-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdijkstra_shivam_dhakad.py
399 lines (334 loc) · 15 KB
/
dijkstra_shivam_dhakad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# import libraries
import cv2
import numpy as np
import heapq as hq
import copy
import time
# Action Functions
#move-up
def Move_up(node,map_canvas):
#print(node)
current_node = copy.deepcopy(node)
#print(current_node)
next_node=[current_node[0],current_node[1]-1]
#print(map_canvas[current_node[0]][current_node[1]-1] )
# check if node is not in obsctacle space
if(current_node[1] > 0) and (map_canvas[next_node[0]][next_node[1]][0]==0) and (map_canvas[next_node[0]][next_node[1]][2]==0):
return tuple(next_node)
else:
return None
# move-down
def Move_down(node,map_canvas):
current_node = copy.deepcopy(node)
next_node=[current_node[0],current_node[1]+1]
if(next_node[1] < 500) and (map_canvas[next_node[0]][next_node[1]][0]==0) and (map_canvas[next_node[0]][next_node[1]][2]==0):
return tuple(next_node)
else:
return None
#move-right
def Move_right(node,map_canvas):
current_node = copy.deepcopy(node)
next_node=[current_node[0]+1,current_node[1]]
if(next_node[0] < 1200) and (map_canvas[next_node[0]][next_node[1]][0]==0) and (map_canvas[next_node[0]][next_node[1]][2]==0):
return tuple(next_node)
else:
return None
#move-left
def Move_left(node,map_canvas):
current_node = copy.deepcopy(node)
next_node=[current_node[0]-1,current_node[1]]
if(next_node[0] > 0) and (map_canvas[next_node[0]][next_node[1]][0]==0) and (map_canvas[next_node[0]][next_node[1]][2]==0):
return tuple(next_node)
else:
return None
#move-right-down (diagonally down
def move_left_up(node,map_canvas):
current_node = copy.deepcopy(node)
next_node=[current_node[0]-1,current_node[1]]
if(next_node[1] > 0) and (next_node[0] > 0) and (map_canvas[next_node[0]][next_node[1]][0]==0) and (map_canvas[next_node[0]][next_node[1]][2]==0):
return tuple(next_node)
else:
return None
#move-right-up (diagonally up)
def move_right_up(node,map_canvas):
current_node = copy.deepcopy(node)
next_node=[current_node[0]-1,current_node[1]]
if(next_node[1] > 0) and (next_node[0] < 1200) and (map_canvas[next_node[0]][next_node[1]][0]==0) and (map_canvas[next_node[0]][next_node[1]][2]==0):
return tuple(next_node)
else:
return None
#move-right-down (diagonally down)
def move_right_down(node,map_canvas):
current_node = copy.deepcopy(node)
next_node=[current_node[0]-1,current_node[1]]
if(next_node[1] < 500) and (next_node[0] < 1200) and (map_canvas[next_node[0]][next_node[1]][0]==0) and (map_canvas[next_node[0]][next_node[1]][2]==0):
return tuple(next_node)
else:
return None
#move-left-down (diagonally down)
def move_left_down(node,map_canvas):
current_node = copy.deepcopy(node)
next_node=[current_node[0]-1,current_node[1]]
if(next_node[1] < 500) and (next_node[0] > 0) and (map_canvas[next_node[0]][next_node[1]][0]==0) and (map_canvas[next_node[0]][next_node[1]][2]==0):
return tuple(next_node)
else:
return None
#Dijkstra Algorithm
def Dijkstra(start_node, goal_node,map_canvas):
S={}
PQ=[]
temp=0
hq.heapify(PQ)
hq.heappush(PQ,[0,start_node,start_node]) #PQ= priority Queue. Elements: cost,parent,present
while(len(PQ)!=0):
node=hq.heappop(PQ)
S[(node[2][0],node[2][1])]=node[1]
present_cost=node[0]
if(list(node[2])==goal_node):
print("path generating...")
