From 5bbf78087c698f875c22de92db8d532252855a81 Mon Sep 17 00:00:00 2001 From: Eduardo Santos Date: Sat, 26 Jan 2019 23:17:11 -0200 Subject: [PATCH 1/6] =?UTF-8?q?Tradu=C3=A7=C3=A3o=20parcial=20aula=201?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Traduação parcial da aula 1 pré requisitos de python. --- 0-pre-requisitos/1-python/Aula_01.ipynb | 217 ++- .../Pr\303\241cticaGuiada_DBScan_pt_br.ipynb" | 1506 +++++++++++++++++ ..._Clustering_Jer\303\241rquico_pt_br.ipynb" | 1 + 3 files changed, 1648 insertions(+), 76 deletions(-) create mode 100644 "5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n DBSCAN/Notebooks/Pr\303\241ctica Guiada Fran/Pr\303\241cticaGuiada_DBScan_pt_br.ipynb" create mode 100644 "5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n al Clustering Jer\303\241rquico/Notebooks/Pr\303\241ctica Guiada/PRACTICA_GUIADA_Intro_Clustering_Jer\303\241rquico_pt_br.ipynb" diff --git a/0-pre-requisitos/1-python/Aula_01.ipynb b/0-pre-requisitos/1-python/Aula_01.ipynb index f21b5d7..3f27acd 100644 --- a/0-pre-requisitos/1-python/Aula_01.ipynb +++ b/0-pre-requisitos/1-python/Aula_01.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Aula 1: Data Types\n", + "# Aula 1: Data Types - Tipos de Dados\n", "**02/08/2017**" ] }, @@ -12,7 +12,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Objects in Python, like in many other languages, are organized in types, called __classes__. By belonging to a class, objects can be modified by functions (called __methods__) that are defined for objetcs of that class. Later in the course we will learn how to create our own classes and define methods that apply to objetcs that belong to them. For the time being, let us go through some standard classes that will already take us a long way towards solving problems." + "Objetos em Python, assim como em várias outras linguagens de programação, são organizados em tipos, chamados __classes__. Pertencendo a uma classe esses objetos podem ser modificados por funções (chamadas __métodos__) definidas para cada classe.\n", + "Mais tarde neste curso vamos aprender como criar suas próprias classes e definir métodos que podem ser aplicados aos objetos que pertencem a essa nova classe.\n", + "Enquanto isso vamos passar por algumas classes padrão que já nos ajudarão a resolver vários problemas.\n", + "\n", + "" ] }, { @@ -24,7 +28,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Python 3.5.4 :: Anaconda custom (64-bit)\r\n" + "Python 3.5.4 :: Anaconda custom (64-bit)\n" ] } ], @@ -36,14 +40,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Numbers" + "# Numbers - Números" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "There are three basic types of numeric objects in Python. One of then is int (for integers), such as -1, 0, 1, 2, and so on." + "Existem três tipos básicos de objetos numéricos no Python.\n", + "O primeiro deles é o int (para inteiros), como -1, 0, 1, 2 e assim por diante.\n", + "\n", + "" ] }, { @@ -71,8 +78,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The other type of numeric object is float, that stores real numbers.\n", - "For more information on how Python handles floating point arithmetic, see [this](https://docs.python.org/3/tutorial/floatingpoint.html)." + "Outro tipo é o float, que guarda números reais.\n", + "Você consegue encontrar mais informações sobre como o Python trata o número de casas decimais na [documentação do Python](https://docs.python.org/3/tutorial/floatingpoint.html) (em Inglês).\n", + "\n", + "" ] }, { @@ -120,7 +130,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "One can also represent complex numbers (complex). A quick refresher on complex numbers can be found [here](https://en.wikipedia.org/wiki/Complex_number) and [here](http://mathworld.wolfram.com/ComplexNumber.html)." + "E por último complex que representa os números complexos. Entenda os números complexos e suas opeções nesta sequencia de vídeos: [Números complexos em pt_br](https://youtu.be/nprqf6DKeyI)\n", + "\n", + "" ] }, { @@ -167,7 +179,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Notice that although the int 3, the float 3.0, and the complex 3.0+0j represent the same quantity, Python will treat them as different objetcs." + "Note que mesmo int 3, float 3.0, e complex 3.0+0j representem a mesma quantidade, o Python vai tratá-los como objetos diferente.\n", + "\n", + "" ] }, { @@ -196,7 +210,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Some operations that we can perform with numbers:" + "Algumas operações que podemos fazer com números:\n", + "\n", + "" ] }, { @@ -225,7 +241,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Notice that adding two ints will return an int. But adding an int to a float will return a float (even though the float has no decimals). Finally, adding an int or a float to a complex will result in a complex object. This rule applies to other operations in Python involving numbers." + "Note que adicionar dois int vai retornar um int, mas adicionar um int e um float vai retornar um float mesmo que o float não tenha casas decimais.\n", + "Finalmente, adicionar um int ou float a um complex vai resultar sempre em um objeto complex. Essas mesmas regras se aplicam a outras operações envolvendo núnmeros no Python.\n", + "\n", + "" ] }, { @@ -340,7 +359,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Sometimes it is convenient to assign an object to a **variable**. The variable inherits several properties of the object itself, but can have its values changed later on. In several programming languages, the variable and the type of data it can store have to be declared at the outset. Python does not require such declaration, and the type of variable can change throughout the code." + "Algumas vezes é conveniente colocar um objeto dentro de uma **variável** que herda várias propriedades do objeto, mas pode ter seu valor alterado posteriormente.\n", + "Em várias linguagens de programação, a variável e o tipo de objeto devem ser declarados no início, mas o Python não requer esse tipo de declaração. Além disso o tipo da variável pode alterar ao longo do seu código.\n", + "\n", + "" ] }, { @@ -368,10 +390,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**Variables naming rules**\n", + "**Regras para nomes de variáveis**\n", + "\n", + "* Os nomes das variáveis devem começar com um letra ou \"_\" (*underscore*).\n", + "* O restante do nome pode conter letras, números e underscores.\n", + "* Nomes de variáveis no Python são diferentes se escritas em caixa alta ou baixa.\n", + "\n", + "" ] }, { @@ -422,7 +450,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Another way to perform basic arithmetic operations:" + "Outra forma de utilizar operações aritiméticas:\n", + "" ] }, { @@ -469,7 +498,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Other useful functions (methods) that apply to numbers:" + "Outras funções (métodos) úteis que se aplicam a números:\n", + "" ] }, { @@ -553,7 +583,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "What are the methods in a numerical object?" + "Quais são os métodos em um objeto numérico?\n", + "" ] }, { @@ -597,7 +628,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "A rule about assignment to a number:" + "Uma regra sobre atribuição a um número:\n", + "" ] }, { @@ -645,14 +677,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Strings" + "# Strings - Textos" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "A string (str) is Pyhton is a sequence of characters." + "Um texto ou *string* (str) em Python é uma sequência de caracteres.\n", + "" ] }, { @@ -679,15 +712,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Strings can be created by enclosing a sequence of characters in single or double quotes.\n", - "'string\" is NOT valid! 'string'=\"string\"." + "Textos podem ser criados colocando a sequência de caracteres dentro de aspas simples ou duplas.\n", + "'texto\" não é válido! 'texto\" = \"texto\".\n", + "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "What is the size of a string?" + "Qual o tamanho de um texto?\n", + "" ] }, { @@ -754,7 +790,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Numbers cannot be merged to strings on the fly. To do so, one has to convert the number to a string before." + "Números não podem ser fundidos/adicionados com textos em tempo de execução. Para fazer isso, antes é necessário converter o número para texto.\n", + "" ] }, { @@ -782,7 +819,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "There are methods to extract only a portion of a string." + "Existem métodos para extrair apenas parte de um texto.\n", + "" ] }, { @@ -818,14 +856,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Although one can access the element in position *i* this way, it is not possible to modify the string directly. s[3] = \"v\" would return an error." + "Mesmo sendo possível acessar o caracter na posição *i*, não é possível alterá-lo diretamente no texto. s[3] = \"v\" vai retornar um erro.\n", + "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Triple quotes (''') interprets literally whatever is between then, including line brakes. " + "Aspas triplas (''') fazem o Python interpretar literlamente qualquer coisa que estiver entre as aspas triplas. Isso incluí quebras de linhas.\n", + "" ] }, { @@ -851,7 +891,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "There are more elegant ways to insert line breaks and other control characters." + "Existem formas mais elegantes de se adicionar quebras de linha e outros caracteres de controle.\n", + "" ] }, { @@ -876,7 +917,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Expressions inside a string that are preceeded by a backslash (\\) are referred to as escape sequences, and are used - among other things - to insert non-printable and especial characters, such as linebreak (\\n), tab (\\t), or a single space (\\s). " + "Expressões dentro de um texto que tenham o prefixo de uma barra invertida \\ são utilizadas para imprimir sequências, caracteres especiais entre outras coisas. Para inserir um caracter especial ou de controle como uma quebra de linha \\n, espaçamentos \\t, ou um espaço \\s.\n", + "" ] }, { @@ -900,7 +942,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Strings can be 'multiplied' too." + "Textos também podem ser multiplicados.\n", + "" ] }, { @@ -927,7 +970,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Here is a safer, more flexible way to merge strings, using the format method." + "Aqui um exemplo mais seguro e flexível para fundir textos usando o método format.\n", + "" ] }, { @@ -1185,7 +1229,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Other string methods:" + "Outros métodos para textos (string):\n", + "" ] }, { @@ -1253,18 +1298,17 @@ }, { "cell_type": "markdown", - "metadata": { - "collapsed": true - }, + "metadata": {}, "source": [ - "# Lists" + "# Lists - Listas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "A list is an ordered collection of elements. Each element has two attributes: index (the position it is in, *starting from zero*) and value." + "Uma lista (list) é uma coleção ordenada de elementos. Cada elemento tem 2 atributos: index (a posição em que ele se encontra, começão do 0) e o valor.\n", + "" ] }, { @@ -1291,7 +1335,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The element of a list can be accessed by calling its index." + "O elemento da lista pode ser acessado chamando o *index* dele.\n", + "" ] }, { @@ -1343,7 +1388,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "What is the size of our list?" + "Qual é o tamanho da nossa lista?\n", + "" ] }, { @@ -1371,7 +1417,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The list can be sorted (if all elements can be compared! More about this later in this section). Notice that the indexes associated with each element will change." + "Uma lista pode ser ordenada (se todos os elementos puderem ser comparados! Vamos ver mais sobre isso nessa sessão. Note que o *index* associado com cada elemento vai ser alterado.\n", + "" ] }, { @@ -1402,7 +1449,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The order of the elements can also be reversed.\n" + "A ordem dos elementos também pode ser revertida.\n", + "\n" ] }, { @@ -1429,7 +1477,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "There are two ways to add an element to a list. The method append will add the element to the last position." + "Existem duas formas de adicionar um elemnto a uma lista. O método append que vai adicionar o elemento na última posição da lista.\n", + "" ] }, { @@ -1456,7 +1505,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "A value can also be added in a specific position. In this scenario, the other indexes may also change." + "Ou adicionar o elemento em uma posição especifica na lista. Neste caso os outros inedx também podem ser alterados.\n", + "" ] }, { @@ -1481,11 +1531,10 @@ }, { "cell_type": "markdown", - "metadata": { - "collapsed": true - }, + "metadata": {}, "source": [ - "Elements of a list can be modified." + "Elementos de uma lista também podem ser modificados.\n", + "" ] }, { @@ -1512,7 +1561,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Elements can be removed from the list depende on the value they have. The method p.remove(v) will remove all the elements whose value is v. Indexes will change." + "Elementos podem ser removidos da lista dependendo do valor ques eles possuem. O método p.remove(v) vai remover todos os elementos da lista que tiverem o valor igual a v. Os indexes serão alterados nos elementos remanecentes.\n", + "" ] }, { @@ -1543,7 +1593,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "What is the index of \"Luis\"?" + "Qual o index do elemento \"Luis\"?\n", + "" ] }, { @@ -1570,7 +1621,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Also possible to remove element according to its index. Remember that the index is the position of the element in the list." + "Também é possível remover um elemento de acordo com seu index. Lembre-se o index é a posição do elemento na lista e ao removê-lo, você pode alterar a posição de outros elementos.\n", + "" ] }, { @@ -1600,14 +1652,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "list.pop() removes the last element of a list (the one with the highest index)." + "O método list.pop() remove o último elemento da lista (o que tiver o maior index).\n", + "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Other list methods:" + "Outros métodos das listas (list):\n", + "" ] }, { @@ -1631,7 +1685,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "A trick that you should remember. It is true for lists and for other **mutable** objetcs." + "Um truque que você deve se lembrar e que é verdade para listas e outros objetos **mutáveis**.\n", + "" ] }, { @@ -1667,7 +1722,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "a and b are pointing to the same object in memory." + "a e b estão apontando para o mesmo objeto na memória, se um muda o outro também vai ser alterado.\n", + "" ] }, { @@ -1691,11 +1747,10 @@ }, { "cell_type": "markdown", - "metadata": { - "collapsed": true - }, + "metadata": {}, "source": [ - "Let us modify b" + "Vamos modificar b\n", + "" ] }, { @@ -1720,7 +1775,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "a was also modified." + "a também foi alterado.\n", + "" ] }, { @@ -1772,7 +1828,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Lists can store more than one type of data." + "Listas podem guardar mais do que um tipo de dados.\n", + "" ] }, { @@ -1797,7 +1854,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "How to merge/combine lists?" + "Como fundir/juntar/combinar listas?\n", + "" ] }, { @@ -1926,14 +1984,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Tuples" + "# Tuples - Tuplas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "A tuple is a sequence of **immutable** Python objects. Unlike lists, once are created, they cannot be modified." + "Uma tupla nada mais é do que uma sequência de objetos em Python que são **imutáveis**. Diferente das listas, assim que criados, não modem ser modificados.\n", + "" ] }, { @@ -1958,7 +2017,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Since tuples are immutable, they have only a subset of the methods available for strings." + "Como as tuplas são imutáveis, elas tem apenas um pequeno set de métodos disponíveis para strings.\n", + "" ] }, { @@ -2044,14 +2104,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Dictionaries" + "# Dictionaries - Dicionários" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Dictionaries (or hashes) are associative tables, in which indexes are associated with values." + "Dicionários (ou hashes) são tabelas associativas, nas quais indexes são associados com valores.\n", + "" ] }, { @@ -2074,11 +2135,10 @@ }, { "cell_type": "markdown", - "metadata": { - "collapsed": true - }, + "metadata": {}, "source": [ - "Dictionary elements can be accessed like we do with lists and tuples. The keys must be unique and immutable. strings, numbers or tuples will work as dictionary keys." + "Elementos em Dicionários, podem ser acessados da mesma forma que fazemos com listas e tuplas. A chave (key) deve ser única e imutável. Chaves podem ser textos, tuplas ou números.\n", + "" ] }, { @@ -2182,7 +2242,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "There are dict methods that allow us to access the keys and values of the dictionary." + "Existem métodos dict que permitem acessar as chaves e valores do dicionário.\n", + "" ] }, { @@ -2327,14 +2388,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Dictionaries are mutable, and can be modified pretty much the same we did for lists. This is not true for strings and tuples, which are immutable." + "Dicionários, são mutáveis e podem ser alterados basicamente da mesma forma que fizemos com as listas. Isso não se aplica a strings e tuples que são imutáveis.\n", + "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "How to delete one of the entries?" + "Como deletar entradas no dicionário?\n", + "" ] }, { @@ -2359,7 +2422,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Combining two dictionaries:" + "Combinando dois dicionários:\n", + "" ] }, { @@ -2385,7 +2449,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "What if one tries to access an index that does not exist?" + "E se tentarmos acessar um index que não existe?\n", + "" ] }, { @@ -2704,7 +2769,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.5.4" + "version": "3.6.8" } }, "nbformat": 4, diff --git "a/5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n DBSCAN/Notebooks/Pr\303\241ctica Guiada Fran/Pr\303\241cticaGuiada_DBScan_pt_br.ipynb" "b/5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n DBSCAN/Notebooks/Pr\303\241ctica Guiada Fran/Pr\303\241cticaGuiada_DBScan_pt_br.ipynb" new file mode 100644 index 0000000..dbe45ce --- /dev/null +++ "b/5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n DBSCAN/Notebooks/Pr\303\241ctica Guiada Fran/Pr\303\241cticaGuiada_DBScan_pt_br.ipynb" @@ -0,0 +1,1506 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prática Guiada: DBScan com dados geográficos\n", + "\n", + "Nesta prática, aplicaremos a técnica de DBScan a dados geolocalizados para encontrar zonas de alta densidade comercial de um determinado tipo de comércio em uma cidade.
\n", + "Os dados vêm de um dataset aberto da cidade de Baltimore. É possível encontrar mais informação aqui .
\n", + "\n", + "Para este notebook é importante instalar as bibliotecas:\n", + "1. multiprocessing\n", + "2. geopandas\n", + "3. mplleaflet\n", + "\n", + "## 1- Carregamos bibliotecas e importamos os dados\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import requests\n", + "import json\n", + "import pandas as pd\n", + "import numpy as np\n", + "import time\n", + "import mplleaflet\n", + "from multiprocessing import Pool" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "df = pd.read_csv('Restaurants.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namezipCodeneighborhoodcouncilDistrictpoliceDistrictLocation 1
041021206Frankford2NORTHEASTERN4509 BELAIR ROAD\\nBaltimore, MD\\n
1191921231Fells Point1SOUTHEASTERN1919 FLEET ST\\nBaltimore, MD\\n
2SAUTE21224Canton1SOUTHEASTERN2844 HUDSON ST\\nBaltimore, MD\\n
3#1 CHINESE KITCHEN21211Hampden14NORTHERN3998 ROLAND AVE\\nBaltimore, MD\\n
4#1 chinese restaurant21223Millhill9SOUTHWESTERN2481 frederick ave\\nBaltimore, MD\\n
\n", + "
" + ], + "text/plain": [ + " name zipCode neighborhood councilDistrict \\\n", + "0 410 21206 Frankford 2 \n", + "1 1919 21231 Fells Point 1 \n", + "2 SAUTE 21224 Canton 1 \n", + "3 #1 CHINESE KITCHEN 21211 Hampden 14 \n", + "4 #1 chinese restaurant 21223 Millhill 9 \n", + "\n", + " policeDistrict Location 1 \n", + "0 NORTHEASTERN 4509 BELAIR ROAD\\nBaltimore, MD\\n \n", + "1 SOUTHEASTERN 1919 FLEET ST\\nBaltimore, MD\\n \n", + "2 SOUTHEASTERN 2844 HUDSON ST\\nBaltimore, MD\\n \n", + "3 NORTHERN 3998 ROLAND AVE\\nBaltimore, MD\\n \n", + "4 SOUTHWESTERN 2481 frederick ave\\nBaltimore, MD\\n " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Limpamos o endereço\n", + "df['address'] = df['Location 1'].str.replace('\\n',' ')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namezipCodeneighborhoodcouncilDistrictpoliceDistrictLocation 1address
041021206Frankford2NORTHEASTERN4509 BELAIR ROAD\\nBaltimore, MD\\n4509 BELAIR ROAD Baltimore, MD
1191921231Fells Point1SOUTHEASTERN1919 FLEET ST\\nBaltimore, MD\\n1919 FLEET ST Baltimore, MD
2SAUTE21224Canton1SOUTHEASTERN2844 HUDSON ST\\nBaltimore, MD\\n2844 HUDSON ST Baltimore, MD
3#1 CHINESE KITCHEN21211Hampden14NORTHERN3998 ROLAND AVE\\nBaltimore, MD\\n3998 ROLAND AVE Baltimore, MD
4#1 chinese restaurant21223Millhill9SOUTHWESTERN2481 frederick ave\\nBaltimore, MD\\n2481 frederick ave Baltimore, MD
\n", + "
" + ], + "text/plain": [ + " name zipCode neighborhood councilDistrict \\\n", + "0 410 21206 Frankford 2 \n", + "1 1919 21231 Fells Point 1 \n", + "2 SAUTE 21224 Canton 1 \n", + "3 #1 CHINESE KITCHEN 21211 Hampden 14 \n", + "4 #1 chinese restaurant 21223 Millhill 9 \n", + "\n", + " policeDistrict Location 1 \\\n", + "0 NORTHEASTERN 4509 BELAIR ROAD\\nBaltimore, MD\\n \n", + "1 SOUTHEASTERN 1919 FLEET ST\\nBaltimore, MD\\n \n", + "2 SOUTHEASTERN 2844 HUDSON ST\\nBaltimore, MD\\n \n", + "3 NORTHERN 3998 ROLAND AVE\\nBaltimore, MD\\n \n", + "4 SOUTHWESTERN 2481 frederick ave\\nBaltimore, MD\\n \n", + "\n", + " address \n", + "0 4509 BELAIR ROAD Baltimore, MD \n", + "1 1919 FLEET ST Baltimore, MD \n", + "2 2844 HUDSON ST Baltimore, MD \n", + "3 3998 ROLAND AVE Baltimore, MD \n", + "4 2481 frederick ave Baltimore, MD " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2 - Geolocalizar os dados\n", + "\n", + "Para poder aplicar DBScan precisamos da latitude e longitude de cada estabelecimento.
\n", + "O processo de obter esses dados a partir de um endereço se denomina geocoding. O Googlemaps tem um serviço freemium de geocoding através de sua API. A senha pode ser obtida aqui com sua identidade do google." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "my_key = 'AIzaSyA0UeUFFchUSdPA0uJR_IPeMmtPNmKplk4'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 - Paralelizar o consumo da API\n", + "\n", + "O Python permite paralelizar a execução de tarefas que consomem muito tempo. Para esto, usamos a classe Pool da biblioteca multiprocessing.\n", + "\n", + "Primeiro definimos as funções que serão utilizadas." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def geocodificar(my_id):\n", + " \"\"\"Retorna um dicionário com latitude e longitude a partir de um id do dataset de restaurantes\"\"\"\n", + " try:\n", + " addr = df.address[my_id]\n", + " url = \"https://maps.googleapis.com/maps/api/geocode/json?address=\" + addr + \"&key=AIzaSyBvBdD5U6nCzy-bnX6SVNy2VWj9aISOdz4\"\n", + " response = requests.get(url)\n", + " data = json.loads(response.text)\n", + " return{'lat':data[\"results\"][0].get(\"geometry\").get(\"location\")['lat'],'lon':data[\"results\"][0].get(\"geometry\").get(\"location\")['lng']}\n", + " except:\n", + " return{'lat':np.nan,'lon':np.nan}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Para poder paralelizar, construímos uma função que trabalhe com um intervalo de ids do dataframe e geocodifique cada um para retornar uma lista de dicionários." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def processar_intervalo_ids(id_range):\n", + " \"\"\"processar um intervalo de ids e guardar los resultados em um dicionário\"\"\"\n", + " store = []\n", + " for my_id in id_range:\n", + " store.append(geocodificar(my_id))\n", + " return store" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vamos paralelizar a execução em 3 processos. Vejamos os intervalos de ids com que cada um deles deve trabalhar." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "442\n", + "884\n" + ] + } + ], + "source": [ + "cut = len(df)// 3\n", + "print(cut)\n", + "print(cut *2)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Criamos uma lista de intervalos\n", + "ranges = [range(0,442),range(442,884), range(884,len(df))]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "pool = Pool(processes=3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Executamos de forma paralela\n", + "results = pool.map(processar_intervalo_ids, ranges)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Unimos os resultados dos 3 processos em uma única lista\n", + "results_final = results[0] + results[1] + results[2]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Eliminamos os resultados que tiveram erros\n", + "results_final = [res for res in results_final if isinstance(res,dict)]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Guardamos um DataFrame com a latitude e a longitude de cada estabelecimento\n", + "bares = pd.DataFrame(results_final).dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bares.to_csv('bares.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bares = pd.read_csv('bares.csv')[['lat','lon']]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latlon
039.330489-76.562022
139.284518-76.589430
239.282420-76.575708
339.337072-76.633356
439.282212-76.656208
\n", + "
" + ], + "text/plain": [ + " lat lon\n", + "0 39.330489 -76.562022\n", + "1 39.284518 -76.589430\n", + "2 39.282420 -76.575708\n", + "3 39.337072 -76.633356\n", + "4 39.282212 -76.656208" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bares.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3- Visualizar os dados gerados\n", + "\n", + "Para visualizar os dados gerados, vamos criar um GeoDataFrame usando a biblioteca geopandas e vamos mostrá-lo em um mapa interativo usando mplleaflet." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from geopandas import GeoDataFrame\n", + "from shapely.geometry import Point\n", + "\n", + "geometry = [Point(xy) for xy in zip(bares.lon, bares.lat)]\n", + "crs = {'init': 'epsg:4326'}\n", + "gdf = GeoDataFrame(crs=crs, geometry=geometry)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "% matplotlib inline\n", + "import shapely\n", + "import matplotlib.pyplot as plt\n", + "ax1 = gdf.plot()\n", + "ax1.set_xlim([-76.75, -76.5])\n", + "ax1.set_ylim([39.2, 39.375])\n", + "fig = plt.gcf()\n", + "fig.set_size_inches(20, 20)\n", + "mplleaflet.display()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## 4 - Pré-processamento dos dados geográficos\n", + "\n", + "Até agora temos a posição relativa dos bares expressa em graus de latitude e longitude.\n", + "\n", + "Para que os parâmetros do clustering DBScan façam mais sentido é possível transformar as medidas de latitude e longitude para um aproximado dos metros que representam em relação ao centro dos dados. Enquanto um grau de latitude sempre representa a mesma distância, um grau de longitude só é equivalente a um de latitude, em metros, na zona do equador. Portanto, é necessário fazer um ajuste para nos adaptar à zona de estudo.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Primeiro, centralizamos os dados\n", + "bares['lat_center'] = bares['lat'] - np.mean(bares['lat']) \n", + "bares['lon_center'] = bares['lon'] - np.mean(bares['lon']) " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latlonlat_centerlon_center
039.330489-76.5620220.0340820.044523
139.284518-76.589430-0.0118890.017115
239.282420-76.575708-0.0139880.030837
339.337072-76.6333560.040665-0.026812
439.282212-76.656208-0.014196-0.049663
\n", + "
" + ], + "text/plain": [ + " lat lon lat_center lon_center\n", + "0 39.330489 -76.562022 0.034082 0.044523\n", + "1 39.284518 -76.589430 -0.011889 0.017115\n", + "2 39.282420 -76.575708 -0.013988 0.030837\n", + "3 39.337072 -76.633356 0.040665 -0.026812\n", + "4 39.282212 -76.656208 -0.014196 -0.049663" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bares.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Agora, funções para passar aproximadamente de graus a metros" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def lat_a_metros(x):\n", + " \"\"\"Latitude: 1 deg = 110.54 km\"\"\"\n", + " return x*110540\n", + "\n", + "def lon_a_metros(x,cos_mean_lat):\n", + " \"\"\"Longitude: 1 deg = 111.320*cos(latitude) km\"\"\"\n", + " return x*111320*cos_mean_lat\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.773879922828\n" + ] + } + ], + "source": [ + "cos_m_lat = np.cos(np.deg2rad(np.mean(bares['lat'])))\n", + "print(cos_m_lat)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Na cidade de Baltimore, cada milésimo de grau de longitude equivale a uma distância de 0,77 milésimos de grau de latitude.\n", + "Usamos esta medida de ajuste para calcular uma medida que sirva para avaliar distâncias em metros." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bares['lat_metros'] = bares['lat_center'].apply(lambda x: round(lat_a_metros(x)))" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bares['lon_metros'] = bares['lon_center'].apply(lambda x: round(lon_a_metros(x,cos_m_lat)))" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latlonlat_centerlon_centerlat_metroslon_metros
039.330489-76.5620220.0340820.04452337673836.0
139.284518-76.589430-0.0118890.017115-13141474.0
239.282420-76.575708-0.0139880.030837-15462657.0
339.337072-76.6333560.040665-0.0268124495-2310.0
439.282212-76.656208-0.014196-0.049663-1569-4278.0
\n", + "
" + ], + "text/plain": [ + " lat lon lat_center lon_center lat_metros lon_metros\n", + "0 39.330489 -76.562022 0.034082 0.044523 3767 3836.0\n", + "1 39.284518 -76.589430 -0.011889 0.017115 -1314 1474.0\n", + "2 39.282420 -76.575708 -0.013988 0.030837 -1546 2657.0\n", + "3 39.337072 -76.633356 0.040665 -0.026812 4495 -2310.0\n", + "4 39.282212 -76.656208 -0.014196 -0.049663 -1569 -4278.0" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bares.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5- DBScan\n", + "\n", + "Agora podemos pesquisar as zonas de alta densidade de restaurantes a partir de alguma definição de negócio. Por exemplo, podemos propor que há uma zona de alta densidade quando 5 restaurantes estão localizados em um raio de menos de 100 metros. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# Zona de restaurantes: Pelo menos 5 restaurantes em um raio de 100 metros" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from sklearn.cluster import DBSCAN, KMeans\n", + "dbscn = DBSCAN(eps = 100, min_samples = 5).fit(bares[['lat_metros','lon_metros']])" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DBSCAN(algorithm='auto', eps=100, leaf_size=30, metric='euclidean',\n", + " metric_params=None, min_samples=5, n_jobs=1, p=None)" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dbscn" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "labels = dbscn.labels_" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "46" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "n_clusters_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Com estes parâmetros encontramos 46 zonas de restaurantes na cidade para analisar. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5.1 - Visualizar os resultados\n", + "\n", + "Agora vejamos as zonas obtidas no mapa." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bares['labels'] = labels" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "clusters = bares.loc[bares['labels']!=-1].copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
latlonlat_centerlon_centerlat_metroslon_metroslabels
139.284518-76.589430-0.0118890.017115-13141474.00
16239.285668-76.587383-0.0107390.019162-11871651.00
17539.285943-76.588645-0.0104650.017899-11571542.00
116839.284848-76.590342-0.0115590.016203-12781396.00
114339.283517-76.589438-0.0128910.017107-14251474.00
2439.284548-76.588882-0.0118600.017663-13111522.00
25439.285943-76.588645-0.0104650.017899-11571542.00
29739.285605-76.588610-0.0108030.017935-11941545.00
93539.283854-76.589788-0.0125540.016757-13881444.00
32239.284241-76.588832-0.0121670.017713-13451526.00
49539.284376-76.590224-0.0120310.016320-13301406.00
69139.284927-76.588861-0.0114810.017684-12691523.00
50139.286003-76.587806-0.0104050.018739-11501614.00
53539.284516-76.589310-0.0118910.017235-13141485.00
17639.287216-76.556723-0.0091920.049821-10164292.01
67639.286848-76.555499-0.0095600.051046-10574398.01
63639.286879-76.556205-0.0095290.050340-10534337.01
10839.286821-76.556097-0.0095870.050448-10604346.01
80039.286924-76.555162-0.0094830.051383-10484427.01
88739.286841-76.555603-0.0095670.050942-10574389.01
\n", + "
" + ], + "text/plain": [ + " lat lon lat_center lon_center lat_metros lon_metros \\\n", + "1 39.284518 -76.589430 -0.011889 0.017115 -1314 1474.0 \n", + "162 39.285668 -76.587383 -0.010739 0.019162 -1187 1651.0 \n", + "175 39.285943 -76.588645 -0.010465 0.017899 -1157 1542.0 \n", + "1168 39.284848 -76.590342 -0.011559 0.016203 -1278 1396.0 \n", + "1143 39.283517 -76.589438 -0.012891 0.017107 -1425 1474.0 \n", + "24 39.284548 -76.588882 -0.011860 0.017663 -1311 1522.0 \n", + "254 39.285943 -76.588645 -0.010465 0.017899 -1157 1542.0 \n", + "297 39.285605 -76.588610 -0.010803 0.017935 -1194 1545.0 \n", + "935 39.283854 -76.589788 -0.012554 0.016757 -1388 1444.0 \n", + "322 39.284241 -76.588832 -0.012167 0.017713 -1345 1526.0 \n", + "495 39.284376 -76.590224 -0.012031 0.016320 -1330 1406.0 \n", + "691 39.284927 -76.588861 -0.011481 0.017684 -1269 1523.0 \n", + "501 39.286003 -76.587806 -0.010405 0.018739 -1150 1614.0 \n", + "535 39.284516 -76.589310 -0.011891 0.017235 -1314 1485.0 \n", + "176 39.287216 -76.556723 -0.009192 0.049821 -1016 4292.0 \n", + "676 39.286848 -76.555499 -0.009560 0.051046 -1057 4398.0 \n", + "636 39.286879 -76.556205 -0.009529 0.050340 -1053 4337.0 \n", + "108 39.286821 -76.556097 -0.009587 0.050448 -1060 4346.0 \n", + "800 39.286924 -76.555162 -0.009483 0.051383 -1048 4427.0 \n", + "887 39.286841 -76.555603 -0.009567 0.050942 -1057 4389.0 \n", + "\n", + " labels \n", + "1 0 \n", + "162 0 \n", + "175 0 \n", + "1168 0 \n", + "1143 0 \n", + "24 0 \n", + "254 0 \n", + "297 0 \n", + "935 0 \n", + "322 0 \n", + "495 0 \n", + "691 0 \n", + "501 0 \n", + "535 0 \n", + "176 1 \n", + "676 1 \n", + "636 1 \n", + "108 1 \n", + "800 1 \n", + "887 1 " + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "clusters.sort_values('labels').head(20)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Depois, montamos outro GeoDataFrame que contenha as posições e labels dos restaurantes que foram atribuídos a algum cluster." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "geometry = [Point(xy) for xy in zip(clusters.lon, clusters.lat)]\n", + "crs = {'init': 'epsg:4326'}\n", + "gdf = GeoDataFrame(clusters[['labels']],crs=crs, geometry=geometry)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
labelsgeometry
10POINT (-76.58942990000001 39.284518)
1431POINT (-76.6116007 39.2894404)
171POINT (-76.5560291 39.287256)
1822POINT (-76.59478399999998 39.300073)
212POINT (-76.61544169999998 39.2993421)
\n", + "
" + ], + "text/plain": [ + " labels geometry\n", + "1 0 POINT (-76.58942990000001 39.284518)\n", + "14 31 POINT (-76.6116007 39.2894404)\n", + "17 1 POINT (-76.5560291 39.287256)\n", + "18 22 POINT (-76.59478399999998 39.300073)\n", + "21 2 POINT (-76.61544169999998 39.2993421)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf.plot(column='labels', cmap='Paired');\n", + "fig = plt.gcf()\n", + "fig.set_size_inches(20, 20)\n", + "mplleaflet.display()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Conclusão: Nas zonas periféricas os clusters são bem definidos. Nas zonas centrais, os clusters se confundem um pouco. Lembrem-se que o DBScan é sensível à diferença geral de densidade entre as zonas. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n al Clustering Jer\303\241rquico/Notebooks/Pr\303\241ctica Guiada/PRACTICA_GUIADA_Intro_Clustering_Jer\303\241rquico_pt_br.ipynb" "b/5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n al Clustering Jer\303\241rquico/Notebooks/Pr\303\241ctica Guiada/PRACTICA_GUIADA_Intro_Clustering_Jer\303\241rquico_pt_br.ipynb" new file mode 100644 index 0000000..7801e46 --- /dev/null +++ "b/5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n al Clustering Jer\303\241rquico/Notebooks/Pr\303\241ctica Guiada/PRACTICA_GUIADA_Intro_Clustering_Jer\303\241rquico_pt_br.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"PRACTICA_GUIADA_Intro_Clustering_Jerárquico_pt_br.ipynb","version":"0.3.2","views":{},"default_view":{},"provenance":[]},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"}},"cells":[{"metadata":{"id":"Kb35a1tZ3o7P","colab_type":"text"},"cell_type":"markdown","source":["# PRÁTICA GUIADA: Clustering hierárquico"]},{"metadata":{"id":"VHxs1LRw3o7R","colab_type":"text"},"cell_type":"markdown","source":["## 1. Introdução\n","\n","Implementar um clustering hierárquico em Python é tão simples quanto invocar uma função do pacote SciPy.\n","\n","```python\n","from scipy.cluster.hierarchy import linkage\n","Z = linkage(X, 'ward')\n","```\n","\n","Aqui, `X` é a matriz de dados com a que trabalhamos, e `'ward'` define o método para calcular a distância entre os clusters. Nesse caso, usamos a distância de Ward (minimiza a diferença da soma quadrática das distâncias entre os clusters). Ao calcular a métrica específica de distância, o método implementa por padrão a distância euclideana.\n","\n","Depois de estimar os clusters, teremos que calcular o dendrograma usando a função `dendrogram()` de SciPy e fazer a representação gráfica com base em `plt` de `matplotlib`."]},{"metadata":{"id":"-D-wDvFb3o7S","colab_type":"text"},"cell_type":"markdown","source":["Para avaliar o grau de eficiência do algoritmo que mediu a distância, podemos calcular o coeficiente de correlação de copehenic. Essa métrica quantifica a correlação entre as distâncias originais dos pontos e as distâncias entre os pontos (as alturas do dendrograma no ponto em que os dois ramos se unem), e também permite avaliar se o clustering funcionou bem.\n","\n","```python\n","c, coph_dists = cophenet(Z, pdist(X))\n","```\n","É possível invocar a função que calcula o coeficiente a partir de SciPy e aplicá-la ao conjunto clusterizado (`Z`) e à distância do conjunto original (`X`). "]},{"metadata":{"id":"vCnMI7uH3o7T","colab_type":"text"},"cell_type":"markdown","source":["### Outros recursos"]},{"metadata":{"id":"ul95CKXM3o7T","colab_type":"text"},"cell_type":"markdown","source":["* [Documentação de SciPy para análise de clustering](http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.cluster.hierarchy.linkage.html)\n","* [O que é uma análise de clustering hierárquico?](http://www.saedsayad.com/clustering_hierarchical.htm)"]},{"metadata":{"id":"KVhnEq4T3o7V","colab_type":"text"},"cell_type":"markdown","source":["## 2. Preparar a análise e trabalhar com os dados"]},{"metadata":{"id":"3RXm47jh3o7W","colab_type":"text"},"cell_type":"markdown","source":["Vamos trabalhar sobre um conjunto de dados que detalha as habilidades de idiomas de diferentes países europeus. Vamos fazer uma análise de cluster hierárquico nesse conjunto de dados."]},{"metadata":{"id":"q3WkpSjW3o7Y","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}}},"cell_type":"code","source":["from matplotlib import pyplot as plt\n","from scipy.cluster.hierarchy import dendrogram, linkage, cophenet\n","from scipy.spatial.distance import pdist\n","import numpy as np\n","import pandas as pd\n","import os\n","from scipy.cluster.hierarchy import fcluster, cophenet\n","import matplotlib\n","%matplotlib inline"],"execution_count":0,"outputs":[]},{"metadata":{"id":"ojODrkZ-3o7c","colab_type":"text"},"cell_type":"markdown","source":["Vamos usar SciPy para a análise. Já conhecemos bem o conjunto de dados, então podemos passar direto para a análise dos dados..."]},{"metadata":{"id":"Qyb5Lyd23o7e","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}},"outputId":"d5a5f0fd-286a-442c-d131-74ba8a45e3fa"},"cell_type":"code","source":["from sklearn import datasets\n","data = datasets.load_iris(return_X_y=False)\n","data.keys()"],"execution_count":0,"outputs":[{"output_type":"execute_result","data":{"text/plain":["dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])"]},"metadata":{"tags":[]},"execution_count":2}]},{"metadata":{"id":"46S_iuac3o7k","colab_type":"text"},"cell_type":"markdown","source":["Extraímos os dados para uma matriz para poder passá-los ao algoritmo de clustering. Com o formato matriz (ou np.array), é mais fácil para o algoritmo calcular as distâncias."]},{"metadata":{"id":"ssMLlM8h3o7m","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}},"outputId":"2c6dd4c9-ff91-48d9-aa7c-7c693ce12fcd"},"cell_type":"code","source":["X = data.data\n","type(X)"],"execution_count":0,"outputs":[{"output_type":"execute_result","data":{"text/plain":["numpy.ndarray"]},"metadata":{"tags":[]},"execution_count":3}]},{"metadata":{"id":"rMCQzItq3o7s","colab_type":"text"},"cell_type":"markdown","source":["## 3. Calcular clusters"]},{"metadata":{"id":"oaaHJG1W3o7t","colab_type":"text"},"cell_type":"markdown","source":["Implementamos o algoritmo de clustering hierárquico usando o método de `ward`"]},{"metadata":{"id":"VPqgmpIg3o7u","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}}},"cell_type":"code","source":["Z = linkage(X, 'ward')"],"execution_count":0,"outputs":[]},{"metadata":{"id":"JBV6qN653o7y","colab_type":"text"},"cell_type":"markdown","source":["Agora, calculamos o coeficiente de correlação de cophenetic para avaliar a eficiência do cálculo das medidas de distância entre os pontos."]},{"metadata":{"id":"Nz0k-hHV3o7z","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}},"outputId":"fd4607a7-0c59-4594-deee-bab37d03ef11"},"cell_type":"code","source":["c, coph_dists = cophenet(Z, pdist(X))\n","c"],"execution_count":0,"outputs":[{"output_type":"execute_result","data":{"text/plain":["0.87260152506447042"]},"metadata":{"tags":[]},"execution_count":5}]},{"metadata":{"id":"yPFz4fig3o75","colab_type":"text"},"cell_type":"markdown","source":["O “C” deveria ser ao redor de 0.87, o que implica que as distâncias entre os clusters estão bastante correlacionadas às distâncias originais dos dados. Ou seja, o clustering parece preservar bastante a estrutura de distâncias dos dados originais.\n","\n","Vamos traçar um dendrograma. Para fazer isso, é necessário invocar o dendrograma a partir de `scipy.cluster.hierarchy`, passar os links como inputs e fazer uma rotação das tags para que possamos ver o gráfico de forma um pouco mais organizada. Podemos traçar o dendrograma com `pyplot` de `matplotlib`\n"]},{"metadata":{"id":"3fHiqist3o76","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}},"outputId":"972ee1fd-0936-4d69-e17b-500a5fdf77e1"},"cell_type":"code","source":["plt.figure(figsize=[7,7])\n","plt.title('Dendrogram')\n","plt.xlabel('Index Numbers')\n","plt.ylabel('Distance')\n","dendrogram(\n"," Z,\n"," leaf_rotation=90., \n"," leaf_font_size=5.,\n",")\n","plt.show()"],"execution_count":0,"outputs":[{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAboAAAG5CAYAAAD4Y/ErAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XmYZFV9//H3VxbZ9wFGVFDEBUUb\nRQRRmbiSoOIaZKKgPxRi1IhLkKhRXBLRIGiMURsloDIa4wqCKKIzKCo4SAuDoBgFBAYYRYZtAAe+\nvz/OqZmaorq7uqerq/vO+/U8/XQtdzn33HvP5557q25FZiJJUlM9YNAFkCSpnww6SVKjGXSSpEYz\n6CRJjWbQSZIazaCTJDWaQSfNABHx6oj48aDLITWRQSeNIiKuiogVEXFbRNwSET+JiL+PCPcbaRZx\nh5XG9oLM3BzYGTgOeAfwueksQESsP5OnJ810Bp3Ug8xcnpmnAwcDh0XE4yLigRFxfERcExE3RsSn\nI2JjgIiYFxHXRsTbIuKmiFgaEa9pTS8ito2I0yPi1oi4ENi1fX4RkRHxhoi4EriyvvbUiPh5RCyv\n/5/aNvzDIuK82vv8fkR8MiK+WN/bpU7v8Ii4BvhBff1/I+KGOr3zIuKxbdM7JSL+KyK+ExG3R8T5\nEbFjRHwsIv4cEVdExJ59q3BpChl00gRk5oXAtcDTgQ8DjwSGgEcAOwHvaRt8R2DL+vrhwCcjYuv6\n3ieBu4C5wP+rf51eBDwF2D0itgHOBP4D2BY4ATgzIratwy4ALqzvHQu8qsv09gceAzyvPv8OsBuw\nPfAL4LSO4f8WeDewHXA38NM63HbAV2sZpBnPoJMm7npgG+B1wFsy8+bMvA34N+AVbcP9BXh/Zv4l\nM88CbgceFRHrAS8F3pOZd2TmEuDULvP5UJ32CuBA4MrM/EJmrszMLwFXAC+IiIcCT67Tuyczfwyc\n3mV6x9b5rQDIzJMz87bMvJsSjk+IiC3bhv9GZl6UmXcB3wDuyszPZ+a9wP8A9ug0K3iuXpq4nSj7\nzibARRHRej2A9dqG+1Nmrmx7fiewGTCnjv+Htveu7jKf9vcf1GWYq2tZHgTcnJl3doz7kNGmV8P2\nX4GX1/LcV9/aDlheH9/YNu6KLs8361JmacaxRydNQEQ8mRIu36Q09o/NzK3q35aZ2UvjvwxYyZpB\n9NAuw7X/tMj1lA/EtHsocB2wFNgmIjZpe68z5DqnNx84CHg25fTqLvX1QGoYg07qQURsERHPB74M\nfDEzfwmcBJwYEdvXYXaKiOeNNR2Aeurv68CxEbFJROwOHDbOaGcBj4yI+RGxfkQcDOwOfDszrwYW\n1+ltGBH7Ai8YZ3qbU667/YnSM/238cotzVYGnTS2MyLiNsppv3dRPoDR+vTkO4DfAj+LiFuB7wOP\n6nG6b6Sc+rsBOAX477EGzsw/Ac8H3kYJp6OB52fmH+sgfwfsW9/7IOUa2t1jTPLzlFOf1wG/An7W\nY7mlWSf84VWpeSLif4ArMvO9gy6LNGj26KQGiIgnR8SuEfGAiDiAcv3tm4MulzQT+KlLqRl2pFz3\n25byPb/XZ+bFgy2SNDN46lKS1GieupQkNZpBJ0lqtFlxjW677bbLXXbZZdDFkCTNIBdddNEfM3PO\neMPNiqDbZZddWLx48aCLIUmaQSKi263z7sdTl5KkRjPoJEmNZtBJkhrNoJMkNZpBJ0lqNINOktRo\nBp0kqdEMOklSoxl0kqRGM+gkSY1m0EmSGs2gkyQ1mkEnSWo0g06S1GgGnSSp0WbF79E11fAwLFgw\n6FJIU2P+fDjiiEGXQro/e3QDtGABjIwMuhTS2hsZ8aBNM5c9ugEbGoKFCwddCmntzJs36BJIo7NH\nJ0lqNINOktRoBp0kqdEMOklSoxl0kqRGM+gkSY1m0EmSGs2gkyQ1mkEnSWo0g06S1GgGnSSp0Qw6\nSVKjGXSSpEYz6CRJjWbQSZIazaCTJDWaQSdJajSDTpLUaAadJKnRDDpJUqMZdJKkRutb0EXERhFx\nYUT8MiIui4j31dcfFhEXRMSVEfE/EbFhv8ogSVI/e3R3A8/MzCcAQ8ABEbEP8GHgxMzcDfgzcHgf\nyyBJWsf1LeiyuL0+3aD+JfBM4Kv19VOBF/WrDJIk9fUaXUSsFxEjwE3AOcD/Abdk5so6yLXATv0s\ngyRp3dbXoMvMezNzCHgwsDfwmG6DdRs3Io6IiMURsXjZsmX9LKYkqcGm5VOXmXkLsBDYB9gqItav\nbz0YuH6UcYYzc6/M3GvOnDnTUUxJUgP181OXcyJiq/p4Y+DZwOXAD4GX1cEOA77VrzJIkrT++INM\n2lzg1IhYjxKoX8nMb0fEr4AvR8QHgYuBz/WxDJKkdVzfgi4zLwH27PL67yjX6yRJ6jvvjCJJajSD\nTpLUaAadJKnRDDpJUqMZdJKkRjPoJEmNZtBJkhrNoJMkNZpBJ0lqNINOktRoBp0kqdEMOklSoxl0\nkqRGM+gkSY1m0EmSGs2gkyQ1mkEnSWo0g06S1GgGnSSp0Qw6SVKjGXSSpEYz6CRJjWbQSZIazaCT\nJDWaQSdJajSDTpLUaAadJKnRDDpJUqMZdJKkRjPoJEmNZtBJkhrNoJMkNZpBJ0lqNINOktRoBp0k\nqdEMOklSoxl0kqRGM+gkSY1m0EmSGs2gkyQ1mkEnSWo0g06S1GgGnSSp0Qw6SVKjGXSSpEYz6CRJ\njWbQSZIarW9BFxEPiYgfRsTlEXFZRLy5vn5sRFwXESP172/6VQZJktbv47RXAm/LzF9ExObARRFx\nTn3vxMw8vo/zliQJ6GPQZeZSYGl9fFtEXA7s1K/5SZLUzbRco4uIXYA9gQvqS2+MiEsi4uSI2Ho6\nyiBJWjf1PegiYjPga8BRmXkr8ClgV2CI0uP76CjjHRERiyNi8bJly/pdTElSQ/U16CJiA0rInZaZ\nXwfIzBsz897MvA84Cdi727iZOZyZe2XmXnPmzOlnMSVJDdbPT10G8Dng8sw8oe31uW2DvRhY0q8y\nSJLUz09d7ge8Crg0Ikbqa+8EDomIISCBq4Aj+1gGSdI6rp+fuvwxEF3eOqtf85QkqZN3RpEkNZpB\nJ0lqNINOktRoBp0kqdEMOklSoxl0kqRGM+gkSY1m0EmSGs2gkyQ1mkEnSWo0g06S1GgGnSSp0Qw6\nSVKjGXSSpEYz6CRJjWbQSZIazaCTJDWaQSdJajSDTpLUaAadJKnRDDpJUqMZdJKkRjPoJEmNZtBJ\nkhrNoJMkNZpBJ0lqNINOktRoBp0kqdEMOklSoxl0kqRGM+gkSY1m0EmSGs2gkyQ1mkEnSWo0g06S\n1GgGnSSp0Qw6SVKjGXSSpEYz6CRJjWbQSZIazaCTJDWaQSdJajSDTpLUaAadJKnRDDpJUqMZdJKk\nRjPoJEmN1regi4iHRMQPI+LyiLgsIt5cX98mIs6JiCvr/637VQZJkvrZo1sJvC0zHwPsA7whInYH\njgHOzczdgHPrc0mS+qJvQZeZSzPzF/XxbcDlwE7AQcCpdbBTgRf1qwySJE3LNbqI2AXYE7gA2CEz\nl0IJQ2D76SiDJGnd1Pegi4jNgK8BR2XmrRMY74iIWBwRi5ctW9a/AkqSGq2vQRcRG1BC7rTM/Hp9\n+caImFvfnwvc1G3czBzOzL0yc685c+b0s5iSpAbr56cuA/gccHlmntD21unAYfXxYcC3+lUGSZLW\n7+O09wNeBVwaESP1tXcCxwFfiYjDgWuAl/exDJKkdVzfgi4zfwzEKG8/q1/zlSSpnXdGkSQ1mkEn\nSWo0g06S1GgGnSSp0Qw6SVKjGXSSpEYz6CRJjWbQSZIareegi4idI+LZ9fHGEbF5/4olSdLU6Cno\nIuJ1wFeBz9SXHgx8s1+FkiRpqvTao3sD5d6VtwJk5pX4O3KSpFmg16C7OzPvaT2JiPWB7E+RJEma\nOr0G3aKIeCewcUQ8B/hf4Iz+FUuSpKnRa9AdAywDLgWOBM4C3t2vQkmSNFV6/ZmejYGTM/MkgIhY\nr752Z78KJknSVOi1R3cuJdhaNga+P/XFkSRpavUadBtl5u2tJ/XxJv0pkiRJU6fXoLsjIp7YehIR\nTwJW9KdIkiRNnV6v0R0F/G9EXF+fzwUO7k+RJEmaOj0FXWb+PCIeDTwKCOCKzPxLX0smSdIU6LVH\nB/BkYJc6zp4RQWZ+vi+lkiRpivQUdBHxBWBXYAS4t76cgEEnSZrReu3R7QXsnpne9kuSNKv0+qnL\nJcCO/SyIJEn90GuPbjvgVxFxIXB368XMfGFfSiVJ0hTpNeiO7WchJEnql16/XrCo3wWRJKkfev2F\n8X0i4ucRcXtE3BMR90bErf0unCRJa6vXD6P8J3AIcCXlhs6vra9JkjSj9fyF8cz8bUSsl5n3Av8d\nET/pY7kkSZoSvQbdnRGxITASER8BlgKb9q9YkiRNjV5PXb6qDvtG4A7gIcBL+lUoSZKmSq9B96LM\nvCszb83M92XmW4Hn97NgkiRNhV6D7rAur716CsshSVJfjHmNLiIOAeYDD4uI09ve2gL4Uz8LJknS\nVBjvwyg/oXzwZDvgo22v3wZc0q9CSZI0VcYMusy8Grg6Ip4NrMjM+yLikcCjgUuno4CSJK2NXq/R\nnQdsFBE7AecCrwFO6VehJEmaKr0GXWTmnZSvFHwiM18M7N6/YkmSNDV6DrqI2Bf4O+DM+lrPd1WR\nJGlQeg26o4B/Br6RmZdFxMOBH/avWJIkTY2J/EzPorbnvwP+sV+FkiRpqoz3PbqPZeZREXEGkJ3v\n+wvjkqSZbrwe3Rfq/+P7XRBJkvphvO/RXVT/L4qIOfXxsukomCRJU2HMD6NEcWxE/BG4AvhNRCyL\niPdMT/EkSVo7433q8ihgP+DJmbltZm4NPAXYLyLe0vfSSZK0lsYLukOBQzLz960X6icuX1nfG1VE\nnBwRN0XEkrbXjo2I6yJipP79zdoUXpKk8YwXdBtk5h87X6zX6TYYZ9xTgAO6vH5iZg7Vv7N6K6Yk\nSZMzXtDdM8n3yMzzgJsnXCJJkqbQeF8veEJE3Nrl9QA2muQ83xgRhwKLgbdl5p8nOR1JksY1Zo8u\nM9fLzC26/G2emeOduuzmU8CuwBDld+4+OtqAEXFERCyOiMXLlvmNBknS5PR6r8spkZk3Zua9mXkf\ncBKw9xjDDmfmXpm515w5c6avkJKkRpnWoIuIuW1PXwwsGW1YSZKmQt9+aicivgTMA7aLiGuB9wLz\nImKIct/Mq4Aj+zV/SZKgj0GXmYd0eflz/ZqfJEndTOupS0mSpptBJ0lqNINOktRoBp0kqdEMOklS\noxl0kqRGM+gkSY1m0EmSGs2gkyQ1mkEnSWo0g06S1GgGnSSp0Qw6SVKjGXSSpEYz6CRJjWbQSZIa\nzaCTJDWaQSdJajSDTpLUaAadJKnRDDpJUqMZdJKkRjPoJEmNZtBJkhpt/UEXQFrnDA/DggWDLsXU\nGvlY+T/vqMGWYyrNnw9HHDHoUmgKGHTSdFuwAEZGYGho0CWZMguHGhRwUNYPGHQNYdBJgzA0BAsX\nDroUGs28eYMugaaQ1+gkSY1m0EmSGs2gkyQ1mkEnSWo0g06S1GgGnSSp0Qw6SVKjGXSSpEYz6CRJ\njWbQSZIazaCTJDWaQSdJajSDTpLUaAadJKnRDDpJUqMZdJKkRjPoJEmNZtBJkhrNoJMkNZpBJ0lq\ntL4FXUScHBE3RcSStte2iYhzIuLK+n/rfs1fkiTob4/uFOCAjteOAc7NzN2Ac+tzSZL6pm9Bl5nn\nATd3vHwQcGp9fCrwon7NX5IkmP5rdDtk5lKA+n/70QaMiCMiYnFELF62bNm0FVCS1Cwz9sMomTmc\nmXtl5l5z5swZdHEkSbPUdAfdjRExF6D+v2ma5y9JWsdMd9CdDhxWHx8GfGua5y9JWsf08+sFXwJ+\nCjwqIq6NiMOB44DnRMSVwHPqc0mS+mb9fk04Mw8Z5a1n9WuekiR1mrEfRpEkaSoYdJKkRjPoJEmN\nZtBJkhrNoJMkNZpBJ0lqNINOktRoBp0kqdEMOklSoxl0kqRGM+gkSY1m0EmSGs2gkyQ1mkEnSWo0\ng06S1GgGnSSp0Qw6SVKjGXSSpEYz6CRJjWbQSZIazaCTJDWaQSdJajSDTpLUaAadJKnRDDpJUqMZ\ndJKkRjPoJEmNZtBJkhrNoJMkNZpBJ0lqNINOktRoBp0kqdEMOklSoxl0kqRGW3/QBZC0jhgehgUL\nBl2K3oyMlP/z5g20GBMyfz4cccSgSzEj2aOTND0WLFgdIDPd0FD5my1GRmbPQcQA2KOTNH2GhmDh\nwkGXonlmU89zAOzRSZIazaCTJDWaQSdJajSDTpLUaAadJKnRDDpJUqMZdJKkRjPoJEmNZtBJkhrN\noJMkNdpAbgEWEVcBtwH3Aiszc69BlEOS1HyDvNflX2XmHwc4f0nSOsBTl5KkRhtU0CXwvYi4KCK6\n/oBSRBwREYsjYvGyZcumuXiSpKYY1KnL/TLz+ojYHjgnIq7IzPPaB8jMYWAYYK+99spBFFLrqH7/\nQOh0/ainP8QpAQPq0WXm9fX/TcA3gL0HUQ6pq37/QOh0/KinP8QprTLtPbqI2BR4QGbeVh8/F3j/\ndJdDGtNs/4FQf4hTWmUQpy53AL4REa35L8jMswdQDknSOmDagy4zfwc8YbrnK0laN/n1AklSoxl0\nkqRGM+gkSY1m0EmSGs2gkyQ1mkEnSWq0Qf56wawwfNEwCy7tzx0mRm74GADzTjmqL9Ofv8d8jniS\nt4CStG4z6Max4NIFjNwwwtCOU3/LpqFj+hNwACM3lFtYGXSS1nUGXQ+Gdhxi4asXDroYEzLvlHmD\nLoIkzQheo5MkNZpBJ0lqNINOktRoBp0kqdEMOklSoxl0kqRGM+gkSY1m0EmSGs0vjEtSvwwPw4L+\n3EJwDSPlTkjMm9ff+cyfD0fMvrstGXSSerO2jfZUNMazraFdsKAs99DU30JwDf2ePqxef7Op/iuD\nTlJv1rbRXtvGeLY2tENDsHDhoEux9vrdW+wjg05S7wbZaM/ihlaD5YdRJEmNZtBJkhrNoJMkNZpB\nJ0lqNINOktRofupSktYF6/D3IO3RSdK6oPU9yMkaGlq770KOjEzPXWK6sEc3Qw1fNMyCSye/UYzc\nUDboeafMm/Q05u8xnyOeNMu+nKuZbW16FWvTo5htd1Tpl3X0e5AG3Qy14NIFjNwwwtCOkzuCmux4\nLa2gNOhmqPECo5dQGETjvzZ3V5lsb2K23lFFU8agm8GGdhxi4asXDmTea9MTHLhBX4uYjgAZLzDG\nC4VBNv7T3avoV0+il+2s123JHmdfGXRqnkHek3E6A6TXwBitQR4ZuX8DbIPbu162s162JXucfWfQ\nqZkGdS1iJt6PsVuD3K0BtsGduKnYzmbiNjMRvZ5BmciZkik+4DLopF70Y2eG6etB9dIgz/YGV4PR\n6xmUXs+U9OGAa50Jusl+inGyn170E4sNM9U7M9iDUnNM5RmUPhxwrTNBN9lPMU7m04sz4ROLg/56\nQiODfqpPh9qDWvd0OzMw2lkAr5dOmXUm6GD6PsU4Ez6xOMivJ8yEoFeP2hve9gZ3NjayY33oBkY/\nsJjOZfV66UCsU0HXb61eVGdvaFC9m0F9PWFag34iR8gwOxvwfmpveFsN7mxtZEc7vTzW6eRBLKvX\nS6edQTeFuvWi7N30Wa9HyDB7G/B+62x4Z3MjO9HTy7N5WZtgmk7lGnRTrLMXNRNOYzZer42bjdr0\nmQ2nEWeSzvrqVk9NrJtpOpU7a4Nuoh+2mMyHK9bmlGO305hN+oDGWPU/Xl03qR561uuR66Abs+Hh\nqblW18tpxKVL4cYbVz9fvvz+N/4ddH1Ml8766qy3mXA2YjIHL72sv2k4lTtrg26iH7aY6Icr1vaU\nY2f5+nEKc5BhM1b9j1XX034qdzIfthgvlDob6FajNNY0ezlynQmNWWu5h4bWvjzjNWDz5pV6nI5T\nzf1qpCc6/7G2wbHqa6INfT9OCU70GuhM2J6rWRt0MDUfthgvLDqDYiIB0V6+XnuSE/lAy6DDppf6\n71a/nfXa1x7eZD5sMV4o3Xgj3H47bLbZ6td62al7afjHMlpow9Q2yq1ytqbdrZEebZ69NOjd5tU+\nbrv225StzTJOZSM9kfoYbf79DoF+nRKcyDXQGXSpYFYH3VQYLSy6BcV09EY6y7P0tqX85ubfjDrv\nyYT9dF437FyeoR2HWHrb0lXLs/zu5YzcMLIqDPsSepP5sEUvR9dT9QGOXhvObqENozdWEw2d0XRr\nNEeb59o06GOdvpuKYOilke48mOi2LiZSH6PNfyIHNe3Tn8hp7tGWt9u0p/KAaTIHAn02K4Ju2Z3L\n7tc4dzs1N9lGcrywaO+VtHoj/eyFdPYEb7yjnCZbcOmCgV/bmsxXKLp9QOfGO25cI8xHbhiZntAb\ny1QFw0SnOZGGc7QeUKuxGqtBXpuwaM13vHl2lnG0Br3btcCxlq99ftC/RrPXddHvT6r285rdRA+Y\n1mb6azvtKdonZ0XQ3bziZpbfsHyNXtYOm+7AjXfcOGrPAKauoVyb620TCYbhi4ZXDTd80fCq9yf7\n5e3RTsuOdf1uvDqbyFcoRlse6B7m+++8f9fQu1+ZOhvbe+6BrbaqE67lmsxptckEw1RNczINZ/u0\nly6FRYvuP/2xQqc9bIaHJ9frmmwD1u1a4FjzmkyjOdlTvRNZF1N9cNQ5vc6yti/ThReW7X5oaOLz\nnMgB02SWcbQDo9Z21us0p2h7e8CEhh6gVsPY+pu7+dxVrw/tOMT+O++/xmmxRVcv4uhzjmbeKfMY\nvmj4ftMbvmiYeafMY+SGkVW9tNGGbc1n/h7zVz1vjTPa8C3twbDDpjuMWbb2UBrrE6Xdyt6tHO0B\n27ksnb2pznKNVxft62K0IO62PK3wG7lhZI3pt6bZWq+t9bnGwcvwcNkhjj66NOpLl5YdYMMNyzWz\nls5P7q0qRNtOs8MOZRpHH12mu6ogQ6t7F61pzZu35jCjTbPVaHfOu7XTL1zY270wWwHUahg6X2sv\nT2vac+fClluuLlMv02wfbiK/39fL8rTWVbcyd05nvJ+5ac1rIusF1mxIO6/R9rq83eqt2zx22KE8\nb21TY5VtrGmOtz21v9/a7tuHaa/3VhD2Wk+j7ReTWcZu0249n+g0W9tAa/2Pti7GMJCgi4gDIuLX\nEfHbiDhmIuO2N/It8/eYf78A7NpQtplIAHUbZ6xpd+qpEW8bdrweXGfZW+VulblVRxdedyG333P7\nqHXVecCw/87791wX7fMZK3A7l6eXMG8P0jXqon2n2XLL0ri3GsqnPQ0+8pHVw462M/QSDL2EV7dp\nTqTh7xZgYwVQZw+oW3k6ez6dy9Tt8VjjrI2J1mGn0eqll2m21zWUBnK8oBxt/fRyMDA0VLYngP33\nH395x5tmt4a928FNa7tvX3/jBeFoxtsvelnG0epwtAOaqa63MUx70EXEesAngb8GdgcOiYjdex2/\n1cjvsGk5Euhs5GGMhrJDZwA9cptHjjrNznFavbvOnsl4uvUMJzJ+t7Jv+cCyYbaCo1VHG6634arh\nl9629H7h1X5qEUoItodxe4h2C7Fe1sVoZR8vzDtDdNU0x+oFjHb0OGpBxmjkx2tsuha6xyP19rJN\nJIB66QGNZSpDbbRGrXN+kz0SH6texpvmRHsR7afRum07vdbbRHruvUyzl4ObscrRLQjH66GOV7ax\n9ouJ7n9jTXMyZRvDIHp0ewO/zczfZeY9wJeBgyYygaEdh5i7+VyW372c/Xfen+V3L+/aO2hvKLc6\nbqsxP23Y6zRbFly6gOV3Lx93uNHGXXT1IoZ2HJrU+N3K3u1To0M7DvG0hz6NW465ZY2e26KrF7Hg\n0gWrlqH9tdYwnb299vc75zOReuvVpOtobcPgfgVZUL7IPDRUGsaxdt7WsMuXj32k3i3A+tGr6qcF\nC0p9DA2Nvrztw45VL6MZr4c62bqeO7eMt//+a44/ldtOK0zWVr+254mui9Gm07lfrE15p6psXURm\nTukEx51hxMuAAzLztfX5q4CnZOYbO4Y7AjiiPn0U8OtpLagkaabbOTPnjDfQID51GV1eu1/aZuYw\nMPFzepIktRnEqctrgYe0PX8wcP0AyiFJWgcMIuh+DuwWEQ+LiA2BVwCnD6AckqR1wLSfuszMlRHx\nRuC7wHrAyZl52XSXQ5K0bpj2D6NIkjSdZs2dUSRJmgyDTpLUaAadJKnRZsWvF4wmIp6Xmd8d4/3X\nUu7EAvCtzDwzIv6mPn8K8HDgEuDPwG6Urz6syMzP9qm87wZuBzYD7s7Mf5/i6f9tfbgfcH5mfiUi\nXg1sX1+/MTNP7WE6nwG+BXw3M++dRDmeSNm2XgRcnplfmOg0ukxzK4DMvKU+3ywzb289rvNrfz+A\nJ9TRf5kdF6MjYlvgZmBz4Lb29yNig8z8S/twmZkRsTVwC/A44OrMvDUiHpSZ19dht+icVreyj7Js\n92bmbV3e2yQz7+xlWp3TaS9PRGyamXd0m39Hfa3MzCWjzW+0ZZyo9vU3xjCrlqfL4851DfBE4Dfl\nrbx9rPpom0drO9iG1et5jbKNte2NUfZozaej7KNtI5vVMq/a3jre7/p6l/n2NNwgjbW91/enZBtr\nN6ODLiLmARsBzwAeCVwK7AncClwGvKBu5K8EbqME1gHAZ4CvATtk5hER8R3g7+vdVjYEzgA+BJwN\nvB74BrBZZu4bEUvq/TgfBNzB6tD4SC3T54G7gL2AK4ARSjh+IiLeBDwNeAvwfspO92RgS+DVwK6U\nFfiPEXF+RGwJDAFbUL5m8QHKHWBW1OVYBLywzucmyh1iLqCE98a1/PtQvp6xe533CbWubo+IXYD9\nMvOgWvaRiNioTvvsWkfvAO4GngTsWMt8N/An4MyI2A74P+A+4OJaH7fXeR4ObAv8Fjg9M0+rq+4f\n6zjrA6+NiJ3rOjyHcsOAVn19DPgp8LeUmwZcRjkAObcO91zgZ/W1u4FvRMShwJnAfhGxeV2O19Rt\n47sRcUgt5+PrMnwO+J+I+CYloPaghPhhlAOOzwGPrwch76M0lp+NiFcCX6Bsf2+LiJPqNFcAXwe+\nVLeF/SJie+AXwC7AdvUA67M0XZC2AAARq0lEQVTAycDOtX4iIt4BnAKcRbnt3frAHMp3Se+IiMXA\nqcDz6rL/AfjbiDitbZmuBV4RERvU7eUVwELgH2odXh8Rc2t9XA48PyLOAF5UG5DXAqdRbr3301rn\nUZ9/CXhi3Ua+BxxJCfbT676zmLK93RIRB9d5bk7Z9rYC/r5t2u3LuA3lu7Pvoux359V6W4/yHdq9\nKWGzjLJvXQY8k7KvLqvr+ZfAwyNiY+CbwBa13j9O2d9/QNn+5wI3R8SmlK8yPbytPtYHdo6IX7Rt\nB8+q5TsDeFVEfK2WbWmdzz8D1wHndmx7I5R79r6Nso9/g9ImfLLW8R61zv61Ls/LI+Ja4KvA2yNi\nuNbRwZR2a35EXEnZ5w+JiJ8A1wAH1nGeB+xU7yx1Qt02dge2A77YMdz2EXFmLdcS4CTgTbUOWgf6\n1wA71TK8tm4Dd1Daqh/X9fAM4PuUbTGAH9bHF9T1Nbcu32eBH1HahkcBn2fNbWt+Zp4IEBFfBa4E\nnhcRV1H271fXZRiq28DlwHMj4suUffaezDy27tt7U9r/yMz30KMZHXSUjZDMfGdEfI+yY3+qvvbh\niHg4pXJ/DzwtM/8qIh5PaYQPoWxs76E0nK2j93OAl1B2uLPqUdSxrN4ALqzj/xvl1O4PgAPqQWNQ\nGt096zCLgf8AflV3wL8C7gEOBR5LCaiLKfV8KCU8/7PuANdTdrCfU0LrUMqGe3kNgadTNqhnAUsz\n818i4ixK4PwUeE4d7iBKj+2LlEb51lrO99T/j4yIo+t4i2q5n0MJw0MoAXcFpSG5jBIOD87MCyLi\nQuDDlOB6TC3PXZSdYXtKKN5Vx3lXROxU5/kkyg7yUMoByImUcD0B+DawXq2v51EC8RrKBv3Furwn\nsDrotql1uHldF8+mBMc9lB1iU0rj/466/l5B2blXUkLkPsoBxhMz8+11O9qJ0lDsUcv5FsrOvQUl\nhE+KiJfX4X5C2b6OB75S6+E0ygHJjcD5tT52qPW4AbAvpZE+nRJsm9U6OLhO50DgGZn5rIj4LqsP\nIg6t0zwUeFBmvioiHpeZ742IPYGjKKH+SODeWt7n1XX+E8rXdZbVOtuwLtubat2eSwnCfeu4x1MC\n5wZKI71jrZMtgBcDf6zLtl6t99fUaZ5dl/UQyr53Wl3/D+iYdvsyfr1uJ/vW9fhbyoHLtsBxdZs4\nu85rn1oflwAPBJbW7eDzlOB8NqXB/VTdBg6gHEw8ghJID6zl3Yly0PCitvrYBNi+rT3ZqZZj87ru\n/tBWtu3q8p1fx+3c9vav834IsFHdFy+i7INJaRv2revqHZR2Y2NK+/Ny4N+B59fxf05pD5ZQtqt7\ngCWZeWpEvLCW81bKfnIoZb86q47z1Drv1nArgIso+9B3KG3m0cALKNvm7+s4r4yIcyj78ZmUAPkZ\nZVt9MPB2Snt2X132gyjb8DxKYL6Yso8dQDnIuaDW2w+A/6IEX2vbens9MGudNfgXykHB+ZQDlXmU\nbea0WmefoNz+sbXP/joi7qS0DXMp7ffrmICZHnRXAhvUntI1mXkfcGR9DqVSNwD+DrgryimsjSkN\nOcD3M/Oz9UhsE8pKe2pmfrB9Jpl5PqXSoTS8T6dU6HLKjvvNzPwMQETsA7yB0pPbm3LEdylwNWVF\nrk85qntgZh4fEa+grNztgB9n5hl1OjtSjqCeSjlqvo7Sa7spyvcMz6nPf03pQVGX9Q+UBu/3dXkv\nBLamNPC/zcwfRcT5wD/Vsh3f1ht9YmYujYhfUnaW/6aE0lWUnsyddVq/qfNbSTmqX5+yAz0VeDfl\n1mxJORJbRNno9q6vfQr4c2Z+MSKeSukZvJCyg72V0mhcVad3Uh1ne8qByCGUHbh139MVlJ35MEpj\nuCelF7EB8PTM/G49qt+CcjQYwFsys9Urf0Vdh4dTdkKAYygNwo2Uo9HtgCMz8/sRcTqrr1sfRQnI\nzYG3ZuY9dTu6lxKgr6c0PntTgnYlpSG8sM7/H2p5/45yZLwncEy9kfk36tEslF7Qa4D/BM7MzEvr\n+tmovv/vAJl5cUS8hNLAXg18OTP/HBEPAH5Vl+8gSg/17FqfO9e6W0I5Nb8sM6+NiL/U5Tk4M68G\niIiFtS7OpgTkXXXZdqp1fzkliJ5d1/lcynb5tLpsl9d1fG0dZgi4JyKOoux721Iatx9QGtMja13f\nRWns9qvzv4nSSH6krvs/1Xp+Yq33lZTwWr8u80OABbXcL6vDv7E+P6vOrxUS+1F6gsOUXtRhlPbi\nNEowXFfX+QNr+S+gNPZPoGzDH6AcED0DOCozr6711to/35aZ50XErZSgWhkRd1EOYL9DOej7L0qQ\nvaHWwy/rNDektAebAW9s+27xsZSgPpJywPlNShhsU9fBhXW4/6Nsm3cCj6Zs9z+qdb4F5YDh6jq9\nb9f9405WHwh+jRIwJ9X6XELZ/35FCb0llIBZTDkIWq/Of7+6Tvao9dD6dZqVlDby4fX1JZTvTp9f\n62NDSkC+Gfho3R7fUcd7KGUb+2M90/KD+vxxdfqXUDoqPZvpQbcDsG1mHhMRl9aeSVAa3E8AD6OE\nzEaUhqf1/u51nPd2mc577zeXNd1L2eAeCLwXmA+8rJ5mDMpG9CpWn+58RT0yur2O83pKyLwsIlZQ\ndpStKTte+/WxFZQd92fACzPz8Ih4flvZL63jPYMS9lAandspO/j76/I+nfKTR0dTNliAv9R6+VjH\nPP8pIi6u49zTNs4bKadxbqZs2F9qK+P2tTznUHoox1M20ospDdsltT5a9XJ0fR9Kb+LiWm9PrnXz\n3LqMh0fEJZRe3FbAbpl5cF3uL9bxdwU+TWnc76IE6+GUjX6/KDcEv5jVR5ZvBY6LiCWU09l/qMOu\nyMxP1Gm+gXLw8FTKUe5Kys73fcrR8pNrGVaNExEnR8QVrD5lvKg+vqBt2ZZQtp2ja0/4akqj+3rK\naZb3R8QX6zK3egoXU47qH0YJuwMiYhGlAb4qIlbW+e/TNp+f13k/vw7bmnersfkKsGtmjgDXRMTJ\nlBDaj7IdvY7S8AO8MCJay/GcWqZn1elfSAmxeykHQ2dl5ssi4tvAHpn51xHx/cx8aUScTQmzD1F6\nB7vUx9+iNHQ/YnUwPZ3S63wipdE+l7KfPbD2/r5Tt5FvAgdn5iF129uScurzW7W+zqzvf7Ce6Wid\nbTmTcqD2jMx8eJTfu9yHsq/9iHI25O6298+u5d27Tvsh9dLCd+o0W43sPcCczLwJ+GpEfC4irqEE\nw19RguLQiHhyfX5PlJ32/Mz8SET8c63HA1v1UudzJqvbtA3reryv7qcnUbb5aykHkI+gHLxuWOv1\nSsrlm7soZ4vuoWzbu2XmpnUZnld7sOfUdflvlKB5J+WAcXEt0x6Z+aA6zspaN2dRtuEVtVy71GW4\nhtJrbIXlHMp2+Vxg/8x8dq3Xx1H2w6fU6byzblM/oAT1VrXMb42Ip9V5PKpOa2fKtdZ/bNsmLgZ2\nysxN6pm6ns30oDufEgQAX2nrmTweIDOPq6f4fpeZV9RTkCdTKhRKA9A5nVUX2rsZZZoPa5v3ii6n\nOz9NaTy6jfORKB8I2Tozr+mybPtQAgPKDnVc+/JGxAWUHtIldYVvCfxf23we3VaeD3Qswy0d8/x0\nZi6KiF/XeS5pG/85lNNs7eO011trGW/JzBPr9Bdl5j93qZcPtM9vjHr737qMP6YcXLSW+8N1nNby\nLqUcKNxA6YktpTRWm9b6OosSLK3Tw5+jNDYvpDQil0c5VdpqDC+nXEd6DiWoW6emn0PZcU/oGGdv\nygHAEsoR8AmUHnfrFOvZdZnPALbJzENr7/mCurwL69HqoymN191t83wGsEs9Tdk6Xb07pbc9RDnY\nac3n23X+7eVozbu9Dv4hInZldQP6OspB2Pod77fP+yXARzvmcwzl1PyHgLNr43IppWcC8JP62icp\np1A/RLles2t9/EPK6fC/phxsvofSED+2vn9GraPvUg6yqMvw+7oezo6IIylhuE3HNP+mzv/IWp8f\npTT8b6p/K2rZvlbf/y3lYGjHWo4VXcr+Q+CyOs0/1XLcRukpHgd8JiLWr3W0b63Xy4E/R8Qj2ur6\nOkqv9pdt63k7SiPfOZ/lta7bt8fWdn00pTd5JGX/y8w8MiJeyupLJH+qpy73pWyTr6z10F6XUK7f\nzanTOyEzfxoRzxyj/gHOq+8fT9nX74uIx1JOWz6Rsi9+HPhjZl4AXFA7JJ31ekbb+4dQeuoPzsw3\nAURE69pt+/6zL3BOlMs8rXWxLeVaOJSA7pl3RtGsEBGPoTQu11GOKPel7BTHR8T+wONz9QeCvk85\njbcz5drLjm2BfGxmHlsfH0np/W6YmZ+OiN2AD1Kud91vnPr+2ymhty1lB4RydP7m2gg8s5bjwCyf\n8n1CZv6ybX7n1bK35vlYyvXlz0TEgcDv6vsPoDSASTn1BKV3/a6OcrTm3V4HH2or+79QDlB2Ba5s\nf79j3q+j9MpWzaeOf2Bmnrl2a6+/an20Dp7ua+u9T/V82tfl8VmuHz2B0jv8RFtdQwmV31HXcx3n\nyNYlkLZpPrZ1mrJte9wmM4+vr308M99cH7+pfdk6xp3x66mlfV+ulx/2rwfg99t/pmqeM71HJxER\nX2L1KdD3U3oZAbwpyjWq+ZTTcptQjuY3plyf24ByPfBVEfHnOs5ro1zYnl/f/3ydzhZtr/1inHF+\nB/w/yulzgJdGxHUd5Xgq5TTaMfU0VNSytZd9i7Zxtmp7f42ytc3nsIhY3lGObvNuL/uRdfxnAM/q\neL9z3p3zafUIZ3oD+n7K9SBYfVmjH9rX5Ssi4ibWrPdWXR/C/betVl1+pmOa767T7NweH1DHaa3f\n9ks2nePOlvXUuS8fRLlu9/cR8RS67z9TIzP9829G/1HO+7cev6bzMeUa3uPHe60f44zx/uNnetnH\nG6d9OWbyX0cd96283dblBOv1fmVrTXMy62K6lrvf62qUOpjS5fHUpSSp0bwFmCSp0Qw6SVKjGXTS\nKCJizPsZdhl+XpTvma3tfOdFREbEC9pe+3aUW+KttYi4Ksqt3aR1gkEnzUzXUr4gPaPU75FJs4pB\nJ42j9rAWRsRXI+KKiDgt6reAI+KA+tqPKbdIao2zaZQ7qvw8Ii6Ock9SIuKtUe5WQkTsEeUm4pt0\nme0vgeVRvsjfWZ5VPbKI2CvKbaiIiGMj4tSI+F4d5iUR8ZH6Jd6zo9xvsOWfIuLC+veIOv6ciPha\nLfPPI2K/tukOR7k/5Ocj4rF1vJGIuKR+j02asQw6qTetmyrvTrn90n5R7vJ/EuVWYk+n3HWj5V3A\nDzKzdUuof49yR/2PAY+IiBdT7n5yZLb9DE+HD1LuLToRu1Ju6XQQ5VZqP8zMPSi3cTqwbbhbM3Nv\nyj02P1Zf+zhwYi3zSyl3OWl5EnBQZs6n3J/z45k5RLmX4rUTLKM0rTwNIfXmwsy8FsrPHVHu+3c7\n8PvMvLK+/kXKXdeh3JvvhRHx9vp8I+ChmXl5lFvCXQJ8JssNxbvKcoNuotwarFffycy/RLlf53qU\nW4RBuXXXLm3Dfant/4n18bOB3WPVz7uxRZSfyIHyM0wr6uOfUn6t4sHA11vLL81UBp3Um7vbHt/L\n6n1ntC+iBvDSzPx1l/d2o4Tkg3qY779Seocr215byeqzMRt1DH83QJb7Ev4lV39R9j7W3N+zy+MH\nAPu2BVpZkBJ8q360NTMXRLkH64GU3wB8bWb+oIdlkQbCU5fS5F0BPCzKDZKh3Pqp5buUWzm1ruXt\nWf9vSTlF+Axg2yg/pDmqzPwe5cbOT2h7+SrKqUQopxgn4+C2/z+tj7/H6p9IIiKGuo0Y5Xcgf5eZ\n/0H5RYvHT7IM0rQw6KRJysy7KKcqz6wfRrm67e0PUO5deEmUnw1q/aLDicB/ZeZvKD85dFyU39Qb\ny79Sfgyz5X3AxyPiR5Te5WQ8sPbK3kz54Vkov3e2V/2Aya8o1+K6ORhYUk/hPppyf0ZpxvIWYJKk\nRrNHJ0lqNINOktRoBp0kqdEMOklSoxl0kqRGM+gkSY1m0EmSGs2gkyQ12v8HUt9mznTNCDoAAAAA\nSUVORK5CYII=\n","text/plain":[""]},"metadata":{"tags":[]}}]},{"metadata":{"id":"S0rOcLmr3o7_","colab_type":"text"},"cell_type":"markdown","source":["O próximo passo é definir os clusters. Existem muitas formas de automatizar esse processo, mas uma boa possibilidade é estimar os clusters (a quantidade) através de uma análise visual do dendrograma. Além disso, isso ajudará a entender a lógica e a estrutura por trás desse tipo de gráficos.\n","\n","Contudo, como geramos os clusters no fim das contas?\n","\n","1. definimos a quantidade de clusters que vamos usar (inspecionando o dendrograma)\n","2. usamos a função `fcluster` da biblioteca `scipy.cluster.hierarchy` que retorna um array com o pertencimento de cada observação a um cluster.\n","\n","Onde vocês definiriam o número ideal de clusters nesse dendrograma?"]},{"metadata":{"id":"M6SDkYs43o8A","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}},"outputId":"980d56db-d04a-433b-85eb-0c97d2a2cdb6"},"cell_type":"code","source":["max_dist = 7.5\n","clusters = fcluster(Z, max_dist, criterion='distance')\n","clusters"],"execution_count":0,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n"," 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n"," 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n"," 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n"," 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3,\n"," 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2,\n"," 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3], dtype=int32)"]},"metadata":{"tags":[]},"execution_count":7}]},{"metadata":{"id":"wu2tP0ZL3o8F","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}},"outputId":"3ad8ee03-648a-4a28-fc3c-4b00ed1a6db0"},"cell_type":"code","source":["plt.scatter(X[:,0], X[:,1], c=clusters)\n","plt.show"],"execution_count":0,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{"tags":[]},"execution_count":8},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXeYFFXWh99bXR0nMjDkLDkpkpOK\nYELWAAYwrCiKWdRVv110dw1rWrOua1pzwoyKGEEMICJBUEAkg6QZJodO1XW/P2oYZqaroQd6Ivd9\nHh5m6lbdOjVdferWvb9zjpBSolAoFIrGhVbXBigUCoUi8SjnrlAoFI0Q5dwVCoWiEaKcu0KhUDRC\nlHNXKBSKRohy7gqFQtEIUc5doVAoGiHKuSsUCkUjRDl3hUKhaITo8e4ohHAAS4DtUsrxVdqmAA8A\n28s2/UdK+b/99desWTPZsWPHahmrUCgUhztLly7dI6XMPNB+cTt3YDqwBkiN0f6WlPKaeDvr2LEj\nS5YsqcbpFQqFQiGE2BLPfnFNywgh2gKnAvsdjSsUCoWifhDvnPujwC2AuZ99JgohVgoh3hVCtLPb\nQQgxTQixRAixJDs7u7q2KhQKhSJODujchRDjgSwp5dL97PYx0FFK2Q/4CnjZbicp5bNSyoFSyoGZ\nmQecMlIoFArFQRLPyH0EcJoQYjMwEzheCPFaxR2klDlSymDZr88BAxJqpUKhUCiqxQGdu5Tyb1LK\ntlLKjsAkYJ6U8oKK+wghWlX49TSshVeFQqFQ1BHVUctUQghxJ7BESvkRcJ0Q4jTAAHKBKYkxT3E4\nkbsrD82hkZ6ZVtemKBQNHlFXlZgGDhwolRRSAbBhxWbuPf8xdmzYDVJyxFEdmfHG9bTq3KKuTVMo\n6h1CiKVSyoEH2k9FqCrqlKK8Yv5y3D/ZsvoPwsEw4ZDB2iUbuH7U3wmHwnVtnkLRYFHOXVGnzH39\nO4ywUWmbNCX+Yj8/frKsjqxSKBo+yrkr6pRdm3YTLA1FbTdCBllb99SBRQpF40A5d0Wd0mtYd7zJ\nnqjtDt1B90Fd6sAihaJxoJy7ok4ZfvogWnTMxOl2lm9ze130GNyVXsO61aFlCkXDRjl3RZ2iO3Ue\n/f5fTJg+jsx2zWjZqTnn3TqBu+fMQAhR1+YpFA0WJYVUKBSKBoSSQioUCsVhjHLuCoVC0QhRzl2h\nUCgaIcq5KxQKRSNEOXeFQqFohCjnrlAoFI0Q5dwVCoWiEaKcu0KhUDRCDrpYh0IBEIlEmP30F3z0\n388JloYYOXEI582YQGpGSl2bplAc1ijnrjgk7r/wCRZ+9FN5ZseP/vMZC2f9xLMrH8Ljc9exdQrF\n4YuallEcNNvWbmfBrMWVUvaGQwZ5u/OZ+9q3dWiZQqFQzl1x0Kz9aQMO3RG1PVASZMU3q+rAIoVC\nsRfl3BUHTWbbpmCTuNHp0mmt6p8qFHWKcu6Kg6bvMT1p0jwNzVH5NnI4HYy7bGwdWaVQKEA5d8Uh\noGkaD359Bz2GdMXp1nF7XTRv34y7P5lB8/aZdW2eQnFYo9QyikMis21THvv+X+TtzifoD9GiQ6Yq\nsqFQ1AOUc2/EhENh5r72HV/PXIA3xcOp005g0ElH1ci5mrRIr5F+FQrFwaGceyMlYkS4ZeydrFu2\niWBpEIClX6zgjGtPYeo959exdQqFoqZRc+6NlAWzFrP+583ljh0sieL7j35C9h85dWiZQqGoDZRz\nb6Qsmr2UQHEgarumO/j561/rwCKFQlGbKOfeSEnLTLUNMNI0QUqT5DqwSKFQ1CbKuTdSTpk6Bt0Z\n7dx1p86AE/vVgUUKhaI2Uc69kdK+Rxtu/N8VeJLc+FK9eFM8ZLRK5/4v/47T5axr8xQKRQ2j1DKN\nmOMnj2L46YNZvXAtbp+bnkO7omnqea5QHA7E7dyFEA5gCbBdSjm+SpsbeAUYAOQA50opNyfQTsVB\n4vG5OXpsw5+GKcwp4stXv2HXpix6D+/OiDMHqzcQhWI/VGfkPh1YA6TatE0F8qSUXYQQk4D7gXMT\nYJ9CwbplG7np+NsxwhFC/hCfv/g1r931Lo8tvJukVF9dm6dQ1EviekcXQrQFTgX+F2OX04GXy35+\nFxgjVAy6IkHcd8HjlBb6CfmtvPH+4gA7NuzmzXvfr2PLFIr6S7wTsI8CtwBmjPY2wDYAKaUBFABN\nD9k6xWHPnh257NycFbU9HAzz9ZsL6sAihaJhcEDnLoQYD2RJKZfubzebbdKmr2lCiCVCiCXZ2dnV\nMFNxuOLQHSCjbiWrzUbqqVAoLOIZuY8AThNCbAZmAscLIV6rss8fQDsAIYQOpAG5VTuSUj4rpRwo\npRyYmalSwioOTJPmaXQ+siOaVnn84Pa6GDd1TB1ZpVDUfw7o3KWUf5NStpVSdgQmAfOklBdU2e0j\n4KKyn88q28d+uKVQVJNb37yeJi3T8aV4cXmceJLc9B7Rg4k3jj/wwQrFYcpB69yFEHcCS6SUHwHP\nA68KIdZjjdgnJcg+hYJWnVrw2qb/snjOcrK27aHH4C50H9RF5Y1XKPaDqKsB9sCBA+WSJUvq5NyK\n6rHgw5/49p2FtGifyaQZZ+JL9ta1SQrFYYsQYqmUcuCB9lMRqoqYGIbBlK7XsXvLvsXvmffP4o4P\n/49h4wfUoWUKheJAqFh0RUwevfzZSo4dQErJnRMfwDRjqWIVCkV9QDl3RUy+eXuh7XYjHGHZlytr\n2RqFQlEdlHNXxMSMxB6d+0uiC4EoFIr6g3LuipgcNbqP7XahCYaddsD1HIVCUYco566Iyf+9ei1u\nnytq+7R/X4iuq7V4haI+o76hipikZqTwbtbzvPSPt/jps+U0a92UqfdMptvALnVtmkKhOABK597A\n+e69RSz54mdGnD6IweMarjwxHArz24/rcega3Qd3weFQeWMU9QcpJauzsygMBunXoiVJrug32gNh\nmCYrdu/ElJKjWrTCeZD3uNK5N3Jyd+VxQaerCQfDAMx5bi7uJDcz/3ia5LSGVQD7p8+Wc/fkR5FS\nIqXE7XVz54f/R88hXevaNIWCrQX5XPzh++wuLkbTBIZpcuuo4zi/75Fx97Fkx3aumP0hwUgEATg0\nwROn/ImR7TvUmN1qzr2BclnfG8sd+16CJUGmHXlTHVl0cOzZnsMdZz1ESUEppYV+/EUB8rMK+OtJ\ndylFjqLOkVJy0az32FKQT6kRpjgUImAY3PPdfJbt3BFXH4XBIBd/+B65AT8l4RDF4RAFwSCXz55F\ndmlJjdmunHsDJBKJUJhTbNuWvTWnlq05NL567VtbyaU0JQtn/VQHFikU+1iZtZvs0hLMKtPXAcPg\nlRXL4+rj8w3rbLNWm1Iy+/e1iTDTFuXcGyChkFHXJiSMgj1FUW8gABEjQmFOUR1YpFDsoyAQwGGT\noE5C3KPu/ICfsBmJ2h6MRMjzlx6qiTFRzr0B4vW6Y2ZEdOgN6yMdeOKReJI9UduFEPQf07cOLFIo\n9nFUy5aEItGO2aPrnNA5PtXY8LbtcWjR30uf7mREOzXnrqjC5Bln2m6/9P6qqfbrN/3H9KXPiO54\nktzl2zxJbkZPGkHH3u3q0DKFAlLdHm4cOgJvhbgOj67TNiWVc3rHN/jo3bwFJx3RFZ/TWb7NqzsZ\n2rYdg9u0TbjNe1FSyAbMF6/M56kbXqK0oJTkjGSuf2oaoyYOrWuzqk3EiDD39e/48tVv0J06p0w9\nnlETh6p87Yp6ww/btvLKyuXk+P2cfERXzu3dt1pySFNKPl33O2+v/oWIKZnYszende9hO6I/EPFK\nIZVzb+CEAiHydhfQpGU6LrfzwAfYUFrkpzivmKZtMmz15ZFIhJztuSSlJ5GU6jtUkxUKxSGgdO6N\nHNM0efG2N/ng8U+t6uSaYNItp3PerRPjHvEGSoM8fNnTfP/+j2gOgcfn5qrHL+H4SSPL95n/1gL+\nc+0LBEoCmKZkxJmDufG5K/AmRc+TKxSK+oNy7g2Umfd9wAePf0qwNLhv2/2zSMlI5rSrTo6rj/sv\nfILFny4rV6sES0M8fOlTNGudQb9jevHr92t4cOp/CZaGyo9ZOGsxIX+IOz64JbEXpFAoEopaUG2A\nSCl558GPKzl2gEBJkDfv/SCuPvKyCvhxzjJCgSqBUKUhZt5n9THz/lmVHDtAKBDmp89+JndX3iFc\ngUKhqGmUc2+AmBGTkgJ7jW1+VkFcfeTsyMXptn9x27UpC4CdG7Ns251unZwdyrkrFPUZ5dwbIA7d\nQasjWtq2dezbPq4+2nRtRcSIjgx16Bp9RvUEoO+onjh0mwXWcIS23VpVw2KFQlHbKOfeQLnq0Yuj\ncq27vS6uePCiuI73Jnk4/9YJuH379OWaJvAkeZj8N0tDP/lvZ+JJcqNp+xZo3T43k2dMwJvsTcBV\nKBSKmkJJIRswK75ZxSu3v822tTvo1KcdF905iV5Du1Wrj/lvLWDm/bPI211Av2N6MuWuSbTpsm9U\nvmPDLl76x0xWzF9NkxZpnHvLGYyeNCLRl6JQKOJE6dwVCoWiEaJ07geJlJLZz3zB6/96j7zdBbTp\n2oorHrqIwaf0r1U7ivKKefrGl/nm7YVEIiaDT+nPNU9MJbNt01q1Q6GoKUrDYe5f8C3vrVlFKBJh\nWNt23H7cGDqlN6lr0xoFauRehXcf/piX/vFWJZmh2+vizo/+ytG1lMjKNE2u6H8z29buwCjLAKk5\nNNKbp/HS74+rACJFo2Dye2+zfNeO8sRcAkh1u5n750vI8KpI6FjEO3JXC6oViEQivHbXu1H68aA/\nxIu3vlFrdvz89Sp2bcoqd+xgyR9LC0v55q2FtWaHQlFTrMnOYsXunZUyLkogaESY+esvdWdYI0I5\n9woU55VEBfXsZdva+KquJIKtq//ACEenGQ2UBNmwYnOt2aFQ1BTrcnNs86QHIga/Zu2uA4saH8q5\nVyA5PQmXxz75VpuutafrbtejNbozWl/uSXLTqW/N5X9WKGqLI5pkRFU3AnA7HPTObF4HFjU+lHOv\ngEN3MHlGZe03WHPul9w9udbs6D+mL83bN6vk4DWHhjfZw+jJSoaoaPj0bt6CPs1b4KqQhVQAbl1n\nUp9+dWdYI0I59yqcc9NpXHrveTRpkQbCGrHPePN6BpwQf6XzQ0XTNB7+9k6OOXs4TreOQ9cYdPJR\nPLHoXrWYqmg0vHDaBCb27I1H19GEYGjbdrx39mSa+tRiaiJQapn9IKWs84IRez+furZDoahJ6sN3\nraGQMLWMEMIjhFgshFghhFglhLjDZp8pQohsIcTPZf8uPVjD6xN1ebOVFvu59dR7GOeZzMnuSVw/\n8jb27MittM9H//2MM5tO4ST9HM5qMZUvXv66UntRXjHP3vIKF3S6iqm9rueDJ+YQsakHeShEIhFm\n/edTpva6ngs6XcXTN71MYa4qbK2oHsqxJ54DjtyF9VdPklIWCyGcwPfAdCnlogr7TAEGSimviffE\nDWHkXleYpsnZLS+lcE9lJ+l0O3k/5wU8Pg+v3/MeL902M+rYax6/hNOvOYVAaZDLj7yJrG17yiWV\nbp+boeMHcNvMGxJm6z3nPcrCj34qTw3sdOk0a9uUZ1c+hKfK2oVCoTh0EjZylxbFZb86y/7VzVzO\nYcIXL8+PcuwA4WCYF297C4DX7njH9tjn/voaAF+/+T25u/IqaeWDpUEWfbyELWv+SIid29ZuZ8Gs\nxZVyvodDBnm785n72rcJOYdCoTg44lpQFUI4hBA/A1nAl1LKH212myiEWCmEeFcIocrWHwKLP10e\ns23F/F8JBUK2Onig3NGu+GYVgZJgVLvQBGsXr0+InWt/2mCbEjhQEmTFN6sScg6FQnFwxOXcpZQR\nKeVRQFtgsBCiT5VdPgY6Sin7AV8BL9v1I4SYJoRYIoRYkp2dfSh2N2padW4Rs61Fx0x0V+yUQKIs\nPW+rzi1si3EITdAsQflpMts2tfRrVXC6dFrv5xoUCkXNUy0ppJQyH5gPnFxle46Ucu8w8TlgQIzj\nn5VSDpRSDszMzDwIcw8Pzr9tYrmTrsql956PpmkcNbq3bfuIMwYDMO7SsVGjas2hkZ6ZFvPY6tL3\nmJ40aZ6G5qh8GzmcDsZdNjYh51AoFAdHPGqZTCFEetnPXmAs8FuVfSqGb54GrEmkkYcbvmQv93/x\n90rFOBxOBze/dA3turcB4N7Pb6PbwM6Vjut7TE/+/vaNgDWqvvfTW2nRMROX14XTrdNjSFcemn8H\nmpaY8AZN03jw6zvoObQrTreO2+uiRYdM7plzK83bq4e3QlGXxKOW6Yc1zeLAehi8LaW8UwhxJ7BE\nSvmREOJeLKduALnAlVLK32J2ilLLxMv6nzcRDobpPqiLrVPO31PIppVbOOKojqRmpES1SynJ2roH\nl8dJkxbpNWZnXlYBIX+I5u2bKVmbQlGDqGIdh8C2tdt5/9FP2PrbdvqM6MEZ155Sbcf4yXNf8sY9\nH1BaUEq/Y3sx/anLyGgZf55q0zR56R8z+fT5eZhGhGPOGsaVj0zB5dk3mt+5aTfvP/oJG1duodvA\nI5gw/dRK+d7DoTBzX/uOr2d+jzfFy6nTTmDQSUdV6zqytmbz6BXPsnrR76Q0SeaiO85h7AXHVquP\n+oIMLUaWvA5mHnhORPjOQoj4I35NKfls/TreW/MrUsKEnr0Y17U7WoWH2ab8PF5YvpT1uTkc3ao1\nU448msykpJq4HMVhinLuB8mKb1Zx2/h7CQXCmBETp1vHk+ThyZ/uo1Wn+BYJ77vwcea+/l2lbbrT\nwaub/kuz1hlx9XFp3xvYsqqyZDGtWSozdzyDruv8vnQDfxl9O0YwjBGOoLscuDwuHltwNx17tyNi\nRLjp+NtZv3xTuWrGk+TmjGtOYeq958dlw/YNO7mkx/WYkcqFtE+/5mSueXxqXH3UF8yS56HoccBf\ntsUDekdE07fjdvA3fD6HLzesp9SwMof6nE6O69CJJ04ZjxCCn3b8wZRZ7xGKRIhIiUtz4HXqzDr3\nAjqk19xbk+LwQuVzPwiklDxy2dMESoLlDi0cNCjJL+GFGfHlc8/Lyo9y7ABGOMIjlz8TVx8/zF4a\n5dgBCvYU8u6DHwPw+FXPESgOlEsijVAEf5Gfp254CYAFsxaz/ufNleSQgZIg7z/2Cdl/5MRlxwMX\nPRnl2AE+/M9nBEoDcfVRH5BmARQ9yj7HDhAAYwuy9MO4+li5exdfbFhX7tjBqiT09eZNLN+1E4AZ\nc7/EbxhEygZMITNCUSjE/QuU5l9R+yjnXoGivGJ2b90Ttd00JUu+WBFXH/P3U0zjl29Wx9XHV69+\nE7Ptm3d+IBKJ8PuSjVFtUsLKb61zLJq9lEBxtAPWdAc/f/1rXHb8vnRDzLYfPqx/b10xCS0DYZfK\n2Q/Bz+PqYuG2rZUKS+wlaIT5fusWioJBthTkR7WbUrJg25bqWqxQHDLKuVfA7XXFbEtKiy9TXbM2\nsaddPMnxheOnZ6bGbEtpmoymaThj5J33pVhTDGmZqbYBRpomSGmSHJcdsXLbAzRr14BquWpp2AdV\nC9Diu440j6dSetq9uHSd9LI2zU70DyS7Yt9XCkVNoZx7BdxeNyPPHBwV/OP2uTjz2lPi6mPEGYNj\nBhmddcOf4urj/Nsmxmybcse5CCE4+eLRUc7X7XVx6uUnAHDK1DG2BT90p86AE+PLlz3+ipNst3uS\n3PQd2TOuPuoFzqNApBMdceVB+OJbfzilS1dbFZAATu3aHbeuc0rXblEPAI+u8+d+tVtcXaEA5dyj\nuP6Zy+k1rDtur4ukNB9Ot5PRk0ZyxnXj4jpe0zT+/dU/ohzrkFOP5pybT4+rj4yWTbj+mWlU9SWT\nZ5xJr2HdAZj2wIX0H9MXl8dJUpoPl8fJkPED+PM/zwGgfY823Pi/K/AkufGlevGmeMholc79X/4d\npyv2iLwil957Pn1G9ai0zel28sh3d8V1fH1BCA2R8QJorUH4QCQDHkj5P4QrPvVQusfLc+PPIM3t\nJtnpItnlIsXl5unxp5fnH79r9FgGtmqDR9dJcblwORyM69KNS48+4NqXQpFwlFomBtvWbmfX5mw6\n9WlHszbVn4IwTZN5b3xH1rYcxpw3khYdql86LBQI8en/5hIKhjll6vEkp0dPp+zYsIvt63bSvmdb\nWnSIDhwKlAZZvXAtbp+bnkO7HlQA07a12/n2vUW07dKKUWcNTVgQVG0jpYTwSpDF4DwSocU3PVWR\ncCTCsp07kMDRrVrbTtVszMvlj8JCumY0pVVKdOyBQnEoKClkI2Dzqm3Me/N7jJDBqIlD6Tmka6X2\n0iI/8974ns2rttKlf2eOO3e4SrNbxxT4s/nw1/fZmJdHv5ZtGNdzAh5n7evcv9q4gWeWLCZsRji3\nTz8mq9J1jQbl3Bs47z4ym5due5NwyECaEpfXxcmXjC7Xl+/ctJvrhs4gUBokUBLEk+QmKc3Hfxbf\nF7eWXpFY1mf/zNnvziFkavgjTnx6mAx3mPcnTaVZUutas+PKTz7k8w2VM392ycjgs/MuarBvXYp9\nKJ17Ayb7jxxevPUNgv4QZsRESkmwNMhnL3zNmh/XAfDYFc9SmFNUrmMPlATJ211QrnNX1D63fDGL\nwrATf8Ra0yg1nOwqdfPAty/Wmg2/Zu2OcuwA63NzeePXlbVmh6LuUc69HvLjJ8sQNiOskD/E9+8v\nIhKJsHzer5hm5bcuM2KyaPbS2jJTUYGSYAG/5iYhq3ylDOngiy21l2vnpRXLYra9teqXWrNDUfco\n514P0Z2OKKUMgOYQ6C4dIUTMlMAOXX2kdYGmRS+s7sUham/q07UfO3Q1JXNYoT7tesiw0wZiRqId\ngsOpc/zkkWiaZunpq8gtdZfO6Ekja8tMRQW8zmSGtSzBISqna3BrBhO61F4Q05UDB8dsu+zoQbVm\nh6LuUc69HpLWLJW/vnotbq8LT5Ibt8+Fy+Nk6j2T6dDLqmB43ZOX0rpLS7wpHlweJ95kDx17t2Pa\nAxfWsfWHL/8+aQqtk/wk6WHcmoFPD9Mrw8/1oy6vNRvapaVzxYBoJ358x06M69qt1uxQ1D1KLVOP\nKcwpYuFHSzBCBkPHHx2ltzdNk2Vf/cIfa3fQsU87jjyut8qlXscYkTDfbpzDtvxd9GrehQHtRteJ\nQmVLfh5PLllMyDC4+KijObJlqwMfpGgQxKuWiV2Ms4EipWTNj+vY8PNmWnVuQf8xfXDYBJrsj0gk\nwrKvfmHXpiy69O9Ej8Fdopzmivmr+OyFeaRkJHHebWeR3ix2PpiDRWjCmkOXDtsFVk3TGHjikQw8\n8ciEn7shIo1NEPoRtHRwj0aI2tf86w4nx3fdfyTy1tw1LNi8kCSXlzFdTyXJnVapPWgYzNu8kTy/\nnyFt2nJERvWD6DqkN+HfY+3TR4D1PVn0xzY25ufRNaMpg1q3ibrHdxYV8e3WzbgdOmM6dSbF7a7S\nRxiC34KZDc6jEM7K0czxUBwKMW/TBvzhMCM7dKRNSuK/R4crjWrkHvQHmTHuHn5fsgFpSjRdo0nz\nNB757q64C2Xk7MzjxmP+Tl5WAaZhIjRB90FduGfOjPJCGdcM/RtrF1eWm01/ahrjy/K6JIIFsxZz\n7/mPoTk0pJSYEZNpD1zI6VfHl+PmcEJKiSy8A/zvAQKEA3AgMl5GOBNTLzZRPDD/IV741UATkr1r\n4s+fOpDBHayas2v2ZHP++28TjphEpDV/f1q3Htw75sSEvZUVBAJMfu8tthUWEDElmibolN6E1yec\nQ2qZA39m6WIeXbQQTWhowspu+d9xp3Fsx04ASGMzMvc8kH6QZdky3cch0h9BiPgGUz9s28pls2ch\nsPo3peSKAYOZPnR4Qq6zsXJY6txf/9d7/PbjOgIlQYL+EP6iALu3ZPPgxf+Nu48HpvyH3Vuy8RcF\nCPpDBEqCrFn0O2/c/R4AM+/7IMqxAzx21bMJy3FemFPEvec/Zl1DcYBASZBQIMxzt7zG1t+2J+Qc\njYrglxD4AAgCAZAlIAuReZcjZXQ++rpi4cbPeGlVmKCp4484KTGsf9Pm/ETQ8COl5LKPPyA/EKAk\nHCJgGAQMg49/X8sn69YmzI47vpnHhrxcSsJhAhGD0nCYdbk53PPdfABWZe3msR9/IBiJ4DfClITD\n+A2Dq+d8THEoBIDMuxrMHOtvTcD6F/wGWfp2XDYEjDCXf/IhpeF9/QcjEZ5d9hNLd6p7PBE0Kuf+\n2YtfEwqEK22LGCbL5v1CoDQY46h9+Iv9rJi/iohR2SGEAmE+feFrAD56Kkb+bwkfPRlfbvADsfCj\nJQhH9EdjhCPMeyO6EMjhjix92xpBRjWUQLj+aLvfWbUEfyR6JtSUsGjzV6zOziI/ED1A8Bth3kxQ\nAJKUkk/W/U7YrHKPRyJ8/Lv1AHn/t9WEjOjc9ULA/M0bkcYfENlKdBplP/jfjMuOBVu32m4PGAbv\nrIqv3oBi/zQq5x4JR9+Qe7GrKGS3T6xJKiNsWP+HjJjHx/MAiYdwMIw0o+01I2bUw0sByFhvTAII\n1aYl+yUQMYlOO2wRMsKETRMRoz1oUyjkYDFjvM0YZqTMlgh23wQJZQVLQsR0HTK+v3fIjNim2JdY\naw6KQ6dROffhZwzCUUX7LQR07tcBX4r3gMcnpSXRuW/7qO2608GoCUMAOO7c2POBf7ryxGpabM+Q\ncf2jok8BXF4XI8+MrWM+XBHe00HE+Hyd9Wex+bRuPfA5oh/OhtQY2vE4emc2tw008uo6Z3RPTP58\nIQQj2nWoVNQbQEOUz6ef3LUrPj06LXTENDmmQydwdALNbuHTDd74ahaMaNc+6u0BrLq047tVf2FW\nEU2jcu5T7zmPZq0z8CRZi0Junwtfmo+bX7w67j5ufvFqktJ85VWZPElumrbO4OJ/TQbg0n9fSHrz\n6Bv79GtOpknzxBRBbt4+k4vuOBe314Xm0BBC4PG5OeHPx5bnc1dUwHsG6P2AvdWynIAHkfYAQtSf\nKkgn9pjIsFZBfHoYkOgigsdhcPeo1qR4MnA6HDx60jg8uo6zzMn7nE56ZTbn7F59EmbHXaPHku7x\n4NWtKSKv7qSJ18s/jz0egOFt23NSl654dScCcAiBR9f528hjaebzWRHS6Q9bufHZ+/f1gd4J4bs4\nLhtS3R7uPO54PLqOXvag8TnTQ1hEAAAgAElEQVSdHNuhI6M7dU7YtR7ONCq1DFiKmflvLeS3xeto\n2601J/z5WFIzqpdTuzC3iC9ens/2dTvpMbgrx507HLd3nwzMMAze+veHfDNzAb40H3++/RyOHpP4\nlKobVmxm3hvfEQ4ZHHPWMHoP76507DGQMmIt6AW/BS0D4Z2A0NvWtVlRRMwICzZ+ylcbfiHV7WJC\nnxPp3KxvpX22FxXy/ppVZJeUMrJ9e8Z0OgJHgrXyRcEgH65dw5o92fTKbM7p3XtWKgcopeTH7X/w\n+YZ1eHSdM3v0olvTZpX6kJEspP99iOxEuIaA5wSEba3a2GzMy+X9NaspCYcY2/kIhrdtr+7xA6BS\n/h4iOzbsYtemLDr2aRe3jLIiUko2rtxCYU4R3QYeQVJqdA3W1YvW8tnz8+g+pAunXpo4GaWifuMP\nh/l5106S3W76ZDavEWdmRMKs2DaTsBHkyA5n43WmHfigKhT4C3h/1Vx8Tg8T+pyI09HowmIaJMq5\nHyT+Yj+3T3yQX7//DadLJxQIc9KU47j2yUvjjjTM2prNjHH3sHtLNg7dgREyuOSeyUyYPh6wgqQm\ntb2c/N0F5cdomuDJJffT5ahONXJdivrBe6t/5R/z56FrgoiUNPX6ePH0CXRukrgc/Cu3vsVln62l\n1HAikIDgoWM9nND7hrj7uPfrl3julz3lv2tIHjmhP3/qOTZhdioOjsNS554IHr3iWX75dg0hf4iS\nglLCwTBfvvots574NK7jpZTceuq9bFu7g0BJkJKCUoL+EC/cOpOfv7YkXjePubOSYwcwTcm1Q2ck\n/HoU9YdVWbv5+/y5+I0wRaEQpeEwfxQWcMEH72AmaJBVGtrDnz/ZQHYgiRLDRbHhpthwMX1+kG05\nC+Lq4/vNi8scuyj/Z6Jx/Zc/UxgsToidippHOfcKhAIhvntvEeFgZUVDsDTIB499Elcfm1dtY9fm\nrCjpZbA0yAePzwHgl+9W2x5rhAzWLo0OkFI0Dl7/ZUWZlHAfEigKhvhp+x8JOce83/5HREZP80Sk\nxvsrP4irj0d+sI+lkMDTP8bXh6LuUc69AoHSILECGosLSuPqoyi3GM0mAAkgP6tstL6fQdqO9bvi\nOo+i4bHHX2o7QhdAfjAx0c0FgRJb5x42HeQE4tPK5wcNYunx95SWHIp5ilpEOfcKpDRJpnn76CRN\nmiboP6avzRHRdD26U1SEK1ga9eGnW6lYk9KiF1f3MkLp2BstYzsdgddGPx42Iwxo1SYh5xjSfiTS\nxjH79DDHdIiO4bBjbMcWxBqBTOylcsI3FJRzr4AQghuevQK3z10++na6dHxpPi6774K4+vAme5n2\nwIW4fa7yakour4tmrTMYf4UV5DTj9etsjz3m7GG4XPVHl61ILKd370mn9PRyfTlYAUpXDRpCM1/s\nB3516NLyJM7qtKtSsJTXEaZfRg7Hdrsyrj6uHzGJZD1CZQcv6ZUhGdJ+QELsVNQ8Si1jw5bV23j3\n4dlsW7ud3sN7cOb0cTRrXT01w6/fr+GDx+eQuyufYacNYvzlJ1SKkv11wW/cc96j5GzPw+VzceHf\nz+Kcm/efKlbR8AkYYd5e9SufrFtLmsfDhf2OYlT7jgk9RyQS4avVj/Dmml2ETMEZXZI4/ci/4HbG\nH+9RFCzm9rmv8tWWQpwaTO7VhuuHT652+mxF4mnUUsiivGICJUGatcmw1QiHQ2Fyd+aTlpmKx1f7\nOb33krU1m5ydeXQd0Bldj9YIR4wIe7bnkto0GW+yffh8fnYBEcOkaavqa+0ThZQRMHeDSEVoyQfV\nh2kWg7EW9CPQNPtIXhnJAqEjtIOTBZqmAcYq0Jqh6fbTHNIsAFkKWkvbe8c0S8FYA3ontIO0IxGs\n3bOHzQV5jO7YGZeNQ5XSADMLRBpCS7LtY31ODoGIQZ/mLWzbg4bBntJSmvl8uG3uz0QQMU12lRST\n6nJH5YPfS57fTzBi0CIpuc4CmEwp2VVcRLLLRarbY7tPQVm2zlbJKXUaaJWwYh1CCA/wLeAu2/9d\nKeU/q+zjBl4BBgA5wLlSys0HYfd+yc8u4L4LHmflN6sRDo20Zinc/OLV9D9+33z4e4/O5pXb38Y0\nTEwpGXfpGK546CIceu2NOLK2ZnPt0Bnk7soHrKIbk/82gYvvmlS+z6fPz+XZm18lHDKQpsno80Zy\n3ZOX4XJbc7I7N+3mnvMeY8PyTSAErTo352+vTadL/9rVwZv+T6DwzrKsiybSMxaReg9Ci28awTRN\nyJsK4X0yPFPvBxkz0TTr9pPh1cj8v0BkGyCRek9E+sMIPb45YgCz6HEo+S9grXeYWjPIeKfcyUsz\nD5l/E4QWARpoTSDtXoR7xL4+8q6B4Bf7fnd0habvoMV5rYlgfU4O42e+WklVc/IRXfnvqafts6v0\nPSi6D2QQ6zMZj0i7o7w4ydId27now/coDVtTM05N476xJ3Fmj17W8VLy8A8LePHnpWU9CqYdPZDr\nhgxLqNP6dN1a/jF/LiXhMKaUjO10BPePPYmksqnH7JISrv/8E5bs2IEmIDMpiQdPOIXBbWo3svib\nzZv469zPKQgGiZgmI9t34OETx5HmsZx8fsDPX774lO+3bsGhaaS7Pdw39iSO6dCxVu2sLgccuQvr\n006SUhYLK7b4e2C6lHJRhX2uAvpJKa8QQkwCzpRSnru/fqs7cpdScuWAW9iyahtGheyPbp+bZ35+\ngDZdWjH39e945PJnCFbIzuj2ufjTlSdx+QN/jvtch8oZGRdRkh+trpnx+nRGTx7Jj3OWcdc5D1e2\n0+viuEkjuOn5qzDCBhd0uoq8XfmVEoj5Ur28uuFJUptWL53CwSJDS5C5l2Dl6y63FNyj0JrElyPf\nzLsRgrOjG5xD0Jq+ijQLkNnHgyyq0KiB1hSR+XVcuWFM/xwouD66QSSjtVhm7bNnojUip2LGQS+i\n2QcIvTNmwd3gfzm6D70nWrMPD2hDouj2xMMYNt/J6YOHMX3ocGTwO2TeNUDFFMdu8JyMlv4AAcOg\nz1OP26pyvjh/Cl2aNuWZJYt5fPEP+CtkX/TqOjcNH8XFRx2dkOtYvnMH53/wDoEK53A5HIxo157n\nT5uAlJITX3uJLfl5la7Xqzv54oIptEmtnYpMa3P2cOZbr1ey06lp9GvRknfOtvJJTXj7DVZl7a6U\n6Myr68w69wK6Nq1+laxDJWFBTNJib+SCs+xf1TvndGDvN+NdYIxI8HvLumUb2b5uZyXHDlYq3g//\n8xkAr9/9XiWHCRAsDfHxU1+Up+ytaZbP+8XWsQM8f+sbgFVUJMpOf4h5b35PaZGfxXOWU1rkj8oM\nGQlH+Or1b2vGcBtk8bNUduwAQQh+i4xkx9dJcI799vCPmKaJ9H8EsmqmRNOaOgnOj+8cRQ/Zb5fF\nmMEFyPAaMNZT2bEDhJAlr1o/xspDbqyxppRqgU9+X2vr2AGeWfoTALL4KSo7doAgBD5FmoU8vWRx\nzICo+xZY984zy36q5NgB/IbB00sWH5L9FXl66eKo1L2hSISF27ayq7iIpTt3sLO4KOp6DdPkjV9X\nJMyOA/Hi8qWEq8QehE2T1dlZrM/N4fecPazdk22b/37fm0/9JC61jBDCIYT4GcgCvpRS/lhllzbA\nNgAppQEUAFGPNCHENCHEEiHEkuzsOJ1DGVlb99jqxyPhCNvX7QQgZ0ee7bERI4K/ODE64gOxceWW\nmG0Fe6zRadbWPbbtDodGQXYhWVv32OamD/pD7NqUlRhD4yGyzX67cFnzvXGxvzz6AYj8QfQDBMvh\nR3bGeYqc2G3h36x+bEu/RSCyee+O++l/d3x2HCLLd+2I2RaMlDnKSIwqRUIHM4eNebkx+9hWWICU\n0rYgCECuP75YjnjYWlBgK6Z0OhzsLi5mR1Ghbe76sBlhc35+wuw4EJvz84jYPAx1TWNnURE7iops\n0zBHpGRzvr2/qS/E5dyllBEp5VFAW2CwEKJq/lG7UXrUX0xK+ayUcqCUcmBmZma1DO02oDNhm0IZ\nbq+LI0f3Kd/HjtSMZJLT7RedEs3QU2NLxTr2bgdAr+HdEFr0n8yhO8hs15Rug46wfZB5kz30rs2U\nv65B2C7LSAMcHePsxH5xChxomg/h6l+WOrYKQgdnnJk29f38TTyjwdkrRhEJD7iGlJ0v1jSAAK1D\nfHYcIhPK5sTtyPCWLbi7BmD/tRXgaMNxHWOvyQxp0xYhRMw8Nl0PohB3LAa3aWvrFA3TpHOTDPq2\naFleHKQiXl1nSC3OuQ9p2w63zYJ1MBKhR2YmvTIzbQuluB0OhraNf02oLqiWzl1KmQ/MB06u0vQH\n0A5ACKEDaUDsIcRB0Lx9JmPOG4W7gvrFoTtISk9i3KVjALj0/gtw+9xUnBBy+1xc/vBFtba63aZr\nK7oNjH7ICAE3PDMNgIvuOBePz13JJrfPzSX3nIfu1Ok5pCu9hnUvzykP4HTrNG/fjOFn1F4QiUi+\nvKwIRsXbxAvJV8RUaESRcrP99qTLrf/dY8DRhn15wQE8Vn5251HxnSPtX9iOL/TeaHpnhKMleCdY\ntpfjAC0Z4Stb5E79Z/TxAJ5zyhd+a5pezVvQ3Gf/d33wRKswuki+JvozEV5IvgEhXEzo2ZsmnugH\nqlPTuHn4SAD+ccxoPFXUMR5d57ZjRifmQoDLBwzCpzvRKnwuXl3n8qMHkeJ20ym9CScd0bWS5t+p\naTTxeJnQs/aKmv+5X3+SXC4corKdk/v0I9OXRPOkZM7t3beSnboQJLvcXNgvzvuzjohnQTUTCEsp\n84UQXuAL4H4p5ewK+1wN9K2woDpBSnnO/vo9GCmkaZrMfuZLZj0xh9KiAMP+NIAL/3F2pZS865dv\n4sW/z2T98o207NScC/9xDgNPrN1qPKZp8vBlTzPvje8wwhFadW7B/718TaVCG1tWb+Olv7/F6kW/\n06xNBuffOrE8ghUgFAzz7sMf89nz8zDCEUZPGsF5t06wTR1ck0hjK7L4UQj9CFozRNJlCO/4avVh\nlr4LRfeDLASRDEnXoiVP2XcOsxhZ8jT4P7ZG7N6JiKRLq1VowwytgIKbyqaSdPCMh9R7yjN5Smki\nS9+C0ldAFoP7OETytQhH8319+OdA4V0gcy2HmTQNLfmqal3roRKJRLhg1rv8WJZrxqc7efCEkzm5\na7fyfaSxAVn0KISXgdYckXwlwrOvClhxKMS1n37Mgq1bMIE+mc15ctxplRYpF2//g0cXLWRDXg5d\nM5pxw7DhCYuS3cvWgnweWbSQH7ZtJcPrZdqAwZzevUf5oCZimryyYjmv/bICvxHmxCO6cu2goTRN\nUEBXvOwqLuLRRQuZv2UTaW4Plxx1NOf07ltup5SSt1b9wgs/L6MoGOC4jp2ZPmQYLZNrR9hQlYTp\n3IUQ/bAWSx1Yw4W3pZR3CiHuBJZIKT8qk0u+CvTHGrFPklJu3F+/9TmISaFQKOorCdO5SylXYjnt\nqtv/UeHnAHB2dY2sCX6cs4xnbnqZ7et20aRlOhfcNpFTp52gqrvUIab/cyh+wFo81VpA8vVovjPL\n22VkF7LwrjJ1jAaecYjUGQit+gUmYiFlCFn0EPjftgpqOwcgUv+JcHbdt0/wW2ThvRDZBFpTSLoK\n4Ttv3wjOzEUW/gsCXwIS3McjUv+BcDQrO4c1wnvsxx/ILi2hY1o6M0Ydx/EVysZJYwOy8E4I/QTC\nbb2lpNyENT6K81pCi5GFd1tBYSIdki5FJF2CEI0vm8iXG9Zz74Jv2FpQQIukZK4fMoyze8eX5+lw\np0FGqMZi6Zcr+OcZ/ybo37d45va5mXLXJM66oXpTCYrEIANfWgFKlRQxXki9Dc13NlL6kdkngLmH\nfcoaJ+gdEU0/TpjDMvMuh+BCoIIEVSQjms1BOFoigz8g8y6PtjP5GrTky5DSQO45pUytsndhXwdH\nC0SzzxHCxYs/L+PBhd9Vkhl6dJ2nTz2dYzp0REaykXtOtqaFyvUGbnANQst4Ia7rkOGVyJwLou30\nXYCWGmN9o4Eyd9MGrv10diUNulfXmTHqOM7vW38Kn9c2h2WxjhdufbOSYwcrj/prd71DxGbFW1Hz\nyKKHiJY6+qH4kbIfPwWzmMqSyTBEdkBoYWJsMLZEO3YAGUKWWjp3WfywvZ0lT1mh/sGvyx5AFRVb\nBpj5EPgKU0oe/3FhlH48YBg8sNDKjy5L3yyLKq04oApCaAnSiC+Pvyz6T/R14IfSV5Fm4qSM9YEH\nFnxXybGDpcd/ZNEC6mpQ2pBoVM79j9/tdcLBUquqkqIOiMQoQmHmWFMlxm+AzWcjw2WBRwnA2AC2\nhZtDEF5Vts9m+2NlGMwCqw9ZNXgIkCVIYz3FoWB5uH9VynXbxirrnFURutV/PBhrsU3HKxy1psev\nLbYWFthuLwgEopy+IppG5dzbdGllu93tde03h7qiBnHEUGBoGYAToXcH7HTuTtCPSIwNemebKFgA\nJzjLZHd6R/tjhQ5amtWHsEnuJpIQ+hEkOV14nXYPEOiQXpYoTe9FZclnGdIAh32MRhR6V/vtMmKt\nZzQi2qXar7mkuj1RUk5FNI3KuV9892TcvspfHrfPzXm3TlSpSusIkXIj0YFMXkiabi1UeseBlkTl\nW9EJWktwjSARCL0juIZi5b6r2OBC+C60fky+PoadVyCEDu7RVrKxShoEhxX85DkBh6ZxzaChlfTQ\nYM253zTM0pcL32RrEbWSJt8Nrv6VFnb3ey3J19rb6Ts/7mRuDYWbh4+McuJeXWd6ghOcNVYalXMf\ndNJRzHjjelp3aQkCmrRI47L7z+fsv/yprk07bBGekyDt3n0jeK25tZiaZAUPCeFFNH0X3MdiqW2d\n4DkJ0fSNhKo/RJP/gO+cstG3AOdARMabVoATINwjEOmP7Yu81ZpCyg2IpGlldjoRGW+De6xlI7ql\nlmn6Trkef2r/Afx15DHlhTfap6XzyInjyqNGhaM5ImMmOAdhffW84J2AaPJ0/NfhOhLR5Jl9I3iR\nBslXImIFizVgxnbuwkMnnFw+gm+elMRto46r98FD9YVGpZapiJRSPd3rGQf6TPbeizX9ucVjx6Ha\neajniIfD6R4/nK71QCRM595QUTdC/UGGf0EWPQHGGqTeGZF8DcK1LxrXNLKh4DoI/wwIpGs4pD+G\nViHFgQzOtzIiRnaAsz8iZTriIOfkY90bpv9zKLoLzD1I4YOkK9CSp+2zQQaRJc+D/33rd8/piORL\nERXm4mXwB2TxkxDZgnT2RiRPRzh7lrevz8lh+uezWZuTgy40Tu7SlQdPPKU8D4uUEgKzrfOYueAe\nWRZJG72edCj3uAwtQxY/YS1a690QydchXPVXXhjrWkvDYZ5espgP167BIQRn9erD1P4DElp8RErJ\nu2tW8eLypRQEg4zu2JnrhgyledLBFa6pLRrtyF1RP5Chpcjci6ksM/QgmjyOcB+HaQYgaxBR8j6R\nDpmL0DQNs/RtKLybfaluNRAeRNN3EXqXhNhp+mdDwY3RDd7z0dL+iZQSmTu5TF2z11Y3OLsjMt5G\nCA3T/xkU3FLhWoV1rU1fQzj7srOoiFEvPReVkrdTejpz/zzVsqPoMSh9oYIyxwEiBdFsdqVUCYeC\nDC5A5l1J9GfyHMI9JCHnqA0ipskZb73O+tyc8uReHl2nf8tWvHbm2Qkb4N35zde8tWplucxV1zTS\nPR6+uGAK6R77Cmo1yWGpc1fUP2TRvUTrxwNWpCdA8WNE67YBmQ+Bdy2NedG/qZzD3AQZQBY9ljhD\nC++y3+5/wyrfF1oExm9VbA1aI9/Q99aIu+huKl+rBPzIon8DcPv8uba51jfl57N0x3akWQgl/6si\nuYxYcsvSlw7p8ipi/e1tPpOiexJ2jtrg680b2ZSfVylrY8AwWLF7F0t2xkiNXE2yS0p449cVleIX\nDNOkKBjktZU/J+QcNYVy7oqaJfyb/fbINqQMl5W9i0HwmzLttp2M0YTw8kRYaCFj5RCXYG6B8Eor\nbUFUcymEV1hRp7Hyyod/BWD5rtj56b/YuB6M32Po8cMQ3M/fqRpIKSESQ1Nv/J6Qc9QWy3butI0t\nCEcirNi1KyHnWJ2dFTMl8MJtWxNyjppCOXdFzRKryLRIAnTQ9pOJ0NHemp6RMQp+OBKp67bXqAOW\nftzREmzzv/gs2abwxu5Ds2oXNE+KnSa5S5MM6zy2enwBjsTkOBdCWAobO2IULq+vtE5JiZKeglXO\nr1WCMja2TEnBMKPvP4cQdEivu6L18aCcu6JmSbqcynnUsX73TbEcTcx8KAKSr7HyxnvHY6ftFkkJ\nTMfrjVHyV++OpiWD50SsAKQq87hCB88plhbeNznaTuGFpCsB+NvIY21P4XI4mNizN0JvB66jiQ50\nciOSplbzgvZD0qXYfiZJlyXuHLXAad17RBUEEVjz7mM7JyYArnvTZnRt2gxnlfM4HQ6mJKjebE2h\nnLuiRhG+8yD5MsvJCR/gAd8kRPLVAGh6B0h7kMrCLQ80ebFcLSNS7wDPOCyn5wWRAim3IDxjEman\nlvZ3cFXpz9EZMt6ybBBeRNM3QO+GFQzlAkcXRMbrCM1STYiUm8A70WoXPutf0tUI7xkAjGjfgb+O\nGIVWYaEv1eVm1rnnl+edF+n/AffICteaAWkPJFTJIpIuA98FgKfsM/FC0hSE7+KEnaM2SHV7eHPi\nuXRu0gS3w4HL4aBHs0zeOmtSQtUyL542gaFt2+NyOPDoOpm+JJ4c9ye6N22WsHPUBEoto6gVpAxC\nZLdV8MMmktI0TTB+AZxoLvtyc9IstuSBjlYI27npQ8c0i605ckcnNN1+2kdGdgOyPAAq2s4Sa/7d\n0dK24IhpmizduYOmPi+dm9iXtpNmPphF4GiNsK3/euhI6YdINjiaVyvlcH1kZ1ERDk3UqDwxz++n\nOBSiTWpqpQd0bXPY69wVVg5z/B8hA7NB+BC+yQj3qNq3I7ILWfKytSip94CkixB65fqTmqbBfkan\nZsFD4H8eKytjMjL9ETSP/TRHTDtCi5Elr1mZHD0nInxnRTk1TUsG99D99iP2M9cvjc3IkhetRGCu\n/uD7M8Kxr15w0DB4d80qPl3/O6llpdqGtYuuxSm09BqfAxfCC3r9rgMaL61Sar4qUhOvlybe2pc+\nHixq5N5IkdJA5l4Ixup90jrhBe+FaKk31Z4dxnpkzjllqW7DgG7ldMl4BRFnAWwz50II/xjdkPog\nmu+0+PooeR6KHmefpNJTljP+7YSNWmVoCTJ3KlbmxwjgKtPjv4/Q2xM0DM5+dyYbcnPKpXVeXefq\nQUO5alDD0Zcr6halcz/cCX4FxprKmmnph9KXkZHYkrxEIwvvAVnCPjmjAbIUWRCjIHUVTCNg79gB\nCv8anw1mARQ9SmWtfACMLcjSWXH1Edd5Cm4rO8de3XUIZHG5zv2j339jQ25uJc203zB4YvEP5JSq\nlNSKxKKceyNFBr62NNhVEQ6r2HVtEfoJ2/zjxmpL534ggh/upzHOnN6hZTH0434IfhFfHwdAmsUQ\nsdM9m+VFR77auB6/EX3NTocjYUE3CsVelHNvrESlpy1viK1zrglErDS0LqwskAfA0enQbdDSsH3A\nIKzsj4lA2Mgky9usRb4Mr892IU5KSHM37AVNRf1DOfdGivCdjb1z18GdmDzpceE7j2iNuhu8Z8aV\n0lfzDCa204wzsMd5lBUMFdWPB+E7P74+DoAQLvCcQrRG3QNlOePP63skrirRjgJIdjkZ1Ho/wVwK\nxUGgnHsjRehHQNrdZfryZCsiVMtEZLxkK8+rMTuSrwLP8Vja7xTrf9cQROrf4u8k/UWbjS5oGt+U\nihAaIuMF0FqX6c+TAQ+k/B/Clbjc4CL1dnANsPoWKZaN3lMQSZcA0Ld5C/55zPF4dJ1kl4skp5NW\nKSm8eubZODT1VVQkFqWWaeRI6YfQcit03nlUQgtgVMuOyA4ryZajY5QMMl7MwkesPC6+89C8J1bf\nBinLcsQUg/PI8uCjRCONTVbtWL2rrRa+JBRi2a4dpLjcHNmipUpPragWSueuAMq0zO7hNXoOaWxC\n+j8CWYrwjLWqHFVxWMLRGhytY/cRWoEMfA5CR3jGI5zdKrebeeBoAvIIBGGkDFX7DUQIsV8tvZQh\nCHyODP1sySS9pyG06q9PCL0T6LHXCpJcLka171jtfhV1x/bCQj74bTV5AT/HdujEyPYd6jSQKR7U\nyF1xSJil70LhnVjKlYj1huA+AZH2QNwjUrPwbih9GysNrQY4IXk6WrKVT0WGV1mafWmU7eOzolSb\nvpOw0bc085E5Z4G5p0xl5AHhtErxVXnQKA4vvtywnumff0LENAmbJj6nk0Gt2/Lcn86Iym1TGyid\nu6LGkWY+FN6B5XANQFpa+sCXEPo+vj7Cv0DpW1j6cImlEQ9A8aPlenyZ/xdrKqU8B3mplTK45KnE\nXUvRYxDZWUE+GgBZhCy4JWHnUDQ8gobBjV/MIWAYhMuyQ5aGwyze/gezf19bx9btH+XcFQdPcIGV\nFTEKPzLwSVxdyMDnWBGdVREQnGflcYnYacBD4I/vHHER/AzbvPHG71YQlOKwZMnO7bZvoH4jzKy1\nq+vAovhRzl1x8Agde5miIFoSGAsXtrehEFj50XXsNerEeLAcLPvT3NdM4i5F/cepOWLeflVlrfUN\n5dwVB49rFGBXSMON8J4ZVxfCeyq2zlNK8IxFOJqCsyfRt6oHvGdXz979sTdVbyUc4BpQY6oaRf3n\n6Fatcdo4ca/u5NzefevAovhRzl1x0AjNh0h/AqvwQ1mudtyQfBnC1T++PvQjIOVm6zi8ZRWN3JB2\nP6KsipNIe9iqZiSSKM9z7hqASEpc/nGRfCU4+5VF1LrK4gJaINIeSNg5FA0PXdN47k9nlMcluB0O\n3A6ds3v15viOnevavP2i1DKKQ0aaRRCcay2mukYh9OqXhJORXRCcDzjBczxCq1zCTMowBL+1Fj2d\nfRNavGLfOaRVlzW8Gm9eiGMAABB8SURBVBxtwD3KqrCkOOwpDYf5auN6CoJBRrRrT+cmMcpH1gIJ\n07kLIdoBrwAtsd7Bn5VSPlZln+OAD4FNZZvel1LeWV2jDzdkeJUVVKO1PChHIqVpJQGLbAa9i62+\nvHYQWFMrDisxWRUsp7kUjHXg6GhFqEYFUzmw0gFr2L1QCuGEBFZessPSwR9dVuru4DBNA0r/ZxWb\ndg4B79nlVZZqk8JggHmbNhKMRBjdsVONFrE4HPA5nZzWvWddm1EtDjhyF0K0AlpJKZcJIVKApcAZ\nUsrVFfY5DrhJSjk+3hMfziN3KcPI/GvKKtpLyyGKFETGG3GPeqWZj8w931KSyIjVh6OzlSe9FueI\nZXABMv/qsl8kYELylWjJV5XZWYzMnQKR9Vaha+EArRWi6evlo3Oz5HUous9y7FJYfaQ9eFBRqHWJ\nGf4NciZQKVulSIbMeWi1WHx67sYNXPfZbDQhMKXElJKbh4/ikv4Das0GRc2RMJ27lHKnlHJZ2c9F\nwBpAZTk6BGTJKxD8AUvbHbDynZtZyIIb4u+j8HYwNpfpsoPW/8bvyKLamyOW0m85dllaZoffsqX4\naWRohbVP0UNg/FbWXnatkc3l+dylsQmK7i+7Bj9Qtl/BTVZUakMidwpRaYhlMeTWXuHpwmCAaz+b\njd8wKAmH8RsGwUiEB3/4nrU5e2rNDkXdU633RSFER6A/YJcQfJgQYoUQ4lMhRO8E2NZ48b/FvoCc\nvZgQXoOMHPgLKKVpBQpF6bJDEPgoQUbGQfA77KWQIaT/fevHwEdE69gNCH6FlCbS/zG2edmFgMBX\nCTW3JjHNfJC59o3GylqzY+7GjbZh8eFIhFm/1W9dtiKxxD3JK4RIBt4DrpdSFlZpXgZ0kFIWCyHG\nAbOArjZ9TAOmAbRv3zhqNx4UMYtUCGwDaaI7YF+1n6pNcRawSAQxr8Ok/OG1331M9pWkq9q3xD64\nqZ5i7u9zqz3RQihiYDfTakpJyIhxzygaJXGN3IVVav494HUp5ftV26WUhVLK4rKf5wBOIUQzm/2e\nlVIOlFIOzMzMrNp8+OAdh22Qj6Oltbh6AIRwgGsI0R+fBu7jEmBgnLiH2z9MhA/hGVe2z2iideza\n/7d3/0Fy1/Udx5+v/XG/75JLcogkhKhoECspgdBQHFRCpFiaMK0daQcpdBgVMYhgbaWt02qnThmH\nKnRKRNEpiJgS+T1IKdZalEk6IVKDHn+ECsmVH7lwkl/3c+/77h/fb5K9/XG3Fzf7/d5334+Znezu\n93O7r/twvHf3u58fkF+FlEOtaylf7x3AGvu7/JoyuT7CIaEVZE9pWI73LnsLgZXPPWjL5bno1LL3\nWy7FZizuCodf3An0m9ktVdqcGLVD0jnR475ez6Bpos6PQ/bkol2KWkGdaN6Xax7top4vhjsq6XBB\naYfMQtTzl8clc8UMmV7o+SvC4hzNVlVHWNBbzo9yfi7a7Sj6XdUO6kHzvhjebFkRTiBSe/jzZMLH\n69qAsnPsq535/1jhzgzM/+eGRTixq5vPnPse2nI5shIinHCzbvlpviFIk6lltMx7gKeAHRydjngT\nsBTAzDZK+iRwDeHJ0xHgBjN7errHbebRMlC8vOw2yC5B7b8fzsaczWMEB7CRh8Jhd7l3ofZLUKbz\nOCWeJkfhhTBHcChc8rdl9ZQXKQuGsZFHofAc5N6B2tejTPfR49H4cht9HMiFv0f+9Ib/HvUQFHbD\n/i+Fw1PzK6Dnzxs6Uuaw5/cO8tDz/YxPTnLRqW9n1UmLfd34lKh1tIxPYoqRBUMw0R8uX5tL9my3\n6QRBAUYfhOAgdFwaSzFzrln4Zh0JZmbYgX+A4W+DWsEmsPzpqPdrx7Q5RJyCkX+DfZ/iyIe6g39P\n0P4RMvP+OtZczjU7X1smDqMPwPC9wDjYAWAUJnZgb3wm7mSzEgTDsO86yhYPG7mbYPQ/44jknIt4\ncY+BHfoW4VcTxSZg/OlwA4y5YvibVB3md/Crle93zjWEF/c4VN38IRuet54rpptwNZdepJxLIS/u\ncWg9n4pfd2S6pt1EOnGmW7O99YLG5XDOlfHiHgN1fRLUw9GJTOHYbvX8XYXVEpMr07ICchWW3lUH\ndN/Y+EDOuSPmTiVJEWVPRH2PQefVkF8JbevQwk2obQ6+212wCbo2gBaCuqH196Dvx2QyHTP/rHPu\nuGnaoZC/ei08J9z7pnjGZCuzAHVfP2M7C4bACih7QgNSzV4mk4GuDVjH5WBj4e5FTT5ZxmwEgiHI\n9CHVupesc/XVdMX9pf4BvvTHX2XX8wMALD1tCTfdez1LT0vW1Gwr7Mb23RDuCoSw7BI0/5bEzdy0\nydewN24MdzAiA9kTYN7NqKX51g43K0TzF757ZNMR69pApvNP447mmlBTzVAdOTTK5cuu4cDQwSMr\n50nQvaCLe17aSFtH6QbJ8TCbwAbfD8FepowhVxfq+0HZFnRxMQuwvb8Dk7uZsrKjOtCix1F25kXQ\n0iTYf3M4MW3Kcs7t0PO3ZDoujSuWS5m6bdaRJk9t3sL42NQlUc1gYqzAU9/bEl+wUmM/Cje1KJ0c\nZAVspIHrtc9kYhsEg5Qt2WsFbHhTLJHiYlaAkXsoX6d/BA7dHkck1+Saqrjv2bWX0UOl//PB6PAY\ne3YlaJeayZerrMs+CpMDDY9T1eTLVJ7ENA6TLzU6TbxsuPra9cGexmZxjiYr7stXvY32zvK1w9s6\nWlm+6tQYElWRP4PK/2k6UP7MRqepLv/ucP/WMu2QP6fhcWKlbsgsqHws5xuTucZrquJ+1gdWsPSd\ni2lpyx+5r6UtzymnL2Hlhe+OMVmJ/ApoOZOpm1i0hBOc2i6MK1UZ5d4WTVYqzpmH7ALUvi6uWLGQ\nBN03MbUvBLSh7j+LKZVrZk31hSqEX6puuvkhnrzrRyBYe8V7+fBnL03Ml6mHmY1jh+6Ekc3hKZr2\nS1DnNSjTFXe0KcwK2PDd4UJoNgpta1HXtajau9iUs7GfYAdvC79kzr0TdX8a5f2du6sfX8/dOedS\nyEfLOFckCPYT7L2U4NV3hJfXziIYeXJWj2HBEMEbNxC8+hvh5VfXYdMtnuZcjLy4u+aw9yIo/OLo\nbTsA+z5BML6jph83K2CvfxhGHwfGw8vYk9jQH4ZbJjqXMF7cXeoFY09DUGW/9v1fqO1Bxn4YTSor\nHqJaCJc2Hp3dJwDnGsGLu0u/8f+ufmzyxdoeo/ACWOkGK4Adwgo7jymWc8eTF3eXfi2rqh/LnlLb\nY+TeCmovv1+d4ZBQ5xLGi7tLvUzreaAqQzN7Pl/bg7S+HzK9TF1rLxuuy9+29teN6FzdeXF3zaHv\nCcgtP3pbXTDvNjItZ9T041IeLbgPWi8E8kAOWteghff5sr4ukZpuyV/XnDKZHlj0CABBEITr0M+S\nsgtR760cnhvS7OvWu2Tz4u6azrEU9mJe1N1c4KdlnHMuhby4O+dcCnlxd865FPLi7pxzKeTF3Tnn\nUsiLu3POpZAXd+ecS6EZi7ukkyX9UFK/pJ9L+lSFNpJ0q6Sdkn4maeXxids8zAwb/QHB0McIhq7C\nRh7CKm6a7Zxz5WqZxFQAbjSz7ZK6gWck/buZFS2OzcXA26PLbwG3R/+6Y2T7/wZGHzyyEqGNb4eR\nR6D3DiT/wOWcm96MVcLMXjGz7dH1A0A/sLik2XrgLgttAeZLenPd0zYJK+yEkftLlpgdgYltMP50\nbLmcc3PHrN4CSloGnAlsLTm0GNhddHuA8hcAV6uxLZXvt2Fs7L8am8U5NyfVXNwldQHfA643s/2l\nhyv8SNnO25I+KmmbpG2Dg4OzS9pMMvNAlc6Y5aNlZ51zbno1FXdJecLCfo+Z3V+hyQBwctHtJcDL\npY3M7A4zO9vMzu7r6zuWvM2h9QIqv15mUfv6Rqdxzs1BtYyWEXAn0G9mt1Rp9jBwRTRqZjWwz8xe\nqWPOpqJMJ+r9JqgX1BmuPa5ONP8rKHtS3PGcc3NALaNlzgM+AuyQ9Gx0303AUgAz2wg8BnwQ2AkM\nA1fVP2pzUctvwgk/gYlnwSag5SzfFMI5V7MZi7uZ/ZjK5wiK2xhwbb1CuZCUg5az447hnJuDfMC0\nc86lkBd355xLIS/uzjmXQl7cnXMuhby4O+dcCnlxd865FFI4ijGGJ5YGgZdiefKjFgF7Y85QC89Z\nX56zvjxnfc2U8xQzm3GKf2zFPQkkbTOzxA8k95z15Tnry3PWV71y+mkZ55xLIS/uzjmXQs1e3O+I\nO0CNPGd9ec768pz1VZecTX3O3Tnn0qrZ37k751wqNUVxl5SV9FNJj1Y4dqWkQUnPRper48gYZXlR\n0o4ox7YKxyXpVkk7Jf1M0sqE5nyfpH1Fffr5mHLOl7RZ0vOS+iWdW3I8Kf05U87Y+1PS8qLnf1bS\nfknXl7SJvT9rzBl7f0Y5Pi3p55Kek3SvpLaS462SNkX9uTXa5rR2Zpb6C3AD8B3g0QrHrgT+Ke6M\nUZYXgUXTHP8g8H3CJZhXA1sTmvN9lfo6hpz/AlwdXW8B5ie0P2fKmYj+LMqTBV4lHG+duP6sIWfs\n/Um4x/Qvgfbo9r8CV5a0+QSwMbp+GbBpNs+R+nfukpYAvwt8I+4sdbAeuMtCW4D5kt4cd6gkktQD\nnE+4ixhmNm5mb5Q0i70/a8yZNGuAF8ysdBJi7P1ZolrOpMgB7ZJyQAflW5OuJ3zhB9gMrIl2xqtJ\n6os78BXgs0AwTZs/iD5GbpZ08jTtjjcDnpD0jKSPVji+GNhddHsguq/RZsoJcK6k/5H0fUnvamS4\nyFuBQeBb0Sm5b0jqLGmThP6sJSfE35/FLgPurXB/EvqzWLWcEHN/mtn/AV8GdgGvEG5N+kRJsyP9\naWYFYB+wsNbnSHVxl3QJsMfMnpmm2SPAMjM7A3iSo6+UcTjPzFYCFwPXSjq/5HilV+04hjvNlHM7\n4UfhFcBtwIONDkj4rmglcLuZnQkcAv6ipE0S+rOWnEnoTwAU7vW4Driv0uEK98UyHG+GnLH3p6Re\nwnfmbwFOAjolXV7arMKP1tyfqS7uhPu/rpP0IvBd4AJJ3y5uYGavm9lYdPPrwFmNjTgly8vRv3uA\nB4BzSpoMAMWfLJZQ/lHuuJspp5ntN7OD0fXHgLykRQ2OOQAMmNnW6PZmwiJa2ibu/pwxZ0L687CL\nge1m9lqFY0noz8Oq5kxIf14I/NLMBs1sArgf+O2SNkf6Mzp1Mw8YqvUJUl3czexzZrbEzJYRfkT7\nDzOb8upYck5wHdDfwIjFOToldR++DnwAeK6k2cPAFdGohNWEH+VeSVpOSScePjco6RzCv7PXG5nT\nzF4FdktaHt21BvhFSbPY+7OWnEnozyJ/RPVTHbH3Z5GqORPSn7uA1ZI6oixrKK89DwN/El3/EGH9\nqvmd+4wbZKeRpC8A28zsYeA6SeuAAuGr4pUxxXoT8ED0N5cDvmNmj0v6OICZbQQeIxyRsBMYBq5K\naM4PAddIKgAjwGWz+aOsow3APdFH9P8Frkpgf9aSMxH9KakDWAt8rOi+xPVnDTlj708z2yppM+Ep\nogLwU+COktp0J3C3pJ2Etemy2TyHz1B1zrkUSvVpGeeca1Ze3J1zLoW8uDvnXAp5cXfOuRTy4u6c\ncynkxd0551LIi7tzzqWQF3fnnEuh/weCR9sqpgi4BwAAAABJRU5ErkJggg==\n","text/plain":[""]},"metadata":{"tags":[]}}]},{"metadata":{"id":"GgJet29a3o8M","colab_type":"text"},"cell_type":"markdown","source":["Contudo, neste caso, podemos ver que não existe um agrupamento a uma distância maior de aproximadamente 35. O que acontece se definimos a distância máxima nesse ponto?"]},{"metadata":{"id":"BgDRT5en3o8N","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}},"outputId":"97f9364d-d1fa-48e1-aba9-fe1afab64428"},"cell_type":"code","source":["max_dist = 35\n","clusters = fcluster(Z, max_dist, criterion='distance')\n","clusters"],"execution_count":0,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n"," 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n"," 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n"," 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n"," 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n"," 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n"," 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)"]},"metadata":{"tags":[]},"execution_count":9}]},{"metadata":{"id":"FxLW2Y2o3o8X","colab_type":"text"},"cell_type":"markdown","source":["Por último, vamos a realizar un gráfico de las clusters..."]},{"metadata":{"id":"ivG6FDos3o8Y","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}},"outputId":"359ae402-407d-4e1a-ccf1-3d0977d7990d"},"cell_type":"code","source":["plt.scatter(X[:,0], X[:,1], c=clusters)\n","plt.show"],"execution_count":0,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{"tags":[]},"execution_count":10},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd4FFUXh9/ZvpuQQEhAOii9SW+C\nUkSKSFWqKAoqKk1FVKSKNFEExM8uRURQRETAgjQp0nvvLZSEJJC6/X5/LESWnYUNbArhvs/D84S5\nM3fO7Nw9e+fO75yjCCGQSCQSSe5Ck90GSCQSiST4SOcukUgkuRDp3CUSiSQXIp27RCKR5EKkc5dI\nJJJciHTuEolEkguRzl0ikUhyIdK5SyQSSS5EOneJRCLJhegC3VFRFC2wFYgWQrS5oa0XMAmIvrpp\nuhDi65v1FxkZKUqWLJkhYyUSieReZ9u2bZeEEFG32i9g5w4MBA4AYX7a5wsh+gXaWcmSJdm6dWsG\nTi+RSCQSRVFOBbJfQMsyiqIUBR4Hbjobl0gkEknOINA19ynAEMB9k306KYqyW1GUBYqiFFPbQVGU\nFxVF2aooytbY2NiM2iqRSCSSALmlc1cUpQ0QI4TYdpPdfgNKCiGqAn8Ds9R2EkJ8KYSoJYSoFRV1\nyyUjiUQikdwmgczcHwLaKopyEpgHNFUUZc71Owgh4oQQtqv//QqoGVQrJRKJRJIhbunchRDvCCGK\nCiFKAl2BlUKIp6/fR1GUQtf9ty2eF68SiUQiySYyopbxQlGU94CtQojFwABFUdoCTiAe6BUc8yT3\nEvEXEtBoNeSNCs9uUySSux4luyox1apVS0gppATg2K6TjO8xlXPHLoIQPFCtJEPnDqLQ/QWz2zSJ\nJMehKMo2IUStW+0nI1Ql2UpSQjJvNB7Jqf1ncdgcOOxODm09xqBGw3HYHdltnkRy1yKduyRbWfH9\nWpwOp9c24RakJaexaen2bLJKIrn7kc5dkq1cOHERW6rdZ7vT7iTm9KVssEgiyR1I5y7JVirWL4c5\n1OSzXavTUq526WywSCLJHUjnLslWGrSrTcGSUeiN+vRtRrOB8nXKULF+2Wy0TCK5u5HOXZKt6PQ6\npqx7n44DWxNVLJL7ShWg+7sdGbtsKIqiZLd5Esldi5RCSiQSyV2ElEJKJBLJPYx07hKJRJILkc5d\nIpFIciHSuUskEkkuRDp3iUQiyYVI5y6RSCS5EOncJRKJJBcinbtEIpHkQm67WIdEAuByuVjy+V8s\n/t+f2FLtNOxUl+5DOxIWkSe7TZNI7mmkc5fcERN7fsKGxVvSMzsunv4HGxZt4cvdH2GyGLPZOonk\n3kUuy0humzOHolm/aLNXyl6H3UnCxcusmPNPNlomkUikc5fcNoe2HEOr0/pst6bY2LVmXzZYJJFI\nriGdu+S2iSqaH1QSN+oNOgrL+qcSSbYinbvktqnycAXyFQhHo/UeRlq9ltYvPJpNVkkkEpDOXXIH\naDQaPlw1mvJ1y6A36jCaDRQoHsnYpUMpUDwqu82TSO5ppFpGckdEFc3P1HXvk3DxMrY0OwVLRMki\nGxJJDkA691yMw+5gxZy1rJq3HnMeE4+/2JzaLaplyrnyFcybKf1KJJLbQzr3XIrL6WLIo+9xZPsJ\nbKk2ALb9tYv2/VvRe1yPbLZOIpFkNnLNPZeyftFmju48me7YwSNRXDhlKbFn47LRMolEkhVI555L\n2bhkG9Zkq892jU7LzlV7s8EiiUSSlUjnnksJjwpTDTDSaBTy5AvNBoskEklWIp17LqVV72bo9L7O\nXafXUfOxqtlgkUQiyUqkc8+lFC9fhNe/7ospxIglzIw5j4mIQnmZuHw4eoM+u82TSCSZjFTL5GKa\ndmtEg3Z12L/hEEaLkQr1yqDRyN9zieReIGDnriiKFtgKRAsh2tzQZgRmAzWBOKCLEOJkEO2U3CYm\ni5Eaj979yzCJcUks/24NF07EUKlBOR7qUEc+gUgkNyEjM/eBwAEgTKWtN5AghCitKEpXYCLQJQj2\nSSQc2X6cwU1H4XS4sKfZ+XPGKuaMWcDUDWMJCbNkt3kSSY4koGd0RVGKAo8DX/vZpR0w6+rfC4Bm\nioxBlwSJCU9PIzUxDXuaJ298WrKVc8cu8sP4hdlsmUSScwl0AXYKMARw+2kvApwBEEI4gStA/ju2\nTnLPc+lcPOdPxvhsd9gcrPphfTZYJJHcHdzSuSuK0gaIEUJsu9luKtuESl8vKoqyVVGUrbGxsRkw\nU3KvotVpQfgMJU+bitRTIpF4CGTm/hDQVlGUk8A8oKmiKHNu2OcsUAxAURQdEA7E39iREOJLIUQt\nIUStqCiZElZya/IVCOf+B0ui0XjPH4xmA617N8smqySSnM8tnbsQ4h0hRFEhREmgK7BSCPH0Dbst\nBp69+veTV/dRn25JJBnk3R8Gke++vFjymDGY9JhCjFR6qDydXm9z64MlknuU29a5K4ryHrBVCLEY\n+Ab4TlGUo3hm7F2DZJ9EQqFSBZlz4n9sXraDmDOXKF+nNOVql5Z54yWSm6Bk1wS7Vq1aYuvWrdly\nbknGWP/rFv75aQMFi0fRdWgHLKHm7DZJIrlnURRlmxCi1q32kxGqEr84nU56lRnAxVP/vfyeN3ER\no399i/ptamajZRKJ5FbIWHSJX6a89KWXYwcQQvBep0m43f5UsRKJJCcgnbvEL2t+3KC63elwsX35\n7iy2RiKRZATp3CV+cbv8z87TUnwLgUgkkpyDdO4Sv1RrUll1u6JRqN/2lu9zJBJJNiKdu8Qvb33X\nH6PF4LP9xQ96otPJd/ESSU5GfkMlfgmLyMOCmG+YOWI+W/7YQWTh/PQe142ytUpnt2kSieQWSJ37\nXc7anzey9a+dPNSuNnVa373yRIfdwcFNR9HqNJSrUxqtVuaNkeQchBAc23mS5MsplKv9AObbiPVw\nOV0c3HwU4XZTvm4ZdPrbm1tLnXsuJ/5CAk+XehWHzQHAsq9WYAwxMu/s54SG310FsLf8sYOx3aYg\nhEAIgdFs5L1f36JC3TLZbZpEwvnjFxnaehyXouPQaDW4HC76Tn6WNi89FnAfe9cfZFSHD3DYnKCA\nRqth+PzXM7WQjpy536V0inqOxLhkn+1RxfMz9+Tn2WDR7XEpOo5e5QZiS7V5bbeEmZkX/SXmEFM2\nWSaReGbsvcoN4Pzxiwj3f77SaDHwwfIRVKxf7pZ9pFxJoVvxvqQleSvMTBYjs49NJ1/BvBmyKdCZ\nu3yhehficrlUHTtA7Om4LLbmzvh7zj+qkkvhFmxYtCUbLJJI/uPw1mPEX7js5dgB7GkOFk3/I6A+\n1i7c7HM8gNvtZtW8zKtJIJ37XYjd7sxuE4LGlUtJ6UtL1+NyukiMS8oGiySS/0iMT1YtKi+EIOHi\n5YD6SIpLwqnynbVbHVy5lHljXDr3uxCz2eg3I6JWd3fd0lqPPYgp1HfpRVEUqjerkg0WSST/UaFu\nGZx238mH0WKgQbvaAfVRvVkV1cIyphAjNR7NvDF+d3kCSTrdhnZQ3d5n4o2p9nM21ZtVofJD5TCF\nGNO3mUKMNOn6ECUrFctGyyQSCM0bQq8xXTFa/hufRrOBgiWiaPl804D6KF29FA91qOszxqs1qUzV\nhysG3eZryBeqdzF/zV7NZ6/NJPVKKqERoQz67EUadaqX3WZlGJfTxYrv17L8uzXo9Dpa9W5Ko071\nZL52SY5h56q9LJr+O1diE2nYsS6t+zTLkBzS7XazdsFGfv92JW6ni+bPNqZp94a3JfkN9IWqdO53\nOXarnYSLV8h3X14MRv1t9ZGalEZyQjL5i0SoDjaXy0VcdDwheUMICbPcqckSieQOkDr3XI7b7WbG\nsB/4ZdrvnurkGoWuQ9rR/d1OAc94rak2Jr/wOesWbkKjVTBZjLwy7Xmadm2Yvs/q+euZ3v9brClW\n3G7BQx3q8PpXfaVEUSLJ4Ujnfpcyb8Iv/DLtdy99+LyJi8gTEUrbV1oG1MfEnp+w+fft6WoVW6qd\nyX0+I7JwBFUfrsjedQf4sPf/sKXa04/ZsGgz9jQ7o38ZEtwLkkgkQUW+UL0LEULw04e/+QT+WFNs\n/DD+l4D6SIi5wqZl27FbvZUAtlQ78yZ4+pg3cZGXYwePfGvLHzuJv5BwB1cgkUgyG+nc70LcLjcp\nV1JU2y7HXAmoj7hz8eiN6g9uF07EAHD+eIxqu96oI+6cdO4SSU5GOve7EK1OS6EH7lNtK1mleEB9\nFClTCJfTNzJUq9NQuVEFAKo0qoBWp/KC1eGiaNlCGbBYIpFkNdK536W8MuU5n1zrRrOBvh8+G9Dx\n5hATPd7t6KXf1WgUTCEmur3j0dB3e6cDphAjGs1/L2iNFiPdhna8rax4Eokk65BSyLuYXWv2MXvU\nj5w5dI5SlYvx7HtdqVivbIb6WD1/PfMmLiLh4hWqPlyBXmO6UqT0f7Pyc8cuMHPEPHat3k++guF0\nGdKeJl0fCvalSCSSAJE6d4lEIsmFyKyQt4kQgt8+/5OuRV+khb4Lz1ccxObfd2S5HUkJyUx67lPa\nhPSglakbIzt8QOzZuyvjo0RyM9JSrHzS/2vahvWkpbErb7d8n7NHzme3WbkGOXO/gQWTf2PmiPle\nMkOj2cB7i9+mRhYlsnK73fSt/iZnDp1Lzyan0WrIWyCcmYenyQAiSa5gcNNR7P/3cHqchaIohOS1\nMPPQNMIjw7LZupyLnLnfBi6XizljFvjox21pdma8OzfL7Ni5ah8XTsR4pQl1u9ykJqayZv6GLLND\nIsksju06ycHNR7zSPQshsFsdLPvq72y0LPcgnft1JCek+AT1XOPMoXNZZsfp/WdxOlw+260pNo7t\nOplldkgkmcWp/WfRaH3djz3NzpHtJ7LBotyHdO7XEZo3BINJPflWkTJZp+suVr4wOj/5n0tVKZFl\ndkgkmUXx8kVwu3yXhA0mPaWrl8x6g3Ih0rlfh1anpdtQb+03eNbcnx/bLcvsqN6sCgWKR3o5eI1W\ngznURJNuUoYoufspXb0UZWqWQn9dJlNFUTCYDLR+4dFstCz3IJ37DXQe3JY+47uTr2A4KJ4Z+9Af\nBlGz+YNZZoNGo2HyP+/x8FMN0Bt1aHUaaresxicbx8uXqZJcw7ilQ3ns2Ucwmg0oGoUHm1Ri6oax\n5I0Kz27TcgVSLXMThBDZXjDi2v3JbjskkswkJ3zX7haCppZRFMWkKMpmRVF2KYqyT1GU0Sr79FIU\nJVZRlJ1X//W5XcNzEtk52FKT03j38XG0NnWjpbErgxoO49K5eK99Fv/vDzrk70ULXWeeLNibv2at\n8mpPSkjmyyGzebrUK/SuOIhfPlmGy+X7ovZOcLlcLJr+O70rDuLpUq/w+eBZJMbLwtaSjCEde/C5\n5cxd8XzqIUKIZEVR9MA6YKAQYuN1+/QCagkh+gV64rth5p5duN1unrqvD4k3VEbXG/UsjPsWk8XE\n9+N+ZuaweT7H9pv2PO36tcKaauOlBwcTc+ZSuqTSaDFSr01Nhs17LWi2jus+hQ2Lt6SnBtYbdEQW\nzc+Xuz/CdMO7C4lEcucEbeYuPCRf/a/+6r/sWcu5R/hr1mofxw7gsDmYMWw+AHNG/6R67FdvzwFg\n1Q/riL+Q4KWVt6Xa2PjbVk4dOBsUO88cimb9os1eOd8ddicJFy+zYs4/QTmHRCK5PQJ6oaooilZR\nlJ1ADLBcCLFJZbdOiqLsVhRlgaIosmz9HXCzdAe7Vu/FbrWr6uCBdEe7a80+rCk2n3ZFo3Bo89Gg\n2HloyzHVlMDWFBu71uwLyjkkEsntEZBzF0K4hBDVgKJAHUVRKt+wy29ASSFEVeBvYJZaP4qivKgo\nylZFUbbGxsbeid25mkL3F/TbVrBkFDqD/+qIytX0vIXuL6hajEPRKEQWzX/nRgJRRfODylKp3qCj\n8E2uQSKRZD4ZkkIKIS4Dq4GWN2yPE0JcmyZ+BdT0c/yXQohaQohaUVFRt2HuvUGPYZ3SnfSN9Bnf\nA41GQ7UmlVTbH2pfB4DWfR71mVVrtBryRoX7PTajVHm4AvkKhPtEGmr1WqlVlkiymUDUMlGKouS9\n+rcZeBQ4eMM+14dvtgUOBNPIew1LqJmJfw33Ksah1Wt5c2Y/ipUrAsD4P4dRttb9XsdVebgCw398\nHfDMqsf//i4FS0ZhMBvQG3WUr1uGj1aPRqMJTniDRqPhw1WjqVCvDHqjDqPZQMESUYxb9i4Fissf\nb4kkOwlELVMVzzKLFs+PwY9CiPcURXkP2CqEWKwoyng8Tt0JxAMvCyEO+u0UqZYJlKM7T+CwOShX\nu7SqU758KZETu0/xQLWShEXk8WkXQhBz+hIGk558BfNmmp0JMVewp9kpUDxSytokkkxEFuu4A84c\nimbhlKWcPhhN5YfK075/qww7xqVfLWfuuF9IvZJK1UcqMvCzF4i4L1/Ax7vdbmaOmMfv36zE7XTx\n8JP1efnjXhhM/83mz5+4yMIpSzm++xRlaz1Ax4GPe9bBr+KwO1gxZy2r5q3DnMfM4y82p3aLahm6\njpjTsUzp+yX7Nx4mT75Qnh3dmUeffiRDfeQUdq3Zx2//+5MrcUk07FiXls81wWgOXK7pdrtZt3AT\nf81ajdsteOyZR3j4qfpeP7pnj5xn4ZQlnNp/lor1y9JhQOsM3XeJ5FZI536b7Fqzj2FtxmO3OnC7\n3OiNOkwhJj7dMoFCpQJ7STih5zRWfL/Wa5tOr+W7E/8jsnBEQH30qfIap/Z5SxbDI8OYd+4LdDod\nh7cd440mo3DaHDgdLnQGLQaTganrx1KyUjFcTheDm47i6I4T6aoZU4iR9v1a0Xt8j4BsiD52nufL\nD8Lt8i6k3a5fS/pN6x1QHzmFnz5azKyRP6anczZaDBQpU4hpG8YG7ODH95zGhkWbvT7POq1qMGz+\nayiKwt51B3in5Vgcdgcup2fsGC1GPt08gcJ+CppLJBlF5nO/DYQQfPzC51hTbOkOzWFzknI5hW+H\nBpbPPSHmso9jB3A6XHz80hcB9fHvkm0+jh3gyqVEFnz4GwDTXvkKa7I1XRLptLtIS0rjs9dmArB+\n0WaO7jzpJYe0pthYOHVpwBWdJj37qY9jB/h1+h9YU60B9ZETSEpIZubweV55+m2pdqKPXODv7wLT\n4x/aeoz1v2z2+Tw3/76dAxsPAzD5xS+wptpwOa8bO1dS+eqtOUG8GokkMKRzv46khGQunr7ks93t\nFmz9a1dAfay+STGNPWv2B9TH39+t8du25qd/cblcHN563KdNCNj9j+ccG5dsw5rs64A1Oi07V+0N\nyI7D2475bfv315z31OWP/RsOoTP4pnK2pdpYu1AtZMOXHSv2eAWEpfeRZmfb8t2kJKZy7ugFn3bh\nFmz/e0/GjZZI7hDp3K/DaDb4bQsJtwTUR2QR/8suptDAHv/zRvkvMZYnfygajQa9n7zzljyerJHh\nUWGqAUYajUKefKEB2eEvtz1AZLHgaOWzgtB8oQjh+wSiKIon+2cA5MkXohpfYDDqyRMRit6oR+NH\nvhoSZs6YwRJJEJDO/TqMZiMNO9TxCf4xWgx06N8qoD4eal/Hb5DRk689EVAfPYZ18tvWa3QXFEWh\n5XNNfJyv0Wzg8ZeaA9CqdzPVgh86vY6aj1UNyI42fVuobjeFGKnSsEJAfeQEKtQrQ1hEHh8Vj8Fs\n4ImX1a/xRho9WU899kBRaNylAQajnoefqu+Vnxw8Y6ddv5a+x0kkmYx07jcw6IuXqFi/HEazgZBw\nC3qjniZdG9J+QOuAjtdoNHzw9wgfx1r38Rp0frNdQH1E3JePQV+8yI2Kwm5DO1CxfjkAXpzUk+rN\nqmAw6QkJt2Aw6anbpibPjOwMeCrdvP51X0whRixhZsx5TEQUysvE5cPRqyxRqNFnfA8qNyrvtU1v\n1PPx2jEBHZ9T0Gg0TPhzGAVKRGIONRESZsFoNvDShz2pWK9sQH2EReRhzK9vEZovBEuYGUuYmZBw\nC6N/eTM9//iA/71A5YbeY+fhJ+vz5BuB/ahLJMFEqmX8cOZQNBdOxlKqcjEii2R8CcLtdrNy7lpi\nzsTRrHtDCpYokOE+7FY7v3+9ArvNQaveTQnN67uccu7YBaKPnKd4haIULOEbOGRNtbF/wyGMFiMV\n6pW5rQCmM4ei+efnjRQtXYhGT9YLWhBUViOE4NCWo6RcSaV83TKEhAW21HY9ToeTfRsOgYCKDcqq\n/lCePXyO8ydiKFmpmJc0VSIJBlIKmQs4ue8MK39Yh9PupFGnelSoW8arPTUpjZVz13Fy32lKV7+f\nxl0ayDS72czFUzF8OWQOZw5FU7FeWfpM6KH6o5zZ/PvbFuZ/8CsOm5PWLzTj8ReaZ7kNksxBOve7\nnAUfL2HmsB9w2J0It8BgNtDy+Sbp+vLzJy4yoN5QrKk2rCk2TCFGQsItTN88IWAtvSS4bFq2nWFP\njPdKiK3Vafhi10eUqFA0y+wY/eQk1i3c7LWteMWifLX7o7v2qUvyH1LnfhcTezaOGe/OxZZmx+1y\nI4TAlmrjj29XcWDTEQCm9v2SxLikdN21NcVGwsUr6Tp3SdbzftePfSoduJxuRnb4IMtsOLz9uI9j\nBzi9/yxLvlieZXZIsh/p3HMgm5ZuR1GZYdnT7KxbuBGXy8WOlXtxu709idvlZuOSbVllpuQ6EmIu\nq8YVAEQfOZ9ldiyatsxv2+9fr8gyOyTZj3TuORCdXuujlAHQaBV0Bh2KovhNCazVyVuaHajFFFxD\nUUt6n0ncKMW8Hq2KNFaSe5GeIAdSv20t3C7fdyFavY6m3Rqi0Wg8evobvqw6g44mXRtmlZmS6wiL\nyENYfvUXp2Vq3q+6PTPo+nZ7v22dB7fNMjsk2Y907jmQ8Mgw3v6uP0azAVOIEaPFgMGkp/e4bpSo\n6KlgOODTPhQufR/mPCYMJj3mUBMlKxXjxUk9s9n6e5eJy0f4zODNoSbGLhuaZTYUKlWQLm/5Ovi6\nbWrw8JP1s8wOSfYj1TI5mMS4JDYs3orT7qRemxo+enu32832v/dw9tA5SlYuxoONK8lc6tmM3e5g\n3vhfOLnvDNUaV6JN38eyRaESfew8P4z7BYfNQYeBj1O+dukst0GSOdyzUkghBAc2HeHYzpMUur8g\n1ZtVRqvN2Fqjy+Vi+997uHAihtLVS1G+Tmkfp7lr9T7++HYleSJC6D7sSfJG+s8Hc7skJSSzcck2\nXA4XtVtVJ38hmRf8Zpw9fI5dq/eRJyKUem1qeuW+z0ns/mcfv3+9kpC8IfQY1pF8BbxrBditdjYt\n3c6VS0lUfaQixcsXCboNQgh2rd7HmUPnKFGxKFUaVfAZ47Fn49j6504MJgP1nqjpE/TldDjZ/PsO\n4s9fpmL9stxftUSG7UhNSvMkuUuxUeuxqrKCVwDck87dlmZjaOtxHN56DOEWaHQa8hUI5+O1YwIu\nmBB3PoHXHx5OQswV3E43ikahXO3SjFs2NN1Z9Kv3Doc2H/U6buBnL9LmpeAFiqxftJnxPaai0WoQ\nQuB2uXlxUk/avRpYjpt7CSEEn/T7mj9nrkZRQKvVoNFp+WD5CMrUyLr17kAY+NC77P/3sNe2ftOe\np10/z309vvsUbzYbhdPuwuV0IYCm3Rry+ld9g/ZUlpSQzBtNRnLheAxulxuNVkORMoX4cOVIQsJD\nAJg/6Vdmj5yPRqtBURTcbsHIBW9Qu2V1wFOU5PVHRmBLseFyukCBOq1r8O4PgwKeTO1ctZcR7SaC\nAsIlcLvddHmrfXoKDYk696TO/fv3f+bgpiNYU2zY0uykJVm5eCqWD5/7X8B9TOo1nYunYklLsmJL\ns2NNsXFg42Hmjv0ZgHkTfvFx7ABTX/kyaDnOE+OSGN9jqucakq1YU2zYrQ6+GjKH0wejg3KO3MT6\nRZtZPnsN9jQ7tlQ7qUlWkhNSGP7EBNxu32yQ2cWCyb/5OHaA6QO/JTU5DSEEw9tOIDEumdSkNGxp\nduxpdlbPX8+aH/2nks4onw6cwZmD50hLtqaPsZP7zvD54NkAHN1xgu9G/Yjd6sCaYvPsl2rjvac+\nIjUpDYDRnSZx+eKVdDttqXY2L9vBsq8Ck1va0myM7PABaclW0pKsWFM9Y/zHSYs96R0kd0yucu5/\nzFiF3erw2uZyutm+cg/W6wo1+CMtOY1dq/elF1u4ht3q4PdvVwGw+LM/1Q8WsPhTP20ZZMPirSha\n31vjdLhYOde3EMi9zrKv/vYqonGN1OQ0Dm/1n5M+q/n10z/UGwT8Mm0Zx3aeJCk+2afZmmJj6Zd/\nB8UGIQRrftzgk5veaXeyet56AP6avRqHzeFzrKJR2LxsOxdOxnDu2EVufOq3pdpYGmCglL8c9/Y0\nO3/MWBlQH5Kbk6ucu+tqVSI11CoKqe3jb5HK6fB8GdQKNlwjkB+QQHDYHAiVGafb5fb58ZLg9zNR\nFAWHzf/9ymocdv/3zpZqw2F3+l16sVvtQbPD33fhWlUvh83pEyAHgPC0OWwONP7sVPlRUD2X3ekT\nzQueHx97WvCu9V4mVzn3Bu1r+wRqKArcX7UEljy3LpgQEh7C/VWK+2zX6bU06lgXgMZdGvg9/omX\nH8ugxerUbV1d9ctlMBto2KFOUM6Rm2jWoxGmEPWEaeXr5hyVSNObxCC0faUlZWqUUg1CM1qMNOvx\ncFBsUBSFGo9W9SksotEo1G7pKZ7eqFM91c/T5XRRq2U1ipYtTGhEiE+7waSnaffA4iyqN6uS/mNy\nPaYQI427PBRQH5Kbk6uce+9x3YksHJE+MI0WA5ZwC2/OeDXgPt6c8Soh4Zb0qkymECP5C0fw3Pvd\nAOjzQU/yFvBVxrTr19JH9XC7FCgexbOju2A0G9JfaJksRpo/80h6PnfJfzR/5hHK1S6dXulKZ9Bh\nNBt4a3b/gHPXZwXPj++uWvmpTd/mRBaOQKfX8c73AzFaDOivFnwxhZooXa0kLXs3DZodA/7XhzwR\neTBezSBqCjESFhlGv2nPA1C9aWUadqyLKcToeUGt02AwG3hxUk/yFQhHURSGfj8IU4gxPSLWFGqi\naLnCdHqtTUA2hOYNof+nvTGaDemxAaYQE7VbVqfu4zWCdq33MrlKLQOeFzWr52/g4OYjFC1bmObP\nPEJYRJ4M9ZEYn8Rfs1YTfeQyGf5DAAAgAElEQVQ85euUoXGXBhjN/81knE4n8z/4lTXz1mMJt/DM\nqM7UaBZYdaOMcGzXSVbOXYvD7uThJ+tTqUE5qWP3g8vlYvOyHWz5cyd5o8J47NnG3Fcy4zn0Mxun\n08mPkxaz+od1WMItPD3iKWo1f9Brn5jTsfw1aw3xFy9T89Gq1HuiZoblvLciJTGVFXPWcmLPKe5/\nsCTNejTyeroVQrB7zX7W/bIJo8XIo08/TMlKxbz6iDufwF+zVhFzOo5qjSvxUIc66PTqVcj8ceZQ\nNMtnryE1yUqDdrWp3rSyHOO34J6UQgaTc8cucOFEDCUrFwtYRnk9QgiO7z5FYlwSZWs9oFoYYv/G\nQ/zxzUrK1S3N431kvu17BWuqjYObjmAJM1Omxv2Z4szsdjvfjfoJa4qNHsM6pVeLygjxFxKYO3bh\n1R+hThgMOTNu4F5DOvfbJC05jVGdPmTvuoPoDTrsVgctejWm/6d9Ao40jDkdy9DW47h4KhatTovT\n7uT5cd3oONDzyOpyueha9CUuX7ySfoxGo/Dp1omUrlYqU65LkjP4c9Yqpvf7Bq1Wg9styFsgjLFL\nh1KsXPACleaM+YlZI3/02vbwU/UZPv/1gPsY0X4i/y72/n72Ht+drm91CIqNktvnntS5B4Mpfb9k\nzz8HsKfZSbmSisPmYPl3/7Dok98DOl4IwbuPj+fMoXNYU2ykXEnFlmbn23fnsXPVXgDebPael2MH\ncLsF/etlXQ4SSdZzdMcJPnnla8+4SEwjLdnKhRMxDGn+XtD0+LHRcT6OHeCfn/5l7c8bA+rjr9mr\nfRw7wDfvzOVy7BWVIyQ5Eencr8NutbP2540+Gl9bqo1fpi4NqI+T+85w4WSMj9zMlmrjl6u5tves\n3a96rNPu5NA23wApSe7gt8//8hlbQkDKlVT2rD0QlHNMeelLv21fXA1SuhXfvjvXb9u0l7/KsE2S\n7EE69+uwptoQfiZQyVdSA+ojKT4ZjUoAEsDlmKuznpushJ07eiGg80juPi5fvKIqcVUURTV46Xa4\ncpOZdWpSYGM4Lcl/pHVCjJy53y1I534defKFUqC4b7V6jUaherMqAfVRpkYpnwhX8GjUG7SrDUBI\nuO/L1Ws8JHXsuZb6bWup6seddieVHioflHO0eqGZ37aaN6hy/PFg40p+29q+2iLDNkmyB+ncr0NR\nFF77si9GizF99q036LCEW3hhwtMB9WEONfPipJ4YLYb0akoGs4HIwhG06esJchr6/QDVYx9+qr5U\nJORimnZvSJEyhTBa/rvHJouRbu90IF+BjKtZ1Hi8T3NC8/kGGGm0Gl7/9pWA+nhnzgA0Wl8FT3hU\nGE26yGIwdwtSLaPCqf1nWDB5CWcORVOpQXk6DGxNZOGIDPWxd90Bfpm2jPgLl6nftjZtXmrupSPe\nu/4g47pPIS46AYPFQM/hT9L5zXbBvhRJDsOWZuOPb1ey5sd/Cc0XQrtXWwY8ow4Ul8vFmM6T2bRk\nG24hqFivLGN+e4vQcPVKUWpciU9ieJsJHNp6FI1GQ4N2tRk6d2DQ9faSjJOrpZBJCclYU2xEFolQ\n1Qg77A7iz18mPCoMk0U9LD0riDkdS9z5BMrUvB+dzje4w+V0cSk6nrD8oZhD1dMjXI69gsvpztZc\n7i6Xi7joeELyhqjq9QMhJTGVk3tOU6xCEb9BZXHnE9DqNLelyQZPgNCRbceJuC8vBUuoBzAlJSST\nlmwlqmh+1bFjTbVybMdJipQrnCk5+gPl5N7TnD1ynjqPV1d9mnM5XcSdiydPhP+xc+rAWWxpdsr6\nSXtst9pJuHiFfAXDMy33fSBjJzEuCbvVTv7C6t/nrMDtdnMpOh5LHjOheX2ffODWYyerCNS53zKc\nTFEUE/APYLy6/wIhxMgb9jECs4GaQBzQRQhx8jbsvimXY68w4elp7F6zH0WrITwyD2/OeJXqTf9b\nD/95yhJmj/oRt9ONWwha92lG34+evWkB42ATczqW/vWGEn/hMuDJptftnY48N6Zr+j6/f7OCL9/8\nDofdiXC7adK9IQM+fQHD1XDu8ycuMq77VI7tOAGKQqH7C/DOnIGUrp61OvhV89fzaf9vsKbYcLsF\nD7Wvzetfv4w5xBTQ8W63m3davu+VBbBcndJMWTcm/Qfv6M4TjO8xjfPHL4IQ3F+tJO/OHUSh+wsG\nbOfsUfOZ8/7PiKsvLPMVDOeTjePSnXxiXBITnp7GjlV70WgUwiPDeOObl71mzaOfnMS6hZvT/1+i\nUjGmbxqHyRLYtQaDUwfO8nLNITiuS4bWqGNdRiwYnP7/P2eu4vM3ZuGwOXC7BE26PsTAz15Id9D7\n1h/k7VZjsSZ7Xozq9Fre+OZlHn36EcBzT2aNmM/PU5Z6Sncr8NTgtvQc8VRQndY/C/5l2qtfY022\n4na7qf9ELQZ/+0r6j1H8hQTG95jGvvUHUTQKEYXyMWRmP6o0qhA0GwJhyx87+KjPZyQlpOB2uanZ\nvCpvze5PnnyeJ53E+CQmPvMJ2//eg0arISwilNe/fpnaLaplqZ0Z5ZYzd8Vzt0OEEMmKouiBdcBA\nIcTG6/Z5BagqhOirKEpXoIMQosvN+s3ozF0Iwcs1h3Bq3xmvhENGi5Evdk6iSOlCrPh+LR+/9AW2\n67IzGi0Gnni5BS9Neibgc90p7SOeJeWyrzJh6PcDadKtIZuWbWdM58nedpoNNO76EIO/eQWnw8nT\npV4h4cJlL3WFJczMd8c+JSx/xtIp3C571x3g7ZbvY0v9L0ufwaSnVotqjP5lSEB9jO3+Mavn+eYi\nf7BxJT5cOYqkhGR63v8qKdepkRSNQr6CeZlz4tOAcsOs+XED73f92Gd7SLiFRQmzAHi1ztsc33XS\nZ+x8tm0ixcoV4bPXZrBw6jKfPh54sCSf75gU0LUGg5aGrp7iFzfQc+RTPDOyM1v+3MnoTh96jR2D\n2cDDnerx1uz+2K12nsjTUzXz49f7PqZEhaLM/2AR37234IbviZHe47rRYcDjQbmO/RsPM+TR0V5j\nR2/UU+PRKrz/2zsIIehT+TWij1zwul5TiJGv935MwRJZU5HpxN7T9K/3jpedOoOOcrUeYMq69wEY\nUH8oR7Yf9xk7n24en17TOCsJWhCT8HBNp6W/+u/GX4R2wKyrfy8AmilBfm45sv040UfO+2SSczqc\n/Drdkyf7+7E/ew1YAFuqnd8++ys9ZW9ms2PlHlXHDvDNVf3w9++r2JlmZ+UP60hNSmPzsh2kJqX5\nyOZcDhd/f/9P5hiuwryJi7wGPXjS6275YyfxFxIC6uOfn9QDZ3at3ofb7WbF92t97o1wC9KS09i0\ndHtA5/hmqLouO+VKKluX7+LYrpOcPnDWd+zYHenBab99rp6H/Niuk6QkBiYhvFPW/LRB1bEDzP/g\nVwDmjlvoM3bsaXbW/PQvyZdTmDfhF78pfb8a8h0AP076VeV7YmPehEV3egn/2TtxkU/qXofNwY4V\ne7gUHce+DYeIPRPnc71Oh4slX/wVNDtuxcIpS33SQjvtTo7uPMGpA2c5ue8Mx/ec8hk7DpuDhQHG\nvmQXAallFEXRKoqyE4gBlgshNt2wSxHgDIAQwglcAXw0hYqivKgoylZFUbbGxsZmyNCY05dU9eMu\nh4voI+cBiDun7nBcThdpycGpknQrju8+5bftyqUkwHMtami1Gq7EJhJz+pJqbnpbmp0LJ2KCY2gA\nnD+ufi69Uef3s76Rm+XRt1vtXDhx0ecHBDxfMH+f041cvon2+sTuU1fHju+ynMvp5uzVsXOzXOuX\nouMDsuNOObDRt0rTNa4t08ScUv/eaPVaLsdc4cyhc377uHAyFiEEiXHqmvrLsYkZsPbmnD92EbVF\nAZ1Bx6XoeM+9VZn/Oe1OorMw1iP66HnVMarT64g9E0fM6UuqydDcLjfRR3J2TEpAzl0I4RJCVAOK\nAnUURal8wy5qs3SfWyuE+FIIUUsIUSsqKmOPXWVr3o9DpVCG0WzgwSaV0/dRIywi1O9LkmBT7/Ga\nftuuZdWr2KAsisb3I9PqtEQVy0/Z2g+o/pCZQ01UysKUv1UaVVB9V+FyuChatlBAfVwv+7serU6D\nyWKiYv1ymEN917S1Oi3l6wSWi72USg7+a9RrU5MyNUqpVhYymA1Uu6rpvra+eiOKolCkzH0B2XGn\nPNrzEb9t4VGepbhKDcr55GIH0CgKBUpEUbuV/3S5Dz5SEUVRKFausGp7iUpFM2ixf6o8UtGntgJ4\nxk6x8kUoW+sBXCpP00aLkQcfqRg0O27Fg40rpactvh671cEDD5bggWolVYvBGEx6qjXxHw+QE8iQ\nzl0IcRlYDbS8oeksUAxAURQdEA4EdbpToHgUzbo3Ss9BDR4HEJI3hNZ9PIEbfSY+jdFi9JoQGC0G\nXpr8bJa93S5SphBla/n+yCgKvPbFiwA8O7oLJovRyyajxcjz47qj0+uoULcMFeuXS88pD57ZcoHi\nkTRoXzvzL+Iq3d7pgCnE6OVMjBYj3YZ29KvQuBF/8QFdriagatCuNgVLRnl9wYxmA+XrlKFCvbIB\nneO1L/uqTQIpU6MUxcoVIbJIfh7r9Yjv2Am38PjVoub9P+mt2nerF5qpKp0yg9LVSpG/sLoq6s1Z\n/QHP2rsxxOg1OTBZjPR6vysGo57HnnmE8EjfdzI6vZbnx3UH4OUpz3mNLfB8T16e3CtIVwJdhrTz\nGTsmi5HOQ9oREmahaJlCPNShrtc90em1hEfmofkzjYNmx61o92pLLGFmryIpJouRx198lHwF85K/\nUD5a9WnqM3YsYRbavnKjG8xZBPJCNQpwCCEuK4piBv4CJgohlly3z6tAleteqHYUQty0hPntSCHd\nbjdLvljOok+WkZpkpf4TNek54imvlLxHd5xgxvB5HN1xnPtKFaDniM7Ueiy4OuJA7Jz8wuesnLsW\np8NFofsL8tasfl6FNk7tP8PM4fPZv/EwkUUi6PFup/QIVvCUK1sw+Tf++GYlToeLJl0fovu7HW9b\nini7nDt2gZkj5rFr9X7yFQyny5D2NOmasUo5v3+7kq+GfEfy5RTMecw8M/IpOg36r6hDSmIqP4xf\nyMq569HptbR8vglPvtE2XTkUCAc2HWZCz084f/wiOr2WJt0a8sbXL6dn8nS73Sz98m8WfbKMlCtp\n1GtTg54jO3tJTNf8uIHpA77lyqVETBYjXYa0o8ewJzN0rXeKy+ViyKPvsfuf/SA8T2tvzniVRp3q\npe9z+mA0M4fPY9+GQ+QvnI/uQzvSsEPd9PbU5DTe7zyZ7X/vQQhB6eolGblgMAWK//e0vGftAWaN\nnM/pg9GUrFSUZ0d3pVKD4D4Vnj9+kZkj57Nz5V7Co8Lo8mY7mnZvmD6pcblc/Dr9D3777E+sKTYa\ndqhLj+G3l574TrgUHcesUT+y5fcdhOYNoeOgNrTq3TTdTiEEv3+9goVTl5J8OYU6rWvwzMiniCzi\nG82eFQRN564oSlU8L0u1eGb6Pwoh3lMU5T1gqxBi8VW55HdAdTwz9q5CiOM36zcnBzFJJBJJTiWY\napndQojqQoiqQojKQoj3rm4fIYRYfPVvqxDiKSFEaSFEnVs59sxk07LtPF9xIC30Xeha7CWWfPGX\nT5V2Sday9ueNPFu2P4/pOtO9xMv8NXu1V/ul6DhGdZxEK1M3Hg/pwQe9ppOUEJxEWtew2xx8/sYs\n2oU/Q0tDFwY3HcXJfWe89tnyxw56V3qNx3Sd6VLkRRZ/9qfX2Lkce4Vx3afwuKU7rc3dGNNlMgkX\nL6e3CyFY+tVyuhV7iRb6LjxXYSCblm7zOsfpg9EMaf4eLQ1daRvek08HzcCWlrHC6rvW7KNv9Tdp\noe/CkwV78+OHvwYtZXBOY8OvW+hVboBn7BTvyx8zVma3SXcNd2WEqj+2Ld/FyPYfYLtOgmW0GOk1\npitPBljbURJc1i/azPinp3opYowWI69OfY5WvZthTbXRq2x/Ei5eSVct6Aw6ipQpxJe7Pgy4QMqt\nGN52Atv/3u31cswSZuabfR8TWSQ/O1buYfgTE3zGTs+RT9HlzXa4nC6erziIi6di05VMWp2WyCIR\nzDg0Fb1Bz8JpS5kx9AesN8QvjFz4JrVbVCP+QgLPVxhEamJqupLEYNJT5eGKTPhjWEDXcWjLUd5o\nMtLn82zfvxV9xve4k48ox7FxyTbe7zLZ5570/egZ2rwUnGL0dyP3ZLGOb9/9wWsggEe/O2fMT7hc\n6vphSebyzTvf+0gdbak2Zgz7AfCsc6ckpnrJ0TwyyFivqNY7Ifroebav2OOjenBY/9O5zximPnbm\njv0Zl9PFxiXbSLh42Uui6nK6SIxLYsOiLbjdbr4b/ZOXYwePfPXbqzr8a/ncr59P2a0O9q49wKn9\n3k8R/pg9+icf/bgt1caiactIS8kauW9W8c0736vek5kj5sun8QDIVc797GF1ja8t1e4VASnJOi6c\nVNfKX45JxGF3cHz3KazJvssSTruT0/vPBsWG0wei0anI8hx2J0e2e1YQ/enDHXYnifHJnD4QjS3F\n1860ZCun9p8lNTENq0o7kK7bPrL9hKqsTqvXcvpAdEDXcnLvaVX9uEarIS6L9PhZxbnjF1W3J8Un\n+zh9iS+5yrkXKa2uvTaaDTfNoS7JPAqWVE/gFR4Vhk6vo1SVEphU8tToDDqKVQhOXdFi5Yv4RBhe\nO0fp6h7ZatGy6tpvvV5HWEQoxcoXxqiSi92cx0TxCkUw5zH5TVJX+AFPjpzS1Uupaqqvab8DoURF\ndS262+Umf5GMZS7N6RQqpT52QvOF+Eg5Jb7kKuf+3NhuPkEzRouR7u92kqlKs4nnx3ZXvSfPvtcF\nRVFo3KUBljwmr6AtnV5LVNH81GxeNSg2FC1TiGpNKmEweTtWg1FP+/6tAHhuTFcfO00WI13f6YBW\np6Vem5qER4Z5BXVpdRpC84bQoH0dtFotPYZ38tJDg2di8fxYj778ib6PYTDpvTT5BpOeig3Kpge4\n3YqeIzuraNSNtH21RcDJ3O4Wnh/XXfVanxkZ3ARnuZVc5dxrt6jG0LmDKFz6PlA8mQFfmNiDp954\nIrtNu2dp1LEug795hftKRoEC+Qvn49Wpz9HmRU/wkMli5JNN46nTqjpanQadQUejJ+vx8T9jgvYy\nFWDkgsG0fuFRTFcDgCo3LM/Ha8cQVdSjVa7xaFWGzXvdE3mrQN4C4Tw3thtd32oPeMLRp20YS4P2\ntdEZdB6H/0QtPtk4Pl2P32lQG1784GnyFcwLimfG/vacAdRpVR2A/IXyMWXd+1R5uCKKRsFoMdKi\nVxPe+/XtgK+jQt0yjPntbUpWLgYK5IkIpfvQjvQJsJjM3USDtrUZMqsf95UqAApEFMpH38nP5vjg\noZxCrlLLXI8QQv665zBudU+ujcXMvm+B2HGndt7pOQLhXhrj99K13oqg5XO/W5EDIedwaOsxZo/6\nkeO7TlKsfGF6jujslbM7/kICY576iAObjoCiUKNZFYb9+DqW61IcbFq2nbljfybm9CUqNijHs6O7\nUDzAdeob8Tc21i7cyPT+33L54mVMoSa6vd2Brm93SG+3W+0smPwbf85cjRCC5j0f4anBbb3W2nes\n3MOcMQs4d/QCZWrez7Oju/DAgyXT208dOMu4blM4ue8MWp2GRp3q8ebMV9NTHAghWPXDOn76aDFX\nYpOo+VhVeo7sTIFikQFfRyDs23CI2aN/5PT+s5SsXIxnRnWhQt0yt91fZuPvWtNSrMz/4FdWfv8P\nGq2GFr2a0On1JzIU3XwrhBD8NXM1P09dQnJCCnUfr8HTw5/K1gI6gZBrZ+6SnMHe9Qd5u8X7Prnr\nh//0BnVb18ButdMhopePiiRPRCgLYr5Bo9Hw+zcr+HTgjPQ+FI2SvpxTokJwkl2tmr+ecd2m+Gxv\n+0oL+k/vgxCC1x4e7lG8XFVqGEx67q9agqkbxqLRaPhnwb980Gt6uvRTUcBgNvLR6tGUq/UAsWfj\neLrUy7hd3t+5omULMePgNABmjpzHz5OXpCtvtDoNIeEWvtw9OWjOZPvfuxnRbqK3ftxsYOzSoTct\njp3TcLlc9KvzDqcOnE3PmmkwG6hYrywf/D0iaBO8/w2awbKvV6SPP61OS1j+UL7e97HfqmKZyT2p\nc5fkPD5/Y5Zq7vr/DZwBwMwR81XlgUnxyfzx7UpcThdfvvmdVx/CLbCm2pg1Yl7Q7Jze7xvV7b99\n/hdOp5Odq/ZybNcpL4253erg1P6zbPtrF0IIPnttppemXwiPLvurtzx51Kf3/8bHsQOcPXyefesP\nknw5hZ8mLfaSVLqcbtKSrPz88RKf426XTwfO8NWPp9n57PWZQTtHVrBp6Xaij5z3qlplT7NzcPMR\n9q0/GJRzxF9IYMkXy73Gn8vpIuVKKr999mdQzpFZSOcuyVSO71LPb3/++EWcDic7V/kPVNq8bAeX\nouNxqqR6Fm7Bvg3+859nlMT4JNXtwi2IPnKBQ5uP+gQPgUfnfnDTUVITU/3mlT+81aOlv1m+9vW/\nbuHk3tPojb4rpQ6758clGAghOH1APX7gxJ7TQTlHVnHg38OqdRqcdicHNh0NyjmO7Tzpo7ICzw/7\njhXBuSeZhXTukkwlb5R6kWlzHhNandZvIWuAwqXvIyx/KC4/eVOuKV2Cgd7g//VTZJEIIovmV9VW\nm0KMRBaNwBRiQqtS1AEg4r68AH7T+QIUr1CE/EUifKoCgWe92Z/mO6MoikKeCPXc9WqpgnMyBYpH\n+khPAfQmPQWKBWdsRBbNrxojodFqPKq8HIx07pJMpevb7X213xYjHQe1QVEU+kxUz4eiaBSeHvEk\n5lAzTbs1xKCid+7+bseg2dn6heaq20tVLU5ImIWGHeuiN+p88sbr9Doe6dwArU7LEy8/pqqV7z7U\nY+cLH/RUPYfeqOexZxtTqFRBKjYo5/NDYzAbeGpw29u8Ml+eGtxW9Z50frNd0M6RFTTp1hDdDcVk\nFEXBaDJQv11w6h6UqlyckpWK+kQ46406OgxoHZRzZBbSuUsylSdebpFeuMEUYsRoNtDmpeY8PbwT\nAEUeKMTbcwZ4fXkMZgMT/hyWrpYZ8L8XaNy5AXqTHlOIkZBwCy9O6kmDtsErXNJv2vPUb+v9jqp4\nhSJM2zAW8Djpyf+MoWTl4uhNevQmPSUqFmXymtFY8njs7DO+By2ea4Lhqp2mUBNPj3iS5s94KizV\naFaVFyY+7RWwFZLXwqdbJqRr+kf9PJiaLaqhN+owWoyER4Xx1qx+lK8TPCVLlyHtaNevJUazwXNP\nLEY6vfY4ne6y5HqheUP4cPUoipUvjMGkR2/0vOD+eO2YoKplxi17l2pNKl+9JwYi7svL8B/foFRl\n/xXAcgJSLSPJEuxWO5ei48l3X17VSEq3282hLUfRG/WUrlZKtY+UxFQSLyURVSy/al3LYJCSmMrR\n7ScoUrYQkYXVw/kvnYsHIfwWa0hLTuNyTCL5i0SoOhm3282+DYfIGxVGsXLqcs7E+CRSrqRSoHhk\npkVXW1NtxJ9PIH/hfBjN6qkT7hZiz8ah0WoyVZ6YGJdESmIqBUtEBTXALqMErVhHZiGde+bjsDtY\nMWctq+atwxRiok3fx6jdolqW2xF7No5fpi3j4OYj3F+1BJ0GtaHQ/QUz1Mc3Q+fy00eLcTlcWMIt\nvPvDQOq09F8vVI1da/ax+NM/SIxLpmGnurR8rknQndrZI+dZ+PESTh04S8X6ZekwoLVXpTC71c6f\nM1ez9ueNhOYNoe0rLajW5MaSxBKJf6Rzv8dxOV0MbjqKoztOpEvrTCFG2vdrRe8szPt96sBZBtQf\nit3qwGl3otVr0Rv1fLhiJOVqB1YAe3Cz0exSUYu8NWcAj3ZvFFAfP320mFkjf0yXtBktBoqUKcS0\nDWOD5uD3rjvAOy3H4rA7cDnd6Usrn26eQOEH7sNuczCo4TDOHIhOTw1stBjp8W5Hur0TvPcHktyN\n1Lnf46xftJmjO096aaatKTYWTl1KzJlLWWbHZ4NmkJaUli5ndDlcWJOtTHn5y4COt1qtqo4d4KPn\nPg2oj6SEZGYOn+elVbal2ok+coHls/8JqI9AmPziF1hTbbicHnWPw+Yk5UoqXw2ZA8DKues4czDa\nK+e7p97AAi7HqssoJZLbRTr3XMrGJduwqmiANTotu1bvyzI79qw9oJp//NiOkzgdvrK/G1kxe63f\nNjWJmhr7NxxCZ/Bd+7al2lj3y6aA+rgVKYmpnLuat/16hFuwfYVHy//v4i2qOd91Bh171wUn6EYi\nuYZ07rmU8Cjv9LTX0GgU8uRT1zlnBuZQ9TS0eqPOSzXij6Ll1fOsZ4TQfKEI4auVVxSFfAXD77h/\n8MgZNRr1cPeQMI+aJjwqTHUfIcjSeyK5N5DOPZfSqncz1epDOr2Omo8FJ096ILR5+TGf4B+DSU/z\nZxsHpDh48OFKfnOE3BdgYE+FemUIi8jj04/BbOCJl1sE1MetMBj1PPxUfZ9iHEaLgXb9PClq27zU\n3KddUcCSx0TlRuWDYodEcg3p3HMpxcsX4fWv+2IKMWIJM2POYyKiUD4mLh+OXmWJIrN4etiT1G9b\nC4NJT0i4BYPZwINNKtP3o2cD7mPCct/i0XqjnhmHpgZ0vEajYcKfwyhQIhJzqImQMAtGs4GXPuxJ\nxXplA7bjVgz43wtUblguvfKX/qrDf/JqPYGyNR/g1WnPY7QY0u9JVLFIJi4fIYvJSIKOVMvkcqyp\nNvb/exij2UCFemWyTZ8bczqWU/vPUqRMIQo/cHth2zOGzeXA5qO0fbkFDTvUzfDxQggObTlKypVU\nKtQrmx58FGzOHj7H+RMxlKxUTDVFQlpyGvv/PYwlzEL5OqVlempJhrjn87lLPJgsRmo0q5Kp5zh7\n+Bwrvl9LWoqVBm1rU6VRBR+HVaB4FAWKR/nt48CmI6xbuBGtTkuTbg19ov8S45IIiwyjePmiOO1O\nHHZHhp9AFEW5aaSn3c5Il/AAABV8SURBVOZg3c8b2b/xCEXLFqJZj0a3tRZetGxhvzVZAcyhZmo2\nfzDD/Uqyj4unYvl7zhoSLyVRq2V1ajavmq2BTIEgZ+6SO+L3b1cwvf+3uBwu3C4XRouRBu3r8Pbs\n/gHPSD97bQZLv1qBPc2OolHQG3Q8M7oLna/mUzmy/TiDm47C6XBhT7NjDvUsZ0z7dywhYcEpfJ4Y\nn0T/ukNJuHiZtGQrRosBnV7Hx2vH5Pgwc0nmsuHXLYzrPgWXy43T7sQUaqJKowqM+fUtVdFCZiN1\n7pJMJzE+ien9vsGeZsfldCGER0u/YdFmtv61K6A+Dm09xtKvPIUQhBC4XW5saXZmjZiXrscf32Mq\nqYlp6Sl305KtnD9+gbljFwbtWmaNmE/M6dj0FLK2VDspV1L54NnpQTuH5O7DbrUz4Zlp2NLs6bEa\n1mQre/7Zz+r5G7LZupsjnbvkttm+fDdaFUWONcXGmvnrA+pj3cKN2K2+edJRFDb+to1L5+K5cCrW\np9lhc7I6wHMEwj8LNqrq5k/uPU1SQnLQziO5u9i7/pDqE6g1xcbf3wcvAC4zkM5dctto9TrVga8o\nio/kzx86g0517VKjUdAZdJ7HXj9Lh2o/LLfLzR6vs+PRW5IzUJMTX+NmNQByAtK5S26bWi0exO3y\nDQ4ymA3paW5vRZOuDVWdtNsteKh9bfIVCOeBaqV8gn+MZgOt+zx6e4ar0KJXY5+KOxqthsoNy2ea\nqkaS86nUoBw6FSduCjEGdfxlBtK5S24bc4iJEQsGY7QYMYeaMJoNGEx6Or/Zlor1ywXUR/HyRegz\noQcGkx6jxZNf3GAyMGRmP8IjPVWchs4dSL5C+TDnMafnSq/csDydXns8aNfS/d2OlKtT+ur59Zjz\nmIgsGsGQWf2Ddg7J3YdWp2XMr2954hJCTRhMegwmPS16NaHu4xnLSprVSLWM5I5JuZLChsVbsabY\nqN2yGveVzHhJuEvRcWxauh2tXkeDtrUIy+9d8s3pcLL59x3EnomjXO0Hglq84hpCCPb/e5ijO05w\nX8koarWoJpdkJACkpVj5d/FWkhNSqN6sst88/FlB0HTuiqIUA2YD9wFu4EshxNQb9mkM/AqcuLpp\noRDivYwafa9xZPtxDm4+SoFi+W/Lkbjdbnat3sfZw+cpWakYlRuWz5aAGEWjQavVoNVpVfPFCCHY\nt/4gJ/aeoWjZQjzYuJLPOrvm6vFarQZFJf+KTq8LauUlNRRFoVKDclRqENhThxpOp5MfJy3m5J7T\nPNikEq16N8sWPXTy5RQ2LtmGw+agTusamVrE4l7AHGKiabeG2W1GhrjlzF1RlEJAISHEdkVR8gDb\ngPZCiP3X7dMYGCyECLhO1708c3c6nIzqOImdq/aBEGh0GkLCLXz8z5iAZ72J8Um80XgkF0/G4nK5\n0Gi1FC9fmEkrRmXpGvH2v3czssMHKIqC2y0Qbjfdh3akx7AnAUhNSmNI8/c4te8Mwi3QaDUUKB7J\n5DXvpc/OF3/2J1+8MQuNVuPpx+Xmre8G0KhjxqNQs5Pju0/ySu23cV2nurGEmfnu+KeERWRd8el/\nf9vK2G5T0GiUdHlp7/Hd6Tjw7iqjJ1EnaDp3IcR5IcT2q38nAQeA7HsmyQX8Mm0ZO1ftxZZqw5Zm\nJy3JSvy5BMZ2mxJwH5+8+jVnD50jLdmKPc2BNdnKiT2n+WrId5louTfWVBujOk7CmmIjLdmKLdWG\n3erghwm/cGDTEQC+eed7ju/y5JW3pdlJS7YSfeQ8U1/5CvBEt34xeDZ2q+O/ftLsTOw5jcT/t3fn\n0VGVaR7Hv0/2hYQtIAgEUBRwBWQVRGnFo7ihIy0yIOAoDmrbqGcYlxk907Tas6GItogy3YKgjqgo\nNNAYsRUcgUbAxjZqi0hEEcKWQEKSqtQzf1QRklqoAou6xa3nc04OVXVfUj/ehKdu3XqXPQcS9m+J\nh6nDpzUp7ADVlYd4+KrHE5bh4P4qHhv9JLXV/r6sqfL/TOY89ApbPytLWA7jvGN6vygiXYDeQLhF\nsAeJyKciskxEzo5DNtda+kIJtdVNx3b7fMqWTVvZt3N/1L/v8/lY/ea6kHHZnlovKxesjmvWo1n/\nx01hL6HU1XhY8dL7ALw3fxWe2qbrtns99Xy0aB0+n4+Vr6wOKYgAkiZ8tGjdiQl+AlTuPUBFeWXY\nY1+u25KwHB8vXh/20pi3zst78yOvjW/cJ+aBmiLSDHgDmKKqwb/FG4DOqnpQREYAi4CQT7xEZBIw\nCaC4OHWndHvqwm9SISIRjzWmqvh8oUMQAbze2DawiAdvnTfsEHT1KXWHPP42ETbUUJ+iPsVT6wk7\nnNLn05AXhWTmPcrPTUncoAVPrZdwl1rVp+EnixnXiunMXUQy8Rf2+aoaMudbVStV9WDg9lIgU0SK\nwrSbrap9VbVvmzaRF5Fyu0t+fmHYST5tOrYOu4pgsPT0dM6/5OyQs+a09DQGjOgdt5zR9LnsPOrD\n7KaUk5/NxT+/EIABV/UJOZOUNOHci3qSnpHO4JH9yQpa7x0A1aQfatZYq3YtyckPvxfr8a6CeTz6\nX9kr7Itldl4WF90wMGE5jPOiFnfxD7+YA5Sq6vQIbdoF2iEi/QPfd088g7rJzQ9eT/vT2jbsUpSV\nk0lusxweePmemEe7TJk1iYJWzcjJ8xeUnPxsWrQpZPKTE09Y7mCFrQu4c8ZEsnKzSM9IR8SfY+A1\nfel3RS8AJk8fT4u2zRsKX05eNgUt85ny/B0A9Oh/BldMHEZ2XjYiQlp6Gtm5WYx7dBSndD65TgAe\nWvBLCPrxpaWn8W9vTU1YhqIOrZn42Biyc7MaPqDOyc9m2M1DOGeIbQiSSmIZLTMEWAVsxj8UEuAh\noBhAVWeJyN3AZMALHALuU9WjrqqTyqNl4MjysptXl9Kua1suHz+Mlm2Pbcu3qooqSuav4tvNZXTr\n3ZWfjRlCbrPEz6Ys++J7SuZ9QPWBGgaP7EevYec0eZE6VFXD+wtW87cN39DlnE5cNnYo+c3zG44f\nHl/+4cKPychIZ9iYIXTr1TXh/4542LF1J8/fP5fvvvqengPOZNJ/jkvoSJnDtm7eRsn8VXhqPVx0\nw0DHhsma+It1tIxNYnJQxe5Ktmz6ljadWjs6KeKn8nq9lMz7kKqKaobfcrEjxcyYVGGbdSQxVWX2\n1Hm8/cxysnIy8Xq8dOvVlWmLHzjpNkpe9eYafn3Tkw3XeWfd9xLX3X0ldz99q8PJjElttraMA96d\n+wFLZq3AU+uhqqKa2uo6vly/hd+Me9rpaMekprqGaaOmh3yA9/Yzy1i7dINDqYwxYMXdEQufXExN\nVW2Tx7x1XjaWbKZy78kzcef1/14SdtgdwO8feTXBaYwxjVlxd8DBvVVhH0/LSKO68lCC0xy/fTv2\nRTx2YK9tcGGMk6y4O6DvFeEXCcsrzKNtccj0gKQ1fHzkNdsHXh318x5jzAlkxd0Btzw6ioKW+Q0T\nmdLShOy8LO59/o6k31G9sZ4DzqTHgG4hj+c2y+G234xxIJEx5jAbCumQ/eUVLJq5jE3vf0b709tx\n471Xc/r5XZyOdcx8Ph8vT1vI4udW4KnzMGBEH+757e3kF+Y5Hc0YV7Jx7lEcXqCr5SktHMsQi/3l\nFdR7fUm/HnflngPU1dTR+tRWKT9Zpqa6lorySlq1b0FmVmx7yRoTKxvnHsG20u08MWYGZV9sB6C4\nR0ceemUKxT2SaxLRjq07eXzMDLZs3AoitO/algfn/5JuvZNr5ubuH/byxN/P4POPvyItTWh9aium\nvnQ35wxOvanu9d56nv+nufxhdglpgaUUxj06ihvvu8bpaCYFpdSZ+6GqGsZ2mcyBvQcbVjMUgYJW\nzZi/bVbDOi1O83q8jO16J/t+3I/Pd+Tnk1eYy7wtz4ZsQecUn8/HrT2nsOObnU3Guuc0y+F/Pn8q\npkXQ3OSFf57H288ub7Kcc05eNvc8dzvDx8W2Ybgx0cRtsw43WbVwDXW1TZepVfUvk7rqjTXOBQuy\nbulGqg8calLYAeo99ZTM/9ChVKE2rypl74/7QiYx1Xu8/OGFEodSOaPeW887v/1jyDr9NdW1LHgs\nZCFVY064lCruu8p2U1NVE/J4TXUtu8p2O5AovF1lu8NuYFF7qI4ft+5yIFF4u8p2E26pck+tlx++\n3pH4QA46dLAm4prue44yH8CYEyWlinv3fqeTm58T8nhOXjbd+4UO6XPKmf1OD7ubTm6zHM4edPyb\nN8db937dqA+zdnhOfjbnDU2tzbjym+dRWFQY9tgZfZLrcxKTGlKquF9w+fkU9+xAVs6REQxZOZl0\nPqsjfS4718FkTfUccAZnDereZBOLzOwM2hYXceHIfg4ma6q4RwcGXn0B2XlHcmZkZdC8qJBLx17k\nYLLEExEmPzm+SV+IQHZeNrf/+1gHk5lUlVIfqIL/Q9XX/uNtSuZ+AALDb7mYm6aOTJoPUw+rq/Ww\ncPpils9ZiddTz7DRgxnz8A1JN3683lvPoplLWfL8u9RU1zLk+gGM/dcbaR7hLNbtPnn3U+b96nV2\nfLOLbr26MGHaaM7oc5rTsYyL2Dh3Y4xxIRstY0wjB/cfZPIFUxmeNorhaaMY2XI8H73952P6HvvL\nK3h8zFOMyB3DiNybmXbT9IbJcMYkGztzNylhVLvb2L+rIuTxZ9c9wZl9o3+YXu+t59azprBzW3nD\nSKb0jHSKOrTid1/OsJmoJmHszN2YgA3v/SVsYQeY+Ys5MX2PNUs+Yd/O/U2GqNZ766ncc4D/W3Rs\n7wCMSQQr7sb1Pv3T5xGPff+32Mbjl5V+T23QBivgH9++7fPtx53NmBPFirtxvXOH9ox47NRu7WP6\nHp16nEp2fuiIqtyCHIp7Jte6RMaAFXeTAvoOP5/mbcIPzbx75j/E9D0GXn0BzYsKm2yykp6RRrMW\n+Vw4sn9cchoTT1bcTUr4/ZczOO28zg338wpzeWTh/fSIcWZyRmYGT3/8OIOv709GVgbpGekMuqYf\nM9c8QVa2fZhqko+NljEpx+fz/aQdrw7/n0n1deuNM2w9d2Mi+KlbGVpRNycDuyxjjDEuZMXdGGNc\nyIq7Mca4kBV3Y4xxISvuxhjjQlbcjTHGhay4G2OMC0Ud5y4inYC5QDvAB8xW1RlBbQSYAYwAqoEJ\nqroh/nFTh6ry8eL1LHvxPTx1Xi4bO5Rhowc3mf5ujDGRxDKJyQvcr6obRKQA+ERE3lXVxkvtXQmc\nEfgaADwX+NMcp6fvepGSeR9QE1iJ8K8ffcHKBav59ZIHfvIkHGOM+0WtEqq64/BZuKoeAEqB4GXw\nrgPmqt8aoIWIxLbcngmxrXQ7K176U0NhB6ipqmXz6lI2lGx2MJkx5mRxTKeAItIF6A2sDTrUAfiu\n0f3thL4AmBhtWvkZELrmT83BGv68fGPiAxljTjoxF3cRaQa8AUxR1crgw2H+Skh1EpFJIrJeRNaX\nl5cfW9IUUtAyP+y19cysDAqLChxIZIw52cRU3EUkE39hn6+qb4Zpsh3o1Oh+R+CH4EaqOltV+6pq\n3zZt2hxP3pQw6Nq+YRenSktPY/jYoQ4kMsacbKIW98BImDlAqapOj9DsHeAW8RsIVKhqbPuXmRC5\nzXJ5Yvm/0LyogLzCXP9XQS4Pv3ovbYvtRdEYE10so2UGA+OAzSKyKfDYQ0AxgKrOApbiHwb5Nf6h\nkBPjHzW1nDXwTF774QVK13yFp87L2YN72KYQxpiYRS3uqrqa8NfUG7dR4K54hTJ+6RnpnDMk8v6f\nxhgTiQ2YNsYYF7LibowxLmTF3RhjXMiKuzHGuJAVd2OMcSEr7sYY40LiH8XowBOLlAPbHHnyI4qA\n3Q5niIXljC/LGV+WM76i5eysqlFnMzpW3JOBiKxX1b5O54jGcsaX5Ywvyxlf8cppl2WMMcaFrLgb\nY4wLpXpxn+10gBhZzviynPFlOeMrLjlT+pq7Mca4VaqfuRtjjCulRHEXkXQR2SgiS8IcmyAi5SKy\nKfB1mxMZA1m+FZHNgRzrwxwXEXlaRL4Wkb+ISJ8kzXmJiFQ06tNHHMrZQkQWisgXIlIqIoOCjidL\nf0bL6Xh/ikj3Rs+/SUQqRWRKUBvH+zPGnI73ZyDHvSLyVxH5TEReEZGcoOPZIvJaoD/XBrY5jZ2q\nuv4LuA9YACwJc2wC8IzTGQNZvgWKjnJ8BLAM/xLMA4G1SZrzknB97UDOl4DbArezgBZJ2p/RciZF\nfzbKkw78iH+8ddL1Zww5He9P/HtMbwVyA/f/F5gQ1OZOYFbg9mjgtWN5DtefuYtIR+Aq4EWns8TB\ndcBc9VsDtBCR9k6HSkYiUggMxb+LGKpap6r7g5o53p8x5kw2lwJbVDV4EqLj/RkkUs5kkQHkikgG\nkEfo1qTX4X/hB1gIXCrh9t+MwPXFHXgKmAr4jtLm7wJvIxeKSKejtDvRFFghIp+IyKQwxzsA3zW6\nvz3wWKJFywkwSEQ+FZFlInJ2IsMFnAaUA78LXJJ7UUTyg9okQ3/GkhOc78/GRgOvhHk8GfqzsUg5\nweH+VNXvgf8CyoAd+LcmXRHUrKE/VdULVACtY30OVxd3Ebka2KWqnxyl2WKgi6qeB5Rw5JXSCYNV\ntQ9wJXCXiATvhh3uVduJ4U7Rcm7A/1b4fGAmsCjRAfGfFfUBnlPV3kAV8EBQm2Toz1hyJkN/AiAi\nWcC1wOvhDod5zJHheFFyOt6fItIS/5l5V+BUIF9ExgY3C/NXY+5PVxd3/Pu/Xisi3wKvAj8TkZcb\nN1DVPapaG7j7AnBBYiM2yfJD4M9dwFtA/6Am24HG7yw6EvpW7oSLllNVK1X1YOD2UiBTRIoSHHM7\nsF1V1wbuL8RfRIPbON2fUXMmSX8ediWwQVV3hjmWDP15WMScSdKflwFbVbVcVT3Am8CFQW0a+jNw\n6aY5sDfWJ3B1cVfVB1W1o6p2wf8WbaWqNnl1DLomeC1QmsCIjXPki0jB4dvA5cBnQc3eAW4JjEoY\niP+t3I5kyyki7Q5fGxSR/vh/z/YkMqeq/gh8JyLdAw9dCnwe1Mzx/owlZzL0ZyM3E/lSh+P92UjE\nnEnSn2XAQBHJC2S5lNDa8w4wPnD7Rvz1K+Yz96gbZLuRiPwKWK+q7wD3iMi1gBf/q+IEh2KdArwV\n+J3LABao6nIR+UcAVZ0FLMU/IuFroBqYmKQ5bwQmi4gXOASMPpZfyjj6BTA/8Bb9G2BiEvZnLDmT\noj9FJA8YDtzR6LGk688Ycjren6q6VkQW4r9E5AU2ArODatMcYJ6IfI2/No0+luewGarGGONCrr4s\nY4wxqcqKuzHGuJAVd2OMcSEr7sYY40JW3I0xxoWsuBtjjAtZcTfGGBey4m6MMS70/y+A8Ytdo07+\nAAAAAElFTkSuQmCC\n","text/plain":[""]},"metadata":{"tags":[]}}]},{"metadata":{"id":"pe5NE9Eo3o8c","colab_type":"text"},"cell_type":"markdown","source":["Para terminar, vamos ver o que acontece se alteramos o método de geração dos clusters. Vamos testar os seguintes linkages:\n","\n","- ward\n","- average\n","- complete\n","- single"]},{"metadata":{"id":"VWEMEvn43o8d","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}}},"cell_type":"code","source":["def eval_clusters_linkage(X, link_method):\n"," L = linkage(X, link_method)\n"," c, coph_dists = cophenet(L, pdist(X))\n"," print(link_method, c)\n"," plt.figure(figsize=[6,6])\n"," plt.title('Dendrogram - Method: ' + link_method.title())\n"," plt.xlabel('Index Numbers')\n"," plt.ylabel('Distance')\n"," dendrogram(L, leaf_rotation=90., leaf_font_size=5.)"],"execution_count":0,"outputs":[]},{"metadata":{"id":"V09GhJJD3o8i","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}},"outputId":"8a18c54c-94b4-476b-ee24-1bb81bd0851c"},"cell_type":"code","source":["for i in ['ward','single','average','complete']:\n"," eval_clusters_linkage(X, i)"],"execution_count":0,"outputs":[{"output_type":"stream","text":["ward 0.872601525064\n","single 0.86357244036\n","average 0.876696652921\n","complete 0.727170309992\n"],"name":"stdout"},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYIAAAGDCAYAAAAmphcsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XmYXFWd//H3h4SwBQhLgICQsEWB\nARoNCKISFRQFxZ0hMywOGlxgRP2JCDriuDGMgsuoEAUBpVFcQUFWSWLYQiINYRMUCFsSwhb2BML3\n98c5ldwUVV3Vna6q7tzP63n66aq7nnvuued77rlLKSIwM7PyWq3TCTAzs85yIDAzKzkHAjOzknMg\nMDMrOQcCM7OScyAwMys5BwJrGUlHSJrR6XQMdQOZj5ImSnpwIJbVCi4zneFAUCKS7pP0vKSnJT0p\n6VpJH5fkcjAAJE2VFJJ2rRr+hzx8YhPLGJenHd6yhDZJ0hmSflT4vrqkZ+sM27MzqbSB4AqgfN4d\nEesCY4GTgS8AZ7Y7EQNd0Q2GijO7Czis8kXSRsCewMKOpaj/pgP7FL5PAO4H3lw1DGB2XxcuaVj/\nk2YDyYGgpCJiUURcBBwMHC7pXwAkrSHp25Lul7RA0umS1srjJkp6UNLnJD0iaZ6kj1SWKWkjSRdJ\nekrSTGDb4jpzS/dTku4G7s7D3iDpRkmL8v83FKbfWtL0fAZzpaQfSvpFHldpOR8p6X7gL3n4ryXN\nz8ubLmmnwvLOlvQjSX+W9IykayRtJum7kp6QdKek3VYya88DDi5UcocAvweWFNKxmqTjJf1T0mOS\nLpC0YR49Pf9/Mqdxr8J8387pvFfSOwvDN8/5/rikf0j6WGHcWnm7n5B0O7B7H7ZlGrCDpI3z9zcB\nvwTWqRp2XUS8mNfXKP9/LOkSSc8Cb2lUZqw9HAhKLiJmAg+SDmiA/wHGA13AdsAWwH8VZtkMWD8P\nPxL4oaQN8rgfAi8AY4D/yH/V3gu8HtgxV34XA98HNgJOBS7OrWiAbmBmHncScGiN5e0D7AC8I3//\nM7A9sAnwN1LFXPRh4EvAxsBi4Lo83cbAb3IaVsbDwO3A2/P3w4Bzq6b5T1I+7ANsDjxByjtY3toe\nFREjI+K6/P31wN9zOk8BzpSkPO580j7cHPgg8E1Jb8vjvkKqXLcl5dHhxYTkwPgjaoiIB4G5LC8b\nbwb+ClxbNWx6YbZG+T8J+AawLjCD5sqMtVpE+K8kf8B9wL41hl8PnAgIeBbYtjBuL+De/Hki8Dww\nvDD+EVLXxzDgReA1hXHfBGYUvgfw1sL3Q4GZVWm5DjgC2Ap4CVi7MO4XwC/y53F5edv0sr2j8jTr\n5+9nAz8pjD8GuKPwfWfgyZXI36nAR4F/J1XOrwbuyuMeBCbmz3cAbyvMNybn3fDCdhXz+AjgH4Xv\na+dpNgO2BJYC6xbGfws4O3++B9i/MG4y8GAftuls4DRSo/GRvO6PF4Y9AezTh/w/tzC+YZnxX3v+\nfEZgkFr3jwOjSQf67Hwx+Ung0jy84rGIeKnw/TlgZJ5mOPBAYdzcGusqjt+8xjRzc3o2Bx6PiOfq\nzPuKYZKGSTo5d7k8RQp8kFrRFQsKn5+v8X1kjXUg6YTcVfOMpNNrTVPwO+CtpEDz8xrjxwK/L+Tx\nHaTKfNNeljm/8qGQJyNZnk9PF6at5CF5fKN90pvppFb/zsA9ed0zCsPWAm6ApvO/mJZmy4y1mANB\nyUnanVRpzAAeJVWGO0XEqPy3fkTUrByrLCS14LcsDNuqxnTF190+TKoUi7YCHgLmARtKWrswbkte\nqbi8ScBBwL6k7qtxebhYSRHxzUhdNSMj4uMNpn2O1EXyCWoHggeAdxbyeFRErBkRD7Hi9jTjYVI+\nrVsYVslDSPnYaJ/0ZjqwK3AAqVsI4La8zAOAGyPihTy8mfwvbl+zZcZazIGgpCStJ+lA0sW/X0TE\nnIh4GfgJcJqkTfJ0W0h6R2/LAoiIpaSW8EmS1pa0I1X90TVcAoyXNEnScEkHAzsCf4qIucCsvLwR\n+aLpuxssb11Sv/9jpDObbzZKdwudQOoyua/GuNOBb0gaCyBptKSD8riFwMvANs2sJCIeIPXZf0vS\nmpJ2IV27qfTNXwB8UdIGkl5FOktpWkT8g3TW9GlyIIjUh3NDHla8PtCn/O9nmbEWcCAonz9KeprU\nKj2RdHH0I4XxXwD+AVyfT++vJPV1N+NoUnfFfFJ/8M96mzgiHgMOBD5HqjyOAw6MiEfzJP9Gukbx\nGPB14Fekiqaec0ldCw+RLthe32S6B1xEPBwR9R6M+h5wEXB53hfXky4GV84mvgFck7uOmrk//xBS\n6/th0h1KX4mIK/K4r5Ly5F7gcqrOUJTuCmvU1TWd1I1zTWHYX0kXhIuBoD/536cyY62hFNzNBj9J\nvwLujIivdDotZqsSnxHYoCVpd0nb5vvu9yf1P/+h0+kyW9UMlqcxzWrZjNSHvBHp9stPRMRNnU2S\n2arHXUNmZiXnriEzs5JzIDAzK7khcY1g4403jnHjxnU6GWZmQ8rs2bMfjYjRjaYbEoFg3LhxzJo1\nq9PJMDMbUiQ19coOdw2ZmZWcA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5\nEJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZXckHj76FA1ZQp0d3c6FbaqmzQJJk/udCpsKPMZQQt1\nd0NPT6dTYauynh43Nmzl+Yygxbq6YOrUTqfCVlUTJ3Y6BbYq8BmBmVnJORCYmZWcA4GZWck5EJiZ\nlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWc\nA4GZWck5EJiZlZwDgZlZybUsEEhaU9JMSTdLuk3SV/PwrSXdIOluSb+SNKJVaTAzs8ZaeUawGHhr\nROwKdAH7S9oT+B/gtIjYHngCOLKFaTAzswZaFggieSZ/XT3/BfBW4Dd5+DnAe1uVBjMza6yl1wgk\nDZPUAzwCXAH8E3gyIl7KkzwIbNHKNJiZWe9aGggiYmlEdAGvAvYAdqg1Wa15JU2WNEvSrIULF7Yy\nmWZmpdaWu4Yi4klgKrAnMErS8DzqVcDDdeaZEhETImLC6NGj25FMM7NSauVdQ6Mljcqf1wL2Be4A\nrgY+mCc7HLiwVWkwM7PGhjeepN/GAOdIGkYKOBdExJ8k3Q78UtLXgZuAM1uYBjMza6BlgSAibgF2\nqzH8HtL1AjMzGwT8ZLGZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EJiZlZwD\ngZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZ\nWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJ\nORCYmZWcA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EJiZlZwDgZlZybUs\nEEjaUtLVku6QdJukT+fhJ0l6SFJP/ntXq9JgZmaNDW/hsl8CPhcRf5O0LjBb0hV53GkR8e0WrtvM\nzJrUskAQEfOAefnz05LuALZo1frMzKx/2nKNQNI4YDfghjzoaEm3SDpL0gbtSIOZmdXW8kAgaSTw\nW+DYiHgK+DGwLdBFOmP4Tp35JkuaJWnWwoULW51MM7PSamkgkLQ6KQicFxG/A4iIBRGxNCJeBn4C\n7FFr3oiYEhETImLC6NGjW5lMM7NSa+VdQwLOBO6IiFMLw8cUJnsfcGur0mBmZo218q6hvYFDgTmS\nevKwE4BDJHUBAdwHHNXCNJiZWQOtvGtoBqAaoy5p1TrNzKzv/GSxmVnJORCYmZWcA4GZWck5EJiZ\nlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWc\nA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOB\nmVnJORCYmZWcA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EJiZlZwDgZlZ\nyTkQmJmVnAOBmVnJORCYmZWcA4GZWcm1LBBI2lLS1ZLukHSbpE/n4RtKukLS3fn/Bq1Kg5mZNdbK\nM4KXgM9FxA7AnsCnJO0IHA9cFRHbA1fl72Zm1iEtCwQRMS8i/pY/Pw3cAWwBHASckyc7B3hvq9Jg\nZmaNteUagaRxwG7ADcCmETEPUrAANmlHGszMrLaWBwJJI4HfAsdGxFN9mG+ypFmSZi1cuLB1CTQz\nK7mWBgJJq5OCwHkR8bs8eIGkMXn8GOCRWvNGxJSImBARE0aPHt3KZJqZlVor7xoScCZwR0ScWhh1\nEXB4/nw4cGGr0mBmZo0Nb+Gy9wYOBeZI6snDTgBOBi6QdCRwP/ChFqbBzMwaaFkgiIgZgOqMflur\n1mtmZn3jJ4vNzErOgcDMrOQcCMzMSq7pQCBprKR98+e1JK3bumSZmVm7NBUIJH0M+A1wRh70KuAP\nrUqUmZm1T7NnBJ8i3Q76FEBE3I1fDWFmtkpoNhAsjogllS+ShgPRmiSZmVk7NRsIpkk6AVhL0n7A\nr4E/ti5ZZmbWLs0GguOBhcAc4CjgEuBLrUqUmZm1T7NPFq8FnBURPwGQNCwPe65VCTMzs/Zo9ozg\nKlLFX7EWcOXAJ8fMzNqt2UCwZkQ8U/mSP6/dmiSZmVk7NRsInpX02soXSa8Dnm9NkszMrJ2avUZw\nLPBrSQ/n72OAg1uTJDMza6emAkFE3CjpNcCrSa+WvjMiXmxpyszMrC368nsEuwPj8jy7SSIizm1J\nqszMrG2aCgSSfg5sC/QAS/PgABwIzMyGuGbPCCYAO0aEXythZraKafauoVuBzVqZEDMz64xmzwg2\nBm6XNBNYXBkYEe9pSarMzKxtmg0EJ7UyEWZm1jnN3j46rdUJMTOzzmj2F8r2lHSjpGckLZG0VNJT\nrU6cmZm1XrMXi/8POAS4m/TCuY/mYWZmNsQ1/UBZRPxD0rCIWAr8TNK1LUyXmZm1SbOB4DlJI4Ae\nSacA84B1WpcsMzNrl2a7hg7N0x4NPAtsCby/VYkyM7P2aTYQvDciXoiIpyLiqxHxWeDAVibMzMza\no9lAcHiNYUcMYDrMzKxDer1GIOkQYBKwtaSLCqPWAx5rZcLMzKw9Gl0svpZ0YXhj4DuF4U8Dt7Qq\nUWZm1j69BoKImAvMlbQv8HxEvCxpPPAaYE47EmhmZq3V7DWC6cCakrYArgI+ApzdqkSZmVn7NBsI\nFBHPkW4Z/UFEvA/YsXXJMjOzdmk6EEjaC/g34OI8rC8/c2lmZoNUs4HgWOCLwO8j4jZJ2wBXty5Z\nZmbWLn15DfW0wvd7gP9sVaLMzKx9Gj1H8N2IOFbSH0k/Vr8C/0KZmdnQ1+iM4Of5/7dbnRAzM+uM\nRs8RzM7/p0kanT8vbGbBks4ivY/okYj4lzzsJOBjQGUZJ0TEJf1LupmZDYReLxYrOUnSo8CdwF2S\nFkr6ryaWfTawf43hp0VEV/5zEDAz67BGdw0dC+wN7B4RG0XEBsDrgb0lfaa3GSNiOvD4wCTTzMxa\npVEgOAw4JCLurQzIdwz9ex7XH0dLukXSWZI2qDeRpMmSZkmatXBhU71RZmbWD40CweoR8Wj1wHyd\nYPV+rO/HwLZAF+lldt+pN2FETImICRExYfTo0f1YlZmZNaNRIFjSz3E1RcSCiFgaES8DPwH26Osy\nzMxsYDW6fXRXSU/VGC5gzb6uTNKYiJiXv74PuLWvyzAzs4HV6PbRYf1dsKTzgYnAxpIeBL4CTJTU\nRXo47T7gqP4u38zMBkbLXhwXEYfUGHxmq9ZnZmb90+xL58zMbBXlQGBmVnIOBGZmJedAYGZWcg4E\nZmYl50BgZlZyDgRmZiXnQGBmVnIOBGZmJedAYGZWcg4EZmYl50BgZlZyDgRmZiXnQGBmVnIOBGZm\nJedAYGZWcg4EZmYl50BgZlZyDgRmZiXXst8sNhtypkyB7u5Op6Jver6b/k88trPp6KtJk2Dy5E6n\nwjIHArOK7m7o6YGurk6npGlTu4ZYAICUx+BAMIg4EJgVdXXB1KmdTsWqbeLETqfAqvgagZlZyTkQ\nmJmVnAOBmVnJORCYmZWcA4GZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWck5EJiZ\nlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWcm1LBBIOkvSI5JuLQzbUNIVku7O/zdo1frNzKw5\nrTwjOBvYv2rY8cBVEbE9cFX+bmZmHdSyQBAR04HHqwYfBJyTP58DvLdV6zczs+a0+xrBphExDyD/\n36TehJImS5oladbChQvblkAzs7IZtBeLI2JKREyIiAmjR4/udHLMzFZZ7Q4ECySNAcj/H2nz+s3M\nrEq7A8FFwOH58+HAhW1ev5mZVWnl7aPnA9cBr5b0oKQjgZOB/STdDeyXv5uZWQcNb9WCI+KQOqPe\n1qp1mplZ3w3ai8VmZtYeDgRmZiXnQGBmVnIOBGZmJedAYGZWcg4EZmYl50BgZlZyDgRmZiXnQGBm\nVnIOBGZmJedAYGZWcg4EZmYl50BgZlZyDgRmZiXnQGBmVnIOBGZmJedAYGZWcg4EZmYl50BgZlZy\nDgRmZiXnQGBmVnIOBGZmJedAYGZWcg4EZmYl50BgZlZyDgRmZiXnQGBmVnIOBGZmJTe80wkwsxaa\nMgW6uzudihX19KT/Eyd2NBmvMGkSTJ7c6VR0hM8IzFZl3d3LK97Boqsr/Q0mPT2DL2C2kc8IzFZ1\nXV0wdWqnUzG4DbazkzbzGYGZWck5EJiZlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcA4GZWcl15DkC\nSfcBTwNLgZciYkIn0mFmZp19oOwtEfFoB9dvZma4a8jMrPQ6FQgCuFzSbEnlfMuTmdkg0amuob0j\n4mFJmwBXSLozIqYXJ8gBYjLAVltt1Yk0mpmVQkcCQUQ8nP8/Iun3wB7A9KpppgBTACZMmBBtT6QN\nbq14vXIrX49c4lcc2+DX9q4hSetIWrfyGXg7cGu702FDXCter9yq1yOX/BXHNvh14oxgU+D3kirr\n746ISzuQDhvqhsrrlUv+imMb/NoeCCLiHmDXdq/XzMxq8+2jZmYl50BgZlZyDgRmZiXnQGBmVnIO\nBGZmJdfJl84NOlNmT6F7zsDd790z/7sATDz72AFb5qSdJzH5dX4wycwGjgNBQfecbnrm99C12cA8\nVNR1/MAFAICe+ekBKgcCMxtIDgRVujbrYuoRUzudjJomnj2x00kws1WQrxGYmZWcA4GZWck5EJiZ\nlZwDgZlZyTkQmJmVnAOBmVnJORCYmZWcnyMwGyr68/OcK/Pzm4P15zX9M6UDzmcEZkNFf36es78/\nvzmYf17TP1M64HxGYDaUtOvnOQf7z2v6Z0oHlM8IzMxKzoHAzKzkHAjMzErOgcDMrOQcCMzMSs53\nDZmZNWMVfo7DgaBD+vOzmJVfKOvrD9T45y3boLdKorfKoF0He18rsf5UYEPgwamVUnl+oS/PG/T3\n2YRK/jsQrNr687OY/fkJzSHx85arQkurt0qiXmXQzoO9r5VYXyuwgdyWRuWh0b5vZUBaRZ/jcCDo\noHb8LOaQ+HnLVaWl1ddKot0PG7WyEhvIbWlUHnrb921uSa8qHAhscFhFW1orqG7p1mrZrurdK83q\nb3kYIk/yDjYOBGbtUt3SrW7ZujVbHivb/VUxQA2HVToQ9PWCbH8uxvpC7CDSzLWGZg6wTvUxuzVb\nHivT/VUxgA2HVToQ9PWCbF8vxrb7Qmw77zSCIRjkmrnW0OgAc6t8aGmmuw0GZ5fbynaHDmDDYZUO\nBNDaC7LtvhDbrjuNYIjcbVTLIDq4mlapzKorscFYeUHtM69O3SLbqLutmLbBmJeDxCofCFqh0jIv\ntrbb1Xpux51G0MIg15dKZLBWhAOt1pnMYK68aqW3k7fINgr+7nJryIGgH6pb5kO29dwJzVYig7ki\nbIXqyqy/lVe96yQDHWybPfPq5BlWxVA50+pNsw2ofm7bkAwEzfaV96V/vK8t+q7Nupi086Rl6eiZ\n39PWM4OBUi8v6+XdgGxfM5VIuyqQwdjHPGXK8nRMmdK39da7TlL5Pm8eLFiQPi9atOIvaA3FCrKW\n3rqL2t3AGKjA3EwDaiW2bUgGgmb7ypvtH+9vi75VZwZ9rZyh/xV0vbyslXdtOfOp1V9e7+DorRIv\nVniVA6bWcgZjH3Nxm7q7+77eRncmLVjQmltX29nt16ic1MuDZhsYA9UCbxSYay2/3vJa2AU2JAMB\nrFxfea2KttKiL2qmci2mo9GZR3G9vV1f6EvlXFxWfyvo3vKyOq9mPjSTUSePqpmmATlbqD5wejs4\neqvEFyyAZ56BkSMbL6e/B1ixsmgmcPVFcVuaCY59CaCV7a0VSFem+2Rlu/36sg19KSf9MZAt8MHc\njZYN2UCwMqor2na1fovr7dqsi3lPz2Pa3Gk119WXQNfKu5eq09wzv4dnljzDyBEjV5huQPOreOA0\nOjgatfyaXU61Zir5YmXR1ZXOQqZNW97dUpm2LxVcLc1Uev2pGKvTX7EylWpvlV51nlYHnb5uQ7Pl\npN6+rGgUMOstq7gd/Q3+rWxM9MGQCAQLn1u4QmVX3UXSn5ZovYq2utU+0P3+1WcQC55N3Rfdc7rb\nem2hL3c+1TrrqXxvOr8G8hbJla1Yi8tptpKH2hVTdWVU6XYpTttbBdfs9YCurpS+6oq0XndIrYqx\nel3V8zSqqFdWM3dH9aUR0J/1Vl8rqVwnKaahr8tamcDZW2Oi2WUOwPHQkUAgaX/ge8Aw4KcRcXJv\n0z/+/OMsmr9oWct903U2ZcGzC+iZ38OixYvomd+zQvdFvQqtmcqvMr6yjnot9lrLnfnQTJYsXcKo\nk0ctS2tl+VNmT1m2nCmzpyxbVl/v86/XrVXZnnlPz1sWXHrrtmnm+kZ1mqvXVblY3lR+FQv8vHnp\nc28HYXXhLlaSfWk5NloOvLLirujPnTyVCrunJ/3VqnCLy+nL9YBmtru3SqF6XY2WX28dRX1t0VYH\nnup8qt6GJUtg1Kjer/PUU50XxXkrQXv8eLjrLjjuuOXb2VsDobdtKE7bn666Yrpgeb52d8PMmfXz\nYgC6ydr+C2WShgE/BN4J7AgcImnHRvNV7tIBWPDsAhYtXgTA+A3HL+tm6Znfw7S50zjuiuOYePbE\nZZVXRbHSAupO27VZF2PWHQPAPmP3WTZvPZXljhg2YoXhxQBVnL/esqbMnsLEsycy86GZzLh/BhPP\nnviKtBUDWTG9lQp9wbMLeGbJM3XTUT1fJU8r01Wvq/i58r3SRVT83mt+FQ+sSZNgTJqW8eNTMDju\nuHQAFCuDSuHedNPa01Qq3GWJr6pMqpdTOUiqK8Dicuoto7gNlWnqVWLV66heX635qrtmelOpNKZO\nrT1PdQuzeFdQb+uq3kfN5G1xfZD2FaQWbfX+qrXd9fKpuA0jRqRrPZV01MrPiRNr74tm9v2YMbD+\n+iuOr/zfdNPl29Lb9teatrju4rh6eVJdtotp7ulJ+VBUa782u89q6MQZwR7APyLiHgBJvwQOAm5v\nNGOxFTvv6Xnc9fhdAHzuDZ+je043C55dsKwiqteKL1aY4zcc/4pWbPW0k3aeRM/8nhW6PWoptr6n\nHjF1WWu6WLk2av0XA8qSpUtW2I7K+MpZx8yHZjJi2IhlaSyedYwcMZJT9jtl2TxLli5hxv0zlp2p\nFLehGBzvevwujrviOLrndC+bptYF66lHTK15XaI6v5ad+dQ64CsFvborZYUFNpimGCyqW3XVy6lu\npVf3r1d/rm7J9Va512rJ16vYG7XKm1HrLKd63dXdSI0qhXp50FveVgeP7u60r/bZ55VdHPXOfHp7\n187UqSte66l1RlascGsFiup9X9mf1dPUWj+8snVe68yy3rTFbViwYHlAqM6TeuW/VvqmTq3fCGmU\nF73oxG8WbwE8UPj+YB7WlEpFVGmBLlq8aIWWabHfv1L51au0xqw7hkWLF7HP2H1WWE5R95xuFi1O\n3VLT5k5r+l0/lfnqLbe37evarIs3bvVGph4xdVlF3D2nm2lzpzFi2AiWxlKWLF3CosWLVkhT9Tqr\n5wFqbkOxRd/X7Wx6u+u1RCsHS6P3A9WbptKqg3TmUK/wd3en8fWmqW6FLVqUvk+btuIBW30XSbMt\n+Xrr6o/u7pSurq7629PMNI3S1Shva+VpZV/Vmm9lt7tS+dVKd29lqN7+bEatctFMGao1rl6eNCr/\n1XpLR3+WBygi+jTDypL0IeAdEfHR/P1QYI+IOKZquslApfnxauDvbU2omdnQNzYiRjeaqBNdQw8C\nWxa+vwp4uHqiiJgCNN/JZWZm/dKJrqEbge0lbS1pBPCvwEUdSIeZmdGBM4KIeEnS0cBlpNtHz4qI\n29qdDjMzS9p+jcDMzAaXTnQNmZnZIOJAYGZWcg4EZmYlNyReOlePpHdExGV9mP4Q0u2qTwDbk25l\nfT4iftqiJK40SR/OH/cGromIC/ow7xnAhcBlEfmJsubmey2pbLwXuCMift6HJJvZEDPkAoGk84Gb\nAAFvIN19VBz/UdJrLAAujIiLJb0rf5+cpz8YGBkRe0n6ygCn70vAM8BIYHFE/O9KLnIbYA7wJHC9\npCOATfK4BRFxTi/z3g48BpwgSRHx302ucx9S/pwg6b/6mW4AJI0CiIgnJY2MiGckjSSXvYh4Mk8n\nYNc8282R72KQtBHweESEpPWApwvjVo+IF6um2YCUV/8CzM3b8XD1vLXSVyftSyPi6cKwtSPiub7M\nW1y3pHUi4tk6eVXJg5ci4tYa+VdzG5pVyf9exo8ClpLu5qv8r95HAK8F7gKCtB9fsZ2FZW4EPA5s\nmP+vU0xDrfLRS/qU87Bm3lZvZ7FcVKenXh42Gt9Otcpf1fiVKg8rLGsQbG9dkiYCawKfIRXMjwJH\nRsTX8rgdSC3lp0mV1xzSe4wBgtwZAAAQVElEQVROlHQ88EZgOnAE6cnk84BdSMHgXcB2pLODLwFH\nkgr23sA1wMvAO4CNgDuBHtLZww8kHZOXfQvpqee1gPXzer6R07OYFJCeBtYDLgfGk56j2B+YBrwn\nL3sr4HngxbyshaQD7J+kgHdFzoPrgLcAf87pXB04ivQSv78AO5MqwdcBm+XPPwXG5HWvn7frJuDD\ned2b5G38B3BRRJwn6WfAVTmvtgTWzem6rJAH383p+XDOt3VymlcHXgBmAPsB5wAfIFUq2wB3szy4\nXQYcktOzCylo3Q5MANbI+XF53u/XkF5Nsk0uC5XKaEtgNKmSOSZPu07e5nWBzYF5eT9vnMf/FDgL\nGJu3+zN5mn8CjwIX5P14G6mMXQPMB95Oanw8ADwETM35+R/A1Xkfjge2zXkyhnTW+RvgQOCPpLOs\n9YAlwIK8727L+/mXwPnA+3J6t8j7cL2c/6vn7wcDn8zbtyMwKqdjAansVLbhv4FbczrWy9M+m/P2\n8Tzf34FrSe/7upFUJh/I674J+BupjHwPOINUzt6Yl7lJzoetCtv59rwdh+b99ywpCIh0LK9GKneP\nkILeb1lePgKYCfwIODunXXn/LiaV75tJZ/WvKazz/5EePt02b88kUjlbC9gUOBc4IE/7jrxt15B6\nBVYnlYt7cx5dAryfFY+xX+e0Vp7QvT8v4xJSeRKpLN1PKgNrA7/P2zUD2JPUMLww59uivLzX5/z9\nIssfqlVO/4akxsxY4D7gelL98gugi+V1xNi8jCURcVLhuNyRVL831ZAb7NcI3kbaGdNIhfUwUiGo\njNuctANfQyqk9wCjJU0lHXTTgRuAPwCz87L+HBHXRMSJeZlfJVVGe+Rpt8/Lfyep8D0OzAJOBY6R\ndBwpiKxJqhS2Jx0wM3L6NidV3NuRDoQb83r2AraPiB+QDo4b8v95pApxBGkHDiNVSKNIO32NiPgr\nKeicCpxCqlTWBH6e074+qZCNJRX0m0kV+eWkg3U94FhSMHsxr3tB/n8XqRLbFThY0heADSPiF6RK\n54m8vFmkIPTunAfvyMu+P6//7pwPV5IK8amkg+hq4Feks6SrgDNJB/AXSJVKkA74vwHPkYLAZjkv\n1iId2C+QKq+3AePy9jyf1/kiqXzMArYmBYjVSA8pLiGVidtJlc8NeT+MyONfRzqofkcqHyNzevYi\nVejn5v24G3B4nv77wKU5TePzNiyOiC+Ryteb8v6emfNmjZwnW5MO7Kvy+h4i+RapEts/b/cDefs2\nJ1VWd5ICxRp5vffmfb43KZj+Fbi4sLziNmwbEV/Oeb9Fzve3kMr0paSyt3Yuk2vk7X2UVE4ezenf\nP6d7f1L52i6v6/G8vE9Wbee4vA8q+28xKWD9hVSWngXmRcQJpIBdLB9bkMr+/qSyNYfUSFmct6my\nj4cV1nkF6czvf3N6JpAq1VtzXj6at29YXv5TOW075Hy+Mi/rdlK5+Dvp2DqVdOzeSGpsvTXn/Zic\n9s1zGi8mBbU787wzAPI6XyQdC1fk/NyDFAg2yuuYQQq8W5Pqqv1Jx+yhpHK0HqlxdE1Oz33At0nB\nYq+8rzchlc89qo7Ln+f8acpgPyM4jFSZ7AIsjIivSzomt0gPzuP+LU8+m7Rzp5L7/fP8a+fpXnEt\nQNKJpMrkjaSC9hip8P6FVKBeR8r8V5EOxi5SS+sjpFbpSaSd8BSpIl0np/NruUvlWVKweJJ0kM8n\nVZaLSYXgE6SDanWWR/97SYXhLaTW6vyI+ImkL5MK1hdJheHiiPhb3o5zSAV/vbyedUmVapAq+jVI\nB9o6eVvuA75CCpAHkirSm0kV20eAQyJiiqQ3kCrT40hnNuPyvD05zUtIBXI4qVLZNK8bUoD8Dqnl\nItJBvQup4noXqVUk4K6IuDW/nvxfgZfytPeQztIezp+fAHYnHXAPkSr750jBdzhwXkQsyqfLS0mt\nt6U5/68D9gVm5nX1ACeQKus35zw7HxgXETflPD0s77/b87aNJR289+ZlzyOdhQq4JyJ6JO1Kah3f\nSmphX5XzYlTed7fmfFlIKmfbAHdGxNy8zrGk1ulLOW93J1Vex5Aqucj76iXSmehjpPJ3R07TgpzO\nRaRK802kSnLLvB1H5fmnkALJjjkvH8v7/gZgYp5/LKnyWifnw42kcnsp8MG8zANIZyIP53y5Jef3\nanm+V+ftPg/497yM4TnPZpOOsa1zHn2P1A1yes6LnSNijqT1c9oq+bclqYw+nf8+lNNwMaliHE4q\nI8/m/XpBLhd7kyrlM4D/JB1vO+T8qeyPyjG6Ud6/XwV+RmpoPkMq638inQH+jnScbk8q06cDPwY+\nTzrL+0LeB7/JaZ6b59+E1HCambd7cf7/Ut6G75PqsG+SzqgPIQWJJ4GeiLhK0jZ5+i/nPFiTFOge\nI5WDuaTy/a2I+BpNGOzXCDYl7ZRNgB1ya/UNwA9IBWgOKRM+kYeNzEHiK8X5I+L4OtcClpIKzOOk\nCuxU0inYnqSCt4RUwY+MiH+VdAWpQKyR1/kbUiF6AdiAdJBU+uyfJ+2U60lR/yLgPRFxpKQ5efo3\nkyrU+/P3F0in86eTDpTVSae75PTMAb6b1/E/kirXSl4PfIpUSGeTKpjHSQf/+aSuhE1yPlyR0zIj\np3cn0gE8IW/v50ktI0gV0E2kimxt0gG3Y96GW0hnLKNIB8PLeV8tzdvyS1Lg2IBUWd9HOiDmkyqj\n/YHPAidLupVUUTyQx21Cav3vQTpgPpqHV7rtXiBVknNyPgv4P0kzSRX+DJYHd/L6rwOOy9PMJR00\nn8jzLiYdgOtJuiYiTiFV8n8ntc5WZ3kQ3DKn88W87KuAwyXNYHlXwrWkbowLgL0i4reSziJV2JVp\nPkaquN4jqXI2ul/evr1z2lfL+XkG6UB/LbBzRLxT0pUR8QFJl+Z9UznrvAT4YG40XRkRk/M0Y0nB\nf0dSQFiDVF4OjIijJP05b1tlO/5AqvB/CRycl3cJy8vbxaQgdRmptbxJRPx3Xue+ki4jVWZvz3n3\nncLyDszdt1dGxPjcjbsG8KKkX5G66sbn/Xt43tcbkcqnch4NJzXUDiCdDVe6Hd9NarCNyNvzoXxd\n7QhSMP0x6axmD1JgmJHneRrYNCI+mfPiUeB4UkPpMlK9882cfyfkfTgrr3/nPO7APE9lmnmkM46v\n5byalfdjF6lhsxMpiCwhBe2xpG6xHfN/5TSOytN8VtIbWd4QWIcUzH5btR/vj4i1+3J9b7AHgmtI\nFembgI3zAbULQEScLOlNpNbYnZJOIrU0IbUcivMXhy1TWMYi4KZ8gelo0gE5k9TKWbew3NNJrf/K\nOo8G9suF+ghgg4i4v2rde+blVFpNkFopp0i6AXgiIm7J878pL/e7pMJ/EqkQFdP6ZETcL+n0iJgG\nIOn5nPbKfPuR+lgr0xbzobINF5NOw6dFxBclHZTTd2tlncDpETFN0t9r5MWv8zbMIAXTUYV9dAQp\nAMzLfzuQWlafJwXFS0iVcaUr7UzSGdB7crpWIxX8cRFxaN7uG0gH8zWkA/c5UgVUPe37SAF9XVJw\neolUzvcidXkdJum1EXFDLjNTScF+K9JBd01ucLyeVHH/MufnwrwNx+d0fhbYNzc8KutcI6+r0hK/\nGnhC0nakiuRjhWmuJlUGjxbS/n5ShRmkgPYZUoB6Lam1P4dUYQFcmw/0H5K6A7YjBag3A7+WdBQw\np2qaPXM692D5Bdy/5eXNznn8OlKgfTOpb3x8XtdRpID5HVKFewypVbwDqevjZaU3BlfW+cc8rrLu\nyvL2zPMXt2E/UiW5Q17HYcAnJW2bxz1HanTsm+e/hnTm9EZS19rVpDP2w0gB/sI838t5Xx2X9/FR\npPIfpOtEL5EC/WM5be/P2/kYqbxvlPPnwpy2PYFTI+I6SW/NZeiyqry8Bbg7Ii4pTHMs6XrBhLwf\nf5+nHUcKCn8kNTp2yuk8lRQU5gMfiPxm5tyD8a08/Yak7rD3k8pqJU/nsryemUWTBnXXkA19knYg\nVcKrkSqrq0kVzS6FC+9XkrpSxpKC1IPki5IRcYakA0jdQx8mBbR7gK+TWujV036M1ELemHTwPkw6\nSP4CvDWv84BId5PtGhE353RWzhivj4jLJJ0UESflcUeRzgBWy8sdSzpVfzgvr7LObfO6biF1g00H\n3pyn+XLetso000mVY620b1ZY9gERcfEA7IqVJml7ljcEXs794AOx3F0j4mZJ+wCvyXnxrdxA2Z60\nr68lnWG/yPJ9dFREnFFYzk6R31uW99nWwNV52u9FxKfzuGMqaa+aZ9DkNaxw7DyUt2Gf3DDbiaqy\nvNLrciCwVtHyW30nkU6lX6z6fy6pZfn9lZymetofkPpW603zhog4qJf0tWKd/ZlmWVr7kf0DLudX\n5ZdhBixdNfZDs+VihTQ0uT9VnE9Vt6MPsrxeIV118mlA0jzYu4ZsaKt0Ld1A6gbZoPg/d4k9EhE/\nW5lp6kx7fS/T7NJb+lq0zj5PU5XWwaDYHTmQ6VphP/ShXFSnoeH+rJH2Vm3TyqqVrlr5NCBp9hmB\nmVnJDfbnCMzMrMUcCMzMSs6BwIYMSXXfQ1Nn+omS/jQA650oKSS9uzDsT0qvOVlpku6TtPFALMus\nPxwIzJrzIHBipxNRTZJv+LCV5kBgQ05uoU+V9BtJd0o6T0pvxpS0fx42g/SwTWWedSSdJelGSTfl\nB+iQ9Fmlp36RtLOkWyWtXWO1NwOLJO1XIz3LWvSSJii96wpJJ0k6R9LleZr3SzpF0hxJl0pavbCY\nz0uamf+2y/OPlvTbnOYblV6TUFnuFEmXA+dK2inP1yPplnzvvVnTHAhsqNqN9CK9HUmvF9hb0prA\nT0hPHr+J9GBWxYnAXyJid9JTzP8raR3SKzu2U3o6+GfAUZFfM13D10lvqu2LbUmvITiI9HTs1RGx\nM+nVGAcUpnsqIvYA/i+nCdL7d07Laf4A6WnYitcBB0XEJODjwPcioov09OqDfUyjlZxPK22omhkR\nDwIovURuHOk9UPdGxN15+C9Iv0EB6Z0375H0//L3NYGtIuIOpVdi3AKcERHX1FthRPxVEkqvvGjW\nnyP9ZsIc0ntmLs3D5+Q0V5xf+H9a/rwvsKOW/QwA60mqvNTvooh4Pn++DjhR0quA31W236xZDgQ2\nVC0ufF7K8rJc78EYkd7b8vca47YnBZHNm1jvN0hnFy8Vhr3E8rPrNWulMyJelvRiLH9w52VWPP6i\nxufVSC+te74wjhwYlv24TUR054eMDgAuk/TRiPhLE9tiBrhryFYtdwJbK72sDNKrGiouI/2eROVa\nwm75//qkLpg3AxtJ+mBvK4iIy0lPrO5aGHwfqasGUhdOfxxc+H9d/nw5cHRlAkldtWZUei3xPRHx\nfdKbZQfTE7I2BDgQ2CojIl4gdQVdnC8Wzy2M/hrp/Sy3KL32uvKG1dOAH0XEXaTfPzhZ0ib07hss\n/4EkSO+t/56kv5LOTvpjjdyq/zTpraOQ3ps/IV8Avp10LaCWg4HK7yy8hvQOGrOm+RUTZmYl5zMC\nM7OScyAwMys5BwIzs5JzIDAzKzkHAjOzknMgMDMrOQcCM7OScyAwMyu5/w9/NTMkr6/NRQAAAABJ\nRU5ErkJggg==\n","text/plain":[""]},"metadata":{"tags":[]}},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYUAAAGDCAYAAADEegxVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XmYHVWd//H3xw5hC8qSKJAEEhYX\nQAkaQEAlCvxAZGBcRiAjiiNGHcFhnBlFcQB1VEYd0XFwsFVkUAFXNCiLIgRkTYKEfQt7IEDYCVuT\n8P39cU5VKpfb3beX6tvL5/U8/fS9t86tOnWqbn3rnFN1ShGBmZkZwMvanQEzMxs+HBTMzKzkoGBm\nZiUHBTMzKzkomJlZyUHBzMxKDgpWK0mHSrqk3fkY6QazHCXNkrRkkOb1eUk/HKR53SVpz8GYl/Wf\ng8IYk394z0p6StLjki6T9HFJ3hcGgaR5kkLS9g2f/zZ/PquFeUzLacfVltE+kHSApEWSnpT0sKQ/\nS5oGEBFfjYjD2ptDG0w+EIxNfxMR6wGbA8cDnwV+NNSZGOyD3nA5iAK3Ah8s3kjaCHgzsKxtOeon\nSVsBpwL/ArwCmA58D3ixnfmy+jgojGER8UREzAUOBD4kaTsASWtK+qakeyQ9KOkkSWvnabMkLZH0\nL5IekrRU0oeLeUraSNLcfFY5H9iyusx8BvxJSbcBt+XPdpW0QNIT+f+ulfTTJV2cazbnSzpR0k/z\ntOKM+iOS7gEuyJ//UtIDeX4XS9q2Mr9TJH1P0jmSlku6VNLGkr4t6TFJN0vaYYBF+zPgQEkd+f3B\nwJlAVyUfL5N0lKTbJT0i6ReSNsyTL87/H8953KXyvW/mfN4p6Z2VzzfN5f6opMWSPlqZtnZe78ck\n3Qjs2Id1mQHcGRF/juSpiPh1RNyT531ck+3xobzvPCzp6IZ8/F/Ox02SPtNdM1Yv5WM1clAwImI+\nsAR4a/7oP4FXkw4IWwGTgWMqX9mYdNY4GfgIcKKkDfK0E4HngE2Af8h/jf4W2BnYJv/Q/wD8N7AR\n8C3gD/nsGuA0YH6edhxwSJP57Q68Dtg7vz8H2Bp4JfBX0kG66v3AF4CJwPPA5TndROBXOQ8DcT9w\nI/D/8vsPks62qz5FKofdgU2Bx0hlB/C2/H/9iJgQEZfn9zsDt+R8fh34kSTlaaeTtuGmwPuAr0ra\nI087lhSctySV0YeqGclB8nvdrMtfgddKOkHS2yVNaGH93wK8BtgDOEbS6yr5mAZsAewFfKCHefRU\nPlaniPDfGPoD7gL2bPL5FcDRgICngS0r03YhnS0CzAKeBcZVpj9Eah7pAF4AXluZ9lXgksr7AN5R\neX8IML8hL5cDhwKbASuAdSrTfgr8NL+elue3RQ/ru35O84r8/hTgB5XpRwA3Vd6/Hnh8AOU7DziM\ndMA7nXRwvDVPWwLMyq9vAvaofG+TXHbjKutVLeNDgcWV9+vkNBsDU4GVwHqV6V8DTsmv7wD2qUyb\nAyzpwzq9GfgFqfnruVyGE/K045psjymV784HDqrkY+/KtMOq+aCyb/ZUPu3+DY32P9cUrDAZeBSY\nRDrgXKXUEf04cG7+vPBIRKyovH8GmJDTjAPurUy7u8myqtM3bZLm7pyfTYFHI+KZbr77ks8kdUg6\nPjc7PEk60EA6uy48WHn9bJP3Tc+Gla60WZ7/TmqWpuI3wDtIQecnTaZvDpxZKeObSAf2V/UwzweK\nF5UymcCqcnqqkrYoQ/L03rZJtyLiioh4f0RMItUm30Y6geg1n6zaN5rlo9m2LPSnfGwQOCgYknYk\nHUAuAR4mHRi3jYj1898rIqKVZoNlpDP7qZXPNmuSrjo07/2kA0DVZsB9wFJgQ0nrVKZN5aWq85sN\nHADsSWrimpY/FwMU6UqbCfnv472kfYbUjPUJmgeFe4F3Vsp4/YhYKyLuY/X1acX9pHJar/JZUYaQ\nyrG3bdKSiFhACnjb9ePrS4EplffNtmWhp/KxGjkojGGSXi5pP+AMUhPAdRHxIvAD4ARJr8zpJkva\nu6d5AUTEStIB4zhJ60jahob26ybOBl4tabakcZIOBLYBfh8RdwML8/zG5w7Xv+llfuuR+gkeIdV4\nvtpbvmv0eWD3iLirybSTgK9I2hxA0iRJB+Rpy0hX92zRykIi4l7gMuBrktaS9AZSX0/Rl/IL4HOS\nNpA0hVR7aYmkt0j6aGVfeC2wP6m5sa+q+ZgMHN5D2p7Kx2rkoDA2nSXpKdLZ2NGkjtUPV6Z/FlgM\nXJGbYM4ntY234nBSc8EDpLbnH/eUOCIeAfYjXfL4CPAZYL+IeDgn+XtSn8YjwH8APycd9LtzKql5\n5D5SZ29/Dl6DIiLuj4jubjj7DjAX+GPeFleQOpKLWsZXgEtz88mbW1jcwaRa0f2kK52OjYg/5Wlf\nJJXJncAfaai5KF1d1l1z2OOkIHCdpOWkpsQzSR3dffUlUr/KnaR96ld0vy27LR+rlyL8kB0bOST9\nHLg5Io5td15sYCR9gtQJvXu782KruKZgw5qkHSVtma9b34fUX/DbdufL+k7SJpJ2y9vyNaTa4Znt\nzpetbrjcAWrWnY1J/RQbkZoePhERV7c3S9ZP44Hvk+6KfpzUl9Xd/RHWJm4+MjOzkpuPzMys5KBg\nZmalEdenMHHixJg2bVq7s2FmNqJcddVVD+e70ns04oLCtGnTWLhwYbuzYWY2okhqaXgTNx+ZmVnJ\nQcHMzEoOCmZmVnJQMDOzkoOCmZmVHBTMzKzkoGBmZiUHBTMzKzkomJlZyUHBzMxKDgpmZlZyUDAz\ns5KDgpmZlUbcKKlVnZ1w2mntzoUNhtmzYc6cdufCzEZ0TeG002DRonbnwgZq0SIHd7PhYkTXFABm\nzIB589qdCxuIWbPanQMzK4zomoKZmQ2u2oKCpJMlPSTp+h7SzJK0SNINki6qKy9mZtaaOmsKpwD7\ndDdR0vrA94D9I2Jb4O9qzIuZmbWgtqAQERcDj/aQZDbwm4i4J6d/qK68mJlZa9rZp/BqYANJ8yRd\nJemDbcyLmZnR3quPxgFvAvYA1gYul3RFRNzamFDSHGAOwGabbTakmTQzG0vaWVNYApwbEU9HxMPA\nxcD2zRJGRGdEzIyImZMmTRrSTJqZjSXtDAq/A94qaZykdYCdgZvamB8zszGvtuYjSacDs4CJkpYA\nxwJrAETESRFxk6RzgWuBF4EfRkS3l6+amVn9agsKEXFwC2m+AXyjrjyYmVnf+I5mMzMrOSiYmVnJ\nQcHMzEoOCmZmVnJQMDOzkoOCmZmVHBTMzKzkoGBmZiUHBTMzKzkomJlZyUHBzMxKDgpmZlZyUDAz\ns5KDgpmZlRwUzMys5KBgZmYlBwUzMys5KJiZWclBwczMSg4KZmZWclAwM7OSg4KZmZUcFMzMrOSg\nYGZmJQcFMzMrOSiYmVnJQcHMzEoOCmZmVnJQMDOzUm1BQdLJkh6SdH0v6XaUtFLS++rKi5mZtabO\nmsIpwD49JZDUAfwncF6N+TAzsxbVFhQi4mLg0V6SHQH8GniornyYmVnr2tanIGky8G7gpHblwczM\nVtfOjuZvA5+NiJW9JZQ0R9JCSQuXLVs2BFkzMxubxrVx2TOBMyQBTAT2lbQiIn7bmDAiOoFOgJkz\nZ8aQ5tLMbAxpW1CIiOnFa0mnAL9vFhDMzGzo1BYUJJ0OzAImSloCHAusARAR7kcwMxuGagsKEXFw\nH9IeWlc+zMysdb6j2czMSg4KZmZWclAwM7OSg4KZmZUcFMzMrOSgYGZmJQcFMzMrOSiYmVnJQcHM\nzEoOCmZmVnJQMDOzkoOCmZmVHBTMzKzkoGBmZiUHBTMzKzkomJlZyUHBzMxKDgpmZlZyUDAzs5KD\ngpmZlRwUzMys5KBgZmYlBwUzMys5KJiZWclBwczMSg4KZmZWclAwM7OSg4KZmZUcFMzMrFRbUJB0\nsqSHJF3fzfS/l3Rt/rtM0vZ15cXMzFpTZ03hFGCfHqbfCeweEW8Avgx01pgXMzNrwbi6ZhwRF0ua\n1sP0yypvrwCm1JUXMzNrzXDpU/gIcE67M2FmNtbVVlNolaS3k4LCW3pIMweYA7DZZpsNUc7MzMae\nttYUJL0B+CFwQEQ80l26iOiMiJkRMXPSpElDl0EzszGmbUFB0mbAb4BDIuLWduXDzMxWqa35SNLp\nwCxgoqQlwLHAGgARcRJwDLAR8D1JACsiYmZd+TEzs97VefXRwb1MPww4rK7lm5lZ3w2Xq4/MzGwY\ncFAwM7OSg4KZmZUcFMzMrOSgYGZmJQcFMzMrOSiYmVnJQcHMzEoOCmZmVnJQMDOzkoOCmZmVHBTM\nzKzkoGBmZiUHBTMzKzkomJlZyUHBzMxKDgpmZlZyUDAzs5KDgpmZlRwUzMys5KBgZmYlBwUzMys5\nKJiZWclBwczMSg4KZmZWclAwM7OSg4KZmZUcFMzMrOSgYGZmpdqCgqSTJT0k6fpupkvSf0taLOla\nSW+sKy9mZtaaOmsKpwD79DD9ncDW+W8O8L815sXMzFpQW1CIiIuBR3tIcgBwaiRXAOtL2qSu/JiZ\nWe/a2acwGbi38n5J/szMzNqknUFBTT6LpgmlOZIWSlq4bNmymrNlZjZ2tTMoLAGmVt5PAe5vljAi\nOiNiZkTMnDRp0pBkzsxsLGpnUJgLfDBfhfRm4ImIWNrG/JiZjXnj6pqxpNOBWcBESUuAY4E1ACLi\nJOBsYF9gMfAM8OG68mJmZq2pLShExMG9TA/gk3Ut38zM+s53NJuZWanloCBpc0l75tdrS1qvvmyZ\nmVk7tBQUJH0U+BXw/fzRFOC3dWXKzMzao9WawieB3YAnASLiNuCVdWXKzMzao9Wg8HxEdBVvJI2j\nmxvNzMxs5Go1KFwk6fPA2pL2An4JnFVftszMrB1aDQpHAcuA64CPke4x+EJdmTIzs/Zo9T6FtYGT\nI+IHAJI68mfP1JUxMzMbeq3WFP5MCgKFtYHzBz87ZmbWTq0GhbUiYnnxJr9ep54smZlZu7QaFJ6u\nPi5T0puAZ+vJkpmZtUurfQpHAr+UVAxtvQlwYD1ZMjOzdmkpKETEAkmvBV5DejjOzRHxQq05MzOz\nIdeXUVJ3BKbl7+wgiYg4tZZcmZlZW7QUFCT9BNgSWASszB8H4KBgZjaKtFpTmAlsk5+BYGZmo1Sr\nVx9dD2xcZ0bMzKz9Wq0pTARulDQfeL74MCL2ryVXZmbWFq0GhePqzISZmQ0PrV6SelHdGTEzs/Zr\n9clrb5a0QNJySV2SVkp6su7MmZnZ0Gq1o/l/gIOB20iD4R2WPzMzs1Gk5ZvXImKxpI6IWAn8WNJl\nNebLzMzaoNWg8Iyk8cAiSV8HlgLr1pctMzNrh1abjw7JaQ8HngamAu+pK1NmZtYerQaFv42I5yLi\nyYj4YkR8GtivzoyZmdnQazUofKjJZ4cOYj7MzGwY6LFPQdLBwGxguqS5lUkvBx6pM2NmZjb0euto\nvozUqTwR+K/K508B19aVKRvlOjvhtNNWvV/07fR/1pGrPps9G+bMGdp8mVnPzUcRcXdEzAP2BP6S\n72xeCkwhPWynR5L2kXSLpMWSjmoyfTNJF0q6WtK1kvbt32rYiHLaabBoUfl23owjmTejEhAWLVo9\naJjZkGn1ktSLgbdK2gD4M7CQ9DjOv+/uC5I6gBOBvYAlwAJJcyPixkqyLwC/iIj/lbQNcDbpQT42\n2s2YAfPmNZ82a9ZQ5sTMKlrtaFZEPEO6DPW7EfFuYJtevrMTsDgi7oiILuAM4ICGNEHqnwB4BXA/\nZmbWNi0HBUm7kGoGf8if9VbLmAzcW3m/JH9WdRzwAUlLSLWEI1rMj5mZ1aDVoHAk8DngzIi4QdIW\nwIW9fKdZn0Pjk9sOBk6JiCnAvsBPJL0kT5LmSFooaeGyZctazLKZmfVVX4bOvqjy/g7gU718bQnp\nzufCFF7aPPQRYJ88z8slrUW60umhhuV3Ap0AM2fO9CNBzcxq0tt9Ct+OiCMlncVLz/J7e/LaAmBr\nSdOB+4CDSPc8VN0D7AGcIul1wFqAqwJmZm3SW03hJ/n/N/s644hYIelw4DygAzg5Nz19CVgYEXOB\nfwF+IOmfSUHn0IhwTcDMrE16DAoRcVX+f5GkSfl1y2fyEXE2qQO5+tkxldc3Arv1JcNmZlafHjua\nlRwn6WHgZuBWScskHdPT98zMbGTq7eqjI0ln8jtGxEYRsQGwM7BbbvIxM7NRpLeg8EHg4Ii4s/gg\nX3n0gTzNzMxGkd6CwhoR8XDjh7lfYY16smRmZu3SW1Do6uc0MzMbgXq7JHV7SU82+VykewrMzGwU\n6e2S1I6hyoiNUY3PVoBVw2pXR0v18xXMhkSrYx+Z1aPh2QpAGlZ7xoxV7/18BbMh0+rzFMzq09Oz\nFcDPVzAbQq4pmJlZyUHBzMxKDgpmZlZyUDAzs5KDgpmZlRwUzMys5KBgZmYlBwUzMys5KJiZWclB\nwczMSg4KZmZWclAwM7OSg4KZmZU8SqoNP43PWGj2fAXwMxbMauCagg0/jc9YaHy+AvgZC2Y1cU3B\nhic/Y8GsLVxTsJGlszMFhEWL0t+sWemvs7PNGTMbHVxTsJGlaFpqfFwnuH/BbBCMuKCw7JllzDpl\nFgCLHvg2ALNOOZLZr5/NnDf5oDAmNDYtuSnJbNCMuKDw6LOP8sQDTzBj4xnMOOpIABY9kM4UHRTM\nzAam1qAgaR/gO0AH8MOIOL5JmvcDxwEBXBMRs3ub74yNZzDv0Hnl+6LmYGZmA1NbUJDUAZwI7AUs\nARZImhsRN1bSbA18DtgtIh6T9Mq68mNmZr2r8+qjnYDFEXFHRHQBZwAHNKT5KHBiRDwGEBEP1Zgf\nMzPrRZ1BYTJwb+X9kvxZ1auBV0u6VNIVubnJzMzapM4+BTX5LJosf2tgFjAF+Iuk7SLi8dVmJM0B\n5gCsOXnNwc+pmZkB9dYUlgBTK++nAPc3SfO7iHghIu4EbiEFidVERGdEzIyImWussUZtGTYzG+vq\nDAoLgK0lTZc0HjgImNuQ5rfA2wEkTSQ1J91RY57MzKwHtQWFiFgBHA6cB9wE/CIibpD0JUn752Tn\nAY9IuhG4EPi3iHikrjyZmVnPar1PISLOBs5u+OyYyusAPp3/zMyszTwgnpmZlRwUzMys5KBgI1Mx\nhHbjMNoeQttsQBwUbGSqPp2teDKbn8ZmNmAjbpRUs5KH0DYbdA4KNrJ1dqbawdKlcPvt6bP11181\nvfHZzrNn+2E8Zj1wULCRrdqMBDBhQvdp/YQ2s145KNjIV60NFM1JRQ2iUdEhXeXag1nJHc02OjXW\nIGBVh3SVO6fNVuOago1ejR3Rzbhz2mw1rimYmVnJNQUbWxr7GoompqLG4P4FG+NcU7CxpbGvodrP\n4P4FM9cUbAzqrq/B/QtmDgo2xvX15jdwE5ONag4KNrb15eY38A1wNuo5KJg1u/mtO25islHOHc1m\nZlZyUDAzs5KDgpmZlUZ0n0LnVZ2cdt1pLHogdf7NOmUWALNfP5s5b3JHoJlZX43ooFAEhBkbr+oo\nLAKEg4KZWd+N6KAAMGPjGcw7dF75vqgtmJlZ37lPwczMSg4KZmZWGvHNR2aDrnEk1aVL4cEH0+vl\ny9P/6lAYjZoNjdEdD5lhw4xrCmaNGoe+ePDBVcFgwoTeh8JolUdltWHINQWzZqojqVaftVAMnlfU\nHJppfAxod5Yvh0su6bnW0Vd9qaUMJdeIRgwHBbNWVWsQy5cPvMYwWDWO4c6DCI4otQYFSfsA3wE6\ngB9GxPHdpHsf8Etgx4hY2NflFDexAb6Rbbjr7Fx1kOjsrGf+1YP3rFmDe5bayuB5jX0SlraHBxNc\nZRjXnGrrU5DUAZwIvBPYBjhY0jZN0q0HfAq4sr/Lqt7VPGPjGeXNbIseWFQGCxsmqgfLOg6cRUAo\nnqjWjnb7xj6Jsa76dDsb9n1JddYUdgIWR8QdAJLOAA4AbmxI92Xg68C/DmRhjTexgW9kG7bqPkA0\n6w8Yat093c2Gv6Go6Q1FzamftZE6rz6aDNxbeb8kf1aStAMwNSJ+39OMJM2RtFDSwhdeeGHwc2pm\nVqi7pjcUNacB1EbqrCmoyWdRTpReBpwAHNrbjCKiE+gEWG/6etFLcjOzgRnpNb0B1ELqDApLgKmV\n91OA+yvv1wO2A+ZJAtgYmCtp//50NtsoUHcn8WDrrpmhmv9mhvM62cg2CL+hOoPCAmBrSdOB+4CD\ngNnFxIh4AphYvJc0D/hXB4QxrNpJDMP/UsbG/BZ6ahoY7utkI9sg/IZqCwoRsULS4cB5pEtST46I\nGyR9CVgYEXPrWraNYMOhk7gvZsxYdVNbq1rtZHSNYnD0teO4OJC+5jU936RY1UofwVBtzwH+hmq9\nTyEizgbObvjsmG7SzqozL2a16a7G0EyrHYyuUQyevmwfWP0sezBuUizmBSNie/qOZrPBMNgdkyOh\nljSS9Gf7FNtgMLbrCNqeoyooFHc2L31qKQ8+/SDLu9IgZusfn8aWqT6hreA7noehxs6yzs4RcYZl\nbdJb81B3Hf/VMayKZsC+7metNk1V89Db2FmvelXz6c1qOjU0SY2qUVKLO5uLgDBh/AQmjO++6uc7\nnoepxur+ML7704aB3u4r6O6+gOrot/29rr/Vexqqeagut5nephdqujN6VNUUYPXaQOMdzo18x/Mw\nVlT3R1C129pooM1DA9nP+rrs3pqlWm22qum3MeqCQlV1oLyiSalrZRddK7sAWBkrARj3pVQMEcGL\nvLjaPDrU0a9l91RDGSzNmsOGqzHTTDdYQyTMnw9dXYMzrPZg3T3rq6GS6jZubJoaqjKqDizZ3b0I\n/Rx8clQ1HzWqDpRXNCl1rewqg0GHOlY76DcGBBscY6qZbrCGSBg/fuDzGEzDfBC3IVXdxtVmoaEs\no2I5PQ362M/BJ0d1TQFWDZTX2FTUrGmpSNNbs5O1pnFI886rOhkT55nV5oSB1BwmTOjfWf5gna02\n5r16f8VQ1xp6KseB3kHeeEbdyno1azIaSHNOT7UPaL4OrTSx9mP/GdU1BWuvoqZWNHONmdpCVX9r\nDv0dNG0wz1aHwxlxs7w06qmsWslr3cO5t6K7soYhL+9RX1Ow9uqupjamDOXgaoPd+TjYZ8QDMZDO\n5Fbm3W7drd8Ql7eDgtlwM5Amp96aUnrSXTNLNT9Ll8Ltt6fX66yTOsOh+7t+u7vmHuq97n6kDa44\njLj5yGy4GUhndR3NTtX8FAf4CRNSQFi5suf5tnrNfW956Kvh8AS+Eco1BbPhaKjH8++tZtHYqdn4\nurf5trIudTZ9+X6Xlo3poFC9OgZg/n3z6VrZxTpfWae8l6HxfoOe7g0YM9fi2+Doz/MYBrsJxM0s\nzbVyH0A1bWMZwsDLsU3DvYzp5qPqfQwA4zvSteHVexlaNaauxbfB0V0zUXdNQHU0gbiZpblW7gOo\npq2WIQxOObZpuJcxXVOAVVfHwEuHvejL/Qpj+uoa67++NBPV1QTiZpbm+jLUSuN2HKxybMNwL2O6\npmBmZqsbszWFzqs6y6ajzqs63Rdg1hd9aXPv7/wb76YullVw30ctxmxNodr+774Asz7qS5t7f+df\n7W9p812+Y8mYrSnAyBpl1GzYqbu9u6f+Fvd91GZMBwUb5ZoNHdzb5X39GRytDs0uV120qPlw2l1d\nzUdVHYondXVXXn29TLOfwzy3lL+hvOS2rstTh9CYbT6yMaBxoLNWBj4bDoOjFctuvFx1xox08G+8\nQ7irq31P6uquvPp6mWZd5T7Ul9zWdXnqEHJNwUa3xrPlVoaAGA6Do0HPg9E1u/yxt0tb62zm6e7z\nvlymWVe5D/Ult3VdnjpEXFMwM7OSawo9aBwGo3ikZzPLu1L1ff3j1286vdFgdHJ7WI1Rps7HPNZ9\nCWlvyz7ttNUfMTpjRt/y0OwS1Wr/SlHLGKo+k1a/2zhMBbz0/TAbZsQ1hR40DoNRPNKzmQnjJwzJ\nc5kLHlZjFKrzoTZ1X0La27IXLVq9M7yveWh2iWpj/8pQ9pm0+t3GYSqa9XMNs2FGXFPoRbNhMIbD\n4zo9rMYoVedDbdowZMJqyy70Nw/dtdXX3V8wkL6OZmXerJ9rGA0z4pqCmZmVXFMYoKLfoVl/Q9HU\nFBG8yIvl5x3q6HW+vTVFNfZhvGrdV7HJepuslqaap66VXeVw4I0jwPaUny032PIl821ULKfoJ3Ff\nBx6SejC1sz+kL+q612KIl1lrTUHSPpJukbRY0lFNpn9a0o2SrpX0Z0mb15mfOhT9Dj31N1QDwmCp\n9mEs71retAO8mqf+DAe+MlZ227He3XLc15ENw7biEaud/SF90Y57XGpYZm01BUkdwInAXsASYIGk\nuRFxYyXZ1cDMiHhG0ieArwMH1pWnulSvJGrW31B3X0R3869+3p88tPqdZssxhl1b8YjWzv6QvmjH\nPS6DvMw6awo7AYsj4o6I6ALOAA6oJoiICyPimfz2CmBKjfkxM7Ne1NmnMBm4t/J+CbBzD+k/ApxT\nY36GROO9DUB5WWvjWfRA296LZVXn3872/MbhyI2B9y0MZTv1YCyru2vzbcSoMyioyWfRNKH0AWAm\nsHs30+cAcwDWnLzmYOWvFsVButqk1OxGteLgOZADeOOyBmOeA+HhyJtovFa9OFi2GhSGsp16MJZV\nXd/h3P5v3aozKCwBplbeTwHub0wkaU/gaGD3iHi+2YwiohPoBFhv+npNA8twUr23oTuD1fbe0+NE\n28HDkTcx0L6FoWynHoxljZT2f2uqzj6FBcDWkqZLGg8cBMytJpC0A/B9YP+IeKjGvJiZWQtqCwoR\nsQI4HDgPuAn4RUTcIOlLkvbPyb4BTAB+KWmRpLndzM7MzIZArTevRcTZwNkNnx1Teb1nncsfDpp1\nPENq/+9a2fWSAfRete6rVrs3oNoc45vCRqlmnbOt9Dl0N9AcDN8bvOowlJ3bw+UhTDXyMBc1axxU\nrzBj4xmM7xj/khveursJzjeFjWLNBk7ry/can7o21jp4+1t+/V1Ws9ejiIe5GALddTw3uzmstxvR\nbJTqb+ds40BzMDY7eIeyc3u4PISpJq4pmJlZyUHBzMxKDgpmZlZyn0ILqsNJFFcMzdh4BrNfP7vX\n73X3nWoHdOdVnT1eVdTTfBoVGPzlAAAUpUlEQVTTtDq/otN66VNLuf2x24E0xLeUbkQf3zGeZ1c8\nS4c6WP/49cuhuZsNk12b0XSlRytXyDQbIro/yyiuRmo2pEY7hndu1N/1HA55r9MwWT8HhRZUh5NY\n9MAilnctb3pFUbPvAeVVRtXvVOd32nWn9XgQ72k+jWmK173Nr1j+g08/yMpYSYc60hDfkZ6vUDx7\nYcL4CeXVUJust8lLhsmuVeOVHiM5KLQy/EPjENH9Xcb48SkoNBtSYzhcPdPf9RwOea/TMFk/B4UW\nFVcQ9fUqoO6Gfejr/FoZPqIvQ0w0Ln8gr2s1mq70aOUKmYFeRdNKeQ2HMh2Mq61Go2Gwfu5TMDOz\nkoOCmZmVHBTMzKzkoGBmZiUHBTMzK/nqo1GqlUdjDlYaM6vREN+v45rCKNXKozEHK42Z1WiI719w\nTWEUG6x7G/yITbM2G8L7F1xTMDOzkoOCmZmVHBTMzKzkoGBmZiUHBTMzKzkomJlZyUHBzMxKDgpm\nZlZyUDAzs5KDgpmZlRwUzMys5KBgZmYlBwUzMyvVGhQk7SPpFkmLJR3VZPqakn6ep18paVqd+TEz\ns57VFhQkdQAnAu8EtgEOlrRNQ7KPAI9FxFbACcB/1pUfMzPrXZ01hZ2AxRFxR0R0AWcABzSkOQD4\nv/z6V8AeklRjnszMrAd1BoXJwL2V90vyZ03TRMQK4AlgoxrzNKzNOmUWix5YxCX3XMKsU2a1Oztm\no8usWemxlsWjLa0pRUQ9M5b+Dtg7Ig7L7w8BdoqIIyppbshpluT3t+c0jzTMaw5QPJj0NcAttWTa\nzGz02jwiJvWWqM7HcS4BplbeTwHu7ybNEknjgFcAjzbOKCI6AT813sysZnU2Hy0AtpY0XdJ44CBg\nbkOaucCH8uv3ARdEXVUXMzPrVW01hYhYIelw4DygAzg5Im6Q9CVgYUTMBX4E/ETSYlIN4aC68mNm\nZr2rrU/BzMxGHt/RbGZmJQcFMzMrOSiYmVmpzktSxyxJB5MuwX0M2Jp06e2zEfHDQZj33hFx3gDn\n8X3gd8B5EbFS0vvzpN2ASyPiFwOc/xtJ+9bfAjdFxE8GMj8zGzoOCv0kad/8cmfgiYj4VmXy1sC3\ngDOBCRGxi6Rje5nfYaShQQB+FxF/qEw7HbgaELAr6YouJH0BWA5MAJ6PiG+0mP0bgUeAz+dhRbqA\n64DHgSvyvA8FXpnTPxgR/9dkPt3ZnbTen5d0TLMEleFM3gjcmtftKdK9KkTE403Sbw+sA1wObAfc\nDbwYEcsr6V4OPBURIWndiHi62bQm+ZkUEcvy6/WLPOTXK4Etc9JrgHWryxyIyvw7mq13d2ka1nMC\n6be8MiKeqnxvI+DRVi7zrqaVNKG39evLvPuqWN/qujRMfzlpX9mwMQ895UuS+prfYn7Aeqwq79Xy\nVyn/cvtV96EiTbMylbRGRLzQLO+SNo2I+7vbbxuX0U3+eyzLpt8ZaVcfSToCeAvwz8DxwPXA/sDN\nwBaknWU6afiMc4E9SAfUh4CtSIPzjQP+BDwLPEw6GD9JOlP+I/CB/P1lOe3twC7AXaSD1lxgs7y8\nI4DPAxcAe5EObpMi4qOSdgP2zct9jHTz3hRgZs7vItJluN8HNouIoyWdA6wAXgQi5/26PN9HgNeR\nzsBXAleS7gB/l6RLgQuBGcDapAPIc8B9wLrApPz5vcBtEfEFSf8KvDqv0y2kA+3leVm7RcQBks4A\n1iA1NZ4LvJ4UPJ4D3gacn8tv7Up5TSTVjN4t6Vd5Xd+f1/+LwA3Ax3Ne1wI2BX4IzM7/P57T3pzX\n4x7gkDztU3m73ZW/V2yf1+QyORXYDzgrl9PLc9qJwMY5758kjbs1Dtgkp9kduJa0n8zL5f8BUpA8\ngBSIX1X5e5oUTK8lDc8yMy9nZi7LSbkcgxS0f0Y6WfiPPO09wAbAG/L8rgb+SgrE3wG+l7fvO4Dx\n+TtXk272XBv4Keken1+SBpa8L2+n2/I6vUDal/8F+EH+3sOkA+lU0gnLdqTfw+PApbmMf02uMZL2\nlZ1I+/VdwKHAe3M5753z+lhe7tWk38Qr8rY4Ned5KfDRvA2X5rK4MW+7M0j70IO53HcinSR0kIL/\nXbn8D83rO4O0j22Y5/1cLrtTgXeRxk+bmPPxFLBjLtNJuTxPAP6c5/86YHHeJmvk7/2UtB/8JpfF\nC3kbTSDtjxPzek4hbf9XkH73Hyb9RseThul5grTtfwN8EPgD8HZgfl7m/yP97sbnfH0A+AnpmPZo\nLosrgU/kMnssL/uwPJ8zctppeRsuzd+5K+fnINI+/I+k/e9+YF5E/C8tGDF9CpLOlvQZ0kF2LVJh\nb0oqvKdJBdNJKpzbgQsj4rukA+KXgXeTzupvI23YtwN/Q9rh9iDtEE/n+d1BOsDeDqxP2mDrAkeS\nzlYPJG2ktwA3kXbSfwfeFxGfJ20cIuLSiDgauIx0MNyV9MN8FFhIqk08QAoykyTNI+20Z5I27vyc\n91eTdqQ98jpflOe5FfCyPAzI/Tkf1+R5n5/fP0Q6CFxGOkgsIgUXSAfDI/Nnj5EOcN/Kf8tyea+V\n139lzsfmpAPCCaQf14ukQNJRKa8jSGf/kH6UG5IOTPOBr+XtVByQgrQf/on047wQOIdUC9ga2Dpv\nxy7SQeph0g/uKlItqSuv+7l5eeeTTgq2y2X5G9JZ3nTgt6RtPx14W0T8e57HZFKz2V6kA82rc/mv\nRTrgPAismb/7OOkA/HZSUNkmb/OOXJZLSQe0C0gHkz8BD+d12APYJ89zH9LB85m8Tvfkz7bL/6fl\nsr2WdMAp0tyQ83J+zsdiUvPkP+b8TM/bY21SUL0T+GbOS5ACxnOkg/s7c9pJOe29rDpQwqrfxpmk\nffrg/DeZFJivIt2kuoB0grR+Xu//Bb6R879tnvctpN/XJrm8ppKCzw45H8WybsnpHyEFpm/lZX+T\ntN13IQWGCTm/Rdl25Hztl8tgat5+GwHP59fkbf5a0gH/daTfwPnAPXk+k0mBqSjDe3O53kw6NkzP\ny7qatI8W5f/ZvJ2K39GNuSzuz2kmk34fHwLeBJwOXBMRP8j5m0z6XS/My96VdBy6sbLsXYDPsGo/\nWZu0f1+Vy/rFvD5753W4jPSbuzqnbcmIqSlI+ixp5/gw6QB1EGkH/Qspot6Xp/8D6QfbSSrMHUiF\nPYVUkOuTNkJxBrkGaSPfktMsIUXwi0gHs3eRzhR/Rtq4E0kHjQ/n5V8ZEdfkfoT3knbuf46IL1fy\nfjQpGP0TaUM/mJd1A+nM8teks45nSQe5dXK+pkbEZ/I8jiAd4NcA/p50cFoGLIuIL+dmmqfzfDch\n/Wgg7YBnkc6oip381oj4z/yd5aSA9wDpTPoF4HPAN/N83xgRf5X076QzsCLdxaSz2HNJB8M7SUHn\n7bmcHoiIH0jaNa/TW0mB4vqIuDuv026kHXxynvd9pAP5saSzqxl5W9+W1/3M/PrFvB3Wyd8/Oy9j\ni7xtXyDVILfOZfSeXC7vzfvE5aSA/t+kE4VxwO0RcbKkDUlniyL9iLciHTS2z39PAseRfqwbkw5e\nF+ftfjLppOWHpJOWO3Ne7iYdlF6Xt9s2pDPgbUkHkc1JB/118zZckLfhqcDXWRXw35jzNY904Hkj\n6QTjXblM7sll8iQp4DwBXAL8HPi3/L44UK7IZblmzuMbcvlfQBpn7OLKPD8EfJU0ovHR+fMpeZvt\nAfw4l+N9eRt1kPbrjUgHpqNIgeJw4Pe5XD6Z5/tQLte3kU54diMF701zHh4HFkXEnyVtkfO9VS7L\nLuAXEfFE3pc2zOX2c9LvaTn5ZCYiFkh6U0RcJenWXLbj8nzuJv2OvpF/x4tyHj+Sv/8XUi1mPimI\nfzhvl3GkY8W+uWwnkmorIh2HipPLNYB3R8T3JW2ft8EtwOR8Q+82pObJqcDP8vqsRTruXA7sCcyP\niOslHRIRP8n76X6k3/npwAYRcQeApPeQ9s/n8zx+BIyLiMdowUgKCkeRIvG/koLAbNLQGKfk12uQ\nduANSFXH2yLiHyWdR4qUm7NqBNYu0o9hAinS7h8Rb5V0Aakp6grSweS5PL/zSAeoy0g/gi7SGfD4\nPN+rSRuu/DwiyocKNcn7d1nV13AecHVEHJX7HZ4BNsrvryOdpRd9CZfn+fwzqWYzjXSn+D2S/i2v\nX7GeK6tlkctmO9KB7kfV71SW/Xye/06VNEV/RrF+E0hnJk+TfsjfIB1wPg6cVJk2Ps+3sT+kaG5a\ni3QA6yAFgHVJgaN4vW9O25GXu3Ne/91IZ7yFFaRgdy6wdkR8XdLJpBrcbnm/uIb0g72NVJvbWdKf\nSAewk0nNfw+TmhvWy/P9c2V+n8rTJpIOuAtz/uYCB0bEmyWdTaoNHkM6sShOMKbncv074OyIeIek\nc0kHrGtIZ38XkvblMyrzO4e0vy0n1UzPIh2EdgReHhFvk3R+ROyZ96HzSGeI1f/jG8r0fTnPxXw6\nSAfeXXP+fkc6WN1OCliTG9ZlSU57G+mguR/pIL9fnu82Oc3uOV+/z8v4Y05zfmVZvyUF/2NJv8Vi\nPueR9rVNSMHvIeDNpAPyClKwe3let6mkmtmhueyX5DSvBz6dy3ZyXtfrWNUsdkie95akQPIzUqvB\nWZVtfgRpP12PtA+tyN99llUBomiaLpa5mBQo30QKNCvy+l9ECoB3kX6zd+W835unPRsR363sZ2vn\nvxfysi8nnYjOB9aJiK9DOejoFqTf9faV+e1IOilarSwi4te0YMR0NEfE8ZLeCtwRETdLOg6Ynjfg\nlaSH9VybO0h3IB04IRXS8aQfx0RSQd1J2tj7kjb0nTnt/IhYnofn2Cu38R9KOrh+KyIuklRUya8n\nNe2clD+/peHz3vJedFQX+SN/dym5s5d0FlTsAG/I61f8yG8nnR3ck9Nemr/3VmBiRPy6WhYR8WLu\nmH66yXcgncH/Os//8UqaxvXbgrTTHZfX80nSWfbNkr7dMK36/XNIB+q9ST+MX5HOOK8jNTcdQTog\nbUv6sV2Uy+N9uXw2B/6LFJReJAWePUkHnL1yeb4sd0jvSmrHXpO0j7+cFNQ3AX4p6WOkg/6GOU9/\nIB1AniGdWe+Zf6S35v7wvfK0zwDfzsu6iPTDPzc3310TEVdK+maetnv+/1pSDeVrOe0xpIdP7U06\n472XFFx/SfrhX5bz90gu72dIAW8yqbb3J+DFvMzr8vzOIp3xNv7/XqVMd87L2CLP5zrSCcPvctqv\nkYLTDcCsXA7FQWZ34KK8D72XFKQ/wKpa219JNZfbIuJsSUW+imUUaarLOiuX13mk2s6GOc09pOAx\nNfKIyrmm/bW8XhuS+lz2yvPdP2+X7YGPkWqNd+d1eSwv/xlSM9SOpGaYqRFxRD6jXkEKEo80bPO3\nkfbT/8jL2oX0e9kbmBYRh0jan7SfF8vcgrR/LiDVnmaQWgWWkgLmj0m1jB+Tak/7k06WbpK0dmWZ\nxW/jRdL+uwuwYUR8sJK/fyCd+F3Dqlp2Mb9zG/L1QdLJSUtBYcTUFGxkk7R9bmbbltR0cwGp5nQj\n6Qqi7/by/a1JB+OJpAPLbaRmlQtIP6QlwJSI+ENu6nqSdCZ4W/6xH9FsGZV8FZ3AdwD35+8cHhH/\nU5l2WSt5tYGR9DrSgfC+iDhP0u75xGJb4B1523yMdKC7MKf5TkT8k6TdSU1hF5MOsudS2XakgFPO\nOy9v24i4Ib8utvm2wFtyk8/HSE2FV5D2s+Lzz+Zm2N2BN+R8FfvQy/Ly7iMFul0qn72MtB9vTmrO\n3DgiPtfkt/E8aT+/oLLeRf62B96c81HU8ov5bVEti572/6bl76BgQ6HSjFQ09RVV41OBXSOi8al8\nzb6/iNSPU/1+4/9TSbWO71bSdruMXvJ1BKnfYXZv87HB0djcGOkKuO62UU/bqqc05bybLLO3+fR3\nmQNJM9D59Wm/HTHNRzbiFc1IV5Kq9RuwqsnvDX34/hXV7zf+z/N7KCJ+XKTtZRk95auYz5UtzMcG\nx0kRcRGkJtPqZ43biB62VU9pGubduMwe59PfZQ4kzUDn19f91jUFMzMrjZj7FMzMrH4OCmZmVnJQ\nsBFLUp/GH5I0K187P9DlzpIUkv6m8tnvJc0a6LzzvO6SNHEw5mXWVw4KZv2zhHR377AiyReP2IA4\nKNiIl8/c50n6laSbJf0s38SGpH3yZ5eQhrsovrOupJMlLZB0taTi8sRPK90RjaTXS7pe0jpNFnsN\n8ISkvZrkpzzTlzRTaUwrJB0n6f8k/TGneY+kr+ebvc6VtEZlNv8maX7+2yp/f5KkX+c8L1Aa2qGY\nb6ekPwKnSto2f2+RpGvzfRZmLXFQsNFiB9IYTNuQ7izdTWn8mB+QhjB4K+kGpMLRwAURsSNpvKZv\nSFqXdMfyVpLeTbrz9GMR8Uw3y/wP4At9zOeWrBpP66ekm69eTxo+4V2VdE9GxE7A/+Q8QbqT94Sc\n5/eSxlgqvAk4ICJmk4Yc+U5EzCCNQbSkj3m0McxVTRst5kfEEgBJi0h3OS8H7oyI2/LnPyUN9gZp\n1Nn9lYYPhzQW02YRcZPS8CDXAt+PiEu7W2BE/EUSSkODtOqciHhBaVyrDlaN7npdznPh9Mr/E/Lr\nPYFtVD6KgpdLKsZqmhsRz+bXlwNHS5oC/KZYf7NWOCjYaPF85fVKVu3b3d2II+C9EXFLk2lbkwLK\npi0s9yukWseKymcrWFULX6tZPvM4Qi/EqhuFinFuCtHk9ctIA5s9W5lGDhLlw4Qi4rR849K7gPMk\nHRYRF7SwLmZuPrJR7WZguqTiqWkHV6adBxxR6XvYIf9/BamZ5m3ARpLe19MCIuKPpLtJt698fBep\nOQdSM09/HFj5f3l+/UfS8NPkvM5o9kWlIabviIj/Jo1e6ruwrWUOCjZqRcRzpOaiP+SO5rsrk79M\nGhfmWknVkW1PAL4XEbeSxtM/XtIr6dlXSMNLF74IfEfSX0i1lv5YM5/t/xOrRvz9FDAzdx7fSOo7\naOZA4PrcjPZa0tg3Zi3xMBdmZlZyTcHMzEoOCmZmVnJQMDOzkoOCmZmVHBTMzKzkoGBmZiUHBTMz\nKzkomJlZ6f8DNDkJ91qAPkgAAAAASUVORK5CYII=\n","text/plain":[""]},"metadata":{"tags":[]}},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYUAAAGDCAYAAADEegxVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xm8HFWd9/HP1xCWyE6iIAECCCog\nRI0I4pJBHNFBeGbQYRkRHDWOz6CD47iADoqjIzoOwuMycBFlM4g6igFBBDEoOwGu7EJkDWtYwi4Q\n+D1/nNOVsul7u/vertvL/b5fr/u63VWnq05VV59fnXOqTikiMDMzA3hRtzNgZma9w0HBzMwKDgpm\nZlZwUDAzs4KDgpmZFRwUzMys4KBg4ybpAEkXdDsf/a6T+1HSXElLOrEsm1wcFAaQpNskPSXpMUnL\nJF0k6Z8k+fvuAEkLJYWk7eqmn5anz21hGbNy2pUqy2iblNwi6fpu58W6x4XE4Hp3RKwBbAIcDnwG\nOG6iM9HpQq+HCtGbgPfX3khaD9gBWNq1HI3fW4CXAJtJen0VK+ih789G4KAw4CLikYhYAOwF7C9p\nGwBJq0j6hqQ7JN0n6WhJq+V5cyUtkfRJSfdLukfSB2rLlLSepAWSHpV0GbB5eZ35DPifJd0M3Jyn\nvVHS5ZIeyf/fWEq/qaTf5ZrNuZK+I+nkPK92Rv1BSXcA5+XpP5F0b17e7yRtXVre8ZK+K+ksSY9L\nulDS+pKOlPSwpBslvWacu/aHwF6SpuT3+wA/B54p5eNFkj4r6U+SHpT0Y0nr5tm/y/+X5TzuWPrc\nN3I+b5X0ztL0l+X9/pCkxZI+XJq3Wt7uh/OZ/lgK9f2BXwBn5te1Ze8taVE5oaRPSFqQX7dyLH1G\n0r3ADyStI+kMSUtzfs+QNLO07BGPhzx/h1z7XSbpD63UzKwNEeG/AfsDbgN2aTD9DuCj+fWRwAJg\nXWAN4HTgq3neXGA58CVgKvAu4ElgnTz/R8CPgRcD2wB3AReU1hPAOXnZq+X/DwP7ASuRCtCHgfVy\n+ouBbwArA28CHgVOzvNm5eWdmNe3Wp7+jznfq+RtGS6t/3jgAeB1wKqkQHIr6cx+CvBl4Lfj2L8L\ngQ8BvwbemaddBuwILAHm5mkHAZcAM3M+jwFOqduulUrLPQB4FvhwzudHgbsB5fnnA9/N2zSbVCt5\nW553OPD7vK83Aq4FlpSW/V3gu6Ns07S8398F7Jn338qleY8BW5TSXw7s3cax9LW8D1YD1svrmJbT\n/wQ4rbTs0Y6HDYEHcz5fBLw9v5/R7d/doPx1PQP+q+BLHTkoXAJ8DhDwBLB5ad6OwK359VzgqboC\n635S88iUXHC9sjTvP3lhUNi59H4/4LK6vFycC8GNc6ExrTTvZF4YFDYbZXvXzmnWyu+PB44tzf8Y\ncEPp/auBZePYvwtJQeF9wCnAK4Cb8rxyULiBXGjn9xvkfbcSIweFxaX303Ka9UkF/XPAGqX5XwWO\nz69vAXYtzZtHKSi0sE3vIwWZlUiF9zLgb+u+k0Pz6y1IQWJai8fSM8Cqo6x7NvBwft3sePgMcFLd\n588G9u/2725Q/tx8NLlsCDwEzCD9oK/IVfBlwK/y9JoHI2J56f2TwOo5zUrAnaV5tzdYV3n+yxqk\nuT3n52XAQxHx5AiffcE0SVMkHZ6bZR4lBUGA6aX095VeP9Xg/eoN1oGkQ3JzzuOSjm6UpuRnwM6k\noHNSg/mbAD8v7eMbSAX7S0dZ5r21F6V9sjor9tNjpbS1fUie3+w7Gc3+wI8jYnlEPE3atv1L8+eT\nangA+5LO7J+ktWNpaUT8ufZG0jRJx0i6PX9/vwPWzk1xzY6HTYD31taV1/cmUsC1DnCnzySh1HG4\nIXABqWngKWDriLirzUUtJZ3JbQTcmKdt3CBdefjdu0k/5rKNSYXHPcC6kqaVCoKNmixvX2APYBdS\nQFiL1ByllrdiBBHxn6SaTytpn5R0FqmZZ/MGSe4E/jEiLqyfIal+fzRzN2k/rVEKDBuTmu4g7ceN\ngOtK81qS2/N3BraXtGeePA1YVdL0iHiA1FQ2XdJsUnD4RE7XyrFUPxTzJ0m1qzdExL15mVeRvr9m\nx8OdpJrCh7FKuKYw4CStKWk3Uj/AyRFxTUQ8DxwLfFPSS3K6DSW9o9nyIuI50lnkF/MZ31b85Rll\nI2cCW0raV9JKkvYCtgLOiIjbgUV5eSvnDtd3N1neGsDTpLbkabRYiFfkEOCtEXFbg3lHA1+pBQBJ\nMyTtkectBZ4HNmtlJRFxJ3AR8FVJq0raFvggqcMbUh/PwbkTdyap9tKq/UhXU72C1JQzG9iS1BS2\nT17/cuCnwH+R+g7OydPHciytQQoky3LH+xdK29nseDgZeLekd+Qa46q5M3sm1hEOCoPrdEmPkc6s\nPgccAXygNP8zwGLgklyFP5dUKLTiQFKTxr2k9vsfjJY4Ih4EdiOdIT4IfBrYLZ+BAvwDqR36QVIn\n8KmkQn8kJ5KaR+4Crif1lXRFRNwdESPdcHYUqQP21/m7uAR4Q/7ck8BXgAtzM8gOLaxuH1JfxN2k\nK52+EBHn5HmHkfbJraSz+r9ozspXBI3UHLY/qRP63vIfKajVNyHtAvykrmmx3WPpSFKH8wOkffKr\nuvkjHg85OO5BCsZLScf3p3BZ1jG1qxrMeoakU4EbI+ILTRPbwPPxMLEcXa3rJL1e0uZK1/XvSjoT\nPK3b+bLu8PHQXe5otl6wPqmfYj1SO/ZHI+Kq7mbJusjHQxe5+cjMzApuPjIzs4KDgpmZFfquT2H6\n9Okxa9asbmfDzKyvXHHFFQ9ExIxm6fouKMyaNYtFixY1T2hmZgVJLQ194uYjMzMrOCiYmVnBQcHM\nzAoOCmZmVnBQMDOzgoOCmZkVHBTMzKzgoGBmZgUHBTMzKzgomJlZwUHBzMwKDgpmZlZwUDAzs0Lf\njZI6HkNDMH9+t3Nh1jn77gvz5nU7FzZIKq8pSJoi6SpJZzSYt4qkUyUtlnSppFlV5mX+fBgernIN\nZhNneNgnOdZ5E1FT+BfgBmDNBvM+CDwcES+XtDfwNWCvKjMzezYsXFjlGswmxty53c6BDaJKawqS\nZgJ/A3xvhCR7ACfk1z8F3iZJVebJzMxGVnXz0ZHAp4HnR5i/IXAnQEQsBx4B1qs4T2ZmNoLKgoKk\n3YD7I+KK0ZI1mBYNljVP0iJJi5YuXdqxPJqZ2V+qsqawE7C7pNuAHwE7Szq5Ls0SYCMASSsBawEP\n1S8oIoYiYk5EzJkxo+lzp83MbIwqCwoRcXBEzIyIWcDewHkR8b66ZAuA/fPr9+Q0L6gpmJnZxJjw\n+xQkfQlYFBELgOOAkyQtJtUQ9p7o/JiZ2QoTEhQiYiGwML8+tDT9z8B7JyIPZmbWnIe5MDOzgoOC\nmZkVHBTMzKzgoGBmZgUHBTMzKzgomJlZwUHBzMwKDgpmZlZwUDAzs4KDgpmZFRwUzMys4KBgZmYF\nBwUzMys4KJiZWcFBwczMCg4KZmZWcFAwM7OCg4KZmRUcFMzMrOCgYGZmBQcFMzMrOCiYmVnBQcHM\nzAoOCmZmVnBQMDOzgoOCmZkVHBTMzKzgoGBmZgUHBTMzKzgomJlZobKgIGlVSZdJ+oOk6yQd1iDN\nAZKWShrOfx+qKj9mZtbcShUu+2lg54h4XNJU4AJJZ0XEJXXpTo2IAyvMh5mZtaiyoBARATye307N\nf1HV+szMbPwq7VOQNEXSMHA/cE5EXNog2Z6Srpb0U0kbjbCceZIWSVq0dOnSKrNsZjapVRoUIuK5\niJgNzAS2l7RNXZLTgVkRsS1wLnDCCMsZiog5ETFnxowZVWbZzGxSm5CrjyJiGbAQ2LVu+oMR8XR+\neyzwuonIj5mZNVbl1UczJK2dX68G7ALcWJdmg9Lb3YEbqsqPmZk1V+XVRxsAJ0iaQgo+P46IMyR9\nCVgUEQuAj0vaHVgOPAQcUGF+zMysiSqvProaeE2D6YeWXh8MHFxVHszMrD2+o9nMzAoOCmZmVnBQ\nMDOzgoOCmZkVHBTMzKzgoGBmZgUHBTMzKzgomJlZwUHBzMwKDgpmZlZwUDAzs4KDgpmZFRwUzMys\n4KBgZmYFBwUzMys4KJiZWcFBwczMCg4KZmZWcFAwM7OCg4KZmRUcFMzMrOCgYGZmBQcFMzMrOCiY\nmVnBQcHMzAoOCmZmVnBQMDOzgoOCmZkVHBTMzKxQWVCQtKqkyyT9QdJ1kg5rkGYVSadKWizpUkmz\nqsqPmZk1V2VN4Wlg54jYDpgN7Cpph7o0HwQejoiXA98EvlZhfszMrInKgkIkj+e3U/Nf1CXbAzgh\nv/4p8DZJqipPZmY2ukr7FCRNkTQM3A+cExGX1iXZELgTICKWA48A61WZJzMzG1mlQSEinouI2cBM\nYHtJ29QlaVQrqK9NIGmepEWSFi1durSKrJqZGRN09VFELAMWArvWzVoCbAQgaSVgLeChBp8fiog5\nETFnxowZFefWzGzyqvLqoxmS1s6vVwN2AW6sS7YA2D+/fg9wXkS8oKZgZmYTY6UKl70BcIKkKaTg\n8+OIOEPSl4BFEbEAOA44SdJiUg1h7wrzY2ZmTVQWFCLiauA1DaYfWnr9Z+C9VeXBzMza4zuazcys\n4KBgZmYFBwUzMys4KJiZWcFBwczMCg4KZmZWcFAwM7OCg4KZmRUcFMzMrOCgYGZmBQcFMzMrOCiY\nmVnBQcHMzAoOCmZmVnBQMDOzgoOCmZkVHBTMzKzgoGBmZgUHBTMzKzgomJlZwUHBzMwKDgpmZlZw\nUDAzs4KDgpmZFRwUzMys4KBgZmYFBwUzMys4KJiZWcFBwczMCpUFBUkbSfqtpBskXSfpXxqkmSvp\nEUnD+e/QqvJjZmbNrVThspcDn4yIKyWtAVwh6ZyIuL4u3e8jYrcK82FmZi2qrKYQEfdExJX59WPA\nDcCGVa3PzMzGb0L6FCTNAl4DXNpg9o6S/iDpLElbT0R+zMyssSqbjwCQtDrwv8BBEfFo3ewrgU0i\n4nFJ7wJOA7ZosIx5wDyAjTfeuOIcm5lNXpXWFCRNJQWEH0bEz+rnR8SjEfF4fn0mMFXS9AbphiJi\nTkTMmTFjRpVZNjOb1Kq8+kjAccANEXHECGnWz+mQtH3Oz4NV5cnMzEZXZfPRTsB+wDWShvO0Q4CN\nASLiaOA9wEclLQeeAvaOiKgwT2ZmNorKgkJEXACoSZpvA9+uKg9mZtYe39FsZmYFBwUzMys4KJiZ\nWaHloCBpE0m75Ner5aErzMxsgLQUFCR9GPgpcEyeNJN0o5mZmQ2QVmsK/0y6xPRRgIi4GXhJVZky\nM7PuaDUoPB0Rz9TeSFoJ8P0EZmYDptWgcL6kQ4DVJL0d+AlwenXZMjOzbmg1KHwWWApcA3wEOBP4\nfFWZMjOz7mj1jubVgO9HxLEAkqbkaU9WlTEzM5t4rdYUfkMKAjWrAed2PjtmZtZNrQaFVWtDXAPk\n19OqyZKZmXVLq0HhCUmvrb2R9DrSqKZmZjZAWu1TOAj4iaS78/sNgL2qyZKZmXVLS0EhIi6X9Erg\nFaThsG+MiGcrzZmZmU24dp6n8HpgVv7MayQRESdWkiszM+uKloKCpJOAzYFh4Lk8OQAHBTOzAdJq\nTWEOsJUflWlmNthavfroWmD9KjNiZmbd12pNYTpwvaTLgKdrEyNi90pyZWZmXdFqUPhilZkwM7Pe\n0OolqedXnREzM+u+Vp+8toOkyyU9LukZSc9JerTqzJmZ2cRqtaP528A+wM2kwfA+lKeZmdkAafnm\ntYhYLGlKRDwH/EDSRRXmy8zMuqDVoPCkpJWBYUlfB+4BXlxdtszMrBtabT7aL6c9EHgC2Aj4u6oy\nZWZm3dFqUPg/EfHniHg0Ig6LiH8FdqsyY2ZmNvFaDQr7N5h2QAfzYWZmPWDUPgVJ+wD7AptKWlCa\ntSbwYJPPbkQaMG994HlgKCKOqksj4CjgXaTnPR8QEVe2uxFmZtYZzTqaLyJ1Kk8H/rs0/THg6iaf\nXQ58MiKulLQGcIWkcyLi+lKadwJb5L83AP+T/5uZWReMGhQi4nbgdkm7AE9FxPOStgReCVzT5LP3\nkAIKEfGYpBuADYFyUNgDODGPvnqJpLUlbZA/a2ZmE6zVPoXfAatK2hD4DfAB4PhWVyJpFvAa4NK6\nWRsCd5beL8nTzMysC1oNCoqIJ0mXoX4rIv4W2KqlD0qrA/8LHBQR9UNjqMFHXvDMBknzJC2StGjp\n0qUtZtnMzNrVclCQtCPwD8Av87SmN75JmkoKCD+MiJ81SLKEdM9DzUzg7vpEETEUEXMiYs6MGTNa\nzLKZmbWr1TuaDwIOBn4eEddJ2gz47WgfyFcWHQfcEBFHjJBsAXCgpB+ROpgfcX+C9byhIZg/v9u5\ngOEj0/+5B3U3HwD77gvz5nU7F9YB7QydfX7p/S3Ax5t8bCfSndDXSBrO0w4BNs7LOBo4k3Q56mLS\nJakfaCfzZl0xfz4MD8Ps2V3NxsLZPRAMIO0LcFAYEM3uUzgyIg6SdDoN2vpHe/JaRFxA4z6DcpoA\n/rnFvJr1jtmzYeHCbueiN8yd2+0cWAc1qymclP9/o+qMmJlZ9zW7T+GK/P98STPya1/+Y2Y2oEa9\n+kjJFyU9ANwI3CRpqaRDJyZ7ZmY2kZpdknoQqcP49RGxXkSsQ7pKaCdJn6g8d2ZmNqGaBYX3A/tE\nxK21CfnKo/fleWZmNkCaBYWpEfFA/cTcrzC1miyZmVm3NAsKz4xxnpmZ9aFml6RuJ6l+vCJI9x+s\nWkF+zMysi5pdkjplojJiZmbd1+qAeGZmNgk4KJiZWaHVUVLNrJf0ykitsGJAvF4ZA8kjto6Lawpm\n/ag2UmsvmD276yPGFoaHeydY9inXFMz6lUdqfaFeqa30MdcUzMys4KBgZmYFBwUzMys4KJiZWcFB\nwczMCg4KZmZWcFAwM7OCg4KZmRUcFMzMrOCgYGZmBQcFMzMrOCiYmVnBQcHMzAoOCmZmVnBQMDOz\ngoOCmZkVKgsKkr4v6X5J144wf66kRyQN579Dq8qLmZm1psonrx0PfBs4cZQ0v4+I3SrMg5mZtaGy\nmkJE/A54qKrlm5lZ53W7T2FHSX+QdJakrUdKJGmepEWSFi1dunQi82dmNql0MyhcCWwSEdsB3wJO\nGylhRAxFxJyImDNjxowJy6CZ2WTTtaAQEY9GxOP59ZnAVEnTu5UfMzPrYlCQtL4k5dfb57w82K38\nmJlZhVcfSToFmAtMl7QE+AIwFSAijgbeA3xU0nLgKWDviIiq8mNmZs1VFhQiYp8m879NumTVzMx6\nRLevPjIzsx7ioGBmZgUHBTMzK1Q5zIVZfxgagvnzW08/PJz+z53bWvp994V589rOllk3uKZgNn/+\nioK+FbNnp79WDA+3F3DMusw1BTNIhfzChZ1fbqu1CbMe4ZqCmZkVHBTMzKzQd81HS59cytzj547p\ns8P3HgnA3OMPavuz+756X+a9zp2FZjbY+i4oPPTUQzxy7yPMXr/Fjr6S2Z9tPxgADN+bOiEdFMxs\n0PVdUACYvf5sFh6wcMLWN9aaiZlZv3GfgpmZFRwUzMys4KBgZmYFBwUzMys4KJiZWcFBwczMCn15\nSaqZ9Yl2R6Adr3ZHsB2vARwB1zUFM6tOuyPQjlc7I9iO14COgOuagplVq6oRaLttQEfAdU3BzMwK\nDgpmZlZwUDAzs4KDgpmZFRwUzMys4KuPzDql0TX5o103P4DXuFv/G4igMHTFEPOvqe564dpDdqp+\nroKf7tbnatfkl6+TH+ma+VqwcFCwHjMQQWH+NfMZvnd4TE9ja0VVyy3z090GRKvX5A/oNe4DZ7Q7\nslu5e7oPa4MDERRg4p/G1ml+uptZD2pU+6tpdud0n9YGKwsKkr4P7AbcHxHbNJgv4CjgXcCTwAER\ncWVV+TEzG5Ox3pHdp7XBKq8+Oh7YdZT57wS2yH/zgP+pMC9mZtaCyoJCRPwOeGiUJHsAJ0ZyCbC2\npA2qyo+ZmTXXzfsUNgTuLL1fkqeZmVmXdDMoqMG0aJhQmidpkaRFzz77bMXZMjObvLp59dESYKPS\n+5nA3Y0SRsQQMASwxqZrNAwcZmN+oMtYH8zSh5cbmjXTzZrCAuD9SnYAHomIe7qYH+t3Y32gy1ge\nzDKgD1gxq/KS1FOAucB0SUuALwBTASLiaOBM0uWoi0mXpH6gqrzYJDJRD3Tp08sNzZqpLChExD5N\n5gfwz1Wt38zM2jcwdzSbWQeNtX+m3lj7a+q5/2bCOCiYTYT6QrZRYdlLBd9owzu0Y7yfh74dLqJf\nOSiYjVetwC8X9PUFfH0hW19Y9mLBN1H9M63USoaHB27guV7loGA2XvUF/kgF/GiF7GTuuG5WKxnQ\nged6lYOCWSeUC/zJXMCP1XhqJd7fHeXHcZqZWcFBwczMCg4KZmZWcFAwM7OCg4KZmRV89ZGZWTNj\nucO7T0ffdU3BzKyZsYzA26ej77qmMA5DVwwx/5rOfIHD96YDbu7xczuyPIB9X70v817nG3o6bmho\nRQExNNTdvNjEmYg7vHvgngvXFMZh/jXzi8J8vGavP5vZ63dgnJhs+N7hjgUsq1M+k/MzFWzAuKYw\nTrPXn83CAxZ2Oxsv0MkahzXQiYHezHqQg0IfG635arTmKDcrTWKtdpi220nqAekGhoNCH6s1XzVq\ndhqpKaoWLBwUekC5gK4vhKsqZFsdErudmpAHpBsoDgp9rt3mKzcr9ZByAV0uhKsuZDvdYdoDnaPW\nOQ4KZt3UqIB2ITuYWn1uBLR2DFRUm3RQsN7ndnAbBK003bXabFdhbdJBwXqf28FtUHSq6a7C2qSD\ngvUHt4NPTp1qcnGtsGW+ec3Melcrw0s0G06iB4aO6CeuKZhZ95SHDJk7t/EZ/Xhria4VtsVBwbqv\nWRNBs+aBVpsGGt0X8IpXwH33pdfls003N0yM2vcxe7b7eXqEg4J1X7OO5GZNA9BaQdLovoDhYXj8\ncVh99bEtczIZKXiPFLRbDay1moDP6HuCg4L1hrE2EbRbkNSvp/b5RtPsL40UvBsFbQfWvuWgYGat\nazV4O7B2Vn0trcJhUfo6KNQGhKuN5zN0xdCkHtOnlec7tPLcBg+YZ32p3eYt6J++o/paWoXDolQa\nFCTtChwFTAG+FxGH180/APgv4K486dsR8b1Wl18eEK72/IB2CrPxPiRnvA/G6XThO9oAeTXNntng\nAfOsb7XTvAX918Q1Ui2tw7WyyoKCpCnAd4C3A0uAyyUtiIjr65KeGhEHjnU9tQHhxlIwt1KINlv3\nWFVV+I73+Q4eMM/6Wjt9U50sTDs5rlGXay9V1hS2BxZHxC0Akn4E7AHUB4VxG7pi6C/O2ts5A+/W\nQ3Jc+NqY1AqfZtf2T7Rmbd417V4+3GvbOZJOjWvUau2lwmHXqwwKGwJ3lt4vAd7QIN2ekt4C3AR8\nIiLubJBmVLUmoFozErj5w/rMSD/y+h94feHTSiEyWgECnSlsR2vzrhnr5cPtfrZbOjEUS6u1lwqH\nXa8yKKjBtKh7fzpwSkQ8LemfgBOAnV+wIGkeMA9glQ1Xabiy8TQjTZRyH0aj/gh38A6gVs94R7qH\nAka/w7eVQmSkAmS0dYxFs0JxPJcP+2qmF6po2PUqg8ISYKPS+5nA3eUEEfFg6e2xwNcaLSgihoAh\ngDU2XaM+sDQ1UofyRD+ystyHUd8f4RpOG7rxxLKxaueMd6R7KDphgjoprf9VGRQuB7aQtCnp6qK9\ngX3LCSRtEBH35Le7AzdUkZGROpS78cjKch9GfbAavne4CFBV1RqaXXHV6hVV487feJo0uvXEsrEa\nyxlvK2MCmVWgsqAQEcslHQicTbok9fsRcZ2kLwGLImIB8HFJuwPLgYeAA6rKTzsdyhPVBDVSzaHK\noNTsiqtWrqjqSP7G26Qx6E8s85hAVlM+QRgaqvw4qPQ+hYg4EzizbtqhpdcHAwdXmYde1yhYVR2U\neuayVTdpjM5jAnXeRHS6dypPtbyUr+qaP7+/g0I/aNScMlITijuCbWC0c8lnv10eOpqJ6nQfb57q\n89LOUwXHadIHhUbNKY2aUNwRPAEGofCpr+r3qnY6wPvx8tDRdKKG2sp9Ge0cu1VeZNCmSR8UoLXm\nlKqbdEa7XHXS1FDGWvg0CibQnYBSX9XvZe10gA/y5aH1x08r7fbN7svo48DpoNAjutHp3JPGUvg0\nupu0mz/Kiarqd+IKpYmonY2l0J1I5eOn9ujOdp4D0UgfB86BDgr1o6i2OgRGq/0MnT6D70an88Do\noer3hOnEFUoT0TQ01kJ3InWiU7+f7p8ZxUAHhfr+glbPulvpZxjUM3gPv91nOlGYTUTT0GS4kqrf\n7p8ZwUAFhfLAeENXpE6+8tl3O2fdzfoZBvUMfiCH326l+aLVsYcmWr90XFvSjftnOnzsDlRQKJ/h\njuc5CVVr9HCgXtIz9zF0SivNF+2MPTSRxtpx3atBrpc16qPpBx0+dgcqKMD4nnEwURo9HMgq1krz\nRa/2S4yl47pXg9xYNOtQb6WzvJU0jfpoumEstcMOHrsvGvMnbVxqZ+ONgtjQFUPMPX4uc4+fy/C9\nw8WYSKPVKGpNZyOlrS2zlqZrtZOhoXTADg+nv15sEqnP49y56a8X8zqaWkFR+2sWXGqFUW2bW9ne\nRvuq0/upvrCurzHVB8Cxpqmto5V9VaUuX9bsoNCDyk1LtUtUm9Uo6p8pUZ+2vq+ga7WT+qtdevFa\n/pHOsnsxr53UrPAd6TOtFLbj1aywLgfA8aTpFY3uuJ4gA9d8NJL6Tuie6QQdQX27fivt9M2eKVH1\nMydavgS4H65E6dWmpKqN5bsZ5BvbJqFJExTqO6F7PSiMVbuPJm00fHfts2WtXGI61kuAJ4VGV0CV\n5/XSjV2jtWlXdTVUK8tt5Wa9qoccH4ShWJqYVM1HjR5uM2iaNSM1Sl8rvGufa3RPRqvNTbXayEj9\nJS0ZT7/DaJ8tt5m3u8zx9oGM1mw2EW3I7WzDaPmpKq+tLLeV5q2xNIG1m89Wmstqx2HV/S0VmDQ1\nhXpjvdu5H7TbTNRz92SM5w7YRp8tzyu/bmeZjV63a7Smmarbj9vdhvE+gH4sWlluO1eRVX0jHoy8\njj6++mvSBoV2mjraGV4b+v+jUk7SAAAVGUlEQVRu3mZNShOyfSP9sFtpahlP4TvS8nu9Y7IVVW7D\nJGhWaVs3+qU68D1M2qAArd/t3GzYi3seu4f7nrgPgEeefqRobunX4FC/vT01QF/VDxyZ4AeaDIxB\nG167X3Xge5jUQQFav7t4tCaWucfP5b4n7qus8Gy387gT6re3fmjv0fJRedNc1Wftg1Ar6IZmzSq9\n1qHeC8Z7F3WjDvpxXg026YNCp+4uHsslpK2q7zyGiT9Tb6e5zVchWUOuhb3QeO+irqDjf9IHBaj+\n+v1OmIg8NjvDb2dwwbEORNg2DxjXX3qhFlb1MdOoRjTapbLj7Rjv8D6dVJektqs2NMRld13GBXdc\nwNqHr10MPzFSM1P9cBLNhqfoJfUP+umLcZn66Uln1huqPmYaLb/qS2U7yDWFUdQKyZWnrMwzzz1T\nTC83h9TfKV1l00mjocHHk3a0ocbLYymNNag16q9pay+02gbdC2ef3dTozLdbbfej3aQ3kZrVBsZ7\nzDTbzkbLnz071RAmatyvMdaIXFNoonbW/KaN38Syzy57wU1ZjYbr7sgNXA20MzR4K2lHS9OJYcjH\nPd6SawGtqd9P3dxvvTK21UTUBsaynRP53YxxXa4pdMBE3iXdzrpaSTueh+m0modx9YVM9lpAq+r3\nUzf3W6+MbTURV6mNZTsn8rsZw7pcUzAzs4KDQpvaaWsfS7t8J9ry+0InxhMys45zUGhTp9v1O/GZ\nvuT+ArOe5D6FMeh0u34nPtOX3F9g1nNcUzAzs0KlQUHSrpL+KGmxpM82mL+KpFPz/EslzaoyP2Zm\nNrrKgoKkKcB3gHcCWwH7SNqqLtkHgYcj4uXAN4GvVZUfMzNrrsqawvbA4oi4JSKeAX4E7FGXZg/g\nhPz6p8DbJKnCPJmZ2Siq7GjeELiz9H4J8IaR0kTEckmPAOsBD1SYLxun2thOAGsfvnbTJ7eZddxY\nRhS1ligiqlmw9F7gHRHxofx+P2D7iPhYKc11Oc2S/P5POc2DdcuaB8WwOa8A/lhJps3MBtcmETGj\nWaIqawpLgI1K72cCd4+QZomklYC1gIfqFxQRQ4DvcDIzq1iVfQqXA1tI2lTSysDewIK6NAuA/fPr\n9wDnRVVVFzMza6qymkLuIzgQOBuYAnw/Iq6T9CVgUUQsAI4DTpK0mFRD2Luq/JiZWXOV9SmYmVn/\n8R3NZmZWcFAwM7OCg4KZmRU8SmoDkv4+v9wJuDAiftzm548BfgGcHRHPlaa/lrTP/w9wQ0Sc1KEs\nV0LSOyLi7DbS70O69PhhYAvSJcdPRcT3KsqimXWYg0JjmwHXAMuASyQdALwkz7svIk4Y6YPZ9cCD\nwCGSFBFfytPfCqweEYdIOrSCfCPp88DjwOrA0xHxX21+/hTgKkDAG0lXj5Xnf4g0hAnALyLil5Le\nld/Py+n3Im3njpK+UPf5l0XE3ZLWBB5rdAmypKkR8ayk9YCHamkkrQ0QEcvq0q8NPBcRjzXZtvVI\nV7mtATwGbJdn/QF4Mfn3UF5+eZ2SZgJ3AdsAtwPPAy8HlkfEtSOsc828rmkR8UTdvGkR8eRo21be\nPtJVfLW8jLj/xqJ+X0+E8vdWvz2SVo+Ix0f5rCIimn33pf2/LnXbN9o2l4bbeS1wU7Njq+6zq5OO\npSJfDbavdiyum/+/uLy9dcdds31RPj5q+3PE46mZvgwKkk4iFdq7AzeSboB7DrgI2JL0Y10J+BNp\naI3fkAq5p/L/1wOr5b+lpbSzgFOANYG/zsvdC/gr4KyI+JakYUmrArsCvwJeTQoerwPWB24Cbo6I\nSyW9GdhS0h9IgWIboFZ4bCvpy6Qz6pWBVXM+pgJ/Bh7J068GdgRuI93ct4B0IL0J+ATwJWB6/txV\npKFDHgOeBraXtAowLS9vm7xtU0g3Es7J+29a/vyHgesj4uuS5gKPSjo5L++teZ8vjoh5edTbj0ra\nGjiAdJf5d4BtgS8C75J0KvCwpOnAfwKL82fuIdUmpucg81eksbEOI/8IJW0EzAAekvQxYLec50/k\nz/+JNBzKDFLtZLmkC4ETga8A5wF/S2oinQY8C6xDCpbHke6P+QzwIeClwMvy9q2cf7A/Bt4LHA/s\nmQd43JIU7G/L6V8KDAMP5P11InAxcB3wdVLA+BOwMXC2pD2Ac4H7ga2Bt0u6kxRoFgLPS/pH4Lek\nY3VLYHMggLXz97uRpNWAk4GPSToC2DR/p2sCGwCPktyR13Nh/m7vIJ3cLAF+no+J/fLyzwb+TtJZ\npBryVOAnpMD5FPBMRHxR0pF5Gw/IaSD9piLv2x+Sjukv5+n7ko7jbUi/qSuBg4E9Scf7eyUtyd/j\nMkk3ko6lnSQNk46pT5J+s1fmdE8Dr86/q5nAE7kMX0QaZPPmnOelpN/KDOA00qCcF5F+12sCTwAb\n5uNmC1I58ffAJXm/r5G/q80lPQvcl5f5AOn4+BLp93xu3k+b5+/iFfk7XSppA9JxtRKwiaQgHYtP\n5LyJ9Nt/OB/Xp+X9cxewVj7uZkp6gnTcLc+fnZP30zp5/76UNGTQI/n4OA1YU9JLgKOAfSPim7Sg\nb/oUJJ0p6dOSPg28CriUtHPuAc4nBYQdSV/un0g/opNJB+oRpILn3cDbgdeQDuwpdWlfDuwUEYeQ\nDoar82e/Duwm6d/yuhaQgtCWwCbAO0hnm78hFRK1YTrWBA5iRc3h2IjYJ8+7knRQ/DHn8WbSj/7c\nuuknkc5iDyIdeHsBf0M6kN5P+tGvnLdte1JhdU7elmeBt+T9sh3pgD0vr+cg0hnKovx3eV7ezJy/\nt+Vl3Qq8EjgGuAWYIWkhcDrwu/w9nAZcQSpMzoqICyPic/k7OQzYh3Tw35eXcT0pGF2a8/ZpUpBd\nk/Rjvjnn/fyct03zPv4t8LO8rtVJBVGtQHx5/l53Bd5MCi73kwqEi0knAHeSfpznsqIgu4oU1JeQ\ngsQ1pJF7v0U6ufgtcCqp9nVbzvsV+f0SUoBZnLfnG8BXSXffr0s6SVgPWC8iDgeWRcS/A39HOh7/\nH+nE4s+kY+k8Uu3u83lfvjnvw8tIBdEdpICzSv6O7yUdi1vkv+WkQuJWYIN8HD+V93OtsD0h53d3\nUsG+OH/mj6Rj6gjSsXA58BFg57xft8+/vXeQAstVpPLjvPxdnAM8kPfb2/L38GtS0Kkdexfk9W6a\nl3ti3qZVSMfQVXmfzsn7fdu8nI1y3tYjBYRgxXExJX9urZz3Y1hR092RVIivnrfvGVIhfj3pN/Mo\n6dh4FbBmzvujOc1lpN/dqqSgehdJ7bjbEdg8f59HAv+Ql79W3ob/m/PxdF7X6nm/1Y7Fp0lB5zzS\nCdJ5Oa875fXdzYrjbgnpeBkmHc8Hkcq9aaQy6hrS8TGc1zkt779dScF4V9JJa0v65j4FSZ8h/Sh3\nIn1BC4CP5tf3kArFaaQfylTSwfJHUuFwIWnH3EaKqHeRDrhbSQfuX5F+HLNIP8JppC9XpMLpYOAb\nEfEfkl4bEVdK+nfSGeC9pB//GsCTpAPmpoj4Wm4iepxUW5lK+kF9ICJ+LOmNpINoDulH8xCpYFgt\nb/JrST+id5DOvhaTagRbAmcC7wI+APxr3s7ngfcBl+d8HkoKmpuRDpbHSYXzr0k/8hvzvpiZ010S\nEcdK+liuEe2V8/wPOT9XkH48C8n9BJLez4paxgv6DiR9jlTAvylvywLSyLgXA7sAl0XEtZL2i4iT\ncpX3RXk/vp9UgP8wIh6RtC4wN+/rU4BZEXGVpE3zfjgFuCdXt99M+oGtkr+jc0hnkM8BvycVgo/k\n5SsfD+/M06YDP42IhyXtXDoOrsnf489JP8xp+Tu6gRTgt4iImyRtEhG3S9qMVKhsCDwYEZfX+mgk\nbZe/99NJBcXdpJqYgFsiYjin2ZhUQO2R98mLgENJhcSjpILxZ6Rg9Byp4LmPVGCdAfwjqVD+Y973\n/wN8inT2vVY+LnbP66gNRnkPKZD/IH/fT5OOvSmkE5sZpKazw0jH5UzS7+jZPH3V/LllpGP0R3ld\nd5LOpJ/Oh8cleZ2bkWqinyIdkxfn7+Va0rF8u6SNScdv7UTs2Tx/o/zdf530mzg77/Mf5LTLSScL\nr8r7+KZ8A+2qpEL734CPkwrOV+XveNUclMm/gbcCvwQOzPt2k5zvRaSgfTvp0QDn5uNh/Zzm+fy5\ndfJ+3inn5T5STeLZvP/eRwrAl5KOr0tJ5dF2pJOFM3Ka80nNs28gnaS9kXTcvjJv25o5X/eQThTP\nJp08PpGX33JTcj8Fhc+SvrTXkwq1C0lV06mkwn4L4FjSQb4A2D0i3izpvDzt56QfzS9IB8FM4J+A\no0kF3hOkwuuyiPhsbgt/Oq9ze+C4iLij1Oa+C6lQXz1/fjapYL++lPZTpB/asrzOPzVYTm0bns3/\n7yAdSI+Tai+b5mVfRDoDK6/zCdLwILexojD467p1b5L/kz97Jemge2dpn9yW0/wGeGNE7FHa3/9G\nCr7fotRPEBGH1dZR218Rcdgo31mQCrZa08TFpB/4ZaT29q9L+nhOew1/2dR3GbBaTvMZVjSDXZjT\nbU8KylNJBcFUUvDaaZQ05HlvzNMuIjUFLiYVxmuRCqffkQLUbaRC6M78XZGXsxrpB/tUDqYfy+u6\nlBQ4/lzapteTCrNa4TYtf762vN+QjqsLSvuplq9bSAHrLlIB/SSwA+k4eD5PeyPpuLmYVFDdlqdd\nlKfvRvptbEU6/mtjj60bETvkpqNy2jNINdNTgd0i4m2lNI/WLWdT0u/lvcCZEbGzpAU537WLDjYj\nBeVnSM1RR0g6OE+/CXhPRLyhdHwdR/o9HEs6tjfM+3C9vIwtSIVybf/9J/Dveb/+hlT4rkk6U1+e\n99NV+fWrSbWuWm26tg9+mb/P7fN38yJW1B52JJ2B1/J5bkTsIulXeZ9dk7+HN5AK5ZXzd3QH6fe5\nEiv66f46f+bS0vJq+7ad77P2Hf0iHzPvya//SArWe+XtesHvcyR906cQEYfnM8BHgCMi4nxJl5Kq\nXquTCsgXk3bE3fk/pEL+cUlfBN6Vl/N5UuS8MbeRvp7UDv594JD8uWsj4n/zOpdFxB15+tF53bWd\nvln+/NtJ7c/ltBeSzsCfz+t8osFyatuwDqnZ4mqlju11SEFkndL23li3zi8Cm0bEfrWz4/p1k85m\nppN+CLeSDu5XlvcJqfYwPW/vtnX7+5a8n2ppYUW/SG0d5WkjfWe16v0qpONuR9IP8f2Sbsptwm8n\nFXY7k36Mz5BqBPuV0tTOoNfN638HqYb35fz5q0k/wHtIzSMjpVkH+G/SD3clVpz1bUY6nn5TWs6r\nSGefnyWdYPwrqfC+mPQDPgK4IbflviWva3rehlrN5whSU9F/kGoI65IKh+dJQWuXHFT+tm4/1fK1\nKunk4KU5X0exoqnoMVJh8J28rTuQjpmLJR1EalpYj3RCcDUr2tzPJ10Jt1zSR0g1gVtLaW/PeX5D\n/gx52q2k4FRezitJ/QRfBX6Va6o/Z0Uz6fmk2vzsvP3HKA2COZ10MrY+8BNJ1wLX5uC/I6kv5AbS\nb+SxvC9Pzvv/8vy9zAauzv14F5Ee1lXrezuq9J2/GDicVKu4nRQQA/he3gfzSMfq86Tj+fm8DUeS\nzvLvzN/vT/L+uiZvZ22/vzZ/N6eTjpnvsqKmtWvextq82mfKy6vt/3a+z9p3tArpBOSrpMB1Hen3\nelFedq08bKpvagrW3yRtQTpINycVJucBO+eC8MCI+HZO82XSGdGSnOZNEXFMLU1eVu2Kpktyulqa\nj5DO/O4inZ39/ShpgnQWWcvP1cC2OT9fJp3h1pazI6lwn06qeS0jnXj8ilSTuh5YPyIOVup4f1Ne\n70zSGfCXSWd3m0XEv+Q0O5c+/xBwd173h0lnuo3y9bHc7t33JG0XEX/Irz8SEcc0mP6NiPi33JT2\nFtL+qu3LGaTv6EWkwvuu3DT31nwCtTUrjq/ad75uRHxD0lsZYZ9K2jo3MW3Biu/2+UHZ761wULAJ\nkZvLhkn9GuXmshOBj5E6Xeub0tpJM5blfatBfqpe51jzdSK5aa/tnd+DVHfpc2276qa3s/9rzZ4j\nNcs22v8v2KcNPj9Q+70VfdN8ZH2v1lx2CS9sLrs/In5Q35TWTppxLO+SLqyz7XzledtW8s10x9ER\ncT5A3XaVp7ez/7ctf36EZtm/WN4I+/QvPj+A+70p1xTMzKzQN/cpmJlZ9RwUzMys4KBgfUvSiOPB\njJB+rqQzOrDeuZJC0rtL085QGupi3CTdpjQ0iNmEc1AwG5slwOe6nYl6+dp/szFzULC+l8/cF0r6\nqaQbJf1Q+U43SbvmaReQxhyqfebFkr4v6XJJVykNVoekf5X0/fz61ZKulTStwWr/QBp87O0N8lOc\n6UuaozRWFJK+KOkESb/Oaf5O0tclXSPpV5KmlhbzKUmX5b+X58/PkPS/Oc+XS9qptNwhSb8GTpS0\ndf7csKSr8zX3Zi1xULBB8RrSQGFbke5K3klpjJtjSXfSvpl0R2nN54DzIuL1pGE//kvSi8l3ryrd\nWfwD4CORh7du4MvA59vM5+akMWn2IN2Z+9uIeDXpzuC/KaV7NCK2B76d8wTp7txv5jzvSboTt+Z1\nwB4RsS9p+JajImI2aYylJW3m0SYxVzVtUFwWEUsAlIZcnkUaH+bWiLg5Tz+ZNKgYpLFndlca+RbS\nMBIbR8QNSsOMXA0cExEXjrTCiPi9JJSG8mjVWZGeFVEbJ+dXefo1Oc81p5T+14Y83gXYSsVQ/6wp\naY38ekFEPJVfXwx8Tun5Dz+rbb9ZKxwUbFA8XXr9HCuO7ZFuxBGwZ0T8scG8LUgB5WUtrPcrpFrH\n8tK05ayoha/aKJ95PKxnY8WNQrVngNREg9cvAnYsFf5pQ1KQKB7gExHz881Xf0N6jsOHIuK8FrbF\nzM1HNtBuBDaVtHl+v09p3tmkh9TU+h5ek/+vRWqmeQuwnqT3jLaCiPg16a7Z7UqTb2PF+PV7jjHv\ne5X+X5xf/5o0hDM5r7MbfVBp2O5bIuL/kQaGm1R35Nr4OCjYwIqIP5Oai36ZO5pvL83+D9LYNlcr\njcz5H3n6N4HvRsRNpGcwHK709KrRfIUVDyeC9KyBoyT9nlRrGYtV8tn+v5CesAdp7P85ufP4elLf\nQSN7kUYaHSaNXnriGPNgk5CHuTAzs4JrCmZmVnBQMDOzgoOCmZkVHBTMzKzgoGBmZgUHBTMzKzgo\nmJlZwUHBzMwK/x9UmqtLZfxBbgAAAABJRU5ErkJggg==\n","text/plain":[""]},"metadata":{"tags":[]}},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXwAAAGDCAYAAAAoI6sGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XmcJVV99/HP12HYN4GBAWREFhcQ\nacKIIgotqGgEl8SEMFHERzNkceHRxCj6KEZRY4xiXKJtogSxiWCEoAjiwoBsDgy2DMKwb8MwMDCy\nL8MMv+ePc+5Mcbn3dnX3rb63u77v16tffe+tunVOnar6nVOnTtVVRGBmZtPfs3qdATMzmxwO+GZm\nNeGAb2ZWEw74ZmY14YBvZlYTDvhmZjXhgG9PI+loSRf1Oh9TXTfLUdKgpKXdWNZkkxSSdut1Pixx\nwO9zkm6V9JikhyTdL+kSSX8tyduuCyQtyEFp76bPz8yfD5ZYxs553vUqy+gYKHm/pKslPSJpqaTT\nJe3V67y1M5UrtanEQWNqODwiNgOeC3we+EfgPyc7E90OaP0SIIHrgaMabyRtDbwcWNGzHE3MV4AP\nAO8HtgKeD5wJvLGXmbLec8CfQiLigYg4CzgCeKekFwNI2kDSFyXdLuluSd+UtFGeNphbeB+SdI+k\nuyS9q7FMSVtLOkvSg5IWArsW08wt17+TdANwQ/7sFZIul/RA/v+KwvzPk3RhPiP5haSvSzolT2u0\nhN8t6XbgV/nz0yUtz8u7UNKeheWdJOkbks6R9LCkiyXNlnSipD9IWiJpnwkW7feBIyTNyO+PBM4A\nVhXy8SxJH5F0k6T7JJ0maas8+cL8//6cx/0L3/tizuctkt5Q+HyHXO4rJd0o6a8K0zbK6/0HSdcA\nLy27IpJ2B/4OODIifhURT0TEoxHx/Yj4fJ5nC0knS1oh6TZJH2+cMeauqIslfTmfUd6ct/fRku7I\n+9A7C+mdlPe3n+dtfoGk57bJW8v9VNImwDnADrn8Hs7l06nMbRwc8KegiFgILAVelT/6Z1IrbgDY\nDdgR+EThK7OBLfLn7wa+LunZedrXgceB7YH/k/+avQV4GbBHPuDOBv4N2Br4EnB2bhUDDAML87Tj\ngXe0WN5BwIuAQ/P7c4DdgW2BK0kBuOjPgY8D2wBPAJfm+bYBfpjzMBHLgGuA1+X3RwEnN83zflI5\nHATsAPyBVHYAB+b/W0bEphFxaX7/MuC6nM8vAP8pSXnaqaRtuAPwNuCzkg7J0z5Jqnh3JZXR2gAL\nkCvAb7RZl0OApXkfaeerpP1hl7w+RwHvKkx/GXAVaRsOA/9NqnR2A94OfE3SpoX5/xL4dF7PEZ65\n/Rpa7qcR8QjwBmBZLr9NI2IZncvcxiMi/NfHf8CtwGtafH4Z8DFAwCPAroVp+wO35NeDwGPAeoXp\n95C6LGYATwIvLEz7LHBR4X0ABxfevwNY2JSXS4GjgTnAamDjwrRTgFPy653z8nbpsL5b5nm2yO9P\nAr5dmP4+4NrC+72A+ydQvguA95AC2anAC4Dr87SlwGB+fS1wSOF72+eyW6+wXsUyPhq4sfB+4zzP\nbGAnYA2wWWH654CT8uubgdcXps0nBfEy6/Mx4LIO02eQKs09Cp8dAywo5PuGpvINYLvCZ/cBA4Xt\n89+FaZvmddupsP/sRrn9dGlTXtuWea+Py6n61y99qDZ2OwIrgVmkYLJoXeMRkQ7shvsiYnXh/aOk\nA3MWKWDdUZh2W4u0itN3aDHPbTk/OwArI+LRpu/u1G55uRvlBODPcn6eypO2AR7Ir+8ufPexFu+L\nrc21JB0HHJffnhIRf91qvuxHwL+Sgtn3Wkx/LnCGpKcKn60BtuuwzOWNFxHxaN4+m5Jazisj4qHC\nvLcBc/PrHRh9m7RzHykwtrMNsH7TMhvbr6G5fImITmW+Nq8R8bCklTxzHcrsp806lfmdHb5nbbhL\nZwqS9FLSAXoRcC/pANwzIrbMf1tERMsg2GQFqUVeDMhzWsxXfKTqMtKBWDSHdADeBWwlaePCtOZg\n37y8ecCbgdeQuhl2zp+LCYqIz8a6LoJOwZ5cSZ0D/A2tA/4dwBsKZbxlRGwYEXfy9PUpYxmpnDYr\nfNYoQ0jlONo2aeeXwHMkzW0z/V5SK7m4DYtpj8favOaunq1I69icbqf9tFUZdipzGwcH/ClE0uaS\nDiP1qZ4SEYsj4ing28CXJW2b59tR0qGdlgUQEWtILdvjJW0saQ+a+otb+CnwfEnzJK0n6QhgD+An\nEXEbcEVe3vr54uXhoyxvM1IXw32kFuBnR8t3hY4DDoqIW1tM+yZwQuOCpKRZkt6cp60gnZnsUiaR\niLgDuAT4nKQNJb2EdG2l0fd9GvBRSc+W9BxSN1YpEXED8A3gVKUL9uvnNP5C0kfyNj8tr8tmeX0+\nSOp6G68/lvRKSeuT+vJ/k9exmK/R9tO7ga0lbVH4Wqcyt3FwwJ8afizpIVKL52Oki5TFi2z/CNwI\nXCbpQeAXpL7oMt5LOj1fTuqP/W6nmSPiPuAw4EOkIP1h4LCIuDfP8pekvtn7gM8APyAF9HZOJnUp\n3Em6cHpZyXx3XUQsi4h2N0t9BTgLOC9vi8tIFzcbZwcnABfnkS0vL5HckaSzmWWkEUGfjIif52mf\nIpXJLcB5NJ1x5NEt3+yw7PcDXyNd4LwfuAl4K/DjPP19pP70m0lnicPAd0rkuZ1h0oXmlcC+pH2g\nlbb7aUQsIV1DuTmX4Q50KHMbH+WLIWaVkPQDYElEfLLXebHuk3QS6WLrx3udFxudW/jWVZJeKmnX\nPIb69aT++TN7nS8zw6N0rOtmk64LbE0a1vg3EfHb3mbJzMBdOmZmteEuHTOzmnDANzOrib7qw99m\nm21i55137nU2zMymjEWLFt0bEbPKzNtXAX/nnXfmiiuu6HU2zMymDEmlH73hLh0zs5pwwDczqwkH\nfDOzmnDANzOrCQd8M7OacMA3M6sJB3wzs5pwwDczqwkHfDOzmnDANzOrCQd8M7OacMA3M6sJB3wz\ns5qo7GmZkl4A/KDw0S7AJyLixKrSnGxDQzA83OtcmE3MvHkwf36vc2GTobIWfkRcFxEDETEA7As8\nCpxRVXq9MDwMIyO9zoXZ+I2MuNFSJ5P1PPxDgJsiovRzm6eKgQFYsKDXuTAbn8HBXufAJtNk9eH/\nBXDqJKVlZmYtVB7wJa0PvAk4vc30+ZKukHTFihUrqs6OmVltTUYL/w3AlRFxd6uJETEUEXMjYu6s\nWaV+ltHMzMZhMgL+kbg7x8ys5yoN+JI2Bl4L/KjKdMzMbHSVjtKJiEeBratMw8zMyvGdtmZmNeGA\nb2ZWEw74ZmY14YBvZlYTDvhmZjXhgG9mVhMO+GZmNeGAb2ZWEw74ZmY14YBvZlYTDvhmZjXhgG9m\nVhMO+GZmNeGAb2ZWEw74ZmY14YBvZlYTDvhmZjXhgG9mVhMO+GZmNeGAb2ZWEw74ZmY14YBvZlYT\nDvhmZjXhgG9mVhMO+GZmNeGAb2ZWEw74ZmY14YBvZlYTDvhmZjXhgG9mVhMO+GZmNeGAb2ZWEw74\nZmY14YBvZlYTDvhmZjVRacCXtKWkH0paIulaSftXmZ6ZmbW3XsXL/wpwbkS8TdL6wMYVp2dmZm1U\nFvAlbQ4cCBwNEBGrgFVVpWdmZp1V2aWzC7AC+K6k30r6D0mbVJiemZl1UGXAXw/4I+DfI2If4BHg\nI80zSZov6QpJV6xYsaLC7JiZ1VuVAX8psDQifpPf/5BUATxNRAxFxNyImDtr1qwKs2NmVm+VBfyI\nWA7cIekF+aNDgGuqSs/MzDqrepTO+4Dv5xE6NwPvqjg9MzNro9KAHxEjwNwq0zAzs3J8p62ZWU04\n4JuZ1YQDvplZTTjgm5nVhAO+mVlNOOCbmdWEA76ZWU044JuZ1YQDvplZTTjgm5nVhAO+mVlNOOCb\nmdWEA76ZWU044JuZ1YQDvplZTTjgm5nVhAO+mVlNOOCbmdWEA76ZWU044JuZ1YQDvplZTTjgm5nV\nhAO+mVlNOOCbmdWEA76ZWU044JuZ1YQDvplZTTjgm5nVhAO+mVlNOOCbmdWEA76ZWU044JuZ1YQD\nvplZTTjgm5nVhAO+mVlNrFflwiXdCjwErAFWR8TcKtMzM7P2Kg342asj4t5JSMfMzDpwl46ZWU1U\nHfADOE/SIknzK07LzMw6qLpL54CIWCZpW+DnkpZExIXFGXJFMB9gzpw5FWfHzKy+Km3hR8Sy/P8e\n4AxgvxbzDEXE3IiYO2vWrCqzY2ZWa5UFfEmbSNqs8Rp4HXB1VemZmVlnVXbpbAecIamRznBEnFth\nemZm1kFlAT8ibgb2rmr5ZmY2Nh6WaWZWEw74ZmY14YBvZlYTDvhmZjXhgG9mVhMO+GZmNeGAb2ZW\nEw74ZmY14YBvZlYTDvhmZjXhgG9mVhMO+GZmNeGAb2ZWEw74ZmY14YBvZlYTDvhmZjXhgG9mVhMO\n+GZmNeGAb2ZWEw74ZmY14YBvZlYTDvhmZjXhgG9mVhMO+GZmNeGAb2ZWEw74ZmY14YBvZlYTDvhm\nZjXhgG9mVhMO+GZmNeGAb2ZWE6UDvqTnSnpNfr2RpM2qy5aZmXVbqYAv6a+AHwLfyh89BzizqkyZ\nmVn3lW3h/x1wAPAgQETcAGxbVabMzKz7ygb8JyJiVeONpPWAqCZLZmZWhbIB/wJJxwEbSXotcDrw\n4zJflDRD0m8l/WS8mTQzs4krG/A/AqwAFgPHAD8FPl7yux8Arh171szMrJvWKznfRsB3IuLbkFrt\n+bNHO31J0nOANwInAB+cQD7N+s/QEAwP9zoXEzNyYvo/eGxv89EN8+bB/Pm9zkVfK9vC/yUpwDds\nBPyixPdOBD4MPDXGfJn1v+FhGBnpdS4mZMHAsSwYmAbBfmRk6le+k6BsC3/DiHi48SYiHpa0cacv\nSDoMuCciFkka7DDffGA+wJw5c0pmx6xPDAzAggW9zoUNDvY6B1NC2Rb+I5L+qPFG0r7AY6N85wDg\nTZJuBf4bOFjSKc0zRcRQRMyNiLmzZs0qmR0zMxursi38Y4HTJS3L77cHjuj0hYj4KPBRgNzC//uI\nePs482lmZhNUKuBHxOWSXgi8ABCwJCKerDRnZmbWVWVb+AAvBXbO39lHEhFxcpkvRsQCYMFYM2dm\nZt1TKuBL+h6wKzACrMkfB1Aq4JuZWe+VbeHPBfaICD9Owcxsiio7SudqYHaVGTEzs2qVbeFvA1wj\naSHwROPDiHhTJbkyM7OuKxvwj68yE2ZmVr2ywzIvqDojZmZWrbK/ePVySZdLeljSKklrJD1YdebM\nzKx7yl60/RpwJHAD6cFp78mfmZnZFFH6xquIuFHSjIhYA3xX0iUV5svMzLqsbMB/VNL6wIikLwB3\nAZtUly0zM+u2sl0678jzvhd4BNgJ+JOqMmVmZt1XNuC/JSIej4gHI+JTEfFB4LAqM2ZmZt1VNuC/\ns8VnR3cxH2ZmVrGOffiSjgTmAc+TdFZh0ubAfVVmzMzMumu0i7aXkC7QbgP8a+Hzh4CrqsqUmZl1\nX8eAHxG3AbdJeg3wWEQ8Jen5wAuBxZORQTMz646yffgXAhtK2hH4JfAu4KSqMmVmZt1XNuArIh4l\nDcX8akS8FdijumyZmVm3lQ74kvYH/hI4O382lp9HNDOzHisb8I8FPgqcERG/l7QLcH512TIzs24b\ny+ORLyi8vxl4f1WZMjOz7httHP6JEXGspB+TfrT8afyLV2ZmU8doLfzv5f9frDojZmZWrdHG4S/K\n/y+QNCu/XjEZGTMzs+7qeNFWyfGS7gWWANdLWiHpE5OTPTMz65bRRukcCxwAvDQito6IZwMvAw6Q\n9H8rz52ZmXXNaAH/KODIiLil8UEeofP2PM3MzKaI0QL+zIi4t/nD3I8/s5osmZlZFUYbpbNqnNMq\nNbRoiOHFw71Kfq2R5ScCMHjSsT3Nx7y95jF/3/k9zYOZ9b/RAv7ekh5s8bmADSvITynDi4cZWT7C\nwOyBXmUBgIGP9DbQA4wsHwFwwDezUY02LHPGZGVkrAZmD7Dg6AW9zkbPDZ402OssmNkUUfZZOmZm\nNsU54JuZ1YQDvplZTTjgm5nVRGUBX9KGkhZK+p2k30v6VFVpmZnZ6Kr81aongIMj4mFJM4GLJJ0T\nEZdVmKaZmbVRWcCPiAAezm9n5r9nPFPfzMwmR6V9+JJmSBoB7gF+HhG/qTI9MzNrr9KAHxFrImIA\neA6wn6QXN88jab6kKyRdsWKFH7VvZlaVSRmlExH3AwuA17eYNhQRcyNi7qxZsyYjO2ZmtVTlKJ1Z\nkrbMrzcCXkP6ERUzM+uBKkfpbA/8l6QZpIrltIj4SYXpmZlZB1WO0rkK2Keq5ZuZ2dj4Tlszs5pw\nwDczqwkHfDOzmnDANzOrCQd8M7OacMA3M6sJB3wzs5pwwDczqwkHfDOzmnDANzOrCQd8M7OacMA3\nM6sJB3wzs5pwwDczqwkHfDOzmnDANzOrCQd8M7OacMA3M6sJB3wzs5qo8kfMzawuhoZgeLh36Y+M\npP+Dg73Lw7x5MH9+79IvwS18M5u44eF1QbcXBgbSX6+MjPS2wivJLXwz646BAViwoNe56I1enlmM\ngVv4ZmY14YBvZlYTDvhmZjXhgG9mVhMO+GZmNeFROl0wtGiI4cW9GZI1sjwNhRs8abAn6c/bax7z\n9+3vscdmlriF3wXDi4fXBt7JNjB7gIHZvRl/PLJ8pGcVnZmNnVv4XTIwe4AFRy/odTYmVa/OKsxs\nfNzCNzOrCQd8M7OacMA3M6sJB3wzs5pwwDczq4nKAr6knSSdL+laSb+X9IGq0jIzs9FVOSxzNfCh\niLhS0mbAIkk/j4hrKkzTzMzaqKyFHxF3RcSV+fVDwLXAjlWlZ2ZmnU1KH76knYF9gN+0mDZf0hWS\nrlixYsVkZMfMrJYqD/iSNgX+Bzg2Ih5snh4RQxExNyLmzpo1q+rsmJnVVqUBX9JMUrD/fkT8qMq0\nzMyssypH6Qj4T+DaiPhSVemYmVk5VbbwDwDeARwsaST//XGF6ZmZWQeVDcuMiIsAVbV8MzMbG99p\na2ZWEw74ZmY14YBvZlYTDvhmZjXhgG9mVhMO+GZmNeEfMTdrNjQEw8Ojzzcykv4PDnaeb948mD9/\nwtkymyi38M2aDQ+vC+adDAykv05GRspVHmaTwC38mhpaNMTw4okFopHlKSgOnjQ44fzM22se8/ft\no1bwwAAsWDDx5YzW+jebRG7h19Tw4uG1AXu8BmYPMDB7lBZuCSPLRyZc+ZjZ6NzCr7GB2QMsOHpB\nr7PRlTMEMxudW/hmZjXhgG9mVhMO+GZmNeGAb2ZWEw74ZmY14YBvZlYTfTsss9ONQaPd8NN3N/HY\n9FH2sQsNZR+/UORHMVhF+jbgN24ManVjT6ebfRqVgQN+b43lTt6x3rHb0wq98diF0R6p0FB2voZG\nBeGAbxXo24AP47sxyDfx9IdOFXazsdyt2xcVerceu9BKrx7FMNYzl2bjOZNppZ/ObsZSJmNZ/x6u\nY18H/DKaW5KtWovu4umNKu7kdYVekbGeuTQb7/eK+u3sZixlUnb9e7yOUz7gN7ckm1uLfdEiNJsK\nqjxzKaMfHzTX7TLp8TpO+YAPnVuSbhGamSUelmlmVhMO+GZmNeGAb2ZWEw74ZmY1MS0u2pr1rcm4\nMxf6a/y69S0H/Dam7Z2iNrmqvjMXej6226YOB/w2pvWdoja5qh7f3o/j160vOeB3MFXvFC1zdlLm\nrMRnImbTiy/aTkONs5NOBmYPjPoQurJdWmY2NbiFP01N9OzEdyibTT8O+GY2cRN92iZ054mbHq3U\nkQN+BfzjLeM32vWHsiOi6l6Ok26iT9uEiT9x06OVRlVZwJf0HeAw4J6IeHFV6fQj/3jL+I02OqrM\niCiXY4/4aZt9r8oW/knA14CTK0yjb/nHW8bP1x9KKHahNHeFuFvD2qgs4EfEhZJ2rmr5o2l0DRS7\nAHyab9NGsQul2BXibo3eKHsNo+x1iooq7Z734UuaD8wHmDNnTteW29w14NN8m3ZadaG4W6M3yl7D\nKHOdosJKu+cBPyKGgCGAuXPnRjeXXewaqMVpvpn1TreuYVRYafvGKzOzmuh5C9/6R3FIpH8Mfoza\n9eG267P1hVXrgcpa+JJOBS4FXiBpqaR3V5WWdUfxInfzoxf8qIVRNPpwmzVfVIU030RvUjIbhypH\n6RxZ1bKtOu2GRPoaSAll+3B9YdV6xH34ZmY14T58M5uamq+b+HrJqGoR8IcWDa3tmx5aNPSMC4+t\nnt/ii5Zmfa557HurMe6+Ee1pahHwi8F8ePHwM4J2q+e3ND+zpZ9v3GqusNo9YMwVlk07o1038fWS\np6lFwIfRH7o12vNb+vmiZXOF1Wpd+7nCmqjaV3h+ro6VVJuA349GC1RjCVBTucKaqLpXeH6ujpXl\ngN9DnQLVVA5QxWsmk/XQuq5UeI2WcrGVPFVayH6ujpXggN9j03Hce+OsZWD2QMeKq+8uljdfBHQL\nuX6mefeYA75VolGRdaq4+vJiebGl7BZy9x/7C/0dOKd595gDfgm96KKoizpfe5gSuvnYX5gagXOy\nusfG+vwlmHBl6YBfQtkuCrOeq6JLops/XVjlWVOrAFph8JywdpVpu8qzC5WlA35JZbooppNujiCq\nvcm8I3Sad0l01CqAVhg8O1auUG57jqUy7UJl6YBvLU3XEUQ9Mdl3hNZ5xM5kPsCuXeUKfVvB9l3A\nb/VbtPDMFmXzfK0emTBZytz4MxVbxL0cQTTtfpPYd4ROXUND7Yfqttuu3dqeXe6i67uAX2xZ3vXQ\nXYwsH+GBJx5Y+zz2xkFfnK8xrVfBYLQbf8q2iKv4AZKpGji78ZvE7cqzq+s/lcfuWzmNgDswMPkt\n9y530fVdwIen95ff/cjdHPTcg4BnHvT91K/eabRJ2fwVg1y3hif224+5jyUIT/Q3iVuVZ9fX32P3\n66HRku/FmVgXu+j6MuAX1e2HyKvoRumnMpyUIFzQXJ6VrL/H7tsU0fcBfyorez2ibroVhKdqdxVQ\nbuTOdOgamkrPrO/UVz9NOOBXqNWdpL3uUhmvTtcXehVk+627akxGG7lTtmuoGKSGhlpPb77GAJMX\nzKbSM+t72Vc/SaZlwG/+wZNempQuhUnQ3BXTfEEdehNo+6m7asw6jdwp2zVUbD23umuz1dj0yQ5m\nU2mE0kT66tuNqGmuXHt4oX9a/qZt8w+etDO0aIjBkwYZWT7CyPIRBk8aZPCkwdKVRKvv97qCqVIj\nuC44egHbb7Y9wNoL6p3KuR+MeVs1Ws4jI+mAbNV6HjXRofTdxnLGs4wyWo0Db56+YMG6v7KPQbCx\nKQbxxjYZGXlmRdw88qbVPBWZli18GP0HT2DiXS697lKo6l6E0X4SsqEbo6Qm6zlFY95W3Ti9Lx7Y\njYN6KnQRdOMO0rpqPptpd6bQowv9U6KF39w662YruthqXXD0glIVRbvvj/W7E9UcxLrVyi57htTN\ntIr3U1RlzNuqcVBOpEXcjWVMtlYt1YZJbI1WosxZV/HsbiJnZd04S+yyKRHwqwpsRVVWKhMxWr4a\nQWy0ADbWLo1W9wK0W+5Ey2y0dSim0dfdZt0IFM0BaXCwN8GiuRuon7uDWpVZu/JqvqbR7rpHq9fN\naY62rZvPEvugopwSAR/KB7bxmoxKZTzK5KtMQGy+6Nqt1vRknA1M5lnAhJQJFGWW0XxnZa+DRSOg\ndqMiKi6ruMyFC2HLLdf9FaePlkajzLbbLr2/4AL48Ifbf7fMWddo10XKbusqzvAm0LCYMgF/MlRd\nqYzXaPkqGxCr6n4qezYw0TT6cds8w2iBokyXQr9dZG3XxTOeiqi4rIaBAVh/fXj44WfOXzaNgQHY\nPg0k4KCDJqdVXSyLbnUDlTGBhkVfBfwVj64Yc/fAeLoUxtt9M5Hui05pdmO0z3i7dqrsHhlLeZWZ\nt9M8401r0ruIynQpVGUsXR/NGpXQvHlP/3w8/dOtuosGBuCVr4T7709/463sBgaensfJ6j8fbxBu\n188/2rYarWHRRl8F/JWPrVz7uuxp+3i6FDp1k3QKHJ3SGi3gdEqzqu6WViaz62os26bMvJ3mGU9a\nPesi6tWF3G4MByw79LCXejXscTxBuF0/f0Xr0HfDMsdzyj7e77QaUtgcOFo90KuV0b7XKc3iNKj+\nBqLJfOjcWLZNmXk7zVOcNtrNd10pg9Hucu21VvnrxnDAskMPe2kqPd+o3c1ejc+72F3UdwG/H4y3\nn7jv+5drZFKGlnbjIm2V+j1/Vk4Xt6MDfkX66fEOE9Xq5qipYFIq4CpGXzRew9O7UIaGxn7DU5Xd\nRmN5RMBYHyfQmH/hQli1Ko3cafTP1/Gmry5tRwf8ioynhdnqztmxKHuH7Fi1+hH38agqf13LT8uZ\nKuq2aV7u/PmtW3KN4YbXX5+GGg4PP/PC6XjSbq5IOuWr3bSx/BZAp3nblcXISBq9s2rV6Mvv5nr2\nwiR1D/bVRdvpZqzDFSd6QbXKboxuDIuczDt4yyiVn6q6Rdott/nCX2O44RZbdO/iXaeRQp3Wt9W0\n4oib0Vqh7eYdrSwao3fGc0F0POvZC5OUH7fw+0y7i4ljeb5NP+u3/JV+xEIliY9hud3+xaVOyxvt\nhqSJancxeSzfKdsiH+96dlPZ1vsk5KfSFr6k10u6TtKNkj5SZVrTXb+1js3GbTyt2X5rkY9FH+W9\nsha+pBnA14HXAkuByyWdFRHXVJXmdNdvrWOzcRtPa7bXdxxPRJ/kvcoW/n7AjRFxc0SsAv4beHOF\n6ZmZWQdV9uHvCNxReL8UeFmF6dkYTWTEjdkzNPqpG0MoizdnWV9QRFSzYOnPgEMj4j35/TuA/SLi\nfU3zzYe1I+JeAFxXSYbMzKan50bErDIzVtnCXwrsVHj/HGBZ80wRMQRM7TuTzMymgCr78C8Hdpf0\nPEnrA38BnFVhemZm1kFlLfyIWC3pvcDPgBnAdyLi91WlZ2ZmnVXWh29mZv3Fj1YwM6sJB3wzs5pw\nwDczqwk/PM3MSpN0aET8bJzf/Rbwv8DPImJNi+l/nl8eAFwcEaeNcflHkoZ//wHYnTQ0/LGI+I/x\n5LdNGn9EiptvAa6NiO91a9lg6/SBAAARXElEQVSToS8CvqSNI+LR/HpLgIi4v8V8WwJrIuIhSZsD\nDwEbR8QjbZYrYG9gdURc3Wr5kjaNiIclbUouj8K0xvcBfgdsBawENgMeinzFu12ei/lt+vzZwP3A\ni4HbSDvlk5K2BlZG4Uq6pB0iYlljfZvSfMay87S18zbWr135NKX1tHnb5OcZn7Vb5+Y8j8do6XVL\ni/2iubyVZ/0j4Hpg/Ua+iuXWaf8tkYfGPtiy/Npsj7bbt5CfNaSRco3/Y8qfpFOB3wICXkEaedc8\nz3tIj1MB+N+IOLvFoq4B7gOOy/vePzVN3wVYTDo2LsvLPRrYNk+/OyL+q5DmH+eXLwMeADYFvgSc\nAWwaEftL+mRTPj8OPJznfSIi/mXUAni6g/Kyj5P0iTF+t+f6YpSOpHOB3wC7AQuAPwNmAr8Ang/c\nSar1L8nTlpIC5RxgNbA58B7g+6Rn9lwK/B74FClIb06q9Xck7UxnAUcBZ+fv3cC6nW19YGvgNOBI\n4OPA4Tkfm5N2lIXAc4ErgZcDpwD/F7gLuAm4F5hFam2sBi4GTgZOAH4FfJB04N1Kurt4EekmtR8C\nHwK+Deyby+Rv8nL/AGyT83tCXr9D8zL2yOvwGLACuBZ4J3A68Oqc3w2Bl+Y8zwKeAPYi3eX8OeDC\nwrwPAXPzum6X8/7GnL9DczleTGpFzcz5OoV0r8WFhW00K5f3aTlfjQP09ryMn+b1US7P20kH91Lg\n58CDOd9/ApxD2gdm5vXaO6/vqog4XtKJpO3+VzmNvfK6XkUKMo8BfwpclLfZpqTW5vbAI8DOpP1t\nPnBFnud+0v0kM4BdSRX9dXmb/S/wDuB/gDcBS3J53JnLcFvgK8C8iPiypHPyNnyAtH9sRdrmHyuU\n/7vz9+fkMrgul0sATwLnAfOAX+Z8b07a9o8AG5AaIyuAx0n7x8Gk/Xk70mNOdiQF7gvy+pyYy35e\nXsdDSfv+klz2T+Uy2DQi3i9pEHgRqXW7JufpLtIxckxEnJDXczXw7Lyc5wEb5fRviIiPS/p70vH0\n+rydH8vpPJ7L9sq8/A1I+2Rx21+eP/828AVSTNiA9Jyuk0j77nLSvrZbLvOPk47ljUiVw3akfWW/\nnP5c4FTg6DxPI+5sntNcndfzTNKxe3d+v1PeJzYiVYKPRcRXC/vi0aQKfGZeN+XXm+eyuQnYn3QM\nb0GKS1uTjtON8t+5pH3xrLytlbf3i/NyLo6IL1BSv/ThnxMRnyQVyvNJG/wS0kZ+VUQcl+c7mRQU\nNiAVzNaknf9HpIJbA3yRdAANkXa2WaSC2YEUpJaQgu4y4Mb8/f8kHWD/SAr6f4iIrwKrSAfblqQN\newdpA24KbJvzJeD8nIdFeVrktGeQdrp9SDv3q0gtxPNJB9NdpIrrBtLBcx1wS16HS0mtqZtJLaMl\npApg/1xGJ5MC2cXAt1jXAtuftMPemddvR9KOtRMpeG5NCvZBCmz753UrzvsK0s51B3BvLosZefqD\nOW8vyuX6C+D2PM+apm10Zs7XocB787ptn8ttB1JQPBu4J6/fdcB/5bwcArw9f7YhqeV2ef47hhTM\n9gH2k/ThnMa2wI/z8i4iBeJtgdfm/D1JCrQ/JwXd/UiB88U5jV/ledYnHWi3kIL47qQgvkkux01y\nfu/IeX0kb8uLSfvVG/IyXw/8fc7fk6R9o7F/bE/a34vlvxT420L5bZrzfynp4F9COlv9f6RW6o75\nO68mBftzgRHS/voUqbJbnNd1JP+/Pa/nn+T8nUequF6f94uVeb+4F9gzb6u7SQ7J2+0C0vGpXBZH\nAnvlFu8vSS3sRplcktMYIe2vkPabY0lnzbeRKrVDgS8Dd0bEl/N2+hIpqB+Wt8/3SDFhBqnBNjPP\n96fAccBs4HURcXFEfCyn/amcv8NzmXyfFGB3y9ukkda2pOOscYztTmo8Ls/ltQI4ICJel7fD/aTK\n5He5vF4NHN60L95A2v9/kdP4fi6Tu3M638vldyypAXME8DrSfn0pMCPvt9vl5Q2SYsjepPjyq7EE\ne+iTLh1S7QrwD6RTptmkwp6T/wA+SwpCH8jvdyTtQKuBFRGxVNKTEbFK0hERcVs+Jd6XtBOvIhX0\nO0gF+rekHUak4LA5MEA6IL6U02gcqN8iFfgOpNb13Jw/SC20ffKyTwV2jojfSnoe8C5Si+CuiLhf\n0s2kHWcZ8IOcp+WkILqcdOB/MD9d9IuSvkZquVwKvAZYGBFXS3o8l8X6pIN7BvBdUsBdncvsYzmt\nb0TEyZIWkILEGlKF8SRwdb5B7jbSjvn1PO9pwFtJAafxOwbHk3baY4D3k1pSLyIFroV5ni/mfJ2T\np/8D6eCYSQrCfwv8JD86+1HSAbgrqZX8zZyHT5Meq70w53V/UpD/B+ATeT1X5eXfktd9y7wNt8j5\nPJe0b3yddAAN5TS3IZ1BPo8UnPfP+X+MVLH8hHR2NCOX9wW5rNaQzgCvJHXn3EraR+7M+X+K1Cqb\nSToY15AO5l1ymV9NCu4Pks68NmNd5TuXFAwPI1US55P2j1vy9M1JAeQFpP3wytyVMYt1lcvppLOJ\nA/I63gP8mhQsl+U8zCHtL3sBf5nXYSvSfrcil8kTOS/7kRqD9+RupkbD8Oq8jm/JZXEFKXAC/CIi\n/kPSUcDGpONhJ1JLv9HCvz7Puxr46/z5XjnN2aRK6Jd5njWkbf5R0n51dkRcKWljUnD9IHBkRAxJ\nupF0Nr0DqQJs2JQUIHcHzo2ILwFIeoIUFx7JyzmTVAnPznmDFPy3yeX0UF6PXxeWvYC0H344T18/\nz/sYqaJ5Kv81zgLuAT5POpM7JH/nM6RK4K9JDcbn53SXAW8DbsnlvzCnf3Uuq4dJldgaSa+NiJ9T\nUr8E/L+QtAFph4VU6IeRgtJMSYtI3QR3kILf/qSA/1JSYc6U9FekAwrgTZL2Ix1UG+flNfqu1s/v\n3006oN9O2ukvILVybgS+ImmLPP/FpBZvw+Gs66b5MbBjRJwu6R+BfwM2l3QxacM/j3S2MVPSatLB\nsiCneUchX5eQTgd/JOk7kpaQDrqNchkcldf7w5IWkg7yC0kH7JY5nW+RDpYXkALkRhHxBUkzJf2A\n1OX06kK5bQ2syn3Ta/OQWygALyEFrz/L/ahHkw6mfycd5Pvl9C8itWweL6T5UdIB9U3Sjntm3raN\nSvu4XBZXkLqK9srTDiNVMHvkv60i4uW5m+DePO2wvLwjSC2owyLimDzP7aQusT1IwfbXpLOuZ+c0\n7yK1tj6dy+EKUnDfj3Rw7wv8NCLeJuknOV+NO8XnkhoHu5L2s/1I3To7kVqwh5FagheQ9ped83Z+\nGanyOZYUUH+ay+Qs0vH3BHBgRPyxpJ/l9A4mNTB+xrozvc+S9t1X5WUvIR0Hn8zrewywQUQcksvi\ndYVy+t9c/mcCb4uIz+R5diFVMC8mBa8PAV8lBcpzSGcZH87pQtrPFpP2sevz/rF7RBxV6CvfjrRv\nLSadYZ2dl7+UdQ27x/L6/bqwTotIgXlP0hnYk3kZJ5LO+v5Z0m9JFfEqUmXQyNfOed6Ved6GNaSg\nvhI4SNJ6rLsOcREwKyI+ImkxqYLeMufh2znvG7OuF+E9wKOS5pK2/YtJDZQt83xPAXtExLvzdlxR\nKIs1pH3wGlJjZJv8/zpSI/M20v61Km+nlaT94p9y+b+KdMxfRtrWT+Z5tyVVdFMu4G9FOgghbdBL\nWVdDrkcKeC8h9a9eSzqVeojUSry8MM/fStoVOJC0E/wwL+OxvNzvkn6Q5SrW9cMdSNq4PyUV/C6k\nHf6XpI30r6SAWPz+/sDFOch/MLfm9ya1orYiVQaH5jx8pkWar85pfjLn72DgWbn1sh9px7i6qQz2\nJwXAoyQdSNr4z4mI90k6DvhnUhBpzHN9vs54MGnnOb+p3E7J6/S7vHyR+j2fRQpQc3J5vIm00+1N\nCirfzOXxH6QK6x3AfbnvspHmNsArSS2m03N5Pk7qi/xSRFwq6eCI+E0+OFbmcmv0ud9AqqxXSzom\n56fR4r0y5+tcUjC9geS2PM+d+bOZpIPpDODKiPhdIc1jSd0Ac/M2+XreXp8Dzs1dE4tzWf2eFKDv\nKKzziXne8/P0t+c0r87zFpf346Y0D8xlsgspIHyCVNF+gtSAeBHpAH4KeGEuw8bn3yAFiT1Jle4d\njTLN+83KprJ4NJfTBrn8DwROV3pC7fWkym8HUsv0iYhYIun4vB809oszyMdmRHxe0quAC/JFy1eQ\nAip53SHt+5flfN0SET/MF0ofiYjbm+Y5PKdxOakRcnyLtO6PiNslfTMiLpDU6Pa8usW8DxTSeNrn\npP3uAgBJLyHtk5flWU/LDZWL8vpsktNYAWwTEf8j6Z6I+G7h+89uys9mrLtGdQGpNf+qwvePJsWT\nm0iV4E35/ZfycpYU1usk4KbC9nhhpIEl7yXFkoXNZVBWv1y03Z1UWLNJpzPnAn9PClQ35GDylYj4\ngKS9STvuuaRgendhns9FxEcl7UkKOL/Ky1kJLMvzHEOqIe8ktQjfSTpwHwdekuf5DKnvPEin1LOb\nvj8buCwifibp07lPlUIr5zJSi+aVEfGtFmm+mdRveS/pQL4JWJqXf3y+CLl7sQzyuhyc53ljzt/+\neZmP551mz8I8742Ir0k6iBQ4Lmsqt0tI3QI3A+vlU+O9SZXI2XldNgLOz+v5lYj4QF7P9+W+RSTt\nGfkZSY008+tjIuJb49gd+lJhHwV4qrH+ZlNJvwT8U0l9U0eSWmZPNv0/GXgfqctk3gTmGc/yvjrB\nfHV7HYrzNE5PHyWdXs4bw3ImlGZEvLmw7RoXjFvOMx0U9lGYZutm9dEvXTqN07XLSN0Ozy7+j4ir\nGqdUkn4z3nkmsLxx56vb61CcB55xevmbqvNVSPNp2y5/3m6e6aC4ntNt3awm+qKFb2Zm1euXcfhm\nZlYxB3wzs5pwwLe+I6nts2HazD+Yx81PNN1BSSHp8MJnP1F6pMCESbpV0jbdWJbZeDjgmz3dUtJd\nyn0l3zRkNiEO+Na3cot7gaQfSloi6fvKd3ZJen3+7CLSLfmN72yidLfy5ZJ+K6kxfPSDkr6TX+8l\n6ep8o1uz3wEPSHpti/ysbaFLmqv0uAokHS/pvySdl+f5E0lfkLRY0rmSZhYW8w+SFua/3fL3Z0n6\nn5znyyUdUFjukKTzgJMl7Zm/NyLpqnxvgFlpDvjW7/YhPZag8biEAyRtSLr9/XDS3YyzC/N/jPRQ\nqZeS7mj+F0mbkO6O3U3SW0l3TB8T+ZHcLXyG9ITFsdiV9JiIN5PuYj4/IvYi3eX9xsJ8D0bEfsDX\ncp4gPQfnyznPf0q6o7dhX+DNETGP9MyVr0TEAOku4eJzY8xG5dNE63cLI2IpgKQR0uMqHibdtn9D\n/vwU0mM3ID1D5k1Kj+CF9IiGORFxrdLt7VcB34qIi9slGBG/loTSbfllnRPpNw0Wk569c27+fHHO\nc8Ophf9fzq9fA+yhtY/cZ3NJm+XXZ0XEY/n1pcDHJD0H+FFj/c3KcsC3fvdE4fUa1u2z7W4gEfCn\nEXFdi2m7kyqLHUqkewLpbGF14bPVrDsr3rBVPiPiKaWntjby13gWUkO0eP0sYP9CYE8rkiqAtT/u\nExHD+ea4NwI/k/SeiPhViXUxA9ylY1PTEuB5Sg/Kg/Toi4afAe8r9PXvk/9vQeo6ORDYWtLbOiUQ\nEeeR7jTeu/DxraQuFkhdL+NxROH/pfn1eaTfCyDndaDVFyXtAtwcEf9GelCe7/i1MXHAtyknIh4n\ndeGcnS/a3laY/GnS83+uklR8muCXSb8NcD3p0difl7QtnZ1Aevxsw6dIj87+NelsYzw2yK30D5Ae\nWQ3p9wXm5gux15D66ls5Arg6d229kPSMI7PS/GgFM7OacAvfzKwmHPDNzGrCAd/MrCYc8M3MasIB\n38ysJhzwzcxqwgHfzKwmHPDNzGri/wOXUXwyWnkGgQAAAABJRU5ErkJggg==\n","text/plain":[""]},"metadata":{"tags":[]}}]},{"metadata":{"id":"E16Pj9nx3o8n","colab_type":"code","colab":{"autoexec":{"startup":false,"wait_interval":0}}},"cell_type":"code","source":[""],"execution_count":0,"outputs":[]}]} \ No newline at end of file From 35da772edcb568d911d8f4441b8161486c409776 Mon Sep 17 00:00:00 2001 From: Eduardo Santos Date: Sun, 27 Jan 2019 18:10:38 -0200 Subject: [PATCH 2/6] =?UTF-8?q?Tradu=C3=A7=C3=A3o=20completa=20pr=C3=A9=20?= =?UTF-8?q?python?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit tradução completa das aulas 1 e 2 dos pré requisitos de python --- 0-pre-requisitos/1-python/Aula_01.ipynb | 418 +- 0-pre-requisitos/1-python/Aula_02.ipynb | 2221 +++++--- .../3-sql/0_conectando_python_em_db_sql.ipynb | 19 +- .../aula1.ipynb" | 2 +- .../aula1.ipynb" | 2518 ++++----- .../correla\303\247\303\265es_deepdive.ipynb" | 4850 ++++++++--------- 6 files changed, 5022 insertions(+), 5006 deletions(-) diff --git a/0-pre-requisitos/1-python/Aula_01.ipynb b/0-pre-requisitos/1-python/Aula_01.ipynb index 3f27acd..7ab6a72 100644 --- a/0-pre-requisitos/1-python/Aula_01.ipynb +++ b/0-pre-requisitos/1-python/Aula_01.ipynb @@ -8,6 +8,20 @@ "**02/08/2017**" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Objetivos:\n", + "- Tipos de dados e operações com os dados.\n", + "- Números (int/float/complex).\n", + "- Textos (list)\n", + "- Tuplas (tuple)\n", + "- Dicionários (dict)\n", + "- Conjuntos set loops\n", + "- Conversão de tipos" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -21,14 +35,14 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Python 3.5.4 :: Anaconda custom (64-bit)\n" + "Python 3.6.8 :: Anaconda, Inc.\n" ] } ], @@ -55,7 +69,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -64,7 +78,7 @@ "int" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -87,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -96,7 +110,7 @@ "53" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -108,7 +122,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -117,7 +131,7 @@ "float" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -137,7 +151,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -146,7 +160,7 @@ "complex" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -157,7 +171,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -166,7 +180,7 @@ "complex" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -186,16 +200,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "94708970930304\n", - "139738084184280\n", - "139738084123920\n" + "4402206192\n", + "4440060840\n", + "4440441680\n" ] } ], @@ -217,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -249,7 +263,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -271,7 +285,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -291,7 +305,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -300,7 +314,7 @@ "2" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -312,7 +326,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -321,7 +335,7 @@ "1" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -333,7 +347,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -367,7 +381,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -376,7 +390,7 @@ "8" ] }, - "execution_count": 14, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -404,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -425,7 +439,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -456,7 +470,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -476,7 +490,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -504,7 +518,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -526,7 +540,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -544,7 +558,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -562,7 +576,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -589,14 +603,14 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['__abs__', '__add__', '__bool__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__int__', '__le__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__pos__', '__pow__', '__radd__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rmod__', '__rmul__', '__rpow__', '__rsub__', '__rtruediv__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', 'conjugate', 'imag', 'real']\n" + "['__abs__', '__add__', '__bool__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__int__', '__le__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__pos__', '__pow__', '__radd__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rmod__', '__rmul__', '__rpow__', '__rsub__', '__rtruediv__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', 'conjugate', 'imag', 'real']\n" ] } ], @@ -607,7 +621,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -634,7 +648,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -655,7 +669,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -690,7 +704,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -699,7 +713,7 @@ "str" ] }, - "execution_count": 27, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -728,7 +742,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -737,7 +751,7 @@ "9" ] }, - "execution_count": 28, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -748,7 +762,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -769,7 +783,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -796,7 +810,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -805,7 +819,7 @@ "'number two: 2'" ] }, - "execution_count": 31, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -825,7 +839,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -870,7 +884,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -897,7 +911,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -923,7 +937,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -948,7 +962,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -976,7 +990,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -985,7 +999,7 @@ "'Corinthias é campeão'" ] }, - "execution_count": 37, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -1003,7 +1017,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -1026,7 +1040,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -1049,7 +1063,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -1058,7 +1072,7 @@ "'TIMAO, EO! '" ] }, - "execution_count": 40, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -1069,7 +1083,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -1078,7 +1092,7 @@ "'timao, eo! '" ] }, - "execution_count": 41, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -1089,7 +1103,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -1098,7 +1112,7 @@ "'(6+9j)'" ] }, - "execution_count": 42, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -1109,7 +1123,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -1118,7 +1132,7 @@ "['Timao,', 'eo!']" ] }, - "execution_count": 43, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -1129,7 +1143,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -1148,7 +1162,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -1165,7 +1179,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 47, "metadata": { "scrolled": true }, @@ -1176,7 +1190,7 @@ "2" ] }, - "execution_count": 46, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -1187,7 +1201,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -1196,7 +1210,7 @@ "-1" ] }, - "execution_count": 47, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -1207,7 +1221,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 49, "metadata": {}, "outputs": [ { @@ -1216,7 +1230,7 @@ "2" ] }, - "execution_count": 48, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -1235,14 +1249,14 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']\n" + "['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']\n" ] } ], @@ -1253,7 +1267,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 51, "metadata": { "scrolled": true }, @@ -1277,7 +1291,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -1313,7 +1327,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -1341,7 +1355,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -1350,7 +1364,7 @@ "'Fernando'" ] }, - "execution_count": 53, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -1361,7 +1375,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -1394,7 +1408,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -1403,7 +1417,7 @@ "5" ] }, - "execution_count": 55, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -1423,7 +1437,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -1455,7 +1469,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -1483,7 +1497,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -1511,7 +1525,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -1539,7 +1553,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -1567,7 +1581,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -1599,7 +1613,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -1608,7 +1622,7 @@ "3" ] }, - "execution_count": 62, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -1627,7 +1641,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -1666,14 +1680,14 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 65, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']\n" + "['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']\n" ] } ], @@ -1691,7 +1705,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 66, "metadata": {}, "outputs": [], "source": [ @@ -1700,7 +1714,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 67, "metadata": {}, "outputs": [ { @@ -1728,15 +1742,15 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 68, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "id(a) = 139738083628936\n", - "id(b) = 139738083628936\n" + "id(a) = 4441100744\n", + "id(b) = 4441100744\n" ] } ], @@ -1755,7 +1769,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 69, "metadata": {}, "outputs": [ { @@ -1781,7 +1795,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 70, "metadata": {}, "outputs": [ { @@ -1798,7 +1812,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 71, "metadata": {}, "outputs": [], "source": [ @@ -1807,15 +1821,15 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 72, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "id(a) = 139738083628936\n", - "id(b) = 139738083627208\n" + "id(a) = 4441100744\n", + "id(b) = 4441102408\n" ] } ], @@ -1834,7 +1848,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 73, "metadata": {}, "outputs": [ { @@ -1860,7 +1874,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 74, "metadata": {}, "outputs": [ { @@ -1887,16 +1901,23 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 75, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['Ulisses', 'Roberto', 'Luis', 'Fernando', 'Leonel']" + "['Ulisses',\n", + " 'Roberto',\n", + " 'Luis',\n", + " 'Fernando',\n", + " 'Leonel',\n", + " 'Eneas',\n", + " 'Marronzinho',\n", + " 'Correa']" ] }, - "execution_count": 72, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -1914,7 +1935,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "['Ulisses', 'Roberto', 'Luis', 'Leonel', 'Fernando']\n" + "['Ulisses', 'Roberto', 'Marronzinho', 'Luis', 'Leonel', 'Fernando', 'Eneas', 'Correa']\n" ] } ], @@ -1924,7 +1945,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 77, "metadata": {}, "outputs": [], "source": [ @@ -1933,16 +1954,23 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['Fernando', 'Leonel', 'Luis', 'Roberto', 'Ulisses']" + "['Correa',\n", + " 'Eneas',\n", + " 'Fernando',\n", + " 'Leonel',\n", + " 'Luis',\n", + " 'Marronzinho',\n", + " 'Roberto',\n", + " 'Ulisses']" ] }, - "execution_count": 81, + "execution_count": 78, "metadata": {}, "output_type": "execute_result" } @@ -1953,7 +1981,7 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 79, "metadata": {}, "outputs": [], "source": [ @@ -1962,16 +1990,23 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 80, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['Fernando', 'Mário', 'Luis', 'Roberto', 'Ulisses']" + "['Correa',\n", + " 'Mário',\n", + " 'Fernando',\n", + " 'Leonel',\n", + " 'Luis',\n", + " 'Marronzinho',\n", + " 'Roberto',\n", + " 'Ulisses']" ] }, - "execution_count": 83, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" } @@ -1997,7 +2032,7 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -2023,7 +2058,7 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -2033,7 +2068,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"rugby\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"rugby\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" ] } @@ -2044,14 +2079,14 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 83, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'count', 'index']\n" + "['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'count', 'index']\n" ] } ], @@ -2061,7 +2096,7 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -2070,7 +2105,7 @@ "3" ] }, - "execution_count": 86, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } @@ -2081,7 +2116,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 85, "metadata": {}, "outputs": [ { @@ -2090,7 +2125,7 @@ "1" ] }, - "execution_count": 88, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -2117,7 +2152,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 86, "metadata": {}, "outputs": [ { @@ -2143,7 +2178,7 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 87, "metadata": {}, "outputs": [ { @@ -2152,7 +2187,7 @@ "'Maluf'" ] }, - "execution_count": 98, + "execution_count": 87, "metadata": {}, "output_type": "execute_result" } @@ -2163,7 +2198,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ @@ -2172,21 +2207,21 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 89, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{11: 'Maluf',\n", - " 12: 'Brizola',\n", - " 13: 'Lula',\n", + "{13: 'Lula',\n", " 15: 'Ulisses',\n", - " 18: 'Afif',\n", - " 20: 'Collor'}" + " 11: 'Maluf',\n", + " 12: 'Brizola',\n", + " 20: 'Collor',\n", + " 18: 'Afif'}" ] }, - "execution_count": 102, + "execution_count": 89, "metadata": {}, "output_type": "execute_result" } @@ -2197,7 +2232,7 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 90, "metadata": {}, "outputs": [], "source": [ @@ -2206,7 +2241,7 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 91, "metadata": {}, "outputs": [], "source": [ @@ -2215,21 +2250,21 @@ }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{11: ' Afif',\n", - " 12: 'Brizola',\n", - " 13: 'Lula',\n", + "{13: 'Lula',\n", " 15: 'Ulisses',\n", - " 18: 'Afif',\n", - " 20: 'Collor'}" + " 11: ' Afif',\n", + " 12: 'Brizola',\n", + " 20: 'Collor',\n", + " 18: 'Afif'}" ] }, - "execution_count": 104, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } @@ -2248,7 +2283,7 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 93, "metadata": {}, "outputs": [], "source": [ @@ -2257,7 +2292,7 @@ }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 94, "metadata": {}, "outputs": [], "source": [ @@ -2266,7 +2301,7 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 95, "metadata": {}, "outputs": [], "source": [ @@ -2275,17 +2310,17 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 96, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{9321936: {'esporte': 'volei', 'idade': 21, 'nome': 'João'},\n", - " 9625728: {'esporte': 'Sporti', 'idade': 22, 'nome': 'Gabriel'}}" + "{9321936: {'nome': 'João', 'idade': 21, 'esporte': 'volei'},\n", + " 9625728: {'nome': 'Gabriel', 'idade': 22, 'esporte': 'Sporti'}}" ] }, - "execution_count": 110, + "execution_count": 96, "metadata": {}, "output_type": "execute_result" } @@ -2296,7 +2331,7 @@ }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 97, "metadata": {}, "outputs": [ { @@ -2305,7 +2340,7 @@ "43" ] }, - "execution_count": 111, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } @@ -2316,7 +2351,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 98, "metadata": {}, "outputs": [ { @@ -2324,7 +2359,7 @@ "output_type": "stream", "text": [ "keys: dict_keys([9321936, 9625728])\n", - "values: dict_values([{'idade': 21, 'esporte': 'volei', 'nome': 'João'}, {'idade': 22, 'esporte': 'Sporti', 'nome': 'Gabriel'}])\n" + "values: dict_values([{'nome': 'João', 'idade': 21, 'esporte': 'volei'}, {'nome': 'Gabriel', 'idade': 22, 'esporte': 'Sporti'}])\n" ] } ], @@ -2335,7 +2370,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 99, "metadata": {}, "outputs": [ { @@ -2352,14 +2387,14 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 100, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "dict_items([(20, 'Collor'), (12, 'Brizola'), (13, 'Lula'), (15, 'Ulisses')])\n" + "dict_items([(13, 'Lula'), (15, 'Ulisses'), (11, ' Afif'), (12, 'Brizola'), (20, 'Collor'), (18, 'Afif')])\n" ] } ], @@ -2369,14 +2404,14 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 101, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']\n" + "['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']\n" ] } ], @@ -2402,14 +2437,14 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 102, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{20: 'Collor', 12: 'Brizola', 13: 'Lula', 15: 'Ulisses'}\n" + "{13: 'Lula', 15: 'Ulisses', 12: 'Brizola', 20: 'Collor', 18: 'Afif'}\n" ] } ], @@ -2428,14 +2463,14 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 103, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{33: 'Brant', 20: 'Collor', 22: 'Afif', 43: 'Gabeira', 12: 'Brizola', 13: 'Lula', 15: 'Ulisses'}\n" + "{13: 'Lula', 15: 'Ulisses', 12: 'Brizola', 20: 'Collor', 18: 'Afif', 43: 'Gabeira', 33: 'Brant', 22: 'Afif'}\n" ] } ], @@ -2455,7 +2490,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 104, "metadata": {}, "outputs": [ { @@ -2476,12 +2511,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Sets" + "# Sets - Conjuntos" ] }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 117, "metadata": {}, "outputs": [ { @@ -2489,7 +2524,8 @@ "output_type": "stream", "text": [ "list l = [1, 2, 3, 1, 3, 3, 2]\n", - "set(l) = {1, 2, 3}\n" + "set(l) = {1, 2, 3}\n", + "\n" ] } ], @@ -2497,12 +2533,13 @@ "l = [1, 2, 3, 1, 3, 3, 2]\n", "print(\"list l = \" + str(l))\n", "sl = set(l)\n", - "print(\"set(l) = \" + str(sl))" + "print(\"set(l) = \" + str(sl))\n", + "print(type(sl))" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 106, "metadata": {}, "outputs": [ { @@ -2522,6 +2559,7 @@ " '__hash__',\n", " '__iand__',\n", " '__init__',\n", + " '__init_subclass__',\n", " '__ior__',\n", " '__isub__',\n", " '__iter__',\n", @@ -2564,7 +2602,7 @@ " 'update']" ] }, - "execution_count": 36, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" } @@ -2577,12 +2615,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Converting between types" + "# Converting between types - Convertendo entre os tipos de dados" ] }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 107, "metadata": {}, "outputs": [ { @@ -2591,7 +2629,7 @@ "tuple" ] }, - "execution_count": 114, + "execution_count": 107, "metadata": {}, "output_type": "execute_result" } @@ -2603,7 +2641,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 108, "metadata": {}, "outputs": [], "source": [ @@ -2612,7 +2650,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 109, "metadata": {}, "outputs": [ { @@ -2629,7 +2667,7 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 110, "metadata": {}, "outputs": [ { @@ -2647,7 +2685,7 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 111, "metadata": {}, "outputs": [ { @@ -2656,7 +2694,7 @@ "['a', 'b', 'c', 'd', 'e']" ] }, - "execution_count": 118, + "execution_count": 111, "metadata": {}, "output_type": "execute_result" } @@ -2667,7 +2705,7 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": 112, "metadata": {}, "outputs": [ { @@ -2676,7 +2714,7 @@ "[1, 2, 3]" ] }, - "execution_count": 119, + "execution_count": 112, "metadata": {}, "output_type": "execute_result" } @@ -2687,7 +2725,7 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 113, "metadata": {}, "outputs": [], "source": [ @@ -2696,7 +2734,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 114, "metadata": {}, "outputs": [ { @@ -2705,7 +2743,7 @@ "[1, 2, 3]" ] }, - "execution_count": 122, + "execution_count": 114, "metadata": {}, "output_type": "execute_result" } @@ -2716,7 +2754,7 @@ }, { "cell_type": "code", - "execution_count": 123, + "execution_count": 115, "metadata": {}, "outputs": [ { @@ -2734,7 +2772,7 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 116, "metadata": {}, "outputs": [ { @@ -2743,7 +2781,7 @@ "[1, 2, 3]" ] }, - "execution_count": 124, + "execution_count": 116, "metadata": {}, "output_type": "execute_result" } diff --git a/0-pre-requisitos/1-python/Aula_02.ipynb b/0-pre-requisitos/1-python/Aula_02.ipynb index 082c74e..a82842d 100644 --- a/0-pre-requisitos/1-python/Aula_02.ipynb +++ b/0-pre-requisitos/1-python/Aula_02.ipynb @@ -1,882 +1,1365 @@ { - "cells": [ - { - "metadata": { - "collapsed": true - }, - "cell_type": "markdown", - "source": "# Aula 2: Program Flow and Control Structures\n**06/08/2017**\n" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "Objectives:\n- Conditional (if/else) statements\n- for loops\n- while loops\n- functions" - }, - { - "metadata": { - "collapsed": true - }, - "cell_type": "markdown", - "source": "# Conditional" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "A boolean variable stores True or False." - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "type(True)", - "execution_count": 1, - "outputs": [ - { - "data": { - "text/plain": "bool" - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x = (4>3)\nprint(\"x = {0}\".format(x))", - "execution_count": 2, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "x = True\n" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "y = 2==4\nprint(\"y = {0}\".format(y))", - "execution_count": 3, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "y = False\n" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x or y", - "execution_count": 4, - "outputs": [ - { - "data": { - "text/plain": "True" - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x and y", - "execution_count": 5, - "outputs": [ - { - "data": { - "text/plain": "False" - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "not x", - "execution_count": 6, - "outputs": [ - { - "data": { - "text/plain": "False" - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "True and False behave like 1 and 0, respectively." - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x+y", - "execution_count": 7, - "outputs": [ - { - "data": { - "text/plain": "1" - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x*y", - "execution_count": 8, - "outputs": [ - { - "data": { - "text/plain": "0" - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "The example below shows the most basic sintax of a decision structure:" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x = 5\ny = 4\nt = x>y\nif t:\n print(\"{0} is greater than {1}\".format(x, y))", - "execution_count": 9, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "5 is greater than 4\n" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "If the condition (or set of conditions) is satisfied, the indented code below is executed. Indentation in Python is made up of four simple spaces, and is used to determine the end of the structure. Python is very strict about indentation, and programmers should be too.\n\nNotice that something happens (code is execute) only if the condition is True. In some scenarios, one wants something to happen if the condition is False. The else clauses comes in handy in this case." - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x = 4\ny = 5\nif (x>y):\n print(\"{0} is greater than {1}\".format(x, y))\nelse:\n print(\"{0} is *NOT* greater than {1}\".format(x, y))", - "execution_count": 10, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "4 is *NOT* greater than 5\n" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "The elif allows to test multiple conditions." - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x = 5\ny = 4\nif (x>y):\n print(\"{0} is greater than {1}\".format(x, y))\nelif (x==y):\n print(\"{0} is equal to {1}\".format(x, y))\nelse:\n print(\"{0} is smaller than {1}\".format(x, y))", - "execution_count": 11, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "5 is greater than 4\n" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "Python will execute the instruction *first* condition that is true." - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x = 5\ny = 5\nif (x>=y):\n print(\"{0} is greater than or equal to {1}\".format(x, y))\nelif (x==y):\n print(\"{0} is equal to {1}\".format(x, y))\nelse:\n print(\"{0} is smaller than {1}\".format(x, y))", - "execution_count": 12, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "5 is greater than or equal to 5\n" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "colors = {0: 'green', 1: 'violet', 2: 'blue', 3: ' yellow'}", - "execution_count": 13, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "c = 0\nif c == 0:\n print(colors[0])\nelif c == 0:\n print(colors[1])\nelif c == 2:\n print(colors[2])\nelif c == 3:\n print(colors[3])\nelse:\n print('I dont know.')", - "execution_count": 14, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "green\n" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "if conditions can be nested within each other." - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x = 7\ny = 5\nif (x>y):\n if abs(x-y)<1:\n print(\"{0} is greater than {1}\".format(x, y))\n else:\n print(\"{0} is MUCH greater than {1}\".format(x, y))\nelif (x==y):\n print(\"{0} is equal to {1}\".format(x, y))\nelse:\n print(\"{0} is smaller than {1}\".format(x, y))", - "execution_count": 15, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "7 is MUCH greater than 5\n" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "# `for` loops" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "Loops in Python, as in other programming languages, allows on to perform operations multiple times." - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "print(list(range(10)))", - "execution_count": 16, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "# sum of the first 10 whole numbers\n\ngauss = 0 # the scalar 'gauss' will store the value of the running sum\nparcelas = [] # the list parcelas will store the value of the running sum at each step\n\nfor i in range(11):\n\n gauss += i\nprint(gauss)\n \nprint(\"1+2+3+...+10 = \" + str(gauss))", - "execution_count": 19, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "55\n1+2+3+...+10 = 55\n" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "# parsing a list\nl = [\"Macro\", \"Micro\", \"Econometria\", 537]\nfor i, v in enumerate(l):\n # the index at each step is assigned to 'i' \n # the value at each stpe is assigned to 'v'\n # both 'i' and 'v' are local, and cannot be accessed outside of the loop\n print(\"{0}: {1}\".format(i, v))\n print(\"---\")", - "execution_count": 28, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "0: Macro\n---\n1: Micro\n---\n2: Econometria\n---\n3: 537\n---\n" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "# if you want to access only the values\nfor v in l:\n print(v)", - "execution_count": 24, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "Macro\nMicro\nEconometria\n537\n" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "# parsing a list\nd = { \"Macro\": [\"eae302\",20], \"Micro\": [\"eae301\",25], \"Econometria\": [\"eae303\",40] }\nfor key, value in d.items():\n print(\"{0}: {1} alunos\".format(key, value[1]))", - "execution_count": 31, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "Macro: 20 alunos\nEconometria: 40 alunos\nMicro: 25 alunos\n" - } - ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "# parsing a string\ns = \"Barcelona\"\nfor x in s:\n print(x)", - "execution_count": 33, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "B\na\nr\nc\ne\nl\no\nn\na\n" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "# while loops" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "Similar to for. Executes a chunck of code until a certain condition is met." - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "gauss = 0\ni = 1\n\nwhile i<=100:\n gauss += i\n i += 1\n\nprint(gauss)", - "execution_count": 34, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "5050\n" - } - ] - }, - { - "metadata": { - "collapsed": true - }, - "cell_type": "markdown", - "source": "We know that $lim_{n\\rightarrow +\\infty} \\sum_{i=1}^{n}{\\frac{1}{i}} = +\\infty$. That means that for any positive real $S$, one can find an integer $n$ such that $\\sum_{i=1}^{n}{\\frac{1}{i}} > n$. In the code below, we will find one such $n$ for $S=10$." - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "S = 15 # target value for the sum\ns = 0 # variable that will store the value of the running (partial) sum\ni = 1\n\nwhile (sif/else) statements\n", + "- for loops\n", + "- while loops\n", + "- functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Assim como em outras linguagens de programação o Python tem várias funções de controle de fluxo e estruturas para os programas/scripts desenvolvidos." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Conditional - Condicional" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Uma variável boleana (bool) guarda valores Verdadeiro (True) ou Falso (False).\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "bool" ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "# Example 3: sum of infinite series (see problem above)\ndef limit(S):\n\n s = 0\n i = 0\n\n while (s3)\n", + "print(\"x = {0}\".format(x))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "y = False\n" + ] + } + ], + "source": [ + "y = 2==4\n", + "print(\"y = {0}\".format(y))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "# Example 4: evaluating a polynomial\ndef p(x, coef):\n return sum([c * x**i for i, c in enumerate(coef)])\n\nprint(p(2,(2,1,3)))", - "execution_count": 64, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": "16\n" - } + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x or y" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "coef = (2, 1, 3)\nx = 2", - "execution_count": 56, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "parcelas = [jp*(x**i) for i, jp in enumerate(coef)]\nparcelas", - "execution_count": 60, - "outputs": [ - { - "data": { - "text/plain": "[2, 2, 12]" - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x and y" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "False" ] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "sum(parcelas)", - "execution_count": 61, - "outputs": [ - { - "data": { - "text/plain": "16" - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "not x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Verdadeiro (True) e Falso (False) se comportam como 1 e 0 respectivamente.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "n! = n * (n-1)!, if n > 1 and f(1) = 1 " - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "# Example 5: Recursion\ndef factorial(n):\n if n == 1:\n return 1\n else:\n return n * factorial(n-1)", - "execution_count": 34, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "factorial(4)", - "execution_count": 29, - "outputs": [ - { - "data": { - "text/plain": "24" - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x+y" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "https://realpython.com/python-thinking-recursively/" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Exercícios" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "**1.** Da coluna de Marcelo Viana (IMPA) na Falha de São Paulo em 12/08/2018:
\n*Funciona assim: considere um inteiro positivo N qualquer. Se for par, divida por 2. Se for ímpar, multiplique por 3 e some 1. Substitua N pelo resultado obtido e siga repetindo esse procedimento. Por exemplo, se começar com N=7 obterá, sucessivamente, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 e, a partir daí, a sequência só repete os números 4, 2, 1, ciclicamente.*" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def par(x):\n if (x%2 == 0):\n return True\n else:\n return False", - "execution_count": 1, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def Marcelo_Viana(x):\n c = 0\n while x != 1:\n if par(x):\n x = x/2\n else:\n x = 3*x+1\n c += 1\n \n return c", - "execution_count": 7, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "for x in range(1, 15):\n print(\"{0}: {1}\".format(x, Marcelo_Viana(x)))", - "execution_count": 8, - "outputs": [ - { - "output_type": "stream", - "text": "1: 0\n2: 1\n3: 7\n4: 2\n5: 5\n6: 8\n7: 16\n8: 3\n9: 19\n10: 6\n11: 14\n12: 9\n13: 9\n14: 17\n", - "name": "stdout" - } + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x*y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "O exemplo abaixo mostra a sintaxe mais básica de uma estrutura de decisão:\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5 is greater than 4\n" + ] + } + ], + "source": [ + "x = 5\n", + "y = 4\n", + "t = x>y\n", + "if t:\n", + " print(\"{0} is greater than {1}\".format(x, y))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Se a condição ou uma série de condições for satisfeita, o códico identado abaixo é executado, caso contrário não. A identação no Python é feita com quatro (4) espaços simples, e utilizada para determinar o fim da estrutura. O Python é bem rigido com relação a identação do código e os programadores deveriam ser também (LEMBRE-SE: além de um código funcional somos responsáveis por comunicar descobertas e um código limpo e explicado ajuda a comunicação e trabalho em equipe).\n", + "\n", + "Note que algo acontece (o código é executado) somente se a condição for True. Em alguns casos, queremos que outra coisa acontece se a condição for False, nestes casos usamos as cláusulas \"se não\" (else) ou \"então se\" (elif).\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 is *NOT* greater than 5\n" + ] + } + ], + "source": [ + "x = 4\n", + "y = 5\n", + "if (x>y):\n", + " print(\"{0} is greater than {1}\".format(x, y))\n", + "else:\n", + " print(\"{0} is *NOT* greater than {1}\".format(x, y))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "O elif permite o teste de multiplas condições.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5 is greater than 4\n" + ] + } + ], + "source": [ + "x = 5\n", + "y = 4\n", + "if (x>y):\n", + " print(\"{0} is greater than {1}\".format(x, y))\n", + "elif (x==y):\n", + " print(\"{0} is equal to {1}\".format(x, y))\n", + "else:\n", + " print(\"{0} is smaller than {1}\".format(x, y))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "O Python vai sempre executar as instruções apenas da **primeira** condição que for verdadeira.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5 is greater than or equal to 5\n" + ] + } + ], + "source": [ + "x = 5\n", + "y = 5\n", + "if (x>=y):\n", + " print(\"{0} is greater than or equal to {1}\".format(x, y))\n", + "elif (x==y):\n", + " print(\"{0} is equal to {1}\".format(x, y))\n", + "else:\n", + " print(\"{0} is smaller than {1}\".format(x, y))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "colors = {0: 'green', 1: 'violet', 2: 'blue', 3: ' yellow'}" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "green\n" + ] + } + ], + "source": [ + "c = 0\n", + "if c == 0:\n", + " print(colors[0])\n", + "elif c == 0:\n", + " print(colors[1])\n", + "elif c == 2:\n", + " print(colors[2])\n", + "elif c == 3:\n", + " print(colors[3])\n", + "else:\n", + " print('I dont know.')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As condições if, podem ser agrupadas uma dentro da outra.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "7 is MUCH greater than 5\n" + ] + } + ], + "source": [ + "x = 7\n", + "y = 5\n", + "if (x>y):\n", + " if abs(x-y)<1:\n", + " print(\"{0} is greater than {1}\".format(x, y))\n", + " else:\n", + " print(\"{0} is MUCH greater than {1}\".format(x, y))\n", + "elif (x==y):\n", + " print(\"{0} is equal to {1}\".format(x, y))\n", + "else:\n", + " print(\"{0} is smaller than {1}\".format(x, y))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `for` loops - Ciclos condicionais `for`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Loops in Python, as in other programming languages, allows on to perform operations multiple times." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n" + ] + } + ], + "source": [ + "print(list(range(10)))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "55\n", + "1+2+3+...+10 = 55\n" + ] + } + ], + "source": [ + "# sum of the first 10 whole numbers\n", + "\n", + "gauss = 0 # the scalar 'gauss' will store the value of the running sum\n", + "parcelas = [] # the list parcelas will store the value of the running sum at each step\n", + "\n", + "for i in range(11):\n", + "\n", + " gauss += i\n", + "print(gauss)\n", + " \n", + "print(\"1+2+3+...+10 = \" + str(gauss))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0: Macro\n", + "---\n", + "1: Micro\n", + "---\n", + "2: Econometria\n", + "---\n", + "3: 537\n", + "---\n" + ] + } + ], + "source": [ + "# parsing a list\n", + "l = [\"Macro\", \"Micro\", \"Econometria\", 537]\n", + "for i, v in enumerate(l):\n", + " # the index at each step is assigned to 'i' \n", + " # the value at each stpe is assigned to 'v'\n", + " # both 'i' and 'v' are local, and cannot be accessed outside of the loop\n", + " print(\"{0}: {1}\".format(i, v))\n", + " print(\"---\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Macro\n", + "Micro\n", + "Econometria\n", + "537\n" + ] + } + ], + "source": [ + "# if you want to access only the values\n", + "for v in l:\n", + " print(v)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Macro: 20 alunos\n", + "Micro: 25 alunos\n", + "Econometria: 40 alunos\n" + ] + } + ], + "source": [ + "# parsing a list\n", + "d = { \"Macro\": [\"eae302\",20], \"Micro\": [\"eae301\",25], \"Econometria\": [\"eae303\",40] }\n", + "for key, value in d.items():\n", + " print(\"{0}: {1} alunos\".format(key, value[1]))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "B\n", + "a\n", + "r\n", + "c\n", + "e\n", + "l\n", + "o\n", + "n\n", + "a\n" + ] + } + ], + "source": [ + "# parsing a string\n", + "s = \"Barcelona\"\n", + "for x in s:\n", + " print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# `while` loops - Ciclos condicionais `while`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "De forma parecida com o for, o while executa o código enquanto uma condição for atendida.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5050\n" + ] + } + ], + "source": [ + "gauss = 0\n", + "i = 1\n", + "\n", + "while i<=100:\n", + " gauss += i\n", + " i += 1\n", + "\n", + "print(gauss)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nós sabemos que $lim_{n\\rightarrow +\\infty} \\sum_{i=1}^{n}{\\frac{1}{i}} = +\\infty$. Que significa que para qualquer positivo real $S$, podemos encontrar um inteiro $n$ de tal modo que $\\sum_{i=1}^{n}{\\frac{1}{i}} > n$. No código abaixo, vamos encontrar um tal $n$ para $S=10$.\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n = 1835422\n" + ] + } + ], + "source": [ + "S = 15 # target value for the sum\n", + "s = 0 # variable that will store the value of the running (partial) sum\n", + "i = 1\n", + "\n", + "while (s" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "# Example 1 (trivial): a function that takes as arguments two real numbers and returns their sum\n", + "def my_sum(x, y):\n", + " return x+y" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3\n" + ] + } + ], + "source": [ + "# testing my_sum\n", + "print(my_sum(2, 1))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "# Example 2: improving my_sum\n", + "def my_sum(x, y=0):\n", + " \"\"\"\n", + " my_sum(x, y=0): takes two integers (x and y) and returns their sum\n", + " \"\"\"\n", + " \n", + " if isinstance(x, (int, float)) and isinstance(y, (int, float)):\n", + " return (x+y, \"{0} + {1} = {2}\".format(x, y, x+y))" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(2, '2 + 0 = 2')\n" + ] + } + ], + "source": [ + "# testing my_sum\n", + "s = my_sum(1, 2)\n", + "#print(type(s))\n", + "#print(s[0])\n", + "#print(s[1])\n", + "\n", + "#print(my_sum.__doc__)\n", + "print(my_sum(2))\n", + "#print(my_sum(2, \"Egídio\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1 + 2 = 3'" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "**2.** Write a Python program to find those numbers which are divisible by 7 and multiple of 5, between 1500 and 2700 (both included)." - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def div7(x):\n if (x%7 == 0):\n return True\n else:\n return False\n \ndef div5(x):\n if (x%5 == 0):\n return True\n else:\n return False\n\nJ = []\nfor x in range(1500, 2700+1):\n if div7(x) and div5(x):\n print(x)\n J.append(x)", - "execution_count": 9, - "outputs": [ - { - "output_type": "stream", - "text": "1505\n1540\n1575\n1610\n1645\n1680\n1715\n1750\n1785\n1820\n1855\n1890\n1925\n1960\n1995\n2030\n2065\n2100\n2135\n2170\n2205\n2240\n2275\n2310\n2345\n2380\n2415\n2450\n2485\n2520\n2555\n2590\n2625\n2660\n2695\n", - "name": "stdout" - } + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "# Example 3: sum of infinite series (see problem above)\n", + "def limit(S):\n", + "\n", + " s = 0\n", + " i = 0\n", + "\n", + " while (s 1 and f(1) = 1 " + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# Example 5: Recursion\n", + "def factorial(n):\n", + " if n == 1:\n", + " return 1\n", + " else:\n", + " return n * factorial(n-1)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "24" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "**6.** Write a Python program to construct the following pattern, using a nested loop number:
\n1
\n22
\n333
\n4444
\n55555
\n666666
\n7777777
\n88888888
\n999999999" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# Jeito errado\nfor i in range(1, 10):\n print(str(i)*i)", - "execution_count": 30, - "outputs": [ - { - "output_type": "stream", - "text": "1\n22\n333\n4444\n55555\n666666\n7777777\n88888888\n999999999\n", - "name": "stdout" - } + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "factorial(4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Veja esse exemplo (artigo em inglês) de como pensar de forma recursiva usando Python.\n", + "Nele o autor Abhirag Awasthi, mostra como o Papai Noel programaria seus elfos para entregar os presentes de natal em cada casa sem ter de passar as instruções novamente para cada uma das casas ao redor do mundo.\n", + "https://realpython.com/python-thinking-recursively/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercícios" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**1.** Da coluna de Marcelo Viana (IMPA) na Folha de São Paulo em 12/08/2018:
\n", + "*Funciona assim: considere um inteiro positivo N qualquer.*\n", + "- Se for par, divida por 2.\n", + "- Se for ímpar, multiplique por 3 e some 1.\n", + "- Substitua N pelo resultado obtido e siga repetindo esse procedimento.\n", + "\n", + "*Por exemplo, se começar com N=7 obterá, sucessivamente, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 e, a partir daí, a sequência só repete os números 4, 2, 1, ciclicamente.*" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "def par(x):\n", + " if (x%2 == 0):\n", + " return True\n", + " else:\n", + " return False" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "def Marcelo_Viana(x):\n", + " c = 0\n", + " while x != 1:\n", + " if par(x):\n", + " x = x/2\n", + " else:\n", + " x = 3*x+1\n", + " c += 1\n", + " \n", + " return c" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1: 0\n", + "2: 1\n", + "3: 7\n", + "4: 2\n", + "5: 5\n", + "6: 8\n", + "7: 16\n", + "8: 3\n", + "9: 19\n", + "10: 6\n", + "11: 14\n", + "12: 9\n", + "13: 9\n", + "14: 17\n" + ] + } + ], + "source": [ + "for x in range(1, 15):\n", + " print(\"{0}: {1}\".format(x, Marcelo_Viana(x)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**2.** Escreva um script em Python para encontrar os números divisíveis por 7 e multiplos de 5, estes devem estar entre 1500 e 2700 (incluindo os dois).\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1505\n", + "1540\n", + "1575\n", + "1610\n", + "1645\n", + "1680\n", + "1715\n", + "1750\n", + "1785\n", + "1820\n", + "1855\n", + "1890\n", + "1925\n", + "1960\n", + "1995\n", + "2030\n", + "2065\n", + "2100\n", + "2135\n", + "2170\n", + "2205\n", + "2240\n", + "2275\n", + "2310\n", + "2345\n", + "2380\n", + "2415\n", + "2450\n", + "2485\n", + "2520\n", + "2555\n", + "2590\n", + "2625\n", + "2660\n", + "2695\n" + ] + } + ], + "source": [ + "def div7(x):\n", + " if (x%7 == 0):\n", + " return True\n", + " else:\n", + " return False\n", + " \n", + "def div5(x):\n", + " if (x%5 == 0):\n", + " return True\n", + " else:\n", + " return False\n", + "\n", + "J = []\n", + "for x in range(1500, 2700+1):\n", + " if div7(x) and div5(x):\n", + " print(x)\n", + " J.append(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**3.** Escreva um código em Python para checar se um triângulo é equilátero, isósceles ou escaleno.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**4.** Escreva um programa em Python para encontrar a mediana dos valores 3,2 e 1.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "def mediana(x, y, z):\n", + " l = [x, y, z]\n", + " l.sort()\n", + " return l[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# Jeito certo\nfor i in range(1, 10):\n for j in range(i):\n print(i, end=\"\")\n print(\"\\n\", end=\"\")", - "execution_count": 36, - "outputs": [ - { - "output_type": "stream", - "text": "1\n22\n333\n4444\n55555\n666666\n7777777\n88888888\n999999999\n", - "name": "stdout" - } + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mediana(3, 1, 2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**5.** Escreva um programa em Python para calcular a soma e a média de números inteiros (input do usuário). Se o usuário digitar 0, termine o programa.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "def sumario():\n", + " \n", + " n = int(input(\"digite um número natural: \"))\n", + "\n", + " s = 0\n", + " for i in range(n):\n", + " x = float(input(\"digite um número: \"))\n", + " s += x\n", + " \n", + " return (s, s/n)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdin", + "output_type": "stream", + "text": [ + "digite um número natural: 2\n", + "digite um número: 53\n", + "digite um número: 22\n" + ] + }, + { + "data": { + "text/plain": [ + "(75.0, 37.5)" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "**7.** Write a Python program to check the validity of password input by users.

