-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_16.qmd
589 lines (478 loc) · 18.9 KB
/
chapter_16.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
---
title: "Prediction of individual treatment effect using data from multiple studies"
authors:
- name: Orestis Efthimiou
orcid: 0000-0002-0955-7572
affiliations:
- ref: ubern
affiliations:
- id: smartdas
name: Smart Data Analysis and Statistics B.V.
city: Utrecht
- id: ubern
name: Institute of Social and Preventive Medicine (ISPM)
city: Bern, Switzerland
format:
html:
toc: true
number-sections: true
execute:
cache: true
bibliography: 'https://api.citedrive.com/bib/0d25b38b-db8f-43c4-b934-f4e2f3bd655a/references.bib?x=eyJpZCI6ICIwZDI1YjM4Yi1kYjhmLTQzYzQtYjkzNC1mNGUyZjNiZDY1NWEiLCAidXNlciI6ICIyNTA2IiwgInNpZ25hdHVyZSI6ICI0MGFkYjZhMzYyYWE5Y2U0MjQ2NWE2ZTQzNjlhMWY3NTk5MzhhNzUxZDNjYWIxNDlmYjM4NDgwOTYzMzY5YzFlIn0=/bibliography.bib'
---
``` {r}
#| message: false
#| warning: false
#| echo: false
# List of required packages
required_packages <- c("dplyr", "table1", "kableExtra", "bipd")
# Install required packages
for (pkg in required_packages) {
if (!requireNamespace(pkg, quietly = TRUE)) {
install.packages(pkg)
}
}
```
In this chapter, we discuss statistical methods for developing models to predict patient-level treatment effects using data from multiple randomized and non-randomized studies. We will first present prediction models that assume a constant treatment effect and discuss how to address heterogeneity in baseline risk. Subsequently, we will discuss approaches that allow for treatment effect modification by adopting two different approaches in an IPD-MA context, namely the risk modelling and the effect modelling approach. For both approaches, we will first discuss how to combine IPD from RCTs comparing the same two treatments. We will then discuss how these methods can be extended to include randomized data from multiple treatments, real-world data, and published aggregate data. We will discuss statistical software to implement these approaches and provide example code as supporting information. Real examples will be used throughout to illustrate the main methods.
## Estimating heterogeneous treatment effects in pairwise meta-analysis
```{r}
#| echo: false
#| message: false
library(table1)
library(dplyr)
library(kableExtra)
```
We hereby provide code for estimating patient-level treatment effects for the case when we have patient-level data from multiple randomized trials.
### Example of a continuous outcome
#### Setup
We start by simulating an artificial dataset using the R package **bipd**:
```{r ds}
library(bipd)
ds <- generate_ipdma_example(type = "continuous")
```
Let us have a look at the dataset:
```{r ds2}
head(ds)
```
The simulated dataset contains information on the following variables:
- the trial indicator `studyid`
- the treatment indicator `treat`, which takes the values 0 for control and 1 for active treatment
- two prognostic variables `z1` and `z2`
- the continuous outcome `y`
```{r}
#| label: tbl-summary-continuous_outcome-data
#| tbl-cap: The simulated dataset with a continuous outcome
#| echo: false
#| warning: false
dstbl <- ds %>% mutate(treat = as.factor(treat),
studyid = as.factor(studyid))
table1(~ z1+z2+studyid | treat, data = dstbl)
```
#### Model fitting
We synthesize the evidence using a Bayesian random effects meta-analysis model. The model is given in Equation 16.7 of the book. First we need set up the data and create the model:
```{r MAcont1}
ipd <- with(ds, ipdma.model.onestage(y = y, study = studyid, treat = treat,
X = cbind(z1, z2),
response = "normal",
shrinkage = "none"),
type = "random")
```
The JAGS model can be accessed as follows:
```{r MAcont2}
ipd$model.JAGS
```
We can fit the treatment effect model as follows:
```{r MAcont3}
#| results: hide
#| message: false
samples <- ipd.run(ipd, n.chains = 2, n.iter = 20,
pars.save = c("alpha", "beta", "delta", "sd", "gamma"))
trtbenefit <- round(treatment.effect(ipd, samples, newpatient = c(z1 = 1, z2 = 0.5)), 2)
```
Here are the estimated model parameters:
```{r MAcont4}
summary(samples)
```
#### Prection
We can now predict the individualized treatment effect for a new patient with covariate values `z1 = 1` and `z2 = 0.5`.
