forked from art-programmer/FloorNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
augmentation_tf.py
executable file
·276 lines (220 loc) · 14.2 KB
/
augmentation_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import numpy as np
from utils import *
import tensorflow as tf
from floorplan_utils import *
def warpIndices(xs, ys, gridStride, gridWidth, gridHeight, width, height, gridXsTarget, gridYsTarget):
numPoints = xs.shape[0]
minXs = xs / gridStride
minYs = ys / gridStride
maxXs = xs / gridStride + 1
maxYs = ys / gridStride + 1
topLeft = tf.expand_dims(minYs * gridWidth + minXs, -1)
topRight = tf.expand_dims(minYs * gridWidth + maxXs, -1)
bottomLeft = tf.expand_dims(maxYs * gridWidth + minXs, -1)
bottomRight = tf.expand_dims(maxYs * gridWidth + maxXs, -1)
topLeftXsTarget = tf.gather_nd(gridXsTarget, topLeft)
topLeftYsTarget = tf.gather_nd(gridYsTarget, topLeft)
topRightXsTarget = tf.gather_nd(gridXsTarget, topRight)
topRightYsTarget = tf.gather_nd(gridYsTarget, topRight)
bottomLeftXsTarget = tf.gather_nd(gridXsTarget, bottomLeft)
bottomLeftYsTarget = tf.gather_nd(gridYsTarget, bottomLeft)
bottomRightXsTarget = tf.gather_nd(gridXsTarget, bottomRight)
bottomRightYsTarget = tf.gather_nd(gridYsTarget, bottomRight)
ratioX = tf.cast(xs - minXs * gridStride, tf.float32) / float(gridStride)
ratioY = tf.cast(ys - minYs * gridStride, tf.float32) / float(gridStride)
topLeftRatio = (1 - ratioX) * (1 - ratioY)
topRightRatio = ratioX * (1 - ratioY)
bottomLeftRatio = (1 - ratioX) * ratioY
bottomRightRatio = ratioX * ratioY
xsTarget = topLeftXsTarget * topLeftRatio + topRightXsTarget * topRightRatio + bottomLeftXsTarget * bottomLeftRatio + bottomRightXsTarget * bottomRightRatio
ysTarget = topLeftYsTarget * topLeftRatio + topRightYsTarget * topRightRatio + bottomLeftYsTarget * bottomLeftRatio + bottomRightYsTarget * bottomRightRatio
xsTarget = tf.clip_by_value(tf.cast(tf.round(xsTarget), tf.int32), 0, width - 1)
ysTarget = tf.clip_by_value(tf.cast(tf.round(ysTarget), tf.int32), 0, height - 1)
return xsTarget, ysTarget
def scaleIndices(xs, ys, min_x, min_y, max_x, max_y, width, height):
xsTarget = (tf.cast(xs, tf.float32) - min_x) / (max_x - min_x + 1) * width
ysTarget = (tf.cast(ys, tf.float32) - min_y) / (max_y - min_y + 1) * height
xsTarget = tf.clip_by_value(tf.cast(tf.round(xsTarget), tf.int32), 0, width - 1)
ysTarget = tf.clip_by_value(tf.cast(tf.round(ysTarget), tf.int32), 0, height - 1)
return xsTarget, ysTarget
#Get coarse indices maps from 256x256 indices map
def getCoarseIndicesMaps(indicesMap, width=256, height=256, batchIndex=0):
indicesMaps = []
for strideIndex in xrange(6):
stride = pow(2, strideIndex)
if strideIndex == 0:
indicesMaps.append(indicesMap + batchIndex * width * height)
else:
indicesMaps.append(indicesMap / (width * stride) * (width / stride) + indicesMap % width / stride + batchIndex * width / stride * height / stride)
pass
#print(indicesMaps)
continue
indicesMaps = tf.stack(indicesMaps, axis=0)
return indicesMaps
#Get coarse indices maps from 256x256 indices map
def getCoarseIndicesMapsBatch(indicesMap, width=256, height=256):
indicesMaps = []
for strideIndex in xrange(6):
stride = pow(2, strideIndex)
if strideIndex == 0:
indicesMaps.append(indicesMap)
else:
indicesMaps.append(indicesMap / (width * stride) * (width / stride) + indicesMap % width / stride)
pass
#print(indicesMaps)