\nValidation :

\n\nAt least 1 letter between [a-z] and 1 letter between [A-Z].
\nAt least 1 number between [0-9].
\nAt least 1 character from [$#@].
\nMinimum length 6 characters.
\nMaximum length 16 characters." - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# At least 1 character from [$#@]. \ndef cond_0(s):\n r = {\"$\", \"#\", \"@\"}\n if r.intersection(set(s)) == set():\n return False\n else:\n return True", - "execution_count": 51, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# Minimum length 6 characters & Maximum length 16 characters.\ndef cond_1(s):\n if len(s) >= 6 and len(s) <= 16:\n return True\n else:\n return False", - "execution_count": 57, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# At least 1 letter between [a-z] and 1 letter between [A-Z]. \ndef cond_2(s):\n if s.lower() == s:\n return False\n elif s.upper() == s:\n return False\n else:\n return True", - "execution_count": 3, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# At least 1 number between [0-9]\ndef cond_3(s):\n for i in range(0, 10):\n if str(i) in s:\n return True\n return False", - "execution_count": 19, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def password(s):\n if cond_0(s) and cond_1(s) and cond_2(s) and cond_3(s):\n return True\n else:\n return False", - "execution_count": 23, - "outputs": [] - } - ], - "metadata": { - "kernelspec": { - "name": "python3", - "display_name": "Python 3", - "language": "python" - }, - "language_info": { - "mimetype": "text/x-python", - "nbconvert_exporter": "python", - "name": "python", - "pygments_lexer": "ipython3", - "version": "3.5.4", - "file_extension": ".py", - "codemirror_mode": { - "version": 3, - "name": "ipython" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sumario()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**6.** Escreva um programa em Python que construa o resultado abaixo, usando ciclos condicionais agrupados:
\n", + "1
\n", + "22
\n", + "333
\n", + "4444
\n", + "55555
\n", + "666666
\n", + "7777777
\n", + "88888888
\n", + "999999999" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n", + "22\n", + "333\n", + "4444\n", + "55555\n", + "666666\n", + "7777777\n", + "88888888\n", + "999999999\n" + ] + } + ], + "source": [ + "# Jeito errado\n", + "for i in range(1, 10):\n", + " print(str(i)*i)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1\n", + "22\n", + "333\n", + "4444\n", + "55555\n", + "666666\n", + "7777777\n", + "88888888\n", + "999999999\n" + ] + } + ], + "source": [ + "# Jeito certo\n", + "for i in range(1, 10):\n", + " for j in range(i):\n", + " print(i, end=\"\")\n", + " print(\"\\n\", end=\"\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**7.** Escreva um programa em Python para validar uma senha inserida pelo usuário.

\n", + "A senha deve conter:
\n", + "\n", + "Pelo menos 1 letra entre [a-z] e 1 letra entre [A-Z].
\n", + "Pelo menos 1 número entre [0-9].
\n", + "Pelo menos 1 destes caracteres especiais [$#@].
\n", + "Mínimo de 6 caracters.
\n", + "Máximo de 16 caracters.\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "# At least 1 character from [$#@]. \n", + "def cond_0(s):\n", + " r = {\"$\", \"#\", \"@\"}\n", + " if r.intersection(set(s)) == set():\n", + " return False\n", + " else:\n", + " return True" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [], + "source": [ + "# Minimum length 6 characters & Maximum length 16 characters.\n", + "def cond_1(s):\n", + " if len(s) >= 6 and len(s) <= 16:\n", + " return True\n", + " else:\n", + " return False" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "# At least 1 letter between [a-z] and 1 letter between [A-Z]. \n", + "def cond_2(s):\n", + " if s.lower() == s:\n", + " return False\n", + " elif s.upper() == s:\n", + " return False\n", + " else:\n", + " return True" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "# At least 1 number between [0-9]\n", + "def cond_3(s):\n", + " for i in range(0, 10):\n", + " if str(i) in s:\n", + " return True\n", + " return False" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "def password(s):\n", + " if cond_0(s) and cond_1(s) and cond_2(s) and cond_3(s):\n", + " return True\n", + " else:\n", + " return False" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb b/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb index 01a5936..d69cd89 100644 --- a/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb +++ b/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb @@ -16,9 +16,22 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "OperationalError", + "evalue": "could not connect to server: Operation timed out\n\tIs the server running on host \"data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com\" (52.44.6.84) and accepting\n\tTCP/IP connections on port 5432?\n", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mOperationalError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mpwd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'trainingwrite'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mconn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpsycopg2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconnect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"host='{host}' port={port} dbname='{dbname}' user={username} password={pwd}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/psycopg2/__init__.py\u001b[0m in \u001b[0;36mconnect\u001b[0;34m(dsn, connection_factory, cursor_factory, **kwargs)\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0mdsn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_ext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake_dsn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdsn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 130\u001b[0;31m \u001b[0mconn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_connect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdsn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconnection_factory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconnection_factory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwasync\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 131\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcursor_factory\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0mconn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcursor_factory\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcursor_factory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mOperationalError\u001b[0m: could not connect to server: Operation timed out\n\tIs the server running on host \"data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com\" (52.44.6.84) and accepting\n\tTCP/IP connections on port 5432?\n" + ] + } + ], "source": [ "import pandas as pd\n", "import pandas.io.sql as sqlio\n", @@ -369,7 +382,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.6.8" } }, "nbformat": 4, diff --git "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula1.ipynb" "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula1.ipynb" index 7778080..997f9bd 100644 --- "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula1.ipynb" +++ "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula1.ipynb" @@ -342,7 +342,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.6.8" } }, "nbformat": 4, diff --git "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula1.ipynb" "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula1.ipynb" index 61f3ffa..f816767 100644 --- "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula1.ipynb" +++ "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula1.ipynb" @@ -28,685 +28,687 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "image/svg+xml": [ - "\r\n", - "\r\n", - "\r\n", - "\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - "\r\n" + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -787,7 +789,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -795,10 +797,10 @@ "output_type": "stream", "text": [ "100 100\n", - "[10.55374249 8.29790426 9.69520582 9.30412856 10.0188368 10.76275235\n", - " 8.35069333 9.63132558 10.87050061 9.51223173]\n", - "[ -8.57072606 -10.57115866 -9.90906428 -10.29654157 -16.81454513\n", - " -7.31634713 -6.28246351 -12.7298158 -14.63215864 -10.75692555]\n" + "[11.50638015 8.91796137 8.5287626 11.14152409 10.66816049 6.88176928\n", + " 10.48076567 10.24756271 10.28450948 10.40363591]\n", + "[-19.70677437 -5.7385174 -7.27760569 -13.20295844 -8.1920152\n", + " -5.02467154 -9.9714921 -11.76001434 -16.06845711 -5.73377351]\n" ] } ], @@ -814,596 +816,598 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 10, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/svg+xml": [ - "\r\n", - "\r\n", - "\r\n", - "\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - "\r\n" + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -1413,14 +1417,14 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "(-0.28401696991395853, 0.004187473404737506)\n" + "(-0.2660505977096023, 0.007462719677197317)\n" ] } ], @@ -1432,14 +1436,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[(10.55374248938698, -8.570726060565887), (8.297904255357617, -10.571158661789699), (9.695205824957856, -9.90906428122503), (9.304128562343449, -10.296541574770174), (10.018836797385346, -16.81454512667393)]\n" + "[(11.506380149363725, -19.70677437336482), (8.917961369077013, -5.738517403609567), (8.528762599273342, -7.277605689387169), (11.14152409078903, -13.202958442165897), (10.668160493323981, -8.192015199233175)]\n" ] } ], @@ -1450,7 +1454,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -1477,16 +1481,16 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "-0.28401696991396297" + "-0.2660505977095853" ] }, - "execution_count": 14, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -1526,7 +1530,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.6.8" } }, "nbformat": 4, diff --git "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/correla\303\247\303\265es_deepdive.ipynb" "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/correla\303\247\303\265es_deepdive.ipynb" index 2afc30f..266c553 100644 --- "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/correla\303\247\303\265es_deepdive.ipynb" +++ "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/correla\303\247\303\265es_deepdive.ipynb" @@ -9,1382 +9,1112 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/eduardo/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", + " return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n" + ] + }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 3, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/svg+xml": [ - "\r\n", - "\r\n", - "\r\n", - "\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - "\r\n" + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -1440,1347 +1170,1095 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 6, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/svg+xml": [ - "\r\n", - "\r\n", - "\r\n", - "\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - "\r\n" + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -2831,7 +2309,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.8" } }, "nbformat": 4, From 7de97d52aa2378cb12f0eada47c7cd9ace0389db Mon Sep 17 00:00:00 2001 From: Eduardo Santos Date: Mon, 28 Jan 2019 17:43:20 -0200 Subject: [PATCH 3/6] pre Math Algebra Linear MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Tradução e inclusão do SQL --- .../2-math/algebra_linear_com_numpy.ipynb | 5511 +++++++++++------ 1 file changed, 3606 insertions(+), 1905 deletions(-) diff --git a/0-pre-requisitos/2-math/algebra_linear_com_numpy.ipynb b/0-pre-requisitos/2-math/algebra_linear_com_numpy.ipynb index 4d8eb7c..d935926 100644 --- a/0-pre-requisitos/2-math/algebra_linear_com_numpy.ipynb +++ b/0-pre-requisitos/2-math/algebra_linear_com_numpy.ipynb @@ -1,1945 +1,3646 @@ { - "cells": [ - { - "metadata": {}, - "cell_type": "markdown", - "source": "# Numpy" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import numpy as np", - "execution_count": 33, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Why `numpy`?" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import timeit", - "execution_count": 2, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "l = range(1000)\n%timeit [i**2 for i in l]", - "execution_count": 3, - "outputs": [ - { - "output_type": "stream", - "text": "311 µs ± 6.69 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n", - "name": "stdout" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Algebra Linear" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Conceitos de algebra linear https://youtu.be/Y0ZyUhi0khY ou https://youtu.be/D4ewzYFM8LY" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Biblioteca Numpy" + ] + }, + { + "cell_type": "code", + "execution_count": 211, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Porque usar `numpy`? " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Utilizando a biblioteca timeit conseguimos ver o tempo de processamento para o código Python criado e isso deixa claro o aumento de performance quando estamos usando a biblioteca Numpy." + ] + }, + { + "cell_type": "code", + "execution_count": 212, + "metadata": {}, + "outputs": [], + "source": [ + "import timeit" + ] + }, + { + "cell_type": "code", + "execution_count": 213, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "357 µs ± 15.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" + ] + } + ], + "source": [ + "l = range(1000)\n", + "%timeit [i**2 for i in l]" + ] + }, + { + "cell_type": "code", + "execution_count": 214, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.73 µs ± 72.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" + ] + } + ], + "source": [ + "a = np.arange(1000)\n", + "%timeit a**2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Arrays - Matrizes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Um `ndarray` é um contêiner multidimensional (geralmente de tamanho fixo) de itens do mesmo tipo e tamanho. O número de dimensões e itens em uma matriz é definido por sua forma, que é uma tupla de N inteiros positivos que especificam os tamanhos de cada dimensão. O tipo de itens na matriz é especificado por um objeto de tipo de dados separado (`dtype`), um dos quais está associado a cada ndarray.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 215, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "numpy.ndarray" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "a = np.arange(1000)\n%timeit a**2", - "execution_count": 4, - "outputs": [ - { - "output_type": "stream", - "text": "1.66 µs ± 47.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n", - "name": "stdout" - } + }, + "execution_count": 215, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y = np.ndarray(shape = (1, 4))\n", + "type(y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Criando uma matriz a partir de uma lista:\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 216, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [4, 5, 6]])" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Arrays" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "An `ndarray` is a (usually fixed-size) multidimensional container of items of the same type and size. The number of dimensions and items in an array is defined by its `shape`, which is a tuple of N positive integers that specify the sizes of each dimension. The type of items in the array is specified by a separate data-type object (`dtype`), one of which is associated with each ndarray." - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "y = np.ndarray(shape = (1, 4))\ntype(y)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "Creating an array from a list:" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x = np.array([[1, 2, 3], [4, 5, 6]], np.int)\nx", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "type(x)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x.shape", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x.ndim", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x.dtype", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "Example of a 3-dimensional array" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "z = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], np.int)\nz", - "execution_count": 5, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 5, - "data": { - "text/plain": "array([[[ 1, 2, 3],\n [ 4, 5, 6]],\n\n [[ 7, 8, 9],\n [10, 11, 12]]])" - }, - "metadata": {} - } + }, + "execution_count": 216, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = np.array([[1, 2, 3], [4, 5, 6]], np.int)\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 217, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "numpy.ndarray" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "print(\"Array has {0} dimensions:\".format(z.ndim))\nfor d, s in enumerate(z.shape):\n print(\"-dimension {0} has size {1}.\".format(d, s))", - "execution_count": 6, - "outputs": [ - { - "output_type": "stream", - "text": "Array has 3 dimensions:\n-dimension 0 has size 2.\n-dimension 1 has size 2.\n-dimension 2 has size 3.\n", - "name": "stdout" - } + }, + "execution_count": 217, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 218, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 3)" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "### Changing size (or shape)" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x.reshape(3, 2)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x.resize(3, 2)\nx", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "type(x.shape)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z = np.array([1, 2, 3, 4, 5, 6]).reshape((2, 3))\nz", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "### Creating arrays" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "#### `np.empty`" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x = np.empty(5)\nx", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x.shape", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x.resize((5, 1))\nprint(x.shape)\nx", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "y = np.empty((5, 1))\ny", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "#### `np.linspace`\n" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x = np.linspace(2, 10, 3)\nx", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "x.shape", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "#### `np.identity`" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z = np.identity(3)\nz", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "`np.eye(3)` would produce the same outcome." - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "#### `np.ones`" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z = np.ones(3)\nz", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.shape", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z = np.ones(3, dtype=int)\nz", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "d = np.array([0, 1, 1, 0, 0], dtype=bool)\nd", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "### Accessing elements of an array" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z = np.linspace(1, 9, 9)\nz", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.shape", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z[0]", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z[-1]", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z[2:6]", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z = z.reshape(3, 3)\nz", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.shape", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z[0:1, :]", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z[0:1]", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z[1:, 1:]", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "rows = [0, 1]\nz[rows, :]", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z[:] = 10\nz", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "### Array Methods" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z = np.array([2, 1, 4, 3], dtype=float)\nz", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "print(dir(z))", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.clip(1, 2)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a = np.array([[1, 2], [3, 4], [5, 6]])", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "a.compress([False, True, True], axis=0)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "help(np.where)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "help(np.size)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "#### sorting" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.argsort()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.sort()\nz", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "#### statistics" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.sum()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.mean()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.var()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.std()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "z.max()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z.argmax()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z.cumsum()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z.cumprod()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z.shape = (2, 2)\nz", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z.T", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "np.searchsorted([2,3,1,4,5], 2.5)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "np.searchsorted([1,2,3,4,5], 3, side='right')", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a = np.array([1, 2, 3, 4])\nb = np.array([5, 6, 7, 8])\na + b", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a * b", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a + 10", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a * 10", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "A = np.ones((2, 2))\nB = np.ones((2, 2))\nA + B", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "A + 10", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "A", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "B", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "A * B", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "A @ B", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "A = np.array((1, 2))\nA", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "A.shape", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "B = np.array((10, 20))\nA @ B", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "A = np.array(((1, 2), (3, 4)))\nA", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "A @ (0, 1)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "np.dot(a, b)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a = np.array([42, 44])\na", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a[-1] = 0\na", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "#### *Broadcasting*" - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a = np.array([[0.0,0.0,0.0],[10.0,10.0,10.0],[20.0,20.0,20.0],[30.0,30.0,30.0]]) \na", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "b = np.array([1.0,2.0,3.0])\nb", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a+b", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "* Arrays have exactly the same shape.\n\n* Arrays have the same number of dimensions and the length of each dimension is either a common length or 1.\n\n* Array having too few dimensions can have its shape prepended with a dimension of length 1, so that the above stated property is true." - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a = np.random.randn(3)\na", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "b = a", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "b", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "b[0] = 0.0\na", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a = np.random.randn(3)\na", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "b = np.copy(a)\nb", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "b[:] = 1\nb", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "a", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z = np.array([1, 2, 3])\nnp.sin(z)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "n = len(z)\ny = np.empty(n)\nfor i in range(n):\n y[i] = np.sin(z[i])", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "y", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "(1 / np.sqrt(2 * np.pi)) * np.exp(- 0.5 * z**2)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "x = np.random.randn(4)\nx", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "np.where(x > 0, 1, 0)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "def f(x): return 1 if x > 0 else 0\n\nf = np.vectorize(f)\nf(x)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z = np.array([2, 3])\ny = np.array([2, 3])\nz == y", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "y[0] = 5\nz == y", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z != y", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "z > 3", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true, - "trusted": false - }, - "cell_type": "code", - "source": "b = z > 3\nb", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Matrix Algebra ( `linalg`)" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "from numpy import linalg as lg", - "execution_count": 8, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "A = np.array([[1, 2], [3, 4]])", - "execution_count": 9, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "a = np.array([[1,2],[3,4]]) \nb = np.array([[5,6],[7,8]])", - "execution_count": 10, - "outputs": [] - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "print(a)\nprint(b)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "np.concatenate((a,b))", - "execution_count": 11, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 11, - "data": { - "text/plain": "array([[1, 2],\n [3, 4],\n [5, 6],\n [7, 8]])" - }, - "metadata": {} - } + }, + "execution_count": 218, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 219, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 219, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.ndim" + ] + }, + { + "cell_type": "code", + "execution_count": 220, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('int64')" + ] + }, + "execution_count": 220, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.dtype" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exemplo de uma matriz tridimencional:\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 221, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[ 1, 2, 3],\n", + " [ 4, 5, 6]],\n", + "\n", + " [[ 7, 8, 9],\n", + " [10, 11, 12]]])" + ] + }, + "execution_count": 221, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], np.int)\n", + "z" + ] + }, + { + "cell_type": "code", + "execution_count": 222, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Array has 3 dimensions:\n", + "-dimension 0 has size 2.\n", + "-dimension 1 has size 2.\n", + "-dimension 2 has size 3.\n" + ] + } + ], + "source": [ + "print(\"Array has {0} dimensions:\".format(z.ndim))\n", + "for d, s in enumerate(z.shape):\n", + " print(\"-dimension {0} has size {1}.\".format(d, s))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Changing size (or shape) - Mudando o tamanho ou forma da matriz" + ] + }, + { + "cell_type": "code", + "execution_count": 223, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [4, 5, 6]])" + ] + }, + "execution_count": 223, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 224, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])" + ] + }, + "execution_count": 224, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.reshape(3, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 225, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [4, 5, 6]])" + ] + }, + "execution_count": 225, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 226, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6]])" + ] + }, + "execution_count": 226, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.resize(3, 2)\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 227, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tuple" + ] + }, + "execution_count": 227, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(x.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 228, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [4, 5, 6]])" + ] + }, + "execution_count": 228, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = np.array([1, 2, 3, 4, 5, 6]).reshape((2, 3))\n", + "z" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating arrays - Criando Matrizes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### `np.empty`" + ] + }, + { + "cell_type": "code", + "execution_count": 229, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2.5e-323, 3.0e-323, 3.5e-323, 4.0e-323, 4.4e-323])" + ] + }, + "execution_count": 229, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = np.empty(5)\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 230, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5,)" + ] + }, + "execution_count": 230, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 231, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(5, 1)\n" + ] + }, + { + "data": { + "text/plain": [ + "array([[2.5e-323],\n", + " [3.0e-323],\n", + " [3.5e-323],\n", + " [4.0e-323],\n", + " [4.4e-323]])" + ] + }, + "execution_count": 231, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.resize((5, 1))\n", + "print(x.shape)\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 232, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2.5e-323],\n", + " [3.0e-323],\n", + " [3.5e-323],\n", + " [4.0e-323],\n", + " [4.4e-323]])" + ] + }, + "execution_count": 232, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y = np.empty((5, 1))\n", + "y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### `np.linspace`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 233, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 2., 6., 10.])" + ] + }, + "execution_count": 233, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = np.linspace(2, 10, 3)\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 234, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(3,)" + ] + }, + "execution_count": 234, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### `np.identity`" + ] + }, + { + "cell_type": "code", + "execution_count": 235, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 0., 0.],\n", + " [0., 1., 0.],\n", + " [0., 0., 1.]])" + ] + }, + "execution_count": 235, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = np.identity(3)\n", + "z" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`np.eye(3)` would produce the same outcome." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### `np.ones`" + ] + }, + { + "cell_type": "code", + "execution_count": 236, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1., 1.])" + ] + }, + "execution_count": 236, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = np.ones(3)\n", + "z" + ] + }, + { + "cell_type": "code", + "execution_count": 237, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(3,)" + ] + }, + "execution_count": 237, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 238, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 1, 1])" + ] + }, + "execution_count": 238, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = np.ones(3, dtype=int)\n", + "z" + ] + }, + { + "cell_type": "code", + "execution_count": 239, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([False, True, True, False, False])" + ] + }, + "execution_count": 239, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d = np.array([0, 1, 1, 0, 0], dtype=bool)\n", + "d" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Accessing elements of an array - Acessando elementos da matriz" + ] + }, + { + "cell_type": "code", + "execution_count": 240, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 2., 3., 4., 5., 6., 7., 8., 9.])" + ] + }, + "execution_count": 240, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = np.linspace(1, 9, 9)\n", + "z" + ] + }, + { + "cell_type": "code", + "execution_count": 241, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(9,)" + ] + }, + "execution_count": 241, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 242, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 242, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 243, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9.0" + ] + }, + "execution_count": 243, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z[-1]" + ] + }, + { + "cell_type": "code", + "execution_count": 244, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([3., 4., 5., 6.])" + ] + }, + "execution_count": 244, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z[2:6]" + ] + }, + { + "cell_type": "code", + "execution_count": 245, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 2., 3.],\n", + " [4., 5., 6.],\n", + " [7., 8., 9.]])" + ] + }, + "execution_count": 245, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = z.reshape(3, 3)\n", + "z" + ] + }, + { + "cell_type": "code", + "execution_count": 246, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(3, 3)" + ] + }, + "execution_count": 246, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 247, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 2., 3.]])" + ] + }, + "execution_count": 247, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z[0:1, :]" + ] + }, + { + "cell_type": "code", + "execution_count": 248, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 2., 3.]])" + ] + }, + "execution_count": 248, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z[0:1]" + ] + }, + { + "cell_type": "code", + "execution_count": 249, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[5., 6.],\n", + " [8., 9.]])" + ] + }, + "execution_count": 249, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z[1:, 1:]" + ] + }, + { + "cell_type": "code", + "execution_count": 250, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 2., 3.],\n", + " [4., 5., 6.]])" + ] + }, + "execution_count": 250, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rows = [0, 1]\n", + "z[rows, :]" + ] + }, + { + "cell_type": "code", + "execution_count": 251, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[10., 10., 10.],\n", + " [10., 10., 10.],\n", + " [10., 10., 10.]])" + ] + }, + "execution_count": 251, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z[:] = 10\n", + "z" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Array Methods - Métodos para Matrizes" + ] + }, + { + "cell_type": "code", + "execution_count": 252, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2., 1., 4., 3.])" + ] + }, + "execution_count": 252, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = np.array([2, 1, 4, 3], dtype=float)\n", + "z" + ] + }, + { + "cell_type": "code", + "execution_count": 253, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['T', '__abs__', '__add__', '__and__', '__array__', '__array_finalize__', '__array_interface__', '__array_prepare__', '__array_priority__', '__array_struct__', '__array_ufunc__', '__array_wrap__', '__bool__', '__class__', '__complex__', '__contains__', '__copy__', '__deepcopy__', '__delattr__', '__delitem__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__iand__', '__ifloordiv__', '__ilshift__', '__imatmul__', '__imod__', '__imul__', '__index__', '__init__', '__init_subclass__', '__int__', '__invert__', '__ior__', '__ipow__', '__irshift__', '__isub__', '__iter__', '__itruediv__', '__ixor__', '__le__', '__len__', '__lshift__', '__lt__', '__matmul__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmatmul__', '__rmod__', '__rmul__', '__ror__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__setitem__', '__setstate__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__xor__', 'all', 'any', 'argmax', 'argmin', 'argpartition', 'argsort', 'astype', 'base', 'byteswap', 'choose', 'clip', 'compress', 'conj', 'conjugate', 'copy', 'ctypes', 'cumprod', 'cumsum', 'data', 'diagonal', 'dot', 'dtype', 'dump', 'dumps', 'fill', 'flags', 'flat', 'flatten', 'getfield', 'imag', 'item', 'itemset', 'itemsize', 'max', 'mean', 'min', 'nbytes', 'ndim', 'newbyteorder', 'nonzero', 'partition', 'prod', 'ptp', 'put', 'ravel', 'real', 'repeat', 'reshape', 'resize', 'round', 'searchsorted', 'setfield', 'setflags', 'shape', 'size', 'sort', 'squeeze', 'std', 'strides', 'sum', 'swapaxes', 'take', 'tobytes', 'tofile', 'tolist', 'tostring', 'trace', 'transpose', 'var', 'view']\n" + ] + } + ], + "source": [ + "print(dir(z))" + ] + }, + { + "cell_type": "code", + "execution_count": 254, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2., 1., 2., 2.])" + ] + }, + "execution_count": 254, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.clip(1, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 255, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "a = np.array([[1, 2], [3, 4], [5, 6]])" + ] + }, + { + "cell_type": "code", + "execution_count": 256, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[3, 4],\n", + " [5, 6]])" + ] + }, + "execution_count": 256, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a.compress([False, True, True], axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 257, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on built-in function where in module numpy.core.multiarray:\n", + "\n", + "where(...)\n", + " where(condition, [x, y])\n", + " \n", + " Return elements, either from `x` or `y`, depending on `condition`.\n", + " \n", + " If only `condition` is given, return ``condition.nonzero()``.\n", + " \n", + " Parameters\n", + " ----------\n", + " condition : array_like, bool\n", + " When True, yield `x`, otherwise yield `y`.\n", + " x, y : array_like, optional\n", + " Values from which to choose. `x`, `y` and `condition` need to be\n", + " broadcastable to some shape.\n", + " \n", + " Returns\n", + " -------\n", + " out : ndarray or tuple of ndarrays\n", + " If both `x` and `y` are specified, the output array contains\n", + " elements of `x` where `condition` is True, and elements from\n", + " `y` elsewhere.\n", + " \n", + " If only `condition` is given, return the tuple\n", + " ``condition.nonzero()``, the indices where `condition` is True.\n", + " \n", + " See Also\n", + " --------\n", + " nonzero, choose\n", + " \n", + " Notes\n", + " -----\n", + " If `x` and `y` are given and input arrays are 1-D, `where` is\n", + " equivalent to::\n", + " \n", + " [xv if c else yv for (c,xv,yv) in zip(condition,x,y)]\n", + " \n", + " Examples\n", + " --------\n", + " >>> np.where([[True, False], [True, True]],\n", + " ... [[1, 2], [3, 4]],\n", + " ... [[9, 8], [7, 6]])\n", + " array([[1, 8],\n", + " [3, 4]])\n", + " \n", + " >>> np.where([[0, 1], [1, 0]])\n", + " (array([0, 1]), array([1, 0]))\n", + " \n", + " >>> x = np.arange(9.).reshape(3, 3)\n", + " >>> np.where( x > 5 )\n", + " (array([2, 2, 2]), array([0, 1, 2]))\n", + " >>> x[np.where( x > 3.0 )] # Note: result is 1D.\n", + " array([ 4., 5., 6., 7., 8.])\n", + " >>> np.where(x < 5, x, -1) # Note: broadcasting.\n", + " array([[ 0., 1., 2.],\n", + " [ 3., 4., -1.],\n", + " [-1., -1., -1.]])\n", + " \n", + " Find the indices of elements of `x` that are in `goodvalues`.\n", + " \n", + " >>> goodvalues = [3, 4, 7]\n", + " >>> ix = np.isin(x, goodvalues)\n", + " >>> ix\n", + " array([[False, False, False],\n", + " [ True, True, False],\n", + " [False, True, False]])\n", + " >>> np.where(ix)\n", + " (array([1, 1, 2]), array([0, 1, 1]))\n", + "\n" + ] + } + ], + "source": [ + "help(np.where)" + ] + }, + { + "cell_type": "code", + "execution_count": 258, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on function size in module numpy.core.fromnumeric:\n", + "\n", + "size(a, axis=None)\n", + " Return the number of elements along a given axis.\n", + " \n", + " Parameters\n", + " ----------\n", + " a : array_like\n", + " Input data.\n", + " axis : int, optional\n", + " Axis along which the elements are counted. By default, give\n", + " the total number of elements.\n", + " \n", + " Returns\n", + " -------\n", + " element_count : int\n", + " Number of elements along the specified axis.\n", + " \n", + " See Also\n", + " --------\n", + " shape : dimensions of array\n", + " ndarray.shape : dimensions of array\n", + " ndarray.size : number of elements in array\n", + " \n", + " Examples\n", + " --------\n", + " >>> a = np.array([[1,2,3],[4,5,6]])\n", + " >>> np.size(a)\n", + " 6\n", + " >>> np.size(a,1)\n", + " 3\n", + " >>> np.size(a,0)\n", + " 2\n", + "\n" + ] + } + ], + "source": [ + "help(np.size)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### sorting - ordenação" + ] + }, + { + "cell_type": "code", + "execution_count": 259, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 0, 3, 2])" + ] + }, + "execution_count": 259, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.argsort()" + ] + }, + { + "cell_type": "code", + "execution_count": 260, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 2., 3., 4.])" + ] + }, + "execution_count": 260, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.sort()\n", + "z" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### statistics - estatísticos" + ] + }, + { + "cell_type": "code", + "execution_count": 261, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10.0" + ] + }, + "execution_count": 261, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 262, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.5" + ] + }, + "execution_count": 262, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 263, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.25" + ] + }, + "execution_count": 263, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.var()" + ] + }, + { + "cell_type": "code", + "execution_count": 264, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.118033988749895" + ] + }, + "execution_count": 264, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.std()" + ] + }, + { + "cell_type": "code", + "execution_count": 265, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.0" + ] + }, + "execution_count": 265, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.max()" + ] + }, + { + "cell_type": "code", + "execution_count": 266, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 2., 3., 4.])" + ] + }, + "execution_count": 266, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z" + ] + }, + { + "cell_type": "code", + "execution_count": 267, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 267, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.argmax()" + ] + }, + { + "cell_type": "code", + "execution_count": 268, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1., 3., 6., 10.])" + ] + }, + "execution_count": 268, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.cumsum()" + ] + }, + { + "cell_type": "code", + "execution_count": 269, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1., 2., 6., 24.])" + ] + }, + "execution_count": 269, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.cumprod()" + ] + }, + { + "cell_type": "code", + "execution_count": 270, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 2.],\n", + " [3., 4.]])" + ] + }, + "execution_count": 270, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.shape = (2, 2)\n", + "z" + ] + }, + { + "cell_type": "code", + "execution_count": 271, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 3.],\n", + " [2., 4.]])" + ] + }, + "execution_count": 271, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z.T" + ] + }, + { + "cell_type": "code", + "execution_count": 272, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 272, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.searchsorted([2,3,1,4,5], 2.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 273, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 273, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.searchsorted([1,2,3,4,5], 3, side='right')" + ] + }, + { + "cell_type": "code", + "execution_count": 274, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 5, 1, 2])" + ] + }, + "execution_count": 274, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])" + ] + }, + { + "cell_type": "code", + "execution_count": 275, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 6, 8, 10, 12])" + ] + }, + "execution_count": 275, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = np.array([1, 2, 3, 4])\n", + "b = np.array([5, 6, 7, 8])\n", + "a + b" + ] + }, + { + "cell_type": "code", + "execution_count": 276, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 5, 12, 21, 32])" + ] + }, + "execution_count": 276, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a * b" + ] + }, + { + "cell_type": "code", + "execution_count": 277, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([11, 12, 13, 14])" + ] + }, + "execution_count": 277, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a + 10" + ] + }, + { + "cell_type": "code", + "execution_count": 278, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([10, 20, 30, 40])" + ] + }, + "execution_count": 278, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a * 10" + ] + }, + { + "cell_type": "code", + "execution_count": 279, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2., 2.],\n", + " [2., 2.]])" + ] + }, + "execution_count": 279, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = np.ones((2, 2))\n", + "B = np.ones((2, 2))\n", + "A + B" + ] + }, + { + "cell_type": "code", + "execution_count": 280, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[11., 11.],\n", + " [11., 11.]])" + ] + }, + "execution_count": 280, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A + 10" + ] + }, + { + "cell_type": "code", + "execution_count": 281, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 1.],\n", + " [1., 1.]])" + ] + }, + "execution_count": 281, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 282, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 1.],\n", + " [1., 1.]])" + ] + }, + "execution_count": 282, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B" + ] + }, + { + "cell_type": "code", + "execution_count": 283, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1., 1.],\n", + " [1., 1.]])" + ] + }, + "execution_count": 283, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A * B" + ] + }, + { + "cell_type": "code", + "execution_count": 284, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2., 2.],\n", + " [2., 2.]])" + ] + }, + "execution_count": 284, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A @ B" + ] + }, + { + "cell_type": "code", + "execution_count": 285, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2])" + ] + }, + "execution_count": 285, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = np.array((1, 2))\n", + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 286, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(2,)" + ] + }, + "execution_count": 286, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 287, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "50" + ] + }, + "execution_count": 287, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = np.array((10, 20))\n", + "A @ B" + ] + }, + { + "cell_type": "code", + "execution_count": 288, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4]])" + ] + }, + "execution_count": 288, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = np.array(((1, 2), (3, 4)))\n", + "A" + ] + }, + { + "cell_type": "code", + "execution_count": 289, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 4])" + ] + }, + "execution_count": 289, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A @ (0, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 290, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "70" + ] + }, + "execution_count": 290, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.dot(a, b)" + ] + }, + { + "cell_type": "code", + "execution_count": 291, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([42, 44])" + ] + }, + "execution_count": 291, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = np.array([42, 44])\n", + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 292, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([42, 0])" + ] + }, + "execution_count": 292, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a[-1] = 0\n", + "a" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### *Broadcasting*" + ] + }, + { + "cell_type": "code", + "execution_count": 293, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0., 0., 0.],\n", + " [10., 10., 10.],\n", + " [20., 20., 20.],\n", + " [30., 30., 30.]])" + ] + }, + "execution_count": 293, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = np.array([[0.0,0.0,0.0],[10.0,10.0,10.0],[20.0,20.0,20.0],[30.0,30.0,30.0]]) \n", + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 294, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 2., 3.])" + ] + }, + "execution_count": 294, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = np.array([1.0,2.0,3.0])\n", + "b" + ] + }, + { + "cell_type": "code", + "execution_count": 295, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1., 2., 3.],\n", + " [11., 12., 13.],\n", + " [21., 22., 23.],\n", + " [31., 32., 33.]])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "np.concatenate((a,b), axis = 1)", - "execution_count": 12, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 12, - "data": { - "text/plain": "array([[1, 2, 5, 6],\n [3, 4, 7, 8]])" - }, - "metadata": {} - } + }, + "execution_count": 295, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a+b" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Matrizes têm exatamente a mesma forma.\n", + "\n", + "* Matrizes têm o mesmo número de dimensões e o comprimento de cada dimensão é um comprimento comum ou 1.\n", + "\n", + "* Matriz com poucas dimensões pode ter sua forma prefixada com uma dimensão de comprimento 1, de modo que a propriedade declarada acima seja verdadeira.\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 296, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-1.11336594, -0.17744627, -1.33607215])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "lg.det(A)", - "execution_count": 13, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 13, - "data": { - "text/plain": "-2.0000000000000004" - }, - "metadata": {} - } + }, + "execution_count": 296, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = np.random.randn(3)\n", + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 297, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "b = a" + ] + }, + { + "cell_type": "code", + "execution_count": 298, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-1.11336594, -0.17744627, -1.33607215])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "lg.inv(A)", - "execution_count": 14, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 14, - "data": { - "text/plain": "array([[-2. , 1. ],\n [ 1.5, -0.5]])" - }, - "metadata": {} - } + }, + "execution_count": 298, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b" + ] + }, + { + "cell_type": "code", + "execution_count": 299, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0. , -0.17744627, -1.33607215])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "lg.matrix_rank(A)", - "execution_count": 15, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 15, - "data": { - "text/plain": "2" - }, - "metadata": {} - } + }, + "execution_count": 299, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b[0] = 0.0\n", + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 300, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-1.48850816, -0.32891427, 1.76183354])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "B = np.array([[1, 2, 3], [4, 5, 6]])\nB", - "execution_count": 19, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 19, - "data": { - "text/plain": "array([[1, 2, 3],\n [4, 5, 6]])" - }, - "metadata": {} - } + }, + "execution_count": 300, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = np.random.randn(3)\n", + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 301, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-1.48850816, -0.32891427, 1.76183354])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "lg.matrix_rank(B)", - "execution_count": 21, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 21, - "data": { - "text/plain": "2" - }, - "metadata": {} - } + }, + "execution_count": 301, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = np.copy(a)\n", + "b" + ] + }, + { + "cell_type": "code", + "execution_count": 302, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1., 1.])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "A = np.array([1, 2, 4, 5]).reshape(2, 2)\nb = np.array([3, 6]).reshape(2, 1)\nlg.inv(A) @ b", - "execution_count": 26, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 26, - "data": { - "text/plain": "array([[-1.],\n [ 2.]])" - }, - "metadata": {} - } + }, + "execution_count": 302, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b[:] = 1\n", + "b" + ] + }, + { + "cell_type": "code", + "execution_count": 303, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-1.48850816, -0.32891427, 1.76183354])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "lg.solve(A, b)", - "execution_count": 33, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 33, - "data": { - "text/plain": "array([[-1.],\n [ 2.]])" - }, - "metadata": {} - } + }, + "execution_count": 303, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 304, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.84147098, 0.90929743, 0.14112001])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "print(dir(lg))", - "execution_count": 31, - "outputs": [ - { - "output_type": "stream", - "text": "['LinAlgError', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_umath_linalg', 'absolute_import', 'cholesky', 'cond', 'det', 'division', 'eig', 'eigh', 'eigvals', 'eigvalsh', 'info', 'inv', 'lapack_lite', 'linalg', 'lstsq', 'matrix_power', 'matrix_rank', 'multi_dot', 'norm', 'pinv', 'print_function', 'qr', 'slogdet', 'solve', 'svd', 'tensorinv', 'tensorsolve', 'test']\n", - "name": "stdout" - } + }, + "execution_count": 304, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = np.array([1, 2, 3])\n", + "np.sin(z)" + ] + }, + { + "cell_type": "code", + "execution_count": 305, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "n = len(z)\n", + "y = np.empty(n)\n", + "for i in range(n):\n", + " y[i] = np.sin(z[i])" + ] + }, + { + "cell_type": "code", + "execution_count": 306, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.84147098, 0.90929743, 0.14112001])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "lg.norm(A)", - "execution_count": 34, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 34, - "data": { - "text/plain": "6.782329983125268" - }, - "metadata": {} - } + }, + "execution_count": 306, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y" + ] + }, + { + "cell_type": "code", + "execution_count": 307, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "lg.norm((3, 4))", - "execution_count": 35, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 35, - "data": { - "text/plain": "5.0" - }, - "metadata": {} - } + }, + "execution_count": 307, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z" + ] + }, + { + "cell_type": "code", + "execution_count": 308, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.24197072, 0.05399097, 0.00443185])" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "#### Exercício 0: Input-Output Matrix" - }, - { - "metadata": { - "trusted": true, - "scrolled": true - }, - "cell_type": "code", - "source": "ls /home/nbuser/library", - "execution_count": 19, - "outputs": [ - { - "output_type": "stream", - "text": "Aula_01.ipynb Aula_03.ipynb \u001b[0m\u001b[01;34mdata\u001b[0m/\r\nAula_02.ipynb Aula_04.ipynb sorteio.ipynb\r\n", - "name": "stdout" - } + }, + "execution_count": 308, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(1 / np.sqrt(2 * np.pi)) * np.exp(- 0.5 * z**2)" + ] + }, + { + "cell_type": "code", + "execution_count": 309, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.26391966, -0.91446636, 0.79007045, -2.06239142])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "ls /home/nbuser/library/data", - "execution_count": 20, - "outputs": [ - { - "output_type": "stream", - "text": "alunos.csv tech_coef.csv\r\n", - "name": "stdout" - } + }, + "execution_count": 309, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = np.random.randn(4)\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 310, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 0, 1, 0])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "A = np.loadtxt('/home/nbuser/library/data/tech_coef.csv')", - "execution_count": 21, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "A.shape", - "execution_count": 22, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 22, - "data": { - "text/plain": "(12, 12)" - }, - "metadata": {} - } + }, + "execution_count": 310, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.where(x > 0, 1, 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 311, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 0, 1, 0])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "sectors = { \"Agropecuária\": 0,\n \"Indústria extrativa\": 1,\n \"Indústria de transformação\": 2,\n \"Utilidades\": 3,\n \"Construção civil\": 4,\n \"Comércio\": 5,\n \"Transporte\": 6,\n \"Serviços de informação\": 7,\n \"Intermediação financeira\": 8,\n \"Atividades imobiliárias\": 9,\n \"Outros serviços\": 10,\n \"Administração pública\": 11 }", - "execution_count": 27, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "impact = []\nsec = []\nfor sector, id in sectors.items():\n i = \"{0:0.4f}\".format(A[:,id].sum())\n print(sector, \": \", i, sep='')\n impact.append(i)\n sec.append(sector)", - "execution_count": 26, - "outputs": [ - { - "output_type": "stream", - "text": "Indústria de transformação: 0.6058\nComércio: 0.3078\nAtividades imobiliárias: 0.0580\nServiços de informação: 0.4191\nUtilidades: 0.4452\nTransporte: 0.4553\nOutros serviços: 0.3284\nConstrução civil: 0.4399\nAgropecuária: 0.3520\nAdministração pública: 0.2490\nIndústria extrativa: 0.3419\nIntermediação financeira: 0.3296\n", - "name": "stdout" - } + }, + "execution_count": 311, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def f(x): return 1 if x > 0 else 0\n", + "\n", + "f = np.vectorize(f)\n", + "f(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 312, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ True, True])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import matplotlib.pyplot as plt\npos = np.arange(12)\n\nplt.barh(pos, impact, align='center', height=.8, color='r')\nplt.yticks(pos, sec)\nplt.xlim((0, .7))\nfor i, v in enumerate(impact):\n l = \"{0:.2f}\".format(float(v))\n plt.text(float(v)+.01, i-.25, \"{0:.2f}\".format(float(v)), color='black', fontweight='bold')\nplt.show()", - "execution_count": 32, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAD8CAYAAABevCxMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzs3XncVVW9x/HPVyBAUUlBM6eH6zwhyoPljGYlDVdNTMlyuF5JLUVLrW7F1bJMyWuZiaImDU7hlDlPoOYA8iCjmZZSivOEomIKv/vH73d8NodzngGe6cDv/Xrt195n77XXXufAc9Zea+2zfjIzUkoppVQ7VunsAqSUUkqpdbLyTimllGpMVt4ppZRSjcnKO6WUUqoxWXmnlFJKNSYr75RSSqnGZOWdUkop1ZisvFNKKaUak5V3SimlVGO6d3YB0oqpX79+VldX19nFSCmlmtLQ0PCKmfVvLl1W3qld1NXVMXXq1M4uRkop1RRJ/2xJuuw2TymllGpMVt4ppZRSjcnKO6WUUqoxWXmnlFJKNSYr75RSSqnGZOWdUkop1ZisvFNKKaUak5V3SimlVGNykpbUPhoaQOrsUqSU0gopW94ppZRSjcnKO6WUUqoxbVp5S1rQgjQnSlq1La/bWpKOkHR+bB8j6bBlzOdESQ9LmiBpi1aee5Ckv0qaKKle0nnLUoa2JOkWSX07uxwptbUHgIFAT2BHYFqFNLOBrYBeQF/g88C8OHYXsEmc3w8YAbzVvkVOqUkys7bLTFpgZn2aSTMXqDezV1qRbzczW7S85Svkd0SU4ZttlecylOE24Cwzm9hZZWgJScL/nyxuzXn1kmVYktQVLATqgN7AKcBP8Er4SaBbId1jwARgADAJuAw4GhgH3Ac8CHwcuBa4MfL5nw4of1q5CBrMrL65dO3SbS5pqKRJkq6R9Liky+VOwP//T5Q0MdJ+RtJDkqZFC7ZP7J8rabSkvwAHRX7nSrovWqxDJF0n6UlJZxSu/VVJUyRNl3SRpG6x/0hJT0i6F9i1kP40SSfH9tGSHpE0Q9K1pR4CSetKuj72T4+Wch9Jd0e5Z0nar5DntyTNjuXECp/PaGA34EJJY+LzuqlQnt/E+30qPrPSeTdIapA0R9LIwv4Fkn4S5XtY0roVyj1D0i7NfEZzJfWTVBef8QV4I2VDSWMlTY1rn748/z9S6ki3Ai8Cx8VyFPA0XkEXbQ18D9gX2CX2lb4g9wBOBD4D7FB2LKVOYWZttgALYj0UmA9sgP8ffwjYLY7NBfrFdj/8pna1eP0dYHQh3amFvCfhLVWAUcBzwHr4TfSzwNp4r9efgR6R7gLgsEj3L6A/8BG8F+38SHMacHJsr1243hnA8bF9dWG7O7BGaV14H38HBAwGZgGrAX2AOcAOFT6rSXjrv/R53VQoz4M09tC9Wng/a8W6N97Lt3a8NuCLsX028INCuU+M7W7AmtU+o+K/Dd5QWQx8slDetQr5TAIGNvV/YTCY5ZJLF1jOAQPs8nh9UbweVyHt9XEMsG3AXigcO7dwbE+wt7rAe8tlxVuAqS2pb9vz5nGKmT0b3a3To0Io90n8hvcBSdOBw4GNC8evLkt/Y6xnAXPM7Hkzew94CtgQ+BReeT4S+X0K+A/gE8AkM3vZzP5dId+SbSXdL2kWcCiwTezfG7gIwMw+MLM38Yr6p5Jm4kNi6wPr4i3q683sbTNbAFwH7N7UB1XBzWb2XgwtvBT5ApwgaQbwcLzfzWL/v4GbYruBxs96b2BslHuRmc1v4jMq908ze7jw+suSpgGPxueydfkJkkZG63zqy618wyl1FIt1pR8y7oq31Efhd90XFY4dCNyMj3ffi3efp9RZ2vN33u8VthdVuZaAO81sRJU83q6S5+Ky/BdH/gJ+a2bfW+Ii0v40/s02ZTywv5nNiHHxoU2kPRRvyQ82s/djLL8Xlb8TWmupz07SUGAfYGcze0fSpLgewPvW+PBCtc+6pOJnVMGHn72kAcDJwBAze13S+MK1P2Rm4/AhQuqllnzeKbW7AbF+NtbzCvsX4l1JPWJff7zb/NPAr4A/AqPj2IaxbAVciY+PH96eBU+pCZ0xbPMWsHpsPwzsKmlTAEmrStp8OfK+GxguaZ3Iby1JGwOTgaGS1pbUAzioyvmrA89HmkPL8v165Nld0hp4F/RLUXHvRWOPwX3A/vFeVgMOAO5fjvdUsibwelTcW+K9Fs25Gzg2yt0tyl3tM2rKGnhlPj/G04ct65tIqaMNA9bBu6DGApfiXVN1+PjTAZHuTHzMezxwJN4iKHUvnQScHsdKT7ku1fWUUgfqjMp7HHCrpIlm9jJwBHBldD8/DGy5rBmb2WPAD4A7Ir87gfXM7Hl8LPkhvIu70i9FAH6IV/R3Ao8X9o8CPi1pXpy7GXA5UC9pKl7RPx5lmIb/jU+JvC4xs0eX9T0V3Ia3wGcCP8Y/q+aMAvaKYYAGYJtqn1FTmZjZDLy7fA7wG/yZgZRqQi+8ldwH/4NYJ153K0vXH7gCGAncjnePnx/H1sK70EfiY4DH4F8oKXWWNv2p2Iountbewswu6+yydHX5U7GUUmq9Tv2p2IpI0gjgd7Rs7DyllFJqNxmYpIXM7Er8OZWUUkqpU2XlndrH4MEwNTvOU0qpVVoYjTG7zVNKKaUak5V3SimlVGOy2zy1j4aGFnf/pJRSap1seaeUUko1JivvKiR9TdLHO7scKaWUUrkVrvKWtKCV6T8Mx1nYtwewh5k918y5J5bChlY5fomkdptFUdIRy3KDIWn/Yrkk/UjSPm1bupS6vgeAgXgIvx2pPPXibHw+815AX+DzNM6PXnIPHjRAQP7GInWEFa7ybiMb0DiFcVNOBCpW3pK6mdl/x3Sk7eUIPD56xes3cd7+FKZmNrPRZnZX2xYtpa5tIR4p7C3gXDzm93A8sk/RKsAh+LzOXwJuwec5L3kXnza16l18Su1gha28o0U9SdI1kh6XdLnkT1BJ2jf2/QX/eyydc5qkk83sCjN7T9JsSXWSVpN0s6QZse9gSSfgFedESRPj/AXRip0M7BzXr49jYyNc5hxJpy9dYpC0iaTbJDVEaNItY/+fJB0W21+P9zIcqAculzRdUm9JcyWNjvd1kKSjJT0S5b42gqXsAvwnMCbO20TSeEnDJQ2T9Meyz/DPLS1/SrXkVrzCPi6Wo4Cn8WD1RVvjAUv2BXaJfcUvzv/FowYdQEodqCVBv2tpARbEeigwH29Fr4IHJdkN7/16Bg8uIjzq301xzmnAyYW8ZuPBhw4ELi7sXzPWc4F+hf0GfLnwehJQH9trxbpb7B9Yoex3A5vF9ieAe2J7XeDveFzwJwp5fZh/oTynFl6vXdg+Azg+tscDwwvHxuONju7Av4DVYv9Y4KstLX9xGdwFgtrnkktTyzlggF0ery+K1+MqpL0+jgG2DdgLsX8aWK9YHx7HH+kC7y2X2l2AqS2p61bYlneYYmbPmtliPBhQHR617Gkze9K8NvpDC/KZBewj6SxJu5vZ/CrpFgHXVjn2ZUnT8Ohc21AWUVBSH/zGfoKk6XgQo/UAzOxFPKzwRODbZvZaE2W9urC9bbTgZ+GRz7Zp6k2a2Qd49LIvSuqOD+/9qSXlj/cwMlrnU19u6kIpdUEW60o/cNwVb6mPwkPrXRT7T8DjC6+Od7+Dxw1f2H7FTAlYgbvNw3uF7UU0/q7dKqQF+IAlP5NeAGb2BDAYr8TPlDS6yvkLzax8yAxJA4CTgU+Z2UDg5lLeBasAb5jZoMKyVeH4dsCrVBnjLni7sD0e+KaZbYcP05Vfs5KrgS8DewOPmNlbLSw/ZjbOzOrNrL5/Cy6UUmcaEOtnYz2vsH8h8H4hbX+82/wc/A+1NLb0DPB7vBvvuth3APnQWmp/K3rlXcnjwABJm8TrEYVjc/GHTpG0I/H3HU90v2NmfwB+XkqD32yv3oJrroFXqvMlrQsMK09gZm8CT0s6KK4pSdvH9k5xzg7AyVGZtuT6qwPPS+qBt7xLmjpvEv7+jqaxFd9s+VOqNcPw2N5jY7kU75qrA3rTOIZ9Jj7mPR44ElhMY7fTWDw2+AR8nA7gLPzp9JTa00pXeZvZQvzh0Jvjwa5/Fg5fC6wV3dbH4uPL4K3eKbH/+/j4MfgDqLeWHlhr4poz8O7mOcBv8F+oVHIocJSkGZF2P0k9gYuB/zL/6dq3gd/Ew3fjgQtLD6xVyO+HwGTgTvympeQq4BRJjxZuYkplXQTchH+33dTK8qdUM3rhlW4fvDt8nXhd/jON/sAV+JfG7fjd/vlxbBj+sMhwYOPYtzewdnsWPCVA8RBSSm2qXrLsOkwppdYRNJhZfXPpVrqWd0oppVTrMjBJah8ZzzullFov43mnlFJKK6asvFNKKaUak5V3SimlVGNyzDu1j4aGFo/dpJRSap1seaeUUko1JivvFYykNSQd29nlSCml1H66TOUt6QBJVgqDWSXN+AiF2dI8Py7pmhaku0VS3yaOnyipzcL1RoCTByVdLamtJ2MaQ2E2tVKY0wplqJM0O7brJZ3XxuVIK5kHgIFAT3x+3WkV0twYx1YH+gH/hcfDBp+XV2XLL9q1xCnVri5TeeOzDv4Fj3vfJszsOTNrtrI3s8+Z2RtNJDkRqFh5SyqfTbEl5fqOme1iZgeb2autPb8aSWsCt5tZk9O1VijPVDM7oa3KkVY+C/G4uW8B5+Jxsofj0YCKZuDzgv8fHunnMuDssjQ/BK6M5XPtV+SUalqXqLwjHOauwFEUKu8IznG+pMck3YxPP1w6NlfSTyU9FGEod5R0u6R/SDom0hRbl0dIuk7SbZKelHR2WV79JK0m6WZJMyTNlnSwpBPwSF4TS3OYS1og6UeSJgM7Sxot6ZE4Z1zMO46kTSXdFfk1SNowynS/pGmx7FJ4r2Mij1mSDq7wOdVJelzSbyXNlHRNqUdA0lygh5ldFy3pSYVTt5d0T7zvoyvkO1TSTaV/C0mXRRlmSjow9o+Nz3mOpNNb/Y+cVmi34hX2cbEcBTyNt6aLvoPH4D0aj/ADPmF+0e7A/vgXwebtU9yUal6XqLzxv9XbIvTma/KIXuCBfbbAA4Mcjce7LnrGzHYG7seDdAwHPgn8qMp1BgEHR34HS9qw7Pi+wHNmtr2ZbRtlOg94DtjLzPaKdKsBs83sE2b2F+B8MxsS5/QGvhDpLgfOM7Ptgd2AV4CXgE+b2Y5RllJ39ZeifNsD+wBjJK1X4T1sAYyL0Jxv4t+VzRmIx+beGRgtj5JWzQ+B+Wa2XVzjntj//ZhvdyCwp6SB5Scq43mvtJ6O9fqx3iDWT5Wl+0hh+/ZY71GW5rN4N9cnaYwMlFJaUlepvEfgka6IdSlM5x7AlWa2KCJq3VN23o2xngVMNrO3zOxlYGGVMey7zWx+RBZ7jMZAQCWzgH1iTHp3M5tfpbyL8AhkJXtJmixpFh5UaBtJqwPrm9mNAGb2rpm9C/QALo60E2iMLrhb4b2+CNwLDKlw7WfMrBTV6w9xXnP+FNd/BZgI7NRE2n2AX5demNnrsfllSdPw6GLbFMpNIW3G804AlMIdVfux4LXA/+Dd4qWnK9fFw2n+CQ/BOblwLKW0pE7/nXc8sLU3sK0kwyPymaRTI0lTYc/ei/XiwnbpdaX3VkyzqDyNmT0haTD+nXKmpDvMrFIrfmGEzkRSL+ACoN7MnpF0Gh5tUFXKfhLew7g9fvO0MPa39EfR5XmWXn9A481YrxaeU8lS5ZbHDz8ZGGJmr0saX+EaaSVWCjD/bKznFfYvxP+oe8S+q4Gv4n/019IYgnMrGuNgfxG4EL/DTiktrSu0vIcDvzOzjc2szsw2xHvhdgPuAw6R1C26kPdqKqPlFd3J75jZH/AhuVL3/Vv4A7KVlCqxV2LsfjiAmb0JzJP0xci7tzzm9prA82a2GPgajd9d9+Fd+d0k9cd7HaZUuN5GknaO7dJDfgBz8WeAwJ8dKtpPUq+4URoKPFL9U+AO4JulF5I+CqwBvA3Ml7QuHsY4pQ8Nwx9IGRvLpUBdLL3x8S+Am/Gg9X3x/7w30Nid9iP8ydDL8LGg14BPdEThU6pBXaHyHgFcX7bvWuArsf9JvDt7LN6V3J62A6ZImg58Hzgj9o8Dbi09sFYUT6lfHGW8gSUrxq8B35L0PD4uvzbeSj9c0sP48zhvR9rrgZn4A7n3AKea2QsVyvjXOH8msBb+uQCcDvxS0v0s/ZDvFPx782HgxzEEUc0ZwEfjwbkZ+Fj/DLy7fA7wG/xXQSl9qBc+BtQHGIVX5BNovDMteQT/z/kKcCT+x1/q2toaf8Dtm8Af8QfWLmrncqdUq2TWVA9qaguSvoK3tlv1E64K+dQBN8WDcV1avWQZEDSllFpH0BAPBzepK7S8V2iSvg38mKUbISmllNIyyZZ3ahf19fU2dWq2vVNKqTUkZcs7pZRSWhFl5Z1SSinVmE7/nXdaQWU875RSajfZ8k4ppZRqTFbeKaWUUo3JynslFLO4jZKUwyYppVSDsvJeRpIOkGSStuzssiyDbwELzOyDSgclfVzSNR1cppS6hAfw0Hk98fmRp1VIMxufh70XPtXr52mcz30SHiCguPyiXUucVkZZeS+70rzihzSXsEhSp07WImkV4AUzu7TK8e5m9pyZDe/goqXU6RbigQHeAs7FIwgNZ+n5hlfB//DH4bF8b8HnJy76IXBlLJ9rvyKnlVRW3ssgApDsChxFVN6SVpF0gaQ5km6SdIuk4XFsrqTRkv4CHCRpkKSHJc2UdH0E/0DSJEm/kPRgzC2+U+xfTdJvJD0i6VFJ+8X+bpJ+LmlW5HV84Xr9Yrte0qTY3gm/4fhWXGOL2H+EpAmS/gzcIalO0uw4VifpfknTYimPqZ7SCuNWvMI+Lpaj8ChJk8rSbY2HLd0XKP1BlH+Z7g7sj39BbN4+xU0rsRzzXDb7A7dFCNHXJO0I/AceRGk7PC7DX/EgHiULzWw3gAgqcryZ3SvpR8D/4gGVAFYzs10k7RHnb4sHSbnHzP4r4pRPkXQXcBgedXEHM/tA0lrNlPtxYI9I+1ngpzRGINsZGGhmr8Uc6iUvAZ82s4WSNsMbEhVn/5E0EhgJsFEzBUmpK3o61uvHeoNYPwV8qiztLTRGS9uGpVven431TsDvyAo8ta2svJfNCBqHsa6K1z2ACRHq84UKEciuBpC0JtDXzEoR0n6LB2AquRLAzO6TtEZU1p8B/lPSyZGmF14/7gNcWBq7NrPXmin36sDFktbHh+LWLhy7s8r5PYDzJQ3Cew+rfgeZ2Ti8J5F6j82eUk0r/SeuNGPBrnhL/Tbgl3gEtNHAusBZ+Jj4w/gd8rHA3e1d2LRSycq7lSIm9t7AtvIKqhv+N14e1rTc280cLymv9Az/7jjQzP5WVhZVSA/wAY29eL0K+88AJprZhZIGAMUbjGrlOwnvSdw+8lzYkjeRUi0aEOtnYz2vsH8h/sfeI/b1x7vNPw38Cg9jOhqvtLeKNF8ELgQea9dSp5VRjnm33nDgd2a2sZnVmdmGeG/bK8CBMfa9LjC00slmNh94XdLusetrLBmn/GAASbsB8yP97cDxUVkjaYdIewdwTOknX4Vu87nA4NgudYsDfBR4ObaPaOH7XRMPZ7o4yprR0dIKaxg+5jU2lkvxsbA6oDeN3eRn4mPe4/G45IvxcXDw+OQnApfh4+avAZ/ogLKnlUtW3q03gqVb2dcCH8dv2GfjPWiTgflV8jgcGBNj34Pwv/eS1yU9iN+wHxX7fozf8M+MB8l+HPsvAf4V+2cAX4n9pwO/lHQ/Sz4oOwY4U9IDtPzf/gLgcEkP413mLe1BSKnm9MLHsPoAo/CKfAJL37H2B67AH/C4Hf9SOD+ObY0/4PZNvDV+CP6FkFJbypCgbUhSHzNbEF3rU4BdzeyFVpw/CTjZzGo+lma9VPtvIqWUOpigRSFBc8y7bd0UD5h9BPhxayrulFJKqaWy8m5DZja0M8/vUgYPhqnZ9k4ppVZpYTTGHPNOKaWUakxW3imllFKNyW7z1D4aGlrc/ZNSSql1suWdUkop1ZisvFNKKaUas9JX3pI+JukqSf+Q9FhEA2uzGAKS9pe0dfMpW5zfNhHl68+SjmmjPB9s5ni9pPNi+whJ5zeVPqXU/loSd7zk8Ugn4JqyYy8D/eLYz9u+mKmdrNRj3jHd6PXAb82sFNpzEB5b4Ik2usz+wE1UmN44Ymd/0JrMzGwOHm2wzZhZk2E+Y9KY/N1XSl1EKe54bzzu+E/weZufZOnZ4Aw4Gv+y/3eFvEYB77ZbSVN7Wdlb3nsB75vZhaUdZjbdzO6XGxNxtWdJKs05PjTibl8j6XFJlxfmHP9ZtN5nRpztXYD/xKdCnS5pkzj3p5LuBUZJGq+I+x15LChsfyeuP0PS6bFvdMT1ni1pXOHaFWOEF0laN47NiGWX4jUlXS3pc4X04yUdGO/5prb84FNKy66lccfB52ifC3y9Sj5/Br7THoVM7Wplr7y3BRqqHPsSPu/49njozTGS1otjO+CxB7bG43jvGkFBDgC2MbOBwBlm9iBwI3CKmQ0ys3/E+X3NbE8zO6dawSQNw4MSDTGz7fGogwDnm9kQM9sWv/H+Quz/HfCduPYsPEZ4ufOAeyO/HYE5ZcevojEwykfwEMa3VCtjSqlzNBV3vGgeHkBlLLBG2bEFwDF4kJWN2qGMqX2t7JV3U3YDrjSzRWb2Ih75a0gcm2Jmz0akrel40KE38d6sSyR9CXinibyvbsH19wHGm9m7sESs7r0kTZY0Cw9Nuk2VGOF7VMhzb/zvmHhf5YFTbgX2ltQTD7B0X+n6LSFppKSpkqa+3HzylFIbqRZ3/LtAPbAlHt0M4AW84j4LWBX4DPBSHHsVeL1dS5rayko95o23PIdXOdbUj5TfK2wvArqb2QeSdsJbq4fgQYX2rnJ+MTLXh7G3owv8I9WuL6kXHuWr3syekXQaS8brXi5mtjCCo3wWb4Ff2crzxwHjwAOTtFW5UkpLamnc8WfwVsdmhXOPB/rGsceBLQrHfgasBvygXUqd2tLK3vK+B+gp6ejSDklDJO0J3AccLKmbpP54S3ZKtYwk9QHWNLNb8C71QXHoLWD1Jsowl8bY2/vhf3PgsboPl9Q78l+Lxor6lbjecGhRjPCSu4FjI79uksp70sC7zo/EH4q7vYlyp5Q6SUvjjp+OhzSdABwU+76Nf5l9s3DsG3HsMKq3ZlLXslK3vM3MJB0A/ELSd/Gb1rl45XsfsDMwA++VOtXMXpC0ZZXsVgf+FK1jASfF/quAiyWdQOW/i4vjvCl45fp2lO22ePJ9Row/X2Zmp0u6GB/Tngs8UsjncOBCSaviQ19HVrjWKGCcpKPwHoNjgYfK0tyBj5/faGaVHk5NKXWyUtzxb+B/1NvgXyTlT5rvWdieHetP4mPcG+Fd6uDd6ADb4V3sqevLeN5dXHSljzOzo5tN3IVkPO+UUmq9lsbzXtm7zbu06Bp/FNiws8uSUkqp61ipu827OjNbQOPYeUoppQRk5Z3ay+DBMDU7zlNKqVVaGI0xu81TSimlGpOVd0oppVRjsts8tY+GhhZ3/6SUUmqdbHmnlFJKNSYr75RSSqnGZOVdIGkDSX+S9KSkf0j6Zcxu1tx5/9MR5WsLkj4u6ZrOLkdKHeUBYCDQEw+lN61CmtnAVvjMZX2Bz9M4X/hdwCZxfj9gBD7ncUqdKSvvEDOZXQfcYGabAZsDffA4982pWHlHTPAO/4wllc+S+CEze87McvritFJYCByIV7bn4jGwh+NzAxetgkcTGofHAr4FnxccPFLQ0fj0o7vi8x3/qr0LnlIzsvJutDew0MwuAw+Zic9P/l+SVpV0hKTzS4kl3SRpqKSfAb0lTZd0uaQ6SX+VdAF+k7+hpBGSZkmaLemsOL+bpPGxb5akk8oLJOmgOD5D0n2F88ZIekTSTElfj/1DJU2UdAUwS9JZko4r5HWapG9H+WYX8jonrjFT0sjYv0zlTamruRWvsI+L5Sg8FvaksnRb43Gv9wV2iX2lL8c98GAHnwF2KDuWUmfJp80bbQM0FHeY2ZuS/gVsWu0kM/uupG+a2SAASXV4lL0jzew4SR/HQ+cOxkPl3iFpfzwi3/pmtm2c17dC9qOBz5rZvMLxo4D5ZjYk4m4/IOmOOLYTsK2ZPS1pB+AXeAhRgC/j303F752R+NSr25vZIklrLWd5U+pSno71+rHeINZP4bF7i26hMRrXNjS2vAEupDHS0J54RK6UOlPeQDYSjTHtW7K/Kf80s4djewgwycxeNrMPgMvxm/mngP+Q9CtJ+wJvVsjnAWB8hCwtdYV/BjhM0nRgMrA2jeF6p5jZ0wBm9iiwToxxbw+8bmb/Kst/HzzoyaI457XlKa+kkZKmSpr6cqs+rpQ6RukPudKPGHfFW+qjgDnARYVjBwI34+Pd9wLXtmMZU2qJrLwbzaExQh4AEe96Q+AfwAcs+Xn1orq3i9lUSmBmrwPb4z143wAuqZDmGOAHUYbpktaO/I43s0GxDDCzUsv77bIsrsGH+A7Gh+rKVSrb8pR3nJnVm1l9/0qZpNTBBsT62VjPK+xfCLxfSNsf75o6B/9D/2Ph2IbA52h8AGZCexQ2pVbIyrvR3cCqkg6DDx/6OgcYb2bv4PGzB0laRdKGeBd1yfuSelTJdzKwp6R+kecI4F5J/YBVzOxa4If4g7BLkLSJmU02s9HAK/h3yO3AsaXrSdpc0mpVrn0V/hzOcLwiL3cHMLL0gJuktZanvCl1NcOAdYCxsVwK1MXSm8Zu8jPxMe/xwJHAYnwcHLy7/PQ4VuouLx1LqbPkmHcwM5N0AHCBpB/iNza30Pgk+QP4ENos/JclxV+cjANmSpoGfL8s3+clfQ+YiLdqbzGzP0VX9mWFp9G/V6FYYyRtFufdDcwAZuLfPdPiCfmXgf2rvKc5klYH5pnZ8xWSXII/Vf+kpMXAWWZ28XKUN6UupRfeSv4G3h2+Df7UePnPMfrj49rPAx/F71h/EcfWwiv+VyLdMcBp7VzulJojs9YO56YVjaRewM/NrM2ew6mXLGOKpZRS6wgazKy+uXTZbb6Sk7Q58Ag+B0VKKaUakN3mKznAIlDeAAAgAElEQVQzewLYrs0zznjeKaXUehnPO6WUUloxZeWdUkop1ZisvFNKKaUak2PeqX00NLR47CallFLrZMs7pZRSqjFZeaeUUko1JivvDiBp7QgZOl3SC5LmFV5/pLPLV4mkb8XkLSmlGvMAMBCfvGFHlpwOstzjkU4sOYfyM8B+wGrAmsCh7VLStKyy8u4AZvZqKZAIPgvjuYXAIv8GkOsS/x4xp/m3aDr4SkqpC1qIR0F7CzgXj2c+HFhUIa0BR7P0w0+Gz/t+J3AKcDY+NWzqOrpEZbGykrSppNmSLsRvjteTNC7Cas6RNLqQ9llJp0l6VNLMmBkNSXtLmhGt+GmSVpO0j6SJkm6Q9JikX8c86Ej6qqRZcd2fxr7ukt6QdIakKcCpeDyH+yXdFWmGSXoornF1E8FQUkqd6Fa8wj4ulqPwoAyTKqQdi0dc+nrZ/olAA34H/11gJI1zvaeuISvvzrc1cKmZ7WBm84Dvxry22wOfllQMYPSime2ABxT5Vuw7BRgZrfo98BtvgE8AJ+Kzp20F7CdpA+AMYC9gB2BXSV+I9GsC08xsJzM7E3gJ2N3M9pG0Dv43/Ckz2xEPjjKq/I1kPO+UOt/TsV4/1hvE+qmydPPw6EJjgTXKjj0W62uBVeP4eW1bzLScsvLufP8ws0cKr0dEdLJpeKVbrLyvi3UDHlkMfHjrF5KOB9Yws1Lv2MNmNjdeXwXshlfo95jZK2b2PnAFXuED/Bu4vkoZd4lyPChpOj78VVeeKON5p9T1lEJPlf9w87tAPbAl8FrsewFYALwXr3vgXwoD8JbAE+1a0tQa+Tvvzvd2aSPCf44CdjKzNyT9gSXHnUt/U4uIfzszO0PSjcDngUckDY005eHijKX/foveteoh5gTcZmZfa8H7SSl1ogGxfjbW8wr7F+LhUHvgD6TdC2xWOPd4oC+Nd+afxx9aexiPhfw0HkM4db5seXcta+DPmbwpaT3gs82dIGkTM5sZXd2PAlvEoU9K2igePvsy8Bf8b3CvePq9O3AI/vdbyVvA6rH9ILCnpP+Ia64WNxoppS5mGP7AythYLsUr4zqgN/4gGsDpeKzzCcBBse/beFfc5yKPa+P8a4A++Fhb6hqy8u5apuHDTbOBi/Eu8eacHA+fzQTeAO6I/Q8C5+A3zE8AN5rZs8Bo/NmV6XjX+s1V8h0H3CXpLjN7EX/u5WpJMyLvvAFPqQvqhVfIffBuvHXidbeydHviT6EPp3Fs7pPARnglfw3+E7Jv4OPe10VeqWtQ9Z7SVKsk7QN808z276wy1EuWAUFTSql1BA3x0HKTsuWdUkop1Zh8YG0FZGZ3AXd1aiEGD4ap2fZOKaVWaWFAp2x5p5RSSjUmK++UUkqpxmTlnVJKKdWYHPNO7aOhocVjNymllFonW94ppZRSjcnKO6WUUqoxWXl3Ekl1kmaX7TtN0smSjpD08cL+S0rRxSTNldQvth+skvd4ScOXpywppdrwADAQnw1tR3yaxmoej3TCZ1ArUdnSabM7pRbLMe+u6Qh8itTnAMzsvyslMrNdOrBMKaUuZiFwID6d6bnAT/DpTp9k6elQDTga/9L/d4W8DoxzoTGMaOq6suXdNdUDl0uaLqm3pEmSlpouT9KCWEvS+ZIek3QzhSmIJY2W9EjMfz5O8qfIJA2WNEPSQ/j0xaX03SSNiXNmSvp67F9P0n1RptmSdm/nzyCl1IxbgReB42I5Co/8NalC2rHAXODrVfLaGvgiHq1otzYuZ2p7WXl3TVOBQ81skJm924L0B+DRxLbDb66LLfLzzWyImW2L36B/IfZfBpxgZjuX5XUUMN/MhgBDgKMlDQC+AtxuZoOA7fHAJkuQNFLSVElTX27xW00pLaunY71+rEst5qfK0s0DvodX4GtUyesMPJjJxsBNbVjG1D6y8u481SLCLEukmD2AK81skZk9B9xTOLaXpMmSZgF7A9tIWhPoa2alcKC/L6T/DHCYpOnAZGBtPOTvI8CRkk4DtjOzt5YquNk4M6s3s/r+y/AmUkrLp/TlUf4jze/i3XlbAq/FvheABbH9HTxq2DjgdWAE8E67ljQtrxzz7jyvAh8t27cWjTfTrbVUpS+pF3ABUG9mz0TF2wv/2652kyDgeDO7vUJ+ewCfB34vaYyZ/W4Zy5pSagMDYv1srOcV9i/Ex717AM8A9+J34SXHA32BrwI/K+y/Da/In8G781LXlC3vTmJmC4DnJX0KQNJawL7AX4C3gNVbkd19wCExXr0esFfs7xXrVyT1IZ5HMbM3gPmSSkNbhxbyuh04VlKPKNfmklaTtDHwkpldDFyKP9iaUupEw/AHXMbGcilQF0tvfDwN4HQ8pvcE4KDY9228y+4WfExsHHAWPo7en8Ybg9Q1Zcu7cx0G/FrSOfH6dDP7h6TxwIWS3gXKx6QruR7vEp8FPIHfZGNmb0i6OPbPxbu+S44EfiPpHbzCLrkE/9ufFg+3vYz/cmQocIqk9/HetsNa+2ZTSm2rF14hfwMYBWwDXMzST5rvWdgu/Sb0k8BGeEvheeBUYBHevX4O8JF2K3VqCzJbliHWlJpWL1kGBE0ppdYRNJjZUr8uKpfd5imllFKNyW7z1D4GD4ap2fZOKaVWaWFAp2x5p5RSSjUmK++UUkqpxmS3eWofGc87pZTaTba8U0oppRqTlXdKKaVUYzq08pb0fUlzIlrVdEmfaKN8fyRpn7bIq5nrnCbp5Fak/09J321BujHxuYxZvhIuP0lnSXpQ0tWS1u7s8qS0slne+NwP4ZGJ+sZyID7TUlqxdNiYt6Sd8YhWO5rZe5L60YpJfCR1N7MPKh0zs9FtVMw2ZWY3Aje2IOnXgf5m9l5L8m3qs1heZvad9sg3pdS8tojP/QTQD5/q9F7gSjyS2GXtWfDU4Tqy5b0e8EqpgjKzVyICVim29L2SGiTdHvNzE3GsfyrpXuD7kuZKWiWOrSrpGUk9JI2XNDz2D4mW44yIptVT0lqSbogW/8OSBkbaPaMHYLqkRyUtNZ949Bb8TdJdFObpl7SJpNuizPdL2rLCuUdIOj+2x0s6L8r2VKG8NwKrAZMlHSxpY0l3R1nvlrRR4fz/kzQROCt6AX4r6Y74XL4k6WxJs6JcpbnJq8Xz3lTSXfE5NUjaUFJdvJdpsewSaRW9A7Mj/4OX/79DSqlcW8TnHoG3GL4OXBT75rR9UVNnM7MOWfBQsdPxG8MLgD1jfw/gQbzlCXAw8JvYngRcUMjjT8BehXSXxPZ4/Ab1I8A/8NY9wJr4DcqvgP+NfXsD02P7z8CuhfJ1LyvzYHxe8FXxm9e/AyfHsbuBzWL7E8A9Fd7zEXg87VIZJ0R5tgb+Xki3oLD9Z+Dw2P4v4IbC+TcB3eL1aXgQkx54fO13gGFx7Hpg/9heq5D374EvxvZk4D9ju3csqwK9Yt9mwNTYPhC4E7/5Xxf4F7BeU//eg8Esl1xyadVyDhhgl8fri+L1uLJ0z4KtAfZnsP+NNBMq5Dchjn27C7y3XFq2lL53m1s6rNvczBZIGgzsjke9ujrGg6cC2wJ3RqOwGz5PfsnVZdsHAxOBQ/CbgKItgOfNbFpccz5ARM86MPbdI2lteUzrB4D/k3Q5cJ2ZPVuW3+7A9Wb2TuRzY6z74MNKE9T4c6ieLfgYbjCzxcBjktatkmZn4Eux/Xvg7MKxCWa2qPD6VjN7Xx6ruxsezQ/8hqMutveSdCpeMa8FzJE0CVg/uvUxs3fjfa0JnC9pEB6jYPPIYzciXjjwYvSEDKFsSEDSSGAkeMCDlNLysVg3FZ/7jthXis/dJ14/gN/9D8bv9NOKpUN/5x1f/pOASVHhHA40AHPMrFr0rLcL2zcCZ8rDZw4G7ilLW+2HxZX2m5n9TNLNwOeAhyXtY2aPl6ercO4qwBtmNqjK9aopjmm39EfQxeu/XXasNASxWNL71hhlZjHQXa2P530S3mu3Pf4eF7amrGY2Do8sSL1UKf+UUhPaKj73fcDngU3xkIF9SCuaDhvzlrSFpOL/tUHAP4G/Af3jgTZiDHubSnlEDOwpwC+Bm8paoeAPX64nacfIa80YI7+PiFktaSg+9v6mpE3MbJaZnYX3AJSPW98HHCCpd4yHfzHK8SbwtKSDIk9J2n4ZPpZKHsR7FYgy/2U58qoWz/tNYJ6kLwLE++uNDzM8H70DX6PxGZn7gIPl8cL742GApyxHuVJKFbRFfO5pkc8i/IG2O/GxuLRi6ciWdx/gV5L6Ah/g48cjzezf8fDWedFt2x34BdWfsbga/z87tPxA5HUIMFbShvjNwVC81+gySTPxseHD45QTJe2F/z9/DH9epJjfNElX42P1/wTuLxw+NK7zA/xm+CpgRos/jepOwONsn4L/wuPIZc2omXjeXwPGSRqH3+Dvj7fSr42bkok0tvSvx7vzZ+At9lPN7IVlLVdKqbK2iM99D/4lR+QDsDHR8kgrjBU2nrek7+Dj2E92dlm6MklfwVvbE9sy34znnVJKrbdSx/OWdA7+4FSPzi5LVybp28CPWfrGPqWUUhe2wra8U+fKlndKKbVeS1veGVUstY/Bg2FqVt8ppdQqLYzGuEJ2m6eUUkorsqy8U0oppRqTlXdKKaVUY7LyTimllGpMVt4rAUm7xvzuKaWUVgCdWnlLOkCSFcNpRljKrxRe10s6r5l8jpF0WIX9dZJmVzqnibw+DC+6rFpS5lbkNVce+7x8/4fvWUuGRL1E0taFdGviM8xNb+IaP5K0T1uUt6t54IEHGDhwID179mTHHXdk2rRpFdNddNFFbLDBBvTu3Zv99tuPV1999cNj9913H0OGDKFnz5587GMf45e//GVHFT+llCrq7Jb3CHzu7kMK++qADytvM5tqZic0lYmZXWhmv2uXEi6DlpS5Da5R8T2b2X+b2WOFXVsD34h54ZciqZuZjTazu9qrrJ1l4cKFHHjggbz11luce+65vPjiiwwfPpxFi5acEv/RRx/lmGOOYauttuL000/n5ptv5qSTTgLghRdeYNiwYbz00kucc845nHLKKayySmf/2aSUVnptFa+7tQs+1/k8POzk44X9DwPz8ZbiSfjc5DfhNxpzgb6FtH/H40ufRmOc7cH4HNwPAWOA2bG/Dp+bfFosu8R+Aefjc5vfDNwCDC/kdS8e+ex2IoY1Pv/4Y8BM4KoK720oHjiFKNtv8ch9c/Fwn2fj843fBvSIdJ8CHo39vwF6xv65wFl4IJApwKaFfEvveXyhzJPwKGLgsQ2mRllPL5RvLjCaxhun4vmj8TnQZ+MRwtSS97xUPO/Bg62zXXfddQbY2WefbWZmP/zhDw2wu+66a4l0J5xwggE2ZcoUMzPbfffdrXv37vbuu+9+eM6dd95p77zzToe/h5TSyoUWxvPuzCbE/sBtZvYE8FopEhgeqvZ+MxtkZueWEptHuvoTEVhH0ieAuWb2Ylm+lwEn2NIhRl8CPm1mO+IxwUvd2gfgccC3w4Pw7BL59wB+hVdqg/EK9SeFMu5gZgOBY1rwXjfBI/TtB/wBmGhm2wHvAp+P0J3jgYNjf3fg2ML5b5rZTvhNxi9acL2S75vP1DMQj+s9sHBsoZntZmZXlZ1zvpkNMbNt8UBGX4j9rX3Pne7pp58GYP311wdggw02AOCpp55qNt0HH3zAM888w2OPeSfGCSecwKqrrsrGG2/MpEmTOqL4KaVUVWdW3iPwSFzEekQLzrkar3jBW4xXFw/G+G5fM7s3dv2+cLgHcHHEEZ+AdyeDR9G70swWmdlzNMYI3wLYFrhT0nTgB8AGcWwmcLmkr+IR0ppzq5m9j7equ+EtbuJ1XVzr6biRAW+p71E4/8rCulrc80q+JOn+eE+b0PieoeyzK9hL0uT4nPbGAxtBC96zpJGSpkqa+vLLL7eimB3DYipgNTODUTHde+95CPbtt9+eK6+8ktdee42vfvWr7VvQlFJqRqdU3pLWxiuGSyTNBU7B40U3Ny/cQ8CmEVN6f+C68qzxkJWVnAS8CGwP1AMfKRyrdI6AOdEDMMjMtjOzz8SxzwO/xrvVGyQ1N83se/Bh78H7VqodYDHeym7ufVuV7aok1QGnAsPMbA/gLhrje0NjuM/iOb3wsKDDowfg4sI5zb5nMxtnZvVmVt+/f/+WFLNdDRgwAIBnn30WgHnz5n24f+HChbz//vtV03Xv3p0NNtiAuro6AI444ggOOeQQtt12W5577jkWLlzYkW8lpZSW0Fkt7+HA78xsYzOrM7MNgaeB3YC3gNUrnRSV3vXA/wF/NbNXy46/Acwv/Czq0MLhNfHQl4vxWNalSFr3AYdI6iZpPWCv2P83oL+kncG70SVtI2kVYEPzEJqnAn3x8fvl8ThQJ2nTeP01fKy95ODC+qEW5tkX75Z/R9K6wL4tOKdUUb8iqQ/+70Q7ved2N2zYMNZZZx3Gjh3L2LFjufTSS6mrq6Ouro7evXtzwAEHAHDYYf5Dhe9///ucffbZPPjggxxyyCH06tWLww/30O/nnXce559/PtOnT2fIkCH06tWr6nVTSqm9dVblPQKvhIuuxZ8ynwl8IGmGpJMqnHs18FWqd/seCfxa0kN45VVyAXC4pIfxh+RKLc/rgSfxLuyxRKVpZv/GK6+zJM3AH6DbBa/0/xDdyo8C58ZNwzIzs4VR7gmR72LgwkKSnpImA6PwHoSWmBHLHHy8/oEWlOMNvLU9C7gBf3AN2uE9d4RevXoxYcIE+vTpw6hRo1hnnXWYMGEC3botGQF18ODB/PrXv+axxx5j9OjRDBs2jHPP9cct6uvrueCCC5g+fTrf+9732GOPPbjiiis64+2klNKHMiRoahf19fU2NaOKpZRSq0hqUUjQ/MFqSimlVGOy8k4ppZRqTFbeKaWUUo3JyjullFKqMVl5p5RSSjWmuclFUlo2DQ3Q7Jw7KaWUlkW2vFNKKaUak5X3Ck5Sd0nflNSzs8uSUkqpbWTl3QVI+pikqyT9Q9Jjkm6RtHkb5Cs8CtlMM3uvledeImnr5lOm1DkewMPl9QR2xOP8lpsNbIXP+9sXn6B/Xhz7F7BrnC/gmnYub0ptKSvvThYV7PXAJDPbxMy2Bv4Hj1O+XCI87DfN7L4q1676zIOZ/beZPba8ZUipPSwEDsQDIZyLRxwaDiwqS7cKHn5wHPAl4Bbg9Dj2HvAfLBm+L6VakZV359sLjzT24VzmZjYd+IukMZJmS5ol6WAASUMl3Svpj5KekPQzSYdKmhLpNol0/SVdK+mRWHaN/adJGifpDuB3EZDl53HuTEnHR7pJkupje0Qcny3prA7+fFJayq14hX1cLEfhkY0mlaXbGvgeHpVnl9hX+tLbDI8ZvGs7lzWl9pBPm3e+bYGGCvu/BAzCQ5j2Ax6RVGpBb4/3Br4GPAVcYmY7SRoFHA+cCPwSDyDyF0kbAbfHOeBhPXczs3clHQsMAHYwsw8krVUshKSPA2fFOa8Dd0ja38xuKC+wpJHASICNlu2zSKlFno71+rHeINZPAZ8qS3sLcEBsb0NjyzulWpYt765rN+BKM1tkZi/i0c6GxLFHzOz5GMf+B3BH7J8F1MX2PsD5kqYDNwJrSCqFWr3RzN4tpLvQzD4AMLPXysoxBO/SfznSXE6VnsYl4nkv+/tOqdVK4ZUq/ThxV7ylPgoPsXdRRxUqpXaUlXfnm4O3ass19SPp4sNniwuvF9PYm7IKsLOZDYplfTN7K469XThfNH73VZI/1k5dzoBYPxvreYX9C4H3C2n7493m5+B/FH/siAKm1M6y8u589+Dxuo8u7ZA0BO+iPjjGpPvjrd0prcj3DuCbhTwHNZHumNLDa+Xd5sBkYE9J/SR1w2Ox39uKcqTU5oYB6wBjY7kU73KqA3rT2E1+Jj7mPR44Er+7Lf2EYgFwCY1Pqd8dr1OqBVl5dzLzgOoHAJ+On4rNAU4DrgBmAjPwCv5UM3uhFVmfANTHQ2iPAcdUSXcJ/quZmZJmAF8pK9/z+PffxCjLNDP7UyvKkVKb6wVMAPrg3eHrxOtuZen6439II/GHPkYA58exV4CjgT/H6wvjdUq1QF53pNS26iWb2tmFSCmlGiNoMLP65tJlyzullFKqMflTsdQ+Bg+Gqdn2TimlVmlhQKdseaeUUko1JivvlFJKqcZk5Z1SSinVmBzzTu2joaHFYzcppZRaJ1veKaWUUo3psMpb0tciyEVKKaWUlkOzlbekBa3JMEJW3lS2bw9gDzN7rplzT5S0ahPHL5G0dbXjzeRdJ2l2K9L3lXTcslyrtSRdGTOhndQR12umLL+PkKO/ayred0op1aoHgIFAT2BHGqfILTcb2Bufcndt4NTY/y4eva4PHvzh5+1Z2Co66st5AwrzbDfhROAPwDvlByR1M7P/buuCNaEvHir4giplWdQWF5H0MWAXM9u4Fed0L0UBa2tm9rX2yDellLqChcCBeIV8LvATYDjwJEtOr/suHtDmXeBHwKr4lLoAi4C14vi1HVLqpbW42zxa1JMkXSPpcUmXS/5EkqR9Y99f8DjUpXNOk3SymV1hZu9Jmh0t4NUk3SxpRuw7WNIJwMeBiZImxvkLJP1I0mRg57h+fRwbK2mqpDmSKobolTQ4rvEQ8I3C/m6Sxkh6JFq8X69w+s+ATSRNj7RDJU2UdAUeehNJN0hqiDKMLOS/QNJP4toPS1o39h8U73dGITb3HcA6cZ3dJQ2Kc2ZKul7SR+PcSZJ+KuleYJSk8fEZTJT0lKQ9Jf1G0l8ljS+UpeLnJGmIpAejLJMl9ZS0U+x7NNZbRNpeki6TNCuO7dWS/zMppdTV3Aq8iLfMjgOOwuPDTypLdyUere4svOX5DeB/41gffC79L7R/caszsyYXYEGshwLz8Vb0KsBDeMzpXsAzwGZ4D8IfgZvinNOAkwt5zcYD/xwIXFzYv2as5wL9CvsN+HLh9SSgPrbXinW32D+wQtlnAnvG9hhgdmyPBH4Q2z2BqcCAsnPrSukL7//tYrpCGXrHe1u7UO4vxvbZhWvNAtaP7b5VrlMs84+AXxTe+wWFdOOBq+Iz3w94E9gu/m0agEHVPifgI3gc8B1Ln3+ctwbQPfbtA1wb298GLovtLfFAJr0qfN4j47OcuhGY5ZJLLrl0seUcMMAuj9cXxetxZem+Hfu3inU/sKvL0lwWx8a0YfmAqc3Vy2bW6gfWppjZs2a2GJgeFc+WwNNm9mREyPpDC/KZBewj6SxJu5vZ/CrpFlG9V+LLkqYBjwLb0BjpDwBJa+IVZCl85e8Lhz8DHCZpOh7ycm385qM5U8zs6cLrEyIS18PAhoU8/g2Uxv0b8M8JfKhlvDz8Z3kApEpl/i0eCrTk6rJT/hyf+SzgRTObFf82cwrXrPQ5bQE8b2bTAMxsfpy3JjAhng04N9KD36T9PtI+DvwT2Ly8/GY2zszqzay+f/nBlFLqgizW5T9sfS/W6+GVUE/gCOCtjilWs1pbeb9X2F5E45i5VUgL8EHZNXoBmNkTwGC80jlT0ugq5y+sNLYsaQBwMvApMxsI3FzKu5isiXIJON7MBsUywMzuqJK26O1CGYbirdOdzWx7vHIsleF9awzX9uHnZGbHAD/AK/rpktZuwTUrXj+U/j0Ws+S/zWKgexOfU7UfYP8YmGhm2wJfLLyf/MF2SmmFMCDWz8Z6XmH/QuD9eF0X6y/jY8G74+PfTT513YHa4qdijwMDJG0Sr0cUjs3FH+ZD0o7E5yb/ydg7ZvYH/EG9HSP9W8DqLbjmGnhFNj/Gk4eVJzCzN+L4brHr0MLh24FjJfWI8mwuabWyLJory5rA62b2jqQtgU82V2hJm5jZZDMbjT/7sGFZmecDr0vaPXZ9DbiXZVftc3ocWC/+TZC0pqRV4j2V/i8fUcjnPuLzk7Q5sBHwt+UoV0opdYphePz3sbFcilfUdfj45wGRbgTe2r4MuBi4G1gfKFV0l+BfjABT4nWrfpq1nJa78jazhfhY583xwNo/C4evBdaK7uljgSdi/3bAlNj/feCM2D8OuLX0wFoT15yBt3TnAL/Bu6MrORL4dTyw9m5h/yXAY8C06CK+iLIn783sVeCBeMBsTIW8b8NbtzPxFuvDTZU5jImHvmbj/+4zKqQ5PNLNBAbh497LpNrnZGb/Bg4Bxkp6Lt5LD3x8/kxJD7Bkt/4FQDdJs/Cu+yPMrNjSTymlmtALf9isDzAKr8gnsPQ45seBK4CXI92mwI00VhRH4xU7cf7RND6N3hHU2LubVkaSvgNcZ2ZPtmW+9ZJlQNCUUmodQYOZ1TeXLqdHXYlJOgfvNenR2WVJKaXUctnyTu2ivr7epk7NtndKKbWGpGx5p5RSSiuirLxTSimlGpOVd0oppVRjsvJOKaWUakxW3imllFKNyco7pZRSqjFZeaeUUko1JivvlFJKqcZk5Z1SSinVmJxhLbULSW+RkcdSSqm1Njaz/s0l6t5cgpSW0d9aMsVfSiml1stu85RSSqnGZOWdUkop1ZisvFN7GdfZBUgppRVVPrCWUkop1ZhseaeUUko1JivvVJGkfSX9TdLfJX23wvGekq6O45Ml1cX+OknvSpoey4WFc0ZImiVppqTbJPWL/WtJulPSk7H+aEe9z5RSqkVZeaelSOoG/BoYBmwNjJC0dVmyo4DXzWxT4FzgrMKxf5jZoFiOiTy7/397d/NiUxzHcfz9SWzUWAh5rFFjMQuxsVCUZD0WlB1lQ1lZsTQrW38AJSXJxuwsRrFFimQzM+VxokxZYvS1uD/ROGw81Lnerzp1fud+77fzW326v/NwgQvAvqraDjwCTrX6M8B0VY0B020sSfoJw1tddgEzVTVXVR+Ba8DEkpoJ4HLbvwHsT5Jf9EzbVra6EeB1R6/LwMHfn4IkDS/DW102Ai++G79sxzprqmoReA+sbp+NJnmY5E6SPa3mE3ASeMwgtMeBi61+XVXNt7p5YMIGKBYAAAEtSURBVO0fn5EkDRHDW126fkEvfSzhZzXzwJaq2gmcBq4mGUmynEF47wQ2MFg2P/vnTlmS/h+Gt7q8BDZ/N97EtyXuH2ra9exVwEJVfaiqdwBV9QCYBbYBO9qx2Ro8n3gd2N16vUmyvvVaD7z9G5OSpGFheKvLPWAsyWiSFcARYGpJzRRwtO0fAm5XVSVZ0254I8lWYAyYA14B40m+vnD/APC0o9dR4OZfmJMkDQ3/mEQ/qKrFJKeAW8Ay4FJVPUkyCdyvqikG16uvJJkBFhgEPMBeYDLJIvAZOFFVCwBJzgF3k3wCngHH2nfOA9eTHAeeA4f/xTwlqa98w5okST3jsrkkST1jeEuS1DOGtyRJPWN4S5LUM4a3JEk9Y3hLktQzhrckST1jeEuS1DNfAHlkMbP6QgbwAAAAAElFTkSuQmCC\n", - "text/plain": "" - }, - "metadata": {} - } + }, + "execution_count": 312, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z = np.array([2, 3])\n", + "y = np.array([2, 3])\n", + "z == y" + ] + }, + { + "cell_type": "code", + "execution_count": 313, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([False, True])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "L = np.linalg.inv(np.eye(len(sectors))-A)\nd = np.zeros(12).reshape(12, 1)\nd[2, 0] = 1\n\nimpact = L@d\npos = np.arange(12)\n\nplt.barh(pos, impact, align='center', height=.8, color='r')\nplt.yticks(pos, sec)\nplt.xlim((0,1.7))\nfor i, v in enumerate(impact):\n l = \"{0:.2f}\".format(float(v))\n plt.text(float(v)+.01, i-.25, \"{0:.2f}\".format(float(v)), color='black', fontweight='bold')\nplt.show()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "impact = []\nsec = []\nfor sector, id in sectors.items():\n i = \"{0:0.4f}\".format(L[:,id].sum())\n print(sector, \": \", i, sep='')\n impact.append(i)\n sec.append(sector)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "pos = np.arange(12)\n\nplt.barh(pos, impact, align='center', height=.8, color='r')\nplt.yticks(pos, sec)\nplt.xlim((0,2.3))\nfor i, v in enumerate(impact):\n l = \"{0:.2f}\".format(float(v))\n plt.text(float(v)+.01, i-.25, \"{0:.2f}\".format(float(v)), color='black', fontweight='bold')\nplt.show()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Random arrays (`random`)" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "from numpy import random as rd", - "execution_count": 34, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "rd.rand(3, 2)", - "execution_count": 37, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 37, - "data": { - "text/plain": "array([[0.41275145, 0.92513523],\n [0.147698 , 0.79403711],\n [0.86205034, 0.75643253]])" - }, - "metadata": {} - } + }, + "execution_count": 313, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y[0] = 5\n", + "z == y" + ] + }, + { + "cell_type": "code", + "execution_count": 314, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ True, False])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "np.random.rand(3, 2)", - "execution_count": 38, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 38, - "data": { - "text/plain": "array([[0.42902137, 0.17576067],\n [0.5861823 , 0.55467978],\n [0.14108171, 0.39161468]])" - }, - "metadata": {} - } + }, + "execution_count": 314, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z != y" + ] + }, + { + "cell_type": "code", + "execution_count": 315, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([False, False])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "rd.seed(1910)\nnp.random.rand(3, 2)", - "execution_count": 39, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 39, - "data": { - "text/plain": "array([[0.0504399 , 0.21857161],\n [0.18244948, 0.23708749],\n [0.2995859 , 0.56284799]])" - }, - "metadata": {} - } + }, + "execution_count": 315, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "z > 3" + ] + }, + { + "cell_type": "code", + "execution_count": 316, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([False, False])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "rd.seed(1910)\nnp.random.rand(3, 2)", - "execution_count": 40, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 40, - "data": { - "text/plain": "array([[0.0504399 , 0.21857161],\n [0.18244948, 0.23708749],\n [0.2995859 , 0.56284799]])" - }, - "metadata": {} - } + }, + "execution_count": 316, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b = z > 3\n", + "b" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Matrix Algebra ( `linalg`) - Algebra Matricial" + ] + }, + { + "cell_type": "code", + "execution_count": 317, + "metadata": {}, + "outputs": [], + "source": [ + "from numpy import linalg as lg" + ] + }, + { + "cell_type": "code", + "execution_count": 318, + "metadata": {}, + "outputs": [], + "source": [ + "A = np.array([[1, 2], [3, 4]])" + ] + }, + { + "cell_type": "code", + "execution_count": 319, + "metadata": {}, + "outputs": [], + "source": [ + "a = np.array([[1,2],[3,4]]) \n", + "b = np.array([[5,6],[7,8]])" + ] + }, + { + "cell_type": "code", + "execution_count": 320, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 2]\n", + " [3 4]]\n", + "[[5 6]\n", + " [7 8]]\n" + ] + } + ], + "source": [ + "print(a)\n", + "print(b)" + ] + }, + { + "cell_type": "code", + "execution_count": 321, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2],\n", + " [3, 4],\n", + " [5, 6],\n", + " [7, 8]])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "rd.randn(2, 1)", - "execution_count": 41, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 41, - "data": { - "text/plain": "array([[ 1.54773602],\n [-2.05072622]])" - }, - "metadata": {} - } + }, + "execution_count": 321, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.concatenate((a,b))" + ] + }, + { + "cell_type": "code", + "execution_count": 322, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 5, 6],\n", + " [3, 4, 7, 8]])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "rd.randint(10, 20, size=5, dtype=np.int)", - "execution_count": 42, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 42, - "data": { - "text/plain": "array([15, 19, 18, 16, 12])" - }, - "metadata": {} - } + }, + "execution_count": 322, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.concatenate((a,b), axis = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 323, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2.0000000000000004" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "pop = np.linspace(0, 99, 100)", - "execution_count": 44, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "pop", - "execution_count": 45, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 45, - "data": { - "text/plain": "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,\n 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,\n 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,\n 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,\n 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,\n 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,\n 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,\n 91., 92., 93., 94., 95., 96., 97., 98., 99.])" - }, - "metadata": {} - } + }, + "execution_count": 323, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lg.det(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 324, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-2. , 1. ],\n", + " [ 1.5, -0.5]])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "np.arange(100)", - "execution_count": 46, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 46, - "data": { - "text/plain": "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,\n 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,\n 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,\n 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,\n 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])" - }, - "metadata": {} - } + }, + "execution_count": 324, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lg.inv(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 325, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "rd.choice(pop, size=(10, 1), replace=False)", - "execution_count": 48, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 48, - "data": { - "text/plain": "array([[42.],\n [53.],\n [68.],\n [82.],\n [45.],\n [27.],\n [79.],\n [56.],\n [52.],\n [31.]])" - }, - "metadata": {} - } + }, + "execution_count": 325, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lg.matrix_rank(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 326, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [4, 5, 6]])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "rd.shuffle(pop)\npop", - "execution_count": 49, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 49, - "data": { - "text/plain": "array([75., 66., 17., 56., 11., 54., 63., 40., 35., 36., 20., 48., 21.,\n 42., 84., 72., 14., 67., 65., 94., 26., 80., 13., 3., 73., 88.,\n 9., 85., 96., 77., 62., 24., 70., 61., 33., 43., 23., 38., 31.,\n 59., 4., 60., 78., 7., 15., 30., 82., 37., 90., 34., 76., 41.,\n 81., 58., 87., 32., 5., 74., 92., 64., 45., 25., 6., 69., 91.,\n 46., 51., 86., 55., 95., 47., 28., 12., 19., 83., 93., 10., 44.,\n 29., 39., 52., 89., 53., 2., 18., 79., 16., 1., 49., 27., 71.,\n 57., 0., 98., 22., 50., 68., 97., 99., 8.])" - }, - "metadata": {} - } + }, + "execution_count": 326, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "B = np.array([[1, 2, 3], [4, 5, 6]])\n", + "B" + ] + }, + { + "cell_type": "code", + "execution_count": 327, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "rd.permutation(pop)", - "execution_count": 50, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 50, - "data": { - "text/plain": "array([71., 8., 43., 70., 64., 4., 16., 67., 13., 79., 41., 86., 5.,\n 73., 27., 60., 39., 40., 65., 1., 35., 51., 45., 80., 7., 26.,\n 81., 33., 63., 38., 28., 74., 76., 94., 50., 99., 59., 69., 34.,\n 25., 62., 15., 31., 19., 78., 95., 84., 44., 96., 91., 85., 23.,\n 83., 36., 75., 21., 66., 98., 72., 90., 56., 93., 22., 55., 54.,\n 97., 42., 29., 48., 14., 11., 17., 12., 18., 32., 68., 77., 6.,\n 3., 53., 30., 61., 37., 88., 0., 46., 87., 9., 52., 20., 49.,\n 24., 58., 57., 89., 82., 47., 92., 2., 10.])" - }, - "metadata": {} - } + }, + "execution_count": 327, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lg.matrix_rank(B)" + ] + }, + { + "cell_type": "code", + "execution_count": 328, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-1.],\n", + " [ 2.]])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "pop", - "execution_count": 51, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 51, - "data": { - "text/plain": "array([75., 66., 17., 56., 11., 54., 63., 40., 35., 36., 20., 48., 21.,\n 42., 84., 72., 14., 67., 65., 94., 26., 80., 13., 3., 73., 88.,\n 9., 85., 96., 77., 62., 24., 70., 61., 33., 43., 23., 38., 31.,\n 59., 4., 60., 78., 7., 15., 30., 82., 37., 90., 34., 76., 41.,\n 81., 58., 87., 32., 5., 74., 92., 64., 45., 25., 6., 69., 91.,\n 46., 51., 86., 55., 95., 47., 28., 12., 19., 83., 93., 10., 44.,\n 29., 39., 52., 89., 53., 2., 18., 79., 16., 1., 49., 27., 71.,\n 57., 0., 98., 22., 50., 68., 97., 99., 8.])" - }, - "metadata": {} - } + }, + "execution_count": 328, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = np.array([1, 2, 4, 5]).reshape(2, 2)\n", + "b = np.array([3, 6]).reshape(2, 1)\n", + "lg.inv(A) @ b" + ] + }, + { + "cell_type": "code", + "execution_count": 329, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-1.],\n", + " [ 2.]])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "print(dir(rd))", - "execution_count": 52, - "outputs": [ - { - "output_type": "stream", - "text": "['Lock', 'RandomState', '__RandomState_ctor', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'absolute_import', 'beta', 'binomial', 'bytes', 'chisquare', 'choice', 'dirichlet', 'division', 'exponential', 'f', 'gamma', 'geometric', 'get_state', 'gumbel', 'hypergeometric', 'info', 'laplace', 'logistic', 'lognormal', 'logseries', 'mtrand', 'multinomial', 'multivariate_normal', 'negative_binomial', 'noncentral_chisquare', 'noncentral_f', 'normal', 'np', 'operator', 'pareto', 'permutation', 'poisson', 'power', 'print_function', 'rand', 'randint', 'randn', 'random', 'random_integers', 'random_sample', 'ranf', 'rayleigh', 'sample', 'seed', 'set_state', 'shuffle', 'standard_cauchy', 'standard_exponential', 'standard_gamma', 'standard_normal', 'standard_t', 'test', 'triangular', 'uniform', 'vonmises', 'wald', 'warnings', 'weibull', 'zipf']\n", - "name": "stdout" - } + }, + "execution_count": 329, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lg.solve(A, b)" + ] + }, + { + "cell_type": "code", + "execution_count": 330, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['LinAlgError', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_umath_linalg', 'absolute_import', 'cholesky', 'cond', 'det', 'division', 'eig', 'eigh', 'eigvals', 'eigvalsh', 'info', 'inv', 'lapack_lite', 'linalg', 'lstsq', 'matrix_power', 'matrix_rank', 'multi_dot', 'norm', 'pinv', 'print_function', 'qr', 'slogdet', 'solve', 'svd', 'tensorinv', 'tensorsolve', 'test']\n" + ] + } + ], + "source": [ + "print(dir(lg))" + ] + }, + { + "cell_type": "code", + "execution_count": 331, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6.782329983125268" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "#### Exercise 1" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "mu = 4\nsigma = 12\nn = 50\nN = int(1e5)", - "execution_count": 35, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "A = rd.normal(loc=mu, scale=sigma, size=(n, N))", - "execution_count": 36, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "avg = np.mean(A, axis=0)", - "execution_count": 37, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "avg.shape", - "execution_count": 38, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 38, - "data": { - "text/plain": "(100000,)" - }, - "metadata": {} - } + }, + "execution_count": 331, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lg.norm(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 332, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5.0" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "np.var(avg)", - "execution_count": 39, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 39, - "data": { - "text/plain": "2.8750101224970765" - }, - "metadata": {} - } + }, + "execution_count": 332, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lg.norm((3, 4))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Exercício 0: Input-Output Matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 333, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ls: /home/nbuser/library: No such file or directory\n" + ] + } + ], + "source": [ + "ls /home/nbuser/library" + ] + }, + { + "cell_type": "code", + "execution_count": 334, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ls: /home/nbuser/library/data: No such file or directory\n" + ] + } + ], + "source": [ + "ls /home/nbuser/library/data" + ] + }, + { + "cell_type": "code", + "execution_count": 370, + "metadata": {}, + "outputs": [], + "source": [ + "#A = np.loadtxt('/home/nbuser/library/data/tech_coef.csv')\n", + "#A = np.loadtxt('/Users/eduardo/OwnCloud/Projects/DigitalHouse/DataScience/Git/datascience_course/0-pre-requisitos/2-math/data/tech_coef.csv')\n", + "\n", + "import psycopg2\n", + "\n", + "host = 'data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com'\n", + "port = 5432\n", + "dbname = 'db3'\n", + "username = 'trainingwrite'\n", + "pwd = 'trainingwrite'\n", + "\n", + "conn = psycopg2.connect(f\"host='{host}' port={port} dbname='{dbname}' user={username} password={pwd}\")\n", + "cur = conn.cursor()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 371, + "metadata": {}, + "outputs": [], + "source": [ + "sql = \"SELECT * FROM tech_coef\"\n", + "cur.execute(sql)\n", + "A = np.asarray(cur.fetchall()) " + ] + }, + { + "cell_type": "code", + "execution_count": 369, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(12, 12)" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "sigma**2/n", - "execution_count": 40, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 40, - "data": { - "text/plain": "2.88" - }, - "metadata": {} - } + }, + "execution_count": 369, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 337, + "metadata": {}, + "outputs": [], + "source": [ + "sectors = { \"Agropecuária\": 0,\n", + " \"Indústria extrativa\": 1,\n", + " \"Indústria de transformação\": 2,\n", + " \"Utilidades\": 3,\n", + " \"Construção civil\": 4,\n", + " \"Comércio\": 5,\n", + " \"Transporte\": 6,\n", + " \"Serviços de informação\": 7,\n", + " \"Intermediação financeira\": 8,\n", + " \"Atividades imobiliárias\": 9,\n", + " \"Outros serviços\": 10,\n", + " \"Administração pública\": 11 }" + ] + }, + { + "cell_type": "code", + "execution_count": 338, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Agropecuária: 0.3520\n", + "Indústria extrativa: 0.3419\n", + "Indústria de transformação: 0.6058\n", + "Utilidades: 0.4452\n", + "Construção civil: 0.4399\n", + "Comércio: 0.3078\n", + "Transporte: 0.4553\n", + "Serviços de informação: 0.4191\n", + "Intermediação financeira: 0.3296\n", + "Atividades imobiliárias: 0.0580\n", + "Outros serviços: 0.3284\n", + "Administração pública: 0.2490\n" + ] + } + ], + "source": [ + "impact = []\n", + "sec = []\n", + "for sector, id in sectors.items():\n", + " i = \"{0:0.4f}\".format(A[:,id].sum())\n", + " print(sector, \": \", i, sep='')\n", + " impact.append(i)\n", + " sec.append(sector)" + ] + }, + { + "cell_type": "code", + "execution_count": 339, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAD8CAYAAABevCxMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmYHFW5x/HvLyFmISwCgYtsk4uAENZkUNnDooJcZAtCVAQuEgGBoCDKVWNAFBG5oCKBsAVZQ0AEAwEUMuyELGTlIiiJEgQE2ZewJO/9432bqXR6ZnqS2Tp5P8/TT1WfOlV1qpPpU+ec6vPKzEgppZRS7ejW2QVIKaWUUutk5Z1SSinVmKy8U0oppRqTlXdKKaVUY7LyTimllGpMVt4ppZRSjcnKO6WUUqoxWXmnlFJKNSYr75RSSqnGrNTZBUjLp7XWWsvq6uo6uxgppVRTpk6d+rKZ9WspX1beqV3U1dUxZcqUzi5GSinVFEl/ryZfdpunlFJKNSYr75RSSqnGZOWdUkop1ZisvFNKKaUak5V3SimlVGOy8k4ppZRqTFbeKaWUUo3JyjullFKqMTlJS2ofU6eC1NmlSCml5VK2vFNKKaUak5V3SimlVGOy8l7OSFpV0nGdXY604nkI2BroCQwEplXIc1tsWwVYC/hv4N3Y1gCo7HVBu5Y4pdrVZSpvSQdKMkmfaibPGElDWnHMT0i6qYp8d0havZntJ0vqU+15qzjfOZIeljRW0pptddxwLvBk4VwjJZ1aoQx1kmbHer2kX7dxOdIKZAFwMPAmcD7wIjAEWFiWbwawBfC/wCDgSuAXZXl+BFwfry+2X5FTqmld6YG1ocCDwGHAyLY4oJn9E/8OaSlfS98RJwPXAO+Ub5DU3czKv6NaOt/3WpO/WpJWA+4ys4mtLM8UIEOApaU2Aa+wfwEcD7wA/ARvTe9ZyPc94GOx/lm8pT6n7Fi7xKtX+xU3pZrXJVrekvoCOwFH45V3KV2SLpT0hKTbgbUL2+ZJ+pmkRyRNkTRQ0l2S/ibp2MhTbF0eKen3ku6U9LSkX5Qday1JK0u6XdIMSbMlHSrpJOATwERJEyP/W5LOlDQJ2EHSCEmTY5/Rkj9mLemTkv4cx5sqaYMo0wOSpsVrx8K1nhvHmCXp0AqfU52kJyVdJWmmpJtKPQKS5gE9zOz30ZJuKOy6jaR747qPqXDcwZLGl/4tJF0ZZZgp6eBIHxWf8xxJZ7T6Hzkt1+bGcr1Yrh/LZ8ryfaywflcsdy3L8wWgD165P9VWBUxpeWNmnf4CvgZcHusPAwNj/SDgT0B3vAJ9DRgS2+YBx8X6+cBMfCitH/CvSK8DZsf6kfh3yWr4Tf3fgQ0Kx1oL7/m7tFCu1YrbC+kGfLnwfo3C+tXAfrE+CfhSrPeOVx+gV6RtAkyJ9YML17oO8A9g3bLPqS7OvVO8vwI4tbyMQD3QEOsj8d7K3nGNz8ZnWfxsBgPjY/0c4ILCOT9evMYoXwOwdYV/x2F4C37KhmCWrxXmdZ7/v7Rr4/3F8f7SJvLfBNYD7ItgH0baE2DngN0G9j+x/x5d4Nryla+OfJXqhJZeXaLljXeZ3xDrN8R78Jvy681sYXSB31u2322xnAVMMrM3zewlYEETY9j3mNnrZrYAeALYqGz7LGCvGJPexcxeb6K8C4GbC+93lzRJ0ixgD2CApFWA9czsNgAze9fM3gV6AJdG3nH4ECDAzoVrfRG4D9i+wrmfNbOHYv2a2K8lt8b5XwYmAp9uJu9ewG9Lb8zs1Vj9sqRpwOPAgEK5KeQdbWb1Zlbfr4pCpeVH/1jOj+VzhfQFwAeFvGPx7rXd8T+i7pG+OXAasB/wU2AN/I80pbSkTh/zjge29gC2lGT437JJOi2yWDO7vxfLRYX10vtK11bMs7A8j5k9JWkQ/pzM2ZLuNrMzKxxnQWmcW1Iv4CKg3syelTQSb9mribJ/Gx8e3AYftlgQ6dXOaFJ+zNL7D2kcBikfLmxqn0qWKLek/sCpwPZm9qqkMRXOkVZg++BjWqPw7q/L8a6dOrzLZ19gPHA78FXg4/gd+h9ivz2AM4FX8D+MybG+f8ddQko1pSu0vIcAvzOzjcyszsw2wIfQdgbuBw6T1F3SuvjNeruR9AngHTO7Bvgl/qsW8IdoV2lit1Il9nKM3Q8BMLM3gOck7RfH7i2pN95t/7yZLQIOp7HhcT9waFxrP7zX4bEK59tQ0g6xXnrID7zbfFCsH1y2z/6SesWN0mD8u7EpdwMnlN5I+jiwKvA28LqkdfDv6pQ+0gvvRuoLDMcr5HE0/ucumYzfNb8MHIX/By7dHW+Bj8ecANyIt84vaedyp1SrOr3ljf/9/rws7WbgK/iDq3vg3dlP4V3J7Wkr4FxJi/CevtLvpUcDEyQ9b2aL3UCY2WuSLo0yzmPxivFwYLSk0XhP4gF4K/1mSYfgXdhvR95bgB3w8WkDTjOzFyqU8f+AIyRdAjyNN3YAzgAul/Q/+Fh70WN4o2dD4Cdm9k9JdU18BmcBv40H/RYCZ8RDcI/jDwY/g/+kN6XF7Ir/EZQrduOMpOmfkgyhip+GpJQAUDxolNqRpK/gre2Jy3icOvzBsi3bolztqV6y/O1ZSim1jmCqmdW3lK8rdJsv1ySdgv/ktbwHMaWUUloq2fJO7aK+vt6mTMm2d0optYakbHmnlFJKy6OsvFNKKaUa0xWeNk/Lo6lTQdX+dD2llFJrZMs7pZRSqjFZeaeUUko1JivvAknrS7o1om/9TdKvJH2siv3+pyPK1xZUZYzzlJYXD+GhR3viUyZOq5BnNj63ei9gdXw619L87H8GNo7918JnlXqzfYucUouy8g4RxvP3wB/MbBNgU3y2x59WsXvFyjvCfHb4Zyypyd+Um9k/zSwnskorhAX4XMFv4qEHX8RncVtYlq8bPh3raDyU4R34lIXgYUyPAS7F4xbfAPymvQueUguy8m60Bx5w5EqACDzybeC/JfWRxwO/sJRZ0viIg/1zoLek6ZKujZjb/yfpIvwmfwNJQyM+9mxJ58T+3SWNKcTv/nZ5gSQdEttnSLq/sN+58vjhMyV9M9IHS5oo6TpgVkRGO75wrJGSTtHiMc67SzovzjFT0rBIX6ryptTVTMAr7OPjdTQeOKGhLN8WwOnA3sCOkVb6ctwVOBn4PLBd2baUOks+bd5oADC1mGBmb0j6B/DJpnYys+9LOsHMtoWPpjDdDDjKzI6PYCfn4EFDXgXulnQAHld7vdJUp02EMB0BfMHMnitsPxp43cy2l9QTeEjS3bHt08CWZjZX0nbABfhc6gBfxr+bit87w4ANgG3MbKGkNZaxvCl1KXNjuV4s14/lM8CeZXnvAA6M9QE0trwBLsbv5AF2oxC5J6VOkjeQjZoK4dlUenP+bmaPxvr2QIOZvWRmHwLX4jfzzwD/Kek3kvYG3qhwnIeAMZKOoXF61c8DX5c0HQ9AsiawSWx7zMzmApjZ48DaMca9DfCqmf2j7Ph7AaNL4U3N7JVlKa+kYZKmSJryUqs+rpQ6RukPudKPGHfCW+rD8Qg8xYhmB+ORfYbi0ZFubscyplSNrLwbzQEWm5JO0qp4y/RvLB4vG5qPZ/12Yb3ij53N7FU8dHED8C3gsgp5jgV+GGWYHiE9BZxoZtvGq7+ZlVreb5cd4iZ8iO9QfKiuXKWyLUt5R5tZvZnV96t0kJQ6WP9Yzo/lc4X0BXjowJJ+eNfUefgf+o2FbRsAX6TxAZhx7VHYlFohK+9G9wB9JH0dPnro6zxgjJm9g4f73FZSN0kb4F3UJR9I6tHEcScBu0laK445FLhP0lpANzO7GfgRjbHDPyJpYzObZGYj8BDIGwB3AceVzidpU0krN3HuG/DncIbgFXm5u4FhpQfcJK2xLOVNqavZB48tPipelwN18epNYzf52fiY9xg8zvgifBwcvLv8jNhW6i4vbUups+SYdzAzk3QgcJGkH+E3NnfQ+CT5Q/gQ2iz8lyXFX5yMBmZKmgb8oOy4z0s6HY/dLeAOM7s1urKvLDyNfnqFYp0raZPY7x481vdM/LtnWjwh/xIeJ7zSNc2RtArwnJk9XyHLZfhT9U/LY5ifY2aXLkN5U+pSeuGt5G/h3eED8KfGy3+O0Q8f134e+Dh+x3pBbFsDr/hfjnzH0nRM8pQ6SkYVS0jqBfzSzNrsOZyM551SSq2X8bxTVSRtCkzG56BIKaVUA7LbfAVnZk8BW7X5gQcNgoznnVJKrVNlQKdseaeUUko1JivvlFJKqcZk5Z1SSinVmBzzTu1j6tSqx25SSim1Tra8U0oppRqTlfcKQNJOknbu7HKklFJqG51aeUs6UJJJ+lQhrU7SVwrv6yX9uoXjHFua1rQs/aPwl60o0xhJyxTvupoyt+JY82Jq0vL0j665WGZJl0naopBvNXxCqOnNnONMSXu1RXm7moeArfEfsQ9k8Wnxii7BI071BvYH/l3Ydj8eraUn8B/Ar9qrsCmlVKXOHvMeCjyIz789MtLqgK8A1wGY2RSg2R8Mm9nF7VbCpVBNmdvgHBWv2cy+UZa0BfAtM3urUn5J3WPu9OXOAjwaVG/gfDyoxBDgaRafHvNxfMrLvYDP4fPhfhv4HfACPj/2WvhE9++R3VUppc7Xad9DkvriUfiOxivvkp8Du0iaLunbkgZLGh8BQeYV40hL+qukdSSNlHRqpA2SNEPSI/iUxqW8dZIekDQtXjtGuiRdKOkJSbfjcQwoHOs+SVMl3SVp3Ug/KfLPlLREtK5SmWN9pKSrJN0d5T9I0i8kzZJ0ZyHAyJ6SHo/0K+Sxuku+K+mxeH2ycNxTK5y7QVJ9rI8CfgP8QdIZhTzzJI2Q9CBwSFnLfYSkyZJmSxod86e3eM1d0QTgReD4eB2NT07fUJZvTCx/BpwG7Ahcj1f+FwHv4AEtjgZOAU5s32KnlFKLOrMRcQBwZ8zw9YqkUpSq7wMPRLjL80uZzWwRcCsRCEjSZ4B5ZvZi2XGvBE4ysx3K0v8FfM7MBuIhMkvd2gcCm+GzjB2Df3cTlepvgCFmNgi4gsaIgN8HtjOzrfFGW0s2BvbFe2SvASaa2VbAu8C+Mbf4GODQSF8JOK6w/xtm9mngQhrjJVTjBzFH7tbA7pK2LmxbYGY7m1l5RXyhmW1vZlvijdb/ivQWr1ldLJ733FiuF8v1Y/lMFfk+BJ4Fnoi0k4A+wEYsWfmnlFJH68zKeyiNMaZviPctGYtXvOCt9bHFjTG+u7qZ3RdJVxc29wAulTQLDzRUGhfeFbjezBaa2T+BeyN9M2BL4E+SpuNxtUvf/zOBayV9Df+eb8kEM/sAj0jWHbgz0mfhwwSbAXPjRgbgqihXyfWFZflNSXMOkvRAXNPGLB7JcGzlXdhd0qT4nPbAAzFBFdfc1eN5l0LwtPQDtmK+92J9G/zDfwX4WtsXLaWUWqVTxrwlrYlXDFtKMrxCM0mntbDrI8AnJfXDW+5nlR+axu/ect/Ge1G3wW9aFhS2VdpHwJwKLXjwVvSuwJeAH0kaYGbNVeLvgfceSPrAGkO5LcL/DaqtT5oq65KFl+rwXuCBZvaWpKvwCIklb1fYpxfeU1xvZs9KGlnYp7XX3On6x3J+LJ8rpC/A/9P1KMv3ici3En6nVhfbjgS+gD+sNin2L36YKaXUkTqr5T0E+J2ZbWRmdWa2Ad57uTPwJrBKpZ2i0rsF+F/g/8zs32XbXwNeV+PPor5a2Lwa8Hx0vx9O4zNL9wOHSeoeY9q7R/pfgH6SdgDvRpc0QB7PegMzm4hXjqsDfZf6k3BPAnWl8ewo332F7YcWlo9UeczV8W75dyStA+xdxT6l+ujleCahNA7eHtfc7vbBH2AYFa/L8cq4Dh8PODDylX6m8APgF8DDeLdOL+CI2PZrfMxiOv7keVbcKaXO1FlPmw/FH0wruhl/yvwk4ENJM/Bx4MfL8o3FQ1ge2cSxjwKukPQOcFch/SLgZkmHABNpbHnegvcCzAKeIipNM3s/HuL6dXTHr4SPNz8FXBNpAs6Pm4alZmYLJB0FjJO0Ulxf8WnynpIm4Tdb1QwvAMyI1xx8mPehKsrxmqRL8c9iXpQD/EanTa+5I/TCx0e+BQzH+/8vZfEnzQEGAb/FH2h4AK/0Sw9b1OP/cc7C7/J2jfcppdSZ1NiDm1LbqZcsA4KmlFLrCKbGg8bNyp+sppRSSjWmsydpScurQYNgSra9U0qpVaoM6JQt75RSSqnGZOWdUkop1ZjsNk/tI+N5p5RSu8mWd0oppVRjsvJOKaWUakxW3imllFKNadPKW1LFmNFleU6W1Kctz9tako6UdGGsHyvp6y3t08RxTpb0qKRxkjZr5b6HSPo/SRMl1Uv6dct7tS9Jd6gQcjWl5cVDeGi9nsBAYFqFPLOBzfGZ+VbHJ/MvzYf/ZzyyT088tvtQfB7nlDpLm86wJuktM2t2zmtJ8/DAFy+34rjdzWzhspavcLwjowwntNUxl6IMdwLnxHzhXVbE81bMCV+1nGEtdRULaJzP/rv4NLg9gadZfKrcJ/DpdPvjYV+vxGMEj8anxn0YD1xzM3BbHOd/OqD8acXSqTOsSRosqUHSTZKelHSt3En4//+JkiZG3s9LekTStGjB9o30eZJGSHoQOCSOd76k+6PFur2k30t6WtJZhXN/TdJjkqZLukRS90g/StJTku4DdirkHynp1Fg/RtJkSTMk3VzqIZC0jqRbIn16tJT7Sronyj1L0v6FY35H0ux4nVzh8xmBB2G5WNK58XmNL5TnirjeZ+IzK+33B0lTJc2RNKyQ/pakn0b5Ho1AJOXlniGpFKu8qc9onqS1JNXFZ3wR3kjZQNIoeazuOZLOWJb/Hyl1pAl4OMHj43U0HgWpoSzfFsDpeASfHSOt9AW5K3Ay8Hlgu7JtKXUKM2uzF/BWLAcDr+NRFbvhkbB2jm3zgLVifS38pnbleP89YEQh32mFYzfgLVXwOBP/BNbFb6LnA2vivV5/BHpEvovwoFHrAv8A+gEfw3vRLow8I4FTY33NwvnOAk6M9bGF9ZWAVUvLwnX8FQ/aMQgP7LEyHnlrDrBdhc+qAW/9lz6v8YXyPExjD92/C9ezRix74718a8Z7A/aL9V8APyyU++RY745HVqv4GRX/bfCGyiLgs4XyrlE4TgOwdYVrGgZMAaZsCGb5ylcXeJ0HBti18f6SeD+6Qt5bYhtgA8BeKGw7v7BtN7A3u8C15Wv5ewFTqqlv2/Pm8TEzmx/drdNpDI1c9Fn8hvchSdPxCIwbFbaPLct/Wyxn4bG2nzez9/CoWRsAe+KV5+Q43p7AfwKfARrM7CUze7/CcUu2lPSApFl4ONEBkb4HcAmAmX1oZm/gFfXPJM3Eh8TWA9bBW9S3mNnbZvYW8Htgl+Y+qApuN7P3YmjhX3FcgJPk0dYejevdJNLfB8bH+lQaP+s98GiYmNlCM3u9mc+o3N/N7NHC+y9LmoZHeRuA/7stxsxGm1m9mdX3a+UFp9RRLJaVZiHYCW+pD8fvui8pbDsYuB0f774P7z5PqbO05yQt7xXWFzZxLgF/MrOmwly+Xfa+dMxFZcdfFMcXcJWZnb7YSaQDaPybbc4Y4AAzmxHj4oObyftVvCU/yMw+iLH8XlT+TmitJT47SYOBvYAdzOwdSQ00hpX+wBofXmjqsy6p+BlV8NFnL6k/cCqwvZm9KmkMGdI61Yj+sZwfy+cK6QvwrqQekdYP7zb/HPAb4EZgRGzbIF6bA9fj4+NHtGfBU2pGZwzbvAmsEuuPAjtJ+iSApD6SNl2GY98DDJG0dhxvDUkbAZOAwZLWlNQDOKSJ/VcBno88Xy077jfjmCtJWhXvgv5XVNy709hjcD9wQFzLysCBeJjoZbUa8GpU3J/Cey1acg9wXJS7e5S7qc+oOavilfnrMZ6+z9JeREodbR9gbbwLahRwOd41VYePPx0Y+c7Gx7zHAEfhLYJS99K3gTNiW+kp1yW6nlLqQJ1ReY8GJkiaaGYvAUcC10f386PAp5b2wGb2BPBD4O443p+Adc3seXws+RG8i7vSL0UAfoRX9H8CniykDwc+J+m52HcT4FqgXtIUvKJ/MsowDf8bfyyOdZmZPb6011RwJ94Cnwn8BP+sWjIc2D2GAaYCA5r6jJo7iJnNwLvL5wBX4M8MpFQTeuGt5L74H8Ta8b57Wb5+wHX4gxt34d3jF8a2NfAu9GH4GOCx+BdKSp2lTX8qtryLp7U3M7MrO7ssXV3+VCyllFqvU38qtjySNBT4HdWNnaeUUkrtJqOKVcnMrsefU0nVGDQIpmTbO6WUWqXKaIzZ8k4ppZRqTFbeKaWUUo3JbvPUPqZOrbr7J6WUUutkyzullFKqMVl5p5RSSjWmQytvST+IqFQzI6LVZ9rouGdK2qstjtXCeT6KQFZl/i9J+n4V+c6Nz+XcZSvhspN0jqSHJY2VtGZnlyelFU01scdLnox8Am6KtEfwqGirx+tg4KX2KmzqNB025i1pB+C/gIFm9p6ktfAIX9Xuv5KZfVhpm5mNqJTe2czsNhqDqTTnm0C/CLLSouY+i2VlZt9rj+OmlFq2AK9sewPn4zHDh7Bk7HHwCSeOwb/E3y+kP4WHBjwHD6ByPT6/cc4stXzpyJb3usDLpQrKzF42s38CSBok6b6IVX2XpHUjvUHSz+QxuH8Q8aa7xbY+kp6V1EPSGElDIn37aDnOkDRJUs+Yv/sP0eJ/VNLWkXe36AGYLulxSauUFzp6C/4i6c/AZoX0jSXdGWV+IOYbL9/3SEkXxvoYSb+Osj1TKO9tePjQSZIOlbSRPE74zFhuWNj/f+Vx0M+JXoCrJN0dn8tBkn4hjy1+Z8zPjjwm+mR5bPHRkj9FJumTkv4cn9NUSRvI43g/II9RPk2N8b8VvQOz4/iHLvt/h5RSuWpjj4PP0z6PCLpQMBRvMXyTxqhoc9q+qKmztWU87xZifffFpwV+Co8hvVuk98DjV/eL94cCVxRiXl9UOMatwO6FfJfF+hj8BvVjwN/w1j14MI9ueICgH0faHsD0WP8jsFOhfCuVlbkUm7sPfvP6Vxpjf98DbBLrnwHurXDNR9IYN3wMPqVyNzymwV8L+d4qrP8ROCLW/xv4Q2H/8UD3eD8SeDA+v22Ad4B9YtsteHQ0iDjcsX41jXG/JwFfivXe8eoD9Iq0TYi4snhj4E/4zf86eGz0dZv79x7UBeLi5itftfaqNvb4fLBVwf4I9uPIM67C8cbFtlO6wLXlq7oXVcbz7rBuczN7S9IgPLb17sDYGA+eAmwJ/Ckahd2B5wu7ji1bPxSYCByG3wQUbQY8H8FBiPjVSNoZr4Aws3vl0cVWw4eX/lfStcDvzWx+2fF2wWNzvxPHuS2WffFhpXFq/DlUzyo+hj+Yxzd/Qh6dq5IdgINi/WrgF4Vt48xsYeH9hIhqNgv/3O6M9Fk0xvTeXdJpeMW8BjBHHk50vejWx8zejetaDbhQ0rZ4aNFShLedgevj3C9GT8j2lA0JSBqGx25gwyo+jJRS8yyW5T+6/D5Qj0dxujvSXgDewlsh4F9u/423QEa2aylTZ+jQ33nHl38D0BAVzhF4tKs5ZrZDE7sVY3rfBpwtaQ38/+S9ZXmb+mFxpXQzs59Luh34IvCopL3M7MnyfBX27Qa8ZmbbNnG+phTHtKv9EXTx/BXjm5vZIknFmN6L8AhkvfAbnHoze1bSSBpjjle6rm/jvXbb4Ne4oDVlNbPReNQ46qVKx08pNaPa2OPP4uPZmxT2PRF/QO1reFzifYFP4hHS+pKWNx025i1pM0nF/2vbAn8H/gL0iwfaiDHsAZWOYWZv4aE2fwWML2uFgj98ua6kgXGs1WKM/H4iPrekwfjY+xuSNjazWWZ2Dt4DUD5ufT9woKTeMR6+X5TjDWCupEPimJK0zVJ8LJU8jPcqEGV+cBmO1SuWL0dvwRD4qPzPSdoPIK6vNz7M8Hz0DhxO4zMy9wOHymOC9wN2xf8dUkptqNrY42fgY3DjgEMi7RT8D3NaHGch/kDbn/CxuLR86ciWd1/gN5JWBz7Ex4+Hmdn78fDWr6PbdiXgApp+xmIs/n92cPmGONZhwChJG+A3B4PxXqMr5fGr38Fb/AAnS9od/3/+BP68SPF40ySNxcfq/w48UNj81TjPD/Gb4RuAGVV/Gk07CbhC0nfxX3gctbQHMrPXJF2Kd6PPAyYXNh8OjJY0Gr/BPwBvpd8cNyUTaWzp34J358/AW+ynmdkLS1uulFJlpdjj38Jjjw8ALmXJJ813K6zPjuVn8eGqe/EvOeI4ABsRLY+03Fhu43lL+h4+jv10Z5elK5P0Fby1PbEtj5vxvFNKqfVW6Hjeks7DH5zq0dll6coknQL8hCVv7FNKKXVhy23LO3WubHmnlFLrVdvyzqhiqX0MGgRTsvpOKaVWqTIa43LZbZ5SSiktz7LyTimllGpMdpun9jF1atXdPymllFonW94ppZRSjcnKO6WUUqoxWXl3gAiEUgo9+oKk5wrvq45p3pEkfSfmRk8p1ZiHgK3xaEkD8SlTm/Jk5BNwUyH9WWB/PF7xasT80qnLyMq7A5jZv81s2whkcjFwfum9mb0PH82P3iX+PSR1B75D49zoKaUasQAPofgmcD4eaWgIPgd0OcPnPy9/+MnwedT/BHwXD23Yr53Km5ZOl6gsVlSSPilptqSL8ZvjdSWNljRF0hxJIwp550saKelxSTMlbRrpe0iaEa34aZJWlrSXpImS/iDpCUm/VcQulfQ1SbPivD+LtJUkvSbpLEmPAafh8REekPTnyLOPpEfiHGMlrdzBH1dKqQoT8Ar7+HgdDczFwzmWG4UHPfhmWfpEPNzjd/Dwo8PwgBOp68jKu/NtAVxuZtuZ2XPA92N2nW2Az0naopD3RTPbDrgM/7sCvzEeFq36XWkM4/kZ4GRgK2BzYH9J6wNn4fHUtwN2kvRfkX81YJqZfdrMzgb+BexiZntJWhv/G97TzAYCM/G4CSmlLmZuLNeL5fqxfKYs33PA6XgFvmrZtidieTPQJ7b/um2LmZZRVt6d729mVoz2NVTSNLwlvjleuZf8PpZT8SiB4MNbF0g6EVi1ECb1UTObF+/gZapkAAAgAElEQVRvAHbGK/R7zexlM/sAuA6v8AHex6OHVbJjlONhSdPx4a+68kyShkWvwZSXqrv2lFI7K02AXf7Dze8D9Xgc5Fci7QXgLeC9eN8D/1Loj7cEnmrXkqbWyN95d75S2E0i3vlw4NMRzvMaFh93Lv1NLST+7czsLEm3AfsCkyNeOTT+zVJ439wPr9+1pie6F3CnmR3e3IWY2WhgNPjc5s3lTSm1j/6xnB/L5wrpC/AoRD3wB9LuAzYp7HsisDqNd+b74g+tPYrHFZ4LbNpO5U6tky3vrmVV/DmTNyStC3yhpR0kbWxmM6Or+3Fgs9j0WUkbxsNnXwYexP8Gd4+n31cCDsP/fit5E1gl1h8GdpP0n3HOleNGI6XUxeyDP7AyKl6X45VxHdAbfxAN4Aw8dvg44JBIOwXvivtiHOPm2P8moC8+1pa6hqy8u5Zp+HDTbOBSvEu8JafGw2czgdeAuyP9YeA8/Ib5KeA2M5sPjMCfXZmOd63f3sRxRwN/lvRnM3sRf+5lrKQZcey8AU+pC+qFV8h98W68teN9edzf3fCn0IfQODb3WWBDvJK/Cf8J2bfwce/fx7FS15AhQZdDkvYCTjCzAzqrDBkSNKWUWq/akKDZ8k4ppZRqTD6wthwysz8Df+7UQmQ875RSar2M551SSiktn7LyTimllGpMVt4ppZRSjckx79Q+pk6teuwmpZRS62TLO6WUUqoxWXkv5yJi2AmSenZ2WVJKKbWNrLy7AEn/IekGSX+LEJ53lEJ+LuNxhUfym2lm77WUv2zfy8oimqXUpTwEbI3PAjYQn56w3Gw8uk8vfM7ufWmc6/sfwE6xv/AZxVKqFVl5d7KoYG8BGsxsYzPbAvgfYJ1lPba5E8zs/ibO3eQzD2b2DTN7oqntKXWmBcDB+AT85+Pxq4fgEXuKuuET+I8GDgLuwOf0Bo/y8580htVLqZZk5d35dgc+MLOLSwlmNh14UNK5MW/5LEmHAkgaLOk+STdKekrSzyV9VdJjkW/jyNdP0s2SJsdrp0gfKWm0pLuB30nqLumXse/MCC2KpAZJ9bE+NLbPlnROB38+KS1hAl5hHx+vo/GIVw1l+bbAY1bvjce1hcYvvU2Aq/HWd0q1Jp8273xb4vG5yx0EbAtsA6yFh/sstaC3wXsDXwGeAS4zs09LGo5H9TsZ+BVwvpk9KGlD4K7YB2AQsLOZvSvpODxa4HZm9qGkNYqFkPQJ4JzY51XgbkkHmNkfygssaRgwDDy4QUrtZW4s14vl+rF8BtizLO8dNEbSGkBjyzulWpYt765rZ+B6M1sYUb3uA7aPbZPN7PkYx/4bjZHEZtEYincv4EJJ04HbgFUllUJ83mZm7xbyXWxmHwKY2Stl5dge79J/KfJcSxM9jWY22szqzay+39Jfd0qtVgqvVOnHiTvhLfXhwBzgko4qVErtKCvvzjcHb9WWa+5H0sWHzxYV3i+isTelG7CDmW0br/XM7M3Y9nbZeZoLLZc/1k5dTv9Yzo/lc4X0BcAHhbz98G7z8/A/ihs7ooAptbOsvDvfvUBPSceUEiRtj3dRHxpj0v3w1u5jrTju3cAJhWNu20y+Y0sPr5V3mwOTgN0krSWpOzAU7wVIqdPsg8eWHhWvy/Eupzo8FnWpm/xsfMx7DHAUfndb+gnFW8BlND6lfk+8T6kWZOXdycwDqh8IfC5+KjYHGAlcB8wEZuAV/Glm9kIrDn0SUB8PoT0BHNtEvsvwX83MlDQD+EpZ+Z7Hv/8mRlmmmdmtrShHSm2uFzAO6It3h68d77uX5euH/yENwx/6GApcGNteBo4B/hjvL473KdUCed2RUtuqlywDgqaUUusIpppZfUv5suWdUkop1Zj8qVhqH4MGwZRse6eUUqtUGdApW94ppZRSjcnKO6WUUqoxWXmnlFJKNSbHvFP7mDq16rGblFJKrZMt75RSSqnGZOWdUkop1ZgVvvKW9B+SbojZzZ6QdIekTdvw+AdI2qLlnFUfb4CkByT9UVJTs6a19pgPt7C9XtKvY/1ISRc2lz+l1P4eArYGegIDaZzmtZInI5+Am8q2vYSHLRTwy7YvZmonK/SYtyQBtwBXmdlhkbYtsA7wVBud5gBgPPBEhfOvVIrmVS0zmwPs0kZlKx1zxxa2TwHyR9spdRELgIPxedzPB34KDAGeZskpYg2f9nUl4P0KxxoOvFshPXVtK3rLe3fgAzO7uJRgZtPN7AG5cyXNljRL0qEAkgZLapB0k6QnJV0bNwFI+nm03mdK+qWkHYEvAedKmi5p49j3Z5LuA4ZLGiNpSOn8kt4qrH8vzj9D0hmRNkLS5EgfXTj3tpIejXPfIunj5RcraZ3YNiNeOxbPKWmspC8W8o+RdHBc8/i2/OBTSktvAvAicHy8jsZjnDdUyDsKmAd8s4nj/BH4XnsUMrWrFb3y3hKY2sS2g4BtgW3wmNfnSlo3tm0HnIwHKPpPYKeIxnUgMMDMtgbOMrOH8Vja342wnH+L/Vc3s93M7LymCiZpH2A/YHsz2wb4VWy60My2N7Mt8Rvv/4r03wHfi3PPAn5c4bC/Bu6L4w3Ew5EW3QCUblI+BuwJ3NFUGSuUeZikKZKmvFTtTimlVpsby/ViuX4snynL9xweVWgUsGrZtrfwaEVnAxu2QxlT+1rRK+/m7Axcb2YLzexFPAzm9rHtMTObb2aLgOl4JMI38N6syyQdBLzTzLHHVnH+vYAxZvYugJm9Eum7S5okaRawBzBA0mr4DUEpVOdVeAjRcnvgf8fEdb1etn0CsIeknnjUxftL56+GmY02s3ozq+9X7U4ppWVWCi9V/uPM7wP1wKeA0hfIC3jFfQ7QB/g88K/Y9m88FnHq+lboMW+85TmkiW3N/Uj5vcL6QmAlM/tQ0qfx1upheCztPZrY/+3C+ofETVR0gX+sqfNL6gVcBNSb2bOSRuLREduEmS2Q1AB8AW+BX99Wx04ptZ3+sZwfy+cK6Qvwce8ewLN4q2OTwr4nAqvHtieBzQrbfg6sDPywXUqd2tKK3vK+F+gp6aMwvpK2l7QbcD9wqKTukvrhLdnHmjqQpL7AamZ2B96lvm1sehNYpZkyzAMGxfr++N8cwN3AEZJ6x/HXoLGifjnONwQgWtCvSio9yHY4/jdb7h7guDhed0nlPWngXedH4Q/F3dVMuVNKnWQfPIb5qHhdjnf/1eFjaQdGvjPwOOfjgEMi7RT8y+yEwrZvxbav03RrJnUtK3TL28xM0oHABZK+j9+0zsMr3/uBHYAZeK/UaWb2gqRPNXG4VYBbo3Us4NuRfgNwqaSTqPx3cWns9xheub4dZbsznnyfEePPV5rZGZIuxce05wGTC8c5ArhYUh986OuoCucaDoyWdDTeY3Ac8EhZnrvx8fPbzKzSw6kppU7Wi8ZKdzgwAP8iKX/SfLfC+uxYfhYf494Q71IH70YH2ArvYk9dn8ys5Vyp00RX+mgzO6bFzF1IvWT527KUUmodwVQzq28p34rebd6lRdf448AGnV2WlFJKXccK3W3e1ZnZWzSOndeWQYNgSra9U0qpVaoM6JQt75RSSqnGZOWdUkop1ZjsNk/tI+N5p5RSu8mWd0oppVRjsvJOKaWUakxW3p1EUp2k2WVpIyWdGjGzP1FIv6wUE1zSPElrxXrFONzlkcqWpiwppdrQFnG9VfY6oF1KmtpSjnl3TUfiEyL9E8DMvlEpU0txuFNKy7e2jOt9MI1TQK5fYXvqWrLl3TXVA9dGDPDeEQN8iRl3CnG4JenCiCV+Oz7tcSlPU/G/B0VM70donNq4NOf5ubHPTEnfjPR1Jd0fZZpdmEc9pdRJ2iquN3h84/3wqEo7t3E5U9vLyrtrmgJ8NWKAVxOS80A8ONBW+M11sUXeVPzvK4GTzGyHsmMdDbxuZtvjIVCPkdQf+Apwl5mVYpxPX8prSym1kbaI611yFtAX2AgY34ZlTO0jK+/O09Sk8ksz2fyuNMYe/yceLa2kmvjfVxfyfx74uqTpwCRgTTyi4GTgqAhDupWZvVleCEnDJE2RNOWlpbiIlNKyWZq43gDfA34PjMbjeQ8F3mnXkqZllWPeneffwMfL0tag8Wa6tZao9JuJ/61K+Uu7ASea2RLhQCXtCuwLXC3pXDP73WIFMBuN//1TL2XEm5TaWVvE9f4aHse75E68In+WxWN9p64lW96dJOYtf17SnvBRvO69gQdpOQZ4ufuBw2K8el1g90hvKv73a8DrkkpDW18tHOsu4DhJPaJcm0paWdJGwL/M7FI8fPDA1l1xSqmttUVc7zvwMbHRwDn4OHo/Gm8MUteULe/O9XXgt5LOi/dnmNnfJI3BY3O/i8cUb8kteJf4LOAp/CYbM3utmfjfRwFXSHoHr7BLLsP/9qfFw20v4b8cGQx8V9IHeG/b11t7sSmlttUWcb3fBJ4HTgMW4t3r5wEfa7dSp7aQ8bxTu8h43iml1HoZzzullFJaTmXlnVJKKdWYHPNO7WPQIJiSHecppdQqVUZjzJZ3SimlVGOy8k4ppZRqTHabp/YxdWrV3T8ppZRaJ1veKaWUUo3psMpb0uHFGNUppZRSWjotVt6lsJPVkjRY0viytF2BXSNoRnP7niypTzPbL5O0RWvKU9i3TtLslnN+lH91SccvzblaS9L1EX7z2x1xvhbKcrWk+yT9TlIOq6SUljsPAVsDPfF5nqc1kW82PnVlbzxC02mR/i6wJx6FTcAv27OwTeioL+f1gROqyHcycA0VAtpI6m5m32jrgjVjdTxE7kVNlGVhW5xE0n8AO5rZRq3YZyUz+7Atzl/OzA5vj+OmlFJXsAA4GK+Qzwd+igd9eJrFp5V9Fw828S5wJtAHeDm2LcSjSO0N3NwhpV5S1d3m0aJukHSTpCclXRtzXyNp70h7EDiosM9ISaea2XVm9p6k2dECXlnS7ZJmRNqhkk4CPgFMlDQx9n9L0pmSJgE7xPnrY9uoCD85R9IZTZR5UJzjEXz631J6d0nnSpocLd5K8el/DmwsaXrkHSxpoqTr8LnCkfQHSVOjDMMKx39L0k/j3I9KWifSD4nrnSHp/sh+N7B2nGcXSdvGPjMl3SLp47Fvg6SfSboPGC5pTHwGEyU9I2k3SVdI+r+YG71Uloqfk6TtJT0cZZkkqaekT0fa47HcLPL2knSlpFmxrRT4JKWUasoE4EW8ZXY8cDQeyrGhLN/1eJS2c/CW57eAH8e2vvic8v/V/sVtmpk1+wLeiuVg4HW8Fd0NeATYGZ8b/1k82pyAG4Hxsc9I4NTCsWbjQS8OBi4tpK8Wy3nAWoV0A75ceN+Ah7cEWCOW3SN96wplnwnsFuvnArNjfRjww1jvCUwB+pftW1fKX7j+t4v5CmXoHde2ZqHc+8X6LwrnmgWsF+urN3GeYpnPBC4oXPtFhXxjgBviM98feAPYKv5tpgLbNvU54TEH/gYMLH3+sd+qwEqRthdwc6yfAlwZ658C/gH0au7/zSAwy1e+8pWvLvY6Dwywa+P9JfF+dFm+UyJ981iuBTa2LM+Vse3cNiwfMKWletnMWv3A2mNmNt/MFgHTo+L5FDDXzJ42/3a/porjzAL2knSOpF3M7PUm8i2k6V6JL0uaBjyOB9NZbCxc0mp4BXlfJF1d2Px54OuSpgOT8OGMYqjbpjxmZnML70+SNAN4FNigcIz3gdK4/1T8cwIfahkj6RiWDPxTqcxX4VH7SsaW7fLH+MxnAS+a2az4t5lTOGelz2kz4HkzmwZgZq/HfqsB4+LZgPMjP/hN2tWR90ng78CmFco/LFr5U14q35hSSl2QxbL8h63vxXJdvBLqCRyJR2HrClpbeb9XWF9I45i5VcgL8GHZOXoBmNlTwCC80jlb0ogm9l9QaWxZUn/gVGBPM9sauJ3G2NUfZWumXAJONLNt49XfzO5uIm/R24UyDMZbpzuY2TZ45VgqwwfWGK7to8/JzI4FfohX9NMlrVnFOSueP5T+PRax+L/NImClZj6npn6A/RNgopltCexXuJ6qfrBtZqPNrN7M6vtVs0NKKXWwUpzy+bF8rpC+APgg3tfF8sv4WPAu+Ph3s09dd6C2+KnYk0B/SRvH+6GFbfPwh/mQNJD43OQ/GXvHzK7BH9QbGPnfBFap4pyr4hXZ6zGevE95BjN7LbbvHElfLWy+CzhOUo8oz6aSVi47REtlWQ141czekfQpPDxusyRtbGaTzGwE/uzDBmVlfh14VdIukXQ4EZt7KTX1OT0JrBv/JkhaTVK3uKbS/+UjC8e5n/j8JG2KhwH+yzKUK6WUOsU+wNrAqHhdjlfUdfj454GRbyje2r4Sj5F+D7AeUKroLsO/GAEei/et+mnWMlrmytvMFuBjyLfHA2t/L2y+GVgjuqePA56K9K2AxyL9B8BZkT4amFB6YK2Zc87AW7pzgCvw7uhKjgJ+Gw+svVtIvwx4ApgWXcSXUPbkvZn9G3goHjA7t8Kx78RbtzPxFuujzZU5nBsPfc3G/91nVMhzROSbCWyLj3svlaY+JzN7HzgMGCXpn3EtPfDx+bMlPcTi3foXAd0lzcK77o80s2JLP6WUakIv/GGzvsBwvCIfx5LjmJ8ArgNeinyfBG6jsaI4Bq/Yif2PofFp9I6gxt7dtCKS9D3g92b2dFset16yjCmWUkqtI5hqZvUt5cvpUVdgks7De016dHZZUkopVS9b3qld1NfX25SM551SSq0iKVveKaWU0vIoK++UUkqpxmTlnVJKKdWYjBqV2sfUqaCq5nZJKaXUStnyTimllGpMVt5NkHR4zASXUkopdSnLXeUtqVUz1EWoz/FlabsCu5pZs9PYSjpZUp9mtl8maYumti8rSUcuzQ2GpAOK5ZKHXd2rbUuXUtf3EB5mryc+R/O0CnlmA5vjM3OtDuxL4xzCJffiAQCEhyhMqb0td5V3G1kfD+HakpPxGO1LkNTdzL5hZk+0ackWdyQ+i1/F8zez3wEUorCZ2Qgz+3PbFi2lrm0BHpv4TTyE3ovAEDySUFE3fC7h0XiAijuAMwrb38VnOmryLj6ldrDcVt7Rom6QdJOkJyVdK/kTVJL2jrQH8b/H0j4jJZ1qZteZ2Xsxr3mdpJUl3S5pRqQdKukkvOKcWJqLXdJb0YqdBOwQ56+PbaMiXOYcSWcsWWIPXCLpTklTJT0QAU+QdKukr8f6N+NahgD1wLWSpkvqLWmepBFxXYdIOkbS5Cj3zZL6SNoR+BI+f/r0OOcYSUMk7SPpxrLP8I/Vlj+lWjIBr7CPj9fRwFw86H3RFsDpwN7AjpFW/OL8MR7R50BS6kDVBP2upRfwViwHA6/jrehuwCN4XOpewLN47G0BNwLjY5+RwKmFY83Gg80cDFxaSF8tlvOAtQrpBny58L4BqI/1NWLZPdK3rlD2e4BNYv0zwL2xvg7wVzwq3VOFY310/EJ5Tiu8X7OwfhYeBhVgDDCksG0M3uhYCfgHsHKkjwK+1oryD8N7Dads2IbB6fOVr/Z4nQcG2LXx/pJ4P7pC3ltiG2ADwF6I9GlgvWJ5RGyf3AWuLV+1+wKmVFPXLbct7/CYmc03s0XAdLwi/hQw18yeNq9xrqniOLOAvSSdI2mXCN1ZyUI8klolX5Y0DY/yNYBCtzWApL74jf24iLZ2CR4HHjN7ERgBTAROMbNXminr2ML6ltGCn4WH9BzQ3EWa2Yd4hLH9JK2ED+/dWk35Y/+M551qlsWy0g8cd8Jb6sPxEH2XRPpJwCF47OA3I20+3iWfUnta3ivvYtjKhTT+rt0q5AX4kMU/k14AZvYUMAivxM+WNKKJ/ReYWfmQGZL6A6cCe5rZ1sDtpWMXdANeM7NtC6/NC9u3Av5NE2PcBW8X1scAJ5jZVvgwXfk5KxmLx5/fA5hsZm9WWf6Uakr/WM6P5XOF9AXAB4W8/fBu8/PwP9TS2NKzwNV4N97vI+1A8qG11P6W98q7kieB/pJKMdWHFrbNwx86RdJA4u87nuh+x8yuAX5ZyoPfbK9SxTlXxSvV1yWtg8eDX4yZvQHMlXRInFOSton1T8c+2wGnRmVazflXAZ6X1ANveZc0t18Dfn3H0NiKb7H8KdWaffBYzqPidTneNVcH9KZxDPtsfMx7DHAUsIjGbqdReCzncfg4HcA5+NPpKbWnFa7yNrMF+Njs7fFg198Lm28G1ohu6+Pw8WXwVu9jkf4DfPwY/AHUCaUH1po55wy8u3kOcAX+C5VKvgocLWlG5N1fUk/gUuC/zX+6dgpwRTx8Nwa4uPTAWoXj/QiYBPwJv2kpuQH4rqTHCzcxpbIuBMbj323jW1n+lGpGL7zS7Yt3h68d78t/ptEPuA7/0rgLv9u/MLbtgz8sMgTYKNL2ANZsz4KnRIYETe2kXrLsOkwppdYRZEjQlFJKaXmUgUlS+xg0CKZk2zullFqlyoBO2fJOKaWUakxW3imllFKNyco7pZRSqjFZeaeUUko1JivvlFJKqcZk5b0CktRd0vCYvzyllFKNycp7KUk6UJKVwnbWmO/g0dc+rLRR0ick3dTBZUqpS3jooYfYeuut6dmzJwMHDmTatGlL5Jk9ezabb745vXr1YvXVV2ffffflued8dvSGhgYkLfa64IILOvoy0nIuK++lNxR4EDisNTtJKp99sUNJ6ga8YGaXN7F9JTP7p5kN6eCipdTpFixYwMEHH8ybb77J+eefz4svvsiQIUNYuHDxeEPdunXjsMMOY/To0Rx00EHccccdnHHG4mHuf/SjH3H99ddz/fXX88UvfrEjLyOtALLyXgoRvnMn4Gii8pbUTdJFkuZIGi/pDklDYts8SSNiLvVDJG0r6VFJMyXdIunjka9B0gWSHpY0OwKSIGllSVdImhzzke8f6d0l/VLSrDjWiYXzrRXr9ZIaYv3T+A3Hd+Icm0X6kZLGSfojcLekOkmzY1tdhBWdFq8dO+ZTTqnjTZgwgRdffJHjjz+e448/nqOPPpq5c+fS0NCwWL4tttiC008/nb333psdd/Q/iW7dFv863WWXXTjggAM47LDD2HTTTTvqEtIKIivvpXMAcGeECn0lIpAdhAck2gr4BrBD2T4LzGxnM7sB+B3wvQivOQv4cSHfyma2I3A8HgQEPBjKvWa2PbA7cK6klfFYCf2B7eJY17ZQ7ieBXc1sOzxE6M8K23YAjjCzPcr2+RfwOTMbCBwK/Lqpg0saJmmKpCkvvfRSC0VJqeuZO3cuAOuttx4A66+/PgDPPPPMEnnvuOMO1llnHY455hgGDBiwRMv7C1/4An369OGzn/0sTz311BL7p7QssvJeOkPxyFzEciiwMzDOzBaZ2QtAeaSxsQCSVgNWN7P7Iv0qYNdCvusBzOx+YFVJqwOfB74fUc0a8IBIGwJ7AReXxq7N7JUWyr0KcG30AIwABhS2/amJ/XsAl0qahQdd2qJCHuL8o82s3szq+/Xr10JRUur6SoGbVGHKyp122okJEyYwfPhw5syZwyWXXALAOuuswznnnMOtt97K6aefzqRJkzjuuOM6tNxp+ZdPG7eSpDXxqH9bSjI8gqABt7Sw69tVnqI8zJsBAg42s7+UlUUV8gN8SOONWa9C+lnARDO7OGKCF28wmirft4EXgW3imAuquYiUalH//v0BmD9/PsBHD6H179+fBQsW0L17d3r06AFAv3792Hvvvfnc5z7Hb37zG2688UZGjBjB5ptvzuabe0Tv/fbbj4svvpgnnniiE64mLc+y8m69IcDvzOybpQRJ9wEvAwdLugoPATwYDwO8GDN7XdKrknYxsweAw4H7ClkOBSZK2hl4PfLfBZwo6UQzM0nbmdnjwN3AsZIazOxDSWtE63keMAiYABxcOPbHgVJ/9pFVXu9qwHwzWyTpCJYMd5zScmOfffZh7bXXZtSoUayyyipcfvnl1NXVUVdXR+/evdl3330ZP348Z599Nm+88QabbbYZ9957L4sWLWKLLbxT6swzz+SVV15hm222YfLkybzyyivsv//+nXxlaXmT3eatN5QlW9k3A58A5gOzgUuAScDrTRzjCHzceiawLXBmYdurkh4GLsYfiAP4Cd59PTMeJPtJpF8G/CPSZwBfifQzgF9JegAoPiZ7LnC2pIeo/t/+IuAISY8Cm1J9D0JKNadXr16MGzeOvn37Mnz4cNZee23GjRtH9+6L37P269eP6667jmHDhnHXXXcxdOhQLrzwQsAfZmtoaOCEE07gxhtv5LDDDvuoSz2ltqLSmE5adpL6mtlb0bX+GLBTjH9Xu38DcKqZ1Xwszfr6epuSIUFTSqlVJE01s/qW8mW3edsaHw+YfQz4SWsq7pRSSqlaWXm3ITMb3Jn7p5RSWjHkmHdKKaVUY7LyTimllGpMVt4ppZRSjcnKO6WUUqoxWXmnlFJKNSYr75RSSqnGZOWdUkop1ZisvFNKKaUak5V3SimlVGNybvPULiS9CfylxYwppZSKNjKzfi1lyulRU3v5SzWT66eUUmq97DZPKaWUakxW3imllFKNyco7tZfRnV2AlFJaXuUDaymllFKNyZZ3SimlVGOy8k4VSdpb0l8k/VXS9ytsP1bSLEnTJT0oaYtIr5P0bqRPl3RxpPeRdLukJyXNkfTzwrF6Shob55okqa6jrjOllGpRdpunJUjqDjwFfA6YD0wGhprZE4U8q5rZG7H+JeB4M9s7Kt7xZrZl2TH7AJ8xs4mSPgbcA/zMzCZIOh7Y2syOlXQYcKCZHdr+V5pSSrUpW96pkk8DfzWzZ8zsfeAGYP9ihlLFHVYGmr0LNLN3zGxirL8PTAPWj837A1fF+k3AnpK0zFeRUkr/397ds1YRhGEYvh+0VkGsjEKUY+8P0MpOBAuLdLaCQcTGQqtgZSWijaiNoNansxGs/UglCDFpDFoZsRSPvBZn0Y1ZBVECc7ivamZ2dl+mephllp1RhreG7Afe9frr3dgmSc4nWfSnWYsAAAFASURBVAWuAxd6l+aTLCd5luTYwH17gFNMd9+b6lXVBPgM7P0fC5GkWWR4a8jQrnfLzrqqblfVYeAycLUb/gAcrKqjwCXgYZJdPx6c7AQeATerau1v6kmSpgxvDVkHDvT6c8D7P8x/DJwGqKovVfWxa78EVoEjvbl3gJWqujFUrwv33cDGP65BkmaW4a0hz4FRkvnucNkCMO5PSDLqdU8CK934vu7AG0kOASNgretfYxrMF3+pNwbOdu0zwNPyJKUk/ZY/JtEWVTVJsgg8AXYA96vqdZIl4EVVjYHFJCeAr8AnfobvcWApyQT4Bpyrqo0kc8AV4A3wqjuPdquq7gL3gAdJ3jLdcS9s22IlqUF+KiZJUmN8bS5JUmMMb0mSGmN4S5LUGMNbkqTGGN6SJDXG8JYkqTGGtyRJjTG8JUlqzHfzTaYeC8xaNwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "markdown", - "source": "#### Exercise 2: Law of Large Numbers\nAs the number of identically distributed, randomly generated variables increases, their sample mean (average) approaches their theoretical mean." - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x = np.linspace(0, 4, 5)\nsize = np.logspace(0, 4, 5)\ndraws = 100\nmu = 0\nsigma = 1\n\nDATA = []\n\nfor s in size:\n d = np.random.normal(loc=mu, scale=sigma, size=(draws, int(s)))\n DATA.append(d.mean(axis=1))", - "execution_count": 41, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import matplotlib.pyplot as plt\nplt.boxplot(DATA)\nplt.xticks([1, 2, 3, 4, 5], ['$10^0$', '$10^1$', '$10^2$', '$10^3$', '$10^4$'])\nplt.xlabel('sample size')\nplt.title(\"Distribution of the mean\\n{0} replications for each sample size\".format(draws))\nplt.show()", - "execution_count": 43, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEpCAYAAACHhglHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAHsxJREFUeJzt3XmcXFWZ//HP1yYk7CSSnwxCEhV0glFcGtAZHMgYlc1lREVchqUF0Z9BR/whTCNGpN2YURRUBMNkFG1EFEGRAZwJYqsoARGBIDLIElAJJKyyBHh+f5zT9E1Rna7uqnR1n/q+X69+peou5z51qvLUvefeeq4iAjMzK8cz2h2AmZm1lhO7mVlhnNjNzArjxG5mVhgndjOzwjixm5kVxondnkbSqZI+1qK2Zkl6UFJXfn6ppPe0ou3c3oWSDmxVe6PY7gmS7pb05waXXyTpzPUdlxk4sXccSbdIeljSA5LulfQLSYdLeuqzEBGHR8QnG2xrwbqWiYjbImLTiHiiBbE/LTlGxF4R8Z/Ntj3KOLYDjgR2jIit68zfQ9KK8YzJrMqJvTO9PiI2A2YDnwE+Cixu9UYkbdDqNieI2cA9EXFXuwMxq8eJvYNFxH0RcT6wP3CgpHkAkpZIOiE/3krSj/Le/SpJP5P0DEnfBGYBP8xDLUdJmiMpJPVIug34n8q0apJ/nqRfS7pP0nmSZuRtPW1Pd/CoQNKewL8C++ft/TbPf2poJ8d1rKRbJd0l6RuStsjzBuM4UNJteRild7i+kbRFXn9lbu/Y3P4C4BJgmxzHkpr1NgEurMx/UNI2efaGuc0HJF0nqbuy3jaSvpe390dJR6wjtiWSvpKHoR6U9HNJW0s6SdJqSTdIemkjbUvaRdIv8/v7J0mnSNqwMj/yEd0fcttflqThYrOJwYndiIhfAyuAV9WZfWSeNxN4Fim5RkS8G7iNtPe/aUR8rrLO7sBc4HXDbPKfgUOAbYDHgS81EON/AZ8CvpO3t1OdxQ7Kf/OB5wKbAqfULLMb8ALg1cBxkuYOs8mTgS1yO7vnmA+OiJ8AewF35jgOqonzoZr5m0bEnXn2G4CzgC2B8wdjy8NgPwR+Czw7x/YhScP1H8DbgGOBrYBHgV8CV+Xn5wCfb7DtJ4B/yeu9Ms9/f8229gV2BnbK211XXDYBOLHboDuBGXWmrwH+BpgdEWsi4mcxcoGhRRHxUEQ8PMz8b0bEtTkJfgx42+DJ1Sa9E/h8RNwcEQ8CxwBvrzla+EREPBwRvyUlu6d9QeRY9geOiYgHIuIW4N+BdzcZ30BE/Difb/hmZds7AzMj4viIeCwibgZOB96+jrbOjYgrI+IR4FzgkYj4Rm77O8DgHvs6285tXB4Rj+fX+TXSF1nVZyLi3oi4DVgKvKTJfrD1rNQxUBu9ZwOr6kw/EVgEXJyPwE+LiM+M0Nbto5h/KzCFtMfYrG1ye9W2NyAdaQyqXsXyV9Jefa2tgA3rtPXsJuOr3fa0/KUzmzR0c29lfhfws3W09ZfK44frPB98XetsW9LzSXv33cDGpP66coS46/WZTSDeYzck7UxKWgO18/Ie65ER8Vzg9cCHJb16cPYwTY60R79d5fEs0lHB3cBDpOQyGFcXaQio0XbvJCWyatuPs3bSa8TdOabatu5ocP3Rlky9HfhjRGxZ+dssIvYeZTtjafurwA3ADhGxOWmozWPok5wTeweTtLmkfUnjvmdGxO/qLLOvpO3zCbP7SWOyg5cu/oU0Bj1a75K0o6SNgeOBc/IQwo2kvdh9JE0hjSFPraz3F2COKpdm1ugH/kXScyRtytCY/OOjCS7HcjbQJ2kzSbOBDwONXof+F+CZgyduG/Br4H5JH5W0kaQuSfPyF26zRmp7M9L7+qCkvwXe14JtWps5sXemH0p6gLQ310s6FD94mGV3AH4CPEg6QfeViLg0z/s0cGy+ouIjo9j+N4ElpEP8acARkK7SIZ24+zpp7/gh0onbQd/N/94j6ao67Z6R274M+CPwCLBwFHFVLczbv5l0JPPt3P6IIuIG0pfMzblvthlh+SdIR0MvyXHfTeqDRr8Ymmn7I8A7gAdIY+/faXab1n7yjTbMzMriPXYzs8I4sZuZFcaJ3cysME7sZmaFcWK3p0g6SNJA5fmDksZyOeNI27lO0h6tbneEbY6qzG47qFKjZ7JQAxU+x9DmuH8+SuPEvh5I+oCkZZIerS0Slee/Ohdq+qukpfk66cF5UyWdIel+SX+W9OFxDb4i1zm5uZk26iWriHhh5ZLJ9U4jlNm1iWW8Px8lcmJfP+4ETqDOdc+StgK+T6qRMgNYxtrXDi8iXTs+m1TM6iilyoYjUrllcps15jK77lObjJzY14OI+H5E/AC4p87sNwPXRcR3cwGnRcBO+Vd/kKoIfjIiVkfEctKPRg6qt508dPJzSV+QtCq3haRDJC3PZVYvqjkiCElHSLo5D02cONwvOfOy2+fHG0n6d6UStvdJGpC0UZ733Xx0cZ+kyyS9ME8/jFSY66g8rPPDPP2pw/d8hHKSpDvz30mSpuZ5e0haIelIpTK8f5J0cCW+vSVdr1QG9456P5LSMGV2Jb0hH/Lfq1T6d25lnVvyLzWvAR6ql9wl/a2kS5RKGf9e0tsq8/aR9Jt81HW7pEU16+6mdIOTe/P86vs7XdIF+TX9StLzhnlvpkk6U9I9uZ0rJD0rzzs4v/8P5Pf5vZX1Bvv0qEqfvin35Y359fxrZflFks6R9J3c3lWS6lXWHCybfLSk/81xna1ckrnOsnXLQVf6f/Dzca+Gyh8/lD+Tc/K8fSVdraEbxry43rY6UkT4bz39kfbal9RM+yLw1Zpp1wL7AdNJdUaeVZn3FuB3w7R/EKkWykJS8aaNgDcBN5HK5m5A+ln+LyrrBKlC3wxS/ZMbgfdU2huoWXb7/PjLwKWkmjJdwN8BU/O8Q0g/TZ8KnARcXWljCXBCTdy3AAvy4+OBy4H/Q6oL8wvSFxvAHvn1HU8qFLY3qQjV9Dz/T8Cr8uPpwMuG6ac9gBWV588n/ar0Nbndo3KfbViJ72pSTZuN6rS3CelXuwfnPn4Z6RedL6xs70WkHacXk0oMvCnPm0X6lecBedvPBF5S6atVwC653W8BZw3zmt5LKse7cX4/Xg5snuftAzyPVPNl99xnL6vp0+Py9g8FVpJ+WbsZ8ELSL3afm5dfRKqb85a8/EdIv2CdUue9/FB+L7fNn4WvAf3DxP9p4NTc5hRSyWjVtlmzzqdIvyqekvv8LmDX/PoPzOtNbff/+4nw1/YASv6jfmJfTCqDWp32c1JS3Y6UTKdV5r0GuGWY9g8CbquZdiHQU3n+jPwfe3Z+HsCelfnvB/670t7TEntu42FgpwZe85Z5vS3y8yWsO7H/L7B3Zd7rBl9vTkIPAxtU5t8FvCI/vo2U4DYfIaY9WDuxfww4u6aP7gD2qMR3yDra2x/4Wc20rwEfH2b5k4Av5MfHkEru1ltuCfD1yvO9gRuGWfYQ0pfgixt4T34AfLCmT7vy883y+7VrZfkrGfoiWgRcXtNX1S/U6nu5HHh1Zdm/IX0pbFAnpuOB88g7DsN9Pmr6/BZSCWJIxcs+WbPM74HdG/m/Wfqfh2LG34PA5jXTNiftxT1YeV47bzi1JXJnA1/Mh6f3kvYAxdolZ2vL5q6zlgmpjO00UhJei1JRqc/kw+/7Sf/5BtdpRL1Su9V47om1i3hVy8buR0p+t0r6qaRXjmWbEfEkqU+G66Nas4FdB/s49/M7ga0BJO2qdFJ8paT7gMMZ6o/tqNOPFY2WyP0mcBFwVh7C+pxS4TQk7SXp8jzEcS+pj6rvxz0xdA/awZr5w5X9hUpf5L5aQf3PzGzg3EqfLCcVjHtWnWVPJB0lXZyHi44e5nWidDeoU4B/ioiVlW0dWfMebDdMXB3HiX38XUfl5g5Kt1J7HmncfTVpb6g6hrlTXmc4tcV+bgfeG2uXad0oIn5RWaa2bO6drNvdpMPzeuO97wDeCCwgFZaak6cPln4dS6ndkeJJDUdcERFvJA3j/IBUkbERa21Tkkh9Ui3Lu664bwd+WtPHm0bEYGXEb5PukLRdRGxBGnJQZd264+ajEemmJ5+IiB1Jw2L7Av+sdH7ie8C/kYb0tgR+XNn+WDz1ecnj4NtS/z26Hdirpl+mRcTTyh3HustBP0XSTNKNRD4QEb+p2VZfzbY2joj+Jl5nMZzY1wNJG0iaRhr768onugZPwJ0LzJO0X17mOOCaSBUBAb5Bqpg4XemE6qGkQ/RGnQoco6ETmFtIemvNMv8vt78d8EFGqOiX99LOAD6vdP/MLkmvzElkM9Kt2e4hjfd+qmb1kUr79pNe70ylK4aOo4HyuJI2lPROSVtExBqGSgo34mxgH6XLTqeQLoV8lDS00YgfAc+X9G5JU/Lfzho6AbsZsCoiHpG0C+nLb9C3gAWS3pY/J8+UNOo7EkmaL+lFSjXr7ycNeTxBukHIVNK4+eOS9gJeO9r2a7xc0pvzZ/hDpL66vM5yp5JKHc/OMc6U9MZh4l9XOejBZTYgfUl9KyJqP6OnA4fnoyNJ2kTppPVmzbzQUjixrx/Hkg5njwbelR8fC5APJfcD+oDVpJM/1VugfZx0qH4r8FPgxEj3+2xIRJwLfJZ0iH4/6cTsXjWLnUcaR70auIA07j+SjwC/A64gDe98lvT5+UaO9Q7gep7+H34xsGM+XP5BnXZPIF3yeU1u/6o8rRHvBm7Jr/NwUl+PKCJ+n5c9mXQ08nrSvVsfa3D9B0jJ8u2kPdc/k/pjsHb8+4HjlUojH0flSCLS7eX2Jn2ZrCK9B3WvMhnB1qR7m95PGvL4Kamm/gOkMshnkz5f7yAdPTTjPNIY92pSn785f5nW+mLe1sX5tV9O+nzXs65y0IO2JZ1U/VDlypgHJc2KiGWknZ5Tclw3MczVY53IZXs7jKQg3S3npnbHYhOf0qWa20dEQ1+aNjF4j93MrDBO7GZmhfFQjJlZYbzHbmZWGCd2M7PCtKVy3VZbbRVz5sxpx6bNzCatK6+88u6ImDnScm1J7HPmzGHZsmXt2LSZ2aQl6daRl/JQjJlZcZzYzcwK48RuZlYYJ3Yzs8I4sZuZFcaJ3cysME0ndknb5bvFLFe6OfAHWxGYmZmNTSuuY38cODIirspF7q+UdElEXN+Ctscs1e9vnmvpmNlk03Rij4g/kW7nRkQ8IGk56d6RbU3sIyVkSU7aZlaklo6xS5oDvBT4VZ15h0laJmnZypUra2ebmVmLtCyxS9qUdH/CD0XE/bXzI+K0iOiOiO6ZM0csdWBmZmPUksSebwg8eNPZ77eiTTMzG5tWXBUj0g2Ll0fE55sPyczMmtGKPfa/J925/B8lXZ3/9m5Bu2ZmNgatuCpmAGjNtYVmZtY0//LUzKwwTuxmZoVxYjczK4wTu5lZYZzYzcwK48RuZlYYJ3Yzs8I4sZuZFcaJ3cysME7sZmaFcWI3MyuME7uZWWGc2M3MCuPEbmZWGCd2M7PCOLGbmRXGid3MrDBO7GZmhXFiNzMrjBO7mVlhnNjNzArjxG5mVhgndjOzwjixm5kVxondzKwwTuxmZoVxYjczK4wTu5lZYZzYzcwK05LELukMSXdJurYV7ZmZ2di1ao99CbBni9oyM7MmtCSxR8RlwKpWtGVmZs3xGLuZWWHGLbFLOkzSMknLVq5cOV6bNTPrOOOW2CPitIjojojumTNnjtdmzcw6jodizMwK06rLHfuBXwIvkLRCUk8r2jUzs9HboBWNRMQBrWjHzMya56EYM7PCOLGbmRXGid3MrDBO7GZmhXFiNzMrTEuuimmHGTNmsHr16qbakNTU+tOnT2fVqolfIqfZ1zkoIlrSjpmtX5M2sa9evbrtiaZVCXN9G6mfJLW9L82sdTwUY2ZWGCd2M7PCOLGbmRXGid3MrDBO7GZmhXFiNzMrjBO7mVlhnNjNzArjxG5mVhgndjOzwjixm5kVxondzKwwTuxmQH9/P/PmzaOrq4t58+bR39/f7pDMxmzSVnc0a5X+/n56e3tZvHgxu+22GwMDA/T09ABwwAG+T7tNPt5jt47X19fH4sWLmT9/PlOmTGH+/PksXryYvr6+dodmNiZqRx3u7u7uWLZsWVNtTIQa4hMhhlYo5XWMVVdXF4888ghTpkx5atqaNWuYNm0aTzzxRBsjM1ubpCsjonuk5bzHbh1v7ty5DAwMrDVtYGCAuXPntikis+Y4sRdgxowZSBrzH9DU+pKYMWNGm3th7Hp7e+np6WHp0qWsWbOGpUuX0tPTQ29vb7tDMxsTnzwtgG8T2JzBE6QLFy5k+fLlzJ07l76+Pp84tUnLY+yTPIaJEsdEiKERvrG3TWaNjrF7j906im/sbZ3AY+xmZoWZtHvs8fHNYdEW7Y/BzGyCaUlil7Qn8EWgC/h6RHymFe2uc5ufuL/th8ySiEVtDcFszHy+oVxNJ3ZJXcCXgdcAK4ArJJ0fEdc327bZaM2YMYPVq1c31UazCW/69OmsWrWqqTbGg883lKsVe+y7ADdFxM0Aks4C3gg4sdu486WfQ/wl17jSjl5akdifDdxeeb4C2LV2IUmHAYcBzJo1qwWbNXs6n3sZsuqIJ4B2xzJBSjKM8Jlo2Xs20mdv0X2t2c4Imr6OXdJbgddFxHvy83cDu0TEwuHW8XXsLdbmRPaUcfrQrstEeE8mQgyDcbTbRNljL6UvxvM69hXAdpXn2wJ3tqBda5BPJK+t3f+Jp0+f3tbtD2rBTlvbP1etUsrraFQrEvsVwA6SngPcAbwdeEcL2jUbNSezxjXyBdjIMp3SX5NJ04k9Ih6X9AHgItLljmdExHVNR2Zm65UTcrlach17RPwY+HEr2jIzs+a4pICZWWEmbUkBW5tPGJrZICf2AviEYeN8wtA6gRO7dRQnZOsEHmM3MyuME7uZWWGc2M3MCuPEbmZWGCd2M7PCOLGbmRXGid3MrDBO7GZmhXFiNzMrjBO7mVlhJnVJARe+MjN7ukmb2F34ysysPg/FmJkVxondzKwwTuxmZoVxYjczK8ykPXlqjfNdg8w6ixN7B3BCNussHooxMyuME7uZWWGc2M3MCuPEbmZWGCd2M7PCOLGbmRXGid3MrDBNJXZJb5V0naQnJXW3KigzMxu7ZvfYrwXeDFzWgljMzKwFmvrlaUQsh/bf8MLMzIZ4jN3MrDAj7rFL+gmwdZ1ZvRFxXqMbknQYcBjArFmzGg7QzMxGZ8TEHhELWrGhiDgNOA2gu7vbVanMzNYTD8WYmRWm2csd/0nSCuCVwAWSLmpNWGZmNlbNXhVzLnBui2IxM7MW8FCMmVlhnNjNzArjxG5mVhgndjOzwjixm5kVxondzKwwTuxmZoVxYjczK4wTu5lZYZzYzcwK48RuZlYYJ3Yzs8I4sZuZFcaJ3cysME7sZmaFcWI3MyuME7uZWWGc2M3MCuPEbmZWGCd2M7PCOLGbmRXGid3MrDBO7GZmhXFiNzMrjBO7mVlhnNjNzArjxG5mVhgndjOzwjixm5kVxondzKwwTSV2SSdKukHSNZLOlbRlqwIzM7OxaXaP/RJgXkS8GLgROKb5kMzMrBlNJfaIuDgiHs9PLwe2bT4kMzNrRivH2A8BLhxupqTDJC2TtGzlypUt3KyZmVVtMNICkn4CbF1nVm9EnJeX6QUeB741XDsRcRpwGkB3d3eMKVozMxvRiIk9Ihasa76kA4F9gVdHhBO2mVmbjZjY10XSnsBHgd0j4q+tCcnMzJrR7Bj7KcBmwCWSrpZ0agtiMjOzJjS1xx4R27cqEDMzaw3/8tTMrDBO7GZmhXFiNzMrjBO7mVlhnNjNzArjxG5mVhgndjOzwjixm5kVpqkfKE1kklqyjMvfmNlkU2xid0I2s07loRgzs8I4sZuZFcaJ3cysME7sZmaF6bjE3t/fz7x58+jq6mLevHn09/e3OyQzs5Yq9qqYevr7++nt7WXx4sXstttuDAwM0NPTA8ABBxzQ5ujMzFpD7bgssLu7O5YtWzbu2503bx4nn3wy8+fPf2ra0qVLWbhwIddee+24x2NmNhqSroyI7hGX66TE3tXVxSOPPMKUKVOemrZmzRqmTZvGE088Me7xmJmNRqOJvaPG2OfOncvAwMBa0wYGBpg7d26bIjIza72OSuy9vb309PSwdOlS1qxZw9KlS+np6aG3t7fdoZmZtUxHnTwdPEG6cOFCli9fzty5c+nr6/OJUzMrSkeNsZuZTWYeYzcz61BO7GZmhXFiNzMrjBO7mVlhnNjNzArTcYndRcDMrHQddR27i4CZWSdoao9d0iclXSPpakkXS9qmVYGtD319fSxevJj58+czZcoU5s+fz+LFi+nr62t3aGZmLdPUD5QkbR4R9+fHRwA7RsThI63nImBmZqM3Lj9QGkzq2SbA+P+MdRRcBMzMOkHTJ08l9Um6HXgncFzzIa0/LgJmZp1gxKEYST8Btq4zqzcizqssdwwwLSI+Pkw7hwGHAcyaNevlt95665iDbsbChQs5/fTTefTRR5k6dSqHHnooJ598cltiMTMbjZYNxUTEgoiYV+fvvJpFvw3st452TouI7ojonjlz5sivYD3o7+/nggsu4MILL+Sxxx7jwgsv5IILLvAlj2ZWlGavitmh8vQNwA3NhbN++aoYM+sEzV4V8z3gBcCTwK3A4RFxx0jr+aoYM7PRa3QopqkfKEXEsEMvE9HgVTHVm1n7qhgzK01HlRTwVTFm1gk6qqSAb41nZp3At8YzM5skfGs8M7MO5cRuZlYYJ3Yzs8I4sZuZFcaJ3cysMG25KkbSStIvVdtpK+DuNscwUbgvhrgvhrgvhkyUvpgdESMW22pLYp8IJC1r5LKhTuC+GOK+GOK+GDLZ+sJDMWZmhXFiNzMrTCcn9tPaHcAE4r4Y4r4Y4r4YMqn6omPH2M3MStXJe+xmZkVyYjczK4wTu5lZYZzYM0mbSPpPSadLeme742knSc+VtFjSOe2Opd0kvSl/Js6T9Np2x9NOkuZKOlXSOZLe1+542i3njCsl7dvuWGoVndglnSHpLknX1kzfU9LvJd0k6eg8+c3AORFxKOnG3EUZTV9ExM0R0dOeSNe/UfbFD/Jn4iBg/zaEu16Nsi+WR8ThwNuASfNjnUaNMl8AfBQ4e3yjbEzRiR1YAuxZnSCpC/gysBewI3CApB2BbYHb82Il3tl6CY33RemWMPq+ODbPL80SRtEXkt4ADAD/Pb5hjoslNNgXkhYA1wN/Ge8gG1F0Yo+Iy4BVNZN3AW7Ke6WPAWcBbwRWkJI7FNgvo+yLoo2mL5R8FrgwIq4a71jXt9F+LiLi/Ij4O6C44cpR9sV84BXAO4BDJU2onNFR9zzNns3QnjmkhL4r8CXgFEn7AD9sR2BtULcvJD0T6ANeKumYiPh0W6IbX8N9LhYCC4AtJG0fEae2I7hxNtznYg/SkOVU4MdtiKsd6vZFRHwAQNJBwN0R8WQbYhtWJyZ21ZkWEfEQcPB4B9Nmw/XFPcDh4x1Mmw3XF18ifel3kuH64lLg0vENpe3q9sVTDyKWjF8ojZtQhw/jZAWwXeX5tsCdbYql3dwXQ9wXQ9wXQyZlX3RiYr8C2EHScyRtCLwdOL/NMbWL+2KI+2KI+2LIpOyLohO7pH7gl8ALJK2Q1BMRjwMfAC4ClgNnR8R17YxzPLgvhrgvhrgvhpTUFy4CZmZWmKL32M3MOpETu5lZYZzYzcwK48RuZlYYJ3Yzs8I4sZuZFcaJ3SyTdKmkpsrRSnpDTWlXs3HXibVizNabiDifSfDLRCub99htwsp3qLlA0m8lXStp/zz9OElX5GmnSVKefqmkL0i6TNJySTtL+r6kP0g6IS8zR9INSnfLuibfDWjjOtt+raRfSrpK0nclbVpnmSMkXZ/bOStPO0jSKfnx1ZW/hyXtnl/TGTn+30gqvkyyjT8ndpvI9gTujIidImIe8F95+ikRsXOethFQvTXZYxHxD8CpwHnA/wXmAQflcsQALwBOi4gXA/cD769uVNJWpBtrLIiIlwHLgA/Xie9o4KW5nadVw4yIl0TES4CP5TZ+AfQC/xMRO5Nqep8oaZNR9YrZCJzYbSL7HbBA0mclvSoi7svT50v6laTfAf8IvLCyzvmVda+LiD9FxKPAzQxV6bs9In6eH58J7Faz3VeQ7pbzc0lXAwcCs+vEdw3wLUnvAh6v9wIk7QCcCOwfEWuA1wJH53YvBaYBs0bqCLPR8Bi7TVgRcaOklwN7A5+WdDHwOeArQHdE3C5pESk5Dno0//tk5fHg88HPe22BpNrnAi6JiANGCHEf4B9I98j9mKTqFwx5T/xs4NCIGCz1KmC/iPj9CG2bjZn32G3CkrQN8NeIOBP4N+BlDCXxu/O491vG0PQsSa/Mjw8g3cOz6nLg7yVtn+PYWNLza2J7BrBdRCwFjgK2BGrH4f8D+I+I+Fll2kXAwsp5gZeOIX6zdfIeu01kLyKNQT8JrAHeFxH3SjqdNNRyC6le9mgtBw6U9DXgD8BXqzMjYmW+5Vm/pKl58rHAjZXFuoAzJW1B2gv/Qo4NAEmzSV86z5d0SF7nPcAngZOAa3Jyv4W1zxGYNc1le62jSJoD/CifeDUrkodizMwK4z12M7PCeI/dzKwwTuxmZoVxYjczK4wTu5lZYZzYzcwK48RuZlaY/w9FGgqaYKrTQQAAAABJRU5ErkJggg==\n", - "text/plain": "" - }, - "metadata": {} - } + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "pos = np.arange(12)\n", + "\n", + "plt.barh(pos, impact, align='center', height=.8, color='r')\n", + "plt.yticks(pos, sec)\n", + "plt.xlim((0, .7))\n", + "for i, v in enumerate(impact):\n", + " l = \"{0:.2f}\".format(float(v))\n", + " plt.text(float(v)+.01, i-.25, \"{0:.2f}\".format(float(v)), color='black', fontweight='bold')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 340, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Agropecuária: 1.6731\n", + "Indústria extrativa: 1.6181\n", + "Indústria de transformação: 2.1342\n", + "Utilidades: 1.7976\n", + "Construção civil: 1.8425\n", + "Comércio: 1.5198\n", + "Transporte: 1.8479\n", + "Serviços de informação: 1.6966\n", + "Intermediação financeira: 1.5236\n", + "Atividades imobiliárias: 1.0954\n", + "Outros serviços: 1.5636\n", + "Administração pública: 1.4200\n" + ] + } + ], + "source": [ + "impact = []\n", + "sec = []\n", + "for sector, id in sectors.items():\n", + " i = \"{0:0.4f}\".format(L[:,id].sum())\n", + " print(sector, \": \", i, sep='')\n", + " impact.append(i)\n", + " sec.append(sector)" + ] + }, + { + "cell_type": "code", + "execution_count": 341, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAD8CAYAAABevCxMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmcVMW5//HPl0VQQJQlBA06BBUvbgijiSICiolr3AVi3AUlUVxiXH7J5eJykygmGjVqgAguXCDEJUZcCALuLDMswxKVICgiUYiKooICz++PqmYOTfdMzzBbD8/79TqvPl2nTp06PT1dXXVO1yMzwznnnHP5o0FtV8A555xzFeONt3POOZdnvPF2zjnn8ow33s4551ye8cbbOeecyzPeeDvnnHN5xhtv55xzLs944+2cc87lGW+8nXPOuTzTqLYr4OqnNm3aWEFBQW1Xwznn8kpxcfEaM2tbXj5vvF21KCgooKioqLar4ZxzeUXSu7nk82Fz55xzLs944+2cc87lGW+8nXPOuTzjjbdzzjmXZ7zxds455/KMN97OOedcnvHG2znnnMsz3ng755xzecYnaXHVo7gYpNquhXPO1Uve83bOOefyjDfezjnnXJ7xxruekbSrpMG1XQ/n3PYZArQDBJxcTt71QOeY94qY9jFwYixjF+AIoLhaaupqQ51pvCWdLskk7V9GnjGSzqpAmXtI+msO+Z6VtFsZ26+WtEuux83heLdLel3SBEmtq6rcaDjwZuJYwyRdl6EOBZIWxvVCSfdUcT2cc9upf475bgHeT0v7DFgJ3AjcAMwEcv7wdHVeXbphbQDwKuH9OqwqCjSzD8jh/WpmJ5aT5WrgMeDL9A2SGprZpgrW64aK5M+VpJbAC2Y2rYL1KQI8BJhzdcg9wPL4WJYS4C5CA359Iv07wFxKe2hPA3MIH2JV1hNxtaZO9LwlNQd6AJeQ+LKp4D5JiyVNAr6V2LZc0q8lvSGpSFI3SS9IWirp8pgn2bu8UNITkp6XtETSHWlltZHUTNIkSfMlLZTUT9IQYA9gmqRpMf86SbdImgkcIWmopNlxnxFSuM1a0j6SpsTyiiV1iHV6RdKcuByZONfhsYwFkvpleJ0KJL0p6WFJJZL+mhoRkLQcaGxmT8Se9PTErodImhrPe2CGcntLeib1t5A0OtahRNKZMf2B+DovknRzhf/Izrkqtxm4FPgZcFjatkaUfsC/SxiO64433PWGmdX6AvwE+HNcfx3oFtfPAP4BNCQ0oJ8CZ8Vty4HBcf0uwhfQFkBb4KOYXgAsjOsXAu8ALYGmhPdzh0RZbYAzgZGJerVMbk+kG3BO4nmrxPqjwClxfSbwo7i+c1x2AZrGtH2Borh+ZuJc2wHvAe3TXqeCeOwe8flDwHXpdQQKgelxfRgwPx67DbAivpbJ16Y38Excvx24O3HM3ZPnGOs3HTg4w99xEKEHX7QXmPniiy/btSwDA+ykLNtHgbUFmw/2WMz7E7CPEnlWgXUB2x1sYR04J1/KXlJtQnlLneh5E4bMx8f18fE5wNHAODPbFIfAp6bt93R8XADMNLPPzWw1sD7LNewXzWytma0HFgN7p21fAPSN16R7mtnaLPXdBDyeeN5H0kxJC4BjgAMktQD2NLOnAczsKzP7CmgMjIx5JwJdYhlHJc71Q+Altv0yDbDCzF6L64/F/crzt3j8NcA04PAy8vYF/ph6YmafxNVzJM0hjMQdkKg3ibwjzKzQzArb5lAp51zFbYgLhG/iq4FDCD0gCB8KN8X1DwjfzFcBkwn/uK5+qPVr3vGGrWOAAyUZoWdnklKXb6yM3VPv4c2J9dTzTOeWzLMpPY+ZvS2pO+Emzd9Immxmt2QoZ33qOrekpsD9QKGZrZA0jNCzV5a6XwN8SPh/a0C4UZSYPxfpZaaeb6R0lKxpjvtksk29JXUErgMOM7NPJI3JcAznXBWaBCyM6yuAUUAv4DhgDbAOOAc4MOZZRBhmOx4YHLf3Av4F/CI+/gs4BWhWEyfgqlVd6HmfBTxiZnubWYGZdQCWEXqULwP9JTWU1B7oU50VkbQH8KWZPQbcCXSLmz4nDMlnkmrE1sRr92cBmNlnwEpJp8Syd5a0M2HYfpWZbQbOI3xZgXCu/eK5tiWMOszKcLy9JB0R11M3+UEYNu8e189M2+dUSU3jF6XewOzsrwKTKf21CZJ2B3YFvgDWSmoHnFDG/s65KjCccKc4hGuCA4HX0vJ0IXzgnEVoqAE6ET4I1hAa61RZA+Kyuvqq7GpQXWi8BwBPpqU9Dvw4pi8hDGc/QBhKrk4HAbMkzQN+CdwW00cAz6VuWEsys0+BkbGOT7F1w3gecK2kVcArQGtCL/0CSTOA/QiNIoRzLSFcn54KXG9m/85Qx3/G/UuAVoTXBeBm4A+SXiGMKiTNInyRnwHcGi9BZHMbsHu8cW4+0MfM5hOGyxcRrrOnf4Y456rYdOJF7MRyIeFb+roM+XvHPPfF5wUZ9reY7vKf4o1GrhpJ+jGht71N41/BcgoIN5YdWE7WWlcomf/2zDnnKkZQbGaF5eWrCz3vek3Sz4FbKR0ed84557aL97xdtSgsLLSiIu97O+dcRUjynrdzzjlXH3nj7ZxzzuWZWv+dt6uniotBuf503TnnXEV4z9s555zLM954O+ecc3nGG+8ESd+R9LcYfWuppD9I2imH/f5fTdSvKijHGOfOufpnCCHqkYCTy8hXEPOklq6JbZ8C5wO7Ac0JU0G6mueNdxTDeD4BPGVm+xJmP2sO/G8Ou2dsvGOYzxp/jSVl/U25mX1gZuXGOHfO1U/9y88CxKhQcbk9kX4xMJYQv/luYJ8qrZ3LlTfepY4hBBwZDRADj1wDXCxplxgPPDXzIJKeiXGwfwvsLGmepLEx5vY/Jd0PzAE6SBoQ42MvlHR73L+hpDGJ+N3XpFdI0tmpaUolvZzYb7hC/PASSZfF9N6Spkn6P2BBjIz200RZwyT9XFvHOG8o6XfxGCWSBsX0StXXOVe33UP4UMtFR+AkQmP/w5j2DmEe5wHAb4CLCPMlu5rnd5uXOgAoTiaY2WeS3qOML5dmdqOkK8ysK2yZwrQzcJGZ/TQGO7mdECvgE2CypNMIgYL2TE11miWE6VDgh2a2MrH9EmCtmR0mqQnwmqTJcdvhwIFmtkzSoYQvxvfHbecQAg4lv7ANAjoAh5jZJkmttrO+zrl64hHgYaAtoaG+hBBHGUIAh2aEaSOvYuueuasZ3vMulS2EZ7b0srxrZjPi+mHAdDNbbWYbCSNORxO+xH5X0r2Sjgc+y1DOa8AYSQMpnV71B8D5MXjKTEKwk33jtllmtgzAzOYC34rXuA8BPjGz99LK7wuMSIU3NbOPt6e+kgZJKpJU5JGLnMtfA4G/AI8COwGXEUI9pmIqfwFMAHoAdwBTaqGOOzpvvEstAraakk7SroSe6VK2jpcNZcez/iKxnvHHzmb2CSGm93TgZ4Rwvel5Lgd+FeswL4b0FHClmXWNS0czS/W8v0gr4q+EaIH9gPEZqpGpbttT3xFmVmhmhW0zFeKcq5M2UNowQwipeBbwE8KHxybgbUojkvUEziAM50H4gHQ1yxvvUi8Cu0g6H7bc9PU7YIyZfUmIxNdVUgNJHQhD1CnfSGqcpdyZQC9JbWKZA4CXJLUBGpjZ48B/Uxo7fAtJncxsppkNJYTn7QC8AAxOHU/SfpKaZTn2eMIlq7MIDXm6ycCg1A1uklptT32dc3XbJEKPGcJ1sFGEmMudCUN4EGIbn0K43nYPYfh8Z0K85G7x8UVCHOTRhCHBHjVTfZfg17wjMzNJpwP3S/pvwhebZym9k/w1wsjRAmAh4Wa0lBFAiaQ5hC+tyXJXSboJmEbo1T5rZn+LQ9mjE3ej35ShWsMl7Rv3e5EQ67uE8AV4TrxDfjVwWpZzWiSpBbDSzFZlyDKKcFf9EkmbgdvNbOR21Nc5V4cNB16K6yWE4fHRaXnaEHraQ4EvgS6En9zsEbePAy4FrgT2IjTudT5GcT3kUcUckpoCd5rZFVVVpsfzds65ivN43i4nkvYj3DzapLbr4pxzLjc+bL6DM7O3CZexqlb37uDxvJ1zrmJyDOjkPW/nnHMuz3jj7ZxzzuUZb7ydc865POPXvF31KC7O+dqNc865ivGet3POOZdnvPHeAUjqIemo2q6Hc865qlGrjbek0yWZpP0TaQWSfpx4XijpnnLKuTw1rWla+pbwlxWo0xhJ2xXvOpc6V6Cs5XFq0vT0LeecrLOkUZK6JPK1BIYB88o4xi2S+lZFfZ2rS4YA7QhTBZ5cyXz/BI4kTITQmTCnsHO1rbZ73gOAV9k6PnwBsKXxNrMiMxtSViFm9qCZPVItNayEXOpcBcfIeM5mdqmZLU4kdQF+ZmbrMpUjqaGZDTUzDwzk6qX+5WcpM98A4E3g90Bj4GxgbRXUy7ntUWuNt6TmhPnsL2Hr/5vfAj0lzZN0jaTekp6JAUGWJ+NIS/qXpHaShkm6LqZ1lzRf0huE6FepvAWSXpE0Jy5HxnRJuk/SYkmTgG8l9uku6SVJxZJekNQ+pg+J+UskbROtK1XnuD5M0sOSJsf6nyHpDkkLJD2fCDByrKS5Mf0hhVjdKb+QNCsu+yTKvS7DsadLKozrDwD3Ak9JujmRZ7mkoZJeBc5O67kPlTRb0kJJI+L86eWes3N10T3ANduRby4hoMAAwofJtYRYuJmi/DhXk2qz530a8Hyc4etjSakoVTcCr8Rwl3elMpvZZuBvwOkAkr4HLDezD9PKHQ0MMbMj0tI/Ao4zs26EKHepYe3TCaNhBxHm6U816o0JDd9ZZtYdeIgwP3+qjoea2cHA5TmcayfgJOBU4DFgmpkdBHwFnBTnFh8D9IvpjYDBif0/M7PDgfuAu3M4Xsov4xy5BwN9JB2c2LbezI4ys/SG+D4zO8zMDiQEE0qNIpZ7zvJ43q6eWRYf94yP34mP79RCXZxLqs3GewClMabHx+flmUBoeCH01ickN8bru7uZWSpwzqOJzY2BkZIWABMJw8kARwPjzGyTmX0ATI3pnQnBcv4haR4hrnbqf7cEGCvpJ4Q43+V5zsy+IUQkawg8H9MXEC4TdAaWxS8yAA/HeqWMSzymfykpyxmSXonn1InSc4a01y6hj6SZ8XU6Bjggppd7zh7P29V3qTBO/iNIV9tq5XfekloTGoYDJRmhQTNJ15ez6xvAPpLaEnrut6UXTen/V7prgA+BQwhfWtYntmXaR8CiDD14CL3oo4EfAf8t6QAzK6sR3wBh9EDSN1Yaym0z4W9Q3meBZVnPSlIBcD3QzczWSXoYaJrI8kWGfZoSwvgWmtkKScMS+1T0nJ2rszbEx/Ki8XSMj+/Hx5Vp6c7VltrqeZ8FPGJme5tZgZl1IIxQHQV8DrTItFNs9J4k3DvyTzP7T9r2T4G1Kv1Z1LmJzS2BVXH4/TzCFwaAl4H+khrGa9p9YvpbQFtJR0AYRpd0gEI86w5mNo3QOO4GNK/0KxG8CRSkrmfH+r2U2N4v8fhGjmXuRhiW/1JSO+D4HPZJNdRr4j0Jqevg1XHOzlW7SZQOMa0gBLBfQhjqap1DvkMJ15zGA38kfPC0AM6s7oo7V47ammFtAOHGtKTHCXeZDwE2SppPuA48Ny3fBEIIywuzlH0R8JCkL4EXEun3A49LOhuYRmnP80nCKMAC4G1io2lmX8ebuO6Jw/GNCNeb3wYei2kC7opfGirNzNZLugiYKKlRPL8HE1maSJpJ+LKVy+UFCPfZzAcWES7RvZZDPT6VNJLwWiyP9YDwRadKz9m5mjCc0m/BJYSbWkZXIN++wP8BlxJuVtsb+Avh26tztUmlI7jOVZ1CyTwgqHPOVYygON5oXKba/p23c8455yrIA5O46tG9OxR539s55yokx4BO3vN2zjnn8ow33s4551ye8WFzVz08nrdzzlUb73k755xzecYbb+eccy7PeOPtnHPO5ZkqbbwlZYwZnZbnakm7VOVxK0rShZLui+uXSzq/kuVcLWmGpImSOldw37Ml/VPSNEmFku4pf6/qJelZJUKuOufy0xCgHWE6xJPLyFcQ86SWrjF9CWGe6NaE6WCPA5ZWU11d5dTGDWtXE8JifpnrDpIamtmm6qiMmT1Yfq6s+95NxUJ0Jl0C/DTOFw5Q6z+KNrMT09NiPG/FOeGdc3miP6Vxj8tyNKXxh3ePjysJUZNuJswHfS9hithp2+ztaku1DJtL6i1puqS/SnpT0lgFQ4A9gGmSpsW8P5D0hqQ5sQfbPKYvlzRU0qvA2bG8uyS9HHush0l6QtISSbcljv0TSbMkzZP0J0kNY/pFkt6W9BLQI5F/mKTr4vpASbMlzZf0eGqEQFI7SU/G9Hmxp9xc0oux3gsknZoo81pJC+NydYbXZyghCMuDkobH1+uZRH0eiuf7TnzNUvs9JalY0iJJgxLp6yT9b6zfjBiIJL3e8yWlYpVne42WS2ojqSC+xvcDc4AOkh5QiNW9SNLN2/P+cM5Vr3sIYRRz0ZEQMrA/8MOYdiRhrvcrYlmtCEESXB1iZlW2AOviY29gLSH+dQNCJKyj4rblQJu43oYQ1atZfH4DMDSR7/pE2dOB2+P6VcAHQHtCVL/3CSM8/wX8HWgc890PnB/zvQe0BXYiBOm4L+YZBlwX11snjncbcGVcn5BYbwTsmnpMnMe/CCNP3QmBPZoRIm8tAg7N8FpNJ4TeTL1ezyTq83o8rzbAfxLn0yo+7gwsTNWXECb0lLh+B/CrRL2vjusNCZHVMr5Gyb8NYTRtM/D9RH1bJcqZDhyc4ZwGEUYQivYCM1988aXWlmVggJ1URp69wRTztQUblSHP7Lj9zDpwTjvCAhTl0t5W57D5LDN7H0DSvNggvJqW5/tAF+C1MDrLTmwd8nJCWv6n4+MCQqztVbH8d4AOhN5sd2B2LG9n4CPge8B0M1sd808A9stQ5wNjLz4V8jIVlewYQphOYgzrzyQ1Bn4t6WhCQ7cn4TLTUcCTZvZFPNYTQE+2jY5WlklmtgHYIOmjWO77wBBJp8c8HQhBj/4DfA08E9OLCZeoUvU+P9Z7EyFc6nlZXqN075rZjMTzc2JvvxHhy1AXQgCmLcxsBDACQmCSCpyvc64WDCSER10P3AhcRvjQSMUrfws4lfDhfW8t1M9lV52N94bE+qYsxxLwDzPLFubyi7TnqTI3p5W/OZYv4GEzu2mrg0inEb7RlGcMcJqZzZd0IaFHnM25hJ58dzP7RtJyQjzsqpiZZJvXTlJvoC9whJl9KWk6pfG3v7HS8HDZXuuUjK9RBltee0kdgeuAw8zsE0ljEsd2zuWJ1AdLk/j4y8S2uYR45W8TGu/FhIa8CTCV8I3d1R218VOxzwk3MALMAHpI2gdA0i6SMvWIc/UicJakb8XyWknaG5gJ9JbUOvaYz86yfwtgVcxzblq5l8UyG0nalTAE/VFsuPsQQv1CuAxwWjyXZsDpwCvbcU4pLYFPYsO9P2HUojwvEu9FkdQw1jvba1SWXQmN+dp4Pf2Eyp6Ec676TaJ02HIFMIpwB3lnwvVFCMOXpxCum90DPEIYhjso7tMbWEP4AJkJjK+Zqrsc1UbjPQJ4TtK0OIx9ITBOUgmhMd+/sgWb2WLgV8DkWN4/gPZxeH0YYUh+CuEmrEz+m/A+/QfwZiL9KuA4SSvjvvsCY4FCSUWEhv7NWIc5hB78rFjWKDOryJB5Ns8TeuAlwK2E16o8VwF9JC0gDKcfkO01KqsQM5tP+GK+CHiIcM+Ac66OGk4YBodwbWsg2/7TtiEM0w2NefcGniTcUbwUWB233wQMiIurO1Q62urKE+/W7mxmo2u7LnVdoWS1/ts355zLM4JiMyssL5/PsJYjSQMII0v+bcc551yt8qhiOTKzccC42q5H3ujeHYq87+2ccxWSYzRG73k755xzecYbb+eccy7P+LC5qx7FxTkP/zjnnKsY73k755xzecYbb+eccy7P1GjjLemXMSpVSYxo9b0qKvcWSX2roqxyjrMlAlmO+X8k6cYc8g2Pr8vw7avh9pN0u6TXJU2Q1Lr8PZxzO6pc4oaPYeuY4alledz+FLAPYb7l3sCy6qpsPVNj17wlHUH4+3Yzsw2S2hACkeS6f6MYFGQbZja0iqpZpczsaUqDqZTlMqBtDEZSrrJei+1lZjdUR7nOufqpvLjhvSj9je1G4BJC3PA9gX/H/bsQZoX7f8AFhDmmXdlqsufdHliTaqDMbI2ZfQAgqbukl2Ks6hcktY/p0yX9WiEG9y9jvOkGcdsuklZIaixpjKSzYvphsec4X9JMSU3i/N1PxR7/DEkHx7y94gjAPElzJbVIr3QcLXhL0hTC1MCp9E6Sno91fiXON56+74WS7ovrYyTdE+v2TqK+TxPCh86U1E/S3gpxwkvi416J/X+vEAf99jgK8LCkyfF1OUPSHQqxxZ+P87OjEBN9tkJs8RFSuItM0j6SpsTXqVhSB4U43q8oxCifo9L434qjAwtj+f22/+3gnMt3ucQN70hooPsTetdfAxcDjQmN+gbCFKxXUhoIYmk11bdeqcp43uXE+m4OzCMErbkf6BXTGxPiV7eNz/sBDyViXt+fKONvQJ9EvlFxfQxwFqEnv5TQu4cQzKMBIZrd/8S0Y4B5cf3vQI9E/Rql1TkVm3sXQnCOf1Ea+/tFYN+4/j1gaoZzvpDSuOFjgImxPl2AfyXyrUus/x24IK5fDDyV2P8ZoGEi7ver8fU7BPgSOCFue5IQHQ1iHO64/iilcb9nAj9KxAffOZ5n05i2LzGuLHAmYQ70hoRRsvcIc8Zn/Xt3rwNxcX3xxZfqX5ZRftzw1NIXrEHcx8CujPu+Fp/fFJ9PrgPnVVsLdSCe91bMbJ2k7oTY1n2ACfF6cBFwIPCP2ClsCKxK7Dohbb0fMI3wRe7+tMN0BlbF4CCY2VoASUcRGiDMbKpCdLGWhLn6fy9pLPBEKv54Qk9CbO4vYzlPx8fmwJHARJX+HKoJ5XvKzDYDixWic2VyBHBGXH8UuCOxbWKMy53yXIxqtoDwuj0f0xcQQvBCCExyPaFhbgUsUggnumcc1sfMvorn1RK4T1JXQkyCVIS3o4Bx8dgfxpGQw0i7JKAQ73sQwF45vBjOuR3HUkKP5wRKP5zSWXz0H5mWr0Z/5x0//KcD02ODcwEh2tUiMzsiy27JmN5PA7+R1IrQK56aljfb3zxTupnZbyVNAk4EZkjqa2ZvpufLsG8D4FMz65rleNkkr2nn+v5MHj9jfHMz2ywpGdN7MyECWVPCF5xCM1shaRilMcczndc1wIeEnnwDYH1F6mpmIwhR4yiUMpXvnNsBpMcNB/gT4UNncCKtY3xM9ZpWpqW77GrsmrekzpL2TSR1Bd4F3gLaxhvaiNewD8hUhpmtI4Ta/APwTFovFEJYzvaSusWyWsZr5C8T43NL6k249v6ZpE5mtsDMbieMAKRft34ZOF3SzvF6+CmxHp8ByySdHcuUpEMq8bJk8jphVIFY51e3o6ym8XFNHC04C7bUf6WkUwDi+e1MuMywKo4OnEfozUN4HfopxARvCxxN+Ds453ZgucQNh3CdewxhRO7ERHp/wrXO2wnXNp8kDPN1qs5K1xM1ecNac+BhSYsV4kh3AYaZ2deERuV2SfMJ18WPLKOcCcBP2Ho4HYBYVn/gAUkfEIaRGxOuDxfG4/6W0OMHuDrehDUf+Ap4Lq28OfE484DHCfdSpJwLXBL3XQScmusLUY4hwEWxrucRYnJXipl9CowkDKM/BcxObD4PuFbSKsJ5tSb00i+QNIMwZJ7q6T9JCAs8nzDacb2Z/buy9XLO1Q+5xA0HeIIQH3wgWzc67Qk3rX0KXAccSmjkXfnqbTxvSTcQrmMvqe261GWSfkzobU+rynI9nrdzzlXcDh3PW9LvCDdONa7tutRlkn4O3Erp8Lhzzrk8UG973q52ec/bOecqLteet0cVc9Wje3co8ubbOecqJMdojPVy2Nw555yrz7zxds455/KMD5u76lFcnPPwj3POuYrxnrdzzjmXZ7zxds455/KMN941IAZCSYUe/beklYnnOcc0r0mSro1zozvnXI0aQghfKODkMvLdTQhy0oQwH/q9iW0Fcf/UUtFAFHWdN941wMz+Y2ZdYyCTB4G7Us/jlK6p+dHrxN9DUkPgWkrnRnfOuRrVv5ztSwiRlBoAvwe+ITT6KxJ5jiZMvzqOMH96fVInGosdlaR94tzqDwJzCEFVRkgqkrRI0tBE3vclDZM0V1KJpP1i+jGS5sde/BxJzST1lTRN0lNxLvk/KsYulfQTSQvicX8d0xpJ+lTSbZJmAdcD3wJekTQl5jlB0hvxGBMkNavhl8s5t4O4h9Awl2VzfNwT6At8m9ADT/Y4OgInEb4I/LCK61jbvPGufV2AP5vZoWa2Ergxzq5zCHCcpC6JvB+a2aGE4D3XxrRfAINir/5oSsN4fg+4GjgI+C/gVEnfAW4jxFM/FOghKTUq1RKYY2aHm9lvgI+AnmbWV9K3CPEHjjWzboQYBJUOmOKcc9urMyHK1GuEcJBzCfGI2ybyPALsSuiJ/LmmK1jNvPGufUvNLBnta4CkOYSe+H8RGveUJ+JjMaXx7F8D7pZ0JbBrIkzqDDNbHp+PJ0Ta+x4w1czWmNk3wP8RGnwIUfuezFLHI2M9Xpc0jxBRrSA9k6RBcdSgaHVu5+6cc5WymnCNuyshZOIhwBWUxgYfCPwFeJQQdvQyYFnNV7PaeONd+1JhN4nxzq8CjjGzgwkhTZOjQKkY95uIv9E3s9sI78vmwOxEzPT0SeuNcN9GNl9Z9onuBTyfuE7fxcwGpWcysxFmVmhmhW0zFOKcc9tjA6UfgtOAlcAZhHjMZwCfA2/E7b8kxJr+CdCP8KH5dk1Wtpp541237Ep4/30mqT05XKaR1MnMSuJQ91zCaBLA9yXtFW8+Owd4FZgB9Il3vzciXAp6KUvRnwMt4vrrQC9J343HbJb4kuCcc1VqEjAhrq8gXCdcQvhwax3TvxsfHyMMiY+Nz/cDFgCnAPcTrp8/AuxMuIZYX3jjXbfMARYDC4GRZI5rn+66ePNZCSGm/eQsMjcxAAAgAElEQVSY/jrwO8L7+G3gaTN7HxgKTAfmEYbWJ2UpdwQwRdIUM/sQuASYIGl+LHu/Spyfc86VazjhJhsIN9gMZNsPw0LCB9wG4Gfx8T7C8HkbQk97aCxnb8I1wT2qu+I1yEOC1kOS+gJXmNlptVUHDwnqnHMVl2tIUO95O+ecc3nGA5PUQ2Y2BZhSq5XweN7OOVdxHs/bOeecq5+88XbOOefyjDfezjnnXJ7xa96uehQX53ztxjnnXMV4z9s555zLM95413MxYtgVkprUdl2cc85VDW+86wBJ35Y0XtLSGMLz2VTIz+0sV4R49SVmtqG8/Gn7jkqLaOacyxNDgHaEoAQnl5GvIOZJLV1j+hJC6MHWhDmSjwOWVlNdXeX4Ne9aFhvYJ4GHzax/TOtK+N/brnn0Y6CRK8o4diMz25hl30u359jOudrVnzCvd3mOBgbH9d3j40pCvOybCR9C9wKXEoKBuLrBe961rw/wjZk9mEows3nAq5KGx3nLF0jqByCpt6SXJP1F0tuSfivpXEmzYr5OMV9bSY9Lmh2XHjF9mKQRkiYDj0hqKOnOuG9JDC2KpOmSCuP6gLh9oaTba/j1cc5V0D3ANTnm7QicRGjsU5GQjiRELLoiltUKWFTFdXTbx3vete9AQnzudGcQRrFS8+zPlvRy3HYIIdb3x8A7wCgzO1zSVcCVwNXAH4C7zOxVSXsBL8R9ALoDR5nZV5IGE/5/DzWzjZJaJSshaQ/g9rjPJ8BkSaeZ2VPpFZY0CBgEsFflXgvnXA17BHgYaAv8hhCBaKfE9iLCB82ZNV81VwZvvOuuo4BxZrYJ+FDSS8BhwGfAbDNbBSBpKaWRxBYQevIAfYEuKv251q6SUiE+nzazrxL5HkwNn5vZx2n1OAyYbmar4/HGEkbatmm8zWwEIRoZhZJHvHGujhtICLO5nhB96zLgGMK3eYC3CLGyCwhD567u8Ma79i0ixIxPV9aPpJM3n21OPN9M6d+0AXBEopEOhYbG/Iu045TV0PqPtZ2rJ1IfFKmfnvwysW0u8HvCNe6OhNjEx8S8U4H2NVRHlxu/5l37pgJNJA1MJUg6jDBE3S9ek25L6O3OqkC5k0ncrBZvgsuW73JJjWK+VmnbZwK9JLWR1BAYQLgc5pyroyYBE+L6CmAU4Q7yzoQ7yCEM050C3E+4rv0IsDNwUNynN7CGcDPbTGB8zVTd5ch73rXMzEzS6cDdkm4kjGAtJ1y3bg7MJ/SMrzezf0vaP8eihwB/lFRC+Du/DFyeId8oYD+gRNI3wEhCTPtU/VZJuolwo6mAZ83sbxU/U+dcTRlO6TfsEsLw+Oi0PG2ATcBQ4EugC/C/wB7AdGB1zHdTYp/+1VNdVwkKvyZyrmoVSuYBQZ1zrmIExWZWWF4+HzZ3zjnn8owPm7vq0b07FHnf2znnKiTHgE7e83bOOefyjDfezjnnXJ7xxts555zLM37N21WP4uKcr90455yrGO95O+ecc3nGG2/nnHMuz+zwjbekb0saL2mppMWSnpW0XxWWf5qkLlVY3gGSXpH0d0mZZkyrTJmvl7O9UNI9cf1CSfeVld855yprCNCOMJ3jyWXku5sQMKUJYS729MAp6wnTwYrEPNH1yA7deCtE6XiSEDWrk5l1Af4f4b1TVU4jzDyY6fgVvufAzBaZWU8zOyUZA3x7mNmR5WwvMrMhVXEs55wrT3nTsC4hxCtvQAim8g2h0V+RyHML8H611K5u2KEbb0L4zG+SjaCZzTOzVxQMl7RQ0gJJ/QAk9ZY0XdJfJb0paWz8EoCk38bee4mkOyUdCfwIGC5pnqROcd9fxxCfV0kaI2lLVDFJ6xLrN8Tjz5d0c0wbKml2TB+ROHZXSTPisZ+UtHv6yUpqF7fNj8uRyWNKmiDpxET+MZLOjOf8TFW+8M45l8k9hIa5LJvj456EmMbfJvTAm8b0EuAuYFg11K+u2NEb7wOB4izbzgC6AocQ3h/DJaWi4h1KCBzSBfgu0CNG4zodOMDMDgZuM7PXgaeBX5hZVzNbGvffzcx6mdnvslVM0gmEoD+HmdkhwB/ipvvM7DAzO5AQBCg1svQIcEM89gLgfzIUew/wUiyvGyEcadJ4IPUlZSfgWODZbHXMUOdBkookFa0uP7tzzlVKZ+C3wGvA/oRwpiOAtoSG/VLgZ8BhtVXBGrCjN95lOQoYZ2abzOxDQpCe1Hthlpm9b2abgXmESy+fES6zjJJ0BiFQTzYTytiW0hcYk4rHbWYfx/Q+kmZKWkAIt3uApJaELwSpQEIPE0KIpjsGeCCWt8nM1qZtfw44RlIT4ATg5fR44GUxsxFmVmhmhW1z3ck55ypoNeEad1fgKUIP6wrCMPloQljG84GVMf9aSqOk1Rc7euO9COieZVtZP1LekFjfBDQys43A4cDjhOvcz5ex/xeJ9Y3Ev0McAt8p2/ElNSWE3z3LzA4ihO9smp6vssxsPSEa4A8JPXAP4eucqxM2UPrBO43QMJ8BnBofPwfeIFz3Xk1o0H8S8z/G1qFN64MdvfGeCjSRNDCVIOkwSb0I8a/7SWooqS2hJzsrW0GSmgMtzexZwpB617jpc6BFGXVYTukXiFOBxnF9MnCBpJ1j+a0obajXxOOdBRB70J9I6hm3n0dpON+kF4HBsbyGknbNkGc8cBHQE3ihjHo751yVm0Tp0OQKYBThBrXOQOuY/t34+BjwZ2BsfL4fcA4wMS7DYvrxxA++emSHbrwtBDM/HTgu/lRsEeHv/QHhLvQSYD6hkb/ezP5dRnEtgGcklRAaztQ9F+OBX0iaK6lThv1GAr0kzQK+R+yVm9nzhPfxfEnLgSvN7NOYfwFhtGh2opwLCNflSwhfHG7JcKyrCMPuCwjX+g/IkGcy4YvKFDP7uozzdc65KjccuDGulwADCde2kwqB3xF64j+Lj/cRettdCL2as4BeMX8nsg+x5iuF9svVVXEofYSZDSw3cx1SKJkHBHXOuYoRFJtZYXn5duied10Xh8bnAh1quy7OOefqDg9MUoeZ2TpKr53nl+7docj73s45VyE5BnTynrdzzjmXZ7zxds455/KMD5u76uHxvJ1zrtp4z9s555zLM954O+ecc3nGG+9aIqlA0sK0tGGSrosxs/dIpI9KxQSXtFxSm7ieMQ53eqSyytTFOeeqS1XE7H4NODhu6wbMqY6K1mHeeNdNFwJbGm8zu9TMFqdnKi8Ot3PO1VXbE7N7PXAmYe7pu4APCTOqbaquytZB3njXTYXA2BgDfOcYA3ybGXcScbgl6b4YS3wS8K1Enmzxv7vHmN5vEGYYTOVvqBDHfHaMDX5ZTG8v6eVYp4WJedSdc65Ctjdm93OEBvuncbkEWEaIqrSj8Ma7bioCzo0xwHMJyXk6Yd7+gwhTASd75Nnif48GhpjZEWllXQKsNbPDCCFQB0rqCPwYeMHMUjHO51Xy3JxzrlxlxexeFvPsGR+/Ex/fqckK1jJvvGtPtknlKzPZ/NGUxh7/gBBIJSWX+N+PJvL/ADhf0jxgJiGQz76EICgXSRoGHGRmn6dXQtIgSUWSiupb7FznXM0qK2Z3utSH5o7041RvvGvPf4Dd09JaAWsqWd42jX4Z8b+VKX9qN0IEs65x6Whmk83sZcKXhJXAo5LO36YCZiPMrNDMCttW8iScczuuXGN2d4x5Ug35yviYSt8ReONdS+K85askHQtb4nUfD7xK+THA070M9I/Xq9sDfWJ6tvjfnwJrJR0Vt5+bKOsFYLCkxrFe+0lqJmlv4CMzG0kIodutYmfsnHPB9sbsPoFwY88Dcfkz4a703tVb7TrFG+/adT7wqzhEPRW42cyWAmOAB1M3rOVQzpOE9/4Cwnv5JdjSSGeL/30R8Md4w1ryuvooYDEwJ/587E+Emfh6A/MkzSXc6PmHypywc85tb8zupsBEoDlwFaEhnwg0rO6K1yEez9tVC4/n7ZxzFefxvJ1zzrl6yhtv55xzLs94VDFXPbp3hyIfOHfOuQrJMRqj97ydc865POONt3POOZdnfNjcVY/i4pyHf5xzrtrU019Uec/bOeecyzM11nhLOi8Zo9o555xzlVNu450KO5krSb0lPZOWdjRwdAyaUda+V0vapYztoyR1qUh9EvsWxBnDcs2/m6SfVuZYFSVpXAy/WV6UvJqoy6OSXpL0iCS/rOKccxksWbKEPn360Lp1a1q0aMFxxx3H0qVLt8n31Vdfceyxx9K8eXMkceedd27Ztnr1arp27UqzZs1o0aIFvXr1gtJprctUUz3v7xACwpTnaiBj4y2poZldamaLq7Rm2e1GCBWbsS5VdRBJ3waONLODzeyuHPeptkbVzM4zs15mdr6Zbayu4zjnXD5buXIlmzdv5uabb+aiiy5iypQpXHrppdvk27RpE61ateL444/PWM4JJ5zA/fffz+DBg3n55ZcBOuRUATMrcwHWxcfehFjnfwXeJMwTn5pe9fiY9iohzvozMX0YcF2irIWE+eObEeamnx/T+gFDgK8J83BPSx0buIUQmvKoePzCuO0BQtzrRYQ5wTPVvXs8xhuE6XQXxvSG8flswtS6l2XYdzxhzu95MW9vQqCb/wMWxzxPAcWxDoOSrxnwv/HYM4B2Mf3seL7zgZdjWkniOD0JEfBmxPQngd1jvunArwnzlv+cMP/5A7FO7wC9gIeAfwJjEnXJ+DoRYnW/HusykxDn/vCYNjc+do55mxLify+I2/qU977pHm4T8cUXX3yp3aWabNiwYavnrVq1srZt22bNP3r0aANs+PDhW6Vv3LjRPvroI3vuuecMMGCtWdmfrxbPrOwMWzfeawm96AaxQTwqfrCvIMR8FvAXym+8zwRGJtJbxsflQJtEugHnJJ5Pp7TxbhUfG8b0gzPUvQToFdeTjfcg4FdxvUls3Dqm7VuQyp84/y+S+RJ12DmeW+tEvU+J63ckjrUA2DOu75blOMk63wLcnTj3+xP5xhC+YIgQMe8z4KD4tykGumZ7nYCdgKVAt9TrH/fbFWgU0/oCj8f1nwOj4/r+wHtA07LeN954++KLL3ViqQGzZ882wM4888ysebI13nPnzrXYZtiee+5pyfagrKWiw+azzOx9M9tM6CkWxA/zZWa2xMyMEMGtPAuAvpJul9TTzNZmybcJeDzLtnMkzSH0BA8AtroWLqkloYF8KSY9mtj8A+D8GM1rJiEK3b451HuWmS1LPB8iKdW77pAo42sgdd2/mPA6QQicM0bSQDIEwMlQ54cJMbRTJqTt8vf4mi8APjSzBfFvsyhxzEyvU2dglZnNATCztXG/lsDEeG/AXTE/hC9pj8a8bwLvEiLzpdd/kKQiSUWr0zc651w99NZbb3HqqadSUFDAvffeW+H999lnH1544QVuvfVWPvjgA4Bv57JfRRvvDYn1TZT+Ttyy5N+YdoymAGb2NmFIewHwG0lDs+y/3sw2pSdK6ghcBxxrZgcThuDTL/KrjHoJuNLMusalo5lNzpI36YtEHXoTeqdHmNkhhMYxVYdvYqMKidfJzC4HfkVo6OdJSoWuzdUXac9Tf4/NbP232Qw0KuN1yvYD7FsJlywOBE5JnE9OP9g2sxFmVmhmhW1z2cE55/LY4sWL6dWrF40aNWLq1Km0b98eM2P9+vV88803OZXRvHlzfvCDH/CrX/2KDh06AOyey35VccPam0BHSZ3i8wGJbcuBbgCSugEd4/oewJdm9hhwZyoP8DnQIodj7kpoyNZKakeIzb4VC7Gs10o6Kiadm9j8AjBYUuNYn/0kNUsrory6tAQ+MbMvJe0PfL+8SkvqZGYzzWwosIa0GxPiCMQnknrGpPOIsbkrKdvr9CbQPv5NkNRSUoN4TitjngsT5bxMfP0k7QfsBby1HfVyzrm8tmLFCnr37s2aNWsYPHgwM2fOZPz48bz77rvsvPPOnH766Vvyjho1KnUzGrNmzWLUqFGsW7eO0aNHc9VVVzF69GiuueYa3nvvPYD1uRx/u+9aNrP1kgYBkyStIdy0dmDc/Dilw9Ozgbdj+kHAcEmbgW+AwTF9BPCcpFVm1qeMY86XNJcwPPwO28ZxT7kIeEjSl4QGO2UUYVh5jiQBq4HT0o7xH0mvxSHk5wi91qTngcsllRAashnZ6pswXFLq3oAXCTeL7Z2W5wLgwfiTuXfiOVRKttfJzL6W1B94QFIHwjB4b8L1+YclXQtMTRR1f6zTAsJoyoVmluzpO+fcDmXp0qWsXh0uEN50001b0pctW7ZN3oEDB25ZnzhxIhMnTqRv3760bduWZ599lgcffJDmzZtz8skn88wzz7yTy/FVOrrrdkSSbgCeMLMlVVluoWQeU8w5V+vyrI2TVGxmheXl8+lRd2CSfke4875xbdfFOedc7rzn7apFYWGhFXk8b+ecqxDveTvnnHP1lDfezjnnXJ7xxts555zLMx41ylWP4mJQTnO7OJed35PjXEbe83bOOefyjDfeWUg6L84E55xzztUp9a7xlrSugvl7S3omLe1o4Ggz+6Ccfa+OM6Fl2z5KUpds27eXpAsr8wVD0mnJekm6RVLfqq2dcy7fDBkyhHbt2iGJk08+OWu+Tz/9lPPPP5/ddtuN5s2bc/TRIX7SkiVL6NOnD61bt6ZFixYcd9xxLF26tKaqv0Opd413FfkOcEUO+a4GMjbekhqa2aVmtrhKa7a1C4GMjbekbaKWJZxGIgqbmQ01sylVWzXnXD7q379/uXkuvvhixo4dyyWXXMLdd9/NPvvsA8DKlSvZvHkzN998MxdddBFTpkzh0ksvre4q75hyiRuaTwtbxx+fDvyVEIhjLKWT0hwf014F7qH8+OPNCHObz49p/YAhhNCfCwiRuADWEWJwzySE0ZxOafzxBwhxwxcBN2epeyfCnOnFwCvA/jH9b8D5cf2yeC5nxeO9RQjPujMhEMzQeF79gYGEOeXnE+aZ3wU4EvgYWBb360SIDX4WIXDJXxL16U0IO5pT/ZOLx/P2pUoWV+OWLVtmgJ100kkZty9dutQAO/fcc23Dhg22cePGLds2bNiwVd5WrVpZ27Ztq7W+9Q1QZFb18bzzzaGE3nEX4LtAD0lNgZGEkJc9yS126vHAB2Z2iIVwmc+b2T3AB0AfKw2i0owQSP17ZvZqWhm/tDBrzsFAL0kHZzjOCEKo0u6EUJ73x/RBwNAYbeznMc9fCY3puRbCmn4V8643s6PMbDxhzvLDLIQs/SdwiZm9DjwN/CLulxzT+gfw/USEtX6UxhAvt/4ez9u5+m/x4jCYOHv2bJo1a0azZs244YYbANhpp5225CsqKuLjjz/eMqTuqlZ9b7xnmdn7ZraZ0MssAPYHlpnZkvgt57EcylkA9JV0u6SeFkJ3ZrKJ0MPN5BxJcwhxvw8gMWwNIKk5oVc8MUZh+xPQHsDMPiT0qKcBPzezj8uo64TE+oGSXonRwM6Nx83KzDYSev6nSGoEnETo9Zdb/7i/x/N2rp7bsCEEFPziiy+YMGECPXr04I477mDKlNIrb2+99RannnoqBQUF3HvvvbVV1XqtvjfeybCVmyj9Xbtlyb+RrV+TpgBm9jbQndCI/0bS0Cz7rzezTemJkjoSetLHmtnBhCH4pmnZGgCfxt5wavmvxPaDgP+Q5Rp3wheJ9THAFWZ2EHBzhmNmMgE4BzgGmG1mn+dYf+dcPbVhw4YtjXZBQQEAPXv25IwzzuCcc84B2HJj2uLFi+nVqxeNGjVi6tSptG/fvlbqXN/V98Y7kzeBjpI6xecDEtuWA90AJHUDOsb1PYAvzewx4M5UHuBzoEUOx9yV0KiuldSOcG15K2b2GbBM0tnxmJJ0SFw/PO5zKHBdbExzOX4LYJWkxoSed0pZ+00nnN9ASnvx5dbfOZf/Jk2axIQJ4d9+xYoVjBo1iiVLltC5c2dat24NQLdu3TjooIN48cUXGTlyJKNHj6Zhw4b06NGDFStW0Lt3b9asWcPgwYOZOXMm48ePr81Tqr9yuTCeTwtb37D2TCL9PuDCuJ68Ye23lN6wtjMwmTDEPpJwnbgA+CFQEtNnU3oT2pWxnGnJYyeOOT2Rd0wsbxLwRKouafk7Eoat5wOLCUPlTeLzbjHPjwjD5wLOZNsb1tokyhtMuDFtOnAvMCam94jlzyVxw1raa7UO2CWRVm79k4vfsOZLlSyuRvXq1cuArZbRo0fb3nvvbc2aNduSb+HChfb973/fmjRpYvvuu6+NHTvWzMymTZu2zf7437FCyPGGNQ8J6qpFoWQeENRtN/98cjsYDwnqnHPO1VMemMRVj+7docj73s45Vx285+2cc87lGW+8nXPOuTzjjbdzzjmXZ7zxds455/KMN97OOedcnvHGewckqaGkq+L85c455/KMN96VJOl0SSZp/9quSyVcS5gNbmOmjZL2kPTXGq6Tc66OGzJkCO3atUMSJ598ctZ8n376Keeffz677bYbzZs33xJZbMyYMUjaZlm+fHkNnUH94Y135Q2gNG52ziQ1rJ7q5Hz8BsC/zezPWbY3MrMPzOysGq6acy4P9O9f/kfexRdfzNixY7nkkku4++672WeffQDo1asX48aNY9y4cTz66KPstNNOtGvXjj333LO6q13/5DKHqi/bzEHeHFgJ7Ae8GdMaEOJvLwKeAZ4lzhdOmHN8KKWNfVdgBmG+9CeB3WO+6cDdwOvAQuDwmN4MeIgwr/pc4NSY3pAQKGVBLOvKxPHaxPVCYHpcPzyWPTc+do7pFwITgb8DUwnzuS+M2wqAV4A5cTkyl9eoe/fuGWbtdc7lu2XLlhlgJ510UsbtS5cuNcDOPfdc27Bhg23cuDFjvokTJxpgN910U3VWN++Q49zm3vOunNOA5y2ECv04RiA7g9DQHQRcChyRts96MzvKzMYDjwA3WAivuQD4n0S+ZmZ2JPBTQoMN8EtgqpkdBvQBhktqBgwiBDM5NJY1tpx6vwkcbWaHEkKE/jqx7QjgAjM7Jm2fj4DjzKwb0A+4J1vhkgZJKpJUtHr16nKq4pyrjxYvXgzA7NmzadasGc2aNeOGG27YJt+f/vQnGjRowKBBg2q6ivWCN96VMwBIxbkbH58fBUw0s81m9m9C5K+kCQCSWgK7mdlLMf1h4OhEvnEAZvYysKuk3YAfADdKmkfonTcF9gL6Ag9avHZtZh+XU+8WwFhJrxJGAg5IbPtHlv0bAyMlLSD0zrtkK9zMRphZoZkVtm3btpyqOOfqo1Tc7y+++IIJEybQo0cP7rjjDqZMmbIlz9KlS3nxxRc5/vjjt8QHdxXjdxtXkKTWwDHAgZKMMHRthOHvsnyR4yHSwygZMfynmb2VVhdlyA+wkdIvZk0T6bcRwpc+GGOCJ79gZKvfNcCHwCGxzPW5nIRzbseRarCbNGmypTHu2bMnZ5xxBqtXr2bq1KksXbqUvn37AqHXbWYMHjy4tqqc97znXXFnAY+Y2d5mVmBmHQgxs9cAZ0pqIKkdIZ74NsxsLfCJpJ4x6TzgpUSWfgCSjgLWxvwvAFfGxhpJh8a8k4HLUz/5ktQqpi8Husf1MxNl7w6kxrMvzPF8WwKrzGxzrGut3nDnnKs9kyZNYsKECQCsWLGCUaNGsWTJEjp37kzr1q0B6NatGwcddBAvvvgiI0eOZPTo0TRs2JAePXoA8PXXXzNmzBj22msvTjzxxFo7l3znjXfFDWDbXvbjwB7A+4Qbzf4EzATWZinjAsJ16xLCzWu3JLZ9Iul14EHgkph2K2H4ukTSwvgcYBTwXkyfD/w4pt8M/EHSK8CmRNnDgd9Ieo3c//b3AxdImkG4QS/XEQTnXD0zfPhwbrzxRgBKSkoYOHAgr7322lZ5JDFu3Dg6derElVdeyccff8wjjzzCgQceCMATTzzB6tWrGThwIA0aeBNUWTIPdl9lJDU3s3VxaH0W0CNe/851/+nAdWaW97E0CwsLrchDgjrnXIVIKjazwvLy+TXvqvVMvMFsJ+DWijTczjnnXK688a5CZta7Nvd3zjm3Y/ALDs4551ye8cbbOeecyzPeeDvnnHN5xhtv55xzLs944+2cc87lGW+8nXPOuTzjjbdzzjmXZ7zxds455/KMN97OOedcnvG5zV21kPQ58Fa5GZ0rWxtCxD7nKivf3kN7m1nb8jL59KiuuryVy+T6zpVFUpG/j9z2qK/vIR82d8455/KMN97OOedcnvHG21WXEbVdAVcv+PvIba96+R7yG9acc865POM9b+eccy7PeOPtMpL0kKSPJC0sI09vSfMkLZL0UkzrHNNSy2eSro7bbpVUEtMnS9ojpu8v6Q1JGyRdVzNn6KpbZd9DZe0rqaukGXGfIkmHx3R/D9VDkjpImibpn/E9clWGPBn/9pKaSpolaX7c9+YM+94raV3i+bWSFsfPqRcl7V19Z7d9fNjcZSTpaGAd8IiZHZhh+27A68DxZvaepG+Z2UdpeRoCK4Hvmdm7knY1s8/itiFAFzO7XNK3gL2B04BPzOzO6j07VxO25z2UbV9Jk4G7zOw5SScC15tZb38P1U+S2gPtzWyOpBZAMXCamS1O5Mn4t5ckoJmZrZPUGHgVuMrMZsTthcBVwOlm1jym9QFmmtmXkgYDvc2sX42dcAV4z9tlZGYvAx+XkeXHwBNm9l7M/1GGPMcCS83s3Zjns8S2ZoCl9jWz2cA3VVF3Vzdsz3uojH0N2DWutwQ+SO3r76H6x8xWmdmcuP458E9gz7Q8Gf/2FqR61Y3jYrClYzEcuD5tn2lm9mV8OgP4TtWeUdXxSVpcZe0HNJY0HWgB/MHMHknL05//3979hNgUhnEc/z6ZlMlWzYZuGpSIiUaJ/GkKqdnIQolkgyxmFjYmKWUnkRRlFhZjyjRTlFAWYqWwsTBlFv5PUxamEAvzs3jP1G3mzoy50+Ecfp/Vvee87z3P7Ty3p/c9T13orT4QEWeBA8AosO0PxGnF9U05ifAAAAIXSURBVDs5NFEHcD8izpEWHxvzDdGKIiIqQAvwZBZz5pFW683AZUnjc48DtyUNpwV6TYeBu/XGmzevvK1eDcA6YDewAzgVEcvHT0bEfKAd6KueJKlL0mKgh/QDsv/XtDk0haNAZ5ZDnUB3viFaEUTEQqAf6JiwgzctST8lrSWtoFsjYlXWa7MXuDTN9fYD60mr80Jy8bZ6vQfuSfoq6RPwCFhTdX4X8FzSyBTzbwB7co7Rim2mHKrlIDCQve4DWnOMzwoge17dD/RIGphpfC2SPgMPgZ2k1XszMBQRr4HGiBiqul4b0AW0S/oxt+jz4+Jt9boFbI6IhohoBDaQnkeN28fkLfNlVW/bgcHco7QimymHavkIbMlebwde5Rif/WVZ01k38FLS+VnOXZQ1RRIRC4A2YFDSHUlNkiqSKsA3Sc3ZuBbgKqlw1+rjKQx3m1tNEdELbCX9I88IcJrU8IGkK9mYE8AhYAy4JulCdrwReAcslTRa9Zn9wIps/BvgiKQPEdEEPCU1Io2RuoxXzmZ7zIpnjjk0aa6k7ojYBFwkbbl/B45JeuYc+jdl9/sx8IJ0XwFOAksg5dFU9x6oANeBeaSF6k1JZ2pc40tVt/kDYDUwnJ1+K6k9ly83Ry7eZmZmJeNtczMzs5Jx8TYzMysZF28zM7OScfE2MzMrGRdvMzOzknHxNjMzKxkXbzMzs5Jx8TYzMyuZX8FZirIlOwybAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "#### Exercise 3: Central Limit Theorem\nsource: Wolfram MathWorld" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import math\n\nn_bins = 50\ndraws = int(1e4)\n\nk = 0.5\ntheta = 1.0\nmu = k*theta\nsigma = math.sqrt(k)*theta\n\nS = [10, 30, 50, 100]\n\nfig, axes = plt.subplots(nrows=2, ncols=2)\nax = axes.flatten()\n\n# normal pdf\nnormpdf = lambda x: (1/math.sqrt(2*math.pi))*math.exp(-x**2/2)\nt = np.linspace(-4,4,50)\ny = [y for y in map(normpdf, t)]\n\nfor i, x in enumerate(ax):\n n = S[i]\n s = np.random.gamma(shape = k, scale = theta, size = (draws, n))\n s = (np.mean(s, axis=1)-mu)/(sigma/math.sqrt(n))\n x.hist(s, n_bins, range = (-4, 4), normed=1, histtype='stepfilled', color = 'gray')\n x.plot(t, y, 'r', linewidth=3)\n x.set_yticklabels([])\n x.set_title('n = {0}'.format(n))\n\nfig.tight_layout()\nplt.show()", - "execution_count": 11, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xd4VFX6wPHvSSGU0AKhE3rvEHqXIogiltW1oLsW7GX9ue5a2WDdxbqKrKDrqoCCFbAgRZReQpcqIAQIvYUSUs/vjzM1JKTNzL0z836eZx7uuUlmXoWT995zz3mP0lojhBBC2E2E1QEIIYQQ+ZEEJYQQwpYkQQkhhLAlSVBCCCFsSRKUEEIIW5IEJYQQwpYkQQkhhLAlSVAhQCnVVin1o1LqmFLqooVtSqk4pdTXSqlzSqm9SqmbrYhTCDtTSv1RKbVdKXVaKXVEKfWRUqqSx9elHwWYJKjQkAXMAO4s4OsTgEygJnALMFEp1SZAsQkRLJYCvbXWlYHGQBTwgsfXpR8FmCQoP1NK7VFKPa6U2ui4MpuulCrry8/QWm/XWn8AbM7n8ysA1wHPaq3Paq2XALOA0b6MQQh/ClA/2qe1PuZxKgdo6vh86UcWkAQVGDcAw4BGQHvgT/l9k1Kqj1Lq1CVefUrw2c2BHK31Do9zGwC58hPBxu/9yPGzp4EzmIT0puNL0o8sEGV1AGHi31rrVACl1GygY37f5Lgqq+Ljz44FTuc5dxqo6OPPEcLf/N6PHD9bWSlVF7gb2OP4kvQjC8gdVGAc8jg+j/nHHihngUp5zlXCXCEKEUwC1o+01geAOcBnjlPSjywgCcpGlFJ9lVJnL/HqW4K33QFEKaWaeZzrQD7Pq4QIBT7sR1FAE8ex9CMLyBCfjWitF1OCq0KllAJigDKOdlnzdjpDa31OKfUVME4pdRdmWORqoJfvIhfCPkrRj24BFgP7gATgRWCB4z2lH1lA7qBCQwMgHffVXDqw3ePr9wPlgCPAp8B9Wmu58hPCW2tgGWY4bymmD93t8XXpRwGmZMNCIYQQdiR3UEIIIWxJEpQQQghbkgQlhBDCliRBCSGEsKViTTOvXr26btiwoZ9CEcL+1qxZc0xrHV+a95B+JMJdUftRsRJUw4YNSU5OLnlUQgQ5pdTe0r6H9CMR7oraj2SITwghhC1JghJCCGFLkqCEEELYktTis0BSUpJXe+zYsRZFIkTo8uxn0seCk9xBCSGEsCW5gxJChLykpCTKnztHpbQ0AO655x4oVw5atAClLI5OFEQSlBAiJOQdOncqc+ECgxYsoOvq1bhS0XvvAXCoZk1qzZ4NXbsGJkhRLDLEJ0QAKKXGKKWSlVLJR48etTqcsNFi61YemDCBbp7JyUOtw4ehe3d45BE4I5vj2o3cQQVIQVd3hX2fPNwNDVrrScAkgMTERNnjxkcK6lcqJ4dR33xD+02bvM4fq1aNrOhoAKofO0Z0djZoDf/+N3z9NXz/PbRt6/e4RdFIgrKBoiYvIUTRDJ03zys5na1QgTnDh7O5TRvXM6cqJ04w4rvvaLprl/mmffvgyith9WqIL1U1K+EjMsQnhAgpHdeupceKFa72hvbtmfDgg2xu29ZrQsSpuDim3norTJ0KsY4d4vfuheuug8zMQIct8iEJSggRMuqnpHDlt9+62ltbtuSbUaO4UK5c/j+gFNx8M3z6qTt5LV4MDz5ohv6EpSRB2Vi58+fh//4PunSBjh3dr9tug507rQ5PCFupdOoUN0yfTmRuLmBm6H19zTUQUYRfc1deCS+/7G5PngzvvOOnSEVRFfoMSik1BhgDkJCQ4PeABKjcXLqsWcPAn36C9PSLv2HDBpg+HR57DJ5+2j08IUS40ppR33xD7LlzAJwrX57P/vhHsmJiiv4eTzwBmzaZIT8w/WvQIGjd2g8Bi6Io9NJCaz1Ja52otU6MlweHfhd/5Ahj3nuPEd99R/n8kpNTZia88opZaPjDD4ELUAgbarVlC4327AEgVylm3HADp6tWLd6bKGXunBITTTs720w/l6E+y8gQn41UOXmS0R9/bNZmOJysUoUvrr+e/9xzD6xbB3PnQo8e7h9KTYVRo2DhQgsiFsJ6UZmZDJ0719Ve1a0bKSXdELJcOfjgA/ew4Pz5MHNm6YMUJSLTzP2kuFPHy507xy1TplDx7FkAsqKiWNyvH8t69iTHsW6Djh3Nn4MGwZQp8Le/waFD5m5q1ChYsgTatfPlf4YQttdn6VKqnD4NmKG9nwcMKNbP57v28L77YMIEc+Ivf4HLLzfJSwSUJCgbiMrM5KZPP6X68eMAZEdGMmX0aFIaNMj/ByIizESJAQOgZ09zF5WWBsOGwfLlIM8KRYjKm0yqnDxJ7yVLXO0FgwaR4YtEMm6cmdl34gTs2QOvvgrPPlv69xXFIkN8FlO5uVz35ZfU378fAA18de21BScnTwkJ5vlTpUqmnZoKw4fDyZP+C1gIGxn6449E5eQAcKBOHdZ16uSbN46LgxdfdLdffhlSUnzz3qLI5A7KYt1WraLl9u2u9pxhw9japk2+35vvUET79qZEy7BhkJUFW7bAo4/CRx/5NW4hAqWg4fKEPXtotW2bq/3D8OFFm1JeVHffbYrKrl9vZtM+/TR88onv3l8USu6gLFTp1CkuW7DA1V7esyerPCdAFNVll8GHH7rbH38M8+b5IEIh7KvfokWu4w3t23Ogfn2fvG9SUpJ5vfCCqdHnNG0aOMsiiYCQBGUVrRnx3XeUycoC4Eh8PPMHDSr5+91yC9x4o7t9771w/nwpgxTCnuru30+T3bsBM638l2JOjCiyvn1hyBBznJtrlnaIgJEEZZHWmzfT/LffXO3ZV11FblQpR1zffBOqVDHHu3ebB71ChKC+HndPv7Zty8m4OP992DPPuI8/+kieRQWQJCgLlE1PZ7jH4trViYns98XMu1q1zGwjp1dfNePnQoSQmocO0WLHDld7cd++/v3Afv3MnRSY57zjx/v384SLJCgLDJ4/31WSJa1iRRYMHuy7N7/jDujf3xzn5JgHvY7aZEKEgj6LF7uOt7RqxbEaNfz/oU8/7T5+/32z/lD4nSSoAKt+9Cid1q51tX+44goyypb13QcoBZMmgbMGWXIyzJjhu/cXwkLVjh6lzebNrvbifv0C88FDh7pLIF24AK+/HpjPDXOSoAJswMKFRDhqe+1s0oRtrVr5/kOaNzeFLp2ee87UFRMiyPVZssS1dfuOZs04VLt2YD5YKe9nUe++C46F9cJ/JEEFUK3UVNps2eJq/1SaWXuF+etf3RMmfvtN1kWJoBeblkY7j11yA3b35HTVVe5SYufOmZEK4VeSoALosp9+ch1vadWKg3XqlOr9XOs18lvIWLWqSVLub4aMjFJ9nhBW6pqc7NrrKaV+ffb7aN1TkUVEePepCRPMpAnhN5KgAqT+3r00c2wyqIGFAwf6/0MffhicD5D37TOr4oUIQpFZWXRJTna1V5RkQbsv3HAD1Kxpjg8cgC+/tCaOMCEJyocKvKPRmkEeFSM2dOgQmJlHsbHw1FPu9osvmqEJIYJMu02bqOBYeH6qcmW2tWxpTSAxMXD//e72m29aE0eYkAQVAI137aKBY3FfTkSEX1a9eyZHrwR5zz3gHAo5csS7dIsQwUBreqxY4Wqu7tYNHRlpXTz33ANlypjjlSvBIzbhW5KgAqCvx7qNtZ07c6q4O32WRtmyZhaf0xtvSAkkEVQa7tlDzSNHAMiMjmZt587WBlSzJtx8s7v91lvWxRLipJq5n9VLSaHh3r2AuXta4u9V7/m5/XZ4/nlTouXoUfjvf+HBBwMfhxBFkHeI/EaPO5QNHTpwwQ4bBz7yCPzvf+b4iy9MdYl69SwNKRTJHZSf9fHYTG1j+/akVa4c+CCio+Hxx93t8eNl9pEIClVPnKCFx3Y0K7t3tzAaj6H0mTPdFVuys826KOFzcgflR/GHD7tqhmlgWe/e1gVz552meOyxY+ZO6rPPYPRo6+IRogi6rlrlWpj7W9OmHI+PD+jnF7QXFWDuon75xRxPmmSG0n1ZFUbIHZQ/9V661HW8rWVLjgW4c3kpX950KKdXXpEafcLWojMz6ehR7HiVxXdPFxk5Epw7Xx8/DtOnWxtPCJIE5SeVT570WvW+pE8fC6NxeOABM/UczM67335rbTxCXEK7TZsod+ECAMfj4tjZpInFEeURGQn33eduv/OOdbGEKElQftJr2TJXzb3djRqRaocHqFWrmo0MnV5+GRwxCmErWtN11SpXM7lrV99u5+4rd97pXZjZI2ZRejb8Gw9+5c+do9O6da72UjvcPTn95S/uNRwrVoDHxm9C2EX9lBRqHT4MmKnl6zt2tDiiAlSvDjfd5G7LXZRPSYLyg66rVhHtqB6eWrs2uxs3DngMBVa1qFMHbrvN3X7ttcAGJkQRdPO4E9nUrp09ppYX5IEH3MfTp5sF8cInZBZfKeQ3wycqM5Ouq1e72st69TKl+u3k//7PbLoGMHs2bN0K/tj2Q4gSiD1zhlZbt7raq7t1szCaIkhMhO7dTVWJzEz44AN48kmrowoJkqB8rMOGDV41w7a0bm1xRPlo2dLMQJo1y7Rffx0mT7Y2JiEcuqxZ46pavjchgcO1alkcUf48L1Db16nDNc7GxImm6nmU/HotLRni8yGVm0vP5ctd7RU9e1pbM8wh3zp9ngt3P/5YtrAW9pCnarnt754cNrduDc5lJPv2mZEJUWqSoHyoxfbtVDtxAoD0smVZ16mTxRFdQp8+4Oz8mZlmbxshLOK8ePrippuoePYsAGdiY9lqVdXyYsqJjmaxZ6xvv21dMCFEEpQP9Vy2zHW8JjGRTOf0UztSynvztXffla04hOW6r1zpOk5OTCQ3iIbJkhMTyXU+b164EDzWQYqSkQTlI/VSUkjYtw8wRWFXBsPQxDXXQKNG5vjECfjwQ2vjEWGt9oED1N+/HzB9aE2XLhZHVDxplSuz1XOykUw5LzVJUD7Sy+PuaWP79pytVMnCaIooMhIee8zdfv11U/hSCAt4Ti3/tW1bzlWsaGE0JeNVjumTT8yFnygxSVA+UO3oUVpu2+ZqL+/Z08JoiunPf4a4OHP8+++yhbWwRIWzZ2n766+utu3q7hVRSkICB52zDtPTzdY2osQkQflAr2XLXBWXdzRrxtGaNS2Np1gqVPDeG+qf/5TyRyLguqxZQ1RODgD769YltW5diyMqIaVY5Tm8P2ECOP67RPFJgiql2LQ02m/c6GrbqqxRUT34IDhX6q9bBwsWWBtPCFJKjVFKJSulko8ePWp1OPaSlUWix+J2q/d8Kq1f27WDatVMY88eKcpcCpKgSqn7ypWuK7999eqRkpBgcUQlEB8Pd9zhbv/rX9bFEqK01pO01ola68R4K7ddsaMvv/SaWm7Lxe3FkB0dDXff7T4hW8KXmCSoUoi5cIFEj0WFS3v3tl9Zo6J67DF3teh582DtWmvjEeFBa696kGuCbGp5ge67z0xCAjPl3KN4tCi6QhOUDE0UrMuaNZTNyADgWLVqbG/RwuKIiibfQrKNG8Mf/uBujx8f+MBE+PnlF7NNBZAdGUlyYqLFAflIQgJcf727/eqr1sUSxAq9VNFaTwImASQmJob903PnL/XI7GweXrHCdX5Z79723K+mOJ54wr0r6IwZ8OKLJnEJ4WPOfnTT1Kk0d5zb0LEj55wbaoaCv/7V3Z+mT4eXXnLvwCuKJMh/o1qn4/r1VDpzBjDj5hvbt7c4Ih/o3BkGDzbHublmRp8QfhJ/5AjNf/sNAA0sC6blGUXRpQsMHGiOc3LgzTetjScISYIqgYjsbPosXuxqL+/Zk5xQGDcH720CPvwQUlKsi0WENM/SYNtatuRE9eoWRuMnnuXEJk+GkyetiyUISYIqgQ4bNlDl9GkAzpUvb7ajDhUDB5pCsgBZWfDKK9bGI0JSxTzLM5b16mVhNH40bBi0bWuOz52D//zH2niCjCSoYorIyaGv591Tr15kObdQD0IXbcWhFDz3nPsbPvgAHPXRhPCV7itXuvZ8Sqlfn/3BuDyjKJTy3trm3/+GCxesiyfISIIqpvYbN1L11CkAzpcrx6pQuntyGjwYnM8DMjPlWZTwrbQ0rz2flvXubWEwAXDTTeCsjHHokKnRJ4pEElRxZGfTd9EiV3N5z55k2XlLjRJISkoiadw4pnjO3ps8GVJTrQtKhJY33/RentG8eSE/EOTKlIFHHnG3X3rJXPiJQkmCKo5p04hzPORML1vWu+ZWiNnVtKl7Q8OMDLmLEr5x8qSpmu+wuF+/4F+eURT33utd/uh//7MymqARBv8yfCQjAzwWtq7o2ZPMsmUtDMjPlIKxY93t996DvXuti0eEhtdfB8cEo2PVqrHJOYEgxFz0bLdiRbPO0OmFF8zvFHFJkqCKauJE2L0bMHdPQbEhYWkNH+59F/XMM9bGI4LbsWNea4F+GTAA7SwHFA4eeABq1DDH+/bB++9bG08QkARVFKdOwfPPu5qL+vcnw1n9O5Qp5V3yaMoUqSkmSmzJqFHgKAp7JD6ezW3aWBxRgFWoAH//u7v94otmzyhRIElQRfHSS66dMU9WqcLqUJy5V5B+/WDkSHf7r3+V/aJE8R0+7LVj7s8DBqDD4dmTg3Oo78Xjx6F2bXPy4EEzdC4KFD7/Qkpq716zdsFhweDBoVM1ohDOTjWhfn1ynVXaFyyAOXOsDUwEn1deoUxWFgCHatZka6tWFgdkjezoaHjqKfeJl18GR8k0cTFJUIXYeNVVroeZ++vWDb9hCeBYfDxrO3d2n3jiCdklVBTd1q3wzjuu5s8DB4bHzL2C3H031Ktnjo8cMUN9Il9h/K+kCFatov2mTa7mvKFDg3e/p1L6ecAAM4YO8OuvpsKEEIXR2qwBys4GYG9CQtBsS+M3MTHmsYHT66/Djh3WxWNjkqAKkpXltSvmthYtSAnjUvnn8k6T/dvfzKp4IS7lm2/MBphArlL8cMUVYXuR5+XWW8FZfzAryyRxebZ7EUlQBXntNXAUs8yKimLu5ZdbHJANPP64e3+oU6fg4YetjUfYW3o6/OUvruaaxEQO16plYUD24KzW8l7btrhS0pw5MHu2lWHZkiSo/Ozc6bUod+HAgZyMi7MwIJsoXx4mTXK3P/9cOpUo2D//6V7cXa0aPzn3RhIAHKpThzVdurhPPPqoFJLNQxJUXlrDmDGufyiptWuzokcPi4OykUGD4E9/crfvvx/S0iwLR9jUrl3e5bFefJEL5ctbF49N/TRoEFStahq//y7b2+QhCSqvDz+EhQvNcWQks6+6KrxWu1+Cc9r5v2rUcK+I37/fe9qsENnZ5hmL826gc2e46y5rY7Kp9PLlvWfxvfgieKwXC3eSoDz99pu5zXZ67DEO1aljXTw2lV6+PLz1lvvEhAnw3XfWBSTs5YUXYMUKcxwVZRajykVegcYdOkRK/fqmkZ0Nt9ziqrgR7iRBOZ0/D9df714016QJ/OMfloZkazfeCFde6W6PHi3FZAUsW+ZVFoxx4yAx0bp4goCOiODra64hw7nx6c6dXpNLwpkkKDDPnR54wDVrj5gYmDHDTAoQ+UoaN47xrVpxulIlc+LkSZPgpUJz+EpLM1f/jp1y9zRowLgLF9wVvUWBTsXF8f2IEe4T778PX39tXUA2IQkK4L//9d6f5e23zbi5uKTzFSrwxR/+QI6zKkByMjz2mLVBCWtoDffcY/Y6Aqhcma+vuSas6u2V1sb27eGPf3SfuOsu9//PMCX/elatMndPTrfdJg90i2F//frMHTrUfeLdd2UztnD07LPw2Wfu9n/+Q1qVKtbFE4yU4pUGDdyjEidOwLBhrkLV4Si8E9TGjeYfgHNYql07s++TrHQvllXdu/OrZ43Cu+6S4Ylw8t573jPRxozxvhMQRZZRrhxfXH892c5JJdu3m90EwnRbjvBNUNu3w5Ah5tkJQFwcfPGFPHcqCaWYPXIkh51Tz3NyyLn+eqbceqs8ewh1s2ebtXAOO5o1Y1zNmvL3Xgr7ExL4+tpr3SeWLjXT9sOwQHN47BuR1++/mwWnR46YdqVKMHcuNG8OIJ2rBDJjYvhk9Gj+/OGHVDtxgsjcXG6cPp2pt95qdWjCX376yczmdEyKIDGRL4YMkXWDPrClTRt+TEvj8h9/NCe++gruu8+M8ITR/9/wu4Navx4GDIADB0y7fHn4/nvwLDkiSuRcxYp8fPvtnKpcGYDo7GxunjrVFAwVoeWTT8zwuHPoqVEj+PZbsmJirI0rhKzo2dN7uvnkyXDttWZJTJgIrwQ1Y4apIJySYtoxMTBrFvTubW1cISStcmU+vv12zsTGAphN6q65xqyHcV5pi+Cltdkq4rbbTBVugDp1TLHTmjWtjS0UvfqqGd5zmjWL/c2bM/6vf7UupgAKjwSVmwvPPGOGI5xXfBUrwsyZZqhP+NTJuDg+uv12TnrO4ho7li1t28oK+WCWlgZ33AFPP+0+17atqRrhGB4XvpX0/PMkNW7MUo+L6HoHDnDnBx8w+e67Q36NWeg/g1q3Du6917u+VbNmJjmF6bbTgXA8Pp7JY8Zw/eef0/j33wFovXWr+YX29ttw1VUWRyiK5ccfzf5o+/a5zw0cyCvdupHx3/9aF1c4iIhg/pAhnK5cmWE//ECE1sSdPMmdH3zA8l69WDhggNUR+k3oJqjTp+G558xW055DS5dfDp9+6q4gLPwmvXx5ptx6K5fPnUv3lSvNyb17YeRItrVowZzhw3n0jTesDVJc2uHDphhw3iQ0ejS8/z4ZL79sTVxhaHW3bpyuVInrvvySMllZRGhN76VLabFtGx/t38+ehg1dS2TGjh1rbbA+EnoJ6tAhU7x04kQ4ftx9vkwZ09GeeSasZsFYTUdGMmf4cA7UqcOwOXMo7xhibbl9O0137mTNokWs6NmTY/HxIdOpQkJKCowfb0rueO5RVK2auei78UZZL2iBHS1bMvH++xk5cyaNHFUmqh8/zu0ffURK/fos6tePXU2bWhukD4VGgsrOhsWL4eOPYdo0yMz0/vrgwSZpyTi5ZTZ16MDOpk0ZPH8+ndetAyAqJ4cua9fSZe1adjRrZhZKX345VKgAeE/3l+QVAJmZZrnFZ5+ZCUXOSRBOf/iDSU7O9W7CEqeqVuXj226jy5o1DJk3jxjH77uEffu4depUDtaqZdZ1/uEPULu2xdGWjtJaF/5dDomJiTo5OdmP4RSR1mYsfMUKs83Dt9/mXw6kYUOzAdgNN1zyai+UHzLaUb2UFIbNmUPd1NSLvpYVFcWuJk3Y0aIF++rX51i1ahARYZsEpZRao7UuVXluW/WjlBRYsgQWLDDVP06duvj7EhNh7FhX9XrpL/ZR6dQp+i1aRMf164nMM0tWA3sbNGBHixakJCRwsFYtcqO870ms6ldF7Uf2voPKyjKLaX//3ezV9NtvsGULrFxphvIK0rOnKVo6apTZj0bYyv6EBN6/+24SUlLosXw5Lbdtw3n5EJ2dTcvt22m5fTsAF2JiOFC3Lst//JHjcXGciIvjZFwcj7zyCpQta91/RDDJzjbPkvbtMxVUtm+Hbdtg9Wqz4WRB+vY1M/aGDpXhPJtKq1KFb0eOZFH//vRatozOa9YQnZ0NgAIa7t1LQ8c2OFlRURyoW5ej8fEcr16dY9Wrm9+ptWuDY1mI3fjmDio728yK09pMSPB85eSYr+fkmITjfGVkmCnfzldamnmdPm3KDx06BMeOFf2/pG5dk5BuvRWKuUW7XBFaK+74cTqsX0/LbduocfRokX/uQkwMZ2NjOV++PBkxMeZVtixd+vSBcuXMq2xZiI52v6KizDNI5ysiwryUMn/27w/Vqxf4mX6/g/rtN1MjMm8f8nw5+1BmpvkzPd0s3jx/Hs6dM3dBzteRI+ZV1H7eoIF5vnTjja6K/tI/gke58+dptWULbTZvpuGePUQU8e89o0wZzsbGUq1ZM6hSxbwqVjSFDMqXN30pJsY8yy+sL0VEmOo8nkWk8wjsHVRGhtkLKJBiY6FbN7PwduRIMwxRjKs86XT2caJaNRYOGsTCQYOIO36cltu2kbB3L/X276fCJVbNl83IoGxGhvdkGIA1a0oezC+/QL9+Jf/50vr228BuWRIba/pQ797m+V+3bnK3FMTSy5dnbWIiaxMTqXDmDC127CBh717q79tHnLPuaD5iMjOJOXHCjE75QsuWsHVrqd+m0DsopdQYYIyj2QLYfolvrw4U47bHchKvf4VivA201vHFfeNi9qOixmInEq9/BVO8PutHxRriK/TNlEou7fBHIEm8/iXxlpydYikKide/gileX8YaHqWOhBBCBB1JUEIIIWzJ1wlqko/fz98kXv+SeEvOTrEUhcTrX8EUr89i9ekzKCGEEMJXZIhPCCGELUmCEkIIYUt+S1BKqceVUlopVfCyfBtQSo1XSm1TSm1USn2tlKpS+E8FnlJqmFJqu1Jqp1Lq71bHUxClVH2l1EKl1Fal1Gal1CNWx1QUSqlIpdQ6pdS3VseSl/Ql3wmWfgTSl8BPCUopVR8YAqT44/19bB7QVmvdHtgBPGlxPBdRSkUCE4DhQGvgJqVUa2ujKlA28H9a61ZAD+ABG8fq6RGg9EvffUz6ku8EWT8C6Ut+u4N6A3gCU1DX1rTWc7XW2Y7mCqCelfEUoBuwU2u9W2udCXwGXG1xTPnSWh/UWq91HJ/B/EOta21Ul6aUqgeMAN63OpZ8SF/ynaDpRyB9CfyQoJRSI4EDWusNvn7vALgD+MHqIPJRF/DYa5v92PwfKoBSqiHQCfBRgS+/eROTBHIL+8ZAkr7kc0HZjyB8+1KJisUqpeYDtfL50tPAU0DBZWwtcKl4tdYzHd/zNOaWemogYyui/Kp32vqKWikVC3wJPKq1TrM6noIopa4Ejmit1yilBljw+dKXAifo+hGEd18qUYLSWg/O77xSqh3QCNigTEXkesBapVQ3rfUlNnDyr4LidVJK3Q5cCQzS9lwYth+o79GuB1y8259NKKWiMR1qqtb6K6vjKURvYKRS6gqgLFBJKTVFa31rID5c+lJABVU/AulLfl2oq5TaAyRqrW22z1WkAAAgAElEQVRbhVcpNQx4HeivtS76ZkQBpJSKwjx0HgQcAFYDN2utN1saWD6U+W36EXBCa/2o1fEUh+Oq73Gt9ZVWx5KX9KXSC6Z+BNKXQNZBAbwDVATmKaXWK6X+Y3VAeTkePD8I/Ih5UDrDrp0KcxU1GrjM8f9zveOKSoQ+W/elIOtHIH1JSh0JIYSwJ7mDEkIIYUuSoIQQQtiSJCghhBC2JAlKCCGELUmCEkIIYUuSoIQQQtiSJCghhBC2JAlKCCGELUmCEkIIYUuSoIQQQtiSJCghhBC2JAlKCCGELUmCEkIIYUuSoEKAUupPSqkcpdRZj9cAj683VEotVEqdV0ptU0pdctM5IcKFUqqtUupHpdQxpdRFWzsopeKUUl8rpc4ppfYqpW7O8/WbHefPKaW+UUrFBS760CcJKnQs11rHerx+9vjap8A6oBpmK/EvlFLxVgQphM1kATOAOwv4+gQgE6gJ3AJMVEq1AXD8+R5mz6aawHngXX8HHE4kQfmZUmqPUupxpdRGpdRppdR0pVTZAH5+c6AzMFZrna61/hLYBFwXqBiEKIlA9B2t9Xat9QfARRsXKqUqYPrJs1rrs1rrJcAsTEICk7Bma60Xaa3PAs8C1yqlKvoyxnAmCSowbgCGAY2A9sCf8vsmpVQfpdSpS7z6XOIzOjmGKXYopZ51bG8N0AbYrbU+4/G9GxznhbC7QPSdgjQHcrTWOzzOefadNo42AFrrXZi7reYl+CyRj6jCv0X4wL+11qkASqnZQMf8vslxhValBO+/CGgL7MV0mulANvAyEAuczvP9p4G6JfgcIQLN333nUgrqOxWL+HVRSnIHFRiHPI7PY/5h+4zWerfW+netda7WehMwDrje8eWzQKU8P1IJOIMQ9ufXvlOIwvqO9C0/kwRlI0qpvnlm4uV99S3iW2lAOY43A43zjIt3IJ8xdyGClQ/7jqcdQJRSqpnHOc++s9nRdsbQGIhx/JzwARnisxGt9WJKcIWolBoOrNVaH1ZKtcQ8rP3c8Z47lFLrgbFKqWeA4ZixfJkkIUJGKfqOwiSVMo52WfN2OkNrfU4p9RUwTil1F2Z48Wqgl+PHpwLLHclvLWbk4qs8z3tFKcgdVGgYBGxUSp0Dvge+Al7y+PofgUTgJPAKcL3W+mjAoxTCfhoA6bjvitKB7R5fvx8oBxzBLNe4T2u9GcDx572YRHUE8+zp/sCEHR6U1hetTRNCCCEsJ3dQQgghbEkSlBBCCFuSBCWEEMKWJEEJIYSwpWJNM69evbpu2LChn0IRwv7WrFlzTGtdqkK70o9EuCtqPypWgmrYsCHJycklj0qIIKeU2lva95B+JMJdUfuRDPEJIYSwJUlQQojQpjVMmwZNm0JUlPtVsSLccw+cOmV1hKIAkqCECACl1BilVLJSKvnoUSniETAHD8I118Att8CuXZCT436dPQuTJkHbtvD991ZHKvIhtfhsJikpqcCvjR07NoCRCF/SWk8CJgEkJiZK+ZZA+Pxzc4d08uSlv+/AARgxAv70J5gwAcqXD0h4onByByWECD1z5sCNN3onp/vuM+2sLPP64guoUcP99f/9zyQpKf9mG5KggoDKySEiJ8fdsYQQBfv9d7j5ZneiadgQFiyAd9+FKlXcz6Cuuw42b4abbnL/7Oefw+uvWxK2uJgM8dlYjUOHGDZnDg337DGbOz3/vPlC69bw6qswfLiV4QlhP+npJvE47pzSKlZk0vXX8/hll3l9m+dQ+thp0yAuzgzvAfztb9ClCwwYEKioRQEKTVBKqTHAGICEhAS/ByQgKjOT/r/8Qs/ly4nMzb34G7ZsgSuuMEMYb74JtWoFPkghbCbpH/9g5MyZdFq/HoCciAhm3HAD52JjL/lsFzB3TWvXwvLlZgLFDTeYdr16AYhcFKTQIT6t9SStdaLWOjE+vlQL6EUR1E5N5f5336XP0qVeySknIsIMSyjl/ubp06FlSzOWLkSY67RunSs5AcwZPpwD9esX7YfLlDHDe85nUkePwh/+YJKVsIw8g7KTvXu5ZcoUqnqsy9jToAETHniAF557zjx/OnQIRo92/8zp02YM/eefAx+vEHZx8iSD581zNdd36EByYmLx3qNuXZgxAyIjTXvFCjNxQlhGEpQNJCUl8dJTT3Goe3cqnD8PwIWYGGaNHMlHt9/OMc871xo14OOPYd48aNzYnMvONuPuu3ZZEL0Q1klKSiIpKYllI0ZQPj0dgJNVqvDdiBHeow1F1b8/P/fp424/84xZLyUsIZMk7CA3l2u/+opahw8DZjhv2s03s69Bg4J/ZvBg+OUX6NrV3FWdOAFXXWWu+ipVClDgQlivyokTdFu1ytWeP2QI2WXKFPnn8z6fiu7dm85r11LpzBnTt8aPh8KeYQm/kARlA5ctXEjL7dtd7W+vvDLf5JS3I40dOxa++Qb694eMDNi61Qz3zZrlHqYQIsQNnj+fKMezopT69dnSunWp3i+rTBl+uuwyRs2caU6MHw9jxpghQBFQMsRntfnz6bt4sau5vGdP1nfuXKQfTUpKImnOHL4aMcJ98vvv4bXXfB2lELZULyWFNlu2uNpzhw4t2dBeHhs6dOCgc3ZseroZ6hMBJwnKAs5x8+effZajHosEf2valHlDhhT7/Ta1bw9PPuk+MW6cKd8iRCjTmqFz57qav7ZpU/RZe4WJiDDJzumjj8BjhqAIDElQFuq+ciXxx44BkFGmDDOvvhodUcK/knHjTNFLgHPn4K9/9VGUQtjU7NnU378fgOzISBYMHuzTt9/TuLGp0QemKsXTT/v0/UXhJEFZJPbMGfr/8our/fPAgZyrWLHkbxgVBW+/7W5/+iksWlSKCIWwuX/9y3W4umtXTlWt6p/PcA4Zfv89/Pqr7z9DFEgSlEUGz5tHTGYmAEfi41nVrVvp33TAAFNdwumhh8wUdCFCzbJlsHQpYGa9LuvVyz+f07o1jBrlbr/6qn8+R+RLEpQF6qek0GHjRld7zvDh5Ppq1t2rr7q3C9i4Ef7zH9+8rxB2Mn6863Bj+/ac9efSiieecB9PmwaOYUXhf5KgAk1rLp8zx9Xc0qoVvzsX3PpCvXreY+XPPis7horQsm0bOKeAg//unpx69IC+fc1xVha89ZZ/P0+4SIIKtB9+oG5qKgBZUVHMvfxy33/G//0fNGlijk+dgnfe8f1nCGGBpKQk1t5yi2srje3Nm3PMc08nf/GcdPTee3LRFyCSoAJJa/eWGcCaLl04XaWK7z8nJgaee87dfuMNOHPG958jRIDFnjlD+w0bXO1lvXsH5oNHjIBWrczxmTMmSQm/k0oSgbRggSlFhJkW68/ONW7nTh6qUsUUnj1xAiZO9B5LFyIIdVu50lU1Yl+9eqT4eQsgz+otHZs14+qtW03jrbfg0UfNxaDwG0lQAZKUlMTtH35IQ0d7fadOnPHhg92L9ruJjGRJ375cNXu2ab/2Gjz4oHsChRDB5vx5EpOTXc1lvXv7pGpEUW1q356rV6+GgwfNa8YM750FhM/JEF+AJOzdS8O9ewEzLXZJAIYm1nfowGlnEjxyBCZP9vtnCuFrzsorM2++mXIXLgBwompVtrdoEdA4cqKizEWe08SJAf38cCQJKkD6eiya3di+Paf9sagwj9yoKJZ6bh3wr3+ZorJCBKHE1atdx8mJiSWvulIad90F0dHmePlyWLcu8DGEEUlQgbBqFU0dezXlKsUS55TVAFjXqZN7S/jUVPjww4B9thC+UufAAdfs1+zISNZ36mRJHEkTJ7KxZUv3iXfftSSOcCEJKhA8Vp//2rYtJ6pVC9hHZ0dHe0+Rfe018NhKXohg4Hn39GvbtqRb+Cw1uWtXd2PqVJly7keSoPxt71748ktXM2DTYj2NGQOVK5vjnTtNTTEhgkS58+dp61EDb7VngrDAvvr1OVSzpmmkp5tK58IvJEH524QJrjuW3Y0acdg53BZIsbFw993u9ptvBj4GIUqo47p1RDtqSqbWrk2q1RsHKuV9F/Xuu66Fw8K3JEH509mzXjPnVvboYV0sDz3k3mV3wQJTp08Iu8vN9Zpavrpbt4BOLS/IxnbtwDlDdscO+OknawMKUZKg/CQpKYnvbrzRNT59PC6OHc2aWRdQQgJce627LfXERDCYO5e4kycBSC9bll/btLE4ICMrJgZuv919YsIE64IJYZKg/CU3lx6OqhEAK7t3ByumxXp69FH38dSpZm2UEHbmUVJofceOZJcpY2Ewedx3n/t41iyzeFf4lCQoP2m2cyfVTpwA4EJMDOs7drQ4IqBnT3COnWdkyFYcwt5SU8FZCQVYk5hoYTD5aNUK+vUzxzk5soTDDyRB+Ul3j7untZ07myEBqykFf/mLu/3uu7JwV9iOs3LET7fean7xA783bMjx6tUtjiwf99zjPp48WZZw+JgkKH/YsoUmu3cDZmHuqu7dLQ7Iw/XXQ5065vjwYVNPTAibUbm5dF671tVe26WLhdHkLykpiRe2bOF8uXLmxJ49MG+epTGFGikW6w8e+y9ta9nSP1tqFEPeQrJjH3jAvanhO+9IwUthO4137aLK6dMAnC9Xjq3OrS5sJic6mg0dOtDTOWIyaRL4Y4+3MCV3UD6UlJTEK08+Seb777vOrerWzcKICnDXXeB82LxqlXkJYSNd1qxxHa/v2NEUarWpNZ53dzNnymQJH5IE5WMd16+nTFYWAIdr1GBvw4bWBpSfGjXgj390t2WKrLCR2LQ0Wmzf7mrbcXjP0/H4ePY0aGAaMlnCpyRB+VJuLl097kbssqgwX57bBnz2GRw9al0sQnjotH49EY7KDHsaNLDn5Ig8vJKoTJbwGfveNweBvM92muze7TW1fGO7dlaEVShn3HfWrUu9AwcgM9N0qqeesjgyEfZycujsMbxnu6nlBdjSqhXXxsWZ3audkyXkWVSpyR2UD3VbudJ1vL5TJ3tMLb8Er+djEyeCo96ZEIHmnFo+9bbbvCdHeG5tYWM50dHelSVkjaFPSILykaonTtDst99c7VUWV1wuii1t2pjnUQD795vV8EJYyLPu3vpOncwv/mDhuSZq9mzTp0SpSILyka6rV+N82vRb06acDOCeTyWVExVltuJwevtt64IRYa/SqVNeF3lrbD454iItWsDAgeY4Jwc++MDaeEKAJCgfiM7IoJPHokJbTi0vyD33uKuc//yzVDkXlumydq1rcsSuxo0DurGnz9x7r/t48mQZNi8lSVA+0GHjRso6SgYdj4tjZ9OmFkdUDPXqwXXXudtyFyUsEJGT43WRlxwkkyM8JSUl8fymTZytUMGcOHAAvv3W2qCCnCSo0srN9ZocsapbN+urlhfXww+7j6dMgWPHrItFhKUW27ZR8exZAM7ExrKjRQuLIyqZ3Kgo1nXu7D4xcaJ1wYSAIPtNaj+Nd+8m3vELPaNMGXtULS+GpKQkkubNI7V2bXPiwgXwqIQhfEMpNUYplayUSj4qa84u4jk5Ym3nzuQ6h52D0JrOnd3rH+fOhV27rA0oiEmCKqXueaaWZ5Yta2E0JaSU2a/KacIEGTv3Ma31JK11otY6MT4+3upw7GXHDhr//jtgiivbvXJEYU5XrQpXXOE+MWmSdcEEOUlQpRB3/DjNHbOONEE2OSKPzW3busfO9++Hr7+2NiARPjzWDO1o3py0ypUtDMZHPCdL/Pe/ZmRCFFuhCUqGJgrWzaOs0W/NmgXnrCOHnKgo71X7//63dcGI8HHmjNd07GCpHFGYcatXc8qZaI8dg2nTrA0oSBWaoGRoogBpaXRct87VXGmnPZ9KKDkxEZxVo5csAY9ZVUL4xUcfQVoaAMeqVWNnkyYWB+QbOiLC1OJ0eustcEyhF0UnQ3wlNXkyMZmZABytXp3dIdCxzlasCDfc4D7x2mvWBSNCX26u1536qu7dg28G7CWs7dyZTGcljI0bzTpDUSyh868hkDIz4Y03XM0VPXvat2p5MU2KjXU3pk83hS+F8IcffgDHM9wLMTGs79DB4oB860K5cmzw/G966y3rgglSkqBK4tNPzSI84GyFCmxo397igHznYJ067G7UyDRycrwSsRA+5fELe23nzrYvrlwSXkP/s2bB7t3WBROEJEEVV24ujB/vaq7s0SO4CloWwdLevd2N99+H48etC0aEps2bzZYUABERQT0D9lKOx8fzm7OyjNZSqaWYJEEV07TRo03nwizMDcaSLIXZ3aQJh2rWNI3z5+Hdd60NSIQez1miV19t1g6FKM+7qIx333VNChGFkwRVTL2WLnUdr+3ShQvlylkYjZ8o5X0X9e9/Q3q6dfGI0HL8OHzyibv96KPWxRIAu5o04ZhjCUpMZqZsCV8MkqCKY+VKGu7dC0BORAQrevSwOCD/2dKmDSQkmMaxY/C//1kajwghb77puuA5WKsWST/9ZHFAfhYRwUrP3xWvvgqO4tLi0iRBFcc//+k63NSuXWiseC9AbmQkPPaY+8T48ZCVZV1AIuglJSXxyt//zgWPZ7hL+/QJmRmwl7K+Y0fvSi0ff2xtQEFCElRRrV3rVf5nea9eFgYTIHfeCXFx5vj336VTiVLrtnq1a2uaY9WqsaV1a4sjCozs6Gjv3xkvvyz1LotAElRRPfec63BLq1YccU4iCGWxsfD44+72uHEyNCFKLDojgx7Ll7vaS/r2RYfQwtzCJCcmct75zPr3381yFXFJ4fOvozRWrIDvvgNMUdifnds6h4OHHgJniauUFNnGWpRYYnIy5R3Pnk5WqcKmdu0sjiiwMmNivJ9FvfSSWWsoCiQJqiiefdZ1uKldO47WqGFhMAEWGwt/+5u7/eKLMqNPFF96Or2WLXM1l/TpE9R7PpXUym7doFIl09i2Db76ytqAbE4SVCE+/POfYf58wOxV80v//hZHFDhJSUkkJSXx4okTnHGWQEpNhffeszYwEXw++IDYc+cASKtYkQ1BtrGnr2SUKwcPPug+8cILZvG/yJckqEvRmss8psBu6NCBE9WrWxiQNbLLlGFx377uEy+/DI5fNkIU6swZ84vYYWnv3uQ4q+aHoX9lZXkXkZ0+3dqAbEwS1KXMmUODlBTArHtaFEZ3T3mt7dIF6tc3jSNHzFoWIYrin/+Ew4cBc/e0tnNniwOyVnqFCqZyu9Pf/y7D5gWQBFWQjAx45BFXc32nTpwK4XIshcmJivJ6FsdLL5lJE0Jcyr59Xtu2LBg8mOwyZSwMyB6W9OnDufLlTSMlRS74CiAJqiBvvOG1FcDCcJq5V5A//xmcldvPn/eegi5Efp56yrXdeWrt2mwMs5l7BckoW9b7d8rLL7vuMoWbJKh8vP7YY2R6rHtaOHAg5zz3SQpXUVEwYYK7/fnnsGCBdfEIe1u9GqZMcTV/vPzykNqQsLTWdu7MEecSjjNnYOxYawOyIfnXko+hc+dSxlHW53CNGqzu2tXiiOwhKSmJpAULvPe/eughKYEkLqa1d6msa64hpWFDy8KxIx0ZybyhQ90nJk+GX3+1LiAbkgSV18KFtHVspwHw/RVXoMNwvcalzB8yxKyPAti6Vfa4ERebMgWWLDHH0dFedSyF286mTcGZpHJz4YEHZNq5B0lQns6fh/vvdzU3tmsnV335OFuxIvzjH+4TY8ea0i1CgNlt+uGHXc3lXbqQNG2ahQHZmFJMbNKEXGfB3EWL5ILPgyQoT48/blZ3YzYjnDdkiMUB2djDD4Oz0OfZs3DrrVL8UpihvbvvhlOnADhRtapMMCrEkZo1WdKnj/vEk0/Cjh3WBWQjkqCcZs6EiRNdzR+HDeOssySJuFh0tNl4zbngctkyr8WYIjzNGjUKfvgBMHUrZ159NVkxMdYGFQR+6d/fvYt1ejr86U9Spw9JUEZqqtlawmFLq1as69TJwoDsLykpiaQffmBBv36uc7njxvFfj/+PIszs3cvlc+a4mit79JAh8iLKjYrim1Gj3Bd8y5d7rR8LV5KgcnPh9tvNNtQA9eox+6qrwmITNV9Y2qcPexo0ACBCa6798ks4fdriqETAZWXBbbeZLc0xez0tGDTI4qCCy+Hatb229eHZZyE52bqAbEAS1D/+4SoGi1LwySdccK7wFoXSERF8fe21pJctC0CV06dh9Gh5HhVOtDaTixYtAkxR5W9GjSLbWW9OFN3f/w5dupjjzEy4+moz6SRMhXeCmjQJnn/e1VzSuzdJv/xiYUDBKa1yZb696ir3idmzTcVmra0LSgTOG2/A+++7mgsHDuSAs26jKJakl17i7V69XBd8pKaS2rUrLz39tLWBWSR8E9Ts2XDffa7mziZNZLZRKWxp04alnltav/eeqdcnQtvs2V4lrza0b88Sz8r3othOVKvGjBtuIMdRdaPOwYOM+vrrsFwfFZ4JasUKuPFG1194au3azLjhhrDcQM2X5g8e7F1r7ZlnzINfEZpWrYKbb3bfKffqxeyRI+X5rQ/sadyY76+4wtVuvXWruRAIs1GJ8EtQv/wCw4e7y9s3asS0W26RqbC+EBHBzKuvZnejRq5TI2fN8hr+ESFi/ny47DKzBg6gYUP4+uuw3ufJ19YmJrLCc4v4N96Ae+4Jq+nn4ZWgpk0zZUUciwjPlyvH2yNGSCFYH8qNimLGjTe61nREOBduPvNM2F39hawvv4QRI9ybVlarZob6atSwNq4QNHfoULa2bOk+MXky/PGPZjugMKB0MX5pJCYm6uRgnPaotakF9uSTrlNnYmOZdvPNHKpTx8LAQleFM2e4ZepUah865D55660837AhuR5X2WODrIKzUmqN1jqxNO8R1P1o4kRTINgxPH66UiWmjB7NMWdVbuFzETk5jJw5kw4bN7rO7WrcmC+uv9414zhU+1Ho30EdOgTXXeeVnGjVig/uukuSkx+dq1iR//35z/zWtKn75JQp3PnBB9SQfW+Cz5EjcM013sVMmzfnv3fcIcnJz3IjI/lm1Civ4b4mu3dz38SJNN61y8LI/C90E5TW8PHHpl7c11+7zw8YAEuXcrpKFctCCxeZMTF8etNNrPHY4rvOwYOMee89+v/8MxGyVio4zJ4N7dqZcmBOnTvDkiWkST8KjIgIfrz8cn7ymGlc6cwZRn/yCcO+/94Uug5BoTnEt3Sp9wJch+TEROYMGyYPcgNNa3qsWMGg+fOJ8njAeyQ+nhoTJ5or8yDZyC6shviSk02l+u+/9zq9qmtX5g0ZIlu3W6T5tm2MnDWLCh5J6XSlSizu1491HTuSGxVl+yG/8Bvi0xrmzoX+/aFPH+/k1KgRH912G99deaUkJysoxYqePfnPvfeyr1491+kaR4/C9ddDmzbmblc2PrSe1mYZxtVXQ9eu3smpdm344Qd+GDFCkpOFdrRsycT772d78+auc5XT0rjy22956O236bxmjXsCS5AL7gSltbnKe+IJaNQILr/cVW4FMOsxHnoINm5kT+PG1sUpADgeH8+Hd9zBnGHDyPQsg7Ntm6mHWKuWmfE3b56USgq0nTshKQlatICePWHWLPfXlDLlqzZtgmHDrItRuJyLjeWzm25i1siRnK1QwXW+yunTXDV7NtSsaf7OfvwxqPtScA3xZWSYHVyXLjWvxYth//6Lvy8qyvzl/O1vpsNhqm8L+yh/9iw9Vqyg6+rVlM1nymx62bKUGzIEevc2d8QdOrh38bVQSAzxZWfDrl2mYvaiRWZt4O7d+X/vjTcyoVo1jskUctuKzsyk6+rV9Fq61GvYz6ViRdOP+vWDvn3N88TKlQMfqIei9iN7JKicHEhLM+uTTp0ylcUPHjSv1FRzdbd9u+lElyr3UaWK2Tjv8cehQQNJSkEgJj2dbqtW0WXNGiqnpV36m+vVMxcczZtD3bpmyKl2bYiPN3/3VaqYjufHIqW2TlC5uWZo5+RJ9+vwYVNs9MABSEkxF3g7dlx6OLViRTPz9bHHoF076UdBIjojg67JyXRct474Y8cu+b1pFStyND6eJkOGmL5Uty7UqWPWtFWtal6VKvmtLwU2QaWnmzFrrU0n8XxlZ5sElJ1tOkVWlqnSm5FhZp6cP2/aJVWpEowaBTfcwPMrVnitsRFBJDeXevv302bzZlpv2UKlM2dK/l5RUVC+vHmVLWs6WZky5s+oKPOKjDSviAjzUsr8+dpr5gqzAH5PUF9+aeoYevahnBzvl7MPOV/p6aYfOaujlES5cjB4sLnAu+oqkv71r5K/l7CW1tQ6eJD2mzbRevPmwi/8LiU62t2XYmJMP/LsS85+5NmXIiIgIQE++KDAty1qP/LNb3OtzXMDf1OKk5Urk1qnDikJCexLSOBQzZroyEjzLEqSU/CKiGB/QgL7ExL4cdgwqh07RsK+fdRPSaHe/v3EnThBZFGLZWZnmzvyknRMR5URy6SkBKYv1avHb2XLktKgAXsaNCC1Th1zcbd1q3mJ4KUUh+rU4VCdOswdOpQqp07RYM8eGuzdS53UVKodP+41m/aSsrLM/m7F3ePNs/pFKRR6B6WUGgOMcTRbANsv8e3VgUvfW9qLxOtfoRhvA611sVemFrMfFTUWO5F4/SuY4vVZPyrWEF+hb6ZUcmmHPwJJ4vUvibfk7BRLUUi8/hVM8foy1uCeZi6EECJkSYISQghhS75OUJN8/H7+JvH6l8RbcnaKpSgkXv8Kpnh9FqtPn0EJIYQQviJDfEIIIWxJEpQQQghb8luCUko9rpTSSqnq/voMX1BKjVdKbVNKbVRKfa2UsuUGN0qpYUqp7UqpnUqpv1sdT0GUUvWVUguVUluVUpuVUo9YHVNRKKUilVLrlFLfWh1LXtKXfCdY+hFIXwI/JSilVH1gCJDij/f3sXlAW611e2AH8GQh3x9wSqlIYAIwHGgN3KSUam1tVAXKBv5Pa90K6AE8YONYPT0C2K6EgvQl3wmyfgTSl/x2B/UG8ARg+xkYWuu5WmtnPfoVQL1Lfb9FugE7tda7tUxcc94AAAHqSURBVNaZwGfA1RbHlC+t9UGt9VrH8RnMP9S61kZ1aUqpesAI4H2rY8mH9CXfCZp+BNKXwA8JSik1Ejigtd7g6/cOgDuAH6wOIh91gX0e7f3Y/B8qgFKqIdAJWGltJIV6E5MEiljsLzCkL/lcUPYjCN++VKLqqkqp+UCtfL70NPAUMLQ0QfnapeLVWs90fM/TmFvqqYGMrYhUPudsfUWtlIoFvgQe1VqXopyyfymlrgSOaK3XKKUGWPD50pcCJ+j6EYR3XypRgtJaD87vvFKqHdAI2KCUAnOLv1Yp1U1rfajEUZZSQfE6KaVuB64EBml7LgzbD9T3aNcDUi2KpVBKqWhMh5qqtf7K6ngK0RsYqZS6AigLVFJKTdFa3xqID5e+FFBB1Y9A+pJfF+oqpfYAiVpr21bhVUoNA14H+mutj1odT36UUlGYh86DgAPAauBmrfVmSwPLhzK/TT8CTmitH7U6nuJwXPU9rrW+0upY8pK+VHrB1I9A+hLIOiiAd4CKwDyl1Hql1H+sDigvx4PnB4EfMQ9KZ9i1U2GuokYDlzn+f653XFGJ0GfrvhRk/QikL0mpIyGEEPYkd1BCCCFsSRKUEEIIW5IEJYQQwpYkQQkhhLAlSVBCCCFsSRKUEEIIW5IEJYQQwpb+H9wcVNTIR5VAAAAAAElFTkSuQmCC\n", - "text/plain": "" - }, - "metadata": {} - } + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pos = np.arange(12)\n", + "\n", + "plt.barh(pos, impact, align='center', height=.8, color='r')\n", + "plt.yticks(pos, sec)\n", + "plt.xlim((0,2.3))\n", + "for i, v in enumerate(impact):\n", + " l = \"{0:.2f}\".format(float(v))\n", + " plt.text(float(v)+.01, i-.25, \"{0:.2f}\".format(float(v)), color='black', fontweight='bold')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Random arrays (`random`) - Matrizes Randomicas" + ] + }, + { + "cell_type": "code", + "execution_count": 342, + "metadata": {}, + "outputs": [], + "source": [ + "from numpy import random as rd" + ] + }, + { + "cell_type": "code", + "execution_count": 343, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.42133561, 0.70384355],\n", + " [0.1872136 , 0.09562296],\n", + " [0.17934325, 0.28826841]])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "", - "execution_count": null, - "outputs": [] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "name": "python3", - "display_name": "Python 3", - "language": "python" - }, - "language_info": { - "mimetype": "text/x-python", - "nbconvert_exporter": "python", - "name": "python", - "file_extension": ".py", - "version": "3.5.4", - "pygments_lexer": "ipython3", - "codemirror_mode": { - "version": 3, - "name": "ipython" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file + }, + "execution_count": 343, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rd.rand(3, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 344, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.58788579, 0.2440049 ],\n", + " [0.372578 , 0.35439001],\n", + " [0.71171335, 0.90973135]])" + ] + }, + "execution_count": 344, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.random.rand(3, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 345, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.0504399 , 0.21857161],\n", + " [0.18244948, 0.23708749],\n", + " [0.2995859 , 0.56284799]])" + ] + }, + "execution_count": 345, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rd.seed(1910)\n", + "np.random.rand(3, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 346, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.0504399 , 0.21857161],\n", + " [0.18244948, 0.23708749],\n", + " [0.2995859 , 0.56284799]])" + ] + }, + "execution_count": 346, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rd.seed(1910)\n", + "np.random.rand(3, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 347, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1.54773602],\n", + " [-2.05072622]])" + ] + }, + "execution_count": 347, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rd.randn(2, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 348, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([15, 19, 18, 16, 12])" + ] + }, + "execution_count": 348, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rd.randint(10, 20, size=5, dtype=np.int)" + ] + }, + { + "cell_type": "code", + "execution_count": 349, + "metadata": {}, + "outputs": [], + "source": [ + "pop = np.linspace(0, 99, 100)" + ] + }, + { + "cell_type": "code", + "execution_count": 350, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,\n", + " 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,\n", + " 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,\n", + " 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,\n", + " 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,\n", + " 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,\n", + " 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,\n", + " 91., 92., 93., 94., 95., 96., 97., 98., 99.])" + ] + }, + "execution_count": 350, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pop" + ] + }, + { + "cell_type": "code", + "execution_count": 351, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,\n", + " 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,\n", + " 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,\n", + " 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,\n", + " 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])" + ] + }, + "execution_count": 351, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.arange(100)" + ] + }, + { + "cell_type": "code", + "execution_count": 352, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[41.],\n", + " [92.],\n", + " [ 7.],\n", + " [37.],\n", + " [68.],\n", + " [27.],\n", + " [61.],\n", + " [40.],\n", + " [74.],\n", + " [46.]])" + ] + }, + "execution_count": 352, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rd.choice(pop, size=(10, 1), replace=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 353, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([24., 26., 41., 31., 82., 36., 48., 76., 20., 90., 3., 69., 9.,\n", + " 79., 67., 62., 74., 40., 54., 96., 13., 56., 33., 23., 85., 92.,\n", + " 4., 14., 11., 21., 35., 58., 94., 7., 15., 30., 42., 37., 63.,\n", + " 97., 60., 73., 61., 78., 91., 93., 66., 83., 45., 25., 6., 59.,\n", + " 46., 51., 43., 95., 64., 38., 55., 86., 98., 47., 81., 28., 12.,\n", + " 19., 75., 84., 10., 44., 29., 39., 52., 80., 53., 2., 18., 16.,\n", + " 1., 49., 27., 71., 57., 0., 88., 22., 50., 68., 89., 8., 17.,\n", + " 32., 72., 99., 70., 77., 65., 34., 87., 5.])" + ] + }, + "execution_count": 353, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rd.shuffle(pop)\n", + "pop" + ] + }, + { + "cell_type": "code", + "execution_count": 354, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([88., 76., 72., 27., 44., 65., 25., 35., 40., 13., 38., 94., 85.,\n", + " 63., 98., 97., 96., 61., 53., 75., 56., 48., 73., 16., 59., 2.,\n", + " 67., 47., 11., 78., 14., 60., 99., 90., 87., 9., 68., 1., 45.,\n", + " 32., 64., 71., 8., 36., 31., 15., 57., 54., 12., 10., 79., 52.,\n", + " 84., 69., 74., 22., 82., 41., 20., 91., 33., 50., 37., 80., 95.,\n", + " 21., 81., 23., 39., 93., 7., 77., 92., 49., 19., 43., 4., 3.,\n", + " 58., 51., 66., 29., 89., 0., 18., 34., 42., 17., 55., 5., 26.,\n", + " 70., 46., 30., 86., 83., 6., 62., 24., 28.])" + ] + }, + "execution_count": 354, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rd.permutation(pop)" + ] + }, + { + "cell_type": "code", + "execution_count": 355, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([24., 26., 41., 31., 82., 36., 48., 76., 20., 90., 3., 69., 9.,\n", + " 79., 67., 62., 74., 40., 54., 96., 13., 56., 33., 23., 85., 92.,\n", + " 4., 14., 11., 21., 35., 58., 94., 7., 15., 30., 42., 37., 63.,\n", + " 97., 60., 73., 61., 78., 91., 93., 66., 83., 45., 25., 6., 59.,\n", + " 46., 51., 43., 95., 64., 38., 55., 86., 98., 47., 81., 28., 12.,\n", + " 19., 75., 84., 10., 44., 29., 39., 52., 80., 53., 2., 18., 16.,\n", + " 1., 49., 27., 71., 57., 0., 88., 22., 50., 68., 89., 8., 17.,\n", + " 32., 72., 99., 70., 77., 65., 34., 87., 5.])" + ] + }, + "execution_count": 355, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pop" + ] + }, + { + "cell_type": "code", + "execution_count": 356, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['Lock', 'RandomState', '__RandomState_ctor', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'absolute_import', 'beta', 'binomial', 'bytes', 'chisquare', 'choice', 'dirichlet', 'division', 'exponential', 'f', 'gamma', 'geometric', 'get_state', 'gumbel', 'hypergeometric', 'info', 'laplace', 'logistic', 'lognormal', 'logseries', 'mtrand', 'multinomial', 'multivariate_normal', 'negative_binomial', 'noncentral_chisquare', 'noncentral_f', 'normal', 'np', 'operator', 'pareto', 'permutation', 'poisson', 'power', 'print_function', 'rand', 'randint', 'randn', 'random', 'random_integers', 'random_sample', 'ranf', 'rayleigh', 'sample', 'seed', 'set_state', 'shuffle', 'standard_cauchy', 'standard_exponential', 'standard_gamma', 'standard_normal', 'standard_t', 'test', 'triangular', 'uniform', 'vonmises', 'wald', 'warnings', 'weibull', 'zipf']\n" + ] + } + ], + "source": [ + "print(dir(rd))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Exercício 1" + ] + }, + { + "cell_type": "code", + "execution_count": 357, + "metadata": {}, + "outputs": [], + "source": [ + "mu = 4\n", + "sigma = 12\n", + "n = 50\n", + "N = int(1e5)" + ] + }, + { + "cell_type": "code", + "execution_count": 358, + "metadata": {}, + "outputs": [], + "source": [ + "A = rd.normal(loc=mu, scale=sigma, size=(n, N))" + ] + }, + { + "cell_type": "code", + "execution_count": 359, + "metadata": {}, + "outputs": [], + "source": [ + "avg = np.mean(A, axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 360, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(100000,)" + ] + }, + "execution_count": 360, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "avg.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 361, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.9066983895805354" + ] + }, + "execution_count": 361, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.var(avg)" + ] + }, + { + "cell_type": "code", + "execution_count": 362, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.88" + ] + }, + "execution_count": 362, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sigma**2/n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Exercício 2: Law of Large Numbers\n", + "À medida que o número de variáveis geradas aleatoriamente distribuídas de forma idêntica aumenta, a média da amostra (média) aproxima-se da média teórica. (inglês)" + ] + }, + { + "cell_type": "code", + "execution_count": 363, + "metadata": {}, + "outputs": [], + "source": [ + "x = np.linspace(0, 4, 5)\n", + "size = np.logspace(0, 4, 5)\n", + "draws = 100\n", + "mu = 0\n", + "sigma = 1\n", + "\n", + "DATA = []\n", + "\n", + "for s in size:\n", + " d = np.random.normal(loc=mu, scale=sigma, size=(draws, int(s)))\n", + " DATA.append(d.mean(axis=1))" + ] + }, + { + "cell_type": "code", + "execution_count": 364, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEpCAYAAACHhglHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH1lJREFUeJzt3XuYXFWd7vHvSycQCLdEckQIBBQvgSiiQWQGB4IZ5eZl1BGDOgFaET1GHPFEmEaMSLwxo6ioiJNMRKARUQRvgzgJYqsoCSISA8ggQgtKIOESBBLi7/yxVqcrRXV3dVelq3v1+3meftJde9fav1pVeWvXqr3XVkRgZmbl2KrVBZiZWXM52M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgt6eRdL6kDzeprT0lrZPUlv++VtI7mtF2bu+HkuY2q71BbPdsSQ9I+nOd6y+QdNGWrssMHOxjjqS7JD0u6VFJD0n6uaSTJW16LUTEyRHxsTrbmt3fOhFxd0RsHxEbm1D708IxIo6MiK812vYg69gDOBXYNyJ2rbH8MEndw1mTWSUH+9j0mojYAZgGfBL4ELCo2RuRNK7ZbY4Q04AHI+L+VhdiVouDfQyLiIcj4irgWGCupBkAkpZIOjv/vouk7+W9+zWSfippK0lfB/YEvpuHWuZL2ktSSGqXdDewtOK2ypB/jqRfSXpY0pWSJudtPW1Pt+dTgaQjgH8Djs3b+01evmloJ9d1hqQ/Srpf0oWSdsrLeuqYK+nuPIzS0VffSNop3391bu+M3P5s4Bpgt1zHkqr7TQR+WLF8naTd8uKtc5uPSlopaWbF/XaT9K28vT9Iel8/tS2R9KU8DLVO0s8k7SrpXElrJd0q6YB62pb0Mkm/yM/vfZLOk7R1xfLIn+h+n9v+oiT1VZuNDA52IyJ+BXQDr6ix+NS8bArwTFK4RkS8HbibtPe/fUR8uuI+hwLTgVf3scl/AU4EdgOeAj5fR43/DXwc+Ebe3v41Vjs+/8wCng1sD5xXtc4hwPOBVwJnSprexya/AOyU2zk013xCRPwYOBK4N9dxfFWdj1Ut3z4i7s2LXwtcCuwMXNVTWx4G+y7wG2D3XNv7JfXVfwBvBs4AdgGeBH4B3Jj/vhz4TJ1tbwT+Nd/v4Lz8PVXbOgY4ENg/b7e/umwEcLBbj3uByTVu3wA8C5gWERsi4qcx8ARDCyLisYh4vI/lX4+IW3IIfhh4c8+Xqw16K/CZiLgzItYBpwNvqfq08NGIeDwifkMKu6e9QeRajgVOj4hHI+Iu4D+AtzdYX1dE/CB/3/D1im0fCEyJiLMiYn1E3Al8FXhLP21dERErIuIJ4ArgiYi4MLf9DaBnj73ftnMb10fEU/lxfoX0RlbpkxHxUETcDSwDXtxgP9gWVuoYqA3e7sCaGrefAywAfpQ/gV8QEZ8coK17BrH8j8B40h5jo3bL7VW2PY70SaNH5VEsfyXt1VfbBdi6Rlu7N1hf9bYn5DedaaShm4cqlrcBP+2nrb9U/P54jb97Hle/bUt6HmnvfiawHam/VgxQd60+sxHEe+yGpANJodVVvSzvsZ4aEc8GXgN8QNIrexb30eRAe/R7VPy+J+lTwQPAY6Rw6amrjTQEVG+795KCrLLtp9g89OrxQK6puq0/1Xn/wU6Zeg/wh4jYueJnh4g4apDtDKXtLwO3As+NiB1JQ20eQx/lHOxjmKQdJR1DGve9KCJ+W2OdYyTtk78we4Q0Jttz6OJfSGPQg/U2SftK2g44C7g8DyHcTtqLPVrSeNIY8jYV9/sLsJcqDs2s0gn8q6S9JW1P75j8U4MpLtdyGbBQ0g6SpgEfAOo9Dv0vwDN6vritw6+ARyR9SNK2ktokzchvuI0aqO0dSM/rOkkvAN7dhG1aiznYx6bvSnqUtDfXQfoofkIf6z4X+DGwjvQF3Zci4tq87BPAGfmIig8OYvtfB5aQPuJPAN4H6Sgd0hd3/0naO36M9MVtj2/mfx+UdGONdhfntq8D/gA8AcwbRF2V5uXt30n6JHNJbn9AEXEr6U3mztw3uw2w/kbSp6EX57ofIPVBvW8MjbT9QeA44FHS2Ps3Gt2mtZ58oQ0zs7J4j93MrDAOdjOzwjjYzcwK42A3MyuMg902kXS8pK6Kv9dJGsrhjANtZ6Wkw5rd7gDbHNQ0u62gijl6RgvVMcPnENoc9tdHaRzsW4Ck90paLunJ6kmi8vJX5oma/ippWT5OumfZNpIWS3pE0p8lfWBYi6+Q5zm5s5E2aoVVROxXccjkFqcBptm1kWW4Xx8lcrBvGfcCZ1PjuGdJuwDfJs2RMhlYzubHDi8gHTs+jTSZ1XylmQ0HpHKnyW3UkKfZdZ/aaORg3wIi4tsR8R3gwRqL3wCsjIhv5gmcFgD757P+IM0i+LGIWBsRq0gnjRxfazt56ORnkj4raU1uC0knSlqVp1m9uuoTQUh6n6Q789DEOX2dyZnX3Sf/vq2k/1CawvZhSV2Sts3Lvpk/XTws6TpJ++XbTyJNzDU/D+t8N9++6eN7/oRyrqR788+5krbJyw6T1C3pVKVpeO+TdEJFfUdJ+p3SNLh/qnWSlPqYZlfSa/NH/oeUpv6dXnGfu/KZmjcDj9UKd0kvkHSN0lTGt0l6c8WyoyX9On/qukfSgqr7HqJ0gZOH8vLK53eSpO/nx/RLSc/p47mZIOkiSQ/mdm6Q9My87IT8/D+an+d3Vdyvp0/nV/Tp63Nf3p4fz79VrL9A0uWSvpHbu1FSrZk1e6ZNPk3S/+a6LlOekrnGujWng67o/57Xx0Pqnf74sfya3CsvO0bSTeq9YMyLam1rTIoI/2yhH9Je+5Kq2z4HfLnqtluANwKTSPOMPLNi2ZuA3/bR/vGkuVDmkSZv2hZ4PXAHadrccaTT8n9ecZ8gzdA3mTT/ye3AOyra66pad5/8+xeBa0lzyrQBfwdsk5edSDo1fRvgXOCmijaWAGdX1X0XMDv/fhZwPfB/SPPC/Jz0xgZwWH58Z5EmCjuKNAnVpLz8PuAV+fdJwEv66KfDgO6Kv59HOqv0H3O783OfbV1R302kOW22rdHeRNJZuyfkPn4J6YzO/Sq290LSjtOLSFMMvD4v25N0luecvO1nAC+u6Ks1wMtyuxcDl/bxmN5Fmo53u/x8vBTYMS87GngOac6XQ3OfvaSqT8/M238nsJp0Zu0OwH6kM3afnddfQJo35015/Q+SzmAdX+O5fH9+Lqfm18JXgM4+6v8EcH5uczxpymhVt1l1n4+Tzioen/v8fuCg/Pjn5vtt0+r/9yPhp+UFlPxD7WBfRJoGtfK2n5FCdQ9SmE6oWPaPwF19tH88cHfVbT8E2iv+3ir/x56W/w7giIrl7wH+p6K9pwV7buNxYP86HvPO+X475b+X0H+w/y9wVMWyV/c83hxCjwPjKpbfD7w8/343KeB2HKCmw9g82D8MXFbVR38CDquo78R+2jsW+GnVbV8BPtLH+ucCn82/n06acrfWekuA/6z4+yjg1j7WPZH0JviiOp6T7wCnVPVpW/57h/x8HVSx/gp634gWANdX9VXlG2rlc7kKeGXFus8ivSmMq1HTWcCV5B2Hvl4fVX1+F2kKYkiTl32sap3bgEPr+b9Z+o+HYobfOmDHqtt2JO3Frav4u3pZX6qnyJ0GfC5/PH2ItAcoNp9ytnra3H7nMiFNYzuBFMKbUZpU6pP54/cjpP98PfepR62pdivreTA2n8SrctrYN5LC74+SfiLp4KFsMyL+RuqTvvqo2jTgoJ4+zv38VmBXAEkHKX0pvlrSw8DJ9PbHHtToxwr1TpH7deBq4NI8hPVppYnTkHSkpOvzEMdDpD6qfD4ejN5r0PbMmd/XtL9Q0Re5r7qp/ZqZBlxR0SerSBPGPbPGuueQPiX9KA8XndbH40TpalDnAf8UEasrtnVq1XOwRx91jTkO9uG3koqLOyhdSu05pHH3taS9ocoxzP3zffpSPdnPPcC7YvNpWreNiJ9XrFM9be699O8B0sfzWuO9xwGvA2aTJpbaK9/eM/XrUKbaHaie1HDEDRHxOtIwzndIMzLWY7NtShKpTyqn5e2v7nuAn1T18fYR0TMz4iWkKyTtERE7kYYcVHHfmuPmgxHpoicfjYh9ScNixwD/ovT9xLeAfycN6e0M/KBi+0Ox6fWSx8GnUvs5ugc4sqpfJkTE06Y7jv6ng95E0hTShUTeGxG/rtrWwqptbRcRnQ08zmI42LcASeMkTSCN/bXlL7p6voC7Apgh6Y15nTOBmyPNCAhwIWnGxElKX6i+k/QRvV7nA6er9wvMnST9c9U6/y+3vwdwCgPM6Jf30hYDn1G6fmabpINziOxAujTbg6Tx3o9X3X2gqX07SY93itIRQ2dSx/S4kraW9FZJO0XEBnqnFK7HZcDRSoedjicdCvkkaWijHt8Dnifp7ZLG558D1fsF7A7Amoh4QtLLSG9+PS4GZkt6c36dPEPSoK9IJGmWpBcqzVn/CGnIYyPpAiHbkMbNn5J0JPCqwbZf5aWS3pBfw+8n9dX1NdY7nzTV8bRc4xRJr+uj/v6mg+5ZZxzpTeriiKh+jX4VODl/OpKkiUpfWu/QyAMthYN9yziD9HH2NOBt+fczAPJHyTcCC4G1pC9/Ki+B9hHSR/U/Aj8Bzol0vc+6RMQVwKdIH9EfIX0xe2TValeSxlFvAr5PGvcfyAeB3wI3kIZ3PkV6/VyYa/0T8Due/h9+EbBv/rj8nRrtnk065PPm3P6N+bZ6vB24Kz/Ok0l9PaCIuC2v+wXSp5HXkK7dur7O+z9KCsu3kPZc/0zqj565498DnKU0NfKZVHySiHR5uaNIbyZrSM9BzaNMBrAr6dqmj5CGPH5CmlP/UdI0yJeRXl/HkT49NOJK0hj3WlKfvyG/mVb7XN7Wj/Jjv570+q6lv+mge0wlfan6/oojY9ZJ2jMilpN2es7Ldd1BH0ePjUWetneMkRSkq+Xc0epabORTOlRzn4io603TRgbvsZuZFcbBbmZWmIaHYvIXgNeRxhfHka5f+ZEm1GZmZkPQjGAXMDEi1uUjDLpIJ0PU+tbczMy2sIYnOIr0ztBzYk3P6cH+RtbMrEWaMnNdPpZ2Ben08y9GxC9rrHMScBLAxIkTX/qCF7ygehUzM+vHihUrHoiIKQOt19TDHSXtTDoBZ15E3NLXejNnzozly5c3bbtmZmOBpBURMXOg9Zp6VExEPESaAbCu+cPNzKz5Gg72fNrwzvn3bUlzhtza/73MzGxLacYY+7OAr+Vx9q1I06F+rwntmpnZEDTjqJibgQOaUIuZmTWBzzw1MyuMg93MrDAOdjOzwjTlBKWRKM100DhPa2xmo02xwT5QIEtyaJtZkTwUY2ZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWmIaDXdIekpZJWiVppaRTmlGYmZkNzbgmtPEUcGpE3ChpB2CFpGsi4ndNaNvMzAap4T32iLgvIm7Mvz8KrAJ2b7RdMzMbmqaOsUvaCzgA+GWNZSdJWi5p+erVq5u5WTMzq9C0YJe0PfAt4P0R8Uj18oi4ICJmRsTMKVOmNGuzZmZWpSnBLmk8KdQvjohvN6NNMzMbmmYcFSNgEbAqIj7TeElmZtaIZuyx/z3wduBwSTfln6Oa0K6ZmQ1Bw4c7RkQXoCbUYmZmTeAzT83MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrTFOCXdJiSfdLuqUZ7ZmZ2dA1a499CXBEk9oyM7MGNCXYI+I6YE0z2jIzs8Z4jN3MrDDDFuySTpK0XNLy1atXD9dmzczGnGEL9oi4ICJmRsTMKVOmDNdmzczGHA/FmJkVplmHO3YCvwCeL6lbUnsz2jUzs8Eb14xGImJOM9oxM7PGjdqhmMmTJyNpyD9AQ/eXxOTJk1vcC2ZmT9eUPfZWWLt2LRHR0hp63iDMzEaSUbvHbmZmtY3aPXarX7M+WbT6E5KZ1cfBPgYMFMiSHNpmBfFQjJlZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwV6AyZMnI2nIP0BD95fE5MmTW9wLZtZj1F7MOj6yIyzYqfU1jABr165t+cWoe94gzKz1Rm2w66OPjIgwiwUtLcEGqVlvQK1+7W1JnZ2dLFy4kFWrVjF9+nQ6OjqYM2dOq8uyQRi1wW42FAMFsqSiQ3sgnZ2dnHLKKUycOJGI4LHHHuOUU04BcLiPIh5jN7NN5s+fT1tbG4sXL+bJJ59k8eLFtLW1MX/+/FaXZoPgYDezTbq7u7nwwguZNWsW48ePZ9asWVx44YV0d3e3ujQbhKYEu6QjJN0m6Q5JpzWjTTMzG5qGg11SG/BF4EhgX2COpH0bbdfMht/UqVOZO3cuy5YtY8OGDSxbtoy5c+cyderUVpdmg9CMPfaXAXdExJ0RsR64FHhdE9o1GzQf01+/WrV3d3dz3333cfjhh7P11ltz+OGHc99999Hd3d1vn5Wqs7OTGTNm0NbWxowZM+js7Gx1SXVpxlExuwP3VPzdDRzUhHbNBs3H9PeaPHkya9eu3eLb6e/xTpo0iTVr1mzxGhpVz3O2cuVKjjvuOI477rg+12n1a69HM4K9Vo887dFJOgk4CWDPPfdswmath0/W6uW+6LXmfRuBVteyscXbzwZ4TTTtORvotbfg4eZsZwBq9B1G0sHAgoh4df77dICI+ERf95k5c2YsX7680e22/N1xJNQwUuoYCTWMlDpGQg09dbRaSXvs9djSz7ukFRExc6D1mjHGfgPwXEl7S9oaeAtwVRPaNRuSRsfIG/2ZNGlSq7sASCHT389wbGc0hDrUfgz77bcfS5cu3ey2pUuXst9++23xPm1Uw8EeEU8B7wWuBlYBl0XEykbbNRuKgcKsnrBrtI3RHGZbbbUV69ev3+y29evXs9VWW434MGu2jo4O2tvbNztCqL29nY6OjlaXNqCmTCkQET8AftCMtsysdaZPn05XVxezZs3adFtXVxfTp09vYVWt0TOFwrx58zbNm7Nw4cJRMbWC54oxs0169lIXLVrEIYccQldXF+3t7SxcuLDVpbXEnDlzRkWQV3Owm9kmo3kv1Xo1fFTMUPiomPLqGAk11GO0HP1gVstwHhVjI4CPBKlPrS//LrnkEvbee2+WLl3K+vXrWbp0KXvvvTeXXHLJmPvC0MrgPfZRXkMzlPI4hmrGjBl84Qtf2OwLw2XLljFv3jxuueWWFlZmtrl699gd7KO8hmYo5XEMVVtbG0888QTjx4/fdNuGDRuYMGECGzeOkDMnzfBQjFndeg7xqzRWD/GzMjjYbcwbzSeimNXiwx1tzPMhflYaj7GP8hqaoZTHYVY6j7GbmY1RDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCjOqT1Bq9cV6R8uMhmY2tozaYG/0hBqflGNmpfJQjJlZYUbtHrvVr54hq3rW8Sccs9HBwT4GOJDNxhYPxZiZFcbBbmZWGAe7mVlhHOxmZoVxsI9hnZ2dzJgxg7a2NmbMmEFnZ2erSzKzJvBRMWNUZ2cnHR0dLFq0iEMOOYSuri7a29sBfEk4s1HOe+xj1MKFC1m0aBGzZs1i/PjxzJo1i0WLFrFw4cJWl2ZmDRq11zxt1FifUqCtrY0nnniC8ePHb7ptw4YNTJgwgY0bN7awMjPri695av2aPn06XV1dm93W1dXF9OnTW1SRmTVLQ8Eu6Z8lrZT0N0kDvovYyNHR0UF7ezvLli1jw4YNLFu2jPb2djo6Olpdmpk1qNEvT28B3gB8pQm12DDq+YJ03rx5rFq1iunTp7Nw4UJ/cWpWgIaCPSJWQevnRbehmTNnjoPcrEDDNsYu6SRJyyUtX7169XBt1sxszBlwj13Sj4FdayzqiIgr691QRFwAXADpqJi6KzQzs0EZMNgjYvZwFGJmZs3hwx3NzArT6OGO/ySpGzgY+L6kq5tTlpmZDVWjR8VcAVzRpFrMzKwJPBRjZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEaCnZJ50i6VdLNkq6QtHOzCjMzs6FpdI/9GmBGRLwIuB04vfGSzMysEQ0Fe0T8KCKeyn9eD0xtvCQzM2tEM8fYTwR+2NdCSSdJWi5p+erVq5u4WTMzqzRuoBUk/RjYtcaijoi4Mq/TATwFXNxXOxFxAXABwMyZM2NI1ZqZ2YAGDPaImN3fcklzgWOAV0aEA9vMrMUGDPb+SDoC+BBwaET8tTklmZlZIxodYz8P2AG4RtJNks5vQk1mZtaAhvbYI2KfZhViZmbN4TNPzcwK42A3MyuMg93MrDAOdjOzwjjYzcwK09BRMSOZpKas43OuzGy0KTbYHchmNlZ5KMbMrDAOdjOzwjjYzcwK42A3MyuMg93MrDAOdjOzwjjYzcwK42A3MyuMWnEij6TVwB+HfcOb2wV4oMU1jBTui17ui17ui14jpS+mRcSUgVZqSbCPBJKWR8TMVtcxErgverkverkveo22vvBQjJlZYRzsZmaFGcvBfkGrCxhB3Be93Be93Be9RlVfjNkxdjOzUo3lPXYzsyI52M3MCuNgNzMrjIM9kzRR0tckfVXSW1tdTytJerakRZIub3UtrSbp9fk1caWkV7W6nlaSNF3S+ZIul/TuVtfTajkzVkg6ptW1VCs62CUtlnS/pFuqbj9C0m2S7pB0Wr75DcDlEfFO4LXDXuwWNpi+iIg7I6K9NZVueYPsi+/k18TxwLEtKHeLGmRfrIqIk4E3A6PmZJ16DTIvAD4EXDa8Vdan6GAHlgBHVN4gqQ34InAksC8wR9K+wFTgnrzaxmGscbgsof6+KN0SBt8XZ+TlpVnCIPpC0muBLuB/hrfMYbGEOvtC0mzgd8BfhrvIehQd7BFxHbCm6uaXAXfkvdL1wKXA64BuUrhDgf0yyL4o2mD6QsmngB9GxI3DXeuWNtjXRURcFRF/BxQ3XDnIvpgFvBw4DninpBGVGeNaXUAL7E7vnjmkQD8I+DxwnqSjge+2orAWqNkXkp4BLAQOkHR6RHyiJdUNr75eF/OA2cBOkvaJiPNbUdww6+t1cRhpyHIb4ActqKsVavZFRLwXQNLxwAMR8bcW1NansRjsqnFbRMRjwAnDXUyL9dUXDwInD3cxLdZXX3ye9KY/lvTVF9cC1w5vKS1Xsy82/RKxZPhKqd+I+vgwTLqBPSr+ngrc26JaWs190ct90ct90WtU9sVYDPYbgOdK2lvS1sBbgKtaXFOruC96uS96uS96jcq+KDrYJXUCvwCeL6lbUntEPAW8F7gaWAVcFhErW1nncHBf9HJf9HJf9CqpLzwJmJlZYYreYzczG4sc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm2WSrpXU0HS0kl5bNbWr2bAbi3PFmG0xEXEVo+DMRCub99htxMpXqPm+pN9IukXSsfn2MyXdkG+7QJLy7ddK+qyk6yStknSgpG9L+r2ks/M6e0m6VelqWTfnqwFtV2Pbr5L0C0k3SvqmpO1rrPM+Sb/L7Vyabzte0nn595sqfh6XdGh+TItz/b+WVPw0yTb8HOw2kh0B3BsR+0fEDOC/8+3nRcSB+bZtgcpLk62PiH8AzgeuBP4vMAM4Pk9HDPB84IKIeBHwCPCeyo1K2oV0YY3ZEfESYDnwgRr1nQYckNt52myYEfHiiHgx8OHcxs+BDmBpRBxImtP7HEkTB9UrZgNwsNtI9ltgtqRPSXpFRDycb58l6ZeSfgscDuxXcZ+rKu67MiLui4gngTvpnaXvnoj4Wf79IuCQqu2+nHS1nJ9JugmYC0yrUd/NwMWS3gY8VesBSHoucA5wbERsAF4FnJbbvRaYAOw5UEeYDYbH2G3EiojbJb0UOAr4hKQfAZ8GvgTMjIh7JC0ghWOPJ/O/f6v4vefvntd79QRJ1X8LuCYi5gxQ4tHAP5CukfthSZVvMOQ98cuAd0ZEz1SvAt4YEbcN0LbZkHmP3UYsSbsBf42Ii4B/B15Cb4g/kMe93zSEpveUdHD+fQ7pGp6Vrgf+XtI+uY7tJD2vqratgD0iYhkwH9gZqB6H/y/gvyLipxW3XQ3Mq/he4IAh1G/WL++x20j2QtIY9N+ADcC7I+IhSV8lDbXcRZove7BWAXMlfQX4PfDlyoURsTpf8qxT0jb55jOA2ytWawMukrQTaS/8s7k2ACRNI73pPE/Sifk+7wA+BpwL3JzD/S42/47ArGGettfGFEl7Ad/LX7yaFclDMWZmhfEeu5lZYbzHbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlh/j9jw8UIkrCfDgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.boxplot(DATA)\n", + "plt.xticks([1, 2, 3, 4, 5], ['$10^0$', '$10^1$', '$10^2$', '$10^3$', '$10^4$'])\n", + "plt.xlabel('sample size')\n", + "plt.title(\"Distribution of the mean\\n{0} replications for each sample size\".format(draws))\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Exercício 3: Central Limit Theorem - Teorema do Limite Central\n", + "source: Wolfram MathWorld" + ] + }, + { + "cell_type": "code", + "execution_count": 365, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX6+PHPSUhC6CWA1IB0QieEDgoooCziWlBcy8+Ca9m14NfVteDo2rsiKlasgBUsiAgivfdOQFoQCC1AAqSd3x9nKiSkzcy9M/O8X695cc9NMvOsm5Pn3nPPeY7SWiOEEELYTZTVAQghhBAFkQQlhBDCliRBCSGEsCVJUEIIIWxJEpQQQghbkgQlhBDCliRBCSGEsCVJUGFAKdVWKTVdKXVQKXXWwjalVA2l1HdKqUyl1E6l1Egr4hTCzpRS1yilNiulMpRSB5RSE5RSVby+Lv0oyCRBhYccYDJwSyFffwvIBuoA1wFvK6WSghSbEKFiPtBLa10VOB8oB/zP6+vSj4JMElSAKaV2KKUeUEqtcV6ZTVJKlffnZ2itN2utPwDWF/D5FYErgMe01ie01vOAqcD1/oxBiEAKUj/arbU+6HUqD2jm/HzpRxaQBBUcVwODgSZAe+Cmgr5JKdVbKXX0HK/epfjsFkCe1nqL17nVgFz5iVAT8H7k/NkM4DgmIb3m/JL0IwuUszqACPGG1novgFLqB6BjQd/kvCqr5ufPrgRknHEuA6js588RItAC3o+cP1tVKVUfuA3Y4fyS9CMLyB1UcOzzOs7C/LIHywmgyhnnqmCuEIUIJUHrR1rrNOAXYKLzlPQjC0iCshGlVB+l1IlzvPqU4m23AOWUUs29znWggOdVQoQDP/ajckBT57H0IwvIEJ+NaK3nUoqrQqWUAuKAWGe7vHk7fVprnamU+hZ4Uil1K2ZY5DKgp/8iF8I+ytCPrgPmAruBRsDTwEzne0o/soDcQYWHROAknqu5k8Bmr6/fCcQDB4AvgTu01nLlJ4SvNsACzHDefEwfus3r69KPgkzJhoVCCCHsSO6ghBBC2JIkKCGEELYkCUoIIYQtSYISQghhSyWaZp6QkKAbN24coFCEsL/ly5cf1FrXKst7SD8Ska64/ahECapx48YsW7as9FEJEeKUUjvL+h7Sj0SkK24/kiE+IYQQtiQJSgghhC1JghJCCGFLUovPBhwOh/t4zJgxFkYiROjy7kcgfSkcSIISQkSG1FTYtcvTjo+HLl0gNta6mMQ5SYISQoS39HS47z74/POzv9a0KYwfD/37Bz8uUSRJUEIEgVJqFDAKoFGjRhZHEz7OHNbz+doTT9BuzRoG//ILFU6eLPibtm2DAQPg5pvhxRehRo0ARSpKQyZJCBEEWuvxWutkrXVyrVplWucriiEqL4+rJ03i799955Oc9tSvz5+NG8OFF0LVqp4f+PBDaNMGVq4MfrCiUJKghBBhZ9Avv9B60yZ3+2jVqnx+3XV8cNttfHLTTTBrFmzcCFde6fmh/fth2DDYt+/sNxSWkCG+IDnXUIQQwn86L19OytKl7vbyLl2YfvHF5MTF+X5j3brw1Vfw/fdw002QkQF79sAVV5gEdub3i6CTOyghRNhouHMnl/z0k7u9vk0bfhw69Ozk5G34cJg4EaKcfw4XLIC77wbZzNVykqCEEGGhSkYGV0+eTHR+PgD76tRhyvDhoFTRPzx4MDz/vKf9/vswblyAIhXFJUN8NieLeIUoBq0ZNmUKlTIzAcisUIGJ115LTjHWOLn7mNZc3q4d7deuNe377oOBA6Fly0BFLYogCcpmznxWFZOdTe39+4nSGubPNydbtoSEBAuiE8KeWm7aRNPt2wHIV4qvrr6ajGrVSvYmSvHDsGG0j4mBFSsgJ8ckqZ9/DkDEojgkQdlUVF4eyUuXcsHs2cSfOmVOfvih+TcmBu69Fx55xHeqrBARKDonh4t//dXdXpaczM5S7reVGxNjhve6dDHPoKZNMwnqkkv8FK0oiSITlCwwDL6mW7cyaPp0ah08WPA35OSYRYUTJsD//mcWGUZHBzdIISxQ0GzYHosWUePIEQCy4uP5/cILS/U+bp06wa23wnvvmbZrqE9KIgVdkZMkZIFhEGnNwBkz+Mfnn/skp4wqVdjVsCH07Ok7Hn7gAIwaBX/7G2RnWxCwENaqdOwYfebMcbdnX3ghpypUKPsb/+9/ntGJLVvgzTfL/p6ixGQWn430nD+fXq7nTMDp2FhmDBzIm//+Nx/dcot5BrVxI3zxBTRs6PnBadPMOg7n7CUhIsXA334jNicHgP21a7OsSxf/vHHt2uA9KenJJ81CXhFUkqBsosPKlVz022/u9pbmzXnz3/9mQe/e5JXzGolVCq69FjZtMkMPLl9+adqydkNEiLp799JhzRp3+5fBg9H+HOq+6y7PiMWxY/DEE/57b1EsMkkiQEpSOaL5li0MmzrV3d6RmMjkq68mLyam8B+qUAFeftkM7b31ljn3xhtmdfxDD5U2bCFChvfQ3sZWrdhx/vn+/YDYWHj1Vc8EiQ8/hEcfhfr1/fs5olByB2WxWgcOcNXkyWYaOWZx4cRrrz13cnJRCl5/Ha66ynPu4Yfh668DFK0Q9pBw4IBPrb3ZxZgYUSqDB0OPHuY4OxteeSUwnyMKJHdQFlL5+QybMoWY3FwAjlSrxuf/+Aeny5cv8PsL3DE0Oho+/RQOHTL1wwDuvNNUa65ZM6DxCxEMBY1G9J43z328qWVLDtSpE5gPVwr++18zEQngnXdMW/pWUMgdlIVSFi+mQVoaAHlRUXx57bWcqFy55G8UFwfffgsNGpi2a4M2IcJQtSNHaOeq9gDM6907sB946aXQvr05zsoyoxYiKCRBWaTakSP0d93xAHP69iW9LFeBVavC22972p9+Cr/8UoYIhbCnnvPnu4fEtzdpQpr3jFY/czgcOJ58kq+bN/ecfPNNM2lCBJwkKCtozdAffvCZHuuXq8ChQ80MP5fbb4fjx8v+vkLYRKXjx+nktang3D59gvK5G5KSOOTabffoUTPUJwJOEpQFOq5a5VM3bOqwYeSX89PjwNdf94yP79plxsuFCBPdFy6kXF4eYHbH3dGkSVA+V0dFMd/7IvKVV6CwbeSF38gkiSCLPXWKgTNmuNuLu3dnr+vZUQkVWOm8Vi2TpP7xD9N+6y247TbPGLoQISr29GmSly1zt+f26VO8rTRKqLAlIqvbt2fYihVmU8P9++Hzz01JJBEwcgcVZD0XLqRiVhZgtqEuTt2wEhs5EgYNMsdam6KyQoS4DqtWEecs6ZWekMCWFi2C+vn55cqZIs0ub7whC+MDTBJUEFU4cYIeCxa4279feGGx9qspMaXghRc8V5c//ghe03KFCDn5+XRbvNjdXNKtm2cH3GC65RazSB5g7Vr444/gxxBBJEEFUd85c3wmRqwN5LBb+/Zw3XWe9kMPydWeCFnNtm2j5uHDAJyKi2O1VUPW1arBjTd62m+8YU0cEUKeQfnRucobVTtyxGf8fNaAAehAXwE++SRMmmS255g/H376ycz0EyLEpHjdPa3s3JmcuDjrgrn7bs+SjilTYMcOKOX+U+LcJEEFyQW//060s9r4roYNgzN+3qQJ/POfnq0CHn4YhgyRvaOErZ15oVfz4EGap6YCoIElXbtaEJWXNm3gootgxgyzg8C4cWZIXfidDPEFQe39+2nvVXV55sCBAZl9VKBHHoGKFc3xunVmqw4hQkjKkiXu480tW3LUtR7JSvfc4zl+7z3IzLQuljAmCSoI+v7xB650tKV5c3YlJgbvw+vUgdGjPe2nngLnOhIh7C7u1Ck6rFrlbi/u1s3CaLwMGQJNm5rjo0fhs8+sjSdMSYIKsJrp6bTZsMHdDsi08qKMHu3ZHXTrVql2LkJGR6+p5Qdq1QrawtwiRUXBv/7lab/5pkxCCgBJUAHWe948993T1mbN2FevXlA+1+FwuF9UqeLbmZ55RjqTsD+tSV661N1c0q1b8IbGi+Omm6BSJXO8fj3MnWtpOOFIElQAVT1yxOfZ09y+fa0L5p57POs31qwxa6OEsLEm27eTcOgQYKaWr2nXzuKIzlC1qqdiC3g2DhV+I7P4AqjXggXuqss7EhPZ3ahRwD6ryB18ExLMjD7XhmtPP22mnNvpilQIL1297p5Wd+xo7dTywtx5p6dw7Lffwl9/mV2thV/IHVSAVDp+nE4rVrjblt49uYwebbaxBli8GH7/3dp4hChE5YwMWm7e7G4vTU62MBoPn6FzgHbtwFVRPTcX3n/fuuDCkCSoAOnhVXU5rV49tp9/vsURAfXqwc03e9pPP21dLEKcQ5fly332fDpUq5bFEZ3DnXd6jt991yQq4ReSoAKgfFaWz8PduX372mco7cEHPQt1Z80yd1JC2EhUbi5dli93t5dZvTC3KH//O9SubY7T0mDqVGvjCSPyDCoAui5d6q65d6BWLTYHueryOTVpYmr0ffKJaT//vBk7F8ImWm/aRCXnwtdjlSuzuWVLiyMqmPdz3wtbtqTvgQOmMW6cSVqizCRBlUFBExPK5eT4VF2e37u3NVWXz+X//s+ToL7/HjZvBpv+ERCRx3v0YXmXLuSHQGmu5cnJ9J0/35Q+mjkTNm2CVq2sDivk2ewvZ+jruGqVe7+njCpVWNe2rcURFaBtW7j0UnOsNbz0krXxiIjnmnjw9h130HjnTgDyoqJY0bmzxZEVz7GqVWHYMM+JceOsCyaMSILyI5Wf77Pf08IePex79fef/3iOP/nETI8VwmIpXndPm1q14kSVKhZGU0J33eU5/vhjOH7cslDChQzx+VHrDRuoceQIACfLl7fN1d+ZQ5FjxoyB3r2he3dYtAiys+G118zzKCEsUv7kSdp5LWxfYpe6e8U1YIAZ1tu0ySSnTz/1neEnSkzuoPxFa3rNn+9uLklJsefCQhelfO+i3nkHMjKsi0dEvI6rVrknF+2rU4ddAVzYHhBKmb2iXMaOlZJiZSQJyk+a/Pkn9ZzDZDnlyrEkJcXiiIph2DDP5Ihjx8waDiGskJ9PV69tNZakpNhnaUZJ3HADVK5sjjduNEs5RKlJgvKTXvPmuY9XdepElquIpJ1FRZkZfS6vvgqnTlkXj4hYzVJTfYbH19qt7l5xVa7suyW8a7NQUSqSoPygbloaTbdvByBfKRb06GFxRCXwj3+YChMA+/Z5pp8Lv1JKjVJKLVNKLUtPT7c6HNvx3pRwZadO5LpKcoUi78kSP/xgtoQXpSIJyg96e909rWvb1h47fhZXXBzcf7+n/cILUqolALTW47XWyVrr5Fp2LttjhdRUny3dl9q9ckQh3HX6Jk0yW8KDWRflKiYrSkwSVBnVTE+n9caN7vb83r0tjKaURo2C6tXN8bZtsqGhCK6xY92HW1q0CK0LvMJ4T5Z47z1wro0UJSMJqox6zZ/v3pBwc4sWHKhTx9J4SqVyZd8NDZ97TmYfiYBy3W08/9BDZHstal0aCpOLiuPSS6FxY3N8+DBMmGBpOKFKElQZVMnI8NmQMFTuns7aMgBMgnJtaLh6NUybZk1wIqJ0Wb7cPbV8f+3abGva1OKI/CQ6Gu6919N+5RVw7m4giq/IBCUPdwvXY8ECovPzAdjZqFFANyQMuIQEuO02T/vZZ62LRUSEqNxcUrzqVi7s0SM0p5YX5uaboVo1c5yaaiZMiBIpspKE1no8MB4gOTlZxn1c0tPp7LUh4TzXpmUhxvsuqkpUFPfFxEBODsybB3PnejZjE8LP2q5bRxVnOaDjlSqxLlSnlhemcmWzi/Vzz5n2Sy/B8OHWxhRiZIivhFxDY/Mvv9xn1Xtqs2YWR1Z2x6pWNdPOXYraRl6I0tKanl51K5d060ZeuTCsvPavf0FMjDmeP9+UFhPFJgmqFCqcOOGz6n1Ov37hMzTx8MOeDQ1nzjR3UUL42fnbtlHHuX9SdkwMy7p0sTiiAKlXD0aO9LRfftm6WEKQJKhS6LVggc/d08Zw2veleXPfu6gxY6yLRYStHgsXuo9Xdu7MKdcEnXA0erTn+NtvwbmoXxQtDO+pA6viGXdPf1xwgf02JCyrxx6Dzz4zs45+/x3++AP69bM6KhEuVqyg2bZtgKm8sqh7d4sD8r+zdhC4+GL49VezcPell2S/qGIKs7+sgddr/nxinJUW/jrvPDaF092TS9OmpuilyxNPWBaKCENev08b2rThqGuReDjzrnn5/vuwa5d1sYQQSVAlsW+fz3bUf1xwQfg8ezrTo4+C66H17NnmJURZLVvmnm6tgTl9+1obT7AMGAA9e5rjnBx45hlr4wkRkqBK4rnn3HdPe+vWZbNrq4pwdP75vlWZH39cqkuIsvMa+lqflER6KFZeKQ2lfGfFfvghOLe2F4WTBFVcqak+48Zhfffk4n0XNXcuTJ1qbTwitC1dCj/+CDjvniLtueaAAWYna5C7qGKSBFVcDz1kfqmAXQ0bsqVFC4sDCoLGjc1CQ5f/+z+zPbwQpbDluuvcx+uTkkivXdvCaCxQ0F2UbMVxTpKgimPuXPjmG3fz10GDwv/uyWXMGKha1Rxv3Qpvv21tPCI0LV5Mi61bAXP39EeE3T2561/OmQOu5265ufD009YGZnOSoIqSn++zX9Kadu1Ia9DAwoCCLCHBTDt3cThMdWYhiktreOQRd3Nd27YcjLS7Jxel+LhJE3cz78MPYfNmCwOyN0lQRfniCzPzCKB8eWYOGGBtPAFWYKXzu+82kyYAjhyBp56yJjgRmr7/3lQlwax7irS7pzPtbNKEP51bcUTn58N991kbkI1JgjqXrCxT+sfl/vs55qpOHAHcyeq555icnOz5wtixsGWLdYGJ0HHqlE8lhWXJyRySHYX5ddAg3HNip02Dn36yMhzbkgR1Lg4H7NljjmvXNhMlItTG1q3Z6dpOJDcX7rpLpp2Lor38Mvz5JwBZ8fH8fuGFFgdkD/vq1mWFd/3Be++F06etC8imJEEVZtkyU5LE5ZlnTPn8SKUU0wcNIt81OeS33+Cjj6yNSdjbnj0+U6l/798/vGvuldCs/v05Wb68aaSmMmPoUGsDsiFJUAXJzoZbbjETJIA/GzfGsXv3WfW1Is1f9euz2Ltu2v33w9691gUk7O3BB80wOUD79iwP14rlpZRVsSKzL7jA3e47Zw789Zd1AdmQJKiCPP88OLdyzylXjh+GDYucaeVFmHXhhRx21U7LyJChPlGwmTPhyy/dzY87d0aHW1FlP1jWtSsHnM/k4rKzfbeJF5KgzrJhg88stVkDBnCkRg0LA7KX3NhYk7Bdvv8evvrKuoCE/Rw54lMma32bNux0zloTvvKjo/ll8GDPicmTzcxhAUiC8nX6tOlYzooRdOvG4m7drI3JhnY0aQKjRnlO3H03pKVZF5CwD63hjjvcvw+ZFSowbcgQi4Oytz+bNmVlp06eE3feKdXOnSRBebvnHs+ap5gY+OADGZYozAsvQP365jg9Ha6+WsogCXP1P2mSu/nD3/5GZiRPLiqmXwYP9h06v+EGsx9bhJO/vi4ffQTvvutpv/ACJCVZF4/NOV57jQkDB3pm9S1YAA88YG1Qwlo7d5qrf6cVnTqxuXVrCwMKHdlxcXx3+eWezU//+ANeecXaoGxAEhTAihVmWMLlmmvM3ZQ4px1NmjBz4EDPiTffNDvxishz6hRcey0cO2baTZv6PlsRRdrTqBFzXNXOgbyHHoL58y2MyHqSoA4dgiuu8CySa9vW7Hgps/aKZUHPnmzwvkoeNQpWr7YuIBF8+flmSGrhQtOOioJPPyUnLs7auELQH/36kVavHuAsg3TZZaZIc4SK7AR19ChcfLGn5H2VKqZqecWKloYVUpRiyvDh0KqVaZ88CYMGSQHMSPLQQ74zOV98EXr0sC6eEJYfHc3XV15JpmtB86FDMGSIec4bgcpZHYBljh2DwYPN8B6YO6YJE6BFi4hfkFtS2XFx8O230K0bHD8O+/dD//5mHL1ZM6vDE4E0bpxJSE6LU1L45dgx332PRIkcrVGDL0eO5MaPPzY7eG/bBsOGwaxZEB9vdXhBFZl3UCdOwCWXwOLFnnPjx8Pw4dbFFOpat4affwbXld/evWR06cJrsvAwfH3yCfzrX572ZZcxffBgGR73g7QGDfjmiis8BWUXLTKPIjIzrQwr6CIvQaWnm1tm74ePb70Ft95qXUxhwOFw4Jg5kwlXXUWOc5v4qseOceOECbB+vcXRCb/SGp591qwZdJYDIyUFvvhClmX40ebWrX0nmkybxp6WLXnxwQcjZpQnsn6bli+HLl1g3jzPuVdf9ZkaK8pmR5MmTLzmGnKjowGofvSoGfrz2pFYhLC8PLMw+7//9Zxr1w5++MFz9yz8Zkn37vzh2oEXaJCWxs0ffED1CNk0NHIS1CefQK9esHu3aStlqpXLEJTfbW/WjEkjRpAdE2NOZGbClVcyt08fWXwYyvbtM89Cxo3znLvwQpg712xHIwJidv/+/HzJJe7hvpqHD3PL+++bIfUwF/4JKi3NrGu68UbPVPKqVc0Vn9dGasK/Ulu04P1bb/Wsjgf6zJvH7saNeeef/zx7115hX1qbChFJSb5/FK+5xmy2V7WqdbFFiKUpKUweMcI9fF4xKwsuvRRuvtnMRg5T4TuLLzsbXn/dzCbyfrDYpo0pcNq8uXWxRYj0OnV4b9Qo/v7NNzRPTQWg4Z49jBo/nmVduzJLNq+zv+3bTYWQ777zPf/gg/Dsszi8CiuLwNrUujWf3nADV0+aRCXX37SPPuLY119T5eOPzSSvMHsGGF7/a8BMc37zTZOIHnzQNzldf72ZDSPJKWhOxcfz5ciRzL7gAvKcnSdKa1KWLOHfb7zBnH79eHn0aLmbspvNm82oQ4sWvskpMdFsVvn882H3xzAU7G7UiLfvvJN1XmXYqhw/Dldcwf66dfnqqqt4cswYCyP0L6VLsJdPcnKyXuYqpmonWpv1TJ9/Dh984Cm34pKUZGbq9etXrLeTP5aBUfPgQYb8/DNNt2/3OZ8XFcX6pCRWdurErsRE8p0TLMbYsKMppZZrrZPL8h627UdZWfDTT6YfTZ169j5ft98OL76IQ2rE2UKb9eu55KefzHCfl4M1a7K6Y0fWtW3L0erVQ7ofhe4QX3o6LFlixsCnTvVMfvBWrRo89phZq+F6YF8ASUjBcSghgc+uv57WGzdy0a+/mhl+mJIu7deupf3atZwsX56tzZuzpUULs+VAw4ag1Fn/H9mx04UcrU0ZnXnzzF3R1KkFr7Pp3x+eeAL69Al6iKJwG5KS2NG4Mb3mzyd56VJindsEJRw6xICZMxkwcyZ76tc3f/v69IGuXcG1xXyIsHeCysszpT7+/BNSU81r40ZYutSMjRemZUtT7PWGG6Rskd0oxcY2bdjUsiWtNm+m26JFJHrtfRN/6pQ7WfHNN1CnDqSk0P/IEQ7XqMHhGjU4Ur262bPrHBcdwkt2tpmBt3s3bNpkXq5+dOBA4T83eLC5wOvZM3ixihLJqliRGRdfzLxeveixaBEpixebnXmdGqSlwSOPAJAbHc1fdevScPBgU5qsdWvG/vwzxytXNtVglLLdhZ9/ElRuLkyZYq7I8vN9X3l5nldOjud1+rSp23bqlPn32DHzysgwO3Lu32/uklwLAYtSvbqZ1TJypKkFJ+Pjtqajo9nYpg0b27ShbloaHVetouXmzVQ9c3h2/3744QfOunZ/9VWy4uPJrFiRrAoVOB0XZ17ly5Pcp48pCVO+PDPmziUvKor86GjyoqL4m2tLg+ho84qKMi+lzL/9+kFCQrD+M5xt61ZYs6bwPuTdj7KzzevkSTM8l5Vl7oCOHjWvI0dMAipJHbeWLU1V8hEjPPUVhe2drFiRWQMGMK93b1pu2kTbdetoum2bKTjrVC4vj4Z79phi2E53O//NjonhRKVKZoi3enUz+lS5slnb5nrFxnpeMTFQrpynH3n3pagoU9f04ovL/L/LP8+gMjOhUqUyB1MicXHQqZMpSjl0qLmFLcEVtQzr2ZDWnPfXX7TcvJlGu3ZRb+9eyruWBgTLH3+A18LIMwX8GdQrrwR3+UO1amZ9YJ8+5sKuQ4cCh1RF6InPyqL5li0k7txJo127SDh0KHgf3qqVuUsvRHH7UZEJSik1CnDt790SOFeZ6gTgYFEfaiMSb2CFY7yJWutaJX3jEvaj4sZiJxJvYIVSvH7rRyW6gyryzZRaVtary2CSeANL4i09O8VSHBJvYIVSvP6MVR7UCCGEsCVJUEIIIWzJ3wlqvJ/fL9Ak3sCSeEvPTrEUh8QbWKEUr99i9eszKCGEEMJfZIhPCCGELUmCEkIIYUsBS1BKqQeUUlopZeGy/KIppV5USm1SSq1RSn2nlKpmdUwFUUoNVkptVkqlKqUesjqewiilGiqlfldKbVRKrVdK3WN1TMWhlIpWSq1USv1odSxnkr7kP6HSj0D6EgQoQSmlGgIXAbuK+l4bmAG01Vq3B7YAD1scz1mUUtHAW8AQoA1wrVKqjbVRFSoXGK21bg10B+6ycaze7gEKX/puEelL/hNi/QikLwXsDupV4EHA9jMwtNa/aq1znc1FQAMr4ylECpCqtd6utc4GJgKXWRxTgbTWf2mtVziPj2N+UetbG9W5KaUaAJcC7xf1vRaQvuQ/IdOPQPoSBCBBKaWGAWla69X+fu8guBmYZnUQBagPeO8nsgeb/6ICKKUaA52AxdZGUqTXMEmgmJWJg0P6kt+FZD+CyO1LpapmrpT6DTivgC89AvwXKHsZWz86V7xa6ynO73kEc0v9eTBjKyZVwDlbX1ErpSoB3wD3aq2PFfX9VlFKDQUOaK2XK6UusODzpS8FT8j1I4jsvlSqBKW1HljQeaVUO6AJsFopBeYWf4VSKkVrva/UUZZRYfG6KKVuBIYCA7Q9F4btARp6tRsAey2KpUhKqRhMh/pca/2t1fEUoRcwTCl1CVAeqKKU+kxr/Y9gfLj0paAKqX4E0pcCulBXKbUDSNZa27YKr1JqMPAK0E9rXYKNc4JHKVUO89B5AJAGLAVGaq3XWxpYAZT5azoBOKy1vtfqeErCedX3gNZ6qNWxnEmSW0VjAAAgAElEQVT6UtmFUj8C6Usg66AAxgKVgRlKqVVKqXesDuhMzgfPdwPTMQ9KJ9u1U2Guoq4H+jv/e65yXlGJ8GfrvhRi/QikL0mpIyGEEPYkd1BCCCFsSRKUEEIIW5IEJYQQwpYkQQkhhLAlSVBCCCFsSRKUEEIIW5IEJYQQwpYkQQkhhLAlSVBCCCFsSRKUEEIIW5IEJYQQwpYkQQkhhLAlSVBCCCFsSRJUGFBK3aSUylNKnfB6XeD19cZKqd+VUllKqU1KqXNuOidEpFBKtVVKTVdKHVRKnbW1g1KqhlLqO6VUplJqp1Jq5BlfH+k8n6mU+l4pVSN40Yc/SVDhY6HWupLXa7bX174EVgI1MVuJf62UqmVFkELYTA4wGbilkK+/BWQDdYDrgLeVUkkAzn/fxezZVAfIAsYFOuBIIgkqwJRSO5RSDyil1iilMpRSk5RS5YP4+S2AzsAYrfVJrfU3wFrgimDFIERpBKPvaK03a60/AM7auFApVRHTTx7TWp/QWs8DpmISEpiE9YPWeo7W+gTwGPB3pVRlf8YYySRBBcfVwGCgCdAeuKmgb1JK9VZKHT3Hq/c5PqOTc5hii1LqMef21gBJwHat9XGv713tPC+E3QWj7xSmBZCntd7idc677yQ52wBorbdh7rZalOKzRAHKFf0twg/e0FrvBVBK/QB0LOibnFdo1Urx/nOAtsBOTKeZBOQCzwKVgIwzvj8DqF+KzxEi2ALdd86lsL5TuZhfF2Ukd1DBsc/rOAvzi+03WuvtWus/tdb5Wuu1wJPAlc4vnwCqnPEjVYDjCGF/Ae07RSiq70jfCjBJUDailOpzxky8M199ivlWGlDO4/XA+WeMi3eggDF3IUKVH/uOty1AOaVUc69z3n1nvbPtiuF8IM75c8IPZIjPRrTWcynFFaJSagiwQmu9XynVCvOw9ivne25RSq0CxiilHgWGYMbyZZKECBtl6DsKk1Rine3y5u30aa11plLqW+BJpdStmOHFy4Cezh//HFjoTH4rMCMX357xvFeUgdxBhYcBwBqlVCbwM/At8IzX168BkoEjwHPAlVrr9KBHKYT9JAIn8dwVnQQ2e339TiAeOIBZrnGH1no9gPPff2IS1QHMs6c7gxN2ZFBan7U2TQghhLCc3EEJIYSwJUlQQgghbEkSlBBCCFuSBCWEEMKWSjTNPCEhQTdu3DhAoQhhf8uXLz+otS5ToV3pRyLSFbcflShBNW7cmGXLlpU+KiFCnFJqZ1nfQ/qRiHTF7UcyxCeEEMKWpJKEnR07Bg4H/Por5OV5znfuDE8/DYmJ1sUmhBABVmSCUkqNAkYBNGrUKOABCafp0+G222D37rO/tnEjTJkCL74Io0ZBlNwIC3FOR47AO+/Ajh2ec/HxcM010L27ZWGJcytRJYnk5GQtY+f+53A43Mexp08z6Jdf6LxyZfF+uH9/+OgjkIuHoFBKLddaJ5fi57wv9Lrs3FnmR1miCK5+1WrjRi756Scqnzhx9jcpBXfdBc8+C5WCWSg9shW3H8kQnwW8E5I3lZfHiIkTOf/PP93nMitUYPqgQfxVty533XUXpKXBv/8NmzaZb5g1C/r2hWXLICEhGOGLUtBajwfGg7nQsziciFDhxAmGTJtG2/XnKNyvNYwdCz/8AO+9BxddFLwARZEkQdnIgJkzfZLTuqQkpl1yCVkVKwLg+OorAKKvuIILZs+m98KFkJ8PO3fCyJEwbRpER1sSuxC28tdfjBo/nqrHjrlPHa9UiQU9e5ITG8vQoUNNUvrpJ/PFnTvh4ovhgw/g5pstClqcSR5e2ETr9evptWCBuz27Xz++ueoqd3LylhcTw8yLLoJvv/WcnDEDHn88GKEKYW/Z2XDllT7JaWXHjoy76y4W9ezJ8uRkuP12k6A++wxq1PD87B13wOLFFgQtCiIJygYS0tO5bMoUd3tzixb80a9f0T942WXw6KOe9jPPmMkTQkSye+8F58VevlJMGjGCqcOHcyo+3v0tDocDx5NP4khNhQ0boH1784XsbLjiCti3r6B3FkEmCcpiMadPM2LiROKyswE4XL06311+efFn5j3xBAwa5Glffz1s3er/QIWwIYfD4X4BZoju7bfdX/9t4EA2tW597jepUwe++w6qVzfttDS46iqTrISlJEFZrPe8eSQcOgRATrlyTBoxgtNeV3rn4nA4cPzvfzzfoQO4SuccPw733BOgaIWwsaVL4U7PfoHrkpJY2LPnOX7Ay/nnw8SJngvDefNg9OgABClKQhKUhapkZNBj4UJ3e9qQIRw477wSv8+pChXgq6/MlFkwkyVmzPBXmELYnsrLY//Qoe67nv21azP1sss8faI4Lr7YDJO7jB1rEpWwjMzis1D/mTOJyc0FYG/duqzs1Kn0b5acDP/v/8GHH5r26NGwcqXM6hMRofPKldQ5cACA7JgYJl1zDTmxscX6WZ9lH1oz5rLLPM9y77vPTJqQxfCWkP/qFqm7dy8d1qxxt3+9+OKyd4KnnoIKFczx2rXw8cdlez8hQkDcqVNcOGuWuz2vTx+OeM/MKwml4PXXoXx50162zMz0E5aQBGUFrbl4+nR3c1PLluxs0qTs71uvHjz4oKf96KNQ0Op5IcJIn7lzqZiVBcDRqlVZ2KNH2d4wMRHuv9/TfvhhyMws23uKUpEEZYGWmzfT2FnqJi8qit/8uXr9gQdMogIzVfbFF/333kLYTLXDh+m2aJG7PXPgQHJjYsr0ng6Hg2e15rir9NHevdKPLCIJKtjy8xnw22/u5rLkZA75s0RRxYqm0rnLiy9Cerr/3l8IG7loxgzKOSv9727QgHVt2/rlfbPj4pjVv7/nxAsvwJ49fnlvUXySoILEtVZj4nXXUevgQQBOxcUVb0FuSd1wA/vq1DHHJ0+a2UhChJtFi2izcaO7OX3QoJLN2ivC6o4doWNH0zh5Uiq1WEASVJD1nD/ffbw8OZmTBZQyKrOoKOb16eNpjx0rY+giLHgvzN10003u82vbtiWtYUO/fpaOioJXX/Wc+PTTgre/EQEj08yDqOGuXTRy/oLnRUWxqFs3v733mRXSVevWHKlWjepHj8Lhw2b6+b/+5bfPE8JKCQcO0GrzZnd7TiBGIgAuuAD69IG5cyE31ySsV14JzGeJs8gdVBB53z2t6dCBE1WqBOyzdHS07yr6V14xHUyIMNDLqy9tatmSg7VqBe7DHnrIczx+vLngE0EhCSpIaqan+1zxLShuCZYyWNmxI1muskk7dsDXXwf8M4UItCoZGbRbu9bdnt+7d2A/cMgQaNfOHGdmwltvBfbzhJsM8QXImUNuf/PaSiPgV3xOubGxLOnWjQtmzzYnXngBRozw64NkIYKtx8KFROfnA7AjMZE9fn725M3Vj9s1b87fXUnxjTdMpRbXongRMHIHFQSVjh2jvVfViGDcPbks6doVXHdRK1fCzJlB+2wh/C0+K4vOy5e72/N79QrK565LSuJo1aqmcfCgp6SYCChJUEHQdelSn7Uauxs1Ctpnn6xY0XeH0JdfDtpnC+FvXZcsITYnBzAFYVObNw/K5+roaN8Ly5deAmccInAkQQVYVG4unVescLcX9uwZ/CG2++7zfOb06bBtW3A/Xwh/OHWKlCVL3M35vXsHtS+t7NQJXIvqd+703dFaBIQkqABrs3EjlZxrkI5Vrsymli2DH0TTpuZBL4DW8M47wY9BiLL66it3zb2MKlVYn5QU1I/PjY2Fu+7ynJDJEgEnCSrAkpcudR8vT05GW7X9hddGbnz4oVkZL0Qo8UoIy5KTybeiL91+O5Rzzi2bOxe8ni0L/5MEFUC19+0jcdcuwCzMXdG5s3XBDB7s2XX38GGYNMm6WIQoqaVLzb5MQG50tGV9yTF+POu8R0HkLiqgJEEFUNdly9zHG1u35kTlytYFEx0Nd9zhaY8bZ10sQpSAw+Fg1W23udvrk5LIclUat8CSlBRP47PP4MgRy2IJd5KgAiTu1Cnar17tbi/t2tXCaJxuvhni4szx0qXmJYTNxWdm0nbdOnfbJ0FYYHejRp5izFlZsjFoAEmCCpD2q1e7p8MeqFWLXYmJFkeEmYF09dWettxFiRDQeeVK9zKNtHr12NuggbUBKeWbJMeNA+fCYeFfkqACQWu6et2dLE1JsU/1Bu9ZSBMnwqFD1sUiRFHy8nwmGi21+O7JZW27dlCtmmmkpsKvv1obUJiSBBUIc+e693w6HRvLmvbtLQ7IS0oKuB4wnzoFn3xibTxCnMuPP1ItIwOArPh41gV5anlhcmNjfRfAy55rASEJKhDefdd9uLZ9e7Jdz33sQCn45z897fHjzdooIezIa83eis6dySvjdu5+5b104+efzeJd4VdSLNaPHA4H8VlZ3D9pkvs/7LIuXSyNCc4uXDtm9Gi4/344cQI2bTLrOfr2tSg6IQqxfbupfAJozDpCW2naFAYNMjFqDe+9B//7n9VRhRW5g/KzDqtW+TzQ3V+3rsURFaBSJbjuOk97/HjrYhGiMO+95767T23WjKPVq1sckC+Hw8FE13MogPffl/p8fiYJyp+0potXpWXbXfF5u/12z/HXX8tkCWEv2dnwwQfu5jKb9qUtLVpwzLW+cf9+mDLF2oDCjCQoP0rcuZME5x/607GxtnmgW6BOncDV6U+flskSwjYcDgdfX3cdpKcDpu7e1iBVLS8pfWZVC6lz6VeSoPyoi1fliDXt25Njp8kRBfG+i3r3XZksIWzDuy+t6NzZuhqWxbCic2fyXctIZs6ELVusDSiMSILyl4MHab1xo7tp6+E9l2uuAdfwxObNZrKEEBarmZ5Okx07AMhXipVW1rAshuNVq7KlRQvPCa9ZvKJsJEH5y4QJ7skRe+rXZ/9551kcUDGcOVlCOpawgWSv57ibW7bkeJUqFkZTPD4XpB9/LLsF+IkkKH/Iz/f5477cBlPLi+3MyRLOcX8hLJGVRYdVq9xNu06OONO2pk19dwv46itL4wkXkqD84fffYetWAE7FxbG+bVuLAyqBjh2hWzdznJ0thS+FtSZNIv7UKQAOV6/O9vPPtzig4tFRUTBqlOfE229bF0wYkYW6ZeBaAHvVpEm0cZ5b3aEDObGx1gVVDN4Ld8eMGWMqSzj32uHdd2H0aIiSaxcRPK7fyVvHj6e+89yy5OTQ+j285RYYM8ashVq0CFauNLNlRamF0P/79lTp2DFabdrkbofE5IgzjRjhKXy5bRv89pu18YiIVC8tjfp79wJmU8JVIfbH3fH226xp1cpzQu6iykwSVBl1XrmSKOf07B2JiaTXrm1xRKUQHw833eRpS8cSFvCuWr6ubVtOVqhgYTSls8x737fPP4ejR60LJgxIgioDlZdH51CpHFEU7wKyP/wAe/ZYF4uIOPFZWT6bEtpig89S2N2woe9mhrIAvkyKTFBKqVFKqWVKqWXpMsPLR/PUVKoeOwZAZoUKbGzd2uKISs7hcJjXxIn86ZqFlJfnU2ZGiEDruGoVMbm5AOytW5e99esX8RM2pZTvXdS4cbIAvgyKTFBa6/Fa62StdXKtWrWCEVPI8B6SWNmpE3nlQnvOic+U3vfeA+cfDFF2cqF3Dvn5vpsSdu1qnw0+S2FNu3a+C+B//93agEKYDPGV1vbtNEtNdTdDau1TITa1agWu4Ym0NJg61dqAwohc6J3Db79R48gRAE6WL8+6UFqmUYCcuDi48UbPiXHjrAsmxEmCKq2xY3Fd46U2bcrRGjUsDccf8suVg1tv9Zx44w3rghGRw+v3bHXHjma32lDn/Uz3++9h1y7rYglhkqBKyOFw8Ox//8spr6uixd27WxiRn/3zn+AaqvzjD/Ba1S+E323eDD/9BJhNCUN1csRZkpLgwgvNcV6ebAlfSpKgSqHjqlWUP30agIM1a5LatKnFEflRgwZw5ZWe9uuvWxeLCH9ev19bWrTgcM2aFgbjZ/fd5zkeP97sYC1KRBJUSeXnk+KqugAs7tYttFa7F8e993qOv/jCbMQmhL8dPgwTJribi3r0sDCYALj0UnDtY5WRAR99ZG08ISjM/rIGXvOtW6l5+DBgHuiu7tDB4ogCoFs33/p8UuVcBML48WatELCvTh12uJY5hIuoKLjnHk/79dfNcJ8ottCeF22B7osWuY9Xdu5s/00JS8hVEy2pQQOudN0pjhsH//kPhNn/VmGdpx57jHtefx3XRhqLevQI6anlZ3L1o5jsbO4rX94UwN22DX78ES67zOLoQofcQZXE2rWc/+efgNlIbUlKisUBBc7GNm3AtVhy/36YNMnagERYSdqwgSrHjwNwomLFkJ9aXpic2FjfJSivvmpdMCFIElRJeD3Q3di6NRmuAqthKD86Gu66y3PitddkRbzwD63pvnChu7k0JSXkF7mfy5KUFN+ZsStWWBtQCJEEVQRXKaBX77+fPK+HnItdz2jC2ahRUL68OV65EqZPtzYeER5mz6beX38Bpmp5qGxKWFrHq1aFq67ynHjhBeuCCTGSoIqp5/z5ROfnA7CrYUN2N2pkcUSB5xg7lsXt23tOPPWU3EWJsnvySffh6o4dyapY0cJggmT0aM/x5MngtUWPKJwkqGKoePw4nb1uy+f07RtWD3TPZUGvXuS5ptEvWGCGKIQorTlzYPZsAPKiopjbu7e18QRLly5wySXmWGt4+mlr4wkRkqCKoefChe5Ky2n16rGtWTOLIwqeY1Wr+m4c99RT1gUjQp/X78/qDh3IqF7dwmCC7LHHPMdffAFbt1oXS4iQBFWE+MxMn0rLcyPo7sllXq9e5Lv+N8+aZe6khCihD265xb1bc75SzOvTx+KIgsfhcOCYPt1TdSY/H555xtqgQoAkqCJ0X7yY2JwcAPbXrs3mFi0sjij4jtaowRrvZ1EyPCFKoZ/X8PCa9u05EgYFlktqTr9+nsann5q1UaJQkqDO5ehRn7JGc/v2Db+yRsU0r08fz53jzz+D107CQhRp8WKaOf8Y5yvF3Ai6e/K2u1Ej6N/fNPLy4NlnrQ3I5iLzr21xPf+8T1HYDW3aWByQdQ4lJMDVV3tOPPywzOgTxff44+7DdW3bcjghwcJgLOb134IJE8BrXznhSxJUYXbs8Fn1PadfP3SE3j25Pf645w5yxgz45Rdr4xGh4eef4ddfAefdU9++FgdksX79zAvMrtUPPGBtPDYW4X9xz+Hhh8F595RWrx5rw7QUS4m0aQO33eZpjx4t28KLc8vJgfvvdzdXdO7MwQjfUdjhcPCe97PsKVNg5kzrArIxSVAFWbgQJk50N6cPGhSxz568ORwOXqpcmdOuHU83boT33rM2KGFvb79tNiUETsXF8btrE78It7d+fVZ574Rw331S6bwA8lf3TFqz2+tZy/o2bdidmGhhQPaSWamS7wPuxx83e90IcaZDh+CJJ9zNOX37klWpknXx2MysAQPIjokxjbVr4YMPrA3IhiRBnWnyZBru2QOYOmEzBw60OCD7WdS9O7iS9sGDsp5DFMzhgCNHzHHTpiyJhPqVJXC8ShXmeVfSePRRudg7gyQobxkZPg8sl3TrFpFrNYqSFxMDzz3nOfHaa7B+vXUBCftZu9bsI+by0kthXbG8tBb27AkNG5pGerrPHaeQBOXrvvvAefeUWaECcyJ0rUaxjBgBri26s7PhxhvNA3EhsrPhhhvcz1T+bNwYx6pVFgdlT7kxMb7VzV9/HebOtS4gm5EE5fLjj+C1ncbPl1zC6fh4CwOyN8eTTzKuUydyo6PNieXLfe+qROR68klwJqTc6Gh+vvTSiCsPVhKOTZs8JZC0Nhd7zs0cI50kKIDDh32mT69LSmKDTCsvUnrt2r6zsrz+MIkItWiRT3WE3wYOjPhp5UVSiqnDhnHStffan3/K2ignSVAA//oX7NtnjuvU4WdXWXxRpIU9e7K7QQPTyM01V3/O9WMiwmRlmaE9575pfzZuHBkbe/rB8apVmeb9d2f8eLPAOcJJgvr8c1P63mX8eE5GwgZqfqKjovh++HBwDYeuWQP//a+1QQlrjB7t2UKicmWmDB8u6wdLYG27dnDllZ4Tt9wC+/dbF5ANRPZvz6JF5pfAaVWHDjhWrrQwoNB0OCGBad5Vml95BT780LqARPC99Ra8846n/frrZFSrZl08oUgpXmjShBOuC+R9+2D4cDh50tq4LBS5CWrnTrjsMvdwVHpCAr8MGWJxUKFrSUoKm1q29Jy4/XbZfTdSTJsG//63u7m+TRscO3daGFDoOlmxIt8PH+7Zf23RIrjpJvewaaSJzAR1/Dj87W9w4AAAWfHxfDlyJKddDylFyUVF8e3f/86+OnVMOzeXrCFDeMPrD5cIQ2vWmCr3zj+gafXqmSFfmbVXatuaN2f64MGeE5MnM+eCCyyLx0qRl6BOnTJreNauNe2YGCZdc40syPWDnLg4vrz2WvcQRYWTJxn5xRfw118WRyYCYvduMvr0gRMnADhatSpfXnstua5ajaLUlnTrxpKUFHe779y58P77FkZkjchKUMeOwSWXmCEJl/Hj2SW19vzmWLVqTLz2WnKcVQMSDh2C3r1h+3aLIxN+tXEj9OxJ1WPHADgdG8uXI0eSWbmyxYGFj18GDWJL8+aeE7fdZp7vRpDISVDp6WYny99/95x79FEzviv8Kq1BA767/HLPOPr27Rzv0IG377jD2sCEfyxaZC46nFVX8qKi+OqqqzjgGt4VfqGjo/nmyiv567zzPCdHj2Z+7944IqQkUmQkqNRU06G8tyl/7jmzsFQExMakJCaNGOGuNFH5xAlu+vhjmD3b0rhEGf30EwwYYBa3A9kxMXxx3XVs877SF36THRfHhBtvZGejRu5zvebPZ9iUKRGx3jC8E5TWZr+ijh1hyxZzLirKLIL7z3/kQW6AbWnVis+uv55TcXEAxJ86Ze5i//OfiOhcYSUryyxoHzrUHAMkJDDhppvY7irTIwLidHw8n11/vc8s2U6rVkHXrrB6tYWRBV74Jqh9+2DYMBg1CjIzzbnYWJg0CW67DYfD4X6JwNnZuDETbrrJs7ZDa1McMyXFM1FF2NvCheYib+xYz7nERJg3j73161sXVwTJjYlh8tVXs7JTJ8/JtWvJ69yZmQMGhO3O1uGXoDIyzD40rVqZArAurVvDggW+K7VFUOyrW5fxo0ax7fzzPSfXrCGvY0ezXmrXLuuCE4VLTTXPaHv39lSIALNEY/Fi8F73JgJOR0czddgwfh4yxD0JKTo/nwGzZrG/fn0mjxiBY8yYsLroVlrrYn9zcnKyXrZsWQDDKYP0dLOS/ZVX4OhR36/dcw9PV6pkStsL6+Tnk7J0KQNnzCDG64ovLyqKFZ0703XiRLD5cJFSarnWOrks72HrfgRmht7zz8Nnn/luQ165MrzxBo4dO2R43GI1Dh5k+PffuzdXddlfuzZz+vblqi++ABv/vStuPwrtBJWZCVOnmo40fbpvZwJo0cKUYBk4MKyuKkJdQno6Q3/4gcQC7px2N2jA2vbtWZ+UxP9575NjE2GboNLSYOJEU5dyxYqzvry1WTN+GjpUyhfZiMrLo9eCBfSZM4fYM/Ziy4qPZ0NSEmvbteP/vf++7Woihl+C0trcJa1cCXPmmNeSJWZztDM1awaPP86TW7eiXfsVCXvRmibbt3PB7Nk02r377C8D+847j12JiexMTOTqF14wO49a3NHCIkHl58OOHab/uPpSYTsiX3QRHzZsyG6vWWTCXipkZtJjwQJSliw5K1GBSVY7ExPZlZjIrkaNuO3VV8Higtihk6C0Nknm6FE4csS8Dh0yV3Su15YtsGGDe2proXr2NJMirrsOypWTu6ZQoDVNt22j65IlNEtNJfocNceyY2JIr1WLQzVr0v7SS6FePahfH2rXhurVzataNVNZPUBDULZOUFqbGXaufnTkiKmGvXev6Ue7dsGmTbB5s6moUpi4OLj0Urj/fujVS/pRiIjPzKT7okV0WL3avYC6UImJ5rl806aeflS3LtSsafpQ9epQpQo4n3X5W3AT1MmTpvBqfr7npbUZcsvN9fybk2OS0enT5pWVZV5nDs2VRFISXHMNjByJ49NPS/8+wnLxmZkkrV9Pu7VrabBnD1El+N30poGcmBhyYmKoWLOmmb0ZF2fG5MuVM6/oaPOKivJ9vfwytGtX6HsHPEF98w28+65vX8rL833l5Hj6Una26X+uvlRa5cpBv37m4u7yy3G8/nrp30tYKz+fRrt3027tWlpv2EDFsvxexMZChQrmFRvrebn6kqsfndmXGjWCDz4o9G2Dm6CysoJzy1ixosn63bubztS3L4633w7854qgiz19moa7dtF4504a7tpFrfR0KgRj24E5c6BPn0K/HPAE9eqr5s4l0GrXNom4d2/o25dnZs4kR2rohR+tSUhPJ3HXLhrt3Em9vXupcfhwqS/+iq1VKzPZphB+S1BKqVHAKGezJbD5HN+eABws6kNtROINrHCMN1FrXeI9zEvYj4obi51IvIEVSvH6rR+V6A6qyDdTallZry6DSeINLIm39OwUS3FIvIEVSvH6M1Z7zT0UQgghnCRBCSGEsCV/J6jxfn6/QJN4A0viLT07xVIcEm9ghVK8fovVr8+ghBBCCH+RIT4hhBC2JAlKCCGELQUsQSmlHlBKaaVUQqA+wx+UUi8qpTYppdYopb5TStmyGqZSarBSarNSKlUp9ZDV8RRGKdVQKfW7UmqjUmq9Uuoeq2MqDqVUtFJqpVLqx6K/O7ikL/lPqPQjkL4EAUpQSqmGwEVAKGz0MwNoq7VuD2wBHrY4nrMopaKBt4AhQBvgWqVUG2ujKlQuMFpr3RroDtxl41i93QMUvvTdItKX/CfE+hFIXwrYHdSrwIOYsmi2prX+VWvt2pxoEdDAyngKkQKkaq23a62zgYnAZRbHVCCt9V9a6xXO4+OYX1Rbb7uqlGoAXJFwcYoAAAHLSURBVAq8b3UsBZC+5D8h049A+hIEIEEppYYBaVrr1f5+7yC4GZhmdRAFqA9470mxB5v/ogIopRoDnYDF1kZSpNcwSaDwUuoWkL7kdyHZjyBy+1KpaqkrpX4DzivgS48A/wUuLktQ/naueLXWU5zf8wjmlvrzYMZWTAXtHWHrK2qlVCXgG+BerXURtf+to5QaChzQWi9XSl1gwedLXwqekOtHENl9qVQJSms9sKDzSql2QBNgtTL78TQAViilUrTW+0odZRkVFq+LUupGYCgwQNtzYdgeoKFXuwGw16JYiqSUisF0qM+11t9aHU8RegHDlFKXAOWBKkqpz7TW/wjGh0tfCqqQ6kcgfSmgC3WVUjuAZK21bavwKqUGA68A/bTW6VbHUxClVDnMQ+cBQBqwFBiptS5kG1TrKPPXdAJwWGt9r9XxlITzqu8BrfVQq2M5k/SlsgulfgTSl0DWQQGMBSoDM5RSq5RS71gd0JmcD57vBqZjHpROtmunwlxFXQ/0d/73XOW8ohLhz9Z9KcT6EUhfklJHQggh7EnuoIQQQtiSJCghhBC2JAlKCCGELUmCEkIIYUuSoIQQQtiSJCghhBC2JAlKCCGELf1/bElA6FegoWoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import math\n", + "\n", + "n_bins = 50\n", + "draws = int(1e4)\n", + "\n", + "k = 0.5\n", + "theta = 1.0\n", + "mu = k*theta\n", + "sigma = math.sqrt(k)*theta\n", + "\n", + "S = [10, 30, 50, 100]\n", + "\n", + "fig, axes = plt.subplots(nrows=2, ncols=2)\n", + "ax = axes.flatten()\n", + "\n", + "# normal pdf\n", + "normpdf = lambda x: (1/math.sqrt(2*math.pi))*math.exp(-x**2/2)\n", + "t = np.linspace(-4,4,50)\n", + "y = [y for y in map(normpdf, t)]\n", + "\n", + "for i, x in enumerate(ax):\n", + " n = S[i]\n", + " s = np.random.gamma(shape = k, scale = theta, size = (draws, n))\n", + " s = (np.mean(s, axis=1)-mu)/(sigma/math.sqrt(n))\n", + " x.hist(s, n_bins, range = (-4, 4), normed=1, histtype='stepfilled', color = 'gray')\n", + " x.plot(t, y, 'r', linewidth=3)\n", + " x.set_yticklabels([])\n", + " x.set_title('n = {0}'.format(n))\n", + "\n", + "fig.tight_layout()\n", + "plt.show()" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From b35886a25144c5db356075b1e9e896006521e5c0 Mon Sep 17 00:00:00 2001 From: Eduardo Santos Date: Tue, 26 Feb 2019 12:11:42 -0300 Subject: [PATCH 4/6] =?UTF-8?q?Calculo=20e=20Otimiza=C3=A7=C3=B5es?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../2-math/calculo_num\303\251rico.ipynb" | 1389 +++- .../2-math/otimiza\303\247\303\243o-I.ipynb" | 6877 ++++++++++++++--- .../2-math/otimiza\303\247\303\243o-II.ipynb" | 1162 +-- .../otimiza\303\247\303\243o-III.ipynb" | 831 +- .../2-math/otimiza\303\247\303\243o-IV.ipynb" | 910 ++- .../3-sql/0_conectando_python_em_db_sql.ipynb | 120 +- 6 files changed, 8728 insertions(+), 2561 deletions(-) diff --git "a/0-pre-requisitos/2-math/calculo_num\303\251rico.ipynb" "b/0-pre-requisitos/2-math/calculo_num\303\251rico.ipynb" index a66ec4d..7484103 100644 --- "a/0-pre-requisitos/2-math/calculo_num\303\251rico.ipynb" +++ "b/0-pre-requisitos/2-math/calculo_num\303\251rico.ipynb" @@ -1,429 +1,1044 @@ { - "cells": [ - { - "metadata": {}, - "cell_type": "markdown", - "source": "# Roots and Integration of real-valued functions\n\nDiscuss the relevant concepts and the computational implementation of methods to find roots of real-valued functions: \n- Bisection\n- Newton's Method (or Newton-Raphson)\n- Quasi-Newton (Secant)" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import matplotlib.pyplot as plt\nx = [x/10 for x in range(0, 21)]\ny = [x**3-1 for x in x]\nplt.plot(x, y, 'b')\nplt.axhline(y=0, linewidth=.5, color='k', marker='.')\nplt.show()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import numpy as np\nimport matplotlib.pyplot as plt\nx = np.linspace(-3, 3)\ny = [x**3-1-3*x+1 for x in x]\nplt.plot(x, y, 'b')\nplt.axhline(y=0, linewidth=.5, color='k', marker='.')\nplt.show()", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Bracketing\n### Bisection" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def bisection(f, a, b, delta=1e-5, eps=1e-7):\n\n # f: a function\n # a: lower limit\n # b: upper limit\n \n if f(a)*f(b) <= 0:\n \n x_low = a\n x_high = b\n e = 1 # abs(x_high - x_low)\n d = 1 # f(M)\n i = 0\n #print(\"{joao:2d}: [{x_low:0.8f}, {x_high:0.8f}]\".format(joao = i, x_low = x_low, x_high = x_high))\n \n while abs(e)>eps*(1+abs(x_low)+abs(x_high)) or abs(d)>delta:\n \n i += 1\n \n midpoint = (x_low+x_high)/2\n if f(x_low)*f(midpoint)<0:\n x_high = midpoint\n else:\n x_low = midpoint\n \n midpoint = (x_low+x_high)/2\n e = x_high-x_low\n d = f(midpoint)\n #print(\"{i:2d}: [{x_low:0.12f}, {x_high:0.12f}]\".format(i = i, x_low = x_low, x_high = x_high))\n \n return midpoint", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def func(x):\n return x**3-1", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%time bisection(func, .4, 3)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# testing\n%time bisection(lambda x: x**3-1, .4, 3)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "collapsed": true - }, - "cell_type": "markdown", - "source": "## Newton's Method" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "http://mathworld.wolfram.com/NewtonsMethod.html
\nhttp://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# derive\ndef derive(func, x, eps=1e-6):\n \"derive: calculates the derivative of a real-valued function at a certain point of its domain.\"\n if func(x) or func(x) == 0:\n return (func(x+eps)-func(x-eps))/(2*eps)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# newton\ndef newton(func, x, eps=10**(-5), delta=10**(-7)):\n \"newton: finds a root of a real-valued function using Newton's method.\"\n \n e = 1\n d = abs(func(x))\n i = 0\n \n x0 = x\n \n while e>eps or d>delta:\n \n i = i+1\n x1 = x0-(func(x0)/derive(func, x0))\n e = abs(x1-x0)\n d = abs(func(x1))\n print(\"interaction: \", i)\n print(\"{0:.6f} -> {1:.6f}\".format(x0,x1))\n print(\"e={0:.6f} d={1:.6f}\".format(e,d))\n print(\"---------------------------------\")\n x0 = x1\n \n return (x0, i)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%time newton(lambda w: w**3-1, 3)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Quasi-Newton" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "### Secant Method\nhttp://mathworld.wolfram.com/SecantMethod.html" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# quasi-newton (secant)\ndef secant(func, x0, x1, eps=10**(-5), delta=10**(-7)):\n \"quasi-newton (secant): finds a root of a real-valued function using the secant method.\"\n \n e = 1\n d = abs(func(x1))\n i = 0\n \n while e>eps or d>delta:\n \n i = i+1\n x2 = x1-(func(x1)*(x1-x0)/(func(x1)-func(x0)))\n e = abs(x2-x1)\n d = abs(func(x2))\n print(\"interaction: \", i)\n print(\"{0:.6f} -> {1:.6f}\".format(x1, x2))\n print(\"e={0:.6f} d={1:.6f}\".format(e, d))\n print(\"---------------------------------\")\n x0 = x1\n x1 = x2\n \n return (x2, i)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%time secant(lambda w: w**3-1, 4, 3)", - "execution_count": null, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## using `scipy.optimize`" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "from scipy import optimize as opt", - "execution_count": null, - "outputs": [] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Roots and Integration of real-valued functions\n", + "\n", + "Discussão sobre a implementação computacional e conceitos relevantes de métodos para encontrar a raíz de funções com valor real:\n", + "\n", + "Discuss the relevant concepts and the computational implementation of methods to find roots of real-valued functions: \n", + "- Bisection - Método da Bissecção\n", + "- Newton's Method (or Newton-Raphson) - Método de Newton-Raphson\n", + "- Quasi-Newton (Secant) - Método da Secante" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%time opt.bisect(lambda w: w**3-1, .4, 3)", - "execution_count": null, - "outputs": [] - }, + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHQZJREFUeJzt3XmcFNW5//HP46CgxAV1oogimuuKUcEBRY0GiSKg0bjFJddo9I4rImpUFOMevTfGuOAVEbluKChIXFAR3BMRnVFUEFfUsIjMYEB2ZHh+f5yeH80we1d3ddd8369Xvbq6qrrqoaZ55sw5p84xd0dERJJjg7gDEBGRaCmxi4gkjBK7iEjCKLGLiCSMEruISMIosYuIJIwSu4hIwiixi4gkjBK7iEjCtIrjoltvvbV36tQpjkuLiBSs8vLySncvbui4WBJ7p06dKCsri+PSIiIFy8y+acxxqooREUkYJXYRkYRRYhcRSRgldhGRhFFiFxFJmIwTu5ntZmZT05YfzOziKIITEZGmy7i7o7t/CuwLYGZFwBxgXKbnFRGR5om6KqYX8KW7N6qvpYhIS7F8OQwYALNmZf9aUSf2k4HHa9thZqVmVmZmZRUVFRFfVkQkv911V1hmzsz+tSyqyazNbCNgLtDZ3b+r79iSkhLXk6ci0lJ8/z3svDMcfDA891zzz2Nm5e5e0tBxUZbY+wDvNZTURURamltugR9+CK+5EGViP4U6qmFERFqqf/0L7r4bTj8dfv7z3FwzksRuZpsAhwNPRXE+EZGkuPba8HrDDbm7ZiSjO7r7MmCrKM4lIpIUH30EDz0El14KHTvm7rp68lREJEsGDYLNNguvuRTLeOwiIkn3+uswfjzceitsuWVur60Su4hIxNzhiiugQwe46KLcX18ldhGRiI0bB1OmwPDhsPHGub++SuwiIhFavTrUqe+xB/z+9/HEoBK7iEiERoyAzz6Dp5+GVjFlWJXYRUQisnRp6Ld+0EFw9NHxxaESu4hIRO64A+bNgzFjwCy+OFRiFxGJQGUl/Pd/wzHHhBJ7nJTYRUQicPPNoSrmz3+OOxIldhGRjH31FdxzD/zhD7DnnnFHo8QuIpKxa66BoiK47rq4IwmU2EVEMvD++zByJFx8cXjSNB8osYuIZGDQIGjXLgwhkC/U3VFEpJlefhkmTIDbboMttog7mrWimmhjCzMbY2afmNkMM+sRxXlFRPLVmjWhlN6xI1xwQdzRrCuqEvudwIvufkJqUutNIjqviEheGjMGysvDRBpt2sQdzboyTuxmthlwCHAGgLuvAlZlel4RkXy1ahVcdVWYw/S00+KOZn1RlNh3BiqA/zOzfYByYIC7L43g3CIieef+++HLL8NEGkVFcUezvijq2FsBXYF73b0LsBS4suZBZlZqZmVmVlZRURHBZUVEcm/x4jAx9aGHQp8+cUdTuygS+2xgtrtPSb0fQ0j063D3Ye5e4u4lxcXFEVxWRCT3br8d5s8P48LEOdBXfTJO7O4+D5hlZrulNvUCPs70vCIi+ea770LXxhNOgP33jzuaukXVK6Y/MDLVI2YmcGZE5xURyRvXXAPLl4cBv/JZJInd3acCJVGcS0QkH73zTpjDdOBA2HXXuKOpn4YUEBFpQFVVeAhp223DDEn5TkMKiIg0YPhwKCsLg31ttlnc0TRMJXYRkXpUVoaHkQ49FE45Je5oGkeJXUSkHlddBYsWwZAh+du9sSYldhGROlQ3mA4YAHvtFXc0jafELiJSi+oG0222KYwG03RqPBURqUWhNZimU4ldRKSGQmwwTafELiJSQyE2mKZTYhcRSVPdYHrRRYXVYJpOiV1EJCW9wfS66+KOpvnUeCoikvLAA6HB9NFHC6/BNJ1K7CIiwIIFMGgQHHIInHpq3NFkRoldRIS1Dab33FOYDabplNhFpMV7990wj2khN5imU2IXkRatqgrOP7/wG0zTRdJ4amZfA4uBKmC1u2vSDREpCElpME0XZa+Ynu5eGeH5RESyKkkNpulUFSMiLVahP2Fal6gSuwMvmVm5mZVGdE4RkaypbjDt3x9+/vO4o4lWVFUxB7n7XDP7KTDRzD5x9zfSD0gl/FKAjh07RnRZEZGmW7MmGU+Y1iWSEru7z029zgfGAd1rOWaYu5e4e0lxcXEUlxURaZYHHggl9ttug803jzua6GWc2M2srZltWr0OHAFMy/S8IiLZsGABXHll8hpM00VRFbMNMM5Cy0Mr4DF3fzGC84qIRO6KK5LZYJou48Tu7jOBfSKIRUQkqyZMCNUwf/xj8hpM06m7o4i0CIsWwdlnw+67ww03xB1NdmnYXhFpES65BObOhcmToU2buKPJLpXYRSTxXngBRoyAyy+H7uv12UseJXYRSbSFC0MVTOfOyeyzXhtVxYhIog0cCN99B08/Da1bxx1NbqjELiKJ9dxz8OCDod96SQsac1aJXUQS6d//htLSMHHGNdfEHU1uqSpGRBJpwACYPz+U2ltKFUw1ldhFJHGeeQYeeSQMy9u1a9zR5J4Su4gkyoIFcM45sPfeMHhw3NHEQ1UxIpIoF10ElZWh7/pGG8UdTTxUYheRxBg3Dh57LJTU99037mjio8QuIolQWQnnnhsS+lVXxR1NvFQVIyKJ0L9/6OI4cSJsuGHc0cRLiV1ECt7YsTBqFNx4Y2g0belUFSMiBa2iAs47L3RrvOKKuKPJD5GV2M2sCCgD5rj7UVGdV0SkPhdcEAb6euUVVcFUi7LEPgCYEeH5RETq9cQT8OSTcP31YegACSJJ7Ga2PdAPGB7F+UREGvLdd3D++dCtW5jqTtaKqsR+B3A5sKauA8ys1MzKzKysoqIiosuKSEvkHpL64sVh9MZW6gayjowTu5kdBcx39/L6jnP3Ye5e4u4lxcXFmV5WRFqw0aPhqafC3KV77hl3NPknihL7QcCvzexrYBRwmJk9GsF5RUTW8803obTevTtcemnc0eSnjBO7uw9y9+3dvRNwMvCKu/8u48hERGpYtQpOOgmqqsLQAaqCqZ1ui4gUjCuugHfegTFj4Gc/izua/BVpYnf314DXojyniAiEAb7uuCMMHXD88XFHk9/05KmI5L2ZM+HMM0PXxr/8Je5o8p8Su4jktZUrQ726WegN09KmuWsO1bGLSF677DIoLw9VMTvtFHc0hUEldhHJW08+CUOGwMCBcOyxcUdTOJTYRSQvffEFnHUW7L8/3Hpr3NEUFiV2Eck7K1bAiSeGfuqjR7fcuUubS3XsIpJ3Bg6EqVPh2Wdhxx3jjqbwqMQuInnl8cdh6NAwYuNRmtmhWZTYRSRvfPoplJbCgQfCzTfHHU3hUmIXkbywfHnor966dahX12xIzac6dhHJCxddBB9+CM8/D9tvH3c0hU0ldhGJ3aOPwvDhMGgQ9OkTdzSFT4ldRGI1Ywaccw4cckiYOEMyp8QuIrFZujT0V2/bNvSG0fjq0dBtFJHYXHghfPwxTJgA220XdzTJEcWcp23M7B0z+8DMppvZ9VEEJiLJ9uCDYRk8GA4/PO5okiWKEvtK4DB3X2JmGwL/MLMX3P3tCM4tIglUXh7mLe3ZE669Nu5okifjxO7uDixJvd0wtXim5xWRZJo1C44+GoqLQ716UVHcESVPJI2nZlZkZlOB+cBEd58SxXlFJFkWLw7DBCxZAuPHwzbbxB1RMkWS2N29yt33BbYHupvZXjWPMbNSMyszs7KKioooLisiBWT1ajj5ZJg+PYyzvtd6WUKiEml3R3dfSJjM+sha9g1z9xJ3LykuLo7ysiJSAC65JDxVOmQI9O4ddzTJFkWvmGIz2yK1vjHwK+CTTM8rIslx991hueQSOPfcuKNJvih6xbQHHjKzIsIviifc/bkIzisiCTB+PFx8MRxzDPzP/8QdTcsQRa+YD4EuEcQiIgnzwQehXn3ffWHkSPWAyRUNKSAiWTF3bugBs8UWYSaktm3jjqjl0JACIhK5pUtDX/WFC+Ef/9BwAbmmxC4ikaqqgtNOC3OWPvMM7LNP3BG1PErsIhKpyy+Hp5+Gu+6Cfv3ijqZlUh27iERm6FC4/Xbo3z8sEg8ldhGJxIQJYRjevn1Dcpf4KLGLSMamTQsTZuy1F4wapQkz4qbELiIZmTcv1KX/5CehW+Omm8Ydkej3qog027Jl4YnSykp44w3YYYe4IxJQYheRZlqzBk4/Hd59F8aNg/32izsiqabELiJN5h4aSseOhb/+NZTaJX+ojl1EmsQdBg6Ee+8NfdYHDow7IqlJiV1EGs09JPM77wwjNt56K5jFHZXUpMQuIo3iDoMHw223hYmob79dST1fKbGLSKPceCP8+c/wX/8VJs1QUs9fSuwi0qBbboFrr4UzzgjDBmygzJHXopgabwcze9XMZpjZdDMbEEVgIpIf/vpXuOoqOPVUGD5cSb0QRNHdcTVwqbu/Z2abAuVmNtHdP47g3CISo7vvhssuC8MFPPSQZkAqFBn/7nX3b939vdT6YmAG0CHT84pIvIYOhYsugmOPDdPaafyXwhHpH1Vm1okw/+mUKM8rIrk1YgScd14YA2b0aNhww7gjkqaILLGb2U+AscDF7v5DLftLzazMzMoqKiqiuqyIROyRR+Dss+GII2DMGNhoo7gjkqaKJLGb2YaEpD7S3Z+q7Rh3H+buJe5eUlxcHMVlRSRio0eHni89e8Lf/w5t2sQdkTRHFL1iDHgAmOHuGl5fpEA99VSYq/Sgg8JcpRtvHHdE0lxRlNgPAv4TOMzMpqaWvhGcV0Ry5Nln4be/he7dYfx4aNs27ogkExm3c7v7PwA9gyZSoF54AU44Abp0CeuaKKPw6VEDkRbsxRfhN7+Bzp3DnKWbbx53RBIFJXaRFuqhh+Doo2H33WHiRGjXLu6IJCpK7CItjHsYzOuMM+DQQ+H112GrreKOSqKkZ8lEWpCqqjDz0dChoQfMiBHqp55EKrGLtBDLlsHxx4ekfvnl8PDDSupJpRK7SAtQWRnq06dMCQN7XXhh3BFJNimxiyTczJnQpw98800YIuC44+KOSLJNiV0kwcrLoW9f+PFHmDQJDj447ogkF1THLpJQL74Yer20aQP//KeSekuixC6SQA8+GOrU/+M/YPJk2GOPuCOSXFJiF0kQd7j5ZjjzTPjlL+GNN2C77eKOSnJNdewiCbF6dejtct998LvfwQMPqDtjS6USu0gCLFsWervcdx9ceaX6qLd0KrGLFLiKilCf/s47MGQIXHBB3BFJ3JTYRQpYeTmceCJ8+y2MHRtGahRRVYxIAXKHe++FAw8MdeuvvaakLmtFNefpCDObb2bTojifiNRtyZIwgNf550OvXvD++7D//nFHJfkkqhL7g8CREZ1LROowfTp06xYmnb7pJnjuOQ25K+uLpI7d3d8ws05RnEtEavfII3DuuWHqukmToGfPuCOSfJWzOnYzKzWzMjMrq6ioyNVlRQreihVQWgqnnx5K6++/r6Qu9ctZYnf3Ye5e4u4lxcXFubqsSEH78kvo0QPuvx8GDQol9fbt445K8p26O4rkqaeeCkMDFBWFuvR+/eKOSAqFujuK5JlVq2DgwDDb0e67h6oXJXVpiqi6Oz4OTAZ2M7PZZnZWFOcVaWlmzQqDd91xB/TvD2++CTvuGHdUUmii6hVzShTnEWnJXnwxDN61alXoznjSSXFHJIVKVTEiMVu1CgYPDjMdbbcdlJUpqUtm1HgqEqMpU+Dss2HatNBQOmQIbLJJ3FFJoVOJXSQGS5eGBtIePWDhQnj2WRgxQkldoqESu0iOvfQSnHMOfP01nHce3HorbLZZ3FFJkqjELpIj338PZ5wBvXtD69ahx8v//q+SukRPiV0ky9zhiSfChNIjR8LVV8PUqXDwwXFHJkmlqhiRLJozJwyv+8wzUFISqmH22SfuqCTpVGIXyYI1a8L8o3vuCRMnwm23weTJSuqSGyqxi0Tss8/CaIyvvw6HHQbDhsHPfhZ3VNKSqMQuEpEffww9XPbeO9ShDx8eRmNUUpdcU4ldJAKvvgqXXBIS+nHHhQeNNLyuxEUldpEMfPAB9OkTqlwqK2Hs2LAoqUuclNhFmuGrr8KAXV26hGEB/vKXULd+3HFxRyaiqhiRJqmoCJNI33svtGoFV1wRli22iDsykbWU2EUaYckSuP320G1x6VI46yy49lro0CHuyETWp8QuUo9Vq8J8ozfcAPPnh6qWm28OMxuJ5KuoZlA60sw+NbMvzOzKKM4pEqc1a2DUqPCA0YUXhkQ+eXJoGFVSl3yXcWI3syLgHqAPsCdwipntWd9n5s2bx+TJkzO9tEhWTJoE3brBKaeEYXTHj4fXXoMDDog7MmnJUjlz28YcG0WJvTvwhbvPdPdVwCjgmPo+MGfOHHr16qXkLnnDHd54Aw4/PCyVlfDww2Ei6b59wSzuCKUlmzx5Mr169QJoVKtOFHXsHYBZae9nA/vXPMjMSoHS6vcrVqxg8ODB/OIXv4ggBJHmqaoKsxe9/TbMmwcbbwxHHBFK7F9+CTfeGHeEIvDmm2+yYsWKRh8fRWKvrSzj621wHwYMAzAzb9OmDTfddBM9evSIIASRpqmshKFDw0Bd8+aFIXWvvz70TdcsRpJvqkvsy5cvXy+31iaKqpjZwA5p77cH5tb3gQ4dOvDyyy8rqUvOTZ8eBujaYQe45pow2uILL4RSe2mpkrrkpx49evDyyy9DA7m1mrk36hdA3ScwawV8BvQC5gDvAqe6+/S6PlNSUuJlZWUZXVeksdxhwgT429/CeOht2sDpp8OAAaHXi0ihMLNydy9p6LiMq2LcfbWZXQhMAIqAEfUldZFcWbYMHnkE7rwTZswI47fcdFOYb3TrreOOTiR7InlAyd2fB56P4lwimZozB+65J9Sff/89dO0aEvxJJ8FGG8UdnUj26clTSYQVK0Jd+ciR8PTTobfLscfCwIFhblF1V5SWRIldClZVVXhw6LHHwhOhixbBT38K/fuHp0V33jnuCEXiocQuBcUdystDMh81Cr79FjbdFI4/Hk49FXr2DKMuirRk+i8gBeGzz0Iyf+wx+PzzUFfer19I5v36hQeLRCRQYpe8NXcujB4dknlZWagn79kTrrwyjLKoMdBFaqfELnnl669Dn/MnngjziLpDSUkYC/23v4Xttos7QpH8p8QusVq8OCTwl14Ky+efh+277AJ/+lOoatl113hjFCk0SuySU1VV8N57axP5W2/B6tXhUf6ePUNvlt69QzJXF0WR5lFil6ybNQsmTgyJfNIkWLAgbO/aFS67LCTyHj2gdet44xRJCiV2iVxFBUyZEpL4Sy+Fx/khPNJ/1FFhWNxf/Sr0OReR6CmxS0YWLQr9yt99NyxlZfDNN2FfmzZwyCFh4ufevaFzZ1WviOSCErs02rJlMHXqukn800/X7t9pJ9h//1BP3q0bdO+u/uUicVBil1otXQqffBKSd3USnzYtNH5C6HZYUhImpujWLaxvtVW8MYtIoMTegq1aBV99FZ7q/Pzz8Fq9zJmz9rgttwzJ+6ijwmu3bupPLpLPlNgTbs0amD17bcJOT+BffbW2BA6hxL3rrqFhc5ddYLfdQs+VnXZS3bhIIckosZvZicB1wB5Ad3fXtEg54h4aLufODQNhfftt7euzZ4chbattsklI3l26hCc5d901LLvsoqoUkaTItMQ+DTgOuC+CWFq0lStDol64cN3XRYtC98HaEndtk5ZvskmoJmnfHvbbD37967XJe9ddwz6VvkWSLaPE7u4zACyhmcI9VGVUVYVl5cqQTFesWHe9rqX6mOXLw6PzNRN2ehJfubL+WDbbLCTr9u3hgAPWrrdvvzaRt28fhrBN6I9DRBqpoOrYb7wRHn88JFxY+5q+3tC+6iRd25KexKvfR2XjjcNohJtvHpZ27aBTp3W3Va/XfN1qK2jbNrpYRCTZGkzsZjYJ2LaWXVe7+9ONvZCZlQKlAB07dmx0gOnat4e99qo+37qvtW2rbV9RUd3LBhvUv7916/DQTW1LQ/uKipr1TxYRaTLz9KJtc09i9hpwWWMbT0tKSrysTO2sIiJNYWbl7l7S0HEb5CIYERHJnYwSu5n9xsxmAz2A8WY2IZqwRESkuTLtFTMOGBdRLCIiEgFVxYiIJIwSu4hIwiixi4gkjBK7iEjCKLGLiCRMJA8oNfmiZhXAN838+NZAZYThREVxNY3iahrF1TT5GhdkFtuO7l7c0EGxJPZMmFlZY568yjXF1TSKq2kUV9Pka1yQm9hUFSMikjBK7CIiCVOIiX1Y3AHUQXE1jeJqGsXVNPkaF+QgtoKrYxcRkfoVYoldRETqkVeJ3cyONLNPzewLM7uylv2tzWx0av8UM+uUtm9QavunZtY7x3FdYmYfm9mHZvayme2Ytq/KzKamlmdyHNcZZlaRdv2z0/b93sw+Ty2/z3Fcf0uL6TMzW5i2Lyv3y8xGmNl8M5tWx34zs7tSMX9oZl3T9mXzXjUU12mpeD40s7fMbJ+0fV+b2UepexXpBAeNiOuXZrYo7Wf1p7R99f78sxzXH9Nimpb6Pm2Z2pfN+7WDmb1qZjPMbLqZDajlmNx9x9w9LxagCPgS2BnYCPgA2LPGMecDQ1PrJwOjU+t7po5vDeyUOk9RDuPqCWySWj+vOq7U+yUx3q8zgCG1fHZLYGbqtV1qvV2u4qpxfH9gRA7u1yFAV2BaHfv7Ai8ABhwATMn2vWpkXAdWXw/oUx1X6v3XwNYx3a9fAs9l+vOPOq4axx4NvJKj+9Ue6Jpa3xT4rJb/jzn7juVTib078IW7z3T3VcAo4JgaxxwDPJRaHwP0MjNLbR/l7ivd/Svgi9T5chKXu7/q7stSb98Gto/o2hnFVY/ewER3/97d/w1MBI6MKa5TgMcjunad3P0N4Pt6DjkGeNiDt4EtzKw92b1XDcbl7m+lrgu5+2415n7VJZPvZdRx5eS7BeDu37r7e6n1xcAMoEONw3L2HcunxN4BmJX2fjbr35j/f4y7rwYWAVs18rPZjCvdWYTfytXamFmZmb1tZsdGFFNT4jo+9WffGDPboYmfzWZcpKqsdgJeSducrfvVkLrizua9aqqa3y0HXjKzcgtzCudaDzP7wMxeMLPOqW15cb/MbBNCchybtjkn98tCFXEXYEqNXTn7jmU00UbErJZtNbvs1HVMYz7bXI0+t5n9DigBDk3b3NHd55rZzsArZvaRu3+Zo7ieBR5395Vmdi7hr53DGvnZbMZV7WRgjLtXpW3L1v1qSBzfrUYzs56ExH5w2uaDUvfqp8BEM/skVaLNhfcIj7cvMbO+wN+BXciT+0Wohvmnu6eX7rN+v8zsJ4RfJhe7+w81d9fykax8x/KpxD4b2CHt/fbA3LqOMbNWwOaEP8sa89lsxoWZ/Qq4Gvi1u6+s3u7uc1OvM4HXCL/JcxKXuy9Ii+V+YL/GfjabcaU5mRp/KmfxfjWkrrizea8axcz2BoYDx7j7gurtafdqPmEms6iqHxvk7j+4+5LU+vPAhma2NXlwv1Lq+25l5X6Z2YaEpD7S3Z+q5ZDcfcey0ZDQzMaHVoRGg51Y2+jSucYxF7Bu4+kTqfXOrNt4OpPoGk8bE1cXQoPRLjW2twNap9a3Bj4nooakRsbVPm39N8Dbvrax5qtUfO1S61vmKq7UcbsRGrMsF/crdc5O1N0Y2I91G7beyfa9amRcHQltRgfW2N4W2DRt/S3gyBzGtW31z46QIP+VuneN+vlnK67U/uoCX9tc3a/Uv/1h4I56jsnZdyyymx3RzelLaE3+Erg6te0GQikYoA3wZOqL/g6wc9pnr0597lOgT47jmgR8B0xNLc+kth8IfJT6cn8EnJXjuG4Bpqeu/yqwe9pn/5C6j18AZ+YyrtT764Bba3wua/eLUHr7FviRUEI6CzgXODe134B7UjF/BJTk6F41FNdw4N9p362y1PadU/fpg9TP+Oocx3Vh2nfrbdJ+8dT2889VXKljziB0pkj/XLbv18GE6pMP035WfeP6junJUxGRhMmnOnYREYmAEruISMIosYuIJIwSu4hIwiixi4gkjBK7iEjCKLGLiCSMEruISML8P6SgQxL+2lN9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "x = [x/10 for x in range(0, 21)]\n", + "y = [x**3-1 for x in x]\n", + "plt.plot(x, y, 'b')\n", + "plt.axhline(y=0, linewidth=.5, color='k', marker='.')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%time opt.newton(lambda w: w**3-1, 3)", - "execution_count": null, - "outputs": [] - }, + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHW5JREFUeJzt3XmYVNWZx/HvK0FBQEVtBEXEBYyoAaV1wiQqLiiauOCoIRrFbXDDaDRqEJUYjA5GwSyjLC4wqImJBkERWQxxQ9FGgSAoIaADYbERERWkQ9c7f5zu0GG66aarbp1afp/nuU91VV3qvtV0/+r0ueeeY+6OiIgUvh1iFyAiItmhwBcRKRIKfBGRIqHAFxEpEgp8EZEiocAXESkSCnwRkSKhwBcRKRIKfBGRIvG12AXUtOeee3rHjh1jlyEikldmz569xt1L6tsvpwK/Y8eOlJWVxS5DRCSvmNlHDdlPXToiIkVCgS8iUiQU+CIiRUKBLyJSJBT4IiJFQoEvIlIkFPgiIkVCgS8iEtmvfgUTJyZ/HAW+iEhE69fDrbfChAnJH0uBLyIS0RNPwJdfwpVXJn8sBb6ISCTuMHIkHHEElJYmfzwFvohIJLNmwdy5cMUVYJb88RT4IiKRjBwJLVvC+edn53gKfBGRCNatg6eeCmHfqlV2jqnAFxGJYNw42LgxOydrqynwRUSyzB1GjICjjgonbLMlpxZAEREpBq+/DgsWwMMPZ/e4auGLiGTZyJGwyy7Qt292j6vAFxHJok8+gT/8AS68EFq0yO6xFfgiIlk0dixs2hTG3mebAl9EJEvcYdQo6NEDDj88+8fPSOCb2aNm9rGZza/x2E/N7O9mNqdqOy0TxxIRyVcvvwwffBCndQ+Za+GPAXrX8vhwd+9Wtb2QoWOJiOSlESNgt93gvPPiHD8jge/urwBrM/FaIiKFaNUq+OMf4aKLoHnzODUk3Yc/wMzmVXX5tE74WCIiOevBB2HzZrjmmng1JBn4DwEHAt2AlcD9te1kZv3NrMzMysrLyxMsR0Qkjo0b4aGH4PTToXPneHUkFvjuvtrdK909BYwGjq5jv1HuXurupSUlJUmVIyISzeOPw5o18KMfxa0jscA3s3Y17vYB5te1r4hIoXKH4cPDnDnHHRe3lozMpWNmvwV6Anua2XJgMNDTzLoBDnwIRBqIJCISz5QpsHBhmB0zG4ucbEtGAt/dv1/Lw49k4rVFRPLZsGHQrl28oZg16UpbEZGE/OUvMG0aXHst7Lhj7GoU+CIiiXngAdh553hX1m5NgS8ikoDVq8PonH79YPfdY1cTKPBFRBLw4INQUQHXXx+7ki0U+CIiGbZxYwj82BdabU2BLyKSYU88kRsXWm1NgS8ikkHuYShmt27Qs2fsav6VFjEXEcmgF14IF1qNHRv/QqutqYUvIpIh7jBkCOy3X/YXKG8ItfBFRDJk2jSYNSssdJILF1ptTS18EZEMcIc774T27eHii2NXUzu18EVEMmDGDJg5E37zG9hpp9jV1E4tfBGRDPjZz2DvveGyy2JXUje18EVE0vTyy2H75S+hWbPY1dRNLXwRkTQNGQJ77QX/+Z+xK9k2tfBFRNLw+uvw0ktw//3QvHnsarZNLXwRkTQMGQIlJbkzBfK2KPBFRBpp1qywhOGPfwwtWsSupn4KfBGRRhoyBPbYA66+OnYlDZORwDezR83sYzObX+Ox3c1smpn9teq2dSaOJSKSC2bPhkmT4IYboGXL2NU0TKZa+GOA3ls99hPgJXfvBLxUdV9EpCAMGgStW8OAAbErabiMBL67vwKs3erhM4GxVV+PBc7KxLFERGKbNi303d92G+yyS+xqGi7JPvy93H0lQNVtm9p2MrP+ZlZmZmXl5eUJliMikr5UCm66CTp2hGuuiV3N9ol+0tbdR7l7qbuXlpSUxC5HRGSbHn8c5s6Fu+/O3Tlz6pJk4K82s3YAVbcfJ3gsEZHEbdwYunFKS+F734tdzfZLMvAnAv2qvu4HTEjwWCIiifv1r2HZMrj3Xtghev/I9svUsMzfAm8AB5vZcjO7DPgvoJeZ/RXoVXVfRCQvffJJ6Mb5znfg+ONjV9M4GZlLx92/X8dTJ2bi9UVEYrvrLvj8cxg6NHYljZeHf5SIiGTXkiXw3/8Nl14Khx4au5rGU+CLiNTj1luhadOwhGE+U+CLiGzDW2/BU0/BjTeGFa3ymQJfRKQOqRT86Edh+uObbopdTfq0AIqISB0eeywsTP7YY9CqVexq0qcWvohILcrL4eab4dhjoV+/+vfPBwp8EZFa3HwzrF8PDz0EZrGryQwFvojIVl55BcaMCStZdekSu5rMUeCLiNRQUQFXXRVmw7z99tjVZJZO2oqI1DBsGCxYAM8/DzvvHLuazFILX0SkytKl8LOfwdlnhzlzCo0CX0QEcIdrrw2zYD7wQOxqkqEuHRER4Nlnw6Lk998P++4bu5pkqIUvIkXv009D675rV/jhD2NXkxy18EWk6F19NaxeDRMmwNcKOBUL+K2JiNTvySfhd78L89137x67mmSpS0dEitayZaF136MH3HJL7GqSp8AXkaKUSoU5ciorYdy4wu7KqZb4WzSzD4HPgUpgs7uXJn1MEZH6PPAAzJgBDz8MBx4Yu5rsyNZn2vHuviZLxxIR2ab582HgQDjjjLBsYbFQl46IFJVNm+CCC2C33WD06MKZCbMhshH4Dkw1s9lm1j8LxxMRqdPtt8O8efDII9CmTexqsisbXTrfcvcVZtYGmGZm77v7K9VPVn0I9Afo0KFDFsoRkWI1eTLcdx/07w/f/W7sarIv8Ra+u6+ouv0YGA8cvdXzo9y91N1LS0pKki5HRIrU4sVw/vnwjW+EGTGLUaKBb2YtzKxV9dfAycD8JI8pIrK1L76As84KE6ONHw8tWsSuKI6ku3T2AsZbOCvyNeBJd38x4WOKiPyTO1xyCSxcCC++CPvvH7uieBINfHdfAnRN8hgiItty773w9NPhtlev2NXEpWGZIlKwpkwJ4+3POy+sT1vsFPgiUpD+9jfo2xcOOwwefbS4xtvXRYEvIgXnyy+hT58Q8sV8knZrRTBdkIgUk4oK+I//gPfegxdeKJ55chpCgS8iBaOyEi66KPTdjx4Np5wSu6Lcoi4dESkI7jBgADz1FAwdCpdfHrui3KPAF5GCMHgwjBgBN90EN98cu5rcpMAXkbz3y1/CkCFw2WWhdS+1U+CLSF4bNw6uvz6MyhkxQsMvt0WBLyJ569lnw7QJJ5wQFiMvhmUK06FvjzRKRUW4sGX1avj0U1i79l+3iorwy9ekSdiqv955ZygpCfOQ19z22EO/rLJ9xowJJ2ZLS0PwN2sWu6Lcp18x2abKyrAc3HvvwYIFYVu4EP761/Dc1po2hdatYaedwvPV2+bN4XbDhtr/XZMmcMAB0Llz2A4+eMttu3b6M13+1bBhcOONcNJJ4cKqli1jV5QfFPjyL9zDvOHTp4ftT3+CdevCc02awEEHQZcucPbZcMghsPfesPvuW7YWLbYdzqlUeL2PPw5/HXz8cdj+/vfwIbJoUTjmxo1b/k2bNtC9e2jJVW97753s90FykzsMGgT33APnnAOPPx4aF9IwCnxh82aYOjXMKDh9OixbFh7v0CFcsXjCCdC1K3TqBDvumN6xdthhy4fD179e+z6pVPgAWLQo/DXxzjtQVhYupkmlwj7t2kGPHnDccWE7/PDw2lK4KivhqqvCBVX9+8ODD4ZGiDScuXvsGv6ptLTUy8rKYpdRNBYuDP2g48bBypWhK+bEE8OfySeeGC5Jz6WulA0bYO7cEP5vvw2vvgoffhiea90ajjkmhP+JJ4ZVjXKpdknPpk3wgx+ERsmtt8Jdd+n/tyYzm+3upfXtpxZ+kfnsM/jtb0PQz5oVWkjf+U4Y6XDaaem34JO0886hVd+jx5bHPvoIXn55yzZxYni8bVvo3TtsJ50UTgpLflq9Gr73vfD/e//9cMMNsSvKX2rhF4l168LFKcOHh9A/7LAQ8hdcAHvtFbu6zFm+PHRLvfhi6Kb69NPQ1XPUUXDqqXDGGdCtm1qH+eK118Jc9uvWha6cCy6IXVFuamgLX4Ff4NatgwceCNtnn4V1PQcODAFY6KFXWRm6fqZMgcmT4a23wkm/9u1D8J9xBvTsqZN+ucg9NE5uvjksSfjMM6GbTmqXM4FvZr2BXwJNgIfd/b/q2leBnzmffrol6NevD1ch3nFHaN0Wq/JymDQpdPtMmRLOCbRsGWZUPPvs0LW1666xq5T16+HSS0PI9+kDjz2m/5f6NDTwcffENkLI/w04ANgRmAt0qWv/7t27u6QnlXJ/7DH3PfZwB/c+fdzffTd2Vbln40b3SZPcr7jCvW3b8L1q2tS9d2/3UaPcV6+OXWFxmjfPvVMn9yZN3O+7L/w8S/2AMm9AJic9kO1oYLG7L3H3CuB3wJl17bxq1SreeOONhEsqXIsWhREql1wSLlh691344x+Lu1Vfl2bNwknqESPCENCZM+G668L3sH//MOzzuOPCeY/qYaqSnIqKMPLmqKPg88/DtRg33lj43Y6ZUJWZbRu0c0M+FRq7AecQunGq718I/GYb+3vz5s195syZSX0QFqRNm9yHDHHfaSf3XXd1HzHCvbIydlX5KZVynzvXffBg98MPDy1/cD/6aPehQ90XL45dYeF57TX3Ll3C9/m889xXrYpdUf6YOXOmN2/e3EOU15/Jifbhm9m5wCnufnnV/QuBo9392hr79Af6V93tbmYcf/zxHHPMMYnVVUj+93/huedgzZpwBWzv3tCqVeyqCscnn4TrFRYsCNcqQBjVdMghYSspUSu0sb76Koyomj0bdtklnEPp3Dl2Vfnl1VdfZcaMGdWBXv9PYkM+FRq7AT2AKTXuDwQGbmN/tfAbqLLS/c473c3cO3Rwf/752BUVvqVL3e+/3/3f/z1838G9c2f3n/zEfdYs9Tc3VCrl/tRT4dzJDju433CD++efx64qP9Vo4ae8IZnckJ0auxEu7FoC7M+Wk7aH1rX/Pvvso7BvgDVrwslFcP/BD/TLEsOKFe4PPeTeq5f7174W/i/at3cfMMB96tTQzSb/KpVyf+459+7dw/fryCPdy8piV5X/Zs6c6cByj92lA2BmpwEPEEbsPOruP69rXw3LrN/bb4dJo1atCicUr7hCXQqxrV0Lzz8fTpBPnRomfmvVasuFXqeeGuYOKlbu4ftz552h+2b//cMEaP36aUrsTMmZcfjbQ4FfN/cwouT668O0AU8/HUY0SG7ZsAFeeimcV3nuufDB3KQJfPvbIfh79y6eeX5SqS1B/847Yfrr224Lc+I0bRq7usKiwC8gGzaElvzjj4fQGDdOc8Pkg1QqTPQ2cWIIvrlzw+Nt24aLvU45BXr1gj33jFtnpn34IYwdG7alS8MkfLfdFqZFUNAnQ4FfINatg9NPh9dfDy2lQYM0DXC+WrkydPlUz/Ozdm1o6X/jG1umeT722Pz8APjyy3Bl7JgxMGNGeF8nnhiumD33XHXdJE2BXwBWrQqtwIULQ+v+vPNiVySZUlkZWv9Tp4ZZIGfO3LLoy6GHhvDv0SMs9tK5c25+yC9dumWhnMmTwwVTBx4IF18MF10U1lOQ7FDg57klS+Dkk0OrcPz48LUUroqK8AFQPc3z66/DF1+E51q2hCOPDOHfvXv4i+DAA6F58+zV5x5+Fl97LQT8Sy+Fn1GAffYJ5yb69QvnKorh/ESuUeDnsb/8JQR8RUWY7Oub34xdkWRbZSW8/374EKje5swJFytBCNUOHbasAdy5cxj90qZNuDCsTZuwfsD2HvOzz8JFfIsXb1m/uPr2s8/CfrvuCscfv2WhnIMPVsjHpsDPUzNnhisOW7QIf+536RK7IskV//jHlgBetChsH3wQbtev///7t2gRgn/33UMfepMmYav+2iycI1q7Nmzr1oWWfE3VVxV36RK26rWF1SefW7TiVR6aPj2M227fHqZNg/32i12R5JKmTUN3ztbzwruHheA/+ihMAV29MHz19umnYd3iyspwu3lzWDIwlQqjvTp1Ch8KrVtvWW/4gANC0Gs0WGFR4OeIN9+EM88Mv3zTpoWWmUhDmIWWeCGtXCbJyMFz/8Vn/vwwVe/ee4duHIW9iCRBgR/Z0qXhBG2zZiHs1UoTkaSoSyei1atD2H/1FbzyShhlISKSFAV+JOvWhYuqVqwIJ2sPOyx2RSJS6BT4EWzYEEbjLFgQJtjq0SN2RSJSDBT4WZZKhdkCX3sNnnwytPJFRLJBgZ9ld90VpkoYNgz69o1djYgUE43SyaLnn4fBg0ML//rrY1cjIsVGgZ8lixaF+cCPOAJGjdLcIyKSfQr8LPj8czjrrHBp/Pjx2Z3lUESkmvrwE5ZKhWljFy0KF1ZpfhwRiSWxFr6Z/dTM/m5mc6q205I6Vi67557Qqv/FL+CEE2JXIyLFLOkW/nB3vy/hY+SsF16A22+H88/XSVoRiU99+AlZvjyMxunaFUaP1klaEYkv6cAfYGbzzOxRM2ud8LFyRioV1vXctAn+8IftX3lIRCQJaQW+mU03s/m1bGcCDwEHAt2AlcD9dbxGfzMrM7Oy8vLydMrJGb/6VVjzc/hwOOig2NWIiARZWeLQzDoCz7v7NqcIK4QlDt97LywD16sXTJyorhwRSV5DlzhMcpROuxp3+wDzkzpWrqioCP32u+wCDz+ssBeR3JLkKJ17zawb4MCHwBUJHisnDB4Mc+bAhAlayEREck9ige/uFyb12rno1Vdh6FC4/PIw9bGISK7RsMwMWL8eLrwwrFg1fHjsakREaqepFTLguutg2bIwx33LlrGrERGpnVr4aZo8GcaMgYEDtXKViOQ2BX4aNmyAa66Br38d7rgjdjUiItumLp003H03LF0KM2bAjjvGrkZEZNvUwm+khQvh3nvhoougZ8/Y1YiI1E+B3wjucPXV4QTtL34RuxoRkYZRl04jPP44/PnPMHIktGkTuxoRkYZRC387rV0LN94I3/xmuMhKRCRfqIW/nQYODKE/bRrsoI9LEckjiqzt8MYbMGpUuNCqa9fY1YiIbB8FfgNt3gxXXQXt28NPfxq7GhGR7acunQYaMQLmzoVnnoFWrWJXIyKy/dTCb4DPPoM774QTToA+fWJXIyLSOAr8Brj3XlizJtxqURMRyVcK/HosXw7DhsH554elC0VE8pUCvx533AGpFPz857ErERFJjwJ/G+bNC1MfX3stdOwYuxoRkfSkFfhmdq6ZvWdmKTMr3eq5gWa22Mw+MLNT0iszjltugd12g0GDYlciIpK+dIdlzgfOBkbWfNDMugB9gUOBvYHpZtbZ3SvTPF7WTJ8OL74I990HrVvHrkZEJH1ptfDdfaG7f1DLU2cCv3P3Te6+FFgMHJ3OsbIplYKbbgrdOAMGxK5GRCQzkrrwah/gzRr3l1c9lheeeALmzAm3O+0UuxoRkcyoN/DNbDrQtpanBrn7hLr+WS2PeR2v3x/oD9ChQ4f6ykncV1+FPvvu3aFv39jViIhkTr2B7+4nNeJ1lwP71rjfHlhRx+uPAkYBlJaW1vqhkE2/+Q0sWwZjx2o2TBEpLElF2kSgr5ntZGb7A52AtxI6VsZ8+WW4mvbkk+H442NXIyKSWekOy+xjZsuBHsAkM5sC4O7vAb8HFgAvAtfkwwidkSOhvBwGD45diYhI5pl79F6UfyotLfWysrIox964EfbfHw47LAzJFBHJF2Y2291L69tP0yNXGT0aVq+G3/8+diUiIsnQaUnCyJyhQ+G44+DYY2NXIyKSDLXwgUcfhRUrYNy42JWIiCSn6Fv4mzbBPffAt76lkTkiUtiKvoU/dmyY8/6RR7S4iYgUtqJu4f/jH3D33fBv/wa9esWuRkQkWUXdwh83Dj76CB58UK17ESl8RdvC37w5rGLVvTucemrsakREkle0Lfwnn4QlS2DCBLXuRaQ4FGULP5UKffddu8Lpp8euRkQkO4qyhT95MnzwQZjvXq17ESkWRdnCHz4c9tkHzj03diUiItlTdIE/dy689BJcey00bRq7GhGR7Cm6wB8+HHbeGfr3j12JiEh2FVXgr1wZRudceim0bh27GhGR7CqqwH/wwTD+/rrrYlciIpJ9RRP4GzfCQw/BGWfAQQfFrkZEJPuKJvDHjYNPPoEbbohdiYhIHEUR+KlUOFl75JFwzDGxqxERiSPdRczPNbP3zCxlZqU1Hu9oZhvNbE7VNiL9UhvvxRfh/fdD614XWolIsUr3Stv5wNnAyFqe+5u7d0vz9TNi2DBdaCUiklbgu/tCAMvhZvO8eeFCq3vugR13jF2NiEg8Sfbh729m75rZy2ZWZ8+5mfU3szIzKysvL894EbrQSkQkqLeFb2bTgba1PDXI3SfU8c9WAh3c/RMz6w48a2aHuvv6rXd091HAKIDS0lJveOn1Ky8PF1pdfjnsvnsmX1lEJP/UG/juftL2vqi7bwI2VX0928z+BnQGyra7wjSMGQMVFXDNNdk8qohIbkqkS8fMSsysSdXXBwCdgCVJHKsuqRSMGgXf/jZ06ZLNI4uI5KZ0h2X2MbPlQA9gkplNqXrqWGCemc0FngaudPe16ZW6ff70J1i8GK64IptHFRHJXemO0hkPjK/l8WeAZ9J57XSNHBn67c85J2YVIiK5oyCvtF21Cp59Fi6+GJo1i12NiEhuKMjAf+yxMCumhmKKiGxRcIFffbK2Z084+ODY1YiI5I6CC/ypU+HDD+HKK2NXIiKSWwou8EeOhJIS6NMndiUiIrmloAJ/xQp47jm45BLNmyMisrWCCvxHHoHKSp2sFRGpTcEEfmUljB4NvXrBgQfGrkZEJPcUTOBPngzLlunKWhGRuhRM4I8cCW3bhkXKRUTk/yuIwF+2DF54AS67DJo2jV2NiEhuKojA/+IL6N07zHsvIiK1S3dN25xwyCEwaVLsKkREcltBtPBFRKR+CnwRkSKhwBcRKRIKfBGRIqHAFxEpEgp8EZEiocAXESkSCnwRkSJh7h67hn8ys3LgozReYk9gTYbKialQ3gfoveSiQnkfoPdSbT93L6lvp5wK/HSZWZm7l8auI12F8j5A7yUXFcr7AL2X7aUuHRGRIqHAFxEpEoUW+KNiF5AhhfI+QO8lFxXK+wC9l+1SUH34IiJSt0Jr4YuISB0KKvDNbIiZzTOzOWY21cz2jl1TY5nZL8zs/ar3M97MdotdU2OZ2blm9p6Zpcws70ZUmFlvM/vAzBab2U9i19NYZvaomX1sZvNj15IuM9vXzGaY2cKqn63rYtfUWGbWzMzeMrO5Ve/lzsSOVUhdOma2i7uvr/r6h0AXd78yclmNYmYnA39y981mNhTA3W+JXFajmNkhQAoYCfzY3csil9RgZtYEWAT0ApYDbwPfd/cFUQtrBDM7FvgC+B93Pyx2Pekws3ZAO3d/x8xaAbOBs/L0/8WAFu7+hZk1BV4DrnP3NzN9rIJq4VeHfZUWQN5+mrn7VHffXHX3TaB9zHrS4e4L3f2D2HU00tHAYndf4u4VwO+AMyPX1Cju/gqwNnYdmeDuK939naqvPwcWAvvErapxPPii6m7Tqi2R7CqowAcws5+b2TLgAuCO2PVkyKXA5NhFFKl9gGU17i8nT4OlUJlZR+AIYFbcShrPzJqY2RzgY2CauyfyXvIu8M1supnNr2U7E8DdB7n7vsATwIC41W5bfe+lap9BwGbC+8lZDXkvecpqeSxv/3IsNGbWEngGuH6rv/DzirtXuns3wl/yR5tZIl1uebeIubuf1MBdnwQmAYMTLCct9b0XM+sHfBc40XP8ZMt2/L/km+XAvjXutwdWRKpFaqjq734GeMLd/xi7nkxw93Vm9megN5Dxk+t518LfFjPrVOPuGcD7sWpJl5n1Bm4BznD3DbHrKWJvA53MbH8z2xHoC0yMXFPRqzrR+Qiw0N2Hxa4nHWZWUj0Kz8yaAyeRUHYV2iidZ4CDCSNCPgKudPe/x62qccxsMbAT8EnVQ2/m8YijPsCvgRJgHTDH3U+JW1XDmdlpwANAE+BRd/955JIaxcx+C/QkzMq4Ghjs7o9ELaqRzOzbwKvAXwi/7wC3uvsL8apqHDP7BjCW8PO1A/B7d/9ZIscqpMAXEZG6FVSXjoiI1E2BLyJSJBT4IiJFQoEvIlIkFPgiIkVCgS8iUiQU+CIiRUKBLyJSJP4P7Qyzz9TzuB0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "x = np.linspace(-3, 3)\n", + "y = [x**3-1-3*x+1 for x in x]\n", + "plt.plot(x, y, 'b')\n", + "plt.axhline(y=0, linewidth=.5, color='k', marker='.')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bracketing\n", + "### Bisection - Bissecsção" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def bisection(f, a, b, delta=1e-5, eps=1e-7):\n", + "\n", + " # f: a function\n", + " # a: lower limit\n", + " # b: upper limit\n", + " \n", + " if f(a)*f(b) <= 0:\n", + " \n", + " x_low = a\n", + " x_high = b\n", + " e = 1 # abs(x_high - x_low)\n", + " d = 1 # f(M)\n", + " i = 0\n", + " #print(\"{joao:2d}: [{x_low:0.8f}, {x_high:0.8f}]\".format(joao = i, x_low = x_low, x_high = x_high))\n", + " \n", + " while abs(e)>eps*(1+abs(x_low)+abs(x_high)) or abs(d)>delta:\n", + " \n", + " i += 1\n", + " \n", + " midpoint = (x_low+x_high)/2\n", + " if f(x_low)*f(midpoint)<0:\n", + " x_high = midpoint\n", + " else:\n", + " x_low = midpoint\n", + " \n", + " midpoint = (x_low+x_high)/2\n", + " e = x_high-x_low\n", + " d = f(midpoint)\n", + " #print(\"{i:2d}: [{x_low:0.12f}, {x_high:0.12f}]\".format(i = i, x_low = x_low, x_high = x_high))\n", + " \n", + " return midpoint" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def func(x):\n", + " return x**3-1" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%time opt.newton(lambda w: w**3-1, 3, fprime=lambda w: 3*(w**2))", - "execution_count": null, - "outputs": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 35 µs, sys: 0 ns, total: 35 µs\n", + "Wall time: 39.1 µs\n" + ] }, { - "metadata": { - "trusted": true - }, - "cell_type": "markdown", - "source": "## Application: Internal Rate of Return" - }, + "data": { + "text/plain": [ + "1.000000041723251" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%time bisection(func, .4, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import matplotlib.pyplot as plt\n\nv = [-1000, 500, 500, 500, -200]\ndef vpl(v, r):\n return sum([value*(1+r)**(-period) for period, value in enumerate(v)])\n\nx = [x/400 for x in range(101)]\ny = [vpl(v, r) for r in x]\nplt.plot(x, y, 'b')\nplt.axhline(y=0, linewidth=.5, color='k', marker='.')\nplt.xlim((0,.3))\nplt.show()", - "execution_count": null, - "outputs": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 42 µs, sys: 1 µs, total: 43 µs\n", + "Wall time: 47.2 µs\n" + ] }, { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "from scipy import optimize as opt\ndef irr(v, r0):\n \n def vpl(r):\n return sum([value*(1+r)**(-t) for t,value in enumerate(v)])\n \n return opt.newton(vpl, r0)", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "1.000000041723251" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# testing\n", + "%time bisection(lambda x: x**3-1, .4, 3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Newton's Method" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "http://mathworld.wolfram.com/NewtonsMethod.html
\n", + "http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# derive\n", + "def derive(func, x, eps=1e-6):\n", + " \"derive: calculates the derivative of a real-valued function at a certain point of its domain.\"\n", + " if func(x) or func(x) == 0:\n", + " return (func(x+eps)-func(x-eps))/(2*eps)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# newton\n", + "def newton(func, x, eps=10**(-5), delta=10**(-7)):\n", + " \"newton: finds a root of a real-valued function using Newton's method.\"\n", + " \n", + " e = 1\n", + " d = abs(func(x))\n", + " i = 0\n", + " \n", + " x0 = x\n", + " \n", + " while e>eps or d>delta:\n", + " \n", + " i = i+1\n", + " x1 = x0-(func(x0)/derive(func, x0))\n", + " e = abs(x1-x0)\n", + " d = abs(func(x1))\n", + " print(\"interaction: \", i)\n", + " print(\"{0:.6f} -> {1:.6f}\".format(x0,x1))\n", + " print(\"e={0:.6f} d={1:.6f}\".format(e,d))\n", + " print(\"---------------------------------\")\n", + " x0 = x1\n", + " \n", + " return (x0, i)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# testing\nv = [-1000, 500, 500, 500, -200]\nirr(v, 0.05)", - "execution_count": null, - "outputs": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "interaction: 1\n", + "3.000000 -> 2.037037\n", + "e=0.962963 d=7.452726\n", + "---------------------------------\n", + "interaction: 2\n", + "2.037037 -> 1.438355\n", + "e=0.598682 d=1.975764\n", + "---------------------------------\n", + "interaction: 3\n", + "1.438355 -> 1.120022\n", + "e=0.318333 d=0.405012\n", + "---------------------------------\n", + "interaction: 4\n", + "1.120022 -> 1.012402\n", + "e=0.107620 d=0.037670\n", + "---------------------------------\n", + "interaction: 5\n", + "1.012402 -> 1.000151\n", + "e=0.012251 d=0.000454\n", + "---------------------------------\n", + "interaction: 6\n", + "1.000151 -> 1.000000\n", + "e=0.000151 d=0.000000\n", + "---------------------------------\n", + "interaction: 7\n", + "1.000000 -> 1.000000\n", + "e=0.000000 d=0.000000\n", + "---------------------------------\n", + "CPU times: user 1.75 ms, sys: 1.51 ms, total: 3.27 ms\n", + "Wall time: 1.84 ms\n" + ] }, { - "metadata": {}, - "cell_type": "markdown", - "source": "## Integration" - }, + "data": { + "text/plain": [ + "(1.0000000000000004, 7)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%time newton(lambda w: w**3-1, 3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quasi-Newton" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Secant Method\n", + "http://mathworld.wolfram.com/SecantMethod.html" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# quasi-newton (secant)\n", + "def secant(func, x0, x1, eps=10**(-5), delta=10**(-7)):\n", + " \"quasi-newton (secant): finds a root of a real-valued function using the secant method.\"\n", + " \n", + " e = 1\n", + " d = abs(func(x1))\n", + " i = 0\n", + " \n", + " while e>eps or d>delta:\n", + " \n", + " i = i+1\n", + " x2 = x1-(func(x1)*(x1-x0)/(func(x1)-func(x0)))\n", + " e = abs(x2-x1)\n", + " d = abs(func(x2))\n", + " print(\"interaction: \", i)\n", + " print(\"{0:.6f} -> {1:.6f}\".format(x1, x2))\n", + " print(\"e={0:.6f} d={1:.6f}\".format(e, d))\n", + " print(\"---------------------------------\")\n", + " x0 = x1\n", + " x1 = x2\n", + " \n", + " return (x2, i)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import math", - "execution_count": null, - "outputs": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "interaction: 1\n", + "3.000000 -> 2.297297\n", + "e=0.702703 d=11.124158\n", + "---------------------------------\n", + "interaction: 2\n", + "2.297297 -> 1.771816\n", + "e=0.525481 d=4.562319\n", + "---------------------------------\n", + "interaction: 3\n", + "1.771816 -> 1.406459\n", + "e=0.365357 d=1.782155\n", + "---------------------------------\n", + "interaction: 4\n", + "1.406459 -> 1.172256\n", + "e=0.234203 d=0.610896\n", + "---------------------------------\n", + "interaction: 5\n", + "1.172256 -> 1.050102\n", + "e=0.122154 d=0.157964\n", + "---------------------------------\n", + "interaction: 6\n", + "1.050102 -> 1.007500\n", + "e=0.042602 d=0.022670\n", + "---------------------------------\n", + "interaction: 7\n", + "1.007500 -> 1.000362\n", + "e=0.007139 d=0.001086\n", + "---------------------------------\n", + "interaction: 8\n", + "1.000362 -> 1.000003\n", + "e=0.000359 d=0.000008\n", + "---------------------------------\n", + "interaction: 9\n", + "1.000003 -> 1.000000\n", + "e=0.000003 d=0.000000\n", + "---------------------------------\n", + "CPU times: user 1.86 ms, sys: 1.57 ms, total: 3.43 ms\n", + "Wall time: 1.98 ms\n" + ] }, { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "print(dir(math))", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "(1.0000000009764454, 9)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%time secant(lambda w: w**3-1, 4, 3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## using `scipy.optimize`" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy import optimize as opt" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "math.e", - "execution_count": null, - "outputs": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 27 µs, sys: 2 µs, total: 29 µs\n", + "Wall time: 32.9 µs\n" + ] }, { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "math.exp(2)", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "0.999999999999545" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%time opt.bisect(lambda w: w**3-1, .4, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "math.pi", - "execution_count": null, - "outputs": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 22 µs, sys: 1 µs, total: 23 µs\n", + "Wall time: 26.9 µs\n" + ] }, { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "math.nan", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%time opt.newton(lambda w: w**3-1, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "### Rectangle method\n$\\int_{a}^{b}{f(x)dx} \\approx \\Delta x\\,\\sum_{i=1}^{n}{f(m_i)}$ where $\\Delta x = \\frac{b-a}{n}$ and $m_{i} = a + \\frac{\\Delta x}{2} i$" + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 23 µs, sys: 0 ns, total: 23 µs\n", + "Wall time: 26.9 µs\n" + ] }, { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def rectangle(f, a, b, n):\n \n step = (b-a)/n\n I = 0\n \n for i in range(int(n)):\n I += f(a+(2*i+1)*step/2)\n \n return I*step", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "1.0" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%time opt.newton(lambda w: w**3-1, 3, fprime=lambda w: 3*(w**2))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Application: Internal Rate of Return" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "1e5", - "execution_count": null, - "outputs": [] - }, + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD8CAYAAABpcuN4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8lWP+//HXx44OopTtMBWRHcqhsnRklKidQc5i0Jd8m1GMr+Rs5DAzjOP80CBCjslhpgiphCKyapIOk3aZ0S6U4/BFpM/vj+vua6ndbu+91tr3Wmu/n4/Heqx73eu+1/5cj7Uf+7Ov+7qv62PujoiIyKZsEXcAIiKS25QoRESkUkoUIiJSKSUKERGplBKFiIhUSolCREQqpUQhIiKVUqIQEZFKKVGIiEil6sUdQFVsv/323rp167jDEBHJK7Nnz/7E3YvT/Zy8SBStW7cmmUzGHYaISF4xs39n4nN06UlERCqlRCEiIpVSohARkUopUYiISKWUKEREpFJpJwoza2Bms8zsHTNbYGbXRPt3M7O3zGyJmT1hZltF++tHr8ui91unG4OIiGRPJnoUa4BD3X1/oANQamZdgT8Dt7l7CfA5MCg6fhDwubvvAdwWHSciIjkq7UThwdfRyy2jhwOHAk9F+8cAx0Tb/aPXRO/3NjOr7GcsXw7ffJNupCIiUhMZGaMwsyIzmwusAiYDS4Ev3H1tdEg50CLabgEsB4je/xJoXsFnDjazpJklV62Cfv3gq68yEa2IiFRHRhKFu//o7h2AlkBnYO+KDoueK+o9+EY73Ee5e8LdE7vtBq+/DocdBp9/nomIRUSkqjJ615O7fwG8AnQFmprZ+iVCWgIro+1yoBVA9H4T4LPKPrdZM3j6aZg7F3r1glWrMhm1iIhUJhN3PRWbWdNouyFwGLAImAacEB02EBgfbU+IXhO9/7K7b9Sj2FD//vDss/Dee3DIIVBenm7kIiJSFZnoUewMTDOzecDbwGR3fw64BBhmZmWEMYjR0fGjgebR/mHApVX9QX36wKRJsGIFHHwwLFuWgehFRKRSVoV/5mOXSCQ8dfXYt9+G0lJo0AAmT4Z27WIMTkQkR5nZbHdPpPs5eTkz+8AD4dVXYd26cBlqzpy4IxIRKVx5mSgA9tkHpk+HrbcOA9wzZsQdkYhIYcrbRAGwxx4hWey8cxi/ePHFuCMSESk8eZ0oAFq1gtdegz33hKOPhiefjDsiEZHCkveJAmCHHWDaNOjcGQYMgNGjN3+OiIhUTUEkCoCmTeGll8IlqLPPhptvjjsiEZHCUDCJAqBRIxg/Hk46CS66CC6/HPLg7l8RkZxWb/OH5JettoLHHgs9jOuvh88+g5Ejoago7shERPJTwSUKCEnh7rvDGlE33BAWEnz44ZBERESkegoyUQCYhR5F8+bhMtQXX4SFBRs3jjsyEZH8UlBjFBUZPhzuvx+mTAnLlH/6adwRiYjkl4JPFABnnvnTMuUHHxwq5omISNXUiUQBcMwxYeZ2eTn06AH//GfcEYmI5Ic6kygAevYMiwmuWQMHHQSzZsUdkYhI7qtTiQKgY8dQVrVJEzj00FDfQkRENi0TFe5amdk0M1tkZgvM7Pxo/9VmtsLM5kaPI1LOuczMysxssZn1TTeG6tpjj5As9tgDjjwSHn20tiMQEckfmbg9di1wobvPMbNtgNlmNjl67zZ3/9liGmbWDhgAtAd+AUwxs7bu/mMGYqmynXYKl6GOOQZOOy3U4b7ggtqMQEQkP6Tdo3D3D919TrT9FaFedotKTukPjHX3Ne7+PlAGdE43jppo0gReeAFOOAGGDYOLLw7FkERE5CcZHaMws9ZAR+CtaNe5ZjbPzO43s+2ifS2A1BtUy6k8sWRVgwYwdiyccw7cdBP813/BDz/EFY2ISO7JWKIws8bA08D/uPt/gLuANkAH4EPglvWHVnD6Rkv3mdlgM0uaWXL16tWZCrNCRUVhPajrrgtLfRx1FHz9dVZ/pIhI3shIojCzLQlJ4lF3fwbA3T929x/dfR1wLz9dXioHWqWc3hJYueFnuvsod0+4e6K4uDgTYVbKDK68Eu69FyZPDuVVV63K+o8VEcl5mbjryYDRwCJ3vzVl/84phx0LzI+2JwADzKy+me0GlAA5M6Ph7LPh73+HBQuge3coK4s7IhGReGWiR9EDOB04dINbYW80s3fNbB7QC7gAwN0XAOOAhcCLwNDavuNpc446Cl5+OSwk2L27JuaJSN1mngeVfRKJhCeTyVr/uYsXQ2lpuAQ1bhz86le1HoKISI2Z2Wx3T6T7OXVuZnZ17LknzJwJe+0F/furFreI1E1KFJux007wyithifKzz4YRI1ReVUTqFiWKKthmG3j22bBc+bXXwqBBmmshInVHwVa4y7QttwyXnnbZBa65BlasgCefhG23jTsyEZHsUo+iGszg6qvhvvtg6lT45S9h5UYzQERECosSRQ0MGgQTJ8LSpdC1K8yfv/lzRETylRJFDfXtC9Onw9q1oWLe1KlxRyQikh1KFGno0AHefDOMW5SWwoMPxh2RiEjmKVGkaZddYMaMUGb1zDN1+6yIFB4ligxo0iSMWay/fXbgwFCXW0SkEOj22AzZaqtw+2ybNmEV2g8+gGeegWbN4o5MRCQ96lFkkBlccUWowT1zZlhQcOnSuKMSEUmPEkUWnHoqTJkCq1eH22dffz3uiEREak6JIksOPjjcEdW0KfTuDY8/HndEIiI1o0SRRSUlIVl07hx6GdddpzuiRCT/ZKLCXSszm2Zmi8xsgZmdH+1vZmaTzWxJ9LxdtN/M7HYzKzOzeWbWKd0Yclnz5qG06umnw1VX6Y4oEck/mehRrAUudPe9ga7AUDNrB1wKTHX3EmBq9BqgH6H8aQkwGLgrAzHktPr1YcyY0KN4+OGwZPknn8QdlYhI1aSdKNz9Q3efE21/BSwCWgD9gTHRYWOAY6Lt/sBDHrwJNN2gvnZBMgu3zT7xBCST0KULLFoUd1QiIpuX0TEKM2sNdATeAnZ09w8hJBNgh+iwFsDylNPKo311wkknhUJIX38N3bqFy1IiIrksY4nCzBoDTwP/4+7/qezQCvZtNMRrZoPNLGlmydWrV2cqzJzQpQvMmhWW/+jXD+4q+ItvIpLPMpIozGxLQpJ41N2fiXZ/vP6SUvS8KtpfDrRKOb0lsFFVB3cf5e4Jd08UFxdnIsycsuuuYX5FaSkMGQK/+11YiVZEJNdk4q4nA0YDi9z91pS3JgADo+2BwPiU/WdEdz91Bb5cf4mqrtlmGxg/HoYNgzvugCOPhC+/jDsqEZGfy0SPogdwOnComc2NHkcANwCHm9kS4PDoNcDzwDKgDLgXGJKBGPJWURHccgvce2+oadG1K5SVxR2ViMhPzPNgBlgikfBkMhl3GFn3yitw/PFh+6mnoFevWMMRkTxnZrPdPZHu52hmdg7p2TMMcu+0E/TpA/fcE3dEIiJKFDmnTZuw8myfPvDb38K558IPP8QdlYjUZUoUOWjbbWHCBBg+HEaODHdGffZZ3FGJSF2lRJGjiorgpptCHe4ZM8LCggsXxh2ViNRFShQ5buBAmDYtzOTu2hWeey7uiESkrlGiyAPdu8Pbb4dly48+Gm64QcuVi0jtUaLIE61awfTpcPLJcNll8OtfwzffxB2ViNQFShR5pFEjeOwx+NOfYOzYUEXvgw/ijkpECp0SRZ4xCz2KCRNgyRJIJEJPQ0QkW5Qo8tSRR4bJedttB4ceGlag1biFiGSDEkUe22sveOutMDlvyBD4zW9UZlVEMk+JIs81bRouQ11+eVhYsFcv+LBOrsUrItmiRFEAiorgj3+EcePgnXfggAPCMiAiIpmgRFFATjwxJIiGDeGQQ0IPQ0QkXUoUBWa//cLkvF69YPBgjVuISPqUKApQs2bw/PNw6aUwalRYvnzlRsVmRUSqJlM1s+83s1VmNj9l39VmtmKDqnfr37vMzMrMbLGZ9c1EDPJzRUVw/fXw5JPw7rvQqVNYXFBEpLoy1aN4ECitYP9t7t4hejwPYGbtgAFA++icv5pZUYbikA2ccEK4hXbbbcPlqDvv1HwLEamejCQKd38NqGrFhP7AWHdf4+7vE2pnd85EHFKx9u3DuMURR8B554UVabVOlIhUVbbHKM41s3nRpanton0tgOUpx5RH+37GzAabWdLMkqtXr85ymIWvSRP429/g2mvhkUfCirTLlsUdlYjkg2wmiruANkAH4EPglmi/VXDsRhdD3H2UuyfcPVFcXJy9KOuQLbaA3/8eJk4MiwkecEAY9BYRqUzWEoW7f+zuP7r7OuBefrq8VA60Sjm0JaB7cmpRv36QTELr1mHNqBEj4Mcf445KRHJV1hKFme2c8vJYYP0dUROAAWZW38x2A0qAWdmKQyq2++7wxhtwxhnhctSRR8Knn8YdlYjkonqZ+BAzexzoCWxvZuXACKCnmXUgXFb6F/AbAHdfYGbjgIXAWmCou+v/2Rg0bAgPPADdusHvfhcuRT39dHgWEVnPPA/ulUwkEp5MJuMOo6C9/Xa4lfajj8IttGefHWpfiEj+MrPZ7p5I93M0M1sAOPBAmD07zOIePBjOOku30IpIoEQh/2f77cNdUFddBWPGhEtSS5bEHZWIxE2JQn6mqAiuuSYkjPLyUGr16afjjkpE4qREIRUqLYU5c0IVvRNOgGHD4Icf4o5KROKgRCGbtOuuMH16WPbjtttCjYvlyzd/nogUFiUKqdRWW8Htt8PYsWEV2o4dYdKkuKMSkdqkRCFVcvLJYTb3L34RZnZfeSWsXRt3VCJSG5QopMr23BPefBPOPDPU6D78cPjww7ijEpFsU6KQamnUCEaPhgcfDHUuOnaEqVPjjkpEskmJQmpk4MAwm7tZs9CzuOYaLSwoUqiUKKTG2reHWbPgtNPg6quhb9+wBIiIFBYlCklL48ZhFvf994fVaDt00KUokUKjRCFpMwsD3KmXoq66SndFiRQKJQrJmPW1uQcOhOuug969YcWKuKMSkXQpUUhGbb11qHHx0ENhNdr99w+lV0Ukf2UkUZjZ/Wa2yszmp+xrZmaTzWxJ9LxdtN/M7HYzKzOzeWbWKRMxSG45/fSQKFq2DNXzLrwQvv8+7qhEpCYy1aN4ECjdYN+lwFR3LwGmRq8B+hHKn5YAg4G7MhSD5Jj1E/SGDoVbb4UePWDp0rijEpHqykiicPfXgM822N0fGBNtjwGOSdn/kAdvAk03qK8tBaRBg1Ax75lnoKwsTNB7/PG4oxKR6sjmGMWO7v4hQPS8Q7S/BZC6Bml5tE8K2LHHwty5sO++cOqpoYLe//5v3FGJSFXEMZhdUSXmjQp3m9lgM0uaWXL16tW1EJZk2667wquvwhVXhCVADjggJA8RyW3ZTBQfr7+kFD2vivaXA61SjmsJrNzwZHcf5e4Jd08UFxdnMUypTfXqwR/+ECblffUVdOkSljH3jf5VEJFckc1EMQEYGG0PBMan7D8juvupK/Dl+ktUUnf06gXvvBOW/Tj/fDjqKFDHUSQ3Zer22MeBmcCeZlZuZoOAG4DDzWwJcHj0GuB5YBlQBtwLDMlEDJJ/tt8exo+HO+6AKVNgv/3gpZfijkpENmSeB33+RCLhyWQy7jAki+bNg1NOgYULYfjwUO9iq63ijkokv5nZbHdPpPs5mpktOWG//UIFvSFD4OaboWtXWLw47qhEBJQoJIc0bAgjR4bLUR98AJ06wb33aqBbJG5KFJJzjj46XIrq3h0GD4bjjoNPPok7KpG6S4lCctIvfgGTJoXLUBMnhktTkyfHHZVI3aREITlriy3CYoJvvQVNm0KfPjBsGKxZE3dkInWLEoXkvI4dfxrovu02OPBAmD9/8+eJSGYoUUheaNQoDHRPnAgffwyJBPzlL7BuXdyRiRQ+JQrJK0ccAe++Gy5DXXBBmNmtKnoi2aVEIXlnhx3CLbT33ANvvBFWpB03Lu6oRAqXEoXkJbNw6+w//gElJXDyyaGq3hdfxB2ZSOFRopC81rYtzJgBV18dCiLttx9MmxZ3VCKFRYlC8t6WW8KIEeEyVMOGcOih4Tba776LOzKRwqBEIQWjc+dwKWro0HAb7QEHwJw5cUclkv+UKKSgNGoUanRPmhTGK7p0CYWS1q6NOzKR/KVEIQWpT59wG+2JJ8Lvfw89emg1WpGaynqiMLN/mdm7ZjbXzJLRvmZmNtnMlkTP22U7Dql7mjWDxx6DsWNhyZIww/v22zVJT6S6aqtH0cvdO6QU0LgUmOruJcDU6LVIVpx8MixYEMqvnn8+HH44/PvfcUclkj/iuvTUHxgTbY8BjokpDqkjdt4Znnsu1LeYNStM0hs9WrUuRKqiNhKFAy+Z2WwzGxzt29HdPwSInneohTikjjODs88OYxeJRNg+8khYuTLuyERyW20kih7u3gnoBww1s19W5SQzG2xmSTNLrl69OrsRSp3SujVMmRLGK6ZNg/bt4ZFH1LsQ2ZSsJwp3Xxk9rwL+BnQGPjaznQGi51UVnDfK3RPuniguLs52mFLHbLEFnHcevPMOtGsXlv847riwMq2I/FxWE4WZbW1m26zfBvoA84EJwMDosIHA+GzGIbIpJSXw2mtw003wwguhd/HEE+pdiKTKdo9iR2CGmb0DzAImuvuLwA3A4Wa2BDg8ei0Si6IiGD4c5s6FNm1gwIAw/0K9C5HAPA/+dUokEp5MJuMOQ+qAtWvhllvgqqtgm23CLO+TTw4D4SL5xsxmp0xLqDHNzBZJUa8eXHJJWDOqTRs45RQ4/nj46KO4IxOJjxKFSAXatYPXX4c//xmefz6MXTz6qMYupG5SohDZhHr14OKLfyqOdNpp0L+/5l1I3aNEIbIZe+8dehe33AKTJ4fexgMPqHchdYcShUgVFBWFYkjz5oUqemedBaWlWjNK6gYlCpFqKCmBV16BkSNDL2OffeCvf9WKtFLYlChEqmmLLWDIEJg/H7p1CxX1evaE996LOzKR7FCiEKmh1q1DJb377w8LDe6/P9x4o6rpSeFRohBJgxmceSYsXAj9+oU5GF26hFneIoVCiUIkA3beGZ55Bp56ClasCMuYX345fPtt3JGJpE+JQiSDjj8+9C7OOAOuvz5cjnr11bijEkmPEoVIhjVrFsYtpkyBH38MA93//d/w+edxRyZSM0oUIlnSu3cY5B4+PCSOdu3CpSlN1JN8o0QhkkWNGoVaF7NmhXGME0+EY46B8vK4IxOpOiUKkVpwwAEhWdx440/LgNx5Z7g0JZLrlChEakm9enDRRWGiXteuoRRrjx5hWRCRXBZbojCzUjNbbGZlZnZpXHGI1Lbddw8T9R55BJYuDb2NSy+Fb76JOzKRisWSKMysCBgJ9APaAaeYWbtNHf/RRx8xc+bM2gpPJOvM4Ne/hn/+E04/PdS92HdfeOmluCOTQhH9zdwpE58VV4+iM1Dm7svc/XtgLNB/UwevWLGC3r17K1lIwWnePNwRNW1auDTVty+ceqrqdUt6Zs6cSe/evQFaZOLz6mXiQ2qgBbA85XU50CX1ADMbDAxe//q7777jyiuv5OCDD66dCEVq2YknwowZ8MQTYZb3YYeFy1Kq1y3VNX36dL777ruMfV5ciaKiX/2f3V3u7qOAUQBm5g0aNOAPf/gD3bp1q434RGKzeDH89rcwcSJ89hncfXeogSFSVet7FN9++21GZu3EdempHGiV8rolsMkCky1atGDq1KlKElIn7LknvPwyjBkDS5ZAp07hbqmvv447MskX3bp1Y+rUqVDJ39XqMI9hmqiZ1QPeA3oDK4C3gVPdfUFFxycSCU8mk7UYoUhu+PTTsCLt6NHQqhXccUeo2y1SFWY2290T6X5OLD0Kd18LnAtMAhYB4zaVJETqsubN4b77wthFkyZhVvfRR8O//hV3ZFKXxDaPwt2fd/e27t7G3f8YVxwi+aBHD5gzJ8zsnjo1zOy+4Qb4/vu4I5O6QDOzRfLElluGsYpFi6C0FC67DDp0CDW8RbJJiUIkz+yyS7h99rnn4LvvoFcvOO00+OijuCOTQqVEIZKnfvUrWLAArrwSnnwy3C11++2q2S2Zp0QhkscaNoTrrgt1L7p2hfPPD2VY33gj7sikkChRiBSAtm3hxRdDz+LTT8Pg91lnwapVcUcmhUCJQqRAmMEJJ4TB7ksugYcfDpejRo5U3QtJjxKFSIFp3DjcOjtvXlgr6txzw+Wo11+POzLJV0oUIgVq771DNb1x4+CTT+Cgg2DgQK1MK9WnRCFSwMzCqrSLFoV5F48/HsYzbrsNfvgh7ugkXyhRiNQBjRvDn/4UyrB27w7DhoXJei+/HHdkkg+UKETqkLZt4fnnYfx4+PZb6N079Dg++CDuyCSXKVGI1DFmYWHBBQvg2mtD3Yu99grb334bd3SSi5QoROqohg3h978PdbuPPBJGjAgD4E8/DTFUH5AcpkQhUsftsku4M2raNNh22zAXo3fvMNtbBJQoRCTSs2dYyvzOO2Hu3DDYfe65oRyr1G1ZSxRmdrWZrTCzudHjiJT3LjOzMjNbbGZ9sxWDiFRPvXowdGgowXrOOXDXXVBSEmZ3a7HBuivbPYrb3L1D9HgewMzaAQOA9kAp8FczK8pyHCJSDc2bb9yz6NAhTOCTuieOS0/9gbHuvsbd3wfKgM4xxCEim7HvvjBlCvztb+GOqD59wh1TS5bEHZnUpmwninPNbJ6Z3W9m20X7WgDLU44pj/aJSA4yC7W6Fy4Ma0hNmwbt28Pw4fDFF3FHJ7UhrURhZlPMbH4Fj/7AXUAboAPwIXDL+tMq+KiNbsYzs8FmljSz5OrVq9MJU0QyoH79sCrtkiVwxhlw661h/OLuuzV+UejSShTufpi771PBY7y7f+zuP7r7OuBefrq8VA60SvmYlsDKCj57lLsn3D1RXFycTpgikkE77QT33QezZ4eexTnnQMeO8NJLcUcm2ZLNu552Tnl5LDA/2p4ADDCz+ma2G1ACzMpWHCKSHR07hstQTz8N33wDffuG8qyLFsUdmWRaNscobjSzd81sHtALuADA3RcA44CFwIvAUHdXWRWRPGQGxx0Xxi9uvBFmzAgD4OedF5Y2l8Jgngdz9ROJhCeTybjDEJHNWL0arr4a7rknrFh75ZUhadSvH3dkdZOZzXb3RLqfo5nZIpIxxcVhct4774TlzC+6KKwf9eSTWj8qnylRiEjGtW8fljOfNAm23hpOOilU2Hvzzbgjk5pQohCRrOnTJ8zuvu8+WLYMunWDAQPCtuQPJQoRyaqiIhg0KMy/GDECnn021L+48EItOJgvlChEpFY0bhwGut97D04/PdTt3mMPuOUWWLMm7uikMkoUIlKrWrSA0aPDgHeXLmEpkL32gscfh3Xr4o5OKqJEISKx2HdfeOGFMKO7aVM49VTo3DlM4pPcokQhIrE6/PCwHMhDD8GqVXDooXDEEaqwl0uUKEQkdltsEcYt3nsvzPB+4w3Yf38480z44IO4oxMlChHJGQ0ahEl6y5bBsGHw2GPQti1cfDF8/nnc0dVdShQiknOaNYObbw49jJNPDtu77w433RQKKEntUqIQkZy1664wZkyYtNe9e+hZtG0L99+vGhi1SYlCRHLefvvBxInwyivh9tpBg8K+v/9da0jVBiUKEckbhxwCM2eGGhjr1sGxx4aexquvxh1ZYVOiEJG8sr4Gxvz5YQ2p5cuhZ0/o1w/+8Y+4oytM6dbMPtHMFpjZOjNLbPDeZWZWZmaLzaxvyv7SaF+ZmV2azs8XkbqrXr2f1pC66SaYNQs6dQqLDi5ZEnd0hSXdHsV84DjgtdSdZtYOGAC0B0qBv5pZkZkVASOBfkA74JToWBGRGmnYMCwDsmxZKJT03HOhBsbgwVBeHnd0hSGtROHui9x9cQVv9QfGuvsad38fKAM6R48yd1/m7t8DY6NjRUTS0qQJXHcdLF0KQ4bAgw+GRQcvvDBU3pOay9YYRQtgecrr8mjfpvaLiGTEjjvC7beHORinnAJ/+UuYgzFiBHz5ZdzR5afNJgozm2Jm8yt4VNYTsAr2eSX7K/q5g80saWbJ1fp3QESqqXVreOCBMOhdWgrXXhsSxo03wjffxB1dftlsonD3w9x9nwoe4ys5rRxolfK6JbCykv0V/dxR7p5w90RxcfHmWyIiUoH1Nbtnzw7Lml9yCbRpA3feqToYVZWtS08TgAFmVt/MdgNKgFnA20CJme1mZlsRBrwnZCkGEZH/06lTqOM9fXqY3X3eeVBSAslk3JHlvnRvjz3WzMqBbsBEM5sE4O4LgHHAQuBFYKi7/+jua4FzgUnAImBcdKyISK046KAww/ull0JvY4894o4o95nnwfz3RCLhSaV9EZFqMbPZ7p7Y/JGV08xsERGplBKFiIhUSolCREQqpUQhIiKVUqIQEZFKKVGIiEillChERKRSShQiIlKpvJhwZ2ZfARUtZ14otgc+iTuILFL78lsht6+Q2wawp7tvk+6H1MtEJLVgcSZmF+YqM0uqfflL7ctfhdw2CO3LxOfo0pOIiFRKiUJERCqVL4liVNwBZJnal9/UvvxVyG2DDLUvLwazRUQkPvnSoxARkZjEnijMrNTMFptZmZldWsH79c3siej9t8ysdcp7l0X7F5tZ39qMu6pq2j4za21m35rZ3Ohxd23HXhVVaN8vzWyOma01sxM2eG+gmS2JHgNrL+qqSbNtP6Z8dzlZxbEK7RtmZgvNbJ6ZTTWzXVPey+nvDtJuXyF8f781s3ejNswws3Yp71Xvb6e7x/YAioClwO7AVsA7QLsNjhkC3B1tDwCeiLbbRcfXB3aLPqcozvZkuH2tgflxtyED7WsN7Ac8BJyQsr8ZsCx63i7a3i7uNmWibdF7X8fdhgy0rxfQKNo+J+V3M6e/u3TbV0Df37Yp20cDL0bb1f7bGXePojNQ5u7L3P17YCzQf4Nj+gNjou2ngN5mZtH+se6+xt3fB8qiz8sl6bQvH2y2fe7+L3efB6zb4Ny+wGR3/8zdPwcmA6W1EXQVpdO2fFCV9k1z92+il28CLaPtXP/uIL325YOqtO8/KS+3BtYPSFf7b2fciaIFsDzldXm0r8I3CJnOAAACP0lEQVRjPNTc/hJoXsVz45ZO+wB2M7N/mNmrZnZwtoOtgXS+g1z//tKNr4GZJc3sTTM7JrOhZUR12zcIeKGG58YhnfZBgXx/ZjbUzJYCNwK/q865qeKemV3Rf84b3oa1qWOqcm7c0mnfh8Au7v6pmR0A/N3M2m/wX0Lc0vkOcv37Sze+Xdx9pZntDrxsZu+6+9IMxZYJVW6fmZ0GJIBDqntujNJpHxTI9+fuI4GRZnYqcCUwsKrnpoq7R1EOtEp53RJYualjzKwe0AT4rIrnxq3G7Yu6hZ8CuPtswnXEtlmPuHrS+Q5y/ftLKz53Xxk9LwNeATpmMrgMqFL7zOww4ArgaHdfU51zY5ZO+wrm+0sxFljfM6r+9xfzgEw9wkDYbvw0INN+g2OG8vPB3nHRdnt+PiCzjNwbzE6nfcXr20MYsFoBNIu7TdVtX8qxD7LxYPb7hMHQ7aLtnGlfmm3bDqgfbW8PLGGDgca4H1X83exI+AelZIP9Of3dZaB9hfL9laRsHwUko+1q/+3MhQYfAbwXfWFXRPuuJWR4gAbAk4QBl1nA7innXhGdtxjoF3dbMtk+4HhgQfSFzgGOirstNWzfgYT/YP4X+BRYkHLuWVG7y4Az425LptoGdAfejb67d4FBcbelhu2bAnwMzI0eE/Llu0unfQX0/f2/6G/IXGAaKYmkun87NTNbREQqFfcYhYiI5DglChERqZQShYiIVEqJQkREKqVEISIilVKiEBGRSilRiIhIpZQoRESkUv8f+XlPG6BbWO8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "v = [-1000, 500, 500, 500, -200]\n", + "def vpl(v, r):\n", + " return sum([value*(1+r)**(-period) for period, value in enumerate(v)])\n", + "\n", + "x = [x/400 for x in range(101)]\n", + "y = [vpl(v, r) for r in x]\n", + "plt.plot(x, y, 'b')\n", + "plt.axhline(y=0, linewidth=.5, color='k', marker='.')\n", + "plt.xlim((0,.3))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy import optimize as opt\n", + "def irr(v, r0):\n", + " \n", + " def vpl(r):\n", + " return sum([value*(1+r)**(-t) for t,value in enumerate(v)])\n", + " \n", + " return opt.newton(vpl, r0)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# test 1\nrectangle(lambda x: x**2, 0, 12, 1e5)", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "0.16864273669048988" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# testing\n", + "v = [-1000, 500, 500, 500, -200]\n", + "irr(v, 0.05)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Integration" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "import math" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# test 1\nrectangle(lambda x: math.exp(x), 0, 1, 10)", - "execution_count": null, - "outputs": [] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "['__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']\n" + ] + } + ], + "source": [ + "print(dir(math))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "### Trapezoid rule\n$\\int_{a}^{b}{f(x)dx} \\approx \\frac{\\Delta x}{2}\\,\\sum_{i=1}^{n}{[f(x_{i-1})+f(x_{i})]} = \\frac{\\Delta x}{2}\\,\\left[f(x_{0})+2\\,f(x_{1})+2\\,f(x_{1})+...+2\\,f(x_{n-1})+f(x_{n})\\right]$ where $\\Delta x = \\frac{b-a}{n}$ and $x_{i} = a + \\Delta x\\,i$" - }, + "data": { + "text/plain": [ + "2.718281828459045" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "math.e" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def trapezoid(f, a, b, n):\n \n step = (b - a)/n\n I = f(a) + f(b)\n \n for i in range(1, int(n), 1):\n I += 2*f(a+i*step)\n \n return I*step/2", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "7.38905609893065" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "math.exp(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# test\ntrapezoid(lambda x: x**2, 0, 12, 1000)", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "3.141592653589793" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "math.pi" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# test\ntrapezoid(lambda x: math.exp(x), 0, 1, 10)", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "nan" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "math.nan" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Rectangle method\n", + "$\\int_{a}^{b}{f(x)dx} \\approx \\Delta x\\,\\sum_{i=1}^{n}{f(m_i)}$ where $\\Delta x = \\frac{b-a}{n}$ and $m_{i} = a + \\frac{\\Delta x}{2} i$" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "def rectangle(f, a, b, n):\n", + " \n", + " step = (b-a)/n\n", + " I = 0\n", + " \n", + " for i in range(int(n)):\n", + " I += f(a+(2*i+1)*step/2)\n", + " \n", + " return I*step" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "### Simpson's rule\n[Reference from Wolfran's MathWorld](http://mathworld.wolfram.com/SimpsonsRule.html)\n\n$\\int_{a}^{b}{f(x)dx} \\approx \\frac{\\Delta x}{3}\\,\\left[f(x_{0})+4\\,f(x_{1})+2\\,f(x_{2})+4\\,f(x_{3})+2\\,f(x_{4})+...+2\\,f(x_{n-2})+4\\,f(x_{n-1})+f(x_{n})\\right]$ where $\\Delta x = \\frac{b-a}{n}$." - }, + "data": { + "text/plain": [ + "100000.0" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "1e5" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def simpson(f, a, b, n):\n \n step = (b-a)/n\n I = f(a)+f(b)\n \n for i in range(1, int(n), 2):\n I += 4*f(a+i*step)\n \n for i in range(2, int(n-1), 2):\n I += 2*f(a+i*step)\n \n return I*step/3", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "575.9999999855918" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# test 1\n", + "rectangle(lambda x: x**2, 0, 12, 1e5)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# test\nsimpson(lambda x: x**2, 0, 12, 1e5)", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "1.7175660864611277" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# test 1\n", + "rectangle(lambda x: math.exp(x), 0, 1, 10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Trapezoid rule\n", + "$\\int_{a}^{b}{f(x)dx} \\approx \\frac{\\Delta x}{2}\\,\\sum_{i=1}^{n}{[f(x_{i-1})+f(x_{i})]} = \\frac{\\Delta x}{2}\\,\\left[f(x_{0})+2\\,f(x_{1})+2\\,f(x_{1})+...+2\\,f(x_{n-1})+f(x_{n})\\right]$ where $\\Delta x = \\frac{b-a}{n}$ and $x_{i} = a + \\Delta x\\,i$" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "def trapezoid(f, a, b, n):\n", + " \n", + " step = (b - a)/n\n", + " I = f(a) + f(b)\n", + " \n", + " for i in range(1, int(n), 1):\n", + " I += 2*f(a+i*step)\n", + " \n", + " return I*step/2" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# test\nsimpson(lambda x: math.exp(x), 0, 1, 10)", - "execution_count": null, - "outputs": [] - }, + "data": { + "text/plain": [ + "576.0002880000003" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# test\n", + "trapezoid(lambda x: x**2, 0, 12, 1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "from scipy import integrate\n# help(integrate)", - "execution_count": 47, - "outputs": [] - }, + "data": { + "text/plain": [ + "1.7197134913893146" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# test\n", + "trapezoid(lambda x: math.exp(x), 0, 1, 10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simpson's rule\n", + "[Reference from Wolfran's MathWorld](http://mathworld.wolfram.com/SimpsonsRule.html)\n", + "\n", + "$\\int_{a}^{b}{f(x)dx} \\approx \\frac{\\Delta x}{3}\\,\\left[f(x_{0})+4\\,f(x_{1})+2\\,f(x_{2})+4\\,f(x_{3})+2\\,f(x_{4})+...+2\\,f(x_{n-2})+4\\,f(x_{n-1})+f(x_{n})\\right]$ where $\\Delta x = \\frac{b-a}{n}$." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "def simpson(f, a, b, n):\n", + " \n", + " step = (b-a)/n\n", + " I = f(a)+f(b)\n", + " \n", + " for i in range(1, int(n), 2):\n", + " I += 4*f(a+i*step)\n", + " \n", + " for i in range(2, int(n-1), 2):\n", + " I += 2*f(a+i*step)\n", + " \n", + " return I*step/3" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "help(integrate.trapz)", - "execution_count": 50, - "outputs": [ - { - "output_type": "stream", - "text": "Help on function trapz in module numpy.lib.function_base:\n\ntrapz(y, x=None, dx=1.0, axis=-1)\n Integrate along the given axis using the composite trapezoidal rule.\n \n Integrate `y` (`x`) along given axis.\n \n Parameters\n ----------\n y : array_like\n Input array to integrate.\n x : array_like, optional\n The sample points corresponding to the `y` values. If `x` is None,\n the sample points are assumed to be evenly spaced `dx` apart. The\n default is None.\n dx : scalar, optional\n The spacing between sample points when `x` is None. The default is 1.\n axis : int, optional\n The axis along which to integrate.\n \n Returns\n -------\n trapz : float\n Definite integral as approximated by trapezoidal rule.\n \n See Also\n --------\n sum, cumsum\n \n Notes\n -----\n Image [2]_ illustrates trapezoidal rule -- y-axis locations of points\n will be taken from `y` array, by default x-axis distances between\n points will be 1.0, alternatively they can be provided with `x` array\n or with `dx` scalar. Return value will be equal to combined area under\n the red lines.\n \n \n References\n ----------\n .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule\n \n .. [2] Illustration image:\n http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png\n \n Examples\n --------\n >>> np.trapz([1,2,3])\n 4.0\n >>> np.trapz([1,2,3], x=[4,6,8])\n 8.0\n >>> np.trapz([1,2,3], dx=2)\n 8.0\n >>> a = np.arange(6).reshape(2, 3)\n >>> a\n array([[0, 1, 2],\n [3, 4, 5]])\n >>> np.trapz(a, axis=0)\n array([ 1.5, 2.5, 3.5])\n >>> np.trapz(a, axis=1)\n array([ 2., 8.])\n\n", - "name": "stdout" - } + "data": { + "text/plain": [ + "576.0000000000049" ] - }, + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# test\n", + "simpson(lambda x: x**2, 0, 12, 1e5)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "", - "execution_count": null, - "outputs": [] + "data": { + "text/plain": [ + "1.7182827819248236" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "name": "python3", - "display_name": "Python 3", - "language": "python" - }, - "language_info": { - "mimetype": "text/x-python", - "nbconvert_exporter": "python", - "name": "python", - "pygments_lexer": "ipython3", - "version": "3.5.4", - "file_extension": ".py", - "codemirror_mode": { - "version": 3, - "name": "ipython" - } + ], + "source": [ + "# test\n", + "simpson(lambda x: math.exp(x), 0, 1, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy import integrate\n", + "# help(integrate)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on function trapz in module numpy.lib.function_base:\n", + "\n", + "trapz(y, x=None, dx=1.0, axis=-1)\n", + " Integrate along the given axis using the composite trapezoidal rule.\n", + " \n", + " Integrate `y` (`x`) along given axis.\n", + " \n", + " Parameters\n", + " ----------\n", + " y : array_like\n", + " Input array to integrate.\n", + " x : array_like, optional\n", + " The sample points corresponding to the `y` values. If `x` is None,\n", + " the sample points are assumed to be evenly spaced `dx` apart. The\n", + " default is None.\n", + " dx : scalar, optional\n", + " The spacing between sample points when `x` is None. The default is 1.\n", + " axis : int, optional\n", + " The axis along which to integrate.\n", + " \n", + " Returns\n", + " -------\n", + " trapz : float\n", + " Definite integral as approximated by trapezoidal rule.\n", + " \n", + " See Also\n", + " --------\n", + " sum, cumsum\n", + " \n", + " Notes\n", + " -----\n", + " Image [2]_ illustrates trapezoidal rule -- y-axis locations of points\n", + " will be taken from `y` array, by default x-axis distances between\n", + " points will be 1.0, alternatively they can be provided with `x` array\n", + " or with `dx` scalar. Return value will be equal to combined area under\n", + " the red lines.\n", + " \n", + " \n", + " References\n", + " ----------\n", + " .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule\n", + " \n", + " .. [2] Illustration image:\n", + " http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png\n", + " \n", + " Examples\n", + " --------\n", + " >>> np.trapz([1,2,3])\n", + " 4.0\n", + " >>> np.trapz([1,2,3], x=[4,6,8])\n", + " 8.0\n", + " >>> np.trapz([1,2,3], dx=2)\n", + " 8.0\n", + " >>> a = np.arange(6).reshape(2, 3)\n", + " >>> a\n", + " array([[0, 1, 2],\n", + " [3, 4, 5]])\n", + " >>> np.trapz(a, axis=0)\n", + " array([ 1.5, 2.5, 3.5])\n", + " >>> np.trapz(a, axis=1)\n", + " array([ 2., 8.])\n", + "\n" + ] } + ], + "source": [ + "help(integrate.trapz)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-I.ipynb" "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-I.ipynb" index 649d31d..a2e3eb6 100644 --- "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-I.ipynb" +++ "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-I.ipynb" @@ -1,1128 +1,5921 @@ { - "cells": [ - { - "metadata": {}, - "cell_type": "markdown", - "source": "# Optimization" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "!pip install numdifftools", - "execution_count": 118, - "outputs": [ - { - "output_type": "stream", - "text": "Requirement already satisfied: numdifftools in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (0.9.20)\nRequirement already satisfied: numpy>=1.9 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (1.15.2)\nRequirement already satisfied: scipy>=0.8 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (1.1.0)\nRequirement already satisfied: algopy>=0.4 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (0.5.7)\nRequirement already satisfied: setuptools>=9.0 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (40.4.3)\n\u001b[33mYou are using pip version 18.0, however version 18.1 is available.\nYou should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", - "name": "stdout" - } - ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import numpy as np\nimport timeit\nfrom scipy import optimize as opt\nimport matplotlib.pyplot as plt\nfrom mpl_toolkits.mplot3d.axes3d import get_test_data\nimport numdifftools as nd", - "execution_count": 119, - "outputs": [] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimization - Otimização" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Instalando a biblioteca `numdifftools` e suas dependências." + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "## Scalar functions" - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: numdifftools in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (0.9.20)\n", + "Requirement already satisfied: numpy>=1.9 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (1.15.2)\n", + "Requirement already satisfied: scipy>=0.8 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (1.1.0)\n", + "Requirement already satisfied: algopy>=0.4 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (0.5.7)\n", + "Requirement already satisfied: setuptools>=9.0 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (40.4.3)\n", + "\u001b[33mYou are using pip version 18.0, however version 18.1 is available.\n", + "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install numdifftools" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import timeit\n", + "from scipy import optimize as opt\n", + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d.axes3d import get_test_data\n", + "import numdifftools as nd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scalar functions" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [], + "source": [ + "def f(x):\n", + " return (x+3)*(x-1)**2" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "X = np.arange(-5, 5, .1)\n", + "Y = f(X)\n", + "plt.plot(X, Y)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def f(x):\n return (x+3)*(x-1)**2", - "execution_count": 120, - "outputs": [] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "567 µs ± 16.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" + ] + } + ], + "source": [ + "%timeit opt.minimize_scalar(f, bracket=(-2, 2, 4), method='golden')" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [ { - "metadata": { - "scrolled": false, - "trusted": true - }, - "cell_type": "code", - "source": "X = np.arange(-5, 5, .1)\nY = f(X)\nplt.plot(X, Y)\nplt.show()", - "execution_count": 121, - "outputs": [] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "714 µs ± 33.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" + ] + } + ], + "source": [ + "%timeit opt.minimize_scalar(f, bracket=(-2, 2, 4), method='brent')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Function to calculate first derivative of $f$ at $x_{0}$" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [], + "source": [ + "def d1(x, f, h=1e-5):\n", + " return (f(x+h)-f(x-h))/(2*h)" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%timeit opt.minimize_scalar(f, bracket=(-2, 2, 4), method='golden')", - "execution_count": 122, - "outputs": [ - { - "output_type": "stream", - "text": "567 µs ± 16.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n", - "name": "stdout" - } + "data": { + "text/plain": [ + "79.99999999697138" ] - }, + }, + "execution_count": 125, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Test\n", + "d1(5, f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Function to calculate second derivative of $f$ at $x_{0}$" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [], + "source": [ + "def d2(x, f, h=1e-5):\n", + " return (f(x+2*h)+f(x-2*h)-2*f(x))/(2*h)**2" + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%timeit opt.minimize_scalar(f, bracket=(-2, 2, 4), method='brent')", - "execution_count": 123, - "outputs": [ - { - "output_type": "stream", - "text": "714 µs ± 33.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n", - "name": "stdout" - } + "data": { + "text/plain": [ + "32.000002647691865" ] - }, + }, + "execution_count": 127, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Test\n", + "d2(5, f)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Newton-Raphson" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [], + "source": [ + "def my_newton(f, x0, h=1e-5, delta=1e-5, eps=1e-5):\n", + " \n", + " dif = 1\n", + " der = 1\n", + " i = 0\n", + " \n", + " while dif>eps or der>delta:\n", + " \n", + " i += 1\n", + " d = d1(x0, f)\n", + " x1 = x0 - (d/d2(x0, f))\n", + " dif = abs(x1-x0)\n", + " der = abs(d)\n", + " x0 = x1\n", + " if i > 100:\n", + " break\n", + " \n", + " return x1" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "Function to calculate first derivative of $f$ at $x_{0}$" - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "74.6 µs ± 4.27 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" + ] + } + ], + "source": [ + "%timeit my_newton(f, 10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Derivatives" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [], + "source": [ + "df1 = nd.Derivative(f)\n", + "df2 = nd.Derivative(f, n=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def d1(x, f, h=1e-5):\n return (f(x+h)-f(x-h))/(2*h)", - "execution_count": 124, - "outputs": [] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "185 ms ± 10.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "%timeit opt.minimize(f, 10, method='Newton-CG', jac=df1, hess=df2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Refresher of matrix algebra" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Quadratic form: $Q(x_{1}, x_{2}) = a_{1}\\,x_{1}^2 + a_{2}\\,x_{2}^2 + a_{3}\\,x_{1}\\,x_{2}$

\n", + "\n", + "This a algebraic expression can be written with matrix notation:\n", + "$\n", + " x=\n", + " \\left[ {\\begin{array}{c}\n", + " x_{1} \\\\\n", + " x_{2} \\\\\n", + " \\end{array} } \\right]\n", + "$\n", + " and \n", + "$\n", + " A=\n", + " \\left[ {\\begin{array}{c}\n", + " a_{1} & a_{3}/2 \\\\\n", + " a_{3}/2 & a_{2} \\\\\n", + " \\end{array} } \\right]\n", + "$\n", + " imply $Q(x)=x^{T}\\,A\\,x$. Notice that $A$ is a square, **symmetric** matrix. Therefore, there is a one-to-one relationship between quadratic forms and symmetric matrices.

