-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathmatch_predict.py
109 lines (93 loc) · 3.93 KB
/
match_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import sqlite3
import pandas as pd
from sklearn.svm import SVC
import time
from sklearn import cross_validation
from sklearn.metrics import f1_score, classification_report, accuracy_score
from sklearn.ensemble import RandomForestClassifier as rfc
from statics import champion_counts
# Read matches: Match_id -> Participant(champion, side) & TotalChampionStats(label, ability) -> Team(win)
# 1. 10 participants as features, result following -> GG!
# 2. 2 teams's type difference as features -> GG!
# 3. Ability difference as features
# Connect database
conn = sqlite3.connect('lola.db')
cursor = conn.cursor()
df = pd.read_sql('SELECT * FROM ChampionMatchStats', conn, index_col=['champion'])
all_stats = {}
all_stats_arr = []
names = []
for champion in df.index:
names.append(champion)
kills = df.ix[champion]['kills']/df.ix[champion]['picks']*1000
deaths = df.ix[champion]['deaths']/df.ix[champion]['picks']*1000
assists = df.ix[champion]['assists']/df.ix[champion]['picks']*1000
gold_earned = df.ix[champion]['gold_earned']/df.ix[champion]['picks']
magic_damage = df.ix[champion]['magic_damage']/df.ix[champion]['picks']
physical_damage = df.ix[champion]['physical_damage']/df.ix[champion]['picks']
true_damage = df.ix[champion]['true_damage']/df.ix[champion]['picks']
damage_taken = df.ix[champion]['damage_taken']/df.ix[champion]['picks']
crowd_control_dealt = df.ix[champion]['crowd_control_dealt']/df.ix[champion]['picks']*10
ward_kills = df.ix[champion]['ward_kills']/df.ix[champion]['picks']*1000
wards_placed = df.ix[champion]['wards_placed']/df.ix[champion]['picks']*1000
tmp_dict = {'kills': kills, 'assists': assists, 'deaths': deaths, 'gold_earned': gold_earned, 'magic_damage': magic_damage,
'physical_damage': physical_damage, 'true_damage': true_damage,'damage_taken': damage_taken, 'crowd_control_dealt': crowd_control_dealt,
'ward_kills': ward_kills,'wards_placed': wards_placed}
tmp_arr = [kills, assists, deaths, gold_earned, magic_damage, physical_damage, true_damage, damage_taken, crowd_control_dealt, ward_kills,
wards_placed]
all_stats[champion] = tmp_dict
all_stats_arr.append(tmp_arr)
# Initialize set of data
all_team = []
result = []
# Select matches, champions, sides and result
st = time.time()
cursor.execute('SELECT match_id, win FROM Team WHERE side = ? LIMIT 3000 OFFSET 10000', ('blue',))
matches = cursor.fetchall()
for match in matches:
# match = (u'2053870096', 0)
item = []
for i in range(0, len(all_stats['Jax'])):
item.append(0)
# item = [50, 50, 50, ...]
cursor.execute('SELECT * FROM MatchChampion WHERE match_id = ?', (match[0].encode('utf-8'),))
team = cursor.fetchall()
team = team[0]
# team = (2053870096, u'Graves', u'Alistar', u'Twitch', u'Yasuo', u'Braum', u'Quinn', u'Riven', u'Zed', u'Miss Fortune', u'Zac')
for champion in team[1:6]:
i = 0
for v in all_stats[champion].values():
item[i] += v
i += 1
for champion in team[6:]:
i = 0
for v in all_stats[champion].values():
item[i] -= v
i += 1
all_team.append(item)
# [[0, 0, 2, 4, 3, 51387, -921, -26326, -34600, -2184, -3876],...]
result.append(match[1])
# [1, 1, 0, ...]
print len(all_team)
print len(result)
print 'Elapsed time: %.2fs' % (time.time() - st)
st = time.time()
X_train, X_test, y_train, y_test = cross_validation.train_test_split(all_team, result, test_size=0.2, random_state=1)
# Try classifier
clf = SVC()
print 'done'
clf.fit(X_train, y_train)
result1 = clf.predict(X_test)
print classification_report(y_test, result1)
print accuracy_score(y_test, result1)
print 'Elapsed time: %.2fs' % (time.time() - st)
st = time.time()
clf2 = rfc(n_estimators=5)
clf2.fit(X_train, y_train)
result2 = clf2.predict(X_test)
print classification_report(y_test, result2)
print accuracy_score(y_test, result2)
print 'Elapsed time: %.2fs' % (time.time() - st)
cursor.close()
conn.commit()
conn.close()