forked from SMART-TTS/SMART-Vocoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
synthesize_merged.py
98 lines (79 loc) · 3.37 KB
/
synthesize_merged.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
from torch.utils.data import DataLoader
from torch.distributions.normal import Normal
from args_merged import parse_args
from data import KORDataset, collate_fn_synth
from hps import Hyperparameters
from model import SmartVocoder
from utils import mkdir
import librosa
import os
import time
torch.backends.cudnn.benchmark = False
def load_dataset(args):
collate_fn2 = lambda batch: collate_fn_synth(batch, args.hop_length)
test_dataset = KORDataset(args.data_path, False, 0.1)
synth_loader = DataLoader(test_dataset, batch_size=1, collate_fn=collate_fn2,
num_workers=args.num_workers, pin_memory=True)
print('sr', args.sr)
return synth_loader
def build_model(hps):
model = SmartVocoder(hps)
print('number of parameters:', sum(p.numel() for p in model.parameters() if p.requires_grad))
return model
def synthesize(model, temp, num_synth):
global global_step
print('temp', temp)
for batch_idx, (x, c) in enumerate(synth_loader):
if batch_idx < num_synth:
x, c = x.to(device), c.to(device)
q_0 = Normal(x.new_zeros(x.size()), x.new_ones(x.size()))
z = q_0.sample()
# a = torch.FloatTensor(z.shape).uniform_(temp, 1.0).to(device)
z = z * temp
torch.cuda.synchronize()
timestemp = time.time()
with torch.no_grad():
y_gen = model.reverse(z, c).squeeze()
wav = y_gen.to(torch.device("cpu")).data.numpy()
wav_name = '{}/{}.wav'.format(sample_path, batch_idx)
torch.cuda.synchronize()
print('{} seconds'.format(time.time() - timestemp))
librosa.output.write_wav(wav_name, wav, sr=22050)
print('{} Saved!'.format(wav_name))
def load_checkpoint(step, model):
checkpoint_path = os.path.join(save_path, "checkpoint_step{:09d}.pth".format(step))
print("Load checkpoint from: {}".format(checkpoint_path))
checkpoint = torch.load(checkpoint_path)
# generalized load procedure for both single-gpu and DataParallel models
# https://discuss.pytorch.org/t/solved-keyerror-unexpected-key-module-encoder-embedding-weight-in-state-dict/1686/3
try:
model.load_state_dict(checkpoint["state_dict"])
except RuntimeError:
print("INFO: this model is trained with DataParallel. Creating new state_dict without module...")
state_dict = checkpoint["state_dict"]
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
g_epoch = checkpoint["global_epoch"]
g_step = checkpoint["global_step"]
return model, g_epoch, g_step
if __name__ == "__main__":
global global_step
global start_time
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args = parse_args()
sample_path, save_path = mkdir(args, synthesize=True)
synth_loader = load_dataset(args)
hps = Hyperparameters(args)
model = build_model(hps)
model, global_epoch, global_step = load_checkpoint(args.load_step, model)
# model = WaveNODE.remove_weightnorm(model)
model.to(device)
model.eval()
print('sample_path', sample_path)
with torch.no_grad():
synthesize(model, args.temp, args.num_synth)