-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
284 lines (263 loc) · 9.34 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from os import listdir
from numpy import array
from numpy import argmax
from pandas import DataFrame
from nltk.translate.bleu_score import corpus_bleu
from pickle import load
import numpy
from numpy import *
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.applications.vgg16 import preprocess_input
from keras.applications.vgg16 import VGG16
from keras.utils import plot_model
from keras.models import Model
from keras.layers import Input
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import LSTM
from keras.layers import RepeatVector
from keras.layers import TimeDistributed
from keras.layers import Embedding
from keras.layers.merge import concatenate
from keras.layers.pooling import GlobalMaxPooling2D
def load_embedding(tokenizer, vocab_size, max_length):
# load the tokenizer
embedding = load(open('word2vec_embedding.pkl', 'rb'))
dimensions = 100
trainable = False
# create a weight matrix for words in training docs
weights = zeros((vocab_size, dimensions))
# walk words in order of tokenizer vocab to ensure vectors are in the right index
for word, i in tokenizer.word_index.items():
if word not in embedding:
continue
weights[i] = embedding[word]
layer = Embedding(vocab_size, dimensions, weights=[weights], input_length=max_length, trainable=trainable, mask_zero=True)
return layer
# load doc into memory
def load_doc(filename):
# open the file as read only
file = open(filename, 'r')
# read all text
text = file.read()
# close the file
file.close()
return text
# load a pre-defined list of photo identifiers
def load_set(filename):
doc = load_doc(filename)
dataset = list()
# process line by line
for line in doc.split('\n'):
# skip empty lines
if len(line) < 1:
continue
# get the image identifier
identifier = line.split('.')[0]
dataset.append(identifier)
return set(dataset)
# split a dataset into train/test elements
def train_test_split(dataset):
# order keys so the split is consistent
ordered = sorted(dataset)
# return split dataset as two new sets
return set(ordered[:200]), set(ordered[200:300])
# load clean descriptions into memory
def load_clean_descriptions(filename, dataset):
# load document
doc = load_doc(filename)
descriptions = dict()
for line in doc.split('\n'):
# split line by white space
tokens = line.split()
# split id from description
image_id, image_desc = tokens[0], tokens[1:]
# skip images not in the set
if image_id in dataset:
# store
descriptions[image_id] = 'startseq ' + ' '.join(image_desc) + ' endseq'
return descriptions
# load photo features
def load_photo_features(filename, dataset):
# load all features
all_features = load(open(filename, 'rb'))
# filter features
features = {k: all_features[k] for k in dataset}
return features
# fit a tokenizer given caption descriptions
def create_tokenizer(descriptions):
lines = list(descriptions.values())
tokenizer = Tokenizer()
tokenizer.fit_on_texts(lines)
return tokenizer
# create sequences of images, input sequences and output words for an image
def create_sequences(tokenizer, desc, image, max_length):
Ximages, XSeq, y = list(), list(),list()
vocab_size = len(tokenizer.word_index) + 1
# integer encode the description
seq = tokenizer.texts_to_sequences([desc])[0]
# split one sequence into multiple X,y pairs
for i in range(1, len(seq)):
# select
in_seq, out_seq = seq[:i], seq[i]
# pad input sequence
in_seq = pad_sequences([in_seq], maxlen=max_length)[0]
# encode output sequence
out_seq = to_categorical([out_seq], num_classes=vocab_size)[0]
# store
Ximages.append(image)
XSeq.append(in_seq)
y.append(out_seq)
# Ximages, XSeq, y = array(Ximages), array(XSeq), array(y)
return [Ximages, XSeq, y]
# define the captioning model
def define_model(vocab_size, max_length):
# feature extractor (encoder)
inputs1 = Input(shape=(7, 7, 512))
fe1 = GlobalMaxPooling2D()(inputs1)
fe2 = Dense(128, activation='relu')(fe1)
fe3 = RepeatVector(max_length)(fe2)
# embedding
inputs2 = Input(shape=(max_length,))
emb2 = Embedding(vocab_size, 50, mask_zero=True)(inputs2)
emb3 = LSTM(256, return_sequences=True)(emb2)
emb4 = TimeDistributed(Dense(128, activation='relu'))(emb3)
# merge inputs
merged = concatenate([fe3, emb4])
# language model (decoder)
lm2 = LSTM(500, return_sequences=True)(merged)
lm3 = LSTM(500)(lm2)
lm4 = Dense(500, activation='relu')(lm3)
outputs = Dense(vocab_size, activation='softmax')(lm4)