\n", + " \n", + "*Definitions*:
\n", + "* A quadratic form is *positive definite* iff $Q(x)>0$ for any $x\\neq0$.\n", + "* A quadratic form is *negative definite* iff $Q(x)<0$ for any $x\\neq0$." + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# Test\nd1(5, f)", - "execution_count": 125, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 125, - "data": { - "text/plain": "79.99999999697138" - }, - "metadata": {} - } + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('
');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '
');\n", + " var titletext = $(\n", + " '
');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('
');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('
')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('
');\n", + " var button = $('');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "metadata": {}, - "cell_type": "markdown", - "source": "### Derivatives" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "df1 = nd.Derivative(f)\ndf2 = nd.Derivative(f, n=2)", - "execution_count": 130, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%timeit opt.minimize(f, 10, method='Newton-CG', jac=df1, hess=df2)", - "execution_count": 131, - "outputs": [ - { - "output_type": "stream", - "text": "185 ms ± 10.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n", - "name": "stdout" - } + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Refresher of matrix algebra" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "Quadratic form: $Q(x_{1}, x_{2}) = a_{1}\\,x_{1}^2 + a_{2}\\,x_{2}^2 + a_{3}\\,x_{1}\\,x_{2}$

\n\nThis a algebraic expression can be written with matrix notation:\n$\n x=\n \\left[ {\\begin{array}{c}\n x_{1} \\\\\n x_{2} \\\\\n \\end{array} } \\right]\n$\n and \n$\n A=\n \\left[ {\\begin{array}{c}\n a_{1} & a_{3}/2 \\\\\n a_{3}/2 & a_{2} \\\\\n \\end{array} } \\right]\n$\n imply $Q(x)=x^{T}\\,A\\,x$. Notice that $A$ is a square, **symmetric** matrix. Therefore, there is a one-to-one relationship between quadratic forms and symmetric matrices.

\n \n*Definitions*:
\n* A quadratic form is *positive definite* iff $Q(x)>0$ for any $x\\neq0$.\n* A quadratic form is *negative definite* iff $Q(x)<0$ for any $x\\neq0$." - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib notebook\n", + "fig = plt.figure()\n", + "fig.suptitle('Semi-Definite Quadratic Forms', fontsize=16)\n", + "\n", + "ax1 = fig.add_subplot(121, projection='3d')\n", + "ax1.plot_wireframe(X, Y, (X+Y)**2, rstride=10, cstride=10)\n", + "ax1.set_title('Positive Semi-Definite')\n", + "\n", + "ax2 = fig.add_subplot(122, projection='3d')\n", + "ax2.plot_wireframe(X, Y, -(X+Y)**2, rstride=10, cstride=10)\n", + "ax2.set_title('Negative Semi-Definite')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*Definitions*:
\n", + "* A quadratic form is *indefinite* iff $Q(x)>0$ for some $x$ and $Q(x)<0$ for another $x$." + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%matplotlib notebook\nplt.rcParams['figure.figsize'] = [8, 3]\nfig = plt.figure()\nfig.suptitle('Definite Quadratic Forms', fontsize=16)\n\nx = np.linspace(-5, 5, 101)\ny = np.linspace(-5, 5, 101)\nX, Y = np.meshgrid(x, y)\n\nax1 = fig.add_subplot(121, projection='3d')\nax1.plot_wireframe(X, Y, X**2+Y**2, rstride=10, cstride=10)\nax1.set_title('Positive Definite')\n\nax2 = fig.add_subplot(122, projection='3d')\nax2.plot_wireframe(X, Y, -X**2-Y**2, rstride=10, cstride=10)\nax2.set_title('Negative Definite')\n\nplt.show()", - "execution_count": 132, - "outputs": [ - { - "output_type": "display_data", - "data": { - "application/javascript": "/* Put everything inside the global mpl namespace */\nwindow.mpl = {};\n\n\nmpl.get_websocket_type = function() {\n if (typeof(WebSocket) !== 'undefined') {\n return WebSocket;\n } else if (typeof(MozWebSocket) !== 'undefined') {\n return MozWebSocket;\n } else {\n alert('Your browser does not have WebSocket support.' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.');\n };\n}\n\nmpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = (this.ws.binaryType != undefined);\n\n if (!this.supports_binary) {\n var warnings = document.getElementById(\"mpl-warnings\");\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent = (\n \"This browser does not support binary websocket messages. \" +\n \"Performance may be slow.\");\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = $('
');\n this._root_extra_style(this.root)\n this.root.attr('style', 'display: inline-block');\n\n $(parent_element).append(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n fig.send_message(\"send_image_mode\", {});\n if (mpl.ratio != 1) {\n fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n }\n fig.send_message(\"refresh\", {});\n }\n\n this.imageObj.onload = function() {\n if (fig.image_mode == 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function() {\n fig.ws.close();\n }\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n}\n\nmpl.figure.prototype._init_header = function() {\n var titlebar = $(\n '
');\n var titletext = $(\n '
');\n titlebar.append(titletext)\n this.root.append(titlebar);\n this.header = titletext[0];\n}\n\n\n\nmpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n\n}\n\n\nmpl.figure.prototype._root_extra_style = function(canvas_div) {\n\n}\n\nmpl.figure.prototype._init_canvas = function() {\n var fig = this;\n\n var canvas_div = $('
');\n\n canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n\n function canvas_keyboard_event(event) {\n return fig.key_event(event, event['data']);\n }\n\n canvas_div.keydown('key_press', canvas_keyboard_event);\n canvas_div.keyup('key_release', canvas_keyboard_event);\n this.canvas_div = canvas_div\n this._canvas_extra_style(canvas_div)\n this.root.append(canvas_div);\n\n var canvas = $('');\n canvas.addClass('mpl-canvas');\n canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n\n this.canvas = canvas[0];\n this.context = canvas[0].getContext(\"2d\");\n\n var backingStore = this.context.backingStorePixelRatio ||\n\tthis.context.webkitBackingStorePixelRatio ||\n\tthis.context.mozBackingStorePixelRatio ||\n\tthis.context.msBackingStorePixelRatio ||\n\tthis.context.oBackingStorePixelRatio ||\n\tthis.context.backingStorePixelRatio || 1;\n\n mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband = $('');\n rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n\n var pass_mouse_events = true;\n\n canvas_div.resizable({\n start: function(event, ui) {\n pass_mouse_events = false;\n },\n resize: function(event, ui) {\n fig.request_resize(ui.size.width, ui.size.height);\n },\n stop: function(event, ui) {\n pass_mouse_events = true;\n fig.request_resize(ui.size.width, ui.size.height);\n },\n });\n\n function mouse_event_fn(event) {\n if (pass_mouse_events)\n return fig.mouse_event(event, event['data']);\n }\n\n rubberband.mousedown('button_press', mouse_event_fn);\n rubberband.mouseup('button_release', mouse_event_fn);\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband.mousemove('motion_notify', mouse_event_fn);\n\n rubberband.mouseenter('figure_enter', mouse_event_fn);\n rubberband.mouseleave('figure_leave', mouse_event_fn);\n\n canvas_div.on(\"wheel\", function (event) {\n event = event.originalEvent;\n event['data'] = 'scroll'\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n mouse_event_fn(event);\n });\n\n canvas_div.append(canvas);\n canvas_div.append(rubberband);\n\n this.rubberband = rubberband;\n this.rubberband_canvas = rubberband[0];\n this.rubberband_context = rubberband[0].getContext(\"2d\");\n this.rubberband_context.strokeStyle = \"#000000\";\n\n this._resize_canvas = function(width, height) {\n // Keep the size of the canvas, canvas container, and rubber band\n // canvas in synch.\n canvas_div.css('width', width)\n canvas_div.css('height', height)\n\n canvas.attr('width', width * mpl.ratio);\n canvas.attr('height', height * mpl.ratio);\n canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n\n rubberband.attr('width', width);\n rubberband.attr('height', height);\n }\n\n // Set the figure to an initial 600x600px, this will subsequently be updated\n // upon first draw.\n this._resize_canvas(600, 600);\n\n // Disable right mouse context menu.\n $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n return false;\n });\n\n function set_focus () {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('
')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n // put a spacer in here.\n continue;\n }\n var button = $('');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('
');\n", + " var button = $('');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "metadata": {}, - "cell_type": "markdown", - "source": "*Definitions*:
\n* A quadratic form is *positive semi-definite* iff $Q(x)\\geq0$ for any $x$.\n* A quadratic form is *negative semi-definite* iff $Q(x)\\leq0$ for any $x$." - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "%matplotlib notebook\nfig = plt.figure()\nfig.suptitle('Semi-Definite Quadratic Forms', fontsize=16)\n\nax1 = fig.add_subplot(121, projection='3d')\nax1.plot_wireframe(X, Y, (X+Y)**2, rstride=10, cstride=10)\nax1.set_title('Positive Semi-Definite')\n\nax2 = fig.add_subplot(122, projection='3d')\nax2.plot_wireframe(X, Y, -(X+Y)**2, rstride=10, cstride=10)\nax2.set_title('Negative Semi-Definite')\n\nplt.show()", - "execution_count": 133, - "outputs": [ - { - "output_type": "display_data", - "data": { - "application/javascript": "/* Put everything inside the global mpl namespace */\nwindow.mpl = {};\n\n\nmpl.get_websocket_type = function() {\n if (typeof(WebSocket) !== 'undefined') {\n return WebSocket;\n } else if (typeof(MozWebSocket) !== 'undefined') {\n return MozWebSocket;\n } else {\n alert('Your browser does not have WebSocket support.' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.');\n };\n}\n\nmpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = (this.ws.binaryType != undefined);\n\n if (!this.supports_binary) {\n var warnings = document.getElementById(\"mpl-warnings\");\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent = (\n \"This browser does not support binary websocket messages. \" +\n \"Performance may be slow.\");\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = $('
');\n this._root_extra_style(this.root)\n this.root.attr('style', 'display: inline-block');\n\n $(parent_element).append(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n fig.send_message(\"send_image_mode\", {});\n if (mpl.ratio != 1) {\n fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n }\n fig.send_message(\"refresh\", {});\n }\n\n this.imageObj.onload = function() {\n if (fig.image_mode == 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function() {\n fig.ws.close();\n }\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n}\n\nmpl.figure.prototype._init_header = function() {\n var titlebar = $(\n '
');\n var titletext = $(\n '
');\n titlebar.append(titletext)\n this.root.append(titlebar);\n this.header = titletext[0];\n}\n\n\n\nmpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n\n}\n\n\nmpl.figure.prototype._root_extra_style = function(canvas_div) {\n\n}\n\nmpl.figure.prototype._init_canvas = function() {\n var fig = this;\n\n var canvas_div = $('
');\n\n canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n\n function canvas_keyboard_event(event) {\n return fig.key_event(event, event['data']);\n }\n\n canvas_div.keydown('key_press', canvas_keyboard_event);\n canvas_div.keyup('key_release', canvas_keyboard_event);\n this.canvas_div = canvas_div\n this._canvas_extra_style(canvas_div)\n this.root.append(canvas_div);\n\n var canvas = $('');\n canvas.addClass('mpl-canvas');\n canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n\n this.canvas = canvas[0];\n this.context = canvas[0].getContext(\"2d\");\n\n var backingStore = this.context.backingStorePixelRatio ||\n\tthis.context.webkitBackingStorePixelRatio ||\n\tthis.context.mozBackingStorePixelRatio ||\n\tthis.context.msBackingStorePixelRatio ||\n\tthis.context.oBackingStorePixelRatio ||\n\tthis.context.backingStorePixelRatio || 1;\n\n mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband = $('');\n rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n\n var pass_mouse_events = true;\n\n canvas_div.resizable({\n start: function(event, ui) {\n pass_mouse_events = false;\n },\n resize: function(event, ui) {\n fig.request_resize(ui.size.width, ui.size.height);\n },\n stop: function(event, ui) {\n pass_mouse_events = true;\n fig.request_resize(ui.size.width, ui.size.height);\n },\n });\n\n function mouse_event_fn(event) {\n if (pass_mouse_events)\n return fig.mouse_event(event, event['data']);\n }\n\n rubberband.mousedown('button_press', mouse_event_fn);\n rubberband.mouseup('button_release', mouse_event_fn);\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband.mousemove('motion_notify', mouse_event_fn);\n\n rubberband.mouseenter('figure_enter', mouse_event_fn);\n rubberband.mouseleave('figure_leave', mouse_event_fn);\n\n canvas_div.on(\"wheel\", function (event) {\n event = event.originalEvent;\n event['data'] = 'scroll'\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n mouse_event_fn(event);\n });\n\n canvas_div.append(canvas);\n canvas_div.append(rubberband);\n\n this.rubberband = rubberband;\n this.rubberband_canvas = rubberband[0];\n this.rubberband_context = rubberband[0].getContext(\"2d\");\n this.rubberband_context.strokeStyle = \"#000000\";\n\n this._resize_canvas = function(width, height) {\n // Keep the size of the canvas, canvas container, and rubber band\n // canvas in synch.\n canvas_div.css('width', width)\n canvas_div.css('height', height)\n\n canvas.attr('width', width * mpl.ratio);\n canvas.attr('height', height * mpl.ratio);\n canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n\n rubberband.attr('width', width);\n rubberband.attr('height', height);\n }\n\n // Set the figure to an initial 600x600px, this will subsequently be updated\n // upon first draw.\n this._resize_canvas(600, 600);\n\n // Disable right mouse context menu.\n $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n return false;\n });\n\n function set_focus () {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('
')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n // put a spacer in here.\n continue;\n }\n var button = $('');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n nav_element.append(button);\n }\n\n // Add the status bar.\n var status_bar = $('');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n\n // Add the close button to the window.\n var buttongrp = $('
');\n var button = $('');\n button.click(function (evt) { fig.handle_close(fig, {}); } );\n button.mouseover('Stop Interaction', toolbar_mouse_event);\n buttongrp.append(button);\n var titlebar = this.root.find($('.ui-dialog-titlebar'));\n titlebar.prepend(buttongrp);\n}\n\nmpl.figure.prototype._root_extra_style = function(el){\n var fig = this\n el.on(\"remove\", function(){\n\tfig.close_ws(fig, {});\n });\n}\n\nmpl.figure.prototype._canvas_extra_style = function(el){\n // this is important to make the div 'focusable\n el.attr('tabindex', 0)\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n }\n else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n var manager = IPython.notebook.keyboard_manager;\n if (!manager)\n manager = IPython.keyboard_manager;\n\n // Check for shift+enter\n if (event.shiftKey && event.which == 13) {\n this.canvas_div.blur();\n event.shiftKey = false;\n // Send a \"J\" for go to next cell\n event.which = 74;\n event.keyCode = 74;\n manager.command_mode();\n manager.handle_keydown(event);\n }\n}\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n fig.ondownload(fig, null);\n}\n\n\nmpl.find_output_cell = function(html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i=0; i= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] == html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n}\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel != null) {\n IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n}\n", - "text/plain": "" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/html": "", - "text/plain": "" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "[1.0, -1.0, -4.000000000000001]" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Testing definiteness" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def principal_minors(M):\n if M.ndim == 2 and np.all(M == M.transpose()):\n lpm = []\n for k in np.arange(0, M.shape[0], 1):\n lpm.append(np.linalg.det(M[0:k+1, 0:k+1]))\n return lpm", - "execution_count": 135, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "A = np.array([[1, 2, 3], [2, 3, 4], [3, 4, 9]])", - "execution_count": 136, - "outputs": [] - }, + }, + "execution_count": 137, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "principal_minors(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": {}, + "outputs": [], + "source": [ + "def positive_definite(M):\n", + " if M.ndim == 2 and np.all(M == M.transpose()):\n", + " return np.all(np.array(principal_minors(M))>0)" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "principal_minors(A)", - "execution_count": 137, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 137, - "data": { - "text/plain": "[1.0, -1.0, -4.000000000000001]" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "False" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def positive_definite(M):\n if M.ndim == 2 and np.all(M == M.transpose()):\n return np.all(np.array(principal_minors(M))>0)", - "execution_count": 138, - "outputs": [] - }, + }, + "execution_count": 139, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "positive_definite(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [], + "source": [ + "def negative_definite(M):\n", + " if M.ndim == 2 and np.all(M == M.transpose()):\n", + " n = M.shape[0]\n", + " c = [(-1)**(i+1) for i in np.arange(0, n, 1)]\n", + " return np.all((np.array(c)*np.array(principal_minors(M)))>0)" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "positive_definite(A)", - "execution_count": 139, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 139, - "data": { - "text/plain": "False" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "False" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def negative_definite(M):\n if M.ndim == 2 and np.all(M == M.transpose()):\n n = M.shape[0]\n c = [(-1)**(i+1) for i in np.arange(0, n, 1)]\n return np.all((np.array(c)*np.array(principal_minors(M)))>0)", - "execution_count": 140, - "outputs": [] - }, + }, + "execution_count": 141, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "negative_definite(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [], + "source": [ + "def indefinite(M):\n", + " if M.ndim == 2 and np.all(M == M.transpose()):\n", + " if not positive_definite(M) and not negative_definite(M):\n", + " n = M.shape[0]\n", + " return np.all(np.array(principal_minors(M)) != 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 143, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "negative_definite(A)", - "execution_count": 141, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 141, - "data": { - "text/plain": "False" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "True" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def indefinite(M):\n if M.ndim == 2 and np.all(M == M.transpose()):\n if not positive_definite(M) and not negative_definite(M):\n n = M.shape[0]\n return np.all(np.array(principal_minors(M)) != 0)", - "execution_count": 142, - "outputs": [] - }, + }, + "execution_count": 143, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "indefinite(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Eigenvalues, Eigenvectors and Eigen Decomposition\n", + "\n", + "$A$: square matrix ($n \\times n$), $x$: column vector ($n \\times 1$), $\\lambda$: scalar.
\n", + "\n", + "*Definition*: $\\lambda$ is an **eigenvalue** of $A$ with corresponding $x$ **eigenvector** iff $A\\,x=\\lambda\\,x$.
\n", + "\n", + "Eigenvalues must solve $\\mathrm{det}(A-\\lambda\\,I)=0$.\n", + "\n", + "*Result*: If $A$ is a real symmetric matrix, all of its eigenvalues are real numbers, and eigenvectors corresponding to distinct eigenvalues are orthogonal.\n", + "\n", + "*Eigen Decomposition of Symmetric Matrices*:
\n", + "Let $P = [x_1, x_2, ..., x_n]$ and $D=diag(\\lambda_1, \\lambda_2, ..., \\lambda_n)$. Then $A = P\\,D\\,P^{-1}$.\n", + "\n", + "If $\\lambda_i>0, \\forall i$, then $A$ is **positive definite**.
\n", + "\n", + "If $\\lambda_i<0, \\forall i$, then $A$ is **negative definite**.
\n", + "\n", + "If $\\lambda_i\\geq0, \\forall i$, then $A$ is **positive semi-definite**.
\n", + "\n", + "If $\\lambda_i\\leq0, \\forall i$, then $A$ is **negative semi-definite**." + ] + }, + { + "cell_type": "code", + "execution_count": 144, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "indefinite(A)", - "execution_count": 143, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 143, - "data": { - "text/plain": "True" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "(array([12.14984759, -0.28900503, 1.13915745]),\n", + " array([[ 0.30595473, 0.90505749, -0.29540249],\n", + " [ 0.43670868, -0.40912915, -0.80118592],\n", + " [ 0.84597709, -0.11612179, 0.52042146]]))" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "### Eigenvalues, Eigenvectors and Eigen Decomposition\n\n$A$: square matrix ($n \\times n$), $x$: column vector ($n \\times 1$), $\\lambda$: scalar.
\n\n*Definition*: $\\lambda$ is an **eigenvalue** of $A$ with corresponding $x$ **eigenvector** iff $A\\,x=\\lambda\\,x$.
\n\nEigenvalues must solve $\\mathrm{det}(A-\\lambda\\,I)=0$.\n\n*Result*: If $A$ is a real symmetric matrix, all of its eigenvalues are real numbers, and eigenvectors corresponding to distinct eigenvalues are orthogonal.\n\n*Eigen Decomposition of Symmetric Matrices*:
\nLet $P = [x_1, x_2, ..., x_n]$ and $D=diag(\\lambda_1, \\lambda_2, ..., \\lambda_n)$. Then $A = P\\,D\\,P^{-1}$.\n\nIf $\\lambda_i>0, \\forall i$, then $A$ is **positive definite**.
\n\nIf $\\lambda_i<0, \\forall i$, then $A$ is **negative definite**.
\n\nIf $\\lambda_i\\geq0, \\forall i$, then $A$ is **positive semi-definite**.
\n\nIf $\\lambda_i\\leq0, \\forall i$, then $A$ is **negative semi-definite**." - }, + }, + "execution_count": 144, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.eig(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [], + "source": [ + "def pos_def(A):\n", + " return (np.all(np.linalg.eig(A)[0]>0))" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "np.linalg.eig(A)", - "execution_count": 144, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 144, - "data": { - "text/plain": "(array([12.14984759, -0.28900503, 1.13915745]),\n array([[ 0.30595473, 0.90505749, -0.29540249],\n [ 0.43670868, -0.40912915, -0.80118592],\n [ 0.84597709, -0.11612179, 0.52042146]]))" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "False" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def pos_def(A):\n return (np.all(np.linalg.eig(A)[0]>0))", - "execution_count": 145, - "outputs": [] - }, + }, + "execution_count": 146, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pos_def(A)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multivariate functions" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [], + "source": [ + "def f(x):\n", + " return x[0]**2+x[1]**2-50*np.sin(.5*(x[0]+x[1]))" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "metadata": {}, + "outputs": [], + "source": [ + "x = np.array([1, 2, 3])\n", + "y = np.array([20, 40, 60])" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "metadata": {}, + "outputs": [], + "source": [ + "X, Y = np.meshgrid(x, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "pos_def(A)", - "execution_count": 146, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 146, - "data": { - "text/plain": "False" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [1, 2, 3],\n", + " [1, 2, 3]])" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Multivariate functions" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def f(x):\n return x[0]**2+x[1]**2-50*np.sin(.5*(x[0]+x[1]))", - "execution_count": 147, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x = np.array([1, 2, 3])\ny = np.array([20, 40, 60])", - "execution_count": 148, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "X, Y = np.meshgrid(x, y)", - "execution_count": 149, - "outputs": [] - }, + }, + "execution_count": 150, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "X", - "execution_count": 150, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 150, - "data": { - "text/plain": "array([[1, 2, 3],\n [1, 2, 3],\n [1, 2, 3]])" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "array([[20, 20, 20],\n", + " [40, 40, 40],\n", + " [60, 60, 60]])" ] - }, + }, + "execution_count": 151, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "Y", - "execution_count": 151, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 151, - "data": { - "text/plain": "array([[20, 20, 20],\n [40, 40, 40],\n [60, 60, 60]])" - }, - "metadata": {} - } + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('
');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '
');\n", + " var titletext = $(\n", + " '
');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('
');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('
')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n nav_element.append(button);\n }\n\n // Add the status bar.\n var status_bar = $('');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n\n // Add the close button to the window.\n var buttongrp = $('
');\n var button = $('');\n button.click(function (evt) { fig.handle_close(fig, {}); } );\n button.mouseover('Stop Interaction', toolbar_mouse_event);\n buttongrp.append(button);\n var titlebar = this.root.find($('.ui-dialog-titlebar'));\n titlebar.prepend(buttongrp);\n}\n\nmpl.figure.prototype._root_extra_style = function(el){\n var fig = this\n el.on(\"remove\", function(){\n\tfig.close_ws(fig, {});\n });\n}\n\nmpl.figure.prototype._canvas_extra_style = function(el){\n // this is important to make the div 'focusable\n el.attr('tabindex', 0)\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n }\n else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n var manager = IPython.notebook.keyboard_manager;\n if (!manager)\n manager = IPython.keyboard_manager;\n\n // Check for shift+enter\n if (event.shiftKey && event.which == 13) {\n this.canvas_div.blur();\n event.shiftKey = false;\n // Send a \"J\" for go to next cell\n event.which = 74;\n event.keyCode = 74;\n manager.command_mode();\n manager.handle_keydown(event);\n }\n}\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n fig.ondownload(fig, null);\n}\n\n\nmpl.find_output_cell = function(html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i=0; i= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] == html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n}\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel != null) {\n IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n}\n", - "text/plain": "" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "text/html": "", - "text/plain": "" - }, - "metadata": {} - } + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" ] - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib notebook\n", + "plt.rcParams['figure.figsize'] = [5, 3]\n", + "\n", + "x = np.linspace(-10, 10, 101)\n", + "y = np.linspace(-10, 10, 101)\n", + "X, Y = np.meshgrid(x, y)\n", + "\n", + "fig = plt.figure()\n", + "fig.suptitle('$x^2+y^2-50\\,sin(.5(x+y))$', fontsize=16)\n", + "\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "ax.plot_wireframe(X, Y, f([X, Y]), rstride=10, cstride=10)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "metadata": { - "trusted": true, - "scrolled": true - }, - "cell_type": "code", - "source": "%matplotlib notebook\nplt.rcParams['figure.figsize'] = [5, 3]\nx = np.linspace(-10, 10, 101)\ny = np.linspace(-10, 10, 101)\nX, Y = np.meshgrid(x, y)\n\nfig = plt.figure()\n\nax = fig.add_subplot(111)\nax.contour(X, Y, f([X, Y]))\n\nplt.show()", - "execution_count": 153, - "outputs": [ - { - "output_type": "display_data", - "data": { - "application/javascript": "/* Put everything inside the global mpl namespace */\nwindow.mpl = {};\n\n\nmpl.get_websocket_type = function() {\n if (typeof(WebSocket) !== 'undefined') {\n return WebSocket;\n } else if (typeof(MozWebSocket) !== 'undefined') {\n return MozWebSocket;\n } else {\n alert('Your browser does not have WebSocket support.' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.');\n };\n}\n\nmpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = (this.ws.binaryType != undefined);\n\n if (!this.supports_binary) {\n var warnings = document.getElementById(\"mpl-warnings\");\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent = (\n \"This browser does not support binary websocket messages. \" +\n \"Performance may be slow.\");\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = $('
');\n this._root_extra_style(this.root)\n this.root.attr('style', 'display: inline-block');\n\n $(parent_element).append(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n fig.send_message(\"send_image_mode\", {});\n if (mpl.ratio != 1) {\n fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n }\n fig.send_message(\"refresh\", {});\n }\n\n this.imageObj.onload = function() {\n if (fig.image_mode == 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function() {\n fig.ws.close();\n }\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n}\n\nmpl.figure.prototype._init_header = function() {\n var titlebar = $(\n '
');\n var titletext = $(\n '
');\n titlebar.append(titletext)\n this.root.append(titlebar);\n this.header = titletext[0];\n}\n\n\n\nmpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n\n}\n\n\nmpl.figure.prototype._root_extra_style = function(canvas_div) {\n\n}\n\nmpl.figure.prototype._init_canvas = function() {\n var fig = this;\n\n var canvas_div = $('
');\n\n canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n\n function canvas_keyboard_event(event) {\n return fig.key_event(event, event['data']);\n }\n\n canvas_div.keydown('key_press', canvas_keyboard_event);\n canvas_div.keyup('key_release', canvas_keyboard_event);\n this.canvas_div = canvas_div\n this._canvas_extra_style(canvas_div)\n this.root.append(canvas_div);\n\n var canvas = $('');\n canvas.addClass('mpl-canvas');\n canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n\n this.canvas = canvas[0];\n this.context = canvas[0].getContext(\"2d\");\n\n var backingStore = this.context.backingStorePixelRatio ||\n\tthis.context.webkitBackingStorePixelRatio ||\n\tthis.context.mozBackingStorePixelRatio ||\n\tthis.context.msBackingStorePixelRatio ||\n\tthis.context.oBackingStorePixelRatio ||\n\tthis.context.backingStorePixelRatio || 1;\n\n mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband = $('');\n rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n\n var pass_mouse_events = true;\n\n canvas_div.resizable({\n start: function(event, ui) {\n pass_mouse_events = false;\n },\n resize: function(event, ui) {\n fig.request_resize(ui.size.width, ui.size.height);\n },\n stop: function(event, ui) {\n pass_mouse_events = true;\n fig.request_resize(ui.size.width, ui.size.height);\n },\n });\n\n function mouse_event_fn(event) {\n if (pass_mouse_events)\n return fig.mouse_event(event, event['data']);\n }\n\n rubberband.mousedown('button_press', mouse_event_fn);\n rubberband.mouseup('button_release', mouse_event_fn);\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband.mousemove('motion_notify', mouse_event_fn);\n\n rubberband.mouseenter('figure_enter', mouse_event_fn);\n rubberband.mouseleave('figure_leave', mouse_event_fn);\n\n canvas_div.on(\"wheel\", function (event) {\n event = event.originalEvent;\n event['data'] = 'scroll'\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n mouse_event_fn(event);\n });\n\n canvas_div.append(canvas);\n canvas_div.append(rubberband);\n\n this.rubberband = rubberband;\n this.rubberband_canvas = rubberband[0];\n this.rubberband_context = rubberband[0].getContext(\"2d\");\n this.rubberband_context.strokeStyle = \"#000000\";\n\n this._resize_canvas = function(width, height) {\n // Keep the size of the canvas, canvas container, and rubber band\n // canvas in synch.\n canvas_div.css('width', width)\n canvas_div.css('height', height)\n\n canvas.attr('width', width * mpl.ratio);\n canvas.attr('height', height * mpl.ratio);\n canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n\n rubberband.attr('width', width);\n rubberband.attr('height', height);\n }\n\n // Set the figure to an initial 600x600px, this will subsequently be updated\n // upon first draw.\n this._resize_canvas(600, 600);\n\n // Disable right mouse context menu.\n $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n return false;\n });\n\n function set_focus () {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('
')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n // put a spacer in here.\n continue;\n }\n var button = $('');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('
');\n", + " var button = $('');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import numpy as np\nfrom scipy.optimize import minimize", - "execution_count": 154, - "outputs": [] - }, + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib notebook\n", + "plt.rcParams['figure.figsize'] = [5, 3]\n", + "x = np.linspace(-10, 10, 101)\n", + "y = np.linspace(-10, 10, 101)\n", + "X, Y = np.meshgrid(x, y)\n", + "\n", + "fig = plt.figure()\n", + "\n", + "ax = fig.add_subplot(111)\n", + "ax.contour(X, Y, f([X, Y]))\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from scipy.optimize import minimize" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Nelder-Mead" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "### Nelder-Mead" + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: -45.431122\n", + " Iterations: 76\n", + " Function evaluations: 137\n", + "[1.4541966 1.45419654]\n" + ] }, { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x0 = np.array([0, 0])\nres = minimize(f, x0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})\nprint(res.x)\nf(res.x)", - "execution_count": 155, - "outputs": [ - { - "output_type": "stream", - "text": "Optimization terminated successfully.\n Current function value: -45.431122\n Iterations: 76\n Function evaluations: 137\n[1.4541966 1.45419654]\n", - "name": "stdout" - }, - { - "output_type": "execute_result", - "execution_count": 155, - "data": { - "text/plain": "-45.43112199357746" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "-45.43112199357746" ] - }, + }, + "execution_count": 155, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x0 = np.array([0, 0])\n", + "res = minimize(f, x0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})\n", + "print(res.x)\n", + "f(res.x)" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "res", - "execution_count": 156, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 156, - "data": { - "text/plain": " final_simplex: (array([[1.4541966 , 1.45419654],\n [1.4541966 , 1.45419654],\n [1.4541966 , 1.45419654]]), array([-45.43112199, -45.43112199, -45.43112199]))\n fun: -45.43112199357746\n message: 'Optimization terminated successfully.'\n nfev: 137\n nit: 76\n status: 0\n success: True\n x: array([1.4541966 , 1.45419654])" - }, - "metadata": {} - } + "data": { + "text/plain": [ + " final_simplex: (array([[1.4541966 , 1.45419654],\n", + " [1.4541966 , 1.45419654],\n", + " [1.4541966 , 1.45419654]]), array([-45.43112199, -45.43112199, -45.43112199]))\n", + " fun: -45.43112199357746\n", + " message: 'Optimization terminated successfully.'\n", + " nfev: 137\n", + " nit: 76\n", + " status: 0\n", + " success: True\n", + " x: array([1.4541966 , 1.45419654])" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "### Gradient and Hessian" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "fgrad = nd.Gradient(f)\nfhess = nd.Hessian(f)", - "execution_count": 157, - "outputs": [] - }, + }, + "execution_count": 156, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Gradient and Hessian" + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "metadata": {}, + "outputs": [], + "source": [ + "fgrad = nd.Gradient(f)\n", + "fhess = nd.Hessian(f)" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "type(fgrad)", - "execution_count": 158, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 158, - "data": { - "text/plain": "numdifftools.core.Gradient" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "numdifftools.core.Gradient" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "### Conjugate Gradient" - }, + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(fgrad)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Conjugate Gradient" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x0 = np.array([0, 0])\nres = minimize(f, x0, method='CG', jac=fgrad, options={'disp': True})\nprint(res.x)", - "execution_count": 159, - "outputs": [ - { - "output_type": "stream", - "text": "Optimization terminated successfully.\n Current function value: -45.431122\n Iterations: 3\n Function evaluations: 8\n Gradient evaluations: 8\n[1.45419657 1.45419657]\n", - "name": "stdout" - } - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: -45.431122\n", + " Iterations: 3\n", + " Function evaluations: 8\n", + " Gradient evaluations: 8\n", + "[1.45419657 1.45419657]\n" + ] + } + ], + "source": [ + "x0 = np.array([0, 0])\n", + "res = minimize(f, x0, method='CG', jac=fgrad, options={'disp': True})\n", + "print(res.x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Broyden, Fletcher, Goldfarb, and Shanno (BFGS)" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "### Broyden, Fletcher, Goldfarb, and Shanno (BFGS)" + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: -45.431122\n", + " Iterations: 5\n", + " Function evaluations: 7\n", + " Gradient evaluations: 7\n", + "[1.45419657 1.45419657]\n" + ] }, { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x0 = np.array([0, 0])\nres = minimize(f, x0, method='BFGS', jac=fgrad, options={'gtol': 1e-8, 'disp': True})\nprint(res.x)\nf(res.x)", - "execution_count": 160, - "outputs": [ - { - "output_type": "stream", - "text": "Optimization terminated successfully.\n Current function value: -45.431122\n Iterations: 5\n Function evaluations: 7\n Gradient evaluations: 7\n[1.45419657 1.45419657]\n", - "name": "stdout" - }, - { - "output_type": "execute_result", - "execution_count": 160, - "data": { - "text/plain": "-45.43112199357746" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "-45.43112199357746" ] - }, + }, + "execution_count": 160, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x0 = np.array([0, 0])\n", + "res = minimize(f, x0, method='BFGS', jac=fgrad, options={'gtol': 1e-8, 'disp': True})\n", + "print(res.x)\n", + "f(res.x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Newton-CG" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "### Newton-CG" + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: -45.431122\n", + " Iterations: 5\n", + " Function evaluations: 9\n", + " Gradient evaluations: 13\n", + " Hessian evaluations: 5\n", + "[1.45419658 1.45419658]\n" + ] }, { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x0 = np.array([0, 0])\nres = minimize(f, x0, method='Newton-CG', jac=fgrad, hess=fhess, options={'xtol': 1e-8, 'disp': True})\nprint(res.x)\nf(res.x)", - "execution_count": 161, - "outputs": [ - { - "output_type": "stream", - "text": "Optimization terminated successfully.\n Current function value: -45.431122\n Iterations: 5\n Function evaluations: 9\n Gradient evaluations: 13\n Hessian evaluations: 5\n[1.45419658 1.45419658]\n", - "name": "stdout" - }, - { - "output_type": "execute_result", - "execution_count": 161, - "data": { - "text/plain": "-45.43112199357747" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "-45.43112199357747" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "### Maximum Likelihood" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "mu = 18\nsigma = 5\nn = 30\nS = np.random.normal(loc=mu, scale=sigma, size=n)", - "execution_count": 162, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def likelihood(par):\n # par[0]=mu\n # par[1]=sigma\n \n v = 0\n \n for x in S:\n v += -.5*((x-par[0])/par[1])**2-np.log(par[1])\n \n return -v", - "execution_count": 163, - "outputs": [] - }, + }, + "execution_count": 161, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x0 = np.array([0, 0])\n", + "res = minimize(f, x0, method='Newton-CG', jac=fgrad, hess=fhess, options={'xtol': 1e-8, 'disp': True})\n", + "print(res.x)\n", + "f(res.x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Maximum Likelihood" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": {}, + "outputs": [], + "source": [ + "mu = 18\n", + "sigma = 5\n", + "n = 30\n", + "S = np.random.normal(loc=mu, scale=sigma, size=n)" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [], + "source": [ + "def likelihood(par):\n", + " # par[0]=mu\n", + " # par[1]=sigma\n", + " \n", + " v = 0\n", + " \n", + " for x in S:\n", + " v += -.5*((x-par[0])/par[1])**2-np.log(par[1])\n", + " \n", + " return -v" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x0 = np.array([1, 1])\nres = minimize(likelihood, x0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})", - "execution_count": 164, - "outputs": [ - { - "output_type": "stream", - "text": "Optimization terminated successfully.\n Current function value: 62.562558\n Iterations: 94\n Function evaluations: 186\n", - "name": "stdout" - } - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: 62.562558\n", + " Iterations: 94\n", + " Function evaluations: 186\n" + ] + } + ], + "source": [ + "x0 = np.array([1, 1])\n", + "res = minimize(likelihood, x0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "res.x", - "execution_count": 165, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 165, - "data": { - "text/plain": "array([17.57308836, 4.88133418])" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "array([17.57308836, 4.88133418])" ] - }, + }, + "execution_count": 165, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.x" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "S.mean()", - "execution_count": 166, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 166, - "data": { - "text/plain": "17.573088308542683" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "17.573088308542683" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Consumer´s problem with CES utility" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def utility(x, *args):\n return -(x**.25+(args[0]-args[1]*x)**.25)", - "execution_count": 167, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def demand(m, p):\n x = opt.minimize(utility, .3, args=(m, p), method=\"CG\").x[0]\n return (x, m-p*x)", - "execution_count": 168, - "outputs": [] - }, + }, + "execution_count": 166, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "S.mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Consumer´s problem with CES utility" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [], + "source": [ + "def utility(x, *args):\n", + " return -(x**.25+(args[0]-args[1]*x)**.25)" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [], + "source": [ + "def demand(m, p):\n", + " x = opt.minimize(utility, .3, args=(m, p), method=\"CG\").x[0]\n", + " return (x, m-p*x)" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "demand(5, 2)", - "execution_count": 169, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 169, - "data": { - "text/plain": "(1.1062334943922492, 2.7875330112155017)" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "(1.1062334943922492, 2.7875330112155017)" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "price = np.arange(.1, 5, .1)", - "execution_count": 170, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Regressão Múltipla" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x1 = np.random.uniform(0, 100, size=20000)", - "execution_count": 171, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x2 = np.random.uniform(0, 100, size=20000)", - "execution_count": 172, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x2 = .9*x2+.1*x1", - "execution_count": 173, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "sigma = 5\ny = 10+.4*x1+.7*x2+np.random.normal(loc=0, scale=sigma, size=20000)", - "execution_count": 174, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def my_ols(beta): \n return np.sum((y-beta[0]-beta[1]*x1-beta[2]*x2)**2) ", - "execution_count": 175, - "outputs": [] - }, + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "demand(5, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [], + "source": [ + "price = np.arange(.1, 5, .1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Regressão Múltipla" + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [], + "source": [ + "x1 = np.random.uniform(0, 100, size=20000)" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [], + "source": [ + "x2 = np.random.uniform(0, 100, size=20000)" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [], + "source": [ + "x2 = .9*x2+.1*x1" + ] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [], + "source": [ + "sigma = 5\n", + "y = 10+.4*x1+.7*x2+np.random.normal(loc=0, scale=sigma, size=20000)" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [], + "source": [ + "def my_ols(beta): \n", + " return np.sum((y-beta[0]-beta[1]*x1-beta[2]*x2)**2) " + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "opt.minimize(my_ols, (10.1, .5, .6), method=\"CG\")", - "execution_count": 176, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 176, - "data": { - "text/plain": " fun: 497096.51526724786\n jac: array([0.09375 , 0.31640625, 0.15625 ])\n message: 'Desired error not necessarily achieved due to precision loss.'\n nfev: 626\n nit: 24\n njev: 123\n status: 2\n success: False\n x: array([9.91014709, 0.4020818 , 0.70068662])" - }, - "metadata": {} - } + "data": { + "text/plain": [ + " fun: 497096.51526724786\n", + " jac: array([0.09375 , 0.31640625, 0.15625 ])\n", + " message: 'Desired error not necessarily achieved due to precision loss.'\n", + " nfev: 626\n", + " nit: 24\n", + " njev: 123\n", + " status: 2\n", + " success: False\n", + " x: array([9.91014709, 0.4020818 , 0.70068662])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "markdown", - "source": "## OLS with matrices" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import io", - "execution_count": 178, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "DATA = np.loadtxt(\"data/regression.csv\", delimiter=\";\")", - "execution_count": 185, - "outputs": [] - }, + }, + "execution_count": 176, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "opt.minimize(my_ols, (10.1, .5, .6), method=\"CG\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## OLS with matrices" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [], + "source": [ + "import io" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [], + "source": [ + "DATA = np.loadtxt(\"data/regression.csv\", delimiter=\";\")" + ] + }, + { + "cell_type": "code", + "execution_count": 186, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "DATA", - "execution_count": 186, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 186, - "data": { - "text/plain": "array([[ 19.1503647 , 19.86175115, 37.76143252],\n [ 74.48652608, 36.51600696, 118.1015082 ],\n [ 92.52296518, 65.04593036, 415.2253619 ],\n ...,\n [ 71.10202338, 84.71663564, 470.9957971 ],\n [ 57.05130161, 63.70372631, 382.7933641 ],\n [ 30.32013916, 58.94863735, 200.9883957 ]])" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "array([[ 19.1503647 , 19.86175115, 37.76143252],\n", + " [ 74.48652608, 36.51600696, 118.1015082 ],\n", + " [ 92.52296518, 65.04593036, 415.2253619 ],\n", + " ...,\n", + " [ 71.10202338, 84.71663564, 470.9957971 ],\n", + " [ 57.05130161, 63.70372631, 382.7933641 ],\n", + " [ 30.32013916, 58.94863735, 200.9883957 ]])" ] - }, + }, + "execution_count": 186, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "DATA" + ] + }, + { + "cell_type": "code", + "execution_count": 187, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "DATA.shape", - "execution_count": 187, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 187, - "data": { - "text/plain": "(500, 3)" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "(500, 3)" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "y = DATA[:, 2].reshape(500, 1)", - "execution_count": 188, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "X = DATA[:, 0:2].reshape(500, 2)", - "execution_count": 189, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "c = np.ones(500).reshape(500, 1)\nX = np.concatenate((c, X), axis=1)", - "execution_count": 192, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def my_ols(y, X):\n \n results = {}\n \n (n, k) = X.shape\n results['n'] = n\n results['k'] = k\n \n beta = np.linalg.inv(X.T @ X) @ X.T @ y\n results['beta'] = beta\n \n e = y - X @ beta\n results['residuas'] = e\n \n SSE = sum([e**2 for e in e])[0]\n results['SSE'] = SSE\n \n sigma = np.sqrt(SSE/(n-k))\n results['sigma'] = sigma\n \n V = sigma**2*np.linalg.inv(X.T @ X)\n results['V'] = V\n \n stderr_beta = np.sqrt(np.diag(V))\n results['stderr_beta'] = stderr_beta\n \n t = beta/stderr_beta\n results['t'] = t\n \n # results['p-values'] = \n \n ybar = np.mean(y)\n SQT = sum([(q-ybar)**2 for q in y])[0]\n results['SQT'] = SQT\n \n results['R2'] = 1-(SSE/SQT)\n \n return results ", - "execution_count": 193, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "res = my_ols(y, X)", - "execution_count": 195, - "outputs": [] - }, + }, + "execution_count": 187, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "DATA.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 188, + "metadata": {}, + "outputs": [], + "source": [ + "y = DATA[:, 2].reshape(500, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 189, + "metadata": {}, + "outputs": [], + "source": [ + "X = DATA[:, 0:2].reshape(500, 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 192, + "metadata": {}, + "outputs": [], + "source": [ + "c = np.ones(500).reshape(500, 1)\n", + "X = np.concatenate((c, X), axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 193, + "metadata": {}, + "outputs": [], + "source": [ + "def my_ols(y, X):\n", + " \n", + " results = {}\n", + " \n", + " (n, k) = X.shape\n", + " results['n'] = n\n", + " results['k'] = k\n", + " \n", + " beta = np.linalg.inv(X.T @ X) @ X.T @ y\n", + " results['beta'] = beta\n", + " \n", + " e = y - X @ beta\n", + " results['residuas'] = e\n", + " \n", + " SSE = sum([e**2 for e in e])[0]\n", + " results['SSE'] = SSE\n", + " \n", + " sigma = np.sqrt(SSE/(n-k))\n", + " results['sigma'] = sigma\n", + " \n", + " V = sigma**2*np.linalg.inv(X.T @ X)\n", + " results['V'] = V\n", + " \n", + " stderr_beta = np.sqrt(np.diag(V))\n", + " results['stderr_beta'] = stderr_beta\n", + " \n", + " t = beta/stderr_beta\n", + " results['t'] = t\n", + " \n", + " # results['p-values'] = \n", + " \n", + " ybar = np.mean(y)\n", + " SQT = sum([(q-ybar)**2 for q in y])[0]\n", + " results['SQT'] = SQT\n", + " \n", + " results['R2'] = 1-(SSE/SQT)\n", + " \n", + " return results " + ] + }, + { + "cell_type": "code", + "execution_count": 195, + "metadata": {}, + "outputs": [], + "source": [ + "res = my_ols(y, X)" + ] + }, + { + "cell_type": "code", + "execution_count": 196, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "res", - "execution_count": 196, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 196, - "data": { - "text/plain": "{'R2': 0.5985995381650879,\n 'SQT': 9376178.724748027,\n 'SSE': 3763602.4703605347,\n 'V': array([[ 1.15445286e+02, -5.91775326e-01, -1.40469455e+00],\n [-5.91775326e-01, 2.16566265e-02, -1.01166076e-02],\n [-1.40469455e+00, -1.01166076e-02, 3.83194387e-02]]),\n 'beta': array([[46.56424501],\n [ 3.13088995],\n [ 1.65078469]]),\n 'k': 3,\n 'n': 500,\n 'residuas': array([[-101.5479714 ],\n [-221.95191746],\n [ -28.39493021],\n [ -55.33220907],\n [ 46.99151994],\n [ -61.49876145],\n [ -10.97375688],\n [ 56.04286631],\n [-107.07201378],\n [ -22.64234823],\n [ 18.65252702],\n [ 4.20478851],\n [ 58.73792368],\n [ -96.97502295],\n [ -32.86295192],\n [ -20.22262579],\n [ -67.86712849],\n [ 31.87090306],\n [-162.09171263],\n [ -30.01260059],\n [ 11.30891441],\n [ 158.79214349],\n [-114.42340488],\n [ 142.02318218],\n [ -7.57932036],\n [ -6.49910448],\n [ -44.32843848],\n [ 6.77717352],\n [ 27.23886701],\n [ 39.42746732],\n [-125.27544158],\n [-312.31561908],\n [ 35.88072314],\n [-104.09877123],\n [ -79.13277739],\n [ 62.99108447],\n [ -91.41741639],\n [ 18.04156839],\n [ 81.20209596],\n [ 167.03597417],\n [ 42.0640298 ],\n [ 105.40291713],\n [ 16.97150062],\n [ -44.58504449],\n [ 21.74017311],\n [-119.24943519],\n [ 44.37169876],\n [ 46.01439546],\n [ 76.43506709],\n [ -3.24526726],\n [-202.64255128],\n [ 31.20018425],\n [ 189.10460729],\n [ -23.35534431],\n [ 111.06580827],\n [ 122.03248408],\n [ 19.6059557 ],\n [ 85.72600805],\n [ 199.40993468],\n [ -15.16393386],\n [ 30.05152467],\n [ -24.64764002],\n [ -21.39643233],\n [ 109.15564929],\n [ -96.8452832 ],\n [ 10.6165261 ],\n [ 44.98996026],\n [ 17.5538346 ],\n [ 74.99139838],\n [ 57.08109974],\n [-103.42989143],\n [ -54.15445582],\n [ -80.42379658],\n [ 105.22613221],\n [ 17.60163826],\n [ -84.46223973],\n [ 58.74487388],\n [ -98.38843651],\n [ -57.53132956],\n [ -86.94008465],\n [ 74.25321121],\n [ 66.92698085],\n [ -59.01239301],\n [-182.26613088],\n [ -37.75723997],\n [ -28.90642743],\n [ 10.86710065],\n [ 141.34484921],\n [ 93.36643912],\n [ 79.22696845],\n [ -13.49699548],\n [ 31.19637282],\n [ 28.09608592],\n [ 107.61569733],\n [ 85.52565333],\n [ 67.63855529],\n [ 4.370889 ],\n [ 10.2535358 ],\n [-110.85158432],\n [ -99.42686928],\n [ 28.80679849],\n [ -41.13217022],\n [ 82.26697646],\n [ 0.84861706],\n [ -52.83297938],\n [ 104.87647745],\n [ -5.12211887],\n [ 31.24030526],\n [ -49.3991086 ],\n [-120.22473235],\n [ 67.42246154],\n [ 22.78784737],\n [ 62.42370371],\n [ -44.05909589],\n [ 33.27995053],\n [-123.29471171],\n [ -85.16575008],\n [ -75.75880457],\n [ -37.87498583],\n [ -62.96929899],\n [ 101.86481092],\n [ 94.23284647],\n [ 73.07195268],\n [-117.88512509],\n [ 79.72472231],\n [ -64.44538218],\n [ 14.22644226],\n [ -34.61251184],\n [ 85.21693507],\n [ -3.38182631],\n [ 159.57932115],\n [-133.65984906],\n [-220.12187744],\n [ -52.28391002],\n [ -62.61818894],\n [ -63.10637861],\n [ 14.74703647],\n [ -78.82130204],\n [ 10.9336829 ],\n [-108.21194236],\n [ 108.41923868],\n [ -93.71377032],\n [ 105.88677136],\n [ 36.01765966],\n [ -84.08827417],\n [ 79.33084495],\n [ -17.56642068],\n [ 1.61921415],\n [ 52.11176536],\n [ 21.24481943],\n [ -4.83874205],\n [ 34.4028412 ],\n [ -41.1694442 ],\n [ -71.97469513],\n [ -10.5282205 ],\n [ 132.42414377],\n [ -41.14052994],\n [ 93.85825104],\n [ 5.54528063],\n [-102.08421457],\n [-101.2525261 ],\n [ -26.34363365],\n [ -92.82507213],\n [ -95.64195275],\n [ 102.86431787],\n [-125.75170496],\n [ -61.04351189],\n [ 36.53242613],\n [ 63.19604717],\n [-121.94036996],\n [ -29.08640409],\n [ -37.81013073],\n [ 71.66432807],\n [ 139.07554448],\n [ 98.0285007 ],\n [ 13.75349943],\n [ 0.66487986],\n [ 80.80062849],\n [ 149.18500181],\n [-104.23506815],\n [ 35.42054448],\n [ 37.19662996],\n [ 75.85221312],\n [ 47.49472216],\n [ 99.36408343],\n [-124.56424503],\n [-136.76910575],\n [ -21.60461406],\n [ -2.85575289],\n [ 13.40534834],\n [ 6.87101313],\n [-144.10257391],\n [ -13.37941404],\n [ -31.98826158],\n [ 51.15112054],\n [ -56.68792921],\n [ 42.41272565],\n [ -6.59041779],\n [ 64.75262061],\n [ 30.59657478],\n [ 0.70872505],\n [ 34.5089948 ],\n [ 37.74967398],\n [-122.9368161 ],\n [ 51.1430415 ],\n [ 12.74621679],\n [ 109.12818117],\n [ -92.6956237 ],\n [ 1.44006582],\n [ 132.61012448],\n [-112.54238589],\n [ 154.62747078],\n [ -33.22687664],\n [ 106.4492505 ],\n [-137.45651495],\n [ 28.81481772],\n [ -67.06380283],\n [ 23.44887046],\n [ 10.0924554 ],\n [ 114.89782724],\n [ -20.31846722],\n [ 21.73272829],\n [ 149.54119515],\n [ 111.24471443],\n [ 99.48539882],\n [ -35.16836302],\n [-101.03350911],\n [ 5.97295888],\n [ 7.25257305],\n [ 51.40076171],\n [ -30.86662914],\n [ 18.5159811 ],\n [ 23.16362683],\n [-209.4508955 ],\n [ 18.32657647],\n [ -17.78768718],\n [ 123.10046595],\n [ -9.64742725],\n [ 69.10647314],\n [-164.90965008],\n [ 33.90077698],\n [ -8.34156276],\n [ 81.03494855],\n [ -91.18612226],\n [ -25.95547259],\n [ -57.68636868],\n [ 52.21787164],\n [ -79.80093395],\n [ -96.93575685],\n [ 40.20106337],\n [ -84.97110081],\n [-176.65211321],\n [ 8.84422442],\n [ 46.25082615],\n [ -78.30918897],\n [-160.69327075],\n [ 11.4988301 ],\n [ -68.91145975],\n [ 159.72108347],\n [ -96.1293634 ],\n [ 93.29661842],\n [ -3.34290725],\n [ -44.37403604],\n [ 72.78003375],\n [ 58.9726092 ],\n [-120.2722184 ],\n [ -10.23962428],\n [ -15.23178661],\n [ -72.45067441],\n [ -24.58103381],\n [ -52.95582732],\n [ -32.68445947],\n [ 22.92107052],\n [ 58.30793965],\n [ -1.94134787],\n [-195.81366884],\n [ -68.38699782],\n [-133.16039657],\n [ 176.34274647],\n [ 119.58028278],\n [ -11.16733305],\n [ -36.53320335],\n [ -29.89061742],\n [ -8.5470335 ],\n [ 253.78529229],\n [ 73.91284241],\n [ -56.34987242],\n [ -7.53272516],\n [ 32.47293837],\n [ 45.3525632 ],\n [ -62.21617915],\n [ 12.03373577],\n [ 71.69315111],\n [ 51.26931421],\n [ 82.19307397],\n [-161.8850339 ],\n [ 65.16107598],\n [ 55.05160744],\n [ 132.12975865],\n [ -7.72943068],\n [ 115.02356431],\n [ 62.30344601],\n [ 85.52811036],\n [-146.2041484 ],\n [-114.01867649],\n [-146.59243508],\n [ 24.68708032],\n [-166.22366955],\n [ 21.05365449],\n [-135.30194749],\n [ 128.71733593],\n [ 139.90881929],\n [ 84.5286062 ],\n [ -18.7346335 ],\n [-162.76454329],\n [ -83.63409885],\n [ -34.3897405 ],\n [ -2.30820206],\n [-142.94615367],\n [ 143.00421992],\n [ -30.33643127],\n [ 0.70105601],\n [ -81.80772148],\n [ -52.18366292],\n [ 131.82395509],\n [ 116.4002786 ],\n [ 87.21203659],\n [ 55.19493985],\n [ 0.73477336],\n [ 59.55495105],\n [ 154.46364059],\n [-225.37742167],\n [ 100.21140938],\n [ -98.4036096 ],\n [ 52.63610646],\n [ 11.21453164],\n [ 71.22375439],\n [ -20.14484612],\n [ -86.31817529],\n [ 81.97505105],\n [ 145.00287557],\n [ -27.14528074],\n [ -35.40432235],\n [-138.65037835],\n [ -50.8112898 ],\n [ 8.05796719],\n [ -86.45810587],\n [ -99.40024209],\n [ 54.44078033],\n [ 13.20265305],\n [ -83.12674952],\n [ 54.23072453],\n [ 142.61263906],\n [ -94.10693382],\n [ -51.6455085 ],\n [-167.74786399],\n [ -14.9176615 ],\n [ 124.56501798],\n [-147.92842575],\n [-123.26242741],\n [ 67.91845291],\n [ 85.94901879],\n [ 56.8292938 ],\n [ 36.38058081],\n [ 2.50780512],\n [ 30.39006654],\n [ 127.20394344],\n [-117.73165514],\n [ -2.91657795],\n [ 130.09466648],\n [ -65.3558783 ],\n [ -77.74367354],\n [ -93.52577826],\n [ 22.82638954],\n [ 97.91688948],\n [ 53.87450743],\n [ 13.75402425],\n [ -28.26171893],\n [ -99.63714579],\n [ 16.60563733],\n [ 69.64217385],\n [ -48.15398647],\n [-118.63089411],\n [ 111.87660506],\n [ 24.72343764],\n [ -78.08036474],\n [ -33.88756366],\n [ 33.82069537],\n [ 93.46996659],\n [-247.63913812],\n [ 125.80897024],\n [ 89.26976925],\n [ -3.17516635],\n [ 6.49234628],\n [ 50.69214318],\n [ -96.48176485],\n [ 64.27828339],\n [ 45.58814614],\n [ -57.13311006],\n [ -9.63702525],\n [ 97.76026444],\n [ 9.9760717 ],\n [ -61.11679856],\n [-172.90145046],\n [ 28.449908 ],\n [ 27.95965117],\n [ 97.41121182],\n [-111.4052245 ],\n [ 24.42075129],\n [ -6.03706554],\n [ 19.2155579 ],\n [ 79.78392442],\n [ 63.53156487],\n [ -30.25166355],\n [ 133.04310397],\n [-148.69858107],\n [ 29.30858162],\n [ 202.30977745],\n [ -8.43015243],\n [ -78.15001325],\n [ -3.32114832],\n [ 71.20823193],\n [ 49.14825274],\n [ -12.91143505],\n [ 17.58689208],\n [ -32.32333969],\n [ 68.64015904],\n [ -18.49234881],\n [-155.71407156],\n [ -53.08093331],\n [ -40.04314427],\n [ -96.77421987],\n [ 75.09998225],\n [-142.26316309],\n [ 144.07657567],\n [ -0.9142981 ],\n [ -46.88141109],\n [ 104.18149192],\n [ -7.3838574 ],\n [ 122.98792883],\n [ -25.1067871 ],\n [ -38.86438531],\n [ -29.94311814],\n [ -20.84379604],\n [ -45.63977493],\n [ 120.47849375],\n [ 54.38004088],\n [ -4.38531758],\n [ -33.28213529],\n [ 83.76194741],\n [ 141.38514588],\n [ 66.76231509],\n [-122.11997948],\n [ -34.56647166],\n [ 6.10989168],\n [-281.5787354 ],\n [ 176.19837602],\n [ 44.85378175],\n [ 88.58657353],\n [ 33.0908565 ],\n [ -38.92066434],\n [ 21.62952278],\n [ -4.22175343],\n [ -60.49997326],\n [-109.4640204 ],\n [ -60.48590219],\n [ -27.57076231],\n [ 62.39724201],\n [ 61.39945488],\n [-117.07550313],\n [ 31.65153877],\n [ 20.12100501],\n [ 85.92539889],\n [ -61.86124012],\n [ 61.49792896],\n [ 165.73461627],\n [ 37.26269992],\n [ -21.53092624],\n [ -65.38451959],\n [ -68.93437777],\n [ -99.90633439],\n [ 160.65240439],\n [ -5.26000289],\n [ 72.74214152],\n [ 85.47600172],\n [ -75.87006958],\n [ -82.28498281],\n [ -53.84139672],\n [ 32.14703738],\n [ 111.38677626],\n [ -36.82556496],\n [ 207.45035291],\n [ -75.70162734],\n [ -9.97591029],\n [ 104.25785348],\n [ 39.10952468],\n [ 35.37869775],\n [ 61.97001728],\n [ 52.44663671],\n [ -37.8163759 ]]),\n 'sigma': 87.02092153863731,\n 'stderr_beta': array([10.74454682, 0.14716191, 0.19575352]),\n 't': array([[4.33375607e+00, 3.16415072e+02, 2.37871820e+02],\n [2.91393392e-01, 2.12751386e+01, 1.59940420e+01],\n [1.53639303e-01, 1.12174729e+01, 8.43297595e+00]])}" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "{'R2': 0.5985995381650879,\n", + " 'SQT': 9376178.724748027,\n", + " 'SSE': 3763602.4703605347,\n", + " 'V': array([[ 1.15445286e+02, -5.91775326e-01, -1.40469455e+00],\n", + " [-5.91775326e-01, 2.16566265e-02, -1.01166076e-02],\n", + " [-1.40469455e+00, -1.01166076e-02, 3.83194387e-02]]),\n", + " 'beta': array([[46.56424501],\n", + " [ 3.13088995],\n", + " [ 1.65078469]]),\n", + " 'k': 3,\n", + " 'n': 500,\n", + " 'residuas': array([[-101.5479714 ],\n", + " [-221.95191746],\n", + " [ -28.39493021],\n", + " [ -55.33220907],\n", + " [ 46.99151994],\n", + " [ -61.49876145],\n", + " [ -10.97375688],\n", + " [ 56.04286631],\n", + " [-107.07201378],\n", + " [ -22.64234823],\n", + " [ 18.65252702],\n", + " [ 4.20478851],\n", + " [ 58.73792368],\n", + " [ -96.97502295],\n", + " [ -32.86295192],\n", + " [ -20.22262579],\n", + " [ -67.86712849],\n", + " [ 31.87090306],\n", + " [-162.09171263],\n", + " [ -30.01260059],\n", + " [ 11.30891441],\n", + " [ 158.79214349],\n", + " [-114.42340488],\n", + " [ 142.02318218],\n", + " [ -7.57932036],\n", + " [ -6.49910448],\n", + " [ -44.32843848],\n", + " [ 6.77717352],\n", + " [ 27.23886701],\n", + " [ 39.42746732],\n", + " [-125.27544158],\n", + " [-312.31561908],\n", + " [ 35.88072314],\n", + " [-104.09877123],\n", + " [ -79.13277739],\n", + " [ 62.99108447],\n", + " [ -91.41741639],\n", + " [ 18.04156839],\n", + " [ 81.20209596],\n", + " [ 167.03597417],\n", + " [ 42.0640298 ],\n", + " [ 105.40291713],\n", + " [ 16.97150062],\n", + " [ -44.58504449],\n", + " [ 21.74017311],\n", + " [-119.24943519],\n", + " [ 44.37169876],\n", + " [ 46.01439546],\n", + " [ 76.43506709],\n", + " [ -3.24526726],\n", + " [-202.64255128],\n", + " [ 31.20018425],\n", + " [ 189.10460729],\n", + " [ -23.35534431],\n", + " [ 111.06580827],\n", + " [ 122.03248408],\n", + " [ 19.6059557 ],\n", + " [ 85.72600805],\n", + " [ 199.40993468],\n", + " [ -15.16393386],\n", + " [ 30.05152467],\n", + " [ -24.64764002],\n", + " [ -21.39643233],\n", + " [ 109.15564929],\n", + " [ -96.8452832 ],\n", + " [ 10.6165261 ],\n", + " [ 44.98996026],\n", + " [ 17.5538346 ],\n", + " [ 74.99139838],\n", + " [ 57.08109974],\n", + " [-103.42989143],\n", + " [ -54.15445582],\n", + " [ -80.42379658],\n", + " [ 105.22613221],\n", + " [ 17.60163826],\n", + " [ -84.46223973],\n", + " [ 58.74487388],\n", + " [ -98.38843651],\n", + " [ -57.53132956],\n", + " [ -86.94008465],\n", + " [ 74.25321121],\n", + " [ 66.92698085],\n", + " [ -59.01239301],\n", + " [-182.26613088],\n", + " [ -37.75723997],\n", + " [ -28.90642743],\n", + " [ 10.86710065],\n", + " [ 141.34484921],\n", + " [ 93.36643912],\n", + " [ 79.22696845],\n", + " [ -13.49699548],\n", + " [ 31.19637282],\n", + " [ 28.09608592],\n", + " [ 107.61569733],\n", + " [ 85.52565333],\n", + " [ 67.63855529],\n", + " [ 4.370889 ],\n", + " [ 10.2535358 ],\n", + " [-110.85158432],\n", + " [ -99.42686928],\n", + " [ 28.80679849],\n", + " [ -41.13217022],\n", + " [ 82.26697646],\n", + " [ 0.84861706],\n", + " [ -52.83297938],\n", + " [ 104.87647745],\n", + " [ -5.12211887],\n", + " [ 31.24030526],\n", + " [ -49.3991086 ],\n", + " [-120.22473235],\n", + " [ 67.42246154],\n", + " [ 22.78784737],\n", + " [ 62.42370371],\n", + " [ -44.05909589],\n", + " [ 33.27995053],\n", + " [-123.29471171],\n", + " [ -85.16575008],\n", + " [ -75.75880457],\n", + " [ -37.87498583],\n", + " [ -62.96929899],\n", + " [ 101.86481092],\n", + " [ 94.23284647],\n", + " [ 73.07195268],\n", + " [-117.88512509],\n", + " [ 79.72472231],\n", + " [ -64.44538218],\n", + " [ 14.22644226],\n", + " [ -34.61251184],\n", + " [ 85.21693507],\n", + " [ -3.38182631],\n", + " [ 159.57932115],\n", + " [-133.65984906],\n", + " [-220.12187744],\n", + " [ -52.28391002],\n", + " [ -62.61818894],\n", + " [ -63.10637861],\n", + " [ 14.74703647],\n", + " [ -78.82130204],\n", + " [ 10.9336829 ],\n", + " [-108.21194236],\n", + " [ 108.41923868],\n", + " [ -93.71377032],\n", + " [ 105.88677136],\n", + " [ 36.01765966],\n", + " [ -84.08827417],\n", + " [ 79.33084495],\n", + " [ -17.56642068],\n", + " [ 1.61921415],\n", + " [ 52.11176536],\n", + " [ 21.24481943],\n", + " [ -4.83874205],\n", + " [ 34.4028412 ],\n", + " [ -41.1694442 ],\n", + " [ -71.97469513],\n", + " [ -10.5282205 ],\n", + " [ 132.42414377],\n", + " [ -41.14052994],\n", + " [ 93.85825104],\n", + " [ 5.54528063],\n", + " [-102.08421457],\n", + " [-101.2525261 ],\n", + " [ -26.34363365],\n", + " [ -92.82507213],\n", + " [ -95.64195275],\n", + " [ 102.86431787],\n", + " [-125.75170496],\n", + " [ -61.04351189],\n", + " [ 36.53242613],\n", + " [ 63.19604717],\n", + " [-121.94036996],\n", + " [ -29.08640409],\n", + " [ -37.81013073],\n", + " [ 71.66432807],\n", + " [ 139.07554448],\n", + " [ 98.0285007 ],\n", + " [ 13.75349943],\n", + " [ 0.66487986],\n", + " [ 80.80062849],\n", + " [ 149.18500181],\n", + " [-104.23506815],\n", + " [ 35.42054448],\n", + " [ 37.19662996],\n", + " [ 75.85221312],\n", + " [ 47.49472216],\n", + " [ 99.36408343],\n", + " [-124.56424503],\n", + " [-136.76910575],\n", + " [ -21.60461406],\n", + " [ -2.85575289],\n", + " [ 13.40534834],\n", + " [ 6.87101313],\n", + " [-144.10257391],\n", + " [ -13.37941404],\n", + " [ -31.98826158],\n", + " [ 51.15112054],\n", + " [ -56.68792921],\n", + " [ 42.41272565],\n", + " [ -6.59041779],\n", + " [ 64.75262061],\n", + " [ 30.59657478],\n", + " [ 0.70872505],\n", + " [ 34.5089948 ],\n", + " [ 37.74967398],\n", + " [-122.9368161 ],\n", + " [ 51.1430415 ],\n", + " [ 12.74621679],\n", + " [ 109.12818117],\n", + " [ -92.6956237 ],\n", + " [ 1.44006582],\n", + " [ 132.61012448],\n", + " [-112.54238589],\n", + " [ 154.62747078],\n", + " [ -33.22687664],\n", + " [ 106.4492505 ],\n", + " [-137.45651495],\n", + " [ 28.81481772],\n", + " [ -67.06380283],\n", + " [ 23.44887046],\n", + " [ 10.0924554 ],\n", + " [ 114.89782724],\n", + " [ -20.31846722],\n", + " [ 21.73272829],\n", + " [ 149.54119515],\n", + " [ 111.24471443],\n", + " [ 99.48539882],\n", + " [ -35.16836302],\n", + " [-101.03350911],\n", + " [ 5.97295888],\n", + " [ 7.25257305],\n", + " [ 51.40076171],\n", + " [ -30.86662914],\n", + " [ 18.5159811 ],\n", + " [ 23.16362683],\n", + " [-209.4508955 ],\n", + " [ 18.32657647],\n", + " [ -17.78768718],\n", + " [ 123.10046595],\n", + " [ -9.64742725],\n", + " [ 69.10647314],\n", + " [-164.90965008],\n", + " [ 33.90077698],\n", + " [ -8.34156276],\n", + " [ 81.03494855],\n", + " [ -91.18612226],\n", + " [ -25.95547259],\n", + " [ -57.68636868],\n", + " [ 52.21787164],\n", + " [ -79.80093395],\n", + " [ -96.93575685],\n", + " [ 40.20106337],\n", + " [ -84.97110081],\n", + " [-176.65211321],\n", + " [ 8.84422442],\n", + " [ 46.25082615],\n", + " [ -78.30918897],\n", + " [-160.69327075],\n", + " [ 11.4988301 ],\n", + " [ -68.91145975],\n", + " [ 159.72108347],\n", + " [ -96.1293634 ],\n", + " [ 93.29661842],\n", + " [ -3.34290725],\n", + " [ -44.37403604],\n", + " [ 72.78003375],\n", + " [ 58.9726092 ],\n", + " [-120.2722184 ],\n", + " [ -10.23962428],\n", + " [ -15.23178661],\n", + " [ -72.45067441],\n", + " [ -24.58103381],\n", + " [ -52.95582732],\n", + " [ -32.68445947],\n", + " [ 22.92107052],\n", + " [ 58.30793965],\n", + " [ -1.94134787],\n", + " [-195.81366884],\n", + " [ -68.38699782],\n", + " [-133.16039657],\n", + " [ 176.34274647],\n", + " [ 119.58028278],\n", + " [ -11.16733305],\n", + " [ -36.53320335],\n", + " [ -29.89061742],\n", + " [ -8.5470335 ],\n", + " [ 253.78529229],\n", + " [ 73.91284241],\n", + " [ -56.34987242],\n", + " [ -7.53272516],\n", + " [ 32.47293837],\n", + " [ 45.3525632 ],\n", + " [ -62.21617915],\n", + " [ 12.03373577],\n", + " [ 71.69315111],\n", + " [ 51.26931421],\n", + " [ 82.19307397],\n", + " [-161.8850339 ],\n", + " [ 65.16107598],\n", + " [ 55.05160744],\n", + " [ 132.12975865],\n", + " [ -7.72943068],\n", + " [ 115.02356431],\n", + " [ 62.30344601],\n", + " [ 85.52811036],\n", + " [-146.2041484 ],\n", + " [-114.01867649],\n", + " [-146.59243508],\n", + " [ 24.68708032],\n", + " [-166.22366955],\n", + " [ 21.05365449],\n", + " [-135.30194749],\n", + " [ 128.71733593],\n", + " [ 139.90881929],\n", + " [ 84.5286062 ],\n", + " [ -18.7346335 ],\n", + " [-162.76454329],\n", + " [ -83.63409885],\n", + " [ -34.3897405 ],\n", + " [ -2.30820206],\n", + " [-142.94615367],\n", + " [ 143.00421992],\n", + " [ -30.33643127],\n", + " [ 0.70105601],\n", + " [ -81.80772148],\n", + " [ -52.18366292],\n", + " [ 131.82395509],\n", + " [ 116.4002786 ],\n", + " [ 87.21203659],\n", + " [ 55.19493985],\n", + " [ 0.73477336],\n", + " [ 59.55495105],\n", + " [ 154.46364059],\n", + " [-225.37742167],\n", + " [ 100.21140938],\n", + " [ -98.4036096 ],\n", + " [ 52.63610646],\n", + " [ 11.21453164],\n", + " [ 71.22375439],\n", + " [ -20.14484612],\n", + " [ -86.31817529],\n", + " [ 81.97505105],\n", + " [ 145.00287557],\n", + " [ -27.14528074],\n", + " [ -35.40432235],\n", + " [-138.65037835],\n", + " [ -50.8112898 ],\n", + " [ 8.05796719],\n", + " [ -86.45810587],\n", + " [ -99.40024209],\n", + " [ 54.44078033],\n", + " [ 13.20265305],\n", + " [ -83.12674952],\n", + " [ 54.23072453],\n", + " [ 142.61263906],\n", + " [ -94.10693382],\n", + " [ -51.6455085 ],\n", + " [-167.74786399],\n", + " [ -14.9176615 ],\n", + " [ 124.56501798],\n", + " [-147.92842575],\n", + " [-123.26242741],\n", + " [ 67.91845291],\n", + " [ 85.94901879],\n", + " [ 56.8292938 ],\n", + " [ 36.38058081],\n", + " [ 2.50780512],\n", + " [ 30.39006654],\n", + " [ 127.20394344],\n", + " [-117.73165514],\n", + " [ -2.91657795],\n", + " [ 130.09466648],\n", + " [ -65.3558783 ],\n", + " [ -77.74367354],\n", + " [ -93.52577826],\n", + " [ 22.82638954],\n", + " [ 97.91688948],\n", + " [ 53.87450743],\n", + " [ 13.75402425],\n", + " [ -28.26171893],\n", + " [ -99.63714579],\n", + " [ 16.60563733],\n", + " [ 69.64217385],\n", + " [ -48.15398647],\n", + " [-118.63089411],\n", + " [ 111.87660506],\n", + " [ 24.72343764],\n", + " [ -78.08036474],\n", + " [ -33.88756366],\n", + " [ 33.82069537],\n", + " [ 93.46996659],\n", + " [-247.63913812],\n", + " [ 125.80897024],\n", + " [ 89.26976925],\n", + " [ -3.17516635],\n", + " [ 6.49234628],\n", + " [ 50.69214318],\n", + " [ -96.48176485],\n", + " [ 64.27828339],\n", + " [ 45.58814614],\n", + " [ -57.13311006],\n", + " [ -9.63702525],\n", + " [ 97.76026444],\n", + " [ 9.9760717 ],\n", + " [ -61.11679856],\n", + " [-172.90145046],\n", + " [ 28.449908 ],\n", + " [ 27.95965117],\n", + " [ 97.41121182],\n", + " [-111.4052245 ],\n", + " [ 24.42075129],\n", + " [ -6.03706554],\n", + " [ 19.2155579 ],\n", + " [ 79.78392442],\n", + " [ 63.53156487],\n", + " [ -30.25166355],\n", + " [ 133.04310397],\n", + " [-148.69858107],\n", + " [ 29.30858162],\n", + " [ 202.30977745],\n", + " [ -8.43015243],\n", + " [ -78.15001325],\n", + " [ -3.32114832],\n", + " [ 71.20823193],\n", + " [ 49.14825274],\n", + " [ -12.91143505],\n", + " [ 17.58689208],\n", + " [ -32.32333969],\n", + " [ 68.64015904],\n", + " [ -18.49234881],\n", + " [-155.71407156],\n", + " [ -53.08093331],\n", + " [ -40.04314427],\n", + " [ -96.77421987],\n", + " [ 75.09998225],\n", + " [-142.26316309],\n", + " [ 144.07657567],\n", + " [ -0.9142981 ],\n", + " [ -46.88141109],\n", + " [ 104.18149192],\n", + " [ -7.3838574 ],\n", + " [ 122.98792883],\n", + " [ -25.1067871 ],\n", + " [ -38.86438531],\n", + " [ -29.94311814],\n", + " [ -20.84379604],\n", + " [ -45.63977493],\n", + " [ 120.47849375],\n", + " [ 54.38004088],\n", + " [ -4.38531758],\n", + " [ -33.28213529],\n", + " [ 83.76194741],\n", + " [ 141.38514588],\n", + " [ 66.76231509],\n", + " [-122.11997948],\n", + " [ -34.56647166],\n", + " [ 6.10989168],\n", + " [-281.5787354 ],\n", + " [ 176.19837602],\n", + " [ 44.85378175],\n", + " [ 88.58657353],\n", + " [ 33.0908565 ],\n", + " [ -38.92066434],\n", + " [ 21.62952278],\n", + " [ -4.22175343],\n", + " [ -60.49997326],\n", + " [-109.4640204 ],\n", + " [ -60.48590219],\n", + " [ -27.57076231],\n", + " [ 62.39724201],\n", + " [ 61.39945488],\n", + " [-117.07550313],\n", + " [ 31.65153877],\n", + " [ 20.12100501],\n", + " [ 85.92539889],\n", + " [ -61.86124012],\n", + " [ 61.49792896],\n", + " [ 165.73461627],\n", + " [ 37.26269992],\n", + " [ -21.53092624],\n", + " [ -65.38451959],\n", + " [ -68.93437777],\n", + " [ -99.90633439],\n", + " [ 160.65240439],\n", + " [ -5.26000289],\n", + " [ 72.74214152],\n", + " [ 85.47600172],\n", + " [ -75.87006958],\n", + " [ -82.28498281],\n", + " [ -53.84139672],\n", + " [ 32.14703738],\n", + " [ 111.38677626],\n", + " [ -36.82556496],\n", + " [ 207.45035291],\n", + " [ -75.70162734],\n", + " [ -9.97591029],\n", + " [ 104.25785348],\n", + " [ 39.10952468],\n", + " [ 35.37869775],\n", + " [ 61.97001728],\n", + " [ 52.44663671],\n", + " [ -37.8163759 ]]),\n", + " 'sigma': 87.02092153863731,\n", + " 'stderr_beta': array([10.74454682, 0.14716191, 0.19575352]),\n", + " 't': array([[4.33375607e+00, 3.16415072e+02, 2.37871820e+02],\n", + " [2.91393392e-01, 2.12751386e+01, 1.59940420e+01],\n", + " [1.53639303e-01, 1.12174729e+01, 8.43297595e+00]])}" ] - }, + }, + "execution_count": 196, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res" + ] + }, + { + "cell_type": "code", + "execution_count": 197, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "res['R2']", - "execution_count": 197, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 197, - "data": { - "text/plain": "0.5985995381650879" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "0.5985995381650879" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "", - "execution_count": null, - "outputs": [] - } - ], - "metadata": { - "kernelspec": { - "name": "python3", - "display_name": "Python 3", - "language": "python" - }, - "language_info": { - "mimetype": "text/x-python", - "nbconvert_exporter": "python", - "name": "python", - "pygments_lexer": "ipython3", - "version": "3.5.4", - "file_extension": ".py", - "codemirror_mode": { - "version": 3, - "name": "ipython" - } + }, + "execution_count": 197, + "metadata": {}, + "output_type": "execute_result" } + ], + "source": [ + "res['R2']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-II.ipynb" "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-II.ipynb" index d051859..3900c73 100644 --- "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-II.ipynb" +++ "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-II.ipynb" @@ -1,539 +1,665 @@ { - "cells": [ - { - "metadata": {}, - "cell_type": "markdown", - "source": "# Optimization with equality constraints" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import math\nimport numpy as np\nfrom scipy import optimize as opt", - "execution_count": 1, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "maximize $.4\\,\\log(x_1)+.6\\,\\log(x_2)$ s.t. $x_1+3\\,x_2=50$." - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "I = 50\np = np.array([1, 3])", - "execution_count": 2, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "U = lambda x: (.4*math.log(x[0])+.6*math.log(x[1]))", - "execution_count": 3, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x0 = (I/len(p))/np.array(p)", - "execution_count": 6, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "budget = ({'type': 'eq', 'fun': lambda x: I-np.sum(np.multiply(x, p))})", - "execution_count": 8, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "opt.minimize(lambda x: -U(x), x0, method='SLSQP', constraints=budget, tol=1e-08, \n options={'disp': True, 'ftol': 1e-08})", - "execution_count": 9, - "outputs": [ - { - "output_type": "stream", - "text": "Optimization terminated successfully. (Exit mode 0)\n Current function value: -2.5798439652115133\n Iterations: 8\n Function evaluations: 32\n Gradient evaluations: 8\n", - "name": "stdout" - }, - { - "output_type": "execute_result", - "execution_count": 9, - "data": { - "text/plain": " fun: -2.5798439652115133\n jac: array([-0.01999989, -0.06000018])\n message: 'Optimization terminated successfully.'\n nfev: 32\n nit: 8\n njev: 8\n status: 0\n success: True\n x: array([20.00008839, 9.99997054])" - }, - "metadata": {} - } + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimization with equality constraints" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "import numpy as np\n", + "from scipy import optimize as opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "maximize $.4\\,\\log(x_1)+.6\\,\\log(x_2)$ s.t. $x_1+3\\,x_2=50$." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "I = 50\n", + "p = np.array([1, 3])" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "U = lambda x: (.4*math.log(x[0])+.6*math.log(x[1]))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "x0 = (I/len(p))/np.array(p)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "budget = ({'type': 'eq', 'fun': lambda x: I-np.sum(np.multiply(x, p))})" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully. (Exit mode 0)\n", + " Current function value: -2.5798439652115133\n", + " Iterations: 8\n", + " Function evaluations: 32\n", + " Gradient evaluations: 8\n" + ] + }, + { + "data": { + "text/plain": [ + " fun: -2.5798439652115133\n", + " jac: array([-0.01999989, -0.06000018])\n", + " message: 'Optimization terminated successfully.'\n", + " nfev: 32\n", + " nit: 8\n", + " njev: 8\n", + " status: 0\n", + " success: True\n", + " x: array([20.00008839, 9.99997054])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def consumer(U, p, I):\n budget = ({'type': 'eq', 'fun': lambda x: I-np.sum(np.multiply(x, p))})\n x0 = (I/len(p))/np.array(p)\n sol = opt.minimize(lambda x: -U(x), x0, method='SLSQP', constraints=budget, tol=1e-08, \n options={'disp': False, 'ftol': 1e-08})\n if sol.status == 0:\n return {'x': sol.x, 'V': -sol.fun, 'MgU': -sol.jac, 'mult': -sol.jac[0]/p[0]}\n else:\n return 0", - "execution_count": 16, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "consumer(U, p, I)", - "execution_count": 19, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 19, - "data": { - "text/plain": "{'MgU': array([0.01999989, 0.06000018]),\n 'V': 2.5798439652115133,\n 'mult': 0.01999989151954651,\n 'x': array([20.00008839, 9.99997054])}" - }, - "metadata": {} - } + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "opt.minimize(lambda x: -U(x), x0, method='SLSQP', constraints=budget, tol=1e-08, \n", + " options={'disp': True, 'ftol': 1e-08})" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "def consumer(U, p, I):\n", + " budget = ({'type': 'eq', 'fun': lambda x: I-np.sum(np.multiply(x, p))})\n", + " x0 = (I/len(p))/np.array(p)\n", + " sol = opt.minimize(lambda x: -U(x), x0, method='SLSQP', constraints=budget, tol=1e-08, \n", + " options={'disp': False, 'ftol': 1e-08})\n", + " if sol.status == 0:\n", + " return {'x': sol.x, 'V': -sol.fun, 'MgU': -sol.jac, 'mult': -sol.jac[0]/p[0]}\n", + " else:\n", + " return 0" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'MgU': array([0.01999989, 0.06000018]),\n", + " 'V': 2.5798439652115133,\n", + " 'mult': 0.01999989151954651,\n", + " 'x': array([20.00008839, 9.99997054])}" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "delta=.01", - "execution_count": 14, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "(consumer(U, p, I+delta)['V']-consumer(U, p, I-delta)['V'])/(2*delta)", - "execution_count": 17, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 17, - "data": { - "text/plain": "0.020000000351583225" - }, - "metadata": {} - } + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "consumer(U, p, I)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "delta=.01" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.020000000351583225" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "delta=.001", - "execution_count": null, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "numerador = (consumer(U,p+np.array([delta, 0]), I)['V']-consumer(U,p+np.array([-delta, 0]), I)['V'])/(2*delta)", - "execution_count": 20, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "denominador = (consumer(U, p, I+delta)['V']-consumer(U, p, I-delta)['V'])/(2*delta)", - "execution_count": 21, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "-numerador/denominador", - "execution_count": 22, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 22, - "data": { - "text/plain": "20.000666372514335" - }, - "metadata": {} - } + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(consumer(U, p, I+delta)['V']-consumer(U, p, I-delta)['V'])/(2*delta)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "delta=.001" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "numerador = (consumer(U,p+np.array([delta, 0]), I)['V']-consumer(U,p+np.array([-delta, 0]), I)['V'])/(2*delta)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "denominador = (consumer(U, p, I+delta)['V']-consumer(U, p, I-delta)['V'])/(2*delta)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20.000666372514335" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Cost function" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# Production function\nF = lambda x: (x[0]**.8)*(x[1]**.2)", - "execution_count": 23, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "w = np.array([5, 4])", - "execution_count": 24, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "y = 1", - "execution_count": 25, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "constraint = ({'type': 'eq', 'fun': lambda x: y-F(x)})", - "execution_count": 26, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x0 = np.array([.5, .5])", - "execution_count": 30, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "cost = opt.minimize(lambda x: w@x, x0, method='SLSQP', constraints=constraint, tol=1e-08, \n options={'disp': True, 'ftol': 1e-08})", - "execution_count": 31, - "outputs": [ - { - "output_type": "stream", - "text": "Optimization terminated successfully. (Exit mode 0)\n Current function value: 7.886966805999761\n Iterations: 8\n Function evaluations: 33\n Gradient evaluations: 8\n", - "name": "stdout" - }, - { - "output_type": "stream", - "text": "/home/nbuser/anaconda3_420/lib/python3.5/site-packages/ipykernel/__main__.py:2: RuntimeWarning: invalid value encountered in double_scalars\n from ipykernel import kernelapp as app\n", - "name": "stderr" - } + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "-numerador/denominador" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cost function" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# Production function\n", + "F = lambda x: (x[0]**.8)*(x[1]**.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "w = np.array([5, 4])" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "y = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "constraint = ({'type': 'eq', 'fun': lambda x: y-F(x)})" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "x0 = np.array([.5, .5])" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully. (Exit mode 0)\n", + " Current function value: 7.886966805999761\n", + " Iterations: 8\n", + " Function evaluations: 33\n", + " Gradient evaluations: 8\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/nbuser/anaconda3_420/lib/python3.5/site-packages/ipykernel/__main__.py:2: RuntimeWarning: invalid value encountered in double_scalars\n", + " from ipykernel import kernelapp as app\n" + ] + } + ], + "source": [ + "cost = opt.minimize(lambda x: w@x, x0, method='SLSQP', constraints=constraint, tol=1e-08, \n", + " options={'disp': True, 'ftol': 1e-08})" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9999999999996633" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "F(cost.x)", - "execution_count": 33, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 33, - "data": { - "text/plain": "0.9999999999996633" - }, - "metadata": {} - } + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "F(cost.x)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + " fun: 7.886966805999761\n", + " jac: array([5., 4.])\n", + " message: 'Optimization terminated successfully.'\n", + " nfev: 33\n", + " nit: 8\n", + " njev: 8\n", + " status: 0\n", + " success: True\n", + " x: array([1.26191469, 0.39434834])" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "cost", - "execution_count": 34, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 34, - "data": { - "text/plain": " fun: 7.886966805999761\n jac: array([5., 4.])\n message: 'Optimization terminated successfully.'\n nfev: 33\n nit: 8\n njev: 8\n status: 0\n success: True\n x: array([1.26191469, 0.39434834])" - }, - "metadata": {} - } + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cost" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "a = 2\n", + "u = lambda c: -np.exp(-a*c)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "R = 2\n", + "Z2 = np.array([.72, .92, 1.12, 1.32])\n", + "Z3 = np.array([.86, .96, 1.06, 1.16])" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "def U(x):\n", + " states = len(Z2)*len(Z3)\n", + " U = u(x[0])\n", + " \n", + " for z2 in Z2:\n", + " for z3 in Z3:\n", + " U += (1/states)*u(x[1]*R+x[2]*z2+x[3]*z3)\n", + " \n", + " return U" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "p = np.array([1, 1, .5, .5])\n", + "I = 4" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'MgU': array([0.08731231, 0.08730633, 0.04365353, 0.04365407]),\n", + " 'V': -0.13096546963056768,\n", + " 'mult': 0.08731230534613132,\n", + " 'x': array([2.43826386, 0.96156249, 0.40056072, 0.79978658])}" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Exercise" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "a = 2\nu = lambda c: -np.exp(-a*c)", - "execution_count": 15, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "R = 2\nZ2 = np.array([.72, .92, 1.12, 1.32])\nZ3 = np.array([.86, .96, 1.06, 1.16])", - "execution_count": 37, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def U(x):\n states = len(Z2)*len(Z3)\n U = u(x[0])\n \n for z2 in Z2:\n for z3 in Z3:\n U += (1/states)*u(x[1]*R+x[2]*z2+x[3]*z3)\n \n return U", - "execution_count": 57, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "p = np.array([1, 1, .5, .5])\nI = 4", - "execution_count": 35, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# a=1\nconsumer(U, p, I)", - "execution_count": 39, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 39, - "data": { - "text/plain": "{'MgU': array([0.08731231, 0.08730633, 0.04365353, 0.04365407]),\n 'V': -0.13096546963056768,\n 'mult': 0.08731230534613132,\n 'x': array([2.43826386, 0.96156249, 0.40056072, 0.79978658])}" - }, - "metadata": {} - } + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# a=1\n", + "consumer(U, p, I)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'MgU': array([1.46733761e-05, 1.62503376e-05, 6.30933317e-06, 7.55005789e-06]),\n", + " 'V': -4.5597092009686085e-06,\n", + " 'mult': 1.467337608573871e-05,\n", + " 'x': array([ 2.54778275, -0.03185392, 1.48407021, 1.48407214])}" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# a=5\nconsumer(U, p, I)", - "execution_count": 55, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 55, - "data": { - "text/plain": "{'MgU': array([1.46733761e-05, 1.62503376e-05, 6.30933317e-06, 7.55005789e-06]),\n 'V': -4.5597092009686085e-06,\n 'mult': 1.467337608573871e-05,\n 'x': array([ 2.54778275, -0.03185392, 1.48407021, 1.48407214])}" - }, - "metadata": {} - } + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# a=5\n", + "consumer(U, p, I)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'MgU': array([0.01213578, 0.01212819, 0.00606456, 0.00606509]),\n", + " 'V': -0.009099936642525175,\n", + " 'mult': 0.012135779834352434,\n", + " 'x': array([2.55237217, 1.15077956, 0.19958579, 0.39411074])}" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# a=2\nconsumer(U, p, I)", - "execution_count": 58, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 58, - "data": { - "text/plain": "{'MgU': array([0.01213578, 0.01212819, 0.00606456, 0.00606509]),\n 'V': -0.009099936642525175,\n 'mult': 0.012135779834352434,\n 'x': array([2.55237217, 1.15077956, 0.19958579, 0.39411074])}" - }, - "metadata": {} - } + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# a=2\n", + "consumer(U, p, I)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "x = np.arange(0.0, 2.0, 0.01)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" }, { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import matplotlib.pyplot as plt", - "execution_count": 3, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x = np.arange(0.0, 2.0, 0.01)", - "execution_count": 6, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "a = 2\nu = lambda c: -np.exp(-a*c)\nplt.plot(x, u(x))", - "execution_count": 12, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 12, - "data": { - "text/plain": "[]" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xd8FPed//HXB9RASCBQQRTRe8CARXO3A2fHJaS6xgaXw46TPJI4l4t/RxLfJZfH+XKXy10cx+eGg1uM4wZx7NgY9wJG2GCqKaIIIYSEhHpdfX9/7OITsoQEq93Z1b6fj8c+dnbmu/v9MBreGn1ndsacc4iISGzp5XUBIiISfgp/EZEYpPAXEYlBCn8RkRik8BcRiUEKfxGRGKTwFxGJQQp/EZEYpPAXEYlBcV4X0JH09HQ3cuRIr8sQEYkqGzZsKHXOZXTWLmLDf+TIkeTl5XldhohIVDGz/V1pp2EfEZEY1C3hb2aXmNmnZrbbzO5sZ3mima0ILF9nZiO7o18RETk9QYe/mfUG7gW+BEwGrjGzyW2a3QyUO+fGAr8F/j3YfkVE5PR1x57/bGC3cy7fOdcIPAUsbNNmIbA8MP0M8EUzs27oW0RETkN3hP9QoKDV64OBee22cc41AxXAoLYfZGZLzCzPzPJKSkq6oTQREWlPd4R/e3vwbe8Q05U2OOcecM7lOudyMzI6PVNJREROU3eE/0FgeKvXw4BDHbUxszigP1DWDX2LiMhp6I7z/NcD48xsFFAIXA1c26bNKmAR8AHwDeB1p/tHikiMaWlxVDU0U1XfRE2Dj+qGZqobmqlp9VzT0MzA5ESunZMT0lqCDn/nXLOZfRd4BegNLHPObTWzXwB5zrlVwMPAY2a2G/8e/9XB9isiEm5NvhYq6pqorGuist4f4pV1gecTpv9vWWV9E1X1/ufqhma6sts7I2dA5Ic/gHPuJeClNvN+3mq6Hvhmd/QlItId6hp9lNc2Ul7byLHaJspqGjlW20h5bZN/fo1/uvW8qvrmk35mL4OUpHhS+8SRkuh/zhnY9//mJcWTmhRHalI8yYlx9EuKo19ib5IT40hOiKNfYhzJiXEkxIX++7cRe3kHEZFT4Zyjsr6Z0uoGSqsaKK1upLS6gZKqBv+86gZKqhsprWrgaE0D9U0tHX5Wv8Q40pLjSeubwIC+CYxMTyatb4L/kRxP6glhHk9KUhypfeJJTuhNtJzFrvAXkYhXVd9EcWU9RRX1HD7+qKynuLI+EO6NlFQ30Nj8+UDvZTAwOZGMlETS+yUwJj2ZQf0SSEsOhHnfeAb0TWBgcgID+sYzoE9CWPa8vabwFxFP1TX6KDxWS0FZHYXH6jhc4Q95f9jXUVzZQHXD54dbBiYnkJmSSGZqEmMy+5HRL5H0fomkpySQ0S+J9JQE0vslktY3gd69omNvPJwU/iISUvVNPgqP1XGwvI6D5f6QP1he+9nr0urGE9r3MshKTSIrNYnxWSmcOy6D7P5JDO6fxODUJLL79yEzNZGk+N4e/Yt6BoW/iAStrtHHvqM17CutIb/U/7y3tIYDZbUcqWo4oW18b2PogD4MS+vL/ElZDEvrw/CBfRmW1ochA/qQ0S+RuN49f9jFawp/EekSX4ujoKyW3Ueq2Xf0xJAvqqg/oW1mSiKj0pO5YEIGw9P6MmygP+yHpfUhMyVJwzARQOEvIidoaXEUHqtjZ3EVO4ur2VVcxc4jVew+Un3CGTJpfeMZmZ7MvDGDGDUomVEZyYwclMzI9GT6JSpaIp1+QiIxrLymka2HKtlWVMGnh6vZFQj52kbfZ20GpyYxLqsf180ZwfisfozNTGF0ejJpyQkeVi7BUviLxADnHEUV9Ww9VMnWQxX+wD9USeGxus/aZKQkMiErhatmDWd8VspnQd+/T7yHlUuoKPxFeqDS6gY2HjjGxoJjbDp4jK2HKimr8Z9VYwaj0pOZOSKNG+aNYMqQ/kwekspA7cnHFIW/SJRraPax9VAlHwfCfmNBOQVl/j363r2MCVkpLJiUxZShqUwZksrEwakka0w+5mkLEIky5TWNrN9Xxrq9ZeTtL2fboQqafP6rhWX3T2L68AFcP3cE04enMXVof/ok6Hx4+TyFv0iEK6lq4MO9Zazbe5QP95ax43AVAAlxvZg+bAA3nTOKGcMHMH14GoP7J3lcrUQLhb9IhCmraeTd3aV8sOco6/YeJb+kBoC+Cb05c0Qal0/LZvaoQZwxvD+Jcdqrl9Oj8BfxWEOzjw37y3lnVynv7Cph66FKnIOUpDhmjxzIVbnDmTN6EFOGpBKvb75KN1H4i3ggv6SaNz4t4Z1dJazLL6OuyUdcL2PmiDR+tGA854zLYOrQ/vomrISMwl8kDJp9LeTtL2fN9mLWbD9Cfql/KGd0RjJXzRrOuePSmTN6kL4ZK2GjLU0kRCrqmnhrZwlrthfz5qclVNQ1Ed/bmDt6EIvOGslFEzMZPrCv12VKjFL4i3SjitomXt12mJc2F/Hu7lKafI6ByQnMn5TF/EmZnDs+Q3v3EhG0FYoEqaK2iVcCgf9eIPCHDujD4rNGcvGUwczISdPYvUQchb/IaahpaOaVrYdZtekQ7+4qpbnFH/g3nj2KS6dmc8aw/lFzL1eJTQp/kS7ytTjW5h/l2Y8O8rcth6lt9DF0QB9uOmcUl03NZpoCX6KIwl+kE7uPVPHsR4W88HEhRRX1pCTGsXD6EL42cxi5I9IU+BKVFP4i7ahuaGbVxkOsWH+ATQcr6N3LOH98Bksvm8T8SVm6f6xEPYW/SCtbCit48sMDrPy4kJpGHxMHp/Czyyfz5TOGkJGS6HV5It1G4S8xr67Rx6pNhTy5zr+XnxTfi8unDeHaOTnMGD5AwzrSIyn8JWYdOlbHox/s56n1BzhW28T4rH788xWT+erMYbp7lfR4Cn+JKc45PjpwjGXv7eVvWw7jnOPiKYO58exRzBqpg7cSOxT+EhN8LY6XtxTx4Nv5bDpYQUpSHDefM4ob5o1gWJousSCxR+EvPVpDs4/nPirk/rf2sO9oLaPSk/nlwil8beYw3cpQYpq2fumRqhuaeXLdfh56Zy9HqhqYOrQ/9103k7+bMliXWhAhyPA3s4HACmAksA+40jlX3qbNdOA+IBXwAb9yzq0Ipl+RjlTWN7Hs3b088t4+KuqaOGvMIP7ryumcPXaQxvNFWgl2z/9OYI1z7m4zuzPw+idt2tQCNzjndpnZEGCDmb3inDsWZN8in6lpaOaP7+/jgbfzqahrYsHkLL5z4VimDx/gdWkiESnY8F8IXBCYXg68SZvwd87tbDV9yMyOABmAwl+CVtfo47G1+/jft/Ipq2nkoomZ3LFgPF8Y2t/r0kQiWrDhn+WcKwJwzhWZWebJGpvZbCAB2BNkvxLjmnwt/OnDA9zz+m5Kqho4d1w6P1wwnpk5aV6XJhIVOg1/M3sNGNzOoqWn0pGZZQOPAYuccy0dtFkCLAHIyck5lY+XGOGc49Vtxfz7yzvIL61h9qiB3HvtTGaPGuh1aSJRpdPwd87N72iZmRWbWXZgrz8bONJBu1Tgr8BPnXNrT9LXA8ADALm5ua6z2iS2bCw4xq/+uo31+8oZk5HMw4tyuWhipg7kipyGYId9VgGLgLsDzyvbNjCzBOB54FHn3J+D7E9iUEFZLb9+5VP+sukQ6f0S+NVXv8BVucOJ693L69JEolaw4X838LSZ3QwcAL4JYGa5wG3OuVuAK4HzgEFmtjjwvsXOuY1B9i09XH2Tj/ve3MN9b+2hl8H3LhrLreeP0T1wRbqBOReZoyu5ubkuLy/P6zLEI2u2F/PPf9lKQVkdl0/LZullk8ju38frskQinpltcM7ldtZOu1ASUQ4creVf/rKVNTuOMDazH0/eMoezxqZ7XZZIj6Pwl4jQ0Owf4vnDm3uI62X806UTWXzWKBLiNK4vEgoKf/HcRwfK+ckzn7DrSDWXTcvmpxriEQk5hb94praxmd+8upNl7+1lcGoSyxbnctHELK/LEokJCn/xxHu7S7nzuU8oKKvjW3Nz+MklE0lJ0t2zRMJF4S9hVVXfxK/+up2n1hcwKj2ZFUvmMmf0IK/LEok5Cn8Jmw37y/jBio0Ultdx63mj+eGC8STF9/a6LJGYpPCXkGvytXDPml38/o3dDE3rw9O3ziN3pK7FI+Ilhb+EVH5JNT9csZFNByv4xpnDuOuKyRrbF4kACn8JCeccT60v4Bd/2UZCXC/+cN1MLp2a7XVZIhKg8JduV93QzJ3PfsKLnxRxzth0/vObZzC4f5LXZYlIKwp/6VafHq7i209sYF9pDf94yQRuO28MvXTDdJGIo/CXbvPMhoP89IXNpCTF8+Tfz2WuTuEUiVgKfwlafZOPu1ZuZUVeAfNGD+J/rplOZoqGeUQimcJfgnLgaC23Pr6B7UWVfOfCMfxw/njdZEUkCij85bS9v7uU25/8COfgkcWzuHBiptcliUgXKfzllDnnePSD/fzixW2MTk/mwRtyGZme7HVZInIKFP5yShqbW/j5yi08tb6A+ZMy+e1V0/WlLZEopPCXLiuraeTWx/JYv6+c71w4hh8tmKDTOEWilMJfumRfaQ03/nE9hcfq+J+rp7Nw+lCvSxKRICj8pVMb9pfz94/m4ZzjyVvm6KJsIj2Awl9O6qXNRfxgxUaG9E/ikRtnM0oHdkV6BIW/dOjhd/fyyxe3ceaINB68IZeByQlelyQi3UThL5/jnOM3r+7k92/s5pIpg/nvq6frpisiPYzCX07ga3H8bOUWnlx3gGtmD+dfvzKV3jqjR6THUfjLZxqbW/jh0xv56ydF3H7BGH588QTMFPwiPZHCXwCoa/Sx5LE83tlVytJLJ/H35432uiQRCSGFv1DT0MxNf1zP+n1l/Pob07gyd7jXJYlIiCn8Y1xVfRM3PrKejwuO8dur9OUtkVih8I9hlfVNLFr2IZsPVnDPNTN0j12RGKLwj1EVtU1cv2wd24sq+cN1M/m7KYO9LklEwiiou26Y2UAzW21muwLPaSdpm2pmhWb2+2D6lOBV1DXxrYfXsaOoivuvP1PBLxKDgr3l0p3AGufcOGBN4HVHfgm8FWR/EqSahmZufORDdhyu5P7rz+SiiVlelyQiHgg2/BcCywPTy4GvtNfIzM4EsoBXg+xPglDf5OPm5evZFBjj1523RGJXsOGf5ZwrAgg8fy5NzKwX8Bvgx0H2JUFoaPax5LENrNtbxn9deQaXfEEHd0ViWacHfM3sNaC9QeGlXezjduAl51xBZ98WNbMlwBKAnJycLn68dKbJ18J3n/yYt3eW8OuvT9PpnCLSefg75+Z3tMzMis0s2zlXZGbZwJF2ms0DzjWz24F+QIKZVTvnPnd8wDn3APAAQG5uruvqP0I65pzjJ89+wuptxfzLl6dw5Sx9gUtEgj/VcxWwCLg78LyybQPn3HXHp81sMZDbXvBLaNz9tx0891EhdywYz6KzRnpdjohEiGDH/O8GFpjZLmBB4DVmlmtmDwVbnATnoXfyuf+tfK6fO4LvXTTW63JEJIKYc5E5upKbm+vy8vK8LiNqvfBxIT9YsZFLpw7mnmtm6rLMIjHCzDY453I7axfsnr9EoLd2lvAPf97EvNGD+O1V0xX8IvI5Cv8eZtuhSm5/fAPjs1K4/4YzSYzTHbhE5PMU/j1IcWU9Ny9fT2qfeB65cRapSfFelyQiEUrh30PUNjZz8/L1VNY18fCiWWSlJnldkohEMF3VswfwtTi+/9RGth2q5KFFuUwekup1SSIS4bTn3wPc/fJ2Vm8r5ueXT9aF2kSkSxT+Ue6pDw/w4Dt7WTRvBIvPHuV1OSISJRT+UWzD/jJ+tnIL545L52eXT/a6HBGJIgr/KFVcWc9tj3/EkAF9uOeaGcT11o9SRLpOB3yjUEOzj9se30BNQzOP3zyHAX0TvC5JRKKMwj/KOOf4+Qtb+fjAMe67biYTBqd4XZKIRCGNFUSZx9cdYEVeAd+5cAxfmqobsojI6VH4R5GPDpTzL6u2cuGEDO5YMMHrckQkiin8o0R5TSPfe/JjBvdP4r+vmqGLtYlIUDTmHwVaWhx3PL2RkqoGnvn2PPr31TV7RCQ42vOPAve/nc8bn5aw9LJJTBs2wOtyRKQHUPhHuA/3lvGfr37KZVOzuWHeCK/LEZEeQuEfwUqrG/jenz5ieFof7v76VMw0zi8i3UPhH6FaWhw/enoT5bVN/OG6M0nRtflFpBsp/CPU8g/28dbOEn522SRdollEup3CPwLtOFzJv728gy9OzORbczXOLyLdT+EfYeqbfHz/TxtJTYrn378xTeP8IhISOs8/wtz98g4+La7ijzfOIr1fotfliEgPpT3/CPLGjiP88f193Hj2SC6YkOl1OSLSgyn8I8TR6gZ+/MwmJg5O4SeXTPS6HBHp4TTsEwGcc/z0hS1U1jXzxC1zSYrv7XVJItLDac8/Arz4SREvbznMDxaM0/X5RSQsFP4eO1JVz89WbuGM4QNYcu5or8sRkRih8PeQc46fPr+F2kYfv/nmNN2HV0TCRmnjoVWbDvHqtmJ+tGA8YzM13CMi4aPw98iRynp+vnIrM3IGcIuGe0QkzBT+HnDO8U/Pb6G+ycd/fvMM3ZVLRMIuqPA3s4FmttrMdgWe0zpol2Nmr5rZdjPbZmYjg+k32v1ty2Fe217MHQvGMyajn9fliEgMCnbP/05gjXNuHLAm8Lo9jwL/4ZybBMwGjgTZb9SqqGvirlVbmZydys3njPK6HBGJUcGG/0JgeWB6OfCVtg3MbDIQ55xbDeCcq3bO1QbZb9T69d92UFrdwN1fn6qze0TEM8GmT5Zzrggg8NzeBWnGA8fM7Dkz+9jM/sPM2v0Kq5ktMbM8M8srKSkJsrTIs35fGU+sO8CNZ4/SvXhFxFOdXt7BzF4DBrezaOkp9HEuMAM4AKwAFgMPt23onHsAeAAgNzfXdfHzo0JDs4//99xmhg7owx0LxntdjojEuE7D3zk3v6NlZlZsZtnOuSIzy6b9sfyDwMfOufzAe14A5tJO+Pdk97+Vz+4j1TyyeBbJibqkkoh4K9hhn1XAosD0ImBlO23WA2lmlhF4fRGwLch+o0p+STW/f303l03L5sKJulSziHgv2PC/G1hgZruABYHXmFmumT0E4JzzAf8ArDGzzYABDwbZb9RwznHXqq0kxvXirisme12OiAgQ5CWdnXNHgS+2Mz8PuKXV69XAtGD6ilavbD3MO7tKueuKyWSmJHldjogIoG/4hlRdo49fvridiYNTuF43YheRCKIjjyH0hzd3U3isjhVL5uqcfhGJKEqkENlXWsP9b+WzcPoQ5owe5HU5IiInUPiHyC9f3EZ8b+OfLp3kdSkiIp+j8A+BNduLWbPjCN+fP46sVB3kFZHIo/DvZg3NPn7x4jbGZCSz+CxduE1EIpMO+HazR9/fz/6jtTx602wS4vS7VUQik9KpG5XVNPK713dxwYQMzhuf0fkbREQ8ovDvRr9bs4vaRh9LdZBXRCKcwr+b7Cmp5vG1+7l61nDGZelm7CIS2RT+3eTfXtpBUnxvfqjLNYtIFFD4d4P395Ty2vZibr9wDOn9Er0uR0SkUwr/IPlaHP/64naGDujDTWfr1E4RiQ4K/yA9/3Eh24oq+cmXJpIU3+7dKUVEIo7CPwj1TT5+u3onZwzrzxXTsr0uR0SkyxT+QXhi3QEKj9Xxj5dMxMy8LkdEpMsU/qepuqGZe9/YzdljB3H22HSvyxEROSUK/9P08Dt7Katp5McXT/S6FBGRU6bwPw1lNY08+E4+F0/JYvrwAV6XIyJyyhT+p+G+N3dT29jMP/zdBK9LERE5LQr/U3ToWB3LP9jPV2cM02UcRCRqKfxP0e/W7AIHP5g/zutSREROm8L/FOwrreHPGw5y7Zwchg/s63U5IiKnTeF/Cu55fTdxvYzbLxzjdSkiIkFR+HfRvtIaXthYyLfmjiAzRfflFZHopvDvot+/4d/rv/X80V6XIiISNIV/F+w/WsPzHxdy7Zwc7fWLSI+g8O+CewN7/d8+X2P9ItIzKPw7UVBWy3MfFXLN7BwyU7XXLyI9g8K/E/e+sZtevYxvX6C9fhHpORT+J1FQVsszGw5y7ewcsrTXLyI9SFDhb2YDzWy1me0KPKd10O7XZrbVzLab2e8sSi5+/4c399DLjNs01i8iPUywe/53Amucc+OANYHXJzCzs4CzgWnAF4BZwPlB9htyxZX1PLvhIFfOGsbg/trrF5GeJdjwXwgsD0wvB77SThsHJAEJQCIQDxQH2W/ILXt3Lz7nuPU87fWLSM8TbPhnOeeKAALPmW0bOOc+AN4AigKPV5xz24PsN6Qqapt4fO1+Lp+WrWv4iEiPFNdZAzN7DRjczqKlXenAzMYCk4BhgVmrzew859zb7bRdAiwByMnJ6crHh8Tj6/ZT0+jTXr+I9Fidhr9zbn5Hy8ys2MyynXNFZpYNHGmn2VeBtc656sB7XgbmAp8Lf+fcA8ADALm5ua5r/4TuVd/kY9m7e7lgQgaTh6R6UYKISMgFO+yzClgUmF4ErGynzQHgfDOLM7N4/Ad7I3bY5895BRytadS3eUWkRws2/O8GFpjZLmBB4DVmlmtmDwXaPAPsATYDm4BNzrm/BNlvSDT7Wrj/7Xxm5gxg9qiBXpcjIhIynQ77nIxz7ijwxXbm5wG3BKZ9wK3B9BMuf91cxMHyOu66YgpR8lUEEZHTom/4BjjnuO/NPYzL7McXJ37upCURkR5F4R/w5s4Sdhyu4tbzx9Crl/b6RaRnU/gHPPzOXrJSE/nyGUO8LkVEJOQU/sCnh6t4d3cpN8wbSUKcVomI9HxKOvyXckiK78W1s737YpmISDjFfPiXVjfw/MZCvjZzGGnJCV6XIyISFjEf/k+sPUBjcws3nT3K61JERMImpsO/odnHY2v3c8GEDMZm9vO6HBGRsInp8F+18RCl1Q3cfI72+kUktsRs+DvnWPbePiZkpXDO2HSvyxERCauYDf8P8o+yvaiSm84ZqUs5iEjMidnwX/buXgYlJ7Bw+lCvSxERCbuYDP+CslrW7DjCtXNySIrv7XU5IiJhF5Ph//i6/fQy49o5+lKXiMSmmAv/+iYfT68vYMGkLLL79/G6HBERT8Rc+L+0uYjy2iaunzfC61JERDwTc+H/6Af7GZ2RzFljBnldioiIZ2Iq/DcfrGBjwTGunztCp3eKSEyLqfB/fO1++sT35mszh3ldioiIp2Im/Ctqm1i5qZCvzBhK/z7xXpcjIuKpmAn/P28ooL6phW/N1emdIiIxEf4tLY4n1h3gzBFpTBnS3+tyREQ8FxPh/96eUvaW1nCDTu8UEQFiJPyfXHeAgckJXPKFwV6XIiISEXp8+JdWN7B6WzFfnzmUxDhdx0dEBGIg/J/dcJDmFsdVs4Z7XYqISMTo0eHvnGPF+gJyR6QxNjPF63JERCJGjw7/9fvKyS+t4erZOr1TRKS1Hh3+T60/QEpiHJdO1YFeEZHWemz4V9Q18dLmIr48fQh9E+K8LkdEJKL02PBftbGQ+qYWrp6lIR8RkbaCCn8z+6aZbTWzFjPLPUm7S8zsUzPbbWZ3BtNnVz21voDJ2al8YWhqOLoTEYkqwe75bwG+BrzdUQMz6w3cC3wJmAxcY2aTg+z35EUVVrD1UCVXzx6uSzeLiLQjqMFw59x2oLOAnQ3sds7lB9o+BSwEtgXT98k8tf4AiXG9WHjG0FB1ISIS1cIx5j8UKGj1+mBgXkjUNfpY+fEhLpuaTf++unSziEh7Ot3zN7PXgPbOlVzqnFvZhT7a+7PAddDXEmAJQE7O6R2oraxv4oKJmVwzRwd6RUQ60mn4O+fmB9nHQaD1tRWGAYc66OsB4AGA3Nzcdn9BdCYrNYl7rplxOm8VEYkZ4Rj2WQ+MM7NRZpYAXA2sCkO/IiLSgWBP9fyqmR0E5gF/NbNXAvOHmNlLAM65ZuC7wCvAduBp59zW4MoWEZFgBHu2z/PA8+3MPwRc2ur1S8BLwfQlIiLdp8d+w1dERDqm8BcRiUEKfxGRGKTwFxGJQQp/EZEYZM6d1nepQs7MSoD9QXxEOlDaTeV0J9V1aiK1Lojc2lTXqYnUuuD0ahvhnMvorFHEhn+wzCzPOdfhZaa9orpOTaTWBZFbm+o6NZFaF4S2Ng37iIjEIIW/iEgM6snh/4DXBXRAdZ2aSK0LIrc21XVqIrUuCGFtPXbMX0REOtaT9/xFRKQDURf+nd0M3swSzWxFYPk6MxvZatn/C8z/1MwuDnNdd5jZNjP7xMzWmNmIVst8ZrYx8Oj2y113obbFZlbSqoZbWi1bZGa7Ao9FYa7rt61q2mlmx1otC9k6M7NlZnbEzLZ0sNzM7HeBuj8xs5mtloVyfXVW13WBej4xs/fN7IxWy/aZ2ebA+soLc10XmFlFq5/Xz1stO+k2EOK6ftyqpi2BbWpgYFko19dwM3vDzLab2VYz+347bUK/jTnnouYB9Ab2AKOBBGATMLlNm9uB/w1MXw2sCExPDrRPBEYFPqd3GOu6EOgbmP728boCr6s9XmeLgd+3896BQH7gOS0wnRauutq0/x6wLEzr7DxgJrClg+WXAi/jv0vdXGBdqNdXF+s663h/wJeO1xV4vQ9I92h9XQC8GOw20N11tWl7BfB6mNZXNjAzMJ0C7Gzn/2TIt7Fo2/P/7GbwzrlG4PjN4FtbCCwPTD8DfNHMLDD/Kedcg3NuL7A78Hlhqcs594Zzrjbwci3+O5qFQ1fWWUcuBlY758qcc+XAauASj+q6BvhTN/V9Us65t4GykzRZCDzq/NYCA8wsm9Cur07rcs69H+gXwriNdWF9dSSYbbO76wrn9lXknPsoMF2F/z4nbe9rHvJtLNrCvys3g/+sjfPfSKYCGNTF94ayrtZuxv9b/bgkM8szs7Vm9pVuqulUa/t64M/LZ8zs+G03I2KdBYbIRgGvt5odynXWmY5qD+X6OlVttzEHvGpmG8x/r+xwm2dmm8zsZTObEpgXEevLzPriD9BnW80Oy/oy/7D0DGBdm0Uh38aCupmLB7pyM/iO2nT5RvKn4VRuUv8tIBc4v9XsHOfcITOPbVw3AAACoklEQVQbDbxuZpudc3vCWNtfgD855xrM7Db8fzld1MX3hrKu464GnnHO+VrNC+U664wX21iXmdmF+MP/nFazzw6sr0xgtZntCOwZh8NH+C85UG1mlwIvAOOIkPWFf8jnPedc678SQr6+zKwf/l84P3DOVbZd3M5bunUbi7Y9/67cDP6zNmYWB/TH/6dfl28kH6K6MLP5wFLgy865huPznf/OZzjn8oE38e8JdJdOa3POHW1Vz4PAmV19byjrauVq2vxJHuJ11pmOag/l+uoSM5sGPAQsdM4dPT6/1fo6gv/ue9015Nkp51ylc646MP0SEG9m6UTA+go42fYVkvVlZvH4g/8J59xz7TQJ/TYWigMaoXrg/0slH/8QwPEDRFPatPkOJx7wfTowPYUTD/jm030HfLtS1wz8B7fGtZmfBiQGptOBXXTvQa+u1JbdavqrwFr3fweX9gZqTAtMDwxXXYF2E/AffLNwrbPA546k4wOYl3HiwbgPQ72+ulhXDv5jWWe1mZ8MpLSafh+4JIx1DT7+88MfogcC665L20Co6gosP75zmByu9RX4tz8K/PdJ2oR8G+u2lRyuB/6j4DvxB+nSwLxf4N+bBkgC/hz4T/AhMLrVe5cG3vcp8KUw1/UaUAxsDDxWBeafBWwObPibgZs9WGf/BmwN1PAGMLHVe28KrMvdwI3hrCvw+p+Bu9u8L6TrDP9eYBHQhH9P62bgNuC2wHID7g3UvRnIDdP66qyuh4DyVttYXmD+6MC62hT4OS8Nc13fbbV9raXVL6f2toFw1RVosxj/iSCt3xfq9XUO/qGaT1r9rC4N9zamb/iKiMSgaBvzFxGRbqDwFxGJQQp/EZEYpPAXEYlBCn8RkRik8BcRiUEKfxGRGKTwFxGJQf8fac4WI+UpNtgAAAAASUVORK5CYII=\n", - "text/plain": "" - }, - "metadata": {} - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xd8FPed//HXB9RASCBQQRTRe8CARXO3A2fHJaS6xgaXw46TPJI4l4t/RxLfJZfH+XKXy10cx+eGg1uM4wZx7NgY9wJG2GCqKaIIIYSEhHpdfX9/7OITsoQEq93Z1b6fj8c+dnbmu/v9MBreGn1ndsacc4iISGzp5XUBIiISfgp/EZEYpPAXEYlBCn8RkRik8BcRiUEKfxGRGKTwFxGJQQp/EZEYpPAXEYlBcV4X0JH09HQ3cuRIr8sQEYkqGzZsKHXOZXTWLmLDf+TIkeTl5XldhohIVDGz/V1pp2EfEZEY1C3hb2aXmNmnZrbbzO5sZ3mima0ILF9nZiO7o18RETk9QYe/mfUG7gW+BEwGrjGzyW2a3QyUO+fGAr8F/j3YfkVE5PR1x57/bGC3cy7fOdcIPAUsbNNmIbA8MP0M8EUzs27oW0RETkN3hP9QoKDV64OBee22cc41AxXAoLYfZGZLzCzPzPJKSkq6oTQREWlPd4R/e3vwbe8Q05U2OOcecM7lOudyMzI6PVNJREROU3eE/0FgeKvXw4BDHbUxszigP1DWDX2LiMhp6I7z/NcD48xsFFAIXA1c26bNKmAR8AHwDeB1p/tHikiMaWlxVDU0U1XfRE2Dj+qGZqobmqlp9VzT0MzA5ESunZMT0lqCDn/nXLOZfRd4BegNLHPObTWzXwB5zrlVwMPAY2a2G/8e/9XB9isiEm5NvhYq6pqorGuist4f4pV1gecTpv9vWWV9E1X1/ufqhma6sts7I2dA5Ic/gHPuJeClNvN+3mq6Hvhmd/QlItId6hp9lNc2Ul7byLHaJspqGjlW20h5bZN/fo1/uvW8qvrmk35mL4OUpHhS+8SRkuh/zhnY9//mJcWTmhRHalI8yYlx9EuKo19ib5IT40hOiKNfYhzJiXEkxIX++7cRe3kHEZFT4Zyjsr6Z0uoGSqsaKK1upLS6gZKqBv+86gZKqhsprWrgaE0D9U0tHX5Wv8Q40pLjSeubwIC+CYxMTyatb4L/kRxP6glhHk9KUhypfeJJTuhNtJzFrvAXkYhXVd9EcWU9RRX1HD7+qKynuLI+EO6NlFQ30Nj8+UDvZTAwOZGMlETS+yUwJj2ZQf0SSEsOhHnfeAb0TWBgcgID+sYzoE9CWPa8vabwFxFP1TX6KDxWS0FZHYXH6jhc4Q95f9jXUVzZQHXD54dbBiYnkJmSSGZqEmMy+5HRL5H0fomkpySQ0S+J9JQE0vslktY3gd69omNvPJwU/iISUvVNPgqP1XGwvI6D5f6QP1he+9nr0urGE9r3MshKTSIrNYnxWSmcOy6D7P5JDO6fxODUJLL79yEzNZGk+N4e/Yt6BoW/iAStrtHHvqM17CutIb/U/7y3tIYDZbUcqWo4oW18b2PogD4MS+vL/ElZDEvrw/CBfRmW1ochA/qQ0S+RuN49f9jFawp/EekSX4ujoKyW3Ueq2Xf0xJAvqqg/oW1mSiKj0pO5YEIGw9P6MmygP+yHpfUhMyVJwzARQOEvIidoaXEUHqtjZ3EVO4ur2VVcxc4jVew+Un3CGTJpfeMZmZ7MvDGDGDUomVEZyYwclMzI9GT6JSpaIp1+QiIxrLymka2HKtlWVMGnh6vZFQj52kbfZ20GpyYxLqsf180ZwfisfozNTGF0ejJpyQkeVi7BUviLxADnHEUV9Ww9VMnWQxX+wD9USeGxus/aZKQkMiErhatmDWd8VspnQd+/T7yHlUuoKPxFeqDS6gY2HjjGxoJjbDp4jK2HKimr8Z9VYwaj0pOZOSKNG+aNYMqQ/kwekspA7cnHFIW/SJRraPax9VAlHwfCfmNBOQVl/j363r2MCVkpLJiUxZShqUwZksrEwakka0w+5mkLEIky5TWNrN9Xxrq9ZeTtL2fboQqafP6rhWX3T2L68AFcP3cE04enMXVof/ok6Hx4+TyFv0iEK6lq4MO9Zazbe5QP95ax43AVAAlxvZg+bAA3nTOKGcMHMH14GoP7J3lcrUQLhb9IhCmraeTd3aV8sOco6/YeJb+kBoC+Cb05c0Qal0/LZvaoQZwxvD+Jcdqrl9Oj8BfxWEOzjw37y3lnVynv7Cph66FKnIOUpDhmjxzIVbnDmTN6EFOGpBKvb75KN1H4i3ggv6SaNz4t4Z1dJazLL6OuyUdcL2PmiDR+tGA854zLYOrQ/vomrISMwl8kDJp9LeTtL2fN9mLWbD9Cfql/KGd0RjJXzRrOuePSmTN6kL4ZK2GjLU0kRCrqmnhrZwlrthfz5qclVNQ1Ed/bmDt6EIvOGslFEzMZPrCv12VKjFL4i3SjitomXt12mJc2F/Hu7lKafI6ByQnMn5TF/EmZnDs+Q3v3EhG0FYoEqaK2iVcCgf9eIPCHDujD4rNGcvGUwczISdPYvUQchb/IaahpaOaVrYdZtekQ7+4qpbnFH/g3nj2KS6dmc8aw/lFzL1eJTQp/kS7ytTjW5h/l2Y8O8rcth6lt9DF0QB9uOmcUl03NZpoCX6KIwl+kE7uPVPHsR4W88HEhRRX1pCTGsXD6EL42cxi5I9IU+BKVFP4i7ahuaGbVxkOsWH+ATQcr6N3LOH98Bksvm8T8SVm6f6xEPYW/SCtbCit48sMDrPy4kJpGHxMHp/Czyyfz5TOGkJGS6HV5It1G4S8xr67Rx6pNhTy5zr+XnxTfi8unDeHaOTnMGD5AwzrSIyn8JWYdOlbHox/s56n1BzhW28T4rH788xWT+erMYbp7lfR4Cn+JKc45PjpwjGXv7eVvWw7jnOPiKYO58exRzBqpg7cSOxT+EhN8LY6XtxTx4Nv5bDpYQUpSHDefM4ob5o1gWJousSCxR+EvPVpDs4/nPirk/rf2sO9oLaPSk/nlwil8beYw3cpQYpq2fumRqhuaeXLdfh56Zy9HqhqYOrQ/9103k7+bMliXWhAhyPA3s4HACmAksA+40jlX3qbNdOA+IBXwAb9yzq0Ipl+RjlTWN7Hs3b088t4+KuqaOGvMIP7ryumcPXaQxvNFWgl2z/9OYI1z7m4zuzPw+idt2tQCNzjndpnZEGCDmb3inDsWZN8in6lpaOaP7+/jgbfzqahrYsHkLL5z4VimDx/gdWkiESnY8F8IXBCYXg68SZvwd87tbDV9yMyOABmAwl+CVtfo47G1+/jft/Ipq2nkoomZ3LFgPF8Y2t/r0kQiWrDhn+WcKwJwzhWZWebJGpvZbCAB2BNkvxLjmnwt/OnDA9zz+m5Kqho4d1w6P1wwnpk5aV6XJhIVOg1/M3sNGNzOoqWn0pGZZQOPAYuccy0dtFkCLAHIyck5lY+XGOGc49Vtxfz7yzvIL61h9qiB3HvtTGaPGuh1aSJRpdPwd87N72iZmRWbWXZgrz8bONJBu1Tgr8BPnXNrT9LXA8ADALm5ua6z2iS2bCw4xq/+uo31+8oZk5HMw4tyuWhipg7kipyGYId9VgGLgLsDzyvbNjCzBOB54FHn3J+D7E9iUEFZLb9+5VP+sukQ6f0S+NVXv8BVucOJ693L69JEolaw4X838LSZ3QwcAL4JYGa5wG3OuVuAK4HzgEFmtjjwvsXOuY1B9i09XH2Tj/ve3MN9b+2hl8H3LhrLreeP0T1wRbqBOReZoyu5ubkuLy/P6zLEI2u2F/PPf9lKQVkdl0/LZullk8ju38frskQinpltcM7ldtZOu1ASUQ4creVf/rKVNTuOMDazH0/eMoezxqZ7XZZIj6Pwl4jQ0Owf4vnDm3uI62X806UTWXzWKBLiNK4vEgoKf/HcRwfK+ckzn7DrSDWXTcvmpxriEQk5hb94praxmd+8upNl7+1lcGoSyxbnctHELK/LEokJCn/xxHu7S7nzuU8oKKvjW3Nz+MklE0lJ0t2zRMJF4S9hVVXfxK/+up2n1hcwKj2ZFUvmMmf0IK/LEok5Cn8Jmw37y/jBio0Ultdx63mj+eGC8STF9/a6LJGYpPCXkGvytXDPml38/o3dDE3rw9O3ziN3pK7FI+Ilhb+EVH5JNT9csZFNByv4xpnDuOuKyRrbF4kACn8JCeccT60v4Bd/2UZCXC/+cN1MLp2a7XVZIhKg8JduV93QzJ3PfsKLnxRxzth0/vObZzC4f5LXZYlIKwp/6VafHq7i209sYF9pDf94yQRuO28MvXTDdJGIo/CXbvPMhoP89IXNpCTF8+Tfz2WuTuEUiVgKfwlafZOPu1ZuZUVeAfNGD+J/rplOZoqGeUQimcJfgnLgaC23Pr6B7UWVfOfCMfxw/njdZEUkCij85bS9v7uU25/8COfgkcWzuHBiptcliUgXKfzllDnnePSD/fzixW2MTk/mwRtyGZme7HVZInIKFP5yShqbW/j5yi08tb6A+ZMy+e1V0/WlLZEopPCXLiuraeTWx/JYv6+c71w4hh8tmKDTOEWilMJfumRfaQ03/nE9hcfq+J+rp7Nw+lCvSxKRICj8pVMb9pfz94/m4ZzjyVvm6KJsIj2Awl9O6qXNRfxgxUaG9E/ikRtnM0oHdkV6BIW/dOjhd/fyyxe3ceaINB68IZeByQlelyQi3UThL5/jnOM3r+7k92/s5pIpg/nvq6frpisiPYzCX07ga3H8bOUWnlx3gGtmD+dfvzKV3jqjR6THUfjLZxqbW/jh0xv56ydF3H7BGH588QTMFPwiPZHCXwCoa/Sx5LE83tlVytJLJ/H35432uiQRCSGFv1DT0MxNf1zP+n1l/Pob07gyd7jXJYlIiCn8Y1xVfRM3PrKejwuO8dur9OUtkVih8I9hlfVNLFr2IZsPVnDPNTN0j12RGKLwj1EVtU1cv2wd24sq+cN1M/m7KYO9LklEwiiou26Y2UAzW21muwLPaSdpm2pmhWb2+2D6lOBV1DXxrYfXsaOoivuvP1PBLxKDgr3l0p3AGufcOGBN4HVHfgm8FWR/EqSahmZufORDdhyu5P7rz+SiiVlelyQiHgg2/BcCywPTy4GvtNfIzM4EsoBXg+xPglDf5OPm5evZFBjj1523RGJXsOGf5ZwrAgg8fy5NzKwX8Bvgx0H2JUFoaPax5LENrNtbxn9deQaXfEEHd0ViWacHfM3sNaC9QeGlXezjduAl51xBZ98WNbMlwBKAnJycLn68dKbJ18J3n/yYt3eW8OuvT9PpnCLSefg75+Z3tMzMis0s2zlXZGbZwJF2ms0DzjWz24F+QIKZVTvnPnd8wDn3APAAQG5uruvqP0I65pzjJ89+wuptxfzLl6dw5Sx9gUtEgj/VcxWwCLg78LyybQPn3HXHp81sMZDbXvBLaNz9tx0891EhdywYz6KzRnpdjohEiGDH/O8GFpjZLmBB4DVmlmtmDwVbnATnoXfyuf+tfK6fO4LvXTTW63JEJIKYc5E5upKbm+vy8vK8LiNqvfBxIT9YsZFLpw7mnmtm6rLMIjHCzDY453I7axfsnr9EoLd2lvAPf97EvNGD+O1V0xX8IvI5Cv8eZtuhSm5/fAPjs1K4/4YzSYzTHbhE5PMU/j1IcWU9Ny9fT2qfeB65cRapSfFelyQiEUrh30PUNjZz8/L1VNY18fCiWWSlJnldkohEMF3VswfwtTi+/9RGth2q5KFFuUwekup1SSIS4bTn3wPc/fJ2Vm8r5ueXT9aF2kSkSxT+Ue6pDw/w4Dt7WTRvBIvPHuV1OSISJRT+UWzD/jJ+tnIL545L52eXT/a6HBGJIgr/KFVcWc9tj3/EkAF9uOeaGcT11o9SRLpOB3yjUEOzj9se30BNQzOP3zyHAX0TvC5JRKKMwj/KOOf4+Qtb+fjAMe67biYTBqd4XZKIRCGNFUSZx9cdYEVeAd+5cAxfmqobsojI6VH4R5GPDpTzL6u2cuGEDO5YMMHrckQkiin8o0R5TSPfe/JjBvdP4r+vmqGLtYlIUDTmHwVaWhx3PL2RkqoGnvn2PPr31TV7RCQ42vOPAve/nc8bn5aw9LJJTBs2wOtyRKQHUPhHuA/3lvGfr37KZVOzuWHeCK/LEZEeQuEfwUqrG/jenz5ieFof7v76VMw0zi8i3UPhH6FaWhw/enoT5bVN/OG6M0nRtflFpBsp/CPU8g/28dbOEn522SRdollEup3CPwLtOFzJv728gy9OzORbczXOLyLdT+EfYeqbfHz/TxtJTYrn378xTeP8IhISOs8/wtz98g4+La7ijzfOIr1fotfliEgPpT3/CPLGjiP88f193Hj2SC6YkOl1OSLSgyn8I8TR6gZ+/MwmJg5O4SeXTPS6HBHp4TTsEwGcc/z0hS1U1jXzxC1zSYrv7XVJItLDac8/Arz4SREvbznMDxaM0/X5RSQsFP4eO1JVz89WbuGM4QNYcu5or8sRkRih8PeQc46fPr+F2kYfv/nmNN2HV0TCRmnjoVWbDvHqtmJ+tGA8YzM13CMi4aPw98iRynp+vnIrM3IGcIuGe0QkzBT+HnDO8U/Pb6G+ycd/fvMM3ZVLRMIuqPA3s4FmttrMdgWe0zpol2Nmr5rZdjPbZmYjg+k32v1ty2Fe217MHQvGMyajn9fliEgMCnbP/05gjXNuHLAm8Lo9jwL/4ZybBMwGjgTZb9SqqGvirlVbmZydys3njPK6HBGJUcGG/0JgeWB6OfCVtg3MbDIQ55xbDeCcq3bO1QbZb9T69d92UFrdwN1fn6qze0TEM8GmT5Zzrggg8NzeBWnGA8fM7Dkz+9jM/sPM2v0Kq5ktMbM8M8srKSkJsrTIs35fGU+sO8CNZ4/SvXhFxFOdXt7BzF4DBrezaOkp9HEuMAM4AKwAFgMPt23onHsAeAAgNzfXdfHzo0JDs4//99xmhg7owx0LxntdjojEuE7D3zk3v6NlZlZsZtnOuSIzy6b9sfyDwMfOufzAe14A5tJO+Pdk97+Vz+4j1TyyeBbJibqkkoh4K9hhn1XAosD0ImBlO23WA2lmlhF4fRGwLch+o0p+STW/f303l03L5sKJulSziHgv2PC/G1hgZruABYHXmFmumT0E4JzzAf8ArDGzzYABDwbZb9RwznHXqq0kxvXirisme12OiAgQ5CWdnXNHgS+2Mz8PuKXV69XAtGD6ilavbD3MO7tKueuKyWSmJHldjogIoG/4hlRdo49fvridiYNTuF43YheRCKIjjyH0hzd3U3isjhVL5uqcfhGJKEqkENlXWsP9b+WzcPoQ5owe5HU5IiInUPiHyC9f3EZ8b+OfLp3kdSkiIp+j8A+BNduLWbPjCN+fP46sVB3kFZHIo/DvZg3NPn7x4jbGZCSz+CxduE1EIpMO+HazR9/fz/6jtTx602wS4vS7VUQik9KpG5XVNPK713dxwYQMzhuf0fkbREQ8ovDvRr9bs4vaRh9LdZBXRCKcwr+b7Cmp5vG1+7l61nDGZelm7CIS2RT+3eTfXtpBUnxvfqjLNYtIFFD4d4P395Ty2vZibr9wDOn9Er0uR0SkUwr/IPlaHP/64naGDujDTWfr1E4RiQ4K/yA9/3Eh24oq+cmXJpIU3+7dKUVEIo7CPwj1TT5+u3onZwzrzxXTsr0uR0SkyxT+QXhi3QEKj9Xxj5dMxMy8LkdEpMsU/qepuqGZe9/YzdljB3H22HSvyxEROSUK/9P08Dt7Katp5McXT/S6FBGRU6bwPw1lNY08+E4+F0/JYvrwAV6XIyJyyhT+p+G+N3dT29jMP/zdBK9LERE5LQr/U3ToWB3LP9jPV2cM02UcRCRqKfxP0e/W7AIHP5g/zutSREROm8L/FOwrreHPGw5y7Zwchg/s63U5IiKnTeF/Cu55fTdxvYzbLxzjdSkiIkFR+HfRvtIaXthYyLfmjiAzRfflFZHopvDvot+/4d/rv/X80V6XIiISNIV/F+w/WsPzHxdy7Zwc7fWLSI+g8O+CewN7/d8+X2P9ItIzKPw7UVBWy3MfFXLN7BwyU7XXLyI9g8K/E/e+sZtevYxvX6C9fhHpORT+J1FQVsszGw5y7ewcsrTXLyI9SFDhb2YDzWy1me0KPKd10O7XZrbVzLab2e8sSi5+/4c399DLjNs01i8iPUywe/53Amucc+OANYHXJzCzs4CzgWnAF4BZwPlB9htyxZX1PLvhIFfOGsbg/trrF5GeJdjwXwgsD0wvB77SThsHJAEJQCIQDxQH2W/ILXt3Lz7nuPU87fWLSM8TbPhnOeeKAALPmW0bOOc+AN4AigKPV5xz24PsN6Qqapt4fO1+Lp+WrWv4iEiPFNdZAzN7DRjczqKlXenAzMYCk4BhgVmrzew859zb7bRdAiwByMnJ6crHh8Tj6/ZT0+jTXr+I9Fidhr9zbn5Hy8ys2MyynXNFZpYNHGmn2VeBtc656sB7XgbmAp8Lf+fcA8ADALm5ua5r/4TuVd/kY9m7e7lgQgaTh6R6UYKISMgFO+yzClgUmF4ErGynzQHgfDOLM7N4/Ad7I3bY5895BRytadS3eUWkRws2/O8GFpjZLmBB4DVmlmtmDwXaPAPsATYDm4BNzrm/BNlvSDT7Wrj/7Xxm5gxg9qiBXpcjIhIynQ77nIxz7ijwxXbm5wG3BKZ9wK3B9BMuf91cxMHyOu66YgpR8lUEEZHTom/4BjjnuO/NPYzL7McXJ37upCURkR5F4R/w5s4Sdhyu4tbzx9Crl/b6RaRnU/gHPPzOXrJSE/nyGUO8LkVEJOQU/sCnh6t4d3cpN8wbSUKcVomI9HxKOvyXckiK78W1s737YpmISDjFfPiXVjfw/MZCvjZzGGnJCV6XIyISFjEf/k+sPUBjcws3nT3K61JERMImpsO/odnHY2v3c8GEDMZm9vO6HBGRsInp8F+18RCl1Q3cfI72+kUktsRs+DvnWPbePiZkpXDO2HSvyxERCauYDf8P8o+yvaiSm84ZqUs5iEjMidnwX/buXgYlJ7Bw+lCvSxERCbuYDP+CslrW7DjCtXNySIrv7XU5IiJhF5Ph//i6/fQy49o5+lKXiMSmmAv/+iYfT68vYMGkLLL79/G6HBERT8Rc+L+0uYjy2iaunzfC61JERDwTc+H/6Af7GZ2RzFljBnldioiIZ2Iq/DcfrGBjwTGunztCp3eKSEyLqfB/fO1++sT35mszh3ldioiIp2Im/Ctqm1i5qZCvzBhK/z7xXpcjIuKpmAn/P28ooL6phW/N1emdIiIxEf4tLY4n1h3gzBFpTBnS3+tyREQ8FxPh/96eUvaW1nCDTu8UEQFiJPyfXHeAgckJXPKFwV6XIiISEXp8+JdWN7B6WzFfnzmUxDhdx0dEBGIg/J/dcJDmFsdVs4Z7XYqISMTo0eHvnGPF+gJyR6QxNjPF63JERCJGjw7/9fvKyS+t4erZOr1TRKS1Hh3+T60/QEpiHJdO1YFeEZHWemz4V9Q18dLmIr48fQh9E+K8LkdEJKL02PBftbGQ+qYWrp6lIR8RkbaCCn8z+6aZbTWzFjPLPUm7S8zsUzPbbWZ3BtNnVz21voDJ2al8YWhqOLoTEYkqwe75bwG+BrzdUQMz6w3cC3wJmAxcY2aTg+z35EUVVrD1UCVXzx6uSzeLiLQjqMFw59x2oLOAnQ3sds7lB9o+BSwEtgXT98k8tf4AiXG9WHjG0FB1ISIS1cIx5j8UKGj1+mBgXkjUNfpY+fEhLpuaTf++unSziEh7Ot3zN7PXgPbOlVzqnFvZhT7a+7PAddDXEmAJQE7O6R2oraxv4oKJmVwzRwd6RUQ60mn4O+fmB9nHQaD1tRWGAYc66OsB4AGA3Nzcdn9BdCYrNYl7rplxOm8VEYkZ4Rj2WQ+MM7NRZpYAXA2sCkO/IiLSgWBP9fyqmR0E5gF/NbNXAvOHmNlLAM65ZuC7wCvAduBp59zW4MoWEZFgBHu2z/PA8+3MPwRc2ur1S8BLwfQlIiLdp8d+w1dERDqm8BcRiUEKfxGRGKTwFxGJQQp/EZEYZM6d1nepQs7MSoD9QXxEOlDaTeV0J9V1aiK1Lojc2lTXqYnUuuD0ahvhnMvorFHEhn+wzCzPOdfhZaa9orpOTaTWBZFbm+o6NZFaF4S2Ng37iIjEIIW/iEgM6snh/4DXBXRAdZ2aSK0LIrc21XVqIrUuCGFtPXbMX0REOtaT9/xFRKQDURf+nd0M3swSzWxFYPk6MxvZatn/C8z/1MwuDnNdd5jZNjP7xMzWmNmIVst8ZrYx8Oj2y113obbFZlbSqoZbWi1bZGa7Ao9FYa7rt61q2mlmx1otC9k6M7NlZnbEzLZ0sNzM7HeBuj8xs5mtloVyfXVW13WBej4xs/fN7IxWy/aZ2ebA+soLc10XmFlFq5/Xz1stO+k2EOK6ftyqpi2BbWpgYFko19dwM3vDzLab2VYz+347bUK/jTnnouYB9Ab2AKOBBGATMLlNm9uB/w1MXw2sCExPDrRPBEYFPqd3GOu6EOgbmP728boCr6s9XmeLgd+3896BQH7gOS0wnRauutq0/x6wLEzr7DxgJrClg+WXAi/jv0vdXGBdqNdXF+s663h/wJeO1xV4vQ9I92h9XQC8GOw20N11tWl7BfB6mNZXNjAzMJ0C7Gzn/2TIt7Fo2/P/7GbwzrlG4PjN4FtbCCwPTD8DfNHMLDD/Kedcg3NuL7A78Hlhqcs594Zzrjbwci3+O5qFQ1fWWUcuBlY758qcc+XAauASj+q6BvhTN/V9Us65t4GykzRZCDzq/NYCA8wsm9Cur07rcs69H+gXwriNdWF9dSSYbbO76wrn9lXknPsoMF2F/z4nbe9rHvJtLNrCvys3g/+sjfPfSKYCGNTF94ayrtZuxv9b/bgkM8szs7Vm9pVuqulUa/t64M/LZ8zs+G03I2KdBYbIRgGvt5odynXWmY5qD+X6OlVttzEHvGpmG8x/r+xwm2dmm8zsZTObEpgXEevLzPriD9BnW80Oy/oy/7D0DGBdm0Uh38aCupmLB7pyM/iO2nT5RvKn4VRuUv8tIBc4v9XsHOfcITOPbVw3AAACoklEQVQbDbxuZpudc3vCWNtfgD855xrM7Db8fzld1MX3hrKu464GnnHO+VrNC+U664wX21iXmdmF+MP/nFazzw6sr0xgtZntCOwZh8NH+C85UG1mlwIvAOOIkPWFf8jnPedc678SQr6+zKwf/l84P3DOVbZd3M5bunUbi7Y9/67cDP6zNmYWB/TH/6dfl28kH6K6MLP5wFLgy865huPznf/OZzjn8oE38e8JdJdOa3POHW1Vz4PAmV19byjrauVq2vxJHuJ11pmOag/l+uoSM5sGPAQsdM4dPT6/1fo6gv/ue9015Nkp51ylc646MP0SEG9m6UTA+go42fYVkvVlZvH4g/8J59xz7TQJ/TYWigMaoXrg/0slH/8QwPEDRFPatPkOJx7wfTowPYUTD/jm030HfLtS1wz8B7fGtZmfBiQGptOBXXTvQa+u1JbdavqrwFr3fweX9gZqTAtMDwxXXYF2E/AffLNwrbPA546k4wOYl3HiwbgPQ72+ulhXDv5jWWe1mZ8MpLSafh+4JIx1DT7+88MfogcC665L20Co6gosP75zmByu9RX4tz8K/PdJ2oR8G+u2lRyuB/6j4DvxB+nSwLxf4N+bBkgC/hz4T/AhMLrVe5cG3vcp8KUw1/UaUAxsDDxWBeafBWwObPibgZs9WGf/BmwN1PAGMLHVe28KrMvdwI3hrCvw+p+Bu9u8L6TrDP9eYBHQhH9P62bgNuC2wHID7g3UvRnIDdP66qyuh4DyVttYXmD+6MC62hT4OS8Nc13fbbV9raXVL6f2toFw1RVosxj/iSCt3xfq9XUO/qGaT1r9rC4N9zamb/iKiMSgaBvzFxGRbqDwFxGJQQp/EZEYpPAXEYlBCn8RkRik8BcRiUEKfxGRGKTwFxGJQf8fac4WI+UpNtgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "a = -2\nplt.plot(x, u(x))", - "execution_count": 16, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 16, - "data": { - "text/plain": "[]" - }, - "metadata": {} - }, - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xl8VPW9//HXJ/uekJAQSAJhCfuiEFFwRa1bK9Trhlptq5Zrq7W1u/VxW9t7e29v+2u1tnXXVqvWrfYWtW7UXTaDyr7vISwhkJCQPfn+/phBRwwEyMycmcz7+XjMI2fOMt/PHA7vc+as5pxDRER6vzivCxARkfBQ4IuIxAgFvohIjFDgi4jECAW+iEiMUOCLiMQIBb6ISIxQ4IuIxAgFvohIjEjwuoBAffv2daWlpV6XISISVRYtWrTbOZff3XgRFfilpaVUVFR4XYaISFQxs81HMp526YiIxIiQB76ZnWdmq81snZn9KNTtiYhI10Ia+GYWD/wROB8YDVxhZqND2aaIiHQt1Fv4k4F1zrkNzrlW4ElgRojbFBGRLoQ68IuArQHvK/39PmZms8yswswqqqurQ1yOiEjsCnXgWxf9PvXEFefc/c65cudceX5+t2cViYjIMQp14FcCJQHvi4GqELcpIiJdCPV5+O8DZWY2GNgGzASuDHYja3bW88KS7WQmJ5CRkkBGcgKZKb5XRnIiGf7u9KQE4uO6+tEhItL7hTTwnXPtZnYT8AoQDzzsnFse7HbW7mzg96+v5Ugez5ueFB+wUkj0rxQ+eZ+RkkBWSgI5aUnkpCaSk+Z7ZaUmkpOaRFKCLl0QkehkkfQQ8/LycnesV9p2djoa2zqob26jobmd+pZ239/mdhpa2vx/A/sdGOfTwxpa2w+74khLiicn1b8CSPOtBHLSEslOSyQ7NZE+aUnkpSeRl5FEXnoyuRlJZCYnYKZfFiISGma2yDlX3t14EXVrhZ6Ii7OPt9TJPvbP6ex01Le0U9fYRm1TK7WNbdQ1tVHb1EZdY6uvu/HA+zY27t5PbVMrexvbaG3v7PIzk+LjyE1PIvfjFUESuenJH3fnZSSTn5lMQabvb2K8fkWISPD1msAPlrg4IzvVt7U+kLSjmra5rYM9+1vZs7+Vmv2t1DS0sGd/K7sbWtmzv4WaBl//zTWN1DS0sL+14zOfYQZ56UnkZ6bQL8u3EuiXlUJBVson3VoxiMgxUOAHUUpiPANyUhmQk3pE4ze3dXy8Yqiub2FXfQs79zWzc18L1fW+vyuq9rG7oYXOg3YzHVgx9M9OpcjfZlGfVIpyUijKSWNATgq56UnalSQiH1PgeyglMZ6iHF9gH05Hp6OmoYWd+1rY5V8R7NzXzK76ZrbVNrOuuoG31lTT1PbpXwwpiXG+FUHOJyuFktxUBuWlMyg3TSsEkRijwI8C8XHm26WTlcKhDlA456htbGNbbRPbapuoqm1i294mqup8f1dur2d3Q8unpslMTmBgXhqD8tI+XgkMzEujNC+dwqwU4nQKq0ivosDvJcyMPulJ9ElPYmxR1yuF5rYOKvc2srnmwGs/m/c0smp7Pa+t2Elbxyf7jZIS4hjSN52h+RkMLchgWEEGQ/N971MS48P1tUQkiBT4MSQlMZ5hBZkMK8j8zLCOTkdVbRNb9vhWBptq9rOhuoHlVXW8tGz7x8cQzKAoJ9W/AvCtCMoKMhhRmElmSmKYv5GIHA0FvgC+3UYluWmU5KZx8rBPD2tu62BzTSPrdjX4XtUNrN/VwPwNNTS3fXIqanGfVEYWZjG6fyYj+2cxsjCTQXnpurpZJEIo8KVbKYnxjCjMZEThp38ZdHY6ttU2sWZnPat21LNy+z5W7ajn9VU7P/5FkJoYz/DCTEb3z2RsUTbji3IYUZipK5ZFPNBrrrSVyNHc1sHanQ2s3LGPVdvrWbVjHyu276O2sQ3wXYg2qn8m44p9K4BxxdmUFWSQoOsKRI5JzF1pK5EjJTGeccXZjCv+5OCxc47KvU0sqaxjybZallbW8Y8Pq3hs/hb/NHGM7p/FxIF9KC/tw6RBueRnJnv1FUR6JW3hi2c6Ox2b9zSypLLWtyKorGVxZd3Ht6gYmJtG+aA+TCrtQ/mgXMoKMnSqqEgXjnQLX4EvEaW1vZNlVXUs2rSXis17WLR5L7sbWgHITElg4sA+nDgkl6lD+zJ2QJZ2A4mgwJdewjnH5ppGKjbvZdHmvVRs2sPaXQ2A78KxyYNzmTI0jylD8xhVmKVfABKTtA9fegUzo7RvOqV907lkUjEA1fUtzN9Qw7wNNcxbX8O/Vu0CoE9aIicNyeO04fmcPjz/iO9pJBIrtIUvUW97XRPz1tcwd30N763bzfa6ZgCG98vgjBEFnD48n/LSPiQn6Aph6Z20S0diknOOtbsaeHP1Lt5aU83CjXto63CkJcUzdWge00YW8LlR/fz3JRLpHRT4IsD+lnbmra/hzTW7eHN1NZV7mwA4fmAO54wu5Jwx/Rian+FxlSI9o8AXOciBrf9Xlu3g1RU7WbqtDoBhBRmcM7of54wpZEJxtm4ZLVFHgS/SjW21TcxZsZNXlu9gwcY9dHQ6inJS+cKE/kyfMIDR/bMU/hIVFPgiR6G2sZU5K3fxwpIq3l27m/ZOx9D8dC6cMIDpEwYwRLt9JIIp8EWO0Z79rby0bDvPL65iwcY9OAdjBmQxfcIALjq+SAd8JeIo8EWCYEddMy8u3c7sxVUs3lpLfJwxbUQ+l5aXcObIAj1IXiKCAl8kyDZUN/DMokr+tqiSXfUt5KUncdHxRVx2QgnD+332oTIi4aLAFwmR9o5O3l5bzdPvVzJn5U7aOx0TSnKYeUIJM44bQFqSLmCX8FLgi4RBTUMLf/9wG09XbGXNzgYyUxK4dFIJV08ZxOC+6V6XJzFCgS8SRs45Kjbv5dF5m3lp6XbaOx2nlvXlmimlnDmyQI95lJBS4It4ZFd9M08u3MrjCzazc18LJbmpXHfyYC4tLyE9Wbt7JPiONPB7dIqBmV1qZsvNrNPMyg8adquZrTOz1WZ2bk/aEYkmBZkp3HxWGe/+8Ezuvmoi/TJTuP35FUz95ev8+pVV7NrX7HWJEqN6tIVvZqOATuA+4HvOuQp//9HAX4HJwABgDjDcOddxuM/TFr70Vos27+XBdzbw8vIdJMbF8cXjB/C1U4dQprN7JAjCcj9859xKf2MHD5oBPOmcawE2mtk6fOE/ryftiUSrSYP6MGnQJDbt3s/D723k6YqtPF1RyfljC7npzGGMGZDd/YeI9FCorhopArYGvK/09xOJaaV90/n5jLHM/dFZ3HzmMN5du5vP3/Uu1z9SwZLKWq/Lk16u2y18M5sDFHYx6Dbn3D8ONVkX/brcd2Rms4BZAAMHDuyuHJFeITc9ie+cM4LrTh3Cn9/bxEPvbmD6H3YybUQ+3zyrjIkD+3hdovRC3Qa+c+7sY/jcSqAk4H0xUHWIz78fuB98+/CPoS2RqJWdmsi3zi7j2lNKeXTeZh58ZwP/dvdczh7Vj++fO4IRhdrHL8ETql06s4GZZpZsZoOBMmBhiNoSiXqZKYncOG0Y7/7wTL5/7ggWbKjhvN+9zXee/oitexq9Lk96iZ6elnmRmVUCU4AXzewVAOfccuBpYAXwMnBjd2foiAikJydw47RhvP2Dacw6dQgvLtnOmb95k9tnL2d3Q4vX5UmU04VXIhFse10Td/1rLU9XVJKSEMc3pg3julMGk5KoB7LLJ8Jy4ZWIhFb/7FT+59/G8+otpzF1WF9+/cpqPnfHW7y8bDuRtLEm0UGBLxIFhuZn8MA15Tx+/YmkJSZww2MfcOUDC1i5fZ/XpUkUUeCLRJGTh/XlxZtP4T9njGHVjn18/q53+PHfl7J3f6vXpUkUUOCLRJmE+DiunlLKm9+bxpenlvLU+1s567dv8bdFldrNI4elwBeJUtlpifz0wjG8ePMplOal8d1nFnPVgwvYUN3gdWkSoRT4IlFuZGEWz94wlV9cNJal2+o47853uHPOGlradSa0fJoCX6QXiIszrjpxEP/67umcO7aQO+es5fzfvcP7m/Z4XZpEEAW+SC9SkJnC7684nkeunUxreyeX3TeP/3phBc1t2toXBb5Ir3T68Hxe+fZpXDl5IA++u5HP3/UOH27Z63VZ4jEFvkgvlZ6cwC8uGsdfrptMU2sHF98zl1+9vEr79mOYAl+klzu1LJ+XbzmNSyYVc/eb65nxh/dYXlXndVniAQW+SAzISknkV5dM4OGvlLNnfysX/XEuj8zdpPP2Y4wCXySGnDmyHy9/+zROKevLT2cvZ9ZfFukq3RiiwBeJMbnpSTz05XL+4wujeXP1Li646x0WbtTpm7FAgS8Sg8yM604ZzHNfP5nkhDhm3j+P381ZS0endvH0Zgp8kRg2rjibF24+lekTBnDHnDV86cEFetBKL6bAF4lxGckJ3HH5cfzqkvEs2rKXC3//Lh9trfW6LAkBBb6IYGZcVl7Cc1+fSpwZl907jycWbNFZPL2MAl9EPja2KJsXvnkKJw7J5cd/X8oP/7ZEt2XoRRT4IvIpfdKT+PNXJ/PNM4fxdEUlVzwwn+p67dfvDRT4IvIZ8XHGd88Zwd1XTWTl9n3M+MO7rKjS4xSjnQJfRA7pgnH9efaGqXQ6uOTeuby6fIfXJUkPKPBF5LDGFmUz+6aTKSvI4N8fW8Q9b67XwdwopcAXkW4VZKXw1L9P4QvjB/C/L6/iP/6xTBdpRaEErwsQkeiQkhjP7y4/jqKcVO59az076lr4/RXHk5oU73VpcoS0hS8iRywuzvjR+SP5+Ywx/GvVTq58cD57dPO1qKHAF5Gjds2UUu65ahIrqvZx8T1z2VLT6HVJcgQU+CJyTM4bW8jj15/I3sZWLrl3Lmt21ntdknRDgS8ix6y8NJenZk0B4PL75rGkUvfgiWQ9Cnwz+7WZrTKzJWb2dzPLCRh2q5mtM7PVZnZuz0sVkUg0ojCTZ26YQnpyAlc+sID5G2q8LkkOoadb+K8BY51z44E1wK0AZjYamAmMAc4D7jYzHcoX6aUG5aXz7A1TKcxO4csPL+SNVbu8Lkm60KPAd8696pxr97+dDxT7u2cATzrnWpxzG4F1wOSetCUika0wO4WnZp1EWb8MvvZoha7KjUDB3Id/LfCSv7sI2BowrNLfT0R6sbyMZJ742kmMLcrmG49/oNCPMN0GvpnNMbNlXbxmBIxzG9AOPH6gVxcf1eVleWY2y8wqzKyiurr6WL6DiESQrJREHr1uskI/AnUb+M65s51zY7t4/QPAzL4MfAG4yn1yg41KoCTgY4qBqkN8/v3OuXLnXHl+fn7Pvo2IRIQDoT+uWKEfSXp6ls55wA+B6c65wCsvZgMzzSzZzAYDZcDCnrQlItElKyWRR65V6EeSnu7D/wOQCbxmZh+Z2b0AzrnlwNPACuBl4EbnnB6bIxJjslISedQf+jc98SHvrNVuWy9ZJN3mtLy83FVUVHhdhogEWV1jGzMfmM+m3fv5y3WTKS/N9bqkXsXMFjnnyrsbT1faikjIZaf5tvT7Z6fw1T+/z7JtdV6XFJMU+CISFvmZyTx2/YlkpSRyzcMLWberweuSYo4CX0TCZkBOKo9dfyJxZnzpwQVU7tVdNsNJgS8iYTW4bzp/uW4y+1vb+cqf3qe2UffTDxcFvoiE3aj+WTxwTTlbahqZ9egimtt0El84KPBFxBMnDcnjt5dPYOGmPXzn6Y/0jNww0DNtRcQzXxg/gB11zfzXiyspyFzBTy8cjVlXd2aRYFDgi4inrj91CNvrmnno3Y0MyElh1mlDvS6p11Lgi4jnbrtgFDv2NfM/L61iUF46544p9LqkXkn78EXEc3Fxxm8uncD44hxueeojllfpwqxQUOCLSERISYzngasnkZ2ayNceqWBXfbPXJfU6CnwRiRgFWSk8cE05exvbdLpmCCjwRSSijC3K5o7Lj+OjrbX84NklRNINHqOdAl9EIs55Ywv5/rkjmL24irvfXO91Ob2GAl9EItI3zhjKhRMG8P9eXc3ba3Qf/WBQ4ItIRDIz/vficQwvyOTmJz9k6x7daK2nFPgiErHSkhK47+pJdHQ6bnhMB3F7SoEvIhGttG86d15+HMur9nHb35fpIG4PKPBFJOKdNaof3zqrjL99UMljC7Z4XU7UUuCLSFT41lllTBuRz8+fX86Sylqvy4lKCnwRiQpxccYdlx9HfkYyNz3xIfua27wuKeoo8EUkauSkJfH7K49nW20Ttz63VPvzj5ICX0SiyqRBuXzvnBG8uGQ7TyzU/vyjocAXkajz76cN4bTh+fzs+RWs3L7P63KihgJfRKJOXJzx28smkJOayI1PfMD+lnavS4oKCnwRiUp9M5K5c+ZxbNy9n9tnL/e6nKigwBeRqDV1aF9uPGMYzyyq5OVl270uJ+Ip8EUkqn3r7DLGFWVz63NL2bVPD005HAW+iES1xPg47rh8Ao2tHfzgb7p//uH0KPDN7D/NbImZfWRmr5rZAH9/M7O7zGydf/jE4JQrIvJZwwoy+fEFo3hzdbVuvXAYPd3C/7Vzbrxz7jjgBeAn/v7nA2X+1yzgnh62IyJyWNdMGcRpw/P5xYsrWF/d4HU5EalHge+cCzwBNh048FtqBvCo85kP5JhZ/560JSJyOGbGry8ZT0piPLc89RFtHZ1elxRxerwP38x+YWZbgav4ZAu/CNgaMFqlv19X088yswozq6iu1lNtROTY9ctK4b8vGseSyjruf3uD1+VEnG4D38zmmNmyLl4zAJxztznnSoDHgZsOTNbFR3V5JMU5d79zrtw5V56fn3+s30NEBIALxvXn8+P787s5a1mzs97rciJKt4HvnDvbOTe2i9c/Dhr1CeBif3clUBIwrBioCk7JIiKH97PpY8hISeD7zy6ho1Nn7RzQ07N0ygLeTgdW+btnA9f4z9Y5CahzzumqCBEJi74Zydw+fQyLt9by0LvatXNAQg+n/6WZjQA6gc3ADf7+/wQuANYBjcBXe9iOiMhRuXB8f55fXMVvXl3D2aP6MSQ/w+uSPGeRdJFCeXm5q6io8LoMEekldu1r5uzfvsWIwkyemjWFuLiuDi9GPzNb5Jwr7248XWkrIr1WQVYKP7lwDO9v2ssj8zZ5XY7nFPgi0qtdPLGI04fn8+tXVlNV2+R1OZ5S4ItIr2Zm/NcXx9LpHD97PrZvo6zAF5FeryQ3jZvPKuOV5TuZs2Kn1+V4RoEvIjHha6cOYXi/DH46ezmNrbH5hCwFvojEhMT4OH5x0Ti21Tbxu3+t9bocTyjwRSRmnFCay+XlJTz0zkZW7Yi9h58r8EUkpvzo/JFkpSby4+eW0hljt11Q4ItITOmTnsSPLxjFB1tqeWbR1u4n6EUU+CIScy6eWET5oD786uXV1DW1eV1O2CjwRSTmmBm3Tx/DnsZW7oqhA7gKfBGJSWOLspl5QgmPzN3Eul2xcd98Bb6IxKzvnTOC1KR4fvb8CiLpRpKhosAXkZiVl5HMLWcP5521u5mzcpfX5YScAl9EYtrVUwZRVpDBf76wgua2Dq/LCSkFvojEtMT4OH5y4Wi27GnkoXc3el1OSCnwRSTmnVqWzzmj+/HHN9axq77Z63JCRoEvIgLcesEoWts7uXNO7z1NU4EvIgIM7pvOl04axFPvb+21p2kq8EVE/L555jDSEuP55UurvS4lJBT4IiJ+eRnJ3HDGUOas3MmCDTVelxN0CnwRkQDXnjyYwqwU/vufK3vdxVgKfBGRAKlJ8Xz3nOEsrqzjhSXbvS4nqBT4IiIH+beJxYwszORXr6yipb33XIylwBcROUh8nHHrBaPYuqeJx+Zv8bqcoFHgi4h04fTh+Uwdmsfdb6xjf0vveOi5Al9E5BC+d+4Iava38ue5m7wuJSgU+CIihzBxYB/OGlnAfW+t7xVPxgpK4JvZ98zMmVlf/3szs7vMbJ2ZLTGzicFoR0Qk3L5zznD2Nbfz0DsbvC6lx3oc+GZWAnwOCDyycT5Q5n/NAu7paTsiIl4YMyCbz4/rz0PvbqSmocXrcnokGFv4dwA/AAKvUJgBPOp85gM5ZtY/CG2JiITdLZ8ro6mtg/veju6t/B4FvplNB7Y55xYfNKgI2BrwvtLfT0Qk6gwryOSLxxfxyNxN7NwXvbdP7jbwzWyOmS3r4jUDuA34SVeTddGvy2uUzWyWmVWYWUV1dfXRVS8iEibfPms4HZ2OP76xzutSjlm3ge+cO9s5N/bgF7ABGAwsNrNNQDHwgZkV4tuiLwn4mGKg6hCff79zrtw5V56fn9/T7yMiEhID89K47IQS/rpwC9tqm7wu55gc8y4d59xS51yBc67UOVeKL+QnOud2ALOBa/xn65wE1DnnetdNKUQk5tw0bRgA97653uNKjk2ozsP/J75fAOuAB4BvhKgdEZGwGZCTyiWTinmqYmtU7ssPWuD7t/R3+7udc+5G59xQ59w451xFsNoREfHS108fRken4763ou+MHV1pKyJyFAbmpfHF44p4YuFmdkfZefkKfBGRo/SNaUNpae/kwXc2el3KUVHgi4gcpaH5GXxh/AD+Mm8Te/e3el3OEVPgi4gcg5umDWN/awd/ei96tvIV+CIix2BEYSbnjSnkT3M3sa85Ou6kqcAXETlGN505jPrmdh55b5PXpRwRBb6IyDEaW5TNtBH5/GnuJprbIv/Ztwp8EZEeuOH0oezZ38oziyq9LqVbCnwRkR6YPDiXCSU5PPjOBjo6u7xHZMRQ4IuI9ICZccNpQ9hc08iry3d4Xc5hKfBFRHronDGFlOalce/bG3AucrfyFfgiIj0UH2dcd+oQFm+tZeHGPV6Xc0gKfBGRILh0UjF56UkR/RhEBb6ISBCkJMZzzZRSXl+1izU7670up0sKfBGRILlmyiBSE+O5P0K38hX4IiJB0ic9icvKi/nHR9vYURd5D0hR4IuIBNH1pw6ho9Pxl/mbvC7lMxT4IiJBVJKbxtmj+vHEgi0Rd7sFBb6ISJB95eRS9ja2MfujKq9L+RQFvohIkE0ZksfIwkwefm9jRF2IpcAXEQkyM+OrJ5eyakc98zdEzoVYCnwRkRCYcVwRfdIS+fPcyHkilgJfRCQEUhLjuWLyQF5bsZOtexq9LgdQ4IuIhMzVUwZhZjw6b5PXpQAKfBGRkOmfncp5Ywt58v2t7G9p97ocBb6ISChde3Ip9c3tPPfhNq9LUeCLiITSxIF9GF+czZ8j4BRNBb6ISAiZGVefNIj11ftZ4PG98hX4IiIhduGEAWSlJPDY/M2e1tGjwDez281sm5l95H9dEDDsVjNbZ2arzezcnpcqIhKdUhLjuWRSCa8s30F1fYtndQRjC/8O59xx/tc/AcxsNDATGAOcB9xtZvFBaEtEJCpdeeJA2joczyza6lkNodqlMwN40jnX4pzbCKwDJoeoLRGRiDesIIMpQ/J4YsEWOjq9OXgbjMC/ycyWmNnDZtbH368ICFyNVfr7iYjErKtOGkjl3ibeXlvtSfvdBr6ZzTGzZV28ZgD3AEOB44DtwG8OTNbFR3W5SjOzWWZWYWYV1dXezAQRkXA4Z3QhfTOSeXz+Fk/aT+huBOfc2UfyQWb2APCC/20lUBIwuBjo8sbQzrn7gfsBysvLI+c+oiIiQZaUEMflJxRzz5vr2VbbRFFOaljb7+lZOv0D3l4ELPN3zwZmmlmymQ0GyoCFPWlLRKQ3mHnCQBzw1MLwb+X3dB/+r8xsqZktAaYBtwA455YDTwMrgJeBG51zkfWsLxERD5TkpnHG8HyefH8rbR2dYW27R4HvnLvaOTfOOTfeOTfdObc9YNgvnHNDnXMjnHMv9bxUEZHe4UsnDWJXfQtzVuwMa7u60lZEJMzOGFFA/+wUnnw/vOfkK/BFRMIsPs64dFIxb6+tpqq2KWztKvBFRDxwaXkJzsGziyrD1qYCX0TEAyW5aZw8LI+nK7bSGaYrbxX4IiIeuay8hMq9TcxdXxOW9hT4IiIeOXdMIdmpiTxVEZ6Dtwp8ERGPpCTG88XjBvDK8h3UNraGvD0FvoiIhy47oYTW9k7+LwzPvFXgi4h4aMyAbKZPGECf9KSQt9XtzdNERCS07rri+LC0oy18EZEYocAXEYkRCnwRkRihwBcRiREKfBGRGKHAFxGJEQp8EZEYocAXEYkR5lx4bst5JMysGth8jJP3BXYHsZxgitTaVNfRidS6IHJrU11H51jrGuScy+9upIgK/J4wswrnXLnXdXQlUmtTXUcnUuuCyK1NdR2dUNelXToiIjFCgS8iEiN6U+Df73UBhxGptamuoxOpdUHk1qa6jk5I6+o1+/BFROTwetMWvoiIHEZUBL6ZnWdmq81snZn9qIvhyWb2lH/4AjMrDRh2q7//ajM7N8x1fcfMVpjZEjP7l5kNChjWYWYf+V+zw1zXV8ysOqD96wOGfdnM1vpfXw5mXUdY2x0Bda0xs9qAYSGZZ2b2sJntMrNlhxhuZnaXv+YlZjYxYFio51d3tV3lr2mJmc01swkBwzaZ2VL//KoIc11nmFldwL/XTwKGHXYZCHFd3w+oaZl/mcr1Dwvl/CoxszfMbKWZLTezb3UxTuiXM+dcRL+AeGA9MARIAhYDow8a5xvAvf7umcBT/u7R/vGTgcH+z4kPY13TgDR/99cP1OV/3+Dh/PoK8Icups0FNvj/9vF39wlnbQeN/03g4TDMs9OAicCyQwy/AHgJMOAkYEE45tcR1jb1QJvA+Qdq87/fBPT1aJ6dAbzQ02Ug2HUdNO6FwOthml/9gYn+7kxgTRf/L0O+nEXDFv5kYJ1zboNzrhV4Ephx0DgzgEf83c8CZ5mZ+fs/6Zxrcc5tBNb5Py8sdTnn3nDONfrfzgeKg9R2j+o6jHOB15xze5xze4HXgPM8rO0K4K9BbL9Lzrm3gT2HGWUG8KjzmQ/kmFl/Qj+/uq3NOTfX3zaEbxk7knl2KD1ZPoNdV1iWLwDn3Hbn3Af+7npgJVB00GghX86iIfCLgK0B7yv57Iz6eBznXDtQB+Qd4bShrCvQdfjW3gekmFmFmc03sy8Gqaajqeti/8/GZ82s5CinDXVt+Hd/DQZeD+jacoFUAAADAElEQVQdqnnWnUPVHer5dbQOXsYc8KqZLTKzWR7UM8XMFpvZS2Y2xt8vIuaZmaXhC82/BfQOy/wy3y7n44EFBw0K+XIWDc+0tS76HXxq0aHGOZJpj9URf7aZfQkoB04P6D3QOVdlZkOA181sqXNufZjqeh74q3OuxcxuwPfr6MwjnDbUtR0wE3jWOdcR0C9U86w7XixfR8XMpuEL/FMCep/sn18FwGtmtsq/BRwOH+C73L/BzC4A/g8oI3Lm2YXAe865wF8DIZ9fZpaBbyXzbefcvoMHdzFJUJezaNjCrwRKAt4XA1WHGsfMEoBsfD/rjmTaUNaFmZ0N3AZMd861HOjvnKvy/90AvIlvjR+WupxzNQG1PABMOtJpQ11bgJkc9HM7hPOsO4eqO9Tz64iY2XjgQWCGc67mQP+A+bUL+DvB253ZLefcPudcg7/7n0CimfUlQuYZh1++QjK/zCwRX9g/7px7rotRQr+cheIARTBf+H6FbMD38/7AQZ4xB41zI58+aPu0v3sMnz5ou4HgHbQ9krqOx3eAquyg/n2AZH93X2AtQTpwdYR19Q/ovgiY7z45OLTRX18ff3duOP8t/eONwHcAzcIxz/yfWcqhD0B+nk8fTFsYjvl1hLUNxHdsaupB/dOBzIDuucB5Yayr8MC/H77g3OKff0e0DISqLv/wAxuE6eGaX/7v/ihw52HGCflyFtQFM1QvfEev1+ALz9v8/X6Ob6sZIAV4xr/gLwSGBEx7m3+61cD5Ya5rDrAT+Mj/mu3vPxVY6l/YlwLXhbmu/wGW+9t/AxgZMO21/vm4DvhquP8t/e9vB3550HQhm2f4tvS2A234tqauA24AbvAPN+CP/pqXAuVhnF/d1fYgsDdgGavw9x/in1eL/f/Wt4W5rpsClrH5BKyQuloGwlWXf5yv4DuZI3C6UM+vU/DthlkS8G91QbiXM11pKyISI6JhH76IiASBAl9EJEYo8EVEYoQCX0QkRijwRURihAJfRCRGKPBFRGKEAl9EJEb8fxanBLSqqPI7AAAAAElFTkSuQmCC\n", - "text/plain": "" - }, - "metadata": {} - } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "a = 2\n", + "u = lambda c: -np.exp(-a*c)\n", + "plt.plot(x, u(x))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" }, { - "metadata": { - "trusted": true - }, - "cell_type": "markdown", - "source": "# Optimization with inequality constraints" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "f = lambda x: -x[0]**3+x[1]**2-2*x[0]*(x[2]**2)", - "execution_count": 13, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "constraints =({'type': 'eq', 'fun': lambda x: 2*x[0]+x[1]**2+x[2]-5}, \n {'type': 'ineq', 'fun': lambda x: 5*x[0]**2-x[1]**2-x[2]-2})", - "execution_count": 8, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "constraints =({'type': 'eq', 'fun': lambda x: x[0]**3-x[1]})", - "execution_count": 10, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "x0 = np.array([.5, .5, 2])\nopt.minimize(f, x0, method='SLSQP', constraints=constraints, tol=1e-08, \n options={'disp': True, 'ftol': 1e-08})", - "execution_count": 18, - "outputs": [ - { - "output_type": "stream", - "text": "Optimization terminated successfully. (Exit mode 0)\n Current function value: -19.000000000000256\n Iterations: 11\n Function evaluations: 56\n Gradient evaluations: 11\n", - "name": "stdout" - }, - { - "output_type": "execute_result", - "execution_count": 18, - "data": { - "text/plain": " fun: -19.000000000000256\n jac: array([-21., 0., -12.])\n message: 'Optimization terminated successfully.'\n nfev: 56\n nit: 11\n njev: 11\n status: 0\n success: True\n x: array([ 1.0000000e+00, -2.6438182e-09, 3.0000000e+00])" - }, - "metadata": {} - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xl8VPW9//HXJ/uekJAQSAJhCfuiEFFwRa1bK9Trhlptq5Zrq7W1u/VxW9t7e29v+2u1tnXXVqvWrfYWtW7UXTaDyr7vISwhkJCQPfn+/phBRwwEyMycmcz7+XjMI2fOMt/PHA7vc+as5pxDRER6vzivCxARkfBQ4IuIxAgFvohIjFDgi4jECAW+iEiMUOCLiMQIBb6ISIxQ4IuIxAgFvohIjEjwuoBAffv2daWlpV6XISISVRYtWrTbOZff3XgRFfilpaVUVFR4XYaISFQxs81HMp526YiIxIiQB76ZnWdmq81snZn9KNTtiYhI10Ia+GYWD/wROB8YDVxhZqND2aaIiHQt1Fv4k4F1zrkNzrlW4ElgRojbFBGRLoQ68IuArQHvK/39PmZms8yswswqqqurQ1yOiEjsCnXgWxf9PvXEFefc/c65cudceX5+t2cViYjIMQp14FcCJQHvi4GqELcpIiJdCPV5+O8DZWY2GNgGzASuDHYja3bW88KS7WQmJ5CRkkBGcgKZKb5XRnIiGf7u9KQE4uO6+tEhItL7hTTwnXPtZnYT8AoQDzzsnFse7HbW7mzg96+v5Ugez5ueFB+wUkj0rxQ+eZ+RkkBWSgI5aUnkpCaSk+Z7ZaUmkpOaRFKCLl0QkehkkfQQ8/LycnesV9p2djoa2zqob26jobmd+pZ239/mdhpa2vx/A/sdGOfTwxpa2w+74khLiicn1b8CSPOtBHLSEslOSyQ7NZE+aUnkpSeRl5FEXnoyuRlJZCYnYKZfFiISGma2yDlX3t14EXVrhZ6Ii7OPt9TJPvbP6ex01Le0U9fYRm1TK7WNbdQ1tVHb1EZdY6uvu/HA+zY27t5PbVMrexvbaG3v7PIzk+LjyE1PIvfjFUESuenJH3fnZSSTn5lMQabvb2K8fkWISPD1msAPlrg4IzvVt7U+kLSjmra5rYM9+1vZs7+Vmv2t1DS0sGd/K7sbWtmzv4WaBl//zTWN1DS0sL+14zOfYQZ56UnkZ6bQL8u3EuiXlUJBVson3VoxiMgxUOAHUUpiPANyUhmQk3pE4ze3dXy8Yqiub2FXfQs79zWzc18L1fW+vyuq9rG7oYXOg3YzHVgx9M9OpcjfZlGfVIpyUijKSWNATgq56UnalSQiH1PgeyglMZ6iHF9gH05Hp6OmoYWd+1rY5V8R7NzXzK76ZrbVNrOuuoG31lTT1PbpXwwpiXG+FUHOJyuFktxUBuWlMyg3TSsEkRijwI8C8XHm26WTlcKhDlA456htbGNbbRPbapuoqm1i294mqup8f1dur2d3Q8unpslMTmBgXhqD8tI+XgkMzEujNC+dwqwU4nQKq0ivosDvJcyMPulJ9ElPYmxR1yuF5rYOKvc2srnmwGs/m/c0smp7Pa+t2Elbxyf7jZIS4hjSN52h+RkMLchgWEEGQ/N971MS48P1tUQkiBT4MSQlMZ5hBZkMK8j8zLCOTkdVbRNb9vhWBptq9rOhuoHlVXW8tGz7x8cQzKAoJ9W/AvCtCMoKMhhRmElmSmKYv5GIHA0FvgC+3UYluWmU5KZx8rBPD2tu62BzTSPrdjX4XtUNrN/VwPwNNTS3fXIqanGfVEYWZjG6fyYj+2cxsjCTQXnpurpZJEIo8KVbKYnxjCjMZEThp38ZdHY6ttU2sWZnPat21LNy+z5W7ajn9VU7P/5FkJoYz/DCTEb3z2RsUTbji3IYUZipK5ZFPNBrrrSVyNHc1sHanQ2s3LGPVdvrWbVjHyu276O2sQ3wXYg2qn8m44p9K4BxxdmUFWSQoOsKRI5JzF1pK5EjJTGeccXZjCv+5OCxc47KvU0sqaxjybZallbW8Y8Pq3hs/hb/NHGM7p/FxIF9KC/tw6RBueRnJnv1FUR6JW3hi2c6Ox2b9zSypLLWtyKorGVxZd3Ht6gYmJtG+aA+TCrtQ/mgXMoKMnSqqEgXjnQLX4EvEaW1vZNlVXUs2rSXis17WLR5L7sbWgHITElg4sA+nDgkl6lD+zJ2QJZ2A4mgwJdewjnH5ppGKjbvZdHmvVRs2sPaXQ2A78KxyYNzmTI0jylD8xhVmKVfABKTtA9fegUzo7RvOqV907lkUjEA1fUtzN9Qw7wNNcxbX8O/Vu0CoE9aIicNyeO04fmcPjz/iO9pJBIrtIUvUW97XRPz1tcwd30N763bzfa6ZgCG98vgjBEFnD48n/LSPiQn6Aph6Z20S0diknOOtbsaeHP1Lt5aU83CjXto63CkJcUzdWge00YW8LlR/fz3JRLpHRT4IsD+lnbmra/hzTW7eHN1NZV7mwA4fmAO54wu5Jwx/Rian+FxlSI9o8AXOciBrf9Xlu3g1RU7WbqtDoBhBRmcM7of54wpZEJxtm4ZLVFHgS/SjW21TcxZsZNXlu9gwcY9dHQ6inJS+cKE/kyfMIDR/bMU/hIVFPgiR6G2sZU5K3fxwpIq3l27m/ZOx9D8dC6cMIDpEwYwRLt9JIIp8EWO0Z79rby0bDvPL65iwcY9OAdjBmQxfcIALjq+SAd8JeIo8EWCYEddMy8u3c7sxVUs3lpLfJwxbUQ+l5aXcObIAj1IXiKCAl8kyDZUN/DMokr+tqiSXfUt5KUncdHxRVx2QgnD+332oTIi4aLAFwmR9o5O3l5bzdPvVzJn5U7aOx0TSnKYeUIJM44bQFqSLmCX8FLgi4RBTUMLf/9wG09XbGXNzgYyUxK4dFIJV08ZxOC+6V6XJzFCgS8SRs45Kjbv5dF5m3lp6XbaOx2nlvXlmimlnDmyQI95lJBS4It4ZFd9M08u3MrjCzazc18LJbmpXHfyYC4tLyE9Wbt7JPiONPB7dIqBmV1qZsvNrNPMyg8adquZrTOz1WZ2bk/aEYkmBZkp3HxWGe/+8Ezuvmoi/TJTuP35FUz95ev8+pVV7NrX7HWJEqN6tIVvZqOATuA+4HvOuQp//9HAX4HJwABgDjDcOddxuM/TFr70Vos27+XBdzbw8vIdJMbF8cXjB/C1U4dQprN7JAjCcj9859xKf2MHD5oBPOmcawE2mtk6fOE/ryftiUSrSYP6MGnQJDbt3s/D723k6YqtPF1RyfljC7npzGGMGZDd/YeI9FCorhopArYGvK/09xOJaaV90/n5jLHM/dFZ3HzmMN5du5vP3/Uu1z9SwZLKWq/Lk16u2y18M5sDFHYx6Dbn3D8ONVkX/brcd2Rms4BZAAMHDuyuHJFeITc9ie+cM4LrTh3Cn9/bxEPvbmD6H3YybUQ+3zyrjIkD+3hdovRC3Qa+c+7sY/jcSqAk4H0xUHWIz78fuB98+/CPoS2RqJWdmsi3zi7j2lNKeXTeZh58ZwP/dvdczh7Vj++fO4IRhdrHL8ETql06s4GZZpZsZoOBMmBhiNoSiXqZKYncOG0Y7/7wTL5/7ggWbKjhvN+9zXee/oitexq9Lk96iZ6elnmRmVUCU4AXzewVAOfccuBpYAXwMnBjd2foiAikJydw47RhvP2Dacw6dQgvLtnOmb95k9tnL2d3Q4vX5UmU04VXIhFse10Td/1rLU9XVJKSEMc3pg3julMGk5KoB7LLJ8Jy4ZWIhFb/7FT+59/G8+otpzF1WF9+/cpqPnfHW7y8bDuRtLEm0UGBLxIFhuZn8MA15Tx+/YmkJSZww2MfcOUDC1i5fZ/XpUkUUeCLRJGTh/XlxZtP4T9njGHVjn18/q53+PHfl7J3f6vXpUkUUOCLRJmE+DiunlLKm9+bxpenlvLU+1s567dv8bdFldrNI4elwBeJUtlpifz0wjG8ePMplOal8d1nFnPVgwvYUN3gdWkSoRT4IlFuZGEWz94wlV9cNJal2+o47853uHPOGlradSa0fJoCX6QXiIszrjpxEP/67umcO7aQO+es5fzfvcP7m/Z4XZpEEAW+SC9SkJnC7684nkeunUxreyeX3TeP/3phBc1t2toXBb5Ir3T68Hxe+fZpXDl5IA++u5HP3/UOH27Z63VZ4jEFvkgvlZ6cwC8uGsdfrptMU2sHF98zl1+9vEr79mOYAl+klzu1LJ+XbzmNSyYVc/eb65nxh/dYXlXndVniAQW+SAzISknkV5dM4OGvlLNnfysX/XEuj8zdpPP2Y4wCXySGnDmyHy9/+zROKevLT2cvZ9ZfFukq3RiiwBeJMbnpSTz05XL+4wujeXP1Li646x0WbtTpm7FAgS8Sg8yM604ZzHNfP5nkhDhm3j+P381ZS0endvH0Zgp8kRg2rjibF24+lekTBnDHnDV86cEFetBKL6bAF4lxGckJ3HH5cfzqkvEs2rKXC3//Lh9trfW6LAkBBb6IYGZcVl7Cc1+fSpwZl907jycWbNFZPL2MAl9EPja2KJsXvnkKJw7J5cd/X8oP/7ZEt2XoRRT4IvIpfdKT+PNXJ/PNM4fxdEUlVzwwn+p67dfvDRT4IvIZ8XHGd88Zwd1XTWTl9n3M+MO7rKjS4xSjnQJfRA7pgnH9efaGqXQ6uOTeuby6fIfXJUkPKPBF5LDGFmUz+6aTKSvI4N8fW8Q9b67XwdwopcAXkW4VZKXw1L9P4QvjB/C/L6/iP/6xTBdpRaEErwsQkeiQkhjP7y4/jqKcVO59az076lr4/RXHk5oU73VpcoS0hS8iRywuzvjR+SP5+Ywx/GvVTq58cD57dPO1qKHAF5Gjds2UUu65ahIrqvZx8T1z2VLT6HVJcgQU+CJyTM4bW8jj15/I3sZWLrl3Lmt21ntdknRDgS8ix6y8NJenZk0B4PL75rGkUvfgiWQ9Cnwz+7WZrTKzJWb2dzPLCRh2q5mtM7PVZnZuz0sVkUg0ojCTZ26YQnpyAlc+sID5G2q8LkkOoadb+K8BY51z44E1wK0AZjYamAmMAc4D7jYzHcoX6aUG5aXz7A1TKcxO4csPL+SNVbu8Lkm60KPAd8696pxr97+dDxT7u2cATzrnWpxzG4F1wOSetCUika0wO4WnZp1EWb8MvvZoha7KjUDB3Id/LfCSv7sI2BowrNLfT0R6sbyMZJ742kmMLcrmG49/oNCPMN0GvpnNMbNlXbxmBIxzG9AOPH6gVxcf1eVleWY2y8wqzKyiurr6WL6DiESQrJREHr1uskI/AnUb+M65s51zY7t4/QPAzL4MfAG4yn1yg41KoCTgY4qBqkN8/v3OuXLnXHl+fn7Pvo2IRIQDoT+uWKEfSXp6ls55wA+B6c65wCsvZgMzzSzZzAYDZcDCnrQlItElKyWRR65V6EeSnu7D/wOQCbxmZh+Z2b0AzrnlwNPACuBl4EbnnB6bIxJjslISedQf+jc98SHvrNVuWy9ZJN3mtLy83FVUVHhdhogEWV1jGzMfmM+m3fv5y3WTKS/N9bqkXsXMFjnnyrsbT1faikjIZaf5tvT7Z6fw1T+/z7JtdV6XFJMU+CISFvmZyTx2/YlkpSRyzcMLWberweuSYo4CX0TCZkBOKo9dfyJxZnzpwQVU7tVdNsNJgS8iYTW4bzp/uW4y+1vb+cqf3qe2UffTDxcFvoiE3aj+WTxwTTlbahqZ9egimtt0El84KPBFxBMnDcnjt5dPYOGmPXzn6Y/0jNww0DNtRcQzXxg/gB11zfzXiyspyFzBTy8cjVlXd2aRYFDgi4inrj91CNvrmnno3Y0MyElh1mlDvS6p11Lgi4jnbrtgFDv2NfM/L61iUF46544p9LqkXkn78EXEc3Fxxm8uncD44hxueeojllfpwqxQUOCLSERISYzngasnkZ2ayNceqWBXfbPXJfU6CnwRiRgFWSk8cE05exvbdLpmCCjwRSSijC3K5o7Lj+OjrbX84NklRNINHqOdAl9EIs55Ywv5/rkjmL24irvfXO91Ob2GAl9EItI3zhjKhRMG8P9eXc3ba3Qf/WBQ4ItIRDIz/vficQwvyOTmJz9k6x7daK2nFPgiErHSkhK47+pJdHQ6bnhMB3F7SoEvIhGttG86d15+HMur9nHb35fpIG4PKPBFJOKdNaof3zqrjL99UMljC7Z4XU7UUuCLSFT41lllTBuRz8+fX86Sylqvy4lKCnwRiQpxccYdlx9HfkYyNz3xIfua27wuKeoo8EUkauSkJfH7K49nW20Ttz63VPvzj5ICX0SiyqRBuXzvnBG8uGQ7TyzU/vyjocAXkajz76cN4bTh+fzs+RWs3L7P63KihgJfRKJOXJzx28smkJOayI1PfMD+lnavS4oKCnwRiUp9M5K5c+ZxbNy9n9tnL/e6nKigwBeRqDV1aF9uPGMYzyyq5OVl270uJ+Ip8EUkqn3r7DLGFWVz63NL2bVPD005HAW+iES1xPg47rh8Ao2tHfzgb7p//uH0KPDN7D/NbImZfWRmr5rZAH9/M7O7zGydf/jE4JQrIvJZwwoy+fEFo3hzdbVuvXAYPd3C/7Vzbrxz7jjgBeAn/v7nA2X+1yzgnh62IyJyWNdMGcRpw/P5xYsrWF/d4HU5EalHge+cCzwBNh048FtqBvCo85kP5JhZ/560JSJyOGbGry8ZT0piPLc89RFtHZ1elxRxerwP38x+YWZbgav4ZAu/CNgaMFqlv19X088yswozq6iu1lNtROTY9ctK4b8vGseSyjruf3uD1+VEnG4D38zmmNmyLl4zAJxztznnSoDHgZsOTNbFR3V5JMU5d79zrtw5V56fn3+s30NEBIALxvXn8+P787s5a1mzs97rciJKt4HvnDvbOTe2i9c/Dhr1CeBif3clUBIwrBioCk7JIiKH97PpY8hISeD7zy6ho1Nn7RzQ07N0ygLeTgdW+btnA9f4z9Y5CahzzumqCBEJi74Zydw+fQyLt9by0LvatXNAQg+n/6WZjQA6gc3ADf7+/wQuANYBjcBXe9iOiMhRuXB8f55fXMVvXl3D2aP6MSQ/w+uSPGeRdJFCeXm5q6io8LoMEekldu1r5uzfvsWIwkyemjWFuLiuDi9GPzNb5Jwr7248XWkrIr1WQVYKP7lwDO9v2ssj8zZ5XY7nFPgi0qtdPLGI04fn8+tXVlNV2+R1OZ5S4ItIr2Zm/NcXx9LpHD97PrZvo6zAF5FeryQ3jZvPKuOV5TuZs2Kn1+V4RoEvIjHha6cOYXi/DH46ezmNrbH5hCwFvojEhMT4OH5x0Ti21Tbxu3+t9bocTyjwRSRmnFCay+XlJTz0zkZW7Yi9h58r8EUkpvzo/JFkpSby4+eW0hljt11Q4ItITOmTnsSPLxjFB1tqeWbR1u4n6EUU+CIScy6eWET5oD786uXV1DW1eV1O2CjwRSTmmBm3Tx/DnsZW7oqhA7gKfBGJSWOLspl5QgmPzN3Eul2xcd98Bb6IxKzvnTOC1KR4fvb8CiLpRpKhosAXkZiVl5HMLWcP5521u5mzcpfX5YScAl9EYtrVUwZRVpDBf76wgua2Dq/LCSkFvojEtMT4OH5y4Wi27GnkoXc3el1OSCnwRSTmnVqWzzmj+/HHN9axq77Z63JCRoEvIgLcesEoWts7uXNO7z1NU4EvIgIM7pvOl04axFPvb+21p2kq8EVE/L555jDSEuP55UurvS4lJBT4IiJ+eRnJ3HDGUOas3MmCDTVelxN0CnwRkQDXnjyYwqwU/vufK3vdxVgKfBGRAKlJ8Xz3nOEsrqzjhSXbvS4nqBT4IiIH+beJxYwszORXr6yipb33XIylwBcROUh8nHHrBaPYuqeJx+Zv8bqcoFHgi4h04fTh+Uwdmsfdb6xjf0vveOi5Al9E5BC+d+4Iava38ue5m7wuJSgU+CIihzBxYB/OGlnAfW+t7xVPxgpK4JvZ98zMmVlf/3szs7vMbJ2ZLTGzicFoR0Qk3L5zznD2Nbfz0DsbvC6lx3oc+GZWAnwOCDyycT5Q5n/NAu7paTsiIl4YMyCbz4/rz0PvbqSmocXrcnokGFv4dwA/AAKvUJgBPOp85gM5ZtY/CG2JiITdLZ8ro6mtg/veju6t/B4FvplNB7Y55xYfNKgI2BrwvtLfT0Qk6gwryOSLxxfxyNxN7NwXvbdP7jbwzWyOmS3r4jUDuA34SVeTddGvy2uUzWyWmVWYWUV1dfXRVS8iEibfPms4HZ2OP76xzutSjlm3ge+cO9s5N/bgF7ABGAwsNrNNQDHwgZkV4tuiLwn4mGKg6hCff79zrtw5V56fn9/T7yMiEhID89K47IQS/rpwC9tqm7wu55gc8y4d59xS51yBc67UOVeKL+QnOud2ALOBa/xn65wE1DnnetdNKUQk5tw0bRgA97653uNKjk2ozsP/J75fAOuAB4BvhKgdEZGwGZCTyiWTinmqYmtU7ssPWuD7t/R3+7udc+5G59xQ59w451xFsNoREfHS108fRken4763ou+MHV1pKyJyFAbmpfHF44p4YuFmdkfZefkKfBGRo/SNaUNpae/kwXc2el3KUVHgi4gcpaH5GXxh/AD+Mm8Te/e3el3OEVPgi4gcg5umDWN/awd/ei96tvIV+CIix2BEYSbnjSnkT3M3sa85Ou6kqcAXETlGN505jPrmdh55b5PXpRwRBb6IyDEaW5TNtBH5/GnuJprbIv/Ztwp8EZEeuOH0oezZ38oziyq9LqVbCnwRkR6YPDiXCSU5PPjOBjo6u7xHZMRQ4IuI9ICZccNpQ9hc08iry3d4Xc5hKfBFRHronDGFlOalce/bG3AucrfyFfgiIj0UH2dcd+oQFm+tZeHGPV6Xc0gKfBGRILh0UjF56UkR/RhEBb6ISBCkJMZzzZRSXl+1izU7670up0sKfBGRILlmyiBSE+O5P0K38hX4IiJB0ic9icvKi/nHR9vYURd5D0hR4IuIBNH1pw6ho9Pxl/mbvC7lMxT4IiJBVJKbxtmj+vHEgi0Rd7sFBb6ISJB95eRS9ja2MfujKq9L+RQFvohIkE0ZksfIwkwefm9jRF2IpcAXEQkyM+OrJ5eyakc98zdEzoVYCnwRkRCYcVwRfdIS+fPcyHkilgJfRCQEUhLjuWLyQF5bsZOtexq9LgdQ4IuIhMzVUwZhZjw6b5PXpQAKfBGRkOmfncp5Ywt58v2t7G9p97ocBb6ISChde3Ip9c3tPPfhNq9LUeCLiITSxIF9GF+czZ8j4BRNBb6ISAiZGVefNIj11ftZ4PG98hX4IiIhduGEAWSlJPDY/M2e1tGjwDez281sm5l95H9dEDDsVjNbZ2arzezcnpcqIhKdUhLjuWRSCa8s30F1fYtndQRjC/8O59xx/tc/AcxsNDATGAOcB9xtZvFBaEtEJCpdeeJA2joczyza6lkNodqlMwN40jnX4pzbCKwDJoeoLRGRiDesIIMpQ/J4YsEWOjq9OXgbjMC/ycyWmNnDZtbH368ICFyNVfr7iYjErKtOGkjl3ibeXlvtSfvdBr6ZzTGzZV28ZgD3AEOB44DtwG8OTNbFR3W5SjOzWWZWYWYV1dXezAQRkXA4Z3QhfTOSeXz+Fk/aT+huBOfc2UfyQWb2APCC/20lUBIwuBjo8sbQzrn7gfsBysvLI+c+oiIiQZaUEMflJxRzz5vr2VbbRFFOaljb7+lZOv0D3l4ELPN3zwZmmlmymQ0GyoCFPWlLRKQ3mHnCQBzw1MLwb+X3dB/+r8xsqZktAaYBtwA455YDTwMrgJeBG51zkfWsLxERD5TkpnHG8HyefH8rbR2dYW27R4HvnLvaOTfOOTfeOTfdObc9YNgvnHNDnXMjnHMv9bxUEZHe4UsnDWJXfQtzVuwMa7u60lZEJMzOGFFA/+wUnnw/vOfkK/BFRMIsPs64dFIxb6+tpqq2KWztKvBFRDxwaXkJzsGziyrD1qYCX0TEAyW5aZw8LI+nK7bSGaYrbxX4IiIeuay8hMq9TcxdXxOW9hT4IiIeOXdMIdmpiTxVEZ6Dtwp8ERGPpCTG88XjBvDK8h3UNraGvD0FvoiIhy47oYTW9k7+LwzPvFXgi4h4aMyAbKZPGECf9KSQt9XtzdNERCS07rri+LC0oy18EZEYocAXEYkRCnwRkRihwBcRiREKfBGRGKHAFxGJEQp8EZEYocAXEYkR5lx4bst5JMysGth8jJP3BXYHsZxgitTaVNfRidS6IHJrU11H51jrGuScy+9upIgK/J4wswrnXLnXdXQlUmtTXUcnUuuCyK1NdR2dUNelXToiIjFCgS8iEiN6U+Df73UBhxGptamuoxOpdUHk1qa6jk5I6+o1+/BFROTwetMWvoiIHEZUBL6ZnWdmq81snZn9qIvhyWb2lH/4AjMrDRh2q7//ajM7N8x1fcfMVpjZEjP7l5kNChjWYWYf+V+zw1zXV8ysOqD96wOGfdnM1vpfXw5mXUdY2x0Bda0xs9qAYSGZZ2b2sJntMrNlhxhuZnaXv+YlZjYxYFio51d3tV3lr2mJmc01swkBwzaZ2VL//KoIc11nmFldwL/XTwKGHXYZCHFd3w+oaZl/mcr1Dwvl/CoxszfMbKWZLTezb3UxTuiXM+dcRL+AeGA9MARIAhYDow8a5xvAvf7umcBT/u7R/vGTgcH+z4kPY13TgDR/99cP1OV/3+Dh/PoK8Icups0FNvj/9vF39wlnbQeN/03g4TDMs9OAicCyQwy/AHgJMOAkYEE45tcR1jb1QJvA+Qdq87/fBPT1aJ6dAbzQ02Ug2HUdNO6FwOthml/9gYn+7kxgTRf/L0O+nEXDFv5kYJ1zboNzrhV4Ephx0DgzgEf83c8CZ5mZ+fs/6Zxrcc5tBNb5Py8sdTnn3nDONfrfzgeKg9R2j+o6jHOB15xze5xze4HXgPM8rO0K4K9BbL9Lzrm3gT2HGWUG8KjzmQ/kmFl/Qj+/uq3NOTfX3zaEbxk7knl2KD1ZPoNdV1iWLwDn3Hbn3Af+7npgJVB00GghX86iIfCLgK0B7yv57Iz6eBznXDtQB+Qd4bShrCvQdfjW3gekmFmFmc03sy8Gqaajqeti/8/GZ82s5CinDXVt+Hd/DQZeD+jacoFUAAADAElEQVQdqnnWnUPVHer5dbQOXsYc8KqZLTKzWR7UM8XMFpvZS2Y2xt8vIuaZmaXhC82/BfQOy/wy3y7n44EFBw0K+XIWDc+0tS76HXxq0aHGOZJpj9URf7aZfQkoB04P6D3QOVdlZkOA181sqXNufZjqeh74q3OuxcxuwPfr6MwjnDbUtR0wE3jWOdcR0C9U86w7XixfR8XMpuEL/FMCep/sn18FwGtmtsq/BRwOH+C73L/BzC4A/g8oI3Lm2YXAe865wF8DIZ9fZpaBbyXzbefcvoMHdzFJUJezaNjCrwRKAt4XA1WHGsfMEoBsfD/rjmTaUNaFmZ0N3AZMd861HOjvnKvy/90AvIlvjR+WupxzNQG1PABMOtJpQ11bgJkc9HM7hPOsO4eqO9Tz64iY2XjgQWCGc67mQP+A+bUL+DvB253ZLefcPudcg7/7n0CimfUlQuYZh1++QjK/zCwRX9g/7px7rotRQr+cheIARTBf+H6FbMD38/7AQZ4xB41zI58+aPu0v3sMnz5ou4HgHbQ9krqOx3eAquyg/n2AZH93X2AtQTpwdYR19Q/ovgiY7z45OLTRX18ff3duOP8t/eONwHcAzcIxz/yfWcqhD0B+nk8fTFsYjvl1hLUNxHdsaupB/dOBzIDuucB5Yayr8MC/H77g3OKff0e0DISqLv/wAxuE6eGaX/7v/ihw52HGCflyFtQFM1QvfEev1+ALz9v8/X6Ob6sZIAV4xr/gLwSGBEx7m3+61cD5Ya5rDrAT+Mj/mu3vPxVY6l/YlwLXhbmu/wGW+9t/AxgZMO21/vm4DvhquP8t/e9vB3550HQhm2f4tvS2A234tqauA24AbvAPN+CP/pqXAuVhnF/d1fYgsDdgGavw9x/in1eL/f/Wt4W5rpsClrH5BKyQuloGwlWXf5yv4DuZI3C6UM+vU/DthlkS8G91QbiXM11pKyISI6JhH76IiASBAl9EJEYo8EVEYoQCX0QkRijwRURihAJfRCRGKPBFRGKEAl9EJEb8fxanBLSqqPI7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" ] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "", - "execution_count": null, - "outputs": [] + }, + "metadata": {}, + "output_type": "display_data" } - ], - "metadata": { - "kernelspec": { - "name": "python3", - "display_name": "Python 3", - "language": "python" - }, - "language_info": { - "mimetype": "text/x-python", - "nbconvert_exporter": "python", - "name": "python", - "file_extension": ".py", - "version": "3.5.4", - "pygments_lexer": "ipython3", - "codemirror_mode": { - "version": 3, - "name": "ipython" - } + ], + "source": [ + "a = -2\n", + "plt.plot(x, u(x))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Optimization with inequality constraints" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "f = lambda x: -x[0]**3+x[1]**2-2*x[0]*(x[2]**2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "constraints =({'type': 'eq', 'fun': lambda x: 2*x[0]+x[1]**2+x[2]-5}, \n", + " {'type': 'ineq', 'fun': lambda x: 5*x[0]**2-x[1]**2-x[2]-2})" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "constraints =({'type': 'eq', 'fun': lambda x: x[0]**3-x[1]})" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully. (Exit mode 0)\n", + " Current function value: -19.000000000000256\n", + " Iterations: 11\n", + " Function evaluations: 56\n", + " Gradient evaluations: 11\n" + ] + }, + { + "data": { + "text/plain": [ + " fun: -19.000000000000256\n", + " jac: array([-21., 0., -12.])\n", + " message: 'Optimization terminated successfully.'\n", + " nfev: 56\n", + " nit: 11\n", + " njev: 11\n", + " status: 0\n", + " success: True\n", + " x: array([ 1.0000000e+00, -2.6438182e-09, 3.0000000e+00])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" } + ], + "source": [ + "x0 = np.array([.5, .5, 2])\n", + "opt.minimize(f, x0, method='SLSQP', constraints=constraints, tol=1e-08, \n", + " options={'disp': True, 'ftol': 1e-08})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-III.ipynb" "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-III.ipynb" index ff00af2..c87fe18 100644 --- "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-III.ipynb" +++ "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-III.ipynb" @@ -1,279 +1,582 @@ { - "cells": [ - { - "metadata": { - "collapsed": true - }, - "cell_type": "markdown", - "source": "# Dynamic Optimization" - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "Imagine an infinitely-living individual who has an endowment of capital at the beginning of each period. This endowment is used to produce more goods according, and a fraction of it depreciates. The individual then decides what fraction of the output to consume, and the remaining becomes the endowment of capital available on the next period. Notice that there is just one good in this economy, which can be consumed or used in production (as capital).\n\nThe objective in period $t$ is to *maximize* the intertemporal utility\n$$U_{t} = \\sum_{s=0}^{+\\infty} \\beta^{s}\\,u(c_{t+s})$$\nsubject to\n$$k_{t+s}\\,(1-\\delta) + f(k_{t+s}) = c_{t+s} + k_{t+s+1},\\, t\\in\\mathcal{N}$$\n$k_{t+s}$ is the capital stock at the beginning of period $t+s$, $c_{t+s}$ is the consumption, $f()$ is a production function, $\\delta$ is the depreciation rate, and the discount rate is such that $0<\\beta<1$.\n\nAccording to [Bellman's Principle of Optimality](https://youtu.be/_zE5z-KZGRw) the solution to this problem must also solve\n$$V(k) = \\max \\{u(c)+\\beta\\,V(k^{\\prime})\\}$$\n$$s.t.\\;k^{\\prime}=f(k)+(1-\\delta)k-c$$\n\n*We want to find:*\n* a *value function* $V(k)$ that satisfies the conditions above\n* the associated *policy function* $h(k)$ that indicates what is the (intertemporal) optimal consumption $c$ given the amount of capital at the beginning of the period.\n\nFunctions:\n* $f(k)=k^\\alpha$\n* $u(c)=\\ln(c)$\n\nFirst order condition (wrt $k^{\\prime}$): $-u^{\\prime}(c)+\\beta\\,V^{\\prime}(k^{\\prime})=0$\n\nBenveniste-Scheinkman condition: $V^{\\prime}(k)=u^{\\prime}(c)\\,(1-\\delta+f^{\\prime}(k))$\n\nRe-arranging terms: \n$$k^{\\prime}+c=k^{\\alpha}+(1-\\delta)k$$\n$$c^{\\prime}=\\beta\\,c\\,\\left[1-\\delta+\\alpha\\,(k^{\\prime})^{\\alpha-1}\\right]$$\n\nIn steady state: $c=c^{\\prime}$ and $k=k^{\\prime}$\n\n$$k^{\\ast}=\\left[\\frac{\\alpha\\beta}{1-\\beta(1-\\delta)}\\right]^{\\frac{1}{1-\\alpha}}$$\n$$c^{\\ast}=(k^{\\ast})^{\\alpha}-\\delta k^{\\ast}$$\n\nParameters:\n* $\\alpha = .4$\n* $\\beta = .8$\n* $\\delta = .05$" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import math\nimport numpy as np\nfrom scipy import stats, optimize\nimport time\nimport matplotlib.pyplot as plt", - "execution_count": 2, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# parameters\nalpha = .4\nbeta = .8\ndelta = .05\npar = (alpha, beta, delta)", - "execution_count": 3, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# utility function\nu = lambda c: math.log(c)", - "execution_count": 4, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# production function\nf = lambda k: k**alpha", - "execution_count": 5, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# function to calculate distance between two lists with the same indices\ndef dist(V, W):\n d = 0\n for (_, v), (_, w) in zip(V.items(), W.items()):\n d = d + (v-w)**2\n return math.sqrt(d)", - "execution_count": 6, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Step 1: calculate steady-state" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "k_ss = (alpha*beta/(1-beta*(1-delta)))**(1/(1-alpha))\nc_ss = f(k_ss)-delta*k_ss\nprint(\"steady-state values:\\ncapital: {0:.1f}\\nconsumption: {1:.1f}\".format(k_ss, c_ss))", - "execution_count": 7, - "outputs": [ - { - "output_type": "stream", - "text": "steady-state values:\ncapital: 1.6\nconsumption: 1.1\n", - "name": "stdout" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Step 2: define a grid for $k$ (and $k^{\\prime}$)" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "g_size = 1000\nkmin = 0\nkmax = k_ss*2\nstep = kmax/g_size\n\nk_grid = np.arange(kmin+step, kmax+step, step)", - "execution_count": 8, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Step 3: define initial value function over grid" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# V0 is dictionary. V0(k)=k\nV0 = {}\nfor k in k_grid:\n V0[k] = math.log(k+1)", - "execution_count": 9, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Step 4: construct maximizer function" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# given a value of k and a (proposed) value function V, find k' that maximizes V over grid of k. \n\ndef maximizer(k, V0, u, f, k_grid):\n \n i = 0\n for K in k_grid:\n \n c = f(k)+(1-delta)*k-K\n if c>0:\n i += 1\n v = u(c)+beta*V0[K]\n if i == 1:\n vmax = v\n cmax = c\n kmax = K\n elif v>vmax:\n vmax = v\n cmax = c\n kmax = K\n \n return (vmax, cmax, kmax)", - "execution_count": 10, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Step 5: iteration over value function" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def bellman(V0, u, f, k_grid, eps=1e-3):\n \n T = {}\n T[0] = (1, 1)\n t0 = time.time()\n d = 1\n i = 0\n \n while d>eps:\n \n V = {}\n C = {}\n K = {}\n \n i += 1\n \n for k in k_grid:\n v = maximizer(k, V0, u, f, k_grid)\n V[k] = v[0]\n C[k] = v[1]\n K[k] = v[2]\n \n d = abs(dist(V, V0))\n V0 = V\n T[i] = (d, time.time()-t0)\n print('i: {0}, d = {1:.5f} ({2:.2%})'.format(i,d,(d/T[i-1][0])-1))\n \n print('i: {0}, d = {1:.5f})'.format(i,d))\n return (V, C, K, T)", - "execution_count": 12, - "outputs": [] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamic Optimization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Imagine an infinitely-living individual who has an endowment of capital at the beginning of each period. This endowment is used to produce more goods according, and a fraction of it depreciates. The individual then decides what fraction of the output to consume, and the remaining becomes the endowment of capital available on the next period. Notice that there is just one good in this economy, which can be consumed or used in production (as capital).\n", + "\n", + "The objective in period $t$ is to *maximize* the intertemporal utility\n", + "$$U_{t} = \\sum_{s=0}^{+\\infty} \\beta^{s}\\,u(c_{t+s})$$\n", + "subject to\n", + "$$k_{t+s}\\,(1-\\delta) + f(k_{t+s}) = c_{t+s} + k_{t+s+1},\\, t\\in\\mathcal{N}$$\n", + "$k_{t+s}$ is the capital stock at the beginning of period $t+s$, $c_{t+s}$ is the consumption, $f()$ is a production function, $\\delta$ is the depreciation rate, and the discount rate is such that $0<\\beta<1$.\n", + "\n", + "According to [Bellman's Principle of Optimality](https://youtu.be/_zE5z-KZGRw) the solution to this problem must also solve\n", + "$$V(k) = \\max \\{u(c)+\\beta\\,V(k^{\\prime})\\}$$\n", + "$$s.t.\\;k^{\\prime}=f(k)+(1-\\delta)k-c$$\n", + "\n", + "*We want to find:*\n", + "* a *value function* $V(k)$ that satisfies the conditions above\n", + "* the associated *policy function* $h(k)$ that indicates what is the (intertemporal) optimal consumption $c$ given the amount of capital at the beginning of the period.\n", + "\n", + "Functions:\n", + "* $f(k)=k^\\alpha$\n", + "* $u(c)=\\ln(c)$\n", + "\n", + "First order condition (wrt $k^{\\prime}$): $-u^{\\prime}(c)+\\beta\\,V^{\\prime}(k^{\\prime})=0$\n", + "\n", + "Benveniste-Scheinkman condition: $V^{\\prime}(k)=u^{\\prime}(c)\\,(1-\\delta+f^{\\prime}(k))$\n", + "\n", + "Re-arranging terms: \n", + "$$k^{\\prime}+c=k^{\\alpha}+(1-\\delta)k$$\n", + "$$c^{\\prime}=\\beta\\,c\\,\\left[1-\\delta+\\alpha\\,(k^{\\prime})^{\\alpha-1}\\right]$$\n", + "\n", + "In steady state: $c=c^{\\prime}$ and $k=k^{\\prime}$\n", + "\n", + "$$k^{\\ast}=\\left[\\frac{\\alpha\\beta}{1-\\beta(1-\\delta)}\\right]^{\\frac{1}{1-\\alpha}}$$\n", + "$$c^{\\ast}=(k^{\\ast})^{\\alpha}-\\delta k^{\\ast}$$\n", + "\n", + "Parameters:\n", + "* $\\alpha = .4$\n", + "* $\\beta = .8$\n", + "* $\\delta = .05$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "import numpy as np\n", + "from scipy import stats, optimize\n", + "import time\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# parameters\n", + "alpha = .4\n", + "beta = .8\n", + "delta = .05\n", + "par = (alpha, beta, delta)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# utility function\n", + "u = lambda c: math.log(c)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# production function\n", + "f = lambda k: k**alpha" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# function to calculate distance between two lists with the same indices\n", + "def dist(V, W):\n", + " d = 0\n", + " for (_, v), (_, w) in zip(V.items(), W.items()):\n", + " d = d + (v-w)**2\n", + " return math.sqrt(d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 1: calculate steady-state" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "## Shazam!" - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "steady-state values:\n", + "capital: 1.6\n", + "consumption: 1.1\n" + ] + } + ], + "source": [ + "k_ss = (alpha*beta/(1-beta*(1-delta)))**(1/(1-alpha))\n", + "c_ss = f(k_ss)-delta*k_ss\n", + "print(\"steady-state values:\\ncapital: {0:.1f}\\nconsumption: {1:.1f}\".format(k_ss, c_ss))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2: define a grid for $k$ (and $k^{\\prime}$)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "g_size = 1000\n", + "kmin = 0\n", + "kmax = k_ss*2\n", + "step = kmax/g_size\n", + "\n", + "k_grid = np.arange(kmin+step, kmax+step, step)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: define initial value function over grid" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# V0 is dictionary. V0(k)=k\n", + "V0 = {}\n", + "for k in k_grid:\n", + " V0[k] = math.log(k+1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4: construct maximizer function" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# given a value of k and a (proposed) value function V, find k' that maximizes V over grid of k. \n", + "\n", + "def maximizer(k, V0, u, f, k_grid):\n", + " \n", + " i = 0\n", + " for K in k_grid:\n", + " \n", + " c = f(k)+(1-delta)*k-K\n", + " if c>0:\n", + " i += 1\n", + " v = u(c)+beta*V0[K]\n", + " if i == 1:\n", + " vmax = v\n", + " cmax = c\n", + " kmax = K\n", + " elif v>vmax:\n", + " vmax = v\n", + " cmax = c\n", + " kmax = K\n", + " \n", + " return (vmax, cmax, kmax)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: iteration over value function" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "def bellman(V0, u, f, k_grid, eps=1e-3):\n", + " \n", + " T = {}\n", + " T[0] = (1, 1)\n", + " t0 = time.time()\n", + " d = 1\n", + " i = 0\n", + " \n", + " while d>eps:\n", + " \n", + " V = {}\n", + " C = {}\n", + " K = {}\n", + " \n", + " i += 1\n", + " \n", + " for k in k_grid:\n", + " v = maximizer(k, V0, u, f, k_grid)\n", + " V[k] = v[0]\n", + " C[k] = v[1]\n", + " K[k] = v[2]\n", + " \n", + " d = abs(dist(V, V0))\n", + " V0 = V\n", + " T[i] = (d, time.time()-t0)\n", + " print('i: {0}, d = {1:.5f} ({2:.2%})'.format(i,d,(d/T[i-1][0])-1))\n", + " \n", + " print('i: {0}, d = {1:.5f})'.format(i,d))\n", + " return (V, C, K, T)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Shazam!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "metadata": { - "scrolled": true, - "trusted": true - }, - "cell_type": "code", - "source": "S = bellman(V0, u, f, k_grid)", - "execution_count": 13, - "outputs": [ - { - "output_type": "stream", - "text": "i: 1, d = 11.47116 (1047.12%)\ni: 2, d = 8.71175 (-24.06%)\ni: 3, d = 6.23321 (-28.45%)\ni: 4, d = 4.50341 (-27.75%)\ni: 5, d = 3.30647 (-26.58%)\ni: 6, d = 2.46702 (-25.39%)\ni: 7, d = 1.86775 (-24.29%)\ni: 8, d = 1.43191 (-23.33%)\ni: 9, d = 1.10911 (-22.54%)\ni: 10, d = 0.86617 (-21.90%)\ni: 11, d = 0.68077 (-21.40%)\ni: 12, d = 0.53760 (-21.03%)\ni: 13, d = 0.42600 (-20.76%)\ni: 14, d = 0.33841 (-20.56%)\ni: 15, d = 0.26932 (-20.42%)\ni: 16, d = 0.21461 (-20.31%)\ni: 17, d = 0.17118 (-20.24%)\ni: 18, d = 0.13663 (-20.18%)\ni: 19, d = 0.10912 (-20.14%)\ni: 20, d = 0.08718 (-20.11%)\ni: 21, d = 0.06967 (-20.08%)\ni: 22, d = 0.05569 (-20.07%)\ni: 23, d = 0.04452 (-20.05%)\ni: 24, d = 0.03560 (-20.04%)\ni: 25, d = 0.02847 (-20.03%)\ni: 26, d = 0.02277 (-20.03%)\ni: 27, d = 0.01821 (-20.02%)\ni: 28, d = 0.01456 (-20.02%)\ni: 29, d = 0.01165 (-20.01%)\ni: 30, d = 0.00932 (-20.01%)\ni: 31, d = 0.00745 (-20.01%)\ni: 32, d = 0.00596 (-20.01%)\ni: 33, d = 0.00477 (-20.00%)\ni: 34, d = 0.00382 (-20.00%)\ni: 35, d = 0.00305 (-20.00%)\ni: 36, d = 0.00244 (-20.00%)\ni: 37, d = 0.00195 (-20.00%)\ni: 38, d = 0.00156 (-20.00%)\ni: 39, d = 0.00125 (-20.00%)\ni: 40, d = 0.00100 (-20.00%)\ni: 41, d = 0.00080 (-20.00%)\ni: 41, d = 0.00080)\n", - "name": "stdout" - } - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "i: 1, d = 11.47116 (1047.12%)\n", + "i: 2, d = 8.71175 (-24.06%)\n", + "i: 3, d = 6.23321 (-28.45%)\n", + "i: 4, d = 4.50341 (-27.75%)\n", + "i: 5, d = 3.30647 (-26.58%)\n", + "i: 6, d = 2.46702 (-25.39%)\n", + "i: 7, d = 1.86775 (-24.29%)\n", + "i: 8, d = 1.43191 (-23.33%)\n", + "i: 9, d = 1.10911 (-22.54%)\n", + "i: 10, d = 0.86617 (-21.90%)\n", + "i: 11, d = 0.68077 (-21.40%)\n", + "i: 12, d = 0.53760 (-21.03%)\n", + "i: 13, d = 0.42600 (-20.76%)\n", + "i: 14, d = 0.33841 (-20.56%)\n", + "i: 15, d = 0.26932 (-20.42%)\n", + "i: 16, d = 0.21461 (-20.31%)\n", + "i: 17, d = 0.17118 (-20.24%)\n", + "i: 18, d = 0.13663 (-20.18%)\n", + "i: 19, d = 0.10912 (-20.14%)\n", + "i: 20, d = 0.08718 (-20.11%)\n", + "i: 21, d = 0.06967 (-20.08%)\n", + "i: 22, d = 0.05569 (-20.07%)\n", + "i: 23, d = 0.04452 (-20.05%)\n", + "i: 24, d = 0.03560 (-20.04%)\n", + "i: 25, d = 0.02847 (-20.03%)\n", + "i: 26, d = 0.02277 (-20.03%)\n", + "i: 27, d = 0.01821 (-20.02%)\n", + "i: 28, d = 0.01456 (-20.02%)\n", + "i: 29, d = 0.01165 (-20.01%)\n", + "i: 30, d = 0.00932 (-20.01%)\n", + "i: 31, d = 0.00745 (-20.01%)\n", + "i: 32, d = 0.00596 (-20.01%)\n", + "i: 33, d = 0.00477 (-20.00%)\n", + "i: 34, d = 0.00382 (-20.00%)\n", + "i: 35, d = 0.00305 (-20.00%)\n", + "i: 36, d = 0.00244 (-20.00%)\n", + "i: 37, d = 0.00195 (-20.00%)\n", + "i: 38, d = 0.00156 (-20.00%)\n", + "i: 39, d = 0.00125 (-20.00%)\n", + "i: 40, d = 0.00100 (-20.00%)\n", + "i: 41, d = 0.00080 (-20.00%)\n", + "i: 41, d = 0.00080)\n" + ] + } + ], + "source": [ + "S = bellman(V0, u, f, k_grid)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "S[3]", - "execution_count": 16, - "outputs": [ - { - "output_type": "execute_result", - "execution_count": 16, - "data": { - "text/plain": "{0: (1, 1),\n 1: (11.471163339929898, 11.620864152908325),\n 2: (8.711751727405229, 24.175007581710815),\n 3: (6.233207992621637, 37.45667099952698),\n 4: (4.503406692265431, 50.7048454284668),\n 5: (3.306469822288683, 63.64902210235596),\n 6: (2.467018540510849, 76.81420135498047),\n 7: (1.8677475739998395, 89.01143765449524),\n 8: (1.4319148954993604, 100.75852632522583),\n 9: (1.1091069779636689, 113.11196255683899),\n 10: (0.86616526516008, 125.26574158668518),\n 11: (0.6807749115680007, 137.06682467460632),\n 12: (0.5375994977798054, 148.5941891670227),\n 13: (0.4260043505473527, 160.18138718605042),\n 14: (0.33841249069847884, 172.33310961723328),\n 15: (0.26931662426805536, 184.27857446670532),\n 16: (0.21460923643192942, 196.00503754615784),\n 17: (0.17117894724320826, 207.51750993728638),\n 18: (0.1366336975348204, 219.02280259132385),\n 19: (0.10911729721855218, 231.41397738456726),\n 20: (0.08717613476214513, 243.08990097045898),\n 21: (0.06966772355821278, 254.6827666759491),\n 22: (0.05568814245179515, 266.64171719551086),\n 23: (0.04452161208020133, 278.3515884876251),\n 24: (0.035598941252427484, 290.5835506916046),\n 25: (0.028467578026808594, 302.8230154514313),\n 26: (0.022766594712928367, 314.76684737205505),\n 27: (0.01820850416251944, 327.0457673072815),\n 28: (0.0145636707576875, 339.1297814846039),\n 29: (0.011649095366938398, 351.3482563495636),\n 30: (0.009317977551900567, 363.70199179649353),\n 31: (0.007453545960504198, 375.41989493370056),\n 32: (0.005962193499606321, 388.3381025791168),\n 33: (0.0047694662863360495, 400.3460953235626),\n 34: (0.0038154180630221098, 412.2888388633728),\n 35: (0.003052163370817199, 424.21188163757324),\n 36: (0.002441615428970485, 435.95243740081787),\n 37: (0.0019532613639854386, 448.54394912719727),\n 38: (0.0015626052734961952, 460.12600922584534),\n 39: (0.0012500874972857857, 472.09953689575195),\n 40: (0.0010000568097899912, 483.8269262313843),\n 41: (0.0008000134337702209, 495.6525139808655)}" - }, - "metadata": {} - } + "data": { + "text/plain": [ + "{0: (1, 1),\n", + " 1: (11.471163339929898, 11.620864152908325),\n", + " 2: (8.711751727405229, 24.175007581710815),\n", + " 3: (6.233207992621637, 37.45667099952698),\n", + " 4: (4.503406692265431, 50.7048454284668),\n", + " 5: (3.306469822288683, 63.64902210235596),\n", + " 6: (2.467018540510849, 76.81420135498047),\n", + " 7: (1.8677475739998395, 89.01143765449524),\n", + " 8: (1.4319148954993604, 100.75852632522583),\n", + " 9: (1.1091069779636689, 113.11196255683899),\n", + " 10: (0.86616526516008, 125.26574158668518),\n", + " 11: (0.6807749115680007, 137.06682467460632),\n", + " 12: (0.5375994977798054, 148.5941891670227),\n", + " 13: (0.4260043505473527, 160.18138718605042),\n", + " 14: (0.33841249069847884, 172.33310961723328),\n", + " 15: (0.26931662426805536, 184.27857446670532),\n", + " 16: (0.21460923643192942, 196.00503754615784),\n", + " 17: (0.17117894724320826, 207.51750993728638),\n", + " 18: (0.1366336975348204, 219.02280259132385),\n", + " 19: (0.10911729721855218, 231.41397738456726),\n", + " 20: (0.08717613476214513, 243.08990097045898),\n", + " 21: (0.06966772355821278, 254.6827666759491),\n", + " 22: (0.05568814245179515, 266.64171719551086),\n", + " 23: (0.04452161208020133, 278.3515884876251),\n", + " 24: (0.035598941252427484, 290.5835506916046),\n", + " 25: (0.028467578026808594, 302.8230154514313),\n", + " 26: (0.022766594712928367, 314.76684737205505),\n", + " 27: (0.01820850416251944, 327.0457673072815),\n", + " 28: (0.0145636707576875, 339.1297814846039),\n", + " 29: (0.011649095366938398, 351.3482563495636),\n", + " 30: (0.009317977551900567, 363.70199179649353),\n", + " 31: (0.007453545960504198, 375.41989493370056),\n", + " 32: (0.005962193499606321, 388.3381025791168),\n", + " 33: (0.0047694662863360495, 400.3460953235626),\n", + " 34: (0.0038154180630221098, 412.2888388633728),\n", + " 35: (0.003052163370817199, 424.21188163757324),\n", + " 36: (0.002441615428970485, 435.95243740081787),\n", + " 37: (0.0019532613639854386, 448.54394912719727),\n", + " 38: (0.0015626052734961952, 460.12600922584534),\n", + " 39: (0.0012500874972857857, 472.09953689575195),\n", + " 40: (0.0010000568097899912, 483.8269262313843),\n", + " 41: (0.0008000134337702209, 495.6525139808655)}" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Exploring the results" - }, + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "S[3]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exploring the results" + ] + }, + { + "cell_type": "code", + "execution_count": 240, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "V = S[0]\nX = []\nY = []\nZ = []\n\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(V[k])\n Z.append(V0[k])\n \nplt.plot(X, Y, color=\"green\", linewidth=2, label=\"Optimum\")\nplt.plot(X, Z, \"--\", color=\"gray\", linewidth=1, label=\"Initial guess\")\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$V$\", fontsize=14)\nplt.title(\"Value Function\")\nplt.legend(loc='lower right')\nplt.show()", - "execution_count": 240, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGMCAYAAAAIiKIXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8lNXd///XmYSsJCEkYQv7juwJgigqiwUVBYpbQeBW\nXLu48HWpaFvrcitaRYsWq1WLCgX6q3qLFsUVEUGBhB1kh7AmYUkC2Zfz+2OSkZCFBJK5ksn72cc8\nmDlzruv6ZIrMO+c617mMtRYRERERp7icLkBEREQaNoURERERcZTCiIiIiDhKYUREREQcpTAiIiIi\njlIYEREREUcpjIiIiIijFEZERETEUQojIiIi4iiFEZEGzBhzwBjzhtN11BfGmE7GmCJjzESnaxHx\nJQojInWcMeYjY0ymMSa0kj7zjDG5xpjIau7ekftBGGNGFH+pl/d414mazqjvZmPMPRW8rXtoiNQw\nf6cLEJGzmgdcA/wSmHvmm8aYYGAMsNhae8LLtZ2vmUDiGW27nSjkDJOATsArpzdaa3cZY4KttXnO\nlCXimxRGROq+RcApYCLlhBFgHBCCO7TUN8ustYucLqI6FEREap5O04jUcdbaHOADYIQxJrqcLhOB\nk8DHJQ3GmN8bY743xhwzxmQZY1YbY8ad7VjGmKeNMfnltN9efAql1Rnto40x3xljThlj0o0xi4wx\n3av9Q5Zfi1/xMR8t571Sc11Oq2+QMeZlY0xqcU3/Ke/UVXHd3xpjMorr/sEYc0Pxe98Bo4DOp506\n2l78XrlzRowxVxR/3pnGmBPGmA+MMV3P6PN08bbtjTHvGmPSivv+wxgTWBOfmUh9pTAiUj/MAxoB\nN57eWPxFOxL4wFqbe9pb9wIJwB+A6UAR8L4xZuRZjmMpf05EmXZjzC24R21OAA8DTwO9ge+MMa2r\n9FNBmDEm6oyHqcJ2Z9ZY8no20AP4E/AaMBaYdUbdt+MObuHAM8DvgfXAlcVdngA2AEeAm3Gfsnmg\nokKMMaOAT4EmwB9xn3q6DPj+jM+h5DN8HwgsPu5/gKm4/38SabB0mkakfvgaOIx7FGT2ae034v7v\n+MxTNB1PDyfGmL/h/sKdBnx+vsUYY8KAl4HZ1tp7Tmt/F9gGPAL8rgq7ehc4PXxYoA1w6BxLO2Kt\nHX1aPQHAr40xd1lrs4wxTYCXgOXACGttmVEga+2XxpjDQIi1dn4VjvkCkAJcZK09WXzcj3GHwceB\nO07ra4AfrbW/KX79ujGmGXAb7iAj0iBpZESkHrDWFgELgMHGmLanvTURSMYdVk7vf3oQaYL7t/bl\nQFwNlXQlEAYsOH1UAygEVgPDqrifPwFXnPb4BZB6jjVZ4PUz2r4D/ICSz+xK3PNrni0viFRX8chH\nT+CtkiACYK1dh/v/k9FnbFJRjc2NMUHnW49IfaWREZH6Yx7ukY2JwAxjTCwwBHjZWnvmKZQxwKNA\nX9ynBErU1OTLzrh/y/+unPcscKyK+9lorf367N2qbP8Zr0uuLiqZN9Kx+M/NNXS8dsV/bi/nva3A\ncGNMozOCT9IZ/U6v8XAN1SVSryiMiNQT1tpEY8xPwARgBu5QAvCv0/sZY4YBH+L+zfxu3HMf8nGf\nLrjubIepoN3vjNeu4r4TgKPl9D/vUYdKaimvnhKFFbRXZR6Kt9SHGkW8SmFEpH6ZBzxpjOmNOwjs\nsNYmnNFnPJAJXGmt9XzxGWPuqsL+TwB+xpgQa23Wae3tz+i3q/jPFGvt0mrUX2XW2iJjzEncp5g8\niq88aXaOu92F+0u/F2VHKEodvor721f8Z7dy3usOJNfE6SARX6c5IyL1yzzcX6ZPAv0of92RQtxX\nz3hGD4wxHYFrq7D/ki/ry07btjEw+Yx+n+Je++QxY0yZUYoKLkE+U1W+8HedXkuxX3Pu/3YtwR3U\nHi2e3FqRTM4IQeWx1h4ANgG3Fk/qBcAY0xcYDnxyjnWKNCgaGRGpR6y1e40xK3Bfsmo54xRNsf/i\nvrR3iTFmPtAS+A3uq1x6nuUQnwIHgTnGmBeK26binsvgWWPEWptujPkd8DaQaIxZgPt0TTvckza/\nAf7fWY5VldMSbwKvGmP+DXwF9Mf9JV/enJSK9udpt9amGWMewH3Z76riutNwz61pZK29vbhrAjDe\nGPOX4ucZ1trFFez/QdyhY6Ux5m2gMXAPcBx3aBSRs9DIiEj9Mw93EPnRWltm6XRr7Re454e0wn35\n7Q2418ko77f0UuuHFJ9SGAvsAZ7CHWL+RtkrQLDWvof76pfDuNcZean4WAm4L9k9m6qMjPwd+Asw\nFPcltLHFx8wuZ/uK9leq3Vr7Bu5Va0/hXt/jWdxh5NPTur2K++qlqbg/75cr2d/nwFW4T3E9iXuS\n8TLgkuKRExE5C3PGJHwRERERr/KJkRFjzHRjzKripZ2TjTEfnrkUs4iIiNRNPhFGgEtx311zEO6F\nkxoBnxffzVRERETqMJ88TVM8kz8FuMxau9zpekRERKRivjIycqYmuCeZHXe6EBEREamcz42MFN/x\n82MgzFp7udP1iIiISOV8cZ2R2cAFwCUVdSi+odcoYC+Q452yREREfEIQ7lWZl1hrq3ofqkr5VBgx\nxrwKXA1caq2t7IZToyh7y3URERGpupspf+HFavOZMFIcRMYCl1trK7vnBLhHRJg7dy49evSo7dKk\n2LRp03jppZecLqNB0WfuffrMvU+fuXdt3bqVSZMmQfF3aU3wiTBijJmN+6ZhY4BMY0zz4rfSrbXl\nnYbJAejRowdxcXFeqlIiIiL0eXuZPnPv02fuffrMHVNj0xx85Wqau4FwYClw6LTHjQ7WJCIiIlXg\nEyMj1lpfCVUiIiINjr7ERURExFEKI+I1EyZMcLqEBkefuffpM/c+feb1n88telYVxpg4ICEhIUGT\nnkRERKohMTGR+Ph4gHhrbWJN7FMjIyIiIuIohRERERFxlMKIiIiIOEphRERERBylMCIiIiKOUhgR\nERERRymMiIiIiKMURkRERMRRCiMiIiLiKIURERERcZTCiIiIiDhKYUREREQcpTAiIiIijlIYERER\nEUf5O12AiIiIeEdqZiqbUjaxOXUzm1I2cc/Ae+jZrKfTZSmMiIiI+Jq0nDQ2p2z2hI6SAJKSmVKq\n38DYgQojIiIicu5yCnLYkrqFjckb2Ziy0RM8Dp48WKXtN6VsquUKq0ZhREREpI4rskXsObGHjSkb\n2Zi8kQ0pG9iYvJEdx3dQZIuqtI/moc3p2awnvWJ60atZL3o260nPGOdHRUBhREREpE5JzUz1hI6N\nKe7H5pTNZOZnVmn7JkFN6NWsV5nQERMaU8uVnzuFEREREQdk52ezJXULG5I3eELHxuSNJGcmV2n7\nQL9AesT0oHez3vRp3ofezXrTq1kvWoW1whhTy9XXLIURERGRWlRYVMjuE7vLjHbsPL6zyqdYOkZ2\npHez3u5Hc/efXaK64O+q3td4bm4uhw8fJicnh27dutWZ0KIwIiIiUkNO5p5kQ/IG1ievZ/2R9axP\nXs/GlI1k5WdVafvokOgyoaNns540DmgMQHJyMllZWeQczWHjgY3k5OR4Hrm5uVxwwQV07dq1wv2n\npKTwzjvvAPDII48QGBh4/j90DVAYERERqSZrLUnpSZ7QsS55HeuPrGfXiV0VbhNIII1pTDDBhLvC\n6RTeiXah7WgV1IqogChaN23NVSOuqnS0YuHChZw4ccLzOiAggKCgIM8jNze30rpbtGjB7373O4KC\ngggICKj+D15LFEZEREQqkVOQw+aUzaw9uJbNBzezPWU7+47toyCvgGCCCSr+3xGOlLt9p8hO9Gne\nhz5ZfTBJxUGjCEgDV4YL/yB/coNyOcWps542mTBhAn5+fgQHBxMYGIjLVb2F1Bs1akRUVFS1tvEG\nhREREWkQrLXk5eWRnZ1d6pGTk0N0dDTt2rUj+VRymdGOn47+RLgN5z7uowlNGFj8vxJ55JFDDrv9\ndtOzRU/6Ne9H3xZ96du8L72b9yY8MByAEydOkJGRQXBwsGcko1GjRtWatxETU3eviDkfPhFGjDGX\nAg8B8UBLYJy1dpGzVYmISG0oKioiNzfXEyby8/Np3759pdv861//YteuXRQVlZ0warEcjjjMosJF\nHDlV/ujGSU7yH/5DDjlkk014aDhdmnWhZ8ue9G3Zl34t+vF80+fxc/lVWENkZCSRkZHV+lkbCp8I\nI0AosA54C/jA4VpERKQKCgsLyc7OJjAwkEaNGlXYb/v27Xz77belRjJOFxAQwPTp0yvcPq8wj/C2\n4YQHhZOUmcSOkzvYfHwzJwpPkE02ueRi02252/q7/Lkg5gL6NncHjr7N+9K3RV+iQ6LP7YeWcvlE\nGLHWfgZ8BmDqynVKIiJCYWEhixcvJicnp8zpkby8PAB+9atf0a1btwr3ERQURPPmzQkODq7wUSIr\nP4sNyRtYe3gtiYcTSTySyKaUTeQV5p211qbBTX8OHMWho0d0DwL968YVJ77MJ8KIiIjUjv3795Oc\nnEx2djZZWVll/mzbti1jx46tcHuXy0VycjJBQUGEhIQQFRVVJkjExsZWWkPbtm1p27Ztmfb0nHTW\nHlnL2j1rSTySyNrDa9l6dGuV1u7o0KQD/Vv2p38L96Nvi77EhsXWmXU3GhqFERERH1VYWMipU6fI\nysoqN0hkZ2czZswY/P0r/ipITExk/fr1nuAQEhJCSEgI0dHRBAcH07Jly0prMMZw++23n/fPkpKZ\nUmq0Y+3htZVeRus5Pobu0d3p37I/cS3iPAEkMlhzN+qSBh1Gpk2bRkRERKm2CRMmMGHCBIcqEhEp\nX2FhIVlZWWRmZnrCRfPmzSu9uiIpKYl33323VJvL5fIEiuDgYPLz8ysNI6NHj2bMmDFeHTFIyUwh\n4VACaw6tYc3hNSQcSqjSXWgbuRrRq1kv+rfoT1xLd/Do07yPZ8Ewqb758+czf/78Um3p6ek1fhxj\nbfmTduorY0wRZ7maxhgTByQkJCQQFxfnveJERHBfYlpYWFhpCABYsGABqampZGZmlruY1YgRIxgy\nZEiF22dnZ3Pw4EFP8AgJCSEgIKBOnYo4nn28VPBYc2gNSelJZ90u2D+Yvi36EtcizhM8esb01PwO\nL0hMTCQ+Ph4g3lqbWBP7bNAjIyIiteXgwYPs3r271EjG6c8jIyP5zW9+U+k+mjdvTlRUFCEhIYSG\nhnpGNEqen20FzeDgYDp37lyTP9Z5ycjNIPFwojt4HFrD6kOr2X1i91m3iwiMKHWaJa5lHN2iulV6\nGa3ULz4RRowxoUBnoCTudzTG9AWOW2v3O1eZiNRH1lry8/PJzMzk1KlTZGZmlnkMGzas0pUsk5KS\nWLlypSc4hIaGEhER4Xl95ini8gwbNqwmfyyvyszLZO2RtZ7gsebQGrYd23bW7RoHNCa+ZTwDWg3w\nPDpFdqpTozlS83wijAADgG8AW/x4sbj9HWCqU0WJSN1RVFREdnY2mZmZ+Pv707Rp0wr7ZmZm8uKL\nL5ZqM8Z4QkVoaCgFBQWVHm/w4MEMHjy4Rmqv63ILcll3ZF2pUy1bUrec9aqWYP9g+rfsz4CWPweP\nrlFdNeLRAPlEGLHWfgtUb4F+EfFZa9asISkpqdTIRlZWFiVz5Pr27cu4ceMq3D4kJITx48cTGhpK\n48aNCQ0NJTg4uNr3AfFF1lp2HN/BqoOr+PHAj/x48EfWHVlHflF+pdsF+AXQr0W/UsGjR0wP/F0+\n8TUk50l/C0SkTikqKuLUqVMVPjIzM7nlllsqHbY/fvw4GRkZhIaGEhUV5RnNKAkXZztF4nK56N27\nd03/aPVSamaqO3gc/JFVB1ex6uAqTuScqHQbf5c/vZv1LnWqpVezXgT41Z27xErdojAiIrXOWktu\nbi4nT570nOqoyM6dO8tcShgSEkJYWBiNGzemSZMmFBQUVLp8+MiRI2us9oYkOz+bdUfW8eNB94jH\njwd+ZE/anrNu1z26O4NiB3Fhqwu5MPZC+jTvQ5B/kBcqFl+hMCIiNer777/nxIkTZUY0CgsLAbjy\nyisZNGhQhdvHxsYyceJEGjduTOPGjQkJCcHPT3MIalqRLWL7se38eOBHz8jH+uT1FBRVPhemWWgz\nBsUOcj9aD2JAqwE0CWriparFVymMiEgZJSt3njx5kpMnT5KRkcHJkyfx9/dn6NChlW67fft28vPz\nady4MTExMXTo0METLMLCwiq9AgUgNDSULl261OBPIwBpOWn8eOBHVuxfwcoDK1l1cBXpuZUvXhXs\nH0x8q3gGthrIoNbuANI2oq2ubJEapzAiIh5r1qzhm2++ISsrq1S7n58fYWFhZ136G+DWW2+trfKk\nikpGPVbuX+kJH1tSt2CpeJFLg+GCmAsYGDuQQbGDGBg7kF7NetHIr+LTYSI1RWFExEcUFRWRkpLi\nGc0o73HjjTfSpk2bCvfRrFkzBg0aRHh4OGFhYZ5HUFCQfhuuw07lnWLVwVWe4LFy/8qzTjJt2bgl\ng1oP8ox6DGg1gPDAcC9VLFKawohIHVdydUlRURFNmlR8br6goIDXX3/d8zo0NNQTJlq2bEnXrl1p\n3Ljye3RUdHdUqTustew+sZuVB34e9diQvKHSNT38Xf70a9GPi1tfzOA2g7m4zcW0CW+jgCl1hsKI\nSB2xb98+Dh486JmfkZGR4XluraV79+7cdNNNFW4fEBDA7bffTlhYGKGhoZr06SNyCnJYfXB1qfCR\nkplS6TYxITHu0FEcPga0GkBIoxAvVSxSfQojIrWksLDQEygyMjLo0aNHpTdG27hxIxs2bCAiIoLw\n8HCio6Pp0KED4eHhhIeHn3XiJ7ivRJH67Xj2cVbsX8F3+75j+f7lrDm0hrzCvAr7u4yLXs16cXHr\ni7m4jTt8aPl0qW8URkRqQEZGBj/88APp6emex6lTp0r1ueeeeypdgvyqq65i9OjR+hJpYJLSk1ie\ntNwTPjalbKq0f5OgJlzU+iLPqMfA2IGa6yH1nsKISDkKCws5efKkJ1hERkZWOvGzsLCQbdu2ERER\nQUxMDJ07d/aMcJQ8AgMrv7W5Tqv4viJbxJbULe7wkfQdy5OWk5SeVOk2XZp2YUjbIVzS5hIGtxlM\n9+juuIyWpRffojAiAqxatYr9+/d7wkfJPI0SgwYNqjSMREZGcs8993ijVKlH8grzWHNojSd8fJ/0\nfaVXubiMi/4t+nNp20sZ0nYIQ9oOoXnj5l6sWMQZCiPik/Lz80lLSyMtLY2TJ08SFxdXaf+SS2Ij\nIyNp3749ERERpR4BAbqnhpxdVn4WK/evZOnepSxLWsaqg6vIKcipsH+wfzAXtb7IEz4uan0RYYFh\nXqxYpG5QGJF67/jx46xdu9YTPtLS0krN13C5XPTq1avSQHHNNdd4o1TxMZl5mazYv4Kle5fy7b5v\nWXVwVaV3r40KjmJI2yGe8BHXMk6LiomgMCJ1lLWWkydPcvz4ccLDwyud+JmVlcXGjRtp0qQJUVFR\ndOrUicjISJo0aUKTJk0ICwvTrd+lRpzKO8X3Sd/z7b5vWbp3KasPra70Xi4dmnQoFT66R3fXBGWR\nciiMiOP27t1LSkoKx48f58SJExw/fpy0tDQKCtz/yF922WUMGzaswu1bt27N/fff761ypQE5mXuS\n7/d/z9K9S1m6dylrDq2h0BZW2L9rVFcub3c5Q9sP5bJ2l9E6vLUXqxWpvxRGpFbl5+dXeqt3gK++\n+orDhw/TpEkTmjZtSseOHWnatCmRkZGeEQ4Rb8jIzWB50nLPaZeEQwmVho9uUd0Y2n4ol7e7nMvb\nX06rsFZerFbEdyiMyHnLycnh2LFjHDt2zDO6UTLCkZeXx/Tp0ysdmp44cSKBgYE6lSJel1OQw8r9\nK/lqz1d8tecrVh9cXWn46BHdo9TIR8uws984UETOTmFEzstPP/3EwoULPa9DQ0M9oxolIxzW2krD\nSHBwsDdKFaGwqJDEw4me8LE8aXmlV7tcEHMBQ9sN5fL2l3N5u8t1ma1ILVEYEY+ioiLS0tJKjXJ0\n6dKFLl26VLhN69atue6664iKiqJp06ZnXdhLxJustfx09CdP+Fi6dylpOWkV9u8e3Z3h7YczrMMw\nLmt3Gc1Cm3mxWpGGS2GkgVu+fDkHDhzwhI+iIvedP/39/WnatCmtWlV+Drxx48b06tXLG6WKVMn+\n9P2e8PH1nq85dPJQhX1bh7dmRIcRjOgwguEdhhMbrnv7iDhBYcRHWWs5deoUYWGVL6B07NgxCgsL\n6dSpEwMHDiQqKoqoqCjCw8N1CaLUCxm5GXyz5xs+3/U5X+z+gh3Hd1TYt2lwU4a1H+YOIB1H0KVp\nF/09F6kDFEbqucLCQo4fP87Ro0dJTU3l6NGjnkdhYSGPPvpopfc8GTt2rBerFTl/RbaIhEMJfL7r\nc5bsWsLKAysrXOsjpFEIl7a91BM++rXop/u6iNRBCiP12N69e3nvvfc8p1aCgoKIiYmhRYsW9OrV\ni+joaIcrFKkZBzMOesLHl7u/5Fj2sXL7+bv8uaj1RZ5TL4NaDyLAT0v5i9R1CiN1TMkk0pSUFMLC\nwoiNrfgcdkxMDFdeeSUxMTFER0cTGhqqIWfxCdn52Szbt4wlu5bw+a7P2Zy6ucK+XZp2YWSnkYzq\nNIqh7Yfq3i4i9ZDCiINOnjxJcnIyKSkpnkdqaqpn5dGBAwdWGkZCQ0O58MILvVWuSK2x1rI5dTNL\ndi5hya4lLNu3jNzC3HL7RgRGMKLjCEZ2HMnITiPpENnBy9WKSE1TGHHQ4sWL+emnn2jUqBHNmjWj\nRYsW9OnTh2bNmtGsWTNCQ0OdLlGk1mTmZfL1nq9ZvGMxi3cuJik9qdx+LuNiYOxARnYcyajOoxgY\nOxB/l/7pEvElPvVftDHmt8CDQAtgPXCPtXa1t45fcnO3I0eOkJyczEUXXVTpUugjRoxg5MiRNGnS\nRKdXpEHYcWyHJ3ws3buUvMK8cvu1CW/DqE6jGNV5FMM7DKdpcMU3ShSR+s9nwogx5ibgReBOYBUw\nDVhijOlqrT1a08crKioiNTWVI0eOeMLHkSNHyM7OBtyTSbt3705MTEyF+9AEU/F1OQU5LNu3zB1A\ndiyu8LLbQL9AhrYfylWdr2JU51F0i+qmgC7SgPhMGMEdPl631r4LYIy5GxgNTAWer+mDZWdn8/e/\n/x2AyMhImjdvzqBBg2jRogXNmzcnIiJC/5hKg5SUnuQJH1/t+Yqs/Kxy+7UJb8PoLqO5usvVDO8w\nnNAAnZYUaah8IowYYxoB8cAzJW3WWmuM+RIYXJ195efnk5ycTF5eHh07dqywX2hoKFOnTqVZs2Za\nAl0atCJbxJpDa1i0bRGLti1iY8rGcvv5GT+GtB3C1V2uZnSX0VwQc4ECu4gAPhJGgGjAD0g+oz0Z\n6FbRRgUFBRw4cIBDhw5x+PBhDh8+TEpKCtZaWrRowV133VXpQdu0aXPehYvURzkFOXy1+ysWbVvE\nx9s/5vCpw+X2ax7anKu6XMXVna/mF51+QZOgJl6uVETqA18JI+fk7bffpmXLlrhcLpo3b05sbCwD\nBgygVatWNGumG2SJnO5o1lE+2f4Ji7YtYsmuJRWefhkYO5DRXUYzusto+rfsrxVPReSsfCWMHAUK\ngTPv790cOFLRRqtWrSI6OprAwEDPcPGECRMYMGBArRUqUp9sP7adj376iEXbF7Fi/wqKbFGZPkH+\nQVzR8QrGdhvLNV2voUXjFg5UKiK1Yf78+cyfP79UW3p6eo0fx1hra3ynTjDG/AD8aK29r/i1AZKA\nWdbav5zRNw5ISEhIIC4uzvvFitRRRbaIVQdX8cHWD1i0bRHbjm0rt19MSAzXdr2WMd3GcEXHKzT5\nVKQBSUxMJD4+HiDeWptYE/v0lZERgJnAHGNMAj9f2hsCzHGyKJG6rqCogO/2fccHWz/gw58+5ODJ\ng+X26x7dnbHdxjKm2xgGxQ7Cz1XxDRhFRKrDZ8KItfbfxpho4Encp2fWAaOstanOViZS9+QW5PL1\nnq95f+v7fLTtI45mlV2Kx2VcDGk7hDFdx3Btt2vpGtXVgUpFpCHwmTACYK2dDcx2ug6RuigrP4vP\ndn7GB1s/4OPtH5ORm1GmT4BfACM7jWR89/Fc2+1aokO0MJ+I1D6fCiMiUlpGbgafbP+E97e+z6c7\nPiW7ILtMn5BGIVzd5Wqu63EdV3e5mvDAcAcqFZGGTGFExMdk5mXy8faPWbh5IZ/u+LTcu99GBEYw\nptsYxvcYz6hOowhuFOxApSIibgojIj4gOz+bxTsWs3DzQj7Z/km5IyAxITGM6z6O63pcx7AOwwjw\nC3CgUhGRshRGROqp3IJcPt/1OQs2L2DRtkWcyjtVpk/z0ObccMENXH/B9QxpO0RXwIhInaQwIlKP\n5Bfm89Wer1i4eSEfbv2Q9Nyyiw9Fh0RzXY/ruKnnTVzW7jIFEBGp8xRGROo4ay0rD6xk3oZ5LNy8\nkGPZx8r0aRLUhPHdx3NTr5sY3mE4/i79py0i9Yf+xRKpo7Yd3ca8jfOYt3Eeu0/sLvN+WEAY47qP\n46aeN/GLTr/QHBARqbcURkTqkORTySzYtIB5G+ex+tDqMu8H+wczptsYftXrV1zZ+UqC/IMcqFJE\npGYpjIg4LDMvk//76f+Yu3EuX+z6gkJbWOp9l3FxRccruLn3zfyy+y8JCwxzqFIRkdqhMCLigCJb\nxDd7vmHO+jl8uPVDMvMzy/SJaxnHpN6T+FWvX9EyrKUDVYqIeIfCiIgX7T6xmznr5vDO+ndISk8q\n8367iHbc3Ptmbu5zMxfEXOBAhSIi3qcwIlLLMvMy+c+W/zBn/RyW7l1a5v3IoEhu7HkjN/e+mUva\nXoLLuLxfpIiIgxRGRGqBtZYV+1fwz3X/ZOHmhWUWJHMZF6M6jeLWfrcyptsYAv0DHapURMR5CiMi\nNejQyUO8s+4d5qyfw/Zj28u83zWqK7f2u5XJfSYTGx7rQIUiInWPwojIeSosKuSL3V/wesLrfLzt\n4zJXw4QFhHFTz5u4tf+tDG49GGOMQ5WKiNRNCiMi5+jwycO8vfZt/pH4D/al7yvz/tD2Q5nabyrj\ne4wnNCALFb24AAAgAElEQVTUgQpFROoHhRGRaiiyRXyx6wveSHyDRdsWUVBUUOr9lo1bMrX/VKb2\nn0rHyI4OVSkiUr8ojIhUwZFTR/jn2n/yj8R/sCdtT6n3DIZRnUdxZ9ydXNP1Ghr5NXKoShGR+klh\nRKQCJVfEvLLqFd7f+n6ZUZAWjVtwW//buK3/bXSI7OBQlSIi9Z/CiMgZsvOzWbBpAa+seoW1R9aW\nes9gGNlpJHfG38m1Xa/VKIiISA1QGBEplpSexOzVs3kz8U2OZR8r9V5MSAy3x93OHXF3aBRERKSG\nKYxIg2atZenepbyy6hU+2vYRRbao1PsXtrqQewbeww09b9AdckVEaonCiDRIOQU5vLf+PWatmsWm\nlE2l3mvkasSNPW/knoH3MKj1IIcqFBFpOBRGpEFJzUxl9urZ/G3130jNSi31XsvGLbl7wN3cGX8n\nLRq3cKhCEZGGR2FEGoRtR7cxc+VM3t3wLjkFOaXeu6TNJfxu4O8Y32M8AX4BDlUoItJwKYyIz7LW\nsmzfMl5c+SIfb/+41Ht+xo8bet7AA4MfYECrAQ5VKCIioDAiPqiwqJD3t77P898/T8LhhFLvNQ5o\nzB1xd3DfoPto16SdQxWKiMjpFEbEZ+QV5jF3w1xmLJ/BjuM7Sr3XOrw19w26jzvi7iAiKMKhCkVE\npDz1PowYYx4FRgP9gFxrbVOHSxIvy8rP4s3EN/nLir9wIONAqff6t+jPA4Mf4MaeN2qBMhGROqre\nhxGgEfBvYCUw1eFaxIvSctKYvXo2L//wcpkrY4a1H8b0IdO5ouMVGGMcqlBERKqi3ocRa+0TAMaY\n/3G6FvGO1MxUXv7hZV5d/SoZuRml3ru267VMHzKdwW0GO1SdiIhUV70PI9JwHM06ygsrXuCVVa+Q\nlZ/laXcZFzf1vIlHhjxCn+Z9HKxQRETOhcKI1HnHs4/z4ooXmbVqFqfyTnnaG7kacUu/W3j4kofp\n3LSzgxWKiMj5qJNhxBjzLPD7SrpYoIe1druXShIHnMg+wUs/vMTLP7zMybyTnvYAvwDuir+Lhy95\nmNbhrR2sUEREakKdDCPAC8A/z9Jn9/keZNq0aURElL7Mc8KECUyYMOF8dy3nIT0nnZd/eJmXfniJ\n9Nx0T3sjVyPuiLuD6ZdOVwgREfGC+fPnM3/+/FJt6enpFfQ+d8ZaW+M7dULxBNaXqnJprzEmDkhI\nSEggLi6u9ouTKsnOz+bVVa/y7PJnOZFzwtPu7/Lntv638eilj9I2oq2DFYqISGJiIvHx8QDx1trE\nmthnXR0ZqTJjTBugKdAO8DPG9C1+a6e1NtO5yqSqCooKeHf9uzy+9PFS64T4GT9u7Xcrj132GO2b\ntHeuQBERqVX1PowATwJTTntdktKGAcu8X45UlbWWRdsW8ejXj7IldYun3WCY0ncKf7r8T3SM7Ohg\nhSIi4g31PoxYa28FbnW6Dqme5UnL+f2Xv2fF/hWl2q/tei3PjHiGXs16OVSZiIh4W70PI1K/7Di2\ng4e+eIiPtn1Uqn1w68E8d8VzXNruUocqExERpyiMiFek5aTx1LdP8cqqV8gvyve094juwbMjnmVM\ntzFatl1EpIFSGJFaVVBUwD8S/sGflv6Jo1lHPe2twlrx5NAn+Z9+/4O/S38NRUQaMn0LSK35cveX\nTFsyjU0pmzxtQf5BPHzxwzx8ycOEBoQ6WJ2IiNQVCiNS43af2M20JdNYtG1RqfYJvSYw44oZWitE\nRERKURiRGpNTkMNfvv8Lzyx/hpyCHE/7ha0u5OUrX+biNhc7WJ2IiNRVCiNSI5bsXMLvPv0dO4/v\n9LS1CmvFjBEzuLnPzbiMy8HqRESkLlMYkfNyIOMA05ZM4z9b/uNp8zN+3H/R/Tx++eOEBYY5WJ2I\niNQHCiNyTgqKCpj14yz+9M2fyMz/edX9S9teyt+u/hu9m/d2sDoREalPFEak2jYkb+C2Rbex5tAa\nT1tMSAwvjHyByX0ma70QERGpFoURqbLcglyeXvY0M76fQUFRAeC+j8zdA+7mf4f/L5HBkQ5XKCIi\n9ZHCiFTJiv0ruH3R7Ww9utXT1iO6B2+NeYvBbQY7WJmIiNR3CiNSqVN5p3j0q0d5ddWrWCwA/i5/\nHh3yKI9e+iiB/oEOVygiIvWdwohUaMX+FUz5cAq7TuzytF3Y6kLeGvOWJqiKiEiNURiRMvIK8/jz\n0j/z3PfPUWSLAAj2D+bp4U9z36D78HP5OVyhiIj4EoURKWVTyiYmfTCJ9cnrPW0Xt7mYd8a9Q+em\nnR2sTEREfJXCiABQWFTISz+8xGNfP0ZeYR4AjVyNeGLoEzx8ycMaDRERkVqjMCIcPnmYSR9O4us9\nX3vaesb0ZO74ufRr0c/BykREpCFQGGngPtv5GVM+nEJqVirgXjfkgcEP8NTwpwjyD3K4OhERaQgU\nRhqovMI8/vD1H/jLir942lqFtWLe+HkMbT/UucJERKTBURhpgPac2MOv3v8Vqw6u8rSN7jKaOePm\nEB0S7WBlIiLSECmMNDD/3f5fJn04ibScNMA9SfW5K57j/ovu1z1lRETEEQojDUSRLeKpb5/iz9/+\n2dPWKbITC65fwIBWA5wrTEREGjyFkQbgRPYJJn84mf/u+K+n7Zfdf8mccXMIDwx3sDIRERGFEZ+3\nIXkDv1z4S3af2A2Ay7h4ZvgzPHzJwzotIyIidYLCiA/7z5b/MOXDKWQXZAMQFRzFgusXcEXHKxyu\nTERE5GcKIz7IWssz3z3DH775g6ctvmU879/4Pu2atHOwMhERkbJcVe1ojFlQm4VIzcgtyGXK/00p\nFUQm95nM8qnLFURERKROqnIYAa4yxkTWWiXnyBjTzhjzpjFmtzEmyxizwxjzZ2NMI6dr87aUzBSG\nvzucuRvmetqeHfEs74x7R6upiohInVWd0zRhwBJjzHXW2v21VdA56A4Y4A5gF9ALeBMIAR52sC6v\n2nZ0G1fOu5K9aXsBCPYPZu74uYzvMd7ZwkRERM6iOmFkN/A/wHRjzC7gZWttYe2UVXXW2iXAktOa\n9hpjXgDupoGEkVUHV3H1vKs5ln0McC/rvuhXi4hvFe9wZSIiImdXndM0Y621W621vwESgH8ZY4bU\nUl3nqwlw3OkivOGznZ8x7J1hniDSp3kfVt2+SkFERETqjSqHEWvt5tOeLwUmAZcaY/5mjImqhdrO\niTGmM/A74O9O11Lb3lv/HtfOv5as/CwAhrYfyrJblhEbHutwZSIiIlVXnZGRUqy1+dbaZ4EXgJeN\nMXfUXFlgjHnWGFNUyaPQGNP1jG1igU+Bhdbat2uynrrmxRUvMuX/plBQVADA9Rdcz6c3f0pEUITD\nlYmIiFSPsdbWzI6MuQ64Cfhfa+36GthfFHC2EZfd1tqC4v6tgG+AFdbaW8+y7zgg4bLLLiMiovSX\n94QJE5gwYcK5F17LrLU8tewpHl/6uKftNwN+w6yrZuHn8nOwMhER8TXz589n/vz5pdrS09NZtmwZ\nQLy1NrEmjlPlMGKM6WetXXeWPo2BP+G+uuUJa+2p8y+xSrXFAl8Dq4HJ9iw/VEkYSUhIIC4uzhsl\n1ghrLX/4+g88s/wZT9sTQ5/gj5f9UUu7i4iIVyQmJhIfHw81GEaqczXNX4HLT28w7m/AVkD74kc7\n3JNHhwMTjDH3WGs/rIlCK1I8IrIU2IP76plmJV/M1trk2jy2N1lrefDzB5n5w0xP28yRM5k2eJqD\nVYmIiJy/6oSRC40xTwKxuENHe6A1ULK42Om/mhcCB3Gv/VGrYQT4BdCx+FGy/okBLOAT5y2stdz7\n6b28uvpVT9vfrv4bv7nwNw5WJSIiUjOqE0aCgJI1xvOBA8D3wD5gb/Gj5PkBb61BYq19B3jHG8dy\ngrWWaUumeYKIwfDGtW9we9ztDlcmIiJSM6oTRlKAG3CfDjlkrS2qnZLkdH/65k/89ce/Au4gMmfc\nHKb0neJwVSIiIjWnOmHkU2vtd7VWiZQxY/kMnv7uac/rN8e8qSAiIiI+pzqLnlV6uazUrFd+fIXp\nX033vJ515Sym9p/qYEUiIiK145wXPZPa897697j3s3s9r58d8Sz3DLrHwYpERERqj8JIHfPFri+Y\nuujnEZDHLn2MR4Y84mBFIiIitUthpA5Zf2Q91/37Os8S778e8GueGvaUw1WJiIjULoWROiIpPYmr\n/3U1J/NOAjC221heueoVrawqIiI+T2GkDsjIzeDqeVdz6OQhAC5qfRH/uu5futeMiIg0CAojDiss\nKuTmD25mc+pmALo07cLHEz4mpFGIw5WJiIh4h8KIw/74zR/5ZPsnAEQGRbL45sVEh0Q7XJWIiIj3\nKIw4aMGmBTy7/FkA/Iwf/77h33Ru2tnhqkRERLxLYcQhiYcTmfrRz5fwzhw1kys6XuFgRSIiIs5Q\nGHFAWk4a1/37OrILsgGY2m8q9wzUomYiItIwKYx4mbWWqR9NZW/aXsB95czs0bN1Ca+IiDRYCiNe\n9sqqV/jwpw8B94TVhdcvJNA/0OGqREREnKMw4kWrD67mwc8f9Lx+Z9w7tI1o62BFIiIizlMY8ZL0\nnHRu+s9N5BflA/Dg4Ae5ttu1DlclIiLiPIURL7n3s3vZk7YHcM8TeWbEMw5XJCIiUjcojHjBh1s/\n5N317wIQHhjOgusW0MivkcNViYiI1A0KI7UsJTOFuz65y/N61pWzaNeknYMViYiI1C0KI7XIWsud\nH99JalYqAOO6j2NK3ykOVyUiIlK3KIzUogWbFvDRto8AiAmJ4fVrXtd6IiIiImdQGKklJ7JPcP+S\n+z2v/37N32kW2szBikREROomhZFa8siXj5CSmQLA+B7jGd9jvMMViYiI1E0KI7Xg+6TveSPxDQDC\nAsKYdeUshysSERGpuxRGalheYV6pq2eeHv40seGxDlYkIiJStymM1LBXV73K5tTNAMS3jOe3F/7W\n4YpERETqNoWRGpSamcqT3z4JgMHw+jWv4+fyc7gqERGRus0nwogx5iNjzD5jTLYx5pAx5l1jTEtv\n1/H40sdJz00H4NZ+txLfKt7bJYiIiNQ7PhFGgK+BG4CuwHigE/D/ebOATSmbeD3hdQAaBzTm6eFP\ne/PwIiIi9Za/0wXUBGvtX097ud8YMwP40BjjZ60t9EYND33xEEW2CIBHhzxKyzCvD8yIiIjUS74y\nMuJhjGkK3Ax8760g8t2+7/hs52cAtI1oy7TB07xxWBEREZ/gM2HEGDPDGHMKOAq0AcZ547jWWh77\n+jHP6z9f/meC/IO8cWgRERGfUGdP0xhjngV+X0kXC/Sw1m4vfv088CbQDngceA+4prJjTJs2jYiI\niFJtEyZMYMKECVWu8/Ndn/Nd0ncAdIvqxuS+k6u8rYiISF02f/585s+fX6otPT29xo9jrLU1vtOa\nYIyJAqLO0m23tbagnG1jgf3AYGvtj+W8HwckJCQkEBcXd841WmsZ+OZA1hxaA8DC6xdyY88bz3l/\nIiIidV1iYiLx8fEA8dbaxJrYZ50dGbHWHgOOnePmJYt7BNZQOeX6bOdnniDSt3lfrr/g+to8nIiI\niE+qs2GkqowxA4ELgeXACaAz8CSwA1hZm8ee8f0Mz/PHL38cl/GZKTgiIiJe4wvfnlm41xb5EvgJ\n+AewDhhqrc2vrYOu2L+CZfuWAdA9ujtju4+trUOJiIj4tHo/MmKt3QSM8PZxn/v+Oc/z31/ye42K\niIiInCN9g56DLalbWLRtEQCtw1szsfdEhysSERGpvxRGzsFLK1/yPP9/F/0/AvwCHKxGRESkflMY\nqaa0nDTmbZwHQHhgOHfE3+FwRSIiIvWbwkg1zVk3h+yCbAD+p+//0DigscMViYiI1G8KI9VQZIuY\nvXq25/WvB/zawWpERER8g8JINXy1+yt2HN8BwLD2w+gR08PhikREROo/hZFqmL3m51GR3174Wwcr\nERER8R0KI1V05NQRPt72MQCtwloxptsYhysSERHxDQojVTR/43wKbSEAt/S9hUZ+jRyuSERExDco\njFTRuxve9Tyf3Heyg5WIiIj4FoWRKtiQvIF1R9YBMDB2IN2juztckYiIiO9QGKmC99a/53k+pc8U\nBysRERHxPQojZ2GtZeHmhQD4u/y5qddNDlckIiLiWxRGzmL1odXsz9gPwBUdryA6JNrhikRERHyL\nwshZvL/lfc/z63pc52AlIiIivklhpBLWWt7f6g4jfsaPcd3HOVyRiIiI71EYqcSG5A3sOrELgMvb\nX65TNCIiIrVAYaQSH2z9wPNcp2hERERqh8JIJRbvXOx5PrbbWAcrERER8V0KIxVIzUwl4VACAH2b\n9yU2PNbhikRERHyTwkgFvtj9BRYLwKhOoxyuRkRExHcpjFTgs52feZ5f2flKBysRERHxbQoj5Siy\nRSzZtQSA0EahXNL2EocrEhER8V0KI+VYd2QdKZkpAIzoOIIAvwCHKxIREfFdCiPl+Gr3V57nmi8i\nIiJSuxRGyrF8/3LP86HthzpXiIiISAOgMHKGIlvE8iR3GGka3JTu0d0drkhERMS3+VQYMcYEGGPW\nGWOKjDF9zmUfPx39iePZxwEY0nYILuNTH5GIiEid42vftM8DB6B4gZBzUDIqAjCkzZAaKElEREQq\n4zNhxBhzFfAL4EHAnOt+vkv6zvP80naXnn9hIiIiUil/pwuoCcaY5sAbwBgg+3z2VTIyEuwfTFzL\nuPMvTkRERCrlKyMj/wRmW2vXns9ODmYcZG/aXgAGtR6k9UVERES8oM6GEWPMs8UTUSt6FBpjuhpj\n7gUaA8+VbHqux1x9aLXn+eDWg8/vBxAREZEqqcunaV7APeJRmT3AMGAwkGtMqRyyxhgzz1p7a0Ub\nT5s2jYiICM/rn47+BK2A3jCg1YBzLlxERMQXzJ8/n/nz55dqS09Pr/HjGGvP+cKTOsEY0xoIP62p\nFbAEuA5YZa09VM42cUBCQkICcXE/zwsZ/a/RLN6xGIA99+2hfZP2tVi5iIhI/ZOYmEh8fDxAvLU2\nsSb2WZdHRqrEWnvg9NfGmEzcp2p2lxdEKtkPCYcSAPdiZ+0i2tVonSIiIlK+Ojtn5DxVe7jn8KnD\nJGcmAxDXMo4zTvmIiIhILan3IyNnstbuA/yqu13JqAhAfMv4mixJREREKuGrIyPVtjFlo+d5vxb9\nHKxERESkYVEYKbYldYvnec+Yng5WIiIi0rAojBQrCSMu46JrVFeHqxEREWk4FEaAwqJCth7dCkDn\npp0J9A90uCIREZGGQ2EE2Je+j5yCHECnaERERLxNYQTYnLLZ8/yCmAscrERERKTh8blLe8/F6ZNX\nFUZEpC5ISkri6NGjTpchDVR0dDRt27b12vEURoBtx7Z5nveI7uFgJSIi7iDSo0cPsrKynC5FGqiQ\nkBC2bt3qtUCiMALsPrHb87xT004OViIiAkePHiUrK4u5c+fSo4d+QRLv2rp1K5MmTeLo0aMKI960\nJ20PAFHBUYQHhp+lt4iId/To0aPUzTxFfFWDn8CaV5jH/vT9AHSM7OhwNSIiIg1Pgw8j+9L2YYvv\nq6cwIiIi4n0NPoyUnKIB6NCkg4OViIiINEwNPoycPnlVIyMiIiLepzCiMCIi4vPmzJmDy+UiKSnJ\n6VKkHA0+jJx+mkZhRETEe7Zs2cKkSZNo3bo1QUFBxMbGMmnSJLZs2XL2jSvw7LPP8tFHH5VpN8Zg\njDmfcqUWNfgwsjdtL+C+W2+biDbOFiMi0kB88MEHxMXF8c033zB16lRee+01br/9dpYuXUpcXFy5\ngaIqnnnmmXK3nTJlCtnZ2V5dVVSqrsGvM3L45GEAmoc2x9/V4D8OEZFat3v3bqZMmULnzp1ZtmwZ\nTZs29bx33333MWTIECZPnsyGDRto3759jRzTGENAQECN7EtqXoMeGSmyRSRnJgPQonELh6sREWkY\nnn/+ebKzs3njjTdKBRGApk2b8vrrr3Pq1Cmef/55AP785z/jcrnYtm0bN954IxEREURHR3P//feT\nm5vr2dblcpGVleWZH+JyuZg6dSpQ/pyR9u3bM2bMGL799lsuvPBCQkJC6NOnD99++y3gHr3p06cP\nwcHBDBgwgHXr1pWqdejQoQwfPrzMz3fLLbfQocPPV2fu27cPl8vFzJkzmT17Np06dSI0NJRRo0Zx\n8OBBAJ566inatGlDSEgI48aNIy0t7Xw+4nqnQQ8FpOWkUVBUAEDLsJYOVyMi0jB88skntG/fnosv\nvrjc9y+99FLat2/Pf//7XwDPXI8bb7yRDh06MGPGDH744QdmzZpFWloac+bMAWDu3LncdtttDBo0\niDvvvBOATp06efZx5pwRYww7duzg5ptv5q677mLy5Mn85S9/YcyYMbz22ms89thj/Pa3v8VayzPP\nPMNNN93Etm3bSm1fnormp8ydO5f8/Hzuvfdejh8/znPPPccNN9zA8OHD+fbbb3nkkUfYuXMns2bN\n4sEHH+TNN9+sxqdavzXoMHIs65jnecvGCiMiUv8MeGMAR04dqfXjtGjcgjV3rjnv/WRkZHDo0CHG\njRtXab8+ffrw8ccfk5mZ6Wnr1KkTH3zwAQC//vWvCQsL47XXXuPBBx+kV69eTJw4kbvuuouOHTsy\nceLEKtWzfft2Vq5cycCBAwH3EvyjRo3izjvvZNu2bcTGxgLQpEkT7r77bpYtW8Zll112Lj86hw4d\nYufOnTRu3BiAgoICnn32WXJyclizZg0ul/tkRUpKCvPmzeO1116jUaNG53Ss+qZBh5HUrFTPc52m\nEZH66MipIxw8edDpMqrs5MmTAISFhVXar+T9jIwMwD3a8Nvf/rZUn3vuuYfZs2ezePFievXqdU71\nXHDBBZ4gAjBo0CAARowY4QkiJe3WWnbv3n3OYeTGG2/0BJHTjzV58mRPEClpX7BgAQcPHqyxOTN1\nXYMOI0ezjnqea2REROojb/0iVVPHKQkZJaGkIuWFls6dO5fq06lTJ1wuF3v37j3nes68uiY83H2z\n1NatW5dqj4iIAODEiRPnfKw2bUpfsVmyz8qOpTDSABzNPC2MaM6IiNRDNXHqxJvCw8Np2bIlGzZs\nqLTfhg0biI2NLTWScKaaWDfEz8+vWu3W2rMev7CwsMaP5esa9NU0x7J/njOi0zQiIt5xzTXXsGfP\nHlasWFHu+9999x179+7l2muvLdW+Y8eOUq937txJUVFRqdEDby5sFhkZWe5VL/v27fNaDb6iQYcR\nnaYREfG+hx56iKCgIO666y6OHz9e6r3jx49z9913ExoaykMPPeRpt9byt7/9rVTfWbNmYYzhqquu\n8rSFhoZ67bLYTp068dNPP3Hs2M+/2K5fv57vv//eK8f3JQ37NE32USgO0RoZERHxjs6dO/POO+8w\nadIkevfuzW233UaHDh3Ys2cPb7/9NseOHWPBggVl5kvs2bOHsWPHcuWVV7JixQrmzZvn2UeJ+Ph4\nvvzyS1566SVatWpFhw4dSk1QrUlTp05l5syZjBw5kttuu43k5GRef/11evXq5Zl4e64a0ikaaOgj\nI8VzRiICIwhuFOxwNSIiDcf1119PQkICw4YN4+233+bXv/41b731FsOGDSMhIYGxY8eW6m+MYeHC\nhQQGBjJ9+nQ+/fRT7r333jJrccycOZP4+Hj++Mc/MnHiRP7+979XWENF64FUtb179+689957ZGRk\n8MADD/DJJ58wd+5c+vfvX+6aJhXts6LaGhLjC+nLGLMXOH1KtAWmW2ufr6B/HJAQ9Jsgcprl0D26\nO1t/u9ULlYqInF1iYiLx8fEkJCQQFxfndDmOe+KJJ3jyySdJTU0ts2Kr1Lyz/f0reR+It9Ym1sQx\nfeU0jQX+APwDz4kXKr9uDMgpyAEgJiSm1goTERGRyvlKGAE4Za1NPXu3sqJComq6FhEREakiX5oz\n8ogx5qgxJtEY86AxpvwLt8vRNEjDfiIiIk7xlTDyV+BXwFDg78CjwHNV3bhpsMKIiEhd9fjjj1NY\nWKj5Ij6szp6mMcY8C/y+ki4W6GGt3W6tffm09k3GmHzg78aY6dba/LMdS2FERETEOXU2jAAvAP88\nS5/dFbT/iPtnaw/sqKAPfAYEwYKvFrCyyUoAJkyYwIQJE6pbq4iIiM+ZP38+8+fPL9WWnp5e48ep\ns2HEWnsMOHbWjuXrDxQBKZX2uhJoBX+4/g/c0POGczyUiIiIbyrvF/TTLu2tMXU2jFSVMeYiYBDw\nDe7LeS8GZgLvWWurFN90mkZERMQ59T6MALm4J68+DgQCe4AXgZequoPI4MjaqUxERETOqt6HEWvt\nWmDw+ewjPDC8hqoRERGR6vKVS3vPS1hAmNMliIiINFgKI0BYoMKIiEh94HK5ePLJJ6vUt3379kyd\nOrXax9i3bx8ul4t333232tvKuWnwYcRlXAT76469IiLe8M477+ByuUhMPLf7q51599uVK1fyxBNP\nkJGRUaavy+VqcHe/ra/q/ZyR8xUWEKa/rCIiXnQ+/+ZmZ2fj7//zV9eKFSt48sknufXWWwkPLz3/\nb9u2bbhcDf537npBYUSnaERE6o2AgIBSr621FfZt1KhRbZcjNaTBR0ZNXhURcdYtt9xCWFgYhw4d\nYty4cYSFhdGsWTMeeuihMmHj9DkjTzzxBA8//DDgnh/icrnw8/MjKSnJ03b6nJETJ07w4IMP0qdP\nH8LCwoiIiODqq69mw4YN51z7hg0buPzyywkJCaFNmzb87//+L//85z9xuVyeOs6s+3TlzWtJT0/n\n/vvvp23btgQFBdGlSxeef/75Mp/FggULGDBgAOHh4URERNCnTx9mzZrleb+goIAnnniCrl27Ehwc\nTHR0NJdeeilfffXVOf+8tUUjIxoZERFxlDGGoqIiRo0axUUXXcSLL77Il19+ycyZM+ncuTN33XVX\nuduNHz+e7du3s2DBAv76178SFRUFQExMjGe/p9u9ezeLFi3ihhtuoEOHDiQnJ/P6668zdOhQtmzZ\nQqW2gNAAAA9ASURBVIsWLapV96FDhxg2bBh+fn489thjhISE8OabbxIQEFDlU1Fn9svOzuayyy7j\n8OHD3H333bRp04YVK1Ywffp0jhw5wsyZMwH44osvmDhxIr/4xS94/vnnAdi6dSsrVqzg3nvvBdw3\nGJwxYwZ33nknF154IRkZGaxZs4bExERGjBhRrZ+1timMaGRERMRxOTk5TJgwgUcffRSAO++8k/j4\neN56660Kw0jv3r2Ji4tjwYIFjB07lrZt21Z6jD59+rB9+/ZSbZMnT6Zbt2689dZbPPbYY9WqecaM\nGaSnp7N27Vp69+4NwK233krnzp2rtZ/Tvfjii+zZs4d169bRsWNHAO644w5atmzJCy+8wAMPPEBs\nbCyLFy8mIiKCJUuWVLivxYsXM3r0aP7/9u4/OOo6v+P4800Ak/Ar5MIdZZjEudBQOO9OWTpXkEAA\nAY9w1KlCpWhjaWiVU2NbRY8ZxMEI05u5glfnIj/jnYiOQXvSK0zC1UHmBlAnHEg9roIm3okgSAgG\nEArk0z++m7ghP3eT3e/u5vWY2YF89/Pdfe9nvvPZ136+v8rKyiKuJ1a0m0YzIyKS4BoaGjhx4kS7\nj9OnT3f6GqdPn253/YaGhhh8ClqFjvz8fD76qL37oYYv9BiSxsZG6urqSE9PZ/To0RGd3VNZWcmE\nCROagwhARkYGCxcujLjGbdu2kZ+fz5AhQzhz5kzzY/r06Vy9epU9e/Y0v8+FCxc6DCMZGRm8//77\nHDt2LOJ6YkUzI5oZEZEEV11dzVtvvdXu88OGDWPJkiUdvkZFRUW7oWXKlCkUFBR0p8ROpaamNu9m\naTJ06FDOnj3bY+/hnGPt2rWUlZVRU1PDtWvXAG9XSVZWVtiv9/HHHzNx4sRWy7szM3L06FEOHz7c\nvKsplJlx6pR3/9clS5ZQUVHB7NmzGTFiBDNnzmT+/PnMmjWruf3KlSu54447yMvL46abbuL222/n\n3nvvbRGe4kWvDyMD+w/0uwQRkW4JBAKMHj263edDT4Vtz7x587h69Wqbzw0cGP1xMiUlJerv8cwz\nz/Dkk09SXFxMaWkpmZmZ9OnTh5KSEhobG6P+/m1pCkRNGhsbmTFjBo8//nibZwrl5eUBXsA8ePAg\nlZWV7Ny5k507d1JeXk5RURHl5eWAN7P04Ycf8sYbb1BVVcWmTZtYs2YN69ati+hicNHU68NIat9U\nv0sQEemWQYMGMWhQ92Z52/olngjCuWbJa6+9xrRp01i/fn2L5fX19RF9/pycnDZ3gRw9erTVsqFD\nh1JfX99i2ZUrVzhx4kSLZbm5uZw/f56pU6d2+v59+/alsLCQwsJCAB544AHWr1/P8uXLm483ycjI\noKioiKKiIi5evEh+fj5PPfVU3IWRXn/MiMKIiEjiGjBgAECrL/q2pKSktJptqKio4Pjx4xG996xZ\ns9i3b1+LU4Pr6urYunVrq7a5ubnNx3s0WbduXauZkfnz57Nv3z6qqqpavca5c+ea29fV1bV6vmn3\ny+XLl9tsk56ezqhRo5qfjyeaGVEYERGJqY4uVBauQCCAc45ly5Zx9913069fP+bOnUtaWuvbfMyZ\nM4enn36aRYsWMXHiRA4fPsxLL71Ebm5uRO+9dOlStmzZwm233cZDDz3EgAED2LhxIzk5OZw9e7bF\nrE1xcTH3338/d911FzNmzODQoUNUVVW1mpF57LHH2L59O3PmzOG+++4jEAhw4cIF3nvvPV5//XVq\na2vJzMykuLiYuro6pk2bxsiRI6mtreW5557jlltuYcyYMQCMHTuWgoICAoEAmZmZvPvuu2zbtq35\n1N94ojCiMCIiElNt7Vppb3fL9cuvvzfN+PHjKS0t5fnnn6eyspLGxkZqamrIzs5u1XbZsmVcvHiR\nrVu38uqrrxIIBNixYwdPPPFEm+/TmZEjR7J7924efvhhVq9ezbBhw3jwwQdJS0ujpKSE1NSvvl8W\nL15MbW0tmzZtorKyksmTJ7Nr1y6mT5/e4r3S0tLYs2cPq1atoqKighdffJHBgweTl5fHypUrGTJk\nCOCdkrx+/XrKysqor69n+PDhLFiwgBUrVjS/VklJCdu3b2fXrl1cvnyZnJwcVq1axaOPPtrpZ4s1\n68mEmijMbBxQzT/As4ue5eHvxV9KFJHe68CBAwQCAaqrqxk3bpzf5UiYHnnkETZs2MD58+cT8t5n\nnW1/Tc8DAedcZHc8vI6OGdHMiIiIROjSpUst/j5z5gxbtmwhPz8/IYOIX7SbRmFEREQiNGHCBAoK\nChgzZgwnT55k8+bNNDQ0sHz5cr9LSygKIwojIiISocLCQrZt28aGDRswMwKBAOXl5dx6661+l5ZQ\nFEYURkREJEKlpaWUlpb6XUbC0zEjCiMiIiK+UhhRGBEREfFVrw8jN6Tc4HcJIiIivVqvDyOaGRER\nEfGXDmBVGBGROHXkyBG/S5BeyI/tTmFEYURE4kxWVhbp6encc889fpcivVR6ejpZWVkxez+FEYUR\nEYkz2dnZHDlyhM8//9zvUqSXysrKIjs7O2bvpzCiMCIicSg7OzumXwYifkqKA1jNrNDM9pvZRTOr\nM7PXu7quwkjsvPzyy36X0Ouoz2NPfR576vPEl/BhxMzuBH4BbAK+DUwEtnZ1/f4p/aNUmVxPA0bs\nqc9jT30ee+rzxJfQu2nMLAVYC/yLc+6FkKd+35X1+/ftr7sqioiI+CzRZ0bGASMAzOyAmX1qZjvM\n7FtdWXnjDzZGtTgRERHpXKKHkW8CBqwAVgKFwFlgt5lldLbyt77epcwiIiIiURSXu2nMbDXweAdN\nHDCGr8JUqXPul8F1/w74BJgHbGhn/VTQBYVi7dy5cxw4cMDvMnoV9Xnsqc9jT30eWyHfnT12Bog5\n53rqtXqMmX0N+FonzT4CJgFvApOcc3tD1t8P7HLOLW/n9f8GeKmHyhUREemNFjrnunzCSEficmbE\nOXcGONNZOzOrBi4Do4G9wWX9gBuBjztYtRJYCNQCl7pXrYiISK+Sivc9W9lTLxiXMyPhMLM1wJ3A\n3+MFkKV4x478mXPunJ+1iYiISOficmYkTI8CV/CuNZIGvA1MUxARERFJDAk/MyIiIiKJLdFP7RUR\nEZEEpzAiIiIivkraMGJmPzSzGjP7MngTvT/vpP08MzsSbH/IzL4fq1qTRTh9bmZFZtZoZteC/zaa\n2cVY1pvozCzfzLab2fFg/83twjoFZlZtZpfM7AMzK4pFrcki3D43sykh23djyDb/9VjVnMjM7Edm\n9o6ZfWFmn5nZf5hZXhfW03geoUj6vCfG86QMI2b218BP8K7MegtwCKg0s6x22jfdXG8DcDPwBvBL\nMxsbm4oTX7h9HnQOGB7yyIl2nUlmAHAQWIJ3IcAOmdmNwK+A/wa+CzwLbDSzGdErMemE1edBDvhT\nvtrO/8Q5dyo65SWdfODfge8BtwH9gCozS2tvBY3n3RZ2nwd1azxPygNYgxc9e9s5VxL824A/Aj91\nzv24jfavAOnOubkhy/YBv3XOLYlR2Qktgj4vAtY45zJjW2lyMrNG4A7n3PYO2vwr8H3n3HdClr0M\nDHHOzY5BmUmli30+Be/CjEOdc1/ErLgkFfxxcwqY7Jz7TTttNJ73oC72ebfH86SbGQle9CyA9+sP\nAOclrl8DE9pZbULw+VCVHbSXEBH2OcBAM6s1sz+YmX65RN9foO3cDwYcDN7Isyr4y10ik4E301TX\nQRuN5z2rK30O3RzPky6MAFlACvDZdcs/w5s6asvwMNtLS5H0+f8Ci4C5eFfD7QPsNbMR0SpS2t3O\nB5vZDT7U0xucAP4R78KMf4U3W7jbzG72taoEFJxtXQv8xjn3uw6aajzvIWH0ebfH82S46JkkIOfc\nfmB/09/BadQjeAP3Cr/qEulJzrkPgA9CFu03s1zgnwAdPByenwFjgVv9LqQX6VKf98R4nowzI58D\n14BvXLf8G8DJdtY5GWZ7aSmSPm/BOXcV+C0wqmdLkxDtbedfOOcu+1BPb/UO2s7DYmbPAbOBAufc\niU6aazzvAWH2eQuRjOdJF0acc1eAamB607LgVNN0gjfTa8O+0PZBM4LLpRMR9nkLZtYH+DbetLZE\nR1vb+Uy0ncfazWg777Lgl+JfAlOdc3/owioaz7spgj6/fv2wx/Nk3U3zb8AL5t3V9x28KdF04AUA\nM/sF8Ilzblmw/bN4+3H/GfgvYAHeAZmLY1x3Igurz81sOd603jG8A6SWAtnAxphXnqDMbADeLw8L\nLvqmmX0XqHPO/dHMVgMjnHNNuwOeB34YPKtmM96AfRferx/pgnD73MxKgBrgfbw7nS4GpuJ9OUon\nzOxneOPxXOCCmTXNeJxzzl0Ktvk5cFzjec+IpM97ZDx3ziXlA+86ALXAl3iJeHzIc28Cm69rfyfw\n+2D794BZfn+GRHuE0+d44aUm2PZT4D+B7/j9GRLpAUwBGvF2kYU+NgefLwfevG6dyXizWF8CR4F7\n/f4cifQIt8+Bx4L9fAE4jXfG2WS/P0eiPNrp62vA34a00Xjuc5/3xHielNcZERERkcSRdMeMiIiI\nSGJRGBERERFfKYyIiIiIrxRGRERExFcKIyIiIuIrhRERERHxlcKIiIiI+EphRERERHyVrJeDF5EE\nZGZDgfHAMOCkc+5Nn0sSkRjQzIiIxJNcvHtibAHyfa5FRGJEl4MXkbhiZiOAT4CZzrlf+12PiESf\nZkZEJN7k492s622/CxGR2FAYEZF4Mwn4nXOuwe9CRCQ2FEZEJN5MBvb6XYSIxI7OphGRuGFmGcBN\nwE+Cf2cBPwIccMo592MfyxORKNHMiIjEk0nBf/cFg8kDeGEkD1joW1UiElUKIyIST/KBM8BJ4EFg\nlXPu/4D+QJmfhYlI9OjUXhGJG2a2FxgI7ACecs5d8rkkEYkBzYyISFwws1QgAHwI3Ai8aGajfS1K\nRGJCYURE4sVEvIPqlzvn7gY+BX7V9KSZDfarMBGJLoUREYkXk4A659z/BP8+hrfLBjMbBRT7VZiI\nRJfCiIjEi3zgrZC/LwM1wf8vAF6JeUUiEhMKIyISLwbRMnC8AtSb2U+BWufcp/6UJSLRprNpRERE\nxFeaGRERERFfKYyIiIiIrxRGRERExFcKIyIiIuIrhRERERHxlcKIiIiI+EphRERERHylMCIiIiK+\nUhgRERERXymMiIiIiK8URkRERMRXCiMiIiLiK4URERER8dX/A9rTDiqrpXTJAAAAAElFTkSuQmCC\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGMCAYAAAAIiKIXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8lNXd///XmYSsJCEkYQv7juwJgigqiwUVBYpbQeBW\nXLu48HWpaFvrcitaRYsWq1WLCgX6q3qLFsUVEUGBhB1kh7AmYUkC2Zfz+2OSkZCFBJK5ksn72cc8\nmDlzruv6ZIrMO+c617mMtRYRERERp7icLkBEREQaNoURERERcZTCiIiIiDhKYUREREQcpTAiIiIi\njlIYEREREUcpjIiIiIijFEZERETEUQojIiIi4iiFEZEGzBhzwBjzhtN11BfGmE7GmCJjzESnaxHx\nJQojInWcMeYjY0ymMSa0kj7zjDG5xpjIau7ekftBGGNGFH+pl/d414mazqjvZmPMPRW8rXtoiNQw\nf6cLEJGzmgdcA/wSmHvmm8aYYGAMsNhae8LLtZ2vmUDiGW27nSjkDJOATsArpzdaa3cZY4KttXnO\nlCXimxRGROq+RcApYCLlhBFgHBCCO7TUN8ustYucLqI6FEREap5O04jUcdbaHOADYIQxJrqcLhOB\nk8DHJQ3GmN8bY743xhwzxmQZY1YbY8ad7VjGmKeNMfnltN9efAql1Rnto40x3xljThlj0o0xi4wx\n3av9Q5Zfi1/xMR8t571Sc11Oq2+QMeZlY0xqcU3/Ke/UVXHd3xpjMorr/sEYc0Pxe98Bo4DOp506\n2l78XrlzRowxVxR/3pnGmBPGmA+MMV3P6PN08bbtjTHvGmPSivv+wxgTWBOfmUh9pTAiUj/MAxoB\nN57eWPxFOxL4wFqbe9pb9wIJwB+A6UAR8L4xZuRZjmMpf05EmXZjzC24R21OAA8DTwO9ge+MMa2r\n9FNBmDEm6oyHqcJ2Z9ZY8no20AP4E/AaMBaYdUbdt+MObuHAM8DvgfXAlcVdngA2AEeAm3Gfsnmg\nokKMMaOAT4EmwB9xn3q6DPj+jM+h5DN8HwgsPu5/gKm4/38SabB0mkakfvgaOIx7FGT2ae034v7v\n+MxTNB1PDyfGmL/h/sKdBnx+vsUYY8KAl4HZ1tp7Tmt/F9gGPAL8rgq7ehc4PXxYoA1w6BxLO2Kt\nHX1aPQHAr40xd1lrs4wxTYCXgOXACGttmVEga+2XxpjDQIi1dn4VjvkCkAJcZK09WXzcj3GHwceB\nO07ra4AfrbW/KX79ujGmGXAb7iAj0iBpZESkHrDWFgELgMHGmLanvTURSMYdVk7vf3oQaYL7t/bl\nQFwNlXQlEAYsOH1UAygEVgPDqrifPwFXnPb4BZB6jjVZ4PUz2r4D/ICSz+xK3PNrni0viFRX8chH\nT+CtkiACYK1dh/v/k9FnbFJRjc2NMUHnW49IfaWREZH6Yx7ukY2JwAxjTCwwBHjZWnvmKZQxwKNA\nX9ynBErU1OTLzrh/y/+unPcscKyK+9lorf367N2qbP8Zr0uuLiqZN9Kx+M/NNXS8dsV/bi/nva3A\ncGNMozOCT9IZ/U6v8XAN1SVSryiMiNQT1tpEY8xPwARgBu5QAvCv0/sZY4YBH+L+zfxu3HMf8nGf\nLrjubIepoN3vjNeu4r4TgKPl9D/vUYdKaimvnhKFFbRXZR6Kt9SHGkW8SmFEpH6ZBzxpjOmNOwjs\nsNYmnNFnPJAJXGmt9XzxGWPuqsL+TwB+xpgQa23Wae3tz+i3q/jPFGvt0mrUX2XW2iJjzEncp5g8\niq88aXaOu92F+0u/F2VHKEodvor721f8Z7dy3usOJNfE6SARX6c5IyL1yzzcX6ZPAv0of92RQtxX\nz3hGD4wxHYFrq7D/ki/ry07btjEw+Yx+n+Je++QxY0yZUYoKLkE+U1W+8HedXkuxX3Pu/3YtwR3U\nHi2e3FqRTM4IQeWx1h4ANgG3Fk/qBcAY0xcYDnxyjnWKNCgaGRGpR6y1e40xK3Bfsmo54xRNsf/i\nvrR3iTFmPtAS+A3uq1x6nuUQnwIHgTnGmBeK26binsvgWWPEWptujPkd8DaQaIxZgPt0TTvckza/\nAf7fWY5VldMSbwKvGmP+DXwF9Mf9JV/enJSK9udpt9amGWMewH3Z76riutNwz61pZK29vbhrAjDe\nGPOX4ucZ1trFFez/QdyhY6Ux5m2gMXAPcBx3aBSRs9DIiEj9Mw93EPnRWltm6XRr7Re454e0wn35\n7Q2418ko77f0UuuHFJ9SGAvsAZ7CHWL+RtkrQLDWvof76pfDuNcZean4WAm4L9k9m6qMjPwd+Asw\nFPcltLHFx8wuZ/uK9leq3Vr7Bu5Va0/hXt/jWdxh5NPTur2K++qlqbg/75cr2d/nwFW4T3E9iXuS\n8TLgkuKRExE5C3PGJHwRERERr/KJkRFjzHRjzKripZ2TjTEfnrkUs4iIiNRNPhFGgEtx311zEO6F\nkxoBnxffzVRERETqMJ88TVM8kz8FuMxau9zpekRERKRivjIycqYmuCeZHXe6EBEREamcz42MFN/x\n82MgzFp7udP1iIiISOV8cZ2R2cAFwCUVdSi+odcoYC+Q452yREREfEIQ7lWZl1hrq3ofqkr5VBgx\nxrwKXA1caq2t7IZToyh7y3URERGpupspf+HFavOZMFIcRMYCl1trK7vnBLhHRJg7dy49evSo7dKk\n2LRp03jppZecLqNB0WfuffrMvU+fuXdt3bqVSZMmQfF3aU3wiTBijJmN+6ZhY4BMY0zz4rfSrbXl\nnYbJAejRowdxcXFeqlIiIiL0eXuZPnPv02fuffrMHVNj0xx85Wqau4FwYClw6LTHjQ7WJCIiIlXg\nEyMj1lpfCVUiIiINjr7ERURExFEKI+I1EyZMcLqEBkefuffpM/c+feb1n88telYVxpg4ICEhIUGT\nnkRERKohMTGR+Ph4gHhrbWJN7FMjIyIiIuIohRERERFxlMKIiIiIOEphRERERBylMCIiIiKOUhgR\nERERRymMiIiIiKMURkRERMRRCiMiIiLiKIURERERcZTCiIiIiDhKYUREREQcpTAiIiIijlIYERER\nEUf5O12AiIiIeEdqZiqbUjaxOXUzm1I2cc/Ae+jZrKfTZSmMiIiI+Jq0nDQ2p2z2hI6SAJKSmVKq\n38DYgQojIiIicu5yCnLYkrqFjckb2Ziy0RM8Dp48WKXtN6VsquUKq0ZhREREpI4rskXsObGHjSkb\n2Zi8kQ0pG9iYvJEdx3dQZIuqtI/moc3p2awnvWJ60atZL3o260nPGOdHRUBhREREpE5JzUz1hI6N\nKe7H5pTNZOZnVmn7JkFN6NWsV5nQERMaU8uVnzuFEREREQdk52ezJXULG5I3eELHxuSNJGcmV2n7\nQL9AesT0oHez3vRp3ofezXrTq1kvWoW1whhTy9XXLIURERGRWlRYVMjuE7vLjHbsPL6zyqdYOkZ2\npHez3u5Hc/efXaK64O+q3td4bm4uhw8fJicnh27dutWZ0KIwIiIiUkNO5p5kQ/IG1ievZ/2R9axP\nXs/GlI1k5WdVafvokOgyoaNns540DmgMQHJyMllZWeQczWHjgY3k5OR4Hrm5uVxwwQV07dq1wv2n\npKTwzjvvAPDII48QGBh4/j90DVAYERERqSZrLUnpSZ7QsS55HeuPrGfXiV0VbhNIII1pTDDBhLvC\n6RTeiXah7WgV1IqogChaN23NVSOuqnS0YuHChZw4ccLzOiAggKCgIM8jNze30rpbtGjB7373O4KC\ngggICKj+D15LFEZEREQqkVOQw+aUzaw9uJbNBzezPWU7+47toyCvgGCCCSr+3xGOlLt9p8hO9Gne\nhz5ZfTBJxUGjCEgDV4YL/yB/coNyOcWps542mTBhAn5+fgQHBxMYGIjLVb2F1Bs1akRUVFS1tvEG\nhREREWkQrLXk5eWRnZ1d6pGTk0N0dDTt2rUj+VRymdGOn47+RLgN5z7uowlNGFj8vxJ55JFDDrv9\ndtOzRU/6Ne9H3xZ96du8L72b9yY8MByAEydOkJGRQXBwsGcko1GjRtWatxETU3eviDkfPhFGjDGX\nAg8B8UBLYJy1dpGzVYmISG0oKioiNzfXEyby8/Np3759pdv861//YteuXRQVlZ0warEcjjjMosJF\nHDlV/ujGSU7yH/5DDjlkk014aDhdmnWhZ8ue9G3Zl34t+vF80+fxc/lVWENkZCSRkZHV+lkbCp8I\nI0AosA54C/jA4VpERKQKCgsLyc7OJjAwkEaNGlXYb/v27Xz77belRjJOFxAQwPTp0yvcPq8wj/C2\n4YQHhZOUmcSOkzvYfHwzJwpPkE02ueRi02252/q7/Lkg5gL6NncHjr7N+9K3RV+iQ6LP7YeWcvlE\nGLHWfgZ8BmDqynVKIiJCYWEhixcvJicnp8zpkby8PAB+9atf0a1btwr3ERQURPPmzQkODq7wUSIr\nP4sNyRtYe3gtiYcTSTySyKaUTeQV5p211qbBTX8OHMWho0d0DwL968YVJ77MJ8KIiIjUjv3795Oc\nnEx2djZZWVll/mzbti1jx46tcHuXy0VycjJBQUGEhIQQFRVVJkjExsZWWkPbtm1p27Ztmfb0nHTW\nHlnL2j1rSTySyNrDa9l6dGuV1u7o0KQD/Vv2p38L96Nvi77EhsXWmXU3GhqFERERH1VYWMipU6fI\nysoqN0hkZ2czZswY/P0r/ipITExk/fr1nuAQEhJCSEgI0dHRBAcH07Jly0prMMZw++23n/fPkpKZ\nUmq0Y+3htZVeRus5Pobu0d3p37I/cS3iPAEkMlhzN+qSBh1Gpk2bRkRERKm2CRMmMGHCBIcqEhEp\nX2FhIVlZWWRmZnrCRfPmzSu9uiIpKYl33323VJvL5fIEiuDgYPLz8ysNI6NHj2bMmDFeHTFIyUwh\n4VACaw6tYc3hNSQcSqjSXWgbuRrRq1kv+rfoT1xLd/Do07yPZ8Ewqb758+czf/78Um3p6ek1fhxj\nbfmTduorY0wRZ7maxhgTByQkJCQQFxfnveJERHBfYlpYWFhpCABYsGABqampZGZmlruY1YgRIxgy\nZEiF22dnZ3Pw4EFP8AgJCSEgIKBOnYo4nn28VPBYc2gNSelJZ90u2D+Yvi36EtcizhM8esb01PwO\nL0hMTCQ+Ph4g3lqbWBP7bNAjIyIiteXgwYPs3r271EjG6c8jIyP5zW9+U+k+mjdvTlRUFCEhIYSG\nhnpGNEqen20FzeDgYDp37lyTP9Z5ycjNIPFwojt4HFrD6kOr2X1i91m3iwiMKHWaJa5lHN2iulV6\nGa3ULz4RRowxoUBnoCTudzTG9AWOW2v3O1eZiNRH1lry8/PJzMzk1KlTZGZmlnkMGzas0pUsk5KS\nWLlypSc4hIaGEhER4Xl95ini8gwbNqwmfyyvyszLZO2RtZ7gsebQGrYd23bW7RoHNCa+ZTwDWg3w\nPDpFdqpTozlS83wijAADgG8AW/x4sbj9HWCqU0WJSN1RVFREdnY2mZmZ+Pv707Rp0wr7ZmZm8uKL\nL5ZqM8Z4QkVoaCgFBQWVHm/w4MEMHjy4Rmqv63ILcll3ZF2pUy1bUrec9aqWYP9g+rfsz4CWPweP\nrlFdNeLRAPlEGLHWfgtUb4F+EfFZa9asISkpqdTIRlZWFiVz5Pr27cu4ceMq3D4kJITx48cTGhpK\n48aNCQ0NJTg4uNr3AfFF1lp2HN/BqoOr+PHAj/x48EfWHVlHflF+pdsF+AXQr0W/UsGjR0wP/F0+\n8TUk50l/C0SkTikqKuLUqVMVPjIzM7nlllsqHbY/fvw4GRkZhIaGEhUV5RnNKAkXZztF4nK56N27\nd03/aPVSamaqO3gc/JFVB1ex6uAqTuScqHQbf5c/vZv1LnWqpVezXgT41Z27xErdojAiIrXOWktu\nbi4nT570nOqoyM6dO8tcShgSEkJYWBiNGzemSZMmFBQUVLp8+MiRI2us9oYkOz+bdUfW8eNB94jH\njwd+ZE/anrNu1z26O4NiB3Fhqwu5MPZC+jTvQ5B/kBcqFl+hMCIiNer777/nxIkTZUY0CgsLAbjy\nyisZNGhQhdvHxsYyceJEGjduTOPGjQkJCcHPT3MIalqRLWL7se38eOBHz8jH+uT1FBRVPhemWWgz\nBsUOcj9aD2JAqwE0CWriparFVymMiEgZJSt3njx5kpMnT5KRkcHJkyfx9/dn6NChlW67fft28vPz\nady4MTExMXTo0METLMLCwiq9AgUgNDSULl261OBPIwBpOWn8eOBHVuxfwcoDK1l1cBXpuZUvXhXs\nH0x8q3gGthrIoNbuANI2oq2ubJEapzAiIh5r1qzhm2++ISsrq1S7n58fYWFhZ136G+DWW2+trfKk\nikpGPVbuX+kJH1tSt2CpeJFLg+GCmAsYGDuQQbGDGBg7kF7NetHIr+LTYSI1RWFExEcUFRWRkpLi\nGc0o73HjjTfSpk2bCvfRrFkzBg0aRHh4OGFhYZ5HUFCQfhuuw07lnWLVwVWe4LFy/8qzTjJt2bgl\ng1oP8ox6DGg1gPDAcC9VLFKawohIHVdydUlRURFNmlR8br6goIDXX3/d8zo0NNQTJlq2bEnXrl1p\n3Ljye3RUdHdUqTustew+sZuVB34e9diQvKHSNT38Xf70a9GPi1tfzOA2g7m4zcW0CW+jgCl1hsKI\nSB2xb98+Dh486JmfkZGR4XluraV79+7cdNNNFW4fEBDA7bffTlhYGKGhoZr06SNyCnJYfXB1qfCR\nkplS6TYxITHu0FEcPga0GkBIoxAvVSxSfQojIrWksLDQEygyMjLo0aNHpTdG27hxIxs2bCAiIoLw\n8HCio6Pp0KED4eHhhIeHn3XiJ7ivRJH67Xj2cVbsX8F3+75j+f7lrDm0hrzCvAr7u4yLXs16cXHr\ni7m4jTt8aPl0qW8URkRqQEZGBj/88APp6emex6lTp0r1ueeeeypdgvyqq65i9OjR+hJpYJLSk1ie\ntNwTPjalbKq0f5OgJlzU+iLPqMfA2IGa6yH1nsKISDkKCws5efKkJ1hERkZWOvGzsLCQbdu2ERER\nQUxMDJ07d/aMcJQ8AgMrv7W5Tqv4viJbxJbULe7wkfQdy5OWk5SeVOk2XZp2YUjbIVzS5hIGtxlM\n9+juuIyWpRffojAiAqxatYr9+/d7wkfJPI0SgwYNqjSMREZGcs8993ijVKlH8grzWHNojSd8fJ/0\nfaVXubiMi/4t+nNp20sZ0nYIQ9oOoXnj5l6sWMQZCiPik/Lz80lLSyMtLY2TJ08SFxdXaf+SS2Ij\nIyNp3749ERERpR4BAbqnhpxdVn4WK/evZOnepSxLWsaqg6vIKcipsH+wfzAXtb7IEz4uan0RYYFh\nXqxYpG5QGJF67/jx46xdu9YTPtLS0krN13C5XPTq1avSQHHNNdd4o1TxMZl5mazYv4Kle5fy7b5v\nWXVwVaV3r40KjmJI2yGe8BHXMk6LiomgMCJ1lLWWkydPcvz4ccLDwyud+JmVlcXGjRtp0qQJUVFR\ndOrUicjISJo0aUKTJk0ICwvTrd+lRpzKO8X3Sd/z7b5vWbp3KasPra70Xi4dmnQoFT66R3fXBGWR\nciiMiOP27t1LSkoKx48f58SJExw/fpy0tDQKCtz/yF922WUMGzaswu1bt27N/fff761ypQE5mXuS\n7/d/z9K9S1m6dylrDq2h0BZW2L9rVFcub3c5Q9sP5bJ2l9E6vLUXqxWpvxRGpFbl5+dXeqt3gK++\n+orDhw/TpEkTmjZtSseOHWnatCmRkZGeEQ4Rb8jIzWB50nLPaZeEQwmVho9uUd0Y2n4ol7e7nMvb\nX06rsFZerFbEdyiMyHnLycnh2LFjHDt2zDO6UTLCkZeXx/Tp0ysdmp44cSKBgYE6lSJel1OQw8r9\nK/lqz1d8tecrVh9cXWn46BHdo9TIR8uws984UETOTmFEzstPP/3EwoULPa9DQ0M9oxolIxzW2krD\nSHBwsDdKFaGwqJDEw4me8LE8aXmlV7tcEHMBQ9sN5fL2l3N5u8t1ma1ILVEYEY+ioiLS0tJKjXJ0\n6dKFLl26VLhN69atue6664iKiqJp06ZnXdhLxJustfx09CdP+Fi6dylpOWkV9u8e3Z3h7YczrMMw\nLmt3Gc1Cm3mxWpGGS2GkgVu+fDkHDhzwhI+iIvedP/39/WnatCmtWlV+Drxx48b06tXLG6WKVMn+\n9P2e8PH1nq85dPJQhX1bh7dmRIcRjOgwguEdhhMbrnv7iDhBYcRHWWs5deoUYWGVL6B07NgxCgsL\n6dSpEwMHDiQqKoqoqCjCw8N1CaLUCxm5GXyz5xs+3/U5X+z+gh3Hd1TYt2lwU4a1H+YOIB1H0KVp\nF/09F6kDFEbqucLCQo4fP87Ro0dJTU3l6NGjnkdhYSGPPvpopfc8GTt2rBerFTl/RbaIhEMJfL7r\nc5bsWsLKAysrXOsjpFEIl7a91BM++rXop/u6iNRBCiP12N69e3nvvfc8p1aCgoKIiYmhRYsW9OrV\ni+joaIcrFKkZBzMOesLHl7u/5Fj2sXL7+bv8uaj1RZ5TL4NaDyLAT0v5i9R1CiN1TMkk0pSUFMLC\nwoiNrfgcdkxMDFdeeSUxMTFER0cTGhqqIWfxCdn52Szbt4wlu5bw+a7P2Zy6ucK+XZp2YWSnkYzq\nNIqh7Yfq3i4i9ZDCiINOnjxJcnIyKSkpnkdqaqpn5dGBAwdWGkZCQ0O58MILvVWuSK2x1rI5dTNL\ndi5hya4lLNu3jNzC3HL7RgRGMKLjCEZ2HMnITiPpENnBy9WKSE1TGHHQ4sWL+emnn2jUqBHNmjWj\nRYsW9OnTh2bNmtGsWTNCQ0OdLlGk1mTmZfL1nq9ZvGMxi3cuJik9qdx+LuNiYOxARnYcyajOoxgY\nOxB/l/7pEvElPvVftDHmt8CDQAtgPXCPtXa1t45fcnO3I0eOkJyczEUXXVTpUugjRoxg5MiRNGnS\nRKdXpEHYcWyHJ3ws3buUvMK8cvu1CW/DqE6jGNV5FMM7DKdpcMU3ShSR+s9nwogx5ibgReBOYBUw\nDVhijOlqrT1a08crKioiNTWVI0eOeMLHkSNHyM7OBtyTSbt3705MTEyF+9AEU/F1OQU5LNu3zB1A\ndiyu8LLbQL9AhrYfylWdr2JU51F0i+qmgC7SgPhMGMEdPl631r4LYIy5GxgNTAWer+mDZWdn8/e/\n/x2AyMhImjdvzqBBg2jRogXNmzcnIiJC/5hKg5SUnuQJH1/t+Yqs/Kxy+7UJb8PoLqO5usvVDO8w\nnNAAnZYUaah8IowYYxoB8cAzJW3WWmuM+RIYXJ195efnk5ycTF5eHh07dqywX2hoKFOnTqVZs2Za\nAl0atCJbxJpDa1i0bRGLti1iY8rGcvv5GT+GtB3C1V2uZnSX0VwQc4ECu4gAPhJGgGjAD0g+oz0Z\n6FbRRgUFBRw4cIBDhw5x+PBhDh8+TEpKCtZaWrRowV133VXpQdu0aXPehYvURzkFOXy1+ysWbVvE\nx9s/5vCpw+X2ax7anKu6XMXVna/mF51+QZOgJl6uVETqA18JI+fk7bffpmXLlrhcLpo3b05sbCwD\nBgygVatWNGumG2SJnO5o1lE+2f4Ji7YtYsmuJRWefhkYO5DRXUYzusto+rfsrxVPReSsfCWMHAUK\ngTPv790cOFLRRqtWrSI6OprAwEDPcPGECRMYMGBArRUqUp9sP7adj376iEXbF7Fi/wqKbFGZPkH+\nQVzR8QrGdhvLNV2voUXjFg5UKiK1Yf78+cyfP79UW3p6eo0fx1hra3ynTjDG/AD8aK29r/i1AZKA\nWdbav5zRNw5ISEhIIC4uzvvFitRRRbaIVQdX8cHWD1i0bRHbjm0rt19MSAzXdr2WMd3GcEXHKzT5\nVKQBSUxMJD4+HiDeWptYE/v0lZERgJnAHGNMAj9f2hsCzHGyKJG6rqCogO/2fccHWz/gw58+5ODJ\ng+X26x7dnbHdxjKm2xgGxQ7Cz1XxDRhFRKrDZ8KItfbfxpho4Encp2fWAaOstanOViZS9+QW5PL1\nnq95f+v7fLTtI45mlV2Kx2VcDGk7hDFdx3Btt2vpGtXVgUpFpCHwmTACYK2dDcx2ug6RuigrP4vP\ndn7GB1s/4OPtH5ORm1GmT4BfACM7jWR89/Fc2+1aokO0MJ+I1D6fCiMiUlpGbgafbP+E97e+z6c7\nPiW7ILtMn5BGIVzd5Wqu63EdV3e5mvDAcAcqFZGGTGFExMdk5mXy8faPWbh5IZ/u+LTcu99GBEYw\nptsYxvcYz6hOowhuFOxApSIibgojIj4gOz+bxTsWs3DzQj7Z/km5IyAxITGM6z6O63pcx7AOwwjw\nC3CgUhGRshRGROqp3IJcPt/1OQs2L2DRtkWcyjtVpk/z0ObccMENXH/B9QxpO0RXwIhInaQwIlKP\n5Bfm89Wer1i4eSEfbv2Q9Nyyiw9Fh0RzXY/ruKnnTVzW7jIFEBGp8xRGROo4ay0rD6xk3oZ5LNy8\nkGPZx8r0aRLUhPHdx3NTr5sY3mE4/i79py0i9Yf+xRKpo7Yd3ca8jfOYt3Eeu0/sLvN+WEAY47qP\n46aeN/GLTr/QHBARqbcURkTqkORTySzYtIB5G+ex+tDqMu8H+wczptsYftXrV1zZ+UqC/IMcqFJE\npGYpjIg4LDMvk//76f+Yu3EuX+z6gkJbWOp9l3FxRccruLn3zfyy+y8JCwxzqFIRkdqhMCLigCJb\nxDd7vmHO+jl8uPVDMvMzy/SJaxnHpN6T+FWvX9EyrKUDVYqIeIfCiIgX7T6xmznr5vDO+ndISk8q\n8367iHbc3Ptmbu5zMxfEXOBAhSIi3qcwIlLLMvMy+c+W/zBn/RyW7l1a5v3IoEhu7HkjN/e+mUva\nXoLLuLxfpIiIgxRGRGqBtZYV+1fwz3X/ZOHmhWUWJHMZF6M6jeLWfrcyptsYAv0DHapURMR5CiMi\nNejQyUO8s+4d5qyfw/Zj28u83zWqK7f2u5XJfSYTGx7rQIUiInWPwojIeSosKuSL3V/wesLrfLzt\n4zJXw4QFhHFTz5u4tf+tDG49GGOMQ5WKiNRNCiMi5+jwycO8vfZt/pH4D/al7yvz/tD2Q5nabyrj\ne4wnNCALFb24AAAgAElEQVTUgQpFROoHhRGRaiiyRXyx6wveSHyDRdsWUVBUUOr9lo1bMrX/VKb2\nn0rHyI4OVSkiUr8ojIhUwZFTR/jn2n/yj8R/sCdtT6n3DIZRnUdxZ9ydXNP1Ghr5NXKoShGR+klh\nRKQCJVfEvLLqFd7f+n6ZUZAWjVtwW//buK3/bXSI7OBQlSIi9Z/CiMgZsvOzWbBpAa+seoW1R9aW\nes9gGNlpJHfG38m1Xa/VKIiISA1QGBEplpSexOzVs3kz8U2OZR8r9V5MSAy3x93OHXF3aBRERKSG\nKYxIg2atZenepbyy6hU+2vYRRbao1PsXtrqQewbeww09b9AdckVEaonCiDRIOQU5vLf+PWatmsWm\nlE2l3mvkasSNPW/knoH3MKj1IIcqFBFpOBRGpEFJzUxl9urZ/G3130jNSi31XsvGLbl7wN3cGX8n\nLRq3cKhCEZGGR2FEGoRtR7cxc+VM3t3wLjkFOaXeu6TNJfxu4O8Y32M8AX4BDlUoItJwKYyIz7LW\nsmzfMl5c+SIfb/+41Ht+xo8bet7AA4MfYECrAQ5VKCIioDAiPqiwqJD3t77P898/T8LhhFLvNQ5o\nzB1xd3DfoPto16SdQxWKiMjpFEbEZ+QV5jF3w1xmLJ/BjuM7Sr3XOrw19w26jzvi7iAiKMKhCkVE\npDz1PowYYx4FRgP9gFxrbVOHSxIvy8rP4s3EN/nLir9wIONAqff6t+jPA4Mf4MaeN2qBMhGROqre\nhxGgEfBvYCUw1eFaxIvSctKYvXo2L//wcpkrY4a1H8b0IdO5ouMVGGMcqlBERKqi3ocRa+0TAMaY\n/3G6FvGO1MxUXv7hZV5d/SoZuRml3ru267VMHzKdwW0GO1SdiIhUV70PI9JwHM06ygsrXuCVVa+Q\nlZ/laXcZFzf1vIlHhjxCn+Z9HKxQRETOhcKI1HnHs4/z4ooXmbVqFqfyTnnaG7kacUu/W3j4kofp\n3LSzgxWKiMj5qJNhxBjzLPD7SrpYoIe1druXShIHnMg+wUs/vMTLP7zMybyTnvYAvwDuir+Lhy95\nmNbhrR2sUEREakKdDCPAC8A/z9Jn9/keZNq0aURElL7Mc8KECUyYMOF8dy3nIT0nnZd/eJmXfniJ\n9Nx0T3sjVyPuiLuD6ZdOVwgREfGC+fPnM3/+/FJt6enpFfQ+d8ZaW+M7dULxBNaXqnJprzEmDkhI\nSEggLi6u9ouTKsnOz+bVVa/y7PJnOZFzwtPu7/Lntv638eilj9I2oq2DFYqISGJiIvHx8QDx1trE\nmthnXR0ZqTJjTBugKdAO8DPG9C1+a6e1NtO5yqSqCooKeHf9uzy+9PFS64T4GT9u7Xcrj132GO2b\ntHeuQBERqVX1PowATwJTTntdktKGAcu8X45UlbWWRdsW8ejXj7IldYun3WCY0ncKf7r8T3SM7Ohg\nhSIi4g31PoxYa28FbnW6Dqme5UnL+f2Xv2fF/hWl2q/tei3PjHiGXs16OVSZiIh4W70PI1K/7Di2\ng4e+eIiPtn1Uqn1w68E8d8VzXNruUocqExERpyiMiFek5aTx1LdP8cqqV8gvyve094juwbMjnmVM\ntzFatl1EpIFSGJFaVVBUwD8S/sGflv6Jo1lHPe2twlrx5NAn+Z9+/4O/S38NRUQaMn0LSK35cveX\nTFsyjU0pmzxtQf5BPHzxwzx8ycOEBoQ6WJ2IiNQVCiNS43af2M20JdNYtG1RqfYJvSYw44oZWitE\nRERKURiRGpNTkMNfvv8Lzyx/hpyCHE/7ha0u5OUrX+biNhc7WJ2IiNRVCiNSI5bsXMLvPv0dO4/v\n9LS1CmvFjBEzuLnPzbiMy8HqRESkLlMYkfNyIOMA05ZM4z9b/uNp8zN+3H/R/Tx++eOEBYY5WJ2I\niNQHCiNyTgqKCpj14yz+9M2fyMz/edX9S9teyt+u/hu9m/d2sDoREalPFEak2jYkb+C2Rbex5tAa\nT1tMSAwvjHyByX0ma70QERGpFoURqbLcglyeXvY0M76fQUFRAeC+j8zdA+7mf4f/L5HBkQ5XKCIi\n9ZHCiFTJiv0ruH3R7Ww9utXT1iO6B2+NeYvBbQY7WJmIiNR3CiNSqVN5p3j0q0d5ddWrWCwA/i5/\nHh3yKI9e+iiB/oEOVygiIvWdwohUaMX+FUz5cAq7TuzytF3Y6kLeGvOWJqiKiEiNURiRMvIK8/jz\n0j/z3PfPUWSLAAj2D+bp4U9z36D78HP5OVyhiIj4EoURKWVTyiYmfTCJ9cnrPW0Xt7mYd8a9Q+em\nnR2sTEREfJXCiABQWFTISz+8xGNfP0ZeYR4AjVyNeGLoEzx8ycMaDRERkVqjMCIcPnmYSR9O4us9\nX3vaesb0ZO74ufRr0c/BykREpCFQGGngPtv5GVM+nEJqVirgXjfkgcEP8NTwpwjyD3K4OhERaQgU\nRhqovMI8/vD1H/jLir942lqFtWLe+HkMbT/UucJERKTBURhpgPac2MOv3v8Vqw6u8rSN7jKaOePm\nEB0S7WBlIiLSECmMNDD/3f5fJn04ibScNMA9SfW5K57j/ovu1z1lRETEEQojDUSRLeKpb5/iz9/+\n2dPWKbITC65fwIBWA5wrTEREGjyFkQbgRPYJJn84mf/u+K+n7Zfdf8mccXMIDwx3sDIRERGFEZ+3\nIXkDv1z4S3af2A2Ay7h4ZvgzPHzJwzotIyIidYLCiA/7z5b/MOXDKWQXZAMQFRzFgusXcEXHKxyu\nTERE5GcKIz7IWssz3z3DH775g6ctvmU879/4Pu2atHOwMhERkbJcVe1ojFlQm4VIzcgtyGXK/00p\nFUQm95nM8qnLFURERKROqnIYAa4yxkTWWiXnyBjTzhjzpjFmtzEmyxizwxjzZ2NMI6dr87aUzBSG\nvzucuRvmetqeHfEs74x7R6upiohInVWd0zRhwBJjzHXW2v21VdA56A4Y4A5gF9ALeBMIAR52sC6v\n2nZ0G1fOu5K9aXsBCPYPZu74uYzvMd7ZwkRERM6iOmFkN/A/wHRjzC7gZWttYe2UVXXW2iXAktOa\n9hpjXgDupoGEkVUHV3H1vKs5ln0McC/rvuhXi4hvFe9wZSIiImdXndM0Y621W621vwESgH8ZY4bU\nUl3nqwlw3OkivOGznZ8x7J1hniDSp3kfVt2+SkFERETqjSqHEWvt5tOeLwUmAZcaY/5mjImqhdrO\niTGmM/A74O9O11Lb3lv/HtfOv5as/CwAhrYfyrJblhEbHutwZSIiIlVXnZGRUqy1+dbaZ4EXgJeN\nMXfUXFlgjHnWGFNUyaPQGNP1jG1igU+Bhdbat2uynrrmxRUvMuX/plBQVADA9Rdcz6c3f0pEUITD\nlYmIiFSPsdbWzI6MuQ64Cfhfa+36GthfFHC2EZfd1tqC4v6tgG+AFdbaW8+y7zgg4bLLLiMiovSX\n94QJE5gwYcK5F17LrLU8tewpHl/6uKftNwN+w6yrZuHn8nOwMhER8TXz589n/vz5pdrS09NZtmwZ\nQLy1NrEmjlPlMGKM6WetXXeWPo2BP+G+uuUJa+2p8y+xSrXFAl8Dq4HJ9iw/VEkYSUhIIC4uzhsl\n1ghrLX/4+g88s/wZT9sTQ5/gj5f9UUu7i4iIVyQmJhIfHw81GEaqczXNX4HLT28w7m/AVkD74kc7\n3JNHhwMTjDH3WGs/rIlCK1I8IrIU2IP76plmJV/M1trk2jy2N1lrefDzB5n5w0xP28yRM5k2eJqD\nVYmIiJy/6oSRC40xTwKxuENHe6A1ULK42Om/mhcCB3Gv/VGrYQT4BdCx+FGy/okBLOAT5y2stdz7\n6b28uvpVT9vfrv4bv7nwNw5WJSIiUjOqE0aCgJI1xvOBA8D3wD5gb/Gj5PkBb61BYq19B3jHG8dy\ngrWWaUumeYKIwfDGtW9we9ztDlcmIiJSM6oTRlKAG3CfDjlkrS2qnZLkdH/65k/89ce/Au4gMmfc\nHKb0neJwVSIiIjWnOmHkU2vtd7VWiZQxY/kMnv7uac/rN8e8qSAiIiI+pzqLnlV6uazUrFd+fIXp\nX033vJ515Sym9p/qYEUiIiK145wXPZPa897697j3s3s9r58d8Sz3DLrHwYpERERqj8JIHfPFri+Y\nuujnEZDHLn2MR4Y84mBFIiIitUthpA5Zf2Q91/37Os8S778e8GueGvaUw1WJiIjULoWROiIpPYmr\n/3U1J/NOAjC221heueoVrawqIiI+T2GkDsjIzeDqeVdz6OQhAC5qfRH/uu5futeMiIg0CAojDiss\nKuTmD25mc+pmALo07cLHEz4mpFGIw5WJiIh4h8KIw/74zR/5ZPsnAEQGRbL45sVEh0Q7XJWIiIj3\nKIw4aMGmBTy7/FkA/Iwf/77h33Ru2tnhqkRERLxLYcQhiYcTmfrRz5fwzhw1kys6XuFgRSIiIs5Q\nGHFAWk4a1/37OrILsgGY2m8q9wzUomYiItIwKYx4mbWWqR9NZW/aXsB95czs0bN1Ca+IiDRYCiNe\n9sqqV/jwpw8B94TVhdcvJNA/0OGqREREnKMw4kWrD67mwc8f9Lx+Z9w7tI1o62BFIiIizlMY8ZL0\nnHRu+s9N5BflA/Dg4Ae5ttu1DlclIiLiPIURL7n3s3vZk7YHcM8TeWbEMw5XJCIiUjcojHjBh1s/\n5N317wIQHhjOgusW0MivkcNViYiI1A0KI7UsJTOFuz65y/N61pWzaNeknYMViYiI1C0KI7XIWsud\nH99JalYqAOO6j2NK3ykOVyUiIlK3KIzUogWbFvDRto8AiAmJ4fVrXtd6IiIiImdQGKklJ7JPcP+S\n+z2v/37N32kW2szBikREROomhZFa8siXj5CSmQLA+B7jGd9jvMMViYiI1E0KI7Xg+6TveSPxDQDC\nAsKYdeUshysSERGpuxRGalheYV6pq2eeHv40seGxDlYkIiJStymM1LBXV73K5tTNAMS3jOe3F/7W\n4YpERETqNoWRGpSamcqT3z4JgMHw+jWv4+fyc7gqERGRus0nwogx5iNjzD5jTLYx5pAx5l1jTEtv\n1/H40sdJz00H4NZ+txLfKt7bJYiIiNQ7PhFGgK+BG4CuwHigE/D/ebOATSmbeD3hdQAaBzTm6eFP\ne/PwIiIi9Za/0wXUBGvtX097ud8YMwP40BjjZ60t9EYND33xEEW2CIBHhzxKyzCvD8yIiIjUS74y\nMuJhjGkK3Ax8760g8t2+7/hs52cAtI1oy7TB07xxWBEREZ/gM2HEGDPDGHMKOAq0AcZ547jWWh77\n+jHP6z9f/meC/IO8cWgRERGfUGdP0xhjngV+X0kXC/Sw1m4vfv088CbQDngceA+4prJjTJs2jYiI\niFJtEyZMYMKECVWu8/Ndn/Nd0ncAdIvqxuS+k6u8rYiISF02f/585s+fX6otPT29xo9jrLU1vtOa\nYIyJAqLO0m23tbagnG1jgf3AYGvtj+W8HwckJCQkEBcXd841WmsZ+OZA1hxaA8DC6xdyY88bz3l/\nIiIidV1iYiLx8fEA8dbaxJrYZ50dGbHWHgOOnePmJYt7BNZQOeX6bOdnniDSt3lfrr/g+to8nIiI\niE+qs2GkqowxA4ELgeXACaAz8CSwA1hZm8ee8f0Mz/PHL38cl/GZKTgiIiJe4wvfnlm41xb5EvgJ\n+AewDhhqrc2vrYOu2L+CZfuWAdA9ujtju4+trUOJiIj4tHo/MmKt3QSM8PZxn/v+Oc/z31/ye42K\niIiInCN9g56DLalbWLRtEQCtw1szsfdEhysSERGpvxRGzsFLK1/yPP9/F/0/AvwCHKxGRESkflMY\nqaa0nDTmbZwHQHhgOHfE3+FwRSIiIvWbwkg1zVk3h+yCbAD+p+//0DigscMViYiI1G8KI9VQZIuY\nvXq25/WvB/zawWpERER8g8JINXy1+yt2HN8BwLD2w+gR08PhikREROo/hZFqmL3m51GR3174Wwcr\nERER8R0KI1V05NQRPt72MQCtwloxptsYhysSERHxDQojVTR/43wKbSEAt/S9hUZ+jRyuSERExDco\njFTRuxve9Tyf3Heyg5WIiIj4FoWRKtiQvIF1R9YBMDB2IN2juztckYiIiO9QGKmC99a/53k+pc8U\nBysRERHxPQojZ2GtZeHmhQD4u/y5qddNDlckIiLiWxRGzmL1odXsz9gPwBUdryA6JNrhikRERHyL\nwshZvL/lfc/z63pc52AlIiIivklhpBLWWt7f6g4jfsaPcd3HOVyRiIiI71EYqcSG5A3sOrELgMvb\nX65TNCIiIrVAYaQSH2z9wPNcp2hERERqh8JIJRbvXOx5PrbbWAcrERER8V0KIxVIzUwl4VACAH2b\n9yU2PNbhikRERHyTwkgFvtj9BRYLwKhOoxyuRkRExHcpjFTgs52feZ5f2flKBysRERHxbQoj5Siy\nRSzZtQSA0EahXNL2EocrEhER8V0KI+VYd2QdKZkpAIzoOIIAvwCHKxIREfFdCiPl+Gr3V57nmi8i\nIiJSuxRGyrF8/3LP86HthzpXiIiISAOgMHKGIlvE8iR3GGka3JTu0d0drkhERMS3+VQYMcYEGGPW\nGWOKjDF9zmUfPx39iePZxwEY0nYILuNTH5GIiEid42vftM8DB6B4gZBzUDIqAjCkzZAaKElEREQq\n4zNhxBhzFfAL4EHAnOt+vkv6zvP80naXnn9hIiIiUil/pwuoCcaY5sAbwBgg+3z2VTIyEuwfTFzL\nuPMvTkRERCrlKyMj/wRmW2vXns9ODmYcZG/aXgAGtR6k9UVERES8oM6GEWPMs8UTUSt6FBpjuhpj\n7gUaA8+VbHqux1x9aLXn+eDWg8/vBxAREZEqqcunaV7APeJRmT3AMGAwkGtMqRyyxhgzz1p7a0Ub\nT5s2jYiICM/rn47+BK2A3jCg1YBzLlxERMQXzJ8/n/nz55dqS09Pr/HjGGvP+cKTOsEY0xoIP62p\nFbAEuA5YZa09VM42cUBCQkICcXE/zwsZ/a/RLN6xGIA99+2hfZP2tVi5iIhI/ZOYmEh8fDxAvLU2\nsSb2WZdHRqrEWnvg9NfGmEzcp2p2lxdEKtkPCYcSAPdiZ+0i2tVonSIiIlK+Ojtn5DxVe7jn8KnD\nJGcmAxDXMo4zTvmIiIhILan3IyNnstbuA/yqu13JqAhAfMv4mixJREREKuGrIyPVtjFlo+d5vxb9\nHKxERESkYVEYKbYldYvnec+Yng5WIiIi0rAojBQrCSMu46JrVFeHqxEREWk4FEaAwqJCth7dCkDn\npp0J9A90uCIREZGGQ2EE2Je+j5yCHECnaERERLxNYQTYnLLZ8/yCmAscrERERKTh8blLe8/F6ZNX\nFUZEpC5ISkri6NGjTpchDVR0dDRt27b12vEURoBtx7Z5nveI7uFgJSIi7iDSo0cPsrKynC5FGqiQ\nkBC2bt3qtUCiMALsPrHb87xT004OViIiAkePHiUrK4u5c+fSo4d+QRLv2rp1K5MmTeLo0aMKI960\nJ20PAFHBUYQHhp+lt4iId/To0aPUzTxFfFWDn8CaV5jH/vT9AHSM7OhwNSIiIg1Pgw8j+9L2YYvv\nq6cwIiIi4n0NPoyUnKIB6NCkg4OViIiINEwNPoycPnlVIyMiIiLepzCiMCIi4vPmzJmDy+UiKSnJ\n6VKkHA0+jJx+mkZhRETEe7Zs2cKkSZNo3bo1QUFBxMbGMmnSJLZs2XL2jSvw7LPP8tFHH5VpN8Zg\njDmfcqUWNfgwsjdtL+C+W2+biDbOFiMi0kB88MEHxMXF8c033zB16lRee+01br/9dpYuXUpcXFy5\ngaIqnnnmmXK3nTJlCtnZ2V5dVVSqrsGvM3L45GEAmoc2x9/V4D8OEZFat3v3bqZMmULnzp1ZtmwZ\nTZs29bx33333MWTIECZPnsyGDRto3759jRzTGENAQECN7EtqXoMeGSmyRSRnJgPQonELh6sREWkY\nnn/+ebKzs3njjTdKBRGApk2b8vrrr3Pq1Cmef/55AP785z/jcrnYtm0bN954IxEREURHR3P//feT\nm5vr2dblcpGVleWZH+JyuZg6dSpQ/pyR9u3bM2bMGL799lsuvPBCQkJC6NOnD99++y3gHr3p06cP\nwcHBDBgwgHXr1pWqdejQoQwfPrzMz3fLLbfQocPPV2fu27cPl8vFzJkzmT17Np06dSI0NJRRo0Zx\n8OBBAJ566inatGlDSEgI48aNIy0t7Xw+4nqnQQ8FpOWkUVBUAEDLsJYOVyMi0jB88skntG/fnosv\nvrjc9y+99FLat2/Pf//7XwDPXI8bb7yRDh06MGPGDH744QdmzZpFWloac+bMAWDu3LncdtttDBo0\niDvvvBOATp06efZx5pwRYww7duzg5ptv5q677mLy5Mn85S9/YcyYMbz22ms89thj/Pa3v8VayzPP\nPMNNN93Etm3bSm1fnormp8ydO5f8/Hzuvfdejh8/znPPPccNN9zA8OHD+fbbb3nkkUfYuXMns2bN\n4sEHH+TNN9+sxqdavzXoMHIs65jnecvGCiMiUv8MeGMAR04dqfXjtGjcgjV3rjnv/WRkZHDo0CHG\njRtXab8+ffrw8ccfk5mZ6Wnr1KkTH3zwAQC//vWvCQsL47XXXuPBBx+kV69eTJw4kbvuuouOHTsy\nceLEKtWzfft2Vq5cycCBAwH3EvyjRo3izjvvZNu2bcTGxgLQpEkT7r77bpYtW8Zll112Lj86hw4d\nYufOnTRu3BiAgoICnn32WXJyclizZg0ul/tkRUpKCvPmzeO1116jUaNG53Ss+qZBh5HUrFTPc52m\nEZH66MipIxw8edDpMqrs5MmTAISFhVXar+T9jIwMwD3a8Nvf/rZUn3vuuYfZs2ezePFievXqdU71\nXHDBBZ4gAjBo0CAARowY4QkiJe3WWnbv3n3OYeTGG2/0BJHTjzV58mRPEClpX7BgAQcPHqyxOTN1\nXYMOI0ezjnqea2REROojb/0iVVPHKQkZJaGkIuWFls6dO5fq06lTJ1wuF3v37j3nes68uiY83H2z\n1NatW5dqj4iIAODEiRPnfKw2bUpfsVmyz8qOpTDSABzNPC2MaM6IiNRDNXHqxJvCw8Np2bIlGzZs\nqLTfhg0biI2NLTWScKaaWDfEz8+vWu3W2rMev7CwsMaP5esa9NU0x7J/njOi0zQiIt5xzTXXsGfP\nHlasWFHu+9999x179+7l2muvLdW+Y8eOUq937txJUVFRqdEDby5sFhkZWe5VL/v27fNaDb6iQYcR\nnaYREfG+hx56iKCgIO666y6OHz9e6r3jx49z9913ExoaykMPPeRpt9byt7/9rVTfWbNmYYzhqquu\n8rSFhoZ67bLYTp068dNPP3Hs2M+/2K5fv57vv//eK8f3JQ37NE32USgO0RoZERHxjs6dO/POO+8w\nadIkevfuzW233UaHDh3Ys2cPb7/9NseOHWPBggVl5kvs2bOHsWPHcuWVV7JixQrmzZvn2UeJ+Ph4\nvvzyS1566SVatWpFhw4dSk1QrUlTp05l5syZjBw5kttuu43k5GRef/11evXq5Zl4e64a0ikaaOgj\nI8VzRiICIwhuFOxwNSIiDcf1119PQkICw4YN4+233+bXv/41b731FsOGDSMhIYGxY8eW6m+MYeHC\nhQQGBjJ9+nQ+/fRT7r333jJrccycOZP4+Hj++Mc/MnHiRP7+979XWENF64FUtb179+689957ZGRk\n8MADD/DJJ58wd+5c+vfvX+6aJhXts6LaGhLjC+nLGLMXOH1KtAWmW2ufr6B/HJAQ9Jsgcprl0D26\nO1t/u9ULlYqInF1iYiLx8fEkJCQQFxfndDmOe+KJJ3jyySdJTU0ts2Kr1Lyz/f0reR+It9Ym1sQx\nfeU0jQX+APwDz4kXKr9uDMgpyAEgJiSm1goTERGRyvlKGAE4Za1NPXu3sqJComq6FhEREakiX5oz\n8ogx5qgxJtEY86AxpvwLt8vRNEjDfiIiIk7xlTDyV+BXwFDg78CjwHNV3bhpsMKIiEhd9fjjj1NY\nWKj5Ij6szp6mMcY8C/y+ki4W6GGt3W6tffm09k3GmHzg78aY6dba/LMdS2FERETEOXU2jAAvAP88\nS5/dFbT/iPtnaw/sqKAPfAYEwYKvFrCyyUoAJkyYwIQJE6pbq4iIiM+ZP38+8+fPL9WWnp5e48ep\ns2HEWnsMOHbWjuXrDxQBKZX2uhJoBX+4/g/c0POGczyUiIiIbyrvF/TTLu2tMXU2jFSVMeYiYBDw\nDe7LeS8GZgLvWWurFN90mkZERMQ59T6MALm4J68+DgQCe4AXgZequoPI4MjaqUxERETOqt6HEWvt\nWmDw+ewjPDC8hqoRERGR6vKVS3vPS1hAmNMliIiINFgKI0BYoMKIiEh94HK5ePLJJ6vUt3379kyd\nOrXax9i3bx8ul4t333232tvKuWnwYcRlXAT76469IiLe8M477+ByuUhMPLf7q51599uVK1fyxBNP\nkJGRUaavy+VqcHe/ra/q/ZyR8xUWEKa/rCIiXnQ+/+ZmZ2fj7//zV9eKFSt48sknufXWWwkPLz3/\nb9u2bbhcDf537npBYUSnaERE6o2AgIBSr621FfZt1KhRbZcjNaTBR0ZNXhURcdYtt9xCWFgYhw4d\nYty4cYSFhdGsWTMeeuihMmHj9DkjTzzxBA8//DDgnh/icrnw8/MjKSnJ03b6nJETJ07w4IMP0qdP\nH8LCwoiIiODqq69mw4YN51z7hg0buPzyywkJCaFNmzb87//+L//85z9xuVyeOs6s+3TlzWtJT0/n\n/vvvp23btgQFBdGlSxeef/75Mp/FggULGDBgAOHh4URERNCnTx9mzZrleb+goIAnnniCrl27Ehwc\nTHR0NJdeeilfffXVOf+8tUUjIxoZERFxlDGGoqIiRo0axUUXXcSLL77Il19+ycyZM+ncuTN33XVX\nuduNHz+e7du3s2DBAv76178SFRUFQExMjGe/p9u9ezeLFi3ihhtuoEOHDiQnJ/P6668zdOhQtmzZ\nQqW2gNAAAA9ASURBVIsWLapV96FDhxg2bBh+fn489thjhISE8OabbxIQEFDlU1Fn9svOzuayyy7j\n8OHD3H333bRp04YVK1Ywffp0jhw5wsyZMwH44osvmDhxIr/4xS94/vnnAdi6dSsrVqzg3nvvBdw3\nGJwxYwZ33nknF154IRkZGaxZs4bExERGjBhRrZ+1timMaGRERMRxOTk5TJgwgUcffRSAO++8k/j4\neN56660Kw0jv3r2Ji4tjwYIFjB07lrZt21Z6jD59+rB9+/ZSbZMnT6Zbt2689dZbPPbYY9WqecaM\nGaSnp7N27Vp69+4NwK233krnzp2rtZ/Tvfjii+zZs4d169bRsWNHAO644w5atmzJCy+8wAMPPEBs\nbCyLFy8mIiKCJUuWVLivxYsXM3r0aP7/9u4/OOo6v+P4800Ak/Ar5MIdZZjEudBQOO9OWTpXkEAA\nAY9w1KlCpWhjaWiVU2NbRY8ZxMEI05u5glfnIj/jnYiOQXvSK0zC1UHmBlAnHEg9roIm3okgSAgG\nEArk0z++m7ghP3eT3e/u5vWY2YF89/Pdfe9nvvPZ136+v8rKyiKuJ1a0m0YzIyKS4BoaGjhx4kS7\nj9OnT3f6GqdPn253/YaGhhh8ClqFjvz8fD76qL37oYYv9BiSxsZG6urqSE9PZ/To0RGd3VNZWcmE\nCROagwhARkYGCxcujLjGbdu2kZ+fz5AhQzhz5kzzY/r06Vy9epU9e/Y0v8+FCxc6DCMZGRm8//77\nHDt2LOJ6YkUzI5oZEZEEV11dzVtvvdXu88OGDWPJkiUdvkZFRUW7oWXKlCkUFBR0p8ROpaamNu9m\naTJ06FDOnj3bY+/hnGPt2rWUlZVRU1PDtWvXAG9XSVZWVtiv9/HHHzNx4sRWy7szM3L06FEOHz7c\nvKsplJlx6pR3/9clS5ZQUVHB7NmzGTFiBDNnzmT+/PnMmjWruf3KlSu54447yMvL46abbuL222/n\n3nvvbRGe4kWvDyMD+w/0uwQRkW4JBAKMHj263edDT4Vtz7x587h69Wqbzw0cGP1xMiUlJerv8cwz\nz/Dkk09SXFxMaWkpmZmZ9OnTh5KSEhobG6P+/m1pCkRNGhsbmTFjBo8//nibZwrl5eUBXsA8ePAg\nlZWV7Ny5k507d1JeXk5RURHl5eWAN7P04Ycf8sYbb1BVVcWmTZtYs2YN69ati+hicNHU68NIat9U\nv0sQEemWQYMGMWhQ92Z52/olngjCuWbJa6+9xrRp01i/fn2L5fX19RF9/pycnDZ3gRw9erTVsqFD\nh1JfX99i2ZUrVzhx4kSLZbm5uZw/f56pU6d2+v59+/alsLCQwsJCAB544AHWr1/P8uXLm483ycjI\noKioiKKiIi5evEh+fj5PPfVU3IWRXn/MiMKIiEjiGjBgAECrL/q2pKSktJptqKio4Pjx4xG996xZ\ns9i3b1+LU4Pr6urYunVrq7a5ubnNx3s0WbduXauZkfnz57Nv3z6qqqpavca5c+ea29fV1bV6vmn3\ny+XLl9tsk56ezqhRo5qfjyeaGVEYERGJqY4uVBauQCCAc45ly5Zx9913069fP+bOnUtaWuvbfMyZ\nM4enn36aRYsWMXHiRA4fPsxLL71Ebm5uRO+9dOlStmzZwm233cZDDz3EgAED2LhxIzk5OZw9e7bF\nrE1xcTH3338/d911FzNmzODQoUNUVVW1mpF57LHH2L59O3PmzOG+++4jEAhw4cIF3nvvPV5//XVq\na2vJzMykuLiYuro6pk2bxsiRI6mtreW5557jlltuYcyYMQCMHTuWgoICAoEAmZmZvPvuu2zbtq35\n1N94ojCiMCIiElNt7Vppb3fL9cuvvzfN+PHjKS0t5fnnn6eyspLGxkZqamrIzs5u1XbZsmVcvHiR\nrVu38uqrrxIIBNixYwdPPPFEm+/TmZEjR7J7924efvhhVq9ezbBhw3jwwQdJS0ujpKSE1NSvvl8W\nL15MbW0tmzZtorKyksmTJ7Nr1y6mT5/e4r3S0tLYs2cPq1atoqKighdffJHBgweTl5fHypUrGTJk\nCOCdkrx+/XrKysqor69n+PDhLFiwgBUrVjS/VklJCdu3b2fXrl1cvnyZnJwcVq1axaOPPtrpZ4s1\n68mEmijMbBxQzT/As4ue5eHvxV9KFJHe68CBAwQCAaqrqxk3bpzf5UiYHnnkETZs2MD58+cT8t5n\nnW1/Tc8DAedcZHc8vI6OGdHMiIiIROjSpUst/j5z5gxbtmwhPz8/IYOIX7SbRmFEREQiNGHCBAoK\nChgzZgwnT55k8+bNNDQ0sHz5cr9LSygKIwojIiISocLCQrZt28aGDRswMwKBAOXl5dx6661+l5ZQ\nFEYURkREJEKlpaWUlpb6XUbC0zEjCiMiIiK+UhhRGBEREfFVrw8jN6Tc4HcJIiIivVqvDyOaGRER\nEfGXDmBVGBGROHXkyBG/S5BeyI/tTmFEYURE4kxWVhbp6encc889fpcivVR6ejpZWVkxez+FEYUR\nEYkz2dnZHDlyhM8//9zvUqSXysrKIjs7O2bvpzCiMCIicSg7OzumXwYifkqKA1jNrNDM9pvZRTOr\nM7PXu7quwkjsvPzyy36X0Ouoz2NPfR576vPEl/BhxMzuBH4BbAK+DUwEtnZ1/f4p/aNUmVxPA0bs\nqc9jT30ee+rzxJfQu2nMLAVYC/yLc+6FkKd+35X1+/ftr7sqioiI+CzRZ0bGASMAzOyAmX1qZjvM\n7FtdWXnjDzZGtTgRERHpXKKHkW8CBqwAVgKFwFlgt5lldLbyt77epcwiIiIiURSXu2nMbDXweAdN\nHDCGr8JUqXPul8F1/w74BJgHbGhn/VTQBYVi7dy5cxw4cMDvMnoV9Xnsqc9jT30eWyHfnT12Bog5\n53rqtXqMmX0N+FonzT4CJgFvApOcc3tD1t8P7HLOLW/n9f8GeKmHyhUREemNFjrnunzCSEficmbE\nOXcGONNZOzOrBi4Do4G9wWX9gBuBjztYtRJYCNQCl7pXrYiISK+Sivc9W9lTLxiXMyPhMLM1wJ3A\n3+MFkKV4x478mXPunJ+1iYiISOficmYkTI8CV/CuNZIGvA1MUxARERFJDAk/MyIiIiKJLdFP7RUR\nEZEEpzAiIiIivkraMGJmPzSzGjP7MngTvT/vpP08MzsSbH/IzL4fq1qTRTh9bmZFZtZoZteC/zaa\n2cVY1pvozCzfzLab2fFg/83twjoFZlZtZpfM7AMzK4pFrcki3D43sykh23djyDb/9VjVnMjM7Edm\n9o6ZfWFmn5nZf5hZXhfW03geoUj6vCfG86QMI2b218BP8K7MegtwCKg0s6x22jfdXG8DcDPwBvBL\nMxsbm4oTX7h9HnQOGB7yyIl2nUlmAHAQWIJ3IcAOmdmNwK+A/wa+CzwLbDSzGdErMemE1edBDvhT\nvtrO/8Q5dyo65SWdfODfge8BtwH9gCozS2tvBY3n3RZ2nwd1azxPygNYgxc9e9s5VxL824A/Aj91\nzv24jfavAOnOubkhy/YBv3XOLYlR2Qktgj4vAtY45zJjW2lyMrNG4A7n3PYO2vwr8H3n3HdClr0M\nDHHOzY5BmUmli30+Be/CjEOdc1/ErLgkFfxxcwqY7Jz7TTttNJ73oC72ebfH86SbGQle9CyA9+sP\nAOclrl8DE9pZbULw+VCVHbSXEBH2OcBAM6s1sz+YmX65RN9foO3cDwYcDN7Isyr4y10ik4E301TX\nQRuN5z2rK30O3RzPky6MAFlACvDZdcs/w5s6asvwMNtLS5H0+f8Ci4C5eFfD7QPsNbMR0SpS2t3O\nB5vZDT7U0xucAP4R78KMf4U3W7jbzG72taoEFJxtXQv8xjn3uw6aajzvIWH0ebfH82S46JkkIOfc\nfmB/09/BadQjeAP3Cr/qEulJzrkPgA9CFu03s1zgnwAdPByenwFjgVv9LqQX6VKf98R4nowzI58D\n14BvXLf8G8DJdtY5GWZ7aSmSPm/BOXcV+C0wqmdLkxDtbedfOOcu+1BPb/UO2s7DYmbPAbOBAufc\niU6aazzvAWH2eQuRjOdJF0acc1eAamB607LgVNN0gjfTa8O+0PZBM4LLpRMR9nkLZtYH+DbetLZE\nR1vb+Uy0ncfazWg777Lgl+JfAlOdc3/owioaz7spgj6/fv2wx/Nk3U3zb8AL5t3V9x28KdF04AUA\nM/sF8Ilzblmw/bN4+3H/GfgvYAHeAZmLY1x3Igurz81sOd603jG8A6SWAtnAxphXnqDMbADeLw8L\nLvqmmX0XqHPO/dHMVgMjnHNNuwOeB34YPKtmM96AfRferx/pgnD73MxKgBrgfbw7nS4GpuJ9OUon\nzOxneOPxXOCCmTXNeJxzzl0Ktvk5cFzjec+IpM97ZDx3ziXlA+86ALXAl3iJeHzIc28Cm69rfyfw\n+2D794BZfn+GRHuE0+d44aUm2PZT4D+B7/j9GRLpAUwBGvF2kYU+NgefLwfevG6dyXizWF8CR4F7\n/f4cifQIt8+Bx4L9fAE4jXfG2WS/P0eiPNrp62vA34a00Xjuc5/3xHielNcZERERkcSRdMeMiIiI\nSGJRGBERERFfKYyIiIiIrxRGRERExFcKIyIiIuIrhRERERHxlcKIiIiI+EphRERERHyVrJeDF5EE\nZGZDgfHAMOCkc+5Nn0sSkRjQzIiIxJNcvHtibAHyfa5FRGJEl4MXkbhiZiOAT4CZzrlf+12PiESf\nZkZEJN7k492s622/CxGR2FAYEZF4Mwn4nXOuwe9CRCQ2FEZEJN5MBvb6XYSIxI7OphGRuGFmGcBN\nwE+Cf2cBPwIccMo592MfyxORKNHMiIjEk0nBf/cFg8kDeGEkD1joW1UiElUKIyIST/KBM8BJ4EFg\nlXPu/4D+QJmfhYlI9OjUXhGJG2a2FxgI7ACecs5d8rkkEYkBzYyISFwws1QgAHwI3Ai8aGajfS1K\nRGJCYURE4sVEvIPqlzvn7gY+BX7V9KSZDfarMBGJLoUREYkXk4A659z/BP8+hrfLBjMbBRT7VZiI\nRJfCiIjEi3zgrZC/LwM1wf8vAF6JeUUiEhMKIyISLwbRMnC8AtSb2U+BWufcp/6UJSLRprNpRERE\nxFeaGRERERFfKYyIiIiIrxRGRERExFcKIyIiIuIrhRERERHxlcKIiIiI+EphRERERHylMCIiIiK+\nUhgRERERXymMiIiIiK8URkRERMRXCiMiIiLiK4URERER8dX/A9rTDiqrpXTJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" ] - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "V = S[0]\n", + "X = []\n", + "Y = []\n", + "Z = []\n", + "\n", + "for k in k_grid:\n", + " if k < 1.5*k_ss:\n", + " X.append(k)\n", + " Y.append(V[k])\n", + " Z.append(V0[k])\n", + " \n", + "plt.plot(X, Y, color=\"green\", linewidth=2, label=\"Optimum\")\n", + "plt.plot(X, Z, \"--\", color=\"gray\", linewidth=1, label=\"Initial guess\")\n", + "plt.xlabel(\"$k$\", fontsize=14)\n", + "plt.ylabel(\"$V$\", fontsize=14)\n", + "plt.title(\"Value Function\")\n", + "plt.legend(loc='lower right')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 229, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "C = S[1]\nX = []\nY = []\nZ = []\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(C[k])\n Z.append(f(k)-delta*k)\n\nplt.plot(X, Y, color=\"blue\", linewidth=2, label=\"capital stock: $k$\")\nplt.plot(X, Z, \"--\", color=\"gray\", linewidth=1, label=\"net product: $f(k)-\\delta k$\")\nplt.plot([k_ss], [c_ss], marker='o', color='r')\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$c$\", fontsize=14)\nplt.title(\"Policy Function: $c$\")\nplt.legend(loc='lower right')\nplt.show()", - "execution_count": 229, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGOCAYAAABIXnNbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VUX+x/H3JBB6QgkCgVAiRYqACSIIKkVBUEQUwSCy\n4mIDG/7UXcuu6NrXsrgLrrq62DYuKgqIIqjYUFETcOkgvZNQEiIESDK/PyYhuSlw025JPq/nyQOZ\nOfec772PJh/mzMwx1lpERERE/C3E3wWIiIiIgEKJiIiIBAiFEhEREQkICiUiIiISEBRKREREJCAo\nlIiIiEhAUCgRERGRgKBQIiIiIgFBoUREREQCgkKJiIiIBASFEhEREQkICiUilYwx5jpjTLYxpmVR\n30vx9FmJ+JdCiYifGWN+l/OLMPfriDFmrTHm78aY00pxSpvzVdz3Fa6I95T/63Ff1lJMfb2NMQ8Z\nY8ILdPn8sxKRPNX8XYCIAO4X4Z+AzUBNoC9wCzDEGNPFWptRhnO/ASRYa4+VucqSyf+e8lvh4zqK\nci7wZ+DfQFq+dn99ViKCQolIIJlvrU3K+ftrxpj9wGRgOPDf0p7UWmsBf/2Szf+eAokpqtHPn5VI\nlafbNyKB6wvcL882uQ3GmLOMMZ8YY1KNMYeMMZ8ZY8452UmKmydhjIkyxrxqjNlhjMkwxmw0xkw3\nxlQzxvTLec3wIs43JqfvpNf1hjFmhjFmUxHtU4wx2QW/N8acnvOaA8aYg8aY14wxNYt4/cne20PA\n0zmHbs45b5YxpuVJPqtTfu6lqLGDMSa6tJ+dSGWkkRKRwNU25899AMaYzsDXQCrwJJAJ3AR8aYw5\n31r7UzHnKTRPwhjTDPgJCAdeAtYCzYGRQG1r7ZfGmG3ANcDsAue7BvjVWrvEi/cQYYxp5FGMtftO\nVlsx7bl/nwlsBP4IxAITgD3Afd6+N2AW0B64GriDnM8XSC6qHmNMJ7z73L2uMcdq4EtgQBHvX6RK\nUigRCRy5v8Bz55T8CTgMfJTT/yju/9k+1totAMaYN3G/dJ8G+pfgWk8CpwE9rbVL87VPyff3t4DJ\nxph61tpDOdeLBC4C/uLFNQzweYE2C4SWoM6CEq21N564gKvn93j+wj/Ve1tujEnChZLZ1tqt+c5X\n1DUfo2Sfuzc1Qgkm1RpjIoAHcfNfsoAUa+3L3rxWJJjo9o1IYMj9BZ4MbAP+g/sFdLm1dpcxJgQX\nBj7I/cUIYK3dnXNsX2NMXa8u5H7zDgfmFPilXdAbuIA0Ml/b1bhQ8bYXl7K4yboX5vu6yJsaT3K+\nlwq0fQM0yn3vJXhvXinF537KGvOdI9RaO9CLGhrknOMza+1fcCM7T5bm/YgEOo2UiAQGC0wE1uNu\nD+yx1q7N198Yd+thXRGvXY37B0Z0zt9PpTHu1sbKkxZk7VpjzE+42zX/zmkeA/xgrd3oxXUAfirn\nia5bC3x/IOfPBkA6Xr63EijN536qGktqKrDCWvtpzvc7gIdLcR6RgKdQIhI4yvsXeHl4A/ibMSYK\nqAX0woWn8lLc7YvibvFkFdNe5H0XPym3GnPmx8QDg3PbrLUfFf8KkeCm2zciwSEZN7+kQxF9HYFs\n3G0fb8+VBnTx4th3cs4djxslOYabyFleDgD1i2hvXcrzefvevN0grTw/99I4O+fP7yrwGiIBQ6FE\nJAhYa7OBBcDw/MtVjTFNcIHhG2utV7cGcvbi+BAYZoyJPcWx+4BPgGtxt3HmW2v3l+5dFGkDboLv\niRCRMzpweWlOVoL39lvOn0UFovznK7fPvSAvlwSHAKkFN88zxsQYYzTSLZWOQolIYPBmaP9B3HyT\nxcaY+4wx9wKLgTDg3hJe735gL/C1MeY5Y8wNOduuLy9i6/U3gK5AO9yKHG95857ewY1EfGiMud0Y\ncx/wA25lS2l5894Sc+p73Bgz1hgz2hhTq5jzlefnnt9q4PVTHPMVnFjBQ87fuwATrLWZZbi2SEBS\n0hYJDKe8nWCtXWWMOQ94ArcHRgjuF/gYa+3PJbqYtTtzNv/6C+62TDhuAuXHuJCQ31zcbRYDzCnJ\nZbyoY78x5nLgOeApYBPuvbXH7fFRYt68N2vtz8aYB4GbcfM1Qsi3SV2B85Xb517w1JziM7LWHjDG\nXImb17MaN9dmq7X2/jJcVyRgGTfaKSJSNGNMKLATt6fHjac6XkSktAL29o0x5jxjzJycbaKzjTGX\nefGaMGPMY8aYzfm2lr7OB+WKVGYjgEjcbRwRkQoTyLdv6gDLgFdx20J7413cvgLjcRPomhHAwUsk\nkBljegLdcHMqkqy13/q5JBGp5AI2lFhr5wPz4cQujSdljLkYOA+IsdYezGkuuImRiHjvFtyKm6W4\noC8iUqEq0yjCMOBn4A/GmO3GmLXGmL8W9XROETk1a+14a22YtfYca+0qf9cjIpVfwI6UlEIMbqQk\nA7fHQSTwItAQ9zAsERERCWCVKZSE4HZXHJO7mZEx5i7gXWPMRGvt0YIvyHki62BgMy7MiIiIiHdq\n4nZf/jRno8Uyq0yhZBewo8Duiqtxeyu0wE18LWgw3j3tVERERIp2De6p2WVWmULJYmCkMaa2tTZ3\n86cOuNGT7cW8ZjPAW2+9RceOHSu+QgFg8uTJPP/88/4uo0rRZ+57+sx9T5+5b61evZqxY8dCzu/S\n8hCwocQYUwdoS95W1THGmG7AfmvtNmPME0CUtfZ3Of3/wS1d/LcxZgpuafDTwKtF3brJkQHQsWNH\nYmNLtXmklEJERIQ+bx/TZ+57+sx9T5+535Tb9IdAXn3TA7cUMRG3FfOzQBLwcE5/U+DEw6ystb8B\nF+EesPUT8CYwG7jDdyWLiIhIaQXsSIm19itOEpqstYX2TbDWrsPNExEREZEgE8gjJSIiIlKFKJSI\nz8XHx/u7hCpHn7nv6TP3PX3mwa9KPyXYGBMLJCYmJmpylIiISAkkJSURFxcHEGetTSqPc2qkRERE\nRAKCQomIiIgEBIUSERERCQgKJSIiIhIQFEpEREQkICiUiIiISEBQKBEREZGAoFAiIiIiAUGhRERE\nRAKCQomIiIgEBIUSERERCQgKJSIiIhIQFEpEREQkICiUiIiISEBQKBEREZGAoFAiIiIiAUGhRERE\npIqxFmbPhnHjYPhwf1eTp5q/CxARERHf2LgRPv4YPvgAvvjCtRkD6elQt65/awOFEhERkUrvl18g\nIQGefRYyMz37jIH16+Gss/xTW366fSMiIlIJHT0KiYlwxRXQvTs89ZRnIAkLg/vvh8OHAyOQgEZK\nREREKpXjx2HaNPjzn+HQocL9/frBE09A165Qu7bPyzsphRIREZFK4Oef4a674Mcf3ShJfiEhcMMN\nMH489OzpbtkEIoUSERGRIJWcDH/9KyxeDN99V7g/Lg7GjoWLLoLOnX1fX0kplIiIiASZFStgxgx4\n8UU3JyS/mjXh8sthyBAXSEKCaPaoQomIiEgQSE+HBQvg889h+vTC/W3awNCh8PjjEB7u+/rKQ8CG\nEmPMecA9QBzQDLjcWjvHy9f2Ab4ElltrYyusSBERkQq2e7cLIv/3f7BnT+H+2Fh45RX3Z7AL5EGd\nOsAyYCJgvX2RMSYCeB34rILqEhERqXA7dsDgwdCsmbsNUzCQXHIJbNvmlv1WhkACATxSYq2dD8wH\nMKZE84T/CbwNZAMBtHmuiIjIyVnr9hN55RW3+2pBzZu7ia19+0J0tO/rq2gBG0pKwxgzHmgDXAP8\nyc/liIiIeOWrr+C112DhQti1q3D/bbdBnz5w2WVQq5bv6/OVShNKjDHtgMeBvtba7JINroiIiPhW\ndja8/z68+677Kig21gWRiRPhjDN8X58/VIpQYowJwd2yechauyG32dvXT548mYiICI+2+Ph44uPj\ny69IERGp8qyFdevgp5/cCprvvy98TGws3HsvjB7t+/qKk5CQQEJCgkdbampquV/HWOv1HFK/McZk\nc5LVNzmTWw8AmeSFkZCcv2cCg6y1XxbxulggMTExkdjKMktIREQCjrWwahX8/vewZEnh/pAQt9vq\n3/8ePLdnkpKSiIuLA4iz1iaVxzkrxUgJkAZ0KdA2CegPXAls9nVBIiIiAIsWwU03uSfxFlS7Njz0\nkLtFU7eu72sLNAEbSowxdYC25I18xBhjugH7rbXbjDFPAFHW2t9ZN9yzqsDr9wIZ1trVPi1cRESq\nvL174YEH4LPPYPNmz77q1eEPf3AraHr2hAYN/FJiQArYUAL0ABbh9iixwLM57a8D1wNNgUq4IEpE\nRIJRdjYkJLgg8s47kJHh2d+kCUyY4EZNKuNy3vIQsKHEWvsVJ9nczVo7/hSvfxh4uLzrEhERyW/z\nZvj6azcf5OefC/f37QsDBsDdd0O9ej4vL6gEbCgREREJZNu3w9Sp8Le/QWamZ1+1anDuue6BeZ06\n+ae+YKRQIiIiUgIpKe4WzKxZhfvq1YO//MX116zp+9qCnUKJiIjIKSQnw5//7B6MV9QqmmHD4I47\n4Oyzg/cJvYFAoURERKQI1rodVz//HN58E377rfAxN98Mo0ZB//6+r68yUigRERHJ5+hRmDcPnnsO\nFi8u3N+rF5xzDlx7Lbi9w6S8KJSIiIgAqanwzTfuNkzBJ/Qa44LIyy/DmWf6p76qQKFERESqtIwM\nuPVW95Tegk9eqVXLzSWZNEnLeX1BoURERKqctDR4+mk3X+SHHwr3N2gAzz4Ll14KjRv7vr6qSqFE\nRESqjB074JVX4KWXYPfuwv3x8TBkiAsj2v7d9xRKRESkUjt6FJYtcw/Ge/jhwtu/t2/v5ov8/vdw\nwQX+qVEchRIREamUsrPhrbdg8mTYv79wf7t28K9/wfnn+742KZpCiYiIVDpPPunmjBw4ULjvrLNg\nxgy3isaYwv3iPwolIiIS9DIz3QZnn33mbtPs2uXZ36WLW0HTq5cLI6Gh/qkzUOzZs4dNmzZRp04d\nzgygNc4KJSIiErS2b3dP6H3mGVi6tHD/eefB6NFw441Qvbrv6wtUv/zyCz/++CPdunVTKBERESmL\ngwddEHnqqcJP6K1ZE3r0cA/FGzvWP/X5w2+//cauXbvYtWsXZ555JvXr1y/22AsuuICBAwcSGmBD\nRgolIiISNJYudWHj558Lb3QWHu7mkVx/feUfFTl06NCJAJL7lZaWBkCNGjWIioo6aSipUaOGr0ot\nEYUSEREJaOnp8Le/ufkiX31VuH/IELc1fK9eEBHh+/p8zVrLtGnTOHr0KLVq1aJZs2aceeaZNGvW\njGbNmtGgQQNMkM7gVSgREZGAlJzsJq/+7W+wbZtnX0SEeyDexRfD0KGVZxXNkSNH2L9/P82bNy/2\nGGMMV199NfXr1yciIiJoA0hRFEpERCRgWOsehvfZZ3DvvW47+Pxat3ZB5LHHoGFDv5RYbo4ePcqu\nXbvYuXPnia8DBw5QvXp1/vjHPxISElLsa1u3bu27Qn1IoURERAJCSgqMGweffFK4LzrabXQ2aJDv\n6ypv27dvZ/bs2aSkpABQvXp1mjVrRvv27YmKiiIqKqpSjX6UhEKJiIj4zf798OijsHAhrFhRuL9D\nB3j1VTdfJMAWipRavXr1aNOmDX369CEqKorIyMiTjopUJQolIiLic998427RTJsG+/YV7v+//3Nz\nRfr2hbAw39fnLWst+/fvZ/v27ezYsYOdO3fSqlUrLrroomJfExERwdChQ31YZfBQKBEREZ/IynKj\nIY88ArNmFe6PjYU+fWDCBOja1ff1eWvbtm2sX7/+RAjJyHnCX6NGjWjevDktWrTwc4XBS6FEREQq\n3OzZbn+RPXsK93Xp4p5FExfn87JKZe3atSxbtozmzZvTu3dvmjdvTlRUFLVq1fJ3aUFPoURERCrE\n3r0wZYq7TbN+vWdfSAjceafbX6RlS7+U5yE7O5vk5GR27NhB27ZtCQ8PL/bYfv36MXDgwCo7GbUi\nKZSIiEi5sRa+/NJNXJ0+HVJTPfvbt4ebb4bBg6FTJ7+UCEBaWtqJeSC5t2GOHz8OwKhRo04aSqpV\n06/OiqJPVkREyiwrC5Yvh4cegjlzCvf36QOXXAJ33QX+3uH8n//8J3ty7iOFh4fTvHlzLrjgApo3\nb06zZs0Cdgv2qiBgQ4kx5jzgHiAOaAZcbq0t4j/1E8ePAG4BugM1gJXAFGvtAh+UKyJSZX34oZsv\nsndv4b7YWHj9dTdvJFCcffbZ1K5dmxYtWlCvXj1/lyP5BGwoAeoAy4BXgSLmaRdyPrAAuA84CFwP\nzDXG9LTW/lJhVYqIVEF797pVNAsXwrp1nn2hoXD33XD77RAVVbF1ZGVlsWvXLrZv38727dvZs2cP\nt9xyy0n3/YgLlhm1VVDAhhJr7XxgPoDxYjaRtXZygaYHjDHDgWGAQomISBllZMB338HXX8PUqXDw\noGf/GWe4+SIXX+w2PasIx44d49dffz0RQnbu3ElWVhahoaFERUXRrl07jh8/rlswQSpgQ0lZ5QSZ\nesB+f9ciIhLMcievXn89bN5cuL93bxg2zDfzRQ4fPsy7775LREQELVq0oFOnTkRHR9O0aVNCK8uW\nr1VYpQ0luPkodYCZ/i5ERCQYHTsG99/vntRb1HyRrl1dX3ltdJaRkUF6ejqRkZHFHhMREcFdd92l\nuSCVVKUMJcaYMcCfgMustSn+rkdEJJj8/DP85z8wcybs2OHZd9pp8PTT0K8ftGpV+mtYa0lNTWXr\n1q1s3bqVbdu2sXfvXqKiorjhhhuKfZ0xRoGkEqt0ocQYczXwMjDSWrvIm9dMnjyZiIgIj7b4+Hji\n4+MroEIRkcCTlQX/+58b+Xj++cL9gwbBwIFulU2BH5clsm3bNpYsWcLWrVs5dOgQAJGRkURHR9O7\nd29aBsJOalJIQkICCQkJHm2pBTehKQfGWlvuJy1vxphsTrEkOOe4eOBfwGhr7UdenDcWSExMTCQ2\nNrZ8ihURCTIrV8Lo0e7Pgrp2hSefhCFDyuda69ev55tvviE6OpqWLVsSHR1N7dq1y+fk4lNJSUm5\nK5nirLVJ5XHOgB0pMcbUAdoCuStvYowx3YD91tptxpgngChr7e9yjh8DzABuB34yxjTJed0Ra22a\nb6sXEQlsW7bAs8/CokXuIXkFXXEFvPwyNGrk3fkOHTrE1q1bT0xALU67du1o165dKauWyi5gQwnQ\nA1gE2JyvZ3PaX8ftQdIUiM53/A1AKDAt54sCx4uIVGnWQlKS21vk4YfdEt/86tVze48MHAhnnnmy\n87j5IJs3b2bLli1s3bqV/fvdQsdzzz1XT8mVUgvYUGKt/Qoodvcba+34At/3r/CiRESC1J49bknv\nxx8X7uvRA/r3d0t6mzY9+XkWL17Mjz/+SFqaG4A+7bTTOP300xkwYAAtW7bUJFQpk4ANJSIiUnYp\nKTB2LHz6aeG+uDh4911o08b789WpU4dOnTrRunVrWrZsSa1atcqvWKnyFEpERCqZtDR49VU3X2Tu\nXM++kBD44x9dUDnjDDAGsrOz2b17N1u2bKFDhw40bNiw2HN37969gquXqkyhRESkkjhwAL74wj1z\nZudOz76QEJg8Ga69Frp0yWLHjh18++2WE/uEHDt2jGrVqhEREXHSUCJSkRRKRESChLWWoh4FZi38\n4Q9uNU12tmdf48ZuvshDD0GnTjBr1izmzVvD8ePHCQsLo2XLlpx33nm0atWKqKgobdUufqVQIiIS\nwA4dOsQzDzzA4rlzqXP8OL9Vr06fYcP4v0cf46OP6jF7tltNc+CA5+uaN4cZM9xKmvw5pkmTJjRp\n0oQ2bdrQtGnTkz5NV8TXFEpERALUoUOHuLJ3b+5avZop2dkY3P4In0ybRo/XvmD9b98D9TDG0qTJ\nXlq33kTr1nGMGVOdAQOgbt3C5+zTp4+P34WI9xRKREQC1DMPPMBdq1dzcb57MgYYmp1N1m+ruee0\nG+jW7wratNlMrVpHMCaUCRNaEhUV5b+iRcpAoUREJEAtnjuXKQUnieS4lGwePvopXboMonfvHpx+\nehtatGhB9erVfVylSPlRKBERCUBr1ljs/uMUntbqGKBprdo8+OD4Iie/igQjzXASEQkAx48fz3ly\nLvz5z9Cli2FzWnWKe2SqBTJqhimQSKWikRIRET/Izs5m165dbNy4kU2bNrF581aszeK55+4mLa0O\nAPsYxjymcSmFb+HMDwmh72WX+bpskQqlUCIi4iPHjh3jl19+YdOmTWzatImMjAyMCePgwdZ8992F\nbNwYQ1pa7RPH9xn6GH9d9wUhG1czJN/qm/khITzfsSPvP/qo396LSEVQKBER8aGFCxfStGlTmjQ5\nh2nTYkhKak52dt6GZdHRMGwYXHopXHxxPdLTv+fZBx/k+TlzqH38OIerV6fPZZfx/qOP6uF3Uuko\nlIiIlJPidlzNtXt3GOvW3cPUqdXZu9ezr0YN95Texx7z3OysXr16TJk6FaZOPeX5RYKdQomISBmk\npqby66+/smHDBlJSUrjlllsKBYelS+GTT+CJJyA93XPJbpMm8PLLcNFFcKoH7iqQSGWnUCIiUgLH\njx9ny5YtHkHEGEPz5s3p3LkzWVlZVKvmfrSmpcEdd7jt3gu69FIXRK69Fho08O17EAlUCiUiIl7a\nv38/L774IpmZmYSHh3P66afTv39/2rRpQ618wxzLlrkn8n7zDWRleZ7j7LPhv/+FNm18XLxIEFAo\nERHxUoMGDbjwwguJiYkhMjLS43bKoUPw+efw6afwz38Wfu2tt7qgEhPjw4JFgoxCiYhUedZa9u3b\nR3JyMh07diz2OGMM55xzTqH2zz+HsWNh927P9nr14He/g9GjoW/f8q5apPJRKBGRKikzM5PNmzez\nfv161q9fz4EDB6hVqxYdOnQgJOTUm11v2gTPPQfz58Ovv3r2Va/ulvW+/DI0alRBb0CkElIoEZEq\nIyMjgxUrVvDrr7+yceNGjh8/TkREBO3ataNdu3a0adPmlIFk2zaYMwfuuQeOHPHsa90apk6F/v3d\nKImIlIxCiYhUGceOHeOTTz4hOjqa888/n/bt29O4cWOvltpmZcGNN8JrrxXuO/98GDLEzRupW7cC\nChepIhRKRKTKCA8P595776VGjRpeHW8tfPCB+5ozxy3xze+ss2D2bLcLq4iUnUKJiAS9AwcOsG7d\nOlJSUrjkkktOeqw3gcRaWLMGHnjABZKCJk6EceOgRw8IDS3cLyKlo1AiIkHHWsvOnTtZu3Yta9eu\nZe/evYSGhtKmTRuysrIILUNSWLoUrrkGVq/2bK9bFy68EG6+GQYPLuMbEJEiKZSISNBIT09n0aJF\nrFu3jvT0dGrVqkW7du244IILOP30072+LVPQgQNuROTjj+H99z37QkPhoYfgD3+AsLByeBMiUiyF\nEhEJGmFhYWzfvp0uXbrQoUMHWrZs6dXy3eJYC1984UZG9uzx7GvWDO6+2y3tbdeujIWLiFcUSkQk\naISFhXHLLbeU+TzWwlNPwT/+ATt2ePY1bAiXX+76IyPLfCkRKYHS/xOjghljzjPGzDHG7DDGZBtj\nLvPiNf2MMYnGmAxjzDpjzO98UauIlJ61lr179/LVV1/x9ttvY62tsGvt3An/+pfbXfW++zwDSXQ0\nLFoEe/fCq68qkIj4QyCPlNQBlgGvArNOdbAxpjXwETAdGANcCPzLGLPTWruw4soUkZKy1rJr1y5W\nr17N6tWr2bdvH2FhYbRv356jR49Ss2bNcr3enj1uG/jPPivc178/XHGFW00THl6ulxWREgrYUGKt\nnQ/MBzDe7GwEtwAbrbX35ny/1hjTF5gMKJSIBIBjx47xxRdfsGbNGlJTU09s6z5o0CBiYmKoVq18\nfyR9/z289RbMmAGHD3v2RUbCo4/CTTeV6yVFpAwCNpSUQi+g4L+DPgWe90MtIlKE6tWrs337dtq3\nb0/Hjh1p1apVmSaqFmffPnjmGXjySc/2sDC3PfywYdpjRCQQVaZQ0hQoMH+ePUC4MaaGtfaoH2oS\nkXyMMUyYMKHCzr9gATzyiBshyc7Oa69eHQYOhGefhU6dKuzyIlJGlSmUiIifZGVlsXHjRlavXs2Q\nIUOoXr26z66dnQ3ffQczZ8Lf/164f8wYeOklPZNGJBhUplCyG2hSoK0JkHaqUZLJkycTERHh0RYf\nH098fHz5VihSiWRlZbFp0yZWrlzJmjVryMjIoFGjRhw8eJDGjRv7pIbUVBgxwq2aya9ZMzexdfhw\n6NPHJ6WIVGoJCQkkJCR4tKWmppb7dUxFLr8rL8aYbOBya+2ckxzzJDDEWtstX9t/gPrW2qHFvCYW\nSExMTCQ2Nra8yxaplDZs2HAiiBw5coSGDRvSuXNnOnfuzGmnnebVE3fLIjvbTV597z23A2tWVl5f\nSIjbCO3VV90tGxGpOElJScTFxQHEWWuTyuOcATtSYoypA7QFcn/CxRhjugH7rbXbjDFPAFHW2ty9\nSP4JTDLGPAW8BgwERgJFBhIRKZ3PP/+cjIwM4uLi6Ny5M02aNKnwIJJr7Vq4806YP9+zPTQUnn7a\nLevV/iIiwStgQwnQA1gE2JyvZ3PaXweux01sPfHAcGvtZmPMJbjVNrcD24HfW2uL2JlAREpr7Nix\n1KpVy2dBxFqYPt3NF1m71rOvaVO47DK45Rbo3t0n5YhIBQrYUGKt/YqT7DhrrR1fRNvXQFxF1iVS\nmSUnJ1O3bl1q1apV7DG1a9f2SS1Hj7rn0kyfDh995NlXvbpb8nvrre6WjYhUDgEbSkTEN9LS0li+\nfDkrVqxg9+7dDBkyhJ49e/q1pjffdIEjLc2zvWdPuOoqtwNrTIx/ahORiqNQIlIFHTlyhFWrVrF8\n+XK2bNlCtWrVaN++PRdccAFt27b1S0179sAHH8D77xfeDr5mTfjLX9xTe0Wk8lIoEalivv76a776\n6iustcTExDB8+HA6duxIjRo1/FbThx+6SaqHDnm2n3ce3HUXXHQR1Knjn9pExHcUSkSqmObNmzNo\n0CA6d+5MXT/uKLZzJ7z4ohsdWbnSs69lS5gwwT3Jt5wfhyMiAUz/u4tUMaeffjqnn366366flQWf\nfgrXXguwRFNWAAAgAElEQVT793v2de/u9hg56yzw0eIeEQkgCiUilURGRgarVq0iJCSE7gG4PvbA\nAXjwQXj3XUhO9uw791y48kqYONHNHxGRqkmhRCSIZWdns3HjRn755RfWrFlDZmYm3bt3D6hQ8ttv\nbrOze++FjRs9+2JiYN48OOMM/9QmIoFFoUQkCCUnJ7Ns2TKWL1/OoUOHiIyM5IILLqBr166Eh4f7\nuzwAjh93k1RffRWOHPHsu+IK93X55ZrAKiJ5FEpEgszWrVv597//Ta1atejSpQvdunUjKirKZzus\nnkpKCsyeDf/4Byxb5tkXFQWzZsE55/inNhEJbAolIkGmRYsWjB49mrZt21ItgJampKTAjTfCnDme\nD8kDuO46iI+H/v31oDwRKV7g/EQTEa+EhIRwRgBNwti5001efeYZ2L7ds69lS3juOTeJVUTkVBRK\nRAKEtZaNGzeyfPlyLr300oAaBSnOrFluae/hw3ltoaEwebLbDv7ss7W0V0S8F/g/9UQqubS0NJKS\nkli2bBmpqak0btyY1NRUGjVq5O/SirRpE8yc6b6Skjz7unZ1E1t79PBPbSIS3BRKRPwgd1Tk559/\nZu3atVSrVo0uXboQGxtL8+bNA2bSakFTp8L//V/hOSNnnw0zZkCnTn4pS0QqCYUSET945513WLdu\nHaeddhpDhgyha9eufn32zMls3w5vvAEJCbBihWdfjx5w9dXuib4BWr6IBBGFEhE/6NmzJ3369CE6\nOjpgR0XAbQc/ahSkpXm2jxjhJrbGxPinLhGpnBRKRPzAn8+eOZUtW+A//3EjI8uXe/b17u2W906Y\nACEhfilPRCoxhRKRcpacnExGRgbR0dH+LqXEZs6E3/0OMjI82zt1chuitW3rn7pEpGpQKBEpB9Za\n1q9fz5IlS9i4cSMxMTFce+21/i7LK/v3u0mqCQnw88+efb16uTkjEyZoO3gRqXgKJSJlkJGRwbJl\ny/jxxx85cOAAUVFRjBgxgk5BsgxlxQoYMqTwpmd9+sCbb0KbNv6pS0SqJoUSkVI4fPgwX375JcuW\nLSMrK4vOnTtzxRVX0KJFC3+XdkoHD7rbNG+/DV9/7dkXGwtjx8KkSRAW5p/6RKTqUigRKYVq1aqx\nceNGevfuTY8ePahXr56/S/LKL7/AxRfD7t2e7U2auGfW9Ozpn7pEREChRKRUwsLCmDRpUkAv582V\nmQkffOBux8yd69l3xhlwzTVwww0umIiI+JNCiUgpBUMg+e03uPRS+PJLz/boaPcQvZ499WwaEQkc\n2mlApIB9+/Yxb948tm7d6u9SSiU7G776yq2YadLEM5BERcE990BiIpxzjgKJiAQWjZSI4Jb0btu2\nje+//541a9ZQp04dWrdu7e+ySuzIEbjkEli0yLO9WjV48UUYP949xVdEJBAplEiVZq1l9erVfPfd\nd+zYsYPIyEiGDRtG165dqVYteP732LDBPZ/mn/+EvXvz2uvVg6uucqtpYmP9V5+IiDeC56euSDnb\nvn07s2fPJiUlhVatWhEfH0+7du2CYq5IrkOH4Npr3W6r+YWGwj/+AePGQe3a/qlNRKSkAjqUGGMm\nAXcDTYFfgNustT+d5Pg7gZuBlkAK8B5wn7X2qA/KlSBTr149IiMjGT58eFDsL5LfoUNuoupTT8G6\ndXntISEwaBD86U9w7rn+q09EpDQCNpQYY0YDzwI3Aj8Ck4FPjTHtrbUpRRw/BngCuA74HmgPvA5k\n44KNiIeIiAhGjx7t7zJK5NAhN1H1rbfcyppcoaHwyCPuYXlRUX4rT0SkTMq8+sYY09UYU7tAW4ey\nnhcXQl6y1r5hrV2DGwE5DFxfzPG9gW+ttf+11m611n4GJADaDkqCnrWweDEMGAAvveQZSDp2hIUL\n4f77FUhEJLiVKZQYY/6IG8X4uEBXU2PMk2U4b3UgDvg8t81aa4HPcOGjKN8BccaYs3POEQMMBeaV\ntg4JXunp6Xz66accPHjQ36WUydGj8MwzLnj07ev5wLybboIffoCVK6F/f//VKCJSXsp6+6YB7nZJ\nRP5Ga+1XxpgmxphLrLWlCQWRQCiwp0D7HqDIURhrbYIxJhL41riZiqHAP621T5Xi+hKk0tPTWbx4\nMT///DOhoaG0bt2a+vXr+7usUklOhpEjCz+fpn59+O9/3dwREZHKpKyhpLq19p2iOqy1M40xf8NH\nIxXGmH7A/bjbPD8CbYEXjDG7rLWP+qIG8Z+CYaRPnz6cc8451KpVy9+llUh2Nnz+ObzyCnz4IRw/\nntfXrx9cfz1ceaVW1IhI5VTWUNLIGHO6tXZDMf3HSnneFCALKPg0jibA7sKHA/AI8Ia19t853680\nxtQFXgJOGkomT55MRITHYA/x8fHEx8eXtG7xsd9++41vv/026MMIuEAycqR7Tk1+YWHuib4jR/qn\nLhGRhIQEEhISPNpSU1PL/TplDSVTgc+MMbcWc5umbmlOaq09boxJBAYCcwBybskMBF4o5mW1cStt\n8svOfW3OnJQiPf/888RqZ6mgtH//fpYuXcq5555Lr169gjKM7N0Lr78O06bBli157aed5lbT3HAD\ntG3rt/JERIr8h3pSUhJxcXHlep0yhRJrbZIx5kFgljFmHfAhsAxIA/pSylCS4zlgRk44yV0SXBuY\nAWCMeQPYbq29P+f4ucBkY8wyYAnQDjd6MudkgUSCW3R0NHfddRdhYWH+LqXErHXLe194wfM2DcBz\nz7ldWIPwbYmIlFqZ9ymx1r5tjFkNPIWb05G7HeZC4OoynHdmzsTVR3C3bZYBg621yTmHtAAy873k\nL7iRkb8AzYFk3CjLg6WtQYJDsAUSa92qmcceg3kFxhcHDIA//EGTWEWkaiqXzdOstUnARTkhIgbY\na63dXA7nnQ5ML6ZvQIHvcwPJX8p6XQkcWVlZWGuD6jk0xTlyBGbMcM+n+d//PPtuuQXuuku3aUSk\naivXn/Q5O60W2m1VpKSstaxcuZJFixbRvXt3zjvvPH+XVCZpaTBwoOc+I+CW9z76qLtVIyJS1QX/\nPz+l0tmwYQOfffYZu3fvpl27drRr187fJZXa+vVuZORf/3LBJFevXnDzzTBqFATh3FwRkQqhUCIB\nY+/evSxcuJBff/2V6Ohoxo8fT8uWLf1dVqls2AATJ8KCBZ7tNWrAe+/BpZf6py4RkUCmUCJ+d+zY\nMRYsWEBSUhL169fnqquuomPHjrhV4MHFWli0CK65Bnbn21GnRg0YPRruvhvOPNN/9YmIBDKFEvG7\natWqkZyczEUXXUTPnj0JDQ31d0kllp4Ob74J//gHrFqV196gAdx3H4wfD5GR/qtPRCQYKJSI34WE\nhHDdddcF5cgIwPffw7BhsG+fZ3tMDHz6qVbUiIh4q0xPCRYpL8EYSHbvhilT3BN68weSvn3hnXdg\nzRoFEhGRktBIifiEtTYog0dRfvkFnn3WBY/8O7F26eJu4XTv7r/aRESCmUZKpEJlZWXxww8/8Npr\nr5GVleXvcsps7lw4+2wXPnIDSWgoXH01fPGFAomISFlopEQqzKZNm/jkk09ISUkhLi6OrKysoJzE\nai18+SU8/7wLJbkaNICbbnJLf6Oj/VaeiEiloVAi5S41NZUFCxawatUqoqOjueGGG2jWrJm/yyqV\nTz6B+++HZcs82/v0cZNY69TxT10iIpWRQomUm+zsbJYsWcKiRYuoUaMGI0aM4MwzzwzKuSTZ2e45\nNRMmuJGSXM2bw223we23aydWEZHyplAi5Wbp0qUsWLCAnj17MmDAAGrUqOHvkkrs6FF4+203kTX/\nfiOdO8MDD8DIkVC9uv/qExGpzBRKpNx0796dqKiooL1VM3Mm3HGH506sAEOGuLkkQTgdRkQkqGj1\njZSb0NDQoAwkR4+6nVivvtozkPTtCx9+CB99pEAiIuILGimRKistDV5+2a2q2bkzr/388+Gpp9yT\nfEVExHcUSsRr1loyMjKoFeQzPLOy4PHH3byR1FTPvhEj3KZoYWH+qU1EpCrT7RvxSlpaGgkJCbz+\n+utkZ2f7u5xSO3wYbrkF/vznvEBijAsjP/wAs2YpkIiI+ItGSuSkrLUnVtWEhYVx6aWXEhISfFk2\nLQ2mT4fnnoPk5Lz2666DP/4ROnTwW2kiIpJDoUSKlZqayty5c9mwYQPdu3dn8ODB1KxZ099llUhK\nCrzwAvz973DwoGffk0/CH/7gn7pERKQwhRIp0vLly5k3bx5hYWFcc801tA3Cx92uWAH9+nk+wdcY\nGDUK7rsPunXzW2kiIlIEhRIpZPny5cyaNYsuXbowdOjQoJvYmpEB//oX/OlPeaMj1arBtde6WzXt\n2/u3PhERKZpCiRTSsWNHRo8ezRlnnOHvUkrkyBF45RW3nDf/Et+YGPj8c2jd2m+liYiIF4JvxqJU\nuGrVqgVVILEWXnzRhY877vAMJJddBosWKZCIiAQDhRIJatbClCkwcaLnbqyXXw5JSTB7NrRs6bfy\nRESkBHT7RoKStTB/vps3kpiY1z5iBDz0kCaxiogEI42UVEHHjx/n22+/JSsry9+llMoXX0CfPjB0\nqGcguesut/mZAomISHDSSEkVk5yczLvvvsvBgweJiYkhKirK3yV57eBB99C8Tz/1bO/WDR55BIYN\n809dIiJSPgJ6pMQYM8kYs8kYc8QY84Mx5uxTHB9hjJlmjNlpjMkwxqwxxlzsq3oD3bJly3jllVcA\nuOGGG4IqkOzcCVde6RlIOnWCd991c0cuu8ztQSIiIsErYEdKjDGjgWeBG4EfgcnAp8aY9tbalCKO\nrw58BuwGrgB2Aq2AgwWPrWoyMzOZP38+iYmJdO/enaFDh1K9enV/l+WVgwfdEt+pU92SX4AaNdzS\n3zFjIDTUv/WJiEj5CdhQggshL1lr3wAwxtwMXAJcDzxdxPG/B+oDvay1uZMltvqi0ECWlpbGzJkz\n2b17N8OGDSM2NtbfJXnlyBH4xz/giSfgwIG89nr14M03Yfhw/9UmIiIVIyBv3+SMesQBn+e2WWst\nbiSkdzEvGwZ8D0w3xuw2xiw3xtxnjAnI9+grs2bN4tChQ4wfPz4oAklmJrz6qtt19d578wJJWBjc\neSds2KBAIiJSWQXqSEkkEArsKdC+Byjuea4xwADgLWAI0BZ4Efce/1IxZQa+YcOGUbNmTerUqePv\nUk4pPR0GDoQff8xrM8ZtD//II9Cqlf9qExGRiheooaQ0QnCh5cacUZWlxpgWwN2cIpRMnjyZiIgI\nj7b4+Hji4+MrqlafadSokb9L8MqGDTBhgmcgGTYMHnsMzjzTf3WJiAgkJCSQkJDg0Zaamlru1zHu\n93dgybl9cxi40lo7J1/7DCDCWjuiiNd8CRyz1g7K13YxMA+oYa3NLOI1sUBiYmJiUNzaqIwOHnTB\n44UX4Ngx1xYWBnPnwqBBJ3+tiIj4T1JSEnFxcQBx1tqk8jhnQM63sNYeBxKBgbltxhiT8/13xbxs\nMe6WTX4dgF1FBRLxr8xMmDYN2raFZ57JCyRNmsB77ymQiIhURQEZSnI8B9xgjBlnjDkD+CdQG5gB\nYIx5wxjzeL7jXwQaGmNeMMa0M8ZcAtwH/MPHdftcenq6v0vwmrXw8cfQtSvceivs2+faa9aEBx6A\n9eu1CZqISFUVsHNKrLUzjTGRwCNAE2AZMNham5xzSAsgM9/x240xg4HngV+AHTl/L2r5cKWRmJjI\n/PnzGT9+fMBvhrZnD4wbBwsWeLaPGeOW/urBeSIiVVvAhhIAa+10YHoxfQOKaFsCnFvRdQUCay1f\nfvklX3/9NT169KBp06b+Lumk0tPdw/K+/z6vrXdveP55OOcc/9UlIiKBI6BDiRQtOzubefPmkZSU\nxMCBA+nTpw8mQPdYtxYSEuCee9xW8QAREfDSSzBqlLaGFxGRPAolQeb48eO8//77rFu3juHDh9O9\ne3d/l1Ss//3PzRv55pu8tho14P333X4kIiIi+QXyRFcp4MiRI7z55pts3LiR+Pj4gA0khw7BXXdB\nbKxnILn0UlixQoFERESKppGSILJq1SpSUlIYN24cLVq08Hc5hVgLs2bBHXfAjh157W3bugfqDR3q\nv9pERCTwKZQEkbi4OM4444yA3DJ+40Z3q+aTT/Lacpf53nOPu20jIiJyMgolQSbQAsnRo/DXv7pd\nWTMy8tqHDHFP+Y2J8V9tIiISXBRKpNQyM+HCC+Hbb/Pamjd3t2quuEIra0REpGQ00VVK5cABuOaa\nvEASGuomt65eDVdeqUAiIiIlp5ESKbH334dJk9wOrbnmzYPBg/1Xk4iIBD+NlASY1NRUPvroIzIz\nA+8ZgsnJbsOzkSPzAkm9ejBjhgKJiIiUnUZKAsihQ4d4/fXXsdZy5MgR6tWr5++STnj3XZg4EVJS\n8tqGDYPp0yEAVyeLiEgQ0khJgPjtt9944403yMrKYty4cQETSPbuhauuciMkuYGkYUP4z39g9mwF\nEhERKT8KJQHg6NGjvP322xw5coRx48bRoEEDf5eEtfDf/0KnTvDee3ntV1wBq1ZBfLwms4qISPlS\nKPGzrKwsZs6cyf79+xk7diyNGjXyd0kcOOBCx9VXw759ri0y0oWU996DJk38W5+IiFROmlPiR9Za\n5syZw5YtW7jmmmto2rSpv0viiy/gd7+D7dvz2kaOhGnT4LTT/FeXiIhUfhop8aNDhw6xadMmLr/8\nctq0aePXWo4ehbvvdg/Lyw0kDRrAO++4Sa4KJCIiUtE0UuJH4eHh3HrrrYSFhfm1jpUrYcwY+N//\n8toGDnRLfTWRVUREfEUjJX7mz0BiLfz97xAXlxdIwsLg2WdhwQIFEhER8S2NlFRRBw7A+PFuWW+u\nzp3h7behWzf/1SUiIlWXRkqqoB9/hLPO8gwkd9wBP/+sQCIiIv6jUFKFWAt/+xv07Qtbtri2hg3h\no49ce82a/q1PRESqNt2+8ZH09HTq1q3rt+sfOADXXw8ffpjXdu65bnVNdLTfyhIRETlBIyU+sHLl\nSqZOnUpK/gfH+NDSpRAb6xlI7r0XvvxSgURERAKHRkoq2L59+5gzZw4dOnTwy26tb78NEyZARob7\nvmFDeOMNuOQSn5ciIiJyUhopqUDHjx9n5syZ1KtXj2HDhmF8+LCYzEyYPBnGjs0LJOecA8uWKZCI\niEhgUiipQB9//DH79+9n1KhR1KhRw2fX3bsXLrrITV7NNWECfPWVbteIiEjg0u2bCrJixQqWLVvG\n8OHDOc2He7QvXQrDh8O2be776tXdBmk33eSzEkREREoloEdKjDGTjDGbjDFHjDE/GGPO9vJ1Vxtj\nso0xsyq6xqKkpqYyb948OnfuTDcfbvwxe7Zb7psbSJo2dZNZFUhERCQYBGwoMcaMBp4FHgLOAn4B\nPjXGRJ7ida2BvwJfV3CJxdqwYQNhYWFccsklPplHYq3bGn7ECDh82LX16gWJiW7Zr4iISDAI5Ns3\nk4GXrLVvABhjbgYuAa4Hni7qBcaYEOAt4M/A+UCEb0r1FBsbS+fOnX0yj+T4cZg0CV55Ja8tPh5e\ne02boYmISHAJyJESY0x1IA74PLfNWmuBz4DeJ3npQ8Aea+2/K7bCU6voQGItLF4Mffp4BpKHHnLL\ngBVIREQk2ATqSEkkEArsKdC+B+hQ1AuMMX2B8UClf3rLsWNuNc2bb+a1hYW50ZFrrvFfXSIiImUR\nqKGkRIwxdYE3gBustQf8XU9FSk+HK6+EBQvy2iIj4YMP3CRXERGRYBWooSQFyAKaFGhvAuwu4vjT\ngVbAXJM3szQEwBhzDOhgrd1U3MUmT55MRITn9JP4+Hji4+NLV30F2b8fhg6FJUvy2i67zO1H0qaN\n/+oSEZHKLSEhgYSEBI+21NTUcr+OcVM1Ao8x5gdgibX2jpzvDbAVeMFa+9cCx4YBbQuc4jGgLnA7\nsN5am1nENWKBxMTERGJjYyvgXZSf3bth0CBYvtx9X78+zJ2r0REREfGPpKQk4uLiAOKstUnlcc5A\nHSkBeA6YYYxJBH7ErcapDcwAMMa8AWy31t5vrT0GrMr/YmPMQdz82NUVWeSOHTuoVasWDRs2rLBr\nbNkCF14Iv/7qvm/SxN2+6dq1wi4pUqG2bt3qtwdUioh3IiMjadmypU+vGbChxFo7M2dPkkdwt22W\nAYOttck5h7QACo1++FJmZiazZs2iYcOGXFMBM0ythUWL4NprYedO19ayJXz2GbRrV+6XE/GJrVu3\n0rFjRw7nbqojIgGpdu3arF692qfBJGBDCYC1djowvZi+Aad47fgKKSqfJUuWcODAAUaPHl3u587I\ncPuNfPhhXluHDrBwoZ5fI8EtJSWFw4cP89Zbb9GxY0d/lyMiRVi9ejVjx44lJSVFoSQYHDp0iK+/\n/pqzzz673J9tc+wYjBwJ8+bltXXvDp9+Cj58jI5IherYsWPAz+USEd8KyM3TgsGiRYsIDQ2lX79+\n5Xre48fh6qs9A8kdd7jbOAokIiJSmWmkpBRSUlJYtmwZgwYNolatWuV23sxMN3/kgw/c97Vqwccf\nQznnHhERkYCkUFIKixYtIjw8nB49epTbOQ8dgquucrdoAGrUgDlzFEhERKTq0O2bEtq/fz+rVq2i\nX79+VKtWPpnuu++gefO8QFK9Osya5ZYBi4iIVBUaKSmhhg0bcuONN9KkScHNZktn1Sq49FI3UgJQ\nrRq8+67buVVERKQqUSgphWbNmpXLebZtg8GD4UDO03qio90ISTneFRIREQkaun3jJ//9r3tezfbt\n7vu4OFi5UoFEREpnxowZhISEsHXr1qA4b0WZMmUKISEh7N+/39+lSCkolPjB7NluY7SsLPd927Zu\nlU29ev6tS0SClzGGvOeROt9//z0PP/wwaWlp5Xre0iiPWrxRXvUWdPfdd3PRRRdx++23l/u5JY9C\niY8tXQpjxrgt5AG6ddOmaCJSduPGjePIkSMeu29+9913PPLIIxw8eNCPlQVeLaXx1FNPkZ2dTXh4\nuL9LqdQUSnxo5Uq45BLIfeTHmDEupMTE+LcuEQl+xhjCwsI82gLpKfCBVEtphIaGsnbtWvrq0ewV\nSqHERz78EM46C3btct/37g2vvgoVMMooIgFg586d/P73v6d58+bUrFmTmJgYJk6cSGame47o1q1b\nmThxImeccQa1a9cmMjKSUaNGsWXLFo/z5M6RWLt2LaNGjSIiIoLIyEjuvPNOjh49euK4gnM/Hn74\nYe69914AWrduTUhICKGhoSf6vb2+t9LT07nzzjtp06YNNWvWpEmTJgwaNIilS5eeshaApUuXMmTI\nECIiIqhXrx4XXnghS5YsKfHnWpQtW7bQtm1bunbtSnJy8on2tWvXsm3bNq/e3+bNm9mzZw/nnnuu\ntx+JlIJW35zC8ePHWbJkCbGxsdSuXbtU51ixAsaOdVvIA7Rq5XZtrVmzHAsVkYCxa9cuzj77bNLS\n0rjpppvo0KEDO3bs4L333uPw4cOEh4fz008/8cMPPxAfH0+LFi3YvHkz06dPp3///qxatYqaOT8g\ncudHjBo1ijZt2vDkk0/yww8/8MILL3Dw4EFmzJhx4rj8cymuvPJK1q1bxzvvvMPUqVNp1KgRAI0b\nNwbw+vreuummm5g1axa33XYbHTt2ZN++fXz77besWbPmlLWsWrWK888/n4iICP74xz9SrVo1Xnrp\nJfr163fiGWPefq4FbdiwgQEDBtC4cWMWLlxIgwYNTvR17NiRfv368cUXX5zy/S1evJjOnTvr9k1F\ns9ZW2S8gFrCJiYm2OElJSXbKlCl23759xR5zMp99Zm3duta6WSTW9upl7e7dpTqVSKWQmJhoT/X/\nXbAbN26crVatmk1KSir2mIyMjEJtS5YsscYY+9Zbb51omzJlijXG2BEjRngcO2nSJBsSEmKXL19u\nrbV2xowZNiQkxG7ZsuXEMc8880yhtpJev6jzFqV+/fr2tttuK7b/ZLVcfvnltmbNmnbz5s0n2nbt\n2mXDw8Ntv379TrR587lOmTLFhoSE2H379tnVq1fb5s2b2169etmDBw8WOjYkJMQOGDDgpO8r1y23\n3GInTZpkrbX2hx9+sA8++KBt2rTpic+/svHm/9PcY4BYW06/l3X75iSstfz444+0a9eOhg0blvj1\ny5a5OSTp6e777t3hiy+gnPZdE6kSevSAFi0q9qs8l+Jba5k9ezaXXXYZZ511VrHH1ahR48TfMzMz\n2b9/PzExMdSvX5+kpCSPY40xTJo0yaPttttuw1rLxx9/XKo6S3J9b9SvX58lS5awK/cetZeys7NZ\nuHAhI0aMoFWrVifamzZtypgxY/j2229JT0/3+nPNtXz5cvr160dMTAwLFy4kIiKi0DFZWVl8/vnn\nXtW5ePFi+vbty6JFi9i3bx/XXnst1lqys7O9f7NySrp9cxK7du1i9+7d9O/fv8Sv3bsXRo6E3Fu+\n7dq5eSXl+Pw+kSph927YscPfVXgvOTmZtLQ0OnfufNLjMjIyePzxx5kxYwY7duw4MRHUGENqamqh\n49u2bevx/emnn05ISAibN28uVZ0lvf6pPP3001x33XVER0cTFxfH0KFDGTduHG3atDnp65KTkzl8\n+DDt27cv1NexY0eys7PZtm0bjRo18upzBRcMhw0bRtOmTZk/f36pb73nSktLY+XKlWzYsIHIyEiG\n5my5vXv37jKdVwpTKDmJZcuWUbdu3UI/DE5lwwbo29f9MAWIjXXPt8n3DxMR8VLTppXjGgXdeuut\nvP7660yePJlevXoRERGBMYbRo0d79a/vsu7FUdbrF3TVVVdx/vnn88EHH7BgwQKeeeYZnnrqKT74\n4AMGDx5cplpLyhjDyJEjef3113nrrbe48cYby3S+77//noYNG7JmzRrWrl1Lq1ataNeuXTlVK/kp\nlBQjMzOTFStWcNZZZxES4v1drvR097Tf3EASHu52b1UgESmdn3/2dwUl07hxY8LDw1mxYsVJj3v/\n/S2VUCAAAB0MSURBVPe57rrrePrpp0+0HT16tNh9PNavX+9xe+PXX38lOzub1q1bF3uNkwWXkl7f\nG02aNOHmm2/m5ptvJiUlhbPOOovHHnuMwYMHF1tL48aNqV27NmvXri3Ut3r1akJCQoiOjqZOnTpe\nfa65/vrXvxIaGsrEiRMJDw/n6quvLvX7Wrx4MQMHDuTNN9/k6aef5rLLLmP16tVkZ2eX6PeDnJo+\nzWKsX7+eI0eO0K1bN69fk5YGvXq5vUfAzR357ju3Y6uIVA3GGC6//HLmzp170rkZoaGhhUYkXnjh\nBbJyt3rOx1rLtGnTCh1rjGHIkCHFXqNOnToARQaNklz/VLKzswvt1BoZGUlUVNSJZcvF1RISEsKg\nQYOYPXu2xxLhPXv2kJCQwHnnnUfdunW9/lxzGWN4+eWXGTlyJOPGjeOjjz4qdIy3S4IXL15Mr169\nAOjcuTP79u0DYNq0aRw5cuSUrxfvaaSkGL/88gtRUVGc5uVWq9bC7be7DdIAwsLcdvJe3P4UkUrm\n8ccf5//bu/foqKrz/+PvPYAmCAmXcFURFEGqghBZohCJF6CwEAEBRUBZIFpAUWxrgYU/DEsMYotf\n8EIBtVhtsVQr2qpFo1Yk3FYTwEIJoAtqgAgB5CaBQPL8/phJyJALMyGZmSSf11qzmHNmn3Oe2UzO\nPLPP2Xt/9tln3HrrrTz88MN06NCBvXv38u6775KamkpMTAz9+/fnrbfeIiYmhp/97GesWbOGzz//\nnLi4uBL3uXPnTu6++25+/vOfs3r1av70pz8xcuRIrr/++lLjiI+Px8yYNm0a9913H3Xq1GHAgAFE\nR0cHffyyHDt2jMsuu4whQ4bQqVMn6tWrx2effca///1v5s6de95Ynn32WVJSUujevTsTJkygVq1a\nLFq0iNzcXL+WnEDqtSjnHG+//TYDBw5k6NChfPzxx373CAbSJTgvL4/169eTnJxcuK7gkn5OTg7R\nulGwYlVUN56q+KCMLsEZGRm2Y8eOUjpCFffww2e7/UZHm61cGfCmIjVKTegSbGaWmZlpo0ePtmbN\nmll0dLS1bdvWJk2aZKdPnzYzsyNHjtjYsWOtadOmFhMTY/369bPt27dbmzZtbMyYMYX7KejimpGR\nYUOHDrXY2Fhr3LixPf7443bq1KnCcqV13Z01a5ZdfvnlVrt2bb/XDx8+HNDxA+kSnJuba7/5zW+s\nc+fOFhsba/Xr17fOnTvbwoULA4rFzGzjxo3Wt29fi4mJsXr16tmdd95p69atC7pei3YJLpCTk2O3\n3XabxcTE2Pr16wvXB9IlOCsry9q3b1+4/5ycHBswYIBNnz7dtmzZUua2VVm4ugQ7s6o99O+FcM51\nAdLS0tLo0qVLufezfDkMGnR2eeFCuMD7qkSqrfT0dOLj47nQv7uaIikpiZkzZ5KdnV2uoQlEyiOQ\nv9OCMkC8mQXfj7wEuqfkAn39tXe01gLPP6+EREREpDyUlFyA48dh+HD46Sfvct++8OtfhzcmERGR\nqkpJSTnl58Pjj58d1KlLF/jTnzTBnoiISHkpKSmnF16AN97wPr/4Yli2DIrM8yQiUiFmzJhBXl6e\n7ieRGkFJSTl88glMn352+cUX4aqrwhePiIhIdaCkJEiHDsHYsXDmjHd54kQYPz68MYmIiFQHEZ2U\nOOcmOud2OudynHNrnXNdyyj7kHNupXPukO/xWVnlS7Jp0yZWrFhR6utm3q6/BZNgJibC734XzBFE\nRESkNBGblDjn7gV+B8wAOgObgBXOudKGG+wJ/BlIBLoBmcCnzrkWgR5z8+bN7N+/v9TXlyyBlSu9\nzxs2hMWLNaeNiIhIRYnYpASYDCw0sz+aWQbwC+AEMKakwmY2ysx+b2bfmNl24CG87++OQA6Wn5/P\n999/X+o02zt3wi9+cXb59dc1p42IiEhFisikxDlXB4gHPi9YZ96hZ1OAmwPczSVAHeBQIIX3799P\nbm4urVq1KvZafj788peQm+tdHjUKBg4MMAoREREJSEQmJUAcUAvYd876fUDzAPfxPLAHbyJzXpmZ\nmXg8Hlq0KH61Z9kyeP997/OYGJg3T+ORiIiIVLRqOUuwc24KMAzoaWa5gWyTmZlJixYtqFOnjt/6\nkyfh2WfPLr/2msYjERERqQyRmpQcAPKAZuesbwb8UNaGzrlfAU8Bd5jZlkAONnnyZA4ePEi9evX4\n8MMPARg+fDjDhw/nl7+ELb69dO0KQ4YE9T5ERESqvKVLl7J06VK/dUeOHKnw40RkUmJmp51zaXhv\nUv0QwDnnfMvzS9vOOfcUMBXobWYbAj3ec889R0pKCkOGDOHaa68tXP/uu/Dqq97nUVHeVhJdthER\nkZqm4Id6UUVmCa4wEZmU+MwFlviSk/V4e+PUBZYAOOf+COw2s2m+5d8AScBw4HvnXEEry3Ez++l8\nB0tMTOTyyy8vXDbzH7X1pZegY8cLf1MiIiJSski90RUzWwb8CpgJbAA6An3MLNtX5DL8b3r9Bd7e\nNu8Ce4s8fnm+Y0VHR9OzZ09iYmIK133+OWzb5n2ekOAdxVVERAL3zDPP4PFE7NdM0L7++mtSU1PD\nHUa1FtGfFjN71cxam1m0md1sZv8u8trtZjamyHIbM6tVwmNmsMc9cwaefPLs8vjxumwjIuGzZs0a\nkpKSOHr0aLhDCYpzDleJJ89Q1su3337LP/7xD7p37+63/le/+hW9evVi0qRJJW43ZcoUfvrpvI31\nlep8MUaSiE5KwmXxYvjPf7zPb7wR7r03vPGISM22evVqZs6cyeHDh8MdSkSprHqZPXs2kyZNon//\n/oUJz7Rp05he9Jq+z/PPP09+fr5fS3tRjz76KJMnT67Q+Eqzfft2Hn30UTp27Ei3bt345z//GVCM\nkURJyTlOnoRZs84uv/QSVKPWRxGpgrxjR4bOiRMnQnq88qqMeklJSeHNN99k8ODBpKWlcfz4cdas\nWUPTpk2pX79+sfK1atVi27Zt9OjRo8T9XXbZZbRr147ly5dXeKznWrZsGS+//DIbN25kzJgxXH31\n1QHFGEn0dXuO11+HPXu8z+++G7p1C288IlL1FNxL8d133zF69GgaNmxIgwYNGDNmDCdPnvQru3fv\nXsaMGUPz5s2Jioriuuuu4w9/+EPh60lJSTz11FMAtG7dGo/HQ61atfj+++/Pe/xt27YxbNgwYmNj\niYuL44knnuDUqVMllt26dSv3338/jRo1IiEhAYANGzbQt29fYmNjqV+/PnfeeSfr1q0r8ZirVq2i\na9euREdHc/XVV7No0aJiZUaPHl3iVB6l3Xuyd+9exo4dy6WXXkpUVBRXXnklEyZM4MyZM+etl23b\ntpGZmVlqHZXmvffeIyEhgcTERLKysmjZsiWvvvoqo0aNKrH8rl272LdvH7fcckup+xw3bhwvvvhi\n0LGUx8cff4zH4+Hhhx/mqquuCjjGSBHJvW9CLj8f5s49uzxjRvhiEZGqq+A+imHDhnHllVcye/Zs\n0tPTee2112jWrBnJycmAd3qLm266iVq1ajFp0iTi4uL45JNPGDt2LMeOHWPSpEkMHjyY7du38847\n7zBv3jwaN24MQJMmTQI6fps2bZg9ezZr165l/vz5HD58mCVLlhQrO3ToUNq1a0dycjJmxn//+18S\nEhJo0KABU6ZMoXbt2ixcuJDExERWrlxJ165nJ2HfvHkzffr0oWnTpsycOZPTp0/zzDPP0LRp02Jx\nlXSPSUnrs7Ky6Nq1K0ePHuWRRx6hffv27Nmzh3fffZcTJ06ct146dOhAYmIiX3zxxfn/w4pYvXo1\nTzzxhN+6VatW+SWKRaWmpnLttdeWeWkkNjaWBg0asHnzZq677rqg4glG//796devHxs2bKBZs7PD\nfAUSY8Qwsxr7ALoAlpaWZmZmH31k5u0MbNarl4lIJUhLS7Oif3fV0TPPPGPOORs3bpzf+sGDB1uT\nJk0Kl8eOHWuXXnqp/fjjj37lhg8fbg0bNrSTJ0+amdlvf/tb83g89r///S+o4w8aNMhv/cSJE83j\n8dh//vOfYmVHjhzpV3bgwIEWFRVlu3btKlyXlZVlMTExlpiYWKxs3bp1bffu3YXrMjIyrHbt2ubx\neArXjR492tq0aVNivEXLmZk98MADVrt2bUtPTy/1fZZVLx6Px26//fZStz3X22+/bffee29hvT3w\nwAN2+PBh27Fjh3Xt2rXU7caPH28TJ040M7O1a9fa9OnTrXnz5n51bGaWnJxsc+bMCTie8sjMzLQ2\nbdpYr3O+wAKNsahA/k4LygBdrIK+l3X5BsjO9vYyfvnls+smTgxTMCJSzLFjx8jKyir1UfA3XJbs\n7OwStz127FilxOyc45FHHvFbl5CQwMGDBzl+/DgAf/vb37jrrrvIy8vj4MGDhY/evXtz5MgR0tPT\nL+j4E885kT322GOYGR9//HGZsebn5/PZZ58xaNAgrrjiisL1zZs35/7772fVqlWF7yE/P59PP/2U\nQYMGcemllxaWbd++PX369ClX7GbGBx98wIABA+jcuXO59pGXl8fnn39+/oI+I0aMYOrUqdSpU4dl\ny5bx5ptvEhsby549e4q1+BSVmppKjx49+PLLLzl48CCjRo3CzMjPz/cr16lTJzZu3Fiu9xKIuXPn\nMn/+fObNm0dKSgqffvpp0DFGAl2+AdLS0rjkkj588ol3uVUr6N8/vDGJyFlpaWl89dVXpb7epEkT\nJkyYUOY+/vrXv5aYvPTs2ZPExMQLDbFE58463tA3cdaPP/5ITk4Ohw8fZtGiRSxcuLDYts459u/f\nf0HHb9u2rd/yVVddhcfjYdeuXcXKFr3XIzs7mxMnTtCuXbti5Tp06EB+fj6ZmZl06NCB7OxscnJy\nih0LvInJJwUn1iBkZ2dz9OhRvxG2Q2HTpk1cc8011K599qsxOzub2NjYEssfPXqULVu28N133xEX\nF0e/fv0A+OGH4rOhNGrUiO+++65S4l6wYAGpqam89957gPcem6+++orevXsHFWMkUFIC1K9fn1de\nObs8fTrUqhW+eETEX3x8PO3bty/19aJfIqUZOnQoZ86cKba+Xr16FxRbWWqVciIp+it15MiRPPjg\ngyWW61jBw0iXNWZIdHR0hR4rmOPn5eVV+rEDsWnTJm644Qa/dWW1JqxZs4ZGjRqRkZHBtm3buOKK\nKwp7vJyrYcOGpc4Vs2zZMt5///1S68fMcM5x//330/+cX8wnTpxg6tSpfoO6XXfddYU3VAcTYyRQ\nUgJER9fjo4+8zxs2hNGjwxqOiJyjfv36JXbHDEZZN4aGQ5MmTahfvz55eXncfvvtZZYt7wBkO3bs\n8Lv88u2335Kfn0/r1q3PG1vdunXZVjCsdRFbt27F4/EUTsvRpEkToqOj2bFjR7GyGRkZfssNGzYs\ncUyRc1tumjRpQkxMDJs3by4zzooemO2bb76hb9++fuvi4uJKHQclNTWVO+64g7feeos5c+YwYMAA\ntm7dSn5+frHeRHl5eVx00UUl7mfYsGEMGzasXDGvXLmS2NhYv1alEydOFCbxwcQYCSIvojDYvbsu\nBZeV77oL6tQJbzwiUv15PB7uuece3nvvPbZsKT6h+YEDBwqfX3LJJQBBDRJmZrxStAkYmD9/Ps65\nYl+8JcXWu3dvPvjgA7+ux/v27WPp0qUkJCQUtjB5PB769OnD8uXL2b17d2HZrVu3+t3XAN7LR0eO\nHPFLNrKysoqN4eGcY+DAgfz9738v876asuqlPF2CN27cWKylpEWLFhw8eLDE8qmpqXTzjRtx7bXX\nFpZ75ZVXyMnJ8Sv7448/VkpinJOT4zdv2/Hjx9mwYQODBw8OOsZIoKQESE8/22x5331hDEREapTZ\ns2fTokULbrrpJiZPnszixYt5/vnnGTZsGNdcc01hufj4eMyMadOm8fbbb/OXv/wloC+UnTt3cvfd\nd7NgwQJGjRrFggULGDFiBNdff/15t3322WepXbs23bt3Jzk5mTlz5tC9e3dyc3OZM2eOX9mkpCTM\njB49ejBnzhxmzZrF7bffXqz763333UfdunUZOHAg8+fPJzk5mW7dupV4ae65556jadOm3HrrrTz5\n5JMsXryYpKQkrr/++sJRVsuqlw4dOpR6WawkmZmZHDp0iE6dOvmtv+aaa9i3b1+xyzh5eXmsX7+e\nm2++uXBdwX01OTk5xS6HHThwgJYtWwYcT6BuueUW9u3bx+nTpwFYvHgx99xzD3FxcUHHGBEqqhtP\nVXzg6xLctGmKgVnjxma5uaX2fhKRClBTugR7PB47ePCg3/olS5YU68KanZ1tjz32mF1xxRV28cUX\nW8uWLa1Xr172+uuv+207a9Ysu/zyywu72ZbVPbjg+BkZGTZ06FCLjY21xo0b2+OPP26nTp0KKFYz\ns40bN1rfvn0tJibG6tWrZ3feeaetW7euxGN+/fXX1rVrV4uKirK2bdvaokWLSuzqm5KSYh07drSo\nqCjr0KGD/fnPfy6xnJm3i+vo0aOtWbNmFh0dbW3btrVJkybZ6dOnz1svwXYJXr58uXXs2LHE1+69\n995iXZOzsrKsffv2hbHk5OTYgAEDbPr06bZly5Zi+3j66adt3rx5AccTjJSUFHvooYdsypQpNn78\n+ML/42BjLCpcXYKdWWiHL44kzrkuQNpFF6WSm3sL48fDq6+GOyqR6i09PZ34+HjS0tLo0qVLuMOp\nlpKSkpg5cybZ2dk0atQo3OFEtBkzZtC3b18++ugj8vLyeO6554qVWbFiBStXrmRW0TlIgtSrVy9+\n//vfF46yGukC+TstKAPEm1n5+68Xocs3QG7uxYB3WHkREakZDhw4QHJyMocOHSI1NZVx48aVWK5P\nnz588803xaYICNSePXswsyqTkISTkhIAHB4PFLnsJiIi1VxcXBxjx44lNTWVESNGlDgvT4EZM2aQ\nlJRUruO89NJLPP300+UNs0ZRl2CfG26AqjAtgIiIVJwFCxYEVO7GG29k165dfPnll9x2220B73/T\npk3k5ubSs2fP8oZYo6ilxMc3KaaISJU3Y8YM8vLydD9JBRsyZEhQCQl4Z+194YUXKimi6kctJT5K\nSkREpKJNnTo13CFUKWop8bnxxnBHICIiUrMpKQGioqDIgHgiIiISBkpKgDZtIAKnABAREalR9FWM\nNykRERGR8FJSAlx5ZbgjEBERESUlwIgR4Y5ARERE1CUYuOiicEcgUvNs3bo13CGISCnC9feppERE\nQiouLo66desycuTIcIciImWoW7cucXFxIT2mkhIRCalWrVqxdetWDhw4EO5QRKQMcXFxtGrVKqTH\nVFIiIiHXqlWrkJ/sRCTyRfSNrs65ic65nc65HOfcWudc1/OUH+qc2+orv8k51zdUsUrgli5dGu4Q\nahzVeeipzkNPdV71RWxS4py7F/gdMAPoDGwCVjjnSrzA5Zy7BfgzsBi4AfgAWO6c+1loIpZA6cQR\neqrz0FOdh57qvOqL2KQEmAwsNLM/mlkG8AvgBDCmlPKTgE/MbK6ZbTOz/wekA4+GJlwRERG5EBGZ\nlDjn6gDxwOcF68zMgBTg5lI2u9n3elEryigvIiIiESQikxIgDqgF7Dtn/T6geSnbNA+yvIiIiESQ\nmt77Jgo0iFOoHTlyhPT09HCHUaOozkNPdR56qvPQKvLdGVVR+4zUpOQAkAc0O2d9M+CHUrb5Icjy\nAK0BDeIUBvHx8eEOocZRnYee6jz0VOdh0RpYXRE7isikxMxOO+fSgDuADwGcc863PL+UzdaU8Hov\n3/rSrABGALuAkxcWtYiISI0ShTchWVFRO3Te+0cjj3NuGLAEb6+b9Xh74wwBrjGzbOfcH4HdZjbN\nV/5m4F/AVOAjYDgwBehiZv8N+RsQERGRoERkSwmAmS3zjUkyE+9lmI1AHzPL9hW5DDhTpPwa59z9\nwCzfYwdwtxISERGRqiFiW0pERESkZonULsEiIiJSwygpERERkYhQ7ZMSTeoXesHUuXPuQedcvnMu\nz/dvvnPuRCjjrcqccwnOuQ+dc3t8dTcggG0SnXNpzrmTzrntzrkHQxFrdRFsnTvnehb5bOcX+bw3\nDVXMVZ1zbqpzbr1z7qhzbp9z7n3nXLsAttP5vJzKU+cVcT6v1kmJJvULvWDr3OcI3pF3Cx5XVHac\n1cgleG8CnwCc9wYx51xr4B94p3DoBMwDXnPO9aq8EKudoOrcx4CrOfsZb2Fm+ysnvGopAXgJuAm4\nE6gDfOqciy5tA53PL1jQde5zQefzan2jq3NuLbDOzB73LTsgE5hvZnNKKP8OUNfMBhRZtwbYYGYT\nQhR2lVaOOn8QeNHMGoU20urHOZcPDDSzD8so8zzQ18w6Flm3FIg1s34hCLNaCbDOewJfAA3N7GjI\ngqvGfD9y9gO3mtmqUsrofF6BAqzzCz6fV9uWEk3qF3rlrHOAes65Xc65751z+iVTubqhz3g4OGCj\nc26vc+5T3694Kb8GeFufDpVRRufzihVIncMFns+rbVKCJvULh/LU+TZgDDAA7+i6HmC1c65lZQVZ\nw5X2GY9xzl0chnhqgizgEeAeYDDelsN/OeduCGtUVZSv9fX/gFXnGYdK5/MKEkSdX/D5PGIHT5Oa\nwczWAmsLln3Nq1vxnsRnhCsukYpiZtuB7UVWrXXOXYV3lGrdZBy8V4GfAd3DHUgNElCdV8T5vDq3\nlIRqUj85qzx17sfMzgAbgLYVG5r4lPYZP2pmp8IQT021Hn3Gg+acexnoBySaWdZ5iut8XgGCrHM/\n5TmfV9ukxMxOAwWT+gF+k/qVNpvhmqLlfc43qZ/4lLPO/TjnPMD1eJu8peKV9BnvjT7joXYD+owH\nxffleDdwm5l9H8AmOp9foHLU+bnbB30+r+6Xb+YCS5x3xuGCSf3q4p3oD3fOpH54u0f+yzn3JGcn\n9YsHxoU47qosqDp3zj2Nt7nvW7w3Uj0FtAJeC3nkVZBz7hK8v0Kcb9WVzrlOwCEzy3TOJQMtzazg\nMsHvgYm+Xjhv4D1pD8H7S0gCEGydO+ceB3YCW/DOqjoOuA3vF6QEwDn3Kt7z8QDgJ+dcQQvIETM7\n6SvzJrBH5/OKUZ46r5DzuZlV6wfesQR2ATl4M+Qbi7z2BfDGOeXvATJ85b/BOwlg2N9HVXoEU+d4\nk5idvrJ7gb8DHcP9HqrKA+gJ5OO9bFb08Ybv9T8AX5yzza14W7Ry8E5cOSrc76MqPYKtc+DXvnr+\nCcjG2zvt1nC/j6r0KKW+84AHipTR+TzMdV4R5/NqPU6JiIiIVB3V9p4SERERqVqUlIiIiEhEUFIi\nIiIiEUFJiYiIiEQEJSUiIiISEZSUiIiISERQUiIiIiIRQUmJiIiIRITqPsy8iFQxzrmGwI1AE+AH\nM/sizCGJSIiopUREIs1VeOfbeBtICHMsIhJCGmZeRCKOc64lsBvobWYp4Y5HREJDLSUiEokS8E4I\nti7cgYhI6CgpEZFI1AP4r5kdC3cgIhI6SkpEJBLdCqwOdxAiElrqfSMiEcU51wC4DvidbzkOmAoY\nsN/M5oQxPBGpRGopEZFI08P37xpfgjIeb1LSDhgRtqhEpNIpKRGRSJMAHAR+AB4FnjOzXOAiYEE4\nAxORyqUuwSISUZxzq4F6wMfAM2Z2MswhiUiIqKVERCKGcy4KiAe+A1oDbznn2oc1KBEJGSUlIhJJ\nbsF7A/7TZnYfsBf4R8GLzrmYcAUmIpVPSYmIRJIewCEz2+xb/hbvpRycc22Bh8IVmIhUPiUlIhJJ\nEoCviiyfAnb6ng8H3gl5RCISMkpKRCSS1Mc/8XgHOOycmw/sMrO94QlLREJBvW9EREQkIqilRERE\nRCKCkhIRERGJCEpKREREJCIoKREREZGIoKREREREIoKSEhEREYkISkpEREQkIigpERERkYigpERE\nREQigpISERERiQhKSkRERCQiKCkRERGRiKCkRERERCLC/wencU6y3SaINAAAAABJRU5ErkJggg==\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGOCAYAAABIXnNbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VUX+x/H3JBB6QgkCgVAiRYqACSIIKkVBUEQUwSCy\n4mIDG/7UXcuu6NrXsrgLrrq62DYuKgqIIqjYUFETcOkgvZNQEiIESDK/PyYhuSlw025JPq/nyQOZ\nOfec772PJh/mzMwx1lpERERE/C3E3wWIiIiIgEKJiIiIBAiFEhEREQkICiUiIiISEBRKREREJCAo\nlIiIiEhAUCgRERGRgKBQIiIiIgFBoUREREQCgkKJiIiIBASFEhEREQkICiUilYwx5jpjTLYxpmVR\n30vx9FmJ+JdCiYifGWN+l/OLMPfriDFmrTHm78aY00pxSpvzVdz3Fa6I95T/63Ff1lJMfb2NMQ8Z\nY8ILdPn8sxKRPNX8XYCIAO4X4Z+AzUBNoC9wCzDEGNPFWptRhnO/ASRYa4+VucqSyf+e8lvh4zqK\nci7wZ+DfQFq+dn99ViKCQolIIJlvrU3K+ftrxpj9wGRgOPDf0p7UWmsBf/2Szf+eAokpqtHPn5VI\nlafbNyKB6wvcL882uQ3GmLOMMZ8YY1KNMYeMMZ8ZY8452UmKmydhjIkyxrxqjNlhjMkwxmw0xkw3\nxlQzxvTLec3wIs43JqfvpNf1hjFmhjFmUxHtU4wx2QW/N8acnvOaA8aYg8aY14wxNYt4/cne20PA\n0zmHbs45b5YxpuVJPqtTfu6lqLGDMSa6tJ+dSGWkkRKRwNU25899AMaYzsDXQCrwJJAJ3AR8aYw5\n31r7UzHnKTRPwhjTDPgJCAdeAtYCzYGRQG1r7ZfGmG3ANcDsAue7BvjVWrvEi/cQYYxp5FGMtftO\nVlsx7bl/nwlsBP4IxAITgD3Afd6+N2AW0B64GriDnM8XSC6qHmNMJ7z73L2uMcdq4EtgQBHvX6RK\nUigRCRy5v8Bz55T8CTgMfJTT/yju/9k+1totAMaYN3G/dJ8G+pfgWk8CpwE9rbVL87VPyff3t4DJ\nxph61tpDOdeLBC4C/uLFNQzweYE2C4SWoM6CEq21N564gKvn93j+wj/Ve1tujEnChZLZ1tqt+c5X\n1DUfo2Sfuzc1Qgkm1RpjIoAHcfNfsoAUa+3L3rxWJJjo9o1IYMj9BZ4MbAP+g/sFdLm1dpcxJgQX\nBj7I/cUIYK3dnXNsX2NMXa8u5H7zDgfmFPilXdAbuIA0Ml/b1bhQ8bYXl7K4yboX5vu6yJsaT3K+\nlwq0fQM0yn3vJXhvXinF537KGvOdI9RaO9CLGhrknOMza+1fcCM7T5bm/YgEOo2UiAQGC0wE1uNu\nD+yx1q7N198Yd+thXRGvXY37B0Z0zt9PpTHu1sbKkxZk7VpjzE+42zX/zmkeA/xgrd3oxXUAfirn\nia5bC3x/IOfPBkA6Xr63EijN536qGktqKrDCWvtpzvc7gIdLcR6RgKdQIhI4yvsXeHl4A/ibMSYK\nqAX0woWn8lLc7YvibvFkFdNe5H0XPym3GnPmx8QDg3PbrLUfFf8KkeCm2zciwSEZN7+kQxF9HYFs\n3G0fb8+VBnTx4th3cs4djxslOYabyFleDgD1i2hvXcrzefvevN0grTw/99I4O+fP7yrwGiIBQ6FE\nJAhYa7OBBcDw/MtVjTFNcIHhG2utV7cGcvbi+BAYZoyJPcWx+4BPgGtxt3HmW2v3l+5dFGkDboLv\niRCRMzpweWlOVoL39lvOn0UFovznK7fPvSAvlwSHAKkFN88zxsQYYzTSLZWOQolIYPBmaP9B3HyT\nxcaY+4wx9wKLgTDg3hJe735gL/C1MeY5Y8wNOduuLy9i6/U3gK5AO9yKHG95857ewY1EfGiMud0Y\ncx/wA25lS2l5894Sc+p73Bgz1hgz2hhTq5jzlefnnt9q4PVTHPMVnFjBQ87fuwATrLWZZbi2SEBS\n0hYJDKe8nWCtXWWMOQ94ArcHRgjuF/gYa+3PJbqYtTtzNv/6C+62TDhuAuXHuJCQ31zcbRYDzCnJ\nZbyoY78x5nLgOeApYBPuvbXH7fFRYt68N2vtz8aYB4GbcfM1Qsi3SV2B85Xb517w1JziM7LWHjDG\nXImb17MaN9dmq7X2/jJcVyRgGTfaKSJSNGNMKLATt6fHjac6XkSktAL29o0x5jxjzJycbaKzjTGX\nefGaMGPMY8aYzfm2lr7OB+WKVGYjgEjcbRwRkQoTyLdv6gDLgFdx20J7413cvgLjcRPomhHAwUsk\nkBljegLdcHMqkqy13/q5JBGp5AI2lFhr5wPz4cQujSdljLkYOA+IsdYezGkuuImRiHjvFtyKm6W4\noC8iUqEq0yjCMOBn4A/GmO3GmLXGmL8W9XROETk1a+14a22YtfYca+0qf9cjIpVfwI6UlEIMbqQk\nA7fHQSTwItAQ9zAsERERCWCVKZSE4HZXHJO7mZEx5i7gXWPMRGvt0YIvyHki62BgMy7MiIiIiHdq\n4nZf/jRno8Uyq0yhZBewo8Duiqtxeyu0wE18LWgw3j3tVERERIp2De6p2WVWmULJYmCkMaa2tTZ3\n86cOuNGT7cW8ZjPAW2+9RceOHSu+QgFg8uTJPP/88/4uo0rRZ+57+sx9T5+5b61evZqxY8dCzu/S\n8hCwocQYUwdoS95W1THGmG7AfmvtNmPME0CUtfZ3Of3/wS1d/LcxZgpuafDTwKtF3brJkQHQsWNH\nYmNLtXmklEJERIQ+bx/TZ+57+sx9T5+535Tb9IdAXn3TA7cUMRG3FfOzQBLwcE5/U+DEw6ystb8B\nF+EesPUT8CYwG7jDdyWLiIhIaQXsSIm19itOEpqstYX2TbDWrsPNExEREZEgE8gjJSIiIlKFKJSI\nz8XHx/u7hCpHn7nv6TP3PX3mwa9KPyXYGBMLJCYmJmpylIiISAkkJSURFxcHEGetTSqPc2qkRERE\nRAKCQomIiIgEBIUSERERCQgKJSIiIhIQFEpEREQkICiUiIiISEBQKBEREZGAoFAiIiIiAUGhRERE\nRAKCQomIiIgEBIUSERERCQgKJSIiIhIQFEpEREQkICiUiIiISEBQKBEREZGAoFAiIiIiAUGhRERE\npIqxFmbPhnHjYPhwf1eTp5q/CxARERHf2LgRPv4YPvgAvvjCtRkD6elQt65/awOFEhERkUrvl18g\nIQGefRYyMz37jIH16+Gss/xTW366fSMiIlIJHT0KiYlwxRXQvTs89ZRnIAkLg/vvh8OHAyOQgEZK\nREREKpXjx2HaNPjzn+HQocL9/frBE09A165Qu7bPyzsphRIREZFK4Oef4a674Mcf3ShJfiEhcMMN\nMH489OzpbtkEIoUSERGRIJWcDH/9KyxeDN99V7g/Lg7GjoWLLoLOnX1fX0kplIiIiASZFStgxgx4\n8UU3JyS/mjXh8sthyBAXSEKCaPaoQomIiEgQSE+HBQvg889h+vTC/W3awNCh8PjjEB7u+/rKQ8CG\nEmPMecA9QBzQDLjcWjvHy9f2Ab4ElltrYyusSBERkQq2e7cLIv/3f7BnT+H+2Fh45RX3Z7AL5EGd\nOsAyYCJgvX2RMSYCeB34rILqEhERqXA7dsDgwdCsmbsNUzCQXHIJbNvmlv1WhkACATxSYq2dD8wH\nMKZE84T/CbwNZAMBtHmuiIjIyVnr9hN55RW3+2pBzZu7ia19+0J0tO/rq2gBG0pKwxgzHmgDXAP8\nyc/liIiIeOWrr+C112DhQti1q3D/bbdBnz5w2WVQq5bv6/OVShNKjDHtgMeBvtba7JINroiIiPhW\ndja8/z68+677Kig21gWRiRPhjDN8X58/VIpQYowJwd2yechauyG32dvXT548mYiICI+2+Ph44uPj\ny69IERGp8qyFdevgp5/cCprvvy98TGws3HsvjB7t+/qKk5CQQEJCgkdbampquV/HWOv1HFK/McZk\nc5LVNzmTWw8AmeSFkZCcv2cCg6y1XxbxulggMTExkdjKMktIREQCjrWwahX8/vewZEnh/pAQt9vq\n3/8ePLdnkpKSiIuLA4iz1iaVxzkrxUgJkAZ0KdA2CegPXAls9nVBIiIiAIsWwU03uSfxFlS7Njz0\nkLtFU7eu72sLNAEbSowxdYC25I18xBhjugH7rbXbjDFPAFHW2t9ZN9yzqsDr9wIZ1trVPi1cRESq\nvL174YEH4LPPYPNmz77q1eEPf3AraHr2hAYN/FJiQArYUAL0ABbh9iixwLM57a8D1wNNgUq4IEpE\nRIJRdjYkJLgg8s47kJHh2d+kCUyY4EZNKuNy3vIQsKHEWvsVJ9nczVo7/hSvfxh4uLzrEhERyW/z\nZvj6azcf5OefC/f37QsDBsDdd0O9ej4vL6gEbCgREREJZNu3w9Sp8Le/QWamZ1+1anDuue6BeZ06\n+ae+YKRQIiIiUgIpKe4WzKxZhfvq1YO//MX116zp+9qCnUKJiIjIKSQnw5//7B6MV9QqmmHD4I47\n4Oyzg/cJvYFAoURERKQI1rodVz//HN58E377rfAxN98Mo0ZB//6+r68yUigRERHJ5+hRmDcPnnsO\nFi8u3N+rF5xzDlx7Lbi9w6S8KJSIiIgAqanwzTfuNkzBJ/Qa44LIyy/DmWf6p76qQKFERESqtIwM\nuPVW95Tegk9eqVXLzSWZNEnLeX1BoURERKqctDR4+mk3X+SHHwr3N2gAzz4Ll14KjRv7vr6qSqFE\nRESqjB074JVX4KWXYPfuwv3x8TBkiAsj2v7d9xRKRESkUjt6FJYtcw/Ge/jhwtu/t2/v5ov8/vdw\nwQX+qVEchRIREamUsrPhrbdg8mTYv79wf7t28K9/wfnn+742KZpCiYiIVDpPPunmjBw4ULjvrLNg\nxgy3isaYwv3iPwolIiIS9DIz3QZnn33mbtPs2uXZ36WLW0HTq5cLI6Gh/qkzUOzZs4dNmzZRp04d\nzgygNc4KJSIiErS2b3dP6H3mGVi6tHD/eefB6NFw441Qvbrv6wtUv/zyCz/++CPdunVTKBERESmL\ngwddEHnqqcJP6K1ZE3r0cA/FGzvWP/X5w2+//cauXbvYtWsXZ555JvXr1y/22AsuuICBAwcSGmBD\nRgolIiISNJYudWHj558Lb3QWHu7mkVx/feUfFTl06NCJAJL7lZaWBkCNGjWIioo6aSipUaOGr0ot\nEYUSEREJaOnp8Le/ufkiX31VuH/IELc1fK9eEBHh+/p8zVrLtGnTOHr0KLVq1aJZs2aceeaZNGvW\njGbNmtGgQQNMkM7gVSgREZGAlJzsJq/+7W+wbZtnX0SEeyDexRfD0KGVZxXNkSNH2L9/P82bNy/2\nGGMMV199NfXr1yciIiJoA0hRFEpERCRgWOsehvfZZ3DvvW47+Pxat3ZB5LHHoGFDv5RYbo4ePcqu\nXbvYuXPnia8DBw5QvXp1/vjHPxISElLsa1u3bu27Qn1IoURERAJCSgqMGweffFK4LzrabXQ2aJDv\n6ypv27dvZ/bs2aSkpABQvXp1mjVrRvv27YmKiiIqKqpSjX6UhEKJiIj4zf798OijsHAhrFhRuL9D\nB3j1VTdfJMAWipRavXr1aNOmDX369CEqKorIyMiTjopUJQolIiLic998427RTJsG+/YV7v+//3Nz\nRfr2hbAw39fnLWst+/fvZ/v27ezYsYOdO3fSqlUrLrroomJfExERwdChQ31YZfBQKBEREZ/IynKj\nIY88ArNmFe6PjYU+fWDCBOja1ff1eWvbtm2sX7/+RAjJyHnCX6NGjWjevDktWrTwc4XBS6FEREQq\n3OzZbn+RPXsK93Xp4p5FExfn87JKZe3atSxbtozmzZvTu3dvmjdvTlRUFLVq1fJ3aUFPoURERCrE\n3r0wZYq7TbN+vWdfSAjceafbX6RlS7+U5yE7O5vk5GR27NhB27ZtCQ8PL/bYfv36MXDgwCo7GbUi\nKZSIiEi5sRa+/NJNXJ0+HVJTPfvbt4ebb4bBg6FTJ7+UCEBaWtqJeSC5t2GOHz8OwKhRo04aSqpV\n06/OiqJPVkREyiwrC5Yvh4cegjlzCvf36QOXXAJ33QX+3uH8n//8J3ty7iOFh4fTvHlzLrjgApo3\nb06zZs0Cdgv2qiBgQ4kx5jzgHiAOaAZcbq0t4j/1E8ePAG4BugM1gJXAFGvtAh+UKyJSZX34oZsv\nsndv4b7YWHj9dTdvJFCcffbZ1K5dmxYtWlCvXj1/lyP5BGwoAeoAy4BXgSLmaRdyPrAAuA84CFwP\nzDXG9LTW/lJhVYqIVEF797pVNAsXwrp1nn2hoXD33XD77RAVVbF1ZGVlsWvXLrZv38727dvZs2cP\nt9xyy0n3/YgLlhm1VVDAhhJr7XxgPoDxYjaRtXZygaYHjDHDgWGAQomISBllZMB338HXX8PUqXDw\noGf/GWe4+SIXX+w2PasIx44d49dffz0RQnbu3ElWVhahoaFERUXRrl07jh8/rlswQSpgQ0lZ5QSZ\nesB+f9ciIhLMcievXn89bN5cuL93bxg2zDfzRQ4fPsy7775LREQELVq0oFOnTkRHR9O0aVNCK8uW\nr1VYpQ0luPkodYCZ/i5ERCQYHTsG99/vntRb1HyRrl1dX3ltdJaRkUF6ejqRkZHFHhMREcFdd92l\nuSCVVKUMJcaYMcCfgMustSn+rkdEJJj8/DP85z8wcybs2OHZd9pp8PTT0K8ftGpV+mtYa0lNTWXr\n1q1s3bqVbdu2sXfvXqKiorjhhhuKfZ0xRoGkEqt0ocQYczXwMjDSWrvIm9dMnjyZiIgIj7b4+Hji\n4+MroEIRkcCTlQX/+58b+Xj++cL9gwbBwIFulU2BH5clsm3bNpYsWcLWrVs5dOgQAJGRkURHR9O7\nd29aBsJOalJIQkICCQkJHm2pBTehKQfGWlvuJy1vxphsTrEkOOe4eOBfwGhr7UdenDcWSExMTCQ2\nNrZ8ihURCTIrV8Lo0e7Pgrp2hSefhCFDyuda69ev55tvviE6OpqWLVsSHR1N7dq1y+fk4lNJSUm5\nK5nirLVJ5XHOgB0pMcbUAdoCuStvYowx3YD91tptxpgngChr7e9yjh8DzABuB34yxjTJed0Ra22a\nb6sXEQlsW7bAs8/CokXuIXkFXXEFvPwyNGrk3fkOHTrE1q1bT0xALU67du1o165dKauWyi5gQwnQ\nA1gE2JyvZ3PaX8ftQdIUiM53/A1AKDAt54sCx4uIVGnWQlKS21vk4YfdEt/86tVze48MHAhnnnmy\n87j5IJs3b2bLli1s3bqV/fvdQsdzzz1XT8mVUgvYUGKt/Qoodvcba+34At/3r/CiRESC1J49bknv\nxx8X7uvRA/r3d0t6mzY9+XkWL17Mjz/+SFqaG4A+7bTTOP300xkwYAAtW7bUJFQpk4ANJSIiUnYp\nKTB2LHz6aeG+uDh4911o08b789WpU4dOnTrRunVrWrZsSa1atcqvWKnyFEpERCqZtDR49VU3X2Tu\nXM++kBD44x9dUDnjDDAGsrOz2b17N1u2bKFDhw40bNiw2HN37969gquXqkyhRESkkjhwAL74wj1z\nZudOz76QEJg8Ga69Frp0yWLHjh18++2WE/uEHDt2jGrVqhEREXHSUCJSkRRKRESChLWWoh4FZi38\n4Q9uNU12tmdf48ZuvshDD0GnTjBr1izmzVvD8ePHCQsLo2XLlpx33nm0atWKqKgobdUufqVQIiIS\nwA4dOsQzDzzA4rlzqXP8OL9Vr06fYcP4v0cf46OP6jF7tltNc+CA5+uaN4cZM9xKmvw5pkmTJjRp\n0oQ2bdrQtGnTkz5NV8TXFEpERALUoUOHuLJ3b+5avZop2dkY3P4In0ybRo/XvmD9b98D9TDG0qTJ\nXlq33kTr1nGMGVOdAQOgbt3C5+zTp4+P34WI9xRKREQC1DMPPMBdq1dzcb57MgYYmp1N1m+ruee0\nG+jW7wratNlMrVpHMCaUCRNaEhUV5b+iRcpAoUREJEAtnjuXKQUnieS4lGwePvopXboMonfvHpx+\nehtatGhB9erVfVylSPlRKBERCUBr1ljs/uMUntbqGKBprdo8+OD4Iie/igQjzXASEQkAx48fz3ly\nLvz5z9Cli2FzWnWKe2SqBTJqhimQSKWikRIRET/Izs5m165dbNy4kU2bNrF581aszeK55+4mLa0O\nAPsYxjymcSmFb+HMDwmh72WX+bpskQqlUCIi4iPHjh3jl19+YdOmTWzatImMjAyMCePgwdZ8992F\nbNwYQ1pa7RPH9xn6GH9d9wUhG1czJN/qm/khITzfsSPvP/qo396LSEVQKBER8aGFCxfStGlTmjQ5\nh2nTYkhKak52dt6GZdHRMGwYXHopXHxxPdLTv+fZBx/k+TlzqH38OIerV6fPZZfx/qOP6uF3Uuko\nlIiIlJPidlzNtXt3GOvW3cPUqdXZu9ezr0YN95Texx7z3OysXr16TJk6FaZOPeX5RYKdQomISBmk\npqby66+/smHDBlJSUrjlllsKBYelS+GTT+CJJyA93XPJbpMm8PLLcNFFcKoH7iqQSGWnUCIiUgLH\njx9ny5YtHkHEGEPz5s3p3LkzWVlZVKvmfrSmpcEdd7jt3gu69FIXRK69Fho08O17EAlUCiUiIl7a\nv38/L774IpmZmYSHh3P66afTv39/2rRpQ618wxzLlrkn8n7zDWRleZ7j7LPhv/+FNm18XLxIEFAo\nERHxUoMGDbjwwguJiYkhMjLS43bKoUPw+efw6afwz38Wfu2tt7qgEhPjw4JFgoxCiYhUedZa9u3b\nR3JyMh07diz2OGMM55xzTqH2zz+HsWNh927P9nr14He/g9GjoW/f8q5apPJRKBGRKikzM5PNmzez\nfv161q9fz4EDB6hVqxYdOnQgJOTUm11v2gTPPQfz58Ovv3r2Va/ulvW+/DI0alRBb0CkElIoEZEq\nIyMjgxUrVvDrr7+yceNGjh8/TkREBO3ataNdu3a0adPmlIFk2zaYMwfuuQeOHPHsa90apk6F/v3d\nKImIlIxCiYhUGceOHeOTTz4hOjqa888/n/bt29O4cWOvltpmZcGNN8JrrxXuO/98GDLEzRupW7cC\nChepIhRKRKTKCA8P595776VGjRpeHW8tfPCB+5ozxy3xze+ss2D2bLcLq4iUnUKJiAS9AwcOsG7d\nOlJSUrjkkktOeqw3gcRaWLMGHnjABZKCJk6EceOgRw8IDS3cLyKlo1AiIkHHWsvOnTtZu3Yta9eu\nZe/evYSGhtKmTRuysrIILUNSWLoUrrkGVq/2bK9bFy68EG6+GQYPLuMbEJEiKZSISNBIT09n0aJF\nrFu3jvT0dGrVqkW7du244IILOP30072+LVPQgQNuROTjj+H99z37QkPhoYfgD3+AsLByeBMiUiyF\nEhEJGmFhYWzfvp0uXbrQoUMHWrZs6dXy3eJYC1984UZG9uzx7GvWDO6+2y3tbdeujIWLiFcUSkQk\naISFhXHLLbeU+TzWwlNPwT/+ATt2ePY1bAiXX+76IyPLfCkRKYHS/xOjghljzjPGzDHG7DDGZBtj\nLvPiNf2MMYnGmAxjzDpjzO98UauIlJ61lr179/LVV1/x9ttvY62tsGvt3An/+pfbXfW++zwDSXQ0\nLFoEe/fCq68qkIj4QyCPlNQBlgGvArNOdbAxpjXwETAdGANcCPzLGLPTWruw4soUkZKy1rJr1y5W\nr17N6tWr2bdvH2FhYbRv356jR49Ss2bNcr3enj1uG/jPPivc178/XHGFW00THl6ulxWREgrYUGKt\nnQ/MBzDe7GwEtwAbrbX35ny/1hjTF5gMKJSIBIBjx47xxRdfsGbNGlJTU09s6z5o0CBiYmKoVq18\nfyR9/z289RbMmAGHD3v2RUbCo4/CTTeV6yVFpAwCNpSUQi+g4L+DPgWe90MtIlKE6tWrs337dtq3\nb0/Hjh1p1apVmSaqFmffPnjmGXjySc/2sDC3PfywYdpjRCQQVaZQ0hQoMH+ePUC4MaaGtfaoH2oS\nkXyMMUyYMKHCzr9gATzyiBshyc7Oa69eHQYOhGefhU6dKuzyIlJGlSmUiIifZGVlsXHjRlavXs2Q\nIUOoXr26z66dnQ3ffQczZ8Lf/164f8wYeOklPZNGJBhUplCyG2hSoK0JkHaqUZLJkycTERHh0RYf\nH098fHz5VihSiWRlZbFp0yZWrlzJmjVryMjIoFGjRhw8eJDGjRv7pIbUVBgxwq2aya9ZMzexdfhw\n6NPHJ6WIVGoJCQkkJCR4tKWmppb7dUxFLr8rL8aYbOBya+2ckxzzJDDEWtstX9t/gPrW2qHFvCYW\nSExMTCQ2Nra8yxaplDZs2HAiiBw5coSGDRvSuXNnOnfuzGmnnebVE3fLIjvbTV597z23A2tWVl5f\nSIjbCO3VV90tGxGpOElJScTFxQHEWWuTyuOcATtSYoypA7QFcn/CxRhjugH7rbXbjDFPAFHW2ty9\nSP4JTDLGPAW8BgwERgJFBhIRKZ3PP/+cjIwM4uLi6Ny5M02aNKnwIJJr7Vq4806YP9+zPTQUnn7a\nLevV/iIiwStgQwnQA1gE2JyvZ3PaXweux01sPfHAcGvtZmPMJbjVNrcD24HfW2uL2JlAREpr7Nix\n1KpVy2dBxFqYPt3NF1m71rOvaVO47DK45Rbo3t0n5YhIBQrYUGKt/YqT7DhrrR1fRNvXQFxF1iVS\nmSUnJ1O3bl1q1apV7DG1a9f2SS1Hj7rn0kyfDh995NlXvbpb8nvrre6WjYhUDgEbSkTEN9LS0li+\nfDkrVqxg9+7dDBkyhJ49e/q1pjffdIEjLc2zvWdPuOoqtwNrTIx/ahORiqNQIlIFHTlyhFWrVrF8\n+XK2bNlCtWrVaN++PRdccAFt27b1S0179sAHH8D77xfeDr5mTfjLX9xTe0Wk8lIoEalivv76a776\n6iustcTExDB8+HA6duxIjRo1/FbThx+6SaqHDnm2n3ce3HUXXHQR1Knjn9pExHcUSkSqmObNmzNo\n0CA6d+5MXT/uKLZzJ7z4ohsdWbnSs69lS5gwwT3Jt5wfhyMiAUz/u4tUMaeffjqnn366366flQWf\nfgrXXguwRFNWAAAgAElEQVT793v2de/u9hg56yzw0eIeEQkgCiUilURGRgarVq0iJCSE7gG4PvbA\nAXjwQXj3XUhO9uw791y48kqYONHNHxGRqkmhRCSIZWdns3HjRn755RfWrFlDZmYm3bt3D6hQ8ttv\nbrOze++FjRs9+2JiYN48OOMM/9QmIoFFoUQkCCUnJ7Ns2TKWL1/OoUOHiIyM5IILLqBr166Eh4f7\nuzwAjh93k1RffRWOHPHsu+IK93X55ZrAKiJ5FEpEgszWrVv597//Ta1atejSpQvdunUjKirKZzus\nnkpKCsyeDf/4Byxb5tkXFQWzZsE55/inNhEJbAolIkGmRYsWjB49mrZt21ItgJampKTAjTfCnDme\nD8kDuO46iI+H/v31oDwRKV7g/EQTEa+EhIRwRgBNwti5001efeYZ2L7ds69lS3juOTeJVUTkVBRK\nRAKEtZaNGzeyfPlyLr300oAaBSnOrFluae/hw3ltoaEwebLbDv7ss7W0V0S8F/g/9UQqubS0NJKS\nkli2bBmpqak0btyY1NRUGjVq5O/SirRpE8yc6b6Skjz7unZ1E1t79PBPbSIS3BRKRPwgd1Tk559/\nZu3atVSrVo0uXboQGxtL8+bNA2bSakFTp8L//V/hOSNnnw0zZkCnTn4pS0QqCYUSET945513WLdu\nHaeddhpDhgyha9eufn32zMls3w5vvAEJCbBihWdfjx5w9dXuib4BWr6IBBGFEhE/6NmzJ3369CE6\nOjpgR0XAbQc/ahSkpXm2jxjhJrbGxPinLhGpnBRKRPzAn8+eOZUtW+A//3EjI8uXe/b17u2W906Y\nACEhfilPRCoxhRKRcpacnExGRgbR0dH+LqXEZs6E3/0OMjI82zt1chuitW3rn7pEpGpQKBEpB9Za\n1q9fz5IlS9i4cSMxMTFce+21/i7LK/v3u0mqCQnw88+efb16uTkjEyZoO3gRqXgKJSJlkJGRwbJl\ny/jxxx85cOAAUVFRjBgxgk5BsgxlxQoYMqTwpmd9+sCbb0KbNv6pS0SqJoUSkVI4fPgwX375JcuW\nLSMrK4vOnTtzxRVX0KJFC3+XdkoHD7rbNG+/DV9/7dkXGwtjx8KkSRAW5p/6RKTqUigRKYVq1aqx\nceNGevfuTY8ePahXr56/S/LKL7/AxRfD7t2e7U2auGfW9Ozpn7pEREChRKRUwsLCmDRpUkAv582V\nmQkffOBux8yd69l3xhlwzTVwww0umIiI+JNCiUgpBUMg+e03uPRS+PJLz/boaPcQvZ499WwaEQkc\n2mlApIB9+/Yxb948tm7d6u9SSiU7G776yq2YadLEM5BERcE990BiIpxzjgKJiAQWjZSI4Jb0btu2\nje+//541a9ZQp04dWrdu7e+ySuzIEbjkEli0yLO9WjV48UUYP949xVdEJBAplEiVZq1l9erVfPfd\nd+zYsYPIyEiGDRtG165dqVYteP732LDBPZ/mn/+EvXvz2uvVg6uucqtpYmP9V5+IiDeC56euSDnb\nvn07s2fPJiUlhVatWhEfH0+7du2CYq5IrkOH4Npr3W6r+YWGwj/+AePGQe3a/qlNRKSkAjqUGGMm\nAXcDTYFfgNustT+d5Pg7gZuBlkAK8B5wn7X2qA/KlSBTr149IiMjGT58eFDsL5LfoUNuoupTT8G6\ndXntISEwaBD86U9w7rn+q09EpDQCNpQYY0YDzwI3Aj8Ck4FPjTHtrbUpRRw/BngCuA74HmgPvA5k\n44KNiIeIiAhGjx7t7zJK5NAhN1H1rbfcyppcoaHwyCPuYXlRUX4rT0SkTMq8+sYY09UYU7tAW4ey\nnhcXQl6y1r5hrV2DGwE5DFxfzPG9gW+ttf+11m611n4GJADaDkqCnrWweDEMGAAvveQZSDp2hIUL\n4f77FUhEJLiVKZQYY/6IG8X4uEBXU2PMk2U4b3UgDvg8t81aa4HPcOGjKN8BccaYs3POEQMMBeaV\ntg4JXunp6Xz66accPHjQ36WUydGj8MwzLnj07ev5wLybboIffoCVK6F/f//VKCJSXsp6+6YB7nZJ\nRP5Ga+1XxpgmxphLrLWlCQWRQCiwp0D7HqDIURhrbYIxJhL41riZiqHAP621T5Xi+hKk0tPTWbx4\nMT///DOhoaG0bt2a+vXr+7usUklOhpEjCz+fpn59+O9/3dwREZHKpKyhpLq19p2iOqy1M40xf8NH\nIxXGmH7A/bjbPD8CbYEXjDG7rLWP+qIG8Z+CYaRPnz6cc8451KpVy9+llUh2Nnz+ObzyCnz4IRw/\nntfXrx9cfz1ceaVW1IhI5VTWUNLIGHO6tXZDMf3HSnneFCALKPg0jibA7sKHA/AI8Ia19t853680\nxtQFXgJOGkomT55MRITHYA/x8fHEx8eXtG7xsd9++41vv/026MMIuEAycqR7Tk1+YWHuib4jR/qn\nLhGRhIQEEhISPNpSU1PL/TplDSVTgc+MMbcWc5umbmlOaq09boxJBAYCcwBybskMBF4o5mW1cStt\n8svOfW3OnJQiPf/888RqZ6mgtH//fpYuXcq5555Lr169gjKM7N0Lr78O06bBli157aed5lbT3HAD\ntG3rt/JERIr8h3pSUhJxcXHlep0yhRJrbZIx5kFgljFmHfAhsAxIA/pSylCS4zlgRk44yV0SXBuY\nAWCMeQPYbq29P+f4ucBkY8wyYAnQDjd6MudkgUSCW3R0NHfddRdhYWH+LqXErHXLe194wfM2DcBz\nz7ldWIPwbYmIlFqZ9ymx1r5tjFkNPIWb05G7HeZC4OoynHdmzsTVR3C3bZYBg621yTmHtAAy873k\nL7iRkb8AzYFk3CjLg6WtQYJDsAUSa92qmcceg3kFxhcHDIA//EGTWEWkaiqXzdOstUnARTkhIgbY\na63dXA7nnQ5ML6ZvQIHvcwPJX8p6XQkcWVlZWGuD6jk0xTlyBGbMcM+n+d//PPtuuQXuuku3aUSk\naivXn/Q5O60W2m1VpKSstaxcuZJFixbRvXt3zjvvPH+XVCZpaTBwoOc+I+CW9z76qLtVIyJS1QX/\nPz+l0tmwYQOfffYZu3fvpl27drRr187fJZXa+vVuZORf/3LBJFevXnDzzTBqFATh3FwRkQqhUCIB\nY+/evSxcuJBff/2V6Ohoxo8fT8uWLf1dVqls2AATJ8KCBZ7tNWrAe+/BpZf6py4RkUCmUCJ+d+zY\nMRYsWEBSUhL169fnqquuomPHjrhV4MHFWli0CK65Bnbn21GnRg0YPRruvhvOPNN/9YmIBDKFEvG7\natWqkZyczEUXXUTPnj0JDQ31d0kllp4Ob74J//gHrFqV196gAdx3H4wfD5GR/qtPRCQYKJSI34WE\nhHDdddcF5cgIwPffw7BhsG+fZ3tMDHz6qVbUiIh4q0xPCRYpL8EYSHbvhilT3BN68weSvn3hnXdg\nzRoFEhGRktBIifiEtTYog0dRfvkFnn3WBY/8O7F26eJu4XTv7r/aRESCmUZKpEJlZWXxww8/8Npr\nr5GVleXvcsps7lw4+2wXPnIDSWgoXH01fPGFAomISFlopEQqzKZNm/jkk09ISUkhLi6OrKysoJzE\nai18+SU8/7wLJbkaNICbbnJLf6Oj/VaeiEiloVAi5S41NZUFCxawatUqoqOjueGGG2jWrJm/yyqV\nTz6B+++HZcs82/v0cZNY69TxT10iIpWRQomUm+zsbJYsWcKiRYuoUaMGI0aM4MwzzwzKuSTZ2e45\nNRMmuJGSXM2bw223we23aydWEZHyplAi5Wbp0qUsWLCAnj17MmDAAGrUqOHvkkrs6FF4+203kTX/\nfiOdO8MDD8DIkVC9uv/qExGpzBRKpNx0796dqKiooL1VM3Mm3HGH506sAEOGuLkkQTgdRkQkqGj1\njZSb0NDQoAwkR4+6nVivvtozkPTtCx9+CB99pEAiIuILGimRKistDV5+2a2q2bkzr/388+Gpp9yT\nfEVExHcUSsRr1loyMjKoFeQzPLOy4PHH3byR1FTPvhEj3KZoYWH+qU1EpCrT7RvxSlpaGgkJCbz+\n+utkZ2f7u5xSO3wYbrkF/vznvEBijAsjP/wAs2YpkIiI+ItGSuSkrLUnVtWEhYVx6aWXEhISfFk2\nLQ2mT4fnnoPk5Lz2666DP/4ROnTwW2kiIpJDoUSKlZqayty5c9mwYQPdu3dn8ODB1KxZ099llUhK\nCrzwAvz973DwoGffk0/CH/7gn7pERKQwhRIp0vLly5k3bx5hYWFcc801tA3Cx92uWAH9+nk+wdcY\nGDUK7rsPunXzW2kiIlIEhRIpZPny5cyaNYsuXbowdOjQoJvYmpEB//oX/OlPeaMj1arBtde6WzXt\n2/u3PhERKZpCiRTSsWNHRo8ezRlnnOHvUkrkyBF45RW3nDf/Et+YGPj8c2jd2m+liYiIF4JvxqJU\nuGrVqgVVILEWXnzRhY877vAMJJddBosWKZCIiAQDhRIJatbClCkwcaLnbqyXXw5JSTB7NrRs6bfy\nRESkBHT7RoKStTB/vps3kpiY1z5iBDz0kCaxiogEI42UVEHHjx/n22+/JSsry9+llMoXX0CfPjB0\nqGcguesut/mZAomISHDSSEkVk5yczLvvvsvBgweJiYkhKirK3yV57eBB99C8Tz/1bO/WDR55BIYN\n809dIiJSPgJ6pMQYM8kYs8kYc8QY84Mx5uxTHB9hjJlmjNlpjMkwxqwxxlzsq3oD3bJly3jllVcA\nuOGGG4IqkOzcCVde6RlIOnWCd991c0cuu8ztQSIiIsErYEdKjDGjgWeBG4EfgcnAp8aY9tbalCKO\nrw58BuwGrgB2Aq2AgwWPrWoyMzOZP38+iYmJdO/enaFDh1K9enV/l+WVgwfdEt+pU92SX4AaNdzS\n3zFjIDTUv/WJiEj5CdhQggshL1lr3wAwxtwMXAJcDzxdxPG/B+oDvay1uZMltvqi0ECWlpbGzJkz\n2b17N8OGDSM2NtbfJXnlyBH4xz/giSfgwIG89nr14M03Yfhw/9UmIiIVIyBv3+SMesQBn+e2WWst\nbiSkdzEvGwZ8D0w3xuw2xiw3xtxnjAnI9+grs2bN4tChQ4wfPz4oAklmJrz6qtt19d578wJJWBjc\neSds2KBAIiJSWQXqSEkkEArsKdC+Byjuea4xwADgLWAI0BZ4Efce/1IxZQa+YcOGUbNmTerUqePv\nUk4pPR0GDoQff8xrM8ZtD//II9Cqlf9qExGRiheooaQ0QnCh5cacUZWlxpgWwN2cIpRMnjyZiIgI\nj7b4+Hji4+MrqlafadSokb9L8MqGDTBhgmcgGTYMHnsMzjzTf3WJiAgkJCSQkJDg0Zaamlru1zHu\n93dgybl9cxi40lo7J1/7DCDCWjuiiNd8CRyz1g7K13YxMA+oYa3NLOI1sUBiYmJiUNzaqIwOHnTB\n44UX4Ngx1xYWBnPnwqBBJ3+tiIj4T1JSEnFxcQBx1tqk8jhnQM63sNYeBxKBgbltxhiT8/13xbxs\nMe6WTX4dgF1FBRLxr8xMmDYN2raFZ57JCyRNmsB77ymQiIhURQEZSnI8B9xgjBlnjDkD+CdQG5gB\nYIx5wxjzeL7jXwQaGmNeMMa0M8ZcAtwH/MPHdftcenq6v0vwmrXw8cfQtSvceivs2+faa9aEBx6A\n9eu1CZqISFUVsHNKrLUzjTGRwCNAE2AZMNham5xzSAsgM9/x240xg4HngV+AHTl/L2r5cKWRmJjI\n/PnzGT9+fMBvhrZnD4wbBwsWeLaPGeOW/urBeSIiVVvAhhIAa+10YHoxfQOKaFsCnFvRdQUCay1f\nfvklX3/9NT169KBp06b+Lumk0tPdw/K+/z6vrXdveP55OOcc/9UlIiKBI6BDiRQtOzubefPmkZSU\nxMCBA+nTpw8mQPdYtxYSEuCee9xW8QAREfDSSzBqlLaGFxGRPAolQeb48eO8//77rFu3juHDh9O9\ne3d/l1Ss//3PzRv55pu8tho14P333X4kIiIi+QXyRFcp4MiRI7z55pts3LiR+Pj4gA0khw7BXXdB\nbKxnILn0UlixQoFERESKppGSILJq1SpSUlIYN24cLVq08Hc5hVgLs2bBHXfAjh157W3bugfqDR3q\nv9pERCTwKZQEkbi4OM4444yA3DJ+40Z3q+aTT/Lacpf53nOPu20jIiJyMgolQSbQAsnRo/DXv7pd\nWTMy8tqHDHFP+Y2J8V9tIiISXBRKpNQyM+HCC+Hbb/Pamjd3t2quuEIra0REpGQ00VVK5cABuOaa\nvEASGuomt65eDVdeqUAiIiIlp5ESKbH334dJk9wOrbnmzYPBg/1Xk4iIBD+NlASY1NRUPvroIzIz\nA+8ZgsnJbsOzkSPzAkm9ejBjhgKJiIiUnUZKAsihQ4d4/fXXsdZy5MgR6tWr5++STnj3XZg4EVJS\n8tqGDYPp0yEAVyeLiEgQ0khJgPjtt9944403yMrKYty4cQETSPbuhauuciMkuYGkYUP4z39g9mwF\nEhERKT8KJQHg6NGjvP322xw5coRx48bRoEEDf5eEtfDf/0KnTvDee3ntV1wBq1ZBfLwms4qISPlS\nKPGzrKwsZs6cyf79+xk7diyNGjXyd0kcOOBCx9VXw759ri0y0oWU996DJk38W5+IiFROmlPiR9Za\n5syZw5YtW7jmmmto2rSpv0viiy/gd7+D7dvz2kaOhGnT4LTT/FeXiIhUfhop8aNDhw6xadMmLr/8\nctq0aePXWo4ehbvvdg/Lyw0kDRrAO++4Sa4KJCIiUtE0UuJH4eHh3HrrrYSFhfm1jpUrYcwY+N//\n8toGDnRLfTWRVUREfEUjJX7mz0BiLfz97xAXlxdIwsLg2WdhwQIFEhER8S2NlFRRBw7A+PFuWW+u\nzp3h7behWzf/1SUiIlWXRkqqoB9/hLPO8gwkd9wBP/+sQCIiIv6jUFKFWAt/+xv07Qtbtri2hg3h\no49ce82a/q1PRESqNt2+8ZH09HTq1q3rt+sfOADXXw8ffpjXdu65bnVNdLTfyhIRETlBIyU+sHLl\nSqZOnUpK/gfH+NDSpRAb6xlI7r0XvvxSgURERAKHRkoq2L59+5gzZw4dOnTwy26tb78NEyZARob7\nvmFDeOMNuOQSn5ciIiJyUhopqUDHjx9n5syZ1KtXj2HDhmF8+LCYzEyYPBnGjs0LJOecA8uWKZCI\niEhgUiipQB9//DH79+9n1KhR1KhRw2fX3bsXLrrITV7NNWECfPWVbteIiEjg0u2bCrJixQqWLVvG\n8OHDOc2He7QvXQrDh8O2be776tXdBmk33eSzEkREREoloEdKjDGTjDGbjDFHjDE/GGPO9vJ1Vxtj\nso0xsyq6xqKkpqYyb948OnfuTDcfbvwxe7Zb7psbSJo2dZNZFUhERCQYBGwoMcaMBp4FHgLOAn4B\nPjXGRJ7ida2BvwJfV3CJxdqwYQNhYWFccsklPplHYq3bGn7ECDh82LX16gWJiW7Zr4iISDAI5Ns3\nk4GXrLVvABhjbgYuAa4Hni7qBcaYEOAt4M/A+UCEb0r1FBsbS+fOnX0yj+T4cZg0CV55Ja8tPh5e\ne02boYmISHAJyJESY0x1IA74PLfNWmuBz4DeJ3npQ8Aea+2/K7bCU6voQGItLF4Mffp4BpKHHnLL\ngBVIREQk2ATqSEkkEArsKdC+B+hQ1AuMMX2B8UClf3rLsWNuNc2bb+a1hYW50ZFrrvFfXSIiImUR\nqKGkRIwxdYE3gBustQf8XU9FSk+HK6+EBQvy2iIj4YMP3CRXERGRYBWooSQFyAKaFGhvAuwu4vjT\ngVbAXJM3szQEwBhzDOhgrd1U3MUmT55MRITn9JP4+Hji4+NLV30F2b8fhg6FJUvy2i67zO1H0qaN\n/+oSEZHKLSEhgYSEBI+21NTUcr+OcVM1Ao8x5gdgibX2jpzvDbAVeMFa+9cCx4YBbQuc4jGgLnA7\nsN5am1nENWKBxMTERGJjYyvgXZSf3bth0CBYvtx9X78+zJ2r0REREfGPpKQk4uLiAOKstUnlcc5A\nHSkBeA6YYYxJBH7ErcapDcwAMMa8AWy31t5vrT0GrMr/YmPMQdz82NUVWeSOHTuoVasWDRs2rLBr\nbNkCF14Iv/7qvm/SxN2+6dq1wi4pUqG2bt3qtwdUioh3IiMjadmypU+vGbChxFo7M2dPkkdwt22W\nAYOttck5h7QACo1++FJmZiazZs2iYcOGXFMBM0ythUWL4NprYedO19ayJXz2GbRrV+6XE/GJrVu3\n0rFjRw7nbqojIgGpdu3arF692qfBJGBDCYC1djowvZi+Aad47fgKKSqfJUuWcODAAUaPHl3u587I\ncPuNfPhhXluHDrBwoZ5fI8EtJSWFw4cP89Zbb9GxY0d/lyMiRVi9ejVjx44lJSVFoSQYHDp0iK+/\n/pqzzz673J9tc+wYjBwJ8+bltXXvDp9+Cj58jI5IherYsWPAz+USEd8KyM3TgsGiRYsIDQ2lX79+\n5Xre48fh6qs9A8kdd7jbOAokIiJSmWmkpBRSUlJYtmwZgwYNolatWuV23sxMN3/kgw/c97Vqwccf\nQznnHhERkYCkUFIKixYtIjw8nB49epTbOQ8dgquucrdoAGrUgDlzFEhERKTq0O2bEtq/fz+rVq2i\nX79+VKtWPpnuu++gefO8QFK9Osya5ZYBi4iIVBUaKSmhhg0bcuONN9KkScHNZktn1Sq49FI3UgJQ\nrRq8+67buVVERKQqUSgphWbNmpXLebZtg8GD4UDO03qio90ISTneFRIREQkaun3jJ//9r3tezfbt\n7vu4OFi5UoFEREpnxowZhISEsHXr1qA4b0WZMmUKISEh7N+/39+lSCkolPjB7NluY7SsLPd927Zu\nlU29ev6tS0SClzGGvOeROt9//z0PP/wwaWlp5Xre0iiPWrxRXvUWdPfdd3PRRRdx++23l/u5JY9C\niY8tXQpjxrgt5AG6ddOmaCJSduPGjePIkSMeu29+9913PPLIIxw8eNCPlQVeLaXx1FNPkZ2dTXh4\nuL9LqdQUSnxo5Uq45BLIfeTHmDEupMTE+LcuEQl+xhjCwsI82gLpKfCBVEtphIaGsnbtWvrq0ewV\nSqHERz78EM46C3btct/37g2vvgoVMMooIgFg586d/P73v6d58+bUrFmTmJgYJk6cSGame47o1q1b\nmThxImeccQa1a9cmMjKSUaNGsWXLFo/z5M6RWLt2LaNGjSIiIoLIyEjuvPNOjh49euK4gnM/Hn74\nYe69914AWrduTUhICKGhoSf6vb2+t9LT07nzzjtp06YNNWvWpEmTJgwaNIilS5eeshaApUuXMmTI\nECIiIqhXrx4XXnghS5YsKfHnWpQtW7bQtm1bunbtSnJy8on2tWvXsm3bNq/e3+bNm9mzZw/nnnuu\ntx+JlIJW35zC8ePHWbJkCbGxsdSuXbtU51ixAsaOdVvIA7Rq5XZtrVmzHAsVkYCxa9cuzj77bNLS\n0rjpppvo0KEDO3bs4L333uPw4cOEh4fz008/8cMPPxAfH0+LFi3YvHkz06dPp3///qxatYqaOT8g\ncudHjBo1ijZt2vDkk0/yww8/8MILL3Dw4EFmzJhx4rj8cymuvPJK1q1bxzvvvMPUqVNp1KgRAI0b\nNwbw+vreuummm5g1axa33XYbHTt2ZN++fXz77besWbPmlLWsWrWK888/n4iICP74xz9SrVo1Xnrp\nJfr163fiGWPefq4FbdiwgQEDBtC4cWMWLlxIgwYNTvR17NiRfv368cUXX5zy/S1evJjOnTvr9k1F\ns9ZW2S8gFrCJiYm2OElJSXbKlCl23759xR5zMp99Zm3duta6WSTW9upl7e7dpTqVSKWQmJhoT/X/\nXbAbN26crVatmk1KSir2mIyMjEJtS5YsscYY+9Zbb51omzJlijXG2BEjRngcO2nSJBsSEmKXL19u\nrbV2xowZNiQkxG7ZsuXEMc8880yhtpJev6jzFqV+/fr2tttuK7b/ZLVcfvnltmbNmnbz5s0n2nbt\n2mXDw8Ntv379TrR587lOmTLFhoSE2H379tnVq1fb5s2b2169etmDBw8WOjYkJMQOGDDgpO8r1y23\n3GInTZpkrbX2hx9+sA8++KBt2rTpic+/svHm/9PcY4BYW06/l3X75iSstfz444+0a9eOhg0blvj1\ny5a5OSTp6e777t3hiy+gnPZdE6kSevSAFi0q9qs8l+Jba5k9ezaXXXYZZ511VrHH1ahR48TfMzMz\n2b9/PzExMdSvX5+kpCSPY40xTJo0yaPttttuw1rLxx9/XKo6S3J9b9SvX58lS5awK/cetZeys7NZ\nuHAhI0aMoFWrVifamzZtypgxY/j2229JT0/3+nPNtXz5cvr160dMTAwLFy4kIiKi0DFZWVl8/vnn\nXtW5ePFi+vbty6JFi9i3bx/XXnst1lqys7O9f7NySrp9cxK7du1i9+7d9O/fv8Sv3bsXRo6E3Fu+\n7dq5eSXl+Pw+kSph927YscPfVXgvOTmZtLQ0OnfufNLjMjIyePzxx5kxYwY7duw4MRHUGENqamqh\n49u2bevx/emnn05ISAibN28uVZ0lvf6pPP3001x33XVER0cTFxfH0KFDGTduHG3atDnp65KTkzl8\n+DDt27cv1NexY0eys7PZtm0bjRo18upzBRcMhw0bRtOmTZk/f36pb73nSktLY+XKlWzYsIHIyEiG\n5my5vXv37jKdVwpTKDmJZcuWUbdu3UI/DE5lwwbo29f9MAWIjXXPt8n3DxMR8VLTppXjGgXdeuut\nvP7660yePJlevXoRERGBMYbRo0d79a/vsu7FUdbrF3TVVVdx/vnn88EHH7BgwQKeeeYZnnrqKT74\n4AMGDx5cplpLyhjDyJEjef3113nrrbe48cYby3S+77//noYNG7JmzRrWrl1Lq1ataNeuXTlVK/kp\nlBQjMzOTFStWcNZZZxES4v1drvR097Tf3EASHu52b1UgESmdn3/2dwUl07hxY8LDw1mxYsVJj3v/\n/S2VUCAAAB0MSURBVPe57rrrePrpp0+0HT16tNh9PNavX+9xe+PXX38lOzub1q1bF3uNkwWXkl7f\nG02aNOHmm2/m5ptvJiUlhbPOOovHHnuMwYMHF1tL48aNqV27NmvXri3Ut3r1akJCQoiOjqZOnTpe\nfa65/vrXvxIaGsrEiRMJDw/n6quvLvX7Wrx4MQMHDuTNN9/k6aef5rLLLmP16tVkZ2eX6PeDnJo+\nzWKsX7+eI0eO0K1bN69fk5YGvXq5vUfAzR357ju3Y6uIVA3GGC6//HLmzp170rkZoaGhhUYkXnjh\nBbJyt3rOx1rLtGnTCh1rjGHIkCHFXqNOnToARQaNklz/VLKzswvt1BoZGUlUVNSJZcvF1RISEsKg\nQYOYPXu2xxLhPXv2kJCQwHnnnUfdunW9/lxzGWN4+eWXGTlyJOPGjeOjjz4qdIy3S4IXL15Mr169\nAOjcuTP79u0DYNq0aRw5cuSUrxfvaaSkGL/88gtRUVGc5uVWq9bC7be7DdIAwsLcdvJe3P4UkUrm\n8ccf5//bu/foqKrz/+PvPYAmCAmXcFURFEGqghBZohCJF6CwEAEBRUBZIFpAUWxrgYU/DEsMYotf\n8EIBtVhtsVQr2qpFo1Yk3FYTwEIJoAtqgAgB5CaBQPL8/phJyJALMyGZmSSf11qzmHNmn3Oe2UzO\nPLPP2Xt/9tln3HrrrTz88MN06NCBvXv38u6775KamkpMTAz9+/fnrbfeIiYmhp/97GesWbOGzz//\nnLi4uBL3uXPnTu6++25+/vOfs3r1av70pz8xcuRIrr/++lLjiI+Px8yYNm0a9913H3Xq1GHAgAFE\nR0cHffyyHDt2jMsuu4whQ4bQqVMn6tWrx2effca///1v5s6de95Ynn32WVJSUujevTsTJkygVq1a\nLFq0iNzcXL+WnEDqtSjnHG+//TYDBw5k6NChfPzxx373CAbSJTgvL4/169eTnJxcuK7gkn5OTg7R\nulGwYlVUN56q+KCMLsEZGRm2Y8eOUjpCFffww2e7/UZHm61cGfCmIjVKTegSbGaWmZlpo0ePtmbN\nmll0dLS1bdvWJk2aZKdPnzYzsyNHjtjYsWOtadOmFhMTY/369bPt27dbmzZtbMyYMYX7KejimpGR\nYUOHDrXY2Fhr3LixPf7443bq1KnCcqV13Z01a5ZdfvnlVrt2bb/XDx8+HNDxA+kSnJuba7/5zW+s\nc+fOFhsba/Xr17fOnTvbwoULA4rFzGzjxo3Wt29fi4mJsXr16tmdd95p69atC7pei3YJLpCTk2O3\n3XabxcTE2Pr16wvXB9IlOCsry9q3b1+4/5ycHBswYIBNnz7dtmzZUua2VVm4ugQ7s6o99O+FcM51\nAdLS0tLo0qVLufezfDkMGnR2eeFCuMD7qkSqrfT0dOLj47nQv7uaIikpiZkzZ5KdnV2uoQlEyiOQ\nv9OCMkC8mQXfj7wEuqfkAn39tXe01gLPP6+EREREpDyUlFyA48dh+HD46Sfvct++8OtfhzcmERGR\nqkpJSTnl58Pjj58d1KlLF/jTnzTBnoiISHkpKSmnF16AN97wPr/4Yli2DIrM8yQiUiFmzJhBXl6e\n7ieRGkFJSTl88glMn352+cUX4aqrwhePiIhIdaCkJEiHDsHYsXDmjHd54kQYPz68MYmIiFQHEZ2U\nOOcmOud2OudynHNrnXNdyyj7kHNupXPukO/xWVnlS7Jp0yZWrFhR6utm3q6/BZNgJibC734XzBFE\nRESkNBGblDjn7gV+B8wAOgObgBXOudKGG+wJ/BlIBLoBmcCnzrkWgR5z8+bN7N+/v9TXlyyBlSu9\nzxs2hMWLNaeNiIhIRYnYpASYDCw0sz+aWQbwC+AEMKakwmY2ysx+b2bfmNl24CG87++OQA6Wn5/P\n999/X+o02zt3wi9+cXb59dc1p42IiEhFisikxDlXB4gHPi9YZ96hZ1OAmwPczSVAHeBQIIX3799P\nbm4urVq1KvZafj788peQm+tdHjUKBg4MMAoREREJSEQmJUAcUAvYd876fUDzAPfxPLAHbyJzXpmZ\nmXg8Hlq0KH61Z9kyeP997/OYGJg3T+ORiIiIVLRqOUuwc24KMAzoaWa5gWyTmZlJixYtqFOnjt/6\nkyfh2WfPLr/2msYjERERqQyRmpQcAPKAZuesbwb8UNaGzrlfAU8Bd5jZlkAONnnyZA4ePEi9evX4\n8MMPARg+fDjDhw/nl7+ELb69dO0KQ4YE9T5ERESqvKVLl7J06VK/dUeOHKnw40RkUmJmp51zaXhv\nUv0QwDnnfMvzS9vOOfcUMBXobWYbAj3ec889R0pKCkOGDOHaa68tXP/uu/Dqq97nUVHeVhJdthER\nkZqm4Id6UUVmCa4wEZmU+MwFlviSk/V4e+PUBZYAOOf+COw2s2m+5d8AScBw4HvnXEEry3Ez++l8\nB0tMTOTyyy8vXDbzH7X1pZegY8cLf1MiIiJSski90RUzWwb8CpgJbAA6An3MLNtX5DL8b3r9Bd7e\nNu8Ce4s8fnm+Y0VHR9OzZ09iYmIK133+OWzb5n2ekOAdxVVERAL3zDPP4PFE7NdM0L7++mtSU1PD\nHUa1FtGfFjN71cxam1m0md1sZv8u8trtZjamyHIbM6tVwmNmsMc9cwaefPLs8vjxumwjIuGzZs0a\nkpKSOHr0aLhDCYpzDleJJ89Q1su3337LP/7xD7p37+63/le/+hW9evVi0qRJJW43ZcoUfvrpvI31\nlep8MUaSiE5KwmXxYvjPf7zPb7wR7r03vPGISM22evVqZs6cyeHDh8MdSkSprHqZPXs2kyZNon//\n/oUJz7Rp05he9Jq+z/PPP09+fr5fS3tRjz76KJMnT67Q+Eqzfft2Hn30UTp27Ei3bt345z//GVCM\nkURJyTlOnoRZs84uv/QSVKPWRxGpgrxjR4bOiRMnQnq88qqMeklJSeHNN99k8ODBpKWlcfz4cdas\nWUPTpk2pX79+sfK1atVi27Zt9OjRo8T9XXbZZbRr147ly5dXeKznWrZsGS+//DIbN25kzJgxXH31\n1QHFGEn0dXuO11+HPXu8z+++G7p1C288IlL1FNxL8d133zF69GgaNmxIgwYNGDNmDCdPnvQru3fv\nXsaMGUPz5s2Jioriuuuu4w9/+EPh60lJSTz11FMAtG7dGo/HQ61atfj+++/Pe/xt27YxbNgwYmNj\niYuL44knnuDUqVMllt26dSv3338/jRo1IiEhAYANGzbQt29fYmNjqV+/PnfeeSfr1q0r8ZirVq2i\na9euREdHc/XVV7No0aJiZUaPHl3iVB6l3Xuyd+9exo4dy6WXXkpUVBRXXnklEyZM4MyZM+etl23b\ntpGZmVlqHZXmvffeIyEhgcTERLKysmjZsiWvvvoqo0aNKrH8rl272LdvH7fcckup+xw3bhwvvvhi\n0LGUx8cff4zH4+Hhhx/mqquuCjjGSBHJvW9CLj8f5s49uzxjRvhiEZGqq+A+imHDhnHllVcye/Zs\n0tPTee2112jWrBnJycmAd3qLm266iVq1ajFp0iTi4uL45JNPGDt2LMeOHWPSpEkMHjyY7du38847\n7zBv3jwaN24MQJMmTQI6fps2bZg9ezZr165l/vz5HD58mCVLlhQrO3ToUNq1a0dycjJmxn//+18S\nEhJo0KABU6ZMoXbt2ixcuJDExERWrlxJ165nJ2HfvHkzffr0oWnTpsycOZPTp0/zzDPP0LRp02Jx\nlXSPSUnrs7Ky6Nq1K0ePHuWRRx6hffv27Nmzh3fffZcTJ06ct146dOhAYmIiX3zxxfn/w4pYvXo1\nTzzxhN+6VatW+SWKRaWmpnLttdeWeWkkNjaWBg0asHnzZq677rqg4glG//796devHxs2bKBZs7PD\nfAUSY8Qwsxr7ALoAlpaWZmZmH31k5u0MbNarl4lIJUhLS7Oif3fV0TPPPGPOORs3bpzf+sGDB1uT\nJk0Kl8eOHWuXXnqp/fjjj37lhg8fbg0bNrSTJ0+amdlvf/tb83g89r///S+o4w8aNMhv/cSJE83j\n8dh//vOfYmVHjhzpV3bgwIEWFRVlu3btKlyXlZVlMTExlpiYWKxs3bp1bffu3YXrMjIyrHbt2ubx\neArXjR492tq0aVNivEXLmZk98MADVrt2bUtPTy/1fZZVLx6Px26//fZStz3X22+/bffee29hvT3w\nwAN2+PBh27Fjh3Xt2rXU7caPH28TJ040M7O1a9fa9OnTrXnz5n51bGaWnJxsc+bMCTie8sjMzLQ2\nbdpYr3O+wAKNsahA/k4LygBdrIK+l3X5BsjO9vYyfvnls+smTgxTMCJSzLFjx8jKyir1UfA3XJbs\n7OwStz127FilxOyc45FHHvFbl5CQwMGDBzl+/DgAf/vb37jrrrvIy8vj4MGDhY/evXtz5MgR0tPT\nL+j4E885kT322GOYGR9//HGZsebn5/PZZ58xaNAgrrjiisL1zZs35/7772fVqlWF7yE/P59PP/2U\nQYMGcemllxaWbd++PX369ClX7GbGBx98wIABA+jcuXO59pGXl8fnn39+/oI+I0aMYOrUqdSpU4dl\ny5bx5ptvEhsby549e4q1+BSVmppKjx49+PLLLzl48CCjRo3CzMjPz/cr16lTJzZu3Fiu9xKIuXPn\nMn/+fObNm0dKSgqffvpp0DFGAl2+AdLS0rjkkj588ol3uVUr6N8/vDGJyFlpaWl89dVXpb7epEkT\nJkyYUOY+/vrXv5aYvPTs2ZPExMQLDbFE58463tA3cdaPP/5ITk4Ohw8fZtGiRSxcuLDYts459u/f\nf0HHb9u2rd/yVVddhcfjYdeuXcXKFr3XIzs7mxMnTtCuXbti5Tp06EB+fj6ZmZl06NCB7OxscnJy\nih0LvInJJwUn1iBkZ2dz9OhRvxG2Q2HTpk1cc8011K599qsxOzub2NjYEssfPXqULVu28N133xEX\nF0e/fv0A+OGH4rOhNGrUiO+++65S4l6wYAGpqam89957gPcem6+++orevXsHFWMkUFIC1K9fn1de\nObs8fTrUqhW+eETEX3x8PO3bty/19aJfIqUZOnQoZ86cKba+Xr16FxRbWWqVciIp+it15MiRPPjg\ngyWW61jBw0iXNWZIdHR0hR4rmOPn5eVV+rEDsWnTJm644Qa/dWW1JqxZs4ZGjRqRkZHBtm3buOKK\nKwp7vJyrYcOGpc4Vs2zZMt5///1S68fMcM5x//330/+cX8wnTpxg6tSpfoO6XXfddYU3VAcTYyRQ\nUgJER9fjo4+8zxs2hNGjwxqOiJyjfv36JXbHDEZZN4aGQ5MmTahfvz55eXncfvvtZZYt7wBkO3bs\n8Lv88u2335Kfn0/r1q3PG1vdunXZVjCsdRFbt27F4/EUTsvRpEkToqOj2bFjR7GyGRkZfssNGzYs\ncUyRc1tumjRpQkxMDJs3by4zzooemO2bb76hb9++fuvi4uJKHQclNTWVO+64g7feeos5c+YwYMAA\ntm7dSn5+frHeRHl5eVx00UUl7mfYsGEMGzasXDGvXLmS2NhYv1alEydOFCbxwcQYCSIvojDYvbsu\nBZeV77oL6tQJbzwiUv15PB7uuece3nvvPbZsKT6h+YEDBwqfX3LJJQBBDRJmZrxStAkYmD9/Ps65\nYl+8JcXWu3dvPvjgA7+ux/v27WPp0qUkJCQUtjB5PB769OnD8uXL2b17d2HZrVu3+t3XAN7LR0eO\nHPFLNrKysoqN4eGcY+DAgfz9738v876asuqlPF2CN27cWKylpEWLFhw8eLDE8qmpqXTzjRtx7bXX\nFpZ75ZVXyMnJ8Sv7448/VkpinJOT4zdv2/Hjx9mwYQODBw8OOsZIoKQESE8/22x5331hDEREapTZ\ns2fTokULbrrpJiZPnszixYt5/vnnGTZsGNdcc01hufj4eMyMadOm8fbbb/OXv/wloC+UnTt3cvfd\nd7NgwQJGjRrFggULGDFiBNdff/15t3322WepXbs23bt3Jzk5mTlz5tC9e3dyc3OZM2eOX9mkpCTM\njB49ejBnzhxmzZrF7bffXqz763333UfdunUZOHAg8+fPJzk5mW7dupV4ae65556jadOm3HrrrTz5\n5JMsXryYpKQkrr/++sJRVsuqlw4dOpR6WawkmZmZHDp0iE6dOvmtv+aaa9i3b1+xyzh5eXmsX7+e\nm2++uXBdwX01OTk5xS6HHThwgJYtWwYcT6BuueUW9u3bx+nTpwFYvHgx99xzD3FxcUHHGBEqqhtP\nVXzg6xLctGmKgVnjxma5uaX2fhKRClBTugR7PB47ePCg3/olS5YU68KanZ1tjz32mF1xxRV28cUX\nW8uWLa1Xr172+uuv+207a9Ysu/zyywu72ZbVPbjg+BkZGTZ06FCLjY21xo0b2+OPP26nTp0KKFYz\ns40bN1rfvn0tJibG6tWrZ3feeaetW7euxGN+/fXX1rVrV4uKirK2bdvaokWLSuzqm5KSYh07drSo\nqCjr0KGD/fnPfy6xnJm3i+vo0aOtWbNmFh0dbW3btrVJkybZ6dOnz1svwXYJXr58uXXs2LHE1+69\n995iXZOzsrKsffv2hbHk5OTYgAEDbPr06bZly5Zi+3j66adt3rx5AccTjJSUFHvooYdsypQpNn78\n+ML/42BjLCpcXYKdWWiHL44kzrkuQNpFF6WSm3sL48fDq6+GOyqR6i09PZ34+HjS0tLo0qVLuMOp\nlpKSkpg5cybZ2dk0atQo3OFEtBkzZtC3b18++ugj8vLyeO6554qVWbFiBStXrmRW0TlIgtSrVy9+\n//vfF46yGukC+TstKAPEm1n5+68Xocs3QG7uxYB3WHkREakZDhw4QHJyMocOHSI1NZVx48aVWK5P\nnz588803xaYICNSePXswsyqTkISTkhIAHB4PFLnsJiIi1VxcXBxjx44lNTWVESNGlDgvT4EZM2aQ\nlJRUruO89NJLPP300+UNs0ZRl2CfG26AqjAtgIiIVJwFCxYEVO7GG29k165dfPnll9x2220B73/T\npk3k5ubSs2fP8oZYo6ilxMc3KaaISJU3Y8YM8vLydD9JBRsyZEhQCQl4Z+194YUXKimi6kctJT5K\nSkREpKJNnTo13CFUKWop8bnxxnBHICIiUrMpKQGioqDIgHgiIiISBkpKgDZtIAKnABAREalR9FWM\nNykRERGR8FJSAlx5ZbgjEBERESUlwIgR4Y5ARERE1CUYuOiicEcgUvNs3bo13CGISCnC9feppERE\nQiouLo66desycuTIcIciImWoW7cucXFxIT2mkhIRCalWrVqxdetWDhw4EO5QRKQMcXFxtGrVKqTH\nVFIiIiHXqlWrkJ/sRCTyRfSNrs65ic65nc65HOfcWudc1/OUH+qc2+orv8k51zdUsUrgli5dGu4Q\nahzVeeipzkNPdV71RWxS4py7F/gdMAPoDGwCVjjnSrzA5Zy7BfgzsBi4AfgAWO6c+1loIpZA6cQR\neqrz0FOdh57qvOqL2KQEmAwsNLM/mlkG8AvgBDCmlPKTgE/MbK6ZbTOz/wekA4+GJlwRERG5EBGZ\nlDjn6gDxwOcF68zMgBTg5lI2u9n3elEryigvIiIiESQikxIgDqgF7Dtn/T6geSnbNA+yvIiIiESQ\nmt77Jgo0iFOoHTlyhPT09HCHUaOozkNPdR56qvPQKvLdGVVR+4zUpOQAkAc0O2d9M+CHUrb5Icjy\nAK0BDeIUBvHx8eEOocZRnYee6jz0VOdh0RpYXRE7isikxMxOO+fSgDuADwGcc863PL+UzdaU8Hov\n3/rSrABGALuAkxcWtYiISI0ShTchWVFRO3Te+0cjj3NuGLAEb6+b9Xh74wwBrjGzbOfcH4HdZjbN\nV/5m4F/AVOAjYDgwBehiZv8N+RsQERGRoERkSwmAmS3zjUkyE+9lmI1AHzPL9hW5DDhTpPwa59z9\nwCzfYwdwtxISERGRqiFiW0pERESkZonULsEiIiJSwygpERERkYhQ7ZMSTeoXesHUuXPuQedcvnMu\nz/dvvnPuRCjjrcqccwnOuQ+dc3t8dTcggG0SnXNpzrmTzrntzrkHQxFrdRFsnTvnehb5bOcX+bw3\nDVXMVZ1zbqpzbr1z7qhzbp9z7n3nXLsAttP5vJzKU+cVcT6v1kmJJvULvWDr3OcI3pF3Cx5XVHac\n1cgleG8CnwCc9wYx51xr4B94p3DoBMwDXnPO9aq8EKudoOrcx4CrOfsZb2Fm+ysnvGopAXgJuAm4\nE6gDfOqciy5tA53PL1jQde5zQefzan2jq3NuLbDOzB73LTsgE5hvZnNKKP8OUNfMBhRZtwbYYGYT\nQhR2lVaOOn8QeNHMGoU20urHOZcPDDSzD8so8zzQ18w6Flm3FIg1s34hCLNaCbDOewJfAA3N7GjI\ngqvGfD9y9gO3mtmqUsrofF6BAqzzCz6fV9uWEk3qF3rlrHOAes65Xc65751z+iVTubqhz3g4OGCj\nc26vc+5T3694Kb8GeFufDpVRRufzihVIncMFns+rbVKCJvULh/LU+TZgDDAA7+i6HmC1c65lZQVZ\nw5X2GY9xzl0chnhqgizgEeAeYDDelsN/OeduCGtUVZSv9fX/gFXnGYdK5/MKEkSdX/D5PGIHT5Oa\nwczWAmsLln3Nq1vxnsRnhCsukYpiZtuB7UVWrXXOXYV3lGrdZBy8V4GfAd3DHUgNElCdV8T5vDq3\nlIRqUj85qzx17sfMzgAbgLYVG5r4lPYZP2pmp8IQT021Hn3Gg+acexnoBySaWdZ5iut8XgGCrHM/\n5TmfV9ukxMxOAwWT+gF+k/qVNpvhmqLlfc43qZ/4lLPO/TjnPMD1eJu8peKV9BnvjT7joXYD+owH\nxffleDdwm5l9H8AmOp9foHLU+bnbB30+r+6Xb+YCS5x3xuGCSf3q4p3oD3fOpH54u0f+yzn3JGcn\n9YsHxoU47qosqDp3zj2Nt7nvW7w3Uj0FtAJeC3nkVZBz7hK8v0Kcb9WVzrlOwCEzy3TOJQMtzazg\nMsHvgYm+Xjhv4D1pD8H7S0gCEGydO+ceB3YCW/DOqjoOuA3vF6QEwDn3Kt7z8QDgJ+dcQQvIETM7\n6SvzJrBH5/OKUZ46r5DzuZlV6wfesQR2ATl4M+Qbi7z2BfDGOeXvATJ85b/BOwlg2N9HVXoEU+d4\nk5idvrJ7gb8DHcP9HqrKA+gJ5OO9bFb08Ybv9T8AX5yzza14W7Ry8E5cOSrc76MqPYKtc+DXvnr+\nCcjG2zvt1nC/j6r0KKW+84AHipTR+TzMdV4R5/NqPU6JiIiIVB3V9p4SERERqVqUlIiIiEhEUFIi\nIiIiEUFJiYiIiEQEJSUiIiISEZSUiIiISERQUiIiIiIRQUmJiIiIRITqPsy8iFQxzrmGwI1AE+AH\nM/sizCGJSIiopUREIs1VeOfbeBtICHMsIhJCGmZeRCKOc64lsBvobWYp4Y5HREJDLSUiEokS8E4I\nti7cgYhI6CgpEZFI1AP4r5kdC3cgIhI6SkpEJBLdCqwOdxAiElrqfSMiEcU51wC4DvidbzkOmAoY\nsN/M5oQxPBGpRGopEZFI08P37xpfgjIeb1LSDhgRtqhEpNIpKRGRSJMAHAR+AB4FnjOzXOAiYEE4\nAxORyqUuwSISUZxzq4F6wMfAM2Z2MswhiUiIqKVERCKGcy4KiAe+A1oDbznn2oc1KBEJGSUlIhJJ\nbsF7A/7TZnYfsBf4R8GLzrmYcAUmIpVPSYmIRJIewCEz2+xb/hbvpRycc22Bh8IVmIhUPiUlIhJJ\nEoCviiyfAnb6ng8H3gl5RCISMkpKRCSS1Mc/8XgHOOycmw/sMrO94QlLREJBvW9EREQkIqilRERE\nRCKCkhIRERGJCEpKREREJCIoKREREZGIoKREREREIoKSEhEREYkISkpEREQkIigpERERkYigpERE\nREQigpISERERiQhKSkRERCQiKCkRERGRiKCkRERERCLC/wencU6y3SaINAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" ] - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "C = S[1]\n", + "X = []\n", + "Y = []\n", + "Z = []\n", + "for k in k_grid:\n", + " if k < 1.5*k_ss:\n", + " X.append(k)\n", + " Y.append(C[k])\n", + " Z.append(f(k)-delta*k)\n", + "\n", + "plt.plot(X, Y, color=\"blue\", linewidth=2, label=\"capital stock: $k$\")\n", + "plt.plot(X, Z, \"--\", color=\"gray\", linewidth=1, label=\"net product: $f(k)-\\delta k$\")\n", + "plt.plot([k_ss], [c_ss], marker='o', color='r')\n", + "plt.xlabel(\"$k$\", fontsize=14)\n", + "plt.ylabel(\"$c$\", fontsize=14)\n", + "plt.title(\"Policy Function: $c$\")\n", + "plt.legend(loc='lower right')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 220, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "K = S[2]\nX = []\nY = []\n\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(K[k])\n\nplt.plot(X, Y, color=\"black\", linewidth=2)\nplt.plot(X, X, \"--\", color=\"gray\", linewidth=1)\nplt.plot([k_ss], [k_ss], marker='o', color='r')\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$k^{\\prime}$\", fontsize=14)\nplt.title(\"Policy Function: $k^{\\prime}$\")\nplt.show()", - "execution_count": 220, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGOCAYAAACjachYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VOX5///XFRZBVhUJWlGK4r6waBUhiRtaAQG1/X1F\nRAGRWMAAyr5aUXABEUQUghBBxfqpyupKKWuryOpaxaJSSWQRZIeQyf37Y4YxExKyzZ738/HIQ3LP\nWe45TSfvXOec65hzDhEREZFokBDpCYiIiIgco2AiIiIiUUPBRERERKKGgomIiIhEDQUTERERiRoK\nJiIiIhI1FExEREQkaiiYiIiISNRQMBEREZGooWAiIiIiUUPBREQkxpnZyWZ2b6TnIRIMCiYiccLM\nuphZrpmdXdD3Urg4OFYdgIlmZpGeiEhZKZiIRIiZ3ef7ZXjs65CZfWNmz5tZ3VJs0vm+Cvs+5Ap4\nT3m/xoRzLoXMr7mZjTKzmvleCvuxKg4zG2dmH5nZpCIWvQ54w+mprBIHKkZ6AiLlnANGAD8AVYCW\nwF+AW83sUufc4TJsexYwxzmXXeZZlkze95TXF2GeR0GuBUYCM4G9ecYjdayKMgj4kMC5FiQF6BT6\n6YiEnoKJSOS975xb5/v3DDPbBfQD2gN/K+1GfX89R+oXbd73FE0KPNUR4WNVKOecx8wuAJ4pbBkz\nOwM47JxbE76ZiYSOTuWIRJ8leH+B/v7YgJk1MbP3zGyPme0zs8VmdvWJNlLYdRNmdqaZvWxmW83s\nsJltNrMpZlbRzK7zrdO+gO3d7XvthPstDjPLMLPvCxh/1Mxy839vZuf61tltZr+a2Qwzq1LA+id6\nb6OAp32L/uDbrsfMzj7BsSryuJdijheYWf1iHqcGQCLwrxMsdh3wcnG2JxILVDERiT7n+f77C4CZ\nXQIsB/YATwI5QCqw1MySnXOfFrKd466b8P11/SlQE5gKfAP8DvgTcLJzbqmZ/Q/vaYF5+bbXCfjO\nOfdJMd5DLTM7LWAyzv1yorkVMn7s328Cm4HBQFOgO7ANGFLc9wa8DZwP3AX0wXd8gR0FzcfMLqZ4\nx73Yc/T5GlgK3FDA+8+vBfClc+5Ep3IuAZ4txrZEYoKCiUjkHfslfuwakxHAQWCh7/XH8f5/tYVz\n7kcAM5uN9xfv08D1JdjXk0Bd4A/OufV5xh/N8+9XgX5mVsM5t8+3vzpAK2B0MfZhwD/yjTmgQgnm\nmd9a51wP/w6887mfwF/6Rb23z81sHd5gMs85tyXP9gra5xOU7LgXZ45QsgttWwArfdu7GmiLN/C0\ncs59AeCcG17MbYnEBJ3KEYmsY7/EdwD/A17He6FjB+dclpkl4A0E7xz75QjgnPvZt2xLM6terB15\nf/u2B+bn+8Wd3yy8IelPecbuwhssXivGrhzeC3hvyvPVqjhzPMH2puYbWwGcduy9l+C9FUspjnuR\nc8yzjQrOuRuLOZUWwEozux44DZiN92dGn90St1QxEYksB/QENuE9VbDNOfdNntdPx3sa4tsC1v0a\n7y+o+r5/F+V0vKc5vjzhhJz7xsw+xXvqZqZv+G7gY+fc5mLsB+DTIF/8uiXf97t9/z0F2E8x31sJ\nlOa4FzXHEvHd0nwJcC6w0zn3ru+leiXdlkgsUTARibxg/xIPhlnAc2Z2JlAVuAZvgAqWwk5lFHa6\nx1PIeDQ1FAv2HJsDu4ALgQvM7Efn3KZSbkskZqgcKBLdduC93uSCAl67CMjFewqouNvaC1xajGXf\n8G27I95qSTbeizuDZTdQu4DxBqXcXnHfW3Gv7QjmcS+tFsA/nHOd8faAmQ/+00wicUs/4CJRzDmX\ni7fBVvu8t7KaWSLe0LDCOVes0wS+Xh1zgdvMrGkRy/4CvAd0xntK533n3K7SvYsC/RfvRb/+IOG7\nq6ZDaTZWgvd2wPffgkJR3u0F7bjnV4LbhVsAH/v+/SXea0wAeplZ1dLsWyQWKJiIRFZxyvzD8V5/\nssrMhpjZQGAVUBkYWML9DQW2A8vN7Fkze8DXov3zAtq0zwIuBxrhvVOnuIrznt7AW5GYa2ZpZjYE\n7y/hb0682gkV572t9c1vjJndY2b/7wS/5IN53PP6GnjlRAuYWQXgD8C/8wx/5/tvVefcoTLsXySq\n6RoTkcgq8tSCc+4rM0sCxuLtkZGA95f43SXt9umcy/Tddjoa7ymamsBW4F28QSGvBXhPuRi+0wjF\n3U0x5rHLzDrg7b/xFPA93vd2Pt4eICVWnPfmnFtjZsOBB4Fb8B7L3xeyvaAd9/ybpuhjdLpv7seu\nPfoH0MPMRgNzyrBvkahneuaTiBTE91d7Jt6eHz2KWl5EJBii9lSOr3S62sz2mtk2M3vHzM4vYp1j\nTzb12G9PNM3/V6CIFM/tQB28p3RERMIimk/lJAHPA2vwznMs8KGZXVTE+dU9eMvBx85zqyQkUgJm\n9gfgCrzXWKxzzq2M8JREpByJ2mDinGud93sz64L3wrZm+Fo0F76q2xHCqYnEu7/gvRNnPdA1wnMR\nkXImak/lFKA23upHUbcsVjezH8xsi5nN9T2IS0SKyTnX1TlX2Tl3tXPuq0jPR0TKl5i4+NX3HIwF\nQA3nXMoJlrsG75NZPwNqAQOAZOBi51xmOOYqIiIipRcrweRFvLf2tXDOZZVgvYp4ewa87pwbVcDr\np/m2+wNwODizFRERKReq4O3W/IGvKWNQRO01JseY2WSgNZBUklAC4JzLMbP1eKsoBbmF4j0tVURE\nRArWCe9Tt4MiqoOJL5S0B1Kcc/mf3Fmc9ROAy4BFhSzyA8Crr77KRRddVNppSgn169ePCRMmRHoa\n5YqOefjpmIefjnl4ff3119xzzz3g+10aLFEbTMxsCt5nUrQDDvieUQGwxzl32LfMK8BW59xQ3/cj\n8HZm/A7vxbIDgbOB6YXs5jDARRddRNOmpWo2KaVQq1YtHe8w0zEPPx3z8NMxj5igXgoRtcEEb8to\nByzNN96V3xo+1SfwUeOnANOAenhbaa8Fmjvn/hPSmYqIiEhQRG0wcc4VeSuzc+6GfN8/DDwcskmJ\niIhISMVSHxMRERGJcwomEnYdO3aM9BTKHR3z8NMxDz8d8/gQE31MQsXMmgJr165dqwumRERESmDd\nunU0a9YMoJlzbl2wtquKiYiISDmVm5sb6SkcR8FERESkHMrMzGTq1Kl88803kZ5KgKi9K0dERESC\nLycnh+XLl7Ny5UoSExOpVatWpKcUQMFERESknMjMzGTevHns3LmT5ORkkpKSqFChQqSnFUDBRERE\npBz45JNP+OCDD0hMTOSBBx6gXr16kZ5SgRRMREREyoHExMSorZLkpWAiIiJSDjRo0IAGDRpEehpF\n0l05IiIiEjUUTERERCRqKJiIiIjEgczMTL788stIT6PMdI2JiIhIDMvbl6R+/fpcfPHFmFmkp1Vq\nCiYiIiIxKm9fkpSUFFq2bBnToQQUTERERGJO/u6t0dyXpKQUTERERGJIVlYWc+fODaiSRHNfkpJS\nMBEREYkhBw4cICEhIa6qJHkpmIiIiMSQ8847j3PPPTfmryUpjG4XFhERiTHxGkpAwURERESiiIKJ\niIhIFPF4PGRmZkZ6GhGjYCIiIhIlsrKymDZtGq+99hpHjx4Nyz7Xrl0blv0Ul4KJiIhIhHk8HpYs\nWUJ6ejoJCQl07tyZSpUqhWx/zjkWLFjALbfcwpVXXsmiRYtCtq+S0l05IiIiERTuviQ//fQTDzzw\nAO+//75/rEePHvznP/+hRo0aIdtvcSmYiIiIRIDH42HZsmVh6976zTff0L9/fxYuXBgwfsopp/D0\n009TvXr1kO27JBRMREREIuCHH35g1apVIa+SrF27lqeeeoq5c+cGXLdy5plnMmLECDp27EitWrVC\nsu/SUDARERGJgHPPPZe0tLSQhYLdu3fz1FNPMW7cODwej3+8cuXK3H///TzxxBOccsopIdl3WSiY\niIiIREgoQsn+/fsZNGgQU6ZMCRg3M/r06cMTTzzBySefHPT9BouCiYiISBz45ZdfePnll5k8eTL/\n+9///OOVKlVi8ODBPPLII1F1yqYwCiYiIiIhkp2dTeXKlUO+n7fffpu//OUvbN++3T9WuXJl7rjj\nDoYMGcLll18e8jkEi/qYiIiIBFlOTg5Llixh0qRJ7N+/PyT7cM7x8ssvc95553HnnXcGhJKUlBS+\n+uor5syZE1OhBFQxERERCarMzEzmzZvHzp07SU5OpmrVqkHdvsfjIT09nSlTpvD5558HvNamTRv6\n9+9PcnIyCQmxWXtQMBEREQmCcPQlWbt2Lb179+bjjz8OGG/UqBGjRo3i7rvvjvknDyuYiIiIlFGo\nu7euWbOGHj16sH79+oDxs88+mxdffJHWrVsHbV+RpmAiIiJSBjt27CA9PT0kVZLVq1fz4osvMnv2\n7IBeJI0aNWLixInccsstMXvKpjAKJiIiImVw+umnc+edd3LhhRcGrUqyb98+Bg4cyEsvvRQwXr9+\nfXr06MHDDz8c1b1IykLBREREpIwuueSSoGxn586dDBkyhFmzZpGdne0fr1SpEiNHjmTQoEEhfepw\nNFAwERERibDdu3fz2muv8dhjj7Fjxw7/eLVq1ejfvz/du3fnrLPOiuAMw0fBREREJEKys7OZPn06\ngwcPZt++fQGvdejQgfHjx9OwYcMIzS4y4uuKGRERkSDLzMxk1qxZHDx4MGjb9Hg8PPPMM9SuXZte\nvXoFhJL27duTlZXFO++8U+5CCahiIiIiUqCcnByWL1/u70ty6NChoFxwum7dOnr27Mknn3wSMN6m\nTRt69erFH//4x5jvRVIWCiYiIiL55O3eGqy+JJ9++impqanH9SK58cYb6d+/P3/84x/LtP14oWAi\nIiLik79KEoy+JIsXL2b48OHHVUjOP/98Zs6cybXXXlum7ccbBRMRERHg0KFDZGRkBK1K8tlnnzFh\nwgQyMjICxs866yxSU1N55JFHgv4cnXigYCIiIgJUqVKF8847j9tvv71MVZIdO3bQu3dv3nzzzYDx\nU045hf79+zNgwIC470VSFgomIiIigJnRqlWrUq+/ZcsWnn76aWbPns3evXv949WqVePpp5/mwQcf\njLv28aGgYCIiIlIGR48eZfr06QwaNCjgtt9TTjmFBx54gL/85S80aNAgchOMMQomIiIipeDxeBg/\nfjyPPvoohw4dCnjtjjvu4IUXXgjqA/3KC9WURESkXPB4PKxYsYLDhw+XaTuHDx9m1KhRJCYmMmjQ\noIBQ0rVrVzZv3sxbb72lUFJKqpiIiEjcy8rKYu7cuezcuZO6detywQUXlGo7q1evpmvXrnz11VcB\n4zfeeCMDBgzglltuCcZ0y7WorZiY2RAzW21me81sm5m9Y2bnF2O9P5vZ12Z2yMw2mtmt4ZiviIhE\nH4/Hw5IlS0hPTychIYEHHnigVKFk8eLFNG/enKuvvjoglFxzzTWsWrWKxYsXK5QESTRXTJKA54E1\neOc5FvjQzC5yzh0qaAUzuxZ4HRgELAI6AXPNrIlz7quC1hERkfiUt0qSnJxMUlJSifuSfP7550yY\nMIGZM2cGjDdr1oyMjAwuvfTSYE5ZiOJg4pxrnfd7M+sCbAeaASsLWS0NeM8596zv+5Fm1groDfQM\n0VRFRCSK5ObmsnTp0jJ1b/3pp5945JFHjutFUrt2bQYMGKBeJCEUtcGkALUBB+w6wTLNgfH5xj4A\n2odqUiIiEl3MjJ9//rlUVZItW7bQs2dPFi1aFDCuXiThExPBxLyPWXwOWFnEKZl6wLZ8Y9t84yIi\nUg6YGR07dizRE3r/+9//kp6ezpQpU47rRdK9e3d69uypXiRhEhPBBJgCXAy0iPREREQk+hU3lOTk\n5DB+/HhGjRrFkSNH/OM1atTg3nvvZfjw4brtN8yiPpiY2WSgNZDknMsqYvGfgcR8Y4m+8UL169eP\nWrVqBYx17NiRjh07lnC2IiISCw4fPswbb7zBxIkT2bBhQ8Br3bp1Y/z48dSuXTtCs4s+c+bMYc6c\nOQFje/bsCcm+zDkXkg0Hgy+UtAdSnHObi7H8G0BV51z7PGOrgI3OueMufjWzpsDatWvX0rRp0yDO\nXEREQikrK4tTTz2Vk046qUTrHTlyhAULFjBy5Ei+/vpr/7iZ0b17d3r37s3ll18e7OnGpXXr1tGs\nWTOAZs65dcHabtRWTMxsCtARaAccMLNjlZA9zrnDvmVeAbY654b6XpsILDWzh/HeLtwR7108D4R1\n8iIiEhI5OTksX76clStXct1115GcnFzsdT/66CO6d+/Oli1bAsbPP/98Zs6cybXXXhvs6UopRG0w\nAR7EexfO0nzjXYFZvn/XBzzHXnDO/dvM7gae8H1tAtqrh4mISOzL25ckJSWFFi2Kd9nhF198wfjx\n48nIyAgYb9KkCYMGDaJ9+/ZUqVIlBDOW0ojaYOKcK/J+LOfcDQWMvQW8FZJJiYhI2Hk8HpYtW1bi\nviRbt26lb9++/P3vfw8Yb9asGb169aJz585UrBi1vwbLLf0vIiIiUas03Vt//PFHevXqVWAvkmee\neYbU1FT1IoliCiYiIhK1PvroI/8zboqqkng8HqZNm8agQYOO60Vy//3306tXL/UiiQEKJiIiErXu\nvPNOqlSpcsIqybFeJH/96185dOi3R6nVqFGDzp07M3LkSBIT83eSkGilYCIiIlGrWrVqhb52+PBh\n/va3vzFx4kTWr18f8Fr37t0ZN27ccT2qJPopmIiISMxZvXo1Xbp0CehFAnD99dczePBgbr755gjN\nTMpKwURERCLG4/GQm5tb7Cf1fvTRRzz66KP861//Chi/4IILyMjI4JprrgnFNCWMdFmyiIhERFZW\nFtOmTeMf//hHkct+8cUXdO3alZtvvjkglDRt2pQ33niDDRs2KJTECVVMREQkrPL3JWncuHGhy2Zl\nZZGWlnZcL5JatWoxaNAgBgwYoF4kcUb/a4qISNjk797asmXLAu+4US+S8kvBREREQq643Vs3b95M\neno6kydPZv/+/f7xU045hW7dutG7d2/1IolzCiYiIhJyCxcu5LPPPiu0SpKTk8O4ceMYNWoU2dnZ\n/vEaNWpw7733MnLkSOrWrRvuaUsEKJiIiEjItWzZkquvvvq4Ksnhw4d58803mTBhAhs2bAh4Tb1I\nyicFExERCbnTTjvtuLFPPvmELl268J///Mc/lpCQ4D9lc8UVV4RzihIlFExERCSsPvzwQ/7617+q\nF4kUSMFERETC4ssvv2TcuHFkZGQEjDdt2pQBAwbQoUMHqlSpEpnJSdRQMBERkTI5dscNwA033HDc\n69u3b6dnz5689dZbAeM1a9Zk8ODB6kUiAfSTICIipZa/L0leP/zwAxMmTOCVV15hz549/vHq1asz\nbtw4evTogZmFe8oS5RRMRESkxE7UlyQ3N5epU6cycODAgF4ktWvXplu3bqSlpXHOOedEauoS5RRM\nRESkRPJWSZKTk0lKSqJChQrk5OTwzDPPMHr0aA4dOhSwzp/+9CdeeOEF9SKRIimYiIhIsa1du5ZF\nixYFVEkOHz7M66+/zoQJE1i/fn3A8t26dWPw4ME0atQoQjOWWKNgIiIixXbWWWcFdG8tqBcJQEpK\nCkOHDuXmm2+O0EwlVimYiIhIsSUmJpKYmMiHH37I6NGjWblyZcDrF154IRkZGVx99dURmqHEOgUT\nEREptr179/LII48wffr0gPGmTZvSv39/br/9dvUikTJRMBERkSJt376dkSNHMmvWrIALW2vUqMHQ\noUPp37+/epFIUOinSERE/LKyssjMzKRZs2YA7N+/n1mzZjFy5Eh++eUX/3LqRSKhomAiIiIBfUnO\nOOMMrrjiCqZPn86AAQMCepEAtGvXjkmTJqkXiYSEgomISDmXty9JUlISmzZt4sorr2Tjxo0By6kX\niYSDgomISDmVv3vr9ddfT79+/VizZk3Acrfeeiu9evWiTZs2EZqplCcKJiIi5dC2bdt4++232blz\nJw0bNmTSpEl8+umnAcucffbZTJ8+nVatWkVollIeKZiIiJRDHo+HhIQE9u/fz3333Udubq7/tQsv\nvJAnn3ySNm3a6E4bCTv9xImIlDN79uzhscceY+rUqQHjZ5xxBqmpqQwaNEi9SCRiFExERMqJX375\nhdmzZzN+/Hh++ukn/3jlypV57LHHeOSRR1QhkYjTT6CISJwrrBdJQkICHTp0YPTo0Vx88cURnKHI\nbxRMRETikMfjYcuWLbz//vsMHDjwuF4kN910E9OnT1cvEok6CiYiInEmMzOTOXPm8OuvvzJu3DgO\nHz7sf61NmzY89NBD3HzzzerYKlFJwUREJE54PB7+/ve/89VXX7Ft2zbmzp3rDyXqRSKxQsFERCQO\nLF68mCVLllCxYkWWL1/OihUryM3N5eyzz+bll1/mpptuivQURYpFwUREJIY45wJOwezfv58xY8ZQ\nqVIldu3axdy5c9m2bRvnnHMOPXr0oHfv3tSsWTOCMxYpGQUTEZEot2/fPsYNG8aqBQuodvQoBypV\n4sqbb6ZyYiKLFi2idevWLFu2jBUrVgAwePBgRo0apV4kEpMUTEREoti+ffu4s3lzHv76ax7NzcUA\nByyaNo0eQBbw7bffkp2dzbBhw+jVqxeJiYmRnbRIGSiYiIhEsXHDhvHw11/zxzwt4w1oC0wFOgMX\nXHwxM2fOVC8SiQsKJiIiUWzVggU8mieU5NUWuKxePZZ//LFu/ZW4kRDpCYiISME2b97MocxMCosc\nBpxaoUI4pyQScgomIiJR5osvvuDOO+/koosuYk9CAq6Q5RxwoFIlVUskriiYiIhEiZycHJ544gma\nNm3Kv//9b+6//37OvOwy3i1k+fcTEmjZrl1Y5ygSarrGREQkwg4dOsTTTz/N1KlT2b59O8nJySQl\nJbFt2zYaNm3KhP37SfjmG/6Y566c9xMSmHDRRbz1+OORnr5IUCmYiIhESE5ODgsXLmTQoEF8++23\nnHHGGfTo0YM6derg8XgYP3481apVY9++fYwfPpxn58/n5KNHOVipEi3ateOtxx+nRo0akX4bIkGl\nYCIiEgHvvfcePXr04KeffgKgVq1adO/enf3795OSksKNN97oX7ZGjRo8OnEiTJx4XOdXkXijYCIi\nEkbffvstY8aM4ZVXXgkYv/DCC0lJSeG6666jwgnutFEokXinYCIiEgbbtm2jZ8+evP322wHjTZo0\noWfPnnTp0oWKFfWRLKL/F4iIhNAPP/zA888/z4wZM/j111/94zVq1ODZZ5/l/vvvVxVEJI+ovV3Y\nzJLMbL6ZbTWzXDM74T1xZpbiWy7vl8fM6oZrziIix+Tm5jJlyhQuvfRSnn32WX8oqV27Nn369OGL\nL76ge/fuCiUi+URzxaQasAF4GXi7iGWPccD5wD7/gHPbgz81EZGCHT16lKeffpqnnnqKffv8H0Wc\nccYZdO7cmdTUVBo2bBjBGYpEt6gNJs6594H3Aaxkf1LscM7tDc2sREQK9/nnn9OlSxfWrVvnH6tQ\noQJpaWnUrl2bunXr6vZekSJEbTApJQM2mFkV4AvgUefcvyI8JxGJc//617/o27cvn376acD4rbfe\nyvXXX8/hw4dJSkoiKSnphHfciEh8BZMsIBVYA5wEPAAsNbM/OOc2RHRmIhKXDh48yIgRI5gwYQLO\n/fZEm0svvZTBgwfz3//+l5o1a9K5c2fq1asXwZmKxI64CSbOuW+Bb/MMfWxm5wL9gPsiMysRiUe/\n/vorgwYNIj09PSCQJCYm8pe//IXTTz+dzZs3+1vLq0oiUnxxE0wKsRpoUdRC/fr1o1atWgFjHTt2\npGPHjqGal4jEoF27dvHaa6/x1FNPsXXrVv/4SSedxOjRo3n44YepUKECK1asoFGjRqqSSNyYM2cO\nc+bMCRjbs2dPSPZledN+tDKzXKCDc25+Cdf7ENjrnPtTIa83BdauXbuWpk2bBmGmIhKPnHPMmTOH\nhx56iF27dvnHzYz27dszduxYLrzwwgjOUCT81q1bR7NmzQCaOefWFbV8cUVtxcTMqgHn4b2gFaCh\nmV0B7HLO/c/MxgJnOufu8y3fB/ge+BKogvcak+uBVmGfvIjEhdzcXP7xj38wYcIE3nvvvYDXbrnl\nFtLT06lfv36EZicSn6I2mABXAv/E25vEAeN9468A3YB6QN5PhMq+Zc4EDgKfATc655aHa8IiEj82\nb97M/fffz9KlSwPG27RpQ+/evbnlllvUHE0kBKK286tzbplzLsE5VyHfVzff612dczfkWf4Z51wj\n51w159zpzjmFEhEpsc8//5w///nPXHDBBQGhpG7durz11lvMnTuXKlWqBDRPE5HgieaKiYhI2Bw9\nepSnnnqKxx57jKNHj/rHzz77bPr27cu9997LkSNHSE9PZ+fOndSpU4dLL700gjMWiU8KJiJSrh08\neJBnnnmGadOmkZmZGfBaz549efLJJ6latSrLly9n5cqVJCYm8sADD+iOG5EQUTARkXLJ4/GwaNEi\n+vfvz6ZNm/zjFSpUYMCAAQwfPpxq1aqRmZnJq6++ys6dO9WXRCQMFExEpNx59913SU1N5aeffgoY\nb9asGS+99BJXXnklzjmWLFmiKolImCmYiEi58euvv9KvXz8yMjICxq+55hqmTZvGZZdd5h8zM/bt\n26cqiUiYKZiISNz7+eefGT16NLNnzw64m6Zx48b07NmTbt26FRg82rVrp1uCRcJMwURE4tahQ4d4\n5ZVXGDp0KLt37/aP16xZk2effZZu3bqdMHgolIiEn4KJiMSd3NxcpkyZwuDBgzlw4EDAa7fddhsv\nvPCCOraKRKmobbAmIlJSzjk++eQTbrjhBh566KGAUHLXXXexdetW5s+f7w8lmZmZ7N+/P1LTFZEC\nqGIiInHhs88+4/7772fNmjUB461atSItLY22bdv6x3Jycvx9Sa655hpuvvnmcE9XRAqhYCIiMW3N\nmjW88MILvPbaawEdWxs0aMDLL7/MDTfcELB8VlYWc+fOZefOnaSkpNCyZctwT1lETkDBRERi0sGD\nBxk+fDjJOvFWAAAgAElEQVTPPfcczjn/eP369enRowd9+/alevXq/nGPx8OyZcvUl0QkyimYiEhM\n+fXXX5k6dSovvvgiP/74o3+8QoUKDBo0iJEjR3LSSScFrFNQlUR9SUSik4KJiMSMRYsW0aNHj4Bn\n2lSpUoUBAwaQmprK7373uwLXW7VqFQkJCaqSiMQABRMRiWrOOd59911eeOEF3nvvvYDXmjdvzsyZ\nM7ngggtOuI22bdtSqVIlVUlEYoCCiYhEraysLB588EHmz58fMH7zzTczZMgQkpOTSUgouutBlSpV\nQjVFEQkyBRMRiTrff/89U6ZMYfr06fz666/+8Zo1azJhwgS6du2qrqwicUrBRESiRm5uLi+88AKD\nBw/m4MGD/vG6desyatQoOnXqRK1atY5bz+PxkJOTc9xFryISexRMRCTijh49yquvvsrkyZNZt25d\nwGt33XUXzz//PHXq1Clw3czMTObNm0e9evW4/fbbwzFdEQmhYgUTM+sBbHXOLQrxfESknNm4cSNd\nunRhw4YNAePdunWjb9++XHbZZQWul7d7a2JiIs2bNw/HdEUkxIpbMekFXGZmPwBTgJedc7tPvIqI\nSOHWrFnDlClTmD17Njk5Of7xc845hxkzZhzXsTWvY1US9SURiT/FDSaNgWZAK+BWYKiZvQNMds6t\nD9XkRCT+HDx4kGHDhjFx4sSAjq2XXHIJo0aNol27doVeK5K/SqK+JCLxp1jBxHk/Pdb4vsaaWVUg\nGW9IUTARkSLt3r2b9PR0pkyZclzH1sGDBzNixIgiL1796KOPWLNmjaokInGsVBe/OucOAR/4vkRE\nTqiwjq39+/fnwQcfLLRja34tWrSgSZMmqpKIxDHdlSMiIRGMjq351axZk5o1awZzmiISZYpumXgC\nZjbQzDaa2YN5xmqa2cNmdmbZpycisSgrK4v27dvTtm3bgFDSqlUrlixZwsqVK0scSkSkfChTMAHq\nAj8CHY4NOOf2AvOB+82scxm3LyIx5MiRI0ydOpWLL76YBQsW+Mdr1qzJyy+/zAcffMD1119/wjby\neS+IFZHyp6zBxIA/Oef+mHfQOfedc240cFUZty8iMSA3N5dJkyZx2mmn8eCDD/rbyNetW5fJkyfz\n448/0q1btxO2kfd4PCxZsoSFCxeGa9oiEoXKeo3JWGCQmY1xznnM7AJgIVAd+B749YRri0hMO1HH\n1o4dO/L8889z2mmnFbmdrKws5s6dy86dO0lOTsY5p2fhiJRTxe38egOQBKwCPnHO7QNwzu00s+eB\nIWY2DngceBf4DjgCvBGSWYtIxBXWsfXGG2+kb9++tG3btshteDweli1bpr4kIuJX3IpJPWCU79+5\nZvYV8C/f17+BicCjgMc51yfYkxSR6LF7926effZZnnzyyYCOrQ0aNGDGjBlcf/31xdpO3iqJ+pKI\nyDHFDSY7gBfwnrpJAlribbD2gO/1X4Cfgf+a2aXOuS+CPVERiazCOrZeeumljBgxgnbt2lGlSpVi\nbWvjxo3MmzdPVRIROU5xg8kaYLdzLhP4m+8LM6uNN6Qk+b5aA+3MbBewDHjDOff3oM9aRMImNzeX\n999/nz59+vDdd9/5xytUqMCQIUMYMWIElStXLtE2zznnHK677jpatGihKomIBChuS/rdeMNJ/vFf\n8V7suhDAzKoA1/JbWOkPKJiIxKhFixbRs2dPtmzZ4h+rVKkSd9xxBwMHDqRp06al2m7t2rVJTk4O\n1jRFJI4EtfOrc+4wsMT3JSIxavfu3fTt25dZs2YFjF977bXMnDmT888/P0IzE5F4V9Y+JiISR7Ky\nsnjooYf4/e9/HxBKLr/8cqZOncry5csVSkQkpPSsHBHBOcerr75KWlqavzkaQK1atXjuuee47777\nStRXJDMzk++//54WLVqEYroiEscUTETKsdzcXGbMmMHkyZPZuHFjwGu33XYbL774YrGf/AuQk5PD\n8uXL/X1J/vCHP1CpUqVgT1tE4piCiUg59d1339GtWzdWrFgRMH733XczZswYzjnnnBJtT31JRCQY\nFExEypmtW7cybdo0nnnmGQ4dOuQf/93vfsfkyZPp0KHDCdY+nrq3ikgwKZiIlBPZ2dmMHTuWxx9/\nPKBj6+9//3smTZpE69atT/jU34Js376dt956y/+Mm6SkJFVJRKRMFExE4tyRI0dYsGABjz/++HHX\nkfTu3ZuxY8dSvXr1Um27YsWKnHTSSaqSiEjQKJiIxLEVK1bQtWtX/vvf//rHKlSoQOfOnenZsydX\nXXVVmbZ/6qmn0rVrVz0JWESCRsFEJA4dPHiQoUOHMmnSpIDn2lx22WVkZGSUumNrQRRKRCSYFExE\n4sju3bsZOnQoM2fO5MiRI/7xJk2a0Lt3b+65554SP9dGRCScFExE4sSCBQtITU0lKyvLP1alShXG\njBlDWlpaqS5KzcnJ4fvvv6dRo0bBnKqISKHUkl4khjnneO+992jbti3t2rULCCW33XYbGzdupF+/\nfqUKJZmZmaSnp/O3v/2Nffv2BXPaIiKFUsVEJEZlZmaSmprKwoULA8Zbt27NtGnTStSxNa/83Vu7\nd+9OjRo1gjFlEZEiKZiIxJijR4+SkZHBwIEDg/Jcm7wyMzOZN2+eureKSMQomIjEiNzcXJ5//nmG\nDRvGgQMH/OOJiYkMGzaMTp06ceqpp5Zq2/mrJOpLIiKRomAiEgO+++47unbtysqVKwPG7777biZN\nmsRpp51Wpu3/+uuvfPLJJ6qSiEjERe3Fr2aWZGbzzWyrmeWaWbtirHOdma01s8Nm9q2Z3ReOuYqE\nysaNG7n77ru55JJLAkLJ9ddfz/z583nttdfKHEoA6tSpQ9++fUlJSVEoEZGIiuaKSTVgA/Ay8HZR\nC5tZA2AhMAW4G7gJmG5mmc65j0I3TZHgy87OZsyYMTzxxBMBz7Vp2LAhM2bMICUlJej7rFq1atC3\nKSJSUlEbTJxz7wPvA1jxruT7C7DZOTfQ9/03ZtYS6AcomEhMOHLkCAsXLmT06NEFPtfmySefpFq1\nahGanYhI6EVtMCmFa4DF+cY+ACZEYC4iJbZ8+XK6desW8FybihUrMnDgQB555JFSX9h6zP79+0v9\nsD4RkXCJ2mtMSqEesC3f2DagppmdFIH5iBTLgQMH6NOnDykpKQGh5LLLLmP16tU88cQTZQolHo+H\nJUuW8Nxzz/Hzzz8HY8oiIiETTxUTkZiya9cuhg0bRkZGBocPH/aPN27cmF69enHvvfeW+bk2WVlZ\nzJ07l507d5KUlMTpp59e1mmLiIRUPAWTn4HEfGOJwF7n3JEClvfr168ftWrVChjr2LEjHTt2DO4M\nRXwWLFhAjx49AioYZX2uTV4ej4dly5apL4mIBMWcOXOYM2dOwNiePXtCsi/L+0j0aGVmuUAH59z8\nEyzzJHCrc+6KPGOvA7Wdc60LWacpsHbt2rVBfQy8SGG2bt3K4MGDefXVVwPG27Zty7PPPhuUh+Xl\nr5IkJSXpFmARCbp169bRrFkzgGbOuXXB2m7UVkzMrBpwHnDsjpyGZnYFsMs59z8zGwuc6Zw71qvk\nJaCXmT0FzABuBP4EFBhKRMIpMzOTXr16MXfu3IDxsj7XJr+DBw8yY8YM6tSpoyqJiMSkqA0mwJXA\nPwHn+xrvG38F6Ib3Ytf6xxZ2zv1gZm3w3oWTBvwE3O+cy3+njkjYOOeYPXs2ffr0CfpzbQpy8skn\n06lTJ+rXr68qiYjEpKgNJs65ZZzgriHnXNcCxpYDzUI5L5HiyM3NZeXKlTz55JO89957/vHq1avT\nqVMnRowYEbQqSX4NGjQIyXZFRMIhaoOJSKwq7Lk2nTp1YtKkSWXuRyIiEs/iqY+JSETl5uYyceJE\nLr/88oBQkpiYyNy5c3n11VeDEkpi4YJ1EZHSUjARKaPs7Gxmz57N1VdfTd++fTl06BAA9evXZ8yY\nMXz55Ze0b98+KPvKysoiPT1djdJEJG7pVI5IGWzYsIEuXboc91ybhx56iLFjxwbtuTb5+5IkJOhv\nChGJTwomIqWQnZ3NE088wZgxY0L+9N+8fUlSUlJo2bKl7rgRkbilYCJSAgcOHGDixIlMnTqVLVu2\n+Mcvu+wyhgwZQocOHahatWpQ9qXurSJSHimYiBTTsmXL6NatG5s3b/aPVaxYkaFDhzJs2LAyP9cm\nL4/Hw/Tp09m+fTvJycnq3ioi5YaCiUgRDhw4wJAhQ3j++ecDxps0acLLL79MkyZNgr7PChUq0KxZ\nM8466yxVSUSkXFEwESnErl27GD58OBkZGf47bQBatmzJM888w9VXXx3Urq35XXnllSHbtohItFIw\nESnAvHnzSE1NZdu2bf6xqlWr+p/+q7tiRERCQ5+uInlkZWVxzz330KFDh4BQ0rp1azZu3Ejfvn0V\nSkREQkifsCLA1q1buf322znzzDN57bXX/ONt2rThp59+YtGiRTRq1Cho+/N4PPzzn/9kx44dQdum\niEg80KkcKdecc8yaNYs+ffqwZ88e/3itWrWYOHEi9957b9CvI8nbl+SUU07h9NNPD+r2RURimYKJ\nlFtbt24lNTWVRYsW+ceqVatGp06dGDlyZNCf/qu+JCIiRVMwkXJn06ZNDBkyhLfffjvggXj33HMP\nEydODMnTf9W9VUSkeBRMpNzIzc1l0qRJDB06NOD233r16jF16lTatWsXkv0uXbqU5cuXq0oiIlIM\nCiZSLmzatIlu3bqxcuVK/5iZ0a1bN55++umQVEmOycnJUZVERKSYFEwkrv38889MmzaNJ598MqBK\nkpaWxpgxY4L29N8Tuemmm0K+DxGReKFgInHpRE//nTlzJsnJyRGcnYiIFEbBROLO+vXr6dKlC599\n9lnAeDirJCIiUjpqsCZxIzs7m5EjR3LVVVf5Q0nFihW55557+Pjjj5k4cWJIQklWVha7du0K+nZF\nRMojVUwk5u3fv5/nn3+eqVOn8uOPP/rHr7jiCjIyMmjcuHFI9pu3L0mTJk247bbbQrIfEZHyRMFE\nYtrSpUvp1q0b33//vX+sYsWKDBs2jKFDh1K5cuWQ7DdvX5Lk5GSSkpJCsh8RkfJGwURi0v79+xky\nZAiTJ08OGG/cuDEzZ84MS5VEfUlERIJPwURiinOOf/7zn3Tv3j2gSpKUlMTYsWO59tprg/5sm2MK\nqpKoL4mISHApmEjMmDdvHv369QsIJFWrVmXs2LE89NBDJCSE9lru9evXk5CQoCqJiEgIKZhI1Nu1\naxdpaWm89tprAeNJSUnMmDGD8847LyzzaNWqFQkJCaqSiIiEkIKJRLV58+aRmprKtm3b/GMXXngh\naWlppKamhrxKklelSpXCti8RkfJKwUSiUkFVktq1azNx4kQ6d+4csutIREQkstRgTaLKgQMHSE9P\n5+KLLw4IJW3atOHLL7/k3nvvDVko8Xg8HDx4MCTbFhGR4lHFRKKCc45XXnmFvn37smfPHv94uKok\nmZmZzJs3j5o1a9KpU6eQ7UdERE5MwUQibuvWrfTo0YN33303YLxNmzZMmzaNM888M2T7zsnJYfny\n5f6+JDfeeGPI9iUiIkVTMJGIKaxKctNNN9GrVy/at28fliqJ+pKIiEQPBROJiIKqJPXq1WPq1Km0\na9cupPvOXyVRXxIRkeihYCJh5ZwjIyODfv36BVRJ7rnnHiZOnMipp54a8jmsWLGCVatWqUoiIhKF\nFEwkLDweD5MmTWLUqFHs27fPPx6uKklezZs356KLLlKVREQkCimYSMht2rSJrl27smrVqoDxcFZJ\n8qpSpYpCiYhIlFIfEwkZj8fDhAkTuPzyywNCSYsWLZg/fz6zZ88OeygREZHopoqJhERBVZKGDRsy\nc+ZMkpOTQ75/55y6w4qIxCBVTCSoCquSpKWl8dlnn4U8lOTk5LBkyRLefPNNnHMh3ZeIiASfKiYS\nNJGukuTtS5KUlKSqiYhIDFIwkTI7dsfN0KFDOXz4sH88LS2NMWPGUK1atZDuX31JRETih4KJlFp2\ndjbjxo1jypQpbN261T8eqSqJ+pKIiMQ+BRMplXXr1tGlSxc+//zzgPFwVUkAvvrqK/7+97+rSiIi\nEkcUTKREsrOzGT16NGPHjsXj8fjHGzduzMSJE8NSJTmmQYMG3HDDDTRv3lxVEhGROKFgIsVWUJXk\niiuuICMjg8aNG4d9PieffDItW7YM+35FRCR0dLuwFCk7O5sRI0bwhz/8wR9KKlasyKOPPsrq1asj\nEkpERCQ+qWIiJxRtVRIREYlvqphIgaKhSpKZmcnixYvVKE1EpBxRxUSOE+kqSf6+JC1btqRKlSoh\n36+IiESegon4FXTHTcWKFRk+fDhDhgyhcuXKIZ+D+pKIiJRvUR9MzKwX0B+oB2wEHnLOfVrIsvcB\nMwEHHOtFftg5d3I45hrLoq1Kor4kIiLlU1QHEzP7f8B4oAewGugHfGBm5zvndhay2h7gfH4LJrpA\n4QSioUqyc+dO/u///k9VEhERie5ggjeITHXOzQIwsweBNkA34OlC1nHOuR1hml9Mi3SV5JgqVapQ\nvXp1br/9dlVJRETKuai9K8fMKgHNgH8cG3Pe2zMWA81PsGp1M/vBzLaY2VwzuzjEU4050XDHTV7V\nq1enc+fOCiUiIhLVFZM6QAVgW77xbcAFhazzDd5qymdALWAA8C8zu9g5lxmqicaSaKmSiIiIFCRq\nKyal4Zz72Dn3qnPuM+fcCuAOYAeQGuGpRVy0VUlEREQKEs0Vk52AB0jMN54I/FycDTjncsxsPXDe\niZbr168ftWrVChjr2LEjHTt2LP5so1ikqyQ5OTl88803XHLJJSHfl4iIBN+cOXOYM2dOwNiePXtC\nsi+L5q6aZvYx8Ilzro/vewO2AJOcc88UY/0E4EtgkXOufwGvNwXWrl27lqZNmwZ38lEgGu64yduX\npGfPnpx22mkh36eIiITeunXraNasGUAz59y6YG03mismAM8CGWa2lt9uFz4ZyAAws1nAT865ob7v\nRwAfA98BtYGBwNnA9LDPPMKioUqSvy+JQomIiBQlqoOJc+5NM6sDPIb3FM4G4JY8twOfBeTkWeUU\nYBreZmy7gbVAc+fcf8I368iKtipJSkoKLVu2VF8SEREplqgOJgDOuSnAlEJeuyHf9w8DD4djXtEo\nGqskugVYRERKIuqDiRQtGqokAAcPHmTt2rWqkoiISKkpmMS4SFdJ8qpZsyZ9+vQJWxASEZH4E1d9\nTMqb9957j6uvvjqq+pIolIiISFmoYhKDPB4PkyZNYsiQIeTkeK/9VfdWERGJBwomMWbTpk107dqV\nVatW+cfatm3LW2+9FZZqxZ49e45rRiciIhIsOpUTIzweDxMmTODyyy8PCCVpaWm8+eabIQ8lHo+H\nJUuWMGnSJH744YeQ7ktERMovVUxiQEFVknPPPZcZM2aQnJwc8v1nZWUxd+5cdu7cSXJyMvXr1w/5\nPkVEpHxSMIly8+bN46677uLw4cP+sbS0NMaMGUO1atVCum+Px8OyZcvUl0RERMJGwSRKOed45ZVX\n6Nmzpz+URKpKor4kIiISLgomUWjr1q2kpqayaNEi/9jtt9/O7NmzQ14lAThy5AizZs2idu3aqpKI\niEhYKZhEEeccs2bNok+fPgGPk+7cuTMvvfQSJ598cljmcdJJJ9G5c2cSExNVJRERkbBSMIkSHo+H\nu+++mzfffNM/Vq9ePaZNm8Ztt90W9vmceeaZYd+niIiIbheOArt27eKuu+4KCCWdO3fmyy+/jEgo\nERERiRRVTCJs3rx5pKamsm3bNgASEhJ44403+POf/xzS/TrnMLOQ7kNERKSkVDGJoLFjx9KhQwd/\nKKlduzZz5swJeSjJzMxk6tSpfP/99yHdj4iISEmpYhIBBw4cYPDgwUyePNk/1qZNG6ZNmxbSazty\ncnJYvny5vy9JuC6mFRERKS4FkzBbvnw5Xbt2ZfPmzf6x4cOH89hjj4X01Ir6koiISCxQMAmj999/\nn7Zt2+LxeACoWrUqY8eOJS0tLWShRN1bRUQkliiYhEF2djaPP/44Y8eO9YeSli1bMmPGDBo1ahSy\n/TrnmDlzJllZWaqSiIhITFAwCTGPx8O9997L3/72N/9Y69atmT9/fshDgplxzTXXUKdOHVVJREQk\nJuiunBDatGkTKSkp/lBSoUIFRo0axTvvvBO2ysWll16qUCIiIjFDFZMQ2bRpE82bN+eXX34BvNWL\ncNwKLCIiEstUMQmBuXPnctVVV/lDScOGDVm6dKlCiYiISBFUMQmyd955h44dO3LkyBEAGjVqxMcf\nf8ypp54a9H0d60vSqFEj6tevH/Tti4iIhJsqJkE0ZswY7rjjDn8o6dChQ8hCSWZmJunp6axatcrf\nOVZERCTWqWISBNnZ2QwYMIBJkyb5x9q3b88bb7zBSSedFNR95e/eqr4kIiISTxRMyig7O5uuXbvy\n+uuv+8dGjBjBX//616A3TcvMzGTevHnq3ioiInFLwaQMfvnlF1q1asX69esBqFSpEs8880xIOrku\nX76cpUuXqkoiIiJxTcGklLZv307btm39oaRixYrMmjWLu+66KyT7q1ixoqokIiIS9xRMSmHHjh20\na9eOTz/9FIDTTjuNDz74gGbNmoVsn9dee23Iti0iIhItFExKaPfu3dx6662sXbsWgLp167Jw4cKQ\nhhIREZHyQsGkBPbu3ct1113HZ599BkCdOnVYsGABV111VYRnJiIiEh8UTIpp7969tGjRgi+++AKA\n2rVr8+GHH9KkSZOgbD8rKwsz00WtIiJSrqnBWjH88ssvpKSk+ENJjRo1WL58eVBCicfjYcmSJf5m\naSIiIuWZKiZFyM3N5b777mPDhg0A1KpVixUrVnDZZZeVedtZWVnMnTuXnTt3kpycTFJSUpm3KSIi\nEssUTIrw5JNPsmjRIsB7983ixYvLHEo8Hg/Lli1T91YREZF8FExOYOzYsQwbNgwAM+P111+ncePG\nZdpmQVUS9SURERHxUjApxOLFi/2hBGD48OHcfPPNZd7uN998Q0JCgqokIiIiBVAwKUBWVhadOnXC\nOQf89uybYEhKSlKVREREpBAKJvl4PB7uvvtutm/fDsCtt97Ko48+GrRn3yiQiIiIFE63C+fz2GOP\nsXTpUgB+97vfMWvWLBISdJhERETCQb9x81i9ejWjR48GvJWNN954gzp16pRoGzk5OezduzcU0xMR\nEYl7OpXjk5uby5AhQ/zXlYwePZqWLVuWaBuZmZnMmzePSpUqcf/99wft9I+IiEh5oWDik56ezpIl\nSwBo0KAB/fv3L/a6+fuStG3bVqFERESkFBRMgCNHjvhP4QC89NJLVKpUqVjr5u1LkpKSQsuWLXWB\nq4iISCkpmADz5s1j69atALRv355bbrmlyHXUvVVERCT4FEyAGTNm+P89atSoYq2zevVqVq1ape6t\nIiIiQaRgAuzYsQPwVkuK+8Tgq666ioYNG5KYmBjKqYmIiJQrul04j4EDBxZ72YoVKyqUiIiIBJmC\nic/5559P8+bNIz0NERGRck3BxOeOO+447hbf3NzcCM1GRESkfIr6YGJmvczsezM7ZGYfm9lVRSz/\nZzP72rf8RjO7tTj7adu2rf/fHo+HJUuW8MorryichMCcOXMiPYVyR8c8/HTMw0/HPD5EdTAxs/8H\njAdGAU2AjcAHZlZgn3gzuxZ4HUgHGgPzgLlmdvGJ9nP22WdzzTXXAN6+JNOmTWPVqlU0bNjQ3wlW\ngkcfHuGnYx5+Oubhp2MeH6I6mAD9gKnOuVnOuf8ADwIHgW6FLJ8GvOece9Y5941zbiSwDuh9op28\n/fbbACxZsoT09HQSEhJ44IEHSElJ0W3AIiIiYRS1twubWSWgGTDm2JhzzpnZYqCwq1Sb462w5PUB\n0P5E+9q5cyfTpk1T91YREZEIi+aKSR2gArAt3/g2oLAWq/VKuDwA77zzjqokIiIiUSBqKyZhUgXg\njDPOoGnTpmRmZpKZmRnpOcW9PXv2sG7dukhPo1zRMQ8/HfPw0zEPr6+//vrYP6sEc7sWrRd3+k7l\nHATudM7NzzOeAdRyzt1ewDo/AuOdc5PyjD0KtHfOHdfS1czuBl4L/uxFRETKjU7OudeDtbGorZg4\n546a2VrgRmA+gHkbjdwITCpktX8X8Hor33hBPgA6AT8Ah8s+axERkXKjCtAA7+/SoInaigmAmf1/\nQAbeu3FW471L50/Ahc65HWY2C/jJOTfUt3xzYCkwBFgEdAQGA02dc1+F/Q2IiIhIiURtxQTAOfem\nr2fJY0AisAG4xTm3w7fIWUBOnuX/7Ts984TvaxPe0zgKJSIiIjEgqismIiIiUr5E8+3CIiIiUs4o\nmIiIiEjUiPtgEq6HAMpvSnLMzew+M8s1M4/vv7lmdjCc8411ZpZkZvPNbKvv+LUrxjrXmdlaMzts\nZt+a2X3hmGu8KOkxN7OUPD/fuXl+5uuGa86xzMyGmNlqM9trZtvM7B0zO78Y6+nzvJRKc8yD9Xke\n18EkXA8BlN+U9Jj77MHbnffY1zmhnmecqYb3wvCeQJEXjZlZA2Ah8A/gCmAiMN3MWoVuinGnRMfc\nxwGN+O3n/Azn3PbQTC/uJAHPA1cDNwGVgA/NrGphK+jzvMxKfMx9yvx5HtcXv5rZx8Anzrk+vu8N\n+B8wyTn3dAHLvwGc7Jxrl2fs38B651zPME07ppXimN8HTHDOnRremcYnM8sFOuRtSljAMk8Btzrn\nLs8zNgdv48LWYZhmXCnmMU8BlgCnOOf2hm1yccr3h852INk5t7KQZfR5HkTFPOZB+TyP24pJnocA\n/uPYmPOmsKIeArg439gHJ1he8ijlMQeobmY/mNkWM9NfNKF3Dfo5jwQDNphZppl96PuLXkqnNt4K\n1K4TLKPP8+AqzjGHIHyex20wIYwPARS/0hzzb4BuQDu8XXgTgH+Z2ZmhmqQU+nNe08xOisB8yoMs\nIEuHvnUAAAQ2SURBVBW4E7gDbxVxqZk1juisYpCvCvscsLKIHlX6PA+SEhzzoHyeR3WDNYl/zrmP\ngY+Pfe8rtX6N90N8VKTmJRJMzrlvgW/zDH1sZufi7WatC49LZgpwMdAi0hMpR4p1zIP1eR7PFZOd\ngAdvx9i8EoGfC1nn5xIuL4FKc8wDOOdygPXAecGdmuRR2M/5XufckQjMp7xajX7OS8TMJgOtgeuc\nc1lFLK7P8yAo4TEPUNrP87gNJs65o8CxhwACAQ8B/Fchq/077/I+J3oIoORRymMewMwSgMvwlr4l\nNAr6Ob8Z/ZyHW2P0c15svl+Q7YHrnXNbirGKPs/LqBTHPP/6pfo8j/dTOc8CGeZ9SvGxhwCejPfB\ngFi+hwDivW1yqZk9zG8PAWwGPBDmeceyEh1zMxuBt/T3Hd6LqwYCZwPTwz7zGGVm1fD+RWK+oYZm\ndgWwyzn3PzMbC5zpnDt2yuAloJfv7pwZeD+8/4T3ryIphpIeczPrA3wPfIn3iawPANfj/UUpRTCz\nKXg/j9sBB8zsWCVkj3PusG+ZV4Ct+jwPjtIc86B9njvn4voLb5+BH4BDeJPylXleWwLMyLf8ncB/\nfMt/hvehgRF/H7H0VZJjjjfIfO9bNhNYAFwe6fcQS19ACpCL9zRa3q8ZvtdnAkvyrZOMt7p1CO/D\nLjtH+n3E0ldJjzkwwHecDwA78N65lhzp9xErX4Ucaw9wb55l9Hke4WMerM/zuO5jIiIiIrElbq8x\nERERkdijYCIiIiJRQ8FEREREooaCiYiIiEQNBRMRERGJGgomIiIiEjUUTERERCRqKJiIiIhI1Ij3\nlvQiEoPM7BTgSuB04Gfn3JIIT0lEwkQVExGJRufifUbHq0BShOci8v+3d4eqUoVRGIa/VcSgYjCZ\nDKLFZpNzjF6DYrUI3oBBMBkEi8ULsJwLEJPFcsQuJkWDHERQBItalmFG0AuYvVd4njKzmfLFl3/P\nnmFBfpIeGKmqzib5lORad79Yew+wDCcmwFT72fyR2Ou1hwDLESbAVHtJ3nb3j7WHAMsRJsBUV5Mc\nrj0CWJancoBxqup0kktJHm2vzyS5m6STfOnuhyvOA3bIiQkw0d729dU2Um5nEyYXktxcbRWwc8IE\nmGg/ydckn5PcSfKgu38nOZbkyZrDgN3yuDAwTlUdJjmR5HmS+939c+VJwEKcmACjVNXxJJeTvE9y\nLsnTqrq46ihgMcIEmOZKNl/Mv9fd15McJXn298OqOrXWMGD3hAkwzV6Sb939Znv9LpvbOqmq80lu\nrTUM2D1hAkyzn+TlP9e/knzYvr+R5GDxRcBihAkwzcn8Hx8HSb5X1eMkH7v7aJ1ZwBI8lQMAjOHE\nBAAYQ5gAAGMIEwBgDGECAIwhTACAMYQJADCGMAEAxhAmAMAYwgQAGEOYAABjCBMAYAxhAgCMIUwA\ngDH+AP80qw+Kyq1jAAAAAElFTkSuQmCC\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGOCAYAAACjachYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VOX5///XFRZBVhUJWlGK4r6waBUhiRtaAQG1/X1F\nRAGRWMAAyr5aUXABEUQUghBBxfqpyupKKWuryOpaxaJSSWQRZIeQyf37Y4YxExKyzZ738/HIQ3LP\nWe45TSfvXOec65hzDhEREZFokBDpCYiIiIgco2AiIiIiUUPBRERERKKGgomIiIhEDQUTERERiRoK\nJiIiIhI1FExEREQkaiiYiIiISNRQMBEREZGooWAiIiIiUUPBREQkxpnZyWZ2b6TnIRIMCiYiccLM\nuphZrpmdXdD3Urg4OFYdgIlmZpGeiEhZKZiIRIiZ3ef7ZXjs65CZfWNmz5tZ3VJs0vm+Cvs+5Ap4\nT3m/xoRzLoXMr7mZjTKzmvleCvuxKg4zG2dmH5nZpCIWvQ54w+mprBIHKkZ6AiLlnANGAD8AVYCW\nwF+AW83sUufc4TJsexYwxzmXXeZZlkze95TXF2GeR0GuBUYCM4G9ecYjdayKMgj4kMC5FiQF6BT6\n6YiEnoKJSOS975xb5/v3DDPbBfQD2gN/K+1GfX89R+oXbd73FE0KPNUR4WNVKOecx8wuAJ4pbBkz\nOwM47JxbE76ZiYSOTuWIRJ8leH+B/v7YgJk1MbP3zGyPme0zs8VmdvWJNlLYdRNmdqaZvWxmW83s\nsJltNrMpZlbRzK7zrdO+gO3d7XvthPstDjPLMLPvCxh/1Mxy839vZuf61tltZr+a2Qwzq1LA+id6\nb6OAp32L/uDbrsfMzj7BsSryuJdijheYWf1iHqcGQCLwrxMsdh3wcnG2JxILVDERiT7n+f77C4CZ\nXQIsB/YATwI5QCqw1MySnXOfFrKd466b8P11/SlQE5gKfAP8DvgTcLJzbqmZ/Q/vaYF5+bbXCfjO\nOfdJMd5DLTM7LWAyzv1yorkVMn7s328Cm4HBQFOgO7ANGFLc9wa8DZwP3AX0wXd8gR0FzcfMLqZ4\nx73Yc/T5GlgK3FDA+8+vBfClc+5Ep3IuAZ4txrZEYoKCiUjkHfslfuwakxHAQWCh7/XH8f5/tYVz\n7kcAM5uN9xfv08D1JdjXk0Bd4A/OufV5xh/N8+9XgX5mVsM5t8+3vzpAK2B0MfZhwD/yjTmgQgnm\nmd9a51wP/w6887mfwF/6Rb23z81sHd5gMs85tyXP9gra5xOU7LgXZ45QsgttWwArfdu7GmiLN/C0\ncs59AeCcG17MbYnEBJ3KEYmsY7/EdwD/A17He6FjB+dclpkl4A0E7xz75QjgnPvZt2xLM6terB15\nf/u2B+bn+8Wd3yy8IelPecbuwhssXivGrhzeC3hvyvPVqjhzPMH2puYbWwGcduy9l+C9FUspjnuR\nc8yzjQrOuRuLOZUWwEozux44DZiN92dGn90St1QxEYksB/QENuE9VbDNOfdNntdPx3sa4tsC1v0a\n7y+o+r5/F+V0vKc5vjzhhJz7xsw+xXvqZqZv+G7gY+fc5mLsB+DTIF/8uiXf97t9/z0F2E8x31sJ\nlOa4FzXHEvHd0nwJcC6w0zn3ru+leiXdlkgsUTARibxg/xIPhlnAc2Z2JlAVuAZvgAqWwk5lFHa6\nx1PIeDQ1FAv2HJsDu4ALgQvM7Efn3KZSbkskZqgcKBLdduC93uSCAl67CMjFewqouNvaC1xajGXf\n8G27I95qSTbeizuDZTdQu4DxBqXcXnHfW3Gv7QjmcS+tFsA/nHOd8faAmQ/+00wicUs/4CJRzDmX\ni7fBVvu8t7KaWSLe0LDCOVes0wS+Xh1zgdvMrGkRy/4CvAd0xntK533n3K7SvYsC/RfvRb/+IOG7\nq6ZDaTZWgvd2wPffgkJR3u0F7bjnV4LbhVsAH/v+/SXea0wAeplZ1dLsWyQWKJiIRFZxyvzD8V5/\nssrMhpjZQGAVUBkYWML9DQW2A8vN7Fkze8DXov3zAtq0zwIuBxrhvVOnuIrznt7AW5GYa2ZpZjYE\n7y/hb0682gkV572t9c1vjJndY2b/7wS/5IN53PP6GnjlRAuYWQXgD8C/8wx/5/tvVefcoTLsXySq\n6RoTkcgq8tSCc+4rM0sCxuLtkZGA95f43SXt9umcy/Tddjoa7ymamsBW4F28QSGvBXhPuRi+0wjF\n3U0x5rHLzDrg7b/xFPA93vd2Pt4eICVWnPfmnFtjZsOBB4Fb8B7L3xeyvaAd9/ybpuhjdLpv7seu\nPfoH0MPMRgNzyrBvkahneuaTiBTE91d7Jt6eHz2KWl5EJBii9lSOr3S62sz2mtk2M3vHzM4vYp1j\nTzb12G9PNM3/V6CIFM/tQB28p3RERMIimk/lJAHPA2vwznMs8KGZXVTE+dU9eMvBx85zqyQkUgJm\n9gfgCrzXWKxzzq2M8JREpByJ2mDinGud93sz64L3wrZm+Fo0F76q2xHCqYnEu7/gvRNnPdA1wnMR\nkXImak/lFKA23upHUbcsVjezH8xsi5nN9T2IS0SKyTnX1TlX2Tl3tXPuq0jPR0TKl5i4+NX3HIwF\nQA3nXMoJlrsG75NZPwNqAQOAZOBi51xmOOYqIiIipRcrweRFvLf2tXDOZZVgvYp4ewa87pwbVcDr\np/m2+wNwODizFRERKReq4O3W/IGvKWNQRO01JseY2WSgNZBUklAC4JzLMbP1eKsoBbmF4j0tVURE\nRArWCe9Tt4MiqoOJL5S0B1Kcc/mf3Fmc9ROAy4BFhSzyA8Crr77KRRddVNppSgn169ePCRMmRHoa\n5YqOefjpmIefjnl4ff3119xzzz3g+10aLFEbTMxsCt5nUrQDDvieUQGwxzl32LfMK8BW59xQ3/cj\n8HZm/A7vxbIDgbOB6YXs5jDARRddRNOmpWo2KaVQq1YtHe8w0zEPPx3z8NMxj5igXgoRtcEEb8to\nByzNN96V3xo+1SfwUeOnANOAenhbaa8Fmjvn/hPSmYqIiEhQRG0wcc4VeSuzc+6GfN8/DDwcskmJ\niIhISMVSHxMRERGJcwomEnYdO3aM9BTKHR3z8NMxDz8d8/gQE31MQsXMmgJr165dqwumRERESmDd\nunU0a9YMoJlzbl2wtquKiYiISDmVm5sb6SkcR8FERESkHMrMzGTq1Kl88803kZ5KgKi9K0dERESC\nLycnh+XLl7Ny5UoSExOpVatWpKcUQMFERESknMjMzGTevHns3LmT5ORkkpKSqFChQqSnFUDBRERE\npBz45JNP+OCDD0hMTOSBBx6gXr16kZ5SgRRMREREyoHExMSorZLkpWAiIiJSDjRo0IAGDRpEehpF\n0l05IiIiEjUUTERERCRqKJiIiIjEgczMTL788stIT6PMdI2JiIhIDMvbl6R+/fpcfPHFmFmkp1Vq\nCiYiIiIxKm9fkpSUFFq2bBnToQQUTERERGJO/u6t0dyXpKQUTERERGJIVlYWc+fODaiSRHNfkpJS\nMBEREYkhBw4cICEhIa6qJHkpmIiIiMSQ8847j3PPPTfmryUpjG4XFhERiTHxGkpAwURERESiiIKJ\niIhIFPF4PGRmZkZ6GhGjYCIiIhIlsrKymDZtGq+99hpHjx4Nyz7Xrl0blv0Ul4KJiIhIhHk8HpYs\nWUJ6ejoJCQl07tyZSpUqhWx/zjkWLFjALbfcwpVXXsmiRYtCtq+S0l05IiIiERTuviQ//fQTDzzw\nAO+//75/rEePHvznP/+hRo0aIdtvcSmYiIiIRIDH42HZsmVh6976zTff0L9/fxYuXBgwfsopp/D0\n009TvXr1kO27JBRMREREIuCHH35g1apVIa+SrF27lqeeeoq5c+cGXLdy5plnMmLECDp27EitWrVC\nsu/SUDARERGJgHPPPZe0tLSQhYLdu3fz1FNPMW7cODwej3+8cuXK3H///TzxxBOccsopIdl3WSiY\niIiIREgoQsn+/fsZNGgQU6ZMCRg3M/r06cMTTzzBySefHPT9BouCiYiISBz45ZdfePnll5k8eTL/\n+9///OOVKlVi8ODBPPLII1F1yqYwCiYiIiIhkp2dTeXKlUO+n7fffpu//OUvbN++3T9WuXJl7rjj\nDoYMGcLll18e8jkEi/qYiIiIBFlOTg5Llixh0qRJ7N+/PyT7cM7x8ssvc95553HnnXcGhJKUlBS+\n+uor5syZE1OhBFQxERERCarMzEzmzZvHzp07SU5OpmrVqkHdvsfjIT09nSlTpvD5558HvNamTRv6\n9+9PcnIyCQmxWXtQMBEREQmCcPQlWbt2Lb179+bjjz8OGG/UqBGjRo3i7rvvjvknDyuYiIiIlFGo\nu7euWbOGHj16sH79+oDxs88+mxdffJHWrVsHbV+RpmAiIiJSBjt27CA9PT0kVZLVq1fz4osvMnv2\n7IBeJI0aNWLixInccsstMXvKpjAKJiIiImVw+umnc+edd3LhhRcGrUqyb98+Bg4cyEsvvRQwXr9+\nfXr06MHDDz8c1b1IykLBREREpIwuueSSoGxn586dDBkyhFmzZpGdne0fr1SpEiNHjmTQoEEhfepw\nNFAwERERibDdu3fz2muv8dhjj7Fjxw7/eLVq1ejfvz/du3fnrLPOiuAMw0fBREREJEKys7OZPn06\ngwcPZt++fQGvdejQgfHjx9OwYcMIzS4y4uuKGRERkSDLzMxk1qxZHDx4MGjb9Hg8PPPMM9SuXZte\nvXoFhJL27duTlZXFO++8U+5CCahiIiIiUqCcnByWL1/u70ty6NChoFxwum7dOnr27Mknn3wSMN6m\nTRt69erFH//4x5jvRVIWCiYiIiL55O3eGqy+JJ9++impqanH9SK58cYb6d+/P3/84x/LtP14oWAi\nIiLik79KEoy+JIsXL2b48OHHVUjOP/98Zs6cybXXXlum7ccbBRMRERHg0KFDZGRkBK1K8tlnnzFh\nwgQyMjICxs866yxSU1N55JFHgv4cnXigYCIiIgJUqVKF8847j9tvv71MVZIdO3bQu3dv3nzzzYDx\nU045hf79+zNgwIC470VSFgomIiIigJnRqlWrUq+/ZcsWnn76aWbPns3evXv949WqVePpp5/mwQcf\njLv28aGgYCIiIlIGR48eZfr06QwaNCjgtt9TTjmFBx54gL/85S80aNAgchOMMQomIiIipeDxeBg/\nfjyPPvoohw4dCnjtjjvu4IUXXgjqA/3KC9WURESkXPB4PKxYsYLDhw+XaTuHDx9m1KhRJCYmMmjQ\noIBQ0rVrVzZv3sxbb72lUFJKqpiIiEjcy8rKYu7cuezcuZO6detywQUXlGo7q1evpmvXrnz11VcB\n4zfeeCMDBgzglltuCcZ0y7WorZiY2RAzW21me81sm5m9Y2bnF2O9P5vZ12Z2yMw2mtmt4ZiviIhE\nH4/Hw5IlS0hPTychIYEHHnigVKFk8eLFNG/enKuvvjoglFxzzTWsWrWKxYsXK5QESTRXTJKA54E1\neOc5FvjQzC5yzh0qaAUzuxZ4HRgELAI6AXPNrIlz7quC1hERkfiUt0qSnJxMUlJSifuSfP7550yY\nMIGZM2cGjDdr1oyMjAwuvfTSYE5ZiOJg4pxrnfd7M+sCbAeaASsLWS0NeM8596zv+5Fm1groDfQM\n0VRFRCSK5ObmsnTp0jJ1b/3pp5945JFHjutFUrt2bQYMGKBeJCEUtcGkALUBB+w6wTLNgfH5xj4A\n2odqUiIiEl3MjJ9//rlUVZItW7bQs2dPFi1aFDCuXiThExPBxLyPWXwOWFnEKZl6wLZ8Y9t84yIi\nUg6YGR07dizRE3r/+9//kp6ezpQpU47rRdK9e3d69uypXiRhEhPBBJgCXAy0iPREREQk+hU3lOTk\n5DB+/HhGjRrFkSNH/OM1atTg3nvvZfjw4brtN8yiPpiY2WSgNZDknMsqYvGfgcR8Y4m+8UL169eP\nWrVqBYx17NiRjh07lnC2IiISCw4fPswbb7zBxIkT2bBhQ8Br3bp1Y/z48dSuXTtCs4s+c+bMYc6c\nOQFje/bsCcm+zDkXkg0Hgy+UtAdSnHObi7H8G0BV51z7PGOrgI3OueMufjWzpsDatWvX0rRp0yDO\nXEREQikrK4tTTz2Vk046qUTrHTlyhAULFjBy5Ei+/vpr/7iZ0b17d3r37s3ll18e7OnGpXXr1tGs\nWTOAZs65dcHabtRWTMxsCtARaAccMLNjlZA9zrnDvmVeAbY654b6XpsILDWzh/HeLtwR7108D4R1\n8iIiEhI5OTksX76clStXct1115GcnFzsdT/66CO6d+/Oli1bAsbPP/98Zs6cybXXXhvs6UopRG0w\nAR7EexfO0nzjXYFZvn/XBzzHXnDO/dvM7gae8H1tAtqrh4mISOzL25ckJSWFFi2Kd9nhF198wfjx\n48nIyAgYb9KkCYMGDaJ9+/ZUqVIlBDOW0ojaYOKcK/J+LOfcDQWMvQW8FZJJiYhI2Hk8HpYtW1bi\nviRbt26lb9++/P3vfw8Yb9asGb169aJz585UrBi1vwbLLf0vIiIiUas03Vt//PFHevXqVWAvkmee\neYbU1FT1IoliCiYiIhK1PvroI/8zboqqkng8HqZNm8agQYOO60Vy//3306tXL/UiiQEKJiIiErXu\nvPNOqlSpcsIqybFeJH/96185dOi3R6nVqFGDzp07M3LkSBIT83eSkGilYCIiIlGrWrVqhb52+PBh\n/va3vzFx4kTWr18f8Fr37t0ZN27ccT2qJPopmIiISMxZvXo1Xbp0CehFAnD99dczePBgbr755gjN\nTMpKwURERCLG4/GQm5tb7Cf1fvTRRzz66KP861//Chi/4IILyMjI4JprrgnFNCWMdFmyiIhERFZW\nFtOmTeMf//hHkct+8cUXdO3alZtvvjkglDRt2pQ33niDDRs2KJTECVVMREQkrPL3JWncuHGhy2Zl\nZZGWlnZcL5JatWoxaNAgBgwYoF4kcUb/a4qISNjk797asmXLAu+4US+S8kvBREREQq643Vs3b95M\neno6kydPZv/+/f7xU045hW7dutG7d2/1IolzCiYiIhJyCxcu5LPPPiu0SpKTk8O4ceMYNWoU2dnZ\n/vEaNWpw7733MnLkSOrWrRvuaUsEKJiIiEjItWzZkquvvvq4Ksnhw4d58803mTBhAhs2bAh4Tb1I\nyicFExERCbnTTjvtuLFPPvmELl268J///Mc/lpCQ4D9lc8UVV4RzihIlFExERCSsPvzwQ/7617+q\nF4kUSMFERETC4ssvv2TcuHFkZGQEjDdt2pQBAwbQoUMHqlSpEpnJSdRQMBERkTI5dscNwA033HDc\n69u3b6dnz5689dZbAeM1a9Zk8ODB6kUiAfSTICIipZa/L0leP/zwAxMmTOCVV15hz549/vHq1asz\nbtw4evTogZmFe8oS5RRMRESkxE7UlyQ3N5epU6cycODAgF4ktWvXplu3bqSlpXHOOedEauoS5RRM\nRESkRPJWSZKTk0lKSqJChQrk5OTwzDPPMHr0aA4dOhSwzp/+9CdeeOEF9SKRIimYiIhIsa1du5ZF\nixYFVEkOHz7M66+/zoQJE1i/fn3A8t26dWPw4ME0atQoQjOWWKNgIiIixXbWWWcFdG8tqBcJQEpK\nCkOHDuXmm2+O0EwlVimYiIhIsSUmJpKYmMiHH37I6NGjWblyZcDrF154IRkZGVx99dURmqHEOgUT\nEREptr179/LII48wffr0gPGmTZvSv39/br/9dvUikTJRMBERkSJt376dkSNHMmvWrIALW2vUqMHQ\noUPp37+/epFIUOinSERE/LKyssjMzKRZs2YA7N+/n1mzZjFy5Eh++eUX/3LqRSKhomAiIiIBfUnO\nOOMMrrjiCqZPn86AAQMCepEAtGvXjkmTJqkXiYSEgomISDmXty9JUlISmzZt4sorr2Tjxo0By6kX\niYSDgomISDmVv3vr9ddfT79+/VizZk3Acrfeeiu9evWiTZs2EZqplCcKJiIi5dC2bdt4++232blz\nJw0bNmTSpEl8+umnAcucffbZTJ8+nVatWkVollIeKZiIiJRDHo+HhIQE9u/fz3333Udubq7/tQsv\nvJAnn3ySNm3a6E4bCTv9xImIlDN79uzhscceY+rUqQHjZ5xxBqmpqQwaNEi9SCRiFExERMqJX375\nhdmzZzN+/Hh++ukn/3jlypV57LHHeOSRR1QhkYjTT6CISJwrrBdJQkICHTp0YPTo0Vx88cURnKHI\nbxRMRETikMfjYcuWLbz//vsMHDjwuF4kN910E9OnT1cvEok6CiYiInEmMzOTOXPm8OuvvzJu3DgO\nHz7sf61NmzY89NBD3HzzzerYKlFJwUREJE54PB7+/ve/89VXX7Ft2zbmzp3rDyXqRSKxQsFERCQO\nLF68mCVLllCxYkWWL1/OihUryM3N5eyzz+bll1/mpptuivQURYpFwUREJIY45wJOwezfv58xY8ZQ\nqVIldu3axdy5c9m2bRvnnHMOPXr0oHfv3tSsWTOCMxYpGQUTEZEot2/fPsYNG8aqBQuodvQoBypV\n4sqbb6ZyYiKLFi2idevWLFu2jBUrVgAwePBgRo0apV4kEpMUTEREoti+ffu4s3lzHv76ax7NzcUA\nByyaNo0eQBbw7bffkp2dzbBhw+jVqxeJiYmRnbRIGSiYiIhEsXHDhvHw11/zxzwt4w1oC0wFOgMX\nXHwxM2fOVC8SiQsKJiIiUWzVggU8mieU5NUWuKxePZZ//LFu/ZW4kRDpCYiISME2b97MocxMCosc\nBpxaoUI4pyQScgomIiJR5osvvuDOO+/koosuYk9CAq6Q5RxwoFIlVUskriiYiIhEiZycHJ544gma\nNm3Kv//9b+6//37OvOwy3i1k+fcTEmjZrl1Y5ygSarrGREQkwg4dOsTTTz/N1KlT2b59O8nJySQl\nJbFt2zYaNm3KhP37SfjmG/6Y566c9xMSmHDRRbz1+OORnr5IUCmYiIhESE5ODgsXLmTQoEF8++23\nnHHGGfTo0YM6derg8XgYP3481apVY9++fYwfPpxn58/n5KNHOVipEi3ateOtxx+nRo0akX4bIkGl\nYCIiEgHvvfcePXr04KeffgKgVq1adO/enf3795OSksKNN97oX7ZGjRo8OnEiTJx4XOdXkXijYCIi\nEkbffvstY8aM4ZVXXgkYv/DCC0lJSeG6666jwgnutFEokXinYCIiEgbbtm2jZ8+evP322wHjTZo0\noWfPnnTp0oWKFfWRLKL/F4iIhNAPP/zA888/z4wZM/j111/94zVq1ODZZ5/l/vvvVxVEJI+ovV3Y\nzJLMbL6ZbTWzXDM74T1xZpbiWy7vl8fM6oZrziIix+Tm5jJlyhQuvfRSnn32WX8oqV27Nn369OGL\nL76ge/fuCiUi+URzxaQasAF4GXi7iGWPccD5wD7/gHPbgz81EZGCHT16lKeffpqnnnqKffv8H0Wc\nccYZdO7cmdTUVBo2bBjBGYpEt6gNJs6594H3Aaxkf1LscM7tDc2sREQK9/nnn9OlSxfWrVvnH6tQ\noQJpaWnUrl2bunXr6vZekSJEbTApJQM2mFkV4AvgUefcvyI8JxGJc//617/o27cvn376acD4rbfe\nyvXXX8/hw4dJSkoiKSnphHfciEh8BZMsIBVYA5wEPAAsNbM/OOc2RHRmIhKXDh48yIgRI5gwYQLO\n/fZEm0svvZTBgwfz3//+l5o1a9K5c2fq1asXwZmKxI64CSbOuW+Bb/MMfWxm5wL9gPsiMysRiUe/\n/vorgwYNIj09PSCQJCYm8pe//IXTTz+dzZs3+1vLq0oiUnxxE0wKsRpoUdRC/fr1o1atWgFjHTt2\npGPHjqGal4jEoF27dvHaa6/x1FNPsXXrVv/4SSedxOjRo3n44YepUKECK1asoFGjRqqSSNyYM2cO\nc+bMCRjbs2dPSPZledN+tDKzXKCDc25+Cdf7ENjrnPtTIa83BdauXbuWpk2bBmGmIhKPnHPMmTOH\nhx56iF27dvnHzYz27dszduxYLrzwwgjOUCT81q1bR7NmzQCaOefWFbV8cUVtxcTMqgHn4b2gFaCh\nmV0B7HLO/c/MxgJnOufu8y3fB/ge+BKogvcak+uBVmGfvIjEhdzcXP7xj38wYcIE3nvvvYDXbrnl\nFtLT06lfv36EZicSn6I2mABXAv/E25vEAeN9468A3YB6QN5PhMq+Zc4EDgKfATc655aHa8IiEj82\nb97M/fffz9KlSwPG27RpQ+/evbnlllvUHE0kBKK286tzbplzLsE5VyHfVzff612dczfkWf4Z51wj\n51w159zpzjmFEhEpsc8//5w///nPXHDBBQGhpG7durz11lvMnTuXKlWqBDRPE5HgieaKiYhI2Bw9\nepSnnnqKxx57jKNHj/rHzz77bPr27cu9997LkSNHSE9PZ+fOndSpU4dLL700gjMWiU8KJiJSrh08\neJBnnnmGadOmkZmZGfBaz549efLJJ6latSrLly9n5cqVJCYm8sADD+iOG5EQUTARkXLJ4/GwaNEi\n+vfvz6ZNm/zjFSpUYMCAAQwfPpxq1aqRmZnJq6++ys6dO9WXRCQMFExEpNx59913SU1N5aeffgoY\nb9asGS+99BJXXnklzjmWLFmiKolImCmYiEi58euvv9KvXz8yMjICxq+55hqmTZvGZZdd5h8zM/bt\n26cqiUiYKZiISNz7+eefGT16NLNnzw64m6Zx48b07NmTbt26FRg82rVrp1uCRcJMwURE4tahQ4d4\n5ZVXGDp0KLt37/aP16xZk2effZZu3bqdMHgolIiEn4KJiMSd3NxcpkyZwuDBgzlw4EDAa7fddhsv\nvPCCOraKRKmobbAmIlJSzjk++eQTbrjhBh566KGAUHLXXXexdetW5s+f7w8lmZmZ7N+/P1LTFZEC\nqGIiInHhs88+4/7772fNmjUB461atSItLY22bdv6x3Jycvx9Sa655hpuvvnmcE9XRAqhYCIiMW3N\nmjW88MILvPbaawEdWxs0aMDLL7/MDTfcELB8VlYWc+fOZefOnaSkpNCyZctwT1lETkDBRERi0sGD\nBxk+fDjJOvFWAAAgAElEQVTPPfcczjn/eP369enRowd9+/alevXq/nGPx8OyZcvUl0QkyimYiEhM\n+fXXX5k6dSovvvgiP/74o3+8QoUKDBo0iJEjR3LSSScFrFNQlUR9SUSik4KJiMSMRYsW0aNHj4Bn\n2lSpUoUBAwaQmprK7373uwLXW7VqFQkJCaqSiMQABRMRiWrOOd59911eeOEF3nvvvYDXmjdvzsyZ\nM7ngggtOuI22bdtSqVIlVUlEYoCCiYhEraysLB588EHmz58fMH7zzTczZMgQkpOTSUgouutBlSpV\nQjVFEQkyBRMRiTrff/89U6ZMYfr06fz666/+8Zo1azJhwgS6du2qrqwicUrBRESiRm5uLi+88AKD\nBw/m4MGD/vG6desyatQoOnXqRK1atY5bz+PxkJOTc9xFryISexRMRCTijh49yquvvsrkyZNZt25d\nwGt33XUXzz//PHXq1Clw3czMTObNm0e9evW4/fbbwzFdEQmhYgUTM+sBbHXOLQrxfESknNm4cSNd\nunRhw4YNAePdunWjb9++XHbZZQWul7d7a2JiIs2bNw/HdEUkxIpbMekFXGZmPwBTgJedc7tPvIqI\nSOHWrFnDlClTmD17Njk5Of7xc845hxkzZhzXsTWvY1US9SURiT/FDSaNgWZAK+BWYKiZvQNMds6t\nD9XkRCT+HDx4kGHDhjFx4sSAjq2XXHIJo0aNol27doVeK5K/SqK+JCLxp1jBxHk/Pdb4vsaaWVUg\nGW9IUTARkSLt3r2b9PR0pkyZclzH1sGDBzNixIgiL1796KOPWLNmjaokInGsVBe/OucOAR/4vkRE\nTqiwjq39+/fnwQcfLLRja34tWrSgSZMmqpKIxDHdlSMiIRGMjq351axZk5o1awZzmiISZYpumXgC\nZjbQzDaa2YN5xmqa2cNmdmbZpycisSgrK4v27dvTtm3bgFDSqlUrlixZwsqVK0scSkSkfChTMAHq\nAj8CHY4NOOf2AvOB+82scxm3LyIx5MiRI0ydOpWLL76YBQsW+Mdr1qzJyy+/zAcffMD1119/wjby\neS+IFZHyp6zBxIA/Oef+mHfQOfedc240cFUZty8iMSA3N5dJkyZx2mmn8eCDD/rbyNetW5fJkyfz\n448/0q1btxO2kfd4PCxZsoSFCxeGa9oiEoXKeo3JWGCQmY1xznnM7AJgIVAd+B749YRri0hMO1HH\n1o4dO/L8889z2mmnFbmdrKws5s6dy86dO0lOTsY5p2fhiJRTxe38egOQBKwCPnHO7QNwzu00s+eB\nIWY2DngceBf4DjgCvBGSWYtIxBXWsfXGG2+kb9++tG3btshteDweli1bpr4kIuJX3IpJPWCU79+5\nZvYV8C/f17+BicCjgMc51yfYkxSR6LF7926effZZnnzyyYCOrQ0aNGDGjBlcf/31xdpO3iqJ+pKI\nyDHFDSY7gBfwnrpJAlribbD2gO/1X4Cfgf+a2aXOuS+CPVERiazCOrZeeumljBgxgnbt2lGlSpVi\nbWvjxo3MmzdPVRIROU5xg8kaYLdzLhP4m+8LM6uNN6Qk+b5aA+3MbBewDHjDOff3oM9aRMImNzeX\n999/nz59+vDdd9/5xytUqMCQIUMYMWIElStXLtE2zznnHK677jpatGihKomIBChuS/rdeMNJ/vFf\n8V7suhDAzKoA1/JbWOkPKJiIxKhFixbRs2dPtmzZ4h+rVKkSd9xxBwMHDqRp06al2m7t2rVJTk4O\n1jRFJI4EtfOrc+4wsMT3JSIxavfu3fTt25dZs2YFjF977bXMnDmT888/P0IzE5F4V9Y+JiISR7Ky\nsnjooYf4/e9/HxBKLr/8cqZOncry5csVSkQkpPSsHBHBOcerr75KWlqavzkaQK1atXjuuee47777\nStRXJDMzk++//54WLVqEYroiEscUTETKsdzcXGbMmMHkyZPZuHFjwGu33XYbL774YrGf/AuQk5PD\n8uXL/X1J/vCHP1CpUqVgT1tE4piCiUg59d1339GtWzdWrFgRMH733XczZswYzjnnnBJtT31JRCQY\nFExEypmtW7cybdo0nnnmGQ4dOuQf/93vfsfkyZPp0KHDCdY+nrq3ikgwKZiIlBPZ2dmMHTuWxx9/\nPKBj6+9//3smTZpE69atT/jU34Js376dt956y/+Mm6SkJFVJRKRMFExE4tyRI0dYsGABjz/++HHX\nkfTu3ZuxY8dSvXr1Um27YsWKnHTSSaqSiEjQKJiIxLEVK1bQtWtX/vvf//rHKlSoQOfOnenZsydX\nXXVVmbZ/6qmn0rVrVz0JWESCRsFEJA4dPHiQoUOHMmnSpIDn2lx22WVkZGSUumNrQRRKRCSYFExE\n4sju3bsZOnQoM2fO5MiRI/7xJk2a0Lt3b+65554SP9dGRCScFExE4sSCBQtITU0lKyvLP1alShXG\njBlDWlpaqS5KzcnJ4fvvv6dRo0bBnKqISKHUkl4khjnneO+992jbti3t2rULCCW33XYbGzdupF+/\nfqUKJZmZmaSnp/O3v/2Nffv2BXPaIiKFUsVEJEZlZmaSmprKwoULA8Zbt27NtGnTStSxNa/83Vu7\nd+9OjRo1gjFlEZEiKZiIxJijR4+SkZHBwIEDg/Jcm7wyMzOZN2+eureKSMQomIjEiNzcXJ5//nmG\nDRvGgQMH/OOJiYkMGzaMTp06ceqpp5Zq2/mrJOpLIiKRomAiEgO+++47unbtysqVKwPG7777biZN\nmsRpp51Wpu3/+uuvfPLJJ6qSiEjERe3Fr2aWZGbzzWyrmeWaWbtirHOdma01s8Nm9q2Z3ReOuYqE\nysaNG7n77ru55JJLAkLJ9ddfz/z583nttdfKHEoA6tSpQ9++fUlJSVEoEZGIiuaKSTVgA/Ay8HZR\nC5tZA2AhMAW4G7gJmG5mmc65j0I3TZHgy87OZsyYMTzxxBMBz7Vp2LAhM2bMICUlJej7rFq1atC3\nKSJSUlEbTJxz7wPvA1jxruT7C7DZOTfQ9/03ZtYS6AcomEhMOHLkCAsXLmT06NEFPtfmySefpFq1\nahGanYhI6EVtMCmFa4DF+cY+ACZEYC4iJbZ8+XK6desW8FybihUrMnDgQB555JFSX9h6zP79+0v9\nsD4RkXCJ2mtMSqEesC3f2DagppmdFIH5iBTLgQMH6NOnDykpKQGh5LLLLmP16tU88cQTZQolHo+H\nJUuW8Nxzz/Hzzz8HY8oiIiETTxUTkZiya9cuhg0bRkZGBocPH/aPN27cmF69enHvvfeW+bk2WVlZ\nzJ07l507d5KUlMTpp59e1mmLiIRUPAWTn4HEfGOJwF7n3JEClvfr168ftWrVChjr2LEjHTt2DO4M\nRXwWLFhAjx49AioYZX2uTV4ej4dly5apL4mIBMWcOXOYM2dOwNiePXtCsi/L+0j0aGVmuUAH59z8\nEyzzJHCrc+6KPGOvA7Wdc60LWacpsHbt2rVBfQy8SGG2bt3K4MGDefXVVwPG27Zty7PPPhuUh+Xl\nr5IkJSXpFmARCbp169bRrFkzgGbOuXXB2m7UVkzMrBpwHnDsjpyGZnYFsMs59z8zGwuc6Zw71qvk\nJaCXmT0FzABuBP4EFBhKRMIpMzOTXr16MXfu3IDxsj7XJr+DBw8yY8YM6tSpoyqJiMSkqA0mwJXA\nPwHn+xrvG38F6Ib3Ytf6xxZ2zv1gZm3w3oWTBvwE3O+cy3+njkjYOOeYPXs2ffr0CfpzbQpy8skn\n06lTJ+rXr68qiYjEpKgNJs65ZZzgriHnXNcCxpYDzUI5L5HiyM3NZeXKlTz55JO89957/vHq1avT\nqVMnRowYEbQqSX4NGjQIyXZFRMIhaoOJSKwq7Lk2nTp1YtKkSWXuRyIiEs/iqY+JSETl5uYyceJE\nLr/88oBQkpiYyNy5c3n11VeDEkpi4YJ1EZHSUjARKaPs7Gxmz57N1VdfTd++fTl06BAA9evXZ8yY\nMXz55Ze0b98+KPvKysoiPT1djdJEJG7pVI5IGWzYsIEuXboc91ybhx56iLFjxwbtuTb5+5IkJOhv\nChGJTwomIqWQnZ3NE088wZgxY0L+9N+8fUlSUlJo2bKl7rgRkbilYCJSAgcOHGDixIlMnTqVLVu2\n+Mcvu+wyhgwZQocOHahatWpQ9qXurSJSHimYiBTTsmXL6NatG5s3b/aPVaxYkaFDhzJs2LAyP9cm\nL4/Hw/Tp09m+fTvJycnq3ioi5YaCiUgRDhw4wJAhQ3j++ecDxps0acLLL79MkyZNgr7PChUq0KxZ\nM8466yxVSUSkXFEwESnErl27GD58OBkZGf47bQBatmzJM888w9VXXx3Urq35XXnllSHbtohItFIw\nESnAvHnzSE1NZdu2bf6xqlWr+p/+q7tiRERCQ5+uInlkZWVxzz330KFDh4BQ0rp1azZu3Ejfvn0V\nSkREQkifsCLA1q1buf322znzzDN57bXX/ONt2rThp59+YtGiRTRq1Cho+/N4PPzzn/9kx44dQdum\niEg80KkcKdecc8yaNYs+ffqwZ88e/3itWrWYOHEi9957b9CvI8nbl+SUU07h9NNPD+r2RURimYKJ\nlFtbt24lNTWVRYsW+ceqVatGp06dGDlyZNCf/qu+JCIiRVMwkXJn06ZNDBkyhLfffjvggXj33HMP\nEydODMnTf9W9VUSkeBRMpNzIzc1l0qRJDB06NOD233r16jF16lTatWsXkv0uXbqU5cuXq0oiIlIM\nCiZSLmzatIlu3bqxcuVK/5iZ0a1bN55++umQVEmOycnJUZVERKSYFEwkrv38889MmzaNJ598MqBK\nkpaWxpgxY4L29N8Tuemmm0K+DxGReKFgInHpRE//nTlzJsnJyRGcnYiIFEbBROLO+vXr6dKlC599\n9lnAeDirJCIiUjpqsCZxIzs7m5EjR3LVVVf5Q0nFihW55557+Pjjj5k4cWJIQklWVha7du0K+nZF\nRMojVUwk5u3fv5/nn3+eqVOn8uOPP/rHr7jiCjIyMmjcuHFI9pu3L0mTJk247bbbQrIfEZHyRMFE\nYtrSpUvp1q0b33//vX+sYsWKDBs2jKFDh1K5cuWQ7DdvX5Lk5GSSkpJCsh8RkfJGwURi0v79+xky\nZAiTJ08OGG/cuDEzZ84MS5VEfUlERIJPwURiinOOf/7zn3Tv3j2gSpKUlMTYsWO59tprg/5sm2MK\nqpKoL4mISHApmEjMmDdvHv369QsIJFWrVmXs2LE89NBDJCSE9lru9evXk5CQoCqJiEgIKZhI1Nu1\naxdpaWm89tprAeNJSUnMmDGD8847LyzzaNWqFQkJCaqSiIiEkIKJRLV58+aRmprKtm3b/GMXXngh\naWlppKamhrxKklelSpXCti8RkfJKwUSiUkFVktq1azNx4kQ6d+4csutIREQkstRgTaLKgQMHSE9P\n5+KLLw4IJW3atOHLL7/k3nvvDVko8Xg8HDx4MCTbFhGR4lHFRKKCc45XXnmFvn37smfPHv94uKok\nmZmZzJs3j5o1a9KpU6eQ7UdERE5MwUQibuvWrfTo0YN33303YLxNmzZMmzaNM888M2T7zsnJYfny\n5f6+JDfeeGPI9iUiIkVTMJGIKaxKctNNN9GrVy/at28fliqJ+pKIiEQPBROJiIKqJPXq1WPq1Km0\na9cupPvOXyVRXxIRkeihYCJh5ZwjIyODfv36BVRJ7rnnHiZOnMipp54a8jmsWLGCVatWqUoiIhKF\nFEwkLDweD5MmTWLUqFHs27fPPx6uKklezZs356KLLlKVREQkCimYSMht2rSJrl27smrVqoDxcFZJ\n8qpSpYpCiYhIlFIfEwkZj8fDhAkTuPzyywNCSYsWLZg/fz6zZ88OeygREZHopoqJhERBVZKGDRsy\nc+ZMkpOTQ75/55y6w4qIxCBVTCSoCquSpKWl8dlnn4U8lOTk5LBkyRLefPNNnHMh3ZeIiASfKiYS\nNJGukuTtS5KUlKSqiYhIDFIwkTI7dsfN0KFDOXz4sH88LS2NMWPGUK1atZDuX31JRETih4KJlFp2\ndjbjxo1jypQpbN261T8eqSqJ+pKIiMQ+BRMplXXr1tGlSxc+//zzgPFwVUkAvvrqK/7+97+rSiIi\nEkcUTKREsrOzGT16NGPHjsXj8fjHGzduzMSJE8NSJTmmQYMG3HDDDTRv3lxVEhGROKFgIsVWUJXk\niiuuICMjg8aNG4d9PieffDItW7YM+35FRCR0dLuwFCk7O5sRI0bwhz/8wR9KKlasyKOPPsrq1asj\nEkpERCQ+qWIiJxRtVRIREYlvqphIgaKhSpKZmcnixYvVKE1EpBxRxUSOE+kqSf6+JC1btqRKlSoh\n36+IiESegon4FXTHTcWKFRk+fDhDhgyhcuXKIZ+D+pKIiJRvUR9MzKwX0B+oB2wEHnLOfVrIsvcB\nMwEHHOtFftg5d3I45hrLoq1Kor4kIiLlU1QHEzP7f8B4oAewGugHfGBm5zvndhay2h7gfH4LJrpA\n4QSioUqyc+dO/u///k9VEhERie5ggjeITHXOzQIwsweBNkA34OlC1nHOuR1hml9Mi3SV5JgqVapQ\nvXp1br/9dlVJRETKuai9K8fMKgHNgH8cG3Pe2zMWA81PsGp1M/vBzLaY2VwzuzjEU4050XDHTV7V\nq1enc+fOCiUiIhLVFZM6QAVgW77xbcAFhazzDd5qymdALWAA8C8zu9g5lxmqicaSaKmSiIiIFCRq\nKyal4Zz72Dn3qnPuM+fcCuAOYAeQGuGpRVy0VUlEREQKEs0Vk52AB0jMN54I/FycDTjncsxsPXDe\niZbr168ftWrVChjr2LEjHTt2LP5so1ikqyQ5OTl88803XHLJJSHfl4iIBN+cOXOYM2dOwNiePXtC\nsi+L5q6aZvYx8Ilzro/vewO2AJOcc88UY/0E4EtgkXOufwGvNwXWrl27lqZNmwZ38lEgGu64yduX\npGfPnpx22mkh36eIiITeunXraNasGUAz59y6YG03mismAM8CGWa2lt9uFz4ZyAAws1nAT865ob7v\nRwAfA98BtYGBwNnA9LDPPMKioUqSvy+JQomIiBQlqoOJc+5NM6sDPIb3FM4G4JY8twOfBeTkWeUU\nYBreZmy7gbVAc+fcf8I368iKtipJSkoKLVu2VF8SEREplqgOJgDOuSnAlEJeuyHf9w8DD4djXtEo\nGqskugVYRERKIuqDiRQtGqokAAcPHmTt2rWqkoiISKkpmMS4SFdJ8qpZsyZ9+vQJWxASEZH4E1d9\nTMqb9957j6uvvjqq+pIolIiISFmoYhKDPB4PkyZNYsiQIeTkeK/9VfdWERGJBwomMWbTpk107dqV\nVatW+cfatm3LW2+9FZZqxZ49e45rRiciIhIsOpUTIzweDxMmTODyyy8PCCVpaWm8+eabIQ8lHo+H\nJUuWMGnSJH744YeQ7ktERMovVUxiQEFVknPPPZcZM2aQnJwc8v1nZWUxd+5cdu7cSXJyMvXr1w/5\nPkVEpHxSMIly8+bN46677uLw4cP+sbS0NMaMGUO1atVCum+Px8OyZcvUl0RERMJGwSRKOed45ZVX\n6Nmzpz+URKpKor4kIiISLgomUWjr1q2kpqayaNEi/9jtt9/O7NmzQ14lAThy5AizZs2idu3aqpKI\niEhYKZhEEeccs2bNok+fPgGPk+7cuTMvvfQSJ598cljmcdJJJ9G5c2cSExNVJRERkbBSMIkSHo+H\nu+++mzfffNM/Vq9ePaZNm8Ztt90W9vmceeaZYd+niIiIbheOArt27eKuu+4KCCWdO3fmyy+/jEgo\nERERiRRVTCJs3rx5pKamsm3bNgASEhJ44403+POf/xzS/TrnMLOQ7kNERKSkVDGJoLFjx9KhQwd/\nKKlduzZz5swJeSjJzMxk6tSpfP/99yHdj4iISEmpYhIBBw4cYPDgwUyePNk/1qZNG6ZNmxbSazty\ncnJYvny5vy9JuC6mFRERKS4FkzBbvnw5Xbt2ZfPmzf6x4cOH89hjj4X01Ir6koiISCxQMAmj999/\nn7Zt2+LxeACoWrUqY8eOJS0tLWShRN1bRUQkliiYhEF2djaPP/44Y8eO9YeSli1bMmPGDBo1ahSy\n/TrnmDlzJllZWaqSiIhITFAwCTGPx8O9997L3/72N/9Y69atmT9/fshDgplxzTXXUKdOHVVJREQk\nJuiunBDatGkTKSkp/lBSoUIFRo0axTvvvBO2ysWll16qUCIiIjFDFZMQ2bRpE82bN+eXX34BvNWL\ncNwKLCIiEstUMQmBuXPnctVVV/lDScOGDVm6dKlCiYiISBFUMQmyd955h44dO3LkyBEAGjVqxMcf\nf8ypp54a9H0d60vSqFEj6tevH/Tti4iIhJsqJkE0ZswY7rjjDn8o6dChQ8hCSWZmJunp6axatcrf\nOVZERCTWqWISBNnZ2QwYMIBJkyb5x9q3b88bb7zBSSedFNR95e/eqr4kIiISTxRMyig7O5uuXbvy\n+uuv+8dGjBjBX//616A3TcvMzGTevHnq3ioiInFLwaQMfvnlF1q1asX69esBqFSpEs8880xIOrku\nX76cpUuXqkoiIiJxTcGklLZv307btm39oaRixYrMmjWLu+66KyT7q1ixoqokIiIS9xRMSmHHjh20\na9eOTz/9FIDTTjuNDz74gGbNmoVsn9dee23Iti0iIhItFExKaPfu3dx6662sXbsWgLp167Jw4cKQ\nhhIREZHyQsGkBPbu3ct1113HZ599BkCdOnVYsGABV111VYRnJiIiEh8UTIpp7969tGjRgi+++AKA\n2rVr8+GHH9KkSZOgbD8rKwsz00WtIiJSrqnBWjH88ssvpKSk+ENJjRo1WL58eVBCicfjYcmSJf5m\naSIiIuWZKiZFyM3N5b777mPDhg0A1KpVixUrVnDZZZeVedtZWVnMnTuXnTt3kpycTFJSUpm3KSIi\nEssUTIrw5JNPsmjRIsB7983ixYvLHEo8Hg/Lli1T91YREZF8FExOYOzYsQwbNgwAM+P111+ncePG\nZdpmQVUS9SURERHxUjApxOLFi/2hBGD48OHcfPPNZd7uN998Q0JCgqokIiIiBVAwKUBWVhadOnXC\nOQf89uybYEhKSlKVREREpBAKJvl4PB7uvvtutm/fDsCtt97Ko48+GrRn3yiQiIiIFE63C+fz2GOP\nsXTpUgB+97vfMWvWLBISdJhERETCQb9x81i9ejWjR48GvJWNN954gzp16pRoGzk5OezduzcU0xMR\nEYl7OpXjk5uby5AhQ/zXlYwePZqWLVuWaBuZmZnMmzePSpUqcf/99wft9I+IiEh5oWDik56ezpIl\nSwBo0KAB/fv3L/a6+fuStG3bVqFERESkFBRMgCNHjvhP4QC89NJLVKpUqVjr5u1LkpKSQsuWLXWB\nq4iISCkpmADz5s1j69atALRv355bbrmlyHXUvVVERCT4FEyAGTNm+P89atSoYq2zevVqVq1ape6t\nIiIiQaRgAuzYsQPwVkuK+8Tgq666ioYNG5KYmBjKqYmIiJQrul04j4EDBxZ72YoVKyqUiIiIBJmC\nic/5559P8+bNIz0NERGRck3BxOeOO+447hbf3NzcCM1GRESkfIr6YGJmvczsezM7ZGYfm9lVRSz/\nZzP72rf8RjO7tTj7adu2rf/fHo+HJUuW8MorryichMCcOXMiPYVyR8c8/HTMw0/HPD5EdTAxs/8H\njAdGAU2AjcAHZlZgn3gzuxZ4HUgHGgPzgLlmdvGJ9nP22WdzzTXXAN6+JNOmTWPVqlU0bNjQ3wlW\ngkcfHuGnYx5+Oubhp2MeH6I6mAD9gKnOuVnOuf8ADwIHgW6FLJ8GvOece9Y5941zbiSwDuh9op28\n/fbbACxZsoT09HQSEhJ44IEHSElJ0W3AIiIiYRS1twubWSWgGTDm2JhzzpnZYqCwq1Sb462w5PUB\n0P5E+9q5cyfTpk1T91YREZEIi+aKSR2gArAt3/g2oLAWq/VKuDwA77zzjqokIiIiUSBqKyZhUgXg\njDPOoGnTpmRmZpKZmRnpOcW9PXv2sG7dukhPo1zRMQ8/HfPw0zEPr6+//vrYP6sEc7sWrRd3+k7l\nHATudM7NzzOeAdRyzt1ewDo/AuOdc5PyjD0KtHfOHdfS1czuBl4L/uxFRETKjU7OudeDtbGorZg4\n546a2VrgRmA+gHkbjdwITCpktX8X8Hor33hBPgA6AT8Ah8s+axERkXKjCtAA7+/SoInaigmAmf1/\nQAbeu3FW471L50/Ahc65HWY2C/jJOTfUt3xzYCkwBFgEdAQGA02dc1+F/Q2IiIhIiURtxQTAOfem\nr2fJY0AisAG4xTm3w7fIWUBOnuX/7Ts984TvaxPe0zgKJSIiIjEgqismIiIiUr5E8+3CIiIiUs4o\nmIiIiEjUiPtgEq6HAMpvSnLMzew+M8s1M4/vv7lmdjCc8411ZpZkZvPNbKvv+LUrxjrXmdlaMzts\nZt+a2X3hmGu8KOkxN7OUPD/fuXl+5uuGa86xzMyGmNlqM9trZtvM7B0zO78Y6+nzvJRKc8yD9Xke\n18EkXA8BlN+U9Jj77MHbnffY1zmhnmecqYb3wvCeQJEXjZlZA2Ah8A/gCmAiMN3MWoVuinGnRMfc\nxwGN+O3n/Azn3PbQTC/uJAHPA1cDNwGVgA/NrGphK+jzvMxKfMx9yvx5HtcXv5rZx8Anzrk+vu8N\n+B8wyTn3dAHLvwGc7Jxrl2fs38B651zPME07ppXimN8HTHDOnRremcYnM8sFOuRtSljAMk8Btzrn\nLs8zNgdv48LWYZhmXCnmMU8BlgCnOOf2hm1yccr3h852INk5t7KQZfR5HkTFPOZB+TyP24pJnocA\n/uPYmPOmsKIeArg439gHJ1he8ijlMQeobmY/mNkWM9NfNKF3Dfo5jwQDNphZppl96PuLXkqnNt4K\n1K4TLKPP8+AqzjGHIHyex20wIYwPARS/0hzzb4BuQDu8XXgTgH+Z2ZmhmqQU+nNe08xOisB8yoMs\nIEuHvnUAAAQ2SURBVBW4E7gDbxVxqZk1juisYpCvCvscsLKIHlX6PA+SEhzzoHyeR3WDNYl/zrmP\ngY+Pfe8rtX6N90N8VKTmJRJMzrlvgW/zDH1sZufi7WatC49LZgpwMdAi0hMpR4p1zIP1eR7PFZOd\ngAdvx9i8EoGfC1nn5xIuL4FKc8wDOOdygPXAecGdmuRR2M/5XufckQjMp7xajX7OS8TMJgOtgeuc\nc1lFLK7P8yAo4TEPUNrP87gNJs65o8CxhwACAQ8B/Fchq/077/I+J3oIoORRymMewMwSgMvwlr4l\nNAr6Ob8Z/ZyHW2P0c15svl+Q7YHrnXNbirGKPs/LqBTHPP/6pfo8j/dTOc8CGeZ9SvGxhwCejPfB\ngFi+hwDivW1yqZk9zG8PAWwGPBDmeceyEh1zMxuBt/T3Hd6LqwYCZwPTwz7zGGVm1fD+RWK+oYZm\ndgWwyzn3PzMbC5zpnDt2yuAloJfv7pwZeD+8/4T3ryIphpIeczPrA3wPfIn3iawPANfj/UUpRTCz\nKXg/j9sBB8zsWCVkj3PusG+ZV4Ct+jwPjtIc86B9njvn4voLb5+BH4BDeJPylXleWwLMyLf8ncB/\nfMt/hvehgRF/H7H0VZJjjjfIfO9bNhNYAFwe6fcQS19ACpCL9zRa3q8ZvtdnAkvyrZOMt7p1CO/D\nLjtH+n3E0ldJjzkwwHecDwA78N65lhzp9xErX4Ucaw9wb55l9Hke4WMerM/zuO5jIiIiIrElbq8x\nERERkdijYCIiIiJRQ8FEREREooaCiYiIiEQNBRMRERGJGgomIiIiEjUUTERERCRqKJiIiIhI1Ij3\nlvQiEoPM7BTgSuB04Gfn3JIIT0lEwkQVExGJRufifUbHq0BShOci8v+3d4eqUoVRGIa/VcSgYjCZ\nDKLFZpNzjF6DYrUI3oBBMBkEi8ULsJwLEJPFcsQuJkWDHERQBItalmFG0AuYvVd4njKzmfLFl3/P\nnmFBfpIeGKmqzib5lORad79Yew+wDCcmwFT72fyR2Ou1hwDLESbAVHtJ3nb3j7WHAMsRJsBUV5Mc\nrj0CWJancoBxqup0kktJHm2vzyS5m6STfOnuhyvOA3bIiQkw0d729dU2Um5nEyYXktxcbRWwc8IE\nmGg/ydckn5PcSfKgu38nOZbkyZrDgN3yuDAwTlUdJjmR5HmS+939c+VJwEKcmACjVNXxJJeTvE9y\nLsnTqrq46ihgMcIEmOZKNl/Mv9fd15McJXn298OqOrXWMGD3hAkwzV6Sb939Znv9LpvbOqmq80lu\nrTUM2D1hAkyzn+TlP9e/knzYvr+R5GDxRcBihAkwzcn8Hx8HSb5X1eMkH7v7aJ1ZwBI8lQMAjOHE\nBAAYQ5gAAGMIEwBgDGECAIwhTACAMYQJADCGMAEAxhAmAMAYwgQAGEOYAABjCBMAYAxhAgCMIUwA\ngDH+AP80qw+Kyq1jAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Simulation" - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "K = S[2]\n", + "X = []\n", + "Y = []\n", + "\n", + "for k in k_grid:\n", + " if k < 1.5*k_ss:\n", + " X.append(k)\n", + " Y.append(K[k])\n", + "\n", + "plt.plot(X, Y, color=\"black\", linewidth=2)\n", + "plt.plot(X, X, \"--\", color=\"gray\", linewidth=1)\n", + "plt.plot([k_ss], [k_ss], marker='o', color='r')\n", + "plt.xlabel(\"$k$\", fontsize=14)\n", + "plt.ylabel(\"$k^{\\prime}$\", fontsize=14)\n", + "plt.title(\"Policy Function: $k^{\\prime}$\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 234, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "C = S[1]\nK = S[2]\n\nk0 = k_grid[30]\nX = [k0]\nY = [C[k0]]\nT = [0]\n\ns = 0\nt = 1\nwhile s<5:\n T.append(t)\n k = K[k0]\n X.append(k)\n c = C[k]\n Y.append(c)\n if k0 == k:\n s += 1\n k0 = k\n t += 1\n \nplt.plot(T, X, color=\"black\", linewidth=2, label=\"capital stock: $k_{t}$\")\nplt.plot(T, Y, color=\"red\", linewidth=1, label=\"consumption: $c_{t}$\")\nplt.plot([t], [k_ss], marker='o', color='black')\nplt.xlabel(\"$t$\", fontsize=14)\nplt.ylabel(\"$c_{t}$, $k_{t}$\", fontsize=14)\nplt.title(\"Path of $c$ and $k$ over time\")\nplt.legend(loc='lower right')\nplt.show()", - "execution_count": 234, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGMCAYAAADuoWlTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VGXax/HvnRANoQTpAkoRC4u7KgFXAYUFFZUXRGwE\nKxaqBZQiK6tiRUBUVBTLgiwaEbHAwqIiYAFBTARdBFeliggJSA0l5Xn/OJOQhCSkzGRmkt/nuuaa\nOc9p9zmEzJ2nHXPOISIiIhIKIoIdgIiIiEgWJSYiIiISMpSYiIiISMhQYiIiIiIhQ4mJiIiIhAwl\nJiIiIhIylJiIiIhIyFBiIiIiIiFDiYmIiIiEDCUmIkFiZg+bWaaZ1SyDc7U2syVmts/MMszsL4E+\nZyBk3bNgxxGqzOwW38/UycGORaSklJiI5GFmN/t+uWe9DpjZj2b2vJnVLcHxzjezh8ysep5VzvcK\nKDOrBLwLnAAMBm4ENgb6vAFSpHtmZuPN7BMzm1gGMZW5YP9MiQSSEhOR/DlgFHADMAhYAgwAlppZ\ndDGP1RZ4EKjh1wiL7hTgZGCcc+4159xbzrndQYqlrIzA+/22J9iBBEhBP1PTgMrOuU1lH5KIfygx\nESnYfN+X+D+dc7cCzwJNgSuKeRzzf2jFUs/3Xt6TkWzOuQzgdODLYMdSUmYWU9jq/Aqd53CAQhIp\nE0pMRIpuId4XQlMAMzvZzCaZ2VozSzWzFDN7x8waZ+1gZg8BY32LG3xNQxl5+gCcYGZTzewPM9tl\nZv8saq2MmZ1jZv8xs91mttfMFpjZX3OsnwIsxqsBetd3/oWlugtHx3DM++DbLqtPzSlFuV4za29m\nK3xNaT+ZWd9ixNQELyFbWsxrKfR++ra5yncdF+Szfz/fuj/5lhv4ru93MztoZv81sz757Jd1b1qY\n2VtmthP4ooAYC/yZyq+PSY5jn2pm0333fLuZPeJbf5KZfeC75q1mdm8+5yzSdYj4Q6VgByASRpr7\n3nf43tsA5wEJwK9AE2AgsMjM/uScOwjMAk4DegH35Ng32fduwDvAOuB+oBVwO7ANGFlYML4vv8/x\nakLGAOlAP2CxmV3onFsBvOyL7QHgOWCF79j+VJT7AEf6Phzzes3sTOAjYDtek0UU8LBvuSjaAaud\nc0Vuyini/QSYC+wDruXo5OFa4L/OuR98/ZGWAxnARCAFuAx43cyqOedy9n/Jujczgf/h3YuCatoK\n+5nKr49J1vIM4Ae8Zq6uwAO+BKgf8CkwHLgeGGdmXzvnvvTdl+Jch0jpOef00kuvHC/gZrxfwn8D\nagENgevwfvHvA070bXd8PvueC2QC1+cou893vJPzbPuQb9tX8pTPArYXIc73gQNA4xxl9fG+WBfl\nKOvgO0/PIl5/LDAO+Afwd6DvMbYv6n0o8vX6rm0/0DBH2elAGpBRhGuYBLzg+/xX4FFgK3Bmae+n\nr/xN3/EsR1k9vGTm777l1/AStRp59n0L2JnzvuW4N/8q4r9RQT9TN+ctz3HsSTnKIoBNvniH5vm3\n3w/8M0dZka9DL7388VJTjkj+DO+vyGRgM94v4T1AD+fcVgDn3KHsjc0qmTfsdx2wC68moCgcMDlP\n2RdALTOrWmBwZhHAxcD7zrnsETbOud99sbYvbP9CjnuC7/wLnHOP4v01PqbQCyjefTjm9fqu7RLf\ntW3JcZ4f8WpRiqId8KWZZSWX/8L7N833d14J7ucMoC7QMUfZNb5zzPAt9wTmAJFmVivrBXyMlwAU\n5d74iwNez15wLhP4xhfvP3OU7wZ+BJrl2Le41yFSKmrKEcmfw2uO+Anvr8ptvi/GbL5+EX8HbsGr\nVbEc+8YW41x5R1D84Xs/Aa+GJj91gBi8av+81uB9AZ/k+1wcz+E1RWQlAFuA0YXtUIL7cKzrrQNU\nBn7OZ98f8ZoRCounOtASbzRSinNunm9V/UJ2K+79nI+XqF4HLPKVXQusdM79YmZ18EbM9MVrKsnL\n4SU2ea0vJMbSynvfdwMHnXM78ymvCVCK6xApMSUmIgVb4ZxLKmT9C3hV588Ay/B+oTu8v5iLUxuZ\nUUB5mY7mMbMTgXigS1aZc+7fRdi1uPch0Nd7Pl4TwxnA6Wa20Tn3k5+ODYBz7rCZfQBcaWYDgRPx\namnu922Sdd3TgTcKOMx3+ZQd8GeceeR334/1b1HS6xApMSUmIiV3FTDVOTc8q8DMjufouSUCMeFV\nMpCK1+8irxZ4fQo2F/OYbXzvxRrJQtHvQ1El431Bn5rPujOKsH874FPn3I1mNhyYDbQwswhfE0ZB\n5yzu/ZwB3AR0xquhAa9jb9bx9gKRzjm/joLyKatJ1AJ9HSJHUR8TkZLL4Oj/Q3cDkXnK9vve/TbB\nmu8L9mPgijxDQ+vh1Xp84ZwrqBmoIBHAbndkFE3WMZuZN3tsQYp6H4rEd20fAT3MrFGOOFrg9T05\nlnZ4NTcAq/H6mAAMMrPKhZyzuPdzAV4zVC+8Zpyvs/qn+I43C7jKzFrm2Q8zq12E6yiM33+m8lMG\n1yFyFNWYiOSvKM0K/wZuNLM9eMMwz8f76zklz3aJvuM9YWZv440smeOHGEcBFwFLzGwSXoLQFzgO\nb+hncX0G3peNcy7F9/lMoLdz7u+F7FfU+1AcDwGX4nVgnYQ3XPhO4L9Agc/5MbNIvBFBOYdaZ/VV\nqeycK6yppFj30zmXbmbv4SUmMXgjZXK6H69z7HIzexXv3tQE4oBOQGm+1PP7mZpdiuMVJpDXIXIU\nJSYi+StKVfndeB1jewPReLOMXoT31372/s65b8xsFNAfr/9GBL5J2koVoDdXxgXAk3hfHhF4NQW9\nnXPf5N28CMf7w8yuAp41szV4NR6bjpGUQBHvQ3E45743s0uACXidb3/Fm8+kAYUkJnidWLcAWX2D\nPgX6mtmjePOsFHbO4tzPLDOA2/CaembmOd52MzvXF/eVeI802IFXi1OSxDHnsf31M1XQv0/On9+A\nXYdIfsw5Pe9JREREQkNY9DExswvMbLaZbfFNrdy9CPtcb2YrzWy/mf1mZq9bGTxeXkREREouLBIT\noAqwEm9eiaI88rwd3tC2V4E/AVfjtTu/EsAYRUREpJTCoo+Jc24+3oRGmFlROiWeB6x3zr3oW95o\nZpNRe6iIiEhIC5cak+L6CjjJzC6D7CF/V+M9fEtERERCVLlMTJxzS4EbgBlmdhjvYVu78IYbioiI\nSIgKi6ac4vI9vvw5vMekf4w3XfR4vAdk3V7APrXwht1tAA7mt42IiIjkKxpoAnzknNtRmgOF3XBh\nM8vEe8JrgZMJmdk0vEdxX5ejrB3eU0xPdM5ty2ef3niPMhcREZGSud4591ZpDlAua0zwZmFMy1OW\niTeip6DOsxsApk+fTosWLQIXWRgYMmQIzzzzTLDDCAm6Fx7dhyN0Lzy6D0foXsCaNWu44YYbwPdd\nWhphkZiYWRWgOUeSimZmdhaw0zm32cyeBBo45272rZ8DvGJm/fFmn2yA9+TT5c653ws4zUGAFi1a\n0KpVq0BdSliIjY2t8Pcgi+6FR/fhCN0Lj+7DEboXuZS6K0RYJCZAa2ARXo2HA572lb8B3ArUB07K\n2tg594aZVQUG4fUt2YU3NfX9iIiISMgKi8TEOfcZhYwgcs71yafsReDFfDYXERGREFUuhwuLiIhI\neFJiIkeJj48PdgghQ/fCo/twhO6FR/fhCN0L/wq74cKBYmatgMTExER1YhIRESmGpKQk4uLiAOKc\nc0mlOZZqTERERCRkKDERERGRkKHEREREREKGEhMREREJGUpMREREJGQoMREREZGQocREREREQoYS\nExEREQkZSkxEREQkZCgxERERkZChxERERERChhITERERCRlKTERERCRkKDERERGRkKHEREREREKG\nEhMREREJGUpMREREJGQoMREREZGQocREREREcnHOBe3cSkxERESEvXv3cvfdd9O0aVNOOukkmjZt\nyt13383evXvLNI6wSEzM7AIzm21mW8ws08y6F2Gf48zscTPbYGYHzWydmd1SBuGKiIiElb1793L+\n+efz4osvsmHDBrZs2cKGDRt48cUXOf/888s0OQmLxASoAqwEBgJFrV+aCfwN6AOcBsQDPwYkOhER\nkTD2wAMPsGbNGjIzM3OVZ2ZmsmbNGkaNGlVmsVQqszOVgnNuPjAfwMzsWNub2aXABUAz59wuX/Gm\nwEUoIiKB4pzj4MGD7N+/n/3795Oamlro59TUVNLT04Mddsho0qQJt956a6HbzJkz56ikJEtmZiaz\nZ8/mueeeC0R4RwmLxKQEugHfACPM7EZgPzAb+Idz7mBQIxMRKWeccxw6dChXklBYAlHc5dTU1KB2\nxgx3HTp0KDQxcc6RlpZW6DHS0tJwzlGEuoFSK6+JSTO8GpODQA+gNvASUBO4LYhxiYiUuawvnpIk\nDEVJGvbv31/gX9sS+syMqKioQreJiooqk6QEym9iEgFkAr2dc/sAzOxeYKaZDXTOHQpqdCIixeSc\nY9euXSQnJ7N9+/Z831NSUgpMIDIyMoJ9CUUWExNDlSpVst/zfi5sXdbnY33RViQnnHDCMbfp1q0b\nL774Yr4JZkREBN27H3PMid+U18RkK7AlKynxWQMY0Aj4paAdhwwZQmxsbK6y+Ph44uPjAxGniFRQ\nzjn27NlTYJKRtywlJeWY1e1lJTo6usAkobjLeddFR0cTEREu4zLKj8cff5yFCxce1QE2IiKCFi1a\n8Nhjj2WXJSQkkJCQkGv/3bt3+y0WC7d2OzPLBHo452YXss0dwDNAXedcqq/sCuBdoGp+NSZm1gpI\nTExMpFWrVoEJXkTKLecce/fuLVKSkVV2+PDhgMQSHR1dotqGotRExMTEKHEop/bu3cuoUaOYPXs2\naWlpREVF0b17dx577DGqVatW6L5JSUnExcUBxDnnkkoTR1jUmJhZFaA5Xo0HQDMzOwvY6ZzbbGZP\nAg2cczf71r8FjAKmmNnDQB1gLPC6mnFEpDjS0tLYvHkzGzZsYOPGjWzbtq3AhCMQiUZUVBR169al\nTp061KlTJ/tzfu+1a9ematWqREZG+j0OKf+qVavGc889x3PPPVdmHV3zExaJCdAaWIQ3h4kDnvaV\nvwHcCtQHTsra2Dm338wuBp4HVgA7gBnAP8owZhEJA2lpafz6669s2LCBDRs2sH79+uzPWRNN+bNj\nZ6VKlfJNNApKNqpXrx60LwipuIL5MxcWiYlz7jMKmQzOOdcnn7L/AV0CGZeIhL709PRciUfeBOTX\nX38tVeIRGRmZb1KR3+e6desSGxurREOkEGGRmIiIFCQjIyN7+uz8aj02b95c4hEptWvXpkmTJtmv\nxo0b06BBg1xJR40aNdTnQsSPlJiISFjIyMhg/fr1/PDDD6xevTr7tXbtWg4eLNm8ibVq1cqVeOR9\nVa1a1c9XISLHosREREJKZmYmGzZsyJV8ZCUgBw4cKNaxTjjhBJo2bZpv0tG4cWOqV68eoKsQkZJS\nYiIiQZORkcHatWv5+uuvWbFiBStWrGD16tVFTkAiIyM59dRTOeOMM45KQBo3bnzUnEQiEvqUmIhI\nmXDOsWnTJr7++uvsRCQxMZF9+/Ydc9+IiAiaN29Oy5Ytc71OO+00jj/++DKIXkTKihITEQmIlJSU\n7FqQrGQkOTm50H3MjFNOOeWoBOT0008nOjq6jCIXkWBSYiIifrF9+3YWL16c/VqzZs0x9zn55JNp\n06YN5557Lm3atCEuLk79PkQqOCUmIlIiycnJfPbZZyxatIjFixfzww8/FLp9zZo1cyUhbdq0oX79\n+mUUrYiECyUmIlIkKSkpfPbZZyxevJhFixaxevXqAreNjIykdevWtG3bNjsRadasmSYWE5FjUmIi\nIvk6fPgwn3/+OfPmzWPBggV8//33BW6blYh07NiRjh070q5du2M+9EtEJD9KTEQk29atW5k3bx5z\n587lk08+KXDETERERK5EpH379kpERMQvlJiIVGCZmZmsWLGCuXPnMnfuXJKS8n9aeUREBHFxcbkS\nEXVSFZFAUGIiUsHs2rWLjz/+mLlz5/Kf//ynwCG8tWvX5rLLLqNr165ccsklnHDCCWUcqYhUREpM\nRCqAffv2MWvWLKZNm8bnn39Oenp6vtudc845dO3ala5du9KmTRsiIyPLOFIRqeiUmIiUU845vvji\nC6ZOnco777zD/v37j9qmSpUqXHzxxXTt2pXLL7+cBg0aBCFSEZEjlJiIlDObNm3ijTfeYOrUqaxb\nt+6o9c2aNaNbt2507dqVCy+8UFO6i0hIUWIiUg6kpqby/vvvM2XKFBYuXIhzLtf66tWr06tXL265\n5RbOO+88zSciIiFLiYlImHLO8dVXXzFlyhRmzJjB3r17c603Mzp37kyfPn3o0aMHMTExQYpURKTo\nlJiIhJn9+/czZcoUnn/+ef73v/8dtf6UU07hlltu4aabbuLkk08OQoQiIiWnxEQkTCQnJ/Piiy/y\nwgsvsGPHjlzrqlatyrXXXsstt9xC+/bt1VQjImFLiYlIiFu3bh0TJkzgn//8JwcOHMi1rkOHDvTp\n04errrqKqlWrBilCERH/UWIiEqISExMZN24cM2fOJDMzM7s8MjKSXr16MWzYMM4666wgRigi4n9K\nTERCiHOOjz/+mHHjxvHpp5/mWhcTE8Mdd9zBkCFDaNy4cZAiFBEJLCUmIiEgLS2NmTNnMnbsWFat\nWpVrXZ06dbjnnnsYMGAANWvWDFKEIiJlIywSEzO7ABgGxAEnAj2cc7OLuG87YDHwvXOuVcCCFCmB\ntLQ0XnvtNZ566ik2btyYa13z5s0ZOnQoN910E5UrVw5ShCIiZSssEhOgCrASeB14r6g7mVks8Aaw\nAKgXmNBEis85x3vvvcfIkSP56aefcq1r06YNI0aMoEePHnpWjYhUOGGRmDjn5gPzAax44yBfBt4E\nMoErAhCaSLF98cUXDB8+nGXLluUqv/zyyxk+fDgXXnihhvuKSIUVEewAAsXM+gBNgdHBjkUEYM2a\nNVxxxRVceOGFuZKSDh06sHz5cubOnUuHDh2UlIhIhRYWNSbFZWanAk8A7Z1zmfpFL8H022+/8fDD\nD/P666/nGvbbsmVLnnrqKS6//HIlIyIiPuUuMTGzCLzmm4ecc79kFRd1/yFDhhAbG5urLD4+nvj4\neP8FKRXCnj17GDduHBMmTCA1NTW7vEGDBjz66KPcfPPN6kMiImEnISGBhISEXGW7d+/22/Et71NI\nQ52ZZVLIqBxfh9c/gHSOJCQRvs/pwCXOucX57NcKSExMTKRVKw3ekZI7fPgwkydP5tFHHyU5OTm7\nvHr16tx///3cc889eqCeiJQrSUlJxMXFAcQ555JKc6xyV2MC7AHOzFM2CPgbcBWwoawDkooha6TN\niBEj+OWXX7LLo6KiGDhwIKNGjaJ27dpBjFBEJPSFRWJiZlWA5hypAWlmZmcBO51zm83sSaCBc+5m\n51UB/ZBn/+3AQefcmjINXCqMbdu20b9/fz744INc5fHx8Tz22GM0a9YsSJGJiISXsEhMgNbAIsD5\nXk/7yt8AbgXqAycFJzSpyJxzzJgxgzvvvDPXE387derEU089RevWrYMYnYhI+AmLxMQ59xmFDG12\nzvU5xv6j0bBh8bPt27czcOBAZs2alV1Wp04dXnrpJXr27KmRNiIiJVBu5zERCaSZM2fSsmXLXEnJ\ntddey+rVq7nqqquUlIiIlFBY1JiIhIrk5GQGDRrEzJkzs8tq167NpEmTuOaaa4IYmYhI+aDERKSI\nZs2axYABA3INAb7qqquYNGkSdevWDWJkIiLlh5pyRI4hJSWFXr16cfXVV2cnJbVq1eLtt99m5syZ\nSkpERPxINSYihXj//ffp378/27dvzy678soreemll6hXTw+sFhHxN9WYiORj165dXH/99fTs2TM7\nKTnhhBN48803mTVrlpISEZEAUY2JSB6rV6+mR48e/Pzzz9ll3bp1Y/LkyZx44olBjExEpPxTjYlI\nDu+++y5//etfs5OSGjVqMG3aND788EMlJSIiZUA1JiJARkYGo0aNYsyYMdllZ599Nu+//z5NmjQJ\nXmAiIhWMEhOp8Hbu3El8fDwff/xxdtkNN9zA5MmT9RRgEZEypqYcqdBWrVpF69ats5OSyMhInnvu\nOaZNm6akREQkCFRjIhVWQkICt912GwcOHAC859y88847dOzYMbiBiYhUYKoxkQonPT2d++67j969\ne2cnJa1btyYxMVFJiYhIkKnGRCqU5ORkevXqxcKFC7PL+vTpw6RJk4iOjg5iZCIiAkpMpAJJTEyk\nZ8+ebNq0CYBKlSoxceJE+vfvr6cBi4iECCUmUiFMmzaNvn37cujQIQDq16/PzJkzad++fZAjExGR\nnNTHRMo15xzDhg3j5ptvzk5Kzj//fBITE5WUiIiEICUmUm5lZmYycOBAxo8fn13Wr18/Fi1aRIMG\nDYIYmYiIFERNOVIuZWRkcNttt/HGG28AYGZMmjSJ/v37BzkyEREpjBITKXfS0tK48cYbmTFjBuBN\nmvavf/2L+Pj4IEcmIiLHosREypVDhw5x3XXX8eGHHwIQFRXF22+/Tc+ePYMcmYiIFIUSEyk3Dhw4\nQM+ePZk/fz4Axx9/PLNmzaJr165BjkxERIpKiYmUC/v27aN79+4sWrQIgJiYGGbPnk3nzp2DHJmI\niBRHWIzKMbMLzGy2mW0xs0wz636M7a80s4/NbLuZ7TazpWZ2SVnFK2Vr9+7ddOnSJTspqVatGvPn\nz1dSIiIShsIiMQGqACuBgYArwvYXAh8DlwGtgEXAHDM7K2ARSlDs3LmTiy66iKVLlwJQo0YNFixY\nwAUXXBDkyEREpCTCoinHOTcfmA9gRZg73Dk3JE/RA2Z2BdANWOX/CCUYtm/fzsUXX8x3330HQO3a\ntfnkk084++yzgxyZiIiUVFgkJqXlS2aqATuDHYv4x2+//Ubnzp1Zu3Yt4E0xv2DBAlq2bBnkyERE\npDQqRGICDMNrDnon2IFI6W3cuJHOnTvzyy+/AHDSSSfx6aefcuqppwY5MhERKa1yn5iYWW/gH0B3\n51xKsOOR0vn555/p3Llz9hOCmzZtysKFC2nSpElwAxMREb8o14mJmfUCXgGuds4tKso+Q4YMITY2\nNldZfHy8Zg0NAZs3b6Zjx45s2bIFgNNOO41PP/2URo0aBTkyEZGKIyEhgYSEhFxlu3fv9tvxzbmi\nDHIJHWaWCfRwzs0+xnbxwGvAdc65fxfhuK2AxMTERFq1auWfYMVv9u7dS/v27bM7up555pksWLCA\nevXqBTkyERFJSkoiLi4OIM45l1SaY4VFjYmZVQGaA1kjcpr5hv7udM5tNrMngQbOuZt92/cGpgJ3\nAyvMLOvb64Bzbk/ZRi+llZ6eTq9evbKTkmbNmrFw4ULq1KkT5MhERMTfwmUek9bAt0Ai3jwmTwNJ\nwGjf+vrASTm2vwOIBF4EfsvxeraM4hU/uu+++5g3bx7gzVMyd+5cJSUiIuVUWNSYOOc+o5AkyjnX\nJ8/y3wIelJSJF154gYkTJwJQqVIlZs2axRlnnBHkqEREJFDCpcZEKqB58+Zxzz33ZC+/8sordOrU\nKYgRiYhIoCkxkZD03Xffcd1115GZmQnA/fffT58+fY6xl4iIhDslJhJytm7dyv/93/+xb98+AK6+\n+moef/zxIEclIiJlQYmJhJT9+/fTvXt3Nm/eDMC5557LtGnTiIjQj6qISEWg3/YSMjIzM7nxxhv5\n5ptvADj55JP58MMPqVy5cpAjExGRsqLERELGyJEjef/99wGoVq0ac+fOpX79+kGOSkREylJYDBeW\n8u/VV19l7NixAERGRjJz5kzOPPPMIEclIgHnHGRmQkbGkfe8n/ftg717vdeePUd/zq8sLS3YVxY6\nFiyAKlWCHUWRKTGRoFuwYAEDBw7MXn7++efp0qVLECMSCVGHD8OuXUdef/yRe3nPHu8LuaAv+MK+\n/Atb549j5FzOWV6ax6JUq+a9qlfP/blJEzjuOL/d9rAXZn30lJhIUK1Zs4arr76a9PR0AAYPHsyA\nAQOCHJVIHs5Bairs3AkHD3pf/mlpXqKQ8z2/sqKsy+/9wIHcSceuXV5ZfiIioEYN70s5Kspbjoz0\nXvl9Lmx9VBRERxe+XUnXlfQYVaocST6y3qtUCbsvXCkaJSYSNMnJyXTt2jX7qZTdunVj/PjxQY5K\nyiXnID3dSyoOHPDe9+/3Eo0dO/J/5V136FDJz3/ccd4rKsp7ZX3O+57zc3Q0nH66l3DkfJ1wwtFl\n1aqB2bHjEAkDSkwkKA4ePEiPHj1Yv349AGeffTZvvfUWkZGRQY5MQk5mptdksX07JCd771mvrOXd\nu48kHDmTj5zLvsn6ClStGtSqdeR14olw5pm5y2rWhMqVC04m8ks0IiOVNIgUgxITCYqhQ4eydOlS\nABo0aMCcOXOoWrVqkKOSMpOZ6dVCbN0Kv//uvWd9zpl4bN8OKSleX4ScKlWCOnWgbl3vVaOGl0hE\nRx95Va6cezlvWUyMl2hkJRzqkyASEpSYSJmbPXs2L774IgDR0dHMmTOHRo0aBTkq8YvMTNi2DbZs\n8V5ZCUfeBGTbNq9pJacaNaB+fe9Vpw6cccaRxKNu3aMTEdVCiJRLSkykTG3ZsiXXM2+effZZWrVq\nFcSIpMgOHYLffvMSjl9/zf/9t99yJxyRkUeSjRNPhLPPhssuO7Kc8z06OnjXJiIhQ4mJlJmMjAxu\nvPFGdu7cCUDPnj3p27dvkKMSwOscmpICGzfCpk1Hv2/a5PXnyKlqVWjUyHuddhp06uR9btjwyHvt\n2ho5ISLFosREyszYsWNZtGgRAI0aNeLVV1/FVB1fdvbuhe+/h59/zj/xyDkUtXJlaNwYTj4ZWrWC\nK644koRkJR3VqwfvWkSk3FJiImVi2bJl/OMf/wDAzJg+fTo1a9YMclTllHNeorFqFaxc6b2vWgW/\n/HJkmzp1jiQel1/uvWctN27sdQhV0igiQaDERAJu9+7d9O7dmwzfyIpRo0bRoUOHIEdVThw8CKtX\nH0k+Vq4UFp6hAAAgAElEQVSE777zJuMCb7TJWWdBt25e/46zzvKaXWJighu3iEgBlJhIQDnnGDhw\nYPZ8JW3btuXBBx8MclRh6vBhL+lYsQK+/hq++QbWrPGG0prBqad6icfQod772Wd7TS6q+RCRMKLE\nRALqX//6F2+99RYAsbGxvPnmm1SqpB+7Y8rMhB9/PJKErFjh1YYcPuzN4fGXv0C7dnDnnV4S8uc/\nh9VDukRECqJvCAmYn376iUGDBmUvT548mSZNmgQvoFDlnDfcNisB+fprSEz0HsgG3rTkbdrADTd4\n72efraG1IlJuKTGRgDh8+DDx8fHs27cPgFtvvZXrrrsuyFGFiIwM+O9/4csvj7x+/dVb16iRl3zc\nfz+cey7ExXmTiYmIVBBKTCQgRo0aRWJiIgCnnXYaEydODHJEQXTggFcLkpWELF3q1YZERUHr1hAf\nD23bwl//6k02JiJSgSkxEb/75JNPGDduHABRUVEkJCRQpSL1f0hJgSVLjiQiiYneo+yrV/cSkBEj\noH17r2akcuVgRysiElLCIjExswuAYUAccCLQwzk3+xj7dASeBloCm4DHnXNvBDjUCm/79u3cdNNN\n2ctjxowp/1POO+dNXPb++/DBB14nVfBGxFxwgdc3pH1770m1enqyiEihwiIxAaoAK4HXgfeOtbGZ\nNQH+DUwCegMXAa+Z2W/OuU8CF2bF5pyjT58+/P777wBceumlDB48OMhRBUhGBixb5iUj778P69ZB\ntWrQtSvcd5+XkJx8sobqiogUU1gkJs65+cB8ACvaHOYDgHXOueG+5R/NrD0wBFBiEiATJ05k3rx5\nANSrV4+pU6cSUZ6ek3LoECxc6CUis2d7T8itV8+brr1HD+9ZMccfH+woRUTCWsASEzNr5ZxL8n2O\nBcw5tytQ58vjPGBBnrKPgGfK6PwVzsqVKxk+fHj28htvvEG9evWCGJGf7N0L//mPl4zMnestN2vm\nNc9ceSWcd56aZ0RE/MiviYmZxQGnAAuBS4Ek36r9wK1m9qNz7jN/nrMA9YFtecq2AdXN7Hjn3KEy\niKHC2L9/P/Hx8Rw+fBiAe++9ly5dugQ5qlJITfVqRN58Ez7+2JvU7OyzvRlVr7zS6yuiJhoRkYDw\nd43JPryEZCyQaWZ1gUXAZ865V8zsFqAsEpMSGzJkCLGxsbnK4uPjiY+PD1JEoW/48OGsXbsWgFat\nWvHEE08EOaISyMjwmmmmT4f33oN9+7zakDFjvGaapk2DHaGISEhISEggISEhV9nu3bv9dnxzzvnt\nYLkObDYJSAQ6ABfg1Zp875wr1Te8mWVyjFE5ZvYZkOicuzdH2S3AM865EwrYpxWQmJiYWP5HkfjR\n0qVLadeuHQAxMTF8++23nHbaaUGOqoicg2+/9WpGEhJg61bvAXfXX++9Tjkl2BGKiISFpKQk4uLi\nAOKyunGUVCA7v/7bOTcPbyQNZlYH2BHA8+X0FXBZnrJLfOXiJ4cPH6Zv377Zy0888UR4JCUbNsBb\nb3m1I2vWQN260KuX12+kdWs104iIBFHAEhNfUpJzObmkxzKzKkBzIOsbo5mZnQXsdM5tNrMngQbO\nuZt9618GBpnZU8A/gc7A1cDlJY1BjjZ+/HhWr14NQOvWrbnzzjuDHFEhdu6EmTO9ZOTLLyEmxusv\nMmECXHSR92A8EREJulKP5TSz4Wa2ysz65yirbmb3mlmD0h7fpzXwLV7TkMObOC0JGO1bXx84KWtj\n59wGoCve/CUr8YYJ3+acyztSR0ro559/5pFHHgEgMjKSV155hchQHJ2ydi3cfrs31fugQVC1qpec\nbNvmvV96qZISEZEQ4o/fyHWBjUAPvJoKnHN7zGw2cJuZbXDO/as0J/CN5CkwiXLO9cmn7HO8mWLF\nz5xz9O/fn0OHvMFNgwcP5pxzzglyVHksWQJjx3qjaxo0gEcfhZtv9uYdERGRkOWP2a8MuNo5d2nO\nQufcz865R4E2fjiHhJDp06fz6aefAtC4cWNGjx59jD3KSGamNyV827beFPA//wxTpsD69TB8uJIS\nEZEw4I/E5ElghJlFApjZ6Wb2k5ltNbOleH1DpJxISUnh3nuzBzsxadKk4D+g7+BBePVVaNHC6zcS\nFQVz5njPr7nlFjjuuODGJyIiRVbkphwz64Q37HcJsNw5txfAOZdiZs8DI81sPPAYMA/4GTgEvO33\nqCVohg0bRkpKCgDXXHMNl18exP7Ef/wBL70EEyfC9u1eUvLGG978IyIiEpaK08ekPvCQ73Ommf0A\nLPW9vgKeAx4GMpxz9/gzSAkNixYtYurUqQDExsby3HPPBSeQTZvg2WfhlVcgPd2rFbn3Xm8OEhER\nCWvFSUySgRfxmm4uANoDFwJ3+NbvAH4HfjGzM51z//VnoBJcBw8epF+/ftnLY8aM4cQTTyzbIHbs\ngH/8w2u2qVYNBg+Gu+5S3xERkXKkOInJN8AfzrnfgBm+F2ZWAy9JucD3uhzobmY78aaff9s5965f\no5Yy98QTT/DTTz8B0LZt21wTqwVcejq8/DI8+KA3dfyTT0L//t7QXxERKVeKnJg45/7AS07ylu8C\n/u17YWbRQFuOJCtDASUmYWzNmjWMGTMGgEqVKjF58mQiIvzRb7oIFi6Ee+6B1avhttvg8ce9mVpF\nRKRc8vvMUs65g3hPF17o72NL2cvMzKRfv36kpaUB3gP7zjzzzMCfeMMG72m+s2Z5w39XrIA4TUsj\nIlLeldGfvRKu/vnPf/LFF18A0Lx5c0aNGhXYE+7f7zXZtGgBX33lPWDvyy+VlIiIVBCai1sKtG3b\nNoYNG5a9/PLLL1O5cuXAnMw5mDEDhg3zhv4OHQojR6ofiYhIBaMaEynQkCFD2LVrFwA33ngjnTt3\nDsyJVq6EDh0gPt57uu+aNV5fEiUlIiIVjhITydf8+fNJSEgAoFatWjz99NP+P0lKije6Ji7OGwr8\nySfw/vvQrJn/zyUiImFBTTlylNTUVAYOHJi9PH78eOrUqePfk7z7LgwYAGlpMGECDBzoTSUvIiIV\nmmpM5CijR49m/fr1AHTs2JGbb77ZfwffuRN694ZrroELL4T//c8bDqykREREUI2J5LFq1arsZpvj\njjuOl19+GTPzz8H//W+44w7voXtvvun1KfHXsUVEpFwIWI2JmV1oZm3NTLUyYSJrzpKMjAwAHnjg\nAU4//fTSH3j3bm9ytG7doFUrb7K03r2VlIiIyFECmTQsBr4AfjKzfmamZ8+HuJkzZ7J8+XIAzjjj\nDEaMGFH6gy5YAH/+M8ycCa+95tWaNGhQ+uOKiEi5FMjE5HPgSyAWeAnYEMBzSSkdPnyYv//979nL\nzz77LMcff3zJD7hvHwwaBBdfDKeeCt9/79WaqJZEREQKEbA+Js65jlmfzexMvGfnSIiaPHky69at\nA6Bz585ccsklJT/Yl1/CLbfAb7/B8897I27K6tk6IiIS1srk28I591/n3MtlcS4pvj179vDII49k\nLz/11FMl6/B64IA3Y+uFF0K9erBqFdx5p5ISEREpMo3KEcaNG0dKSgoAvXr1Iq4kz6VZsQJuugnW\nrYOxY2HIEIiM9HOkIiJS3gVyVE6rHJ9jzaxGoM4lJbd161YmTJgAQFRUFI8//njxDuAcTJzoPQG4\nShVISvJqTZSUiIhICfg1MTGzODO71sxqA5fmWLUfuNbMOvjzfFJ6Dz/8MKmpqQAMGDCAZsWZDj41\n1aslueceuOsu72nALVsGKFIREakI/F1jsg8vIfkGuN3MnjWzK4CqzrlXgKYlPbCZDTKz9WZ2wMyW\nmVmbY2w/2MzWmlmqmW0yswlmVophJuXP2rVref311wGoVq0ao0aNKvrOGzZAu3Ywa5Y3WdqECZq9\nVURESs2viYlz7kfn3K3OuSbAfOB74CrgWzP7L9ClJMc1s+uAp4GHgHOAVcBHvpqZ/LbvDTzp2/4M\n4FbgOqCY7RTl28iRI7MnUxsxYkTRn4fzySfeg/d27/ZqSXr3DmCUIiJSkfglMTGzv5hZTJ7i/zrn\nXnfO3eScawr8Dbi+hKcYAkx2zk1zzq0F+gOpeAlHfs4HvnTOzXDObXLOLQASgHNLeP5yZ8mSJXzw\nwQcAnHjiiQwePPjYOznndWy99FJo0wa++QbOOivAkYqISEVS6sTEzO4Hvgbm5Vm12szGZC0455Kd\nc5klOH4UEAd8muNYDliAl4DkZykQl9XcY2bNgMuBucU9f3nknGP48OHZy6NHj6ZKlSqF77RvH1x3\nHYwYAfffD3PnQs2aAY5UREQqGn8MFz4BuAVvhtdszrnPzKyemXV1zpUmIagNRALb8pRvA/J9kItz\nLsHXzPOleRNyRAIvO+eeKkUc5caHH37I0qVLAW/q+T59+hS+w08/wZVXwsaNXp+Snj3LIEoREamI\n/NGUE+Wce9s5NznvCufcO8DFfjhHsZhZR+DveE0+5wA9gf8zs2L07iyf0tPTGTlyZPbymDFjqFSp\nkPz03//2mm3S0mD5ciUlIiISUP6oMallZqc4534pYP3hUh4/BcgA6uUprwf8XsA+jwDTnHNTfMur\nzawqMBl4rLCTDRkyhNjYXJU/xMfHEx8fX9y4Q9KUKVNYu3YtAO3ataN79+75b5iZCY89Bg89BN27\nw7RpkOe+iIhIxZOQkEBCQkKust27d/vt+OZ11yjFAbyJ1GYBd+bXZGNmk5xzA0t5jmXAcufcPb5l\nAzYBE51z4/LZ/hvgE+fcyBxl8cCrQDWXz0X7riMxMTGRVq1a5V1dLuzfv59TTz2VrVu3Al4H2LZt\n2x694e7d3vwkc+bA6NHwwAOaVl5ERAqUlJSUNWt4nHMuqTTHKnWNiXMuyddE8p6Z/Q/4AFgJ7MF7\ncF/V0p4DmABMNbNEvI62Q4AYYCqAmU0DfnXOZT0edw4wxMxWAsuBU/FqUWbnl5RUFM8++2x2UnLl\nlVfmn5T8/DN07QrbtnnNOJdfXsZRiohIReaXZ+U45940szXAU3h9O7KeAPcJ0MsPx3/H15n1Ebwm\nnJVAF+dcsm+TRkB6jl0eBTJ97w2BZGA2UGH7mCQnJ/PUU17f38jISJ588smjN/r5Z+jY0Zta/ptv\noHnzsg1SREQqPL89xM9XdXOxL4FoBmx3zm3w4/EnAZMKWNcpz3JWUvKov84f7h577DH27t0LwO23\n387pp+cZ0JSVlFStCosWwYknln2QIiJS4fn96cLOuRS8DqsSItatW8dLL70EQExMDA899FDuDX7+\nGf72NyUlIiISdOrRWAE88MADpKWlAXDfffdxYs7E45dfvKQkJkZJiYiIBJ0Sk3Lum2++4e233wag\ndu3aDB069MjKX37xmm9iYmDxYiUlIiISdEpMyjHnHCNGjMhefvDBB6levbq3kDMpUU2JiIiECCUm\n5dhHH33EwoULATjllFPo16+ftyJv802DBkGMUkRE5AglJuVURkZGrtqSxx9/nOOOOw7WrfOSkuho\nJSUiIhJylJiUUzNnzuS7774DoHXr1lxzzTVeUtKxo5eULF6spEREREKOEpNyKDMzk8ceO/JIoCef\nfJKIDRuOJCWqKRERkRClxKQc+uCDD1i9ejUAbdu2pXPTprmbbxo2DHKEIiIi+VNiUs4453LVljx+\n++1Yp05w3HFKSkREJOQpMSln5s2bx7fffgtA9z//mQ4PP6ykREREwoYSk3LEOcejj3qPB6oJvLlj\nBxYV5SUljRoFNzgREZEi8PuzciR4FixYwPLly4kCPqpShSqHD8PnnyspERGRsKHEpBzJ6lvyKnDO\noUPYRx/BKacENygREZFiUFNOOfH555/z+eef83fgZsCmTIF27YIdloiISLEoMSknHn30Ua4FHgdW\n9exJxA03BDskERGRYlNiUg4sW7aM/QsW8AbwQdWqtPQ9TVhERCTcKDEpB14dOZIPgBXAH+PGUSkq\nKtghiYiIlIg6v4a5VZ99xtDFi9kD3NWwIV/femuwQxIRESkxJSbhLC0NrrmGesB5wJAHHvCeICwi\nIhKmlJiEK+fY2asXLZKTuRjY36ABffr0CXZUIiIipaLEJFyNH0/N997jZuBz4Jlhw4iOjg52VCIi\nIqWixCQcvfcebsQIngCmAXXr1qVv377BjkpERKTUNCon3KxYATfcwPLGjfmHr+i+++4jJiYmqGGJ\niIj4Q9gkJmY2yMzWm9kBM1tmZm2OsX2smb1oZr+Z2UEzW2tml5ZVvAGxaRN068bBM87gok2bcEDN\nmjUZMGBAsCMTERHxi7BITMzsOuBp4CHgHGAV8JGZ1S5g+yhgAXAy0BM4DbgD2FImAQfCnj3QtStU\nrszf//Qn9mdmAjB48GCqVasW5OBERET8I1z6mAwBJjvnpgGYWX+gK3ArMDaf7W8DagDnOecyfGWb\nyiLQgMjMhPh42LyZ3959lxcuvxyA6tWrc9dddwU5OBEREf8J+RoTX+1HHPBpVplzzuHViJxfwG7d\ngK+ASWb2u5l9b2YjzSzkrzdf48bBf/4DM2bwxAcfkJaWBsDdd99NjRo1ghyciIiI/4RDjUltIBLY\nlqd8G3B6Afs0AzoB04HLgObAS3jX+2hgwgyQr76CBx6A++9n61/+wmtXXAFAlSpVGDx4cJCDExER\n8a9wSExKIgIvcenrq1351swaAUM5RmIyZMgQYmNjc5XFx8cTHx8fqFgLtmuX14TTpg2MHs24ESM4\ndOgQAAMHDqRWrVplH5OIiFRoCQkJJCQk5CrbvXu3345v3vd26PI15aQCVznnZuconwrEOueuzGef\nxcBh59wlOcouBeYCxzvn0vPZpxWQmJiYSKtWrfx+HcXmHFx3HXz8MaxcSXKVKjRu3JgDBw5QuXJl\n1q9fT7169YIdpYiICElJScTFxQHEOeeSSnOskO9z4ZxLAxKBzlllZma+5aUF7LYEr/kmp9OBrfkl\nJSHp1Vdh5kx47TVo0oQJEyZw4MABAPr27aukREREyqWQT0x8JgB3mNlNZnYG8DIQA0wFMLNpZvZE\nju1fAmqa2UQzO9XMugIjgRfKOO6S+e9/4Z57oH9/uPpqdu7cyQsveKEfd9xxDBs2LMgBioiIBEZY\n9DFxzr3jm7PkEaAesBLo4pxL9m3SCEjPsf2vZtYFeAZvzpMtvs/5DS0OLampXhNO8+YwYQIAEydO\nZN++fQDceuutNGzYMJgRioiIBExYJCYAzrlJwKQC1nXKp2w50DbQcfnd4MGwfj188w1Urkxqamp2\nbUlkZCQjRowIcoAiIiKBEzaJSYXwzjte35JXX4U//QmAKVOmsGPHDsAbHdSkSZMgBigiIhJY4dLH\npPxbvx7uuMNrxrntNgDS09N5+umnszcZOnRosKITEREpE0pMQkFaGvTqBbVqweTJYAbAe++9x/r1\n6wHo0qULZ511VjCjFBERCTg15YSCUaMgKQmWLAHf5G7OOcaOPdJXVyNxRESkIlBiEmwffwxjx3rP\nwzn33OzixYsXk5iYCECrVq3o1Omo/r0iIiLljppygun33+HGG6FLF7j33lyr8taWmK95R0REpDxT\nYhIsmZleUhIRAdOmee8+3333HfPnzwegSZMmXH311cGKUkREpEypKSdYxo6FTz/1mnLq1s21avz4\n8dmf77vvPipV0j+TiIhUDKoxCYavvvI6vI4cCRddlGvV5s2bs5/aWLNmTfr06ROMCEVERIJCiUlZ\n270b4uPhr3+Fhx8+avWzzz5Lero3u/6dd95JlSpVyjhAERGR4FEbQVkbMQJ27oTPPoOoqFyr/vjj\nD1555RUAoqOjufPOO4MRoYiISNAoMSlLn33mTaD24ovQuPFRq19++eXsh/X16dOHOnXqlHWEIiIi\nQaWmnLJy8KA35Xy7dtC/fz6rDzJx4kQAIiIiuDfP8GEREZGKQDUmZeXRR2HjRvjww1xDg7NMnz6d\n33//HYCePXvSvHnzso5QREQk6FRjUhZWrfKGB48aBS1aHLU6MzMz1xDh4cOHl2V0IiIiIUOJSaCl\np8Ptt8MZZ3gdX/MxZ84cfvzxRwA6dOhAmzZtyjJCERGRkKGmnECbOBESE725S447Lt9Nxo0bl/1Z\ntSUiIlKRqcYkkNat85pv7r7bm7ckH0uWLGHJkiUAtGzZkssuu6wsIxQREQkpSkwCxTno18+bbv6x\nxwrcLGdtiR7WJyIiFZ2acgJl2jRYsADmz4eqVfPdZO3atcyePRuAhg0bEh8fX5YRioiIhBzVmATC\ntm0wZIj39OAuXQrc7Omnn8Y5B8DgwYM5roA+KCIiIhWFEpNAuOceiIyECRMK3OT3339n2rRpAFSv\nXp2+ffuWVXQiIiIhS005/jZnDsyYAW++CbVrF7jZxIkTOXz4MAD9+/enevXqZRWhiIhIyAqbxMTM\nBgFDgfrAKuAu59yKIuzXC3gL+MA51zOgQe7ZAwMGwOWXe08QLsDevXuZNGkSAFFRUdxzzz0BDUtE\n/GPTpk2kpKQEOwyRoKhduzYnn3xywM8TFomJmV0HPA30Bb4GhgAfmdlpzrkCf0uYWRNgHPB5GYQJ\nI0fCrl3w0ktQyOia1157jd27dwNwww030KBBgzIJT0RKbtOmTbRo0YLU1NRghyISFDExMaxZsybg\nyUlYJCZ4ichk59w0ADPrD3QFbgXG5reDmUUA04EHgQuB2IBG+OWXMGmSN6FaIf9oaWlpPPPMM9nL\nQ4cODWhYIuIfKSkppKamMn36dFrk82gJkfJszZo13HDDDaSkpCgxMbMoIA54IqvMOefMbAFwfiG7\nPgRsc85NMbMLAxpk1pODzz8fBg4sdNMZM2awefNmALp168af/vSngIYmIv7VokULWrVqFewwRMqt\nkE9MgNpAJLAtT/k24PT8djCz9kAf4KzAhubzxBPwyy/w7bfeaJwCOOcYO/ZIBc+wYcPKIjoREZGw\nUe6GC5tZVWAacIdz7o+An/D77+HJJ+GBB6Bly0I3/c9//sP3338PwF//+lfat28f8PBERETCSTjU\nmKQAGUC9POX1gN/z2f4UoDEwx47M7x4BYGaHgdOdc+sLOtmQIUOIjc3dHSU+Pj7/WVkzMrwnB592\nGtx//zEvZMyYMdmfR44cqennRUQk7CQkJJCQkJCrLGtAhz+EfGLinEszs0SgMzAbwJdwdAYm5rPL\nGuDPecoeB6oCdwObCzvfM888U/T240mTYMUKWLIEjj++0E2XLl3KF198AXht1N26dSvaOUREREJI\nfn+sJyUlERcX55fjh3xi4jMBmOpLULKGC8cAUwHMbBrwq3Pu7865w8APOXc2s114fWbX+C2i5GR4\n8MEjnV6P4amnnsr+PHz4cCIiyl0rmoiISKmFRWLinHvHzGoDj+A14awEujjnkn2bNALSyzSoBx/0\nniBcyJODs6xevTr7YX2NGjWid+/egY5OREQkLIXNn+3OuUnOuSbOucrOufOdc9/kWNfJOXdrIfv2\n8eusr6tWwSuvwOjRUKfOMTfPORLnvvvu08P6RESAqVOnEhERwaZNm8LiuIHy8MMPExERwc6dO4Md\nSkgIm8QkZDjnPaTvtNOOOWcJwMaNG3nrrbcAqFmzJrfffnugIxQRCQtmdtQggK+++orRo0ezZ88e\nvx63JPwRS1H4K968hg4dysUXX8zdd9/t92MHkhKT4po1Cz77DJ59FqKijrn5hAkTSE/3Wpnuuusu\nqlatGugIRUTCwk033cSBAwdyzSS6dOlSHnnkEXbt2hXEyEIvlpJ46qmnyMzMDLuHxCoxKY4DB2Do\nUOjWDbp0OebmKSkpvPrqq4D3jIE777wz0BGKiIQNMzuqads5F6RojhZKsZREZGQkP/74Y9jNmaXE\npDjGj4fffoOnny7S5i+88AIHDhwA4I477qB27dqBjE5EpFR+++03brvtNho2bEh0dDTNmjVj4MCB\n2bW+mzZtYuDAgZxxxhnExMRQu3Ztrr32WjZu3JjrOFl9Jn788UeuvfZaYmNjqV27NoMHD+bQoUPZ\n2+XtCzJ69GiGDx8OQJMmTYiIiCAyMjJ7fVHPX1T79u1j8ODBNG3alOjoaOrVq8cll1zCt99+e8xY\nAL799lsuu+wyYmNjqVatGhdddBHLly8v9n3Nz8aNG2nevDl/+ctfSE5Ozi7/8ccfsx9rciwbNmxg\n27ZttG3btqi3JCSExaickLB5szfD65AhcOqpx9x83759PP/88wBUqlSJe++9N9ARioiU2NatW2nT\npg179uyhX79+nH766WzZsoV3332X1NRUqlevzooVK1i2bBnx8fE0atSIDRs2MGnSJP72t7/xww8/\nEB0dDZDdX+Laa6+ladOmjBkzhmXLljFx4kR27drF1KlTs7fL2bfiqquu4n//+x9vv/02zz33HLVq\n1QKgjm+QQVHPX1T9+vXjvffe46677qJFixbs2LGDL7/8krVr1x4zlh9++IELL7yQ2NhY7r//fipV\nqsTkyZPp2LEjn3/+OW3atCnyfc3rl19+oVOnTtSpU4dPPvmEE044IXtdixYt6NixIwsXLjzm9S1Z\nsoSWLVuGXVMOzjm9vOq6VoBLTEx0+YqPd65ePed2785/fR7PPPOMAxzgbrrppiLtIyKhKzEx0RX6\nOyKPuLg417Bhw4C+4uLi/HZ9N910k6tUqZJLSkoqcJuDBw8eVbZ8+XJnZm769OnZZQ8//LAzM3fl\nlVfm2nbQoEEuIiLCff/9984556ZOneoiIiLcxo0bs7cZP378UWXFPX9+x81PjRo13F133VXg+sJi\n6dGjh4uOjnYbNmzILtu6daurXr2669ixY3ZZUe7rww8/7CIiItyOHTvcmjVrXMOGDd15553ndu3a\nddS2ERERrlOnToVeV5YBAwa4QYMGOeecW7ZsmRs1apSrX79+9v0vjmP9/GetB1q5Un4fq8akKL78\nEhISYMoUKELmefjwYZ7O0dyTVR0oIhXH77//zpYtW4IdRpE45/jwww/p3r0755xzToHbHZ9jhuv0\n9PPdQykAABxjSURBVHT27NlDs2bNqFGjBklJSVx//fXZ682MQYMG5dr/rrvuYtKkScybN48zzzyz\n2HH+f3v3Hh5Vdf97/P2doA0BkwBBEAwa5AcGLxTBHq1yUyuXY7kVBCzmidAihYrgDfBXy+UAchN/\nco7WKMfGKoF6UEArFrC1tQWEcrE/oRAQoaJEnqAFVILYzDp/7MmQTCbJhFxmknxezzPP49577b2/\nWaxkvq6911qVuX8kkpOT2bp1K3l5eVxyySURn+f3+9m4cSNDhgzhsssuC+5v3bo1d911F8uWLeOr\nr76iSZMmEdVrkQ8++IARI0bQsWNH1q1bF3awRGFhYcRxbtq0ienTp/POO+9QUFDA3XffzfPPP4/f\n74/4GtGgxKQihYUwaRJ07w4ZGRGdkpOTwyeffALAwIEDuaqCxf1EpP5p3bp1nblHfn4+p06dqvBv\n1ZkzZ5g3bx7Z2dl8+umnwZdDzSzsWikdOnQosX3FFVfg8/k4fPjwecVZ2ftXZOHChWRmZpKamkq3\nbt0YMGAAGRkZpKWllXtefn4+p0+fpmPHjqWOpaen4/f7OXLkCC1atIioXsFLDn/4wx/SunVrfv/7\n35OQkFDpn6e4U6dOsWfPHg4ePEhKSgoDBgwAvIQ51ikxqcivfw27dsHmzRDBNPJ+v7/E9PPTIljc\nT0Tqn+3bt1dcqI75+c9/zosvvsiUKVO44YYbSEpKwswYMWJERP8XXtW5Oqp6/1DDhw+nZ8+erF69\nmg0bNrB48WIWLFjA6tWr6RvByMvqZGYMGzaMF198kZdffplx48ZV6XpbtmyhefPm7Nu3j9zcXC67\n7DL+I+T9yD59+vDOO+9U6T41QYlJeU6ehEcfhdGjI1oPB+D1119n3759APTs2ZMbIzxPRCRaWrZs\nSWJiIrt37y633KuvvkpmZmaJ2ay/+eabMuf5OHDgQIlHHR9++CF+v5/LL7+8zHuUl7xU9v6RaNWq\nFePHj2f8+PEcP36crl27MnfuXPr27VtmLC1btiQhIYHc3NxSx/bu3YvP5yM1NZUmTZpEVK9FFi1a\nRFxcHBMmTCAxMZGRI0ee98+1adMmbr31Vl566SUWLlzIwIED2bt3L36/PzhiqmUEM5dHg4YLl2f2\nbDh9GubPj6i4c475xcqqt0RE6gIzY/Dgwbzxxhvs3LmzzHJxcXGleiaWLl0a9r0H5xxPP/10qbJm\nRv/+/cu8R5MmTQDCJhuVuX9F/H5/qRldU1JSaNOmTXBIc1mx+Hw+br/9dtauXVti+PCxY8dYsWIF\nPXr0oGnTphHXaxEz47nnnmPYsGFkZGTwu9/9rlSZSIcLb9q0iRtuuAGAq666is8//xyAp59+mnXr\n1jF16lSSk5NZs2ZNhdeqbeoxKUtuLixd6q2H07ZtRKe8++67wTHs1157Lf369avJCEVEqs28efPY\nuHEjPXv2ZNy4caSnp3P06FFWrVrFpk2bSExM5I477uCll14iMTGRzp07s2XLFv7whz+UOUfToUOH\nGDRoEP369WPz5s0sX76c0aNHc80115QZR7du3XDO8eijjzJy5EguuOACBg4cSOPGjSt9//J8+eWX\nXHrppQwbNowuXbrQtGlTNm7cyPbt21myZEmFscyZM4e3336bm266iQkTJhAXF8dzzz3H2bNnS/To\nRFKvxZkZL7/8MoMHD2b48OGsW7eOPn36BI9HMly4sLCQbdu28fjjjwf3Fb3vU1BQwIABA3j++eeZ\nNm0a7du3r3Td1biqDuupLx9Chwv37+9cWppzBQVhh0aF069fv+AQ4eXLl0d8nojEvsoOF66Ljhw5\n4jIzM12rVq1c48aNXYcOHdykSZPct99+65xz7uTJk27s2LHu4osvdomJiW7AgAFu//79Li0tzY0Z\nMyZ4naLhr/v27XPDhw93SUlJrkWLFu7+++9333zzTbBcWcN6586d61JTU12jRo1KHD9x4kRE949k\nuPDZs2fd1KlTXdeuXV1SUpK76KKLXNeuXV1WVlZEsTjn3Pvvv+/69+/vEhMTXdOmTd1tt93mtm7d\nWul6LT5cuEhBQYHr06ePS0xMdNu2bQvuj2S4cF5enuvUqVPw+gUFBW7gwIHuF7/4hduzZ4/z+/2u\nS5cu5V4jVG0OF456QhArnxKJyZtvelXz2mvl/kMVt2vXrmBScvnllwcbhIjUDw0hMaku4b5oJXbs\n2rXLZWRkOL/f7956662IzqnNxETvmIT69ltvdtdbboHBgyM+rfhInIcffphGjfSUTEREYk+LFi2I\nj48nJyeHXr16RTucUvTtGWrlSvjwQ1i1CiIc2nbw4EFeeeUVwHtb+5577qnJCEVERM5bamoqWVlZ\n0Q6jTOoxCfX88/Czn0E5L2eFeuKJJ4Jvik+ePJnGjRvXVHQiIiL1mhKTUD6fNxInQseOHeOFF14A\n4KKLLmLChAk1FZmISJ0wY8YMCgsLad68ebRDkTpIiUmoCRMgsIpkJJ566qngmPfx48eTnJxcU5GJ\niIjUe0pMQg0dGnHRkydPBicQuvDCC5k8eXJNRSUiItIgKDEJVYnRNFlZWcGZAzMyMmjTpk1NRSUi\nItIgKDE5TwUFBTz55JOAN1Pfww8/HOWIRERE6j4lJudp6dKlweWjhw4dGnb5axEREakcJSbnIT8/\nn3nz5gHeYk6zKjGKR0RERMpWZxITM5toZofMrMDM3jOz68sp+xMze9fMvgh8NpZXvrJmzZoVfLfk\nJz/5CVdddVV1XVpERKRBqxOJiZmNAJ4AZgBdgb8D682srCUlewE5QG/gBuAIsMHMLqlqLLm5uTz7\n7LOAtyS2ektERESqT51ITIApQJZz7jfOuX3AeOA0MCZcYefc3c65Z51z/+2c2w/8BO9nvbWqgUyd\nOpXCwsLgf7du3bqqlxQREZGAmE9MzOwCoBvwh6J9zjkHvA3cGOFlmgAXAF9UJZY///nPrF27FoA2\nbdrw4IMPVuVyIiIiEiLmExMgBYgDjoXsPwZE2l2xAPgUL5k5L36/v0QiMnfuXBISEs73ciIiIhJG\nvV9d2MymAXcCvZxzZysqP2XKFJKSkkrsGzVqFH6/nx07dgDQpUsX7r777poIV0RE6rDs7GzGjBnD\n4cOHadeuXbTDqRErVqxgxYoVJfadPHmy2q5fFxKT40Ah0Cpkfyvgs/JONLOHgEeAW51zeyK52ZNP\nPsl1111XYl9BQQFXXnllcHvx4sXExcVFcjkREalntmzZwoYNG5gyZQqJiYkljpkZZhalyGrHqFGj\nGDVqVIl9O3fupFu3btVy/Zh/lOOc+xbYQbEXV837V78V2FzWeWb2CPCfQF/n3K6qxLB06VI+/vhj\nAPr3789tt91WlcuJiEgdtnnzZmbPns2JEydKHcvIyKCgoKDe9pbUhrrQYwKwBMg2sx3ANrxROglA\nNoCZ/Qb4xDn3aGB7KjALGAV8bGZFvS1fOee+rsyNQydTW7hwYdV/GhERqbO88RfhmRkXXnhhLUZT\n/8R8jwmAc+4V4CFgNrALuBavJyQ/UORSSr4IOx5vFM4q4GixT6WH0RSfTG3s2LFcffXV5/lTiIjE\ntqNHjzJ27Fjatm1LfHw87du3Z8KECfz73/8Oltm1axf9+/cnKSmJiy66iNtuu42tW7eWuM7MmTPx\n+XwcPHiQzMxMmjVrRnJyMmPGjOHMmTPBcl999RWTJ08mLS2N+Ph4WrVqxe233877778fLJOZmUla\nWlqpWIvuEW7fgQMHGD16NMnJyVx88cX88pe/BODIkSMMHjyYpKQkLrnkEpYsWRL2/NzcXO68806S\nkpJISUlh8uTJnD3rvaI4a9YsHnnkEQAuv/xyfD4fcXFxwV717OxsfD5fcDvSOqtMvYE3p9aRI0dK\nXaM+qCs9JjjnngGeKePYLSHbpVvxeQidTG327NnVcVkRkZiTl5fH9ddfz6lTp7j33nvp1KkTn376\nKatWreL06dMkJibyj3/8g549e5KUlMS0adNo1KgRWVlZ9O7dm3fffZfrr/cm2C56x+LOO++kffv2\nzJ8/n507d7Js2TJatWrF448/DsC9997La6+9xn333Ud6ejqff/45f/3rX9m7dy/f/e53g9cK985G\nuP1F2yNGjKBz584sWLCAN998k7lz59K8eXOysrK49dZbWbhwIcuXL+fhhx/me9/7HjfffHOpuNPS\n0pg/fz7vvfceS5cu5cSJE2RnZzN06FD279/PypUreeqpp2jRogUALVu2DBvXnj17IqqzytQbQHp6\nOr179+aPf/zjef17xzTnnD5et9x1gNuxY4crMmjQIAc4wM2ePduJSMO1Y8cOF/o3oj7JyMhwjRo1\ncjt37iyzzODBg118fLw7fPhwcF9eXp5LTEx0vXv3Du6bOXOmMzP305/+tMT5Q4cOdS1btgxuJycn\nu/vuu6/cuDIzM11aWlqp/TNnznQ+n6/UPjNzP/vZz4L7CgsLXWpqqouLi3OLFi0K7j9x4oRLSEhw\n99xzT6nzhwwZUuK6EydOdD6fz33wwQfOOecWL17sfD6f++c//1kqruzs7BLHIq2z4vevqN6cc87n\n87lbbrml1P3DOXHihHvooYfc7Nmz3dy5c11WVlZE5xVXUfsvOg5c56r4fVxnekxqW+hkag888ECU\nIxKROuX0adi3r2bvceWVUA3zKTnnWLt2LQMHDqRr165hy/j9fjZu3MiQIUO47LLLgvtbt27NXXfd\nxbJly/jqq69o2rQp4P3f/7333lviGj169GDNmjXBcsnJyWzdupW8vDwuuaTKK4YE7zt27Njgts/n\no3v37qxdu5YxY85NFp6UlESnTp346KOPSp0/ceLEEvvuu+8+nnnmGdatW1epx/mVrbOi+1dUb0Bw\nBvKK/Otf/6JXr14sWrSIvn37kpWVxbRp0xg3blzEP0dtU2ISht/v56GHHgpuz5kzhyZNmkQxIhGp\nc/btg2oaPlmmHTsgZHqD85Gfn8+pU6fKXZA0Pz+f06dP07Fjx1LH0tPT8fv9HDlyhPT09OD+0JEp\nzZo1A7wvy6ZNm7Jw4UIyMzNJTU2lW7duDBgwgIyMjLDvlFRG6H2TkpKIj4+nefPmpfZ/8UXpCcE7\ndOhQYvuKK67A5/Nx+PDhSsVxPnUWLv7QequM+++/n6uvvpq+ffsC0LZtW2bMmFGpa9Q2JSZhrFy5\nku3btwNw7bXXkpGREeWIRKTOufJKL3Go6XvEsLLme3KBUS3Dhw+nZ8+erF69mg0bNrB48WIWLFjA\n6tWrg1+kZc0JUl6PQbj7VhRLeWp7XpKqxFpcXl4eK1asYP369cF9d9xxR4kyffr04Z133ql8kDVI\niUmIM2fOMH369OC2JlMTkfOSkFAtvRm1oWXLliQmJrJ79+5yyyQkJJCbm1vq2N69e/H5fKSmplb6\n3q1atWL8+PGMHz+e48eP07VrV+bOnRtMTJo1axZ2vpDK9l5UxoEDB0o8evnwww/x+/3BnpxIE5Wa\nqrNI/e1vfwPg+9//ftjjubm5wZd2Y0mdGC5cm1auXBkc5tWvXz9+8IMfRDkiEZGaZWYMHjyYN954\ng507d4Yt4/P5uP3221m7dm2JobDHjh1jxYoV9OjRo1KPGfx+f3AqhiIpKSm0adOGb775Jrjviiuu\n4OTJkyWSpry8PNasWRPxvSrDOcfTTz9dYt/SpUsxM/r16wcQfLQfLmEqrrrrrLhIhgv7/f7gY6zi\nPvroI9544w2mTp1KcnJyjdXl+VKPSYgXXngB8BrUokWLohyNiEjtmDdvHhs3bqRnz56MGzeO9PR0\njh49yqpVq9i0aROJiYnMmTOHt99+m5tuuokJEyYQFxfHc889x9mzZys9+eSXX37JpZdeyrBhw+jS\npQtNmzZl48aNbN++vcT8IiNHjmTq1KkMHjyYSZMm8fXXX/Pss8/SqVOnMpOoqjp06BCDBg2iX79+\nbN68meXLlzN69GiuueYaALp164ZzjkcffZSRI0dywQUXMHDgQBo3blzqWtVZZ8VFMly4V69eABw/\nfpyUlBQAdu/eTU5ODvPmzeOFF15g2rRptG/f/rzjqAlKTEJ8/bU3MawmUxORhqRNmzZs3bqVxx57\njJycHE6dOkXbtm0ZMGBAcCX1zp0785e//IXp06czf/58/H4/N9xwAzk5OXTv3r1S90tISGDixIls\n2LCB1atX4/f76dChA7/61a9KjBhp3rw5a9as4YEHHmDq1KnB+UX2799fqcSkrMcv4eZC+e1vf8tj\njz3G9OnTadSoEZMmTSqRRHTv3p05c+bw7LPPsn79evx+P4cOHQo7DX111llonBU9UmrWrBmvvvoq\nkydPJj09ncLCQtq1a8e8efNwznHo0KGYS0oArLIv09RXZnYd3po8NGnShAMHDlTb8DURqfuKFinb\nsWNHqYU+pX6YNWsWs2fPJj8/v9QInvrm/fff58knnyQ7O5v169cHH1OVpaL2X2wRv27OuSp1Zekd\nkzAeeeQRJSUiIlJvtWjRgvj4eHJycoKPfGKFHuWESElJ4cEHK72kjoiISJ2RmppKVlZWtMMISz0m\nISZMmKDJ1ERERKJEiUmI0MlnRESkYZgxYwaFhYX1/v2SWKfEJIQmUxMREYkeJSYiIiISM5SYiIiI\nSMxQYiIiIiIxQ4mJiIiIxAwlJiIiIhIzNMGaiEgl7N27N9ohiNS62mz3SkxERCKQkpJCQkICo0eP\njnYoIlGRkJAQXKW4JikxERGJQLt27di7dy/Hjx+PdigiUZGSkhJ2BeXqpsRERCRC7dq1q5U/zCIN\nWZ15+dXMJprZITMrMLP3zOz6CsoPN7O9gfJ/N7P+tRVrXbdixYpohxAzVBce1cM5qguP6uEc1UX1\nqhOJiZmNAJ4AZgBdgb8D680s7MMuM/s+kAM8D3wXWAusMbPOtRNx3aZfsnNUFx7VwzmqC4/q4RzV\nRfWqE4kJMAXIcs79xjm3DxgPnAbGlFF+EvCWc26Jcy7XOfdLYCfw89oJV0RERM5HzCcmZnYB0A34\nQ9E+55wD3gZuLOO0GwPHi1tfTnkRERGJATGfmAApQBxwLGT/MaB1Gee0rmR5ERERiQEalXNOPGjy\nJICTJ0+yc+fOaIcRE1QXHtXDOaoLj+rhHNVFie/O+Kpey7ynIrEr8CjnNPAj59zrxfZnA0nOuSFh\nzvkn8IRzbmmxfTOBQc65rmXc5y5gefVGLyIi0qD82DmXU5ULxHyPiXPuWzPbAdwKvA5gZhbYXlrG\naVvCHP9BYH9Z1gM/Bg4DZ6oWtYiISIMSD1yO911aJTHfYwJgZncC2XijcbbhjdIZBlzpnMs3s98A\nnzjnHg2UvxH4EzAdeBMYBUwDrnPO/aPWfwARERGJSMz3mAA4514JzFkyG2gFvA/0dc7lB4pcCvy7\nWPktgUczcwOfA3iPcZSUiIiIxLA60WMiIiIiDUNdGC4sIiIiDYQSExEREYkZSkyo/AKB9ZGZzTAz\nf8inQbyTY2Y9zOx1M/s08HMPDFNmtpkdNbPTZrbRzDpEI9aaVFE9mNmvw7SRddGKt6aY2XQz22Zm\np8zsmJmtNrOOIWW+Y2ZPm9lxM/vSzFaZ2cXRirkmRFgPfwppD4Vm9ky0Yq4pZjY+sBjsycBns5n1\nK3a83rcHiKgeqqU9NPjEpLILBNZzu/FeLm4d+Nwc3XBqTRO8F6onAKVeujKzqXjrLI0Dvgd8jddG\nLqzNIGtBufUQ8BYl28io2gmtVvUA/jfwP4DbgAuADWbWuFiZ/wL+J/AjoCfQBni1luOsaZHUgwOe\n41ybuAR4pJbjrA1HgKnAdXhLpPwRWGtm6YHjDaE9QMX1UD3twTnXoD/Ae8BTxbYN+AR4JNqx1XI9\nzAB2RjuOaH8APzAwZN9RYEqx7USgALgz2vHWcj38Gngt2rFFoS5SAvVxc7F//2+AIcXKdAqU+V60\n462tegjsewdYEu3YolQfnwP3NNT2EFoP1dkeGnSPyXkuEFif/UegG/+gmb1sZqnRDijazCwNL/Mv\n3kZOAVtpmG2kd6Bbf5+ZPWNmzaMdUC1Ixvs/wS8C293wploo3iZygY+p320itB6K/NjM8s3sAzOb\nF9KjUu+Ymc/MRgIJeJN2Nsj2EFIPm4sdqnJ7qBPzmNSg8hYI7FT74UTVe0AmkIvX/TYTeNfMrnbO\nfR3FuKKtNd4fYy0K6T3GeRU4BFwBPA6sM7MbAwl9vROYZfq/gL+6c/MgtQbOBhLU4uptmyijHsBb\nxuOfeL2K1wILgY54E2DWK2Z2NV4iEg98iddDss/MutKA2kMZ9ZAbOFwt7aGhJyYS4JwrPo3wbjPb\nhtfA7sTrwpcGzjn3SrHNPWb2AXAQ6I3XhVsfPQN0puG8b1WWonq4qfhO59yyYpt7zOwz4G0zS3PO\nHarNAGvBPqALkIT3RfsbM+sZ3ZCiImw9OOf2VVd7aNCPcoDjQCHeizrFtQI+q/1wYodz7iSwH6h3\no08q6TO8947URkIE/tAcp562ETP7P8AAoLdz7mixQ58BF5pZYsgp9bJNhNRDXgXFt+L9vtS7NuGc\n+7dz7iPn3C7n3H/iDZS4nwbWHsqph3DOqz006MTEOfctULRAIFBigcDNZZ3XEJhZU7zu+or+ENVr\ngS/fzyjZRhLxRio09DZyKdCCethGAl/Gg4A+zrmPQw7vwFsCo3ib6AS0o/yFQuucCuohnK54jz7r\nXZsIwwd8hwbUHspQVA/hnFd70KMcWAJkm7eCcdECgQl4iwY2GGa2CHgD7/FNW2AW3i/bimjGVRvM\nrAleRm+BXe3NrAvwhXPuCN6z9V+Y2Yd4q0//L7yRW2ujEG6NKa8eAp8ZeO+YfBYotwCvV63Kq4nG\nksC8C6OAgcDXZlbUW3bSOXfGOXfKzP4vsMTM/oX3nH0psMk5ty06UVe/iurBzNoDdwHr8EZmdMH7\ne/pn59zuaMRcU8xsHt47Vh8DF+GtRN8LuL2htAcovx6qtT1Ee6hRLHzw5m04jDcEdAvQPdoxRaEO\nVuB92RYEGl0OkBbtuGrpZ++FN7SvMOTzQrEyM/Fe6DqN90XcIdpx12Y94L3o9nu8pOQM8BHwK6Bl\ntOOugXoIVweFQEaxMt/Bm+PjON4X0f8DLo527LVZD3iLp/4JyA/8XuTivRDdNNqx10BdLAu0+YLA\n78AG4JaG1B4qqofqbA9axE9ERERiRoN+x0RERERiixITERERiRlKTERERCRmKDERERGRmKHERERE\nRGKGEhMRERGJGUpMREREJGYoMREREZGYocREREREYoYSExEREYkZSkxEpE4ws1sCCymKSD2mxERE\n6ophwL+iHYSI1CwlJiJSV9wMvBvtIESkZikxEZGYZ2bJwFXAX6Idi4jULCUmIhKzzOxHZvYW53pK\n7jWzdWbWI5pxiUjNMedctGMQESmXmc0FhjnnOkU7FhGpWeoxEZG64Cb0GEekQVBiIiIxzcwaAdej\nxESkQVBiIiKxrhsQj0bkiDQISkxEJNZ9H8hzzh0CMLP2ZhYf5ZhEpIYoMRGRWHcDsKnY9oPOuTPR\nCkZEapYSExGJdXFAUW/J3cBb0Q1HRGqShguLSEwzs67AIuDvwH87516MckgiUoOUmIiIiEjM0KMc\nERERiRlKTERERCRmKDERERGRmKHERERERGKGEhMRERGJGUpMREREJGYoMREREZGYocREREREYoYS\nExEREYkZSkxEREQkZigxERERkZihxERERERihhITERERiRn/H2KC4utH2Ov8AAAAAElFTkSuQmCC\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGMCAYAAADuoWlTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VGXax/HvnRANoQTpAkoRC4u7KgFXAYUFFZUXRGwE\nKxaqBZQiK6tiRUBUVBTLgiwaEbHAwqIiYAFBTARdBFeliggJSA0l5Xn/OJOQhCSkzGRmkt/nuuaa\nOc9p9zmEzJ2nHXPOISIiIhIKIoIdgIiIiEgWJSYiIiISMpSYiIiISMhQYiIiIiIhQ4mJiIiIhAwl\nJiIiIhIylJiIiIhIyFBiIiIiIiFDiYmIiIiEDCUmIkFiZg+bWaaZ1SyDc7U2syVmts/MMszsL4E+\nZyBk3bNgxxGqzOwW38/UycGORaSklJiI5GFmN/t+uWe9DpjZj2b2vJnVLcHxzjezh8ysep5VzvcK\nKDOrBLwLnAAMBm4ENgb6vAFSpHtmZuPN7BMzm1gGMZW5YP9MiQSSEhOR/DlgFHADMAhYAgwAlppZ\ndDGP1RZ4EKjh1wiL7hTgZGCcc+4159xbzrndQYqlrIzA+/22J9iBBEhBP1PTgMrOuU1lH5KIfygx\nESnYfN+X+D+dc7cCzwJNgSuKeRzzf2jFUs/3Xt6TkWzOuQzgdODLYMdSUmYWU9jq/Aqd53CAQhIp\nE0pMRIpuId4XQlMAMzvZzCaZ2VozSzWzFDN7x8waZ+1gZg8BY32LG3xNQxl5+gCcYGZTzewPM9tl\nZv8saq2MmZ1jZv8xs91mttfMFpjZX3OsnwIsxqsBetd3/oWlugtHx3DM++DbLqtPzSlFuV4za29m\nK3xNaT+ZWd9ixNQELyFbWsxrKfR++ra5yncdF+Szfz/fuj/5lhv4ru93MztoZv81sz757Jd1b1qY\n2VtmthP4ooAYC/yZyq+PSY5jn2pm0333fLuZPeJbf5KZfeC75q1mdm8+5yzSdYj4Q6VgByASRpr7\n3nf43tsA5wEJwK9AE2AgsMjM/uScOwjMAk4DegH35Ng32fduwDvAOuB+oBVwO7ANGFlYML4vv8/x\nakLGAOlAP2CxmV3onFsBvOyL7QHgOWCF79j+VJT7AEf6Phzzes3sTOAjYDtek0UU8LBvuSjaAaud\nc0Vuyini/QSYC+wDruXo5OFa4L/OuR98/ZGWAxnARCAFuAx43cyqOedy9n/Jujczgf/h3YuCatoK\n+5nKr49J1vIM4Ae8Zq6uwAO+BKgf8CkwHLgeGGdmXzvnvvTdl+Jch0jpOef00kuvHC/gZrxfwn8D\nagENgevwfvHvA070bXd8PvueC2QC1+cou893vJPzbPuQb9tX8pTPArYXIc73gQNA4xxl9fG+WBfl\nKOvgO0/PIl5/LDAO+Afwd6DvMbYv6n0o8vX6rm0/0DBH2elAGpBRhGuYBLzg+/xX4FFgK3Bmae+n\nr/xN3/EsR1k9vGTm777l1/AStRp59n0L2JnzvuW4N/8q4r9RQT9TN+ctz3HsSTnKIoBNvniH5vm3\n3w/8M0dZka9DL7388VJTjkj+DO+vyGRgM94v4T1AD+fcVgDn3KHsjc0qmTfsdx2wC68moCgcMDlP\n2RdALTOrWmBwZhHAxcD7zrnsETbOud99sbYvbP9CjnuC7/wLnHOP4v01PqbQCyjefTjm9fqu7RLf\ntW3JcZ4f8WpRiqId8KWZZSWX/8L7N833d14J7ucMoC7QMUfZNb5zzPAt9wTmAJFmVivrBXyMlwAU\n5d74iwNez15wLhP4xhfvP3OU7wZ+BJrl2Le41yFSKmrKEcmfw2uO+Anvr8ptvi/GbL5+EX8HbsGr\nVbEc+8YW41x5R1D84Xs/Aa+GJj91gBi8av+81uB9AZ/k+1wcz+E1RWQlAFuA0YXtUIL7cKzrrQNU\nBn7OZ98f8ZoRCounOtASbzRSinNunm9V/UJ2K+79nI+XqF4HLPKVXQusdM79YmZ18EbM9MVrKsnL\n4SU2ea0vJMbSynvfdwMHnXM78ymvCVCK6xApMSUmIgVb4ZxLKmT9C3hV588Ay/B+oTu8v5iLUxuZ\nUUB5mY7mMbMTgXigS1aZc+7fRdi1uPch0Nd7Pl4TwxnA6Wa20Tn3k5+ODYBz7rCZfQBcaWYDgRPx\namnu922Sdd3TgTcKOMx3+ZQd8GeceeR334/1b1HS6xApMSUmIiV3FTDVOTc8q8DMjufouSUCMeFV\nMpCK1+8irxZ4fQo2F/OYbXzvxRrJQtHvQ1El431Bn5rPujOKsH874FPn3I1mNhyYDbQwswhfE0ZB\n5yzu/ZwB3AR0xquhAa9jb9bx9gKRzjm/joLyKatJ1AJ9HSJHUR8TkZLL4Oj/Q3cDkXnK9vve/TbB\nmu8L9mPgijxDQ+vh1Xp84ZwrqBmoIBHAbndkFE3WMZuZN3tsQYp6H4rEd20fAT3MrFGOOFrg9T05\nlnZ4NTcAq/H6mAAMMrPKhZyzuPdzAV4zVC+8Zpyvs/qn+I43C7jKzFrm2Q8zq12E6yiM33+m8lMG\n1yFyFNWYiOSvKM0K/wZuNLM9eMMwz8f76zklz3aJvuM9YWZv440smeOHGEcBFwFLzGwSXoLQFzgO\nb+hncX0G3peNcy7F9/lMoLdz7u+F7FfU+1AcDwGX4nVgnYQ3XPhO4L9Agc/5MbNIvBFBOYdaZ/VV\nqeycK6yppFj30zmXbmbv4SUmMXgjZXK6H69z7HIzexXv3tQE4oBOQGm+1PP7mZpdiuMVJpDXIXIU\nJSYi+StKVfndeB1jewPReLOMXoT31372/s65b8xsFNAfr/9GBL5J2koVoDdXxgXAk3hfHhF4NQW9\nnXPf5N28CMf7w8yuAp41szV4NR6bjpGUQBHvQ3E45743s0uACXidb3/Fm8+kAYUkJnidWLcAWX2D\nPgX6mtmjePOsFHbO4tzPLDOA2/CaembmOd52MzvXF/eVeI802IFXi1OSxDHnsf31M1XQv0/On9+A\nXYdIfsw5Pe9JREREQkNY9DExswvMbLaZbfFNrdy9CPtcb2YrzWy/mf1mZq9bGTxeXkREREouLBIT\noAqwEm9eiaI88rwd3tC2V4E/AVfjtTu/EsAYRUREpJTCoo+Jc24+3oRGmFlROiWeB6x3zr3oW95o\nZpNRe6iIiEhIC5cak+L6CjjJzC6D7CF/V+M9fEtERERCVLlMTJxzS4EbgBlmdhjvYVu78IYbioiI\nSIgKi6ac4vI9vvw5vMekf4w3XfR4vAdk3V7APrXwht1tAA7mt42IiIjkKxpoAnzknNtRmgOF3XBh\nM8vEe8JrgZMJmdk0vEdxX5ejrB3eU0xPdM5ty2ef3niPMhcREZGSud4591ZpDlAua0zwZmFMy1OW\niTeip6DOsxsApk+fTosWLQIXWRgYMmQIzzzzTLDDCAm6Fx7dhyN0Lzy6D0foXsCaNWu44YYbwPdd\nWhphkZiYWRWgOUeSimZmdhaw0zm32cyeBBo45272rZ8DvGJm/fFmn2yA9+TT5c653ws4zUGAFi1a\n0KpVq0BdSliIjY2t8Pcgi+6FR/fhCN0Lj+7DEboXuZS6K0RYJCZAa2ARXo2HA572lb8B3ArUB07K\n2tg594aZVQUG4fUt2YU3NfX9iIiISMgKi8TEOfcZhYwgcs71yafsReDFfDYXERGREFUuhwuLiIhI\neFJiIkeJj48PdgghQ/fCo/twhO6FR/fhCN0L/wq74cKBYmatgMTExER1YhIRESmGpKQk4uLiAOKc\nc0mlOZZqTERERCRkKDERERGRkKHEREREREKGEhMREREJGUpMREREJGQoMREREZGQocREREREQoYS\nExEREQkZSkxEREQkZCgxERERkZChxERERERChhITERERCRlKTERERCRkKDERERGRkKHEREREREKG\nEhMREREJGUpMREREJGQoMREREZGQocREREREcnHOBe3cSkxERESEvXv3cvfdd9O0aVNOOukkmjZt\nyt13383evXvLNI6wSEzM7AIzm21mW8ws08y6F2Gf48zscTPbYGYHzWydmd1SBuGKiIiElb1793L+\n+efz4osvsmHDBrZs2cKGDRt48cUXOf/888s0OQmLxASoAqwEBgJFrV+aCfwN6AOcBsQDPwYkOhER\nkTD2wAMPsGbNGjIzM3OVZ2ZmsmbNGkaNGlVmsVQqszOVgnNuPjAfwMzsWNub2aXABUAz59wuX/Gm\nwEUoIiKB4pzj4MGD7N+/n/3795Oamlro59TUVNLT04Mddsho0qQJt956a6HbzJkz56ikJEtmZiaz\nZ8/mueeeC0R4RwmLxKQEugHfACPM7EZgPzAb+Idz7mBQIxMRKWeccxw6dChXklBYAlHc5dTU1KB2\nxgx3HTp0KDQxcc6RlpZW6DHS0tJwzlGEuoFSK6+JSTO8GpODQA+gNvASUBO4LYhxiYiUuawvnpIk\nDEVJGvbv31/gX9sS+syMqKioQreJiooqk6QEym9iEgFkAr2dc/sAzOxeYKaZDXTOHQpqdCIixeSc\nY9euXSQnJ7N9+/Z831NSUgpMIDIyMoJ9CUUWExNDlSpVst/zfi5sXdbnY33RViQnnHDCMbfp1q0b\nL774Yr4JZkREBN27H3PMid+U18RkK7AlKynxWQMY0Aj4paAdhwwZQmxsbK6y+Ph44uPjAxGniFRQ\nzjn27NlTYJKRtywlJeWY1e1lJTo6usAkobjLeddFR0cTEREu4zLKj8cff5yFCxce1QE2IiKCFi1a\n8Nhjj2WXJSQkkJCQkGv/3bt3+y0WC7d2OzPLBHo452YXss0dwDNAXedcqq/sCuBdoGp+NSZm1gpI\nTExMpFWrVoEJXkTKLecce/fuLVKSkVV2+PDhgMQSHR1dotqGotRExMTEKHEop/bu3cuoUaOYPXs2\naWlpREVF0b17dx577DGqVatW6L5JSUnExcUBxDnnkkoTR1jUmJhZFaA5Xo0HQDMzOwvY6ZzbbGZP\nAg2cczf71r8FjAKmmNnDQB1gLPC6mnFEpDjS0tLYvHkzGzZsYOPGjWzbtq3AhCMQiUZUVBR169al\nTp061KlTJ/tzfu+1a9ematWqREZG+j0OKf+qVavGc889x3PPPVdmHV3zExaJCdAaWIQ3h4kDnvaV\nvwHcCtQHTsra2Dm338wuBp4HVgA7gBnAP8owZhEJA2lpafz6669s2LCBDRs2sH79+uzPWRNN+bNj\nZ6VKlfJNNApKNqpXrx60LwipuIL5MxcWiYlz7jMKmQzOOdcnn7L/AV0CGZeIhL709PRciUfeBOTX\nX38tVeIRGRmZb1KR3+e6desSGxurREOkEGGRmIiIFCQjIyN7+uz8aj02b95c4hEptWvXpkmTJtmv\nxo0b06BBg1xJR40aNdTnQsSPlJiISFjIyMhg/fr1/PDDD6xevTr7tXbtWg4eLNm8ibVq1cqVeOR9\nVa1a1c9XISLHosREREJKZmYmGzZsyJV8ZCUgBw4cKNaxTjjhBJo2bZpv0tG4cWOqV68eoKsQkZJS\nYiIiQZORkcHatWv5+uuvWbFiBStWrGD16tVFTkAiIyM59dRTOeOMM45KQBo3bnzUnEQiEvqUmIhI\nmXDOsWnTJr7++uvsRCQxMZF9+/Ydc9+IiAiaN29Oy5Ytc71OO+00jj/++DKIXkTKihITEQmIlJSU\n7FqQrGQkOTm50H3MjFNOOeWoBOT0008nOjq6jCIXkWBSYiIifrF9+3YWL16c/VqzZs0x9zn55JNp\n06YN5557Lm3atCEuLk79PkQqOCUmIlIiycnJfPbZZyxatIjFixfzww8/FLp9zZo1cyUhbdq0oX79\n+mUUrYiECyUmIlIkKSkpfPbZZyxevJhFixaxevXqAreNjIykdevWtG3bNjsRadasmSYWE5FjUmIi\nIvk6fPgwn3/+OfPmzWPBggV8//33BW6blYh07NiRjh070q5du2M+9EtEJD9KTEQk29atW5k3bx5z\n587lk08+KXDETERERK5EpH379kpERMQvlJiIVGCZmZmsWLGCuXPnMnfuXJKS8n9aeUREBHFxcbkS\nEXVSFZFAUGIiUsHs2rWLjz/+mLlz5/Kf//ynwCG8tWvX5rLLLqNr165ccsklnHDCCWUcqYhUREpM\nRCqAffv2MWvWLKZNm8bnn39Oenp6vtudc845dO3ala5du9KmTRsiIyPLOFIRqeiUmIiUU845vvji\nC6ZOnco777zD/v37j9qmSpUqXHzxxXTt2pXLL7+cBg0aBCFSEZEjlJiIlDObNm3ijTfeYOrUqaxb\nt+6o9c2aNaNbt2507dqVCy+8UFO6i0hIUWIiUg6kpqby/vvvM2XKFBYuXIhzLtf66tWr06tXL265\n5RbOO+88zSciIiFLiYlImHLO8dVXXzFlyhRmzJjB3r17c603Mzp37kyfPn3o0aMHMTExQYpURKTo\nlJiIhJn9+/czZcoUnn/+ef73v/8dtf6UU07hlltu4aabbuLkk08OQoQiIiWnxEQkTCQnJ/Piiy/y\nwgsvsGPHjlzrqlatyrXXXsstt9xC+/bt1VQjImFLiYlIiFu3bh0TJkzgn//8JwcOHMi1rkOHDvTp\n04errrqKqlWrBilCERH/UWIiEqISExMZN24cM2fOJDMzM7s8MjKSXr16MWzYMM4666wgRigi4n9K\nTERCiHOOjz/+mHHjxvHpp5/mWhcTE8Mdd9zBkCFDaNy4cZAiFBEJLCUmIiEgLS2NmTNnMnbsWFat\nWpVrXZ06dbjnnnsYMGAANWvWDFKEIiJlIywSEzO7ABgGxAEnAj2cc7OLuG87YDHwvXOuVcCCFCmB\ntLQ0XnvtNZ566ik2btyYa13z5s0ZOnQoN910E5UrVw5ShCIiZSssEhOgCrASeB14r6g7mVks8Aaw\nAKgXmNBEis85x3vvvcfIkSP56aefcq1r06YNI0aMoEePHnpWjYhUOGGRmDjn5gPzAax44yBfBt4E\nMoErAhCaSLF98cUXDB8+nGXLluUqv/zyyxk+fDgXXnihhvuKSIUVEewAAsXM+gBNgdHBjkUEYM2a\nNVxxxRVceOGFuZKSDh06sHz5cubOnUuHDh2UlIhIhRYWNSbFZWanAk8A7Z1zmfpFL8H022+/8fDD\nD/P666/nGvbbsmVLnnrqKS6//HIlIyIiPuUuMTGzCLzmm4ecc79kFRd1/yFDhhAbG5urLD4+nvj4\neP8FKRXCnj17GDduHBMmTCA1NTW7vEGDBjz66KPcfPPN6kMiImEnISGBhISEXGW7d+/22/Et71NI\nQ52ZZVLIqBxfh9c/gHSOJCQRvs/pwCXOucX57NcKSExMTKRVKw3ekZI7fPgwkydP5tFHHyU5OTm7\nvHr16tx///3cc889eqCeiJQrSUlJxMXFAcQ555JKc6xyV2MC7AHOzFM2CPgbcBWwoawDkooha6TN\niBEj+OWXX7LLo6KiGDhwIKNGjaJ27dpBjFBEJPSFRWJiZlWA5hypAWlmZmcBO51zm83sSaCBc+5m\n51UB/ZBn/+3AQefcmjINXCqMbdu20b9/fz744INc5fHx8Tz22GM0a9YsSJGJiISXsEhMgNbAIsD5\nXk/7yt8AbgXqAycFJzSpyJxzzJgxgzvvvDPXE387derEU089RevWrYMYnYhI+AmLxMQ59xmFDG12\nzvU5xv6j0bBh8bPt27czcOBAZs2alV1Wp04dXnrpJXr27KmRNiIiJVBu5zERCaSZM2fSsmXLXEnJ\ntddey+rVq7nqqquUlIiIlFBY1JiIhIrk5GQGDRrEzJkzs8tq167NpEmTuOaaa4IYmYhI+aDERKSI\nZs2axYABA3INAb7qqquYNGkSdevWDWJkIiLlh5pyRI4hJSWFXr16cfXVV2cnJbVq1eLtt99m5syZ\nSkpERPxINSYihXj//ffp378/27dvzy678soreemll6hXTw+sFhHxN9WYiORj165dXH/99fTs2TM7\nKTnhhBN48803mTVrlpISEZEAUY2JSB6rV6+mR48e/Pzzz9ll3bp1Y/LkyZx44olBjExEpPxTjYlI\nDu+++y5//etfs5OSGjVqMG3aND788EMlJSIiZUA1JiJARkYGo0aNYsyYMdllZ599Nu+//z5NmjQJ\nXmAiIhWMEhOp8Hbu3El8fDwff/xxdtkNN9zA5MmT9RRgEZEypqYcqdBWrVpF69ats5OSyMhInnvu\nOaZNm6akREQkCFRjIhVWQkICt912GwcOHAC859y88847dOzYMbiBiYhUYKoxkQonPT2d++67j969\ne2cnJa1btyYxMVFJiYhIkKnGRCqU5ORkevXqxcKFC7PL+vTpw6RJk4iOjg5iZCIiAkpMpAJJTEyk\nZ8+ebNq0CYBKlSoxceJE+vfvr6cBi4iECCUmUiFMmzaNvn37cujQIQDq16/PzJkzad++fZAjExGR\nnNTHRMo15xzDhg3j5ptvzk5Kzj//fBITE5WUiIiEICUmUm5lZmYycOBAxo8fn13Wr18/Fi1aRIMG\nDYIYmYiIFERNOVIuZWRkcNttt/HGG28AYGZMmjSJ/v37BzkyEREpjBITKXfS0tK48cYbmTFjBuBN\nmvavf/2L+Pj4IEcmIiLHosREypVDhw5x3XXX8eGHHwIQFRXF22+/Tc+ePYMcmYiIFIUSEyk3Dhw4\nQM+ePZk/fz4Axx9/PLNmzaJr165BjkxERIpKiYmUC/v27aN79+4sWrQIgJiYGGbPnk3nzp2DHJmI\niBRHWIzKMbMLzGy2mW0xs0wz636M7a80s4/NbLuZ7TazpWZ2SVnFK2Vr9+7ddOnSJTspqVatGvPn\nz1dSIiIShsIiMQGqACuBgYArwvYXAh8DlwGtgEXAHDM7K2ARSlDs3LmTiy66iKVLlwJQo0YNFixY\nwAUXXBDkyEREpCTCoinHOTcfmA9gRZg73Dk3JE/RA2Z2BdANWOX/CCUYtm/fzsUXX8x3330HQO3a\ntfnkk084++yzgxyZiIiUVFgkJqXlS2aqATuDHYv4x2+//Ubnzp1Zu3Yt4E0xv2DBAlq2bBnkyERE\npDQqRGICDMNrDnon2IFI6W3cuJHOnTvzyy+/AHDSSSfx6aefcuqppwY5MhERKa1yn5iYWW/gH0B3\n51xKsOOR0vn555/p3Llz9hOCmzZtysKFC2nSpElwAxMREb8o14mJmfUCXgGuds4tKso+Q4YMITY2\nNldZfHy8Zg0NAZs3b6Zjx45s2bIFgNNOO41PP/2URo0aBTkyEZGKIyEhgYSEhFxlu3fv9tvxzbmi\nDHIJHWaWCfRwzs0+xnbxwGvAdc65fxfhuK2AxMTERFq1auWfYMVv9u7dS/v27bM7up555pksWLCA\nevXqBTkyERFJSkoiLi4OIM45l1SaY4VFjYmZVQGaA1kjcpr5hv7udM5tNrMngQbOuZt92/cGpgJ3\nAyvMLOvb64Bzbk/ZRi+llZ6eTq9evbKTkmbNmrFw4ULq1KkT5MhERMTfwmUek9bAt0Ai3jwmTwNJ\nwGjf+vrASTm2vwOIBF4EfsvxeraM4hU/uu+++5g3bx7gzVMyd+5cJSUiIuVUWNSYOOc+o5AkyjnX\nJ8/y3wIelJSJF154gYkTJwJQqVIlZs2axRlnnBHkqEREJFDCpcZEKqB58+Zxzz33ZC+/8sordOrU\nKYgRiYhIoCkxkZD03Xffcd1115GZmQnA/fffT58+fY6xl4iIhDslJhJytm7dyv/93/+xb98+AK6+\n+moef/zxIEclIiJlQYmJhJT9+/fTvXt3Nm/eDMC5557LtGnTiIjQj6qISEWg3/YSMjIzM7nxxhv5\n5ptvADj55JP58MMPqVy5cpAjExGRsqLERELGyJEjef/99wGoVq0ac+fOpX79+kGOSkREylJYDBeW\n8u/VV19l7NixAERGRjJz5kzOPPPMIEclIgHnHGRmQkbGkfe8n/ftg717vdeePUd/zq8sLS3YVxY6\nFiyAKlWCHUWRKTGRoFuwYAEDBw7MXn7++efp0qVLECMSCVGHD8OuXUdef/yRe3nPHu8LuaAv+MK+\n/Atb549j5FzOWV6ax6JUq+a9qlfP/blJEzjuOL/d9rAXZn30lJhIUK1Zs4arr76a9PR0AAYPHsyA\nAQOCHJVIHs5Bairs3AkHD3pf/mlpXqKQ8z2/sqKsy+/9wIHcSceuXV5ZfiIioEYN70s5Kspbjoz0\nXvl9Lmx9VBRERxe+XUnXlfQYVaocST6y3qtUCbsvXCkaJSYSNMnJyXTt2jX7qZTdunVj/PjxQY5K\nyiXnID3dSyoOHPDe9+/3Eo0dO/J/5V136FDJz3/ccd4rKsp7ZX3O+57zc3Q0nH66l3DkfJ1wwtFl\n1aqB2bHjEAkDSkwkKA4ePEiPHj1Yv349AGeffTZvvfUWkZGRQY5MQk5mptdksX07JCd771mvrOXd\nu48kHDmTj5zLvsn6ClStGtSqdeR14olw5pm5y2rWhMqVC04m8ks0IiOVNIgUgxITCYqhQ4eydOlS\nABo0aMCcOXOoWrVqkKOSMpOZ6dVCbN0Kv//uvWd9zpl4bN8OKSleX4ScKlWCOnWgbl3vVaOGl0hE\nRx95Va6cezlvWUyMl2hkJRzqkyASEpSYSJmbPXs2L774IgDR0dHMmTOHRo0aBTkq8YvMTNi2DbZs\n8V5ZCUfeBGTbNq9pJacaNaB+fe9Vpw6cccaRxKNu3aMTEdVCiJRLSkykTG3ZsiXXM2+effZZWrVq\nFcSIpMgOHYLffvMSjl9/zf/9t99yJxyRkUeSjRNPhLPPhssuO7Kc8z06OnjXJiIhQ4mJlJmMjAxu\nvPFGdu7cCUDPnj3p27dvkKMSwOscmpICGzfCpk1Hv2/a5PXnyKlqVWjUyHuddhp06uR9btjwyHvt\n2ho5ISLFosREyszYsWNZtGgRAI0aNeLVV1/FVB1fdvbuhe+/h59/zj/xyDkUtXJlaNwYTj4ZWrWC\nK644koRkJR3VqwfvWkSk3FJiImVi2bJl/OMf/wDAzJg+fTo1a9YMclTllHNeorFqFaxc6b2vWgW/\n/HJkmzp1jiQel1/uvWctN27sdQhV0igiQaDERAJu9+7d9O7dmwzfyIpRo0bRoUOHIEdVThw8CKtX\nH0k+Vq4UFp6hAAAgAElEQVSE777zJuMCb7TJWWdBt25e/46zzvKaXWJighu3iEgBlJhIQDnnGDhw\nYPZ8JW3btuXBBx8MclRh6vBhL+lYsQK+/hq++QbWrPGG0prBqad6icfQod772Wd7TS6q+RCRMKLE\nRALqX//6F2+99RYAsbGxvPnmm1SqpB+7Y8rMhB9/PJKErFjh1YYcPuzN4fGXv0C7dnDnnV4S8uc/\nh9VDukRECqJvCAmYn376iUGDBmUvT548mSZNmgQvoFDlnDfcNisB+fprSEz0HsgG3rTkbdrADTd4\n72efraG1IlJuKTGRgDh8+DDx8fHs27cPgFtvvZXrrrsuyFGFiIwM+O9/4csvj7x+/dVb16iRl3zc\nfz+cey7ExXmTiYmIVBBKTCQgRo0aRWJiIgCnnXYaEydODHJEQXTggFcLkpWELF3q1YZERUHr1hAf\nD23bwl//6k02JiJSgSkxEb/75JNPGDduHABRUVEkJCRQpSL1f0hJgSVLjiQiiYneo+yrV/cSkBEj\noH17r2akcuVgRysiElLCIjExswuAYUAccCLQwzk3+xj7dASeBloCm4DHnXNvBDjUCm/79u3cdNNN\n2ctjxowp/1POO+dNXPb++/DBB14nVfBGxFxwgdc3pH1770m1enqyiEihwiIxAaoAK4HXgfeOtbGZ\nNQH+DUwCegMXAa+Z2W/OuU8CF2bF5pyjT58+/P777wBceumlDB48OMhRBUhGBixb5iUj778P69ZB\ntWrQtSvcd5+XkJx8sobqiogUU1gkJs65+cB8ACvaHOYDgHXOueG+5R/NrD0wBFBiEiATJ05k3rx5\nANSrV4+pU6cSUZ6ek3LoECxc6CUis2d7T8itV8+brr1HD+9ZMccfH+woRUTCWsASEzNr5ZxL8n2O\nBcw5tytQ58vjPGBBnrKPgGfK6PwVzsqVKxk+fHj28htvvEG9evWCGJGf7N0L//mPl4zMnestN2vm\nNc9ceSWcd56aZ0RE/MiviYmZxQGnAAuBS4Ek36r9wK1m9qNz7jN/nrMA9YFtecq2AdXN7Hjn3KEy\niKHC2L9/P/Hx8Rw+fBiAe++9ly5dugQ5qlJITfVqRN58Ez7+2JvU7OyzvRlVr7zS6yuiJhoRkYDw\nd43JPryEZCyQaWZ1gUXAZ865V8zsFqAsEpMSGzJkCLGxsbnK4uPjiY+PD1JEoW/48OGsXbsWgFat\nWvHEE08EOaISyMjwmmmmT4f33oN9+7zakDFjvGaapk2DHaGISEhISEggISEhV9nu3bv9dnxzzvnt\nYLkObDYJSAQ6ABfg1Zp875wr1Te8mWVyjFE5ZvYZkOicuzdH2S3AM865EwrYpxWQmJiYWP5HkfjR\n0qVLadeuHQAxMTF8++23nHbaaUGOqoicg2+/9WpGEhJg61bvAXfXX++9Tjkl2BGKiISFpKQk4uLi\nAOKyunGUVCA7v/7bOTcPbyQNZlYH2BHA8+X0FXBZnrJLfOXiJ4cPH6Zv377Zy0888UR4JCUbNsBb\nb3m1I2vWQN260KuX12+kdWs104iIBFHAEhNfUpJzObmkxzKzKkBzIOsbo5mZnQXsdM5tNrMngQbO\nuZt9618GBpnZU8A/gc7A1cDlJY1BjjZ+/HhWr14NQOvWrbnzzjuDHFEhdu6EmTO9ZOTLLyEmxusv\nMmECXHSR92A8EREJulKP5TSz4Wa2ysz65yirbmb3mlmD0h7fpzXwLV7TkMObOC0JGO1bXx84KWtj\n59wGoCve/CUr8YYJ3+acyztSR0ro559/5pFHHgEgMjKSV155hchQHJ2ydi3cfrs31fugQVC1qpec\nbNvmvV96qZISEZEQ4o/fyHWBjUAPvJoKnHN7zGw2cJuZbXDO/as0J/CN5CkwiXLO9cmn7HO8mWLF\nz5xz9O/fn0OHvMFNgwcP5pxzzglyVHksWQJjx3qjaxo0gEcfhZtv9uYdERGRkOWP2a8MuNo5d2nO\nQufcz865R4E2fjiHhJDp06fz6aefAtC4cWNGjx59jD3KSGamNyV827beFPA//wxTpsD69TB8uJIS\nEZEw4I/E5ElghJlFApjZ6Wb2k5ltNbOleH1DpJxISUnh3nuzBzsxadKk4D+g7+BBePVVaNHC6zcS\nFQVz5njPr7nlFjjuuODGJyIiRVbkphwz64Q37HcJsNw5txfAOZdiZs8DI81sPPAYMA/4GTgEvO33\nqCVohg0bRkpKCgDXXHMNl18exP7Ef/wBL70EEyfC9u1eUvLGG978IyIiEpaK08ekPvCQ73Ommf0A\nLPW9vgKeAx4GMpxz9/gzSAkNixYtYurUqQDExsby3HPPBSeQTZvg2WfhlVcgPd2rFbn3Xm8OEhER\nCWvFSUySgRfxmm4uANoDFwJ3+NbvAH4HfjGzM51z//VnoBJcBw8epF+/ftnLY8aM4cQTTyzbIHbs\ngH/8w2u2qVYNBg+Gu+5S3xERkXKkOInJN8AfzrnfgBm+F2ZWAy9JucD3uhzobmY78aaff9s5965f\no5Yy98QTT/DTTz8B0LZt21wTqwVcejq8/DI8+KA3dfyTT0L//t7QXxERKVeKnJg45/7AS07ylu8C\n/u17YWbRQFuOJCtDASUmYWzNmjWMGTMGgEqVKjF58mQiIvzRb7oIFi6Ee+6B1avhttvg8ce9mVpF\nRKRc8vvMUs65g3hPF17o72NL2cvMzKRfv36kpaUB3gP7zjzzzMCfeMMG72m+s2Z5w39XrIA4TUsj\nIlLeldGfvRKu/vnPf/LFF18A0Lx5c0aNGhXYE+7f7zXZtGgBX33lPWDvyy+VlIiIVBCai1sKtG3b\nNoYNG5a9/PLLL1O5cuXAnMw5mDEDhg3zhv4OHQojR6ofiYhIBaMaEynQkCFD2LVrFwA33ngjnTt3\nDsyJVq6EDh0gPt57uu+aNV5fEiUlIiIVjhITydf8+fNJSEgAoFatWjz99NP+P0lKije6Ji7OGwr8\nySfw/vvQrJn/zyUiImFBTTlylNTUVAYOHJi9PH78eOrUqePfk7z7LgwYAGlpMGECDBzoTSUvIiIV\nmmpM5CijR49m/fr1AHTs2JGbb77ZfwffuRN694ZrroELL4T//c8bDqykREREUI2J5LFq1arsZpvj\njjuOl19+GTPzz8H//W+44w7voXtvvun1KfHXsUVEpFwIWI2JmV1oZm3NTLUyYSJrzpKMjAwAHnjg\nAU4//fTSH3j3bm9ytG7doFUrb7K03r2VlIiIyFECmTQsBr4AfjKzfmamZ8+HuJkzZ7J8+XIAzjjj\nDEaMGFH6gy5YAH/+M8ycCa+95tWaNGhQ+uOKiEi5FMjE5HPgSyAWeAnYEMBzSSkdPnyYv//979nL\nzz77LMcff3zJD7hvHwwaBBdfDKeeCt9/79WaqJZEREQKEbA+Js65jlmfzexMvGfnSIiaPHky69at\nA6Bz585ccsklJT/Yl1/CLbfAb7/B8897I27K6tk6IiIS1srk28I591/n3MtlcS4pvj179vDII49k\nLz/11FMl6/B64IA3Y+uFF0K9erBqFdx5p5ISEREpMo3KEcaNG0dKSgoAvXr1Iq4kz6VZsQJuugnW\nrYOxY2HIEIiM9HOkIiJS3gVyVE6rHJ9jzaxGoM4lJbd161YmTJgAQFRUFI8//njxDuAcTJzoPQG4\nShVISvJqTZSUiIhICfg1MTGzODO71sxqA5fmWLUfuNbMOvjzfFJ6Dz/8MKmpqQAMGDCAZsWZDj41\n1aslueceuOsu72nALVsGKFIREakI/F1jsg8vIfkGuN3MnjWzK4CqzrlXgKYlPbCZDTKz9WZ2wMyW\nmVmbY2w/2MzWmlmqmW0yswlmVophJuXP2rVref311wGoVq0ao0aNKvrOGzZAu3Ywa5Y3WdqECZq9\nVURESs2viYlz7kfn3K3OuSbAfOB74CrgWzP7L9ClJMc1s+uAp4GHgHOAVcBHvpqZ/LbvDTzp2/4M\n4FbgOqCY7RTl28iRI7MnUxsxYkTRn4fzySfeg/d27/ZqSXr3DmCUIiJSkfglMTGzv5hZTJ7i/zrn\nXnfO3eScawr8Dbi+hKcYAkx2zk1zzq0F+gOpeAlHfs4HvnTOzXDObXLOLQASgHNLeP5yZ8mSJXzw\nwQcAnHjiiQwePPjYOznndWy99FJo0wa++QbOOivAkYqISEVS6sTEzO4Hvgbm5Vm12szGZC0455Kd\nc5klOH4UEAd8muNYDliAl4DkZykQl9XcY2bNgMuBucU9f3nknGP48OHZy6NHj6ZKlSqF77RvH1x3\nHYwYAfffD3PnQs2aAY5UREQqGn8MFz4BuAVvhtdszrnPzKyemXV1zpUmIagNRALb8pRvA/J9kItz\nLsHXzPOleRNyRAIvO+eeKkUc5caHH37I0qVLAW/q+T59+hS+w08/wZVXwsaNXp+Snj3LIEoREamI\n/NGUE+Wce9s5NznvCufcO8DFfjhHsZhZR+DveE0+5wA9gf8zs2L07iyf0tPTGTlyZPbymDFjqFSp\nkPz03//2mm3S0mD5ciUlIiISUP6oMallZqc4534pYP3hUh4/BcgA6uUprwf8XsA+jwDTnHNTfMur\nzawqMBl4rLCTDRkyhNjYXJU/xMfHEx8fX9y4Q9KUKVNYu3YtAO3ataN79+75b5iZCY89Bg89BN27\nw7RpkOe+iIhIxZOQkEBCQkKust27d/vt+OZ11yjFAbyJ1GYBd+bXZGNmk5xzA0t5jmXAcufcPb5l\nAzYBE51z4/LZ/hvgE+fcyBxl8cCrQDWXz0X7riMxMTGRVq1a5V1dLuzfv59TTz2VrVu3Al4H2LZt\n2x694e7d3vwkc+bA6NHwwAOaVl5ERAqUlJSUNWt4nHMuqTTHKnWNiXMuyddE8p6Z/Q/4AFgJ7MF7\ncF/V0p4DmABMNbNEvI62Q4AYYCqAmU0DfnXOZT0edw4wxMxWAsuBU/FqUWbnl5RUFM8++2x2UnLl\nlVfmn5T8/DN07QrbtnnNOJdfXsZRiohIReaXZ+U45940szXAU3h9O7KeAPcJ0MsPx3/H15n1Ebwm\nnJVAF+dcsm+TRkB6jl0eBTJ97w2BZGA2UGH7mCQnJ/PUU17f38jISJ588smjN/r5Z+jY0Zta/ptv\noHnzsg1SREQqPL89xM9XdXOxL4FoBmx3zm3w4/EnAZMKWNcpz3JWUvKov84f7h577DH27t0LwO23\n387pp+cZ0JSVlFStCosWwYknln2QIiJS4fn96cLOuRS8DqsSItatW8dLL70EQExMDA899FDuDX7+\nGf72NyUlIiISdOrRWAE88MADpKWlAXDfffdxYs7E45dfvKQkJkZJiYiIBJ0Sk3Lum2++4e233wag\ndu3aDB069MjKX37xmm9iYmDxYiUlIiISdEpMyjHnHCNGjMhefvDBB6levbq3kDMpUU2JiIiECCUm\n5dhHH33EwoULATjllFPo16+ftyJv802DBkGMUkRE5AglJuVURkZGrtqSxx9/nOOOOw7WrfOSkuho\nJSUiIhJylJiUUzNnzuS7774DoHXr1lxzzTVeUtKxo5eULF6spEREREKOEpNyKDMzk8ceO/JIoCef\nfJKIDRuOJCWqKRERkRClxKQc+uCDD1i9ejUAbdu2pXPTprmbbxo2DHKEIiIi+VNiUs4453LVljx+\n++1Yp05w3HFKSkREJOQpMSln5s2bx7fffgtA9z//mQ4PP6ykREREwoYSk3LEOcejj3qPB6oJvLlj\nBxYV5SUljRoFNzgREZEi8PuzciR4FixYwPLly4kCPqpShSqHD8PnnyspERGRsKHEpBzJ6lvyKnDO\noUPYRx/BKacENygREZFiUFNOOfH555/z+eef83fgZsCmTIF27YIdloiISLEoMSknHn30Ua4FHgdW\n9exJxA03BDskERGRYlNiUg4sW7aM/QsW8AbwQdWqtPQ9TVhERCTcKDEpB14dOZIPgBXAH+PGUSkq\nKtghiYiIlIg6v4a5VZ99xtDFi9kD3NWwIV/femuwQxIRESkxJSbhLC0NrrmGesB5wJAHHvCeICwi\nIhKmlJiEK+fY2asXLZKTuRjY36ABffr0CXZUIiIipaLEJFyNH0/N997jZuBz4Jlhw4iOjg52VCIi\nIqWixCQcvfcebsQIngCmAXXr1qVv377BjkpERKTUNCon3KxYATfcwPLGjfmHr+i+++4jJiYmqGGJ\niIj4Q9gkJmY2yMzWm9kBM1tmZm2OsX2smb1oZr+Z2UEzW2tml5ZVvAGxaRN068bBM87gok2bcEDN\nmjUZMGBAsCMTERHxi7BITMzsOuBp4CHgHGAV8JGZ1S5g+yhgAXAy0BM4DbgD2FImAQfCnj3QtStU\nrszf//Qn9mdmAjB48GCqVasW5OBERET8I1z6mAwBJjvnpgGYWX+gK3ArMDaf7W8DagDnOecyfGWb\nyiLQgMjMhPh42LyZ3959lxcuvxyA6tWrc9dddwU5OBEREf8J+RoTX+1HHPBpVplzzuHViJxfwG7d\ngK+ASWb2u5l9b2YjzSzkrzdf48bBf/4DM2bwxAcfkJaWBsDdd99NjRo1ghyciIiI/4RDjUltIBLY\nlqd8G3B6Afs0AzoB04HLgObAS3jX+2hgwgyQr76CBx6A++9n61/+wmtXXAFAlSpVGDx4cJCDExER\n8a9wSExKIgIvcenrq1351swaAUM5RmIyZMgQYmNjc5XFx8cTHx8fqFgLtmuX14TTpg2MHs24ESM4\ndOgQAAMHDqRWrVplH5OIiFRoCQkJJCQk5CrbvXu3345v3vd26PI15aQCVznnZuconwrEOueuzGef\nxcBh59wlOcouBeYCxzvn0vPZpxWQmJiYSKtWrfx+HcXmHFx3HXz8MaxcSXKVKjRu3JgDBw5QuXJl\n1q9fT7169YIdpYiICElJScTFxQHEOeeSSnOskO9z4ZxLAxKBzlllZma+5aUF7LYEr/kmp9OBrfkl\nJSHp1Vdh5kx47TVo0oQJEyZw4MABAPr27aukREREyqWQT0x8JgB3mNlNZnYG8DIQA0wFMLNpZvZE\nju1fAmqa2UQzO9XMugIjgRfKOO6S+e9/4Z57oH9/uPpqdu7cyQsveKEfd9xxDBs2LMgBioiIBEZY\n9DFxzr3jm7PkEaAesBLo4pxL9m3SCEjPsf2vZtYFeAZvzpMtvs/5DS0OLampXhNO8+YwYQIAEydO\nZN++fQDceuutNGzYMJgRioiIBExYJCYAzrlJwKQC1nXKp2w50DbQcfnd4MGwfj188w1Urkxqamp2\nbUlkZCQjRowIcoAiIiKBEzaJSYXwzjte35JXX4U//QmAKVOmsGPHDsAbHdSkSZMgBigiIhJY4dLH\npPxbvx7uuMNrxrntNgDS09N5+umnszcZOnRosKITEREpE0pMQkFaGvTqBbVqweTJYAbAe++9x/r1\n6wHo0qULZ511VjCjFBERCTg15YSCUaMgKQmWLAHf5G7OOcaOPdJXVyNxRESkIlBiEmwffwxjx3rP\nwzn33OzixYsXk5iYCECrVq3o1Omo/r0iIiLljppygun33+HGG6FLF7j33lyr8taWmK95R0REpDxT\nYhIsmZleUhIRAdOmee8+3333HfPnzwegSZMmXH311cGKUkREpEypKSdYxo6FTz/1mnLq1s21avz4\n8dmf77vvPipV0j+TiIhUDKoxCYavvvI6vI4cCRddlGvV5s2bs5/aWLNmTfr06ROMCEVERIJCiUlZ\n270b4uPhr3+Fhx8+avWzzz5Lero3u/6dd95JlSpVyjhAERGR4FEbQVkbMQJ27oTPPoOoqFyr/vjj\nD1555RUAoqOjufPOO4MRoYiISNAoMSlLn33mTaD24ovQuPFRq19++eXsh/X16dOHOnXqlHWEIiIi\nQaWmnLJy8KA35Xy7dtC/fz6rDzJx4kQAIiIiuDfP8GEREZGKQDUmZeXRR2HjRvjww1xDg7NMnz6d\n33//HYCePXvSvHnzso5QREQk6FRjUhZWrfKGB48aBS1aHLU6MzMz1xDh4cOHl2V0IiIiIUOJSaCl\np8Ptt8MZZ3gdX/MxZ84cfvzxRwA6dOhAmzZtyjJCERGRkKGmnECbOBESE725S447Lt9Nxo0bl/1Z\ntSUiIlKRqcYkkNat85pv7r7bm7ckH0uWLGHJkiUAtGzZkssuu6wsIxQREQkpSkwCxTno18+bbv6x\nxwrcLGdtiR7WJyIiFZ2acgJl2jRYsADmz4eqVfPdZO3atcyePRuAhg0bEh8fX5YRioiIhBzVmATC\ntm0wZIj39OAuXQrc7Omnn8Y5B8DgwYM5roA+KCIiIhWFEpNAuOceiIyECRMK3OT3339n2rRpAFSv\nXp2+ffuWVXQiIiIhS005/jZnDsyYAW++CbVrF7jZxIkTOXz4MAD9+/enevXqZRWhiIhIyAqbxMTM\nBgFDgfrAKuAu59yKIuzXC3gL+MA51zOgQe7ZAwMGwOWXe08QLsDevXuZNGkSAFFRUdxzzz0BDUtE\n/GPTpk2kpKQEOwyRoKhduzYnn3xywM8TFomJmV0HPA30Bb4GhgAfmdlpzrkCf0uYWRNgHPB5GYQJ\nI0fCrl3w0ktQyOia1157jd27dwNwww030KBBgzIJT0RKbtOmTbRo0YLU1NRghyISFDExMaxZsybg\nyUlYJCZ4ichk59w0ADPrD3QFbgXG5reDmUUA04EHgQuB2IBG+OWXMGmSN6FaIf9oaWlpPPPMM9nL\nQ4cODWhYIuIfKSkppKamMn36dFrk82gJkfJszZo13HDDDaSkpCgxMbMoIA54IqvMOefMbAFwfiG7\nPgRsc85NMbMLAxpk1pODzz8fBg4sdNMZM2awefNmALp168af/vSngIYmIv7VokULWrVqFewwRMqt\nkE9MgNpAJLAtT/k24PT8djCz9kAf4KzAhubzxBPwyy/w7bfeaJwCOOcYO/ZIBc+wYcPKIjoREZGw\nUe6GC5tZVWAacIdz7o+An/D77+HJJ+GBB6Bly0I3/c9//sP3338PwF//+lfat28f8PBERETCSTjU\nmKQAGUC9POX1gN/z2f4UoDEwx47M7x4BYGaHgdOdc+sLOtmQIUOIjc3dHSU+Pj7/WVkzMrwnB592\nGtx//zEvZMyYMdmfR44cqennRUQk7CQkJJCQkJCrLGtAhz+EfGLinEszs0SgMzAbwJdwdAYm5rPL\nGuDPecoeB6oCdwObCzvfM888U/T240mTYMUKWLIEjj++0E2XLl3KF198AXht1N26dSvaOUREREJI\nfn+sJyUlERcX55fjh3xi4jMBmOpLULKGC8cAUwHMbBrwq3Pu7865w8APOXc2s114fWbX+C2i5GR4\n8MEjnV6P4amnnsr+PHz4cCIiyl0rmoiISKmFRWLinHvHzGoDj+A14awEujjnkn2bNALSyzSoBx/0\nniBcyJODs6xevTr7YX2NGjWid+/egY5OREQkLIXNn+3OuUnOuSbOucrOufOdc9/kWNfJOXdrIfv2\n8eusr6tWwSuvwOjRUKfOMTfPORLnvvvu08P6RESAqVOnEhERwaZNm8LiuIHy8MMPExERwc6dO4Md\nSkgIm8QkZDjnPaTvtNOOOWcJwMaNG3nrrbcAqFmzJrfffnugIxQRCQtmdtQggK+++orRo0ezZ88e\nvx63JPwRS1H4K968hg4dysUXX8zdd9/t92MHkhKT4po1Cz77DJ59FqKijrn5hAkTSE/3Wpnuuusu\nqlatGugIRUTCwk033cSBAwdyzSS6dOlSHnnkEXbt2hXEyEIvlpJ46qmnyMzMDLuHxCoxKY4DB2Do\nUOjWDbp0OebmKSkpvPrqq4D3jIE777wz0BGKiIQNMzuqads5F6RojhZKsZREZGQkP/74Y9jNmaXE\npDjGj4fffoOnny7S5i+88AIHDhwA4I477qB27dqBjE5EpFR+++03brvtNho2bEh0dDTNmjVj4MCB\n2bW+mzZtYuDAgZxxxhnExMRQu3Ztrr32WjZu3JjrOFl9Jn788UeuvfZaYmNjqV27NoMHD+bQoUPZ\n2+XtCzJ69GiGDx8OQJMmTYiIiCAyMjJ7fVHPX1T79u1j8ODBNG3alOjoaOrVq8cll1zCt99+e8xY\nAL799lsuu+wyYmNjqVatGhdddBHLly8v9n3Nz8aNG2nevDl/+ctfSE5Ozi7/8ccfsx9rciwbNmxg\n27ZttG3btqi3JCSExaickLB5szfD65AhcOqpx9x83759PP/88wBUqlSJe++9N9ARioiU2NatW2nT\npg179uyhX79+nH766WzZsoV3332X1NRUqlevzooVK1i2bBnx8fE0atSIDRs2MGnSJP72t7/xww8/\nEB0dDZDdX+Laa6+ladOmjBkzhmXLljFx4kR27drF1KlTs7fL2bfiqquu4n//+x9vv/02zz33HLVq\n1QKgjm+QQVHPX1T9+vXjvffe46677qJFixbs2LGDL7/8krVr1x4zlh9++IELL7yQ2NhY7r//fipV\nqsTkyZPp2LEjn3/+OW3atCnyfc3rl19+oVOnTtSpU4dPPvmEE044IXtdixYt6NixIwsXLjzm9S1Z\nsoSWLVuGXVMOzjm9vOq6VoBLTEx0+YqPd65ePed2785/fR7PPPOMAxzgbrrppiLtIyKhKzEx0RX6\nOyKPuLg417Bhw4C+4uLi/HZ9N910k6tUqZJLSkoqcJuDBw8eVbZ8+XJnZm769OnZZQ8//LAzM3fl\nlVfm2nbQoEEuIiLCff/9984556ZOneoiIiLcxo0bs7cZP378UWXFPX9+x81PjRo13F133VXg+sJi\n6dGjh4uOjnYbNmzILtu6daurXr2669ixY3ZZUe7rww8/7CIiItyOHTvcmjVrXMOGDd15553ndu3a\nddS2ERERrlOnToVeV5YBAwa4QYMGOeecW7ZsmRs1apSrX79+9v0vjmP9/GetB1q5Un4fq8akKL78\nEhISYMoUKELmefjwYZ7O0dyTVR0oIhXH77//zpYtW4IdRpE45/jwww/p3r0755xzToHbHZ9jhuv0\n9PPdQykAABxjSURBVHT27NlDs2bNqFGjBklJSVx//fXZ682MQYMG5dr/rrvuYtKkScybN48zzzyz\n2HH+f3v3Hh5Vdf97/P2doA0BkwBBEAwa5AcGLxTBHq1yUyuXY7kVBCzmidAihYrgDfBXy+UAchN/\nco7WKMfGKoF6UEArFrC1tQWEcrE/oRAQoaJEnqAFVILYzDp/7MmQTCbJhFxmknxezzPP49577b2/\nWaxkvq6911qVuX8kkpOT2bp1K3l5eVxyySURn+f3+9m4cSNDhgzhsssuC+5v3bo1d911F8uWLeOr\nr76iSZMmEdVrkQ8++IARI0bQsWNH1q1bF3awRGFhYcRxbtq0ienTp/POO+9QUFDA3XffzfPPP4/f\n74/4GtGgxKQihYUwaRJ07w4ZGRGdkpOTwyeffALAwIEDuaqCxf1EpP5p3bp1nblHfn4+p06dqvBv\n1ZkzZ5g3bx7Z2dl8+umnwZdDzSzsWikdOnQosX3FFVfg8/k4fPjwecVZ2ftXZOHChWRmZpKamkq3\nbt0YMGAAGRkZpKWllXtefn4+p0+fpmPHjqWOpaen4/f7OXLkCC1atIioXsFLDn/4wx/SunVrfv/7\n35OQkFDpn6e4U6dOsWfPHg4ePEhKSgoDBgwAvIQ51ikxqcivfw27dsHmzRDBNPJ+v7/E9PPTIljc\nT0Tqn+3bt1dcqI75+c9/zosvvsiUKVO44YYbSEpKwswYMWJERP8XXtW5Oqp6/1DDhw+nZ8+erF69\nmg0bNrB48WIWLFjA6tWr6RvByMvqZGYMGzaMF198kZdffplx48ZV6XpbtmyhefPm7Nu3j9zcXC67\n7DL+I+T9yD59+vDOO+9U6T41QYlJeU6ehEcfhdGjI1oPB+D1119n3759APTs2ZMbIzxPRCRaWrZs\nSWJiIrt37y633KuvvkpmZmaJ2ay/+eabMuf5OHDgQIlHHR9++CF+v5/LL7+8zHuUl7xU9v6RaNWq\nFePHj2f8+PEcP36crl27MnfuXPr27VtmLC1btiQhIYHc3NxSx/bu3YvP5yM1NZUmTZpEVK9FFi1a\nRFxcHBMmTCAxMZGRI0ee98+1adMmbr31Vl566SUWLlzIwIED2bt3L36/PzhiqmUEM5dHg4YLl2f2\nbDh9GubPj6i4c475xcqqt0RE6gIzY/Dgwbzxxhvs3LmzzHJxcXGleiaWLl0a9r0H5xxPP/10qbJm\nRv/+/cu8R5MmTQDCJhuVuX9F/H5/qRldU1JSaNOmTXBIc1mx+Hw+br/9dtauXVti+PCxY8dYsWIF\nPXr0oGnTphHXaxEz47nnnmPYsGFkZGTwu9/9rlSZSIcLb9q0iRtuuAGAq666is8//xyAp59+mnXr\n1jF16lSSk5NZs2ZNhdeqbeoxKUtuLixd6q2H07ZtRKe8++67wTHs1157Lf369avJCEVEqs28efPY\nuHEjPXv2ZNy4caSnp3P06FFWrVrFpk2bSExM5I477uCll14iMTGRzp07s2XLFv7whz+UOUfToUOH\nGDRoEP369WPz5s0sX76c0aNHc80115QZR7du3XDO8eijjzJy5EguuOACBg4cSOPGjSt9//J8+eWX\nXHrppQwbNowuXbrQtGlTNm7cyPbt21myZEmFscyZM4e3336bm266iQkTJhAXF8dzzz3H2bNnS/To\nRFKvxZkZL7/8MoMHD2b48OGsW7eOPn36BI9HMly4sLCQbdu28fjjjwf3Fb3vU1BQwIABA3j++eeZ\nNm0a7du3r3Td1biqDuupLx9Chwv37+9cWppzBQVhh0aF069fv+AQ4eXLl0d8nojEvsoOF66Ljhw5\n4jIzM12rVq1c48aNXYcOHdykSZPct99+65xz7uTJk27s2LHu4osvdomJiW7AgAFu//79Li0tzY0Z\nMyZ4naLhr/v27XPDhw93SUlJrkWLFu7+++9333zzTbBcWcN6586d61JTU12jRo1KHD9x4kRE949k\nuPDZs2fd1KlTXdeuXV1SUpK76KKLXNeuXV1WVlZEsTjn3Pvvv+/69+/vEhMTXdOmTd1tt93mtm7d\nWul6LT5cuEhBQYHr06ePS0xMdNu2bQvuj2S4cF5enuvUqVPw+gUFBW7gwIHuF7/4hduzZ4/z+/2u\nS5cu5V4jVG0OF456QhArnxKJyZtvelXz2mvl/kMVt2vXrmBScvnllwcbhIjUDw0hMaku4b5oJXbs\n2rXLZWRkOL/f7956662IzqnNxETvmIT69ltvdtdbboHBgyM+rfhInIcffphGjfSUTEREYk+LFi2I\nj48nJyeHXr16RTucUvTtGWrlSvjwQ1i1CiIc2nbw4EFeeeUVwHtb+5577qnJCEVERM5bamoqWVlZ\n0Q6jTOoxCfX88/Czn0E5L2eFeuKJJ4Jvik+ePJnGjRvXVHQiIiL1mhKTUD6fNxInQseOHeOFF14A\n4KKLLmLChAk1FZmISJ0wY8YMCgsLad68ebRDkTpIiUmoCRMgsIpkJJ566qngmPfx48eTnJxcU5GJ\niIjUe0pMQg0dGnHRkydPBicQuvDCC5k8eXJNRSUiItIgKDEJVYnRNFlZWcGZAzMyMmjTpk1NRSUi\nItIgKDE5TwUFBTz55JOAN1Pfww8/HOWIRERE6j4lJudp6dKlweWjhw4dGnb5axEREakcJSbnIT8/\nn3nz5gHeYk6zKjGKR0RERMpWZxITM5toZofMrMDM3jOz68sp+xMze9fMvgh8NpZXvrJmzZoVfLfk\nJz/5CVdddVV1XVpERKRBqxOJiZmNAJ4AZgBdgb8D682srCUlewE5QG/gBuAIsMHMLqlqLLm5uTz7\n7LOAtyS2ektERESqT51ITIApQJZz7jfOuX3AeOA0MCZcYefc3c65Z51z/+2c2w/8BO9nvbWqgUyd\nOpXCwsLgf7du3bqqlxQREZGAmE9MzOwCoBvwh6J9zjkHvA3cGOFlmgAXAF9UJZY///nPrF27FoA2\nbdrw4IMPVuVyIiIiEiLmExMgBYgDjoXsPwZE2l2xAPgUL5k5L36/v0QiMnfuXBISEs73ciIiIhJG\nvV9d2MymAXcCvZxzZysqP2XKFJKSkkrsGzVqFH6/nx07dgDQpUsX7r777poIV0RE6rDs7GzGjBnD\n4cOHadeuXbTDqRErVqxgxYoVJfadPHmy2q5fFxKT40Ah0Cpkfyvgs/JONLOHgEeAW51zeyK52ZNP\nPsl1111XYl9BQQFXXnllcHvx4sXExcVFcjkREalntmzZwoYNG5gyZQqJiYkljpkZZhalyGrHqFGj\nGDVqVIl9O3fupFu3btVy/Zh/lOOc+xbYQbEXV837V78V2FzWeWb2CPCfQF/n3K6qxLB06VI+/vhj\nAPr3789tt91WlcuJiEgdtnnzZmbPns2JEydKHcvIyKCgoKDe9pbUhrrQYwKwBMg2sx3ANrxROglA\nNoCZ/Qb4xDn3aGB7KjALGAV8bGZFvS1fOee+rsyNQydTW7hwYdV/GhERqbO88RfhmRkXXnhhLUZT\n/8R8jwmAc+4V4CFgNrALuBavJyQ/UORSSr4IOx5vFM4q4GixT6WH0RSfTG3s2LFcffXV5/lTiIjE\ntqNHjzJ27Fjatm1LfHw87du3Z8KECfz73/8Oltm1axf9+/cnKSmJiy66iNtuu42tW7eWuM7MmTPx\n+XwcPHiQzMxMmjVrRnJyMmPGjOHMmTPBcl999RWTJ08mLS2N+Ph4WrVqxe233877778fLJOZmUla\nWlqpWIvuEW7fgQMHGD16NMnJyVx88cX88pe/BODIkSMMHjyYpKQkLrnkEpYsWRL2/NzcXO68806S\nkpJISUlh8uTJnD3rvaI4a9YsHnnkEQAuv/xyfD4fcXFxwV717OxsfD5fcDvSOqtMvYE3p9aRI0dK\nXaM+qCs9JjjnngGeKePYLSHbpVvxeQidTG327NnVcVkRkZiTl5fH9ddfz6lTp7j33nvp1KkTn376\nKatWreL06dMkJibyj3/8g549e5KUlMS0adNo1KgRWVlZ9O7dm3fffZfrr/cm2C56x+LOO++kffv2\nzJ8/n507d7Js2TJatWrF448/DsC9997La6+9xn333Ud6ejqff/45f/3rX9m7dy/f/e53g9cK985G\nuP1F2yNGjKBz584sWLCAN998k7lz59K8eXOysrK49dZbWbhwIcuXL+fhhx/me9/7HjfffHOpuNPS\n0pg/fz7vvfceS5cu5cSJE2RnZzN06FD279/PypUreeqpp2jRogUALVu2DBvXnj17IqqzytQbQHp6\nOr179+aPf/zjef17xzTnnD5et9x1gNuxY4crMmjQIAc4wM2ePduJSMO1Y8cOF/o3oj7JyMhwjRo1\ncjt37iyzzODBg118fLw7fPhwcF9eXp5LTEx0vXv3Du6bOXOmMzP305/+tMT5Q4cOdS1btgxuJycn\nu/vuu6/cuDIzM11aWlqp/TNnznQ+n6/UPjNzP/vZz4L7CgsLXWpqqouLi3OLFi0K7j9x4oRLSEhw\n99xzT6nzhwwZUuK6EydOdD6fz33wwQfOOecWL17sfD6f++c//1kqruzs7BLHIq2z4vevqN6cc87n\n87lbbrml1P3DOXHihHvooYfc7Nmz3dy5c11WVlZE5xVXUfsvOg5c56r4fVxnekxqW+hkag888ECU\nIxKROuX0adi3r2bvceWVUA3zKTnnWLt2LQMHDqRr165hy/j9fjZu3MiQIUO47LLLgvtbt27NXXfd\nxbJly/jqq69o2rQp4P3f/7333lviGj169GDNmjXBcsnJyWzdupW8vDwuuaTKK4YE7zt27Njgts/n\no3v37qxdu5YxY85NFp6UlESnTp346KOPSp0/ceLEEvvuu+8+nnnmGdatW1epx/mVrbOi+1dUb0Bw\nBvKK/Otf/6JXr14sWrSIvn37kpWVxbRp0xg3blzEP0dtU2ISht/v56GHHgpuz5kzhyZNmkQxIhGp\nc/btg2oaPlmmHTsgZHqD85Gfn8+pU6fKXZA0Pz+f06dP07Fjx1LH0tPT8fv9HDlyhPT09OD+0JEp\nzZo1A7wvy6ZNm7Jw4UIyMzNJTU2lW7duDBgwgIyMjLDvlFRG6H2TkpKIj4+nefPmpfZ/8UXpCcE7\ndOhQYvuKK67A5/Nx+PDhSsVxPnUWLv7QequM+++/n6uvvpq+ffsC0LZtW2bMmFGpa9Q2JSZhrFy5\nku3btwNw7bXXkpGREeWIRKTOufJKL3Go6XvEsLLme3KBUS3Dhw+nZ8+erF69mg0bNrB48WIWLFjA\n6tWrg1+kZc0JUl6PQbj7VhRLeWp7XpKqxFpcXl4eK1asYP369cF9d9xxR4kyffr04Z133ql8kDVI\niUmIM2fOMH369OC2JlMTkfOSkFAtvRm1oWXLliQmJrJ79+5yyyQkJJCbm1vq2N69e/H5fKSmplb6\n3q1atWL8+PGMHz+e48eP07VrV+bOnRtMTJo1axZ2vpDK9l5UxoEDB0o8evnwww/x+/3BnpxIE5Wa\nqrNI/e1vfwPg+9//ftjjubm5wZd2Y0mdGC5cm1auXBkc5tWvXz9+8IMfRDkiEZGaZWYMHjyYN954\ng507d4Yt4/P5uP3221m7dm2JobDHjh1jxYoV9OjRo1KPGfx+f3AqhiIpKSm0adOGb775Jrjviiuu\n4OTJkyWSpry8PNasWRPxvSrDOcfTTz9dYt/SpUsxM/r16wcQfLQfLmEqrrrrrLhIhgv7/f7gY6zi\nPvroI9544w2mTp1KcnJyjdXl+VKPSYgXXngB8BrUokWLohyNiEjtmDdvHhs3bqRnz56MGzeO9PR0\njh49yqpVq9i0aROJiYnMmTOHt99+m5tuuokJEyYQFxfHc889x9mzZys9+eSXX37JpZdeyrBhw+jS\npQtNmzZl48aNbN++vcT8IiNHjmTq1KkMHjyYSZMm8fXXX/Pss8/SqVOnMpOoqjp06BCDBg2iX79+\nbN68meXLlzN69GiuueYaALp164ZzjkcffZSRI0dywQUXMHDgQBo3blzqWtVZZ8VFMly4V69eABw/\nfpyUlBQAdu/eTU5ODvPmzeOFF15g2rRptG/f/rzjqAlKTEJ8/bU3MawmUxORhqRNmzZs3bqVxx57\njJycHE6dOkXbtm0ZMGBAcCX1zp0785e//IXp06czf/58/H4/N9xwAzk5OXTv3r1S90tISGDixIls\n2LCB1atX4/f76dChA7/61a9KjBhp3rw5a9as4YEHHmDq1KnB+UX2799fqcSkrMcv4eZC+e1vf8tj\njz3G9OnTadSoEZMmTSqRRHTv3p05c+bw7LPPsn79evx+P4cOHQo7DX111llonBU9UmrWrBmvvvoq\nkydPJj09ncLCQtq1a8e8efNwznHo0KGYS0oArLIv09RXZnYd3po8NGnShAMHDlTb8DURqfuKFinb\nsWNHqYU+pX6YNWsWs2fPJj8/v9QInvrm/fff58knnyQ7O5v169cHH1OVpaL2X2wRv27OuSp1Zekd\nkzAeeeQRJSUiIlJvtWjRgvj4eHJycoKPfGKFHuWESElJ4cEHK72kjoiISJ2RmppKVlZWtMMISz0m\nISZMmKDJ1ERERKJEiUmI0MlnRESkYZgxYwaFhYX1/v2SWKfEJIQmUxMREYkeJSYiIiISM5SYiIiI\nSMxQYiIiIiIxQ4mJiIiIxAwlJiIiIhIzNMGaiEgl7N27N9ohiNS62mz3SkxERCKQkpJCQkICo0eP\njnYoIlGRkJAQXKW4JikxERGJQLt27di7dy/Hjx+PdigiUZGSkhJ2BeXqpsRERCRC7dq1q5U/zCIN\nWZ15+dXMJprZITMrMLP3zOz6CsoPN7O9gfJ/N7P+tRVrXbdixYpohxAzVBce1cM5qguP6uEc1UX1\nqhOJiZmNAJ4AZgBdgb8D680s7MMuM/s+kAM8D3wXWAusMbPOtRNx3aZfsnNUFx7VwzmqC4/q4RzV\nRfWqE4kJMAXIcs79xjm3DxgPnAbGlFF+EvCWc26Jcy7XOfdLYCfw89oJV0RERM5HzCcmZnYB0A34\nQ9E+55wD3gZuLOO0GwPHi1tfTnkRERGJATGfmAApQBxwLGT/MaB1Gee0rmR5ERERiQEalXNOPGjy\nJICTJ0+yc+fOaIcRE1QXHtXDOaoLj+rhHNVFie/O+Kpey7ynIrEr8CjnNPAj59zrxfZnA0nOuSFh\nzvkn8IRzbmmxfTOBQc65rmXc5y5gefVGLyIi0qD82DmXU5ULxHyPiXPuWzPbAdwKvA5gZhbYXlrG\naVvCHP9BYH9Z1gM/Bg4DZ6oWtYiISIMSD1yO911aJTHfYwJgZncC2XijcbbhjdIZBlzpnMs3s98A\nnzjnHg2UvxH4EzAdeBMYBUwDrnPO/aPWfwARERGJSMz3mAA4514JzFkyG2gFvA/0dc7lB4pcCvy7\nWPktgUczcwOfA3iPcZSUiIiIxLA60WMiIiIiDUNdGC4sIiIiDYQSExEREYkZSkyo/AKB9ZGZzTAz\nf8inQbyTY2Y9zOx1M/s08HMPDFNmtpkdNbPTZrbRzDpEI9aaVFE9mNmvw7SRddGKt6aY2XQz22Zm\np8zsmJmtNrOOIWW+Y2ZPm9lxM/vSzFaZ2cXRirkmRFgPfwppD4Vm9ky0Yq4pZjY+sBjsycBns5n1\nK3a83rcHiKgeqqU9NPjEpLILBNZzu/FeLm4d+Nwc3XBqTRO8F6onAKVeujKzqXjrLI0Dvgd8jddG\nLqzNIGtBufUQ8BYl28io2gmtVvUA/jfwP4DbgAuADWbWuFiZ/wL+J/AjoCfQBni1luOsaZHUgwOe\n41ybuAR4pJbjrA1HgKnAdXhLpPwRWGtm6YHjDaE9QMX1UD3twTnXoD/Ae8BTxbYN+AR4JNqx1XI9\nzAB2RjuOaH8APzAwZN9RYEqx7USgALgz2vHWcj38Gngt2rFFoS5SAvVxc7F//2+AIcXKdAqU+V60\n462tegjsewdYEu3YolQfnwP3NNT2EFoP1dkeGnSPyXkuEFif/UegG/+gmb1sZqnRDijazCwNL/Mv\n3kZOAVtpmG2kd6Bbf5+ZPWNmzaMdUC1Ixvs/wS8C293wploo3iZygY+p320itB6K/NjM8s3sAzOb\nF9KjUu+Ymc/MRgIJeJN2Nsj2EFIPm4sdqnJ7qBPzmNSg8hYI7FT74UTVe0AmkIvX/TYTeNfMrnbO\nfR3FuKKtNd4fYy0K6T3GeRU4BFwBPA6sM7MbAwl9vROYZfq/gL+6c/MgtQbOBhLU4uptmyijHsBb\nxuOfeL2K1wILgY54E2DWK2Z2NV4iEg98iddDss/MutKA2kMZ9ZAbOFwt7aGhJyYS4JwrPo3wbjPb\nhtfA7sTrwpcGzjn3SrHNPWb2AXAQ6I3XhVsfPQN0puG8b1WWonq4qfhO59yyYpt7zOwz4G0zS3PO\nHarNAGvBPqALkIT3RfsbM+sZ3ZCiImw9OOf2VVd7aNCPcoDjQCHeizrFtQI+q/1wYodz7iSwH6h3\no08q6TO8947URkIE/tAcp562ETP7P8AAoLdz7mixQ58BF5pZYsgp9bJNhNRDXgXFt+L9vtS7NuGc\n+7dz7iPn3C7n3H/iDZS4nwbWHsqph3DOqz006MTEOfctULRAIFBigcDNZZ3XEJhZU7zu+or+ENVr\ngS/fzyjZRhLxRio09DZyKdCCethGAl/Gg4A+zrmPQw7vwFsCo3ib6AS0o/yFQuucCuohnK54jz7r\nXZsIwwd8hwbUHspQVA/hnFd70KMcWAJkm7eCcdECgQl4iwY2GGa2CHgD7/FNW2AW3i/bimjGVRvM\nrAleRm+BXe3NrAvwhXPuCN6z9V+Y2Yd4q0//L7yRW2ujEG6NKa8eAp8ZeO+YfBYotwCvV63Kq4nG\nksC8C6OAgcDXZlbUW3bSOXfGOXfKzP4vsMTM/oX3nH0psMk5ty06UVe/iurBzNoDdwHr8EZmdMH7\ne/pn59zuaMRcU8xsHt47Vh8DF+GtRN8LuL2htAcovx6qtT1Ee6hRLHzw5m04jDcEdAvQPdoxRaEO\nVuB92RYEGl0OkBbtuGrpZ++FN7SvMOTzQrEyM/Fe6DqN90XcIdpx12Y94L3o9nu8pOQM8BHwK6Bl\ntOOugXoIVweFQEaxMt/Bm+PjON4X0f8DLo527LVZD3iLp/4JyA/8XuTivRDdNNqx10BdLAu0+YLA\n78AG4JaG1B4qqofqbA9axE9ERERiRoN+x0RERERiixITERERiRlKTERERCRmKDERERGRmKHERERE\nRGKGEhMRERGJGUpMREREJGYoMREREZGYocREREREYoYSExEREYkZSkxEpE4ws1sCCymKSD2mxERE\n6ophwL+iHYSI1CwlJiJSV9wMvBvtIESkZikxEZGYZ2bJwFXAX6Idi4jULCUmIhKzzOxHZvYW53pK\n7jWzdWbWI5pxiUjNMedctGMQESmXmc0FhjnnOkU7FhGpWeoxEZG64Cb0GEekQVBiIiIxzcwaAdej\nxESkQVBiIiKxrhsQj0bkiDQISkxEJNZ9H8hzzh0CMLP2ZhYf5ZhEpIYoMRGRWHcDsKnY9oPOuTPR\nCkZEapYSExGJdXFAUW/J3cBb0Q1HRGqShguLSEwzs67AIuDvwH87516MckgiUoOUmIiIiEjM0KMc\nERERiRlKTERERCRmKDERERGRmKHERERERGKGEhMRERGJGUpMREREJGYoMREREZGYocREREREYoYS\nExEREYkZSkxEREQkZigxERERkZihxERERERihhITERERiRn/H2KC4utH2Ov8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" ] + }, + "metadata": {}, + "output_type": "display_data" } - ], - "metadata": { - "kernelspec": { - "name": "python3", - "display_name": "Python 3", - "language": "python" - }, - "language_info": { - "mimetype": "text/x-python", - "nbconvert_exporter": "python", - "name": "python", - "file_extension": ".py", - "version": "3.5.4", - "pygments_lexer": "ipython3", - "codemirror_mode": { - "version": 3, - "name": "ipython" - } - } + ], + "source": [ + "C = S[1]\n", + "K = S[2]\n", + "\n", + "k0 = k_grid[30]\n", + "X = [k0]\n", + "Y = [C[k0]]\n", + "T = [0]\n", + "\n", + "s = 0\n", + "t = 1\n", + "while s<5:\n", + " T.append(t)\n", + " k = K[k0]\n", + " X.append(k)\n", + " c = C[k]\n", + " Y.append(c)\n", + " if k0 == k:\n", + " s += 1\n", + " k0 = k\n", + " t += 1\n", + " \n", + "plt.plot(T, X, color=\"black\", linewidth=2, label=\"capital stock: $k_{t}$\")\n", + "plt.plot(T, Y, color=\"red\", linewidth=1, label=\"consumption: $c_{t}$\")\n", + "plt.plot([t], [k_ss], marker='o', color='black')\n", + "plt.xlabel(\"$t$\", fontsize=14)\n", + "plt.ylabel(\"$c_{t}$, $k_{t}$\", fontsize=14)\n", + "plt.title(\"Path of $c$ and $k$ over time\")\n", + "plt.legend(loc='lower right')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-IV.ipynb" "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-IV.ipynb" index 3f03ee6..b264fe8 100644 --- "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-IV.ipynb" +++ "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-IV.ipynb" @@ -1,315 +1,633 @@ { - "cells": [ - { - "metadata": { - "collapsed": true - }, - "cell_type": "markdown", - "source": "# Dynamic Optimization with Uncertainty" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "import math\nimport numpy as np\nfrom scipy import stats, optimize\nimport time\nimport matplotlib.pyplot as plt", - "execution_count": 2, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# parameters\nalpha = .4\nbeta = .8\ndelta = .05\ntheta_H = 1.2\ntheta_L = .8\npi_H = .75\npi_L = .65", - "execution_count": 3, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# utility function\nu = lambda c: math.log(c)", - "execution_count": 4, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# production function\nf = lambda k, A: A*k**alpha", - "execution_count": 5, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# function to calculate distance between two dictionaries with the same indices\ndef dist(V, W):\n d = 0\n for (_, v), (_, w) in zip(V.items(), W.items()):\n d = d + (v-w)**2\n return math.sqrt(d)", - "execution_count": 17, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "nomes = ['Ana', 'Vitória', 'Elisa', 'Rayne']\nnumeros = [3, 6, 9]", - "execution_count": 9, - "outputs": [] - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "for nome, num in zip(nomes, numeros):\n print(nome)\n print(num)", - "execution_count": 10, - "outputs": [ - { - "output_type": "stream", - "text": "Ana\n3\nVitória\n6\nElisa\n9\n", - "name": "stdout" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Step 1: calculate steady-state" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def steadystate(alpha, beta, delta, theta, f):\n k_ss = (theta*alpha*beta/(1-beta*(1-delta)))**(1/(1-alpha))\n c_ss = f(k_ss, 1)-delta*k_ss\n return (k_ss, c_ss)\n\nk_ss_L = steadystate(alpha, beta, delta, theta_L, f)[0]\nk_ss_H = steadystate(alpha, beta, delta, theta_H, f)[0]\nk_ss = (pi_L*k_ss_L+pi_H*k_ss_H)/(pi_L+pi_H)\nc_ss = (pi_L*f(k_ss, theta_L)+pi_H**f(k_ss, theta_H))/(pi_L+pi_H)-delta*k_ss\nprint(\"steady-state values:\\ncapital: {0:.1f}\\nconsumption: {1:.1f}\".format(k_ss, c_ss))", - "execution_count": 11, - "outputs": [ - { - "output_type": "stream", - "text": "steady-state values:\ncapital: 1.7\nconsumption: 0.8\n", - "name": "stdout" - } - ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Step 2: define a grid for $k$ (and $k^{\\prime}$)" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "g_size = 1000\nkmin = 0\nkmax = max([k_ss_H, k_ss_L])*2\nstep = (kmax-kmin)/g_size\n\nk_grid = np.arange(kmin+step, kmax+step, step)", - "execution_count": 12, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Step 3: construct maximizer function" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# given a value of k, a state A and a (proposed) value function V,\n# find k' that maximizes V over grid of k. \n\ndef maximizer(k, A, V0, u, f, k_grid):\n \n pi = pi_H\n if A == theta_L:\n pi = pi_L\n \n i = 0\n for K in k_grid:\n \n c = f(k, A)+(1-delta)*k-K\n if c>0:\n i += 1\n v = u(c)+beta*(pi*V0[(K,A)]+(1-pi)*V0[(K,2-A)])\n if i == 1:\n vmax = v\n cmax = c\n kmax = K\n elif v>vmax:\n vmax = v\n cmax = c\n kmax = K\n \n return (vmax, cmax, kmax)", - "execution_count": 13, - "outputs": [] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Step 4: define initial value function over grid" - }, - { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "# V0 is dictionary. V0(k)=log(k+1)\nV0 = {}\nfor k in k_grid:\n V0[(k, theta_L)] = math.log(k+1)\n V0[(k, theta_H)] = math.log(k+2)", - "execution_count": 14, - "outputs": [] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamic Optimization with Uncertainty" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "import numpy as np\n", + "from scipy import stats, optimize\n", + "import time\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# parameters\n", + "alpha = .4\n", + "beta = .8\n", + "delta = .05\n", + "theta_H = 1.2\n", + "theta_L = .8\n", + "pi_H = .75\n", + "pi_L = .65" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# utility function\n", + "u = lambda c: math.log(c)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# production function\n", + "f = lambda k, A: A*k**alpha" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# function to calculate distance between two dictionaries with the same indices\n", + "def dist(V, W):\n", + " d = 0\n", + " for (_, v), (_, w) in zip(V.items(), W.items()):\n", + " d = d + (v-w)**2\n", + " return math.sqrt(d)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "nomes = ['Ana', 'Vitória', 'Elisa', 'Rayne']\n", + "numeros = [3, 6, 9]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "## Step 5: iteration over value function" - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "Ana\n", + "3\n", + "Vitória\n", + "6\n", + "Elisa\n", + "9\n" + ] + } + ], + "source": [ + "for nome, num in zip(nomes, numeros):\n", + " print(nome)\n", + " print(num)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 1: calculate steady-state" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": true - }, - "cell_type": "code", - "source": "def bellman(V0, u, f, k_grid, eps=1e-3):\n \n T = {}\n T[0] = (1, 1)\n t0 = time.time()\n d = 1\n i = 0\n \n while d>eps:\n \n V = {}\n C = {}\n K = {}\n \n i += 1\n \n for k in k_grid:\n for A in [theta_L, theta_H]:\n v = maximizer(k, A, V0, u, f, k_grid)\n V[(k, A)] = v[0]\n C[(k, A)] = v[1]\n K[(k, A)] = v[2]\n \n d = abs(dist(V, V0))\n V0 = V\n T[i] = (d, time.time()-t0)\n print('i: {0}, d = {1:.5f} ({2:.2%})'.format(i,d,(d/T[i-1][0])-1))\n \n print('i: {0}, d = {1:.5f})'.format(i,d))\n return (V, C, K, T)", - "execution_count": 15, - "outputs": [] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "steady-state values:\n", + "capital: 1.7\n", + "consumption: 0.8\n" + ] + } + ], + "source": [ + "def steadystate(alpha, beta, delta, theta, f):\n", + " k_ss = (theta*alpha*beta/(1-beta*(1-delta)))**(1/(1-alpha))\n", + " c_ss = f(k_ss, 1)-delta*k_ss\n", + " return (k_ss, c_ss)\n", + "\n", + "k_ss_L = steadystate(alpha, beta, delta, theta_L, f)[0]\n", + "k_ss_H = steadystate(alpha, beta, delta, theta_H, f)[0]\n", + "k_ss = (pi_L*k_ss_L+pi_H*k_ss_H)/(pi_L+pi_H)\n", + "c_ss = (pi_L*f(k_ss, theta_L)+pi_H**f(k_ss, theta_H))/(pi_L+pi_H)-delta*k_ss\n", + "print(\"steady-state values:\\ncapital: {0:.1f}\\nconsumption: {1:.1f}\".format(k_ss, c_ss))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 2: define a grid for $k$ (and $k^{\\prime}$)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "g_size = 1000\n", + "kmin = 0\n", + "kmax = max([k_ss_H, k_ss_L])*2\n", + "step = (kmax-kmin)/g_size\n", + "\n", + "k_grid = np.arange(kmin+step, kmax+step, step)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 3: construct maximizer function" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# given a value of k, a state A and a (proposed) value function V,\n", + "# find k' that maximizes V over grid of k. \n", + "\n", + "def maximizer(k, A, V0, u, f, k_grid):\n", + " \n", + " pi = pi_H\n", + " if A == theta_L:\n", + " pi = pi_L\n", + " \n", + " i = 0\n", + " for K in k_grid:\n", + " \n", + " c = f(k, A)+(1-delta)*k-K\n", + " if c>0:\n", + " i += 1\n", + " v = u(c)+beta*(pi*V0[(K,A)]+(1-pi)*V0[(K,2-A)])\n", + " if i == 1:\n", + " vmax = v\n", + " cmax = c\n", + " kmax = K\n", + " elif v>vmax:\n", + " vmax = v\n", + " cmax = c\n", + " kmax = K\n", + " \n", + " return (vmax, cmax, kmax)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 4: define initial value function over grid" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# V0 is dictionary. V0(k)=log(k+1)\n", + "V0 = {}\n", + "for k in k_grid:\n", + " V0[(k, theta_L)] = math.log(k+1)\n", + " V0[(k, theta_H)] = math.log(k+2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Step 5: iteration over value function" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def bellman(V0, u, f, k_grid, eps=1e-3):\n", + " \n", + " T = {}\n", + " T[0] = (1, 1)\n", + " t0 = time.time()\n", + " d = 1\n", + " i = 0\n", + " \n", + " while d>eps:\n", + " \n", + " V = {}\n", + " C = {}\n", + " K = {}\n", + " \n", + " i += 1\n", + " \n", + " for k in k_grid:\n", + " for A in [theta_L, theta_H]:\n", + " v = maximizer(k, A, V0, u, f, k_grid)\n", + " V[(k, A)] = v[0]\n", + " C[(k, A)] = v[1]\n", + " K[(k, A)] = v[2]\n", + " \n", + " d = abs(dist(V, V0))\n", + " V0 = V\n", + " T[i] = (d, time.time()-t0)\n", + " print('i: {0}, d = {1:.5f} ({2:.2%})'.format(i,d,(d/T[i-1][0])-1))\n", + " \n", + " print('i: {0}, d = {1:.5f})'.format(i,d))\n", + " return (V, C, K, T)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Shazam!" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true + }, + "outputs": [ { - "metadata": {}, - "cell_type": "markdown", - "source": "## Shazam!" - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "i: 1, d = 19.71450 (1871.45%)\n", + "i: 2, d = 12.85047 (-34.82%)\n", + "i: 3, d = 8.91404 (-30.63%)\n", + "i: 4, d = 6.43776 (-27.78%)\n", + "i: 5, d = 4.77451 (-25.84%)\n", + "i: 6, d = 3.61480 (-24.29%)\n", + "i: 7, d = 2.78258 (-23.02%)\n", + "i: 8, d = 2.16911 (-22.05%)\n", + "i: 9, d = 1.70649 (-21.33%)\n", + "i: 10, d = 1.35120 (-20.82%)\n", + "i: 11, d = 1.07450 (-20.48%)\n", + "i: 12, d = 0.85688 (-20.25%)\n", + "i: 13, d = 0.68456 (-20.11%)\n", + "i: 14, d = 0.54748 (-20.02%)\n", + "i: 15, d = 0.43812 (-19.98%)\n", + "i: 16, d = 0.35071 (-19.95%)\n", + "i: 17, d = 0.28078 (-19.94%)\n", + "i: 18, d = 0.22480 (-19.94%)\n", + "i: 19, d = 0.17998 (-19.94%)\n", + "i: 20, d = 0.14408 (-19.95%)\n", + "i: 21, d = 0.11533 (-19.95%)\n", + "i: 22, d = 0.09232 (-19.96%)\n", + "i: 23, d = 0.07389 (-19.96%)\n", + "i: 24, d = 0.05913 (-19.97%)\n", + "i: 25, d = 0.04732 (-19.97%)\n", + "i: 26, d = 0.03787 (-19.98%)\n", + "i: 27, d = 0.03030 (-19.98%)\n", + "i: 28, d = 0.02424 (-19.99%)\n", + "i: 29, d = 0.01940 (-19.99%)\n", + "i: 30, d = 0.01552 (-19.99%)\n", + "i: 31, d = 0.01242 (-19.99%)\n", + "i: 32, d = 0.00993 (-19.99%)\n", + "i: 33, d = 0.00795 (-19.99%)\n", + "i: 34, d = 0.00636 (-20.00%)\n", + "i: 35, d = 0.00509 (-20.00%)\n", + "i: 36, d = 0.00407 (-20.00%)\n", + "i: 37, d = 0.00326 (-20.00%)\n", + "i: 38, d = 0.00261 (-20.00%)\n", + "i: 39, d = 0.00208 (-20.00%)\n", + "i: 40, d = 0.00167 (-20.00%)\n", + "i: 41, d = 0.00133 (-20.00%)\n", + "i: 42, d = 0.00107 (-20.00%)\n", + "i: 43, d = 0.00085 (-20.00%)\n", + "i: 43, d = 0.00085)\n" + ] + } + ], + "source": [ + "S = bellman(V0, u, f, k_grid)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exploring the results" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ { - "metadata": { - "scrolled": true, - "trusted": true - }, - "cell_type": "code", - "source": "S = bellman(V0, u, f, k_grid)", - "execution_count": 18, - "outputs": [ - { - "output_type": "stream", - "text": "i: 1, d = 19.71450 (1871.45%)\ni: 2, d = 12.85047 (-34.82%)\ni: 3, d = 8.91404 (-30.63%)\ni: 4, d = 6.43776 (-27.78%)\ni: 5, d = 4.77451 (-25.84%)\ni: 6, d = 3.61480 (-24.29%)\ni: 7, d = 2.78258 (-23.02%)\ni: 8, d = 2.16911 (-22.05%)\ni: 9, d = 1.70649 (-21.33%)\ni: 10, d = 1.35120 (-20.82%)\ni: 11, d = 1.07450 (-20.48%)\ni: 12, d = 0.85688 (-20.25%)\ni: 13, d = 0.68456 (-20.11%)\ni: 14, d = 0.54748 (-20.02%)\ni: 15, d = 0.43812 (-19.98%)\ni: 16, d = 0.35071 (-19.95%)\ni: 17, d = 0.28078 (-19.94%)\ni: 18, d = 0.22480 (-19.94%)\ni: 19, d = 0.17998 (-19.94%)\ni: 20, d = 0.14408 (-19.95%)\ni: 21, d = 0.11533 (-19.95%)\ni: 22, d = 0.09232 (-19.96%)\ni: 23, d = 0.07389 (-19.96%)\ni: 24, d = 0.05913 (-19.97%)\ni: 25, d = 0.04732 (-19.97%)\ni: 26, d = 0.03787 (-19.98%)\ni: 27, d = 0.03030 (-19.98%)\ni: 28, d = 0.02424 (-19.99%)\ni: 29, d = 0.01940 (-19.99%)\ni: 30, d = 0.01552 (-19.99%)\ni: 31, d = 0.01242 (-19.99%)\ni: 32, d = 0.00993 (-19.99%)\ni: 33, d = 0.00795 (-19.99%)\ni: 34, d = 0.00636 (-20.00%)\ni: 35, d = 0.00509 (-20.00%)\ni: 36, d = 0.00407 (-20.00%)\ni: 37, d = 0.00326 (-20.00%)\ni: 38, d = 0.00261 (-20.00%)\ni: 39, d = 0.00208 (-20.00%)\ni: 40, d = 0.00167 (-20.00%)\ni: 41, d = 0.00133 (-20.00%)\ni: 42, d = 0.00107 (-20.00%)\ni: 43, d = 0.00085 (-20.00%)\ni: 43, d = 0.00085)\n", - "name": "stdout" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEbCAYAAADAsRPLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd8VFX6x/HPQ0BC764iYECqFCkB6aCCIi0IKDYU3RXZdd2isrrrrmLXFdvvZ0HcnyIsKIKKDRuigqBgKNJRUErAQpEWapLz++OZSZ0kQ5KZO+V5v17zmszMnblnEpjvnHvueY445zDGGGPyK+d1A4wxxkQmCwhjjDEBWUAYY4wJyALCGGNMQBYQxhhjArKAMMYYE5AFhIkLIpIkIk5EynvdllAQkUki8i+v22FiiwWEiQoi8qGI3Bvg/hQR+cnLD34R2SIiR0TkUK5L/RDub4yIfJH7PufcOOfcfaHap4lPFhAmWkwBRouI5Lt/NDDdOZcR/iblMcQ5VzXXZafH7TGm1CwgTLSYA9QGevnvEJFawGBgqu/2IBFZISIHRGS7iEwo7MV83/r75bo9QUT+m+t2VxFZLCL7ROQbEel7sg0Wkb4iklbYfn37fE1EporIQRFZKyLJubZtKCJviMguEdkjIk+LSCtgEtDN11PZ59t2iojcn+u5N4jIJhHZKyJv5+7R+A61jROR70TkVxF5JkDwGmMBYaKDc+4I8BpwTa67LwM2OOe+8d1O9z1eExgE/F5Ehp3svkTkDOA94H40lG4DXheReiV/B4UaCryKtvlt4GlfGxKAd4GtQBJwBvCqc249MA740tdTqRmg/ecDD6G/n9N9r/Fqvs0GA52Bc3zbXVTWb8xEPwsIE01eBi4VkUq+29f47gPAOfeZc261cy7LObcKeAXoU4L9XA3Mdc7N9b3Wx0AqMLCI58zx9Tb2icick9jXF779ZALT0A9sgC5AfWC8cy7dOXfUOfdFoa+S11XAi8655c65Y8Df0R5HUq5tHnbO7XPObQM+BdqfRJtNnLCAMFHD9wG5C0gRkSboN+AZ/sdF5FwR+dR3SGY/+k27bgl2dSYaRP4P/H1AT/TbeGGGOedq+i4n02v5KdfPh4FE34B7Q2BrCcdW6qO9BgCcc4eAPWgvpLD9Vi3BfkyMi8lT/kxMm4r2HFoAHznnfs712Az0EM3FzrmjIvIkhQdEOlA51+3Tcv28HZjmnLuhlG3Nsw/fYaNgD1NtBxqJSPkAIVFcCeadaMj591sFqAPsCHLfxgDWgzDRZyrQD7iBXIeXfKoBe33h0AW4sojXWQlcLiIVfAPDI3M99l9giIhcJCIJIpLoG3BucJJt/RbtEQwSkQrAP4GKQT53KfAj8LCIVPG1oYfvsZ+BBiJySiHPnQFcJyLtRaQi8CCwxDm35STbb+KcBYSJKr4PucVAFXRQN7c/APeKyEHgLnRQuzD/As4CfgXuIdehKufcdiAF+Ad6SGs7MJ6T/P/inNvva9N/0G/v6UBakU/KeW4mMARoCmzzPW+U7+H5wFrgJxHZHeC5n/je3+toyJwFXH4ybTcGQGzBIGOMMYFYD8IYY0xAFhDGGGMCsoAwxhgTkAWEMcaYgKJ6HkTdunVdUlKS180wxpiosmzZst3OuWLn5ER1QCQlJZGamup1M4wxJqqIyNbit7JDTMYYYwoRMQHhK238qYis95U9/rPXbTLGmHgWSYeYMoBbnXPLRaQasExEPnbOrfO6YcYYE48ipgfhnPvRObfc9/NBYD15q08aY4wJo4gJiNx8des7AEsCPDZWRFJFJHXXrl3hbpoxxsSNiAsIEamKFhn7i3PuQP7HnXOTnXPJzrnkevVCscCXMcYYiLCA8JVEfh1dhP4Nr9tjjDHxLGIGqX2Lpv8fsN4597jX7THGmEiQlQVbt8L69Xkvv/0tXH99aPcdMQEB9ABGA6tFZKXvvn845+Z62CZjjAmLY8fgu+8KBsHGjXD0aMHt27ePo4DwrTcsXrfDGGNC6cCBgiGwfj18/732FgI5/XRo1UovLVvqddu2oW9rxASEMcbEkoMHYd06WLs27yWtkDUFy5WDpk0LBkHLllCzZnjb7mcBYYwxpXDokPYA8gfBtm2Bt09MhBYtcoLAHwLNmuljkcQCwhhjgnD4cOAg2LIl8PYVK+oHf+vWeS+NG0NCQlibXmIWEMYYk8vx4zowvHq1XvxB8MMP4FzB7StU0B5B7hBo0waaNIHyUf4JG+XNN8aYknEOdu7UEFi1KueyYQOcOFFw+/LloXnzgj2Cpk01JGKRBYQxJualp2svwB8C/lDYu7fgtiL6od+unfYE/EHQrBmcckr42+4lCwhjTMzIytLTRfMHwebNgQ8P1aqlQZD70ro1VKkS/rZHIgsIY0xUOnxYA2DlSlixQq9Xr9b78ytfXs8WatdO5w/4w6B+fe0xmMAsIIwxEW/37rxBsGKFDiQHmlh2xhl5Q6BdOx1EjrfDQ2XBAsIYEzGc09NG84dBoMllCQk6RtC+PXTooNfnnAN16oS92THLAsIY44mMDJ1XsHx53kDYv7/gtpUr64e/Pwg6dNCxgkqVwt/ueGIBYYwJucxMPX00NVUvy5ZpGBw5UnDbevU0AHKHQdOm0TO5LGQOHMiZlLFmDQwYoJcQsoAwxpSpzEz49tucIEhN1d5BoMHjxo2hY8e8gXD66XE+cJyenjNle82anOvt2/NuV66cBYQxJnJlZWmJan8Q+MPg0KGC2555JnTqBMnJeunYMc7HC06c0JH2VavyBkFhU7YrVtRTsfxTtfv2DXkTLSCMMUFxTgeLlyzRi7+HcPBgwW0bNiwYBnG7QnD+Kdv+6/Xri56y3aZNzkw9j2p3WEAYYwI6eFBDwB8IS5bAjz8W3K5+/Zwg6NRJL7/5TfjbGxHS07UXkLt+x+rVgadsg37o+6ds+8OgefOIOSc3ogJCRF4EBgO/OOfaeN0eY+JFZqYe4cgdBuvWFZxnUKMGdOkC556r18nJOmYQdzIzc6Zs5w6D778vfMq2f3KG/7p1a6hWLfxtPwkRFRDAFOBpYKrH7TAmpu3cCV99lfdwUXp63m3Kl9eB43PPzbk0a6Zjo3Hl4EH45hs97Wrlypwxg0CnYPmnbOeeqde2rc7ei8KR94gKCOfcAhFJ8rodxsSSzEz9krtokV4WL4atWwtul5SUNww6dIizeQbO6TE0fxD4J2Zs2hR4+zPOyBsCMThlO6ICIhgiMhYYC9CoUSOPW2NM5DlwQHsH/jD46quCZxVVq5Y3DLp0ibNxg8xMPf3KHwL+yy+/FNy2QoWcKdv+6dpt20Lt2uFvd5hFXUA45yYDkwGSk5MDHOwzJn74S1P4w2DRIu0t5D8M3qQJdO8OPXrodevWcTTxLHdVP3/PYNWqwIeIatTIW7ujfXs9ZBRDvYKTEXUBYUw88x8u+vxzWLhQQyH/mUUVKuhppf4w6N49jgaSDx3SEPBPzFi2rPCqfo0a5YSAPxTOPDMqxwpCxQLCmAh24oTWKlqwQC8LFxasVVSnTt7eQXJynIwdpKdrb2DZspxA2LChYPfJqvqVWEQFhIi8AvQF6opIGnC3c+7/vG2VMeFz7BgsXaph8Pnn2kPIf3ZRUhL06QO9ekHPnnrafMx/6U1PL9gz2LChYM+gfHkNA/+EjE6ddLwgLhKz7EVUQDjnrvC6DcaE0+HD8OWXGgYLFuiA8rFjebdp0QJ69865xPy5GYcPaxj4g2DZMp11nD8MEhK0J+Cfst2pk55JlJjoTbtjUEQFhDGx7sQJ7SF88olevvyyYLWFtm01CPy9hNNO86atYeEv87pkif5ilizRQZbMzLzbJSToh3/u6drt2lnPIMQsIIwJoawsnWP1yScwf772EnIfMhLRAeW+fTUUevaM8UPjO3bkBMHSpdpLyF/MqVw5TUl/GCQnWxh4xALCmDLknJa6nj9fQ+HTTwuW4WnVCi64AM4/X4OhVi1Pmhp6/mJOuQNhx46C2zVqlLd+R6dOUKVK+NtrCrCAMKaUdu2Cjz+Gjz6CefMKfgaeeWZOIJx/foyecpqVpcWbFi/OW8wp/xlFNWpA5845YdClS4wfQ4tuFhDGnKQTJ3Ts4MMP9bJ8ed7PwXr1NAj8odCkSQyeZXTggIbA4sU507UPHMi7TYUKOoicu3fQvHkcFnOKXhYQxgTh++9zAmH+/LyHzStW1PGDiy6CCy/UsyxjKhCc01+APwwWLw48XbtRI52I0bWrBkL79nZGUZSzgDAmgMOHNQg++EBDIX+9tlatNBAuukjDoXJlb9oZEkeP6qmluQMhf40i/3Rt/1Ttbt20eJ2JKRYQxvhs2wbvvQfvvqvhcPRozmM1a0K/fjmh0LChd+0sc3v3ahGnBQvgiy80HPKfe1uvXk4YdO+uA8l2VlHMs4AwcSszUw+jv/uuXlavzvt4584wcKAGQufOYV/tMXR27tSaHQsXaijkf+Mielpp7t7BWWfF2HEzE4xY+SdvTFD27dOzjd59F+bOhT17ch6rWlXHEAYPhosvjpGTa/zjB/4wWLAANm/Ou03Fijpm0KuXXrp1g+rVvWmviSgWECbmpaXBnDnw5pta0iL3JN0mTWDIEBg0SMcSKlb0rp1lwn+6ae7qfjt35t2mWjXtGfTurYHQubMNJpuALCBMTNq4UQPhzTd1fpZfQoKWsBg8WC8tWkT5kRPntFTFp5/qwMlnn+XtFoFOzfaHQe/eeuppzBwvM6Fk/0pMTHBO5yO88YaGwvr1OY9VqqTjCJdcoqEQ1QuB+Q8Z+QPh00/hp5/ybnPGGZqC/lBo1SrKU9B4xQLCRK2sLJ2wNmuWhsK2bTmP1ayph44uuUTDIapPQ92+PW8g5H6joGuFnneezso77zwbUDZlxgLCRBXn4OuvYeZMeO01HV/wq18fhg3TUOjTR0/Vj0q7d+dU95s/v+AkjNq1tYiTPxCsh2BCJKICQkQGAE8BCcB/nHMPe9wkEwGc04XD/KGwZUvOY40awWWXwciROtYalVUcjh/XyWgffaSX/LU7qlfXw0X+QGjXLkrfqIk2ERMQIpIAPAP0B9KAr0XkbefcOm9bZryyerWGwsyZeb9E168Pl14Ko0bp2ZlR91npH1j2B8Lnn+etAX7KKTp20K+fhkLHjjaobDwRSf/qugCbnHPfA4jIq0AKYAERR3buhBkzYNo0WLUq5/5TT9VewqhRumZC1IXC7t1a6vWjj7T0a+5jY6AFnC68EPr3j8HaHSZaRVJAnAFsz3U7DTjXo7aYMDp0SAeZp03TQ+/+lSVr1coJhT59ouxLdGamroXw3ns6Iy//YaNTT9UwuPBC7SnUr+9dW40pRCT9lws0yuYKbCQyFhgL0CjmF+eNXZmZGgbTpumpqYcP6/2nnKKnoo4erWUuTjnF23aelL17tbLf3Lla5W/37pzHKlbUw0b+ULBxBBMFIikg0oDcJdAaADvzb+ScmwxMBkhOTi4QICaybdoEL74IU6bAjz/m3N+jh4bCpZdG0TwF5/Q4mL+X8OWXOd0fgKQknaI9cKCedWSHjUyUiaSA+BpoJiKNgR3A5cCV3jbJlIUjR7SX8J//6ERfv6ZNNRSuvlpLXkSF9HQdQ5g7Vy+5l48rX16DYOBADYaon6Zt4l3EBIRzLkNE/gh8iJ7m+qJzbq3HzTKlsHKlhsL06VokD3RW86hR8Nvfaq8hKj4/f/4Z3nkH3npLB5pz1wE//fScQLjgAityZ2JKxAQEgHNuLjDX63aYkktP10CYPFmXFfBLTobf/Q4uv1yXJY54GzdqILz1lh46yj3A3LWrDpQMGqR1jaIi5Yw5eREVECZ6ffstPPusji3s36/31ayph5B++1v9HI1oWVm6rrI/FDZuzHmsYkXtHQwbpvU7YqIOuDHFs4AwJZaZqeOzzzyjp/f7desGf/gDjBgR4YuOnTihgyKzZ2so/PxzzmO1amkvISVFizlVrepZM43xigWEOWl79sALL8CkSbB1q95XqRJceSXcdBN06OBt+4p04oSeXzt7tk6+2Ls357GkJA2ElBSdjRe1xZyMKRsWECZo330HTzyhh5GOHNH7zjpLewvXXadfuiPS8eM6uDxrlvYUfv0157GWLfXc2uHDbTzBmHwsIEyRnNP17B97TD9b/WO1F18Mf/qTzvmKyPlex47pcS//4SP/wAhA69Y6RfvSS+Hssy0UjCmEBYQJKCND5y489ljOimynnKKDzrfcop+rEScrS5fZnDFDgyF3T6FtWw2EkSO1PLYxplgWECaPY8fg5Zfh4Yfhhx/0vtq19TDSTTdF4Ak8/lrgM2bAq6/mnbjWtq1Ouhg5UietGWNOigWEAXRM4T//gX//O6fQaNOm2lu49toIrBKxaRO88ooGw4YNOfcnJelo+RVXaIVUY0yJWUDEuUOH9GykiRNzzvJs0wbuvFOPyCQkeNu+PPbu1V7Cyy/nHPcCqFtXewpXXqnn2NqYgjFlwgIiTh06BP/zPzrG4D/Ts1Mn+Oc/YejQCBp4zsjQ2kcvvaSDzceP6/1Vq+raoldeqZPY7JRUY8qcBUScOXYMnn8eHngAfvlF7+vWDf71LxgwIIK+fG/YoOfTTpumqwiBNu7CC/WY17BhEXjcy5jYYgERJzIy9LN2wgTYtk3vO/dcuP9+/QIeEcGwf78eQpoyRcte+DVrBmPG6ClUDRsW9mxjTBmzgIhxzsHrr2sPwT+W26aN9iCGDImAYHBOxxMmTdLFp/0z8KpV03GFMWOge/cIaKgx8ccCIoZ9/TX89a860Q10zYV779WKqp4PPh84oGVfn38evvkm5/7zzoPrr9fxhSpVvGufMcYCIhalpcHf/w7//a/ePvVUuOcerarq+VhuaqqGwiuvaG1w0LOQrrsObrhBDycZYyKCBUQMSU+HRx/VuQxHjujM57/+Ff7xD4/XsTl6VMcWnn467yIRffrAjTdqHaSKFb1rnzEmoIgICBG5FJgAtAK6OOdSvW1RdHEO5syBP/8Ztm/X+y69FB55BBo39rBhO3fqIhHPPw+7d+t9tWrpuMLYsVoozxgTsSIiIIA1wHDgea8bEm1++AFuvlnXZQDo2BGefBJ69fKoQc7BkiXw1FNaDykjQ+9v314TbNSoCF8kwhjjFxEB4ZxbDyB2pkrQjh/XSW733aeHk6pXh4ce0iM2ngxAnzgBr72mwfD113pfuXJaB+lPf9L1Fezva0xUiYiAOBkiMhYYC9CoUSOPW+ONL7/UAef16/X2lVdqWHhSSO/gQS3i9MQTOce3atfWAec//AHi9G9kTCwIW0CIyDwg0EfYnc65t4J9HefcZGAyQHJysitm85hy5AjcdRc8/rhWtm7WTA/x9+vnQWN+/llrdTz7LOzbp/e1aqWj4lddZbOcjYkBYQsI55wXH2Mx46uvdGx340Y9cnPHHXD33ZCYGOaGfPeddlemTNG6HQA9esDtt8OgQRFUxMkYU1pRd4gp3hw/rrOgJ07UXkOrVvrZ3KVLmBuyZo0OeMyalbOsXEoKjB+vAWGMiTkR8XVPRC4RkTSgG/CeiHzodZsiwcaNWkjv3//W23fcAcuXhzkcVq3Sgea2bXUQunz5nAGQOXMsHIyJYRHRg3DOvQm86XU7IoVzWt365pvh8GGdyzBjBnTtGsZGrFypdTne9P1ZKlbUgefbb4cGDcLYEGOMVyIiIEyOAwd0DtnMmXr7qqt0HDhsM6FXrdLBjTlz9HZiojbo9tuhfv0wNcIYEwksICLIunVadWLjRl0P59lntcJ1WHz/vZ4iNWOGdmEqVYJx43SM4fTTw9QIY0wksYCIELNmab269HQtx/3GG2GqW/fzzzr4PHmyTnY75RT4/e91wMOTiRXGmEhhAeGxjAytvDpxot6+4gp44YUwVLrev193+sQTmkoiulLbhAmQlBTinRtjooEFhIcOHNDSRB98oCcHTZyoVSlCWpEiI0NnPv/rXzkF9FJSdGm5Nm1CuGNjTLSxgPDI9u06r2z1al0O4fXXoXfvEO/0k090pvPq1Xq7Z08t+dq9e4h3bIyJRhYQHli2TJf7/PFHaNFCK7GedVYId7hpE9x2G7zlq2iSlKTdleHDrYCeMaZQETFRLp58/LH2FH78Efr21cJ7IQuH9HQdbD77bA2HqlXhwQd1ktuIERYOxpgiWQ8ijN58U9eDPn5cT1/9z3/0pKGQePttnWm3bZsGwXXXwQMP2CmrxpigWQ8iTKZO1VXejh/XgegpU0IUDlu36qBzSoqGQ4cOWunvxRctHIwxJ8UCIgyefVbPIM3M1JOHnnwyBEVPMzJ0Qeqzz9beQ7VqunjP0qUeVPYzxsQCO8QUYpMnw0036c8TJ8Ktt4ZgJ2vX6iEk/0pul12m8xusNIYxphSsBxFC06ZptQrQtXXKPBwyMnTQuWNHDYcGDWDuXC3kZOFgjCkl60GEyGuv6QI/zulUg5tvLuMdrF6tvYZly/T2DTfoIaYaNcp4R8aYeGU9iBD45BOtwpqVpZUr/va3MnzxrCxd0a1TJw2HRo3gww/1WJaFgzGmDFkPooytWaPzzzIydNLyXXeV4Yv/+KOOdn/8sd4eO1Z7DWGrBW6MiScR0YMQkUdFZIOIrBKRN0WkptdtKomdO2HgQK2xNGKEDkqX2Vy0d9+Fdu00HOrU0TOVnn/ewsEYEzIRERDAx0Ab51w74Fvg7x6356Slp8PgwVpjqVs3HaAuk1NZjx3TiRNDhmhxvX79dFGfIUPK4MWNMaZwEREQzrmPnHMZvptfAVG1pqVzerRnxQpo2lS/3FeqVAYvvH271uX43/+FChX0cNKHH9oZSsaYsChyDEJEGjnntoWrMT7XAzMLe1BExgJjARo1ahSuNhXp6ad1IbYqVbTkUd26ZfCi8+bp4hC7d+tA9OzZ0LlzGbywMcYEp7gexAYRuUtEKpZ2RyIyT0TWBLik5NrmTiADmF7Y6zjnJjvnkp1zyfXq1Stts0pt0SK45Rb9+cUXdSJzqTgHDz0EF12k4XDhhXq2koWDMSbMijuL6S/AfcB1IvJX59ycku7IOdevqMdF5FpgMHCBc86VdD/h9OuvWnwvI0ND4rLLSvmCR47A9dfDq6/q7bvu0ktCQqnbaowxJ6vIHoRzbjLQDHgDmCkiH4pIi7JuhIgMAG4HhjrnDpf164eCc7p0c1oadO0KDz9cyhf8+Wc4/3wNh2rV4J134J57LByMMZ4pdpDaOXfAOXcr0BY4AawSkYkiUq0M2/E0UA34WERWisikMnztkJgxQytaVKkC//2vjiGX2OrVWlDvq6/gzDP1uNXgwWXWVmOMKYmgJ8o5574FBovIRcDjwFUicrtzbmppG+Gca1ra1winbdtyCvA99VQpF/z56COdNHHokHZF5syB3/ymTNppjDGlcdKnuTrnPgTaAQ8Bj4vI4jJvVQTzH1rav1+XXLj++lK82MyZ2lM4dEgHM+bPt3AwxkSMoHsQIlIVaIMeamrju5QDzg1N0yLT669rwdQaNWDSpFLMlH7uOe2GOKcj3I8+GoJFIowxpuSKmwfxEDmB0BAQYDewGlgF/Bf4JsRtjBj79+ukZtBB6dNOK8GLOKcluv/5T7390ENw++22PrQxJuIU14MYiAbBM77rVc65H0Peqgg1YYLWy+vaVWdOl/hF7r1XewuTJmmZbmOMiUBFBoRz7pxwNSTSbdoEzzyjX/Sfe66ER4PuuUfDISEBpk+HUaPKvJ3GGFNW7KB3kP7+dzhxQqttt29fghe4917tPZQrZ+FgjIkKFhBBWLxYSyFVqgT33VeCF3joIbj7bg2HadMsHIwxUcECIgj/+Ide33KLLvt8UiZP1hcQgZdfhiuvLPP2GWNMKFhAFGPRIvj8cz2tdfz4k3zyW2/ppAnQgYurry7z9hljTKhYQBTjwQf1+o9/PMklnxct0slvWVl6eOnGG0PSPmOMCRULiCKsWKGT4ipXhr/85SSeuGmTrvh29KieD3v33SFrozHGhIoFRBH8FVpvvPEkFgE6cEBrcPz6q5bRePZZmwRnjIlKFhCF2LFDy2qUL5+zIFCxsrJ0nGHdOl05aPp0K9dtjIlaFhCFeOEFyMyESy45iTOX7r5b13GoWVMHqKtXD2kbjTEmlCwgAjhxQs9OBfjDH4J80rvvwv3361yHmTOhaVRVMDfGmAIsIAJ45x2tudSqFfTpE8QT0tJgzBj9+aGHdB1pY4yJchERECJyn4is8q0m95GI1PeyPdOm6fXvfhfE+HJmJlx1FezZAxddBLfdFvL2GWNMOEREQACPOufaOefaA+8Cd3nVkF9/1VNby5WDK64I4gkPPAALFmjt76lTbU0HY0zMiIhPM+fcgVw3qwDOq7bMng3Hj8P558Pppxez8YoVWoRPRLsdp54aljYaY0w4BL2iXKiJyAPANcB+4LwithsLjAVo1KhRmbdj+nS9vuqqYjY8cULXG83M1FWE+vUr87YYY4yXxLnwfFkXkXlAoDXY7nTOvZVru78Dic65YqcfJycnu9TU1DJr4y+/6JGiU07Rn4s8S/X+++Ff/4LGjWH1aqhSpczaYYwxoSQiy5xzycVtF7YehHMu2K/YM4D3gLDXp3j/fV0R9LzzigmHtWv10BLohAkLB2NMDIqIMQgRaZbr5lBggxfteO89vR40qIiNnIObbtJDTDfcABdcEJa2GWNMuEXKGMTDItICyAK2AuPC3YATJ+DDD/XnIgNi1iyt/12nDjzySFjaZowxXoiIgHDOjfC6DV98oXX2zj5bhxUCSk/Pmefw4INQq1bY2meMMeEWEYeYIsH77+t1kb2HRx+F7duhY0f47W/D0i5jjPGKBYTP55/rdaFnq+7aBY89pj8/+aRVaTXGxDwLCODgQVi2TD/zu3UrZKOHH4ZDh2DgQOjVK6ztM8YYL1hAAF9+qfPdOnWCatUCbJCWBs88oz/ff39Y22aMMV6xgEBLKQH07l3IBg8+CMeOwaWXQocOYWuXMcZ4yQICWLpUr7t3D/DgL7/ASy/pzxMmhKtJxhjjubgPCOd0/AEgOdDE82eegaNHYcgQPQfWGGPiRNwHxNatsHcv1KsXYGnRw4dzxh7Gjw9724yOVLZtAAAVgklEQVQxxktxHxD+3kPHjgEWB5oyRRcC6tIFevYMd9OMMcZTFhC+gOjUKd8DzsFTT+nPt94axNJyxhgTW+I+IFat0usCJyctWADffgv168Pw4WFvlzHGeC3uA2KDr25sq1b5HnjhBb2+7jooHxElq4wxJqziOiCOHYMfftBlpJs2zfXA3r269ihYzSVjTNyK64DYvBmysrR6a8WKuR549VVNj/79iyjtaowxsS2uA2LjRr1u0SLfAzNn6vXo0WFtjzHGRJK4Dgj/+EOegNi5ExYu1C5FSoon7TLGmEgQUQEhIreJiBORuuHYX8AexOzZeorrxRcXszC1McbEtogJCBFpCPQHtoVrn99/r9d5Bqj9h5dGjQpXM4wxJiJFTEAATwB/A1y4drhjh15nl9j45RdYvFgPLw0eHK5mGGNMRIqIgBCRocAO59w3QWw7VkRSRSR1165dJd6nczkBccYZvjs//FCv+/aFqlVL/NrGGBMLwjYDTETmAacFeOhO4B/AhcG8jnNuMjAZIDk5ucS9jV9/1TNZq1fPlQUffKDXF19c0pc1xpiYEbaAcM4FXO1ZRNoCjYFvROsdNQCWi0gX59xPoWpPgd5DZmZOD2LAgFDt1hhjoobnNSScc6uBU/23RWQLkOyc2x3K/RYIiGXLtHJrUhI0bx7KXRtjTFSIiDEIL/gDon593x3+3sPFF1vlVmOMIQJ6EPk555LCsZ8CPQj/wtTnnx+O3RtjTMSL2x7Ezp16fcYZQEYGfPml3mELAxljDBDHAZGnB/HNN5CerjPmTgt0opUxxsSfuA2In3znR51+OrBokd7o0cOz9hhjTKSJ24DYu1eva9cm5/BS9+6etccYYyJN3AbEr7/qde3awIoVeiM52bP2GGNMpInLgMjMhH379Oea5Q/p2tPly0Pr1t42zBhjIkhcBsT+/VqLqUYNSFi7Sm+0bp1vWTljjIlvcRkQ/sNLtWoBy5frjQ4dPGuPMcZEorgMCP8Ada1awMqVesMCwhhj8ojLgMgzQL1+vd5o08az9hhjTCSKy4A4cECvq1dHB6gh37qjxhhj4jIg0tP1ukr5Y7B7N1SpkqtqnzHGGIjTgDh8WK+rZPjOdW3e3Cq4GmNMPnEZEP4eROXDe/QHW//BGGMKiMuAyO5BHPpZf7CAMMaYAuIyILLHIA74an5bQBhjTAERERAiMkFEdojISt9lYCj35+9BVD7g60E0bhzK3RljTFSKpBXlnnDOTQzHjgr0ILKXlTPGGOMXET2IcMsOiH2+gDj9dO8aY4wxESqSehB/FJFrgFTgVufcr4E2EpGxwFiARo0alWhH2YeY3CGoU8eK9JmgnDhxgrS0NI4ePep1U4wJSmJiIg0aNKBChQolen7YAkJE5gGB1vO8E3gOuA9wvuvHgOsDvY5zbjIwGSA5OdmVpC3ZPQjS7fCSCVpaWhrVqlUjKSkJsXkzJsI559izZw9paWk0LuE4a9gCwjnXL5jtROQF4N1QtiW7B8Fhm0Ftgnb06FELBxM1RIQ6deqwa9euEr9GRIxBiEjuQYBLgDWh3F+eHoQFhDkJFg4mmpT232ukjEH8W0Tao4eYtgA3hnJnbdpAxT07qfnjPgsIY4wpRET0IJxzo51zbZ1z7ZxzQ51zP4Zyf6+8AqmDJ9CI7TYGYaJKWloaKSkpNGvWjLPOOos///nPHD9+vMjn7Nu3j2effTb79s6dOxk5cmSomxqUzz77jMGDB3vdjEKVpn1z5sxh3bp12bfvuusu5s2bV+RzBg4cyL59+wr8zbwSEQHhiR079Np6ECZKOOcYPnw4w4YN47vvvuPbb7/l0KFD3HnnnUU+L/+HTf369Zk9e3aomxvRMjMzQ76P/AFx77330q9f0UOxc+fOpWbNmhYQnvvZN4v6tEAnVhlTDJHQXIowf/58EhMTue666wBISEjgiSee4MUXX+Tw4cNMmTKFlJQUBgwYQIsWLbjnnnsAuOOOO9i8eTPt27dn/PjxbNmyhTa+BbKmTJnCsGHDGDJkCI0bN+bpp5/m8ccfp0OHDnTt2pW9vuUX+/btS2pqKgC7d+8mKSnppJ4fjL179zJs2DDatWtH165dWbVqFQBt27Zl3759OOeoU6cOU6dOBWD06NEFvpF/9tln9O7dm0suuYSzzz6bcePGkZWVBUDVqlW56667OPfcc/nyyy/55JNP6NChA23btuX666/n2LFjAHzwwQe0bNmSnj178sYbb2S/9oQJE5g4MWcub5s2bdiyZQsAU6dOpV27dpxzzjmMHj2axYsX8/bbbzN+/Hjat2/P5s2bGTNmDLNnz+b999/nsssuy9PmIUOGAJCUlMTu3bsL/M1Gjx7NW2+9lf2cq666irfffjvo321JxW9A+P/h1q7tbTuMCdLatWvp1KlTnvuqV69Oo0aN2LRpEwBLly5l+vTprFy5klmzZpGamsrDDz/MWWedxcqVK3n00UcLvO6aNWuYMWMGS5cu5c4776Ry5cqsWLGCbt26ZX8YFyWY50+aNIlJkyYV+Tp33303HTp0YNWqVTz44INcc801APTo0YNFixaxdu1amjRpwsKFCwH46quv6Nq1a4HXWbp0KY899hirV69m8+bN2R/y6enptGnThiVLlpCcnMyYMWOYOXMmq1evJiMjg+eee46jR49yww038M4777Bw4UJ++umnYt//2rVreeCBB5g/fz7ffPMNTz31FN27d2fo0KE8+uijrFy5krPOOit7+/79+/PVV1+R7jtbZubMmYwaNSrPa+b/m/3ud7/jpZdeAmD//v0sXryYgQNDWpEIiOeA8K87WquWt+0w0cm50FyK3KULeFZK7vv79+9PnTp1qFSpEsOHD+eLL74o9q2cd955VKtWjXr16lGjRo3sb7Nt27bN/oZc2uePGzeOcePGFfk6X3zxBaNHjwbg/PPPZ8+ePezfv59evXqxYMECFixYwO9//3tWr17Njh07qF27NlWrVi3wOl26dKFJkyYkJCRwxRVXZP8OEhISGDFiBAAbN26kcePGNPcV6rz22mtZsGABGzZsoHHjxjRr1gwR4eqrry72/c+fP5+RI0dSt25dAGoX86WzfPnyDBgwgHfeeYeMjAzee+89UlJSinxOnz592LRpE7/88guvvPIKI0aMoHz50J9jFJ8BkZUF+/frzzVretsWY4LUunXr7MM8fgcOHGD79u3Z31DzB0gwpzlWzFVJoFy5ctm3y5UrR0ZGBqAfav5DNflnkgfz/GC4AAEpIvTu3ZuFCxeycOFC+vbtS7169Zg9eza9evUK+DqF/Q4SExNJSEgodF+FPd8v9+8Acn4PhQV3UUaNGsVrr73G/Pnz6dy5M9WqVSv2OaNHj2b69Om89NJL2YcZQy0+A2L/fv22Vr06+P7BGBPpLrjgAg4fPpx92CYzM5Nbb72VMWPGULlyZQA+/vhj9u7dy5EjR5gzZw49evSgWrVqHDx4sFT7TkpKYtmyZQAhG+Du3bs306dPB/S4fN26dalevToNGzZk9+7dfPfddzRp0oSePXsyceLEQgNi6dKl/PDDD2RlZTFz5kx69uxZYJuWLVuyZcuW7ENz06ZNo0+fPrRs2ZIffviBzZs3A/DKK69kPycpKYnly5cDsHz5cn744QdA/y6vvfYae/boAmT+cZeifu99+/Zl+fLlvPDCCwUOLxX23DFjxvDkk08C+mUhHOIzIPzjD3Z4yUQREeHNN99k1qxZNGvWjObNm5OYmMiDDz6YvU3Pnj0ZPXo07du3Z8SIESQnJ1OnTh169OhBmzZtGD9+fIn2fdttt/Hcc8/RvXt3du/efdLPD2YMYsKECaSmptKuXTvuuOMOXn755ezHzj333OzDQb169WLHjh0BP/gBunXrxh133EGbNm1o3Lgxl1xySYFtEhMTeemll7j00ktp27Yt5cqVY9y4cSQmJjJ58mQGDRpEz549OfPMM7OfM2LECPbu3Uv79u157rnnstvTunVr7rzzTvr06cM555zDLbfcAsDll1/Oo48+SocOHbIDxy8hIYHBgwfz/vvvBzyNNtDf7De/+Q2tWrUKW+8BQIrqakW65ORkl7/LHZTUVOjcGTp0AN83AmOKs379elq1auV1Mwo1ZcoUUlNTefrpp71uimc+++wzJk6cyLvvhrRajycOHz5M27ZtWb58OTVq1Aj6eYH+3YrIMudccnHPjc8ehA1QG2OiyLx582jZsiU333zzSYVDaUVKqY3wOnBAr6tX97YdxpShMWPGMGbMGK+b4am+ffvSt29fr5tR5vr168e2bdvCvt/47EFkV+ur4m07jDEmgsVnQPjrfVtAGGNMoeIzIKwHYYwxxYrPgMheMaiyt+0wxpgIFp8BYT0IE6Virdz3lClT+OMf/xjwMX/p66LkLiIYLvFUAjw+A8J6ECYKxVu5b3/p63CxEuAFRUxAiMjNIrJRRNaKyL9DujPrQZhS8qDad8yW+965cycDBgygWbNm/O1vf8u+31/6GuC+++6jZcuW9O/fnyuuuCJP2e1Zs2bRpUsXmjdvnl3pNTcrAV5yETEPQkTOA1KAds65YyJyakh3aD0IE4WCLfe9Zs0aKleuTOfOnRk0aBAPP/wwa9asYeXKlQAFKrSuWbOGFStWcPToUZo2bcojjzzCihUr+Otf/8rUqVP5y1/+UmS7gnm+v8xGoIquK1euZMWKFVSsWJEWLVpw880307Bhw+zHU1NTef3111mxYgUZGRl07Ngxz+8hIyODpUuXMnfuXO65556Ah2yWLl3KunXrOPPMMxkwYABvvPEGI0eOzC4Bfu+993L06FGaNWvGJ598QvPmzbnmmmt47rnnGDduHDfccAPz58+nadOmAWsn5ecvAb5o0SLq1q3L3r17qV27NkOHDmXw4MEFDvH179+fG2+8kfT0dKpUqVJoCfDcf8fPP/+cJ554gpSUlOwS4LnLk5SFSOlB/B542Dl3DMA590tI92Y9CFNKHlT7jtly3xdccAE1atQgMTGRs88+m61bt+Z5/IsvviAlJYVKlSpRrVq17Nf3Gz58OACdOnUqtL1WArxkIiUgmgO9RGSJiHwuIp0L21BExopIqoik7tq1q2R7s3kQJgrFarnv3M9PSEgo8Jzi6sX5nx/ouX5WArxkwhYQIjJPRNYEuKSgh7pqAV2B8cBrUshv1zk32TmX7JxLrlevXska4+9B2CEmE0Vivdx3YXr27Mk777zD0aNHOXToEO+9995Jv4aVAC+ZsAWEc66fc65NgMtbQBrwhlNLgSygbsgaYz0IE4Vivdx3YTp37szQoUM555xzGD58OMnJySddsM5KgJeQc87zCzAOuNf3c3NgO75S5EVdOnXq5EqkRw/natVy7rvvSvZ8E5fWrVvndROK9NJLL7mbbrrJ62aExMGDB51zzqWnp7tOnTq5ZcuWBf3cTz/91A0aNChUTfNUenq6a9Kkidu3b1+h2wT6dwukuiA+myPiLCbgReBFEVkDHAeu9b2J0Ahi4M4YEznGjh3LunXrOHr0KNdeey0dO3b0ukmemzdvHtdffz233HJLyEqAx+eCQcaUQKQvGGRMILZgkDFhEs1fqEz8Ke2/VwsIY4KUmJjInj17LCRMVHDOsWfPHhITE0v8GpEyBmFMxGvQoAFpaWmUeP6NMWGWmJhIgwYNSvx8CwhjglShQgUaN27sdTOMCRs7xGSMMSYgCwhjjDEBWUAYY4wJKKrnQYjILmBrsRsGVhc4+ZoB0cveb2yLt/cL8feey/L9numcK7aYXVQHRGmISGowE0Vihb3f2BZv7xfi7z178X7tEJMxxpiALCCMMcYEFM8BMdnrBoSZvd/YFm/vF+LvPYf9/cbtGIQxxpiixXMPwhhjTBEsIIwxxgQU0wEhIgNEZKOIbBKROwI8XlFEZvoeXyIiSeFvZdkK4j2PEZFdIrLSd/mdF+0sCyLyooj84ltoKtDjIiL/4/tdrBKRqF9lJoj33FdE9uf6+94V7jaWFRFpKCKfish6EVkrIn8OsE1M/Y2DfM/h+xsHs+xcNF6ABGAz0AQ4BfgGODvfNn8AJvl+vhyY6XW7w/CexwBPe93WMnq/vYGOwJpCHh8IvA8I0BVY4nWbw/Ce+wLvet3OMnqvpwMdfT9XA74N8O85pv7GQb7nsP2NY7kH0QXY5Jz73jl3HHgVSMm3TQrwsu/n2cAFIiJhbGNZC+Y9xwzn3AJgbxGbpABTnfoKqCkip4endaERxHuOGc65H51zy30/HwTWA2fk2yym/sZBvuewieWAOAPYnut2GgV/0dnbOOcygP1AnbC0LjSCec8AI3zd8dki0jA8TfNEsL+PWNNNRL4RkfdFpLXXjSkLvsO/HYAl+R6K2b9xEe8ZwvQ3juWACNQTyH9ObzDbRJNg3s87QJJzrh0wj5weVCyKtb9vMJajdXbOAf4XmONxe0pNRKoCrwN/cc4dyP9wgKdE/d+4mPcctr9xLAdEGpD723EDYGdh24hIeaAG0d19L/Y9O+f2OOeO+W6+AHQKU9u8EMy/gZjinDvgnDvk+3kuUEFE6nrcrBITkQroB+V059wbATaJub9xce85nH/jWA6Ir4FmItJYRE5BB6HfzrfN28C1vp9HAvOdbxQoShX7nvMdnx2KHuOMVW8D1/jOdOkK7HfO/eh1o0JJRE7zj6OJSBf0//geb1tVMr738X/Aeufc44VsFlN/42Deczj/xjG75KhzLkNE/gh8iJ7d86Jzbq2I3AukOufeRv8Q00RkE9pzuNy7FpdekO/5TyIyFMhA3/MYzxpcSiLyCnpGR10RSQPuBioAOOcmAXPRs1w2AYeB67xpadkJ4j2PBH4vIhnAEeDyKP7S0wMYDawWkZW++/4BNIKY/RsH857D9je2UhvGGGMCiuVDTMYYY0rBAsIYY0xAFhDGGGMCsoAwxhgTkAWEMcaYgCwgjDHGBGQBYUwZEpFHRORjr9thTFmwgDCmbLUHVha7lTFRwALCmLJ1DrDC60YYUxYsIIwpIyJyGvAbfD0IEakiIq+KyPJYWK3QxB8LCGPKTge0Ns5GEWkBLEVrXvVwzm3xsmHGlIQFhDFlpz2wGhgGLAZecM5d7Zw74m2zjCkZK9ZnTBkRkZlAf7SS7lDn3OceN8mYUrEehDFlpz3wBlp+O5qXrjUGsB6EMWVCRCoDB4GuQDNgMtDbvwC9MdEoZhcMMibMzkHXQl7jnPtaRFoB74hIF+fcDo/bZkyJ2CEmY8rGOcB3uQak7wIWAW/7ehfGRB07xGSMMSYg60EYY4wJyALCGGNMQBYQxhhjArKAMMYYE5AFhDHGmIAsIIwxxgRkAWGMMSYgCwhjjDEB/T9XYTDHF4rw7AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Exploring the results" - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "V = S[0]\n", + "X = []\n", + "Y = []\n", + "Z = []\n", + "\n", + "for k in k_grid:\n", + " if k < 1.5*k_ss:\n", + " X.append(k)\n", + " Y.append(V[(k, theta_L)])\n", + " Z.append(V[(k, theta_H)])\n", + " \n", + "plt.plot(X, Y, color=\"red\", linewidth=2, label=\"Optimum: low productivity\")\n", + "plt.plot(X, Z, color=\"blue\", linewidth=2, label=\"Optimum: high productivity\")\n", + "plt.xlabel(\"$k$\", fontsize=14)\n", + "plt.ylabel(\"$V$\", fontsize=14)\n", + "plt.title(\"Value Function\")\n", + "plt.legend(loc='lower right')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "V = S[0]\nX = []\nY = []\nZ = []\n\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(V[(k, theta_L)])\n Z.append(V[(k, theta_H)])\n \nplt.plot(X, Y, color=\"red\", linewidth=2, label=\"Optimum: low productivity\")\nplt.plot(X, Z, color=\"blue\", linewidth=2, label=\"Optimum: high productivity\")\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$V$\", fontsize=14)\nplt.title(\"Value Function\")\nplt.legend(loc='lower right')\nplt.show()", - "execution_count": 12, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEbCAYAAADAsRPLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd8VFX6x/HPQ0BC764iYECqFCkB6aCCIi0IKDYU3RXZdd2isrrrrmLXFdvvZ0HcnyIsKIKKDRuigqBgKNJRUErAQpEWapLz++OZSZ0kQ5KZO+V5v17zmszMnblnEpjvnHvueY445zDGGGPyK+d1A4wxxkQmCwhjjDEBWUAYY4wJyALCGGNMQBYQxhhjArKAMMYYE5AFhIkLIpIkIk5EynvdllAQkUki8i+v22FiiwWEiQoi8qGI3Bvg/hQR+cnLD34R2SIiR0TkUK5L/RDub4yIfJH7PufcOOfcfaHap4lPFhAmWkwBRouI5Lt/NDDdOZcR/iblMcQ5VzXXZafH7TGm1CwgTLSYA9QGevnvEJFawGBgqu/2IBFZISIHRGS7iEwo7MV83/r75bo9QUT+m+t2VxFZLCL7ROQbEel7sg0Wkb4iklbYfn37fE1EporIQRFZKyLJubZtKCJviMguEdkjIk+LSCtgEtDN11PZ59t2iojcn+u5N4jIJhHZKyJv5+7R+A61jROR70TkVxF5JkDwGmMBYaKDc+4I8BpwTa67LwM2OOe+8d1O9z1eExgE/F5Ehp3svkTkDOA94H40lG4DXheReiV/B4UaCryKtvlt4GlfGxKAd4GtQBJwBvCqc249MA740tdTqRmg/ecDD6G/n9N9r/Fqvs0GA52Bc3zbXVTWb8xEPwsIE01eBi4VkUq+29f47gPAOfeZc261cy7LObcKeAXoU4L9XA3Mdc7N9b3Wx0AqMLCI58zx9Tb2icick9jXF779ZALT0A9sgC5AfWC8cy7dOXfUOfdFoa+S11XAi8655c65Y8Df0R5HUq5tHnbO7XPObQM+BdqfRJtNnLCAMFHD9wG5C0gRkSboN+AZ/sdF5FwR+dR3SGY/+k27bgl2dSYaRP4P/H1AT/TbeGGGOedq+i4n02v5KdfPh4FE34B7Q2BrCcdW6qO9BgCcc4eAPWgvpLD9Vi3BfkyMi8lT/kxMm4r2HFoAHznnfs712Az0EM3FzrmjIvIkhQdEOlA51+3Tcv28HZjmnLuhlG3Nsw/fYaNgD1NtBxqJSPkAIVFcCeadaMj591sFqAPsCHLfxgDWgzDRZyrQD7iBXIeXfKoBe33h0AW4sojXWQlcLiIVfAPDI3M99l9giIhcJCIJIpLoG3BucJJt/RbtEQwSkQrAP4GKQT53KfAj8LCIVPG1oYfvsZ+BBiJySiHPnQFcJyLtRaQi8CCwxDm35STbb+KcBYSJKr4PucVAFXRQN7c/APeKyEHgLnRQuzD/As4CfgXuIdehKufcdiAF+Ad6SGs7MJ6T/P/inNvva9N/0G/v6UBakU/KeW4mMARoCmzzPW+U7+H5wFrgJxHZHeC5n/je3+toyJwFXH4ybTcGQGzBIGOMMYFYD8IYY0xAFhDGGGMCsoAwxhgTkAWEMcaYgKJ6HkTdunVdUlKS180wxpiosmzZst3OuWLn5ER1QCQlJZGamup1M4wxJqqIyNbit7JDTMYYYwoRMQHhK238qYis95U9/rPXbTLGmHgWSYeYMoBbnXPLRaQasExEPnbOrfO6YcYYE48ipgfhnPvRObfc9/NBYD15q08aY4wJo4gJiNx8des7AEsCPDZWRFJFJHXXrl3hbpoxxsSNiAsIEamKFhn7i3PuQP7HnXOTnXPJzrnkevVCscCXMcYYiLCA8JVEfh1dhP4Nr9tjjDHxLGIGqX2Lpv8fsN4597jX7THGmEiQlQVbt8L69Xkvv/0tXH99aPcdMQEB9ABGA6tFZKXvvn845+Z62CZjjAmLY8fgu+8KBsHGjXD0aMHt27ePo4DwrTcsXrfDGGNC6cCBgiGwfj18/732FgI5/XRo1UovLVvqddu2oW9rxASEMcbEkoMHYd06WLs27yWtkDUFy5WDpk0LBkHLllCzZnjb7mcBYYwxpXDokPYA8gfBtm2Bt09MhBYtcoLAHwLNmuljkcQCwhhjgnD4cOAg2LIl8PYVK+oHf+vWeS+NG0NCQlibXmIWEMYYk8vx4zowvHq1XvxB8MMP4FzB7StU0B5B7hBo0waaNIHyUf4JG+XNN8aYknEOdu7UEFi1KueyYQOcOFFw+/LloXnzgj2Cpk01JGKRBYQxJualp2svwB8C/lDYu7fgtiL6od+unfYE/EHQrBmcckr42+4lCwhjTMzIytLTRfMHwebNgQ8P1aqlQZD70ro1VKkS/rZHIgsIY0xUOnxYA2DlSlixQq9Xr9b78ytfXs8WatdO5w/4w6B+fe0xmMAsIIwxEW/37rxBsGKFDiQHmlh2xhl5Q6BdOx1EjrfDQ2XBAsIYEzGc09NG84dBoMllCQk6RtC+PXTooNfnnAN16oS92THLAsIY44mMDJ1XsHx53kDYv7/gtpUr64e/Pwg6dNCxgkqVwt/ueGIBYYwJucxMPX00NVUvy5ZpGBw5UnDbevU0AHKHQdOm0TO5LGQOHMiZlLFmDQwYoJcQsoAwxpSpzEz49tucIEhN1d5BoMHjxo2hY8e8gXD66XE+cJyenjNle82anOvt2/NuV66cBYQxJnJlZWmJan8Q+MPg0KGC2555JnTqBMnJeunYMc7HC06c0JH2VavyBkFhU7YrVtRTsfxTtfv2DXkTLSCMMUFxTgeLlyzRi7+HcPBgwW0bNiwYBnG7QnD+Kdv+6/Xri56y3aZNzkw9j2p3WEAYYwI6eFBDwB8IS5bAjz8W3K5+/Zwg6NRJL7/5TfjbGxHS07UXkLt+x+rVgadsg37o+6ds+8OgefOIOSc3ogJCRF4EBgO/OOfaeN0eY+JFZqYe4cgdBuvWFZxnUKMGdOkC556r18nJOmYQdzIzc6Zs5w6D778vfMq2f3KG/7p1a6hWLfxtPwkRFRDAFOBpYKrH7TAmpu3cCV99lfdwUXp63m3Kl9eB43PPzbk0a6Zjo3Hl4EH45hs97Wrlypwxg0CnYPmnbOeeqde2rc7ei8KR94gKCOfcAhFJ8rodxsSSzEz9krtokV4WL4atWwtul5SUNww6dIizeQbO6TE0fxD4J2Zs2hR4+zPOyBsCMThlO6ICIhgiMhYYC9CoUSOPW2NM5DlwQHsH/jD46quCZxVVq5Y3DLp0ibNxg8xMPf3KHwL+yy+/FNy2QoWcKdv+6dpt20Lt2uFvd5hFXUA45yYDkwGSk5MDHOwzJn74S1P4w2DRIu0t5D8M3qQJdO8OPXrodevWcTTxLHdVP3/PYNWqwIeIatTIW7ujfXs9ZBRDvYKTEXUBYUw88x8u+vxzWLhQQyH/mUUVKuhppf4w6N49jgaSDx3SEPBPzFi2rPCqfo0a5YSAPxTOPDMqxwpCxQLCmAh24oTWKlqwQC8LFxasVVSnTt7eQXJynIwdpKdrb2DZspxA2LChYPfJqvqVWEQFhIi8AvQF6opIGnC3c+7/vG2VMeFz7BgsXaph8Pnn2kPIf3ZRUhL06QO9ekHPnnrafMx/6U1PL9gz2LChYM+gfHkNA/+EjE6ddLwgLhKz7EVUQDjnrvC6DcaE0+HD8OWXGgYLFuiA8rFjebdp0QJ69865xPy5GYcPaxj4g2DZMp11nD8MEhK0J+Cfst2pk55JlJjoTbtjUEQFhDGx7sQJ7SF88olevvyyYLWFtm01CPy9hNNO86atYeEv87pkif5ilizRQZbMzLzbJSToh3/u6drt2lnPIMQsIIwJoawsnWP1yScwf772EnIfMhLRAeW+fTUUevaM8UPjO3bkBMHSpdpLyF/MqVw5TUl/GCQnWxh4xALCmDLknJa6nj9fQ+HTTwuW4WnVCi64AM4/X4OhVi1Pmhp6/mJOuQNhx46C2zVqlLd+R6dOUKVK+NtrCrCAMKaUdu2Cjz+Gjz6CefMKfgaeeWZOIJx/foyecpqVpcWbFi/OW8wp/xlFNWpA5845YdClS4wfQ4tuFhDGnKQTJ3Ts4MMP9bJ8ed7PwXr1NAj8odCkSQyeZXTggIbA4sU507UPHMi7TYUKOoicu3fQvHkcFnOKXhYQxgTh++9zAmH+/LyHzStW1PGDiy6CCy/UsyxjKhCc01+APwwWLw48XbtRI52I0bWrBkL79nZGUZSzgDAmgMOHNQg++EBDIX+9tlatNBAuukjDoXJlb9oZEkeP6qmluQMhf40i/3Rt/1Ttbt20eJ2JKRYQxvhs2wbvvQfvvqvhcPRozmM1a0K/fjmh0LChd+0sc3v3ahGnBQvgiy80HPKfe1uvXk4YdO+uA8l2VlHMs4AwcSszUw+jv/uuXlavzvt4584wcKAGQufOYV/tMXR27tSaHQsXaijkf+Mielpp7t7BWWfF2HEzE4xY+SdvTFD27dOzjd59F+bOhT17ch6rWlXHEAYPhosvjpGTa/zjB/4wWLAANm/Ou03Fijpm0KuXXrp1g+rVvWmviSgWECbmpaXBnDnw5pta0iL3JN0mTWDIEBg0SMcSKlb0rp1lwn+6ae7qfjt35t2mWjXtGfTurYHQubMNJpuALCBMTNq4UQPhzTd1fpZfQoKWsBg8WC8tWkT5kRPntFTFp5/qwMlnn+XtFoFOzfaHQe/eeuppzBwvM6Fk/0pMTHBO5yO88YaGwvr1OY9VqqTjCJdcoqEQ1QuB+Q8Z+QPh00/hp5/ybnPGGZqC/lBo1SrKU9B4xQLCRK2sLJ2wNmuWhsK2bTmP1ayph44uuUTDIapPQ92+PW8g5H6joGuFnneezso77zwbUDZlxgLCRBXn4OuvYeZMeO01HV/wq18fhg3TUOjTR0/Vj0q7d+dU95s/v+AkjNq1tYiTPxCsh2BCJKICQkQGAE8BCcB/nHMPe9wkEwGc04XD/KGwZUvOY40awWWXwciROtYalVUcjh/XyWgffaSX/LU7qlfXw0X+QGjXLkrfqIk2ERMQIpIAPAP0B9KAr0XkbefcOm9bZryyerWGwsyZeb9E168Pl14Ko0bp2ZlR91npH1j2B8Lnn+etAX7KKTp20K+fhkLHjjaobDwRSf/qugCbnHPfA4jIq0AKYAERR3buhBkzYNo0WLUq5/5TT9VewqhRumZC1IXC7t1a6vWjj7T0a+5jY6AFnC68EPr3j8HaHSZaRVJAnAFsz3U7DTjXo7aYMDp0SAeZp03TQ+/+lSVr1coJhT59ouxLdGamroXw3ns6Iy//YaNTT9UwuPBC7SnUr+9dW40pRCT9lws0yuYKbCQyFhgL0CjmF+eNXZmZGgbTpumpqYcP6/2nnKKnoo4erWUuTjnF23aelL17tbLf3Lla5W/37pzHKlbUw0b+ULBxBBMFIikg0oDcJdAaADvzb+ScmwxMBkhOTi4QICaybdoEL74IU6bAjz/m3N+jh4bCpZdG0TwF5/Q4mL+X8OWXOd0fgKQknaI9cKCedWSHjUyUiaSA+BpoJiKNgR3A5cCV3jbJlIUjR7SX8J//6ERfv6ZNNRSuvlpLXkSF9HQdQ5g7Vy+5l48rX16DYOBADYaon6Zt4l3EBIRzLkNE/gh8iJ7m+qJzbq3HzTKlsHKlhsL06VokD3RW86hR8Nvfaq8hKj4/f/4Z3nkH3npLB5pz1wE//fScQLjgAityZ2JKxAQEgHNuLjDX63aYkktP10CYPFmXFfBLTobf/Q4uv1yXJY54GzdqILz1lh46yj3A3LWrDpQMGqR1jaIi5Yw5eREVECZ6ffstPPusji3s36/31ayph5B++1v9HI1oWVm6rrI/FDZuzHmsYkXtHQwbpvU7YqIOuDHFs4AwJZaZqeOzzzyjp/f7desGf/gDjBgR4YuOnTihgyKzZ2so/PxzzmO1amkvISVFizlVrepZM43xigWEOWl79sALL8CkSbB1q95XqRJceSXcdBN06OBt+4p04oSeXzt7tk6+2Ls357GkJA2ElBSdjRe1xZyMKRsWECZo330HTzyhh5GOHNH7zjpLewvXXadfuiPS8eM6uDxrlvYUfv0157GWLfXc2uHDbTzBmHwsIEyRnNP17B97TD9b/WO1F18Mf/qTzvmKyPlex47pcS//4SP/wAhA69Y6RfvSS+Hssy0UjCmEBYQJKCND5y489ljOimynnKKDzrfcop+rEScrS5fZnDFDgyF3T6FtWw2EkSO1PLYxplgWECaPY8fg5Zfh4Yfhhx/0vtq19TDSTTdF4Ak8/lrgM2bAq6/mnbjWtq1Ouhg5UietGWNOigWEAXRM4T//gX//O6fQaNOm2lu49toIrBKxaRO88ooGw4YNOfcnJelo+RVXaIVUY0yJWUDEuUOH9GykiRNzzvJs0wbuvFOPyCQkeNu+PPbu1V7Cyy/nHPcCqFtXewpXXqnn2NqYgjFlwgIiTh06BP/zPzrG4D/Ts1Mn+Oc/YejQCBp4zsjQ2kcvvaSDzceP6/1Vq+raoldeqZPY7JRUY8qcBUScOXYMnn8eHngAfvlF7+vWDf71LxgwIIK+fG/YoOfTTpumqwiBNu7CC/WY17BhEXjcy5jYYgERJzIy9LN2wgTYtk3vO/dcuP9+/QIeEcGwf78eQpoyRcte+DVrBmPG6ClUDRsW9mxjTBmzgIhxzsHrr2sPwT+W26aN9iCGDImAYHBOxxMmTdLFp/0z8KpV03GFMWOge/cIaKgx8ccCIoZ9/TX89a860Q10zYV779WKqp4PPh84oGVfn38evvkm5/7zzoPrr9fxhSpVvGufMcYCIhalpcHf/w7//a/ePvVUuOcerarq+VhuaqqGwiuvaG1w0LOQrrsObrhBDycZYyKCBUQMSU+HRx/VuQxHjujM57/+Ff7xD4/XsTl6VMcWnn467yIRffrAjTdqHaSKFb1rnzEmoIgICBG5FJgAtAK6OOdSvW1RdHEO5syBP/8Ztm/X+y69FB55BBo39rBhO3fqIhHPPw+7d+t9tWrpuMLYsVoozxgTsSIiIIA1wHDgea8bEm1++AFuvlnXZQDo2BGefBJ69fKoQc7BkiXw1FNaDykjQ+9v314TbNSoCF8kwhjjFxEB4ZxbDyB2pkrQjh/XSW733aeHk6pXh4ce0iM2ngxAnzgBr72mwfD113pfuXJaB+lPf9L1Fezva0xUiYiAOBkiMhYYC9CoUSOPW+ONL7/UAef16/X2lVdqWHhSSO/gQS3i9MQTOce3atfWAec//AHi9G9kTCwIW0CIyDwg0EfYnc65t4J9HefcZGAyQHJysitm85hy5AjcdRc8/rhWtm7WTA/x9+vnQWN+/llrdTz7LOzbp/e1aqWj4lddZbOcjYkBYQsI55wXH2Mx46uvdGx340Y9cnPHHXD33ZCYGOaGfPeddlemTNG6HQA9esDtt8OgQRFUxMkYU1pRd4gp3hw/rrOgJ07UXkOrVvrZ3KVLmBuyZo0OeMyalbOsXEoKjB+vAWGMiTkR8XVPRC4RkTSgG/CeiHzodZsiwcaNWkjv3//W23fcAcuXhzkcVq3Sgea2bXUQunz5nAGQOXMsHIyJYRHRg3DOvQm86XU7IoVzWt365pvh8GGdyzBjBnTtGsZGrFypdTne9P1ZKlbUgefbb4cGDcLYEGOMVyIiIEyOAwd0DtnMmXr7qqt0HDhsM6FXrdLBjTlz9HZiojbo9tuhfv0wNcIYEwksICLIunVadWLjRl0P59lntcJ1WHz/vZ4iNWOGdmEqVYJx43SM4fTTw9QIY0wksYCIELNmab269HQtx/3GG2GqW/fzzzr4PHmyTnY75RT4/e91wMOTiRXGmEhhAeGxjAytvDpxot6+4gp44YUwVLrev193+sQTmkoiulLbhAmQlBTinRtjooEFhIcOHNDSRB98oCcHTZyoVSlCWpEiI0NnPv/rXzkF9FJSdGm5Nm1CuGNjTLSxgPDI9u06r2z1al0O4fXXoXfvEO/0k090pvPq1Xq7Z08t+dq9e4h3bIyJRhYQHli2TJf7/PFHaNFCK7GedVYId7hpE9x2G7zlq2iSlKTdleHDrYCeMaZQETFRLp58/LH2FH78Efr21cJ7IQuH9HQdbD77bA2HqlXhwQd1ktuIERYOxpgiWQ8ijN58U9eDPn5cT1/9z3/0pKGQePttnWm3bZsGwXXXwQMP2CmrxpigWQ8iTKZO1VXejh/XgegpU0IUDlu36qBzSoqGQ4cOWunvxRctHIwxJ8UCIgyefVbPIM3M1JOHnnwyBEVPMzJ0Qeqzz9beQ7VqunjP0qUeVPYzxsQCO8QUYpMnw0036c8TJ8Ktt4ZgJ2vX6iEk/0pul12m8xusNIYxphSsBxFC06ZptQrQtXXKPBwyMnTQuWNHDYcGDWDuXC3kZOFgjCkl60GEyGuv6QI/zulUg5tvLuMdrF6tvYZly/T2DTfoIaYaNcp4R8aYeGU9iBD45BOtwpqVpZUr/va3MnzxrCxd0a1TJw2HRo3gww/1WJaFgzGmDFkPooytWaPzzzIydNLyXXeV4Yv/+KOOdn/8sd4eO1Z7DWGrBW6MiScR0YMQkUdFZIOIrBKRN0WkptdtKomdO2HgQK2xNGKEDkqX2Vy0d9+Fdu00HOrU0TOVnn/ewsEYEzIRERDAx0Ab51w74Fvg7x6356Slp8PgwVpjqVs3HaAuk1NZjx3TiRNDhmhxvX79dFGfIUPK4MWNMaZwEREQzrmPnHMZvptfAVG1pqVzerRnxQpo2lS/3FeqVAYvvH271uX43/+FChX0cNKHH9oZSsaYsChyDEJEGjnntoWrMT7XAzMLe1BExgJjARo1ahSuNhXp6ad1IbYqVbTkUd26ZfCi8+bp4hC7d+tA9OzZ0LlzGbywMcYEp7gexAYRuUtEKpZ2RyIyT0TWBLik5NrmTiADmF7Y6zjnJjvnkp1zyfXq1Stts0pt0SK45Rb9+cUXdSJzqTgHDz0EF12k4XDhhXq2koWDMSbMijuL6S/AfcB1IvJX59ycku7IOdevqMdF5FpgMHCBc86VdD/h9OuvWnwvI0ND4rLLSvmCR47A9dfDq6/q7bvu0ktCQqnbaowxJ6vIHoRzbjLQDHgDmCkiH4pIi7JuhIgMAG4HhjrnDpf164eCc7p0c1oadO0KDz9cyhf8+Wc4/3wNh2rV4J134J57LByMMZ4pdpDaOXfAOXcr0BY4AawSkYkiUq0M2/E0UA34WERWisikMnztkJgxQytaVKkC//2vjiGX2OrVWlDvq6/gzDP1uNXgwWXWVmOMKYmgJ8o5574FBovIRcDjwFUicrtzbmppG+Gca1ra1winbdtyCvA99VQpF/z56COdNHHokHZF5syB3/ymTNppjDGlcdKnuTrnPgTaAQ8Bj4vI4jJvVQTzH1rav1+XXLj++lK82MyZ2lM4dEgHM+bPt3AwxkSMoHsQIlIVaIMeamrju5QDzg1N0yLT669rwdQaNWDSpFLMlH7uOe2GOKcj3I8+GoJFIowxpuSKmwfxEDmB0BAQYDewGlgF/Bf4JsRtjBj79+ukZtBB6dNOK8GLOKcluv/5T7390ENw++22PrQxJuIU14MYiAbBM77rVc65H0Peqgg1YYLWy+vaVWdOl/hF7r1XewuTJmmZbmOMiUBFBoRz7pxwNSTSbdoEzzyjX/Sfe66ER4PuuUfDISEBpk+HUaPKvJ3GGFNW7KB3kP7+dzhxQqttt29fghe4917tPZQrZ+FgjIkKFhBBWLxYSyFVqgT33VeCF3joIbj7bg2HadMsHIwxUcECIgj/+Ide33KLLvt8UiZP1hcQgZdfhiuvLPP2GWNMKFhAFGPRIvj8cz2tdfz4k3zyW2/ppAnQgYurry7z9hljTKhYQBTjwQf1+o9/PMklnxct0slvWVl6eOnGG0PSPmOMCRULiCKsWKGT4ipXhr/85SSeuGmTrvh29KieD3v33SFrozHGhIoFRBH8FVpvvPEkFgE6cEBrcPz6q5bRePZZmwRnjIlKFhCF2LFDy2qUL5+zIFCxsrJ0nGHdOl05aPp0K9dtjIlaFhCFeOEFyMyESy45iTOX7r5b13GoWVMHqKtXD2kbjTEmlCwgAjhxQs9OBfjDH4J80rvvwv3361yHmTOhaVRVMDfGmAIsIAJ45x2tudSqFfTpE8QT0tJgzBj9+aGHdB1pY4yJchERECJyn4is8q0m95GI1PeyPdOm6fXvfhfE+HJmJlx1FezZAxddBLfdFvL2GWNMOEREQACPOufaOefaA+8Cd3nVkF9/1VNby5WDK64I4gkPPAALFmjt76lTbU0HY0zMiIhPM+fcgVw3qwDOq7bMng3Hj8P558Pppxez8YoVWoRPRLsdp54aljYaY0w4BL2iXKiJyAPANcB+4LwithsLjAVo1KhRmbdj+nS9vuqqYjY8cULXG83M1FWE+vUr87YYY4yXxLnwfFkXkXlAoDXY7nTOvZVru78Dic65YqcfJycnu9TU1DJr4y+/6JGiU07Rn4s8S/X+++Ff/4LGjWH1aqhSpczaYYwxoSQiy5xzycVtF7YehHMu2K/YM4D3gLDXp3j/fV0R9LzzigmHtWv10BLohAkLB2NMDIqIMQgRaZbr5lBggxfteO89vR40qIiNnIObbtJDTDfcABdcEJa2GWNMuEXKGMTDItICyAK2AuPC3YATJ+DDD/XnIgNi1iyt/12nDjzySFjaZowxXoiIgHDOjfC6DV98oXX2zj5bhxUCSk/Pmefw4INQq1bY2meMMeEWEYeYIsH77+t1kb2HRx+F7duhY0f47W/D0i5jjPGKBYTP55/rdaFnq+7aBY89pj8/+aRVaTXGxDwLCODgQVi2TD/zu3UrZKOHH4ZDh2DgQOjVK6ztM8YYL1hAAF9+qfPdOnWCatUCbJCWBs88oz/ff39Y22aMMV6xgEBLKQH07l3IBg8+CMeOwaWXQocOYWuXMcZ4yQICWLpUr7t3D/DgL7/ASy/pzxMmhKtJxhjjubgPCOd0/AEgOdDE82eegaNHYcgQPQfWGGPiRNwHxNatsHcv1KsXYGnRw4dzxh7Gjw9724yOVLZtAAAVgklEQVQxxktxHxD+3kPHjgEWB5oyRRcC6tIFevYMd9OMMcZTFhC+gOjUKd8DzsFTT+nPt94axNJyxhgTW+I+IFat0usCJyctWADffgv168Pw4WFvlzHGeC3uA2KDr25sq1b5HnjhBb2+7jooHxElq4wxJqziOiCOHYMfftBlpJs2zfXA3r269ihYzSVjTNyK64DYvBmysrR6a8WKuR549VVNj/79iyjtaowxsS2uA2LjRr1u0SLfAzNn6vXo0WFtjzHGRJK4Dgj/+EOegNi5ExYu1C5FSoon7TLGmEgQUQEhIreJiBORuuHYX8AexOzZeorrxRcXszC1McbEtogJCBFpCPQHtoVrn99/r9d5Bqj9h5dGjQpXM4wxJiJFTEAATwB/A1y4drhjh15nl9j45RdYvFgPLw0eHK5mGGNMRIqIgBCRocAO59w3QWw7VkRSRSR1165dJd6nczkBccYZvjs//FCv+/aFqlVL/NrGGBMLwjYDTETmAacFeOhO4B/AhcG8jnNuMjAZIDk5ucS9jV9/1TNZq1fPlQUffKDXF19c0pc1xpiYEbaAcM4FXO1ZRNoCjYFvROsdNQCWi0gX59xPoWpPgd5DZmZOD2LAgFDt1hhjoobnNSScc6uBU/23RWQLkOyc2x3K/RYIiGXLtHJrUhI0bx7KXRtjTFSIiDEIL/gDon593x3+3sPFF1vlVmOMIQJ6EPk555LCsZ8CPQj/wtTnnx+O3RtjTMSL2x7Ezp16fcYZQEYGfPml3mELAxljDBDHAZGnB/HNN5CerjPmTgt0opUxxsSfuA2In3znR51+OrBokd7o0cOz9hhjTKSJ24DYu1eva9cm5/BS9+6etccYYyJN3AbEr7/qde3awIoVeiM52bP2GGNMpInLgMjMhH379Oea5Q/p2tPly0Pr1t42zBhjIkhcBsT+/VqLqUYNSFi7Sm+0bp1vWTljjIlvcRkQ/sNLtWoBy5frjQ4dPGuPMcZEorgMCP8Ada1awMqVesMCwhhj8ojLgMgzQL1+vd5o08az9hhjTCSKy4A4cECvq1dHB6gh37qjxhhj4jIg0tP1ukr5Y7B7N1SpkqtqnzHGGIjTgDh8WK+rZPjOdW3e3Cq4GmNMPnEZEP4eROXDe/QHW//BGGMKiMuAyO5BHPpZf7CAMMaYAuIyILLHIA74an5bQBhjTAERERAiMkFEdojISt9lYCj35+9BVD7g60E0bhzK3RljTFSKpBXlnnDOTQzHjgr0ILKXlTPGGOMXET2IcMsOiH2+gDj9dO8aY4wxESqSehB/FJFrgFTgVufcr4E2EpGxwFiARo0alWhH2YeY3CGoU8eK9JmgnDhxgrS0NI4ePep1U4wJSmJiIg0aNKBChQolen7YAkJE5gGB1vO8E3gOuA9wvuvHgOsDvY5zbjIwGSA5OdmVpC3ZPQjS7fCSCVpaWhrVqlUjKSkJsXkzJsI559izZw9paWk0LuE4a9gCwjnXL5jtROQF4N1QtiW7B8Fhm0Ftgnb06FELBxM1RIQ6deqwa9euEr9GRIxBiEjuQYBLgDWh3F+eHoQFhDkJFg4mmpT232ukjEH8W0Tao4eYtgA3hnJnbdpAxT07qfnjPgsIY4wpRET0IJxzo51zbZ1z7ZxzQ51zP4Zyf6+8AqmDJ9CI7TYGYaJKWloaKSkpNGvWjLPOOos///nPHD9+vMjn7Nu3j2effTb79s6dOxk5cmSomxqUzz77jMGDB3vdjEKVpn1z5sxh3bp12bfvuusu5s2bV+RzBg4cyL59+wr8zbwSEQHhiR079Np6ECZKOOcYPnw4w4YN47vvvuPbb7/l0KFD3HnnnUU+L/+HTf369Zk9e3aomxvRMjMzQ76P/AFx77330q9f0UOxc+fOpWbNmhYQnvvZN4v6tEAnVhlTDJHQXIowf/58EhMTue666wBISEjgiSee4MUXX+Tw4cNMmTKFlJQUBgwYQIsWLbjnnnsAuOOOO9i8eTPt27dn/PjxbNmyhTa+BbKmTJnCsGHDGDJkCI0bN+bpp5/m8ccfp0OHDnTt2pW9vuUX+/btS2pqKgC7d+8mKSnppJ4fjL179zJs2DDatWtH165dWbVqFQBt27Zl3759OOeoU6cOU6dOBWD06NEFvpF/9tln9O7dm0suuYSzzz6bcePGkZWVBUDVqlW56667OPfcc/nyyy/55JNP6NChA23btuX666/n2LFjAHzwwQe0bNmSnj178sYbb2S/9oQJE5g4MWcub5s2bdiyZQsAU6dOpV27dpxzzjmMHj2axYsX8/bbbzN+/Hjat2/P5s2bGTNmDLNnz+b999/nsssuy9PmIUOGAJCUlMTu3bsL/M1Gjx7NW2+9lf2cq666irfffjvo321JxW9A+P/h1q7tbTuMCdLatWvp1KlTnvuqV69Oo0aN2LRpEwBLly5l+vTprFy5klmzZpGamsrDDz/MWWedxcqVK3n00UcLvO6aNWuYMWMGS5cu5c4776Ry5cqsWLGCbt26ZX8YFyWY50+aNIlJkyYV+Tp33303HTp0YNWqVTz44INcc801APTo0YNFixaxdu1amjRpwsKFCwH46quv6Nq1a4HXWbp0KY899hirV69m8+bN2R/y6enptGnThiVLlpCcnMyYMWOYOXMmq1evJiMjg+eee46jR49yww038M4777Bw4UJ++umnYt//2rVreeCBB5g/fz7ffPMNTz31FN27d2fo0KE8+uijrFy5krPOOit7+/79+/PVV1+R7jtbZubMmYwaNSrPa+b/m/3ud7/jpZdeAmD//v0sXryYgQNDWpEIiOeA8K87WquWt+0w0cm50FyK3KULeFZK7vv79+9PnTp1qFSpEsOHD+eLL74o9q2cd955VKtWjXr16lGjRo3sb7Nt27bN/oZc2uePGzeOcePGFfk6X3zxBaNHjwbg/PPPZ8+ePezfv59evXqxYMECFixYwO9//3tWr17Njh07qF27NlWrVi3wOl26dKFJkyYkJCRwxRVXZP8OEhISGDFiBAAbN26kcePGNPcV6rz22mtZsGABGzZsoHHjxjRr1gwR4eqrry72/c+fP5+RI0dSt25dAGoX86WzfPnyDBgwgHfeeYeMjAzee+89UlJSinxOnz592LRpE7/88guvvPIKI0aMoHz50J9jFJ8BkZUF+/frzzVretsWY4LUunXr7MM8fgcOHGD79u3Z31DzB0gwpzlWzFVJoFy5ctm3y5UrR0ZGBqAfav5DNflnkgfz/GC4AAEpIvTu3ZuFCxeycOFC+vbtS7169Zg9eza9evUK+DqF/Q4SExNJSEgodF+FPd8v9+8Acn4PhQV3UUaNGsVrr73G/Pnz6dy5M9WqVSv2OaNHj2b69Om89NJL2YcZQy0+A2L/fv22Vr06+P7BGBPpLrjgAg4fPpx92CYzM5Nbb72VMWPGULlyZQA+/vhj9u7dy5EjR5gzZw49evSgWrVqHDx4sFT7TkpKYtmyZQAhG+Du3bs306dPB/S4fN26dalevToNGzZk9+7dfPfddzRp0oSePXsyceLEQgNi6dKl/PDDD2RlZTFz5kx69uxZYJuWLVuyZcuW7ENz06ZNo0+fPrRs2ZIffviBzZs3A/DKK69kPycpKYnly5cDsHz5cn744QdA/y6vvfYae/boAmT+cZeifu99+/Zl+fLlvPDCCwUOLxX23DFjxvDkk08C+mUhHOIzIPzjD3Z4yUQREeHNN99k1qxZNGvWjObNm5OYmMiDDz6YvU3Pnj0ZPXo07du3Z8SIESQnJ1OnTh169OhBmzZtGD9+fIn2fdttt/Hcc8/RvXt3du/efdLPD2YMYsKECaSmptKuXTvuuOMOXn755ezHzj333OzDQb169WLHjh0BP/gBunXrxh133EGbNm1o3Lgxl1xySYFtEhMTeemll7j00ktp27Yt5cqVY9y4cSQmJjJ58mQGDRpEz549OfPMM7OfM2LECPbu3Uv79u157rnnstvTunVr7rzzTvr06cM555zDLbfcAsDll1/Oo48+SocOHbIDxy8hIYHBgwfz/vvvBzyNNtDf7De/+Q2tWrUKW+8BQIrqakW65ORkl7/LHZTUVOjcGTp0AN83AmOKs379elq1auV1Mwo1ZcoUUlNTefrpp71uimc+++wzJk6cyLvvhrRajycOHz5M27ZtWb58OTVq1Aj6eYH+3YrIMudccnHPjc8ehA1QG2OiyLx582jZsiU333zzSYVDaUVKqY3wOnBAr6tX97YdxpShMWPGMGbMGK+b4am+ffvSt29fr5tR5vr168e2bdvCvt/47EFkV+ur4m07jDEmgsVnQPjrfVtAGGNMoeIzIKwHYYwxxYrPgMheMaiyt+0wxpgIFp8BYT0IE6Virdz3lClT+OMf/xjwMX/p66LkLiIYLvFUAjw+A8J6ECYKxVu5b3/p63CxEuAFRUxAiMjNIrJRRNaKyL9DujPrQZhS8qDad8yW+965cycDBgygWbNm/O1vf8u+31/6GuC+++6jZcuW9O/fnyuuuCJP2e1Zs2bRpUsXmjdvnl3pNTcrAV5yETEPQkTOA1KAds65YyJyakh3aD0IE4WCLfe9Zs0aKleuTOfOnRk0aBAPP/wwa9asYeXKlQAFKrSuWbOGFStWcPToUZo2bcojjzzCihUr+Otf/8rUqVP5y1/+UmS7gnm+v8xGoIquK1euZMWKFVSsWJEWLVpw880307Bhw+zHU1NTef3111mxYgUZGRl07Ngxz+8hIyODpUuXMnfuXO65556Ah2yWLl3KunXrOPPMMxkwYABvvPEGI0eOzC4Bfu+993L06FGaNWvGJ598QvPmzbnmmmt47rnnGDduHDfccAPz58+nadOmAWsn5ecvAb5o0SLq1q3L3r17qV27NkOHDmXw4MEFDvH179+fG2+8kfT0dKpUqVJoCfDcf8fPP/+cJ554gpSUlOwS4LnLk5SFSOlB/B542Dl3DMA590tI92Y9CFNKHlT7jtly3xdccAE1atQgMTGRs88+m61bt+Z5/IsvviAlJYVKlSpRrVq17Nf3Gz58OACdOnUqtL1WArxkIiUgmgO9RGSJiHwuIp0L21BExopIqoik7tq1q2R7s3kQJgrFarnv3M9PSEgo8Jzi6sX5nx/ouX5WArxkwhYQIjJPRNYEuKSgh7pqAV2B8cBrUshv1zk32TmX7JxLrlevXska4+9B2CEmE0Vivdx3YXr27Mk777zD0aNHOXToEO+9995Jv4aVAC+ZsAWEc66fc65NgMtbQBrwhlNLgSygbsgaYz0IE4Vivdx3YTp37szQoUM555xzGD58OMnJySddsM5KgJeQc87zCzAOuNf3c3NgO75S5EVdOnXq5EqkRw/natVy7rvvSvZ8E5fWrVvndROK9NJLL7mbbrrJ62aExMGDB51zzqWnp7tOnTq5ZcuWBf3cTz/91A0aNChUTfNUenq6a9Kkidu3b1+h2wT6dwukuiA+myPiLCbgReBFEVkDHAeu9b2J0Ahi4M4YEznGjh3LunXrOHr0KNdeey0dO3b0ukmemzdvHtdffz233HJLyEqAx+eCQcaUQKQvGGRMILZgkDFhEs1fqEz8Ke2/VwsIY4KUmJjInj17LCRMVHDOsWfPHhITE0v8GpEyBmFMxGvQoAFpaWmUeP6NMWGWmJhIgwYNSvx8CwhjglShQgUaN27sdTOMCRs7xGSMMSYgCwhjjDEBWUAYY4wJKKrnQYjILmBrsRsGVhc4+ZoB0cveb2yLt/cL8feey/L9numcK7aYXVQHRGmISGowE0Vihb3f2BZv7xfi7z178X7tEJMxxpiALCCMMcYEFM8BMdnrBoSZvd/YFm/vF+LvPYf9/cbtGIQxxpiixXMPwhhjTBEsIIwxxgQU0wEhIgNEZKOIbBKROwI8XlFEZvoeXyIiSeFvZdkK4j2PEZFdIrLSd/mdF+0sCyLyooj84ltoKtDjIiL/4/tdrBKRqF9lJoj33FdE9uf6+94V7jaWFRFpKCKfish6EVkrIn8OsE1M/Y2DfM/h+xsHs+xcNF6ABGAz0AQ4BfgGODvfNn8AJvl+vhyY6XW7w/CexwBPe93WMnq/vYGOwJpCHh8IvA8I0BVY4nWbw/Ce+wLvet3OMnqvpwMdfT9XA74N8O85pv7GQb7nsP2NY7kH0QXY5Jz73jl3HHgVSMm3TQrwsu/n2cAFIiJhbGNZC+Y9xwzn3AJgbxGbpABTnfoKqCkip4endaERxHuOGc65H51zy30/HwTWA2fk2yym/sZBvuewieWAOAPYnut2GgV/0dnbOOcygP1AnbC0LjSCec8AI3zd8dki0jA8TfNEsL+PWNNNRL4RkfdFpLXXjSkLvsO/HYAl+R6K2b9xEe8ZwvQ3juWACNQTyH9ObzDbRJNg3s87QJJzrh0wj5weVCyKtb9vMJajdXbOAf4XmONxe0pNRKoCrwN/cc4dyP9wgKdE/d+4mPcctr9xLAdEGpD723EDYGdh24hIeaAG0d19L/Y9O+f2OOeO+W6+AHQKU9u8EMy/gZjinDvgnDvk+3kuUEFE6nrcrBITkQroB+V059wbATaJub9xce85nH/jWA6Ir4FmItJYRE5BB6HfzrfN28C1vp9HAvOdbxQoShX7nvMdnx2KHuOMVW8D1/jOdOkK7HfO/eh1o0JJRE7zj6OJSBf0//geb1tVMr738X/Aeufc44VsFlN/42Deczj/xjG75KhzLkNE/gh8iJ7d86Jzbq2I3AukOufeRv8Q00RkE9pzuNy7FpdekO/5TyIyFMhA3/MYzxpcSiLyCnpGR10RSQPuBioAOOcmAXPRs1w2AYeB67xpadkJ4j2PBH4vIhnAEeDyKP7S0wMYDawWkZW++/4BNIKY/RsH857D9je2UhvGGGMCiuVDTMYYY0rBAsIYY0xAFhDGGGMCsoAwxhgTkAWEMcaYgCwgjDHGBGQBYUwZEpFHRORjr9thTFmwgDCmbLUHVha7lTFRwALCmLJ1DrDC60YYUxYsIIwpIyJyGvAbfD0IEakiIq+KyPJYWK3QxB8LCGPKTge0Ns5GEWkBLEVrXvVwzm3xsmHGlIQFhDFlpz2wGhgGLAZecM5d7Zw74m2zjCkZK9ZnTBkRkZlAf7SS7lDn3OceN8mYUrEehDFlpz3wBlp+O5qXrjUGsB6EMWVCRCoDB4GuQDNgMtDbvwC9MdEoZhcMMibMzkHXQl7jnPtaRFoB74hIF+fcDo/bZkyJ2CEmY8rGOcB3uQak7wIWAW/7ehfGRB07xGSMMSYg60EYY4wJyALCGGNMQBYQxhhjArKAMMYYE5AFhDHGmIAsIIwxxgRkAWGMMSYgCwhjjDEB/T9XYTDHF4rw7AAAAABJRU5ErkJggg==\n", - "text/plain": "
" - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEdCAYAAAD5KpvoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd4VOXywPHvgEGqoBQLRUBB6cWACAJBiogo6gUBUUFQFPXqtf2sIPYC1mtBLICKAoIiKoqNei0UKVIECyABhYD0nmR+f0waIWUJmy3JfJ4njzlnz56ds8GdPW+ZV1QV55xzLitFwh2Ac865yOVJwjnnXLY8STjnnMuWJwnnnHPZ8iThnHMuW54knHPOZcuThHPOuWx5knDOOZctTxKuQBCRNSLSIeX3ZSISF+aQ8kVBvjYXmTxJuIiS8mG/V0R2ichGERklIqWP5ByqWk9VZ+RjXKk/pwTzNbJ5zQ4Z9+XHtTmXE08SLhJdpKqlgaZAM+CBMMeT6iJVLZ3hZ0O4A3Iuv3mScBFLVdcDnwP1AUSkjojMEJFtKc0uF2f1vMzfwEWkqoh8KCIJIrJFRF4SkbtEZFKm5/1XRJ4/0jhFREXk9Azbo0Xk0Uzx3CkiS0Rku4iMF5Hi2cWWsv8doBrwScpdy/9lvrac3o+cXvMIrqu3iCxIef7v3sxVOHmScBFLRKoCXYCFIhIDfAJ8CVQC/g2MFZEzcjlHUeBTYC1QHagMjAPeBTqLSLmU444BegLv5MvFwOVAZ6AG0BDol0NsqOpVwJ+k3708nem6Ank/DnvNDM9/RUReyS5YEbkDu4O7DjgeuARYk6crd1HNk4SLRJNFZBswB5gJPA60AEoDT6rqAVX9FvuA7Z3LuZoDpwB3qepuVd2nqnNU9S9gFtAj5bjOwGZVXZBbXCk/k4/wml5U1Q2q+g/24d44u9gCPF8g70dWrwmAqt6oqjdmdWIRqQg8CFyhqj+parKq/qyqa47skl1BcEy4A3AuC5eo6tcZd6R0Eq9T1eQMu9di375zUhVYq6qJWTw2BhgEvA5cSe53EYfFdQT+zvD7Hiw55BRbbgJ5P7J6zUB0AH5W1cV5iMsVMH4n4aLFBqCqiGT8N1sNWJ/L89YB1VKakzKbDDQUkfpAV2BsHmPbA5TMsH1SgM/LKTaAnBZ7yev7EYgTgG1BOI8rADxJuGjxI7Ab+D8RiUnpRL2IlDb8HMwF/gKeFJFSIlJcRFoBqOo+YCLwHjBXVf/MY2yLgCtEpKiIdAbaBvi8bGNLsRGomc1z8/p+BGIhcK6INBJTS0TqBOG8Lgp5knBRQVUPABcDFwCbgVeAq1X1l1yel4R9eJ6OdQTHYx3UqcYADTi6DutbU15jG9AHu0PJVQCxPQE8kNIHcmem5+bp/UglIiNEZEQ2cX0HPIr1cewEPgJKBHJeV/CIL1/qCjMRqQb8ApykqjvCHY9zkcbvJFyhldKefzswzhOEc1nz0U2uUBKRUlib/1ps+KtzLgve3OSccy5b3tzknHMuW1Hf3FShQgWtXr16uMNwzrmosmDBgs2qWjG346I+SVSvXp358+eHOwznnIsqIrI2kOO8uck551y2PEk455zLlicJ55xz2fIk4ZxzLlueJJxzzmXLk4RzzrlseZJwzjmXLU8SzjkXRRIT4YUX4Pzz4aab8v/1QjaZTkTewlb/2qSq9bM5Jg54HojB1hsOdPEW55wr0P78E8aPhwkTIHX+8KpV+f+6oZxxPRp4CXg7qwdFpBy2cEpnVf1TRCqFMDbnnItIS5bA11/D0KGwc6ftK14cnn4aLrss/18/ZElCVWeJSPUcDrkC+DB1CUlV3RSKuJxzLtKowi+/WCIYPTp9f5MmcNtt0L49nHJKaGKJpNpNtYEYEZkBlAFeUNXs7joGAgMBqlWrFrIAnXMuv736Kjz4ICQkpO/r3Rs6dIA+feDYY0MbTyQliWOAs4D22Hq634vID6p6WKubqo4ERgLExsb6ghjOuag2eza89hrMmgXr1tm+k06CNm1gwADo1Cl8sUVSkojHOqt3A7tFZBbQCAhB14xzzoVWYiJMnAhffQWjRlkTE0C5cnD//XDHHSAS3hghspLEx8BLInIMUAw4G3guvCE551xwbdlidw7PPWd3Dqn+9S8YMgTq14ciETQ5IZRDYN8H4oAKIhIPPIgNdUVVR6jqChH5AlgCJANvqOrSUMXnnHP5afduGDwYnn8+/a7h2GPtrqFTJ2jePDLuHDIL5eim3gEcMwwYFoJwnHMuJCZOhGefhXnzrIkJrK8hLs46pM88M6zh5SqSmpucc65A2L3bRilNm2ZzHMCakGJj4Z57rGkpWniScM65IFmxAqZPtwSxNENj+W232bDWsmXDF1teeZJwzrmjtH493HsvvPNO+r5y5az/4fzzbThrtPIk4ZxzeTRqFDzxBPz6a/q+nj1tRvRFF0V3ckjlScI5547Azz/D2LHW17Bgge0rUwZat7ZmpQ4dwhtfsHmScM65XCQmwsKFMHUqPPYYHDxo+2Ni4IEH4L774JgC+mlaQC/LOeeOnqqV5e7VC/74I31/hw5w553QqhWULh2++ELBk4RzzmXhzTfh4YdtHQeA8uWtNHfHjvbfokXDG1+oeJJwzrkUS5fCmDHW37Boke074QTo0sVGKpUvH974wsGThHOuUEtKsoQwdSo8+igcOGD7jz3Wymjce29k1VIKNU8SzrlC6+efoUcPWLkyfd9551liaNUKSpQIX2yRwpOEc65Q2bvXZj9//HH6GtHHH2+lMjp2tP8Wlv6GQHiScM4VCvPmweefw/vv29KgYPMbOneG//4XTjwxvPFFKk8SzrkCbfVqGD4cXnklfd/xx8Nbb0HXrgV3fkOw+NvjnCuQpk2Df//70JIZ/fpBt27Qrl10FtsLB08SzrkC46+/bH7Dl1/a6m9gTUodO1qCuOiisIYXlUK5Mt1bQFdgk6rWz+G4ZsAPQE9VnRiq+Jxz0Wv9evjiC1vlbeNG21e0KFxzjZXt9ialvAvl6N/RQOecDhCRosBTwLRQBOSci25799pa0dWrw7XXWoKoXRsmTYLNm+H11z1BHK2QJQlVnQX8k8th/wYmAZvyPyLnXLRatsxmQZ9wAtx+uxXgi4uzUUrz5lnZjHLlwh1lPtm/H1580dY9DcESdxGTY0WkMnApcB7QLJdjBwIDAapVq5b/wTnnwm77dvjmG2tWevddu4sAaNIE+vaFW24BkfDGmG8OHoTly60E7aRJkJwcspeOmCQBPA/crapJkstfWlVHAiMBYmNjNQSxOefCJDnZJr716wc7dqTvP/dcGDcOKlcOW2j5Lz7e1kN96CH4/ff0/dWrw003waBB+R5CJCWJWGBcSoKoAHQRkURVnRzesJxz4bBpE9xzD3z6KSQk2L569eCKK2wCXOPGBbim0tdf28y/l15KLyZVqpQteXfffXD22SELJWKShKrWSP1dREYDn3qCcK5wUYUff4TPPrOlQdevt/3VqtmyoI8+CsWKhTfGfJPa1/DFF/Dtt+n7Gza0sbu33goVK4Y8rFAOgX0fiAMqiEg88CAQA6CqI0IVh3MuMv31F/zf/1l/Q6rq1WHCBIiNLcD9DevWWUXBr76y26dUV19tU8LDvHhFyJKEqvY+gmP75WMozrkI8umnVnDvp59sWwSuvx4uvthGLBXISqz791tb2rRpsGJF+v4TTrA3o1MnG70UASKmuck5V3hs3GitKp9+ChNTpsyWKGFlum+91WZIFzgHD8KaNTYl/OmnrW0t1TnnwFNPQdOm1vcQQTxJOOdCJikJRoyA//zH5jakuu46eOGFAnrXsHs3vPcePPDAoc1Jp59unSwXXhjRC2V7knDO5bvff4ehQ23AzpYttq9NG1vw58ILoUaNHJ8efZKTbVLH4sXw7LPW4QJWVTA21rJiz57hjTFAniScc/lC1T4jP/nE7hJSk8Npp1mfw513FsDO6G3b4O23Yfx4+O679P0nnmhzGu69N+qGZ3mScM4F3bZtNgt6ypT0fY0aWatLnToFMDksWwYvvwwffpheYbBIEejf3yZ09OkTtXVCPEk454JmyhQb6j9zpvU5HHOMVWK96CIbsHPsseGOMMgmTbLVjDLOazj5ZBvL26WLVRuMcp4knHNH5cABmDULPvgARo60fUWKWJ/D449Dq1bhjS/o9u61TugPPrA5DqnatYO77rILj7ARSkfDk4RzLs/GjLEhq9u3p+8bNAgeeQTKlw9fXEF38KDN6nv4YVi1Kn1/sWK2/N2gQVCzZgFsR/Mk4Zw7Qr/8Yq0skyfD/Pm2r04duPRSuOQSaJZjDecoomrDsn74wTqc4+PTH6tbF4YMsVLdBXzBioJ9dc65oNm711Z5u+uu9ErVJUpY8/vQoWENLbj27IE5c+CJJ2DGjPT9xx1ndwwPPxx1I5SOhicJ51yO1q6FO+6wOQ579ti+bt1s4E6HDlCyZHjjC5rVq2HqVEsOqZUFwS6yWTOrvhrBk97yiycJ59xhVGHJEvjoI7t7SJ0o3KyZreswaFABan7/5hubzPHKK9b3AFCpkrWf3XKLNS0VYp4knHOHiI+3IauLFqXvq1PHhreefnr44gqqpCRLCp99ZkX2UjVrZjOh+/eH448PX3wRxJOEc47duy0JfPih/ffAAShTBnr1si/U551XQOY4zJhhC1XMnm3NS6n69rWS3BdeGNay3JHIk4Rzhdzy5TZI55df0vede65VljjllPDFFVSvvmrTvefMSd9XujQMHmy3TXXqhC+2COdJwrlC6tVXrcVl6VLbPvlkuPtuG8Z66qnhjS0o9uyB22+3/oYNG9L3X3mlFY9q0MAK7rkchXJlureArsAmVa2fxeN9gLtTNncBg1R1cajic64wOHDAlk8eNSp9HYeyZW2Bn0ceKQDJQRV+/tlm+GUcvlqqlM2SvvJKqFIlbOFFo1DeSYwGXgLezubx1UBbVd0qIhcAI4HQrfbtXAH32mt2p5A6O1rEymbcfnsBGPa/Y4etYnTnnYeWyqhb1xb46dQJYmLCF18UC+XypbNEpHoOj2eoq8sPgKd7547Sxo3WGT1+vBXdA2tl6dHDfiJkhcy8W7nSymU8/jjs22f7ihe3pPD88wVwoYrQi9Q+iQHA59k9KCIDgYEA1apVC1VMzkUNVaurNHBg+tD/mBh46CGrMBHV/vkH5s2zdRveey99f+3a0LWrJYwCMRQrMkRckhCRdliSODe7Y1R1JNYcRWxsrGZ3nHOFza+/2mfnhAnpdeji4qxc98UXR+2SBmbFCpvX8NBDsGtX+v4LLrBxutdeW4Bm+EWOiEoSItIQeAO4QFW3hDse56LFwYNWubp/f9i/3/ZVrAg33ggPPhjFn52q8OWXNvV75EjbBqhVCzp2tDazuLiwhljQRUySEJFqwIfAVaq6KrfjnXN2t/DsszZSKXV50Pbt4Z577LMzaguU7tuXfkv0zTfp+zt2tFuigQMLQG97dAjlENj3gTiggojEAw8CMQCqOgIYApQHXhH72pOoqrGhis+5aLJ7t5Xq/ve/YetW23fmmXDVVTbAJ2o/P2fNsjIZEyemt5eJ2LyGrl1ttbeovS2KTqEc3dQ7l8evBa4NUTjORaX166009+TJ6RVZmzWDN96wUUtR+fmZnAzvvAMff2zNSqmOO84qr3btCvXqhS++Qi5ab0adK1T++ce+XD/+uJXuBmjZEnr3tk7pqFwtc88eeOYZy3g//ZS+/4orrBZ5u3bWseLCypOEcxFs0SLreP788/ShrDVr2rIHZ5wR3tjybMMGG6H06afp5TKKFUuvCdK0aXjjc4fwJOFcBEpIgHHjrJLEjh1QpIj12V5xhRXjK1Mm3BHmweLFdkFffZU+BKtCBXjqKTj/fKhcObzxuSx5knAugqxfb8NWP/vMljwAaNXKhreefHJ4Y8uT/fstMXz77aFNSvXqwQsvQIsWUdpWVnh4knAuAqTeOTzzjPU5FC1qSxtceaXNE4u6CcQbN1pRqM8+Sy8WBXZRw4fb7OgiRcIXnwuYJwnnwmjFCmuK//xzSEy0fTVqWKXWmjXDG1ueLF5sFVhTC0WB3QI99xx07uyluaOQJwnnwmDrViu6N2SI3UUULWpTAK6+2uaKlSgR7giPgKqt2XD33YeuXNS0qS1YERvrq71FMU8SzoXQ1q02AW7ixPS+26ZN7TM26laB27LFOlC++ip9Rl+RIjav4dVXo/CCXFY8STgXAnv2WMnup56yleBEoEMHW1r5X/+KsjuHZctg0CBbJzpVhQq2IPbw4VHYgeJy4knCuXy0caMtozx+vA1lBfs8/eoraNw4vLEdEVUL+pZbbA2HVLGx8PLLNu07Kqd7u9x4knAuHyQlWfHSO+6wzmmAs8+Gfv3sC3fUlOzetQtuuslmRadmuaJFrTz3iBE+t6EQ8CThXBBt2gQvvgijR9ucB7DP0U8/jbI7h7VrrdLql1+m7zvpJOtv+O9/bfU3Vyh4knAuSBYuhO7d4Y8/bPv00219hwEDoFKl8MYWEFVrOnrmGVizJn1/o0Y28a1t27CF5sLHk4RzR2HHDpsE9/rrMH++7atRA0aNgjZtoqSZPjHRqq2++aZVEgTrSW/Z0oaw1q4d3vhcWHmScC6PpkyxWkq7d9t2uXK2nsM990TJ6M8dO2wI6wcfwIEDtq9CBVsE+5ZbonjFIhdM/q/AuSOgCtOn20qa48fbvhYt4Oab4bLLomQo66efwv33w5Il6ftOO83qkPfoESW3Py5UPEk4F6CpU+E//4Fff7XtIkXguuts3ljEf66q2spETzwBq1fbPhGbyff883DuueGNz0WsUC5f+hbQFdikqvWzeFyAF4AuwB6gn6r+lPk450Jtwwbrc3jsMVvToXJluPZa65CuWjXc0eUiORkeecQy2caNtq9ECQv+qaegZMnwxuciXijvJEYDLwFvZ/P4BUCtlJ+zgVdT/utcyKU2K73yik0RSC3b3bMnvPtuFDTXHzhghfbGjoWdO23f8cfDXXfZT8RfgIsUoVzjepaIVM/hkG7A26qqwA8iUk5ETlbVv0ISoHMpkpJslvQTT9h20aJWOmPQIDjvvAhvWvrf/6zn/Icf0svKVq4Mjz5qNUAiOngXiSLp60RlYF2G7fiUfYclCREZCAwEqFatWkiCcwXfli3w1lt295A6TeCee6wgX0SPVtq/35YD/fJLWLAgff8ZZ1iJ7gsuCF9sLupFUpLI6iuOZnWgqo4ERgLExsZmeYxzgdq3D267zWZJ79tn+2rUsDLe/fqFM7JcbNtmQX74Yfr0bhG4/HJ46SUbzurcUYqkJBEPZOwGrAJsCFMsrpCYO9dGg379tW137mzDWTt3juAlEP76y5LD5MmwebPtq1DBymVceGGULoDtIlUkJYkpwM0iMg7rsN7u/REuPxw4YOs5vPgi/Pij7Ste3FbaPO+88MaWo0mT7K7hk0/SO6OrVoXXXoO4uCiZpOGiTSiHwL4PxAEVRCQeeBCIAVDVEcBUbPjrb9gQ2GtCFZsrPLZvtxJEixfbdrlyNtfhxhuhevWwhpY1VXjnHav98fnn6fvr1LHkcPbZUKxY+OJzBV4oRzf1zuVxBW4KUTiukElIsMrWL71klVpPOsn6evv0gVKlwh1dFjZssMQwZUr6etEiNpvv6quhfn0fxupCwv+VuQJt+XIb4PPOO+nLhTZsCO+/D3Xrhje2LK1ZY7WUHn/cOqbBOkceeMAKRXmxPRdiniRcgfXZZ3DJJenTBbp2tVFM7dpF2HQBVZg3D7791mZH79lj++vWtVWL4uKgZs2whugKL08SrkBRhRkzbKnlqVNt36WX2sS4M84Ia2iHS00OTz4JH32Uvj821jpJevXyzmgXdp4kXIGQmGgjloYPT59PVqIEXH89PP00xMSEN75DJCbCokXWhDRtmu0TsRnRcXHQu7d3RruI4UnCRb0dO2yBn9QRSxUr2lyHG2+MsPlkSUk2fHXgQOtJB+t8vuoqqxjYsmV443MuC54kXNTavx/GjLE+3rVrbcTS0KE2+CeiWmmSk+0258YbrfYHWLDnn2+L+zRtGt74nMuBJwkXdXbutOGszz1nk4/B1pOeMsWmD0SMgwet8NPEiYcmh969rUx3RLWBOZc1TxIuqrz+Ovzf/6WPDm3UyIrwde8eQdMG9u61YVTjx6cHesopNinjySdttSLnokSk/G/lXI527LAF1B580LZbt7almDt3jqDhrD/+aCVkP/ss/c6hcmV4803o1CmCAnUucJ4kXETbuhVeeMF+Ur+U3323fSGPGD/+aDXG33wzfXWiypWtrGz79p4cXFTzJOEi0ubN8OyzVkYjtZZd27a2GFBEFOFLTrZaStOmwcsv2zbYjL1HHoEGDSK4jKxzgfMk4SLOypVwzjl2FwHQoYMlhzZtwhsXYAtO/PCDLXidWl8coFs3u8Vp0cLvHFyBElCSEJEOwA5VnZvP8bhCbNcuWxLhqaesWmvz5tbM1KJFuCPDmpGmTYNrrrEKgWCjk26/3fobIq7Wh3PBEeidxLPAcOCQJCEiDYCNqrop2IG5wmPPHuvvfeqp9DV02rWzkaMnnBDe2FCF6dNtwtuGlDWwqlaFyy6zZesaNw5reM7lt0CTRC1gThb7mwOXA+cHLSJXaOzbByNHWl2lv/+2fS1aWJN+2Pt7Va13/LXXbKYe2FTuXr1sf8mSYQzOudAJNElsAyoCf2TaPwcYFtSIXKHwv/9Bz57pSzPHxsLDD0fAkNa//4ZnnrFhrCtW2L7jj4d//ct60Y89NozBORd6gc7qmQzcncX+oik/ARGRziKyUkR+E5F7sni8mohMF5GFIrJERLoEem4XHVRtaeZLLrEEUb8+fPyxrTV9wQVhTBAJCXZLc9ZZViVwxQq7W3jtNWsDe/11TxCuUAr0TuJ+YLGIfAIMUdWFIlIauA9YEsgJRKQo8DLQEYgH5onIFFVdnuGwB4AJqvqqiNTFljStHmCMLsLNmWOzpb//3rZbtbLm/rBWp1i3zjqkH3oI4uNtX82a8OqrNmMvoopAORd6Ad1JqOo/QIuU4xeIyH5gO9AZ+L8AX6s58Juq/qGqB4BxQLfMLwUcl/J7WWBDgOd2EWzpUrj4YvvM/f57a9p/6SVbYydsCWLnTiv+VLOmLXIdHw+nnmpLhi5ebCOWPEE4F/g8CVVdD1woIlWBJsBB4MeUBBKIysC6DNvxwNmZjhkKfCki/wZKAR2yOpGIDAQGAlSrVi3QS3Ahtm6dldEYM8bmmpUqBXfdZaNGy5QJU1AHD0L//pYMUpesa9sWevSw5UGPPz5MgTkXmY54Mp2qruPQD/tAZdXarJm2ewOjVfUZETkHeEdE6qtqcqYYRgIjAWJjYzOfw0WARx+1n/37rfDejTfaGjsnnhimgFautDriU6daISiwGXu9elmlVp/j4FyWQjnjOh6ommG7Coc3Jw3AmrBQ1e9FpDhQAfB5GFHi4EFbCW7wYNvu1cuGtJ5+epgC+u47+PBD63hOTQ6nnWa1liJiCrdzkS2USWIeUEtEagDrgV7AFZmO+RNoD4wWkTpAcSAhhDG6PFK1UaN33mlf2sFqL912W5iCWbXKEsMzz6Tvb9YM3n7bFrv2OwfnAhKyJKGqiSJyMzANGzb7lqouE5GHgfmqOgW4A3hdRG7DmqL6qao3J0W4pUutn+Grr2z79NNtFOnFF4chmG3bbFGfL75I39e3r82ObtXKF/px7giFtMCfqk7FhrVm3Dckw+/LgVahjMnl3datMGSIldRIToZy5Wz7ppugWLEQB7NsGdx6K8ycaR3SMTHWGd2jhxXf8zsH5/LEq8C6I5acbEsl3HOPzUErWtQSw0MPQfnyIQ5m+nR47z0YO9ZWhBOxO4YXXrCJcc65o+JJwh2R+fMtIcxNKfXYpo1Vbm3YMMSB/PqrFX4aPjx9X6tWMGlSGIdQOVfweJJwAdm8Ge6/3/qCVW3J5uHDbfRSSFtydu2yFeDuuCN9FbgBA+Dmm23Ba29Wci6oPEm4XH3+OVx5Jfzzj815uO02G+Ia0glxa9fafIYvv7TJFwBdutgEjC5dPDk4l088SbgczZ5tE5G3bbNlQ19+Gc48M4QBLFliw1ZHj4YtW2xfixbQp48liCKB1qh0zuWFJwmXpW3brBjf66/bdocO9iU+ZF/Yt2yxzug77kgvn1GvHnz6KVSvHqIgnHP+Ncwd5qOPoG5dSxDFitmw1k8+CVGCULW2rEqVbEhrYiJceCHMmgWLFnmCcC7E/E7Cpfn7b+v/nTTJtlu2hDfegDp1QvDiu3fbqkPjx6evBNexI1x+uU2EO8b/qToXDv5/nkMVRo2ylp1t26B0aVt/JyRN/jt32qpDzz8PCxbYvpNOsgWvr746n1/cOZcbTxKF3OrVMHAgfP21bV9wAYwYASGpwL5okc2G/vNP2z7uOHj/fVvD1DuknYsI/n9iIaVqTUkNG1qCKF8e3n3XivTle4KYORMaNIAmTSxB1KhhM/JWrrThrJ4gnIsYfidRCP39N1x7rSUEgO7drf5SxYr5+KJJSTBjhvU5jBplHdLHHQf/+pe1bfksaecikieJQmbiRLjhBhthWq6czXvo3TufRy5t22aZ6Jtv0vddeqk1LR17bD6+sHPuaHmSKCS2brUJy2PH2nbHjrbuTpUq+fiif/0Ft9xi42f374eSJW26ds+eUL++z5J2Lgp4kigE5syxWdPr1kGJElZzadCgfPyM3rgRJkywBX/WrrUXiouzEUvNm+fTizrn8oMniQIsKQkef9yWdk5Ots/nd96B2rXz8UVffNFWIEotvle9Okybls8v6pzLLyEdRiIinUVkpYj8JiL3ZHPM5SKyXESWich7oYyvINmwwZqUhgyxBHH33XZHkS+f1du3w3PP2foNt95qCeKCC6zPYelSTxDORbGQ3UmISFHgZaAjEA/ME5EpKavRpR5TC7gXaKWqW0WkUqjiK0imTrUVOzdvtuoW77wDnTrl04v98ot1Si9bZttly8IDD9hi1865qBfKO4nmwG+q+oeqHgDGAd0yHXMd8LKqbgVQ1U0hjC/qTZwIlStbqaPNm+1OYvFDGVJWAAAcpklEQVTifEoQq1fbIj916liCOOUUC+Dvvz1BOFeAhDJJVAbWZdiOT9mXUW2gtoj8T0R+EJHOWZ1IRAaKyHwRmZ+QkJBP4UaPxET7XO7Rw5qZwPqIv/jCKlwEVXy8dXS0aAHffQelStmiP3Pm2JyH4sWD/ILOuXAKZcd1VmNpNNP2MUAtIA6oAswWkfqquu2QJ6mOBEYCxMbGZj5HobJxo40onTnTauA9+qgNdS1ZMh9e7JVX7OTJybZdv77NfajkrYLOFVShTBLxQNUM21WADVkc84OqHgRWi8hKLGnMC02I0WX+fLjkEli/3u4YPvgAzj03yC+yb591QL/xht05gNVbuv56a8cqWjTIL+iciyShTBLzgFoiUgNYD/QCrsh0zGSgNzBaRCpgzU9/hDDGqDF+vFXQ3rfPEsOECXDyyUF+kX/+sSw0e7ZtlykD995rP865QiFkfRKqmgjcDEwDVgATVHWZiDwsIhenHDYN2CIiy4HpwF2quiVUMUaD5GQb1tqrlyWIAQOsxSeoCWL5chseVbmyJYiyZeHNN20GtScI5woVUY3uJv3Y2FidP39+uMMIid27bYmFDz+0QqnPPmtVL4I2c1rVJr717Ak7dti+Tp2so/qss4L0Is65SCAiC1Q1NrfjvCZzFEhKgoceggoVLEGULWtzIW69NYgJYswYG856wQWWIFq3ht9/t6ThCcK5QsvLckS4/fvhqqusUxqgVi2rl3fGGUF6ga1b7Zbk0Udtu3JlW4Xo9tttiTrnXKHmSSKCbd9u/cYzZtjSC8OGWXNTUKYirFsHjz1m07H37LF9999vhZ58PWnnXAr/NIhQf/1lLT+LF1un9OefQ6NGQTr5zz/DRRdZhVawfodbb7VV4ZxzLgNPEhHou++gTx9Ys8Zq402bZsVUj9qPP9rQqC+/tO3atWHyZOuLcM65LHjHdQQ5eNDWfWjVyhJE8+ZW7eKoE4SqrVV63nmWIEqWhJtusnYsTxDOuRz4nUSE2L/f5j5MnmzbV14JI0ZYaaQ8S0qyHu+nn4aFC21fly7w7rtw/PFHHbNzruDzJBEB9u2z2nhTp9q6019+Cc2aHeVJk5Ph2mth9GjbrlTJJlXcfrstT+eccwHwJBFms2fbUqLLlkH58vD119C48VGcMDERxo2zCXArVthIpeeft6nZXqHVOXeEPEmE0SefwGWX2ed6pUpWXqN+/aM44Wef2d3CHynlrqpVsxXjLrssKPE65wof77gOk6++sgXdEhPh0kutomueE0Ryst09dO9uCeL0063W0q+/eoJwzh0VTxIhlphoX/Y7dYIDB+Dmm2HSJKhaNffnHkYVPv4YmjaF3r2tc6NHD2tm6t8fihULevzOucLFm5tCSNWWYXjrLdu+7jp44YU81l/av99m202fbtuVK9va0gMG+Ixp51zQ+J1ECA0ZYgmiRAn46CMYOdKquR6xxYvh/PMtQZQrBy++CL/9BjfcADExQY/bOVd4+VfOENi2zeZATJtmC7lNmABdu+bhRGvWwODBMHas3ZYcd5x1VrdsGeyQnXMO8CSR7w4ehMsvt45qgNdfz2OCmD8f2rSBvXvtbuGmm6wgX4UKQY3XOecyCmlzk4h0FpGVIvKbiNyTw3HdRURFJNcFMSLZmjXQoIEliEqVYNEiuOaaIzxJUpJNve7Y0RJE586wcqUNbfUE4ZzLZyG7kxCRosDLQEcgHpgnIlNUdXmm48oAtwA/hiq2/LB7N3TrZp/npUvbIKQjruI6Y4ZVZ12yxLbbt4eJE4+yVodzzgUulHcSzYHfVPUPVT0AjAO6ZXHcI8DTwL4QxhZUv/5qi7ktWWKLBP3+O7RocQQnSEiwoazt2tlJTj3VajB99ZUnCOdcSIUySVQG1mXYjk/Zl0ZEmgBVVfXTnE4kIgNFZL6IzE9ISAh+pEdh926bHLdyJZxwgt1BVKp0BCfYs8d6uSdOtGqtjzxi8x66dw/iWqXOOReYUHZcZ/UJp2kPihQBngP65XYiVR0JjASIjY3VXA4PmY0boWdPq8NUu7aV+a5Y8QhOMHWqdUivWWMLWc+bZ7cizjkXJqG8k4gHMs4rrgJsyLBdBqgPzBCRNUALYEq0dF4nJlol15kzrUVo0qQjSBAJCXb3cOGFliAaNbJCTp4gnHNhFsokMQ+oJSI1RKQY0AuYkvqgqm5X1QqqWl1VqwM/ABer6vwQxpgne/bYQkH/+x+ceCLMnXsEdZgmToR69WD8eGteGj7chruedVa+xuycc4EIWXOTqiaKyM3ANKAo8JaqLhORh4H5qjol5zNEpqQkayGaOxfKlLH+5bp1A3hiQoI98YMPbDsuzory1ayZn+E659wRCelkOlWdCkzNtG9INsfGhSKmo3X99bauT0wMzJoV4FoQCxdahb/Nm61tatgwO1GeanQ451z+8RnXR+Hdd+3Lf0wMvPdegAli3Tq4+mpLEHFxVsypRo38DtU55/LEv7rm0eTJcNVV9vvjj9sI1Vx99JF1Si9daonh0089QTjnIponiTz43/9srhvAv/9ty0bnaP9+63+47DLYuhW6dIEff/SJcc65iOfNTUfowAFbkzoxEfr0gWefzaUrYd06u82YO9fapZ5+2kpt+MQ451wU8CRxBFRtstzPP0P16lbRNcf1faZPtyckJFhpjUmTfGircy6qeHPTEXjmGeuLKF0a3n/fFg/Kkio8/7xVbk1IsP8uWOAJwjkXdTxJBGjhQrj7bvv9xRdzKNiXmGgdFbfdZpMo7r0XPv8cypcPWazOORcs3twUgN27baGg5GQYODCHNSF27YLevW3UUrFiMGaMldtwzrko5UkiF6o2emnDBpsH8eyz2Rz4999We+mnn9LLv557bkhjdc65YPMkkYtnnoGRI+HYY+Hll7MZtbpuHZx3Hvz2G5x2mlVzrV075LE651yweZLIwaZN8NRT9vt770HLllkctHq1JYg1a6BJE5g27Qjrg7tQOHjwIPHx8ezbF7VrWTmXJ8WLF6dKlSrExMTk6fmeJLKhCgMGWPWM1q1tIaHDDnjvPWuL2rQJzj7bOqiPPz4s8bqcxcfHU6ZMGapXr474HBVXSKgqW7ZsIT4+nhp5rO7go5uyMWWK9T8fdxyMG5dp7psq3HEHXHmlJYjWrW1pUU8QEWvfvn2UL1/eE4QrVESE8uXLH9UdtCeJLOzebZOiAR59FE45JdMBw4bBc8/ZVOs777Q7iDJlQh6nOzKeIFxhdLT/7r25KQuPPQZr19popkGDMj04bpxNmBCxGXWXXx6WGJ1zLhT8TiKTX3+1xeEAXnklU9mNiROhb1/7ffhwTxCuwBs9ejQbNqSvMnzttdeyfPnyoL7GmjVrqB/wUo6hdzTxzZgxg++++y5te8SIEbz99ts5Pifje/z444/n6XWDyZNEJg8+CAcPQr9+cM45GR547DEr/XrgQPqMaucKuMxJ4o033qBuQEsvRr6kpKR8f43MSeKGG27g6quvzvE5Gd/jQpckRKSziKwUkd9E5J4sHr9dRJaLyBIR+UZETg1lfD//bK1JxYrBQw9leODrr2HwYPv9P/+x/ghv345eIvnzk4u3336bhg0b0qhRI65KWYxk7dq1tG/fnoYNG9K+fXv+/PNPAPr168ctt9xCy5YtqVmzJhMnTgTgr7/+ok2bNjRu3Jj69esze/ZsAEqXLp32OhMnTqRfv35p5xk0aBDt2rWjZs2azJw5k/79+1OnTp20Y1Kff8cdd9C0aVPat29PQkICEydOZP78+fTp04fGjRuzd+9e4uLimD/flp1///33adCgAfXr1+fu1Jo1Kee6//77adSoES1atGDjxo0B/2n27dvHNddcQ4MGDWjSpAnTp08HoEuXLixZsgSAJk2a8PDDDwMwePBg3njjjUPOsWbNGs4880z69u1Lw4YN6d69O3v27AGgevXqPPzww5x77rl88MEHLFq0iBYtWtCwYUMuvfRStm7dCsCCBQto1KgR55xzDi+//HLauUePHs3NN9+ctt21a1dmzJgBwBdffEHTpk1p1KgR7du3Z82aNYwYMYLnnnuOxo0bM3v2bIYOHcrw4cNZsWIFzZs3PyTmhg0bAqS9x/fccw979+6lcePG9OnTh8GDB/PCCy+kPef+++/nxRdfDPi9zTNVDckPtq7170BNoBiwGKib6Zh2QMmU3wcB43M771lnnaXBctllqqB6880Zdi5Zolqxoj0wZEjQXsuF1vLly9M3bHxa8H9ysHTpUq1du7YmJCSoquqWLVtUVbVr1646evRoVVV98803tVu3bqqq2rdvX+3evbsmJSXpsmXL9LTTTlNV1eHDh+ujjz6qqqqJiYm6Y8cOVVUtVapU2mt98MEH2rdv37Tz9OzZU5OTk3Xy5MlapkwZXbJkiSYlJWnTpk114cKFKW8J+u6776qq6kMPPaQ33XSTqqq2bdtW582bl3bu1O3169dr1apVddOmTXrw4EFt166dfvTRR2nnmjJliqqq3nXXXfrII4+oqurHH3+sgwcPPuy9Wb16tdarVy/t+vr166eqqitWrNCqVavq3r179YknntCXXnpJt2/frrGxsdqpUydVVY2Li9NffvnlsPMBOmfOHFVVveaaa3TYsGGqqnrqqafqU089lXZsgwYNdMaMGaqqOnjwYL311lsP23/nnXemxTdq1Ki090ZV9cILL9Tp06frpk2btEqVKvrHH38c8vd98MEH014783ajRo30999/V1XVJ598Mu19yvieZ/y7rl69Wps0aaKqqklJSVqzZk3dvHnzYe9nVg75958CmK8BfHaH8k6iOfCbqv6hqgeAcUC3jAeo6nRV3ZOy+QNQJVTBrVljC8fFxMB996Xs/OUXq+SXkAAdOsCQLJfjdtEmv9JEDr799lu6d+9OhQoVADjhhBMA+P7777niiisAuOqqq5gzZ07acy655BKKFClC3bp1076NN2vWjFGjRjF06FB+/vlnygQwqu6iiy5CRGjQoAEnnngiDRo0oEiRItSrV481a9YAUKRIEXr27AnAlVdeeUgcWZk3bx5xcXFUrFiRY445hj59+jBr1iwAihUrRteuXQE466yz0l7j4osvTrsDyM6cOXPS7rLOPPNMTj31VFatWkXr1q2ZNWsWc+bM4cILL2TXrl3s2bOHNWvWcMYZZxx2nqpVq9KqVassryf1Ordv3862bdto27YtAH379mXWrFmH7U+NJyc//PADbdq0SZuLkPr3zcnll1/OhAkTABg/fnxaXNmpXr065cuXZ+HChXz55Zc0adKE8iEoHBrKJFEZWJdhOz5lX3YGAJ9n9YCIDBSR+SIyPyEhISjBvfaa/X/eowecfDJWwbV/f9izx9aiHj8eihYNymu5wkdVAxqKmPGYY4899pDnA7Rp04ZZs2ZRuXJlrrrqqrRO0IzPyzwmPvU8RYoUOeScRYoUITExMdc4srue7MTExKQ9v2jRotm+xpGct1mzZsyfP5/Zs2fTpk0bmjRpwuuvv85Z2ZTfzxx/xu1SuawImdPf6phjjiE5OTltO/W9DvTvm1HPnj2ZMGECq1atQkSoVatWrs+59tprGT16NKNGjaJ///5H9Hp5FcokkdU7mOW/CBG5EogFhmX1uKqOVNVYVY2tGIQSGP/8Y0kC4MYbsXKvt94K339vkyQ++siK9jmXR+3bt2fChAls2bIFgH/++QeAli1bMm7cOADGjh3LubkUhVy7di2VKlXiuuuuY8CAAfz0008AnHjiiaxYsYLk5GQ++uijI44vOTk5rd/jvffeS4ujTJky7Ny587Djzz77bGbOnMnmzZtJSkri/fffT/vmfTTatGnD2LFjAVi1ahV//vknZ5xxBsWKFaNq1apMmDCBFi1a0Lp1a4YPH07r1q2zPM+ff/7J999/D1jfSVbva9myZTn++OPT+nXeeecd2rZtS7ly5Shbtmza3UdqPGDf5hctWkRycjLr1q1j7ty5AJxzzjnMnDmT1atXA+l/3+zeP4DTTjuNokWL8sgjj2R7FxETE8PBgwfTti+99FK++OIL5s2bx/nnn5/NuxhcoZwnEQ9UzbBdBdiQ+SAR6QDcD7RV1f2hCGzkSFt6+rzzUuozjXnbqvmJ2PJz5cqFIgxXgNWrV4/777+ftm3bUrRoUZo0acLo0aN58cUX6d+/P8OGDaNixYqMGjUqx/PMmDGDYcOGERMTQ+nSpdPuJJ588km6du1K1apVqV+/Prt27Tqi+EqVKsWyZcs466yzKFu2LOPHjwes4/uGG26gRIkSaR+6ACeffDJPPPEE7dq1Q1Xp0qUL3bp1y+70AEyZMoX58+fn2OR04403csMNN9CgQQOOOeYYRo8enXb307p1a7755htKlixJ69atiY+PzzZJ1KlThzFjxnD99ddTq1YtBh024cmMGTOGG264gT179lCzZs209z/1m3rJkiUP+TBu1aoVNWrUSOuwb9q0KQAVK1Zk5MiRXHbZZSQnJ1OpUiW++uorLrroIrp3787HH3/Mf//738Nev2fPntx1111pySWzgQMH0rBhQ5o2bcrYsWMpVqwY7dq1o1y5chQNVctGIB0XwfjBEtIfQA3SO67rZTqmCda5XSvQ8waj47pxY2tUnjJFVTdsUD3pJNsxcuRRn9tFhqw67ly6jB2k0S5jR3hBk5SUpI0aNdJVq1Yd0fOiouNaVROBm4FpwApggqouE5GHReTilMOGAaWBD0RkkYhMye+4Vq2CRYusRlOnjmqV/P7+2yZJDBiQ3y/vnHMBWb58Oaeffjrt27cPqP8iWEJalkNVpwJTM+0bkuH3DqGMByBlcAGXXALHjngBfvzRSn1/+KHVZnKuEDjS5qlIVr16dZYuXRruMIKubt26/PHHHyF/3UJfuyk1SVx+wU4YcL9tvPACnHRS+IJyzrkIUai/Km/YYLOsS5eGjlP+bcNdO3Wydaqdc84V7iSROr+mZe3NFHt/DJQsaXcRzjnngEKeJFKGR9P6z3ftl6FD4cwzwxaPc85FGk8SQOvNH9k06//8J7wBORdhQlEqfMaMGWllPDIL5PX69euXNhEwVApT+fBC23G9axcsWQIxcpDmOhcuG2CFm5xzaUaPHk39+vU5JWV5xswVV/NbqF8vKSkp3yepzZgxg9KlS9OyZUvAyofnJuP78Pjjj3NfWoG5/Fdo7yRWrLBaTWfqCkqUKmqrzblCIUyVwr1UeA527dpF9+7dOfPMM+nTp09aDaeMr/fmm29Su3Zt4uLiuO666w4p2T1r1qzD3quMvHz4UQhkxl0k/+R1xvWYMTap+nLGqV59dZ7O4aJHxhmnYagU7qXCNftS4dOnT9fjjjtO161bp0lJSdqiRQudPXv2Ya936qmn6pYtW/TAgQN67rnnpsWY3XuVUWEvHx4VM64jzYoV9t86rPBlSAuZ/EoTOfFS4TmXCm/evDlVqlShSJEiNG7cOO05qebOnUvbtm054YQTiImJoUePHoc8ntV7lZmXD8+bQpskDm7dSSl2Uaf4GujYMdzhuAJO1UuF5yRjXFk9J6fXy/z87I718uF5U2iTxPDO37CTMvzrnA22Xqlz+chLhR+d5s2bM3PmTLZu3UpiYiKTJk064nN4+fC8KbSjm5g7FwGOOTvrRUucCyYvFR5YqfDsVK5cmfvuu4+zzz6bU045hbp161K2bNkjOoeXD8+jQDouIvknz6XC77xTtUwZ1UmT8vZ8F1W8VHjOoqFU+M6dO1VV9eDBg9q1a1f98MMPA35uYS8f7h3XeTFsGGzbBhddFO5InHMBGDp0aNrQ3xo1anDJJZeEO6SwC0X58MLb3ARWCtzLgTsXFaXChw8fnufnevnwvPNPSFdoaG7jVJ0rgI72331Ik4SIdBaRlSLym4jck8Xjx4rI+JTHfxSR6qGMzxVcxYsXZ8uWLZ4oXKGiqmzZsoXixYvn+Rwha24SkaLAy0BHIB6YJyJTVDVj9a4BwFZVPV1EegFPATnPJnEuAFWqVCE+Pp6EhIRwh+JcSBUvXpwqVark+fmh7JNoDvymqn8AiMg4oBuQMUl0A4am/D4ReElERP3rnztKMTExaTNfnXOBC2VzU2VgXYbt+JR9WR6jqonAduCwOeYiMlBE5ovIfP9m6Jxz+SeUSSKr+emZ7xACOQZVHamqsaoaW7FixaAE55xz7nChTBLxQNUM21WADdkdIyLHAGWBf0ISnXPOucOEsk9iHlBLRGoA64FewBWZjpkC9AW+B7oD3+bWH7FgwYLNIrI2jzFVADbn8bnRyK+34Cts1+zXm3enBnJQyJKEqiaKyM3ANKAo8JaqLhORh7Hp4VOAN4F3ROQ37A6iVwDnzXN7k4jMV9XYvD4/2vj1FnyF7Zr9evNfSGdcq+pUYGqmfUMy/L4P6JH5ec4558LDZ1w755zLVmFPEiPDHUCI+fUWfIXtmv1685n4PDXnnHPZKex3Es4553LgScI551y2CkWSKGzVZwO43n4ikiAii1J+rg1HnMEiIm+JyCYRyXLBADEvprwfS0SkaahjDKYArjdORLZn+PsOyeq4aCEiVUVkuoisEJFlInJrFscUmL9xgNcbur9xIMvXRfMPNifjd6AmUAxYDNTNdMyNwIiU33sB48Mddz5fbz/gpXDHGsRrbgM0BZZm83gX4HOs7EsL4Mdwx5zP1xsHfBruOIN4vScDTVN+LwOsyuLfdIH5Gwd4vSH7GxeGO4m06rOqegBIrT6bUTdgTMrvE4H2IpJVHaloEMj1FiiqOoucy7d0A95W8wNQTkRODk10wRfA9RYoqvqXqv6U8vtOYAWHFwctMH/jAK83ZApDkgha9dkoEcj1Avwr5bZ8oohUzeLxgiTQ96QgOUdEFovI5yJSL9zBBEtKU3AT4MdMDxXIv3EO1wsh+hsXhiQRtOqzUSKQa/kEqK6qDYGvSb+LKqgK0t83ED8Bp6pqI+C/wOQwxxMUIlIamAT8R1V3ZH44i6dE9d84l+sN2d+4MCSJwlZ9NtfrVdUtqro/ZfN14KwQxRYugfwbKDBUdYeq7kr5fSoQIyIVwhzWURGRGOwDc6yqfpjFIQXqb5zb9Ybyb1wYkkRa9VkRKYZ1TE/JdExq9VkIsPpsBMv1ejO11V6MtXkWZFOAq1NGwLQAtqvqX+EOKr+IyEmpfWoi0hz7/3xLeKPKu5RreRNYoarPZnNYgfkbB3K9ofwbh7TAXzhoPlWfjVQBXu8tInIxkIhdb7+wBRwEIvI+NtqjgojEAw8CMQCqOgIrKtkF+A3YA1wTnkiDI4Dr7Q4MEpFEYC/QK4q/9AC0Aq4CfhaRRSn77gOqQYH8GwdyvSH7G3tZDuecc9kqDM1Nzjnn8siThHPOuWx5knDOOZctTxLOOeey5UnCOedctjxJOOecy5YnCeeCTESeEpGvwh2Hc8HgScK54GsMLMr1KOeigCcJ54KvEbAw3EE4FwyeJJwLIhE5CTiRlDsJESklIuNE5KdoX/HQFU6eJJwLriZYLZ2VInIGMBerkdVKVdeEMzDn8sKThHPB1Rj4GbgE+A54XVWvVNW94Q3LubzxAn/OBZGIjAc6YhV4L1bVmWEOybmj4ncSzgVXY+BDrHR3tC6B61wav5NwLkhEpCSwE2gB1AJGAm1SF7V3LhoV+EWHnAuhRti6yktVdZ6I1AE+EZHmqro+zLE5lyfe3ORc8DQCfs3QST0E+B8wJeUuw7mo481NzjnnsuV3Es4557LlScI551y2PEk455zLlicJ55xz2fIk4ZxzLlueJJxzzmXLk4RzzrlseZJwzjmXrf8HwTL4bgkzYt4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" ] - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "C = S[1]\n", + "X = []\n", + "Y = []\n", + "Z = []\n", + "for k in k_grid:\n", + " if k < 1.5*k_ss:\n", + " X.append(k)\n", + " Y.append(C[(k, theta_L)])\n", + " Z.append(C[(k, theta_H)])\n", + "\n", + "plt.plot(X, Y, color=\"red\", linewidth=2, label=\"consumption: low productivity\")\n", + "plt.plot(X, Z, color=\"blue\", linewidth=2, label=\"consumption: high productivity\")\n", + "plt.xlabel(\"$k$\", fontsize=14)\n", + "plt.ylabel(\"$c$\", fontsize=14)\n", + "plt.title(\"Policy Function: $c$\")\n", + "plt.legend(loc='lower right')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "C = S[1]\nX = []\nY = []\nZ = []\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(C[(k, theta_L)])\n Z.append(C[(k, theta_H)])\n\nplt.plot(X, Y, color=\"red\", linewidth=2, label=\"consumption: low productivity\")\nplt.plot(X, Z, color=\"blue\", linewidth=2, label=\"consumption: high productivity\")\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$c$\", fontsize=14)\nplt.title(\"Policy Function: $c$\")\nplt.legend(loc='lower right')\nplt.show()", - "execution_count": 13, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEdCAYAAAD5KpvoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd4VOXywPHvgEGqoBQLRUBB6cWACAJBiogo6gUBUUFQFPXqtf2sIPYC1mtBLICKAoIiKoqNei0UKVIECyABhYD0nmR+f0waIWUJmy3JfJ4njzlnz56ds8GdPW+ZV1QV55xzLitFwh2Ac865yOVJwjnnXLY8STjnnMuWJwnnnHPZ8iThnHMuW54knHPOZcuThHPOuWx5knDOOZctTxKuQBCRNSLSIeX3ZSISF+aQ8kVBvjYXmTxJuIiS8mG/V0R2ichGERklIqWP5ByqWk9VZ+RjXKk/pwTzNbJ5zQ4Z9+XHtTmXE08SLhJdpKqlgaZAM+CBMMeT6iJVLZ3hZ0O4A3Iuv3mScBFLVdcDnwP1AUSkjojMEJFtKc0uF2f1vMzfwEWkqoh8KCIJIrJFRF4SkbtEZFKm5/1XRJ4/0jhFREXk9Azbo0Xk0Uzx3CkiS0Rku4iMF5Hi2cWWsv8doBrwScpdy/9lvrac3o+cXvMIrqu3iCxIef7v3sxVOHmScBFLRKoCXYCFIhIDfAJ8CVQC/g2MFZEzcjlHUeBTYC1QHagMjAPeBTqLSLmU444BegLv5MvFwOVAZ6AG0BDol0NsqOpVwJ+k3708nem6Ank/DnvNDM9/RUReyS5YEbkDu4O7DjgeuARYk6crd1HNk4SLRJNFZBswB5gJPA60AEoDT6rqAVX9FvuA7Z3LuZoDpwB3qepuVd2nqnNU9S9gFtAj5bjOwGZVXZBbXCk/k4/wml5U1Q2q+g/24d44u9gCPF8g70dWrwmAqt6oqjdmdWIRqQg8CFyhqj+parKq/qyqa47skl1BcEy4A3AuC5eo6tcZd6R0Eq9T1eQMu9di375zUhVYq6qJWTw2BhgEvA5cSe53EYfFdQT+zvD7Hiw55BRbbgJ5P7J6zUB0AH5W1cV5iMsVMH4n4aLFBqCqiGT8N1sNWJ/L89YB1VKakzKbDDQUkfpAV2BsHmPbA5TMsH1SgM/LKTaAnBZ7yev7EYgTgG1BOI8rADxJuGjxI7Ab+D8RiUnpRL2IlDb8HMwF/gKeFJFSIlJcRFoBqOo+YCLwHjBXVf/MY2yLgCtEpKiIdAbaBvi8bGNLsRGomc1z8/p+BGIhcK6INBJTS0TqBOG8Lgp5knBRQVUPABcDFwCbgVeAq1X1l1yel4R9eJ6OdQTHYx3UqcYADTi6DutbU15jG9AHu0PJVQCxPQE8kNIHcmem5+bp/UglIiNEZEQ2cX0HPIr1cewEPgJKBHJeV/CIL1/qCjMRqQb8ApykqjvCHY9zkcbvJFyhldKefzswzhOEc1nz0U2uUBKRUlib/1ps+KtzLgve3OSccy5b3tzknHMuW1Hf3FShQgWtXr16uMNwzrmosmDBgs2qWjG346I+SVSvXp358+eHOwznnIsqIrI2kOO8uck551y2PEk455zLlicJ55xz2fIk4ZxzLlueJJxzzmXLk4RzzrlseZJwzjmXLU8SzjkXRRIT4YUX4Pzz4aab8v/1QjaZTkTewlb/2qSq9bM5Jg54HojB1hsOdPEW55wr0P78E8aPhwkTIHX+8KpV+f+6oZxxPRp4CXg7qwdFpBy2cEpnVf1TRCqFMDbnnItIS5bA11/D0KGwc6ftK14cnn4aLrss/18/ZElCVWeJSPUcDrkC+DB1CUlV3RSKuJxzLtKowi+/WCIYPTp9f5MmcNtt0L49nHJKaGKJpNpNtYEYEZkBlAFeUNXs7joGAgMBqlWrFrIAnXMuv736Kjz4ICQkpO/r3Rs6dIA+feDYY0MbTyQliWOAs4D22Hq634vID6p6WKubqo4ERgLExsb6ghjOuag2eza89hrMmgXr1tm+k06CNm1gwADo1Cl8sUVSkojHOqt3A7tFZBbQCAhB14xzzoVWYiJMnAhffQWjRlkTE0C5cnD//XDHHSAS3hghspLEx8BLInIMUAw4G3guvCE551xwbdlidw7PPWd3Dqn+9S8YMgTq14ciETQ5IZRDYN8H4oAKIhIPPIgNdUVVR6jqChH5AlgCJANvqOrSUMXnnHP5afduGDwYnn8+/a7h2GPtrqFTJ2jePDLuHDIL5eim3gEcMwwYFoJwnHMuJCZOhGefhXnzrIkJrK8hLs46pM88M6zh5SqSmpucc65A2L3bRilNm2ZzHMCakGJj4Z57rGkpWniScM65IFmxAqZPtwSxNENj+W232bDWsmXDF1teeZJwzrmjtH493HsvvPNO+r5y5az/4fzzbThrtPIk4ZxzeTRqFDzxBPz6a/q+nj1tRvRFF0V3ckjlScI5547Azz/D2LHW17Bgge0rUwZat7ZmpQ4dwhtfsHmScM65XCQmwsKFMHUqPPYYHDxo+2Ni4IEH4L774JgC+mlaQC/LOeeOnqqV5e7VC/74I31/hw5w553QqhWULh2++ELBk4RzzmXhzTfh4YdtHQeA8uWtNHfHjvbfokXDG1+oeJJwzrkUS5fCmDHW37Boke074QTo0sVGKpUvH974wsGThHOuUEtKsoQwdSo8+igcOGD7jz3Wymjce29k1VIKNU8SzrlC6+efoUcPWLkyfd9551liaNUKSpQIX2yRwpOEc65Q2bvXZj9//HH6GtHHH2+lMjp2tP8Wlv6GQHiScM4VCvPmweefw/vv29KgYPMbOneG//4XTjwxvPFFKk8SzrkCbfVqGD4cXnklfd/xx8Nbb0HXrgV3fkOw+NvjnCuQpk2Df//70JIZ/fpBt27Qrl10FtsLB08SzrkC46+/bH7Dl1/a6m9gTUodO1qCuOiisIYXlUK5Mt1bQFdgk6rWz+G4ZsAPQE9VnRiq+Jxz0Wv9evjiC1vlbeNG21e0KFxzjZXt9ialvAvl6N/RQOecDhCRosBTwLRQBOSci25799pa0dWrw7XXWoKoXRsmTYLNm+H11z1BHK2QJQlVnQX8k8th/wYmAZvyPyLnXLRatsxmQZ9wAtx+uxXgi4uzUUrz5lnZjHLlwh1lPtm/H1580dY9DcESdxGTY0WkMnApcB7QLJdjBwIDAapVq5b/wTnnwm77dvjmG2tWevddu4sAaNIE+vaFW24BkfDGmG8OHoTly60E7aRJkJwcspeOmCQBPA/crapJkstfWlVHAiMBYmNjNQSxOefCJDnZJr716wc7dqTvP/dcGDcOKlcOW2j5Lz7e1kN96CH4/ff0/dWrw003waBB+R5CJCWJWGBcSoKoAHQRkURVnRzesJxz4bBpE9xzD3z6KSQk2L569eCKK2wCXOPGBbim0tdf28y/l15KLyZVqpQteXfffXD22SELJWKShKrWSP1dREYDn3qCcK5wUYUff4TPPrOlQdevt/3VqtmyoI8+CsWKhTfGfJPa1/DFF/Dtt+n7Gza0sbu33goVK4Y8rFAOgX0fiAMqiEg88CAQA6CqI0IVh3MuMv31F/zf/1l/Q6rq1WHCBIiNLcD9DevWWUXBr76y26dUV19tU8LDvHhFyJKEqvY+gmP75WMozrkI8umnVnDvp59sWwSuvx4uvthGLBXISqz791tb2rRpsGJF+v4TTrA3o1MnG70UASKmuck5V3hs3GitKp9+ChNTpsyWKGFlum+91WZIFzgHD8KaNTYl/OmnrW0t1TnnwFNPQdOm1vcQQTxJOOdCJikJRoyA//zH5jakuu46eOGFAnrXsHs3vPcePPDAoc1Jp59unSwXXhjRC2V7knDO5bvff4ehQ23AzpYttq9NG1vw58ILoUaNHJ8efZKTbVLH4sXw7LPW4QJWVTA21rJiz57hjTFAniScc/lC1T4jP/nE7hJSk8Npp1mfw513FsDO6G3b4O23Yfx4+O679P0nnmhzGu69N+qGZ3mScM4F3bZtNgt6ypT0fY0aWatLnToFMDksWwYvvwwffpheYbBIEejf3yZ09OkTtXVCPEk454JmyhQb6j9zpvU5HHOMVWK96CIbsHPsseGOMMgmTbLVjDLOazj5ZBvL26WLVRuMcp4knHNH5cABmDULPvgARo60fUWKWJ/D449Dq1bhjS/o9u61TugPPrA5DqnatYO77rILj7ARSkfDk4RzLs/GjLEhq9u3p+8bNAgeeQTKlw9fXEF38KDN6nv4YVi1Kn1/sWK2/N2gQVCzZgFsR/Mk4Zw7Qr/8Yq0skyfD/Pm2r04duPRSuOQSaJZjDecoomrDsn74wTqc4+PTH6tbF4YMsVLdBXzBioJ9dc65oNm711Z5u+uu9ErVJUpY8/vQoWENLbj27IE5c+CJJ2DGjPT9xx1ndwwPPxx1I5SOhicJ51yO1q6FO+6wOQ579ti+bt1s4E6HDlCyZHjjC5rVq2HqVEsOqZUFwS6yWTOrvhrBk97yiycJ59xhVGHJEvjoI7t7SJ0o3KyZreswaFABan7/5hubzPHKK9b3AFCpkrWf3XKLNS0VYp4knHOHiI+3IauLFqXvq1PHhreefnr44gqqpCRLCp99ZkX2UjVrZjOh+/eH448PX3wRxJOEc47duy0JfPih/ffAAShTBnr1si/U551XQOY4zJhhC1XMnm3NS6n69rWS3BdeGNay3JHIk4Rzhdzy5TZI55df0vede65VljjllPDFFVSvvmrTvefMSd9XujQMHmy3TXXqhC+2COdJwrlC6tVXrcVl6VLbPvlkuPtuG8Z66qnhjS0o9uyB22+3/oYNG9L3X3mlFY9q0MAK7rkchXJlureArsAmVa2fxeN9gLtTNncBg1R1cajic64wOHDAlk8eNSp9HYeyZW2Bn0ceKQDJQRV+/tlm+GUcvlqqlM2SvvJKqFIlbOFFo1DeSYwGXgLezubx1UBbVd0qIhcAI4HQrfbtXAH32mt2p5A6O1rEymbcfnsBGPa/Y4etYnTnnYeWyqhb1xb46dQJYmLCF18UC+XypbNEpHoOj2eoq8sPgKd7547Sxo3WGT1+vBXdA2tl6dHDfiJkhcy8W7nSymU8/jjs22f7ihe3pPD88wVwoYrQi9Q+iQHA59k9KCIDgYEA1apVC1VMzkUNVaurNHBg+tD/mBh46CGrMBHV/vkH5s2zdRveey99f+3a0LWrJYwCMRQrMkRckhCRdliSODe7Y1R1JNYcRWxsrGZ3nHOFza+/2mfnhAnpdeji4qxc98UXR+2SBmbFCpvX8NBDsGtX+v4LLrBxutdeW4Bm+EWOiEoSItIQeAO4QFW3hDse56LFwYNWubp/f9i/3/ZVrAg33ggPPhjFn52q8OWXNvV75EjbBqhVCzp2tDazuLiwhljQRUySEJFqwIfAVaq6KrfjnXN2t/DsszZSKXV50Pbt4Z577LMzaguU7tuXfkv0zTfp+zt2tFuigQMLQG97dAjlENj3gTiggojEAw8CMQCqOgIYApQHXhH72pOoqrGhis+5aLJ7t5Xq/ve/YetW23fmmXDVVTbAJ2o/P2fNsjIZEyemt5eJ2LyGrl1ttbeovS2KTqEc3dQ7l8evBa4NUTjORaX166009+TJ6RVZmzWDN96wUUtR+fmZnAzvvAMff2zNSqmOO84qr3btCvXqhS++Qi5ab0adK1T++ce+XD/+uJXuBmjZEnr3tk7pqFwtc88eeOYZy3g//ZS+/4orrBZ5u3bWseLCypOEcxFs0SLreP788/ShrDVr2rIHZ5wR3tjybMMGG6H06afp5TKKFUuvCdK0aXjjc4fwJOFcBEpIgHHjrJLEjh1QpIj12V5xhRXjK1Mm3BHmweLFdkFffZU+BKtCBXjqKTj/fKhcObzxuSx5knAugqxfb8NWP/vMljwAaNXKhreefHJ4Y8uT/fstMXz77aFNSvXqwQsvQIsWUdpWVnh4knAuAqTeOTzzjPU5FC1qSxtceaXNE4u6CcQbN1pRqM8+Sy8WBXZRw4fb7OgiRcIXnwuYJwnnwmjFCmuK//xzSEy0fTVqWKXWmjXDG1ueLF5sFVhTC0WB3QI99xx07uyluaOQJwnnwmDrViu6N2SI3UUULWpTAK6+2uaKlSgR7giPgKqt2XD33YeuXNS0qS1YERvrq71FMU8SzoXQ1q02AW7ixPS+26ZN7TM26laB27LFOlC++ip9Rl+RIjav4dVXo/CCXFY8STgXAnv2WMnup56yleBEoEMHW1r5X/+KsjuHZctg0CBbJzpVhQq2IPbw4VHYgeJy4knCuXy0caMtozx+vA1lBfs8/eoraNw4vLEdEVUL+pZbbA2HVLGx8PLLNu07Kqd7u9x4knAuHyQlWfHSO+6wzmmAs8+Gfv3sC3fUlOzetQtuuslmRadmuaJFrTz3iBE+t6EQ8CThXBBt2gQvvgijR9ucB7DP0U8/jbI7h7VrrdLql1+m7zvpJOtv+O9/bfU3Vyh4knAuSBYuhO7d4Y8/bPv00219hwEDoFKl8MYWEFVrOnrmGVizJn1/o0Y28a1t27CF5sLHk4RzR2HHDpsE9/rrMH++7atRA0aNgjZtoqSZPjHRqq2++aZVEgTrSW/Z0oaw1q4d3vhcWHmScC6PpkyxWkq7d9t2uXK2nsM990TJ6M8dO2wI6wcfwIEDtq9CBVsE+5ZbonjFIhdM/q/AuSOgCtOn20qa48fbvhYt4Oab4bLLomQo66efwv33w5Il6ftOO83qkPfoESW3Py5UPEk4F6CpU+E//4Fff7XtIkXguuts3ljEf66q2spETzwBq1fbPhGbyff883DuueGNz0WsUC5f+hbQFdikqvWzeFyAF4AuwB6gn6r+lPk450Jtwwbrc3jsMVvToXJluPZa65CuWjXc0eUiORkeecQy2caNtq9ECQv+qaegZMnwxuciXijvJEYDLwFvZ/P4BUCtlJ+zgVdT/utcyKU2K73yik0RSC3b3bMnvPtuFDTXHzhghfbGjoWdO23f8cfDXXfZT8RfgIsUoVzjepaIVM/hkG7A26qqwA8iUk5ETlbVv0ISoHMpkpJslvQTT9h20aJWOmPQIDjvvAhvWvrf/6zn/Icf0svKVq4Mjz5qNUAiOngXiSLp60RlYF2G7fiUfYclCREZCAwEqFatWkiCcwXfli3w1lt295A6TeCee6wgX0SPVtq/35YD/fJLWLAgff8ZZ1iJ7gsuCF9sLupFUpLI6iuOZnWgqo4ERgLExsZmeYxzgdq3D267zWZJ79tn+2rUsDLe/fqFM7JcbNtmQX74Yfr0bhG4/HJ46SUbzurcUYqkJBEPZOwGrAJsCFMsrpCYO9dGg379tW137mzDWTt3juAlEP76y5LD5MmwebPtq1DBymVceGGULoDtIlUkJYkpwM0iMg7rsN7u/REuPxw4YOs5vPgi/Pij7Ste3FbaPO+88MaWo0mT7K7hk0/SO6OrVoXXXoO4uCiZpOGiTSiHwL4PxAEVRCQeeBCIAVDVEcBUbPjrb9gQ2GtCFZsrPLZvtxJEixfbdrlyNtfhxhuhevWwhpY1VXjnHav98fnn6fvr1LHkcPbZUKxY+OJzBV4oRzf1zuVxBW4KUTiukElIsMrWL71klVpPOsn6evv0gVKlwh1dFjZssMQwZUr6etEiNpvv6quhfn0fxupCwv+VuQJt+XIb4PPOO+nLhTZsCO+/D3Xrhje2LK1ZY7WUHn/cOqbBOkceeMAKRXmxPRdiniRcgfXZZ3DJJenTBbp2tVFM7dpF2HQBVZg3D7791mZH79lj++vWtVWL4uKgZs2whugKL08SrkBRhRkzbKnlqVNt36WX2sS4M84Ia2iHS00OTz4JH32Uvj821jpJevXyzmgXdp4kXIGQmGgjloYPT59PVqIEXH89PP00xMSEN75DJCbCokXWhDRtmu0TsRnRcXHQu7d3RruI4UnCRb0dO2yBn9QRSxUr2lyHG2+MsPlkSUk2fHXgQOtJB+t8vuoqqxjYsmV443MuC54kXNTavx/GjLE+3rVrbcTS0KE2+CeiWmmSk+0258YbrfYHWLDnn2+L+zRtGt74nMuBJwkXdXbutOGszz1nk4/B1pOeMsWmD0SMgwet8NPEiYcmh969rUx3RLWBOZc1TxIuqrz+Ovzf/6WPDm3UyIrwde8eQdMG9u61YVTjx6cHesopNinjySdttSLnokSk/G/lXI527LAF1B580LZbt7almDt3jqDhrD/+aCVkP/ss/c6hcmV4803o1CmCAnUucJ4kXETbuhVeeMF+Ur+U3323fSGPGD/+aDXG33wzfXWiypWtrGz79p4cXFTzJOEi0ubN8OyzVkYjtZZd27a2GFBEFOFLTrZaStOmwcsv2zbYjL1HHoEGDSK4jKxzgfMk4SLOypVwzjl2FwHQoYMlhzZtwhsXYAtO/PCDLXidWl8coFs3u8Vp0cLvHFyBElCSEJEOwA5VnZvP8bhCbNcuWxLhqaesWmvz5tbM1KJFuCPDmpGmTYNrrrEKgWCjk26/3fobIq7Wh3PBEeidxLPAcOCQJCEiDYCNqrop2IG5wmPPHuvvfeqp9DV02rWzkaMnnBDe2FCF6dNtwtuGlDWwqlaFyy6zZesaNw5reM7lt0CTRC1gThb7mwOXA+cHLSJXaOzbByNHWl2lv/+2fS1aWJN+2Pt7Va13/LXXbKYe2FTuXr1sf8mSYQzOudAJNElsAyoCf2TaPwcYFtSIXKHwv/9Bz57pSzPHxsLDD0fAkNa//4ZnnrFhrCtW2L7jj4d//ct60Y89NozBORd6gc7qmQzcncX+oik/ARGRziKyUkR+E5F7sni8mohMF5GFIrJERLoEem4XHVRtaeZLLrEEUb8+fPyxrTV9wQVhTBAJCXZLc9ZZViVwxQq7W3jtNWsDe/11TxCuUAr0TuJ+YLGIfAIMUdWFIlIauA9YEsgJRKQo8DLQEYgH5onIFFVdnuGwB4AJqvqqiNTFljStHmCMLsLNmWOzpb//3rZbtbLm/rBWp1i3zjqkH3oI4uNtX82a8OqrNmMvoopAORd6Ad1JqOo/QIuU4xeIyH5gO9AZ+L8AX6s58Juq/qGqB4BxQLfMLwUcl/J7WWBDgOd2EWzpUrj4YvvM/f57a9p/6SVbYydsCWLnTiv+VLOmLXIdHw+nnmpLhi5ebCOWPEE4F/g8CVVdD1woIlWBJsBB4MeUBBKIysC6DNvxwNmZjhkKfCki/wZKAR2yOpGIDAQGAlSrVi3QS3Ahtm6dldEYM8bmmpUqBXfdZaNGy5QJU1AHD0L//pYMUpesa9sWevSw5UGPPz5MgTkXmY54Mp2qruPQD/tAZdXarJm2ewOjVfUZETkHeEdE6qtqcqYYRgIjAWJjYzOfw0WARx+1n/37rfDejTfaGjsnnhimgFautDriU6daISiwGXu9elmlVp/j4FyWQjnjOh6ommG7Coc3Jw3AmrBQ1e9FpDhQAfB5GFHi4EFbCW7wYNvu1cuGtJ5+epgC+u47+PBD63hOTQ6nnWa1liJiCrdzkS2USWIeUEtEagDrgV7AFZmO+RNoD4wWkTpAcSAhhDG6PFK1UaN33mlf2sFqL912W5iCWbXKEsMzz6Tvb9YM3n7bFrv2OwfnAhKyJKGqiSJyMzANGzb7lqouE5GHgfmqOgW4A3hdRG7DmqL6qao3J0W4pUutn+Grr2z79NNtFOnFF4chmG3bbFGfL75I39e3r82ObtXKF/px7giFtMCfqk7FhrVm3Dckw+/LgVahjMnl3datMGSIldRIToZy5Wz7ppugWLEQB7NsGdx6K8ycaR3SMTHWGd2jhxXf8zsH5/LEq8C6I5acbEsl3HOPzUErWtQSw0MPQfnyIQ5m+nR47z0YO9ZWhBOxO4YXXrCJcc65o+JJwh2R+fMtIcxNKfXYpo1Vbm3YMMSB/PqrFX4aPjx9X6tWMGlSGIdQOVfweJJwAdm8Ge6/3/qCVW3J5uHDbfRSSFtydu2yFeDuuCN9FbgBA+Dmm23Ba29Wci6oPEm4XH3+OVx5Jfzzj815uO02G+Ia0glxa9fafIYvv7TJFwBdutgEjC5dPDk4l088SbgczZ5tE5G3bbNlQ19+Gc48M4QBLFliw1ZHj4YtW2xfixbQp48liCKB1qh0zuWFJwmXpW3brBjf66/bdocO9iU+ZF/Yt2yxzug77kgvn1GvHnz6KVSvHqIgnHP+Ncwd5qOPoG5dSxDFitmw1k8+CVGCULW2rEqVbEhrYiJceCHMmgWLFnmCcC7E/E7Cpfn7b+v/nTTJtlu2hDfegDp1QvDiu3fbqkPjx6evBNexI1x+uU2EO8b/qToXDv5/nkMVRo2ylp1t26B0aVt/JyRN/jt32qpDzz8PCxbYvpNOsgWvr746n1/cOZcbTxKF3OrVMHAgfP21bV9wAYwYASGpwL5okc2G/vNP2z7uOHj/fVvD1DuknYsI/n9iIaVqTUkNG1qCKF8e3n3XivTle4KYORMaNIAmTSxB1KhhM/JWrrThrJ4gnIsYfidRCP39N1x7rSUEgO7drf5SxYr5+KJJSTBjhvU5jBplHdLHHQf/+pe1bfksaecikieJQmbiRLjhBhthWq6czXvo3TufRy5t22aZ6Jtv0vddeqk1LR17bD6+sHPuaHmSKCS2brUJy2PH2nbHjrbuTpUq+fiif/0Ft9xi42f374eSJW26ds+eUL++z5J2Lgp4kigE5syxWdPr1kGJElZzadCgfPyM3rgRJkywBX/WrrUXiouzEUvNm+fTizrn8oMniQIsKQkef9yWdk5Ots/nd96B2rXz8UVffNFWIEotvle9Okybls8v6pzLLyEdRiIinUVkpYj8JiL3ZHPM5SKyXESWich7oYyvINmwwZqUhgyxBHH33XZHkS+f1du3w3PP2foNt95qCeKCC6zPYelSTxDORbGQ3UmISFHgZaAjEA/ME5EpKavRpR5TC7gXaKWqW0WkUqjiK0imTrUVOzdvtuoW77wDnTrl04v98ot1Si9bZttly8IDD9hi1865qBfKO4nmwG+q+oeqHgDGAd0yHXMd8LKqbgVQ1U0hjC/qTZwIlStbqaPNm+1OYvFDGVJWAAAcpklEQVTifEoQq1fbIj916liCOOUUC+Dvvz1BOFeAhDJJVAbWZdiOT9mXUW2gtoj8T0R+EJHOWZ1IRAaKyHwRmZ+QkJBP4UaPxET7XO7Rw5qZwPqIv/jCKlwEVXy8dXS0aAHffQelStmiP3Pm2JyH4sWD/ILOuXAKZcd1VmNpNNP2MUAtIA6oAswWkfqquu2QJ6mOBEYCxMbGZj5HobJxo40onTnTauA9+qgNdS1ZMh9e7JVX7OTJybZdv77NfajkrYLOFVShTBLxQNUM21WADVkc84OqHgRWi8hKLGnMC02I0WX+fLjkEli/3u4YPvgAzj03yC+yb591QL/xht05gNVbuv56a8cqWjTIL+iciyShTBLzgFoiUgNYD/QCrsh0zGSgNzBaRCpgzU9/hDDGqDF+vFXQ3rfPEsOECXDyyUF+kX/+sSw0e7ZtlykD995rP865QiFkfRKqmgjcDEwDVgATVHWZiDwsIhenHDYN2CIiy4HpwF2quiVUMUaD5GQb1tqrlyWIAQOsxSeoCWL5chseVbmyJYiyZeHNN20GtScI5woVUY3uJv3Y2FidP39+uMMIid27bYmFDz+0QqnPPmtVL4I2c1rVJr717Ak7dti+Tp2so/qss4L0Is65SCAiC1Q1NrfjvCZzFEhKgoceggoVLEGULWtzIW69NYgJYswYG856wQWWIFq3ht9/t6ThCcK5QsvLckS4/fvhqqusUxqgVi2rl3fGGUF6ga1b7Zbk0Udtu3JlW4Xo9tttiTrnXKHmSSKCbd9u/cYzZtjSC8OGWXNTUKYirFsHjz1m07H37LF9999vhZ58PWnnXAr/NIhQf/1lLT+LF1un9OefQ6NGQTr5zz/DRRdZhVawfodbb7VV4ZxzLgNPEhHou++gTx9Ys8Zq402bZsVUj9qPP9rQqC+/tO3atWHyZOuLcM65LHjHdQQ5eNDWfWjVyhJE8+ZW7eKoE4SqrVV63nmWIEqWhJtusnYsTxDOuRz4nUSE2L/f5j5MnmzbV14JI0ZYaaQ8S0qyHu+nn4aFC21fly7w7rtw/PFHHbNzruDzJBEB9u2z2nhTp9q6019+Cc2aHeVJk5Ph2mth9GjbrlTJJlXcfrstT+eccwHwJBFms2fbUqLLlkH58vD119C48VGcMDERxo2zCXArVthIpeeft6nZXqHVOXeEPEmE0SefwGWX2ed6pUpWXqN+/aM44Wef2d3CHynlrqpVsxXjLrssKPE65wof77gOk6++sgXdEhPh0kutomueE0Ryst09dO9uCeL0063W0q+/eoJwzh0VTxIhlphoX/Y7dYIDB+Dmm2HSJKhaNffnHkYVPv4YmjaF3r2tc6NHD2tm6t8fihULevzOucLFm5tCSNWWYXjrLdu+7jp44YU81l/av99m202fbtuVK9va0gMG+Ixp51zQ+J1ECA0ZYgmiRAn46CMYOdKquR6xxYvh/PMtQZQrBy++CL/9BjfcADExQY/bOVd4+VfOENi2zeZATJtmC7lNmABdu+bhRGvWwODBMHas3ZYcd5x1VrdsGeyQnXMO8CSR7w4ehMsvt45qgNdfz2OCmD8f2rSBvXvtbuGmm6wgX4UKQY3XOecyCmlzk4h0FpGVIvKbiNyTw3HdRURFJNcFMSLZmjXQoIEliEqVYNEiuOaaIzxJUpJNve7Y0RJE586wcqUNbfUE4ZzLZyG7kxCRosDLQEcgHpgnIlNUdXmm48oAtwA/hiq2/LB7N3TrZp/npUvbIKQjruI6Y4ZVZ12yxLbbt4eJE4+yVodzzgUulHcSzYHfVPUPVT0AjAO6ZXHcI8DTwL4QxhZUv/5qi7ktWWKLBP3+O7RocQQnSEiwoazt2tlJTj3VajB99ZUnCOdcSIUySVQG1mXYjk/Zl0ZEmgBVVfXTnE4kIgNFZL6IzE9ISAh+pEdh926bHLdyJZxwgt1BVKp0BCfYs8d6uSdOtGqtjzxi8x66dw/iWqXOOReYUHZcZ/UJp2kPihQBngP65XYiVR0JjASIjY3VXA4PmY0boWdPq8NUu7aV+a5Y8QhOMHWqdUivWWMLWc+bZ7cizjkXJqG8k4gHMs4rrgJsyLBdBqgPzBCRNUALYEq0dF4nJlol15kzrUVo0qQjSBAJCXb3cOGFliAaNbJCTp4gnHNhFsokMQ+oJSI1RKQY0AuYkvqgqm5X1QqqWl1VqwM/ABer6vwQxpgne/bYQkH/+x+ceCLMnXsEdZgmToR69WD8eGteGj7chruedVa+xuycc4EIWXOTqiaKyM3ANKAo8JaqLhORh4H5qjol5zNEpqQkayGaOxfKlLH+5bp1A3hiQoI98YMPbDsuzory1ayZn+E659wRCelkOlWdCkzNtG9INsfGhSKmo3X99bauT0wMzJoV4FoQCxdahb/Nm61tatgwO1GeanQ451z+8RnXR+Hdd+3Lf0wMvPdegAli3Tq4+mpLEHFxVsypRo38DtU55/LEv7rm0eTJcNVV9vvjj9sI1Vx99JF1Si9daonh0089QTjnIponiTz43/9srhvAv/9ty0bnaP9+63+47DLYuhW6dIEff/SJcc65iOfNTUfowAFbkzoxEfr0gWefzaUrYd06u82YO9fapZ5+2kpt+MQ451wU8CRxBFRtstzPP0P16lbRNcf1faZPtyckJFhpjUmTfGircy6qeHPTEXjmGeuLKF0a3n/fFg/Kkio8/7xVbk1IsP8uWOAJwjkXdTxJBGjhQrj7bvv9xRdzKNiXmGgdFbfdZpMo7r0XPv8cypcPWazOORcs3twUgN27baGg5GQYODCHNSF27YLevW3UUrFiMGaMldtwzrko5UkiF6o2emnDBpsH8eyz2Rz4999We+mnn9LLv557bkhjdc65YPMkkYtnnoGRI+HYY+Hll7MZtbpuHZx3Hvz2G5x2mlVzrV075LE651yweZLIwaZN8NRT9vt770HLllkctHq1JYg1a6BJE5g27Qjrg7tQOHjwIPHx8ezbF7VrWTmXJ8WLF6dKlSrExMTk6fmeJLKhCgMGWPWM1q1tIaHDDnjvPWuL2rQJzj7bOqiPPz4s8bqcxcfHU6ZMGapXr474HBVXSKgqW7ZsIT4+nhp5rO7go5uyMWWK9T8fdxyMG5dp7psq3HEHXHmlJYjWrW1pUU8QEWvfvn2UL1/eE4QrVESE8uXLH9UdtCeJLOzebZOiAR59FE45JdMBw4bBc8/ZVOs777Q7iDJlQh6nOzKeIFxhdLT/7r25KQuPPQZr19popkGDMj04bpxNmBCxGXWXXx6WGJ1zLhT8TiKTX3+1xeEAXnklU9mNiROhb1/7ffhwTxCuwBs9ejQbNqSvMnzttdeyfPnyoL7GmjVrqB/wUo6hdzTxzZgxg++++y5te8SIEbz99ts5Pifje/z444/n6XWDyZNEJg8+CAcPQr9+cM45GR547DEr/XrgQPqMaucKuMxJ4o033qBuQEsvRr6kpKR8f43MSeKGG27g6quvzvE5Gd/jQpckRKSziKwUkd9E5J4sHr9dRJaLyBIR+UZETg1lfD//bK1JxYrBQw9leODrr2HwYPv9P/+x/ghv345eIvnzk4u3336bhg0b0qhRI65KWYxk7dq1tG/fnoYNG9K+fXv+/PNPAPr168ctt9xCy5YtqVmzJhMnTgTgr7/+ok2bNjRu3Jj69esze/ZsAEqXLp32OhMnTqRfv35p5xk0aBDt2rWjZs2azJw5k/79+1OnTp20Y1Kff8cdd9C0aVPat29PQkICEydOZP78+fTp04fGjRuzd+9e4uLimD/flp1///33adCgAfXr1+fu1Jo1Kee6//77adSoES1atGDjxo0B/2n27dvHNddcQ4MGDWjSpAnTp08HoEuXLixZsgSAJk2a8PDDDwMwePBg3njjjUPOsWbNGs4880z69u1Lw4YN6d69O3v27AGgevXqPPzww5x77rl88MEHLFq0iBYtWtCwYUMuvfRStm7dCsCCBQto1KgR55xzDi+//HLauUePHs3NN9+ctt21a1dmzJgBwBdffEHTpk1p1KgR7du3Z82aNYwYMYLnnnuOxo0bM3v2bIYOHcrw4cNZsWIFzZs3PyTmhg0bAqS9x/fccw979+6lcePG9OnTh8GDB/PCCy+kPef+++/nxRdfDPi9zTNVDckPtq7170BNoBiwGKib6Zh2QMmU3wcB43M771lnnaXBctllqqB6880Zdi5Zolqxoj0wZEjQXsuF1vLly9M3bHxa8H9ysHTpUq1du7YmJCSoquqWLVtUVbVr1646evRoVVV98803tVu3bqqq2rdvX+3evbsmJSXpsmXL9LTTTlNV1eHDh+ujjz6qqqqJiYm6Y8cOVVUtVapU2mt98MEH2rdv37Tz9OzZU5OTk3Xy5MlapkwZXbJkiSYlJWnTpk114cKFKW8J+u6776qq6kMPPaQ33XSTqqq2bdtW582bl3bu1O3169dr1apVddOmTXrw4EFt166dfvTRR2nnmjJliqqq3nXXXfrII4+oqurHH3+sgwcPPuy9Wb16tdarVy/t+vr166eqqitWrNCqVavq3r179YknntCXXnpJt2/frrGxsdqpUydVVY2Li9NffvnlsPMBOmfOHFVVveaaa3TYsGGqqnrqqafqU089lXZsgwYNdMaMGaqqOnjwYL311lsP23/nnXemxTdq1Ki090ZV9cILL9Tp06frpk2btEqVKvrHH38c8vd98MEH014783ajRo30999/V1XVJ598Mu19yvieZ/y7rl69Wps0aaKqqklJSVqzZk3dvHnzYe9nVg75958CmK8BfHaH8k6iOfCbqv6hqgeAcUC3jAeo6nRV3ZOy+QNQJVTBrVljC8fFxMB996Xs/OUXq+SXkAAdOsCQLJfjdtEmv9JEDr799lu6d+9OhQoVADjhhBMA+P7777niiisAuOqqq5gzZ07acy655BKKFClC3bp1076NN2vWjFGjRjF06FB+/vlnygQwqu6iiy5CRGjQoAEnnngiDRo0oEiRItSrV481a9YAUKRIEXr27AnAlVdeeUgcWZk3bx5xcXFUrFiRY445hj59+jBr1iwAihUrRteuXQE466yz0l7j4osvTrsDyM6cOXPS7rLOPPNMTj31VFatWkXr1q2ZNWsWc+bM4cILL2TXrl3s2bOHNWvWcMYZZxx2nqpVq9KqVassryf1Ordv3862bdto27YtAH379mXWrFmH7U+NJyc//PADbdq0SZuLkPr3zcnll1/OhAkTABg/fnxaXNmpXr065cuXZ+HChXz55Zc0adKE8iEoHBrKJFEZWJdhOz5lX3YGAJ9n9YCIDBSR+SIyPyEhISjBvfaa/X/eowecfDJWwbV/f9izx9aiHj8eihYNymu5wkdVAxqKmPGYY4899pDnA7Rp04ZZs2ZRuXJlrrrqqrRO0IzPyzwmPvU8RYoUOeScRYoUITExMdc4srue7MTExKQ9v2jRotm+xpGct1mzZsyfP5/Zs2fTpk0bmjRpwuuvv85Z2ZTfzxx/xu1SuawImdPf6phjjiE5OTltO/W9DvTvm1HPnj2ZMGECq1atQkSoVatWrs+59tprGT16NKNGjaJ///5H9Hp5FcokkdU7mOW/CBG5EogFhmX1uKqOVNVYVY2tGIQSGP/8Y0kC4MYbsXKvt94K339vkyQ++siK9jmXR+3bt2fChAls2bIFgH/++QeAli1bMm7cOADGjh3LubkUhVy7di2VKlXiuuuuY8CAAfz0008AnHjiiaxYsYLk5GQ++uijI44vOTk5rd/jvffeS4ujTJky7Ny587Djzz77bGbOnMnmzZtJSkri/fffT/vmfTTatGnD2LFjAVi1ahV//vknZ5xxBsWKFaNq1apMmDCBFi1a0Lp1a4YPH07r1q2zPM+ff/7J999/D1jfSVbva9myZTn++OPT+nXeeecd2rZtS7ly5Shbtmza3UdqPGDf5hctWkRycjLr1q1j7ty5AJxzzjnMnDmT1atXA+l/3+zeP4DTTjuNokWL8sgjj2R7FxETE8PBgwfTti+99FK++OIL5s2bx/nnn5/NuxhcoZwnEQ9UzbBdBdiQ+SAR6QDcD7RV1f2hCGzkSFt6+rzzUuozjXnbqvmJ2PJz5cqFIgxXgNWrV4/777+ftm3bUrRoUZo0acLo0aN58cUX6d+/P8OGDaNixYqMGjUqx/PMmDGDYcOGERMTQ+nSpdPuJJ588km6du1K1apVqV+/Prt27Tqi+EqVKsWyZcs466yzKFu2LOPHjwes4/uGG26gRIkSaR+6ACeffDJPPPEE7dq1Q1Xp0qUL3bp1y+70AEyZMoX58+fn2OR04403csMNN9CgQQOOOeYYRo8enXb307p1a7755htKlixJ69atiY+PzzZJ1KlThzFjxnD99ddTq1YtBh024cmMGTOGG264gT179lCzZs209z/1m3rJkiUP+TBu1aoVNWrUSOuwb9q0KQAVK1Zk5MiRXHbZZSQnJ1OpUiW++uorLrroIrp3787HH3/Mf//738Nev2fPntx1111pySWzgQMH0rBhQ5o2bcrYsWMpVqwY7dq1o1y5chQNVctGIB0XwfjBEtIfQA3SO67rZTqmCda5XSvQ8waj47pxY2tUnjJFVTdsUD3pJNsxcuRRn9tFhqw67ly6jB2k0S5jR3hBk5SUpI0aNdJVq1Yd0fOiouNaVROBm4FpwApggqouE5GHReTilMOGAaWBD0RkkYhMye+4Vq2CRYusRlOnjmqV/P7+2yZJDBiQ3y/vnHMBWb58Oaeffjrt27cPqP8iWEJalkNVpwJTM+0bkuH3DqGMByBlcAGXXALHjngBfvzRSn1/+KHVZnKuEDjS5qlIVr16dZYuXRruMIKubt26/PHHHyF/3UJfuyk1SVx+wU4YcL9tvPACnHRS+IJyzrkIUai/Km/YYLOsS5eGjlP+bcNdO3Wydaqdc84V7iSROr+mZe3NFHt/DJQsaXcRzjnngEKeJFKGR9P6z3ftl6FD4cwzwxaPc85FGk8SQOvNH9k06//8J7wBORdhQlEqfMaMGWllPDIL5PX69euXNhEwVApT+fBC23G9axcsWQIxcpDmOhcuG2CFm5xzaUaPHk39+vU5JWV5xswVV/NbqF8vKSkp3yepzZgxg9KlS9OyZUvAyofnJuP78Pjjj3NfWoG5/Fdo7yRWrLBaTWfqCkqUKmqrzblCIUyVwr1UeA527dpF9+7dOfPMM+nTp09aDaeMr/fmm29Su3Zt4uLiuO666w4p2T1r1qzD3quMvHz4UQhkxl0k/+R1xvWYMTap+nLGqV59dZ7O4aJHxhmnYagU7qXCNftS4dOnT9fjjjtO161bp0lJSdqiRQudPXv2Ya936qmn6pYtW/TAgQN67rnnpsWY3XuVUWEvHx4VM64jzYoV9t86rPBlSAuZ/EoTOfFS4TmXCm/evDlVqlShSJEiNG7cOO05qebOnUvbtm054YQTiImJoUePHoc8ntV7lZmXD8+bQpskDm7dSSl2Uaf4GujYMdzhuAJO1UuF5yRjXFk9J6fXy/z87I718uF5U2iTxPDO37CTMvzrnA22Xqlz+chLhR+d5s2bM3PmTLZu3UpiYiKTJk064nN4+fC8KbSjm5g7FwGOOTvrRUucCyYvFR5YqfDsVK5cmfvuu4+zzz6bU045hbp161K2bNkjOoeXD8+jQDouIvknz6XC77xTtUwZ1UmT8vZ8F1W8VHjOoqFU+M6dO1VV9eDBg9q1a1f98MMPA35uYS8f7h3XeTFsGGzbBhddFO5InHMBGDp0aNrQ3xo1anDJJZeEO6SwC0X58MLb3ARWCtzLgTsXFaXChw8fnufnevnwvPNPSFdoaG7jVJ0rgI72331Ik4SIdBaRlSLym4jck8Xjx4rI+JTHfxSR6qGMzxVcxYsXZ8uWLZ4oXKGiqmzZsoXixYvn+Rwha24SkaLAy0BHIB6YJyJTVDVj9a4BwFZVPV1EegFPATnPJnEuAFWqVCE+Pp6EhIRwh+JcSBUvXpwqVark+fmh7JNoDvymqn8AiMg4oBuQMUl0A4am/D4ReElERP3rnztKMTExaTNfnXOBC2VzU2VgXYbt+JR9WR6jqonAduCwOeYiMlBE5ovIfP9m6Jxz+SeUSSKr+emZ7xACOQZVHamqsaoaW7FixaAE55xz7nChTBLxQNUM21WADdkdIyLHAGWBf0ISnXPOucOEsk9iHlBLRGoA64FewBWZjpkC9AW+B7oD3+bWH7FgwYLNIrI2jzFVADbn8bnRyK+34Cts1+zXm3enBnJQyJKEqiaKyM3ANKAo8JaqLhORh7Hp4VOAN4F3ROQ37A6iVwDnzXN7k4jMV9XYvD4/2vj1FnyF7Zr9evNfSGdcq+pUYGqmfUMy/L4P6JH5ec4558LDZ1w755zLVmFPEiPDHUCI+fUWfIXtmv1685n4PDXnnHPZKex3Es4553LgScI551y2CkWSKGzVZwO43n4ikiAii1J+rg1HnMEiIm+JyCYRyXLBADEvprwfS0SkaahjDKYArjdORLZn+PsOyeq4aCEiVUVkuoisEJFlInJrFscUmL9xgNcbur9xIMvXRfMPNifjd6AmUAxYDNTNdMyNwIiU33sB48Mddz5fbz/gpXDHGsRrbgM0BZZm83gX4HOs7EsL4Mdwx5zP1xsHfBruOIN4vScDTVN+LwOsyuLfdIH5Gwd4vSH7GxeGO4m06rOqegBIrT6bUTdgTMrvE4H2IpJVHaloEMj1FiiqOoucy7d0A95W8wNQTkRODk10wRfA9RYoqvqXqv6U8vtOYAWHFwctMH/jAK83ZApDkgha9dkoEcj1Avwr5bZ8oohUzeLxgiTQ96QgOUdEFovI5yJSL9zBBEtKU3AT4MdMDxXIv3EO1wsh+hsXhiQRtOqzUSKQa/kEqK6qDYGvSb+LKqgK0t83ED8Bp6pqI+C/wOQwxxMUIlIamAT8R1V3ZH44i6dE9d84l+sN2d+4MCSJwlZ9NtfrVdUtqro/ZfN14KwQxRYugfwbKDBUdYeq7kr5fSoQIyIVwhzWURGRGOwDc6yqfpjFIQXqb5zb9Ybyb1wYkkRa9VkRKYZ1TE/JdExq9VkIsPpsBMv1ejO11V6MtXkWZFOAq1NGwLQAtqvqX+EOKr+IyEmpfWoi0hz7/3xLeKPKu5RreRNYoarPZnNYgfkbB3K9ofwbh7TAXzhoPlWfjVQBXu8tInIxkIhdb7+wBRwEIvI+NtqjgojEAw8CMQCqOgIrKtkF+A3YA1wTnkiDI4Dr7Q4MEpFEYC/QK4q/9AC0Aq4CfhaRRSn77gOqQYH8GwdyvSH7G3tZDuecc9kqDM1Nzjnn8siThHPOuWx5knDOOZctTxLOOeey5UnCOedctjxJOOecy5YnCeeCTESeEpGvwh2Hc8HgScK54GsMLMr1KOeigCcJ54KvEbAw3EE4FwyeJJwLIhE5CTiRlDsJESklIuNE5KdoX/HQFU6eJJwLriZYLZ2VInIGMBerkdVKVdeEMzDn8sKThHPB1Rj4GbgE+A54XVWvVNW94Q3LubzxAn/OBZGIjAc6YhV4L1bVmWEOybmj4ncSzgVXY+BDrHR3tC6B61wav5NwLkhEpCSwE2gB1AJGAm1SF7V3LhoV+EWHnAuhRti6yktVdZ6I1AE+EZHmqro+zLE5lyfe3ORc8DQCfs3QST0E+B8wJeUuw7mo481NzjnnsuV3Es4557LlScI551y2PEk455zLlicJ55xz2fIk4ZxzLlueJJxzzmXLk4RzzrlseZJwzjmXrf8HwTL4bgkzYt4AAAAASUVORK5CYII=\n", - "text/plain": "
" - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEeCAYAAAB7Szl7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd4VVXWx/HvIgk1dBSQLiBSBYmRIggjICBNAUVGBEWCASwzllFGcXR0GMexFxRFVEaFGVBIkCoiSFGagHQjiqE3aQmQtt8/VngTQ5KbckvK+jwPjzk3596zbzJzf9ln7722OOcwxhhjslMi0A0wxhhT8FlYGGOM8cjCwhhjjEcWFsYYYzyysDDGGOORhYUxxhiPLCyMMcZ4ZGFhjDHGIwsLUySIyC8i0i31660i0iXATfIJf743EYkVkTZZfK+viIT6ox2mYLCwMAVK6of+WRE5IyKHRGRqbj+UnHPNnXNf+7BdF/5d5s1rZHHNbukf88V7y+LalYGawPYsTnkJCPJ1O0zBYWFhCqK+zrlQ4GrgGuCJALfngr7OudB0//YHukE+1BKIcc6dy/gNEbkS+MY5d9L/zTKBYmFhCizn3D5gPtACQESaisjXInIi9XZMv8yel/EvchGpIyKficgRETkmIm+IyCMiMivD814XkVdy204RcSLSKN3xByLybIb2PCwim0XkpIjMEJHSWbUt9fFpQF0gOrUX82jG95bdzyO7a+ZQK2BL6muVFZFPUtsZCvwBeCe3PydTuFlYmAJLROoAvYHvRSQEiAYWAZcC9wEfi0gTD68RBMwF9gD1gVrAdOA/QE8RqZR6XjBwGzDNJ28GbgV6Ag3QD+IR2bQN59ww4FfSejP/yvC+cvLzuOia6Z7/loi8lU17WwE/iEgDYAWwExjonDsDhDrnvsvDz8AUYhYWpiCaLSIn0A+pZcA/gHZAKPBP51yCc+4r9IP2dg+vFQ5cBjzinItzzp1zzq1wzh0AlgODU8/rCRx1zq331K7Uf7Nz+Z5ec87td84dRz/kW2fVthy+Xk5+HpldEwDn3Bjn3JhsXr8lOmbxFfC0c+5pl1qiOmNwmeIhONANMCYTA5xzX6Z/IHUwOdY5l5Lu4T3oX+PZqQPscc4lZfK9D4FI4F3gDjz3Ki5qVy4cTPd1PBoS2bXNk5z8PDK7pkciIuitv8uBl5xzc/LQPlPEWM/CFBb7gToikv5/s3WBfR6eFwvUTb3NlNFsoJWItAD6AB/nsW3xQNl0xzVy+Lzs2gaQ3WYzef155ESD1P92Ax4SkTAvvKYp5CwsTGHxHRAHPCoiIalrDfqSeo8/G2uAA8A/RaSciJQWkY4AqTN9ZgKfAGucc7/msW0bgaEiEiQiPYHrc/i8LNuW6hD6131m8vrzyIlWwGbn3A9ABPC5iNT0wuuaQszCwhQKzrkEoB/QCzgKvAXc6Zzb4eF5yeiHaCN0wHgvOpB9wYfo/fn8DGw/kHqNE8Af0R6LRzlo20TgidQxkoczPDdPP48LRORtEXk7i2+3BDanXmc2MBkdr8nNbCpTxIhtq2qKMxGpC+wAajjnTgW6PcYUVNazMMVW6v3+PwPTLSiMyZ7NhjLFkoiUQ8cE9qDTZo0x2bDbUMYYYzyy21DGGGM8srAwxhjjUZEZs6hWrZqrX79+oJthjDGFyvr164865y7xdF6RCYv69euzbt26QDfDGGMKFRHZk5Pz7DaUMcYYjywsjDHGeGRhYYwxxiMLC2OMMR5ZWBhjjPHIwsIYY4xHFhbGGGM88ntYiEgdEVkqIttFZKuIPJDJOV1E5KSIbEz9N8Hf7TTGmMJg06ZETp70/XUCsSgvCXjIObdBRMoD60VksXNuW4bzvnHO9QlA+4wxpsD7/vvz/O9/i9m79wRly97B21ltZeUlfu9ZOOcOOOc2pH59GtjO7zeZN8YYk4UzZ+Dhh+H++9exZYvjf/8bRIkSkJLi2+sGtNyHiNQH2qD7CWfUXkQ2oRvTP+yc2+rHphljTIFy6hQ8/ng8Bw4sZN26tuzb14FbbhEWLoTOnX1//YCFhYiEArOABzPZpWwDUM85d0ZEeqN7GjfO5DUi0A3lqVu3ro9bbIwx/nfsGDz/vGPVqq20a7eQuLgW1KxZg5kzhfBw/7UjIJsfiUgIMBdY6Jx7KQfn/wKEOeeOZnVOWFiYs0KCxpiiwjmYORPGjXMcO5bMoEGzOH68Iy++WJuWLb13HRFZ75wL83Se33sWIiLAFGB7VkEhIjWAQ845JyLh6NjKMT820xhjAsI5+PBDeOIJR/Xq39O792Z27x7ObbfdRt++EByg+0GBuGxHYBjwg4hsTH1sPFAXwDn3NjAIiBSRJOAsMMTZ/q/GmCIsJQVWrYJnnoF1636jb99oypQ5T/Pm/ZgyRSgR4FVxfg8L59wKQDyc8wbwhn9aZIwxgbVzJ4wcCatWpSDiaNHiBFdf3YjRo9tRunTBWDtdZDY/MsaYwmbTJp0G+9VXUK3aYSIioihVqi3jx7ehevUGgW7e71hYGGOMnx08CK+9Bi+8AElJjuuvX07nzmvo3v0PXHddayTbey+BYWFhjDF+EhcHTzwBr76qA9nlysUxenQ5brqpNB07jqZChQqBbmKWLCyMMcbHTp6Ejz6Cl1+Gn3+GkJBEhg5dStOm23jooXEEB18b6CZ6ZGFhjDE+kpwMc+bAfffB/v36WOfOh+jTZwYNG9amZ88IggM1FzaXCkcrjTGmEHEOpk+HBx+Ew4f1sbCwcwwblsCdd4Zy+HBPrrjiisA2MpcsLIwxxkucg8WLdUxi3jx9rEoVePzxnZQoMY9rr+1ApUrXUqlS4QoKsLAwxhiv2L0bRo3SabAAFSrAiy9CzZpfsHv3bvr2vZn69esHtI35YWFhjDH5sG2bToGdMQPOnoXKlWHIEMfw4bsJD7+c/ftb06NHD0JCQgLd1HwpGEsDjTGmkElMhGefhTZt4IMPNCiGDoX160/RqdN0NmxYRHx8PLVq1Sr0QQHWszDGmFw5exb+/nd44w04fVofGzYMRo+GJk2OMnXqVMLDw7n11lsJCgoKbGO9yMLCGGNy4Nw5WLAA/vIX2LVLH2vYECZPhtatj/Pbb79RterljBw5kipVqgS2sT5gt6GMMcaDhQuhSRO4+WYNimbNYMkS2LEjhdKlV/Hee+9x4sQJRKRIBgVYz8IYY7L0+efw9NNa8A+gVi2IiNDeRalS8MUX8zl27BijRo2icuXKgW2sj1lYGGNMBjt2wJNP6k51oMHwzDPw5z8DJLF69Wratm3LDTfcQKlSpZCCWPnPyywsjDEm1a+/wr33wvz5elyunIbE8OFQtSrs3buXqKgoqlSpQps2bShbtmxgG+xHFhbGmGLv5591+utLL8GZMxAUBP36aeG/evX0nPj4eGbNmkW3bt1o1qxZsehNpGdhYYwptpKSNBAmTNDZTqCD2G++CTVr6vHu3bvZs2cPXbt2Zdy4cUVqOmxuWFgYY4qdhAQNiSlT4Mcf9bGePfUWVP/+enzu3DkWLVrE7t27uemmmwCKbVCAhYUxpphZswbuvhu2btXjOnXgnXegV6/fn7d+/XqCgoKIjIykVKlS/m9oTsXGQrVqUKaMTy9j6yyMMcXC119DixZw7bUaFI0a6YZE27alBcWZM2eYOXMme/bsoUOHDtx0000FNyhiYuCee3TRx9/+5vPLWc/CGFOkbdoEr7+ut5wASpSAhx7S9RMX/hh3zvHDDz+waNEiWrduzWWXXVZwB7C3btVytp9+mjbQ8tNPkJKib85HLCyMMUXS0aO6+dDHH+txSIjuf/3oo1C6dNp5zjmSk5PZuXMnQ4cO5bLLLgtMgz3ZsAFeew0++USrGALceitERsL114OPw83CwhhTpBw4oJsPTZmigVGyJPTpoz2JFi3SznPOsW7dOrZs2cKIESMYPHhw4BqdnVWr4K23tCeRkqKP3XmnLiXv2NFvzbCwMMYUCSdOaC/iiSf0a4AuXeDdd3V8Ir1jx44RFRVFSkoK/fr1K5i3nJYuhbffhv/+V49LlNDdle65B8LD/d4cCwtjTKGWkqLrIh5/HOLi9LFu3fTuzIABv7+Nn5KSgnOO06dP06xZM6655hpK+PA+f54sWKClbD//XI+Dg7X++T33QOvWAWuWhYUxplBKTNSexKRJOh0W9DbTY4/pJkQZOwsHDx4kKiqK8PBwWrduXbC2OHUOoqN1Du+FzbtLl9aQGDUKmjcPbPuwsDDGFELffw8jR+p/QVdbv/WW9iQycs6xdOlS1q9fT/fu3bnqqqv829jsOKdzdx95JK0gVWiohsTo0dC4cWDbl46FhTGm0Pj+e3jvPf0DPDkZ6tbVP7zHjYNKlS4+/8yZM4SGhlKhQgUiIyMJDQ31f6Mzk5ysJW3ffBO++UYfq1xZbzWNHZtWkKoAsbAwxhR4Z87AX/+q6yWc01tM998Pzz2nf4hnlJCQwJIlS9i1axdjx44lLCzM/43OjHOaePfeC2vX6mPBwTB4sFYxrFEjsO3Lht9HdkSkjogsFZHtIrJVRB7I5BwRkddEJEZENovI1f5upzEm8E6c0Ds0jRrpEoMSJXQ8YuVKnR6bWVAcOHCASZMmcf78eSIiIggOLgB/E589C9OmwdVXQ9u2GhQ1a8L48XDwoK6dKMBBAYHpWSQBDznnNohIeWC9iCx2zm1Ld04voHHqv2uBSan/NcYUE7Nnw5gxum4CoE0bXTvRpk3m5589e5aEhAQqVqxInz59aNiwof8am51ly/T2UkyMHgcH6xqJiROhQoXAti0X/N6zcM4dcM5tSP36NLAdqJXhtP7AR059C1QSkZp+bqoxxs+c0xlONWtqqfADB6B9e4iKgu++yzootm/fzqRJk9i1axdly5YtGEExf74OUHfpokHRsCE8+yycPKljFYUoKCDAYxYiUh9oA3yX4Vu1gNh0x3tTHzvgl4YZY/wqJQWWL4cXXkibORoaqmMSY8fqZkRZiY6OZs+ePQwaNIi6dev6p8HZmTkTHn4Y9uzR45AQvd00frwuJy+kAhYWIhIKzAIedM6dyvjtTJ7iMnmNCCACKBj/IzHG5FpMjM5o+vprPa5YUevk3XVX1nXxnHPExMTQqFEjwsLC6NWrV2DHJpzTErZPPAF79+pjpUvrnqwPPqiBUcgF5KcrIiFoUHzsnPssk1P2AnXSHdcG9mc8yTk3GZgMEBYWdlGYGGMKrgMH4P33tfdw9qyGxK23arXt7Gr5nThxgrlz5xIXF0etWrWoWTOAd6hTUnQe77PPwv7Uj6jQUB2PiIgo1D2JjPweFqJFWKYA251zL2VxWhQwTkSmowPbJ51zdgvKmCIgIUE/S597Lq146h13wCuvQNWq2T/36NGjvP/++3To0IH27dsHbue6pCRt8Isv6mwmgCpV9D7aHXcUqZC4IBA9i47AMOAHEdmY+th4oC6Ac+5tYB7QG4gB4oG7AtBOY4wXnT2rRf3efhu2b9fH2rWDJ5+E3r2zf+7Ro0c5ceIEDRs2JCIigkqZrcDzh/PnYepU7U1sTP34ql5d10gMGlQkQ+ICv4eFc24FmY9JpD/HAWP90yJjjK9lnD3asKGuxO7SJfvnJScns2rVKr799lu6deuGiAQmKOLj4e9/1/tmhw/rY3XqaEj061ekQ+KCArBaxRhTVM2fr2O8336rx02b6uLle+6BsmVz8vz5nDx5klGjRgUmJE6d0p7E66/rbnSgSRcZqWMS5cv7v00BYmFhjPG6X3/ViUHTpulxSIiW63j8cc9/hCcmJrJy5UrCw8Pp3r07JUuW9P9+E8ePw4cfwssvQ2zqLP6WLeH557X+eRGY3ZRbFhbGGK85eFCL+s2apcelS2to3H23LrTz5NdffyUqKorq1avjnKNUqVK+bXBGhw5pwr3wQtrtpquu0rm9o0YVi9tNWbGwMMbkW3Ky/iH+0ENpu9T17Kn1nHJaZTs+Pp7Zs2fTvXt3mjZt6rvGZmbfPg2J559PewNhYXqr6e67s18VWExYWBhj8iwlRTcfevxxOH1aH+vVS2c85XSdbExMDHv27OGGG25g3Lhx/t25bs8eXUz3r39paVvQ+iKjR8OwYVmvCiyGLCyMMXmyc6duQLRypR7XqKF3b/74x4t3qctMfHw8ixYtYs+ePfTp0wfAf0GRlKQzmZ56Cs6d08euv15H32+7LWdvoJixsDDG5MrGjVqvadUqPa5RQ3epu/nm3L7ORkqXLk1kZCQl/TUWcP68rgZ84YW0kLjhBh1oyWybPfP/LCyMMTkSE6Nr0V5+WccoQG/n//vfuslbTpw+fZp58+bRrl07OnTo4LvGZhQfDxMmaKqdPauPXX65Ht94o//aUYhZWBhjshUXp9NeX3stbZe6++6Dp5/OeUg459i4cSNffvklbdu2pVatjLsS+MjJk1rtderUtJC48kodaLn+ervdlAsWFsaYTMXHw9y58Je/wC+/6Fhv9+5anuO663L+Os45kpOT2b17N8OGDaOGP3aEO3oUHn0UPv007XZTq1bak+jQwUIiDywsjDEXiYrSRcoXCqm2bq271F2diw2OU1JSWLNmDdu2beOuu+5i4MCBvmlsegcO6F4Ss2bp+ARAeLh2i8LDLSTywcLCGAPoLaYdO/T20owZ+li9ehoaf/5z7hYtHzlyhKioKIKCgujfv7/vV2D/8ov2JObM0bK2oLeZXnxRE85CIt8sLIwx7N2roTB3rh6XLatlxD3tUpdRcurId3x8PFdddRVt27b1bVDs3AmPPabb610IiV694B//0JXXFhJeY2FhTDH2yy9aSPWVV3RRXUgI9Omjf5A3aJC719q/fz9RUVG0a9eO1q1bU69ePZ+0GYBt27Rs7Vtvpd1uGjxYB1RatLCQ8AELC2OKoeRkePVVrdt0YZJQ//762ZvdLnWZcc7x5ZdfsmnTJnr06EHLli293+ALNm3SkHj7bV1YBzBihI5TNG/uu+saCwtjipPERB37ffllWLNGH+vZU6tb9O+f+z/IT506RYUKFahatSqRkZGUK1fO+40GWL8eJk/W3ZMuzN8dNEjvnf3hD765pvkdCwtjiol167Q8x+bNelyrlv6BnlppI1fOnz/P4sWL2b17N2PGjOHq3EyTyo1vv9VGfvihHgcF6e2m++7TKbDGbywsjCnitmzRP8rffFML/9WpA8OH652bihVz/3r79+9nxowZNGrUiIiICIKDffAxcvQoPPggfPyxHoeEwK23wp/+BG3bev96xiMLC2OKqFOntBrsW2/pcYkSWkL8mWdytktdRvHx8SQkJFC5cmUGDBhAg9yOgOfE/v1w//1pG2KUKaO3mx57DJo18/71TI5ZWBhTxJw6BZ99pqWQYmMhOBj69tXP2/Dw3L+ec46tW7eyYMECunTpQlhYmPeD4uef9dbSF1+kPda9u5blaNjQu9cyeWJhYUwRMnOmro24sMlbWJiuvG7VKu+vGRUVxb59+xgyZAi1a9f2TkMv2LFDexKLF6c91q+frrj25dRbk2sWFsYUcs7p4PXEifD55/rYlVfqDKdx47RnkfvXdOzcuZMmTZrQrl07qlWrRpA3d4vbuFHHJJYtS3tsyBAtHe7tQDJeYWFhTCH2yy8aCosW6XFoqG76Nnp03jd5O378ONHR0SQkJFC3bl2qV6/utfayerWOrF/YDAN0itbTT+v0LFNgWVgYUwgdP65Vt596SkuIly2re/dMnJjz7Uwzc+TIEaZOnUqnTp249tprvbdz3YoVuhnGxx//vs75X/6S+1WAJiAsLIwpRJKStBTHU0+lVbkYNAjeeAPy0wE4fPgwJ06coHHjxtx7771UqFDBOw3+6iudt3uhMmFQEDzyiI5T1KzpnWsYv7CwMKaQ2LhR79hs2KDHLVvC3/4Gt9yS99dMTk7mm2++Ye3atfTo0QMRyX9QOAcLF2pPYvZsfaxkSW386NFa4M8UOhYWxhRwq1drKHz5pS6qq1dP/1jv0SP/rz1//nxOnz7N6NGjvRMSc+fqwo4FC/SxsmU1JMaM0VF3U2hZWBhTQGW1nek//qED2XmVmJjI8uXLadeuHT169CAkJCT/ZcR37NA5u199pccVKsBdd8EDD+S+fK0pkCwsjClgTpyA556D//wHDh7U2/wPPqh3cBo3zt9r//zzz0RHR1O7dm1EhJIlS+bvBbds0WJ+K1bocdWqcOedulTcZjcVKRYWxhQg3tjONCtxcXHMnTuXnj17csUVV+TvxTZsgHvvhbVr9VgE/vhHeOkluOSS/DfWFDhemheXcyLyvogcFpEtWXy/i4icFJGNqf8m+LuNxviTc/qH+eDBWiZ8/35o106DY82a/AfFzp07Wbx4MeXKlWPs2LH5C4qVKzXB2rZNC4pRo3Qu77RpFhRFWCB6Fh8AbwAfZXPON865PBRONqZw8dZ2ppmJi4tjwYIF7Nu3j379+gHkfd3EV1/B66/rHtcXBlDuv1/vl/lqDwtToPg9LJxzy0Wkvr+va0xBcuiQrk97+mkt/BcaCgMH6voJb40Hb9q0ifLlyxMZGUlISEjeXmTePC3mdyHNgoJ0Id0TT2hFWFNsFNQxi/YisgnYDzzsnNsa6AYZ4w3e3M40MydPnmTevHl06NCBDnndHMg5HZP417/gv//Vx0qV0p7E3XfbFNhiqiCGxQagnnPujIj0BmYDmc4BEZEIIAKgbn5qHBjjB1u26JKDC9uZhofrpKHBg3O/nWlGzjnWr1/P0qVLCQ8Pz1t12AsVCZ9+Oq1UeLlyOhXrrrusVHgxV+DCwjl3Kt3X80TkLRGp5pw7msm5k4HJAGFhYc6PzTQmx9at0woXX3+tx7Vr606hN93knddPSUkhJSWF2NhYhg8fzqWXXprbF9AEGz8eli7Vx8qU0S7PxIlQv753GmoKNb/PhvJERGpI6gohEQlH23gssK0yJvfOnoVHH4Vrr00Linvvha1bvRMUKSkprFy5kqlTpxIUFMTNN9+c+6DYulX3sm7fXoOiXDkYNgxiYuDTTy0ozP/ze89CRD4FugDVRGQv8BQQAuCcexsYBESKSBJwFhjinLNegyk0Tp/WirCvv66fuSVK6NbRf/qT7n/tDYcPH2bOnDmUKlWKW265JfcrsNev1+XhX36pAymhobqfxMSJUK2adxppipRAzIa63cP330Cn1hpT6MyfryutY2P1uEULXVSXl+1MM5OUlATAuXPnaNu2LW3atMldUKxYoYWmli7V20+gDX7+eahY0TuNNEVSgRuzMKYwOnZMew7Tpulxq1a6Vi0iQguuekNsbCxRUVFcd911XHXVVbmb1LFoEfzzn2ljEiVKaN2mceOgUSPvNNAUaRYWxuTDgQM6eWjGDK3pVLo0/P3vOoEoL9uZZsY5x8KFC9m6dSs9e/akWbNmOX/y7Nnw8suwfLkeBwfrFKyICLj8cu800BQLFhbG5IFz8MEH8Oc/a0gAXH89vPeed/9QP3HiBJUqVaJGjRp07tyZsmXL5qxxX3+tgyYXNuUuVQoee0ynwNar570GmmLDwsKYXEhJ0Ts6//43LFmij/XqpX+sd+2a932vMzp37hwLFy7k119/JTIyktatW+fsibGxOuVq3jw9LldOp8TeeafO2TUmjywsjMmhHTvgnnu0lh5oNe5XX4WhQ/O/qC69ffv2MWPGDJo0aUJERATBObmfFROjBaUWLdLjChXgttt0xpP1JIwXWFgY40FiIrzwgo5NJCRoSNx+Ozz5JOR2WUN2zpw5Q2JiIlWqVGHgwIHUy8mH/JYtuiPShYUcoEWmXn/d9rg2XmVhYUwWzp3TGnrvvQfbtuljI0dqcFSu7L3rOOfYvHkzixcvpmvXrrRt29ZzUKxbp7OZVq1Ke2zYMG1c9erea5wxqSwsjMnEypV6y2nHDj2uXx/efRe6dfP+tWbPns2hQ4cYOnQol3mqJrhqlSbYJ5+krZO4917t9nizm2NMBh7DQkQeAJY55zb6oT3GBNSZMzoe/MYbOqmoSRP9A/7OO727bYNzju3bt9O0aVM6duxI1apVCcpuA4ulS+Gdd3SOLuhI+kMPaT0RCwnjBznpWVQCPhCR0+jK6pnOuWTfNssY//rtNx0L/vhj3V8iKEhnmj7xhK6d8KajR48SHR1NSkoKDRo0yL6e065dusHQR6l7hQUH64rre+7RHeuM8ROPYeGcexp4WkRqAD2ACWg9J2OKhM8/hzFj4OBBPW7TBt5/3zefxUeOHGHq1Klcf/31XHPNNVnvXLdjhybVrFl6XLq0hsSoUdC8ufcbZowHuRmzKOmcy24rVGMKlZgYePxxmDlTjzt21IoYHTp4b73EBQcPHuTkyZNcccUVREZGUr58+cxP/PVXHYOYP1+Pg4Kgd29d2JGfvbONyafc/F/iMxHJtMqNiHi5o26M78TGQp8+0LixBkW5cjrTdPlyuO467wZFUlISS5YsYdq0aSQkJCAimQfFjz/quogmTTQogoPhllvgp58gKsqCwgRcbnoWMcC7wPD0D4rIZcAc4BovtssYr0tJ0THiRx/VgewSJaBfP3jlFd+tW5s/fz5nz54lMjKS0NDQi0/YskWrwEZH6yIO0HUSb7wBNWr4plHG5EFuwuJuYI2I3Oecex1ARFoDc4EVvmicMd6yc6fe7v/mGz2++WZ4803frFtLSEhg2bJltG/fnp49exISEnLxSdu26cDIa6/pqj+AO+7QCoRt23q/UcbkU47DwjkXLyIDgZUi8j1QDZgGvOycm+CrBhqTH5s36xDA6tV6XL26hsTAgb653k8//UR0dDT169cnKCjo4qDYvBkmT9a1EhfWSYwapaU6rrrKN40yxguyDQsRWQhsBL5P/e9OIALtTQQDo5xzn/q6kcbk1vnzOuN04kRI3S+I4cPhpZegShXfXDMuLo4FCxbQp08fGmUsPXvyJPzlL3ofDPQe2IABWra2UyffNMgYL/LUs/geaA3cCVQH4oEfgGTgv8AuESnlnDvv01YakwurV2tZju3b9XjMGA2NChV8c71t27YRGxvLjTfeyJgxY36/c92xY7p4bto07UmEhEDfvrqI4xob5jOFR7Zh4Zx77MLXIlIdaIOGR2vzoukVAAAcX0lEQVSgMzqOkSIiPzrnbPK3Cahly/QW08yZuvq6cWOt69S5s2+ud/r0aebPn8/hw4fp168fQFpQHDigvYb//jftdlP79noLqkUL3zTIGB/KzZjFIWBB6j8ARKQMGhytvN80Y3LmxAl45BENBtClCQ8/DE89BWXKeP96zjlEhC1btlC1alVuueWWtDLie/Zo3fKpU9N2ReraVefm2mI6U4jlq5Cgc+4ssDr1nzF+FxUFkZGwf7/e4Rk7Vm9B+eqP9xMnTjB37lw6depE+/bt076xaxe89ZYmVlycPtarlw6SXHmlbxpjjB9Z1VlT6DinM0///ve0unrt2sGUKZCb7alzd03HmjVrWLZsGR06dKD2hV3nDh/WW0vPPquj6qAr/kaPhptu8u6uSMYEkIWFKVT27tUB6+hoPS5bFv7xDxg3Tm8/+UJystbNPHjwIHfffTfVqlXTYPjb37Q+yIXpVgMHQkQE9Ojhm4YYE0AWFqZQSEnROzyPPKJVYUNC9A/4f/8bLr/cN9dMTk5m5cqV7Nq1i5EjR9K/f3+9xfT44/DBB2mVB9u21cSykDBFmIWFKfBiYnTd2oWdQ/v10+GBWrV8d82DBw8ye/ZsQkNDGTRoEHLqlG4w9J//wJEjetIVV2iC2ToJUwxYWJgC68cfdVLRK6/A2bNwySVaMmnwYN8NBSQmJiIiJCYm0r59e1rVqoV89BH861+wb5+e1KqV9iS6d4eSmdbWNKbIsbAwBU5Cgi6ie+6535dNeuUVqFrVd9fds2cP0dHRdO7cmVYtWlBnxQrdR/XoUT3h2mt1nOKGG/Q+mDHFiIWFKVDWroW779ZirKDjEuPGwY03+u6azjnmz5/Pjh076NWrF01Xr9a1EceP6wlt2+rA9ciRvhtFN6aAs7AwBUJ8PEyYAC+/rIPZDRvqcECXLr697m+//UblypWpfdlldP3xR8q0a6cj6KBFpP75T93C1KbAmmLOwsIE3Ndf6+fxTz9pfb2HH9ax5LJlfXfN+Ph4Fi5cyL69e7nXOVpNmaIVYUFL0778MgwZYiFhTCq/h4WIvA/0AQ475y5aZytaXOdVoDdauHCEc26Df1tp/GHePK2xt2OHHrdsqQvrfF1fb+/evcyYPp3mZcsS8dFHBK9bp9+oWVOnWfXvbyFhTAaB6Fl8ALwBZLWfdy+gceq/a4FJqf81RcTRo7rHz8cf63FICDzxhBZi9eXkotOnT5OYmEi1n37i1tmzqbNypX6jfn0tHz5kCFSq5LsGGFOI+T0snHPLRaR+Nqf0Bz5yzjngWxGpJCI1nXMH/NJA4zPOaRHW++7TpQplyujtpjFjdB9s313X8f3337NkwQK6rVlDmzlzqAPakxg+HP76V8hsy1NjzP8riGMWtYDYdMd7Ux+zsCjE9u3TUIiK0uMuXeDddyHjHkG+8Nmbb3IsNpZhH35IjUOHdEbTX/4CTz4JpUv7vgHGFAEFMSwyu1nsMj1RJALduY+6dev6sk0mj5zTWU0PP6yTjCpU0BIdI0fqYLavpKSksHXxYlpMncr1S5ZQ5fhxSgQHa/XByEjfLtgwpggqiGGxF/QuQarawP7MTnTOTQYmA4SFhWUaKCYwkpN1I6LXX9dyHaAbxE2a5NsyHQCHf/iBqI8+IvjoURpFRVFNBB54QCvBNmni24sbU0QVxLCIAsaJyHR0YPukjVcULtu2ac/h22/1uFo1DY3bbvPxJKOffuLw00/zYc2adP36a9pu3Ij07QsvvggNGvjwwsYUfYGYOvsp0AWoJiJ7gaeAEADn3NvAPHTabAw6dfYuf7fR5E1CAjz/vG7tkJAAl12ma9puvtnH48c//si+Dz7g1Ny5XLl5M2PKlaNct24wZ442whiTb4GYDXW7h+87YKyfmmO8ZN067U1cWNcWEaG19ypW9OFFt28nccoUvt6yhU0tW9IrKQm5/XbKPfQQXH21rZUwxot8OMRoioP4eHj0Ua2xt3mzlun46it45x0fBsXZs7ooo2VL5u/axanQUCJ/+onmL74In3yitZwsKIzxqoI4ZmEKiWXLtExHTIzObHroIXjmGR+W6Th9Gl54gXOffMLXjRpxXZky9A4OJnjcON8XkTKmmLOwMLl26pQuU3j7bT1u0ULLdISH+/CCn30GTz3FrlKl+KJfPxodPUrwvHkE28ZDxviFhYXJlS++gHvv1b2w/VKm47PPYOxYOHiQuHLlWDJ6NAOaN6fBH/8IpUr56KLGmIwsLIxHzsH//gfjx2tlWNBexJQp2qvwyQX/8x948kncnj1sadGCvV270uuaa7h33DjENh4yxu8sLEy29u/XMh1z5uhxmTK6g9399/tgH6CUFPj0U5g8GZYv51T58nwxbBi/XXEF/YYPhzp1Ml3eb4zxPQsLkynn4P33ddD65EkoX17XTIwY4YMB7JQUWL1auy7Ll+MAqVyZbRMmULNFC27t2pUg26HOmICysDAX2b0bRo3SKbAAN92kg9m1a/vgYj/8oPuopu4pcbxRI6KHDaNLnz60u/pqH1zQGJMXFhbm/yUna1mOv/5V109UqwavveajDePWroXHH4elSyElhZSKFfn27rtZUb0613XqRJ3Wrb18QWNMflhYGAC2btUV2N99p8dDh8Irr8All3j5QocP69LuC5ttA8mRkfDccxxfuZJ7OnSgSpUqXr6oMSa/LCyKuYQEHYt49llITNSKsJMmaYVYrzp1SufYTpqkxyVKkPynP/FNp07EHDvGyEqV6NOnj5cvaozxFiv3UYytXQthYfDUUxoUo0drD8OrQXHsmJYHb9gwLSg6dODAwoW806gRB86d49Zbb0WsPIcxBZr1LIqh+HgNiJde0jtBDRvqrnVdu3rxIhn3UAUIDyfhnXeQ5s1JPnSIzjVq0Lx5cwsKYwoBC4ti5uuvdabThXpODz+s+2B7bTqsc/DBB/DII9qrALj+enj8cX5u2JDoefPoGhREy5Ytqe2T6VXGGF+w21DFxMmTWqaja1cNihYtdGnDCy94KShSUmDRIujRQ6fCHjsGlSrBO+/gliwhOiGB2dHR9OzZk5YtW3rhgsYYf7KeRTEwd64Gxb59PqrntGOHlp9duVKPq1aFV1+FoUM5dvw4VYOCaNCgAT169KCU1XMyplCynkURduSIToHt21eDIjwcNmyACRO8FBQbN0LnztC0qQZFlSpaG2TbNuIGDGDmrFlMnz6d5ORkWrRoYUFhTCFmYVFERUVBs2ZaaqlMGR3MXrXKS4X/fvlFa5Rfcw18840+dtdden/rzTeJPX+eSZMmUbFiRSIiIqxUhzFFgN2GKmKcg48/1mGDxEQdo3j3XZ3xlG9nzug9rNde0wuJ6Gynv/4Vqlfn5MmTJB07xiWXXMLQoUO5zPa/NqbIsJ5FERIbq7echg3ToBg7FpYs8UJQnDgBzz+v3ZJXX9XHunbVXsVrr+EuvZS1a9cyefJkYmNjKV26tAWFMUWM9SyKgJQUrer96KO682jFinrb6a67vFDTac4ciIyEAwf0uHVr3cgiXZG/WbNmcfLkSUaMGMElXq8PYowpCCwsCrkff9R1E8uW6fGAAfDmm5CvP+ydg+nTtYbTxo36WFiYLvEePhxCQkhJSeGHH36gVatWdO3alcqVK1OihHVUjSmqLCwKqaQkrcU3YQKcOweXXgpvvAGDBuWzN7Frl25iMXeuHpctCxMn6j2t1IHqgwcPEhUVRenSpbniiiuoWrVq/t+QMaZAs7AohDZv1gqxqVtAcOedetspX5/ZP/2kPYclS/S4YkV45hmde1ut2v+fdvjwYaZNm0a3bt1o3bq1leowppiwsChk5s6Fm2/WnkXduvDOO9CzZz5eMDFRZzc9+SScPas1QAYO1Prk6e5lxcbGcvr0aZo2bcrYsWMp6/Xt8owxBZndZC4kzp3TGaoDBmhQ3H03bNmSj6BISNC65KGhWiDq7FntRRw6pAUAU4MiISGBBQsW8N///hcRQUQsKIwphqxnUQisWqW3nXbs0PGIP/9ZazrlaTz53Dldsffcc3o/C+Dyy3VKbCb7SSxYsICUlBQiIyMtJIwpxiwsCrAzZ2D8eB24dg6uvBLeew86dszjCy5frjWcfvxRj7OoTX727FmWLl1Kp06d6N27N8HB9j8TY4o7+xQooPbvh06dYPdunYT02GO6eLp06Ty82JYturn25Ml6XLcujBihJTsy9Ba2b9/O/PnzadKkCSVLlrSgMMYAFhYF0oIFEBGhK7JbtIBp03QtXK4dO6b3rD76SI+Dg7WrMn48ZFLU78yZMyxfvpyBAwdSr169/L0JY0yREpABbhHpKSI7RSRGRB7L5PsjROSIiGxM/XdPINrpb8eO6Zq3Xr00KNq21ZmsuQ4K52DmTK0k+NFHWpe8f39Yv153OkoXFM45Nm3axBdffEFoaCgREREWFMaYi/i9ZyEiQcCbQHdgL7BWRKKcc9synDrDOTfO3+0LlI0bdWbToUN6q+mZZ+BPf9LOQI45p+Hw3HNp4xKdOulAxxVXXHT6iRMnmDt3LnFxcfTr1w/A1k0YYzIViNtQ4UCMc243gIhMB/oDGcOiWLiwVfXYsdqz6NgR3n8/08/27P3yiy6qW7RIj0NDtVzH6NEXTZtyziEi7Ny5k3r16tGhQwcrI26MyVYgwqIWEJvueC9wbSbnDRSRzsAu4E/OudhMzinUjhzRyUlRUXrcvbt+natB7JgY7Tm88QbExekGRBMnwu23Q/nyF51+9OhRoqOj+cMf/sC112b2YzfGmIsFIiwyu8/hMhxHA586586LyL3Ah8AfLnohkQggAqBu3brebqdP7dunC+zWrdPP9H//W4Mjx2snkpL0SX/7G5w/r48NHqyznqpXv+j0lJQUVq1axapVq7j++usL3c/LGBNYgQiLvUCddMe1gf3pT3DOHUt3+C7wfGYv5JybDEwGCAsLyxg4BVJKinYEHnkETp2C2rVhxQrI8Ziyc7BmjW5fumGDPtavn95u6t0706ckJSUhIpw6dYqIiAgqVarknTdjjCk2AjEbai3QWEQaiEhJYAgQlf4EEamZ7rAfsN2P7fOZlBRd3jB6tAZF377w7be5CIrVq6FVK2jXToOiXj1YuFD3nMgkKJKSkliyZAkffPABJUqUoHfv3hYUxpg88XvPwjmXJCLjgIVAEPC+c26riDwDrHPORQH3i0g/IAk4Dozwdzu97aeftGTHsmW6Dm7KFLjtthyWE8+4nWmpUpo4zz2nA9mZ2LdvH59//jmXXnopQ4YMsVlOxph8EecKxd0bj8LCwty6CzW7C5idO+EPf9BV2ZdeqrNbb7wxh09evFhX6P3yiy7lfuQReOqpLEfBExISEBEOHz7MyZMnadasmdfehzGm6BGR9c65ME/nWdVZH3vzTbjqKg2K9u1h27YcBsWcOVrgr0cPDYrWrXWsYuLELIMiJiaGt956i507d1KrVi0LCmOM11i5Dx9JTITnn9dtIkDHKl5+GTwOGRw6BPffr4svAEqW1J7EI4/oSuxMOOeIiori559/pm/fvjRs2NBr78MYY8DCwifOnNE1E99+q8cvvaSrsbPlHHz8MTzwABw/rgMb//iHznrKIiQAjhw5wiWXXELjxo3p1asXJUuW9N4bMcaYVBYWXrZ9OwwZoltF1K6tq7G7d/fwpF9/hXvvhfnz9bhbN60Q26BBlk85ffo08+fP59ixY0RERNgtJ2OMT1lYeNHatbojaWysfs7Pm6d7UGTp+HH48EOYMEG7I5UqaTdkxIhsp0nFxsYyffp02rZtyy233GKlOowxPmdh4SULF+pGc0lJEB6u1WKzmNWqJ738sobEuXP62M0362h4zZpZPEkL/yUlJXHppZcybNgwatSo4f03YowxmbDZUF7wr3/pmrgLe2MvXZpNUGzerNOiHn1Ug6JVK/jf/+Czz7IMipSUFL777jsmT57M/v37KVWqlAWFMcavrGeRT3//u3YQRPTz/7nnsigrfv68fnPiRE2VOnXgnXd08woPZs6cSVxcHCNHjqRq1arefxPGGOOBhUUenTun4fD661r87/XXdeJSpr79Vpdvb0utwj5mjIZGhQpZvn5ycjKbNm2idevWdO/enUqVKtkqbGNMwFhY5MHZs3DHHXrnKChIOwgjR2ZyYlyclul49VWdGtu4sVYR7Nw529ffv38/UVFRlC9fnmbNmlG5cmXfvBFjjMkhC4tciovTrSKio6FcOfjyS63rd5ElS2DUKPj557QyHRMmQJky2b7+oUOH+OSTT+jevTutWrWy3oQxpkCwsMiFM2dg0CCd+VS+PHz1FYRlrKhy4gQ8/LBWCgSt9TFlim6onY09e/Zw+vRpmjdvztixYynjIVSMMcafbDZUDiUnwy23aFBUrgzLl2cSFHPmQLNmGg4lS+qA9tq12QbF+fPn+eKLL5g1axYhISGIiAWFMabAsZ5FDiQl6ZjE4sVQrZr2KFq2THfC4cNw331p9Zzat9fAaNrU42svWLAAESEyMtJCwhhTYFlY5MD48VpWvGRJmD49Q1AcPAhdu8KOHTqIMXGiznbKZlV1fHw8S5YsoUuXLvTp08dWYBtjCjy7DeXBX/8KL7ygn/0LF8INN6R+wzkt1dGsmQZF06awZYv2MLL48HfOsXXrViZNmkRISAilSpWyoDDGFArWs8jG9Ola+PXC9NguXVK/sWeP7lS3cKEe33ij3naqVSvb14uLi2P16tXcdttt1K5d26dtN8YYb7KwyMK2bXDPPfr1q6+mW0exaxd07AhHj+pI9yuvwLBhWRb+c87x/fffs3//fvr06cPIkSNtOqwxptCxsMjEhSmycXEwdGjqyuzkZC30N368fqNLF+16VK+e5ev89ttvREdHc+7cOfr37w9gQWGMKZQsLDJwTtfSbd+uwxGTJ4OkJGvZ8P/8R08aPBjefRcqVsziNRwiwo8//kjDhg1p3749JUrY8JAxpvCysMjgzTe1wxAaCrNmQbl9uzQoVq/W3es+/hgGDMjy+YcPHyYqKoru3bsTHh7uv4YbY4wPWViks2+fLr4GHa++MmmLDl7v3w+XXaazn7p1y/S5ycnJrFixgjVr1tC1a1fq1q3rx5YbY4xvWVikcg7GjtVK4oMHw60VFsDV/SAxURfZzZ+f5W2nxMRESpQowblz54iIiKBiFucZY0xhZTfSUy1apNU6KlaE57t/Cf1Sg+LOO2HBgkyDIjExkUWLFvHhhx9SokQJbrzxRgsKY0yRZD0LtFfx5JP69fi+P9BgTC+t8RERAZMm6YYVGcTGxvL5559Tq1Ytbr/9dpvlZIwp0iwsgLlztd7fpVWTGPt5Nw2KcePgtdcuWj9x7tw5goKCCAoK4sYbb6RJkyYBarUxxviPhQWaCQCP8Tzl4g7DkCGZBsWuXbv44osv6NGjB82bNw9AS40xJjCKfVgcPgxffeUIlmSGH3tRqwS+++7vgsI5x+eff87evXsZMGAADRo0CGCLjTHG/4p9WMycCSkpQi8WUKUyWn88NBTQkDh06BA1atSgWbNm9O3bl5CQkMA22BhjAqDYz4aa8UkyALcxQ289VasGwKlTp5g+fTpz5swhOTmZK6+80oLCGFNsFfuexbMtZzBj5XH6t90Hf/wjAL/++iszZswgPDycW2+91cqIG2OKvYCEhYj0BF4FgoD3nHP/zPD9UsBHQFvgGHCbc+4XrzfEOTpteJVOrIF/LOT4b7+RnJxM9erVGT58OJdeeqnXL2mMMYWR329DiUgQ8CbQC2gG3C4izTKcNhL4zTnXCHgZeN5HjYEVK0iZNYtV5crx3nvvcfDgQUqVKmVBYYwx6QRizCIciHHO7XbOJQDTgf4ZzukPfJj69UzgBvHVqreQEP6XmMiPMTHcc889tPzdnqnGGGMgMLehagGx6Y73AtdmdY5zLklETgJVgaPpTxKRCCACyFfhvgtlOmwVtjHGZC4QPYvMPpFdHs7BOTfZORfmnAu75JJL8tygSpUqWVAYY0w2AhEWe4E66Y5rA/uzOkdEgoGKwHG/tM4YY8xFAhEWa4HGItJAREoCQ4CoDOdEAcNTvx4EfOWcu6hnYYwxxj/8PmaROgYxDliITp193zm3VUSeAdY556KAKcA0EYlBexRD/N1OY4wxaQKyzsI5Nw+Yl+GxCem+PgcM9ne7jDHGZK7Yl/swxhjjmYWFMcYYjywsjDHGeGRhYYwxxiMpKjNSReQIsCePT69GhtXhRZy936KvuL1ne795V88553FVc5EJi/wQkXXOubBAt8Nf7P0WfcXtPdv79T27DWWMMcYjCwtjjDEeWVioyYFugJ/Z+y36itt7tvfrYzZmYYwxxiPrWRhjjPGoWIWFiPQUkZ0iEiMij2Xy/VIiMiP1+9+JSH3/t9J7cvB+R4jIERHZmPrvnkC00xtE5H0ROSwiW7L4vojIa6k/i80icrW/2+htOXjPXUTkZLrf74TMzissRKSOiCwVke0islVEHsjknCLze87h+/Xf79g5Vyz+oRVufwIuB0oCm4BmGc4ZA7yd+vUQYEag2+3j9zsCeCPQbfXS++0MXA1syeL7vYH56MZa7YDvAt1mP7znLsDcQLfTi++3JnB16tflgV2Z/G+6yPyec/h+/fY7Lk49i4K197fv5eT9FhnOueVkv0FWf+Ajp74FKolITf+0zjdy8J6LFOfcAefchtSvTwPb0S2Y0ysyv+ccvl+/KU5hkdne3xl/8L/b+xu4sPd3YZST9wswMLW7PlNE6mTy/aIipz+Poqa9iGwSkfki0jzQjfGW1FvEbYDvMnyrSP6es3m/4KffcXEKC6/t/V1I5OS9RAP1nXOtgC9J61UVRUXpd5tTG9BSDlcBrwOzA9werxCRUGAW8KBz7lTGb2fylEL9e/bwfv32Oy5OYVHc9v72+H6dc8ecc+dTD98F2vqpbYGQk99/keKcO+WcO5P69TwgRESqBbhZ+SIiIegH58fOuc8yOaVI/Z49vV9//o6LU1gUt72/Pb7fDPdy+6H3RIuqKODO1Nky7YCTzrkDgW6UL4lIjQtjbiISjv7//VhgW5V3qe9lCrDdOfdSFqcVmd9zTt6vP3/HAdlWNRBcMdv7O4fv934R6Qckoe93RMAanE8i8ik6M6SaiOwFngJCAJxzb6Pb+PYGYoB44K7AtNR7cvCeBwGRIpIEnAWGFOI/fgA6AsOAH0RkY+pj44G6UCR/zzl5v377HdsKbmOMMR4Vp9tQxhhj8sjCwhhjjEcWFsYYYzyysDDGGOORhYUxxhiPLCyMMcZ4ZGFhjI+IyPMisjjQ7TDGGywsjPGd1sBGj2cZUwhYWBjjO1cB3we6EcZ4g4WFMT4gIjWA6qT2LESknIhMF5ENhX0HRlM8WVgY4xtt0Fo9O0WkCbAGrcHV0Tn3SyAbZkxeWFgY4xutgR+AAcAq4F3n3B3OubOBbZYxeWOFBI3xARGZAXRHK/72c84tC3CTjMkX61kY4xutgc/QkuGFdWteY/6f9SyM8TIRKQucBtoBjYHJQGfn3IaANsyYfCg2mx8Z40dXofs+b3HOrRWRpkC0iIQ75/YFuG3G5IndhjLG+64Cfkw3mD0BWAlEpfY6jCl07DaUMcYYj6xnYYwxxiMLC2OMMR5ZWBhjjPHIwsIYY4xHFhbGGGM8srAwxhjjkYWFMcYYjywsjDHGeGRhYYwxxqP/Azqllp6vdPoiAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" ] - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "K = S[2]\n", + "X = []\n", + "Y = []\n", + "Z = []\n", + "W = []\n", + "\n", + "for k in k_grid:\n", + " if k < 1.5*k_ss:\n", + " X.append(k)\n", + " Y.append(K[(k, theta_L)])\n", + " Z.append(K[(k, theta_H)])\n", + " W.append(k)\n", + "\n", + "plt.plot(X, Y, color=\"red\", linewidth=2)\n", + "plt.plot(X, Z, color=\"blue\", linewidth=2)\n", + "plt.plot(X, W, '--', color=\"gray\", linewidth=1)\n", + "plt.xlabel(\"$k$\", fontsize=14)\n", + "plt.ylabel(\"$k^{\\prime}$\", fontsize=14)\n", + "plt.title(\"Policy Function: $k^{\\prime}$\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def shox(A, pi_H, pi_L, theta_H, theta_L):\n", + " \n", + " if A == 1.5:\n", + " pi = pi_H\n", + " else:\n", + " pi = pi_L\n", + " \n", + " x = np.random.binomial(1,pi_H)\n", + " \n", + " return A*x+(2-A)*(1-x)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "K = S[2]\nX = []\nY = []\nZ = []\nW = []\n\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(K[(k, theta_L)])\n Z.append(K[(k, theta_H)])\n W.append(k)\n\nplt.plot(X, Y, color=\"red\", linewidth=2)\nplt.plot(X, Z, color=\"blue\", linewidth=2)\nplt.plot(X, W, '--', color=\"gray\", linewidth=1)\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$k^{\\prime}$\", fontsize=14)\nplt.title(\"Policy Function: $k^{\\prime}$\")\nplt.show()", - "execution_count": 14, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEeCAYAAAB7Szl7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd4VVXWx/HvIgk1dBSQLiBSBYmRIggjICBNAUVGBEWCASwzllFGcXR0GMexFxRFVEaFGVBIkCoiSFGagHQjiqE3aQmQtt8/VngTQ5KbckvK+jwPjzk3596zbzJzf9ln7722OOcwxhhjslMi0A0wxhhT8FlYGGOM8cjCwhhjjEcWFsYYYzyysDDGGOORhYUxxhiPLCyMMcZ4ZGFhjDHGIwsLUySIyC8i0i31660i0iXATfIJf743EYkVkTZZfK+viIT6ox2mYLCwMAVK6of+WRE5IyKHRGRqbj+UnHPNnXNf+7BdF/5d5s1rZHHNbukf88V7y+LalYGawPYsTnkJCPJ1O0zBYWFhCqK+zrlQ4GrgGuCJALfngr7OudB0//YHukE+1BKIcc6dy/gNEbkS+MY5d9L/zTKBYmFhCizn3D5gPtACQESaisjXInIi9XZMv8yel/EvchGpIyKficgRETkmIm+IyCMiMivD814XkVdy204RcSLSKN3xByLybIb2PCwim0XkpIjMEJHSWbUt9fFpQF0gOrUX82jG95bdzyO7a+ZQK2BL6muVFZFPUtsZCvwBeCe3PydTuFlYmAJLROoAvYHvRSQEiAYWAZcC9wEfi0gTD68RBMwF9gD1gVrAdOA/QE8RqZR6XjBwGzDNJ28GbgV6Ag3QD+IR2bQN59ww4FfSejP/yvC+cvLzuOia6Z7/loi8lU17WwE/iEgDYAWwExjonDsDhDrnvsvDz8AUYhYWpiCaLSIn0A+pZcA/gHZAKPBP51yCc+4r9IP2dg+vFQ5cBjzinItzzp1zzq1wzh0AlgODU8/rCRx1zq331K7Uf7Nz+Z5ec87td84dRz/kW2fVthy+Xk5+HpldEwDn3Bjn3JhsXr8lOmbxFfC0c+5pl1qiOmNwmeIhONANMCYTA5xzX6Z/IHUwOdY5l5Lu4T3oX+PZqQPscc4lZfK9D4FI4F3gDjz3Ki5qVy4cTPd1PBoS2bXNk5z8PDK7pkciIuitv8uBl5xzc/LQPlPEWM/CFBb7gToikv5/s3WBfR6eFwvUTb3NlNFsoJWItAD6AB/nsW3xQNl0xzVy+Lzs2gaQ3WYzef155ESD1P92Ax4SkTAvvKYp5CwsTGHxHRAHPCoiIalrDfqSeo8/G2uAA8A/RaSciJQWkY4AqTN9ZgKfAGucc7/msW0bgaEiEiQiPYHrc/i8LNuW6hD6131m8vrzyIlWwGbn3A9ABPC5iNT0wuuaQszCwhQKzrkEoB/QCzgKvAXc6Zzb4eF5yeiHaCN0wHgvOpB9wYfo/fn8DGw/kHqNE8Af0R6LRzlo20TgidQxkoczPDdPP48LRORtEXk7i2+3BDanXmc2MBkdr8nNbCpTxIhtq2qKMxGpC+wAajjnTgW6PcYUVNazMMVW6v3+PwPTLSiMyZ7NhjLFkoiUQ8cE9qDTZo0x2bDbUMYYYzyy21DGGGM8srAwxhjjUZEZs6hWrZqrX79+oJthjDGFyvr164865y7xdF6RCYv69euzbt26QDfDGGMKFRHZk5Pz7DaUMcYYjywsjDHGeGRhYYwxxiMLC2OMMR5ZWBhjjPHIwsIYY4xHFhbGGGM88ntYiEgdEVkqIttFZKuIPJDJOV1E5KSIbEz9N8Hf7TTGmMJg06ZETp70/XUCsSgvCXjIObdBRMoD60VksXNuW4bzvnHO9QlA+4wxpsD7/vvz/O9/i9m79wRly97B21ltZeUlfu9ZOOcOOOc2pH59GtjO7zeZN8YYk4UzZ+Dhh+H++9exZYvjf/8bRIkSkJLi2+sGtNyHiNQH2qD7CWfUXkQ2oRvTP+yc2+rHphljTIFy6hQ8/ng8Bw4sZN26tuzb14FbbhEWLoTOnX1//YCFhYiEArOABzPZpWwDUM85d0ZEeqN7GjfO5DUi0A3lqVu3ro9bbIwx/nfsGDz/vGPVqq20a7eQuLgW1KxZg5kzhfBw/7UjIJsfiUgIMBdY6Jx7KQfn/wKEOeeOZnVOWFiYs0KCxpiiwjmYORPGjXMcO5bMoEGzOH68Iy++WJuWLb13HRFZ75wL83Se33sWIiLAFGB7VkEhIjWAQ845JyLh6NjKMT820xhjAsI5+PBDeOIJR/Xq39O792Z27x7ObbfdRt++EByg+0GBuGxHYBjwg4hsTH1sPFAXwDn3NjAIiBSRJOAsMMTZ/q/GmCIsJQVWrYJnnoF1636jb99oypQ5T/Pm/ZgyRSgR4FVxfg8L59wKQDyc8wbwhn9aZIwxgbVzJ4wcCatWpSDiaNHiBFdf3YjRo9tRunTBWDtdZDY/MsaYwmbTJp0G+9VXUK3aYSIioihVqi3jx7ehevUGgW7e71hYGGOMnx08CK+9Bi+8AElJjuuvX07nzmvo3v0PXHddayTbey+BYWFhjDF+EhcHTzwBr76qA9nlysUxenQ5brqpNB07jqZChQqBbmKWLCyMMcbHTp6Ejz6Cl1+Gn3+GkJBEhg5dStOm23jooXEEB18b6CZ6ZGFhjDE+kpwMc+bAfffB/v36WOfOh+jTZwYNG9amZ88IggM1FzaXCkcrjTGmEHEOpk+HBx+Ew4f1sbCwcwwblsCdd4Zy+HBPrrjiisA2MpcsLIwxxkucg8WLdUxi3jx9rEoVePzxnZQoMY9rr+1ApUrXUqlS4QoKsLAwxhiv2L0bRo3SabAAFSrAiy9CzZpfsHv3bvr2vZn69esHtI35YWFhjDH5sG2bToGdMQPOnoXKlWHIEMfw4bsJD7+c/ftb06NHD0JCQgLd1HwpGEsDjTGmkElMhGefhTZt4IMPNCiGDoX160/RqdN0NmxYRHx8PLVq1Sr0QQHWszDGmFw5exb+/nd44w04fVofGzYMRo+GJk2OMnXqVMLDw7n11lsJCgoKbGO9yMLCGGNy4Nw5WLAA/vIX2LVLH2vYECZPhtatj/Pbb79RterljBw5kipVqgS2sT5gt6GMMcaDhQuhSRO4+WYNimbNYMkS2LEjhdKlV/Hee+9x4sQJRKRIBgVYz8IYY7L0+efw9NNa8A+gVi2IiNDeRalS8MUX8zl27BijRo2icuXKgW2sj1lYGGNMBjt2wJNP6k51oMHwzDPw5z8DJLF69Wratm3LDTfcQKlSpZCCWPnPyywsjDEm1a+/wr33wvz5elyunIbE8OFQtSrs3buXqKgoqlSpQps2bShbtmxgG+xHFhbGmGLv5591+utLL8GZMxAUBP36aeG/evX0nPj4eGbNmkW3bt1o1qxZsehNpGdhYYwptpKSNBAmTNDZTqCD2G++CTVr6vHu3bvZs2cPXbt2Zdy4cUVqOmxuWFgYY4qdhAQNiSlT4Mcf9bGePfUWVP/+enzu3DkWLVrE7t27uemmmwCKbVCAhYUxpphZswbuvhu2btXjOnXgnXegV6/fn7d+/XqCgoKIjIykVKlS/m9oTsXGQrVqUKaMTy9j6yyMMcXC119DixZw7bUaFI0a6YZE27alBcWZM2eYOXMme/bsoUOHDtx0000FNyhiYuCee3TRx9/+5vPLWc/CGFOkbdoEr7+ut5wASpSAhx7S9RMX/hh3zvHDDz+waNEiWrduzWWXXVZwB7C3btVytp9+mjbQ8tNPkJKib85HLCyMMUXS0aO6+dDHH+txSIjuf/3oo1C6dNp5zjmSk5PZuXMnQ4cO5bLLLgtMgz3ZsAFeew0++USrGALceitERsL114OPw83CwhhTpBw4oJsPTZmigVGyJPTpoz2JFi3SznPOsW7dOrZs2cKIESMYPHhw4BqdnVWr4K23tCeRkqKP3XmnLiXv2NFvzbCwMMYUCSdOaC/iiSf0a4AuXeDdd3V8Ir1jx44RFRVFSkoK/fr1K5i3nJYuhbffhv/+V49LlNDdle65B8LD/d4cCwtjTKGWkqLrIh5/HOLi9LFu3fTuzIABv7+Nn5KSgnOO06dP06xZM6655hpK+PA+f54sWKClbD//XI+Dg7X++T33QOvWAWuWhYUxplBKTNSexKRJOh0W9DbTY4/pJkQZOwsHDx4kKiqK8PBwWrduXbC2OHUOoqN1Du+FzbtLl9aQGDUKmjcPbPuwsDDGFELffw8jR+p/QVdbv/WW9iQycs6xdOlS1q9fT/fu3bnqqqv829jsOKdzdx95JK0gVWiohsTo0dC4cWDbl46FhTGm0Pj+e3jvPf0DPDkZ6tbVP7zHjYNKlS4+/8yZM4SGhlKhQgUiIyMJDQ31f6Mzk5ysJW3ffBO++UYfq1xZbzWNHZtWkKoAsbAwxhR4Z87AX/+q6yWc01tM998Pzz2nf4hnlJCQwJIlS9i1axdjx44lLCzM/43OjHOaePfeC2vX6mPBwTB4sFYxrFEjsO3Lht9HdkSkjogsFZHtIrJVRB7I5BwRkddEJEZENovI1f5upzEm8E6c0Ds0jRrpEoMSJXQ8YuVKnR6bWVAcOHCASZMmcf78eSIiIggOLgB/E589C9OmwdVXQ9u2GhQ1a8L48XDwoK6dKMBBAYHpWSQBDznnNohIeWC9iCx2zm1Ld04voHHqv2uBSan/NcYUE7Nnw5gxum4CoE0bXTvRpk3m5589e5aEhAQqVqxInz59aNiwof8am51ly/T2UkyMHgcH6xqJiROhQoXAti0X/N6zcM4dcM5tSP36NLAdqJXhtP7AR059C1QSkZp+bqoxxs+c0xlONWtqqfADB6B9e4iKgu++yzootm/fzqRJk9i1axdly5YtGEExf74OUHfpokHRsCE8+yycPKljFYUoKCDAYxYiUh9oA3yX4Vu1gNh0x3tTHzvgl4YZY/wqJQWWL4cXXkibORoaqmMSY8fqZkRZiY6OZs+ePQwaNIi6dev6p8HZmTkTHn4Y9uzR45AQvd00frwuJy+kAhYWIhIKzAIedM6dyvjtTJ7iMnmNCCACKBj/IzHG5FpMjM5o+vprPa5YUevk3XVX1nXxnHPExMTQqFEjwsLC6NWrV2DHJpzTErZPPAF79+pjpUvrnqwPPqiBUcgF5KcrIiFoUHzsnPssk1P2AnXSHdcG9mc8yTk3GZgMEBYWdlGYGGMKrgMH4P33tfdw9qyGxK23arXt7Gr5nThxgrlz5xIXF0etWrWoWTOAd6hTUnQe77PPwv7Uj6jQUB2PiIgo1D2JjPweFqJFWKYA251zL2VxWhQwTkSmowPbJ51zdgvKmCIgIUE/S597Lq146h13wCuvQNWq2T/36NGjvP/++3To0IH27dsHbue6pCRt8Isv6mwmgCpV9D7aHXcUqZC4IBA9i47AMOAHEdmY+th4oC6Ac+5tYB7QG4gB4oG7AtBOY4wXnT2rRf3efhu2b9fH2rWDJ5+E3r2zf+7Ro0c5ceIEDRs2JCIigkqZrcDzh/PnYepU7U1sTP34ql5d10gMGlQkQ+ICv4eFc24FmY9JpD/HAWP90yJjjK9lnD3asKGuxO7SJfvnJScns2rVKr799lu6deuGiAQmKOLj4e9/1/tmhw/rY3XqaEj061ekQ+KCArBaxRhTVM2fr2O8336rx02b6uLle+6BsmVz8vz5nDx5klGjRgUmJE6d0p7E66/rbnSgSRcZqWMS5cv7v00BYmFhjPG6X3/ViUHTpulxSIiW63j8cc9/hCcmJrJy5UrCw8Pp3r07JUuW9P9+E8ePw4cfwssvQ2zqLP6WLeH557X+eRGY3ZRbFhbGGK85eFCL+s2apcelS2to3H23LrTz5NdffyUqKorq1avjnKNUqVK+bXBGhw5pwr3wQtrtpquu0rm9o0YVi9tNWbGwMMbkW3Ky/iH+0ENpu9T17Kn1nHJaZTs+Pp7Zs2fTvXt3mjZt6rvGZmbfPg2J559PewNhYXqr6e67s18VWExYWBhj8iwlRTcfevxxOH1aH+vVS2c85XSdbExMDHv27OGGG25g3Lhx/t25bs8eXUz3r39paVvQ+iKjR8OwYVmvCiyGLCyMMXmyc6duQLRypR7XqKF3b/74x4t3qctMfHw8ixYtYs+ePfTp0wfAf0GRlKQzmZ56Cs6d08euv15H32+7LWdvoJixsDDG5MrGjVqvadUqPa5RQ3epu/nm3L7ORkqXLk1kZCQl/TUWcP68rgZ84YW0kLjhBh1oyWybPfP/LCyMMTkSE6Nr0V5+WccoQG/n//vfuslbTpw+fZp58+bRrl07OnTo4LvGZhQfDxMmaKqdPauPXX65Ht94o//aUYhZWBhjshUXp9NeX3stbZe6++6Dp5/OeUg459i4cSNffvklbdu2pVatjLsS+MjJk1rtderUtJC48kodaLn+ervdlAsWFsaYTMXHw9y58Je/wC+/6Fhv9+5anuO663L+Os45kpOT2b17N8OGDaOGP3aEO3oUHn0UPv007XZTq1bak+jQwUIiDywsjDEXiYrSRcoXCqm2bq271F2diw2OU1JSWLNmDdu2beOuu+5i4MCBvmlsegcO6F4Ss2bp+ARAeLh2i8LDLSTywcLCGAPoLaYdO/T20owZ+li9ehoaf/5z7hYtHzlyhKioKIKCgujfv7/vV2D/8ov2JObM0bK2oLeZXnxRE85CIt8sLIwx7N2roTB3rh6XLatlxD3tUpdRcurId3x8PFdddRVt27b1bVDs3AmPPabb610IiV694B//0JXXFhJeY2FhTDH2yy9aSPWVV3RRXUgI9Omjf5A3aJC719q/fz9RUVG0a9eO1q1bU69ePZ+0GYBt27Rs7Vtvpd1uGjxYB1RatLCQ8AELC2OKoeRkePVVrdt0YZJQ//762ZvdLnWZcc7x5ZdfsmnTJnr06EHLli293+ALNm3SkHj7bV1YBzBihI5TNG/uu+saCwtjipPERB37ffllWLNGH+vZU6tb9O+f+z/IT506RYUKFahatSqRkZGUK1fO+40GWL8eJk/W3ZMuzN8dNEjvnf3hD765pvkdCwtjiol167Q8x+bNelyrlv6BnlppI1fOnz/P4sWL2b17N2PGjOHq3EyTyo1vv9VGfvihHgcF6e2m++7TKbDGbywsjCnitmzRP8rffFML/9WpA8OH652bihVz/3r79+9nxowZNGrUiIiICIKDffAxcvQoPPggfPyxHoeEwK23wp/+BG3bev96xiMLC2OKqFOntBrsW2/pcYkSWkL8mWdytktdRvHx8SQkJFC5cmUGDBhAg9yOgOfE/v1w//1pG2KUKaO3mx57DJo18/71TI5ZWBhTxJw6BZ99pqWQYmMhOBj69tXP2/Dw3L+ec46tW7eyYMECunTpQlhYmPeD4uef9dbSF1+kPda9u5blaNjQu9cyeWJhYUwRMnOmro24sMlbWJiuvG7VKu+vGRUVxb59+xgyZAi1a9f2TkMv2LFDexKLF6c91q+frrj25dRbk2sWFsYUcs7p4PXEifD55/rYlVfqDKdx47RnkfvXdOzcuZMmTZrQrl07qlWrRpA3d4vbuFHHJJYtS3tsyBAtHe7tQDJeYWFhTCH2yy8aCosW6XFoqG76Nnp03jd5O378ONHR0SQkJFC3bl2qV6/utfayerWOrF/YDAN0itbTT+v0LFNgWVgYUwgdP65Vt596SkuIly2re/dMnJjz7Uwzc+TIEaZOnUqnTp249tprvbdz3YoVuhnGxx//vs75X/6S+1WAJiAsLIwpRJKStBTHU0+lVbkYNAjeeAPy0wE4fPgwJ06coHHjxtx7771UqFDBOw3+6iudt3uhMmFQEDzyiI5T1KzpnWsYv7CwMKaQ2LhR79hs2KDHLVvC3/4Gt9yS99dMTk7mm2++Ye3atfTo0QMRyX9QOAcLF2pPYvZsfaxkSW386NFa4M8UOhYWxhRwq1drKHz5pS6qq1dP/1jv0SP/rz1//nxOnz7N6NGjvRMSc+fqwo4FC/SxsmU1JMaM0VF3U2hZWBhTQGW1nek//qED2XmVmJjI8uXLadeuHT169CAkJCT/ZcR37NA5u199pccVKsBdd8EDD+S+fK0pkCwsjClgTpyA556D//wHDh7U2/wPPqh3cBo3zt9r//zzz0RHR1O7dm1EhJIlS+bvBbds0WJ+K1bocdWqcOedulTcZjcVKRYWxhQg3tjONCtxcXHMnTuXnj17csUVV+TvxTZsgHvvhbVr9VgE/vhHeOkluOSS/DfWFDhemheXcyLyvogcFpEtWXy/i4icFJGNqf8m+LuNxviTc/qH+eDBWiZ8/35o106DY82a/AfFzp07Wbx4MeXKlWPs2LH5C4qVKzXB2rZNC4pRo3Qu77RpFhRFWCB6Fh8AbwAfZXPON865PBRONqZw8dZ2ppmJi4tjwYIF7Nu3j379+gHkfd3EV1/B66/rHtcXBlDuv1/vl/lqDwtToPg9LJxzy0Wkvr+va0xBcuiQrk97+mkt/BcaCgMH6voJb40Hb9q0ifLlyxMZGUlISEjeXmTePC3mdyHNgoJ0Id0TT2hFWFNsFNQxi/YisgnYDzzsnNsa6AYZ4w3e3M40MydPnmTevHl06NCBDnndHMg5HZP417/gv//Vx0qV0p7E3XfbFNhiqiCGxQagnnPujIj0BmYDmc4BEZEIIAKgbn5qHBjjB1u26JKDC9uZhofrpKHBg3O/nWlGzjnWr1/P0qVLCQ8Pz1t12AsVCZ9+Oq1UeLlyOhXrrrusVHgxV+DCwjl3Kt3X80TkLRGp5pw7msm5k4HJAGFhYc6PzTQmx9at0woXX3+tx7Vr606hN93knddPSUkhJSWF2NhYhg8fzqWXXprbF9AEGz8eli7Vx8qU0S7PxIlQv753GmoKNb/PhvJERGpI6gohEQlH23gssK0yJvfOnoVHH4Vrr00Linvvha1bvRMUKSkprFy5kqlTpxIUFMTNN9+c+6DYulX3sm7fXoOiXDkYNgxiYuDTTy0ozP/ze89CRD4FugDVRGQv8BQQAuCcexsYBESKSBJwFhjinLNegyk0Tp/WirCvv66fuSVK6NbRf/qT7n/tDYcPH2bOnDmUKlWKW265JfcrsNev1+XhX36pAymhobqfxMSJUK2adxppipRAzIa63cP330Cn1hpT6MyfryutY2P1uEULXVSXl+1MM5OUlATAuXPnaNu2LW3atMldUKxYoYWmli7V20+gDX7+eahY0TuNNEVSgRuzMKYwOnZMew7Tpulxq1a6Vi0iQguuekNsbCxRUVFcd911XHXVVbmb1LFoEfzzn2ljEiVKaN2mceOgUSPvNNAUaRYWxuTDgQM6eWjGDK3pVLo0/P3vOoEoL9uZZsY5x8KFC9m6dSs9e/akWbNmOX/y7Nnw8suwfLkeBwfrFKyICLj8cu800BQLFhbG5IFz8MEH8Oc/a0gAXH89vPeed/9QP3HiBJUqVaJGjRp07tyZsmXL5qxxX3+tgyYXNuUuVQoee0ynwNar570GmmLDwsKYXEhJ0Ts6//43LFmij/XqpX+sd+2a932vMzp37hwLFy7k119/JTIyktatW+fsibGxOuVq3jw9LldOp8TeeafO2TUmjywsjMmhHTvgnnu0lh5oNe5XX4WhQ/O/qC69ffv2MWPGDJo0aUJERATBObmfFROjBaUWLdLjChXgttt0xpP1JIwXWFgY40FiIrzwgo5NJCRoSNx+Ozz5JOR2WUN2zpw5Q2JiIlWqVGHgwIHUy8mH/JYtuiPShYUcoEWmXn/d9rg2XmVhYUwWzp3TGnrvvQfbtuljI0dqcFSu7L3rOOfYvHkzixcvpmvXrrRt29ZzUKxbp7OZVq1Ke2zYMG1c9erea5wxqSwsjMnEypV6y2nHDj2uXx/efRe6dfP+tWbPns2hQ4cYOnQol3mqJrhqlSbYJ5+krZO4917t9nizm2NMBh7DQkQeAJY55zb6oT3GBNSZMzoe/MYbOqmoSRP9A/7OO727bYNzju3bt9O0aVM6duxI1apVCcpuA4ulS+Gdd3SOLuhI+kMPaT0RCwnjBznpWVQCPhCR0+jK6pnOuWTfNssY//rtNx0L/vhj3V8iKEhnmj7xhK6d8KajR48SHR1NSkoKDRo0yL6e065dusHQR6l7hQUH64rre+7RHeuM8ROPYeGcexp4WkRqAD2ACWg9J2OKhM8/hzFj4OBBPW7TBt5/3zefxUeOHGHq1Klcf/31XHPNNVnvXLdjhybVrFl6XLq0hsSoUdC8ufcbZowHuRmzKOmcy24rVGMKlZgYePxxmDlTjzt21IoYHTp4b73EBQcPHuTkyZNcccUVREZGUr58+cxP/PVXHYOYP1+Pg4Kgd29d2JGfvbONyafc/F/iMxHJtMqNiHi5o26M78TGQp8+0LixBkW5cjrTdPlyuO467wZFUlISS5YsYdq0aSQkJCAimQfFjz/quogmTTQogoPhllvgp58gKsqCwgRcbnoWMcC7wPD0D4rIZcAc4BovtssYr0tJ0THiRx/VgewSJaBfP3jlFd+tW5s/fz5nz54lMjKS0NDQi0/YskWrwEZH6yIO0HUSb7wBNWr4plHG5EFuwuJuYI2I3Oecex1ARFoDc4EVvmicMd6yc6fe7v/mGz2++WZ4803frFtLSEhg2bJltG/fnp49exISEnLxSdu26cDIa6/pqj+AO+7QCoRt23q/UcbkU47DwjkXLyIDgZUi8j1QDZgGvOycm+CrBhqTH5s36xDA6tV6XL26hsTAgb653k8//UR0dDT169cnKCjo4qDYvBkmT9a1EhfWSYwapaU6rrrKN40yxguyDQsRWQhsBL5P/e9OIALtTQQDo5xzn/q6kcbk1vnzOuN04kRI3S+I4cPhpZegShXfXDMuLo4FCxbQp08fGmUsPXvyJPzlL3ofDPQe2IABWra2UyffNMgYL/LUs/geaA3cCVQH4oEfgGTgv8AuESnlnDvv01YakwurV2tZju3b9XjMGA2NChV8c71t27YRGxvLjTfeyJgxY36/c92xY7p4bto07UmEhEDfvrqI4xob5jOFR7Zh4Zx77MLXIlIdaIOGR2vzoukVAAAcX0lEQVSgMzqOkSIiPzrnbPK3Cahly/QW08yZuvq6cWOt69S5s2+ud/r0aebPn8/hw4fp168fQFpQHDigvYb//jftdlP79noLqkUL3zTIGB/KzZjFIWBB6j8ARKQMGhytvN80Y3LmxAl45BENBtClCQ8/DE89BWXKeP96zjlEhC1btlC1alVuueWWtDLie/Zo3fKpU9N2ReraVefm2mI6U4jlq5Cgc+4ssDr1nzF+FxUFkZGwf7/e4Rk7Vm9B+eqP9xMnTjB37lw6depE+/bt076xaxe89ZYmVlycPtarlw6SXHmlbxpjjB9Z1VlT6DinM0///ve0unrt2sGUKZCb7alzd03HmjVrWLZsGR06dKD2hV3nDh/WW0vPPquj6qAr/kaPhptu8u6uSMYEkIWFKVT27tUB6+hoPS5bFv7xDxg3Tm8/+UJystbNPHjwIHfffTfVqlXTYPjb37Q+yIXpVgMHQkQE9Ojhm4YYE0AWFqZQSEnROzyPPKJVYUNC9A/4f/8bLr/cN9dMTk5m5cqV7Nq1i5EjR9K/f3+9xfT44/DBB2mVB9u21cSykDBFmIWFKfBiYnTd2oWdQ/v10+GBWrV8d82DBw8ye/ZsQkNDGTRoEHLqlG4w9J//wJEjetIVV2iC2ToJUwxYWJgC68cfdVLRK6/A2bNwySVaMmnwYN8NBSQmJiIiJCYm0r59e1rVqoV89BH861+wb5+e1KqV9iS6d4eSmdbWNKbIsbAwBU5Cgi6ie+6535dNeuUVqFrVd9fds2cP0dHRdO7cmVYtWlBnxQrdR/XoUT3h2mt1nOKGG/Q+mDHFiIWFKVDWroW779ZirKDjEuPGwY03+u6azjnmz5/Pjh076NWrF01Xr9a1EceP6wlt2+rA9ciRvhtFN6aAs7AwBUJ8PEyYAC+/rIPZDRvqcECXLr697m+//UblypWpfdlldP3xR8q0a6cj6KBFpP75T93C1KbAmmLOwsIE3Ndf6+fxTz9pfb2HH9ax5LJlfXfN+Ph4Fi5cyL69e7nXOVpNmaIVYUFL0778MgwZYiFhTCq/h4WIvA/0AQ475y5aZytaXOdVoDdauHCEc26Df1tp/GHePK2xt2OHHrdsqQvrfF1fb+/evcyYPp3mZcsS8dFHBK9bp9+oWVOnWfXvbyFhTAaB6Fl8ALwBZLWfdy+gceq/a4FJqf81RcTRo7rHz8cf63FICDzxhBZi9eXkotOnT5OYmEi1n37i1tmzqbNypX6jfn0tHz5kCFSq5LsGGFOI+T0snHPLRaR+Nqf0Bz5yzjngWxGpJCI1nXMH/NJA4zPOaRHW++7TpQplyujtpjFjdB9s313X8f3337NkwQK6rVlDmzlzqAPakxg+HP76V8hsy1NjzP8riGMWtYDYdMd7Ux+zsCjE9u3TUIiK0uMuXeDddyHjHkG+8Nmbb3IsNpZhH35IjUOHdEbTX/4CTz4JpUv7vgHGFAEFMSwyu1nsMj1RJALduY+6dev6sk0mj5zTWU0PP6yTjCpU0BIdI0fqYLavpKSksHXxYlpMncr1S5ZQ5fhxSgQHa/XByEjfLtgwpggqiGGxF/QuQarawP7MTnTOTQYmA4SFhWUaKCYwkpN1I6LXX9dyHaAbxE2a5NsyHQCHf/iBqI8+IvjoURpFRVFNBB54QCvBNmni24sbU0QVxLCIAsaJyHR0YPukjVcULtu2ac/h22/1uFo1DY3bbvPxJKOffuLw00/zYc2adP36a9pu3Ij07QsvvggNGvjwwsYUfYGYOvsp0AWoJiJ7gaeAEADn3NvAPHTabAw6dfYuf7fR5E1CAjz/vG7tkJAAl12ma9puvtnH48c//si+Dz7g1Ny5XLl5M2PKlaNct24wZ442whiTb4GYDXW7h+87YKyfmmO8ZN067U1cWNcWEaG19ypW9OFFt28nccoUvt6yhU0tW9IrKQm5/XbKPfQQXH21rZUwxot8OMRoioP4eHj0Ua2xt3mzlun46it45x0fBsXZs7ooo2VL5u/axanQUCJ/+onmL74In3yitZwsKIzxqoI4ZmEKiWXLtExHTIzObHroIXjmGR+W6Th9Gl54gXOffMLXjRpxXZky9A4OJnjcON8XkTKmmLOwMLl26pQuU3j7bT1u0ULLdISH+/CCn30GTz3FrlKl+KJfPxodPUrwvHkE28ZDxviFhYXJlS++gHvv1b2w/VKm47PPYOxYOHiQuHLlWDJ6NAOaN6fBH/8IpUr56KLGmIwsLIxHzsH//gfjx2tlWNBexJQp2qvwyQX/8x948kncnj1sadGCvV270uuaa7h33DjENh4yxu8sLEy29u/XMh1z5uhxmTK6g9399/tgH6CUFPj0U5g8GZYv51T58nwxbBi/XXEF/YYPhzp1Ml3eb4zxPQsLkynn4P33ddD65EkoX17XTIwY4YMB7JQUWL1auy7Ll+MAqVyZbRMmULNFC27t2pUg26HOmICysDAX2b0bRo3SKbAAN92kg9m1a/vgYj/8oPuopu4pcbxRI6KHDaNLnz60u/pqH1zQGJMXFhbm/yUna1mOv/5V109UqwavveajDePWroXHH4elSyElhZSKFfn27rtZUb0613XqRJ3Wrb18QWNMflhYGAC2btUV2N99p8dDh8Irr8All3j5QocP69LuC5ttA8mRkfDccxxfuZJ7OnSgSpUqXr6oMSa/LCyKuYQEHYt49llITNSKsJMmaYVYrzp1SufYTpqkxyVKkPynP/FNp07EHDvGyEqV6NOnj5cvaozxFiv3UYytXQthYfDUUxoUo0drD8OrQXHsmJYHb9gwLSg6dODAwoW806gRB86d49Zbb0WsPIcxBZr1LIqh+HgNiJde0jtBDRvqrnVdu3rxIhn3UAUIDyfhnXeQ5s1JPnSIzjVq0Lx5cwsKYwoBC4ti5uuvdabThXpODz+s+2B7bTqsc/DBB/DII9qrALj+enj8cX5u2JDoefPoGhREy5Ytqe2T6VXGGF+w21DFxMmTWqaja1cNihYtdGnDCy94KShSUmDRIujRQ6fCHjsGlSrBO+/gliwhOiGB2dHR9OzZk5YtW3rhgsYYf7KeRTEwd64Gxb59PqrntGOHlp9duVKPq1aFV1+FoUM5dvw4VYOCaNCgAT169KCU1XMyplCynkURduSIToHt21eDIjwcNmyACRO8FBQbN0LnztC0qQZFlSpaG2TbNuIGDGDmrFlMnz6d5ORkWrRoYUFhTCFmYVFERUVBs2ZaaqlMGR3MXrXKS4X/fvlFa5Rfcw18840+dtdden/rzTeJPX+eSZMmUbFiRSIiIqxUhzFFgN2GKmKcg48/1mGDxEQdo3j3XZ3xlG9nzug9rNde0wuJ6Gynv/4Vqlfn5MmTJB07xiWXXMLQoUO5zPa/NqbIsJ5FERIbq7echg3ToBg7FpYs8UJQnDgBzz+v3ZJXX9XHunbVXsVrr+EuvZS1a9cyefJkYmNjKV26tAWFMUWM9SyKgJQUrer96KO682jFinrb6a67vFDTac4ciIyEAwf0uHVr3cgiXZG/WbNmcfLkSUaMGMElXq8PYowpCCwsCrkff9R1E8uW6fGAAfDmm5CvP+ydg+nTtYbTxo36WFiYLvEePhxCQkhJSeGHH36gVatWdO3alcqVK1OihHVUjSmqLCwKqaQkrcU3YQKcOweXXgpvvAGDBuWzN7Frl25iMXeuHpctCxMn6j2t1IHqgwcPEhUVRenSpbniiiuoWrVq/t+QMaZAs7AohDZv1gqxqVtAcOedetspX5/ZP/2kPYclS/S4YkV45hmde1ut2v+fdvjwYaZNm0a3bt1o3bq1leowppiwsChk5s6Fm2/WnkXduvDOO9CzZz5eMDFRZzc9+SScPas1QAYO1Prk6e5lxcbGcvr0aZo2bcrYsWMp6/Xt8owxBZndZC4kzp3TGaoDBmhQ3H03bNmSj6BISNC65KGhWiDq7FntRRw6pAUAU4MiISGBBQsW8N///hcRQUQsKIwphqxnUQisWqW3nXbs0PGIP/9ZazrlaTz53Dldsffcc3o/C+Dyy3VKbCb7SSxYsICUlBQiIyMtJIwpxiwsCrAzZ2D8eB24dg6uvBLeew86dszjCy5frjWcfvxRj7OoTX727FmWLl1Kp06d6N27N8HB9j8TY4o7+xQooPbvh06dYPdunYT02GO6eLp06Ty82JYturn25Ml6XLcujBihJTsy9Ba2b9/O/PnzadKkCSVLlrSgMMYAFhYF0oIFEBGhK7JbtIBp03QtXK4dO6b3rD76SI+Dg7WrMn48ZFLU78yZMyxfvpyBAwdSr169/L0JY0yREpABbhHpKSI7RSRGRB7L5PsjROSIiGxM/XdPINrpb8eO6Zq3Xr00KNq21ZmsuQ4K52DmTK0k+NFHWpe8f39Yv153OkoXFM45Nm3axBdffEFoaCgREREWFMaYi/i9ZyEiQcCbQHdgL7BWRKKcc9synDrDOTfO3+0LlI0bdWbToUN6q+mZZ+BPf9LOQI45p+Hw3HNp4xKdOulAxxVXXHT6iRMnmDt3LnFxcfTr1w/A1k0YYzIViNtQ4UCMc243gIhMB/oDGcOiWLiwVfXYsdqz6NgR3n8/08/27P3yiy6qW7RIj0NDtVzH6NEXTZtyziEi7Ny5k3r16tGhQwcrI26MyVYgwqIWEJvueC9wbSbnDRSRzsAu4E/OudhMzinUjhzRyUlRUXrcvbt+natB7JgY7Tm88QbExekGRBMnwu23Q/nyF51+9OhRoqOj+cMf/sC112b2YzfGmIsFIiwyu8/hMhxHA586586LyL3Ah8AfLnohkQggAqBu3brebqdP7dunC+zWrdPP9H//W4Mjx2snkpL0SX/7G5w/r48NHqyznqpXv+j0lJQUVq1axapVq7j++usL3c/LGBNYgQiLvUCddMe1gf3pT3DOHUt3+C7wfGYv5JybDEwGCAsLyxg4BVJKinYEHnkETp2C2rVhxQrI8Ziyc7BmjW5fumGDPtavn95u6t0706ckJSUhIpw6dYqIiAgqVarknTdjjCk2AjEbai3QWEQaiEhJYAgQlf4EEamZ7rAfsN2P7fOZlBRd3jB6tAZF377w7be5CIrVq6FVK2jXToOiXj1YuFD3nMgkKJKSkliyZAkffPABJUqUoHfv3hYUxpg88XvPwjmXJCLjgIVAEPC+c26riDwDrHPORQH3i0g/IAk4Dozwdzu97aeftGTHsmW6Dm7KFLjtthyWE8+4nWmpUpo4zz2nA9mZ2LdvH59//jmXXnopQ4YMsVlOxph8EecKxd0bj8LCwty6CzW7C5idO+EPf9BV2ZdeqrNbb7wxh09evFhX6P3yiy7lfuQReOqpLEfBExISEBEOHz7MyZMnadasmdfehzGm6BGR9c65ME/nWdVZH3vzTbjqKg2K9u1h27YcBsWcOVrgr0cPDYrWrXWsYuLELIMiJiaGt956i507d1KrVi0LCmOM11i5Dx9JTITnn9dtIkDHKl5+GTwOGRw6BPffr4svAEqW1J7EI4/oSuxMOOeIiori559/pm/fvjRs2NBr78MYY8DCwifOnNE1E99+q8cvvaSrsbPlHHz8MTzwABw/rgMb//iHznrKIiQAjhw5wiWXXELjxo3p1asXJUuW9N4bMcaYVBYWXrZ9OwwZoltF1K6tq7G7d/fwpF9/hXvvhfnz9bhbN60Q26BBlk85ffo08+fP59ixY0RERNgtJ2OMT1lYeNHatbojaWysfs7Pm6d7UGTp+HH48EOYMEG7I5UqaTdkxIhsp0nFxsYyffp02rZtyy233GKlOowxPmdh4SULF+pGc0lJEB6u1WKzmNWqJ738sobEuXP62M0362h4zZpZPEkL/yUlJXHppZcybNgwatSo4f03YowxmbDZUF7wr3/pmrgLe2MvXZpNUGzerNOiHn1Ug6JVK/jf/+Czz7IMipSUFL777jsmT57M/v37KVWqlAWFMcavrGeRT3//u3YQRPTz/7nnsigrfv68fnPiRE2VOnXgnXd08woPZs6cSVxcHCNHjqRq1arefxPGGOOBhUUenTun4fD661r87/XXdeJSpr79Vpdvb0utwj5mjIZGhQpZvn5ycjKbNm2idevWdO/enUqVKtkqbGNMwFhY5MHZs3DHHXrnKChIOwgjR2ZyYlyclul49VWdGtu4sVYR7Nw529ffv38/UVFRlC9fnmbNmlG5cmXfvBFjjMkhC4tciovTrSKio6FcOfjyS63rd5ElS2DUKPj557QyHRMmQJky2b7+oUOH+OSTT+jevTutWrWy3oQxpkCwsMiFM2dg0CCd+VS+PHz1FYRlrKhy4gQ8/LBWCgSt9TFlim6onY09e/Zw+vRpmjdvztixYynjIVSMMcafbDZUDiUnwy23aFBUrgzLl2cSFHPmQLNmGg4lS+qA9tq12QbF+fPn+eKLL5g1axYhISGIiAWFMabAsZ5FDiQl6ZjE4sVQrZr2KFq2THfC4cNw331p9Zzat9fAaNrU42svWLAAESEyMtJCwhhTYFlY5MD48VpWvGRJmD49Q1AcPAhdu8KOHTqIMXGiznbKZlV1fHw8S5YsoUuXLvTp08dWYBtjCjy7DeXBX/8KL7ygn/0LF8INN6R+wzkt1dGsmQZF06awZYv2MLL48HfOsXXrViZNmkRISAilSpWyoDDGFArWs8jG9Ola+PXC9NguXVK/sWeP7lS3cKEe33ij3naqVSvb14uLi2P16tXcdttt1K5d26dtN8YYb7KwyMK2bXDPPfr1q6+mW0exaxd07AhHj+pI9yuvwLBhWRb+c87x/fffs3//fvr06cPIkSNtOqwxptCxsMjEhSmycXEwdGjqyuzkZC30N368fqNLF+16VK+e5ev89ttvREdHc+7cOfr37w9gQWGMKZQsLDJwTtfSbd+uwxGTJ4OkJGvZ8P/8R08aPBjefRcqVsziNRwiwo8//kjDhg1p3749JUrY8JAxpvCysMjgzTe1wxAaCrNmQbl9uzQoVq/W3es+/hgGDMjy+YcPHyYqKoru3bsTHh7uv4YbY4wPWViks2+fLr4GHa++MmmLDl7v3w+XXaazn7p1y/S5ycnJrFixgjVr1tC1a1fq1q3rx5YbY4xvWVikcg7GjtVK4oMHw60VFsDV/SAxURfZzZ+f5W2nxMRESpQowblz54iIiKBiFucZY0xhZTfSUy1apNU6KlaE57t/Cf1Sg+LOO2HBgkyDIjExkUWLFvHhhx9SokQJbrzxRgsKY0yRZD0LtFfx5JP69fi+P9BgTC+t8RERAZMm6YYVGcTGxvL5559Tq1Ytbr/9dpvlZIwp0iwsgLlztd7fpVWTGPt5Nw2KcePgtdcuWj9x7tw5goKCCAoK4sYbb6RJkyYBarUxxviPhQWaCQCP8Tzl4g7DkCGZBsWuXbv44osv6NGjB82bNw9AS40xJjCKfVgcPgxffeUIlmSGH3tRqwS+++7vgsI5x+eff87evXsZMGAADRo0CGCLjTHG/4p9WMycCSkpQi8WUKUyWn88NBTQkDh06BA1atSgWbNm9O3bl5CQkMA22BhjAqDYz4aa8UkyALcxQ289VasGwKlTp5g+fTpz5swhOTmZK6+80oLCGFNsFfuexbMtZzBj5XH6t90Hf/wjAL/++iszZswgPDycW2+91cqIG2OKvYCEhYj0BF4FgoD3nHP/zPD9UsBHQFvgGHCbc+4XrzfEOTpteJVOrIF/LOT4b7+RnJxM9erVGT58OJdeeqnXL2mMMYWR329DiUgQ8CbQC2gG3C4izTKcNhL4zTnXCHgZeN5HjYEVK0iZNYtV5crx3nvvcfDgQUqVKmVBYYwx6QRizCIciHHO7XbOJQDTgf4ZzukPfJj69UzgBvHVqreQEP6XmMiPMTHcc889tPzdnqnGGGMgMLehagGx6Y73AtdmdY5zLklETgJVgaPpTxKRCCACyFfhvgtlOmwVtjHGZC4QPYvMPpFdHs7BOTfZORfmnAu75JJL8tygSpUqWVAYY0w2AhEWe4E66Y5rA/uzOkdEgoGKwHG/tM4YY8xFAhEWa4HGItJAREoCQ4CoDOdEAcNTvx4EfOWcu6hnYYwxxj/8PmaROgYxDliITp193zm3VUSeAdY556KAKcA0EYlBexRD/N1OY4wxaQKyzsI5Nw+Yl+GxCem+PgcM9ne7jDHGZK7Yl/swxhjjmYWFMcYYjywsjDHGeGRhYYwxxiMpKjNSReQIsCePT69GhtXhRZy936KvuL1ne795V88553FVc5EJi/wQkXXOubBAt8Nf7P0WfcXtPdv79T27DWWMMcYjCwtjjDEeWVioyYFugJ/Z+y36itt7tvfrYzZmYYwxxiPrWRhjjPGoWIWFiPQUkZ0iEiMij2Xy/VIiMiP1+9+JSH3/t9J7cvB+R4jIERHZmPrvnkC00xtE5H0ROSwiW7L4vojIa6k/i80icrW/2+htOXjPXUTkZLrf74TMzissRKSOiCwVke0islVEHsjknCLze87h+/Xf79g5Vyz+oRVufwIuB0oCm4BmGc4ZA7yd+vUQYEag2+3j9zsCeCPQbfXS++0MXA1syeL7vYH56MZa7YDvAt1mP7znLsDcQLfTi++3JnB16tflgV2Z/G+6yPyec/h+/fY7Lk49i4K197fv5eT9FhnOueVkv0FWf+Ajp74FKolITf+0zjdy8J6LFOfcAefchtSvTwPb0S2Y0ysyv+ccvl+/KU5hkdne3xl/8L/b+xu4sPd3YZST9wswMLW7PlNE6mTy/aIipz+Poqa9iGwSkfki0jzQjfGW1FvEbYDvMnyrSP6es3m/4KffcXEKC6/t/V1I5OS9RAP1nXOtgC9J61UVRUXpd5tTG9BSDlcBrwOzA9werxCRUGAW8KBz7lTGb2fylEL9e/bwfv32Oy5OYVHc9v72+H6dc8ecc+dTD98F2vqpbYGQk99/keKcO+WcO5P69TwgRESqBbhZ+SIiIegH58fOuc8yOaVI/Z49vV9//o6LU1gUt72/Pb7fDPdy+6H3RIuqKODO1Nky7YCTzrkDgW6UL4lIjQtjbiISjv7//VhgW5V3qe9lCrDdOfdSFqcVmd9zTt6vP3/HAdlWNRBcMdv7O4fv934R6Qckoe93RMAanE8i8ik6M6SaiOwFngJCAJxzb6Pb+PYGYoB44K7AtNR7cvCeBwGRIpIEnAWGFOI/fgA6AsOAH0RkY+pj44G6UCR/zzl5v377HdsKbmOMMR4Vp9tQxhhj8sjCwhhjjEcWFsYYYzyysDDGGOORhYUxxhiPLCyMMcZ4ZGFhjI+IyPMisjjQ7TDGGywsjPGd1sBGj2cZUwhYWBjjO1cB3we6EcZ4g4WFMT4gIjWA6qT2LESknIhMF5ENhX0HRlM8WVgY4xtt0Fo9O0WkCbAGrcHV0Tn3SyAbZkxeWFgY4xutgR+AAcAq4F3n3B3OubOBbZYxeWOFBI3xARGZAXRHK/72c84tC3CTjMkX61kY4xutgc/QkuGFdWteY/6f9SyM8TIRKQucBtoBjYHJQGfn3IaANsyYfCg2mx8Z40dXofs+b3HOrRWRpkC0iIQ75/YFuG3G5IndhjLG+64Cfkw3mD0BWAlEpfY6jCl07DaUMcYYj6xnYYwxxiMLC2OMMR5ZWBhjjPHIwsIYY4xHFhbGGGM8srAwxhjjkYWFMcYYjywsjDHGeGRhYYwxxqP/Azqllp6vdPoiAAAAAElFTkSuQmCC\n", - "text/plain": "
" - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEbCAYAAAAmmNiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsnXd4HNW9979HvXdZzbZkyd2W5d7ANs0Uh+aQUN/QCUnu+3IJIaTcBN+QBC4hCSEhAXwNJGDs0G1DbIPjhruRLLlLttXrqsvq0u6e94+zZzQ7OzM7s1Vrz+d5eLB2Z2fPzsz5fc+vnHMIpRQGBgYGBgZaCPJ3AwwMDAwMAgdDNAwMDAwMNGOIhoGBgYGBZgzRMDAwMDDQjCEaBgYGBgaaMUTDwMDAwEAzhmgYGBgYGGjGEA2DUQUhpIoQcp2HzjWFEFJMCOkmhDzhiXO6CyHk74SQ36i8X0sImePLNrkLIeQ0IeQqf7fDwDcYomHgNjZD308I6SGEmAghbxNCYjR+ziMCocAzAPZQSmMppX/24vd4BEJIIoAMAGf93RY1pPeNUjqDUrrHj00y8CGGaBh4ilsopTEA5gJYAOAXfm4PAGQDOO3vRuggH8AFSumAvxsCAISQEH+3wWD0YYiGgUehlNYD2AZgJgAQQn5KCCm3hYjOEEJW215/F8B4AJ/ZPJRnRKeZTQg5QQjpIoS8TwiJkPsuQsg0QsgeQkinLURyq+i9XQCuBvCq7fyTFc5xDyGkyPZd5XJhFqXfYHuvihDytFJ7CSFzCCHHbJ99H4Dsb7ExC8Ap2+eiCCEbCCGfyHltTn77TwkhH0mOf4UQ8mfbvzMJIR8TQloIIZXi0J3t9/yEEHICQK9UOOTum9TzsP39Y9s16SWEvEkISSOEbLNdh3/bvCrVthiMUiilxn/Gf279B6AKwHW2f48DG93/2vb3twFkgg1Q7gLQCyBD+jnJuY7aPpMEFqr5nsx3hgK4AODnAMIAXAOgG8AU0TF7ADyq0u4f2do619a+fAA5Msc5+w2y7bW1qxrAD23t/RaAYQC/UWjPWgBrAEwAcMz2b6L3t4N5WH0A4mx/BwNoBLDY9huKADxr+2wugAoAN4h+T4ntPkY6u98qfx8GkAYgC0Cz7ffMARAOYJftt6m2xfhvdP5neBoGnmITIaQTwH4AewE8DwCU0g8ppQ2UUiul9H0A5wEsdHKuP9s+0w7gMwCzZY5ZDCAGwP9QSocopbsAfA7gHi2NJYSkghmueymlx2ztO0kprZIeq+E3KLV3MZiB/xOldJhS+hGAr1WalQ+W09gF4FeU0l9RmxXW89sppdVgRvp22/HXAOijlB4GCx2mUkqfs322AsD/Arhb8ntqKaX9Km11xl8opSbKPM99AI5QSosppYMAPgUTEC1tMRhlGDFLA09xO6X039IXCSH3A3gKQI7tpRgAKU7O1ST6dx/YKF5KJoBaSqlV9Fo12MhWC9cBOEkpPe7sQA2/Qam9mQDqJYa/WuE7CFhILxfAHymlm1WapOW3bwATkXcA3Gv7G2BeSKZN4DnBYIadU6vy3Voxif7dL/N3jMa2GIwyDNEw8BqEkGywkeO1AA5RSi2EkBIAxHaIO+vyNwAYRwgJEhnP8QDOafx8EoBOZwdp+A1qNALIIoQQkXCMB1Auc+wE2/+vA7CTELKTUlqocF4tv/1DAH8ghIwFsBrAEtvrtQAqKaWTVNrt7L54aj8FLW0xGGUY4SkDbxINZmBaAIAQ8hBsCXIbJrCRtSscAcstPEMICbUlsG8B8E+Nny8GcCUhpIAwJhFCprnwG9Q4BMAM4AlCSAgh5JtQDs3NAnCCUnoSwHcBfEoIyVA41ulvp5S2gOV03gYzzLyM9yiAi7ZkdyQhJJgQMpMQskDjbwLcu29iPNEWAx9jiIaB16CUngHwBzDjaQKL2R8QHfICgF/YKoCe1nnuIQC3ArgJQCuAvwG4n1JaqvHzBwH8BiwX0A0WZ4904Tc4a+M3ATwIoAMsif6JwuH5AE7YPrcJLCm+Sa5yTMdv3wDmuWwQfdYCJjCzAVTaPr8OQLyW32TD5fsm+R2eaIuBjyHyeTYDAwMDAwNHDE/DwMDAwEAzhmgYGBgYGGjGEA0DAwMDA80YomFgYGBgoJlLbp5GSkoKzcnJ8XczDAwMDAKGoqKiVkppqpZj/SIahJBxYDNV0wFYAayllL4iOeYqAJvBSvEA4BNK6XPOzp2Tk4PCQqU5UQYGBgYGUgghsisVyOEvT8MM4EeU0mOEkFgARYSQHbaaeDH7KKU3+6F9BgYGBgYy+CWnQSltpJQes/27G2xlUK1rBhkYGBgY+Am/J8IJITlgK14ekXl7CSHkuG0d/hkq5/guIaSQEFLY0tLipZYaGBgYGPhVNGyby3wM4ElK6UXJ28cAZFNKCwD8BcAmpfNQStdSSudTSuenpmrK5RgYGBgYuIDfRIMQEgomGO9RSh3W46GUXqSU9tj+vRVAKCHE2ZLaBgYGBgZexC+iYds74E0AZymlf1Q4Jt12HAghC8Ha2ua7VhoYGBgYSPFX9dQVAL4D4KRtbwKAbV05HgAopa+DbY35fUKIGWzTlrsVdjEzMDAwMPARfhENSul+ONnEhlL6KoBXfdMiA4MRqqqqcPToUdx5553+bopBAHL06FH09/djxYoV/m6KV/B79ZSBwWji008/xezZs3HXXXehvr7e380xCCCsViuee+45LFmyBA888IC/m+M1DNEwMLDx1ltv4Y477kBQEOsWnZ1Od4M1MADABOP73/8+1qxZg/j4+Ev62TFEw8AAwIYNG/DII49g5cqVePPNNwEA3d3dfm6VQSBgtVrx+OOPY+3atfj5z3+OH/zgB+ju7salmoI1RMPgsqewsBAPP/wwli9fjs2bN4PP9bl4UTp1yMDAHqvVikcffRTr1q3DL3/5S/zmN79BbGwsrFYr+vr6/N08r2CIhsFlTVNTE1avXo309HR89NFHiIiIQFxcHADD0zBwzrPPPou3334ba9aswXPPPQdCyCX//BiiYXDZMjQ0hG9961toa2vDpk2bBA8jNjYWwKXb6Q08w8cff4zf/va3eOSRR7BmzRrh9Uv9+bnk9tMwMNDKs88+iwMHDuCf//wnZs+eLbx+qXd6A/epq6vDI488gkWLFuGvf/0rbPOQAVz6z4/haRhclpw/fx5//OMf8eCDD+Kuu+6ye493eiOnYSAHpRSPPvoohoeH8d577yE8PNzu/Uv9+TE8DYPLkqeffhrh4eF44YUXHN4LDw9HWFjYJTtSNHCPDz/8EF988QVeffVV5OXlObx/qec0DNEwuOzYv38/tmzZghdeeAHp6emyx8TGxl6ynd7AdSwWC9asWYMZM2bg+9//vuwxl3p4yhANg8uONWvWIC0tDU888YTiMYZoGMjx/vvvo7S0FB988IEwCVSKIRoGBpcQe/fuxa5du/Dyyy8jKipK8bi4uLhLNiZt4BpWqxW/+c1vkJ+fjzvuuEPxOB6eulSfH0M0DC4rXnrpJaSlpeHxxx9XPc7wNAykbNu2DWfPnsX69esVvQwAiI6OBiHkkn1+jOopg8uG6upqbN26FY899hgiIyNVjw0k0RgYGMB1112HnTt3+rsplzR/+MMfMHbsWKerHxNCEBMTEzDPj14M0TC4bFi3bh0A4NFHH3V6bGxsbMCEFz777DPs3LkT+/fv93dTLllKSkqwe/duPPHEEwgNDXV6fCA9P3oxRMPgsmB4eBjr1q3DqlWrkJ2d7fT4uLi4gBkpvvPOOwCArq4uP7fk0uXNN99EeHg4HnvsMU3HB9LzoxdDNAy8zpEjR/D111/7tQ27du1CU1OTJi8DCJzwVHNzM7Zt2wbAO6JBKcWGDRvQ0dHh8XMHCkNDQ9i4cSNuv/12JCQkaPpMoDw/rmCIhoFXoZTizjvvxNNPP+3XdnzwwQeIi4vDjTfeqOn42NhY9PT0wGq1erll7rFx40ZYLBbExsZ6RTSOHj2K++67D++//77Hzx0obN26FW1tbbo2VrqURcOonjLwKkeOHEFNTY1QhugPhoaG8Omnn+K2225DRESEps/ExsaCUore3l6h7n408tFHH6GgoACRkZFeEY1NmzYBANrb2z1+7kDhnXfeQVpaGlauXKn5M7GxsWhpafFiq/yH4WkYeJUPPvgAgH/j7Tt37kRHR4euPb8DYSmI5uZmHDhwAKtXr0Z8fLxXReNyzZf09fVh27ZtuOuuuxASon2MbeQ0DAxcwGq14sMPPwTg361TP/zwQ8THx+P666/X/JlAmNX72WefgVKK2267zSuiUVZWhtLSUgCX79a3e/bswcDAAG6++WZdn7uUw1OGaBh4jSNHjqCurg6TJk1Cd3c3LBaLz9tgtVqxdetW3HTTTQgLC9P8uUAQjc2bNyM7OxsFBQVeEY3NmzcDABISEi5bT2Pr1q2IiorC8uXLdX3OEA2DUc327dvx8MMP+7sZDmzfvh1BQUG4++67AfhnWYXi4mKYTCasWrVK1+dG+1IQvb292LFjB26//XYQQrwiGlu3bsXs2bMxadKky9LToJTiX//6F6699lqH5c+dERcXh6GhIQwODnqpdf7DEI1LgNdeew1vv/02hoaG7F43m80oKSnxU6uAHTt2YP78+ZgwYQIA/8TFt27dCkIIbrjhBl2fG+2exv79+zEwMICbbroJABAfH4+BgQGHZ8BVenp6cPDgQVx//fWXradRVlaGqqoq3QMOYPQ/P+5giEaAY7FYsHfvXgCORvm1117DvHnz/FLF0dXVhaNHj2LlypWIj48H4J+4+NatW7FgwQKMGTNG1+dGe6ffs2cPQkJCcMUVVwCAcI09Zdy/+uorDA8PC/fvchSN7du3A4AgzHoY7c+POxiiEeCUlJQIHVo6AevLL7+E1WpFc3Ozz9u1e/duWCwWrFy5UpgQ5WvD09bWhiNHjvh9pPjvf//b6QKJnN/+9rd46623nB63e/duLFy4EDExMQA8Lxo7duxAREQErrzySiQkJFyW4ak9e/YgLy9P0woCUgzRMBi17NmzR/i3uGNbLBZ89dVXABzFxBfs2LED0dHRWLJkid88jb1794JSqqu+nuPJnMbrr7+OtWvXOg0dmc1mvPDCC9i4caPqcd3d3SgsLMTVV18tvOYN0Vi2bBkiIiIuS0+De/BXXXWVS58f7TkxdzBEI8DZvXu3sKm9WByKi4uFB9YforFr1y6sWLECYWFhfvM09u3bh4iICMyfP1/3ZyMjIxEUFOT2SJFSin379gFwfh9KSkrQ29vr9Lh9+/bBYrF4TTQaGxtx+vRpQWwTEhLQ19eH4eFht88dKBw/fhydnZ1211gPhqdhMCoxm83Yt28frrzySgD2I/ndu3cL//a1aLS1taG0tFRol788jX379mHRokW6Sm05hBCPlE2eP39eCA9qEQMtx+3ZswdhYWFYunSp8JonhfnAgQMAIIyyPe3FBAK8/xii4YghGgHMmTNncPHiRdxyyy0A7I3Nnj17kJaWBsD3xvrw4cMAgCVLlgDwj9Hp7u5GcXExli1b5vI5PLF7HxcCwHOicfDgQcyfP99uTxBPXuODBw8iIiICBQUFdue+nPIae/bsweTJk5GZmenS543wlMGo5MiRIwAgLMLHO7XVasX+/ftlxcQXHDp0CMHBwViwYAEAIDQ0FFFRUT41OocOHYLVanVLNDyRANYqGpRSYT+Mzs5OxYUSh4eHUVRUhEWLFtm97mnRWLBggeCh+Su86C+sViv27duHFStWuHwOfs0uRaE1RCOAOXr0KJKSkjBz5kyEhYUJRun8+fO4ePEili5ditjYWJ+LxsGDBzF79mxER0cLr/k6mbpv3z4EBQUJ3o4rJCUlub1Q3759+zB9+nQA6qJRVlaGlpYWTJ8+HZRSxRHqqVOnMDAwgIULF9q9zke27l7jgYEBHDt2zO66XW6eRnl5Obq6uhyEWQ8xMTEICQm5JBd6NEQjgDly5AgWLlwIQggSExOFTl1YWAgAmD9/vt3rvsBsNuPo0aMOxtrXZZuHDh3C7Nmz3VqhNjEx0S3BbW5uRkVFhbBukdq5Dh48CABOj+XepVQ0QkJCEB0d7bZoFBUVYXh42Gv5kkBA3H9chffJS3EfEkM0ApSenh6cPn1aMB4JCQnCA1pYWIjIyEhMmzbN5w/uyZMn0dvba2d0AN96GpRSFBcXY968eW6dx11Po7i4GABw3XXXAVAXjcLCQsTFxWHx4sWqxx49ehQpKSnCLHsxnrjGXLzkPI1AFQ1KKdavX4++vj5NxxcWFiIiIkLwEF3FE57qaMQvokEIGUcI2U0IOUsIOU0I+U+ZYwgh5M+EkAuEkBOEkLn+aOtopaioCFarVXChpZ7GnDlzEBISYicmvuDo0aMA4ODa+9LTqKmpQXt7O+bMmePWedwV3GPHjgEAFixYgOjoaNVzFRUVYe7cuUhKSgKg7mlw71KKJ0Tj8OHDyM3NtZtBH+jx+a+//hrf+c53hGXenVFYWIjZs2dr2gtcDcPT8CxmAD+ilE4DsBjAfxBCpLJ+E4BJtv++C+A13zZxdMONM082c3GwWCwoLi4WXGu18NQTTzyBp556yqPtOnbsGBISEhxGwr70NPgIf+5c98YZSUlJ6Ovrw8DAgMvtyM3NRUJCgqoBGRoawvHjx4VwIiAvGhcvXsTZs2cVY+2euMZyHhoP8QWqp8GfBy3L6VitVhw7dsyt0BTH8DQ8CKW0kVJ6zPbvbgBnAWRJDrsNwDuUcRhAAiEkw8dNHbUcO3YM2dnZSE1NBTAyki8rK0Nvb6/Q8dWM1QcffGA3o9wTFBcXY86cOQ4jYV8ueldcXIygoCDk5+e7dR5no34t7eDejtp9OH36NAYHB52KRklJCSiligbNXdG4ePEiKisrhVJbTnBwMOLi4gLW0zh+/DgAbbsPnjt3Dj09PW6HNgFDNLwGISQHwBwARyRvZQGoFf1dB0dh4ef4LiGkkBBSeKlusSjl5MmTdkaRexTSJJ6SsTKZTDCZTB59qIeHh3HixAnZEX58fLzPjM6xY8cwdepUREVFuXUeNQPujK6uLly4cEGTaEgLF5S+kxu/2bNny57HXdE4ceIEADiIhifO7U/4dWtra3N6rCeS4BwjPOUFCCExAD4G8CSlVFpj6Bi0BajceSilayml8yml8/nI+1JmaGgIZWVlmDVrlvAaD0+VlJQgMjISU6ZMEV7v7e11WAJCT0fSSmlpKQYHB2VzCfHx8RgaGnI51KMH8QjfHbin4Yqw8uurVTQSEhKQm5uL6OhohISEKIpGSkoKMjLkHW53DTtvs5JoBKKnYbVaBTHUch9LSkoQHh6OqVOnuv3dSUlJ6Ozs9MvmY97Eb6JBCAkFE4z3KKWfyBxSB2Cc6O+xABp80bbRTmlpKcxms4OnYbFYcOjQIUyfPh3BwcHC64BjEpMbiJ6eHo/twaCWS/BVMrW5uRn19fVu5zMA9zwN6bXgonHo0CHcd999dpP3ioqKMG/ePBBCVEs1jx8/joKCAtkkOOAZ0UhMTMTYsWMd3gvUPTUqKyvR09MDQNsA6eTJk5gxY4au/cCV4M9PIF43NfxVPUUAvAngLKX0jwqHbQFwv62KajGALkppo88aOYrhIyexaHCjXFhY6CAmgKPh46IBeM7bKC4uRlRUFCZPnuzwnifKNs1mM06ePGn32m233YYnn3xS+NtZCEcP7ngaJSUlSEtLQ3p6OoAR0fjnP/+JDRs2CElZi8WCU6dO2bVXTjTMZjNOnTol6wWIP9ff3++yN6cmSoHqafDnITU1VdN9lIZ93cGd52c04y9P4woA3wFwDSGkxPbfKkLI9wgh37MdsxVABYALAP4XwA/81NZRx8mTJxEaGmpnnLk4mM1mu7CVmqcRFMRuv6dE49ixY5g1a5bg5YjxhKfx9ttvY86cOcICgJRS7Ny5UxjVAyypDAAzZ850+Xs4/Nq50ulPnz5t14bExET09vYKOym2trYCYLOPBwcHMWPGDLtjpaJx/vx5DAwMqIpGSkoKANfup8ViwcmTJxXFNlA9Df6cL1u2zOl1aWtrQ2Njo8dEw53nZzTjr+qp/ZRSQimdRSmdbftvK6X0dUrp67ZjKKX0PyileZTSfEppoT/aOho5efIkpk2bZldHzo0yIO+BiI3Q4OAgSktLhXJdrUamtbVVWB9JCqUUJ0+eVDRqnhCN4uJiWCwWNDYyh7O2tha9vb2CAQaYsU5JSdG9U58c8fHxIIToDk9ZrVacOXPGQQiAkVJpfs25yDkTDbV8A4eLhvh6aKW8vBz9/f2q9y8QPY0TJ05g8uTJyMrKcmq8uRfraU/jUkuG+716ykA/ci60kmjIhafOnDkDs9mMa665BoD2kdCLL76Ia6+9Vjax19LSgo6ODkybNk32s8nJyQDc82rOnj0LYMQoSv8GmBEWG2B3CAoKQmJiou6RYk1NDXp7e2VFg4eOeJu5aIhnHyuJRmhoqOL1Bdy7xmfOnAEAxWuXnJwszAMKJEpLSzF9+nQkJyejq6sLZrNZ8Vi5sK87GOEpg1FBZ2cn6urqHB5sbpRSU1OFJdHFr0tFAwCWL18OQLuROX36NIaGhmRHTmVlZQCgWHXCR8HulETzdnODy/9ua2sDpRSUUo+KBuBa2aSS9yBG7Gnk5OQI27YqfeeJEycwdepU1b1B3PE0SktLAajfP0ppQBnA4eFhXLhwAVOnTtU06j958iSSk5OFPJS7uFNIMZoxRCPA4MZZui4O9zSUPBBxaKGsrAxBQUHCulVaRYMbFjnD78zoJCYmIigoyCWDBrDRGs9lSD0Ni8WCrq4u1NXV4eLFix7JZ3BcmaB16tQpAOqiIfY0pCLH59yIK6zOnTvntAyUexquikZWVpbiAo+8lN3V++cPKioqYDabMXXqVOHaqN1L7sErVafpxchpGIwKuGhIK5QSEhIQHBxslwQHgIiICERERNiNds6dO4ecnBwkJiYiLCxMk2gMDAygqqoKgLJoREZGYty4cQ7vAWxWcVJSkstGhwsE4Ohp8NfkRvju4kp46vTp08jKyrILGXIDEhsbi8jISLS1tcFsNqOsrExWNKxWq7Dr29DQECorK4W5N0q4E54qLS1VFSV3vBh/IR7IOLs23Ev1VGgKAMLCwhAdHW2IhoF/OXfuHIKDg5Gbm2v3enBwMLZs2YJnnnnG4TPScMe5c+cwZcoUEEKQnJysycicP38elLK5lXKGo7S0FJMnTxYqsuRISUlxOTwlFQhKKc6cOYPx48cLr3lDNJKSklwKT8kJAW9bSkoKWltbceHCBQwNDSkey73DiooKWCwW2VJmMaGhoYiLi9Nt2CmlmkUjkFZc4KIxZcoUp/mFhoYG9PT0eGRSnxhXnp/RjiEaAUZZWRlyc3NlV+BctWqV7GxhbqQAZiDOnTsnGKDk5GRNIyHeAQFlT8NZh0tNTXXL04iMjERubi5aW1vR3NyMjo4OYWc+LhppaWnCqNIT6PU0rFYrzp49qyoaXKiVyoOlsXAl71KOlJQU3Z6GyWRCV1eX6v0LxPBUaWkpMjMzERcX59TTOH/+PABg0qRJHm2DK57qaMcQjQBDbPC1kpqaKhj6hoYG9Pb22omGFiOjJho8dOVMNMTipZczZ85g6tSpGDNmDFpbW4VwlVg0zp496/YeCFL4SFFp+1Up1dXV6O/vd2hHWFgYnnnmGTz88MPCdeBiIA07SXMT586dA6BNNJKTk3VfY/GIXO284jYFAuKBjDNPw1uiYXgaBn7FarXi/PnzTmPbUsaMGSMkkbkB4ufQIxrZ2dmIjY11EI0LFy7AarU6bZc74amzZ89i2rRpDgb3iiuuAAAh3OONkaI4v+CMCxcuAJA3Pi+++CKWLl0qXPPy8nJkZGTYbYsLQJhjIr5nqampDsl0OVzxNJwVMQAsNxYTExMw4SkecuPPZHx8PIKDg1U9jbCwMMWcnKsYnoaBX6mrq0N/f79LngY3QNJQhx7RmDp1qmyISYvR4e1oa2vTPGrnDAwMoLa2FpMnTxZEo7y8HOHh4Zg2bRrCwsJw4cIFtLa2YuLEibrO7Qy9tfbl5eUAoNoOcU5D7jipaJSVlWkeKLjizZWWliI6OhpZWbKLSAu4E170Nc3Nzejs7BSeSb6ml5qnkZeXJ7uagTtcisujG6IRQEi9BK2MGTMGXV1dGBoawrlz5xAVFSUYiKSkJGGegxKUUpSVlQmiIR1tanXtU1JShPJYPVRVVYFSiry8PMEonj9/Hrm5uQgODkZKSoqwd7anRUNv1dCFCxcQGRmpuBItMDJRrqysDHl5eQ7vJyQkICQkxM7T0DpQ0DoIEKOliAFwL7zoa+T6itq1OX/+vMe9VGDE81PrX4GGIRoBhJ7YthiexGxpacG5c+cwadIkwUAkJyfDbDarhl8aGxvR29uLSZMmyYpGRUUFxowZYzdBTQ5XK3D46J2LxsDAAE6cOCEIREpKirAEhJwRdgc+UdJkMmk6/sKFC8jLy3NaRcbPKSdyQUFBgnfY1dUFk8mk+Z6npKSgu7tb18rFFRUVmgymO+FFX1NRUQEAdlWGSqN+q9WK8vJyr4hGWloahoaGAnIJFiUM0QggysrKEBMTozqKlUMc7pCOqLRMeqqsrATAOqDcaLO8vFyTsXa1AkdsALjBraioEL6TezDA6BENNcTVXUqeUVpaGpqbm3UPFPTO1bBYLKiqqnLYnleOQApPVVZWghCC7Oxs4TUlT6Ourg4DAwNeEw1A+/MTCBiiEUBw46x3xioXDZPJhKqqKrvRlxYjIzba3NMQu9tiA66GqxPEysvLER0djTFjxgjnAGDnaQCQTSq7i55Ob7VaUVFR4TREJv4NSteNFy9wwdYqhnqvcUNDA4aHhx3m/SidO1BEo6KiAmPHjrVbdkWpssxblVOAIRoGfkbriFAKH+GXlJRgaGjI7hxaSim54eJ7kg8ODgob2wwNDaG2tlaz0XH2XXJUVFQgNzcXhBBV0fB0PgNgVUNxcXGaOn1jYyP6+/udtkPsaTgTDT4LPycnR1N79XoafECg5blKSUlBb28v+vv7NZ3bn1RWVjo8k+np6TCZTA75BUPvbMA/AAAgAElEQVQ09GGIRoBAKUVVVZVm4yGGexo8WSzuTHxxtqamJsXPV1ZWIisrCxEREQ4hpqqqKlitVl3hKVdyGuJQFEf6mqdDU5y0tDRNnZ6X22r1NJKTkxXLaMWeRlJSEuLi4jS1Va8w8wGB1vCUnnP7k4qKCofflJ6eLptf4JV4zqrHXMEQDQO/0drait7eXpc8jfj4eISGhgqiIT6HFtEQd0BpMlsu4ahEVFQUIiIidBkdSqngaYi/Pzg4WIhXe9PTALSLhjhhr4YWkRszZgx6e3uFVXC1otfTqKysRFBQkLAcixqBsv7UwMAAGhoaZEUDcHzWq6urkZ2d7bR6zBWSk5MRHBxsiIaB79EbphBDCEFqaioaGxsdkoMxMTGIiYkRNjaSQ+zqS70FrYaSt0NvXLyxsREDAwPC+RMSEhAUFIScnBxhKZXRIhoXLlxAaGio0wliUVFRCA8PV20v9w6PHTvmkmho9ebkYv9KBIpoVFdXA3AcyCiJhqsevBZ4JZwhGgY+h4uGK54GMGLs5QxERkaGomgMDg6irq5O+F5piKKiogKRkZGa9yCQK9lVQ+rJBAcHIzEx0U6kZsyYgYiICMyfP1/zefWgx9PIzs5GSEiI6nGEEDz33HN4/PHHFY/hoqHXuwwPD0dCQoIwx8MZcrF/JVwNL/oapTyNM0/DW2h9fgIF9afbYNQgTka7AjdCcgYoPT1dMTxVU1MDSqmDaIg9DZ6k1oLeWn85T+ahhx6yW8J61qxZ6Ovr89g+CFLS0tLQ3t6O4eFh2YUiOTU1NZpHrHKrEYsRb1erdxScmZmJhoYGTcdWVFTgxhtv1HRsoKx0Ky4RFyMnGv39/WhubjZEQweGpxEgVFVV6UqISuHGXm5UqeZpSDtgTEwMIiIihE4gzjdoQU2g5KiqqnIIqb300ku4//777Y7zlmAAI8lMZ6P36upqTbkBLbgjGhkZGZpEo7+/H42NjZo9mcTERISGhuq6f/6goqICERERDt5vfHw8wsPD7drPQ1neCk8B6qJRXFys2SscLRiiESBUVla6HJoC1D0NNdGQuvqEEGEkSynV3a7MzEw0NjZqXn+qpqYG6enpmmLu3kJLBczg4CAaGxs9NmLlIg/oD0lq9TR4yFOr6AcFBWkWJH9SWVmJnJwch4EEIQTp6el2zzoXDV94GnJLiaxcuRK//vWvvfbd3sAQjQDB3WSdmqeRnp6Onp4eYe6FmMrKSoSFhSEzM1N4LSsrC/X19ejq6kJPT4+u0XVWVhaGh4c1J1Nramo8Nnp3FS2iUV9fDwAea2tUVJSwLItegyYWdTVcKa7g9340U11drfibMjIy/OJpDAwMOCzV09XVhba2NsGbDxQM0QgA3JmjwXHmaQDyZbfcaIvLETMzM1FfX4/a2loA0LWcNBcfrYantrbW48tV60WLaHhjxMpnwDtb00tKZmYmhoeHnZbd8vunR+j4vR/NqD0z0vBoVVUVQkJCdC/Nowel54df/9F+PaUYohEAmEwmDAwMuBWeuuGGG3D//fdj7ty5Du/xDiMXoqqtrcXYsWPtXsvKykJDQ4NLosEnUGkJcVBKA8bTqKmpAeA5TwNgBk5PvojDhdnZNa6trRVCTlrh9360Mjg4iObmZs2iUV1djXHjxnl8SXQxSs9PXV0dgMATDaN6SgeUUlBKvTIJSA1PGKRx48bhH//4h+x7ahP8amtrsWLFCrvXMjMz0dfXh1OnTgnn1ooeT6O9vR39/f1+F43o6GhER0dr8jSkAusOL7/8sktLaotFY9asWYrH1dbWIjMz02mJsPTcFy9eRE9Pj24PyBdwQ6wmGq2trUIlnDfnaHCceRotLS0YHBxEeHi4V9vhKQxPQwf33nuvQ9WOL3DWEdxFydOwWCyor693+F7uLRw+fBjBwcG6RqoZGRkghGgarXKx9Hd4CmAdX61qqKamBhkZGR7t+AsXLsSiRYt0f46LhtqETcC10J8eT9EfcEOsJN7p6emglAplw96eowGMiIb0+eFtBUbv9ZTDEA0dFBUVobCw0Offy0XDk6NYMcnJyQgJCXEwMk1NTbBYLIqiceTIEWRkZOhy7UNDQzFmzBhNnoY3Qj6u4qwiyZPltu7CRdyZIaqrq9P9TPF7P1pDKlo8DYA920NDQ2hoaPC6aKSmpiI4ONjhfohFY7ReTzkM0dAIpRT19fXCZDdfUldXh/DwcLvVUT1JUFCQ7EhaSazE4Q9XvACtJaGu5Ey8xbhx4+w6uZSamhqvGx+t8GdF7RpTSl3yNLTmS/yFs2dGLBq8wszbz1dwcDCysrIcnp+6ujph3pUhGpcgnZ2d6OvrQ39/v+7tNN2Fjwi9OYFNbq6GUgcUl9+60uG0lm3W1NQgPDzcbs6Cvxg/fjxqa2tl55eMloS9GLEwV1VV4emnnxY2qgJG8kWuioba/bv66qvxX//1Xy602n1qa2uRlJSEqKgo2fe5aDQ2Ngq/wRur20oZP3684DlzamtrhfAjH6AFAoZoaETcSdRGnN7AlTCCXuRG/0qiERkZKSzp7W1PY+zYsT4vPMDFi4Atyc8ZP348hoeHZZPhLS0tGBgYGDWeBmA/K/zjjz/GH/7wB5SVlQnvu+rFxcbGIjY2VvH+UUpx5MgRHD582MWWu4cz7ykzMxNBQUGoqakR+rTH+1Z9PSCxEVLR4J7ezJkzERUVZXgalyLimyodMXgbX4jG+PHjhQogTm1tLaKiomT3fOCjM1c9DV4xoobPR++NjcCTTwLjxgG33Wb3Fv+dcgMGZ8lXfyAWZv5/8f11J/Sn5il2dXWhv79fmDjoa+RKxMWEhoYiKysLVVVVnvc0SkqA73wHmDABkHha48aNQ11dneCp8sjFuHHjAmLCpBhDNDQidh99KRpWqxX19fVeN0g5OTm4ePGi3QY1vAPKhcV4R3OlXVqre3wmGk1NwFNPATNmAEFBwO7dzNsQwdshd++5UfZFmEMr4uVauEESi4Y7xRVqE/z467W1tXbhMF9RV1fnVAizs7NRXV2N+vp6REZGIiEhwfUvrK0FnngCyM8Hbr6Z/f+NN2SfH7GnKhbtsWPHGqJxKcJvalhYmE/DU62trRgaGvK6aPDQiniEqNYBueF3daQKqCdTLRYLGhoavPu7Dx0CrrgCmDIFsFiA06eBP/4RmDoVkCz5oOZpcPET53r8zdixY2GxWOxi9+J7W1tbi5CQEKEcVA9qE/z468PDw04HBZ6mr68PbW1tTp/JnJwcVFVVoa6uDllZWa7lCnt7gTVrgNmzgZgY4O23gaoq4JlnmKfq5PkRe6dZWVlGTuNSpL6+HqmpqbIJLW/i7XJbDp/gJA1hKHVAd8NTgHryr7m5GVar1XuG+PPPgVtvBf7v/wWam4FXXgH4fJPISMBsBoaHhcMTExMRHR0t3PvOzk7cddddMJlMaGhoACHEJQPsLfhM8srKSsXwVFZWlkszobloyHkS4hGzNNzpbbTOZ8rOzkZdXR2qq6td61cnTwLTpgHnzwPFxcDzzwPz5wN8kmRsrINoSD1VsafBr6fWRTz9jd9EgxDyFiGkmRBySuH9qwghXYSQEtt/z/q6jWLq6+uRlZV1yYoG9zR4RzebzWhsbFTsgHfddRd+/OMfa958SQwXKLWF2rw2eh8eBn76U+Dxx5lw3HMPIJ2QRwgbPYo6PiHE7t4fPnwYH3zwAXbs2IGGhgakpaXpmlntbfiSMxUVFYqehqulphMmTMDw8LCstyF+zV+i4ayv5OTkwGKxoKSkRH9IsagIWLkS+N3vgA0bALnwqQbRaGhoQFBQENLT0zF27FgMDw+P+n1KOP70NP4OwNnuL/sopbNt/z3ngzYpwpPRzur1vfG9gPdFIyUlBZGRkYJh4fFwpU41c+ZM/O53v3PJtY+Li0NKSoqwwZIc3Ph4dCE5i4UlKo8dY0lLtdnWsbGAZNVf8b3nolZRUYGGhgb/h6b27AGGhoQ/s7OzQQhBUVERBgcHQQixM+J8EOQK3IuRu3/19fVCuauvk+Fac0t8gDQwMKDvGqxfD9x4I/D668DddysfJ/PsJCQkIDo6Wnh++EAjODjYTuADAb+JBqX0KwDt/vp+vYg9jYaGBgyLQhfepK6uDiEhIXab8ngDQghycnIEw+LRkX5fH4sBi8jLy1PtJPz7PSoaP/whS3pv2QI4m/uhMFoUjxQBZjj9LhoffABcfTVw9KjwUnh4OLKysrB//34AbEvcxsZGoWKtqalJ+7Vtt++mfBdFufvX0NCA3NxcpKam+tzT0DrQEJdGaxaNt94CfvlLViRx++3qx0q8VMDRU21sbBTaya+n2iBqNDHacxpLCCHHCSHbCCEzlA4ihHyXEFJICCn0hos3MDCA1tZWQTSsVqvPZsTyZJ0v5ipkZ2fbeRqAB4x2fz+wYgVLMIvIzc1V7ST8+10Jf8ny+uvAzp3A5s1ARITz42VEY9y4cTCZTMKGS8CIp+HNpbVVOXoU+I//ACZNcmhvbm4uSkpKAABLly4FwMIjfO8UTdf2/HmW2L1wQXiJrwqr5GlkZmbaPUu+orGxEdHR0YiNjVU9TlyRp8mD37UL+NnPgO3bgZkznR/PPQ3JyhFST5U/MxMmTAAhBBdE13g0M5pF4xiAbEppAYC/ANikdCCldC2ldD6ldL43Zg9zgeDhKcB3Zbe+HMWKPQ2+pIhbxpBS4LvfZQZHMos+Ly8PNTU1ih5bY2MjUlJSPLNj3/79rNJl82YgPl7bZ2RGi9zY1NXVCaJRVlaG5uZm/3gaLS3At74F/O//AgUFDu2dMGGCkFzlolFdXa19QGCxAA89BAwM2N2/kJAQZGdnK3oaWVlZQlmrLxEbYjXEW8E69TS6uoD77wfee49V2WkhJAQIDWUDJhFST4M/M+Hh4Rg/frwhGu5CKb1IKe2x/XsrgFBCSIo/2iKeBKQWz/UGmsII584B77zj9ndlZ2ejra0NPT09aGxsBCHEvbDY5s0scfjcc7KjYKvVqii+Wg2AU9ragHvvZeGFiRO1f07G0+BhjcrKSsHwtrS0gFLqe9GgFHjgAZbIv/12IC7OYW6AeP+VxYsXA2CioXlA8MorbN7KihUO1yIvL8+hD1gsFjQ1NSEzM1MYgPhynTaxIXYGv5dOReOnPwW+8Q3guuv0NUbh+TGZTLh48SJMJpPd9c/LyzNEw10IIenElmUlhCwEa6tvF32yIR6ZTZgwASEhITh37pzPvls1jEAp8IMfAGvXOr739dcs8asRcdktH+mHhobqbLGN/n6WQ3j1VSAtzcGgOYvjeizk89hjbDT+jW/o+5xMp588eTIA4Ny5c2hsbESEKMylaqxMJuCzz7R97/79wNmzzo/bvBmoqQF++1v2t4xo8AFOcnIy8vLyEBwcjKqqKm2hv7IyVkr69ttAQoLsuaX3rrm5GRaLRfA0BgYG0Nzc7Py3eAg9A42cnByhekmRffvYfXvxRf2NUXl+Dhw4AEqpXVsnTpx4eeQ0CCHqwUP1z24EcAjAFEJIHSHkEULI9wgh37Md8i0ApwghxwH8GcDd1NfLy9rgszjT09MREhKCvLw8u3V8vMXg4CDa29vVH+zPPwcKC5kbbf9h4MEHWRxfI+IJfroSpXK89BKwYAFwzTWyBk0tmQp4yNP48ku2htQLL+j/rEwFTGZmJqKjo1FWVobGxka7vS5UReMnP9FmePr7meewSTESyxgcBJ5+Gnj55ZG5ASqeRlZWFkJCQjB27Fg7L0nx+lIKPPww8KtfAXl57FrI3L/29na7FQS4R56ZmSkIli9Hz3oGGrfeeivuvvtu5TLpgQE24PjLX5ho6kXm+eGisXfvXgBwEI3W1la766mVTz/91GH/cW/irqexV/qCWsJaDKX0HkppBqU0lFI6llL6JqX0dUrp67b3X6WUzqCUFlBKF1NKD7rZVpdpampCcHCwsDT55MmTfeJp8FGaomiYzcCPf8yMoqRT4/nngawsRzFRYaItfMNH0i4b7ZYWFtr43e/Y3zIGjW9YJDe6slqtQpjDZSwWNjv3f/7HcR6GFmRGioQQTJ48GUeOHMHg4CCuuOIK4T3Fth4/Dmzc6Hh/5Pjzn9n6V86Ofe01Nmt95UrV9nLDzUMwU6ZMQWlpKZqamhAaGoqkpCT583/8MROw73+f/a3ixYhFX1zyOn36dADAWS1ekwfo7u5Gb2+v5mf23nvvxXvvvad8wAsvsGVlVq92rUEyObFJkyYBAPbs2QMADuEpQH/Yu66uDt/85jexbt0619rpAi6JBiHkVkLIzwFEE0Kks1s2uN+s0UVTUxPGjBkjVDBNmTIF58+fd3kGZ3NzM/7yl784jffy2LOiaGzcCIwZA9x5p32n7u5mYaG1a9mIyWzW1K7U1FSkpKTg7NmzzsNiajz/PMsj8G004+IcOlBQUBByc3NlPY22tjaYzWb3PI1//hOIinK908sYYYANGPhGXPn5+YiNjUVwcLDy8u0//zmrbnImBO3twO9/z0KNasf29jKv5fnn7V+XMezp6emIiIgQRGP69Ok4e/asMEdAtiLPbGalpc8/z/IZ/NwyOQ1AXjQyMjKQnZ2NyMhIn4mGR0vEef/5/e9dP4fM8xMdHY2xY8cKz4+4rXzAptcz497d6dOnXW+rTlz1NI4DaAWQAuDvhJBKQshBQshHAHwzgcGHmEwmOwM6efJkDA4OulxBtXHjRjzxxBNOO5SqaJjNLHzw3HMjBoOL0N//Dlx7LTPaMh1ewGIBJMI3bdo0nD592iFRp5n6epaUF6/yKRPeAJTLbt2e2EcpC9384hdsdrcrKIjGlClThOUzMjMzkZeXh/T0dPnlOMrKWCHA0087F41XXmHLmsyfr37s3/4GLFsGSPf+lhGNoKAgbNiwAT/60Y8AsHvb19cn7Lgoy4YNbCByww2q55YrCOHPKx9gTZ06FWfOnFH71R5DNeRmsQC33OIQLlLkH/9g815EhQS6cfL8SJedcdXT4KFzX11nQKdocK+CUlpNKV0LYDWl9BpK6QQA3wbwewDXeL6Z/qWpqcnOcE+xld65GqLincvZ6EBVND74ABg7FrjqKlbeFx7OJtFZrcwAPfkkOy4uTjlE9eSTLPcgYvr06SgqKsLw8LBrRvvll1mJorjNMkYHYNexrKzMYQ0jt+eIHD0KdHSw2buuouJpcDIyMrB8+XKhMsmBv/0NePRRNpFQLOpSurqAv/6VzQWIj1e+X319bPS7Zo3jewqDg9WrV2Pq1KkAmGgArExY0Yv8y19YWE8stjKiHxcXh/T0dDtjZTKZkJycLBRPTJs2TXZgVFxc7PGqKtWBxtatLPensse7gNXKwoT/+Z/uNcjJ8yMtMomOjkZGRoZum8JF4+zZsz6rVNPraXxCCBECxLZZ3Zw2SulhSqmG4G1gYTKZ7EYF4ioaV88HaBcN2bLXN94A/t//G/mbG+Zjx4CwMGDJEvvXpbS0AOvWsRi6iGnTpgmzhnWHp9rbWWnrU0/Zv847kOShzs/Px8DAgINL7nao4dVXWZjHnQmRMjFpwFE0XnnlFXz00UeOn+/uBt59l61xFRrK7klfHxOEd9+1P/Zvf2MCN3Gi8v0CmAe3aBGLtUtR8ObE8DwDb7sDhYXsuZCKrUKb8vPzcfLkSeFvaT+ZPn06qqur0SMa4RcXF2Pu3Ln48ssvVduqF9WBxmuvsf9rye9t28au5ZVXutcgJ6Ih107u5euB25LOzk7ZDcK8gd5edQGAQ20nISQTwD6PtGiUQSl1CE+lpaUhNjbW5QoqfnNPnZJdq1GgqakJSUlJCJcmcktLWejjlltGXuMd22RiYSk+UlQauf7tb2xmtOQ9p4ZFjddeY5sXSRfCCwlh39XXZ/fyLFuIRWx4ABUDUF/PVqUV89RTLBzHMZnYqPKhh/S1XYpM9Qsw0uljY2MRExOj/Pn161mIg18Lfn+Ki+0rqaxWNgD44Q/tj5NitbJZ9U8/Lf99amJjIzk5Wci9yN7b119nIicNtSl4MbNmzcKZM2dgtuXMpKIh9mw4fJb4UdGSJ56Al0A77I1RWck8z0WLtInGn/7EPHB3t1ZWeH54lEJuQJSfn4/Tp0/r2odELBS+ClHpFY2HAcwjhAhDXELIbABHAQRGkbFOOjo6MDw8bNcZCCFCaMUV9HgasqP9detYOa14tnR8PDMa7e2ArcoLgLwxGRpiovGjHzl0JN7RARnDcvAgS+rKQSkbQX/ve/Lvy4yEp02bhqCgIAfRMJlMiIuLs5sHAYCJwyefjPzd3888G/FyFevWsXkZSpVBWlEYKcbHxyMtLU1dUCll3o5Y4Lh4t7fbX/Pdu1lJ59y59sdJ+fxzdtyyZfLfqUE0gJFBgcNz1d0NfPQRK7XVeO78/HwMDg4KnqKcpwHYV1DxZ//48eNO26oHXu3nsIDmm28C/+f/sLlCzkTj9GlWon3nne43yImnKvf85Ofno7+/X9fChSaTCfG2VQ58VXSgSzQopX0A7gCwhhByJSHkdjAP4y1Kqcqyj4GLUl7BFVeSwzvO+fPnVbc8la1gMpuZcX7kEfvXecdua7M3mFxMxOzcydYqkhl9ZWVlCWv3OHz32rUshCHHmTOssmfBAvn3ZQxPZGQkJk2a5CAazc3NjntTUMoSlOI69i1bWPv5bzCb2WhZSdj0oCAaADBv3jwhTyCLraQSV1018pr4/oiv+dtvM0PNjZ2S8X/vPTZvQGkErFbwIIIPChyM1qefAsuXM+MqRSH0lZ+fD2DEU5SKRl5eHkJCQuxGwLyMnK+J5SlkS8StVnbdHnhAPVfE+fOfWZmxKyXaUhSen+zsbCQnJ8s+P0qetxomkwkFBQWIi4sbPZ4GIeQLQsiLhJC7CSFTAZwD8F0AnwNYD+C7lFK/7nXhTbiBlxqxOXPmoKGhQXcckVKK5uZmjB8/HhaLRTUvIutp7NzJwk+2mm8BbmzkPA1pZ/nkE+Cb35QVFEIIpk2bhpiYGPvwS18fq99XmnzEz6mUR9AYFweYYXHI4xw5wgzm0NDI5ki8yoW3acsWdm1mz5Zvgx5URGPjxo1Yv3698me5lyE28OL7093NKnouXmQexL33Oh4nZmAA+OILh33LHdqrlmy3oSga69ezEbkcCvdO7Cn29fWhp6fHrp+EhoZi8uTJdoMr3l/Ky8s9OiFNtq8cPMjKrmfPlh88iTGbmaflbliTo/D8hISE4OzZs3iSF6qImDFjBgghukUjLS1NsejAG2jxNIoBFAB4GcAZAN0AfgzAAjYn45w4OX6poeRpzLWFE4qLi3Wdr7OzE0NDQ7jmGlZkpuStUErlZ2Vv3MhmDUvh4iD1NKQd3mxmS1CsXq04+lq+fDlmSw3vli1sdrCSaHz8MXDHHfLv8XbIdKL8/HyUl5ejV7R0uqxovPMOGzHy39nZyZbcePDBkd9w+DCwapVyG/SgIhpxcXHKK6l2d7OZ6PfdZ/+6OHwIsH+XlwPZ2UCKaEk1HpIbGBh5bccOZvjU1gELC2O5CPHnZLjjjjvw2GOPCaNaAEBDA1tyRpwjE6Nw78Seotrg6tixY8Lf4mVF9BhHZ8h6p1wICXHuaezbx0psXdyYygGV5yc1NVV2Ic6oqCjk5eW5JBp8Do4vcCoalNKfUkpvpJRmAMgAW95jM4AdAJYDOAKgmxDiu9klPoSLhvSB5EZVr2jwzrV8+XIEBwcrikZ3dzf6+/vtxaq/nxn8u+5y/IB4JCsNT4k7y/79rGNMmKDYkV588UVhqQOB995jo2e5jldezsoZRTOkFdsnIT8/H5RShxCGnWhQypbW+Pa3R9rc1MS2Z83MHGlTR4e9AXYHlU6vypdfAkuXst8rRizqAPt3R4e9Vyg+VnytuBfnDA15jaysLKxdu9Y+X/T++2zRw8hI3eflnqKSaMyfPx91dXVCPzKZTMIaZ57Ka5jNZrS1tdk/M9xz4F6cM9HYtMn5Phl6cPH5kfO8lRgcHERnZyfS0tJw991345lnnvHJlrF6cxomSul2Sun/UErvppROBRALYAXY+lCXHCaTCaGhoUhMTLR7PT4+Hrm5uXajKK3nA9gyyVOmTFEUHVkPZ/t2ljCVS8KKY+ZqifBt20ZGlAodKSgoyH62cF8fi9N/+9vMgEtHsx9/zDqc2n7TCnFxPuLlBsRisaC1tdXeABQXs89PmsSSwTyhnJTE/ubeT3s7ILlPLhMezkJIot3wNLFlC5ukJ0Us6sDIb5Brr/SeffaZNoOmMa/hwOefq8+cj4hgIUGZazFr1ixUVFQIyXCpaMybNw8AUFRUBIANCBYsWICEhASPiUZbWxsopfbPzKFDbCtWvuGSmmjwQYmnRUPrZEIR+fn5uHDhAvoly6rLwb22tLQ0XH/99fjhD3/ok3133P4GSmk/pfQQpfQNTzRotNHU1IS0tDTZbU3nzp3rsqeRlpaGxYsX49ChQ7KTcmQ9nH/9SzmureZpiA1QY+PITNeICJYsVEnGA2AVPvPmsXNxoy3GWWhK3D4Jubm5SEpKwuHDhwEA7e3tsFqt9gbgX/8aWaVWXIWUlGRvDKS/3R0I0d/xLRY2kezmmx3fE4enCLH/DUrHAsy77O7WFjbRMFfDge5uVpJ6jcqcXEIUBWnBggWglOLzzz8HIB+eIoQIS2fwcEpBQYHuvqMEN552z8zWrfahSrVJrsePs7k0cvNfXEWhesoZBQUFsFqtOHHihNNjlbw7bzNql0YfLUjnaIiZM2cOysvL0aVjUUDxjV66dCna29tlk+F8B0JhTSNKmaehNMtZzdMQt088utUS6wWYd3LTTezf8fH2eY3aWrbJkrhSSKl9Mp2IEIIlS5bg0KFDABQMwOefjxhi/v1i0RB7Gp4SDUB/iOHQIbZIpGg7UQGxqPOFJJXaK75nHR3sGC3zBjSW3dqxcyeweDEzcs7OLXMt+Gz4rVu3AnCciBoTE4Np06ahsLAQQ/TGbmIAACAASURBVENDQjhl0aJFKC4u1jSidgbvU3bfvW2bvWioPefbt7Nj3Z2bIcbF8BRfOZn3BzVkf7cPMETDCdzTkGPOnDkA9JUPilfMXWKbtS33gHDREB6IM2fYaEhaNcVR8jSkhsRZzkMKpfYdUOppfPIJC3c523dDxaAtWbIEZ86cQUdHh6NomExsIiOfocvby40p/5tS/4vGF18oJ+LFOY0JE+x/g9yx/Frp+U2uiIZ0RK7z3AkJCZgxYwa6u7uRkJDgOBEVLK9RVFRkd2+XLVuG4eFhj0zyE4dpALBJoLW1rKSco/acf/klcP31brfDDq3PTl8f81Bt8C2l9YiG4WmMMlpaWhSVfIFtTsKBAwc0n89kMiE1NVVY0C0hIQEHDzqu+s5FI4Undr/4gnkZSqOh+HhmkHp77bc0lXYWqaFyJhrnzrHwFd8bWZxDAFiug3shaqiETvhWpIcPH3YUjZ07WVktrzaRhqfCw9mM8/5+ZSPsKnpF49//Vt7hTSzqXDS05DT0/Ca9OQ3pgEANlfvHBz9KxmvevHlobGwUwlFpaWnCsvL79rm/kITDM7N9OxMBcY5N6Tnv7WWVY848Zb3ExMjuE+7At7/tsEHX0qVLZW2CFEM0RiGUUrS0tCgue52SkoL8/Hzs3r1b8znFE6CCgoKEvIaUlpYWxMfHj5Tmbd9uv/KolLg4oLqaGSG5+QEcvZ7Gjh3se8XLkohFo7XVfnFCtfYpGJ0FCxYgODgYhw4dcnS5d+2yj7dLE+G8Tc3NLFEbHe28LVrRIxpdXWw2sU0AHYiPZ14TpayQwVlOw5U8jd6cxrlz7L6K1tNSROX+cdFXMl48hPXxxx8DYPc2MTERM2fO9JhohISEjCwhsnOn/V4jgPI8ja++YsUlzsJzegkJGVlEVAmzmX2/ZCHFJUuWoK6uDrW1tapfYTKZEBMTg6ioKE+0WDMeEw1CyHhCyCUlQhcvXsTQ0NCIaHz4ISt5FXH11VfjwIEDqjO7xUhnzS5duhSnT5922LHLTqwGB1m8XC1ZGRfHltOQGhhxZ+EhHPHo1plo7N3LRvocaXhKq1FTGQXHxMRg1qxZOHjwIJqbmxEUFDSyQdDu3fa/W+xp8N+RkMDWGJIKprvoSYTv3ctyA9KlTzhxcayNycnywic9Vhye0loRpjc8tWcPu7da8yUK98+ZaMybNw8JCQn4xLYEDB8QLFu2DAcPHhTWrnIVXqJNCGHP+J49jp6D0nO+Y4fnQ1McZ8/PiRPs/Y4Ou5f59XQWopKdm+IDPGnkqwAcJ4Qs9+A5/YpDMvrdd9kkIBFXXXUV+vv7NcdmpaKxfPlyUEodvJXm5uaR7/36a7ZTm7T2X0xcHBMXad2/OKna08NGP+K4s7NSxL17gRUr7I8XC1xHhzaj5sSgXXHFFTh06BBqa2uF8B2qq1mbRYsoOoSn+GuVlZ4NTfE2a91+c+dOtoeJ2rlqa+3zMFpFw1vhKTnjqnZuhfs3efJkZGdnj6xbZjbbhWWCg4NxzTXXCDPA+fO/bNky9PT0uF16azev5/x5NsqX7oUREyO/IdmBA/bPtydx9vzs389WUJCIRkFBASIjI52GqNSiIN7Ek6LxMIBPALzk7MBAwU40KGWjfV5nb2PFihUghAhbOGo5pzhHsnTpUsTFxQnVJ+LjhAfiq6/YukBqcEGRGpiICJZoGxyUN/BqonHmDBstics9pZ6G1pi7k9DJDTfcgL6+Pnz22Wcj12f3bseRsLR6ir/mDdHIy2NGSAu7dqmLRnw8K28Wi4bStXM1PKVk2BsaHEObSiNyJVTuHyEEJ06cwC9+8Qv2wqOPss2cRKy0hYsiIyMRbQshrrAZ65069rGXw040+G+Sek+8hFr6G1pa5Oc9eQJnz8/+/WwLA4lohIaGYvHixU7D3gEpGoQQYS0FSunfKaVrKKWL1D4TSNiJRnk5i99LbnBSUhIKCgo05TV6e3vR399vd6NDQ0Nx/fXXY+vWrXbzNezERYto8GUtpJ4GL6uVq6wC1EVDyc3no6f+fmYIlWYSi3HiaVx99dUIDw9HR0eHfT5DHBoTt1f8W3h4ytOiMXMmy1NooaICEK0Q7AAX9eRke+Fzlgj3RE6jtpbtICjm/HlWXMC35HWGk/sXFxc3sqnQ7t2sgkkEFw3xnKfMzEwUFBQ4DJi0Ul1dLVTcOYiG0m+QPutaPWVXUHt+KGVRi1tvdbApAHDTTTfhxIkTqKurUzx9S0vLSKGMD3HX09grfYEQ4sEZMv7FTjQOHWIrgEo8DYB1iP379zudr9Ha2goADjd61apVaGhoECb0UErR2trKvtdsZt/tbFMYHnZSC3foFY29ex07oLh6inc4N2PiANu57CrbdwkGQO53c09HPEqPj2dG2xuiobaS8a9/zUSTL6KoloTnos49jZYW5v3JJWCl1VPu5jTa29l5xEtM7NnDwjJac0BaQ191dUBNjUM/ycvLw4QJExwqEVetWqWp78hx00034eGHHx4RDR5OVRIN6bNutbLfJK429CRqz09lJQtNzZkjKxqrbBVt27Ztk/24nY3wMS6JBiHkVkLIzwFE8y1gRWyQ+0wg4iAaN90ke4Nvu+02DA8PK95gjpJo3GibsMdHXJ2dnTCbzex7S0rYcghyaxRJiYuTP85VT6OoCFi40P41cXhKbzmokyQt7yhjxoxh5zaZWC5H2t7OTvYfr5bh4SlPjxhzc1kb5JKZw8PAs8+OGOSEBHUDHBLCRIWLBi9akPuMuHhBj6eRkCA7qBEEQ2z0T5xg+5FrRWuSnZefy7Rj7dq1eOGFF+xeW7VqFSwWC3bs2KG9LTZqamrwr3/9C729veyZqapiwqG0t7f0We/qYqKttvyNO6h5GjU1bKfGxERZmzJ9+nSMHz9e0Qvr7u62L9LxIa56GscBtAJIAfB3QkglIeQgIeQjAMMea52faWlpQVRUFIvBHjzI6tllOsPixYuRmpqKzZLKKrnzAXC40RkZGZg/f75Qkmh33P792reejI9Xn2EsZ+TVRKOtje1vLT3elbWeoqLYyFplLScuGhkZGWzfjjlzHDt0fDwLt8TEMEMMMGPZ1OR5TyM4GJgyheV2pPCOzkVDazEAFw3pasTS41zJaUydytoqnRsgbitHuoS+lrZrKQo4eJCJkYwhvO6664TVnTmLFy9GQkKC7hBVf38/ent7MWxbJn/MmDFs+fzFi9XnMomFz5uhKYCFK8vKHJPv4u9WEA1CCFatWoV///vfspWZSrbEF+gSDULIdYSQhZTSakrpWgCrKaXXUEonAPg2gN8DUKkLDSyERFNvL6tpv/ZaWdEIDg7Grbfeiq1bt2JIxSgqeRoAcN9996GoqAhnzpyxfyCKipQ3NpLCjZLc63o9DYtF3nV31dMghI2sVHY7nDhxIrZs2YJHH32UVYzJ/e74eFYFI51rAnheNADl0SLv6G1t+kSD5zQAddFwxdPIzGQehaTuX1Y09BrMSZPYNsPOOHCArRAg5/HIEBISghtvvBGff/65IABa4H2JI4jGIpWUqtxEV2+KRnQ0S7KXy2xqyvuOgmgAwDe+8Q309PRg165dDu85TP71IXo9jT8CEOIFlNKvAIAQkg9gmFJ6mFKqcx2D0YsgGidOsFFDYiIbNcjsWXD77bfj4sWLqglxO9GQuPr33HMPgoOD8e6779qLxrFjI1uBOiM9HRg71vF1tcSrkmh0dbE4vNxIX5rT0Mrcuez3qHDLLbcgOTlZWTQiI5mHIZ1rAvhWNLhR1CMa3BOMjWUiqvQZaXhK6zUmBCgoYAvwybXVHdGYMYPljdQmq/X2AmfPsol1GkUDYM9+S0sLvvjiC82f4X1p4sSJANwQDW88M2LUnp/ERNam7m77fJONlStXIikpCe+8847De/z3p6amsi0L+JL7PkCvaEwCsF/m9YUA3nW/OaMLQTSKi1mohBD2kCm43omJiXj77bdVzxccHIyE2lrmRotIS0vDjTfeiPXr14+scBsTw2L14nkKamzaJL+nxaRJrDPr8TQ6O+WNijtLkc+Z41Q0BJREgxDWBvHv4LkNb4mGXDLTlfDUihVs8BEUxIRDqb3x8SyP0tvL/q8nUVtQwAY5Sm0Vv6bn3oWFsfCX2l4PFRWsGiszU5do3HjjjUhJSZE1jkpwo/nf//3feOihh5A/ZQoTS7U8jfRZ9+RS+kqoPT+JiWxQFhsr2wfDw8Nx9913Y9OmTQ6FAsLAMi4OeOMNtmioj9ArGp0A5IJo+wFojKEEDsIEu5ISZvAARXcyIiICDzzwAD755BPFLWBbW1uRnJyMoOJiVjsv4YEHHkBdXR3efZfpb2pjIxMMmV2+ZAkNlY/nzpvHwlx6REPJqMTGMmNmsegfqWnwNACw5dv7+9UTmr4MT504oZwn0ONp/O53IwMApfwTwO7j9OmswikuTl+iVs7T6OhwrPxzJTTj7P7xcyYlKYsGpcxrEXnrYWFhuOeee7BlyxZ0KIRqpHCjOW/ePLz11luIKCtj8yLUlgPxdXgKGHl+pIi/WyVEdf/992NgYAAfffSR3ev896e1tbHoxyj2NDYB+InM68G2/y4Z7NadKi4e2XdapUM8/vjjGB4eVvQ2WltbWWjq+HH28EpiuLfffjvGjh2LgwcPIjY2FmGnTmkPTakxbx7r7HpFg4/gxfBRMs+R6PU0jh+XdcXtOHUKmDVLPaEpJxreMADjxrH2StcBEo/eXRmxqokGwLysL77QL4RK4am8vJHnllJlT1INraLBZ1/L5ff6+1myXpKTeOCBBzA4OKjZ23DIDzoLTQGO8zR8IRoLFrC2SREPuFREY+HChZgyZQreeOMNu3lcra2tCA8PRyTfVkFyPb2JXtH4LwALCCGfEULmAAAhJAbAzwHIyGng0tvbi4GBAYxJSmIPeUEBe0MhPAUAU6dOxVVXXYXXX39dNqknTMbhnVoiPqGhoXjiiScAuJDPUCMjg41eT5xwNEKRkcyISGvw1TqUeEaznk6XlMQSwc5cabmqLen3+yo8RQibtStdB4gLhR5PQ0x8vPpnFi5ki1TqPe+0aSzxKs67dXSwIgT+vPX2sudBqwfLcSYaXIh4vkaun/DQpsTIzZ07F8uXL8eLL76oaY+N1tZWEEJGdtQsLQXy89U/lJdnX4jhC9HIy2P3QjpJTzzQUBENQgieeuopfP3119i+fbvwOh/QEr6B1GgVDUppO4DFts8VEUIGAXQBuBHAM55vnv/g7t9Es5kll7nbm5ioGq996qmnUF1dLYSYxLS2tiKVi0ZSkqxL+dhjjyEmJsY+l+IJ5s2T9zQIYXFg6WhIbSTK8xquJBK15DWcjYKVPA05z8gTyIkGN8SuioY0LyNlwQI2a1vv9Q0PZ+0Slwl3dNh7Gq4ay1mzWG5MqUJQ7J0qeeTcOEqMHCEEzz33HBobG/HGG843AW1paUFycjKCeehOy7O4aBEr5eYDOl+IhtKgQ2N4CgAefPBB5OTk4NlnnxW8DSEKcvw4y4+O4vAUKKX1lNJvAMgGK7O9GcBkSqnzXUMCCC4aEzo7R0JTgHq8FsDNN9+M+fPn49e//rWDt9Ha2oqJvPpn+nTZ0UFCQgLefPNN/PQnP2EJNGejJ61wj0WukyxfzpYqEaPWofgI25WwzNy5rOOq4awzT5zIJt5xEhKAjz7y3iStpUuVRUNPIlzMc8+p72MxfTqb2+KK97RoEZsvwZGGp1w1llFRLM+kNGFNLPZK/UTB0wDYWlRXX301XnjhBVx0MpFQCPWKz+ts0JCQwBL1PMfgC9EAlJ8fjaIRFhaGX/ziFygsLMSmTZsA2ESDD0CvuWb0ehpiKKW1lNItlNJtNg/kkoKLRnpTk71oOLnBhBD86le/QlVVFV5//XXhdavVira2NkwfHmahruRkxdHBnXfeidtXrmTi4qm18ufNY+eTSxQqiYZSJ5w9m1U3ueJpXHmlw0rBDjgzAC+9BKxePfI3Ic73KHeH+fOZoZQL+bjqacydq/6ZkBB2jCuisWLFyP0cHGQj63Hj3BcNgFXnKd0/8Xl1ehqcF198Ec3NzXj++edVm+EgGlp/09KlI4Lq6Z0elVDyNDTkNDgPPPAAZsyYgaeffhqDg4NobW3F5Kgo5lnOmDG6PY3LBZ5oi6+ttR/tO/E0ALYmzvXXX4+f/exnqKioAAB0dHTAarViYm8vE42UFPXRgZaRkx4WLmSb7cgll5cuZaN/8cxTtU64YgWr7HHF+CxaxDwotXWMfDUC1EpkJBv5ixf9a293z9PQwpIlgCv7Py9fztZgonTEOCUne0Y0rrqKnVsOLeEpFU8DYBtyPfjgg3j55ZdxQSX35bDCq9b+smTJiGj46jmbP595N3zQYbXat1eDaISEhOBPf/oTKioq8PLLL6OlpQWzrNaRAWggeBqXOm025Y6oqGBKztFwgwkhWLduHYKDg/Hggw/CbDYLIpTZ3s5iwyqeBgDPP9AZGcqLp8XFsRp8cdhILa+wbBnreK60MTKSjaDV9grwtGB6gqVL7UfYPE/gqqehhV/9CnjGhVRhdja7zmVlIyFEcS7OnfZyL0auAk5LeKqjg1XgqRi5559/HhEREbjrrrsUk+Ie8TR8JRrR0axA4euv2d/d3SyCwJfB0WBTADYXbPXq1VizZg26u7sxDmDhtpSUy8PTIIS8RQhpJoTIBkgJ48+EkAuEkBOEEA+UEWmnra0NSUFBIF1drBNyNHgaADBu3Dj89a9/xb59+/DMM88IohHb388MuDPR8LXh5KNTjlqHSklhD2t4uP4KHEB9tOrsu/3FddexPcA5HR1sIcmBAbZirTfaGxmpbdl5OVasYNdYvMZRe/uI9+Fqe7Oy2HOpNmENUPc0cnJUn/2MjAysX78excX/v707D4+iyhc+/j1ZSMgiW1TAoDDKmoUEwyagzqCyCEREHdCgoIg41wW9+IBXRR65zMiAKMyMjguIcB3Qq7KI6MzL6/W+yoAOWxQQN8iYBAZjhyWsCcl5/zjVSafT3elO0l1N+vd5njxJKpXqX1dV16/OUufs5J577qHKLUE5R3gdUFZW0xvK389L167mqfbCwtCeZ67nj/vr+pk0AF599VVSrVEf2kZFmf+NoJLGckyvK29GYJ5A7wpMBV4KQUzVSktL6Z+cjOrVy9wZOfmZNADy8vJ48MEHef7551m4cCEA8WfOmJO7vuqpUF84f/WruhdFX69/zTWNu1s935LGtdeaHmbOYTScA/61bWsedGzqOaYby3kT4KyeatnSdBQ4darx+9fb8XOvnvJ0IXS2BdVzkRs9ejS//e1vWbVqFVOnTq2VOI4dO0ZlZSVX7dsHH35oEre/87ooZeZo+etfA3/avjGuvx7+9jfzs3sHkgCSRrt27Vi3bh29evXisgsuqEkaDkfdB1CDxLakYY1b5evqmwus0MZWoLVSKkhTbNXlcDi4Mj6+dtUUBHSAAZ577jlGjBhR3euhxalT5oMVbiWNa681xWfnMOC+GsKhcUlj4EDT6+PkSc9/D8fqqeRk0134009rX6TatWv6ucmbwtCh5ibg55/r3v03Nmlce61p03Lnb+8pP5IGwMyZM5k9ezZLly5l7NixlFrbc3ZSSa6sNEPXO88Xf4/B8OHw1lvmmEaF6BI4aJApnXnqqh7gNSU9PZ09e/ZwcVyced/x8abEH8hUv40Qzm0alwCuj+EWWcvqUEpNVUptU0ptc55QjeVwOMiIiqqbNAIoaYB5YO+9995j5MiRtGzZkpgTJ/wraYT6wpmUZJ4NcF4M6ntWYvRocOkdFpCEBNO33NscCuFY0oCau0VnfM6xyMIx1s6dzQCWrg8INlXSuP56Mye6+/Ma/vae6trVr6Th7Im4ePFiPvzwQ7Kzs9myZUt1VW/i2bMmaQT6fm64wcwuGMrjFh9v2lM+/rhuvO3bm/k1KisD26brdkLYrhHOScPTbYPH8pfW+hWtdY7WOqepxpd3OBx0q6iomzScD7bVNxSGi/j4eNavX8/3331n2kj8KWnYceEcNsxcZPwZZiIuznwIGio3FzzNP6K1edo8VNUGgbjhBlOt4XpsnCWNcDRmjBnEsqmTRvv2puOEa2mjvNx8OWcv9Kek4Wd1ykMPPcTmzZuJjo5myJAhzJkzB4C4M2fMMPCB3mClppr4Q9Hd1pWn8wdMd+iOHc3cOYFwfd8hbNcI56RRBKaDgCUVqDvKX5CUlpZy2cmTdZNGbKy5U/rii4C2Fx0dTcfk5Jqhveu7M7CjimbYsJq63rg4816DZcwY2LCh7gQ1ZWVmHwXztRsqJ8c0en/xRe0LcTgnjbNnay6OTZU0AG66qXbSd68i8lXSuOQSs56vYdbd9O3bl507d5KXl8cmq+2txalTDStpgDnXQ33cbrwR3n/fc8eJX//aVJkFwrUKWUoaAKwH7rR6UQ0AjmmtD4XqxSt//pmWlZXmLsDd+PGwalXgG3Xvm330qPciaUMGlGus3r3NB3nr1uAnrMsuM3d87l1vw7E9wyk6Gm69FV56qeZCHM4ljZwc01PPGV/nzuYhxaZIGs6SorO04L7NDh3Mna/73a/z+NZXPetBq1atWL58OXv37uW/336b6GPHardpBGLiRPMeQql7dzPa8Lp1dUs5t90G777reZY/b1yvEZFQ0lBKrQK2AN2VUkVKqXuUUtOUUtOsVTYC+4HvgVeB34QqtjNnznDJ6dMcSUnx3Lg2YQK8/XbgdZCuJ3d0tO8pNOtriA4Gpcwdzx//GJoLYW4urFlTe1m4tmc4TZhQu6SRkhL6ag5/RUXBvHk1c7fk5cHrr5s70sbu4x49TFWU89kD9/M1MdGUdNxHrXUe3wYkDafu3btzy403ml9++qlhw9lkZZnJi0LN/fxxuvxyc4PqqYOBN5FW0tBaT9Bad9Bax2qtU7XWS7XWf9Za/9n6u9Za/5vW+nKtdYbWup4Bi5qOw+HgcuBU+/aeV+jWzdRB+uo26ol76cHXB8euO+68PFOEDsWF+4474M03/X8SPRwMHGiez3DGePfdDXsAL1QmTzZ3uGAeqnTekTbFPp44EZYtMz97Khnfey+89lpNaaSy0vSYc05725iL3JEj5vOTkGAmKgvX0qm78ePNd0/7/847a/ZnfaqqTNufa9Jo7iWNcFZaWsoVQPmll3pf6fbb4Y03Atuw+92Yrw+OXRfP7GxzkQnFa3ftaqrE3nuvZlk4V0+BuXu/++6aARMvuqj2w5/h7t57TZtRXFzjt3XPPaYevqzMc8l48GBzcXNWQTqnEI6KavxFznmeXHyxecAvnG80XF16qeny6+mcmTgRNm40bR71cX+qvLFJOACSNDxwljS4/HLvK911F6xfH9iJ735BDMeShlLmjqchYx41xLRptbvuhntJA+Dpp2H6dLujaJjbb4cHH2yabXXoYJ4HefNNz8dNKZg61bQBQe3SSGOThvP1Lr7YzKURzjca7j78sM50z4B5P2PHwvLl9W8jkFqLJiZJwwNn0ojt0cP7Sikppk5+6VL/N+yeCFJT/RtmOtRmzIBFi0LzWmPGmHkjdu0yv4d7SeN8d8EFMH9+021v2jT4wx+8tytMngwffGC6xrrXwTdVSePAgfC/0fCX8yaqvgZx98/JL38JTz4Z3NgskjQ8cFZPJTpn6/PmgQfMXZS/PR7cE8FvfgNLltR9Mrqy0nR7TU4OKO4mExsbuteOjTVJau5c8/v5UNIQNYYONdUkK1d6TvZt2pjOFS+/XPv879PHdILwMMOlX1yTRlVV87nR6NfPdElevdr3eu7VgRddZAZCDQFJGh4cP3SI1kCrnj19r5iTY6qw/H0y2v3uICPDjBj7ktuwWseOmTvCUA1xYLdp00y9d36+vSUsETilYM4c+PZb78ftwQfNZ6SwsOb8HzXKVG8tXtyw13WtnoLmc8449+fcub5vRm38nETIVSkwav9+DihFgj+D0P3hD2YI68OH61/XU2Ph7NlmUiHXRqxIu9tOSIDHHoP/+A97uhqLxhk50syT4q23YVqaeRp69uya81op+NOf4NlnTTIJlGtJA5rXOfPLX5r39V//5X0dGz8nkjQ8aFFYSJG/vUt69TL1tv/+7/Wv66m+PiPD9N12/f9IrNd/4AEoKDD135GUMJsDpUz389Gjva+zcKGphnU9tl27muPekE4FzbWkAWZ/PvcczJrlu6OMlDTCR9K//sXhQIa6fvpp8xT1hg2+1/N2oP/zP81DPR984Hu95qxFC9OnPxITZnMQF+d7lNkLLzS9rNwTy6xZplpy48bAXs+9pBGOY5U1Rt++5mby0Uc9/11KGuGldWkppYFctBMTzQVv2jTffay9XRCTkkxRdPJkM6VopFbRDBxoujHn5NgdiQiG4cPNPB+u4uNNe8d99wU0enStpJGcbEZYaG7mzoXNm+uOmgBS0gg37crKOBnoaLnXXguTJpkGPm/zRPhKBoMHmx4mo0ebaVcjMWmA2X8Nna1OnJ+uuw7GjTOJw9+JhJzVU5071344tDlx3kzefz8cdBurVUoa4eXCM2eo6Ngx8H+cO9c0+t18c80k8q7qq3oZO9ZUdc2fH3nVUyKyPfusadO64w7/JhNyHVX3uuuCHp5tBg40bT5XXw07dtQst7EaV5KGG11VRWplJdrT6Lb1UQpeecUMYHfTTbVPfuezFxdc4Hsb990HL7xguuIKESni401jekKCuVAeqmdA60jqYThrlhl4ctgwMz8K2Pr+JWm4KfvxR84BSQ0paYAZC2blSlNs7tnTPKSjNRw/7v+zFw8/HPphm4WwW0ICvPqqGepkyBAzJ7s3kdZh4te/NsOPOJ/AdzikpBEuyvbs4UfMBO4NFhNjGvdWr4bf/c4Unz/5JLJOciEaQinzvM4zz8Att5ivb7+tvU5VlSnF11dqb25yckxp7J13zHhbNg3JL0nDzal9+xqfNJwGTfQsjAAAEg1JREFUDza9ocaONY1Z4TrvghDh5vbbzei1OTlmWuEBA8wDoPv314yW2xx7TNWne3dzA7prlxm7zgaSNNyc27+ffwJtm+oCHxNjHmD64YfAp3MUIpIlJJj6/IIC+P3vTdVuv37mGYZIac/wRCkzpYBNYmx75XD1z3/yI/CrpihpuEpMhCuuaNptChEJkpJM76GrrzZD9nz/vd0RRTRJGm5iDh5suuopIUTTio+H9HS7o4hoUj3lJr6kpGmrp4QQohmRpOHmgiNHOJKUREyMFMKEEMKdJA1XZ8+SePo0FSkpdkcihBBhSZKGq+JiHC1a0EaShhBCeCRJw1VREf+KiZFGcCGE8EKShqviYoq0lkZwIYTwQpKGq+JiCs6dk5KGEEJ4IUnDRVVhIfvPnpWkIYQQXkjScFFx4ABFyIN9QgjhjSQNF1WFhRQjD/YJIYQ3kjRcRB06RDFS0hBCCG8kaThVVRHjcHAQSRpCCOGNJA2nkhIqWrakHKmeEkIIbyRpOBUXczw5GZCShhBCeCNJw6m4mCMtWxIdHU2rVq3sjkYIIcKSDOXqVFTE4RYtaNu2LUopu6OJGBUVFRQVFXHmzBm7QxFNJD4+ntTUVGJjY+0ORQSBbUlDKTUcWAxEA69prZ91+/skYAFQbC36o9b6taAFVFzMoagoac8IsaKiIpKTk+ncubMk62ZAa43D4aCoqIguXbrYHY4IAluqp5RS0cCfgBFAL2CCUqqXh1Xf0lpnWV/BSxgAxcUUVlZKe0aInTlzhnbt2knCaCaUUrRr105Kjs2YXW0a/YDvtdb7tdblwGog16ZYjKNHOXj6tCQNG0jCaF7keDZvdiWNS4BCl9+LrGXuximlvlRKvaOU6uRtY0qpqUqpbUqpbSUlJQ0OquzECUkaQgjhg11Jw9OtiHb7/X2gs9Y6E9gEvOFtY1rrV7TWOVrrnAsvvLDBQZWVlUmbhhBC+GBX0igCXEsOqcBB1xW01g6t9Vnr11eBK4MZUGVlJWfLy6WkIYQQPtiVNP4BdFVKdVFKtQDGA+tdV1BKdXD5dQzwdTADKi8vB+TBPtFwV111FQBHjx7lxRdf9Ot/kpKS/FovkG16UlBQQHp6ekD/s2nTJiZOnNjg1xTNky1JQ2t9DngA+CsmGbyttd6jlHpGKTXGWu0hpdQepVQ+8BAwKZgxlVdUAJI0RMP9/e9/Bxp/gfckGNusT35+PtnZ2SF9TRH+bHtOQ2u9Edjotmy2y8+PA4+HKh5nSUPaNOwzffp0du3a1aTbzMrK4oUXXqh3vRUrVrBw4UKUUmRmZrJy5UpuuukmCgsLOXPmDA8//DBTp06loKCA4cOH079/f3bu3Em3bt1YsWIFCQkJJCUlceLECWbNmsUPP/xAVlYW119/PQsWLPC4LW9OnjzJbbfdRlFREZWVlTz11FOsWbOmzjYXLVrEsmXLAJgyZQrTp0/3+n7mzp1b/bf9+/czbtw4XnnlFfr27es1jvz8fCZPnszZs2e577776NixI/PmzZPeURFOngi3SPVU5NqzZw/z5s1j8+bNpKSkUFpaCsCyZcto27Ytp0+fpm/fvowbNw6Ab775hqVLlzJo0CDuvvtuXnzxRWbMmFG9vWeffZbdu3fXSoCetuXtXPvoo4/o2LEjH3zwAQDHjh2jf//+tba5fft2Xn/9dT7//HO01vTv359rrrmG7Oxsj+/n+PHj1bGPHz+e119/naysLABGjhzJa6+9RseOHWvFkZ+fz0UXXcSwYcOYMmUKeXl5ABw5coQ2bdo0er+L85MkDYskDfv5UyIIho8//phbbrmFlJQUoKa0uWTJEtasWQNAYWEh3333He3bt6dTp04MGjQIgLy8PJYsWVIraXjiaVvezrWMjAxmzJjBzJkzGTVqFEOGDOHIkSO11vnss88YO3YsiYmJANx88818+umnZGdne3w/x48fp6SkhNzcXN59913S0tKqt7VxY60CP2CGdykoKGDChAm8/PLLDBw4sPpvjzzyCMuXL/f5fkXzJQMWWiokaUQsrXWdKpdPPvmETZs2sWXLluq6fedTzu7r1ldd42tbnnTr1o3t27eTkZHB448/zjPPPOMx5kDeD0CrVq3o1KkTmzdv9hkvwN69e+nbty8xMTFER0dXL//oo4/Yt28fCxcurHcbonmSpGEpLy+nRWwsLVu2tDsUEWJDhw7l7bffxuFwAFBaWsqxY8do06YNCQkJ7Nu3j61bt1av/+OPP7JlyxYAVq1axeDBg2ttLzk5mbKysurffW3Lk4MHD5KQkEBeXh4zZsxgx44ddbZ59dVXs3btWk6dOsXJkydZs2YNQ4YM8fp+AFq0aMHatWtZsWIFf/nLX3zGkJ+fz1VXXcXq1auZPHkyhw8fBiAlJaU6LhGZJGlYysvLSbbm0xCRJS0tjSeeeIJrrrmG3r178+ijjzJ8+HDOnTtHZmYmTz31FAMGDKhev2fPnrzxxhtkZmZSWlrK/fffX2t77dq1Y9CgQaSnp/PYY4/53JYnX331Ff369SMrK4t58+bx5JNP1tlmnz59mDRpEv369aN///5MmTKluqeTp/fjlJiYyIYNG3j++edZt24dYNo0Dh6s9ZgU+fn5pKen061bN+bPn89tt91GRUUFX375Jb17927U/hbnN+WrmHs+ysnJ0du2bQv4/7Z26MBbcXE8X1DQ9EEJr77++mt69uxpdxh+KygoYNSoUezevdvuUGyxfv163n33XWbNmuXzuJ1vxzXSKaW2a61z/FlXGsIt5eXlJEl7hhA+jRkzhjFjxtS/omi2pHrKItVTwh+dO3eO2FKGECBJo1p5RYUkDSGEqIckDcvDcXH8cMUVdochhBBhTZKG5eeoKCpkTmMhhPBJkoYQQgi/SdIQQgjhN0kaQggh/CZJQwghhN8kaQghhPCbJA0hzkOeZvJzTjcrRDBJ0hDiPOQpaTinmxUimCRpCIGZHjUzM5PevXszceJEABYtWkR6ejrp6enVE0QVFBTQs2dP7r33XtLS0rjhhhs4ffo0J0+e5MYbb6R3796kp6fz1ltvVa+fnp5e/ToLFy5kzpw5FBQU0KNHD6ZMmUJ6ejp33HEHmzZtYtCgQXTt2pUvvvii+v979OjBXXfdRWZmJrfccgunTp2qNaXsY489BkBSUlL16wQSe30OHjzIuHHjyM7OpkePHtWxiQiltW5WX1deeaVuiNatW+uHHnqoQf8rGm7v3r21F0DTf9Vj9+7dulu3brqkpERrrbXD4dDbtm3T6enp+sSJE7qsrEz36tVL79ixQx84cEBHR0frnTt3aq21vvXWW/XKlSv1O++8o6dMmVK9zaNHj2qttT5w4IBOS0urXr5gwQL99NNPV2/nyy+/1JWVlbpPnz568uTJuqqqSq9du1bn5uZW/z+gP/vsM6211pMnT9YLFiyos12ttU5MTNRa64Bj11rrESNG6OLi4jr7pqKiQmdmZur3339fa631yZMn9fHjx3VpaanPfVrnuIqwBmzTfl5jpaQhwksw0kY9PE2P6jqdalJSUvV0qgBdunSpnl/7yiuvpKCggIyMDDZt2sTMmTP59NNPadWqVb2v26VLFzIyMoiKiiItLY2hQ4eilCIjI4MClyH63aeX/eyzz3xuN9DYwUz56j5HOMDatWvp2bMno0aNAiAhIYHk5GQeeeSRet+faJ4kaYiIpz1Mj6p9JJu4uLjqn6Ojozl37pzXKVpjYmKoqqqqXt91mlfX7URFRVX/HhUVxblz56r/Fuj0soHG7suuXbvqTBolU75GNkkaIuJ5mh7V13SqnniaohXg4osv5qeffsLhcHD27Fk2bNgQcHyeppd1n/7VVaCx+9K+fXv27NlT/XtJSYlM+RrhJGmIiOdpelRf06l64mmKVoDY2Fhmz55N//79GTVqFD169Ag4Pk/Ty7pP/+oq0NjB85SvAJMmTeLw4cOkpaWRlZXFli1bZMrXCCfTvVratGnDnXfeyeLFi4MQlfBGpgX1LRynl/Vnylc5rucXme5VCBE0MuVrZJPqKUtubm51rxIhwoVMLyvCjZQ0LMuXL7c7BCGECHtS0hBCCOE3SRrCds2tM0akk+PZvEnSELaKj4/H4XDIhaaZ0FrjcDiIj4+3OxQRJNKmIWyVmppKUVERJSUldocimkh8fDypqal2hyGCRJKGsFVsbCxdunSxOwwhhJ+kekoIIYTfJGkIIYTwmyQNIYQQfmt2Y08ppUqAfzbw31OAn5swnKYicQUuXGOTuAIjcQWuIbFdprW+0J8Vm13SaAyl1DZ/B+0KJYkrcOEam8QVGIkrcMGOTaqnhBBC+E2ShhBCCL9J0qjtFbsD8ELiCly4xiZxBUbiClxQY5M2DSGEEH6TkoYQQgi/SdIQQgjhN0kagFJquFLqG6XU90qpWTbG0Ukp9T9Kqa+VUnuUUg9by+copYqVUrusr5E2xVeglPrKimGbtaytUur/KKW+s763CXFM3V32yy6l1HGl1HQ79plSaplS6iel1G6XZR73jzKWWOfcl0qpPjbEtkAptc96/TVKqdbW8s5KqdMu++7PIY7L67FTSj1u7bNvlFLDQhzXWy4xFSildlnLQ7m/vF0jQneeaa0j+guIBn4AfgG0APKBXjbF0gHoY/2cDHwL9ALmADPCYF8VACluy34PzLJ+ngXMt/lY/gu4zI59BlwN9AF217d/gJHAh4ACBgCf2xDbDUCM9fN8l9g6u65nQ1wej531WcgH4oAu1uc2OlRxuf39OWC2DfvL2zUiZOeZlDSgH/C91nq/1rocWA3k2hGI1vqQ1nqH9XMZ8DVwiR2xBCAXeMP6+Q3gJhtjGQr8oLVu6IgAjaK1/n9Aqdtib/snF1ihja1Aa6VUh1DGprX+m9b6nPXrViDk45l72Wfe5AKrtdZntdYHgO8xn9+QxqWUUsBtwKpgvLYvPq4RITvPJGmYHV7o8nsRYXChVkp1BrKBz61FD1jFy2WhrgJyoYG/KaW2K6WmWssu1lofAnNCAxfZFBvAeGp/kMNhn3nbP+F23t2NuSN16qKU2qmU+l+l1BAb4vF07MJlnw0BDmutv3NZFvL95XaNCNl5JknDFNvc2doPWSmVBLwLTNdaHwdeAi4HsoBDmKKxHQZprfsAI4B/U0pdbVMcdSilWgBjgP+2FoXLPvMmbM47pdQTwDngTWvRIeBSrXU28CjwF6XUBSEMyduxC5d9NoHaNych318erhFeV/WwrFH7TJKGybydXH5PBQ7aFAtKqVjMyfCm1vo9AK31Ya11pda6CniVIBXJ66O1Pmh9/wlYY8Vx2Fnctb7/ZEdsmES2Q2t92IoxLPYZ3vdPWJx3Sqm7gFHAHdqqBLeqfxzWz9sxbQfdQhWTj2Nn+z5TSsUANwNvOZeFen95ukYQwvNMkgb8A+iqlOpi3a2OB9bbEYhVV7oU+FprvchluWsd5Fhgt/v/hiC2RKVUsvNnTCPqbsy+usta7S5gXahjs9S6+wuHfWbxtn/WA3davVsGAMec1QuhopQaDswExmitT7ksv1ApFW39/AugK7A/hHF5O3brgfFKqTilVBcrri9CFZflOmCf1rrIuSCU+8vbNYJQnmehaPEP9y9MD4NvMXcIT9gYx2BM0fFLYJf1NRJYCXxlLV8PdLAhtl9geq7kA3uc+wloB/xf4Dvre1sbYksAHEArl2Uh32eYpHUIqMDc4d3jbf9gqg3+ZJ1zXwE5NsT2Paa+23mu/dlad5x1jPOBHcDoEMfl9dgBT1j77BtgRCjjspYvB6a5rRvK/eXtGhGy80yGERFCCOE3qZ4SQgjhN0kaQggh/CZJQwghhN8kaQghhPCbJA0hhBB+k6QhhBDCb5I0hAgBpdRCpdRHdschRGNJ0hAiNPoS+qeXhWhy8nCfEEFkjRN0Eoh1WbxXa51mU0hCNIqUNIQIrkpgoPVzf8wkOoPtC0eIxomxOwAhmjOtdZU1AF8Z8A8tRXtxnpOShhDBlw3kS8IQzYEkDSGCLwvYaXcQQjQFSRpCBF9vzFDWQpz3JGkIEXwxQA+lVEelVGu7gxGiMSRpCBF8T2BmhCwCfmdzLEI0ijynIYQQwm9S0hBCCOE3SRpCCCH8JklDCCGE3yRpCCGE8JskDSGEEH6TpCGEEMJvkjSEEEL4TZKGEEIIv/1/oaWlk/+j55UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" ] - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "## Simulation" - }, - { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "def shox(A, pi_H, pi_L, theta_H, theta_L):\n \n if A == 1.5:\n pi = pi_H\n else:\n pi = pi_L\n \n x = np.random.binomial(1,pi_H)\n \n return A*x+(2-A)*(1-x)", - "execution_count": 15, - "outputs": [] - }, + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(1910)\n", + "C = S[1]\n", + "K = S[2]\n", + "\n", + "k0 = k_grid[30]\n", + "a0 = theta_H\n", + "n = 200\n", + "\n", + "X = [k0]\n", + "Y = [C[(k0, a0)]]\n", + "A = [a0]\n", + "T = [0]\n", + "\n", + "s = 0\n", + "for t in np.arange(0,n):\n", + " T.append(t)\n", + " a0 = shox(a0, pi_H, pi_L, theta_H, theta_L)\n", + " A.append(a0)\n", + " k = K[(k0, a0)]\n", + " X.append(k)\n", + " c = C[(k, a0)]\n", + " Y.append(c)\n", + " k0 = k\n", + " \n", + "plt.plot(T, X, color=\"black\", linewidth=1.5, label=\"capital stock: $k_{t}$\")\n", + "plt.plot(T, Y, color=\"red\", linewidth=1, label=\"consumption: $c_{t}$\")\n", + "plt.xlabel(\"$t$\", fontsize=14)\n", + "plt.ylabel(\"$c_{t}$, $k_{t}$\", fontsize=14)\n", + "plt.title(\"Path of $c$ and $k$ over time\")\n", + "plt.legend(loc=\"lower center\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [ { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "np.random.seed(1910)\nC = S[1]\nK = S[2]\n\nk0 = k_grid[30]\na0 = theta_H\nn = 200\n\nX = [k0]\nY = [C[(k0, a0)]]\nA = [a0]\nT = [0]\n\ns = 0\nfor t in np.arange(0,n):\n T.append(t)\n a0 = shox(a0, pi_H, pi_L, theta_H, theta_L)\n A.append(a0)\n k = K[(k0, a0)]\n X.append(k)\n c = C[(k, a0)]\n Y.append(c)\n k0 = k\n \nplt.plot(T, X, color=\"black\", linewidth=1.5, label=\"capital stock: $k_{t}$\")\nplt.plot(T, Y, color=\"red\", linewidth=1, label=\"consumption: $c_{t}$\")\nplt.xlabel(\"$t$\", fontsize=14)\nplt.ylabel(\"$c_{t}$, $k_{t}$\", fontsize=14)\nplt.title(\"Path of $c$ and $k$ over time\")\nplt.legend(loc=\"lower center\")\nplt.show()", - "execution_count": 16, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEbCAYAAAAmmNiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsnXd4HNW9979HvXdZzbZkyd2W5d7ANs0Uh+aQUN/QCUnu+3IJIaTcBN+QBC4hCSEhAXwNJGDs0G1DbIPjhruRLLlLttXrqsvq0u6e94+zZzQ7OzM7s1Vrz+d5eLB2Z2fPzsz5fc+vnHMIpRQGBgYGBgZaCPJ3AwwMDAwMAgdDNAwMDAwMNGOIhoGBgYGBZgzRMDAwMDDQjCEaBgYGBgaaMUTDwMDAwEAzhmgYGBgYGGjGEA2DUQUhpIoQcp2HzjWFEFJMCOkmhDzhiXO6CyHk74SQ36i8X0sImePLNrkLIeQ0IeQqf7fDwDcYomHgNjZD308I6SGEmAghbxNCYjR+ziMCocAzAPZQSmMppX/24vd4BEJIIoAMAGf93RY1pPeNUjqDUrrHj00y8CGGaBh4ilsopTEA5gJYAOAXfm4PAGQDOO3vRuggH8AFSumAvxsCAISQEH+3wWD0YYiGgUehlNYD2AZgJgAQQn5KCCm3hYjOEEJW215/F8B4AJ/ZPJRnRKeZTQg5QQjpIoS8TwiJkPsuQsg0QsgeQkinLURyq+i9XQCuBvCq7fyTFc5xDyGkyPZd5XJhFqXfYHuvihDytFJ7CSFzCCHHbJ99H4Dsb7ExC8Ap2+eiCCEbCCGfyHltTn77TwkhH0mOf4UQ8mfbvzMJIR8TQloIIZXi0J3t9/yEEHICQK9UOOTum9TzsP39Y9s16SWEvEkISSOEbLNdh3/bvCrVthiMUiilxn/Gf279B6AKwHW2f48DG93/2vb3twFkgg1Q7gLQCyBD+jnJuY7aPpMEFqr5nsx3hgK4AODnAMIAXAOgG8AU0TF7ADyq0u4f2do619a+fAA5Msc5+w2y7bW1qxrAD23t/RaAYQC/UWjPWgBrAEwAcMz2b6L3t4N5WH0A4mx/BwNoBLDY9huKADxr+2wugAoAN4h+T4ntPkY6u98qfx8GkAYgC0Cz7ffMARAOYJftt6m2xfhvdP5neBoGnmITIaQTwH4AewE8DwCU0g8ppQ2UUiul9H0A5wEsdHKuP9s+0w7gMwCzZY5ZDCAGwP9QSocopbsAfA7gHi2NJYSkghmueymlx2ztO0kprZIeq+E3KLV3MZiB/xOldJhS+hGAr1WalQ+W09gF4FeU0l9RmxXW89sppdVgRvp22/HXAOijlB4GCx2mUkqfs322AsD/Arhb8ntqKaX9Km11xl8opSbKPM99AI5QSosppYMAPgUTEC1tMRhlGDFLA09xO6X039IXCSH3A3gKQI7tpRgAKU7O1ST6dx/YKF5KJoBaSqlV9Fo12MhWC9cBOEkpPe7sQA2/Qam9mQDqJYa/WuE7CFhILxfAHymlm1WapOW3bwATkXcA3Gv7G2BeSKZN4DnBYIadU6vy3Voxif7dL/N3jMa2GIwyDNEw8BqEkGywkeO1AA5RSi2EkBIAxHaIO+vyNwAYRwgJEhnP8QDOafx8EoBOZwdp+A1qNALIIoQQkXCMB1Auc+wE2/+vA7CTELKTUlqocF4tv/1DAH8ghIwFsBrAEtvrtQAqKaWTVNrt7L54aj8FLW0xGGUY4SkDbxINZmBaAIAQ8hBsCXIbJrCRtSscAcstPEMICbUlsG8B8E+Nny8GcCUhpIAwJhFCprnwG9Q4BMAM4AlCSAgh5JtQDs3NAnCCUnoSwHcBfEoIyVA41ulvp5S2gOV03gYzzLyM9yiAi7ZkdyQhJJgQMpMQskDjbwLcu29iPNEWAx9jiIaB16CUngHwBzDjaQKL2R8QHfICgF/YKoCe1nnuIQC3ArgJQCuAvwG4n1JaqvHzBwH8BiwX0A0WZ4904Tc4a+M3ATwIoAMsif6JwuH5AE7YPrcJLCm+Sa5yTMdv3wDmuWwQfdYCJjCzAVTaPr8OQLyW32TD5fsm+R2eaIuBjyHyeTYDAwMDAwNHDE/DwMDAwEAzhmgYGBgYGGjGEA0DAwMDA80YomFgYGBgoJlLbp5GSkoKzcnJ8XczDAwMDAKGoqKiVkppqpZj/SIahJBxYDNV0wFYAayllL4iOeYqAJvBSvEA4BNK6XPOzp2Tk4PCQqU5UQYGBgYGUgghsisVyOEvT8MM4EeU0mOEkFgARYSQHbaaeDH7KKU3+6F9BgYGBgYy+CWnQSltpJQes/27G2xlUK1rBhkYGBgY+Am/J8IJITlgK14ekXl7CSHkuG0d/hkq5/guIaSQEFLY0tLipZYaGBgYGPhVNGyby3wM4ElK6UXJ28cAZFNKCwD8BcAmpfNQStdSSudTSuenpmrK5RgYGBgYuIDfRIMQEgomGO9RSh3W46GUXqSU9tj+vRVAKCHE2ZLaBgYGBgZexC+iYds74E0AZymlf1Q4Jt12HAghC8Ha2ua7VhoYGBgYSPFX9dQVAL4D4KRtbwKAbV05HgAopa+DbY35fUKIGWzTlrsVdjEzMDAwMPARfhENSul+ONnEhlL6KoBXfdMiA4MRqqqqcPToUdx5553+bopBAHL06FH09/djxYoV/m6KV/B79ZSBwWji008/xezZs3HXXXehvr7e380xCCCsViuee+45LFmyBA888IC/m+M1DNEwMLDx1ltv4Y477kBQEOsWnZ1Od4M1MADABOP73/8+1qxZg/j4+Ev62TFEw8AAwIYNG/DII49g5cqVePPNNwEA3d3dfm6VQSBgtVrx+OOPY+3atfj5z3+OH/zgB+ju7salmoI1RMPgsqewsBAPP/wwli9fjs2bN4PP9bl4UTp1yMDAHqvVikcffRTr1q3DL3/5S/zmN79BbGwsrFYr+vr6/N08r2CIhsFlTVNTE1avXo309HR89NFHiIiIQFxcHADD0zBwzrPPPou3334ba9aswXPPPQdCyCX//BiiYXDZMjQ0hG9961toa2vDpk2bBA8jNjYWwKXb6Q08w8cff4zf/va3eOSRR7BmzRrh9Uv9+bnk9tMwMNDKs88+iwMHDuCf//wnZs+eLbx+qXd6A/epq6vDI488gkWLFuGvf/0rbPOQAVz6z4/haRhclpw/fx5//OMf8eCDD+Kuu+6ye493eiOnYSAHpRSPPvoohoeH8d577yE8PNzu/Uv9+TE8DYPLkqeffhrh4eF44YUXHN4LDw9HWFjYJTtSNHCPDz/8EF988QVeffVV5OXlObx/qec0DNEwuOzYv38/tmzZghdeeAHp6emyx8TGxl6ynd7AdSwWC9asWYMZM2bg+9//vuwxl3p4yhANg8uONWvWIC0tDU888YTiMYZoGMjx/vvvo7S0FB988IEwCVSKIRoGBpcQe/fuxa5du/Dyyy8jKipK8bi4uLhLNiZt4BpWqxW/+c1vkJ+fjzvuuEPxOB6eulSfH0M0DC4rXnrpJaSlpeHxxx9XPc7wNAykbNu2DWfPnsX69esVvQwAiI6OBiHkkn1+jOopg8uG6upqbN26FY899hgiIyNVjw0k0RgYGMB1112HnTt3+rsplzR/+MMfMHbsWKerHxNCEBMTEzDPj14M0TC4bFi3bh0A4NFHH3V6bGxsbMCEFz777DPs3LkT+/fv93dTLllKSkqwe/duPPHEEwgNDXV6fCA9P3oxRMPgsmB4eBjr1q3DqlWrkJ2d7fT4uLi4gBkpvvPOOwCArq4uP7fk0uXNN99EeHg4HnvsMU3HB9LzoxdDNAy8zpEjR/D111/7tQ27du1CU1OTJi8DCJzwVHNzM7Zt2wbAO6JBKcWGDRvQ0dHh8XMHCkNDQ9i4cSNuv/12JCQkaPpMoDw/rmCIhoFXoZTizjvvxNNPP+3XdnzwwQeIi4vDjTfeqOn42NhY9PT0wGq1erll7rFx40ZYLBbExsZ6RTSOHj2K++67D++//77Hzx0obN26FW1tbbo2VrqURcOonjLwKkeOHEFNTY1QhugPhoaG8Omnn+K2225DRESEps/ExsaCUore3l6h7n408tFHH6GgoACRkZFeEY1NmzYBANrb2z1+7kDhnXfeQVpaGlauXKn5M7GxsWhpafFiq/yH4WkYeJUPPvgAgH/j7Tt37kRHR4euPb8DYSmI5uZmHDhwAKtXr0Z8fLxXReNyzZf09fVh27ZtuOuuuxASon2MbeQ0DAxcwGq14sMPPwTg361TP/zwQ8THx+P666/X/JlAmNX72WefgVKK2267zSuiUVZWhtLSUgCX79a3e/bswcDAAG6++WZdn7uUw1OGaBh4jSNHjqCurg6TJk1Cd3c3LBaLz9tgtVqxdetW3HTTTQgLC9P8uUAQjc2bNyM7OxsFBQVeEY3NmzcDABISEi5bT2Pr1q2IiorC8uXLdX3OEA2DUc327dvx8MMP+7sZDmzfvh1BQUG4++67AfhnWYXi4mKYTCasWrVK1+dG+1IQvb292LFjB26//XYQQrwiGlu3bsXs2bMxadKky9LToJTiX//6F6699lqH5c+dERcXh6GhIQwODnqpdf7DEI1LgNdeew1vv/02hoaG7F43m80oKSnxU6uAHTt2YP78+ZgwYQIA/8TFt27dCkIIbrjhBl2fG+2exv79+zEwMICbbroJABAfH4+BgQGHZ8BVenp6cPDgQVx//fWXradRVlaGqqoq3QMOYPQ/P+5giEaAY7FYsHfvXgCORvm1117DvHnz/FLF0dXVhaNHj2LlypWIj48H4J+4+NatW7FgwQKMGTNG1+dGe6ffs2cPQkJCcMUVVwCAcI09Zdy/+uorDA8PC/fvchSN7du3A4AgzHoY7c+POxiiEeCUlJQIHVo6AevLL7+E1WpFc3Ozz9u1e/duWCwWrFy5UpgQ5WvD09bWhiNHjvh9pPjvf//b6QKJnN/+9rd46623nB63e/duLFy4EDExMQA8Lxo7duxAREQErrzySiQkJFyW4ak9e/YgLy9P0woCUgzRMBi17NmzR/i3uGNbLBZ89dVXABzFxBfs2LED0dHRWLJkid88jb1794JSqqu+nuPJnMbrr7+OtWvXOg0dmc1mvPDCC9i4caPqcd3d3SgsLMTVV18tvOYN0Vi2bBkiIiIuS0+De/BXXXWVS58f7TkxdzBEI8DZvXu3sKm9WByKi4uFB9YforFr1y6sWLECYWFhfvM09u3bh4iICMyfP1/3ZyMjIxEUFOT2SJFSin379gFwfh9KSkrQ29vr9Lh9+/bBYrF4TTQaGxtx+vRpQWwTEhLQ19eH4eFht88dKBw/fhydnZ1211gPhqdhMCoxm83Yt28frrzySgD2I/ndu3cL//a1aLS1taG0tFRol788jX379mHRokW6Sm05hBCPlE2eP39eCA9qEQMtx+3ZswdhYWFYunSp8JonhfnAgQMAIIyyPe3FBAK8/xii4YghGgHMmTNncPHiRdxyyy0A7I3Nnj17kJaWBsD3xvrw4cMAgCVLlgDwj9Hp7u5GcXExli1b5vI5PLF7HxcCwHOicfDgQcyfP99uTxBPXuODBw8iIiICBQUFdue+nPIae/bsweTJk5GZmenS543wlMGo5MiRIwAgLMLHO7XVasX+/ftlxcQXHDp0CMHBwViwYAEAIDQ0FFFRUT41OocOHYLVanVLNDyRANYqGpRSYT+Mzs5OxYUSh4eHUVRUhEWLFtm97mnRWLBggeCh+Su86C+sViv27duHFStWuHwOfs0uRaE1RCOAOXr0KJKSkjBz5kyEhYUJRun8+fO4ePEili5ditjYWJ+LxsGDBzF79mxER0cLr/k6mbpv3z4EBQUJ3o4rJCUlub1Q3759+zB9+nQA6qJRVlaGlpYWTJ8+HZRSxRHqqVOnMDAwgIULF9q9zke27l7jgYEBHDt2zO66XW6eRnl5Obq6uhyEWQ8xMTEICQm5JBd6NEQjgDly5AgWLlwIQggSExOFTl1YWAgAmD9/vt3rvsBsNuPo0aMOxtrXZZuHDh3C7Nmz3VqhNjEx0S3BbW5uRkVFhbBukdq5Dh48CABOj+XepVQ0QkJCEB0d7bZoFBUVYXh42Gv5kkBA3H9chffJS3EfEkM0ApSenh6cPn1aMB4JCQnCA1pYWIjIyEhMmzbN5w/uyZMn0dvba2d0AN96GpRSFBcXY968eW6dx11Po7i4GABw3XXXAVAXjcLCQsTFxWHx4sWqxx49ehQpKSnCLHsxnrjGXLzkPI1AFQ1KKdavX4++vj5NxxcWFiIiIkLwEF3FE57qaMQvokEIGUcI2U0IOUsIOU0I+U+ZYwgh5M+EkAuEkBOEkLn+aOtopaioCFarVXChpZ7GnDlzEBISYicmvuDo0aMA4ODa+9LTqKmpQXt7O+bMmePWedwV3GPHjgEAFixYgOjoaNVzFRUVYe7cuUhKSgKg7mlw71KKJ0Tj8OHDyM3NtZtBH+jx+a+//hrf+c53hGXenVFYWIjZs2dr2gtcDcPT8CxmAD+ilE4DsBjAfxBCpLJ+E4BJtv++C+A13zZxdMONM082c3GwWCwoLi4WXGu18NQTTzyBp556yqPtOnbsGBISEhxGwr70NPgIf+5c98YZSUlJ6Ovrw8DAgMvtyM3NRUJCgqoBGRoawvHjx4VwIiAvGhcvXsTZs2cVY+2euMZyHhoP8QWqp8GfBy3L6VitVhw7dsyt0BTH8DQ8CKW0kVJ6zPbvbgBnAWRJDrsNwDuUcRhAAiEkw8dNHbUcO3YM2dnZSE1NBTAyki8rK0Nvb6/Q8dWM1QcffGA3o9wTFBcXY86cOQ4jYV8ueldcXIygoCDk5+e7dR5no34t7eDejtp9OH36NAYHB52KRklJCSiligbNXdG4ePEiKisrhVJbTnBwMOLi4gLW0zh+/DgAbbsPnjt3Dj09PW6HNgFDNLwGISQHwBwARyRvZQGoFf1dB0dh4ef4LiGkkBBSeKlusSjl5MmTdkaRexTSJJ6SsTKZTDCZTB59qIeHh3HixAnZEX58fLzPjM6xY8cwdepUREVFuXUeNQPujK6uLly4cEGTaEgLF5S+kxu/2bNny57HXdE4ceIEADiIhifO7U/4dWtra3N6rCeS4BwjPOUFCCExAD4G8CSlVFpj6Bi0BajceSilayml8yml8/nI+1JmaGgIZWVlmDVrlvAaD0+VlJQgMjISU6ZMEV7v7e11WAJCT0fSSmlpKQYHB2VzCfHx8RgaGnI51KMH8QjfHbin4Yqw8uurVTQSEhKQm5uL6OhohISEKIpGSkoKMjLkHW53DTtvs5JoBKKnYbVaBTHUch9LSkoQHh6OqVOnuv3dSUlJ6Ozs9MvmY97Eb6JBCAkFE4z3KKWfyBxSB2Cc6O+xABp80bbRTmlpKcxms4OnYbFYcOjQIUyfPh3BwcHC64BjEpMbiJ6eHo/twaCWS/BVMrW5uRn19fVu5zMA9zwN6bXgonHo0CHcd999dpP3ioqKMG/ePBBCVEs1jx8/joKCAtkkOOAZ0UhMTMTYsWMd3gvUPTUqKyvR09MDQNsA6eTJk5gxY4au/cCV4M9PIF43NfxVPUUAvAngLKX0jwqHbQFwv62KajGALkppo88aOYrhIyexaHCjXFhY6CAmgKPh46IBeM7bKC4uRlRUFCZPnuzwnifKNs1mM06ePGn32m233YYnn3xS+NtZCEcP7ngaJSUlSEtLQ3p6OoAR0fjnP/+JDRs2CElZi8WCU6dO2bVXTjTMZjNOnTol6wWIP9ff3++yN6cmSoHqafDnITU1VdN9lIZ93cGd52c04y9P4woA3wFwDSGkxPbfKkLI9wgh37MdsxVABYALAP4XwA/81NZRx8mTJxEaGmpnnLk4mM1mu7CVmqcRFMRuv6dE49ixY5g1a5bg5YjxhKfx9ttvY86cOcICgJRS7Ny5UxjVAyypDAAzZ850+Xs4/Nq50ulPnz5t14bExET09vYKOym2trYCYLOPBwcHMWPGDLtjpaJx/vx5DAwMqIpGSkoKANfup8ViwcmTJxXFNlA9Df6cL1u2zOl1aWtrQ2Njo8dEw53nZzTjr+qp/ZRSQimdRSmdbftvK6X0dUrp67ZjKKX0PyileZTSfEppoT/aOho5efIkpk2bZldHzo0yIO+BiI3Q4OAgSktLhXJdrUamtbVVWB9JCqUUJ0+eVDRqnhCN4uJiWCwWNDYyh7O2tha9vb2CAQaYsU5JSdG9U58c8fHxIIToDk9ZrVacOXPGQQiAkVJpfs25yDkTDbV8A4eLhvh6aKW8vBz9/f2q9y8QPY0TJ05g8uTJyMrKcmq8uRfraU/jUkuG+716ykA/ci60kmjIhafOnDkDs9mMa665BoD2kdCLL76Ia6+9Vjax19LSgo6ODkybNk32s8nJyQDc82rOnj0LYMQoSv8GmBEWG2B3CAoKQmJiou6RYk1NDXp7e2VFg4eOeJu5aIhnHyuJRmhoqOL1Bdy7xmfOnAEAxWuXnJwszAMKJEpLSzF9+nQkJyejq6sLZrNZ8Vi5sK87GOEpg1FBZ2cn6urqHB5sbpRSU1OFJdHFr0tFAwCWL18OQLuROX36NIaGhmRHTmVlZQCgWHXCR8HulETzdnODy/9ua2sDpRSUUo+KBuBa2aSS9yBG7Gnk5OQI27YqfeeJEycwdepU1b1B3PE0SktLAajfP0ppQBnA4eFhXLhwAVOnTtU06j958iSSk5OFPJS7uFNIMZoxRCPA4MZZui4O9zSUPBBxaKGsrAxBQUHCulVaRYMbFjnD78zoJCYmIigoyCWDBrDRGs9lSD0Ni8WCrq4u1NXV4eLFix7JZ3BcmaB16tQpAOqiIfY0pCLH59yIK6zOnTvntAyUexquikZWVpbiAo+8lN3V++cPKioqYDabMXXqVOHaqN1L7sErVafpxchpGIwKuGhIK5QSEhIQHBxslwQHgIiICERERNiNds6dO4ecnBwkJiYiLCxMk2gMDAygqqoKgLJoREZGYty4cQ7vAWxWcVJSkstGhwsE4Ohp8NfkRvju4kp46vTp08jKyrILGXIDEhsbi8jISLS1tcFsNqOsrExWNKxWq7Dr29DQECorK4W5N0q4E54qLS1VFSV3vBh/IR7IOLs23Ev1VGgKAMLCwhAdHW2IhoF/OXfuHIKDg5Gbm2v3enBwMLZs2YJnnnnG4TPScMe5c+cwZcoUEEKQnJysycicP38elLK5lXKGo7S0FJMnTxYqsuRISUlxOTwlFQhKKc6cOYPx48cLr3lDNJKSklwKT8kJAW9bSkoKWltbceHCBQwNDSkey73DiooKWCwW2VJmMaGhoYiLi9Nt2CmlmkUjkFZc4KIxZcoUp/mFhoYG9PT0eGRSnxhXnp/RjiEaAUZZWRlyc3NlV+BctWqV7GxhbqQAZiDOnTsnGKDk5GRNIyHeAQFlT8NZh0tNTXXL04iMjERubi5aW1vR3NyMjo4OYWc+LhppaWnCqNIT6PU0rFYrzp49qyoaXKiVyoOlsXAl71KOlJQU3Z6GyWRCV1eX6v0LxPBUaWkpMjMzERcX59TTOH/+PABg0qRJHm2DK57qaMcQjQBDbPC1kpqaKhj6hoYG9Pb22omGFiOjJho8dOVMNMTipZczZ85g6tSpGDNmDFpbW4VwlVg0zp496/YeCFL4SFFp+1Up1dXV6O/vd2hHWFgYnnnmGTz88MPCdeBiIA07SXMT586dA6BNNJKTk3VfY/GIXO284jYFAuKBjDNPw1uiYXgaBn7FarXi/PnzTmPbUsaMGSMkkbkB4ufQIxrZ2dmIjY11EI0LFy7AarU6bZc74amzZ89i2rRpDgb3iiuuAAAh3OONkaI4v+CMCxcuAJA3Pi+++CKWLl0qXPPy8nJkZGTYbYsLQJhjIr5nqampDsl0OVzxNJwVMQAsNxYTExMw4SkecuPPZHx8PIKDg1U9jbCwMMWcnKsYnoaBX6mrq0N/f79LngY3QNJQhx7RmDp1qmyISYvR4e1oa2vTPGrnDAwMoLa2FpMnTxZEo7y8HOHh4Zg2bRrCwsJw4cIFtLa2YuLEibrO7Qy9tfbl5eUAoNoOcU5D7jipaJSVlWkeKLjizZWWliI6OhpZWbKLSAu4E170Nc3Nzejs7BSeSb6ml5qnkZeXJ7uagTtcisujG6IRQEi9BK2MGTMGXV1dGBoawrlz5xAVFSUYiKSkJGGegxKUUpSVlQmiIR1tanXtU1JShPJYPVRVVYFSiry8PMEonj9/Hrm5uQgODkZKSoqwd7anRUNv1dCFCxcQGRmpuBItMDJRrqysDHl5eQ7vJyQkICQkxM7T0DpQ0DoIEKOliAFwL7zoa+T6itq1OX/+vMe9VGDE81PrX4GGIRoBhJ7YthiexGxpacG5c+cwadIkwUAkJyfDbDarhl8aGxvR29uLSZMmyYpGRUUFxowZYzdBTQ5XK3D46J2LxsDAAE6cOCEIREpKirAEhJwRdgc+UdJkMmk6/sKFC8jLy3NaRcbPKSdyQUFBgnfY1dUFk8mk+Z6npKSgu7tb18rFFRUVmgymO+FFX1NRUQEAdlWGSqN+q9WK8vJyr4hGWloahoaGAnIJFiUM0QggysrKEBMTozqKlUMc7pCOqLRMeqqsrATAOqDcaLO8vFyTsXa1AkdsALjBraioEL6TezDA6BENNcTVXUqeUVpaGpqbm3UPFPTO1bBYLKiqqnLYnleOQApPVVZWghCC7Oxs4TUlT6Ourg4DAwNeEw1A+/MTCBiiEUBw46x3xioXDZPJhKqqKrvRlxYjIzba3NMQu9tiA66GqxPEysvLER0djTFjxgjnAGDnaQCQTSq7i55Ob7VaUVFR4TREJv4NSteNFy9wwdYqhnqvcUNDA4aHhx3m/SidO1BEo6KiAmPHjrVbdkWpssxblVOAIRoGfkbriFAKH+GXlJRgaGjI7hxaSim54eJ7kg8ODgob2wwNDaG2tlaz0XH2XXJUVFQgNzcXhBBV0fB0PgNgVUNxcXGaOn1jYyP6+/udtkPsaTgTDT4LPycnR1N79XoafECg5blKSUlBb28v+vv7NZ3bn1RWVjo8k+np6TCZTA75BUPvbMA/AAAgAElEQVQ09GGIRoBAKUVVVZVm4yGGexo8WSzuTHxxtqamJsXPV1ZWIisrCxEREQ4hpqqqKlitVl3hKVdyGuJQFEf6mqdDU5y0tDRNnZ6X22r1NJKTkxXLaMWeRlJSEuLi4jS1Va8w8wGB1vCUnnP7k4qKCofflJ6eLptf4JV4zqrHXMEQDQO/0drait7eXpc8jfj4eISGhgqiIT6HFtEQd0BpMlsu4ahEVFQUIiIidBkdSqngaYi/Pzg4WIhXe9PTALSLhjhhr4YWkRszZgx6e3uFVXC1otfTqKysRFBQkLAcixqBsv7UwMAAGhoaZEUDcHzWq6urkZ2d7bR6zBWSk5MRHBxsiIaB79EbphBDCEFqaioaGxsdkoMxMTGIiYkRNjaSQ+zqS70FrYaSt0NvXLyxsREDAwPC+RMSEhAUFIScnBxhKZXRIhoXLlxAaGio0wliUVFRCA8PV20v9w6PHTvmkmho9ebkYv9KBIpoVFdXA3AcyCiJhqsevBZ4JZwhGgY+h4uGK54GMGLs5QxERkaGomgMDg6irq5O+F5piKKiogKRkZGa9yCQK9lVQ+rJBAcHIzEx0U6kZsyYgYiICMyfP1/zefWgx9PIzs5GSEiI6nGEEDz33HN4/PHHFY/hoqHXuwwPD0dCQoIwx8MZcrF/JVwNL/oapTyNM0/DW2h9fgIF9afbYNQgTka7AjdCcgYoPT1dMTxVU1MDSqmDaIg9DZ6k1oLeWn85T+ahhx6yW8J61qxZ6Ovr89g+CFLS0tLQ3t6O4eFh2YUiOTU1NZpHrHKrEYsRb1erdxScmZmJhoYGTcdWVFTgxhtv1HRsoKx0Ky4RFyMnGv39/WhubjZEQweGpxEgVFVV6UqISuHGXm5UqeZpSDtgTEwMIiIihE4gzjdoQU2g5KiqqnIIqb300ku4//777Y7zlmAAI8lMZ6P36upqTbkBLbgjGhkZGZpEo7+/H42NjZo9mcTERISGhuq6f/6goqICERERDt5vfHw8wsPD7drPQ1neCk8B6qJRXFys2SscLRiiESBUVla6HJoC1D0NNdGQuvqEEGEkSynV3a7MzEw0NjZqXn+qpqYG6enpmmLu3kJLBczg4CAaGxs9NmLlIg/oD0lq9TR4yFOr6AcFBWkWJH9SWVmJnJwch4EEIQTp6el2zzoXDV94GnJLiaxcuRK//vWvvfbd3sAQjQDB3WSdmqeRnp6Onp4eYe6FmMrKSoSFhSEzM1N4LSsrC/X19ejq6kJPT4+u0XVWVhaGh4c1J1Nramo8Nnp3FS2iUV9fDwAea2tUVJSwLItegyYWdTVcKa7g9340U11drfibMjIy/OJpDAwMOCzV09XVhba2NsGbDxQM0QgA3JmjwXHmaQDyZbfcaIvLETMzM1FfX4/a2loA0LWcNBcfrYantrbW48tV60WLaHhjxMpnwDtb00tKZmYmhoeHnZbd8vunR+j4vR/NqD0z0vBoVVUVQkJCdC/Nowel54df/9F+PaUYohEAmEwmDAwMuBWeuuGGG3D//fdj7ty5Du/xDiMXoqqtrcXYsWPtXsvKykJDQ4NLosEnUGkJcVBKA8bTqKmpAeA5TwNgBk5PvojDhdnZNa6trRVCTlrh9360Mjg4iObmZs2iUV1djXHjxnl8SXQxSs9PXV0dgMATDaN6SgeUUlBKvTIJSA1PGKRx48bhH//4h+x7ahP8amtrsWLFCrvXMjMz0dfXh1OnTgnn1ooeT6O9vR39/f1+F43o6GhER0dr8jSkAusOL7/8sktLaotFY9asWYrH1dbWIjMz02mJsPTcFy9eRE9Pj24PyBdwQ6wmGq2trUIlnDfnaHCceRotLS0YHBxEeHi4V9vhKQxPQwf33nuvQ9WOL3DWEdxFydOwWCyor693+F7uLRw+fBjBwcG6RqoZGRkghGgarXKx9Hd4CmAdX61qqKamBhkZGR7t+AsXLsSiRYt0f46LhtqETcC10J8eT9EfcEOsJN7p6emglAplw96eowGMiIb0+eFtBUbv9ZTDEA0dFBUVobCw0Offy0XDk6NYMcnJyQgJCXEwMk1NTbBYLIqiceTIEWRkZOhy7UNDQzFmzBhNnoY3Qj6u4qwiyZPltu7CRdyZIaqrq9P9TPF7P1pDKlo8DYA920NDQ2hoaPC6aKSmpiI4ONjhfohFY7ReTzkM0dAIpRT19fXCZDdfUldXh/DwcLvVUT1JUFCQ7EhaSazE4Q9XvACtJaGu5Ey8xbhx4+w6uZSamhqvGx+t8GdF7RpTSl3yNLTmS/yFs2dGLBq8wszbz1dwcDCysrIcnp+6ujph3pUhGpcgnZ2d6OvrQ39/v+7tNN2Fjwi9OYFNbq6GUgcUl9+60uG0lm3W1NQgPDzcbs6Cvxg/fjxqa2tl55eMloS9GLEwV1VV4emnnxY2qgJG8kWuioba/bv66qvxX//1Xy602n1qa2uRlJSEqKgo2fe5aDQ2Ngq/wRur20oZP3684DlzamtrhfAjH6AFAoZoaETcSdRGnN7AlTCCXuRG/0qiERkZKSzp7W1PY+zYsT4vPMDFi4Atyc8ZP348hoeHZZPhLS0tGBgYGDWeBmA/K/zjjz/GH/7wB5SVlQnvu+rFxcbGIjY2VvH+UUpx5MgRHD582MWWu4cz7ykzMxNBQUGoqakR+rTH+1Z9PSCxEVLR4J7ezJkzERUVZXgalyLimyodMXgbX4jG+PHjhQogTm1tLaKiomT3fOCjM1c9DV4xoobPR++NjcCTTwLjxgG33Wb3Fv+dcgMGZ8lXfyAWZv5/8f11J/Sn5il2dXWhv79fmDjoa+RKxMWEhoYiKysLVVVVnvc0SkqA73wHmDABkHha48aNQ11dneCp8sjFuHHjAmLCpBhDNDQidh99KRpWqxX19fVeN0g5OTm4ePGi3QY1vAPKhcV4R3OlXVqre3wmGk1NwFNPATNmAEFBwO7dzNsQwdshd++5UfZFmEMr4uVauEESi4Y7xRVqE/z467W1tXbhMF9RV1fnVAizs7NRXV2N+vp6REZGIiEhwfUvrK0FnngCyM8Hbr6Z/f+NN2SfH7GnKhbtsWPHGqJxKcJvalhYmE/DU62trRgaGvK6aPDQiniEqNYBueF3daQKqCdTLRYLGhoavPu7Dx0CrrgCmDIFsFiA06eBP/4RmDoVkCz5oOZpcPET53r8zdixY2GxWOxi9+J7W1tbi5CQEKEcVA9qE/z468PDw04HBZ6mr68PbW1tTp/JnJwcVFVVoa6uDllZWa7lCnt7gTVrgNmzgZgY4O23gaoq4JlnmKfq5PkRe6dZWVlGTuNSpL6+HqmpqbIJLW/i7XJbDp/gJA1hKHVAd8NTgHryr7m5GVar1XuG+PPPgVtvBf7v/wWam4FXXgH4fJPISMBsBoaHhcMTExMRHR0t3PvOzk7cddddMJlMaGhoACHEJQPsLfhM8srKSsXwVFZWlkszobloyHkS4hGzNNzpbbTOZ8rOzkZdXR2qq6td61cnTwLTpgHnzwPFxcDzzwPz5wN8kmRsrINoSD1VsafBr6fWRTz9jd9EgxDyFiGkmRBySuH9qwghXYSQEtt/z/q6jWLq6+uRlZV1yYoG9zR4RzebzWhsbFTsgHfddRd+/OMfa958SQwXKLWF2rw2eh8eBn76U+Dxx5lw3HMPIJ2QRwgbPYo6PiHE7t4fPnwYH3zwAXbs2IGGhgakpaXpmlntbfiSMxUVFYqehqulphMmTMDw8LCstyF+zV+i4ayv5OTkwGKxoKSkRH9IsagIWLkS+N3vgA0bALnwqQbRaGhoQFBQENLT0zF27FgMDw+P+n1KOP70NP4OwNnuL/sopbNt/z3ngzYpwpPRzur1vfG9gPdFIyUlBZGRkYJh4fFwpU41c+ZM/O53v3PJtY+Li0NKSoqwwZIc3Ph4dCE5i4UlKo8dY0lLtdnWsbGAZNVf8b3nolZRUYGGhgb/h6b27AGGhoQ/s7OzQQhBUVERBgcHQQixM+J8EOQK3IuRu3/19fVCuauvk+Fac0t8gDQwMKDvGqxfD9x4I/D668DddysfJ/PsJCQkIDo6Wnh++EAjODjYTuADAb+JBqX0KwDt/vp+vYg9jYaGBgyLQhfepK6uDiEhIXab8ngDQghycnIEw+LRkX5fH4sBi8jLy1PtJPz7PSoaP/whS3pv2QI4m/uhMFoUjxQBZjj9LhoffABcfTVw9KjwUnh4OLKysrB//34AbEvcxsZGoWKtqalJ+7Vtt++mfBdFufvX0NCA3NxcpKam+tzT0DrQEJdGaxaNt94CfvlLViRx++3qx0q8VMDRU21sbBTaya+n2iBqNDHacxpLCCHHCSHbCCEzlA4ihHyXEFJICCn0hos3MDCA1tZWQTSsVqvPZsTyZJ0v5ipkZ2fbeRqAB4x2fz+wYgVLMIvIzc1V7ST8+10Jf8ny+uvAzp3A5s1ARITz42VEY9y4cTCZTMKGS8CIp+HNpbVVOXoU+I//ACZNcmhvbm4uSkpKAABLly4FwMIjfO8UTdf2/HmW2L1wQXiJrwqr5GlkZmbaPUu+orGxEdHR0YiNjVU9TlyRp8mD37UL+NnPgO3bgZkznR/PPQ3JyhFST5U/MxMmTAAhBBdE13g0M5pF4xiAbEppAYC/ANikdCCldC2ldD6ldL43Zg9zgeDhKcB3Zbe+HMWKPQ2+pIhbxpBS4LvfZQZHMos+Ly8PNTU1ih5bY2MjUlJSPLNj3/79rNJl82YgPl7bZ2RGi9zY1NXVCaJRVlaG5uZm/3gaLS3At74F/O//AgUFDu2dMGGCkFzlolFdXa19QGCxAA89BAwM2N2/kJAQZGdnK3oaWVlZQlmrLxEbYjXEW8E69TS6uoD77wfee49V2WkhJAQIDWUDJhFST4M/M+Hh4Rg/frwhGu5CKb1IKe2x/XsrgFBCSIo/2iKeBKQWz/UGmsII584B77zj9ndlZ2ejra0NPT09aGxsBCHEvbDY5s0scfjcc7KjYKvVqii+Wg2AU9ragHvvZeGFiRO1f07G0+BhjcrKSsHwtrS0gFLqe9GgFHjgAZbIv/12IC7OYW6AeP+VxYsXA2CioXlA8MorbN7KihUO1yIvL8+hD1gsFjQ1NSEzM1MYgPhynTaxIXYGv5dOReOnPwW+8Q3guuv0NUbh+TGZTLh48SJMJpPd9c/LyzNEw10IIenElmUlhCwEa6tvF32yIR6ZTZgwASEhITh37pzPvls1jEAp8IMfAGvXOr739dcs8asRcdktH+mHhobqbLGN/n6WQ3j1VSAtzcGgOYvjeizk89hjbDT+jW/o+5xMp588eTIA4Ny5c2hsbESEKMylaqxMJuCzz7R97/79wNmzzo/bvBmoqQF++1v2t4xo8AFOcnIy8vLyEBwcjKqqKm2hv7IyVkr69ttAQoLsuaX3rrm5GRaLRfA0BgYG0Nzc7Py3eAg9A42cnByhekmRffvYfXvxRf2NUXl+Dhw4AEqpXVsnTpx4eeQ0CCHqwUP1z24EcAjAFEJIHSHkEULI9wgh37Md8i0ApwghxwH8GcDd1NfLy9rgszjT09MREhKCvLw8u3V8vMXg4CDa29vVH+zPPwcKC5kbbf9h4MEHWRxfI+IJfroSpXK89BKwYAFwzTWyBk0tmQp4yNP48ku2htQLL+j/rEwFTGZmJqKjo1FWVobGxka7vS5UReMnP9FmePr7meewSTESyxgcBJ5+Gnj55ZG5ASqeRlZWFkJCQjB27Fg7L0nx+lIKPPww8KtfAXl57FrI3L/29na7FQS4R56ZmSkIli9Hz3oGGrfeeivuvvtu5TLpgQE24PjLX5ho6kXm+eGisXfvXgBwEI3W1la766mVTz/91GH/cW/irqexV/qCWsJaDKX0HkppBqU0lFI6llL6JqX0dUrp67b3X6WUzqCUFlBKF1NKD7rZVpdpampCcHCwsDT55MmTfeJp8FGaomiYzcCPf8yMoqRT4/nngawsRzFRYaItfMNH0i4b7ZYWFtr43e/Y3zIGjW9YJDe6slqtQpjDZSwWNjv3f/7HcR6GFmRGioQQTJ48GUeOHMHg4CCuuOIK4T3Fth4/Dmzc6Hh/5Pjzn9n6V86Ofe01Nmt95UrV9nLDzUMwU6ZMQWlpKZqamhAaGoqkpCT583/8MROw73+f/a3ixYhFX1zyOn36dADAWS1ekwfo7u5Gb2+v5mf23nvvxXvvvad8wAsvsGVlVq92rUEyObFJkyYBAPbs2QMADuEpQH/Yu66uDt/85jexbt0619rpAi6JBiHkVkLIzwFEE0Kks1s2uN+s0UVTUxPGjBkjVDBNmTIF58+fd3kGZ3NzM/7yl784jffy2LOiaGzcCIwZA9x5p32n7u5mYaG1a9mIyWzW1K7U1FSkpKTg7NmzzsNiajz/PMsj8G004+IcOlBQUBByc3NlPY22tjaYzWb3PI1//hOIinK908sYYYANGPhGXPn5+YiNjUVwcLDy8u0//zmrbnImBO3twO9/z0KNasf29jKv5fnn7V+XMezp6emIiIgQRGP69Ok4e/asMEdAtiLPbGalpc8/z/IZ/NwyOQ1AXjQyMjKQnZ2NyMhIn4mGR0vEef/5/e9dP4fM8xMdHY2xY8cKz4+4rXzAptcz497d6dOnXW+rTlz1NI4DaAWQAuDvhJBKQshBQshHAHwzgcGHmEwmOwM6efJkDA4OulxBtXHjRjzxxBNOO5SqaJjNLHzw3HMjBoOL0N//Dlx7LTPaMh1ewGIBJMI3bdo0nD592iFRp5n6epaUF6/yKRPeAJTLbt2e2EcpC9384hdsdrcrKIjGlClThOUzMjMzkZeXh/T0dPnlOMrKWCHA0087F41XXmHLmsyfr37s3/4GLFsGSPf+lhGNoKAgbNiwAT/60Y8AsHvb19cn7Lgoy4YNbCByww2q55YrCOHPKx9gTZ06FWfOnFH71R5DNeRmsQC33OIQLlLkH/9g815EhQS6cfL8SJedcdXT4KFzX11nQKdocK+CUlpNKV0LYDWl9BpK6QQA3wbwewDXeL6Z/qWpqcnOcE+xld65GqLincvZ6EBVND74ABg7FrjqKlbeFx7OJtFZrcwAPfkkOy4uTjlE9eSTLPcgYvr06SgqKsLw8LBrRvvll1mJorjNMkYHYNexrKzMYQ0jt+eIHD0KdHSw2buuouJpcDIyMrB8+XKhMsmBv/0NePRRNpFQLOpSurqAv/6VzQWIj1e+X319bPS7Zo3jewqDg9WrV2Pq1KkAmGgArExY0Yv8y19YWE8stjKiHxcXh/T0dDtjZTKZkJycLBRPTJs2TXZgVFxc7PGqKtWBxtatLPensse7gNXKwoT/+Z/uNcjJ8yMtMomOjkZGRoZum8JF4+zZsz6rVNPraXxCCBECxLZZ3Zw2SulhSqmG4G1gYTKZ7EYF4ioaV88HaBcN2bLXN94A/t//G/mbG+Zjx4CwMGDJEvvXpbS0AOvWsRi6iGnTpgmzhnWHp9rbWWnrU0/Zv847kOShzs/Px8DAgINL7nao4dVXWZjHnQmRMjFpwFE0XnnlFXz00UeOn+/uBt59l61xFRrK7klfHxOEd9+1P/Zvf2MCN3Gi8v0CmAe3aBGLtUtR8ObE8DwDb7sDhYXsuZCKrUKb8vPzcfLkSeFvaT+ZPn06qqur0SMa4RcXF2Pu3Ln48ssvVduqF9WBxmuvsf9rye9t28au5ZVXutcgJ6Ih107u5euB25LOzk7ZDcK8gd5edQGAQ20nISQTwD6PtGiUQSl1CE+lpaUhNjbW5QoqfnNPnZJdq1GgqakJSUlJCJcmcktLWejjlltGXuMd22RiYSk+UlQauf7tb2xmtOQ9p4ZFjddeY5sXSRfCCwlh39XXZ/fyLFuIRWx4ABUDUF/PVqUV89RTLBzHMZnYqPKhh/S1XYpM9Qsw0uljY2MRExOj/Pn161mIg18Lfn+Ki+0rqaxWNgD44Q/tj5NitbJZ9U8/Lf99amJjIzk5Wci9yN7b119nIicNtSl4MbNmzcKZM2dgtuXMpKIh9mw4fJb4UdGSJ56Al0A77I1RWck8z0WLtInGn/7EPHB3t1ZWeH54lEJuQJSfn4/Tp0/r2odELBS+ClHpFY2HAcwjhAhDXELIbABHAQRGkbFOOjo6MDw8bNcZCCFCaMUV9HgasqP9detYOa14tnR8PDMa7e2ArcoLgLwxGRpiovGjHzl0JN7RARnDcvAgS+rKQSkbQX/ve/Lvy4yEp02bhqCgIAfRMJlMiIuLs5sHAYCJwyefjPzd3888G/FyFevWsXkZSpVBWlEYKcbHxyMtLU1dUCll3o5Y4Lh4t7fbX/Pdu1lJ59y59sdJ+fxzdtyyZfLfqUE0gJFBgcNz1d0NfPQRK7XVeO78/HwMDg4KnqKcpwHYV1DxZ//48eNO26oHXu3nsIDmm28C/+f/sLlCzkTj9GlWon3nne43yImnKvf85Ofno7+/X9fChSaTCfG2VQ58VXSgSzQopX0A7gCwhhByJSHkdjAP4y1Kqcqyj4GLUl7BFVeSwzvO+fPnVbc8la1gMpuZcX7kEfvXecdua7M3mFxMxOzcydYqkhl9ZWVlCWv3OHz32rUshCHHmTOssmfBAvn3ZQxPZGQkJk2a5CAazc3NjntTUMoSlOI69i1bWPv5bzCb2WhZSdj0oCAaADBv3jwhTyCLraQSV1018pr4/oiv+dtvM0PNjZ2S8X/vPTZvQGkErFbwIIIPChyM1qefAsuXM+MqRSH0lZ+fD2DEU5SKRl5eHkJCQuxGwLyMnK+J5SlkS8StVnbdHnhAPVfE+fOfWZmxKyXaUhSen+zsbCQnJ8s+P0qetxomkwkFBQWIi4sbPZ4GIeQLQsiLhJC7CSFTAZwD8F0AnwNYD+C7lFK/7nXhTbiBlxqxOXPmoKGhQXcckVKK5uZmjB8/HhaLRTUvIutp7NzJwk+2mm8BbmzkPA1pZ/nkE+Cb35QVFEIIpk2bhpiYGPvwS18fq99XmnzEz6mUR9AYFweYYXHI4xw5wgzm0NDI5ki8yoW3acsWdm1mz5Zvgx5URGPjxo1Yv3698me5lyE28OL7093NKnouXmQexL33Oh4nZmAA+OILh33LHdqrlmy3oSga69ezEbkcCvdO7Cn29fWhp6fHrp+EhoZi8uTJdoMr3l/Ky8s9OiFNtq8cPMjKrmfPlh88iTGbmaflbliTo/D8hISE4OzZs3iSF6qImDFjBgghukUjLS1NsejAG2jxNIoBFAB4GcAZAN0AfgzAAjYn45w4OX6poeRpzLWFE4qLi3Wdr7OzE0NDQ7jmGlZkpuStUErlZ2Vv3MhmDUvh4iD1NKQd3mxmS1CsXq04+lq+fDlmSw3vli1sdrCSaHz8MXDHHfLv8XbIdKL8/HyUl5ejV7R0uqxovPMOGzHy39nZyZbcePDBkd9w+DCwapVyG/SgIhpxcXHKK6l2d7OZ6PfdZ/+6OHwIsH+XlwPZ2UCKaEk1HpIbGBh5bccOZvjU1gELC2O5CPHnZLjjjjvw2GOPCaNaAEBDA1tyRpwjE6Nw78Seotrg6tixY8Lf4mVF9BhHZ8h6p1wICXHuaezbx0psXdyYygGV5yc1NVV2Ic6oqCjk5eW5JBp8Do4vcCoalNKfUkpvpJRmAMgAW95jM4AdAJYDOAKgmxDiu9klPoSLhvSB5EZVr2jwzrV8+XIEBwcrikZ3dzf6+/vtxaq/nxn8u+5y/IB4JCsNT4k7y/79rGNMmKDYkV588UVhqQOB995jo2e5jldezsoZRTOkFdsnIT8/H5RShxCGnWhQypbW+Pa3R9rc1MS2Z83MHGlTR4e9AXYHlU6vypdfAkuXst8rRizqAPt3R4e9Vyg+VnytuBfnDA15jaysLKxdu9Y+X/T++2zRw8hI3eflnqKSaMyfPx91dXVCPzKZTMIaZ57Ka5jNZrS1tdk/M9xz4F6cM9HYtMn5Phl6cPH5kfO8lRgcHERnZyfS0tJw991345lnnvHJlrF6cxomSul2Sun/UErvppROBRALYAXY+lCXHCaTCaGhoUhMTLR7PT4+Hrm5uXajKK3nA9gyyVOmTFEUHVkPZ/t2ljCVS8KKY+ZqifBt20ZGlAodKSgoyH62cF8fi9N/+9vMgEtHsx9/zDqc2n7TCnFxPuLlBsRisaC1tdXeABQXs89PmsSSwTyhnJTE/ubeT3s7ILlPLhMezkJIot3wNLFlC5ukJ0Us6sDIb5Brr/SeffaZNoOmMa/hwOefq8+cj4hgIUGZazFr1ixUVFQIyXCpaMybNw8AUFRUBIANCBYsWICEhASPiUZbWxsopfbPzKFDbCtWvuGSmmjwQYmnRUPrZEIR+fn5uHDhAvoly6rLwb22tLQ0XH/99fjhD3/ok3133P4GSmk/pfQQpfQNTzRotNHU1IS0tDTZbU3nzp3rsqeRlpaGxYsX49ChQ7KTcmQ9nH/9SzmureZpiA1QY+PITNeICJYsVEnGA2AVPvPmsXNxoy3GWWhK3D4Jubm5SEpKwuHDhwEA7e3tsFqt9gbgX/8aWaVWXIWUlGRvDKS/3R0I0d/xLRY2kezmmx3fE4enCLH/DUrHAsy77O7WFjbRMFfDge5uVpJ6jcqcXEIUBWnBggWglOLzzz8HIB+eIoQIS2fwcEpBQYHuvqMEN552z8zWrfahSrVJrsePs7k0cvNfXEWhesoZBQUFsFqtOHHihNNjlbw7bzNql0YfLUjnaIiZM2cOysvL0aVjUUDxjV66dCna29tlk+F8B0JhTSNKmaehNMtZzdMQt088utUS6wWYd3LTTezf8fH2eY3aWrbJkrhSSKl9Mp2IEIIlS5bg0KFDABQMwOefjxhi/v1i0RB7Gp4SDUB/iOHQIbZIpGg7UQGxqPOFJJXaK75nHR3sGC3zBjSW3dqxcyeweDEzcs7OLXMt+Gz4rVu3AnCciBoTE4Np06ahsLAQQ/TGbmIAACAASURBVENDQjhl0aJFKC4u1jSidgbvU3bfvW2bvWioPefbt7Nj3Z2bIcbF8BRfOZn3BzVkf7cPMETDCdzTkGPOnDkA9JUPilfMXWKbtS33gHDREB6IM2fYaEhaNcVR8jSkhsRZzkMKpfYdUOppfPIJC3c523dDxaAtWbIEZ86cQUdHh6NomExsIiOfocvby40p/5tS/4vGF18oJ+LFOY0JE+x/g9yx/Frp+U2uiIZ0RK7z3AkJCZgxYwa6u7uRkJDgOBEVLK9RVFRkd2+XLVuG4eFhj0zyE4dpALBJoLW1rKSco/acf/klcP31brfDDq3PTl8f81Bt8C2l9YiG4WmMMlpaWhSVfIFtTsKBAwc0n89kMiE1NVVY0C0hIQEHDzqu+s5FI4Undr/4gnkZSqOh+HhmkHp77bc0lXYWqaFyJhrnzrHwFd8bWZxDAFiug3shaqiETvhWpIcPH3YUjZ07WVktrzaRhqfCw9mM8/5+ZSPsKnpF49//Vt7hTSzqXDS05DT0/Ca9OQ3pgEANlfvHBz9KxmvevHlobGwUwlFpaWnCsvL79rm/kITDM7N9OxMBcY5N6Tnv7WWVY848Zb3ExMjuE+7At7/tsEHX0qVLZW2CFEM0RiGUUrS0tCgue52SkoL8/Hzs3r1b8znFE6CCgoKEvIaUlpYWxMfHj5Tmbd9uv/KolLg4oLqaGSG5+QEcvZ7Gjh3se8XLkohFo7XVfnFCtfYpGJ0FCxYgODgYhw4dcnS5d+2yj7dLE+G8Tc3NLFEbHe28LVrRIxpdXWw2sU0AHYiPZ14TpayQwVlOw5U8jd6cxrlz7L6K1tNSROX+cdFXMl48hPXxxx8DYPc2MTERM2fO9JhohISEjCwhsnOn/V4jgPI8ja++YsUlzsJzegkJGVlEVAmzmX2/ZCHFJUuWoK6uDrW1tapfYTKZEBMTg6ioKE+0WDMeEw1CyHhCyCUlQhcvXsTQ0NCIaHz4ISt5FXH11VfjwIEDqjO7xUhnzS5duhSnT5922LHLTqwGB1m8XC1ZGRfHltOQGhhxZ+EhHPHo1plo7N3LRvocaXhKq1FTGQXHxMRg1qxZOHjwIJqbmxEUFDSyQdDu3fa/W+xp8N+RkMDWGJIKprvoSYTv3ctyA9KlTzhxcayNycnywic9Vhye0loRpjc8tWcPu7da8yUK98+ZaMybNw8JCQn4xLYEDB8QLFu2DAcPHhTWrnIVXqJNCGHP+J49jp6D0nO+Y4fnQ1McZ8/PiRPs/Y4Ou5f59XQWopKdm+IDPGnkqwAcJ4Qs9+A5/YpDMvrdd9kkIBFXXXUV+vv7NcdmpaKxfPlyUEodvJXm5uaR7/36a7ZTm7T2X0xcHBMXad2/OKna08NGP+K4s7NSxL17gRUr7I8XC1xHhzaj5sSgXXHFFTh06BBqa2uF8B2qq1mbRYsoOoSn+GuVlZ4NTfE2a91+c+dOtoeJ2rlqa+3zMFpFw1vhKTnjqnZuhfs3efJkZGdnj6xbZjbbhWWCg4NxzTXXCDPA+fO/bNky9PT0uF16azev5/x5NsqX7oUREyO/IdmBA/bPtydx9vzs389WUJCIRkFBASIjI52GqNSiIN7Ek6LxMIBPALzk7MBAwU40KGWjfV5nb2PFihUghAhbOGo5pzhHsnTpUsTFxQnVJ+LjhAfiq6/YukBqcEGRGpiICJZoGxyUN/BqonHmDBstics9pZ6G1pi7k9DJDTfcgL6+Pnz22Wcj12f3bseRsLR6ir/mDdHIy2NGSAu7dqmLRnw8K28Wi4bStXM1PKVk2BsaHEObSiNyJVTuHyEEJ06cwC9+8Qv2wqOPss2cRKy0hYsiIyMRbQshrrAZ65069rGXw040+G+Sek+8hFr6G1pa5Oc9eQJnz8/+/WwLA4lohIaGYvHixU7D3gEpGoQQYS0FSunfKaVrKKWL1D4TSNiJRnk5i99LbnBSUhIKCgo05TV6e3vR399vd6NDQ0Nx/fXXY+vWrXbzNezERYto8GUtpJ4GL6uVq6wC1EVDyc3no6f+fmYIlWYSi3HiaVx99dUIDw9HR0eHfT5DHBoTt1f8W3h4ytOiMXMmy1NooaICEK0Q7AAX9eRke+Fzlgj3RE6jtpbtICjm/HlWXMC35HWGk/sXFxc3sqnQ7t2sgkkEFw3xnKfMzEwUFBQ4DJi0Ul1dLVTcOYiG0m+QPutaPWVXUHt+KGVRi1tvdbApAHDTTTfhxIkTqKurUzx9S0vLSKGMD3HX09grfYEQ4sEZMv7FTjQOHWIrgEo8DYB1iP379zudr9Ha2goADjd61apVaGhoECb0UErR2trKvtdsZt/tbFMYHnZSC3foFY29ex07oLh6inc4N2PiANu57CrbdwkGQO53c09HPEqPj2dG2xuiobaS8a9/zUSTL6KoloTnos49jZYW5v3JJWCl1VPu5jTa29l5xEtM7NnDwjJac0BaQ191dUBNjUM/ycvLw4QJExwqEVetWqWp78hx00034eGHHx4RDR5OVRIN6bNutbLfJK429CRqz09lJQtNzZkjKxqrbBVt27Ztk/24nY3wMS6JBiHkVkLIzwFE8y1gRWyQ+0wg4iAaN90ke4Nvu+02DA8PK95gjpJo3GibsMdHXJ2dnTCbzex7S0rYcghyaxRJiYuTP85VT6OoCFi40P41cXhKbzmokyQt7yhjxoxh5zaZWC5H2t7OTvYfr5bh4SlPjxhzc1kb5JKZw8PAs8+OGOSEBHUDHBLCRIWLBi9akPuMuHhBj6eRkCA7qBEEQ2z0T5xg+5FrRWuSnZefy7Rj7dq1eOGFF+xeW7VqFSwWC3bs2KG9LTZqamrwr3/9C729veyZqapiwqG0t7f0We/qYqKttvyNO6h5GjU1bKfGxERZmzJ9+nSMHz9e0Qvr7u62L9LxIa56GscBtAJIAfB3QkglIeQgIeQjAMMea52faWlpQVRUFIvBHjzI6tllOsPixYuRmpqKzZLKKrnzAXC40RkZGZg/f75Qkmh33P792reejI9Xn2EsZ+TVRKOtje1vLT3elbWeoqLYyFplLScuGhkZGWzfjjlzHDt0fDwLt8TEMEMMMGPZ1OR5TyM4GJgyheV2pPCOzkVDazEAFw3pasTS41zJaUydytoqnRsgbitHuoS+lrZrKQo4eJCJkYwhvO6664TVnTmLFy9GQkKC7hBVf38/ent7MWxbJn/MmDFs+fzFi9XnMomFz5uhKYCFK8vKHJPv4u9WEA1CCFatWoV///vfspWZSrbEF+gSDULIdYSQhZTSakrpWgCrKaXXUEonAPg2gN8DUKkLDSyERFNvL6tpv/ZaWdEIDg7Grbfeiq1bt2JIxSgqeRoAcN9996GoqAhnzpyxfyCKipQ3NpLCjZLc63o9DYtF3nV31dMghI2sVHY7nDhxIrZs2YJHH32UVYzJ/e74eFYFI51rAnheNADl0SLv6G1t+kSD5zQAddFwxdPIzGQehaTuX1Y09BrMSZPYNsPOOHCArRAg5/HIEBISghtvvBGff/65IABa4H2JI4jGIpWUqtxEV2+KRnQ0S7KXy2xqyvuOgmgAwDe+8Q309PRg165dDu85TP71IXo9jT8CEOIFlNKvAIAQkg9gmFJ6mFKqcx2D0YsgGidOsFFDYiIbNcjsWXD77bfj4sWLqglxO9GQuPr33HMPgoOD8e6779qLxrFjI1uBOiM9HRg71vF1tcSrkmh0dbE4vNxIX5rT0Mrcuez3qHDLLbcgOTlZWTQiI5mHIZ1rAvhWNLhR1CMa3BOMjWUiqvQZaXhK6zUmBCgoYAvwybXVHdGYMYPljdQmq/X2AmfPsol1GkUDYM9+S0sLvvjiC82f4X1p4sSJANwQDW88M2LUnp/ERNam7m77fJONlStXIikpCe+8847De/z3p6amsi0L+JL7PkCvaEwCsF/m9YUA3nW/OaMLQTSKi1mohBD2kCm43omJiXj77bdVzxccHIyE2lrmRotIS0vDjTfeiPXr14+scBsTw2L14nkKamzaJL+nxaRJrDPr8TQ6O+WNijtLkc+Z41Q0BJREgxDWBvHv4LkNb4mGXDLTlfDUihVs8BEUxIRDqb3x8SyP0tvL/q8nUVtQwAY5Sm0Vv6bn3oWFsfCX2l4PFRWsGiszU5do3HjjjUhJSZE1jkpwo/nf//3feOihh5A/ZQoTS7U8jfRZ9+RS+kqoPT+JiWxQFhsr2wfDw8Nx9913Y9OmTQ6FAsLAMi4OeOMNtmioj9ArGp0A5IJo+wFojKEEDsIEu5ISZvAARXcyIiICDzzwAD755BPFLWBbW1uRnJyMoOJiVjsv4YEHHkBdXR3efZfpb2pjIxMMmV2+ZAkNlY/nzpvHwlx6REPJqMTGMmNmsegfqWnwNACw5dv7+9UTmr4MT504oZwn0ONp/O53IwMApfwTwO7j9OmswikuTl+iVs7T6OhwrPxzJTTj7P7xcyYlKYsGpcxrEXnrYWFhuOeee7BlyxZ0KIRqpHCjOW/ePLz11luIKCtj8yLUlgPxdXgKGHl+pIi/WyVEdf/992NgYAAfffSR3ev896e1tbHoxyj2NDYB+InM68G2/y4Z7NadKi4e2XdapUM8/vjjGB4eVvQ2WltbWWjq+HH28EpiuLfffjvGjh2LgwcPIjY2FmGnTmkPTakxbx7r7HpFg4/gxfBRMs+R6PU0jh+XdcXtOHUKmDVLPaEpJxreMADjxrH2StcBEo/eXRmxqokGwLysL77QL4RK4am8vJHnllJlT1INraLBZ1/L5ff6+1myXpKTeOCBBzA4OKjZ23DIDzoLTQGO8zR8IRoLFrC2SREPuFREY+HChZgyZQreeOMNu3lcra2tCA8PRyTfVkFyPb2JXtH4LwALCCGfEULmAAAhJAbAzwHIyGng0tvbi4GBAYxJSmIPeUEBe0MhPAUAU6dOxVVXXYXXX39dNqknTMbhnVoiPqGhoXjiiScAuJDPUCMjg41eT5xwNEKRkcyISGvw1TqUeEaznk6XlMQSwc5cabmqLen3+yo8RQibtStdB4gLhR5PQ0x8vPpnFi5ki1TqPe+0aSzxKs67dXSwIgT+vPX2sudBqwfLcSYaXIh4vkaun/DQpsTIzZ07F8uXL8eLL76oaY+N1tZWEEJGdtQsLQXy89U/lJdnX4jhC9HIy2P3QjpJTzzQUBENQgieeuopfP3119i+fbvwOh/QEr6B1GgVDUppO4DFts8VEUIGAXQBuBHAM55vnv/g7t9Es5kll7nbm5ioGq996qmnUF1dLYSYxLS2tiKVi0ZSkqxL+dhjjyEmJsY+l+IJ5s2T9zQIYXFg6WhIbSTK8xquJBK15DWcjYKVPA05z8gTyIkGN8SuioY0LyNlwQI2a1vv9Q0PZ+0Slwl3dNh7Gq4ay1mzWG5MqUJQ7J0qeeTcOEqMHCEEzz33HBobG/HGG843AW1paUFycjKCeehOy7O4aBEr5eYDOl+IhtKgQ2N4CgAefPBB5OTk4NlnnxW8DSEKcvw4y4+O4vAUKKX1lNJvAMgGK7O9GcBkSqnzXUMCCC4aEzo7R0JTgHq8FsDNN9+M+fPn49e//rWDt9Ha2oqJvPpn+nTZ0UFCQgLefPNN/PQnP2EJNGejJ61wj0WukyxfzpYqEaPWofgI25WwzNy5rOOq4awzT5zIJt5xEhKAjz7y3iStpUuVRUNPIlzMc8+p72MxfTqb2+KK97RoEZsvwZGGp1w1llFRLM+kNGFNLPZK/UTB0wDYWlRXX301XnjhBVx0MpFQCPWKz+ts0JCQwBL1PMfgC9EAlJ8fjaIRFhaGX/ziFygsLMSmTZsA2ESDD0CvuWb0ehpiKKW1lNItlNJtNg/kkoKLRnpTk71oOLnBhBD86le/QlVVFV5//XXhdavVira2NkwfHmahruRkxdHBnXfeidtXrmTi4qm18ufNY+eTSxQqiYZSJ5w9m1U3ueJpXHmlw0rBDjgzAC+9BKxePfI3Ic73KHeH+fOZoZQL+bjqacydq/6ZkBB2jCuisWLFyP0cHGQj63Hj3BcNgFXnKd0/8Xl1ehqcF198Ec3NzXj++edVm+EgGlp/09KlI4Lq6Z0elVDyNDTkNDgPPPAAZsyYgaeffhqDg4NobW3F5Kgo5lnOmDG6PY3LBZ5oi6+ttR/tO/E0ALYmzvXXX4+f/exnqKioAAB0dHTAarViYm8vE42UFPXRgZaRkx4WLmSb7cgll5cuZaN/8cxTtU64YgWr7HHF+CxaxDwotXWMfDUC1EpkJBv5ixf9a293z9PQwpIlgCv7Py9fztZgonTEOCUne0Y0rrqKnVsOLeEpFU8DYBtyPfjgg3j55ZdxQSX35bDCq9b+smTJiGj46jmbP595N3zQYbXat1eDaISEhOBPf/oTKioq8PLLL6OlpQWzrNaRAWggeBqXOm025Y6oqGBKztFwgwkhWLduHYKDg/Hggw/CbDYLIpTZ3s5iwyqeBgDPP9AZGcqLp8XFsRp8cdhILa+wbBnreK60MTKSjaDV9grwtGB6gqVL7UfYPE/gqqehhV/9CnjGhVRhdja7zmVlIyFEcS7OnfZyL0auAk5LeKqjg1XgqRi5559/HhEREbjrrrsUk+Ie8TR8JRrR0axA4euv2d/d3SyCwJfB0WBTADYXbPXq1VizZg26u7sxDmDhtpSUy8PTIIS8RQhpJoTIBkgJ48+EkAuEkBOEEA+UEWmnra0NSUFBIF1drBNyNHgaADBu3Dj89a9/xb59+/DMM88IohHb388MuDPR8LXh5KNTjlqHSklhD2t4uP4KHEB9tOrsu/3FddexPcA5HR1sIcmBAbZirTfaGxmpbdl5OVasYNdYvMZRe/uI9+Fqe7Oy2HOpNmENUPc0cnJUn/2MjAysX78excX/v707D4+iyhc+/j1ZSMgiW1TAoDDKmoUEwyagzqCyCEREHdCgoIg41wW9+IBXRR65zMiAKMyMjguIcB3Qq7KI6MzL6/W+yoAOWxQQN8iYBAZjhyWsCcl5/zjVSafT3elO0l1N+vd5njxJKpXqX1dV16/OUufs5J577qHKLUE5R3gdUFZW0xvK389L167mqfbCwtCeZ67nj/vr+pk0AF599VVSrVEf2kZFmf+NoJLGckyvK29GYJ5A7wpMBV4KQUzVSktL6Z+cjOrVy9wZOfmZNADy8vJ48MEHef7551m4cCEA8WfOmJO7vuqpUF84f/WruhdFX69/zTWNu1s935LGtdeaHmbOYTScA/61bWsedGzqOaYby3kT4KyeatnSdBQ4darx+9fb8XOvnvJ0IXS2BdVzkRs9ejS//e1vWbVqFVOnTq2VOI4dO0ZlZSVX7dsHH35oEre/87ooZeZo+etfA3/avjGuvx7+9jfzs3sHkgCSRrt27Vi3bh29evXisgsuqEkaDkfdB1CDxLakYY1b5evqmwus0MZWoLVSKkhTbNXlcDi4Mj6+dtUUBHSAAZ577jlGjBhR3euhxalT5oMVbiWNa681xWfnMOC+GsKhcUlj4EDT6+PkSc9/D8fqqeRk0134009rX6TatWv6ucmbwtCh5ibg55/r3v03Nmlce61p03Lnb+8pP5IGwMyZM5k9ezZLly5l7NixlFrbc3ZSSa6sNEPXO88Xf4/B8OHw1lvmmEaF6BI4aJApnXnqqh7gNSU9PZ09e/ZwcVyced/x8abEH8hUv40Qzm0alwCuj+EWWcvqUEpNVUptU0ptc55QjeVwOMiIiqqbNAIoaYB5YO+9995j5MiRtGzZkpgTJ/wraYT6wpmUZJ4NcF4M6ntWYvRocOkdFpCEBNO33NscCuFY0oCau0VnfM6xyMIx1s6dzQCWrg8INlXSuP56Mye6+/Ma/vae6trVr6Th7Im4ePFiPvzwQ7Kzs9myZUt1VW/i2bMmaQT6fm64wcwuGMrjFh9v2lM+/rhuvO3bm/k1KisD26brdkLYrhHOScPTbYPH8pfW+hWtdY7WOqepxpd3OBx0q6iomzScD7bVNxSGi/j4eNavX8/3331n2kj8KWnYceEcNsxcZPwZZiIuznwIGio3FzzNP6K1edo8VNUGgbjhBlOt4XpsnCWNcDRmjBnEsqmTRvv2puOEa2mjvNx8OWcv9Kek4Wd1ykMPPcTmzZuJjo5myJAhzJkzB4C4M2fMMPCB3mClppr4Q9Hd1pWn8wdMd+iOHc3cOYFwfd8hbNcI56RRBKaDgCUVqDvKX5CUlpZy2cmTdZNGbKy5U/rii4C2Fx0dTcfk5Jqhveu7M7CjimbYsJq63rg4816DZcwY2LCh7gQ1ZWVmHwXztRsqJ8c0en/xRe0LcTgnjbNnay6OTZU0AG66qXbSd68i8lXSuOQSs56vYdbd9O3bl507d5KXl8cmq+2txalTDStpgDnXQ33cbrwR3n/fc8eJX//aVJkFwrUKWUoaAKwH7rR6UQ0AjmmtD4XqxSt//pmWlZXmLsDd+PGwalXgG3Xvm330qPciaUMGlGus3r3NB3nr1uAnrMsuM3d87l1vw7E9wyk6Gm69FV56qeZCHM4ljZwc01PPGV/nzuYhxaZIGs6SorO04L7NDh3Mna/73a/z+NZXPetBq1atWL58OXv37uW/336b6GPHardpBGLiRPMeQql7dzPa8Lp1dUs5t90G777reZY/b1yvEZFQ0lBKrQK2AN2VUkVKqXuUUtOUUtOsVTYC+4HvgVeB34QqtjNnznDJ6dMcSUnx3Lg2YQK8/XbgdZCuJ3d0tO8pNOtriA4Gpcwdzx//GJoLYW4urFlTe1m4tmc4TZhQu6SRkhL6ag5/RUXBvHk1c7fk5cHrr5s70sbu4x49TFWU89kD9/M1MdGUdNxHrXUe3wYkDafu3btzy403ml9++qlhw9lkZZnJi0LN/fxxuvxyc4PqqYOBN5FW0tBaT9Bad9Bax2qtU7XWS7XWf9Za/9n6u9Za/5vW+nKtdYbWup4Bi5qOw+HgcuBU+/aeV+jWzdRB+uo26ol76cHXB8euO+68PFOEDsWF+4474M03/X8SPRwMHGiez3DGePfdDXsAL1QmTzZ3uGAeqnTekTbFPp44EZYtMz97Khnfey+89lpNaaSy0vSYc05725iL3JEj5vOTkGAmKgvX0qm78ePNd0/7/847a/ZnfaqqTNufa9Jo7iWNcFZaWsoVQPmll3pf6fbb4Y03Atuw+92Yrw+OXRfP7GxzkQnFa3ftaqrE3nuvZlk4V0+BuXu/++6aARMvuqj2w5/h7t57TZtRXFzjt3XPPaYevqzMc8l48GBzcXNWQTqnEI6KavxFznmeXHyxecAvnG80XF16qeny6+mcmTgRNm40bR71cX+qvLFJOACSNDxwljS4/HLvK911F6xfH9iJ735BDMeShlLmjqchYx41xLRptbvuhntJA+Dpp2H6dLujaJjbb4cHH2yabXXoYJ4HefNNz8dNKZg61bQBQe3SSGOThvP1Lr7YzKURzjca7j78sM50z4B5P2PHwvLl9W8jkFqLJiZJwwNn0ojt0cP7Sikppk5+6VL/N+yeCFJT/RtmOtRmzIBFi0LzWmPGmHkjdu0yv4d7SeN8d8EFMH9+021v2jT4wx+8tytMngwffGC6xrrXwTdVSePAgfC/0fCX8yaqvgZx98/JL38JTz4Z3NgskjQ8cFZPJTpn6/PmgQfMXZS/PR7cE8FvfgNLltR9Mrqy0nR7TU4OKO4mExsbuteOjTVJau5c8/v5UNIQNYYONdUkK1d6TvZt2pjOFS+/XPv879PHdILwMMOlX1yTRlVV87nR6NfPdElevdr3eu7VgRddZAZCDQFJGh4cP3SI1kCrnj19r5iTY6qw/H0y2v3uICPDjBj7ktuwWseOmTvCUA1xYLdp00y9d36+vSUsETilYM4c+PZb78ftwQfNZ6SwsOb8HzXKVG8tXtyw13WtnoLmc8449+fcub5vRm38nETIVSkwav9+DihFgj+D0P3hD2YI68OH61/XU2Ph7NlmUiHXRqxIu9tOSIDHHoP/+A97uhqLxhk50syT4q23YVqaeRp69uya81op+NOf4NlnTTIJlGtJA5rXOfPLX5r39V//5X0dGz8nkjQ8aFFYSJG/vUt69TL1tv/+7/Wv66m+PiPD9N12/f9IrNd/4AEoKDD135GUMJsDpUz389Gjva+zcKGphnU9tl27muPekE4FzbWkAWZ/PvcczJrlu6OMlDTCR9K//sXhQIa6fvpp8xT1hg2+1/N2oP/zP81DPR984Hu95qxFC9OnPxITZnMQF+d7lNkLLzS9rNwTy6xZplpy48bAXs+9pBGOY5U1Rt++5mby0Uc9/11KGuGldWkppYFctBMTzQVv2jTffay9XRCTkkxRdPJkM6VopFbRDBxoujHn5NgdiQiG4cPNPB+u4uNNe8d99wU0enStpJGcbEZYaG7mzoXNm+uOmgBS0gg37crKOBnoaLnXXguTJpkGPm/zRPhKBoMHmx4mo0ebaVcjMWmA2X8Nna1OnJ+uuw7GjTOJw9+JhJzVU5071344tDlx3kzefz8cdBurVUoa4eXCM2eo6Ngx8H+cO9c0+t18c80k8q7qq3oZO9ZUdc2fH3nVUyKyPfusadO64w7/JhNyHVX3uuuCHp5tBg40bT5XXw07dtQst7EaV5KGG11VRWplJdrT6Lb1UQpeecUMYHfTTbVPfuezFxdc4Hsb990HL7xguuIKESni401jekKCuVAeqmdA60jqYThrlhl4ctgwMz8K2Pr+JWm4KfvxR84BSQ0paYAZC2blSlNs7tnTPKSjNRw/7v+zFw8/HPphm4WwW0ICvPqqGepkyBAzJ7s3kdZh4te/NsOPOJ/AdzikpBEuyvbs4UfMBO4NFhNjGvdWr4bf/c4Unz/5JLJOciEaQinzvM4zz8Att5ivb7+tvU5VlSnF11dqb25yckxp7J13zHhbNg3JL0nDzal9+xqfNJwGTfQsjAAAEg1JREFUDza9ocaONY1Z4TrvghDh5vbbzei1OTlmWuEBA8wDoPv314yW2xx7TNWne3dzA7prlxm7zgaSNNyc27+ffwJtm+oCHxNjHmD64YfAp3MUIpIlJJj6/IIC+P3vTdVuv37mGYZIac/wRCkzpYBNYmx75XD1z3/yI/CrpihpuEpMhCuuaNptChEJkpJM76GrrzZD9nz/vd0RRTRJGm5iDh5suuopIUTTio+H9HS7o4hoUj3lJr6kpGmrp4QQohmRpOHmgiNHOJKUREyMFMKEEMKdJA1XZ8+SePo0FSkpdkcihBBhSZKGq+JiHC1a0EaShhBCeCRJw1VREf+KiZFGcCGE8EKShqviYoq0lkZwIYTwQpKGq+JiCs6dk5KGEEJ4IUnDRVVhIfvPnpWkIYQQXkjScFFx4ABFyIN9QgjhjSQNF1WFhRQjD/YJIYQ3kjRcRB06RDFS0hBCCG8kaThVVRHjcHAQSRpCCOGNJA2nkhIqWrakHKmeEkIIbyRpOBUXczw5GZCShhBCeCNJw6m4mCMtWxIdHU2rVq3sjkYIIcKSDOXqVFTE4RYtaNu2LUopu6OJGBUVFRQVFXHmzBm7QxFNJD4+ntTUVGJjY+0ORQSBbUlDKTUcWAxEA69prZ91+/skYAFQbC36o9b6taAFVFzMoagoac8IsaKiIpKTk+ncubMk62ZAa43D4aCoqIguXbrYHY4IAluqp5RS0cCfgBFAL2CCUqqXh1Xf0lpnWV/BSxgAxcUUVlZKe0aInTlzhnbt2knCaCaUUrRr105Kjs2YXW0a/YDvtdb7tdblwGog16ZYjKNHOXj6tCQNG0jCaF7keDZvdiWNS4BCl9+LrGXuximlvlRKvaOU6uRtY0qpqUqpbUqpbSUlJQ0OquzECUkaQgjhg11Jw9OtiHb7/X2gs9Y6E9gEvOFtY1rrV7TWOVrrnAsvvLDBQZWVlUmbhhBC+GBX0igCXEsOqcBB1xW01g6t9Vnr11eBK4MZUGVlJWfLy6WkIYQQPtiVNP4BdFVKdVFKtQDGA+tdV1BKdXD5dQzwdTADKi8vB+TBPtFwV111FQBHjx7lxRdf9Ot/kpKS/FovkG16UlBQQHp6ekD/s2nTJiZOnNjg1xTNky1JQ2t9DngA+CsmGbyttd6jlHpGKTXGWu0hpdQepVQ+8BAwKZgxlVdUAJI0RMP9/e9/Bxp/gfckGNusT35+PtnZ2SF9TRH+bHtOQ2u9Edjotmy2y8+PA4+HKh5nSUPaNOwzffp0du3a1aTbzMrK4oUXXqh3vRUrVrBw4UKUUmRmZrJy5UpuuukmCgsLOXPmDA8//DBTp06loKCA4cOH079/f3bu3Em3bt1YsWIFCQkJJCUlceLECWbNmsUPP/xAVlYW119/PQsWLPC4LW9OnjzJbbfdRlFREZWVlTz11FOsWbOmzjYXLVrEsmXLAJgyZQrTp0/3+n7mzp1b/bf9+/czbtw4XnnlFfr27es1jvz8fCZPnszZs2e577776NixI/PmzZPeURFOngi3SPVU5NqzZw/z5s1j8+bNpKSkUFpaCsCyZcto27Ytp0+fpm/fvowbNw6Ab775hqVLlzJo0CDuvvtuXnzxRWbMmFG9vWeffZbdu3fXSoCetuXtXPvoo4/o2LEjH3zwAQDHjh2jf//+tba5fft2Xn/9dT7//HO01vTv359rrrmG7Oxsj+/n+PHj1bGPHz+e119/naysLABGjhzJa6+9RseOHWvFkZ+fz0UXXcSwYcOYMmUKeXl5ABw5coQ2bdo0er+L85MkDYskDfv5UyIIho8//phbbrmFlJQUoKa0uWTJEtasWQNAYWEh3333He3bt6dTp04MGjQIgLy8PJYsWVIraXjiaVvezrWMjAxmzJjBzJkzGTVqFEOGDOHIkSO11vnss88YO3YsiYmJANx88818+umnZGdne3w/x48fp6SkhNzcXN59913S0tKqt7VxY60CP2CGdykoKGDChAm8/PLLDBw4sPpvjzzyCMuXL/f5fkXzJQMWWiokaUQsrXWdKpdPPvmETZs2sWXLluq6fedTzu7r1ldd42tbnnTr1o3t27eTkZHB448/zjPPPOMx5kDeD0CrVq3o1KkTmzdv9hkvwN69e+nbty8xMTFER0dXL//oo4/Yt28fCxcurHcbonmSpGEpLy+nRWwsLVu2tDsUEWJDhw7l7bffxuFwAFBaWsqxY8do06YNCQkJ7Nu3j61bt1av/+OPP7JlyxYAVq1axeDBg2ttLzk5mbKysurffW3Lk4MHD5KQkEBeXh4zZsxgx44ddbZ59dVXs3btWk6dOsXJkydZs2YNQ4YM8fp+AFq0aMHatWtZsWIFf/nLX3zGkJ+fz1VXXcXq1auZPHkyhw8fBiAlJaU6LhGZJGlYysvLSbbm0xCRJS0tjSeeeIJrrrmG3r178+ijjzJ8+HDOnTtHZmYmTz31FAMGDKhev2fPnrzxxhtkZmZSWlrK/fffX2t77dq1Y9CgQaSnp/PYY4/53JYnX331Ff369SMrK4t58+bx5JNP1tlmnz59mDRpEv369aN///5MmTKluqeTp/fjlJiYyIYNG3j++edZt24dYNo0Dh6s9ZgU+fn5pKen061bN+bPn89tt91GRUUFX375Jb17927U/hbnN+WrmHs+ysnJ0du2bQv4/7Z26MBbcXE8X1DQ9EEJr77++mt69uxpdxh+KygoYNSoUezevdvuUGyxfv163n33XWbNmuXzuJ1vxzXSKaW2a61z/FlXGsIt5eXlJEl7hhA+jRkzhjFjxtS/omi2pHrKItVTwh+dO3eO2FKGECBJo1p5RYUkDSGEqIckDcvDcXH8cMUVdochhBBhTZKG5eeoKCpkTmMhhPBJkoYQQgi/SdIQQgjhN0kaQggh/CZJQwghhN8kaQghhPCbJA0hzkOeZvJzTjcrRDBJ0hDiPOQpaTinmxUimCRpCIGZHjUzM5PevXszceJEABYtWkR6ejrp6enVE0QVFBTQs2dP7r33XtLS0rjhhhs4ffo0J0+e5MYbb6R3796kp6fz1ltvVa+fnp5e/ToLFy5kzpw5FBQU0KNHD6ZMmUJ6ejp33HEHmzZtYtCgQXTt2pUvvvii+v979OjBXXfdRWZmJrfccgunTp2qNaXsY489BkBSUlL16wQSe30OHjzIuHHjyM7OpkePHtWxiQiltW5WX1deeaVuiNatW+uHHnqoQf8rGm7v3r21F0DTf9Vj9+7dulu3brqkpERrrbXD4dDbtm3T6enp+sSJE7qsrEz36tVL79ixQx84cEBHR0frnTt3aq21vvXWW/XKlSv1O++8o6dMmVK9zaNHj2qttT5w4IBOS0urXr5gwQL99NNPV2/nyy+/1JWVlbpPnz568uTJuqqqSq9du1bn5uZW/z+gP/vsM6211pMnT9YLFiyos12ttU5MTNRa64Bj11rrESNG6OLi4jr7pqKiQmdmZur3339fa631yZMn9fHjx3VpaanPfVrnuIqwBmzTfl5jpaQhwksw0kY9PE2P6jqdalJSUvV0qgBdunSpnl/7yiuvpKCggIyMDDZt2sTMmTP59NNPadWqVb2v26VLFzIyMoiKiiItLY2hQ4eilCIjI4MClyH63aeX/eyzz3xuN9DYwUz56j5HOMDatWvp2bMno0aNAiAhIYHk5GQeeeSRet+faJ4kaYiIpz1Mj6p9JJu4uLjqn6Ojozl37pzXKVpjYmKoqqqqXt91mlfX7URFRVX/HhUVxblz56r/Fuj0soHG7suuXbvqTBolU75GNkkaIuJ5mh7V13SqnniaohXg4osv5qeffsLhcHD27Fk2bNgQcHyeppd1n/7VVaCx+9K+fXv27NlT/XtJSYlM+RrhJGmIiOdpelRf06l64mmKVoDY2Fhmz55N//79GTVqFD169Ag4Pk/Ty7pP/+oq0NjB85SvAJMmTeLw4cOkpaWRlZXFli1bZMrXCCfTvVratGnDnXfeyeLFi4MQlfBGpgX1LRynl/Vnylc5rucXme5VCBE0MuVrZJPqKUtubm51rxIhwoVMLyvCjZQ0LMuXL7c7BCGECHtS0hBCCOE3SRrCds2tM0akk+PZvEnSELaKj4/H4XDIhaaZ0FrjcDiIj4+3OxQRJNKmIWyVmppKUVERJSUldocimkh8fDypqal2hyGCRJKGsFVsbCxdunSxOwwhhJ+kekoIIYTfJGkIIYTwmyQNIYQQfmt2Y08ppUqAfzbw31OAn5swnKYicQUuXGOTuAIjcQWuIbFdprW+0J8Vm13SaAyl1DZ/B+0KJYkrcOEam8QVGIkrcMGOTaqnhBBC+E2ShhBCCL9J0qjtFbsD8ELiCly4xiZxBUbiClxQY5M2DSGEEH6TkoYQQgi/SdIQQgjhN0kagFJquFLqG6XU90qpWTbG0Ukp9T9Kqa+VUnuUUg9by+copYqVUrusr5E2xVeglPrKimGbtaytUur/KKW+s763CXFM3V32yy6l1HGl1HQ79plSaplS6iel1G6XZR73jzKWWOfcl0qpPjbEtkAptc96/TVKqdbW8s5KqdMu++7PIY7L67FTSj1u7bNvlFLDQhzXWy4xFSildlnLQ7m/vF0jQneeaa0j+guIBn4AfgG0APKBXjbF0gHoY/2cDHwL9ALmADPCYF8VACluy34PzLJ+ngXMt/lY/gu4zI59BlwN9AF217d/gJHAh4ACBgCf2xDbDUCM9fN8l9g6u65nQ1wej531WcgH4oAu1uc2OlRxuf39OWC2DfvL2zUiZOeZlDSgH/C91nq/1rocWA3k2hGI1vqQ1nqH9XMZ8DVwiR2xBCAXeMP6+Q3gJhtjGQr8oLVu6IgAjaK1/n9Aqdtib/snF1ihja1Aa6VUh1DGprX+m9b6nPXrViDk45l72Wfe5AKrtdZntdYHgO8xn9+QxqWUUsBtwKpgvLYvPq4RITvPJGmYHV7o8nsRYXChVkp1BrKBz61FD1jFy2WhrgJyoYG/KaW2K6WmWssu1lofAnNCAxfZFBvAeGp/kMNhn3nbP+F23t2NuSN16qKU2qmU+l+l1BAb4vF07MJlnw0BDmutv3NZFvL95XaNCNl5JknDFNvc2doPWSmVBLwLTNdaHwdeAi4HsoBDmKKxHQZprfsAI4B/U0pdbVMcdSilWgBjgP+2FoXLPvMmbM47pdQTwDngTWvRIeBSrXU28CjwF6XUBSEMyduxC5d9NoHaNych318erhFeV/WwrFH7TJKGybydXH5PBQ7aFAtKqVjMyfCm1vo9AK31Ya11pda6CniVIBXJ66O1Pmh9/wlYY8Vx2Fnctb7/ZEdsmES2Q2t92IoxLPYZ3vdPWJx3Sqm7gFHAHdqqBLeqfxzWz9sxbQfdQhWTj2Nn+z5TSsUANwNvOZeFen95ukYQwvNMkgb8A+iqlOpi3a2OB9bbEYhVV7oU+FprvchluWsd5Fhgt/v/hiC2RKVUsvNnTCPqbsy+usta7S5gXahjs9S6+wuHfWbxtn/WA3davVsGAMec1QuhopQaDswExmitT7ksv1ApFW39/AugK7A/hHF5O3brgfFKqTilVBcrri9CFZflOmCf1rrIuSCU+8vbNYJQnmehaPEP9y9MD4NvMXcIT9gYx2BM0fFLYJf1NRJYCXxlLV8PdLAhtl9geq7kA3uc+wloB/xf4Dvre1sbYksAHEArl2Uh32eYpHUIqMDc4d3jbf9gqg3+ZJ1zXwE5NsT2Paa+23mu/dlad5x1jPOBHcDoEMfl9dgBT1j77BtgRCjjspYvB6a5rRvK/eXtGhGy80yGERFCCOE3qZ4SQgjhN0kaQggh/CZJQwghhN8kaQghhPCbJA0hhBB+k6QhhBDCb5I0hAgBpdRCpdRHdschRGNJ0hAiNPoS+qeXhWhy8nCfEEFkjRN0Eoh1WbxXa51mU0hCNIqUNIQIrkpgoPVzf8wkOoPtC0eIxomxOwAhmjOtdZU1AF8Z8A8tRXtxnpOShhDBlw3kS8IQzYEkDSGCLwvYaXcQQjQFSRpCBF9vzFDWQpz3JGkIEXwxQA+lVEelVGu7gxGiMSRpCBF8T2BmhCwCfmdzLEI0ijynIYQQwm9S0hBCCOE3SRpCCCH8JklDCCGE3yRpCCGE8JskDSGEEH6TpCGEEMJvkjSEEEL4TZKGEEIIv/1/oaWlk/+j55UAAAAASUVORK5CYII=\n", - "text/plain": "
" - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGMCAYAAAD0nYndAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXeYHFeZ7t8zOYee6RmNNCPNKIdRlqMs5AjYYBkbr7Gw\nWZKBXcyywGXxYpawy2XZBfbaYAO7gAGD1yYYsGXjJGPJyJatNMoapRlpcs6aHM7946ua6VDdXVVd\n1d01/f2eZ56WuqurT3edOuc9XzpCSgmGYRiGYZhYJCHaDWAYhmEYhgkECxWGYRiGYWIWFioMwzAM\nw8QsLFQYhmEYholZWKgwDMMwDBOzsFBhGIZhGCZmYaHCMAzDMEzMwkKFYRiGYZiYhYUKwzAMwzAx\nCwsVhpnFCCG+IYSYEkK4IvBZm4QQbwohLgkhJoUQa+z+TKchhPiIcj3mR7stDOMUWKgwTBQQQnxY\nmbDUv2EhxBkhxCNCiCIT57tKCPF1IUSOz0tS+bMVIUQSgKcB5AP4HIAPAagLcvz3hBA7hRA/sLtt\n0SDa14NhZhMsVBgmekgA/wLgXgD3A3gTwN8D2CuESDN4rqsBfA1AnqUt1M8iAPMBfFdK+TMp5ZNS\nyr4gxz8AGn/6I9K6yBPoevwKQLqUsj7yTWIYZ8JChWGiy0vKpP5zKeXHADwMoALAbQbPI6xvmiGK\nlcdg4mQaKeUkgGUA3rCtRTYjhMgI9rLWk5IYs6lJDDMrYaHCMLHFa6BJrgIAhBDzhRA/EkKcFkIM\nCSE6hRC/E0IsUN8ghPg6gO8o/72ouJImfeIg8oUQvxRC9AgheoUQP9drtRFCrBdCvCiE6BNCDAgh\nXhVCXOHx+i8A7AZZiJ5WPv+1EOcsB4mbvXraYKAt71c+f4vGez+lvLbS47m5ym/RKoQYEUKcEEJ8\nVOO9aqzPCiHEk0KIbgB7ArQx4PXQilHxOPcSIcQTyvVpF0L8m/J6mRDiGeU7twghvqDxmbq+B8M4\nkaRoN4BhGC8WK49dyuNlAK4E8BSARgDlAD4NYJcQYqWUcgTAHwAsBXA3gH/0eG+H8igA/A5ALYB/\nBrABwH0A2gB8OVhjlEn9ryBLyX8AmADwKQC7hRDvkFIeAPDfStu+AuD7AA4o5w7GZgAnpZS6XT86\n2/JnAJcA3AV/IXEXgBNSylPK+YoA7AMwCeAHADoB3AzgMSFEtpTSM35GjSv5PYCzoN8tkBUr2PXQ\nilFR//9bAKdAbrH3APiKIog+BeAvAL4E4B4A3xVC7JdSvmHiezCM85BS8h//8V+E/wB8GDSxXAeg\nAMA8AB8ATWaXAJQox6VqvPdyAFMA7vF47v8o55vvc+zXlWN/4vP8HwC062jnnwAMA1jg8dwckFjY\n5fHcVuVz7tD5/X8E4FHl31cA+CaAFgCVFrTlf5VzCY/nikHC5kGP534GElh5Pp/zJIBuz9/e43f8\ntc7vF+h6fNj3eY9z/8jjuQQA9Uqbv+jxfC6AQQA/N/M9+I//nPjHrh+GiR4CtFLuANAAmlj6AbxP\nStkCAFLK0emDhUhS0oxrAfSCLCN6kAD+x+e5PQAKhBBZARsnRAKAmwD8SUo5ncEjpWxV2npNsPeH\nYDOAN4QQqlD7Nej30ByTDLbltwCKAFzrcYq/wYxlSeUOAM8BSBRCFKh/AF4BCQLf31frd7QKCeCx\n6f9IOQXgoNLmn3s83wfgDICFHu81+j0YxlGw64dhoocEuXHOgVbObVLKM54HKHEkDwL4CMjqIjze\nm2vgs3yzTHqUx3yQBUcLN4AMkKvDl2qQqChT/q0bJWV3FShTqFNK+YLy0pwgbzPSlpdAgu8DAHYp\nx9wF4IiU8rzSBjcoI+eTINeKLxIkdny5EKSN4eJ7jfoAjEgpuzWedwFhfQ+GcQwsVBgmuhyQUlYF\nef1RkLvgIQBvgyYpCbIaGLGITgZ4PhrZQleBXBLLASwTQtRJKc9ZdXIp5ZgQ4hkAtwshPg2gBGTB\n+WePw9Tf7gkAjwc41TGN54ataqcGWtco1HUz+z0YxjGwUGGY2Ob9AH4ppfyS+oQQIhX+9TnsKCLW\nAWAIlEbsywpQXEWDifNuBvAXKeWHhBBfArADwAohRILi8rCiLb8F8LcAbgBZbwBvt08HgAEAiVLK\noBlKJolUUTe7vwfDRB2OUWGY2GYS/vfpZwEk+jw3qDxaVvBNEQ2vALjNJ522GMB2AHuklIHcRsHY\nDLIOAcBJUIwKANwvhEi3qC2vgtxbd4PcPvt9YlumQAHF7xdCrIIPQohCE9/LE8uvhxYR+B4ME3XY\nosIw0UOP2+V5AB8SQvSDUlevAlkJOn2OO6Sc79+FEL8BMA4KsAyXfwFwI4A3hRA/AgmnTwJIAaXL\nGkIIkQjKWvJMiz6vPKZLKYO5VnS3RUo5IYT4I0ioZICycHz5Z1DA7T4hxE9Bv68LwEYA1wMIZ5LX\nuh47wjhfMOz8HgwTdVioMEz00OMe+Cwo0PaDANJAlVxvBPCy5/ullAeFEP8C4O8AvAtkhakIu4FS\nnlKKp30bNCEmgKwhH5RSHvQ9XMcp3QCaAKhxOX8B8EkhxDdBtWKsagtA7p+Pg9xCv9c4X7sQ4nJQ\nqfvbQdsXdIGsPIZFmM+5rboegX5Tz2tv2/dgmFhASMn7YzEMwzAME5vEfIyKEOLLQoj9Qoh+IUSb\nEOJPQoilId6j7kw7KWZ2px2KVJsZhmEYhrGGmBcqALYAeARUvfJGAMkAXgkUdOdBH6gug/q3IPjh\nDMMwDMPEGjEfoyKlvMXz/0KIjwBoBwWKBdt5VUopO4K8zjAMwzBMjOMEi4oveaBAMt9qjb5kCSEu\nCiHqlZ1HV4Y4nmEYhmGYGMNRwbRCCAFKucyWUm4NctyVoF1oj4HKjP8TgHcAWCmlbI5EWxmGYRiG\nCR+nCZUfg1L9Nqubtul8XxJoD5AnpZRfD3BMgXLuiwBGwm8twzAMw8QNaQDKAbwspeyy8sQxH6Oi\nIoR4FMAtALYYESnAdPGnwyArSyDeBdoenmEYhmEYc9wD2tHcMhwhVBSRchuArVJK3x1G9bw/AcBq\nAH8OcthFAHjiiSewYsUKM81kYozPf/7zeOihh6LdDMYi+HrOPviazh6qq6tx7733AspcaiUxL1SU\nUtnbAWwDMKjs7QEAfVLKEeWYxwE0SSkfVP7/VVDFyvOg4NsvAZgP4GdBPmoEAFasWIENGzbY8VWY\nCJObm8vXchbB13P2wdd0VmJ56ETMCxVQCWoJYLfP8x8F8Cvl32Xw3g49H8BPQPVTekD7blwlpTxt\na0sZhmEYhrGUmBcqUsqQKdRSyut9/v8FAF+wrVEMwzAMw0QEJ9ZRYRiGYRgmTmChwsxatm/fHu0m\nMBbC13P2wdeU0QMLFWbWwoOgdQwNAdEuucTXc/bB19SfId4+1w8WKgzDBGX/fqAzbxH2fPDH0W4K\nw8xaxseBp9/3BIayi9DT7ZxCrJGAhQrDMJpMTgLf/CZw9dVABoawsqgz2k1imFnJuXPA5s3AMzsS\nUDjVgeyk4Wg3KaZgocIwjB9jY8D27cA3vgE8+CBQUJ6DwpT+aDeLYWYd+/cDV14J9PQAX/teDgAg\naYjvNU9YqDAM48XgILBtG/Dss8Af/gD8278BIjcH6OfBk2Gs5LXXgBtuAJYvBw4cAJZuIqHC95o3\nLFQYhplmfBy4/XbgjTeAF14A3vc+5YUcFioMYyXPPAPcfDO5Vl95BcjLA91nAN9rPrBQYRgGAGX1\n3H8/sGsXsGMHrfSmYaHCMJbxq18Bd95JlssdO4DMTOUFFiqasFBhGAYA8L3vAT/9KfCTnwDXX+/z\nIgsVhrGEX/0K+PCHgY98BPjNb4DUVI8XWahoEvMl9BmGsZ8//hF44AEKnP3oRzUOYKHCMGGzezdw\n333Axz9OiwIhfA7IzqZHvte8YIsKw8Q5Bw4A994L3HUXpSNrwkKFYcLizBngjjuArVuBH/9YQ6QA\nZF5JTeV7zQcWKgwTxzQ3A7feCqxbB/ziF0BCoBGBhQrDmGZoiILU58wBfv97IDk5yMF8r/nBrh+G\niWM+9zkKon3mGSA9PciBubk0eEoZYCnIMEwgvvhF4OJF4NAhJbsnGCxU/GChwjBxyssv0+ruiSeA\noqIQB+fkABMTwPAwkJERkfYxzGxgxw5y9fz4x8CKFTrekJMD9PXZ3i4nwa4fholDRkYoFfm664AP\nflDHGzgbgWEM09tLgbPbtgGf+pTON7FFxQ+2qDBMHPLd7wL19cDzz+v05HgKlTlzbG0bw8wWvvMd\nik/57/824DFloeIHW1QYJs5ob6cB9B/+gUp364ItKgxjiOZm4OGHKQ6spMTAG9V4MGYaFioME2d8\n61uU3fPggwbexEKFYQzxr/9KAepf+pLBN7JFxQ8WKgwTR1y4QEF9DzwAFBQYeCMLFYbRzdmzwGOP\nAV/5ChlIDMFCxQ8WKgwTR3ztayRQ/vEfDb6RK2YyjG6+/W2guBj49KdNvJmFih8cTMswcUJ9PfDk\nk+Q3n94ETS9cMZNhdFFXRyn/3/kOkJZm4gQsVPxgiwrDxAk/+hGQlRVgLx898AAKADj728M48MDv\nMTUV7ZYwscj3vkfunk98wuQJcnKAsTFgdNTSdjkZFioMEwcMD9MmaB//OIkVU7BQAQCc/NYzKP1/\nX+ACvYwf7e3Az35GrtWw7jOA7zUPWKgwTBzw5JNATw8VeTMNCxX09gJvV+fCldDLQoXx4/vfB5KS\ngM98JoyTsFDxg4UKw8xypAQeeQR4z3uARYvCOBHXd8CTTwJdk3lIHbtEWwowjML4OFlTPv5xID8/\njBOxUPGDhQrDzHLeegs4epQKvIUFW1Tws58Bizcpu8rxfiyMB88/T66f++4L80QsVPxgocIwGtQ9\ndwx7bvgGBvpltJsSNk88AZSVATfeGOaJ4lyoVFUBhw8D79imCJXe3ug2CMC+Lz+DvZ96PNrNYEAi\n9oorgMrKME/EQsUPFioMo8G+n5/Eltf+Fcljg9FuSliMjQG//S1tPJgQ7t0e50LlsceoFPrl74wd\nodL52LNw/f5/ot2MuKehAXjpJXL7hA0LFT9YqDCMD1ICL75Fk1HaSPQno3B4+WWguxu45x4LThbH\nQmV8HPjNb4C//VsgqTA2XD8NDcDZjjzMSXd2H50N/PKXVC7/7rstOFlaGkXkxum9pgULFYbx4a23\ngNNtsbNqDocnngBWr6a/sMnJifrkHC127SLB94EPAMiLjb7xxz8CAwl5yJlydh91OlICv/gF9Q21\ngHNYCBHX95oWLFQYxocnngBSi5Ww/Z6e6DYmDPr7gR07gHvvteiEcWxRefppyphatw4zpvkoC5Wn\nnwaKl+cjode5fXQ2UFVFe2hZYrVUieN7TQsWKgzjwdgY8LvfATe8PzZWzeHwpz9Rccvt2y06YZxW\nzJyYoN/yzjtpsYukJFo6R7FvNDcDb74JrNycB4yM0B8TFXbsICPbli0WnpSFihe8148Pn/vcjGXX\nl7Iy4Ic/DP7+++8n33Egtm8PPnHU14cuFvToo8D8+YFff+op+gsEf48ZfL/Hyy8DXV3A+z6SB/wI\nqD8/hs9sC/4Zsfg9AFpxb95M57fkehxZgafwLHAbgBT/12drv3r9daCzk4SKyv1Tj6Dhv68Admuf\nw+7v8cc/UnD0tw+9E9/Fs8BtAkgN/j20cOL10CKa32PHDuCWW+h+s+x7NP4QeDYDqPd+3SnXw2qE\nlM5Pv7QCIcQGAIcOHTqEDRs2RLs5TJT44AeB48fpD+npwH/+J/DZz0a7WYYZHAQKC4FvfhP44hct\nOumuXcD11wPnz4dZOc5Z/P3fU0ZHbS1mqtGuXg1cdx3wgx9EpU1bt9LGki98eQ/wjncA1dXA8uVR\naUs8U1cHlJdTZt1dd1l44ve+lyx3zzxj4UntpaqqChs3bgSAjVLKKivPza4fRhdNj72Enp0Ho90M\nW5mYoAnp9tuVJ/LyHOv6efVV8gbcdpuFJ43DtMnJSbJeTLt9VKLYN7q6gDfeAO64AzET2BuvPPcc\nkJwMvOtdFp+YXT9esFBhQiIl0PvpL+Pk//l5tJtiK/v3U+zszTcrT+TnO3YC2LGDFthLllh40jgU\nKm+/TdVG77jD54UoCpVXXgGmppR+ykIlquzYAVx7Le0uYSksVLxgocKE5Nw5oHXMhYTe7qDHtRzr\nQMtr1RFqlfW8+CLgcgGXX648kZfnyKyfyUla6W0LEVtjmDgUKq++St1guk+oRFGovPgisHYtMG8e\nZjaVcWA/dTp9fcDu3RZbLVVYqHjBQoUJyauvAj3IR8pQ8MGw+lMPY+Kmm+HUsKcXXwTe+U4gMVF5\nwqGun337gI4OGwZQddkYRwPozp0UljPdJ1Ty8qJS52JqityT01a/zExqnAP7qdN55RUqBPje99pw\nchYqXrBQYUKycycJlfSR4ELlaIMLhYnd3r58h9DWBhw6RNH70zjU9bNjB+B2074jlpKaSg75SA6g\nUtJsYJLhYWB8yNz7+/vJ9XPTTRovRknEVlWRCJ0WKkI4tp86nZ07yb26YIENJ2eh4gULFSYoExOU\n7NGX6ELWaGDXT2cncLzJhfTxgbAmlmjx8sv06BUU51DXz3PP0SrPzwoQLmrFzAgOoCfK34Oja8xX\nrDv0oYcwlOXG2Jjx977+OrnRNDdzjJJQefFFugRXXeXTFgf2UycjJQkVTRFrBTk5isp23lhqByxU\nmKAcPEgW7qKl+cieDDwYvvYa0AUX/ceBq7sXXwQ2bQKKijyedOBKtbUVOHWKXFi2EEGhMjkJnG3J\nwUR78NioYByvy0Wu7ENKwoTh9+7cSamnmpnYeXn0O0xOmm6bGV54gSbH5GSftjisnzqd2lrg4kWb\nhQoADAzY9AHOgoUKE5SdOyk0Yf46F/JkD6YmpgIft0AJ7Os2P7FEg8lJ8jdPm9NVHLhS3b2bHq+9\n1qYPiKBQOXYMaB13IWPYXH+SEnj7rHnx/OqrZE3RdGVGIV6nq4vij/z6aX6+4/qp09m5kyyWW7fa\n9AFxGLgeDBYqTFBefZXqWqXOyUcCJAaa/G8c1Qy68hplUnCYUDlxgpp8ww0+L0Rp1RwOu3eT33zO\nHJs+IIJCZdcuio3KGjPXn06eBC70m+uTjY1UQy3gijkKacGvvUb3ml/NDraoRJxXXwWuvHJGT1gO\nCxUvWKgwAbl0iXYSvvFGEioA0F/nv3KrqaEKjRtvUiYFh63u9uwhU7pfCqqa+umgwWLXLhKWthFB\nobJ7N9ANF3ImzQmV3buBgSRzQuUvfyFLyvXXBzggCkJlzx5yQ5WWarSFhUrEmJwk0agZu2QVLFS8\nYKHCBGTfPorluu46IH0eDfiX6v0H/J07qdrzlTc70/WzZw9w2WVUMd8LdTJyiPBqbgbOnrXR7QNE\nTKhMTgJ//SuQ6HYhF/2mMnd27QIWrDcnVP76V6qSX1gY4IAoCRXNje/Y9RNRqqro57YtPgVgoeID\nCxUmIHv30ni8fDmQPZ9EyHCz/4C4cyeZQbOL0oG0NEcJFSmDTAAOq/ppe3wKELG4nSNHKIh75WYS\nGr0XjV2DqSnK2ll/vTnxvHcvcPXVQQ6IcN/o6wOOHg3STx3SR2cDO3fS5tl+FlgrcdgiyW5YqDAB\n2buX0iATEoDsBTRhjLR4D/jqRD/tbnC5HHVz1dYCLS1BVqqAYyaB3buBlSt9MpesxuWKiBDdtYss\nXKu3Ur8bqDP2mSdOUPDplnem04kMtLm7Gzh9OoRQUYNpI1T0be9euteCChWnVlp0GH/9K10Hr8wr\nq0lPp7pFDlr02QkLFUaTqSkqdqUO1tlzszGJBEy0e4uQ2lqqoXLllcoT+fmOurn27KFYhM2bNV50\n2KrG9vgUACgoIAVgM7t30zXJrVBcjg3G+tTu3UBKilJvxGCffPttegwqVJKTqSpshETsnj0kQBcv\n1ngxP598ZZcuRaQt8YyUtCfY9HhnF0JE7F5zAixUGE1On6YxWB2sE5IS0CvyMdnlPWnv30+P02bQ\nCK24rWLPHopFUDWJF+qq2QEWlaYm4Px5m90+AF3fS5dgqoKaTiYn6bpce+2MJW+02Vif2rWLJpP0\ndBjuk3v3kihYuDDEgRF0uajuSc1UaYe5KJ3MuXO0brG86rMWDhtL7YSFCqPJ3r3k8vH0ww4k5UP4\n3Dj79lEmwnTQocNcPwHjUwAqlJCT44gJQLUCaFqGrKSggB5tHECrqymGcPNmILec3G+jrfo/T0rK\nVrvmGuUJgwP+W2+RJSbkVhC5uRHpGyMjtCAI2E9ZqESMffvo8bLLIvBhbFGZJuaFihDiy0KI/UKI\nfiFEmxDiT0KIpTre9zdCiGohxLAQ4qgQwrdMEhOEvXuBNWuArKyZ5wZT8pHQ7y1C9u3zWV04yPXT\n2korpIATAOCYom8HD9JuuiUlNn+QS8misXEAPXiQRMKGDUBaXhoGkYFJA9Vp6+tp76bpfmlAqExM\nUJ8O6vZRiZBF5cABMmAF7Ke8g3JIxken0FPTHXZNpP37gaVLZ35yW3G5WKgoxLxQAbAFwCMArgBw\nI4BkAK8IIXyTSacRQlwN4EkAPwWwDsCzAJ4RQqy0v7mzg7fe8h+sh9NcSBmYGfDHxoDDh32EioPM\nlXv30uP0ylsLh5TRP3iQtgCwnQhYVA4cAJYtm8nQ7Et0QXbp/zx11WtGqBw/DgwOxpZQ2bOHskzW\nrg3SDsAR/TRanPnJ68hfXICzL9WGdR6/hZmdFBQ4Ziy1m5gXKlLKW6SUv5ZSVkspjwP4CID5ADYG\nedtnAbwopfx/UsozUsqvAagC8Bn7W+x8urq0sx7GMvOROjSzajt6FBgd9UnTMzApRDtJYf9+Kp41\nb16QgxyQ+illBIVKhCwqnt9lINkF0WNMqCxYABQXK08Y6JNvvUU1gTYGG11UItQ31Mkx4CaTLFRC\ncryFfNMVOeb77cgIpc1HVKiwRQWAA4SKBnkAJIBgI89VAF71ee5l5XkmBGq8w1U+v9Z4jgvpIzNC\nZf9+Sn5Yt87jIDVGRYcKqc7ahNe3/ZcFLTaHrsndAa6fmhqaoyLiN8+3t6jf2BgJYM/vMpTmQlK/\n/s/bv9+8lW/vXnI5+RX/0yJCQqWqKoRwSk2lBsd4P40mB2rJEpjc12n6HEeOUAHMiAkVB1mn7cZR\nQkUIIQA8DOANKeWpIIfOAdDm81yb8jwTgv37AbcbqKjwfl7m5iNrfObG2bePREpamsdB+fnk6A+R\nKjkwAIihQRSMNlnYcv3otkI4wPVz8CA96rIChEtSEk3QNq30Tp4kK53ndRnNcCFlUN+APT4OHDqk\nYeXr6aGc+xDs22cg9TQCQqWjg/Yd2rAh+m1xMntOKS7LMPrtvn2kCdessahRoSgooGs6YXzn79mG\no4QKgB8BWAng7mg3ZDZz5AgNjH5ZDwUu5EzOrNo0/bUufSXLjx4FOlGIuSnmVzjhcP481erSZVGJ\n8Qng4EGgvDxIuXersTHI78AByjbztNKNZbuQrnMH5RMngOFhDYvK1FTIcuR9fdQvdLvQ8vJsL/h2\n+DA9slAxz+gocKQ6FWOpWVT0yST79gHr11N9noigjqVsKUNStBugFyHEowBuAbBFStkS4vBWAMU+\nzxUrzwfl85//PHLV+hkK27dvx/bt2w201tkcOQLcrSEFEwvykYMBjA+N49JoMs6eBb76VZ+DPG+u\nBQsCfsbhw8B8UYi8iegIFdUKocuiEuMDRcTiU1RsDPI7eBBYtQrIyJh5birXhaxafZ+3bx/FcnhN\n7J7iWbNgDnHkCD2uX6+zsapQmZoidWUDVVUUVByyposD+mm0OHGCjBJT7sKwhcqtt1rYsFB4Bq67\n3RH84NA89dRTeOqpp7ye67NRtDtCqCgi5TYAW6WU9Tre8haAGwD8wOO5m5Tng/LQQw9hQ8jly+yl\nu5vSO73iThRSiik+oa+uF8da6MbxmyB1xjBUVQFlBYVI6DoabpNNcfAgubbUsSAgMb5SnZoiV8e/\n/EsEP9RGi4qm6HK5kDOhX6isWeMtdLyESpAZv6qK3JjLl+tsbF4e+RAHBmaKA1pMVRXdiyF1UIz3\n02hSVUXiNaWk0HS/7e2lKtwRXxAAMRlQq7V4r6qqwkab/M8x7/oRQvwIwD0APghgUAhRrPyleRzz\nuBDi3z3e9n0A7xZCfEEIsUwI8Q1QltCjkWy7Ezl2jB61hEraXBrw++t6cOQIxe8tWeJzkE7XT1UV\nkFoa3gonHHRbIfLyyJcwOmp7m8xw5gyFA0UkkFbFJovKyAilB/t+lwS3C3myB1MToWNM/AJpAUN9\ncu1aCsPRRQQqF1dV6XD7AI4I+o4WVVXAihVAgrvA9HhzVFlPaY2LtqGz38YDMS9UAPwdgBwAuwE0\ne/zd5XFMGTwCZaWUb4GEzScBHAFwB4DbQgTgMiDzd1qahgABkD6XrCVDjd04epRWrn4pk7m5FNwS\nZNAcGaGgybxF0REqk5NkhdAlVGJ8Y0LVhRVRI6BNFpWjR8lE73tdkotdSIBEf0MfRnpHcDz7apx9\n+pjf+/v7qaqt3662BoSKod/R5r2g+vooo0tXmxwQ9B0tqqoUd16heYvK0aMUSLtsmbVtC0oESgE4\nhZgXKlLKBCllosbfrzyOuV5K+TGf9/1BSrlcSpkupVwjpXw58q13HkeO0N43WqtKdd+V4WayqGgW\noEpIoAE8yKRw/DiJheJVhWQ2j7C14swZKuql26ICRHUSOPUPP8a5eVs1X6uqoi0MgoReWI9NFpWq\nKup3q1d7P59WQv2u70I3anecwOpLb6Ht+QN+7z9+nDwxfhN7VhadOEibBwepdpAhoWKzaV6NmdFt\nUWGh4sfEBFmJN2wAXS+TC6MjR4DKSpt3TPYlNZU2vmSLSuwLFSayHD0a2Lyp7rsy2NiNU6eCmEFD\n5P+rPuPSdUqaSoRXDIbSeSO0g/L5bz6F6qW3ab52/MAI5jYf1Hzt2LEgFUvtwqZCVMeO0YrVK90d\nQEYpCZXBhm507SJLymRrh+b7k5I0YkyECNknjx2jeB9DQkUNcOzwb4sVVFWRe1XXKp6DaTU5fZos\nuBs2ICwo9Cy3AAAgAElEQVSLypEjEXb7qHDRNwAsVBgPxsbIJRNo4kt3pWMEqWg63oOJiRBCJcig\nWVUFrFwJpMxVhEqE3T8HD9J+HbriHyPk+jn8ahcWnnsJcsq/UF51pxuZGMJQ55DX81LSBBuxug4q\nLheN/kNDoY81wPHj2t9FteQNNXZj6oji8tHoM8ePk0hJTdU4eYg+efgwrZZXrTLQ4OxsylW1qf8a\nipnJyyPrJNfc8KKqih7XrcOMUDFYEnt8PPi4aCssVACwUGE8OH2abspAAkQkCPQl5KPtdA+E8DfR\nT6PDojK9wgHCHujHRiWG2i/pHoCCWY38UC0qNptfqzvdSMUY+psGvJ6XEjjSRCv37jPeK/e2Nvrp\nIi5UbNjvJ5joyiknoTLW2o2ciyRUknq0LSrh9MlVqwKInEAIQX3YRouKoVRpgN0/Phw+DCxerOwb\nVVBAQi5EPR1fTp+mRVxULCpcnRYACxXGA9UnHmziu5SUD9HbjcWLvXdW9iLIDsrj47TytVKonPzP\n55FRnI2GKn0TxqlTBlbOmZnki7DZ6qOKkd6z7V7P19cD9SP0Wn+N9/dTM7QCTs52YUOQX10dGQS0\n+l6mOwOjSMF4axfm99GXTh3w/i2kDGyRmW6zHvFsFLfbFqEyOkoTpO5VvOqGilIWXaxy8iTFlgAw\nPd7oGRdtgy0qAFioMB4cOUKBmdnZgY8ZTHUhHz3BB9AgZvbqahqE168HLXOSksIeXM900yA9N6k9\nxJE0p3R2kutJF0LYNhmptLcD5/q0xciJE0AH6LXBi96vHT9O9UJCFgOzGhssKseP06OW6FIteaL6\nFApkFzqEGxmD3n2mvp4WymaEyugo/c6mhYoN4uDsWYqZ0S2oi4ro0cZ+6kROnfK419V+a/B6HT1K\n95hNpXKCwxYVACxUGA+OHg29ghtJz4cL3cHNoEFurlNKgnhlJWZM52EO9MdaaZBO7AotVNTP1y1U\nAJoE2kOf2ywnT86IkaE6f6EymE6vjTZ6t0F1ddhUFDUwNlhUjh0j70VpqfbrA0kuzDu3GwBwrvQ6\n5IwZtC4F6ZOqy9NUDIJNrh/D/VS1qNjYT51GXx/Q1OQh9grNBe8HzHCMBGxRAcBChfHg5MnQboSx\nLLKoBBUqQVw/1dVAcfFMjKoVQuVAnbKa1DFInzpFRpzFiw18gM0WlRMngIFkWu2NNfkLleXr0tCP\nbEy2+E/OEXf7ALS0TEiwXKisWaOxv5TCYKoLi8aqcQmZGFtzGfIn/H+LYEInmFCprqZHQ+JVxaa+\nceoUMGfOjCYMSX4+pdKxRWUav+tqwqIiZRQzfgAWKgosVBgA5KlpawtdPnwyJ1+f6+fSJVqm+lBd\nTVUipwkjZRCggeTQ6UyMJ6XpFipLlxrcWMxmi8qJE8CSlcnoFi6/tNsTJ8j61JPkhvSYhCYm6LtE\nxW+ekGC5STpofAmA4QyasS9krUZSaTGyMIjh7mG/9wcSOtPt1Qi4rq6mS6xbFHhik+vn5EmDwikh\nge4ltqhMc+oU9Yfp9O60NIo5MzDeNDfT4VETKi4XFfmJ0crYkYKFCgOAzN+Aj4jQIKnIhcKEbsyb\nF+SgILt+nj6tIVTCGOhbW4GeXoHxfH1iwvAEAETEolJZCfQmuYFObzFSXU2vDaS6kdQ989rZs5SJ\nEBWhAlhanXZkhIrwBbMOjWdRn+opXY20eWTC7zk3029CWpdcLvrBNFKq/fqkEdT+OxW6vL8RvGIr\n9FJUxBYVD06epNiS9HSPJw2ON2rp/Ki6foC4j1NhocIAoAlRCLI2BGPjDz6M5OefCbxyBQJuTDg5\nSROsl9UmTKGi+vITivUJFdMTgE0rVSlnhMpAutsr7bamhhZSlZXAUKYbKf0zr0Ut40fFwuq0p07R\nPB9MdE3kklCRlWuQsYDiMfrO0+8xMkL9KqhoC1JGv7rawEaEvrjd1LEtTAseGwPOnTNY00VtC1tU\nptHM7jPoSjl9mgLWy8qsbZtuWKgAYKHCKJw+DZSX+6w+NEhbtgAFN/tupuJDAF/wxYs08XqtXsMo\naw3QYJSaCqSUhRYTXV3k3jJlUentpRnEYhobKVulshIYznQj1UOMnDhBj5WVwGiuGxmDM68dPw7M\nm2fSXWEFFlpU1Iyf6TRSLfLpi+Zesxo5i5QsqDrqN9XVpBXMCBVVPJu2qNiQFnz+PFnT2KISHpqL\nEoMLozNnaPEW8YB1Fd7vBwALFUYhrFWlL8XF9OgjHNTgNqstKsuW6bOomA6aVFM/bYhF8BQjY7lu\nZA7NTDQnT9I8WFQETOa7kTPibVGJmtsHsNSicuwYpcUHrMsDZedbAAveuxquZWoWVMf0+4EQFogA\nA76meDaCDWX0TWWmqW1hiwoAqslTX6/xGxq0qJw5E+GNCH1hiwoAFiqMQlh+el/y8ym1pq3N6+nq\napqMvDIzCgspbsBkOfbpVZMO98ypU7QyCuXe8sPGPV1OnKD4vvnzgUmXGzmj3haVaSuD2428CW8R\nE9QCYTcWWlT0fJfV//cDeOuLTyN/kQsZhRkYQjomlCyoM2fo9wtW/yfQNdQUz0ZQU14tFipu98yp\ndcMWlWnUmDsrLCpRFSpqxWG2qDDxzsgIUFtroVBJSKBB00eonD5NE4JXfIvJ2gYAxXdMB8fqECon\nT1JasqEy6cCMRcWG1eqJE2QJSEgARJEbrsmO6cQUz8DfpBI3cjCA0f5RjI6SJSDqKz2LBs+zZ0N/\nl/xFLlz13fdP/7870Y2p9s7p9y9ZEuJDsrMp66O11evp06dJKJqOQSgooA5toUAwFfANzGQgWRzY\n60RUq5SfADUgVPr6qLtE9T5LSiKxwkKFiXfOnaOxzTLXD0DuHw2LiubAAZhyq3R00P07LVQGBoDh\n4YDHGyqd74mNFhXPNiXPdSMDwxhsH8TkJMUqqL9XaunMfj81NSTSDFuGrER1/Rjc4M0XVXQZ/S79\nqW4kKllQZ8/qeL8QVJgkQJ8MGhwejMREsi5Z6BY03U+LiuhGjnM3AUBir6KCRKgXqsDW0W/PnKHH\nqAoVwFI3q1NhocLoTk02hI9FRcoA7qUwhIqXL19HCXFTGT8AjXYZGZZbVKT0nmRVMdJztgP19RS7\nq1oKMsrp+/Wd78DZs/RcSCuCnbhcFPE5MBD62CCoosvodxnKKERKXwempkho6xI6GuJZtfKFhYXV\naScmaII0bVEBOE4FQe71wkKq76Sj38aMULHQzepUWKgwqK6m+1eN27IEn0mhvZ3KqlhpUfGqMhtC\nqAwMUPGmsNJQLbaodHZSxo86SWcvnNnvRxUj6gQ8nelykV7Lzp6JWY4KFlmZfL+nXkay3Ugb7ERT\nE7kudQsVD9ePlBoFCM1gYd+oqaF51JRQ4f1+pjl1KsB1VQc5HRP/mTOUWRcsyDsi2FzHyQmwUGGs\nGax98REqatCi3+dkZlLQiEmhsnQpkJyMkHEk58/To2krhA21VM6do0e1nL8qRoYutuPcOaqeO38+\nvaZmuow0dExbYUy7K6xgzhx69In5MIpZ0TWR70b2iL+gC4qP60cVz5YIFYtcP6p105SgZosKALJE\n1tUF6BMGFkZRD6RVmTMn7PvM6bBQYawxf/tSXOw1YJ4+Te78RYt8jgtjY0Ivk786AAUYpH1FgWFs\nWNWo4kltk2spfYfRRpqAFy+m3wwAMt0ZGEQGJprb9cVk2I2FQsWU6CosRN44/U5JSVQDKCQ+4jks\nUeCJxRaVzMyZn9cQeXn0Y8T56vviRQrV8RtrAMMWFRYqsQELlThnaopuSFssKh7BrWfO0MChuceO\nSaFy/ryH8EhNpc3yglhU8vPDcG/ZZFEpKZkJ+EvNSUUfcjDR0qEpRnoSab+fmBAq+fl0MVtawjrN\nuXPmrFwJxW7ky26cPjmJhQtpfg6JKlSUQMrqahKCpsWrioUxKufP031iylomBNdSAYk9IMB11bkx\n4eQk9c2YEColJXSfhRm47mRYqMQ5DQ2kJWyxqADTK1gvUeGLCaEyPk7mXa9VUxAxYXZCnMYmi4pv\nm3qT6HO0xEh/qhtTrR1oa4sBoaJm0VhkUTFK6jw3EiBR/Wa3/vfPmUMdR9mD6vx5ssQY2qBSCwtd\nPzU1ASwBeuFaKqipoWuquR9ZRgb9hbhe9fUU+xQTQmXOHPJnWbhNg9NgoRLnBF19hIMaM2KTUKmv\np1WPXqES9PP1YJNFxVeo9KcVQXR1oK7O/7XBTDfGlSJnUc34UZkzJyyLSn8/6RwzQiV9PsVjtB7v\n0P9+H/FcWxumKFBxu8MqWuiJalEJqy1xblE5f55Sk1W3qR867uWYyfgBZvyAYVovnQwLlTintpYW\nxwsWWHxij0lhagq4cCHIAGzCdO4b3wHAfotKf79l261LqS2ehjLdmGyltFvfCXg0242s4RgSKiUl\nYVlU1LghM0Ilq5ziefImO40LFaXNNTW0u27YWFSdVrUShi2o2aIS/DcsKaEUwCCcOUPeZDWYPaqU\nlNBjHMepsFCJc2prqSpn2OZvXwoLSQG1taGpieb3gELFxIRXU0NxCV4VRQMIlf5+WkSHPQEAlk0C\nnZ1U+dJXcIx67PfjOwFP5LvhRgeKimYqa0eVMF0/4dSDyV9KFhU3DFhU1JVpWxuktNiiAoTt/tG0\nEpppS5xbVEK6z+bODWmdOHOG+mVAq0wk8RHY8QgLlTjHslWlL0lJJFba27WtH57MnUsCwMDuxDU1\nZN71CqIMIFRU91bYFhXA0qBJwP83mXSRGNFK2ZVFRcYmZrtRg/xMcvYs/axmRFfugjxMIBFudOi/\nrllZtD14Wxs6O4FLlyzq+xb1DbVPcIyKeaamdAhQHRaV2lob3OFmycqiP3b9MPGKZatKLZQsi5oa\nMq4ETCGdO5ceDawYNH35qlDxiY4POzVZPTdg2Wo1UJuE2z0tRnwzP5LmuJGPXqxYPG5JG8Jmzhz6\nPSYnTb1dd0VZDRKSEtCTUICS5M7p7hMSIaaLvtXW0lOx5PqpqaGaQKb3HQJINHV1mb4mTke13ga9\n13VYVC5coIVQzBCmm9XpsFCJc2prbbKoANNC5fx58vUG3AxQnWlCrHI80TTvFhWRVaa/3+vpsFOT\nAVssKp6pySpJJW5k4xJWLRrxe0+KUmJ/dYl1+8qExZw5NCGaLO8dbpp1b7IbS3I7kGBkFPMQz4BF\nfT89nS6kBUKlvFxnqnUgiopIqMdpyXVdVqmSEvp9AsSbTU1RLZaYEipxXkuFhUoc09tLe13ZJlSU\n/X50+YwBWg7pYGoqQMBcAKtH2IG0wMxkZKFFRatNaWUkRtaU+E96mQvotRWFMWLaV4P8TJikffc5\nMsNwphsVWQZ/C6U6bW0tGUJycsx/vhcWxIaEnfGjtgOI2ziVkNZbIKQFt7mZ1ju2jYtmCDPDzumw\nUIljVPN3JFw/QT/D5aJoXp0WlZYWqnGgaVEB/AbpsFOTPc9voUVFS6hklgcWIxVXl+C863Js3BAj\nhZ/CqE7b3U3BxOH0vfJnHsbqP/6rsTd5uH4snYjmzTNkEdQiZLaKHuJ8v5+amhDWW2BGYAe4Xhcu\n0GNMWVTY9cPEK5b66bUoLoZUXD9BB2AhaJWjc6BXzfZ+k1wA94wlFhX1/BasVKWkNmn9JmWbitGa\ntgAbK/3N0pkr5mNx1z7kX7s27DZYghrta2Kld/EiPYYzGeRsWYus9QYvrCKebREqOi2CWqhWQrao\nhIcuq5RqUQnQb1WhomtbhkgR5xaVcLyhjMOprSXTt8tl0wcUF0P09GAEY1i0KET+swGhcv48aRu/\nicblAhISvPZzsSQ1WcVn912zdHWRNUGrTVnLS5E1fDHsz4gIqan0m5v4TVShEvHJQAkArsUUNm+2\ncJ02bx5w5Ijptwe0EholJwdIS4vb1XdNDbBpU4iDQlhwa2vpVs/IsL59ppkzh8yQo6MhzEWzE7ao\nxDFqarJtu/AqK243OvStcgxYVObNo/HYi8REuqE9zmNJarJKaWlYq2YVdcUWUz5ws5gM8rtwgUJ+\nwgpwNkNxMTA+jqGmHmt/f7VvmNyPxbIK0UKEbd1xKoGKKPohRNDU+gsXYvDeVN1VISxl4/3D2P/t\nv6CnpjsCjYocLFTiGFtTk4FpoVKMNkuFStDBqLQUaGyc/m9AN5EZyspoc6QwqaujR8urAUcDk7VU\n1KwK20RyIJQ+WaSnTxph3jxgcNAv40wvqpXQkrgIi/qp0+jspH1QdV3XILVUYi41GdBdRr/leCcu\nf/BGXPzN2xFoVORgoRLH2JqaDExPCsty25CdHeJYA8GIQX35PkKlrs7ClXtpKZlfw9zTpa6O6jfZ\n5nKLJCYtKhcvRikGQBnwi9FmvUUF8Op7RghoJTTbFpPtcDKGkgOC1FKJaaES4l67MFKCSSSgZGJ2\nCVUWKnHKxARNmLYKFSWwb1VhW4gDQQNHb68uERBSqHisJuvryXJhycpdnYzCNKtfvGhhm6KNySC/\nqAkVRTzPS2zT3l3XLOrJTPYNSyfHOBUqqqVSV78KYFEZHaVLGHNCxe2m+LsQ91pdUxJaUIKCIRYq\nzCzAkn1FQpGaiv7EPCzJ0SlUgJBWlf5+0jMBB6OyMj+LimUbi4W5alapq4uxjIJwMJE2KWUUhUpW\nFsaS0rEiv9XafVzU/muyb6iC2hLUeJmpKYtO6Azq6oDsbCA3V8fBASwqdXXUP2MuRiUxkVLPQ9xr\ndXVAa1IZkttml1BloRKn2J6arNCUshDF+Tr28NEpVOrr6TGg+CgtJUe1Eitg6QSgrpotECqzIj4F\nIIvKwADFZ+iks5MOj8qqVQh0p8zB4mwd4tkIKSk0kZi0qFjaJ0pLaSvmOKulUl9P44IuS2VJCXVE\nn/3FYrKGiooON2t9PdCTPftilFioxCm1tWRJtHsb8xVDh7D11a+GPlCnUAkZiOpj9bDUopKRQYEl\nYQoV1fUzKzCxBX3UUpMV2kUx5qXbUGJ+3jxTfWN8nLp9rFn+nIYhsRegOu2FC2S8UH/CmEJH4Hpd\nHTBcwEKFmSXU1dHNmJxs/2fpWuFkZ1PUqw6LSlLSzPzoh8cgfekSxb5aKsbC9P/39pKxZ9a4fkxU\np422UFnduRsbD/yP9Sc2mb6uemkstagAcSdUVIuKLgJUp62tpXOEtd+SXei0qEzNU4SKyVT5WISF\nSjhIiTcWfxj7vvp8tFtimPr6MHdptRqd1Wnr62kcDhhf4BEroLqJLLVehClUZlVqMmBaqGRn00aR\n0UCkpSI9w4ZIZpP1S0K6M43idtMKJM6EiimLio+FIiZrqKiEECpSKgu5ijKqHjiLNqZkoRIGE5MC\nC2peQ/Ih5+WsNzTY7/YxjA6hEtKVk5JCmR0eQsXS7xlmjQrVmjBrhEp+PlXKNLDPTdRqqNiNSRGr\nilfL+mlCgl/222xHDbLX/RsWFJCY8+m3MZmarKK6fgIESXd2AsPDQOZyZQU6i64/C5UwaG0F6rAA\nxSN10W6KYQyZSSOFTotKyEleGaTr6mjMtjQN1QKLSlrazDY5jkcIEm+qKtTBhQuzyPXlybx5NFuM\njBh6W309zZuZmRa2Jc5SlA1bTwNUp41poTJ/PgX/BqhOq/4GrnWKUJlF15+FShg0NJBQyetzllCZ\nmqI+HFOuH8AaiwowPUjX19PcYam/ubSUsikMTkYqavtnlTVhwYIZU5EOopaabDdqbIjBXZRtyQKL\nU6FiaPHlU0tlcNCGmDYrUTtJgHtNtczNXVdMgx5bVBiA+sFFlCO97WK0m2KItjbKNIi5G1IVKgGC\nwNTsiJCDulJLxdLUZBWTk5HKrMr4UVmwYGaUDIFaQyVmV63hYLLomy3WTYNCRY6M4o0vPoOW/c6c\n3OrqKG5NDT3Rhc/CSP25Ym4Bp6Kq+wD3Wn09kJ4OFBYpZmQWKgxA/aAtdQFESxPNog7BltgNK5g7\nN+h+KWp2hF6LiqWpyZ7nBkyvVmdVsTeV8nLdQqWjg/zos+43AALW2fn9kgfx/P/ZFfBttlpUdGZ+\n9PdO4Zr/uh31v/iLxQ2JDCGD7LXwCX5W5/WYFSp5ebQ7doB7zctaO8v2e2KhEgYNDcBw0QKIqSlH\n7VYaszdkiIJquv3QpaVAby86L16yfgIIs+jbrCr2prJgAfnNdWx/oBbUmpVCJSeH0pk8xgI5JXHL\n+e+jdN/Tmm9RMzVsEdSjo7ozPxq70tGCOSgZvWBxQyKDqfuqvJw6pCLm1HHR0pg2qwlivfSyILNQ\nYVQaGoDJsnL6jwEffbSpr6fAvWilhwZEnb0C/JaqUAkpsDz25LF8AlBrdJsQKoODFGs5K4UKoCug\ndtalZ/vis0rvvdiLTAyheLBW8/CuLtJ3trkodfbTxkagFgvh6nOmUDEl9ioqZm5K0HheVERJbDFL\neXnQ8XH6N/DZSsTpsFAJg4YGIGWx0jN0mr5jAUOlpiPJ3LmUMnhBe7CsqwMKC3VkRyiDdMlUoz0T\nYphpqLPOmqD+yDrugcZGun55eTa3KVr49I2Ow/TvvG7tPm2bG9aEULmACmS0aguqWMeURUUNlFLG\nm4aGGLQy+xLEouL1G6hCZZbs98RCJQwaG4E5Fekkwx0kVGL2hkxMpFm8Vnuw1L1qUmy3ZWiwJw7H\npFl11loT1OAAHVbFxkY6POZEslX4WFT6TlA/SWu7qDlp2NYnio1lfjQ2Ah1ZFUi46DyLiuktCFSh\noow3MTsueqIKFZ/Yo+Fhiv/ysqiMjc2a/Z5YqJhkbIzqqJSVIag5LhaJyRoqKhUVQS0qutqdloaR\n7EKUotGe72nSonLxIs0dhjITnEBSEk3QOsR6U1OMxwCES1mZ1+8wfI76iRgd1awqWl9Prga32+J2\nqCkwBiwqlworaMY3mXofLUxvQZCXR/5vJ1lUyssxvTeIB37xe2Wzq+gbCxWTqFm0ZWUwlJ4ZCzhV\nqBhJN+7LKsWilEZkZ1vYNhWTQqWxkeYOQ5kJTkHnPTDrhcqiRTQ4DA8DAKbqPfqJhqXQ1ro6Bvpp\nYyMwXlox0ygHEZb7zGO8icnaUr4EcLP6/QYsVCKPEGKLEGKHEKJJCDElhNgW4vitynGef5NCiCKr\n2uSVOeMgoTIyQgkaMXtDqgOHj2lTSmM7IbellGFRqk3BZGVlVIxmdNTQ25qbZ6E1RSWAVXH35V9C\nzfPV0/9XXT+zlkWL6FERJYmtjTifXknPaQhwW2r9qBioGNzQAIhFyiY3ARYKsUpYWxAo401/P1VF\niNlxUSWAUKmrI7E7vQgoLCRTHQuViJIJ4AiATwPQuyWkBLAEwBzlr0RKqV172ATq9S8tBQ3S9fWO\nCFxSF1gxbVHp7wd6erye7u42lh3Rs+kmTK3faEMDQZORlAFjaQIxq60JGmJ9oHkA1x74Lhoe/gMA\nuj2am2fxbwAAixfTY00NACCjqxEdruXk29EQALbU+lFZtAg4f17XoY2NQNbyUnLjGezX0SasLQgq\nKoDa2tgt2eCL201V3XwWBY2NtGdhSoryhBCzar+nWNzM2g8p5UsAXgIAIQwZSTuklNrVw8KkoYGy\nVLOzQYP0+DjtGxHjo3DM35Dq1qW1tYDLNf20UfPu1qf/weKGebBkCT2eOwesWKH7bU1Nhg53FgsW\nkAoZG5seLTuONCEbQNJFmiw7Oug2mdUWlTlzgIyMaYGQd6kRDfNXASnaLs36euC977WpLUuW0Aw2\nNERtCsDAANDXB8ybn0g3mMMsKmHFlixcCNTXo+HiJIDE2O+bQmguCjQXQUHc6E7DKRYVMwgAR4QQ\nzUKIV4QQV1t5ci9/poH0zGijTvgxe0P6pAyqxJTAKinxmoz0MustKlJ6reD6qqk8eU77OQAzyTCz\n9jcAaCJZuBCoqYGUgHtM8XUtXOjXp8fHyQ1r272oWndCWEjU61JaCkdObmFZ6SoqgIkJ9BxvhBAO\ncc3qFSpLlgBnz0auXTYyW4VKC4BPAXg/gDsANADYLYRYZ9UHeKl4hwmVoiKyHsYkLheZqXwGy+Zm\nCkItsizKKAyEoEng3DndbxkcpFWrIwZCM2jsQzJ4jmbAkksk6FS346wWKgD1jZoa9Df0IQcDSF5Y\nOu1i8ERNArKtT3ha/oKgXhenCpWmpjB+Q2VhNHzqAkpKqIxTzKOxZYVm/NvSpbSYckBIQihmpVCR\nUp6VUv5USnlYSvm2lPLjAPYC+LxVn+ElVHJyKM3NASnKMZ+CJ4TmYNncTIaMhFjpsYsXG7KoqHuf\nzdpJWu1UHvfAxEUSKm7Zjv7GfjQ1UQhETIhNO1FiQ9Rib1nLFKHS2EiuMQW1T9gmVIqKgKyskP3U\nS0BqWH5inbAsleois7Y2tsdFTzR2K9f8DZYupewzB23vEghHxKhYxH4Am0Md9PnPfx65ublez23f\nvh3bt2/3eq6hAbj9do8nHJL5E9OpySoag2XMZcwsWQL85je6D5/1bo+0NIrP8LgHRHMTJpCIJEyi\n6fXzaGragJKSWZqe7cmiRUBdHfqOXgQAFKwtpQlD3dhHccnYLlSEoH6qw6IyXTq+ooIC2Xt7HVE+\nWHWfmb6v0tKAuXOR0nwBZTbF3lvOggV0jQYGgOxsjI7SLgCaQgUg94/FKuypp57CU0895fVcX1+f\npZ/hSTwJlXUgl1BQHnroIWzYsCHoMSMjFBjode0dUvStqQm49tpotyIEFRXA8897PRVzQmXxYpp0\nRkd1bQ5i+6QUC/iYpFM7m3AmcwNWDR5Az/5zaOzbELuxUVayeDEwMYHEfXsxBYGitSVA+yS9duGC\nl1BJTqaMFVvbosOiMn1dPGPE1q+3sWHW0NpK+i+sBcDChcg5esE5FhVPN2tlZeCxpbycTJhnzwI3\n3GBpE7QW71VVVdi40R61FyuG9KAIITKFEGs9YkwWKv8vU17/thDicY/j/1EIsU0IsUgIsUoI8TCA\n6wA8akV7VFOpV8c2kAoYTVpaHDBZVlTQTejhWw3LD20HS5YYSlFuaiIPYVaWze2KJuputApZ/c3o\nnkyHxz0AACAASURBVFuJbuHC6MnzszuY2BOllorr+G50JBQjJSuFBouEBK/+EhF3pg6LSkNDAKHi\nAFRLZThjg6yogHvwgnNEtCpUlGsU0K2clER9cRYE1DpCqADYBOAwgEOg+ij/BaAKwL8qr88B4Ckb\nUpRjjgHYDWA1gBuklLutaIxX8JnK8uXUcWK4/LS663tMTfhaVFSQL1+9AxGjFhVAtziNi0l66VLg\nzJnp/7pGmjBZPA/NGUuQfPHc7C/2pjJ/PpCUhLlNB9CVpnzh5GQSKx4CICJ9YvFiGrCUSrlaeF0X\nt5sy2hwmVML5HUfmVKB8ykExKiUltOJR7rWgv8EsyfxxhFCRUr4upUyQUib6/H1Mef2jUsrrPY7/\nrpRyiZQyU0rpllLeIKX8q1Xt0TS1rVhBFgADmSCRRs0yKCmJbjtCstC7QmZAH2w0mTuXBnSd1zsu\nhMqKFVSxt6cHk2OTKJpsQULpXPQWLUF2exxZVJKSgPJyJE2Noz/XQ5n5BIlHRHyrmT9KATotvISK\nml7tIKGSmhqe+6wjqwIlaMV8d2AxF1MIQQvjaqr43NREQ5FPaCWxdCkLlXilpYUErZcZf/lyeqyu\n1nxPLOCYOAkf06btaZxmUFOUdVpUZn1FVmDmHjh9Gp2n2pGESaQunIeJBYtRcukcBgbi4DdQUdw/\nI26PZfrChX6un4gJlQD9dGiIqj57WboWLYrpBZcn6m8Yzl5J7ZkVGEUKFiQ5KDvGR6gE/A2WLqVx\ndHw8su2zGBYqJmhp0bBKFBSQ2fT06ai0SQ+qUIl5i0pGBjVSGSxjVmAZqKUSczE2drBsGY2W1dXo\nPqEUe1sxD8krl6BItiMb/fHh+gGmhYqc5/GFly2j8UHZxyoiQkVNUQ7QT72KvamsWgWcPGlzw6zB\nivtq0+euQdLYMIo3L7amUZFgxYrpvhR0EbR0KTA5abmF7PW/eRR7y+6y9JzBYKFiAk2hAnip3Fik\npYWqm3tUpo9dPAbLmBUqS5bosqjExR43AFURLC8HTp9GfzXNgAWr5yJvE00Ai3F+9v8GCiOl9J1T\nKjwUQGUlcOkSUF+P4WHKMLW9T6spygH6qWa8XWUlKQCf/bZiEUvciYmJSExOsGcHa7tYsYKuT3t7\n8N/AM0XZQtobR7Gu+YWIFZNjoWKCgEJFVbk20lHTj6lLQ6beq2YZOOKG9BEqqalUUy+m8ExRDkJX\nF1le42KSVsT6aC3VUClYUYR515L7YTHOx57YtInOXLKoZC7zESoAcOIEWpRCCRH5PYJY/jSrBavt\ndIBVJS4WAFp4hBoEFSpqLJ3FQuWErETG1GDEaoexUDFBUKFy5oxtKnO4uQfuxbl444HnTL3fEanJ\nKpWVtAocHrbED20LS5bQtda5l0pcDKiKWJ9qaEJ7YgkSUxKRV5GPbuHCuoxzSEuLdgMjQ9/qa7DT\n9QG4bvCoRVJWRttDnDgRWSthkBTllhYKwvTas3DZMgoIPnEiAo0Lj7gJ0PZl8WIgKQmy+nRw95dq\nUbNYqBwcmRHdkYCFiglaW4O4foaHbVOZbWP5aMJclPYcN/V+1aLiCCorSQScDnEjRhM1RTnEIGBF\nrQfHsHw5UFuLtJZadKfNzCDNGUtQmeqMAE0rWLXFhZu6foP5q7JnnhSC+nWkhYqaojzkb4ltbaWC\nwl6kpJDLIMaFSn8/edLi4r7yJTkZWLQIo0eqMTISQqzZkPlzrHMuhtPyWKjEKsPDVF06oEUFsM39\n09ICHMdqFDYfM/1+x9zUK1fSozKox2S7586lMuPHgwvHpiYq6lVcHKF2RRMlTX9x0+u4lDtz0aYW\nL8HCgt4oNixG8BAq6ekBUkrt+ExAc1IJuOhS2hnLxJWlUosVKzBxnGIiQwoVj/pG4TI1BbS1C/TM\nXcVCJVYJWoukrIxsqDYF1La2AsewBpkX4sCikpNDe1rEslARAli3Djh6NOhhzc20ak2Khw0rFLFe\nONqM0YKZ0XNN1eOoPPdMtFoVO1RWAtXVaGmcjJw7s7KSlLJGP21p0bCoqO85cWI6Q8mXV//jIJ5z\nfxSTE9qvR4JZv9FnKFasQOJ5WhQHHR9XraIfq7vbko/t6aGYu5HFkROzLFQMogbBaU74CQkzKYg2\n0NoKnExYg8T6i4DBDaAcU5XWE4/VZ8y2e9064MiRoIfElR+9oAAoLAQAyLkeXzpmtr2OMqtWAaOj\nmDxbE7k+kZ5OLjmNfqrp+gGonV1dtOOfBkm7XsGtnb9EYmv0ao/ElUtVi+XLkd7RgExcCv4brFN2\nngmxoNKLOgdiVSXNdRGo0cKjh0HUi6R5cwO0orTJotLSAjQXrqb/GFSyjqlK60llJaaOn0BfXwxP\n9OvWUdDvwEDAQ2I2xsYmJpeRVSV5QRx9ab0obpiM2hOR7RMBBHXAxIAg7iIAEG3KgFJVZVEDjdPU\nRJmA6elRa0J0UayXV+WdRkpKkOOWLqUfKcSCSi/qXJK2qZK2OonAHncsVAwSshaJjbVUWluBwdLl\n5EMIERfhS0TTIa1i1SokNNQjG/2x2+61a+kxyPVwVGyQBVwqpQE0Y0msqssoUlQEFBaisDXCQmXt\nWuDYMa+MxOFhMsxqLroWLaKaAAGESnJ3G/3j8GEbGquPuE1NVlFSlC/PCWHBT0wk4WmxUMnbvIr+\nEQH3DwsVg6g+3YC+5RUrgppMw/3sgrmp1EGPGQuodUxVWk+UVd0qnIzdiX7lSorADzIItLXFSSCt\nQkchDaC5K+N5FgmAkvlT2hcFi8qlS16p9G2K1tAcExITqW8HmIQy+mPDohLXQiU7G51p87AmWcfC\nWEcsnV5aWiiEMGOBmwY2FiqxR0BTqYrqD7ThBp72J69ebViotLTQfBrO5l0RZ/lyTIkEVCLCg7oR\nUlJoQA8gVKamSLMGdBXOQpqW34gDiVfAfVl5tJsSk4wtrcTyiShYVACvfhrSjR0k8yd3iIVKLHAh\new2KM/pDH7huHXDqFLlqwsQrU2xVZDJ/WKgYJKRQWbSIUlYPHrT8s6c7yJo15GoIEJGvhaOq0qqk\np6O3cDHWJZ9Ednbow6PG2rUBVytdXbTVRjxZVLZ+ZjUum3gb2e44qe5mkO65lViCc5hXGLyisaUU\nF5Mi8einqgk/pFDRKGDpGm9FS9llVJ/FBuuxHhyVxWgTl7X9GdceeyT0gevWUdDrqVNhf6ZXAHaE\n0thZqBgkpFARAti0yXKhMjXl0UHWrKFqR/X1ut/v1DiJxtxKrE+O7XoOWLeOLFwTE34vqeb1eBIq\nTHCaXZVIxgQWjFpbhCskPgG1ra0U7hbQyrp+PbmLfIqFDXcNIRf9aN94Cz0RhTgVKePPUqmJ3pXn\naiUJwwL3j1dKu1pBfGQk7PMGg4WKQUIKFcAWodLdTfPgtOsHMOT+cerqo2/rNoxtuCrazQjOunV0\no2qUKQ+5amXijrUf34S2Iy2Y967KyH6wj1BpaSEBHTBz/LLL6HH/fq+nu06R+p64/GoKVoiC+6e3\nl7wYfF/pJDubKhRbEFDr5frxqCBuJyxUDDAxAXR06BQqTU0eCefh45VeXFqqqyKqJ061qGz52Ydx\n7Z5vRrsZwVH9/xqrFbaoML4kZqSieO0cJCVH2A+7di25arq6AASpoaKSl0eB+/v2eT3de4Y6dfbS\nErK6RMGioo6HfF8ZQEfNJz149Zv16+mcaiVxm2ChYoC2NjI5hhQq6krk0CHLPtsr8E0Icv8Y6HRO\ntag4ApeLqhJrXI+2NiAry2fTN4aJBj6FvwKWz/fkiiv8hMpgDakE18o5wIYNUbGo8ALABGosnYHY\nRl9GRqgy7bRQSUuj8wYt5BI+LFQMELQqrSdlZYDbDRw4YNln+7kQrrwSePNNXZ1ubAzo7HSmRcUx\nbNjgZyIH6LrxYMrEBEuWkGpW+mnA8vmeXH45TW7Dw9NPjda1YgKJcC0poH5fU0O+mAiiChV2/Rhg\n3TpSGQ0Npk8RNKXdRmwTKkKIDR7/zhVC5Nn1WZFCt1CxIaC2tZU2MJuuwrhlC5lJLlwI+V6+qSPA\nNdcAb7/tl/7X1sa/OxMjJCYCV10F7NkDQIfrByCLysSEl3tnqrkVHQnFSEhKIKECRNz909pKi/mY\nzgaMNdRrFcYCOmRKu01YKlSEEBuFEHcJIQoBvNvjpUEAdwkhtlr5eZGmpYUCz4qKdBysCpUwzGy+\nn+3VOTZvJkGkDDrBULMHeWVvI1u20KrTxwweb8XemBhnyxbgzTcxNT6pz/WzZg0pAg9rYUJ7K3pT\nlcFo2TKKZdExDlmJel85qtxCtJk7FygvD+taRSs5wGqLyiWQQDkI4D4hxMNCiNsAZEkpfwKgwuLP\niygtLeTRSUzUcfCmTaQQGhst+Wy/QSU/nyKudXQ61aKiS2Ax5tiwgQJRfK4Hu36YmGLLFqCvD31v\nnpjJIgxGcjL1bY84lZSeNlzKUjp1YiLwjncAu3fb1mQt2FJpki1bgDfeMP321la65Mq+oxHDUqEi\npTwjpfyYlLIcwEsAjgN4P4DDQogTAN5l5edFGl0rEJVNm+jRojgVTX/yli2GLCosVGwkOZnihnyu\nBw+oTExxxRVAcjKGX6F+qms88wmozbzUipE8j0593XXA3r2219LwhBcAJtmyhdx0QTZRDUbIlHab\nsPPjnpNSPial/FspZQWA6wDcY+Pn2Y4hM/7cucD8+ZaZRDX9yVu2UDEm1WQSgPZ2ss7aHJjNqKsV\npZLn5CSls/OAysQM6enApk1I2Eural0i+oorKBauowMAkDfSislCjzdeey0wOuqXHWQn7FI1yZYt\nND699ZaptxtarFtI2EJFCPElIcRRIcTfeTyXA2ClEGI6z0RK2SGl9K/F7CDa2w3eHDfeCOzcacln\na3aQa66hxxCmPL6pI8SWLRRVr5Spjsfy+YwD2LIFOcf2AJD6hMrll9PjW29BTkkUTrRClHi8cc0a\nckXv2mVHazVhS6VJli2j+AWTC2hdAdg2YIVFpQhAHYD3qU9IKfsBPAvg40KID1nwGTFBe7tB98lN\nNwEnT4Zd+G14mLL//DpIaamu4CjD7WbMceWV5MBVrgdnWzExyZYtyOhpxprsCzNZhMEoL6e/V15B\nf2M/0jGC5PkenTohAdi6NWJCRUpefJlGCFrgmhQqulLabcAKoSIA3Cml9MzygZTyvJTymwAus+Az\nYoK2NoMT/vXX0+Orr4b9uUAAk5uOOBUWKhEiM5MCD32ECg+oTEyxeTOmIHBzps7JSgjglluAF19E\n10lK+8hc6DNbXXcdped71Fuxi54e2l+P7yuTXHMNuelGjW+KGS1LlhVC5dsAHhBCJAKAEGKZEOKc\nEKJFCLEXwGILPiPqjIzQPoCGbo6iIiqyE6b7J2hK2NatVBFVKYutBa8+IogqHKXkMt9MbJKfj8bc\nSmyBgVX1zTcDtbUYf43ek7PEp1Nfey3VEDIZ+2AEtlSGyZYtNKEZrJyubgQZjfFMt1ARQlwvhPi6\nEOJGIcR0mR0pZSeARwB8WQiRBuD/AngBwL8D+CWAu61tcnRQ4siMWyZuuoksKmHUUwlaZOfmmyk4\n6sUXA76fLSoR5MYbKSX95Em0tVFBKi6fz8QatZs/hMx1S/S/4brrgJQUFDz7cwBK+XxPKitpG+YI\nuH94ARAm69eT9deg++fSJdI3brdN7QqCEYvKHABfB/AKgB4hxDEhxH8LIf4WgBvA9wF8A8CklPIf\npZSPSCl/osSrOB7TZvwbbySloQRYmv3shIQA27HPnUt7Cz37rOZ7p6ZIZLFQiRDXXUeDwI4dbMli\nYpZr//xPuPbFB/S/ITMT2LoVhefewjDSkFOa4/16QgJwww3ASy9Z21AN2KUaJklJVPvm5ZcNvS2a\nZS6MCJUOAD8EUApKM34dwFUAfgHgNIAaALcASBVCRHj/cvsxfZG2bAFSU8OKU+noIBUbMHf9ttto\ngNDwOfb0UAVsvqkjRFoa8K53ATt2cK0HZnZx880AgM6kORAJGiVht22jatxNTbY2o62Nsqy5fH4Y\nbNsG/PWvNEHoxClC5SCAx6WUzVLK30op/0FKuRZAAYDbQILlEkisHBVCdAghnhZC3Gl9syOPepEM\nm73S06ncvUH16vvZQT932zayy2lUh+Rib1HgttuAffswVt/KfnRm9qAIld60AJ365psp6+255yz/\n6M7qDpx+ivYTUhcAXD4/DG69lWonvPCC7rc4QqhIKXuklH677Ekpe6WUz0spH5BSXg0gF8BNoLiV\nXABftKy1UaStjUoFmCqaduutwF/+AvT1mfrskK6bykqgokLT/cPl86PALbcACQlYfv55tqgws4dl\ny9CaXo6hrACd2uUil8KOHZZ/9In7Hsa8D74DQ51D7FK1gnnzqHq6gWvV3k7iUDMEwWYsr0wrpRyR\nUr4mpfw3KeVNUsorrf6MaBBWQOr7308R8c8/b/qzg1pUhCCryo4dfkG7vCFhFCgsBDZvxtUdz/Lv\nzswehMCBT/4MPX//YOBjtm2jRZnJEu2BSGxvRjYu4ci/7eBib1axbRslYfjs+B6I9nYa2nTtdWcx\nEa7Y71wM11DxpKyMioH9/vem3q4rGHbbNvIN++ze295OVqCcnADvY2xh6tbbsGXsVZTmD0a7KQxj\nGbc+fAPe/bXLAx+wbRtNfK+8YunnpvZT2mXSb/+XY7+s4rbbSFDq3FAymtmjLFR0Enb++J13UsCr\niZVGSIsKQEG7RUXAr3/t9bQqsNifG1m6r9mGdIxgVUt4xf4YxlEsXEiuaIvdPxmDHRhCOta3v4Se\nc50sVKxg9WpgwQLd14qFigMI+yLdeSdl5fz5z4beNjUFdHbq+OzkZODDHyah4pH9E60CPfFO1vol\nOPbvz2PxJ6+PdlMYJrJs20ZubhOVTwORO9qOQ0s/CAGJdw/8jsc0K1BDBp55hgJrQ8BCxQGEHcC1\nYAHVOzHo/unuJrGiK9voYx+jNzzzzPRTXOwtOqSlAWu+/B4UlHMOJRNn3HMPjUMWWlXyJzowuWIV\nDrvfhXvwvxyjYhX33kshAzqqp7NQiXEsK5p2552UDtavvwaeoYq4y5fTPg6PPTb9FEfIMwwTUVau\nBK66ymscCofBjiFkYRDJJW6M3XUvNmMvFkzWWnLuuOeyy8hVp+NasVCJcXp6yDIW9kW65x7aTevx\nx3W/xXD9lvvuI3V84cL0+9miwjBMRLnvPgqorasL+1TdZ2i1lja/CJd9cxuO3vgFrLssOezzMiD3\nz333UWkLdbLRYHJSZwiCTbBQ0YFlJZvnzaNU5UcfJTONDgzvMXTnnVSy8ee0JwcLFYZhIs5dd1HZ\n/V/8IuxTDdTQBJpZ7kZKfibW7vwvJFWUhX1eRuHee0mw+CRieGIoBMEGWKjowNKKfJ/9LHD2rO70\nvfZ22pohL0/n+TMzgY98BPjxjzHcOYiBAXb9MAwTYbKygLvvJqGiI1AzGJcu0GotdwmvuGyhoAC4\n/XZy/wTYPDfaFc6TovOxMcznPuenCpY0A88CmP+dMuCnPwz+/vvvBxoaAr9+993Ahg3AI48A7363\n/+v19cBnPjP93xvOAH9OBMRtHsc8+igwf37gz1i8GOjuRuLVV+BZLMSVPwTwO4/Xy8qAH4b5PbZv\np79A+HwPTUJ9j6eeor9A8PeYgb/HDPw9iGh/j54eev3nPwc+8YnA5wjxPUrPUy0i17Igy3m+HoTZ\n73HffcBNNwGvvUaqxOd7FHfSHLj2awCW6/geFiNkAAUVbwghNgA4dOjQIWzYsMHrtUceAf7pn4Dh\nYYvqkTz+OFk9zp4FlgTfav3++4E33gCOHjX4GR/9KMZe2Ins9hrsO5yKdetMt5ZhGMY4UtKOyu3t\nNICZLGm6+z3fxfoXvoVc2WtxA5lppASuuIImuLff9pvofvtbWmP39gK5udqnqKqqwsaNGwFgo5Sy\nSvsoc7DrRwdqnIdlRdM+8AHyx3zrWyEPNZ1t9MADSO5oxofwa3b9MAwTeYQA/uM/gJMngSeeMH+e\n9nZ0J7Pbx1bUa7V/P/DHP/q9HO0K5yxUdGB5im9aGvDVrwK/+hVw4kTQQ3VVpdVi+XJc3HAH/hn/\ngcK8CXPtZBiGCYfLL6cEgq99DRgZMXWKxJ4ODKRFKYoznrj+euCd7wS+8hVgwnvOUBfM0apwzkJF\nB7ZkznziE7Tj8YNBNvhCePVbev7uQTRseB+SJ80NEAzDMGHzrW9RUTGTcQ1p/e3/v717j7Kzqu8w\n/vxyIxcll0aSiiDQKIqrjcmgEoWCF8pC1xqtIjQS0FIRBK0NdlG0aoqiBRWqVlDRVoyW6aJolaux\nsLC2kkjXjCAoxKJcGiGXCckQM0mAZPeP9wycHOacORNnzrvPzPNZ611Z572cd8/aOe/5nv2+e2/6\nZ9ii0hIXXwxr1z5rXJWye48aVJowKpU0ZQpcdBFcf33xEEqDc+9rl7DF717Ma7s/WzyBL0llOPxw\nOPtsuPBCeOSRYR8+ffsmnphli0pLLFoEp59e/IDu7X16tUGlDYza6K6nnFL8x/jABwadanv3bti8\n2XFQJLW5iy6CadPgvPOGfejMXRvZPceLYMt8+tPFoCkXXPD0KoNKG9i0aZQGupkwAa68En72M1ix\n4lmbN28uHsYua5AdSRoRs2bBpZcW3UeamFdmQEowZ/cmJszzItgy8+bBpz5V3P65/XbAoJK9Xbtg\n2zaYO3eUTnDkkfCJT8All8Btt+21adij0kpSrk49FY47rrgN9NhjTR2yfeN2prODSc/3IthS73lP\nMQ/QmWfCtm0GlWZExDERcV1E/CYi9kREZxPHHBcR3RGxMyJ+GRHv3Jdzb95c/DtqQQWKQVqOPRZO\nOw3Wr3969bDn+ZGkXEUUv9L7+uCtbx30dnetLWuLi+C0g70IttTEiXDVVbBuHbvffgq/7XvKoNKE\nGcCdwDnAkCPURcQhwA3ArcBC4PPA1yLi+OGeuCVBZeLEYpyBPXugsxP6+wFbVCSNMYcdVkyAt3p1\n8Wt9iAFH++4vLoIzDvUi2HJHHAHXXsuEW37A5/grnje3vMFh2yKopJS+n1L6WErpe0AzPbnfC/w6\npXR+SmltSuly4Fpg+XDPPfDg86gGFSgmLLzhhmJwpNNOgz172LgRJk8ub5AdSRpxr3lN8Wt95Uo4\n55yGE7T2P1i0qMx6kS0qpTj+eB6+4Eu8j8s57JH6vVNH21id6+co4JaadauAfxjuG7UsqEAxB1BX\nF7zlLfDud7P5wCs54IBJpQ2yI0mjYunSYk6SM8+Exx8vgsvkyc/abde6okVlzotbcQHWYOZ95Ezu\nf+kf8cK3vqq0MozVoDIf2FCzbgOwf0Tsl1La1ewb9fYWsxe3rFWjs7P4pfGud9F5cB83zb0a2K9F\nJ5ekFjnjjOLC+o53FBPxrVwJhxyy1y67H93IlpjN7OnPDjFqjalTYcGp5YUUaJNbP2Xq7S1mwW5p\nq8ayZfCd7/Cyh27kskf/rIUnlqQWOukkuPVWeOghWLgQvvnNvZ9b2bSJLZN8PmW8G6stKuuB2iHa\n5gGPD9Wasnz5cmZWTQ95zz0wefJSoMHU2qOhs5Pui75PPPFka88rSa10zDHFWFLvf38xKur118OX\nvwxz5jBpy0a2TfP5lNx0dXXR1dW117q+vr5RO1+kIZ66zk1E7AHeklK6rsE+FwMnppQWVq27GpiV\nUnpjnWMWA93d3d0sXrz46fXLlsG6dfDDH47UXyBJGtQ11xTjrEybBh/9KHf+7TXsmDqbJb/5dtkl\n0xB6enro6OgA6Egp9Yzke7fFrZ+ImBERCyPi5ZVVh1VeH1TZ/vcR8Y2qQ75c2eeSiDg8Is4BTgIu\nG+65e3tb9CCtJI13J58Md98NRx8N557Lyx+7jSdm2qIy3rVFUAGOBH4KdFOMo3Ip0ANcWNk+Hzho\nYOeU0oPAm4A3UIy/shz4i5RSbU+gIQ08oyJJaoEDDyyG2l+7llsWfpDfdp5adolUsrZ4RiWl9J80\nCFUppT8fZN2PgI7f9dy2qEhSCRYs4A13frbsUigD7dKiUhqDiiRJ5TGoNLBzJ2zfblCRJKksBpUG\nWjLPjyRJqsug0kBLh8+XJEnPYlBpYCCo2OtHkqRyGFQasEVFkqRyGVQa2Ly5mNDzuc8tuySSJI1P\nBpUGBromt3RCQkmS9DSDSgOOoSJJUrkMKg04fL4kSeUyqDRgi4okSeUyqDSwebNBRZKkMhlUGrBF\nRZKkchlUGjCoSJJULoNKHf39xeLDtJIklcegUocTEkqSVD6DSh0Ony9JUvkMKnXYoiJJUvkMKnXY\noiJJUvkMKnX09sJ++8GMGWWXRJKk8cugUsfA8PlOSChJUnkMKnU4hookSeUzqNTh8PmSJJXPoFKH\nLSqSJJXPoFKHQUWSpPIZVOoYeJhWkiSVx6AyiJRsUZEkKQcGlUH098POnQYVSZLKZlAZhMPnS5KU\nB4PKIBw+X5KkPBhUBmFQkSQpDwaVQQwEFXv9SJJULoPKIHp7YepUmD697JJIkjS+GVQGMTB8vhMS\nSpJULoPKIBxDRZKkPBhUBmFQkSQpDwaVQTh8viRJeTCoDMIWFUmS8mBQGYRBRZKkPBhUaqT0TK8f\nSZJULoNKjR07YNcug4okSTkwqNTYurX416AiSVL5DCo1BoKKvX4kSSqfQaWGLSqSJOXDoFLDFhVJ\nkvJhUKmxdWsxGaETEkqSVD6DSo2tW73tI0lSLgwqNbZu9baPJEm5MKjUsEVFkqR8GFRqGFQkScqH\nQaVGX59BRZKkXLRNUImIcyPigYjYERFrIuIVDfZ9Z0TsiYjdlX/3RER/M+exRUWSpHy0RVCJiFOA\nS4EVwCLgLmBVRDSKFH3A/Krlhc2cy4dpJUnKR1sEFWA58JWU0sqU0n3A2UA/cEaDY1JKaVNKaWNl\n2dTMiZ56yhYVSZJykX1QiYjJQAdw68C6lFICbgGWNDj0ORHxYEQ8HBHfjYgjmj2nQUWSpDxk3ZKY\nEQAACnhJREFUH1SAucBEYEPN+g0Ut3QGs5aitaUTOJXi77w9Ip7f1AkNKpIkZWFS2QUYDSmlNcCa\ngdcRsRq4FziL4jmXhgwqkiTloR2CSi+wG5hXs34esL6ZN0gpPRURPwUWDL33cs46ayYTqtqali5d\nytKlS5ssriRJY1dXVxddXV17revr6xu180XxuEfeImIN8JOU0gcqrwN4GPhCSukzTRw/Afg5cGNK\n6a/r7LMY6J46tZsdOxaPXOElSRrjenp66OjoAOhIKfWM5Hu3Q4sKwGXAVRHRDdxB0QtoOnAVQESs\nBNallD5cef1Rils/9wOzgPOBg4GvDXWiWbNGofSSJGmftEVQSSldUxkz5eMUt3zuBE6o6nL8AuCp\nqkNmA1dSPGy7BegGllS6Njc0e/ZIllySJP0u2iKoAKSUrgCuqLPtdTWvzwPO25fz2KIiSVI+2qF7\ncksZVCRJyodBpcbMmWWXQJIkDTCo1LBFRZKkfBhUahhUJEnKh0GlhkFFkqR8GFRqGFQkScqHQaWG\nQUWSpHwYVGoYVCRJyodBpYbdkyVJyodBpcaUKWWXQJIkDTCoSJKkbBlUJElStgwqkiQpWwYVSZKU\nLYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRsGVQkSVK2DCqSJClbBhVJkpQtg4okScqWQUWS\nJGXLoCJJkrJlUJEkSdkyqEiSpGwZVCRJUrYMKpIkKVsGFUmSlC2DiiRJypZBRZIkZcugIkmSsmVQ\nkSRJ2TKoSJKkbBlUJElStgwqkiQpWwYVSZKULYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRs\nGVQkSVK2DCqSJClbBhVJkpQtg4okScqWQUWSJGXLoCJJkrJlUJEkSdkyqEiSpGy1TVCJiHMj4oGI\n2BERayLiFUPs//aIuLey/10RcWKryqo8dHV1lV0EjSDrc+yxTtWMtggqEXEKcCmwAlgE3AWsioi5\ndfZ/NXA18FXg5cD3gO9GxBGtKbFy4EVwbLE+xx7rVM1oi6ACLAe+klJamVK6Dzgb6AfOqLP/XwI3\np5QuSymtTSl9DOgB3tea4kqSpJGQfVCJiMlAB3DrwLqUUgJuAZbUOWxJZXu1VQ32lyRJGco+qABz\ngYnAhpr1G4D5dY6ZP8z9JUlShiaVXYCMTAW49957yy6HRkhfXx89PT1lF0MjxPoce6zTsaPqu3Pq\nSL93OwSVXmA3MK9m/TxgfZ1j1g9zf4BDAJYtWzb8EipbHR0dZRdBI8j6HHus0zHnEOD2kXzD7INK\nSunJiOgGXg9cBxARUXn9hTqHrR5k+/GV9fWsAk4FHgR2/m6lliRpXJlKEVJWjfQbR/Fcat4i4mTg\nKorePndQ9AI6CXhJSmlTRKwE1qWUPlzZfwnwQ+BDwI3AUuACYHFK6Rct/wMkSdI+yb5FBSCldE1l\nzJSPU9zCuRM4IaW0qbLLC4CnqvZfHRHvAD5ZWf4XeLMhRZKk9tIWLSqSJGl8aofuyZIkaZwyqEiS\npGwZVBj+hIfKQ0SsiIg9NcsvqrbvFxGXR0RvRGyLiGsj4oAyy6y9RcQxEXFdRPymUn+dg+zz8Yh4\nJCL6I+I/ImJBzfbZEfEvEdEXEVsi4msRMaN1f4UGDFWfEfH1QT6zN9XsY31mIiI+FBF3RMTjEbEh\nIv49Il5cs8+Q19mIOCgiboyI7RGxPiI+HRFN549xH1SGO+GhsnMPxQPW8yvL0VXbPge8CXgb8MfA\n84Fvt7qAamgGxcPx5wDPemAuIv6GYo6u9wCvBLZTfD6nVO12NfBSiiEJ3kRR118Z3WKrjob1WXEz\ne39ml9Zstz7zcQzwj8CrgDcAk4EfRMS0qn0aXmcrgeQmis47RwHvBN5F0TmmOSmlcb0Aa4DPV70O\nYB1wftllcxmy7lYAPXW27Q/sAv60at3hwB7glWWX3WXQOtsDdNasewRYXlOvO4CTK69fWjluUdU+\nJ1D0Apxf9t80npc69fl14DsNjnmJ9ZnvQjGlzR7g6MrrIa+zwInAk8Dcqn3OArYAk5o577huUdnH\nCQ+VlxdVmpl/FRHfioiDKus7KBJ8dd2uBR7Gum0LEXEoxS/u6jp8HPgJz9ThUcCWlNJPqw69heLX\n/KtaVFQNz3GV2wj3RcQVETGnatsSrM+czaKoi8cqr5u5zh4F3J1S6q16n1XATOBlzZx0XAcV9m3C\nQ+VjDUUT4gkUgwEeCvyocj97PvBE5YutmnXbPuZTXBQbfT7nAxurN6aUdlNcSK3n/NwMnA68Djgf\nOBa4qTLaOFif2arU0eeA/07PjEnWzHW23iTB0GSdtsWAb9JgUkrVQzXfExF3AA8BJ+M0CFJ2UkrX\nVL38eUTcDfwKOA64rZRCqVlXAEew93OALTHeW1T2ZcJDZSql1Af8ElhAUX9TImL/mt2s2/axnuKZ\nsUafz/VAbQ+DicAcrOfspZQeoLgOD/Tksj4zFBFfBN4IHJdSeqRqUzPX2XqTBEOTdTqug0pK6Ulg\nYMJDYK8JD0d09keNvoh4DvAHFA9gdlM8gFddt4cDB9N4ckplovIltp6963B/imcVBj6fq4FZEbGo\n6tDXUwScn7SoqNpHEfEC4PeARyurrM/MVELKm4HXppQertnc6Dpb/Rn9w5qetH8C9AFNTWvjrR+4\nDLiqMkPzwISH0ykmQVTGIuIzwPUUt3sOBC6k+ND8a0rp8Yj4J+CyiNgCbKOYTfvHKaU7yiqz9lZ5\nnmgBxRcRwGERsRB4LKX0fxT3xD8SEfdTzGz+CYpeed8DSCndFxGrgK9GxHuBKRTdKbtSSv4Cb7FG\n9VlZVlB0XV1f2e8SilbQVWB95iYirqDoPt4JbI+IgZaQvpTSziGus/9T2fcHFIHkm5XhBn6f4nP8\nxUpjwdDK7u6Uw0LR5/9Bim6Pq4Ejyy6TS1P11kXxpbWD4inzq4FDq7bvR3GR6618gP4NOKDscrvs\nVYfHUnRl3F2z/HPVPn9H0UrWT/GFtqDmPWYB36L4hbYF+Cowvey/bTwujeoTmAp8nyKk7AR+DXwJ\neJ71medSpy53A6dX7TPkdRY4CLgB+C3Fg7SXABOaLYeTEkqSpGyN62dUJElS3gwqkiQpWwYVSZKU\nLYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRsGVQkSVK2DCqSJClbBhVJbSEiXleZnFDSOGJQ\nkdQuTqKYpE7SOGJQkdQujgZ+VHYhJLWWQUVS9iJiFvAy4L/KLouk1jKoSMpWRLwtIm7mmZaUsyLi\npog4psxySWqdSCmVXQZJaigiPgmclFI6vOyySGotW1QktYPX4G0faVwyqEjKWkRMAl6BQUUalwwq\nknLXAUzFHj/SuGRQkZS7VwOPppQeAIiIwyJiasllktQiBhVJuTsK+HHV6w+mlHaWVRhJrWVQkZS7\nicBAa8ppwM3lFkdSK9k9WVLWImIR8BngLuBnKaVvlFwkSS1kUJEkSdny1o8kScqWQUWSJGXLoCJJ\nkrJlUJEkSdkyqEiSpGwZVCRJUrYMKpIkKVsGFUmSlC2DiiRJypZBRZIkZcugIkmSsmVQkSRJ2TKo\nSJKkbP0/5A0l25iCnOYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" ] + }, + "metadata": {}, + "output_type": "display_data" }, { - "metadata": { - "trusted": false - }, - "cell_type": "code", - "source": "import numpy.ma as ma\n\nmask_H = []\nmask_L = []\nK_H = []\nK_L = []\nB = list(A)\nB.append(B[n])\n\nY = []\n\nfor i, a in enumerate(A):\n \n b = B[i+1]\n \n if a == theta_H and b == theta_H:\n mask_H.append(0)\n mask_L.append(1)\n elif a == theta_L and b == theta_L:\n mask_H.append(1)\n mask_L.append(0)\n elif a != b:\n mask_H.append(0)\n mask_L.append(0)\n \n K_H.append(k_ss_H)\n K_L.append(k_ss_L)\n Y.append(f(X[i], a))\n\nX_H = ma.masked_array(X, mask=mask_H)\nX_L = ma.masked_array(X, mask=mask_L)\n\nY_H = ma.masked_array(Y, mask=mask_H)\nY_L = ma.masked_array(Y, mask=mask_L)\n\nplt.plot(T, X_H, color=\"blue\", lw=1)\nplt.plot(T, X_L, color=\"red\", lw=1)\nplt.plot(T, K_H, '--', color=\"blue\", lw=.5)\nplt.plot(T, K_L, '--', color=\"red\", lw=.5)\nplt.xlabel(\"$t$\", fontsize=14)\nplt.ylabel(\"$k_{t}$\", fontsize=14)\nplt.title(\"Path of $k$ over time\")\nplt.show()\n\nplt.plot(T, Y_H, color=\"blue\", lw=1)\nplt.plot(T, Y_L, color=\"red\", lw=1)\nplt.xlabel(\"$t$\", fontsize=14)\nplt.ylabel(\"$k_{t}$\", fontsize=14)\nplt.title(\"Path of $k$ over time\")\nplt.show()", - "execution_count": 164, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGMCAYAAAD0nYndAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXeYHFeZ7t8zOYee6RmNNCPNKIdRlqMs5AjYYBkbr7Gw\nWZKBXcyywGXxYpawy2XZBfbaYAO7gAGD1yYYsGXjJGPJyJatNMoapRlpcs6aHM7946ua6VDdXVVd\n1d01/f2eZ56WuqurT3edOuc9XzpCSgmGYRiGYZhYJCHaDWAYhmEYhgkECxWGYRiGYWIWFioMwzAM\nw8QsLFQYhmEYholZWKgwDMMwDBOzsFBhGIZhGCZmYaHCMAzDMEzMwkKFYRiGYZiYhYUKwzAMwzAx\nCwsVhpnFCCG+IYSYEkK4IvBZm4QQbwohLgkhJoUQa+z+TKchhPiIcj3mR7stDOMUWKgwTBQQQnxY\nmbDUv2EhxBkhxCNCiCIT57tKCPF1IUSOz0tS+bMVIUQSgKcB5AP4HIAPAagLcvz3hBA7hRA/sLtt\n0SDa14NhZhMsVBgmekgA/wLgXgD3A3gTwN8D2CuESDN4rqsBfA1AnqUt1M8iAPMBfFdK+TMp5ZNS\nyr4gxz8AGn/6I9K6yBPoevwKQLqUsj7yTWIYZ8JChWGiy0vKpP5zKeXHADwMoALAbQbPI6xvmiGK\nlcdg4mQaKeUkgGUA3rCtRTYjhMgI9rLWk5IYs6lJDDMrYaHCMLHFa6BJrgIAhBDzhRA/EkKcFkIM\nCSE6hRC/E0IsUN8ghPg6gO8o/72ouJImfeIg8oUQvxRC9AgheoUQP9drtRFCrBdCvCiE6BNCDAgh\nXhVCXOHx+i8A7AZZiJ5WPv+1EOcsB4mbvXraYKAt71c+f4vGez+lvLbS47m5ym/RKoQYEUKcEEJ8\nVOO9aqzPCiHEk0KIbgB7ArQx4PXQilHxOPcSIcQTyvVpF0L8m/J6mRDiGeU7twghvqDxmbq+B8M4\nkaRoN4BhGC8WK49dyuNlAK4E8BSARgDlAD4NYJcQYqWUcgTAHwAsBXA3gH/0eG+H8igA/A5ALYB/\nBrABwH0A2gB8OVhjlEn9ryBLyX8AmADwKQC7hRDvkFIeAPDfStu+AuD7AA4o5w7GZgAnpZS6XT86\n2/JnAJcA3AV/IXEXgBNSylPK+YoA7AMwCeAHADoB3AzgMSFEtpTSM35GjSv5PYCzoN8tkBUr2PXQ\nilFR//9bAKdAbrH3APiKIog+BeAvAL4E4B4A3xVC7JdSvmHiezCM85BS8h//8V+E/wB8GDSxXAeg\nAMA8AB8ATWaXAJQox6VqvPdyAFMA7vF47v8o55vvc+zXlWN/4vP8HwC062jnnwAMA1jg8dwckFjY\n5fHcVuVz7tD5/X8E4FHl31cA+CaAFgCVFrTlf5VzCY/nikHC5kGP534GElh5Pp/zJIBuz9/e43f8\ntc7vF+h6fNj3eY9z/8jjuQQA9Uqbv+jxfC6AQQA/N/M9+I//nPjHrh+GiR4CtFLuANAAmlj6AbxP\nStkCAFLK0emDhUhS0oxrAfSCLCN6kAD+x+e5PQAKhBBZARsnRAKAmwD8SUo5ncEjpWxV2npNsPeH\nYDOAN4QQqlD7Nej30ByTDLbltwCKAFzrcYq/wYxlSeUOAM8BSBRCFKh/AF4BCQLf31frd7QKCeCx\n6f9IOQXgoNLmn3s83wfgDICFHu81+j0YxlGw64dhoocEuXHOgVbObVLKM54HKHEkDwL4CMjqIjze\nm2vgs3yzTHqUx3yQBUcLN4AMkKvDl2qQqChT/q0bJWV3FShTqFNK+YLy0pwgbzPSlpdAgu8DAHYp\nx9wF4IiU8rzSBjcoI+eTINeKLxIkdny5EKSN4eJ7jfoAjEgpuzWedwFhfQ+GcQwsVBgmuhyQUlYF\nef1RkLvgIQBvgyYpCbIaGLGITgZ4PhrZQleBXBLLASwTQtRJKc9ZdXIp5ZgQ4hkAtwshPg2gBGTB\n+WePw9Tf7gkAjwc41TGN54ataqcGWtco1HUz+z0YxjGwUGGY2Ob9AH4ppfyS+oQQIhX+9TnsKCLW\nAWAIlEbsywpQXEWDifNuBvAXKeWHhBBfArADwAohRILi8rCiLb8F8LcAbgBZbwBvt08HgAEAiVLK\noBlKJolUUTe7vwfDRB2OUWGY2GYS/vfpZwEk+jw3qDxaVvBNEQ2vALjNJ522GMB2AHuklIHcRsHY\nDLIOAcBJUIwKANwvhEi3qC2vgtxbd4PcPvt9YlumQAHF7xdCrIIPQohCE9/LE8uvhxYR+B4ME3XY\nosIw0UOP2+V5AB8SQvSDUlevAlkJOn2OO6Sc79+FEL8BMA4KsAyXfwFwI4A3hRA/AgmnTwJIAaXL\nGkIIkQjKWvJMiz6vPKZLKYO5VnS3RUo5IYT4I0ioZICycHz5Z1DA7T4hxE9Bv68LwEYA1wMIZ5LX\nuh47wjhfMOz8HgwTdVioMEz00OMe+Cwo0PaDANJAlVxvBPCy5/ullAeFEP8C4O8AvAtkhakIu4FS\nnlKKp30bNCEmgKwhH5RSHvQ9XMcp3QCaAKhxOX8B8EkhxDdBtWKsagtA7p+Pg9xCv9c4X7sQ4nJQ\nqfvbQdsXdIGsPIZFmM+5rboegX5Tz2tv2/dgmFhASMn7YzEMwzAME5vEfIyKEOLLQoj9Qoh+IUSb\nEOJPQoilId6j7kw7KWZ2px2KVJsZhmEYhrGGmBcqALYAeARUvfJGAMkAXgkUdOdBH6gug/q3IPjh\nDMMwDMPEGjEfoyKlvMXz/0KIjwBoBwWKBdt5VUopO4K8zjAMwzBMjOMEi4oveaBAMt9qjb5kCSEu\nCiHqlZ1HV4Y4nmEYhmGYGMNRwbRCCAFKucyWUm4NctyVoF1oj4HKjP8TgHcAWCmlbI5EWxmGYRiG\nCR+nCZUfg1L9Nqubtul8XxJoD5AnpZRfD3BMgXLuiwBGwm8twzAMw8QNaQDKAbwspeyy8sQxH6Oi\nIoR4FMAtALYYESnAdPGnwyArSyDeBdoenmEYhmEYc9wD2tHcMhwhVBSRchuArVJK3x1G9bw/AcBq\nAH8OcthFAHjiiSewYsUKM81kYozPf/7zeOihh6LdDMYi+HrOPviazh6qq6tx7733AspcaiUxL1SU\nUtnbAWwDMKjs7QEAfVLKEeWYxwE0SSkfVP7/VVDFyvOg4NsvAZgP4GdBPmoEAFasWIENGzbY8VWY\nCJObm8vXchbB13P2wdd0VmJ56ETMCxVQCWoJYLfP8x8F8Cvl32Xw3g49H8BPQPVTekD7blwlpTxt\na0sZhmEYhrGUmBcqUsqQKdRSyut9/v8FAF+wrVEMwzAMw0QEJ9ZRYRiGYRgmTmChwsxatm/fHu0m\nMBbC13P2wdeU0QMLFWbWwoOgdQwNAdEuucTXc/bB19SfId4+1w8WKgzDBGX/fqAzbxH2fPDH0W4K\nw8xaxseBp9/3BIayi9DT7ZxCrJGAhQrDMJpMTgLf/CZw9dVABoawsqgz2k1imFnJuXPA5s3AMzsS\nUDjVgeyk4Wg3KaZgocIwjB9jY8D27cA3vgE8+CBQUJ6DwpT+aDeLYWYd+/cDV14J9PQAX/teDgAg\naYjvNU9YqDAM48XgILBtG/Dss8Af/gD8278BIjcH6OfBk2Gs5LXXgBtuAJYvBw4cAJZuIqHC95o3\nLFQYhplmfBy4/XbgjTeAF14A3vc+5YUcFioMYyXPPAPcfDO5Vl95BcjLA91nAN9rPrBQYRgGAGX1\n3H8/sGsXsGMHrfSmYaHCMJbxq18Bd95JlssdO4DMTOUFFiqasFBhGAYA8L3vAT/9KfCTnwDXX+/z\nIgsVhrGEX/0K+PCHgY98BPjNb4DUVI8XWahoEvMl9BmGsZ8//hF44AEKnP3oRzUOYKHCMGGzezdw\n333Axz9OiwIhfA7IzqZHvte8YIsKw8Q5Bw4A994L3HUXpSNrwkKFYcLizBngjjuArVuBH/9YQ6QA\nZF5JTeV7zQcWKgwTxzQ3A7feCqxbB/ziF0BCoBGBhQrDmGZoiILU58wBfv97IDk5yMF8r/nBrh+G\niWM+9zkKon3mGSA9PciBubk0eEoZYCnIMEwgvvhF4OJF4NAhJbsnGCxU/GChwjBxyssv0+ruiSeA\noqIQB+fkABMTwPAwkJERkfYxzGxgxw5y9fz4x8CKFTrekJMD9PXZ3i4nwa4fholDRkYoFfm664AP\nflDHGzgbgWEM09tLgbPbtgGf+pTON7FFxQ+2qDBMHPLd7wL19cDzz+v05HgKlTlzbG0bw8wWvvMd\nik/57/824DFloeIHW1QYJs5ob6cB9B/+gUp364ItKgxjiOZm4OGHKQ6spMTAG9V4MGYaFioME2d8\n61uU3fPggwbexEKFYQzxr/9KAepf+pLBN7JFxQ8WKgwTR1y4QEF9DzwAFBQYeCMLFYbRzdmzwGOP\nAV/5ChlIDMFCxQ8WKgwTR3ztayRQ/vEfDb6RK2YyjG6+/W2guBj49KdNvJmFih8cTMswcUJ9PfDk\nk+Q3n94ETS9cMZNhdFFXRyn/3/kOkJZm4gQsVPxgiwrDxAk/+hGQlRVgLx898AAKADj728M48MDv\nMTUV7ZYwscj3vkfunk98wuQJcnKAsTFgdNTSdjkZFioMEwcMD9MmaB//OIkVU7BQAQCc/NYzKP1/\nX+ACvYwf7e3Az35GrtWw7jOA7zUPWKgwTBzw5JNATw8VeTMNCxX09gJvV+fCldDLQoXx4/vfB5KS\ngM98JoyTsFDxg4UKw8xypAQeeQR4z3uARYvCOBHXd8CTTwJdk3lIHbtEWwowjML4OFlTPv5xID8/\njBOxUPGDhQrDzHLeegs4epQKvIUFW1Tws58Bizcpu8rxfiyMB88/T66f++4L80QsVPxgocIwGtQ9\ndwx7bvgGBvpltJsSNk88AZSVATfeGOaJ4lyoVFUBhw8D79imCJXe3ug2CMC+Lz+DvZ96PNrNYEAi\n9oorgMrKME/EQsUPFioMo8G+n5/Eltf+Fcljg9FuSliMjQG//S1tPJgQ7t0e50LlsceoFPrl74wd\nodL52LNw/f5/ot2MuKehAXjpJXL7hA0LFT9YqDCMD1ICL75Fk1HaSPQno3B4+WWguxu45x4LThbH\nQmV8HPjNb4C//VsgqTA2XD8NDcDZjjzMSXd2H50N/PKXVC7/7rstOFlaGkXkxum9pgULFYbx4a23\ngNNtsbNqDocnngBWr6a/sMnJifrkHC127SLB94EPAMiLjb7xxz8CAwl5yJlydh91OlICv/gF9Q21\ngHNYCBHX95oWLFQYxocnngBSi5Ww/Z6e6DYmDPr7gR07gHvvteiEcWxRefppyphatw4zpvkoC5Wn\nnwaKl+cjode5fXQ2UFVFe2hZYrVUieN7TQsWKgzjwdgY8LvfATe8PzZWzeHwpz9Rccvt2y06YZxW\nzJyYoN/yzjtpsYukJFo6R7FvNDcDb74JrNycB4yM0B8TFXbsICPbli0WnpSFihe8148Pn/vcjGXX\nl7Iy4Ic/DP7+++8n33Egtm8PPnHU14cuFvToo8D8+YFff+op+gsEf48ZfL/Hyy8DXV3A+z6SB/wI\nqD8/hs9sC/4Zsfg9AFpxb95M57fkehxZgafwLHAbgBT/12drv3r9daCzk4SKyv1Tj6Dhv68Admuf\nw+7v8cc/UnD0tw+9E9/Fs8BtAkgN/j20cOL10CKa32PHDuCWW+h+s+x7NP4QeDYDqPd+3SnXw2qE\nlM5Pv7QCIcQGAIcOHTqEDRs2RLs5TJT44AeB48fpD+npwH/+J/DZz0a7WYYZHAQKC4FvfhP44hct\nOumuXcD11wPnz4dZOc5Z/P3fU0ZHbS1mqtGuXg1cdx3wgx9EpU1bt9LGki98eQ/wjncA1dXA8uVR\naUs8U1cHlJdTZt1dd1l44ve+lyx3zzxj4UntpaqqChs3bgSAjVLKKivPza4fRhdNj72Enp0Ho90M\nW5mYoAnp9tuVJ/LyHOv6efVV8gbcdpuFJ43DtMnJSbJeTLt9VKLYN7q6gDfeAO64AzET2BuvPPcc\nkJwMvOtdFp+YXT9esFBhQiIl0PvpL+Pk//l5tJtiK/v3U+zszTcrT+TnO3YC2LGDFthLllh40jgU\nKm+/TdVG77jD54UoCpVXXgGmppR+ykIlquzYAVx7Le0uYSksVLxgocKE5Nw5oHXMhYTe7qDHtRzr\nQMtr1RFqlfW8+CLgcgGXX648kZfnyKyfyUla6W0LEVtjmDgUKq++St1guk+oRFGovPgisHYtMG8e\nZjaVcWA/dTp9fcDu3RZbLVVYqHjBQoUJyauvAj3IR8pQ8MGw+lMPY+Kmm+HUsKcXXwTe+U4gMVF5\nwqGun337gI4OGwZQddkYRwPozp0UljPdJ1Ty8qJS52JqityT01a/zExqnAP7qdN55RUqBPje99pw\nchYqXrBQYUKycycJlfSR4ELlaIMLhYnd3r58h9DWBhw6RNH70zjU9bNjB+B2074jlpKaSg75SA6g\nUtJsYJLhYWB8yNz7+/vJ9XPTTRovRknEVlWRCJ0WKkI4tp86nZ07yb26YIENJ2eh4gULFSYoExOU\n7NGX6ELWaGDXT2cncLzJhfTxgbAmlmjx8sv06BUU51DXz3PP0SrPzwoQLmrFzAgOoCfK34Oja8xX\nrDv0oYcwlOXG2Jjx977+OrnRNDdzjJJQefFFugRXXeXTFgf2UycjJQkVTRFrBTk5isp23lhqByxU\nmKAcPEgW7qKl+cieDDwYvvYa0AUX/ceBq7sXXwQ2bQKKijyedOBKtbUVOHWKXFi2EEGhMjkJnG3J\nwUR78NioYByvy0Wu7ENKwoTh9+7cSamnmpnYeXn0O0xOmm6bGV54gSbH5GSftjisnzqd2lrg4kWb\nhQoADAzY9AHOgoUKE5SdOyk0Yf46F/JkD6YmpgIft0AJ7Os2P7FEg8lJ8jdPm9NVHLhS3b2bHq+9\n1qYPiKBQOXYMaB13IWPYXH+SEnj7rHnx/OqrZE3RdGVGIV6nq4vij/z6aX6+4/qp09m5kyyWW7fa\n9AFxGLgeDBYqTFBefZXqWqXOyUcCJAaa/G8c1Qy68hplUnCYUDlxgpp8ww0+L0Rp1RwOu3eT33zO\nHJs+IIJCZdcuio3KGjPXn06eBC70m+uTjY1UQy3gijkKacGvvUb3ml/NDraoRJxXXwWuvHJGT1gO\nCxUvWKgwAbl0iXYSvvFGEioA0F/nv3KrqaEKjRtvUiYFh63u9uwhU7pfCqqa+umgwWLXLhKWthFB\nobJ7N9ANF3ImzQmV3buBgSRzQuUvfyFLyvXXBzggCkJlzx5yQ5WWarSFhUrEmJwk0agZu2QVLFS8\nYKHCBGTfPorluu46IH0eDfiX6v0H/J07qdrzlTc70/WzZw9w2WVUMd8LdTJyiPBqbgbOnrXR7QNE\nTKhMTgJ//SuQ6HYhF/2mMnd27QIWrDcnVP76V6qSX1gY4IAoCRXNje/Y9RNRqqro57YtPgVgoeID\nCxUmIHv30ni8fDmQPZ9EyHCz/4C4cyeZQbOL0oG0NEcJFSmDTAAOq/ppe3wKELG4nSNHKIh75WYS\nGr0XjV2DqSnK2ll/vTnxvHcvcPXVQQ6IcN/o6wOOHg3STx3SR2cDO3fS5tl+FlgrcdgiyW5YqDAB\n2buX0iATEoDsBTRhjLR4D/jqRD/tbnC5HHVz1dYCLS1BVqqAYyaB3buBlSt9MpesxuWKiBDdtYss\nXKu3Ur8bqDP2mSdOUPDplnem04kMtLm7Gzh9OoRQUYNpI1T0be9euteCChWnVlp0GH/9K10Hr8wr\nq0lPp7pFDlr02QkLFUaTqSkqdqUO1tlzszGJBEy0e4uQ2lqqoXLllcoT+fmOurn27KFYhM2bNV50\n2KrG9vgUACgoIAVgM7t30zXJrVBcjg3G+tTu3UBKilJvxGCffPttegwqVJKTqSpshETsnj0kQBcv\n1ngxP598ZZcuRaQt8YyUtCfY9HhnF0JE7F5zAixUGE1On6YxWB2sE5IS0CvyMdnlPWnv30+P02bQ\nCK24rWLPHopFUDWJF+qq2QEWlaYm4Px5m90+AF3fS5dgqoKaTiYn6bpce+2MJW+02Vif2rWLJpP0\ndBjuk3v3kihYuDDEgRF0uajuSc1UaYe5KJ3MuXO0brG86rMWDhtL7YSFCqPJ3r3k8vH0ww4k5UP4\n3Dj79lEmwnTQocNcPwHjUwAqlJCT44gJQLUCaFqGrKSggB5tHECrqymGcPNmILec3G+jrfo/T0rK\nVrvmGuUJgwP+W2+RJSbkVhC5uRHpGyMjtCAI2E9ZqESMffvo8bLLIvBhbFGZJuaFihDiy0KI/UKI\nfiFEmxDiT0KIpTre9zdCiGohxLAQ4qgQwrdMEhOEvXuBNWuArKyZ5wZT8pHQ7y1C9u3zWV04yPXT\n2korpIATAOCYom8HD9JuuiUlNn+QS8misXEAPXiQRMKGDUBaXhoGkYFJA9Vp6+tp76bpfmlAqExM\nUJ8O6vZRiZBF5cABMmAF7Ke8g3JIxken0FPTHXZNpP37gaVLZ35yW3G5WKgoxLxQAbAFwCMArgBw\nI4BkAK8IIXyTSacRQlwN4EkAPwWwDsCzAJ4RQqy0v7mzg7fe8h+sh9NcSBmYGfDHxoDDh32EioPM\nlXv30uP0ylsLh5TRP3iQtgCwnQhYVA4cAJYtm8nQ7Et0QXbp/zx11WtGqBw/DgwOxpZQ2bOHskzW\nrg3SDsAR/TRanPnJ68hfXICzL9WGdR6/hZmdFBQ4Ziy1m5gXKlLKW6SUv5ZSVkspjwP4CID5ADYG\nedtnAbwopfx/UsozUsqvAagC8Bn7W+x8urq0sx7GMvOROjSzajt6FBgd9UnTMzApRDtJYf9+Kp41\nb16QgxyQ+illBIVKhCwqnt9lINkF0WNMqCxYABQXK08Y6JNvvUU1gTYGG11UItQ31Mkx4CaTLFRC\ncryFfNMVOeb77cgIpc1HVKiwRQWAA4SKBnkAJIBgI89VAF71ee5l5XkmBGq8w1U+v9Z4jgvpIzNC\nZf9+Sn5Yt87jIDVGRYcKqc7ahNe3/ZcFLTaHrsndAa6fmhqaoyLiN8+3t6jf2BgJYM/vMpTmQlK/\n/s/bv9+8lW/vXnI5+RX/0yJCQqWqKoRwSk2lBsd4P40mB2rJEpjc12n6HEeOUAHMiAkVB1mn7cZR\nQkUIIQA8DOANKeWpIIfOAdDm81yb8jwTgv37AbcbqKjwfl7m5iNrfObG2bePREpamsdB+fnk6A+R\nKjkwAIihQRSMNlnYcv3otkI4wPVz8CA96rIChEtSEk3QNq30Tp4kK53ndRnNcCFlUN+APT4OHDqk\nYeXr6aGc+xDs22cg9TQCQqWjg/Yd2rAh+m1xMntOKS7LMPrtvn2kCdessahRoSgooGs6YXzn79mG\no4QKgB8BWAng7mg3ZDZz5AgNjH5ZDwUu5EzOrNo0/bUufSXLjx4FOlGIuSnmVzjhcP481erSZVGJ\n8Qng4EGgvDxIuXersTHI78AByjbztNKNZbuQrnMH5RMngOFhDYvK1FTIcuR9fdQvdLvQ8vJsL/h2\n+DA9slAxz+gocKQ6FWOpWVT0yST79gHr11N9noigjqVsKUNStBugFyHEowBuAbBFStkS4vBWAMU+\nzxUrzwfl85//PHLV+hkK27dvx/bt2w201tkcOQLcrSEFEwvykYMBjA+N49JoMs6eBb76VZ+DPG+u\nBQsCfsbhw8B8UYi8iegIFdUKocuiEuMDRcTiU1RsDPI7eBBYtQrIyJh5birXhaxafZ+3bx/FcnhN\n7J7iWbNgDnHkCD2uX6+zsapQmZoidWUDVVUUVByyposD+mm0OHGCjBJT7sKwhcqtt1rYsFB4Bq67\n3RH84NA89dRTeOqpp7ye67NRtDtCqCgi5TYAW6WU9Tre8haAGwD8wOO5m5Tng/LQQw9hQ8jly+yl\nu5vSO73iThRSiik+oa+uF8da6MbxmyB1xjBUVQFlBYVI6DoabpNNcfAgubbUsSAgMb5SnZoiV8e/\n/EsEP9RGi4qm6HK5kDOhX6isWeMtdLyESpAZv6qK3JjLl+tsbF4e+RAHBmaKA1pMVRXdiyF1UIz3\n02hSVUXiNaWk0HS/7e2lKtwRXxAAMRlQq7V4r6qqwkab/M8x7/oRQvwIwD0APghgUAhRrPyleRzz\nuBDi3z3e9n0A7xZCfEEIsUwI8Q1QltCjkWy7Ezl2jB61hEraXBrw++t6cOQIxe8tWeJzkE7XT1UV\nkFoa3gonHHRbIfLyyJcwOmp7m8xw5gyFA0UkkFbFJovKyAilB/t+lwS3C3myB1MToWNM/AJpAUN9\ncu1aCsPRRQQqF1dV6XD7AI4I+o4WVVXAihVAgrvA9HhzVFlPaY2LtqGz38YDMS9UAPwdgBwAuwE0\ne/zd5XFMGTwCZaWUb4GEzScBHAFwB4DbQgTgMiDzd1qahgABkD6XrCVDjd04epRWrn4pk7m5FNwS\nZNAcGaGgybxF0REqk5NkhdAlVGJ8Y0LVhRVRI6BNFpWjR8lE73tdkotdSIBEf0MfRnpHcDz7apx9\n+pjf+/v7qaqt3662BoSKod/R5r2g+vooo0tXmxwQ9B0tqqoUd16heYvK0aMUSLtsmbVtC0oESgE4\nhZgXKlLKBCllosbfrzyOuV5K+TGf9/1BSrlcSpkupVwjpXw58q13HkeO0N43WqtKdd+V4WayqGgW\noEpIoAE8yKRw/DiJheJVhWQ2j7C14swZKuql26ICRHUSOPUPP8a5eVs1X6uqoi0MgoReWI9NFpWq\nKup3q1d7P59WQv2u70I3anecwOpLb6Ht+QN+7z9+nDwxfhN7VhadOEibBwepdpAhoWKzaV6NmdFt\nUWGh4sfEBFmJN2wAXS+TC6MjR4DKSpt3TPYlNZU2vmSLSuwLFSayHD0a2Lyp7rsy2NiNU6eCmEFD\n5P+rPuPSdUqaSoRXDIbSeSO0g/L5bz6F6qW3ab52/MAI5jYf1Hzt2LEgFUvtwqZCVMeO0YrVK90d\nQEYpCZXBhm507SJLymRrh+b7k5I0YkyECNknjx2jeB9DQkUNcOzwb4sVVFWRe1XXKp6DaTU5fZos\nuBs2ICwo9Cy3AAAgAElEQVSLypEjEXb7qHDRNwAsVBgPxsbIJRNo4kt3pWMEqWg63oOJiRBCJcig\nWVUFrFwJpMxVhEqE3T8HD9J+HbriHyPk+jn8ahcWnnsJcsq/UF51pxuZGMJQ55DX81LSBBuxug4q\nLheN/kNDoY81wPHj2t9FteQNNXZj6oji8tHoM8ePk0hJTdU4eYg+efgwrZZXrTLQ4OxsylW1qf8a\nipnJyyPrJNfc8KKqih7XrcOMUDFYEnt8PPi4aCssVACwUGE8OH2abspAAkQkCPQl5KPtdA+E8DfR\nT6PDojK9wgHCHujHRiWG2i/pHoCCWY38UC0qNptfqzvdSMUY+psGvJ6XEjjSRCv37jPeK/e2Nvrp\nIi5UbNjvJ5joyiknoTLW2o2ciyRUknq0LSrh9MlVqwKInEAIQX3YRouKoVRpgN0/Phw+DCxerOwb\nVVBAQi5EPR1fTp+mRVxULCpcnRYACxXGA9UnHmziu5SUD9HbjcWLvXdW9iLIDsrj47TytVKonPzP\n55FRnI2GKn0TxqlTBlbOmZnki7DZ6qOKkd6z7V7P19cD9SP0Wn+N9/dTM7QCTs52YUOQX10dGQS0\n+l6mOwOjSMF4axfm99GXTh3w/i2kDGyRmW6zHvFsFLfbFqEyOkoTpO5VvOqGilIWXaxy8iTFlgAw\nPd7oGRdtgy0qAFioMB4cOUKBmdnZgY8ZTHUhHz3BB9AgZvbqahqE168HLXOSksIeXM900yA9N6k9\nxJE0p3R2kutJF0LYNhmptLcD5/q0xciJE0AH6LXBi96vHT9O9UJCFgOzGhssKseP06OW6FIteaL6\nFApkFzqEGxmD3n2mvp4WymaEyugo/c6mhYoN4uDsWYqZ0S2oi4ro0cZ+6kROnfK419V+a/B6HT1K\n95hNpXKCwxYVACxUGA+OHg29ghtJz4cL3cHNoEFurlNKgnhlJWZM52EO9MdaaZBO7AotVNTP1y1U\nAJoE2kOf2ywnT86IkaE6f6EymE6vjTZ6t0F1ddhUFDUwNlhUjh0j70VpqfbrA0kuzDu3GwBwrvQ6\n5IwZtC4F6ZOqy9NUDIJNrh/D/VS1qNjYT51GXx/Q1OQh9grNBe8HzHCMBGxRAcBChfHg5MnQboSx\nLLKoBBUqQVw/1dVAcfFMjKoVQuVAnbKa1DFInzpFRpzFiw18gM0WlRMngIFkWu2NNfkLleXr0tCP\nbEy2+E/OEXf7ALS0TEiwXKisWaOxv5TCYKoLi8aqcQmZGFtzGfIn/H+LYEInmFCprqZHQ+JVxaa+\nceoUMGfOjCYMSX4+pdKxRWUav+tqwqIiZRQzfgAWKgosVBgA5KlpawtdPnwyJ1+f6+fSJVqm+lBd\nTVUipwkjZRCggeTQ6UyMJ6XpFipLlxrcWMxmi8qJE8CSlcnoFi6/tNsTJ8j61JPkhvSYhCYm6LtE\nxW+ekGC5STpofAmA4QyasS9krUZSaTGyMIjh7mG/9wcSOtPt1Qi4rq6mS6xbFHhik+vn5EmDwikh\nge4ltqhMc+oU9Yfp9O60NIo5MzDeNDfT4VETKi4XFfmJ0crYkYKFCgOAzN+Aj4jQIKnIhcKEbsyb\nF+SgILt+nj6tIVTCGOhbW4GeXoHxfH1iwvAEAETEolJZCfQmuYFObzFSXU2vDaS6kdQ989rZs5SJ\nEBWhAlhanXZkhIrwBbMOjWdRn+opXY20eWTC7zk3029CWpdcLvrBNFKq/fqkEdT+OxW6vL8RvGIr\n9FJUxBYVD06epNiS9HSPJw2ON2rp/Ki6foC4j1NhocIAoAlRCLI2BGPjDz6M5OefCbxyBQJuTDg5\nSROsl9UmTKGi+vITivUJFdMTgE0rVSlnhMpAutsr7bamhhZSlZXAUKYbKf0zr0Ut40fFwuq0p07R\nPB9MdE3kklCRlWuQsYDiMfrO0+8xMkL9KqhoC1JGv7rawEaEvrjd1LEtTAseGwPOnTNY00VtC1tU\nptHM7jPoSjl9mgLWy8qsbZtuWKgAYKHCKJw+DZSX+6w+NEhbtgAFN/tupuJDAF/wxYs08XqtXsMo\naw3QYJSaCqSUhRYTXV3k3jJlUentpRnEYhobKVulshIYznQj1UOMnDhBj5WVwGiuGxmDM68dPw7M\nm2fSXWEFFlpU1Iyf6TRSLfLpi+Zesxo5i5QsqDrqN9XVpBXMCBVVPJu2qNiQFnz+PFnT2KISHpqL\nEoMLozNnaPEW8YB1Fd7vBwALFUYhrFWlL8XF9OgjHNTgNqstKsuW6bOomA6aVFM/bYhF8BQjY7lu\nZA7NTDQnT9I8WFQETOa7kTPibVGJmtsHsNSicuwYpcUHrMsDZedbAAveuxquZWoWVMf0+4EQFogA\nA76meDaCDWX0TWWmqW1hiwoAqslTX6/xGxq0qJw5E+GNCH1hiwoAFiqMQlh+el/y8ym1pq3N6+nq\napqMvDIzCgspbsBkOfbpVZMO98ypU7QyCuXe8sPGPV1OnKD4vvnzgUmXGzmj3haVaSuD2428CW8R\nE9QCYTcWWlT0fJfV//cDeOuLTyN/kQsZhRkYQjomlCyoM2fo9wtW/yfQNdQUz0ZQU14tFipu98yp\ndcMWlWnUmDsrLCpRFSpqxWG2qDDxzsgIUFtroVBJSKBB00eonD5NE4JXfIvJ2gYAxXdMB8fqECon\nT1JasqEy6cCMRcWG1eqJE2QJSEgARJEbrsmO6cQUz8DfpBI3cjCA0f5RjI6SJSDqKz2LBs+zZ0N/\nl/xFLlz13fdP/7870Y2p9s7p9y9ZEuJDsrMp66O11evp06dJKJqOQSgooA5toUAwFfANzGQgWRzY\n60RUq5SfADUgVPr6qLtE9T5LSiKxwkKFiXfOnaOxzTLXD0DuHw2LiubAAZhyq3R00P07LVQGBoDh\n4YDHGyqd74mNFhXPNiXPdSMDwxhsH8TkJMUqqL9XaunMfj81NSTSDFuGrER1/Rjc4M0XVXQZ/S79\nqW4kKllQZ8/qeL8QVJgkQJ8MGhwejMREsi5Z6BY03U+LiuhGjnM3AUBir6KCRKgXqsDW0W/PnKHH\nqAoVwFI3q1NhocLoTk02hI9FRcoA7qUwhIqXL19HCXFTGT8AjXYZGZZbVKT0nmRVMdJztgP19RS7\nq1oKMsrp+/Wd78DZs/RcSCuCnbhcFPE5MBD62CCoosvodxnKKERKXwempkho6xI6GuJZtfKFhYXV\naScmaII0bVEBOE4FQe71wkKq76Sj38aMULHQzepUWKgwqK6m+1eN27IEn0mhvZ3KqlhpUfGqMhtC\nqAwMUPGmsNJQLbaodHZSxo86SWcvnNnvRxUj6gQ8nelykV7Lzp6JWY4KFlmZfL+nXkay3Ugb7ERT\nE7kudQsVD9ePlBoFCM1gYd+oqaF51JRQ4f1+pjl1KsB1VQc5HRP/mTOUWRcsyDsi2FzHyQmwUGGs\nGax98REqatCi3+dkZlLQiEmhsnQpkJyMkHEk58/To2krhA21VM6do0e1nL8qRoYutuPcOaqeO38+\nvaZmuow0dExbYUy7K6xgzhx69In5MIpZ0TWR70b2iL+gC4qP60cVz5YIFYtcP6p105SgZosKALJE\n1tUF6BMGFkZRD6RVmTMn7PvM6bBQYawxf/tSXOw1YJ4+Te78RYt8jgtjY0Ivk786AAUYpH1FgWFs\nWNWo4kltk2spfYfRRpqAFy+m3wwAMt0ZGEQGJprb9cVk2I2FQsWU6CosRN44/U5JSVQDKCQ+4jks\nUeCJxRaVzMyZn9cQeXn0Y8T56vviRQrV8RtrAMMWFRYqsQELlThnaopuSFssKh7BrWfO0MChuceO\nSaFy/ryH8EhNpc3yglhU8vPDcG/ZZFEpKZkJ+EvNSUUfcjDR0qEpRnoSab+fmBAq+fl0MVtawjrN\nuXPmrFwJxW7ky26cPjmJhQtpfg6JKlSUQMrqahKCpsWrioUxKufP031iylomBNdSAYk9IMB11bkx\n4eQk9c2YEColJXSfhRm47mRYqMQ5DQ2kJWyxqADTK1gvUeGLCaEyPk7mXa9VUxAxYXZCnMYmi4pv\nm3qT6HO0xEh/qhtTrR1oa4sBoaJm0VhkUTFK6jw3EiBR/Wa3/vfPmUMdR9mD6vx5ssQY2qBSCwtd\nPzU1ASwBeuFaKqipoWuquR9ZRgb9hbhe9fUU+xQTQmXOHPJnWbhNg9NgoRLnBF19hIMaM2KTUKmv\np1WPXqES9PP1YJNFxVeo9KcVQXR1oK7O/7XBTDfGlSJnUc34UZkzJyyLSn8/6RwzQiV9PsVjtB7v\n0P9+H/FcWxumKFBxu8MqWuiJalEJqy1xblE5f55Sk1W3qR867uWYyfgBZvyAYVovnQwLlTintpYW\nxwsWWHxij0lhagq4cCHIAGzCdO4b3wHAfotKf79l261LqS2ehjLdmGyltFvfCXg0242s4RgSKiUl\nYVlU1LghM0Ilq5ziefImO40LFaXNNTW0u27YWFSdVrUShi2o2aIS/DcsKaEUwCCcOUPeZDWYPaqU\nlNBjHMepsFCJc2prqSpn2OZvXwoLSQG1taGpieb3gELFxIRXU0NxCV4VRQMIlf5+WkSHPQEAlk0C\nnZ1U+dJXcIx67PfjOwFP5LvhRgeKimYqa0eVMF0/4dSDyV9KFhU3DFhU1JVpWxuktNiiAoTt/tG0\nEpppS5xbVEK6z+bODWmdOHOG+mVAq0wk8RHY8QgLlTjHslWlL0lJJFba27WtH57MnUsCwMDuxDU1\nZN71CqIMIFRU91bYFhXA0qBJwP83mXSRGNFK2ZVFRcYmZrtRg/xMcvYs/axmRFfugjxMIBFudOi/\nrllZtD14Wxs6O4FLlyzq+xb1DbVPcIyKeaamdAhQHRaV2lob3OFmycqiP3b9MPGKZatKLZQsi5oa\nMq4ETCGdO5ceDawYNH35qlDxiY4POzVZPTdg2Wo1UJuE2z0tRnwzP5LmuJGPXqxYPG5JG8Jmzhz6\nPSYnTb1dd0VZDRKSEtCTUICS5M7p7hMSIaaLvtXW0lOx5PqpqaGaQKb3HQJINHV1mb4mTke13ga9\n13VYVC5coIVQzBCmm9XpsFCJc2prbbKoANNC5fx58vUG3AxQnWlCrHI80TTvFhWRVaa/3+vpsFOT\nAVssKp6pySpJJW5k4xJWLRrxe0+KUmJ/dYl1+8qExZw5NCGaLO8dbpp1b7IbS3I7kGBkFPMQz4BF\nfT89nS6kBUKlvFxnqnUgiopIqMdpyXVdVqmSEvp9AsSbTU1RLZaYEipxXkuFhUoc09tLe13ZJlSU\n/X50+YwBWg7pYGoqQMBcAKtH2IG0wMxkZKFFRatNaWUkRtaU+E96mQvotRWFMWLaV4P8TJikffc5\nMsNwphsVWQZ/C6U6bW0tGUJycsx/vhcWxIaEnfGjtgOI2ziVkNZbIKQFt7mZ1ju2jYtmCDPDzumw\nUIljVPN3JFw/QT/D5aJoXp0WlZYWqnGgaVEB/AbpsFOTPc9voUVFS6hklgcWIxVXl+C863Js3BAj\nhZ/CqE7b3U3BxOH0vfJnHsbqP/6rsTd5uH4snYjmzTNkEdQiZLaKHuJ8v5+amhDWW2BGYAe4Xhcu\n0GNMWVTY9cPEK5b66bUoLoZUXD9BB2AhaJWjc6BXzfZ+k1wA94wlFhX1/BasVKWkNmn9JmWbitGa\ntgAbK/3N0pkr5mNx1z7kX7s27DZYghrta2Kld/EiPYYzGeRsWYus9QYvrCKebREqOi2CWqhWQrao\nhIcuq5RqUQnQb1WhomtbhkgR5xaVcLyhjMOprSXTt8tl0wcUF0P09GAEY1i0KET+swGhcv48aRu/\nicblAhISvPZzsSQ1WcVn912zdHWRNUGrTVnLS5E1fDHsz4gIqan0m5v4TVShEvHJQAkArsUUNm+2\ncJ02bx5w5Ijptwe0EholJwdIS4vb1XdNDbBpU4iDQlhwa2vpVs/IsL59ppkzh8yQo6MhzEWzE7ao\nxDFqarJtu/AqK243OvStcgxYVObNo/HYi8REuqE9zmNJarJKaWlYq2YVdcUWUz5ws5gM8rtwgUJ+\nwgpwNkNxMTA+jqGmHmt/f7VvmNyPxbIK0UKEbd1xKoGKKPohRNDU+gsXYvDeVN1VISxl4/3D2P/t\nv6CnpjsCjYocLFTiGFtTk4FpoVKMNkuFStDBqLQUaGyc/m9AN5EZyspoc6QwqaujR8urAUcDk7VU\n1KwK20RyIJQ+WaSnTxph3jxgcNAv40wvqpXQkrgIi/qp0+jspH1QdV3XILVUYi41GdBdRr/leCcu\nf/BGXPzN2xFoVORgoRLH2JqaDExPCsty25CdHeJYA8GIQX35PkKlrs7ClXtpKZlfw9zTpa6O6jfZ\n5nKLJCYtKhcvRikGQBnwi9FmvUUF8Op7RghoJTTbFpPtcDKGkgOC1FKJaaES4l67MFKCSSSgZGJ2\nCVUWKnHKxARNmLYKFSWwb1VhW4gDQQNHb68uERBSqHisJuvryXJhycpdnYzCNKtfvGhhm6KNySC/\nqAkVRTzPS2zT3l3XLOrJTPYNSyfHOBUqqqVSV78KYFEZHaVLGHNCxe2m+LsQ91pdUxJaUIKCIRYq\nzCzAkn1FQpGaiv7EPCzJ0SlUgJBWlf5+0jMBB6OyMj+LimUbi4W5alapq4uxjIJwMJE2KWUUhUpW\nFsaS0rEiv9XafVzU/muyb6iC2hLUeJmpKYtO6Azq6oDsbCA3V8fBASwqdXXUP2MuRiUxkVLPQ9xr\ndXVAa1IZkttml1BloRKn2J6arNCUshDF+Tr28NEpVOrr6TGg+CgtJUe1Eitg6QSgrpotECqzIj4F\nIIvKwADFZ+iks5MOj8qqVQh0p8zB4mwd4tkIKSk0kZi0qFjaJ0pLaSvmOKulUl9P44IuS2VJCXVE\nn/3FYrKGiooON2t9PdCTPftilFioxCm1tWRJtHsb8xVDh7D11a+GPlCnUAkZiOpj9bDUopKRQYEl\nYQoV1fUzKzCxBX3UUpMV2kUx5qXbUGJ+3jxTfWN8nLp9rFn+nIYhsRegOu2FC2S8UH/CmEJH4Hpd\nHTBcwEKFmSXU1dHNmJxs/2fpWuFkZ1PUqw6LSlLSzPzoh8cgfekSxb5aKsbC9P/39pKxZ9a4fkxU\np422UFnduRsbD/yP9Sc2mb6uemkstagAcSdUVIuKLgJUp62tpXOEtd+SXei0qEzNU4SKyVT5WISF\nSjhIiTcWfxj7vvp8tFtimPr6MHdptRqd1Wnr62kcDhhf4BEroLqJLLVehClUZlVqMmBaqGRn00aR\n0UCkpSI9w4ZIZpP1S0K6M43idtMKJM6EiimLio+FIiZrqKiEECpSKgu5ijKqHjiLNqZkoRIGE5MC\nC2peQ/Ih5+WsNzTY7/YxjA6hEtKVk5JCmR0eQsXS7xlmjQrVmjBrhEp+PlXKNLDPTdRqqNiNSRGr\nilfL+mlCgl/222xHDbLX/RsWFJCY8+m3MZmarKK6fgIESXd2AsPDQOZyZQU6i64/C5UwaG0F6rAA\nxSN10W6KYQyZSSOFTotKyEleGaTr6mjMtjQN1QKLSlrazDY5jkcIEm+qKtTBhQuzyPXlybx5NFuM\njBh6W309zZuZmRa2Jc5SlA1bTwNUp41poTJ/PgX/BqhOq/4GrnWKUJlF15+FShg0NJBQyetzllCZ\nmqI+HFOuH8AaiwowPUjX19PcYam/ubSUsikMTkYqavtnlTVhwYIZU5EOopaabDdqbIjBXZRtyQKL\nU6FiaPHlU0tlcNCGmDYrUTtJgHtNtczNXVdMgx5bVBiA+sFFlCO97WK0m2KItjbKNIi5G1IVKgGC\nwNTsiJCDulJLxdLUZBWTk5HKrMr4UVmwYGaUDIFaQyVmV63hYLLomy3WTYNCRY6M4o0vPoOW/c6c\n3OrqKG5NDT3Rhc/CSP25Ym4Bp6Kq+wD3Wn09kJ4OFBYpZmQWKgxA/aAtdQFESxPNog7BltgNK5g7\nN+h+KWp2hF6LiqWpyZ7nBkyvVmdVsTeV8nLdQqWjg/zos+43AALW2fn9kgfx/P/ZFfBttlpUdGZ+\n9PdO4Zr/uh31v/iLxQ2JDCGD7LXwCX5W5/WYFSp5ebQ7doB7zctaO8v2e2KhEgYNDcBw0QKIqSlH\n7VYaszdkiIJquv3QpaVAby86L16yfgIIs+jbrCr2prJgAfnNdWx/oBbUmpVCJSeH0pk8xgI5JXHL\n+e+jdN/Tmm9RMzVsEdSjo7ozPxq70tGCOSgZvWBxQyKDqfuqvJw6pCLm1HHR0pg2qwlivfSyILNQ\nYVQaGoDJsnL6jwEffbSpr6fAvWilhwZEnb0C/JaqUAkpsDz25LF8AlBrdJsQKoODFGs5K4UKoCug\ndtalZ/vis0rvvdiLTAyheLBW8/CuLtJ3trkodfbTxkagFgvh6nOmUDEl9ioqZm5K0HheVERJbDFL\neXnQ8XH6N/DZSsTpsFAJg4YGIGWx0jN0mr5jAUOlpiPJ3LmUMnhBe7CsqwMKC3VkRyiDdMlUoz0T\nYphpqLPOmqD+yDrugcZGun55eTa3KVr49I2Ow/TvvG7tPm2bG9aEULmACmS0aguqWMeURUUNlFLG\nm4aGGLQy+xLEouL1G6hCZZbs98RCJQwaG4E5Fekkwx0kVGL2hkxMpFm8Vnuw1L1qUmy3ZWiwJw7H\npFl11loT1OAAHVbFxkY6POZEslX4WFT6TlA/SWu7qDlp2NYnio1lfjQ2Ah1ZFUi46DyLiuktCFSh\noow3MTsueqIKFZ/Yo+Fhiv/ysqiMjc2a/Z5YqJhkbIzqqJSVIag5LhaJyRoqKhUVQS0qutqdloaR\n7EKUotGe72nSonLxIs0dhjITnEBSEk3QOsR6U1OMxwCES1mZ1+8wfI76iRgd1awqWl9Prga32+J2\nqCkwBiwqlworaMY3mXofLUxvQZCXR/5vJ1lUyssxvTeIB37xe2Wzq+gbCxWTqFm0ZWUwlJ4ZCzhV\nqBhJN+7LKsWilEZkZ1vYNhWTQqWxkeYOQ5kJTkHnPTDrhcqiRTQ4DA8DAKbqPfqJhqXQ1ro6Bvpp\nYyMwXlox0ygHEZb7zGO8icnaUr4EcLP6/QYsVCKPEGKLEGKHEKJJCDElhNgW4vitynGef5NCiCKr\n2uSVOeMgoTIyQgkaMXtDqgOHj2lTSmM7IbellGFRqk3BZGVlVIxmdNTQ25qbZ6E1RSWAVXH35V9C\nzfPV0/9XXT+zlkWL6FERJYmtjTifXknPaQhwW2r9qBioGNzQAIhFyiY3ARYKsUpYWxAo401/P1VF\niNlxUSWAUKmrI7E7vQgoLCRTHQuViJIJ4AiATwPQuyWkBLAEwBzlr0RKqV172ATq9S8tBQ3S9fWO\nCFxSF1gxbVHp7wd6erye7u42lh3Rs+kmTK3faEMDQZORlAFjaQIxq60JGmJ9oHkA1x74Lhoe/gMA\nuj2am2fxbwAAixfTY00NACCjqxEdruXk29EQALbU+lFZtAg4f17XoY2NQNbyUnLjGezX0SasLQgq\nKoDa2tgt2eCL201V3XwWBY2NtGdhSoryhBCzar+nWNzM2g8p5UsAXgIAIQwZSTuklNrVw8KkoYGy\nVLOzQYP0+DjtGxHjo3DM35Dq1qW1tYDLNf20UfPu1qf/weKGebBkCT2eOwesWKH7bU1Nhg53FgsW\nkAoZG5seLTuONCEbQNJFmiw7Oug2mdUWlTlzgIyMaYGQd6kRDfNXASnaLs36euC977WpLUuW0Aw2\nNERtCsDAANDXB8ybn0g3mMMsKmHFlixcCNTXo+HiJIDE2O+bQmguCjQXQUHc6E7DKRYVMwgAR4QQ\nzUKIV4QQV1t5ci9/poH0zGijTvgxe0P6pAyqxJTAKinxmoz0MustKlJ6reD6qqk8eU77OQAzyTCz\n9jcAaCJZuBCoqYGUgHtM8XUtXOjXp8fHyQ1r272oWndCWEjU61JaCkdObmFZ6SoqgIkJ9BxvhBAO\ncc3qFSpLlgBnz0auXTYyW4VKC4BPAXg/gDsANADYLYRYZ9UHeKl4hwmVoiKyHsYkLheZqXwGy+Zm\nCkItsizKKAyEoEng3DndbxkcpFWrIwZCM2jsQzJ4jmbAkksk6FS346wWKgD1jZoa9Df0IQcDSF5Y\nOu1i8ERNArKtT3ha/oKgXhenCpWmpjB+Q2VhNHzqAkpKqIxTzKOxZYVm/NvSpbSYckBIQihmpVCR\nUp6VUv5USnlYSvm2lPLjAPYC+LxVn+ElVHJyKM3NASnKMZ+CJ4TmYNncTIaMhFjpsYsXG7KoqHuf\nzdpJWu1UHvfAxEUSKm7Zjv7GfjQ1UQhETIhNO1FiQ9Rib1nLFKHS2EiuMQW1T9gmVIqKgKyskP3U\nS0BqWH5inbAsleois7Y2tsdFTzR2K9f8DZYupewzB23vEghHxKhYxH4Am0Md9PnPfx65ublez23f\nvh3bt2/3eq6hAbj9do8nHJL5E9OpySoag2XMZcwsWQL85je6D5/1bo+0NIrP8LgHRHMTJpCIJEyi\n6fXzaGragJKSWZqe7cmiRUBdHfqOXgQAFKwtpQlD3dhHccnYLlSEoH6qw6IyXTq+ooIC2Xt7HVE+\nWHWfmb6v0tKAuXOR0nwBZTbF3lvOggV0jQYGgOxsjI7SLgCaQgUg94/FKuypp57CU0895fVcX1+f\npZ/hSTwJlXUgl1BQHnroIWzYsCHoMSMjFBjode0dUvStqQm49tpotyIEFRXA8897PRVzQmXxYpp0\nRkd1bQ5i+6QUC/iYpFM7m3AmcwNWDR5Az/5zaOzbELuxUVayeDEwMYHEfXsxBYGitSVA+yS9duGC\nl1BJTqaMFVvbosOiMn1dPGPE1q+3sWHW0NpK+i+sBcDChcg5esE5FhVPN2tlZeCxpbycTJhnzwI3\n3GBpE7QW71VVVdi40R61FyuG9KAIITKFEGs9YkwWKv8vU17/thDicY/j/1EIsU0IsUgIsUoI8TCA\n6wA8akV7VFOpV8c2kAoYTVpaHDBZVlTQTejhWw3LD20HS5YYSlFuaiIPYVaWze2KJuputApZ/c3o\nnkyHxz0AACAASURBVFuJbuHC6MnzszuY2BOllorr+G50JBQjJSuFBouEBK/+EhF3pg6LSkNDAKHi\nAFRLZThjg6yogHvwgnNEtCpUlGsU0K2clER9cRYE1DpCqADYBOAwgEOg+ij/BaAKwL8qr88B4Ckb\nUpRjjgHYDWA1gBuklLutaIxX8JnK8uXUcWK4/LS663tMTfhaVFSQL1+9AxGjFhVAtziNi0l66VLg\nzJnp/7pGmjBZPA/NGUuQfPHc7C/2pjJ/PpCUhLlNB9CVpnzh5GQSKx4CICJ9YvFiGrCUSrlaeF0X\nt5sy2hwmVML5HUfmVKB8ykExKiUltOJR7rWgv8EsyfxxhFCRUr4upUyQUib6/H1Mef2jUsrrPY7/\nrpRyiZQyU0rpllLeIKX8q1Xt0TS1rVhBFgADmSCRRs0yKCmJbjtCstC7QmZAH2w0mTuXBnSd1zsu\nhMqKFVSxt6cHk2OTKJpsQULpXPQWLUF2exxZVJKSgPJyJE2Noz/XQ5n5BIlHRHyrmT9KATotvISK\nml7tIKGSmhqe+6wjqwIlaMV8d2AxF1MIQQvjaqr43NREQ5FPaCWxdCkLlXilpYUErZcZf/lyeqyu\n1nxPLOCYOAkf06btaZxmUFOUdVpUZn1FVmDmHjh9Gp2n2pGESaQunIeJBYtRcukcBgbi4DdQUdw/\nI26PZfrChX6un4gJlQD9dGiIqj57WboWLYrpBZcn6m8Yzl5J7ZkVGEUKFiQ5KDvGR6gE/A2WLqVx\ndHw8su2zGBYqJmhp0bBKFBSQ2fT06ai0SQ+qUIl5i0pGBjVSGSxjVmAZqKUSczE2drBsGY2W1dXo\nPqEUe1sxD8krl6BItiMb/fHh+gGmhYqc5/GFly2j8UHZxyoiQkVNUQ7QT72KvamsWgWcPGlzw6zB\nivtq0+euQdLYMIo3L7amUZFgxYrpvhR0EbR0KTA5abmF7PW/eRR7y+6y9JzBYKFiAk2hAnip3Fik\npYWqm3tUpo9dPAbLmBUqS5bosqjExR43AFURLC8HTp9GfzXNgAWr5yJvE00Ai3F+9v8GCiOl9J1T\nKjwUQGUlcOkSUF+P4WHKMLW9T6spygH6qWa8XWUlKQCf/bZiEUvciYmJSExOsGcHa7tYsYKuT3t7\n8N/AM0XZQtobR7Gu+YWIFZNjoWKCgEJFVbk20lHTj6lLQ6beq2YZOOKG9BEqqalUUy+m8ExRDkJX\nF1le42KSVsT6aC3VUClYUYR515L7YTHOx57YtInOXLKoZC7zESoAcOIEWpRCCRH5PYJY/jSrBavt\ndIBVJS4WAFp4hBoEFSpqLJ3FQuWErETG1GDEaoexUDFBUKFy5oxtKnO4uQfuxbl444HnTL3fEanJ\nKpWVtAocHrbED20LS5bQtda5l0pcDKiKWJ9qaEJ7YgkSUxKRV5GPbuHCuoxzSEuLdgMjQ9/qa7DT\n9QG4bvCoRVJWRttDnDgRWSthkBTllhYKwvTas3DZMgoIPnEiAo0Lj7gJ0PZl8WIgKQmy+nRw95dq\nUbNYqBwcmRHdkYCFiglaW4O4foaHbVOZbWP5aMJclPYcN/V+1aLiCCorSQScDnEjRhM1RTnEIGBF\nrQfHsHw5UFuLtJZadKfNzCDNGUtQmeqMAE0rWLXFhZu6foP5q7JnnhSC+nWkhYqaojzkb4ltbaWC\nwl6kpJDLIMaFSn8/edLi4r7yJTkZWLQIo0eqMTISQqzZkPlzrHMuhtPyWKjEKsPDVF06oEUFsM39\n09ICHMdqFDYfM/1+x9zUK1fSozKox2S7586lMuPHgwvHpiYq6lVcHKF2RRMlTX9x0+u4lDtz0aYW\nL8HCgt4oNixG8BAq6ekBUkrt+ExAc1IJuOhS2hnLxJWlUosVKzBxnGIiQwoVj/pG4TI1BbS1C/TM\nXcVCJVYJWoukrIxsqDYF1La2AsewBpkX4sCikpNDe1rEslARAli3Djh6NOhhzc20ak2Khw0rFLFe\nONqM0YKZ0XNN1eOoPPdMtFoVO1RWAtXVaGmcjJw7s7KSlLJGP21p0bCoqO85cWI6Q8mXV//jIJ5z\nfxSTE9qvR4JZv9FnKFasQOJ5WhQHHR9XraIfq7vbko/t6aGYu5HFkROzLFQMogbBaU74CQkzKYg2\n0NoKnExYg8T6i4DBDaAcU5XWE4/VZ8y2e9064MiRoIfElR+9oAAoLAQAyLkeXzpmtr2OMqtWAaOj\nmDxbE7k+kZ5OLjmNfqrp+gGonV1dtOOfBkm7XsGtnb9EYmv0ao/ElUtVi+XLkd7RgExcCv4brFN2\nngmxoNKLOgdiVSXNdRGo0cKjh0HUi6R5cwO0orTJotLSAjQXrqb/GFSyjqlK60llJaaOn0BfXwxP\n9OvWUdDvwEDAQ2I2xsYmJpeRVSV5QRx9ab0obpiM2hOR7RMBBHXAxIAg7iIAEG3KgFJVZVEDjdPU\nRJmA6elRa0J0UayXV+WdRkpKkOOWLqUfKcSCSi/qXJK2qZK2OonAHncsVAwSshaJjbVUWluBwdLl\n5EMIERfhS0TTIa1i1SokNNQjG/2x2+61a+kxyPVwVGyQBVwqpQE0Y0msqssoUlQEFBaisDXCQmXt\nWuDYMa+MxOFhMsxqLroWLaKaAAGESnJ3G/3j8GEbGquPuE1NVlFSlC/PCWHBT0wk4WmxUMnbvIr+\nEQH3DwsVg6g+3YC+5RUrgppMw/3sgrmp1EGPGQuodUxVWk+UVd0qnIzdiX7lSorADzIItLXFSSCt\nQkchDaC5K+N5FgmAkvlT2hcFi8qlS16p9G2K1tAcExITqW8HmIQy+mPDohLXQiU7G51p87AmWcfC\nWEcsnV5aWiiEMGOBmwY2FiqxR0BTqYrqD7ThBp72J69ebViotLTQfBrO5l0RZ/lyTIkEVCLCg7oR\nUlJoQA8gVKamSLMGdBXOQpqW34gDiVfAfVl5tJsSk4wtrcTyiShYVACvfhrSjR0k8yd3iIVKLHAh\new2KM/pDH7huHXDqFLlqwsQrU2xVZDJ/WKgYJKRQWbSIUlYPHrT8s6c7yJo15GoIEJGvhaOq0qqk\np6O3cDHWJZ9Ednbow6PG2rUBVytdXbTVRjxZVLZ+ZjUum3gb2e44qe5mkO65lViCc5hXGLyisaUU\nF5Mi8einqgk/pFDRKGDpGm9FS9llVJ/FBuuxHhyVxWgTl7X9GdceeyT0gevWUdDrqVNhf6ZXAHaE\n0thZqBgkpFARAti0yXKhMjXl0UHWrKFqR/X1ut/v1DiJxtxKrE+O7XoOWLeOLFwTE34vqeb1eBIq\nTHCaXZVIxgQWjFpbhCskPgG1ra0U7hbQyrp+PbmLfIqFDXcNIRf9aN94Cz0RhTgVKePPUqmJ3pXn\naiUJwwL3j1dKu1pBfGQk7PMGg4WKQUIKFcAWodLdTfPgtOsHMOT+cerqo2/rNoxtuCrazQjOunV0\no2qUKQ+5amXijrUf34S2Iy2Y967KyH6wj1BpaSEBHTBz/LLL6HH/fq+nu06R+p64/GoKVoiC+6e3\nl7wYfF/pJDubKhRbEFDr5frxqCBuJyxUDDAxAXR06BQqTU0eCefh45VeXFqqqyKqJ061qGz52Ydx\n7Z5vRrsZwVH9/xqrFbaoML4kZqSieO0cJCVH2A+7di25arq6AASpoaKSl0eB+/v2eT3de4Y6dfbS\nErK6RMGioo6HfF8ZQEfNJz149Zv16+mcaiVxm2ChYoC2NjI5hhQq6krk0CHLPtsr8E0Icv8Y6HRO\ntag4ApeLqhJrXI+2NiAry2fTN4aJBj6FvwKWz/fkiiv8hMpgDakE18o5wIYNUbGo8ALABGosnYHY\nRl9GRqgy7bRQSUuj8wYt5BI+LFQMELQqrSdlZYDbDRw4YNln+7kQrrwSePNNXZ1ubAzo7HSmRcUx\nbNjgZyIH6LrxYMrEBEuWkGpW+mnA8vmeXH45TW7Dw9NPjda1YgKJcC0poH5fU0O+mAiiChV2/Rhg\n3TpSGQ0Npk8RNKXdRmwTKkKIDR7/zhVC5Nn1WZFCt1CxIaC2tZU2MJuuwrhlC5lJLlwI+V6+qSPA\nNdcAb7/tl/7X1sa/OxMjJCYCV10F7NkDQIfrByCLysSEl3tnqrkVHQnFSEhKIKECRNz909pKi/mY\nzgaMNdRrFcYCOmRKu01YKlSEEBuFEHcJIQoBvNvjpUEAdwkhtlr5eZGmpYUCz4qKdBysCpUwzGy+\nn+3VOTZvJkGkDDrBULMHeWVvI1u20KrTxwweb8XemBhnyxbgzTcxNT6pz/WzZg0pAg9rYUJ7K3pT\nlcFo2TKKZdExDlmJel85qtxCtJk7FygvD+taRSs5wGqLyiWQQDkI4D4hxMNCiNsAZEkpfwKgwuLP\niygtLeTRSUzUcfCmTaQQGhst+Wy/QSU/nyKudXQ61aKiS2Ax5tiwgQJRfK4Hu36YmGLLFqCvD31v\nnpjJIgxGcjL1bY84lZSeNlzKUjp1YiLwjncAu3fb1mQt2FJpki1bgDfeMP321la65Mq+oxHDUqEi\npTwjpfyYlLIcwEsAjgN4P4DDQogTAN5l5edFGl0rEJVNm+jRojgVTX/yli2GLCosVGwkOZnihnyu\nBw+oTExxxRVAcjKGX6F+qms88wmozbzUipE8j0593XXA3r2219LwhBcAJtmyhdx0QTZRDUbIlHab\nsPPjnpNSPial/FspZQWA6wDcY+Pn2Y4hM/7cucD8+ZaZRDX9yVu2UDEm1WQSgPZ2ss7aHJjNqKsV\npZLn5CSls/OAysQM6enApk1I2Eural0i+oorKBauowMAkDfSislCjzdeey0wOuqXHWQn7FI1yZYt\nND699ZaptxtarFtI2EJFCPElIcRRIcTfeTyXA2ClEGI6z0RK2SGl9K/F7CDa2w3eHDfeCOzcacln\na3aQa66hxxCmPL6pI8SWLRRVr5Spjsfy+YwD2LIFOcf2AJD6hMrll9PjW29BTkkUTrRClHi8cc0a\nckXv2mVHazVhS6VJli2j+AWTC2hdAdg2YIVFpQhAHYD3qU9IKfsBPAvg40KID1nwGTFBe7tB98lN\nNwEnT4Zd+G14mLL//DpIaamu4CjD7WbMceWV5MBVrgdnWzExyZYtyOhpxprsCzNZhMEoL6e/V15B\nf2M/0jGC5PkenTohAdi6NWJCRUpefJlGCFrgmhQqulLabcAKoSIA3Cml9MzygZTyvJTymwAus+Az\nYoK2NoMT/vXX0+Orr4b9uUAAk5uOOBUWKhEiM5MCD32ECg+oTEyxeTOmIHBzps7JSgjglluAF19E\n10lK+8hc6DNbXXcdped71Fuxi54e2l+P7yuTXHMNuelGjW+KGS1LlhVC5dsAHhBCJAKAEGKZEOKc\nEKJFCLEXwGILPiPqjIzQPoCGbo6iIiqyE6b7J2hK2NatVBFVKYutBa8+IogqHKXkMt9MbJKfj8bc\nSmyBgVX1zTcDtbUYf43ek7PEp1Nfey3VEDIZ+2AEtlSGyZYtNKEZrJyubgQZjfFMt1ARQlwvhPi6\nEOJGIcR0mR0pZSeARwB8WQiRBuD/AngBwL8D+CWAu61tcnRQ4siMWyZuuoksKmHUUwlaZOfmmyk4\n6sUXA76fLSoR5MYbKSX95Em0tVFBKi6fz8QatZs/hMx1S/S/4brrgJQUFDz7cwBK+XxPKitpG+YI\nuH94ARAm69eT9deg++fSJdI3brdN7QqCEYvKHABfB/AKgB4hxDEhxH8LIf4WgBvA9wF8A8CklPIf\npZSPSCl/osSrOB7TZvwbbySloQRYmv3shIQA27HPnUt7Cz37rOZ7p6ZIZLFQiRDXXUeDwI4dbMli\nYpZr//xPuPbFB/S/ITMT2LoVhefewjDSkFOa4/16QgJwww3ASy9Z21AN2KUaJklJVPvm5ZcNvS2a\nZS6MCJUOAD8EUApKM34dwFUAfgHgNIAaALcASBVCRHj/cvsxfZG2bAFSU8OKU+noIBUbMHf9ttto\ngNDwOfb0UAVsvqkjRFoa8K53ATt2cK0HZnZx880AgM6kORAJGiVht22jatxNTbY2o62Nsqy5fH4Y\nbNsG/PWvNEHoxClC5SCAx6WUzVLK30op/0FKuRZAAYDbQILlEkisHBVCdAghnhZC3Gl9syOPepEM\nm73S06ncvUH16vvZQT932zayy2lUh+Rib1HgttuAffswVt/KfnRm9qAIld60AJ365psp6+255yz/\n6M7qDpx+ivYTUhcAXD4/DG69lWonvPCC7rc4QqhIKXuklH677Ekpe6WUz0spH5BSXg0gF8BNoLiV\nXABftKy1UaStjUoFmCqaduutwF/+AvT1mfrskK6bykqgokLT/cPl86PALbcACQlYfv55tqgws4dl\ny9CaXo6hrACd2uUil8KOHZZ/9In7Hsa8D74DQ51D7FK1gnnzqHq6gWvV3k7iUDMEwWYsr0wrpRyR\nUr4mpfw3KeVNUsorrf6MaBBWQOr7308R8c8/b/qzg1pUhCCryo4dfkG7vCFhFCgsBDZvxtUdz/Lv\nzswehMCBT/4MPX//YOBjtm2jRZnJEu2BSGxvRjYu4ci/7eBib1axbRslYfjs+B6I9nYa2nTtdWcx\nEa7Y71wM11DxpKyMioH9/vem3q4rGHbbNvIN++ze295OVqCcnADvY2xh6tbbsGXsVZTmD0a7KQxj\nGbc+fAPe/bXLAx+wbRtNfK+8YunnpvZT2mXSb/+XY7+s4rbbSFDq3FAymtmjLFR0Enb++J13UsCr\niZVGSIsKQEG7RUXAr3/t9bQqsNifG1m6r9mGdIxgVUt4xf4YxlEsXEiuaIvdPxmDHRhCOta3v4Se\nc50sVKxg9WpgwQLd14qFigMI+yLdeSdl5fz5z4beNjUFdHbq+OzkZODDHyah4pH9E60CPfFO1vol\nOPbvz2PxJ6+PdlMYJrJs20ZubhOVTwORO9qOQ0s/CAGJdw/8jsc0K1BDBp55hgJrQ8BCxQGEHcC1\nYAHVOzHo/unuJrGiK9voYx+jNzzzzPRTXOwtOqSlAWu+/B4UlHMOJRNn3HMPjUMWWlXyJzowuWIV\nDrvfhXvwvxyjYhX33kshAzqqp7NQiXEsK5p2552UDtavvwaeoYq4y5fTPg6PPTb9FEfIMwwTUVau\nBK66ymscCofBjiFkYRDJJW6M3XUvNmMvFkzWWnLuuOeyy8hVp+NasVCJcXp6yDIW9kW65x7aTevx\nx3W/xXD9lvvuI3V84cL0+9miwjBMRLnvPgqorasL+1TdZ2i1lja/CJd9cxuO3vgFrLssOezzMiD3\nz333UWkLdbLRYHJSZwiCTbBQ0YFlJZvnzaNU5UcfJTONDgzvMXTnnVSy8ee0JwcLFYZhIs5dd1HZ\n/V/8IuxTDdTQBJpZ7kZKfibW7vwvJFWUhX1eRuHee0mw+CRieGIoBMEGWKjowNKKfJ/9LHD2rO70\nvfZ22pohL0/n+TMzgY98BPjxjzHcOYiBAXb9MAwTYbKygLvvJqGiI1AzGJcu0GotdwmvuGyhoAC4\n/XZy/wTYPDfaFc6TovOxMcznPuenCpY0A88CmP+dMuCnPwz+/vvvBxoaAr9+993Ahg3AI48A7363\n/+v19cBnPjP93xvOAH9OBMRtHsc8+igwf37gz1i8GOjuRuLVV+BZLMSVPwTwO4/Xy8qAH4b5PbZv\np79A+HwPTUJ9j6eeor9A8PeYgb/HDPw9iGh/j54eev3nPwc+8YnA5wjxPUrPUy0i17Igy3m+HoTZ\n73HffcBNNwGvvUaqxOd7FHfSHLj2awCW6/geFiNkAAUVbwghNgA4dOjQIWzYsMHrtUceAf7pn4Dh\nYYvqkTz+OFk9zp4FlgTfav3++4E33gCOHjX4GR/9KMZe2Ins9hrsO5yKdetMt5ZhGMY4UtKOyu3t\nNICZLGm6+z3fxfoXvoVc2WtxA5lppASuuIImuLff9pvofvtbWmP39gK5udqnqKqqwsaNGwFgo5Sy\nSvsoc7DrRwdqnIdlRdM+8AHyx3zrWyEPNZ1t9MADSO5oxofwa3b9MAwTeYQA/uM/gJMngSeeMH+e\n9nZ0J7Pbx1bUa7V/P/DHP/q9HO0K5yxUdGB5im9aGvDVrwK/+hVw4kTQQ3VVpdVi+XJc3HAH/hn/\ngcK8CXPtZBiGCYfLL6cEgq99DRgZMXWKxJ4ODKRFKYoznrj+euCd7wS+8hVgwnvOUBfM0apwzkJF\nB7ZkznziE7Tj8YNBNvhCePVbev7uQTRseB+SJ80NEAzDMGHzrW9RUTGTcQ1p/e3/v717j7Kzqu8w\n/vxyIxcll0aSiiDQKIqrjcmgEoWCF8pC1xqtIjQS0FIRBK0NdlG0aoqiBRWqVlDRVoyW6aJolaux\nsLC2kkjXjCAoxKJcGiGXCckQM0mAZPeP9wycHOacORNnzrvPzPNZ611Z572cd8/aOe/5nv2+e2/6\nZ9ii0hIXXwxr1z5rXJWye48aVJowKpU0ZQpcdBFcf33xEEqDc+9rl7DF717Ma7s/WzyBL0llOPxw\nOPtsuPBCeOSRYR8+ffsmnphli0pLLFoEp59e/IDu7X16tUGlDYza6K6nnFL8x/jABwadanv3bti8\n2XFQJLW5iy6CadPgvPOGfejMXRvZPceLYMt8+tPFoCkXXPD0KoNKG9i0aZQGupkwAa68En72M1ix\n4lmbN28uHsYua5AdSRoRs2bBpZcW3UeamFdmQEowZ/cmJszzItgy8+bBpz5V3P65/XbAoJK9Xbtg\n2zaYO3eUTnDkkfCJT8All8Btt+21adij0kpSrk49FY47rrgN9NhjTR2yfeN2prODSc/3IthS73lP\nMQ/QmWfCtm0GlWZExDERcV1E/CYi9kREZxPHHBcR3RGxMyJ+GRHv3Jdzb95c/DtqQQWKQVqOPRZO\nOw3Wr3969bDn+ZGkXEUUv9L7+uCtbx30dnetLWuLi+C0g70IttTEiXDVVbBuHbvffgq/7XvKoNKE\nGcCdwDnAkCPURcQhwA3ArcBC4PPA1yLi+OGeuCVBZeLEYpyBPXugsxP6+wFbVCSNMYcdVkyAt3p1\n8Wt9iAFH++4vLoIzDvUi2HJHHAHXXsuEW37A5/grnje3vMFh2yKopJS+n1L6WErpe0AzPbnfC/w6\npXR+SmltSuly4Fpg+XDPPfDg86gGFSgmLLzhhmJwpNNOgz172LgRJk8ub5AdSRpxr3lN8Wt95Uo4\n55yGE7T2P1i0qMx6kS0qpTj+eB6+4Eu8j8s57JH6vVNH21id6+co4JaadauAfxjuG7UsqEAxB1BX\nF7zlLfDud7P5wCs54IBJpQ2yI0mjYunSYk6SM8+Exx8vgsvkyc/abde6okVlzotbcQHWYOZ95Ezu\nf+kf8cK3vqq0MozVoDIf2FCzbgOwf0Tsl1La1ewb9fYWsxe3rFWjs7P4pfGud9F5cB83zb0a2K9F\nJ5ekFjnjjOLC+o53FBPxrVwJhxyy1y67H93IlpjN7OnPDjFqjalTYcGp5YUUaJNbP2Xq7S1mwW5p\nq8ayZfCd7/Cyh27kskf/rIUnlqQWOukkuPVWeOghWLgQvvnNvZ9b2bSJLZN8PmW8G6stKuuB2iHa\n5gGPD9Wasnz5cmZWTQ95zz0wefJSoMHU2qOhs5Pui75PPPFka88rSa10zDHFWFLvf38xKur118OX\nvwxz5jBpy0a2TfP5lNx0dXXR1dW117q+vr5RO1+kIZ66zk1E7AHeklK6rsE+FwMnppQWVq27GpiV\nUnpjnWMWA93d3d0sXrz46fXLlsG6dfDDH47UXyBJGtQ11xTjrEybBh/9KHf+7TXsmDqbJb/5dtkl\n0xB6enro6OgA6Egp9Yzke7fFrZ+ImBERCyPi5ZVVh1VeH1TZ/vcR8Y2qQ75c2eeSiDg8Is4BTgIu\nG+65e3tb9CCtJI13J58Md98NRx8N557Lyx+7jSdm2qIy3rVFUAGOBH4KdFOMo3Ip0ANcWNk+Hzho\nYOeU0oPAm4A3UIy/shz4i5RSbU+gIQ08oyJJaoEDDyyG2l+7llsWfpDfdp5adolUsrZ4RiWl9J80\nCFUppT8fZN2PgI7f9dy2qEhSCRYs4A13frbsUigD7dKiUhqDiiRJ5TGoNLBzJ2zfblCRJKksBpUG\nWjLPjyRJqsug0kBLh8+XJEnPYlBpYCCo2OtHkqRyGFQasEVFkqRyGVQa2Ly5mNDzuc8tuySSJI1P\nBpUGBromt3RCQkmS9DSDSgOOoSJJUrkMKg04fL4kSeUyqDRgi4okSeUyqDSwebNBRZKkMhlUGrBF\nRZKkchlUGjCoSJJULoNKHf39xeLDtJIklcegUocTEkqSVD6DSh0Ony9JUvkMKnXYoiJJUvkMKnXY\noiJJUvkMKnX09sJ++8GMGWWXRJKk8cugUsfA8PlOSChJUnkMKnU4hookSeUzqNTh8PmSJJXPoFKH\nLSqSJJXPoFKHQUWSpPIZVOoYeJhWkiSVx6AyiJRsUZEkKQcGlUH098POnQYVSZLKZlAZhMPnS5KU\nB4PKIBw+X5KkPBhUBmFQkSQpDwaVQQwEFXv9SJJULoPKIHp7YepUmD697JJIkjS+GVQGMTB8vhMS\nSpJULoPKIBxDRZKkPBhUBmFQkSQpDwaVQTh8viRJeTCoDMIWFUmS8mBQGYRBRZKkPBhUaqT0TK8f\nSZJULoNKjR07YNcug4okSTkwqNTYurX416AiSVL5DCo1BoKKvX4kSSqfQaWGLSqSJOXDoFLDFhVJ\nkvJhUKmxdWsxGaETEkqSVD6DSo2tW73tI0lSLgwqNbZu9baPJEm5MKjUsEVFkqR8GFRqGFQkScqH\nQaVGX59BRZKkXLRNUImIcyPigYjYERFrIuIVDfZ9Z0TsiYjdlX/3RER/M+exRUWSpHy0RVCJiFOA\nS4EVwCLgLmBVRDSKFH3A/Krlhc2cy4dpJUnKR1sEFWA58JWU0sqU0n3A2UA/cEaDY1JKaVNKaWNl\n2dTMiZ56yhYVSZJykX1QiYjJQAdw68C6lFICbgGWNDj0ORHxYEQ8HBHfjYgjmj2nQUWSpDxk3ZKY\nEQAACnhJREFUH1SAucBEYEPN+g0Ut3QGs5aitaUTOJXi77w9Ip7f1AkNKpIkZWFS2QUYDSmlNcCa\ngdcRsRq4FziL4jmXhgwqkiTloR2CSi+wG5hXs34esL6ZN0gpPRURPwUWDL33cs46ayYTqtqali5d\nytKlS5ssriRJY1dXVxddXV17revr6xu180XxuEfeImIN8JOU0gcqrwN4GPhCSukzTRw/Afg5cGNK\n6a/r7LMY6J46tZsdOxaPXOElSRrjenp66OjoAOhIKfWM5Hu3Q4sKwGXAVRHRDdxB0QtoOnAVQESs\nBNallD5cef1Rils/9wOzgPOBg4GvDXWiWbNGofSSJGmftEVQSSldUxkz5eMUt3zuBE6o6nL8AuCp\nqkNmA1dSPGy7BegGllS6Njc0e/ZIllySJP0u2iKoAKSUrgCuqLPtdTWvzwPO25fz2KIiSVI+2qF7\ncksZVCRJyodBpcbMmWWXQJIkDTCo1LBFRZKkfBhUahhUJEnKh0GlhkFFkqR8GFRqGFQkScqHQaWG\nQUWSpHwYVGoYVCRJyodBpYbdkyVJyodBpcaUKWWXQJIkDTCoSJKkbBlUJElStgwqkiQpWwYVSZKU\nLYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRsGVQkSVK2DCqSJClbBhVJkpQtg4okScqWQUWS\nJGXLoCJJkrJlUJEkSdkyqEiSpGwZVCRJUrYMKpIkKVsGFUmSlC2DiiRJypZBRZIkZcugIkmSsmVQ\nkSRJ2TKoSJKkbBlUJElStgwqkiQpWwYVSZKULYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRs\nGVQkSVK2DCqSJClbBhVJkpQtg4okScqWQUWSJGXLoCJJkrJlUJEkSdkyqEiSpGy1TVCJiHMj4oGI\n2BERayLiFUPs//aIuLey/10RcWKryqo8dHV1lV0EjSDrc+yxTtWMtggqEXEKcCmwAlgE3AWsioi5\ndfZ/NXA18FXg5cD3gO9GxBGtKbFy4EVwbLE+xx7rVM1oi6ACLAe+klJamVK6Dzgb6AfOqLP/XwI3\np5QuSymtTSl9DOgB3tea4kqSpJGQfVCJiMlAB3DrwLqUUgJuAZbUOWxJZXu1VQ32lyRJGco+qABz\ngYnAhpr1G4D5dY6ZP8z9JUlShiaVXYCMTAW49957yy6HRkhfXx89PT1lF0MjxPoce6zTsaPqu3Pq\nSL93OwSVXmA3MK9m/TxgfZ1j1g9zf4BDAJYtWzb8EipbHR0dZRdBI8j6HHus0zHnEOD2kXzD7INK\nSunJiOgGXg9cBxARUXn9hTqHrR5k+/GV9fWsAk4FHgR2/m6lliRpXJlKEVJWjfQbR/Fcat4i4mTg\nKorePndQ9AI6CXhJSmlTRKwE1qWUPlzZfwnwQ+BDwI3AUuACYHFK6Rct/wMkSdI+yb5FBSCldE1l\nzJSPU9zCuRM4IaW0qbLLC4CnqvZfHRHvAD5ZWf4XeLMhRZKk9tIWLSqSJGl8aofuyZIkaZwyqEiS\npGwZVBj+hIfKQ0SsiIg9NcsvqrbvFxGXR0RvRGyLiGsj4oAyy6y9RcQxEXFdRPymUn+dg+zz8Yh4\nJCL6I+I/ImJBzfbZEfEvEdEXEVsi4msRMaN1f4UGDFWfEfH1QT6zN9XsY31mIiI+FBF3RMTjEbEh\nIv49Il5cs8+Q19mIOCgiboyI7RGxPiI+HRFN549xH1SGO+GhsnMPxQPW8yvL0VXbPge8CXgb8MfA\n84Fvt7qAamgGxcPx5wDPemAuIv6GYo6u9wCvBLZTfD6nVO12NfBSiiEJ3kRR118Z3WKrjob1WXEz\ne39ml9Zstz7zcQzwj8CrgDcAk4EfRMS0qn0aXmcrgeQmis47RwHvBN5F0TmmOSmlcb0Aa4DPV70O\nYB1wftllcxmy7lYAPXW27Q/sAv60at3hwB7glWWX3WXQOtsDdNasewRYXlOvO4CTK69fWjluUdU+\nJ1D0Apxf9t80npc69fl14DsNjnmJ9ZnvQjGlzR7g6MrrIa+zwInAk8Dcqn3OArYAk5o577huUdnH\nCQ+VlxdVmpl/FRHfioiDKus7KBJ8dd2uBR7Gum0LEXEoxS/u6jp8HPgJz9ThUcCWlNJPqw69heLX\n/KtaVFQNz3GV2wj3RcQVETGnatsSrM+czaKoi8cqr5u5zh4F3J1S6q16n1XATOBlzZx0XAcV9m3C\nQ+VjDUUT4gkUgwEeCvyocj97PvBE5YutmnXbPuZTXBQbfT7nAxurN6aUdlNcSK3n/NwMnA68Djgf\nOBa4qTLaOFif2arU0eeA/07PjEnWzHW23iTB0GSdtsWAb9JgUkrVQzXfExF3AA8BJ+M0CFJ2UkrX\nVL38eUTcDfwKOA64rZRCqVlXAEew93OALTHeW1T2ZcJDZSql1Af8ElhAUX9TImL/mt2s2/axnuKZ\nsUafz/VAbQ+DicAcrOfspZQeoLgOD/Tksj4zFBFfBN4IHJdSeqRqUzPX2XqTBEOTdTqug0pK6Ulg\nYMJDYK8JD0d09keNvoh4DvAHFA9gdlM8gFddt4cDB9N4ckplovIltp6963B/imcVBj6fq4FZEbGo\n6tDXUwScn7SoqNpHEfEC4PeARyurrM/MVELKm4HXppQertnc6Dpb/Rn9w5qetH8C9AFNTWvjrR+4\nDLiqMkPzwISH0ykmQVTGIuIzwPUUt3sOBC6k+ND8a0rp8Yj4J+CyiNgCbKOYTfvHKaU7yiqz9lZ5\nnmgBxRcRwGERsRB4LKX0fxT3xD8SEfdTzGz+CYpeed8DSCndFxGrgK9GxHuBKRTdKbtSSv4Cb7FG\n9VlZVlB0XV1f2e8SilbQVWB95iYirqDoPt4JbI+IgZaQvpTSziGus/9T2fcHFIHkm5XhBn6f4nP8\nxUpjwdDK7u6Uw0LR5/9Bim6Pq4Ejyy6TS1P11kXxpbWD4inzq4FDq7bvR3GR6618gP4NOKDscrvs\nVYfHUnRl3F2z/HPVPn9H0UrWT/GFtqDmPWYB36L4hbYF+Cowvey/bTwujeoTmAp8nyKk7AR+DXwJ\neJ71medSpy53A6dX7TPkdRY4CLgB+C3Fg7SXABOaLYeTEkqSpGyN62dUJElS3gwqkiQpWwYVSZKU\nLYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRsGVQkSVK2DCqSJClbBhVJbSEiXleZnFDSOGJQ\nkdQuTqKYpE7SOGJQkdQujgZ+VHYhJLWWQUVS9iJiFvAy4L/KLouk1jKoSMpWRLwtIm7mmZaUsyLi\npog4psxySWqdSCmVXQZJaigiPgmclFI6vOyySGotW1QktYPX4G0faVwyqEjKWkRMAl6BQUUalwwq\nknLXAUzFHj/SuGRQkZS7VwOPppQeAIiIwyJiasllktQiBhVJuTsK+HHV6w+mlHaWVRhJrWVQkZS7\nicBAa8ppwM3lFkdSK9k9WVLWImIR8BngLuBnKaVvlFwkSS1kUJEkSdny1o8kScqWQUWSJGXLoCJJ\nkrJlUJEkSdkyqEiSpGwZVCRJUrYMKpIkKVsGFUmSlC2DiiRJypZBRZIkZcugIkmSsmVQkSRJ2TKo\nSJKkbP0/5A0l25iCnOYAAAAASUVORK5CYII=\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGMCAYAAAAbX+LjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXm8HFWd/v8+3VV9b3b2TZB9R1lFIiLqoI5fFRlANKIi\nzqLDqDM4izOOo844M/ob9cXoqIMbyohGVFzAJSA7ISSBkISEQAhJWEIgJISEJHfp6u7z++NU9a3u\nrqquvapvzvN63VcnXd1Vp2s55znP5/l8jpBSoqGhoaGhoaFRVlSKboCGhoaGhoaGRhA0WdHQ0NDQ\n0NAoNTRZ0dDQ0NDQ0Cg1NFnR0NDQ0NDQKDU0WdHQ0NDQ0NAoNTRZ0dDQ0NDQ0Cg1NFnR0NDQ0NDQ\nKDU0WdHQ0NDQ0NAoNTRZ0dDQ0NDQ0Cg1NFnR0JjEEEJ8TgjREkLslcOxzhBC3CuE2CmEaAohXpn1\nMQcNQogP2tfj5UW3RUNjkKDJioZGARBCXGYPWs7fqBBitRDif4QQ+8XY32whxGeFEDO7Nkn7L1MI\nIQzg58CewN8A7weeDPj8l4UQfxBCfC3rthWBoq+HhsZkgyYrGhrFQQKfBt4H/BVwL/CXwAIhxHDE\nfb0G+AywR6otDI8jgZcDX5JSfldK+WMp5faAz38S1f+8lEvr8off9fg/YIqU8qn8m6ShMbjQZEVD\no1jMswf2a6SUHwL+GzgceGfE/Yj0mxYJ+9uvQQSlDSllEzgWmJ9ZizKGEGJq0GavN6VCPaMmaWhM\nWmiyoqFRLtyOGugOBxBCvFwI8U0hxKNCiBEhxBYhxE+FEIc6XxBCfBb4L/u/T9hhpWaXL2JPIcQP\nhBAvCiG2CSGuCaveCCFOFUL8XgixXQixQwhxqxDi1a7t3wfuRClFP7ePf3uffR6GIjgLwrQhQlsu\nso9/jsd3P2xvO8H13kH2uXhOCDEmhFgphLjc47uO9+d4IcSPhRBbgXt82uh7Pbw8K659Hy2EuM6+\nPs8LIf7N3n6IEOJX9m9+VgjxCY9jhvodGhqDCqPoBmhoaHTgKPv1Bfv1VcBZwFxgA3AYcAVwhxDi\nBCnlGHADcAzwHuCvXd/dbL8K4KfAOuAfgdOAPwM2Af8U1Bh7YL8bpZh8EWgAHwbuFEK8Tkp5P3C1\n3bZ/Br4K3G/vOwhnAw9LKUOHgUK25bfATuASesnEJcBKKeUqe3/7AYuAJvA1YAvwVuB7QogZUkq3\nn8bxmfwMeAx13vzUrKDr4eVZcf5/PbAKFSJ7G/DPNin6MHAb8A/ApcCXhBCLpZTzY/wODY3BhJRS\n/+k//ZfzH3AZanB5A7A38DLg3agBbSdwoP25IY/vngm0gEtd7/2tvb+Xd332s/Znv931/g3A8yHa\n+UtgFDjU9d4BKMJwh+u9c+3jXBjy938T+Lr971cDnweeBU5KoS0/svclXO/tjyI3n3K9910Uydqj\n6zg/Bra6z73rPP4w5O/zux6Xdb/v2vc3Xe9VgKfsNv+d6/1ZwC7gmji/Q//pv0H902EgDY3iIFAz\n5s3A06jB5SXgAinlswBSyvH2h4Uw7BTkdcA2lEISBhL4Vtd79wB7CyGm+zZOiArwJuCXUsp2Zo+U\n8jm7ra8N+n4fnA3MF0I4ZO2HqPPh2SdFbMv1wH7A6127eBcTCpODC4GbgKoQYm/nD7gFRQq6z6/X\neUwLEvhe+z9StoAH7DZf43p/O7AaOML13ai/Q0Nj4KDDQBoaxUGiQjprUDPoTVLK1e4P2L6STwEf\nRKkvwvXdWRGO1Z198qL9uidKyfHCvsBUVNijG4+giMUh9r9Dw07nPRGVQbRFSvk7e9MBAV+L0pZ5\nKNL3buAO+zOXAMuklI/bbdgXlanzF6gwSzckivB0Y31AG5Oi+xptB8aklFs93t8LEv0ODY2BgiYr\nGhrF4n4p5YMB27+OCh1cBSxEDVQSpR5EUUabPu8XkUU0GxWeOA44VgjxpJRyTVo7l1LWhRC/Av5E\nCHEFcCBKyflH18ecc3cdcK3Prh7yeG80rXZ6wOsa9btucX+HhsZAQZMVDY1y4yLgB1LKf3DeEEIM\n0Vu/I4tCY5uBEVSKcTeOR/ksno6x37OB26SU7xdC/ANwI3C8EKJihz/SaMv1wAeAP0KpONAZAtoM\n7ACqUsrAzKWYyKvwW9a/Q0OjFNCeFQ2NcqNJ73P6caDa9d4u+zW1onA2cbgFeGdXqu3+wBzgHiml\nXwgpCGejVCKAh1GeFYC/EkJMSaktt6JCXe9BhYAWd3ldWiiT8UVCiBPpghBinxi/y43Ur4cXcvgd\nGhqlgFZWNDSKQ5gQzG+A9wshXkKltc5GqQVbuj63xN7ffwohfgJYKNNlUnwaOA+4VwjxTRR5+gug\nhkqljQQhRBWVzeROmX7cfp0ipQwKs4Rui5SyIYT4BYqsTEVl53TjH1Em3EVCiO+gzu9ewOnAG4Ek\nA73X9bgxwf6CkOXv0NAoBTRZ0dAoDmFCBR9HmW/fCwyjKr6eB9zs/r6U8gEhxKeBjwBvQakxhydu\noJSr7AJrX0ANihWUKvJeKeUD3R8Psct9gWcAx6dzG/AXQojPo2rJpNUWUKGgP0WFiH7msb/nhRBn\nosri/wlqqYMXUGpPZCLWte+0roffOXVf+8x+h4ZGWSCk1GtqaWhoaGhoaJQXA+FZEUKcI4S4UQjx\njF2W+vwQ37lUCLFMCLFLCLFRCPE9u0aFhoaGhoaGxgBhIMgKMA1YhqpJ0VcKEkKcjUrj+w5wAnAx\nKk7+7QzbqKGhoaGhoZEBBsKzIqWchyr0hBAijCnxLGC9lPIb9v+fFEJ8Cx2/1dDQ0NDQGDgMirIS\nFfcBhwgh3grt9MaLUYucaWhoaGhoaAwQJiVZkVIuAN4HXC+EqKMWNdsGfLTQhmloaGhoaGhExkCE\ngaLCXkr+q8DnUIWkDgS+jFqE7M98vrM3KsXwCWAsj3ZqaGhoaGhMEgwDhwE3SylfSHvnA5e6LIRo\noVal9S2wJIT4P9Sy6O92vXc2aqXZA6WUmzy+817U0vIaGhoaGhoa8XCplPLHae90UiorqIqVVtd7\nLVQmkZ9B9wmA6667juOPPz67lmnkhiuvvJKrrrqq6GZopAR9PScf9DWdPHjkkUd43/veB/ZYmjYG\ngqwIIaYBRzFBNI4QQpwMbJVSPi2E+AJwkJTyMnv7TcC3hRAfQVX6PAi1au0iKeVzPocZAzj++OM5\n7bTTsvopGjli1qxZ+lpOIujrOfmgr+mkRCY2ioEgK8AZwB0oZUQCX7Hfvxb4EHAAcIjzYSnltUKI\n6cBfobwq21Blvd1LxGtoaGhoaGgMAAaCrEgp7yIgc0lKebnHe98AvuHxcQ0NDQ0NDY0BwqRMXdbQ\n0NDQ0NCYPNBkRWPSYs6cOUU3QSNF6Os5+aCvqUZYaLKiMWmhO8LJBX09Jx/0NdUIC01WNDQ0NDQ0\nNEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRKDU1WNDQ0NDQ0NEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRK\nDU1WNDQ0NDQ0NEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRKDU1WNDQ0NDQ0NEoNTVY0NDQC0WrBQ1++\nhUd+tKTopmhoTGpsfWQTd11xPXLnrqKbUjposqKhoeGJp56CT34SDj0UWn//D2z6wveLbpKGxqRD\nqwU33gjveAe856SVnPu/72Hdos1FN6t00GRFQ0OjA+vXw+WXw5FHwne+A+efD0cda3Du2Y2im6ah\nMWnQaMCPfgSvfCW8853w/PPwkY8aABx5qH7WuqHJioaGBgCjo/C5z8Hxx8PNN8MXvwhPPgnf+AZM\n38NANKyim6ihMfCwLLj6ajjmGHjf+5Ryec89sGgRXHiJMfEhjQ4YRTdAQ0OjWEipZOi/+Rt45hn4\nu7+Df/5nmDbN9SHTVFNBDQ2N2LjtNvjYx2D1anjXu+AXv4BTTnF9wDTVq37WeqCVFQ2N3RibN8Pb\n3w4XXADHHQcrV8J//mcXUQEwDN2BamjExI4dcNllcN55sM8+sHQp/OQnXUQF1HMG+lnzgFZWNDR2\nUzz8sCIqIyPwq18pb4oQPh/WZEVDIxYWL4Y5c9TE4PvfV6Ql8DkD/ax5QCsrGhq7IW67DWbPhpkz\n4f77lcHPtwMFTVY0NGLg97+H171uQk354AdDPGegnzUPaLKiobGb4Xe/g7e9DV7zGpg/H17+8hBf\nMgxt+tPQiIBf/1pNAt7yFrj7bpVd1xeGNtj6QZMVDY3dCDfeqPwpb3mL6kxnzAj5RW2w1dAIjd/8\nBi6+WD1rP/85DA2F/KI22PpCkxUNjd0ES5bAu9+tik9F6kBBh4Fc2PXo0yz+zG+KboZGSbFgAVxy\niXrOfvzjCf4RCjoM5AtNVjQ0dgNs2qRmea94BVx3XcQOFDRZcWHu5bdw5uffwebnZdFN0SgZVq1S\npvUzz1RExYiawqLJii80WdHQmOSwLLjoImg24Ze/hClTYuxEe1YAuPZauGehGlD23VMPKBoT2LkT\nLrwQXvYyFWIdHo6xE+1Z8YUmKxoaHth48woW7/kWnpi/oeimJMYXvwgLF8INN6iONBa0ssKjj8IV\nV8BrzinP7HfRFddyz+EfoF4vuiUaH/sYbNigQqyzZsXciVZWfKHJioZGF6SE//r0S5y57Rb2ru0o\nujmJsGwZ/Nu/wT/9k0pVjo3d3GDbbML73w+HHAKX/Vk5TJDbt8P8/1vHcZvupFYrtCm7Pa67Dn7w\nA/jmN+HYYxPsSBtsfaGLwmlodOHb34b7HlCPxozhwZVj63VV1+H44+Ff/iXhznZzZeXqq+GBB5R5\ncvjZckj1n/407GcZ7LXH4N6jkwGbN8NHP6rW+fnABxLuTCsrvtDKioaGC088odbGefsFg99pfOUr\nqnz+D35A8pn3bkxWnn0WPvUp+Iu/sNWpEsx+H3hALTD5hvMMqq3d87qUBZ/9rHq96qoUdqbJii80\nWdEIhWd/fAfP/uj2opuROa68EvbYA678++IHpCR47jm1xs/HPgannZbCDndjg+3f/q1K8/7CF+w3\nCh5QpFTemVe+Emafu3uH54rGypXwrW/BZz6jqtQmRrWqXnfTZy0IOgyk0RfNJjz84a+yx7QGB176\nRt/P7XjiBZ5b9CRHvzuN0TF/LF6s1si59lqYvkc5pP64+PSnlZrymc+ktMPd1LPywAMwdy5ccw3s\ntZf9ZsEZG7/4hVoi4c47obp09yWRRUNK+MQn4IgjVBgoFQixW6uYQdDKikZf/Oxn8OLO/oPVPX/7\nS45+z+lsfWEw60986lNw4olw6aWUQuqPi2XL1OD6uc/BnnumtNOiOlApFVuOiVZTsnVzU+0nBj7/\neTjmmC4vQoH3RqOhiOhb3gLnnstuSyLLgNtugz/8Ab785RTCrG5osuKJgSArQohzhBA3CiGeEUK0\nhBDnh/hOTQjxH0KIJ4QQY0KIdUKID+bQ3EmFVkt12A0MKi3/GdyuXfC7W1Qnvtes+INLUbjtNvX3\n7/9uK7EDHDv+x39UGQkf+UiKOy2oA118+l+ybt9Xx/7+kn/5FXvtZ/D0Qy9G/u7SpWp5gk9/ekKd\nBwq9N667TqVQ/8d/uNoygPfoZMC//RuccYZarTxV6GvqiUEJA00DlgHfA34R8js/A/YFLgfWAgcy\nIOSsTPjFL1RVxqkzDCoBRr5vfQteGnHJ45FLNxYHKdWAdOaZauExoHCpPy6WLoWbb1ahi8hVaoNQ\nQAe6ZQs8+JDBG8z41+CGXxu8CjjkgOj7+Pd/V4vPzZnTtaGge2N8XKllF18Mp5/uakvTVo4Cl/PV\nSBN33QX33KOKv6V+2ndjf1gQBmJEkVLOA+YBCNH/1hBC/DFwDnCElHKb/fZT2bVwckJK1WGfdx7s\n9aRJ9TnvB2h0FL70JfjM60y4k4GbFSxcqP5+8xtXxzOgYaAvfxkOO0wNaKmigA70m9+EmU2DqhHv\nGixcCMtXxVNBVq5URP2aazx4d0H3xvXXw5NPqlWzPduSKjvVCMLnPw8nn6zW/0kdWlnxxGRVGt4B\nPAB8UgixQQixWgjxJSFEnALIuy3uvhuWL1dhBVn1V1a+9z14/nm44OLBVCO+9jU46ih461tdbw6g\nsvLkk2pAu/LKDIStnL0Ro6Pw9a9DA5NqQPgxCF/6Euz/MnsAj3gdv/51Ve33fe/z2FhAGEhKdZ/+\n8R/DCSd4tGWA7tNBx333qZDxpz+dkZilfUiemKxk5QiUsnIicAHw18DFwDeKbNSg4eqrlbnwjW8E\naZieZEVK+OpX1SqjB7588NSIZ55R5bE/+lGouJ+GAVRW/vu/YeZM+NCHMth5zrO9a6+FF16Ao44z\nqMrox12zRq2DdOEl0YnFjh3wox/Bn/+5j1hRAEG47z61avbHP961YQDv00HHV7+qPGEXXpjRAbSy\n4onJSlYqQAt4r5TyATuM9AngMiHEULFNGww8/7xaS+YjH7FnD1UDw2OGO38+PP44fPjDDOQs7+qr\n1YJjH/xg14YBM9ju2AHf/a6qvzF9egYHyLEDlVIV2LrwQthjXxNDRr+fvvpVVffiLW+Prqz86Ecw\nMgJ/+qc+HyiAIHzta3D00SoLqAMDdp8OOrZuVST4z/+8a3KTJjRZ8cRAeFZi4FngGSnlTtd7jwAC\nOBhluPXElVdeyayuVajmzJnDnB6X3eTGD36gHsbLLlP/l4ZJxWOGe801qs7A614H3D5Ys7yxMWUM\n/uAHPRYeGzDidcMNKiPrwx/O6AA5dqD33QePPQb/+7/Af5iRlZXRUZU1c8UVMDQt2mAupSKw73gH\nHHywz4dyvjecxfGuuspjgByw+7QotLbv4PY/vY6TPvl2DnjVIbH38+MfKz+zZ3gwLQyAwXbu3LnM\nnTu3473t27dneszJSlbuBS4WQkyVUo7Y7x2LUlsCl9G96qqrOC2Vkp+Di1ZLDeKXXNJZCKtbWdmx\nA376U7VIXqVC5I5z9U2PccDLa8w6+bDU2h4FN96o1vX4q7/y2Dhg8vp118HrX68W2ssEpqlujFYr\nwymlwnXXKaLw+tfD3f+fEVlZ+dWv1CJ/H/wgsDOasrJ4sfJpffGLAR/KWc343vdgypSJiUMHBuw+\nLQpLbtvGeTdcwYqzjkhEVr7/fXj722H//VNsXDcGwLPiNYF/8MEHOb2dppY+BiIMJISYJoQ4WQhx\niv3WEfb/D7G3f0EIca3rKz8GXgC+L4Q4XgjxOuC/gO9JKcfzbf3g4Y47YN26rjodZu8M92c/U7PY\ndicaseMcmfMhll7wucTtjYvrroNXvxqOO85jY6Wi4l8ln+GAmnnffrtaFTgz5DRA1+vKJHzppTYn\nMk2MiMrK978Pr32t8ltFbfe3v62yqd785oAP5UgQpFRp6BdeqPxIPdDKSij88jfqmp14TPzztGwZ\nPPhgRp4wN3QYyBMDQVaAM4ClwBJAAl8BHgT+1d5+ANCmy1LKXcCbgD2A+4EfAr9GGW01+uD661V9\nidmzXW8aBtWuGe4118Cb3uSazUfoONesgW27TI44uJhOdssW+P3v+8i5AzDDATWYDQ3BRRdleJCc\nyMrvf698Ac51EaaBQfh75Kmn4NZb4fLL7TfM8MrK+LgKp33gA33EoxwJwkMPwerV8J73+HxAKyt9\n0WxOkJWgWlH98P3vK0WlI2swC2iy4omBCANJKe8igFhJKS/3eO8xoNuOptEHjYaS0S+/vCstr2uG\nOzoK994L3/lO52faO+mD66+H2VWTg/Yv5qH86U/VrPXd7w740IB0Gj/8oSpm5znzTgs5kZUf/hBO\nOQVOOsl+wzQxCH/Ma69VIZN3vct+I0K7b75ZhY8C7wm7TWH3mRQ/+YkKxZ53ns8HtMG2L+66CzZu\nTkYwm001KfjAB3IoZzMAnpUiMCjKikZOuOce5ePomaUbnTPcsTH1uscenZ8BQj1o118Pe+/nnWGU\nB370I1WzYt99Az5Ukk5Dbn2RbXcu81zf5qGHYMWKjA1/kIuasG0b3HRT528RpoHZpazcdfLHWfnd\nhT3fl1KRlXe9C2bMsN+MoKz85CeKJHXUMfFCTgRBSvWcXHRRwACpw0B98ZOfwEEJyyo4/eIll6TY\nMD8MyCQpb2iyotGBG25QYZ1XvarzfWF21rtw+saOTjTkjPPhh1WF0P0PMQvpZNetgwUL7AULg5Bj\nGGjb7Q/y0Bv+WsUiurDgUzexxxtOxRrpPVc//alarLAnpTVt5KAm3Hij8qy4Qx6iZlJB0mq02u+d\n/tA1bPnF3T3fX74c1q6F977X9WZIYjEyoo7fV1Vx7zPje/f++2H9+j5t0mGgQFiW6tMueneya3bD\nDcr0fcYZKTbODwMSfs4bmqxotNFqqRLjF17oUZnRNDtmuM6z1EFWQnbi11+vUoX3Oyi9GcSOl2To\nlXXnzlW1SNrrAPkhR2Xlju88zivv/BovPT/Ws23hA+okj+/sbcuNN6rshFykacicrJx5pqoc60CY\n6riN0YnfbmJ5tuPGG1Uo7PWvd70ZUln53e9U6ncospITQbj+euWR6Pg93dDKSiBuvVV5oC6eE6+S\nMah+8Ze/VP1ixolwClpZ8YQmKxptLFwIzz7rbdRURsc+ykqIAc2Rti+4AKpD6SgrT/3+YWbMqrDs\n6t7QgBd++1sVApo6tc8Hc+w0Fi9VJ9I9KIMSWpautLeNdbZl/XoVAkp91VcvZExWxsZg3rxeAlkZ\nUr/dGp04ronled/8+tfK/Firud4M2e7rr4dTT1WF1/rCGbEyvDekVBOHiy7qWvG5G9qzEoibblJ1\noE4+RagTGeM8LV6sKl1namB3Q5MVT2iyotHGDTfAAQfAa17Tu03UTEwayJZSLwLDQAEE5JFHVMGv\nd72L1OTO+QtVh33M4f2Jz9atsGiRIit9kZMc+8ILsOoxW0HoIiR33QU7x3vVBVCDc62WQwgIMh8U\n77hDKRvdxKutrNjnpVlvUkH23GNPP63SSnvUshD35OioIrChVBVQsmPGqttjj8ETT8Db3tbngzoM\n5AspVXbZW99qK8Uxr9kNN8B++8HZZ6ffRk+UxCtXNmiyotHGvHmqc/SayTmDRrPeBOIrK7feqgbY\nN7yB1B7KO+arRkw1++/r1luVrBtqgM+p05g3D8alt7Lym9+Ahfe2G29U6za1zaRZIuNww69/rWbA\nJ57Y+b6jrDi/ve3b6brHbrpJNbEnrTTEPTl/viIsfYmBGxkT2Xnz1HNy7rl9PqjDQL5Ys0YRvvbE\nxIyu5EqpyMoFF/RRuNKEVlY8ocmKBqBkzlWrVN0UL4ha16BhP/Mdq/uGmMX+4Q9qhjJ1KrE6j27U\n63D3feFnl/PmqYwP31LqbuSkrPz2t9AU6jc0xybOh5Rq2z4H9G7bulWtit3Xd5MWMpzBt1qKbLzz\nnb1eqTZJHlfHnSArvSrTued2ZadB6HvygAN6iVIgMiay8+apJSymTevzQa2s+MIhfG3PTwwSsHKl\nCrdmtmihF7TB1hOarGgASnEA+KM/8t7uDBqOdyCOsmJZcOedrpoRKcwg7r0XXhoNN7uUUnVgocMm\nOSgrjYaSqk84udeXsnq1ylyafU5viOj3v1e1H97xjkybN4EMw0BLlsDGjd7em25lxXkVruuyfbsK\nI3kSt5Bq33nneZjKg5Dh7Hd0VD0noUKVWlnxxbx5cM45roU9Y0yObr9dEZ7XvS799vlCKyue0GRF\nA1Ad9qmnqpVqveAMGu0ZbozU5YULYedOl3qTgrIybx7stV84p/+KFcpAHGoQgFw6jfvuU/VFXvM6\nW0FwqSe//a1aEfrUV/cqK7/7HZx+emfmTKbIkKzcdJNKv37ta3u3VWqdyopD2ERzoh2LFqlL73ld\nhW2s9Lk3Nm+GpUv9FUVfZDj7veceZTiORFb04NaBsTEPwhfjeb79duXhmzIl1eYFQ3tWPKHJigZS\nKrIS1GG3lZWRzjBQlNTlW29Vg1J7ncgUOvx58+CcN4YjK/PmqfCT16DoiRzk2N/9ThWmO/GUXkKy\nYIHqKKfO7N32/PPK45EbMhwU77hDKXodIUUb1WFvZcUdBhqxlyrdc0+fAwQMUrfdpl59K8T6IcMB\nZd48RUL7FqcDHQbywT33KIWqQ0WNODlqNpXB/Y1vTL99gdDKiic0WdHg4YfhueeCO+xQykqfAe0P\nf1CDUtuolrDD37hRVXB941vCddg336yMvcPDIQ+Qwwzn9tsVSTSndp5fUJ3trFlQHTJ6tllWDrVV\n3IhQCTYKRkdVaqifkbRbWXEIW8VFVjzvRTcCBqlbb1Wk4KCDIjY8wwFl3jylCIQKS+kwkCfmzVPX\ntL1sA0QmK0uXqhDjG96QfvsCoT0rntBkRYM//EEthBekODiDRrfBtmOAqFTUn0eHsH27GpQ61JuE\nYaBbblEd+hvf3L/DHh9X/pZIM+iMO41du1S67TnnuAjJWOcgbJoT6oLXttyQkbKycKEySft5Arp/\ne9uz0uwkbtCnJL1Hu6VU937kEJBzsAzujQ0bVHp/aF+VVlY8cdttauXsDsIXkWDecYdSYs88M/32\nBUIrK57QZEWDW29VA2ZQXLY9aAQpK84bHg/anXcqWbWDLCTs8O+6C04+GfY5sP+sf8kSRVjOOSfC\nATJWVhYvVj//ta+dUK5a4/5kxWtbbsiIrNx9twrfdMyAXXBIcqtue1baZCW5svL442qV5sghIMjs\n3rj3XvXaN2XZ3Q7QyooLL72k/Gk9k6+Ik6Pbb1f76CgymAc0WfGEJiu7ORoNNej7ZQE5aMvxzgzX\nq9w++HbiTz6pwi8dPouEHf5999kF7PqYKEENAtOmKXITGhl3GvPnq1TbE04AY0p/slJoGCgjsnLX\nXYpA+pUx71ZWgsJAXp6X9gaPdi9dql69iiD2RUbKyoIFcOSRqghZKFQq6v7Xg1sbixerdPie6xrh\nebYs5XvJ3a8C2mDrA01WdnOsWKHCEf1Mp92+iajKiufgmiAM9MILKrW33SH16Yjmz4ezzgoY0LyQ\ncRjonntUzZlKBYxhf19Ke9skCwPV64pwBqkIzn3nKCttstLqPBfVaoDHw+c+c9aM7LvsghcyIrKO\nqToStMeRn41IAAAgAElEQVShAwsWKLXu2GO7NkTob+6/X/WLuftVQCsrPtBkZTfHokXq2Whn6Pig\nbbAdC/CsgO+swHNwTfBQLrSXAZo9m4mG+HRErZZSVkJnAbnbl9EMp9FQA7XTpjDKiqwXSFYyMNje\nf79KMQ2qYeGnrHR7VgLPhc991jd8FIQM7o2REVi2zHVPF9iWQcaCBeoc9qh1EcjKXXepytD9+sVM\noMmnJzRZ2c2xcCG88pX9Z5fd3gFf6T0nZWXBArUi7eGH99/X6tVKiYlMVjLsNB56SNWccdoUREgc\nItOsT7Sl0Rh8ZeXuu9WAcMop/p/pVlYcMldtRiBuPveGZU1EECMjg3vjgQfULrWyEh+tlurTPAlf\nhMnRokXKWBtJiU0LWlnxhCYruzkWLVLhkX6Y8E2kqKwk6GTvu091SG3pP2Bf8+erAenVr454kAxn\nrPPnK+PeGWfYhxruHJShNwwkJ5nB9q67FFkLGhC6FSe/MFBcZSX2OcxgQFmwQFVb9TMbB7ZFKyuA\nyqTavt2H8EUMA73qVem2LTQ0WfGEJiu7MV58ER59NNwg3p7hujwrnj6BKMqKYagUISkjtbvRUCSr\no0MK6LDnz1ez98gL/mXYacyfr2ZuTs0Xp85KYDZQkWGglMlKq9UZBvODn7JSaUUIAwUoK4nISsoE\nYcEC9SxGVnr04NbGggUq/OOZbhzyPG3cqP5yT1l2oMmnJzRZ2Y1x//3qNQxZ6Z7h+nb0UZUVZ2ME\nrFih4vsdZCVg1nTvvTGXd89IXpdSkRX3QO2cX2n1EhKHyEgP1SU3pJwiu3atSjF1lCU/tEmcTdTa\nYaCilZWU7w0pXdltBbdlkLFggcr4a68H5EZIZcXpFwtTVvT19IQmK7sxFi1Srvmjj+7/Wa9sIM+O\nPqpnBSI/mAsWqK+efnrXvjw6oueeUwNjZL8KZDbD2bhRrVHkJonmFDvU40FInG2F1llxCv6l1Iku\nWaJeO66hB5z7TnZ7VqKQlQFQVh5/HLZsiUlW9Ey8DSc87IkIZOWAA3Jcd6sbCZQyKeH+/d7G4n/9\nfcqNKh6arOzGWLhQSZ1+NS7caM/86ykqKzFn6/fdp1z6HWXzfUjShg3q9aijIh0icJ9J4dT3OPXU\nifdEtUKTirfBdrj3POVOViDVcMOSJXDoobD33sGfm1CVbGXFUsevRgkDDYBnZcEC9RrZVwV6Jm5j\n61ZlpvclKyGv2eLFSlWJtAp3mkhwbz37LJyy+RZqG59It00lgCYruymkVMpK2M6x2zuQqrISkax4\ntjuAJLkPFQkZzViXLlWK1stf3vm+helJVkRFYGEUm7oMqZOVfqoKuMzFNklxTMZVWbCykjJBWLIE\njjkmYDHGIGhlBVBp3xBwX4VQVqRUWVmFhYAg0fVcvlz1IwfvP/nuB01WdlOsW6fSecNkAoHLs+KU\nPfdLnY2jrETo9HfuVGEdtyoBBA5IzubIyMi4uHSpan/3zM3CRDa8FYMGRltVkLKA1GVI7XxIqdZE\nCkNWqjXlNnU8Kw5hK9yzkjJBWL48YnXl7rZoZYXly9WSIccc4/OBEOdp7VqVeFA4WYmReAATZGWv\nmZqsaHQhxv1UCkQ1kbVnuGHCQBkqKytWqHPe07EHKDruQ0VChmGgHrIFNIUBPuqJxQQZ813qIGsk\nXHjSwdq1Kr00TMEtR1XCJmoOaanKEmQDpXRvSJmQrOgwEKDO4UknBWRThbh/nX6xn/E7Uzg3ZbMZ\n+avLloE0zI7lKCYLNFlJiGV7voE7X/NPRTcjMh56SBnI9tkn3OfbWRlWiDBQ1GygCB3t8uVqnDjh\nhK4NAxIGevFFeOIJb7LiJiRSqr6qfYqE2SYyiX5TEqQ0QIc11zpwh8ecVyNKGKjk2UBPPaXIWyJl\nRYeBWLaszzkMSVaOOCJ8v5gJEpQJWL4cRC2dSUXZoMlKAkgJYsd2ZsltRTclMlasgFe8IvznuwuT\nWZZPMa8oA0MMg+3y5XDccTA01LUhizBQBjNWJ67uRVYaYuI3dLe7idH2bUwGsnLIIbDvvuE+38CY\nCI/FISslzwZy7gmtrMRHvQ6rVvU5hyHu3yVLClZVIDZZGRmBxx6z6zJpsqLhxlNPwXjLZO8BjA9G\nJSsVo0IL0TFgpqasRCQrnh1SH7ISa5n3DLwAS5equHrPImvYYaCGNyFpCBPRmBzKSli/igO3qtRW\nVig4GyhFgrB8Oey1Fxx8cMwdpHRdnrx3A2PPDd7EC1RxS8sKXrohjLLywgtw4IHpti0yYmZJrlyp\nii0aUzRZ0ejCypW2mWn6YN0Y27fDk0+qNYGiwC3Hp+JZiTiDaLVU+MqXrAzAYnVLl6rz7hVXb1Z6\nlZX2KQpQXXJDCoNiFHOtgyau41olUlZCnoufnPMNfj7nBt/tDgGPnSqb0n067ZxTufd9/5t4P0Vg\n+XL1Gtinhbhm9XoBz1U3Yiory5erMhS1aZqsaHTh4YehWa0xrVYvuimRsHKleo2irICS490z/7yV\nlXXr1LLtnmQlC89KBvK6n7kWgtWTRmUiU6ibyOSGFAy269cr305kZcU5rv1qMjjZQCcuu46D7v+V\n7/ZE5lpI5T7dsgXq0uSAvQdzkFu+XC1qOnNmwIdC3L+FlAToRsximcuXK8W2oj0rGt1YuRKGppuI\nAbsxVqxQM/vjjov2vQads/u8s4Gc2VOcMFAZlJXRUSVX+5GVVkAYqCWMSREGeu459dpdYyYI7vBY\nW1lxhYH6pnEXXGel2rI6yJUbO3ao7KhEZCWF+/SRR6BOjf32GKyJl4Ply/uEgGBwyEpMZaVtME4p\na69s0GQlAVauhKkzB+/GWLHCx6TaBw1hpOtZifhQLlsG+++v/qIcV4gYi8M57UtRWVm5UmX4+JGV\nZiVYWRHW4JOVOG1vVHqVlSotWo1W+624ykosL5Ozz5DPfbVlYUrvz65YoV4Tk5WE12XVKjukPWOw\n+jJQocW+mUAQ6jwluifSQgzPihMiP+UUNFnR6ESzqWYjU/cYvBvjoYeih4Cg1zdRhLLi2yFFqZwb\nFqYZuziTF1auVMTppJO8tzcCyEqzYkJz8LKBxraN0axP1IuIY3huCqP923HVj7BG+tyLDgr2rCiy\n4q1Y+KbiR0EKYaBVq1T4wF1sb1Dw7LMqjNWXrExiZeWJJ5RK11ZW6oOpkAVBk5WYWLcOxsZgxp6D\nRVakjJ4J5MAtx/tK73HK7Yd8KAPJSpTKuWGRoN6BFx59VK2HM2WK9/ZWxUT4EJJShIFizNgeP/hc\n7nnXV9v/j9P2pktVEq5r0Rjro/I5KDgbyJAWhk8YaNmyeCpn5wGSh4FWrYLqgGaRBIaH3QhxnkpB\nVmJ4VlatUq8nnYRWVoqEEOIcIcSNQohnhBAtIcT5Eb57thDCEkI8mGabHJPqzL0H68bYsEFlA8VW\nVhp9ZrMZLWS4bZtKFfeNS2flS4DUyMrq1d4pyw5aFX9C0qxOVKUcJGVlr7GN8MzG9v9jkRVhtEmc\ncCkrjdGClZWQz73RqndkL7mxalW8Z7EDKSkr5tTB6sscrFwJ06fDYYf1+WCI81QKshJjkjQyol5n\nzkSTlYIxDVgGXAGE1uSFELOAa4Fb027QypVqxdjhAfOsODHyqGnLYCsrYTwrGYSBNm1Sr761KLII\nA8Wsd+CHfmSlWTWpNP3DQH6qS26IQVYMaXUQjLjKSjv8EycMVPCqy4a0MHzCKzt3wh57xGyDuy0J\n7tFt22DjRhiaXhuovsyB81z1Tf2exGGgjudqkpKVvJMfY0FKOQ+YByBEpGoEVwM/AlrAO9Ns08MP\nK8lN1AbrAX/oIcW+o2RjOOg2gPpWsM3AYNvX6+Bz3ER1E1IMA1mWyvoIVFaq/oREVgyED5HJDXHJ\nijURP4/T9lZlQllxr3nSHA8ZBio4G8iQFg0fZSWVuh4JDbaPPKJeh2cOpteh3ySgDec8SenJbJpN\nZVQtDVmJMK7sDmRlUJSVyBBCXA4cDvxrFvtfuRJOPJGBMzM9/LBqd5wCVN0VVvNUVvoOciUPA61f\nr9oSlC4uK4a/shKguuSGFJQV51GJRlYmQmCxwkAF11kxpYXR8u4jUsk+SRgGWrVKFRObMmAqsYPQ\nZKX9MHkvEFjYc9WNBMpKtYq6oQbwOvbDpCQrQoijgf8ELpVSttLef72uHpBBNDOtWRPywfaAe4ab\nimclAhkohKykGAZavVq99lNW/AhJ0LbcEONer1FPHAbqUFaallqFmU6yElggr+BsIAP/MFAqYYeE\nYaBVq+DII6E6NFh9GagCg5s3R1BWwPc3loasxJgkOQqdEAzcmBQWAxEGigIhRAUV+vmslHKt83bY\n71955ZXMmjWr4705c+YwZ86c9v/XrlX30QknAOsG68ZYswbe8Y543212VVhNrKxEIAOhyEoWGR+Q\nirKyerUyAR50kP9nWlWTSsubkMiqQcUa89yWGwxjwskXEiZWO3wFqu2VivoLC7eqJJoWo0zBZEf4\nMFBW2UCtlvrr82NMLOpZkpUUlJUTTgBag9WXgVq4D+CYY0J8uM/zXBqyElNZabc7B7Iyd+5c5s6d\n2/He9u3bMz3mpCMrwAzgDOAUIcQ37PcqKLtLHXizlPJOvy9fddVVnHbaaYEHePxx9Xr00QwUi926\nVf0dfXS876eurDijVhpkJcvU5ZSUlWOOCQ6/yapBpeXjWQkgMrkhYhio1WhRpUWl0elZiRr2kBUD\n0ZpQVsYqU5nZ2kFzLGQYKEvVrdEI/EGyJalhMVpyZeXSS4HVZmQyWjQcxTISWSm7shLTs9K+DXMY\nk95+3p/w/874I2YdvV/7vQcffJDTo6yjERGTMQz0EnAScApwsv13NfCo/e9FSQ+wdq2qlXHggQwU\nWVlr60xHHRXv+81qysoKhB4A+3odsh6QEuLRR/tL1dIwqQaEgfy25YaIZMXJ1ql0KStR2+0OgVWa\nFuMVVagmNFnJSlmBvuejMa78EX7F1lIjKzHv0R07VEmAE05AjXYD5L8DRVYOPhimTQvx4T7Pc18T\nf14YAGVl2ce+x/Axh6S9dFogBoKsCCGmCSFOFkI4VTaOsP9/iL39C0KIawGkwir3H/A8MCalfERK\nOZq0PWvXwhFHFBMfXPXjZbywYmP/D3pgzRr1euSR8Y7dcs1woygrUvYhNxGUFd+OpOQG29Wr+6/F\n1DImKoj2KCuGv+qSGyKGG9IiK7JqULEVvWrTYrw6FYBWPUI2kEcl4jyIrLVLDf7uc+BGKtlACcJA\njjJx3HEM1MTLQWhzLQyOshKj38mbrGx6sYaJhVFNp7p3GAwEWUGFdZYCS1B1Vr4CPMhEps8BwCF5\nNWbtWteAn/MDvu/73sxDn/hBrO8+/jjsuy90WXJCo9VVmCyssuKY79MgK7l6VlIKA4U1AUrDpCL9\nw0B+RCY3RAw3OAbYarMzDBRLWbF/e6VlUbfJSiRlBXrujzzuDYewuc9BdxsSz+QThIFeekm97rUX\nA0lWHnssAlkZFIPtACgrz71gUkH6ZlZlgYEgK1LKu6SUFSlltevvQ/b2y6WUbwz4/r9KKYONKBHQ\nQVZyTBN76SUYlzX2nhnveI8/Ht+vAp3Kim+5fY+OM7ATCClhF+JZSUlZCZMJBIBhBCgrnWSlWo2X\nfp4IEcMN9V29ykocJcHt5ak2LSwjYhjIZ0adSxhotPccpNYGd1ti3qMd99mAkZVWS6nFofwqMKkN\nth3PVQ7XceMWm2HneL8MBFkpE5pNVTOjQ1nJKc67fj1YmOw9I97x1qyJ71cBe3bv8k14pos6HadL\ncg/sBNJWVrKQ+hM+kA5Z6UcUZdVsp7g6h3Sa0K26FNKhRiQrzVF1n1aThoFcXp6KbGCZE2EgJ7pT\nVmWlTVYavZ8L1fawbYl5j8YlK/f+YA0PGGexcW3iqHpsPPWUWp9t0oWBYhpscyUrm+2D5ehx0mQl\nIjZsUPdBEWGgdeugTo09psVXVpKQlVY1pGcFOuTBvmQlrTorXcd1vhdbZk/JYPvoo3DIISFMgGYn\nITEMl3piGB1EZhDISjsM1EpIVqpG+7xUWxaNmk1Wxq1wA0wWykpYz4odBhIeykpqg2MCg22HcT2C\nwdZcs4ozmouobd8c67hpILRi6aDPNYtTsDATlDwM9OKL8OKIVlZKDydtuYOsyHxid+vXq1onU43o\nbHbbNrWMepIwULeyEkhWXA9a3zBQiBve6Uh8i3/5zEbKEAZ6+ukQi6yBIiTS+/xK06Tqsy03RAw3\nTJCVZJ4VdwjMaFk0ayoMFJqseNyTTomU/MJA3qqfe1exkUIYqFYj0iDnhOBMn9Wk88Dq1Wq16tBL\nhwyKsuLEeCOSlbxSl9etUwo/oJWVMmPtWlUa5NBD7Tf6PABpYt06YKjWURE0LJKmLUNvHRBfpcT5\nAJ3/TBoGMs0An0aWs+eE17Zeh+HhEB80zTZZ6fEEGSbVMoSBIpwLZ0AzupSVyEqXYbR/e1VaNIcn\nwkCRlJWwBDpkmzp25APnHHh9NnVlRUbPzIgbBpJ159oWl+r82GOqP6tWQ35hUAy2EL1MQI7KiqPw\ntw+cEzRZiYi1axWT72CxkMtFW78eqsPxPDJJ05ZhIrXWEZJSU1ZChoHKaqLsh9CmUhdZ6W63MP1V\nl9wQ1bNiD9RV2UlWkiorsk1WIiorYQl0GISU6oPIivMYp7I2EMRSd+OSlda4arwpiyMrkRMGBsVg\nC6UnK0PTtLJSenRkAkHuyooxNV720eOPw957w557JmiAraz0VUogM2XFFz4dURmUlbBqgiIk3uqJ\nDCAyuSEmWTEShoG6lRU5rMJAMqpnJU1lJSSRdUzGHQdNqw0OEtyn9bpSK6tVoikr4/a19VlNOg/s\n2gUzZkT4wqCEgSCyipk3Wdn3oPzGPQearEREUWSl1YInnoDatHjKStK0ZVCFyaqyzwARVVlJi6xk\n4VlJyWAbug2miYGfslKSMFAUz8qIuk+NhMqKW3EypKXKRwPSChkGylJZKUsYCGLdpx1EOkIZBicM\n5F5KIW9EDikOSgVbiF4moDt1OWZYMAzWrYP9D6lNHDgnaLISAVJ6kJVaPrG7555TaXpD0+MpK0nT\nlsGR41NWVnaDMFAUsmL6khXDd1tuiDhja3nMvmNVbHUpKyYushI2DJSlZyVBGChVg22ItnihZ0Ye\ncvBxyEqeM+tuRH4OBklZiWia7rmOkErlbS+sXw8HHKKVlVJjyxa1loanspIxw1y/Xr1OmRlfWUlK\nVrBTSItQVvoOcj4PaKJy5ikabMO0oVIzMPBRTwKITG6IGQYy01ZWaiYWRniykoWyEnJAcAgb0PPc\nliEMFDd80CYrBa4lFPlemuQG2zx8lI0GPPkkHHioVlZKDSejpogw0Lp16nXKrHjKyosvqlL7iWAP\nGs4zlLeyEijPllxZCeVZqakS1s16s1dZqZnUsJAtOTBkxRmoTZJ7VgyXsiJMkwYG0iqBslKGMFCa\nykrY8IFVn9hBQajXI4ZsBs1gm8Sz4ryZMjZsUKfvZYdpZaXUKJKsrF8P++8PxpToykrgQoJRYMvx\nzk/1rHkymTwrlYrnPqMidBtq6kONUcszDATQarQGkKwkU1ZEbcLLY2IhaiYWZrGelbAG23F/spJa\nNlBCg22s8MEgKit9+urSFIWD5NlAzpspw5k0H3KkVlZKjXXrYJ99uhzoOSorRxxBrLWIAhcSjAJb\nWUnVs5IWWclCWREiUXXQqG2o2GTFGm30fKcyZG8b6SUyuSFiHH2CrDSQLTVbj2yKBKWs0KBZb1JB\nImomDWHCAHhWZABZKZ3BNkpfZg0gWQlhsC1kzS0vpOFZyYisVCpw0KFaWSk1NmzwqJaYI1k5/HAi\nmeAcpDmDq6btWUnbYJtm6rKz35zqrFRq6tx5KSuO6lIoWTGMSNWaW2MT96lTyTWusmJiTZSuHzJp\nomTywpSVkGpGKw+yklYYqBZhtuw0vuAwUNoG21KoKpA8GwgyIyuHHAK16VpZKTWefhoOPrjrzRzD\nQHGVlTQ7xd1KWYFEi8S52xDWswLehMQhMs3xXtUlN0ScwbdNmEyswByLrJgGFST1napjrDjKSqPA\nCrYhCYIcd3Xmg2CwDbkf4XhWClZWIk3AnFK3k5Cs5KmsHHFEtsfwgyYrEfD004pVdiCHizY+Ds88\nE19ZSatTFKaS41NVVkIqF31nUVl4Vpz95hUGskM9XoSkUhZlBWKRFUdZiZOdJezzMr5ttP3/RkWR\n3ECzd3e7J6uykiAMFHtGXgJlJfJz0CesWzqyUkKD7aZNcOCB5Fayww1NViJgwwYPspLDRXvySaW+\nx1VWUgsDOXJ8GGUl5YUM+86islJWQio/QQjvWfEPAzlExjNElBcSkBUnhBOn7RXbXDy2dUT9v2bS\nFAY0BsCzUs+BrCQYnOJ6Vtrrkw2SZwUCn+dYfqqsUNLU5XYGlnMMHQYqH3buVCsX+4aBMrxozz6r\nXg86iGKVFSOCslJUGChtz0oKykrYFMu2sjIWQFbGCgwDRfRGdCgrdjXbuJ4VmFBWKkMmzShhoAKz\ngcKQldSygdJIXXY3LABtslKwZyWOWXsgwkAlNdi2j1OtKqetVlbKhw0b1GsRYSCHmwwNUahnxakD\nMj7S9N9fHGUlDYOtx4DUbCpFqmiDbdhOsDrsT1aqQ3bq8ngJlJWQ959XGCiWsmIrTvVtSlmpDqsw\nkHAZbD3T6B1koaxUKiqs0O9cWP5kJbVU2bQNtiGub7vMfkHKSqul/mIpK4MSBkpKVjK4Nh0EMcbE\nOQk0WQmJp59Wr0UYbDs61hg3SFphIGEPGuO7GhPt6YbPLLZSmShb0oEMDbapkLSUDLahyIpNSLzU\nExFQgyU3RJ3Bu+5TN1mJeh+207ZfspWVmkFLGIhmgdlAzn5DKCst7FzYEhpsPT0rIfqXvMNAy79+\nDytmzO5IgYcY525QlJWI/U5e2UA9pEgrK+WDQ1Ze9rKuDXmTlQKVlbZ3YKflvz+fWazvsTMMA+U1\nIAUhSkG+oDBQW3UZb9Bo9FESskJUsuJWuUYThIHs+87abntWhkyaFRMRNQyU9r0RQnWTdYtRpnYe\ntKsNia9lAWGgSjPfMND2BQ/zip0LadaVqhtblQq4ZomW5kgbJc0G6lHitLJSPmzYoCrIDg11bcgx\nDNQ2NhXlWXG8AzvVQxRYwbZrFut77JAPZei1gTxmz4kUpYSzBycUFaYNDiHxCvU4qosXkckNCchK\nkjBQm6jtHG3/v1k1ES6DrZOV6gkh1AeKUN0si9GKP1kxjBSKkBVhsHXISk6DlRNSdNLXYz/bfQy2\nmqwEoycMpJWV8sGzxgoMhLKSVhjI8Q6MF6SsBLa/QKk/CFHa0CYkHqnLQX6W3BD1XncrK/YaOXFm\nr+0sqZcmPCutikGlOXEu+g74XTPqvO4NYdUZE1M6D+pqQyrXsQBlpdrMd20gp16NtauTrEzaMFAM\ng20e2UBaWRkAeNZYgYnc/d1AWXHCFPWR6J6VQLKShsHWMcWkTVYSGmyjtMGYEqCsuMJAA6OsNHrJ\nSiyDrX3ftXZNKCutioloRjgXXc+oZU0ILrER5t6wLBqVWo+y47QhletYhME2Z2XFaVO3sqINtkq5\nbTS0Z0XDhmeNFQcZu6I7pO5aLVLJc/f3E4eB2p6VALLikIawykqEOit925/V7DnBAxlJWQkIAxnD\n6tzL+uCEgYRlMYJSFZJ4VtqZUDtdykrVbBtsQ+3P495Ixdja594QDUulWXvMQmOl3vq1A3I12FZz\n9qw4bbJ2jrv/O3lTlyP0Oz2FEfMKA2llpZzwDQNB5gyzQ+qO0KE4SCsM5AymToGvsAQkF4Otx77K\nEAaKcu6D1JMg821uiKGsjArl12iOWbHTTZ3zIkeUsmJMMWlVDapRyEqUezIswigrDUtV2/W4z8sS\nBooTPqi0ilFWEoeBJqGy0mM21srK7ouXXlJ/gcpKxmGgDjYLkY6XWhjIqXcx0vBPRYaeBy0Ng22o\njsRjQIIBCgMN+9dSCQoR5YaI4YaKVWfMNpc67XbvJiyc+45RN1mJGAYqSlmxLJpZk5W0wkARBjmj\nlXOdFbtN7uKCEJOsBCgrpalgG6Hf6TkXGSsr2rNSYjgF4YpWVtrHgkg3SdqeFWvECt6Xh8KRVFkJ\nZczs2lcqRbdyDAO1CYlHqKdNZOol8KyEPB+iaTFWnQaoFZidr0UdEBxlxU1WZNWk0ipYWQljsG1Y\nNCu1bMmKM2uIcZ/GNtg6ykpeM2t74cTEZGWQwkBxyUqCsGAQHG+MzgYqMZwaK0UpK3FNcO7vQ/IH\n0fEO1EcawfuKoqxECAP1HeSy8KwUYLCVHoQkiMjkhojhhkrDol5Nrqw4950YVZ6VWGGgLJSVEPeG\naFg0qxkrK0LEvk/jFhOr5hwGEnabHO9T7ND2IIWBQvbxPc+Vcz+kPCb1eGO0slI+bNigrv9BB/l8\nIM8wUAk8K43RFJUVh9hIGXjswsJACZWVKOfenOJvom0TmTKU2w9rsG1a1M3kZMX57WLcpawYJpVW\nsmygPMJAlaZFK+swUMi2eCF+GChfZUXkoKwMalE4T8UygzGppy/Tykr58PTTqiCc74AzIMpK0kqZ\n7XoXYykrK9A3u2lQDbaxwkAehKRNZKwShIHCKitNC8tUYSA5Xo8dlnOUleqYUlbMqSoMVI0SBsrK\ns9JPWWnayorHLDRVj0TM+7SjDZWKSjkMMREyZL6eFacInTurDLTBFnzORQZjUs9xtLJSPgSmLUOs\nQm1REDe90IFlpVMp0/FNNEat/gvHRVFWoO+DGZqsDHAYqFqrtr/UQ1amqv80x6zkizPGRVSDbcOi\nUVPKiqMWuXcTFg6Jq9ZtZWXYQBpGNLJSUDZQtVGn5RMGSnUmH/M+7TkPIQc5Q+arrFRsZSVxGGhQ\nPCsRrqfnJCAPsqKVlfIhMG0Z1EXLuM5KkmygtOo5tNNnxzNQVvr8nkKVlZwMtqIisDBoeagnFbNK\nCx4DMgsAACAASURBVNEuWz8IBttqs07LMNVvSkJWbJJs1Ecm/m+YVGT5s4EqTQuZtWclZFu8kJis\n5KystMayzQYqDVkpobKiw0ADgI0bPRYwdCPPMFBMZSWNh7C9KnCanpUQZCX0YoAlTF2OOgO0MGmN\n9RISIdS2xlhAQb6sETUM1FIDdZ0apKCsGI1RLAxERSANE6NoZSXEgFJpWb7KSqqDYxoGW2c/JSQr\nFbsacjMNsjIoYaC4BlvnPzoMlD+EEOcIIW4UQjwjhGgJIc7v8/k/EULcIoR4XgixXQixQAjx5rjH\n37RJeVZ8kafBNqZnJY2H0Bk0UlVWQgyAzqZQ2UADrKyAIiROafruUFsDo71tEMhKtWnRMkwaKOUx\nqbJSs0awMNttqcryZwM552BglJWQIe0a+a4NVLHXIpJJycqghIFKqKzoMFA4TAOWAVcAwWkjCq8D\nbgHeCpwG3AHcJIQ4OeqBGw3YsqVYspJUWUkrDDSx0F6+ykrojikLz0qOBluAhjBpjnurJ24iMwie\nlWrLQho1LGF2eFai3ouOX8dsjk6QFdOkGiUMVFQ2kH0O/Ay2qZKVpAZbCB3SNrFomMP5KStdYaCs\nUpcHuShc7tlAOSsrCfND8oGUch4wD0CI/jZRKeWVXW/9sxDincA7gOVRjr1liwpDlIasFKisOING\nKwvPSsCDGYmslDQMFLYNTWHQHPcmJEFEJhc4q/5FISumSUOYbdMwRG97xVBzqqHmiNqXvROjaGUl\nBEFQhM1fWZk6NWEbHMS4T5tNes3aIfoy2ZIYNBkb2gMjp5m1s8pza1wrK93Qysokgk1wZgBbo373\n+efVa2nCQCXwrLQiKisdK4J2I4RpM3THVMI6K1HVhIYwafmQlaZQRlWvbbnAWaY4rMFWWmCYNISa\ngcVNXRYVQR2TodboBFkxjGhkpahsoACykmo2UIz7NG4WibM2WGNoWm4za2fhRHcYKNaq2dpgGxs9\n94v2rGSCv0eFkn4a9YubNqnX/fYL+FDJlZW0wkBtZaWebzZQkjBQ4BpGYZBQWYkTBmr5qCdBRCY3\nROhEjVYdaZhqIb9GfGUFlF9nuNWtrJQ/G8hRl8posI07yDmLCTaHpubnWbGL0Mn6RBgoVp8WcJ5K\nVxQu5LnNO3W5qGyggQgDJYEQ4r3AvwDnSym39Pv8lVdeyaxZs9r/V+sCzWH//ef4f6lWg507E7fV\nDx2x1AKVFcfoWKUPWYniWQlh2gwdn45y3LDI2WDbFAbSRz1pCJNWvcAwEEQkK+oCNIWJSBAGAuXX\nmcIo28Q+AIiaiUFEZWVkZGJ/FgwPR29HB0IQBLNVB0dZ2bGjY1vRBltP1S+EwdZRVppTpsO2zZGO\nGRfthRNdYaBY506HgWLDfZy5c+cy99e/VgPk+SrfZfv27akerxuTmqwIId4DfBu4WEp5R5jvXHXV\nVZx22mnt/3/lK7BmTZ/YckhTWlzU6zB9uv0fp2cpIgxkFy0z6RMGKkpZMQzYtSvcccMiocG2Xo+m\n7jQrpi9ZaQkDigwDOQcO61mR6gI0KrXEykpTGNSkvYIxgGFgRiErHsrKjBnR29GBMMqKfQ68+oii\nDbaxlRWbrLSGp+U2s+5eiyj2uRuUMJBpQqul/vp0HkWEgebMmcOc1avhu9+FG28E4MEHH+T0009P\n9ZhuTNowkBBiDvA94D22QTcWnn++j18F8g0DhRjcu5FWGMgpWmbQ6F/BtqgwUJeykvh3pxAGitKG\npjCRlk8YKIDI5IYIM3hDWkizRrNiUrHipy4D7fBP035VykoJsoH63BuGQ1Y8FIuiw0C+4YM+EyGn\nMGFrytTcPAttZSUpWQm4ZqUiK04H22cZEsgvG6jnODobqBdCiGnAUYCTCXSEnYa8VUr5tBDiC8BB\nUsrL7M+/F/gB8HHgfiGEQzdGpZQvRTn2pk19/CqQi8G2/RBVq4ppF6CsgJLjQykrXZJ7kjBQEs9K\nGcJAUdrQrEwcr9dga/puyw0RZvAmFqJm0qyYiKTKit1VNSv2Csw1kwoSa6yJaYZwWWZxb4QgCIZb\nWfEgK6muDRQzDBR1Ru6UvJdT8jPYdhehS+RZ8fh9johROrIS4kbV2UDlwhnAUmAJqs7KV4AHgX+1\ntx8AuFfv+XOgCnwD2Oj6+++oB+5bEA5yUVaSsOY0yUrDVlb6elZKoqwUHQaKTlb8CUmrYiAbA+RZ\nkTZZqXaSlTiDTMMO/zhhIGEvqlnf1WedqnZjiqmzYkr74c3aYFtAGEhOnaZG+BCz/6RwVnl2Vl9O\nFAbyOE9JiHQmiFCA0TORIMMwUId/UisrnZBS3kUAsZJSXt71/zekdexNm+DMM/t8KM8wEESW39Ls\nFJvCwJQhlJUUDbaRPCuu46bi7k94baPOAFu2CuEc2o1mRRlVvbblhgiDYg11AZrVGpVGsjBQUzjK\nivpypaZerdE+xNlBVqpbP2XFVpe87qPUFzJMw2AbRlmxCxPKadMmdhQ5hzga2qs8JyUrPgRzkMmK\n531kmh3+vTTQc44yXsC3G4OirBSGMnhWega8iMdLy7MC0MDMXVkpPBsoR2WlVTGg6a2eNO0UYK9t\nuSGkN0K2JDV7oG5VTSpNi3pdjWlxVv92vCotR1mxF9Xsu06Vg4LqrJhY4JCVQTDYhhiAHLIinKyD\nHAYsE3WMSn0cSD8MlET1ywTORQmprHiSlbzCQDJMUfnk0GQlAFKWg6yUSVlpCCOcZyXswJB2GCgr\nX0LMBzJyGKjqr6y0qgaiDGGgEPd6s65CAw5ZEc0ImTte+7O9Ks2qrayYIRfVdFCAn8lN2CaTwdYh\nKzjKSg6hANNWVkQjG4PtICsreZGVer2rEJ/D7BJM5qJAk5UAvPiiut59DbYZy2E9N2OBnpWmSFlZ\nSdtgm4WyArHj8pGVlarZXmG217OiBn2vbbkh5Aze8TWIoRqtao1KUrLiKCsOWXGUlX5LP7jbnbPq\n5qyQXfEJA6WurORksG2M2MRhuisMlDHaykoanpVBCgOFOLd5Kium6VJGQ0w004QmKwFwqteGUlYy\nrrPSU7ipgIUMwfaslFVZyWpAgtizh8ielapJRXqrJ62q2e60B4WsVIZNWoZJtVlPRVnpJit970UH\nWapuPmgTtgCykmo2UMwwUNQQs1NFuU1WMlZWHIUKoJJUWTHNidQfF+IuBZEZIiorPfdRBmNSjzcm\nRs2vJNBkJQCRyMpuoqw0KiGUlRKV209lQOrTviBEbYOsGr6EpFVV595rW24IGW5wanFUaiayalJt\nJVNWHK9Km6zY2UChyUoB2UAT6lIOykoCg23UvsUJA1Vm5ENWHIUKoNJMmLrsQwJKp6yU1LPSQ2yd\nDTlAk5UAhFrEEHIx2JbFs9IKo6y4zkff+gWDEgaKqazECQP5kZUgIpMboiorQybSMBOHgVq2siJt\nslIdLoGy0i8M5BC2oVrPTFfK4g22nmpCiJC2o6xUpudjsHXuJYBqGsqKswP3McpGVtLIBsooDNSG\nVlbKg02bYGgIZs7s88EclJWo63e4kWo2kK2sBNa2cHWcfTsBx62VRjZQVhkfkBtZkQHqiUNkYq02\nmxZCeiMcX0NlyESaNYxWPVHYwzHWtozOMFBflc+n3andGwHnYoKsmD3PrHM7FWmw9VVW+gw+LXvl\n4+osew2QjAcrZ+HEMYaoNlMw2EL5lZUSelZ6SJFWVsoDp3pt31TLIsJARSkrlWjKSt9OQIi+s8JS\nKCsxr29UoiiNgDCQESIElzVCzuCdgbo6rJSVastKVFekR1kZihgGKkBZcRSB6rArDGRnlaU+OOZo\nsG0rKzPyMdg653FETGuTlUSpyzCplJXCwkBaWSkPQlWvBXVjSJlJJUcp1f0aVap1I9VsoIielVCd\nQJ8Hy7JCLgaY1YAEuSorJpb3762GIIpZIyRZafsahmtIw8RI6lmxSYo0YoaBCqiz0qGsOAez+4hM\nyErOBltzlh0GytqzYp/Hkcp0qq2UwkCDoqyUjKxoZaWkCFVjBSae9gwumm+HUlA2UKsSstx+WGWl\n6/NeCN0xZaGs5G2wNfzXXmoFbMsNEQ221WETWatRlcnIinSUFbsTd8hKaKXJ1W5nXpEKkQ2YpDiE\nra2sQM9zkVo2UI4GW2cxzerMfJQVJ6Q4Xp3WXtAwcRio7MpKRIOtZzZQ1mGgyaKsCCFOc/17lhBi\nj6yOlRUiKSuQKVkpi7ISKgwUVVkJEQaKNHt2Se2Dpqxg+JNBWZYwUIh7zz1QC9PElMlSlx2vCo6y\nEjUMZBiKVEiZ3sDU595wFvzrUFZcqwan0gZ3W2IYbHv8T6EMtuo3GDOmTOwoQzjEd8ycnpys9AkD\nlaaCbUmVlUmTDSSEOF0IcYkQYh/gj12bdgGXCCHOTfN4WSMyWcngofU0lxbqWQlZFK4oZQU6pPai\nDbbRPSsB6ontZwm1cF9WiBgGclQFIzVlxVZUpkQMA7muY2pEoc+9EaSspF7XI6bBNs4gJ+sWdUzE\nUD4za4f01c0JZWXSpy5H8MoVlg2U4bjnhbSVlZ0okvIA8GdCiP8WQrwTmC6l/DZweMrHywxSThhs\n+6LkykqaYSAZxjcRR1npkw0Uqv1dg0cZDLaR22D6k5VAIpMXwpIVe4AxpqREVhxlxez0rETKBgKw\nrPQGpj73RgdZ6QoVl8VgG6uYWN3Covc3ZQVHWbFq0zAzUlYGvShcHmTFNww0iMqKlHK1lPJDUsrD\ngHnACuAiYKkQYiXwljSPlyV27YLR0eLDQHHX73AjVYNtNYKyElZy7zMrjKysuAaEyRQGogxkJeQM\n3jFhVodNGKolDgPJqjFxfMAYjpENBOkqK/3CQDZZMabWfD0rRRts4yorDTdZyVpZsc9jY2h6e/Xl\nSW+wjehZ8byOdtgzLfiGgXJSVrIUlG+SUv4e+B6AEGJf4IUMj5cqnIJwZVFWktRZSZOsyIqBya7+\nSglAq4VlqYB4LmGgrpnuIBpsg5QVYYYwN2eNiGEgY4rtWcFKpPB1KyuRw0BZKCt9BpQOwkbGZCXG\nTDp2+MCqUxe9BCwrOAbb5vA0ai6ykigMVHaDbURlxVkAuw33tUlJVu/pywZNWRFC/IMQYrkQ4iOu\n92YCJwghDnLek1JullK2PHdSQmzdql733jvEh/MOA0VQVhxynVo2UBiTp+t85Gqw9QgDJf7dOa8N\nNBBhoBD3uTNQG1NriJpqd6rKypSIYaAslZU+YSBzaq9nJXVDZ5rKSr8yDHWLhshPWXHupdbU6ZhM\neFbSDAOVlqyEeNZ8r2PI74dFT182gJ6V/YAngQucN6SULwG/Bv5UCPH+FI6ROxyystdeIT6cdxgo\ngrKSdizW8az0rWAL4QeGtJQVDxNj1rPnfog8QNcCyGCtJGQlQhjInKqMmBUk1lgzPllxvliLGQbK\n0rPiFwZyCNsUs6djz0RZSYOshJktW5ZaBbtaVelEGc+sHf+TnDqNGrtZBdskqcvOxpQw8MoKIICL\npZTu7B+klI9LKT8PvCqFY+SOSGSlxHVW0n4IZVjPin3wIsnKIBpshelvYB6kMFCrPjFQO6XxrV31\n+G23lRVh78CcGjEMlIWy0ofISjdZyctgG8GjEDjIBfUvlkWj4pDHaOuUxYFDfJk2DYMmzXozdYOt\nZYUsPJkX0jDYOhtTgm+5/QFSVr4AfFIIUQUQQhwrhFgjhHhWCLEAOCqFY+SOrVvVtZg2LcSH8w4D\nRVBW0icrIbOBIPzA0GcADB1KycKzkrPB1vF3eH4naFteCDmDl/b6MeZUE2GrIeM7E7Td/qKzr2pN\neaHKnA3krKHToay4VL9U2tDdllb4SLuvZwUC+xdh1ZWy4nw+a7Jin0cxQ61FZI0k8D8FGGxLo6pA\n8oUMM5hA+xpsc1JWQhtshRBvBM4B7gUWSSl3AEgptwgh/gf4JyHEl4F/B34HPA6MAz9JvdU5YOtW\npar0XRcIMmWYSbOBQi8CGBLSHABlJc3U5YQPZNROVdRMDJqYhkSJlq5tZSArMcJAlWF1AqyRBG23\nO2+HrIiKwCLC8gNZelb8lJW6y7Oyy9uzkmoYyNlxyFUuY8/IGxZWxb6pI5r946DZtRZRfWcdyxpO\nFgbyUFZKUxAOJmSeEikrPcepVlUby0ZWgAOAz9r/bgkhVgEL7L/7gK8CnwOaUsq/TrORRcAhK6GQ\ng7ISNxso9U6xAGWlFGGg3JQVdbxho0E7g8TZFkBkckNIg227JHut2g4DNUYShIEcZWVoYgcWEchb\nltlAfsqKi7D5GWxTV1Yi3KdxBzlhWbRyDAM54TRnlWdrV4I0+IAwUKmUFQj9rBUWBoJcrr+DKGGg\nzcA3gIOBS4G7gNnA94FHgbXA/wOGhBAnpdzO3FE2shJXWUk9DBQlGyhvg22Wqct5kRVbOZhi9J6P\nSs1NZApCSGVF1i3GqSEqYsKzkoKyUjEn5lcWEZYfKEhZaSFUyMrHYJvq2kABbfGCp5oQInwgmhZN\nh6z0eXbTgHTK+8+ylZUd4/GVEJ9rlooZP22EfNbyVFbyWIPID1GUlQeAF6WUG4Hr7T/sNX9eiwoR\nnYMiLOcLIbaiCM1PpJQ/T7XVOaAsZMUzjBMjGyjNFMnQyspkCAMlNNhGDgPZA/twtfd4DpFR2wrq\nWadMgR07lJEzKEZqqSqnQ0xUm7VGrPj3YZdnBaApDExZAmUlgKxYmAxVRD4GW/eOQyDuIFex6jSr\n+Skr7TR4ey2i0e22H2qyKyvOs9YHhWUDQTmVFSnli1LKBzze3yal/I2U8pNSytcAs4A3Af9j//vv\nUmttjigLWSmbshJYYdVB1FlsBmEgKdUuBy0MVA1QT9pkpUhl5YQTYNs2eOaZwI9JpxYHtD0r1Vb8\nMJATHqu4wkANYYZfKylLZcXnuXfISsfBShQGCjTYBvQvomnRrNYmPp/1zLpeZ5wa1alDAIy9tJuQ\nlRNOgBUr+n6s0DBQSZWVUJBSjgG3238Di7KQlaR1VrIw8vUlK3GUlZ07fTfX6x4VGv32Yx/X6bOL\nJCtxCFOnetKJdhjIY1tuOPVU9bpsGRx8sP/n6vX2QO0oK4nMwfZ56SYrpcgG8rs3rAnC1t1HZLKQ\nYVBbvJsXT1lpWLTyVFZs0ledoghSIrISUGeldGTl1FNh3ry+H4ub1RUVvgpO2ZSV3Q2RyEoRdVYa\njVA1FQoJA3XNYnuWoff6fMqeldQGJKfxMa5tHMJUCQoDBWzLDYccAnvuCUuXBn/ONVCnQVaE0aus\nNEWEbKCopu8wCBkG6visS1np+1xEQZ5hoGa+ZIW6hSVqao0lJshKrD7Np5BdKcnKKafAmjWBEzko\nMBsIcskGc6DJigekLI+y4tmxRiBHWSkroSrYWiFLrGdQbj/V3x2jlDnEI4qOejJU7T1e1R6ovbbl\nBiHUjG/ZsuDPWVa7FoczI05EVmqdxAcmwkBRQ4R5hYGEVe9VVlwG21QHx5jZQHEMttVmfYKs5BQG\namC2ycr4jgTKCng+z6UkK6eeqgajhx4K/FjhYSCtrBSHXbvUNQ5NVpyOIqM6Kz0zsBBxZQfpk5Xo\nqct9j522wTbNAcnZSYyHPk4bHOVgqOIfBvLalitOPTWUsuLU4nDW8amRwLNS81BWKjHCQDl6VtyE\nrXtGHzubxQ8xBqe44QOlrLjqrGQ9WNn3kkNW6jsTkhWP57mUZOWEE1Sj+jxrhWYDaWWlWDil9vfc\nM+QXhAidEx8VcWc/DtIOA4kwnpUu0pC7spI2WYmprMRpg6MceJKVACKTK045BdavV0ZbH4jGxEAd\neYVkD1Q8lJWmMKhhhSuRnsW9scceyky1fr33dstVlh46OvayKCtxDLaVltW5CnbWg5WtUHWTlUSZ\nZYNAVmo1OPHEQLLSaqk/razspoi0LpCDjB7auB2K+/vuryRF0No1bRSlrGThWQGYPj1wYPZDIrLi\nEeqpBBCZXOGYbJcv9/9MY6IWRxpkxckG6iArFTP8ufBQVhL7RapVOO00uP9+z82iYdEQrhHVdZ+n\nPjhOVwXTotyncWfk1aaLrOTkWWkKE3NaSsqKTxioVBVsHfQJuXp6GkF7VnYXlImsJF33IXWyUjOp\n0sKsBqxBElVZ6XPuQtcqycqzcsopsGRJ5K/FUbWqQ/6hHsPeVqsU6FkBOPZYGB4OnPEJy0VW7Blx\njXrsAcFRlbrJSuhz4XFPhlpKox/OOAMe6KnooNDoUlayJCtHH63qckS4T32zO5yNPjBa9VyVFdGw\naFRq1KbbyzbsSj8MVMqicKD6nhUrfM+xb1ZZymSl1YJmU2cDlQ5lIiuBHUoEZSWtWYM5JcSAGVVZ\nKXsY6Mwz1ew5woq2djMit8EZlGuixGEgw4BXvCKYrDTqbbISeYVkDzh+HTdZaVUMajGVldQGple9\nCtauhRdf7NnkJmxAR8ee+uBoGHD66bB4ceivxFZWWhYtMz/PirDqNCoTykpjZDcx2IJSVup1eOQR\nz82+fUzKZMX3OFpZKRZbt6pZ16xZEb5UUmUl7XoOp3zkLB77m28yNCXg1pk2TZ3AF17INwxUqbRN\njKmTlRdfVINSBCQJA3mRwfY2DyKTO/rI05WG1a5ymopnZahzXwCtislQ2HMRNUMtLM44Q716qCui\n4VpDB7JVVkDdpxHISty+pSotyDEMJBoWzUqN2gxVFM4a2U08KwAnn6xefZ61vMmKVlb6QAhxjhDi\nRiHEM0KIlhDi/BDfeb0QYokQYkwI8ZgQ4rKwx9u6VZlrQxn3HGTEMNNSVtJ6EIdPPpZjrvpLAnOX\np06F44+HxYvDKytpkBVQH0w7DPSqV6nXCAMBxDv3xrB/GKhaljAQKHl61SoYH/fc7K5y6syIk5CV\no957Jnee/gkOOuvl7feaVRNThDwXQsBBB8HatekOTEcdBTNn+pKVdll66DHYpu6ROPNMZfbdvDnU\nx5MoK+3P5RAGqjRUeX9HoWsmVVYGiazMnAlHHumrYvr2MY4hKyUioZWV8JgGLAOuAPpq8UKIw4Df\nALcBJ6NWhP6uEOJNYQ4WqcaKgzwNthE9K07WZK6YPRsWLgyvrKQRBnL2ZVnpZkHttZfqMCKSlVie\nlQD1pHTKSqPhWw684lIVnEEmSeryrEP34PUPfKVN5gBkxYh2LmbPhgUL0h2YKhVf30qlWc9XWXFI\ntZ+HpguebXA6i4BBzpQuSSYnZaVVMREVQR2T1thuFAYC9aw9+KDnJl8SIUSqY1KgN0YrKxOQUs6T\nUn5GSvlrIMyw+5fAOinlP0gpV0spvwH8HLgyzPFik5WM6qwkyQaKupBeajjrLFixgsrIzlQMtlHJ\nStqKUlSJHWIqK1P8CUnQttxxyinqxrrvPs/NlaZFyw4VVM0KTSrJyu17oFU1o5OV+++nOZZuOzjj\nDM+MoEq3spI1WTn8cNh779D3qa+60+d5NKSFdDwreRhsXSpdnRrNsd0oDATw6ler+8vjPAd6ElO8\nNr7H0cpKYpwF3Nr13s3A7DBfLpuykqTOSmEP4VlnQavFy569PxWDbeiOyQ4pZUJWHnww0jVOEgby\nCm+0vR9hQx9ZYnhYGTrvvddzc0dJdsAiQrXZkGhFCQOBIiujo+yz8aH0ycrTT8OmTR1vd58D94Qm\nk+dSiEik2ncSEIKstFe/zkFZqTQmKuZaokZrNKGyUqvByEjHW6UmK2efDaOjnr6VQE9iBmTFc+Ks\nyUoiHABs6npvEzBTCDHU78tlIytJlJXCHsLjj4cZMzjs2YX9jz9rlloKvasDcVC4ZwXUIDA+HmoV\nVAdJlBXTKwzkeFbKoKyA6kTnz/fMkqo260jXQF2nligM5AVZNTzPky9OOw1Mk5c9dV+6z4QTfulK\nG+6o9AodfURmqbIOWQmRueb7XPWZLRvSai8smcfMWql0dtqyqCHHE5KVV7yi51qVmqycdhoMDXlO\nDAL7GB0GmvwoE1lJIxuokDBQtQpnnskRm0OQldmzVRL/okU9m3wrNPohqzDQqaeq3+RTAMwLcTwr\nE6Xp/cNApse2QnD22fDMM/DUUz2bKq2JMBBMrOOT5r3YMsxo58JWg17+zIJ0B6ZDD1Xhl657o/sc\nZFrB1sGZZ8KWLfDEE30/6tuGPn2ZiYVwG2wzHqzcaxFZYkLJiX3+zjkHVq7sSDfPxPCcFoaGFCEu\nkKzoMFB2eA7Yv+u9/YGXpJTe6Qs2rrzyStasOZ9bbjmf889Xf3Pnzu1/xDzDQIOgrADMns1RWxZi\nGn1meSeeqNjhXXf1bIpMOrIiK1OmwCtfGbmORdQ2OGZUg97wxpSZatvMqSUIA4EiK+DZiVZds2GI\nuOhgSMzYy2TGlIjnYvZsDns2ZWXFCb90+XeqTatDXer2rGQyOIbMXJOyj2cloG+p8f+3d+dhUpTn\n3se/92zMAAoqCEZEJSioqCyigKyDYRQUgqiICueNEo5LFsnJpsmJJ/FoYtwSY1TUREXNGDVRcSXu\nSxSNEI0b7r5oBBQXlGWY7Tl/PN1DT09Pb1PdXc38PtfVF0x1VffTXdVVd93PVg9d8jfOSuyIuY0x\nmZWsv79x4/wXEHPchnZQuKixY3154zJmhcqs1NbW+uvj/fcz/a23mD59OgsXptUkNGvbarDyDDA5\nbtmUyPKkLr30UsyWcPrpS1iyxD/mzJmT+h1zFGEGMYJtwX6Eo0bRc8tH9GtoZ+6UqJISfwJ54ok2\nT2V8wY/URwcerIBv6Pb002mvnlWwUlXGyr2nM3jyrm2e69Kjko9ue5yh/xV/aBdI796w996Jg5XY\n+WPwd8RBBysHPrOIgaufymyj0aPp9eV79HFrgisIwIQJvkos5jdZEvcd5LyBLfh9MmBAyuO0qclf\n9zK9yDU3NlNKc8tcTXnputy8NfBtLKmABn/lTDrzezIDBsAuu8CTT7YsCnU1EPgbg9Wr22TM8p1Z\nib7PnDlz/PXxmGNYsssuLFmyhEsvvTSQ92pPUQQrZtbNzA40s6GRRQMif+8Wef6XZnZDzCZXxpV0\nVgAAIABJREFURda5wMwGmdnpwDHAJaneq67Ot2UKSzVQR9usFKwaCPzFHdjvy2Wp1x0/3t+Zxn2m\njAe1GzoUnn02N8HKxImwcqU/aaQhmzJYaQmDX7+LPickCEhKStj5mPGU9N05/RfMtUMPTRysuNYX\n6kYrD7zNCmVlmU/wM9q3sR+6OeV9S2YmTfLTtce0hYgP2HLewDZq4kR49NGkq2R7kWvY5JdbdPbr\nPGRWypq2Du/fWFJBScMWyso6MByDmb85KqZgZcwY/2/cb63g1UBqs9LGQcA/geX4cVYuBlYAP488\n3xfYLbqyc+49YBpwGH58loXAKc65+B5CbXz5pf83TMFKUfYGAujVi39XDWTw52kGK3V1ber9k3bN\nS6S62o8zsX49kINgBVJeCKKCnvE6lA491Dc6/uKLVotbDRyGn8cn6MxKVvr1Y13X3ThwY/oZsrQM\nHw7bbdfq2Gg1hw7kJ7MCPnB66aWkg8MlvcglyRJHg5V8ZlZKY7pKN5ZWUO6yn2Oqxbhx/jyxeTNQ\nBMHKjjv6TgtPtc4kJj3H5KOBrdqstOace9w5V+KcK417nBx5/hvOueq4bZ5wzo1wzlU55/Zyzt2Y\nzntFrnHhHmclmv8Me5sV4M0Jp9DtoH1Srzh0qD/Zx1UFZZydmDQJmpvp9ap/naxTxYn06ePb1zzy\nSFqrR8seaBnC5tBDfQvoZa0D0rLm+q1DsoOfNTcMwQrwxo6j2WdDZmPmpFRW5i+AMcFKaXMDrrxA\nwQrAY4+1u0rWmZXIJIIllflrs1LWXN/yPTaVBNSrbNw4/xkjjfoLfZ5MS4IsZqGqgVq9hzIrhRG9\nQQx1ZiWD0QkLWg0ETLz/x4yvPS31imVl/scY18g242BlwADo35++rz7SsVRxe6qr086sNDSQmzKE\nyaBBvidMTEodIt1bY3ZaY1AXmQDs/+hl9Ht5afAvPGmSv5hETt5lzTGDp0Gru9CcNujcdVe/X5IE\n1SkHE2vnAtS4OZJZia0Gik7JmyOxWbqm0oCOoyFDoGfPluO2KIKVsWPhlVfa9GIC9QbqlDqUWclX\nm5Xo+xVBZiUj48f7k33MAHEZBytmUF3NV15/NDefu7oa3nkn7a6h23QVELR83zz4YKvFrUY5JUTV\nQMB2A/uw41cqg3/hiRP9WEGRqsxWE/5BfnoDRVVXJw1Wsh1MrE2wEn2BHF6wfODrv6zAgpXSUn9z\nFMnkFsV5ctIk3yr64YdbFmmclU4smlnZYYcMN8znOCuQdkRbFD/CqAkTYMOGVvNgZNVQtrqa3h++\nSJ/SdcGWD3wZzdLKroS+O2RQamr8BfrTT1sWtRo4jMikgwGPsxI6w4b5iecix0Z8dilv1UDgL2xv\nvAEffJDw6WwvcgkzK5DTC1bsXERNZT5YCeQ4Gj/e95rasqU4zpP9+/t2K0u3ZgWVWenEvvjCN53I\nuJ1BPquBou+XZmalaC4QI0f6Lz/mx5hVI9VInf1EHguubFE77OAbU6bRbqUoToBBqKnxVQEPbW2/\nXuZiBg7DtzUIS2YlZ0pL/QUw0lYkPmDLW28gSNkYvKNtVqKTauYtsxI5ATSXBVideMQRsGkTzY8+\nTlNTkfxWa2r8+TEy3koo2qw0NqY1YnJHKViJs2GDH/09Y/kcZyWD9yuqu/vycpgyBe67r2VRVpmV\nfv34ZKe9GN+cXtuSjEVT7Cl+oJ0mWOnXzzc8jgkyy4mZP4bIpIMhabOSU9XVvipz06Y2AVteMyu9\ne/tBDFMEKwlvApKcW5rq/PLSqpgGtpD7zErkWAo0WBkyBHbbjeZ77gWK5KaupsbPQ/Xaa0CKdnH5\nqgaKFiTHFKzE2bgxy2BFbVaCMW2ab6Ef6XaZ7Xgpb+9ezdj69HrtZGzyZPjwQ3j11aSrFVVWq6Nq\nauCBB1oCuArq2wQr23xmBfzxW1cHDz3UJmDLy3D7sSZPhr/9LWFQnW2blZZgJZpZyWAYhWyV09DS\nVdoFWQ1kBtOmUXL/vYArjmNzwgQ/bUTkxiDpzWjAmZWSkgTDGuUhWI1SsBJnwwZf7ZyxfFcDZdBm\npagumEcc4U+uDzwAZB+sdD3jZNac/JPcpCcnTIDu3eHOO5OuVlRZrY46/HAfwL3yCq7ZUUZTgsxK\nw7bdMwr8iL6DBsFdd/l5i+KrgfLRGyjqqKP83E1xk/ZBGtUH7Vx82gQr0RfIZWaFmGqg8oB7lU2d\nSsk7b7M3bxTHb7Wqylc1xpwf2y13376+3VIA58CkM3RHC5JjClbidChYydc4Kxm8X9FdMPv2hREj\nWqqCsg1Whpx8MOMWnZSbfsOVlT6ouuOOpKsVXVarI8aN8yfSpUtbBg5rmT8Gn77vUpKfXgMFN2MG\n7u67fXDWTrCSl5uIceN8t8YEx2m2bR2aNke6ZVflJ7PSVN9EKc0t36MLOliprsZ16cI07i2e32pN\nje/FtHlz8nPMjBnw9tvwr391+C3bfZ88ZNaiFKzE2bgxy2ClosKnfwOW9CDZ1noDRU2b5u8cGhtz\nM2x+EGbO9Hes77/f7ipF+d1nq7LSZ5weeKDtKKf4GZIrLD+9Bgpu+nQsUo1psRFJPhvYgm/McNRR\nwQYr8W1WcpxZaTmWIoPQBR6sdOvGltGTii9YqauDxx9PfhxVV/s2DX/5S4ffMmlHD1A1UCFk3Wbl\ngANg7Vo/d0yAgugNVDQ/wqipU+Hzz2HZsvAOWT91qv9ik1QFFXpAvrw78kh4/HGaVn8ExMwfA7gy\nXw3UKYwahevVG4jp4gv5bWAbNXOmb4z5+uutFmfbwLZ5i1/eJrOSq2Al0vuoJUNVHmCblYiNE6cx\nnieorP8i9cphsO++sMcecOedyY+jigqfXQkgWEna0QOUWSmErDMrRxzhu93++c+BlieI3kBFd8Ec\nOdL3Zrj77vBmVnr08HcuSaqCijJQ7IhZs6CpiZLbbwXiMysVnSezUlpKQ82RAK2rgaqq/Ammri5/\nx8aUKdC1a5ugOmkD2x12gFWrEo5K2yZYyXGbhfjMChXBj4T8xbhplNPITm+mMYdZGJjBccfB7bfT\nVJei0fqsWb4jQAdvopN29ABlVgoh6zYrlZX+LuaWWwJt1NkpMyslJS3fZcOWZiCkn2HmTF93/Mkn\nCZ8uyu++I/r2hYkT6XKbn4arpREmQFk5FdZJ2qwAdTUzgLjMyte+BvX1uHvuzd+4HlVVvvFzXFCd\n9CZg1iw/s3iCbs/RNivlXfOTWWncFJmLKGYQuqCDld0n7snGd9ay38Ipwb1orh1/PHzyCbu//Ujy\nm9EpU3xngA5mV5J29IiukGMKVuJkPc4KwOzZPoJ96aVAytLU5Mfa6nRtVgDmzoVVq9jxFT93Ryg/\nw4wZfgfdfXfCp4v2u++I2bMpf/0VoPWF2pX7rsudRcOkKfxth9nY8GFbF+6zD4wcibthMZDHY2Pm\nTD8cQMxotkmDlYMP9r2aFi9u81RzfSSz0jVunJVcZ1bigpUgs8UlJdBtz52La8LRoUNh77058LVb\nkh9HlZW+DeDtt3fo7VL2BlJmJf/q6rLMrAAcdphvfX/LLYGUJdvuhbGKshoI/Lwde+7Jnk/6E2Yo\nTyR9+/rRcq+7LuHTRfvdd8TRR+MiO6sldQ/0Gbk7DQMGF6pUebdTvyqmfHoLhxy3e+sn5s7FHriP\nnViXv2Nj+nRfFXTDDS2LkrZZMYN58+Cvf/V3bzFcpBqoJbOS44tVdHj/aINe6xKeCTELygxmz+aA\nd+6ga+mW5Oseeyy88ELLQHLZUG+gkMo6WKmo8CnUgKqCsm0EF/8aRfnDNoO5c9lz+W10L90c3vE5\n5s/3VUFvvNHmqaL97juiVy82jjoMaF0NtM9V32Wflcm7encKxx/v/yHFHXGQtt/et3H4wx98JpAU\nbVYATjrJt6+Jqz5y9XHBSq67Lm+OG95fwcpWxx9P1/r1jNuUYgbxI4/0M6P/4Q9Zv5V6A4VU1tVA\n4KuC3n0XlnW8sVbKUSa31TYrUXPnUlH3JUeX3lXokrRv5kyfTUtwIijq774DPp3iL8it2qyI17s3\n9ZOnMpcb83tszJ/vz0uRdigNDf5+oM2IpFG77+7nF4qrCmquiwQPFZEN85xZKelSQQUNlJflfi6a\n0Nt3X97vOYSvfZaiU0eXLj5Ttnhx1vtJvYFCKuvMCvgf+IABcMUVHS5H0mqgbbk3UNTAgfx799Gc\n0HxjoUvSvspK377m+uvbnAg6a7DCscdy17D/ofuYAwpdklDaMHMuh/AcPdcEO8xBUmPG+DYz11wD\npHlszpsHDz8M773XssjVN7CFCqwkkurMc2YlWrVYVdZ52j8l897071Jx0IGpVzzlFD+FSTvt61JR\nb6CQ6lCwUloKp50Gt94KH33UoXKkrAba1jMrwBuHzGNgyTt5+TFkbf58v6/vuafV4qIOFDug/+Cu\nzFhxDrvv3aXQRQklN+1I/tHv6/TtsTl/b2rmj9M77oB169I7Lxx7rE8z//73W5c1NNBA3NgxkPPM\nSrSrtEWClcrOMhpyCuNumM/E+36YesX99oNRo+Daa7N6n5TVQMqsFEaHghWAk0/2TcyzPDCiklYD\nde/u5/1IMBZCrGIPVibdPJ+v1r0a7qv+kCH+RHDVVa0WF/t3L7nRq18lI9+/g71nD0u9cpDmzvVt\n6a6/Pr1Aunt3WLDAZ2MiDW1dfQONFnNQl5b6c12OgpXouC7RaqDSaGalJEWjUmlr/nw/AeKqVRlv\n2m41UK9evvfrxIkdLl4qClYS6FCbFfBtGE48Ea68Ehobs36ZpNVAc+f6od5vu63d7aNdn8N8nU+p\n3fnPQ+bb34YHH2w1aZyCFQmV3r1hzhy49FKaN29J79g84wwfqER7EtXX00jcht26+RunHIifi6ik\nymfrqkqVWcnY7Nk+AL388ow3bTezUlbmb9a2267j5UtBwUoC3boF8CJnnOHHNbgr+8ahSauBRozw\nc0Scd15LC//2ttcFMw+OOw6++lU4//yWRQpWJHTOOgtWr2a/529I79js39/3cPztb/15pqGBBos7\nIZ10km+j9+WXgRc3OhdRdFyXaJuVLp1ogMHAdO/ur0tXXgmffprRpmGYEFfBSpzu3QO6kR82zE/l\nff757QYTqaTsXviTn8DLLycdlCzp9hKcsjL48Y/92BSvvgp03jYrEmKDB8OsWRz69wuoLEsz63vm\nmfDmm75NVkMDjSVxJ5Szz/aByu9+F3hx3ZbWmZVodVCnmcE7aGee6bP9Ge6rMNx4KViJ0717gC92\n3nmwYkXWowcmzayAnwJ+/Hj/PgnGdUm5vQRr3jzo1w9++UsgHD9wkTbOPpudPn+HmVvSHLxy1Ch/\nnjn7bEq2bG7dZgX8Mb9gAVx0EaxfH2hRo5mVim6tg5VKZVay06cPfPObPlOWQSas3WqgPFKwEieQ\nKqCosWP9UMc//WlWraVTZlYA/vu/4R//SDj3Q1rbS3AqKuAHP4DaWnjtNQUrEk7DhvHKHlM59bM0\ns75mcPHF8MorDHv1ZpriMyvgq5c2bfIXwQC5uOH9o/+qGqgDvv99H6gsWpT2JqoGCqFAgxXw1UBv\nvdXukOzJpFWNc9hhfoTC733PjziZ6fYSrAUL/PTt3/42DfVO372EUtmFv+KTX13re/Kk46CDYO5c\nttv8EY0lCW6xv/IV3x7iwgsDbWzbvKX1xIkt1UAKVrLXv7/vsXr++bBuXVqbhOHGS8FKnECrgQAO\nOABOOAF+9jP4/POMNk27Gue3v/XjfJx3XsLtC32QdSqVlXDZZfDwwxy+8faCp05FEhl0zP4cfOaY\nzDY6/3zqS6sSZ1bAZ3m7dvXZxYDEz0UUzaxUoGClQ84912fVfvKTtFZXNVAIBZ5ZAbjgAp8i/dGP\nMtos7WqcAQN8486LLoLXX2+zfaEPsk5n6lSYPp1zN36Prs0bUq8vUgz69WPpEb/h1b1mJH6+Z09/\nrquthccfD+Qt3ZZ6GihrGTG3vJsyK4HYeWcfsFxzDTz/fMrVVQ0UQoFnVgB23RV+9Su4+mp48sm0\nN8soM/KjH/n03kkntUQpyqwU0G9+w05uHcOf+X3qdUWKxFF3L+DYfya5G583D0aPhm99K5CB4lx9\n6xFzlVkJ0Gmnwf77++q7IhhcVMFKnJxkVgBOPdXPz7FgAdTVpbVJRr15qqr8bM8vvugbu6FgpaD2\n3JN3Fz3IgMvOLHRJRPKnpMSPufL662lXMSTjg5WtJ8BoZqVcwUrHlZX5MVeef75NE4J4qgYKoZxk\nVsD/iK++2s98evrpCbsax8u4N89BB8Gvfw2XXAL33KNqoALbd8FYdtlD8+NIJzN0qK8OuugiuP/+\njr1WQz0NMV2le/SuYH3ZjvTvXwSjWheDMWPgnHPg5z9PWnWnaqAQyllmBfxkUldf7XsGpTErc1aZ\nke9+F6ZPhxNPpHzlS5lvLyLSUWee6YdtmDevY72D6luPmFveqwc9Gj5h929PD6CQAvgM2LhxviPI\nxx8nXEXVQCGUs8xK1Lx58J3v+B/zo48mXbW+fus8YWkzg5tuggED2O8HR7ArHxT8IBORTsbM35RV\nVfnhFdauze516utpih+EToJVWgo33+xHtp0yJeFQ/GEYjVvBSpycByvg06MTJ/oMyNNPt7ta1tHs\ndtvBfffhSkq5nyPosjmzLtMiIh3Wuzc8/DB88QVUV/vhFTKVaHh/Cd6uu/p99cEHPrj87LNWTyuz\nkgEzO8PM3jWzzWa2zMxGplj/TDNbaWabzGyVmV1iZikbEOS0GiiqvBzuvBOGD4fDD4dnn024Woca\nNe2yC2/97gGadupDt9L0GvSKiARqr73gkUf83fqECbBqVUabW2ND4kHoJHhDhvh9tWoVTJoEq1e3\nPKVgJU1mNhu4GDgHGAa8CCw1s17trH8C8MvI+oOBk4HZQPImz+QpWIm+0T33+EHjJk+GP/+5zSod\nbdS0/3H7MHTdQ/Qc3LcDBRUR6YBBg+CJJ2DLFt+t+aWX0t7UGlQNlFf77w+PPeZHth0zBt54g6Ym\nP36cqoHSsxBY5Jxb7JxbCZwKbMIHIYmMBp5yzv3ZObfKOfcQUAscnOqN8lINFLXddrB0KXz963D8\n8b4dy5YtLU+HIZoVEemwvfbyVd69e/s50669Nq0ekTQ20FiqzEpeDRni91VVFYweTdPim4HCTx0S\n+mDFzMqBEcDD0WXOOQc8hA9KEnkaGBGtKjKzAcBU4N5U75e3zErsG954I1x+ue8hNGxYS7VQGPq2\ni4gEom9fn2GZNcvP/DtlSqsRtxMpaahvf3h/yZ3+/eGpp2DKFCpOPoklTKfHhuDmfMpG6IMVoBdQ\nCsQ3J18LJKzfcM7V4quAnjKzeuBN4FHn3AWp3iyvmZUoMz+K4IoVvgBjxsCpp9Llkw8LHs2KiARm\n++3hj3+EBx7wE7zuuy/Mnw/vvZdwdWtsoEmZlcLYcUeorWXDzXdxUMkK+nz8ckGLUwzBSsbMbCJw\nNr66aBhwNHCkmf001baVlbktW1LR9NtFF8Ftt/HDawbyw8/OSm8adxGRYlFTAytX+gEslyzx85tN\nm+b/39jYslpJUwPNyqwUVPcTprPLhrc45Gc1BS1HWUHfPT3rgCagT9zyPsCadrb5BbDYOXdd5O9X\nzKw7sAj432Rv9r3vLaRHjx6tls2ZM4c5c+ZkWu7slJXBwoXwjW/wwuyLGPLmexkOtCIiUgS6dPGD\nWJ5yip8qZNEimDHDd6M95RQ4+mhKG7fQXKpgpeCqqlr9WVtbS21tbatl69evz2kRzKXTyKnAzGwZ\n8Kxz7ruRvw1YBVzmnLswwfrPAw86586KWTYHuAbYziX40GY2HFi+fPlyhg8fnqNPkgXnfDWRiMi2\nbsUKH7T86U+wwc9Y/mzfGRyy+s4CF0xSWbFiBSNGjAAY4ZxbEfTrF8st+yXAN81snpkNBq4CugLX\nA5jZYjM7P2b9u4HTzGy2me1hZl/DZ1uWJApUQk2Bioh0FsOH+2Dl44/hoYdYNuks1nz91EKXSkKg\nGKqBcM7dGhlT5Rf46p8XgBrnXHQig35AY8wm5wLNkX93BT4GlgAp26yIiEiBVVbC5MmMmjy50CWR\nkCiKYAXAOXcFkHD2P+dcddzf0UDl3DwUTURERHKoWKqBREREpJNSsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhVjTBipmdYWbvmtlm\nM1tmZiNTrN/DzH5vZh+aWZ2ZrTSzw/NVXhEREQlGWaELkA4zmw1cDCwAngMWAkvNbG/n3LoE65cD\nDwFrgKOBD4Hdgc/zVmgREREJRFEEK/jgZJFzbjGAmZ0KTANOBn6dYP1TgJ7AKOdcU2TZqnwUVERE\nRIIV+mqgSJZkBPBwdJlzzuEzJ6Pb2ewo4BngCjNbY2YvmdlZZhb6zysiIiKtFUNmpRdQCqyNW74W\nGNTONgOAauAm4AhgIHAl/vOem5tiioiISC4UQ7CSjRJ8MLMgkoX5p5n1A75PimBl4cKF9OjRo9Wy\nOXPmMGfOnFyVVUREpGjU1tZSW1vbatn69etz+p7mr+XhFakG2gTMcs4tiVl+PdDDOTczwTaPAfXO\nuSkxyw4H7gW6OOcaE2wzHFi+fPlyhg8fHvjnEBER2VatWLGCESNGAIxwzq0I+vVD34bDOdcALAcm\nR5eZmUX+frqdzf6Or/qJNQhYnShQERERkfAKfbAScQnwTTObZ2aDgauArsD1AGa22MzOj1n/SmBH\nM7vMzPYys2nAWcDleS63iIiIdFBRtFlxzt1qZr2AXwB9gBeAGufcx5FV+gGNMet/YGY1wKXAi8C/\nI/9P1M1ZREREQqwoghUA59wVwBXtPFedYNmzwJhcl0tERERyq1iqgURERKSTUrAiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQK5pgxczOMLN3zWyz\nmS0zs5Fpbne8mTWb2V9zXUYJl9ra2kIXQQKk/bnt0T6VdBVFsGJms4GLgXOAYcCLwFIz65Viuz2A\nC4EnclxECSGdCLct2p/bHu1TSVdRBCvAQmCRc26xc24lcCqwCTi5vQ3MrAS4CfgZ8G5eSikiIiKB\nC32wYmblwAjg4egy55wDHgJGJ9n0HGCtc+663JZQREREcqms0AVIQy+gFFgbt3wtMCjRBmY2FvgG\ncGBuiyYiIiK5VgzBSkbMrDuwGPimc+6zDDatBHjttddyUi7Jv/Xr17NixYpCF0MCov257dE+3XbE\nXDsrc/H65mtUwitSDbQJmOWcWxKz/Hqgh3NuZtz6BwIrgCbAIouj1V1NwCDnXJs2LGZ2AnBz4B9A\nRESk8zjROfenoF809JkV51yDmS0HJgNLAMzMIn9flmCT14D945adB3QHvgO8385bLQVOBN4D6jpc\ncBERkc6jEtgDfy0NXOgzKwBmdhxwPb4X0HP43kHHAIOdcx+b2WLgA+fc2e1sfx0+C3N0noosIiIi\nAQl9ZgXAOXdrZEyVXwB9gBeAGufcx5FV+gGNhSqfiIiI5E5RZFZERESk8wr9OCsiIiLSuSlYERER\nkVBTsEL2kyRKYZnZOZFJKmMfr8Y838XMfm9m68zsSzO73cx2LmSZpTUzG2dmS8zs35H9Nz3BOr8w\nsw/NbJOZPWhmA+Oe38HMbjaz9Wb2mZlda2bd8vcpJCrV/jSz6xL8Zu+LW0f7MyTM7Cwze87MvjCz\ntWZ2h5ntHbdOyvOsme1mZvea2UYzW2Nmv45MiZO2Th+sZDtJooTGy/hG130jj7Exz/0GmAbMAsYD\nXwH+ku8CSlLd8A3mTwfaNKAzsx8B3wIWAAcDG/G/z4qY1f4E7IMfzmAafl8vym2xpR1J92fE/bT+\nzc6Je177MzzGAb8DDgEOA8qBv5lZVcw6Sc+zkaDkPnyHnlHAfwD/D99hJn3OuU79AJYBv43524AP\ngB8Wumx6pNx35wAr2nlue2ALMDNm2SCgGTi40GXXI+E+awamxy37EFgYt183A8dF/t4nst2wmHVq\n8L0D+xb6M3XmRzv78zrgr0m2Gaz9Gd4HfvqbZmBs5O+U51ngCKAB6BWzzn8CnwFl6b53p86sdGCS\nRAmPvSIp57fN7CYz2y2yfAQ+ko/dt68Dq9C+LQpmtif+zjt2H34BPMvWfTgK+Mw598+YTR/C39Uf\nkqeiSmYmRqoUVprZFWa2Y8xzo9H+DLOe+H3xaeTvdM6zo4CXnHPrYl5nKdAD2C/dN+7UwQrJJ0ns\nm//iSIaW4dOJNfgBA/cEnojUb/cF6iMXt1jat8WjL/7EmOz32Rf4KPZJ51wT/mSq/Rw+9wPzgGrg\nh8AE4L7IqOSg/RlakX30G+Ap51y0bWA659m+JP4NQwb7tCgGhRNJxDkXO6zzy2b2HPD/gePQlAki\noeOcuzXmz1fM7CXgbWAi8GhBCiXpugLYl9btAvOms2dW1uEnN+wTt7wPsCb/xZGOcM79QTOCAAAD\nmElEQVStB94ABuL3X4WZbR+3mvZt8ViDb0OW7Pe5BojveVAK7Ij2c+g5P6nsOvxvFrQ/Q8nMLgem\nAhOdcx/GPJXOeXYNiX/DkME+7dTBinOuAYhOkgi0miTx6UKVS7JjZt2Br+IbZS7HN8qL3beDgP7A\nMwUpoGQkciFbQ+t9uD2+7UL09/kM0NPMhsVsOhkf5Dybp6JKlsysH7ATsDqySPszZCKBygxgknNu\nVdzTyc6zsb/R/eN62E4B1gOvkiZVA8ElwPWRmZ2jkyR2xU+cKCFmZhcCd+OrfnYFfo7/4dzinPvC\nzP4AXGJmnwFf4mfp/rtz7rlClVlai7QvGoi/GAEMMLMDgU+dc+/j68h/amZv4WdEPxffW+8uAOfc\nSjNbClxjZqcBFfiulrXOOd2J51my/Rl5nIPv1romst4F+GzoUtD+DBszuwLftXw6sNHMohmR9c65\nuhTn2X9E1v0bPii5MTIUwS743/HlkYRBegrdFSoMD/yYAO/hu0Q+AxxU6DLpkdZ+q8VfuDbjW5//\nCdgz5vku+BPdusiP6DZg50KXW49W+3ACvptjU9zjjzHr/A8+W7YJf1EbGPcaPYGb8HdqnwHXAF0L\n/dk64yPZ/gQqgQfwgUod8A5wJdBb+zOcj3b2ZRMwL2adlOdZYDfgHmADvnHtBUBJJmXRRIYiIiIS\nap26zYqIiIiEn4IVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyJSFMysOjKhoYh0MgpWRKRYHIOf2E5EOhkFKyJSLMYCTxS6ECKS\nfwpWRCT0zKwnsB/wZKHLIiL5p2BFRELLzGaZ2f1szaj8p5ndZ2bjClkuEckvc84VugwiIkmZ2XnA\nMc65QYUui4jknzIrIlIMDkVVQCKdloIVEQk1MysDRqJgRaTTUrAiImE3AqhEPYFEOi0FKyISdmOA\n1c65dwHMbICZVRa4TCKSRwpWRCTsRgF/j/n7v5xzdYUqjIjkn4IVEQm7UiCaVZkL3F/Y4ohIvqnr\nsoiEmpkNAy4EXgT+5Zy7ocBFEpE8U7AiIiIioaZqIBEREQk1BSsiIiISagpWREREJNQUrIiIiEio\nKVgRERGRUFOwIiIiIqGmYEVERERCTcGKiIiIhJqCFREREQk1BSsiIiISagpWREREJNQUrIiIiEio\nKVgRERGRUPs/+yZ/uz+HgI8AAAAASUVORK5CYII=\n", - "text/plain": "" - }, - "metadata": {}, - "output_type": "display_data" - } + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGMCAYAAAAbX+LjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXm8HFWd/v8+3VV9b3b2TZB9R1lFIiLqoI5fFRlANKIi\nzqLDqDM4izOOo844M/ob9cXoqIMbyohGVFzAJSA7ISSBkISEQAhJWEIgJISEJHfp6u7z++NU9a3u\nrqquvapvzvN63VcnXd1Vp2s55znP5/l8jpBSoqGhoaGhoaFRVlSKboCGhoaGhoaGRhA0WdHQ0NDQ\n0NAoNTRZ0dDQ0NDQ0Cg1NFnR0NDQ0NDQKDU0WdHQ0NDQ0NAoNTRZ0dDQ0NDQ0Cg1NFnR0NDQ0NDQ\nKDU0WdHQ0NDQ0NAoNTRZ0dDQ0NDQ0Cg1NFnR0JjEEEJ8TgjREkLslcOxzhBC3CuE2CmEaAohXpn1\nMQcNQogP2tfj5UW3RUNjkKDJioZGARBCXGYPWs7fqBBitRDif4QQ+8XY32whxGeFEDO7Nkn7L1MI\nIQzg58CewN8A7weeDPj8l4UQfxBCfC3rthWBoq+HhsZkgyYrGhrFQQKfBt4H/BVwL/CXwAIhxHDE\nfb0G+AywR6otDI8jgZcDX5JSfldK+WMp5faAz38S1f+8lEvr8off9fg/YIqU8qn8m6ShMbjQZEVD\no1jMswf2a6SUHwL+GzgceGfE/Yj0mxYJ+9uvQQSlDSllEzgWmJ9ZizKGEGJq0GavN6VCPaMmaWhM\nWmiyoqFRLtyOGugOBxBCvFwI8U0hxKNCiBEhxBYhxE+FEIc6XxBCfBb4L/u/T9hhpWaXL2JPIcQP\nhBAvCiG2CSGuCaveCCFOFUL8XgixXQixQwhxqxDi1a7t3wfuRClFP7ePf3uffR6GIjgLwrQhQlsu\nso9/jsd3P2xvO8H13kH2uXhOCDEmhFgphLjc47uO9+d4IcSPhRBbgXt82uh7Pbw8K659Hy2EuM6+\nPs8LIf7N3n6IEOJX9m9+VgjxCY9jhvodGhqDCqPoBmhoaHTgKPv1Bfv1VcBZwFxgA3AYcAVwhxDi\nBCnlGHADcAzwHuCvXd/dbL8K4KfAOuAfgdOAPwM2Af8U1Bh7YL8bpZh8EWgAHwbuFEK8Tkp5P3C1\n3bZ/Br4K3G/vOwhnAw9LKUOHgUK25bfATuASesnEJcBKKeUqe3/7AYuAJvA1YAvwVuB7QogZUkq3\nn8bxmfwMeAx13vzUrKDr4eVZcf5/PbAKFSJ7G/DPNin6MHAb8A/ApcCXhBCLpZTzY/wODY3BhJRS\n/+k//ZfzH3AZanB5A7A38DLg3agBbSdwoP25IY/vngm0gEtd7/2tvb+Xd332s/Znv931/g3A8yHa\n+UtgFDjU9d4BKMJwh+u9c+3jXBjy938T+Lr971cDnweeBU5KoS0/svclXO/tjyI3n3K9910Uydqj\n6zg/Bra6z73rPP4w5O/zux6Xdb/v2vc3Xe9VgKfsNv+d6/1ZwC7gmji/Q//pv0H902EgDY3iIFAz\n5s3A06jB5SXgAinlswBSyvH2h4Uw7BTkdcA2lEISBhL4Vtd79wB7CyGm+zZOiArwJuCXUsp2Zo+U\n8jm7ra8N+n4fnA3MF0I4ZO2HqPPh2SdFbMv1wH7A6127eBcTCpODC4GbgKoQYm/nD7gFRQq6z6/X\neUwLEvhe+z9StoAH7DZf43p/O7AaOML13ai/Q0Nj4KDDQBoaxUGiQjprUDPoTVLK1e4P2L6STwEf\nRKkvwvXdWRGO1Z198qL9uidKyfHCvsBUVNijG4+giMUh9r9Dw07nPRGVQbRFSvk7e9MBAV+L0pZ5\nKNL3buAO+zOXAMuklI/bbdgXlanzF6gwSzckivB0Y31AG5Oi+xptB8aklFs93t8LEv0ODY2BgiYr\nGhrF4n4p5YMB27+OCh1cBSxEDVQSpR5EUUabPu8XkUU0GxWeOA44VgjxpJRyTVo7l1LWhRC/Av5E\nCHEFcCBKyflH18ecc3cdcK3Prh7yeG80rXZ6wOsa9btucX+HhsZAQZMVDY1y4yLgB1LKf3DeEEIM\n0Vu/I4tCY5uBEVSKcTeOR/ksno6x37OB26SU7xdC/ANwI3C8EKJihz/SaMv1wAeAP0KpONAZAtoM\n7ACqUsrAzKWYyKvwW9a/Q0OjFNCeFQ2NcqNJ73P6caDa9d4u+zW1onA2cbgFeGdXqu3+wBzgHiml\nXwgpCGejVCKAh1GeFYC/EkJMSaktt6JCXe9BhYAWd3ldWiiT8UVCiBPpghBinxi/y43Ur4cXcvgd\nGhqlgFZWNDSKQ5gQzG+A9wshXkKltc5GqQVbuj63xN7ffwohfgJYKNNlUnwaOA+4VwjxTRR5+gug\nhkqljQQhRBWVzeROmX7cfp0ipQwKs4Rui5SyIYT4BYqsTEVl53TjH1Em3EVCiO+gzu9ewOnAG4Ek\nA73X9bgxwf6CkOXv0NAoBTRZ0dAoDmFCBR9HmW/fCwyjKr6eB9zs/r6U8gEhxKeBjwBvQakxhydu\noJSr7AJrX0ANihWUKvJeKeUD3R8Psct9gWcAx6dzG/AXQojPo2rJpNUWUKGgP0WFiH7msb/nhRBn\nosri/wlqqYMXUGpPZCLWte+0roffOXVf+8x+h4ZGWSCk1GtqaWhoaGhoaJQXA+FZEUKcI4S4UQjx\njF2W+vwQ37lUCLFMCLFLCLFRCPE9u0aFhoaGhoaGxgBhIMgKMA1YhqpJ0VcKEkKcjUrj+w5wAnAx\nKk7+7QzbqKGhoaGhoZEBBsKzIqWchyr0hBAijCnxLGC9lPIb9v+fFEJ8Cx2/1dDQ0NDQGDgMirIS\nFfcBhwgh3grt9MaLUYucaWhoaGhoaAwQJiVZkVIuAN4HXC+EqKMWNdsGfLTQhmloaGhoaGhExkCE\ngaLCXkr+q8DnUIWkDgS+jFqE7M98vrM3KsXwCWAsj3ZqaGhoaGhMEgwDhwE3SylfSHvnA5e6LIRo\noVal9S2wJIT4P9Sy6O92vXc2aqXZA6WUmzy+817U0vIaGhoaGhoa8XCplPLHae90UiorqIqVVtd7\nLVQmkZ9B9wmA6667juOPPz67lmnkhiuvvJKrrrqq6GZopAR9PScf9DWdPHjkkUd43/veB/ZYmjYG\ngqwIIaYBRzFBNI4QQpwMbJVSPi2E+AJwkJTyMnv7TcC3hRAfQVX6PAi1au0iKeVzPocZAzj++OM5\n7bTTsvopGjli1qxZ+lpOIujrOfmgr+mkRCY2ioEgK8AZwB0oZUQCX7Hfvxb4EHAAcIjzYSnltUKI\n6cBfobwq21Blvd1LxGtoaGhoaGgMAAaCrEgp7yIgc0lKebnHe98AvuHxcQ0NDQ0NDY0BwqRMXdbQ\n0NDQ0NCYPNBkRWPSYs6cOUU3QSNF6Os5+aCvqUZYaLKiMWmhO8LJBX09Jx/0NdUIC01WNDQ0NDQ0\nNEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRKDU1WNDQ0NDQ0NEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRK\nDU1WNDQ0NDQ0NEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRKDU1WNDQ0NDQ0NEoNTVY0NDQC0WrBQ1++\nhUd+tKTopmhoTGpsfWQTd11xPXLnrqKbUjposqKhoeGJp56CT34SDj0UWn//D2z6wveLbpKGxqRD\nqwU33gjveAe856SVnPu/72Hdos1FN6t00GRFQ0OjA+vXw+WXw5FHwne+A+efD0cda3Du2Y2im6ah\nMWnQaMCPfgSvfCW8853w/PPwkY8aABx5qH7WuqHJioaGBgCjo/C5z8Hxx8PNN8MXvwhPPgnf+AZM\n38NANKyim6ihMfCwLLj6ajjmGHjf+5Ryec89sGgRXHiJMfEhjQ4YRTdAQ0OjWEipZOi/+Rt45hn4\nu7+Df/5nmDbN9SHTVFNBDQ2N2LjtNvjYx2D1anjXu+AXv4BTTnF9wDTVq37WeqCVFQ2N3RibN8Pb\n3w4XXADHHQcrV8J//mcXUQEwDN2BamjExI4dcNllcN55sM8+sHQp/OQnXUQF1HMG+lnzgFZWNDR2\nUzz8sCIqIyPwq18pb4oQPh/WZEVDIxYWL4Y5c9TE4PvfV6Ql8DkD/ax5QCsrGhq7IW67DWbPhpkz\n4f77lcHPtwMFTVY0NGLg97+H171uQk354AdDPGegnzUPaLKiobGb4Xe/g7e9DV7zGpg/H17+8hBf\nMgxt+tPQiIBf/1pNAt7yFrj7bpVd1xeGNtj6QZMVDY3dCDfeqPwpb3mL6kxnzAj5RW2w1dAIjd/8\nBi6+WD1rP/85DA2F/KI22PpCkxUNjd0ES5bAu9+tik9F6kBBh4Fc2PXo0yz+zG+KboZGSbFgAVxy\niXrOfvzjCf4RCjoM5AtNVjQ0dgNs2qRmea94BVx3XcQOFDRZcWHu5bdw5uffwebnZdFN0SgZVq1S\npvUzz1RExYiawqLJii80WdHQmOSwLLjoImg24Ze/hClTYuxEe1YAuPZauGehGlD23VMPKBoT2LkT\nLrwQXvYyFWIdHo6xE+1Z8YUmKxoaHth48woW7/kWnpi/oeimJMYXvwgLF8INN6iONBa0ssKjj8IV\nV8BrzinP7HfRFddyz+EfoF4vuiUaH/sYbNigQqyzZsXciVZWfKHJioZGF6SE//r0S5y57Rb2ru0o\nujmJsGwZ/Nu/wT/9k0pVjo3d3GDbbML73w+HHAKX/Vk5TJDbt8P8/1vHcZvupFYrtCm7Pa67Dn7w\nA/jmN+HYYxPsSBtsfaGLwmlodOHb34b7HlCPxozhwZVj63VV1+H44+Ff/iXhznZzZeXqq+GBB5R5\ncvjZckj1n/407GcZ7LXH4N6jkwGbN8NHP6rW+fnABxLuTCsrvtDKioaGC088odbGefsFg99pfOUr\nqnz+D35A8pn3bkxWnn0WPvUp+Iu/sNWpEsx+H3hALTD5hvMMqq3d87qUBZ/9rHq96qoUdqbJii80\nWdEIhWd/fAfP/uj2opuROa68EvbYA678++IHpCR47jm1xs/HPgannZbCDndjg+3f/q1K8/7CF+w3\nCh5QpFTemVe+Emafu3uH54rGypXwrW/BZz6jqtQmRrWqXnfTZy0IOgyk0RfNJjz84a+yx7QGB176\nRt/P7XjiBZ5b9CRHvzuN0TF/LF6s1si59lqYvkc5pP64+PSnlZrymc+ktMPd1LPywAMwdy5ccw3s\ntZf9ZsEZG7/4hVoi4c47obp09yWRRUNK+MQn4IgjVBgoFQixW6uYQdDKikZf/Oxn8OLO/oPVPX/7\nS45+z+lsfWEw60986lNw4olw6aWUQuqPi2XL1OD6uc/BnnumtNOiOlApFVuOiVZTsnVzU+0nBj7/\neTjmmC4vQoH3RqOhiOhb3gLnnstuSyLLgNtugz/8Ab785RTCrG5osuKJgSArQohzhBA3CiGeEUK0\nhBDnh/hOTQjxH0KIJ4QQY0KIdUKID+bQ3EmFVkt12A0MKi3/GdyuXfC7W1Qnvtes+INLUbjtNvX3\n7/9uK7EDHDv+x39UGQkf+UiKOy2oA118+l+ybt9Xx/7+kn/5FXvtZ/D0Qy9G/u7SpWp5gk9/ekKd\nBwq9N667TqVQ/8d/uNoygPfoZMC//RuccYZarTxV6GvqiUEJA00DlgHfA34R8js/A/YFLgfWAgcy\nIOSsTPjFL1RVxqkzDCoBRr5vfQteGnHJ45FLNxYHKdWAdOaZauExoHCpPy6WLoWbb1ahi8hVaoNQ\nQAe6ZQs8+JDBG8z41+CGXxu8CjjkgOj7+Pd/V4vPzZnTtaGge2N8XKllF18Mp5/uakvTVo4Cl/PV\nSBN33QX33KOKv6V+2ndjf1gQBmJEkVLOA+YBCNH/1hBC/DFwDnCElHKb/fZT2bVwckJK1WGfdx7s\n9aRJ9TnvB2h0FL70JfjM60y4k4GbFSxcqP5+8xtXxzOgYaAvfxkOO0wNaKmigA70m9+EmU2DqhHv\nGixcCMtXxVNBVq5URP2aazx4d0H3xvXXw5NPqlWzPduSKjvVCMLnPw8nn6zW/0kdWlnxxGRVGt4B\nPAB8UgixQQixWgjxJSFEnALIuy3uvhuWL1dhBVn1V1a+9z14/nm44OLBVCO+9jU46ih461tdbw6g\nsvLkk2pAu/LKDIStnL0Ro6Pw9a9DA5NqQPgxCF/6Euz/MnsAj3gdv/51Ve33fe/z2FhAGEhKdZ/+\n8R/DCSd4tGWA7tNBx333qZDxpz+dkZilfUiemKxk5QiUsnIicAHw18DFwDeKbNSg4eqrlbnwjW8E\naZieZEVK+OpX1SqjB7588NSIZ55R5bE/+lGouJ+GAVRW/vu/YeZM+NCHMth5zrO9a6+FF16Ao44z\nqMrox12zRq2DdOEl0YnFjh3wox/Bn/+5j1hRAEG47z61avbHP961YQDv00HHV7+qPGEXXpjRAbSy\n4onJSlYqQAt4r5TyATuM9AngMiHEULFNGww8/7xaS+YjH7FnD1UDw2OGO38+PP44fPjDDOQs7+qr\n1YJjH/xg14YBM9ju2AHf/a6qvzF9egYHyLEDlVIV2LrwQthjXxNDRr+fvvpVVffiLW+Prqz86Ecw\nMgJ/+qc+HyiAIHzta3D00SoLqAMDdp8OOrZuVST4z/+8a3KTJjRZ8cRAeFZi4FngGSnlTtd7jwAC\nOBhluPXElVdeyayuVajmzJnDnB6X3eTGD36gHsbLLlP/l4ZJxWOGe801qs7A614H3D5Ys7yxMWUM\n/uAHPRYeGzDidcMNKiPrwx/O6AA5dqD33QePPQb/+7/Af5iRlZXRUZU1c8UVMDQt2mAupSKw73gH\nHHywz4dyvjecxfGuuspjgByw+7QotLbv4PY/vY6TPvl2DnjVIbH38+MfKz+zZ3gwLQyAwXbu3LnM\nnTu3473t27dneszJSlbuBS4WQkyVUo7Y7x2LUlsCl9G96qqrOC2Vkp+Di1ZLDeKXXNJZCKtbWdmx\nA376U7VIXqVC5I5z9U2PccDLa8w6+bDU2h4FN96o1vX4q7/y2Dhg8vp118HrX68W2ssEpqlujFYr\nwymlwnXXKaLw+tfD3f+fEVlZ+dWv1CJ/H/wgsDOasrJ4sfJpffGLAR/KWc343vdgypSJiUMHBuw+\nLQpLbtvGeTdcwYqzjkhEVr7/fXj722H//VNsXDcGwLPiNYF/8MEHOb2dppY+BiIMJISYJoQ4WQhx\niv3WEfb/D7G3f0EIca3rKz8GXgC+L4Q4XgjxOuC/gO9JKcfzbf3g4Y47YN26rjodZu8M92c/U7PY\ndicaseMcmfMhll7wucTtjYvrroNXvxqOO85jY6Wi4l8ln+GAmnnffrtaFTgz5DRA1+vKJHzppTYn\nMk2MiMrK978Pr32t8ltFbfe3v62yqd785oAP5UgQpFRp6BdeqPxIPdDKSij88jfqmp14TPzztGwZ\nPPhgRp4wN3QYyBMDQVaAM4ClwBJAAl8BHgT+1d5+ANCmy1LKXcCbgD2A+4EfAr9GGW01+uD661V9\nidmzXW8aBtWuGe4118Cb3uSazUfoONesgW27TI44uJhOdssW+P3v+8i5AzDDATWYDQ3BRRdleJCc\nyMrvf698Ac51EaaBQfh75Kmn4NZb4fLL7TfM8MrK+LgKp33gA33EoxwJwkMPwerV8J73+HxAKyt9\n0WxOkJWgWlH98P3vK0WlI2swC2iy4omBCANJKe8igFhJKS/3eO8xoNuOptEHjYaS0S+/vCstr2uG\nOzoK994L3/lO52faO+mD66+H2VWTg/Yv5qH86U/VrPXd7w740IB0Gj/8oSpm5znzTgs5kZUf/hBO\nOQVOOsl+wzQxCH/Ma69VIZN3vct+I0K7b75ZhY8C7wm7TWH3mRQ/+YkKxZ53ns8HtMG2L+66CzZu\nTkYwm001KfjAB3IoZzMAnpUiMCjKikZOuOce5ePomaUbnTPcsTH1uscenZ8BQj1o118Pe+/nnWGU\nB370I1WzYt99Az5Ukk5Dbn2RbXcu81zf5qGHYMWKjA1/kIuasG0b3HRT528RpoHZpazcdfLHWfnd\nhT3fl1KRlXe9C2bMsN+MoKz85CeKJHXUMfFCTgRBSvWcXHRRwACpw0B98ZOfwEEJyyo4/eIll6TY\nMD8MyCQpb2iyotGBG25QYZ1XvarzfWF21rtw+saOTjTkjPPhh1WF0P0PMQvpZNetgwUL7AULg5Bj\nGGjb7Q/y0Bv+WsUiurDgUzexxxtOxRrpPVc//alarLAnpTVt5KAm3Hij8qy4Qx6iZlJB0mq02u+d\n/tA1bPnF3T3fX74c1q6F977X9WZIYjEyoo7fV1Vx7zPje/f++2H9+j5t0mGgQFiW6tMueneya3bD\nDcr0fcYZKTbODwMSfs4bmqxotNFqqRLjF17oUZnRNDtmuM6z1EFWQnbi11+vUoX3Oyi9GcSOl2To\nlXXnzlW1SNrrAPkhR2Xlju88zivv/BovPT/Ws23hA+okj+/sbcuNN6rshFykacicrJx5pqoc60CY\n6riN0YnfbmJ5tuPGG1Uo7PWvd70ZUln53e9U6ncospITQbj+euWR6Pg93dDKSiBuvVV5oC6eE6+S\nMah+8Ze/VP1ixolwClpZ8YQmKxptLFwIzz7rbdRURsc+ykqIAc2Rti+4AKpD6SgrT/3+YWbMqrDs\n6t7QgBd++1sVApo6tc8Hc+w0Fi9VJ9I9KIMSWpautLeNdbZl/XoVAkp91VcvZExWxsZg3rxeAlkZ\nUr/dGp04ronled/8+tfK/Firud4M2e7rr4dTT1WF1/rCGbEyvDekVBOHiy7qWvG5G9qzEoibblJ1\noE4+RagTGeM8LV6sKl1namB3Q5MVT2iyotHGDTfAAQfAa17Tu03UTEwayJZSLwLDQAEE5JFHVMGv\nd72L1OTO+QtVh33M4f2Jz9atsGiRIit9kZMc+8ILsOoxW0HoIiR33QU7x3vVBVCDc62WQwgIMh8U\n77hDKRvdxKutrNjnpVlvUkH23GNPP63SSnvUshD35OioIrChVBVQsmPGqttjj8ETT8Db3tbngzoM\n5AspVXbZW99qK8Uxr9kNN8B++8HZZ6ffRk+UxCtXNmiyotHGvHmqc/SayTmDRrPeBOIrK7feqgbY\nN7yB1B7KO+arRkw1++/r1luVrBtqgM+p05g3D8alt7Lym9+Ahfe2G29U6za1zaRZIuNww69/rWbA\nJ57Y+b6jrDi/ve3b6brHbrpJNbEnrTTEPTl/viIsfYmBGxkT2Xnz1HNy7rl9PqjDQL5Ys0YRvvbE\nxIyu5EqpyMoFF/RRuNKEVlY8ocmKBqBkzlWrVN0UL4ha16BhP/Mdq/uGmMX+4Q9qhjJ1KrE6j27U\n63D3feFnl/PmqYwP31LqbuSkrPz2t9AU6jc0xybOh5Rq2z4H9G7bulWtit3Xd5MWMpzBt1qKbLzz\nnb1eqTZJHlfHnSArvSrTued2ZadB6HvygAN6iVIgMiay8+apJSymTevzQa2s+MIhfG3PTwwSsHKl\nCrdmtmihF7TB1hOarGgASnEA+KM/8t7uDBqOdyCOsmJZcOedrpoRKcwg7r0XXhoNN7uUUnVgocMm\nOSgrjYaSqk84udeXsnq1ylyafU5viOj3v1e1H97xjkybN4EMw0BLlsDGjd7em25lxXkVruuyfbsK\nI3kSt5Bq33nneZjKg5Dh7Hd0VD0noUKVWlnxxbx5cM45roU9Y0yObr9dEZ7XvS799vlCKyue0GRF\nA1Ad9qmnqpVqveAMGu0ZbozU5YULYedOl3qTgrIybx7stV84p/+KFcpAHGoQgFw6jfvuU/VFXvM6\nW0FwqSe//a1aEfrUV/cqK7/7HZx+emfmTKbIkKzcdJNKv37ta3u3VWqdyopD2ERzoh2LFqlL73ld\nhW2s9Lk3Nm+GpUv9FUVfZDj7veceZTiORFb04NaBsTEPwhfjeb79duXhmzIl1eYFQ3tWPKHJigZS\nKrIS1GG3lZWRzjBQlNTlW29Vg1J7ncgUOvx58+CcN4YjK/PmqfCT16DoiRzk2N/9ThWmO/GUXkKy\nYIHqKKfO7N32/PPK45EbMhwU77hDKXodIUUb1WFvZcUdBhqxlyrdc0+fAwQMUrfdpl59K8T6IcMB\nZd48RUL7FqcDHQbywT33KIWqQ0WNODlqNpXB/Y1vTL99gdDKiic0WdHg4YfhueeCO+xQykqfAe0P\nf1CDUtuolrDD37hRVXB941vCddg336yMvcPDIQ+Qwwzn9tsVSTSndp5fUJ3trFlQHTJ6tllWDrVV\n3IhQCTYKRkdVaqifkbRbWXEIW8VFVjzvRTcCBqlbb1Wk4KCDIjY8wwFl3jylCIQKS+kwkCfmzVPX\ntL1sA0QmK0uXqhDjG96QfvsCoT0rntBkRYM//EEthBekODiDRrfBtmOAqFTUn0eHsH27GpQ61JuE\nYaBbblEd+hvf3L/DHh9X/pZIM+iMO41du1S67TnnuAjJWOcgbJoT6oLXttyQkbKycKEySft5Arp/\ne9uz0uwkbtCnJL1Hu6VU937kEJBzsAzujQ0bVHp/aF+VVlY8cdttauXsDsIXkWDecYdSYs88M/32\nBUIrK57QZEWDW29VA2ZQXLY9aAQpK84bHg/anXcqWbWDLCTs8O+6C04+GfY5sP+sf8kSRVjOOSfC\nATJWVhYvVj//ta+dUK5a4/5kxWtbbsiIrNx9twrfdMyAXXBIcqtue1baZCW5svL442qV5sghIMjs\n3rj3XvXaN2XZ3Q7QyooLL72k/Gk9k6+Ik6Pbb1f76CgymAc0WfGEJiu7ORoNNej7ZQE5aMvxzgzX\nq9w++HbiTz6pwi8dPouEHf5999kF7PqYKEENAtOmKXITGhl3GvPnq1TbE04AY0p/slJoGCgjsnLX\nXYpA+pUx71ZWgsJAXp6X9gaPdi9dql69iiD2RUbKyoIFcOSRqghZKFQq6v7Xg1sbixerdPie6xrh\nebYs5XvJ3a8C2mDrA01WdnOsWKHCEf1Mp92+iajKiufgmiAM9MILKrW33SH16Yjmz4ezzgoY0LyQ\ncRjonntUzZlKBYxhf19Ke9skCwPV64pwBqkIzn3nKCttstLqPBfVaoDHw+c+c9aM7LvsghcyIrKO\nqToStMeRn41IAAAgAElEQVShAwsWKLXu2GO7NkTob+6/X/WLuftVQCsrPtBkZTfHokXq2Whn6Pig\nbbAdC/CsgO+swHNwTfBQLrSXAZo9m4mG+HRErZZSVkJnAbnbl9EMp9FQA7XTpjDKiqwXSFYyMNje\nf79KMQ2qYeGnrHR7VgLPhc991jd8FIQM7o2REVi2zHVPF9iWQcaCBeoc9qh1EcjKXXepytD9+sVM\noMmnJzRZ2c2xcCG88pX9Z5fd3gFf6T0nZWXBArUi7eGH99/X6tVKiYlMVjLsNB56SNWccdoUREgc\nItOsT7Sl0Rh8ZeXuu9WAcMop/p/pVlYcMldtRiBuPveGZU1EECMjg3vjgQfULrWyEh+tlurTPAlf\nhMnRokXKWBtJiU0LWlnxhCYruzkWLVLhkX6Y8E2kqKwk6GTvu091SG3pP2Bf8+erAenVr454kAxn\nrPPnK+PeGWfYhxruHJShNwwkJ5nB9q67FFkLGhC6FSe/MFBcZSX2OcxgQFmwQFVb9TMbB7ZFKyuA\nyqTavt2H8EUMA73qVem2LTQ0WfGEJiu7MV58ER59NNwg3p7hujwrnj6BKMqKYagUISkjtbvRUCSr\no0MK6LDnz1ez98gL/mXYacyfr2ZuTs0Xp85KYDZQkWGglMlKq9UZBvODn7JSaUUIAwUoK4nISsoE\nYcEC9SxGVnr04NbGggUq/OOZbhzyPG3cqP5yT1l2oMmnJzRZ2Y1x//3qNQxZ6Z7h+nb0UZUVZ2ME\nrFih4vsdZCVg1nTvvTGXd89IXpdSkRX3QO2cX2n1EhKHyEgP1SU3pJwiu3atSjF1lCU/tEmcTdTa\nYaCilZWU7w0pXdltBbdlkLFggcr4a68H5EZIZcXpFwtTVvT19IQmK7sxFi1Srvmjj+7/Wa9sIM+O\nPqpnBSI/mAsWqK+efnrXvjw6oueeUwNjZL8KZDbD2bhRrVHkJonmFDvU40FInG2F1llxCv6l1Iku\nWaJeO66hB5z7TnZ7VqKQlQFQVh5/HLZsiUlW9Ey8DSc87IkIZOWAA3Jcd6sbCZQyKeH+/d7G4n/9\nfcqNKh6arOzGWLhQSZ1+NS7caM/86ykqKzFn6/fdp1z6HWXzfUjShg3q9aijIh0icJ9J4dT3OPXU\nifdEtUKTirfBdrj3POVOViDVcMOSJXDoobD33sGfm1CVbGXFUsevRgkDDYBnZcEC9RrZVwV6Jm5j\n61ZlpvclKyGv2eLFSlWJtAp3mkhwbz37LJyy+RZqG59It00lgCYruymkVMpK2M6x2zuQqrISkax4\ntjuAJLkPFQkZzViXLlWK1stf3vm+helJVkRFYGEUm7oMqZOVfqoKuMzFNklxTMZVWbCykjJBWLIE\njjkmYDHGIGhlBVBp3xBwX4VQVqRUWVmFhYAg0fVcvlz1IwfvP/nuB01WdlOsW6fSecNkAoHLs+KU\nPfdLnY2jrETo9HfuVGEdtyoBBA5IzubIyMi4uHSpan/3zM3CRDa8FYMGRltVkLKA1GVI7XxIqdZE\nCkNWqjXlNnU8Kw5hK9yzkjJBWL48YnXl7rZoZYXly9WSIccc4/OBEOdp7VqVeFA4WYmReAATZGWv\nmZqsaHQhxv1UCkQ1kbVnuGHCQBkqKytWqHPe07EHKDruQ0VChmGgHrIFNIUBPuqJxQQZ813qIGsk\nXHjSwdq1Kr00TMEtR1XCJmoOaanKEmQDpXRvSJmQrOgwEKDO4UknBWRThbh/nX6xn/E7Uzg3ZbMZ\n+avLloE0zI7lKCYLNFlJiGV7voE7X/NPRTcjMh56SBnI9tkn3OfbWRlWiDBQ1GygCB3t8uVqnDjh\nhK4NAxIGevFFeOIJb7LiJiRSqr6qfYqE2SYyiX5TEqQ0QIc11zpwh8ecVyNKGKjk2UBPPaXIWyJl\nRYeBWLaszzkMSVaOOCJ8v5gJEpQJWL4cRC2dSUXZoMlKAkgJYsd2ZsltRTclMlasgFe8IvznuwuT\nWZZPMa8oA0MMg+3y5XDccTA01LUhizBQBjNWJ67uRVYaYuI3dLe7idH2bUwGsnLIIbDvvuE+38CY\nCI/FISslzwZy7gmtrMRHvQ6rVvU5hyHu3yVLClZVIDZZGRmBxx6z6zJpsqLhxlNPwXjLZO8BjA9G\nJSsVo0IL0TFgpqasRCQrnh1SH7ISa5n3DLwAS5equHrPImvYYaCGNyFpCBPRmBzKSli/igO3qtRW\nVig4GyhFgrB8Oey1Fxx8cMwdpHRdnrx3A2PPDd7EC1RxS8sKXrohjLLywgtw4IHpti0yYmZJrlyp\nii0aUzRZ0ejCypW2mWn6YN0Y27fDk0+qNYGiwC3Hp+JZiTiDaLVU+MqXrAzAYnVLl6rz7hVXb1Z6\nlZX2KQpQXXJDCoNiFHOtgyau41olUlZCnoufnPMNfj7nBt/tDgGPnSqb0n067ZxTufd9/5t4P0Vg\n+XL1Gtinhbhm9XoBz1U3Yiory5erMhS1aZqsaHTh4YehWa0xrVYvuimRsHKleo2irICS490z/7yV\nlXXr1LLtnmQlC89KBvK6n7kWgtWTRmUiU6ibyOSGFAy269cr305kZcU5rv1qMjjZQCcuu46D7v+V\n7/ZE5lpI5T7dsgXq0uSAvQdzkFu+XC1qOnNmwIdC3L+FlAToRsximcuXK8W2oj0rGt1YuRKGppuI\nAbsxVqxQM/vjjov2vQads/u8s4Gc2VOcMFAZlJXRUSVX+5GVVkAYqCWMSREGeu459dpdYyYI7vBY\nW1lxhYH6pnEXXGel2rI6yJUbO3ao7KhEZCWF+/SRR6BOjf32GKyJl4Ply/uEgGBwyEpMZaVtME4p\na69s0GQlAVauhKkzB+/GWLHCx6TaBw1hpOtZifhQLlsG+++v/qIcV4gYi8M57UtRWVm5UmX4+JGV\nZiVYWRHW4JOVOG1vVHqVlSotWo1W+624ykosL5Ozz5DPfbVlYUrvz65YoV4Tk5WE12XVKjukPWOw\n+jJQocW+mUAQ6jwluifSQgzPihMiP+UUNFnR6ESzqWYjU/cYvBvjoYeih4Cg1zdRhLLi2yFFqZwb\nFqYZuziTF1auVMTppJO8tzcCyEqzYkJz8LKBxraN0axP1IuIY3huCqP923HVj7BG+tyLDgr2rCiy\n4q1Y+KbiR0EKYaBVq1T4wF1sb1Dw7LMqjNWXrExiZeWJJ5RK11ZW6oOpkAVBk5WYWLcOxsZgxp6D\nRVakjJ4J5MAtx/tK73HK7Yd8KAPJSpTKuWGRoN6BFx59VK2HM2WK9/ZWxUT4EJJShIFizNgeP/hc\n7nnXV9v/j9P2pktVEq5r0Rjro/I5KDgbyJAWhk8YaNmyeCpn5wGSh4FWrYLqgGaRBIaH3QhxnkpB\nVmJ4VlatUq8nnYRWVoqEEOIcIcSNQohnhBAtIcT5Eb57thDCEkI8mGabHJPqzL0H68bYsEFlA8VW\nVhp9ZrMZLWS4bZtKFfeNS2flS4DUyMrq1d4pyw5aFX9C0qxOVKUcJGVlr7GN8MzG9v9jkRVhtEmc\ncCkrjdGClZWQz73RqndkL7mxalW8Z7EDKSkr5tTB6sscrFwJ06fDYYf1+WCI81QKshJjkjQyol5n\nzkSTlYIxDVgGXAGE1uSFELOAa4Fb027QypVqxdjhAfOsODHyqGnLYCsrYTwrGYSBNm1Sr761KLII\nA8Wsd+CHfmSlWTWpNP3DQH6qS26IQVYMaXUQjLjKSjv8EycMVPCqy4a0MHzCKzt3wh57xGyDuy0J\n7tFt22DjRhiaXhuovsyB81z1Tf2exGGgjudqkpKVvJMfY0FKOQ+YByBEpGoEVwM/AlrAO9Ns08MP\nK8lN1AbrAX/oIcW+o2RjOOg2gPpWsM3AYNvX6+Bz3ER1E1IMA1mWyvoIVFaq/oREVgyED5HJDXHJ\nijURP4/T9lZlQllxr3nSHA8ZBio4G8iQFg0fZSWVuh4JDbaPPKJeh2cOpteh3ySgDec8SenJbJpN\nZVQtDVmJMK7sDmRlUJSVyBBCXA4cDvxrFvtfuRJOPJGBMzM9/LBqd5wCVN0VVvNUVvoOciUPA61f\nr9oSlC4uK4a/shKguuSGFJQV51GJRlYmQmCxwkAF11kxpYXR8u4jUsk+SRgGWrVKFRObMmAqsYPQ\nZKX9MHkvEFjYc9WNBMpKtYq6oQbwOvbDpCQrQoijgf8ELpVSttLef72uHpBBNDOtWRPywfaAe4ab\nimclAhkohKykGAZavVq99lNW/AhJ0LbcEONer1FPHAbqUFaallqFmU6yElggr+BsIAP/MFAqYYeE\nYaBVq+DII6E6NFh9GagCg5s3R1BWwPc3loasxJgkOQqdEAzcmBQWAxEGigIhRAUV+vmslHKt83bY\n71955ZXMmjWr4705c+YwZ86c9v/XrlX30QknAOsG68ZYswbe8Y543212VVhNrKxEIAOhyEoWGR+Q\nirKyerUyAR50kP9nWlWTSsubkMiqQcUa89yWGwxjwskXEiZWO3wFqu2VivoLC7eqJJoWo0zBZEf4\nMFBW2UCtlvrr82NMLOpZkpUUlJUTTgBag9WXgVq4D+CYY0J8uM/zXBqyElNZabc7B7Iyd+5c5s6d\n2/He9u3bMz3mpCMrwAzgDOAUIcQ37PcqKLtLHXizlPJOvy9fddVVnHbaaYEHePxx9Xr00QwUi926\nVf0dfXS876eurDijVhpkJcvU5ZSUlWOOCQ6/yapBpeXjWQkgMrkhYhio1WhRpUWl0elZiRr2kBUD\n0ZpQVsYqU5nZ2kFzLGQYKEvVrdEI/EGyJalhMVpyZeXSS4HVZmQyWjQcxTISWSm7shLTs9K+DXMY\nk95+3p/w/874I2YdvV/7vQcffJDTo6yjERGTMQz0EnAScApwsv13NfCo/e9FSQ+wdq2qlXHggQwU\nWVlr60xHHRXv+81qysoKhB4A+3odsh6QEuLRR/tL1dIwqQaEgfy25YaIZMXJ1ql0KStR2+0OgVWa\nFuMVVagmNFnJSlmBvuejMa78EX7F1lIjKzHv0R07VEmAE05AjXYD5L8DRVYOPhimTQvx4T7Pc18T\nf14YAGVl2ce+x/Axh6S9dFogBoKsCCGmCSFOFkI4VTaOsP9/iL39C0KIawGkwir3H/A8MCalfERK\nOZq0PWvXwhFHFBMfXPXjZbywYmP/D3pgzRr1euSR8Y7dcs1woygrUvYhNxGUFd+OpOQG29Wr+6/F\n1DImKoj2KCuGv+qSGyKGG9IiK7JqULEVvWrTYrw6FYBWPUI2kEcl4jyIrLVLDf7uc+BGKtlACcJA\njjJx3HEM1MTLQWhzLQyOshKj38mbrGx6sYaJhVFNp7p3GAwEWUGFdZYCS1B1Vr4CPMhEps8BwCF5\nNWbtWteAn/MDvu/73sxDn/hBrO8+/jjsuy90WXJCo9VVmCyssuKY79MgK7l6VlIKA4U1AUrDpCL9\nw0B+RCY3RAw3OAbYarMzDBRLWbF/e6VlUbfJSiRlBXrujzzuDYewuc9BdxsSz+QThIFeekm97rUX\nA0lWHnssAlkZFIPtACgrz71gUkH6ZlZlgYEgK1LKu6SUFSlltevvQ/b2y6WUbwz4/r9KKYONKBHQ\nQVZyTBN76SUYlzX2nhnveI8/Ht+vAp3Kim+5fY+OM7ATCClhF+JZSUlZCZMJBIBhBCgrnWSlWo2X\nfp4IEcMN9V29ykocJcHt5ak2LSwjYhjIZ0adSxhotPccpNYGd1ti3qMd99mAkZVWS6nFofwqMKkN\nth3PVQ7XceMWm2HneL8MBFkpE5pNVTOjQ1nJKc67fj1YmOw9I97x1qyJ71cBe3bv8k14pos6HadL\ncg/sBNJWVrKQ+hM+kA5Z6UcUZdVsp7g6h3Sa0K26FNKhRiQrzVF1n1aThoFcXp6KbGCZE2EgJ7pT\nVmWlTVYavZ8L1fawbYl5j8YlK/f+YA0PGGexcW3iqHpsPPWUWp9t0oWBYhpscyUrm+2D5ehx0mQl\nIjZsUPdBEWGgdeugTo09psVXVpKQlVY1pGcFOuTBvmQlrTorXcd1vhdbZk/JYPvoo3DIISFMgGYn\nITEMl3piGB1EZhDISjsM1EpIVqpG+7xUWxaNmk1Wxq1wA0wWykpYz4odBhIeykpqg2MCg22HcT2C\nwdZcs4ozmouobd8c67hpILRi6aDPNYtTsDATlDwM9OKL8OKIVlZKDydtuYOsyHxid+vXq1onU43o\nbHbbNrWMepIwULeyEkhWXA9a3zBQiBve6Uh8i3/5zEbKEAZ6+ukQi6yBIiTS+/xK06Tqsy03RAw3\nTJCVZJ4VdwjMaFk0ayoMFJqseNyTTomU/MJA3qqfe1exkUIYqFYj0iDnhOBMn9Wk88Dq1Wq16tBL\nhwyKsuLEeCOSlbxSl9etUwo/oJWVMmPtWlUa5NBD7Tf6PABpYt06YKjWURE0LJKmLUNvHRBfpcT5\nAJ3/TBoGMs0An0aWs+eE17Zeh+HhEB80zTZZ6fEEGSbVMoSBIpwLZ0AzupSVyEqXYbR/e1VaNIcn\nwkCRlJWwBDpkmzp25APnHHh9NnVlRUbPzIgbBpJ159oWl+r82GOqP6tWQ35hUAy2EL1MQI7KiqPw\ntw+cEzRZiYi1axWT72CxkMtFW78eqsPxPDJJ05ZhIrXWEZJSU1ZChoHKaqLsh9CmUhdZ6W63MP1V\nl9wQ1bNiD9RV2UlWkiorsk1WIiorYQl0GISU6oPIivMYp7I2EMRSd+OSlda4arwpiyMrkRMGBsVg\nC6UnK0PTtLJSenRkAkHuyooxNV720eOPw957w557JmiAraz0VUogM2XFFz4dURmUlbBqgiIk3uqJ\nDCAyuSEmWTEShoG6lRU5rMJAMqpnJU1lJSSRdUzGHQdNqw0OEtyn9bpSK6tVoikr4/a19VlNOg/s\n2gUzZkT4wqCEgSCyipk3Wdn3oPzGPQearEREUWSl1YInnoDatHjKStK0ZVCFyaqyzwARVVlJi6xk\n4VlJyWAbug2miYGfslKSMFAUz8qIuk+NhMqKW3EypKXKRwPSChkGylJZKUsYCGLdpx1EOkIZBicM\n5F5KIW9EDikOSgVbiF4moDt1OWZYMAzWrYP9D6lNHDgnaLISAVJ6kJVaPrG7555TaXpD0+MpK0nT\nlsGR41NWVnaDMFAUsmL6khXDd1tuiDhja3nMvmNVbHUpKyYushI2DJSlZyVBGChVg22ItnihZ0Ye\ncvBxyEqeM+tuRH4OBklZiWia7rmOkErlbS+sXw8HHKKVlVJjyxa1loanspIxw1y/Xr1OmRlfWUlK\nVrBTSItQVvoOcj4PaKJy5ikabMO0oVIzMPBRTwKITG6IGQYy01ZWaiYWRniykoWyEnJAcAgb0PPc\nliEMFDd80CYrBa4lFPlemuQG2zx8lI0GPPkkHHioVlZKDSejpogw0Lp16nXKrHjKyosvqlL7iWAP\nGs4zlLeyEijPllxZCeVZqakS1s16s1dZqZnUsJAtOTBkxRmoTZJ7VgyXsiJMkwYG0iqBslKGMFCa\nykrY8IFVn9hBQajXI4ZsBs1gm8Sz4ryZMjZsUKfvZYdpZaXUKJKsrF8P++8PxpToykrgQoJRYMvx\nzk/1rHkymTwrlYrnPqMidBtq6kONUcszDATQarQGkKwkU1ZEbcLLY2IhaiYWZrGelbAG23F/spJa\nNlBCg22s8MEgKit9+urSFIWD5NlAzpspw5k0H3KkVlZKjXXrYJ99uhzoOSorRxxBrLWIAhcSjAJb\nWUnVs5IWWclCWREiUXXQqG2o2GTFGm30fKcyZG8b6SUyuSFiHH2CrDSQLTVbj2yKBKWs0KBZb1JB\nImomDWHCAHhWZABZKZ3BNkpfZg0gWQlhsC1kzS0vpOFZyYisVCpw0KFaWSk1NmzwqJaYI1k5/HAi\nmeAcpDmDq6btWUnbYJtm6rKz35zqrFRq6tx5KSuO6lIoWTGMSNWaW2MT96lTyTWusmJiTZSuHzJp\nomTywpSVkGpGKw+yklYYqBZhtuw0vuAwUNoG21KoKpA8GwgyIyuHHAK16VpZKTWefhoOPrjrzRzD\nQHGVlTQ7xd1KWYFEi8S52xDWswLehMQhMs3xXtUlN0ScwbdNmEyswByLrJgGFST1napjrDjKSqPA\nCrYhCYIcd3Xmg2CwDbkf4XhWClZWIk3AnFK3k5Cs5KmsHHFEtsfwgyYrEfD004pVdiCHizY+Ds88\nE19ZSatTFKaS41NVVkIqF31nUVl4Vpz95hUGskM9XoSkUhZlBWKRFUdZiZOdJezzMr5ttP3/RkWR\n3ECzd3e7J6uykiAMFHtGXgJlJfJz0CesWzqyUkKD7aZNcOCB5Fayww1NViJgwwYPspLDRXvySaW+\nx1VWUgsDOXJ8GGUl5YUM+86islJWQio/QQjvWfEPAzlExjNElBcSkBUnhBOn7RXbXDy2dUT9v2bS\nFAY0BsCzUs+BrCQYnOJ6Vtrrkw2SZwUCn+dYfqqsUNLU5XYGlnMMHQYqH3buVCsX+4aBMrxozz6r\nXg86iGKVFSOCslJUGChtz0oKykrYFMu2sjIWQFbGCgwDRfRGdCgrdjXbuJ4VmFBWKkMmzShhoAKz\ngcKQldSygdJIXXY3LABtslKwZyWOWXsgwkAlNdi2j1OtKqetVlbKhw0b1GsRYSCHmwwNUahnxakD\nMj7S9N9fHGUlDYOtx4DUbCpFqmiDbdhOsDrsT1aqQ3bq8ngJlJWQ959XGCiWsmIrTvVtSlmpDqsw\nkHAZbD3T6B1koaxUKiqs0O9cWP5kJbVU2bQNtiGub7vMfkHKSqul/mIpK4MSBkpKVjK4Nh0EMcbE\nOQk0WQmJp59Wr0UYbDs61hg3SFphIGEPGuO7GhPt6YbPLLZSmShb0oEMDbapkLSUDLahyIpNSLzU\nExFQgyU3RJ3Bu+5TN1mJeh+207ZfspWVmkFLGIhmgdlAzn5DKCst7FzYEhpsPT0rIfqXvMNAy79+\nDytmzO5IgYcY525QlJWI/U5e2UA9pEgrK+WDQ1Ze9rKuDXmTlQKVlbZ3YKflvz+fWazvsTMMA+U1\nIAUhSkG+oDBQW3UZb9Bo9FESskJUsuJWuUYThIHs+87abntWhkyaFRMRNQyU9r0RQnWTdYtRpnYe\ntKsNia9lAWGgSjPfMND2BQ/zip0LadaVqhtblQq4ZomW5kgbJc0G6lHitLJSPmzYoCrIDg11bcgx\nDNQ2NhXlWXG8AzvVQxRYwbZrFut77JAPZei1gTxmz4kUpYSzBycUFaYNDiHxCvU4qosXkckNCchK\nkjBQm6jtHG3/v1k1ES6DrZOV6gkh1AeKUN0si9GKP1kxjBSKkBVhsHXISk6DlRNSdNLXYz/bfQy2\nmqwEoycMpJWV8sGzxgoMhLKSVhjI8Q6MF6SsBLa/QKk/CFHa0CYkHqnLQX6W3BD1XncrK/YaOXFm\nr+0sqZcmPCutikGlOXEu+g74XTPqvO4NYdUZE1M6D+pqQyrXsQBlpdrMd20gp16NtauTrEzaMFAM\ng20e2UBaWRkAeNZYgYnc/d1AWXHCFPWR6J6VQLKShsHWMcWkTVYSGmyjtMGYEqCsuMJAA6OsNHrJ\nSiyDrX3ftXZNKCutioloRjgXXc+oZU0ILrER5t6wLBqVWo+y47QhletYhME2Z2XFaVO3sqINtkq5\nbTS0Z0XDhmeNFQcZu6I7pO5aLVLJc/f3E4eB2p6VALLikIawykqEOit925/V7DnBAxlJWQkIAxnD\n6tzL+uCEgYRlMYJSFZJ4VtqZUDtdykrVbBtsQ+3P495Ixdja594QDUulWXvMQmOl3vq1A3I12FZz\n9qw4bbJ2jrv/O3lTlyP0Oz2FEfMKA2llpZzwDQNB5gyzQ+qO0KE4SCsM5AymToGvsAQkF4Otx77K\nEAaKcu6D1JMg821uiKGsjArl12iOWbHTTZ3zIkeUsmJMMWlVDapRyEqUezIswigrDUtV2/W4z8sS\nBooTPqi0ilFWEoeBJqGy0mM21srK7ouXXlJ/gcpKxmGgDjYLkY6XWhjIqXcx0vBPRYaeBy0Ng22o\njsRjQIIBCgMN+9dSCQoR5YaI4YaKVWfMNpc67XbvJiyc+45RN1mJGAYqSlmxLJpZk5W0wkARBjmj\nlXOdFbtN7uKCEJOsBCgrpalgG6Hf6TkXGSsr2rNSYjgF4YpWVtrHgkg3SdqeFWvECt6Xh8KRVFkJ\nZczs2lcqRbdyDAO1CYlHqKdNZOol8KyEPB+iaTFWnQaoFZidr0UdEBxlxU1WZNWk0ipYWQljsG1Y\nNCu1bMmKM2uIcZ/GNtg6ykpeM2t74cTEZGWQwkBxyUqCsGAQHG+MzgYqMZwaK0UpK3FNcO7vQ/IH\n0fEO1EcawfuKoqxECAP1HeSy8KwUYLCVHoQkiMjkhojhhkrDol5Nrqw4950YVZ6VWGGgLJSVEPeG\naFg0qxkrK0LEvk/jFhOr5hwGEnabHO9T7ND2IIWBQvbxPc+Vcz+kPCb1eGO0slI+bNigrv9BB/l8\nIM8wUAk8K43RFJUVh9hIGXjswsJACZWVKOfenOJvom0TmTKU2w9rsG1a1M3kZMX57WLcpawYJpVW\nsmygPMJAlaZFK+swUMi2eCF+GChfZUXkoKwMalE4T8UygzGppy/Tykr58PTTqiCc74AzIMpK0kqZ\n7XoXYykrK9A3u2lQDbaxwkAehKRNZKwShIHCKitNC8tUYSA5Xo8dlnOUleqYUlbMqSoMVI0SBsrK\ns9JPWWnayorHLDRVj0TM+7SjDZWKSjkMMREyZL6eFacInTurDLTBFnzORQZjUs9xtLJSPgSmLUOs\nQm1REDe90IFlpVMp0/FNNEat/gvHRVFWoO+DGZqsDHAYqFqrtr/UQ1amqv80x6zkizPGRVSDbcOi\nUVPKiqMWuXcTFg6Jq9ZtZWXYQBpGNLJSUDZQtVGn5RMGSnUmH/M+7TkPIQc5Q+arrFRsZSVxGGhQ\nPCsRrqfnJCAPsqKVlfIhMG0Z1EXLuM5KkmygtOo5tNNnxzNQVvr8nkKVlZwMtqIisDBoeagnFbNK\nCx4DMgsAACAASURBVNEuWz8IBttqs07LMNVvSkJWbJJs1Ecm/m+YVGT5s4EqTQuZtWclZFu8kJis\n5KystMayzQYqDVkpobKiw0ADgI0bPRYwdCPPMFBMZSWNh7C9KnCanpUQZCX0YoAlTF2OOgO0MGmN\n9RISIdS2xlhAQb6sETUM1FIDdZ0apKCsGI1RLAxERSANE6NoZSXEgFJpWb7KSqqDYxoGW2c/JSQr\nFbsacjMNsjIoYaC4BlvnPzoMlD+EEOcIIW4UQjwjhGgJIc7v8/k/EULcIoR4XgixXQixQAjx5rjH\n37RJeVZ8kafBNqZnJY2H0Bk0UlVWQgyAzqZQ2UADrKyAIiROafruUFsDo71tEMhKtWnRMkwaKOUx\nqbJSs0awMNttqcryZwM552BglJWQIe0a+a4NVLHXIpJJycqghIFKqKzoMFA4TAOWAVcAwWkjCq8D\nbgHeCpwG3AHcJIQ4OeqBGw3YsqVYspJUWUkrDDSx0F6+ykrojikLz0qOBluAhjBpjnurJ24iMwie\nlWrLQho1LGF2eFai3ouOX8dsjk6QFdOkGiUMVFQ2kH0O/Ay2qZKVpAZbCB3SNrFomMP5KStdYaCs\nUpcHuShc7tlAOSsrCfND8oGUch4wD0CI/jZRKeWVXW/9sxDincA7gOVRjr1liwpDlIasFKisOING\nKwvPSsCDGYmslDQMFLYNTWHQHPcmJEFEJhc4q/5FISumSUOYbdMwRG97xVBzqqHmiNqXvROjaGUl\nBEFQhM1fWZk6NWEbHMS4T5tNes3aIfoy2ZIYNBkb2gMjp5m1s8pza1wrK93Qysokgk1wZgBbo373\n+efVa2nCQCXwrLQiKisdK4J2I4RpM3THVMI6K1HVhIYwafmQlaZQRlWvbbnAWaY4rMFWWmCYNISa\ngcVNXRYVQR2TodboBFkxjGhkpahsoACykmo2UIz7NG4WibM2WGNoWm4za2fhRHcYKNaq2dpgGxs9\n94v2rGSCv0eFkn4a9YubNqnX/fYL+FDJlZW0wkBtZaWebzZQkjBQ4BpGYZBQWYkTBmr5qCdBRCY3\nROhEjVYdaZhqIb9GfGUFlF9nuNWtrJQ/G8hRl8posI07yDmLCTaHpubnWbGL0Mn6RBgoVp8WcJ5K\nVxQu5LnNO3W5qGyggQgDJYEQ4r3AvwDnSym39Pv8lVdeyaxZs9r/V+sCzWH//ef4f6lWg507E7fV\nDx2x1AKVFcfoWKUPWYniWQlh2gwdn45y3LDI2WDbFAbSRz1pCJNWvcAwEEQkK+oCNIWJSBAGAuXX\nmcIo28Q+AIiaiUFEZWVkZGJ/FgwPR29HB0IQBLNVB0dZ2bGjY1vRBltP1S+EwdZRVppTpsO2zZGO\nGRfthRNdYaBY506HgWLDfZy5c+cy99e/VgPk+SrfZfv27akerxuTmqwIId4DfBu4WEp5R5jvXHXV\nVZx22mnt/3/lK7BmTZ/YckhTWlzU6zB9uv0fp2cpIgxkFy0z6RMGKkpZMQzYtSvcccMiocG2Xo+m\n7jQrpi9ZaQkDigwDOQcO61mR6gI0KrXEykpTGNSkvYIxgGFgRiErHsrKjBnR29GBMMqKfQ68+oii\nDbaxlRWbrLSGp+U2s+5eiyj2uRuUMJBpQqul/vp0HkWEgebMmcOc1avhu9+FG28E4MEHH+T0009P\n9ZhuTNowkBBiDvA94D22QTcWnn++j18F8g0DhRjcu5FWGMgpWmbQ6F/BtqgwUJeykvh3pxAGitKG\npjCRlk8YKIDI5IYIM3hDWkizRrNiUrHipy4D7fBP035VykoJsoH63BuGQ1Y8FIuiw0C+4YM+EyGn\nMGFrytTcPAttZSUpWQm4ZqUiK04H22cZEsgvG6jnODobqBdCiGnAUYCTCXSEnYa8VUr5tBDiC8BB\nUsrL7M+/F/gB8HHgfiGEQzdGpZQvRTn2pk19/CqQi8G2/RBVq4ppF6CsgJLjQykrXZJ7kjBQEs9K\nGcJAUdrQrEwcr9dga/puyw0RZvAmFqJm0qyYiKTKit1VNSv2Csw1kwoSa6yJaYZwWWZxb4QgCIZb\nWfEgK6muDRQzDBR1Ru6UvJdT8jPYdhehS+RZ8fh9johROrIS4kbV2UDlwhnAUmAJqs7KV4AHgX+1\ntx8AuFfv+XOgCnwD2Oj6+++oB+5bEA5yUVaSsOY0yUrDVlb6elZKoqwUHQaKTlb8CUmrYiAbA+RZ\nkTZZqXaSlTiDTMMO/zhhIGEvqlnf1WedqnZjiqmzYkr74c3aYFtAGEhOnaZG+BCz/6RwVnl2Vl9O\nFAbyOE9JiHQmiFCA0TORIMMwUId/UisrnZBS3kUAsZJSXt71/zekdexNm+DMM/t8KM8wEESW39Ls\nFJvCwJQhlJUUDbaRPCuu46bi7k94baPOAFu2CuEc2o1mRRlVvbblhgiDYg11AZrVGpVGsjBQUzjK\nivpypaZerdE+xNlBVqpbP2XFVpe87qPUFzJMw2AbRlmxCxPKadMmdhQ5hzga2qs8JyUrPgRzkMmK\n531kmh3+vTTQc44yXsC3G4OirBSGMnhWega8iMdLy7MC0MDMXVkpPBsoR2WlVTGg6a2eNO0UYK9t\nuSGkN0K2JDV7oG5VTSpNi3pdjWlxVv92vCotR1mxF9Xsu06Vg4LqrJhY4JCVQTDYhhiAHLIinKyD\nHAYsE3WMSn0cSD8MlET1ywTORQmprHiSlbzCQDJMUfnk0GQlAFKWg6yUSVlpCCOcZyXswJB2GCgr\nX0LMBzJyGKjqr6y0qgaiDGGgEPd6s65CAw5ZEc0ImTte+7O9Ks2qrayYIRfVdFCAn8lN2CaTwdYh\nKzjKSg6hANNWVkQjG4PtICsreZGVer2rEJ/D7BJM5qJAk5UAvPiiut59DbYZy2E9N2OBnpWmSFlZ\nSdtgm4WyArHj8pGVlarZXmG217OiBn2vbbkh5Aze8TWIoRqtao1KUrLiKCsOWXGUlX5LP7jbnbPq\n5qyQXfEJA6WurORksG2M2MRhuisMlDHaykoanpVBCgOFOLd5Kium6VJGQ0w004QmKwFwqteGUlYy\nrrPSU7ipgIUMwfaslFVZyWpAgtizh8ielapJRXqrJ62q2e60B4WsVIZNWoZJtVlPRVnpJit970UH\nWapuPmgTtgCykmo2UMwwUNQQs1NFuU1WMlZWHIUKoJJUWTHNidQfF+IuBZEZIiorPfdRBmNSjzcm\nRs2vJNBkJQCRyMpuoqw0KiGUlRKV209lQOrTviBEbYOsGr6EpFVV595rW24IGW5wanFUaiayalJt\nJVNWHK9Km6zY2UChyUoB2UAT6lIOykoCg23UvsUJA1Vm5ENWHIUKoNJMmLrsQwJKp6yU1LPSQ2yd\nDTlAk5UAhFrEEHIx2JbFs9IKo6y4zkff+gWDEgaKqazECQP5kZUgIpMboiorQybSMBOHgVq2siJt\nslIdLoGy0i8M5BC2oVrPTFfK4g22nmpCiJC2o6xUpudjsHXuJYBqGsqKswP3McpGVtLIBsooDNSG\nVlbKg02bYGgIZs7s88EclJWo63e4kWo2kK2sBNa2cHWcfTsBx62VRjZQVhkfkBtZkQHqiUNkYq02\nmxZCeiMcX0NlyESaNYxWPVHYwzHWtozOMFBflc+n3andGwHnYoKsmD3PrHM7FWmw9VVW+gw+LXvl\n4+osew2QjAcrZ+HEMYaoNlMw2EL5lZUSelZ6SJFWVsoDp3pt31TLIsJARSkrlWjKSt9OQIi+s8JS\nKCsxr29UoiiNgDCQESIElzVCzuCdgbo6rJSVastKVFekR1kZihgGKkBZcRSB6rArDGRnlaU+OOZo\nsG0rKzPyMdg653FETGuTlUSpyzCplJXCwkBaWSkPQlWvBXVjSJlJJUcp1f0aVap1I9VsoIielVCd\nQJ8Hy7JCLgaY1YAEuSorJpb3762GIIpZIyRZafsahmtIw8RI6lmxSYo0YoaBCqiz0qGsOAez+4hM\nyErOBltzlh0GytqzYp/Hkcp0qq2UwkCDoqyUjKxoZaWkCFVjBSae9gwumm+HUlA2UKsSstx+WGWl\n6/NeCN0xZaGs5G2wNfzXXmoFbMsNEQ221WETWatRlcnIinSUFbsTd8hKaKXJ1W5nXpEKkQ2YpDiE\nra2sQM9zkVo2UI4GW2cxzerMfJQVJ6Q4Xp3WXtAwcRio7MpKRIOtZzZQ1mGgyaKsCCFOc/17lhBi\nj6yOlRUiKSuQKVkpi7ISKgwUVVkJEQaKNHt2Se2Dpqxg+JNBWZYwUIh7zz1QC9PElMlSlx2vCo6y\nEjUMZBiKVEiZ3sDU595wFvzrUFZcqwan0gZ3W2IYbHv8T6EMtuo3GDOmTOwoQzjEd8ycnpys9AkD\nlaaCbUmVlUmTDSSEOF0IcYkQYh/gj12bdgGXCCHOTfN4WSMyWcngofU0lxbqWQlZFK4oZQU6pPai\nDbbRPSsB6ontZwm1cF9WiBgGclQFIzVlxVZUpkQMA7muY2pEoc+9EaSspF7XI6bBNs4gJ+sWdUzE\nUD4za4f01c0JZWXSpy5H8MoVlg2U4bjnhbSVlZ0okvIA8GdCiP8WQrwTmC6l/DZweMrHywxSThhs\n+6LkykqaYSAZxjcRR1npkw0Uqv1dg0cZDLaR22D6k5VAIpMXwpIVe4AxpqREVhxlxez0rETKBgKw\nrPQGpj73RgdZ6QoVl8VgG6uYWN3Covc3ZQVHWbFq0zAzUlYGvShcHmTFNww0iMqKlHK1lPJDUsrD\ngHnACuAiYKkQYiXwljSPlyV27YLR0eLDQHHX73AjVYNtNYKyElZy7zMrjKysuAaEyRQGogxkJeQM\n3jFhVodNGKolDgPJqjFxfMAYjpENBOkqK/3CQDZZMabWfD0rRRts4yorDTdZyVpZsc9jY2h6e/Xl\nSW+wjehZ8byOdtgzLfiGgXJSVrIUlG+SUv4e+B6AEGJf4IUMj5cqnIJwZVFWktRZSZOsyIqBya7+\nSglAq4VlqYB4LmGgrpnuIBpsg5QVYYYwN2eNiGEgY4rtWcFKpPB1KyuRw0BZKCt9BpQOwkbGZCXG\nTDp2+MCqUxe9BCwrOAbb5vA0ai6ykigMVHaDbURlxVkAuw33tUlJVu/pywZNWRFC/IMQYrkQ4iOu\n92YCJwghDnLek1JullK2PHdSQmzdql733jvEh/MOA0VQVhxynVo2UBiTp+t85Gqw9QgDJf7dOa8N\nNBBhoBD3uTNQG1NriJpqd6rKypSIYaAslZU+YSBzaq9nJXVDZ5rKSr8yDHWLhshPWXHupdbU6ZhM\neFbSDAOVlqyEeNZ8r2PI74dFT182gJ6V/YAngQucN6SULwG/Bv5UCPH+FI6ROxyystdeIT6cdxgo\ngrKSdizW8az0rWAL4QeGtJQVDxNj1rPnfog8QNcCyGCtJGQlQhjInKqMmBUk1lgzPllxvliLGQbK\n0rPiFwZyCNsUs6djz0RZSYOshJktW5ZaBbtaVelEGc+sHf+TnDqNGrtZBdskqcvOxpQw8MoKIICL\npZTu7B+klI9LKT8PvCqFY+SOSGSlxHVW0n4IZVjPin3wIsnKIBpshelvYB6kMFCrPjFQO6XxrV31\n+G23lRVh78CcGjEMlIWy0ofISjdZyctgG8GjEDjIBfUvlkWj4pDHaOuUxYFDfJk2DYMmzXozdYOt\nZYUsPJkX0jDYOhtTgm+5/QFSVr4AfFIIUQUQQhwrhFgjhHhWCLEAOCqFY+SOrVvVtZg2LcSH8w4D\nRVBW0icrIbOBIPzA0GcADB1KycKzkrPB1vF3eH4naFteCDmDl/b6MeZUE2GrIeM7E7Td/qKzr2pN\neaHKnA3krKHToay4VL9U2tDdllb4SLuvZwUC+xdh1ZWy4nw+a7Jin0cxQ61FZI0k8D8FGGxLo6pA\n8oUMM5hA+xpsc1JWQhtshRBvBM4B7gUWSSl3AEgptwgh/gf4JyHEl4F/B34HPA6MAz9JvdU5YOtW\npar0XRcIMmWYSbOBQi8CGBLSHABlJc3U5YQPZNROVdRMDJqYhkSJlq5tZSArMcJAlWF1AqyRBG23\nO2+HrIiKwCLC8gNZelb8lJW6y7Oyy9uzkmoYyNlxyFUuY8/IGxZWxb6pI5r946DZtRZRfWcdyxpO\nFgbyUFZKUxAOJmSeEikrPcepVlUby0ZWgAOAz9r/bgkhVgEL7L/7gK8CnwOaUsq/TrORRcAhK6GQ\ng7ISNxso9U6xAGWlFGGg3JQVdbxho0E7g8TZFkBkckNIg227JHut2g4DNUYShIEcZWVoYgcWEchb\nltlAfsqKi7D5GWxTV1Yi3KdxBzlhWbRyDAM54TRnlWdrV4I0+IAwUKmUFQj9rBUWBoJcrr+DKGGg\nzcA3gIOBS4G7gNnA94FHgbXA/wOGhBAnpdzO3FE2shJXWUk9DBQlGyhvg22Wqct5kRVbOZhi9J6P\nSs1NZApCSGVF1i3GqSEqYsKzkoKyUjEn5lcWEZYfKEhZaSFUyMrHYJvq2kABbfGCp5oQInwgmhZN\nh6z0eXbTgHTK+8+ylZUd4/GVEJ9rlooZP22EfNbyVFbyWIPID1GUlQeAF6WUG4Hr7T/sNX9eiwoR\nnYMiLOcLIbaiCM1PpJQ/T7XVOaAsZMUzjBMjGyjNFMnQyspkCAMlNNhGDgPZA/twtfd4DpFR2wrq\nWadMgR07lJEzKEZqqSqnQ0xUm7VGrPj3YZdnBaApDExZAmUlgKxYmAxVRD4GW/eOQyDuIFex6jSr\n+Skr7TR4ey2i0e22H2qyKyvOs9YHhWUDQTmVFSnli1LKBzze3yal/I2U8pNSytcAs4A3Af9j//vv\nUmttjigLWSmbshJYYdVB1FlsBmEgKdUuBy0MVA1QT9pkpUhl5YQTYNs2eOaZwI9JpxYHtD0r1Vb8\nMJATHqu4wkANYYZfKylLZcXnuXfISsfBShQGCjTYBvQvomnRrNYmPp/1zLpeZ5wa1alDAIy9tJuQ\nlRNOgBUr+n6s0DBQSZWVUJBSjgG3238Di7KQlaR1VrIw8vUlK3GUlZ07fTfX6x4VGv32Yx/X6bOL\nJCtxCFOnetKJdhjIY1tuOPVU9bpsGRx8sP/n6vX2QO0oK4nMwfZ56SYrpcgG8rs3rAnC1t1HZLKQ\nYVBbvJsXT1lpWLTyVFZs0ledoghSIrISUGeldGTl1FNh3ry+H4ub1RUVvgpO2ZSV3Q2RyEoRdVYa\njVA1FQoJA3XNYnuWoff6fMqeldQGJKfxMa5tHMJUCQoDBWzLDYccAnvuCUuXBn/ONVCnQVaE0aus\nNEWEbKCopu8wCBkG6visS1np+1xEQZ5hoGa+ZIW6hSVqao0lJshKrD7Np5BdKcnKKafAmjWBEzko\nMBsIcskGc6DJigekLI+y4tmxRiBHWSkroSrYWiFLrGdQbj/V3x2jlDnEI4qOejJU7T1e1R6ovbbl\nBiHUjG/ZsuDPWVa7FoczI05EVmqdxAcmwkBRQ4R5hYGEVe9VVlwG21QHx5jZQHEMttVmfYKs5BQG\namC2ycr4jgTKCng+z6UkK6eeqgajhx4K/FjhYSCtrBSHXbvUNQ5NVpyOIqM6Kz0zsBBxZQfpk5Xo\nqct9j522wTbNAcnZSYyHPk4bHOVgqOIfBvLalitOPTWUsuLU4nDW8amRwLNS81BWKjHCQDl6VtyE\nrXtGHzubxQ8xBqe44QOlrLjqrGQ9WNn3kkNW6jsTkhWP57mUZOWEE1Sj+jxrhWYDaWWlWDil9vfc\nM+QXhAidEx8VcWc/DtIOA4kwnpUu0pC7spI2WYmprMRpg6MceJKVACKTK045BdavV0ZbH4jGxEAd\neYVkD1Q8lJWmMKhhhSuRnsW9scceyky1fr33dstVlh46OvayKCtxDLaVltW5CnbWg5WtUHWTlUSZ\nZYNAVmo1OPHEQLLSaqk/razspoi0LpCDjB7auB2K+/vuryRF0No1bRSlrGThWQGYPj1wYPZDIrLi\nEeqpBBCZXOGYbJcv9/9MY6IWRxpkxckG6iArFTP8ufBQVhL7RapVOO00uP9+z82iYdEQrhHVdZ+n\nPjhOVwXTotyncWfk1aaLrOTkWWkKE3NaSsqKTxioVBVsHfQJuXp6GkF7VnYXlImsJF33IXWyUjOp\n0sKsBqxBElVZ6XPuQtcqycqzcsopsGRJ5K/FUbWqQ/6hHsPeVqsU6FkBOPZYGB4OnPEJy0VW7Blx\njXrsAcFRlbrJSuhz4XFPhlpKox/OOAMe6KnooNDoUlayJCtHH63qckS4T32zO5yNPjBa9VyVFdGw\naFRq1KbbyzbsSj8MVMqicKD6nhUrfM+xb1ZZymSl1YJmU2cDlQ5lIiuBHUoEZSWtWYM5JcSAGVVZ\nKXsY6Mwz1ew5woq2djMit8EZlGuixGEgw4BXvCKYrDTqbbISeYVkDzh+HTdZaVUMajGVldQGple9\nCtauhRdf7NnkJmxAR8ee+uBoGHD66bB4ceivxFZWWhYtMz/PirDqNCoTykpjZDcx2IJSVup1eOQR\nz82+fUzKZMX3OFpZKRZbt6pZ16xZEb5UUmUl7XoOp3zkLB77m28yNCXg1pk2TZ3AF17INwxUqbRN\njKmTlRdfVINSBCQJA3mRwfY2DyKTO/rI05WG1a5ymopnZahzXwCtislQ2HMRNUMtLM44Q716qCui\n4VpDB7JVVkDdpxHISty+pSotyDEMJBoWzUqN2gxVFM4a2U08KwAnn6xefZ61vMmKVlb6QAhxjhDi\nRiHEM0KIlhDi/BDfeb0QYokQYkwI8ZgQ4rKwx9u6VZlrQxn3HGTEMNNSVtJ6EIdPPpZjrvpLAnOX\np06F44+HxYvDKytpkBVQH0w7DPSqV6nXCAMBxDv3xrB/GKhaljAQKHl61SoYH/fc7K5y6syIk5CV\no957Jnee/gkOOuvl7feaVRNThDwXQsBBB8HatekOTEcdBTNn+pKVdll66DHYpu6ROPNMZfbdvDnU\nx5MoK+3P5RAGqjRUeX9HoWsmVVYGiazMnAlHHumrYvr2MY4hKyUioZWV8JgGLAOuAPpq8UKIw4Df\nALcBJ6NWhP6uEOJNYQ4WqcaKgzwNthE9K07WZK6YPRsWLgyvrKQRBnL2ZVnpZkHttZfqMCKSlVie\nlQD1pHTKSqPhWw684lIVnEEmSeryrEP34PUPfKVN5gBkxYh2LmbPhgUL0h2YKhVf30qlWc9XWXFI\ntZ+HpguebXA6i4BBzpQuSSYnZaVVMREVQR2T1thuFAYC9aw9+KDnJl8SIUSqY1KgN0YrKxOQUs6T\nUn5GSvlrIMyw+5fAOinlP0gpV0spvwH8HLgyzPFik5WM6qwkyQaKupBeajjrLFixgsrIzlQMtlHJ\nStqKUlSJHWIqK1P8CUnQttxxyinqxrrvPs/NlaZFyw4VVM0KTSrJyu17oFU1o5OV+++nOZZuOzjj\nDM+MoEq3spI1WTn8cNh779D3qa+60+d5NKSFdDwreRhsXSpdnRrNsd0oDATw6ler+8vjPAd6ElO8\nNr7H0cpKYpwF3Nr13s3A7DBfLpuykqTOSmEP4VlnQavFy569PxWDbeiOyQ4pZUJWHnww0jVOEgby\nCm+0vR9hQx9ZYnhYGTrvvddzc0dJdsAiQrXZkGhFCQOBIiujo+yz8aH0ycrTT8OmTR1vd58D94Qm\nk+dSiEik2ncSEIKstFe/zkFZqTQmKuZaokZrNKGyUqvByEjHW6UmK2efDaOjnr6VQE9iBmTFc+Ks\nyUoiHABs6npvEzBTCDHU78tlIytJlJXCHsLjj4cZMzjs2YX9jz9rlloKvasDcVC4ZwXUIDA+HmoV\nVAdJlBXTKwzkeFbKoKyA6kTnz/fMkqo260jXQF2nligM5AVZNTzPky9OOw1Mk5c9dV+6z4QTfulK\nG+6o9AodfURmqbIOWQmRueb7XPWZLRvSai8smcfMWql0dtqyqCHHE5KVV7yi51qVmqycdhoMDXlO\nDAL7GB0GmvwoE1lJIxuokDBQtQpnnskRm0OQldmzVRL/okU9m3wrNPohqzDQqaeq3+RTAMwLcTwr\nE6Xp/cNApse2QnD22fDMM/DUUz2bKq2JMBBMrOOT5r3YMsxo58JWg17+zIJ0B6ZDD1Xhl657o/sc\nZFrB1sGZZ8KWLfDEE30/6tuGPn2ZiYVwG2wzHqzcaxFZYkLJiX3+zjkHVq7sSDfPxPCcFoaGFCEu\nkKzoMFB2eA7Yv+u9/YGXpJTe6Qs2rrzyStasOZ9bbjmf889Xf3Pnzu1/xDzDQIOgrADMns1RWxZi\nGn1meSeeqNjhXXf1bIpMOrIiK1OmwCtfGbmORdQ2OGZUg97wxpSZatvMqSUIA4EiK+DZiVZds2GI\nuOhgSMzYy2TGlIjnYvZsDns2ZWXFCb90+XeqTatDXer2rGQyOIbMXJOyj2cloG+p8f+3d+dhUpTn\n3se/92zMAAoqCEZEJSioqCyigKyDYRQUgqiICueNEo5LFsnJpsmJJ/FoYtwSY1TUREXNGDVRcSXu\nSxSNEI0b7r5oBBQXlGWY7Tl/PN1DT09Pb1PdXc38PtfVF0x1VffTXdVVd93PVg9d8jfOSuyIuY0x\nmZWsv79x4/wXEHPchnZQuKixY3154zJmhcqs1NbW+uvj/fcz/a23mD59OgsXptUkNGvbarDyDDA5\nbtmUyPKkLr30UsyWcPrpS1iyxD/mzJmT+h1zFGEGMYJtwX6Eo0bRc8tH9GtoZ+6UqJISfwJ54ok2\nT2V8wY/URwcerIBv6Pb002mvnlWwUlXGyr2nM3jyrm2e69Kjko9ue5yh/xV/aBdI796w996Jg5XY\n+WPwd8RBBysHPrOIgaufymyj0aPp9eV79HFrgisIwIQJvkos5jdZEvcd5LyBLfh9MmBAyuO0qclf\n9zK9yDU3NlNKc8tcTXnputy8NfBtLKmABn/lTDrzezIDBsAuu8CTT7YsCnU1EPgbg9Wr22TM8p1Z\nib7PnDlz/PXxmGNYsssuLFmyhEsvvTSQ92pPUQQrZtbNzA40s6GRRQMif+8Wef6XZnZDzCZXxpV0\nVgAAIABJREFURda5wMwGmdnpwDHAJaneq67Ot2UKSzVQR9usFKwaCPzFHdjvy2Wp1x0/3t+Zxn2m\njAe1GzoUnn02N8HKxImwcqU/aaQhmzJYaQmDX7+LPickCEhKStj5mPGU9N05/RfMtUMPTRysuNYX\n6kYrD7zNCmVlmU/wM9q3sR+6OeV9S2YmTfLTtce0hYgP2HLewDZq4kR49NGkq2R7kWvY5JdbdPbr\nPGRWypq2Du/fWFJBScMWyso6MByDmb85KqZgZcwY/2/cb63g1UBqs9LGQcA/geX4cVYuBlYAP488\n3xfYLbqyc+49YBpwGH58loXAKc65+B5CbXz5pf83TMFKUfYGAujVi39XDWTw52kGK3V1ber9k3bN\nS6S62o8zsX49kINgBVJeCKKCnvE6lA491Dc6/uKLVotbDRyGn8cn6MxKVvr1Y13X3ThwY/oZsrQM\nHw7bbdfq2Gg1hw7kJ7MCPnB66aWkg8MlvcglyRJHg5V8ZlZKY7pKN5ZWUO6yn2Oqxbhx/jyxeTNQ\nBMHKjjv6TgtPtc4kJj3H5KOBrdqstOace9w5V+KcK417nBx5/hvOueq4bZ5wzo1wzlU55/Zyzt2Y\nzntFrnHhHmclmv8Me5sV4M0Jp9DtoH1Srzh0qD/Zx1UFZZydmDQJmpvp9ap/naxTxYn06ePb1zzy\nSFqrR8seaBnC5tBDfQvoZa0D0rLm+q1DsoOfNTcMwQrwxo6j2WdDZmPmpFRW5i+AMcFKaXMDrrxA\nwQrAY4+1u0rWmZXIJIIllflrs1LWXN/yPTaVBNSrbNw4/xkjjfoLfZ5MS4IsZqGqgVq9hzIrhRG9\nQQx1ZiWD0QkLWg0ETLz/x4yvPS31imVl/scY18g242BlwADo35++rz7SsVRxe6qr086sNDSQmzKE\nyaBBvidMTEodIt1bY3ZaY1AXmQDs/+hl9Ht5afAvPGmSv5hETt5lzTGDp0Gru9CcNujcdVe/X5IE\n1SkHE2vnAtS4OZJZia0Gik7JmyOxWbqm0oCOoyFDoGfPluO2KIKVsWPhlVfa9GIC9QbqlDqUWclX\nm5Xo+xVBZiUj48f7k33MAHEZBytmUF3NV15/NDefu7oa3nkn7a6h23QVELR83zz4YKvFrUY5JUTV\nQMB2A/uw41cqg3/hiRP9WEGRqsxWE/5BfnoDRVVXJw1Wsh1MrE2wEn2BHF6wfODrv6zAgpXSUn9z\nFMnkFsV5ctIk3yr64YdbFmmclU4smlnZYYcMN8znOCuQdkRbFD/CqAkTYMOGVvNgZNVQtrqa3h++\nSJ/SdcGWD3wZzdLKroS+O2RQamr8BfrTT1sWtRo4jMikgwGPsxI6w4b5iecix0Z8dilv1UDgL2xv\nvAEffJDw6WwvcgkzK5DTC1bsXERNZT5YCeQ4Gj/e95rasqU4zpP9+/t2K0u3ZgWVWenEvvjCN53I\nuJ1BPquBou+XZmalaC4QI0f6Lz/mx5hVI9VInf1EHguubFE77OAbU6bRbqUoToBBqKnxVQEPbW2/\nXuZiBg7DtzUIS2YlZ0pL/QUw0lYkPmDLW28gSNkYvKNtVqKTauYtsxI5ATSXBVideMQRsGkTzY8+\nTlNTkfxWa2r8+TEy3koo2qw0NqY1YnJHKViJs2GDH/09Y/kcZyWD9yuqu/vycpgyBe67r2VRVpmV\nfv34ZKe9GN+cXtuSjEVT7Cl+oJ0mWOnXzzc8jgkyy4mZP4bIpIMhabOSU9XVvipz06Y2AVteMyu9\ne/tBDFMEKwlvApKcW5rq/PLSqpgGtpD7zErkWAo0WBkyBHbbjeZ77gWK5KaupsbPQ/Xaa0CKdnH5\nqgaKFiTHFKzE2bgxy2BFbVaCMW2ab6Ef6XaZ7Xgpb+9ezdj69HrtZGzyZPjwQ3j11aSrFVVWq6Nq\nauCBB1oCuArq2wQr23xmBfzxW1cHDz3UJmDLy3D7sSZPhr/9LWFQnW2blZZgJZpZyWAYhWyV09DS\nVdoFWQ1kBtOmUXL/vYArjmNzwgQ/bUTkxiDpzWjAmZWSkgTDGuUhWI1SsBJnwwZf7ZyxfFcDZdBm\npagumEcc4U+uDzwAZB+sdD3jZNac/JPcpCcnTIDu3eHOO5OuVlRZrY46/HAfwL3yCq7ZUUZTgsxK\nw7bdMwr8iL6DBsFdd/l5i+KrgfLRGyjqqKP83E1xk/ZBGtUH7Vx82gQr0RfIZWaFmGqg8oB7lU2d\nSsk7b7M3bxTHb7Wqylc1xpwf2y13376+3VIA58CkM3RHC5JjClbidChYydc4Kxm8X9FdMPv2hREj\nWqqCsg1Whpx8MOMWnZSbfsOVlT6ouuOOpKsVXVarI8aN8yfSpUtbBg5rmT8Gn77vUpKfXgMFN2MG\n7u67fXDWTrCSl5uIceN8t8YEx2m2bR2aNke6ZVflJ7PSVN9EKc0t36MLOliprsZ16cI07i2e32pN\nje/FtHlz8nPMjBnw9tvwr391+C3bfZ88ZNaiFKzE2bgxy2ClosKnfwOW9CDZ1noDRU2b5u8cGhtz\nM2x+EGbO9Hes77/f7ipF+d1nq7LSZ5weeKDtKKf4GZIrLD+9Bgpu+nQsUo1psRFJPhvYgm/McNRR\nwQYr8W1WcpxZaTmWIoPQBR6sdOvGltGTii9YqauDxx9PfhxVV/s2DX/5S4ffMmlHD1A1UCFk3Wbl\ngANg7Vo/d0yAgugNVDQ/wqipU+Hzz2HZsvAOWT91qv9ik1QFFXpAvrw78kh4/HGaVn8ExMwfA7gy\nXw3UKYwahevVG4jp4gv5bWAbNXOmb4z5+uutFmfbwLZ5i1/eJrOSq2Al0vuoJUNVHmCblYiNE6cx\nnieorP8i9cphsO++sMcecOedyY+jigqfXQkgWEna0QOUWSmErDMrRxzhu93++c+BlieI3kBFd8Ec\nOdL3Zrj77vBmVnr08HcuSaqCijJQ7IhZs6CpiZLbbwXiMysVnSezUlpKQ82RAK2rgaqq/Ammri5/\nx8aUKdC1a5ugOmkD2x12gFWrEo5K2yZYyXGbhfjMChXBj4T8xbhplNPITm+mMYdZGJjBccfB7bfT\nVJei0fqsWb4jQAdvopN29ABlVgoh6zYrlZX+LuaWWwJt1NkpMyslJS3fZcOWZiCkn2HmTF93/Mkn\nCZ8uyu++I/r2hYkT6XKbn4arpREmQFk5FdZJ2qwAdTUzgLjMyte+BvX1uHvuzd+4HlVVvvFzXFCd\n9CZg1iw/s3iCbs/RNivlXfOTWWncFJmLKGYQuqCDld0n7snGd9ay38Ipwb1orh1/PHzyCbu//Ujy\nm9EpU3xngA5mV5J29IiukGMKVuJkPc4KwOzZPoJ96aVAytLU5Mfa6nRtVgDmzoVVq9jxFT93Ryg/\nw4wZfgfdfXfCp4v2u++I2bMpf/0VoPWF2pX7rsudRcOkKfxth9nY8GFbF+6zD4wcibthMZDHY2Pm\nTD8cQMxotkmDlYMP9r2aFi9u81RzfSSz0jVunJVcZ1bigpUgs8UlJdBtz52La8LRoUNh77058LVb\nkh9HlZW+DeDtt3fo7VL2BlJmJf/q6rLMrAAcdphvfX/LLYGUJdvuhbGKshoI/Lwde+7Jnk/6E2Yo\nTyR9+/rRcq+7LuHTRfvdd8TRR+MiO6sldQ/0Gbk7DQMGF6pUebdTvyqmfHoLhxy3e+sn5s7FHriP\nnViXv2Nj+nRfFXTDDS2LkrZZMYN58+Cvf/V3bzFcpBqoJbOS44tVdHj/aINe6xKeCTELygxmz+aA\nd+6ga+mW5Oseeyy88ELLQHLZUG+gkMo6WKmo8CnUgKqCsm0EF/8aRfnDNoO5c9lz+W10L90c3vE5\n5s/3VUFvvNHmqaL97juiVy82jjoMaF0NtM9V32Wflcm7encKxx/v/yHFHXGQtt/et3H4wx98JpAU\nbVYATjrJt6+Jqz5y9XHBSq67Lm+OG95fwcpWxx9P1/r1jNuUYgbxI4/0M6P/4Q9Zv5V6A4VU1tVA\n4KuC3n0XlnW8sVbKUSa31TYrUXPnUlH3JUeX3lXokrRv5kyfTUtwIijq774DPp3iL8it2qyI17s3\n9ZOnMpcb83tszJ/vz0uRdigNDf5+oM2IpFG77+7nF4qrCmquiwQPFZEN85xZKelSQQUNlJflfi6a\n0Nt3X97vOYSvfZaiU0eXLj5Ttnhx1vtJvYFCKuvMCvgf+IABcMUVHS5H0mqgbbk3UNTAgfx799Gc\n0HxjoUvSvspK377m+uvbnAg6a7DCscdy17D/ofuYAwpdklDaMHMuh/AcPdcEO8xBUmPG+DYz11wD\npHlszpsHDz8M773XssjVN7CFCqwkkurMc2YlWrVYVdZ52j8l897071Jx0IGpVzzlFD+FSTvt61JR\nb6CQ6lCwUloKp50Gt94KH33UoXKkrAba1jMrwBuHzGNgyTt5+TFkbf58v6/vuafV4qIOFDug/+Cu\nzFhxDrvv3aXQRQklN+1I/tHv6/TtsTl/b2rmj9M77oB169I7Lxx7rE8z//73W5c1NNBA3NgxkPPM\nSrSrtEWClcrOMhpyCuNumM/E+36YesX99oNRo+Daa7N6n5TVQMqsFEaHghWAk0/2TcyzPDCiklYD\nde/u5/1IMBZCrGIPVibdPJ+v1r0a7qv+kCH+RHDVVa0WF/t3L7nRq18lI9+/g71nD0u9cpDmzvVt\n6a6/Pr1Aunt3WLDAZ2MiDW1dfQONFnNQl5b6c12OgpXouC7RaqDSaGalJEWjUmlr/nw/AeKqVRlv\n2m41UK9evvfrxIkdLl4qClYS6FCbFfBtGE48Ea68Ehobs36ZpNVAc+f6od5vu63d7aNdn8N8nU+p\n3fnPQ+bb34YHH2w1aZyCFQmV3r1hzhy49FKaN29J79g84wwfqER7EtXX00jcht26+RunHIifi6ik\nymfrqkqVWcnY7Nk+AL388ow3bTezUlbmb9a2267j5UtBwUoC3boF8CJnnOHHNbgr+8ahSauBRozw\nc0Scd15LC//2ttcFMw+OOw6++lU4//yWRQpWJHTOOgtWr2a/529I79js39/3cPztb/15pqGBBos7\nIZ10km+j9+WXgRc3OhdRdFyXaJuVLp1ogMHAdO/ur0tXXgmffprRpmGYEFfBSpzu3QO6kR82zE/l\nff757QYTqaTsXviTn8DLLycdlCzp9hKcsjL48Y/92BSvvgp03jYrEmKDB8OsWRz69wuoLEsz63vm\nmfDmm75NVkMDjSVxJ5Szz/aByu9+F3hx3ZbWmZVodVCnmcE7aGee6bP9Ge6rMNx4KViJ0717gC92\n3nmwYkXWowcmzayAnwJ+/Hj/PgnGdUm5vQRr3jzo1w9++UsgHD9wkTbOPpudPn+HmVvSHLxy1Ch/\nnjn7bEq2bG7dZgX8Mb9gAVx0EaxfH2hRo5mVim6tg5VKZVay06cPfPObPlOWQSas3WqgPFKwEieQ\nKqCosWP9UMc//WlWraVTZlYA/vu/4R//SDj3Q1rbS3AqKuAHP4DaWnjtNQUrEk7DhvHKHlM59bM0\ns75mcPHF8MorDHv1ZpriMyvgq5c2bfIXwQC5uOH9o/+qGqgDvv99H6gsWpT2JqoGCqFAgxXw1UBv\nvdXukOzJpFWNc9hhfoTC733PjziZ6fYSrAUL/PTt3/42DfVO372EUtmFv+KTX13re/Kk46CDYO5c\nttv8EY0lCW6xv/IV3x7iwgsDbWzbvKX1xIkt1UAKVrLXv7/vsXr++bBuXVqbhOHGS8FKnECrgQAO\nOABOOAF+9jP4/POMNk27Gue3v/XjfJx3XsLtC32QdSqVlXDZZfDwwxy+8faCp05FEhl0zP4cfOaY\nzDY6/3zqS6sSZ1bAZ3m7dvXZxYDEz0UUzaxUoGClQ84912fVfvKTtFZXNVAIBZ5ZAbjgAp8i/dGP\nMtos7WqcAQN8486LLoLXX2+zfaEPsk5n6lSYPp1zN36Prs0bUq8vUgz69WPpEb/h1b1mJH6+Z09/\nrquthccfD+Qt3ZZ6GihrGTG3vJsyK4HYeWcfsFxzDTz/fMrVVQ0UQoFnVgB23RV+9Su4+mp48sm0\nN8soM/KjH/n03kkntUQpyqwU0G9+w05uHcOf+X3qdUWKxFF3L+DYfya5G583D0aPhm99K5CB4lx9\n6xFzlVkJ0Gmnwf77++q7IhhcVMFKnJxkVgBOPdXPz7FgAdTVpbVJRr15qqr8bM8vvugbu6FgpaD2\n3JN3Fz3IgMvOLHRJRPKnpMSPufL662lXMSTjg5WtJ8BoZqVcwUrHlZX5MVeef75NE4J4qgYKoZxk\nVsD/iK++2s98evrpCbsax8u4N89BB8Gvfw2XXAL33KNqoALbd8FYdtlD8+NIJzN0qK8OuugiuP/+\njr1WQz0NMV2le/SuYH3ZjvTvXwSjWheDMWPgnHPg5z9PWnWnaqAQyllmBfxkUldf7XsGpTErc1aZ\nke9+F6ZPhxNPpHzlS5lvLyLSUWee6YdtmDevY72D6luPmFveqwc9Gj5h929PD6CQAvgM2LhxviPI\nxx8nXEXVQCGUs8xK1Lx58J3v+B/zo48mXbW+fus8YWkzg5tuggED2O8HR7ArHxT8IBORTsbM35RV\nVfnhFdauze516utpih+EToJVWgo33+xHtp0yJeFQ/GEYjVvBSpycByvg06MTJ/oMyNNPt7ta1tHs\ndtvBfffhSkq5nyPosjmzLtMiIh3Wuzc8/DB88QVUV/vhFTKVaHh/Cd6uu/p99cEHPrj87LNWTyuz\nkgEzO8PM3jWzzWa2zMxGplj/TDNbaWabzGyVmV1iZikbEOS0GiiqvBzuvBOGD4fDD4dnn024Woca\nNe2yC2/97gGadupDt9L0GvSKiARqr73gkUf83fqECbBqVUabW2ND4kHoJHhDhvh9tWoVTJoEq1e3\nPKVgJU1mNhu4GDgHGAa8CCw1s17trH8C8MvI+oOBk4HZQPImz+QpWIm+0T33+EHjJk+GP/+5zSod\nbdS0/3H7MHTdQ/Qc3LcDBRUR6YBBg+CJJ2DLFt+t+aWX0t7UGlQNlFf77w+PPeZHth0zBt54g6Ym\nP36cqoHSsxBY5Jxb7JxbCZwKbMIHIYmMBp5yzv3ZObfKOfcQUAscnOqN8lINFLXddrB0KXz963D8\n8b4dy5YtLU+HIZoVEemwvfbyVd69e/s50669Nq0ekTQ20FiqzEpeDRni91VVFYweTdPim4HCTx0S\n+mDFzMqBEcDD0WXOOQc8hA9KEnkaGBGtKjKzAcBU4N5U75e3zErsG954I1x+ue8hNGxYS7VQGPq2\ni4gEom9fn2GZNcvP/DtlSqsRtxMpaahvf3h/yZ3+/eGpp2DKFCpOPoklTKfHhuDmfMpG6IMVoBdQ\nCsQ3J18LJKzfcM7V4quAnjKzeuBN4FHn3AWp3iyvmZUoMz+K4IoVvgBjxsCpp9Llkw8LHs2KiARm\n++3hj3+EBx7wE7zuuy/Mnw/vvZdwdWtsoEmZlcLYcUeorWXDzXdxUMkK+nz8ckGLUwzBSsbMbCJw\nNr66aBhwNHCkmf001baVlbktW1LR9NtFF8Ftt/HDawbyw8/OSm8adxGRYlFTAytX+gEslyzx85tN\nm+b/39jYslpJUwPNyqwUVPcTprPLhrc45Gc1BS1HWUHfPT3rgCagT9zyPsCadrb5BbDYOXdd5O9X\nzKw7sAj432Rv9r3vLaRHjx6tls2ZM4c5c+ZkWu7slJXBwoXwjW/wwuyLGPLmexkOtCIiUgS6dPGD\nWJ5yip8qZNEimDHDd6M95RQ4+mhKG7fQXKpgpeCqqlr9WVtbS21tbatl69evz2kRzKXTyKnAzGwZ\n8Kxz7ruRvw1YBVzmnLswwfrPAw86586KWTYHuAbYziX40GY2HFi+fPlyhg8fnqNPkgXnfDWRiMi2\nbsUKH7T86U+wwc9Y/mzfGRyy+s4CF0xSWbFiBSNGjAAY4ZxbEfTrF8st+yXAN81snpkNBq4CugLX\nA5jZYjM7P2b9u4HTzGy2me1hZl/DZ1uWJApUQk2Bioh0FsOH+2Dl44/hoYdYNuks1nz91EKXSkKg\nGKqBcM7dGhlT5Rf46p8XgBrnXHQig35AY8wm5wLNkX93BT4GlgAp26yIiEiBVVbC5MmMmjy50CWR\nkCiKYAXAOXcFkHD2P+dcddzf0UDl3DwUTURERHKoWKqBREREpJNSsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhVjTBipmdYWbvmtlm\nM1tmZiNTrN/DzH5vZh+aWZ2ZrTSzw/NVXhEREQlGWaELkA4zmw1cDCwAngMWAkvNbG/n3LoE65cD\nDwFrgKOBD4Hdgc/zVmgREREJRFEEK/jgZJFzbjGAmZ0KTANOBn6dYP1TgJ7AKOdcU2TZqnwUVERE\nRIIV+mqgSJZkBPBwdJlzzuEzJ6Pb2ewo4BngCjNbY2YvmdlZZhb6zysiIiKtFUNmpRdQCqyNW74W\nGNTONgOAauAm4AhgIHAl/vOem5tiioiISC4UQ7CSjRJ8MLMgkoX5p5n1A75PimBl4cKF9OjRo9Wy\nOXPmMGfOnFyVVUREpGjU1tZSW1vbatn69etz+p7mr+XhFakG2gTMcs4tiVl+PdDDOTczwTaPAfXO\nuSkxyw4H7gW6OOcaE2wzHFi+fPlyhg8fHvjnEBER2VatWLGCESNGAIxwzq0I+vVD34bDOdcALAcm\nR5eZmUX+frqdzf6Or/qJNQhYnShQERERkfAKfbAScQnwTTObZ2aDgauArsD1AGa22MzOj1n/SmBH\nM7vMzPYys2nAWcDleS63iIiIdFBRtFlxzt1qZr2AXwB9gBeAGufcx5FV+gGNMet/YGY1wKXAi8C/\nI/9P1M1ZREREQqwoghUA59wVwBXtPFedYNmzwJhcl0tERERyq1iqgURERKSTUrAiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQK5pgxczOMLN3zWyz\nmS0zs5Fpbne8mTWb2V9zXUYJl9ra2kIXQQKk/bnt0T6VdBVFsGJms4GLgXOAYcCLwFIz65Viuz2A\nC4EnclxECSGdCLct2p/bHu1TSVdRBCvAQmCRc26xc24lcCqwCTi5vQ3MrAS4CfgZ8G5eSikiIiKB\nC32wYmblwAjg4egy55wDHgJGJ9n0HGCtc+663JZQREREcqms0AVIQy+gFFgbt3wtMCjRBmY2FvgG\ncGBuiyYiIiK5VgzBSkbMrDuwGPimc+6zDDatBHjttddyUi7Jv/Xr17NixYpCF0MCov257dE+3XbE\nXDsrc/H65mtUwitSDbQJmOWcWxKz/Hqgh3NuZtz6BwIrgCbAIouj1V1NwCDnXJs2LGZ2AnBz4B9A\nRESk8zjROfenoF809JkV51yDmS0HJgNLAMzMIn9flmCT14D945adB3QHvgO8385bLQVOBN4D6jpc\ncBERkc6jEtgDfy0NXOgzKwBmdhxwPb4X0HP43kHHAIOdcx+b2WLgA+fc2e1sfx0+C3N0noosIiIi\nAQl9ZgXAOXdrZEyVXwB9gBeAGufcx5FV+gGNhSqfiIiI5E5RZFZERESk8wr9OCsiIiLSuSlYERER\nkVBTsEL2kyRKYZnZOZFJKmMfr8Y838XMfm9m68zsSzO73cx2LmSZpTUzG2dmS8zs35H9Nz3BOr8w\nsw/NbJOZPWhmA+Oe38HMbjaz9Wb2mZlda2bd8vcpJCrV/jSz6xL8Zu+LW0f7MyTM7Cwze87MvjCz\ntWZ2h5ntHbdOyvOsme1mZvea2UYzW2Nmv45MiZO2Th+sZDtJooTGy/hG130jj7Exz/0GmAbMAsYD\nXwH+ku8CSlLd8A3mTwfaNKAzsx8B3wIWAAcDG/G/z4qY1f4E7IMfzmAafl8vym2xpR1J92fE/bT+\nzc6Je177MzzGAb8DDgEOA8qBv5lZVcw6Sc+zkaDkPnyHnlHAfwD/D99hJn3OuU79AJYBv43524AP\ngB8Wumx6pNx35wAr2nlue2ALMDNm2SCgGTi40GXXI+E+awamxy37EFgYt183A8dF/t4nst2wmHVq\n8L0D+xb6M3XmRzv78zrgr0m2Gaz9Gd4HfvqbZmBs5O+U51ngCKAB6BWzzn8CnwFl6b53p86sdGCS\nRAmPvSIp57fN7CYz2y2yfAQ+ko/dt68Dq9C+LQpmtif+zjt2H34BPMvWfTgK+Mw598+YTR/C39Uf\nkqeiSmYmRqoUVprZFWa2Y8xzo9H+DLOe+H3xaeTvdM6zo4CXnHPrYl5nKdAD2C/dN+7UwQrJJ0ns\nm//iSIaW4dOJNfgBA/cEnojUb/cF6iMXt1jat8WjL/7EmOz32Rf4KPZJ51wT/mSq/Rw+9wPzgGrg\nh8AE4L7IqOSg/RlakX30G+Ap51y0bWA659m+JP4NQwb7tCgGhRNJxDkXO6zzy2b2HPD/gePQlAki\noeOcuzXmz1fM7CXgbWAi8GhBCiXpugLYl9btAvOms2dW1uEnN+wTt7wPsCb/xZGOcM79QTOCAAAD\nmElEQVStB94ABuL3X4WZbR+3mvZt8ViDb0OW7Pe5BojveVAK7Ij2c+g5P6nsOvxvFrQ/Q8nMLgem\nAhOdcx/GPJXOeXYNiX/DkME+7dTBinOuAYhOkgi0miTx6UKVS7JjZt2Br+IbZS7HN8qL3beDgP7A\nMwUpoGQkciFbQ+t9uD2+7UL09/kM0NPMhsVsOhkf5Dybp6JKlsysH7ATsDqySPszZCKBygxgknNu\nVdzTyc6zsb/R/eN62E4B1gOvkiZVA8ElwPWRmZ2jkyR2xU+cKCFmZhcCd+OrfnYFfo7/4dzinPvC\nzP4AXGJmnwFf4mfp/rtz7rlClVlai7QvGoi/GAEMMLMDgU+dc+/j68h/amZv4WdEPxffW+8uAOfc\nSjNbClxjZqcBFfiulrXOOd2J51my/Rl5nIPv1romst4F+GzoUtD+DBszuwLftXw6sNHMohmR9c65\nuhTn2X9E1v0bPii5MTIUwS743/HlkYRBegrdFSoMD/yYAO/hu0Q+AxxU6DLpkdZ+q8VfuDbjW5//\nCdgz5vku+BPdusiP6DZg50KXW49W+3ACvptjU9zjjzHr/A8+W7YJf1EbGPcaPYGb8HdqnwHXAF0L\n/dk64yPZ/gQqgQfwgUod8A5wJdBb+zOcj3b2ZRMwL2adlOdZYDfgHmADvnHtBUBJJmXRRIYiIiIS\nap26zYqIiIiEn4IVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyJSFMysOjKhoYh0MgpWRKRYHIOf2E5EOhkFKyJSLMYCTxS6ECKS\nfwpWRCT0zKwnsB/wZKHLIiL5p2BFRELLzGaZ2f1szaj8p5ndZ2bjClkuEckvc84VugwiIkmZ2XnA\nMc65QYUui4jknzIrIlIMDkVVQCKdloIVEQk1MysDRqJgRaTTUrAiImE3AqhEPYFEOi0FKyISdmOA\n1c65dwHMbICZVRa4TCKSRwpWRCTsRgF/j/n7v5xzdYUqjIjkn4IVEQm7UiCaVZkL3F/Y4ohIvqnr\nsoiEmpkNAy4EXgT+5Zy7ocBFEpE8U7AiIiIioaZqIBEREQk1BSsiIiISagpWREREJNQUrIiIiEio\nKVgRERGRUFOwIiIiIqGmYEVERERCTcGKiIiIhJqCFREREQk1BSsiIiISagpWREREJNQUrIiIiEio\nKVgRERGRUPs/+yZ/uz+HgI8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" ] + }, + "metadata": {}, + "output_type": "display_data" } - ], - "metadata": { - "kernelspec": { - "name": "python3", - "display_name": "Python 3", - "language": "python" - }, - "language_info": { - "mimetype": "text/x-python", - "nbconvert_exporter": "python", - "name": "python", - "pygments_lexer": "ipython3", - "version": "3.5.4", - "file_extension": ".py", - "codemirror_mode": { - "version": 3, - "name": "ipython" - } - } + ], + "source": [ + "import numpy.ma as ma\n", + "\n", + "mask_H = []\n", + "mask_L = []\n", + "K_H = []\n", + "K_L = []\n", + "B = list(A)\n", + "B.append(B[n])\n", + "\n", + "Y = []\n", + "\n", + "for i, a in enumerate(A):\n", + " \n", + " b = B[i+1]\n", + " \n", + " if a == theta_H and b == theta_H:\n", + " mask_H.append(0)\n", + " mask_L.append(1)\n", + " elif a == theta_L and b == theta_L:\n", + " mask_H.append(1)\n", + " mask_L.append(0)\n", + " elif a != b:\n", + " mask_H.append(0)\n", + " mask_L.append(0)\n", + " \n", + " K_H.append(k_ss_H)\n", + " K_L.append(k_ss_L)\n", + " Y.append(f(X[i], a))\n", + "\n", + "X_H = ma.masked_array(X, mask=mask_H)\n", + "X_L = ma.masked_array(X, mask=mask_L)\n", + "\n", + "Y_H = ma.masked_array(Y, mask=mask_H)\n", + "Y_L = ma.masked_array(Y, mask=mask_L)\n", + "\n", + "plt.plot(T, X_H, color=\"blue\", lw=1)\n", + "plt.plot(T, X_L, color=\"red\", lw=1)\n", + "plt.plot(T, K_H, '--', color=\"blue\", lw=.5)\n", + "plt.plot(T, K_L, '--', color=\"red\", lw=.5)\n", + "plt.xlabel(\"$t$\", fontsize=14)\n", + "plt.ylabel(\"$k_{t}$\", fontsize=14)\n", + "plt.title(\"Path of $k$ over time\")\n", + "plt.show()\n", + "\n", + "plt.plot(T, Y_H, color=\"blue\", lw=1)\n", + "plt.plot(T, Y_L, color=\"red\", lw=1)\n", + "plt.xlabel(\"$t$\", fontsize=14)\n", + "plt.ylabel(\"$k_{t}$\", fontsize=14)\n", + "plt.title(\"Path of $k$ over time\")\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb b/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb index d69cd89..3818fa2 100644 --- a/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb +++ b/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb @@ -21,14 +21,14 @@ "outputs": [ { "ename": "OperationalError", - "evalue": "could not connect to server: Operation timed out\n\tIs the server running on host \"data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com\" (52.44.6.84) and accepting\n\tTCP/IP connections on port 5432?\n", + "evalue": "could not translate host name \"data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com\" to address: nodename nor servname provided, or not known\n", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mOperationalError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mpwd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'trainingwrite'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mconn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpsycopg2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconnect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"host='{host}' port={port} dbname='{dbname}' user={username} password={pwd}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/psycopg2/__init__.py\u001b[0m in \u001b[0;36mconnect\u001b[0;34m(dsn, connection_factory, cursor_factory, **kwargs)\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0mdsn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_ext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake_dsn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdsn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 130\u001b[0;31m \u001b[0mconn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_connect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdsn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconnection_factory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconnection_factory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwasync\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 131\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcursor_factory\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0mconn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcursor_factory\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcursor_factory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mOperationalError\u001b[0m: could not connect to server: Operation timed out\n\tIs the server running on host \"data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com\" (52.44.6.84) and accepting\n\tTCP/IP connections on port 5432?\n" + "\u001b[0;31mOperationalError\u001b[0m: could not translate host name \"data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com\" to address: nodename nor servname provided, or not known\n" ] } ], @@ -40,18 +40,18 @@ "from sqlalchemy import create_engine\n", "import io\n", "\n", - "host = 'data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com'\n", + "host = 'brdh2-ds2019.cpvwsnqnnd2w.us-east-1.rds.amazonaws.com'\n", "port = 5432\n", "dbname = 'db3'\n", - "username = 'trainingwrite'\n", - "pwd = 'trainingwrite'\n", + "username = 'digitalhouse'\n", + "pwd = 'Digitalh'\n", "\n", "conn = psycopg2.connect(f\"host='{host}' port={port} dbname='{dbname}' user={username} password={pwd}\")" ] }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -61,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -162,7 +162,7 @@ "8 8 4 4" ] }, - "execution_count": 71, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -180,14 +180,15 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Wall time: 0 ns\n" + "CPU times: user 1.04 ms, sys: 743 µs, total: 1.78 ms\n", + "Wall time: 1.04 ms\n" ] }, { @@ -218,53 +219,53 @@ " \n", " \n", " 0\n", - " 0.452313\n", - " 0.337163\n", + " 0.237575\n", + " 0.313269\n", " \n", " \n", " 1\n", - " 0.597845\n", - " 0.869110\n", + " 0.135886\n", + " 0.245108\n", " \n", " \n", " 2\n", - " 0.891261\n", - " 0.471389\n", + " 0.803706\n", + " 0.380767\n", " \n", " \n", " 3\n", - " 0.683479\n", - " 0.692223\n", + " 0.578443\n", + " 0.160269\n", " \n", " \n", " 4\n", - " 0.706336\n", - " 0.873535\n", + " 0.898139\n", + " 0.492082\n", " \n", " \n", " 5\n", - " 0.302285\n", - " 0.394499\n", + " 0.682028\n", + " 0.468385\n", " \n", " \n", " 6\n", - " 0.378814\n", - " 0.650194\n", + " 0.853587\n", + " 0.138461\n", " \n", " \n", " 7\n", - " 0.852873\n", - " 0.106283\n", + " 0.004633\n", + " 0.237382\n", " \n", " \n", " 8\n", - " 0.038916\n", - " 0.499037\n", + " 0.873710\n", + " 0.609603\n", " \n", " \n", " 9\n", - " 0.047853\n", - " 0.874112\n", + " 0.334734\n", + " 0.015687\n", " \n", " \n", "\n", @@ -272,19 +273,19 @@ ], "text/plain": [ " col1 col2\n", - "0 0.452313 0.337163\n", - "1 0.597845 0.869110\n", - "2 0.891261 0.471389\n", - "3 0.683479 0.692223\n", - "4 0.706336 0.873535\n", - "5 0.302285 0.394499\n", - "6 0.378814 0.650194\n", - "7 0.852873 0.106283\n", - "8 0.038916 0.499037\n", - "9 0.047853 0.874112" + "0 0.237575 0.313269\n", + "1 0.135886 0.245108\n", + "2 0.803706 0.380767\n", + "3 0.578443 0.160269\n", + "4 0.898139 0.492082\n", + "5 0.682028 0.468385\n", + "6 0.853587 0.138461\n", + "7 0.004633 0.237382\n", + "8 0.873710 0.609603\n", + "9 0.334734 0.015687" ] }, - "execution_count": 72, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -296,14 +297,15 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Wall time: 2min 37s\n" + "CPU times: user 147 ms, sys: 72 ms, total: 219 ms\n", + "Wall time: 3min 49s\n" ] } ], @@ -321,23 +323,33 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Wall time: 4 ms\n", - "Wall time: 3.3 s\n", - "Wall time: 0 ns\n", - "Wall time: 0 ns\n", - "Wall time: 0 ns\n", - "Wall time: 419 ms\n", - "Wall time: 0 ns\n", - "Wall time: 999 µs\n", - "Wall time: 11.7 s\n", - "Wall time: 142 ms\n" + "CPU times: user 15.6 ms, sys: 2.73 ms, total: 18.3 ms\n", + "Wall time: 5.46 s\n", + "CPU times: user 5.73 ms, sys: 1.24 ms, total: 6.97 ms\n", + "Wall time: 6.22 ms\n", + "CPU times: user 415 µs, sys: 129 µs, total: 544 µs\n", + "Wall time: 335 µs\n", + "CPU times: user 15 µs, sys: 1 µs, total: 16 µs\n", + "Wall time: 20 µs\n", + "CPU times: user 5 µs, sys: 0 ns, total: 5 µs\n", + "Wall time: 9.06 µs\n", + "CPU times: user 391 ms, sys: 19.8 ms, total: 411 ms\n", + "Wall time: 412 ms\n", + "CPU times: user 5 µs, sys: 0 ns, total: 5 µs\n", + "Wall time: 7.87 µs\n", + "CPU times: user 4 µs, sys: 0 ns, total: 4 µs\n", + "Wall time: 7.87 µs\n", + "CPU times: user 42.3 ms, sys: 31.5 ms, total: 73.8 ms\n", + "Wall time: 12.8 s\n", + "CPU times: user 432 µs, sys: 104 µs, total: 536 µs\n", + "Wall time: 171 ms\n" ] } ], From 6d2dba2a595d9de1cb073ec5ebdf4b6c783b2275 Mon Sep 17 00:00:00 2001 From: Eduardo Santos Date: Tue, 26 Feb 2019 14:11:28 -0300 Subject: [PATCH 5/6] puxado do master arquivos alterados puxados do master --- .DS_Store | Bin 0 -> 6148 bytes 0-pre-requisitos/1-python/Aula_01.ipynb | 633 +- 0-pre-requisitos/1-python/Aula_02.ipynb | 2221 +- .../2-math/algebra_linear_com_numpy.ipynb | 1023 +- .../2-math/calculo_num\303\251rico.ipynb" | 1389 +- 0-pre-requisitos/2-math/data/regression.csv | 0 0-pre-requisitos/2-math/data/tech_coef.csv | 0 0-pre-requisitos/2-math/linear_algebra.ipynb | 2035 ++ 0-pre-requisitos/2-math/orth_proj.ipynb | 1141 + .../2-math/otimiza\303\247\303\243o-I.ipynb" | 6877 +---- .../2-math/otimiza\303\247\303\243o-II.ipynb" | 1162 +- .../otimiza\303\247\303\243o-III.ipynb" | 831 +- .../2-math/otimiza\303\247\303\243o-IV.ipynb" | 910 +- .../3-sql/0_conectando_python_em_db_sql.ipynb | 135 +- .../aula.ipynb" | 1211 + .../aula1.ipynb" | 350 - .../exercicios_dicionarios.ipynb" | 470 + .../img/.DS_Store" | Bin 0 -> 6148 bytes .../img/EDA.jpg" | Bin 0 -> 698045 bytes .../img/analise_dados.png" | Bin 0 -> 52411 bytes .../img/dado.png" | Bin 0 -> 263111 bytes .../img/media.png" | Bin 0 -> 21552 bytes .../img/mediana.png" | Bin 0 -> 98724 bytes .../img/moda.png" | Bin 0 -> 27979 bytes .../img/moda2.png" | Bin 0 -> 70181 bytes .../img/teorema_limite_central.png" | Bin 0 -> 82901 bytes .../img/tipos_de_variaveis.png" | Bin 0 -> 361612 bytes .../aula.ipynb" | 5344 ++++ .../aula1.ipynb" | 1538 -- .../correla\303\247\303\265es_deepdive.ipynb" | 4850 ++-- .../img/.DS_Store" | Bin 0 -> 6148 bytes .../img/correlacao2.png" | Bin 0 -> 152673 bytes .../img/correlacao_tipos.png" | Bin 0 -> 57496 bytes .../img/correlacoes_comp.png" | Bin 0 -> 23410 bytes .../img/covariancia.png" | Bin 0 -> 36358 bytes .../img/desvio_padrao.png" | Bin 0 -> 74801 bytes .../img/estatistica_descritiva.png" | Bin 0 -> 162528 bytes .../img/medidas_associacao.png" | Bin 0 -> 57197 bytes .../img/medidas_dispersao.png" | Bin 0 -> 76055 bytes .../img/variancia.png" | Bin 0 -> 58641 bytes ...andas Handson Solu\303\247\303\243o.ipynb" | 2738 ++ .../03-pandas/Pandas Handson.ipynb" | 382 + .../03-pandas/img/DataFrame_basico.png" | Bin 0 -> 103176 bytes .../03-pandas/img/caso_real.png" | Bin 0 -> 334929 bytes .../03-pandas/img/modelagem_pandas.png" | Bin 0 -> 259661 bytes .../03-pandas/img/pandas_dataframe.png" | Bin 0 -> 181609 bytes .../03-pandas/pandas101.ipynb" | 3357 ++- .../03-pandas/pandas102.ipynb" | 21834 +++++++++++++--- .../04-probabilidade/aula.ipynb" | 629 +- .../04-probabilidade/img/.DS_Store" | Bin 0 -> 6148 bytes ...onomia_Informa\303\247\303\265es_2013.pdf" | Bin .../img/Teste_T_Gr\303\241fico_bicaudal.gif" | Bin .../04-probabilidade/img/baralho_cartas.png" | Bin 0 -> 192553 bytes .../04-probabilidade/img/bode.png" | Bin .../04-probabilidade/img/dado.png" | Bin 0 -> 50432 bytes .../04-probabilidade/img/dois_dados.png" | Bin 0 -> 59081 bytes .../04-probabilidade/img/erros.PNG" | Bin .../04-probabilidade/img/houses_tableau.jpg" | Bin .../img/linear_regression_scheme.png" | Bin .../04-probabilidade/img/normal.png" | Bin .../img/paradoxo_aniversario.png" | Bin 0 -> 16652 bytes .../img/paradoxo_aniversario_2.png" | Bin 0 -> 29013 bytes .../04-probabilidade/img/pi.png" | Bin 0 -> 90873 bytes .../04-probabilidade/img/pi_monte_carlo.png" | Bin 0 -> 15393 bytes .../04-probabilidade/img/prob_dois_dados.png" | Bin 0 -> 128737 bytes .../04-probabilidade/img/probabilidade.png" | Bin 0 -> 14031 bytes ...o_critica_bilateral_aceitacao_exemplo.png" | Bin .../Distribui\303\247\303\265es.ipynb" | 724 +- .../Exercicios.ipynb" | 140 +- .../img/.DS_Store" | Bin 0 -> 6148 bytes .../img/distribuicoes_prob.png" | Bin 0 -> 140819 bytes .../img/numpy_scipy.png" | Bin 0 -> 16906 bytes .../img/teste_ks.png" | Bin 0 -> 44572 bytes .../solu\303\247\303\265es/d1.png" | Bin .../solu\303\247\303\265es/ex1.png" | Bin .../solu\303\247\303\265es/ex2.png" | Bin .../solu\303\247\303\265es/ex3.png" | Bin .../solu\303\247\303\265es/ex4.png" | Bin ...onomia_Informa\303\247\303\265es_2013.pdf" | Bin .../img/Teste_T_Gr\303\241fico_bicaudal.gif" | Bin .../06-inferencia1/img/anova.png" | Bin 0 -> 50733 bytes .../06-inferencia1/img/anova_explicada.png" | Bin 0 -> 109507 bytes .../06-inferencia1/img/erro_tabela.png" | Bin 0 -> 26490 bytes .../06-inferencia1/img/erros.PNG" | Bin .../06-inferencia1/img/estatistica.png" | Bin 0 -> 192543 bytes .../06-inferencia1/img/houses_tableau.jpg" | Bin .../img/intervalo_de_confianca.png" | Bin 0 -> 173004 bytes .../06-inferencia1/img/klout.png" | Bin 0 -> 149400 bytes .../img/linear_regression_scheme.png" | Bin .../06-inferencia1/img/normal.png" | Bin 3693 -> 30015 bytes ...o_critica_bilateral_aceitacao_exemplo.png" | Bin .../06-inferencia1/img/t-student.png" | Bin 0 -> 32985 bytes .../06-inferencia1/img/teste_hipotese.png" | Bin 0 -> 40586 bytes .../06-inferencia1/img/zona_aceitacao.png" | Bin 0 -> 175038 bytes .../06-inferencia1/inferencia_1.ipynb" | 1893 +- .../Inferencia_2_AB_example.ipynb" | 341 + .../07-inferencia2/aula.ipynb" | 107 - .../07-inferencia2/bear.png" | Bin 0 -> 276679 bytes .../07-inferencia2/inferencia_2.ipynb" | 912 + .../07-inferencia2/simpson_kidney.png" | Bin 0 -> 29205 bytes .../07-inferencia2/simpson_paradox.png" | Bin 0 -> 87537 bytes .../08-SQL1/python_e_sql.ipynb" | 0 ...imite_central_e_lei_grandes_numeros.ipynb" | 0 .../desafio_causalidade.txt" | 0 .../miscel\303\242nia/desafio_simpson.txt" | 0 .../operacoes_com_conjuntos.ipynb" | 0 .../paradoxo_de_simpson.ipynb" | 0 .../simulando_montyhall.ipynb" | 0 .../xxxxx/PRACTICA_GUIADA_Python.ipynb" | 709 + ...303\201CTICA_INDEPENDIENTE_SOLUTION.ipynb" | 465 + .../01-regress\303\265es1/aula.ipynb" | 3591 --- .../img/2019-02-12_12-55-10.jpg" | Bin 0 -> 101083 bytes ...onomia_Informa\303\247\303\265es_2013.pdf" | Bin .../01-regress\303\265es1/img/R2 eqs.png" | Bin 0 -> 28634 bytes .../img/SEbformulae.png" | Bin 0 -> 19312 bytes .../01-regress\303\265es1/img/SSEvenn.png" | Bin 0 -> 10843 bytes .../img/Teste_T_Gr\303\241fico_bicaudal.gif" | Bin .../img/bivarvsmulti slope calc.png" | Bin 0 -> 38642 bytes .../01-regress\303\265es1/img/bode.png" | Bin .../01-regress\303\265es1/img/cov eqs.png" | Bin 0 -> 33762 bytes .../img/cov-cor eqs.png" | Bin 0 -> 39128 bytes .../01-regress\303\265es1/img/cov-cor.png" | Bin 0 -> 16945 bytes .../img/dv measerror.png" | Bin 0 -> 33115 bytes .../01-regress\303\265es1/img/erros.PNG" | Bin .../img/houses_tableau.jpg" | Bin .../img/iv measerror.png" | Bin 0 -> 31579 bytes .../img/linear_regression_scheme.png" | Bin .../01-regress\303\265es1/img/multicoll.png" | Bin 0 -> 22006 bytes .../01-regress\303\265es1/img/multireg.png" | Bin 0 -> 24282 bytes .../01-regress\303\265es1/img/normal.png" | Bin .../01-regress\303\265es1/img/ovb case 1.png" | Bin 0 -> 23973 bytes .../01-regress\303\265es1/img/ovb case 2.png" | Bin 0 -> 23093 bytes .../img/partY venn1.png" | Bin 0 -> 27324 bytes .../01-regress\303\265es1/img/partY2.png" | Bin 0 -> 25804 bytes ...o_critica_bilateral_aceitacao_exemplo.png" | Bin .../01-regress\303\265es1/img/slopecalc.png" | Bin 0 -> 32677 bytes .../img/var calc w scatter.png" | Bin 0 -> 28699 bytes .../01-regress\303\265es1/img/vareqs.png" | Bin 0 -> 43486 bytes .../regressao_simples.ipynb" | 6078 +++++ ...5es_multiplas_com_diagramas_de_venn.ipynb" | 149 + .../01-regress\303\265es1/resumo.txt" | 0 .../02-regress\303\265es2/aula.ipynb" | 162 - .../exercicio_titulos_fazem_diferenca.ipynb" | 572 + .../02-regress\303\265es2/exercicios.ipynb" | 522 + .../exercicios_possivel_solucao.ipynb" | 1292 + ...onomia_Informa\303\247\303\265es_2013.pdf" | Bin 0 -> 1006906 bytes .../img/Teste_T_Gr\303\241fico_bicaudal.gif" | Bin 0 -> 5114 bytes .../02-regress\303\265es2/img/bode.png" | Bin 0 -> 142301 bytes .../02-regress\303\265es2/img/erros.PNG" | Bin 0 -> 19588 bytes .../img/houses_tableau.jpg" | Bin 0 -> 263215 bytes .../img/linear_regression_scheme.png" | Bin 0 -> 159672 bytes .../02-regress\303\265es2/img/normal.png" | Bin 0 -> 3693 bytes ...o_critica_bilateral_aceitacao_exemplo.png" | Bin 0 -> 24227 bytes .../02-regress\303\265es2/reg_mult.ipynb" | 2238 ++ .../02-regress\303\265es2/resumo.txt" | 0 .../03-endogeneidade/7pecados.ipynb" | 127 + .../03-endogeneidade/aula.ipynb" | 397 + .../03-endogeneidade/endogeneidade.ipynb" | 126 + .../03-endogeneidade/img/7sins OVB.png" | Bin 0 -> 29147 bytes .../03-endogeneidade/img/anscombe data.png" | Bin 0 -> 51249 bytes .../03-endogeneidade/img/anscombe graphs.png" | Bin 0 -> 39849 bytes .../03-endogeneidade/img/dv measerror.png" | Bin 0 -> 33115 bytes .../03-endogeneidade/img/hetero1.png" | Bin 0 -> 9113 bytes .../03-endogeneidade/img/hetero2.png" | Bin 0 -> 24214 bytes .../03-endogeneidade/img/iv measerror.png" | Bin 0 -> 31579 bytes .../03-endogeneidade/img/multicoll.png" | Bin 0 -> 22006 bytes .../03-endogeneidade/img/simult.png" | Bin 0 -> 8683 bytes .../03-endogeneidade/resumo.txt" | 0 .../04-causalidade/resumo.txt" | 0 .../05-modelagem1/Untitled.ipynb" | 57 + .../05-modelagem1/resumo.txt" | 0 .../efeitos_aleat\303\263rios.ipynb" | 6 + .../06-modelagem2/efeitos_fixos.ipynb" | 6 + .../06-modelagem2/resumo.txt" | 0 .../07-avaliacao-politica/resumo.txt" | 0 .../08-regress\303\243o-logistica/resumo.txt" | 0 .../machine_learning_intro.ipynb" | 0 .../gradiente_descendente-checkpoint.ipynb | 0 .../nao_supervisionado-checkpoint.ipynb | 0 .../animation.gif | Bin .../gradiente_descendente.ipynb | 0 .../images/0_sFYJwQCCjOnXpSoD.png | Bin .../images/1_J-TbI94E1nXNHIubJc7VeQ.png | Bin .../images/1_QEME_QUKOjntJpBBUdgTNA.png | Bin .../images/1_WGHn1L4NveQ85nn3o7Dd2g.png | Bin .../images/1_f9a162GhpMbiTVTAua_lLQ.png | Bin .../22ce7c18-984c-4a08-8b50-2bbe93f6ed34.jpg | Bin .../images/4hi5cD92Lw2AhFg5nWuvFFp7.gif | Bin .../images/9946262.png | Bin .../images/otimizacao1.mp4 | Bin .../images/otimizacao2.mp4 | Bin .../nao_supervisionado.ipynb | 0 .../Aula 2 - Gradiente Descendente/test.csv | 0 .../Aula 2 - Gradiente Descendente/train.csv | 0 .../exercicio.ipynb" | 0 .../img/overfit.png" | Bin .../pratica_guiada_1.ipynb" | 0 .../pratica_guiada_2.ipynb" | 0 .../test.csv" | 0 .../train.csv" | 0 .../exercicio_limpeza.ipynb" | 0 .../handson_pricing_predict.ipynb" | 0 .../house_pricing_test.csv" | 0 .../house_pricing_train.csv" | 0 .../limpeza_dados.ipynb" | 0 .../pew-raw.csv" | 0 .../sales.csv" | 0 .../tb-raw.csv" | 0 .../Aula 5 - Train-Test Split/train_test.pptx | Bin 930459 -> 0 bytes .../handson_pricing_predict.ipynb" | 0 .../house_pricing_test.csv" | 0 .../house_pricing_train.csv" | 0 .../agrupamento_alunos_pca_kmeans.ipynb" | 0 .../dados_turma_ds.csv" | 0 .../gender_submission.csv" | 0 .../img/1_EyPd0sQxEXtTDSJgu72JNQ.jpeg" | Bin .../img/maxmin.png" | Bin .../img/mean.png" | Bin .../img/stan.png" | Bin .../img/unit.png" | Bin .../kaggle_titanic_challenge.ipynb" | 0 .../random_forest_solution.csv" | 0 .../test.csv" | 0 .../train.csv" | 0 .../classificacao_imagens-checkpoint.ipynb" | 0 .../classificacao_imagens.ipynb" | 0 .../workflow.jpeg" | Bin .../classifiers_difference.ipynb | 0 .../Aula 9 - HandsOn/cm.png | Bin .../Aula 9 - HandsOn/handson.ipynb | 0 .../Aula 9 - HandsOn/roc_auc_curve.png | Bin .../Miscel\303\242nia/births.csv" | 0 .../Miscel\303\242nia/viz_seaborn_1.ipynb" | 0 .../Miscel\303\242nia/viz_seaborn_2.ipynb" | 0 .../Miscel\303\242nia/viz_seaborn_3.ipynb" | 0 .../HR_comma_sep.csv" | 0 .../KNN.ipynb" | 0 .../exemplo_knn.ipynb" | 0 .../img/0_RKKb0xdKkkjT4h2__.jpg" | Bin ...a4b535ffd805ffdf332e51905bcdf4764f663.svg" | 0 .../img/derm-roc-v-rocch1.png" | Bin .../img/fig-2-11.gif" | Bin .../img/fig-3-1.gif" | Bin ...es-for-predicting-secretory-ppis-from.png" | Bin .../img/fig5.gif" | Bin .../img/image_from_ios.jpg" | Bin .../img/metrics.png" | Bin .../img/roc-auc.png" | Bin .../img/sagemaker-knn-1.gif" | Bin .../img/slide14.png" | Bin .../img/threshold2.png" | Bin .../img/two-point-roc1.png" | Bin .../introducao_KNN_NBA.ipynb" | 0 ...machine_learning_basic_step_by_step.ipynb" | 0 .../market.csv" | 0 .../nba_2013.csv" | 0 .../GridSearch.ipynb" | 0 .../RandomizedSearch.ipynb" | 0 .../deep_dive.txt" | 0 .../optimizer.ipynb" | 0 .../USBankHolidays.csv" | 0 .../data/AirPassengers.csv" | 0 .../data/Sample - Superstore.xls" | Bin .../data/tesla_search_terms.csv" | 0 .../Aula 11 - S\303\251ries de Tempo/gm.csv" | 0 .../img/0_4XXSSYy4nYDDgNex.jpg" | Bin .../img/1_0rt_W8NzoFG_WQ0I9mncyg.png" | Bin .../img/1_1I9G9ek3oXmuS2Fa9KVf9g.png" | Bin .../img/1_5OHpAvp_w5g7jccqJ8OYaA (1).png" | Bin .../img/1_5OHpAvp_w5g7jccqJ8OYaA.png" | Bin .../img/1_jEFOLncknBJ8cPQSBQDktA.png" | Bin .../img/1_wtXXjTJK2J9MQFFkyGyhwA.png" | Bin .../img/crossvalidation.png" | Bin .../kaggle_with_sarimax.ipynb" | 0 .../possivel_m\303\241_solucao.ipynb" | 0 .../tesla.csv" | 0 .../time_series.ipynb" | 0 .../train.zip" | Bin .../Aula 2 - Logistica/binary.csv | 0 .../regressa_logistica.ipynb | 0 .../arvore_decisao.ipynb" | 0 .../arvore_decisao_CARTS.ipynb" | 0 .../arvores_decisao.ipynb" | 0 .../img/decisionTree3.png" | Bin .../img/decisionTree4.png" | Bin .../img/decisionTree5.png" | Bin .../img/deep_learning.pdf" | Bin .../img/entropia.png" | Bin .../img/entropia_shannon.jpg" | Bin .../img/lr_boundary_linear.png" | Bin .../img/lr_boundary_radial.png" | Bin .../img/model_boundary_linear.png" | Bin .../img/model_boundary_radial.png" | Bin .../img/regularization.jpg" | Bin .../img/under_and_overfiting.jpg" | Bin .../RandomForests e Ensembles1.ipynb" | 0 .../RandomForests e Ensembles2.ipynb" | 0 .../__pycache__/utils.cpython-36.pyc" | Bin .../arvores_aleat\303\263rias.ipynb" | 0 .../data/cars.csv" | 0 .../data/data_banknote_authentication.csv" | 0 .../data/default.csv" | 0 .../data/non-linear.p" | Bin .../data/regression.p" | Bin .../img/0_GHYCJIjkkrP5ZgPh.png" | Bin .../img/1_C7CrBG1VNaa1x491eZ3fnw.gif" | Bin .../img/1_JORe4Wkhb-nOZhNbZXwhgA.png" | Bin .../img/4188126722.pdf" | Bin .../img/PbAVO.png" | Bin .../img/QBuDOjs.jpg" | Bin .../img/RFfqb.png" | Bin .../img/bagging_example.png" | Bin .../img/bias-variance.png" | Bin ...qimg-b3e1d33876602eafcdcc9c309880a2ec.png" | Bin ...img-b3e1d33876602eafcdcc9c309880a2ec.webp" | Bin .../img/skitch.png" | Bin .../utils.py" | 0 .../abrindo_a_caixa.ipynb" | 0 .../cars.csv" | 0 ..._diferentes_modelos_feat_importance.ipynb" | 0 ...parando_diferentes_modelos_metricas.ipynb" | 0 .../exercicios.ipynb" | 0 .../simple_gini_gain_decesion_tree.ipynb" | 0 .../winequality.csv" | 0 .../Ensambles_Boosting.ipynb | 0 .../Aula 6 - Ensambles/Ensembles.ipynb | 0 ...uiada_Ensable_Bagging_diabetes_pt_br.ipynb | 0 .../Solution_LAB_Ensamble_Bagging_pt_br.ipynb | 0 .../__pycache__/utils.cpython-36.pyc | Bin .../Aula 6 - Ensambles/data/default.csv | 0 .../Aula 6 - Ensambles/data/non-linear.p | Bin .../Aula 6 - Ensambles/data/regression.p | Bin .../Aula 6 - Ensambles/utils.py | 0 .../HR_comma_sep.csv" | 0 .../img/0_RKKb0xdKkkjT4h2__.jpg" | Bin ...a4b535ffd805ffdf332e51905bcdf4764f663.svg" | 0 .../img/derm-roc-v-rocch1.png" | Bin .../img/fig-2-11.gif" | Bin .../Aula 7 - m\303\251tricas/img/fig-3-1.gif" | Bin ...es-for-predicting-secretory-ppis-from.png" | Bin .../Aula 7 - m\303\251tricas/img/fig5.gif" | Bin .../img/image_from_ios.jpg" | Bin .../Aula 7 - m\303\251tricas/img/metrics.png" | Bin .../Aula 7 - m\303\251tricas/img/roc-auc.png" | Bin .../img/sagemaker-knn-1.gif" | Bin .../Aula 7 - m\303\251tricas/img/slide14.png" | Bin .../img/threshold2.png" | Bin .../img/two-point-roc1.png" | Bin .../m\303\251tricas.ipynb" | 0 .../Skyserver_SQL2_27_2018 6_51_39 PM.csv | 0 .../Aula 8 - HandsOn/exercicios.ipynb | 0 .../Aula 8 - HandsOn/house_pricing_test.csv | 0 .../Aula 8 - HandsOn/house_pricing_train.csv | 0 .../Aula 8 - HandsOn/titanic.csv | 0 .../Aula 9 - Desbalanceamento/Untitled.ipynb | 0 .../target_desbalanceado.ipynb | 0 .../maldicao_da_dimensionalidade.ipynb | 0 .../Naive Bayes e SVM/Naive_Bayes.ipynb | 0 .../Naive Bayes e SVM/SVM.ipynb | 0 .../PRESENTACION_Intro_Clustering_pt_br.pptx" | Bin 0 -> 1918982 bytes .../SCRIPT_Intro_Clustering_pt_br.docx" | Bin 0 -> 21190 bytes ...CTICA_GUIADA_Intro_Clustering_pt_br.ipynb" | 0 .../PRESENTACION_Tuning_Clusters_pt_br.pptx" | Bin 0 -> 1277398 bytes .../SCRIPT_Tunning_Clustering_pt_br.docx | Bin 0 -> 21403 bytes ...Pra\314\201cticaGuiada_DBScan_pt_br.ipynb" | 0 ...Clustering_Jera\314\201rquico_pt_br.ipynb" | 0 .../Pr\303\241cticaGuiada_DBScan_pt_br.ipynb" | 0 ...N_Introduccion_DBSCAN_EDITABLE_pt_br.pptx" | Bin 0 -> 1099092 bytes ...IPT_Introducci\303\263n_DBSCAN_pt_br.docx" | Bin 0 -> 22352 bytes ..._Clustering_Jer\303\241rquico_pt_br.ipynb" | 0 ...n_Clustering_Jer\303\241rquico_pt_br.pptx" | Bin 0 -> 2035632 bytes ...n_Clustering_Jer\303\241rquico_pt_br.docx" | Bin 0 -> 21121 bytes 6-dados/api/consultando APIs/APIs.pptx | Bin 0 -> 1627385 bytes 6-dados/api/consultando APIs/apis.ipynb | 0 6-dados/api/consultando APIs/imdb_list.csv | 0 .../api/criando APIs/criando_modelo_ml.ipynb | 0 6-dados/api/criando APIs/log.log | 0 6-dados/api/criando APIs/model.pkl | Bin 6-dados/api/criando APIs/requirements.txt | 0 6-dados/api/criando APIs/train.csv | 0 6-dados/api/criando APIs/webservice.ipynb | 0 6-dados/api/criando APIs/webservice.py | 0 6-dados/grafos/Airlines.csv | 0 .../basic-network-analysis-tutorial.ipynb | 0 6-dados/grafos/facebook_combined.txt | 0 6-dados/grafos/grafos.ipynb | 0 6-dados/grafos/lanl_routes.edgelist | 0 6-dados/grafos/lesmiserables.csv | 0 6-dados/grafos/manhatten.graphml.zip | Bin 6-dados/grafos/napoleao.ipynb | 0 6-dados/grafos/networkx_plotly.ipynb | 0 6-dados/grafos/newyork.graphml.zip | Bin 6-dados/grafos/plot_football.ipynb | 0 6-dados/grafos/plot_roget.ipynb | 0 6-dados/grafos/roget_dat.txt.gz | Bin 6-dados/scraping/bs4.ipynb | 0 6-dados/scraping/tabela_ex.csv | 0 6-dados/scraping/tabela_ex.xlsx | Bin 6-dados/scraping/tabla.csv | 0 7-nlp/Aula1/class_1.ipynb | 0 7-nlp/Aula2/pizza_test.json | 0 7-nlp/Aula2/pizza_train.json | 0 7-nlp/Aula3/resumo.txt | 0 7-nlp/readme.md | 0 8-redes-neurais/resumo.txt | 1 + .../resumo.txt" | 1 + .../computacao_natural/ComputacaoNatural.pdf" | Bin .../atividade1_GA_gabarito.ipynb" | 0 ...2_PSO - Particle Swarm Optimization.ipynb" | 0 .../atividade3/Clonal.ipynb" | 0 .../atividade3/digits/0.png" | Bin .../atividade3/digits/1.png" | Bin .../atividade3/digits/2.png" | Bin .../atividade3/digits/3.png" | Bin .../atividade3/digits/4.png" | Bin .../atividade3/digits/6.png" | Bin .../atividade3/digits/9.png" | Bin .../atividade3/digits/left.png" | Bin .../atividade3/digits/period.png" | Bin .../atividade3/digits/right.png" | Bin .../atividade3/h1_evaluation.py" | 0 .../atividade3/h2_evaluation.py" | 0 .../computacao_natural/atividade3/helpers.py" | 0 .../atividade3/helpers.pyc" | Bin .../atividade3/kapa/__init__.py" | 0 .../atividade3/kapa/__init__.pyc" | Bin .../kapa/__pycache__/__init__.cpython-36.pyc" | Bin .../kapa/__pycache__/affinity.cpython-36.pyc" | Bin .../kapa/__pycache__/antibody.cpython-36.pyc" | Bin .../kapa/__pycache__/antigen.cpython-36.pyc" | Bin .../kapa/__pycache__/clone.cpython-36.pyc" | Bin .../kapa/__pycache__/main.cpython-36.pyc" | Bin .../kapa/__pycache__/mutate.cpython-36.pyc" | Bin .../atividade3/kapa/affinity.py" | 0 .../atividade3/kapa/affinity.pyc" | Bin .../atividade3/kapa/antibody.py" | 0 .../atividade3/kapa/antibody.pyc" | Bin .../atividade3/kapa/antigen.py" | 0 .../atividade3/kapa/antigen.pyc" | Bin .../atividade3/kapa/clone.py" | 0 .../atividade3/kapa/clone.pyc" | Bin .../atividade3/kapa/main.py" | 0 .../atividade3/kapa/main.pyc" | Bin .../atividade3/kapa/mutate.py" | 0 .../atividade3/kapa/mutate.pyc" | Bin "99-miscel\303\242nia/git/resumo.txt" | 0 .../produ\303\247\303\243o/resumo.txt" | 0 "99-miscel\303\242nia/viz/resumo.txt" | 0 README.md | 0 449 files changed, 58635 insertions(+), 23041 deletions(-) create mode 100644 .DS_Store mode change 100644 => 100755 0-pre-requisitos/1-python/Aula_01.ipynb mode change 100644 => 100755 0-pre-requisitos/1-python/Aula_02.ipynb mode change 100644 => 100755 0-pre-requisitos/2-math/algebra_linear_com_numpy.ipynb mode change 100644 => 100755 "0-pre-requisitos/2-math/calculo_num\303\251rico.ipynb" mode change 100644 => 100755 0-pre-requisitos/2-math/data/regression.csv mode change 100644 => 100755 0-pre-requisitos/2-math/data/tech_coef.csv create mode 100755 0-pre-requisitos/2-math/linear_algebra.ipynb create mode 100755 0-pre-requisitos/2-math/orth_proj.ipynb mode change 100644 => 100755 "0-pre-requisitos/2-math/otimiza\303\247\303\243o-I.ipynb" mode change 100644 => 100755 "0-pre-requisitos/2-math/otimiza\303\247\303\243o-II.ipynb" mode change 100644 => 100755 "0-pre-requisitos/2-math/otimiza\303\247\303\243o-III.ipynb" mode change 100644 => 100755 "0-pre-requisitos/2-math/otimiza\303\247\303\243o-IV.ipynb" mode change 100644 => 100755 0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula.ipynb" delete mode 100644 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula1.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/exercicios_dicionarios.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/.DS_Store" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/EDA.jpg" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/analise_dados.png" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/dado.png" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/media.png" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/mediana.png" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/moda.png" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/moda2.png" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/teorema_limite_central.png" create mode 100755 "1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/tipos_de_variaveis.png" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula.ipynb" delete mode 100644 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula1.ipynb" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/correla\303\247\303\265es_deepdive.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/.DS_Store" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/correlacao2.png" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/correlacao_tipos.png" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/correlacoes_comp.png" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/covariancia.png" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/desvio_padrao.png" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/estatistica_descritiva.png" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/medidas_associacao.png" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/medidas_dispersao.png" create mode 100755 "1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/variancia.png" create mode 100755 "1-analise-explorat\303\263ria-basica/03-pandas/Pandas Handson Solu\303\247\303\243o.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/03-pandas/Pandas Handson.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/03-pandas/img/DataFrame_basico.png" create mode 100755 "1-analise-explorat\303\263ria-basica/03-pandas/img/caso_real.png" create mode 100755 "1-analise-explorat\303\263ria-basica/03-pandas/img/modelagem_pandas.png" create mode 100755 "1-analise-explorat\303\263ria-basica/03-pandas/img/pandas_dataframe.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/03-pandas/pandas101.ipynb" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/03-pandas/pandas102.ipynb" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/aula.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/.DS_Store" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/Curso_de_Economia_Informa\303\247\303\265es_2013.pdf" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/Teste_T_Gr\303\241fico_bicaudal.gif" create mode 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/baralho_cartas.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/bode.png" create mode 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/dado.png" create mode 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/dois_dados.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/erros.PNG" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/houses_tableau.jpg" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/linear_regression_scheme.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/normal.png" create mode 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/paradoxo_aniversario.png" create mode 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/paradoxo_aniversario_2.png" create mode 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/pi.png" create mode 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/pi_monte_carlo.png" create mode 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/prob_dois_dados.png" create mode 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/probabilidade.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/04-probabilidade/img/regiao_critica_bilateral_aceitacao_exemplo.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/Distribui\303\247\303\265es.ipynb" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/Exercicios.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/img/.DS_Store" create mode 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/img/distribuicoes_prob.png" create mode 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/img/numpy_scipy.png" create mode 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/img/teste_ks.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/solu\303\247\303\265es/d1.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/solu\303\247\303\265es/ex1.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/solu\303\247\303\265es/ex2.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/solu\303\247\303\265es/ex3.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/solu\303\247\303\265es/ex4.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/Curso_de_Economia_Informa\303\247\303\265es_2013.pdf" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/Teste_T_Gr\303\241fico_bicaudal.gif" create mode 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/anova.png" create mode 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/anova_explicada.png" create mode 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/erro_tabela.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/erros.PNG" create mode 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/estatistica.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/houses_tableau.jpg" create mode 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/intervalo_de_confianca.png" create mode 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/klout.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/linear_regression_scheme.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/normal.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/regiao_critica_bilateral_aceitacao_exemplo.png" create mode 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/t-student.png" create mode 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/teste_hipotese.png" create mode 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/img/zona_aceitacao.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/06-inferencia1/inferencia_1.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/07-inferencia2/Inferencia_2_AB_example.ipynb" delete mode 100644 "1-analise-explorat\303\263ria-basica/07-inferencia2/aula.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/07-inferencia2/bear.png" create mode 100755 "1-analise-explorat\303\263ria-basica/07-inferencia2/inferencia_2.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/07-inferencia2/simpson_kidney.png" create mode 100755 "1-analise-explorat\303\263ria-basica/07-inferencia2/simpson_paradox.png" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/08-SQL1/python_e_sql.ipynb" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/miscel\303\242nia/Teorema_limite_central_e_lei_grandes_numeros.ipynb" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/miscel\303\242nia/desafio_causalidade.txt" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/miscel\303\242nia/desafio_simpson.txt" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/miscel\303\242nia/operacoes_com_conjuntos.ipynb" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/miscel\303\242nia/paradoxo_de_simpson.ipynb" mode change 100644 => 100755 "1-analise-explorat\303\263ria-basica/miscel\303\242nia/simulando_montyhall.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/xxxxx/PRACTICA_GUIADA_Python.ipynb" create mode 100755 "1-analise-explorat\303\263ria-basica/xxxxx/PR\303\201CTICA_INDEPENDIENTE_SOLUTION.ipynb" delete mode 100644 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/aula.ipynb" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/2019-02-12_12-55-10.jpg" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/Curso_de_Economia_Informa\303\247\303\265es_2013.pdf" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/R2 eqs.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/SEbformulae.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/SSEvenn.png" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/Teste_T_Gr\303\241fico_bicaudal.gif" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/bivarvsmulti slope calc.png" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/bode.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/cov eqs.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/cov-cor eqs.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/cov-cor.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/dv measerror.png" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/erros.PNG" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/houses_tableau.jpg" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/iv measerror.png" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/linear_regression_scheme.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/multicoll.