-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathpython.html
163 lines (148 loc) · 11.5 KB
/
python.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<title>Chapter 18 Python notebooks | Machine Learning for Factor Investing</title>
<meta name="author" content="Guillaume Coqueret and Tony Guida">
<meta name="generator" content="bookdown 0.24 with bs4_book()">
<meta property="og:title" content="Chapter 18 Python notebooks | Machine Learning for Factor Investing">
<meta property="og:type" content="book">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="Chapter 18 Python notebooks | Machine Learning for Factor Investing">
<!-- JS --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://kit.fontawesome.com/6ecbd6c532.js" crossorigin="anonymous"></script><script src="libs/header-attrs-2.11/header-attrs.js"></script><script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="libs/bootstrap-4.6.0/bootstrap.min.css" rel="stylesheet">
<script src="libs/bootstrap-4.6.0/bootstrap.bundle.min.js"></script><script src="libs/bs3compat-0.3.1/transition.js"></script><script src="libs/bs3compat-0.3.1/tabs.js"></script><script src="libs/bs3compat-0.3.1/bs3compat.js"></script><link href="libs/bs4_book-1.0.0/bs4_book.css" rel="stylesheet">
<script src="libs/bs4_book-1.0.0/bs4_book.js"></script><script src="libs/kePrint-0.0.1/kePrint.js"></script><link href="libs/lightable-0.0.1/lightable.css" rel="stylesheet">
<script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- CSS --><meta name="description" content=".container-fluid main { max-width: 60rem; } This page hosts the Jupyter notebooks that make the Python version of the monograph (in its first edition). Below, the official notebooks are naturally...">
<meta property="og:description" content=".container-fluid main { max-width: 60rem; } This page hosts the Jupyter notebooks that make the Python version of the monograph (in its first edition). Below, the official notebooks are naturally...">
<meta name="twitter:description" content=".container-fluid main { max-width: 60rem; } This page hosts the Jupyter notebooks that make the Python version of the monograph (in its first edition). Below, the official notebooks are naturally...">
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container-fluid">
<div class="row">
<header class="col-sm-12 col-lg-3 sidebar sidebar-book"><a class="sr-only sr-only-focusable" href="#content">Skip to main content</a>
<div class="d-flex align-items-start justify-content-between">
<h1>
<a href="index.html" title="">Machine Learning for Factor Investing</a>
</h1>
<button class="btn btn-outline-primary d-lg-none ml-2 mt-1" type="button" data-toggle="collapse" data-target="#main-nav" aria-expanded="true" aria-controls="main-nav"><i class="fas fa-bars"></i><span class="sr-only">Show table of contents</span></button>
</div>
<div id="main-nav" class="collapse-lg">
<form role="search">
<input id="search" class="form-control" type="search" placeholder="Search" aria-label="Search">
</form>
<nav aria-label="Table of contents"><h2>Table of contents</h2>
<ul class="book-toc list-unstyled">
<li><a class="" href="index.html">Preface</a></li>
<li class="book-part">Introduction</li>
<li><a class="" href="notdata.html"><span class="header-section-number">1</span> Notations and data</a></li>
<li><a class="" href="intro.html"><span class="header-section-number">2</span> Introduction</a></li>
<li><a class="" href="factor.html"><span class="header-section-number">3</span> Factor investing and asset pricing anomalies</a></li>
<li><a class="" href="Data.html"><span class="header-section-number">4</span> Data preprocessing</a></li>
<li class="book-part">Common supervised algorithms</li>
<li><a class="" href="lasso.html"><span class="header-section-number">5</span> Penalized regressions and sparse hedging for minimum variance portfolios</a></li>
<li><a class="" href="trees.html"><span class="header-section-number">6</span> Tree-based methods</a></li>
<li><a class="" href="NN.html"><span class="header-section-number">7</span> Neural networks</a></li>
<li><a class="" href="svm.html"><span class="header-section-number">8</span> Support vector machines</a></li>
<li><a class="" href="bayes.html"><span class="header-section-number">9</span> Bayesian methods</a></li>
<li class="book-part">From predictions to portfolios</li>
<li><a class="" href="valtune.html"><span class="header-section-number">10</span> Validating and tuning</a></li>
<li><a class="" href="ensemble.html"><span class="header-section-number">11</span> Ensemble models</a></li>
<li><a class="" href="backtest.html"><span class="header-section-number">12</span> Portfolio backtesting</a></li>
<li class="book-part">Further important topics</li>
<li><a class="" href="interp.html"><span class="header-section-number">13</span> Interpretability</a></li>
<li><a class="" href="causality.html"><span class="header-section-number">14</span> Two key concepts: causality and non-stationarity</a></li>
<li><a class="" href="unsup.html"><span class="header-section-number">15</span> Unsupervised learning</a></li>
