forked from sergiomsilva/alpr-unconstrained
-
Notifications
You must be signed in to change notification settings - Fork 2
/
create-model.py
107 lines (77 loc) · 2.88 KB
/
create-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import sys
import keras
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Add, Activation, Concatenate, Input
from keras.models import Model
from keras.applications.mobilenet import MobileNet
from src.keras_utils import save_model
def res_block(x,sz,filter_sz=3,in_conv_size=1):
xi = x
for i in range(in_conv_size):
xi = Conv2D(sz, filter_sz, activation='linear', padding='same')(xi)
xi = BatchNormalization()(xi)
xi = Activation('relu')(xi)
xi = Conv2D(sz, filter_sz, activation='linear', padding='same')(xi)
xi = BatchNormalization()(xi)
xi = Add()([xi,x])
xi = Activation('relu')(xi)
return xi
def conv_batch(_input,fsz,csz,activation='relu',padding='same',strides=(1,1)):
output = Conv2D(fsz, csz, activation='linear', padding=padding, strides=strides)(_input)
output = BatchNormalization()(output)
output = Activation(activation)(output)
return output
def end_block(x):
xprobs = Conv2D(2, 3, activation='softmax', padding='same')(x)
xbbox = Conv2D(6, 3, activation='linear' , padding='same')(x)
return Concatenate(3)([xprobs,xbbox])
def create_model_eccv():
input_layer = Input(shape=(None,None,3),name='input')
x = conv_batch(input_layer, 16, 3)
x = conv_batch(x, 16, 3)
x = MaxPooling2D(pool_size=(2,2))(x)
x = conv_batch(x, 32, 3)
x = res_block(x, 32)
x = MaxPooling2D(pool_size=(2,2))(x)
x = conv_batch(x, 64, 3)
x = res_block(x,64)
x = res_block(x,64)
x = MaxPooling2D(pool_size=(2,2))(x)
x = conv_batch(x, 64, 3)
x = res_block(x,64)
x = res_block(x,64)
x = MaxPooling2D(pool_size=(2,2))(x)
x = conv_batch(x, 128, 3)
x = res_block(x,128)
x = res_block(x,128)
x = res_block(x,128)
x = res_block(x,128)
x = end_block(x)
return Model(inputs=input_layer,outputs=x)
# Model not converging...
def create_model_mobnet():
input_layer = Input(shape=(None,None,3),name='input')
x = input_layer
mbnet = MobileNet(input_shape=(224,224,3),include_top=True)
backbone = keras.models.clone_model(mbnet)
for i,bblayer in enumerate(backbone.layers[1:74]):
layer = bblayer.__class__.from_config(bblayer.get_config())
layer.name = 'backbone_' + layer.name
x = layer(x)
x = end_block(x)
model = Model(inputs=input_layer,outputs=x)
backbone_layers = {'backbone_' + layer.name: layer for layer in backbone.layers}
for layer in model.layers:
if layer.name in backbone_layers:
print 'setting ' + layer.name
layer.set_weights(backbone_layers[layer.name].get_weights())
return model
if __name__ == '__main__':
modules = [func.replace('create_model_','') for func in dir(sys.modules[__name__]) if 'create_model_' in func]
assert sys.argv[1] in modules, \
'Model name must be on of the following: %s' % ', '.join(modules)
modelf = getattr(sys.modules[__name__],'create_model_' + sys.argv[1])
print 'Creating model %s' % sys.argv[1]
model = modelf()
print 'Finished'
print 'Saving at %s' % sys.argv[2]
save_model(model,sys.argv[2])