-
Notifications
You must be signed in to change notification settings - Fork 0
/
dme_tcm_workspace.cpp
419 lines (346 loc) · 13.1 KB
/
dme_tcm_workspace.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/*
* Copyright (C) 2008 Cold Spring Harbor Laboratory and Andrew D Smith
* Author: Andrew D Smith
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include "dme_tcm_workspace.hpp"
#include <smithlab_utils.hpp>
using std::max;
using std::min;
using std::vector;
using std::string;
using std::cerr;
using std::endl;
using smithlab::alphabet_size;
/* convert column types to corresponding scoring matrix columns */
static float
complement_scoremat(const vector<vector<float> > coltypes,
vector<vector<float> > &scoremat) {
scoremat = coltypes;
float max_score = 0.0;
for (size_t i = 0; i < coltypes.size(); ++i)
for (size_t j = 0; j < coltypes[i].size(); j++)
max_score = max(max_score, scoremat[i][j]);
for (size_t i = 0; i < coltypes.size(); ++i)
for (size_t j = 0; j < coltypes[i].size(); j++)
scoremat[i][j] = max_score - scoremat[i][j];
return max_score;
}
////////////////////////////////////////////////////////////////////////
//////////////////// ////////////////////
//////////////////// LEXICOGRAPHIC TREE STUFF ////////////////////
//////////////////// ////////////////////
////////////////////////////////////////////////////////////////////////
struct dme_tcm_lextree {
dme_tcm_lextree() : child(0), max_diff(0.0) {}
void allocate_child_ptrs();
float set_max_diff();
void insert(const string::const_iterator seq, const size_t depth,
const size_t motif_width, const float val);
~dme_tcm_lextree();
bool remove_matching(const vector<vector<float> > &score_matrix,
const size_t motif_width, const size_t depth,
const float current_score);
void build(const vector<string> &foreground,
const vector<string> &background,
const float lambda, const size_t motif_width);
dme_tcm_lextree **child;
float max_diff;
};
/* allocate space for the array of children pointers of a dme_tcm_lextree */
void
dme_tcm_lextree::allocate_child_ptrs() {
child = new dme_tcm_lextree *[alphabet_size];
std::fill_n(child, alphabet_size, static_cast<dme_tcm_lextree*>(0));
}
/* insert a sequence below a subtree */
void
dme_tcm_lextree::insert(const string::const_iterator seq, const size_t depth,
const size_t motif_width, const float val) {
if (depth < motif_width) {
const size_t index = base2int(*seq);
if (child == 0)
allocate_child_ptrs();
if (child[index] == 0)
child[index] = new dme_tcm_lextree;
child[index]->insert(seq + 1, depth + 1, motif_width, val);
child[index]->max_diff += val;
}
}
float
dme_tcm_lextree::set_max_diff() {
if (child) {
max_diff = static_cast<float>(0);
for (size_t i = 0; i < alphabet_size; ++i)
if (child[i]) {
child[i]->set_max_diff();
max_diff += max(child[i]->max_diff, static_cast<float>(0));
}
}
return max_diff;
}
/* build a dme_tcm_lextree from a sets of foreground and background sequences */
void
dme_tcm_lextree::build(const vector<string> &foreground, const vector<string> &background,
const float lambda, const size_t motif_width) {
allocate_child_ptrs();
for (size_t i = 0; i < foreground.size(); i++) {
const size_t n_substrings = foreground[i].length() - motif_width + 1;
for (size_t j = 0; j < n_substrings; ++j) {
size_t k = 0;
for (; k < motif_width && toupper(foreground[i][j+k]) != 'N'; k++);
if (k == motif_width)
insert(foreground[i].begin() + j, 0, motif_width, 1.0);
}
}
for (size_t i = 0; i < background.size(); i++) {
const size_t n_substrings = background[i].length() - motif_width + 1;
for (size_t j = 0; j < n_substrings; ++j) {
size_t k = 0;
for (; k < motif_width && toupper(background[i][j + k]) != 'N'; k++);
if (k == motif_width)
insert(background[i].begin() + j, 0, motif_width, -lambda);
}
}
set_max_diff();
}
/* recursively free space used by a lexicographic tree */
dme_tcm_lextree::~dme_tcm_lextree() {
if (child) {
for (size_t i = 0; i < alphabet_size; ++i)
if (child[i])
delete child[i];
delete[] child;
}
}
bool
dme_tcm_lextree::remove_matching(const vector<vector<float> > &score_matrix,
const size_t motif_width, const size_t depth,
const float current_score) {
size_t n_inactivated = 0;
for (size_t i = 0; i < alphabet_size; ++i) {
if (child[i]) {
if (current_score - score_matrix[depth][i] > 0) {
if (depth == motif_width - 1 ||
child[i]->remove_matching(score_matrix, motif_width,
depth + 1, current_score -
score_matrix[depth][i])) {
n_inactivated++;
delete child[i];
child[i] = 0;
}
}
}
else n_inactivated++;
}
// return true if no more children exist for the current node
return (n_inactivated == alphabet_size);
}
////////////////////////////////////////////////////////////////////////
///////////////////// /////////////////////
///////////////////// ERASING PREVIOUS MOTIFS /////////////////////
///////////////////// /////////////////////
////////////////////////////////////////////////////////////////////////
/**
* This function removes all nodes in the tree for which all leaves
* below them correspond to strings that match the given matrix.
