-
Notifications
You must be signed in to change notification settings - Fork 33
/
test.lua
169 lines (153 loc) · 6.61 KB
/
test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
-- Copyright (c) 2017 Shuangjie Xu, EIC, Huazhong University of Science and Technology, China
-- Contact: [email protected]
-- If you use this code please cite:
-- "Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification",
-- Shuangjie Xu, Yu Cheng, Kang Gu, Yang Yang, Shiyu Chang and Pan Zhou,
-- 2017 IEEE International Conference on Computer Vision (ICCV)
--
-- Copyright (c) 2016 Niall McLaughlin, CSIT, Queen's University Belfast, UK
-- Contact: [email protected]
-- If you use this code please cite:
-- "Recurrent Convolutional Network for Video-based Person Re-Identification",
-- N McLaughlin, J Martinez Del Rincon, P Miller,
-- IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016
--
-- This software is licensed for research and non-commercial use only.
--
-- The above copyright notice and this permission notice shall be included in
-- all copies or substantial portions of the Software.
--
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-- THE SOFTWARE.
-- standard method of computing the CMC curve using sequences
function computeCMC_MeanPool_RNN(personImgs,cmcTestInds,net,outputSize,sampleSeqLength)
net:evaluate()
local nPersons = cmcTestInds:size(1)
local avgSame = 0
local avgDiff = 0
local avgSameCount = 0
local avgDiffCount = 0
local simMat = torch.zeros(nPersons,nPersons)
for shiftx = 1,8 do
for doflip = 1,2 do
local shifty = shiftx
local feats_cam_a = torch.DoubleTensor(nPersons,outputSize)
for i = 1,nPersons do
local actualSampleLen = 0
local seqLen = personImgs[cmcTestInds[i]][1]:size(1)
if seqLen > sampleSeqLength then
actualSampleLen = sampleSeqLength
else
actualSampleLen = seqLen
end
seq_length = actualSampleLen
local seq = personImgs[cmcTestInds[i]][1][{{1,1 + (actualSampleLen - 1)},{},{}}]:squeeze():clone()
if seq:dim() == 3 then
seq:resize(1,seq:size(1),seq:size(2),seq:size(3))
end
-- augment each of the images in the sequence
local augSeq = {}
local feats_cam_a_mp = {}
for k = 1,actualSampleLen do
local u = seq[{{k},{},{},{}}]:squeeze():clone()
if doflip == 1 then
u = image.hflip(u)
end
u = image.crop(u,shiftx,shifty,40+shiftx,56+shifty)
u = u - torch.mean(u)
augSeq[k] = u:cuda():clone()
end
--feats_cam_a[{i,{}}] = net:forward(augSeq):double()
feats_cam_a[{i,{}}] = net:forward({augSeq,augSeq})[1]:double()
end
local feats_cam_b = torch.DoubleTensor(nPersons,outputSize)
for i = 1,nPersons do
local actualSampleLen = 0
local seqOffset = 0
local seqLen = personImgs[cmcTestInds[i]][2]:size(1)
if seqLen > sampleSeqLength then
actualSampleLen = sampleSeqLength
seqOffset = (seqLen - sampleSeqLength) + 1
else
actualSampleLen = seqLen
seqOffset = 1
end
seq_length = actualSampleLen
local seq = personImgs[cmcTestInds[i]][2][{{seqOffset,seqOffset + (actualSampleLen - 1)},{},{}}]:squeeze():clone()
if seq:dim() == 3 then
seq:resize(1,seq:size(1),seq:size(2),seq:size(3))
end
-- augment each of the images in the sequence
local augSeq = {}
local feats_cam_b_mp = torch.DoubleTensor(actualSampleLen,outputSize)
for k = 1,actualSampleLen do
local u = seq[{{k},{},{},{}}]:squeeze():clone()
if doflip == 1 then
u = image.hflip(u)
end
u = image.crop(u,shiftx,shifty,40+shiftx,56+shifty)
u = u - torch.mean(u)
augSeq[k] = u:cuda():clone()
end
--feats_cam_b[{i,{}}] = net:forward(augSeq):double()
feats_cam_b[{i,{}}] = net:forward({augSeq,augSeq})[1]:double()
end
for i = 1,nPersons do
for j = 1, nPersons do
local fa = feats_cam_a[{{i},{}}]
local fb = feats_cam_b[{{j},{}}]
local dst = torch.sqrt(torch.sum(torch.pow(fa - fb,2)))
simMat[i][j] = simMat[i][j] + dst
if i == j then
avgSame = avgSame + dst
avgSameCount = avgSameCount + 1
else
avgDiff = avgDiff + dst
avgDiffCount = avgDiffCount + 1
end
end
end
end
end
avgSame = avgSame / avgSameCount
avgDiff = avgDiff / avgDiffCount
local cmcInds = torch.DoubleTensor(nPersons)
local cmc = torch.zeros(nPersons)
local samplingOrder = torch.zeros(nPersons,nPersons)
for i = 1,nPersons do
cmcInds[i] = i
local tmp = simMat[{i,{}}]
local y,o = torch.sort(tmp)
--find the element we want
local indx = 0
local tmpIdx = 1
for j = 1,nPersons do
if o[j] == i then
indx = j
end
-- build the sampling order for the next epoch
-- we want to sample close images i.e. ones confused with this person
if o[j] ~= i then
samplingOrder[i][tmpIdx] = o[j]
tmpIdx = tmpIdx + 1
end
end
for j = indx,nPersons do
cmc[j] = cmc[j] + 1
end
end
cmc = (cmc / nPersons) * 100
cmcString = ''
for c = 1,50 do
if c <= nPersons then
cmcString = cmcString .. ' ' .. torch.floor(cmc[c])
end
end
print(cmcString)
return cmc,simMat,samplingOrder,avgSame,avgDiff
end