-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathCobyla.js
executable file
·1293 lines (1146 loc) · 58.5 KB
/
Cobyla.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* jcobyla
*
* The MIT License
*
* Copyright (c) 2012 Anders Gustafsson, Cureos AB.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
* FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Remarks:
*
* The original Fortran 77 version of this code was by Michael Powell (M.J.D.Powell @ damtp.cam.ac.uk)
* The Fortran 90 version was by Alan Miller (Alan.Miller @ vic.cmis.csiro.au). Latest revision - 30 October 1998
*/
/**
* Constrained Optimization BY Linear Approximation in Java.
*
* COBYLA2 is an implementation of Powell’s nonlinear derivative–free constrained optimization that uses
* a linear approximation approach. The algorithm is a sequential trust–region algorithm that employs linear
* approximations to the objective and constraint functions, where the approximations are formed by linear
* interpolation at n + 1 points in the space of the variables and tries to maintain a regular–shaped simplex
* over iterations.
*
* It solves nonsmooth NLP with a moderate number of variables (about 100). Inequality constraints only.
*
* The initial point X is taken as one vertex of the initial simplex with zero being another, so, X should
* not be entered as the zero vector.
*
* @author Anders Gustafsson, Cureos AB. Translation to Javascript by Reinhard Oldenburg, Goethe-University
*/
function arr(n) {var a=new Array(n); for(var i=0; i<n;i++) a[i]=0.0; return a; }
function arr2(n,m) {var a= new Array(n); var i=0; while(i<n) {a[i]=arr(m); i=i+1;} return a;}
function arraycopy(x, a, iox, b, n) {var i=0; while(i<n) {iox[i+b]=x[i+a];i++;}; }
// status Variablem
var Normal=0;
var MaxIterationsReached=1;
var DivergingRoundingErrors=2;
var NoDifferenceInFitness=3;
var Running = -1;
/**
* Minimizes the objective function F with respect to a set of inequality constraints CON,
* and returns the optimal variable array. F and CON may be non-linear, and should preferably be smooth.
*
* @param calcfc Interface implementation for calculating objective function and constraints.
* @param n Number of variables.
* @param m Number of constraints.
* @param x On input initial values of the variables (zero-based array). On output
* optimal values of the variables obtained in the COBYLA minimization.
* @param rhobeg Initial size of the simplex.
* @param rhoend Final value of the simplex.
* @param iprint Print level, 0 <= iprint <= 3, where 0 provides no output and
* 3 provides full output to the console.
* @param maxfun Maximum number of function evaluations before terminating.
* @param fmaxiter Maximum number of iterations with deviation smaller than fdev in fitness values before termination
* @return Exit status of the COBYLA2 optimization.
*/
// CobylaExitStatus FindMinimum(final Calcfc calcfc, int n, int m, double[] x, double rhobeg, double rhoend, int iprint, int maxfun)
function FindMinimum(calcfc, n, m, x, rhobeg, rhoend, iprint, maxfun, fmaxiter, iterationCallback, callbackIterations)
{
// This subroutine minimizes an objective function F(X) subject to M
// inequality constraints on X, where X is a vector of variables that has
// N components. The algorithm employs linear approximations to the
// objective and constraint functions, the approximations being formed by
// linear interpolation at N+1 points in the space of the variables.
// We regard these interpolation points as vertices of a simplex. The
// parameter RHO controls the size of the simplex and it is reduced
// automatically from RHOBEG to RHOEND. For each RHO the subroutine tries
// to achieve a good vector of variables for the current size, and then
// RHO is reduced until the value RHOEND is reached. Therefore RHOBEG and
// RHOEND should be set to reasonable initial changes to and the required
// accuracy in the variables respectively, but this accuracy should be
// viewed as a subject for experimentation because it is not guaranteed.
// The subroutine has an advantage over many of its competitors, however,
// which is that it treats each constraint individually when calculating
// a change to the variables, instead of lumping the constraints together
// into a single penalty function. The name of the subroutine is derived
// from the phrase Constrained Optimization BY Linear Approximations.
