-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
185 lines (144 loc) · 6.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import logging
import os
import sys
import numpy as np
import torch
from torch.autograd import Variable
from torch.optim import Adam
from torch.utils.data import DataLoader
sys.path.append('..')
from EMNQA import util
from EMNQA.data_set import QAdataset
from EMNQA.model import DMN
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fmt = logging.Formatter('%(asctime)s: [ %(message)s ]', '%m/%d/%Y %I:%M:%S %p')
console = logging.StreamHandler()
console.setFormatter(fmt)
logger.addHandler(console)
HIDDEN_SIZE = 80
BATCH_SIZE = 64
LR = 0.001
EPOCH = 50
NUM_EPISODE = 3
EARLY_STOPPING = False
DATA_WORKS = 4
USE_CUDA = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if USE_CUDA else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if USE_CUDA else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if USE_CUDA else torch.ByteTensor
def prepare_data(filename): # data -> dataloader
data_p = util.bAbI_data_load(filename)
word2idx, idx2word = util.build_words_dict(data_p)
data_set = QAdataset(data_p, word2idx)
train_dataloader = DataLoader(data_set,
batch_size=BATCH_SIZE,
# sampler=train_sampler,
num_workers=DATA_WORKS,
collate_fn=util.pad_to_batch,
pin_memory=USE_CUDA, )
return train_dataloader, word2idx
def seq2variable(data, word2id): # data -> variable
for t in data:
for i, f in enumerate(t[0]):
t[0][i] = util.prepare_sequence(f, word2id)
t[1] = util.prepare_sequence(t[1], word2id)
t[2] = util.prepare_sequence(t[2], word2id)
def train_from_scratch(filename): # training
train_data = util.bAbI_data_load(filename)
test_data = util.bAbI_data_load(args_dic.test_data_file)
word2idx, idx2word = util.build_words_dict(train_data)
test_data = util.bAbI_data_test(test_data, word2idx)
seq2variable(train_data, word2idx)
print('Model init.')
model = DMN(HIDDEN_SIZE, len(word2idx), len(word2idx), word2idx)
if USE_CUDA:
model = model.cuda()
model.init_weight()
# data_loader = prepare_data(filename)
optimizer = Adam(model.parameters(), lr=LR)
loss_fun = torch.nn.CrossEntropyLoss(ignore_index=0)
EARLY_STOPPING = False
print('Begin Training!')
for i in range(EPOCH):
losses = []
if EARLY_STOPPING: break
for j, batch in enumerate(util.getbatch(train_data, BATCH_SIZE)):
facts, fact_masks, questions, question_masks, answers = util.pad_to_batch(batch, word2idx)
model.zero_grad()
pred = model(facts, fact_masks, questions, question_masks, answers.size(1), NUM_EPISODE, True)
loss = loss_fun(pred, answers.view(-1))
losses.append(loss.data.tolist()[0])
loss.backward()
optimizer.step()
if j % 100 == 0:
logger.info("[%d/%d] mean_loss : %0.2f" % (i, EPOCH, np.mean(losses)))
# print("[%d/%d] mean_loss : %0.2f" % (i, EPOCH, np.mean(losses)))
if np.mean(losses) < 0.01:
EARLY_STOPPING = True
print("Early Stopping!")
torch.save({'state_dict': model.state_dict(), 'word2idx': model.word2index},
'earlystoping-%s' % args_dic.model_file)
break
losses = []
if not EARLY_STOPPING:
model.state_dict(destination=args_dic.model_file)
print('Training over. To Testing...')
evaluation(word2idx, model, test_data)
print('OK .system finish.')
def pad_fact(fact, x_to_ix): # this is for inference
max_x = max([s.size(1) for s in fact])
x_p = []
for i in range(len(fact)):
if fact[i].size(1) < max_x:
x_p.append(
torch.cat([fact[i], Variable(LongTensor([x_to_ix['<PAD>']] * (max_x - fact[i].size(1)))).view(1, -1)],
1))
else:
x_p.append(fact[i])
fact = torch.cat(x_p)
fact_mask = torch.cat(
[Variable(ByteTensor(tuple(map(lambda s: s == 0, t.data))), volatile=False) for t in fact]).view(fact.size(0),
-1)
return fact, fact_mask
def evaluation(word2id, model, test_data):
accuracy = 0
for d in test_data:
facts, facts_mask = pad_fact(d[0], word2id)
question = d[1]
question_mask = Variable(ByteTensor([0] * d[1].size(1)), volatile=False).unsqueeze(0)
answer = d[2].squeeze(0) # ??
model.zero_grad()
score = model([facts], [facts_mask], question, question_mask, num_decode=answer.size(0))
if score.max(1)[1].data.tolist() == answer.data.tolist():
accuracy += 1
print(accuracy / len(test_data) * 100)
def train_from_model():
print('Model init.')
m = torch.load('earlystoping-EMNQA.model', map_location=lambda storage, loc: storage)
word2idx = m['word2idx']
model = DMN(HIDDEN_SIZE, len(word2idx), len(word2idx), word2idx)
model.load_state_dict(state_dict=m['state_dict'])
logger.info('Load from state dict over. Evaluation now')
test_data = util.bAbI_data_load(args_dic.test_data_file)
test_data = util.bAbI_data_test(test_data, word2idx)
evaluation(word2idx, model, test_data=test_data)
if __name__ == '__main__':
# data_file = 'qa5_three-arg-relations_train.txt'
args = argparse.ArgumentParser()
args.add_argument('--train-data-file', type=str, default='qa5_three-arg-relations_train.txt',
help='Input the train QA data')
args.add_argument('--test-data-file', type=str, default='qa5_three-arg-relations_test.txt',
help='Input the test QA data')
args.add_argument('--model-file', type=str, default='EMNQA.model',
help='Model file saved')
args_dic = args.parse_args()
data_file = args_dic.train_data_file
logger.info('Use CUDA : %s' % USE_CUDA)
if os.path.isfile('earlystoping-EMNQA.model'):
logger.info("Find the model state dict . init model...")
train_from_model(data_file)
else:
logger.info('No model state dict be Found .init model from scratch!')
train_from_scratch(data_file)