continue
indicesMaps = tf.stack(indicesMaps, axis=0)
return indicesMaps
def augmentWarping(pointcloudIndices, corners, heatmaps, gridStride=16, randomScale=4):
width = WIDTH
height = HEIGHT
gridWidth = int(width / gridStride + 1)
gridHeight = int(height / gridStride + 1)
gridXs = tf.reshape(tf.tile(tf.expand_dims(tf.range(gridWidth) * gridStride, 0), [gridHeight, 1]), [-1])
gridYs= tf.reshape(tf.tile(tf.expand_dims(tf.range(gridHeight) * gridStride, -1), [1, gridWidth]), [-1])
gridXsTarget = tf.cast(gridXs, tf.float32) + tf.random_normal(stddev=randomScale, shape=[gridHeight * gridWidth])
gridYsTarget = tf.cast(gridYs, tf.float32) + tf.random_normal(stddev=randomScale, shape=[gridHeight * gridWidth])
xsTarget, ysTarget = warpIndices(pointcloudIndices % width, pointcloudIndices / width, gridStride, gridWidth, gridHeight, width, height, gridXsTarget, gridYsTarget)
newPointcloudIndices = tf.clip_by_value(ysTarget, 0, height - 1) * width + tf.clip_by_value(xsTarget, 0, width - 1)
xsTarget, ysTarget = warpIndices(corners[:, 0], corners[:, 1], gridStride, gridWidth, gridHeight, width, height, gridXsTarget, gridYsTarget)
newCorners = tf.stack([xsTarget, ysTarget, corners[:, 2]], axis=1)
return newPointcloudIndices, newCorners, heatmaps
def augmentScaling(pointcloud, pointcloudIndices, corners, heatmaps, imageFeatures):
width = WIDTH
height = HEIGHT
xs = pointcloudIndices % width
ys = pointcloudIndices / width
imageSize = tf.constant((height, width), dtype=np.float32)
#randomScale = pow(2.0, tf.random.uniform([1]) - 1)
randomScale = tf.random_uniform(shape=[1], minval=0.5, maxval=1.5)[0]
xsTarget = tf.clip_by_value(tf.cast(tf.round((tf.cast(xs, tf.float32) - width / 2) * randomScale + width / 2), tf.int32), 0, width - 1)
ysTarget = tf.clip_by_value(tf.cast(tf.round((tf.cast(ys, tf.float32) - height / 2) * randomScale + height / 2), tf.int32), 0, height - 1)
newPointcloudIndices = ysTarget * width + xsTarget
pointcloud = (pointcloud - 0.5) * randomScale + 0.5
newHeatmaps = tf.image.resize_nearest_neighbor(heatmaps, size = tf.cast(tf.round(imageSize * randomScale), tf.int32))
newHeatmaps = tf.image.resize_image_with_crop_or_pad(newHeatmaps, height, width)
xsTarget = tf.cast(tf.round((tf.cast(corners[:, 0], tf.float32) - width / 2) * randomScale + width / 2), tf.int32)
ysTarget = tf.cast(tf.round((tf.cast(corners[:, 1], tf.float32) - height / 2) * randomScale + height / 2), tf.int32)
newCorners = tf.stack([xsTarget, ysTarget, corners[:, 2]], axis=1)
validMask = tf.logical_and(tf.logical_and(tf.greater_equal(newCorners[:, 0], 0), tf.greater_equal(newCorners[:, 1], 0)), tf.logical_and(tf.less(newCorners[:, 0], WIDTH), tf.less(newCorners[:, 1], HEIGHT)))
newCorners = tf.boolean_mask(newCorners, validMask)
for index, (featureSize, numChannels) in enumerate(zip(SIZES, NUM_CHANNELS)[1:]):
if index in imageFeatures:
imageFeatures[index] = tf.image.resize_image_with_crop_or_pad(tf.image.resize_nearest_neighbor(tf.expand_dims(imageFeatures[index], 0), size = tf.cast(tf.round(tf.constant((featureSize, featureSize), dtype=tf.float32) * randomScale), tf.int32)), featureSize, featureSize)[0]
pass
continue
return pointcloud, newPointcloudIndices, newCorners, newHeatmaps, imageFeatures
def augmentFlipping(pointcloud, pointcloudIndices, corners, heatmaps, imageFeatures):
width = WIDTH
height = HEIGHT