// The user must set the values of N, M, RHOBEG and RHOEND, and must
// provide an initial vector of variables in X. Further, the value of
// IPRINT should be set to 0, 1, 2 or 3, which controls the amount of
// printing during the calculation. Specifically, there is no output if
// IPRINT=0 and there is output only at the end of the calculation if
// IPRINT=1. Otherwise each new value of RHO and SIGMA is printed.
// Further, the vector of variables and some function information are
// given either when RHO is reduced or when each new value of F(X) is
// computed in the cases IPRINT=2 or IPRINT=3 respectively. Here SIGMA
// is a penalty parameter, it being assumed that a change to X is an
// improvement if it reduces the merit function
// F(X)+SIGMA*MAX(0.0, - C1(X), - C2(X),..., - CM(X)),
// where C1,C2,...,CM denote the constraint functions that should become
// nonnegative eventually, at least to the precision of RHOEND. In the
// printed output the displayed term that is multiplied by SIGMA is
// called MAXCV, which stands for 'MAXimum Constraint Violation'. The
// argument ITERS is an integer variable that must be set by the user to a
// limit on the number of calls of CALCFC, the purpose of this routine being
// given below. The value of ITERS will be altered to the number of calls
// of CALCFC that are made.
// In order to define the objective and constraint functions, we require
// a subroutine that has the name and arguments
// SUBROUTINE CALCFC (N,M,X,F,CON)
// DIMENSION X(:),CON(:) .
// The values of N and M are fixed and have been defined already, while
// X is now the current vector of variables. The subroutine should return
// the objective and constraint functions at X in F and CON(1),CON(2),
// ...,CON(M). Note that we are trying to adjust X so that F(X) is as
// small as possible subject to the constraint functions being nonnegative.
pleaseStop = false;
// Local variables
var mpp = m + 2;
// Internal base-1 X array
var iox = arr(n+1);
iox[0]=0.0;
arraycopy(x, 0, iox, 1, n);
// Internal representation of the objective and constraints calculation method,
// accounting for that X and CON arrays in the cobylb method are base-1 arrays.
var fcalcfc = function( n, m, thisx, con) // int n, int m, double[] x, double[] con
{
var ix = arr(n);
arraycopy(thisx, 1, ix, 0, n);
var ocon = arr(m);
var f= calcfc(n, m, ix, ocon);
arraycopy(ocon, 0, con, 1, m);
return f;
}
var status = cobylb(fcalcfc, n, m, mpp, iox, rhobeg, rhoend, iprint, maxfun, fmaxiter, iterationCallback, callbackIterations);
arraycopy(iox, 1, x, 0, n);
return status;
}
// get the difference between the biggest and smallest fitness value of the last
// <fmaxiter> iterations.
function getMaxDiffOfFitnessValues(f, fqueue, fmaxiter){
//add to queue
fqueue.push(f);
//if not enough value, can't compute diff
if(fqueue.length < fmaxiter)
return Number.MAX_VALUE;
//remove oldest element
if(fqueue.length > fmaxiter)
fqueue.shift();
//min and max f of last x iterations
var fmax = Math.max.apply(null, fqueue);
var fmin = Math.min.apply(null, fqueue);
return (fmax - fmin);
}
// private static CobylaExitStatus cobylb(Calcfc calcfc, int n, int m, int mpp, double[] x,
// double rhobeg, double rhoend, int iprint, int maxfun)
function cobylb(calcfc, n, m, mpp, x, rhobeg, rhoend, iprint, maxfun, fmaxiter, iterationCallback, callbackIterations)
// calcf ist funktion die aufgerufen wird wie calcfc(n, m, ix, ocon)
{
// N.B. Arguments CON, SIM, SIMI, DATMAT, A, VSIG, VETA, SIGBAR, DX, W & IACT
// have been removed.
// Set the initial values of some parameters. The last column of SIM holds
// the optimal vertex of the current simplex, and the preceding N columns
// hold the displacements from the optimal vertex to the other vertices.
// Further, SIMI holds the inverse of the matrix that is contained in the
// first N columns of SIM.
