Skip to content

Latest commit

 

History

History
284 lines (250 loc) · 7.7 KB

File metadata and controls

284 lines (250 loc) · 7.7 KB
comments edit_url
true

题目描述

给定非负整数数组 heights ,数组中的数字用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1

求在该柱状图中,能够勾勒出来的矩形的最大面积。

 

示例 1:

输入:heights = [2,1,5,6,2,3]
输出:10
解释:最大的矩形为图中红色区域,面积为 10

示例 2:

输入: heights = [2,4]
输出: 4

 

提示:

  • 1 <= heights.length <=105
  • 0 <= heights[i] <= 104

 

注意:本题与主站 84 题相同: https://leetcode.cn/problems/largest-rectangle-in-histogram/

解法

方法一:单调栈

单调栈常见模型:找出每个数左/右边离它最近的比它大/小的数。模板:

stk = []
for i in range(n):
    while stk and check(stk[-1], i):
        stk.pop()
    stk.append(i)

枚举每根柱子的高度 $h$ 作为矩形的高度,向左右两边找第一个高度小于 $h$ 的下标 $left_i$, $right_i$。那么此时矩形面积为 $h \times (right_i-left_i-1)$,求最大值即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为柱子个数。

Python3

class Solution:
    def largestRectangleArea(self, heights: List[int]) -> int:
        n = len(heights)
        left = [-1] * n
        right = [n] * n
        stk = []
        for i, x in enumerate(heights):
            while stk and heights[stk[-1]] >= x:
                stk.pop()
            if stk:
                left[i] = stk[-1]
            stk.append(i)
        stk = []
        for i in range(n - 1, -1, -1):
            while stk and heights[stk[-1]] >= heights[i]:
                stk.pop()
            if stk:
                right[i] = stk[-1]
            stk.append(i)
        return max(x * (r - l - 1) for x, l, r in zip(heights, left, right))

Java

class Solution {
    public int largestRectangleArea(int[] heights) {
        int n = heights.length;
        int[] left = new int[n];
        int[] right = new int[n];
        for (int i = 0; i < n; ++i) {
            left[i] = -1;
            right[i] = n;
        }
        Deque<Integer> stk = new ArrayDeque<>();
        for (int i = 0; i < n; ++i) {
            while (!stk.isEmpty() && heights[stk.peek()] >= heights[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                left[i] = stk.peek();
            }
            stk.push(i);
        }
        stk.clear();
        for (int i = n - 1; i >= 0; --i) {
            while (!stk.isEmpty() && heights[stk.peek()] >= heights[i]) {
                stk.pop();
            }
            if (!stk.isEmpty()) {
                right[i] = stk.peek();
            }
            stk.push(i);
        }
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            ans = Math.max(ans, (right[i] - left[i] - 1) * heights[i]);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        int n = heights.size();
        vector<int> left(n, -1), right(n, n);
        stack<int> stk;
        for (int i = 0; i < n; ++i) {
            while (!stk.empty() && heights[stk.top()] >= heights[i]) {
                stk.pop();
            }
            if (!stk.empty()) {
                left[i] = stk.top();
            }
            stk.push(i);
        }
        stk = stack<int>();
        for (int i = n - 1; ~i; --i) {
            while (!stk.empty() && heights[stk.top()] >= heights[i]) {
                stk.pop();
            }
            if (!stk.empty()) {
                right[i] = stk.top();
            }
            stk.push(i);
        }
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            ans = max(ans, (right[i] - left[i] - 1) * heights[i]);
        }
        return ans;
    }
};

Go

func largestRectangleArea(heights []int) (ans int) {
	n := len(heights)
	left := make([]int, n)
	right := make([]int, n)
	for i := range left {
		left[i] = -1
		right[i] = n
	}
	stk := []int{}
	for i, x := range heights {
		for len(stk) > 0 && heights[stk[len(stk)-1]] >= x {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			left[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	stk = []int{}
	for i := n - 1; i >= 0; i-- {
		for len(stk) > 0 && heights[stk[len(stk)-1]] >= heights[i] {
			stk = stk[:len(stk)-1]
		}
		if len(stk) > 0 {
			right[i] = stk[len(stk)-1]
		}
		stk = append(stk, i)
	}
	for i, x := range heights {
		ans = max(ans, (right[i]-left[i]-1)*x)
	}
	return
}

TypeScript

function largestRectangleArea(heights: number[]): number {
    const n = heights.length;
    const left: number[] = new Array(n).fill(-1);
    const right: number[] = new Array(n).fill(n);
    const stk: number[] = [];
    for (let i = 0; i < n; ++i) {
        while (stk.length && heights[stk[stk.length - 1]] >= heights[i]) {
            stk.pop();
        }
        if (stk.length) {
            left[i] = stk[stk.length - 1];
        }
        stk.push(i);
    }
    stk.length = 0;
    for (let i = n - 1; i >= 0; --i) {
        while (stk.length && heights[stk[stk.length - 1]] >= heights[i]) {
            stk.pop();
        }
        if (stk.length) {
            right[i] = stk[stk.length - 1];
        }
        stk.push(i);
    }
    let ans = 0;
    for (let i = 0; i < n; ++i) {
        ans = Math.max(ans, (right[i] - left[i] - 1) * heights[i]);
    }
    return ans;
}

Swift

class Solution {
    func largestRectangleArea(_ heights: [Int]) -> Int {
        let n = heights.count
        var left = [Int](repeating: -1, count: n)
        var right = [Int](repeating: n, count: n)
        var stack = [Int]()

        for i in 0..<n {
            while !stack.isEmpty && heights[stack.last!] >= heights[i] {
                stack.removeLast()
            }
            if !stack.isEmpty {
                left[i] = stack.last!
            }
            stack.append(i)
        }

        stack.removeAll()

        for i in stride(from: n - 1, through: 0, by: -1) {
            while !stack.isEmpty && heights[stack.last!] >= heights[i] {
                stack.removeLast()
            }
            if !stack.isEmpty {
                right[i] = stack.last!
            }
            stack.append(i)
        }

        var maxArea = 0
        for i in 0..<n {
            maxArea = max(maxArea, (right[i] - left[i] - 1) * heights[i])
        }

        return maxArea
    }
}