-
-
Notifications
You must be signed in to change notification settings - Fork 35
/
compiler.go
880 lines (684 loc) · 19.9 KB
/
compiler.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
// Package compiler contains the "compiler" for our simple virtual machine.
//
// It reads the string of tokens from the lexer, and outputs the bytecode
// which is equivalent.
//
// The approach to labels is the same as in the inspiring-project: Every time
// we come across a label we output a pair of temporary bytes in our bytecode.
// Later, once we've read the whole program and assume we've found all existing
// labels, we go back up and fix the generated addresses.
//
// This mechanism is the reason for the `fixups` and `labels` maps in the
// Compiler object - the former keeps track of offsets in our generated
// bytecodes that need to be patched with the address/offset of a given
// label, and the latter lets us record the offset at which labels were seen.
//
//
package compiler
import (
"fmt"
"io/ioutil"
"os"
"strconv"
"strings"
"github.com/skx/go.vm/lexer"
"github.com/skx/go.vm/opcode"
"github.com/skx/go.vm/token"
)
// Compiler contains our compiler-state
type Compiler struct {
l *lexer.Lexer // our lexer
curToken token.Token // current token
peekToken token.Token // next token
bytecode []byte // generated bytecode
labels map[string]int // holder for labels
fixups map[int]string // holder for fixups
}
// New is our constructor
func New(l *lexer.Lexer) *Compiler {
p := &Compiler{l: l}
p.labels = make(map[string]int)
p.fixups = make(map[int]string)
// prime the pump.
p.nextToken()
p.nextToken()
return p
}
// nextToken gets the next token from our lexer-stream
func (p *Compiler) nextToken() {
p.curToken = p.peekToken
p.peekToken = p.l.NextToken()
}
// isRegister returns true if the given string has a register ID
func (p *Compiler) isRegister(input string) bool {
return (strings.HasPrefix(input, "#"))
}
// getRegister converts a register string "#2" to an integer 2.
func (p *Compiler) getRegister(input string) byte {
num := strings.TrimPrefix(input, "#")
i, err := strconv.Atoi(num)
if err != nil {
panic(err)
}
if (i >= 0) && (i <= 15) {
return byte(i)
}
fmt.Printf("Register out of bounds: #%s\n", input)
os.Exit(1)
return 0
}
// Dump processe the stream of tokens from the lexer and shows the structure
// of the program.
func (p *Compiler) Dump() {
// Until we get the end of our stream we'll show each token.
for p.curToken.Type != token.EOF {
fmt.Printf("%v\n", p.curToken)
p.nextToken()
}
}
// Compile processe the stream of tokens from the lexer and builds
// up the bytecode program.
func (p *Compiler) Compile() {
// Until we get the end of our stream we'll process each token
// in turn, generating bytecode as we go.
for p.curToken.Type != token.EOF {
// Now handle the various tokens
switch p.curToken.Type {
case token.LABEL:
// Remove the ":" prefix from the label
label := strings.TrimPrefix(p.curToken.Literal, ":")
// The label points to the current point in our bytecode
p.labels[label] = len(p.bytecode)
case token.EXIT:
p.exitOp()
case token.INC:
p.incOp()
case token.DEC:
p.decOp()
case token.RANDOM:
p.randOp()
case token.RET:
p.retOp()
case token.CALL:
p.callOp()
case token.IS_INTEGER:
p.isIntOp()
case token.IS_STRING:
p.isStrOp()
case token.STRING2INT:
p.str2IntOp()
case token.INT2STRING:
p.int2StrOp()
case token.SYSTEM:
p.systemOp()
case token.CMP:
p.cmpOp()
case token.CONCAT:
p.concatOp()
case token.DB:
p.dataOp()
case token.DATA:
p.dataOp()
case token.TRAP:
p.trapOp()
case token.JMP:
p.jumpOp(opcode.JUMP_TO)
case token.JMPZ:
p.jumpOp(opcode.JUMP_Z)
case token.JMPNZ:
p.jumpOp(opcode.JUMP_NZ)
case token.MEMCPY:
p.memcpyOp()
case token.NOP:
p.nopOp()
case token.PEEK:
p.peekOp()
case token.POKE:
p.pokeOp()
case token.PUSH:
p.pushOp()
case token.POP:
p.popOp()
case token.STORE:
p.storeOp()
case token.PRINT_INT:
p.printInt()
case token.PRINT_STR:
p.printString()
case token.ADD:
p.mathOperation(opcode.ADD_OP)
case token.XOR:
p.mathOperation(opcode.XOR_OP)
case token.SUB:
p.mathOperation(opcode.SUB_OP)
case token.MUL:
p.mathOperation(opcode.MUL_OP)
case token.DIV:
p.mathOperation(opcode.DIV_OP)
case token.AND:
p.mathOperation(opcode.AND_OP)
case token.OR:
p.mathOperation(opcode.OR_OP)
default:
fmt.Println("Unhandled token: ", p.curToken)
}
p.nextToken()
}
// Now fixup any label-names we've got to patch into place.
