forked from IBM/AccDNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
731 lines (655 loc) · 41.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import numpy as np
import caffe
from layers.convolution import Convolution
from layers.innerproduct import InnerProduct
from layers.pooling import Pooling
from util.proto import readProtoFile
from util.code_aide import code_module_header_gen, code_signals_gen, code_instance_ddr_gen, code_instance_gen, code_dma_delay_gen
from util.data import uint16_dump_hex_aligned
from util.misc import get_layer_cpf, get_layer_kpf, get_layer_dma_delay, get_file_dependence
from util.optim import get_conv_pfs, get_pooling_pf
from util.tcl import ipcore_tcl_gen
from util.math2 import lcm
from util.resource import get_dsps_resource, get_brams_resource, get_ddr_bandwidth
from web.pack import pack_layer_profile, pack_model_profile, pack_optim_info
from settings import *
import ConfigParser
from caffe.proto import caffe_pb2
from google.protobuf import text_format
import math
import struct
class Model(caffe.Net):
def __init__(self, model_file, pretrained_file, batch_size=1):
if pretrained_file is not None:
caffe.Net.__init__(self, model_file, pretrained_file, caffe.TEST)
else:
caffe.Net.__init__(self, model_file, caffe.TEST)
self.batch_size = batch_size
# parse the model file to get the basic informtions, such as padding, stride, kernel_size
# which can not be obtained from the caffe.net
net_config = caffe.proto.caffe_pb2.NetParameter()
parse_object = readProtoFile(model_file, net_config)
self.layer_info_list = parse_object.layer
def get_layer_info(self, layer_name):
for object_ in self.layer_info_list:
if object_.name == layer_name:
return object_
return None
def get_inst_by_layer_name(self, layer_name):
for module_inst in self.modules:
if module_inst.layer_name == layer_name:
return module_inst
return None
def parser(self, optim_file=None):
self.modules = []
# there is no explicit input layer, the first functional layer will dirctly
# connect to the input data steam (DMA input, 16*3bits), each data is 16bits,
# thus the data width is 3
up_layer_data_shape = self.blobs.get('data').data.shape[1:]
up_layer_data_width = 1
up_layer_output_stride = 1
layer_list = list(self._layer_names)
for layer_name in layer_list:
layer_cur = self.layers[layer_list.index(layer_name)]
layer_type = layer_cur.type
if layer_type == 'Softmax' or layer_type == 'Dropout' or layer_type == 'Input':
print '{} layer will be skipped.'.format(layer_type)
continue
# get the layer information
layer_info = self.get_layer_info(layer_name)
if layer_info == None:
raise Exception ('Layer [%s] not found, please check the model net file.'%layer_name)
# check the layer_name,
if layer_name != layer_info.name:
raise Exception ('Layer parse error, please check the model net file.')
if layer_type == 'Convolution' or layer_type == 'ConvolutionRistretto':
stride = 1 if len(layer_info.convolution_param.stride)==0 else layer_info.convolution_param.stride[0]
pad = 0 if len(layer_info.convolution_param.pad)==0 else layer_info.convolution_param.pad[0]
params = [self.params[layer_name][0].data, self.params[layer_name][1].data] \
if layer_info.convolution_param.bias_term else [self.params[layer_name][0].data]
module_inst = Convolution(layer_name, up_layer_data_shape, up_layer_data_width, up_layer_output_stride, \
self.blobs[layer_info.top[0]].data.shape[1:], params, stride, pad, \
get_layer_cpf(layer_name, optim_file), get_layer_kpf(layer_name, optim_file), \
layer_info.convolution_param.group)
if layer_type == 'ConvolutionRistretto':
module_inst.set_quantization(layer_info.quantization_param.bw_layer_in,
layer_info.quantization_param.fl_layer_in,
layer_info.quantization_param.bw_params,
layer_info.quantization_param.fl_params,
layer_info.quantization_param.bw_layer_out,
layer_info.quantization_param.fl_layer_out)
elif layer_type == 'InnerProduct' or layer_type == 'FcRistretto':
params = [self.params[layer_name][0].data, self.params[layer_name][1].data] \
if layer_info.inner_product_param.bias_term else [self.params[layer_name][0].data]
module_inst = InnerProduct(layer_name, up_layer_data_shape, up_layer_data_width, up_layer_output_stride, \
self.blobs[layer_info.top[0]].data.shape[1:], params, \
get_layer_cpf(layer_name, optim_file), get_layer_kpf(layer_name, optim_file))
if layer_type == 'FcRistretto':
module_inst.set_quantization(layer_info.quantization_param.bw_layer_in,
layer_info.quantization_param.fl_layer_in,
layer_info.quantization_param.bw_params,
layer_info.quantization_param.fl_params,
layer_info.quantization_param.bw_layer_out,
layer_info.quantization_param.fl_layer_out)
elif layer_type == 'Pooling':
module_inst = Pooling(layer_name, up_layer_data_shape, up_layer_data_width, up_layer_output_stride, \
self.blobs[layer_info.top[0]].data.shape[1:], \
layer_info.pooling_param.pool, \
layer_info.pooling_param.kernel_size, \
layer_info.pooling_param.stride, \
