-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_proximity.R
358 lines (323 loc) · 14.7 KB
/
calc_proximity.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
library("caret")
library("randomForest")
library("dplyr")
library("RMySQL")
library("gtools")
library("tibble")
library("tidyr")
run_proximity_script <- function(location_data_df, day_start_timestamp, day_end_timestamp) {
create_rssi_frame <- function(start, stop, section_data) {
# Create df with timestamps from start to stop with 1s intervals
df_timeseq <- data.frame(DateTime = seq(start, stop, by=(1)))
if (nrow(section_data) == 0) {return <- NULL
} else {
section_data <- data.frame(section_data$timestamp, section_data$device_id, as.numeric(section_data$rssi))
names(section_data) <- c("timestamp", "device_id", "rssi")
section_data_split <- split(section_data , f = section_data$device_id)
df_rssi_list <- list()
# Remove duplicates and add 0 rssi where there is missing data entries
for(i in 1:length(section_data_split)) {
section_data_split[[i]] <- section_data_split[[i]][duplicated(section_data_split[[i]][,c("timestamp")]) == FALSE,]
df_rssi_values <- data.frame("timestamp" = section_data_split[[i]]$timestamp, "rssi" = section_data_split[[i]]$rssi)
df_no_values <- data.frame("timestamp" = df_timeseq[[1]], "rssi" = 0)
df_rssi_values$timestamp <- format.POSIXct(df_rssi_values$timestamp,'%m-%d-%y %H:%M:%S')
df_no_values$timestamp <- format.POSIXct(df_no_values$timestamp,'%m-%d-%y %H:%M:%S')
df_no_values$rssi[match(df_rssi_values$timestamp, df_no_values$timestamp)] <- df_rssi_values$rssi
df_rssi_list[[i]] <- df_no_values
names(df_rssi_list)[i] <- names(section_data_split)[i]
}
# Add df of 0 for automation_units not present
missing_automation_units <- unique(names(automation_units))[!unique(names(automation_units)) %in% unique(names(df_rssi_list))]
if(length(missing_automation_units) > 0 ) {
for(i in 1:length(missing_automation_units)) {
df_missing <- data.frame("timestamp" = df_timeseq[[1]], "rssi" = 0)
pos <- length(df_rssi_list)+1
df_rssi_list[[pos]] <- df_missing
names(df_rssi_list)[pos] <- missing_automation_units[i]
}
}
# Retrieve rssi column from all dataframes and store in summary df
rssi_summary <- data.frame(init = numeric(length(df_rssi_list[[1]][[1]])))
for(i in 1:length(unique(names(automation_units)))) {
rssi_summary[i] <- df_rssi_list[[unique(names(automation_units))[i]]][[2]]
}
names(rssi_summary) <- paste("RSSI", unique(names(automation_units)))
return <- rssi_summary
}
}
# Create location df
df_loc_preds <- data.frame(matrix(ncol = 0, nrow = 50400))
for(i in 1:length(location_data_df)) {
nearable_name <- names(location_data_df[i])
rssi_df <- create_rssi_frame(day_start_timestamp, day_end_timestamp, location_data_df[[i]])
# Identify and track rownames of empty (containing only 0s) and non empty rows
# Each row represent 1 second
# Empty rows are removed before prediction and then binded back in to maintain structure
zero_vector <- integer(13)
row_sub = apply(rssi_df, 1, function(x) all.equal(as.numeric(x), zero_vector))
removed_rows <- which(row_sub==TRUE)
saved_rows <- which(!row_sub==TRUE)
# Predicts and assigns correct rownames
rssi_predict_df <- rssi_df[saved_rows,]
loc_predicts <- predict(rf_model, newdata=rssi_predict_df)
loc_predicts <- as.data.frame(as.character(loc_predicts), stringsAsFactors=FALSE)
colnames(loc_predicts) <- nearable_name
row.names(loc_predicts) <- saved_rows
# Df with rows that should be 0
zeros_df <- data.frame(integer(length(removed_rows)))
colnames(zeros_df) <- nearable_name