// Local variables
var status=-1;
var alpha = 0.25;
var beta = 2.1;
var gamma = 0.5;
var delta = 1.1;
var f = 0.0;
var fdev = 0.1; //set in UI maybe
var fqueue = [];
var resmax = 0.0;
var total;
var np = n + 1;
var mp = m + 1;
var rho = rhobeg;
var parmu = 0.0;
var iflag = false;
var ifull = false;
var parsig = 0.0;
var prerec = 0.0;
var prerem = 0.0;
var con = arr(1 + mpp);
var sim = arr2(1 + n,1 + np);
var simi = arr2(1 + n,1 + n);
var datmat = arr2(1 + mpp,1 + np);
var a = arr2(1 + n,1 + mp);
var vsig = arr(1 + n);
var veta = arr(1 + n);
var sigbar = arr(1 + n);
var dx = arr(1 + n);
var w = arr(1 + n);
if (iprint >= 2) console.log("The initial value of RHO is "+rho+" and PARMU is set to zero.");
var nfvals = 0;
var temp = 1.0 / rho;
for (var i = 1; i <= n; ++i)
{
sim[i][np] = x[i];
sim[i][i] = rho;
simi[i][i] = temp;
}
var jdrop = np;
var ibrnch = false;
// Make the next call of the user-supplied subroutine CALCFC. These
// instructions are also used for calling CALCFC during the iterations of
// the algorithm.
//alert("Iteration "+nfvals+" x="+x);
L_40:
do
{
if (getMaxDiffOfFitnessValues(f, fqueue, fmaxiter) < fdev && nfvals > 0)
{
status = NoDifferenceInFitness;
break L_40;
}
else if (nfvals >= maxfun && nfvals > 0)
{
status = MaxIterationsReached;
break L_40;
}
++nfvals;
f = calcfc(n, m, x, con);
resmax = 0.0; for (var k = 1; k <= m; ++k) resmax = Math.max(resmax, -con[k]);
//alert(" f="+f+" resmax="+resmax);
if (nfvals == iprint - 1 || iprint == 3)
{
PrintIterationResult(nfvals, f, resmax, x, n, iprint);
}
if(iterationCallback !== undefined && nfvals % callbackIterations == 0){
iterationCallback({'status': Running,
'statusText': "Running",
'maxcv': resmax,
'fitness': f,
'iterations': nfvals,
'x': x});
}
con[mp] = f;
con[mpp] = resmax;
// Set the recently calculated function values in a column of DATMAT. This
// array has a column for each vertex of the current simplex, the entries of
// each column being the values of the constraint functions (if any)
// followed by the objective function and the greatest constraint violation
// at the vertex.
var skipVertexIdent = true;
if (!ibrnch)
{
skipVertexIdent = false;
for (var i = 1; i <= mpp; ++i) datmat[i][jdrop] = con[i];
if (nfvals <= np)
{
// Exchange the new vertex of the initial simplex with the optimal vertex if
// necessary. Then, if the initial simplex is not complete, pick its next
// vertex and calculate the function values there.
if (jdrop <= n)
{
if (datmat[mp][np] <= f)
{
x[jdrop] = sim[jdrop][np];
}
else
{
sim[jdrop][np] = x[jdrop];
for (var k = 1; k <= mpp; ++k)
{
datmat[k][jdrop] = datmat[k][np];
datmat[k][np] = con[k];
}
for (var k = 1; k <= jdrop; ++k)
{
sim[jdrop][k] = -rho;
temp = 0.0; for (var i = k; i <= jdrop; ++i) temp -= simi[i][k];
simi[jdrop][k] = temp;
}
}
}
if (nfvals <= n)
{
jdrop = nfvals;
x[jdrop] += rho;
continue L_40;
}
}
ibrnch = true;
}
L_140:
do
{
L_550:
do
{
if (!skipVertexIdent)
{
// Identify the optimal vertex of the current simplex.