layer_info.pooling_param.pad, \
get_layer_kpf(layer_name, optim_file))
module_inst.set_quantization(self.modules[-1].output_dw, self.modules[-1].output_dq,
self.modules[-1].param_ww, self.modules[-1].param_wq,
self.modules[-1].output_dw, self.modules[-1].output_dq)
elif layer_type == 'BatchNorm':
params = [self.params[layer_name][0].data / self.params[layer_name][2].data, \
self.params[layer_name][1].data / self.params[layer_name][2].data]
self.modules[-1].bn = params
print 'Layer %s(%s), is aggregated to the upper layer %s.'\
%(layer_name, layer_type, self.modules[-1].layer_name)
continue
elif layer_type == 'Scale':
params = [self.params[layer_name][0].data, self.params[layer_name][1].data]
self.modules[-1].bn.extend(params)
print 'Layer %s(%s), is aggregated to the upper layer %s.'\
%(layer_name, layer_type, self.modules[-1].layer_name)
continue
elif layer_type == 'ReLU':
# appregate this simple layer to the up layer
self.modules[-1].hasrelu = 1
print 'Layer %s(%s), is aggregated to the upper layer %s.'\
%(layer_name, layer_type, self.modules[-1].layer_name)
continue
else:
raise Exception('Layer type [%s] is not supported.'%layer_type)
if module_inst.params:
module_inst.dma_delay = get_layer_dma_delay(module_inst.layer_name, optim_file)
# add this module to the end of the list
self.modules.append(module_inst)
up_layer_data_shape = module_inst.output_shape
up_layer_data_width = module_inst.kpf
up_layer_output_stride = module_inst.get_output_stride()
if INPUT_CHANNEL_PADDING > 0:
old_shape = self.modules[0].input_shape
self.modules[0].input_shape = (old_shape[0] + INPUT_CHANNEL_PADDING, old_shape[1], old_shape[2])
if self.modules[0].params:
old_params_shape = self.modules[0].params[0].shape
new_params = np.zeros((old_params_shape[0], old_params_shape[1] + INPUT_CHANNEL_PADDING, \
old_params_shape[2], old_params_shape[3]))
new_params[:,0:old_params_shape[1],:,:] = self.modules[0].params[0]
self.modules[0].params[0] = new_params
self.modules[0].kernel_num = self.modules[0].params[0].shape[0]
self.modules[0].kernel_shape = self.modules[0].params[0].shape[1:]
def parallelism_auto_optimization(self, res_file=None, ddr_data_width=DDR_DATA_WIDTH):
ops_list = []
data_reuse_list = []
for moule_inst in self.modules:
if moule_inst.layer_type == 'Convolution' or moule_inst.layer_type == 'InnerProduct' or \
moule_inst.layer_type == 'ConvolutionRistretto' or moule_inst.layer_type == 'FcRistretto':
ops = moule_inst.output_shape[0] * moule_inst.output_shape[1] * moule_inst.output_shape[2] * \
moule_inst.kernel_shape[0] * moule_inst.kernel_shape[1] * moule_inst.kernel_shape[2]
ops_list.append(float(ops))
# the weight data reuse equal the height of the output shape
data_reuse_list.append(float(moule_inst.param_ww)/float(moule_inst.output_shape[1]))
ops_list = np.array(ops_list)
data_reuse_list = np.array(data_reuse_list)
# normalized pfs for each layer
pf_list = ops_list / ops_list.min()
# bandwidth required with current normalized pfs setting, Mb/s
normalized_bandwidth = np.dot(pf_list, data_reuse_list) * CLOCK_FREQUENCY
# pf scale according to the real bandwidth
pf_list = pf_list * float(get_ddr_bandwidth(res_file)) / normalized_bandwidth
pf_list = np.ceil(pf_list).astype(np.int32)
pf_list[np.where(pf_list == 0)] = 1
module_index = 0
total_pfs = 0
while True:
pf_index = 0
module_index = 0
total_pfs = 0
for module_inst in self.modules:
if module_inst.layer_type == 'Convolution' or module_inst.layer_type == 'InnerProduct' or \
moule_inst.layer_type == 'ConvolutionRistretto' or moule_inst.layer_type == 'FcRistretto':
pf = pf_list[pf_index]
module_inst.cpf, module_inst.kpf = get_conv_pfs(pf, module_inst.input_shape[0], module_inst.kernel_num)
pf_index += 1
total_pfs += module_inst.cpf * module_inst.kpf
elif module_inst.layer_type == 'Pooling':
module_inst.kpf = get_pooling_pf(module_inst.input_shape[0], module_inst.input_shape[0])
# for the last module, no following layers
if module_index < (len(self.modules) - 1):
self.modules[module_index + 1].input_width = module_inst.kpf
self.modules[module_index + 1].rm_wr_stride = module_inst.get_output_stride()
module_index += 1
blks_for_wbm = 0
blks_for_rm = 0
for module_inst in self.modules:
module_inst.module_params_compute(ddr_data_width)
module_inst.profile()
blks_for_wbm += module_inst.wm_blks + module_inst.bm_blks
blks_for_rm += module_inst.rm_blks
#print int(get_dsps_resource() / total_pfs), int((get_brams_resource() - blks_for_wbm) / blks_for_rm)
controller_dsp = sum([6 if module_inst.params else 2 for module_inst in self.modules])
self.batch_size = min(int((get_dsps_resource(res_file) * RESOURCE_THRES - controller_dsp) / total_pfs),
int((get_brams_resource(res_file) * RESOURCE_THRES - blks_for_wbm) / blks_for_rm))
if self.batch_size > 0:
break;
elif self.batch_size == 0 and pf_list.sum() == len(pf_list):
raise Exception ('Don\'t have enough memory to fit the whole network.')