# tie it together [image, seq] [word]
model = Model(inputs=[inputs1, inputs2], outputs=outputs)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# data generator, intended to be used in a call to model.fit_generator()
def data_generator(descriptions, features, tokenizer, max_length, n_step):
# loop until we finish training
while 1:
# loop over photo identifiers in the dataset
keys = list(descriptions.keys())
for i in range(0, len(keys), n_step):
Ximages, XSeq, y = list(), list(),list()
for j in range(i, min(len(keys), i+n_step)):
image_id = keys[j]
# retrieve photo feature input
image = features[image_id][0]
# retrieve text input
desc = descriptions[image_id]
# generate input-output pairs
in_img, in_seq, out_word = create_sequences(tokenizer, desc, image, max_length)
for k in range(len(in_img)):
Ximages.append(in_img[k])
XSeq.append(in_seq[k])
y.append(out_word[k])
# yield this batch of samples to the model
yield [[array(Ximages), array(XSeq)], array(y)]
# map an integer to a word
def word_for_id(integer, tokenizer):
for word, index in tokenizer.word_index.items():
if index == integer:
return word
return None
# generate a description for an image
def generate_desc(model, tokenizer, photo, max_length):
# seed the generation process
in_text = 'startseq'
# iterate over the whole length of the sequence
for i in range(max_length):
# integer encode input sequence
sequence = tokenizer.texts_to_sequences([in_text])[0]
# pad input
sequence = pad_sequences([sequence], maxlen=max_length)
# predict next word
yhat = model.predict([photo,sequence], verbose=0)
# convert probability to integer
yhat = argmax(yhat)
# map integer to word
word = word_for_id(yhat, tokenizer)
# stop if we cannot map the word
if word is None:
break
# append as input for generating the next word
in_text += ' ' + word
# stop if we predict the end of the sequence
if word == 'endseq':
break
return in_text
# evaluate the skill of the model
def evaluate_model(model, descriptions, photos, tokenizer, max_length):
actual, predicted = list(), list()
# step over the whole set
for key, desc in descriptions.items():
# generate description
yhat = generate_desc(model, tokenizer, photos[key], max_length)
# store actual and predicted
actual.append([desc.split()])
predicted.append(yhat.split())
print('Actual: %s' % desc)
print('Predicted: %s' % yhat)
if len(actual) >= 5:
break
# calculate BLEU score
bleu = corpus_bleu(actual, predicted)
return bleu
# load dev set
filename = '/home/lakshminarasimhan/Projectimages/Flickr_8k.devImages.txt'
dataset = load_set(filename)
print('Dataset: %d' % len(dataset))
# train-test split
train, test = train_test_split(dataset)
# descriptions
train_descriptions = load_clean_descriptions('descriptions.txt', train)
test_descriptions = load_clean_descriptions('descriptions.txt', test)
print('Descriptions: train=%d, test=%d' % (len(train_descriptions), len(test_descriptions)))
# photo features
train_features = load_photo_features('features.pkl', train)
test_features = load_photo_features('features.pkl', test)
print('Photos: train=%d, test=%d' % (len(train_features), len(test_features)))
# prepare tokenizer
tokenizer = create_tokenizer(train_descriptions)
vocab_size = len(tokenizer.word_index) + 1
print('Vocabulary Size: %d' % vocab_size)
# determine the maximum sequence length
max_length = max(len(s.split()) for s in list(train_descriptions.values()))
print('Description Length: %d' % max_length)
# define experiment
model_name = 'baseline1'
verbose = 2
n_epochs = 200
n_photos_per_update = 2
n_batches_per_epoch = int(len(train) / n_photos_per_update)
n_repeats = 1
# run experiment
train_results, test_results = list(), list()
for i in range(n_repeats):
# define the model
model = define_model(vocab_size, max_length)
# fit model
model.fit_generator(data_generator(train_descriptions, train_features, tokenizer, max_length, n_photos_per_update), steps_per_epoch=n_batches_per_epoch, epochs=n_epochs, verbose=verbose)
# evaluate model on training data
train_score = evaluate_model(model, train_descriptions, train_features, tokenizer, max_length)
test_score = evaluate_model(model, test_descriptions, test_features, tokenizer, max_length)
# store
train_results.append(train_score)
test_results.append(test_score)
print('>%d: train=%f test=%f' % ((i+1), train_score, test_score))
# save results to file
model_json = model.to_json()
with open("model1.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model1.h5")
print("Saved model to disk")
df = DataFrame()
df['train'] = train_results
df['test'] = test_results
print(df.describe())
df.to_csv(model_name+'.csv', index=False)