forked from gpgpu-sim/gpgpu-sim_distribution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
README
482 lines (334 loc) · 25.2 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
Welcome to GPGPU-Sim, a cycle-level simulator modeling contemporary graphics
processing units (GPUs) running GPU computing workloads written in CUDA or
OpenCL. Also included in GPGPU-Sim is a performance visualization tool called
AerialVision and a configurable and extensible energy model called GPUWattch.
GPGPU-Sim and GPUWattch have been rigorously validated with performance and
power measurements of real hardware GPUs.
This version of GPGPU-Sim has been tested with CUDA version 4.2,
5.0, 5.5, 6.0 and 7.5, 8.0, 9.0, 9.1
Please see the copyright notice in the file COPYRIGHT distributed with this
release in the same directory as this file.
If you use GPGPU-Sim in your research, please cite:
Ali Bakhoda, George Yuan, Wilson W. L. Fung, Henry Wong, Tor M. Aamodt,
Analyzing CUDA Workloads Using a Detailed GPU Simulator, in IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), Boston, MA,
April 19-21, 2009.
If you use cuDNN and Pytorch support, the Checkpoint function or the Debigging tool for functional simulation error in GPGPU-Sim for your research,
please cite:
Jonathan Lew, Deval Shah, Suchita Pati, Shaylin Cattell, Mengchi Zhang, Amruth Sandhupatla, Christopher Ng, Negar Goli, Matthew D. Sinclair, Timothy G. Rogers, Tor M. Aamodt
Analyzing Machine Learning Workloads Using a Detailed GPU Simulator, arXiv:1811.08933,
https://arxiv.org/abs/1811.08933
If you use the memory system in GPGPU-Sim, or the Volta/Pascal models,
please cite:
Mahmoud Khairy, Jain Akshay, Tor Aamodt, Timothy G Rogers,
Exploring Modern GPU Memory System Design Challenges through Accurate Modeling, arXiv:1810.07269,
https://arxiv.org/abs/1810.07269
If you use the Tensor Core in GPGPU-Sim or CUTLASS Library for your research
please cite:
Md Aamir Raihan, Negar Goli, Tor Aamodt,
Modeling Deep Learning Accelerator Enabled GPUs, arXiv:1811.08309,
https://arxiv.org/abs/1811.08309
If you use the GPUWattch energy model in your research, please cite:
Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim,
Tor M. Aamodt, Vijay Janapa Reddi, GPUWattch: Enabling Energy Optimizations in
GPGPUs, In proceedings of the ACM/IEEE International Symposium on Computer
Architecture (ISCA 2013), Tel-Aviv, Israel, June 23-27, 2013.
If you use the support for CUDA dynamic parallelism in your research, please cite:
Jin Wang and Sudhakar Yalamanchili, Characterization and Analysis of Dynamic
Parallelism in Unstructured GPU Applications, 2014 IEEE International Symposium
on Workload Characterization (IISWC), November 2014.
If you use figures plotted using AerialVision in your publications, please cite:
Aaron Ariel, Wilson W. L. Fung, Andrew Turner, Tor M. Aamodt, Visualizing
Complex Dynamics in Many-Core Accelerator Architectures, In Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 164-174, White Plains, NY, March 28-30, 2010.
This file contains instructions on installing, building and running GPGPU-Sim.
Detailed documentation on what GPGPU-Sim models, how to configure it, and a
guide to the source code can be found here: <http://gpgpu-sim.org/manual/>.
Instructions for building doxygen source code documentation are included below.
Detailed documentation on GPUWattch including how to configure it and a guide
to the source code can be found here: <http://gpgpu-sim.org/gpuwattch/>.
If you have questions, please sign up for the google groups page (see
gpgpu-sim.org), but note that use of this simulator does not imply any level of
support. Questions answered on a best effort basis.
To submit a bug report, go here: http://www.gpgpu-sim.org/bugs/
See Section 2 "INSTALLING, BUILDING and RUNNING GPGPU-Sim" below to get started.
See file CHANGES for updates in this and earlier versions.