var phimin = datmat[mp][np] + parmu * datmat[mpp][np];
var nbest = np;
for (var j = 1; j <= n; ++j)
{
temp = datmat[mp][j] + parmu * datmat[mpp][j];
if (temp < phimin)
{
nbest = j;
phimin = temp;
}
else if (temp == phimin && parmu == 0.0 && datmat[mpp][j] < datmat[mpp][nbest])
{
nbest = j;
}
}
// Switch the best vertex into pole position if it is not there already,
// and also update SIM, SIMI and DATMAT.
if (nbest <= n)
{
for (var i = 1; i <= mpp; ++i)
{
temp = datmat[i][np];
datmat[i][np] = datmat[i][nbest];
datmat[i][nbest] = temp;
}
for (var i = 1; i <= n; ++i)
{
temp = sim[i][nbest];
sim[i][nbest] = 0.0;
sim[i][np] += temp;
var tempa = 0.0;
for (var k = 1; k <= n; ++k)
{
sim[i][k] -= temp;
tempa -= simi[k][i];
}
simi[nbest][i] = tempa;
}
}
// Make an error return if SIGI is a poor approximation to the inverse of
// the leading N by N submatrix of SIG.
var error = 0.0;
for (var i = 1; i <= n; ++i)
{
for (var j = 1; j <= n; ++j)
{
temp = DOT_PRODUCT(PART(ROW(simi, i), 1, n), PART(COL(sim, j), 1, n)) - (i == j ? 1.0 : 0.0);
error = Math.max(error, Math.abs(temp));
}
}
if (error > 0.1)
{
status = DivergingRoundingErrors;
break L_40;
}
// Calculate the coefficients of the linear approximations to the objective
// and constraint functions, placing minus the objective function gradient
// after the constraint gradients in the array A. The vector W is used for
// working space.
for (var k = 1; k <= mp; ++k)
{
con[k] = -datmat[k][np];
for (var j = 1; j <= n; ++j) w[j] = datmat[k][j] + con[k];
for (var i = 1; i <= n; ++i)
{
a[i][k] = (k == mp ? -1.0 : 1.0) * DOT_PRODUCT(PART(w, 1, n), PART(COL(simi, i), 1, n));
}
}
// Calculate the values of sigma and eta, and set IFLAG = 0 if the current
// simplex is not acceptable.
iflag = true;
parsig = alpha * rho;
var pareta = beta * rho;
for (var j = 1; j <= n; ++j)
{
var wsig = 0.0; for (var k = 1; k <= n; ++k) wsig += simi[j][k] * simi[j][k];
var weta = 0.0; for (var k = 1; k <= n; ++k) weta += sim[k][j] * sim[k][j];
vsig[j] = 1.0 / Math.sqrt(wsig);
veta[j] = Math.sqrt(weta);
if (vsig[j] < parsig || veta[j] > pareta) iflag = false;
}
// If a new vertex is needed to improve acceptability, then decide which
// vertex to drop from the simplex.
if (!ibrnch && !iflag)
{
jdrop = 0;
temp = pareta;
for (var j = 1; j <= n; ++j)
{
if (veta[j] > temp)
{
jdrop = j;
temp = veta[j];
}
}
if (jdrop == 0)
{
for (var j = 1; j <= n; ++j)
{
if (vsig[j] < temp)
{
jdrop = j;
temp = vsig[j];
}
}
}
// Calculate the step to the new vertex and its sign.
temp = gamma * rho * vsig[jdrop];
for (var k = 1; k <= n; ++k) dx[k] = temp * simi[jdrop][k];
var cvmaxp = 0.0;
var cvmaxm = 0.0;
total = 0.0;
for (var k = 1; k <= mp; ++k)
{
total = DOT_PRODUCT(PART(COL(a, k), 1, n), PART(dx, 1, n));
if (k < mp)
{
temp = datmat[k][np];
cvmaxp = Math.max(cvmaxp, -total - temp);
cvmaxm = Math.max(cvmaxm, total - temp);
}
}
var dxsign = parmu * (cvmaxp - cvmaxm) > 2.0 * total ? -1.0 : 1.0;
// Update the elements of SIM and SIMI, and set the next X.