for addr, name := range p.fixups {
value := p.labels[name]
if value == 0 {
fmt.Printf("Possible use of undefined label '%s'\n", name)
}
p1 := value % 256
p2 := (value - p1) / 256
p.bytecode[addr] = byte(p1)
p.bytecode[addr+1] = byte(p2)
}
}
// nopOp does nothing
func (p *Compiler) nopOp() {
p.bytecode = append(p.bytecode, byte(opcode.NOP_OP))
}
// peekOp reads the contents of a memory address, and stores in a register
func (p *Compiler) peekOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
res := p.getRegister(p.curToken.Literal)
// now we have a comma
if !p.expectPeek(token.COMMA) {
return
}
p.nextToken()
// and a literal
if p.curToken.Type != token.IDENT {
return
}
addr := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.PEEK))
p.bytecode = append(p.bytecode, byte(res))
p.bytecode = append(p.bytecode, byte(addr))
}
// pokeOp writes to memory
func (p *Compiler) pokeOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
val := p.getRegister(p.curToken.Literal)
// now we have a comma
if !p.expectPeek(token.COMMA) {
return
}
p.nextToken()
// and a literal
if p.curToken.Type != token.IDENT {
return
}
addr := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.POKE))
p.bytecode = append(p.bytecode, byte(val))
p.bytecode = append(p.bytecode, byte(addr))
}
// pushOp stores a stack-push
func (p *Compiler) pushOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.STACK_PUSH))
p.bytecode = append(p.bytecode, byte(reg))
}
// popOp stores a stack-push
func (p *Compiler) popOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.STACK_POP))
p.bytecode = append(p.bytecode, byte(reg))
}
// exitOp terminates our interpeter
func (p *Compiler) exitOp() {
p.bytecode = append(p.bytecode, byte(opcode.EXIT))
}
// incOp increments the contents of the given register
func (p *Compiler) incOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.INC_OP))
p.bytecode = append(p.bytecode, byte(reg))
}
// decOp decrements the contents of the given register
func (p *Compiler) decOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.DEC_OP))
p.bytecode = append(p.bytecode, byte(reg))
}
// randOp returns a random value
func (p *Compiler) randOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.INT_RANDOM))
p.bytecode = append(p.bytecode, byte(reg))
}
// retOp returns from a call
func (p *Compiler) retOp() {
p.bytecode = append(p.bytecode, byte(opcode.STACK_RET))
}
// isStrOp tests if a register contains a string
func (p *Compiler) isStrOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.IS_STRING))
p.bytecode = append(p.bytecode, byte(reg))
}
// str2IntOp converts the given string-register to an int.
func (p *Compiler) str2IntOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.STRING_TOINT))
p.bytecode = append(p.bytecode, byte(reg))
}
// int2StrOp converts the given int-register to a string.