```{r MAcont5}
round(treatment.effect(ipd, samples, newpatient = c(z1 = 1, z2 = 0.5)), 2)
```
This means that the predicted outcome for patient with covariate values `z1 = 1` and `z2 = 0.5` will differ by `r trtbenefit["0.5"]` units when receiving the active treatment (`treat = 1`) as compared to the control treatment (`treat = 0`).
We can also predict treatment benefit for all patients in the sample, and look at the distribution of predicted benefit.
```{r benMA}
#| warning: false
#| label: fig-predben_continuous_outcome
#| fig-cap: "Distribution of predicted treatment benefit in each trial. Dashed lines represent the trial mean."
#| fig-width: 8
#| fig-height: 7
library(dplyr)
library(ggplot2)
ds <- ds %>% mutate(benefit = NA,
study = paste("Trial", studyid))
for (i in seq(nrow(ds))) {
newpat <- as.matrix(ds[i, c("z1", "z2")])
ds$benefit[i] <- treatment.effect(ipd, samples, newpatient = newpat)["0.5"]
}
summbenefit <- ds %>% group_by(study) %>%
summarize(mediabenefit = median(benefit), meanbenefit = mean(benefit))
ggplot(ds, aes(x = benefit)) +
geom_histogram(aes(y = after_stat(density)), alpha = 0.3) +
geom_density() +
geom_vline(data = summbenefit, aes(xintercept = meanbenefit),
linewidth = 0.5, lty = 2) +
facet_wrap(~study) +
ylab("Density") +
xlab("Predicted treatment benefit") + theme_bw()
```
#### Penalization
Let us repeat the analysis, but this time while penalizing the treatment-covariate coefficients using a Bayesian LASSO prior.
```{r MAcont6}
ipd <- with(ds, ipdma.model.onestage(y = y, study = studyid,
treat = treat,
X = cbind(z1, z2),
response = "normal",
shrinkage = "laplace"),
type = "random")
samples <- ipd.run(ipd, n.chains = 2, n.iter = 20,
pars.save = c("alpha", "beta", "delta", "sd", "gamma"))
round(treatment.effect(ipd, samples, newpatient = c(1,0.5)), 2)
```
### Example of a binary outcome
#### Setup
We now present the case of a binary outcome. We first generate a dataset as before, using the **bipd** package.
```{r MAbin1}
ds2 <- generate_ipdma_example(type = "binary")
head(ds2)
```
The simulated dataset contains information on the following variables:
- the trial indicator `studyid`
- the treatment indicator `treat`, which takes the values 0 for control and 1 for active treatment
- two prognostic variables `w1` and `w2`
- the binary outcome `y`
```{r}
#| label: tbl-summary-binary_outcome-data
#| tbl-cap: The simulated dataset with a binary outcome
#| echo: false
#| warning: false
dstbl <- ds2 %>% mutate(treat = as.factor(treat),
studyid = as.factor(studyid))
table1(~ w1+w2+studyid | treat, data = dstbl)
```
#### Model fitting
We use a Bayesian random effects model with binomial likelihood. This is similar to the model 16.7 of the book, but with a Binomial likelihood, i.e.
$$
y_{ij}\sim \text{Binomial}(\pi_{ij}) \\
$$
$$
\text{logit}(\pi_{ij})=a_j+\delta_j t_{ij}+ \sum_{l=1}^{L}\beta_l x_{ij}+ \sum_{l=1}^{L}\gamma_l x_{ij} t_{ij}
$$
The remaining of the model is as in the book.
