-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathica.sc
executable file
·67 lines (57 loc) · 3.38 KB
/
ica.sc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# ica - Perform Independent Component Analysis, standalone-version
#
# Run the ICA algorithm of Bell & Sejnowski (1996) or the extended-ICA
# of Lee, Girolami & Sejnowski (1998). Original Matlab code: Scott Makeig,
# Tony Bell, et al.; C++ code: Sigurd Enghoff, CNL / Salk Institute 7/98
#
# Usage: % ica < my.sc
#
# Leading # -> use default values
# Edit a copy of this file to run an ica decomposition
# Contacts: {enghoff,scott,terry,tony,tewon}@salk.edu
# Required variables:
DataFile berger/modeldata # Input data to decompose (floats multiplexed
# by channel (i.e., chan1, chan2, ...))
chans 31 # Number of data channels (= data rows)
frames 768 # Number of data points per epoch (= data columns)
epochs 436 # Number of epochs
# FrameWindow 20 # Number of frames per window
# FrameStep 4 # Number of frames to step per window
# EpochWindow 100 # Number of epochs per window
# EpochStep 25 # Number of epochs to step per window
# Baseline 25 # Number of data points contained in baseline
WeightsOutFile berger/data.wts # Output ICA weight matrix (floats)
SphereFile berger/data.sph # Output sphering matrix (floats)
# Processing options:
# sphering on # Flag sphering of data (on/off) {default: on}
# bias on # Perform bias adjustment (on/off) {default: on}
extended 1 # Perform "extended-ICA" using tnah() with kurtosis
# estimation every N training blocks. If N < 0,
# fix number of sub-Gaussian components to -N
# {default|0: off}
# pca 0 # Decompose a principal component subspace of
# the data. Retain this many PCs. {default|0: all}
# Optional input variables:
# WeightsInFile input.wts # Starting ICA weight matrix (nchans,ncomps)
# {default: identity or sphering matrix}
lrate 2.0e-3 # Initial ICA learning rate (float << 1)
# {default: heuristic ~5e-4}
# blocksize 20 # ICA block size (integer << datalength)
# {default: heuristic fraction of log data length}
# stop 1.0e-6 # Stop training when weight-change < this value
# {default: heuristic ~0.000001}
maxsteps 512 # Max. number of ICA training steps {default: 128}
# posact on # Make each component activation net-positive
# (on/off) {default: on}
# annealstep 0.98 # Annealing factor (range (0,1]) - controls
# the speed of convergence.
# annealdeg 60 # Angledelta threshold for annealing {default: 60}
# momentum 0.0 # Momentum gain (range [0,1]) {default: 0}
# verbose off # Give ascii messages (on/off) {default: on}
# Optional outputs:
# ActivationsFile data.act # Activations of each component (ncomps,points)
# BiasFile data.bs # Bias weights (ncomps,1)
# SignFile data.sgn # Signs designating (-1) sub- and (1) super-Gaussian
# components (ncomps,1)
# This script, "ica.sc" is a sample ica script file. Copy and modify it as
# desired. Note that the input data file(s) must be native floats.