-
Notifications
You must be signed in to change notification settings - Fork 33
/
reIdTrain.lua
174 lines (152 loc) · 6.28 KB
/
reIdTrain.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
-- Copyright (c) 2017 Shuangjie Xu, EIC, Huazhong University of Science and Technology, China
-- Contact: [email protected]
-- If you use this code please cite:
-- "Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification",
-- Shuangjie Xu, Yu Cheng, Kang Gu, Yang Yang, Shiyu Chang and Pan Zhou,
-- 2017 IEEE International Conference on Computer Vision (ICCV)
--
-- Copyright (c) 2016 Niall McLaughlin, CSIT, Queen's University Belfast, UK
-- Contact: [email protected]
-- If you use this code please cite:
-- "Recurrent Convolutional Network for Video-based Person Re-Identification",
-- N McLaughlin, J Martinez Del Rincon, P Miller,
-- IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016
--
-- This software is licensed for research and non-commercial use only.
--
-- The above copyright notice and this permission notice shall be included in
-- all copies or substantial portions of the Software.
--
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-- THE SOFTWARE.
require 'torch'
require 'nn'
require 'nnx'
require 'optim'
require 'cunn'
require 'cutorch'
require 'image'
require 'paths'
require 'rnn'
require 'inn'
require 'layers/MetrixMultiply'
require 'train'
require 'test'
local datasetUtils = require 'datasets/datasetUtils'
local prepDataset = require 'datasets/prepareDataset'
-- set the GPU
cutorch.setDevice(1)
cmd = torch.CmdLine()
cmd:option('-nEpochs',600,'number of training epochs')
cmd:option('-dataset',1,'1 - ilids, 2 - prid, 3 - mars')
cmd:option('-dirRGB','','dir path to the sequences of original datasets')
cmd:option('-dirOF','','dir path to the sequences of optical flow')
cmd:option('-sampleSeqLength',16,'length of sequence to train network')
cmd:option('-gradClip',5,'magnitude of clip on the RNN gradient')
cmd:option('-saveFileName','basicnet','name to save dataset file')
cmd:option('-usePredefinedSplit',false,'Use predefined test/training split loaded from a file')
cmd:option('-dropoutFrac',0.6,'fraction of dropout to use between layers')
cmd:option('-dropoutFracRNN',0.6,'fraction of dropout to use between RNN layers')
cmd:option('-samplingEpochs',100,'how often to compute the CMC curve - dont compute too much - its slow!')
cmd:option('-disableOpticalFlow',false,'use optical flow features or not')
cmd:option('-seed',1,'random seed')
cmd:option('-learningRate',1e-3)
cmd:option('-momentum',0.9)
cmd:option('-nConvFilters',32)
cmd:option('-embeddingSize',128)
cmd:option('-hingeMargin',3)
cmd:option('-mode','spatial_temporal','four mode: cnn-rnn, spatial, temporal, spatial_temporal')
opt = cmd:parse(arg)
print(opt)
opt.spatial = 0
opt.temporal = 0
if opt.mode == 'cnn-rnn' then
require 'models/cnn-rnn'
opt.spatial = 0
opt.temporal = 0
elseif opt.mode == 'spatial' then
require 'models/cnn-rnn'
opt.spatial = 1
opt.temporal = 0
elseif opt.mode == 'temporal' then
require 'models/spatial_temporal'
opt.spatial = 0
opt.temporal = 1
elseif opt.mode == 'spatial_temporal' then
require 'models/spatial_temporal'
opt.spatial = 1
opt.temporal = 1
else
print('Unknown mode')
os.exit(0)
end
function isnan(z)
return z ~= z
end
torch.manualSeed(opt.seed)
cutorch.manualSeed(opt.seed)
-- change these paths to point to the place where you store i-lids or prid datasets
homeDir = paths.home
filePrefix='.png'
if opt.dataset == 1 then
seqRootRGB = 'data/i-LIDS-VID/sequences/'
seqRootOF = 'data/i-LIDS-VID-OF-HVP/sequences/'
elseif opt.dataset == 2 then
seqRootRGB = homeDir .. 'data/PRID2011/multi_shot/'
seqRootOF = homeDir .. 'data/PRID2011-OF-HVP/multi_shot/'
elseif opt.dataset == 3 then
seqRootRGB = homeDir .. 'data/MARS/sequences/'
seqRootOF = homeDir .. 'data/MARS-OF-HVP/sequences/'
filePrefix='.jpg'
else
print('Unknown datasets')
os.exit(0)
end
if opt.seqRootRGB and opt.seqRootOF then
seqRootRGB = opt.seqRootRGB
seqRootOF = opt.seqRootOF
end
print('loading Dataset - ',seqRootRGB,seqRootOF)
dataset = prepDataset.prepareDataset(seqRootRGB,seqRootOF,filePrefix)
print('dataset loaded',#dataset,seqRootRGB,seqRootOF)
if opt.usePredefinedSplit then
-- useful for debugging to run with exactly the same test/train split
print('loading predefined test/training split')
local datasetSplit
if opt.dataset == 1 then
datasetSplit = torch.load('./data/dataSplit.th7')
else
datasetSplit = torch.load('./data/dataSplit_PRID2011.th7')
end
testInds = datasetSplit.testInds
trainInds = datasetSplit.trainInds
else
print('randomizing test/training split')
trainInds,testInds = datasetUtils.partitionDataset(#dataset,0.5)
end
-- build the model
fullModel,criterion,Combined_CNN_RNN,baseCNN = buildModel_MeanPool_RNN(opt,16,opt.nConvFilters,opt.nConvFilters,trainInds:size(1))
-- train the model
trainedModel,trainedConvnet,trainedBaseNet = trainSequence(fullModel,Combined_CNN_RNN,baseCNN,criterion,dataset,nSamplesPerPerson,trainInds,testInds,nEpochs)
-- save the Model and Convnet (which is part of the model) to a file
saveFileNameModel = './weights/fullModel_' .. opt.saveFileName .. '.dat'
torch.save(saveFileNameModel,trainedModel)
saveFileNameConvnet = './weights/convNet_' .. opt.saveFileName .. '.dat'
torch.save(saveFileNameConvnet,trainedConvnet)
saveFileNameBasenet = './weights/baseNet_' .. opt.saveFileName .. '.dat'
torch.save(saveFileNameBasenet,trainedBaseNet)
------------------------------------------------------------------------------------------------------------------------------------
-- Evaluation
------------------------------------------------------------------------------------------------------------------------------------
trainedConvnet:evaluate()
nTestImages = {1,2,4,8,16,32,64,128}
for n = 1,#nTestImages do
print('test multiple images '..nTestImages[n])
-- default method of computing CMC curve
computeCMC_MeanPool_RNN(dataset,testInds,trainedConvnet,128,nTestImages[n])
end