func (p *Compiler) int2StrOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.INT_TOSTRING))
p.bytecode = append(p.bytecode, byte(reg))
}
// systemOp runs the (string) command in the given register
func (p *Compiler) systemOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register
reg := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.STRING_SYSTEM))
p.bytecode = append(p.bytecode, byte(reg))
}
// isIntOp tests if a register contains an integer
func (p *Compiler) isIntOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(opcode.IS_INTEGER))
p.bytecode = append(p.bytecode, byte(reg))
}
// callOp generates a call instruction
func (p *Compiler) callOp() {
// add the call instruction
p.bytecode = append(p.bytecode, byte(opcode.STACK_CALL))
// advance to the target
p.nextToken()
// The call might be to an absolute target, or a label.
switch p.curToken.Type {
case token.INT:
addr, _ := strconv.ParseInt(p.curToken.Literal, 0, 64)
len1 := addr % 256
len2 := (addr - len1) / 256
p.bytecode = append(p.bytecode, byte(len1))
p.bytecode = append(p.bytecode, byte(len2))
case token.IDENT:
// Record that we have to fixup this thing
p.fixups[len(p.bytecode)] = p.curToken.Literal
// output two temporary numbers
p.bytecode = append(p.bytecode, byte(0))
p.bytecode = append(p.bytecode, byte(0))
}
}
// trapOp inserts an interrupt call / trap
func (p *Compiler) trapOp() {
// advance to the target
p.nextToken()
// The jump might be an absolute target, or a label.
switch p.curToken.Type {
case token.INT:
addr, _ := strconv.ParseInt(p.curToken.Literal, 0, 64)
len1 := addr % 256
len2 := (addr - len1) / 256
p.bytecode = append(p.bytecode, byte(opcode.TRAP_OP))
p.bytecode = append(p.bytecode, byte(len1))
p.bytecode = append(p.bytecode, byte(len2))
default:
fmt.Printf("Fail!")
}
}
// jumpOp inserts a direct jump
func (p *Compiler) jumpOp(operator int) {
// add the jump
p.bytecode = append(p.bytecode, byte(operator))
// advance to the target
p.nextToken()
// The jump might be an absolute target, or a label.
switch p.curToken.Type {
case token.INT:
addr, _ := strconv.ParseInt(p.curToken.Literal, 0, 64)
len1 := addr % 256
len2 := (addr - len1) / 256
p.bytecode = append(p.bytecode, byte(len1))
p.bytecode = append(p.bytecode, byte(len2))
case token.IDENT:
// Record that we have to fixup this thing
p.fixups[len(p.bytecode)] = p.curToken.Literal
// output two temporary numbers
p.bytecode = append(p.bytecode, byte(0))
p.bytecode = append(p.bytecode, byte(0))
}
}
// memcpyOp inserts a memcopy operation.
func (p *Compiler) memcpyOp() {
p.nextToken()
one := p.getRegister(p.curToken.Literal)
if !p.expectPeek(token.COMMA) {
return
}
p.nextToken()
two := p.getRegister(p.curToken.Literal)
if !p.expectPeek(token.COMMA) {
return
}
p.nextToken()
three := p.getRegister(p.curToken.Literal)
// output the bytecode
p.bytecode = append(p.bytecode, byte(opcode.MEMCPY))
p.bytecode = append(p.bytecode, byte(one))
p.bytecode = append(p.bytecode, byte(two))
p.bytecode = append(p.bytecode, byte(three))
}
// mathOperation handles add/sub/mul/div/etc
func (p *Compiler) mathOperation(operation int) {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// dest
dst := p.getRegister(p.curToken.Literal)
// now we have a comma
if !p.expectPeek(token.COMMA) {
return
}
p.nextToken()
// and a literal
if p.curToken.Type != token.IDENT {
return
}
src1 := p.getRegister(p.curToken.Literal)
// and a comma
if !p.expectPeek(token.COMMA) {
return
}
p.nextToken()
// and a final literal
if p.curToken.Type != token.IDENT {
return
}
src2 := p.getRegister(p.curToken.Literal)
p.bytecode = append(p.bytecode, byte(operation))
p.bytecode = append(p.bytecode, byte(dst))
p.bytecode = append(p.bytecode, byte(src1))
p.bytecode = append(p.bytecode, byte(src2))
}
// storeOp handles loading a register with a string, integer, or register,
// or label-address.