1. CONTRIBUTIONS and HISTORY
== GPGPU-Sim ==
GPGPU-Sim was created by Tor Aamodt's research group at the University of
British Columbia. Many have directly contributed to development of GPGPU-Sim
including: Tor Aamodt, Wilson W.L. Fung, Ali Bakhoda, George Yuan, Ivan Sham,
Henry Wong, Henry Tran, Andrew Turner, Aaron Ariel, Inderpret Singh, Tim
Rogers, Jimmy Kwa, Andrew Boktor, Ayub Gubran Tayler Hetherington and others.
GPGPU-Sim models the features of a modern graphics processor that are relevant
to non-graphics applications. The first version of GPGPU-Sim was used in a
MICRO'07 paper and follow-on ACM TACO paper on dynamic warp formation. That
version of GPGPU-Sim used the SimpleScalar PISA instruction set for functional
simulation, and various configuration files indicating which loops should be
spawned as kernels on the GPU, along with reconvergence points required for
SIMT execution to provide a programming model simlar to CUDA/OpenCL. Creating
benchmarks for the original GPGPU-Sim simulator was a very time consuming
process and the validity of code generation for CPU run on a GPU was questioned
by some. These issues motivated the development an interface for directly
running CUDA applications to leverage the growing number of applications being
developed to use CUDA. We subsequently added support for OpenCL and removed
all SimpleScalar code.
The interconnection network is simulated using the booksim simulator developed
by Bill Dally's research group at Stanford.
To produce output that matches the output from running the same CUDA program on
the GPU, we have implemented several PTX instructions using the CUDA Math
library (part of the CUDA toolkit). Code to interface with the CUDA Math
library is contained in cuda-math.h, which also includes several structures
derived from vector_types.h (one of the CUDA header files).
== GPUWattch Energy Model ==
GPUWattch (introduced in GPGPU-Sim 3.2.0) was developed by researchers at the
University of British Columbia, the University of Texas at Austin, and the
University of Wisconsin-Madison. Contributors to GPUWattch include Tor
Aamodt's research group at the University of British Columbia: Tayler
Hetherington and Ahmed ElTantawy; Vijay Reddi's research group at the
University of Texas at Austin: Jingwen Leng; and Nam Sung Kim's research group
at the University of Wisconsin-Madison: Syed Gilani.
GPUWattch leverages McPAT, which was developed by Sheng Li et al. at the
University of Notre Dame, Hewlett-Packard Labs, Seoul National University, and
the University of California, San Diego. The paper can be found at
http://www.hpl.hp.com/research/mcpat/micro09.pdf.
2. INSTALLING, BUILDING and RUNNING GPGPU-Sim
Assuming all dependencies required by GPGPU-Sim are installed on your system,
to build GPGPU-Sim all you need to do is add the following line to your
~/.bashrc file (assuming the CUDA Toolkit was installed in /usr/local/cuda):
export CUDA_INSTALL_PATH=/usr/local/cuda
then type
bash
source setup_environment
make
If the above fails, see "Step 1" and "Step 2" below.
If the above worked, see "Step 3" below, which explains how to run a CUDA
benchmark on GPGPU-Sim.
Step 1: Dependencies
====================
GPGPU-Sim was developed on SUSE Linux (this release was tested with SUSE
version 11.3) and has been used on several other Linux platforms (both 32-bit
and 64-bit systems). In principle, GPGPU-Sim should work with any linux
distribution as long as the following software dependencies are satisfied.
Download and install the CUDA Toolkit. It is recommended to use version 3.1 for
normal PTX simulation and version 4.0 for cuobjdump support and/or to use
PTXPlus (Harware instruction set support). Note that it is possible to have
multiple versions of the CUDA toolkit installed on a single system -- just
install them in different directories and set your CUDA_INSTALL_PATH
environment variable to point to the version you want to use.
[Optional] If you want to run OpenCL on the simulator, download and install
NVIDIA's OpenCL driver from <http://developer.nvidia.com/opencl>. Update your
PATH and LD_LIBRARY_PATH as indicated by the NVIDIA install scripts. Note that
you will need to use the lib64 directory if you are using a 64-bit machine. We
have tested OpenCL on GPGPU-Sim using NVIDIA driver version 256.40
<http://developer.download.nvidia.com/compute/cuda/3_1/drivers/devdriver_3.1_linux_64_256.40.run>
This version of GPGPU-Sim has been updated to support more recent versions of
the NVIDIA drivers (tested on version 295.20).
