-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathHaar_Feature_Trainning.cpp
556 lines (458 loc) · 24.3 KB
/
Haar_Feature_Trainning.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
//
// Haar_Feature_Trainning.cpp
// 基于AdaBoost算法的人脸检测
//
// Created by 唧唧歪歪 on 15/2/27.
// Copyright (c) 2015年 唧唧歪歪. All rights reserved.
//
#include "Haar_Feature_Trainning.h"
//训练弱分类器函数;
void Haar_Feature_Trainning::Trainning(Haar_Feature haar,string table_name,int t)
{
//所有特征值已经成功载入;
/*
//载入所有Haar特征下的Haar值;
if(t==0)
{
Get_All(haar, table_name);
}
*/
//创建连接;
MYSQL mycon;
mysql_init(&mycon);
mysql_real_connect(&mycon, "localhost", "root", "", "adaboost", 3306, NULL, 0);
string sql;//SQL语句;
MYSQL_RES *result=NULL;
sql="select * from "+table_name;
mysql_real_query(&mycon, sql.c_str(), sql.length());
result=mysql_store_result(&mycon);
int rowcount=(int)mysql_num_rows(result);
int i;//临时变量;
double min_wrong_rate=50000.000;//作为最小的误差率;
for(i=0;i<rowcount;i++)
{
int H;//弱预测的值;
MYSQL_ROW row=mysql_fetch_row(result);
Weak_Classifier w_c;//临时弱分类器变量;
w_c.threshold=atoi(row[1]);
w_c.haar=haar;
w_c.point1.x_axis=atoi(row[3]);
w_c.point1.y_axis=atoi(row[4]);
w_c.point2.x_axis=atoi(row[5]);
w_c.point2.y_axis=atoi(row[6]);
int num;
//使用p=1作为判断不等式方向的值;
double wrong_rate1=0.0000;//P=1时,所有特征对应错误率;
for(num=0;num<P_Sample.size();num++)
{
H=Weak_judge(w_c, 1, num, 1);
wrong_rate1+=P_Sample[num].weight*abs(H-1);
}
for(num=0;num<M_Sample.size();num++)
{
H=Weak_judge(w_c, 1, num, 0);
wrong_rate1+=M_Sample[num].weight*H;
}
//使用p=-1作为判断不等式方向的值;
double wrong_rate2=0.0000;//P=0时,所有特征对应错误率;
for(num=0;num<P_Sample.size();num++)
{
H=Weak_judge(w_c,-1, num, 1);
wrong_rate2+=P_Sample[num].weight*abs(H-1);
}
for(num=0;num<M_Sample.size();num++)
{
H=Weak_judge(w_c, -1, num, 0);
wrong_rate2+=M_Sample[num].weight*H;
}
//求解出最小的弱分类器;
if(wrong_rate1<=wrong_rate2)
{
w_c.p=1;//弱分类器不等式方向;
w_c.rate=wrong_rate1;//弱分类器误差率;
}
else
{
w_c.p=-1;
w_c.rate=wrong_rate2;
}
//初始权重;
w_c.weight=0.0000;//弱分类器的权重;
if(w_c.rate<min_wrong_rate)
{
min_wrong_rate=w_c.rate;
w=w_c;
}
}
mysql_close(&mycon);
}
//获取当前特征对应的所有Haar特征值;
void Haar_Feature_Trainning::Get_All(Haar_Feature haar,string table_name)
{
MYSQL mycon;
mysql_init(&mycon);
mysql_real_connect(&mycon, "localhost", "root", "", "adaboost", 3306, NULL, 0);
int num;//临时变量;
int id=1;//纪录特征值的ID;
for(num=0;num<P_Sample.size();num++)
{
int width=P_Sample[num].image.rows-1;
int length=P_Sample[num].image.cols-1;
int i,j;//临时变量;
for(i=1;i<width-haar.s;i++)
{
for(j=1;j<length-haar.t;j++)
{
int w=P_Sample[num].image.rows-i;
w=Low_Integral_Function(w,haar.s);
int l=P_Sample[num].image.cols-j;
l=Low_Integral_Function(l,haar.t);
int x1,y1;
x1=i;
y1=j;
Coordinate A_Point;
A_Point.x_axis=x1;
A_Point.y_axis=y1;
int m,n;//临时变量;
for(m=2;m<=w;m++)
{
int x2,y2;
x2=x1+m*haar.s;
for(n=2;n<=l;n++)
{
y2=y1+n*haar.t;
Coordinate D_Point;
D_Point.x_axis=x2;
D_Point.y_axis=y2;
int integral=get_haar1(haar, A_Point, D_Point, num);
string sql;
sql="insert into "+table_name+" values (";
sql+=Convert(id)+",";
sql+=Convert(integral)+",";
sql+=Convert(1)+",";
sql+=Convert(A_Point.x_axis)+",";
sql+=Convert(A_Point.y_axis)+",";
sql+=Convert(D_Point.x_axis)+",";
sql+=Convert(D_Point.y_axis)+")";
id++;
mysql_real_query(&mycon,sql.c_str(),sql.length());
}
}
}
}
}
for(num=0;num<M_Sample.size();num++)
{
int width=M_Sample[num].image.rows-1;
int length=M_Sample[num].image.cols-1;