row.names(zeros_df) <- removed_rows
# Combine two dfs
loc_predicts <- rbind(loc_predicts, zeros_df)
loc_predicts <- data.frame(loc_predicts[order(as.numeric(row.names(loc_predicts))), ])
names(loc_predicts) <- nearable_name
df_loc_preds[i] <- loc_predicts
}
# Total time of a day in seconds
day_in_s <- 50400
# Total time of the day with sensors data
A <- function(x) {
table_x <- table(x)
if (length(which(names(table_x) == 0))) {
table_x <- table_x[-which(names(table_x) == 0)]
}
sum(table_x) }
tot_time_sens_data <- apply(df_loc_preds, 2, A)
# In percentage
tot_time_sens_data_percentage <- ((tot_time_sens_data / 50400) * 100)
# Time around others (i.e., time around patient or nurse)
B <- function(x) {
table_x <- table(unlist(x))
# Find sections which has a freq > 1 in table (i.e., sections with two people or more)
social_sections <- names(which(table_x > 1))
# Removes section zero
if (length(social_sections) > 0) { social_sections <- social_sections[-which(social_sections == 0)] }
# Social sections are replaced by 1, rest 0
replace_sections <- which(x %in% social_sections)
if(length(replace_sections) > 0) {
x[replace_sections] <- 1
x[-replace_sections] <- 0
} else {
x[1:length(x)] <- 0
}
return(x)
}
time_others_df <- df_loc_preds
time_others_df <- time_others_df %>% mutate_all(as.character)
time_others <- apply(time_others_df, 1, B)
time_others <- data.frame(t(time_others), stringsAsFactors = FALSE)
time_others <- time_others %>% mutate_all(as.numeric)
# Sum
time_others_sum <- apply(time_others, 2, sum)
# In percentage
time_others_p <- (time_others_sum/tot_time_sens_data)*100
time_others_p[which(is.na(time_others_p))] <- 0
# Per hour
sum_hours <- function(x) {
start <- 0
end <- 0
j <- 1
hour_base <- numeric(14)
while (end < 50400) {
start <- end + 1
end <- start + 3599
hour_base[j] <- sum(x[start:end])
j <- j + 1
}
return(hour_base)
}
time_others_perhour <- apply(time_others, 2, sum_hours)
nrow_hours <- function(x) {
start <- 0
end <- 0
j <- 1
nrow_base <- numeric(14)
while (end < 50400) {
start <- end + 1
end <- start + 3599
nrow_table <- table(x[start:end])
nrow_table <- sum(nrow_table[which(names(nrow_table) != "0")])
nrow_base[j] <- nrow_table
j <- j + 1
}
return(nrow_base)
}
time_others_nrow <- apply(time_others_df, 2, nrow_hours)
# Time around each patient per day
patients <- unique(grep('P+', names(time_others_df), value=TRUE))
time_each_patient <- time_others_df[,patients]
list_time_eachpatient <- list()
for(i in 1:ncol(time_each_patient)) {
temp_eachpatient_df <- time_each_patient[which(time_each_patient[,i] != "0"),]
patient_ref <- temp_eachpatient_df[,i]
temp_eachpatient_df <- temp_eachpatient_df[,-i]
time_temp <- apply(temp_eachpatient_df, 2, function(x) {
x <- x == patient_ref
x <- sum(x)
})
list_time_eachpatient[[i]] <- time_temp
names(list_time_eachpatient)[i] <- names(time_each_patient)[i]
}
adjency_list <- merge(patients_all, patients_all)
A <- as.character(adjency_list$x)
B <- as.character(adjency_list$y)
adjency_list <- cbind(A, B)
each_pat_nrow <- apply(adjency_list, 1, function(x) {
cond1 <- unlist(x[[1]])
cond2 <- unlist(x[[2]])
cond_vec <- c(cond1, cond2)
if(sum(cond_vec %in% names(time_each_patient)) == 2) {
temp_eachpatientnrow_df <- time_each_patient[, cond_vec]
temp_eachpatientnrow_df <- temp_eachpatientnrow_df[which(temp_eachpatientnrow_df[,1] != 0),]
temp_eachpatientnrow_df <- temp_eachpatientnrow_df[which(temp_eachpatientnrow_df[,2] != 0),]
return(nrow(temp_eachpatientnrow_df))
}
else{return(0)}
})
each_pat_nrow <- cbind(adjency_list, each_pat_nrow)
