comments | edit_url |
---|---|
true |
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7 输出:28
示例 2:
输入:m = 3, n = 2 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3 输出:28
示例 4:
输入:m = 3, n = 3 输出:6
提示:
1 <= m, n <= 100
- 题目数据保证答案小于等于
2 * 109
注意:本题与主站 62 题相同: https://leetcode.cn/problems/unique-paths/
我们定义
考虑
- 如果
$i \gt 0$ ,那么$f[i][j]$ 可以从$f[i - 1][j]$ 走一步到达,因此$f[i][j] = f[i][j] + f[i - 1][j]$ ; - 如果
$j \gt 0$ ,那么$f[i][j]$ 可以从$f[i][j - 1]$ 走一步到达,因此$f[i][j] = f[i][j] + f[i][j - 1]$ 。
因此,我们有如下的状态转移方程:
最终的答案即为
时间复杂度
我们注意到
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
f = [[0] * n for _ in range(m)]
f[0][0] = 1
for i in range(m):
for j in range(n):
if i:
f[i][j] += f[i - 1][j]
if j:
f[i][j] += f[i][j - 1]
return f[-1][-1]
class Solution {
public int uniquePaths(int m, int n) {
var f = new int[m][n];
f[0][0] = 1;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i > 0) {
f[i][j] += f[i - 1][j];
}
if (j > 0) {
f[i][j] += f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
}
}
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> f(m, vector<int>(n));
f[0][0] = 1;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (i) {
f[i][j] += f[i - 1][j];
}
if (j) {
f[i][j] += f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
}
};
func uniquePaths(m int, n int) int {
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
}
f[0][0] = 1
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if i > 0 {
f[i][j] += f[i-1][j]
}
if j > 0 {
f[i][j] += f[i][j-1]
}
}
}
return f[m-1][n-1]
}
function uniquePaths(m: number, n: number): number {
const f: number[][] = Array(m)
.fill(0)
.map(() => Array(n).fill(0));
f[0][0] = 1;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (i > 0) {
f[i][j] += f[i - 1][j];
}
if (j > 0) {
f[i][j] += f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
}
impl Solution {
pub fn unique_paths(m: i32, n: i32) -> i32 {
let (m, n) = (m as usize, n as usize);
let mut f = vec![1; n];
for i in 1..m {
for j in 1..n {
f[j] += f[j - 1];
}
}
f[n - 1]
}
}
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function (m, n) {
const f = Array(m)
.fill(0)
.map(() => Array(n).fill(0));
f[0][0] = 1;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (i > 0) {
f[i][j] += f[i - 1][j];
}
if (j > 0) {
f[i][j] += f[i][j - 1];
}
}
}
return f[m - 1][n - 1];
};
class Solution {
func uniquePaths(_ m: Int, _ n: Int) -> Int {
var dp = Array(repeating: Array(repeating: 0, count: n), count: m)
dp[0][0] = 1
for i in 0..<m {
for j in 0..<n {
if i > 0 {
dp[i][j] += dp[i - 1][j]
}
if j > 0 {
dp[i][j] += dp[i][j - 1]
}
}
}
return dp[m - 1][n - 1]
}
}
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
f = [[1] * n for _ in range(m)]
for i in range(1, m):
for j in range(1, n):
f[i][j] = f[i - 1][j] + f[i][j - 1]
return f[-1][-1]
class Solution {
public int uniquePaths(int m, int n) {
var f = new int[m][n];
for (var g : f) {
Arrays.fill(g, 1);
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; j++) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
}
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> f(m, vector<int>(n, 1));
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
};
func uniquePaths(m int, n int) int {
f := make([][]int, m)
for i := range f {
f[i] = make([]int, n)
for j := range f[i] {
f[i][j] = 1
}
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
f[i][j] = f[i-1][j] + f[i][j-1]
}
}
return f[m-1][n-1]
}
function uniquePaths(m: number, n: number): number {
const f: number[][] = Array(m)
.fill(0)
.map(() => Array(n).fill(1));
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function (m, n) {
const f = Array(m)
.fill(0)
.map(() => Array(n).fill(1));
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
};
class Solution {
func uniquePaths(_ m: Int, _ n: Int) -> Int {
var dp = Array(repeating: Array(repeating: 1, count: n), count: m)
for i in 1..<m {
for j in 1..<n {
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
return dp[m-1][n-1]
}
}
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
f = [1] * n
for _ in range(1, m):
for j in range(1, n):
f[j] += f[j - 1]
return f[-1]
class Solution {
public int uniquePaths(int m, int n) {
int[] f = new int[n];
Arrays.fill(f, 1);
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
}
}
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> f(n, 1);
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
}
};
func uniquePaths(m int, n int) int {
f := make([]int, n+1)
for i := range f {
f[i] = 1
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
f[j] += f[j-1]
}
}
return f[n-1]
}
function uniquePaths(m: number, n: number): number {
const f: number[] = Array(n).fill(1);
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
}
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function (m, n) {
const f = Array(n).fill(1);
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
f[j] += f[j - 1];
}
}
return f[n - 1];
};