forked from piskvorky/gensim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
295 lines (223 loc) · 11.5 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2014 Radim Rehurek <[email protected]>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
"""
Run with:
sudo python ./setup.py install
"""
import os
import sys
import warnings
import io
if sys.version_info[:2] < (2, 7) or (sys.version_info[:1] == 3 and sys.version_info[:2] < (3, 5)):
raise Exception('This version of gensim needs Python 2.7, 3.5 or later.')
import ez_setup
ez_setup.use_setuptools()
from setuptools import setup, find_packages, Extension
from setuptools.command.build_ext import build_ext
# the following code is adapted from tornado's setup.py:
# https://github.com/tornadoweb/tornado/blob/master/setup.py
# to support installing without the extension on platforms where
# no compiler is available.
class custom_build_ext(build_ext):
"""Allow C extension building to fail.
The C extension speeds up word2vec and doc2vec training, but is not essential.
"""
warning_message = """
********************************************************************
WARNING: %s could not
be compiled. No C extensions are essential for gensim to run,
although they do result in significant speed improvements for some modules.
%s
Here are some hints for popular operating systems:
If you are seeing this message on Linux you probably need to
install GCC and/or the Python development package for your
version of Python.
Debian and Ubuntu users should issue the following command:
$ sudo apt-get install build-essential python-dev
RedHat, CentOS, and Fedora users should issue the following command:
$ sudo yum install gcc python-devel
If you are seeing this message on OSX please read the documentation
here:
http://api.mongodb.org/python/current/installation.html#osx
********************************************************************
"""
def run(self):
try:
build_ext.run(self)
except Exception:
e = sys.exc_info()[1]
sys.stdout.write('%s\n' % str(e))
warnings.warn(
self.warning_message +
"Extension modules" +
"There was an issue with your platform configuration - see above.")
def build_extension(self, ext):
name = ext.name
try:
build_ext.build_extension(self, ext)
except Exception:
e = sys.exc_info()[1]
sys.stdout.write('%s\n' % str(e))
warnings.warn(
self.warning_message +
"The %s extension module" % (name,) +
"The output above this warning shows how the compilation failed.")
# the following is needed to be able to add numpy's include dirs... without
# importing numpy directly in this script, before it's actually installed!
# http://stackoverflow.com/questions/19919905/how-to-bootstrap-numpy-installation-in-setup-py
def finalize_options(self):
build_ext.finalize_options(self)
# Prevent numpy from thinking it is still in its setup process:
# https://docs.python.org/2/library/__builtin__.html#module-__builtin__
if isinstance(__builtins__, dict):
__builtins__["__NUMPY_SETUP__"] = False
else:
__builtins__.__NUMPY_SETUP__ = False
import numpy
self.include_dirs.append(numpy.get_include())
model_dir = os.path.join(os.path.dirname(__file__), 'gensim', 'models')
gensim_dir = os.path.join(os.path.dirname(__file__), 'gensim')
cmdclass = {'build_ext': custom_build_ext}
WHEELHOUSE_UPLOADER_COMMANDS = set(['fetch_artifacts', 'upload_all'])
if WHEELHOUSE_UPLOADER_COMMANDS.intersection(sys.argv):
import wheelhouse_uploader.cmd
cmdclass.update(vars(wheelhouse_uploader.cmd))
LONG_DESCRIPTION = u"""
==============================================
gensim -- Topic Modelling in Python
==============================================
|Travis|_
|Wheel|_
.. |Travis| image:: https://img.shields.io/travis/RaRe-Technologies/gensim/develop.svg
.. |Wheel| image:: https://img.shields.io/pypi/wheel/gensim.svg
.. _Travis: https://travis-ci.org/RaRe-Technologies/gensim
.. _Downloads: https://pypi.python.org/pypi/gensim
.. _License: http://radimrehurek.com/gensim/about.html
.. _Wheel: https://pypi.python.org/pypi/gensim
Gensim is a Python library for *topic modelling*, *document indexing* and *similarity retrieval* with large corpora.
Target audience is the *natural language processing* (NLP) and *information retrieval* (IR) community.
Features
---------
* All algorithms are **memory-independent** w.r.t. the corpus size (can process input larger than RAM, streamed, out-of-core),
* **Intuitive interfaces**
* easy to plug in your own input corpus/datastream (trivial streaming API)
* easy to extend with other Vector Space algorithms (trivial transformation API)
* Efficient multicore implementations of popular algorithms, such as online **Latent Semantic Analysis (LSA/LSI/SVD)**,
**Latent Dirichlet Allocation (LDA)**, **Random Projections (RP)**, **Hierarchical Dirichlet Process (HDP)** or **word2vec deep learning**.
* **Distributed computing**: can run *Latent Semantic Analysis* and *Latent Dirichlet Allocation* on a cluster of computers.
* Extensive `documentation and Jupyter Notebook tutorials <https://github.com/RaRe-Technologies/gensim/#documentation>`_.
If this feature list left you scratching your head, you can first read more about the `Vector
Space Model <http://en.wikipedia.org/wiki/Vector_space_model>`_ and `unsupervised
document analysis <http://en.wikipedia.org/wiki/Latent_semantic_indexing>`_ on Wikipedia.
Installation
------------
This software depends on `NumPy and Scipy <http://www.scipy.org/Download>`_, two Python packages for scientific computing.
You must have them installed prior to installing `gensim`.
