forked from patrickloeber/pytorchTutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path13_feedforward.py
103 lines (85 loc) · 3.33 KB
/
13_feedforward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper-parameters
input_size = 784 # 28x28
hidden_size = 500
num_classes = 10
num_epochs = 2
batch_size = 100
learning_rate = 0.001
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
examples = iter(test_loader)
example_data, example_targets = next(examples)
for i in range(6):
plt.subplot(2,3,i+1)
plt.imshow(example_data[i][0], cmap='gray')
plt.show()
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.input_size = input_size
self.l1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.l2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.l1(x)
out = self.relu(out)
out = self.l2(out)
# no activation and no softmax at the end
return out
model = NeuralNet(input_size, hidden_size, num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# origin shape: [100, 1, 28, 28]
# resized: [100, 784]
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print (f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}')
# Test the model
# In test phase, we don't need to compute gradients (for memory efficiency)
with torch.no_grad():
n_correct = 0
n_samples = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
# max returns (value ,index)
_, predicted = torch.max(outputs.data, 1)
n_samples += labels.size(0)
n_correct += (predicted == labels).sum().item()
acc = 100.0 * n_correct / n_samples
print(f'Accuracy of the network on the 10000 test images: {acc} %')