int i,j;//临时变量;
for(i=1;i<width-haar.s;i++)
{
for(j=1;j<length-haar.t;j++)
{
int w=M_Sample[num].image.rows-i;
w=Low_Integral_Function(w,haar.s);
int l=M_Sample[num].image.cols-j;
l=Low_Integral_Function(l,haar.t);
int x1=i;
int y1=j;
Coordinate A_Point;
A_Point.x_axis=x1;
A_Point.y_axis=y1;
int m,n;//临时变量;
for(m=2;m<=w;m++)
{
int x2=x1+m*haar.s;
for(n=2;n<=l;n++)
{
int y2=y1+n*haar.t;
Coordinate D_Point;
D_Point.x_axis=x2;
D_Point.y_axis=y2;
int integral=get_haar2(haar,A_Point,D_Point,num);
string sql;
sql="insert into "+table_name+" values (";
sql+=Convert(id)+",";
sql+=Convert(integral)+",";
sql+=Convert(0)+",";
sql+=Convert(A_Point.x_axis)+",";
sql+=Convert(A_Point.y_axis)+",";
sql+=Convert(D_Point.x_axis)+",";
sql+=Convert(D_Point.y_axis)+")";
id++;
mysql_real_query(&mycon,sql.c_str(),sql.length());
}
}
}
}
}
mysql_close(&mycon);
//mysql_query(&mycon,"COMMIT");//执行事务;
}
//使用弱分类器判断当前样本的正负类;
int Haar_Feature_Trainning::Weak_judge(Weak_Classifier w_c,int p,int num,int type)
{
int integral;//当前样本的特征值;
if(type==1)
{
integral=get_haar1(w_c.haar, w_c.point1, w_c.point2, num);
}
else
{
integral=get_haar2(w_c.haar, w_c.point1, w_c.point2, num);
}
int h;//当前样本的种类;
if(p*integral<p*w_c.threshold)
{
h=1;
}
else
{
h=0;
}
return h;
}
//计算正类样本特征值;
int Haar_Feature_Trainning::get_haar1(Haar_Feature haar, Coordinate A_Point, Coordinate D_Point, int num)
{
Coordinate B_Point,C_Point;
int W_Z=0,B_Z=0;
int integral=0;
B_Point.x_axis=A_Point.x_axis;
B_Point.y_axis=D_Point.y_axis;
C_Point.x_axis=D_Point.x_axis;
C_Point.y_axis=A_Point.y_axis;
switch(haar.kind)
{
case 1:
{
Coordinate C1,C2;
C1.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C1.y_axis=A_Point.y_axis;
C2.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C2.y_axis=D_Point.y_axis;
W_Z=P_Sample[num].integral_image[C2.x_axis][C2.y_axis]+P_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-P_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-P_Sample[num].integral_image[C1.x_axis][C1.y_axis];
B_Z=P_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[C2.x_axis][C2.y_axis]-P_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis];
};break;
case 2:
{
Coordinate C1,C2;
C1.x_axis=A_Point.x_axis;
C1.y_axis=(B_Point.y_axis-A_Point.y_axis)/haar.t+A_Point.y_axis;
C2.x_axis=C_Point.x_axis;
C2.y_axis=(D_Point.y_axis-C_Point.y_axis)/haar.t+C_Point.y_axis;
W_Z=P_Sample[num].integral_image[C2.x_axis][C2.y_axis]+P_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis];
B_Z=P_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-P_Sample[num].integral_image[C2.x_axis][C2.y_axis];
};break;
case 3:
{
Coordinate C1,C2,C3,C4;
C1.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C1.y_axis=A_Point.y_axis;
C2.x_axis=(D_Point.x_axis-B_Point.x_axis)/haar.s+B_Point.x_axis;
C2.y_axis=B_Point.y_axis;
C3.x_axis=(C_Point.x_axis-A_Point.x_axis)*(haar.s-1)/haar.s+A_Point.x_axis;
C3.y_axis=A_Point.y_axis;
C4.x_axis=(D_Point.x_axis-B_Point.x_axis)*(haar.s-1)/haar.s+B_Point.x_axis;
C4.y_axis=B_Point.y_axis;
W_Z=P_Sample[num].integral_image[C2.x_axis][C2.y_axis]+P_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]+P_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+P_Sample[num].integral_image[C3.x_axis][C3.y_axis]-P_Sample[num].integral_image[C4.x_axis][C4.y_axis]-P_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis];
