-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
275 lines (243 loc) · 11.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python
import dash
import flask
from dash.dependencies import Input, Output, State
import dash_core_components as dcc
import dash_html_components as html
import gitscraper as gs
import gitfeatures as gf
import modeling as mod
import json
import numpy as np
import os.path
from scipy.stats import percentileofscore
from sklearn.externals import joblib
from textwrap import dedent
server = flask.Flask(__name__)
app = dash.Dash(__name__, server=server)
server = app.server
my_css_url = "https://codepen.io/chriddyp/pen/bWLwgP.css"
my_css_button = "https://codepen.io/chriddyp/pen/brPBPO.css"
app.css.append_css({"external_url": my_css_url})
app.css.append_css({"external_url": my_css_button})
app.title = 'git-screened'
app.layout = html.Div([
html.Div([
html.H3('git-screened', style={'font-family': 'Courier New',
'background-color': '#CCE5FF', 'text-align': 'center', 'font-size': 45}),
html.H3('Automating Github Repository Assessment', style={'font-size': 25,
'font-style': 'italic', 'text-align': 'center'}),
html.H3('By: Ari Silburt', style={'font-size': 20,
'font-style': 'normal', 'text-align': 'center'}),
dcc.Markdown(dedent('''
```git-screened``` is a tool for recruiters and hiring managers to
quickly determine if a candidate writes clear, beautiful, and
productionized Python code. It can also be used by developers to
polish their portfolios to match the "industry standard" on GitHub.
Here, "industry standard" refers to the 6000 most starred Python
repositories on Github. This project was completed over the Summer
2018 [Insight Data Science](https://www.insightdatascience.com/)
program. The code, along with additional details, are available on
[Github](https://github.com/silburt/git-screened).
**Instructions**: Enter a Github repository in the search box below
and click "search". Summary statistics for the repository will be
scraped (in real time from Github) and output on the screen, along
with a pass/fail classification for the overall production quality
of the repository (generated from a pre-trained One-Class SVM model).
Ticking 'Detailed Metrics' will output histograms that
visualize/contextualize the searched repository to the industry
standard (note: histograms are dislpayed in log scale). Scraped
repositories are by default saved locally for faster re-runs, but ticking
'Rescrape Repository' will force a re-scraping of the repository
using the Github API. This is useful for classifying the most up-to-date
version of a repository, vs. an older version previously classified by
git-screened. Finally, a festive meme can also be output ;).
**Final Notes**: This app works best for repositories where the
majority of code is written in Python. In addition, since the
statistics are scraped in real time, large repositories will take a
moment.
------
''')), ],
style={'background-color': 'WhiteSmoke'}),
html.H2('Repository Name (Format: user/repository)',
style={'font-size': 20, 'font-style': 'normal'}),
dcc.Input(value='', type='text', id='repo'),
html.Button('Search', id='button'),
dcc.Checklist(options=[{'label': 'Detailed Metrics', 'value': 'metrics'},
{'label': 'Rescrape Repository', 'value': 'rescrape'},
{'label': 'Festive Meme', 'value': 'meme'}],
values=[], id='checklist'),
html.Div(id='my-div', children='Enter a value and press Search')])
# SCRAPING/PROCESSING FUNCTIONS
def digest_repo(repo_url, GProfile):
"""
Look through each file and directory, extract metrics from
each python file. Recursive function.
"""
r = gf.get_request('%s' % repo_url)
if r.ok:
repoItems = json.loads(r.text or r.content)
for item in repoItems:
try:
if item['type'] == 'file' and item['name'][-3:] == '.py':
GProfile.n_pyfiles += 1
print(item['download_url'])
gs.get_metrics_per_file(item, GProfile)
elif item['type'] == 'dir':
digest_repo(item['url'], GProfile)
except:
print('%s timed out, skipping!' % item['download_url'])
def get_features(item):
"""
Top-level function that scrapes features for each python file
and stores it in a Github_Profile class.
"""
GP = gs.Github_Profile()
contents_url = '%s/contents' % item['url']
# scrape readme
gf.get_readme_length(contents_url, GP)
# scrape file-by-file stats
digest_repo(contents_url, GP)
# scrape commit history
gf.get_repo_commit_history(item, GP)
# scrape stargazers
GP.n_stars = item['stargazers_count']
# scrape forks
GP.n_forks = item['forks_count']
return GP
# OUTPUT FUNCTIONS
def get_quality(pcnt):
"""
Maps percentileofscore value to quality descriptor.
"""
if pcnt < 10:
return 'POOR', 'red'
elif pcnt > 10 and pcnt < 30:
return 'FAIR', 'orange'
elif pcnt > 30 and pcnt < 50:
return 'GOOD', 'limegreen'
elif pcnt > 50:
return 'GREAT', 'green'
def output_feature(Xp, Xr, feat, repo_name, graph_flag=False,
pep8=False, nbins=30):
"""
Outputs histogram and percentile score for given feature for the
pre-scraped "Industry Standard" repos, as well as for the repo in question.