temp = 0.0;
for (var i = 1; i <= n; ++i)
{
dx[i] = dxsign * dx[i];
sim[i][jdrop] = dx[i];
temp += simi[jdrop][i] * dx[i];
}
for (var k = 1; k <= n; ++k) simi[jdrop][k] /= temp;
for (var j = 1; j <= n; ++j)
{
if (j != jdrop)
{
temp = DOT_PRODUCT(PART(ROW(simi, j), 1, n), PART(dx, 1, n));
for (var k = 1; k <= n; ++k) simi[j][k] -= temp * simi[jdrop][k];
}
x[j] = sim[j][np] + dx[j];
}
continue L_40;
}
// Calculate DX = x(*)-x(0).
// Branch if the length of DX is less than 0.5*RHO.
ifull = trstlp(n, m, a, con, rho, dx);
if (!ifull)
{
temp = 0.0; for (var k = 1; k <= n; ++k) temp += dx[k] * dx[k];
if (temp < 0.25 * rho * rho)
{
ibrnch = true;
break L_550;
}
}
// Predict the change to F and the new maximum constravar violation if the
// variables are altered from x(0) to x(0) + DX.
total = 0.0;
var resnew = 0.0;
con[mp] = 0.0;
for (var k = 1; k <= mp; ++k)
{
total = con[k] - DOT_PRODUCT(PART(COL(a, k), 1, n), PART(dx, 1, n));
if (k < mp) resnew = Math.max(resnew, total);
}
// Increase PARMU if necessary and branch back if this change alters the
// optimal vertex. Otherwise PREREM and PREREC will be set to the predicted
// reductions in the merit function and the maximum constraint violation
// respectively.
prerec = datmat[mpp][np] - resnew;
var barmu = prerec > 0.0 ? total / prerec : 0.0;
if (parmu < 1.5 * barmu)
{
parmu = 2.0 * barmu;
if (iprint >= 2) console.log("Increase in PARMU to "+parmu);
var phi = datmat[mp][np] + parmu * datmat[mpp][np];
for (var j = 1; j <= n; ++j)
{
temp = datmat[mp][j] + parmu * datmat[mpp][j];
if (temp < phi || (temp == phi && parmu == 0.0 && datmat[mpp][j] < datmat[mpp][np])) continue L_140;
}
}
prerem = parmu * prerec - total;
// Calculate the constraint and objective functions at x(*).
// Then find the actual reduction in the merit function.
for (var k = 1; k <= n; ++k) x[k] = sim[k][np] + dx[k];
ibrnch = true;
continue L_40;
}
skipVertexIdent = false;
var vmold = datmat[mp][np] + parmu * datmat[mpp][np];
var vmnew = f + parmu * resmax;
var trured = vmold - vmnew;
if (parmu == 0.0 && f == datmat[mp][np])
{
prerem = prerec;
trured = datmat[mpp][np] - resmax;
}
// Begin the operations that decide whether x(*) should replace one of the
// vertices of the current simplex, the change being mandatory if TRURED is
// positive. Firstly, JDROP is set to the index of the vertex that is to be
// replaced.
var ratio = trured <= 0.0 ? 1.0 : 0.0;
jdrop = 0;
for (var j = 1; j <= n; ++j)
{
temp = Math.abs(DOT_PRODUCT(PART(ROW(simi, j), 1, n), PART(dx, 1, n)));
if (temp > ratio)
{
jdrop = j;
ratio = temp;
}
sigbar[j] = temp * vsig[j];
}
// Calculate the value of ell.
var edgmax = delta * rho;
var l = 0;
for (var j = 1; j <= n; ++j)
{
if (sigbar[j] >= parsig || sigbar[j] >= vsig[j])
{
temp = veta[j];
if (trured > 0.0)
{
temp = 0.0; for (var k = 1; k <= n; ++k) temp += Math.pow(dx[k] - sim[k][j], 2.0);
temp = Math.sqrt(temp);
}
if (temp > edgmax)
{
l = j;
edgmax = temp;
}
}
}
if (l > 0) jdrop = l;
if (jdrop != 0)
{
// Revise the simplex by updating the elements of SIM, SIMI and DATMAT.
