comments | difficulty | edit_url |
---|---|---|
true |
Easy |
Implement a function to check if a binary tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that the heights of the two subtrees of any node never differ by more than one.
Example 1:
Given tree [3,9,20,null,null,15,7] 3 / \ 9 20 / \ 15 7 return true.
Example 2:
Given [1,2,2,3,3,null,null,4,4] 1 / \ 2 2 / \ 3 3 / \ 4 4 return false.
We design a function
The execution logic of the function
- If
$root$ is null, then return$0$ . - Otherwise, we recursively call
$dfs(root.left)$ and$dfs(root.right)$ , and check whether the return values of$dfs(root.left)$ and$dfs(root.right)$ are$-1$ . If not, we check whether$abs(dfs(root.left) - dfs(root.right)) \leq 1$ holds. If it holds, then return$max(dfs(root.left), dfs(root.right)) + 1$ , otherwise return$-1$ .
In the main function, we only need to call true
, otherwise return false
.
The time complexity is
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
def dfs(root: TreeNode):
if root is None:
return 0
l, r = dfs(root.left), dfs(root.right)
if l == -1 or r == -1 or abs(l - r) > 1:
return -1
return max(l, r) + 1
return dfs(root) >= 0
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
return dfs(root) >= 0;
}
private int dfs(TreeNode root) {
if (root == null) {
return 0;
}
int l = dfs(root.left);
int r = dfs(root.right);
if (l < 0 || r < 0 || Math.abs(l - r) > 1) {
return -1;
}
return Math.max(l, r) + 1;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root) {
function<int(TreeNode*)> dfs = [&](TreeNode* root) {
if (!root) {
return 0;
}
int l = dfs(root->left);
int r = dfs(root->right);
if (l == -1 || r == -1 || abs(l - r) > 1) {
return -1;
}
return max(l, r) + 1;
};
return dfs(root) >= 0;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isBalanced(root *TreeNode) bool {
var dfs func(*TreeNode) int
dfs = func(root *TreeNode) int {
if root == nil {
return 0
}
l, r := dfs(root.Left), dfs(root.Right)
if l == -1 || r == -1 || abs(l-r) > 1 {
return -1
}
return max(l, r) + 1
}
return dfs(root) >= 0
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isBalanced(root: TreeNode | null): boolean {
const dfs = (root: TreeNode | null): number => {
if (!root) {
return 0;
}
const l = dfs(root.left);
const r = dfs(root.right);
if (l === -1 || r === -1 || Math.abs(l - r) > 1) {
return -1;
}
return Math.max(l, r) + 1;
};
return dfs(root) >= 0;
}
/* class TreeNode {
* var val: Int
* var left: TreeNode?
* var right: TreeNode?
*
* init(_ val: Int) {
* self.val = val
* self.left = nil
* self.right = nil
* }
* }
*/
class Solution {
func isBalanced(_ root: TreeNode?) -> Bool {
return dfs(root) >= 0
}
private func dfs(_ root: TreeNode?) -> Int {
guard let root = root else {
return 0
}
let leftHeight = dfs(root.left)
let rightHeight = dfs(root.right)
if leftHeight < 0 || rightHeight < 0 || abs(leftHeight - rightHeight) > 1 {
return -1
}
return max(leftHeight, rightHeight) + 1
}
}