-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
executable file
·242 lines (210 loc) · 9.18 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
import torch
import pickle
import cv2
import random
import preprocess_data
import numpy as np
import matplotlib.pyplot as plt
from torchvision import datasets, transforms
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import ToTensor
from tqdm import tqdm
from pathlib import Path
from PIL import Image
from timm.data.constants import \
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.data import create_transform
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
print("Transform = ")
if isinstance(transform, tuple):
for trans in transform:
print(" - - - - - - - - - - ")
for t in trans.transforms:
print(t)
else:
for t in transform.transforms:
print(t)
print("---------------------------")
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform, download=True)
nb_classes = 100
elif args.data_set == 'IMNET':
print("reading from datapath", args.data_path)
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == "image_folder":
root = args.data_path if is_train else args.eval_data_path
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = args.nb_classes
assert len(dataset.class_to_idx) == nb_classes
else:
raise NotImplementedError()
print("Number of the class = %d" % nb_classes)
return dataset, nb_classes
def build_transform(is_train, args):
resize_im = args.input_size > 32
imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
mean=mean,
std=std,
)
if not resize_im:
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
# warping (no cropping) when evaluated at 384 or larger
if args.input_size >= 384:
t.append(
transforms.Resize((args.input_size, args.input_size),
interpolation=transforms.InterpolationMode.BICUBIC),
)
print(f"Warping {args.input_size} size input images...")
else:
if args.crop_pct is None:
args.crop_pct = 224 / 256
size = int(args.input_size / args.crop_pct)
t.append(
# to maintain same ratio w.r.t. 224 images
transforms.Resize(size, interpolation=transforms.InterpolationMode.BICUBIC),
)
t.append(transforms.CenterCrop(args.input_size))
# crop_img = np.transpose(crop_img, (2,0,1))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(mean, std))
return transforms.Compose(t)
def get_split_data(data_root, test_r=0.1, val_r=0.1, file_write=False, label_list=None, use_cropimg=False):
return preprocess_data.split_data(
data_root=data_root,
test_ratio=test_r,
val_ratio=val_r,
label_list=label_list, # ['positive', 'negative']
file_write=file_write,
use_cropimg=use_cropimg)
# Dataset Class
class PotholeDataset(Dataset):
def __init__(self, data_set, args, data_path=None, is_train=True, transform=None, target_transform=None):
super().__init__()
self.data_set = data_set
self.is_train = is_train
self.data_path = data_path
# self.transform = transform
self.transform = build_transform(is_train, args)
self.target_transform = target_transform
self.input_size = args.input_size
self.padding = args.padding
self.padding_size = args.padding_size
self.use_shift = args.use_shift
self.use_bbox = args.use_bbox
self.imsave = args.imsave
self.upsample = args.upsample
self.use_class = args.use_class
self.use_cropimg = args.use_cropimg
self.get_crop()
def __len__(self):
return self.length
# Crop image data
def get_crop(self):
img_list=[]
img_path=[]
img_bbox=[]
label_list=[]
for v in tqdm(self.data_set, desc='Image Cropping... '):
if v.class_id not in self.use_class:
continue
# image_path = self.data_path / v.data_set / v.label / v.image_path
image_path = v.data_set / v.image_path
if self.use_cropimg:
try:
crop_img = cv2.imread(str(image_path))
except:
print(image_path)
sys.exit(1)
else:
crop_img = preprocess_data.crop_image(
image_path = image_path,
bbox = v.bbox,
padding = self.padding,
padding_size = self.padding_size,
use_shift = self.use_shift,
use_bbox = self.use_bbox,
imsave = self.imsave
)
try:
crop_img = cv2.resize(crop_img, (self.input_size, self.input_size))
except:
print(image_path)
if (crop_img.shape[-1]==3):
crop_img = cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB)
pil_image=Image.fromarray(crop_img)
# for i in range(self.upsample[v.class_id]): #여기 주석처리 되어 있어서--upsample은 안쓰는 args.
img_list.append(pil_image)
label_list.append(v.label)
img_path.append(str(image_path))
img_bbox.append(torch.tensor(v.bbox))
self.classes = list(np.sort(np.unique(label_list)))
self.class_to_idx = {string : i for i, string in enumerate(self.classes)}
# print(self.classes) # ['amb_neg', 'amb_pos', 'negative', 'positive']
# print(self.class_to_idx) # {'amb_neg': 0, 'amb_pos': 1, 'negative': 2, 'positive': 3}
# Data upsample to 1:1:1:1 --> label 및 train, val, testset을 일정 비율로 upsample
clcnt = [label_list.count(i) for i in self.classes] # 각 클래스 별 bbox 개수
print("data count before upsampling")
s = num_cl = ''
for idx, cl in enumerate(self.classes):
s = s + ' ' + cl
num_cl = num_cl + ' ' + str(clcnt[idx])
print(s)
print(num_cl)
for j, cl in enumerate(self.classes):
idx = [i for i, k in enumerate(label_list) if k==cl]
img_list.extend([img_list[kk] for kk in idx]*(round(max(clcnt)/clcnt[j])-1))
label_list.extend([label_list[kk] for kk in idx]*(round(max(clcnt)/clcnt[j])-1))
img_path.extend([img_path[kk] for kk in idx]*(round(max(clcnt)/clcnt[j])-1))
img_bbox.extend([img_bbox[kk] for kk in idx]*(round(max(clcnt)/clcnt[j])-1))
# print(clcnt, max(clcnt), clcnt[j], (round(max(clcnt) / clcnt[j]) - 1))
# [175, 90, 273, 34] 273 175 1
# [175, 90, 273, 34] 273 90 2
# [175, 90, 273, 34] 273 273 0
# [175, 90, 273, 34] 273 34 7
self.input_set = (img_list, img_path, img_bbox, label_list)
self.length = len(img_list)
def __getitem__(self, idx):
image = self.input_set[0][idx]
img_path = self.input_set[1][idx]
img_bbox = self.input_set[2][idx]
label = self.input_set[-1][idx]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
clss = torch.tensor(self.class_to_idx[label])
return (image, img_path, img_bbox, clss)
if __name__ == "__main__":
data_root = Path('../nasdata/set_test')
sets = preprocess_data.split_data(data_root, 0.1, 0.1, ['positive', 'negative'], file_write=False)
trainset = PotholeDataset(data_set=sets['train'], args=None, data_path=data_root)
dataloader = DataLoader(trainset, batch_size=2, shuffle=True)
print(dataloader)
for a in dataloader:
print(a)