# Time around nurses.
time_nurses_df <- df_loc_preds
time_nurses_df <- time_nurses_df %>% mutate_all(as.character)
nurses <- unique(grep('N+', names(time_nurses_df), value=TRUE))
if(length(nurses) < 1) { time_nurses_p <- NULL
} else {
# Remove rows with no nurse data
empty_rows_f <- function(x) {
zero_vector_n <- as.character(integer(length(x)))
all(x == zero_vector_n)
}
if(length (nurses) == 1) {
temp_nurse <- data.frame(time_nurses_df[,which(colnames(time_nurses_df) %in% nurses)])
colnames(temp_nurse) <- nurses
empty_rows <- apply(temp_nurse, 1, empty_rows_f)
time_nurses_df <- time_nurses_df[which(empty_rows==FALSE),]
} else {
empty_rows <- apply(time_nurses_df[,which(colnames(time_nurses_df) %in% nurses)], 1, empty_rows_f)
time_nurses_df <- time_nurses_df[which(empty_rows==FALSE),]
}
# Calculate time around nurses for each patient
if(length (nurses) == 1) {
nurse_df <- data.frame(time_nurses_df[,which(colnames(time_nurses_df) %in% nurses)])
colnames(nurse_df) <- nurses
} else{
nurse_df <- time_nurses_df[,which(colnames(time_nurses_df) %in% nurses)]
}
time_nurses <- data.frame(matrix(ncol = 0, nrow = 1))
tot_sensor_data <- data.frame(matrix(ncol = 0, nrow = 1))
time_nurse_vectorlist_hours <- list()
time_nurse_hours_nrow <- list()
for(i in 1:length(patients)) {
temp_df <- cbind(nurse_df, time_nurses_df[,patients[i]], stringsAsFactors = FALSE)
names(temp_df)[ncol(temp_df)] <- patients[i]
temp_df <- temp_df[temp_df[,patients[i]]!="0",]
if(nrow(temp_df) == 0) {
# If there is no patient and nurse data at the same time
# This division will cause NaN
time_nurses[patients[i]] <- 0
tot_sensor_data[patients[i]] <- 0
} else {
check_section <- apply(temp_df, 1, function(x) {
x[length(x)] %in% x[1:length(x)-1]
})
time_tog <- sum(check_section==TRUE)
time_nurses[patients[i]] <- time_tog
tot_sensor_data[patients[i]] <- nrow(temp_df)
time_nurse_vectorlist_hours[[i]] <- check_section
names(time_nurse_vectorlist_hours)[i] <- patients[i]
# Per hour nrow
sum_nurse_data <- function(x) {
start <- 0
end <- 0
j <- 1
nurse_nrow <- numeric(14)
while (end < 50400) {
start <- end + 1
end <- start + 3599
nurse_nrow[j] <- sum(between(as.numeric(rownames(temp_df)), start, end))
j <- j + 1
}
return(nurse_nrow)
}
nurse_hours_nrow <- sum_nurse_data(temp_df[,1])
time_nurse_hours_nrow[[i]] <- nurse_hours_nrow
names(time_nurse_hours_nrow)[i] <- patients[i]
}
}
# Sum
time_nurses_sum <- apply(time_nurses, 2, sum)
# In percentage
# Set NaNs to 0
time_nurses_p <- (time_nurses/tot_sensor_data)*100
time_nurses_p[which(is.na(time_nurses_p))] <- 0
time_nurses_p <- unlist(time_nurses_p)
# Per hour
df_time_nurse_perhour <- data.frame(matrix(0, ncol = length(names(time_nurse_vectorlist_hours)), nrow = 50400))
for(i in 1:length(names(time_nurse_vectorlist_hours))) {
names(df_time_nurse_perhour)[i] <- names(time_nurse_vectorlist_hours)[i]
temp_vec <- time_nurse_vectorlist_hours[[i]]
df_time_nurse_perhour[as.numeric(names(temp_vec[which(temp_vec)])), i] <- 1
