-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_icnet.py
executable file
·59 lines (46 loc) · 2.27 KB
/
train_icnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/python
from time import gmtime, strftime
from keras import optimizers
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
from keras.callbacks import LearningRateScheduler
import utils
from utils import PolyDecay
from models.icnet import ICNet
import configs
## Parameters:
batch_size = 6
epochs = 25
model_type = "large_full_2"
#### Train ####
# Callbacks
checkpoint = ModelCheckpoint('output/icnet_' + model_type + '_{epoch:03d}_{categorical_accuracy:.3f}.h5', mode='max')
tensorboard = TensorBoard(batch_size=batch_size,
log_dir="./logs/ICNet/" + model_type + "/{}/".format(strftime("%Y-%m-%d-%H-%M-%S", gmtime())))
lr_decay = LearningRateScheduler(PolyDecay(0.01, 0.9, epochs).scheduler)
# Generators
train_generator = utils.generator(df=utils.load_train_data(),
batch_size=batch_size,
resize_shape=(configs.img_width, configs.img_height),
crop_shape=(configs.img_width, configs.img_height),
n_classes=34,
training=True)
val_generator = utils.generator(df=utils.load_val_data(configs.val_label_path), batch_size=1,
resize_shape=(configs.img_width, configs.img_height),
crop_shape=(configs.img_width, configs.img_height),
n_classes=34,
training=False)
# Optimizer
optim = optimizers.SGD(lr=0.01, momentum=0.9)
# Model
net = ICNet(width=configs.img_width, height=configs.img_height, n_classes=34,
weight_path='output/icnet_large_full_2_009_0.787.h5', training=False)
# Training
net.model.compile(optim, 'categorical_crossentropy', metrics=['categorical_accuracy'])
net.model.fit_generator(# training
generator=train_generator, steps_per_epoch=1500, epochs=epochs,
# validation
validation_data=val_generator, validation_steps=500,
# callbacks & others
callbacks=[checkpoint, tensorboard, lr_decay], shuffle=True,
max_queue_size=5, use_multiprocessing=True, workers=12, initial_epoch=10)