-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
167 lines (141 loc) · 7.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import tensorflow as tf
import numpy as np
import os, random, time
from Model import Model
from utils import load_data, build_vocab, preview_data, get_batches
if not os.environ.has_key('CUDA_VISIBLE_DEVICES'):
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_boolean('train', False, 'train model')
tf.flags.DEFINE_integer('display_interval', 500, 'step interval to display information')
tf.flags.DEFINE_boolean('show_predictions', False, 'show predictions in the test stage')
tf.flags.DEFINE_string('word_vector', 'glove/glove.6B.100d.txt', 'word vector')
tf.flags.DEFINE_string('prefix', 'dev', 'prefix for storing model and log')
tf.flags.DEFINE_integer('vocab_size', 1000, 'vocabulary size')
tf.flags.DEFINE_integer('max_edu_dist', 20, 'maximum distance between two related edus')
tf.flags.DEFINE_integer('dim_embed_word', 100, 'dimension of word embedding')
tf.flags.DEFINE_integer('dim_embed_relation', 100, 'dimension of relation embedding')
tf.flags.DEFINE_integer('dim_feature_bi', 4, 'dimension of binary features')
tf.flags.DEFINE_boolean('use_structured', True, 'use structured encoder')
tf.flags.DEFINE_boolean('use_speaker_attn', True, 'use speaker highlighting mechanism')
tf.flags.DEFINE_boolean('use_shared_encoders', False, 'use shared encoders')
tf.flags.DEFINE_boolean('use_random_structured', False, 'use random structured repr.')
tf.flags.DEFINE_integer('num_epochs', 50, 'number of epochs')
tf.flags.DEFINE_integer('num_units', 256, 'number of hidden units')
tf.flags.DEFINE_integer('num_layers', 1, 'number of RNN layers in encoders')
tf.flags.DEFINE_integer('num_relations', 16, 'number of relation types')
tf.flags.DEFINE_integer('batch_size', 4, 'batch size')
tf.flags.DEFINE_float('keep_prob', 0.5, 'probability to keep units in dropout')
tf.flags.DEFINE_float('learning_rate', 0.1, 'learning rate')
tf.flags.DEFINE_float('learning_rate_decay', 0.98, 'learning rate decay factor')
def get_summary_sum(s, length):
loss_bi, loss_multi = s[0] / length, s[1] / length
prec_bi, recall_bi = s[4] * 1. / s[3], s[4] * 1. / s[2]
f1_bi = 2 * prec_bi * recall_bi / (prec_bi + recall_bi)
prec_multi, recall_multi = s[5] * 1. / s[3], s[5] * 1. / s[2]
f1_multi = 2 * prec_multi * recall_multi / (prec_multi + recall_multi)
return [loss_bi, loss_multi, f1_bi, f1_multi]
map_relations = {}
data_train = load_data('data/STAC/train.json', map_relations)
data_test = load_data('data/STAC/test.json', map_relations)
vocab, embed = build_vocab(data_train)
print 'Dataset sizes: %d/%d' % (len(data_train), len(data_test))
model_dir, log_dir = FLAGS.prefix + '_model', FLAGS.prefix + '_log'
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
with sess.as_default():
model = Model(sess, FLAGS, embed, data_train)
global_step = tf.Variable(0, name='global_step', trainable=False)
global_step_inc_op = global_step.assign(global_step + 1)
epoch = tf.Variable(0, name='epoch', trainable=False)
epoch_inc_op = epoch.assign(epoch + 1)
saver = tf.train.Saver(write_version=tf.train.SaverDef.V2, max_to_keep=None, pad_step_number=True)
summary_list = ['loss_bi', 'loss_multi', 'f1_bi', 'f1_multi']
summary_num = len(summary_list)
len_output_feed = 6
if FLAGS.train:
if tf.train.get_checkpoint_state(model_dir):
print 'Reading model parameters from %s' % model_dir
saver.restore(sess, tf.train.latest_checkpoint(model_dir))
else:
print 'Created model with fresh parameters'
sess.run(tf.global_variables_initializer())
model.initialize(vocab)
print 'Trainable variables:'
for var in tf.trainable_variables():
print var
train_writer = tf.summary.FileWriter(os.path.join(log_dir, 'train'))
test_writer = tf.summary.FileWriter(os.path.join(log_dir, 'test'))
summary_placeholders = [tf.placeholder(tf.float32) for i in range(summary_num)]
summary_op = [tf.summary.scalar(summary_list[i], summary_placeholders[i]) for i in range(summary_num)]
train_batches = get_batches(data_train, FLAGS.batch_size)
test_batches = get_batches(data_test, FLAGS.batch_size)
best_test_f1 = [0] * 2
while epoch.eval() < FLAGS.num_epochs:
epoch_inc_op.eval()
summary_steps = 0
random.shuffle(train_batches)
start_time = time.time()
s = np.zeros(len_output_feed)
for batch in train_batches:
ops = model.step(batch, is_train=True)
for i in range(len_output_feed):
s[i] += ops[i]
summary_steps += 1
global_step_inc_op.eval()
global_step_val = global_step.eval()
if global_step_val % FLAGS.display_interval == 0:
print 'epoch %d, global step %d (%.4fs/step):' % (
epoch.eval(), global_step_val,
(time.time() - start_time) * 1. / summary_steps
)
summary_sum = get_summary_sum(s, summary_steps)
for k in range(summary_num):
print ' train %s: %.5lf' % (summary_list[k], summary_sum[k])
print ' best test f1:', best_test_f1[0], best_test_f1[1]
summary_sum = get_summary_sum(s, len(train_batches))
summaries = sess.run(summary_op, feed_dict=dict(zip(summary_placeholders, summary_sum)))
for s in summaries:
train_writer.add_summary(summary=s, global_step=epoch.eval())
print 'epoch %d (learning rate %.5lf)' % \
(epoch.eval(), model.learning_rate.eval())
for k in range(summary_num):
print ' train %s: %.5lf' % (summary_list[k], summary_sum[k])
s = np.zeros(len_output_feed)
random.seed(0)
for batch in test_batches:
ops = model.step(batch)
for i in range(len_output_feed):
s[i] += ops[i]
summary_sum = get_summary_sum(s, len(test_batches))
summaries = sess.run(summary_op, feed_dict=dict(zip(summary_placeholders, summary_sum)))
for s in summaries:
test_writer.add_summary(summary=s, global_step=epoch.eval())
for k in range(summary_num):
print ' test %s: %.5lf' % (summary_list[k], summary_sum[k])
if summary_sum[-1] > best_test_f1[1]:
best_test_f1[0] = summary_sum[-2]
best_test_f1[1] = summary_sum[-1]
print ' best test f1:', best_test_f1[0], best_test_f1[1]
model.learning_rate_decay_op.eval()
saver.save(sess, '%s/checkpoint' % model_dir, global_step=epoch.eval())
else:
print 'Reading model parameters from %s' % model_dir
saver.restore(sess, tf.train.latest_checkpoint(model_dir))
test_batches = get_batches(data_test, 1, sort=False)
s = np.zeros(len_output_feed)
random.seed(0)
idx = 0
for k, batch in enumerate(test_batches):
if len(batch[0]['edus']) == 1:
continue
ops = model.step(batch)
for i in range(len_output_feed):
s[i] += ops[i]
if FLAGS.show_predictions:
idx = preview_data(batch, ops[-1], map_relations, vocab, idx)
summary_sum = get_summary_sum(s, len(test_batches))
print 'Test:'
for k in range(summary_num):
print ' test %s: %.5lf' % (summary_list[k], summary_sum[k])