else:
pf_list = pf_list / 2
pf_list[np.where(pf_list == 0)] = 1
def module_params_compute(self, ddr_data_width=DDR_DATA_WIDTH):
self.used_dma_channel_num = 0
for module_inst in self.modules:
module_inst.module_params_compute(ddr_data_width)
if module_inst.params:
self.used_dma_channel_num += 1
#if self.used_dma_channel_num > DDR_DMA_ENGINE_NUM:
# raise Exception ('This design require %d DMA channels, while the max DMA channel number is %d.'\
# %(self.used_dma_channel_num, DDR_DMA_ENGINE_NUM))
#chech the layer input and output width
for idx in range(1, len(self.modules)):
if self.modules[idx-1].bn:
# if bn is aggregated, will use the this layer's origin output_dq is as the Q
# of the middle data, and use the next layer's dw/dq as this layer's output quantization
# parameters, if the next layer is Pooling layer, will use the next next layer.
# the bitwidth for BN is always MAX_DW bit, if input for bn is not MAX_DW, scale it to MAX_DW bits
self.modules[idx-1].mid_dq = min(self.modules[idx-1].output_dq + (MAX_DW - self.modules[idx-1].output_dw), \
self.modules[idx-1].input_dq + self.modules[idx-1].param_wq)
if self.modules[idx].layer_type != 'Pooling':
self.modules[idx-1].output_dw = self.modules[idx].input_dw
self.modules[idx-1].output_dq = self.modules[idx].input_dq
else:
self.modules[idx-1].output_dw = self.modules[idx+1].input_dw
self.modules[idx-1].output_dq = self.modules[idx+1].input_dq
# Update the quantization information for the pooling layer.
self.modules[idx].input_dw = self.modules[idx-1].output_dw
self.modules[idx].input_dq = self.modules[idx-1].output_dq
self.modules[idx].output_dw = self.modules[idx].input_dw
self.modules[idx].output_dq = self.modules[idx].input_dq
if self.modules[idx].input_dw != self.modules[idx-1].output_dw or \
self.modules[idx].input_dq != self.modules[idx-1].output_dq:
# if no bn is aggregated, the adjacent layers should have consistent
# quantization parameters
raise Exception ('{} layer\'s output width or Q doesn\'t match {} layer\'s input width or Q.'\
.format(self.modules[idx-1].layer_name, self.modules[idx].layer_name))
def module_summary(self):
print '\nNeural network structure overview.'
format_str = "%-10s%-16s%-16s%-16s%-15s%-8s%-8s%-8s%-8s%-6s%-6s%-7s%-8s%-7s"
print (format_str%('NAME', 'TYPE', 'INPUT_SHAPE', 'OUTPUT_SHAPE', 'KERNEL_SHAPE', 'KN',
'STRIDE', 'PAD', 'GROUP', 'CPF', 'KPF', 'DIN', 'WEIGHT', 'DOUT'))
print '-------------------------------------------------------------------------------------------' + \
'---------------------------------------------'
for module_inst in self.modules:
if hasattr(module_inst, 'kernel_shape'):
kernel_shape = module_inst.kernel_shape
elif hasattr(module_inst, 'kernel_size'):
kernel_shape = module_inst.kernel_size
else:
kernel_shape = 0
if hasattr(module_inst, 'cpf'):
cpf = module_inst.cpf
else:
cpf = 0
if hasattr(module_inst, 'kernel_num'):
kernel_num = module_inst.kernel_num
else:
module_inst.kernel_num = 0
print (format_str%(module_inst.layer_name, module_inst.layer_type, str(module_inst.input_shape),
str(module_inst.output_shape), str(kernel_shape), str(kernel_num),
str(module_inst.stride), str(module_inst.pad),
str(module_inst.group) if hasattr(module_inst, 'group') else '', str(cpf),
str(module_inst.kpf), str(module_inst.input_dw)+'/'+str(module_inst.input_dq),
str(module_inst.param_ww)+'/'+str(module_inst.param_wq),
str(module_inst.output_dw)+'/'+str(module_inst.output_dq)))
print '\n'
def memory_summary(self, res_file=None):
print '\nFPGA on-chip memory usage (Single batch).'