Backtrack(S,start_node,goal_node,map_canvas)
temp=1
break
# action sequence to explore next_node
next_node=Move_up(node[2],map_canvas)
next_node1=move_right_up(node[2],map_canvas)
next_node2=Move_right(node[2],map_canvas)
next_node3=move_right_down(node[2],map_canvas)
next_node4=Move_down(node[2],map_canvas)
next_node5=move_left_down(node[2],map_canvas)
next_node6=Move_left(node[2],map_canvas)
next_node7=move_left_up(node[2],map_canvas)
if(next_node):
if(next_node not in S):
flag=0
for i in range(len(PQ)):
if(PQ[i][2]==[next_node[0],next_node[1]]):
flag=1
#print(i)
if(PQ[i][0]>(present_cost+1)):
PQ[i][0]=present_cost+1
PQ[i][1]=node[2]
hq.heapify(PQ)
break; #breaks for- no point in continuing after finding the index
if(flag==0):
hq.heappush(PQ,[present_cost+1,node[2],[next_node[0],next_node[1]]])
hq.heapify(PQ)
if(next_node1):
if(next_node1 not in S):
flag=0
for i in range(len(PQ)):
if(PQ[i][2]==[next_node1[0],next_node1[1]]):
flag=1
if(PQ[i][0]>present_cost+1):
PQ[i][0]=present_cost+1
PQ[i][1]=node[2]
hq.heapify(PQ)
break
if(flag==0):
hq.heappush(PQ,[present_cost+1,node[2],[next_node1[0],next_node1[1]]])
hq.heapify(PQ)
if(next_node2):
if(next_node2 not in S):
flag=0
for i in range(len(PQ)):
if(PQ[i][2]==[next_node2[0],next_node2[1]]):
flag=1
if(PQ[i][0]>present_cost+1):
PQ[i][0]=present_cost+1
PQ[i][1]=node[2]
hq.heapify(PQ)
break
if(flag==0):
hq.heappush(PQ,[present_cost+1,node[2],[next_node2[0],next_node2[1]]])
hq.heapify(PQ)
if(next_node3):
if(next_node3 not in S):
flag=0
for i in range(len(PQ)):
if(PQ[i][2]==[next_node3[0],next_node3[1]]):
flag=1
if(PQ[i][0]>present_cost+1):
PQ[i][0]=present_cost+1
PQ[i][1]=node[2]
hq.heapify(PQ)
break;
if(flag==0):
hq.heappush(PQ,[present_cost+1,node[2],[next_node3[0],next_node3[1]]])
hq.heapify(PQ)
if(next_node4):
if(next_node4 not in S):
flag=0
for i in range(len(PQ)):
if(PQ[i][2]==[next_node4[0],next_node4[1]]):
flag=1
if(PQ[i][0]>present_cost+1.4):
PQ[i][0]=present_cost+1.4
PQ[i][1]=node[2]
hq.heapify(PQ)
break
if(flag==0):
hq.heappush(PQ,[present_cost+1.4,node[2],[next_node4[0],next_node4[1]]])
hq.heapify(PQ)
if(next_node5):
if(next_node5 not in S):
flag=0
for i in range(len(PQ)):
if(PQ[i][2]==[next_node5[0],next_node5[1]]):
flag=1
if(PQ[i][0]>present_cost+1.4):
PQ[i][0]=present_cost+1.4
PQ[i][1]=node[2]
hq.heapify(PQ)
break
if(flag==0):
hq.heappush(PQ,[present_cost+1.4,node[2],[next_node5[0],next_node5[1]]])
hq.heapify(PQ)
if(next_node6):
if(next_node6 not in S):
flag=0
for i in range(len(PQ)):
if(PQ[i][2]==[next_node6[0],next_node6[1]]):
flag=1
if(PQ[i][0]>present_cost+1.4):
PQ[i][0]=present_cost+1.4
PQ[i][1]=node[2]
hq.heapify(PQ)
break;
if(flag==0):
hq.heappush(PQ,[present_cost+1.4,node[2],[next_node6[0],next_node6[1]]])
hq.heapify(PQ)
if(next_node7):
if(next_node7 not in S):
flag=0
for i in range(len(PQ)):
if(PQ[i][2]==[next_node7[0],next_node7[1]]):
flag=1
if(PQ[i][0]>present_cost+1.4):
PQ[i][0]=present_cost+1.4
PQ[i][1]=node[2]
hq.heapify(PQ)
break
if(flag==0):
hq.heappush(PQ,[present_cost+1.4,node[2],[next_node7[0],next_node7[1]]])
hq.heapify(PQ)
# if no node is generated, then goal is not reachable
if temp==0 :
print("Goal cannot be reached")
#backtracking function, takes parent node from explored nodes and stores the coordinates of the path in a new list
def Backtrack(S,start_node,goal_node,map_canvas):
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # write the video file in mp4 format
frame_rate = 500 # frame rate
out = cv2.VideoWriter('dijkstra_explore_path.mp4',fourcc,frame_rate,(map_canvas.shape[1],map_canvas.shape[0]))
explored_nodes=S.keys()
navigation=[]
navigation.append(goal_node)
start=copy.deepcopy(start_node)
goal=copy.deepcopy(goal_node)
start.reverse()
goal.reverse()
cv2.circle(map_canvas,tuple(start),3,(0,255,0),-1) #draw green and red circles representing the start & goal
cv2.circle(map_canvas,tuple(goal),3,(0,0,255),-1)
for node in explored_nodes:
map_canvas[node[0]][node[1]]=[255,255,255]
cv2.imshow("Nodes Exploration",map_canvas)
cv2.waitKey(1)
out.write(map_canvas)
parent=S[tuple(goal_node)]
while(parent!=start_node):
navigation.append(parent)
parent=S[tuple(parent)]
navigation.append(start_node)
