Name: | RFS |
---|---|
Embed.: | Conv64F/ResNet12/ResNet18 |
Type: | Fine-tuning |
Venue: | ECCV'20 |
Codes: | rfs |
- When testing the
RFS-simple
, you need to changetest-shot
to1 or 5
for different setting with 1 checkpoint. - Notice that in
Table.2
, we do not use Test-DA(which augment the test samples with 5-times) for fair.
Cite this work with:
@inproceedings{DBLP:conf/eccv/TianWKTI20,
author = {Yonglong Tian and
Yue Wang and
Dilip Krishnan and
Joshua B. Tenenbaum and
Phillip Isola}
title = {Rethinking Few-Shot Image Classification: {A} Good Embedding is All
You Need?},
booktitle = {Computer Vision - {ECCV} 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part {XIV}},
series = {Lecture Notes in Computer Science},
volume = {12359},
pages = {266--282},
year = {2020},
url = {https://doi.org/10.1007/978-3-030-58568-6_16},
doi = {10.1007/978-3-030-58568-6_16}
}
Classification
Embedding | 📖 miniImageNet (5,1) | 💻 miniImageNet (5,1) | 📖miniImageNet (5,5) | 💻 miniImageNet (5,5) | 📝 Comments | |
---|---|---|---|---|---|---|
1 | ResNet12 1 | 62.02 ± 0.63 | 62.80 ± 0.52 ⬇️ 📋 | 79.64 ± 0.44 | 79.57± 0.39 ⬇️ 📋 | rfs-simple-Table-1 |
2 | Conv64F | - | 47.97 ± 0.33 ⬇️ 📋 | - | 65.88 ± 0.30 ⬇️ 📋 | Table.2 |
3 | ResNet12 | - | 60.96 ± 0.35 ⬇️ 📋 | - | 77.36 ± 0.27 ⬇️ 📋 | Table.2 |
4 | ResNet18 | - | 61.65 ± 0.37 ⬇️ 📋 | - | 76.60 ± 0.28 ⬇️ 📋 | Table.2 |
Embedding | 📖 tieredImageNet (5,1) | 💻 tieredImageNet (5,1) | 📖tieredImageNet (5,5) | 💻 tieredImageNet (5,5) | 📝 Comments | |
---|---|---|---|---|---|---|
1 | Conv64F | - | 52.21 ± 0.37 ⬇️ 📋 | - | 71.82 ± 0.32 ⬇️ 📋 | Table.2 |
2 | ResNet12 | - | 70.55 ± 0.42 ⬇️ 📋 | - | 84.74 ± 0.29 ⬇️ 📋 | Table.2 |
3 | ResNet18 | - | 69.14 ± 0.42 ⬇️ 📋 | - | 83.21 ± 0.31 ⬇️ 📋 | Table.2 |
Footnotes
-
ResNet12-MetaOpt with [64,160,320,640]. ↩