temp = 0.0;
for (var i = 1; i <= n; ++i)
{
sim[i][jdrop] = dx[i];
temp += simi[jdrop][i] * dx[i];
}
for (var k = 1; k <= n; ++k) simi[jdrop][k] /= temp;
for (var j = 1; j <= n; ++j)
{
if (j != jdrop)
{
temp = DOT_PRODUCT(PART(ROW(simi, j), 1, n), PART(dx, 1, n));
for (var k = 1; k <= n; ++k) simi[j][k] -= temp * simi[jdrop][k];
}
}
for (var k = 1; k <= mpp; ++k) datmat[k][jdrop] = con[k];
// Branch back for further iterations with the current RHO.
if (trured > 0.0 && trured >= 0.1 * prerem) continue L_140;
}
} while (false);
if (!iflag)
{
ibrnch = false;
continue L_140;
}
if (rho <= rhoend)
{
status = Normal;
break L_40;
}
// Otherwise reduce RHO if it is not at its least value and reset PARMU.
var cmin = 0.0, cmax = 0.0;
rho *= 0.5;
if (rho <= 1.5 * rhoend) rho = rhoend;
if (parmu > 0.0)
{
var denom = 0.0;
for (var k = 1; k <= mp; ++k)
{
cmin = datmat[k][np];
cmax = cmin;
for (var i = 1; i <= n; ++i)
{
cmin = Math.min(cmin, datmat[k][i]);
cmax = Math.max(cmax, datmat[k][i]);
}
if (k <= m && cmin < 0.5 * cmax)
{
temp = Math.max(cmax, 0.0) - cmin;
denom = denom <= 0.0 ? temp : Math.min(denom, temp);
}
}
if (denom == 0.0)
{
parmu = 0.0;
}
else if (cmax - cmin < parmu * denom)
{
parmu = (cmax - cmin) / denom;
}
}
if (iprint >= 2)
console.log("Reduction in RHO to "+rho+" and PARMU = "+parmu);
if (iprint == 2)
PrintIterationResult(nfvals, datmat[mp][np], datmat[mpp][np], COL(sim, np), n, iprint);
} while (true);
} while (true);
switch (status)
{
case Normal:
if (iprint >= 1) console.log("%nNormal return from subroutine COBYLA%n");
if (ifull)
{
if (iprint >= 1) PrintIterationResult(nfvals, f, resmax, x, n, iprint);
return status;
}
break;
case MaxIterationsReached:
if (iprint >= 1)
console.log("%nReturn from subroutine COBYLA because the MAXFUN limit has been reached.%n");
break;
case DivergingRoundingErrors:
if (iprint >= 1)
console.log("%nReturn from subroutine COBYLA because rounding errors are becoming damaging.%n");
break;
case NoDifferenceInFitness:
if (iprint >= 1)
console.log("%nReturn from subroutine COBYLA because no difference in fitness after "+fmaxiter+" iterations detected.%n");
break;
case ManuallyStopped:
if (iprint >= 1)
console.log("%nReturn from subroutine COBYLA because user asked us to.%n");
break;
}
for (var k = 1; k <= n; ++k) x[k] = sim[k][np];
f = datmat[mp][np];
resmax = datmat[mpp][np];
if (iprint >= 1) PrintIterationResult(nfvals, f, resmax, x, n, iprint);
return {status: status,
statusText: ["Normal", "MaxIterationsReached", "DivergingRoundingErrors", "NoDifferenceInFitness","Cancelled"][status],
maxcv: resmax,
fitness: f,
iterations: nfvals,
x: x};
}
function trstlp(n, m, a, b, rho, dx) //(int n, int m, double[][] a, double[] b, double rho, double[] dx)
{
// N.B. Arguments Z, ZDOTA, VMULTC, SDIRN, DXNEW, VMULTD & IACT have been removed.