B_Z=P_Sample[num].integral_image[C4.x_axis][C4.y_axis]+P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[C2.x_axis][C2.y_axis]-P_Sample[num].integral_image[C4.x_axis][C4.y_axis];
B_Z=B_Z*2;
};break;
case 4:
{
Coordinate C1,C2,C3,C4;
C1.x_axis=A_Point.x_axis;
C1.y_axis=(B_Point.y_axis-A_Point.y_axis)/haar.t+A_Point.y_axis;
C2.x_axis=A_Point.x_axis;
C2.y_axis=(B_Point.y_axis-A_Point.y_axis)*(haar.t-1)/haar.t+A_Point.y_axis;
C3.x_axis=C_Point.x_axis;
C3.y_axis=(D_Point.x_axis-C_Point.x_axis)/haar.t+C_Point.x_axis;
C4.x_axis=C_Point.x_axis;
C4.y_axis=(D_Point.y_axis-C_Point.y_axis)*(haar.t-1)/haar.t+C_Point.y_axis;
W_Z=P_Sample[num].integral_image[C3.x_axis][C3.y_axis]+P_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis]+P_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+P_Sample[num].integral_image[C2.x_axis][C2.y_axis]-P_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-P_Sample[num].integral_image[C4.x_axis][C4.y_axis];
B_Z=P_Sample[num].integral_image[C4.x_axis][C4.y_axis]+P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[C2.x_axis][C2.y_axis]-P_Sample[num].integral_image[C3.x_axis][C3.y_axis];
B_Z=B_Z*2;
};break;
case 5:
{
Coordinate C1,C2,C3,C4,C5;
C1.x_axis=A_Point.x_axis;
C1.y_axis=(B_Point.y_axis-A_Point.y_axis)/haar.t+A_Point.y_axis;
C2.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C2.y_axis=A_Point.y_axis;
C3.x_axis=C2.x_axis;
C3.y_axis=C1.y_axis;
C4.x_axis=C2.x_axis;
C4.y_axis=B_Point.y_axis;
C5.x_axis=C_Point.x_axis;
C5.y_axis=C1.y_axis;
W_Z=P_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+P_Sample[num].integral_image[C3.x_axis][C3.y_axis]-P_Sample[num].integral_image[C4.x_axis][C4.y_axis]-P_Sample[num].integral_image[C5.x_axis][C5.y_axis]+P_Sample[num].integral_image[C3.x_axis][C3.y_axis]+P_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[C2.x_axis][C2.y_axis];
B_Z=P_Sample[num].integral_image[C5.x_axis][C5.y_axis]+P_Sample[num].integral_image[C2.x_axis][C2.y_axis]-P_Sample[num].integral_image[C3.x_axis][C3.y_axis]-P_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis]+P_Sample[num].integral_image[C4.x_axis][C4.y_axis]+P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-P_Sample[num].integral_image[C3.x_axis][C3.y_axis];
};break;
case 6:
{
Coordinate C1,C2,C3,C4;
C1.x_axis=A_Point.x_axis;
C1.y_axis=(B_Point.y_axis-A_Point.y_axis)/haar.t+A_Point.y_axis;
C2.x_axis=A_Point.x_axis;
C2.y_axis=(B_Point.y_axis-A_Point.y_axis)*(haar.t-1)/haar.t+A_Point.y_axis;
C3.x_axis=C_Point.x_axis;
C3.y_axis=(D_Point.x_axis-C_Point.x_axis)/haar.t+C_Point.x_axis;
C4.x_axis=C_Point.x_axis;
C4.y_axis=(D_Point.y_axis-C_Point.y_axis)*(haar.t-1)/haar.t+C_Point.y_axis;
W_Z=P_Sample[num].integral_image[C4.x_axis][C4.y_axis]+P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[C2.x_axis][C2.y_axis]-P_Sample[num].integral_image[C3.x_axis][C3.y_axis];
B_Z=P_Sample[num].integral_image[C3.x_axis][C3.y_axis]+P_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis]+P_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+P_Sample[num].integral_image[C2.x_axis][C2.y_axis]-P_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-P_Sample[num].integral_image[C4.x_axis][C4.y_axis];
W_Z=W_Z*2;
};break;
case 7:
{
Coordinate C1,C2;
C1.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C1.y_axis=A_Point.y_axis;
C2.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C2.y_axis=D_Point.y_axis;
