-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathtrainer.py
236 lines (201 loc) · 7.98 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
from dataclasses import asdict, dataclass
from typing import Any, Optional, Tuple
import numpy as np
import torch
# import torch.nn.functional as F
# from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss # noqa
from accelerate import Accelerator
from PIL import ImageDraw
from torch.nn import CrossEntropyLoss # noqa
from torch.optim.optimizer import Optimizer
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import AdamW, PreTrainedModel, get_linear_schedule_with_warmup
from mario_gpt.dataset import MarioDataset
from mario_gpt.lm import BaseMarioLM, MarioLM
@dataclass
class TrainingConfig:
gradient_accumulation_steps: int = 1
mixed_precision: str = (
"no" # `no` for float32, `fp16` for automatic mixed precision
)
output_dir: str = (
"Mario-GPT2-700-context-length" # the model name locally and on the HF Hub
)
learning_rate: float = 5e-4
epsilon: float = 1e-9
lr_warmup_steps: int = 1000
batch_size: int = 4
total_steps: int = 50000
mask_proportion: float = 0.0
eval_iteration: int = 1000
save_iteration: int = 5000
def pretty_print(self):
print("================== Training Config ==================")
d = asdict(self)
for k in d:
print(f"{k} -- {d[k]}")
print("================== MarioLM ==================")
class MarioGPTTrainer:
def __init__(
self,
mario_lm: BaseMarioLM,
train_dataset: MarioDataset,
config: Optional[TrainingConfig] = None,
optimizer: Optional[Optimizer] = None,
lr_scheduler: Optional[Any] = None,
):
self.mario_lm = mario_lm
self.train_dataset = train_dataset
self.config = config
if config is None:
self.config = TrainingConfig()
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
if optimizer is None:
self.optimizer = self.create_optimizer(self.config)
if lr_scheduler is None:
self.lr_scheduler = self.create_lr_scheduler(self.config, self.optimizer)
self.accelerator = self.create_accelerator(self.config)
def prepare(self) -> Tuple[PreTrainedModel, Optimizer, Any]:
return self.accelerator.prepare(
self.mario_lm.lm, self.optimizer, self.lr_scheduler
)
def create_optimizer(self, config: Any) -> Optimizer:
params = self.mario_lm.lm.parameters()
return AdamW(params, lr=config.learning_rate, eps=config.epsilon)
def create_lr_scheduler(self, config: Any, optimizer: Optimizer) -> Any:
return get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=config.lr_warmup_steps,
num_training_steps=config.total_steps,
)
def create_accelerator(self, config: Any) -> Accelerator:
return Accelerator(
mixed_precision=config.mixed_precision,
gradient_accumulation_steps=config.gradient_accumulation_steps,
log_with="tensorboard",
project_dir=config.output_dir,
)
def unwrap(self) -> BaseMarioLM:
return MarioLM(
lm=self.accelerator.unwrap(self.mario_lm.lm),
tokenizer=self.mario_lm.tokenizer,
context_len=self.mario_lm.context_len,
prompter=self.mario_lm.prompter,
)
def sample_from_dataset(
self, dataset: Dataset, batch_size: int
) -> Tuple[torch.Tensor, torch.Tensor]:
indices = list(
torch.randint(low=0, high=len(dataset), size=(batch_size,)).long()
)
return dataset[indices]
def train_iter(
self,
accelerator: Accelerator,
model: PreTrainedModel,
train_dataset: MarioDataset,
optimizer: Any,
scheduler: Any,
batch_size: int = 4,
):
device = accelerator.device
total_train_loss = 0
indices = list(
torch.randint(low=0, high=len(train_dataset), size=(batch_size,)).long()
)
batch = train_dataset[indices]
b_input_ids = batch[0].view(batch_size, -1).to(device)
b_labels = batch[0].view(batch_size, -1).to(device)
attention_masks = batch[1].to(device)
encoder_hidden_states = None
str_levels = []
encoder_hidden_states = []
for level in b_input_ids:
_, encoder_hidden_state, _, str_level = self.mario_lm.prompter(level)
str_levels.append(str_level)
encoder_hidden_states.append(encoder_hidden_state)
encoder_hidden_states = torch.stack(encoder_hidden_states, dim=0).view(
batch_size, 1, -1
)
with accelerator.accumulate(model):
model.zero_grad()
outputs = model(
input_ids=b_input_ids.to(device),
labels=b_labels,
attention_mask=attention_masks,
encoder_hidden_states=encoder_hidden_states,
token_type_ids=None,
)
loss = outputs.loss
batch_loss = loss.item()
total_train_loss += batch_loss
loss.backward()
optimizer.step()
scheduler.step()
grad_dict = {}
for n, W in model.named_parameters():
if W.grad is not None:
grad_dict["{}_grad".format(n)] = float(torch.sum(W.grad).item())
return total_train_loss / batch_size, grad_dict
def train(
self,
total_steps: Optional[int] = None,
batch_size: Optional[int] = None,
):
if total_steps is None:
total_steps = self.config.total_steps
if batch_size is None:
batch_size = self.config.batch_size
self.accelerator.init_trackers("mario-gpt")
checkpoint_path = self.config.output_dir
logdir = os.path.abspath(self.accelerator.logging_dir)
print(f"Training for {total_steps} Iterations and batch_size {batch_size}")
if getattr(self.config, "pretty_print", None) is not None:
self.config.pretty_print()
print(f"Follow tensorboard with: python -m tensorboard.main --logdir {logdir}")
model, optimizer, lr_scheduler = self.prepare()
bar = tqdm(np.arange(total_steps))
model.train()
for i in bar:
loss, grad_dict = self.train_iter(
self.accelerator,
model,
self.train_dataset,
optimizer,
lr_scheduler,
batch_size,
)
logs = {"loss": loss, "last_lr": lr_scheduler.get_last_lr()[0]}
bar.set_description(f"{logs}")
self.accelerator.log({**logs, **grad_dict}, step=i)
if (i + 1) % self.config.eval_iteration == 0:
print("Evaluating...")
with torch.no_grad():
try:
if self.config.mask_proportion <= 0.0:
(
prompt,
_,
_,
_,
) = self.mario_lm.prompter(sample_prompt=True)
out = self.mario_lm.sample(
prompts=[prompt],
num_steps=1400,
temperature=2.0,
use_tqdm=True,
)
draw = ImageDraw.Draw(out.img)
draw.text((0, 0), prompt, (0, 0, 0))
tracker = self.accelerator.get_tracker("tensorboard")
tracker.add_image(
"image", np.array(out.img), i, dataformats="HWC"
)
except Exception as e:
print("Failed to evaluate!", e)
model.train()
if (i + 1) % self.config.save_iteration == 0:
self.mario_lm.save_model(checkpoint_path, i)