"""
features = ['code/files', 'comment/code lines', 'test/code lines',
'readme/code lines', 'docstring/code lines',
'pep8 errors/code lines']
HR_feature = ['Code Distribution', 'Commenting', 'Unit Test', 'Readme',
'Docstring', 'pep8 Error (more=worse)']
HR_explanation = ['Measures total lines of code divided by number of Python files.',
'Measures number of comment lines divided by total code lines.',
'Measures number of unit test lines divided by total code lines.',
'Measures length of readme file divided by total code lines.',
'Measures number of docstring lines divided by total code lines.',
'Measures number of pep8 errors divided by total code lines.']
if pep8: # for pep8 errors fewer is better
Xr_ = 0
Xp_ = 0
for i in range(feat, feat + 10):
Xr_ += 10**Xr[:, i]
Xp_ += 10**Xp[:, i]
pcnt = percentileofscore(np.log10(Xp_), np.log10(Xr_))
pl_P = Xp_[Xp_ <= 1.2]
pl_R = Xr_
quality_label, color = get_quality(100 - pcnt)
else:
pcnt = percentileofscore(Xp[:, feat], Xr[:, feat])
pl_P = Xp[:, feat]
pl_R = Xr[:, feat]
quality_label, color = get_quality(pcnt)
if graph_flag:
max_bin = np.max(np.histogram(Xp[:, feat], bins=nbins)[0])
return html.Div([html.H3('{} quality is {}.'.format(HR_feature[feat], quality_label),
style={'color': color}),
html.H3('{}'.format(HR_explanation[feat]),
style={'font-style':'italic', 'font-size':20}),
dcc.Graph(id='basic-interactions{}'.format(feat),
figure={'data': [{'x': pl_P, 'nbinsx': nbins,
'name': 'industry standard',
'type': 'histogram'}, # 'histnorm':'probability'},
{'x': pl_R[0] * np.ones(2), 'y':[0, max_bin],
'name': repo_name,
'type': 'line', 'mode': 'lines',
'line': {'width': 5}}],
'layout': {'title': '%.0fth percentile of industry standard repos' % pcnt,
'xaxis': dict(title='log10({})'.format(features[feat])), 'barmode':'overlay'}}
)])
else:
return html.Div([html.H3('{} Quality is {}'.format(HR_feature[feat], quality_label), style={'color':color})])
def output(input_value, GP, Xr, score, checklist, modeltype='OC-SVM'):
"""
Top-level function that outputs the pass/fail classification score,
quality scores for each metric, meme, and histograms.
"""
# classification score
meme = None
rand = np.random.randint(1, 5)
if score == 1:
outcome = 'PASS'
color = 'green'
if 'meme' in checklist:
meme = ('https://raw.githubusercontent.com/silburt/'
'git-screened/master/app_images/happy_{}.jpg'.format(rand))
else:
outcome = 'FAIL'
color = 'red'
if 'meme' in checklist:
meme = ('https://raw.githubusercontent.com/silburt/'
'git-screened/master/app_images/sad_{}.jpg'.format(rand))
graph_flag = False
if 'metrics' in checklist:
graph_flag = True
X_pos = np.load('models/X_pos_unscaled_%s.npy' % modeltype)
return html.Div([html.H1('Results for Repository: "{}":'.format(input_value)),
html.Div([
html.H2('Code Review: {}'.format(outcome),
style={'color': color}),
html.Img(src=meme)
]),
output_feature(X_pos, Xr, 0, input_value, graph_flag),
output_feature(X_pos, Xr, 1, input_value, graph_flag),
output_feature(X_pos, Xr, 2, input_value, graph_flag),
output_feature(X_pos, Xr, 3, input_value, graph_flag),
output_feature(X_pos, Xr, 4, input_value, graph_flag),
output_feature(X_pos, Xr, 5, input_value, graph_flag, True)
])
@app.callback(
Output(component_id='my-div', component_property='children'),
[Input('button', 'n_clicks')],
state=[State(component_id='repo', component_property='value'),
State(component_id='checklist', component_property='values')])
def update_output_div(n_clicks, input_value, checklist):
"""
Main App Callback. Takes a user/repository as input, scrapes the stats
using the Github API, classifies the repository using the pre-trained
One-Class SVM model, and sends all the information to output() to be
output on the screen. Saves a querried Github_Profile for faster loading
subsequent times.
"""
repo_path = 'saved_repo_profiles/GP_%s.pkl' % (input_value.replace('/', '_'))
# if profile already exists, don't re-scrape
if os.path.isfile(repo_path) and 'rescrape' not in checklist:
GP = joblib.load(repo_path)
else:
r = gf.get_request('https://api.github.com/repos/%s' % input_value)
if r.ok:
item = json.loads(r.text or r.content)
GP = get_features(item)
joblib.dump(GP, repo_path)
else:
return html.Div([html.H2('Couldnt find: "{}" on Github'.format(input_value),
style={'font-style': 'normal', 'font-size': 15})])
try:
score, Xr = mod.classify_repo(GP) # r for repo
return output(input_value, GP, Xr, score, checklist)
except:
string = '"{}" could not be processed. Does it contain few/no .py files?'
return html.Div([html.H2(string.format(input_value),
style={'font-style': 'normal', 'font-size': 15})])
if __name__ == '__main__':
app.server.run(port=8000, host='0.0.0.0')