GPGPU-Sim dependencies:
* gcc
* g++
* make
* makedepend
* xutils
* bison
* flex
* zlib
* CUDA Toolkit
GPGPU-Sim documentation dependencies:
* doxygen
* graphvi
AerialVision dependencies:
* python-pmw
* python-ply
* python-numpy
* libpng12-dev
* python-matplotlib
We used gcc/g++ version 4.5.1, bison version 2.4.1, and flex version 2.5.35.
If you are using Ubuntu, the following commands will install all required
dependencies besides the CUDA Toolkit.
GPGPU-Sim dependencies:
"sudo apt-get install build-essential xutils-dev bison zlib1g-dev flex
libglu1-mesa-dev"
GPGPU-Sim documentation dependencies:
"sudo apt-get install doxygen graphviz"
AerialVision dependencies:
"sudo apt-get install python-pmw python-ply python-numpy libpng12-dev
python-matplotlib"
CUDA SDK dependencies:
"sudo apt-get install libxi-dev libxmu-dev libglut3-dev"
If you are running applications which use NVIDIA libraries such as cuDNN and
cuBLAS, install them too.
Finally, ensure CUDA_INSTALL_PATH is set to the location where you installed
the CUDA Toolkit (e.g., /usr/local/cuda) and that $CUDA_INSTALL_PATH/bin is in
your PATH. You probably want to modify your .bashrc file to incude the
following (this assumes the CUDA Toolkit was installed in /usr/local/cuda):
export CUDA_INSTALL_PATH=/usr/local/cuda
export PATH=$CUDA_INSTALL_PATH/bin
If running applications which use cuDNN or cuBLAS:
export CUDNN_PATH=<Path To cuDNN Directory>
export LD_LIBRARY_PATH=$CUDA_INSTALL_PATH/lib64:$CUDA_INSTALL_PATH/lib:$CUDNN_PATH/lib64
Step 2: Build
=============
To build the simulator, you first need to configure how you want it to be
built. From the root directory of the simulator, type the following commands in
a bash shell (you can check you are using a bash shell by running the command
"echo $SHELL", which should print "/bin/bash"):
source setup_environment <build_type>
replace <build_type> with debug or release. Use release if you need faster
simulation and debug if you need to run the simulator in gdb. If nothing is
specified, release will be used by default.
Now you are ready to build the simulator, just run
make
After make is done, the simulator would be ready to use. To clean the build,
run
make clean
To build the doxygen generated documentations, run
make docs
to clean the docs run
make cleandocs
The documentation resides at doc/doxygen/html.
Step 3: Run
============
Before we run, we need to make sure the application's executable file is dynamically linked to CUDA runtime library. This can be done during compilation of your program by introducing the nvcc flag "--cudart shared" in makefile (quotes should be excluded).
To confirm the same, type the follwoing command:
ldd <your_application_name>
You should see that your application is using libcudart.so file in GPGPUSim directory.
If running applications which use cuDNN or cuBLAS:
* Modify the Makefile or the compilation command of the application to change
all the dynamic links to static ones, for example:
* -L$(CUDA_PATH)/lib64 -lcublas to
-L$(CUDA_PATH)/lib64 -lcublas_static
* -L$(CUDNN_PATH)/lib64 -lcudnn to
-L$(CUDNN_PATH)/lib64 -lcudnn_static
* Modify the Makefile or the compilation command such that the following
flags are used by the nvcc compiler:
-gencode arch=compute_61,code=compute_61
(the number 61 refers to the SM version. You would need to set it based
on the GPGPU-Sim config "-gpgpu ptx force max capability" you use)
Copy the contents of configs/QuadroFX5800/ or configs/GTX480/ to your
application's working directory. These files configure the microarchitecture
models to resemble the respective GPGPU architectures.
To use ptxplus (native ISA) change the following options in the configuration
file to "1" (Note: you need CUDA version 4.0) as follows:
-gpgpu_ptx_use_cuobjdump 1
-gpgpu_ptx_convert_to_ptxplus 1
Now To run a CUDA application on the simulator, simply execute
source setup_environment <build_type>
Use the same <build_type> you used while building the simulator. Then just
launch the executable as you would if it was to run on the hardware. By
running "source setup_environment <build_type>" you change your LD_LIBRARY_PATH
to point to GPGPU-Sim's instead of CUDA or OpenCL runtime so that you do NOT
need to re-compile your application simply to run it on GPGPU-Sim.