format_str = "%-13s%-15s%-15s%-13s%-13s%-13s%-13s%-13s%-13s"
print (format_str%('NAME', 'TYPE', 'SIZE(bits)', 'BRAM18E',
'WR_WIDTH', 'WR_DEPTH', 'RD_WIDTH', 'RD_DEPTH', 'UTILIZATION'))
print '-----------------------------------------------------------------------------------' + \
'-------------------------------------'
self.rm_blk_size = 0
self.rm_dist_size = 0
self.rm_blks = 0
self.wm_size = 0
self.wm_blks = 0
for module_inst in self.modules:
module_inst.profile()
if module_inst.rm_type == 'blk':
self.rm_blk_size += module_inst.rm_size
self.rm_blks += module_inst.rm_blks
else:
self.rm_dist_size += module_inst.rm_size
if module_inst.params:
self.wm_size += module_inst.wm_size + module_inst.bm_size
self.wm_blks += module_inst.wm_blks + module_inst.bm_blks
print (format_str%(module_inst.layer_name, 'reshape' if module_inst.rm_type == 'blk' else 'reshape*',
str(module_inst.rm_size), str(module_inst.rm_blks), str(module_inst.rm_wr_width), str(module_inst.rm_wr_depth),
str(module_inst.rm_rd_width), str(module_inst.rm_rd_depth),
'%.3f'%(float(module_inst.rm_size)/float(module_inst.rm_blks*18000.0) if module_inst.rm_type=='blk' else 0)))
if module_inst.params:
print (format_str%(' ', 'weights{}'.format('(+)' if module_inst.wm_hier_enable is False else ''),
str(module_inst.wm_size), str(module_inst.wm_blks),
str(module_inst.wm_wr_width), str(module_inst.wm_wr_depth), str(module_inst.wm_rd_width),
str(module_inst.wm_rd_depth), '%.3f'%(float(module_inst.wm_size)/float(module_inst.wm_blks*18000.0))))
print (format_str%(' ', 'bias', str(module_inst.bm_size), str(module_inst.bm_blks), ' ', ' ', str(module_inst.bm_rd_width),
str(module_inst.bm_rd_depth), '%.3f'%(float(module_inst.bm_size)/float(module_inst.bm_blks*18000.0))))
total_blks = self.rm_blks * self.batch_size + self.wm_blks
print '\nWeight memory is %.3fMb(%d BRAM18Es).'%(self.wm_size/1000000.0, self.wm_blks)
print 'Reshape memory of each channel, BRAM memory is %.3fMb(%d BRAM18Es), distributed memory is %.3fMb.'\
%(self.rm_blk_size/1000000.0, self.rm_blks, self.rm_dist_size/1000000.0)
print 'Total memory used is %.3fMb, where BRAM is %.3fMb(%d BRAM18Es, %.1f%%), distributed memory is %.3fMb.'\
%((self.rm_blk_size * self.batch_size + self.rm_dist_size * self.batch_size+ self.wm_size)/1000000.0,
(self.rm_blk_size * self.batch_size + self.wm_size) / 1000000.0, total_blks,
float(total_blks)/float(get_brams_resource(res_file))*100.0, self.rm_dist_size * self.batch_size)
print 'The averaged utilization of BRAM is %.3f.'%(float(self.rm_blk_size * self.batch_size + self.wm_size) \
/float(total_blks)/18000.0)
if total_blks > get_brams_resource(res_file):
raise Exception ('The BRAM18E used is %d, exceeds the total available %d BRAM16Es.'\
%(total_blks, get_brams_resource(res_file)))
if total_blks > get_brams_resource(res_file) * RESOURCE_WARNING_THRES:
print 'WARNING: The BRAM18E used is %d, excees %.1f%% of the total available %d BRAM16Es'\
%(total_blks, RESOURCE_WARNING_THRES*100, get_brams_resource(res_file))
self.total_blks = total_blks
def profile(self, res_file=None):
for module_inst in self.modules:
module_inst.profile(self.batch_size)
max_clocks = max([module_inst.clocks for module_inst in self.modules])
max_delay = max_clocks / CLOCK_FREQUENCY
total_macs = sum([module_inst.macs for module_inst in self.modules])
controller_dsp = sum([6 if module_inst.params else 2 for module_inst in self.modules])
total_compute_dsps = sum([module_inst.dsps for module_inst in self.modules])
total_multiplier = sum([module_inst.multiplier for module_inst in self.modules])
total_dsps = controller_dsp + total_compute_dsps
total_clocks = sum([module_inst.clocks for module_inst in self.modules])
total_weights_num = sum([module_inst.weights_num for module_inst in self.modules])
if total_dsps > get_dsps_resource(res_file):
raise Exception ('The DSPs used is %d, exceeds the total available %d DSPs.'\
%(total_dsps, get_dsps_resource(res_file)))
if total_dsps > get_dsps_resource(res_file) * RESOURCE_WARNING_THRES:
print '\nWARNING: The DSPs used is %d, exceeds %.1f%% of the total available %d DSPs'\
%(total_dsps, RESOURCE_WARNING_THRES*100, get_dsps_resource(res_file))
print '\nFPGA implementation summary (projected in %dMHz clock, batch_size=%d).'%(CLOCK_FREQUENCY, self.batch_size)
format_str = "%-12s%-15s%-8s%-8s%-16s%-16s%-12s%-13s%-15s%-20s"
print (format_str%('NAME', 'TYPE', 'CPF',
'KPF', 'MACS', 'DSPs', 'WEIGHTS', 'CLOCKS', 'DELAY(us)', 'DDR_BW(Mb/s)'))