# draw the path on the map_canvas
while(len(navigation)>0):
path_node = navigation.pop()
map_canvas[path_node[0]][path_node[1]] =[255, 0, 0]
out.write(map_canvas)
cv2.imshow("Nodes Exploration",map_canvas)
out.release()
print(navigation)
if __name__ == '__main__':
start_time = time.time()
start=[]
goal=[]
#create a map of 500x1200
map_canvas = np.zeros((500, 1200, 3), dtype='uint8')
# calculate the vertices of the hexagon
robot_clearance= 5
clearance_color=(140,240,140)
center_x = 650 # hexagon center
center_y = 250
vertices = [] # list to store the vertices of the hexagon
vertices_clearance=[]
# hexacgon vertices radius
radius = 150
clearance_radius= 155
#calculate the vertices of the hexagon
for i in range(6):
x = center_x + radius * np.cos(i * np.pi / 3)
y = center_y + radius * np.sin(i * np.pi / 3)
vertices.append((int(x), int(y)))
for i in range(6):
x = center_x + clearance_radius * np.cos(i * np.pi / 3)
y = center_y + clearance_radius * np.sin(i * np.pi / 3)
vertices_clearance.append((int(x), int(y)))
# draw the hexagon on the map_canvas
cv2.fillPoly(map_canvas,[np.array(vertices_clearance)], clearance_color)
cv2.fillPoly(map_canvas, [np.array(vertices)], (255,0,0))
# show the map_canvas
M = cv2.getRotationMatrix2D((center_x, center_y), 90, 1.0)
map_canvas = cv2.warpAffine(map_canvas, M, (map_canvas.shape[1], map_canvas.shape[0]))
#rectangle coordinates
rectangle1=[[100,0],[175,0],[175,400],[100,400]]
rect1_clearance=[[95,0],[180,0],[180,405],[95,405]]
rectangle2=[[275,100],[350,100],[350,500],[275,500]]
rect2_clearance=[[270,95],[355,95],[355,500],[270,500]]
rectangle3=[[900,50],[1100,50],[1100,125],[900,125]]
rect3_clearance=[[895,45],[1105,45],[1105,130],[895,130]]
rectangle4=[[900,375],[1100,375],[1100,450],[900,450]]
rect4_clearance=[[895,370],[1105,370],[1105,455],[895,455]]
rectangle5=[[1020,120],[1100,120],[1100,380],[1020,380]]
rect5_clearance=[[1015,120],[1105,120],[1105,380],[1015,380]]
vertices1=np.array(rectangle1,dtype=np.int32)
vertices2=np.array(rectangle2,dtype=np.int32)
vertices3=np.array(rectangle3,dtype=np.int32)
vertices4=np.array(rectangle4,dtype=np.int32)
vertices5=np.array(rectangle5,dtype=np.int32)
# draw the rectangle on the map_canvas using fillPoly
cv2.rectangle(map_canvas, (0, 0), (map_canvas.shape[1] - 1, map_canvas.shape[0] - 1), clearance_color, robot_clearance)
cv2.fillPoly(map_canvas, [np.array(rect1_clearance)], clearance_color)
cv2.fillPoly(map_canvas, [np.array(rect2_clearance)], clearance_color)
cv2.fillPoly(map_canvas, [np.array(rect3_clearance)], clearance_color)
cv2.fillPoly(map_canvas, [np.array(rect4_clearance)], clearance_color)
cv2.fillPoly(map_canvas, [np.array(rect5_clearance)], clearance_color)
cv2.fillPoly(map_canvas, [np.array(vertices1)], (255,0,0))
cv2.fillPoly(map_canvas, [np.array(vertices2)], (255,0,0))
cv2.fillPoly(map_canvas, [np.array(vertices3)], (255,0,0))
cv2.fillPoly(map_canvas, [np.array(vertices4)], (255,0,0))
cv2.fillPoly(map_canvas, [np.array(vertices5)], (255,0,0))
while(1):
# take the start and goal coordinates from the user
print("path planning using Dijkstra Algorithm")
x1=input( "Enter start position coordinates(x): ")
y1=input( "Enter start position coordinates(y): ")
start.append(500-int(y1))
start.append(int(x1))
x2=input( "Enter goal position coordinates(x): ")
y2=input( "Enter goal position coordinates(y): ")
goal.append(500-int(y2))
goal.append(int(x2))
# check of inbound conditions for the start and goal nodes
if(int(x1) > 1200 or int(y1)>500 or int(x2) > 1200 or int(y2)>500):
print("enter the coordinates within the map space(1200,500)")
elif map_canvas[int(y2)][int(x2)][0]!=0 or map_canvas[int(y2)][int(x2)][1]!=0 or map_canvas[int(y2)][int(x2)][2]!=0:
print("Goal in obstacle space, try again")
elif map_canvas[int(y1)][int(x1)][0]!=0 or map_canvas[int(y1)][int(x1)][1]!=0 or map_canvas[int(y1)][int(x1)][2]!=0:
print("Start node in obstacle space, try again")
else:
break
# Find the path using Dijkstra Algorithm
Dijkstra(start,goal,map_canvas)
end = time.time()
#print the execution time
print("Total execution time in seconds: ", int(end - start_time))
cv2.waitKey(0)
cv2.destroyAllWindows()