It is also recommended you install a fast BLAS library before installing NumPy. This is optional, but using an optimized BLAS such as `ATLAS <http://math-atlas.sourceforge.net/>`_ or `OpenBLAS <http://xianyi.github.io/OpenBLAS/>`_ is known to improve performance by as much as an order of magnitude. On OS X, NumPy picks up the BLAS that comes with it automatically, so you don't need to do anything special.
The simple way to install `gensim` is::
pip install -U gensim
Or, if you have instead downloaded and unzipped the `source tar.gz <http://pypi.python.org/pypi/gensim>`_ package,
you'd run::
python setup.py test
python setup.py install
For alternative modes of installation (without root privileges, development
installation, optional install features), see the `install documentation <http://radimrehurek.com/gensim/install.html>`_.
This version has been tested under Python 2.7, 3.5 and 3.6. Support for Python 2.6, 3.3 and 3.4 was dropped in gensim 1.0.0. Install gensim 0.13.4 if you *must* use Python 2.6, 3.3 or 3.4. Support for Python 2.5 was dropped in gensim 0.10.0; install gensim 0.9.1 if you *must* use Python 2.5). Gensim's github repo is hooked against `Travis CI for automated testing <https://travis-ci.org/RaRe-Technologies/gensim>`_ on every commit push and pull request.
How come gensim is so fast and memory efficient? Isn't it pure Python, and isn't Python slow and greedy?
--------------------------------------------------------------------------------------------------------
Many scientific algorithms can be expressed in terms of large matrix operations (see the BLAS note above). Gensim taps into these low-level BLAS libraries, by means of its dependency on NumPy. So while gensim-the-top-level-code is pure Python, it actually executes highly optimized Fortran/C under the hood, including multithreading (if your BLAS is so configured).
Memory-wise, gensim makes heavy use of Python's built-in generators and iterators for streamed data processing. Memory efficiency was one of gensim's `design goals <http://radimrehurek.com/gensim/about.html>`_, and is a central feature of gensim, rather than something bolted on as an afterthought.
Documentation
-------------
* `QuickStart`_
* `Tutorials`_
* `Tutorial Videos`_
* `Official Documentation and Walkthrough`_
Citing gensim
-------------
When `citing gensim in academic papers and theses <https://scholar.google.cz/citations?view_op=view_citation&hl=en&user=9vG_kV0AAAAJ&citation_for_view=9vG_kV0AAAAJ:u-x6o8ySG0sC>`_, please use this BibTeX entry::
@inproceedings{rehurek_lrec,
title = {{Software Framework for Topic Modelling with Large Corpora}},
author = {Radim {\v R}eh{\r u}{\v r}ek and Petr Sojka},
booktitle = {{Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks}},
pages = {45--50},
year = 2010,
month = May,
day = 22,
publisher = {ELRA},
address = {Valletta, Malta},
language={English}
}
----------------
Gensim is open source software released under the `GNU LGPLv2.1 license <http://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html>`_.
Copyright (c) 2009-now Radim Rehurek
|Analytics|_
.. |Analytics| image:: https://ga-beacon.appspot.com/UA-24066335-5/your-repo/page-name
.. _Analytics: https://github.com/igrigorik/ga-beacon
.. _Official Documentation and Walkthrough: http://radimrehurek.com/gensim/
.. _Tutorials: https://github.com/RaRe-Technologies/gensim/blob/develop/tutorials.md#tutorials
.. _Tutorial Videos: https://github.com/RaRe-Technologies/gensim/blob/develop/tutorials.md#videos
.. _QuickStart: https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/gensim%20Quick%20Start.ipynb
"""
setup(
name='gensim',
version='2.0.0',
description='Python framework for fast Vector Space Modelling',
long_description=LONG_DESCRIPTION,
ext_modules=[
Extension('gensim.models.word2vec_inner',
sources=['./gensim/models/word2vec_inner.c'],
include_dirs=[model_dir]),
Extension('gensim.models.doc2vec_inner',
sources=['./gensim/models/doc2vec_inner.c'],
include_dirs=[model_dir])
],
cmdclass=cmdclass,
packages=find_packages(),
author=u'Radim Rehurek',
author_email='[email protected]',
url='http://radimrehurek.com/gensim',
download_url='http://pypi.python.org/pypi/gensim',
keywords='Singular Value Decomposition, SVD, Latent Semantic Indexing, '
'LSA, LSI, Latent Dirichlet Allocation, LDA, '
'Hierarchical Dirichlet Process, HDP, Random Projections, '
'TFIDF, word2vec',
platforms='any',
zip_safe=False,
classifiers=[ # from http://pypi.python.org/pypi?%3Aaction=list_classifiers
'Development Status :: 5 - Production/Stable',
'Environment :: Console',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: GNU Lesser General Public License v2 or later (LGPLv2+)',
'Operating System :: OS Independent',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Scientific/Engineering :: Information Analysis',
'Topic :: Text Processing :: Linguistic',
],
test_suite="gensim.test",
setup_requires=[
'numpy >= 1.3'
],
install_requires=[
'numpy >= 1.3',
'scipy >= 0.7.0',
'six >= 1.5.0',
'smart_open >= 1.2.1',
],
extras_require={
'distributed': ['Pyro4 >= 4.27'],
'wmd': ['pyemd >= 0.2.0'],
'test': [
'testfixtures',
'unittest2'
],
},
include_package_data=True,
)