W_Z=P_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+P_Sample[num].integral_image[C1.x_axis][C1.y_axis]-P_Sample[num].integral_image[C2.x_axis][C2.y_axis]-P_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis];
B_Z=P_Sample[num].integral_image[C2.x_axis][C2.y_axis]+P_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-P_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-P_Sample[num].integral_image[C1.x_axis][C1.y_axis];
};break;
}
integral=W_Z-B_Z;
return integral;
}
//计算负类样本特征值;
int Haar_Feature_Trainning::get_haar2(Haar_Feature haar,Coordinate A_Point,Coordinate D_Point,int num)
{
Coordinate B_Point,C_Point;
int W_Z=0,B_Z=0;
int integral=0;
B_Point.x_axis=A_Point.x_axis;
B_Point.y_axis=D_Point.y_axis;
C_Point.x_axis=D_Point.x_axis;
C_Point.y_axis=A_Point.y_axis;
switch(haar.kind)
{
case 1:
{
Coordinate C1,C2;
C1.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C1.y_axis=A_Point.y_axis;
C2.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C2.y_axis=D_Point.y_axis;
W_Z=M_Sample[num].integral_image[C2.x_axis][C2.y_axis]+M_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-M_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-M_Sample[num].integral_image[C1.x_axis][C1.y_axis];
B_Z=M_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[C2.x_axis][C2.y_axis]-M_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis];
};break;
case 2:
{
Coordinate C1,C2;
C1.x_axis=A_Point.x_axis;
C1.y_axis=(B_Point.y_axis-A_Point.y_axis)/haar.t+A_Point.y_axis;
C2.x_axis=C_Point.x_axis;
C2.y_axis=(D_Point.y_axis-C_Point.y_axis)/haar.t+C_Point.y_axis;
W_Z=M_Sample[num].integral_image[C2.x_axis][C2.y_axis]+M_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis];
B_Z=M_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-M_Sample[num].integral_image[C2.x_axis][C2.y_axis];
};break;
case 3:
{
Coordinate C1,C2,C3,C4;
C1.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C1.y_axis=A_Point.y_axis;
C2.x_axis=(D_Point.x_axis-B_Point.x_axis)/haar.s+B_Point.x_axis;
C2.y_axis=B_Point.y_axis;
C3.x_axis=(C_Point.x_axis-A_Point.x_axis)*(haar.s-1)/haar.s+A_Point.x_axis;
C3.y_axis=A_Point.y_axis;
C4.x_axis=(D_Point.x_axis-B_Point.x_axis)*(haar.s-1)/haar.s+B_Point.x_axis;
C4.y_axis=B_Point.y_axis;
W_Z=M_Sample[num].integral_image[C2.x_axis][C2.y_axis]+M_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]+M_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+M_Sample[num].integral_image[C3.x_axis][C3.y_axis]-M_Sample[num].integral_image[C4.x_axis][C4.y_axis]-M_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis];
B_Z=M_Sample[num].integral_image[C4.x_axis][C4.y_axis]+M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[C2.x_axis][C2.y_axis]-M_Sample[num].integral_image[C4.x_axis][C4.y_axis];
B_Z=B_Z*2;
};break;
case 4:
{
Coordinate C1,C2,C3,C4;
C1.x_axis=A_Point.x_axis;
C1.y_axis=(B_Point.y_axis-A_Point.y_axis)/haar.t+A_Point.y_axis;
C2.x_axis=A_Point.x_axis;
C2.y_axis=(B_Point.y_axis-A_Point.y_axis)*(haar.t-1)/haar.t+A_Point.y_axis;
C3.x_axis=C_Point.x_axis;
C3.y_axis=(D_Point.x_axis-C_Point.x_axis)/haar.t+C_Point.x_axis;
C4.x_axis=C_Point.x_axis;
C4.y_axis=(D_Point.y_axis-C_Point.y_axis)*(haar.t-1)/haar.t+C_Point.y_axis;
W_Z=M_Sample[num].integral_image[C3.x_axis][C3.y_axis]+M_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis]+M_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+M_Sample[num].integral_image[C2.x_axis][C2.y_axis]-M_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-M_Sample[num].integral_image[C4.x_axis][C4.y_axis];