To revert back to running on the hardware, remove GPGPU-Sim from your
LD_LIBRARY_PATH environment variable.
The following GPGPU-Sim configuration options are used to enable GPUWattch
- power_simulation_enabled 1 (1=Enabled, 0=Not enabled)
- gpuwattch_xml_file <filename>.xml
The GPUWattch XML configuration file name is set to gpuwattch.xml by default and
currently only supplied for GTX480 (default=gpuwattch_gtx480.xml). Please refer to
<http://gpgpu-sim.org/gpuwattch/> for more information.
Running OpenCL applications is identical to running CUDA applications. However,
OpenCL applications need to communicate with the NVIDIA driver in order to
build OpenCL at runtime. GPGPU-Sim supports offloading this compilation to a
remote machine. The hostname of this machine can be specified using the
environment variable OPENCL_REMOTE_GPU_HOST. This variable should also be set
through the setup_environment script. If you are offloading to a remote machine,
you might want to setup passwordless ssh login to that machine in order to
avoid having too retype your password for every execution of an OpenCL
application.
If you need to run the set of applications in the NVIDIA CUDA SDK code
samples then you will need to download, install and build the SDK.
The CUDA applications from the ISPASS 2009 paper mentioned above are
distributed separately on github under the repo ispass2009-benchmarks.
The README.ISPASS-2009 file distributed with the benchmarks now contains
updated instructions for running the benchmarks on GPGPU-Sim v3.x.
3. (OPTIONAL) Updating GPGPU-Sim (ADVANCED USERS ONLY)
If you have made modifications to the simulator and wish to incorporate new
features/bugfixes from subsequent releases the following instructions may help.
They are meant only as a starting point and only recommended for users
comfortable with using source control who have experience modifying and
debugging GPGPU-Sim.
WARNING: Before following the procedure below, back up your modifications to
GPGPU-Sim. The following procedure may cause you to lose all your changes. In
general, merging code changes can require manual intervention and even in the
case where a merge proceeds automatically it may introduce errors. If many
edits have been made the merge process can be a painful manual process. Hence,
you will almost certainly want to have a copy of your code as it existed before
you followed the procedure below in case you need to start over again. You
will need to consult the documentation for git in addition to these
instructions in the case of any complications.
STOP. BACK UP YOUR CHANGES BEFORE PROCEEDING. YOU HAVE BEEN WARNED. TWICE.
To update GPGPU-Sim you need git to be installed on your system. Below we
assume that you ran the following command to get the source code of GPGPU-Sim:
git clone git://dev.ece.ubc.ca/gpgpu-sim
Since running the above command you have made local changes and we have
published changes to GPGPU-Sim on the above git server. You have looked at the
changes we made, looking at both the new CHANGES file and probably even the
source code differences. You decide you want to incorporate our changes into
your modified version of GPGPU-Sim.
Before updating your source code, we recommend you remove any object files:
make clean
Then, run the following command in the root directory of GPGPU-Sim:
git pull
While git is pulling the latest changes, conflicts might arise due to changes
that you made that conflict with the latest updates. In this case, you need to
resolved those conflicts manually. You can either edit the conflicting files
directly using your favorite text editor, or you can use the following command
to open a graphical merge tool to do the merge:
git mergetool
3.1 Testing updated version of GPGPU-Sim
Now you should test that the merged version "works". This means following the
steps for building GPGPU-Sim in the *new* README file (not this version) since
they may have changed. Assuming the code compiles without errors/warnings the
next step is to do some regression testing. At UBC we have an extensive set of
regression tests we run against our internal development branch when we make
changes. In the future we may make this set of regression tests publically
available. For now, you will want to compile the merged code and re-run all of
the applications you care about (implying these applications worked for you
before you did the merge). You want to do this before making further changes to
identify any compile time or runtime errors that occur due to the code merging
process.
4. MISCELLANEOUS
4.1 Speeding up the execution
Some applications take several hours to execute on GPGPUSim. This is because the simulator has to dump the PTX, analyze them and get resource usage statistics. This can be avoided everytime we execute the program in the following way:
Step 1: Execute the program by enabling “-save_embedded_ptx 1” in config file, execute the code and let cuobjdump command dump all necessary files. After this process, you will get 2 new files namely: _cuobjdump_complete_output_<some_random_name> and _1.ptx
Step 2: Create new environment variables or include the below in your .bashrc file:
a. export PTX_SIM_USE_PTX_FILE=_1.ptx
b. export PTX_SIM_KERNELFILE=_1.ptx
c. export CUOBJDUMP_SIM_FILE=_cuobjdump_complete_output_<some_random_name>
Step 3: Disable -save_embedded_ptx flag, execute the code again. This will skip the dumping by cuobjdump and directly goes to executing the program thus saving time.
