forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseq2seq_attention_decode.py
162 lines (138 loc) · 5.48 KB
/
seq2seq_attention_decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Module for decoding."""
import os
import time
import beam_search
import data
from six.moves import xrange
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('max_decode_steps', 1000000,
'Number of decoding steps.')
tf.app.flags.DEFINE_integer('decode_batches_per_ckpt', 8000,
'Number of batches to decode before restoring next '
'checkpoint')
DECODE_LOOP_DELAY_SECS = 60
DECODE_IO_FLUSH_INTERVAL = 100
class DecodeIO(object):
"""Writes the decoded and references to RKV files for Rouge score.
See nlp/common/utils/internal/rkv_parser.py for detail about rkv file.
"""
def __init__(self, outdir):
self._cnt = 0
self._outdir = outdir
if not os.path.exists(self._outdir):
os.mkdir(self._outdir)
self._ref_file = None
self._decode_file = None
def Write(self, reference, decode):
"""Writes the reference and decoded outputs to RKV files.
Args:
reference: The human (correct) result.
decode: The machine-generated result
"""
self._ref_file.write('output=%s\n' % reference)
self._decode_file.write('output=%s\n' % decode)
self._cnt += 1
if self._cnt % DECODE_IO_FLUSH_INTERVAL == 0:
self._ref_file.flush()
self._decode_file.flush()
def ResetFiles(self):
"""Resets the output files. Must be called once before Write()."""
if self._ref_file: self._ref_file.close()
if self._decode_file: self._decode_file.close()
timestamp = int(time.time())
self._ref_file = open(
os.path.join(self._outdir, 'ref%d'%timestamp), 'w')
self._decode_file = open(
os.path.join(self._outdir, 'decode%d'%timestamp), 'w')
class BSDecoder(object):
"""Beam search decoder."""
def __init__(self, model, batch_reader, hps, vocab):
"""Beam search decoding.
Args:
model: The seq2seq attentional model.
batch_reader: The batch data reader.
hps: Hyperparamters.
vocab: Vocabulary
"""
self._model = model
self._model.build_graph()
self._batch_reader = batch_reader
self._hps = hps
self._vocab = vocab
self._saver = tf.train.Saver()
self._decode_io = DecodeIO(FLAGS.decode_dir)
def DecodeLoop(self):
"""Decoding loop for long running process."""
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
step = 0
while step < FLAGS.max_decode_steps:
time.sleep(DECODE_LOOP_DELAY_SECS)
if not self._Decode(self._saver, sess):
continue
step += 1
def _Decode(self, saver, sess):
"""Restore a checkpoint and decode it.
Args:
saver: Tensorflow checkpoint saver.
sess: Tensorflow session.
Returns:
If success, returns true, otherwise, false.
"""
ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root)
if not (ckpt_state and ckpt_state.model_checkpoint_path):
tf.logging.info('No model to decode yet at %s', FLAGS.log_root)
return False
tf.logging.info('checkpoint path %s', ckpt_state.model_checkpoint_path)
ckpt_path = os.path.join(
FLAGS.log_root, os.path.basename(ckpt_state.model_checkpoint_path))
tf.logging.info('renamed checkpoint path %s', ckpt_path)
saver.restore(sess, ckpt_path)
self._decode_io.ResetFiles()
for _ in xrange(FLAGS.decode_batches_per_ckpt):
(article_batch, _, _, article_lens, _, _, origin_articles,
origin_abstracts) = self._batch_reader.NextBatch()
for i in xrange(self._hps.batch_size):
bs = beam_search.BeamSearch(
self._model, self._hps.batch_size,
self._vocab.WordToId(data.SENTENCE_START),
self._vocab.WordToId(data.SENTENCE_END),
self._hps.dec_timesteps)
article_batch_cp = article_batch.copy()
article_batch_cp[:] = article_batch[i:i+1]
article_lens_cp = article_lens.copy()
article_lens_cp[:] = article_lens[i:i+1]
best_beam = bs.BeamSearch(sess, article_batch_cp, article_lens_cp)[0]
decode_output = [int(t) for t in best_beam.tokens[1:]]
self._DecodeBatch(
origin_articles[i], origin_abstracts[i], decode_output)
return True
def _DecodeBatch(self, article, abstract, output_ids):
"""Convert id to words and writing results.
Args:
article: The original article string.
abstract: The human (correct) abstract string.
output_ids: The abstract word ids output by machine.
"""
decoded_output = ' '.join(data.Ids2Words(output_ids, self._vocab))
end_p = decoded_output.find(data.SENTENCE_END, 0)
if end_p != -1:
decoded_output = decoded_output[:end_p]
tf.logging.info('article: %s', article)
tf.logging.info('abstract: %s', abstract)
tf.logging.info('decoded: %s', decoded_output)
self._decode_io.Write(abstract, decoded_output.strip())