// This subroutine calculates an N-component vector DX by applying the
// following two stages. In the first stage, DX is set to the shortest
// vector that minimizes the greatest violation of the constraints
// A(1,K)*DX(1)+A(2,K)*DX(2)+...+A(N,K)*DX(N) .GE. B(K), K = 2,3,...,M,
// subject to the Euclidean length of DX being at most RHO. If its length is
// strictly less than RHO, then we use the resultant freedom in DX to
// minimize the objective function
// -A(1,M+1)*DX(1) - A(2,M+1)*DX(2) - ... - A(N,M+1)*DX(N)
// subject to no increase in any greatest constraint violation. This
// notation allows the gradient of the objective function to be regarded as
// the gradient of a constraint. Therefore the two stages are distinguished
// by MCON .EQ. M and MCON .GT. M respectively. It is possible that a
// degeneracy may prevent DX from attaining the target length RHO. Then the
// value IFULL = 0 would be set, but usually IFULL = 1 on return.
// In general NACT is the number of constraints in the active set and
// IACT(1),...,IACT(NACT) are their indices, while the remainder of IACT
// contains a permutation of the remaining constraint indices. Further, Z
// is an orthogonal matrix whose first NACT columns can be regarded as the
// result of Gram-Schmidt applied to the active constraint gradients. For
// J = 1,2,...,NACT, the number ZDOTA(J) is the scalar product of the J-th
// column of Z with the gradient of the J-th active constraint. DX is the
// current vector of variables and here the residuals of the active
// constraints should be zero. Further, the active constraints have
// nonnegative Lagrange multipliers that are held at the beginning of
// VMULTC. The remainder of this vector holds the residuals of the inactive
// constraints at DX, the ordering of the components of VMULTC being in
// agreement with the permutation of the indices of the constraints that is
// in IACT. All these residuals are nonnegative, which is achieved by the
// shift RESMAX that makes the least residual zero.
// Initialize Z and some other variables. The value of RESMAX will be
// appropriate to DX = 0, while ICON will be the index of a most violated
// constraint if RESMAX is positive. Usually during the first stage the
// vector SDIRN gives a search direction that reduces all the active
// constraint violations by one simultaneously.
// Local variables
var temp=0;
var nactx = 0;
var resold = 0.0;
var z = arr2(1 + n,1 + n);
var zdota = arr(2 + m);
var vmultc = arr(2 + m);
var sdirn = arr(1 + n);
var dxnew = arr(1 + n);
var vmultd = arr(2 + m);
var iact = arr(2 + m);
var mcon = m;
var nact = 0;
for (var i = 1; i <= n; ++i)
{
z[i][i] = 1.0;
dx[i] = 0.0;
}
var icon = 0;
var resmax = 0.0;
if (m >= 1)
{
for (var k = 1; k <= m; ++k)
{
if (b[k] > resmax)
{
resmax = b[k];
icon = k;
}
}
for (var k = 1; k <= m; ++k)
{
iact[k] = k;
vmultc[k] = resmax - b[k];
}
}
// End the current stage of the calculation if 3 consecutive iterations
// have either failed to reduce the best calculated value of the objective
// function or to increase the number of active constraints since the best
// value was calculated. This strategy prevents cycling, but there is a
// remote possibility that it will cause premature termination.
var first = true;
do
{
L_60:
do
{
if (!first || (first && resmax == 0.0))
{
mcon = m + 1;
icon = mcon;
iact[mcon] = mcon;
vmultc[mcon] = 0.0;
}
first = false;
var optold = 0.0;
var icount = 0;
var step=0, stpful=0;
L_70:
do
{
var optnew = mcon == m ? resmax : -DOT_PRODUCT(PART(dx, 1, n), PART(COL(a, mcon), 1, n));
if (icount == 0 || optnew < optold)
{
optold = optnew;
nactx = nact;
icount = 3;
}
else if (nact > nactx)
{
nactx = nact;
icount = 3;
}
else
{
--icount;
}
if (icount == 0) break L_60;
// If ICON exceeds NACT, then we add the constraint with index IACT(ICON) to
// the active set. Apply Givens rotations so that the last N-NACT-1 columns
// of Z are orthogonal to the gradient of the new constraint, a scalar
// product being set to zero if its nonzero value could be due to computer
// rounding errors. The array DXNEW is used for working space.