*/
void
dme_tcm_workspace::deactivate(const ScoringMatrix &sm) {
vector<vector<float> > score_matrix(sm.get_width(),
vector<float>(alphabet_size));
float max_score = 0.0;
for (size_t i = 0; i < sm.get_width(); ++i) {
float max_column_score = 0.0;
for (size_t j = 0; j < alphabet_size; ++j) {
score_matrix[i][j] = sm[i][j];
max_column_score = max(score_matrix[i][j], max_column_score);
}
for (size_t j = 0; j < alphabet_size; j++)
score_matrix[i][j] = max_column_score - score_matrix[i][j];
max_score += max_column_score;
}
nodes[0][0]->remove_matching(score_matrix, sm.get_width(), 0, max_score);
nodes[0][0]->set_max_diff();
}
////////////////////////////////////////////////////////////////////////
////////////////////////// ////////////////////////////
////////////////////////// SEARCH STUFF ////////////////////////////
////////////////////////// ////////////////////////////
////////////////////////////////////////////////////////////////////////
void
dme_tcm_workspace::refined_enumeration(const size_t depth,
const size_t prev_frontier,
const float surplus_information,
const size_t remaining_changes) {
for (size_t i = 0; i == 0 ||
(remaining_changes > 0 &&
i < n_refined_types[depth - 1]); ++i)
if (refined_coltype_bits[depth - 1][i] < surplus_information) {
float upper_bound = 0.0;
size_t frontier_size = 0;
for (size_t j = 0; j < prev_frontier; ++j) {
const dme_tcm_lextree *n = nodes[depth - 1][j];
for (size_t k = 0; k < alphabet_size; ++k) {
if (n->child[k]) {
const float tmp_score = score[depth - 1][j] -
refined_scoremat[depth - 1][i][k];
if (tmp_score > 0.0) {
score[depth][frontier_size] = tmp_score;
nodes[depth][frontier_size] = n->child[k];
upper_bound += tmp_score*n->child[k]->max_diff;
frontier_size++;
}
}
}
}
if (upper_bound > best_score) {
prefix[depth - 1] = i;
if (depth == motif_width) {
best_path = prefix;
best_score = upper_bound;
}
else
refined_enumeration(depth + 1, frontier_size,
surplus_information - refined_coltype_bits[depth - 1][i],
remaining_changes - (i != 0));
}
}
}
DMEPath
dme_tcm_workspace::run_dme_tcm_local(const vector<vector<vector<float> > > &refined_types,
const vector<vector<float> > &refined_bits,
const float min_information,
const size_t n_changes) {
n_refined_types.resize(refined_types.size());
for (size_t i = 0; i < refined_types.size(); ++i)
n_refined_types[i] = refined_types[i].size();
// get the surplus_information content matrix
float max_col_type_info = 0.0;
for (size_t i = 0; i < motif_width; ++i)
for (size_t j = 0; j < n_refined_types[i]; j++)
max_col_type_info = max(max_col_type_info, refined_bits[i][j]);
refined_coltype_bits = refined_bits;
for (size_t i = 0; i < motif_width; ++i)
for (size_t j = 0; j < n_refined_types[i]; ++j)
refined_coltype_bits[i][j] = max_col_type_info -
refined_coltype_bits[i][j];
// Set the minimum bits/column
const float surplus_information = (max_col_type_info - min_information)*motif_width;
// initialize the log scoring matrix and get the max score
refined_scoremat.resize(motif_width);
score[0][0] = 0.0;
for (size_t i = 0; i < motif_width; ++i)
score[0][0] += complement_scoremat(refined_types[i],
refined_scoremat[i]);
// make sure the variables holding the best current motif and score
// are initialized empty and zero
best_path.clear();
best_score = 0.0;
refined_enumeration(1, 1, surplus_information, n_changes);
