-
Notifications
You must be signed in to change notification settings - Fork 1
/
GraphUtility.py
252 lines (212 loc) · 8.39 KB
/
GraphUtility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import numpy as np
import networkx as nx
class Network:
def __init__(
self,
adjacency_matrix,
node_position,
node_name,
node_size,
threshold: float = 0.200,
node_size_scale: float = 0.08,
):
self.node_position = node_position
self.node_name = node_name
self.node_size = node_size
self.threshold = threshold
self.node_size_scale = node_size_scale
self.network = self._draw_graph(adjacency_matrix)
def _draw_graph(self, adjacency_matrix):
G_1 = nx.DiGraph()
n_state = len(adjacency_matrix)
states = df.columns.to_list()
# Nodes
coords = {}
new_cases = []
for idx, state in enumerate(df.columns.to_list()):
coords[idx] = self.node_position[state]
new_cases.append(np.sqrt(m_new_case_df[state].sum() + 1) * node_size_scale)
# Edges
edgelist = []
for i in range(n_state):
istr = df.columns[i]
for j in range(i + 1, n_state):
jstr = df.columns[j]
diff = directional_entropy[i, j] - directional_entropy[j, i]
weight = np.abs(diff)
if weight < threshold:
continue
if diff > 0: # influence i->j
edgelist.append([i, j, weight])
else: # influence j-> i
edgelist.append([j, i, weight])
G_1.add_weighted_edges_from(edgelist)
edges = G_1.edges()
weights = [edge_scale(G_1[u][v]["weight"]) for u, v in edges]
node_size = [new_cases[k] for k in dict(G_1.degree).keys()]
plt.figure()
nx.draw(G_1, coords, width=weights, node_size=node_size)
for node, (x, y) in coords.items():
plt.text(x, y, states_abbreviation[df.columns[node]])
plt.title(f"Covid19 Entropy Transfer {year}/{month}")
# plt.xlim([xmin-10, xmax+10])
# plt.ylim([ymin-10, ymax+10])
plt.savefig(os.path.join(result_path, f"connectivity_{year}_{month:02d}.png"))
def create_directed_graph_from_adjacency_matrix(adjacency_matrix):
"""
Given adjacency matrix, create nx graph.
"""
edge_scale = lambda x: (x) ** 2
G_1 = nx.DiGraph()
n_state = df.shape[1]
# Nodes
pos = {}
new_cases = []
for idx, state in enumerate(df.columns.to_list()):
pos[idx] = state_xy[state]
new_cases.append(np.sqrt(m_new_case_df[state].sum() + 1) * node_size_scale)
# Edges
edgelist = []
for i in range(n_state):
istr = df.columns[i]
for j in range(i + 1, n_state):
jstr = df.columns[j]
diff = directional_entropy[i, j] - directional_entropy[j, i]
weight = np.abs(diff)
if weight < threshold:
continue
if diff > 0: # influence i->j
edgelist.append([i, j, weight])
else: # influence j-> i
edgelist.append([j, i, weight])
plt.figure()
G_1.add_weighted_edges_from(edgelist)
edges = G_1.edges()
weights = [edge_scale(G_1[u][v]["weight"]) for u, v in edges]
node_size = [new_cases[k] for k in dict(G_1.degree).keys()]
nx.draw(G_1, pos, width=weights, node_size=node_size)
for node, (x, y) in pos.items():
plt.text(x, y, states_abbreviation[df.columns[node]])
plt.title(f"Covid19 Entropy Transfer {year}/{month}")
# plt.xlim([xmin-10, xmax+10])
# plt.ylim([ymin-10, ymax+10])
plt.savefig(os.path.join(result_path, f"connectivity_{year}_{month:02d}.png"))
def save_graph(self, path):
pass
def pagerank(
G,
alpha=0.85,
personalization=None,
max_iter=100,
tol=1.0e-6,
nstart=None,
weight="weight",
dangling=None,
):
"""Return the PageRank of the nodes in the graph.
PageRank computes a ranking of the nodes in the graph G based on
the structure of the incoming links. It was originally designed as
an algorithm to rank web pages.
Parameters
----------
G : graph
A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.
alpha : float, optional
Damping parameter for PageRank, default=0.85.
personalization: dict, optional
The "personalization vector" consisting of a dictionary with a
key for every graph node and nonzero personalization value for each node.
By default, a uniform distribution is used.
max_iter : integer, optional
Maximum number of iterations in power method eigenvalue solver.
tol : float, optional
Error tolerance used to check convergence in power method solver.
nstart : dictionary, optional
Starting value of PageRank iteration for each node.
weight : key, optional
Edge data key to use as weight. If None weights are set to 1.
dangling: dict, optional
The outedges to be assigned to any "dangling" nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified). This must be selected to result in an irreducible transition
matrix (see notes under google_matrix). It may be common to have the
dangling dict to be the same as the personalization dict.
Returns
-------
pagerank : dictionary
Dictionary of nodes with PageRank as value
Notes
-----
The eigenvector calculation is done by the power iteration method
and has no guarantee of convergence. The iteration will stop
after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.
The PageRank algorithm was designed for directed graphs but this
algorithm does not check if the input graph is directed and will
execute on undirected graphs by converting each edge in the
directed graph to two edges.
"""
if len(G) == 0:
return {}
if not G.is_directed():
D = G.to_directed()
else:
D = G
# Create a copy in (right) stochastic form
W = nx.stochastic_graph(D, weight=weight)
N = W.number_of_nodes()
# Choose fixed starting vector if not given
if nstart is None:
x = dict.fromkeys(W, 1.0 / N)
else:
# Normalized nstart vector
s = float(sum(nstart.values()))
x = dict((k, v / s) for k, v in nstart.items())
if personalization is None:
# Assign uniform personalization vector if not given
p = dict.fromkeys(W, 1.0 / N)
else:
missing = set(G) - set(personalization)
if missing:
raise NetworkXError(
"Personalization dictionary "
"must have a value for every node. "
"Missing nodes %s" % missing
)
s = float(sum(personalization.values()))
p = dict((k, v / s) for k, v in personalization.items())
if dangling is None:
# Use personalization vector if dangling vector not specified
dangling_weights = p
else:
missing = set(G) - set(dangling)
if missing:
raise NetworkXError(
"Dangling node dictionary "
"must have a value for every node. "
"Missing nodes %s" % missing
)
s = float(sum(dangling.values()))
dangling_weights = dict((k, v / s) for k, v in dangling.items())
dangling_nodes = [n for n in W if W.out_degree(n, weight=weight) == 0.0]
# power iteration: make up to max_iter iterations
for _ in range(max_iter):
xlast = x
x = dict.fromkeys(xlast.keys(), 0)
danglesum = alpha * sum(xlast[n] for n in dangling_nodes)
for n in x:
# this matrix multiply looks odd because it is
# doing a left multiply x^T=xlast^T*W
for nbr in W[n]:
x[nbr] += alpha * xlast[n] * W[n][nbr][weight]
x[n] += danglesum * dangling_weights[n] + (1.0 - alpha) * p[n]
# check convergence, l1 norm
err = sum([abs(x[n] - xlast[n]) for n in x])
if err < N * tol:
return x
raise NameError(
"pagerank: power iteration failed to converge " "in %d iterations." % max_iter
)