var ratio=0;
if (icon <= nact)
{
if (icon < nact)
{
// Delete the constraint that has the index IACT(ICON) from the active set.
var isave = iact[icon];
var vsave = vmultc[icon];
var k = icon;
do
{
var kp = k + 1;
var kk = iact[kp];
var sp = DOT_PRODUCT(PART(COL(z, k), 1, n), PART(COL(a, kk), 1, n));
temp = Math.sqrt(sp * sp + zdota[kp] * zdota[kp]);
var alpha = zdota[kp] / temp;
var beta = sp / temp;
zdota[kp] = alpha * zdota[k];
zdota[k] = temp;
for (var i = 1; i <= n; ++i)
{
temp = alpha * z[i][kp] + beta * z[i][k];
z[i][kp] = alpha * z[i][k] - beta * z[i][kp];
z[i][k] = temp;
}
iact[k] = kk;
vmultc[k] = vmultc[kp];
k = kp;
} while (k < nact);
iact[k] = isave;
vmultc[k] = vsave;
}
--nact;
// If stage one is in progress, then set SDIRN to the direction of the next
// change to the current vector of variables.
if (mcon > m)
{
// Pick the next search direction of stage two.
temp = 1.0 / zdota[nact];
for (var k = 1; k <= n; ++k) sdirn[k] = temp * z[k][nact];
}
else
{
temp = DOT_PRODUCT(PART(sdirn, 1, n), PART(COL(z, nact + 1), 1, n));
for (var k = 1; k <= n; ++k) sdirn[k] -= temp * z[k][nact + 1];
}
}
else
{
var kk = iact[icon];
for (var k = 1; k <= n; ++k) dxnew[k] = a[k][kk];
var tot = 0.0;
{
var k = n;
while (k > nact)
{
var sp = 0.0;
var spabs = 0.0;
for (var i = 1; i <= n; ++i)
{
temp = z[i][k] * dxnew[i];
sp += temp;
spabs += Math.abs(temp);
}
var acca = spabs + 0.1 * Math.abs(sp);
var accb = spabs + 0.2 * Math.abs(sp);
if (spabs >= acca || acca >= accb) sp = 0.0;
if (tot == 0.0)
{
tot = sp;
}
else
{
var kp = k + 1;
temp = Math.sqrt(sp * sp + tot * tot);
var alpha = sp / temp;
var beta = tot / temp;
tot = temp;
for (var i = 1; i <= n; ++i)
{
temp = alpha * z[i][k] + beta * z[i][kp];
z[i][kp] = alpha * z[i][kp] - beta * z[i][k];
z[i][k] = temp;
}
}
--k;
}
}
if (tot == 0.0)
{
// The next instruction is reached if a deletion has to be made from the
// active set in order to make room for the new active constraint, because
// the new constraint gradient is a linear combination of the gradients of
// the old active constraints. Set the elements of VMULTD to the multipliers
// of the linear combination. Further, set IOUT to the index of the
// constraint to be deleted, but branch if no suitable index can be found.
ratio = -1.0;
{
var k = nact;
do
{
var zdotv = 0.0;
var zdvabs = 0.0;
for (var i = 1; i <= n; ++i)
{
temp = z[i][k] * dxnew[i];
zdotv += temp;
zdvabs += Math.abs(temp);
}
var acca = zdvabs + 0.1 * Math.abs(zdotv);
var accb = zdvabs + 0.2 * Math.abs(zdotv);
if (zdvabs < acca && acca < accb)
{
temp = zdotv / zdota[k];
if (temp > 0.0 && iact[k] <= m)
{
var tempa = vmultc[k] / temp;
if (ratio < 0.0 || tempa < ratio) ratio = tempa;
}
if (k >= 2)
{
var kw = iact[k];
for (var i = 1; i <= n; ++i) dxnew[i] -= temp * a[i][kw];
}
vmultd[k] = temp;
}
else