We can penalize the estimated parameters for effect modification ($\gamma$'s), using a Bayesian LASSO. We can do this using again the *bipd* package:
```{r MAbin2}
ipd2 <- with(ds2, ipdma.model.onestage(y = y, study = studyid, treat = treat,
X = cbind(w1, w2),
response = "binomial",
shrinkage = "laplace"),
type = "random", hy.prior = list("dunif", 0, 1))
ipd2$model.JAGS
```
```{r}
#| message: false
#| echo: false
#| results: hide
samples <- ipd.run(ipd2, n.chains = 2, n.iter = 20,
pars.save = c("alpha", "beta", "delta", "sd", "gamma"))
trtpred <- round(treatment.effect(ipd2, samples, newpatient = c(w1 = 1.6, w2 = 1.3)), 2)
```
```{r}
#| message: false
#| eval: false
samples <- ipd.run(ipd2, n.chains = 2, n.iter = 20,
pars.save = c("alpha", "beta", "delta", "sd", "gamma"))
summary(samples)
```
```{r}
#| message: false
#| echo: false
summary(samples)
```
The predicted treatment benefit for a new patient with covariates `w1 = 1.6` and `w2 = 1.3` is given as:
```{r}
#| message: false
round(treatment.effect(ipd2, samples, newpatient = c(w1 = 1.6, w2 = 1.3)), 2)
```
In other words, the aforementioned patient `r trtpred["0.5"]` (95\% Credibility Interval: `r trtpred["0.025"]` to `r trtpred["0.975"]`)
## Estimating heterogeous treatment effects in network meta-analysis
### Example of a continuous outcome
#### Setup
We use again the bipd package to simulate a dataset:
```{r NMA1}
ds3 <- generate_ipdnma_example(type = "continuous")
head(ds3)
```
Let us look into the data a bit in more detail:
```{r NMA2}
#| label: tbl-nma-summary-continuous_outcome-data
#| tbl-cap: The simulated dataset with a continuous outcome
#| echo: false
#| warning: false
dstbl <- ds3 %>% mutate(treat = as.factor(treat),
studyid = as.factor(studyid))
table1(~ z1+z2+studyid | treat, data=dstbl)
```
#### Model fitting
We will use the model shown in Equation 16.8 in the book. In addition, we will use Bayesian LASSO to penalize the treatment-covariate interactions.
```{r NMA3}
ipd3 <- with(ds3, ipdnma.model.onestage(y = y, study = studyid, treat = treat,
X = cbind(z1, z2),
response = "normal",
shrinkage = "laplace",
type = "random"))
ipd3$model.JAGS
samples <- ipd.run(ipd3, n.chains = 2, n.iter = 20,
pars.save = c("alpha", "beta", "delta", "sd", "gamma"))
summary(samples)
```
As before, we can use the `treatment.effect()` function of *bipd* to estimate relative effects for new patients.
```{r NMA4}
treatment.effect(ipd3, samples, newpatient= c(1,2))
```
This gives us the relative effects for all treatments versus the reference. To obtain relative effects between active treatments we need some more coding:
```{r NMA5}
samples.all=data.frame(rbind(samples[[1]], samples[[2]]))
newpatient= c(1,2)
newpatient <- (newpatient - ipd3$scale_mean)/ipd3$scale_sd
median(
samples.all$delta.2.+samples.all$gamma.2.1.*
newpatient[1]+samples.all$gamma.2.2.*newpatient[2]
-
(samples.all$delta.3.+samples.all$gamma.3.1.*newpatient[1]+
samples.all$gamma.3.2.*newpatient[2])
)
quantile(samples.all$delta.2.+samples.all$gamma.2.1.*
newpatient[1]+samples.all$gamma.2.2.*newpatient[2]
-(samples.all$delta.3.+samples.all$gamma.3.1.*newpatient[1]+
samples.all$gamma.3.2.*newpatient[2])
, probs = 0.025)
quantile(samples.all$delta.2.+samples.all$gamma.2.1.*
newpatient[1]+samples.all$gamma.2.2.*newpatient[2]
-(samples.all$delta.3.+samples.all$gamma.3.1.*newpatient[1]+
samples.all$gamma.3.2.*newpatient[2])
, probs = 0.975)
```
### Modeling patient-level relative effects using randomized and observational evidence for a network of treatments
We will now follow Chapter 16.3.5 from the book. In this analysis we will not use penalization, and we will assume fixed effects. For an example with penalization and random effects, see part 2 of this vignettte.