print '-----------------------------------------------------------------------------------------' + \
'--------------------------------------'
total_ddr_bandwidth = 0
layer_profile = []
optim_info = []
for module_inst in self.modules:
print (format_str%(module_inst.layer_name, module_inst.layer_type,
str(module_inst.cpf) if hasattr(module_inst, 'cpf') else '', str(module_inst.kpf),
str(module_inst.macs), str(module_inst.dsps), str(module_inst.weights_num), str(module_inst.clocks),
'%.3f'%(module_inst.clocks/CLOCK_FREQUENCY),
'%.2f'%(module_inst.ddr_bandwidth * CLOCK_FREQUENCY * module_inst.clocks/max_clocks)))
if WEBSERVICE is True:
layer_profile.append(pack_layer_profile(module_inst.layer_name, module_inst.layer_type,
module_inst.cpf if hasattr(module_inst, 'cpf') else None, module_inst.kpf,
str(module_inst.macs), module_inst.dsps, module_inst.weights_num,
module_inst.clocks/CLOCK_FREQUENCY,
module_inst.ddr_bandwidth * CLOCK_FREQUENCY * module_inst.clocks/max_clocks,
module_inst.rm_blks + module_inst.wm_blks + module_inst.bm_blks))
optim_info.append(pack_optim_info(module_inst.layer_name,
module_inst.cpf if hasattr(module_inst, 'cpf') else None, module_inst.kpf))
total_ddr_bandwidth += module_inst.ddr_bandwidth * CLOCK_FREQUENCY * module_inst.clocks / max_clocks
print '----------------------'
print (format_str%('total', ' ', ' ', ' ', str(total_macs),
str(total_dsps) + '(%.1f%%)'%(float(total_dsps)/get_dsps_resource(res_file)*100.0),
str(total_weights_num), str(total_clocks),
'%.3f'%(total_clocks/CLOCK_FREQUENCY), '%.2f'%(total_ddr_bandwidth)))
print '\nTotal %d DMA channels used, %d left.'%(self.used_dma_channel_num, \
DDR_DMA_ENGINE_NUM-self.used_dma_channel_num)
print 'The projected throughput is %.1fimages/s, utilization is about %.4f.'\
%(1e6/max_delay * self.batch_size, float(total_macs)/(total_multiplier*CLOCK_FREQUENCY*max_delay))
if WEBSERVICE is True:
model_profile = pack_model_profile(layer_profile, self.batch_size, total_macs, total_dsps, \
total_weights_num, self.total_blks, total_ddr_bandwidth, 1e6/max_delay * self.batch_size,
float(total_macs)/(total_multiplier*CLOCK_FREQUENCY*max_delay))
return model_profile, {'paral_info':optim_info, 'batch_size':self.batch_size}
def ipcores_gen(self, fpga_type):
tcl_str = ''
# To generate the ips cores, we should creat a project first
tcl_str += 'set project_name ' + IP_PROJECT_NAME + '\n'
tcl_str += 'set project_path ' + IP_PROJECT_PATH + '\n'
tcl_str += 'set src_path ' + IP_PROJECT_PATH + '/' + IP_PROJECT_NAME + '.srcs\n'
tcl_str += 'set sim_path ' + IP_PROJECT_PATH + '/' + IP_PROJECT_NAME + '.ip_user_files/sim_scripts\n'
if fpga_type:
tcl_str += 'create_project $project_name $project_path -part ' + fpga_type + '\n'
else:
tcl_str += 'create_project $project_name $project_path -part ' + XILINX_FPGA_TYPE + '\n'
# Generate ips for each layer
self.ips = []
for module_inst in self.modules:
self.ips.extend(module_inst.ips_generate())
# Generate the ips core tcl file
tcl_str += ipcore_tcl_gen(self.ips)
file_path_name = TCL_FILE_PATH + '/' + 'ips.tcl'
fd = open(file_path_name, 'w')
fd.write(tcl_str)
fd.close()
def file_list_gen(self):
self.lib_source_file_set = set([])
self.lib_ip_file_set = set([])
self.source_file_set = set([])
self.ip_file_set = set([])
#generate file set for lib or souce/ip files
for module_inst in self.modules:
lib_source_file_list, lib_ip_file_list, source_file_list, ip_file_list = module_inst.get_file_list()
self.lib_source_file_set.update(lib_source_file_list)
self.lib_ip_file_set.update(lib_ip_file_list)
self.source_file_set.update(source_file_list)
self.ip_file_set.update(ip_file_list)
#self.lib_source_file_set.update(utility.get_file_dependence('controller', 'source_dependence'))
#self.lib_ip_file_set.update(utility.get_file_dependence('controller', 'ip_dependence'))
#self.lib_source_file_set.update(['controller.v'])
#add the top layer, always named model.v
self.source_file_set.update(['model.v'])
#input/output bus adapter
self.lib_source_file_set.update(['busm2n.v'])
#ddr read delay for better timing
self.lib_source_file_set.update(['ddr_read_delay.v'])
#collect all the files for Vivado project
file_path_list = []
sim_file_list = []
imp_file_list = []
file_list_str = ''
#collect lib souce file
for file_inst in self.lib_source_file_set:
file_path = LIB_SOURCE_FILE_PATH + '/' + file_inst
file_path_list.append(file_path)
sim_file_list.append(file_path)