B_Z=M_Sample[num].integral_image[C4.x_axis][C4.y_axis]+M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[C2.x_axis][C2.y_axis]-M_Sample[num].integral_image[C3.x_axis][C3.y_axis];
B_Z=B_Z*2;
};break;
case 5:
{
Coordinate C1,C2,C3,C4,C5;
C1.x_axis=A_Point.x_axis;
C1.y_axis=(B_Point.y_axis-A_Point.y_axis)/haar.t+A_Point.y_axis;
C2.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C2.y_axis=A_Point.y_axis;
C3.x_axis=C2.x_axis;
C3.y_axis=C1.y_axis;
C4.x_axis=C2.x_axis;
C4.y_axis=B_Point.y_axis;
C5.x_axis=C_Point.x_axis;
C5.y_axis=C1.y_axis;
W_Z=M_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+M_Sample[num].integral_image[C3.x_axis][C3.y_axis]-M_Sample[num].integral_image[C4.x_axis][C4.y_axis]-M_Sample[num].integral_image[C5.x_axis][C5.y_axis]+M_Sample[num].integral_image[C3.x_axis][C3.y_axis]+M_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[C2.x_axis][C2.y_axis];
B_Z=M_Sample[num].integral_image[C5.x_axis][C5.y_axis]+M_Sample[num].integral_image[C2.x_axis][C2.y_axis]-M_Sample[num].integral_image[C3.x_axis][C3.y_axis]-M_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis]+M_Sample[num].integral_image[C4.x_axis][C4.y_axis]+M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-M_Sample[num].integral_image[C3.x_axis][C3.y_axis];
};break;
case 6:
{
Coordinate C1,C2,C3,C4;
C1.x_axis=A_Point.x_axis;
C1.y_axis=(B_Point.y_axis-A_Point.y_axis)/haar.t+A_Point.y_axis;
C2.x_axis=A_Point.x_axis;
C2.y_axis=(B_Point.y_axis-A_Point.y_axis)*(haar.t-1)/haar.t+A_Point.y_axis;
C3.x_axis=C_Point.x_axis;
C3.y_axis=(D_Point.x_axis-C_Point.x_axis)/haar.t+C_Point.x_axis;
C4.x_axis=C_Point.x_axis;
C4.y_axis=(D_Point.y_axis-C_Point.y_axis)*(haar.t-1)/haar.t+C_Point.y_axis;
W_Z=M_Sample[num].integral_image[C4.x_axis][C4.y_axis]+M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[C2.x_axis][C2.y_axis]-M_Sample[num].integral_image[C3.x_axis][C3.y_axis];
B_Z=M_Sample[num].integral_image[C3.x_axis][C3.y_axis]+M_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis]+M_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+M_Sample[num].integral_image[C2.x_axis][C2.y_axis]-M_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-M_Sample[num].integral_image[C4.x_axis][C4.y_axis];
W_Z=W_Z*2;
};break;
case 7:
{
Coordinate C1,C2;
C1.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C1.y_axis=A_Point.y_axis;
C2.x_axis=(C_Point.x_axis-A_Point.x_axis)/haar.s+A_Point.x_axis;
C2.y_axis=D_Point.y_axis;
W_Z=M_Sample[num].integral_image[D_Point.x_axis][D_Point.y_axis]+M_Sample[num].integral_image[C1.x_axis][C1.y_axis]-M_Sample[num].integral_image[C2.x_axis][C2.y_axis]-M_Sample[num].integral_image[C_Point.x_axis][C_Point.y_axis];
B_Z=M_Sample[num].integral_image[C2.x_axis][C2.y_axis]+M_Sample[num].integral_image[A_Point.x_axis][A_Point.y_axis]-M_Sample[num].integral_image[B_Point.x_axis][B_Point.y_axis]-M_Sample[num].integral_image[C1.x_axis][C1.y_axis];
};break;
}
integral=W_Z-B_Z;
return integral;
}
//将整形类型转换为字符串类型;
string Haar_Feature_Trainning::Convert(int temp)
{
stringstream ss;
string s;
ss<<temp;
ss>>s;
return s;
}
//将浮点型转换为字符串类型;
string Haar_Feature_Trainning::Convert(double temp)
{
stringstream ss;
string s;
ss<<temp;
ss>>s;
return s;
}
//取下整函数;
int Haar_Feature_Trainning::Low_Integral_Function(int x1,int x2)
{
if(x1%x2==0)
{
return x1/x2-1;
}
else
{
return x1/x2;
}
}