}
time_nurses_perhour <- apply(df_time_nurse_perhour, 2, sum_hours)
}
current_date <- as.Date(day_start_timestamp)
# Time around others per hour
time_others_perhour <- as.data.frame(time_others_perhour)
mis_pat <- patients_all[which(!patients_all %in% names(time_others_df))]
time_others_perhour[mis_pat] <- 0
mis_nurse <- nurses_all[which(!nurses_all %in% names(time_others_df))]
time_others_perhour[mis_nurse] <- 0
time_others_perhour <- time_others_perhour[c(nurses_all, patients_all)]
setwd(output_dir)
save(time_others_perhour, file = paste(current_date, "time_others.Rdata", sep = " - "))
# Time around others per hour nrow
time_others_nrow <- as.data.frame(time_others_nrow)
mis_pat <- patients_all[which(!patients_all %in% names(time_others_df))]
time_others_nrow[mis_pat] <- 0
mis_nurse <- nurses_all[which(!nurses_all %in% names(time_others_df))]
time_others_nrow[mis_nurse] <- 0
time_others_nrow <- time_others_nrow[c(nurses_all, patients_all)]
setwd(output_dir)
save(time_others_nrow, file = paste(current_date, "time_others_nrow.Rdata", sep = " - "))
# Social proximity dataframe
prox_df <- data.frame(matrix(ncol = 15, nrow = 15, 0))
colnames(prox_df) <- patients_all
rownames(prox_df) <- patients_all
for(i in 1:length(patients_all)) {
temp_vec <- list_time_eachpatient[[patients_all[i]]]
if (length(temp_vec) > 0) {
mis_pat <- patients_all[which(!patients_all %in% names(temp_vec))]
temp_vec[mis_pat] <- 0
temp_vec <- temp_vec[patients_all]
prox_df[i,] <- temp_vec
}
}
setwd(output_dir)
save(prox_df, file = paste(current_date, "social_proximity.Rdata", sep = " - "))
# Social proximity dataframe nrow
prox_df_nrow <- as.data.frame(each_pat_nrow)
prox_df_nrow <- spread(prox_df_nrow, A, each_pat_nrow)
rownames_pdn <- prox_df_nrow$B
prox_df_nrow <- prox_df_nrow[,-1]
prox_df_nrow <- mutate_all(prox_df_nrow, as.character) %>% mutate_all(as.numeric)
rownames(prox_df_nrow) <- rownames_pdn
prox_df_nrow <- prox_df_nrow[patients_all,patients_all]
prox_df_nrow <- as.matrix(prox_df_nrow)
diag(prox_df_nrow) <- 0
prox_df_nrow <- as.data.frame(prox_df_nrow)
setwd(output_dir)
save(prox_df_nrow, file = paste(current_date, "social_proximity_nrow.Rdata", sep = " - "))
# Time around nurses per hour
time_nurses_perhour <- as.data.frame(time_nurses_perhour)
mis_pat <- patients_all[which(!patients_all %in% names(time_nurses_perhour))]
time_nurses_perhour[mis_pat] <- 0
time_nurses_perhour <- time_nurses_perhour[, patients_all]
setwd(output_dir)
save(time_nurses_perhour, file = paste(current_date, "time_nurses.Rdata", sep = " - "))
# Time around nurses per hour nrow
time_nurse_hours_nrow <- as.data.frame(time_nurse_hours_nrow)
mis_pat <- patients_all[which(!patients_all %in% names(time_nurse_hours_nrow))]
time_nurse_hours_nrow[mis_pat] <- 0
time_nurse_hours_nrow <- time_nurse_hours_nrow[, patients_all]
setwd(output_dir)
save(time_nurse_hours_nrow, file = paste(current_date, "time_nurses_nrow.Rdata", sep = " - "))
}