func (p *Compiler) storeOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
if !p.expectPeek(token.COMMA) {
return
}
p.nextToken()
// Now we know where we're storing the thing we need to determine
// what is being stored: string, integer, register value, or a
// label address.
switch p.curToken.Type {
case token.STRING:
// STRING_STORE $REG $LEN1 $LEN2 $STRING
p.bytecode = append(p.bytecode, byte(opcode.STRING_STORE))
p.bytecode = append(p.bytecode, reg)
len := len(p.curToken.Literal)
len1 := len % 256
len2 := (len - len1) / 256
p.bytecode = append(p.bytecode, byte(len1))
p.bytecode = append(p.bytecode, byte(len2))
// output the length
for i := 0; i < len; i++ {
p.bytecode = append(p.bytecode, byte(p.curToken.Literal[i]))
}
case token.INT:
// INT_STORE $REG $NUM1 NUM2
p.bytecode = append(p.bytecode, byte(opcode.INT_STORE))
p.bytecode = append(p.bytecode, reg)
// Convert to low/high
i, _ := strconv.ParseInt(p.curToken.Literal, 0, 64)
len1 := i % 256
len2 := (i - len1) / 256
p.bytecode = append(p.bytecode, byte(len1))
p.bytecode = append(p.bytecode, byte(len2))
case token.IDENT:
if p.isRegister(p.curToken.Literal) {
// REG_STORE REG_DST REG_SRC
p.bytecode = append(p.bytecode, byte(opcode.REG_STORE))
p.bytecode = append(p.bytecode, reg)
p.bytecode = append(p.bytecode, p.getRegister(p.curToken.Literal))
} else {
// Here we're storing the address of a label.
// INT_STORE $REG $NUM1 $NUM2
p.bytecode = append(p.bytecode, byte(opcode.INT_STORE))
p.bytecode = append(p.bytecode, reg)
// record that we need a fixup here
p.fixups[len(p.bytecode)] = p.curToken.Literal
// output two temporary numbers
p.bytecode = append(p.bytecode, byte(0))
p.bytecode = append(p.bytecode, byte(0))
}
default:
fmt.Printf("ERROR: Invalid thing to store: %v\n", p.curToken)
os.Exit(1)
}
}
// cmpOp handles comparing a register with a string, integer, or register,
// or label-address.
func (p *Compiler) cmpOp() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
// Save the register we're storing to.
reg := p.getRegister(p.curToken.Literal)
if !p.expectPeek(token.COMMA) {
return
}
p.nextToken()
// Now we know what source register we're comparing we need to see
// if that comparison is with a string, integer, register value, or a
// label address.
switch p.curToken.Type {
case token.STRING:
// CMP_STRING $REG $LEN1 $LEN2 $STRING
p.bytecode = append(p.bytecode, byte(opcode.CMP_STRING))
p.bytecode = append(p.bytecode, reg)
len := len(p.curToken.Literal)
len1 := len % 256
len2 := (len - len1) / 256
p.bytecode = append(p.bytecode, byte(len1))
p.bytecode = append(p.bytecode, byte(len2))
// append the string
for i := 0; i < len; i++ {
p.bytecode = append(p.bytecode, byte(p.curToken.Literal[i]))
}
case token.INT:
// CMP_IMMEDIATE $REG $NUM1 NUM2
p.bytecode = append(p.bytecode, byte(opcode.CMP_IMMEDIATE))
p.bytecode = append(p.bytecode, reg)
// Convert to low/high
i, _ := strconv.ParseInt(p.curToken.Literal, 0, 64)
len1 := i % 256
len2 := (i - len1) / 256
p.bytecode = append(p.bytecode, byte(len1))
p.bytecode = append(p.bytecode, byte(len2))
case token.IDENT:
if p.isRegister(p.curToken.Literal) {
// CMP_REG REG_DST REG_SRC
p.bytecode = append(p.bytecode, byte(opcode.CMP_REG))
p.bytecode = append(p.bytecode, reg)
p.bytecode = append(p.bytecode, p.getRegister(p.curToken.Literal))
} else {
// Here we're storing the address of a label.