4.2 Debugging failing GPGPU-Sim Regressions
Credits: Tor M Aamodt
To debug failing GPGPU-Sim regression tests you need to run them locally. The fastest way to do this, assuming you are working with GPGPU-Sim versions more recent than the GPGPU-Sim dev branch circa March 28, 2018 (commit hash 2221d208a745a098a60b0d24c05007e92aaba092), is to install Docker. The instructions below were tested with Docker CE version 18.03 on Ubuntu and Mac OS. Docker will enable you to run the same set of regressions used by GPGPU-Sim when submitting a pull request to https://github.com/gpgpu-sim/gpgpu-sim_distribution and also allow you to log in and launch GPGPU-Sim in gdb so you can inspect failures.
1. Install Docker. On Ubuntu 14.04 and 16.04 the following instructions work: https://docs.docker.com/install/linux/docker-ce/ubuntu/#uninstall-old-versions
2. Clone GPGPU-Sim from your fork of GPGPU-Sim. For example:
git clone https://github.com/<YOUR GITHUB USERNAME>/gpgpu-sim_distribution.git
3. Run the following command (this is all one line) to run the regressions in docker:
docker run --privileged -v `pwd`:/home/runner/gpgpu-sim_distribution:rw aamodt/gpgpu-sim_regress:latest /bin/bash -c "./start_torque.sh; chown -R runner /home/runner/gpgpu-sim_distribution; su - runner -c 'source /home/runner/gpgpu-sim_distribution/setup_environment && make -j -C /home/runner/gpgpu-sim_distribution && cd /home/runner/gpgpu-sim_simulations/ && git pull && /home/runner/gpgpu-sim_simulations/util/job_launching/run_simulations.py -c /home/runner/gpgpu-sim_simulations/util/job_launching/regression_recipies/rodinia_2.0-ft/configs.gtx1080ti.yml -N regress && /home/runner/gpgpu-sim_simulations/util/job_launching/monitor_func_test.py -v -N regress’; tail -f /dev/null"
Explanation: The last part of this command, "tail -f /dev/null" will keep the docker container running after the regressions finish. This enables you to log into the container to run the same tests inside gdb so you can debug. The "--privileged" part enables you to use breakpoints inside gdb in a container. The "-v" part maps the current directory (with the GPGPU-Sim source code you want to test) into the container. The string "aamodt/gpgpu-sim_regress:latest" is a tag for a container setup to run regressions which will be downloaded from docker hub. The portion starting with /bin/bash is a set of commands run inside a bash shell inside the container. E.g., the command start_torque.sh starts up a queue manager inside the container.
If the above command stops with the message "fatal: unable to access 'https://github.com/tgrogers/gpgpu-sim_simulations.git/': Could not resolve host: github.com" this likely means your computer sits behind a firewall which is blocking access to Google's name servers (e.g., 8.8.8.8). To get around this you will need to modify th above command to point to your local DNS server. Lookup your DNS server IP address which we will call <DNS_IP_ADDRESS> below. On Ubuntu run "ifconfig" to lookup the network interface connecting your computer to the network. Then run "nmcli device show <interface name>" to find the IP address of your DNS server. Modify the above command to include "--dns <DNS_IP_ADDRESS>" after "run", E.g.,
docker run --dns <DNS_IP_ADDRESS> --privileged -v `pwd`:/home/runner/gpgpu-sim_distribution:rw aamodt/gpgpu-sim_regress:latest /bin/bash -c "./start_torque.sh; chown -R runner /home/runner/gpgpu-sim_distribution; su - runner -c 'source /home/runner/gpgpu-sim_distribution/setup_environment && make -j -C /home/runner/gpgpu-sim_distribution && cd /home/runner/gpgpu-sim_simulations/ && git pull && /home/runner/gpgpu-sim_simulations/util/job_launching/run_simulations.py -c /home/runner/gpgpu-sim_simulations/util/job_launching/regression_recipies/rodinia_2.0-ft/configs.gtx1080ti.yml -N regress && /home/runner/gpgpu-sim_simulations/util/job_launching/monitor_func_test.py -v -N regress’; tail -f /dev/null"
4. Find the CONTAINER ID associated with your docker container by running "docker ps".
5. Log into the container by running the command:
docker exec -it <CONTAINER_ID> /bin/bash -c "su -l runner"
The container is running Ubuntu 16.04 and has screen, cscope and vim installed (if you find a favorite Linux tool missing, it is fairly easy to create derived containers that have additional tools).