orientation = tf.cast(tf.random_uniform(shape=[1], maxval=4)[0], tf.int32)
#if orientation == 0:
#return pointcloud, pointcloudIndices, newCorners, heatmaps
xsTarget = pointcloudIndices % width
ysTarget = pointcloudIndices / width
reverseChannelsY = tf.constant([-1, 2, 1, 0, 3, 7, 6, 5, 4, 10, 9, 8, 11, 12, 15, 14, 13, 16, 20, 19, 18, 17], dtype=tf.int32) + 1
reverseChannelsX = tf.constant([-1, 0, 3, 2, 1, 5, 4, 7, 6, 8, 11, 10, 9, 12, 13, 16, 15, 14, 18, 17, 20, 19], dtype=tf.int32) + 1
xsTarget = tf.cond(orientation >= 2, lambda: width - 1 - xsTarget, lambda: xsTarget)
pointcloud = tf.cond(orientation >= 2, lambda: tf.concat([1 - pointcloud[:, 0:1], pointcloud[:, 1:]], axis=1), lambda: pointcloud)
heatmaps = tf.cond(orientation >= 2, lambda: heatmaps[:, :, ::-1], lambda: heatmaps)
corners = tf.cond(orientation >= 2, lambda: tf.stack([width - 1 - corners[:, 0], corners[:, 1], tf.gather_nd(reverseChannelsX, corners[:, 2:3])], axis=1), lambda: corners)
ysTarget = tf.cond(tf.equal(orientation % 2, 1), lambda: height - 1 - ysTarget, lambda: ysTarget)
pointcloud = tf.cond(tf.equal(orientation % 2, 1), lambda: tf.concat([pointcloud[:, :1], 1 - pointcloud[:, 1:2], pointcloud[:, 2:]], axis=1), lambda: pointcloud)
heatmaps = tf.cond(tf.equal(orientation % 2, 1), lambda: heatmaps[:, ::-1], lambda: heatmaps)
corners = tf.cond(tf.equal(orientation % 2, 1), lambda: tf.stack([corners[:, 0], height - 1 - corners[:, 1], tf.gather_nd(reverseChannelsY, corners[:, 2:3])], axis=1), lambda: corners)
for index, (size, numChannels) in enumerate(zip(SIZES, NUM_CHANNELS)[1:]):
if index in imageFeatures:
imageFeatures[index] = tf.cond(orientation >= 2, lambda: imageFeatures[index][:, ::-1], lambda: imageFeatures[index])
imageFeatures[index] = tf.cond(tf.equal(orientation % 2, 1), lambda: imageFeatures[index][::-1], lambda: imageFeatures[index])
pass
continue
newPointcloudIndices = ysTarget * width + xsTarget
return pointcloud, newPointcloudIndices, corners, heatmaps, imageFeatures
def augmentDropping(pointcloud, pointcloud_indices, changeIndices):
p = tf.random.random() * 0.5 + 0.5
indices = tf.range(pointcloud.shape[0], dtype='int32')
out_shape = int(pointcloud.shape[0] * p)
chosen_indices = tf.random.choice(indices, (out_shape, ), replace=True)
rest_mask = tf.ones(indices.shape, dtype=tf.bool)
rest_mask[chosen_indices] = 0
rest_indices = indices[rest_mask]
#rest_indices = tf.array(list(set(indices) - set(chosen_indices)))
#rest = pointcloud[rest_indices]
#rest_chosen_indices = tf.random.choice(rest_indices, (pointcloud.shape[0] - out_shape, ), replace=True)
#rest_chosen = rest[rest_chosen_indices]
#aug_pointcloud = pointcloud[chosen_indices] = rest_chosen
rest_indices = tf.random.choice(rest_indices, chosen_indices.shape[0], replace=True)
pointcloud[chosen_indices] = pointcloud[rest_indices]
if changeIndices:
pointcloud_indices[chosen_indices] = pointcloud_indices[rest_indices]
pass
return pointcloud, pointcloud_indices
def augment(pointcloud_inp, pointcloud_indices_0_inp, heatmapBatches, augmentation, numPoints=50000, numInputChannels=7):
pointcloud_indices_inp = tf.zeros((FETCH_BATCH_SIZE, 6, NUM_POINTS),dtype='int32')
newHeatmapBatches = [[] for heatmapIndex in xrange(len(heatmapBatches))]
for imageIndex in xrange(pointcloud_inp.shape[0]):