imp_file_list.append(file_path)
file_list_str += 'verilog work' + " \"acc/" + file_inst + "\"\n"
#collect lib ip file
for file_inst in self.lib_ip_file_set:
file_path = LIB_IP_FILE_PATH + '/' + file_inst + '/' + file_inst + '.xci'
sim_file = LIB_IP_FILE_PATH + '/' + file_inst + '/' + file_inst + '_funcsim.v'
file_path_list.append(file_path)
sim_file_list.append(sim_file)
file_list_str += 'verilog work' + " \"cores/" + file_inst + '/' + file_inst + '.xci' + "\"\n"
#collect source file
for file_inst in self.source_file_set:
file_path = VERILOG_FILE_PATH + '/' + file_inst
file_path_list.append(file_path)
sim_file_list.append(file_path)
imp_file_list.append(file_path)
file_list_str += 'verilog work' + " \"acc/" + file_inst + "\"\n"
#collect ip file
for file_inst in self.ip_file_set:
file_path = IP_FILE_PATH + '/' + file_inst + '/' + file_inst + '.xci'
sim_file = IP_FILE_PATH + '/' + file_inst + '/sim/' + file_inst + '.v'
file_path_list.append(file_path)
sim_file_list.append(sim_file)
file_list_str += 'verilog work' + " \"cores/" + file_inst + '/' + file_inst + '.xci' + "\"\n"
# Print 'The following file will be add to the vivado project.'
# file_list_str = ''
# for file_path_name in file_path_list:
# file_list_str += 'verilog work' + " \"" + file_path_name + "\"\n"
sim_file_str = ''
for file_path_name in sim_file_list:
sim_file_str += file_path_name + "\n"
imp_file_str = ''
for file_path_name in imp_file_list:
imp_file_str += file_path_name + "\n"
#output to a file list text file
file_path_name = FILE_LIST_PATH + '/' + 'file_list.txt'
fd = open(file_path_name, 'w')
fd.write(file_list_str)
fd.close()
if SIMULATION_ONLY is True:
file_path_name = SIM_FILE_LIST_PATH + '/' + 'sim_file.f'
fd = open(file_path_name, 'w')
fd.write(sim_file_str)
fd.close()
file_path_name = FILE_LIST_PATH + '/' + 'imp_file.f'
fd = open(file_path_name, 'w')
fd.write(imp_file_str)
fd.close()
def memory_coe_file_gen(self, ddr_data_width=DDR_DATA_WIDTH):
mif_file_list = []
weights_array = np.array([])
ddr_start_addr = 0
ddr_dma_index = 0
for module_inst in self.modules:
weights, mif_file = module_inst.memory_coe_gen(ddr_data_width)
mif_file_list.extend(mif_file)
if len(weights) != 0:
# write weights to bit stream, will used to load to DDR
weights_array = np.append(weights_array, weights)
module_inst.ddr_start_addr = ddr_start_addr
ddr_start_addr += len(weights) / (ddr_data_width / 16)
module_inst.ddr_dma_id = ddr_dma_index
ddr_dma_index += 1
self.used_dma_channel_num = ddr_dma_index
file_path_name = MEM_COE_FILE_PATH + '/' + 'weights.bin'
fd = open(file_path_name, 'wb')
fd.write(struct.pack('H'*len(weights_array), *weights_array))
fd.close()
weights_array = weights_array.reshape(-1, ddr_data_width / 16)
file_path_name = MEM_COE_FILE_PATH + '/' + 'weights_sim.dat'
uint16_dump_hex_aligned(file_path_name, weights_array)
mif_file_str = ''
for mif_file in mif_file_list:
mif_file_str += mif_file + '\n'
if SIMULATION_ONLY is True:
file_path_name = SIM_FILE_LIST_PATH + '/' + 'mif_file.f'
fd = open(file_path_name, 'w')
fd.write(mif_file_str)
fd.close()
def ios_generate(self, ddr_data_width = DDR_DATA_WIDTH):
self.ios = {}
# data blob ios
self.ios['blob_din'] = tuple([CAPI_DATA_BUS_WIDTH, 'input'])
self.ios['blob_din_rdy'] = tuple([1, 'output'])
self.ios['blob_din_en'] = tuple([1, 'input'])
self.ios['blob_din_eop'] = tuple([1, 'input'])
self.ios['blob_dout'] = tuple([CAPI_DATA_BUS_WIDTH, 'output'])
self.ios['blob_dout_en'] = tuple([1, 'output'])
self.ios['blob_dout_rdy'] = tuple([1, 'input'])
self.ios['blob_dout_eop'] = tuple([1, 'output'])
for i in range(DDR_DMA_ENGINE_NUM):
self.ios['ddr_read_req_' + str(i)] = tuple([1, 'output'])
self.ios['ddr_read_start_addr_' + str(i)] = tuple([27, 'output'])
self.ios['ddr_read_length_' + str(i)] = tuple([27, 'output'])
self.ios['ddr_read_ack_' + str(i)] = tuple([1, 'input'])
self.ios['ddr_dout'] = tuple([ddr_data_width, 'input'])
self.ios['ddr_dout_en'] = tuple([16, 'input'])
self.ios['ddr_dout_eop'] = tuple([1, 'input'])
def code_gen(self, ddr_data_width=DDR_DATA_WIDTH):
#generate the code for each layer
for module_inst in self.modules:
module_inst.code_gen(self.batch_size, ddr_data_width)
#generate the code for the top module
self.code_top_module_gen(ddr_data_width)
def code_top_module_gen(self, ddr_data_width=DDR_DATA_WIDTH):
code_str = ''
# Generate the code of the module header
self.ios_generate(ddr_data_width)
code_str += code_module_header_gen('model', self.ios)