6. Lookup the directory of the regression test you want to debug by going to the regression log file directory:
cd /home/runner/gpgpu-sim_simulations/util/job_launching/logfiles
7. The file "failed_job_log_sim_log.regress.<DATE>.txt" includes information about the failed test including its simulation directory. For the following example, I'll assume the first failing test was "hotspot-rodinia-2.0-ft-30_6_40___data_result_30_6_40_txt--GTX1080Ti" for which the simulation directory is /home/runner/gpgpu-sim_simulations/util/job_launching/../../sim_run_4.2/hotspot-rodinia-2.0-ft/30_6_40___data_result_30_6_40_txt/GTX1080Ti/
8. Change to the simulation directory using:
cd <simulation_directory>
E.g., "cd /home/runner/gpgpu-sim_simulations/util/job_launching/../../sim_run_4.2/hotspot-rodinia-2.0-ft/30_6_40___data_result_30_6_40_txt/GTX1080Ti/"
This directory should contain a file called "torque.sim" that contains commands used to launch the simulation during regression tests. We will modify this file to enable us to re-run the regression test in gdb. This directory should also contain a file containing the standard output during the regression test. This file will end in .o<number> where <number> is the torque queue manager job number. For the running example for me this file is called "hotspot-rodinia-2.0-ft-30_6_40___data_result_30_6_40_txt.o2". Open this file to determine the LD_LIBRARY_PATH settings used when launching the simulation. Look for a line that starts "doing: export LD_LIBRARY_PATH" and copy the entire line starting with "export LD_LIBRARY_PATH ..."
9. Paste the "export LD_LIBRARY_PATH ..." line into the bash shell to set LD_LIBRARY_PATH. E.g.,
export LD_LIBRARY_PATH=/home/runner/gpgpu-sim_simulations/util/job_launching/../../sim_run_4.2/gpgpu-sim-builds/libcudart_gpgpu-sim_git-commit-177d02254ae38b6331b17dd6cd139b570a03c589_modified_0.so:/gpgpu-sim/usr/local/gcc-4.5.4/lib64:/gpgpu-sim/usr/local/gcc-4.5.4/lib:/gpgpu-sim/usr/local/gcc-4.5.4/lib/gcc/x86_64-unknown-linux-gnu/lib64/:/gpgpu-sim/usr/local/gcc-4.5.4/lib/gcc/x86_64-unknown-linux-gnu/4.5.4/:/usr/lib/x86_64-linux-gnu:/home/runner/gpgpu-sim_distribution/lib/gcc-4.5.4/cuda-4020/release:/gpgpu-sim/usr/local/gcc-4.5.4/lib64:/gpgpu-sim/usr/local/gcc-4.5.4/lib:/gpgpu-sim/usr/local/gcc-4.5.4/lib/gcc/x86_64-unknown-linux-gnu/lib64/:/gpgpu-sim/usr/local/gcc-4.5.4/lib/gcc/x86_64-unknown-linux-gnu/4.5.4/:/usr/lib/x86_64-linux-gnu:
10. In the same shell, build the debug version of GPGPU-Sim then return to the directory above:
pushd ~/gpgpu-sim_distribution/
source setup_environment debug
make
popd
11. Open and edit torque.sim and preface the very last line with "gdb --args ". After editing the last line in torque.sim should look something like:
gdb --args /home/runner/gpgpu-sim_simulations/util/job_launching/../../benchmarks/bin/4.2/release/hotspot-rodinia-2.0-ft 30 6 40 ./data/result_30_6_40.txt
12. Re-run the regression test in gdb by sourcing the torque.sim file:
. torque.sim
This will put you in at the (gdb) prompt. Setup any breakpoints needed and run.