#### Setup
We generate a very simple dataset of three studies comparing three treatments. We will assume 2 RCTs and 1 non-randomized trial:
```{r NMA6}
ds4 <- generate_ipdnma_example(type = "continuous")
ds4 <- ds4 %>% filter(studyid %in% c(1,4,10)) %>%
mutate(studyid = factor(studyid) %>%
recode_factor(
"1" = "1",
"4" = "2",
"10" = "3"),
design = ifelse(studyid == "3", "nrs", "rct"))
```
The sample size is as follows:
```{r}
#| echo: false
t1=table(ds4$treat, ds4$studyid)
row.names(t1)=c("treat A:", "treat B:", "treat C:")
colnames(t1)=paste("s",1:3, sep="")
t1
```
#### Model fitting
We will use the design-adjusted model, equation 16.9 in the book. We will fit a two-stage fixed effects meta-analysis and we will use a variance inflation factor. The code below is used to specify the analysis of each individual study. Briefly, in each study we adjust the treatment effect for the prognostic factors `z1` and `z2`, as well as their interaction with `treat`.
```{r NMA7}
library(rjags)
first.stage <- "
model{
for (i in 1:N){
y[i] ~ dnorm(mu[i], tau)
mu[i] <- a + inprod(b[], X[i,]) + inprod(c[,treat[i]], X[i,]) + d[treat[i]]
}
sigma ~ dunif(0, 5)
tau <- pow(sigma, -2)
a ~ dnorm(0, 0.001)
for(k in 1:Ncovariate){
b[k] ~ dnorm(0,0.001)
}
for(k in 1:Ncovariate){
c[k,1] <- 0
}
tauGamma <- pow(sdGamma,-1)
sdGamma ~ dunif(0, 5)
for(k in 1:Ncovariate){
for(t in 2:Ntreat){
c[k,t] ~ ddexp(0, tauGamma)
}
}
d[1] <- 0
for(t in 2:Ntreat){
d[t] ~ dnorm(0, 0.001)
}
}"
```
Subsequently, we estimate the relative treatment effects in the first (randomized) study comparing treatments A and B:
```{r}
#| echo: false
# Keep track of study results
results <- data.frame(study = character(),
BA_est = numeric(),
BA_se = numeric(),
CA_est = numeric(),
CA_se = numeric())
```
```{r}
model1.spec <- textConnection(first.stage)
data1 <- with(ds4 %>% filter(studyid == 1),
list(y = y,
N = length(y),
X = cbind(z1,z2),
treat = treat,
Ncovariate = 2,
Ntreat = 2))
jags.m <- jags.model(model1.spec, data = data1, n.chains = 2, n.adapt = 500,
quiet = TRUE)
params <- c("d", "c")
samps4.1 <- coda.samples(jags.m, params, n.iter = 50)
samps.all.s1 <- data.frame(as.matrix(samps4.1))
samps.all.s1 <- samps.all.s1[, c("c.1.2.", "c.2.2.", "d.2.")]
delta.1 <- colMeans(samps.all.s1)
cov.1 <- var(samps.all.s1)
```
```{r}
#| echo: false
results <- results %>% add_row(data.frame(study = "study 1",
BA_est = delta.1["d.2."],
BA_se = sqrt(diag(cov.1)["d.2."])))
```
We repeat the analysis for the second (randomized) study comparing treatments A and C:
```{r}
model1.spec <- textConnection(first.stage)
data2 <- with(ds4 %>% filter(studyid == 2),
list(y = y,
N = length(y),
X = cbind(z1,z2),
treat = ifelse(treat == 3, 2, treat),
Ncovariate = 2,
Ntreat = 2))
jags.m <- jags.model(model1.spec, data = data2, n.chains = 2, n.adapt = 100,
quiet = TRUE)
params <- c("d", "c")
samps4.2 <- coda.samples(jags.m, params, n.iter = 50)
samps.all.s2 <- data.frame(as.matrix(samps4.2))
samps.all.s2 <- samps.all.s2[, c("c.1.2.", "c.2.2.", "d.2.")]
delta.2 <- colMeans(samps.all.s2)
cov.2 <- var(samps.all.s2)
```
```{r}
#| echo: false
results <- results %>% add_row(data.frame(study = "study 2",
CA_est = delta.2["d.2."],
CA_se = sqrt(diag(cov.2)["d.2."])))