<li><a class="" href="RL.html"><span class="header-section-number">16</span> Reinforcement learning</a></li>
<li class="book-part">Appendix</li>
<li><a class="" href="data-description.html"><span class="header-section-number">17</span> Data description</a></li>
<li><a class="active" href="python.html"><span class="header-section-number">18</span> Python notebooks</a></li>
<li><a class="" href="solutions-to-exercises.html"><span class="header-section-number">19</span> Solutions to exercises</a></li>
</ul>
<div class="book-extra">
</div>
</nav>
</div>
</header><main class="col-sm-12 col-md-9 col-lg-7" id="content"><div id="python" class="section level1" number="18">
<h1>
<span class="header-section-number">18</span> Python notebooks<a class="anchor" aria-label="anchor" href="#python"><i class="fas fa-link"></i></a>
</h1>
<style>
.container-fluid main {
max-width: 60rem;
}
</style>
<p>This page hosts the Jupyter notebooks that make the Python version of the monograph (in its first edition).<br>
Below, the official notebooks are naturally split into chapters.<br>
We also provide an independent implementation by Zheyuan Shen, hosted on
<a href="https://drive.google.com/drive/folders/1bG0vUFZP7c2_iV4X8dqeBQ-77-seJOj4?usp=sharing" target="_blank"><strong>Google Drive</strong></a>.</p>
<p>Chapter 1: <a href="http://www.mlfactor.com/chap_1.html" target="_blank"><strong>Notations & data</strong></a></p>
<p>Chapter 2: <a href="http://www.mlfactor.com/chap_2.html" target="_blank"><strong>Introduction</strong></a></p>
<p>Chapter 3: <a href="http://www.mlfactor.com/chap_3.html" target="_blank"><strong>Factor investing and asset pricing anomalies</strong></a></p>
<p>Chapter 4: <a href="http://www.mlfactor.com/chap_4.html" target="_blank"><strong>Data pre-processing</strong></a></p>
<p>Chapter 5: <a href="http://www.mlfactor.com/chap_5.html" target="_blank"><strong>Penalized regressions</strong></a></p>
<p>Chapter 6: <a href="http://www.mlfactor.com/chap_6.html" target="_blank"><strong>Tree-based methods</strong></a></p>
<p>Chapter 7: <a href="http://www.mlfactor.com/chap_7.html" target="_blank"><strong>Neural networks</strong></a></p>
<p>Chapter 8: <a href="http://www.mlfactor.com/chap_8.html" target="_blank"><strong>Support vector machines</strong></a></p>
<p>Chapter 10: <a href="http://www.mlfactor.com/chap_10.html" target="_blank"><strong>Validating & tuning</strong></a></p>
<p>Chapter 11: <a href="http://www.mlfactor.com/chap_11.html" target="_blank"><strong>Ensemble models</strong></a></p>
<p>Chapter 12: <a href="http://www.mlfactor.com/chap_12.html" target="_blank"><strong>Backtesting</strong></a></p>
<p>Chapter 13: <a href="http://www.mlfactor.com/chap_13.html" target="_blank"><strong>Interpretability</strong></a></p>
<p>Chapter 14: <a href="http://www.mlfactor.com/chap_14.html" target="_blank"><strong>Causality and non-stationarity</strong></a></p>
<p>Chapter 15: <a href="http://www.mlfactor.com/chap_15.html" target="_blank"><strong>Unsupervised learning</strong></a></p>
<p>Chapter 16: <a href="http://www.mlfactor.com/chap_16.html" target="_blank"><strong>Reinforcement learning</strong></a></p>
</div>
<div class="chapter-nav">
<div class="prev"><a href="data-description.html"><span class="header-section-number">17</span> Data description</a></div>
<div class="next"><a href="solutions-to-exercises.html"><span class="header-section-number">19</span> Solutions to exercises</a></div>
</div></main><div class="col-md-3 col-lg-2 d-none d-md-block sidebar sidebar-chapter">
<nav id="toc" data-toggle="toc" aria-label="On this page"><h2>On this page</h2>
<ul class="nav navbar-nav"><li><a class="nav-link" href="#python"><span class="header-section-number">18</span> Python notebooks</a></li></ul>
<div class="book-extra">
<ul class="list-unstyled">
</ul>
</div>
</nav>
</div>
</div>
</div> <!-- .container -->
<footer class="bg-primary text-light mt-5"><div class="container"><div class="row">
<div class="col-12 col-md-6 mt-3">
<p>"<strong>Machine Learning for Factor Investing</strong>" was written by Guillaume Coqueret and Tony Guida. It was last built on 2022-11-28.</p>
</div>
<div class="col-12 col-md-6 mt-3">
<p>This book was built by the <a class="text-light" href="https://bookdown.org">bookdown</a> R package.</p>
</div>
</div></div>
</footer><!-- dynamically load mathjax for compatibility with self-contained --><script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script><script type="text/x-mathjax-config">const popovers = document.querySelectorAll('a.footnote-ref[data-toggle="popover"]');
for (let popover of popovers) {
const div = document.createElement('div');
div.setAttribute('style', 'position: absolute; top: 0, left:0; width:0, height:0, overflow: hidden; visibility: hidden;');
div.innerHTML = popover.getAttribute('data-content');
var has_math = div.querySelector("span.math");
if (has_math) {
document.body.appendChild(div);
MathJax.Hub.Queue(["Typeset", MathJax.Hub, div]);
MathJax.Hub.Queue(function() {
popover.setAttribute('data-content', div.innerHTML);
document.body.removeChild(div);
})
}
}
</script>
</body>
</html>