// INT_STORE $REG $NUM1 $NUM2
p.bytecode = append(p.bytecode, byte(opcode.CMP_IMMEDIATE))
p.bytecode = append(p.bytecode, reg)
// record that we need a fixup here
p.fixups[len(p.bytecode)] = p.curToken.Literal
// output two temporary numbers
p.bytecode = append(p.bytecode, byte(0))
p.bytecode = append(p.bytecode, byte(0))
}
default:
fmt.Printf("ERROR: Invalid thing to store: %v\n", p.curToken)
os.Exit(1)
}
}
// concatOp concatenates two string values.
func (p *Compiler) concatOp() {
p.nextToken()
dst := p.getRegister(p.curToken.Literal)
if !p.expectPeek(token.COMMA) {
return
}
p.nextToken()
a := p.getRegister(p.curToken.Literal)
if !p.expectPeek(token.COMMA) {
return
}
p.nextToken()
b := p.getRegister(p.curToken.Literal)
// output the bytecode
p.bytecode = append(p.bytecode, byte(opcode.STRING_CONCAT))
p.bytecode = append(p.bytecode, byte(dst))
p.bytecode = append(p.bytecode, byte(a))
p.bytecode = append(p.bytecode, byte(b))
}
// dataOp embeds literal/binary data into the output
func (p *Compiler) dataOp() {
p.nextToken()
// We might have a string, or a series of ints
//
// If it is a string handle that first
if p.curToken.Type == token.STRING {
len := len(p.curToken.Literal)
for i := 0; i < len; i++ {
p.bytecode = append(p.bytecode, byte(p.curToken.Literal[i]))
}
return
}
//
// Otherwise we expect a single int
//
db := p.curToken.Literal
i, _ := strconv.ParseInt(db, 0, 64)
p.bytecode = append(p.bytecode, byte(i))
//
// Loop looking for more data - we don't know how much
// there might be, but we'll know it is comma-separated.
//
for p.peekTokenIs(token.COMMA) {
// skip the comma
p.nextToken()
// read the next int
if p.expectPeek(token.INT) {
db := p.curToken.Literal
i, _ := strconv.ParseInt(db, 0, 64)
p.bytecode = append(p.bytecode, byte(i))
}
}
}
// Handle printing the contents of a register as an integer.
func (p *Compiler) printInt() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
p.bytecode = append(p.bytecode, byte(opcode.INT_PRINT))
p.bytecode = append(p.bytecode, p.getRegister(p.curToken.Literal))
}
// Handle printing the contents of a register as a string.
func (p *Compiler) printString() {
// We're looking for an identifier next.
if !p.expectPeek(token.IDENT) {
return
}
p.bytecode = append(p.bytecode, byte(opcode.STRING_PRINT))
p.bytecode = append(p.bytecode, p.getRegister(p.curToken.Literal))
}
// determinate next token is t or not
func (p *Compiler) peekTokenIs(t token.Type) bool {
return p.peekToken.Type == t
}
// expect next token is t
// succeed: return true and forward token
// failed: return false and store error
func (p *Compiler) expectPeek(t token.Type) bool {
if p.peekTokenIs(t) {
p.nextToken()
return true
}
p.peekError(t)
return false
}
func (p *Compiler) peekError(t token.Type) {
fmt.Printf("expected next token to be %s, got %s instead", t, p.curToken.Type)
os.Exit(1)
}
// Write outputs our generated bytecode to the named file.
func (p *Compiler) Write(output string) {
fmt.Printf("Our bytecode is %d bytes long\n", len(p.bytecode))
err := ioutil.WriteFile(output, p.bytecode, 0644)
if err != nil {
fmt.Printf("Error writing output file: %s\n", err.Error())
os.Exit(1)
}
}
// Output returns the bytecodes of the compiled program.
func (p *Compiler) Output() []byte {
return (p.bytecode)
}