# generate the dma delay instance, -1 for disable this channel.
dma_delays = -1 * np.ones(DDR_DMA_ENGINE_NUM, dtype=np.int32)
for module_inst in self.modules:
if module_inst.ddr_dma_id >= 0:
dma_delays[module_inst.ddr_dma_id] = module_inst.dma_delay
code_str += code_dma_delay_gen(dma_delays, ddr_data_width)
# input data width adjust
blob_dout_name = 'input_blob_din'
blob_dout_rdy_name = 'input_blob_din_rdy'
blob_dout_en_name = 'input_blob_din_en'
blob_dout_eop_name = 'input_blob_din_eop'
inter_signals = {}
inter_signals[blob_dout_name] = tuple([self.modules[0].input_width * self.modules[0].input_dw * self.batch_size, 'wire'])
inter_signals[blob_dout_rdy_name] = tuple([1, 'wire'])
inter_signals[blob_dout_en_name] = tuple([1, 'wire'])
inter_signals[blob_dout_eop_name] = tuple([1, 'wire'])
code_str += code_signals_gen(inter_signals)
bus_width_lcm = lcm(self.modules[0].input_width * self.modules[0].input_dw * self.batch_size, CAPI_DATA_BUS_WIDTH)
param_list = [tuple(['IN_WIDTH', str(CAPI_DATA_BUS_WIDTH)]), \
tuple(['OUT_WIDTH', str(self.modules[0].input_width * self.modules[0].input_dw * self.batch_size)]), \
tuple(['COM_MUL', str(bus_width_lcm)]), \
tuple(['N', str(self.modules[0].input_shape[0] * self.modules[0].input_shape[1] \
* self.modules[0].input_shape[2] / self.modules[0].input_width)])]
code_str += code_instance_gen('busm2n', 'blob_din', 'blob_din_en', 'blob_din_rdy', 'blob_din_eop', \
blob_dout_name, blob_dout_en_name, blob_dout_rdy_name, blob_dout_eop_name, param_list, 0)
blob_din_name = blob_dout_name
blob_din_rdy_name = blob_dout_rdy_name
blob_din_en_name = blob_dout_en_name
blob_din_eop_name = blob_dout_eop_name
for module_inst in self.modules:
# Define the output signal name and width
blob_dout_name = module_inst.layer_name + '_blob_dout'
blob_dout_width = module_inst.output_width * module_inst.output_dw * self.batch_size
blob_dout_rdy_name = module_inst.layer_name + '_blob_dout_rdy'
blob_dout_en_name = module_inst.layer_name + '_blob_dout_en'
blob_dout_eop_name = module_inst.layer_name + '_blob_dout_eop'
# Generate the outpt signals
inter_signals = {}
inter_signals[blob_dout_name] = tuple([blob_dout_width, 'wire'])
inter_signals[blob_dout_rdy_name] = tuple([1, 'wire'])
inter_signals[blob_dout_en_name] = tuple([1, 'wire'])
inter_signals[blob_dout_eop_name] = tuple([1, 'wire'])
code_str += code_signals_gen(inter_signals)
if module_inst.ddr_dma_id >= 0:
# DDR DMA channle has been assigned.
code_str += code_instance_ddr_gen(module_inst.layer_name + '_layer', \
blob_din_name, blob_din_en_name, blob_din_rdy_name, blob_din_eop_name, \
blob_dout_name, blob_dout_en_name, blob_dout_rdy_name, blob_dout_eop_name, \
'layer_ddr_read_req_'+str(module_inst.ddr_dma_id), \
'layer_ddr_read_ack_'+str(module_inst.ddr_dma_id), \
'layer_ddr_read_addr_'+str(module_inst.ddr_dma_id), \
'layer_ddr_read_length_'+str(module_inst.ddr_dma_id), \
'layer_ddr_dout_'+str(module_inst.ddr_dma_id), \
'layer_ddr_dout_en_'+str(module_inst.ddr_dma_id), \
'layer_ddr_dout_eop_'+str(module_inst.ddr_dma_id))
else:
code_str += code_instance_gen(module_inst.layer_name + '_layer',
blob_din_name, blob_din_en_name, blob_din_rdy_name, blob_din_eop_name,
blob_dout_name, blob_dout_en_name, blob_dout_rdy_name, blob_dout_eop_name)
# The output of this layer will be the input of next layer
blob_din_name = blob_dout_name
blob_din_rdy_name = blob_dout_rdy_name
blob_din_en_name = blob_dout_en_name
blob_din_eop_name = blob_dout_eop_name
bus_width_lcm = lcm(self.modules[-1].output_width*self.modules[-1].output_dw * self.batch_size ,CAPI_DATA_BUS_WIDTH)
total_bits = np.prod(self.modules[-1].output_shape) * self.modules[-1].output_dw * self.batch_size
if (total_bits %CAPI_DATA_BUS_WIDTH) == 0:
output_num = total_bits / CAPI_DATA_BUS_WIDTH
else:
output_num = total_bits / CAPI_DATA_BUS_WIDTH + 1
param_list = [tuple(['IN_WIDTH', str(self.modules[-1].output_width*self.modules[-1].output_dw * self.batch_size)]), \
tuple(['OUT_WIDTH', str(CAPI_DATA_BUS_WIDTH)]), \
tuple(['COM_MUL', str(bus_width_lcm)]), \
tuple(['N', str(output_num)])]
code_str += code_instance_gen('busm2n', blob_din_name, blob_din_en_name, blob_din_rdy_name, blob_din_eop_name, \
'blob_dout', 'blob_dout_en', 'blob_dout_rdy', 'blob_dout_eop', param_list, 1)
# process the unused channels
unused_channels = range(DDR_DMA_ENGINE_NUM)[self.used_dma_channel_num:]
for channel_index in unused_channels:
code_str += 'assign layer_ddr_read_req_' + str(channel_index) + ' = 1\'b0;\n' + \
'assign layer_ddr_read_length_' + str(channel_index) + ' = 27\'b0;\n' + \
'assign layer_ddr_read_addr_' + str(channel_index) + ' = 27\'b0;\n'
code_str += 'endmodule\n'
file_path_name = VERILOG_FILE_PATH + '/' + 'model.v'
fd = open(file_path_name, 'w')
fd.write(code_str)
fd.close()
def timing_constraints_gen(self):
code_str = ''
for module_inst in self.modules:
if module_inst.ddr_dma_id >= 0:
code_str += 'set_multicycle_path -from [get_nets {a0/afu0/acc_module/u_module' + \
'/u0_ddr_read_delay/engine_ddr_read_addr_%d_o[*]}] -setup %d\n'\
%(module_inst.ddr_dma_id, 2+module_inst.dma_delay)
code_str += 'set_multicycle_path -from [get_nets {a0/afu0/acc_module/u_module' + \
'/u0_ddr_read_delay/engine_ddr_read_addr_%d_o[*]}] -hold 1\n'%(module_inst.ddr_dma_id)
file_path_name = TIMING_FILE_PATH + '/' + 'dma_timing.xdc'
fd = open(file_path_name, 'w')
fd.write(code_str)
fd.close()
def register_map_gen(self):
code_str = ''
code_str += '`define USER_CONFIG0 64\'h' + '%04X'%(self.batch_size) + '%04x'%(self.modules[0].input_shape[2]) + \
'%04X'%(self.modules[0].input_shape[1]) + '%04X'%(self.modules[0].input_shape[0]) + '\n'
code_str += '`define USER_CONFIG1 64\'h' + '%04X'%(self.batch_size) + '%04x'%(self.modules[-1].output_shape[2]) + \
'%04X'%(self.modules[-1].output_shape[1]) + '%04X'%(self.modules[-1].output_shape[0]) + '\n'
input_scale = self.modules[0].input_dq if self.modules[0].input_dq >= 0 else self.modules[0].input_dq + 256
output_scale = self.modules[-1].output_dq if self.modules[-1].output_dq > 0 else self.modules[-1].output_dq + 256
code_str += '`define USER_CONFIG2 64\'h' + '00000000' + '%02X'%(output_scale) + '%02X'%(input_scale) + \
'%02X'%(self.modules[-1].output_dw) + '%02X'%(self.modules[0].input_dw) + '\n'
code_str += '`define USER_CONFIG3 64\'h' + '000000000000' + '%04X'%(INPUT_CHANNEL_PADDING) + '\n'
code_str += '`define USER_CONFIG4 64\'h' + '000000000000' + '%02X'%(self.modules[-1].kpf) + '%02X'%(1) + '\n'
code_str += '`define USER_CONFIG5 64\'h' + '0000000000000000' + '\n'
code_str += '`define USER_CONFIG6 64\'h' + '0000000000000000' + '\n'
code_str += '`define USER_CONFIG7 64\'h' + '0000000000000000'
file_path_name = OUTPUT_PATH + '/' + 'parameters.v'
fd = open(file_path_name, 'w')
fd.write(code_str)
fd.close()
if __name__ == '__main__':
pass