# pointcloud = pointcloud_inp[imageIndex]
# pointcloud_indices_0 = pointcloud_indices_0_inp[imageIndex]
# corner = corner_gt[imageIndex]
# icon = icon_gt[imageIndex]
# room = room_gt[imageIndex]
# feature = feature_inp[imageIndex]
# if 'w' in augmentation:
# pointcloud_indices_0, [corner, icon, room, feature] = augmentWarping(pointcloud_indices_0, [corner, icon, room, feature], gridStride=32., randomScale=4)
# pass
# if 's' in augmentation:
# pointcloud_indices_0, [corner, icon, room, feature] = augmentScaling(pointcloud_indices_0, [corner, icon, room, feature], randomScale=0)
# pass
# if 'f' in augmentation:
# pointcloud_indices_0, [corner, icon, room, feature] = augmentFlipping(pointcloud_indices_0, [corner, icon, room, feature])
# pass
# if 'd' in augmentation:
# pointcloud, pointcloud_indices_0 = augmentDropping(pointcloud, pointcloud_indices_0, changeIndices=True)
# pass
# if 'p' in augmentation:
# pointcloud, pointcloud_indices_0 = augmentDropping(pointcloud, pointcloud_indices_0, changeIndices=False)
# pass
# pointcloud_inp[imageIndex] = pointcloud
# pointcloud_indices_inp[imageIndex] = getCoarseIndicesMaps(pointcloud_indices_0, WIDTH, HEIGHT, 0)
# corner_gt[imageIndex] = corner
# icon_gt[imageIndex] = icon
# room_gt[imageIndex] = room
# feature_inp[imageIndex] = feature
newHeatmaps = [heatmapBatch[imageIndex] for heatmapBatch in heatmapBatches]
if 'w' in augmentation:
pointcloud_indices_0_inp[imageIndex], newHeatmaps = augmentWarping(pointcloud_indices_0_inp[imageIndex], newHeatmaps, gridStride=32, randomScale=4)
pass
if 's' in augmentation:
pointcloud_inp[imageIndex], pointcloud_indices_0_inp[imageIndex], newHeatmaps = augmentScaling(pointcloud_inp[imageIndex], pointcloud_indices_0_inp[imageIndex], newHeatmaps)
pass
if 'f' in augmentation:
pointcloud_inp[imageIndex], pointcloud_indices_0_inp[imageIndex], newHeatmaps = augmentFlipping(pointcloud_inp[imageIndex], pointcloud_indices_0_inp[imageIndex], newHeatmaps)
pass
if 'd' in augmentation:
pointcloud_inp[imageIndex], pointcloud_indices_0_inp[imageIndex] = augmentDropping(pointcloud_inp[imageIndex], pointcloud_indices_0_inp[imageIndex], changeIndices=True)
pass
if 'p' in augmentation:
pointcloud_inp[imageIndex], pointcloud_indices_0_inp[imageIndex] = augmentDropping(pointcloud_inp[imageIndex], pointcloud_indices_0_inp[imageIndex], changeIndices=False)
pass
#print(pointcloud_indices_0_inp[imageIndex].shape, pointcloud_indices_inp[imageIndex].shape)
pointcloud_indices_inp[imageIndex] = getCoarseIndicesMaps(pointcloud_indices_0_inp[imageIndex], WIDTH, HEIGHT, 0)
for heatmapIndex, newHeatmap in enumerate(newHeatmaps):
newHeatmapBatches[heatmapIndex].append(newHeatmap)
continue
continue
newHeatmapBatches = [tf.array(newHeatmapBatch) for newHeatmapBatch in newHeatmapBatches]
pointcloud_inp = tf.concatenate([pointcloud_inp, tf.ones((FETCH_BATCH_SIZE, NUM_POINTS, 1))], axis=2)
#print(pointcloud_itf.shape)
#writePointCloud('test/pointcloud.ply', pointcloud_inp[0, :, :6])
#exit(1)
if numPoints < pointcloud_itf.shape[1]:
sampledInds = tf.range(pointcloud_itf.shape[1])
tf.random.shuffle(sampledInds)
sampledInds = sampledInds[:numPoints]
pointcloud_inp = pointcloud_inp[:, sampledInds]
pointcloud_indices_inp = pointcloud_indices_inp[:, :, sampledInds]
pass
if numInputChannels == 4:
pointcloud_inp = tf.concatenate([pointcloud_inp[:, :, :3], pointcloud_inp[:, :, 6:]], axis=2)
pass
return pointcloud_inp, pointcloud_indices_inp, newHeatmapBatches