```
Finally, we analyze the third (non-randomized) study comparing treatments A, B, and C:
```{r}
model1.spec <- textConnection(first.stage)
data3 <- with(ds4 %>% filter(studyid == 3),
list(y = y,
N = length(y),
X = cbind(z1,z2),
treat = treat,
Ncovariate = 2,
Ntreat = 3))
jags.m <- jags.model(model1.spec, data = data3, n.chains = 2, n.adapt = 100,
quiet = TRUE)
params <- c("d", "c")
samps4.3 <- coda.samples(jags.m, params, n.iter = 50)
samps.all.s3 <- data.frame(as.matrix(samps4.3))
samps.all.s3 <- samps.all.s3[, c("c.1.2.", "c.2.2.", "d.2.", "c.1.3.",
"c.2.3.", "d.3.")]
delta.3 <- colMeans(samps.all.s3)
cov.3 <- var(samps.all.s3)
```
```{r}
#| echo: false
# Save the results from the third analysis
results <- results %>% add_row(data.frame(study = "study 3",
BA_est = delta.3["d.2."],
BA_se = sqrt(diag(cov.3)["d.2."]),
CA_est = delta.3["d.3."],
CA_se = sqrt(diag(cov.3)["d.3."])))
```
The corresponding treatment effect estimates are depicted below:
```{r}
#| echo: false
#| label: tbl-results_nma_stage1
#| tbl-cap: "Treatment effect estimates."
results <- results %>% mutate(BA = ifelse(is.na(BA_est), "", paste(sprintf("%.3f", BA_est), "(SE = ", sprintf("%.3f", BA_se), ")")),
CA = ifelse(is.na(CA_est), "", paste(sprintf("%.3f", CA_est), "(SE = ", sprintf("%.3f", CA_se), ")"))) %>%
select(study, BA, CA)
kable(results,
booktabs = TRUE, digits = 2,
col.names = c("study", "B versus A", "C versus A")) %>%
kable_styling(latex_options = "hold_position")
```
We can now fit the second stage of the network meta-analysis. The corresponding JAGS model is specified below:
```{r}
second.stage <-
"model{
#likelihood
y1 ~ dmnorm(Mu1, Omega1)
y2 ~ dmnorm(Mu2, Omega2)
y3 ~ dmnorm(Mu3, Omega3*W)
Omega1 <- inverse(cov.1)
Omega2 <- inverse(cov.2)
Omega3 <- inverse(cov.3)
Mu1 <- c(gamma[,1], delta[2])
Mu2 <- c(gamma[,2], delta[3])
Mu3 <- c(gamma[,1], delta[2],gamma[,2], delta[3])
#parameters
for(i in 1:2){
gamma[i,1] ~ dnorm(0, 0.001)
gamma[i,2] ~ dnorm(0, 0.001)
}
delta[1] <- 0
delta[2] ~ dnorm(0, 0.001)
delta[3] ~ dnorm(0, 0.001)
}
"
```
We can fit as follows:
```{r}
model1.spec <- textConnection(second.stage)
data3 <- list(y1 = delta.1, y2 = delta.2, y3 = delta.3,
cov.1 = cov.1, cov.2 = cov.2, cov.3 = cov.3, W = 0.5)
jags.m <- jags.model(model1.spec, data = data3, n.chains = 2, n.adapt = 50,
quiet = TRUE)
params <- c("delta", "gamma")
samps4.3 <- coda.samples(jags.m, params, n.iter = 50)
```
```{r}
summary(samps4.3)
# calculate treatment effects
samples.all = data.frame(rbind(samps4.3[[1]], samps4.3[[2]]))
newpatient = c(1,2)
median(
samples.all$delta.2. + samples.all$gamma.1.1.*newpatient[1] +
samples.all$gamma.2.1.*newpatient[2]
)
quantile(samples.all$delta.2.+samples.all$gamma.1.1.*newpatient[1]+
samples.all$gamma.2.1.*newpatient[2]
, probs = 0.025)
quantile(samples.all$delta.2.+samples.all$gamma.1.1.*newpatient[1]+
samples.all$gamma.2.1.*newpatient[2]
, probs = 0.975)
```
## Version info {.unnumbered}
This chapter was rendered using the following version of R and its packages:
```{r}
#| echo: false
#| message: false
#| warning: false
sessionInfo()
```
## References {.unnumbered}