return DMEPath(best_path, best_score);
}
void
dme_tcm_workspace::enumeration(const size_t depth, const size_t prev_frontier,
const float surplus_information) {
for (size_t i = 0; i < n_types && coltype_bits[i] <= surplus_information; ++i) {
float upper_bound = 0.0;
size_t frontier_size = 0;
for (size_t j = 0; j < prev_frontier; j++) {
const dme_tcm_lextree *n = nodes[depth - 1][j];
for (size_t k = 0; k < alphabet_size; ++k)
if (n->child[k]) {
const float tmp_score = score[depth - 1][j] - scoremat[i][k];
if (tmp_score > 0) {
score[depth][frontier_size] = tmp_score;
nodes[depth][frontier_size] = n->child[k];
upper_bound += tmp_score*n->child[k]->max_diff;
frontier_size++;
}
}
}
if (upper_bound > best_score) {
prefix[depth - 1] = i;
if (depth == motif_width) {
best_path = prefix;
best_score = upper_bound;
}
else
enumeration(depth + 1, frontier_size, surplus_information - coltype_bits[i]);
}
}
}
DMEPath
dme_tcm_workspace::run_dme_tcm(const vector<vector<float> > &column_types,
const vector<float > &bits,
const float min_information) {
// set the global alphabet and alphabet size variables
n_types = column_types.size();
// get the info content matrix
coltype_bits = bits;
// get the surplus_information content of each column type and the maximum
// possible surplus_information in a column
float max_col_type_info = 0.0;
for (size_t i = 0; i < n_types; ++i)
max_col_type_info = max(max_col_type_info, coltype_bits[i]);
for (size_t i = 0; i < n_types; ++i)
coltype_bits[i] = max_col_type_info - coltype_bits[i];
// set a bound on how much the surplus_information can go under the maximum
const float surplus_information = (max_col_type_info -
min_information)*motif_width;
// get scoring matrix
const float max_score = complement_scoremat(column_types, scoremat);
// set the value in the first cell in the scores array
score[0][0] = max_score*motif_width;
best_path.clear();
best_score = 0.0;
enumeration(1, 1, surplus_information);
return DMEPath(best_path, best_score);
}
dme_tcm_workspace::dme_tcm_workspace(const vector<string> &foreground,
const vector<string> &background,
const int width,
const float adjustment) :
motif_width(width) {
prefix = vector<size_t>(motif_width, 0);
// get the foreground and background sequence lengths
size_t fg_seqlen = 0;
for (size_t i = 0; i < foreground.size(); ++i)
fg_seqlen += (foreground[i].length() -
std::count(foreground[i].begin(), foreground[i].end(), 'N'));
size_t bg_seqlen = 0;
for (size_t i = 0; i < background.size(); ++i)
bg_seqlen += (background[i].length() -
std::count(background[i].begin(), background[i].end(), 'N'));
const float lambda = ((bg_seqlen > 0) ?
static_cast<float>(fg_seqlen)/bg_seqlen : 1)*adjustment;
const size_t total_sites = fg_seqlen + bg_seqlen;
// allocate the tables of nodes and scores
score = vector<vector<float> >(motif_width + 1);
nodes = vector<vector<dme_tcm_lextree*> >(motif_width + 1);
for (size_t i = 0; i <= motif_width; ++i) {
const size_t max_frontier_size =
min(total_sites, static_cast<size_t>(pow(alphabet_size, i)));
score[i] = vector<float>(max_frontier_size);
nodes[i] = vector<dme_tcm_lextree*>(max_frontier_size);
}
nodes[0][0] = new dme_tcm_lextree;
nodes[0][0]->build(foreground, background, lambda, motif_width);
}
dme_tcm_workspace::~dme_tcm_workspace() {
delete nodes[0][0];
}