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/multireg.png" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/normal.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/ovb case 1.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/ovb case 2.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/partY venn1.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/partY2.png" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/regiao_critica_bilateral_aceitacao_exemplo.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/slopecalc.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/var calc w scatter.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/img/vareqs.png" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/regressao_simples.ipynb" create mode 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/regress\303\265es_multiplas_com_diagramas_de_venn.ipynb" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/01-regress\303\265es1/resumo.txt" delete mode 100644 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/aula.ipynb" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/exercicio_titulos_fazem_diferenca.ipynb" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/exercicios.ipynb" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/exercicios_possivel_solucao.ipynb" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/img/Curso_de_Economia_Informa\303\247\303\265es_2013.pdf" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/img/Teste_T_Gr\303\241fico_bicaudal.gif" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/img/bode.png" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/img/erros.PNG" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/img/houses_tableau.jpg" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/img/linear_regression_scheme.png" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/img/normal.png" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/img/regiao_critica_bilateral_aceitacao_exemplo.png" create mode 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/reg_mult.ipynb" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/02-regress\303\265es2/resumo.txt" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/7pecados.ipynb" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/aula.ipynb" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/endogeneidade.ipynb" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/img/7sins OVB.png" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/img/anscombe data.png" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/img/anscombe graphs.png" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/img/dv measerror.png" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/img/hetero1.png" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/img/hetero2.png" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/img/iv measerror.png" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/img/multicoll.png" create mode 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/img/simult.png" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/03-endogeneidade/resumo.txt" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/04-causalidade/resumo.txt" create mode 100755 "2-analise-explorat\303\263ria-inter/05-modelagem1/Untitled.ipynb" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/05-modelagem1/resumo.txt" create mode 100755 "2-analise-explorat\303\263ria-inter/06-modelagem2/efeitos_aleat\303\263rios.ipynb" create mode 100755 "2-analise-explorat\303\263ria-inter/06-modelagem2/efeitos_fixos.ipynb" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/06-modelagem2/resumo.txt" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/07-avaliacao-politica/resumo.txt" mode change 100644 => 100755 "2-analise-explorat\303\263ria-inter/08-regress\303\243o-logistica/resumo.txt" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 1 - Machine Learning - Introdu\303\247\303\243o/machine_learning_intro.ipynb" mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/.ipynb_checkpoints/gradiente_descendente-checkpoint.ipynb mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/.ipynb_checkpoints/nao_supervisionado-checkpoint.ipynb mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/animation.gif mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/gradiente_descendente.ipynb mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/images/0_sFYJwQCCjOnXpSoD.png mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/images/1_J-TbI94E1nXNHIubJc7VeQ.png mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/images/1_QEME_QUKOjntJpBBUdgTNA.png mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/images/1_WGHn1L4NveQ85nn3o7Dd2g.png mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/images/1_f9a162GhpMbiTVTAua_lLQ.png mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/images/22ce7c18-984c-4a08-8b50-2bbe93f6ed34.jpg mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/images/4hi5cD92Lw2AhFg5nWuvFFp7.gif mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/images/9946262.png mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/images/otimizacao1.mp4 mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/images/otimizacao2.mp4 mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/nao_supervisionado.ipynb mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/test.csv mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 2 - Gradiente Descendente/train.csv mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 3 - Valida\303\247\303\243o de modelos e Hiperparametros/exercicio.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 3 - Valida\303\247\303\243o de modelos e Hiperparametros/img/overfit.png" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 3 - Valida\303\247\303\243o de modelos e Hiperparametros/pratica_guiada_1.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 3 - Valida\303\247\303\243o de modelos e Hiperparametros/pratica_guiada_2.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 3 - Valida\303\247\303\243o de modelos e Hiperparametros/test.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 3 - Valida\303\247\303\243o de modelos e Hiperparametros/train.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 4 - Limpeza e prepara\303\247\303\243o dos dados/exercicio_limpeza.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 4 - Limpeza e prepara\303\247\303\243o dos dados/handson_pricing_predict.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 4 - Limpeza e prepara\303\247\303\243o dos dados/house_pricing_test.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 4 - Limpeza e prepara\303\247\303\243o dos dados/house_pricing_train.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 4 - Limpeza e prepara\303\247\303\243o dos dados/limpeza_dados.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 4 - Limpeza e prepara\303\247\303\243o dos dados/pew-raw.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 4 - Limpeza e prepara\303\247\303\243o dos dados/sales.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 4 - Limpeza e prepara\303\247\303\243o dos dados/tb-raw.csv" delete mode 100644 3-machine-learning-supervisionado-intro/Aula 5 - Train-Test Split/train_test.pptx mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 6 - Regulariza\303\247\303\243o/handson_pricing_predict.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 6 - Regulariza\303\247\303\243o/house_pricing_test.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 6 - Regulariza\303\247\303\243o/house_pricing_train.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/agrupamento_alunos_pca_kmeans.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/dados_turma_ds.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/gender_submission.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/img/1_EyPd0sQxEXtTDSJgu72JNQ.jpeg" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/img/maxmin.png" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/img/mean.png" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/img/stan.png" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/img/unit.png" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/kaggle_titanic_challenge.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/random_forest_solution.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/test.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 7 - Normaliza\303\247\303\243o/train.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 8 - Introdu\303\247\303\243o a Classificacao/.ipynb_checkpoints/classificacao_imagens-checkpoint.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 8 - Introdu\303\247\303\243o a Classificacao/classificacao_imagens.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Aula 8 - Introdu\303\247\303\243o a Classificacao/workflow.jpeg" mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 9 - HandsOn/classifiers_difference.ipynb mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 9 - HandsOn/cm.png mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 9 - HandsOn/handson.ipynb mode change 100644 => 100755 3-machine-learning-supervisionado-intro/Aula 9 - HandsOn/roc_auc_curve.png mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Miscel\303\242nia/births.csv" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Miscel\303\242nia/viz_seaborn_1.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Miscel\303\242nia/viz_seaborn_2.ipynb" mode change 100644 => 100755 "3-machine-learning-supervisionado-intro/Miscel\303\242nia/viz_seaborn_3.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/HR_comma_sep.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/KNN.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/exemplo_knn.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/0_RKKb0xdKkkjT4h2__.jpg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/347a4b535ffd805ffdf332e51905bcdf4764f663.svg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/derm-roc-v-rocch1.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/fig-2-11.gif" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/fig-3-1.gif" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/fig-5-roc-curves-and-precision-recall-pr-curves-for-predicting-secretory-ppis-from.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/fig5.gif" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/image_from_ios.jpg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/metrics.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/roc-auc.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/sagemaker-knn-1.gif" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/slide14.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/threshold2.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/img/two-point-roc1.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/introducao_KNN_NBA.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/machine_learning_basic_step_by_step.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/market.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 1 - Introdu\303\247\303\243o a Classifica\303\247\303\243o/nba_2013.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 10 - Parametriza\303\247\303\243o/GridSearch.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 10 - Parametriza\303\247\303\243o/RandomizedSearch.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 10 - Parametriza\303\247\303\243o/deep_dive.txt" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 10 - Parametriza\303\247\303\243o/optimizer.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/USBankHolidays.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/data/AirPassengers.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/data/Sample - Superstore.xls" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/data/tesla_search_terms.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/gm.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/img/0_4XXSSYy4nYDDgNex.jpg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/img/1_0rt_W8NzoFG_WQ0I9mncyg.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/img/1_1I9G9ek3oXmuS2Fa9KVf9g.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/img/1_5OHpAvp_w5g7jccqJ8OYaA (1).png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/img/1_5OHpAvp_w5g7jccqJ8OYaA.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/img/1_jEFOLncknBJ8cPQSBQDktA.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/img/1_wtXXjTJK2J9MQFFkyGyhwA.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/img/crossvalidation.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/kaggle_with_sarimax.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/possivel_m\303\241_solucao.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/tesla.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/time_series.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 11 - S\303\251ries de Tempo/train.zip" mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 2 - Logistica/binary.csv mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 2 - Logistica/regressa_logistica.ipynb mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/arvore_decisao.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/arvore_decisao_CARTS.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/arvores_decisao.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/decisionTree3.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/decisionTree4.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/decisionTree5.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/deep_learning.pdf" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/entropia.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/entropia_shannon.jpg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/lr_boundary_linear.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/lr_boundary_radial.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/model_boundary_linear.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/model_boundary_radial.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/regularization.jpg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 3 - Arvores de Decis\303\243o/img/under_and_overfiting.jpg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/RandomForests e Ensembles1.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/RandomForests e Ensembles2.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/__pycache__/utils.cpython-36.pyc" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/arvores_aleat\303\263rias.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/data/cars.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/data/data_banknote_authentication.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/data/default.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/data/non-linear.p" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/data/regression.p" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/0_GHYCJIjkkrP5ZgPh.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/1_C7CrBG1VNaa1x491eZ3fnw.gif" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/1_JORe4Wkhb-nOZhNbZXwhgA.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/4188126722.pdf" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/PbAVO.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/QBuDOjs.jpg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/RFfqb.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/bagging_example.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/bias-variance.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/main-qimg-b3e1d33876602eafcdcc9c309880a2ec.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/main-qimg-b3e1d33876602eafcdcc9c309880a2ec.webp" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/img/skitch.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 4 - Arvores aleat\303\263rias/utils.py" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 5 - Interpreta\303\247\303\243o dos Modelos BlackBox/abrindo_a_caixa.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 5 - Interpreta\303\247\303\243o dos Modelos BlackBox/cars.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 5 - Interpreta\303\247\303\243o dos Modelos BlackBox/comparando_diferentes_modelos_feat_importance.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 5 - Interpreta\303\247\303\243o dos Modelos BlackBox/comparando_diferentes_modelos_metricas.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 5 - Interpreta\303\247\303\243o dos Modelos BlackBox/exercicios.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 5 - Interpreta\303\247\303\243o dos Modelos BlackBox/simple_gini_gain_decesion_tree.ipynb" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 5 - Interpreta\303\247\303\243o dos Modelos BlackBox/winequality.csv" mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 6 - Ensambles/Ensambles_Boosting.ipynb mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 6 - Ensambles/Ensembles.ipynb mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 6 - Ensambles/PracticaGuiada_Ensable_Bagging_diabetes_pt_br.ipynb mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 6 - Ensambles/Solution_LAB_Ensamble_Bagging_pt_br.ipynb mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 6 - Ensambles/__pycache__/utils.cpython-36.pyc mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 6 - Ensambles/data/default.csv mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 6 - Ensambles/data/non-linear.p mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 6 - Ensambles/data/regression.p mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 6 - Ensambles/utils.py mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/HR_comma_sep.csv" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/0_RKKb0xdKkkjT4h2__.jpg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/347a4b535ffd805ffdf332e51905bcdf4764f663.svg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/derm-roc-v-rocch1.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/fig-2-11.gif" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/fig-3-1.gif" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/fig-5-roc-curves-and-precision-recall-pr-curves-for-predicting-secretory-ppis-from.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/fig5.gif" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/image_from_ios.jpg" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/metrics.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/roc-auc.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/sagemaker-knn-1.gif" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/slide14.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/threshold2.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/img/two-point-roc1.png" mode change 100644 => 100755 "4-machine-learning-supervisionado-inter/Aula 7 - m\303\251tricas/m\303\251tricas.ipynb" mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 8 - HandsOn/Skyserver_SQL2_27_2018 6_51_39 PM.csv mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 8 - HandsOn/exercicios.ipynb mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 8 - HandsOn/house_pricing_test.csv mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 8 - HandsOn/house_pricing_train.csv mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 8 - HandsOn/titanic.csv mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 9 - Desbalanceamento/Untitled.ipynb mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Aula 9 - Desbalanceamento/target_desbalanceado.ipynb mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Dimensionalidade/maldicao_da_dimensionalidade.ipynb mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Naive Bayes e SVM/Naive_Bayes.ipynb mode change 100644 => 100755 4-machine-learning-supervisionado-inter/Naive Bayes e SVM/SVM.ipynb create mode 100755 "5-machine-learning-nao-supervisionado/agrupamentos/clustering/Introducci\303\263n a clustering/Presentaci\303\263n/PRESENTACION_Intro_Clustering_pt_br.pptx" create mode 100755 "5-machine-learning-nao-supervisionado/agrupamentos/clustering/Introducci\303\263n a clustering/SCRIPT_Intro_Clustering_pt_br.docx" mode change 100644 => 100755 "5-machine-learning-nao-supervisionado/agrupamentos/clustering/Notebooks/Pr\303\241ctica Guiada/PRACTICA_GUIADA_Intro_Clustering_pt_br.ipynb" create mode 100755 "5-machine-learning-nao-supervisionado/agrupamentos/clustering/Tunning de cluster/Presentaci\303\263n/PRESENTACION_Tuning_Clusters_pt_br.pptx" create mode 100755 5-machine-learning-nao-supervisionado/agrupamentos/clustering/Tunning de cluster/SCRIPT_Tunning_Clustering_pt_br.docx mode change 100644 => 100755 "5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introduccio\314\201n DBSCAN/Notebooks/Pra\314\201ctica Guiada Fran/Pra\314\201cticaGuiada_DBScan_pt_br.ipynb" mode change 100644 => 100755 "5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introduccio\314\201n al Clustering Jera\314\201rquico/Notebooks/Pr\303\241ctica Guiada/PRACTICA_GUIADA_Intro_Clustering_Jera\314\201rquico_pt_br.ipynb" mode change 100644 => 100755 "5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n DBSCAN/Notebooks/Pr\303\241ctica Guiada Fran/Pr\303\241cticaGuiada_DBScan_pt_br.ipynb" create mode 100755 "5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n DBSCAN/PRESENTACION_Introduccion_DBSCAN_EDITABLE_pt_br.pptx" create mode 100755 "5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n DBSCAN/SCRIPT_Introducci\303\263n_DBSCAN_pt_br.docx" mode change 100644 => 100755 "5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n al Clustering Jer\303\241rquico/Notebooks/Pr\303\241ctica Guiada/PRACTICA_GUIADA_Intro_Clustering_Jer\303\241rquico_pt_br.ipynb" create mode 100755 "5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n al Clustering Jer\303\241rquico/PRESENTACION_Introduccion_Clustering_Jer\303\241rquico_pt_br.pptx" create mode 100755 "5-machine-learning-nao-supervisionado/agrupamentos/hierarquivo e dbscan/Introducci\303\263n al Clustering Jer\303\241rquico/SCRIPT_Introducci\303\263n_Clustering_Jer\303\241rquico_pt_br.docx" create mode 100755 6-dados/api/consultando APIs/APIs.pptx mode change 100644 => 100755 6-dados/api/consultando APIs/apis.ipynb mode change 100644 => 100755 6-dados/api/consultando APIs/imdb_list.csv mode change 100644 => 100755 6-dados/api/criando APIs/criando_modelo_ml.ipynb mode change 100644 => 100755 6-dados/api/criando APIs/log.log mode change 100644 => 100755 6-dados/api/criando APIs/model.pkl mode change 100644 => 100755 6-dados/api/criando APIs/requirements.txt mode change 100644 => 100755 6-dados/api/criando APIs/train.csv mode change 100644 => 100755 6-dados/api/criando APIs/webservice.ipynb mode change 100644 => 100755 6-dados/api/criando APIs/webservice.py mode change 100644 => 100755 6-dados/grafos/Airlines.csv mode change 100644 => 100755 6-dados/grafos/basic-network-analysis-tutorial.ipynb mode change 100644 => 100755 6-dados/grafos/facebook_combined.txt mode change 100644 => 100755 6-dados/grafos/grafos.ipynb mode change 100644 => 100755 6-dados/grafos/lanl_routes.edgelist mode change 100644 => 100755 6-dados/grafos/lesmiserables.csv mode change 100644 => 100755 6-dados/grafos/manhatten.graphml.zip mode change 100644 => 100755 6-dados/grafos/napoleao.ipynb mode change 100644 => 100755 6-dados/grafos/networkx_plotly.ipynb mode change 100644 => 100755 6-dados/grafos/newyork.graphml.zip mode change 100644 => 100755 6-dados/grafos/plot_football.ipynb mode change 100644 => 100755 6-dados/grafos/plot_roget.ipynb mode change 100644 => 100755 6-dados/grafos/roget_dat.txt.gz mode change 100644 => 100755 6-dados/scraping/bs4.ipynb mode change 100644 => 100755 6-dados/scraping/tabela_ex.csv mode change 100644 => 100755 6-dados/scraping/tabela_ex.xlsx mode change 100644 => 100755 6-dados/scraping/tabla.csv mode change 100644 => 100755 7-nlp/Aula1/class_1.ipynb mode change 100644 => 100755 7-nlp/Aula2/pizza_test.json mode change 100644 => 100755 7-nlp/Aula2/pizza_train.json mode change 100644 => 100755 7-nlp/Aula3/resumo.txt mode change 100644 => 100755 7-nlp/readme.md create mode 100755 8-redes-neurais/resumo.txt create mode 100755 "9-sistemas-recomenda\303\247\303\243o/resumo.txt" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/ComputacaoNatural.pdf" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade1_GA_gabarito.ipynb" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade2_PSO - Particle Swarm Optimization.ipynb" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/Clonal.ipynb" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/digits/0.png" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/digits/1.png" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/digits/2.png" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/digits/3.png" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/digits/4.png" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/digits/6.png" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/digits/9.png" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/digits/left.png" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/digits/period.png" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/digits/right.png" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/h1_evaluation.py" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/h2_evaluation.py" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/helpers.py" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/helpers.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/__init__.py" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/__init__.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/__pycache__/__init__.cpython-36.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/__pycache__/affinity.cpython-36.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/__pycache__/antibody.cpython-36.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/__pycache__/antigen.cpython-36.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/__pycache__/clone.cpython-36.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/__pycache__/main.cpython-36.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/__pycache__/mutate.cpython-36.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/affinity.py" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/affinity.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/antibody.py" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/antibody.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/antigen.py" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/antigen.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/clone.py" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/clone.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/main.py" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/main.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/mutate.py" mode change 100644 => 100755 "99-miscel\303\242nia/computacao_natural/atividade3/kapa/mutate.pyc" mode change 100644 => 100755 "99-miscel\303\242nia/git/resumo.txt" mode change 100644 => 100755 "99-miscel\303\242nia/produ\303\247\303\243o/resumo.txt" mode change 100644 => 100755 "99-miscel\303\242nia/viz/resumo.txt" mode change 100644 => 100755 README.md diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6 GIT binary patch literal 6148 zcmeH~Jr2S!425mzP>H1@V-^m;4Wg<&0T*E43hX&L&p$$qDprKhvt+--jT7}7np#A3 zem<@ulZcFPQ@L2!n>{z**++&mCkOWA81W14cNZlEfg7;MkzE(HCqgga^y>{tEnwC%0;vJ&^%eQ zLs35+`xjp>T0int/float/complex).\n", - "- Textos (list)\n", - "- Tuplas (tuple)\n", - "- Dicionários (dict)\n", - "- Conjuntos set loops\n", - "- Conversão de tipos" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Objetos em Python, assim como em várias outras linguagens de programação, são organizados em tipos, chamados __classes__. Pertencendo a uma classe esses objetos podem ser modificados por funções (chamadas __métodos__) definidas para cada classe.\n", - "Mais tarde neste curso vamos aprender como criar suas próprias classes e definir métodos que podem ser aplicados aos objetos que pertencem a essa nova classe.\n", - "Enquanto isso vamos passar por algumas classes padrão que já nos ajudarão a resolver vários problemas.\n", - "\n", - "" + "Objects in Python, like in many other languages, are organized in types, called __classes__. By belonging to a class, objects can be modified by functions (called __methods__) that are defined for objetcs of that class. Later in the course we will learn how to create our own classes and define methods that apply to objetcs that belong to them. For the time being, let us go through some standard classes that will already take us a long way towards solving problems." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Python 3.6.8 :: Anaconda, Inc.\n" + "Python 3.5.4 :: Anaconda custom (64-bit)\r\n" ] } ], @@ -54,22 +36,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Numbers - Números" + "# Numbers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Existem três tipos básicos de objetos numéricos no Python.\n", - "O primeiro deles é o int (para inteiros), como -1, 0, 1, 2 e assim por diante.\n", - "\n", - "" + "There are three basic types of numeric objects in Python. One of then is int (for integers), such as -1, 0, 1, 2, and so on." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -78,7 +57,7 @@ "int" ] }, - "execution_count": 3, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -92,16 +71,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Outro tipo é o float, que guarda números reais.\n", - "Você consegue encontrar mais informações sobre como o Python trata o número de casas decimais na [documentação do Python](https://docs.python.org/3/tutorial/floatingpoint.html) (em Inglês).\n", - "\n", - "" + "The other type of numeric object is float, that stores real numbers.\n", + "For more information on how Python handles floating point arithmetic, see [this](https://docs.python.org/3/tutorial/floatingpoint.html)." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -110,7 +86,7 @@ "53" ] }, - "execution_count": 4, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -122,7 +98,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -131,7 +107,7 @@ "float" ] }, - "execution_count": 5, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -144,14 +120,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "E por último complex que representa os números complexos. Entenda os números complexos e suas opeções nesta sequencia de vídeos: [Números complexos em pt_br](https://youtu.be/nprqf6DKeyI)\n", - "\n", - "" + "One can also represent complex numbers (complex). A quick refresher on complex numbers can be found [here](https://en.wikipedia.org/wiki/Complex_number) and [here](http://mathworld.wolfram.com/ComplexNumber.html)." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -160,7 +134,7 @@ "complex" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -171,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -180,7 +154,7 @@ "complex" ] }, - "execution_count": 7, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -193,23 +167,21 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Note que mesmo int 3, float 3.0, e complex 3.0+0j representem a mesma quantidade, o Python vai tratá-los como objetos diferente.\n", - "\n", - "" + "Notice that although the int 3, the float 3.0, and the complex 3.0+0j represent the same quantity, Python will treat them as different objetcs." ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "4402206192\n", - "4440060840\n", - "4440441680\n" + "94708970930304\n", + "139738084184280\n", + "139738084123920\n" ] } ], @@ -224,14 +196,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Algumas operações que podemos fazer com números:\n", - "\n", - "" + "Some operations that we can perform with numbers:" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -255,15 +225,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Note que adicionar dois int vai retornar um int, mas adicionar um int e um float vai retornar um float mesmo que o float não tenha casas decimais.\n", - "Finalmente, adicionar um int ou float a um complex vai resultar sempre em um objeto complex. Essas mesmas regras se aplicam a outras operações envolvendo núnmeros no Python.\n", - "\n", - "" + "Notice that adding two ints will return an int. But adding an int to a float will return a float (even though the float has no decimals). Finally, adding an int or a float to a complex will result in a complex object. This rule applies to other operations in Python involving numbers." ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -285,7 +252,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -305,7 +272,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -314,7 +281,7 @@ "2" ] }, - "execution_count": 12, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -326,7 +293,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -335,7 +302,7 @@ "1" ] }, - "execution_count": 13, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -347,7 +314,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -373,15 +340,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Algumas vezes é conveniente colocar um objeto dentro de uma **variável** que herda várias propriedades do objeto, mas pode ter seu valor alterado posteriormente.\n", - "Em várias linguagens de programação, a variável e o tipo de objeto devem ser declarados no início, mas o Python não requer esse tipo de declaração. Além disso o tipo da variável pode alterar ao longo do seu código.\n", - "\n", - "" + "Sometimes it is convenient to assign an object to a **variable**. The variable inherits several properties of the object itself, but can have its values changed later on. In several programming languages, the variable and the type of data it can store have to be declared at the outset. Python does not require such declaration, and the type of variable can change throughout the code." ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -390,7 +354,7 @@ "8" ] }, - "execution_count": 15, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -404,21 +368,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**Regras para nomes de variáveis**\n", - "\n", - "* Os nomes das variáveis devem começar com um letra ou \"_\" (*underscore*).\n", - "* O restante do nome pode conter letras, números e underscores.\n", - "* Nomes de variáveis no Python são diferentes se escritas em caixa alta ou baixa.\n", - "\n", - "" + "* Names are case sensitive." ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -439,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -464,13 +422,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Outra forma de utilizar operações aritiméticas:\n", - "" + "Another way to perform basic arithmetic operations:" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -490,7 +447,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -512,13 +469,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Outras funções (métodos) úteis que se aplicam a números:\n", - "" + "Other useful functions (methods) that apply to numbers:" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -540,7 +496,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -558,7 +514,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -576,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -597,20 +553,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Quais são os métodos em um objeto numérico?\n", - "" + "What are the methods in a numerical object?" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['__abs__', '__add__', '__bool__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__int__', '__le__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__pos__', '__pow__', '__radd__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rmod__', '__rmul__', '__rpow__', '__rsub__', '__rtruediv__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', 'conjugate', 'imag', 'real']\n" + "['__abs__', '__add__', '__bool__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__int__', '__le__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__pos__', '__pow__', '__radd__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rmod__', '__rmul__', '__rpow__', '__rsub__', '__rtruediv__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', 'conjugate', 'imag', 'real']\n" ] } ], @@ -621,7 +576,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -642,13 +597,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Uma regra sobre atribuição a um número:\n", - "" + "A rule about assignment to a number:" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -669,7 +623,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -691,20 +645,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Strings - Textos" + "# Strings" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Um texto ou *string* (str) em Python é uma sequência de caracteres.\n", - "" + "A string (str) is Pyhton is a sequence of characters." ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -713,7 +666,7 @@ "str" ] }, - "execution_count": 28, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -726,23 +679,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Textos podem ser criados colocando a sequência de caracteres dentro de aspas simples ou duplas.\n", - "'texto\" não é válido! 'texto\" = \"texto\".\n", - "" + "Strings can be created by enclosing a sequence of characters in single or double quotes.\n", + "'string\" is NOT valid! 'string'=\"string\"." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Qual o tamanho de um texto?\n", - "" + "What is the size of a string?" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -751,7 +701,7 @@ "9" ] }, - "execution_count": 29, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -762,7 +712,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -783,7 +733,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -804,13 +754,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Números não podem ser fundidos/adicionados com textos em tempo de execução. Para fazer isso, antes é necessário converter o número para texto.\n", - "" + "Numbers cannot be merged to strings on the fly. To do so, one has to convert the number to a string before." ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -819,7 +768,7 @@ "'number two: 2'" ] }, - "execution_count": 32, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -833,13 +782,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Existem métodos para extrair apenas parte de um texto.\n", - "" + "There are methods to extract only a portion of a string." ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -870,21 +818,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Mesmo sendo possível acessar o caracter na posição *i*, não é possível alterá-lo diretamente no texto. s[3] = \"v\" vai retornar um erro.\n", - "" + "Although one can access the element in position *i* this way, it is not possible to modify the string directly. s[3] = \"v\" would return an error." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Aspas triplas (''') fazem o Python interpretar literlamente qualquer coisa que estiver entre as aspas triplas. Isso incluí quebras de linhas.\n", - "" + "Triple quotes (''') interprets literally whatever is between then, including line brakes. " ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -905,13 +851,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Existem formas mais elegantes de se adicionar quebras de linha e outros caracteres de controle.\n", - "" + "There are more elegant ways to insert line breaks and other control characters." ] }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -931,13 +876,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Expressões dentro de um texto que tenham o prefixo de uma barra invertida \\ são utilizadas para imprimir sequências, caracteres especiais entre outras coisas. Para inserir um caracter especial ou de controle como uma quebra de linha \\n, espaçamentos \\t, ou um espaço \\s.\n", - "" + "Expressions inside a string that are preceeded by a backslash (\\) are referred to as escape sequences, and are used - among other things - to insert non-printable and especial characters, such as linebreak (\\n), tab (\\t), or a single space (\\s). " ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -956,13 +900,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Textos também podem ser multiplicados.\n", - "" + "Strings can be 'multiplied' too." ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -984,13 +927,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Aqui um exemplo mais seguro e flexível para fundir textos usando o método format.\n", - "" + "Here is a safer, more flexible way to merge strings, using the format method." ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -999,7 +941,7 @@ "'Corinthias é campeão'" ] }, - "execution_count": 38, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -1017,7 +959,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -1040,7 +982,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -1063,7 +1005,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -1072,7 +1014,7 @@ "'TIMAO, EO! '" ] }, - "execution_count": 41, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -1083,7 +1025,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -1092,7 +1034,7 @@ "'timao, eo! '" ] }, - "execution_count": 42, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -1103,7 +1045,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -1112,7 +1054,7 @@ "'(6+9j)'" ] }, - "execution_count": 43, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -1123,7 +1065,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -1132,7 +1074,7 @@ "['Timao,', 'eo!']" ] }, - "execution_count": 44, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -1143,7 +1085,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -1162,7 +1104,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 45, "metadata": {}, "outputs": [ { @@ -1179,7 +1121,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 46, "metadata": { "scrolled": true }, @@ -1190,7 +1132,7 @@ "2" ] }, - "execution_count": 47, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -1201,7 +1143,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -1210,7 +1152,7 @@ "-1" ] }, - "execution_count": 48, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -1221,7 +1163,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 48, "metadata": {}, "outputs": [ { @@ -1230,7 +1172,7 @@ "2" ] }, - "execution_count": 49, + "execution_count": 48, "metadata": {}, "output_type": "execute_result" } @@ -1243,20 +1185,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Outros métodos para textos (string):\n", - "" + "Other string methods:" ] }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']\n" + "['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']\n" ] } ], @@ -1267,7 +1208,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 50, "metadata": { "scrolled": true }, @@ -1291,7 +1232,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 51, "metadata": {}, "outputs": [ { @@ -1312,22 +1253,23 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "collapsed": true + }, "source": [ - "# Lists - Listas" + "# Lists" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Uma lista (list) é uma coleção ordenada de elementos. Cada elemento tem 2 atributos: index (a posição em que ele se encontra, começão do 0) e o valor.\n", - "" + "A list is an ordered collection of elements. Each element has two attributes: index (the position it is in, *starting from zero*) and value." ] }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -1349,13 +1291,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "O elemento da lista pode ser acessado chamando o *index* dele.\n", - "" + "The element of a list can be accessed by calling its index." ] }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -1364,7 +1305,7 @@ "'Fernando'" ] }, - "execution_count": 54, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -1375,7 +1316,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -1402,13 +1343,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Qual é o tamanho da nossa lista?\n", - "" + "What is the size of our list?" ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -1417,7 +1357,7 @@ "5" ] }, - "execution_count": 56, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -1431,13 +1371,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Uma lista pode ser ordenada (se todos os elementos puderem ser comparados! Vamos ver mais sobre isso nessa sessão. Note que o *index* associado com cada elemento vai ser alterado.\n", - "" + "The list can be sorted (if all elements can be compared! More about this later in this section). Notice that the indexes associated with each element will change." ] }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -1463,13 +1402,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "A ordem dos elementos também pode ser revertida.\n", - "\n" + "The order of the elements can also be reversed.\n" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -1491,13 +1429,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Existem duas formas de adicionar um elemnto a uma lista. O método append que vai adicionar o elemento na última posição da lista.\n", - "" + "There are two ways to add an element to a list. The method append will add the element to the last position." ] }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -1519,13 +1456,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Ou adicionar o elemento em uma posição especifica na lista. Neste caso os outros inedx também podem ser alterados.\n", - "" + "A value can also be added in a specific position. In this scenario, the other indexes may also change." ] }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -1545,15 +1481,16 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "collapsed": true + }, "source": [ - "Elementos de uma lista também podem ser modificados.\n", - "" + "Elements of a list can be modified." ] }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -1575,13 +1512,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Elementos podem ser removidos da lista dependendo do valor ques eles possuem. O método p.remove(v) vai remover todos os elementos da lista que tiverem o valor igual a v. Os indexes serão alterados nos elementos remanecentes.\n", - "" + "Elements can be removed from the list depende on the value they have. The method p.remove(v) will remove all the elements whose value is v. Indexes will change." ] }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -1607,13 +1543,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Qual o index do elemento \"Luis\"?\n", - "" + "What is the index of \"Luis\"?" ] }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -1622,7 +1557,7 @@ "3" ] }, - "execution_count": 63, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -1635,13 +1570,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Também é possível remover um elemento de acordo com seu index. Lembre-se o index é a posição do elemento na lista e ao removê-lo, você pode alterar a posição de outros elementos.\n", - "" + "Also possible to remove element according to its index. Remember that the index is the position of the element in the list." ] }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 63, "metadata": {}, "outputs": [ { @@ -1666,28 +1600,26 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "O método list.pop() remove o último elemento da lista (o que tiver o maior index).\n", - "" + "list.pop() removes the last element of a list (the one with the highest index)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Outros métodos das listas (list):\n", - "" + "Other list methods:" ] }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 64, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']\n" + "['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']\n" ] } ], @@ -1699,13 +1631,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Um truque que você deve se lembrar e que é verdade para listas e outros objetos **mutáveis**.\n", - "" + "A trick that you should remember. It is true for lists and for other **mutable** objetcs." ] }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -1714,7 +1645,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -1736,21 +1667,20 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "a e b estão apontando para o mesmo objeto na memória, se um muda o outro também vai ser alterado.\n", - "" + "a and b are pointing to the same object in memory." ] }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 67, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "id(a) = 4441100744\n", - "id(b) = 4441100744\n" + "id(a) = 139738083628936\n", + "id(b) = 139738083628936\n" ] } ], @@ -1761,15 +1691,16 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "collapsed": true + }, "source": [ - "Vamos modificar b\n", - "" + "Let us modify b" ] }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 68, "metadata": {}, "outputs": [ { @@ -1789,13 +1720,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "a também foi alterado.\n", - "" + "a was also modified." ] }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 69, "metadata": {}, "outputs": [ { @@ -1812,7 +1742,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 70, "metadata": {}, "outputs": [], "source": [ @@ -1821,15 +1751,15 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 71, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "id(a) = 4441100744\n", - "id(b) = 4441102408\n" + "id(a) = 139738083628936\n", + "id(b) = 139738083627208\n" ] } ], @@ -1842,13 +1772,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Listas podem guardar mais do que um tipo de dados.\n", - "" + "Lists can store more than one type of data." ] }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -1868,13 +1797,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Como fundir/juntar/combinar listas?\n", - "" + "How to merge/combine lists?" ] }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -1901,23 +1829,16 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['Ulisses',\n", - " 'Roberto',\n", - " 'Luis',\n", - " 'Fernando',\n", - " 'Leonel',\n", - " 'Eneas',\n", - " 'Marronzinho',\n", - " 'Correa']" + "['Ulisses', 'Roberto', 'Luis', 'Fernando', 'Leonel']" ] }, - "execution_count": 75, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } @@ -1935,7 +1856,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "['Ulisses', 'Roberto', 'Marronzinho', 'Luis', 'Leonel', 'Fernando', 'Eneas', 'Correa']\n" + "['Ulisses', 'Roberto', 'Luis', 'Leonel', 'Fernando']\n" ] } ], @@ -1945,7 +1866,7 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 80, "metadata": {}, "outputs": [], "source": [ @@ -1954,23 +1875,16 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 81, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['Correa',\n", - " 'Eneas',\n", - " 'Fernando',\n", - " 'Leonel',\n", - " 'Luis',\n", - " 'Marronzinho',\n", - " 'Roberto',\n", - " 'Ulisses']" + "['Fernando', 'Leonel', 'Luis', 'Roberto', 'Ulisses']" ] }, - "execution_count": 78, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -1981,7 +1895,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 82, "metadata": {}, "outputs": [], "source": [ @@ -1990,23 +1904,16 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 83, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['Correa',\n", - " 'Mário',\n", - " 'Fernando',\n", - " 'Leonel',\n", - " 'Luis',\n", - " 'Marronzinho',\n", - " 'Roberto',\n", - " 'Ulisses']" + "['Fernando', 'Mário', 'Luis', 'Roberto', 'Ulisses']" ] }, - "execution_count": 80, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } @@ -2019,20 +1926,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Tuples - Tuplas" + "# Tuples" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Uma tupla nada mais é do que uma sequência de objetos em Python que são **imutáveis**. Diferente das listas, assim que criados, não modem ser modificados.\n", - "" + "A tuple is a sequence of **immutable** Python objects. Unlike lists, once are created, they cannot be modified." ] }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -2052,13 +1958,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Como as tuplas são imutáveis, elas tem apenas um pequeno set de métodos disponíveis para strings.\n", - "" + "Since tuples are immutable, they have only a subset of the methods available for strings." ] }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 92, "metadata": {}, "outputs": [ { @@ -2068,7 +1973,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"rugby\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"rugby\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" ] } @@ -2079,14 +1984,14 @@ }, { "cell_type": "code", - "execution_count": 83, + "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'count', 'index']\n" + "['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'count', 'index']\n" ] } ], @@ -2096,7 +2001,7 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 86, "metadata": {}, "outputs": [ { @@ -2105,7 +2010,7 @@ "3" ] }, - "execution_count": 84, + "execution_count": 86, "metadata": {}, "output_type": "execute_result" } @@ -2116,7 +2021,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 88, "metadata": {}, "outputs": [ { @@ -2125,7 +2030,7 @@ "1" ] }, - "execution_count": 85, + "execution_count": 88, "metadata": {}, "output_type": "execute_result" } @@ -2139,20 +2044,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Dictionaries - Dicionários" + "# Dictionaries" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Dicionários (ou hashes) são tabelas associativas, nas quais indexes são associados com valores.\n", - "" + "Dictionaries (or hashes) are associative tables, in which indexes are associated with values." ] }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 97, "metadata": {}, "outputs": [ { @@ -2170,15 +2074,16 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "collapsed": true + }, "source": [ - "Elementos em Dicionários, podem ser acessados da mesma forma que fazemos com listas e tuplas. A chave (key) deve ser única e imutável. Chaves podem ser textos, tuplas ou números.\n", - "" + "Dictionary elements can be accessed like we do with lists and tuples. The keys must be unique and immutable. strings, numbers or tuples will work as dictionary keys." ] }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 98, "metadata": {}, "outputs": [ { @@ -2187,7 +2092,7 @@ "'Maluf'" ] }, - "execution_count": 87, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -2198,7 +2103,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 99, "metadata": {}, "outputs": [], "source": [ @@ -2207,21 +2112,21 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 102, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{13: 'Lula',\n", - " 15: 'Ulisses',\n", - " 11: 'Maluf',\n", + "{11: 'Maluf',\n", " 12: 'Brizola',\n", - " 20: 'Collor',\n", - " 18: 'Afif'}" + " 13: 'Lula',\n", + " 15: 'Ulisses',\n", + " 18: 'Afif',\n", + " 20: 'Collor'}" ] }, - "execution_count": 89, + "execution_count": 102, "metadata": {}, "output_type": "execute_result" } @@ -2232,7 +2137,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 101, "metadata": {}, "outputs": [], "source": [ @@ -2241,7 +2146,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 103, "metadata": {}, "outputs": [], "source": [ @@ -2250,21 +2155,21 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 104, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{13: 'Lula',\n", - " 15: 'Ulisses',\n", - " 11: ' Afif',\n", + "{11: ' Afif',\n", " 12: 'Brizola',\n", - " 20: 'Collor',\n", - " 18: 'Afif'}" + " 13: 'Lula',\n", + " 15: 'Ulisses',\n", + " 18: 'Afif',\n", + " 20: 'Collor'}" ] }, - "execution_count": 92, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } @@ -2277,13 +2182,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Existem métodos dict que permitem acessar as chaves e valores do dicionário.\n", - "" + "There are dict methods that allow us to access the keys and values of the dictionary." ] }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 105, "metadata": {}, "outputs": [], "source": [ @@ -2292,7 +2196,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 107, "metadata": {}, "outputs": [], "source": [ @@ -2301,7 +2205,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ @@ -2310,17 +2214,17 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 110, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{9321936: {'nome': 'João', 'idade': 21, 'esporte': 'volei'},\n", - " 9625728: {'nome': 'Gabriel', 'idade': 22, 'esporte': 'Sporti'}}" + "{9321936: {'esporte': 'volei', 'idade': 21, 'nome': 'João'},\n", + " 9625728: {'esporte': 'Sporti', 'idade': 22, 'nome': 'Gabriel'}}" ] }, - "execution_count": 96, + "execution_count": 110, "metadata": {}, "output_type": "execute_result" } @@ -2331,7 +2235,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 111, "metadata": {}, "outputs": [ { @@ -2340,7 +2244,7 @@ "43" ] }, - "execution_count": 97, + "execution_count": 111, "metadata": {}, "output_type": "execute_result" } @@ -2351,7 +2255,7 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 112, "metadata": {}, "outputs": [ { @@ -2359,7 +2263,7 @@ "output_type": "stream", "text": [ "keys: dict_keys([9321936, 9625728])\n", - "values: dict_values([{'nome': 'João', 'idade': 21, 'esporte': 'volei'}, {'nome': 'Gabriel', 'idade': 22, 'esporte': 'Sporti'}])\n" + "values: dict_values([{'idade': 21, 'esporte': 'volei', 'nome': 'João'}, {'idade': 22, 'esporte': 'Sporti', 'nome': 'Gabriel'}])\n" ] } ], @@ -2370,7 +2274,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -2387,14 +2291,14 @@ }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 71, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "dict_items([(13, 'Lula'), (15, 'Ulisses'), (11, ' Afif'), (12, 'Brizola'), (20, 'Collor'), (18, 'Afif')])\n" + "dict_items([(20, 'Collor'), (12, 'Brizola'), (13, 'Lula'), (15, 'Ulisses')])\n" ] } ], @@ -2404,14 +2308,14 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 69, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']\n" + "['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']\n" ] } ], @@ -2423,28 +2327,26 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Dicionários, são mutáveis e podem ser alterados basicamente da mesma forma que fizemos com as listas. Isso não se aplica a strings e tuples que são imutáveis.\n", - "" + "Dictionaries are mutable, and can be modified pretty much the same we did for lists. This is not true for strings and tuples, which are immutable." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Como deletar entradas no dicionário?\n", - "" + "How to delete one of the entries?" ] }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 70, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{13: 'Lula', 15: 'Ulisses', 12: 'Brizola', 20: 'Collor', 18: 'Afif'}\n" + "{20: 'Collor', 12: 'Brizola', 13: 'Lula', 15: 'Ulisses'}\n" ] } ], @@ -2457,20 +2359,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Combinando dois dicionários:\n", - "" + "Combining two dictionaries:" ] }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 73, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{13: 'Lula', 15: 'Ulisses', 12: 'Brizola', 20: 'Collor', 18: 'Afif', 43: 'Gabeira', 33: 'Brant', 22: 'Afif'}\n" + "{33: 'Brant', 20: 'Collor', 22: 'Afif', 43: 'Gabeira', 12: 'Brizola', 13: 'Lula', 15: 'Ulisses'}\n" ] } ], @@ -2484,13 +2385,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "E se tentarmos acessar um index que não existe?\n", - "" + "What if one tries to access an index that does not exist?" ] }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 76, "metadata": {}, "outputs": [ { @@ -2511,12 +2411,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Sets - Conjuntos" + "# Sets" ] }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -2524,8 +2424,7 @@ "output_type": "stream", "text": [ "list l = [1, 2, 3, 1, 3, 3, 2]\n", - "set(l) = {1, 2, 3}\n", - "\n" + "set(l) = {1, 2, 3}\n" ] } ], @@ -2533,13 +2432,12 @@ "l = [1, 2, 3, 1, 3, 3, 2]\n", "print(\"list l = \" + str(l))\n", "sl = set(l)\n", - "print(\"set(l) = \" + str(sl))\n", - "print(type(sl))" + "print(\"set(l) = \" + str(sl))" ] }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -2559,7 +2457,6 @@ " '__hash__',\n", " '__iand__',\n", " '__init__',\n", - " '__init_subclass__',\n", " '__ior__',\n", " '__isub__',\n", " '__iter__',\n", @@ -2602,7 +2499,7 @@ " 'update']" ] }, - "execution_count": 106, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -2615,12 +2512,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Converting between types - Convertendo entre os tipos de dados" + "# Converting between types" ] }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 114, "metadata": {}, "outputs": [ { @@ -2629,7 +2526,7 @@ "tuple" ] }, - "execution_count": 107, + "execution_count": 114, "metadata": {}, "output_type": "execute_result" } @@ -2641,7 +2538,7 @@ }, { "cell_type": "code", - "execution_count": 108, + "execution_count": 115, "metadata": {}, "outputs": [], "source": [ @@ -2650,7 +2547,7 @@ }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 116, "metadata": {}, "outputs": [ { @@ -2667,7 +2564,7 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 117, "metadata": {}, "outputs": [ { @@ -2685,7 +2582,7 @@ }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 118, "metadata": {}, "outputs": [ { @@ -2694,7 +2591,7 @@ "['a', 'b', 'c', 'd', 'e']" ] }, - "execution_count": 111, + "execution_count": 118, "metadata": {}, "output_type": "execute_result" } @@ -2705,7 +2602,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 119, "metadata": {}, "outputs": [ { @@ -2714,7 +2611,7 @@ "[1, 2, 3]" ] }, - "execution_count": 112, + "execution_count": 119, "metadata": {}, "output_type": "execute_result" } @@ -2725,7 +2622,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 121, "metadata": {}, "outputs": [], "source": [ @@ -2734,7 +2631,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 122, "metadata": {}, "outputs": [ { @@ -2743,7 +2640,7 @@ "[1, 2, 3]" ] }, - "execution_count": 114, + "execution_count": 122, "metadata": {}, "output_type": "execute_result" } @@ -2754,7 +2651,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 123, "metadata": {}, "outputs": [ { @@ -2772,7 +2669,7 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 124, "metadata": {}, "outputs": [ { @@ -2781,7 +2678,7 @@ "[1, 2, 3]" ] }, - "execution_count": 116, + "execution_count": 124, "metadata": {}, "output_type": "execute_result" } @@ -2807,7 +2704,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.5.4" } }, "nbformat": 4, diff --git a/0-pre-requisitos/1-python/Aula_02.ipynb b/0-pre-requisitos/1-python/Aula_02.ipynb old mode 100644 new mode 100755 index a82842d..082c74e --- a/0-pre-requisitos/1-python/Aula_02.ipynb +++ b/0-pre-requisitos/1-python/Aula_02.ipynb @@ -1,1365 +1,882 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Aula 2: Program Flow and Control Structures - Controle de fluxo de programas e controle de estruturas\n", - "**06/08/2017**\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Objectives:\n", - "- Conditional (if/else) statements\n", - "- for loops\n", - "- while loops\n", - "- functions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Assim como em outras linguagens de programação o Python tem várias funções de controle de fluxo e estruturas para os programas/scripts desenvolvidos." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Conditional - Condicional" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Uma variável boleana (bool) guarda valores Verdadeiro (True) ou Falso (False).\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "bool" + "cells": [ + { + "metadata": { + "collapsed": true + }, + "cell_type": "markdown", + "source": "# Aula 2: Program Flow and Control Structures\n**06/08/2017**\n" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "Objectives:\n- Conditional (if/else) statements\n- for loops\n- while loops\n- functions" + }, + { + "metadata": { + "collapsed": true + }, + "cell_type": "markdown", + "source": "# Conditional" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "A boolean variable stores True or False." + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "type(True)", + "execution_count": 1, + "outputs": [ + { + "data": { + "text/plain": "bool" + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(True)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "x = True\n" - ] - } - ], - "source": [ - "x = (4>3)\n", - "print(\"x = {0}\".format(x))" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "y = False\n" - ] - } - ], - "source": [ - "y = 2==4\n", - "print(\"y = {0}\".format(y))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "x = (4>3)\nprint(\"x = {0}\".format(x))", + "execution_count": 2, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "x = True\n" + } ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x or y" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "False" + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "y = 2==4\nprint(\"y = {0}\".format(y))", + "execution_count": 3, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "y = False\n" + } ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x and y" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "False" + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "x or y", + "execution_count": 4, + "outputs": [ + { + "data": { + "text/plain": "True" + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "not x" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Verdadeiro (True) e Falso (False) se comportam como 1 e 0 respectivamente.\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "x and y", + "execution_count": 5, + "outputs": [ + { + "data": { + "text/plain": "False" + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x+y" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "not x", + "execution_count": 6, + "outputs": [ + { + "data": { + "text/plain": "False" + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x*y" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "O exemplo abaixo mostra a sintaxe mais básica de uma estrutura de decisão:\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5 is greater than 4\n" - ] - } - ], - "source": [ - "x = 5\n", - "y = 4\n", - "t = x>y\n", - "if t:\n", - " print(\"{0} is greater than {1}\".format(x, y))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Se a condição ou uma série de condições for satisfeita, o códico identado abaixo é executado, caso contrário não. A identação no Python é feita com quatro (4) espaços simples, e utilizada para determinar o fim da estrutura. O Python é bem rigido com relação a identação do código e os programadores deveriam ser também (LEMBRE-SE: além de um código funcional somos responsáveis por comunicar descobertas e um código limpo e explicado ajuda a comunicação e trabalho em equipe).\n", - "\n", - "Note que algo acontece (o código é executado) somente se a condição for True. Em alguns casos, queremos que outra coisa acontece se a condição for False, nestes casos usamos as cláusulas \"se não\" (else) ou \"então se\" (elif).\n", - "\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "4 is *NOT* greater than 5\n" - ] - } - ], - "source": [ - "x = 4\n", - "y = 5\n", - "if (x>y):\n", - " print(\"{0} is greater than {1}\".format(x, y))\n", - "else:\n", - " print(\"{0} is *NOT* greater than {1}\".format(x, y))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "O elif permite o teste de multiplas condições.\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5 is greater than 4\n" - ] - } - ], - "source": [ - "x = 5\n", - "y = 4\n", - "if (x>y):\n", - " print(\"{0} is greater than {1}\".format(x, y))\n", - "elif (x==y):\n", - " print(\"{0} is equal to {1}\".format(x, y))\n", - "else:\n", - " print(\"{0} is smaller than {1}\".format(x, y))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "O Python vai sempre executar as instruções apenas da **primeira** condição que for verdadeira.\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5 is greater than or equal to 5\n" - ] - } - ], - "source": [ - "x = 5\n", - "y = 5\n", - "if (x>=y):\n", - " print(\"{0} is greater than or equal to {1}\".format(x, y))\n", - "elif (x==y):\n", - " print(\"{0} is equal to {1}\".format(x, y))\n", - "else:\n", - " print(\"{0} is smaller than {1}\".format(x, y))" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "colors = {0: 'green', 1: 'violet', 2: 'blue', 3: ' yellow'}" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "green\n" - ] - } - ], - "source": [ - "c = 0\n", - "if c == 0:\n", - " print(colors[0])\n", - "elif c == 0:\n", - " print(colors[1])\n", - "elif c == 2:\n", - " print(colors[2])\n", - "elif c == 3:\n", - " print(colors[3])\n", - "else:\n", - " print('I dont know.')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As condições if, podem ser agrupadas uma dentro da outra.\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "7 is MUCH greater than 5\n" - ] - } - ], - "source": [ - "x = 7\n", - "y = 5\n", - "if (x>y):\n", - " if abs(x-y)<1:\n", - " print(\"{0} is greater than {1}\".format(x, y))\n", - " else:\n", - " print(\"{0} is MUCH greater than {1}\".format(x, y))\n", - "elif (x==y):\n", - " print(\"{0} is equal to {1}\".format(x, y))\n", - "else:\n", - " print(\"{0} is smaller than {1}\".format(x, y))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `for` loops - Ciclos condicionais `for`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Loops in Python, as in other programming languages, allows on to perform operations multiple times." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n" - ] - } - ], - "source": [ - "print(list(range(10)))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "55\n", - "1+2+3+...+10 = 55\n" - ] - } - ], - "source": [ - "# sum of the first 10 whole numbers\n", - "\n", - "gauss = 0 # the scalar 'gauss' will store the value of the running sum\n", - "parcelas = [] # the list parcelas will store the value of the running sum at each step\n", - "\n", - "for i in range(11):\n", - "\n", - " gauss += i\n", - "print(gauss)\n", - " \n", - "print(\"1+2+3+...+10 = \" + str(gauss))" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0: Macro\n", - "---\n", - "1: Micro\n", - "---\n", - "2: Econometria\n", - "---\n", - "3: 537\n", - "---\n" - ] - } - ], - "source": [ - "# parsing a list\n", - "l = [\"Macro\", \"Micro\", \"Econometria\", 537]\n", - "for i, v in enumerate(l):\n", - " # the index at each step is assigned to 'i' \n", - " # the value at each stpe is assigned to 'v'\n", - " # both 'i' and 'v' are local, and cannot be accessed outside of the loop\n", - " print(\"{0}: {1}\".format(i, v))\n", - " print(\"---\")" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Macro\n", - "Micro\n", - "Econometria\n", - "537\n" - ] - } - ], - "source": [ - "# if you want to access only the values\n", - "for v in l:\n", - " print(v)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Macro: 20 alunos\n", - "Micro: 25 alunos\n", - "Econometria: 40 alunos\n" - ] - } - ], - "source": [ - "# parsing a list\n", - "d = { \"Macro\": [\"eae302\",20], \"Micro\": [\"eae301\",25], \"Econometria\": [\"eae303\",40] }\n", - "for key, value in d.items():\n", - " print(\"{0}: {1} alunos\".format(key, value[1]))" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "B\n", - "a\n", - "r\n", - "c\n", - "e\n", - "l\n", - "o\n", - "n\n", - "a\n" - ] - } - ], - "source": [ - "# parsing a string\n", - "s = \"Barcelona\"\n", - "for x in s:\n", - " print(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# `while` loops - Ciclos condicionais `while`" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "De forma parecida com o for, o while executa o código enquanto uma condição for atendida.\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5050\n" - ] - } - ], - "source": [ - "gauss = 0\n", - "i = 1\n", - "\n", - "while i<=100:\n", - " gauss += i\n", - " i += 1\n", - "\n", - "print(gauss)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Nós sabemos que $lim_{n\\rightarrow +\\infty} \\sum_{i=1}^{n}{\\frac{1}{i}} = +\\infty$. Que significa que para qualquer positivo real $S$, podemos encontrar um inteiro $n$ de tal modo que $\\sum_{i=1}^{n}{\\frac{1}{i}} > n$. No código abaixo, vamos encontrar um tal $n$ para $S=10$.\n", - "\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "n = 1835422\n" - ] - } - ], - "source": [ - "S = 15 # target value for the sum\n", - "s = 0 # variable that will store the value of the running (partial) sum\n", - "i = 1\n", - "\n", - "while (s" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "# Example 1 (trivial): a function that takes as arguments two real numbers and returns their sum\n", - "def my_sum(x, y):\n", - " return x+y" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3\n" - ] - } - ], - "source": [ - "# testing my_sum\n", - "print(my_sum(2, 1))" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Example 2: improving my_sum\n", - "def my_sum(x, y=0):\n", - " \"\"\"\n", - " my_sum(x, y=0): takes two integers (x and y) and returns their sum\n", - " \"\"\"\n", - " \n", - " if isinstance(x, (int, float)) and isinstance(y, (int, float)):\n", - " return (x+y, \"{0} + {1} = {2}\".format(x, y, x+y))" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(2, '2 + 0 = 2')\n" - ] - } - ], - "source": [ - "# testing my_sum\n", - "s = my_sum(1, 2)\n", - "#print(type(s))\n", - "#print(s[0])\n", - "#print(s[1])\n", - "\n", - "#print(my_sum.__doc__)\n", - "print(my_sum(2))\n", - "#print(my_sum(2, \"Egídio\"))" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'1 + 2 = 3'" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "True and False behave like 1 and 0, respectively." + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "x+y", + "execution_count": 7, + "outputs": [ + { + "data": { + "text/plain": "1" + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "s[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "# Example 3: sum of infinite series (see problem above)\n", - "def limit(S):\n", - "\n", - " s = 0\n", - " i = 0\n", - "\n", - " while (sy\nif t:\n print(\"{0} is greater than {1}\".format(x, y))", + "execution_count": 9, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "5 is greater than 4\n" + } ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum(parcelas)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "n! = n * (n-1)!, if n > 1 and f(1) = 1 " - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "# Example 5: Recursion\n", - "def factorial(n):\n", - " if n == 1:\n", - " return 1\n", - " else:\n", - " return n * factorial(n-1)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "24" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "If the condition (or set of conditions) is satisfied, the indented code below is executed. Indentation in Python is made up of four simple spaces, and is used to determine the end of the structure. Python is very strict about indentation, and programmers should be too.\n\nNotice that something happens (code is execute) only if the condition is True. In some scenarios, one wants something to happen if the condition is False. The else clauses comes in handy in this case." + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "x = 4\ny = 5\nif (x>y):\n print(\"{0} is greater than {1}\".format(x, y))\nelse:\n print(\"{0} is *NOT* greater than {1}\".format(x, y))", + "execution_count": 10, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "4 is *NOT* greater than 5\n" + } ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "factorial(4)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Veja esse exemplo (artigo em inglês) de como pensar de forma recursiva usando Python.\n", - "Nele o autor Abhirag Awasthi, mostra como o Papai Noel programaria seus elfos para entregar os presentes de natal em cada casa sem ter de passar as instruções novamente para cada uma das casas ao redor do mundo.\n", - "https://realpython.com/python-thinking-recursively/" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercícios" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**1.** Da coluna de Marcelo Viana (IMPA) na Folha de São Paulo em 12/08/2018:
\n", - "*Funciona assim: considere um inteiro positivo N qualquer.*\n", - "- Se for par, divida por 2.\n", - "- Se for ímpar, multiplique por 3 e some 1.\n", - "- Substitua N pelo resultado obtido e siga repetindo esse procedimento.\n", - "\n", - "*Por exemplo, se começar com N=7 obterá, sucessivamente, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 e, a partir daí, a sequência só repete os números 4, 2, 1, ciclicamente.*" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "def par(x):\n", - " if (x%2 == 0):\n", - " return True\n", - " else:\n", - " return False" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "def Marcelo_Viana(x):\n", - " c = 0\n", - " while x != 1:\n", - " if par(x):\n", - " x = x/2\n", - " else:\n", - " x = 3*x+1\n", - " c += 1\n", - " \n", - " return c" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1: 0\n", - "2: 1\n", - "3: 7\n", - "4: 2\n", - "5: 5\n", - "6: 8\n", - "7: 16\n", - "8: 3\n", - "9: 19\n", - "10: 6\n", - "11: 14\n", - "12: 9\n", - "13: 9\n", - "14: 17\n" - ] - } - ], - "source": [ - "for x in range(1, 15):\n", - " print(\"{0}: {1}\".format(x, Marcelo_Viana(x)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**2.** Escreva um script em Python para encontrar os números divisíveis por 7 e multiplos de 5, estes devem estar entre 1500 e 2700 (incluindo os dois).\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1505\n", - "1540\n", - "1575\n", - "1610\n", - "1645\n", - "1680\n", - "1715\n", - "1750\n", - "1785\n", - "1820\n", - "1855\n", - "1890\n", - "1925\n", - "1960\n", - "1995\n", - "2030\n", - "2065\n", - "2100\n", - "2135\n", - "2170\n", - "2205\n", - "2240\n", - "2275\n", - "2310\n", - "2345\n", - "2380\n", - "2415\n", - "2450\n", - "2485\n", - "2520\n", - "2555\n", - "2590\n", - "2625\n", - "2660\n", - "2695\n" - ] - } - ], - "source": [ - "def div7(x):\n", - " if (x%7 == 0):\n", - " return True\n", - " else:\n", - " return False\n", - " \n", - "def div5(x):\n", - " if (x%5 == 0):\n", - " return True\n", - " else:\n", - " return False\n", - "\n", - "J = []\n", - "for x in range(1500, 2700+1):\n", - " if div7(x) and div5(x):\n", - " print(x)\n", - " J.append(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**3.** Escreva um código em Python para checar se um triângulo é equilátero, isósceles ou escaleno.\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**4.** Escreva um programa em Python para encontrar a mediana dos valores 3,2 e 1.\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [], - "source": [ - "def mediana(x, y, z):\n", - " l = [x, y, z]\n", - " l.sort()\n", - " return l[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "The elif allows to test multiple conditions." + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "x = 5\ny = 4\nif (x>y):\n print(\"{0} is greater than {1}\".format(x, y))\nelif (x==y):\n print(\"{0} is equal to {1}\".format(x, y))\nelse:\n print(\"{0} is smaller than {1}\".format(x, y))", + "execution_count": 11, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "5 is greater than 4\n" + } ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mediana(3, 1, 2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**5.** Escreva um programa em Python para calcular a soma e a média de números inteiros (input do usuário). Se o usuário digitar 0, termine o programa.\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "def sumario():\n", - " \n", - " n = int(input(\"digite um número natural: \"))\n", - "\n", - " s = 0\n", - " for i in range(n):\n", - " x = float(input(\"digite um número: \"))\n", - " s += x\n", - " \n", - " return (s, s/n)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "name": "stdin", - "output_type": "stream", - "text": [ - "digite um número natural: 2\n", - "digite um número: 53\n", - "digite um número: 22\n" - ] - }, - { - "data": { - "text/plain": [ - "(75.0, 37.5)" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "Python will execute the instruction *first* condition that is true." + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "x = 5\ny = 5\nif (x>=y):\n print(\"{0} is greater than or equal to {1}\".format(x, y))\nelif (x==y):\n print(\"{0} is equal to {1}\".format(x, y))\nelse:\n print(\"{0} is smaller than {1}\".format(x, y))", + "execution_count": 12, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "5 is greater than or equal to 5\n" + } ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sumario()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**6.** Escreva um programa em Python que construa o resultado abaixo, usando ciclos condicionais agrupados:
\n", - "1
\n", - "22
\n", - "333
\n", - "4444
\n", - "55555
\n", - "666666
\n", - "7777777
\n", - "88888888
\n", - "999999999" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "22\n", - "333\n", - "4444\n", - "55555\n", - "666666\n", - "7777777\n", - "88888888\n", - "999999999\n" - ] - } - ], - "source": [ - "# Jeito errado\n", - "for i in range(1, 10):\n", - " print(str(i)*i)" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1\n", - "22\n", - "333\n", - "4444\n", - "55555\n", - "666666\n", - "7777777\n", - "88888888\n", - "999999999\n" - ] - } - ], - "source": [ - "# Jeito certo\n", - "for i in range(1, 10):\n", - " for j in range(i):\n", - " print(i, end=\"\")\n", - " print(\"\\n\", end=\"\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**7.** Escreva um programa em Python para validar uma senha inserida pelo usuário.

\n", - "A senha deve conter:
\n", - "\n", - "Pelo menos 1 letra entre [a-z] e 1 letra entre [A-Z].
\n", - "Pelo menos 1 número entre [0-9].
\n", - "Pelo menos 1 destes caracteres especiais [$#@].
\n", - "Mínimo de 6 caracters.
\n", - "Máximo de 16 caracters.\n", - "\n", - "" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "# At least 1 character from [$#@]. \n", - "def cond_0(s):\n", - " r = {\"$\", \"#\", \"@\"}\n", - " if r.intersection(set(s)) == set():\n", - " return False\n", - " else:\n", - " return True" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "# Minimum length 6 characters & Maximum length 16 characters.\n", - "def cond_1(s):\n", - " if len(s) >= 6 and len(s) <= 16:\n", - " return True\n", - " else:\n", - " return False" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [], - "source": [ - "# At least 1 letter between [a-z] and 1 letter between [A-Z]. \n", - "def cond_2(s):\n", - " if s.lower() == s:\n", - " return False\n", - " elif s.upper() == s:\n", - " return False\n", - " else:\n", - " return True" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "# At least 1 number between [0-9]\n", - "def cond_3(s):\n", - " for i in range(0, 10):\n", - " if str(i) in s:\n", - " return True\n", - " return False" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "def password(s):\n", - " if cond_0(s) and cond_1(s) and cond_2(s) and cond_3(s):\n", - " return True\n", - " else:\n", - " return False" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "colors = {0: 'green', 1: 'violet', 2: 'blue', 3: ' yellow'}", + "execution_count": 13, + "outputs": [] + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "c = 0\nif c == 0:\n print(colors[0])\nelif c == 0:\n print(colors[1])\nelif c == 2:\n print(colors[2])\nelif c == 3:\n print(colors[3])\nelse:\n print('I dont know.')", + "execution_count": 14, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "green\n" + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "if conditions can be nested within each other." + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "x = 7\ny = 5\nif (x>y):\n if abs(x-y)<1:\n print(\"{0} is greater than {1}\".format(x, y))\n else:\n print(\"{0} is MUCH greater than {1}\".format(x, y))\nelif (x==y):\n print(\"{0} is equal to {1}\".format(x, y))\nelse:\n print(\"{0} is smaller than {1}\".format(x, y))", + "execution_count": 15, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "7 is MUCH greater than 5\n" + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "# `for` loops" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "Loops in Python, as in other programming languages, allows on to perform operations multiple times." + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "print(list(range(10)))", + "execution_count": 16, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n" + } + ] + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "# sum of the first 10 whole numbers\n\ngauss = 0 # the scalar 'gauss' will store the value of the running sum\nparcelas = [] # the list parcelas will store the value of the running sum at each step\n\nfor i in range(11):\n\n gauss += i\nprint(gauss)\n \nprint(\"1+2+3+...+10 = \" + str(gauss))", + "execution_count": 19, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "55\n1+2+3+...+10 = 55\n" + } + ] + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "# parsing a list\nl = [\"Macro\", \"Micro\", \"Econometria\", 537]\nfor i, v in enumerate(l):\n # the index at each step is assigned to 'i' \n # the value at each stpe is assigned to 'v'\n # both 'i' and 'v' are local, and cannot be accessed outside of the loop\n print(\"{0}: {1}\".format(i, v))\n print(\"---\")", + "execution_count": 28, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "0: Macro\n---\n1: Micro\n---\n2: Econometria\n---\n3: 537\n---\n" + } + ] + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "# if you want to access only the values\nfor v in l:\n print(v)", + "execution_count": 24, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "Macro\nMicro\nEconometria\n537\n" + } + ] + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "# parsing a list\nd = { \"Macro\": [\"eae302\",20], \"Micro\": [\"eae301\",25], \"Econometria\": [\"eae303\",40] }\nfor key, value in d.items():\n print(\"{0}: {1} alunos\".format(key, value[1]))", + "execution_count": 31, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "Macro: 20 alunos\nEconometria: 40 alunos\nMicro: 25 alunos\n" + } + ] + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "# parsing a string\ns = \"Barcelona\"\nfor x in s:\n print(x)", + "execution_count": 33, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "B\na\nr\nc\ne\nl\no\nn\na\n" + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "# while loops" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "Similar to for. Executes a chunck of code until a certain condition is met." + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "gauss = 0\ni = 1\n\nwhile i<=100:\n gauss += i\n i += 1\n\nprint(gauss)", + "execution_count": 34, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": "5050\n" + } + ] + }, + { + "metadata": { + "collapsed": true + }, + "cell_type": "markdown", + "source": "We know that $lim_{n\\rightarrow +\\infty} \\sum_{i=1}^{n}{\\frac{1}{i}} = +\\infty$. That means that for any positive real $S$, one can find an integer $n$ such that $\\sum_{i=1}^{n}{\\frac{1}{i}} > n$. In the code below, we will find one such $n$ for $S=10$." + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "S = 15 # target value for the sum\ns = 0 # variable that will store the value of the running (partial) sum\ni = 1\n\nwhile (s 1 and f(1) = 1 " + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "# Example 5: Recursion\ndef factorial(n):\n if n == 1:\n return 1\n else:\n return n * factorial(n-1)", + "execution_count": 34, + "outputs": [] + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "factorial(4)", + "execution_count": 29, + "outputs": [ + { + "data": { + "text/plain": "24" + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "https://realpython.com/python-thinking-recursively/" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Exercícios" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "**1.** Da coluna de Marcelo Viana (IMPA) na Falha de São Paulo em 12/08/2018:
\n*Funciona assim: considere um inteiro positivo N qualquer. Se for par, divida por 2. Se for ímpar, multiplique por 3 e some 1. Substitua N pelo resultado obtido e siga repetindo esse procedimento. Por exemplo, se começar com N=7 obterá, sucessivamente, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 e, a partir daí, a sequência só repete os números 4, 2, 1, ciclicamente.*" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def par(x):\n if (x%2 == 0):\n return True\n else:\n return False", + "execution_count": 1, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def Marcelo_Viana(x):\n c = 0\n while x != 1:\n if par(x):\n x = x/2\n else:\n x = 3*x+1\n c += 1\n \n return c", + "execution_count": 7, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "for x in range(1, 15):\n print(\"{0}: {1}\".format(x, Marcelo_Viana(x)))", + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": "1: 0\n2: 1\n3: 7\n4: 2\n5: 5\n6: 8\n7: 16\n8: 3\n9: 19\n10: 6\n11: 14\n12: 9\n13: 9\n14: 17\n", + "name": "stdout" + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "**2.** Write a Python program to find those numbers which are divisible by 7 and multiple of 5, between 1500 and 2700 (both included)." + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def div7(x):\n if (x%7 == 0):\n return True\n else:\n return False\n \ndef div5(x):\n if (x%5 == 0):\n return True\n else:\n return False\n\nJ = []\nfor x in range(1500, 2700+1):\n if div7(x) and div5(x):\n print(x)\n J.append(x)", + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": "1505\n1540\n1575\n1610\n1645\n1680\n1715\n1750\n1785\n1820\n1855\n1890\n1925\n1960\n1995\n2030\n2065\n2100\n2135\n2170\n2205\n2240\n2275\n2310\n2345\n2380\n2415\n2450\n2485\n2520\n2555\n2590\n2625\n2660\n2695\n", + "name": "stdout" + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "**3.** Write a Python program to check a triangle is equilateral, isosceles or scalene." + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "**4.** Write a Python program to find the median of three values." + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def mediana(x, y, z):\n l = [x, y, z]\n l.sort()\n return l[1]", + "execution_count": 13, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "mediana(3, 1, 2)", + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 18, + "data": { + "text/plain": "2" + }, + "metadata": {} + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "**5.** Write a Python program to calculate the sum and average of n integer numbers (input from the user). Input 0 to finish." + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def sumario():\n \n n = int(input(\"digite um número natural: \"))\n\n s = 0\n for i in range(n):\n x = float(input(\"digite um número: \"))\n s += x\n \n return (s, s/n)", + "execution_count": 28, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "sumario()", + "execution_count": 27, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "digite um número natural: 3\ndigite um número: 5\ndigite um número: 2.5\ndigite um número: 1.5\n" + }, + { + "output_type": "execute_result", + "execution_count": 27, + "data": { + "text/plain": "(9.0, 3.0)" + }, + "metadata": {} + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "**6.** Write a Python program to construct the following pattern, using a nested loop number:
\n1
\n22
\n333
\n4444
\n55555
\n666666
\n7777777
\n88888888
\n999999999" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# Jeito errado\nfor i in range(1, 10):\n print(str(i)*i)", + "execution_count": 30, + "outputs": [ + { + "output_type": "stream", + "text": "1\n22\n333\n4444\n55555\n666666\n7777777\n88888888\n999999999\n", + "name": "stdout" + } + ] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# Jeito certo\nfor i in range(1, 10):\n for j in range(i):\n print(i, end=\"\")\n print(\"\\n\", end=\"\")", + "execution_count": 36, + "outputs": [ + { + "output_type": "stream", + "text": "1\n22\n333\n4444\n55555\n666666\n7777777\n88888888\n999999999\n", + "name": "stdout" + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "**7.** Write a Python program to check the validity of password input by users.

\nValidation :

\n\nAt least 1 letter between [a-z] and 1 letter between [A-Z].
\nAt least 1 number between [0-9].
\nAt least 1 character from [$#@].
\nMinimum length 6 characters.
\nMaximum length 16 characters." + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# At least 1 character from [$#@]. \ndef cond_0(s):\n r = {\"$\", \"#\", \"@\"}\n if r.intersection(set(s)) == set():\n return False\n else:\n return True", + "execution_count": 51, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# Minimum length 6 characters & Maximum length 16 characters.\ndef cond_1(s):\n if len(s) >= 6 and len(s) <= 16:\n return True\n else:\n return False", + "execution_count": 57, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# At least 1 letter between [a-z] and 1 letter between [A-Z]. \ndef cond_2(s):\n if s.lower() == s:\n return False\n elif s.upper() == s:\n return False\n else:\n return True", + "execution_count": 3, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# At least 1 number between [0-9]\ndef cond_3(s):\n for i in range(0, 10):\n if str(i) in s:\n return True\n return False", + "execution_count": 19, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def password(s):\n if cond_0(s) and cond_1(s) and cond_2(s) and cond_3(s):\n return True\n else:\n return False", + "execution_count": 23, + "outputs": [] + } + ], + "metadata": { + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "language_info": { + "mimetype": "text/x-python", + "nbconvert_exporter": "python", + "name": "python", + "pygments_lexer": "ipython3", + "version": "3.5.4", + "file_extension": ".py", + "codemirror_mode": { + "version": 3, + "name": "ipython" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/0-pre-requisitos/2-math/algebra_linear_com_numpy.ipynb b/0-pre-requisitos/2-math/algebra_linear_com_numpy.ipynb old mode 100644 new mode 100755 index d935926..5befd80 --- a/0-pre-requisitos/2-math/algebra_linear_com_numpy.ipynb +++ b/0-pre-requisitos/2-math/algebra_linear_com_numpy.ipynb @@ -4,26 +4,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Algebra Linear" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Conceitos de algebra linear https://youtu.be/Y0ZyUhi0khY ou https://youtu.be/D4ewzYFM8LY" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Biblioteca Numpy" + "# Numpy" ] }, { "cell_type": "code", - "execution_count": 211, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -34,19 +20,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Porque usar `numpy`? " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Utilizando a biblioteca timeit conseguimos ver o tempo de processamento para o código Python criado e isso deixa claro o aumento de performance quando estamos usando a biblioteca Numpy." + "## Why `numpy`?" ] }, { "cell_type": "code", - "execution_count": 212, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -55,14 +34,14 @@ }, { "cell_type": "code", - "execution_count": 213, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "357 µs ± 15.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" + "379 µs ± 4.87 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" ] } ], @@ -73,14 +52,14 @@ }, { "cell_type": "code", - "execution_count": 214, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1.73 µs ± 72.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" + "1.69 µs ± 37.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)\n" ] } ], @@ -93,20 +72,19 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Arrays - Matrizes" + "## Arrays" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Um `ndarray` é um contêiner multidimensional (geralmente de tamanho fixo) de itens do mesmo tipo e tamanho. O número de dimensões e itens em uma matriz é definido por sua forma, que é uma tupla de N inteiros positivos que especificam os tamanhos de cada dimensão. O tipo de itens na matriz é especificado por um objeto de tipo de dados separado (`dtype`), um dos quais está associado a cada ndarray.\n", - "" + "An `ndarray` is a (usually fixed-size) multidimensional container of items of the same type and size. The number of dimensions and items in an array is defined by its `shape`, which is a tuple of N positive integers that specify the sizes of each dimension. The type of items in the array is specified by a separate data-type object (`dtype`), one of which is associated with each ndarray." ] }, { "cell_type": "code", - "execution_count": 215, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -115,7 +93,7 @@ "numpy.ndarray" ] }, - "execution_count": 215, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -129,13 +107,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Criando uma matriz a partir de uma lista:\n", - "" + "Creating an array from a list:" ] }, { "cell_type": "code", - "execution_count": 216, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -145,7 +122,7 @@ " [4, 5, 6]])" ] }, - "execution_count": 216, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -157,7 +134,7 @@ }, { "cell_type": "code", - "execution_count": 217, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -166,7 +143,7 @@ "numpy.ndarray" ] }, - "execution_count": 217, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -177,7 +154,7 @@ }, { "cell_type": "code", - "execution_count": 218, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -186,7 +163,7 @@ "(2, 3)" ] }, - "execution_count": 218, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -197,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 219, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -206,7 +183,7 @@ "2" ] }, - "execution_count": 219, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -217,7 +194,7 @@ }, { "cell_type": "code", - "execution_count": 220, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -226,7 +203,7 @@ "dtype('int64')" ] }, - "execution_count": 220, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -239,13 +216,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Exemplo de uma matriz tridimencional:\n", - "" + "Example of a 3-dimensional array" ] }, { "cell_type": "code", - "execution_count": 221, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -258,7 +234,7 @@ " [10, 11, 12]]])" ] }, - "execution_count": 221, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -270,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 222, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -294,12 +270,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Changing size (or shape) - Mudando o tamanho ou forma da matriz" + "### Changing size (or shape)" ] }, { "cell_type": "code", - "execution_count": 223, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -309,7 +285,7 @@ " [4, 5, 6]])" ] }, - "execution_count": 223, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -320,7 +296,7 @@ }, { "cell_type": "code", - "execution_count": 224, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -331,7 +307,7 @@ " [5, 6]])" ] }, - "execution_count": 224, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -342,7 +318,7 @@ }, { "cell_type": "code", - "execution_count": 225, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -352,7 +328,7 @@ " [4, 5, 6]])" ] }, - "execution_count": 225, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -363,7 +339,7 @@ }, { "cell_type": "code", - "execution_count": 226, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -374,7 +350,7 @@ " [5, 6]])" ] }, - "execution_count": 226, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -386,7 +362,7 @@ }, { "cell_type": "code", - "execution_count": 227, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -395,7 +371,7 @@ "tuple" ] }, - "execution_count": 227, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -406,7 +382,7 @@ }, { "cell_type": "code", - "execution_count": 228, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -416,7 +392,7 @@ " [4, 5, 6]])" ] }, - "execution_count": 228, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -430,7 +406,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Creating arrays - Criando Matrizes" + "### Creating arrays" ] }, { @@ -442,16 +418,16 @@ }, { "cell_type": "code", - "execution_count": 229, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([2.5e-323, 3.0e-323, 3.5e-323, 4.0e-323, 4.4e-323])" + "array([0., 0., 0., 0., 0.])" ] }, - "execution_count": 229, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -463,7 +439,7 @@ }, { "cell_type": "code", - "execution_count": 230, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -472,7 +448,7 @@ "(5,)" ] }, - "execution_count": 230, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -483,7 +459,7 @@ }, { "cell_type": "code", - "execution_count": 231, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -496,14 +472,14 @@ { "data": { "text/plain": [ - "array([[2.5e-323],\n", - " [3.0e-323],\n", - " [3.5e-323],\n", - " [4.0e-323],\n", - " [4.4e-323]])" + "array([[0.],\n", + " [0.],\n", + " [0.],\n", + " [0.],\n", + " [0.]])" ] }, - "execution_count": 231, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -516,20 +492,20 @@ }, { "cell_type": "code", - "execution_count": 232, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[2.5e-323],\n", - " [3.0e-323],\n", - " [3.5e-323],\n", - " [4.0e-323],\n", - " [4.4e-323]])" + "array([[0.],\n", + " [0.],\n", + " [0.],\n", + " [0.],\n", + " [0.]])" ] }, - "execution_count": 232, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -548,7 +524,7 @@ }, { "cell_type": "code", - "execution_count": 233, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -557,7 +533,7 @@ "array([ 2., 6., 10.])" ] }, - "execution_count": 233, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -569,7 +545,7 @@ }, { "cell_type": "code", - "execution_count": 234, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -578,7 +554,7 @@ "(3,)" ] }, - "execution_count": 234, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -596,7 +572,7 @@ }, { "cell_type": "code", - "execution_count": 235, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -607,7 +583,7 @@ " [0., 0., 1.]])" ] }, - "execution_count": 235, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -633,7 +609,7 @@ }, { "cell_type": "code", - "execution_count": 236, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -642,7 +618,7 @@ "array([1., 1., 1.])" ] }, - "execution_count": 236, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -654,7 +630,7 @@ }, { "cell_type": "code", - "execution_count": 237, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -663,7 +639,7 @@ "(3,)" ] }, - "execution_count": 237, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -674,7 +650,7 @@ }, { "cell_type": "code", - "execution_count": 238, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -683,7 +659,7 @@ "array([1, 1, 1])" ] }, - "execution_count": 238, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -695,7 +671,7 @@ }, { "cell_type": "code", - "execution_count": 239, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -704,7 +680,7 @@ "array([False, True, True, False, False])" ] }, - "execution_count": 239, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -718,12 +694,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Accessing elements of an array - Acessando elementos da matriz" + "### Accessing elements of an array" ] }, { "cell_type": "code", - "execution_count": 240, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -732,7 +708,7 @@ "array([1., 2., 3., 4., 5., 6., 7., 8., 9.])" ] }, - "execution_count": 240, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -744,7 +720,7 @@ }, { "cell_type": "code", - "execution_count": 241, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -753,7 +729,7 @@ "(9,)" ] }, - "execution_count": 241, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -764,7 +740,7 @@ }, { "cell_type": "code", - "execution_count": 242, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -773,7 +749,7 @@ "1.0" ] }, - "execution_count": 242, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -784,7 +760,7 @@ }, { "cell_type": "code", - "execution_count": 243, + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -793,7 +769,7 @@ "9.0" ] }, - "execution_count": 243, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -804,7 +780,7 @@ }, { "cell_type": "code", - "execution_count": 244, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -813,7 +789,7 @@ "array([3., 4., 5., 6.])" ] }, - "execution_count": 244, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } @@ -824,7 +800,7 @@ }, { "cell_type": "code", - "execution_count": 245, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -835,7 +811,7 @@ " [7., 8., 9.]])" ] }, - "execution_count": 245, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -847,7 +823,7 @@ }, { "cell_type": "code", - "execution_count": 246, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -856,7 +832,7 @@ "(3, 3)" ] }, - "execution_count": 246, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -867,7 +843,7 @@ }, { "cell_type": "code", - "execution_count": 247, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -876,7 +852,7 @@ "array([[1., 2., 3.]])" ] }, - "execution_count": 247, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -887,7 +863,7 @@ }, { "cell_type": "code", - "execution_count": 248, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -896,7 +872,7 @@ "array([[1., 2., 3.]])" ] }, - "execution_count": 248, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -907,7 +883,7 @@ }, { "cell_type": "code", - "execution_count": 249, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -917,7 +893,7 @@ " [8., 9.]])" ] }, - "execution_count": 249, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -928,7 +904,7 @@ }, { "cell_type": "code", - "execution_count": 250, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -938,7 +914,7 @@ " [4., 5., 6.]])" ] }, - "execution_count": 250, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -950,7 +926,7 @@ }, { "cell_type": "code", - "execution_count": 251, + "execution_count": 41, "metadata": {}, "outputs": [ { @@ -961,7 +937,7 @@ " [10., 10., 10.]])" ] }, - "execution_count": 251, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -975,12 +951,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Array Methods - Métodos para Matrizes" + "### Array Methods" ] }, { "cell_type": "code", - "execution_count": 252, + "execution_count": 42, "metadata": {}, "outputs": [ { @@ -989,7 +965,7 @@ "array([2., 1., 4., 3.])" ] }, - "execution_count": 252, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -1001,7 +977,7 @@ }, { "cell_type": "code", - "execution_count": 253, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -1018,7 +994,7 @@ }, { "cell_type": "code", - "execution_count": 254, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -1027,7 +1003,7 @@ "array([2., 1., 2., 2.])" ] }, - "execution_count": 254, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -1038,10 +1014,8 @@ }, { "cell_type": "code", - "execution_count": 255, - "metadata": { - "collapsed": true - }, + "execution_count": 45, + "metadata": {}, "outputs": [], "source": [ "a = np.array([[1, 2], [3, 4], [5, 6]])" @@ -1049,7 +1023,7 @@ }, { "cell_type": "code", - "execution_count": 256, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -1059,7 +1033,7 @@ " [5, 6]])" ] }, - "execution_count": 256, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -1070,7 +1044,7 @@ }, { "cell_type": "code", - "execution_count": 257, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -1156,7 +1130,7 @@ }, { "cell_type": "code", - "execution_count": 258, + "execution_count": 49, "metadata": {}, "outputs": [ { @@ -1208,12 +1182,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### sorting - ordenação" + "#### sorting" ] }, { "cell_type": "code", - "execution_count": 259, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -1222,7 +1196,7 @@ "array([1, 0, 3, 2])" ] }, - "execution_count": 259, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -1233,7 +1207,7 @@ }, { "cell_type": "code", - "execution_count": 260, + "execution_count": 51, "metadata": {}, "outputs": [ { @@ -1242,7 +1216,7 @@ "array([1., 2., 3., 4.])" ] }, - "execution_count": 260, + "execution_count": 51, "metadata": {}, "output_type": "execute_result" } @@ -1256,12 +1230,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### statistics - estatísticos" + "#### statistics" ] }, { "cell_type": "code", - "execution_count": 261, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -1270,7 +1244,7 @@ "10.0" ] }, - "execution_count": 261, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -1281,7 +1255,7 @@ }, { "cell_type": "code", - "execution_count": 262, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -1290,7 +1264,7 @@ "2.5" ] }, - "execution_count": 262, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -1301,7 +1275,7 @@ }, { "cell_type": "code", - "execution_count": 263, + "execution_count": 54, "metadata": {}, "outputs": [ { @@ -1310,7 +1284,7 @@ "1.25" ] }, - "execution_count": 263, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -1321,7 +1295,7 @@ }, { "cell_type": "code", - "execution_count": 264, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -1330,7 +1304,7 @@ "1.118033988749895" ] }, - "execution_count": 264, + "execution_count": 55, "metadata": {}, "output_type": "execute_result" } @@ -1341,7 +1315,7 @@ }, { "cell_type": "code", - "execution_count": 265, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -1350,7 +1324,7 @@ "4.0" ] }, - "execution_count": 265, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -1361,10 +1335,8 @@ }, { "cell_type": "code", - "execution_count": 266, - "metadata": { - "collapsed": true - }, + "execution_count": 57, + "metadata": {}, "outputs": [ { "data": { @@ -1372,7 +1344,7 @@ "array([1., 2., 3., 4.])" ] }, - "execution_count": 266, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -1383,10 +1355,8 @@ }, { "cell_type": "code", - "execution_count": 267, - "metadata": { - "collapsed": true - }, + "execution_count": 58, + "metadata": {}, "outputs": [ { "data": { @@ -1394,7 +1364,7 @@ "3" ] }, - "execution_count": 267, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } @@ -1405,10 +1375,8 @@ }, { "cell_type": "code", - "execution_count": 268, - "metadata": { - "collapsed": true - }, + "execution_count": 59, + "metadata": {}, "outputs": [ { "data": { @@ -1416,7 +1384,7 @@ "array([ 1., 3., 6., 10.])" ] }, - "execution_count": 268, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -1427,10 +1395,8 @@ }, { "cell_type": "code", - "execution_count": 269, - "metadata": { - "collapsed": true - }, + "execution_count": 60, + "metadata": {}, "outputs": [ { "data": { @@ -1438,7 +1404,7 @@ "array([ 1., 2., 6., 24.])" ] }, - "execution_count": 269, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } @@ -1449,10 +1415,8 @@ }, { "cell_type": "code", - "execution_count": 270, - "metadata": { - "collapsed": true - }, + "execution_count": 61, + "metadata": {}, "outputs": [ { "data": { @@ -1461,7 +1425,7 @@ " [3., 4.]])" ] }, - "execution_count": 270, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -1473,10 +1437,8 @@ }, { "cell_type": "code", - "execution_count": 271, - "metadata": { - "collapsed": true - }, + "execution_count": 62, + "metadata": {}, "outputs": [ { "data": { @@ -1485,7 +1447,7 @@ " [2., 4.]])" ] }, - "execution_count": 271, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -1496,10 +1458,8 @@ }, { "cell_type": "code", - "execution_count": 272, - "metadata": { - "collapsed": true - }, + "execution_count": 63, + "metadata": {}, "outputs": [ { "data": { @@ -1507,7 +1467,7 @@ "3" ] }, - "execution_count": 272, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -1518,10 +1478,8 @@ }, { "cell_type": "code", - "execution_count": 273, - "metadata": { - "collapsed": true - }, + "execution_count": 64, + "metadata": {}, "outputs": [ { "data": { @@ -1529,7 +1487,7 @@ "3" ] }, - "execution_count": 273, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } @@ -1540,10 +1498,8 @@ }, { "cell_type": "code", - "execution_count": 274, - "metadata": { - "collapsed": true - }, + "execution_count": 65, + "metadata": {}, "outputs": [ { "data": { @@ -1551,7 +1507,7 @@ "array([0, 5, 1, 2])" ] }, - "execution_count": 274, + "execution_count": 65, "metadata": {}, "output_type": "execute_result" } @@ -1562,10 +1518,8 @@ }, { "cell_type": "code", - "execution_count": 275, - "metadata": { - "collapsed": true - }, + "execution_count": 66, + "metadata": {}, "outputs": [ { "data": { @@ -1573,7 +1527,7 @@ "array([ 6, 8, 10, 12])" ] }, - "execution_count": 275, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } @@ -1586,10 +1540,8 @@ }, { "cell_type": "code", - "execution_count": 276, - "metadata": { - "collapsed": true - }, + "execution_count": 67, + "metadata": {}, "outputs": [ { "data": { @@ -1597,7 +1549,7 @@ "array([ 5, 12, 21, 32])" ] }, - "execution_count": 276, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } @@ -1608,10 +1560,8 @@ }, { "cell_type": "code", - "execution_count": 277, - "metadata": { - "collapsed": true - }, + "execution_count": 68, + "metadata": {}, "outputs": [ { "data": { @@ -1619,7 +1569,7 @@ "array([11, 12, 13, 14])" ] }, - "execution_count": 277, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -1630,10 +1580,8 @@ }, { "cell_type": "code", - "execution_count": 278, - "metadata": { - "collapsed": true - }, + "execution_count": 69, + "metadata": {}, "outputs": [ { "data": { @@ -1641,7 +1589,7 @@ "array([10, 20, 30, 40])" ] }, - "execution_count": 278, + "execution_count": 69, "metadata": {}, "output_type": "execute_result" } @@ -1652,10 +1600,8 @@ }, { "cell_type": "code", - "execution_count": 279, - "metadata": { - "collapsed": true - }, + "execution_count": 70, + "metadata": {}, "outputs": [ { "data": { @@ -1664,7 +1610,7 @@ " [2., 2.]])" ] }, - "execution_count": 279, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } @@ -1677,10 +1623,8 @@ }, { "cell_type": "code", - "execution_count": 280, - "metadata": { - "collapsed": true - }, + "execution_count": 71, + "metadata": {}, "outputs": [ { "data": { @@ -1689,7 +1633,7 @@ " [11., 11.]])" ] }, - "execution_count": 280, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } @@ -1700,10 +1644,8 @@ }, { "cell_type": "code", - "execution_count": 281, - "metadata": { - "collapsed": true - }, + "execution_count": 72, + "metadata": {}, "outputs": [ { "data": { @@ -1712,7 +1654,7 @@ " [1., 1.]])" ] }, - "execution_count": 281, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } @@ -1723,10 +1665,8 @@ }, { "cell_type": "code", - "execution_count": 282, - "metadata": { - "collapsed": true - }, + "execution_count": 73, + "metadata": {}, "outputs": [ { "data": { @@ -1735,7 +1675,7 @@ " [1., 1.]])" ] }, - "execution_count": 282, + "execution_count": 73, "metadata": {}, "output_type": "execute_result" } @@ -1746,10 +1686,8 @@ }, { "cell_type": "code", - "execution_count": 283, - "metadata": { - "collapsed": true - }, + "execution_count": 74, + "metadata": {}, "outputs": [ { "data": { @@ -1758,7 +1696,7 @@ " [1., 1.]])" ] }, - "execution_count": 283, + "execution_count": 74, "metadata": {}, "output_type": "execute_result" } @@ -1769,10 +1707,8 @@ }, { "cell_type": "code", - "execution_count": 284, - "metadata": { - "collapsed": true - }, + "execution_count": 75, + "metadata": {}, "outputs": [ { "data": { @@ -1781,7 +1717,7 @@ " [2., 2.]])" ] }, - "execution_count": 284, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -1792,10 +1728,8 @@ }, { "cell_type": "code", - "execution_count": 285, - "metadata": { - "collapsed": true - }, + "execution_count": 76, + "metadata": {}, "outputs": [ { "data": { @@ -1803,7 +1737,7 @@ "array([1, 2])" ] }, - "execution_count": 285, + "execution_count": 76, "metadata": {}, "output_type": "execute_result" } @@ -1815,10 +1749,8 @@ }, { "cell_type": "code", - "execution_count": 286, - "metadata": { - "collapsed": true - }, + "execution_count": 77, + "metadata": {}, "outputs": [ { "data": { @@ -1826,7 +1758,7 @@ "(2,)" ] }, - "execution_count": 286, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } @@ -1837,10 +1769,8 @@ }, { "cell_type": "code", - "execution_count": 287, - "metadata": { - "collapsed": true - }, + "execution_count": 78, + "metadata": {}, "outputs": [ { "data": { @@ -1848,7 +1778,7 @@ "50" ] }, - "execution_count": 287, + "execution_count": 78, "metadata": {}, "output_type": "execute_result" } @@ -1860,10 +1790,8 @@ }, { "cell_type": "code", - "execution_count": 288, - "metadata": { - "collapsed": true - }, + "execution_count": 79, + "metadata": {}, "outputs": [ { "data": { @@ -1872,7 +1800,7 @@ " [3, 4]])" ] }, - "execution_count": 288, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } @@ -1884,10 +1812,8 @@ }, { "cell_type": "code", - "execution_count": 289, - "metadata": { - "collapsed": true - }, + "execution_count": 80, + "metadata": {}, "outputs": [ { "data": { @@ -1895,7 +1821,7 @@ "array([2, 4])" ] }, - "execution_count": 289, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" } @@ -1906,7 +1832,7 @@ }, { "cell_type": "code", - "execution_count": 290, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -1915,7 +1841,7 @@ "70" ] }, - "execution_count": 290, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -1926,10 +1852,8 @@ }, { "cell_type": "code", - "execution_count": 291, - "metadata": { - "collapsed": true - }, + "execution_count": 82, + "metadata": {}, "outputs": [ { "data": { @@ -1937,7 +1861,7 @@ "array([42, 44])" ] }, - "execution_count": 291, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } @@ -1949,10 +1873,8 @@ }, { "cell_type": "code", - "execution_count": 292, - "metadata": { - "collapsed": true - }, + "execution_count": 83, + "metadata": {}, "outputs": [ { "data": { @@ -1960,7 +1882,7 @@ "array([42, 0])" ] }, - "execution_count": 292, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } @@ -1979,10 +1901,8 @@ }, { "cell_type": "code", - "execution_count": 293, - "metadata": { - "collapsed": true - }, + "execution_count": 84, + "metadata": {}, "outputs": [ { "data": { @@ -1993,7 +1913,7 @@ " [30., 30., 30.]])" ] }, - "execution_count": 293, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } @@ -2005,10 +1925,8 @@ }, { "cell_type": "code", - "execution_count": 294, - "metadata": { - "collapsed": true - }, + "execution_count": 85, + "metadata": {}, "outputs": [ { "data": { @@ -2016,7 +1934,7 @@ "array([1., 2., 3.])" ] }, - "execution_count": 294, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" } @@ -2028,10 +1946,8 @@ }, { "cell_type": "code", - "execution_count": 295, - "metadata": { - "collapsed": true - }, + "execution_count": 86, + "metadata": {}, "outputs": [ { "data": { @@ -2042,7 +1958,7 @@ " [31., 32., 33.]])" ] }, - "execution_count": 295, + "execution_count": 86, "metadata": {}, "output_type": "execute_result" } @@ -2055,33 +1971,25 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "* Matrizes têm exatamente a mesma forma.\n", - "\n", - "* Matrizes têm o mesmo número de dimensões e o comprimento de cada dimensão é um comprimento comum ou 1.\n", - "\n", - "* Matriz com poucas dimensões pode ter sua forma prefixada com uma dimensão de comprimento 1, de modo que a propriedade declarada acima seja verdadeira.\n", - "\n", - "" + "* Array having too few dimensions can have its shape prepended with a dimension of length 1, so that the above stated property is true." ] }, { "cell_type": "code", - "execution_count": 296, - "metadata": { - "collapsed": true - }, + "execution_count": 87, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([-1.11336594, -0.17744627, -1.33607215])" + "array([ 0.20676523, -0.33305647, -1.72249529])" ] }, - "execution_count": 296, + "execution_count": 87, "metadata": {}, "output_type": "execute_result" } @@ -2093,10 +2001,8 @@ }, { "cell_type": "code", - "execution_count": 297, - "metadata": { - "collapsed": true - }, + "execution_count": 88, + "metadata": {}, "outputs": [], "source": [ "b = a" @@ -2104,18 +2010,16 @@ }, { "cell_type": "code", - "execution_count": 298, - "metadata": { - "collapsed": true - }, + "execution_count": 89, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([-1.11336594, -0.17744627, -1.33607215])" + "array([ 0.20676523, -0.33305647, -1.72249529])" ] }, - "execution_count": 298, + "execution_count": 89, "metadata": {}, "output_type": "execute_result" } @@ -2126,18 +2030,16 @@ }, { "cell_type": "code", - "execution_count": 299, - "metadata": { - "collapsed": true - }, + "execution_count": 90, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([ 0. , -0.17744627, -1.33607215])" + "array([ 0. , -0.33305647, -1.72249529])" ] }, - "execution_count": 299, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" } @@ -2149,18 +2051,16 @@ }, { "cell_type": "code", - "execution_count": 300, - "metadata": { - "collapsed": true - }, + "execution_count": 91, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([-1.48850816, -0.32891427, 1.76183354])" + "array([-0.2052576 , 0.5882943 , -0.94636507])" ] }, - "execution_count": 300, + "execution_count": 91, "metadata": {}, "output_type": "execute_result" } @@ -2172,18 +2072,16 @@ }, { "cell_type": "code", - "execution_count": 301, - "metadata": { - "collapsed": true - }, + "execution_count": 92, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([-1.48850816, -0.32891427, 1.76183354])" + "array([-0.2052576 , 0.5882943 , -0.94636507])" ] }, - "execution_count": 301, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } @@ -2195,10 +2093,8 @@ }, { "cell_type": "code", - "execution_count": 302, - "metadata": { - "collapsed": true - }, + "execution_count": 93, + "metadata": {}, "outputs": [ { "data": { @@ -2206,7 +2102,7 @@ "array([1., 1., 1.])" ] }, - "execution_count": 302, + "execution_count": 93, "metadata": {}, "output_type": "execute_result" } @@ -2218,18 +2114,16 @@ }, { "cell_type": "code", - "execution_count": 303, - "metadata": { - "collapsed": true - }, + "execution_count": 94, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([-1.48850816, -0.32891427, 1.76183354])" + "array([-0.2052576 , 0.5882943 , -0.94636507])" ] }, - "execution_count": 303, + "execution_count": 94, "metadata": {}, "output_type": "execute_result" } @@ -2240,10 +2134,8 @@ }, { "cell_type": "code", - "execution_count": 304, - "metadata": { - "collapsed": true - }, + "execution_count": 95, + "metadata": {}, "outputs": [ { "data": { @@ -2251,7 +2143,7 @@ "array([0.84147098, 0.90929743, 0.14112001])" ] }, - "execution_count": 304, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" } @@ -2263,10 +2155,8 @@ }, { "cell_type": "code", - "execution_count": 305, - "metadata": { - "collapsed": true - }, + "execution_count": 96, + "metadata": {}, "outputs": [], "source": [ "n = len(z)\n", @@ -2277,10 +2167,8 @@ }, { "cell_type": "code", - "execution_count": 306, - "metadata": { - "collapsed": true - }, + "execution_count": 97, + "metadata": {}, "outputs": [ { "data": { @@ -2288,7 +2176,7 @@ "array([0.84147098, 0.90929743, 0.14112001])" ] }, - "execution_count": 306, + "execution_count": 97, "metadata": {}, "output_type": "execute_result" } @@ -2299,10 +2187,8 @@ }, { "cell_type": "code", - "execution_count": 307, - "metadata": { - "collapsed": true - }, + "execution_count": 98, + "metadata": {}, "outputs": [ { "data": { @@ -2310,7 +2196,7 @@ "array([1, 2, 3])" ] }, - "execution_count": 307, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -2321,10 +2207,8 @@ }, { "cell_type": "code", - "execution_count": 308, - "metadata": { - "collapsed": true - }, + "execution_count": 99, + "metadata": {}, "outputs": [ { "data": { @@ -2332,7 +2216,7 @@ "array([0.24197072, 0.05399097, 0.00443185])" ] }, - "execution_count": 308, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -2343,18 +2227,16 @@ }, { "cell_type": "code", - "execution_count": 309, - "metadata": { - "collapsed": true - }, + "execution_count": 100, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([ 0.26391966, -0.91446636, 0.79007045, -2.06239142])" + "array([-1.27999742, -0.18235141, 0.66829548, 0.41627219])" ] }, - "execution_count": 309, + "execution_count": 100, "metadata": {}, "output_type": "execute_result" } @@ -2366,18 +2248,16 @@ }, { "cell_type": "code", - "execution_count": 310, - "metadata": { - "collapsed": true - }, + "execution_count": 101, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([1, 0, 1, 0])" + "array([0, 0, 1, 1])" ] }, - "execution_count": 310, + "execution_count": 101, "metadata": {}, "output_type": "execute_result" } @@ -2388,18 +2268,16 @@ }, { "cell_type": "code", - "execution_count": 311, - "metadata": { - "collapsed": true - }, + "execution_count": 102, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([1, 0, 1, 0])" + "array([0, 0, 1, 1])" ] }, - "execution_count": 311, + "execution_count": 102, "metadata": {}, "output_type": "execute_result" } @@ -2413,10 +2291,8 @@ }, { "cell_type": "code", - "execution_count": 312, - "metadata": { - "collapsed": true - }, + "execution_count": 103, + "metadata": {}, "outputs": [ { "data": { @@ -2424,7 +2300,7 @@ "array([ True, True])" ] }, - "execution_count": 312, + "execution_count": 103, "metadata": {}, "output_type": "execute_result" } @@ -2437,10 +2313,8 @@ }, { "cell_type": "code", - "execution_count": 313, - "metadata": { - "collapsed": true - }, + "execution_count": 104, + "metadata": {}, "outputs": [ { "data": { @@ -2448,7 +2322,7 @@ "array([False, True])" ] }, - "execution_count": 313, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } @@ -2460,10 +2334,8 @@ }, { "cell_type": "code", - "execution_count": 314, - "metadata": { - "collapsed": true - }, + "execution_count": 105, + "metadata": {}, "outputs": [ { "data": { @@ -2471,7 +2343,7 @@ "array([ True, False])" ] }, - "execution_count": 314, + "execution_count": 105, "metadata": {}, "output_type": "execute_result" } @@ -2482,10 +2354,8 @@ }, { "cell_type": "code", - "execution_count": 315, - "metadata": { - "collapsed": true - }, + "execution_count": 106, + "metadata": {}, "outputs": [ { "data": { @@ -2493,7 +2363,7 @@ "array([False, False])" ] }, - "execution_count": 315, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" } @@ -2504,10 +2374,8 @@ }, { "cell_type": "code", - "execution_count": 316, - "metadata": { - "collapsed": true - }, + "execution_count": 107, + "metadata": {}, "outputs": [ { "data": { @@ -2515,7 +2383,7 @@ "array([False, False])" ] }, - "execution_count": 316, + "execution_count": 107, "metadata": {}, "output_type": "execute_result" } @@ -2529,12 +2397,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Matrix Algebra ( `linalg`) - Algebra Matricial" + "## Matrix Algebra ( `linalg`)" ] }, { "cell_type": "code", - "execution_count": 317, + "execution_count": 108, "metadata": {}, "outputs": [], "source": [ @@ -2543,7 +2411,7 @@ }, { "cell_type": "code", - "execution_count": 318, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ @@ -2552,7 +2420,7 @@ }, { "cell_type": "code", - "execution_count": 319, + "execution_count": 110, "metadata": {}, "outputs": [], "source": [ @@ -2562,7 +2430,7 @@ }, { "cell_type": "code", - "execution_count": 320, + "execution_count": 111, "metadata": {}, "outputs": [ { @@ -2583,7 +2451,7 @@ }, { "cell_type": "code", - "execution_count": 321, + "execution_count": 112, "metadata": {}, "outputs": [ { @@ -2595,7 +2463,7 @@ " [7, 8]])" ] }, - "execution_count": 321, + "execution_count": 112, "metadata": {}, "output_type": "execute_result" } @@ -2606,7 +2474,7 @@ }, { "cell_type": "code", - "execution_count": 322, + "execution_count": 113, "metadata": {}, "outputs": [ { @@ -2616,7 +2484,7 @@ " [3, 4, 7, 8]])" ] }, - "execution_count": 322, + "execution_count": 113, "metadata": {}, "output_type": "execute_result" } @@ -2627,7 +2495,7 @@ }, { "cell_type": "code", - "execution_count": 323, + "execution_count": 114, "metadata": {}, "outputs": [ { @@ -2636,7 +2504,7 @@ "-2.0000000000000004" ] }, - "execution_count": 323, + "execution_count": 114, "metadata": {}, "output_type": "execute_result" } @@ -2647,7 +2515,7 @@ }, { "cell_type": "code", - "execution_count": 324, + "execution_count": 115, "metadata": {}, "outputs": [ { @@ -2657,7 +2525,7 @@ " [ 1.5, -0.5]])" ] }, - "execution_count": 324, + "execution_count": 115, "metadata": {}, "output_type": "execute_result" } @@ -2668,7 +2536,7 @@ }, { "cell_type": "code", - "execution_count": 325, + "execution_count": 116, "metadata": {}, "outputs": [ { @@ -2677,7 +2545,7 @@ "2" ] }, - "execution_count": 325, + "execution_count": 116, "metadata": {}, "output_type": "execute_result" } @@ -2688,7 +2556,7 @@ }, { "cell_type": "code", - "execution_count": 326, + "execution_count": 117, "metadata": {}, "outputs": [ { @@ -2698,7 +2566,7 @@ " [4, 5, 6]])" ] }, - "execution_count": 326, + "execution_count": 117, "metadata": {}, "output_type": "execute_result" } @@ -2710,7 +2578,7 @@ }, { "cell_type": "code", - "execution_count": 327, + "execution_count": 118, "metadata": {}, "outputs": [ { @@ -2719,7 +2587,7 @@ "2" ] }, - "execution_count": 327, + "execution_count": 118, "metadata": {}, "output_type": "execute_result" } @@ -2730,7 +2598,7 @@ }, { "cell_type": "code", - "execution_count": 328, + "execution_count": 119, "metadata": {}, "outputs": [ { @@ -2740,7 +2608,7 @@ " [ 2.]])" ] }, - "execution_count": 328, + "execution_count": 119, "metadata": {}, "output_type": "execute_result" } @@ -2753,7 +2621,7 @@ }, { "cell_type": "code", - "execution_count": 329, + "execution_count": 120, "metadata": {}, "outputs": [ { @@ -2763,7 +2631,7 @@ " [ 2.]])" ] }, - "execution_count": 329, + "execution_count": 120, "metadata": {}, "output_type": "execute_result" } @@ -2774,14 +2642,14 @@ }, { "cell_type": "code", - "execution_count": 330, + "execution_count": 121, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['LinAlgError', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_umath_linalg', 'absolute_import', 'cholesky', 'cond', 'det', 'division', 'eig', 'eigh', 'eigvals', 'eigvalsh', 'info', 'inv', 'lapack_lite', 'linalg', 'lstsq', 'matrix_power', 'matrix_rank', 'multi_dot', 'norm', 'pinv', 'print_function', 'qr', 'slogdet', 'solve', 'svd', 'tensorinv', 'tensorsolve', 'test']\n" + "['LinAlgError', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_numpy_tester', '_umath_linalg', 'absolute_import', 'bench', 'cholesky', 'cond', 'det', 'division', 'eig', 'eigh', 'eigvals', 'eigvalsh', 'info', 'inv', 'lapack_lite', 'linalg', 'lstsq', 'matrix_power', 'matrix_rank', 'multi_dot', 'norm', 'pinv', 'print_function', 'qr', 'slogdet', 'solve', 'svd', 'tensorinv', 'tensorsolve', 'test']\n" ] } ], @@ -2791,7 +2659,7 @@ }, { "cell_type": "code", - "execution_count": 331, + "execution_count": 122, "metadata": {}, "outputs": [ { @@ -2800,7 +2668,7 @@ "6.782329983125268" ] }, - "execution_count": 331, + "execution_count": 122, "metadata": {}, "output_type": "execute_result" } @@ -2811,7 +2679,7 @@ }, { "cell_type": "code", - "execution_count": 332, + "execution_count": 123, "metadata": {}, "outputs": [ { @@ -2820,7 +2688,7 @@ "5.0" ] }, - "execution_count": 332, + "execution_count": 123, "metadata": {}, "output_type": "execute_result" } @@ -2838,7 +2706,7 @@ }, { "cell_type": "code", - "execution_count": 333, + "execution_count": 131, "metadata": { "scrolled": true }, @@ -2847,7 +2715,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "ls: /home/nbuser/library: No such file or directory\n" + "ls: /home/nbuser/library: No such file or directory\r\n" ] } ], @@ -2857,56 +2725,17 @@ }, { "cell_type": "code", - "execution_count": 334, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ls: /home/nbuser/library/data: No such file or directory\n" - ] - } - ], - "source": [ - "ls /home/nbuser/library/data" - ] - }, - { - "cell_type": "code", - "execution_count": 370, - "metadata": {}, - "outputs": [], - "source": [ - "#A = np.loadtxt('/home/nbuser/library/data/tech_coef.csv')\n", - "#A = np.loadtxt('/Users/eduardo/OwnCloud/Projects/DigitalHouse/DataScience/Git/datascience_course/0-pre-requisitos/2-math/data/tech_coef.csv')\n", - "\n", - "import psycopg2\n", - "\n", - "host = 'data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com'\n", - "port = 5432\n", - "dbname = 'db3'\n", - "username = 'trainingwrite'\n", - "pwd = 'trainingwrite'\n", - "\n", - "conn = psycopg2.connect(f\"host='{host}' port={port} dbname='{dbname}' user={username} password={pwd}\")\n", - "cur = conn.cursor()\n" - ] - }, - { - "cell_type": "code", - "execution_count": 371, + "execution_count": 124, "metadata": {}, "outputs": [], "source": [ - "sql = \"SELECT * FROM tech_coef\"\n", - "cur.execute(sql)\n", - "A = np.asarray(cur.fetchall()) " + "A = np.loadtxt('/Users/marcelocolonno/Desktop/git/datascience_course/0-pre-requisitos/2-math/data/tech_coef.csv')\n", + "#/Users/marcelocolonno/Desktop/git/datascience_course/0-pre-requisitos/2-math/data" ] }, { "cell_type": "code", - "execution_count": 369, + "execution_count": 125, "metadata": {}, "outputs": [ { @@ -2915,7 +2744,7 @@ "(12, 12)" ] }, - "execution_count": 369, + "execution_count": 125, "metadata": {}, "output_type": "execute_result" } @@ -2926,7 +2755,7 @@ }, { "cell_type": "code", - "execution_count": 337, + "execution_count": 134, "metadata": {}, "outputs": [], "source": [ @@ -2946,7 +2775,7 @@ }, { "cell_type": "code", - "execution_count": 338, + "execution_count": 135, "metadata": {}, "outputs": [ { @@ -2980,38 +2809,78 @@ }, { "cell_type": "code", - "execution_count": 339, - "metadata": {}, + "execution_count": 179, + "metadata": { + "scrolled": false + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAD8CAYAAABevCxMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmYHFW5x/HvLyFmISwCgYtsk4uAENZkUNnDooJcZAtCVAQuEgGBoCDKVWNAFBG5oCKBsAVZQ0AEAwEUMuyELGTlIiiJEgQE2ZewJO/9432bqXR6ZnqS2Tp5P8/TT1WfOlV1qpPpU+ec6vPKzEgppZRS7ejW2QVIKaWUUutk5Z1SSinVmKy8U0oppRqTlXdKKaVUY7LyTimllGpMVt4ppZRSjcnKO6WUUqoxWXmnlFJKNSYr75RSSqnGrNTZBUjLp7XWWsvq6uo6uxgppVRTpk6d+rKZ9WspX1beqV3U1dUxZcqUzi5GSinVFEl/ryZfdpunlFJKNSYr75RSSqnGZOWdUkop1ZisvFNKKaUak5V3SimlVGOy8k4ppZRqTFbeKaWUUo3JyjullFKqMTlJS2ofU6eC1NmlSCml5VK2vFNKKaUak5V3SimlVGOy8l7OSFpV0nGdXY604nkI2BroCQwEplXIc1tsWwVYC/hv4N3Y1gCo7HVBu5Y4pdrVZSpvSQdKMkmfaibPGElDWnHMT0i6qYp8d0havZntJ0vqU+15qzjfOZIeljRW0pptddxwLvBk4VwjJZ1aoQx1kmbHer2kX7dxOdIKZAFwMPAmcD7wIjAEWFiWbwawBfC/wCDgSuAXZXl+BFwfry+2X5FTqmld6YG1ocCDwGHAyLY4oJn9E/8OaSlfS98RJwPXAO+Ub5DU3czKv6NaOt/3WpO/WpJWA+4ys4mtLM8UIEOApaU2Aa+wfwEcD7wA/ARvTe9ZyPc94GOx/lm8pT6n7Fi7xKtX+xU3pZrXJVrekvoCOwFH45V3KV2SLpT0hKTbgbUL2+ZJ+pmkRyRNkTRQ0l2S/ibp2MhTbF0eKen3ku6U9LSkX5Qday1JK0u6XdIMSbMlHSrpJOATwERJEyP/W5LOlDQJ2EHSCEmTY5/Rkj9mLemTkv4cx5sqaYMo0wOSpsVrx8K1nhvHmCXp0AqfU52kJyVdJWmmpJtKPQKS5gE9zOz30ZJuKOy6jaR747qPqXDcwZLGl/4tJF0ZZZgp6eBIHxWf8xxJZ7T6Hzkt1+bGcr1Yrh/LZ8ryfaywflcsdy3L8wWgD165P9VWBUxpeWNmnf4CvgZcHusPAwNj/SDgT0B3vAJ9DRgS2+YBx8X6+cBMfCitH/CvSK8DZsf6kfh3yWr4Tf3fgQ0Kx1oL7/m7tFCu1YrbC+kGfLnwfo3C+tXAfrE+CfhSrPeOVx+gV6RtAkyJ9YML17oO8A9g3bLPqS7OvVO8vwI4tbyMQD3QEOsj8d7K3nGNz8ZnWfxsBgPjY/0c4ILCOT9evMYoXwOwdYV/x2F4C37KhmCWrxXmdZ7/v7Rr4/3F8f7SJvLfBNYD7ItgH0baE2DngN0G9j+x/x5d4Nryla+OfJXqhJZeXaLljXeZ3xDrN8R78Jvy681sYXSB31u2322xnAVMMrM3zewlYEETY9j3mNnrZrYAeALYqGz7LGCvGJPexcxeb6K8C4GbC+93lzRJ0ixgD2CApFWA9czsNgAze9fM3gV6AJdG3nH4ECDAzoVrfRG4D9i+wrmfNbOHYv2a2K8lt8b5XwYmAp9uJu9ewG9Lb8zs1Vj9sqRpwOPAgEK5KeQdbWb1Zlbfr4pCpeVH/1jOj+VzhfQFwAeFvGPx7rXd8T+i7pG+OXAasB/wU2AN/I80pbSkTh/zjge29gC2lGT437JJOi2yWDO7vxfLRYX10vtK11bMs7A8j5k9JWkQ/pzM2ZLuNrMzKxxnQWmcW1Iv4CKg3syelTQSb9mribJ/Gx8e3AYftlgQ6dXOaFJ+zNL7D2kcBikfLmxqn0qWKLek/sCpwPZm9qqkMRXOkVZg++BjWqPw7q/L8a6dOrzLZ19gPHA78FXg4/gd+h9ivz2AM4FX8D+MybG+f8ddQko1pSu0vIcAvzOzjcyszsw2wIfQdgbuBw6T1F3SuvjNeruR9AngHTO7Bvgl/qsW8IdoV2lit1Il9nKM3Q8BMLM3gOck7RfH7i2pN95t/7yZLQIOp7HhcT9waFxrP7zX4bEK59tQ0g6xXnrID7zbfFCsH1y2z/6SesWN0mD8u7EpdwMnlN5I+jiwKvA28LqkdfDv6pQ+0gvvRuoLDMcr5HE0/ucumYzfNb8MHIX/By7dHW+Bj8ecANyIt84vaedyp1SrOr3ljf/9/rws7WbgK/iDq3vg3dlP4V3J7Wkr4FxJi/CevtLvpUcDEyQ9b2aL3UCY2WuSLo0yzmPxivFwYLSk0XhP4gF4K/1mSYfgXdhvR95bgB3w8WkDTjOzFyqU8f+AIyRdAjyNN3YAzgAul/Q/+Fh70WN4o2dD4Cdm9k9JdU18BmcBv40H/RYCZ8RDcI/jDwY/g/+kN6XF7Ir/EZQrduOMpOmfkgyhip+GpJQAUDxolNqRpK/gre2Jy3icOvzBsi3bolztqV6y/O1ZSim1jmCqmdW3lK8rdJsv1ySdgv/ktbwHMaWUUloq2fJO7aK+vt6mTMm2d0optYakbHmnlFJKy6OsvFNKKaUa0xWeNk/Lo6lTQdX+dD2llFJrZMs7pZRSqjFZeaeUUko1JivvAknrS7o1om/9TdKvJH2siv3+pyPK1xZUZYzzlJYXD+GhR3viUyZOq5BnNj63ei9gdXw619L87H8GNo7918JnlXqzfYucUouy8g4RxvP3wB/MbBNgU3y2x59WsXvFyjvCfHb4Zyypyd+Um9k/zSwnskorhAX4XMFv4qEHX8RncVtYlq8bPh3raDyU4R34lIXgYUyPAS7F4xbfAPymvQueUguy8m60Bx5w5EqACDzybeC/JfWRxwO/sJRZ0viIg/1zoLek6ZKujZjb/yfpIvwmfwNJQyM+9mxJ58T+3SWNKcTv/nZ5gSQdEttnSLq/sN+58vjhMyV9M9IHS5oo6TpgVkRGO75wrJGSTtHiMc67SzovzjFT0rBIX6ryptTVTMAr7OPjdTQeOKGhLN8WwOnA3sCOkVb6ctwVOBn4PLBd2baUOks+bd5oADC1mGBmb0j6B/DJpnYys+9LOsHMtoWPpjDdDDjKzI6PYCfn4EFDXgXulnQAHld7vdJUp02EMB0BfMHMnitsPxp43cy2l9QTeEjS3bHt08CWZjZX0nbABfhc6gBfxr+bit87w4ANgG3MbKGkNZaxvCl1KXNjuV4s14/lM8CeZXnvAA6M9QE0trwBLsbv5AF2oxC5J6VOkjeQjZoK4dlUenP+bmaPxvr2QIOZvWRmHwLX4jfzzwD/Kek3kvYG3qhwnIeAMZKOoXF61c8DX5c0HQ9AsiawSWx7zMzmApjZ48DaMca9DfCqmf2j7Ph7AaNL4U3N7JVlKa+kYZKmSJryUqs+rpQ6RukPudKPGHfCW+rD8Qg8xYhmB+ORfYbi0ZFubscyplSNrLwbzQEWm5JO0qp4y/RvLB4vG5qPZ/12Yb3ij53N7FU8dHED8C3gsgp5jgV+GGWYHiE9BZxoZtvGq7+ZlVreb5cd4iZ8iO9QfKiuXKWyLUt5R5tZvZnV96t0kJQ6WP9Yzo/lc4X0BXjowJJ+eNfUefgf+o2FbRsAX6TxAZhx7VHYlFohK+9G9wB9JH0dPnro6zxgjJm9g4f73FZSN0kb4F3UJR9I6tHEcScBu0laK445FLhP0lpANzO7GfgRjbHDPyJpYzObZGYj8BDIGwB3AceVzidpU0krN3HuG/DncIbgFXm5u4FhpQfcJK2xLOVNqavZB48tPipelwN18epNYzf52fiY9xg8zvgifBwcvLv8jNhW6i4vbUups+SYdzAzk3QgcJGkH+E3NnfQ+CT5Q/gQ2iz8lyXFX5yMBmZKmgb8oOy4z0s6HY/dLeAOM7s1urKvLDyNfnqFYp0raZPY7x481vdM/LtnWjwh/xIeJ7zSNc2RtArwnJk9XyHLZfhT9U/LY5ifY2aXLkN5U+pSeuGt5G/h3eED8KfGy3+O0Q8f134e+Dh+x3pBbFsDr/hfjnzH0nRM8pQ6SkYVS0jqBfzSzNrsOZyM551SSq2X8bxTVSRtCkzG56BIKaVUA7LbfAVnZk8BW7X5gQcNgoznnVJKrVNlQKdseaeUUko1JivvlFJKqcZk5Z1SSinVmBzzTu1j6tSqx25SSim1Tra8U0oppRqTlfcKQNJOknbu7HKklFJqG51aeUs6UJJJ+lQhrU7SVwrv6yX9uoXjHFua1rQs/aPwl60o0xhJyxTvupoyt+JY82Jq0vL0j665WGZJl0naopBvNXxCqOnNnONMSXu1RXm7moeArfEfsQ9k8Wnxii7BI071BvYH/l3Ydj8eraUn8B/Ar9qrsCmlVKXOHvMeCjyIz789MtLqgK8A1wGY2RSg2R8Mm9nF7VbCpVBNmdvgHBWv2cy+UZa0BfAtM3urUn5J3WPu9OXOAjwaVG/gfDyoxBDgaRafHvNxfMrLvYDP4fPhfhv4HfACPj/2WvhE9++R3VUppc7Xad9DkvriUfiOxivvkp8Du0iaLunbkgZLGh8BQeYV40hL+qukdSSNlHRqpA2SNEPSI/iUxqW8dZIekDQtXjtGuiRdKOkJSbfjcQwoHOs+SVMl3SVp3Ug/KfLPlLREtK5SmWN9pKSrJN0d5T9I0i8kzZJ0ZyHAyJ6SHo/0K+Sxuku+K+mxeH2ycNxTK5y7QVJ9rI8CfgP8QdIZhTzzJI2Q9CBwSFnLfYSkyZJmSxod86e3eM1d0QTgReD4eB2NT07fUJZvTCx/BpwG7Ahcj1f+FwHv4AEtjgZOAU5s32KnlFKLOrMRcQBwZ8zw9YqkUpSq7wMPRLjL80uZzWwRcCsRCEjSZ4B5ZvZi2XGvBE4ysx3K0v8FfM7MBuIhMkvd2gcCm+GzjB2Df3cTlepvgCFmNgi4gsaIgN8HtjOzrfFGW0s2BvbFe2SvASaa2VbAu8C+Mbf4GODQSF8JOK6w/xtm9mngQhrjJVTjBzFH7tbA7pK2LmxbYGY7m1l5RXyhmW1vZlvijdb/ivQWr1ldLJ733FiuF8v1Y/lMFfk+BJ4Fnoi0k4A+wEYsWfmnlFJH68zKeyiNMaZviPctGYtXvOCt9bHFjTG+u7qZ3RdJVxc29wAulTQLDzRUGhfeFbjezBaa2T+BeyN9M2BL4E+SpuNxtUvf/zOBayV9Df+eb8kEM/sAj0jWHbgz0mfhwwSbAXPjRgbgqihXyfWFZflNSXMOkvRAXNPGLB7JcGzlXdhd0qT4nPbAAzFBFdfc1eN5l0LwtPQDtmK+92J9G/zDfwX4WtsXLaWUWqVTxrwlrYlXDFtKMrxCM0mntbDrI8AnJfXDW+5nlR+axu/ect/Ge1G3wW9aFhS2VdpHwJwKLXjwVvSuwJeAH0kaYGbNVeLvgfceSPrAGkO5LcL/DaqtT5oq65KFl+rwXuCBZvaWpKvwCIklb1fYpxfeU1xvZs9KGlnYp7XX3On6x3J+LJ8rpC/A/9P1KMv3ici3En6nVhfbjgS+gD+sNin2L36YKaXUkTqr5T0E+J2ZbWRmdWa2Ad57uTPwJrBKpZ2i0rsF+F/g/8zs32XbXwNeV+PPor5a2Lwa8Hx0vx9O4zNL9wOHSeoeY9q7R/pfgH6SdgDvRpc0QB7PegMzm4hXjqsDfZf6k3BPAnWl8ewo332F7YcWlo9UeczV8W75dyStA+xdxT6l+ujleCahNA7eHtfc7vbBH2AYFa/L8cq4Dh8PODDylX6m8APgF8DDeLdOL+CI2PZrfMxiOv7keVbcKaXO1FlPmw/FH0wruhl/yvwk4ENJM/Bx4MfL8o3FQ1ge2cSxjwKukPQOcFch/SLgZkmHABNpbHnegvcCzAKeIipNM3s/HuL6dXTHr4SPNz8FXBNpAs6Pm4alZmYLJB0FjJO0Ulxf8WnynpIm4Tdb1QwvAMyI1xx8mPehKsrxmqRL8c9iXpQD/EanTa+5I/TCx0e+BQzH+/8vZfEnzQEGAb/FH2h4AK/0Sw9b1OP/cc7C7/J2jfcppdSZ1NiDm1LbqZcsA4KmlFLrCKbGg8bNyp+sppRSSjWmsydpScurQYNgSra9U0qpVaoM6JQt75RSSqnGZOWdUkop1ZjsNk/tI+N5p5RSu8mWd0oppVRjsvJOKaWUakxW3imllFKNadPKW1LFmNFleU6W1Kctz9tako6UdGGsHyvp6y3t08RxTpb0qKRxkjZr5b6HSPo/SRMl1Uv6dct7tS9Jd6gQcjWl5cVDeGi9nsBAYFqFPLOBzfGZ+VbHJ/MvzYf/ZzyyT088tvtQfB7nlDpLm86wJuktM2t2zmtJ8/DAFy+34rjdzWzhspavcLwjowwntNUxl6IMdwLnxHzhXVbE81bMCV+1nGEtdRULaJzP/rv4NLg9gadZfKrcJ/DpdPvjYV+vxGMEj8anxn0YD1xzM3BbHOd/OqD8acXSqTOsSRosqUHSTZKelHSt3En4//+JkiZG3s9LekTStGjB9o30eZJGSHoQOCSOd76k+6PFur2k30t6WtJZhXN/TdJjkqZLukRS90g/StJTku4DdirkHynp1Fg/RtJkSTMk3VzqIZC0jqRbIn16tJT7Sronyj1L0v6FY35H0ux4nVzh8xmBB2G5WNK58XmNL5TnirjeZ+IzK+33B0lTJc2RNKyQ/pakn0b5Ho1AJOXlniGpFKu8qc9onqS1JNXFZ3wR3kjZQNIoeazuOZLOWJb/Hyl1pAl4OMHj43U0HgWpoSzfFsDpeASfHSOt9AW5K3Ay8Hlgu7JtKXUKM2uzF/BWLAcDr+NRFbvhkbB2jm3zgLVifS38pnbleP89YEQh32mFYzfgLVXwOBP/BNbFb6LnA2vivV5/BHpEvovwoFHrAv8A+gEfw3vRLow8I4FTY33NwvnOAk6M9bGF9ZWAVUvLwnX8FQ/aMQgP7LEyHnlrDrBdhc+qAW/9lz6v8YXyPExjD92/C9ezRix74718a8Z7A/aL9V8APyyU++RY745HVqv4GRX/bfCGyiLgs4XyrlE4TgOwdYVrGgZMAaZsCGb5ylcXeJ0HBti18f6SeD+6Qt5bYhtgA8BeKGw7v7BtN7A3u8C15Wv5ewFTqqlv2/Pm8TEzmx/drdNpDI1c9Fn8hvchSdPxCIwbFbaPLct/Wyxn4bG2nzez9/CoWRsAe+KV5+Q43p7AfwKfARrM7CUze7/CcUu2lPSApFl4ONEBkb4HcAmAmX1oZm/gFfXPJM3Eh8TWA9bBW9S3mNnbZvYW8Htgl+Y+qApuN7P3YmjhX3FcgJPk0dYejevdJNLfB8bH+lQaP+s98GiYmNlCM3u9mc+o3N/N7NHC+y9LmoZHeRuA/7stxsxGm1m9mdX3a+UFp9RRLJaVZiHYCW+pD8fvui8pbDsYuB0f774P7z5PqbO05yQt7xXWFzZxLgF/MrOmwly+Xfa+dMxFZcdfFMcXcJWZnb7YSaQDaPybbc4Y4AAzmxHj4oObyftVvCU/yMw+iLH8XlT+TmitJT47SYOBvYAdzOwdSQ00hpX+wBofXmjqsy6p+BlV8NFnL6k/cCqwvZm9KmkMGdI61Yj+sZwfy+cK6QvwrqQekdYP7zb/HPAb4EZgRGzbIF6bA9fj4+NHtGfBU2pGZwzbvAmsEuuPAjtJ+iSApD6SNl2GY98DDJG0dhxvDUkbAZOAwZLWlNQDOKSJ/VcBno88Xy077jfjmCtJWhXvgv5XVNy709hjcD9wQFzLysCBeJjoZbUa8GpU3J/Cey1acg9wXJS7e5S7qc+oOavilfnrMZ6+z9JeREodbR9gbbwLahRwOd41VYePPx0Y+c7Gx7zHAEfhLYJS99K3gTNiW+kp1yW6nlLqQJ1ReY8GJkiaaGYvAUcC10f386PAp5b2wGb2BPBD4O443p+Adc3seXws+RG8i7vSL0UAfoRX9H8CniykDwc+J+m52HcT4FqgXtIUvKJ/MsowDf8bfyyOdZmZPb6011RwJ94Cnwn8BP+sWjIc2D2GAaYCA5r6jJo7iJnNwLvL5wBX4M8MpFQTeuGt5L74H8Ta8b57Wb5+wHX4gxt34d3jF8a2NfAu9GH4GOCx+BdKSp2lTX8qtryLp7U3M7MrO7ssXV3+VCyllFqvU38qtjySNBT4HdWNnaeUUkrtJqOKVcnMrsefU0nVGDQIpmTbO6WUWqXKaIzZ8k4ppZRqTFbeKaWUUo3JbvPUPqZOrbr7J6WUUutkyzullFKqMVl5p5RSSjWmQytvST+IqFQzI6LVZ9rouGdK2qstjtXCeT6KQFZl/i9J+n4V+c6Nz+XcZSvhspN0jqSHJY2VtGZnlyelFU01scdLnox8Am6KtEfwqGirx+tg4KX2KmzqNB025i1pB+C/gIFm9p6ktfAIX9Xuv5KZfVhpm5mNqJTe2czsNhqDqTTnm0C/CLLSouY+i2VlZt9rj+OmlFq2AK9sewPn4zHDh7Bk7HHwCSeOwb/E3y+kP4WHBjwHD6ByPT6/cc4stXzpyJb3usDLpQrKzF42s38CSBok6b6IVX2XpHUjvUHSz+QxuH8Q8aa7xbY+kp6V1EPSGElDIn37aDnOkDRJUs+Yv/sP0eJ/VNLWkXe36AGYLulxSauUFzp6C/4i6c/AZoX0jSXdGWV+IOYbL9/3SEkXxvoYSb+Osj1TKO9tePjQSZIOlbSRPE74zFhuWNj/f+Vx0M+JXoCrJN0dn8tBkn4hjy1+Z8zPjjwm+mR5bPHRkj9FJumTkv4cn9NUSRvI43g/II9RPk2N8b8VvQOz4/iHLvt/h5RSuWpjj4PP0z6PCLpQMBRvMXyTxqhoc9q+qKmztWU87xZifffFpwV+Co8hvVuk98DjV/eL94cCVxRiXl9UOMatwO6FfJfF+hj8BvVjwN/w1j14MI9ueICgH0faHsD0WP8jsFOhfCuVlbkUm7sPfvP6Vxpjf98DbBLrnwHurXDNR9IYN3wMPqVyNzymwV8L+d4qrP8ROCLW/xv4Q2H/8UD3eD8SeDA+v22Ad4B9YtsteHQ0iDjcsX41jXG/JwFfivXe8eoD9Iq0TYi4snhj4E/4zf86eGz0dZv79x7UBeLi5itftfaqNvb4fLBVwf4I9uPIM67C8cbFtlO6wLXlq7oXVcbz7rBuczN7S9IgPLb17sDYGA+eAmwJ/Ckahd2B5wu7ji1bPxSYCByG3wQUbQY8H8FBiPjVSNoZr4Aws3vl0cVWw4eX/lfStcDvzWx+2fF2wWNzvxPHuS2WffFhpXFq/DlUzyo+hj+Yxzd/Qh6dq5IdgINi/WrgF4Vt48xsYeH9hIhqNgv/3O6M9Fk0xvTeXdJpeMW8BjBHHk50vejWx8zejetaDbhQ0rZ4aNFShLedgevj3C9GT8j2lA0JSBqGx25gwyo+jJRS8yyW5T+6/D5Qj0dxujvSXgDewlsh4F9u/423QEa2aylTZ+jQ33nHl38D0BAVzhF4tKs5ZrZDE7sVY3rfBpwtaQ38/+S9ZXmb+mFxpXQzs59Luh34IvCopL3M7MnyfBX27Qa8ZmbbNnG+phTHtKv9EXTx/BXjm5vZIknFmN6L8AhkvfAbnHoze1bSSBpjjle6rm/jvXbb4Ne4oDVlNbPReNQ46qVKx08pNaPa2OPP4uPZmxT2PRF/QO1reFzifYFP4hHS+pKWNx025i1pM0nF/2vbAn8H/gL0iwfaiDHsAZWOYWZv4aE2fwWML2uFgj98ua6kgXGs1WKM/H4iPrekwfjY+xuSNjazWWZ2Dt4DUD5ufT9woKTeMR6+X5TjDWCupEPimJK0zVJ8LJU8jPcqEGV+cBmO1SuWL0dvwRD4qPzPSdoPIK6vNz7M8Hz0DhxO4zMy9wOHymOC9wN2xf8dUkptqNrY42fgY3DjgEMi7RT8D3NaHGch/kDbn/CxuLR86ciWd1/gN5JWBz7Ex4+Hmdn78fDWr6PbdiXgApp+xmIs/n92cPmGONZhwChJG+A3B4PxXqMr5fGr38Fb/AAnS9od/3/+BP68SPF40ySNxcfq/w48UNj81TjPD/Gb4RuAGVV/Gk07CbhC0nfxX3gctbQHMrPXJF2Kd6PPAyYXNh8OjJY0Gr/BPwBvpd8cNyUTaWzp34J358/AW+ynmdkLS1uulFJlpdjj38Jjjw8ALmXJJ813K6zPjuVn8eGqe/EvOeI4ABsRLY+03Fhu43lL+h4+jv10Z5elK5P0Fby1PbEtj5vxvFNKqfVW6Hjeks7DH5zq0dll6coknQL8hCVv7FNKKXVhy23LO3WubHmnlFLrVdvyzqhiqX0MGgRTsvpOKaVWqTIa43LZbZ5SSiktz7LyTimllGpMdpun9jF1atXdPymllFonW94ppZRSjcnKO6WUUqoxWXl3gAiEUgo9+oKk5wrvq45p3pEkfSfmRk8p1ZiHgK3xaEkD8SlTm/Jk5BNwUyH9WWB/PF7xasT80qnLyMq7A5jZv81s2whkcjFwfum9mb0PH82P3iX+PSR1B75D49zoKaUasQAPofgmcD4eaWgIPgd0OcPnPy9/+MnwedT/BHwXD23Yr53Km5ZOl6gsVlSSPilptqSL8ZvjdSWNljRF0hxJIwp550saKelxSTMlbRrpe0iaEa34aZJWlrSXpImS/iDpCUm/VcQulfQ1SbPivD+LtJUkvSbpLEmPAafh8REekPTnyLOPpEfiHGMlrdzBH1dKqQoT8Ar7+HgdDczFwzmWG4UHPfhmWfpEPNzjd/Dwo8PwgBOp68jKu/NtAVxuZtuZ2XPA92N2nW2Az0naopD3RTPbDrgM/7sCvzEeFq36XWkM4/kZ4GRgK2BzYH9J6wNn4fHUtwN2kvRfkX81YJqZfdrMzgb+BexiZntJWhv/G97TzAYCM/G4CSmlLmZuLNeL5fqxfKYs33PA6XgFvmrZtidieTPQJ7b/um2LmZZRVt6d729mVoz2NVTSNLwlvjleuZf8PpZT8SiB4MNbF0g6EVi1ECb1UTObF+/gZapkAAAgAElEQVRvAHbGK/R7zexlM/sAuA6v8AHex6OHVbJjlONhSdPx4a+68kyShkWvwZSXqrv2lFI7K02AXf7Dze8D9Xgc5Fci7QXgLeC9eN8D/1Loj7cEnmrXkqbWyN95d75S2E0i3vlw4NMRzvMaFh93Lv1NLST+7czsLEm3AfsCkyNeOTT+zVJ439wPr9+1pie6F3CnmR3e3IWY2WhgNPjc5s3lTSm1j/6xnB/L5wrpC/AoRD3wB9LuAzYp7HsisDqNd+b74g+tPYrHFZ4LbNpO5U6tky3vrmVV/DmTNyStC3yhpR0kbWxmM6Or+3Fgs9j0WUkbxsNnXwYexP8Gd4+n31cCDsP/fit5E1gl1h8GdpP0n3HOleNGI6XUxeyDP7AyKl6X45VxHdAbfxAN4Aw8dvg44JBIOwXvivtiHOPm2P8moC8+1pa6hqy8u5Zp+HDTbOBSvEu8JafGw2czgdeAuyP9YeA8/Ib5KeA2M5sPjMCfXZmOd63f3sRxRwN/lvRnM3sRf+5lrKQZcey8AU+pC+qFV8h98W68teN9edzf3fCn0IfQODb3WWBDvJK/Cf8J2bfwce/fx7FS15AhQZdDkvYCTjCzAzqrDBkSNKWUWq/akKDZ8k4ppZRqTD6wthwysz8Df+7UQmQ875RSar2M551SSiktn7LyTimllGpMVt4ppZRSjckx79Q+pk6teuwmpZRS62TLO6WUUqoxWXkv5yJi2AmSenZ2WVJKKbWNrLy7AEn/IekGSX+LEJ53lEJ+LuNxhUfym2lm77WUv2zfy8oimqXUpTwEbI3PAjYQn56w3Gw8uk8vfM7ufWmc6/sfwE6xv/AZxVKqFVl5d7KoYG8BGsxsYzPbAvgfYJ1lPba5E8zs/ibO3eQzD2b2DTN7oqntKXWmBcDB+AT85+Pxq4fgEXuKuuET+I8GDgLuwOf0Bo/y8580htVLqZZk5d35dgc+MLOLSwlmNh14UNK5MW/5LEmHAkgaLOk+STdKekrSzyV9VdJjkW/jyNdP0s2SJsdrp0gfKWm0pLuB30nqLumXse/MCC2KpAZJ9bE+NLbPlnROB38+KS1hAl5hHx+vo/GIVw1l+bbAY1bvjce1hcYvvU2Aq/HWd0q1Jp8273xb4vG5yx0EbAtsA6yFh/sstaC3wXsDXwGeAS4zs09LGo5H9TsZ+BVwvpk9KGlD4K7YB2AQsLOZvSvpODxa4HZm9qGkNYqFkPQJ4JzY51XgbkkHmNkfygssaRgwDDy4QUrtZW4s14vl+rF8BtizLO8dNEbSGkBjyzulWpYt765rZ+B6M1sYUb3uA7aPbZPN7PkYx/4bjZHEZtEYincv4EJJ04HbgFUllUJ83mZm7xbyXWxmHwKY2Stl5dge79J/KfJcSxM9jWY22szqzay+39Jfd0qtVgqvVOnHiTvhLfXhwBzgko4qVErtKCvvzjcHb9WWa+5H0sWHzxYV3i+isTelG7CDmW0br/XM7M3Y9nbZeZoLLZc/1k5dTv9Yzo/lc4X0BcAHhbz98G7z8/A/ihs7ooAptbOsvDvfvUBPSceUEiRtj3dRHxpj0v3w1u5jrTju3cAJhWNu20y+Y0sPr5V3mwOTgN0krSWpOzAU7wVIqdPsg8eWHhWvy/Eupzo8FnWpm/xsfMx7DHAUfndb+gnFW8BlND6lfk+8T6kWZOXdycwDqh8IfC5+KjYHGAlcB8wEZuAV/Glm9kIrDn0SUB8PoT0BHNtEvsvwX83MlDQD+EpZ+Z7Hv/8mRlmmmdmtrShHSm2uFzAO6It3h68d77uX5euH/yENwx/6GApcGNteBo4B/hjvL473KdUCed2RUtuqlywDgqaUUusIpppZfUv5suWdUkop1Zj8qVhqH4MGwZRse6eUUqtUGdApW94ppZRSjcnKO6WUUqoxWXmnlFJKNSbHvFP7mDq16rGblFJKrZMt75RSSqnGZOWdUkop1ZgVvvKW9B+SbojZzZ6QdIekTdvw+AdI2qLlnFUfb4CkByT9UVJTs6a19pgPt7C9XtKvY/1ISRc2lz+l1P4eArYGegIDaZzmtZInI5+Am8q2vYSHLRTwy7YvZmonK/SYtyQBtwBXmdlhkbYtsA7wVBud5gBgPPBEhfOvVIrmVS0zmwPs0kZlKx1zxxa2TwHyR9spdRELgIPxedzPB34KDAGeZskpYg2f9nUl4P0KxxoOvFshPXVtK3rLe3fgAzO7uJRgZtPN7AG5cyXNljRL0qEAkgZLapB0k6QnJV0bNwFI+nm03mdK+qWkHYEvAedKmi5p49j3Z5LuA4ZLGiNpSOn8kt4qrH8vzj9D0hmRNkLS5EgfXTj3tpIejXPfIunj5RcraZ3YNiNeOxbPKWmspC8W8o+RdHBc8/i2/OBTSktvAvAicHy8jsZjnDdUyDsKmAd8s4nj/BH4XnsUMrWrFb3y3hKY2sS2g4BtgW3wmNfnSlo3tm0HnIwHKPpPYKeIxnUgMMDMtgbOMrOH8Vja342wnH+L/Vc3s93M7LymCiZpH2A/YHsz2wb4VWy60My2N7Mt8Rvv/4r03wHfi3PPAn5c4bC/Bu6L4w3Ew5EW3QCUblI+BuwJ3NFUGSuUeZikKZKmvFTtTimlVpsby/ViuX4snynL9xweVWgUsGrZtrfwaEVnAxu2QxlT+1rRK+/m7Axcb2YLzexFPAzm9rHtMTObb2aLgOl4JMI38N6syyQdBLzTzLHHVnH+vYAxZvYugJm9Eum7S5okaRawBzBA0mr4DUEpVOdVeAjRcnvgf8fEdb1etn0CsIeknnjUxftL56+GmY02s3ozq+9X7U4ppWVWCi9V/uPM7wP1wKeA0hfIC3jFfQ7QB/g88K/Y9m88FnHq+lboMW+85TmkiW3N/Uj5vcL6QmAlM/tQ0qfx1upheCztPZrY/+3C+ofETVR0gX+sqfNL6gVcBNSb2bOSRuLREduEmS2Q1AB8AW+BX99Wx04ptZ3+sZwfy+cK6Qvwce8ewLN4q2OTwr4nAqvHtieBzQrbfg6sDPywXUqd2tKK3vK+F+gp6aMwvpK2l7QbcD9wqKTukvrhLdnHmjqQpL7AamZ2B96lvm1sehNYpZkyzAMGxfr++N8cwN3AEZJ6x/HXoLGifjnONwQgWtCvSio9yHY4/jdb7h7guDhed0nlPWngXedH4Q/F3dVMuVNKnWQfPIb5qHhdjnf/1eFjaQdGvjPwOOfjgEMi7RT8y+yEwrZvxbav03RrJnUtK3TL28xM0oHABZK+j9+0zsMr3/uBHYAZeK/UaWb2gqRPNXG4VYBbo3Us4NuRfgNwqaSTqPx3cWns9xheub4dZbsznnyfEePPV5rZGZIuxce05wGTC8c5ArhYUh986OuoCucaDoyWdDTeY3Ac8EhZnrvx8fPbzKzSw6kppU7Wi8ZKdzgwAP8iKX/SfLfC+uxYfhYf494Q71IH70YH2ArvYk9dn8ys5Vyp00RX+mgzO6bFzF1IvWT527KUUmodwVQzq28p34rebd6lRdf448AGnV2WlFJKXccK3W3e1ZnZWzSOndeWQYNgSra9U0qpVaoM6JQt75RSSqnGZOWdUkop1ZjsNk/tI+N5p5RSu8mWd0oppVRjsvJOKaWUakxW3p1EUp2k2WVpIyWdGjGzP1FIv6wUE1zSPElrxXrFONzlkcqWpiwppdrQFnG9VfY6oF1KmtpSjnl3TUfiEyL9E8DMvlEpU0txuFNKy7e2jOt9MI1TQK5fYXvqWrLl3TXVA9dGDPDeEQN8iRl3CnG4JenCiCV+Oz7tcSlPU/G/B0VM70donNq4NOf5ubHPTEnfjPR1Jd0fZZpdmEc9pdRJ2iquN3h84/3wqEo7t3E5U9vLyrtrmgJ8NWKAVxOS80A8ONBW+M11sUXeVPzvK4GTzGyHsmMdDbxuZtvjIVCPkdQf+Apwl5mVYpxPX8prSym1kbaI611yFtAX2AgY34ZlTO0jK+/O09Sk8ksz2fyuNMYe/yceLa2kmvjfVxfyfx74uqTpwCRgTTyi4GTgqAhDupWZvVleCEnDJE2RNOWlpbiIlNKyWZq43gDfA34PjMbjeQ8F3mnXkqZllWPeneffwMfL0tag8Wa6tZao9JuJ/61K+Uu7ASea2RLhQCXtCuwLXC3pXDP73WIFMBuN//1TL2XEm5TaWVvE9f4aHse75E68In+WxWN9p64lW96dJOYtf17SnvBRvO69gQdpOQZ4ufuBw2K8el1g90hvKv73a8DrkkpDW18tHOsu4DhJPaJcm0paWdJGwL/M7FI8fPDA1l1xSqmttUVc7zvwMbHRwDn4OHo/Gm8MUteULe/O9XXgt5LOi/dnmNnfJI3BY3O/i8cUb8kteJf4LOAp/CYbM3utmfjfRwFXSHoHr7BLLsP/9qfFw20v4b8cGQx8V9IHeG/b11t7sSmlttUWcb3fBJ4HTgMW4t3r5wEfa7dSp7aQ8bxTu8h43iml1HoZzzullFJaTmXlnVJKKdWYHPNO7WPQIJiSHecppdQqVUZjzJZ3SimlVGOy8k4ppZRqTHabp/YxdWrV3T8ppZRaJ1veKaWUUo3psMpb0uHFGNUppZRSWjotVt6lsJPVkjRY0viytF2BXSNoRnP7niypTzPbL5O0RWvKU9i3TtLslnN+lH91SccvzblaS9L1EX7z2x1xvhbKcrWk+yT9TlIOq6SUljsPAVsDPfF5nqc1kW82PnVlbzxC02mR/i6wJx6FTcAv27OwTeioL+f1gROqyHcycA0VAtpI6m5m32jrgjVjdTxE7kVNlGVhW5xE0n8AO5rZRq3YZyUz+7Atzl/OzA5vj+OmlFJXsAA4GK+Qzwd+igd9eJrFp5V9Fw828S5wJtAHeDm2LcSjSO0N3NwhpV5S1d3m0aJukHSTpCclXRtzXyNp70h7EDiosM9ISaea2XVm9p6k2dECXlnS7ZJmRNqhkk4CPgFMlDQx9n9L0pmSJgE7xPnrY9uoCD85R9IZTZR5UJzjEXz631J6d0nnSpocLd5K8el/DmwsaXrkHSxpoqTr8LnCkfQHSVOjDMMKx39L0k/j3I9KWifSD4nrnSHp/sh+N7B2nGcXSdvGPjMl3SLp47Fvg6SfSboPGC5pTHwGEyU9I2k3SVdI+r+YG71Uloqfk6TtJT0cZZkkqaekT0fa47HcLPL2knSlpFmxrRT4JKWUasoE4EW8ZXY8cDQeyrGhLN/1eJS2c/CW57eAH8e2vvic8v/V/sVtmpk1+wLeiuVg4HW8Fd0NeATYGZ8b/1k82pyAG4Hxsc9I4NTCsWbjQS8OBi4tpK8Wy3nAWoV0A75ceN+Ah7cEWCOW3SN96wplnwnsFuvnArNjfRjww1jvCUwB+pftW1fKX7j+t4v5CmXoHde2ZqHc+8X6LwrnmgWsF+urN3GeYpnPBC4oXPtFhXxjgBviM98feAPYKv5tpgLbNvU54TEH/gYMLH3+sd+qwEqRthdwc6yfAlwZ658C/gH0au7/zSAwy1e+8pWvLvY6Dwywa+P9JfF+dFm+UyJ981iuBTa2LM+Vse3cNiwfMKWletnMWv3A2mNmNt/MFgHTo+L5FDDXzJ42/3a/porjzAL2knSOpF3M7PUm8i2k6V6JL0uaBjyOB9NZbCxc0mp4BXlfJF1d2Px54OuSpgOT8OGMYqjbpjxmZnML70+SNAN4FNigcIz3gdK4/1T8cwIfahkj6RiWDPxTqcxX4VH7SsaW7fLH+MxnAS+a2az4t5lTOGelz2kz4HkzmwZgZq/HfqsB4+LZgPMjP/hN2tWR90ng78CmFco/LFr5U14q35hSSl2QxbL8h63vxXJdvBLqCRyJR2HrClpbeb9XWF9I45i5VcgL8GHZOXoBmNlTwCC80jlb0ogm9l9QaWxZUn/gVGBPM9sauJ3G2NUfZWumXAJONLNt49XfzO5uIm/R24UyDMZbpzuY2TZ45VgqwwfWGK7to8/JzI4FfohX9NMlrVnFOSueP5T+PRax+L/NImClZj6npn6A/RNgopltCexXuJ6qfrBtZqPNrN7M6vtVs0NKKXWwUpzy+bF8rpC+APgg3tfF8sv4WPAu+Ph3s09dd6C2+KnYk0B/SRvH+6GFbfPwh/mQNJD43OQ/GXvHzK7BH9QbGPnfBFap4pyr4hXZ6zGevE95BjN7LbbvHElfLWy+CzhOUo8oz6aSVi47REtlWQ141czekfQpPDxusyRtbGaTzGwE/uzDBmVlfh14VdIukXQ4EZt7KTX1OT0JrBv/JkhaTVK3uKbS/+UjC8e5n/j8JG2KhwH+yzKUK6WUOsU+wNrAqHhdjlfUdfj454GRbyje2r4Sj5F+D7AeUKroLsO/GAEei/et+mnWMlrmytvMFuBjyLfHA2t/L2y+GVgjuqePA56K9K2AxyL9B8BZkT4amFB6YK2Zc87AW7pzgCvw7uhKjgJ+Gw+svVtIvwx4ApgWXcSXUPbkvZn9G3goHjA7t8Kx78RbtzPxFuujzZU5nBsPfc3G/91nVMhzROSbCWyLj3svlaY+JzN7HzgMGCXpn3EtPfDx+bMlPcTi3foXAd0lzcK77o80s2JLP6WUakIv/GGzvsBwvCIfx5LjmJ8ArgNeinyfBG6jsaI4Bq/Yif2PofFp9I6gxt7dtCKS9D3g92b2dFset16yjCmWUkqtI5hqZvUt5cvpUVdgks7De016dHZZUkopVS9b3qld1NfX25SM551SSq0iKVveKaWU0vIoK++UUkqpxmTlnVJKKdWYjBqV2sfUqaCq5nZJKaXUStnyTimllGpMVt5NkHR4zASXUkopdSnLXeUtqVUz1EWoz/FlabsCu5pZs9PYSjpZUp9mtl8maYumti8rSUcuzQ2GpAOK5ZKHXd2rbUuXUtf3EB5mryc+R/O0CnlmA5vjM3OtDuxL4xzCJffiAQCEhyhMqb0td5V3G1kfD+HakpPxGO1LkNTdzL5hZk+0ackWdyQ+i1/F8zez3wEUorCZ2Qgz+3PbFi2lrm0BHpv4TTyE3ovAEDySUFE3fC7h0XiAijuAMwrb38VnOmryLj6ldrDcVt7Rom6QdJOkJyVdK/kTVJL2jrQH8b/H0j4jJZ1qZteZ2Xsxr3mdpJUl3S5pRqQdKukkvOKcWJqLXdJb0YqdBOwQ56+PbaMiXOYcSWcsWWIPXCLpTklTJT0QAU+QdKukr8f6N+NahgD1wLWSpkvqLWmepBFxXYdIOkbS5Cj3zZL6SNoR+BI+f/r0OOcYSUMk7SPpxrLP8I/Vlj+lWjIBr7CPj9fRwFw86H3RFsDpwN7AjpFW/OL8MR7R50BS6kDVBP2upRfwViwHA6/jrehuwCN4XOpewLN47G0BNwLjY5+RwKmFY83Gg80cDFxaSF8tlvOAtQrpBny58L4BqI/1NWLZPdK3rlD2e4BNYv0zwL2xvg7wVzwq3VOFY310/EJ5Tiu8X7OwfhYeBhVgDDCksG0M3uhYCfgHsHKkjwK+1oryD8N7Dads2IbB6fOVr/Z4nQcG2LXx/pJ4P7pC3ltiG2ADwF6I9GlgvWJ5RGyf3AWuLV+1+wKmVFPXLbct7/CYmc03s0XAdLwi/hQw18yeNq9xrqniOLOAvSSdI2mXCN1ZyUI8klolX5Y0DY/yNYBCtzWApL74jf24iLZ2CR4HHjN7ERgBTAROMbNXminr2ML6ltGCn4WH9BzQ3EWa2Yd4hLH9JK2ED+/dWk35Y/+M551qlsWy0g8cd8Jb6sPxEH2XRPpJwCF47OA3I20+3iWfUnta3ivvYtjKhTT+rt0q5AX4kMU/k14AZvYUMAivxM+WNKKJ/ReYWfmQGZL6A6cCe5rZ1sDtpWMXdANeM7NtC6/NC9u3Av5NE2PcBW8X1scAJ5jZVvgwXfk5KxmLx5/fA5hsZm9WWf6Uakr/WM6P5XOF9AXAB4W8/fBu8/PwP9TS2NKzwNV4N97vI+1A8qG11P6W98q7kieB/pJKMdWHFrbNwx86RdJA4u87nuh+x8yuAX5ZyoPfbK9SxTlXxSvV1yWtg8eDX4yZvQHMlXRInFOSton1T8c+2wGnRmVazflXAZ6X1ANveZc0t18Dfn3H0NiKb7H8KdWaffBYzqPidTneNVcH9KZxDPtsfMx7DHAUsIjGbqdReCzncfg4HcA5+NPpKbWnFa7yNrMF+Njs7fFg198Lm28G1ohu6+Pw8WXwVu9jkf4DfPwY/AHUCaUH1po55wy8u3kOcAX+C5VKvgocLWlG5N1fUk/gUuC/zX+6dgpwRTx8Nwa4uPTAWoXj/QiYBPwJv2kpuQH4rqTHCzcxpbIuBMbj323jW1n+lGpGL7zS7Yt3h68d78t/ptEPuA7/0rgLv9u/MLbtgz8sMgTYKNL2ANZsz4KnRIYETe2kXrLsOkwppdYRZEjQlFJKaXmUgUlS+xg0CKZk2zullFqlyoBO2fJOKaWUakxW3imllFKNyco7pZRSqjFZeaeUUko1JivvlFJKqcZk5b0CktRd0vCYvzyllFKNycp7KUk6UJKVwnbWmO/g0dc+rLRR0ick3dTBZUqpS3jooYfYeuut6dmzJwMHDmTatGlL5Jk9ezabb745vXr1YvXVV2ffffflued8dvSGhgYkLfa64IILOvoy0nIuK++lNxR4EDisNTtJKp99sUNJ6ga8YGaXN7F9JTP7p5kN6eCipdTpFixYwMEHH8ybb77J+eefz4svvsiQIUNYuHDxeEPdunXjsMMOY/To0Rx00EHccccdnHHG4mHuf/SjH3H99ddz/fXX88UvfrEjLyOtALLyXgoRvnMn4Gii8pbUTdJFkuZIGi/pDklDYts8SSNiLvVDJG0r6VFJMyXdIunjka9B0gWSHpY0OwKSIGllSVdImhzzke8f6d0l/VLSrDjWiYXzrRXr9ZIaYv3T+A3Hd+Icm0X6kZLGSfojcLekOkmzY1tdhBWdFq8dO+ZTTqnjTZgwgRdffJHjjz+e448/nqOPPpq5c+fS0NCwWL4tttiC008/nb333psdd/Q/iW7dFv863WWXXTjggAM47LDD2HTTTTvqEtIKIivvpXMAcGeECn0lIpAdhAck2gr4BrBD2T4LzGxnM7sB+B3wvQivOQv4cSHfyma2I3A8HgQEPBjKvWa2PbA7cK6klfFYCf2B7eJY17ZQ7ieBXc1sOzxE6M8K23YAjjCzPcr2+RfwOTMbCBwK/Lqpg0saJmmKpCkvvfRSC0VJqeuZO3cuAOuttx4A66+/PgDPPPPMEnnvuOMO1llnHY455hgGDBiwRMv7C1/4An369OGzn/0sTz311BL7p7QssvJeOkPxyFzEciiwMzDOzBaZ2QtAeaSxsQCSVgNWN7P7Iv0qYNdCvusBzOx+YFVJqwOfB74fUc0a8IBIGwJ7AReXxq7N7JUWyr0KcG30AIwABhS2/amJ/XsAl0qahQdd2qJCHuL8o82s3szq+/Xr10JRUur6SoGbVGHKyp122okJEyYwfPhw5syZwyWXXALAOuuswznnnMOtt97K6aefzqRJkzjuuOM6tNxp+ZdPG7eSpDXxqH9bSjI8gqABt7Sw69tVnqI8zJsBAg42s7+UlUUV8gN8SOONWa9C+lnARDO7OGKCF28wmirft4EXgW3imAuquYiUalH//v0BmD9/PsBHD6H179+fBQsW0L17d3r06AFAv3792Hvvvfnc5z7Hb37zG2688UZGjBjB5ptvzuabe0Tv/fbbj4svvpgnnniiE64mLc+y8m69IcDvzOybpQRJ9wEvAwdLugoPATwYDwO8GDN7XdKrknYxsweAw4H7ClkOBSZK2hl4PfLfBZwo6UQzM0nbmdnjwN3AsZIazOxDSWtE63keMAiYABxcOPbHgVJ/9pFVXu9qwHwzWyTpCJYMd5zScmOfffZh7bXXZtSoUayyyipcfvnl1NXVUVdXR+/evdl3330ZP348Z599Nm+88QabbbYZ9957L4sWLWKLLbxT6swzz+SVV15hm222YfLkybzyyivsv//+nXxlaXmT3eatN5QlW9k3A58A5gOzgUuAScDrTRzjCHzceiawLXBmYdurkh4GLsYfiAP4Cd59PTMeJPtJpF8G/CPSZwBfifQzgF9JegAoPiZ7LnC2pIeo/t/+IuAISY8Cm1J9D0JKNadXr16MGzeOvn37Mnz4cNZee23GjRtH9+6L37P269eP6667jmHDhnHXXXcxdOhQLrzwQsAfZmtoaOCEE07gxhtv5LDDDvuoSz2ltqLSmE5adpL6mtlb0bX+GLBTjH9Xu38DcKqZ1Xwszfr6epuSIUFTSqlVJE01s/qW8mW3edsaHw+YfQz4SWsq7pRSSqlaWXm3ITMb3Jn7p5RSWjHkmHdKKaVUY7LyTimllGpMVt4ppZRSjcnKO6WUUqoxWXmnlFJKNSYr75RSSqnGZOWdUkop1ZisvFNKKaUak5V3SimlVGNybvPULiS9CfylxYwppZSKNjKzfi1lyulRU3v5SzWT66eUUmq97DZPKaWUakxW3imllFKNyco7tZfRnV2AlFJaXuUDaymllFKNyZZ3SimlVGOy8k4VSdpb0l8k/VXS9ytsP1bSLEnTJT0oaYtIr5P0bqRPl3RxpPeRdLukJyXNkfTzwrF6Shob55okqa6jrjOllGpRdpunJUjqDjwFfA6YD0wGhprZE4U8q5rZG7H+JeB4M9s7Kt7xZrZl2TH7AJ8xs4mSPgbcA/zMzCZIOh7Y2syOlXQYcKCZHdr+V5pSSrUpW96pkk8DfzWzZ8zsfeAGYP9ihlLFHVYGmr0LNLN3zGxirL8PTAPWj837A1fF+k3AnpK0zFeRUkr/397ds1YRhGEYvh+0VkGsjEKUY+8P0MpOBAuLdLaCQcTGQqtgZSWijaiNoNansxGs/UglCDFpDFoZsRSPvBZn0Y1ZBVECc7ivamZ2dl+mephllp1RhreG7Afe9frr3dgmSc4nWfSnWYsAAAFASURBVAWuAxd6l+aTLCd5luTYwH17gFNMd9+b6lXVBPgM7P0fC5GkWWR4a8jQrnfLzrqqblfVYeAycLUb/gAcrKqjwCXgYZJdPx6c7AQeATerau1v6kmSpgxvDVkHDvT6c8D7P8x/DJwGqKovVfWxa78EVoEjvbl3gJWqujFUrwv33cDGP65BkmaW4a0hz4FRkvnucNkCMO5PSDLqdU8CK934vu7AG0kOASNgretfYxrMF3+pNwbOdu0zwNPyJKUk/ZY/JtEWVTVJsgg8AXYA96vqdZIl4EVVjYHFJCeAr8AnfobvcWApyQT4Bpyrqo0kc8AV4A3wqjuPdquq7gL3gAdJ3jLdcS9s22IlqUF+KiZJUmN8bS5JUmMMb0mSGmN4S5LUGMNbkqTGGN6SJDXG8JYkqTGGtyRJjTG8JUlqzHfzTaYeC8xaNwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAD8CAYAAABqxe1QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xt8VdWZ//HP14BJFC+DEkfAGrwWL4gJthUUwUtrvAxSaIV2RDsIRVSQ1jId/UnBqUzBWjpWjSBUKrWoEbQqRS1KRKGKEO7U2pFQAW0qeAMlFOLz+2OtE07CyQ0SAofn/XqdFydrr7322jvR56y191mPzAznnHPOpY+DmrsDzjnnnGtcHtydc865NOPB3TnnnEszHtydc865NOPB3TnnnEszHtydc865NOPB3TnnnEszHtydc865NOPB3TnnnEszLZq7Ay49HX300Zabm9vc3XDOuf3K4sWLN5pZmz1tx4O7axK5ubksWrSoubvhnHP7FUl/a4x2fFreOeecSzMe3J1zzrk048HdOeecSzMe3J1zzrk048HdOeecSzMe3J1zzrk048HdOeecSzMe3J1zzrk048HdNY3Fi5u7B845d8Dy4O6cc86lGQ/uzjnnXJrx4J5mJB0u6Ybm7kd18+fPp1OnTmRmZpKXl0dJSUnKehMnTqR9+/ZkZ2fTq1cvNm3aBMC7775Lt27dyMzMRBJPPvnk3uy+c87tV/aZ4C6ptyST9OVa6kyV1LcBbbaVVGcUkPQHSUfWsv0WSYfU97j1ON44SQskPS7pqMZqN7obeCvpWKMl3ZqiD7mSVsb3XSTd28j9qFReXk6fPn3YvHkzEyZMoKysjL59+1JRUVGl3pIlSxgyZAgdO3ZkzJgxzJo1ixEjRgCwbds2TjjhBLp3795U3XTOubSxzwR3oD/wGtCvsRo0s/fMrM4PA2Z2mZl9XEuVW4CUwV1Sxm706z/NrKuZXW1mmxq6f00kHQG8YGZzG9ifRWY2rLH6Ud3s2bMpKytj6NChDB06lIEDB1JaWkpxcXGVelOnTgVg7NixjBw5kq5duzJ9+nTKy8s5+eSTmTZtGt26dWuqbjrnXNrYJ4K7pFZAN2AgScFdwX2SVkuaBeQkbVsraaykP0laJClP0guS3pE0JNZJHp1eJ2mmpOcl/VXS+GptHS3pUEmzJC2TtFLS1ZKGAW2BuZLmxvpbJN0p6Q3gXEmjJL0Z95kkSbHeSZLmxPYWSzou9ulVSSXx1TXpXO+ObayQdHWK65Qr6S1Jv5G0XNKTiRkFSWuBlmY2M47Ei5N2PUvSy/G8B6Vot4ek5xK/C0kPxz4sl9QnlhfG67xK0piG/H5LS0sBaNeuHQDt27cHYM2aNXXW27FjB+vWrWvI4Zxz7oC3r+Rzvwp43szelvShpDwzKwF6A6cCZwLHAKuBXyftt87MzpU0AZhK+ICQBawCHkxxnM7A2cA24C+SfmVmyZHjUuA9M7scwkjYzD6R9AOgp5ltjPUOBVaa2ahYb7WZ3RnfTwOuAJ4FHgXuMrNnJGXHfQVcYmblkk4GpgNdgG/G/p0FHA28KWmemb1f7RxOBQaa2XxJvwaGAj+v4/p2Ar4W+70kflCqyR3AJ2Z2Zjyff4nlt5vZh3Gm4iVJncxsefKOkgYDgwG+VMsBzCxRv9ZO17eec865qvaJkTthSv6x+P6x+DNAd2C6mVWY2XvAy9X2eyb+uwJ4w8w2m9kHQHkN99BfMrNPzKyc8EHh+GrbVwAXx3vi55vZJzX0twKYkfRzT0lvSFoBXAicLukwoJ2ZPQNgZlvNbCvQEngo1i0CTottnJd0rmXAK8A5KY69zszmx/e/jfvV5ffx+BuBucBXaql7MXB/4gcz+yi+/bakEmAJcHpSv0mqO8nMuphZlzZJ5R06dABg/fr1AGzYsKGyvLy8nO3bt9dYr0WLFpUjfeecc/XT7CP3+EDZhcAZkgzIAEzSyFjFatl9W/z3i6T3iZ9TnVtynYrqdeLMQT5wGfA/kl5MjMirKTezitj/LOABoIuZrZM0mjB7oBr6PgIoI4zQDwLKY3l9h6fV20z8vIOdH9ay6rlPKrv0W1IH4FbgHDP7SNLUFMeoUUFBATk5ORQWFnLYYYcxZcoUcnNzyc3NJTs7m8svv5znnnuOAQMGcO+993L77bdzySWXsGDBAvr3709WVhZbtmzhscceq3zK/qWXXuLjjz/m+uuvr283nHPugLEvjNz7Ao+Y2fFmlmtmxwGlhBHpPKCfpAxJxwI9m7IjktoCn5vZbwlT3Xlx02bgsBp2SwS5jfHZgb4AZvYpsEHSlbHt7Dg1fwTwvpl9AVxD+DAD4VyvjufahjBrsTDF8b4k6dz4PvEQIsBaID++71Ntn16SsuIHqR7AmzVfBV4Ebkr8EKflDwc+Az6RdAxQUMv+u8jKyqKoqIhWrVoxfPhwcnJyKCoqIiOj6rOI+fn53H///axevZpRo0ZRUFDAhAkTANi4cSODBg3i2WefBeDBBx9k0KBdHh9wzjnHPjByJwSon1UrmwF8h3A/+ULCdPnbhKnqpnQmcLekL4DtQOL74pOA2ZLeN7MqHzDM7GNJD8U+rqVq4LwGmCRpErCB8GzBA8AMSd8iTJF/Fus+BZwLLCOMnEea2d9T9PHPwLWSJgJ/BQpj+RhgiqTbgDeq7bMQmEW4Ff7fZvaepNwarsFPgfvjg4gVwJj4kN4SwrMMa4D5Nexbo+7du7NixYpdyhP31RMST9RXl5ubu0td55xzqcn/h9n0JH2HMFpv0FfUUrSTCzxnZmc0Rr+aUhfJFvnflnPONYikxWbWZU/b2Rem5dOapB8C/83O6XfnnHOuSXlwb2Jmdo+ZnWhmcxqhrbX7w6gdgPz8uus455xrEh7cnXPOuTTjwd0555xLM/vC0/IuHS1eDHu6spw/kOecc7vFR+7OOedcmvHg7pxzzqUZD+5JJLWX9PuYPe0dSf8r6eB67Hfb3uhfY1A9c9zva+bPn0+nTp3IzMwkLy+vchnaZFu3buWiiy6iVatWSOLnP6+aT+fpp5/mpJNOIisrix49elRmoXPOuXTjwT2KaVpnAk+b2cnAKUAr4K567J4yuMc0rnv9GquWHPP1zXG/LykvL6dPnz5s3ryZCRMmUFZWRt++famoqKhSr6KigtatW3PppZfu0sbf//53+vXrx+GHH87dd9/N4sWLufbaa/fWKTjn3F7lwX2nCwkJYR4GiIlhRgD/IekQhXzw9yUqS3ou5kH/GZAtaamkR2PO9T9LegAoAY6T1D/mR18paVzcP0PS1KT87SOqd0jSt+L2ZZLmJe13t0L++OWSvh/Le0iaK+l3wIqY2W5oUlujJf1QVXPcZ0i6Jx5jeUzZyu72t6nMnj2bsrKyyqVpBw4cSGlpKcXFxVXqtWrViqKiIq644opd2pg+fTrbtm3jv/7rv7j55pvp3bs3r776Ku+8885eOgvnnNt7/Gn5nU4HFicXmNmnkt4FTqppJzP7saSbzKwzVC4ReyrwPTMbGpPRjCMkdfkIeFHSVcA6QkrYM+J+qVLUjgK+YWYbkrYPJORbP0dSJjBf0otx21eAM8ysVNLZwC8Ja9kDfJuQrz75A91g4DjgLDOrkNR6D/vbJBLT5+3atQOoTAG7Zs0aLrrooj1u48QTT2zU/jrnXHPzkftONaVoram8Nn8zs9fj+3OAYjP7wMx2AI8SMr6tAU6Q9CtJlwKfpmhnPjBV0iB2Ll/7dWCApKWEBDFHASfHbQvNrBTAzJYAOfEe+1nAR2b2brX2LwYmJdLXmtmHe9JfSYMlLZK06IMGXa6GSeRD0B581a4x2nDOuX2VB/edVgFVFuuXdDhhZPsOVfOlQ+35zD9Lep8yepjZR4Sc7sXAjcDkFHWGAP8v9mFpTNkq4GYz6xxfHcwsMXL/rFoTTxJS0F4NPJaiG6n6tif9nWRmXcysS5tUjeymDh06ALB+/XoANmzYUFleXl7O9u3b96gN55xLNx7cd3oJOETSAKh8KO0eYKqZfU5I59pZ0kGSjiNMgSdsl9SyhnbfAC6QdHRssz/wiqSjgYPMbAZwBztzx1eSdKKZvWFmo4CNhCD/AnBD4niSTpF0aA3HfgzoRwjwqZ6QfxEYnHgAT1LrPelvUykoKCAnJ4fCwkIKCwuZMmUKubm55Obmkp2dTe/evSvrTp48mXnz5gGwcOFCJk+ezJYtW+jXrx8HH3ww48aN41e/+hVPPfUU5513nk/JO+fSk5n5K74IwfNZQp70d4BfAZlxmwhT1KuAxwkj2B5x2zhCnvVHgVxgZbV2v0PI974SGB/LziI8cLc0vgpS9Gdm0n7/G/twEDA2qXwucATQg5AOtnobK4C5ST9X9o/wzMUvCFPu/wcM2pP+Jr/yw/pye/ZK8sorr9gZZ5xhLVu2tM6dO9ubb75ppaWlBtjll19eWY9wC6XKq7S01MzMZsyYYSeccIIdfPDBdv7559v//d//mXPO7UuARdYI8czzuTskZQE/N7ObGqvNLpIt2tNG/G/TOXeA8XzurlFIOgV4E8hs7r4455xrHP5VuAOcmb0NnNnoDefnw6I9Hrs755zbDT5yd84559KMB3fnnHMuzXhwd84559KMB3fXNBYvBl/9zTnnmoUHd+eccy7NeHA/AEjqJum85u6Hc865vaNZg7uk3pJM0peTynIlfSfp5y6S7q2jnSGJZWOrlVemN21An6ZK2qN85/XpcwPaWhuXfq1eXnnOyX2WNFnSaUn1jgBGE1aVq+kYd0q6uDH6W5v58+fTqVMnMjMzycvLo6SkJGW9iRMn0r59e7Kzs+nVqxebNm0C4N1336Vbt25kZmYiiSefTLWirnPOueYeufcHXiOsf56QS1j+FAAzW2Rmw2prxMweNLNHmqSHu6E+fW6EY6Q8ZzO73sxWJxWdBtxoZltStSMpw8xGmdmcpuorQHl5OX369GHz5s1MmDCBsrIy+vbtS0VFRZV6S5YsYciQIXTs2JExY8Ywa9YsRowIqeO3bdvGCSecQPfu3Zuyq845t99rtuAuqRXQjZCfPDm4/ww4X9JSSSMk9ZD0XEzYsjY5j7ik/5N0jKTRkm6NZfmSlkn6EyF7WaJurqRXJZXEV9dYLkn3SVotaRaQk7RPvqRXJC2W9IKkY2P5sFh/uaRdsq0l+hzfj5b0G0kvxv5/U9J4SSskPZ+UAOYiSUti+a9jrvaEH0laGF8nJbV7a4pjF0vqEt8XEtbHf1rSmKQ6ayWNkvQa8K1qI/9Rkt6UtFLSJMWcqHWdc11mz55NWVkZQ4cOZejQoQwcOJDS0lKKi4ur1Js6dSoAY8eOZeTIkXTt2pXp06dTXl7OySefzLRp0+jWrVtDD++ccweU5hy5XwU8H1dI+1BSIsvYj4FXLaQznZCobGZfAL8HegNI+iqw1szKqrX7MDDMzM6tVv4P4BIzyyOkQE1Mm/cGTiWs0jYISAT9loTA2NfM8oFfA3cl9fFsM+sEDKnHuZ4IXA70An5LSORyJrAVuDyu7T4VuDqWtwBuSNr/UzP7CnAf8Mt6HC/h9rhGcSegp6ROSdvKzew8M6seqO8zs3PM7AwgG7giltd5zqoln3tpaSkA7dq1A6B9+/YArFmzps56O3bsYN26dfU9Z+ecO+A1Z3Dvz84c44/Fn+vyOCEwQxjtP568Md5fPtLMXolF05I2twQekrQCKCJMVwN0B6abWYWZvQe8HMtPBc4A/ihpKSGvevu4bTnwqKR/J+R5r8tsM9tOyLSWATwfy1cQbkOcCpTGDzoAv4n9Spie9G/1Dy21+aakV+M5ncjOc4Zq1y5JT0lvxOt0IXB6LK/znK0B+dwTCYtUx9fl6lvPOefcTs2ytrykowiB4wxJRgh4JmlkHbv+CThJUhvCyP+n1ZsmpPlMZQRQRkhdehBQnrQt1T4CVqWYAYAwCu8O/Btwh6TTzay2IL8NwuyDpO22MxXfF4TfQV2Ry2p4XyNJucBIIM/Mtkj6DZCVVOWzFPtkAQ8AXcxsnaTRSfs09Jyr6NChAwDr168HYMOGDZXl5eXlZGRk0LJlyyr12rZty4YNG2jRokXlSN8551zdmmvk3hd4xMyON7NcMzsOKAXOAzYDh6XaKQbFpwg5yP9sZpuqbf8Y+EQ7v/b13aTNRwDvx+n9awgfKADmAf0kZcR76j1j+V+ANpLOhTBNL+l0SQcBx5nZXELwPBJotdtXIngLyE3cT4/9eyVp+9VJ//6pnm0eSZj2/1zSMcCl9dgnEcg3xmciEvfh9/icCwoKyMnJobCwkMLCQqZMmUJubi65ublkZ2fTu3dvAAYMCF96uP322xk/fjwLFiygX79+ZGVlsWXLFiZPnlz5lP1LL73E5MmTG9IN55w7IDRXVrj+hAfnks0gPCU/DNghaRnhPvSSavUeJ6Qova6Gtr8H/FrS58ALSeUPADMkfQuYy86R61OEWYQVwNvEoGpm/4wPmd0bp/tbEO53vw38NpYJmBA/VOw2MyuX9D2gSFKLeH4PJlXJlPQG4cNYfW5fACyLr1XAGmB+PfrxsaSHCNdibewHhA9Ce3TOWVlZFBUVceONNzJ8+HBOP/10HnroITIyMqrUy8/P5/777+euu+7i1VdfpaCggAkTwqMXGzduZNCgQZV1H3wwXKLrr7++IV1xzrm0p50zxM41ni6SLQLwvy/nnKs3SYvjg9B7pLm/5+6cc865RubB3TWN/HwftTvnXDPx4O6cc86lGQ/uzjnnXJpprqflXbqrK5+7T9k751yT8ZG7c845l2Y8uDvnnHNpxoO7c845l2YaNbhLSpkzvFqdWyQd0pjHbShJ10m6L74fImnAbrZzi6TXJRVJOrWB+35L0p8lzZXURdK9de/VtCT9QUkpdfeW+fPn06lTJzIzM8nLy6tcXra6iRMn0r59e7Kzs+nVqxebNoXVh4uLi5FU5fXLXzYkeZ5zzqWXRl2hTtIWM6t1zXFJawmJSTY2oN0MM6vY0/4ltXdd7MNNjdXmbvTheWBcXK99nxXzuSuuyV9vlSvU1ST+3ZWXl1euL/+jH/2Iu+66i8zMTP76179WWZp2yZIl5OXlcfHFF3PJJZdw22238Z3vfIdHHnmE4uJievbsyR133MFpp4XEd3l5eZxyyikNPV3nnGtWjbVCHWbWaC9gS/y3B1AMPElIivIoYU3yYcA/CWuXz411v05IhlJCSMXaKpavBUYBrxHSuxYDEwiJXv4MnAPMBP4K/DSpD/8OLASWAhOBjFj+PXauHf8QIW85wGjg1vh+EGE99WWEte4PieXHENagXxbb7UJInPJS7PcKoFdSH34ArIyvW1Jcp1HAFkJymrvj9XouqT+/jue7hpCbPrHf08Biwnrxg5OvOyHX/DLgdeCYFP1eBnSt4xqtBY4mpKH9M2E9/iXA8UAhsCgee0xdfwtxCZuaX9HMmTMNsPHjx5uZ2R133GGAzZkzx5INGzbMAFu4cKGZmZ1//vnWokUL27p1q82dO9cAe/HFF23r1q3mnHP7K2CRNUI8bsp77mcDtxByiJ8AdDOze4H3gJ5m1lPS0YQ86RebWV4MHj9IaqPczM4zs0Te93+aWXdCUpXfAzcScq5fJ+koSR0JmdO6mVlnoAL4bsz2NgboBlxC1bzmyWaa2TlmdhYhuA2M5fcCL8fyLoQPCeVA79jvnsA9CvIJHyS+CnwNGCTp7OSDmNmd8Vy/a2Y/StGPLwPfAL4C/ERSy1j+H2aWH/swLKbOBTgUeD32bx7hQ0qi36/E8jxgVU3XKEUfTiVk7jvbzP4G3G7h02Qn4AJJnarvIGmwpEWSFn2QosFUSktLAWjXrh1AZWrXNWvW1Flvx44drFu3rrLON77xDQ455BC+9rWv8fbbb9ezB845l36a8nvuC81sPYCkpYTR4GvV6nyNEGjnh9lfDqZqStPHq9V/Jv67gpBr/f3Y/hrgOELK2HzgzdheNvAPQqAtNrMPYv3HgVRztmdI+ik7U5omsspdSEjDioUc5p/GgDtWUndCXvZ2hJHyecBTZvZZPNZM4Hx2zW5Xm1lmtg3YJukfsd31hIDeO9Y5DjgZ2ESYDXkuli8mfIBJ9HtA7HcFIR3uNTVco+r+ZmavJ/38bUmDCX8zxxJ+b8uTdzCzScAkCNPyDTjf5DYAUG3fka9W75hjjmHcuHF07NiR119/nbFjx3LDDTfw0ksv7U4XnHNuv9eUwX1b0vuKGo4l4I9mVlMa08+q/Zxo84tq7X8R2xfwGzP7ryoHka4C6hNspgJXmdmyeF++Ry11vwu0AfLNbHt8liAr9mFP7XLtJPUALgbONbPPJRWzM//6dktEu5qvdULKa5RC5bWX1AG4FTjHzD6SNDXp2HukQ4cOAKxfvx6ADRs2VJaXl5eTkZFBy5Ytq9Rr27YtGzZsoEWLFrRv356srCw6duwIwJVXXsmDDz7I6tWrG6N7zjm3X2qOr8JtBg6L718Hukk6CUDSIZL25Cmol4C+knJie60lHQ+8AfSIU/ctgW/VsP9hwPuxTvJU9UvA92ObLSQdDhwB/CMG9p6E+9IQpsWviudyKNAbeHUPzinhCOCjGNi/TJj1qMtLwA2x3xmx3zVdo9ocTgj2n0g6BijY3ZOorqCggJycHAoLCyksLGTKlCnk5uZWPmTXu3eYqBgwIHyh4fbbb2f8+PEsWLCAfv36kZWVxZ133sktt9zCww8/zNChQ/nwww/56le/2lhddM65/U5zBPdJwGxJc+M0+XXAdEnLCcH+y7vbsJmtJtzDfzG290fg2Dh9P5ow5T+H8BBcKncQPgj8kfAgYMJw4BJJG+K+JxMeEuwiaRHhg8BbsQ8lhBmAhbGtyWbWkCn5mjxPGMEvB/6bcK3qMhzoKWkFYbr+9JquUW2NmNkywm2FVYSH/ebv9llUk5WVRVFREa1atWL48OHk5ORQVFRU5Ul5gPz8fO6//35Wr17NqFGjKCgoYMKECQCcdtppFBcXc9NNN/HEE0/Qr18/Jk6c2FhddM65/U6jfhUu3UnqCpxqZg83d1/2dfX9KpxzzrmdGuurcL5CXT1J6g88Qv3u3TvnnHPNxoN7PZnZdDM7ycymNndf9gv5dXzT3TnnXJPx4O6cc86lGQ/uzjnnXJppyu+5uwPZ4sWQvBCNT8U759xe4yN355xzLs14cHfOOefSzF4N7pJul7RK0nJJSyU1yjJiku6UdHFjtFXHcUZLurUB9f9N0o/rUe/ueF3u3rMe7jlJ4yQtkPR4UmKaRrWn+dvnzJnDiSeeSGZmJkcffTT9+/dn8+bNTdFV55zbL+21RWwknQv8AuhhZttiRriDzey9eu7fIiZtaTaSRhPS2v68kdv9FGgTk8XUp36zX4u67LKITSPmb583bx4LFiygbdu2zJgxg2eeeYa77rqL2267be+epHPONbL9cRGbY4GNiQBmZhsTgV1SvqRXJC2W9EJM0YqkYkljJb0C3C5praSD4rZDJK2T1FLSVEl9Y/k5ceS5TNIbkjLj+ulPxxmD1xPpSiVdEGcQlkpaIumw6p2Osw1/kTSHkAY1UX6ipOdjn1+N671X3/c6SffF91Ml3Rv7tiapv88QUra+IelqScdLein29SVJX0ra/xeS5gLj4izCbyS9GK/LNyWNl7Qi9qtl3G+UpDclrZQ0SQpPuUk6SdKceJ0WSzpOUm48l5L46hrrKs4urIztX727fwSzZ8+mrKyMoUOHMnToUAYOHEhpaSnFxcVV6k2dOhWAsWPHMnLkSLp27cr06dMpLy+ne/fu3HLLLXz961/n7LNDNt2DDvI7TM45l7A3/4/4InCcpLclPSDpAoAYhH4F9I25yn8N3JW035FmdoGZjQGWARfE8iuBF8xse6KipIOBx4CbYg7zrwPbCbncl5hZJ+A2wkpzEDKd3Rjzmp8PbE3usEJu9n6E3PTfBM5J2jwJuDn2+VbggXpcg2MJKWGvAH4GYGb/Bmw1s85m9jhwHyGPeifC+vX3Ju1/CnCxmf0w/nwicDnQC/gtMNfMzozncXmsc1/MUX8GIb3rFbH8UeDeeJ3OAzYSUr9eEnPUX5107G8CnYGzCJnp7k58AGuoxsrf/uCDD3LssccyZswYLrjgAm666abd6Y5zzqWlvRbczWwLIY/4YOAD4HGFtKqnAmcAf1TI+/7/gPZJuz5e7X1i1NiPXfO9nwq8H5O3YGafmNkXhOA1LZa9DBwl6QhCApRfSBpG+BBRfar7fEJu9s/N7FNiPnlJrYCuQFHs80TqSL4SPW1mX8TkLcfUUOdc4Hfx/bTY94SimJc9YXb8cLMCyCAklyH+nBvf94wzGCsI+d1PjzMU7czsmXhNtprZVqAl8FCsW0TI2U7sw3QzqzCzMuAVqn7QAUDSYEmLJC36oB4XIx47sW+D6vXp04dZs2bRv39/XnnlFWbMmFHPIzrnXPrbq3OZMTgUm9lPgJuAPoT84qviyLWzmZ1pZl9P2i05p/szQIGk1oQPCi9XO0RNESJVuZnZz4DrCSPa11NNrZN6LfmDgI+T+tzZzDrWcOxkyffU65v3Pfn4KfPbxw8wyTndvyBkkMsizCj0jSP6h9iZcz7VeY0Ayggj9C7AwQ3pq5lNMrMuZtalTQ116srfvn379hrrJfK3Axx33HFcdtll3HVXmOQpKiqqTxedc+6AsNeCu6RTJZ2cVNQZ+BvwF6BNfOCOeA/99FRtxNH/QuB/geeqjWIhpF09VlJebOuIeI9+HjE/u6QehHv/n0o60cxWmNk4YBG7ppudB/SWlB1Hu1fGfnwKlEr6VmxTks7ajcuSygLCrASxz6/tQVtZ8d+NcbahL1T2f4OkKwHi+WUTcsa/Hz8sXEOYDYBwHa5WyAnfBuhO+D00WGPkbx8xYgRjxoxh6tSpldPxp512Wo3HdM65A83eHLm3An4jabVCHvHTgNFm9k9C0BknaRmwlDDlXZPHgX9n1yl5Ylv9gEJJ7xGmqVsScrl3icf9GXBt3OWW+JDYMsJ96tnV2iuJx1kKzABeTdr8XWBg3HcV4b53YxgGfC/29RpCTvbdYmYfE0brK4CngTeTNl8D/EDS+4TzOoowyr9W0uuE+/uJmYJPZDjwAAAgAElEQVSngOWEZx5eBkaa2d93p0+Nkb+9devWTJw4kcGDB7N06VKGDBnC6NGjd6c7zjmXltI2n7uk/wRmmtlfm7sv+zJJ3yGM1uc2Zrs1fRXOOedczbQffhVur5F0D+HBvZbN3Zd9maQfAv/Nzul355xzaSBtR+6uefnI3TnnGs5H7m7flp8fAnri5Zxzbq/x4O6cc86lGQ/uzjnnXJpp0dwdcGlq8WKoY9W5Gvk0vnPO7REfuTvnnHNpxoO7c845l2Y8uO8Fko7SztSyf5e0Ienng+tuYe+T9IO4Nn2zmz9/Pp06dSIzM5O8vDxKSkpS1ps4cSLt27cnOzubXr16sWnTJgA+/fRTrr32Wlq3bk2bNm34yU9+sje775xze50H973AzDYlEswADwITkhLO/BMq16ffJ34fkjKAH7BzbfpmU15eTp8+fdi8eTMTJkygrKyMvn37UlFRNa3AkiVLGDJkCB07dmTMmDHMmjWLESNGAGF9+kceeYQhQ4bwjW98gzvvvJOZM2c2x+k459xesU8EkwOVpJPi2vYPAiWEpDeTYtrUVZJGJdVdL2m0pCWSlks6JZZfKGlZnAUokXSopIslzZX0dFzL/37FXKmS/l3SinjcsbGshaSPJf1U0kJgJJADvCppTqxTIOlP8RiPSzp0b1yj2bNnU1ZWxtChQxk6dCgDBw6ktLSU4uLiKvWmTp0KwNixYxk5ciRdu3Zl+vTplJeXU1xcTMuWLRk7dix33HFHlfrOOZeOPLg3v9OAKWZ2tpltAH4cVyc6C7hEUnK6szIzOxuYTBhZA/wIGBxnBboD5bH8q8AtwJlAR6CXpPbAT4GewNlAN0lXxPpHACVm9hUz+x/gH8D5ZnaxpBzgx8BFZpZHSCKz2wltGqK0tBSAdu3aAVSmfF2zZk2d9Xbs2MG6devIyclh+/btzJ07lzlz5lSp75xz6ci/Ctf83jGz5Gxt/SUNJPxu2hKC/+q4LTGXvBi4LL6fD/xS0u+AGWa2JQ7SXzeztQCSHgPOI6wh/7KZbYzlvyN8IHge+Cch+1sqXWM/FsS2DyZFKlpJgwlr+vOl+p9/gySWS1YdX7NLrjdmzBhKSkq48MILyc7OJiMjg6ysZr/j4JxzTcaDe/NLpFUl5rsfDnzFzD6W9Fuq3vfeFv+tIP7uzOynkp4BLgfejPnqAap/WdyA2iLiVqs50YCA583smtpOxMwmAZMgrC1fW9366tChAwDr168HYMOGDZXl5eXlZGRk0LJlyyr12rZty4YNG2jRogXt27fnpJNOYu3ataxevZqsrCzy8vI8/7tzLq35tPy+5XBgM/CppGOBb9S1g6QTzWx5nEpfApwaN31N0pfiw3HfJoy0Xwd6xqf3WwD9gFdqaHozcFh8vwC4QNIJ8ZiHxg8iTa6goICcnBwKCwspLCxkypQp5ObmkpubS3Z2Nr179wZgwIABQHh4bvz48SxYsIB+/fqRlZXFnDlzmDRpEqtXr2bQoEEcdNBB/OAHP6jtsM45t1/z4L5vKSFMwa8EHiJMudfl1vhw3HLgY+DFWL4AuAdYAbwNPGNm64FRQDGwlDB1P6uGdicBcyTNMbMyYCDwuKRlse1TduP8GiwrK4uioiJatWrF8OHDycnJoaioiIyMqllq8/Pzuf/++1m9ejWjRo2ioKCACRMmALBjxw5++ctfcsMNN/DZZ5/xxBNPcNZZZ+2N7jvnXLPwlK9pSNLFwE1mdlVz9WGXlK8N4X+TzrkDlKd8dc4551xKHtzTkJnNac5RO7BrPveGvJxzzu0RD+7OOedcmvHg7pxzzqUZD+7OOedcmvFFbFzTWLwY6lhFrkH8XrxzztWbj9ydc865NOPBPc3FjG83Scps7r4455zbOzy47wMk/aukxyS9E1O0/iGR0nUP2xXwS2C5mW2rq361fSdXy0i3T5k/fz6dOnUiMzOTvLw8SkpKdqmzdetWLrroIlq1aoUkfv7zn1du+9Of/kTXrl058sgjOfLII+nTpw8ffPDB3jwF55xrMh7cm1kMwE8BxWZ2opmdBtwGHLOnbVtwk5nNq+HYNT5zYWbXm9nqmrY3p/Lycvr06cPmzZuZMGECZWVl9O3bl4qKiir1KioqaN26NZdeeukubbz99tscffTRjBs3jssuu4yZM2cycuTIvXUKzjnXpDy4N7+ewHYzezBRYGZLgdck3R3XjV8h6WoAST0kvSLpCUlvS/qZpO9KWhjrnRjrtZE0Q9Kb8dUtlo+WNEnSi8AjkjIk/Tzuu1zSzbFesaQu8X3/uH2lpHF7+frsYvbs2ZSVlTF06FCGDh3KwIEDKS0tpbi4uEq9Vq1aUVRUxBVXXLFLG/379+eZZ57h+9//PhMnTgRg1apVe6P7zjnX5Pxp+eZ3BiE/e3XfBDoDZwFHE9K5JkbgZwEdgQ+BNcBkM/uKpOHAzcAtwP8CE8zsNUlfAl6I+wDkA+eZ2VZJNwAdgLPNbIek1smdkNQWGBf3+Qh4UdJVZvZ09Q7vjXzuAKWlpQC0a9cOgPbt2wOwZs0aLrroonq1cfDBB1e+f+GFFwDo3r17Y3bTOeeajQf3fdd5wHQzqwDKJL0CnAN8CrxpZu8DSHqHnZngVhBmAgAuBk7Tzq+jHS4pkcL1GTPbmlTvQTPbAWBmH1brxzmEWwYfxOM9CnQHdgnuTZHPvT4SyY+0G1+9mz9/Pv/xH/9Bfn4+o0ePbuSeOedc8/Dg3vxWAX1TlNcWqZIfjvsi6ecv2Pk7PQg4NymIh0ZDAPys2nFqC8SN+GX1xtGhQwcA1q9fD8CGDRsqy8vLy8nIyKBly5Z1tjNv3jwuv/xyTjrpJF544QVatWrVdJ12zrm9yO+5N7+XgUxJgxIFks4hTIFfHe+JtyGMlhc2oN0XgZuS2uxcS70hiYfrqk/LA28AF0g6WlIG0B94pQH9aHQFBQXk5ORQWFhIYWEhU6ZMITc3l9zcXLKzs+ndu3dl3cmTJzNvXribsXDhQiZPnsyWLVsoKSmhoKCAiooKBg0axB//+EeeffbZ5jol55xrVB7cm5mFOeXewCXxq3CrgNHA74DlwDLCB4CRZvb3BjQ9DOgSH5JbDQypod5k4F1guaRlwHeq9e994L+AubEvJWb2+wb0o9FlZWVRVFREq1atGD58ODk5ORQVFZGRkbFL3UGDBvHwww8DUFRUxKBBg9i4cSPLly/n888/Z+vWrdx4443079+fm2++eW+finPONQmZL+vpmkAXyRY1ZoP+d+qcOwBIWmxmXfa0HR+5O+ecc2nGg7trGvn5YbTdWC/nnHP15sHdOeecSzMe3J1zzrk048HdOeecSzMe3F3TWJxqRV3nnHN7gwd355xzLs14cHfOOefSzAEf3CX9q6TH4upwqyX9QdIpjdj+VZJOa8T2Tpf0qqRnJdW06lxD21xQx/Yuku6N76+TdF9DjzF//nw6depEZmYmeXl5lJSUpKw3ceJE2rdvT3Z2Nr169WLTpk0AvPvuu3Tr1o3MzEwk8eSTTza0C845d8A4oIO7QhaVpwhZz040s9OA24BjGvEwVwEpg3tiPfeGMLNVZna+mV2ZnAN+T5hZ1zq2LzKzYbvbfnl5OX369GHz5s1MmDCBsrIy+vbtS0VFRZV6S5YsYciQIXTs2JExY8Ywa9YsRowYAcC2bds44YQTPC2rc87VwwEd3AnpUbcnB0kzW2pmryq4W9JKSSskXQ0gqYekYklPSnpL0qPxQwKSfhZH/8sl/VxSV+DfgLslLZV0Ytx3bEzhOlzSVEmVWeEkbUl6/5/x+MskjYlloyS9GcsnJR27s6TX47GfkvQv1U9W0jFx27L46pp8TEmPS7osqf5USX3iOT+3uxd59uzZlJWVMXToUIYOHcrAgQMpLS2luLi4Sr2pU6cCMHbsWEaOHEnXrl2ZPn065eXlnHzyyUybNo1u3brtbjecc+6AcaAH9zOAmh7r/ibQGTiLkPP8bknHxm1nA7cQRuQnAN1iNrXewOlm1gn4qZktAJ4BfmRmnc3snbj/kWZ2gZndU1PHJBUAVwLnmNlZwP/GTfeZ2TlmdgaQDVwRyx8B/jMeewXwkxTN3gu8EtvLI6SbTfYYkPgQczBwEfCHmvqYos+DJS2StOiDpPLS0lIA2rVrB0D79u0BWLNmTZX9U9XbsWMH69atq28XnHPO4cG9NucB082swszKCGlOz4nbFprZejP7AlgK5AKfAuXAZEnfBD6vpe3H63H8i4GpiXzsZvZhLO8p6Q1JK4ALgdMlHUH4wJBIxfobQorY6i4ECmN7FWb2SbXts4ELJWUCBcC86vnga2Nmk8ysi5l1aVN7PaAyt/we13POOVfVgR7cVwH5NWyrLaJsS3pfAbQwsx3AV4AZhPvsz9ey/2dJ73cQfw9xiv3gmo4vKQt4AOhrZmcCDwFZtRynQcysHCgGvkEYwT/WGO126NABgPXr1wOwYcOGyvLy8nK2b99eY70WLVpUjvSdc87Vz4Ee3F8GMiUNShRIOkfSBcA84GpJGZLaEEbCC2tqSFIr4Agz+wNhyr5z3LQZOKyWPqxl5weMXkDL+P5F4FpJ2bH91uwM5Bvj8foCxBH4R5LOj9uvIcw0VPcScENsL0PS4SnqPAZ8DzgfeKGWftdbQUEBOTk5FBYWUlhYyJQpU8jNzSU3N5fs7Gx69+4NwIABAwC4/fbbGT9+PAsWLKBfv35kZWWxZcsWJk+eXPmU/UsvvcTkyZMbo3vOOZd2DujgbmHetzdwSfwq3CpgNPAe4Sn65cAywoeAkWb291qaOwx4TtJyQmAdEcsfA34kaYmkE1Ps9xBwgaSFwFeJo3ozex6YBSyTtBa42cw+jvVXAE8Dbya1cy3huYDlhA8Wd6Y41nDCtP4KwrMGp6eo8yLhg8wcM/tnLedbb1lZWRQVFdGqVSuGDx9OTk4ORUVFZGRkVKmXn5/P/fffz+rVqxk1ahQFBQVMmDABgI0bNzJo0CCeffZZAB588EEGDRq0y7Gcc86BzNNp7tPiVP0kM9uvIlkXyRb535ZzzjWIpMVm1mVP2zmgR+77ujj1vgQ4rrn74pxzbv/R4EVU3N5jZlvYee9+/5Jf03OKzjnnmpqP3J1zzrk048HdOeecSzM+Le+axuLFUNPiM/6gnXPONSkfuTvnnHNpxoO7c845l2Y8uDcTSbmSVlYrGy3p1pgzvW1S+eRETnhJayUdHd+nzMNePdPc7vRlb9nTPO8JL7/8MpKQxKJFi/ZG151zbp/lwX3fdB1QGdzN7HozW129Ul152Pd1jZHnHWDr1q0MHjyYQw45ZG+fgnPO7ZM8uO+bugCPxhzw2TEH/C4rFiXlYZek+2Iu+VlATlKdmvK/58ec7n8Cbkyqn6GQx/7NmBv++7H8WEnzYp9WJq1jv9saI887wE9+8hOOOOKIyjXqnXPuQOfBfd+0CPhuzAFfn5SrvYFTgTOBQUDyiL6m/O8PA8PM7NxqbQ0EPjGzcwgpbgdJ6gB8B3jBzBI57pfu5rlVaow870uWLOFXv/oVkydPpkUL//KHc86BB/fmVNP3wXbne2Ld2Zl7/j1CopuE+uR/n5ZU/+vAAElLgTeAo4CTCUlqvidpNHCmmW2u3glJgyUtkrTog904id3J8z5s2DC+9a1vcdhhh7F5c+jS+vXrK0f1zjl3IPLg3nw2Af9Sraw1sHE329vlQ0Et+d+Vqn5iN0IGus7x1cHMXjSzeYQPERuAaZIG7NIBs0lm1sXMurSpR4cbI8/7unXrmDZtGieffDIzZ84EoHfv3v5QnXPugObBvZnEdePfl3QRVOZrvxR4jbpzwFc3D+gX75cfC/SM5TXlf/8Y+ETSeXH7d5PaegG4QVLL2K9TJB0q6XjgH2b2EDAFyGvYGe+qMfK8FxYWUlRURFFRET169ABg3LhxdOzYcU+755xz+y2/Sdm8BgD3S7on/jzGzN6RNBV4UNJWoPo98VSeIky5rwDeJuSTx8w+lpTI/76Wqvnfvwf8WtLnhICeMBnIBUriw3cfAFcBPQh56bcDW2Lf90giz/uNN97I8OHDOf3003nooYdqzPN+11138eqrr1bJ815QUFBZ77nnngPgwgsv5KijjtrT7jnn3H7L87m7JtFFshonxv1vzjnnUvJ87s4555xLyYO7c845l2Y8uLumkZ8fpt9TvZxzzjUpD+7OOedcmvHg7pxzzqUZ/yqcaxqLF0MdK80559KA32rbJ/nI3TnnnEszey24S7omOUe5c84555pGncE9kVa0viT1kPRctbLuQPeY1KS2fW+RVGNSbkmTJZ3WkP4k7ZsraWUD6h8paejuHKuhJE2P6VVH1F27yfsyTdIrkh6R5LdtnHP1NmzYMI455hgkccUVV9RYLzc3F0mVr86dO1dumz9/Pp06dSIzM5O8vDxKSkr2RtfTzt4aubcHbqpHvVuAlMFdUoaZXW9mqxu1ZzU7EkgZ3CVlpCrfHZL+FehqZp3MbEI992myoGtm15jZBWY2wMx2NNVxnHPpqV+/fvWq1717d6ZPn8706dMZN24cAOXl5fTp04fNmzczYcIEysrK6Nu3LxUVFU3Z5fRkZrW+gC3x3x5AMfAk8BbwKDuXr700lr0G3As8F8tHA7cmtbWSsG75ocAsYFksuxoYBvyTsA763MSxgTsJqUfPi8fvErcVEvKeryKsyZ6q7/nxGH8C7gZWxvKM+PObwHLg+yn2fQzYSshbfnc8/7nA74DVsc7TwOLYh8HJ1wy4Kx77deCYWP6teL7LgHmxbHnScc4HOsd9lhPWjP+XWK8YGEtYN/6HwNR4DeYCa4ALgF8DfwamJvUl5XUi5GpfEPvyBpAJfCWWLYn/nhrrZhHyv6+I23rW9XdTy7fc/eUvf6XTq5rS0lID7PLLL99lW8Lxxx9v1157rX366adVymfOnGmAjR8/3szM7rjjDgNszpw5NbaVboBFZrX//7U+r7orVA3unxBG4QfFgHle/B//OkLObwFPUHdw7wM8lFR+RPx3LXB0UrkB3076uZidwb11/DcjlndK0fflwAXxfXJwHwz8v/g+Mwa/DtX2zU3UTzr/z5LrJfUhO57bUUn9vjK+H590rBVAu/j+yBqOk9znO4FfJp37A0n1phI+gAjoBXwKnBl/N4uBzjVdJ+Bg4B0gL3H9436HAy1i2cXAjPj+h8DD8f2XgXeBrNr+bjy4+8tfB8irmvoGd0kGWJs2bWzy5MlmZnbPPfcYYI8++qiZmU2cONEAmzRpUo1tpRsaKbg3dFp+oZmtN7MvCCPN3Pg/+1Iz+2vs2G/r0c4K4GJJ4ySdb2af1FCvAphRw7ZvSyohjCRPB6rci5d0BCGAvhKLpiVt/jowQNJSwqj1KMKHk7osNLPSpJ+HSUqMzo9LauOfQOK5g8WE6wQwH5gqaRAh2FaRos+/IeRQT3i82i7Pxmu+AigzsxXxd7Mq6ZiprtOpwPtmVgJgZp/E/Y4AiuKzCRNifQgf4qbFum8BfwNOSdH/wZIWSVr0QfWNzjkXDRo0iCeeeIJp06Zx8MEH8/3vf5/S0tJd6oX/vYH8a7UN1tB7t9uS3lck7W811N9B1fv6WQBm9rakfOAy4H8kvWhmd6bYv9zMdrnZIqkDcCtwjpl9FFOkZlWvVku/BNxsZi/UsL0mnyX1oQdhdHuumX0uqTipD9st8VeZdJ3MbIikrwKXA0sl7XyKpIHHjxK/jy+o+rv5AmhRy3Wq6b+U/ybcEuktKZcw0qeW+lWY2SRgEoSscPXZxzmX/rZtC/97yszMBOD222+v3LZkyRJ+8Ytf8Pbbb9OhQwcA1q9fD8CGDRsAKstd/TXGg1lvAR0knWhm7wD9k7atBa4AkJQHdIjv2wIfmtlv49P418X6m4HDgI11HPNwQqD7RNIxQAE7AxEAFnKZfyLpPDN7Dfhu0uYXgBskvWxm2yWdAmwws+TgmehLTY4APoqB/cvA1+roM/EavQG8IelKwmj/46Q+fyLpozib8SpwDTE3+26q6Tq9BRwrKc/MSuKMweZ4ThvivtcltTOPcP1ejtfqS8Bf9qBfzrk0NGvWLFauDF9KWrduHZMnT+aCCy7gkksuYePGjWzZsoUVK1Zw2223UVBQwI4dO3jkkUfIzs7mzDPPpHXr1uTk5FBYWMhhhx3GlClTyM3NpUePHs17YvuhPX5a3szKCfewZ0l6jTBlmzADaB2nv28A3o7lZwILY/ntwE9j+SRgtqS5dRxzGWGaeRXhIbL5NVT9HnC/pD8RHlpLmAysBkriFPREqn3QMbNNwHxJKyXdnaLt5wmj4+WEEe/rtfU5ulvSinjMeYSH2aq7NtZbTni4LtWMRr3UdJ3M7J9AP6BQ0nvxXFoSng/4H0nzqXrb4AEgQ9IKwq2B68wseabAOee4++67+fGPfwzA8uXLGTRoEPPnV/3f89FHH01FRQWjRo3ixz/+MccffzxPPfUUbdu2JSsri6KiIlq1asXw4cPJycmhqKiIjIxG+4LSAUM7Z4/dgUjSfwIzzeyvjdluF8kWNWaDzrl9k8eQRiVpsZl12dN2fPnZA5ikewizLi2buy/OOecaj4/cXZPo0qWLLVrkY3fnnGsIH7k755xzLiUP7s4551ya8eDunHPOpRnP+uWaxuLFUN9Vpfy5D+eca1Q+cnfOOefSjAf3Gki6Jq6k55xzzu1X0i64x+VsG1K/h6TnqpV1B7qb2Xt17HuLpJT55+P2yZJOq2n7npJ03e58AJF0VXK/JN0p6eLG7d3umz9/Pp06dSIzM5O8vDxKSkpS1ps4cSLt27cnOzubXr16sWnTJgB69OiBpCovX77SOXcgSbvg3kjaAzfVo94tQMrgLinDzK43s9WN2rOqrgNSBndJta3XeBVJWfTMbJSZzWncru2e8vJy+vTpw+bNm5kwYQJlZWX07duXioqq+YOWLFnCkCFD6NixI2PGjGHWrFmMGDECgFGjRjF9+nSmT5/O0KFDAcjLy9vr5+Kcc82mMfLG7ksvquafLwaeJCRKeZSdi/ZcGsteA+6l7vzzhwKzCGvBrwSuBoYRUruuIGRSA9hCWAv+DUKa1GJ25p8vJOSNXwWMqaHvJxLWeV8MvAp8OZb/HhgQ338/nkvfeLy/ENLvZhMS9YyK59UPGAS8Gfs9g/BBpCvwIVAa9zuRkBu+LyGxzBNJ/elBSCtbr/4nvxqUzz3JzJkzDbDx48ebmdkdd9xhgM2ZM6dKvWHDhhlgCxcuNDOz888/31q0aGFbt26tUu/yyy83wN566y1zzrl9Hc2Uz31/czZhdH0acALQTVIW8BBwJXA+8K/1aOdS4D0zO8vMzgCeN7N7gfeAnmbWM9Y7FFhpZl+1kIku2e0WVh3qBFwgqVOK40wipKLNJ6RqfSCWDwZGSTof+GGs8yQh2H7XzDqbWSIxTrmZnWdmjxHWjD/HzM4C/gwMNLMFwDPAj+J+7yQd/4/A1yQdGn++mp055Ovsf2Pkc0/kdG7Xrh0A7du3B2DNmjV11tuxYwfr1q2rrLNu3Tpmz57NhRdeyKmnnrqbPXLOuf1Pugf3hWa23sy+IIxSc4EvA6Vm9tf4Kem39WhnBXCxpHExHesnNdSrIIyQU/m2pBJClrbTSZoWB5DUijCqLorZ8iYCxwKYWRlhRD4X+KGZfVhLXx9Pen+GpFdjNrfvxuPWyMx2EGYOrpTUgpB3/vf16X/cf5KZdTGzLm1qO1ADWPyanOr4Wl2qeg899BBffPEFQ4YMaaTeOOfc/iHdv+eenJa0gp3nW9MXq3dQ9QNPFoCZvS0pH7iMkBL1RTNLlYq13MwqqhdK6kAYiZ9jZh9JmppoO8lBwMdm1rmGvp0JbKKGe+xJknPSTwWuMrNlkq4jTLPX5XHgRsLU/Ztmtrme/W8UHTp0AGD9+vUAbNiwobK8vLycjIwMWrZsWaVe27Zt+f/t3X+QVeV9x/H3h2UDxCUKMquGKIsdaxuN8mucRo01Ia0QrcBApjiphoaWiQRDas1MW6dkRjNtxzLF6WgWDMs0thbJmpoJKIm0ArYwCEiVH6sYwtKUH2IaUoQodpZ8+8d5Fs+uu+69cH+wl89r5gznPs9zzvnehwPfc8957n0OHDjAwIEDT33S7+jooKWlhYsvvpipU6eWI1Qzs7NWrX9y78lrwGhJv5Ze35Gr2weMA5A0Dhid1j8KvB0R/wQs7GwDHAOGFnDMj5Al3aOSLiJ7tt1FRLwFtEv6fDqmJF2b1q9L24wF7kvJtpDjDwUOSaon++Te6YO2W0f2/v6Y9+4C9Bl/qUyePJnGxkaam5tpbm6mpaWFpqYmmpqaGDJkCNOmTQPgrrvuAuD+++/noYceYuPGjcycOZPBg7NrjpUrV3Lw4EFmz55Nfb0nvTOzc8s5l9wj4gTZM+xnJP0H8F+56u8Bw9Nt8buB11P5J4DNqfx+4Jup/DFgtaS1fRzzFbLb2buAZcCGXpp+AZgt6ZXUdoqkQWRjBL4U2Vfz/hRYpuz+8z8AiyW9LGlID/v7S7LBfWvILmo6PQl8XdJ/5i5yOmM9CawiS+Crioz/jA0ePJjW1lYaGhqYP38+jY2NtLa2UlfXdfD/+PHjefTRR2lra2PBggVMnjyZRYsWnapfsmQJAwYMYM6cOeUK1czsrOUpX60sJkhR8ISvPgfNzABP+WpmZma9cHK38hhfxDfdzcyspJzczczMaoyTu5mZWY1xcjczM6sxtf4jNlYtL70EffyqXMH8XN7MrCj+5G5mZlZjnNzPQZLqJM1Pvx9vZmY1xsn9NEmaJikk/Ua1YzkN95JNjdvRU6Wkj0p6qsIxFWTDhg1cc801DBo0iHHjxrFt27b3tXnnnXeYOHEiDQ0NSGLhwoVd6mfMmMGwYcOQxLx58yoVuplZxTi5n747eG/e9IJJquu7VflIGgC8EREtvdQPjIiDETGjwqH16cSJExvYUckAAAobSURBVEyfPp1jx46xaNEiDh8+zIwZMzh5sutcPSdPnmT48OFMmjSpx/0MGjTo1G/Um5nVIif305CmZ70BmE1K7pIGSPqWpF2SVkl6VtKMVLdP0oL0W/aflzRG0iZJ2yU9LWlYardO0sOSNkramSaMQdJ5kpZJ2pJ+D35KKq+TtFDSjrSve3LHG5HWJ0hal9avI7sguTcd48pUPktSq6SVwHOSmiTtTHVNadrYbWm5vjK9/H6rV6/m8OHDzJ07l7lz5zJ79mza29tZt25dl3YNDQ20trZy22239bifJ5544tTEM2ZmtcjPXE/PVOCHaSrYI2kGucvJ5ov/BNAIvEo2yUqnExFxI4Ck7cA9EbFe0gPAN4CvpXbnRcT1km5K219NNlnN8xHxJUkXkE1i86/AXWQz142NiA5Jw/uI+zXgptT2FuCvgOmp7pPANRFxRFJTbps3gd+JiBOSrgCWAz3+7rGkOWST8nBZH4Gcjvb2dgBGjhwJcGp617179zJx4sQyHNHMrH9ycj89dwAPp/Un0+t6oDUifgW80cNMcSsAJJ0PXBAR61P5d4DWXLvlABHxgqSPpGT+u8Dtku5LbQaT5c/PAos7n51HxJE+4h4KfFvSSEDAhbm6Nb1sXw88ImkMcBL49d52HhGPkc2UxwSp7N9f65z0SKX6yp2ZWY1wci+SpAuBzwBXK0tgdUAAT/ex6S8LPET3pBhkiXh6ROzuFot6aA/QwXuPXAbnyr8JrI2IxWlO+PwFSG/x/QlwGLg27fNEIW+iHEaPzqax379/PwAHDhw4VX7ixAnq6uo8d7uZGX7mfjpmAI9HxKiIaIqIS4F24H+A6enZ+0XAzT1tHBFHgV9I+lQquhNYn2vy+wCSbgSOpvY/Au5JyRxJY1Pb54Avd36lLXdbfh8wPq133nYHGAb8LK3PKvD9ng8cSnck7iS7mKmKyZMn09jYSHNzM83NzbS0tNDU1ERTUxNDhgzpMkhu6dKlvPDCCwBs3ryZpUuXcvz4cQBWrFjBM888A0BbWxtLly7l0KFDlX9DZmblEhFeiliAdcCkbmVfBZqBxUAb8H1gNdmzasiS7Yhc+zHAJmB7ajsst++/BjYCO4HrUvkQYAmwI5WvSuUDgb9Lx3wFmJfKPwW8Dvw7sBBYl8pvSOUbgAeBfal8FvBILr4mYGdavyLFuSnFdryQfipiTri+l5z169fH1VdfHfX19TFmzJjYsmVLtLe3BxC33nrrqXZkdzS6LO3t7RERMWrUqPfVrV27NszMqg3YGiXIVcr2ZaUgqSEijqdb95uBGyLijSK2XwfcFxFbyxVjpUyQSvcmfI6a2TlC0ksR0eOg5WL4mXtprUoD4D4EPFhMYjczMysVJ/cSioibq7n9WWX8eNja729AmJn1Sx5QZ2ZmVmOc3M3MzGqMk7uZmVmNcXI3MzOrMU7uZmZmNcbJ3czMrMY4uZuZmdUYJ3czM7Ma4+RuZmZWY/zb8lYWko4Bu/tsWH0jyGb0O9s5ztLpDzGC4yy1/hLnlREx9Ex34p+ftXLZXYrJD8pN0lbHWTr9Ic7+ECM4zlLrT3GWYj++LW9mZlZjnNzNzMxqjJO7lctj1Q6gQI6ztPpDnP0hRnCcpXZOxekBdWZmZjXGn9zNzMxqjJO7FU3SJEm7Je2R9Gc91A+StCLVvyipKVf356l8t6RbqhjjvZLaJG2X9G+SRuXqTkp6OS0/KFeMBcY5S9LPcvH8Ua7ui5J+nJYvVjnORbkYX5f0v7m6ivSnpGWS3pS0s5d6Sfr79B62SxqXq6tkX/YV5xdSfNslbZR0ba5un6QdqS9LMqr6DOK8WdLR3N/tglzdB54vFY7z67kYd6bzcXiqq0h/SrpU0lpJr0raJWl+D21Ke35GhBcvBS9AHfAT4HLgQ8ArwMe7tZkLLE7rM4EVaf3jqf0gYHTaT12VYvw08OG0fndnjOn18bOoL2cBj/Sw7XBgb/pzWFofVq04u7W/B1hWhf68CRgH7Oyl/nPAakDAbwEvVrovC4zz+s7jA5M740yv9wEjzpL+vBlYdabnS7nj7Nb294DnK92fwCXAuLQ+FHi9h3/rJT0//cndinUdsCci9kbE/wFPAlO6tZkCfCetPwVMlKRU/mREvBsR7cCetL+KxxgRayPi7fRyE/CxMsTRl0L6sje3AGsi4khE/AJYA0w6S+K8A1heplh6FREvAEc+oMkU4PHIbAIukHQJle3LPuOMiI0pDqjeuVlIf/bmTM7rohUZZ7XOzUMRsS2tHwNeBUZ2a1bS89PJ3Yo1Evjv3Ov9vP8kPdUmIjqAo8CFBW5bqRjzZpNdMXcaLGmrpE2SppYhvk6Fxjk93aZ7StKlRW5bCgUfKz3eGA08nyuuVH/2pbf3Ucm+LFb3czOA5yS9JGlOlWLK+6SkVyStlnRVKjsr+1PSh8mS4vdyxRXvT2WPKccCL3arKun56V+os2Kph7LuX7norU0h25ZCwceR9AfABOC3c8WXRcRBSZcDz0vaERE/qVKcK4HlEfGupC+T3RH5TIHblkoxx5oJPBURJ3NllerPvlT7vCyKpE+TJfcbc8U3pL5sBNZIei19cq2GbcCoiDgu6XPA94ErOEv7k+yW/IaIyH/Kr2h/Smogu7j4WkS81b26h01O+/z0J3cr1n7g0tzrjwEHe2sjaSBwPtlts0K2rVSMSPoscD9we0S821keEQfTn3uBdWRX2eXQZ5wR8fNcbN8Gxhe6bSXjzJlJt9ueFezPvvT2PirZlwWRdA2wFJgSET/vLM/15ZvA05TnsVZBIuKtiDie1p8F6iWN4Czsz+SDzs2y96ekerLE/kRE/EsPTUp7fpZ7IIGX2lrI7vbsJbv12jlY5qpubb5C1wF1303rV9F1QN1eyjOgrpAYx5IN+rmiW/kwYFBaHwH8mDINBiowzkty69OATWl9ONCe4h2W1odXK87U7kqyAUqqRn+mYzTR+wCwW+k6YGlzpfuywDgvIxuPcn238vOAobn1jcCkKsZ5ceffNVlS/Gnq24LOl0rFmeo7P2CcV43+TP3yOPDwB7Qp6fnp2/JWlIjokDQP+BHZqNhlEbFL0gPA1oj4AdAC/KOkPWT/oGambXdJ+i7QBnQAX4mut28rGePfAg1AazbWj59GxO3AbwJLJP2K7M7W30REW6ljLCLOr0q6nay/jpCNnicijkh6ENiSdvdAdL3dWOk4IRus9GSk/5GSivWnpOVkI7hHSNoPfAOoT+9hMfAs2YjkPcDbwB+muor1ZYFxLiAbo/KtdG52RDbhyUXA06lsIPDPEfHDKsY5A7hbUgfwDjAz/d33eL5UMU7ILoyfi4hf5jatZH/eANwJ7JD0cir7C7ILubKcn/6FOjMzsxrjZ+5mZmY1xsndzMysxji5m5mZ1RgndzMzsxrj5G5mZlZjnNzNzMxqjJO7mZlZjXFyNzMzqzH/Dxpb3DqUtX1lAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", "pos = np.arange(12)\n", "\n", - "plt.barh(pos, impact, align='center', height=.8, color='r')\n", - "plt.yticks(pos, sec)\n", - "plt.xlim((0, .7))\n", + "for i in range(12):\n", + " plt.barh(pos[i], impact[i], align='center', height=.8, color='r')\n", + " plt.yticks(pos, sec)\n", + " plt.xlim((0, 2.0))\n", + "\n", "for i, v in enumerate(impact):\n", " l = \"{0:.2f}\".format(float(v))\n", " plt.text(float(v)+.01, i-.25, \"{0:.2f}\".format(float(v)), color='black', fontweight='bold')\n", + "\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": 340, + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAD8CAYAAABevCxMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xt8VcW5//HP14BJFC8HNVbAGrwWRcQE2wqC4KU1ogcptEJ7vPQgFFFBWuvx6E8KnuopWEuPlUYQKpVa1AhaK0UtSkChitxBam0lVECbCt5ACYX4/P6Y2WEn7FzJFZ7367Vf7MyaNWvWSl48e2atPY/MDOecc861HAc1dQecc845VzsevJ1zzrkWxoO3c84518J48HbOOedaGA/ezjnnXAvjwds555xrYTx4O+eccy2MB2/nnHOuhfHg7ZxzzrUwrZq6A27/dPTRR1t2dnZTd8M551qUZcuWbTGzY6qr58HbNYjs7GyWLl3a1N1wzrkWRdLfa1LPp82dc865FsaDt3POOdfCePB2zjnnWhgP3s4551wL48HbOeeca2E8eDvnnHMtjAdv55xzroXx4O2cc861MB68XcNYtqype+Ccc/stD97OOedcC+PB2znnnGthPHjvZyQdLun6pu5HKosWLaJLly6kp6eTk5PD8uXLU9abPHkyHTp0IDMzk379+rF161YA3nnnHXr06EF6ejqSePLJJxuz+84512w0m+Atqb8kk/SlKupMlzSwFm22k1Tt//CS/iDpyCq23yzpkJoetwbHGy9psaTHJR1VX+1G9wJvJh1rrKRbUvQhW9La+L6bpPvruR/llJSUMGDAALZt28bEiRMpLi5m4MCBlJaWlqu3YsUKhg8fTqdOnRg3bhxz5sxh9OjRAOzcuZMTTzyRXr16NWRXnXOu2Ws2wRsYDLwCDKqvBs3sXTOrNtib2aVm9lEVVW4GUgZvSWl16Nd/mVl3M7vSzLbWdv/KSDoCeN7M5teyP0vNbGR99SOVuXPnUlxczIgRIxgxYgRDhgyhqKiIwsLCcvWmT58OwD333MOtt95K9+7dmTlzJiUlJZxyyinMmDGDHj16NGRXnXOu2WsWwVtSG6AHMISk4K3gAUnrJM0BspK2bZB0j6Q/SVoqKUfS85LeljQ81kkeXV4rabak5yT9VdKECm0dLelQSXMkrZK0VtKVkkYC7YD5kubH+tsl3SXpNeBcSWMkvR73mSJJsd7JkubF9pZJOj726WVJy+Ore9K53hvbWCPpyhTXKVvSm5J+LWm1pCcTMwKSNgCtzWx2HEkXJu16lqSX4nkPTdFub0nPJn4Xkh6OfVgtaUAsz4/X+Q1J42r7Oy4qKgKgffv2AHTo0AGA9evXV1tv9+7dbNy4sbaHdM65/VZzyed9BfCcmb0l6QNJOWa2HOgPnAacCRwLrAN+lbTfRjM7V9JEYDrhA0AG8AbwYIrjdAXOBnYCf5H0CzNLjgqXAO+aWV8II1kz+1jS94E+ZrYl1jsUWGtmY2K9dWZ2V3w/A7gM+D3wKHC3mT0jKTPuK+BiMyuRdAowE+gGfCP27yzgaOB1SQvN7L0K53AaMMTMFkn6FTAC+Gk117cL8NXY7xXxg1Bl7gQ+NrMz4/n8Wyy/w8w+iDMNL0rqYmark3eUNAwYBvDFajpkZol96qWec84dSJrFyJswZf5YfP9Y/BmgFzDTzErN7F3gpQr7PRP/XQO8ZmbbzOx9oKSSe9gvmtnHZlZC+CBwQoXta4CL4j3pnmb2cSX9LQVmJf3cR9JrktYAFwBnSDoMaG9mzwCY2Q4z2wG0Bh6KdQuA02Mb5yWdazGwADgnxbE3mtmi+P43cb/q/C4efwswH/hyFXUvAiYlfjCzD+Pbb0laDqwAzkjqN0l1p5hZNzPrdkyFbR07dgRg06ZNAGzevLmsvKSkhF27dlVar1WrVmUjdeecc81g5B0f2LoA6CzJgDTAJN0aq1gVu++M/36e9D7xc6pzS65TWrFOHPnnApcC/yvphcSIuoISMyuN/c8Afgl0M7ONksYSRv+qpO+jgWLCCPsgoCSW13RoWbHNxM+72fNhLKOG+6SyV78ldQRuAc4xsw8lTU9xjCrl5eWRlZVFfn4+hx12GNOmTSM7O5vs7GwyMzPp27cvzz77LFdffTX3338/d9xxBxdffDGLFy9m8ODBZGRksH37dh577LGyp9RffPFFPvroI6677rradMU551q85jDyHgg8YmYnmFm2mR0PFBFGlAuBQZLSJB0H9GnIjkhqB3xmZr8hTEXnxE3bgMMq2S0RxLbEe/cDAczsE2CzpMtj25lx6vwI4D0z+xy4ivBhBcK5XhnP9RjCrMOSFMf7oqRz4/vEQ34AG4Dc+H5AhX36ScqIH5R6A69XfhV4Abgx8UOcNj8c+BT4WNKxQF4V+6eUkZFBQUEBbdq0YdSoUWRlZVFQUEBaWvnn/XJzc5k0aRLr1q1jzJgx5OXlMXHiRAC2bNnC0KFD+f3vfw/Agw8+yNChe93Cd865/V6Tj7wJAegnFcpmAd8m3M+9gDCd/RZhKrkhnQncK+lzYBeQ+L70FGCupPfMrNwHCDP7SNJDsY8bKB8YrwKmSJoCbCbc2/8lMEvSNwlT2J/Guk8B5wKrCCPfW83sHyn6+GfgGkmTgb8C+bF8HDBN0u3AaxX2WQLMIdyK/h8ze1dSdiXX4MfApPigXykwLj4Et4LwLMF6YFEl+1apV69erFmzZq/yxH3thMQT6RVlZ2fvVdc55w5E8v8MG56kbxNG27X6CleKdrKBZ82sc330qyF1k2yp/20551ytSFpmZt2qq9ccps33a5J+APwPe6bHnXPOuX3iwbuBmdl9ZnaSmc2rh7Y2tIRRNwC5udXXcc45VycevJ1zzrkWxoO3c84518I0h6fN3f5o2TKoz1XR/OE355wr4yNv55xzroXx4O2cc861MB68k0jqIOl3MfvW25L+T9LBNdjv9sboX31QDXOcN3eLFi2iS5cupKenk5OTU7ZkarIdO3Zw4YUX0qZNGyTx05+Wz9/y9NNPc/LJJ5ORkUHv3r3LMpo551xz58E7imk8ZwNPm9kpwKlAG+DuGuyeMnjHNJ+Nfo1VRY7xmuY4b85KSkoYMGAA27ZtY+LEiRQXFzNw4EBKS0vL1SstLaVt27Zccskle7Xxj3/8g0GDBnH44Ydz7733smzZMq655prGOgXnnNsnHrz3uICQcORhgJh4ZDTwn5IOUcgH/kCisqRnYx7snwCZklZKejTm3P6zpF8Cy4HjJQ2O+bHXShof90+TND0pf/foih2S9M24fZWkhUn73auQP3y1pO/F8t6S5kv6LbAmZkYbkdTWWEk/UPkc52mS7ovHWB1TelLX/jaWuXPnUlxcXLaM6pAhQygqKqKwsLBcvTZt2lBQUMBll122VxszZ85k586d/Pd//zc33XQT/fv35+WXX+btt99upLNwzrm686fN9zgDWJZcYGafSHoHOLmynczsNkk3mllXKFvC9DTgu2Y2IiY7GU9IGvIh8IKkK4CNhJShneN+qVKYjgG+bmabk7YPIeTbPkdSOrBI0gtx25eBzmZWJOls4OeEtdQBvkXIV578gW0YcDxwlpmVSmq7j/1tFInp7fbt2wOUpQtdv349F1544T63cdJJJ9Vrf51zrr75yHuPylJ4VlZelb+b2avx/TlAoZm9b2a7gUcJGcPWAydK+oWkS4BPUrSzCJguaSh7llf9GnC1pJWEBCRHAafEbUvMrAjAzFYAWfEe91nAh2b2ToX2LwKmJNKbmtkH+9JfScMkLZW09P1aXa59k1ifX/vw1bT6aMM55xqLB+893gDKLQYv6XDCyPRtyufLhqrzWX+a9D5lNDCzDwk5vQuBG4CpKeoMB/5f7MPKmNJTwE1m1jW+OppZYuT9aYUmniSkKL0SeCxFN1L1bV/6O8XMuplZt2NSNVJPOnbsCMCmTZsA2Lx5c1l5SUkJu3bt2qc2nHOuufPgvceLwCGSroayh77uA6ab2WeEdJ9dJR0k6XjCFHXCLkmtK2n3NeB8SUfHNgcDCyQdDRxkZrOAO9mTO7yMpJPM7DUzGwNsIQTx54HrE8eTdKqkQys59mPAIEIAT/WE+QvAsMQDbpLa7kt/G0teXh5ZWVnk5+eTn5/PtGnTyM7OJjs7m8zMTPr3719Wd+rUqSxcuBCAJUuWMHXqVLZv386gQYM4+OCDGT9+PL/4xS946qmnOO+883zK3DnXMpiZv+KLEBx/T8iT/TbwCyA9bhNhCvkN4HHCCLR33DaekGf7USAbWFuh3W8T8n2vBSbEsrMID7StjK+8FP2ZnbTf/8U+HATck1Q+HzgC6E1IF1qxjTXA/KSfy/pHeObhZ4Qp8b8BQ/elv8mv3LAmWv29KliwYIF17tzZWrdubV27drXXX3/dioqKDLC+ffuW1SPc8ij3KioqMjOzWbNm2YknnmgHH3yw9ezZ0/72t7/tdRznnGtMwFKrQbzyfN4OSRnAT83sxvpqs5tkS+urMfDlUZ1zBwTP5+1qRNKpwOtAelP3xTnnXM34V8UOcGb2FnBmvTecmwtL63Xs7ZxzLvKRt3POOdfCePB2zjnnWhgP3s4551wL48HbNYxly8BXK3POuQbhwds555xrYTx4HwAk9ZB0XlP3wznnXP1o0uAtqb8kk/SlpLJsSd9O+rmbpPuraWd4YlnTCuVl6S9r0afpkvYp33VN+lyLtjbEpUkrlpedc3KfJU2VdHpSvSOAsYRV0So7xl2SLqqP/lZl0aJFdOnShfT0dHJycli+fHnKepMnT6ZDhw5kZmbSr18/tm7dCsA777xDjx49SE9PRxJPPplqxVfnnNv/NfXIezDwCmH97YRswvKcAJjZUjMbWVUjZvagmT3SID2sg5r0uR6OkfKczew6M1uXVHQ6cIOZbU/VjqQ0MxtjZvMaqq8AJSUlDBgwgG3btjFx4kSKi4sZOHAgpaWl5eqtWLGC4cOH06lTJ8aNG8ecOXMYPTqkDt+5cycnnngivXr1asiuOudcs9dkwVtSG6AHIT91cvD+CdBT0kpJoyX1lvRsTAiyITmPtKS/STpW0lhJt8SyXEmrJP2JkP0qUTdb0suSlsdX91guSQ9IWidpDpCVtE+upAWSlkl6XtJxsXxkrL9a0l7ZuhJ9ju/HSvq1pBdi/78haYKkNZKeS0owcqGkFbH8VzFXd8IPJS2Jr5OT2r0lxbELJXWL7/MJ67M/LWlcUp0NksZIegX4ZoWR+xhJr0taK2mKYo7M6s65OnPnzqW4uJgRI0YwYsQIhgwZQlFREYWFheXqTZ8+HYB77rmHW2+9le7duzNz5kxKSko45ZRTmDFjBj169Kjt4Z1zbr/SlCPvK4Dn4gpfH0hKZKm6DXjZQrrLiYnKZvY58DugP4CkrwAbzKy4QrsPAyPN7NwK5f8ELjazHEKKzMS0dn/gNMIqY0OBRFBvTQh8A80sF/gVcHdSH882sy7A8Bqc60lAX6Af8BtCopAzgR1A37i2+HTgyljeCrg+af9PzOzLwAPAz2twvIQ74hq5XYA+krokbSsxs/PMrGIgfsDMzjGzzkAmcFksr/acVUU+76KiIgDat28PQIcOHQBYv359tfV2797Nxo0ba3rOzjm332vK4D2YPTmmH4s/V+dxQuCFMFp/PHljvL97pJktiEUzkja3Bh6StAYoIEwnA/QCZppZqZm9C7wUy08DOgN/lLSSkFe7Q9y2GnhU0n8Q8nxXZ66Z7SJk6koDnovlawi3CU4DiuIHGYBfx34lzEz6t+KHkqp8Q9LL8ZxOYs85Q4Vrl6SPpNfidboAOCOWV3vOVot83omEOKrm62Q1reeccweSJlnbXNJRhMDQWZIRAppJurWaXf8EnCzpGMLI/ccVmyakfUxlNFBMSG15EFCStC3VPgLeSDGChzCK7gX8O3CnpDPMrKogvhPC7IGkXbYnldvnhN9BdZHJKnlfKUnZwK1Ajpltl/RrICOpyqcp9skAfgl0M7ONksYm7VPbcy6nY8eOAGzatAmAzZs3l5WXlJSQlpZG69aty9Vr164dmzdvplWrVmUjdeecc0038h4IPGJmJ5hZtpkdDxQB5wHbgMNS7RSD3lOEHNR/NrOtFbZ/BHysPV+L+k7S5iOA9+L0+1WEDwwAC4FBktLiPe0+sfwvwDGSzoUwjS7pDEkHAceb2XxCcDwSaFPnKxG8CWQn7mfH/i1I2n5l0r9/qmGbRxKm5T+TdCxwSQ32SQTqLfGZhMR98H0+57y8PLKyssjPzyc/P59p06aRnZ1NdnY2mZmZ9O/fH4Crrw5fGrjjjjuYMGECixcvZtCgQWRkZLB9+3amTp1a9pT6iy++yNSpU2vTDeec2y80VVaxwYQH05LNIjxlPhLYLWkV4T7wigr1HieksLy2kra/C/xK0mfA80nlvwRmSfomMJ89I8+nCLMAa4C3iEHTzP4VH+K6P07HtyLcb34L+E0sEzAxfmioMzMrkfRdoEBSq3h+DyZVSZf0GuHDVk1uLwCsiq83gPXAohr04yNJDxGuxYbYDwgfdPbpnDMyMigoKOCGG25g1KhRnHHGGTz00EOkpaWVq5ebm8ukSZO4++67efnll8nLy2PixPDow5YtWxg6dGhZ3QcfDJfouuuuq01XnHOuxdOeGVzn6k83yZYC+N+Xc87VmKRl8UHjKjX197ydc845V0sevF3DyM31UbdzzjUQD97OOedcC+PB2znnnGthmuppc7e/q0k+b59Wd865OvGRt3POOdfCePB2zjnnWhgP3s4551wLU6/BW1LKnNEV6tws6ZD6PG5tSbpW0gPx/XBJV9exnZslvSqpQNJptdz3m5L+LGm+pG6S7q9+r4Yl6Q9KSrnamBYtWkSXLl1IT08nJyenbAnUiiZPnkyHDh3IzMykX79+bN0aVsgtLCxEUrnXz39emwRszjnXctTrCmuStptZlWteS9pASHyxpRbtpplZ6b72L6m9a2MfbqyvNuvQh+eA8XG98GYr5vNWXBO+xspWWKtK/NsrKSkpW+P8hz/8IXfffTfp6en89a9/Lbd86ooVK8jJyeGiiy7i4osv5vbbb+fb3/42jzzyCIWFhfTp04c777yT008PydNycnI49dRTa9Nt55xrUjVdYQ0zq7cXsD3+2xsoBJ4kJN14lLAm9kjgX4S1s+fHul8jJNtYTkjV2SaWbwDGAK8Q0n8WAhMJiUT+DJwDzAb+Cvw4qQ//ASwBVgKTgbRY/l32rF3+ECFvNcBY4Jb4fihhPe9VhLXWD4nlxxLWQF8V2+1GSMzxYuz3GqBfUh++D6yNr5tTXKcxwHZC8pN74/V6Nqk/v4rnu56Qmzyx39PAMsJ65cOSrzsh1/gq4FXg2BT9XgV0r+YabQCOJqQp/TNhPfgVwAlAPrA0HntcdX8LcYmWql/R7NmzDbAJEyaYmdmdd95pgM2bN8+SjRw50gBbsmSJmZn17NnTWrVqZTt27LD58+cbYC+88ILt2LHDnHOuJQKWWg3ibUPe8z4buJmQQ/pEoIeZ3Q+8C/Qxsz6Sjibkyb7IzHJicPh+UhslZnaemSXyfv/LzHoRknb8DriBkHP7WklHSepEyLzVw8y6AqXAd2K2sHFAD+Biyue1TjbbzM4xs7MIwWtILL8feCmWdyN8CCgB+sd+9wHuU5BL+KDwFeCrwFBJZycfxMzuiuf6HTP7YYp+fAn4OvBl4EeSWsfy/zSz3NiHkTG1KsChwKuxfwsJH0IS/V4Qy3OANyq7Rin6cBoh89vZZvZ34A4Lnwa7AOdL6lJxB0nDJC2VtPT9FA1WpqioCID27dsDlKX/XL9+fbX1du/ezcaNG8vqfP3rX+eQQw7hq1/9Km+99RbOObc/asjveS8xs00AklYSRnOvVKjzVUIgXRRmZzmY8ikvH69Q/5n47xpCru33YvvrgeMJKUVzgddje5nAPwmBtNDM3o/1HwdSzad2lvRj9qS8TGQlu4CQphMLOaw/iQH1Hkm9CHm52xNGuucBT5nZp/FYs4Ge7J0drSpzzGwnsFPSP2O7mwgBu3+sczxwCrCVMJvxbCxfRviAkuj31bHfpYR0qVdVco0q+ruZvZr087ckDSP8zRxH+L2tTt7BzKYAUyBMm9fifMuxOJ2uar4nnlzv2GOPZfz48XTq1IlXX32Ve+65h+uvv54XX3yxrt1wzrlmqyGD986k96WVHEvAH82ssjSXn1b4OdHm5xXa/zy2L+DXZvbf5Q4iXQHUJJhMB64ws1XxvnjvKup+BzgGyDWzXfFefkbsw77a69pJ6g1cBJxrZp9JKmRP/u1dlohklV/rhJTXKIWyay+pI3ALcI6ZfShpetKx91nHjh0B2LRpEwCbN28uKy8pKSEtLY3WrVuXq9euXTs2b95Mq1at6NChAxkZGXTq1AmAyy+/nAcffJB169bVVxedc65ZaYqvim0DDovvXwV6SDoZQNIhkvblCaMXgYGSsmJ7bSWdALwG9I5T662Bb1ay/2HAe7FO8lTyi8D3YputJB0OHAH8MwbuPoT7whCmra+I53Io0B94eR/OKeEI4MMYuL9EmLWozovA9bHfabHflV2jqhxOCOYfSzoWyKvrSaSSl5dHVlYW+fn55OfnM23aNLKzs8seYuvfP0w2XH11+FLAHXfcwYQJE1i8eDGDBg0iIyODu+66i5tvvpmHH36YESNG8MEHH/CVr3ylPrvpnHPNRlME7ynAXEnz4zT2tcBMSasJwfxLdW3YzNYR7qG/ENv7I3BcnF4fS5iSn0d4yCyVOwmB/o+EB+0SRgEXS9oc9z2F8BBeN0lLCYH+zdiH5YQR/JLY1lQzq82UeWWeI4zAVwP/Q7hW1RkF9JG0hjCdfkZl16iqRsxsFWHa/w3Cw3SL6nwWKWRkZFBQUECbNm0YNWoUWVlZFBQUlHvSHCA3N5dJkyaxbt06xowZQ15eHhMnTgTg9NNPp7CwkBtvvJEnnniCQYMGMXny5PrspnPONRv1+lWx/Z2k7sBpZvZwU/eluavNV8Wcc84FNf2qmK+wVkOSBgOPULN7584551yD8eBdQ2Y208xONrPpTd2XFiG3Bt/0ds45VycevJ1zzrkWxoO3c84518I05Pe83YFs2TKouMiKT5U751y98JG3c84518J48HbOOedamEYN3pLukPSGpNWSVkqqlyWwJN0l6aL6aKua44yVdEst6v+7pNtqUO/eeF3u3bce7jtJ4yUtlvR4UuKTBrGvObznzZvHSSedRHp6OkcffTSDBw9m27ZtDdll55xrFhptkRZJ5wI/A3qb2c6YUexgM3u3hvu3iklBmoyksYS0pz+t53Y/AY6JyUhqUr/Jr0V1Ui7SkvS3Vh85vBcuXMjixYtp164ds2bN4plnnuHuu+/m9ttvb5yTdM65etYcF2k5DtiSCFBmtiURuCXlSlogaZmk52MKTyQVSrpH0gLgDkkbJB0Utx0iaaOk1pKmSxoYy8+JI8dVkl6TlB7X7346jvhfTaSzlHR+nAFYKWmFpMMqdjrOFvxF0jxCmsxE+UmSnot9fjmuN15x32slPRDfT5d0f+zb+qT+PkNI6fmapCslnSDpxdjXFyV9MWn/n0maD4yPswC/lvRCvC7fkDRB0prYr9ZxvzGSXpe0VtIUKTxFJulkSfPidVom6XhJ2fFclsdX91hXcXZgbWz/yn39Y5g7dy7FxcWMGDGCESNGMGTIEIqKiigsLCxXb/r06QDcc8893HrrrXTv3p2ZM2dSUlJCr169uPnmm/na177G2WeHrKsHHeR3gpxz+7/G/J/uBeB4SW9J+qWk8wFikPkFMDDmqv4VcHfSfkea2flmNg5YBZwfyy8HnjezXYmKkg4GHgNujDmsvwbsIuTyXmFmXYDbCSulQciUdUPMa90T2JHcYYXc3IMIucm/AZyTtHkKcFPs8y3AL2twDY4jpAy9DPgJgJn9O7DDzLqa2ePAA4Q82l0I66ffn7T/qYTc5z+IP58E9AX6Ab8B5pvZmfE8+sY6D8Qc5Z0J6T8vi+WPAvfH63QesIWQGvTimKP8yqRjfwPoCpxFyGx2b+IDVl3VVw7vBx98kOOOO45x48Zx/vnnc+ONN+5Lt5xzrkVotOBtZtsJeaSHAe8Djyuk3TwN6Az8USHv9/8DOiTt+niF94lR3yD2zvd9GvBeTA6CmX1sZp8TgtOMWPYScJSkIwgJNn4maSThQ0LFqeiehNzcn5nZJ8R84pLaAN2BgtjnyVST3CN62sw+j8lBjq2kzrnAb+P7GbHvCQUxL3fC3PjhZQ2QRkheQvw5O77vE2cg1hDye58RZxjam9kz8ZrsMLMdQGvgoVi3gJCzm9iHmWZWambFwALKf5ABQNIwSUslLX2/BhcjWV1yeAMMGDCAOXPmMHjwYBYsWMCsWbNqeWTnnGt5GnWOMf7nX2hmPwJuBAYQ8ku/EUeeXc3sTDP7WtJuyTm9nwHyJLUlfBB4qcIhKvufP1W5mdlPgOsII9JXU019k3ot84OAj5L63NXMOlVy7GTJ97Rrmvc7+fgp85vHDyjJOb0/J2QgyyDMCAyMI/KH2JNzPNV5jQaKCSPsbsDBtemrmU0xs25m1u2YaupWl8N7165dldZL5PAGOP7447n00ku5++4wWVNQUFCTrjrnXIvWaMFb0mmSTkkq6gr8HfgLcEx8oI14D/uMVG3E0fsS4P+AZyuMQiGk5TxOUk5s64h4j3whMT+3pN6Ee++fSDrJzNaY2XhgKXunI10I9JeUGUerl8d+fAIUSfpmbFOSzqrDZUllMWFWgdjnV/ahrYz475Y4WzAQyvq/WdLlAPH8Mgk5w9+LHwauIozmIVyHKxVygh8D9CL8HuqsPnJ4jx49mnHjxjF9+vSy6fLTTz+90mM659z+ojFH3m2AX0tap5BH+nRgrJn9ixBUxktaBawkTElX5nHgP9h7ypzY1iAgX9K7hGnk1oRc3t3icX8CXBN3uTk+hLWKcJ94boX2lsfjrARmAS8nbf4OMCTu+wbhvnN9GAl8N/b1KkJO7joxs48Io+01wNPA60mbrwK+L+k9wnkdRRilXyPpVcL99cRI/ylgNeGfktnbAAAgAElEQVSZg5eAW83sH3XtF9RPDu+2bdsyefJkhg0bxsqVKxk+fDhjx47dl24551yLsN/m85b0X8BsM/trU/elOZP0bcJoe359tlvdV8Wcc87tTc3wq2KNRtJ9hAfjWjd1X5ozST8A/oc90+POOedagP125O2alo+8nXOu9g7okbdrBnJzQ7BOfjnnnKsXHrydc865FsaDt3POOdfCtGrqDrj91LJlUM1qaTXi0+3OObcXH3k755xzLYwHb+ecc66F8eDdCCQdpT2pR/8haXPSzwdX30Ljk/T9uDZ6s7Jo0SK6dOlCeno6OTk5LF++PGW9yZMn06FDBzIzM+nXrx9bt24F4JNPPuGaa66hbdu2HHPMMfzoRz9qzO4751y98ODdCMxsayKBCfAgMDEpocm/oGx99Gbx+5CUBnyfPWujNwslJSUMGDCAbdu2MXHiRIqLixk4cCClpeWXuF+xYgXDhw+nU6dOjBs3jjlz5jB69GggrJH+yCOPMHz4cL7+9a9z1113MXv27KY4Heecqzsz81cjvgjrrN8S358MrCUE9BVAe0Ke8KWE9dLHJO23Ke67grDO+Kmx/ALCmuMrgeXAoYSc2/MJ65mvAyaxZ0Ge/yCsdb4WuCeWtQI+An5MSDjy38C/Yr15sU4e8Kd4jMeBQ6s6zxTf8q7bK8ns2bMNsAkTJpiZ2Z133mmAzZs3r1y9kSNHGmBLliwxM7OePXtaq1atbMeOHda5c2dr3bq1mZm9+eabBtjll19uzjnXHABLrQaxpFmM9A5wpwPTzOxsM9sM3GZhdZ2zgIslJafJKjazs4GphJExwA+BYRZG9b2Aklj+FeBm4EygE9BPUgdCgO4DnA30kHRZrH8EsNzMvmxm/wv8E+hpZhdJygJuAy40sxzCh4c6J0ypq6KiIgDat28PUJYWdP369dXW2717Nxs3biQrK4tdu3Yxf/585s2bV66+c861FP5Vsab3tpklZ/saLGkI4XfTjhDc18VtifndZcCl8f0i4OeSfgvMMrPtCl/RetXMNgBIegw4j7CG+UtmtiWW/5YQ8J8jjLSfqqSP3WM/Fse2DyZFqlJJwwhryvPFmp9/nYUPqaBqvpKWXG/cuHEsX76cCy64gMzMTNLS0sjIaFZ3B5xzrloevJteIu0mMd/5KODLZvaRpN9Q/r7zzvhvKfF3Z2Y/lvQM0Bd4PeYrB6j4BWkDqopyOywR5fYm4Dkzu6qqEzGzKYRpf7pJ9f4F7Y4dOwKwadMmADZv3lxWXlJSQlpaGq1bty5Xr127dmzevJlWrVrRoUMHTj75ZDZs2MC6devIyMggJyfHc4A751ocnzZvXg4HtgGfSDoO+Hp1O0g6ycxWx6nuFcBpcdNXJX0xPnz2LcJI+VWgT3z6vRUh9/mCSpreBhwW3y8Gzpd0YjzmofGDRqPKy8sjKyuL/Px88vPzmTZtGtnZ2WRnZ5OZmUn//v0BuPrqq4HwcNqECRNYvHgxgwYNIiMjg3nz5jFlyhTWrVvH0KFDOeigg/j+979f1WGdc67Z8eDdvCwnTJGvBR4iTIlX5xZJayWtJjx09kIsXwzcR3jo7C3gGTPbBIwBCgkPuL1qZnMqaXcKME/SPDMrBoYAj0taFds+tQ7nt08yMjIoKCigTZs2jBo1iqysLAoKCkhLK5/RNDc3l0mTJrFu3TrGjBlDXl4eEydOBGD37t38/Oc/5/rrr+fTTz/liSee4KyzzmrsU3HOuX3iKUH3Q5IuAm40syuaqg8pU4LWhf99OucOIJ4S1DnnnNtPefDeD5nZvKYcdQOp83nX5eWcc24vHrydc865FsaDt3POOdfCePB2zjnnWhhfpMU1jGXLoJqVz/aJ3w93zh3AfOTtnHPOtTAevPdzklpJulFSelP3xTnnXP3w4N0MSPqCpMckvS1pnaQ/SNrnFcwUMnb8HFhtZjurq19h36kVMpo1a4sWLaJLly6kp6eTk5PD8uXL96qzY8cOLrzwQtq0aYMkfvrTn5Zt+9Of/kT37t058sgjOfLIIxkwYADvv/9+Y56Cc87VmAfvJhYD7FNAoZmdZGanA7cDx+5r2zE97I1mtrCSY1f6zIOZXWdm6yrb3pyUlJQwYMAAtm3bxsSJEykuLmbgwIGUlpaWq1daWkrbtm255JJL9mrjrbfe4uijj2b8+PFceumlzJ49m1tvvbWxTsE552rFg3fT6wPsMrMHEwVmthJ4RdK9cd3yNZKuBJDUW9ICSU9IekvSTyR9R9KSWO+kWO8YSbMkvR5fPWL5WElTJL0APCIpTdJP476rJd0U6xVK6hbfD47b10oa38jXp1pz586luLiYESNGMGLECIYMGUJRURGFhYXl6rVp04aCggIuu+yyvdoYPHgwzzzzDN/73veYPHkyAG+88UZjdN8552rNnzZvep0J+bkr+gbQFTgLOJqQ7jMxgj4L6AR8AKwHpprZlyWNAm4Cbgb+D5hoZq9I+iLwfNwHIBc4z8x2SLoe6AicbWa7JbVN7oSkdsD4uM+HwAuSrjCzpyt2uLHzeScUFRUB0L59ewA6dOgAwPr167nwwgtr1MbBBx9c9v75558HoFevXvXZTeecqzcevJuv84CZZlYKFEtaAJwDfAK8bmbvAUh6mz2ZxNYQRvIAFwGna8/XtQ6XlEjx+YyZ7Uiq96CZ7QYwsw8q9OMcwpT++/F4jwK9gL2Cd0Pn866pRLId1eGraosWLeI///M/yc3NZezYsfXcM+ecqx8evJveG8DAFOVVRZ7kh88+T/r5c/b8Tg8Czk0K0qHRENA+rXCcqgJtA35Zu3507NgRgE2bNgGwefPmsvKSkhLS0tJo3bp1te0sXLiQvn37cvLJJ/P888/Tpk2bhuu0c87tA7/n3fReAtIlDU0USDqHMEV9ZbwnfQxhtLukFu2+ANyY1GbXKuoNTzy8VnHaHHgNOF/S0ZLSgMHAglr0o8Hl5eWRlZVFfn4++fn5TJs2jezsbLKzs8nMzKR///5ldadOncrCheHuw5IlS5g6dSrbt29n+fLl5OXlUVpaytChQ/njH//I73//+6Y6Jeecq5IH7yZmYY63P3Bx/KrYG8BY4LfAamAVIcDfamb/qEXTI4Fu8SG0dcDwSupNBd4BVktaBXy7Qv/eA/4bmB/7stzMfleLfjS4jIwMCgoKaNOmDaNGjSIrK4uCggLS0tL2qjt06FAefvhhAAoKChg6dChbtmxh9erVfPbZZ+zYsYMbbriBwYMHc9NNNzX2qTjnXI3IfJlJ1wC6Sba0IQ/gf7fOuf2QpGVm1q26ej7yds4551oYD96uYeTmhtFxQ72cc+4A5sHbOeeca2E8eDvnnHMtjAdv55xzroXx4O0axrJUK74655yrDx68nXPOuRbGg7dzzjnXwhzwwVvSFyQ9Flc3WyfpD5JOrcf2r5B0ej22d4aklyX9XlJlq6bVts3F1WzvJun++P5aSQ/U9hiLFi2iS5cupKenk5OTw/Lly1PWmzx5Mh06dCAzM5N+/fqxdetWAN555x169OhBeno6knjyySdr2wXnnNtvHNDBWyFLx1OErFknmdnpwO3AsfV4mCuAlME7sZ54bZjZG2bW08wuT84Bvi/MrHs125ea2ci6tl9SUsKAAQPYtm0bEydOpLi4mIEDB1JaWlqu3ooVKxg+fDidOnVi3LhxzJkzh9GjRwOwc+dOTjzxRE/T6ZxzHODBm5A+c1dyEDSzlWb2soJ7Ja2VtEbSlQCSeksqlPSkpDclPRo/BCDpJ3H0vlrSTyV1B/4duFfSSkknxX3viSk+R0maLqksq5ik7Unv/ysef5WkcbFsjKTXY/mUpGN3lfRqPPZTkv6t4slKOjZuWxVf3ZOPKelxSZcm1Z8uaUA852frepHnzp1LcXExI0aMYMSIEQwZMoSioiIKCwvL1Zs+fToA99xzD7feeivdu3dn5syZlJSUcMoppzBjxgx69OhR124459x+40AP3p2Byh6L/gbQFTiLkPP6XknHxW1nAzcTRtQnAj1iNq7+wBlm1gX4sZktBp4BfmhmXc3s7bj/kWZ2vpndV1nHJOUBlwPnmNlZwP/FTQ+Y2Tlm1hnIBC6L5Y8A/xWPvQb4UYpm7wcWxPZyCOlIkz0GJD6kHAxcCPyhsj6m6PMwSUslLX0/qbyoqAiA9u3bA9ChQwcA1q9fX27/VPV2797Nxo0ba9oF55w7IBzowbsq5wEzzazUzIoJaTDPiduWmNkmM/scWAlkA58AJcBUSd8APqui7cdrcPyLgOmJfNxm9kEs7yPpNUlrgAuAMyQdQfhAkEjV+WtCCtGKLgDyY3ulZvZxhe1zgQskpQN5wMKK+cCrYmZTzKybmXU7pup6QFlu8X2u55xzB5oDPXi/AeRWsq2qiLEz6X0p0MrMdgNfBmYR7nM/V8X+nya93038PcQp8IMrO76kDOCXwEAzOxN4CMio4ji1YmYlQCHwdcII/LH6aLdjx44AbNq0CYDNmzeXlZeUlLBr165K67Vq1apspO6ccy440IP3S0C6pKGJAknnSDofWAhcKSlN0jGEkeySyhqS1AY4wsz+QJhS7xo3bQMOq6IPG9jzAaIf0Dq+fwG4RlJmbL8tewL1lni8gQBxBP2hpJ5x+1WEmYKKXgSuj+2lSTo8RZ3HgO8CPYHnq+h3jeXl5ZGVlUV+fj75+flMmzaN7OxssrOzyczMpH///gBcffXVANxxxx1MmDCBxYsXM2jQIDIyMti+fTtTp04te0r9xRdfZOrUqfXRPeeca3nM7IB+Ae2AJ4C3CSPxOcAphJHvvcBawj3kK2P93sCzSfs/AFwLHEcI7qtj/Wvi9h7AOmAFcBJhZNstaf9jgVfjvv8LbE/adhvwFiHA/yiW/Rj4GzAPeBgYG8u7xnZWA08D/5biXI8Ffhf7txI4N5YnH7M1sBV4OKms7JzjuT5Q3XXNBUu2YMEC69y5s7Vu3dq6du1qr7/+uhUVFRlgffv2Las3adIka9eunaWnp9tll11m77//vplZWd2KL+ec258AS60GsUvm6RWbtTiVPsXMhlZbuRnpJtlS/9tyzrlakbTMzLpVV+9AnzZv1uLU+Arg+Kbui3POueaj1ouEuMZjZtvZc++8Zcmt7DlA55xz+8pH3s4551wL48HbOeeca2F82tw1jGXLoKrFVfxhNuecqzMfeTvnnHMtjAdv55xzroXx4N1EJGVLWluhbKykW2LO7HZJ5VMTOcElbZB0dHyfMg93xUxldelLY9vXfN8JL730EpKQxNKlSxuj68451+g8eDdP1xJWfgPAzK4zs3UVK1k1ebhbivrI9w2wY8cOhg0bxiGHHNLYp+Ccc43Kg3fz1A14NOYAz4w5wPdacScpD7ckPRBzic8BspLqVJb/Ozfm9P4TcENS/bSYx/z1mBv8e7H8OEkLY5/WJq2jvs/qI983wI9+9COOOOKIsrXSnXNuf+XBu3laCnzHQg7wmqTk7A+cBpwJDAWSR+SV5f9+GBhpZudWaGsI8LGZnUNIgTpUUkfg28DzZpbIcb6yjue2l/rI971ixQp+8YtfMHXqVFq18i9ROOf2bx68m05l35Wqy3eoerEn9/i7hGxpCTXJ/z0jqf7XgKslrQReA44iJGp5HfiupLHAmWa2rWInJA2TtFTS0vfrcBIJifX2a5Pve+TIkXzzm9/ksMMOY9u20LVNmzaVjcqdc25/4sG76WwF/q1CWVtgSx3b2yvoV5H/W6nqJ3YDboqj/q5m1tHMXjCzhYQPCZuBGZKu3qsDZlPMrJuZdTumFh2vj3zfGzduZMaMGZxyyinMnj0bgP79+/tDa865/ZIH7yYS1y1/T9KFUJav+xLgFarPAV7RQmBQvF99HNAnlleW//sj4GNJ58Xt30lq63ngekmtY79OlXSopBOAf5rZQ8A0IKd2Z1y5+sj3nZ+fT0FBAQUFBfTu3RuA8ePH06lTp/rqpnPONRt+c7BpXQ1MknRf/Hmcmb0taTrwoKQdQMV70qk8RZgSX0PI/70AQpCW9FAs30CY+k74LvArSZ8RAnbCVCAbWB4fbnsfuIKQ0/uHknYB22Pf60VGRgYFBQXccMMNjBo1ijPOOIOHHnqItLS0cvVyc3OZNGkSd999Ny+//DJ5eXlMnDgRCB8AEp599lkALrjgAo466qj66qZzzjUbns/bNYhuklU5Ye1/d845txfP5+2cc87tpzx4O+eccy2MB2/XMHJzw9R4ZS/nnHN15sHbOeeca2E8eDvnnHMtjH9VzDWMZcugmhXSnHOu0e0nt+185O2cc861MI0WvCVdlZyj2jnnnHN1U23wTqSdrClJvSU9W6GsF9ArJs2oat+bJVWajFnSVEmn16Y/SftmS1pbi/pHShpRl2PVlqSZMf3m6OprN3hfZkhaIOkRSX5bxTm33xo5ciTHHnsskrjssssqrZednY2kslfXrl3Lti1atIguXbqQnp5OTk4Oy5cvb4yuN9rIuwNwYw3q3QykDN6S0szsOjNbV689q9yRQMrgLSktVXldSPoC0N3MupjZxBru02BB1cyuMrPzzexqM9vdUMdxzrnmYNCgQTWq16tXL2bOnMnMmTMZP348ACUlJQwYMIBt27YxceJEiouLGThwIKWlpQ3Z5cDMqnwB2+O/vYFC4EngTeBR9iyvekksewW4H3g2lo8Fbklqay1h3exDgTnAqlh2JTAS+BdhHe75iWMDdxFSU54Xj98tbssn5L1+g7AmeKq+58Zj/Am4F1gby9Piz68Dq4Hvpdj3MWAHIW/1vfH85wO/BdbFOk8Dy2IfhiVfM+DueOxXgWNj+Tfj+a4CFsay1UnH6Ql0jfusJqxZ/m+xXiFwD2Hd8h8A0+M1mA+sB84HfgX8GZie1JeU14mQq3tx7MtrQDrw5Vi2Iv57WqybQcj/vSZu61Pd30013/L2l7/85a+meVVQVFRkgPXt23evbQknnHCCXXPNNfbJJ5+UK589e7YBNmHCBDMzu/POOw2wefPmVdpWdYCl1f3/avFMqq5QPnh/TBhFHxQD4nnxP/aNhJzPAp6g+uA9AHgoqfyI+O8G4OikcgO+lfRzIXuCd9v4b1os75Ki76uB8+P75OA9DPh/8X16DG4dK+ybnaifdP6fJtdL6kNmPLejkvp9eXw/IelYa4D28f2RlRwnuc93AT9POvdfJtWbTviAIaAf8AlwZvzdLAO6VnadgIOBt4GcxPWP+x0OtIplFwGz4vsfAA/H918C3gEyqvq78eDtL3/5q1m+Kqhp8JZkgB1zzDE2depUMzO77777DLBHH33UzMwmT55sgE2ZMqXStqpDDYN3bafNl5jZJjP7nDBSzI7/mReZ2V/jgX9Tg3bWABdJGi+pp5l9XEm9UmBWJdu+JWk5YSR4BlDuXrikIwgBckEsmpG0+WvA1ZJWEkadRxE+fFRniZkVJf08UlJidH18Uhv/AhL3/ZcRrhPAImC6pKGEYFpOij7/mpBDO+HxCrv8Pl7zNUCxma2Jv5s3ko6Z6jqdBrxnZssBzOzjuN8RQEF8NmBirA/hQ9qMWPdN4O/AqSn6P0zSUklL36+40TnnWqihQ4fyxBNPMGPGDA4++GC+973vUVRUtFe98N8xqBG+Jlvbe6c7k96XJu1vldTfTfn76hkAZvaWpFzgUuB/Jb1gZnel2L/EzPa6eSCpI3ALcI6ZfRhTaGZUrFZFvwTcZGbPV7K9Mp8m9aE3YXR6rpl9JqkwqQ+7LPFbTLpOZjZc0leAvsBKSXueeqjl8aPE7+Nzyv9uPgdaVXGdKvvL+h/CLYv+krIJI3WqqF+OmU0BpkDIKlaTfZxzrrnZuTP8d5qeng7AHXfcUbZtxYoV/OxnP+Ott96iY8eOAGzatAmAzZs3A5SVN6T6ePDpTaCjpJPM7G1gcNK2DcBlAJJygI7xfTvgAzP7TXya/dpYfxtwGLClmmMeTghkH0s6FshjT6ABwEIu648lnWdmrwDfSdr8PHC9pJfMbJekU4HNZpYcHBN9qcwRwIcxcH8J+Go1fSZeo9eA1yRdThitf5TU548lfRhnI14GriLm5q6jyq7Tm8BxknLMbHkc8W+L57Q57nttUjsLCdfvpXitvgj8ZR/65ZxzTW7OnDmsXRu+hLRx40amTp3K+eefz8UXX8yWLVvYvn07a9as4fbbbycvL4/du3fzyCOPkJmZyZlnnknbtm3JysoiPz+fww47jGnTppGdnU3v3r0bvO/7/LS5mZUQ7iHPkfQKYUo1YRbQNk5PXw+8FcvPBJbE8juAH8fyKcBcSfOrOeYqwjTwG4SHtBZVUvW7wCRJfyI8FJYwFVgHLI9TxJOp8EHGzLYCiyStlXRvirafI4xuVxNGrK9W1efoXklr4jEXEh4Wq+iaWG814eG1VDMSNVLZdTKzfwGDgHxJ78ZzaU24P/+/khZRflr/l0CapDWEqftrzSx5pO+ccy3Ovffey2233QbA6tWrGTp0KIsWlQ8nRx99NKWlpYwZM4bbbruNE044gaeeeop27dqRkZFBQUEBbdq0YdSoUWRlZVFQUEBaWr19IalS2jO76w5Ekv4LmG1mf63PdrtJtrQ+G3TOufrQzGOepGVm1q26er486gFM0n2EWZPWTd0X55xzNecjb9cgunXrZkuX+tjbOedqw0fezjnn3H7Kg7dzzjnXwnjwds4551oYzxrlGsayZVDbVYb8+QvnnKsRH3k755xzLYwH70pIuiquBOecc841K/td8I7Lrdamfm9Jz1Yo6wX0MrN3q9n3Zkkp84/H7VMlnV7Z9n0l6dq6fMCQdEVyvyTdJemi+u3dvqtpkvvJkyfToUMHMjMz6devH1u3bgWgd+/eSCr3aoxlC51zrqHtd8G7nnQAbqxBvZuBlMFbUpqZXWdm6+q1Z+VdC6QM3pKqWp/vCpKysJnZGDObV79d2zc1TXK/YsUKhg8fTqdOnRg3bhxz5sxh9OjRAIwZM4aZM2cyc+ZMRowYAUBOTk6jn4tzztW7muQNbUkvyucfLwSeJCTieJQ9i9JcEsteAe6n+vzjhwJzCGuRrwWuBEYSUn+uIWTiAthOWIv8NUIazUL25B/PJ+QNfwMYV0nfTyKsM74MeBn4Uiz/HXB1fP+9eC4D4/H+QkjPmklIBDMmntcgYCjweuz3LMIHje7AB0BR3O8kQm7wgYTEJU8k9ac3Ie1ojfqf/KpTPu8kNU1yP3LkSANsyZIlZmbWs2dPa9Wqle3YsaNcvb59+xpgb775pjnnXHNFA+XzbmnOJoyOTwdOBHpIygAeAi4HegJfqEE7lwDvmtlZZtYZeM7M7gfeBfqYWZ9Y71BgrZl9xUIms2R3WFg1pwtwvqQuKY4zhZCqNJeQyvOXsXwYMEZST+AHsc6ThGD6HTPramaJxCslZnaemT1GWLP8HDM7C/gzMMTMFgPPAD+M+72ddPw/Al+VdGj8+Ur25BCvtv/1mc87kSu3ffv2AHTo0AGA9evXV1tv9+7dbNy4sazOxo0bmTt3LhdccAGnnXbaPvbMOeea3v4evJeY2SYz+5wwyswGvgQUmdlf46ec39SgnTXARZLGx3SdH1dSr5Qwwk3lW5KWE7J8nUHStDWApDaEUXFBzLY2GTgOwMyKCSPq+cAPzOyDKvr6eNL7zpJejtnAvhOPWykz200Y+V8uqRUh7/jvatL/uP8UM+tmZt2OqepAdWA1THKfqt5DDz3E559/zvDhw+u5V8451zT29+95J6etLGXP+Vb2heLdlP9AkwFgZm9JygUuJaTMfMHMUqXqLDGz0oqFkjoSRtLnmNmHkqYn2k5yEPCRmXWtpG9nAlup5B53kuSc5NOBK8xslaRrCdPg1XkcuIEwtf66mW2rYf/rVVVJ7ktKSkhLS6N169bl6rVr147NmzfTqlWrspH67t27mTZtGl/4whe44oorGrLLzjnXaPb3kXcqbwIdJZ0Ufx6ctG0DkAMgKQfoGN+3Az4zs98AP03UAbbB/2/v/oOsKu87jr8/wAqbgApS0pYoa2Y0bYYgArWJv2JCmrLqSBg2CTaR0uzEqYy0jTHTzjAlnZhpZywtTidmwSxMko5RBpMYxBCTVhZSyAZQI8G1OJa1FkFMakrFuG1Zv/3jPLte1oU9u3DPPRc/r5k7c+45z7nns/fHfu95zrnnYUKObZ5NVlSPSHoH2bHl40TEfwPdkj6WtilJl6Tpy9I6lwK3p2KaZ/sTgEOSGsj2vPucbL0Osr/vM7yxFz9k/tOtubm5f5D7tra2/kHum5qaaGxsZMGCBQAsXrwYgOXLl3PnnXeyY8cOFi1axLhx2XeLhx56iIMHD9La2kpDgwdPM7Mzw1uueEdED9kx5Icl/Qvw7xWLvwVMSt3WtwDPpPnvBXam+cuBL6X59wCbJW0ZYptPknU3PwWsA7afoOkngVZJT6a28yWNJTtG/+nIfrr2OWCdsn7hrwGrJf1UUuMgj/eXZCfP/ZDsS0uf+4HPS3qi4ktMX9ZeYBNZgd40zPynTd5B7mfPns3dd99NV1cXK1asoLm5mVWrVvUvX7NmDaNGjeLmm2+udmQzs8J4SFCrijlSDHtAUL8XzewtzkOCmpmZnaFcvK06Zo/gl95mZpaLi7eZmVmdcfE2MzOrMy7eZmZmdeZMv0iL1cpjj8EQV0MbER8bNzPznreZmVm9cfF+C5I0WtKfpuuXm5lZnXHxHiFJCySFpN+qdZYRuI1s6NRjgy2U9JuSHig407Bt376dGTNmMHbsWGbNmsXjjz/+pjavvfYac+fOZfz48Uhi5cqVxy1vaWlh4sSJSOLWW/MM4W5mVnsu3iN3I2+Mm52bpNFDt6oeSaOAFyNi7QmWj4mIgxHRUnC0Yenp6WHhwoW88sorrFq1isOHD9PS0kJv7/HjwvT29jJp0iTmzZs36OOMHTu2/zrpZmb1wsV7BNLwnVcAraTiLSqsKewAAAkGSURBVGmUpK9IekrSJknfk9SSlj0naUW6lvrHJM2U1Clpj6TvSJqY2nVIukvSDkl704AkSHq7pHWSdqXrkc9P80dLWinpZ+mxllVsb3KaniOpI01fRvaF47a0jXen+UskbZD0EPADSU2S9qZlTWlY0cfT7fJinuWT27x5M4cPH2bp0qUsXbqU1tZWuru76ejoOK7d+PHj2bBhA9dff/2gj3Pvvff2D25iZlYvfMxzZD4KfD8NFfpyGoHsXWTjhb8XmAI8TTaIR5+eiLgSQNIeYFlEbJX0ReALwJ+ldm+PiMslXZ3Wn042GMqjEfFpSeeSDZLyT8BispHPLo2IY5ImDZH7X4GrU9vfB/4aWJiWvR+YEREvS2qqWOcl4PciokfSRcB9wKDX3ZV0M9mgL1wwRJBT1d3dDcDUqVMB+ocA3b9/P3Pnzq3y1s3MasvFe2RuBO5K0/en+w3Ahoh4HXhxkJHG1gNIOgc4NyK2pvlfBzZUtLsPICK2STo7FeuPADdIuj21GUdWHz8MrO47dh0RLw+RewLwVUlTAQHnVSz74QnWbwC+LGkm2ZjoF5/owSPiHrKR1pgjFfqbrr4BdlSNn6eZmZWMi/cwSToP+BAwXVmBGg0E8J0hVn015yYGFr0gK7QLI2LfgCwapD3AMd44JDKuYv6XgC0RsTqNCV75BeNE+T4LHAYuSY/Zk+ePqLYLL8yGND9w4AAAL7zwQv/8np4eRo8e7fG7zeyM5WPew9cCfCMipkVEU0ScD3QDvwAWpmPf7wCuGWzliDgC/FLSVWnWTcDWiiafAJB0JXAktX8EWJaKNZIuTW1/APxx30++KrrNnwNmp+m+bnGAicDP0/SSnH/vOcCh1KNwE9mXlZprbm5mypQptLW10dbWxtq1a2lqaqKpqYnGxsbjTkJrb29n27ZtAOzcuZP29naOHj0KwPr163n44YcB6Orqor29nUOHDhX/B5mZDUdE+DaMG9ABzBsw70+ANmA10AU8CGwmO1YMWTGdXNF+JtAJ7EltJ1Y89t8AO4C9wGVpfiOwBvhZmr8pzR8D/H3a5pPArWn+VcAzwI+AlUBHmn9Fmr8duAN4Ls1fAny5Il8TsDdNX5RydqZsR/M8TyMYUyzfrcLWrVtj+vTp0dDQEDNnzoxdu3ZFd3d3AHHdddf1tyPrnTju1t3dHRER06ZNe9OyLVu2hJlZLQC7I8f/WGVt7XSQND4ijqau9Z3AFRHx4jDW7wBuj4jd1cpYlDlSdf4Iv1/N7Awm6bGIGPSk4Eo+5n16bUonmJ0F3DGcwm1mZpaXi/dpFBHX1HL9Upk9G3bXfQeCmVkp+YQ1MzOzOuPibWZmVmdcvM3MzOqMi7eZmVmdcfE2MzOrMy7eZmZmdcbF28zMrM64eJuZmdUZF28zM7M642ubW1VIegXYN2TD2phMNgpcWZU5X5mzQbnzOdvIlTnf6c42LSJ+bahGvjyqVcu+PBfXrwVJu8uaDcqdr8zZoNz5nG3kypyvVtncbW5mZlZnXLzNzMzqjIu3Vcs9tQ5wEmXOBuXOV+ZsUO58zjZyZc5Xk2w+Yc3MzKzOeM/bzMyszrh42ymRNE/SPknPSvqLQZaPlbQ+Lf+JpKYSZbtNUpekPZL+WdK0smSraNciKSQVejZrnnySPp6ev6ckfbMs2SRdIGmLpCfSa3ttgdnWSXpJ0t4TLJekf0jZ90iaVaJsn0yZ9kjaIemSorLlyVfR7nck9UpqKVM2SddI+mn6PGyteqiI8M23Ed2A0cC/Ae8CzgKeBN4zoM1SYHWaXgSsL1G2DwJvS9O3lClbajcB2AZ0AnNK9rpeBDwBTEz3p5Qo2z3ALWn6PcBzBT53VwOzgL0nWH4tsBkQ8D7gJyXKdnnF69lcZLY8+Spe/0eB7wEtZckGnAt0ARek+1X/PHjP207FZcCzEbE/Iv4XuB+YP6DNfODrafoBYK4klSFbRGyJiF+lu53AOwvIlStbcgdwJ9BTUK4+efJ9Brg7In4JEBEvlShbAGen6XOAgwVlIyK2AS+fpMl84BuR6QTOlfQbZcgWETv6Xk+K/Tz0bX+o5w5gGfAtoKj3G5Ar2x8A346I51P7qudz8bZTMRX4j4r7B9K8QdtExDHgCHBeSbJVaiXbIyrCkNkkXQqcHxGbCspUKc9zdzFwsaTtkjolzStRtr8CPiXpANke2rJiouUy3PdlrRT5echF0lRgAbC61lkGcTEwUVKHpMckLa72Bn2FNTsVg+1BD/z5Qp421ZB7u5I+BcwBPlDVRBWbHGRefzZJo4BVwJKC8gyU57kbQ9Z1fg3ZHtqPJE2PiP8qQbYbga9FxN9Jej/wjynb61XOlketPg+5SfogWfG+stZZBrgL+POI6C2m825YxgCzgblAI/BjSZ0R8Uw1N2g2UgeA8yvuv5M3d1H2tTkgaQxZN+ZQXWNFZUPSh4HlwAci4n8KyJUn2wRgOtCR/kn9OrBR0g0RsbsE+fradEbE/wHdkvaRFfNdJcjWCswDiIgfSxpHdv3pQrtaTyDX+7JWJM0A2oHmiPjPWucZYA5wf/pMTAaulXQsIh6sbSwge11/ERGvAq9K2gZcAlSteLvb3E7FLuAiSRdKOovshLSNA9psBP4wTbcAj0Y6o6PW2VLX9BrghgKP2Q6ZLSKORMTkiGiKiCay449FFe4h8yUPkp3wh6TJZN2G+0uS7XmyPSAk/TYwDvh5Adny2AgsTmedvw84EhGHah0KsrP0gW8DN1Vzj3GkIuLCis/EA8DSkhRugO8CV0kaI+ltwO8CT1dzg97zthGLiGOSbgUeITsLdF1EPCXpi8DuiNgIrCXrtnyWbI97UYmy/S0wHtiQvs0/HxE3lCRbzeTM9wjwEUldQC/w+SL21HJm+xzwVUmfJeuSXlLQF0Yk3Ud2KGFyOub+BaAhZV9Ndgz+WuBZ4FfAHxWRK2e2FWTno3wlfR6ORYEDbuTIVzNDZYuIpyV9H9gDvA60R8RJf/J2ypkKek+bmZnZaeJuczMzszrj4m1mZlZnXLzNzMzqjIu3mZlZnXHxNjMzqzMu3mZmZnXGxdvMzKzOuHibmZnVmf8H2JjbQmxhXskAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "L = np.linalg.inv(np.eye(len(sectors))-A)\n", + "d = np.zeros(12).reshape(12, 1)\n", + "d[2, 0] = 1\n", + "\n", + "impact = L@d\n", + "pos = np.arange(12)\n", + "\n", + "for i in range(12):\n", + " plt.barh(pos[i], impact[i], align='center', height=.8, color='r')\n", + " plt.yticks(pos, sec)\n", + " plt.xlim((0,1.7))\n", + " \n", + "for i, v in enumerate(impact):\n", + " l = \"{0:.2f}\".format(float(v))\n", + " plt.text(float(v)+.01, i-.25, \"{0:.2f}\".format(float(v)), color='black', fontweight='bold')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 182, "metadata": {}, "outputs": [ { @@ -3045,28 +2914,28 @@ }, { "cell_type": "code", - "execution_count": 341, + "execution_count": 186, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAD8CAYAAABevCxMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmcVMW5//HPl0VQQJQlBA06BBUvbgijiSICiolr3AVi3AUlUVxiXH7J5eJykygmGjVqgAguXCDEJUZcCALuLDMswxKVICgiUYiKooICz++PqmYOTfdMzzBbD8/79TqvPl2nTp06PT1dXXVO1yMzwznnnHP5o0FtV8A555xzFeONt3POOZdnvPF2zjnn8ow33s4551ye8cbbOeecyzPeeDvnnHN5xhtv55xzLs944+2cc87lGW+8nXPOuTzTqLYr4OqnNm3aWEFBQW1Xwznn8kpxcfEaM2tbXj5vvF21KCgooKioqLar4ZxzeUXSu7nk82Fz55xzLs944+2cc87lGW+8nXPOuTzjjbdzzjmXZ7zxds455/KMN97OOedcnvHG2znnnMsz3ng755xzecYnaXHVo7gYpNquhXPO1Uve83bOOefyjDfezjnnXJ7xxruekbSrpMG1XQ/n3PYZArQDBJxcTt71QOeY94qY9jFwYixjF+AIoLhaaupqQ51pvCWdLskk7V9GnjGSzqpAmXtI+msO+Z6VtFsZ26+WtEuux83heLdLel3SBEmtq6rcaDjwZuJYwyRdl6EOBZIWxvVCSfdUcT2cc9upf475bgHeT0v7DFgJ3AjcAMwEcv7wdHVeXbphbQDwKuH9OqwqCjSzD8jh/WpmJ5aT5WrgMeDL9A2SGprZpgrW64aK5M+VpJbAC2Y2rYL1KQI8BJhzdcg9wPL4WJYS4C5CA359Iv07wFxKe2hPA3MIH2JV1hNxtaZO9LwlNQd6AJeQ+LKp4D5JiyVNAr6V2LZc0q8lvSGpSFI3SS9IWirp8pgn2bu8UNITkp6XtETSHWlltZHUTNIkSfMlLZTUT9IQYA9gmqRpMf86SbdImgkcIWmopNlxnxFSuM1a0j6SpsTyiiV1iHV6RdKcuByZONfhsYwFkvpleJ0KJL0p6WFJJZL+mhoRkLQcaGxmT8Se9PTErodImhrPe2CGcntLeib1t5A0OtahRNKZMf2B+DovknRzhf/Izrkqtxm4FPgZcFjatkaUfsC/SxiO64433PWGmdX6AvwE+HNcfx3oFtfPAP4BNCQ0oJ8CZ8Vty4HBcf0uwhfQFkBb4KOYXgAsjOsXAu8ALYGmhPdzh0RZbYAzgZGJerVMbk+kG3BO4nmrxPqjwClxfSbwo7i+c1x2AZrGtH2Borh+ZuJc2wHvAe3TXqeCeOwe8flDwHXpdQQKgelxfRgwPx67DbAivpbJ16Y38Excvx24O3HM3ZPnGOs3HTg4w99xEKEHX7QXmPniiy/btSwDA+ykLNtHgbUFmw/2WMz7E7CPEnlWgXUB2x1sYR04J1/KXlJtQnlLneh5E4bMx8f18fE5wNHAODPbFIfAp6bt93R8XADMNLPPzWw1sD7LNewXzWytma0HFgN7p21fAPSN16R7mtnaLPXdBDyeeN5H0kxJC4BjgAMktQD2NLOnAczsKzP7CmgMjIx5JwJdYhlHJc71Q+Altv0yDbDCzF6L64/F/crzt3j8NcA04PAy8vYF/ph6YmafxNVzJM0hjMQdkKg3ibwjzKzQzArb5lAp51zFbYgLhG/iq4FDCD0gCB8KN8X1DwjfzFcBkwn/uK5+qPVr3vGGrWOAAyUZoWdnklKXb6yM3VPv4c2J9dTzTOeWzLMpPY+ZvS2pO+Emzd9Immxmt2QoZ33qOrekpsD9QKGZrZA0jNCzV5a6XwN8SPh/a0C4UZSYPxfpZaaeb6R0lKxpjvtksk29JXUErgMOM7NPJI3JcAznXBWaBCyM6yuAUUAv4DhgDbAOOAc4MOZZRBhmOx4YHLf3Av4F/CI+/gs4BWhWEyfgqlVd6HmfBTxiZnubWYGZdQCWEXqULwP9JTWU1B7oU50VkbQH8KWZPQbcCXSLmz4nDMlnkmrE1sRr92cBmNlnwEpJp8Syd5a0M2HYfpWZbQbOI3xZgXCu/eK5tiWMOszKcLy9JB0R11M3+UEYNu8e189M2+dUSU3jF6XewOzsrwKTKf21CZJ2B3YFvgDWSmoHnFDG/s65KjCccKc4hGuCA4HX0vJ0IXzgnEVoqAE6ET4I1hAa61RZA+Kyuvqq7GpQXWi8BwBPpqU9Dvw4pi8hDGc/QBhKrk4HAbMkzQN+CdwW00cAz6VuWEsys0+BkbGOT7F1w3gecK2kVcArQGtCL/0CSTOA/QiNIoRzLSFcn54KXG9m/85Qx3/G/UuAVoTXBeBm4A+SXiGMKiTNInyRnwHcGi9BZHMbsHu8cW4+0MfM5hOGyxcRrrOnf4Y456rYdOJF7MRyIeFb+roM+XvHPPfF5wUZ9reY7vKf4o1GrhpJ+jGht71N41/BcgoIN5YdWE7WWlcomf/2zDnnKkZQbGaF5eWrCz3vek3Sz4FbKR0ed84557aL97xdtSgsLLSiIu97O+dcRUjynrdzzjlXH3nj7ZxzzuWZWv+dt6uniotBuf503TnnXEV4z9s555zLM954O+ecc3nGG+8ESd+R9LcYfWuppD9I2imH/f5fTdSvKijHGOfOufpnCCHqkYCTy8hXEPOklq6JbZ8C5wO7Ac0JU0G6mueNdxTDeD4BPGVm+xJmP2sO/G8Ou2dsvGOYzxp/jSVl/U25mX1gZuXGOHfO1U/9y88CxKhQcbk9kX4xMJYQv/luYJ8qrZ3LlTfepY4hBBwZDRADj1wDXCxplxgPPDXzIJKeiXGwfwvsLGmepLEx5vY/Jd0PzAE6SBoQ42MvlHR73L+hpDGJ+N3XpFdI0tmpaUolvZzYb7hC/PASSZfF9N6Spkn6P2BBjIz200RZwyT9XFvHOG8o6XfxGCWSBsX0StXXOVe33UP4UMtFR+AkQmP/w5j2DmEe5wHAb4CLCPMlu5rnd5uXOgAoTiaY2WeS3qOML5dmdqOkK8ysK2yZwrQzcJGZ/TQGO7mdECvgE2CypNMIgYL2TE11miWE6VDgh2a2MrH9EmCtmR0mqQnwmqTJcdvhwIFmtkzSoYQvxvfHbecQAg4lv7ANAjoAh5jZJkmttrO+zrl64hHgYaAtoaG+hBBHGUIAh2aEaSOvYuueuasZ3vMulS2EZ7b0srxrZjPi+mHAdDNbbWYbCSNORxO+xH5X0r2Sjgc+y1DOa8AYSQMpnV71B8D5MXjKTEKwk33jtllmtgzAzOYC34rXuA8BPjGz99LK7wuMSIU3NbOPt6e+kgZJKpJU5JGLnMtfA4G/AI8COwGXEUI9pmIqfwFMAHoAdwBTaqGOOzpvvEstAraakk7SroSe6VK2jpcNZcez/iKxnvHHzmb2CSGm93TgZ4Rwvel5Lgd+FeswL4b0FHClmXWNS0czS/W8v0gr4q+EaIH9gPEZqpGpbttT3xFmVmhmhW0zFeKcq5M2UNowQwipeBbwE8KHxybgbUojkvUEziAM50H4gHQ1yxvvUi8Cu0g6H7bc9PU7YIyZfUmIxNdVUgNJHQhD1CnfSGqcpdyZQC9JbWKZA4CXJLUBGpjZ48B/Uxo7fAtJncxsppkNJYTn7QC8AAxOHU/SfpKaZTn2eMIlq7MIDXm6ycCg1A1uklptT32dc3XbJEKPGcJ1sFGEmMudCUN4EGIbn0K43nYPYfh8Z0K85G7x8UVCHOTRhCHBHjVTfZfg17wjMzNJpwP3S/pvwhebZym9k/w1wsjRAmAh4Wa0lBFAiaQ5hC+tyXJXSboJmEbo1T5rZn+LQ9mjE3ej35ShWsMl7Rv3e5EQ67uE8AV4TrxDfjVwWpZzWiSpBbDSzFZlyDKKcFf9EkmbgdvNbOR21Nc5V4cNB16K6yWE4fHRaXnaEHraQ4EvgS6En9zsEbePAy4FrgT2IjTudT5GcT3kUcUckpoCd5rZFVVVpsfzds65ivN43i4nkvYj3DzapLbr4pxzLjc+bL6DM7O3CZexqlb37uDxvJ1zrmJyDOjkPW/nnHMuz3jj7ZxzzuUZb7ydc865POPXvF31KC7O+dqNc865ivGet3POOZdnvPHeAUjqIemo2q6Hc865qlGrjbek0yWZpP0TaQWSfpx4XijpnnLKuTw1rWla+pbwlxWo0xhJ2xXvOpc6V6Cs5XFq0vT0LeecrLOkUZK6JPK1BIYB88o4xi2S+lZFfZ2rS4YA7QhTBZ5cyXz/BI4kTITQmTCnsHO1rbZ73gOAV9k6PnwBsKXxNrMiMxtSViFm9qCZPVItNayEXOpcBcfIeM5mdqmZLU4kdQF+ZmbrMpUjqaGZDTUzDwzk6qX+5WcpM98A4E3g90Bj4GxgbRXUy7ntUWuNt6TmhPnsL2Hr/5vfAj0lzZN0jaTekp6JAUGWJ+NIS/qXpHaShkm6LqZ1lzRf0huE6FepvAWSXpE0Jy5HxnRJuk/SYkmTgG8l9uku6SVJxZJekNQ+pg+J+UskbROtK1XnuD5M0sOSJsf6nyHpDkkLJD2fCDByrKS5Mf0hhVjdKb+QNCsu+yTKvS7DsadLKozrDwD3Ak9JujmRZ7mkoZJeBc5O67kPlTRb0kJJI+L86eWes3N10T3ANduRby4hoMAAwofJtYRYuJmi/DhXk2qz530a8Hyc4etjSakoVTcCr8Rwl3elMpvZZuBvwOkAkr4HLDezD9PKHQ0MMbMj0tI/Ao4zs26EKHepYe3TCaNhBxHm6U816o0JDd9ZZtYdeIgwP3+qjoea2cHA5TmcayfgJOBU4DFgmpkdBHwFnBTnFh8D9IvpjYDBif0/M7PDgfuAu3M4Xsov4xy5BwN9JB2c2LbezI4ys/SG+D4zO8zMDiQEE0qNIpZ7zvJ43q6eWRYf94yP34mP79RCXZxLqs3GewClMabHx+flmUBoeCH01ickN8bru7uZWSpwzqOJzY2BkZIWABMJw8kARwPjzGyTmX0ATI3pnQnBcv4haR4hrnbqf7cEGCvpJ4Q43+V5zsy+IUQkawg8H9MXEC4TdAaWxS8yAA/HeqWMSzymfykpyxmSXonn1InSc4a01y6hj6SZ8XU6Bjggppd7zh7P29V3qTBO/iNIV9tq5XfekloTGoYDJRmhQTNJ15ez6xvAPpLaEnrut6UXTen/V7prgA+BQwhfWtYntmXaR8CiDD14CL3oo4EfAf8t6QAzK6sR3wBh9EDSN1Yaym0z4W9Q3meBZVnPSlIBcD3QzczWSXoYaJrI8kWGfZoSwvgWmtkKScMS+1T0nJ2rszbEx/Ki8XSMj+/Hx5Vp6c7VltrqeZ8FPGJme5tZgZl1IIxQHQV8DrTItFNs9J4k3DvyTzP7T9r2T4G1Kv1Z1LmJzS2BVXH4/TzCFwaAl4H+khrGa9p9YvpbQFtJR0AYRpd0gEI86w5mNo3QOO4GNK/0KxG8CRSkrmfH+r2U2N4v8fhGjmXuRhiW/1JSO+D4HPZJNdRr4j0Jqevg1XHOzlW7SZQOMa0gBLBfQhjqap1DvkMJ15zGA38kfPC0AM6s7oo7V47ammFtAOHGtKTHCXeZDwE2SppPuA48Ny3fBEIIywuzlH0R8JCkL4EXEun3A49LOhuYRmnP80nCKMAC4G1io2lmX8ebuO6Jw/GNCNeb3wYei2kC7opfGirNzNZLugiYKKlRPL8HE1maSJpJ+LKVy+UFCPfZzAcWES7RvZZDPT6VNJLwWiyP9YDwRadKz9m5mjCc0m/BJYSbWkZXIN++wP8BlxJuVtsb+Avh26tztUmlI7jOVZ1CyTwgqHPOVYygON5oXKba/p23c8455yrIA5O46tG9OxR539s55yokx4BO3vN2zjnn8ow33s4551ye8WFzVz08nrdzzlUb73k755xzecYbb+eccy7PeOPtnHPO5ZkqbbwlZYwZnZbnakm7VOVxK0rShZLui+uXSzq/kuVcLWmGpImSOldw37Ml/VPSNEmFku4pf6/qJelZJUKuOufy0xCgHWE6xJPLyFcQ86SWrjF9CWGe6NaE6WCPA5ZWU11d5dTGDWtXE8JifpnrDpIamtmm6qiMmT1Yfq6s+95NxUJ0Jl0C/DTOFw5Q6z+KNrMT09NiPG/FOeGdc3miP6Vxj8tyNKXxh3ePjysJUZNuJswHfS9hithp2+ztaku1DJtL6i1puqS/SnpT0lgFQ4A9gGmSpsW8P5D0hqQ5sQfbPKYvlzRU0qvA2bG8uyS9HHush0l6QtISSbcljv0TSbMkzZP0J0kNY/pFkt6W9BLQI5F/mKTr4vpASbMlzZf0eGqEQFI7SU/G9Hmxp9xc0oux3gsknZoo81pJC+NydYbXZyghCMuDkobH1+uZRH0eiuf7TnzNUvs9JalY0iJJgxLp6yT9b6zfjBiIJL3e8yWlYpVne42WS2ojqSC+xvcDc4AOkh5QiNW9SNLN2/P+cM5Vr3sIYRRz0ZEQMrA/8MOYdiRhrvcrYlmtCEESXB1iZlW2AOviY29gLSH+dQNCJKyj4rblQJu43oYQ1atZfH4DMDSR7/pE2dOB2+P6VcAHQHtCVL/3CSM8/wX8HWgc890PnB/zvQe0BXYiBOm4L+YZBlwX11snjncbcGVcn5BYbwTsmnpMnMe/CCNP3QmBPZoRIm8tAg7N8FpNJ4TeTL1ezyTq83o8rzbAfxLn0yo+7gwsTNWXECb0lLh+B/CrRL2vjusNCZHVMr5Gyb8NYTRtM/D9RH1bJcqZDhyc4ZwGEUYQivYCM1988aXWlmVggJ1URp69wRTztQUblSHP7Lj9zDpwTjvCAhTl0t5W57D5LDN7H0DSvNggvJqW5/tAF+C1MDrLTmwd8nJCWv6n4+MCQqztVbH8d4AOhN5sd2B2LG9n4CPge8B0M1sd808A9stQ5wNjLz4V8jIVlewYQphOYgzrzyQ1Bn4t6WhCQ7cn4TLTUcCTZvZFPNYTQE+2jY5WlklmtgHYIOmjWO77wBBJp8c8HQhBj/4DfA08E9OLCZeoUvU+P9Z7EyFc6nlZXqN075rZjMTzc2JvvxHhy1AXQgCmLcxsBDACQmCSCpyvc64WDCSER10P3AhcRvjQSMUrfws4lfDhfW8t1M9lV52N94bE+qYsxxLwDzPLFubyi7TnqTI3p5W/OZYv4GEzu2mrg0inEb7RlGcMcJqZzZd0IaFHnM25hJ58dzP7RtJyQjzsqpiZZJvXTlJvoC9whJl9KWk6pfG3v7HS8HDZXuuUjK9RBltee0kdgeuAw8zsE0ljEsd2zuWJ1AdLk/j4y8S2uYR45W8TGu/FhIa8CTCV8I3d1R218VOxzwk3MALMAHpI2gdA0i6SMvWIc/UicJakb8XyWknaG5gJ9JbUOvaYz86yfwtgVcxzblq5l8UyG0nalTAE/VFsuPsQQv1CuAxwWjyXZsDpwCvbcU4pLYFPYsO9P2HUojwvEu9FkdQw1jvba1SWXQmN+dp4Pf2Eyp6Ec676TaJ02HIFMIpwB3lnwvVFCMOXpxCum90DPEIYhjso7tMbWEP4AJkJjK+Zqrsc1UbjPQJ4TtK0OIx9ITBOUgmhMd+/sgWb2WLgV8DkWN4/gPZxeH0YYUh+CuEmrEz+m/A+/QfwZiL9KuA4SSvjvvsCY4FCSUWEhv7NWIc5hB78rFjWKDOryJB5Ns8TeuAlwK2E16o8VwF9JC0gDKcfkO01KqsQM5tP+GK+CHiIcM+Ac66OGk4YBodwbWsg2/7TtiEM0w2NefcGniTcUbwUWB233wQMiIurO1Q62urKE+/W7mxmo2u7LnVdoWS1/ts355zLM4JiMyssL5/PsJYjSQMII0v+bcc551yt8qhiOTKzccC42q5H3ujeHYq87+2ccxWSYzRG73k755xzecYbb+eccy7P+LC5qx7FxTkP/zjnnKsY73k755xzecYbb+eccy7P1GjjLemXMSpVSYxo9b0qKvcWSX2roqxyjrMlAlmO+X8k6cYc8g2Pr8vw7avh9pN0u6TXJU2Q1Lr8PZxzO6pc4oaPYeuY4alledz+FLAPYb7l3sCy6qpsPVNj17wlHUH4+3Yzsw2S2hACkeS6f6MYFGQbZja0iqpZpczsaUqDqZTlMqBtDEZSrrJei+1lZjdUR7nOufqpvLjhvSj9je1G4BJC3PA9gX/H/bsQZoX7f8AFhDmmXdlqsufdHliTaqDMbI2ZfQAgqbukl2Ks6hcktY/p0yX9WiEG9y9jvOkGcdsuklZIaixpjKSzYvphsec4X9JMSU3i/N1PxR7/DEkHx7y94gjAPElzJbVIr3QcLXhL0hTC1MCp9E6Sno91fiXON56+74WS7ovrYyTdE+v2TqK+TxPCh86U1E/S3gpxwkvi416J/X+vEAf99jgK8LCkyfF1OUPSHQqxxZ+P87OjEBN9tkJs8RFSuItM0j6SpsTXqVhSB4U43q8oxCifo9L434qjAwtj+f22/+3gnMt3ucQN70hooPsTetdfAxcDjQmN+gbCFKxXUhoIYmk11bdeqcp43uXE+m4OzCMErbkf6BXTGxPiV7eNz/sBDyViXt+fKONvQJ9EvlFxfQxwFqEnv5TQu4cQzKMBIZrd/8S0Y4B5cf3vQI9E/Rql1TkVm3sXQnCOf1Ea+/tFYN+4/j1gaoZzvpDSuOFjgImxPl2AfyXyrUus/x24IK5fDDyV2P8ZoGEi7ver8fU7BPgSOCFue5IQHQ1iHO64/iilcb9nAj9KxAffOZ5n05i2LzGuLHAmYQ70hoRRsvcIc8Zn/Xt3rwNxcX3xxZfqX5ZRftzw1NIXrEHcx8CujPu+Fp/fFJ9PrgPnVVsLdSCe91bMbJ2k7oTY1n2ACfF6cBFwIPCP2ClsCKxK7Dohbb0fMI3wRe7+tMN0BlbF4CCY2VoASUcRGiDMbKpCdLGWhLn6fy9pLPBEKv54Qk9CbO4vYzlPx8fmwJHARJX+HKoJ5XvKzDYDixWic2VyBHBGXH8UuCOxbWKMy53yXIxqtoDwuj0f0xcQQvBCCExyPaFhbgUsUggnumcc1sfMvorn1RK4T1JXQkyCVIS3o4Bx8dgfxpGQw0i7JKAQ73sQwF45vBjOuR3HUkKP5wRKP5zSWXz0H5mWr0Z/5x0//KcD02ODcwEh2tUiMzsiy27JmN5PA7+R1IrQK56aljfb3zxTupnZbyVNAk4EZkjqa2ZvpufLsG8D4FMz65rleNkkr2nn+v5MHj9jfHMz2ywpGdN7MyECWVPCF5xCM1shaRilMcczndc1wIeEnnwDYH1F6mpmIwhR4yiUMpXvnNsBpMcNB/gT4UNncCKtY3xM9ZpWpqW77GrsmrekzpL2TSR1Bd4F3gLaxhvaiNewD8hUhpmtI4Ta/APwTFovFEJYzvaSusWyWsZr5C8T43NL6k249v6ZpE5mtsDMbieMAKRft34ZOF3SzvF6+CmxHp8ByySdHcuUpEMq8bJk8jphVIFY51e3o6ym8XFNHC04C7bUf6WkUwDi+e1MuMywKo4OnEfozUN4HfopxARvCxxN+Ds453ZgucQNh3CdewxhRO7ERHp/wrXO2wnXNp8kDPN1qs5K1xM1ecNac+BhSYsV4kh3AYaZ2deERuV2SfMJ18WPLKOcCcBP2Ho4HYBYVn/gAUkfEIaRGxOuDxfG4/6W0OMHuDrehDUf+Ap4Lq28OfE484DHCfdSpJwLXBL3XQScmusLUY4hwEWxrucRYnJXipl9CowkDKM/BcxObD4PuFbSKsJ5tSb00i+QNIMwZJ7q6T9JCAs8nzDacb2Z/buy9XLO1Q+5xA0HeIIQH3wgWzc67Qk3rX0KXAccSmjkXfnqbTxvSTcQrmMvqe261GWSfkzobU+rynI9nrdzzlXcDh3PW9LvCDdONa7tutRlkn4O3Erp8Lhzzrk8UG973q52ec/bOecqLteet0cVc9Wje3co8ubbOecqJMdojPVy2Nw555yrz7zxds455/KMD5u76lFcnPPwj3POuYrxnrdzzjmXZ7zxds455/KMN941IAZCSYUe/beklYnnOcc0r0mSro1zozvnXI0aQghfKODkMvLdTQhy0oQwH/q9iW0Fcf/UUtFAFHWdN941wMz+Y2ZdYyCTB4G7Us/jlK6p+dHrxN9DUkPgWkrnRnfOuRrVv5ztSwiRlBoAvwe+ITT6KxJ5jiZMvzqOMH96fVInGosdlaR94tzqDwJzCEFVRkgqkrRI0tBE3vclDZM0V1KJpP1i+jGS5sde/BxJzST1lTRN0lNxLvk/KsYulfQTSQvicX8d0xpJ+lTSbZJmAdcD3wJekTQl5jlB0hvxGBMkNavhl8s5t4O4h9Awl2VzfNwT6At8m9ADT/Y4OgInEb4I/LCK61jbvPGufV2AP5vZoWa2Ergxzq5zCHCcpC6JvB+a2aGE4D3XxrRfAINir/5oSsN4fg+4GjgI+C/gVEnfAW4jxFM/FOghKTUq1RKYY2aHm9lvgI+AnmbWV9K3CPEHjjWzboQYBJUOmOKcc9urMyHK1GuEcJBzCfGI2ybyPALsSuiJ/LmmK1jNvPGufUvNLBnta4CkOYSe+H8RGveUJ+JjMaXx7F8D7pZ0JbBrIkzqDDNbHp+PJ0Ta+x4w1czWmNk3wP8RGnwIUfuezFLHI2M9Xpc0jxBRrSA9k6RBcdSgaHVu5+6cc5WymnCNuyshZOIhwBWUxgYfCPwFeJQQdvQyYFnNV7PaeONd+1JhN4nxzq8CjjGzgwkhTZOjQKkY95uIv9E3s9sI78vmwOxEzPT0SeuNcN9GNl9Z9onuBTyfuE7fxcwGpWcysxFmVmhmhW0zFOKcc9tjA6UfgtOAlcAZhHjMZwCfA2/E7b8kxJr+CdCP8KH5dk1Wtpp541237Ep4/30mqT05XKaR1MnMSuJQ91zCaBLA9yXtFW8+Owd4FZgB9Il3vzciXAp6KUvRnwMt4vrrQC9J343HbJb4kuCcc1VqEjAhrq8gXCdcQvhwax3TvxsfHyMMiY+Nz/cDFgCnAPcTrp8/AuxMuIZYX3jjXbfMARYDC4GRZI5rn+66ePNZCSGm/eQsMjcxAAAgAElEQVSY/jrwO8L7+G3gaTN7HxgKTAfmEYbWJ2UpdwQwRdIUM/sQuASYIGl+LHu/Spyfc86VazjhJhsIN9gMZNsPw0LCB9wG4Gfx8T7C8HkbQk97aCxnb8I1wT2qu+I1yEOC1kOS+gJXmNlptVUHDwnqnHMVl2tIUO95O+ecc3nGA5PUQ2Y2BZhSq5XweN7OOVdxHs/bOeecq5+88XbOOefyjDfezjnnXJ7xa96uehQX53ztxjnnXMV4z9s555zLM95413MxYtgVkprUdl2cc85VDW+86wBJ35Y0XtLSGMLz2VTIz+0sV4R49SVmtqG8/Gn7jkqLaOacyxNDgHaEoAQnl5GvIOZJLV1j+hJC6MHWhDmSjwOWVlNdXeX4Ne9aFhvYJ4GHzax/TOtK+N/brnn0Y6CRK8o4diMz25hl30u359jOudrVnzCvd3mOBgbH9d3j40pCvOybCR9C9wKXEoKBuLrBe961rw/wjZk9mEows3nAq5KGx3nLF0jqByCpt6SXJP1F0tuSfivpXEmzYr5OMV9bSY9Lmh2XHjF9mKQRkiYDj0hqKOnOuG9JDC2KpOmSCuP6gLh9oaTba/j1cc5V0D3ANTnm7QicRGjsU5GQjiRELLoiltUKWFTFdXTbx3vete9AQnzudGcQRrFS8+zPlvRy3HYIIdb3x8A7wCgzO1zSVcCVwNXAH4C7zOxVSXsBL8R9ALoDR5nZV5IGE/5/DzWzjZJaJSshaQ/g9rjPJ8BkSaeZ2VPpFZY0CBgEsFflXgvnXA17BHgYaAv8hhCBaKfE9iLCB82ZNV81VwZvvOuuo4BxZrYJ+FDSS8BhwGfAbDNbBSBpKaWRxBYQevIAfYEuKv251q6SUiE+nzazrxL5HkwNn5vZx2n1OAyYbmar4/HGEkbatmm8zWwEIRoZhZJHvHGujhtICLO5nhB96zLgGMK3eYC3CLGyCwhD567u8Ma79i0ixIxPV9aPpJM3n21OPN9M6d+0AXBEopEOhYbG/Iu045TV0PqPtZ2rJ1IfFKmfnvwysW0u8HvCNe6OhNjEx8S8U4H2NVRHlxu/5l37pgJNJA1MJUg6jDBE3S9ek25L6O3OqkC5k0ncrBZvgsuW73JJjWK+VmnbZwK9JLWR1BAYQLgc5pyroyYBE+L6CmAU4Q7yzoQ7yCEM050C3E+4rv0IsDNwUNynN7CGcDPbTGB8zVTd5ch73rXMzEzS6cDdkm4kjGAtJ1y3bg7MJ/SMrzezf0vaP8eihwB/lFRC+Du/DFyeId8oYD+gRNI3wEhCTPtU/VZJuolwo6mAZ83sbxU/U+dcTRlO6TfsEsLw+Oi0PG2ATcBQ4EugC/C/wB7AdGB1zHdTYp/+1VNdVwkKvyZyrmoVSuYBQZ1zrmIExWZWWF4+HzZ3zjnn8owPm7vq0b07FHnf2znnKiTHgE7e83bOOefyjDfezjnnXJ7xxts555zLM37N21WP4uKcr90455yrGO95O+ecc3nGG2/nnHMuz+zwjbekb0saL2mppMWSnpW0XxWWf5qkLlVY3gGSXpH0d0mZZkyrTJmvl7O9UNI9cf1CSfeVld855yprCNCOMJ3jyWXku5sQMKUJYS729MAp6wnTwYrEPNH1yA7deCtE6XiSEDWrk5l1Af4f4b1TVU4jzDyY6fgVvufAzBaZWU8zOyUZA3x7mNmR5WwvMrMhVXEs55wrT3nTsC4hxCtvQAim8g2h0V+RyHML8H611K5u2KEbb0L4zG+SjaCZzTOzVxQMl7RQ0gJJ/QAk9ZY0XdJfJb0paWz8EoCk38bee4mkOyUdCfwIGC5pnqROcd9fxxCfV0kaI2lLVDFJ6xLrN8Tjz5d0c0wbKml2TB+ROHZXSTPisZ+UtHv6yUpqF7fNj8uRyWNKmiDpxET+MZLOjOf8TFW+8M45l8k9hIa5LJvj456EmMbfJvTAm8b0EuAuYFg11K+u2NEb7wOB4izbzgC6AocQ3h/DJaWi4h1KCBzSBfgu0CNG4zodOMDMDgZuM7PXgaeBX5hZVzNbGvffzcx6mdnvslVM0gmEoD+HmdkhwB/ipvvM7DAzO5AQBCg1svQIcEM89gLgfzIUew/wUiyvGyEcadJ4IPUlZSfgWODZbHXMUOdBkookFa0uP7tzzlVKZ+C3wGvA/oRwpiOAtoSG/VLgZ8BhtVXBGrCjN95lOQoYZ2abzOxDQpCe1Hthlpm9b2abgXmESy+fES6zjJJ0BiFQTzYTytiW0hcYk4rHbWYfx/Q+kmZKWkAIt3uApJaELwSpQEIPE0KIpjsGeCCWt8nM1qZtfw44RlIT4ATg5fR44GUxsxFmVmhmhW1z3ck55ypoNeEad1fgKUIP6wrCMPloQljG84GVMf9aSqOk1Rc7euO9COieZVtZP1LekFjfBDQys43A4cDjhOvcz5ex/xeJ9Y3Ev0McAt8p2/ElNSWE3z3LzA4ihO9smp6vssxsPSEa4A8JPXAP4eucqxM2UPrBO43QMJ8BnBofPwfeIFz3Xk1o0H8S8z/G1qFN64MdvfGeCjSRNDCVIOkwSb0I8a/7SWooqS2hJzsrW0GSmgMtzexZwpB617jpc6BFGXVYTukXiFOBxnF9MnCBpJ1j+a0obajXxOOdBRB70J9I6hm3n0dpON+kF4HBsbyGknbNkGc8cBHQE3ihjHo751yVm0Tp0OQKYBThBrXOQOuY/t34+BjwZ2BsfL4fcA4wMS7DYvrxxA++emSHbrwtBDM/HTgu/lRsEeHv/QHhLvQSYD6hkb/ezP5dRnEtgGcklRAaztQ9F+OBX0iaK6lThv1GAr0kzQK+R+yVm9nzhPfxfEnLgSvN7NOYfwFhtGh2opwLCNflSwhfHG7JcKyrCMPuCwjX+g/IkGcy4YvKFDP7uozzdc65KjccuDGulwADCde2kwqB3xF64j+Lj/cRettdCL2as4BeMX8nsg+x5iuF9svVVXEofYSZDSw3cx1SKJkHBHXOuYoRFJtZYXn5duied10Xh8bnAh1quy7OOefqDg9MUoeZ2TpKr53nl+7docj73s45VyE5BnTynrdzzjmXZ7zxds455/KMD5u76uHxvJ1zrtp4z9s555zLM954O+ecc3nGG+9aIqlA0sK0tGGSrosxs/dIpI9KxQSXtFxSm7ieMQ53eqSyytTFOeeqS1XE7H4NODhu6wbMqY6K1mHeeNdNFwJbGm8zu9TMFqdnKi8Ot3PO1VXbE7N7PXAmYe7pu4APCTOqbaquytZB3njXTYXA2BgDfOcYA3ybGXcScbgl6b4YS3wS8K1Enmzxv7vHmN5vEGYYTOVvqBDHfHaMDX5ZTG8v6eVYp4WJedSdc65Ctjdm93OEBvuncbkEWEaIqrSj8Ma7bioCzo0xwHMJyXk6Yd7+gwhTASd75Nnif48GhpjZEWllXQKsNbPDCCFQB0rqCPwYeMHMUjHO51Xy3JxzrlxlxexeFvPsGR+/Ex/fqckK1jJvvGtPtknlKzPZ/NGUxh7/gBBIJSWX+N+PJvL/ADhf0jxgJiGQz76EICgXSRoGHGRmn6dXQtIgSUWSiupb7FznXM0qK2Z3utSH5o7041RvvGvPf4Dd09JaAWsqWd42jX4Z8b+VKX9qN0IEs65x6Whmk83sZcKXhJXAo5LO36YCZiPMrNDMCttW8iScczuuXGN2d4x5Ug35yviYSt8ReONdS+K85askHQtb4nUfD7xK+THA070M9I/Xq9sDfWJ6tvjfnwJrJR0Vt5+bKOsFYLCkxrFe+0lqJmlv4CMzG0kIodutYmfsnHPB9sbsPoFwY88Dcfkz4a703tVb7TrFG+/adT7wqzhEPRW42cyWAmOAB1M3rOVQzpOE9/4Cwnv5JdjSSGeL/30R8Md4w1ryuvooYDEwJ/587E+Emfh6A/MkzSXc6PmHypywc85tb8zupsBEoDlwFaEhnwg0rO6K1yEez9tVC4/n7ZxzFefxvJ1zzrl6yhtv55xzLs94VDFXPbp3hyIfOHfOuQrJMRqj97ydc865POONt3POOZdnfNjcVY/i4pyHf5xzrtrU019Uec/bOeecyzM11nhLOi8Zo9o555xzlVNu450KO5krSb0lPZOWdjRwdAyaUda+V0vapYztoyR1qUh9EvsWxBnDcs2/m6SfVuZYFSVpXAy/WV6UvJqoy6OSXpL0iCS/rOKccxksWbKEPn360Lp1a1q0aMFxxx3H0qVLt8n31Vdfceyxx9K8eXMkceedd27Ztnr1arp27UqzZs1o0aIFvXr1gtJprctUUz3v7xACwpTnaiBj4y2poZldamaLq7Rm2e1GCBWbsS5VdRBJ3waONLODzeyuHPeptkbVzM4zs15mdr6Zbayu4zjnXD5buXIlmzdv5uabb+aiiy5iypQpXHrppdvk27RpE61ateL444/PWM4JJ5zA/fffz+DBg3n55ZcBOuRUATMrcwHWxcfehFjnfwXeJMwTn5pe9fiY9iohzvozMX0YcF2irIWE+eObEeamnx/T+gFDgK8J83BPSx0buIUQmvKoePzCuO0BQtzrRYQ5wTPVvXs8xhuE6XQXxvSG8flswtS6l2XYdzxhzu95MW9vQqCb/wMWxzxPAcWxDoOSrxnwv/HYM4B2Mf3seL7zgZdjWkniOD0JEfBmxPQngd1jvunArwnzlv+cMP/5A7FO7wC9gIeAfwJjEnXJ+DoRYnW/HusykxDn/vCYNjc+do55mxLify+I2/qU977pHm4T8cUXX3yp3aWabNiwYavnrVq1srZt22bNP3r0aANs+PDhW6Vv3LjRPvroI3vuuecMMGCtWdmfrxbPrOwMWzfeawm96AaxQTwqfrCvIMR8FvAXym+8zwRGJtJbxsflQJtEugHnJJ5Pp7TxbhUfG8b0gzPUvQToFdeTjfcg4FdxvUls3Dqm7VuQyp84/y+S+RJ12DmeW+tEvU+J63ckjrUA2DOu75blOMk63wLcnTj3+xP5xhC+YIgQMe8z4KD4tykGumZ7nYCdgKVAt9TrH/fbFWgU0/oCj8f1nwOj4/r+wHtA07LeN954++KLL3ViqQGzZ882wM4888ysebI13nPnzrXYZtiee+5pyfagrKWiw+azzOx9M9tM6CkWxA/zZWa2xMyMEMGtPAuAvpJul9TTzNZmybcJeDzLtnMkzSH0BA8AtroWLqkloYF8KSY9mtj8A+D8GM1rJiEK3b451HuWmS1LPB8iKdW77pAo42sgdd2/mPA6QQicM0bSQDIEwMlQ54cJMbRTJqTt8vf4mi8APjSzBfFvsyhxzEyvU2dglZnNATCztXG/lsDEeG/AXTE/hC9pj8a8bwLvEiLzpdd/kKQiSUWr0zc651w99NZbb3HqqadSUFDAvffeW+H999lnH1544QVuvfVWPvjgA4Bv57JfRRvvDYn1TZT+Ttyy5N+YdoymAGb2NmFIewHwG0lDs+y/3sw2pSdK6ghcBxxrZgcThuDTL/KrjHoJuNLMusalo5lNzpI36YtEHXoTeqdHmNkhhMYxVYdvYqMKidfJzC4HfkVo6OdJSoWuzdUXac9Tf4/NbP232Qw0KuN1yvYD7FsJlywOBE5JnE9OP9g2sxFmVmhmhW1z2cE55/LY4sWL6dWrF40aNWLq1Km0b98eM2P9+vV88803OZXRvHlzfvCDH/CrX/2KDh06AOyey35VccPam0BHSZ3i8wGJbcuBbgCSugEd4/oewJdm9hhwZyoP8DnQIodj7kpoyNZKakeIzb4VC7Gs10o6Kiadm9j8AjBYUuNYn/0kNUsrory6tAQ+MbMvJe0PfL+8SkvqZGYzzWwosIa0GxPiCMQnknrGpPOIsbkrKdvr9CbQPv5NkNRSUoN4TitjngsT5bxMfP0k7QfsBby1HfVyzrm8tmLFCnr37s2aNWsYPHgwM2fOZPz48bz77rvsvPPOnH766Vvyjho1KnUzGrNmzWLUqFGsW7eO0aNHc9VVVzF69GiuueYa3nvvPYD1uRx/u+9aNrP1kgYBkyStIdy0dmDc/Dilw9Ozgbdj+kHAcEmbgW+AwTF9BPCcpFVm1qeMY86XNJcwPPwO28ZxT7kIeEjSl4QGO2UUYVh5jiQBq4HT0o7xH0mvxSHk5wi91qTngcsllRAashnZ6pswXFLq3oAXCTeL7Z2W5wLgwfiTuXfiOVRKttfJzL6W1B94QFIHwjB4b8L1+YclXQtMTRR1f6zTAsJoyoVmluzpO+fcDmXp0qWsXh0uEN50001b0pctW7ZN3oEDB25ZnzhxIhMnTqRv3760bduWZ599lgcffJDmzZtz8skn88wzz7yTy/FVOrrrdkSSbgCeMLMlVVluoWQeU8w5V+vyrI2TVGxmheXl8+lRd2CSfke4875xbdfFOedc7rzn7apFYWGhFXk8b+ecqxDveTvnnHP1lDfezjnnXJ7xxts555zLMx41ylWP4mJQTnO7OJed35PjXEbe83bOOefyjDfeWUg6L84E55xzztUp9a7xlrSugvl7S3omLe1o4Ggz+6Ccfa+OM6Fl2z5KUpds27eXpAsr8wVD0mnJekm6RVLfqq2dcy7fDBkyhHbt2iGJk08+OWu+Tz/9lPPPP5/ddtuN5s2bc/TRIX7SkiVL6NOnD61bt6ZFixYcd9xxLF26tKaqv0Opd413FfkOcEUO+a4GMjbekhqa2aVmtrhKa7a1C4GMjbekbaKWJZxGIgqbmQ01sylVWzXnXD7q379/uXkuvvhixo4dyyWXXMLdd9/NPvvsA8DKlSvZvHkzN998MxdddBFTpkzh0ksvre4q75hyiRuaTwtbxx+fDvyVEIhjLKWT0hwf014F7qH8+OPNCHObz49p/YAhhNCfCwiRuADWEWJwzySE0ZxOafzxBwhxwxcBN2epeyfCnOnFwCvA/jH9b8D5cf2yeC5nxeO9RQjPujMhEMzQeF79gYGEOeXnE+aZ3wU4EvgYWBb360SIDX4WIXDJXxL16U0IO5pT/ZOLx/P2pUoWV+OWLVtmgJ100kkZty9dutQAO/fcc23Dhg22cePGLds2bNiwVd5WrVpZ27Ztq7W+9Q1QZFb18bzzzaGE3nEX4LtAD0lNgZGEkJc9yS126vHAB2Z2iIVwmc+b2T3AB0AfKw2i0owQSP17ZvZqWhm/tDBrzsFAL0kHZzjOCEKo0u6EUJ73x/RBwNAYbeznMc9fCY3puRbCmn4V8643s6PMbDxhzvLDLIQs/SdwiZm9DjwN/CLulxzT+gfw/USEtX6UxhAvt/4ez9u5+m/x4jCYOHv2bJo1a0azZs244YYbANhpp5225CsqKuLjjz/eMqTuqlZ9b7xnmdn7ZraZ0MssAPYHlpnZkvgt57EcylkA9JV0u6SeFkJ3ZrKJ0MPN5BxJcwhxvw8gMWwNIKk5oVc8MUZh+xPQHsDMPiT0qKcBPzezj8uo64TE+oGSXonRwM6Nx83KzDYSev6nSGoEnETo9Zdb/7i/x/N2rp7bsCEEFPziiy+YMGECPXr04I477mDKlNIrb2+99RannnoqBQUF3HvvvbVV1XqtvjfeybCVmyj9Xbtlyb+RrV+TpgBm9jbQndCI/0bS0Cz7rzezTemJkjoSetLHmtnBhCH4pmnZGgCfxt5wavmvxPaDgP+Q5Rp3wheJ9THAFWZ2EHBzhmNmMgE4BzgGmG1mn+dYf+dcPbVhw4YtjXZBQQEAPXv25IwzzuCcc84B2HJj2uLFi+nVqxeNGjVi6tSptG/fvlbqXN/V98Y7kzeBjpI6xecDEtuWA90AJHUDOsb1PYAvzewx4M5UHuBzoEUOx9yV0KiuldSOcG15K2b2GbBM0tnxmJJ0SFw/PO5zKHBdbExzOX4LYJWkxoSed0pZ+00nnN9ASnvx5dbfOZf/Jk2axIQJ4d9+xYoVjBo1iiVLltC5c2dat24NQLdu3TjooIN48cUXGTlyJKNHj6Zhw4b06NGDFStW0Lt3b9asWcPgwYOZOXMm48ePr81Tqr9yuTCeTwtb37D2TCL9PuDCuJ68Ye23lN6wtjMwmTDEPpJwnbgA+CFQEtNnU3oT2pWxnGnJYyeOOT2Rd0wsbxLwRKouafk7Eoat5wOLCUPlTeLzbjHPjwjD5wLOZNsb1tokyhtMuDFtOnAvMCam94jlzyVxw1raa7UO2CWRVm79k4vfsOZLlSyuRvXq1cuArZbRo0fb3nvvbc2aNduSb+HChfb973/fmjRpYvvuu6+NHTvWzMymTZu2zf7437FCyPGGNQ8J6qpFoWQeENRtN/98cjsYDwnqnHPO1VMemMRVj+7docj73s45Vx285+2cc87lGW+8nXPOuTzjjbdzzjmXZ7zxds455/KMN97OOedcnvHGewckqaGkq+L85c455/KMN96VJOl0SSZp/9quSyVcS5gNbmOmjZL2kPTXGq6Tc66OGzJkCO3atUMSJ598ctZ8n376Keeffz677bYbzZs33xJZbMyYMUjaZlm+fHkNnUH94Y135Q2gNG52ziQ1rJ7q5Hz8BsC/zezPWbY3MrMPzOysGq6acy4P9O9f/kfexRdfzNixY7nkkku4++672WeffQDo1asX48aNY9y4cTz66KPstNNOtGvXjj333LO6q13/5DKHqi/bzEHeHFgJ7Ae8GdMaEOJvLwKeAZ4lzhdOmHN8KKWNfVdgBmG+9CeB3WO+6cDdwOvAQuDwmN4MeIgwr/pc4NSY3pAQKGVBLOvKxPHaxPVCYHpcPzyWPTc+do7pFwITgb8DUwnzuS+M2wqAV4A5cTkyl9eoe/fuGWbtdc7lu2XLlhlgJ510UsbtS5cuNcDOPfdc27Bhg23cuDFjvokTJxpgN910U3VWN++Q49zm3vOunNOA5y2ECv04RiA7g9DQHQRcChyRts96MzvKzMYDjwA3WAivuQD4n0S+ZmZ2JPBTQoMN8EtgqpkdBvQBhktqBgwiBDM5NJY1tpx6vwkcbWaHEkKE/jqx7QjgAjM7Jm2fj4DjzKwb0A+4J1vhkgZJKpJUtHr16nKq4pyrjxYvXgzA7NmzadasGc2aNeOGG27YJt+f/vQnGjRowKBBg2q6ivWCN96VMwBIxbkbH58fBUw0s81m9m9C5K+kCQCSWgK7mdlLMf1h4OhEvnEAZvYysKuk3YAfADdKmkfonTcF9gL6Ag9avHZtZh+XU+8WwFhJrxJGAg5IbPtHlv0bAyMlLSD0zrtkK9zMRphZoZkVtm3btpyqOOfqo1Tc7y+++IIJEybQo0cP7rjjDqZMmbIlz9KlS3nxxRc5/vjjt8QHdxXjdxtXkKTWwDHAgZKMMHRthOHvsnyR4yHSwygZMfynmb2VVhdlyA+wkdIvZk0T6bcRwpc+GGOCJ79gZKvfNcCHwCGxzPW5nIRzbseRarCbNGmypTHu2bMnZ5xxBqtXr2bq1KksXbqUvn37AqHXbWYMHjy4tqqc97znXXFnAY+Y2d5mVmBmHQgxs9cAZ0pqIKkdIZ74NsxsLfCJpJ4x6TzgpUSWfgCSjgLWxvwvAFfGxhpJh8a8k4HLUz/5ktQqpi8Husf1MxNl7w6kxrMvzPF8WwKrzGxzrGut3nDnnKs9kyZNYsKECQCsWLGCUaNGsWTJEjp37kzr1q0B6NatGwcddBAvvvgiI0eOZPTo0TRs2JAePXoA8PXXXzNmzBj22msvTjzxxFo7l3znjXfFDWDbXvbjwB7A+4Qbzf4EzATWZinjAsJ16xLCzWu3JLZ9Iul14EHgkph2K2H4ukTSwvgcYBTwXkyfD/w4pt8M/EHSK8CmRNnDgd9Ieo3c//b3AxdImkG4QS/XEQTnXD0zfPhwbrzxRgBKSkoYOHAgr7322lZ5JDFu3Dg6derElVdeyccff8wjjzzCgQceCMATTzzB6tWrGThwIA0aeBNUWTIPdl9lJDU3s3VxaH0W0CNe/851/+nAdWaW97E0CwsLrchDgjrnXIVIKjazwvLy+TXvqvVMvMFsJ+DWijTczjnnXK688a5CZta7Nvd3zjm3Y/ALDs4551ye8cbbOeecyzPeeDvnnHN5xhtv55xzLs944+2cc87lGW+8nXPOuTzjjbdzzjmXZ7zxds455/KMN97OOedcnvG5zV21kPQ58Fa5GZ0rWxtCxD7nKivf3kN7m1nb8jL59KiuuryVy+T6zpVFUpG/j9z2qK/vIR82d8455/KMN97OOedcnvHG21WXEbVdAVcv+PvIba96+R7yG9acc865POM9b+eccy7PeOPtMpL0kKSPJC0sI09vSfMkLZL0UkzrHNNSy2eSro7bbpVUEtMnS9ojpu8v6Q1JGyRdVzNn6KpbZd9DZe0rqaukGXGfIkmHx3R/D9VDkjpImibpn/E9clWGPBn/9pKaSpolaX7c9+YM+94raV3i+bWSFsfPqRcl7V19Z7d9fNjcZSTpaGAd8IiZHZhh+27A68DxZvaepG+Z2UdpeRoCK4Hvmdm7knY1s8/itiFAFzO7XNK3gL2B04BPzOzO6j07VxO25z2UbV9Jk4G7zOw5SScC15tZb38P1U+S2gPtzWyOpBZAMXCamS1O5Mn4t5ckoJmZrZPUGHgVuMrMZsTthcBVwOlm1jym9QFmmtmXkgYDvc2sX42dcAV4z9tlZGYvAx+XkeXHwBNm9l7M/1GGPMcCS83s3Zjns8S2ZoCl9jWz2cA3VVF3Vzdsz3uojH0N2DWutwQ+SO3r76H6x8xWmdmcuP458E9gz7Q8Gf/2FqR61Y3jYrClYzEcuD5tn2lm9mV8OgP4TtWeUdXxSVpcZe0HNJY0HWgB/MHMHknL05//3979hNgUhnEc/z6ZlMlWzYZuGpSIiUaJ/GkKqdnIQolkgyxmFjYmKWUnkRRlFhZjyjRTlFAWYqWwsTBlFv5PUxamEAvzs3jP1G3mzoy50+Ecfp/Vvee87z3P7Ty3p/c9T13orT4QEWeBA8AosO0PxGnF9U05ifAAAAIXSURBVDs5NFEHcD8izpEWHxvzDdGKIiIqQAvwZBZz5pFW683AZUnjc48DtyUNpwV6TYeBu/XGmzevvK1eDcA6YDewAzgVEcvHT0bEfKAd6KueJKlL0mKgh/QDsv/XtDk0haNAZ5ZDnUB3viFaEUTEQqAf6JiwgzctST8lrSWtoFsjYlXWa7MXuDTN9fYD60mr80Jy8bZ6vQfuSfoq6RPwCFhTdX4X8FzSyBTzbwB7co7Rim2mHKrlIDCQve4DWnOMzwoge17dD/RIGphpfC2SPgMPgZ2k1XszMBQRr4HGiBiqul4b0AW0S/oxt+jz4+Jt9boFbI6IhohoBDaQnkeN28fkLfNlVW/bgcHco7QimymHavkIbMlebwde5Rif/WVZ01k38FLS+VnOXZQ1RRIRC4A2YFDSHUlNkiqSKsA3Sc3ZuBbgKqlw1+rjKQx3m1tNEdELbCX9I88IcJrU8IGkK9mYE8AhYAy4JulCdrwReAcslTRa9Zn9wIps/BvgiKQPEdEEPCU1Io2RuoxXzmZ7zIpnjjk0aa6k7ojYBFwkbbl/B45JeuYc+jdl9/sx8IJ0XwFOAksg5dFU9x6oANeBeaSF6k1JZ2pc40tVt/kDYDUwnJ1+K6k9ly83Ry7eZmZmJeNtczMzs5Jx8TYzMysZF28zM7OScfE2MzMrGRdvMzOzknHxNjMzKxkXbzMzs5Jx8TYzMyuZX8FZirIlOwybAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAD8CAYAAABevCxMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xuc1VW9//HXWy4zo3g5BHgExEG8hCjiMFSCIKiUE3qQoET7iXYQw9FQSqnkSGDBCbDomDpyS5IMFcEyCTWUAYQUuchFMk2GBKxJKBWUIRg/vz/WmmHPuPdcYGDY8Hk+Hvsxe9Z3fdd3fb8z8Nlrfb+zPjIznHPOOZc+jqnvDjjnnHOudjx4O+ecc2nGg7dzzjmXZjx4O+ecc2nGg7dzzjmXZjx4O+ecc2nGg7dzzjmXZjx4O+ecc2nGg7dzzjmXZhrWdwfckalZs2aWnZ1d391wzrm0snLlym1m1ry6eh683UGRnZ3NihUr6rsbzjmXViT9tSb1fNrcOeecSzMevJ1zzrk048HbOeecSzMevJ1zzrk048HbOeecSzMevJ1zzrk048HbOeecSzMevJ1zzrk048HbHRwrV9Z3D5xz7ojlwds555xLMx68nXPOuTTjwds555xLMx68nXPOuTTjwds555xLMx68nXPOuTTjwds555xLMx68nXPOuTTjwfsII+kESTfXdz+cc84dPIdN8JbUT5JJ+mwVdWZIGlCLNltKerIG9X4v6aQqtt8u6diaHrcGxxsvaZmkxyV9pq7ajSYCbyQca7SkO5L0IVvS+vg+V9J9ddyPCpYuXUrHjh3JyMggJyeHVatWJa03efJkWrduTVZWFn379mX79u0AvPPOO3Tr1o2MjAwk8eST1f5YnXPuiHXYBG/gGuAlYGBdNWhm75pZtcHezL5sZu9XUeV2IGnwltRgP/r1XTPramZXm9n22u6fiqQTgefMbGEt+7PCzIbVVT8qKykpoX///uzYsYNJkyZRXFzMgAEDKC0trVBv9erVDB06lPbt2zNmzBjmzZvH8OHDAdi9ezenn346PXr0OFjddM65tHFYBG9JTYBuwGASgreC+yVtkDQPaJGwbZOkcZL+KGmFpBxJz0l6W9LQWCdxdHmDpLmSnpX0lqQJldpqJuk4SfMkrZG0XtLVkoYBLYGFkhbG+jsl3SPpFeBCSaMkvRr3mSJJsd4ZkhbE9lZKOjX2aYmkVfHVNeFcJ8Y21km6Osl1ypb0hqRfSlor6cmyGQFJm4BGZjY3jqQLE3Y9X9KL8byHJGm3p6Rnyn4Wkh6OfVgrqX8sL4jX+XVJY2rz850/fz7FxcXk5+eTn5/P4MGDKSoqorCwsEK9GTNmADBu3DhGjBhB165dmTVrFiUlJZx55pnMnDmTbt261ebQzjl3RDosgjdwFfCsmb0J/FNSTizvB5wNnAcMAbpW2m+zmV0ILAFmAAOALwD3pDhOJ+Dq2N7Vkk6ttP1y4F0zO9/Mzo19ug94F+hlZr1iveOA9Wb2eTN7CbjfzLrEfbKAK2K9R4H7zOx84CJgG/APoLeZ5cS+lE1XfyX273zgMmCipFOSnMPZwBQz6wh8COSnONdEHYE+wIXAKEktq6h7N/CBmZ0Xj/FiLB9pZrmxrYsldazBcQEoKioCoFWrVgC0bt0agI0bN1Zbb+/evWzevLmmh3LOuaPC4RK8rwEei+8fi98D9ABmmVmpmb3LvkBS5un4dR3wipntMLP3gJIU97BfMLMPzKwE2ACcVmn7OuCyeE+6u5l9kKK/pcCchO97SXpF0jrgEqCDpOOBVmb2NICZ7TKzXUAjYGqsOxs4J7ZxUcK5FgOLgC5Jjr3ZzJbG97+K+1Xnt/H424CFwOeqqHsZ8EDZN2b2r/j2a5JWAauBDgn9Lifppjg6X/FemzYpD2BmZfWr7HRN6znn3NGm3oN3fGDrEmBanPq9kzAqLvsf26rYfXf8+knC+7LvG1ZRH0IArlAnjvw7E4L4/0oaleK4JWZWGvufCTwIDDCz84CpQCagFH0fDhQTRti5QONYXtMIVbnNsu/3su/nmVnDfZL5VL8ltQXuAC6No/F5SY6BmU0xs1wzy23evHl5edu2bQHYsmULAFu3bi0vLykpYc+ePSnrNWzYsHyk7pxzLqj34E2Y6n7EzE4zs2wzOxUoIowoFwMDJTWIU8i9qmroQMXp5I/N7FfAvUDZ9P0O4PgUu5UFsW3x3v0AADP7ENgq6crYdpakLOBE4G9m9glwHVD2wNtiwoeWBpKaE2Ydlic5XhtJF8b3ZQ/5AWwifPAA6F9pn76SMuMHpZ7Aq6mvAs8Dt5Z9I+k/gBOAj4APJJ0M5FWx/6fk5eXRokULCgoKKCgoYPr06WRnZ5OdnU1WVhb9+vUDYNCgQQCMHDmSCRMmsGzZMgYOHEhmZiY7d+5k2rRp5U+pv/DCC0ybNq023XDOuSNGstHpoXYN8ONKZXOAawn3cy8hjITfJEwlH0znEe41fwLsAcr+XnoKMF/S3xLuewNgZu9Lmhr7uImKgfE6YIqkKcBWwr39B4E5kr5KmML+KNZ9inBPeg1h5DvCzP6epI9/Aq6XNBl4CyiI5WOA6ZLuAl6ptM9ywmi5DfBDM3tXUnaKa/Aj4IH4oF8pMCY+BLcaeB3YCCxNse8+K1dCnDzJJNwfuAW4LT+fDoTpiQZnnBHqzpsHEp0J8/VjN2xgyZIl5OXlMWnSJAC2bdvGkCH7nrV76KGHALjxxhur7Ypzzh1pVHZf0R08kq4ljLZr9SdcSdrJBp6JD8Yd1nIlW7G/O/vvpHPuKCVpZXw4uEqHw7T5EU3Sd4Afsm963DnnnDsgPvJ2B4WPvJ1zrvZ85O2cc84doTx4O+ecc2nGg7dzzjmXZjx4O+ecc2nGg7dzzjmXZjx4O+ecc2nGg3cCSa0l/Tamznxb0v9JalyD/e46FP2rC5JaSnqyvvtRU0uXLqVjx45kZGSQk5NTvjxqol27dnHppZfSpEkTJHHvvfdW2P6b3/yGM844g8zMTHr27Fmevcw559KVB+8oJkKZC/zGzM4EzgKaAGNrsHvS4B1zdB/yaywp5YIwZvaumQ04lP3ZXyUlJfTv358dO3YwadIkiouLGTBgAKWlpRXqlZaW0rRpUy6//PJPtfH3v/+dgQMHcsIJJzBx4kRWrlzJ9ddff6hOwTnnDgoP3vtcQsgW9jBAzBo2HPhvScdKukHS/WWVJT0jqaekHwNZkl6T9KikbEl/kvQgsAo4VdI1ktZJWi9pfNy/gaQZsWydpOGVOyTpq3H7GkmLE/abKOlVSWslfTOW95S0UNKvgXUxrWl+QlujJX0n9m99Qls/icdYK+mmWL5f/a1r8+fPp7i4mPz8fPLz8xk8eDBFRUUUFhZWqNekSRNmz57NFVdc8ak2Zs2axe7du/n+97/Pt771Lfr168eSJUt4++23D3b3nXPuoDkcEpMcLjoAKxMLzOxDSe8AZ6Taycy+J+lWM+sE5euPnw18w8zyY6ay8YSMX/8Cnpd0FbCZkO/73Lhfsvzjo4AvmdnWhO2DgQ/MrIukDGCppOfjts8B55pZkaQLgJ8REqEAfA24nIof2G4CTgXON7NSSU0PpL8x+N8E0KZNG/jrX1Ndthopm95u1aoVQHlq0I0bN3LppZcecBvt2rU7oP4551x98ZH3Pqnyb6cqr8pfzezl+L4LUGhm75nZXuBRQrrPjcDpkn4u6XLgwyTtLAVmSBrCvrXRvwgMkvQaIXvYZ4Az47blZlYEYGargRbxHvf5wL/M7J1K7V8GTCnLTW5m/zyQ/qbK511Xypby3ZfqvX7acM65+ubBe5/XgQrryUo6gTAyfRvYS8XrlUlqHyW8TxolzOxfwPlAISFb5qeSU5vZUOB/Yh9ei/m4BXzLzDrFV1szKxt5f1SpiScJ+cWvBh5L0o1kfdvv/ta1tm3bArBlyxYAtm7dWl5eUlLCnj17DqgN55xLVx6893kBOFbSICh/6OsnwAwz+5iQq7uTpGMknUqYoi6zR1KjFO2+AlwsqVls8xpgkaRmwDFmNge4G8ipvKOkdmb2ipmNArYRgvhzwM1lx5N0lqTjUhz7MWAgIYAne8L8eeCmsgfcJDU9kP7Wtby8PFq0aEFBQQEFBQVMnz6d7OxssrOzycrKol+/fuV1p02bxuLFiwFYvnw506ZNY+fOnQwcOJDGjRszfvx4fv7zn/PUU09x0UUX+ZS5cy69mZm/4osQHH8HvEUYbf8cyIjbRJhCfh14nDAC7Rm3jQf+FLdnA+srtXstsA5YD0yIZecTHmh7Lb7ykvRnbsJ+/xf7cAwwLqF8IXAi0JOQ67tyG+uAhQnfl/eP8MzDTwlT4n8BhhxIfxNfncHqwqJFi+zcc8+1Ro0aWadOnezVV1+1oqIiA6xPnz7l9Qi3Niq8ioqKzMxszpw5dvrpp1vjxo2te/fu9pe//KVO+uacc3UNWGE1iFeeEtQhKRO418xuras2cyVb4b9bzjlXK54S1NWIpLOAV4GM+u6Lc865mvE/FTvKmdmbwHn13Q/nnHM15yNv55xzLs148HbOOefSjAdv55xzLs148HbOOefSjAfvo4CkbpIuqu9+OOecqxv1Grwl9ZNkkj6bUJYt6dqE73Ml3VdNO0PLVkarVF6eQasWfZoh6YBSZtakz7Voa1Nc3axyefk5J/ZZ0jRJ5yTUOxEYTVhYJdUx7pF0WV301znn3MFX3yPva4CXCEt4lskmrPAFgJmtMLNhVTViZg+Z2SMHpYf7oSZ9roNjJD1nM7vRzDYkFJ0D3GJmO5O1I6mBmY0yswUHq68AS5cupWPHjmRkZJCTk8OqVauS1ps8eTKtW7cmKyuLvn37sn37dgDeeecdunXrRkZGBpJ48slkq70659zRod6Ct6QmQDdCisvE4P1joHvMjz085ql+Jq4pvikxFaWkv0g6OeaqviOWdY75r/9ISKBRVjdb0hJJq+KrayyXpPslbZA0D2iRsE9nSYskrZT0nKRTYvmwWH+tpE8l/Cjrc3w/WtIvJT0f+/8VSRNiTuxnE9Yov1TS6lj+i5jus8ydkpbH1xkJ7d6R5NiFknLj+wLCEq+/kTQmoc4mSaMkvQR8tdLIfZRCrvD1kqYopt+q7pyrUlJSQv/+/dmxYweTJk2iuLiYAQMGUFpaWqHe6tWrGTp0KO3bt2fMmDHMmzeP4cND2vDdu3dz+umn06NHj9oc2jnnjkj1OfK+Cng2LhLyT0lliS6+ByyxkDFrUlllM/sE+C3QD0DS54FNZlZcqd2HgWFmdmGl8n8Avc0sh5Blq2xaux8h//Z5wBCgLKg3IgS+AWbWGfgFMDahjxeYWUdgaA3OtR3QB+gL/Iqw1vh5wC6gT1yedAZwdSxvCNycsP+HZvY54H5Cju6aGhmX2esI9JLUMWFbiZldZGaVA/H9ZtbFQt7uLOCKWF7bcy43f/58iouLyc/PJz8/n8GDB1NUVERhYWGFejNmzABg3LhxjBgxgq5duzJr1ixKSko488wzmTlzJt26davNoZ1z7ohUn8H7GvalqXwsfl+dxwmBF8Jo/fHEjfH+7klmtigWzUzY3AiYKmkdMJswnQwhV/UsMys1s3eBF2P52cC5wB8Ucmf/D9A6blsLPCrp/xFShVZnvpntIST7aAA8G8vXEW4TnA0UxQ8yAL+M/SozK+Fr5Q8lVfmKpCXxnNqx75yh0rVL0EvSK/E6XQJ0iOXVnrOkmyStkLTivTZtysuLiooAaNWqFQCtW4fLuHHjxgr7J6u3d+9eNm/eXKOTdc65o0W9LI+qkJf6EuBcSUYIaCZpRDW7/hE4Q1Jzwsj9R5WbJmSUSmY4UEzIjnUMUJKwLdk+Al5PMoKHMIruAfwXcLekDmZWVRDfDWH2QNIe25cN5hPCzyBpDu0U/atRtg9J2cAIIMfMdkr6JRVzkFfO/V2WoORBINfMNksanbBPtedsZlOAKQC5ubkp+1l2+nFGPqWa1nPOuaNNfY28BwCPmNlpZpZtZqcCRcBFwA7g+GQ7xaD3FCGN5Z/MbHul7e8DH2jfn0V9PWHzicDf4vT7dYQPDACLgYGSGsR72r1i+Z+B5pIuhDCNLqmDpGOAU81sISE4ngQ02e8rEbwBZJfdz479W5Sw/eqEr3+sYZsnEablP5Z0MnB5DfYpC9Tb4jMJZffBD+ic27ZtC8CWLVsA2Lp1a3l5SUkJe/bsSVmvYcOG5SN155xzQX0lJrmG8GBaojmEp8yHAXslrSHcB15dqd7jhCxYN6Ro+xvALyR9DDyXUP4gMEfSVwk5sMtGnk8RZgHWAW8Sg6aZ/Ts+xHVfnI5vSLjf/Cbwq1gmYFL80LDfzKxE0jeA2ZIaxvN7KKFKhqRXCB+2anJ7AWBNfL1OyNe9tAb9eF/SVMK12BT7AeGDTu3OeeVKiCPmPMJTgAXf/S7Hf/e7TG/ZkuzsbLKzs8nKyqJPnz4888wzDBo0iPvuu4+RI0fSu3dvli1bxjXXXENmZiY7d+7kscceK39K/YUXXuD999/nxhtvrOHlcM65I4fn83YHRa5kKxK+X0x49P/PQIdOnZg6dSrNmjWjbdu25cEb4MEHH2Ts2LFs376d3r178/DDD9OsWTM2bdpUPjJP5L+/zrkjiWqYz9uDtzsoKgfvCvx3zjnnkqpp8K7vRVqcc845V0sevJ1zzrk048HbOeecSzMevJ1zzrk048HbOeecSzMevJ1zzrk048HbOeecSzN1GrwlJc0ZXanO7ZKOrcvj1pakGyTdH98PlTRoP9u5XdLLkmZLOruW+35V0p8kLZSUK+m+6vc6uCT9XgkpVw+FA83zXVhYiKQKr5/9rDaJ15xzLv3U6SItknaaWZVrXkvaREh8sa0W7TYws9Lqa9a4vRtiH26tqzb3ow/PAuPjeuGHrZjPW3FN+BqrySItJSUl5Uuk3nnnnYwdO5aMjAzeeustGjRoUF599erV5OTkcNlll9G7d2/uuusurr32Wh555BEKCwvp1asXd999N+ecE5Km5eTkcNZZZ+3P6TrnXL2q6SItmFmdvYCd8WtPoBB4kpB041HCmtjDgH8T1s5eGOt+kZBsYxUhVWeTWL4JGAW8REj/WQhMIqy0+SegCzAXeAv4UUIf/h+wHHgNmAw0iOXfYN/a5VMJeasBRgN3xPdDCOt5ryGstX5sLD+ZsAb6mthuLiExxwux3+uAvgl9+DawPr5uT3KdRgE7CauFTozX65mE/vwinu9GQm7ysv1+A6wkrFd+U+J1J+QaXwO8DJycpN9rgK7VXKNNQDNCmtI/EdaDXw2cBhQAK+Kxx1T3u9A5hOjkr2ju3LkG2IQJE8zM7O677zbAFixYYImGDRtmgC1fvtzMzLp3724NGza0Xbt22cKFCw2w559/3nbt2mXOOZfOgBVWg3h7MO95XwDcTsghfTrQzczuA94FeplZL0nNCHmyLzOznBgcvp3QRomZXWRmZXm//21mPQhJO35LWC77XOAGSZ+R1J6QeaubmXUCSoGvx2xhY4BuQG8q5rVONNfMupjZ+YTgNTiW3we8GMtzCR8CSoB+sd+9gJ8o6Ez4oPB54AvAEEkXJB7EzO6J5/p1M7szST8+C3wJ+BzwA0mNYvl/m1nn2IdhMbUqwHHAy7F/iwkfQsr6vSiW5wCvp7pGSfpwNiHz2wVm9ldgpIVPgx2BiyV1THENa6wu83x/6Utf4thjj+ULX/gCb775Js45dyQ7mFnFlpvZFgBJrxFGcy9VqvMFQiBdGnM2N6ZiysvHK9V/On5dR8i1/bfY/kbgVEJK0c7Aq7G9LOAfhEBaaGbvxfqPA8nmVc+V9CP2pbwsy0p2CSFNJxZyWH8YA+o4ST0IeblbEUa6FwFPmdlH8Vhzge58OjtaVeaZ2W5gt6R/xHa3EAJ2v1jnVOBMYDthNuOZWL6S8AGlrN+DYr9LCelSr0txjSr7q5m9nPD91yTdRPidOYXwc1ubuEPcfhNAmzZt4K9/rcUp71+e75NPPpnx48fTvn17Xn75ZcaNG8fNN9/MCy+8UKtjO+dcOjmYwXt3wvvSFMcS8AczS5Xm8qNK35e1+Uml9j+J7Qv4pZl9v8JBpKuAmtzcnwFcZWZr4n3xnlXU/TrQHOhsZnvivfzM2IcD9alrJ6kncBlwoZl9LKmQffm391hZREt9rcskvUZJlF97SW2BO4AuZvYvSTMSjl3OzKYAUwByc3Orvd7V5flu0KABjRo1qlCvZcuWFfJ8Z2Zm0r59ewCuvPJKHnroITZs2FDdoZ1zLq3Vx5+K7QCOj+9fBrpJOgNA0rGSDuRJoxeAAZJaxPaaSjoNeAXoGafWGwFfTbH/8cDfYp3EqeQXgG/GNhtKOgE4EfhHDNy9CPeFIUxbXxXP5TigH7DkAM6pzInAv2Lg/ixh1qI6LwA3x343iP1OdY2qcgIhmH8g6WRCiu4DlpeXR4sWLSgoKKCgoIDp06dXyPPdr1+YZBg0KPwxwMiRI5kwYQLLli1j4MCBZGZmcs8993D77bfz8MMPk5+fzz//+U8+//nP10X3nHPusFUfwXsKMF/SwjiNfQMwS9JaQjD/7P42bGYbCPfQn4/t/QE4JU6vjyZMyS8gPGSWzN2EQP8HwoN2ZW4DekvaGvc9k/AQXq6kFYRA/0bswyrCCH55bGuamdVmyjyVZwkj8LXADwnXqjq3Ab0krSNMp3dIdY2qasTM1hCm/V8nPEy3tNojr1wJ0r5XEpmZmcyePZsmTZpw22230aJFC2bPnl3hSXOAzp0788ADD7BhwwZGjRpFXl4ekyZNAuCcc86hsLCQW2+9lSeeeIKBAwcyefLkarvnnHPpzPN514KkrsDZZvZwffflcPepPxXz3zPnnKuW5/OuY5KuAR6hZvfOnXPOuYPmYD6wdkQxs1nArPruh3POOecjb+eccy7NePB2zjnn0owHb+eccy7NePB2zjnn0owHb+eccy7NePB2zjnn0swhDd6SRkp6XdJaSa9JqpN1LCXdI+myumirmuOMlnRHLer/l6Tv1aDexHhdJh5YDw+cpPGSlkl6PCFrWZ1aunQpHTt2JCMjg5ycHFatSr7g3eTJk2ndujVZWVn07duX7du3A7BgwQLatWtHRkYGzZo145prrmHHjh0Ho6vOOXdYOmQrrEm6EPgp0NPMdsd0oI3N7N0a7t8wZvSqN5JGE3KW31vH7X4INI+ZxGpSv96vRXVSrbBWUlJSvnb5nXfeydixY8nIyOCtt96qsCzq6tWrycnJ4bLLLqN3797cddddXHvttTzyyCMsXryYZcuW0bJlS+bMmcPTTz/N2LFjueuuuw7tSTrnXB07HFdYOwXYVhagzGxbWeCW1FnSIkkrJT0X828jqVDSOEmLgJGSNkk6Jm47VtJmSY0kzZA0IJZ3iSPHNZJekZQRk2/8Jo74Xy7LRS3p4jgD8Jqk1ZKOr9zpOFvwZ0kLCDmuy8rbSXo29nlJTBZSed8bJN0f38+QdF/s28aE/j5NyMf9iqSrJZ0m6YXY1xcktUnY/6eSFgLj4yzALyU9H6/LVyRNkLQu9qtR3G+UpFclrZc0RQoLjUs6Q9KCeJ1WSjpVUnY8l1Xx1TXWVZwdWB/bv3p/fwnmz59PcXEx+fn55OfnM3jwYIqKiigsLKxQb8aMGQCMGzeOESNG0LVrV2bNmkVJSQk9evTg9ttv54tf/CIXXBBSpR9zjN8Bcs4dPQ7l/3jPA6dKelPSg5IuBohB5ufAADPrTEh8MTZhv5PM7GIzGwOsAS6O5VcCz5nZnrKKkhoDjwG3mtn5wBeBPcAYYLWZdQTuIixzCiHN5S1m1omQc3tXYocldQYGAhcAXwG6JGyeAnwr9vkO4MEaXINTCPm+rwB+DGBm/wXsMrNOZvY4cD/wSOzro8B9CfufBVxmZt+J37cD+gB9gV8BC83svHgefWKd+82si5mdS8jdfUUsfxS4L16ni4BthLzevc0sB7g64dhfAToB5xPSkk4s+4BVW0VFRQC0atUKgNatWwOwcePGauvt3buXzZs3A/DQQw9xyimnMGbMGC6++GJuvfXW/emOc86lpUMWvM1sJ9AZuAl4D3hcIWf22cC5wB8kvUbIeNU6YdfHK70vG/UNrLSN2NbfYmYvzOwDM/uEEJxmxrIXgc9IOpGQHeunkoYRPiRUnoruDjxlZh+b2YfA0wCSmgBdgdmxz5OpJjNX9Bsz+yRm9jo5RZ0LgV/H9zNj38vMNrPShO/nxw8v64AGhMxjxO+z4/tecQZiHXAJ0CHOMLQys6fjNdllZruARsDUWHc2cE5s4yJglpmVmlkxsIiKH2QAkHSTpBWSVrzXpk2YKi97pVB220YpMo+lqte/f3/mzZvHNddcw6JFi5gzZ06V+zvn3JHkkM41xv/8C83sB8CtQH9AwOtx5NnJzM4zsy8m7PZRwvungTxJTQkfBF6sdIhUESBZuZnZj4EbCSPSl5NNfZM8EckxwPsJfe5kZu1THDtR4j3tqqNV8uN/VGlb2S2IT4A9tu8Bhk8I6UMzCTMCA+KIfCqQGY+d7LyGA8WEEXYu0Lg2fTWzKWaWa2a5zZs3T1qnbdu2AGzZsgWArVu3lpeXlJSwZ8+elPUaNmxYPlI/9dRT+fKXv8zYsWGSZvbs2TXponPOHREOWfCWdLakMxOKOgF/Bf4MNI8PtBHvYXdI1kYcvS8H/g94ptIoFEJO7VMk5cS2Toz3yBcTcm4jqSfh3vuHktqZ2TozGw+s4NO5xBcD/SRlxdHqlbEfHwJFkr4a25Sk8/fjsiSzjDCrQOzzSwfQVmb8ui3OFgyA8v5vlXQlQDy/LOBEwszFJ8B1hNE8hOtwtaQGkpoDPQg/h1rLy8ujRYsWFBQUUFBQwPTp08nOzi5/iK1fv34ADBo0CICRI0cyYcIEli1bxsCBA8nMzGT48OGMGTOGGTNmlE+Xn3POOSmP6ZxzR5pDmVWsCfBzSScBe4G/ADeZ2b/jw1v3xanshsDPgNdTtPM4YUq3Z+UNsa2BQIGkUwkfDnoCo4GHJa0FPgauj7vcLqkXUApsAOZXam+VpMeB12JbSxI2fz0e538I082PEe7JH6hhwC8k3Uk+GzD9AAAgAElEQVS4vfCN/W3IzN6XNJUwjb4JeDVh83XAFElTgK3AVYRR+pz4oWQh+0b6TxGm89cQRuwjzOzvVR585UpIMhWeSfjh3QLclp9PB8J0QIMzzqhQr3PnzjzwwAOMHTuWJUuWkJeXx6RJkwBo2rQpBQUFbNu2jebNmzN06FBGjx5dw6vinHPp75D9qdihJum7wFwze6u++3I4k3QtYbS9sC7b/dSfitXEEfq76JxzNaXD8E/FDhlJPyE8GNeovvtyOJP0HeCH7Jsed845lwaO2JG3q18+8nbOudo7qkfezjnn3JHMg7dzzjmXZjx4O+ecc2nGg7dzzjmXZjx4O+ecc2nGg7dzzjmXZjx4HwKSPqN9qUf/LmlrwveNq2/h0JP07bg2er1YunQpHTt2JCMjg5ycHFatWpW03uTJk2ndujVZWVn07duX7du3A/Dhhx9y/fXX07RpU5o3b84PfvCDQ9l955w7qDx4HwJmtr0sgQnwEDApIaHJv6F8ffTD4uchqQHwbfatjX5IlZSU0L9/f3bs2MGkSZMoLi5mwIABlJZWXMp+9erVDB06lPbt2zNmzBjmzZvH8OHDgbAm+iOPPMLQoUP50pe+xD333MPcuXPr43Scc67umZm/DuGLsM76HfH9GcB6QkBfDbQi5AlfQVjbfVTCflvivquBtcBZsfwSwprjrwGrgOMIObcXAr8hrNn+APsW5Pl/hLXO1wPjYllD4H3gR4SEI98H/h3rLYh18oA/xmM8DhxX1Xl2rpgQtGavaO7cuQbYhAkTzMzs7rvvNsAWLFhgiYYNG2aALV++3MzMunfvbg0bNrRdu3bZueeea40aNTIzszfeeMMAu/LKK8055w5nwAqrQSw5LEZ6R7lzgOlmdoGZbQW+Z2F1nfOB3pIS02UVm9kFwDTCyBjgTkKCl06EbF8lsfzzwO3AeUB7oK+k1oQA3Qu4AOgm6YpY/0RglZl9zsz+F/gH0N3MLpPUAvgecKmZ5RA+PNxW+USqzOddk1dUVFQEQKtWrQDK04Bu3LixwvGS1du7dy+bN2+mRYsW7Nmzh4ULF7JgwYIK9Z1zLt0dyqxiLrm3zSwx29c1kgYTfjYtCcF9Q9xWNu+7EvhyfL8U+JmkXwNzzGynQjavl81sE4Ckx4CLCGuYv2hm22L5rwkB/1nCSPupFH3sGvuxLLbdmCSpSs1sCmHmgNzc3Dpb69RiYFeSLGWp6o0ZM4ZVq1ZxySWXkJWVRYMGDcjMrLdb+M45V6c8eNe/srSbxHzntwGfs5DO81dUvO+8O34tJf7szOxHkp4G+gCvxnzlEFJ3JjKgqui3y8xSBVwBz5rZdTU4nwPWtm1bALZs2QLA1q1by8tLSkpo0KABjRo1qlCvZcuWbN26lYYNG9K6dWvOOOMMNm3axIYNG8jMzCQnJ8dzfjvnjhg+bX54OQHYAXwo6RTgS9XtIKmdma2NU92rgbPjpi9IahMfPvsaYaT8MtArPv3eEBgILErR9A7g+Ph+GXCxpNPjMY+LHzQOiry8PFq0aEFBQQEFBQVMnz6d7OxssrOzycrKol+/fgAMGjQICA+nTZgwgWXLljFw4EAyMzNZsGABU6ZMYcOGDQwZMoRjjjmGb3/721Ud1jnn0oaPvA8vqwhT5OuBjYQp8ercIak78AnhXvTzhKnwZcBPgA5AIfC0mZmkUfF7Ab8zs3kxkFc2BVggaXO87z0YeDzhT9vuAlLnSl+5EqqZ5k4lE5gN3ALcdtttdOjQgalTp9KgQcXMpZ07d+aBBx5g7NixLFmyhLy8PCZNmgTA3r17+dnPfsZ7771Hu3bteOKJJzj//PP3qz/OOXe48ZSgRyBJlwG3mtlV9dWH/UoJmoz/fjrnjiKeEtQ555w7Qvm0+RHIzBYAC+q7H8455w4OH3k755xzacaDt3POOZdmPHg755xzacaDt3POOZdmPHgf4SQ1lHSrpIz67otzzrm64cH7MCDpPyU9JultSRsk/V7SWXXQroCfAWvNbHd19SvtO61SUhTnnHOHCQ/e9SwG2KeAQjNrZ2bnEFYvO/lA244Z5m41s8Upjp3yTwXN7EYz25Bqe31YunQpHTt2JCMjg5ycHFatWvWpOrt27eLSSy+lSZMmSOLee+8t3/bHP/6Rrl27ctJJJ3HSSSfRv39/3nvvvUN5Cs45Vyc8eNe/XsAeM3uorMDMXgNekjRR0npJ6yRdDSCpp6RFkp6Q9KakH0v6uqTlsV67WK+5pDmSXo2vbrF8tKQpkp4HHpHUQNK9cd+1kr4V6xVKyo3vr4nb10saf4ivDwAlJSX079+fHTt2MGnSJIqLixkwYAClpaUV6pWWltK0aVMuv/zyT7Xx5ptv0qxZM8aPH8+Xv/xl5s6dy4gRIw7VKTjnXN2pSdJvfx28FzAMmJSkvD/wB0Iaz5OBd4BTgJ7A+/F9BrAVGBP3uQ34WXz/a+Ci+L4N8Kf4fjQhpWhW/P5mYA7QMH7fNH4tBHIJaUnfAZoTFvV5EbiquvPqXPts3slf0dy5cw2wCRMmmJnZ3XffbYAtWLDAknn44YcNsIkTJ5aX7d69u/z9hx9+aIB16dIl6f7OOVcfgBVWg9jhI+/D10XALDMrNbNiQvavLnHbq2b2Nwv3sd8mJCMBWAdkx/eXAfdLeg14GjhBUlmWsKfNbFdCvYfMbC+Amf2zUj+6EKb034t1HiUkPvkUSTdJWiFpxXtt2tRN+I6KiooAaNWqFQCtW7cGYOPGjTW+oI0bNy5//9xzzwHQo0fSU3HOucOaL49a/14HBiQpryolV+LDZ58kfP8J+36mxwAXJgTp0GjI9PVRYhGfzv1d035UYGZTCNnIyM3NPagZRSwGdu1H5rKlS5fy3//933Tu3JnRo0fXcc+cc+7g85F3/XsRyJA0pKxAUhfgX8DV8Z50c8Jod3kt2n0euDWhzU5V1Bta9vCapKaVtr9CyOXdLOYGv4bUOcAPmrZt2wKwZcsWALZu3VpeXlJSwp49e2rUzuLFi7n88stp164dzz33HE2aNDk4HXbOuYPIg3c9i/c4+gG945+KvU64L/1rQn7uNYQAP8LM/l6LpocBufEhtA3A0BT1phHuaa+VtAa4tlL//gZ8H1gY+7LKzH5bi37Uiby8PFq0aEFBQQEFBQVMnz6d7OxssrOzycrKol+/fuV1p02bxuLF4QH75cuXM23aNHbu3MmqVavIy8ujtLSUIUOG8Ic//IHf/e53h/pUnHPugHk+b3dQ5Eq2oo5/txYvXswtt9zCn//8Zzp06MDUqVNp1qwZbdu2pU+fPjzzzDNA8qn0oqIiCgsL+cY3vlGh/LTTTmPTpk112k/nnNtfNc3n7cHbHRQHI3g759yRrqbB26fNnXPOuTTjwds555xLMx68nXPOuTTjwds555xLMx68nXPOuTTjwds555xLMx68nXPOuTRz1AdvSf8p6bG4utkGSb+XdFYdtn+VpHPqsL0OkpZI+p2kVKum1bbNZdVsz5V0X3x/g6T7a3uMmuTiBpg8eTKtW7cmKyuLvn37sn37dgDeeecdunXrRkZGBpJ48skna9sF55w7YhzVwVthKa6nCFmz2pnZOcBdhBScdeUqIGnwLltPvDbM7HUz625mV1pCDvADYWZdq9m+wsyG7W/7Nc3FvXr1aoYOHUr79u0ZM2YM8+bNY/jw4QDs3r2b008/3bOAOeccR3nwBnoBexKDoJm9ZmZLFEyUtF7SOklXA0jqKalQ0pOS3pD0aPwQgKQfx9H7Wkn3SuoK/BcwUdJrktrFfcdJWgTcJmmGpPKsYpJ2Jrz/bjz+GkljYtkoSa/G8ikJx+4k6eV47Kck/Uflk5V0cty2Jr66Jh5T0uOSvpxQf4ak/vGcn9nfizx//nyKi4vJz88nPz+fwYMHly9XmmjGjBkAjBs3jhEjRtC1a1dmzZpFSUkJZ555JjNnzqRbt2772w3nnDtiHO3B+1xgZYptXwE6AecTcl5PlHRK3HYBcDthRH060C1m4+oHdDCzjsCPzGwZIZf2nWbWyczejvufZGYXm9lPUnVMUh5wJdDFzM4H/i9uut/MupjZuUAWcEUsfwT4bjz2OuAHSZq9D1gU28shpCNN9BhQ9iGlMXAp8PtUfaypmubiTlZv7969bN68+UC74JxzR5SjPXhX5SJglpmVmlkxIQ1ml7htuZltMbNPgNeAbOBDoASYJukrwMdVtP14DY5/GTCjLB+3mf0zlveS9IqkdcAlQAdJJxI+EJSl6vwlIYVoZZcABbG9UjP7oNL2+cAlkjKAPGBx5XzgVZF0k6QVkla816ZNyno1zcV9IDm7nXPuSHa0B+/Xgc4ptlUVMXYnvC8FGprZXuBzwBzCfe5nq9j/o4T3e4k/hzgF3jjV8SVlAg8CA8zsPGAqkFnFcWrFzEqAQuBLhBH4Y7Xcf4qZ5ZpZbvPmzcvLa5qLO1m9hg0blo/UnXPOBUd78H4RyJA0pKxAUhdJFwOLgaslNZDUnDCSXZ6qIUlNgBPN7PeEKfVOcdMO4Pgq+rCJfR8g+gKN4vvngeslZcX2m7IvUG+LxxsAEEfQ/5LUPW6/jjBTUNkLwM2xvQaSTkhS5zHgG0B34Lkq+l1jNc3FPWjQIABGjhzJhAkTWLZsGQMHDiQzM5OdO3cybdq08qfUX3jhBaZNm1YX3XPOufRjZkf1C2gJPAG8TRiJzwPOJIx8JwLrCfeQr471ewLPJOx/P3ADcAohuK+N9a+P27sBG4DVQDvCyDY3Yf+TgZfjvv8L7EzY9j3gTUKA/0Es+xHwF2AB8DAwOpZ3iu2sBX4D/EeScz0Z+G3s32vAhbE88ZiNgO3Awwll5eccz/X+6q5rZzBLeC0COxesUaNG1qlTJ3v11VetqKjIAOvTp4+VeeCBB6xly5aWkZFhV1xxhb333ntmZuV1K7+cc+5IAqywGsQuz+d9mItT6VPMbEi1lQ8juZKtSLbBf9+ccy4lz+d9BIhT46uBU+u7L8455w4ftV4kxB06ZraTfffOnXPOOcBH3s4551za8eDtnHPOpRkP3s4551ya8eDtnHPOpRkP3s4551ya8eDtnHPOpRkP3vVEUrak9ZXKRku6Q9INklomlE+TdE58v0lSs/h+WYq2K6QZ3Z++HApLly6lY8eOZGRkkJOTU770aWWTJ0+mdevWZGVl0bdvX7Zv315h+4svvogkJLFiRdKlYZxz7ojiwfvwdANh2VYAzOxGM9tQuZKZdT2UnapLJSUl9O/fnx07djBp0iSKi4sZMGAApaWlFeqtXr2aoUOH0r59e8aMGcO8efMYPnx4+fZdu3Zx0003ceyxxx7qU3DOuXrjwfvwlAs8Kuk1SVmSCiV9ark8STvjV0m6X9IGSfOAFgl1Rkl6VdJ6SVPicqtI6ixpjaQ/Arck1G8gaWLcZ62kb8byUyQtjn1an5AEZb/Mnz+f4uJi8vPzyc/PZ/DgwRQVFVFYWFih3owZMwAYN24cI0aMoGvXrsyaNYuSkhIAfvCDH3DiiSeWJzdxzrmjgQfvw9MK4Otm1slqlk+7H3A2cB4wBEgckd9vZl3M7FwgC7gilj8MDDOzCyu1NRj4wMy6EPKXD5HUFrgWeM7MOgHnExKb7LeioiIAWrVqBVCe9nPjxo3V1tu7dy+bN29m9erV/PznP2fatGk0bOiLBTrnjh4evOtPqgwd+5O5owcwy8xKzexdQqrTMr0kvSJpHXAJ0EHSicBJZlaWNnRmQv0vAoMkvQa8AnyGkGXtVeAbkkYD55nZjsqdkHSTpBWSVrzXpk2lvGJWZVKSsgQ5cWKgRvWGDRvGV7/6VY4//nh27Ajd2bJlS/mo3DnnjlQevOvPduA/KpU1BbbtZ3ufioySMoEHgQFmdh4wlZATXMnql+0GfCuO+juZWVsze97MFhM+JGwFZkoa9KkOmE0xs1wzy23evHmVnW3bti0Qgi3A1q1by8tLSkrYs2dPynoNGzakdevWbN68mZkzZ3LmmWcyd+5cAPr16+cPrTnnjngevOtJTDryN0mXAkhqClwOvATsAI6vRXOLgYHxfvUpQK9Ynhm/bosZygbEY78PfCDporj96wltPQfcLKlR7NdZko6TdBrwDzObCkwHcmp3xhXl5eXRokULCgoKKCgoYPr06WRnZ5OdnU1WVlb5PexBg8JnhJEjRzJhwgSWLVvGwIEDyczMpKCggNmzZzN79mx69uwJwPjx42nfvv2BdM055w57ns+7HsU//3qAfSPwiWb2qKT+wDhgF3AhMB+4w8xWSNoE5JrZNkk7zaxJfAjt54Rp8TdjW78ysycl/QgYCGwCNgN/NbPRkjoDvwA+JgTsAWZ2rqRjgB8BVxJG4e8BV8XXncAeYCcwyMyKUp1bynzeCRYTnpT7M9CBMC3QDGgL9AGeifUeBMYSpip6E27WN6vU1g3ALwlz+9UmwnXuSOH/fx9xaprP24O3OyhqErydcwfI//8+4tQ0ePu0uXPOOZdmPHg755xzacaDt3POOZdmPHg755xzacaDt3POOZdmPHg755xzacaDt3POOZdmDlnwlnRdYo5q55xzzu2faoN3WdrJmpLUU9Izlcp6AD1i0oyq9r1dUsrEzJKmxVXJak1StqT1tah/kqT8/TlWbUmaFdNvDq++9kHvy0xJiyQ9IslTdTmXJoYNG8bJJ5+MJK644oqU9bKzs5FU/urUqVP5tqVLl9KxY0cyMjLIyclh1apVh6Lrbj8cqpF3a+DWGtS7HUgavCU1MLMbzWxDnfYstZOApMFbUoO6Ooik/wS6mllHM5tUw30OWlA1s+vM7GIzG2Rmew/WcZxzdW/gwIE1qtejRw9mzZrFrFmzGD9+PAAlJSX079+fHTt2MGnSJIqLixkwYAClpaUHs8tuf5lZlS9gZ/zaEygEngTeAB5l3/Kql8eyl4D7gGdi+WjCmtxlba0HsoHjgHnAmlh2NTAM+DewDlhYdmzgHkJqyovi8XPjtgJC3uvXgTEp+t45HuOPwERgfSxvEL9/FVgLfDPJvo8R1hZ/LdbtCSwEfg1siHV+A6yMfbgp8ZoRluNeA7wMnBzLvxrPdw2wOJatTThOd6BT3Gct8BTwH7FeIWG980XAd4AZ8RosBDYCFxPWKv8TMCOhL0mvEyFX97LYl1eADOBzsWx1/Hp2rJtJWFJ8XdzWq7rfm87JE4L6y1/+qstXJUVFRQZYnz59PrWtzGmnnWbXX3+9ffjhhxXK586da4BNmDDBzMzuvvtuA2zBggUp23J1D1hhVvX/rxZ/+lVXqBi8PyCMoo+JAfGi+B/7ZkLOZwFPUH3w7g9MTSg/MX7dBDRLKDfgawnfF7IveDeNXxvE8o5J+r4WuDi+TwzeNwH/E99nxODWttK+2WX1E87/o8R6CX3Iiuf2mYR+XxnfT0g41jqgVXx/UorjJPb5HuBnCef+YEK9GYQPGAL6Ah8C58WfzUqgU6rrBDQG3gZyyq5/3O8EoGEsuwyYE99/B3g4vv8s8A6QmeR63xSv5Yo2bdoc0C+wc672ahq8JRlgzZs3t2nTppmZ2U9+8hMD7NFHHzUzs8mTJxtgU6ZMOSR9dwE1DN61nTZfbmZbzOwTwkgxO/5nXmRmb8UD/6oG7awDLpM0XlJ3M/sgRb1SYE6KbV+TtIowEuwAVLgXLulEQoBcFItmJmz+IjBI0muEUednCB8+qrPcKmbSGiapbHR9akIb/2ZfUqyVhOsEsBSYIWkIIZhWkKTPvyTk0C7zeKVdfhev+Tqg2MzWxZ/N6wnHTHadzgb+ZmarAMzsg7jficDs+GzApFgfwoe0mbHuG8BfgbMq999qkc/bOVc/hgwZwhNPPMHMmTNp3Lgx3/zmNykqKvpUvfBfC4Skhe5wU9t7p7sT3pcm7G8p6u+l4n31TAAzezOmpPwy8L+Snjeze5LsX2Jmn7rhIqktcAfQxcz+JWkG+3JXl1erol8CvmVmz6XYnspHCX3oSRidXmhmH0sqTOjDHiv7zU+4TmY2VNLnCRkvX5O070mRWh4/Kvt5fELFn80nQMMqrlOqf40/JNyy6CcpmzBSp4r6zrnD3O7d4b+GjIwMAEaOHFm+bfXq1fz0pz/lzTffpG3btgBs2bIFgK1btwKUl7vDS108+PQG0FZSOzN7G7gmYdsm4AoASTmEVM3EPxn7p5n9Kj7NfkOsvwM4HthWzTFPIASyDySdDOSxL9AAYGbvS/pA0kVm9hLw9YTNzwE3S3rRzPZIOgvYamaJwbGsL6mcCPwrBu7PAl+ops/Ea/QK8IqkKwmj9fcT+vyBpH/F2YglwHWEe9z7K9V1egM4RVKOma2KI/4d8Zy2xn1vSGhnMeH6vRivVRtCGm7n3GFi3rx5rF8f/qBm8+bNTJs2jYsvvpjevXuzbds2du7cybp167jrrrvIy8tj7969PPLII2RlZXHeeefRtGlTWrRoQUFBAccffzzTp08nOzubnj171u+JuaQOOHibWYmkm4B5krYRHlo7N26ew77p6VeBN2P5ecBESZ8Ae4CbY/kUYL6kv5lZryqOuUbSasL08EbCdHQy3wB+IeljQsAuM40wrbxKYU7oPeCqSsfYLmlpnEKeT3jALtGzwFBJawmB7OVU/U0wUVLZswEvEB4WO61SneuBh+KfzG2M57BfUl0nM/u3pIFAgaRTCdPgPQn3538p6dvAiwlNPRj7tI4wm3KDmSWO9D9t5UqoyXSbpZoccc7VxsSJE1m0KHzWX7t2LUOGDOHhhx+uUKdZs2aUlpYyatQoPv74Y8455xzGjh1Ly5ZhCY7Zs2dzyy23cNttt9GhQwemTp1KgwZ19sc1rg7J/D/Po5qk7wJzzeytumw3V7IVNanov3/OOVdO0kozy62uni+PehST9BPCE+KN6rsvzjnnas6D91HMzL5jZu3s0C1845xzrg548HbOOefSjAdv55xzLs148HbOOefSjAdv55xzLs148HbOOefSjAfvFCRdF1eCc8455w4rR1zwjsut1qZ+T0nPVCrrAfQws3er2ff2uBJaqu3TJJ2TavuBknTD/nzAkHRVYr8k3SPpsrrtXe0tXbqUjh07kpGRQU5ODqtWrUpab/LkybRu3ZqsrCz69u3L9u3bAejZsyeSKrx8aUfn3JHoiAvedaQ1cGsN6t0OJA3ekhqY2Y0H+W+obwCSBm9JVa1peBUJWdjMbJSZLajbrtVOSUkJ/fv3Z8eOHUyaNIni4mIGDBhAaWnFvDSrV69m6NChtG/fnjFjxjBv3jyGDx8OwKhRo5g1axazZs0iPz8fgJycnEN+Ls45d9DVJG9oOr2omH+8EHiSkIjjUfYtB3t5LHsJuI/q848fR1jbfE0suxoYRkj9uY6QiQtgJyEH9yuENJqF7Ms/XkDIdf06MCZF39sR1kxfCSwBPhvLfwsMiu+/Gc9lQDzenwnpWbMIiWBGxfMaCAwhrCm/hrDO/LFAV+CfQFHcrx0hN/gAQuKSJxL605OQdrRG/U98dQ4Ln1b/iubOnWuATZgwwczM7r77bgNswYIFlmjYsGEG2PLly83MrHv37tawYUPbtWtXhXp9+vQxwN544w1zzrl0wUHK551uLiCMjs8BTge6ScoEpgJXAt2B/6xBO5cD75rZ+WZ2LvCsmd0HvAv0sn1JVI4D1pvZ5y1kMks00sJ6tR2BiyV1THKcKYRUpZ0JqTz/f3v3H2RVfd5x/P1h2bDURQWVCChZ2lrzQyPKxjHRMI6mCQQrOGKzjCMhbpcxREuqZuzEKZmaTNsYpmbaKCi7SNI4yqw2LVBpNCOYtDsR0SgoBGthHX4o/sCiadi2C0//ON+Fy3p374Vd7t27+3nN3Jlzz/mec577nbP73PM9557nvjR/PrBI0meB21KbR8mS6fURMTkiDqS2HRFxWUQ8QvbM8k9FxAXAVqAxItqAVcA30nr/mbP/J4FLJJ2U3n+JIzXEC8Yvab6kjZI2vjVxYnHpO+mqJzxhwgQAzjrrLAC2b99+1D7ytevs7GTnzp2H2+zcuZO1a9dyxRVXcO655+bpZjOzyjbYk/eGiNgVEYfIzjLrgI8COyLiP9K3nB8XsZ3NwOckfTeV69zfQ7uDZGe4+fyxpOeBXwGfIGfYGkBSLdlZcWuqwnY/MA4gIvaSnVGvA26LiH29xLoyZ/o8Sb9I1cCuT/vtUUR0kp35/5Gk4WR1x/+5mPjT+g9ERH1E1J9xxhm97aqgSIldBSqT5Wu3bNkyDh06xE033dSnGMzMBqr+qOc9kOWWrTzIkc/bUymrTo7+QlMDEBGvSJoCfBH4a0lPRMRdedbviIiD3WdKmkR2Jv2piHhX0oqubecYBvxXREzuIbbzgXfo4Rp3jtya5CuAWZGVBp1HNgxeyErga2RD689GxPtFxt8nkyZNAmDXrl0A7N69+/D8jo4OqqqqqK6uPqrd+PHj2b17N8OHDz98pt7Z2UlLSwtnnnkms2bNyrMnM7PKN9jPvPP5NTBJ0u+l93NylrUDFwFIugiYlKbHA7+NiB8Di7vaAO8Do4rY58lkSXW/pA+TXVs+SkS8B+yQdF3apyRdkKYvTutcCNyekmkx+x8FvC6pmuzMu0tv660n+3xNHDmLLxh/X02fPp2xY8eyZMkSlixZQktLC3V1ddTV1TFy5EiuueYaAObOnQvAnXfeyd13301bWxsNDQ3U1GTfJVavXs2ePXtobGykutrF0sxscBpyyTsiOsiuIf+LpH8DXstZ/BgwJg1bfxV4Jc0/H9iQ5t8JfCfNfwBYK2ldgX2+SDbc/DKwHPj3HppeDzRKejG1nSlpBNk1+hsj++nabcByZePEK4Clkl6QNDLP9v6C7Oa5J8m+tHR5BPiGpF/lfInpivUgsIYsQa85xviPeO45kIp+1YwcSeubb1Lb3s7CBQsYO3Ysra2tVFUdfdP8lClTuPfee9myZQuLFi1i+jtZMO4AAAgxSURBVPTp3HPPPYeX33///QwbNoz58+cXDNHMrFJ13X1t1q/qpdjYlw34uDSzIUjSc+nm4F4NuTNvMzOzSufkbWZmVmGcvM3MzCqMk7eZmVmFcfI2MzOrME7eZmZmFcbJ28zMrMI4eQ9BkqokLUzPLx/wiqnzfeDAAa688kpqa2uRxOLFi49aPnv2bEaPHo0kbr65mGqvZmYDl5P3cZJ0jaSQ9NFyx3IcbiUrndqZb6Gk8ZIeLXFMeRVb5/vgwYOMGTOGadOm5d3OiBEjDj9i1cys0jl5H785HKmbXTRJVYVbnTiShgFvRERLD8uHR8SeiJhd4tDyWrt2LXv37mXBggUsWLCAxsZGduzYwfr1649qV1tbS2trK1dddVXe7Tz00EOHn4tuZlbpnLyPQyrfeSnQSErekoZJuk/Sy5LWSHpc0uy0rF3SovQs9eskTZb0S0mbJP1E0ujUbr2k70tqk/RSKkiCpJMkLZf0bHoe+cw0v0rSYkmb07Zuydnf6Wm6XtL6NH0x2ReOW9M+zk3z50lqlbQaeEJSnaSX0rK6VFb0+fT6TGl6OVNsnW8zs6GkIq55DkCzgH9NpUL3pQpkv0tWL/x8YCywlayIR5eOiLgMQNIm4JaIeFrSXcC3gK+ndidFxGckTU3rn0dWDOWpiLhR0qlkRVJ+Bswlq3x2YUR0ShpTIO5fA1NT2y8AfwVcm5Z9GvhkROyTVJezzpvAH0ZEh6RzgIeBvM/dlTSfrOgLEydOhNdey9esT4qt821mNpg5eR+fOcD30/Qj6X010BoRh4A38lQaWwkg6RTg1Ih4Os3/IdCa0+5hgIj4uaSTU7L+PHC1pNtTmxpgIvA5YGnXteuI2Fcg7lHAMkkTAAGn5Sx7sof1q4EfSJpMVhP9D3raeEQ8QFZpjfr6+n6pLFJsnW8zs6HEyfsYSToNuAI4T1IAVUAAPymw6n8XuYvuSS/IEu21EbGtWyzK0x6gkyOXRGpy5n8HWBcRS1NN8NwvGD3F92fAXuCCtM2OYj5Ef8mt8z1q1KgP1PmeMWMGa9asAaC5uZm2tjYANmzYQHNzMw0NDdTW1rJy5Uo2bszqnG3ZsoXm5mZmzJjBuHHjSvlxzMz6ha95H7vZwI8i4iMRURcRZwM7gLeBa9O17w8Dl+dbOSL2A+9K+myadQPwdE6TLwFIugzYn9r/FLglJWskXZjaPgHc1PWTr5xh83ZgSpruGhYHGA28labnFfl5TwFeTyMKN5B9WSmZmpoaWltbqa2tZeHChT3W+QZoamriwQcfBKC1tZWmpibefvttAO64447DPx9bt24dTU1NbNu27QPbMDOrBD7zPnZzgL/pNu8x4GPALuAl4BXgGWB/D9v4MrBU0u8A24Gv5Cx7V1IbcDJwY5r3bbJh+k0pgbcDVwHNZMPYmyT9H7AM+AHwl0CLpG+mOLp8D3hQ0q3AU0V+3vuAxyRdR3amXuwIQr+ZOnUqmzdv/sD87rXoe6tN397e3t9hmZmVjXr7h2fHRlJtRPwmDa1vAC6NiDeOYf31wO0RsfFExVgq9fX10TVMbWZmxZH0XETkvSk4l8+8+9eadIPZh4BvH0viNjMzK5aTdz+KiMvLub6ZmQ0NvmHNzMyswjh5m5mZVRjfsGYnhKT3Af8Wq3enk/3E0HrmPuqd+6ewSuujj0TEGYUa+Zq3nSjbirljciiTtNF91Dv3Ue/cP4UN1j7ysLmZmVmFcfI2MzOrME7edqI8UO4AKoD7qDD3Ue/cP4UNyj7yDWtmZmYVxmfeZmZmFcbJ2/pE0jRJ2yS9KunP8ywfIWllWv6MpLrSR1k+RfTPPElvSXohvf6kHHGWk6Tlkt6U9FIPyyXp71IfbpJ0UaljLKci+udySftzjqFFpY6x3CSdLWmdpK2SXpa0ME+bQXUcOXnbcZNUBdwLTAc+DsyR9PFuzRqBdyPi94F7gO+WNsryKbJ/AFZGxOT0ai5pkAPDCmBaL8unA+ek13xgSQliGkhW0Hv/APwi5xi6qwQxDTSdwG0R8THgEuBref7WBtVx5ORtfXEx8GpEbI+I/wUeAWZ2azMT+GGafhS4sqsu+RBQTP8MeRHxc2BfL01mAj+KzC+BUyWNK0105VdE/wx5EfF6RDyfpt8HtgITujUbVMeRk7f1xQRgZ877XXzwD+Zwm4joJKtxflpJoiu/YvoH4No0jPeopLNLE1pFKbYfh7JPS3pR0lpJnyh3MOWULs1dCDzTbdGgOo6cvK0v8p1Bd//5QjFtBqtiPvtqoC4iPgn8jCOjFHbEUD6GivE82SM1LwD+HvinMsdTNpJqgceAr0fEe90X51mlYo8jJ2/ri11A7pniWcCentpIGg6cwtAZAizYPxHxTkT8T3q7DJhSotgqSTHH2ZAVEe9FxG/S9ONAtaTTyxxWyUmqJkvcD0XEP+ZpMqiOIydv64tngXMkTZL0IaABWNWtzSrgy2l6NvBUDJ2HCxTsn27X3K4mu1ZnR1sFzE13C18C7I+I18sd1EAh6cyu+0gkXUz2f/2d8kZVWunztwBbI+Jve2g2qI4jFyax4xYRnZJuBn4KVAHLI+JlSXcBGyNiFdkf1D9IepXsjLuhfBGXVpH986eSria7W3YfMK9sAZeJpIeBy4HTJe0CvgVUA0TEUuBx4IvAq8Bvga+UJ9LyKKJ/ZgNfldQJHAAahtAX5C6XAjcAmyW9kOZ9E5gIg/M48hPWzMzMKoyHzc3MzCqMk7eZmVmFcfI2MzOrME7eZmZmFcbJ28zMrMI4eZuZmVUYJ28zM7MK4+RtZmZWYf4feO0Qb0HBAQ4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ "pos = np.arange(12)\n", "\n", - "plt.barh(pos, impact, align='center', height=.8, color='r')\n", - "plt.yticks(pos, sec)\n", - "plt.xlim((0,2.3))\n", + "for i in range(12):\n", + " plt.barh(pos[i], impact[i], align='edge', height=.8, color='r')\n", + " plt.yticks(pos, sec)\n", + " plt.xlim((0,2.3))\n", + " \n", "for i, v in enumerate(impact):\n", " l = \"{0:.2f}\".format(float(v))\n", " plt.text(float(v)+.01, i-.25, \"{0:.2f}\".format(float(v)), color='black', fontweight='bold')\n", @@ -3077,12 +2946,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Random arrays (`random`) - Matrizes Randomicas" + "## Random arrays (`random`)" ] }, { "cell_type": "code", - "execution_count": 342, + "execution_count": 187, "metadata": {}, "outputs": [], "source": [ @@ -3091,18 +2960,18 @@ }, { "cell_type": "code", - "execution_count": 343, + "execution_count": 188, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.42133561, 0.70384355],\n", - " [0.1872136 , 0.09562296],\n", - " [0.17934325, 0.28826841]])" + "array([[0.33504551, 0.44071867],\n", + " [0.8455523 , 0.57913819],\n", + " [0.68006321, 0.60939797]])" ] }, - "execution_count": 343, + "execution_count": 188, "metadata": {}, "output_type": "execute_result" } @@ -3113,18 +2982,18 @@ }, { "cell_type": "code", - "execution_count": 344, + "execution_count": 189, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.58788579, 0.2440049 ],\n", - " [0.372578 , 0.35439001],\n", - " [0.71171335, 0.90973135]])" + "array([[0.41042948, 0.31241154],\n", + " [0.93695509, 0.27320886],\n", + " [0.12268868, 0.87671031]])" ] }, - "execution_count": 344, + "execution_count": 189, "metadata": {}, "output_type": "execute_result" } @@ -3135,7 +3004,7 @@ }, { "cell_type": "code", - "execution_count": 345, + "execution_count": 190, "metadata": {}, "outputs": [ { @@ -3146,7 +3015,7 @@ " [0.2995859 , 0.56284799]])" ] }, - "execution_count": 345, + "execution_count": 190, "metadata": {}, "output_type": "execute_result" } @@ -3158,7 +3027,7 @@ }, { "cell_type": "code", - "execution_count": 346, + "execution_count": 191, "metadata": {}, "outputs": [ { @@ -3169,7 +3038,7 @@ " [0.2995859 , 0.56284799]])" ] }, - "execution_count": 346, + "execution_count": 191, "metadata": {}, "output_type": "execute_result" } @@ -3181,7 +3050,7 @@ }, { "cell_type": "code", - "execution_count": 347, + "execution_count": 192, "metadata": {}, "outputs": [ { @@ -3191,7 +3060,7 @@ " [-2.05072622]])" ] }, - "execution_count": 347, + "execution_count": 192, "metadata": {}, "output_type": "execute_result" } @@ -3202,7 +3071,7 @@ }, { "cell_type": "code", - "execution_count": 348, + "execution_count": 193, "metadata": {}, "outputs": [ { @@ -3211,7 +3080,7 @@ "array([15, 19, 18, 16, 12])" ] }, - "execution_count": 348, + "execution_count": 193, "metadata": {}, "output_type": "execute_result" } @@ -3222,7 +3091,7 @@ }, { "cell_type": "code", - "execution_count": 349, + "execution_count": 194, "metadata": {}, "outputs": [], "source": [ @@ -3231,7 +3100,7 @@ }, { "cell_type": "code", - "execution_count": 350, + "execution_count": 195, "metadata": {}, "outputs": [ { @@ -3247,7 +3116,7 @@ " 91., 92., 93., 94., 95., 96., 97., 98., 99.])" ] }, - "execution_count": 350, + "execution_count": 195, "metadata": {}, "output_type": "execute_result" } @@ -3258,7 +3127,7 @@ }, { "cell_type": "code", - "execution_count": 351, + "execution_count": 196, "metadata": {}, "outputs": [ { @@ -3272,7 +3141,7 @@ " 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])" ] }, - "execution_count": 351, + "execution_count": 196, "metadata": {}, "output_type": "execute_result" } @@ -3283,7 +3152,7 @@ }, { "cell_type": "code", - "execution_count": 352, + "execution_count": 197, "metadata": {}, "outputs": [ { @@ -3301,7 +3170,7 @@ " [46.]])" ] }, - "execution_count": 352, + "execution_count": 197, "metadata": {}, "output_type": "execute_result" } @@ -3312,7 +3181,7 @@ }, { "cell_type": "code", - "execution_count": 353, + "execution_count": 198, "metadata": {}, "outputs": [ { @@ -3328,7 +3197,7 @@ " 32., 72., 99., 70., 77., 65., 34., 87., 5.])" ] }, - "execution_count": 353, + "execution_count": 198, "metadata": {}, "output_type": "execute_result" } @@ -3340,7 +3209,7 @@ }, { "cell_type": "code", - "execution_count": 354, + "execution_count": 199, "metadata": {}, "outputs": [ { @@ -3356,7 +3225,7 @@ " 70., 46., 30., 86., 83., 6., 62., 24., 28.])" ] }, - "execution_count": 354, + "execution_count": 199, "metadata": {}, "output_type": "execute_result" } @@ -3367,7 +3236,7 @@ }, { "cell_type": "code", - "execution_count": 355, + "execution_count": 200, "metadata": {}, "outputs": [ { @@ -3383,7 +3252,7 @@ " 32., 72., 99., 70., 77., 65., 34., 87., 5.])" ] }, - "execution_count": 355, + "execution_count": 200, "metadata": {}, "output_type": "execute_result" } @@ -3394,14 +3263,14 @@ }, { "cell_type": "code", - "execution_count": 356, + "execution_count": 201, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "['Lock', 'RandomState', '__RandomState_ctor', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'absolute_import', 'beta', 'binomial', 'bytes', 'chisquare', 'choice', 'dirichlet', 'division', 'exponential', 'f', 'gamma', 'geometric', 'get_state', 'gumbel', 'hypergeometric', 'info', 'laplace', 'logistic', 'lognormal', 'logseries', 'mtrand', 'multinomial', 'multivariate_normal', 'negative_binomial', 'noncentral_chisquare', 'noncentral_f', 'normal', 'np', 'operator', 'pareto', 'permutation', 'poisson', 'power', 'print_function', 'rand', 'randint', 'randn', 'random', 'random_integers', 'random_sample', 'ranf', 'rayleigh', 'sample', 'seed', 'set_state', 'shuffle', 'standard_cauchy', 'standard_exponential', 'standard_gamma', 'standard_normal', 'standard_t', 'test', 'triangular', 'uniform', 'vonmises', 'wald', 'warnings', 'weibull', 'zipf']\n" + "['Lock', 'RandomState', '__RandomState_ctor', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_numpy_tester', 'absolute_import', 'bench', 'beta', 'binomial', 'bytes', 'chisquare', 'choice', 'dirichlet', 'division', 'exponential', 'f', 'gamma', 'geometric', 'get_state', 'gumbel', 'hypergeometric', 'info', 'laplace', 'logistic', 'lognormal', 'logseries', 'mtrand', 'multinomial', 'multivariate_normal', 'negative_binomial', 'noncentral_chisquare', 'noncentral_f', 'normal', 'np', 'operator', 'pareto', 'permutation', 'poisson', 'power', 'print_function', 'rand', 'randint', 'randn', 'random', 'random_integers', 'random_sample', 'ranf', 'rayleigh', 'sample', 'seed', 'set_state', 'shuffle', 'standard_cauchy', 'standard_exponential', 'standard_gamma', 'standard_normal', 'standard_t', 'test', 'triangular', 'uniform', 'vonmises', 'wald', 'warnings', 'weibull', 'zipf']\n" ] } ], @@ -3413,12 +3282,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Exercício 1" + "#### Exercise 1" ] }, { "cell_type": "code", - "execution_count": 357, + "execution_count": 202, "metadata": {}, "outputs": [], "source": [ @@ -3430,7 +3299,7 @@ }, { "cell_type": "code", - "execution_count": 358, + "execution_count": 203, "metadata": {}, "outputs": [], "source": [ @@ -3439,7 +3308,7 @@ }, { "cell_type": "code", - "execution_count": 359, + "execution_count": 204, "metadata": {}, "outputs": [], "source": [ @@ -3448,7 +3317,7 @@ }, { "cell_type": "code", - "execution_count": 360, + "execution_count": 205, "metadata": {}, "outputs": [ { @@ -3457,7 +3326,7 @@ "(100000,)" ] }, - "execution_count": 360, + "execution_count": 205, "metadata": {}, "output_type": "execute_result" } @@ -3468,7 +3337,7 @@ }, { "cell_type": "code", - "execution_count": 361, + "execution_count": 206, "metadata": {}, "outputs": [ { @@ -3477,7 +3346,7 @@ "2.9066983895805354" ] }, - "execution_count": 361, + "execution_count": 206, "metadata": {}, "output_type": "execute_result" } @@ -3488,7 +3357,7 @@ }, { "cell_type": "code", - "execution_count": 362, + "execution_count": 207, "metadata": {}, "outputs": [ { @@ -3497,7 +3366,7 @@ "2.88" ] }, - "execution_count": 362, + "execution_count": 207, "metadata": {}, "output_type": "execute_result" } @@ -3510,13 +3379,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Exercício 2: Law of Large Numbers\n", - "À medida que o número de variáveis geradas aleatoriamente distribuídas de forma idêntica aumenta, a média da amostra (média) aproxima-se da média teórica. (inglês)" + "#### Exercise 2: Law of Large Numbers\n", + "As the number of identically distributed, randomly generated variables increases, their sample mean (average) approaches their theoretical mean." ] }, { "cell_type": "code", - "execution_count": 363, + "execution_count": 208, "metadata": {}, "outputs": [], "source": [ @@ -3535,19 +3404,17 @@ }, { "cell_type": "code", - "execution_count": 364, + "execution_count": 209, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEpCAYAAACHhglHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH1lJREFUeJzt3XuYXFWd7vHvSycQCLdEckQIBBQvgSiiQWQGB4IZ5eZl1BGDOgFaET1GHPFEmEaMSLwxo6ioiJNMRKARUQRvgzgJYqsoCSISA8ggQgtKIOESBBLi7/yxVqcrRXV3dVelq3v1+3meftJde9fav1pVeWvXqr3XVkRgZmbl2KrVBZiZWXM52M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgt6eRdL6kDzeprT0lrZPUlv++VtI7mtF2bu+HkuY2q71BbPdsSQ9I+nOd6y+QdNGWrssMHOxjjqS7JD0u6VFJD0n6uaSTJW16LUTEyRHxsTrbmt3fOhFxd0RsHxEbm1D708IxIo6MiK812vYg69gDOBXYNyJ2rbH8MEndw1mTWSUH+9j0mojYAZgGfBL4ELCo2RuRNK7ZbY4Q04AHI+L+VhdiVouDfQyLiIcj4irgWGCupBkAkpZIOjv/vouk7+W9+zWSfippK0lfB/YEvpuHWuZL2ktSSGqXdDewtOK2ypB/jqRfSXpY0pWSJudtPW1Pt+dTgaQjgH8Djs3b+01evmloJ9d1hqQ/Srpf0oWSdsrLeuqYK+nuPIzS0VffSNop3391bu+M3P5s4Bpgt1zHkqr7TQR+WLF8naTd8uKtc5uPSlopaWbF/XaT9K28vT9Iel8/tS2R9KU8DLVO0s8k7SrpXElrJd0q6YB62pb0Mkm/yM/vfZLOk7R1xfLIn+h+n9v+oiT1VZuNDA52IyJ+BXQDr6ix+NS8bArwTFK4RkS8HbibtPe/fUR8uuI+hwLTgVf3scl/AU4EdgOeAj5fR43/DXwc+Ebe3v41Vjs+/8wCng1sD5xXtc4hwPOBVwJnSprexya/AOyU2zk013xCRPwYOBK4N9dxfFWdj1Ut3z4i7s2LXwtcCuwMXNVTWx4G+y7wG2D3XNv7JfXVfwBvBs4AdgGeBH4B3Jj/vhz4TJ1tbwT+Nd/v4Lz8PVXbOgY4ENg/b7e/umwEcLBbj3uByTVu3wA8C5gWERsi4qcx8ARDCyLisYh4vI/lX4+IW3IIfhh4c8+Xqw16K/CZiLgzItYBpwNvqfq08NGIeDwifkMKu6e9QeRajgVOj4hHI+Iu4D+AtzdYX1dE/CB/3/D1im0fCEyJiLMiYn1E3Al8FXhLP21dERErIuIJ4ArgiYi4MLf9DaBnj73ftnMb10fEU/lxfoX0RlbpkxHxUETcDSwDXtxgP9gWVuoYqA3e7sCaGrefAywAfpQ/gV8QEZ8coK17BrH8j8B40h5jo3bL7VW2PY70SaNH5VEsfyXt1VfbBdi6Rlu7N1hf9bYn5DedaaShm4cqlrcBP+2nrb9U/P54jb97Hle/bUt6HmnvfiawHam/VgxQd60+sxHEe+yGpANJodVVvSzvsZ4aEc8GXgN8QNIrexb30eRAe/R7VPy+J+lTwQPAY6Rw6amrjTQEVG+795KCrLLtp9g89OrxQK6puq0/1Xn/wU6Zeg/wh4jYueJnh4g4apDtDKXtLwO3As+NiB1JQ20eQx/lHOxjmKQdJR1DGve9KCJ+W2OdYyTtk78we4Q0Jttz6OJfSGPQg/U2SftK2g44C7g8DyHcTtqLPVrSeNIY8jYV9/sLsJcqDs2s0gn8q6S9JW1P75j8U4MpLtdyGbBQ0g6SpgEfAOo9Dv0vwDN6vritw6+ARyR9SNK2ktokzchvuI0aqO0dSM/rOkkvAN7dhG1aiznYx6bvSnqUtDfXQfoofkIf6z4X+DGwjvQF3Zci4tq87BPAGfmIig8OYvtfB5aQPuJPAN4H6Sgd0hd3/0naO36M9MVtj2/mfx+UdGONdhfntq8D/gA8AcwbRF2V5uXt30n6JHNJbn9AEXEr6U3mztw3uw2w/kbSp6EX57ofIPVBvW8MjbT9QeA44FHS2Ps3Gt2mtZ58oQ0zs7J4j93MrDAOdjOzwjjYzcwK42A3MyuMg902kXS8pK6Kv9dJGsrhjANtZ6Wkw5rd7gDbHNQ0u62gijl6RgvVMcPnENoc9tdHaRzsW4Ck90paLunJ6kmi8vJX5oma/ippWT5OumfZNpIWS3pE0p8lfWBYi6+Q5zm5s5E2aoVVROxXccjkFqcBptm1kWW4Xx8lcrBvGfcCZ1PjuGdJuwDfJs2RMhlYzubHDi8gHTs+jTSZ1XylmQ0HpHKnyW3UkKfZdZ/aaORg3wIi4tsR8R3gwRqL3wCsjIhv5gmcFgD757P+IM0i+LGIWBsRq0gnjRxfazt56ORnkj4raU1uC0knSlqVp1m9uuoTQUh6n6Q789DEOX2dyZnX3Sf/vq2k/1CawvZhSV2Sts3Lvpk/XTws6TpJ++XbTyJNzDU/D+t8N9++6eN7/oRyrqR788+5krbJyw6T1C3pVKVpeO+TdEJFfUdJ+p3SNLh/qnWSlPqYZlfSa/NH/oeUpv6dXnGfu/KZmjcDj9UKd0kvkHSN0lTGt0l6c8WyoyX9On/qukfSgqr7HqJ0gZOH8vLK53eSpO/nx/RLSc/p47mZIOkiSQ/mdm6Q9My87IT8/D+an+d3Vdyvp0/nV/Tp63Nf3p4fz79VrL9A0uWSvpHbu1FSrZk1e6ZNPk3S/+a6LlOekrnGujWng67o/57Xx0Pqnf74sfya3CsvO0bSTeq9YMyLam1rTIoI/2yhH9Je+5Kq2z4HfLnqtluANwKTSPOMPLNi2ZuA3/bR/vGkuVDmkSZv2hZ4PXAHadrccaTT8n9ecZ8gzdA3mTT/ye3AOyra66pad5/8+xeBa0lzyrQBfwdsk5edSDo1fRvgXOCmijaWAGdX1X0XMDv/fhZwPfB/SPPC/Jz0xgZwWH58Z5EmCjuKNAnVpLz8PuAV+fdJwEv66KfDgO6Kv59HOqv0H3O783OfbV1R302kOW22rdHeRNJZuyfkPn4J6YzO/Sq290LSjtOLSFMMvD4v25N0luecvO1nAC+u6Ks1wMtyuxcDl/bxmN5Fmo53u/x8vBTYMS87GngOac6XQ3OfvaSqT8/M238nsJp0Zu0OwH6kM3afnddfQJo35015/Q+SzmAdX+O5fH9+Lqfm18JXgM4+6v8EcH5uczxpymhVt1l1n4+Tzioen/v8fuCg/Pjn5vtt0+r/9yPhp+UFlPxD7WBfRJoGtfK2n5FCdQ9SmE6oWPaPwF19tH88cHfVbT8E2iv+3ir/x56W/w7giIrl7wH+p6K9pwV7buNxYP86HvPO+X475b+X0H+w/y9wVMWyV/c83hxCjwPjKpbfD7w8/343KeB2HKCmw9g82D8MXFbVR38CDquo78R+2jsW+GnVbV8BPtLH+ucCn82/n06acrfWekuA/6z4+yjg1j7WPZH0JviiOp6T7wCnVPVpW/57h/x8HVSx/gp634gWANdX9VXlG2rlc7kKeGXFus8ivSmMq1HTWcCV5B2Hvl4fVX1+F2kKYkiTl32sap3bgEPr+b9Z+o+HYobfOmDHqtt2JO3Frav4u3pZX6qnyJ0GfC5/PH2ItAcoNp9ytnra3H7nMiFNYzuBFMKbUZpU6pP54/cjpP98PfepR62pdivreTA2n8SrctrYN5LC74+SfiLp4KFsMyL+RuqTvvqo2jTgoJ4+zv38VmBXAEkHKX0pvlrSw8DJ9PbHHtToxwr1TpH7deBq4NI8hPVppYnTkHSkpOvzEMdDpD6qfD4ejN5r0PbMmd/XtL9Q0Re5r7qp/ZqZBlxR0SerSBPGPbPGuueQPiX9KA8XndbH40TpalDnAf8UEasrtnVq1XOwRx91jTkO9uG3koqLOyhdSu05pHH3taS9ocoxzP3zffpSPdnPPcC7YvNpWreNiJ9XrFM9be699O8B0sfzWuO9xwGvA2aTJpbaK9/eM/XrUKbaHaie1HDEDRHxOtIwzndIMzLWY7NtShKpTyqn5e2v7nuAn1T18fYR0TMz4iWkKyTtERE7kYYcVHHfmuPmgxHpoicfjYh9ScNixwD/ovT9xLeAfycN6e0M/KBi+0Ox6fWSx8GnUvs5ugc4sqpfJkTE06Y7jv6ng95E0hTShUTeGxG/rtrWwqptbRcRnQ08zmI42LcASeMkTSCN/bXlL7p6voC7Apgh6Y15nTOBmyPNCAhwIWnGxElKX6i+k/QRvV7nA6er9wvMnST9c9U6/y+3vwdwCgPM6Jf30hYDn1G6fmabpINziOxAujTbg6Tx3o9X3X2gqX07SY93itIRQ2dSx/S4kraW9FZJO0XEBnqnFK7HZcDRSoedjicdCvkkaWijHt8Dnifp7ZLG558D1fsF7A7Amoh4QtLLSG9+PS4GZkt6c36dPEPSoK9IJGmWpBcqzVn/CGnIYyPpAiHbkMbNn5J0JPCqwbZf5aWS3pBfw+8n9dX1NdY7nzTV8bRc4xRJr+uj/v6mg+5ZZxzpTeriiKh+jX4VODl/OpKkiUpfWu/QyAMthYN9yziD9HH2NOBt+fczAPJHyTcCC4G1pC9/Ki+B9hHSR/U/Aj8Bzol0vc+6RMQVwKdIH9EfIX0xe2TValeSxlFvAr5PGvcfyAeB3wI3kIZ3PkV6/VyYa/0T8Due/h9+EbBv/rj8nRrtnk065PPm3P6N+bZ6vB24Kz/Ok0l9PaCIuC2v+wXSp5HXkK7dur7O+z9KCsu3kPZc/0zqj565498DnKU0NfKZVHySiHR5uaNIbyZrSM9BzaNMBrAr6dqmj5CGPH5CmlP/UdI0yJeRXl/HkT49NOJK0hj3WlKfvyG/mVb7XN7Wj/Jjv570+q6lv+mge0wlfan6/oojY9ZJ2jMilpN2es7Ldd1BH0ePjUWetneMkRSkq+Xc0epabORTOlRzn4io603TRgbvsZuZFcbBbmZWmIaHYvIXgNeRxhfHka5f+ZEm1GZmZkPQjGAXMDEi1uUjDLpIJ0PU+tbczMy2sIYnOIr0ztBzYk3P6cH+RtbMrEWaMnNdPpZ2Ben08y9GxC9rrHMScBLAxIkTX/qCF7ygehUzM+vHihUrHoiIKQOt19TDHSXtTDoBZ15E3NLXejNnzozly5c3bbtmZmOBpBURMXOg9Zp6VExEPESaAbCu+cPNzKz5Gg72fNrwzvn3bUlzhtza/73MzGxLacYY+7OAr+Vx9q1I06F+rwntmpnZEDTjqJibgQOaUIuZmTWBzzw1MyuMg93MrDAOdjOzwjTlBKWRKM100DhPa2xmo02xwT5QIEtyaJtZkTwUY2ZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWmIaDXdIekpZJWiVppaRTmlGYmZkNzbgmtPEUcGpE3ChpB2CFpGsi4ndNaNvMzAap4T32iLgvIm7Mvz8KrAJ2b7RdMzMbmqaOsUvaCzgA+GWNZSdJWi5p+erVq5u5WTMzq9C0YJe0PfAt4P0R8Uj18oi4ICJmRsTMKVOmNGuzZmZWpSnBLmk8KdQvjohvN6NNMzMbmmYcFSNgEbAqIj7TeElmZtaIZuyx/z3wduBwSTfln6Oa0K6ZmQ1Bw4c7RkQXoCbUYmZmTeAzT83MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrTFOCXdJiSfdLuqUZ7ZmZ2dA1a499CXBEk9oyM7MGNCXYI+I6YE0z2jIzs8Z4jN3MrDDDFuySTpK0XNLy1atXD9dmzczGnGEL9oi4ICJmRsTMKVOmDNdmzczGHA/FmJkVplmHO3YCvwCeL6lbUnsz2jUzs8Eb14xGImJOM9oxM7PGjdqhmMmTJyNpyD9AQ/eXxOTJk1vcC2ZmT9eUPfZWWLt2LRHR0hp63iDMzEaSUbvHbmZmtY3aPXarX7M+WbT6E5KZ1cfBPgYMFMiSHNpmBfFQjJlZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwV6AyZMnI2nIP0BD95fE5MmTW9wLZtZj1F7MOj6yIyzYqfU1jABr165t+cWoe94gzKz1Rm2w66OPjIgwiwUtLcEGqVlvQK1+7W1JnZ2dLFy4kFWrVjF9+nQ6OjqYM2dOq8uyQRi1wW42FAMFsqSiQ3sgnZ2dnHLKKUycOJGI4LHHHuOUU04BcLiPIh5jN7NN5s+fT1tbG4sXL+bJJ59k8eLFtLW1MX/+/FaXZoPgYDezTbq7u7nwwguZNWsW48ePZ9asWVx44YV0d3e3ujQbhKYEu6QjJN0m6Q5JpzWjTTMzG5qGg11SG/BF4EhgX2COpH0bbdfMht/UqVOZO3cuy5YtY8OGDSxbtoy5c+cyderUVpdmg9CMPfaXAXdExJ0RsR64FHhdE9o1GzQf01+/WrV3d3dz3333cfjhh7P11ltz+OGHc99999Hd3d1vn5Wqs7OTGTNm0NbWxowZM+js7Gx1SXVpxlExuwP3VPzdDRzUhHbNBs3H9PeaPHkya9eu3eLb6e/xTpo0iTVr1mzxGhpVz3O2cuVKjjvuOI477rg+12n1a69HM4K9Vo887dFJOgk4CWDPPfdswmath0/W6uW+6LXmfRuBVteyscXbzwZ4TTTtORvotbfg4eZsZwBq9B1G0sHAgoh4df77dICI+ERf95k5c2YsX7680e22/N1xJNQwUuoYCTWMlDpGQg09dbRaSXvs9djSz7ukFRExc6D1mjHGfgPwXEl7S9oaeAtwVRPaNRuSRsfIG/2ZNGlSq7sASCHT389wbGc0hDrUfgz77bcfS5cu3ey2pUuXst9++23xPm1Uw8EeEU8B7wWuBlYBl0XEykbbNRuKgcKsnrBrtI3RHGZbbbUV69ev3+y29evXs9VWW434MGu2jo4O2tvbNztCqL29nY6OjlaXNqCmTCkQET8AftCMtsysdaZPn05XVxezZs3adFtXVxfTp09vYVWt0TOFwrx58zbNm7Nw4cJRMbWC54oxs0169lIXLVrEIYccQldXF+3t7SxcuLDVpbXEnDlzRkWQV3Owm9kmo3kv1Xo1fFTMUPiomPLqGAk11GO0HP1gVstwHhVjI4CPBKlPrS//LrnkEvbee2+WLl3K+vXrWbp0KXvvvTeXXHLJmPvC0MrgPfZRXkMzlPI4hmrGjBl84Qtf2OwLw2XLljFv3jxuueWWFlZmtrl699gd7KO8hmYo5XEMVVtbG0888QTjx4/fdNuGDRuYMGECGzeOkDMnzfBQjFndeg7xqzRWD/GzMjjYbcwbzSeimNXiwx1tzPMhflYaj7GP8hqaoZTHYVY6j7GbmY1RDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCjOqT1Bq9cV6R8uMhmY2tozaYG/0hBqflGNmpfJQjJlZYUbtHrvVr54hq3rW8Sccs9HBwT4GOJDNxhYPxZiZFcbBbmZWGAe7mVlhHOxmZoVxsI9hnZ2dzJgxg7a2NmbMmEFnZ2erSzKzJvBRMWNUZ2cnHR0dLFq0iEMOOYSuri7a29sBfEk4s1HOe+xj1MKFC1m0aBGzZs1i/PjxzJo1i0WLFrFw4cJWl2ZmDRq11zxt1FifUqCtrY0nnniC8ePHb7ptw4YNTJgwgY0bN7awMjPri695av2aPn06XV1dm93W1dXF9OnTW1SRmTVLQ8Eu6Z8lrZT0N0kDvovYyNHR0UF7ezvLli1jw4YNLFu2jPb2djo6Olpdmpk1qNEvT28B3gB8pQm12DDq+YJ03rx5rFq1iunTp7Nw4UJ/cWpWgIaCPSJWQevnRbehmTNnjoPcrEDDNsYu6SRJyyUtX7169XBt1sxszBlwj13Sj4FdayzqiIgr691QRFwAXADpqJi6KzQzs0EZMNgjYvZwFGJmZs3hwx3NzArT6OGO/ySpGzgY+L6kq5tTlpmZDVWjR8VcAVzRpFrMzKwJPBRjZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEaCnZJ50i6VdLNkq6QtHOzCjMzs6FpdI/9GmBGRLwIuB04vfGSzMysEQ0Fe0T8KCKeyn9eD0xtvCQzM2tEM8fYTwR+2NdCSSdJWi5p+erVq5u4WTMzqzRuoBUk/RjYtcaijoi4Mq/TATwFXNxXOxFxAXABwMyZM2NI1ZqZ2YAGDPaImN3fcklzgWOAV0aEA9vMrMUGDPb+SDoC+BBwaET8tTklmZlZIxodYz8P2AG4RtJNks5vQk1mZtaAhvbYI2KfZhViZmbN4TNPzcwK42A3MyuMg93MrDAOdjOzwjjYzcwK09BRMSOZpKas43OuzGy0KTbYHchmNlZ5KMbMrDAOdjOzwjjYzcwK42A3MyuMg93MrDAOdjOzwjjYzcwK42A3MyuMWnEij6TVwB+HfcOb2wV4oMU1jBTui17ui17ui14jpS+mRcSUgVZqSbCPBJKWR8TMVtcxErgverkverkveo22vvBQjJlZYRzsZmaFGcvBfkGrCxhB3Be93Be93Be9RlVfjNkxdjOzUo3lPXYzsyI52M3MCuNgNzMrjIM9kzRR0tckfVXSW1tdTytJerakRZIub3UtrSbp9fk1caWkV7W6nlaSNF3S+ZIul/TuVtfTajkzVkg6ptW1VCs62CUtlnS/pFuqbj9C0m2S7pB0Wr75DcDlEfFO4LXDXuwWNpi+iIg7I6K9NZVueYPsi+/k18TxwLEtKHeLGmRfrIqIk4E3A6PmZJ16DTIvAD4EXDa8Vdan6GAHlgBHVN4gqQ34InAksC8wR9K+wFTgnrzaxmGscbgsof6+KN0SBt8XZ+TlpVnCIPpC0muBLuB/hrfMYbGEOvtC0mzgd8BfhrvIehQd7BFxHbCm6uaXAXfkvdL1wKXA64BuUrhDgf0yyL4o2mD6QsmngB9GxI3DXeuWNtjXRURcFRF/BxQ3XDnIvpgFvBw4DninpBGVGeNaXUAL7E7vnjmkQD8I+DxwnqSjge+2orAWqNkXkp4BLAQOkHR6RHyiJdUNr75eF/OA2cBOkvaJiPNbUdww6+t1cRhpyHIb4ActqKsVavZFRLwXQNLxwAMR8bcW1NansRjsqnFbRMRjwAnDXUyL9dUXDwInD3cxLdZXX3ye9KY/lvTVF9cC1w5vKS1Xsy82/RKxZPhKqd+I+vgwTLqBPSr+ngrc26JaWs190ct90ct90WtU9sVYDPYbgOdK2lvS1sBbgKtaXFOruC96uS96uS96jcq+KDrYJXUCvwCeL6lbUntEPAW8F7gaWAVcFhErW1nncHBf9HJf9HJf9CqpLzwJmJlZYYreYzczG4sc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm2WSrpXU0HS0kl5bNbWr2bAbi3PFmG0xEXEVo+DMRCub99htxMpXqPm+pN9IukXSsfn2MyXdkG+7QJLy7ddK+qyk6yStknSgpG9L+r2ks/M6e0m6VelqWTfnqwFtV2Pbr5L0C0k3SvqmpO1rrPM+Sb/L7Vyabzte0nn595sqfh6XdGh+TItz/b+WVPw0yTb8HOw2kh0B3BsR+0fEDOC/8+3nRcSB+bZtgcpLk62PiH8AzgeuBP4vMAM4Pk9HDPB84IKIeBHwCPCeyo1K2oV0YY3ZEfESYDnwgRr1nQYckNt52myYEfHiiHgx8OHcxs+BDmBpRBxImtP7HEkTB9UrZgNwsNtI9ltgtqRPSXpFRDycb58l6ZeSfgscDuxXcZ+rKu67MiLui4gngTvpnaXvnoj4Wf79IuCQqu2+nHS1nJ9JugmYC0yrUd/NwMWS3gY8VesBSHoucA5wbERsAF4FnJbbvRaYAOw5UEeYDYbH2G3EiojbJb0UOAr4hKQfAZ8GvgTMjIh7JC0ghWOPJ/O/f6v4vefvntd79QRJ1X8LuCYi5gxQ4tHAP5CukfthSZVvMOQ98cuAd0ZEz1SvAt4YEbcN0LbZkHmP3UYsSbsBf42Ii4B/B15Cb4g/kMe93zSEpveUdHD+fQ7pGp6Vrgf+XtI+uY7tJD2vqratgD0iYhkwH9gZqB6H/y/gvyLipxW3XQ3Mq/he4IAh1G/WL++x20j2QtIY9N+ADcC7I+IhSV8lDbXcRZove7BWAXMlfQX4PfDlyoURsTpf8qxT0jb55jOA2ytWawMukrQTaS/8s7k2ACRNI73pPE/Sifk+7wA+BpwL3JzD/S42/47ArGGettfGFEl7Ad/LX7yaFclDMWZmhfEeu5lZYbzHbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlh/j9jw8UIkrCfDgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEpCAYAAACHhglHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAH1lJREFUeJzt3XuYXFWd7vHvSycQCLdEckQIBBQvgSiiQWQGB4IZ5eZl1BGDOgFaET1GHPFEmEaMSLwxo6ioiJNMRKARUQRvgzgJYqsoCSISA8ggQgtKIOESBBLi7/yxVqcrRXV3dVelq3v1+3meftJde9fav1pVeWvXqr3XVkRgZmbl2KrVBZiZWXM52M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgt6eRdL6kDzeprT0lrZPUlv++VtI7mtF2bu+HkuY2q71BbPdsSQ9I+nOd6y+QdNGWrssMHOxjjqS7JD0u6VFJD0n6uaSTJW16LUTEyRHxsTrbmt3fOhFxd0RsHxEbm1D708IxIo6MiK812vYg69gDOBXYNyJ2rbH8MEndw1mTWSUH+9j0mojYAZgGfBL4ELCo2RuRNK7ZbY4Q04AHI+L+VhdiVouDfQyLiIcj4irgWGCupBkAkpZIOjv/vouk7+W9+zWSfippK0lfB/YEvpuHWuZL2ktSSGqXdDewtOK2ypB/jqRfSXpY0pWSJudtPW1Pt+dTgaQjgH8Djs3b+01evmloJ9d1hqQ/Srpf0oWSdsrLeuqYK+nuPIzS0VffSNop3391bu+M3P5s4Bpgt1zHkqr7TQR+WLF8naTd8uKtc5uPSlopaWbF/XaT9K28vT9Iel8/tS2R9KU8DLVO0s8k7SrpXElrJd0q6YB62pb0Mkm/yM/vfZLOk7R1xfLIn+h+n9v+oiT1VZuNDA52IyJ+BXQDr6ix+NS8bArwTFK4RkS8HbibtPe/fUR8uuI+hwLTgVf3scl/AU4EdgOeAj5fR43/DXwc+Ebe3v41Vjs+/8wCng1sD5xXtc4hwPOBVwJnSprexya/AOyU2zk013xCRPwYOBK4N9dxfFWdj1Ut3z4i7s2LXwtcCuwMXNVTWx4G+y7wG2D3XNv7JfXVfwBvBs4AdgGeBH4B3Jj/vhz4TJ1tbwT+Nd/v4Lz8PVXbOgY4ENg/b7e/umwEcLBbj3uByTVu3wA8C5gWERsi4qcx8ARDCyLisYh4vI/lX4+IW3IIfhh4c8+Xqw16K/CZiLgzItYBpwNvqfq08NGIeDwifkMKu6e9QeRajgVOj4hHI+Iu4D+AtzdYX1dE/CB/3/D1im0fCEyJiLMiYn1E3Al8FXhLP21dERErIuIJ4ArgiYi4MLf9DaBnj73ftnMb10fEU/lxfoX0RlbpkxHxUETcDSwDXtxgP9gWVuoYqA3e7sCaGrefAywAfpQ/gV8QEZ8coK17BrH8j8B40h5jo3bL7VW2PY70SaNH5VEsfyXt1VfbBdi6Rlu7N1hf9bYn5DedaaShm4cqlrcBP+2nrb9U/P54jb97Hle/bUt6HmnvfiawHam/VgxQd60+sxHEe+yGpANJodVVvSzvsZ4aEc8GXgN8QNIrexb30eRAe/R7VPy+J+lTwQPAY6Rw6amrjTQEVG+795KCrLLtp9g89OrxQK6puq0/1Xn/wU6Zeg/wh4jYueJnh4g4apDtDKXtLwO3As+NiB1JQ20eQx/lHOxjmKQdJR1DGve9KCJ+W2OdYyTtk78we4Q0Jttz6OJfSGPQg/U2SftK2g44C7g8DyHcTtqLPVrSeNIY8jYV9/sLsJcqDs2s0gn8q6S9JW1P75j8U4MpLtdyGbBQ0g6SpgEfAOo9Dv0vwDN6vritw6+ARyR9SNK2ktokzchvuI0aqO0dSM/rOkkvAN7dhG1aiznYx6bvSnqUtDfXQfoofkIf6z4X+DGwjvQF3Zci4tq87BPAGfmIig8OYvtfB5aQPuJPAN4H6Sgd0hd3/0naO36M9MVtj2/mfx+UdGONdhfntq8D/gA8AcwbRF2V5uXt30n6JHNJbn9AEXEr6U3mztw3uw2w/kbSp6EX57ofIPVBvW8MjbT9QeA44FHS2Ps3Gt2mtZ58oQ0zs7J4j93MrDAOdjOzwjjYzcwK42A3MyuMg902kXS8pK6Kv9dJGsrhjANtZ6Wkw5rd7gDbHNQ0u62gijl6RgvVMcPnENoc9tdHaRzsW4Ck90paLunJ6kmi8vJX5oma/ippWT5OumfZNpIWS3pE0p8lfWBYi6+Q5zm5s5E2aoVVROxXccjkFqcBptm1kWW4Xx8lcrBvGfcCZ1PjuGdJuwDfJs2RMhlYzubHDi8gHTs+jTSZ1XylmQ0HpHKnyW3UkKfZdZ/aaORg3wIi4tsR8R3gwRqL3wCsjIhv5gmcFgD757P+IM0i+LGIWBsRq0gnjRxfazt56ORnkj4raU1uC0knSlqVp1m9uuoTQUh6n6Q789DEOX2dyZnX3Sf/vq2k/1CawvZhSV2Sts3Lvpk/XTws6TpJ++XbTyJNzDU/D+t8N9++6eN7/oRyrqR788+5krbJyw6T1C3pVKVpeO+TdEJFfUdJ+p3SNLh/qnWSlPqYZlfSa/NH/oeUpv6dXnGfu/KZmjcDj9UKd0kvkHSN0lTGt0l6c8WyoyX9On/qukfSgqr7HqJ0gZOH8vLK53eSpO/nx/RLSc/p47mZIOkiSQ/mdm6Q9My87IT8/D+an+d3Vdyvp0/nV/Tp63Nf3p4fz79VrL9A0uWSvpHbu1FSrZk1e6ZNPk3S/+a6LlOekrnGujWng67o/57Xx0Pqnf74sfya3CsvO0bSTeq9YMyLam1rTIoI/2yhH9Je+5Kq2z4HfLnqtluANwKTSPOMPLNi2ZuA3/bR/vGkuVDmkSZv2hZ4PXAHadrccaTT8n9ecZ8gzdA3mTT/ye3AOyra66pad5/8+xeBa0lzyrQBfwdsk5edSDo1fRvgXOCmijaWAGdX1X0XMDv/fhZwPfB/SPPC/Jz0xgZwWH58Z5EmCjuKNAnVpLz8PuAV+fdJwEv66KfDgO6Kv59HOqv0H3O783OfbV1R302kOW22rdHeRNJZuyfkPn4J6YzO/Sq290LSjtOLSFMMvD4v25N0luecvO1nAC+u6Ks1wMtyuxcDl/bxmN5Fmo53u/x8vBTYMS87GngOac6XQ3OfvaSqT8/M238nsJp0Zu0OwH6kM3afnddfQJo35015/Q+SzmAdX+O5fH9+Lqfm18JXgM4+6v8EcH5uczxpymhVt1l1n4+Tzioen/v8fuCg/Pjn5vtt0+r/9yPhp+UFlPxD7WBfRJoGtfK2n5FCdQ9SmE6oWPaPwF19tH88cHfVbT8E2iv+3ir/x56W/w7giIrl7wH+p6K9pwV7buNxYP86HvPO+X475b+X0H+w/y9wVMWyV/c83hxCjwPjKpbfD7w8/343KeB2HKCmw9g82D8MXFbVR38CDquo78R+2jsW+GnVbV8BPtLH+ucCn82/n06acrfWekuA/6z4+yjg1j7WPZH0JviiOp6T7wCnVPVpW/57h/x8HVSx/gp634gWANdX9VXlG2rlc7kKeGXFus8ivSmMq1HTWcCV5B2Hvl4fVX1+F2kKYkiTl32sap3bgEPr+b9Z+o+HYobfOmDHqtt2JO3Frav4u3pZX6qnyJ0GfC5/PH2ItAcoNp9ytnra3H7nMiFNYzuBFMKbUZpU6pP54/cjpP98PfepR62pdivreTA2n8SrctrYN5LC74+SfiLp4KFsMyL+RuqTvvqo2jTgoJ4+zv38VmBXAEkHKX0pvlrSw8DJ9PbHHtToxwr1TpH7deBq4NI8hPVppYnTkHSkpOvzEMdDpD6qfD4ejN5r0PbMmd/XtL9Q0Re5r7qp/ZqZBlxR0SerSBPGPbPGuueQPiX9KA8XndbH40TpalDnAf8UEasrtnVq1XOwRx91jTkO9uG3koqLOyhdSu05pHH3taS9ocoxzP3zffpSPdnPPcC7YvNpWreNiJ9XrFM9be699O8B0sfzWuO9xwGvA2aTJpbaK9/eM/XrUKbaHaie1HDEDRHxOtIwzndIMzLWY7NtShKpTyqn5e2v7nuAn1T18fYR0TMz4iWkKyTtERE7kYYcVHHfmuPmgxHpoicfjYh9ScNixwD/ovT9xLeAfycN6e0M/KBi+0Ox6fWSx8GnUvs5ugc4sqpfJkTE06Y7jv6ng95E0hTShUTeGxG/rtrWwqptbRcRnQ08zmI42LcASeMkTSCN/bXlL7p6voC7Apgh6Y15nTOBmyPNCAhwIWnGxElKX6i+k/QRvV7nA6er9wvMnST9c9U6/y+3vwdwCgPM6Jf30hYDn1G6fmabpINziOxAujTbg6Tx3o9X3X2gqX07SY93itIRQ2dSx/S4kraW9FZJO0XEBnqnFK7HZcDRSoedjicdCvkkaWijHt8Dnifp7ZLG558D1fsF7A7Amoh4QtLLSG9+PS4GZkt6c36dPEPSoK9IJGmWpBcqzVn/CGnIYyPpAiHbkMbNn5J0JPCqwbZf5aWS3pBfw+8n9dX1NdY7nzTV8bRc4xRJr+uj/v6mg+5ZZxzpTeriiKh+jX4VODl/OpKkiUpfWu/QyAMthYN9yziD9HH2NOBt+fczAPJHyTcCC4G1pC9/Ki+B9hHSR/U/Aj8Bzol0vc+6RMQVwKdIH9EfIX0xe2TValeSxlFvAr5PGvcfyAeB3wI3kIZ3PkV6/VyYa/0T8Due/h9+EbBv/rj8nRrtnk065PPm3P6N+bZ6vB24Kz/Ok0l9PaCIuC2v+wXSp5HXkK7dur7O+z9KCsu3kPZc/0zqj565498DnKU0NfKZVHySiHR5uaNIbyZrSM9BzaNMBrAr6dqmj5CGPH5CmlP/UdI0yJeRXl/HkT49NOJK0hj3WlKfvyG/mVb7XN7Wj/Jjv570+q6lv+mge0wlfan6/oojY9ZJ2jMilpN2es7Ldd1BH0ePjUWetneMkRSkq+Xc0epabORTOlRzn4io603TRgbvsZuZFcbBbmZWmIaHYvIXgNeRxhfHka5f+ZEm1GZmZkPQjGAXMDEi1uUjDLpIJ0PU+tbczMy2sIYnOIr0ztBzYk3P6cH+RtbMrEWaMnNdPpZ2Ben08y9GxC9rrHMScBLAxIkTX/qCF7ygehUzM+vHihUrHoiIKQOt19TDHSXtTDoBZ15E3NLXejNnzozly5c3bbtmZmOBpBURMXOg9Zp6VExEPESaAbCu+cPNzKz5Gg72fNrwzvn3bUlzhtza/73MzGxLacYY+7OAr+Vx9q1I06F+rwntmpnZEDTjqJibgQOaUIuZmTWBzzw1MyuMg93MrDAOdjOzwjTlBKWRKM100DhPa2xmo02xwT5QIEtyaJtZkTwUY2ZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWmIaDXdIekpZJWiVppaRTmlGYmZkNzbgmtPEUcGpE3ChpB2CFpGsi4ndNaNvMzAap4T32iLgvIm7Mvz8KrAJ2b7RdMzMbmqaOsUvaCzgA+GWNZSdJWi5p+erVq5u5WTMzq9C0YJe0PfAt4P0R8Uj18oi4ICJmRsTMKVOmNGuzZmZWpSnBLmk8KdQvjohvN6NNMzMbmmYcFSNgEbAqIj7TeElmZtaIZuyx/z3wduBwSTfln6Oa0K6ZmQ1Bw4c7RkQXoCbUYmZmTeAzT83MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCuNgNzMrTFOCXdJiSfdLuqUZ7ZmZ2dA1a499CXBEk9oyM7MGNCXYI+I6YE0z2jIzs8Z4jN3MrDDDFuySTpK0XNLy1atXD9dmzczGnGEL9oi4ICJmRsTMKVOmDNdmzczGHA/FmJkVplmHO3YCvwCeL6lbUnsz2jUzs8Eb14xGImJOM9oxM7PGjdqhmMmTJyNpyD9AQ/eXxOTJk1vcC2ZmT9eUPfZWWLt2LRHR0hp63iDMzEaSUbvHbmZmtY3aPXarX7M+WbT6E5KZ1cfBPgYMFMiSHNpmBfFQjJlZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwW5mVhgHu5lZYRzsZmaFcbCbmRXGwV6AyZMnI2nIP0BD95fE5MmTW9wLZtZj1F7MOj6yIyzYqfU1jABr165t+cWoe94gzKz1Rm2w66OPjIgwiwUtLcEGqVlvQK1+7W1JnZ2dLFy4kFWrVjF9+nQ6OjqYM2dOq8uyQRi1wW42FAMFsqSiQ3sgnZ2dnHLKKUycOJGI4LHHHuOUU04BcLiPIh5jN7NN5s+fT1tbG4sXL+bJJ59k8eLFtLW1MX/+/FaXZoPgYDezTbq7u7nwwguZNWsW48ePZ9asWVx44YV0d3e3ujQbhKYEu6QjJN0m6Q5JpzWjTTMzG5qGg11SG/BF4EhgX2COpH0bbdfMht/UqVOZO3cuy5YtY8OGDSxbtoy5c+cyderUVpdmg9CMPfaXAXdExJ0RsR64FHhdE9o1GzQf01+/WrV3d3dz3333cfjhh7P11ltz+OGHc99999Hd3d1vn5Wqs7OTGTNm0NbWxowZM+js7Gx1SXVpxlExuwP3VPzdDRzUhHbNBs3H9PeaPHkya9eu3eLb6e/xTpo0iTVr1mzxGhpVz3O2cuVKjjvuOI477rg+12n1a69HM4K9Vo887dFJOgk4CWDPPfdswmath0/W6uW+6LXmfRuBVteyscXbzwZ4TTTtORvotbfg4eZsZwBq9B1G0sHAgoh4df77dICI+ERf95k5c2YsX7680e22/N1xJNQwUuoYCTWMlDpGQg09dbRaSXvs9djSz7ukFRExc6D1mjHGfgPwXEl7S9oaeAtwVRPaNRuSRsfIG/2ZNGlSq7sASCHT389wbGc0hDrUfgz77bcfS5cu3ey2pUuXst9++23xPm1Uw8EeEU8B7wWuBlYBl0XEykbbNRuKgcKsnrBrtI3RHGZbbbUV69ev3+y29evXs9VWW434MGu2jo4O2tvbNztCqL29nY6OjlaXNqCmTCkQET8AftCMtsysdaZPn05XVxezZs3adFtXVxfTp09vYVWt0TOFwrx58zbNm7Nw4cJRMbWC54oxs0169lIXLVrEIYccQldXF+3t7SxcuLDVpbXEnDlzRkWQV3Owm9kmo3kv1Xo1fFTMUPiomPLqGAk11GO0HP1gVstwHhVjI4CPBKlPrS//LrnkEvbee2+WLl3K+vXrWbp0KXvvvTeXXHLJmPvC0MrgPfZRXkMzlPI4hmrGjBl84Qtf2OwLw2XLljFv3jxuueWWFlZmtrl699gd7KO8hmYo5XEMVVtbG0888QTjx4/fdNuGDRuYMGECGzeOkDMnzfBQjFndeg7xqzRWD/GzMjjYbcwbzSeimNXiwx1tzPMhflYaj7GP8hqaoZTHYVY6j7GbmY1RDnYzs8I42M3MCuNgNzMrjIPdzKwwDnYzs8I42M3MCjOqT1Bq9cV6R8uMhmY2tozaYG/0hBqflGNmpfJQjJlZYUbtHrvVr54hq3rW8Sccs9HBwT4GOJDNxhYPxZiZFcbBbmZWGAe7mVlhHOxmZoVxsI9hnZ2dzJgxg7a2NmbMmEFnZ2erSzKzJvBRMWNUZ2cnHR0dLFq0iEMOOYSuri7a29sBfEk4s1HOe+xj1MKFC1m0aBGzZs1i/PjxzJo1i0WLFrFw4cJWl2ZmDRq11zxt1FifUqCtrY0nnniC8ePHb7ptw4YNTJgwgY0bN7awMjPri695av2aPn06XV1dm93W1dXF9OnTW1SRmTVLQ8Eu6Z8lrZT0N0kDvovYyNHR0UF7ezvLli1jw4YNLFu2jPb2djo6Olpdmpk1qNEvT28B3gB8pQm12DDq+YJ03rx5rFq1iunTp7Nw4UJ/cWpWgIaCPSJWQevnRbehmTNnjoPcrEDDNsYu6SRJyyUtX7169XBt1sxszBlwj13Sj4FdayzqiIgr691QRFwAXADpqJi6KzQzs0EZMNgjYvZwFGJmZs3hwx3NzArT6OGO/ySpGzgY+L6kq5tTlpmZDVWjR8VcAVzRpFrMzKwJPBRjZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm5kVxsFuZlYYB7uZWWEaCnZJ50i6VdLNkq6QtHOzCjMzs6FpdI/9GmBGRLwIuB04vfGSzMysEQ0Fe0T8KCKeyn9eD0xtvCQzM2tEM8fYTwR+2NdCSSdJWi5p+erVq5u4WTMzqzRuoBUk/RjYtcaijoi4Mq/TATwFXNxXOxFxAXABwMyZM2NI1ZqZ2YAGDPaImN3fcklzgWOAV0aEA9vMrMUGDPb+SDoC+BBwaET8tTklmZlZIxodYz8P2AG4RtJNks5vQk1mZtaAhvbYI2KfZhViZmbN4TNPzcwK42A3MyuMg93MrDAOdjOzwjjYzcwK09BRMSOZpKas43OuzGy0KTbYHchmNlZ5KMbMrDAOdjOzwjjYzcwK42A3MyuMg93MrDAOdjOzwjjYzcwK42A3MyuMWnEij6TVwB+HfcOb2wV4oMU1jBTui17ui17ui14jpS+mRcSUgVZqSbCPBJKWR8TMVtcxErgverkverkveo22vvBQjJlZYRzsZmaFGcvBfkGrCxhB3Be93Be93Be9RlVfjNkxdjOzUo3lPXYzsyI52M3MCuNgNzMrjIM9kzRR0tckfVXSW1tdTytJerakRZIub3UtrSbp9fk1caWkV7W6nlaSNF3S+ZIul/TuVtfTajkzVkg6ptW1VCs62CUtlnS/pFuqbj9C0m2S7pB0Wr75DcDlEfFO4LXDXuwWNpi+iIg7I6K9NZVueYPsi+/k18TxwLEtKHeLGmRfrIqIk4E3A6PmZJ16DTIvAD4EXDa8Vdan6GAHlgBHVN4gqQ34InAksC8wR9K+wFTgnrzaxmGscbgsof6+KN0SBt8XZ+TlpVnCIPpC0muBLuB/hrfMYbGEOvtC0mzgd8BfhrvIehQd7BFxHbCm6uaXAXfkvdL1wKXA64BuUrhDgf0yyL4o2mD6QsmngB9GxI3DXeuWNtjXRURcFRF/BxQ3XDnIvpgFvBw4DninpBGVGeNaXUAL7E7vnjmkQD8I+DxwnqSjge+2orAWqNkXkp4BLAQOkHR6RHyiJdUNr75eF/OA2cBOkvaJiPNbUdww6+t1cRhpyHIb4ActqKsVavZFRLwXQNLxwAMR8bcW1NansRjsqnFbRMRjwAnDXUyL9dUXDwInD3cxLdZXX3ye9KY/lvTVF9cC1w5vKS1Xsy82/RKxZPhKqd+I+vgwTLqBPSr+ngrc26JaWs190ct90ct90WtU9sVYDPYbgOdK2lvS1sBbgKtaXFOruC96uS96uS96jcq+KDrYJXUCvwCeL6lbUntEPAW8F7gaWAVcFhErW1nncHBf9HJf9HJf9CqpLzwJmJlZYYreYzczG4sc7GZmhXGwm5kVxsFuZlYYB7uZWWEc7GZmhXGwm2WSrpXU0HS0kl5bNbWr2bAbi3PFmG0xEXEVo+DMRCub99htxMpXqPm+pN9IukXSsfn2MyXdkG+7QJLy7ddK+qyk6yStknSgpG9L+r2ks/M6e0m6VelqWTfnqwFtV2Pbr5L0C0k3SvqmpO1rrPM+Sb/L7Vyabzte0nn595sqfh6XdGh+TItz/b+WVPw0yTb8HOw2kh0B3BsR+0fEDOC/8+3nRcSB+bZtgcpLk62PiH8AzgeuBP4vMAM4Pk9HDPB84IKIeBHwCPCeyo1K2oV0YY3ZEfESYDnwgRr1nQYckNt52myYEfHiiHgx8OHcxs+BDmBpRBxImtP7HEkTB9UrZgNwsNtI9ltgtqRPSXpFRDycb58l6ZeSfgscDuxXcZ+rKu67MiLui4gngTvpnaXvnoj4Wf79IuCQqu2+nHS1nJ9JugmYC0yrUd/NwMWS3gY8VesBSHoucA5wbERsAF4FnJbbvRaYAOw5UEeYDYbH2G3EiojbJb0UOAr4hKQfAZ8GvgTMjIh7JC0ghWOPJ/O/f6v4vefvntd79QRJ1X8LuCYi5gxQ4tHAP5CukfthSZVvMOQ98cuAd0ZEz1SvAt4YEbcN0LbZkHmP3UYsSbsBf42Ii4B/B15Cb4g/kMe93zSEpveUdHD+fQ7pGp6Vrgf+XtI+uY7tJD2vqratgD0iYhkwH9gZqB6H/y/gvyLipxW3XQ3Mq/he4IAh1G/WL++x20j2QtIY9N+ADcC7I+IhSV8lDbXcRZove7BWAXMlfQX4PfDlyoURsTpf8qxT0jb55jOA2ytWawMukrQTaS/8s7k2ACRNI73pPE/Sifk+7wA+BpwL3JzD/S42/47ArGGettfGFEl7Ad/LX7yaFclDMWZmhfEeu5lZYbzHbmZWGAe7mVlhHOxmZoVxsJuZFcbBbmZWGAe7mVlh/j9jw8UIkrCfDgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3564,29 +3431,30 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Exercício 3: Central Limit Theorem - Teorema do Limite Central\n", + "#### Exercise 3: Central Limit Theorem\n", "source: Wolfram MathWorld" ] }, { "cell_type": "code", - "execution_count": 365, + "execution_count": 211, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX6+PHPSUhC6CWA1IB0QieEDgoooCziWlBcy8+Ca9m14NfVteDo2rsiKlasgBUsiAgivfdOQFoQCC1AAqSd3x9nKiSkzcy9M/O8X695cc9NMvOsm5Pn3nPPeY7SWiOEEELYTZTVAQghhBAFkQQlhBDCliRBCSGEsCVJUEIIIWxJEpQQQghbkgQlhBDCliRBCSGEsCVJUGFAKdVWKTVdKXVQKXXWwjalVA2l1HdKqUyl1E6l1Egr4hTCzpRS1yilNiulMpRSB5RSE5RSVby+Lv0oyCRBhYccYDJwSyFffwvIBuoA1wFvK6WSghSbEKFiPtBLa10VOB8oB/zP6+vSj4JMElSAKaV2KKUeUEqtcV6ZTVJKlffnZ2itN2utPwDWF/D5FYErgMe01ie01vOAqcD1/oxBiEAKUj/arbU+6HUqD2jm/HzpRxaQBBUcVwODgSZAe+Cmgr5JKdVbKXX0HK/epfjsFkCe1nqL17nVgFz5iVAT8H7k/NkM4DgmIb3m/JL0IwuUszqACPGG1novgFLqB6BjQd/kvCqr5ufPrgRknHEuA6js588RItAC3o+cP1tVKVUfuA3Y4fyS9CMLyB1UcOzzOs7C/LIHywmgyhnnqmCuEIUIJUHrR1rrNOAXYKLzlPQjC0iCshGlVB+l1IlzvPqU4m23AOWUUs29znWggOdVQoQDP/ajckBT57H0IwvIEJ+NaK3nUoqrQqWUAuKAWGe7vHk7fVprnamU+hZ4Uil1K2ZY5DKgp/8iF8I+ytCPrgPmAruBRsDTwEzne0o/soDcQYWHROAknqu5k8Bmr6/fCcQDB4AvgTu01nLlJ4SvNsACzHDefEwfus3r69KPgkzJhoVCCCHsSO6ghBBC2JIkKCGEELYkCUoIIYQtSYISQghhSyWaZp6QkKAbN24coFCEsL/ly5cf1FrXKst7SD8Ska64/ahECapx48YsW7as9FEJEeKUUjvL+h7Sj0SkK24/kiE+IYQQtiQJSgghhC1JghJCCGFLUovPBhwOh/t4zJgxFkYiROjy7kcgfSkcSIISQkSG1FTYtcvTjo+HLl0gNta6mMQ5SYISQoS39HS47z74/POzv9a0KYwfD/37Bz8uUSRJUEIEgVJqFDAKoFGjRhZHEz7OHNbz+doTT9BuzRoG//ILFU6eLPibtm2DAQPg5pvhxRehRo0ARSpKQyZJCBEEWuvxWutkrXVyrVplWucriiEqL4+rJ03i799955Oc9tSvz5+NG8OFF0LVqp4f+PBDaNMGVq4MfrCiUJKghBBhZ9Avv9B60yZ3+2jVqnx+3XV8cNttfHLTTTBrFmzcCFde6fmh/fth2DDYt+/sNxSWkCG+IDnXUIQQwn86L19OytKl7vbyLl2YfvHF5MTF+X5j3brw1Vfw/fdw002QkQF79sAVV5gEdub3i6CTOyghRNhouHMnl/z0k7u9vk0bfhw69Ozk5G34cJg4EaKcfw4XLIC77wbZzNVykqCEEGGhSkYGV0+eTHR+PgD76tRhyvDhoFTRPzx4MDz/vKf9/vswblyAIhXFJUN8NieLeIUoBq0ZNmUKlTIzAcisUIGJ115LTjHWOLn7mNZc3q4d7deuNe377oOBA6Fly0BFLYogCcpmznxWFZOdTe39+4nSGubPNydbtoSEBAuiE8KeWm7aRNPt2wHIV4qvrr6ajGrVSvYmSvHDsGG0j4mBFSsgJ8ckqZ9/DkDEojgkQdlUVF4eyUuXcsHs2cSfOmVOfvih+TcmBu69Fx55xHeqrBARKDonh4t//dXdXpaczM5S7reVGxNjhve6dDHPoKZNMwnqkkv8FK0oiSITlCwwDL6mW7cyaPp0ah08WPA35OSYRYUTJsD//mcWGUZHBzdIISxQ0GzYHosWUePIEQCy4uP5/cILS/U+bp06wa23wnvvmbZrqE9KIgVdkZMkZIFhEGnNwBkz+Mfnn/skp4wqVdjVsCH07Ok7Hn7gAIwaBX/7G2RnWxCwENaqdOwYfebMcbdnX3ghpypUKPsb/+9/ntGJLVvgzTfL/p6ixGQWn430nD+fXq7nTMDp2FhmDBzIm//+Nx/dcot5BrVxI3zxBTRs6PnBadPMOg7n7CUhIsXA334jNicHgP21a7OsSxf/vHHt2uA9KenJJ81CXhFUkqBsosPKlVz022/u9pbmzXnz3/9mQe/e5JXzGolVCq69FjZtMkMPLl9+adqydkNEiLp799JhzRp3+5fBg9H+HOq+6y7PiMWxY/DEE/57b1EsMkkiQEpSOaL5li0MmzrV3d6RmMjkq68mLyam8B+qUAFeftkM7b31ljn3xhtmdfxDD5U2bCFChvfQ3sZWrdhx/vn+/YDYWHj1Vc8EiQ8/hEcfhfr1/fs5olByB2WxWgcOcNXkyWYaOWZx4cRrrz13cnJRCl5/Ha66ynPu4Yfh668DFK0Q9pBw4IBPrb3ZxZgYUSqDB0OPHuY4OxteeSUwnyMKJHdQFlL5+QybMoWY3FwAjlSrxuf/+Aeny5cv8PsL3DE0Oho+/RQOHTL1wwDuvNNUa65ZM6DxCxEMBY1G9J43z328qWVLDtSpE5gPVwr++18zEQngnXdMW/pWUMgdlIVSFi+mQVoaAHlRUXx57bWcqFy55G8UFwfffgsNGpi2a4M2IcJQtSNHaOeq9gDM6907sB946aXQvr05zsoyoxYiKCRBWaTakSP0d93xAHP69iW9LFeBVavC22972p9+Cr/8UoYIhbCnnvPnu4fEtzdpQpr3jFY/czgcOJ58kq+bN/ecfPNNM2lCBJwkKCtozdAffvCZHuuXq8ChQ80MP5fbb4fjx8v+vkLYRKXjx+nktang3D59gvK5G5KSOOTabffoUTPUJwJOEpQFOq5a5VM3bOqwYeSX89PjwNdf94yP79plxsuFCBPdFy6kXF4eYHbH3dGkSVA+V0dFMd/7IvKVV6CwbeSF38gkiSCLPXWKgTNmuNuLu3dnr+vZUQkVWOm8Vi2TpP7xD9N+6y247TbPGLoQISr29GmSly1zt+f26VO8rTRKqLAlIqvbt2fYihVmU8P9++Hzz01JJBEwcgcVZD0XLqRiVhZgtqEuTt2wEhs5EgYNMsdam6KyQoS4DqtWEecs6ZWekMCWFi2C+vn55cqZIs0ub7whC+MDTBJUEFU4cYIeCxa4279feGGx9qspMaXghRc8V5c//ghe03KFCDn5+XRbvNjdXNKtm2cH3GC65RazSB5g7Vr444/gxxBBJEEFUd85c3wmRqwN5LBb+/Zw3XWe9kMPydWeCFnNtm2j5uHDAJyKi2O1VUPW1arBjTd62m+8YU0cEUKeQfnRucobVTtyxGf8fNaAAehAXwE++SRMmmS255g/H376ycz0EyLEpHjdPa3s3JmcuDjrgrn7bs+SjilTYMcOKOX+U+LcJEEFyQW//060s9r4roYNgzN+3qQJ/POfnq0CHn4YhgyRvaOErZ15oVfz4EGap6YCoIElXbtaEJWXNm3gootgxgyzg8C4cWZIXfidDPEFQe39+2nvVXV55sCBAZl9VKBHHoGKFc3xunVmqw4hQkjKkiXu480tW3LUtR7JSvfc4zl+7z3IzLQuljAmCSoI+v7xB650tKV5c3YlJgbvw+vUgdGjPe2nngLnOhIh7C7u1Ck6rFrlbi/u1s3CaLwMGQJNm5rjo0fhs8+sjSdMSYIKsJrp6bTZsMHdDsi08qKMHu3ZHXTrVql2LkJGR6+p5Qdq1QrawtwiRUXBv/7lab/5pkxCCgBJUAHWe948993T1mbN2FevXlA+1+FwuF9UqeLbmZ55RjqTsD+tSV661N1c0q1b8IbGi+Omm6BSJXO8fj3MnWtpOOFIElQAVT1yxOfZ09y+fa0L5p57POs31qwxa6OEsLEm27eTcOgQYKaWr2nXzuKIzlC1qqdiC3g2DhV+I7P4AqjXggXuqss7EhPZ3ahRwD6ryB18ExLMjD7XhmtPP22mnNvpilQIL1297p5Wd+xo7dTywtx5p6dw7Lffwl9/mV2thV/IHVSAVDp+nE4rVrjblt49uYwebbaxBli8GH7/3dp4hChE5YwMWm7e7G4vTU62MBoPn6FzgHbtwFVRPTcX3n/fuuDCkCSoAOnhVXU5rV49tp9/vsURAfXqwc03e9pPP21dLEKcQ5fly332fDpUq5bFEZ3DnXd6jt991yQq4ReSoAKgfFaWz8PduX372mco7cEHPQt1Z80yd1JC2EhUbi5dli93t5dZvTC3KH//O9SubY7T0mDqVGvjCSPyDCoAui5d6q65d6BWLTYHueryOTVpYmr0ffKJaT//vBk7F8ImWm/aRCXnwtdjlSuzuWVLiyMqmPdz3wtbtqTvgQOmMW6cSVqizCRBlUFBExPK5eT4VF2e37u3NVWXz+X//s+ToL7/HjZvBpv+ERCRx3v0YXmXLuSHQGmu5cnJ9J0/35Q+mjkTNm2CVq2sDivk2ewvZ+jruGqVe7+njCpVWNe2rcURFaBtW7j0UnOsNbz0krXxiIjnmnjw9h130HjnTgDyoqJY0bmzxZEVz7GqVWHYMM+JceOsCyaMSILyI5Wf77Pf08IePex79fef/3iOP/nETI8VwmIpXndPm1q14kSVKhZGU0J33eU5/vhjOH7cslDChQzx+VHrDRuoceQIACfLl7fN1d+ZQ5FjxoyB3r2he3dYtAiys+G118zzKCEsUv7kSdp5LWxfYpe6e8U1YIAZ1tu0ySSnTz/1neEnSkzuoPxFa3rNn+9uLklJsefCQhelfO+i3nkHMjKsi0dEvI6rVrknF+2rU4ddAVzYHhBKmb2iXMaOlZJiZSQJyk+a/Pkn9ZzDZDnlyrEkJcXiiIph2DDP5Ihjx8waDiGskJ9PV69tNZakpNhnaUZJ3HADVK5sjjduNEs5RKlJgvKTXvPmuY9XdepElquIpJ1FRZkZfS6vvgqnTlkXj4hYzVJTfYbH19qt7l5xVa7suyW8a7NQUSqSoPygbloaTbdvByBfKRb06GFxRCXwj3+YChMA+/Z5pp8Lv1JKjVJKLVNKLUtPT7c6HNvx3pRwZadO5LpKcoUi78kSP/xgtoQXpSIJyg96e909rWvb1h47fhZXXBzcf7+n/cILUqolALTW47XWyVrr5Fp2LttjhdRUny3dl9q9ckQh3HX6Jk0yW8KDWRflKiYrSkwSVBnVTE+n9caN7vb83r0tjKaURo2C6tXN8bZtsqGhCK6xY92HW1q0CK0LvMJ4T5Z47z1wro0UJSMJqox6zZ/v3pBwc4sWHKhTx9J4SqVyZd8NDZ97TmYfiYBy3W08/9BDZHstal0aCpOLiuPSS6FxY3N8+DBMmGBpOKFKElQZVMnI8NmQMFTuns7aMgBMgnJtaLh6NUybZk1wIqJ0Wb7cPbV8f+3abGva1OKI/CQ6Gu6919N+5RVw7m4giq/IBCUPdwvXY8ECovPzAdjZqFFANyQMuIQEuO02T/vZZ62LRUSEqNxcUrzqVi7s0SM0p5YX5uaboVo1c5yaaiZMiBIpspKE1no8MB4gOTlZxn1c0tPp7LUh4TzXpmUhxvsuqkpUFPfFxEBODsybB3PnejZjE8LP2q5bRxVnOaDjlSqxLlSnlhemcmWzi/Vzz5n2Sy/B8OHWxhRiZIivhFxDY/Mvv9xn1Xtqs2YWR1Z2x6pWNdPOXYraRl6I0tKanl51K5d060ZeuTCsvPavf0FMjDmeP9+UFhPFJgmqFCqcOOGz6n1Ov37hMzTx8MOeDQ1nzjR3UUL42fnbtlHHuX9SdkwMy7p0sTiiAKlXD0aO9LRfftm6WEKQJKhS6LVggc/d08Zw2veleXPfu6gxY6yLRYStHgsXuo9Xdu7MKdcEnXA0erTn+NtvwbmoXxQtDO+pA6viGXdPf1xwgf02JCyrxx6Dzz4zs45+/x3++AP69bM6KhEuVqyg2bZtgKm8sqh7d4sD8r+zdhC4+GL49VezcPell2S/qGIKs7+sgddr/nxinJUW/jrvPDaF092TS9OmpuilyxNPWBaKCENev08b2rThqGuReDjzrnn5/vuwa5d1sYQQSVAlsW+fz3bUf1xwQfg8ezrTo4+C66H17NnmJURZLVvmnm6tgTl9+1obT7AMGAA9e5rjnBx45hlr4wkRkqBK4rnn3HdPe+vWZbNrq4pwdP75vlWZH39cqkuIsvMa+lqflER6KFZeKQ2lfGfFfvghOLe2F4WTBFVcqak+48Zhfffk4n0XNXcuTJ1qbTwitC1dCj/+CDjvniLtueaAAWYna5C7qGKSBFVcDz1kfqmAXQ0bsqVFC4sDCoLGjc1CQ5f/+z+zPbwQpbDluuvcx+uTkkivXdvCaCxQ0F2UbMVxTpKgimPuXPjmG3fz10GDwv/uyWXMGKha1Rxv3Qpvv21tPCI0LV5Mi61bAXP39EeE3T2561/OmQOu5265ufD009YGZnOSoIqSn++zX9Kadu1Ia9DAwoCCLCHBTDt3cThMdWYhiktreOQRd3Nd27YcjLS7Jxel+LhJE3cz78MPYfNmCwOyN0lQRfniCzPzCKB8eWYOGGBtPAFWYKXzu+82kyYAjhyBp56yJjgRmr7/3lQlwax7irS7pzPtbNKEP51bcUTn58N991kbkI1JgjqXrCxT+sfl/vs55qpOHAHcyeq555icnOz5wtixsGWLdYGJ0HHqlE8lhWXJyRySHYX5ddAg3HNip02Dn36yMhzbkgR1Lg4H7NljjmvXNhMlItTG1q3Z6dpOJDcX7rpLpp2Lor38Mvz5JwBZ8fH8fuGFFgdkD/vq1mWFd/3Be++F06etC8imJEEVZtkyU5LE5ZlnTPn8SKUU0wcNIt81OeS33+Cjj6yNSdjbnj0+U6l/798/vGvuldCs/v05Wb68aaSmMmPoUGsDsiFJUAXJzoZbbjETJIA/GzfGsXv3WfW1Is1f9euz2Ltu2v33w9691gUk7O3BB80wOUD79iwP14rlpZRVsSKzL7jA3e47Zw789Zd1AdmQJKiCPP88OLdyzylXjh+GDYucaeVFmHXhhRx21U7LyJChPlGwmTPhyy/dzY87d0aHW1FlP1jWtSsHnM/k4rKzfbeJF5KgzrJhg88stVkDBnCkRg0LA7KX3NhYk7Bdvv8evvrKuoCE/Rw54lMma32bNux0zloTvvKjo/ll8GDPicmTzcxhAUiC8nX6tOlYzooRdOvG4m7drI3JhnY0aQKjRnlO3H03pKVZF5CwD63hjjvcvw+ZFSowbcgQi4Oytz+bNmVlp06eE3feKdXOnSRBebvnHs+ap5gY+OADGZYozAsvQP365jg9Ha6+WsogCXP1P2mSu/nD3/5GZiRPLiqmXwYP9h06v+EGsx9bhJO/vi4ffQTvvutpv/ACJCVZF4/NOV57jQkDB3pm9S1YAA88YG1Qwlo7d5qrf6cVnTqxuXVrCwMKHdlxcXx3+eWezU//+ANeecXaoGxAEhTAihVmWMLlmmvM3ZQ4px1NmjBz4EDPiTffNDvxishz6hRcey0cO2baTZv6PlsRRdrTqBFzXNXOgbyHHoL58y2MyHqSoA4dgiuu8CySa9vW7Hgps/aKZUHPnmzwvkoeNQpWr7YuIBF8+flmSGrhQtOOioJPPyUnLs7auELQH/36kVavHuAsg3TZZaZIc4SK7AR19ChcfLGn5H2VKqZqecWKloYVUpRiyvDh0KqVaZ88CYMGSQHMSPLQQ74zOV98EXr0sC6eEJYfHc3XV15JpmtB86FDMGSIec4bgcpZHYBljh2DwYPN8B6YO6YJE6BFi4hfkFtS2XFx8O230K0bHD8O+/dD//5mHL1ZM6vDE4E0bpxJSE6LU1L45dgx332PRIkcrVGDL0eO5MaPPzY7eG/bBsOGwaxZEB9vdXhBFZl3UCdOwCWXwOLFnnPjx8Pw4dbFFOpat4affwbXld/evWR06cJrsvAwfH3yCfzrX572ZZcxffBgGR73g7QGDfjmiis8BWUXLTKPIjIzrQwr6CIvQaWnm1tm74ePb70Ft95qXUxhwOFw4Jg5kwlXXUWOc5v4qseOceOECbB+vcXRCb/SGp591qwZdJYDIyUFvvhClmX40ebWrX0nmkybxp6WLXnxwQcjZpQnsn6bli+HLl1g3jzPuVdf9ZkaK8pmR5MmTLzmGnKjowGofvSoGfrz2pFYhLC8PLMw+7//9Zxr1w5++MFz9yz8Zkn37vzh2oEXaJCWxs0ffED1CNk0NHIS1CefQK9esHu3aStlqpXLEJTfbW/WjEkjRpAdE2NOZGbClVcyt08fWXwYyvbtM89Cxo3znLvwQpg712xHIwJidv/+/HzJJe7hvpqHD3PL+++bIfUwF/4JKi3NrGu68UbPVPKqVc0Vn9dGasK/Ulu04P1bb/Wsjgf6zJvH7saNeeef/zx7115hX1qbChFJSb5/FK+5xmy2V7WqdbFFiKUpKUweMcI9fF4xKwsuvRRuvtnMRg5T4TuLLzsbXn/dzCbyfrDYpo0pcNq8uXWxRYj0OnV4b9Qo/v7NNzRPTQWg4Z49jBo/nmVduzJLNq+zv+3bTYWQ777zPf/gg/Dsszi8CiuLwNrUujWf3nADV0+aRCXX37SPPuLY119T5eOPzSSvMHsGGF7/a8BMc37zTZOIHnzQNzldf72ZDSPJKWhOxcfz5ciRzL7gAvKcnSdKa1KWLOHfb7zBnH79eHn0aLmbspvNm82oQ4sWvskpMdFsVvn882H3xzAU7G7UiLfvvJN1XmXYqhw/Dldcwf66dfnqqqt4cswYCyP0L6VLsJdPcnKyXuYqpmonWpv1TJ9/Dh984Cm34pKUZGbq9etXrLeTP5aBUfPgQYb8/DNNt2/3OZ8XFcX6pCRWdurErsRE8p0TLMbYsKMppZZrrZPL8h627UdZWfDTT6YfTZ169j5ft98OL76IQ2rE2UKb9eu55KefzHCfl4M1a7K6Y0fWtW3L0erVQ7ofhe4QX3o6LFlixsCnTvVMfvBWrRo89phZq+F6YF8ASUjBcSghgc+uv57WGzdy0a+/mhl+mJIu7deupf3atZwsX56tzZuzpUULs+VAw4ag1Fn/H9mx04UcrU0ZnXnzzF3R1KkFr7Pp3x+eeAL69Al6iKJwG5KS2NG4Mb3mzyd56VJindsEJRw6xICZMxkwcyZ76tc3f/v69IGuXcG1xXyIsHeCysszpT7+/BNSU81r40ZYutSMjRemZUtT7PWGG6Rskd0oxcY2bdjUsiWtNm+m26JFJHrtfRN/6pQ7WfHNN1CnDqSk0P/IEQ7XqMHhGjU4Ur262bPrHBcdwkt2tpmBt3s3bNpkXq5+dOBA4T83eLC5wOvZM3ixihLJqliRGRdfzLxeveixaBEpixebnXmdGqSlwSOPAJAbHc1fdevScPBgU5qsdWvG/vwzxytXNtVglLLdhZ9/ElRuLkyZYq7I8vN9X3l5nldOjud1+rSp23bqlPn32DHzysgwO3Lu32/uklwLAYtSvbqZ1TJypKkFJ+Pjtqajo9nYpg0b27ShbloaHVetouXmzVQ9c3h2/3744QfOunZ/9VWy4uPJrFiRrAoVOB0XZ17ly5Pcp48pCVO+PDPmziUvKor86GjyoqL4m2tLg+ho84qKMi+lzL/9+kFCQrD+M5xt61ZYs6bwPuTdj7KzzevkSTM8l5Vl7oCOHjWvI0dMAipJHbeWLU1V8hEjPPUVhe2drFiRWQMGMK93b1pu2kTbdetoum2bKTjrVC4vj4Z79phi2E53O//NjonhRKVKZoi3enUz+lS5slnb5nrFxnpeMTFQrpynH3n3pagoU9f04ovL/L/LP8+gMjOhUqUyB1MicXHQqZMpSjl0qLmFLcEVtQzr2ZDWnPfXX7TcvJlGu3ZRb+9eyruWBgTLH3+A18LIMwX8GdQrrwR3+UO1amZ9YJ8+5sKuQ4cCh1RF6InPyqL5li0k7txJo127SDh0KHgf3qqVuUsvRHH7UZEJSik1CnDt790SOFeZ6gTgYFEfaiMSb2CFY7yJWutaJX3jEvaj4sZiJxJvYIVSvH7rRyW6gyryzZRaVtary2CSeANL4i09O8VSHBJvYIVSvP6MVR7UCCGEsCVJUEIIIWzJ3wlqvJ/fL9Ak3sCSeEvPTrEUh8QbWKEUr99i9eszKCGEEMJfZIhPCCGELUmCEkIIYUsBS1BKqQeUUlopZeGy/KIppV5USm1SSq1RSn2nlKpmdUwFUUoNVkptVkqlKqUesjqewiilGiqlfldKbVRKrVdK3WN1TMWhlIpWSq1USv1odSxnkr7kP6HSj0D6EgQoQSmlGgIXAbuK+l4bmAG01Vq3B7YAD1scz1mUUtHAW8AQoA1wrVKqjbVRFSoXGK21bg10B+6ycaze7gEKX/puEelL/hNi/QikLwXsDupV4EHA9jMwtNa/aq1znc1FQAMr4ylECpCqtd6utc4GJgKXWRxTgbTWf2mtVziPj2N+UetbG9W5KaUaAJcC7xf1vRaQvuQ/IdOPQPoSBCBBKaWGAWla69X+fu8guBmYZnUQBagPeO8nsgeb/6ICKKUaA52AxdZGUqTXMEmgmJWJg0P6kt+FZD+CyO1LpapmrpT6DTivgC89AvwXKHsZWz86V7xa6ynO73kEc0v9eTBjKyZVwDlbX1ErpSoB3wD3aq2PFfX9VlFKDQUOaK2XK6UusODzpS8FT8j1I4jsvlSqBKW1HljQeaVUO6AJsFopBeYWf4VSKkVrva/UUZZRYfG6KKVuBIYCA7Q9F4btARp6tRsAey2KpUhKqRhMh/pca/2t1fEUoRcwTCl1CVAeqKKU+kxr/Y9gfLj0paAKqX4E0pcCulBXKbUDSNZa27YKr1JqMPAK0E9rXYKNc4JHKVUO89B5AJAGLAVGaq3XWxpYAZT5azoBOKy1vtfqeErCedX3gNZ6qNWxnEmSW0VjAAAgAElEQVT6UtmFUj8C6Usg66AAxgKVgRlKqVVKqXesDuhMzgfPdwPTMQ9KJ9u1U2Guoq4H+jv/e65yXlGJ8GfrvhRi/QikL0mpIyGEEPYkd1BCCCFsSRKUEEIIW5IEJYQQwpYkQQkhhLAlSVBCCCFsSRKUEEIIW5IEJYQQwpYkQQkhhLAlSVBCCCFsSRKUEEIIW5IEJYQQwpYkQQkhhLAlSVBCCCFsSRJUGFBK3aSUylNKnfB6XeD19cZKqd+VUllKqU1KqXNuOidEpFBKtVVKTVdKHVRKnbW1g1KqhlLqO6VUplJqp1Jq5BlfH+k8n6mU+l4pVSN40Yc/SVDhY6HWupLXa7bX174EVgI1MVuJf62UqmVFkELYTA4wGbilkK+/BWQDdYDrgLeVUkkAzn/fxezZVAfIAsYFOuBIIgkqwJRSO5RSDyil1iilMpRSk5RS5YP4+S2AzsAYrfVJrfU3wFrgimDFIERpBKPvaK03a60/AM7auFApVRHTTx7TWp/QWs8DpmISEpiE9YPWeo7W+gTwGPB3pVRlf8YYySRBBcfVwGCgCdAeuKmgb1JK9VZKHT3Hq/c5PqOTc5hii1LqMef21gBJwHat9XGv713tPC+E3QWj7xSmBZCntd7idc677yQ52wBorbdh7rZalOKzRAHKFf0twg/e0FrvBVBK/QB0LOibnFdo1Urx/nOAtsBOTKeZBOQCzwKVgIwzvj8DqF+KzxEi2ALdd86lsL5TuZhfF2Ukd1DBsc/rOAvzi+03WuvtWus/tdb5Wuu1wJPAlc4vnwCqnPEjVYDjCGF/Ae07RSiq70jfCjBJUDailOpzxky8M199ivlWGlDO4/XA+WeMi3eggDF3IUKVH/uOty1AOaVUc69z3n1nvbPtiuF8IM75c8IPZIjPRrTWcynFFaJSagiwQmu9XynVCvOw9ivne25RSq0CxiilHgWGYMbyZZKECBtl6DsKk1Rine3y5u30aa11plLqW+BJpdStmOHFy4Cezh//HFjoTH4rMCMX357xvFeUgdxBhYcBwBqlVCbwM/At8IzX168BkoEjwHPAlVrr9KBHKYT9JAIn8dwVnQQ2e339TiAeOIBZrnGH1no9gPPff2IS1QHMs6c7gxN2ZFBan7U2TQghhLCc3EEJIYSwJUlQQgghbEkSlBBCCFuSBCWEEMKWSjTNPCEhQTdu3DhAoQhhf8uXLz+otS5ToV3pRyLSFbcflShBNW7cmGXLlpU+KiFCnFJqZ1nfQ/qRiHTF7UcyxCeEEMKWpJKEnR07Bg4H/Por5OV5znfuDE8/DYmJ1sUmhBABVmSCUkqNAkYBNGrUKOABCafp0+G222D37rO/tnEjTJkCL74Io0ZBlNwIC3FOR47AO+/Ajh2ec/HxcM010L27ZWGJcytRJYnk5GQtY+f+53A43Mexp08z6Jdf6LxyZfF+uH9/+OgjkIuHoFBKLddaJ5fi57wv9Lrs3FnmR1miCK5+1WrjRi756Scqnzhx9jcpBXfdBc8+C5WCWSg9shW3H8kQnwW8E5I3lZfHiIkTOf/PP93nMitUYPqgQfxVty533XUXpKXBv/8NmzaZb5g1C/r2hWXLICEhGOGLUtBajwfGg7nQsziciFDhxAmGTJtG2/XnKNyvNYwdCz/8AO+9BxddFLwARZEkQdnIgJkzfZLTuqQkpl1yCVkVKwLg+OorAKKvuIILZs+m98KFkJ8PO3fCyJEwbRpER1sSuxC28tdfjBo/nqrHjrlPHa9UiQU9e5ITG8vQoUNNUvrpJ/PFnTvh4ovhgw/g5pstClqcSR5e2ETr9evptWCBuz27Xz++ueoqd3LylhcTw8yLLoJvv/WcnDEDHn88GKEKYW/Z2XDllT7JaWXHjoy76y4W9ezJ8uRkuP12k6A++wxq1PD87B13wOLFFgQtCiIJygYS0tO5bMoUd3tzixb80a9f0T942WXw6KOe9jPPmMkTQkSye+8F58VevlJMGjGCqcOHcyo+3v0tDocDx5NP4khNhQ0boH1784XsbLjiCti3r6B3FkEmCcpiMadPM2LiROKyswE4XL06311+efFn5j3xBAwa5Glffz1s3er/QIWwIYfD4X4BZoju7bfdX/9t4EA2tW597jepUwe++w6qVzfttDS46iqTrISlJEFZrPe8eSQcOgRATrlyTBoxgtNeV3rn4nA4cPzvfzzfoQO4SuccPw733BOgaIWwsaVL4U7PfoHrkpJY2LPnOX7Ay/nnw8SJngvDefNg9OgABClKQhKUhapkZNBj4UJ3e9qQIRw477wSv8+pChXgq6/MlFkwkyVmzPBXmELYnsrLY//Qoe67nv21azP1sss8faI4Lr7YDJO7jB1rEpWwjMzis1D/mTOJyc0FYG/duqzs1Kn0b5acDP/v/8GHH5r26NGwcqXM6hMRofPKldQ5cACA7JgYJl1zDTmxscX6WZ9lH1oz5rLLPM9y77vPTJqQxfCWkP/qFqm7dy8d1qxxt3+9+OKyd4KnnoIKFczx2rXw8cdlez8hQkDcqVNcOGuWuz2vTx+OeM/MKwml4PXXoXx50162zMz0E5aQBGUFrbl4+nR3c1PLluxs0qTs71uvHjz4oKf96KNQ0Op5IcJIn7lzqZiVBcDRqlVZ2KNH2d4wMRHuv9/TfvhhyMws23uKUpEEZYGWmzfT2FnqJi8qit/8uXr9gQdMogIzVfbFF/333kLYTLXDh+m2aJG7PXPgQHJjYsr0ng6Hg2e15rir9NHevdKPLCIJKtjy8xnw22/u5rLkZA75s0RRxYqm0rnLiy9Cerr/3l8IG7loxgzKOSv9727QgHVt2/rlfbPj4pjVv7/nxAsvwJ49fnlvUXySoILEtVZj4nXXUevgQQBOxcUVb0FuSd1wA/vq1DHHJ0+a2UhChJtFi2izcaO7OX3QoJLN2ivC6o4doWNH0zh5Uiq1WEASVJD1nD/ffbw8OZmTBZQyKrOoKOb16eNpjx0rY+giLHgvzN10003u82vbtiWtYUO/fpaOioJXX/Wc+PTTgre/EQEj08yDqOGuXTRy/oLnRUWxqFs3v733mRXSVevWHKlWjepHj8Lhw2b6+b/+5bfPE8JKCQcO0GrzZnd7TiBGIgAuuAD69IG5cyE31ySsV14JzGeJs8gdVBB53z2t6dCBE1WqBOyzdHS07yr6V14xHUyIMNDLqy9tatmSg7VqBe7DHnrIczx+vLngE0EhCSpIaqan+1zxLShuCZYyWNmxI1muskk7dsDXXwf8M4UItCoZGbRbu9bdnt+7d2A/cMgQaNfOHGdmwltvBfbzhJsM8QXImUNuf/PaSiPgV3xOubGxLOnWjQtmzzYnXngBRozw64NkIYKtx8KFROfnA7AjMZE9fn725M3Vj9s1b87fXUnxjTdMpRbXongRMHIHFQSVjh2jvVfViGDcPbks6doVXHdRK1fCzJlB+2wh/C0+K4vOy5e72/N79QrK565LSuJo1aqmcfCgp6SYCChJUEHQdelSn7Uauxs1Ctpnn6xY0XeH0JdfDtpnC+FvXZcsITYnBzAFYVObNw/K5+roaN8Ly5deAmccInAkQQVYVG4unVescLcX9uwZ/CG2++7zfOb06bBtW3A/Xwh/OHWKlCVL3M35vXsHtS+t7NQJXIvqd+703dFaBIQkqABrs3EjlZxrkI5Vrsymli2DH0TTpuZBL4DW8M47wY9BiLL66it3zb2MKlVYn5QU1I/PjY2Fu+7ynJDJEgEnCSrAkpcudR8vT05GW7X9hddGbnz4oVkZL0Qo8UoIy5KTybeiL91+O5Rzzi2bOxe8ni0L/5MEFUC19+0jcdcuwCzMXdG5s3XBDB7s2XX38GGYNMm6WIQoqaVLzb5MQG50tGV9yTF+POu8R0HkLiqgJEEFUNdly9zHG1u35kTlytYFEx0Nd9zhaY8bZ10sQpSAw+Fg1W23udvrk5LIclUat8CSlBRP47PP4MgRy2IJd5KgAiTu1Cnar17tbi/t2tXCaJxuvhni4szx0qXmJYTNxWdm0nbdOnfbJ0FYYHejRp5izFlZsjFoAEmCCpD2q1e7p8MeqFWLXYmJFkeEmYF09dWettxFiRDQeeVK9zKNtHr12NuggbUBKeWbJMeNA+fCYeFfkqACQWu6et2dLE1JsU/1Bu9ZSBMnwqFD1sUiRFHy8nwmGi21+O7JZW27dlCtmmmkpsKvv1obUJiSBBUIc+e693w6HRvLmvbtLQ7IS0oKuB4wnzoFn3xibTxCnMuPP1ItIwOArPh41gV5anlhcmNjfRfAy55rASEJKhDefdd9uLZ9e7Jdz33sQCn45z897fHjzdooIezIa83eis6dySvjdu5+5b104+efzeJd4VdSLNaPHA4H8VlZ3D9pkvs/7LIuXSyNCc4uXDtm9Gi4/344cQI2bTLrOfr2tSg6IQqxfbupfAJozDpCW2naFAYNMjFqDe+9B//7n9VRhRW5g/KzDqtW+TzQ3V+3rsURFaBSJbjuOk97/HjrYhGiMO+95767T23WjKPVq1sckC+Hw8FE13MogPffl/p8fiYJyp+0potXpWXbXfF5u/12z/HXX8tkCWEv2dnwwQfu5jKb9qUtLVpwzLW+cf9+mDLF2oDCjCQoP0rcuZME5x/607GxtnmgW6BOncDV6U+flskSwjYcDgdfX3cdpKcDpu7e1iBVLS8pfWZVC6lz6VeSoPyoi1fliDXt25Njp8kRBfG+i3r3XZksIWzDuy+t6NzZuhqWxbCic2fyXctIZs6ELVusDSiMSILyl4MHab1xo7tp6+E9l2uuAdfwxObNZrKEEBarmZ5Okx07AMhXipVW1rAshuNVq7KlRQvPCa9ZvKJsJEH5y4QJ7skRe+rXZ/9551kcUDGcOVlCOpawgWSv57ibW7bkeJUqFkZTPD4XpB9/LLsF+IkkKH/Iz/f5477cBlPLi+3MyRLOcX8hLJGVRYdVq9xNu06OONO2pk19dwv46itL4wkXkqD84fffYetWAE7FxbG+bVuLAyqBjh2hWzdznJ0thS+FtSZNIv7UKQAOV6/O9vPPtzig4tFRUTBqlOfE229bF0wYkYW6ZeBaAHvVpEm0cZ5b3aEDObGx1gVVDN4Ld8eMGWMqSzj32uHdd2H0aIiSaxcRPK7fyVvHj6e+89yy5OTQ+j285RYYM8ashVq0CFauNLNlRamF0P/79lTp2DFabdrkbofE5IgzjRjhKXy5bRv89pu18YiIVC8tjfp79wJmU8JVIfbH3fH226xp1cpzQu6iykwSVBl1XrmSKOf07B2JiaTXrm1xRKUQHw833eRpS8cSFvCuWr6ubVtOVqhgYTSls8x737fPP4ejR60LJgxIgioDlZdH51CpHFEU7wKyP/wAe/ZYF4uIOPFZWT6bEtpig89S2N2woe9mhrIAvkyKTFBKqVFKqWVKqWXpMsPLR/PUVKoeOwZAZoUKbGzd2uKISs7hcJjXxIn86ZqFlJfnU2ZGiEDruGoVMbm5AOytW5e99esX8RM2pZTvXdS4cbIAvgyKTFBa6/Fa62StdXKtWrWCEVPI8B6SWNmpE3nlQnvOic+U3vfeA+cfDFF2cqF3Dvn5vpsSdu1qnw0+S2FNu3a+C+B//93agEKYDPGV1vbtNEtNdTdDau1TITa1agWu4Ym0NJg61dqAwohc6J3Db79R48gRAE6WL8+6UFqmUYCcuDi48UbPiXHjrAsmxEmCKq2xY3Fd46U2bcrRGjUsDccf8suVg1tv9Zx44w3rghGRw+v3bHXHjma32lDn/Uz3++9h1y7rYglhkqBKyOFw8Ox//8spr6uixd27WxiRn/3zn+AaqvzjD/Ba1S+E323eDD/9BJhNCUN1csRZkpLgwgvNcV6ebAlfSpKgSqHjqlWUP30agIM1a5LatKnFEflRgwZw5ZWe9uuvWxeLCH9ev19bWrTgcM2aFgbjZ/fd5zkeP97sYC1KRBJUSeXnk+KqugAs7tYttFa7F8e993qOv/jCbMQmhL8dPgwTJribi3r0sDCYALj0UnDtY5WRAR99ZG08ISjM/rIGXvOtW6l5+DBgHuiu7tDB4ogCoFs33/p8UuVcBML48WatELCvTh12uJY5hIuoKLjnHk/79dfNcJ8ottCeF22B7osWuY9Xdu5s/00JS8hVEy2pQQOudN0pjhsH//kPhNn/VmGdpx57jHtefx3XRhqLevQI6anlZ3L1o5jsbO4rX94UwN22DX78ES67zOLoQofcQZXE2rWc/+efgNlIbUlKisUBBc7GNm3AtVhy/36YNMnagERYSdqwgSrHjwNwomLFkJ9aXpic2FjfJSivvmpdMCFIElRJeD3Q3di6NRmuAqthKD86Gu66y3PitddkRbzwD63pvnChu7k0JSXkF7mfy5KUFN+ZsStWWBtQCJEEVQRXKaBX77+fPK+HnItdz2jC2ahRUL68OV65EqZPtzYeER5mz6beX38Bpmp5qGxKWFrHq1aFq67ynHjhBeuCCTGSoIqp5/z5ROfnA7CrYUN2N2pkcUSB5xg7lsXt23tOPPWU3EWJsnvySffh6o4dyapY0cJggmT0aM/x5MngtUWPKJwkqGKoePw4nb1uy+f07RtWD3TPZUGvXuS5ptEvWGCGKIQorTlzYPZsAPKiopjbu7e18QRLly5wySXmWGt4+mlr4wkRkqCKoefChe5Ky2n16rGtWTOLIwqeY1Wr+m4c99RT1gUjQp/X78/qDh3IqF7dwmCC7LHHPMdffAFbt1oXS4iQBFWE+MxMn0rLcyPo7sllXq9e5Lv+N8+aZe6khCihD265xb1bc75SzOvTx+KIgsfhcOCYPt1TdSY/H555xtqgQoAkqCJ0X7yY2JwcAPbXrs3mFi0sjij4jtaowRrvZ1EyPCFKoZ/X8PCa9u05EgYFlktqTr9+nsann5q1UaJQkqDO5ehRn7JGc/v2Db+yRsU0r08fz53jzz+D107CQhRp8WKaOf8Y5yvF3Ai6e/K2u1Ej6N/fNPLy4NlnrQ3I5iLzr21xPf+8T1HYDW3aWByQdQ4lJMDVV3tOPPywzOgTxff44+7DdW3bcjghwcJgLOb134IJE8BrXznhSxJUYXbs8Fn1PadfP3SE3j25Pf645w5yxgz45Rdr4xGh4eef4ddfAefdU9++FgdksX79zAvMrtUPPGBtPDYW4X9xz+Hhh8F595RWrx5rw7QUS4m0aQO33eZpjx4t28KLc8vJgfvvdzdXdO7MwQjfUdjhcPCe97PsKVNg5kzrArIxSVAFWbgQJk50N6cPGhSxz568ORwOXqpcmdOuHU83boT33rM2KGFvb79tNiUETsXF8btrE78It7d+fVZ574Rw331S6bwA8lf3TFqz2+tZy/o2bdidmGhhQPaSWamS7wPuxx83e90IcaZDh+CJJ9zNOX37klWpknXx2MysAQPIjokxjbVr4YMPrA3IhiRBnWnyZBru2QOYOmEzBw60OCD7WdS9O7iS9sGDsp5DFMzhgCNHzHHTpiyJhPqVJXC8ShXmeVfSePRRudg7gyQobxkZPg8sl3TrFpFrNYqSFxMDzz3nOfHaa7B+vXUBCftZu9bsI+by0kthXbG8tBb27AkNG5pGerrPHaeQBOXrvvvAefeUWaECcyJ0rUaxjBgBri26s7PhxhvNA3EhsrPhhhvcz1T+bNwYx6pVFgdlT7kxMb7VzV9/HebOtS4gm5EE5fLjj+C1ncbPl1zC6fh4CwOyN8eTTzKuUydyo6PNieXLfe+qROR68klwJqTc6Gh+vvTSiCsPVhKOTZs8JZC0Nhd7zs0cI50kKIDDh32mT69LSmKDTCsvUnrt2r6zsrz+MIkItWiRT3WE3wYOjPhp5UVSiqnDhnHStffan3/K2ignSVAA//oX7NtnjuvU4WdXWXxRpIU9e7K7QQPTyM01V3/O9WMiwmRlmaE9575pfzZuHBkbe/rB8apVmeb9d2f8eLPAOcJJgvr8c1P63mX8eE5GwgZqfqKjovh++HBwDYeuWQP//a+1QQlrjB7t2UKicmWmDB8u6wdLYG27dnDllZ4Tt9wC+/dbF5ANRPZvz6JF5pfAaVWHDjhWrrQwoNB0OCGBad5Vml95BT780LqARPC99Ra8846n/frrZFSrZl08oUgpXmjShBOuC+R9+2D4cDh50tq4LBS5CWrnTrjsMvdwVHpCAr8MGWJxUKFrSUoKm1q29Jy4/XbZfTdSTJsG//63u7m+TRscO3daGFDoOlmxIt8PH+7Zf23RIrjpJvewaaSJzAR1/Dj87W9w4AAAWfHxfDlyJKddDylFyUVF8e3f/86+OnVMOzeXrCFDeMPrD5cIQ2vWmCr3zj+gafXqmSFfmbVXatuaN2f64MGeE5MnM+eCCyyLx0qRl6BOnTJreNauNe2YGCZdc40syPWDnLg4vrz2WvcQRYWTJxn5xRfw118WRyYCYvduMvr0gRMnADhatSpfXnstua5ajaLUlnTrxpKUFHe779y58P77FkZkjchKUMeOwSWXmCEJl/Hj2SW19vzmWLVqTLz2WnKcVQMSDh2C3r1h+3aLIxN+tXEj9OxJ1WPHADgdG8uXI0eSWbmyxYGFj18GDWJL8+aeE7fdZp7vRpDISVDp6WYny99/95x79FEzviv8Kq1BA767/HLPOPr27Rzv0IG377jD2sCEfyxaZC46nFVX8qKi+OqqqzjgGt4VfqGjo/nmyiv567zzPCdHj2Z+7944IqQkUmQkqNRU06G8tyl/7jmzsFQExMakJCaNGOGuNFH5xAlu+vhjmD3b0rhEGf30EwwYYBa3A9kxMXxx3XVs877SF36THRfHhBtvZGejRu5zvebPZ9iUKRGx3jC8E5TWZr+ijh1hyxZzLirKLIL7z3/kQW6AbWnVis+uv55TcXEAxJ86Ze5i//OfiOhcYSUryyxoHzrUHAMkJDDhppvY7irTIwLidHw8n11/vc8s2U6rVkHXrrB6tYWRBV74Jqh9+2DYMBg1CjIzzbnYWJg0CW67DYfD4X6JwNnZuDETbrrJs7ZDa1McMyXFM1FF2NvCheYib+xYz7nERJg3j73161sXVwTJjYlh8tVXs7JTJ8/JtWvJ69yZmQMGhO3O1uGXoDIyzD40rVqZArAurVvDggW+K7VFUOyrW5fxo0ax7fzzPSfXrCGvY0ezXmrXLuuCE4VLTTXPaHv39lSIALNEY/Fi8F73JgJOR0czddgwfh4yxD0JKTo/nwGzZrG/fn0mjxiBY8yYsLroVlrrYn9zcnKyXrZsWQDDKYP0dLOS/ZVX4OhR36/dcw9PV6pkStsL6+Tnk7J0KQNnzCDG64ovLyqKFZ0703XiRLD5cJFSarnWOrks72HrfgRmht7zz8Nnn/luQ165MrzxBo4dO2R43GI1Dh5k+PffuzdXddlfuzZz+vblqi++ABv/vStuPwrtBJWZCVOnmo40fbpvZwJo0cKUYBk4MKyuKkJdQno6Q3/4gcQC7px2N2jA2vbtWZ+UxP9575NjE2GboNLSYOJEU5dyxYqzvry1WTN+GjpUyhfZiMrLo9eCBfSZM4fYM/Ziy4qPZ0NSEmvbteP/vf++7Woihl+C0trcJa1cCXPmmNeSJWZztDM1awaPP86TW7eiXfsVCXvRmibbt3PB7Nk02r377C8D+847j12JiexMTOTqF14wO49a3NHCIkHl58OOHab/uPpSYTsiX3QRHzZsyG6vWWTCXipkZtJjwQJSliw5K1GBSVY7ExPZlZjIrkaNuO3VV8Higtihk6C0Nknm6FE4csS8Dh0yV3Su15YtsGGDe2proXr2NJMirrsOypWTu6ZQoDVNt22j65IlNEtNJfocNceyY2JIr1WLQzVr0v7SS6FePahfH2rXhurVzataNVNZPUBDULZOUFqbGXaufnTkiKmGvXev6Ue7dsGmTbB5s6moUpi4OLj0Urj/fujVS/pRiIjPzKT7okV0WL3avYC6UImJ5rl806aeflS3LtSsafpQ9epQpQo4n3X5W3AT1MmTpvBqfr7npbUZcsvN9fybk2OS0enT5pWVZV5nDs2VRFISXHMNjByJ49NPS/8+wnLxmZkkrV9Pu7VrabBnD1El+N30poGcmBhyYmKoWLOmmb0ZF2fG5MuVM6/oaPOKivJ9vfwytGtX6HsHPEF98w28+65vX8rL833l5Hj6Una26X+uvlRa5cpBv37m4u7yy3G8/nrp30tYKz+fRrt3027tWlpv2EDFsvxexMZChQrmFRvrebn6kqsfndmXGjWCDz4o9G2Dm6CysoJzy1ixosn63bubztS3L4633w7854qgiz19moa7dtF4504a7tpFrfR0KgRj24E5c6BPn0K/HPAE9eqr5s4l0GrXNom4d2/o25dnZs4kR2rohR+tSUhPJ3HXLhrt3Em9vXupcfhwqS/+iq1VKzPZphB+S1BKqVHAKGezJbD5HN+eABws6kNtROINrHCMN1FrXeI9zEvYj4obi51IvIEVSvH6rR+V6A6qyDdTallZry6DSeINLIm39OwUS3FIvIEVSvH6M1Z7zT0UQgghnCRBCSGEsCV/J6jxfn6/QJN4A0viLT07xVIcEm9ghVK8fovVr8+ghBBCCH+RIT4hhBC2JAlKCCGELQUsQSmlHlBKaaVUQqA+wx+UUi8qpTYppdYopb5TStmyGqZSarBSarNSKlUp9ZDV8RRGKdVQKfW7UmqjUmq9Uuoeq2MqDqVUtFJqpVLqx6K/O7ikL/lPqPQjkL4EAUpQSqmGwEVAKGz0MwNoq7VuD2wBHrY4nrMopaKBt4AhQBvgWqVUG2ujKlQuMFpr3RroDtxl41i93QMUvvTdItKX/CfE+hFIXwrYHdSrwIOYsmi2prX+VWvt2pxoEdDAyngKkQKkaq23a62zgYnAZRbHVCCt9V9a6xXO4+OYX1Rbb7uqlGoAXJFwcYoAAAHLSURBVAq8b3UsBZC+5D8h049A+hIEIEEppYYBaVrr1f5+7yC4GZhmdRAFqA9470mxB5v/ogIopRoDnYDF1kZSpNcwSaDwUuoWkL7kdyHZjyBy+1KpaqkrpX4DzivgS48A/wUuLktQ/naueLXWU5zf8wjmlvrzYMZWTAXtHWHrK2qlVCXgG+BerXURtf+to5QaChzQWi9XSl1gwedLXwqekOtHENl9qVQJSms9sKDzSql2QBNgtTL78TQAViilUrTW+0odZRkVFq+LUupGYCgwQNtzYdgeoKFXuwGw16JYiqSUisF0qM+11t9aHU8RegHDlFKXAOWBKkqpz7TW/wjGh0tfCqqQ6kcgfSmgC3WVUjuAZK21bavwKqUGA68A/bTW6VbHUxClVDnMQ+cBQBqwFBiptS5kG1TrKPPXdAJwWGt9r9XxlITzqu8BrfVQq2M5k/SlsgulfgTSl0DWQQGMBSoDM5RSq5RS71gd0JmcD57vBqZjHpROtmunwlxFXQ/0d/73XOW8ohLhz9Z9KcT6EUhfklJHQggh7EnuoIQQQtiSJCghhBC2JAlKCCGELUmCEkIIYUuSoIQQQtiSJCghhBC2JAlKCCGELf1/bElA6FegoWoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4VFX6wPHvmSQQQijSpINYaNIktNAFLAioKCr2vnZ31d2fddnBsrqyCgoq2LCtHRUURESkE5LQu9I7hA7pyfn9caaGhLSZuXcm7+d55uGeO5M777o5ee859xSltUYIIYSwG4fVAQghhBCFkQQlhBDCliRBCSGEsCVJUEIIIWxJEpQQQghbkgQlhBDCliRBCSGEsCVJUBFAKXWhUmqmUipNKXXaxDalVC2l1HdKqVNKqe1KqRutiFMIO1NK3aCU2qiUOqaUOqCU+kgpVd3nfalHISYJKjLkAF8BdxXx/gQgGzgbuAl4WynVNkSxCREuFgI9tdY1gBZANPCCz/tSj0JMElSQKaW2KaWeUEqtct2ZfamUig3kd2itN2qt3wfWFvL9VYFrgOe01ie11guAqcAtgYxBiGAKUT3aqbVO8zmVB5zn+n6pRxaQBBUa1wGXAecA7YHbC/uQUqqXUuroGV69yvDdFwB5WutNPudWAnLnJ8JN0OuR62ePAScwCWms6y2pRxaItjqACuINrfUeAKXUNKBjYR9y3ZXVDPB3xwPHCpw7BlQL8PcIEWxBr0eun62hlGoE3ANsc70l9cgC0oIKjX0+x+mYX/ZQOQlUL3CuOuYOUYhwErJ6pLXeDfwMfOE6JfXIApKgbEQp1VspdfIMr95luOwmIFopdb7PuQ4U8rxKiEgQwHoUDZzrOpZ6ZAHp4rMRrfV8ynBXqJRSQGWgkqscay6ns7TWp5RSU4DRSqm7Md0iVwKJgYtcCPsoRz26CZgP7ASaAi8Cs13XlHpkAWlBRYZmQAbeu7kMYKPP+w8AVYADwOfA/VprufMTwl8bYBGmO28hpg7d4/O+1KMQU7JhoRBCCDuSFpQQQghbkgQlhBDCliRBCSGEsCVJUEIIIWypVMPM69Spo5s3bx6kUISwv9TU1DStdd3yXEPqkajoSlqPSpWgmjdvTkpKStmjEiLMKaW2l/caUo9ERVfSeiRdfEIIIWxJEpQQQghbkgQlhBDClmQtPptxOp1+5VGjRlkUiRDhzbcuST0KT9KCEkIIYUvSghJChC1pJUU2SVAWkG48IUJIa/jySxg9Grb7jG6uUgWuvx5eeAFqBnojaxEIkqBsoGDCKuo9SWThSyl1L3AvQNOmTS2OpuKoceQIV/z0E/z55+lvnjoFEybAt9/CG2/AtdeCUqEPUhRJElSInCkJicintZ4ETAJISEiQPW5CICE5mUG//EKlnJwzf3DfPrjuOhg6FD76CM46KzQBimJJggoH+fn+/zpkbIsQBfneBLZfsYKrf/rJU9ZAcpcuzO3bl5yYGJ5++mn4+Wd45BHYu9d8aNo0GD4cfvkFYmJCHL0ojPyls7Gz9+7llo8+4p+jRzNq9GiIijKv9u3Bp/IJIbwa7dzJ0GnTPOX99erx/l13MeOKK0iPjyencmWIjzddeuvXw/33e3/499/h0UdDH7QoVLEJSil1r1IqRSmVcvDgwVDEVOFVzsjg8unTuXfSJFps3cppveKrV8OQIXDllbB1qxUhCmFL1Y8d44YvviA6Lw8wyemDu+5id5Mmhf9AjRo4zz6b3y6+2Hvu7bfhrbdCEK0oTrFdfNJ3HlrNt27lmm++If7UKb/zGlBKmRFJblOnmu6IcePg3ntDG6gQNhOTnc0Nn3/uqTvpVarwxciRZFeufNpnCz4Tnt+7N3UPHKDdmjXmxCOPQMuWMGBA0OMWRZMuPhs5e98+vwoGsLlFC8Y/9BCj//Uv8wzqwAG46y7vD2Vmwl/+Al9/HfqAhbCRy37+mQb79gGQ53Dw1fXXc7SkAx6UYuqVV7K7YUNTzsszAyfS0oIUrSgJGSRhE9WOHePGzz6jcnY2ACfi45lx+eWsb9PGM/TVc9fXpAmN7rqLu5OTYdUqc+6WW6BRI0hMtCJ8ISzVcNcuLlq2zFOePngw20u551ZuTAxf3nADj33+uRk4cfgwPPMMTJwY4GhFSUmCsoFKWVnc+L//Uf3ECQAyK1fmk1tv5WC9ekX+zO4mTeA//zEJaeNGyMqCYcNgyRI477xQhS5ESBU6XSM/n8HTp3uKG1q2ZFlCQpmuf6J6dZg0yQw5B3j3XdN93rlzma4nyke6+Cym8vO59uuvqb9/P+DtmjhTcvKoVQumT4e6ro0pDx2CwYPNv0JUEB1XrKDRnj0A5EZFMfPSS8t3wSFDTD0C88z34Ye9UzxESEmCsljXpCTO95nl/uPQoWxt0aLkF2jRwgyWiI015T/+gL/+NcBRCmFPlTMyGPjrr57yosREjtaqVf4Lv/66dy7U4sXw2Wflv6YoNeniC5KSrBxR7dgx+s+Z4ykv6NWLFZ06lf7LuneHTz6BESNM+dNP4Y47wHforBARqN/cuVRNTwfgWPXqLOjdOzAXvuACeOwxeOUVU/7HP8y0jurVA3N9USLSgrLQZT//7BkUcaBuXeb061f2i117rVn40u3++81zKSEiVO20NLomJXnKv1xyCTmVKgXuC559Ftyj+vbtg5deCty1RYlIgrLI+Rs30mb9ek/5pyuuID+6nA3a117z3uFt2mQGUQgR5pxOp+flq9f8+Thc8wK3NWvGurZtA/vF8fH+dWj8eBl2HmKSoCwQnZ3tN+poeceO7CjlkFgopOI2bAgvvuj9wIsvFr6KsxBhrubhw7R3T7EAZg8cGJyVyEeOhHbtzPGpU2ZSvAgZSVAW6DtvHjWPHQPMbPdZgwYF7uL33+8dEpuVBQ8+6L/6hBARoNfChZ7W05ZzzmFXUUsZlZfDYeZCub3xBhw9GpzvEqeRBBVi1Y4fp/vixZ7yr4MGkVG1auC+ICoK3nnHezf5yy8we3bgri+ExaodO0bH5cs95Xl9+gT3C6+91gyaADh+3OwhJUJCElSI9Zo/37OQ5e6GDVnesWPgvyQhAe6+21v+5z+lFSUiRs9Fi4hyzUva0aRJqVeMKM5pXedRUfD0094PvP46nDwZ0O8UhZMEFULVjx71W45lTv/+wdvb6dlnwT2iafFimDkzON8jRAhVPXmSi1JTPeV5ffqEZhfcG28EdyI8dEiWPwoRSVABVNRoI7fePq2nnY0bszmYSxI1bQr33OMtSytKRIAeixcTk5sLwJ4GDYJbh3zFxMCTT3rLr74KGRmh+e4KTCbqhkiNI0fo5NNvPqd//+Df+T31FLz3nhkskZxsNjkcMiS43ylEkFTKzCQhOdlTDkXryfdmMyo3l2cbNoQ9e2D/fjMh3vcmUASctKBCpM+8eZ5+8+1Nm5ZuOaOyatQI7rvPW5ZWlAhjnVas8ExsP1inDhtbtgzp9+dFR5vVJdzGjZP6FGTSggqBsw4fpuOKFZ5yMFpPBbsVR40aZQ6efNKszpyRAcuXw/ffw9VXB/S7hQg2lZ/vt2pEUvfuwXt+eyZ33w3/+pcZJLF2rRkhO3Bg6OOoIKQFFQI9FyzwzNnY2rw52885J3RfXr8+PPCAt/zii3LXJ8LOBZs2UevIEQAyYmNZ2b69NYHUqGHWuXQbO9aaOCoIaUEFWdWTJ+mwcqWnPLdv39AH8Y9/mLkbmZmQmgq//w79+4c+DiFKoLBBRt2WLPEcp3buTG4g19wrrYcfNsseaW2e627a5J0nJQJKWlBB1jUpyW/eU6DnbJRIvXpw223e8quvhj4GIcro7H37OGfbNgDylSK5a1drAzr/fP/BRm+8YV0sEU4SVBDFZGXRxWfU0cKePUMzZ6Mwjz/u/e4ZM2DNGmviEKKUfFtP69q04XiNGhZG4+K759rkybL8UZBIggqiTsuXUyUzE4DDZ53FhtatQ/bdp83JOv98/8ERY8aELBYhyiru5EnarV7tKS/p3t3CaHz07w8XXmiOT52C99+3Np4IJQkqSFReHj181txb3KMH2opRR77+/nfv8Wefwa5d1sUiRAkkpKZ6ush3NWrE7mAtCltaSvm3ot58E1xxisCRBBUkbdet86xYfioujhXBWHOvtLp3B/eOo7m5snWAsDVHXh6dU1I85aRu3SyMphA33gi1a5vj7dvNgAkRUJKggkFrEhcu9BSTu3a1dtSRL99W1MSJ4EqiQthNyw0bqH7iBAAnq1ZlXZs2FkdUQJUq/itJjB9vXSwRShJUEDTfto0G+/YBkBMdzdIuXSyOyMcVV0CrVub4xAmzFJIQNtR16VLPcWpCQvl3nA6G++7zThieNQs2bLA2nggjCSoIfPd7WtmxY2D3eyovh8OM6HN74w3T3SeEjdTbv5/m27cDkOdwkOLehNNipw0+atYMhg71fuCtt6wJLELZ8JYkvNU6dIgLNm3ylO0w6ui0ZZD+8Q+zkGxaGuzYAd99ByNGWBSdEKfr4tN6Wt+6NSerV7cwmmI89BD88IM5njzZrNZSrZqlIUUKSVDlUNSMd/dMp03nn8+hOnVCG1RJVKlitoZ//nlTfv11SVDCNipnZNB+1SpP2fKJucUZMABatoSNG023+Sef+C8vJspMElQAxWZk+C0Ku6RHDwujKcYDD8Arr0B2ttnQMCkJ7DZKSlRIHVesoFJODgD7zj6bHU2bWhxR4XxvULu0aMHgjRtNYfx4cwNo1aT8CCLPoALootRUv4q1NZSLwpZW/fowcqS3/Prr1sUihFt+vt/qK8ldu4bFH/qVHTpAfLwprF8Pv/1mbUARQhJUgDjy8vxGHSV1727/ivW3v3mPv/nGPI8SwkozZ1L78GEAMitXZnW7dhYHVDLZsbH+613KkPOAkAQVIK3XraPG8eOAmbOx2r0Mip116OBd1TwvTyqVsJ7PwqvLLrqIHLvMHyyJBx/0Hk+dClu3WhdLhJAEFQha+y1rlNKlC3kxMRYGVAq+rahJk8xDXiFCzOl0Mv7hh+HnnwHQhMHgiIJat4ZLLjHH+fky5DwAJEEFQNPt22m0Zw8AuVFRJCckWBxRKVxxhXcvm2PHZNFLYRnfLvKNLVty9KyzLIymjB55xHv83ntmIVlRZpKgAsC39bSyQwfS3Q9LbcpvsqHD4d+KGjtWJu6KkKucmUkHnxGwS8N1ROnll8O555rjo0fh00+tjSfMSYIqp1ppabR0Dy/FrFoedm691X/RyylTrI1HVDgdV6ygcnY2AAfq1rX3CNgzcTjMxF23N980O++KMpEEVU49Ck7MrVvX0njKJC7Of2LhmDFSqQJMKXWvUipFKZVy8OBBq8Oxl/x8uiYleYpLu3Wz/wjYM7njDnAvb7Z2LcyZY208YUwSVDnEnTrl1y2xKDHRwmjK6cEHoXJlc5ycDAsWWBtPhNFaT9JaJ2itE+qG401MMM2YQa0jRwDIiI1lVfv2FgdUTjVqwO23e8uyrU2ZFZug5M6vaAnJycS4ntfsadCA7c2bWxtQeZx9Ntxyi7csO+6KUHntNc/h8nAbWl4U326+adPgjz+siyWMFZug5M6vCJmZfjPeF/foEd7dEgCPPeY9njbNrC0mRBC4B+lM+stfPKsu5Ctlr61pyqNVKzNgAkx3+X//a208YUq6+Mrqgw+Idw0hPVa9OuvatrU4oABo3RoGDzbHWsN//mNtPCLi+W7subZtW46F49Byl9O24vDdHHTyZDhwwJK4wpkkqFJyOp08/89/cvTppz3nlvToQX5UlIVRBdD//Z/3+OOPZfkjETQ1jxyhzbp1nvKinj0tjCYI+vUD95zIrCxZqaUMJEGVQbtVq6jp2ir9VFwcqTbZTC0g+vSBXr3McW4uvPqqtfGIiNVj8WIcrtGim1u0YF+DBhZHFGBK+beiJkyQibulJAmqlFR+Pr18Rrgt6d49Mh7q+nrmGe/xe+/B/v3WxSIiUpX0dDouX+4pR1zryW34cGjRwhwfPgwffGBtPGFGElQptV63jjqHDgFmteWwWy+sAN9+c0/f+aWXgrtVmJnpN8pKiEDokpzs2Zpmb/36bHH/EY800dH+g49ee01WaikFSVCloTW958/3FJd27UpWbKyFAQWJUuDzjI233jJ3f0IEQnq638TcRYmJ4T8C9kzuuMO7Usu2bfD115aGE05kR93S+Okn6ru6u7JjYljSvbvFAQWepxWVn8+oNm1g3To4edIs2TJqlLXBicjw9ttUTU8H4GiNGpExArYA3912AfpeeCH95s41heefh+uug0gZWBVE0oIqKa1h9GhPMTUhgQz3ciaRyOHwb0WNHWsWvxSiPE6ehJdf9hQX9uwZOSNgz2Bpt25kuZ9Vr18PX3xhbUBhQhJUSX37rVkCCMiJjmZROC4KW1rXXw/nnWeOjx6FV16xNh4R/t58E9LSANN6Wn7RRRYHFBoZcXH+PS5OpzyLKgFJUCWRm+s3sm1p166crF7dwoBCJDradEe4jRsHrn2vhCi1Y8f8pi3M69OHvOiK85RhcY8eZLifWf/xB3zyibUBhQFJUCXxwQewaRNgFrNc4J4nVBFcdx106mSOMzLMnZ8QZfD7VVeBa1HYw2edxcqOHS2OKLSyqlTx345n9GhwbTEiCicJqjjp6fCvf3mKC3v2JDMuzrp4Qs3h8HtmwPvvyxp9ovQOH6a7z8aec/v2rRDPngpK6t7df0Tfhx9aGo/dSYIqzrhxsHevOW7YkKRw3emzPAYNgosvNsd5ef4TeYUoiTFjiM3KAiCtdm1Wh/uWGmWUXbky/OMf3hMvvGB6JkShJEGdyaFD/gMDRo0iN9JWjTgDzwTe0aN5172NNZgBIz7zWIQ4oy1b/CZ7/96vH9pRgf/0PPgg1Ktnjnftkq1tzqAC/5aUwFNPmQe7ABdcAHfeaW08FtrTqBGMGOE98dBDpjUlRHEee8wslgrsbtiQtRE476lUqlb1f5b70kumu0+cRhJUURYuhHff9RS/uOginC++aGFANvDSS95dd1NS4O23rY1H2N/PP8MPP3iKMwYPNs81KzCn08novXvZW7++OZGZCY8/bm1QNlWxf1OKkpMD993nKW5o2ZKNrVpZGJBNnHeeaVW6Pf20DDsXRcvKgkce8RSXd+zI7saNLQzIPrTDwXT33msAU6bArFnWBWRTkqAK89prsGYNYJY0muHeGVPAk0+a7k6AEyfgb3+zNh5hX2PHerc6r1GD2QMHWhuPzexq2pQVHTp4TzzyiAw7L0ASVEFbt/r1D//evz/Ha9a0MCCbqVwZ3nnHW/7qK9ONI4SvnTv9J3mPHs2p+Hjr4rGpXwcOhGrVTGHDBpPUhYckKF/5+XD//d5hnx06sKQiDisvTv/+cMst3vL998Px49bFI+wlL8/8frg357vwQnjgAWtjsqlT1ar5zbPkuedg1SrL4rGbirPOSEm89hrMnGmOlYKJE9HSOvDwXaF51Jgx8OOPZmWAbdvgL3+B//0vsrdNECUzZgy4Vu7OV4oPu3ZlV0UfYHQGzx89yl0NGtBw717TxXfjjWbdzypVrA7NctKCcluyxH8AwOOPg7SeilavntnC2u2LL/xGPYoKKjUVnn3WU5zfpw+7mja1MCD7y4+KYso115DjXpdw7Vr/ybwVmCQoMJvxXX+9d3Xhbt3MkGpxZiNHwt13e8uPPirdExXZqVPm7t9Vj3Y2bszcPn0sDio8HKpTh58vu8x7Yvx4mD7duoBsQhKU1mbHyx07TLlmTdMaiImxNq5wMW6cecYAZj7HddeZPX9ExaI1PPywZ1Fl4uP5bvhwdAVcb6+slnXuDFde6T1xxx1mpYkKTJ5BOZ0wdaq3/OGH0Ly5ZeGEC9/nUbX79uWhrVvNHfTGjXDzzfDNN2a7DlExvPii38Kn3w8cyJFatSwMKAwpBe+9Z5YR27cPDhyAwYNh/nyoUcPq6CxRsVtQb7zhv+TIo4/CVVdZF0+YOlS3rv+qEj/8APfcY0ZFisg3ebIZfeayokMHVvrO7xEl5pwwgY8uvZQ892obq1eztWNHXvD571uRVNwE9cknJiG5XXop/Oc/1sUT5pxbtrAoMdF7YvJkeOIJ0/UjItfMmeZmxGVzixZMGzpURnOWw7ZzzmGqT1ffOdu2ceX331fIG76KmaCmTjX9u26JiWaF7gq0UnkwzBo0iGXuzQ0BXn/ddP2IyLRgAVx7rXdwUYcOfHXddeRL1265rerQgdkDBnjK7dasMTfUFSxJVbzfpEmTzHL37pW427Uz83mqVvV8xCm7xpaNUvw4dCixmZm0Wb/enHvuOUhLM3Nj5A9X5PjqK7j1Vs8q5TRtCtOnky1TDQJmQa9eVD92jC4pKebE+PHm2dTHH1eYOVIVpwWVmwt//auZUOq+4zv3XNNFcdZZ1sYWQbTDwZRrrmFzixbek+PGwbBh3q1LRPjS2txsXH+9NznVqwczZkDDhtbGFmmUYsbgwaxt08Z77ptvYOBAc9NXAVSMBHX4sPkDOW6c91ynTvD779CggWVhRaq86Gi+uOEG1rVu7T05YwYHzzvPu3ioCD8nT5obvL//3XuuZUszyd33j6gIGO1w8O211/rv5L1oEYdatoRly6wLLEQiu89Fa/j8c7Pi9oED3vPDh5tmsk+3ngis3EqV+HrECPrPmUOf+fMBqJuWRk6bNszr25dFiYnkF5gjM2rUKCtCFSUxe7aZlO27sV6vXmbEpgwnDyrtcPDz5ZdztGZNLpk5EwXUPnyY/IQEFvbqxdy+fXnWd2HeCBK5LagtW+Dyy+Gmm/yT0zPPwNdfS3IKBYeDOQMGMGX4cHJdySgmN5cBs2dz78SJNHZPjhb2dfCgaTUNHOifnG64wexfJMkpZJb06MHXI0Z4lkRyaE3v+fO5d+JEmDfP4uiCI/JaUKtWwauvmtUg3M+aABo1MmvH+c7UFiGxun17Dtapw7CpU2mwbx8AZx84wF0ffMCf557LosREtvo+sxLW27XLPGuaNMm7uj+Y57XjxpnJ2ErJgKIQW9+2Lfvq12fY1Kk0374dgHoHD0LfvtCnj7kBHzQoYob5R0aCOnHCrFv14Yfe1cjdlIKHHoIXXoDq1Qv9calkwbevYUPeveceuicl0W/OHCrl5ABw3ubNnLd5M3vr1+fHlBQ2tGpltiBAuvxCLjsbfv3V3Nx98YXZWdrXVVfBW2/Jc1uLHaldm49uu40uyckM/PVXT11i3jyYN489DRrQ8OmnzRQA97byYUrpUkykTEhI0CnuIY9Wys+H9eth0SKYNg1++cU7oshXnz6mNdW16xkvJwkqtGocPcrAWbNos24djgK/fxrY0bQpG1q1YkfTpuyrX5/86GjbJCulVKrWOqE817BNPQKzBuWCBeYZ03ffme1TCurYEUaNMr0P0mqylRpHjtB37lzar1pFVIE5UhrY1rw55zz8sHle2KmTbdYYLWk9sncLKjPTjPvfssUsQrlpk9mKfenSoocsK2UGQfz977Jdhk0dq1mTb0eM4LfDh+m+eDGdli8nxtUdq4BmO3bQzPV8Kic6mr0NGpjniOefb7abP+88Xpo8mZzKlQFpaRUrNxf27ze73G7c6H0lJ5tzRUlMNF1Gl18eMV1GkebYWWcx9aqrmNuvH4kLF3LRsmVEu+Z4KswqFDz+OGDq0u5GjThYty5pdepwqE4dbv7nP02L2Ka7HQemBZWba0bzaG1aN76vvDzzfl6e6TLIyTFdCVlZpm87Pd38e/y4STpHj5q7uH37zHFJtW8P11xjlvs/77yS/xzSgrJa3KlTXLh6Na3Xr6fpjh2ntaqKkh0Tw8n4eNLj4siMjSWrcmWyYmO5qGdPiIszkxljY81dY6VK5t/oaIiK8r4cDvNSyvzbty/UqVPkdwa9BfXHH+Y5asE65PvyrUc5Od56lJ5uFuw9etT7OnDAvEpaz5s0MSvS33ADdO4sLaYwE3fqFG3WraPtmjU0276dkt5WZFWqxMn4eGqff77Z0aFmTbMVfVycty5VruytR2eqSw6HeZxyySVFfl9J61FgEtSpU6HPwPXqQY8epul61VWSlCJE3MmTtNq4kWbbttF41y5qFdblFExz55qu4SIEPUG9/jo89lh5Ll86VauaetSzp1mPsls3cDikfkSA+OPHablpE0127KDpjh2cVZob/vJq1co8hilCwBKUUupe4F5XsSWw8QwfrwOE0xRniTe4IjHeZlrruqW9cCnrUUljsROJN7jCKd6A1aNStaCKvZhSKeW9uwwliTe4JN6ys1MsJSHxBlc4xRvIWCN3oq4QQoiwJglKCCGELQU6QU0K8PWCTeINLom37OwUS0lIvMEVTvEGLNaAPoMSQgghAkW6+IQQQtiSJCghhBC2FLQEpZR6QimllVJFT8u3AaXUq0qpDUqpVUqp75RSNa2OqTBKqcuUUhuVUn8qpZ60Op6iKKWaKKXmKKXWK6XWKqUetTqmklBKRSmlliulfrQ6loKkLgVOuNQjkLoEQUpQSqkmwCAgHDb8mQVcqLVuD2wCnrI4ntMopaKACcDlQBtgpFLKrluY5gKPa61bA92BB20cq69HgaKnvltE6lLghFk9AqlLQWtBvQ78A7Ogrq1prX/RWrs3jloCNLYyniJ0Bf7UWm/RWmcDXwC23NhKa71Xa73MdXwC84vayNqozkwp1Ri4AnjP6lgKIXUpcMKmHoHUJQhCglJKDQN2a61XBvraIXAnMMPqIArRCPBddnoXNv9FBVBKNQc6AUnWRlKssZgkkF/cB0NJ6lLAhWU9gopbl8q03YZS6legsJ2wngGeBopextYCZ4pXa/2D6zPPYJrUn4UythIqbFFiW99RK6XigW+Bv2qtj1sdT1GUUkOAA1rrVKVUPwu+X+pS6IRdPYKKXZfKlKC01gMLO6+UagecA6xUZv+YxsAypVRXrfW+MkdZTkXF66aUug0YAgzQ9pwYtgto4lNuDOyxKJZiKaViMBXqM631FKvjKUZPYJhSajAQC1RXSn2qtb45FF8udSmkwqoegdSloE7UVUptAxK01rZdhVcpdRnwGtBXa33Q6ngKo5SKxjx0HgDsBpKBG7XWay0NrBDK/DX9CDh4KqVyAAAgAElEQVSstf6r1fGUhuuu7wmt9RCrYylI6lL5hVM9AqlLIPOgAMYD1YBZSqkVSql3rA6oINeD54eAmZgHpV/ZtVJh7qJuAS52/fdc4bqjEpHP1nUpzOoRSF2SpY6EEELYk7SghBBC2JIkKCGEELYkCUoIIYQtSYISQghhS5KghBBC2JIkKCGEELYkCUoIIYQtSYISQghhS5KghBBC2JIkKCGEELYkCUoIIYQtSYISQghhS5KghBBC2JIkqAiglLpdKZWnlDrp8+rn835zpdQcpVS6UmqDUuqMm84JUVEopS5USs1USqUppU7b2kEpVUsp9Z1S6pRSartS6sYC79/oOn9KKfW9UqpW6KKPfJKgIsdirXW8z+t3n/c+B5YDtTFbiX+jlKprRZBC2EwO8BVwVxHvTwCygbOBm4C3lVJtAVz/TsTs2XQ2kA68FeyAKxJJUEGmlNqmlHpCKbVKKXVMKfWlUio2hN9/AXARMEprnaG1/hZYDVwTqhiEKItQ1B2t9Uat9fvAaRsXKqWqYurJc1rrk1rrBcBUTEICk7Cmaa3naa1PAs8Bw5VS1QIZY0UmCSo0rgMuA84B2gO3F/YhpVQvpdTRM7x6neE7Orm6KTYppZ5zbW8N0BbYorU+4fPZla7zQthdKOpOUS4A8rTWm3zO+dadtq4yAFrrzZjW1gVl+C5RiOjiPyIC4A2t9R4ApdQ0oGNhH3LdodUsw/XnARcC2zGV5ksgF/g3EA8cK/D5Y0CjMnyPEKEW7LpzJkXVnWolfF+Uk7SgQmOfz3E65hc7YLTWW7TWW7XW+Vrr1cBo4FrX2yeB6gV+pDpwAiHsL6h1pxjF1R2pW0EmCcpGlFK9C4zEK/jqXcJLaUC5jtcCLQr0i3egkD53IcJVAOuOr01AtFLqfJ9zvnVnravsjqEFUNn1cyIApIvPRrTW8ynDHaJS6nJgmdZ6v1KqFeZh7deua25SSq0ARimlngUux/TlyyAJETHKUXcUJqlUcpVjzeV0ltb6lFJqCjBaKXU3pnvxSiDR9eOfAYtdyW8ZpudiSoHnvaIcpAUVGQYAq5RSp4DpwBTgJZ/3bwASgCPAy8C1WuuDIY9SCPtpBmTgbRVlABt93n8AqAIcwEzXuF9rvRbA9e99mER1APPs6YHQhF0xKK1Pm5smhBBCWE5aUEIIIWxJEpQQQghbkgQlhBDCliRBCSGEsKVSDTOvU6eObt68eZBCEcL+UlNT07TW5VpoV+qRqOhKWo9KlaCaN29OSkpK2aMSIswppbaX9xpSj0RFV9J6JF18QgghbElWkhBCRL7jx+G992DbNu+5KlXg+uvhoossC0ucmSQoIUJAKXUvcC9A06ZNLY6mgpk5E+65B3buPP29MWPg8cfB6TQJS9iKJCibczqdnuNRo0ZZGIkoD631JGASQEJCgizfEgIvP/kkl86cSacVK4r+UH4+vPoq/PADfPghJCYW/VkRcpKghBCRJy2Ne959l9qHD3vP1akDf/sbxMczY8YMWm7cSIutW817mzZBr17w+eem20/YgiQom4vJzqb+vn2o/HyYN8+cbNPGVDYhKrhCexjy8mDkSP/kdN11MH481DUjm5ceOcLSbt24KDWVoXPnwokToDXccQe0bg3t24fyf4Yogozisyut4cMP+evrr3PnBx9wx+TJ0LeveTVsCKNGQWam1VEKYT/PPgu//uopfnf11fDll57k5KEUyxISYM0aaNnSnMvIgOHD4ejREAYsilJsglJK3auUSlFKpRw8KDs0hMTGjXDxxXDnncRlZJz+fk4OjB4NHTrA77+HPDwhbGvKFHj5ZU9xbt++rOrQ4Qw/ADRtan4u3rWd1ObNcPPN5vmUsFSxXXzycDf4/Lopzj/fdDNkZ3vOHa9WjSNnnUWzZs3gwAGTwMD0m/fvD089BS+9VPCyQlQsGzbAbbd5ipvOP5/f+/Yt9sfc9a/14MFc99VX5uRPP8Hzz5ueCmEZeQZlI022b4cXXzQtJICoKBZ268bcfv3IqVQJAJWfT+eUFAbMnk1sVpb53L//be4C77vPosiFsJjWcOedcPKkKbdowXfDh4Oj5E8x1rdpw8KePem5cKE54XTCVVeZngphCXkGZRM1jhzh+i+/9Can1q0hJYVfL7nEk5wAtMNBSteuTHjwQbj0Uu8FHn4Y5swJcdRC2EObtWth8WJTqFQJpkwhswzzmmZffDH062cKWps5UrKpq2WkBWUDMVlZjPz8c6qmp5sTdevCjBnQrJmZn1GIk9Wrm37zPn0gNRVyc+Haa2HpUjj33BBGL4S1onJyGOgzKGJRQgKzvv/e7zO+3ehnoqOiYMIEM4ovLw9mz4bp0+GKKwIasygZaUFZLT+f4VOmcPaBAwDkORx8MHQozsmTi69UcXEmgdWvb8qHD8PQoWZZFyEqiG5JSZzlGnWXXqUK83r3Lt8F27SBe+/1lp94wtuzIUJKEpTVPviAVu5BD8CPQ4aws4RL4TidTpzvvcd7Q4ZA5crm5Pr18H//F4xIhbCduFOn6D1/vqf8e79+ZAViyaJ//QuqVzfHGzbAu++W/5qi1CRBWenIETMCz2VJt26sKMPClbsbN/avQBMnwvLlgYhQCFvr9/vvnsFCabVrk5qQEJgL16sHTz/tLY8aBceOBebaosQkQVlp1ChISwPgaI0azB4woOzXuvlm76AJreGRR+ThrohsmzbR2WdfrVmXXEJ+VFTgrv/oo+Y5MJh66jO/SoSGDJKwgNPppN7+/fzlnXc8dwi/XHopuT6j9UpNKRg3Dtq1M/3lCxbA//4HN90UkJiFsJ1XX8Xhugnb2rw5my64ICCX9ZuX+PLLMHKkKUyYAE8+CTVqBOR7RPGkBWUFrbl8+nRP5dpyzjmsb926/Ndt2RL++ldv+e9/N2uMCRFp9u6Fjz/2FH/v39/cpAXaddeZKR9g6tI77wT+O0SRpAUVIr53ZW3XrqX5drPjcb5S/Hz55eWuXO7rV4qO5qH4eKqdPGkq8QsvwCuvlOvaQtjOuHGe1VZ2Nm7MjmDtseVwmBu9O+805bFjzU2ge1CSCCppQYWYIy+PgbNmecpLu3XjYL16Abt+duXKzBo0yHvi9ddhx46AXV8IKzmdTv791FNkjh3rObewZ8/gtJ5c3/fCli0cr1bNnNi3Dz79NCjfJU4nCSrE2q9aRU3XaKBTcXH87p61HkCr27eHHj1MISfHbMgmRITonJrqN3Jvo3sl8iDJi44mqXt374lXX5WFZENEuvhCSOXn08tnzsbiHj3Iio0NwhcpM4/DParv3XfhmWe8E3qFCCO+3eOO3Fy6L1niKS9KTCzVentlldK5M73nzTOJceNGmDrVrNMngkpaUCHUds0azyZqGbGxJHfpErwvGzQI3NfPyoIxY4L3XUKESLvVq6nuGvhzIj6eVSHaWDA7NpYU3zlWr7wi0zhCQBJUqOTn+814T+rWjexgtJ5cnKNH87nvmnxvv+2ZcyVEWNKaxEWLPMWk7t3Ji4kJ2dcndetmFqIFWLIEfGIRwSEJKkRabdhAPdeGj1mVKplf9iDb1LIl+84+2xTS080IJCHCVLNt2/zqUErnziH9/pPVq5sJ8W4TJoT0+ysiSVChoDV95s3zFJO7dCEzLi7436sU8/v08ZbffFO2shZhq0tysud4Vfv2gVlzr7Qeesh7/M03sH9/6GOoQCRBhcKMGTTYtw+AnOhoFrtH2IXA+tatoVUrUzh+HMaPD9l3CxEo8ceP03r9ek85qM9vz6RTJ/8Rsu+9Z00cFYQkqFB47TXPYWrnzqTHx4fsq7XD4b/o5fjxZtCEEGGkc2qqZ+WVbc2acdDddW2FBx7wHk+caPZiE0EhCSpInE4nTqeTtx94wGx6hlk1YkkIW08eN9wAjRqZ4/374csvQx+DEGXkyMujc2qqp2xZ68ltxAizqSjAzp3w44/WxhPBZB5UABW2wWA3nzkb61u35ljNmqEMyYiJMX3n7q09xo6FW24J2ux7IQKp1YYNZukuzNDyDYFYt7KM3HX84pYt6e0asMFbb8mcqCCRFlQQxZ06RftVqzzlJb6z0UPtnnvA/VB5+XLwGfIuhJ11WbrUc7ysc+fAbqlRRqkJCd4JwrNmwaZN1gYUoSRBBVHnlBSi8/IA2N2wIbuaNLEumNq14dZbvWUZci7CQYGFlVNDPLS8KMdq1oQhQ7wn3nrLumAimCSoIHHk5voNi13Svbv1XWqPPOI9/v572LLFuliEKAmf7S02tGrFCfc27HbgO1jio4/MXEMRUPIMKkjarl3r6Tc/Xq0a69q0sSwW32djN517Ludt3myWaRk/3m+EoRC2kp4On3ziKaZYPTiioEGD4NxzYfNmM7/w66/httusjiqiSAsqGLT2W9AyuUsX8qPtcS/g9xzsvffM3Cgh7OjLL8G18v+hWrXY2ry5tfEU5HCYZ7tuEydaF0uEkgQVBI137qTh3r2AmZhrl35zgM3nnuuduHvihN+upELYis8f/GWdO4dk1fJSu+MOM0oWYPFiWL3a2ngijA3/Hw9/XX1GHa1p146MqlUtjKYAhwMefthbHj9eVmUW9rNyJSQlAZAbFcWKjh0tDqgI9erB1Vd7y9KKCihJUAEWf+IEbdat85SXdu1qYTRFuOUWcO8QunGjZyKxEHbgdDpJ9uk6W9+6Nel2uslzcU/G/8h3V4JPPpHBEgEkCSrALkpNJcq12+aOJk3Y16CBxREVolo1uP12b1nW5xM2EpOdTTuf+YN26iIvzLZzzuFQrVqmcPy4rNQSQJKgAsiRl0dCSoqnbMvWk5vvENlp02DbNstCEcLXhWvW+G3pvt1ugyMKUso8I3OTbr6AkQQVQK3Wr/dbkmW9hUuyFKtVKzNMFiA/32++iRBW6uxzk7esc2fr5w+WwIqOHb2bGSYlmWdootwkQQWQ7+CI1M6dbTO0vEi+e9u89x5kZFgXixAAy5bRaM8ewDU4okMHiwMqmfSqVWH4cO8JueELCElQgbJyJc127AAgz+Gwfb85AFdcAc2ameNDh6TvXFjP5w/7ujZt7DUCtjj33ec9/vRTM41DlIskqEDx2f55fevWZntou4uK8n8W9eabMuRcWMLpdPLyU0+RPXmy55ztVo4oTp8+4O7WP3kSPvvM2ngigCSoQDh0yNwxuSTbeXAE3uGxTqcT7roL3MNkly0zkw2FsED7lSuplJMDwP569dhp5eLKZaGUfyvq7bflhq+cJEEFwvvve57f7K1fnx1Nm1ocUCnUrg033eQtv/GGdbGIiktrvxGwKQkJYTE44jS33gpxceZ41Sq54SsnSVDllZvr172X1K1b+FUs35UlvvkGdu2yLhZRITXdsYN6rg0As2NiWNW+vcURlZ7T6cQ5bhzLWrb0nnz7besCigCSoMpr6lRwDY44FRfHmgsvtDigMujQAfr2Ncd5eTICSYRcgs/WNKvatyfbd3WGMOP37OyrryAtzbpgwpwkqHJwOp1se+wxTzm1c2fy3AtHhhvfvaImToTMTOtiiUBKqXuVUilKqZSD7q3ChXHggN/yYGE3OKKAvQ0bgvt/Q3Y2fPihtQGFMUlQ5XD2vn1+u32GdcUaNsw75DwtDb74wtp4IozWepLWOkFrnVC3bl2rw7GXDz7wLA+2s3Fj9tevb3FAAeA7WOKdd8xkeFFqxSYoufMrWlfXastg5mzYarfP0oqOhgcf9JbfeENGIIngy8nxe4abkpBgYTABdMMNULOmOd6yBaZPtzaeMFXsUgda60nAJICEhAT5i+WWlkY7n71fkrp1szCYsvPdbTc2PZ3/q1LFjEhcvhzmzzdzO4QIlu++8wzKOVm1KmvbtrU4oACJi4O774YxY0x57FgYMsTamMKQdPGVknv+0O8jRhCTmwvAngYN2BVuczYKkRkXZ7bicPvvf60LRlQMY8d6DlMSEsL3GW4BTqeTsbm55LtH9M6eLZsZloEkqDKIzs72695bnJgYfkPLi/K3v3mPp06F9euti0VEtqQkzzyh3KioyOneczlWs6b/gtHjxlkXTJiSBFUGHVesIM41MfdojRqsbdPG4ogCqFUruPJKb9ndRSFEADmdTlbffbenvObCCznl3kQzgiR17+4tfPopyHP8UpEEVUoqP58ePrPDF/fogY6KsjCiIPj7373Hn34KrtWlhQiUaseO+Q0t9/tDHkF2NmnC7oYNTSErCyZNsjagMCMJqpRar19PrSNHAEivUoXlF11kcURB0LMnJCaa4+xsWf5IBFyX5GTP0PJtzZrZc+fpQFDKP/lOmGDqlCgRSVCloTWJCxd6iildupDj3qQs0vi2ot5+22xlLUQgpKfTOTXVU1wSoa0nt7Vt2oA7Ae/da1aXECUiCao05s7120wtyearlpfLsGFwwQXm+PhxePdda+MRkWPSJM8z3CM1a7LJd+26CJRfcI7hyy/LxN0SkgRVGv/+t+dwRadOpMfHWxhMkDkc/q2o116T5Y9E+WVmwn/+4ykuSkxEOyrAn6H77wf334u1a+H7762NJ0xUgN+MAFm4EH75BTDLGi3u0cPigILDb6+om28G97Ize/bIA15Rfh9+aLq5gBPx8Szv1MnigEKkVi3/VtQLL8hKLSUgCaqknnvOc7i6XTsO165tYTCh4XzlFX7u2NF74qWXID3duoBEeMvONt1bLot69oyYibnFcTqdvJqXR060a/Ge5cvhp5+sDSoMSIIqiTlzzAvTeprbr5+18YRQSufOHHfPT9m/H956y9qARNiaOmKE39Y0KZ07WxxRaKXHx5PqOxlZWlHFkgRVHK39Wk8rOnXiSK1aFgYUWnkxMcz3XY/vlVfgxAnrAhLhKTeXXvPne4qLExPJjdQRsGewMDER3P+7k5Lg11+tDcjmJEEV49NbbzXPn4A8h4N5FXDx1GWdOnG0Rg1TSEuDN9+0NiARfr74wjN/MCM2luRw3pqmHE5Wr06yz27B231W0xCnkwR1JlrT/7ffPMVlnTtzzL2EfgWSHx3NPPeOu2CWPzp2zLqARHjJyoJ//ctTXNK9O9mVK1sXj8UW9upFnmvkYrMdO2DGDIsjsi9JUGfy3Xd+857m9+5tcUDWWdmhA5x7rikcOeI3VFiIM5owATZvBkzraWmYbk0TKMdq1mSF7+jFJ54A184Iwp8kqKKkp4PPdu4pXbqE94aE5ZQfFeV3F8yYMfDnn5bFI8JEWhqMHu0pzu3Xj8wqVSwMyB7m9OtHlvtZ1Lp1MhG+CJKgivLKK+Dazv1UXBxzK+Czp9PceCO4V8/IzvbfmkOIwjidnu7gtNq1K+yzp4JOVavGAp8emVNPPMHLTz1lYUT2JAmqMFu2mATlMnvAALOZX0XncMD48d69r3780byEKMSEhx4i32c791mDBpmWuADMszj34KOq6en0njfP4ojsRxJUYR57zDzYBXY3bFhxZrsXw+l04pw+nVSf/x6Hb72VF5591sKohF0N+uUXHK55PlubN4/4NfdKKzcmhl8HDvSUuyUlmZtj4SEJqqAZM+CHH7zFwYNNy0F4zB4wgIzYWABqHTlCos/+WEIAMG0aF/zxBwAamHnppZGz63QArb3wQnY2bgxAdF4ePPqoTN71IX95fZ04AQ895C3feSe7Xb88wiujalV+u/hiT7n3vHmwcaOFEQlbOXQI7r3XU1zRqRP7I3W/p/JSyiRvtx9/hI8/ti4em5EE5euRR7xN7Bo1/FYvF/5SExLY61pINiY3F266STZiE8ZDD8G+fYBZEHbWoEEWB2Rvu5s0Yanv1j2PPAI7d1oXkI1IgnL76iuYPNlTnDJgAM6337YuHpvTDgc/XHUVue6H3qmp8M9/WhuUsN5XX8EXX3iK04YOJUMGGBXr14EDOeReQu34cbjrLunqQxKUsWMH/OUvnuKqdu1Y7bMciSjc/vr1me3zkFe/8gof3X67dQEJa+3bBw884Cku79SJP2RgRInkVKrED1ddhSclzZrFj0OHWhmSLUiCysuDW26Bo0dNuXlzpl9xhbUxhZEl3brxp2uFCQVcPWUKHD5sbVAi9PLy4M47zfMngCZN/J+tiGLtbNqURYmJnvIlv/xiJvFWYJKgnnoK3PMPHA749FOyXCPURAm4uvpOubpxqp84YSb05uRYHJgIqf/7P7815T7u10/qURnM6d+fA3XrAlApJweGDIGDBy2OyjoVO0G9+Sa8+qqnOLd3b5yy/H2pnaxWjanDhnlPzJxpRnFJH3rF8O678N//eooLevZkq3vdRlEqeTExTLnmGrLdGzlu3QrDh3vmZVY0FTdBffutmXPgsqFlS+b6rtgtSmVTq1b+//0mT2Zuv35m63gRuX77ze+50/pWrZg9YICFAYW//fXrM+Waa7zPoxYsqLA3fBUzQS1YYIZFu/4P39m4Md9ecw1aJuSWy+/9+vmtutF33jwuSkmxMCIRVKtWwTXXeFfi7tSJ74YPl4ntAbCxVSv/4fkff2wWa65gSari/SbNng1XXOFtMp9/Pp+PHFkhd/cMOKX4ccgQ/jjvPM+pK376SbaJj0QLF0Lfvt7BRQ0bwrRp5Eg9CpjFiYksu+gi74nRo1mcmIhz1KgK0zNRsRLURx/BZZeZeQYA9erBzz+TUbWqtXFFkPyoKL4eMYI9rpUDHFrDgw+ah+j5+RZHJwJi+nQYNMibnKpXh6lToVEja+OKNErx0+DBnlGyAD2WLOGq77/HkZdnYWChUzESlNZmT5rbb/d2RzRqBL/+Ci1aWBpaJMqpXJnPbr6Z3Q0bek/+5z+sad8eMjOtC0yU3+TJcOWVkJEBwMmqVZk4ciTOH3+sMHf1oZQfHc0XI0eyrnVrz7kOq1Zx3Zdfem+0I1jkJ6jdu2HYMBg1ynuuXTtYssT8K4IivWpVPrr9djb4TNS8cO1a6N4dli+3MDJRJocPw8iRcMcd3pu85s358M472Sfr7AVVXnQ034wYQapPd1/LTZugfXuYO9fCyIIv2uoAgkZr+OADs3WG753GwIHwzTc4x461LrYKIqdSJb66/noumzGDrsnJ5uTKleR37syCXr2Y17cvzz7/vLVBiuL98otJTHv2eE7tr1ePT4cP52QF3mU6lLTDwY9Dh5IeF0fvBQvMye3boX9/ePxxeP55iMB5Z5GZoObNMyNe5szxP//ww2a+hnuOgQg67XAwY/Bg0urUYdCsWcTk5uLQmj7z59N6/Xq+3rCB9W3aoB0ORvm2coX1Vq409ej77/1OL+/UiZ8vvZTsCPyDaGtK8dvAgeyvX58rfvyRKpmZ5kZ8zBgzbea558yqONGR82c9cv6X5OebO70XXzTDyH2de65pTcm27dZQiuRu3dh83nkM++EHmu3YAUDdtDRGfPMNabVrs7BXL7MauowCs5bWZuHff/8bpkzxe+tUXBzThg1jY6tWFgUnwOwhtaNpU4b98APnbd5sTm7dCnfeyeHHH2denz5c9fnnUKWKtYEGgNKlGFefkJCgU+w0r0VrSEmBL780qygXXKLe4TCTcV94AafPihHCQvn5dElOZuCvv5qlXHxkxMayoXVr1rRty7ZzzuG50aMtCrJoSqlUrXVCea5hu3oEZpuZ//0PPvsMNmw47e01bdsy4/LLSY+PtyA4USitSUhJof9vvxHnGrTiUa2aWYHipptMN6DNWlUlrUfhlaCyssziiQsXmtf8+WYQREExMXDbbbxRpQpHatcOfZyiWFVOnaJ7UhJdk5KILWQZl4zYWKoMHAg9e0KvXtCxI9jgj2NEJKjcXHPHvWSJecg+dy78+Wfhn736at45+2z2u/b+EvZTKTOTbkuX0mPRItPtV1D16qYO9e1r/m3XziQwC4VXgsrLMwMZjh41r0OHYO9e81B2zx5TeTZuNJXqTHNpatUyfbCPPw5Nmsiw1zBQOTOTLsnJdE5JoeaxY2f87PFq1UirU4fDtWuTcOWVZnJogwZQty7UrGleNWoE9RmjrRNUfj6kp8ORI97X/v3mJm73brOtzIYNpi6daXPJqlXh6qvNAKNOnaQehQl3XeqwYgV13KvKF6VxY2jd2jz+aNTIvBo2hNq1TT066yyT2IJUl0KboDIyzNwIrU0l8X3l5poElJtrVrjOyTGVIyvLVKb09PLtxFqjBlx1FVx/Pc8vXky+ewM9EV60ptGuXbRdu5Y269ZRozxzPKKjIS7OvGJjTSWrVMn8Gx1tXlFR5uVwmJdS5t///veM0w+CnqC+/RYmTvSvQ3l5/i93HXK/MjJMPSrYzVMalSvDgAFw880wbBjOMWPKfi1hLa1puGcP7Vatos26dWaHgbKKifHWpcqVTT3yrUvueuRblxwOaNoU3n+/yMuGNkGlp5u7rmBTCpo3h65dPV0/o7/7Di1JKbJoTa1Dh2i6cydNduyg8a5d1D50iKhQrEQxbx707l3k20FPUK+/blouQXa8WjUO1KvHjmbN2N6sGbsbNSLPZs8pRABozVmHD9Ns+3aabd9Owz17QlOXWrWC9euLfDtgCUopdS9wr6vYEth4ho/XAdKK+1IbkXiDKxLjbaa1rlvaC5eyHpU0FjuReIMrnOINWD0qVQuq2IsplVLeu8tQkniDS+ItOzvFUhISb3CFU7yBjDXylzoSQggRliRBCSGEsKVAJ6hJAb5esEm8wSXxlp2dYikJiTe4winegMUa0GdQQgghRKBIF58QQghbkgQlhBDCloKWoJRSTyiltFKqTrC+IxCUUq8qpTYopVYppb5TStW0OqbCKKUuU0ptVEr9qZR60up4iqKUaqKUmqOUWq+UWquUetTqmEpCKRWllFqulPrR6lgKkroUOOFSj0DqEgQpQSmlmgCDgB3BuH6AzQIu1Fq3BzYBT1kcz2mUUlHABOByoA0wUinVxtqoipQLPK61bg10Bx60cay+HgWKnvpuEalLgRNm9QikLgWtBfU68A/A9iMwtNa/aEZ7k68AAAH9SURBVK1de1izBGhsZTxF6Ar8qbXeorXOBr4ArrQ4pkJprfdqrZe5jk9gflEbWRvVmSmlGgNXAO9ZHUshpC4FTtjUI5C6BEFIUEqpYcBurfXKQF87BO4EZlgdRCEaAb6bXe3C5r+oAEqp5kAnIMnaSIo1FpMEQrDYX8lJXQq4sKxHUHHrUplWh1RK/QoUtkHMM8DTwCXlCSrQzhSv1voH12eewTSpPwtlbCWkCjln6ztqpVQ88C3wV611OZYmDy6l1BDggNY6VSnVz4Lvl7oUOmFXj6Bi16UyJSit9cDCziul2gHnACuVUmCa+MuUUl211vvKHGU5FRWvm1LqNmAIMEDbc2LYLqCJT7kxsMeiWIqllIrBVKjPtNZTivu8xXoCw5RSg4FYoLpS6lOt9c2h+HKpSyEVVvUIpC4FdaKuUmobkKC1tu0qvEqpy4DXgL5a64NWx1MYpVQ05qHzAGA3kAzcqLVea2lghVDmr+lHwGGt9V+tjqc0XHd9T2ith1gdS0FSl8ovnOoRSF0CmQcFMB6oBsxSSq1QSr1jdUAFuR48PwTMxDwo/cqulQpzF3ULcLHrv+cK1x2ViHy2rkthVo9A6pIsdSSEEMKepAUlhBDCliRBCSGEsCVJUEIIIWxJEpQQQghbkgQlhBDCliRBCSGEsCVJUEIIIWzp/wEC8VgB6HHCfgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", "import math\n", "\n", "n_bins = 50\n", @@ -3619,6 +3487,13 @@ "fig.tight_layout()\n", "plt.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git "a/0-pre-requisitos/2-math/calculo_num\303\251rico.ipynb" "b/0-pre-requisitos/2-math/calculo_num\303\251rico.ipynb" old mode 100644 new mode 100755 index 7484103..a66ec4d --- "a/0-pre-requisitos/2-math/calculo_num\303\251rico.ipynb" +++ "b/0-pre-requisitos/2-math/calculo_num\303\251rico.ipynb" @@ -1,1044 +1,429 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Roots and Integration of real-valued functions\n", - "\n", - "Discussão sobre a implementação computacional e conceitos relevantes de métodos para encontrar a raíz de funções com valor real:\n", - "\n", - "Discuss the relevant concepts and the computational implementation of methods to find roots of real-valued functions: \n", - "- Bisection - Método da Bissecção\n", - "- Newton's Method (or Newton-Raphson) - Método de Newton-Raphson\n", - "- Quasi-Newton (Secant) - Método da Secante" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHQZJREFUeJzt3XmcFNW5//HP46CgxAV1oogimuuKUcEBRY0GiSKg0bjFJddo9I4rImpUFOMevTfGuOAVEbluKChIXFAR3BMRnVFUEFfUsIjMYEB2ZHh+f5yeH80we1d3ddd8369Xvbq6qrrqoaZ55sw5p84xd0dERJJjg7gDEBGRaCmxi4gkjBK7iEjCKLGLiCSMEruISMIosYuIJIwSu4hIwiixi4gkjBK7iEjCtIrjoltvvbV36tQpjkuLiBSs8vLySncvbui4WBJ7p06dKCsri+PSIiIFy8y+acxxqooREUkYJXYRkYRRYhcRSRgldhGRhFFiFxFJmIwTu5ntZmZT05YfzOziKIITEZGmy7i7o7t/CuwLYGZFwBxgXKbnFRGR5om6KqYX8KW7N6qvpYhIS7F8OQwYALNmZf9aUSf2k4HHa9thZqVmVmZmZRUVFRFfVkQkv911V1hmzsz+tSyqyazNbCNgLtDZ3b+r79iSkhLXk6ci0lJ8/z3svDMcfDA891zzz2Nm5e5e0tBxUZbY+wDvNZTURURamltugR9+CK+5EGViP4U6qmFERFqqf/0L7r4bTj8dfv7z3FwzksRuZpsAhwNPRXE+EZGkuPba8HrDDbm7ZiSjO7r7MmCrKM4lIpIUH30EDz0El14KHTvm7rp68lREJEsGDYLNNguvuRTLeOwiIkn3+uswfjzceitsuWVur60Su4hIxNzhiiugQwe46KLcX18ldhGRiI0bB1OmwPDhsPHGub++SuwiIhFavTrUqe+xB/z+9/HEoBK7iEiERoyAzz6Dp5+GVjFlWJXYRUQisnRp6Ld+0EFw9NHxxaESu4hIRO64A+bNgzFjwCy+OFRiFxGJQGUl/Pd/wzHHhBJ7nJTYRUQicPPNoSrmz3+OOxIldhGRjH31FdxzD/zhD7DnnnFHo8QuIpKxa66BoiK47rq4IwmU2EVEMvD++zByJFx8cXjSNB8osYuIZGDQIGjXLgwhkC/U3VFEpJlefhkmTIDbboMttog7mrWimmhjCzMbY2afmNkMM+sRxXlFRPLVmjWhlN6xI1xwQdzRrCuqEvudwIvufkJqUutNIjqviEheGjMGysvDRBpt2sQdzboyTuxmthlwCHAGgLuvAlZlel4RkXy1ahVcdVWYw/S00+KOZn1RlNh3BiqA/zOzfYByYIC7L43g3CIieef+++HLL8NEGkVFcUezvijq2FsBXYF73b0LsBS4suZBZlZqZmVmVlZRURHBZUVEcm/x4jAx9aGHQp8+cUdTuygS+2xgtrtPSb0fQ0j063D3Ye5e4u4lxcXFEVxWRCT3br8d5s8P48LEOdBXfTJO7O4+D5hlZrulNvUCPs70vCIi+ea770LXxhNOgP33jzuaukXVK6Y/MDLVI2YmcGZE5xURyRvXXAPLl4cBv/JZJInd3acCJVGcS0QkH73zTpjDdOBA2HXXuKOpn4YUEBFpQFVVeAhp223DDEn5TkMKiIg0YPhwKCsLg31ttlnc0TRMJXYRkXpUVoaHkQ49FE45Je5oGkeJXUSkHlddBYsWwZAh+du9sSYldhGROlQ3mA4YAHvtFXc0jafELiJSi+oG0222KYwG03RqPBURqUWhNZimU4ldRKSGQmwwTafELiJSQyE2mKZTYhcRSVPdYHrRRYXVYJpOiV1EJCW9wfS66+KOpvnUeCoikvLAA6HB9NFHC6/BNJ1K7CIiwIIFMGgQHHIInHpq3NFkRoldRIS1Dab33FOYDabplNhFpMV7990wj2khN5imU2IXkRatqgrOP7/wG0zTRdJ4amZfA4uBKmC1u2vSDREpCElpME0XZa+Ynu5eGeH5RESyKkkNpulUFSMiLVahP2Fal6gSuwMvmVm5mZVGdE4RkaypbjDt3x9+/vO4o4lWVFUxB7n7XDP7KTDRzD5x9zfSD0gl/FKAjh07RnRZEZGmW7MmGU+Y1iWSEru7z029zgfGAd1rOWaYu5e4e0lxcXEUlxURaZYHHggl9ttug803jzua6GWc2M2srZltWr0OHAFMy/S8IiLZsGABXHll8hpM00VRFbMNMM5Cy0Mr4DF3fzGC84qIRO6KK5LZYJou48Tu7jOBfSKIRUQkqyZMCNUwf/xj8hpM06m7o4i0CIsWwdlnw+67ww03xB1NdmnYXhFpES65BObOhcmToU2buKPJLpXYRSTxXngBRoyAyy+H7uv12UseJXYRSbSFC0MVTOfOyeyzXhtVxYhIog0cCN99B08/Da1bxx1NbqjELiKJ9dxz8OCDod96SQsac1aJXUQS6d//htLSMHHGNdfEHU1uqSpGRBJpwACYPz+U2ltKFUw1ldhFJHGeeQYeeSQMy9u1a9zR5J4Su4gkyoIFcM45sPfeMHhw3NHEQ1UxIpIoF10ElZWh7/pGG8UdTTxUYheRxBg3Dh57LJTU99037mjio8QuIolQWQnnnhsS+lVXxR1NvFQVIyKJ0L9/6OI4cSJsuGHc0cRLiV1ECt7YsTBqFNx4Y2g0belUFSMiBa2iAs47L3RrvOKKuKPJD5GV2M2sCCgD5rj7UVGdV0SkPhdcEAb6euUVVcFUi7LEPgCYEeH5RETq9cQT8OSTcP31YegACSJJ7Ga2PdAPGB7F+UREGvLdd3D++dCtW5jqTtaKqsR+B3A5sKauA8ys1MzKzKysoqIiosuKSEvkHpL64sVh9MZW6gayjowTu5kdBcx39/L6jnP3Ye5e4u4lxcXFmV5WRFqw0aPhqafC3KV77hl3NPknihL7QcCvzexrYBRwmJk9GsF5RUTW8803obTevTtcemnc0eSnjBO7uw9y9+3dvRNwMvCKu/8u48hERGpYtQpOOgmqqsLQAaqCqZ1ui4gUjCuugHfegTFj4Gc/izua/BVpYnf314DXojyniAiEAb7uuCMMHXD88XFHk9/05KmI5L2ZM+HMM0PXxr/8Je5o8p8Su4jktZUrQ726WegN09KmuWsO1bGLSF677DIoLw9VMTvtFHc0hUEldhHJW08+CUOGwMCBcOyxcUdTOJTYRSQvffEFnHUW7L8/3Hpr3NEUFiV2Eck7K1bAiSeGfuqjR7fcuUubS3XsIpJ3Bg6EqVPh2Wdhxx3jjqbwqMQuInnl8cdh6NAwYuNRmtmhWZTYRSRvfPoplJbCgQfCzTfHHU3hUmIXkbywfHnor966dahX12xIzac6dhHJCxddBB9+CM8/D9tvH3c0hU0ldhGJ3aOPwvDhMGgQ9OkTdzSFT4ldRGI1Ywaccw4cckiYOEMyp8QuIrFZujT0V2/bNvSG0fjq0dBtFJHYXHghfPwxTJgA220XdzTJEcWcp23M7B0z+8DMppvZ9VEEJiLJ9uCDYRk8GA4/PO5okiWKEvtK4DB3X2JmGwL/MLMX3P3tCM4tIglUXh7mLe3ZE669Nu5okifjxO7uDixJvd0wtXim5xWRZJo1C44+GoqLQ716UVHcESVPJI2nZlZkZlOB+cBEd58SxXlFJFkWLw7DBCxZAuPHwzbbxB1RMkWS2N29yt33BbYHupvZXjWPMbNSMyszs7KKioooLisiBWT1ajj5ZJg+PYyzvtd6WUKiEml3R3dfSJjM+sha9g1z9xJ3LykuLo7ysiJSAC65JDxVOmQI9O4ddzTJFkWvmGIz2yK1vjHwK+CTTM8rIslx991hueQSOPfcuKNJvih6xbQHHjKzIsIviifc/bkIzisiCTB+PFx8MRxzDPzP/8QdTcsQRa+YD4EuEcQiIgnzwQehXn3ffWHkSPWAyRUNKSAiWTF3bugBs8UWYSaktm3jjqjl0JACIhK5pUtDX/WFC+Ef/9BwAbmmxC4ikaqqgtNOC3OWPvMM7LNP3BG1PErsIhKpyy+Hp5+Gu+6Cfv3ijqZlUh27iERm6FC4/Xbo3z8sEg8ldhGJxIQJYRjevn1Dcpf4KLGLSMamTQsTZuy1F4wapQkz4qbELiIZmTcv1KX/5CehW+Omm8Ydkej3qog027Jl4YnSykp44w3YYYe4IxJQYheRZlqzBk4/Hd59F8aNg/32izsiqabELiJN5h4aSseOhb/+NZTaJX+ojl1EmsQdBg6Ee+8NfdYHDow7IqlJiV1EGs09JPM77wwjNt56K5jFHZXUpMQuIo3iDoMHw223hYmob79dST1fKbGLSKPceCP8+c/wX/8VJs1QUs9fSuwi0qBbboFrr4UzzgjDBmygzJHXopgabwcze9XMZpjZdDMbEEVgIpIf/vpXuOoqOPVUGD5cSb0QRNHdcTVwqbu/Z2abAuVmNtHdP47g3CISo7vvhssuC8MFPPSQZkAqFBn/7nX3b939vdT6YmAG0CHT84pIvIYOhYsugmOPDdPaafyXwhHpH1Vm1okw/+mUKM8rIrk1YgScd14YA2b0aNhww7gjkqaILLGb2U+AscDF7v5DLftLzazMzMoqKiqiuqyIROyRR+Dss+GII2DMGNhoo7gjkqaKJLGb2YaEpD7S3Z+q7Rh3H+buJe5eUlxcHMVlRSRio0eHni89e8Lf/w5t2sQdkTRHFL1iDHgAmOHuGl5fpEA99VSYq/Sgg8JcpRtvHHdE0lxRlNgPAv4TOMzMpqaWvhGcV0Ry5Nln4be/he7dYfx4aNs27ogkExm3c7v7PwA9gyZSoF54AU44Abp0CeuaKKPw6VEDkRbsxRfhN7+Bzp3DnKWbbx53RBIFJXaRFuqhh+Doo2H33WHiRGjXLu6IJCpK7CItjHsYzOuMM+DQQ+H112GrreKOSqKkZ8lEWpCqqjDz0dChoQfMiBHqp55EKrGLtBDLlsHxx4ekfvnl8PDDSupJpRK7SAtQWRnq06dMCQN7XXhh3BFJNimxiyTczJnQpw98800YIuC44+KOSLJNiV0kwcrLoW9f+PFHmDQJDj447ogkF1THLpJQL74Yer20aQP//KeSekuixC6SQA8+GOrU/+M/YPJk2GOPuCOSXFJiF0kQd7j5ZjjzTPjlL+GNN2C77eKOSnJNdewiCbF6dejtct998LvfwQMPqDtjS6USu0gCLFsWervcdx9ceaX6qLd0KrGLFLiKilCf/s47MGQIXHBB3BFJ3JTYRQpYeTmceCJ8+y2MHRtGahRRVYxIAXKHe++FAw8MdeuvvaakLmtFNefpCDObb2bTojifiNRtyZIwgNf550OvXvD++7D//nFHJfkkqhL7g8CREZ1LROowfTp06xYmnb7pJnjuOQ25K+uLpI7d3d8ws05RnEtEavfII3DuuWHqukmToGfPuCOSfJWzOnYzKzWzMjMrq6ioyNVlRQreihVQWgqnnx5K6++/r6Qu9ctZYnf3Ye5e4u4lxcXFubqsSEH78kvo0QPuvx8GDQol9fbt445K8p26O4rkqaeeCkMDFBWFuvR+/eKOSAqFujuK5JlVq2DgwDDb0e67h6oXJXVpiqi6Oz4OTAZ2M7PZZnZWFOcVaWlmzQqDd91xB/TvD2++CTvuGHdUUmii6hVzShTnEWnJXnwxDN61alXoznjSSXFHJIVKVTEiMVu1CgYPDjMdbbcdlJUpqUtm1HgqEqMpU+Dss2HatNBQOmQIbLJJ3FFJoVOJXSQGS5eGBtIePWDhQnj2WRgxQkldoqESu0iOvfQSnHMOfP01nHce3HorbLZZ3FFJkqjELpIj338PZ5wBvXtD69ahx8v//q+SukRPiV0ky9zhiSfChNIjR8LVV8PUqXDwwXFHJkmlqhiRLJozJwyv+8wzUFISqmH22SfuqCTpVGIXyYI1a8L8o3vuCRMnwm23weTJSuqSGyqxi0Tss8/CaIyvvw6HHQbDhsHPfhZ3VNKSqMQuEpEffww9XPbeO9ShDx8eRmNUUpdcU4ldJAKvvgqXXBIS+nHHhQeNNLyuxEUldpEMfPAB9OkTqlwqK2Hs2LAoqUuclNhFmuGrr8KAXV26hGEB/vKXULd+3HFxRyaiqhiRJqmoCJNI33svtGoFV1wRli22iDsykbWU2EUaYckSuP320G1x6VI46yy49lro0CHuyETWp8QuUo9Vq8J8ozfcAPPnh6qWm28OMxuJ5KuoZlA60sw+NbMvzOzKKM4pEqc1a2DUqPCA0YUXhkQ+eXJoGFVSl3yXcWI3syLgHqAPsCdwipntWd9n5s2bx+TJkzO9tEhWTJoE3brBKaeEYXTHj4fXXoMDDog7MmnJUjlz28YcG0WJvTvwhbvPdPdVwCjgmPo+MGfOHHr16qXkLnnDHd54Aw4/PCyVlfDww2Ei6b59wSzuCKUlmzx5Mr169QJoVKtOFHXsHYBZae9nA/vXPMjMSoHS6vcrVqxg8ODB/OIXv4ggBJHmqaoKsxe9/TbMmwcbbwxHHBFK7F9+CTfeGHeEIvDmm2+yYsWKRh8fRWKvrSzj621wHwYMAzAzb9OmDTfddBM9evSIIASRpqmshKFDw0Bd8+aFIXWvvz70TdcsRpJvqkvsy5cvXy+31iaKqpjZwA5p77cH5tb3gQ4dOvDyyy8rqUvOTZ8eBujaYQe45pow2uILL4RSe2mpkrrkpx49evDyyy9DA7m1mrk36hdA3ScwawV8BvQC5gDvAqe6+/S6PlNSUuJlZWUZXVeksdxhwgT429/CeOht2sDpp8OAAaHXi0ihMLNydy9p6LiMq2LcfbWZXQhMAIqAEfUldZFcWbYMHnkE7rwTZswI47fcdFOYb3TrreOOTiR7InlAyd2fB56P4lwimZozB+65J9Sff/89dO0aEvxJJ8FGG8UdnUj26clTSYQVK0Jd+ciR8PTTobfLscfCwIFhblF1V5SWRIldClZVVXhw6LHHwhOhixbBT38K/fuHp0V33jnuCEXiocQuBcUdystDMh81Cr79FjbdFI4/Hk49FXr2DKMuirRk+i8gBeGzz0Iyf+wx+PzzUFfer19I5v36hQeLRCRQYpe8NXcujB4dknlZWagn79kTrrwyjLKoMdBFaqfELnnl669Dn/MnngjziLpDSUkYC/23v4Xttos7QpH8p8QusVq8OCTwl14Ky+efh+277AJ/+lOoatl113hjFCk0SuySU1VV8N57axP5W2/B6tXhUf6ePUNvlt69QzJXF0WR5lFil6ybNQsmTgyJfNIkWLAgbO/aFS67LCTyHj2gdet44xRJCiV2iVxFBUyZEpL4Sy+Fx/khPNJ/1FFhWNxf/Sr0OReR6CmxS0YWLQr9yt99NyxlZfDNN2FfmzZwyCFh4ufevaFzZ1WviOSCErs02rJlMHXqukn800/X7t9pJ9h//1BP3q0bdO+u/uUicVBil1otXQqffBKSd3USnzYtNH5C6HZYUhImpujWLaxvtVW8MYtIoMTegq1aBV99FZ7q/Pzz8Fq9zJmz9rgttwzJ+6ijwmu3bupPLpLPlNgTbs0amD17bcJOT+BffbW2BA6hxL3rrqFhc5ddYLfdQs+VnXZS3bhIIckosZvZicB1wB5Ad3fXtEg54h4aLufODQNhfftt7euzZ4chbattsklI3l26hCc5d901LLvsoqoUkaTItMQ+DTgOuC+CWFq0lStDol64cN3XRYtC98HaEndtk5ZvskmoJmnfHvbbD37967XJe9ddwz6VvkWSLaPE7u4zACyhmcI9VGVUVYVl5cqQTFesWHe9rqX6mOXLw6PzNRN2ehJfubL+WDbbLCTr9u3hgAPWrrdvvzaRt28fhrBN6I9DRBqpoOrYb7wRHn88JFxY+5q+3tC+6iRd25KexKvfR2XjjcNohJtvHpZ27aBTp3W3Va/XfN1qK2jbNrpYRCTZGkzsZjYJ2LaWXVe7+9ONvZCZlQKlAB07dmx0gOnat4e99qo+37qvtW2rbV9RUd3LBhvUv7916/DQTW1LQ/uKipr1TxYRaTLz9KJtc09i9hpwWWMbT0tKSrysTO2sIiJNYWbl7l7S0HEb5CIYERHJnYwSu5n9xsxmAz2A8WY2IZqwRESkuTLtFTMOGBdRLCIiEgFVxYiIJIwSu4hIwiixi4gkjBK7iEjCKLGLiCRMJA8oNfmiZhXAN838+NZAZYThREVxNY3iahrF1TT5GhdkFtuO7l7c0EGxJPZMmFlZY568yjXF1TSKq2kUV9Pka1yQm9hUFSMikjBK7CIiCVOIiX1Y3AHUQXE1jeJqGsXVNPkaF+QgtoKrYxcRkfoVYoldRETqkVeJ3cyONLNPzewLM7uylv2tzWx0av8UM+uUtm9QavunZtY7x3FdYmYfm9mHZvayme2Ytq/KzKamlmdyHNcZZlaRdv2z0/b93sw+Ty2/z3Fcf0uL6TMzW5i2Lyv3y8xGmNl8M5tWx34zs7tSMX9oZl3T9mXzXjUU12mpeD40s7fMbJ+0fV+b2UepexXpBAeNiOuXZrYo7Wf1p7R99f78sxzXH9Nimpb6Pm2Z2pfN+7WDmb1qZjPMbLqZDajlmNx9x9w9LxagCPgS2BnYCPgA2LPGMecDQ1PrJwOjU+t7po5vDeyUOk9RDuPqCWySWj+vOq7U+yUx3q8zgCG1fHZLYGbqtV1qvV2u4qpxfH9gRA7u1yFAV2BaHfv7Ai8ABhwATMn2vWpkXAdWXw/oUx1X6v3XwNYx3a9fAs9l+vOPOq4axx4NvJKj+9Ue6Jpa3xT4rJb/jzn7juVTib078IW7z3T3VcAo4JgaxxwDPJRaHwP0MjNLbR/l7ivd/Svgi9T5chKXu7/q7stSb98Gto/o2hnFVY/ewER3/97d/w1MBI6MKa5TgMcjunad3P0N4Pt6DjkGeNiDt4EtzKw92b1XDcbl7m+lrgu5+2415n7VJZPvZdRx5eS7BeDu37r7e6n1xcAMoEONw3L2HcunxN4BmJX2fjbr35j/f4y7rwYWAVs18rPZjCvdWYTfytXamFmZmb1tZsdGFFNT4jo+9WffGDPboYmfzWZcpKqsdgJeSducrfvVkLrizua9aqqa3y0HXjKzcgtzCudaDzP7wMxeMLPOqW15cb/MbBNCchybtjkn98tCFXEXYEqNXTn7jmU00UbErJZtNbvs1HVMYz7bXI0+t5n9DigBDk3b3NHd55rZzsArZvaRu3+Zo7ieBR5395Vmdi7hr53DGvnZbMZV7WRgjLtXpW3L1v1qSBzfrUYzs56ExH5w2uaDUvfqp8BEM/skVaLNhfcIj7cvMbO+wN+BXciT+0Wohvmnu6eX7rN+v8zsJ4RfJhe7+w81d9fykax8x/KpxD4b2CHt/fbA3LqOMbNWwOaEP8sa89lsxoWZ/Qq4Gvi1u6+s3u7uc1OvM4HXCL/JcxKXuy9Ii+V+YL/GfjabcaU5mRp/KmfxfjWkrrizea8axcz2BoYDx7j7gurtafdqPmEms6iqHxvk7j+4+5LU+vPAhma2NXlwv1Lq+25l5X6Z2YaEpD7S3Z+q5ZDcfcey0ZDQzMaHVoRGg51Y2+jSucYxF7Bu4+kTqfXOrNt4OpPoGk8bE1cXQoPRLjW2twNap9a3Bj4nooakRsbVPm39N8Dbvrax5qtUfO1S61vmKq7UcbsRGrMsF/crdc5O1N0Y2I91G7beyfa9amRcHQltRgfW2N4W2DRt/S3gyBzGtW31z46QIP+VuneN+vlnK67U/uoCX9tc3a/Uv/1h4I56jsnZdyyymx3RzelLaE3+Erg6te0GQikYoA3wZOqL/g6wc9pnr0597lOgT47jmgR8B0xNLc+kth8IfJT6cn8EnJXjuG4Bpqeu/yqwe9pn/5C6j18AZ+YyrtT764Bba3wua/eLUHr7FviRUEI6CzgXODe134B7UjF/BJTk6F41FNdw4N9p362y1PadU/fpg9TP+Oocx3Vh2nfrbdJ+8dT2889VXKljziB0pkj/XLbv18GE6pMP035WfeP6junJUxGRhMmnOnYREYmAEruISMIosYuIJIwSu4hIwiixi4gkjBK7iEjCKLGLiCSMEruISML8P6SgQxL+2lN9AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "x = [x/10 for x in range(0, 21)]\n", - "y = [x**3-1 for x in x]\n", - "plt.plot(x, y, 'b')\n", - "plt.axhline(y=0, linewidth=.5, color='k', marker='.')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "# Roots and Integration of real-valued functions\n\nDiscuss the relevant concepts and the computational implementation of methods to find roots of real-valued functions: \n- Bisection\n- Newton's Method (or Newton-Raphson)\n- Quasi-Newton (Secant)" + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHW5JREFUeJzt3XmYVNWZx/HvK0FBQEVtBEXEBYyoAaV1wiQqLiiauOCoIRrFbXDDaDRqEJUYjA5GwSyjLC4wqImJBkERWQxxQ9FGgSAoIaADYbERERWkQ9c7f5zu0GG66aarbp1afp/nuU91VV3qvtV0/+r0ueeeY+6OiIgUvh1iFyAiItmhwBcRKRIKfBGRIqHAFxEpEgp8EZEiocAXESkSCnwRkSKhwBcRKRIKfBGRIvG12AXUtOeee3rHjh1jlyEikldmz569xt1L6tsvpwK/Y8eOlJWVxS5DRCSvmNlHDdlPXToiIkVCgS8iUiQU+CIiRUKBLyJSJBT4IiJFQoEvIlIkFPgiIkVCgS8iEtmvfgUTJyZ/HAW+iEhE69fDrbfChAnJH0uBLyIS0RNPwJdfwpVXJn8sBb6ISCTuMHIkHHEElJYmfzwFvohIJLNmwdy5cMUVYJb88RT4IiKRjBwJLVvC+edn53gKfBGRCNatg6eeCmHfqlV2jqnAFxGJYNw42LgxOydrqynwRUSyzB1GjICjjgonbLMlpxZAEREpBq+/DgsWwMMPZ/e4auGLiGTZyJGwyy7Qt292j6vAFxHJok8+gT/8AS68EFq0yO6xFfgiIlk0dixs2hTG3mebAl9EJEvcYdQo6NEDDj88+8fPSOCb2aNm9rGZza/x2E/N7O9mNqdqOy0TxxIRyVcvvwwffBCndQ+Za+GPAXrX8vhwd+9Wtb2QoWOJiOSlESNgt93gvPPiHD8jge/urwBrM/FaIiKFaNUq+OMf4aKLoHnzODUk3Yc/wMzmVXX5tE74WCIiOevBB2HzZrjmmng1JBn4DwEHAt2AlcD9te1kZv3NrMzMysrLyxMsR0Qkjo0b4aGH4PTToXPneHUkFvjuvtrdK909BYwGjq5jv1HuXurupSUlJUmVIyISzeOPw5o18KMfxa0jscA3s3Y17vYB5te1r4hIoXKH4cPDnDnHHRe3lozMpWNmvwV6Anua2XJgMNDTzLoBDnwIRBqIJCISz5QpsHBhmB0zG4ucbEtGAt/dv1/Lw49k4rVFRPLZsGHQrl28oZg16UpbEZGE/OUvMG0aXHst7Lhj7GoU+CIiiXngAdh553hX1m5NgS8ikoDVq8PonH79YPfdY1cTKPBFRBLw4INQUQHXXx+7ki0U+CIiGbZxYwj82BdabU2BLyKSYU88kRsXWm1NgS8ikkHuYShmt27Qs2fsav6VFjEXEcmgF14IF1qNHRv/QqutqYUvIpIh7jBkCOy3X/YXKG8ItfBFRDJk2jSYNSssdJILF1ptTS18EZEMcIc774T27eHii2NXUzu18EVEMmDGDJg5E37zG9hpp9jV1E4tfBGRDPjZz2DvveGyy2JXUje18EVE0vTyy2H75S+hWbPY1dRNLXwRkTQNGQJ77QX/+Z+xK9k2tfBFRNLw+uvw0ktw//3QvHnsarZNLXwRkTQMGQIlJbkzBfK2KPBFRBpp1qywhOGPfwwtWsSupn4KfBGRRhoyBPbYA66+OnYlDZORwDezR83sYzObX+Ox3c1smpn9teq2dSaOJSKSC2bPhkmT4IYboGXL2NU0TKZa+GOA3ls99hPgJXfvBLxUdV9EpCAMGgStW8OAAbErabiMBL67vwKs3erhM4GxVV+PBc7KxLFERGKbNi303d92G+yyS+xqGi7JPvy93H0lQNVtm9p2MrP+ZlZmZmXl5eUJliMikr5UCm66CTp2hGuuiV3N9ol+0tbdR7l7qbuXlpSUxC5HRGSbHn8c5s6Fu+/O3Tlz6pJk4K82s3YAVbcfJ3gsEZHEbdwYunFKS+F734tdzfZLMvAnAv2qvu4HTEjwWCIiifv1r2HZMrj3Xtghev/I9svUsMzfAm8AB5vZcjO7DPgvoJeZ/RXoVXVfRCQvffJJ6Mb5znfg+ONjV9M4GZlLx92/X8dTJ2bi9UVEYrvrLvj8cxg6NHYljZeHf5SIiGTXkiXw3/8Nl14Khx4au5rGU+CLiNTj1luhadOwhGE+U+CLiGzDW2/BU0/BjTeGFa3ymQJfRKQOqRT86Edh+uObbopdTfq0AIqISB0eeywsTP7YY9CqVexq0qcWvohILcrL4eab4dhjoV+/+vfPBwp8EZFa3HwzrF8PDz0EZrGryQwFvojIVl55BcaMCStZdekSu5rMUeCLiNRQUQFXXRVmw7z99tjVZJZO2oqI1DBsGCxYAM8/DzvvHLuazFILX0SkytKl8LOfwdlnhzlzCo0CX0QEcIdrrw2zYD7wQOxqkqEuHRER4Nlnw6Lk998P++4bu5pkqIUvIkXv009D675rV/jhD2NXkxy18EWk6F19NaxeDRMmwNcKOBUL+K2JiNTvySfhd78L89137x67mmSpS0dEitayZaF136MH3HJL7GqSp8AXkaKUSoU5ciorYdy4wu7KqZb4WzSzD4HPgUpgs7uXJn1MEZH6PPAAzJgBDz8MBx4Yu5rsyNZn2vHuviZLxxIR2ab582HgQDjjjLBsYbFQl46IFJVNm+CCC2C33WD06MKZCbMhshH4Dkw1s9lm1j8LxxMRqdPtt8O8efDII9CmTexqsisbXTrfcvcVZtYGmGZm77v7K9VPVn0I9Afo0KFDFsoRkWI1eTLcdx/07w/f/W7sarIv8Ra+u6+ouv0YGA8cvdXzo9y91N1LS0pKki5HRIrU4sVw/vnwjW+EGTGLUaKBb2YtzKxV9dfAycD8JI8pIrK1L76As84KE6ONHw8tWsSuKI6ku3T2AsZbOCvyNeBJd38x4WOKiPyTO1xyCSxcCC++CPvvH7uieBINfHdfAnRN8hgiItty773w9NPhtlev2NXEpWGZIlKwpkwJ4+3POy+sT1vsFPgiUpD+9jfo2xcOOwwefbS4xtvXRYEvIgXnyy+hT58Q8sV8knZrRTBdkIgUk4oK+I//gPfegxdeKJ55chpCgS8iBaOyEi66KPTdjx4Np5wSu6Lcoi4dESkI7jBgADz1FAwdCpdfHrui3KPAF5GCMHgwjBgBN90EN98cu5rcpMAXkbz3y1/CkCFw2WWhdS+1U+CLSF4bNw6uvz6MyhkxQsMvt0WBLyJ569lnw7QJJ5wQFiMvhmUK06FvjzRKRUW4sGX1avj0U1i79l+3iorwy9ekSdiqv955ZygpCfOQ19z22EO/rLJ9xowJJ2ZLS0PwN2sWu6Lcp18x2abKyrAc3HvvwYIFYVu4EP761/Dc1po2hdatYaedwvPV2+bN4XbDhtr/XZMmcMAB0Llz2A4+eMttu3b6M13+1bBhcOONcNJJ4cKqli1jV5QfFPjyL9zDvOHTp4ftT3+CdevCc02awEEHQZcucPbZcMghsPfesPvuW7YWLbYdzqlUeL2PPw5/HXz8cdj+/vfwIbJoUTjmxo1b/k2bNtC9e2jJVW97753s90FykzsMGgT33APnnAOPPx4aF9IwCnxh82aYOjXMKDh9OixbFh7v0CFcsXjCCdC1K3TqBDvumN6xdthhy4fD179e+z6pVPgAWLQo/DXxzjtQVhYupkmlwj7t2kGPHnDccWE7/PDw2lK4KivhqqvCBVX9+8ODD4ZGiDScuXvsGv6ptLTUy8rKYpdRNBYuDP2g48bBypWhK+bEE8OfySeeGC5Jz6WulA0bYO7cEP5vvw2vvgoffhiea90ajjkmhP+JJ4ZVjXKpdknPpk3wgx+ERsmtt8Jdd+n/tyYzm+3upfXtpxZ+kfnsM/jtb0PQz5oVWkjf+U4Y6XDaaem34JO0886hVd+jx5bHPvoIXn55yzZxYni8bVvo3TtsJ50UTgpLflq9Gr73vfD/e//9cMMNsSvKX2rhF4l168LFKcOHh9A/7LAQ8hdcAHvtFbu6zFm+PHRLvfhi6Kb69NPQ1XPUUXDqqXDGGdCtm1qH+eK118Jc9uvWha6cCy6IXVFuamgLX4Ff4NatgwceCNtnn4V1PQcODAFY6KFXWRm6fqZMgcmT4a23wkm/9u1D8J9xBvTsqZN+ucg9NE5uvjksSfjMM6GbTmqXM4FvZr2BXwJNgIfd/b/q2leBnzmffrol6NevD1ch3nFHaN0Wq/JymDQpdPtMmRLOCbRsGWZUPPvs0LW1666xq5T16+HSS0PI9+kDjz2m/5f6NDTwcffENkLI/w04ANgRmAt0qWv/7t27u6QnlXJ/7DH3PfZwB/c+fdzffTd2Vbln40b3SZPcr7jCvW3b8L1q2tS9d2/3UaPcV6+OXWFxmjfPvVMn9yZN3O+7L/w8S/2AMm9AJic9kO1oYLG7L3H3CuB3wJl17bxq1SreeOONhEsqXIsWhREql1wSLlh691344x+Lu1Vfl2bNwknqESPCENCZM+G668L3sH//MOzzuOPCeY/qYaqSnIqKMPLmqKPg88/DtRg33lj43Y6ZUJWZbRu0c0M+FRq7AecQunGq718I/GYb+3vz5s195syZSX0QFqRNm9yHDHHfaSf3XXd1HzHCvbIydlX5KZVynzvXffBg98MPDy1/cD/6aPehQ90XL45dYeF57TX3Ll3C9/m889xXrYpdUf6YOXOmN2/e3EOU15/Jifbhm9m5wCnufnnV/QuBo9392hr79Af6V93tbmYcf/zxHHPMMYnVVUj+93/huedgzZpwBWzv3tCqVeyqCscnn4TrFRYsCNcqQBjVdMghYSspUSu0sb76Koyomj0bdtklnEPp3Dl2Vfnl1VdfZcaMGdWBXv9PYkM+FRq7AT2AKTXuDwQGbmN/tfAbqLLS/c473c3cO3Rwf/752BUVvqVL3e+/3/3f/z1838G9c2f3n/zEfdYs9Tc3VCrl/tRT4dzJDju433CD++efx64qP9Vo4ae8IZnckJ0auxEu7FoC7M+Wk7aH1rX/Pvvso7BvgDVrwslFcP/BD/TLEsOKFe4PPeTeq5f7174W/i/at3cfMMB96tTQzSb/KpVyf+459+7dw/fryCPdy8piV5X/Zs6c6cByj92lA2BmpwEPEEbsPOruP69rXw3LrN/bb4dJo1atCicUr7hCXQqxrV0Lzz8fTpBPnRomfmvVasuFXqeeGuYOKlbu4ftz552h+2b//cMEaP36aUrsTMmZcfjbQ4FfN/cwouT668O0AU8/HUY0SG7ZsAFeeimcV3nuufDB3KQJfPvbIfh79y6eeX5SqS1B/847Yfrr224Lc+I0bRq7usKiwC8gGzaElvzjj4fQGDdOc8Pkg1QqTPQ2cWIIvrlzw+Nt24aLvU45BXr1gj33jFtnpn34IYwdG7alS8MkfLfdFqZFUNAnQ4FfINatg9NPh9dfDy2lQYM0DXC+WrkydPlUz/Ozdm1o6X/jG1umeT722Pz8APjyy3Bl7JgxMGNGeF8nnhiumD33XHXdJE2BXwBWrQqtwIULQ+v+vPNiVySZUlkZWv9Tp4ZZIGfO3LLoy6GHhvDv0SMs9tK5c25+yC9dumWhnMmTwwVTBx4IF18MF10U1lOQ7FDg57klS+Dkk0OrcPz48LUUroqK8AFQPc3z66/DF1+E51q2hCOPDOHfvXv4i+DAA6F58+zV5x5+Fl97LQT8Sy+Fn1GAffYJ5yb69QvnKorh/ESuUeDnsb/8JQR8RUWY7Oub34xdkWRbZSW8/374EKje5swJFytBCNUOHbasAdy5cxj90qZNuDCsTZuwfsD2HvOzz8JFfIsXb1m/uPr2s8/CfrvuCscfv2WhnIMPVsjHpsDPUzNnhisOW7QIf+536RK7IskV//jHlgBetChsH3wQbtev///7t2gRgn/33UMfepMmYav+2iycI1q7Nmzr1oWWfE3VVxV36RK26rWF1SefW7TiVR6aPj2M227fHqZNg/32i12R5JKmTUN3ztbzwruHheA/+ihMAV29MHz19umnYd3iyspwu3lzWDIwlQqjvTp1Ch8KrVtvWW/4gANC0Gs0WGFR4OeIN9+EM88Mv3zTpoWWmUhDmIWWeCGtXCbJyMFz/8Vn/vwwVe/ee4duHIW9iCRBgR/Z0qXhBG2zZiHs1UoTkaSoSyei1atD2H/1FbzyShhlISKSFAV+JOvWhYuqVqwIJ2sPOyx2RSJS6BT4EWzYEEbjLFgQJtjq0SN2RSJSDBT4WZZKhdkCX3sNnnwytPJFRLJBgZ9ld90VpkoYNgz69o1djYgUE43SyaLnn4fBg0ML//rrY1cjIsVGgZ8lixaF+cCPOAJGjdLcIyKSfQr8LPj8czjrrHBp/Pjx2Z3lUESkmvrwE5ZKhWljFy0KF1ZpfhwRiSWxFr6Z/dTM/m5mc6q205I6Vi67557Qqv/FL+CEE2JXIyLFLOkW/nB3vy/hY+SsF16A22+H88/XSVoRiU99+AlZvjyMxunaFUaP1klaEYkv6cAfYGbzzOxRM2ud8LFyRioV1vXctAn+8IftX3lIRCQJaQW+mU03s/m1bGcCDwEHAt2AlcD9dbxGfzMrM7Oy8vLydMrJGb/6VVjzc/hwOOig2NWIiARZWeLQzDoCz7v7NqcIK4QlDt97LywD16sXTJyorhwRSV5DlzhMcpROuxp3+wDzkzpWrqioCP32u+wCDz+ssBeR3JLkKJ17zawb4MCHwBUJHisnDB4Mc+bAhAlayEREck9ige/uFyb12rno1Vdh6FC4/PIw9bGISK7RsMwMWL8eLrwwrFg1fHjsakREaqepFTLguutg2bIwx33LlrGrERGpnVr4aZo8GcaMgYEDtXKViOQ2BX4aNmyAa66Br38d7rgjdjUiItumLp003H03LF0KM2bAjjvGrkZEZNvUwm+khQvh3nvhoougZ8/Y1YiI1E+B3wjucPXV4QTtL34RuxoRkYZRl04jPP44/PnPMHIktGkTuxoRkYZRC387rV0LN94I3/xmuMhKRCRfqIW/nQYODKE/bRrsoI9LEckjiqzt8MYbMGpUuNCqa9fY1YiIbB8FfgNt3gxXXQXt28NPfxq7GhGR7acunQYaMQLmzoVnnoFWrWJXIyKy/dTCb4DPPoM774QTToA+fWJXIyLSOAr8Brj3XlizJtxqURMRyVcK/HosXw7DhsH554elC0VE8pUCvx533AGpFPz857ErERFJjwJ/G+bNC1MfX3stdOwYuxoRkfSkFfhmdq6ZvWdmKTMr3eq5gWa22Mw+MLNT0iszjltugd12g0GDYlciIpK+dIdlzgfOBkbWfNDMugB9gUOBvYHpZtbZ3SvTPF7WTJ8OL74I990HrVvHrkZEJH1ptfDdfaG7f1DLU2cCv3P3Te6+FFgMHJ3OsbIplYKbbgrdOAMGxK5GRCQzkrrwah/gzRr3l1c9lheeeALmzAm3O+0UuxoRkcyoN/DNbDrQtpanBrn7hLr+WS2PeR2v3x/oD9ChQ4f6ykncV1+FPvvu3aFv39jViIhkTr2B7+4nNeJ1lwP71rjfHlhRx+uPAkYBlJaW1vqhkE2/+Q0sWwZjx2o2TBEpLElF2kSgr5ntZGb7A52AtxI6VsZ8+WW4mvbkk+H442NXIyKSWekOy+xjZsuBHsAkM5sC4O7vAb8HFgAvAtfkwwidkSOhvBwGD45diYhI5pl79F6UfyotLfWysrIox964EfbfHw47LAzJFBHJF2Y2291L69tP0yNXGT0aVq+G3/8+diUiIsnQaUnCyJyhQ+G44+DYY2NXIyKSDLXwgUcfhRUrYNy42JWIiCSn6Fv4mzbBPffAt76lkTkiUtiKvoU/dmyY8/6RR7S4iYgUtqJu4f/jH3D33fBv/wa9esWuRkQkWUXdwh83Dj76CB58UK17ESl8RdvC37w5rGLVvTucemrsakREkle0Lfwnn4QlS2DCBLXuRaQ4FGULP5UKffddu8Lpp8euRkQkO4qyhT95MnzwQZjvXq17ESkWRdnCHz4c9tkHzj03diUiItlTdIE/dy689BJcey00bRq7GhGR7Cm6wB8+HHbeGfr3j12JiEh2FVXgr1wZRudceim0bh27GhGR7CqqwH/wwTD+/rrrYlciIpJ9RRP4GzfCQw/BGWfAQQfFrkZEJPuKJvDHjYNPPoEbbohdiYhIHEUR+KlUOFl75JFwzDGxqxERiSPdRczPNbP3zCxlZqU1Hu9oZhvNbE7VNiL9UhvvxRfh/fdD614XWolIsUr3Stv5wNnAyFqe+5u7d0vz9TNi2DBdaCUiklbgu/tCAMvhZvO8eeFCq3vugR13jF2NiEg8Sfbh729m75rZy2ZWZ8+5mfU3szIzKysvL894EbrQSkQkqLeFb2bTgba1PDXI3SfU8c9WAh3c/RMz6w48a2aHuvv6rXd091HAKIDS0lJveOn1Ky8PF1pdfjnsvnsmX1lEJP/UG/juftL2vqi7bwI2VX0928z+BnQGyra7wjSMGQMVFXDNNdk8qohIbkqkS8fMSsysSdXXBwCdgCVJHKsuqRSMGgXf/jZ06ZLNI4uI5KZ0h2X2MbPlQA9gkplNqXrqWGCemc0FngaudPe16ZW6ff70J1i8GK64IptHFRHJXemO0hkPjK/l8WeAZ9J57XSNHBn67c85J2YVIiK5oyCvtF21Cp59Fi6+GJo1i12NiEhuKMjAf+yxMCumhmKKiGxRcIFffbK2Z084+ODY1YiI5I6CC/ypU+HDD+HKK2NXIiKSWwou8EeOhJIS6NMndiUiIrmloAJ/xQp47jm45BLNmyMisrWCCvxHHoHKSp2sFRGpTcEEfmUljB4NvXrBgQfGrkZEJPcUTOBPngzLlunKWhGRuhRM4I8cCW3bhkXKRUTk/yuIwF+2DF54AS67DJo2jV2NiEhuKojA/+IL6N07zHsvIiK1S3dN25xwyCEwaVLsKkREcltBtPBFRKR+CnwRkSKhwBcRKRIKfBGRIqHAFxEpEgp8EZEiocAXESkSCnwRkSJh7h67hn8ys3LgozReYk9gTYbKialQ3gfoveSiQnkfoPdSbT93L6lvp5wK/HSZWZm7l8auI12F8j5A7yUXFcr7AL2X7aUuHRGRIqHAFxEpEoUW+KNiF5AhhfI+QO8lFxXK+wC9l+1SUH34IiJSt0Jr4YuISB0KKvDNbIiZzTOzOWY21cz2jl1TY5nZL8zs/ar3M97MdotdU2OZ2blm9p6Zpcws70ZUmFlvM/vAzBab2U9i19NYZvaomX1sZvNj15IuM9vXzGaY2cKqn63rYtfUWGbWzMzeMrO5Ve/lzsSOVUhdOma2i7uvr/r6h0AXd78yclmNYmYnA39y981mNhTA3W+JXFajmNkhQAoYCfzY3csil9RgZtYEWAT0ApYDbwPfd/cFUQtrBDM7FvgC+B93Pyx2Pekws3ZAO3d/x8xaAbOBs/L0/8WAFu7+hZk1BV4DrnP3NzN9rIJq4VeHfZUWQN5+mrn7VHffXHX3TaB9zHrS4e4L3f2D2HU00tHAYndf4u4VwO+AMyPX1Cju/gqwNnYdmeDuK939naqvPwcWAvvErapxPPii6m7Tqi2R7CqowAcws5+b2TLgAuCO2PVkyKXA5NhFFKl9gGU17i8nT4OlUJlZR+AIYFbcShrPzJqY2RzgY2CauyfyXvIu8M1supnNr2U7E8DdB7n7vsATwIC41W5bfe+lap9BwGbC+8lZDXkvecpqeSxv/3IsNGbWEngGuH6rv/DzirtXuns3wl/yR5tZIl1uebeIubuf1MBdnwQmAYMTLCct9b0XM+sHfBc40XP8ZMt2/L/km+XAvjXutwdWRKpFaqjq734GeMLd/xi7nkxw93Vm9megN5Dxk+t518LfFjPrVOPuGcD7sWpJl5n1Bm4BznD3DbHrKWJvA53MbH8z2xHoC0yMXFPRqzrR+Qiw0N2Hxa4nHWZWUj0Kz8yaAyeRUHYV2iidZ4CDCSNCPgKudPe/x62qccxsMbAT8EnVQ2/m8YijPsCvgRJgHTDH3U+JW1XDmdlpwANAE+BRd/955JIaxcx+C/QkzMq4Ghjs7o9ELaqRzOzbwKvAXwi/7wC3uvsL8apqHDP7BjCW8PO1A/B7d/9ZIscqpMAXEZG6FVSXjoiI1E2BLyJSJBT4IiJFQoEvIlIkFPgiIkVCgS8iUiQU+CIiRUKBLyJSJP4P7Qyzz9TzuB0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "x = np.linspace(-3, 3)\n", - "y = [x**3-1-3*x+1 for x in x]\n", - "plt.plot(x, y, 'b')\n", - "plt.axhline(y=0, linewidth=.5, color='k', marker='.')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Bracketing\n", - "### Bisection - Bissecsção" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def bisection(f, a, b, delta=1e-5, eps=1e-7):\n", - "\n", - " # f: a function\n", - " # a: lower limit\n", - " # b: upper limit\n", - " \n", - " if f(a)*f(b) <= 0:\n", - " \n", - " x_low = a\n", - " x_high = b\n", - " e = 1 # abs(x_high - x_low)\n", - " d = 1 # f(M)\n", - " i = 0\n", - " #print(\"{joao:2d}: [{x_low:0.8f}, {x_high:0.8f}]\".format(joao = i, x_low = x_low, x_high = x_high))\n", - " \n", - " while abs(e)>eps*(1+abs(x_low)+abs(x_high)) or abs(d)>delta:\n", - " \n", - " i += 1\n", - " \n", - " midpoint = (x_low+x_high)/2\n", - " if f(x_low)*f(midpoint)<0:\n", - " x_high = midpoint\n", - " else:\n", - " x_low = midpoint\n", - " \n", - " midpoint = (x_low+x_high)/2\n", - " e = x_high-x_low\n", - " d = f(midpoint)\n", - " #print(\"{i:2d}: [{x_low:0.12f}, {x_high:0.12f}]\".format(i = i, x_low = x_low, x_high = x_high))\n", - " \n", - " return midpoint" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def func(x):\n", - " return x**3-1" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import matplotlib.pyplot as plt\nx = [x/10 for x in range(0, 21)]\ny = [x**3-1 for x in x]\nplt.plot(x, y, 'b')\nplt.axhline(y=0, linewidth=.5, color='k', marker='.')\nplt.show()", + "execution_count": null, + "outputs": [] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 35 µs, sys: 0 ns, total: 35 µs\n", - "Wall time: 39.1 µs\n" - ] + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import numpy as np\nimport matplotlib.pyplot as plt\nx = np.linspace(-3, 3)\ny = [x**3-1-3*x+1 for x in x]\nplt.plot(x, y, 'b')\nplt.axhline(y=0, linewidth=.5, color='k', marker='.')\nplt.show()", + "execution_count": null, + "outputs": [] }, { - "data": { - "text/plain": [ - "1.000000041723251" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%time bisection(func, .4, 3)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "## Bracketing\n### Bisection" + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 42 µs, sys: 1 µs, total: 43 µs\n", - "Wall time: 47.2 µs\n" - ] + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def bisection(f, a, b, delta=1e-5, eps=1e-7):\n\n # f: a function\n # a: lower limit\n # b: upper limit\n \n if f(a)*f(b) <= 0:\n \n x_low = a\n x_high = b\n e = 1 # abs(x_high - x_low)\n d = 1 # f(M)\n i = 0\n #print(\"{joao:2d}: [{x_low:0.8f}, {x_high:0.8f}]\".format(joao = i, x_low = x_low, x_high = x_high))\n \n while abs(e)>eps*(1+abs(x_low)+abs(x_high)) or abs(d)>delta:\n \n i += 1\n \n midpoint = (x_low+x_high)/2\n if f(x_low)*f(midpoint)<0:\n x_high = midpoint\n else:\n x_low = midpoint\n \n midpoint = (x_low+x_high)/2\n e = x_high-x_low\n d = f(midpoint)\n #print(\"{i:2d}: [{x_low:0.12f}, {x_high:0.12f}]\".format(i = i, x_low = x_low, x_high = x_high))\n \n return midpoint", + "execution_count": null, + "outputs": [] }, { - "data": { - "text/plain": [ - "1.000000041723251" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# testing\n", - "%time bisection(lambda x: x**3-1, .4, 3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Newton's Method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "http://mathworld.wolfram.com/NewtonsMethod.html
\n", - "http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# derive\n", - "def derive(func, x, eps=1e-6):\n", - " \"derive: calculates the derivative of a real-valued function at a certain point of its domain.\"\n", - " if func(x) or func(x) == 0:\n", - " return (func(x+eps)-func(x-eps))/(2*eps)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# newton\n", - "def newton(func, x, eps=10**(-5), delta=10**(-7)):\n", - " \"newton: finds a root of a real-valued function using Newton's method.\"\n", - " \n", - " e = 1\n", - " d = abs(func(x))\n", - " i = 0\n", - " \n", - " x0 = x\n", - " \n", - " while e>eps or d>delta:\n", - " \n", - " i = i+1\n", - " x1 = x0-(func(x0)/derive(func, x0))\n", - " e = abs(x1-x0)\n", - " d = abs(func(x1))\n", - " print(\"interaction: \", i)\n", - " print(\"{0:.6f} -> {1:.6f}\".format(x0,x1))\n", - " print(\"e={0:.6f} d={1:.6f}\".format(e,d))\n", - " print(\"---------------------------------\")\n", - " x0 = x1\n", - " \n", - " return (x0, i)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def func(x):\n return x**3-1", + "execution_count": null, + "outputs": [] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "interaction: 1\n", - "3.000000 -> 2.037037\n", - "e=0.962963 d=7.452726\n", - "---------------------------------\n", - "interaction: 2\n", - "2.037037 -> 1.438355\n", - "e=0.598682 d=1.975764\n", - "---------------------------------\n", - "interaction: 3\n", - "1.438355 -> 1.120022\n", - "e=0.318333 d=0.405012\n", - "---------------------------------\n", - "interaction: 4\n", - "1.120022 -> 1.012402\n", - "e=0.107620 d=0.037670\n", - "---------------------------------\n", - "interaction: 5\n", - "1.012402 -> 1.000151\n", - "e=0.012251 d=0.000454\n", - "---------------------------------\n", - "interaction: 6\n", - "1.000151 -> 1.000000\n", - "e=0.000151 d=0.000000\n", - "---------------------------------\n", - "interaction: 7\n", - "1.000000 -> 1.000000\n", - "e=0.000000 d=0.000000\n", - "---------------------------------\n", - "CPU times: user 1.75 ms, sys: 1.51 ms, total: 3.27 ms\n", - "Wall time: 1.84 ms\n" - ] + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "%time bisection(func, .4, 3)", + "execution_count": null, + "outputs": [] }, { - "data": { - "text/plain": [ - "(1.0000000000000004, 7)" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%time newton(lambda w: w**3-1, 3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quasi-Newton" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Secant Method\n", - "http://mathworld.wolfram.com/SecantMethod.html" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# quasi-newton (secant)\n", - "def secant(func, x0, x1, eps=10**(-5), delta=10**(-7)):\n", - " \"quasi-newton (secant): finds a root of a real-valued function using the secant method.\"\n", - " \n", - " e = 1\n", - " d = abs(func(x1))\n", - " i = 0\n", - " \n", - " while e>eps or d>delta:\n", - " \n", - " i = i+1\n", - " x2 = x1-(func(x1)*(x1-x0)/(func(x1)-func(x0)))\n", - " e = abs(x2-x1)\n", - " d = abs(func(x2))\n", - " print(\"interaction: \", i)\n", - " print(\"{0:.6f} -> {1:.6f}\".format(x1, x2))\n", - " print(\"e={0:.6f} d={1:.6f}\".format(e, d))\n", - " print(\"---------------------------------\")\n", - " x0 = x1\n", - " x1 = x2\n", - " \n", - " return (x2, i)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# testing\n%time bisection(lambda x: x**3-1, .4, 3)", + "execution_count": null, + "outputs": [] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "interaction: 1\n", - "3.000000 -> 2.297297\n", - "e=0.702703 d=11.124158\n", - "---------------------------------\n", - "interaction: 2\n", - "2.297297 -> 1.771816\n", - "e=0.525481 d=4.562319\n", - "---------------------------------\n", - "interaction: 3\n", - "1.771816 -> 1.406459\n", - "e=0.365357 d=1.782155\n", - "---------------------------------\n", - "interaction: 4\n", - "1.406459 -> 1.172256\n", - "e=0.234203 d=0.610896\n", - "---------------------------------\n", - "interaction: 5\n", - "1.172256 -> 1.050102\n", - "e=0.122154 d=0.157964\n", - "---------------------------------\n", - "interaction: 6\n", - "1.050102 -> 1.007500\n", - "e=0.042602 d=0.022670\n", - "---------------------------------\n", - "interaction: 7\n", - "1.007500 -> 1.000362\n", - "e=0.007139 d=0.001086\n", - "---------------------------------\n", - "interaction: 8\n", - "1.000362 -> 1.000003\n", - "e=0.000359 d=0.000008\n", - "---------------------------------\n", - "interaction: 9\n", - "1.000003 -> 1.000000\n", - "e=0.000003 d=0.000000\n", - "---------------------------------\n", - "CPU times: user 1.86 ms, sys: 1.57 ms, total: 3.43 ms\n", - "Wall time: 1.98 ms\n" - ] + "metadata": { + "collapsed": true + }, + "cell_type": "markdown", + "source": "## Newton's Method" }, { - "data": { - "text/plain": [ - "(1.0000000009764454, 9)" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%time secant(lambda w: w**3-1, 4, 3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## using `scipy.optimize`" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy import optimize as opt" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "http://mathworld.wolfram.com/NewtonsMethod.html
\nhttp://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx" + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 27 µs, sys: 2 µs, total: 29 µs\n", - "Wall time: 32.9 µs\n" - ] + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# derive\ndef derive(func, x, eps=1e-6):\n \"derive: calculates the derivative of a real-valued function at a certain point of its domain.\"\n if func(x) or func(x) == 0:\n return (func(x+eps)-func(x-eps))/(2*eps)", + "execution_count": null, + "outputs": [] }, { - "data": { - "text/plain": [ - "0.999999999999545" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%time opt.bisect(lambda w: w**3-1, .4, 3)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# newton\ndef newton(func, x, eps=10**(-5), delta=10**(-7)):\n \"newton: finds a root of a real-valued function using Newton's method.\"\n \n e = 1\n d = abs(func(x))\n i = 0\n \n x0 = x\n \n while e>eps or d>delta:\n \n i = i+1\n x1 = x0-(func(x0)/derive(func, x0))\n e = abs(x1-x0)\n d = abs(func(x1))\n print(\"interaction: \", i)\n print(\"{0:.6f} -> {1:.6f}\".format(x0,x1))\n print(\"e={0:.6f} d={1:.6f}\".format(e,d))\n print(\"---------------------------------\")\n x0 = x1\n \n return (x0, i)", + "execution_count": null, + "outputs": [] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 22 µs, sys: 1 µs, total: 23 µs\n", - "Wall time: 26.9 µs\n" - ] + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "%time newton(lambda w: w**3-1, 3)", + "execution_count": null, + "outputs": [] }, { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%time opt.newton(lambda w: w**3-1, 3)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "## Quasi-Newton" + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 23 µs, sys: 0 ns, total: 23 µs\n", - "Wall time: 26.9 µs\n" - ] + "metadata": {}, + "cell_type": "markdown", + "source": "### Secant Method\nhttp://mathworld.wolfram.com/SecantMethod.html" }, { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%time opt.newton(lambda w: w**3-1, 3, fprime=lambda w: 3*(w**2))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Application: Internal Rate of Return" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# quasi-newton (secant)\ndef secant(func, x0, x1, eps=10**(-5), delta=10**(-7)):\n \"quasi-newton (secant): finds a root of a real-valued function using the secant method.\"\n \n e = 1\n d = abs(func(x1))\n i = 0\n \n while e>eps or d>delta:\n \n i = i+1\n x2 = x1-(func(x1)*(x1-x0)/(func(x1)-func(x0)))\n e = abs(x2-x1)\n d = abs(func(x2))\n print(\"interaction: \", i)\n print(\"{0:.6f} -> {1:.6f}\".format(x1, x2))\n print(\"e={0:.6f} d={1:.6f}\".format(e, d))\n print(\"---------------------------------\")\n x0 = x1\n x1 = x2\n \n return (x2, i)", + "execution_count": null, + "outputs": [] + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD8CAYAAABpcuN4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8lWP+//HXx44OopTtMBWRHcqhsnRklKidQc5i0Jd8m1GMr+Rs5DAzjOP80CBCjslhpgiphCKyapIOk3aZ0S6U4/BFpM/vj+vua6ndbu+91tr3Wmu/n4/Heqx73eu+1/5cj7Uf+7Ov+7qv62PujoiIyKZsEXcAIiKS25QoRESkUkoUIiJSKSUKERGplBKFiIhUSolCREQqpUQhIiKVUqIQEZFKKVGIiEil6sUdQFVsv/323rp167jDEBHJK7Nnz/7E3YvT/Zy8SBStW7cmmUzGHYaISF4xs39n4nN06UlERCqlRCEiIpVSohARkUopUYiISKWUKEREpFJpJwoza2Bms8zsHTNbYGbXRPt3M7O3zGyJmT1hZltF++tHr8ui91unG4OIiGRPJnoUa4BD3X1/oANQamZdgT8Dt7l7CfA5MCg6fhDwubvvAdwWHSciIjkq7UThwdfRyy2jhwOHAk9F+8cAx0Tb/aPXRO/3NjOr7GcsXw7ffJNupCIiUhMZGaMwsyIzmwusAiYDS4Ev3H1tdEg50CLabgEsB4je/xJoXsFnDjazpJklV62Cfv3gq68yEa2IiFRHRhKFu//o7h2AlkBnYO+KDoueK+o9+EY73Ee5e8LdE7vtBq+/DocdBp9/nomIRUSkqjJ615O7fwG8AnQFmprZ+iVCWgIro+1yoBVA9H4T4LPKPrdZM3j6aZg7F3r1glWrMhm1iIhUJhN3PRWbWdNouyFwGLAImAacEB02EBgfbU+IXhO9/7K7b9Sj2FD//vDss/Dee3DIIVBenm7kIiJSFZnoUewMTDOzecDbwGR3fw64BBhmZmWEMYjR0fGjgebR/mHApVX9QX36wKRJsGIFHHwwLFuWgehFRKRSVoV/5mOXSCQ8dfXYt9+G0lJo0AAmT4Z27WIMTkQkR5nZbHdPpPs5eTkz+8AD4dVXYd26cBlqzpy4IxIRKVx5mSgA9tkHpk+HrbcOA9wzZsQdkYhIYcrbRAGwxx4hWey8cxi/ePHFuCMSESk8eZ0oAFq1gtdegz33hKOPhiefjDsiEZHCkveJAmCHHWDaNOjcGQYMgNGjN3+OiIhUTUEkCoCmTeGll8IlqLPPhptvjjsiEZHCUDCJAqBRIxg/Hk46CS66CC6/HPLg7l8RkZxWb/OH5JettoLHHgs9jOuvh88+g5Ejoago7shERPJTwSUKCEnh7rvDGlE33BAWEnz44ZBERESkegoyUQCYhR5F8+bhMtQXX4SFBRs3jjsyEZH8UlBjFBUZPhzuvx+mTAnLlH/6adwRiYjkl4JPFABnnvnTMuUHHxwq5omISNXUiUQBcMwxYeZ2eTn06AH//GfcEYmI5Ic6kygAevYMiwmuWQMHHQSzZsUdkYhI7qtTiQKgY8dQVrVJEzj00FDfQkRENi0TFe5amdk0M1tkZgvM7Pxo/9VmtsLM5kaPI1LOuczMysxssZn1TTeG6tpjj5As9tgDjjwSHn20tiMQEckfmbg9di1wobvPMbNtgNlmNjl67zZ3/9liGmbWDhgAtAd+AUwxs7bu/mMGYqmynXYKl6GOOQZOOy3U4b7ggtqMQEQkP6Tdo3D3D919TrT9FaFedotKTukPjHX3Ne7+PlAGdE43jppo0gReeAFOOAGGDYOLLw7FkERE5CcZHaMws9ZAR+CtaNe5ZjbPzO43s+2ifS2A1BtUy6k8sWRVgwYwdiyccw7cdBP813/BDz/EFY2ISO7JWKIws8bA08D/uPt/gLuANkAH4EPglvWHVnD6Rkv3mdlgM0uaWXL16tWZCrNCRUVhPajrrgtLfRx1FHz9dVZ/pIhI3shIojCzLQlJ4lF3fwbA3T929x/dfR1wLz9dXioHWqWc3hJYueFnuvsod0+4e6K4uDgTYVbKDK68Eu69FyZPDuVVV63K+o8VEcl5mbjryYDRwCJ3vzVl/84phx0LzI+2JwADzKy+me0GlAA5M6Ph7LPh73+HBQuge3coK4s7IhGReGWiR9EDOB04dINbYW80s3fNbB7QC7gAwN0XAOOAhcCLwNDavuNpc446Cl5+OSwk2L27JuaJSN1mngeVfRKJhCeTyVr/uYsXQ2lpuAQ1bhz86le1HoKISI2Z2Wx3T6T7OXVuZnZ17LknzJwJe+0F/furFreI1E1KFJux007wyithifKzz4YRI1ReVUTqFiWKKthmG3j22bBc+bXXwqBBmmshInVHwVa4y7QttwyXnnbZBa65BlasgCefhG23jTsyEZHsUo+iGszg6qvhvvtg6lT45S9h5UYzQERECosSRQ0MGgQTJ8LSpdC1K8yfv/lzRETylRJFDfXtC9Onw9q1oWLe1KlxRyQikh1KFGno0AHefDOMW5SWwoMPxh2RiEjmKVGkaZddYMaMUGb1zDN1+6yIFB4ligxo0iSMWay/fXbgwFCXW0SkEOj22AzZaqtw+2ybNmEV2g8+gGeegWbN4o5MRCQ96lFkkBlccUWowT1zZlhQcOnSuKMSEUmPEkUWnHoqTJkCq1eH22dffz3uiEREak6JIksOPjjcEdW0KfTuDY8/HndEIiI1o0SRRSUlIVl07hx6GdddpzuiRCT/ZKLCXSszm2Zmi8xsgZmdH+1vZmaTzWxJ9LxdtN/M7HYzKzOzeWbWKd0Yclnz5qG06umnw1VX6Y4oEck/mehRrAUudPe9ga7AUDNrB1wKTHX3EmBq9BqgH6H8aQkwGLgrAzHktPr1YcyY0KN4+OGwZPknn8QdlYhI1aSdKNz9Q3efE21/BSwCWgD9gTHRYWOAY6Lt/sBDHrwJNN2gvnZBMgu3zT7xBCST0KULLFoUd1QiIpuX0TEKM2sNdATeAnZ09w8hJBNgh+iwFsDylNPKo311wkknhUJIX38N3bqFy1IiIrksY4nCzBoDTwP/4+7/qezQCvZtNMRrZoPNLGlmydWrV2cqzJzQpQvMmhWW/+jXD+4q+ItvIpLPMpIozGxLQpJ41N2fiXZ/vP6SUvS8KtpfDrRKOb0lsFFVB3cf5e4Jd08UFxdnIsycsuuuYX5FaSkMGQK/+11YiVZEJNdk4q4nA0YDi9z91pS3JgADo+2BwPiU/WdEdz91Bb5cf4mqrtlmGxg/HoYNgzvugCOPhC+/jDsqEZGfy0SPogdwOnComc2NHkcANwCHm9kS4PDoNcDzwDKgDLgXGJKBGPJWURHccgvce2+oadG1K5SVxR2ViMhPzPNgBlgikfBkMhl3GFn3yitw/PFh+6mnoFevWMMRkTxnZrPdPZHu52hmdg7p2TMMcu+0E/TpA/fcE3dEIiJKFDmnTZuw8myfPvDb38K558IPP8QdlYjUZUoUOWjbbWHCBBg+HEaODHdGffZZ3FGJSF2lRJGjiorgpptCHe4ZM8LCggsXxh2ViNRFShQ5buBAmDYtzOTu2hWeey7uiESkrlGiyAPdu8Pbb4dly48+Gm64QcuVi0jtUaLIE61awfTpcPLJcNll8OtfwzffxB2ViNQFShR5pFEjeOwx+NOfYOzYUEXvgw/ijkpECp0SRZ4xCz2KCRNgyRJIJEJPQ0QkW5Qo8tSRR4bJedttB4ceGlag1biFiGSDEkUe22sveOutMDlvyBD4zW9UZlVEMk+JIs81bRouQ11+eVhYsFcv+LBOrsUrItmiRFEAiorgj3+EcePgnXfggAPCMiAiIpmgRFFATjwxJIiGDeGQQ0IPQ0QkXUoUBWa//cLkvF69YPBgjVuISPqUKApQs2bw/PNw6aUwalRYvnzlRsVmRUSqJlM1s+83s1VmNj9l39VmtmKDqnfr37vMzMrMbLGZ9c1EDPJzRUVw/fXw5JPw7rvQqVNYXFBEpLoy1aN4ECitYP9t7t4hejwPYGbtgAFA++icv5pZUYbikA2ccEK4hXbbbcPlqDvv1HwLEamejCQKd38NqGrFhP7AWHdf4+7vE2pnd85EHFKx9u3DuMURR8B554UVabVOlIhUVbbHKM41s3nRpanton0tgOUpx5RH+37GzAabWdLMkqtXr85ymIWvSRP429/g2mvhkUfCirTLlsUdlYjkg2wmiruANkAH4EPglmi/VXDsRhdD3H2UuyfcPVFcXJy9KOuQLbaA3/8eJk4MiwkecEAY9BYRqUzWEoW7f+zuP7r7OuBefrq8VA60Sjm0JaB7cmpRv36QTELr1mHNqBEj4Mcf445KRHJV1hKFme2c8vJYYP0dUROAAWZW38x2A0qAWdmKQyq2++7wxhtwxhnhctSRR8Knn8YdlYjkonqZ+BAzexzoCWxvZuXACKCnmXUgXFb6F/AbAHdfYGbjgIXAWmCou+v/2Rg0bAgPPADdusHvfhcuRT39dHgWEVnPPA/ulUwkEp5MJuMOo6C9/Xa4lfajj8IttGefHWpfiEj+MrPZ7p5I93M0M1sAOPBAmD07zOIePBjOOku30IpIoEQh/2f77cNdUFddBWPGhEtSS5bEHZWIxE2JQn6mqAiuuSYkjPLyUGr16afjjkpE4qREIRUqLYU5c0IVvRNOgGHD4Icf4o5KROKgRCGbtOuuMH16WPbjtttCjYvlyzd/nogUFiUKqdRWW8Htt8PYsWEV2o4dYdKkuKMSkdqkRCFVcvLJYTb3L34RZnZfeSWsXRt3VCJSG5QopMr23BPefBPOPDPU6D78cPjww7ijEpFsU6KQamnUCEaPhgcfDHUuOnaEqVPjjkpEskmJQmpk4MAwm7tZs9CzuOYaLSwoUqiUKKTG2reHWbPgtNPg6quhb9+wBIiIFBYlCklL48ZhFvf994fVaDt00KUokUKjRCFpMwsD3KmXoq66SndFiRQKJQrJmPW1uQcOhOuug969YcWKuKMSkXQpUUhGbb11qHHx0ENhNdr99w+lV0Ukf2UkUZjZ/Wa2yszmp+xrZmaTzWxJ9LxdtN/M7HYzKzOzeWbWKRMxSG45/fSQKFq2DNXzLrwQvv8+7qhEpCYy1aN4ECjdYN+lwFR3LwGmRq8B+hHKn5YAg4G7MhSD5Jj1E/SGDoVbb4UePWDp0rijEpHqykiicPfXgM822N0fGBNtjwGOSdn/kAdvAk03qK8tBaRBg1Ax75lnoKwsTNB7/PG4oxKR6sjmGMWO7v4hQPS8Q7S/BZC6Bml5tE8K2LHHwty5sO++cOqpoYLe//5v3FGJSFXEMZhdUSXmjQp3m9lgM0uaWXL16tW1EJZk2667wquvwhVXhCVADjggJA8RyW3ZTBQfr7+kFD2vivaXA61SjmsJrNzwZHcf5e4Jd08UFxdnMUypTfXqwR/+ECblffUVdOkSljH3jf5VEJFckc1EMQEYGG0PBMan7D8juvupK/Dl+ktUUnf06gXvvBOW/Tj/fDjqKFDHUSQ3Zer22MeBmcCeZlZuZoOAG4DDzWwJcHj0GuB5YBlQBtwLDMlEDJJ/tt8exo+HO+6AKVNgv/3gpZfijkpENmSeB33+RCLhyWQy7jAki+bNg1NOgYULYfjwUO9iq63ijkokv5nZbHdPpPs5mpktOWG//UIFvSFD4OaboWtXWLw47qhEBJQoJIc0bAgjR4bLUR98AJ06wb33aqBbJG5KFJJzjj46XIrq3h0GD4bjjoNPPok7KpG6S4lCctIvfgGTJoXLUBMnhktTkyfHHZVI3aREITlriy3CYoJvvQVNm0KfPjBsGKxZE3dkInWLEoXkvI4dfxrovu02OPBAmD9/8+eJSGYoUUheaNQoDHRPnAgffwyJBPzlL7BuXdyRiRQ+JQrJK0ccAe++Gy5DXXBBmNmtKnoi2aVEIXlnhx3CLbT33ANvvBFWpB03Lu6oRAqXEoXkJbNw6+w//gElJXDyyaGq3hdfxB2ZSOFRopC81rYtzJgBV18dCiLttx9MmxZ3VCKFRYlC8t6WW8KIEeEyVMOGcOih4Tba776LOzKRwqBEIQWjc+dwKWro0HAb7QEHwJw5cUclkv+UKKSgNGoUanRPmhTGK7p0CYWS1q6NOzKR/KVEIQWpT59wG+2JJ8Lvfw89emg1WpGaynqiMLN/mdm7ZjbXzJLRvmZmNtnMlkTP22U7Dql7mjWDxx6DsWNhyZIww/v22zVJT6S6aqtH0cvdO6QU0LgUmOruJcDU6LVIVpx8MixYEMqvnn8+HH44/PvfcUclkj/iuvTUHxgTbY8BjokpDqkjdt4Znnsu1LeYNStM0hs9WrUuRKqiNhKFAy+Z2WwzGxzt29HdPwSInneohTikjjODs88OYxeJRNg+8khYuTLuyERyW20kih7u3gnoBww1s19W5SQzG2xmSTNLrl69OrsRSp3SujVMmRLGK6ZNg/bt4ZFH1LsQ2ZSsJwp3Xxk9rwL+BnQGPjaznQGi51UVnDfK3RPuniguLs52mFLHbLEFnHcevPMOtGsXlv847riwMq2I/FxWE4WZbW1m26zfBvoA84EJwMDosIHA+GzGIbIpJSXw2mtw003wwguhd/HEE+pdiKTKdo9iR2CGmb0DzAImuvuLwA3A4Wa2BDg8ei0Si6IiGD4c5s6FNm1gwIAw/0K9C5HAPA/+dUokEp5MJuMOQ+qAtWvhllvgqqtgm23CLO+TTw4D4SL5xsxmp0xLqDHNzBZJUa8eXHJJWDOqTRs45RQ4/nj46KO4IxOJjxKFSAXatYPXX4c//xmefz6MXTz6qMYupG5SohDZhHr14OKLfyqOdNpp0L+/5l1I3aNEIbIZe+8dehe33AKTJ4fexgMPqHchdYcShUgVFBWFYkjz5oUqemedBaWlWjNK6gYlCpFqKCmBV16BkSNDL2OffeCvf9WKtFLYlChEqmmLLWDIEJg/H7p1CxX1evaE996LOzKR7FCiEKmh1q1DJb377w8LDe6/P9x4o6rpSeFRohBJgxmceSYsXAj9+oU5GF26hFneIoVCiUIkA3beGZ55Bp56ClasCMuYX345fPtt3JGJpE+JQiSDjj8+9C7OOAOuvz5cjnr11bijEkmPEoVIhjVrFsYtpkyBH38MA93//d/w+edxRyZSM0oUIlnSu3cY5B4+PCSOdu3CpSlN1JN8o0QhkkWNGoVaF7NmhXGME0+EY46B8vK4IxOpOiUKkVpwwAEhWdx440/LgNx5Z7g0JZLrlChEakm9enDRRWGiXteuoRRrjx5hWRCRXBZbojCzUjNbbGZlZnZpXHGI1Lbddw8T9R55BJYuDb2NSy+Fb76JOzKRisWSKMysCBgJ9APaAaeYWbtNHf/RRx8xc+bM2gpPJOvM4Ne/hn/+E04/PdS92HdfeOmluCOTQhH9zdwpE58VV4+iM1Dm7svc/XtgLNB/UwevWLGC3r17K1lIwWnePNwRNW1auDTVty+ceqrqdUt6Zs6cSe/evQFaZOLz6mXiQ2qgBbA85XU50CX1ADMbDAxe//q7777jyiuv5OCDD66dCEVq2YknwowZ8MQTYZb3YYeFy1Kq1y3VNX36dL777ruMfV5ciaKiX/2f3V3u7qOAUQBm5g0aNOAPf/gD3bp1q434RGKzeDH89rcwcSJ89hncfXeogSFSVet7FN9++21GZu3EdempHGiV8rolsMkCky1atGDq1KlKElIn7LknvPwyjBkDS5ZAp07hbqmvv447MskX3bp1Y+rUqVDJ39XqMI9hmqiZ1QPeA3oDK4C3gVPdfUFFxycSCU8mk7UYoUhu+PTTsCLt6NHQqhXccUeo2y1SFWY2290T6X5OLD0Kd18LnAtMAhYB4zaVJETqsubN4b77wthFkyZhVvfRR8O//hV3ZFKXxDaPwt2fd/e27t7G3f8YVxwi+aBHD5gzJ8zsnjo1zOy+4Qb4/vu4I5O6QDOzRfLElluGsYpFi6C0FC67DDp0CDW8RbJJiUIkz+yyS7h99rnn4LvvoFcvOO00+OijuCOTQqVEIZKnfvUrWLAArrwSnnwy3C11++2q2S2Zp0QhkscaNoTrrgt1L7p2hfPPD2VY33gj7sikkChRiBSAtm3hxRdDz+LTT8Pg91lnwapVcUcmhUCJQqRAmMEJJ4TB7ksugYcfDpejRo5U3QtJjxKFSIFp3DjcOjtvXlgr6txzw+Wo11+POzLJV0oUIgVq771DNb1x4+CTT+Cgg2DgQK1MK9WnRCFSwMzCqrSLFoV5F48/HsYzbrsNfvgh7ugkXyhRiNQBjRvDn/4UyrB27w7DhoXJei+/HHdkkg+UKETqkLZt4fnnYfx4+PZb6N079Dg++CDuyCSXKVGI1DFmYWHBBQvg2mtD3Yu99grb334bd3SSi5QoROqohg3h978PdbuPPBJGjAgD4E8/DTFUH5AcpkQhUsftsku4M2raNNh22zAXo3fvMNtbBJQoRCTSs2dYyvzOO2Hu3DDYfe65oRyr1G1ZSxRmdrWZrTCzudHjiJT3LjOzMjNbbGZ9sxWDiFRPvXowdGgowXrOOXDXXVBSEmZ3a7HBuivbPYrb3L1D9HgewMzaAQOA9kAp8FczK8pyHCJSDc2bb9yz6NAhTOCTuieOS0/9gbHuvsbd3wfKgM4xxCEim7HvvjBlCvztb+GOqD59wh1TS5bEHZnUpmwninPNbJ6Z3W9m20X7WgDLU44pj/aJSA4yC7W6Fy4Ma0hNmwbt28Pw4fDFF3FHJ7UhrURhZlPMbH4Fj/7AXUAboAPwIXDL+tMq+KiNbsYzs8FmljSz5OrVq9MJU0QyoH79sCrtkiVwxhlw661h/OLuuzV+UejSShTufpi771PBY7y7f+zuP7r7OuBefrq8VA60SvmYlsDKCj57lLsn3D1RXFycTpgikkE77QT33QezZ4eexTnnQMeO8NJLcUcm2ZLNu552Tnl5LDA/2p4ADDCz+ma2G1ACzMpWHCKSHR07hstQTz8N33wDffuG8qyLFsUdmWRaNscobjSzd81sHtALuADA3RcA44CFwIvAUHdXWRWRPGQGxx0Xxi9uvBFmzAgD4OedF5Y2l8Jgngdz9ROJhCeTybjDEJHNWL0arr4a7rknrFh75ZUhadSvH3dkdZOZzXb3RLqfo5nZIpIxxcVhct4774TlzC+6KKwf9eSTWj8qnylRiEjGtW8fljOfNAm23hpOOilU2Hvzzbgjk5pQohCRrOnTJ8zuvu8+WLYMunWDAQPCtuQPJQoRyaqiIhg0KMy/GDECnn021L+48EItOJgvlChEpFY0bhwGut97D04/PdTt3mMPuOUWWLMm7uikMkoUIlKrWrSA0aPDgHeXLmEpkL32gscfh3Xr4o5OKqJEISKx2HdfeOGFMKO7aVM49VTo3DlM4pPcokQhIrE6/PCwHMhDD8GqVXDooXDEEaqwl0uUKEQkdltsEcYt3nsvzPB+4w3Yf38480z44IO4oxMlChHJGQ0ahEl6y5bBsGHw2GPQti1cfDF8/nnc0dVdShQiknOaNYObbw49jJNPDtu77w433RQKKEntUqIQkZy1664wZkyYtNe9e+hZtG0L99+vGhi1SYlCRHLefvvBxInwyivh9tpBg8K+v/9da0jVBiUKEckbhxwCM2eGGhjr1sGxx4aexquvxh1ZYVOiEJG8sr4Gxvz5YQ2p5cuhZ0/o1w/+8Y+4oytM6dbMPtHMFpjZOjNLbPDeZWZWZmaLzaxvyv7SaF+ZmV2azs8XkbqrXr2f1pC66SaYNQs6dQqLDi5ZEnd0hSXdHsV84DjgtdSdZtYOGAC0B0qBv5pZkZkVASOBfkA74JToWBGRGmnYMCwDsmxZKJT03HOhBsbgwVBeHnd0hSGtROHui9x9cQVv9QfGuvsad38fKAM6R48yd1/m7t8DY6NjRUTS0qQJXHcdLF0KQ4bAgw+GRQcvvDBU3pOay9YYRQtgecrr8mjfpvaLiGTEjjvC7beHORinnAJ/+UuYgzFiBHz5ZdzR5afNJgozm2Jm8yt4VNYTsAr2eSX7K/q5g80saWbJ1fp3QESqqXVreOCBMOhdWgrXXhsSxo03wjffxB1dftlsonD3w9x9nwoe4ys5rRxolfK6JbCykv0V/dxR7p5w90RxcfHmWyIiUoH1Nbtnzw7Lml9yCbRpA3feqToYVZWtS08TgAFmVt/MdgNKgFnA20CJme1mZlsRBrwnZCkGEZH/06lTqOM9fXqY3X3eeVBSAslk3JHlvnRvjz3WzMqBbsBEM5sE4O4LgHHAQuBFYKi7/+jua4FzgUnAImBcdKyISK046KAww/ull0JvY4894o4o95nnwfz3RCLhSaV9EZFqMbPZ7p7Y/JGV08xsERGplBKFiIhUSolCREQqpUQhIiKVUqIQEZFKKVGIiEillChERKRSShQiIlKpvJhwZ2ZfARUtZ14otgc+iTuILFL78lsht6+Q2wawp7tvk+6H1MtEJLVgcSZmF+YqM0uqfflL7ctfhdw2CO3LxOfo0pOIiFRKiUJERCqVL4liVNwBZJnal9/UvvxVyG2DDLUvLwazRUQkPvnSoxARkZjEnijMrNTMFptZmZldWsH79c3siej9t8ysdcp7l0X7F5tZ39qMu6pq2j4za21m35rZ3Ohxd23HXhVVaN8vzWyOma01sxM2eG+gmS2JHgNrL+qqSbNtP6Z8dzlZxbEK7RtmZgvNbJ6ZTTWzXVPey+nvDtJuXyF8f781s3ejNswws3Yp71Xvb6e7x/YAioClwO7AVsA7QLsNjhkC3B1tDwCeiLbbRcfXB3aLPqcozvZkuH2tgflxtyED7WsN7Ac8BJyQsr8ZsCx63i7a3i7uNmWibdF7X8fdhgy0rxfQKNo+J+V3M6e/u3TbV0Df37Yp20cDL0bb1f7bGXePojNQ5u7L3P17YCzQf4Nj+gNjou2ngN5mZtH+se6+xt3fB8qiz8sl6bQvH2y2fe7+L3efB6zb4Ny+wGR3/8zdPwcmA6W1EXQVpdO2fFCV9k1z92+il28CLaPtXP/uIL325YOqtO8/KS+3BtYPSFf7b2fciaIFsDzldXm0r8I3CJnOAAACP0lEQVRjPNTc/hJoXsVz45ZO+wB2M7N/mNmrZnZwtoOtgXS+g1z//tKNr4GZJc3sTTM7JrOhZUR12zcIeKGG58YhnfZBgXx/ZjbUzJYCNwK/q865qeKemV3Rf84b3oa1qWOqcm7c0mnfh8Au7v6pmR0A/N3M2m/wX0Lc0vkOcv37Sze+Xdx9pZntDrxsZu+6+9IMxZYJVW6fmZ0GJIBDqntujNJpHxTI9+fuI4GRZnYqcCUwsKrnpoq7R1EOtEp53RJYualjzKwe0AT4rIrnxq3G7Yu6hZ8CuPtswnXEtlmPuHrS+Q5y/ftLKz53Xxk9LwNeATpmMrgMqFL7zOww4ArgaHdfU51zY5ZO+wrm+0sxFljfM6r+9xfzgEw9wkDYbvw0INN+g2OG8vPB3nHRdnt+PiCzjNwbzE6nfcXr20MYsFoBNIu7TdVtX8qxD7LxYPb7hMHQ7aLtnGlfmm3bDqgfbW8PLGGDgca4H1X83exI+AelZIP9Of3dZaB9hfL9laRsHwUko+1q/+3MhQYfAbwXfWFXRPuuJWR4gAbAk4QBl1nA7innXhGdtxjoF3dbMtk+4HhgQfSFzgGOirstNWzfgYT/YP4X+BRYkHLuWVG7y4Az425LptoGdAfejb67d4FBcbelhu2bAnwMzI0eE/Llu0unfQX0/f2/6G/IXGAaKYmkun87NTNbREQqFfcYhYiI5DglChERqZQShYiIVEqJQkREKqVEISIilVKiEBGRSilRiIhIpZQoRESkUv8f+XlPG6BbWO8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "v = [-1000, 500, 500, 500, -200]\n", - "def vpl(v, r):\n", - " return sum([value*(1+r)**(-period) for period, value in enumerate(v)])\n", - "\n", - "x = [x/400 for x in range(101)]\n", - "y = [vpl(v, r) for r in x]\n", - "plt.plot(x, y, 'b')\n", - "plt.axhline(y=0, linewidth=.5, color='k', marker='.')\n", - "plt.xlim((0,.3))\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy import optimize as opt\n", - "def irr(v, r0):\n", - " \n", - " def vpl(r):\n", - " return sum([value*(1+r)**(-t) for t,value in enumerate(v)])\n", - " \n", - " return opt.newton(vpl, r0)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "%time secant(lambda w: w**3-1, 4, 3)", + "execution_count": null, + "outputs": [] + }, { - "data": { - "text/plain": [ - "0.16864273669048988" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# testing\n", - "v = [-1000, 500, 500, 500, -200]\n", - "irr(v, 0.05)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Integration" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "import math" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "## using `scipy.optimize`" + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "['__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp', 'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']\n" - ] - } - ], - "source": [ - "print(dir(math))" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "from scipy import optimize as opt", + "execution_count": null, + "outputs": [] + }, { - "data": { - "text/plain": [ - "2.718281828459045" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "math.e" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "%time opt.bisect(lambda w: w**3-1, .4, 3)", + "execution_count": null, + "outputs": [] + }, { - "data": { - "text/plain": [ - "7.38905609893065" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "math.exp(2)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "%time opt.newton(lambda w: w**3-1, 3)", + "execution_count": null, + "outputs": [] + }, { - "data": { - "text/plain": [ - "3.141592653589793" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "math.pi" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "%time opt.newton(lambda w: w**3-1, 3, fprime=lambda w: 3*(w**2))", + "execution_count": null, + "outputs": [] + }, { - "data": { - "text/plain": [ - "nan" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "math.nan" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Rectangle method\n", - "$\\int_{a}^{b}{f(x)dx} \\approx \\Delta x\\,\\sum_{i=1}^{n}{f(m_i)}$ where $\\Delta x = \\frac{b-a}{n}$ and $m_{i} = a + \\frac{\\Delta x}{2} i$" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "def rectangle(f, a, b, n):\n", - " \n", - " step = (b-a)/n\n", - " I = 0\n", - " \n", - " for i in range(int(n)):\n", - " I += f(a+(2*i+1)*step/2)\n", - " \n", - " return I*step" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "markdown", + "source": "## Application: Internal Rate of Return" + }, { - "data": { - "text/plain": [ - "100000.0" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "1e5" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import matplotlib.pyplot as plt\n\nv = [-1000, 500, 500, 500, -200]\ndef vpl(v, r):\n return sum([value*(1+r)**(-period) for period, value in enumerate(v)])\n\nx = [x/400 for x in range(101)]\ny = [vpl(v, r) for r in x]\nplt.plot(x, y, 'b')\nplt.axhline(y=0, linewidth=.5, color='k', marker='.')\nplt.xlim((0,.3))\nplt.show()", + "execution_count": null, + "outputs": [] + }, { - "data": { - "text/plain": [ - "575.9999999855918" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# test 1\n", - "rectangle(lambda x: x**2, 0, 12, 1e5)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "from scipy import optimize as opt\ndef irr(v, r0):\n \n def vpl(r):\n return sum([value*(1+r)**(-t) for t,value in enumerate(v)])\n \n return opt.newton(vpl, r0)", + "execution_count": null, + "outputs": [] + }, { - "data": { - "text/plain": [ - "1.7175660864611277" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# test 1\n", - "rectangle(lambda x: math.exp(x), 0, 1, 10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Trapezoid rule\n", - "$\\int_{a}^{b}{f(x)dx} \\approx \\frac{\\Delta x}{2}\\,\\sum_{i=1}^{n}{[f(x_{i-1})+f(x_{i})]} = \\frac{\\Delta x}{2}\\,\\left[f(x_{0})+2\\,f(x_{1})+2\\,f(x_{1})+...+2\\,f(x_{n-1})+f(x_{n})\\right]$ where $\\Delta x = \\frac{b-a}{n}$ and $x_{i} = a + \\Delta x\\,i$" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "def trapezoid(f, a, b, n):\n", - " \n", - " step = (b - a)/n\n", - " I = f(a) + f(b)\n", - " \n", - " for i in range(1, int(n), 1):\n", - " I += 2*f(a+i*step)\n", - " \n", - " return I*step/2" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# testing\nv = [-1000, 500, 500, 500, -200]\nirr(v, 0.05)", + "execution_count": null, + "outputs": [] + }, { - "data": { - "text/plain": [ - "576.0002880000003" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# test\n", - "trapezoid(lambda x: x**2, 0, 12, 1000)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "## Integration" + }, { - "data": { - "text/plain": [ - "1.7197134913893146" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# test\n", - "trapezoid(lambda x: math.exp(x), 0, 1, 10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Simpson's rule\n", - "[Reference from Wolfran's MathWorld](http://mathworld.wolfram.com/SimpsonsRule.html)\n", - "\n", - "$\\int_{a}^{b}{f(x)dx} \\approx \\frac{\\Delta x}{3}\\,\\left[f(x_{0})+4\\,f(x_{1})+2\\,f(x_{2})+4\\,f(x_{3})+2\\,f(x_{4})+...+2\\,f(x_{n-2})+4\\,f(x_{n-1})+f(x_{n})\\right]$ where $\\Delta x = \\frac{b-a}{n}$." - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "def simpson(f, a, b, n):\n", - " \n", - " step = (b-a)/n\n", - " I = f(a)+f(b)\n", - " \n", - " for i in range(1, int(n), 2):\n", - " I += 4*f(a+i*step)\n", - " \n", - " for i in range(2, int(n-1), 2):\n", - " I += 2*f(a+i*step)\n", - " \n", - " return I*step/3" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import math", + "execution_count": null, + "outputs": [] + }, { - "data": { - "text/plain": [ - "576.0000000000049" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# test\n", - "simpson(lambda x: x**2, 0, 12, 1e5)" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "print(dir(math))", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "math.e", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "math.exp(2)", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "math.pi", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "math.nan", + "execution_count": null, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Rectangle method\n$\\int_{a}^{b}{f(x)dx} \\approx \\Delta x\\,\\sum_{i=1}^{n}{f(m_i)}$ where $\\Delta x = \\frac{b-a}{n}$ and $m_{i} = a + \\frac{\\Delta x}{2} i$" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def rectangle(f, a, b, n):\n \n step = (b-a)/n\n I = 0\n \n for i in range(int(n)):\n I += f(a+(2*i+1)*step/2)\n \n return I*step", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "1e5", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# test 1\nrectangle(lambda x: x**2, 0, 12, 1e5)", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# test 1\nrectangle(lambda x: math.exp(x), 0, 1, 10)", + "execution_count": null, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Trapezoid rule\n$\\int_{a}^{b}{f(x)dx} \\approx \\frac{\\Delta x}{2}\\,\\sum_{i=1}^{n}{[f(x_{i-1})+f(x_{i})]} = \\frac{\\Delta x}{2}\\,\\left[f(x_{0})+2\\,f(x_{1})+2\\,f(x_{1})+...+2\\,f(x_{n-1})+f(x_{n})\\right]$ where $\\Delta x = \\frac{b-a}{n}$ and $x_{i} = a + \\Delta x\\,i$" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def trapezoid(f, a, b, n):\n \n step = (b - a)/n\n I = f(a) + f(b)\n \n for i in range(1, int(n), 1):\n I += 2*f(a+i*step)\n \n return I*step/2", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# test\ntrapezoid(lambda x: x**2, 0, 12, 1000)", + "execution_count": null, + "outputs": [] + }, { - "data": { - "text/plain": [ - "1.7182827819248236" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# test\ntrapezoid(lambda x: math.exp(x), 0, 1, 10)", + "execution_count": null, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Simpson's rule\n[Reference from Wolfran's MathWorld](http://mathworld.wolfram.com/SimpsonsRule.html)\n\n$\\int_{a}^{b}{f(x)dx} \\approx \\frac{\\Delta x}{3}\\,\\left[f(x_{0})+4\\,f(x_{1})+2\\,f(x_{2})+4\\,f(x_{3})+2\\,f(x_{4})+...+2\\,f(x_{n-2})+4\\,f(x_{n-1})+f(x_{n})\\right]$ where $\\Delta x = \\frac{b-a}{n}$." + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def simpson(f, a, b, n):\n \n step = (b-a)/n\n I = f(a)+f(b)\n \n for i in range(1, int(n), 2):\n I += 4*f(a+i*step)\n \n for i in range(2, int(n-1), 2):\n I += 2*f(a+i*step)\n \n return I*step/3", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# test\nsimpson(lambda x: x**2, 0, 12, 1e5)", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# test\nsimpson(lambda x: math.exp(x), 0, 1, 10)", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "from scipy import integrate\n# help(integrate)", + "execution_count": 47, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "help(integrate.trapz)", + "execution_count": 50, + "outputs": [ + { + "output_type": "stream", + "text": "Help on function trapz in module numpy.lib.function_base:\n\ntrapz(y, x=None, dx=1.0, axis=-1)\n Integrate along the given axis using the composite trapezoidal rule.\n \n Integrate `y` (`x`) along given axis.\n \n Parameters\n ----------\n y : array_like\n Input array to integrate.\n x : array_like, optional\n The sample points corresponding to the `y` values. If `x` is None,\n the sample points are assumed to be evenly spaced `dx` apart. The\n default is None.\n dx : scalar, optional\n The spacing between sample points when `x` is None. The default is 1.\n axis : int, optional\n The axis along which to integrate.\n \n Returns\n -------\n trapz : float\n Definite integral as approximated by trapezoidal rule.\n \n See Also\n --------\n sum, cumsum\n \n Notes\n -----\n Image [2]_ illustrates trapezoidal rule -- y-axis locations of points\n will be taken from `y` array, by default x-axis distances between\n points will be 1.0, alternatively they can be provided with `x` array\n or with `dx` scalar. Return value will be equal to combined area under\n the red lines.\n \n \n References\n ----------\n .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule\n \n .. [2] Illustration image:\n http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png\n \n Examples\n --------\n >>> np.trapz([1,2,3])\n 4.0\n >>> np.trapz([1,2,3], x=[4,6,8])\n 8.0\n >>> np.trapz([1,2,3], dx=2)\n 8.0\n >>> a = np.arange(6).reshape(2, 3)\n >>> a\n array([[0, 1, 2],\n [3, 4, 5]])\n >>> np.trapz(a, axis=0)\n array([ 1.5, 2.5, 3.5])\n >>> np.trapz(a, axis=1)\n array([ 2., 8.])\n\n", + "name": "stdout" + } ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# test\n", - "simpson(lambda x: math.exp(x), 0, 1, 10)" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "from scipy import integrate\n", - "# help(integrate)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on function trapz in module numpy.lib.function_base:\n", - "\n", - "trapz(y, x=None, dx=1.0, axis=-1)\n", - " Integrate along the given axis using the composite trapezoidal rule.\n", - " \n", - " Integrate `y` (`x`) along given axis.\n", - " \n", - " Parameters\n", - " ----------\n", - " y : array_like\n", - " Input array to integrate.\n", - " x : array_like, optional\n", - " The sample points corresponding to the `y` values. If `x` is None,\n", - " the sample points are assumed to be evenly spaced `dx` apart. The\n", - " default is None.\n", - " dx : scalar, optional\n", - " The spacing between sample points when `x` is None. The default is 1.\n", - " axis : int, optional\n", - " The axis along which to integrate.\n", - " \n", - " Returns\n", - " -------\n", - " trapz : float\n", - " Definite integral as approximated by trapezoidal rule.\n", - " \n", - " See Also\n", - " --------\n", - " sum, cumsum\n", - " \n", - " Notes\n", - " -----\n", - " Image [2]_ illustrates trapezoidal rule -- y-axis locations of points\n", - " will be taken from `y` array, by default x-axis distances between\n", - " points will be 1.0, alternatively they can be provided with `x` array\n", - " or with `dx` scalar. Return value will be equal to combined area under\n", - " the red lines.\n", - " \n", - " \n", - " References\n", - " ----------\n", - " .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule\n", - " \n", - " .. [2] Illustration image:\n", - " http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png\n", - " \n", - " Examples\n", - " --------\n", - " >>> np.trapz([1,2,3])\n", - " 4.0\n", - " >>> np.trapz([1,2,3], x=[4,6,8])\n", - " 8.0\n", - " >>> np.trapz([1,2,3], dx=2)\n", - " 8.0\n", - " >>> a = np.arange(6).reshape(2, 3)\n", - " >>> a\n", - " array([[0, 1, 2],\n", - " [3, 4, 5]])\n", - " >>> np.trapz(a, axis=0)\n", - " array([ 1.5, 2.5, 3.5])\n", - " >>> np.trapz(a, axis=1)\n", - " array([ 2., 8.])\n", - "\n" - ] + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "", + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "language_info": { + "mimetype": "text/x-python", + "nbconvert_exporter": "python", + "name": "python", + "pygments_lexer": "ipython3", + "version": "3.5.4", + "file_extension": ".py", + "codemirror_mode": { + "version": 3, + "name": "ipython" + } } - ], - "source": [ - "help(integrate.trapz)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/0-pre-requisitos/2-math/data/regression.csv b/0-pre-requisitos/2-math/data/regression.csv old mode 100644 new mode 100755 diff --git a/0-pre-requisitos/2-math/data/tech_coef.csv b/0-pre-requisitos/2-math/data/tech_coef.csv old mode 100644 new mode 100755 diff --git a/0-pre-requisitos/2-math/linear_algebra.ipynb b/0-pre-requisitos/2-math/linear_algebra.ipynb new file mode 100755 index 0000000..35b433f --- /dev/null +++ b/0-pre-requisitos/2-math/linear_algebra.ipynb @@ -0,0 +1,2035 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Linear Algebra\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents\n", + "\n", + "- [Linear Algebra](#Linear-Algebra) \n", + " - [Overview](#Overview) \n", + " - [Vectors](#Vectors) \n", + " - [Matrices](#Matrices) \n", + " - [Solving Systems of Equations](#Solving-Systems-of-Equations) \n", + " - [Eigenvalues and Eigenvectors](#Eigenvalues-and-Eigenvectors) \n", + " - [Further Topics](#Further-Topics) \n", + " - [Exercises](#Exercises) \n", + " - [Solutions](#Solutions) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview\n", + "\n", + "Linear algebra is one of the most useful branches of applied mathematics for economists to invest in\n", + "\n", + "For example, many applied problems in economics and finance require the solution of a linear system of equations, such as\n", + "\n", + "$$\n", + "\\begin{array}{c}\n", + " y_1 = a x_1 + b x_2 \\\\\n", + " y_2 = c x_1 + d x_2\n", + "\\end{array}\n", + "$$\n", + "\n", + "or, more generally,\n", + "\n", + "\n", + "\n", + "$$\n", + "\\begin{array}{c}\n", + " y_1 = a_{11} x_1 + a_{12} x_2 + \\cdots + a_{1k} x_k \\\\\n", + " \\vdots \\\\\n", + " y_n = a_{n1} x_1 + a_{n2} x_2 + \\cdots + a_{nk} x_k\n", + "\\end{array} \\tag{1}\n", + "$$\n", + "\n", + "The objective here is to solve for the “unknowns” $ x_1, \\ldots, x_k $ given $ a_{11}, \\ldots, a_{nk} $ and $ y_1, \\ldots, y_n $\n", + "\n", + "When considering such problems, it is essential that we first consider at least some of the following questions\n", + "\n", + "- Does a solution actually exist? \n", + "- Are there in fact many solutions, and if so how should we interpret them? \n", + "- If no solution exists, is there a best “approximate” solution? \n", + "- If a solution exists, how should we compute it? \n", + "\n", + "\n", + "These are the kinds of topics addressed by linear algebra\n", + "\n", + "In this lecture we will cover the basics of linear and matrix algebra, treating both theory and computation\n", + "\n", + "We admit some overlap with [this lecture](https://lectures.quantecon.org/py/numpy.html), where operations on NumPy arrays were first explained\n", + "\n", + "Note that this lecture is more theoretical than most, and contains background\n", + "material that will be used in applications as we go along" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Vectors\n", + "\n", + "\n", + "\n", + "A *vector* of length $ n $ is just a sequence (or array, or tuple) of $ n $ numbers, which we write as $ x = (x_1, \\ldots, x_n) $ or $ x = [x_1, \\ldots, x_n] $\n", + "\n", + "We will write these sequences either horizontally or vertically as we please\n", + "\n", + "(Later, when we wish to perform certain matrix operations, it will become necessary to distinguish between the two)\n", + "\n", + "The set of all $ n $-vectors is denoted by $ \\mathbb R^n $\n", + "\n", + "For example, $ \\mathbb R ^2 $ is the plane, and a vector in $ \\mathbb R^2 $ is just a point in the plane\n", + "\n", + "Traditionally, vectors are represented visually as arrows from the origin to\n", + "the point\n", + "\n", + "The following figure represents three vectors in this manner" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHICAYAAABNpu4dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xt8zvXj//HHtc1sbDaHllOlcsjHoYWiUOR8DilnH3NmOTOUMy3nsxHmMOecz4pSEpUiSaFGTUgzZsZl27Xr90d9/fLJaWx7XYfn/Xbb7cb1fl/v6zlv17XnXu/Dy2K32xERERFxVx6mA4iIiIiYpDIkIiIibk1lSERERNyaypCIiIi4NZUhERERcWsqQyIiIuLWVIZERETErakMiYiIiFtTGRIRERG3ltYyZHflr/379xvPoC/tO3f8qlChgvEM+nqwL733nPvLDfbffdHI0D/cuHHDdAR5QNp3zu3SpUumI8gD0nvPuWn//UVlSERERNyaypCIiIi4NZUhERERcWsqQyIiIuLWVIZERETErakMiYiIiFtTGRIRERG3pjIkIiIibk1lSERERNyaypCIiIi4NZUhERERcWsqQyIiIuLWVIZERETErakMiYiIiFtTGRIRERG3pjIkIiIibk1lSERERNyaypCIiGSa69ev88orr2Cz2Th8+DAvvvgiJUqUoHTp0qxateq+t7NmzRosFgsHDx4E4Pvvv+e///1vBqUWV+dlOoCIiLiPyMhImjRpgqenJ9myZWPJkiUUKVKEs2fPUrZsWWrVqkVgYOBdt5GQkMD06dMpX778zcdKlSrFmTNn+O2333j88ccz+tsQF6ORIRERyTTLli2jUaNGABQtWpQiRYoAkD9/foKCgvjzzz/vuY2hQ4cycOBAfHx8bnm8QYMGrFy5Mv1Di8tTGRIRkUyRlJREdHQ0hQoV+teyr776iqSkJJ5++um7buPQoUPExMRQv379fy0rV64ce/fuTa+44kZ0mExERDJFbGzsbQ+BnTt3jjZt2rB48WI8PO78O3pqaip9+vRh0aJFt10eFBTE2bNn0yuuuBGNDImISKbw9fXFarXe8tiVK1eoV68eY8aMoUKFCnd9fkJCAkePHqVKlSoUKlSIAwcO0LBhw5snUVutVnx9fTMsv7gulSEREckUOXPmxGaz3SxESUlJNG7cmLZt29KsWbNb1h08eDDr16+/5bGAgABiY2M5ffo0p0+fpkKFCmzatIly5coBcOLECUqWLJk534y4FJUhERHJNDVr1uTzzz8HYPXq1Xz22WcsWrSI4OBggoODOXz4MPDXpfJ58+ZN07Y/+eQT6tWrl+6ZxfXpnCEREck0oaGhTJ48merVq9O6dWtat2592/WSk5N58cUX77qtPXv23PzzjRs3OHjwIFOnTk3PuOImNDIkIiKZ5rnnnqNq1arYbLa7rrdz5840bfe3337jvffew8tLv+NL2ul/jYiIZKqQkJB032aRIkVu3rNIJK00MiQiIiJuTWVIRERE3JrKkIiIiLg1lSERERFxaypDIiIi4tZUhkRERMStqQyJiIiIW1MZEhEREbemMiQiIiJuTWVIRERE3JrKkIhkCJvNxnPPPUf9+vVNRxERuSuVIRHJENOmTaN48eKmY4iI3JPKkIikuzNnzrB161Y6duxoOoqIyD2pDIlIuuvduzfjx4/Hw0MfMa7sxIkTfPvtIdMxRB6aV1pW3r9/Pzdu3MioLMZdvXqVPXv2mI4hD0D7znHs37+f5ORkEhISOHz4MBcvXrztvtm8eTNbtmwB4NKlS9p/TuTq1ats2rSLXbuOUbRoEGXK7DEdSR6Qq392VqlS5b7Ws9jt9rRsN00rO5s9e/bc9z+cOBbtO8cxePBgoqKi8PLywmq1cuXKFZo0acLSpUvv+JxixYpx/PjxTEwpD8Jms7F16w4mT15OYmJV4BFKlNjFokUzTEeTB+QGn52W+1lJY9gikq7Cw8M5c+YMp0+fZuXKlbz66qt3LULiHH788Ufatu3DyJGf4+k5lrx5O5KaauXRR/1NRxN5aGk6TCYiIu4lLi6O2bMXsWHDEby9Q8iXrzIWy1+/bHt6XiQwUGVInJ/KkIhkmCpVqrj6ELzLSklJYdOmrUyZsgqrtSZBQRF4evreso6HRywBAXkMJRRJPypDIiJyiyNHjjBmzBx++SU3OXOOJzCw4B3WvEiOHE9lajaRjKAyJCIiNy1dupJx49aSI0cf8uV78eYhsdtJTb1Ijhw5MjGdSMbQCdQiInJTxYrlKV06H1brhyQl/XnH9VJTk4FE/P11zpA4P5UhERG56cknn2Tx4sn071+ChITeXLiwCbs99V/rJSdfImfOwLuOHIk4C5UhERG5hZeXFy1aNGPNmgmUKbOf6OgOXLt2+pZ1kpIu8uijOnlaXIPKkIiI3FaBAgVo0OAVvLxiuX59AOfPL/v78BgkJcWSP39uwwlF0ofKkIiI3FZcXBwjRsziiSf82Lx5DtWr/8r58z1JSDhGcvJFHntMI0PiGlSGRETktgYPHo3NBnPmTCR37tyEhw9h+vQ2eHuPIz5+I/nyaWRIXIPKkIiI/MsXX+xn//6f6dWrBQUKFLj5eMWKL7F+/Wx6965IqVIlDSYUST+6z5CIiNwiMTGRfv3eJVcuaNnyjX8tz549O927dwTg999/z+x4IulOZUhERG7x3ntTsVphyZLJeHnpx4S4Ph0mExGRm44ePcrmzQdo1aomRYoUMR1HJFOoDImICABJSUl06zYYPz94663OpuOIZBqNf4qICABz5y7kyhVYvHg0WbNmNR1HJNNoZEhERDh16hQLF26hdu2yBAcHm44jkqlUhkRE3JzNZiMkpCdZs8I77/QzHUck0+kwmYiIm1u9eh0XL8KMGQM0C724JY0MiYi4sfPnzzNp0hLKlHmMl1+ubDqOiBEqQ07k+vXrvPLKK9hstn8tmzNnDqVKlSI4OJhKlSpx7Nixu27LarXywgsv8Oyzz1KiRAmGDx9+c1nz5s05efJkuucXEcdit9sJDQ3DYoGJE0dhsVhMRxIxQmXIiURGRtKkSRM8PT3/taxly5Z8//33HD58mIEDB9K3b9+7bitr1qx8/PHHfPfddxw+fJgdO3Zw4MABALp168b48eMz5HsQEcexa9duTpyI4+23O5MnjyZdFfelMuREli1bRqNGjW67LEeOHDf/nJiYeM/f8CwWC35+fgAkJyeTnJx88zmVK1dm165dpKSkpFNyEXE0ly9f5p13ppE/vzeNGtU3HUfEKJUhJ5GUlER0dDSFChW64zqzZs3i6aefZuDAgUyfPv2e27TZbAQHBxMUFESNGjUoX748AB4eHhQuXJjvvvsuveKLiIN55513SUmBefOm6vCYuD2VIScRGxtLYGDgXdfp0aMHv/zyC+PGjWPMmDH33KanpyeHDx/mzJkzfPXVVxw9evTmsqCgIM6ePfvQuUXE8Xz55Vfs3fsj3bq9zmOPPWY6johxKkNOwtfXF6vVevPvb7/9NsHBwbe9OVrz5s3ZsGHDfW87MDCQKlWqsGPHjpuPWa1WfH19Hy60iDica9eu0afPaAID4b//bWU6johDUBlyEjlz5sRms90sRGPHjuXw4cMcPnwY4Jarv7Zu3XpzgsXff/+datWq/Wt7f/75J5cvXwb+ukpt165dPPPMMzeXnzhxghIlSmTY9yMiZkyePIvr1+H99ydqRnqRv+md4ERq1qzJ559/TvXq1f+1bObMmezatYssWbKQM2dOFi9eDMC5c+du+4F37tw52rVrh81mIzU1lTfeeIP69f86ifKPP/7A19eXfPnyZew3JCKZ6scff2TNms9o3vxVihUrZjqOiMNQGXIioaGhTJ48+bZlaNq0abd9zoEDB+jRo8e/Hi9dujSHDh267XOWL19Oly5dHi6siDiU5ORkunQZSPbs0Lt3N9NxRByKypATee6556hatSo2m+229xq6ndDQ0DS/TmBgIG3atEnz80TEcUVGRhEfDwsWjMDHx8d0HBGHojLkZEJCQjL8Ndq3b5/hryEimefXX3/l/ffX8+qrpShXrqzpOCIORydQi4i4sNTUVEJC3iJLFhg5cpDpOCIOSSNDIiIubN26jfz5p52pU/vecqd6Efn/NDIkIuKiLly4wLhxkZQo8ShVq1YxHUfEYakMiYi4ILvdTu/ebwMwbdq7mnJD5C5UhkREXNAnn+zh6NHzhIWFEBQUZDqOiENTGRIRcTFXrlxhyJDJ5MljoUmTRqbjiDg8nUAtIuJiRowYR1ISrFo1Aw8P/c4rci96l4iIuJCDB79h9+4jdO78Gk888YTpOCJOQWXITSQlJZmOICIZzGq10rv3CAICoEOHtqbjiDgNHSZzA5cuXaJhw7b4+QVRunRhypQpTNGihSlcuDD+/v6m44lIOpk6NYKrV2HFivFkyZLFdBwRp6Ey5AZy5sxJcHAwn39elPj4J9i9+2e8vFZjs0XzyCN+lCpVmLJli1C0aGGefvppFSQRJ3T8+HFWrfqYpk0rU7x4cdNxRJyKypCb6NSpGfv3zyJXrlZYLC8Df92HxGo9y969P7N790myZFlFcvIv5M0bQOnShalSpQw1a9YwnFxE7iUlJYXOnfvj6wv9+qV9cmYRd6cy5CZKlSrFs8/m4KefviBXrkoAWCwWfH0L4OtbAHgF+L+C9Dtr104jJeVLlSERJxAVtYLLl+H994eSLVs203FEnI5OoHYTFouFrl3fIClpNXa7/a7rXb/+K0WLxjF0aK9MTCgiDyImJoaZM1dTqdIzlC//guk4Ik5JZciNlCtXjqefthMf/80d17l+/QypqbOZPHmQzh0ScXB2u51Onfrg5QVjx75tOo6I01IZciMWi4Vu3Zpx/frtR4dstutcuvQuw4a1o0iRIgYSikhabNy4hbNnbzBqVE8CAwNNxxFxWipDbqZy5UoULHiZhIQfbnncbrfzww9vkT9/HNWqVTETTkTuW2xsLO+++z5Fi+aiZs3qpuOIODWVITfj4eFB9+7NSEz84JbHY2M3UazYFX77LZFatZpy4cIFQwlF5F7sdjv9+w8jNRVmzhynGelFHpLKkBt69dWq5MnzG4mJPwNw5cpRfH0/YOnSmcyd+w6JidCgQQcOHrzzuUUiYs7evZ/z7bcx9O3bhrx585qOI+L0VIbckJeXF127NubKlQ9ISorj2rUJTJjQh6CgICpUKM+GDXPx9YWOHUcwf/7iu159JiKZKyEhgbCw8eTODW++2dR0HBGXoDLkpmrXrkmOHD9w/vwIevasQ7lyZW8uy58/Pzt2fMCrr5Zm+vQ1tGvXjatXrxpMKyL/Z8yYSdy4AQsWTMPT09N0HBGXoDLkpnx8fOjW7XXq1s1L69Zv3nb5pEljGDGiI0eP/k6dOi2Ijo42kFRE/s/hw4fZufMb2revz1NPPWU6jojLUBlyY82avUZ4+JA7nnxpsVho0qQRy5dPIDUV3nijFzt3fpTJKUUE4MaNG4SGDsXfH7p0aW86johLURmSe3rmmWfYtm0pjz0WwIAB0xk+PJzk5GTTsUTcysyZ87h6FSIiwvH29jYdR8SlqAzJfQkICGDNmsWEhNRhw4YvqFWrCX/++afpWCJu4eeff2bp0p00aFCBkiVLmo4j4nJUhuS+eXp60rt3d2bPHszVq9CgQQiHDh02HUvEpaWkpNCxYx98fGDQoN6m44i4JJUhSbOKFV9i/fo5ZM0K7dsPZdGipbr8XiSDLF++mrg4mDhxMNmzZzcdR8QlqQzJAylQoAA7d37AK6+UYNKkVXTs2JPExETTsURcytmzZ5k2bQXlyz9FxYovmY4j4rJUhuSB+fj4MHVqOMOHh3Do0Glq127O6dOnTccScQl2u51u3frj6Qnjxg03HUfEpakMyUOxWCy8/npjli0bj80Gr7/+Frt2fWw6lojT2759J6dOJTB8eHdy5cplOo6IS1MZknRRvHhxtm5dQv78fvTtO4UxYyaQkpJiOpaIU4qLi2PEiFk8+aQ/devWNh1HxOWpDEm6yZkzJ+vWRdG2bU0++OAz6tZtRmxsrOlYIk4nLGwkNhtEREzUjPQimUBlSNKVl5cX/fu/xcyZYVy6lEKDBu05cuSI6VgiTmPfvi/48stoevVqQf78+U3HEXELKkOSISpXrsS6dbPx9oa2bd9m6dKVuvxe5B4SExPp3z+cXLmgZcs3TMcRcRsqQ5JhHnvsMXbsWE3FisUYN24ZXbr04dq1a6ZjiTis996bitUK8+dPwcvLy3QcEbehMiQZytfXl5kzJ/D22+34+utfqF37TX777TfTsUQczvfff8/mzQdo3boWhQsXNh1HxK2oDEmGs1gsNG/+OlFR4SQnQ9OmPdiz51PTsUQcRlJSEt27D8HPD0JDO5mOI+J2VIYk05QsWZKtWxfzyCM+9Ow5kfDwybr8XgSYO3chV67AzJmjyZo1q+k4Im5HZUgyVa5cudi0aQWtWlVjxYpPaNiwBXFxcaZjiRgTHR3NwoVbqF27LMHBwabjiLgllSHJdF5eXoSF9Wb69P78+aeVevXacfToUdOxRDKdzWajQ4deZM0K77zTz3QcEbelMiTGVKnyCmvXziJLFmjTZjDLl6/W5ffiVlatWsvFizBu3ED8/f1NxxFxWypDYtTjjz/Ojh2reP75pwkPj6JHjwFcv37ddCyRDHf+/HkmT46iTJnHqFy5kuk4Im5NZUiMy5YtG3PnTiEsrBX79x+ndu03iImJMR1LJMPY7XZCQ8Pw8ICJE0dpyg0Rw1SGxCFYLBZat27O4sVjSUqCJk26s3fv56ZjiWSIDz/cxYkTcQwZ0pk8efKYjiPi9lSGxKGULl2azZsXkitXFkJDxzFhwnRdfi8u5fLlywwbNp38+bPSqFF903FEBJUhcUB58uRh69bVvPHGK0RFfUSTJm24dOmS6Vgi6eLtt8eSkgLz50/V4TERB6EyJA7Jy8uLt9/uz9SpfTl79ir16rXl2LFjpmOJPJQvv/yKzz//idDQNyhYsKDpOCLyN5UhcWivvlqVNWtm4OkJrVuH8cEH63T5vTila9eu0afPaAIDoU2bFqbjiMg/qAyJwytUqBA7dqzkuecKMWrUQnr1GozVajUdSyRNJkyYwbVr8P77EzUjvYiDURkSp5A9e3bmz59O//7N+eyzH6hVqxm///676VhyGzExMVStWpXixYtTokQJpk2bZjqScT/++CPr139O8+avUqxYMdNxROR/qAyJ07BYLLRr14qFC0dz4wY0btyVffu+MB1L/oeXlxeTJk3ixx9/5MCBA8yaNcutz/dKTk6mS5eB+PlB797dTMcRkdtQGRKn89xzwWzZshB/fwvdu4czdepsbDab6Vjyt3z58lGmTBkA/P39KV68uFuP4i1YsIT4eJg6dQQ+Pj6m44jIbagMiVPKkycPO3aspUmTSkRGbmfEiPFcvnzZdCz5H6dPn+bQoUOUL1/edBQjTp8+zfvvb6BatdKUK1fWdBwRuQNLWq7M2b9/v/3GjRsZGMesq1ev4ufnZzqGpNHXX3/D3Lkb8fGBgQM78vjjj5uOJMD169fp1asXrVu35uWXX/7X8s2bN7NlyxYALl26xOrVqzM7YoZKTU2lf//hWK0eTJgwkOzZs5uOlCH0uencXH3/ValS5b5u5pWmMgS49DXNe/bsoUqVKqZjyANYvnw5ERErSEyEd97pSOPGDXVDO4OSk5OpX78+tWrVom/fvvdcv1ixYhw/fjwTkmWeNWvWM2pUJFOn9uXVV6uajpNh9Lnp3Nxg/93XDwIdJhOXkD9/frZvX0GpUgUZPnw+/fq9o8vvDbHb7XTo0IHixYvfVxFyRRcuXGDcuEhKlcpH1apVTMcRkXtQGRKX4efnx6JFs+nduxkff3yE2rWbcfbsWdOx3M6+ffuIiori448/Jjg4mODgYLZt22Y6Vqax2+307DkYgClTxmiEUsQJ6M5f4lIsFgsdOrQlOLgkPXoM57XXujB9+jtUqOCeJ/CaUKlSJbe+S/gnn+zh2LELDBsWQlBQkOk4InIfNDIkLqls2TJs2rSA7NmhS5cxzJgxl9TUVNOxxMXFx8czZMhkgoI8aNKkkek4InKfVIbEZQUFBbFz51oaNCjPvHlbePPNEOLj403HEhc2cuR4kpMhMnIGHh76eBVxFnq3ikvz9vZmzJh3CA/vQXT0RerWbc2JEydMxxIXdPDgN+zefYTOnRvr9g4iTkZlSNxCvXq1WbVqChYLtGjRj40bt7j1eS2SvqxWK716jSAgAEJC2piOIyJppDIkbqNw4cJs376c4sXzMXToXMLCRpCUlGQ6lriAqVMjSEyEuXPHkyVLFtNxRCSNVIbErfj7+7NkyRx69GjMhx9+S82aTTl//rzpWOLEjh8/zqpVH/P66y9TvHhx03FE5AGoDInb8fDwoEuXEObNG87169CoUSe++upr07HECaWkpNC5c398faFv3x6m44jIA1IZErf1/PPl2LhxHtmyQefOo5gzZ4Euv5c0WbRoGZcvw5QpQ8mWLZvpOCLygFSGxK3lzZuXnTvXUqdOOWbP3kDLlp1ISEgwHUucQExMDBERa6hcuTjly79gOo6IPASVIXF73t7evPvuMMaO7cbJkxeoU6clJ0+eNB1LHJjdbqdTpz54ecHYsW+bjiMiD0llSIS/pvFo0KAuK1dOBqB5875s2bLdcCpxVBs3buHs2RuMGdOLgIAA03FE5CGpDIn8Q5EiRdi2bRmFCz/CkCGzGTJklC6/l1vExsYyduz7FCuWm+rVq5mOIyLpQGVI5H/kyJGDFSvm07VrQ7Zt+5patZpy4cIF07HEAdjtdvr3H4bdDjNmvKcZ6UVchMqQyG14eHjQvXsn5sx5h2vXoEGDDhw8+I3pWGLY3r2f8+23MfTv35a8efOajiMi6URlSOQuKlQoz4YN7+PrCx07jmDevEWaxsNNJSQkEBY2nty5oVmzJqbjiEg6UhkSuYd8+fKxc+caqlcPZvr0tbRp01WX37uh0aMncuMGREZOx9PT03QcEUlHKkMi9yFr1qxMmDCK0aM78+OPZ6lTpyXR0dGmY0kmOXz4MDt3fkv79vV58sknTccRkXSmMiRynywWC6+91oDlyydit0OzZr3YufMj07Ekg924cYPQ0KEEBECXLu1NxxGRDKAyJJJGxYoVY9u2pRQqlJMBA6YzbNi7JCcnm44lGWTmzHlcvQqzZ4fj7e1tOo6IZACVIZEHEBAQwOrVC+nYsR4bN+6nVq0m/Pnnn6ZjSTo7efIkS5fupGHDFylZsqTpOCKSQVSGRB6Qp6cnPXt2JSJiCFevQoMGIRw6dNh0LEknKSkpdOrUFx8fCAvrZTqOiGQglSGRh/TSSy+yfv0csmaF9u2HEhkZpcvvXcDy5auJi4NJk4aQPXt203FEJAOpDImkgwIFCrBz5wdUqVKSKVNW0759KImJiaZjyQM6e/Ys06at4MUXC/PSSy+ajiMiGUxlSCSd+Pj4MGXKu4wY0YEjR36jdu3mnD592nQsSSO73U7Xrv3w9ITw8KGm44hIJlAZEklHFouFpk1fY9my8dhs8Prrb/HRR7tNx5I02LZtB6dPX2XEiB7kypXLdBwRyQQqQyIZoHjx4mzbFkWBAv706zeV0aPHk5KSYjqW3ENcXBwjR87mySf9qVOnluk4IpJJVIZEMkhgYCDr1kXRrl0t1qzZS+3arxMbG2s6ltxFWNhIUlMhImKiZqQXcSMqQyIZyNPTk379Qpk5M4z4eBsNGrTnyJEjpmPJbezb9wVffhlNr14tyZ8/v+k4IpKJVIZEMkHlypVYvz4Cb29o2/ZtoqJW6PJ7B5KYmEj//uHkygUtWjQzHUdEMpnKkEgmKViwIDt3fkDlysUZP345nTv31uX3DiI8fApWK8yfPwUvLy/TcUQkk6kMiWQiHx8fpk8fx9tvt+Obb6KpU6c5v/76q+lYbu37779ny5YvadOmNoULFzYdR0QMUBkSyWQWi4XmzV8nKuo9UlKgadNQPvlkj+lYbikpKYnu3Yfg5wc9enQ0HUdEDFEZEjGkRIkSbNmymLx5s9Gr1yTCwyfr8vtMNmdOJFeuwKxZY8iaNavpOCJiiMqQiEG5cuViw4ZltGpVjRUrPqF+/TeJi4szHcstREdHs2jRVmrXLsuzzz5rOo6IGKQyJGKYl5cXYWG9mTFjABcvJlGvXjuOHj1qOpZLs9lsdOjQi6xZ4Z13+pmOIyKGqQyJOIhXXnmZdetmkyULtGkzmOXLV+vy+wyyatVaLl6E8ePD8Pf3Nx1HRAxTGRJxII899hg7dqyifPkihIdH0b17f65fv246lks5d+4ckydHUabM41SqVNF0HBFxACpDIg4mW7ZsRERMYtCg1hw4cILatd8gJibGdCyXYLfbCQ0Nw8MDJk4cqSk3RARQGRJxSBaLhVat3mTJkndJSoImTbrz2Wd7Tcdyeh9+uIuTJy8xZEhn8uTJYzqOiDgIlSERB1aqVCm2bFlE7tzevPXWeMaPn6bL7x/Q5cuXGTZsOgUL+tCoUX3TcUTEgagMiTi43Llzs2XLKpo3r8rSpbto3Lg1ly5dMh3L6QwZMoaUFHj//Sk6PCYit1AZEnECXl5eDB7cl6lT+3LuXCL16rXl2LFjpmM5jQMHvmTfvuOEhr5BwYIFTccREQejMiTiRF59tSpr1szAywtatQpj1aq1uvz+Hq5du0bfvmMIDIQ2bVqYjiMiDkhlSMTJFCpUiO3bV1K27JOMGbOInj3DsFqtpmM5rAkTZnD9OsybN0kz0ovIbakMiTih7NmzM2/eNAYMaMHevT9Sq1Yzfv/9d9OxHM6xY8dYv/5zmjevRtGiRU3HEREHpTIk4qQsFgtt27Zk8eIxJCVB48Zd2bfvC9OxHEZSUhJdu4bh5we9enU1HUdEHJjKkIiTe/bZZ9m8eSE5cnjQvXs4kyfPwmazmY5l3IIFS4iPh2nTRuLj42M6jog4MJUhEReQJ08etm9fQ5MmlVi0aAdNm7bl8uXLpmMZc/r0aebN20j16s9StmwZ03FExMGpDIm4iCxZsjB8eBiTJvXmzJkr1K3c2zieAAAgAElEQVTbhp9++sl0rEyXmppKSEhPvL1h+PCBpuOIiBNQGRJxMTVqVOODD6bj6QktWw5g3bqNbnX5/dq1G4iNtfPuu33JkSOH6Tgi4gRUhkRc0JNPPsn27SsoXfoxhg+fT79+77jF5fcXLlxg/PiFlCqVj6pVq5iOIyJOQmVIxEX5+fmxcOEs+vR5g48/PkLt2s04e/as6VgZxm6307PnYACmTBmjKTdE5L6pDIm4MIvFQkhIGyIjR2G1wmuvdWH//gOmY2WITz7Zw7FjFxg0qANBQUGm44iIE1EZEnEDZco8x6ZNC8ieHbp2HcuMGXNJTU01HSvdxMfHM2TIZIKCPGncuKHpOCLiZFSGRNxEUFAQO3eupVGjF5k3bwtvvNGe+Ph407HSxYgR40hOhsjI6Xh46GNNRNJGnxoibsTb25tRo4YwfvxbnDoVR926rTlx4oTpWA/l4MFv+Pjj7+ncuTGPP/646Tgi4oRUhkTcUO3aNVm9eioWCzRv3o8NGzY75eX3VquVXr1GEBgIISFtTMcRESelMiTipp5++mm2b1/Of/6Tj2HD3mfgwOHcuHHDdKw0mTJlNomJMGfOeLJkyWI6jog4KZUhETfm7+9PVNRcQkOb8NFHh6hV63XOnTtnOtZ9OX78OKtWfcLrr79M8eLFTccRESemMiTi5iwWC507t2f+/BFcvw6vvdaZr7762nSsu0pJSaFz5/5kzw59+/YwHUdEnJzKkIgAUK5cWTZtmk+2bNCp0ygiIuY77OX3ixYt4/JlmDJlGNmyZTMdR0ScnMqQiNz06KOPsnPnWurVe56IiI20bNmJhIQE07FuERMTQ0TEGl5+uTgvvPC86Tgi4gJUhkTkFt7e3owdO5SxY7tx8uQF6tRpycmTJ03HAv6acqNTp954ecGYMW+bjiMiLkJlSET+xWKx0KBBXVaunAxA8+Z92bJlu+FUsGHDZs6eTWLMmF4EBASYjiMiLkJlSETuqEiRImzbtowiRYIYMmQ2Q4aMIikpyUiW2NhYwsPn8cwzeahevZqRDCLimlSGROSucuTIwfLl8+jWrRHbtn1NrVpN+eOPPzI1g91up2/foaSmwowZ72lGehFJVypDInJPHh4edOvWkblzh3LtGjRs2JGDB7/JtNf/7LO9HD58hgED2vHoo49m2uuKiHtQGRKR+1a+/Ats2PA+vr7QseMI5s1blOHTeCQkJDBo0ARy54bXX2+coa8lIu5JZUhE0iRfvnzs3LmGGjWeY8aMtbRp0zVDL78fPXoiN278NSO9p6dnhr2OiLgvlSERSbOsWbMyfvxIRo3qzLFjZ6lTpyXR0dHp/jqHDx9m585vCQlpwJNPPpnu2xcRAZUhEXlAFouF115rwIoVE7HboVmzXmzf/mG6bd9qtRIaOpSAAOjc+b/ptl0Rkf+lMiQiD6VYsWJs27aUJ5/MRVjYDIYNezddLr+fMeN9rl6F2bPD8fb2ToekIiK3pzIkIg8tICCAVasi6dixHhs37qdWraZcuHDhgbd38uRJli//iEaNXqJkyZLpmFRE5N9UhkQkXXh6etKzZ1ciIoaQmAgNG3bg228PpXk7KSkpdOrUF19fGDiwZwYkFRG5lcqQiKSrl156kQ0b5uLjAyEhw4iMjErT5ffLlq0iLg4mThxC9uzZMzCpiMhfVIZEJN3lz5+fHTs+oGrVUkyZspr27XuQmJh4z+f9/vvvTJ++khdfLMxLL72YCUlFRFSGRCSD+Pj4MHnyWEaM6MCRIzHUrt2cU6dO3XF9u91O16798PKC8PChmZhURNydypCIZBiLxULTpq+xbNl4bDZo1qwnH320+7brbtu2g19/TWT48B7kypUrk5OKiDtTGRKRdLdjxw6KFStG4cKFee+99yhevDjbtkVRoIA//fpNZdSocSQnJ99c32azMXLkbJ56Kgd16tQymFxE3JHKkIikK5vNRo8ePdi+fTvHjh1jxYoVHDt2jMDAQNati+K//63N2rWfU6fO68TGxgLw55+JpKbC7NkTNCO9iGQ6lSERSVdfffUVhQsX5qmnnsLb25vmzZuzceNG4K/L7/v27cGsWYO4ciWVBg3as2jRYqxWf3r3bkX+/PkNpxcRd6QyJCLp6vfff+exxx67+feCBQvy+++/37JOpUoVWbcuguTkK3TqNAi4QIsWzTI5qYjIXyxpuf9HhQoV7JcuXcrAOGYlJyeTJUsW0zHkAWjfOY6EhAQSExPJmzcvAFeuXMFqtRIUFHRzHbvdzrlzF7l6NTuQAFymaNGiZgLLQ9F7z7m5+v47ceLETrvdXvte66WpDAFpWtnZFCtWjOPHj5uOIQ9A+85x7N+/nxEjRrBz504AwsPDARg8eDDw11QbHTv2JT4emjatzIABPQkMDMRqtRrLLA9O7z3n5gb7775OQvTK6BQi4l6ef/55Tp48yalTpyhQoAArV65k+fLlpKSksGDBEubMWU+2bLBw4Siee+4503FFRFSGRCR9eXl5MXPmTGrVqoXNZiMkJAQ/Pz9q1GhMXBzUqBHMyJGDNNWGiDgMlaF/qF+/vukI8oC07xxL3bp1qVu3LqmpqSxfvpomTULx9oaIiCG3nWYjMDDQQEpJD3rvOTftv7+oDP1DgwYNTEeQB6R953jOnTtH+/ahnD2bRIUKTzNhwkgCAgJuu+6dHhfHp/eec9P++4vKkIikK7vdzsaNWxgz5n08PWHq1L5UrVpFN1MUEYel+wzdxsSJE7FYLDfvjivOYcCAATzzzDOULl2axo0bc/nyZdOR3E5sbCxvvhnCsGHvU7hwEFu3LuTVV6vesQj937Qdp06d4r333svktPIwYmJiqFq1Ku3ataNEiRJMmzbNdCRJI5vNRqdOnXSoDJWhf4mJieGjjz7i8ccfNx1F0qhGjRocPXqUI0eOULRo0ZuXdEvGs9vtfPTRburWbc+pU7GMGdOVFSvmkydPnjs+55/TdhQqVOjmtB3iHLy8vJg0aRKLFy/mwIEDzJo1S/vPyUybNk0/6/6mMvQ/+vTpw/jx4zWk74Rq1qyJl9dfR34rVKjAmTNnDCdyD/Hx8XTs2JN+/abyyCO+bNr0Pg0b1rvne+if03ZYLJZbpu0Qx5cvXz7KlCkDgL+/P8WLF//XncbFcZ05c4atW7dSr14901EcgsrQP+zbt48CBQrw7LPPmo4iDykyMpI6deqYjuHy9u37glq1WnP48GkGD27L5s0ryZcv3309936m7RDncPr0aQ4dOkT58uVNR5H71Lt3b8aPH4+Hh2oAuOEJ1NWrV+f8+fP/enzs2LEsXbqUAwcOGEgl9+tO+6958+ZUqVIF+Gtfenl50apVq0xO5z6uXr3KsGHh7Np1hNy54YMPZt9SbO7H7e5+rxFZ53P9+nWaNm3K1KlTyZEjh+k4ch+2bNlCUFAQZcuWZe/evabjOAS3K0O7du267ePff/8958+fvzkqdObMGcqUKcNXX311c44lMe9O+2/Pnj0ALF68mC1btrB79279YM0g33zzLW+9NRyrFd56qynt27e+eXgyLQoWLEhMTMzNv585c0az1juZ5ORkhg0bRqtWrWjSpInpOHKf9u3bx6ZNm9i2bdvNuQNbt27N0qVLTUczRnOT/cOePXtuji4UKlSIgwcP3vUEUHEce/bswWq10rdvXz799FMeeeQR05FcjtVqJTx8Chs2fEFgICxYMIXChQs/8PZSUlIoWrQou3fvplatWvj6+rJ8+XJKlCiRjqklo9jtdtq1a8e1a9dYs2aN6TjygKZOncquXbvYsmWL6SgZ5b5+K9bBQnEZoaGhJCQkUKNGDYKDg+natavpSC7jhx9+oHr1Zmzc+AXt2tXmo4/WPlQRglun7Th9+jRvvPGGipAT2bdvH1FRURw6dIjg4GCCg4PZtm2b6VgiD0QjQ//wz5EhcS7adxkjKSmJ6dPnsnTph/j7w9y54/jPf/6T7q/jBjNnuyy995ybG+w/zVovIg/u5MmTdOzYl/h4aNy4EmFhvfDx8TEdS0Qk3akMicgtUlJSWLBgCXPnrsfXFyIjR1GmzHOmY4mIZBiVIRG56bfffqNdux5cvAg1awYzcuQgsmfPbjqWiEiGUhkSEVJTU1mx4gMmT16KtzfMmTOEl1560XQsEZFMoTIk4ubOnTtHhw49OXPGSvnyTzFx4igCAgJMxxIRyTQqQyJuym63s3HjFsaOfR8PD5gypc9dZ5gXEXFVKkMibig2Npbu3Qfw00+xFC/+CLNmjdcNRkXEbakMibgRu93O7t0fM2TIVOx2GD26y33NMC8i4spUhkTcRHx8PP36DeOrr6IpWNCHBQum3/cM8yIirkxlSMQN7Nv3Bf36hZOcDIMGtaF589fx8NBsPCIioDIk4tKuXr3KsGHh7Np1hNy5YfXqWTz++OOmY4mIOBSVIREX9c033/LWW8OxWiE0tAkhIW3w8tJbXkTkf+mTUcTFWK1WwsOnsGHDFwQGwpIlUx56hnkREVemMiTiQn744Qe6dBnE1avQtm0t3nqrM97e3qZjiYg4NJUhEReQlJTEjBnvExW1E39/WLbsPUqUKGE6loiIU1AZEnFyP//8Mx069OHyZWjcuCKDBvXGx8fHdCwREaehMiTipFJSUoiMjGLOnHX4+EBk5EjKli1jOpaIiNNRGRJxQr/99hvt2vUgLg6qV3+WkSMH4efnZzqWiIhTUhkScSKpqamsXLmGSZOi8PaG2bMHU7HiS6ZjiYg4NZUhESdx7tw5OnToyZkzVsqXf4qJE0cREBBgOpaIiNNTGRJxcHa7nU2btjJmzFwsFpg8uTfVqr2qyVVFRNKJypCIA4uNjaVHj4H8+OOfPPNMHmbPnkCePHlMxxIRcSkqQyIOyG63s3v3xwwZMhW7HUaN6kyjRvU1GiQikgFUhkQcTHx8PP37D+PLL6MpWNCHBQumky9fPtOxRERclsqQiAPZt+8L+vULJzkZwsJa06JFMzw8PEzHEhFxaSpDIg4gMTGRoUPfZffuI+TKBatXz+Lxxx83HUtExC2oDIkY9u23hwgNHYbVCj16NCEkpA1eXnpriohkFn3iihhitVoZN24a69d/TkAALF48mSJFipiOJSLidlSGRAw4duwYnTuHcfUqtG5dk549u+Dt7W06loiIW1IZEslESUlJzJjxPlFRO/Hzg6VLwylZsqTpWCIibk1lSCST/Pzzz3To0IfLl6Fx44oMGtQbHx8f07FERNyeypBIBktJSWHhwqVERKzFxwciI0dStmwZ07FERORvKkMiGSgmJoa2bbtz8SJUr16aUaMG4+fnZzqWiIj8g8qQSAZITU1l5co1TJoURZYsEBExmIoVXzIdS0REbkNlSCSdnTt3jo4dexETc53nny/EpEmjCQwMNB1LRETuQGVIJJ3Y7XY2bdrKmDFzsVhg8uTeVKv2qiZXFRFxcCpDIung4sWL9OgxkGPHLvDMM3mYPXsCefLkMR1LRETug8qQyEOw2+18/PEnDBkyhdRUGDWqM40a1ddokIiIE1EZEnlA8fHxDBgwnAMHfiF/fm8WLpxJvnz5TMcSEZE0UhkSeQBffLGfvn3fJTkZwsJa06JFMzw8PEzHEhGRB6AyJJIGiYmJDB/+Hh99dJhcuWDVqpk88cQTpmOJiMhDUBkSuU+HDh2mR4+hWK3QvXtjOnRoi5eX3kIiIs5On+Qi92C1Whk3bhrr139OQAAsXjyZIkWKmI4lIiLpRGVI5C6OHTtGly5hJCRAq1Y16NWrK97e3qZjiYhIOlIZErmNpKQkZs6cx5IlO/Dzg6VLwylZsqTpWCIikgFUhkT+xy+//EJISG8uX4bXXnuJQYN64+vrazqWiIhkEJUhkb+lpKSwaNEyZs9eg48PLFgwgnLlypqOJSIiGUxlSASIiYmhbdvuXLwI1aqVYvToIfj5+ZmOJSIimUBlSNxaamoqq1atZeLEJWTJAhERg6lY8SXTsUREJBOpDInbOn/+PB069CIm5hrPP1+ISZNGExgYaDqWiIhkMpUhcTt2u53Nm7cxevQcLBaYPLk31aq9qslVRUTclMqQuJWLFy8SGhrGDz/8QbFiuYmImEiePHlMxxIREYNUhsQt2O12PvlkD4MHTyY1FUaO7MRrrzXQaJCIiKgMieuLj49n4MAR7N//M/nze7Nw4Uzy5ctnOpaIiDgIlSFxafv3H6Bv37EkJcHAga1o2fINPDw8TMcSEREHojIkLikxMZHhw9/jo48OkysXrFw5kyeeeMJ0LBERcUAqQ+JyDh8+TI8eQ7l2Dbp1e42OHdvh5aX/6iIicnv6CSEuw2q1Mn78dNat20tAAKxePZkiRYqYjiUiIg5OZUhcwq+//srQoZNISIBWrWrQq1dXvL29TccSEREnoDIkTi0pKYnZs+czc+YH5M3rx9Kl4ZQsWdJ0LBERcSIqQ+K0fvnlF0JCenP5Mrz0UhHmzp2Gr6+v6VgiIuJkVIbE6aSkpLBo0TJmz16Djw8sWDCCq1cTVIREROSB6IYr4lRiYmKoUaMx06ev4eWXS7Jz53LKlStrOpaIiDgxjQyJU7Db7axatZYJExaTJQvMnj2ISpUqmo4lIiIuQGVIHN758+fp1Kk3v/6ayPPPF2LSpNEEBgaajiUiIi5CZUgclt1uZ8uW7YwaFYHFAhMn9qJGjWqaXFVERNKVypA4pIsXL/LWW4M4evQ8RYvmIiJiIo888ojpWCIi4oJ0ArU4FLvdzscff0Lduv/l5MnzjBzZiQ8+WKQi5CQGDBjAM888Q+nSpWncuDGXL182HUlE5J5UhsRhxMfH061bP3r3nkxgoDcbN86lceOGOizmRGrUqMHRo0c5cuQIRYsWJTw83HQkEZF7UhkSh7B//wFq127N11+fZODAVmzf/gH58+c3HUvSqGbNmjcnxa1QoQJnzpwxnEhE5N50zpAYlZiYyIgR4/jww0PkzAkrVsygUKFCpmNJOoiMjOTNN980HUNE5J4sdrv9vlfev3+//caNGxkYx6yrV6/i5+dnOobb+Pnnn5k6dQk3bnhQv/4L1K9fC09PzwfalvZd5unXrx9xcXH/erxDhw5UqlQJgKVLl3L8+HFGjRp1x8OcmzdvZsuWLQBcunSJ1atXZ1xoyTB67zk3V99/VapUua/zLNJUhoA0rexs9uzZQ5UqVUzHcHlWq5WJE2ewZs1n5MgB8+dPomjRog+1Te07x7F48WLmzJnD7t27yZYt2309p1ixYhw/fjyDk0lG0HvPubnB/ruvMqTDZJKpfvzxRzp3HkhCArRsWZ3evbvh7e1tOpakkx07djBu3Dg+/fTT+y5CIiKmqQxJpkhKSmL27PksXryd7Nlh6dJwSpYsaTqWpLPQ0FBu3LhBjRo1gL9Oop4zZ47hVCIid6cyJBkuOjqa9u17cfkyNGxYgSFD+mqGeRf1888/m44gIpJmKkOSYWw2G4sWLWPWrA/w8YEFC0ZohnkREXE4KkOSIWJiYmjbtjsXL0LVqiUZM2YI/v7+pmOJiIj8i8qQpCu73c6qVWuZMGExWbLArFlhVK5cyXQsERGRO1IZknTzxx9/0LFjL379NZGyZZ9gypQxBAYGmo4lIiJyVypD8tDsdjtbtmxn1KgILBaYMKEnNWtW15xiIiLiFFSG5KHExcXx1luD+P77cxQtmouIiImaYV5ERJyKypA8ELvdzief7GHw4MnYbDBiREfNMC8iIk5JZUjSLD4+nrCwkXzxxUny5vVi0aJZmmFeRESclsqQpMmBA1/Sp88YkpJgwICWtGr1Jh4eHqZjiYiIPDCVIbkviYmJjBw5np07vyVnTlixYgaFChUyHUtEROShqQzJPX333Xd07/4O165B166N6NTpv3h56b+OiIi4Bv1EkzuyWq1MnDiDNWs+I0cOWLVqEkWLFjUdS0REJF2pDMlt/fjjj3TuPJCEBGjRohp9+nTH29vbdCwREZF0pzIkt0hOTmb27PksXLgNPz+IinqXUqVKmY4lIiKSYVSG5Kbo6Gjat+/F5cvQsGEFhgzpi6+vr+lYIiIiGUplSLDZbCxevJyZM1fj4wPz5w/n+efLmY4lIiKSKVSG3NyZM2do06YbFy9ClSolGDv2bfz9/U3HEhERyTQqQ27KbrezevVaxo9fTJYsMGtWGJUrVzIdS0REJNOpDLmhP/74g06denP69FXKlHmMKVPGkjNnTtOxREREjFAZciN2u52tW3cwcuRsLBaYMKEnNWtW1+SqIiLi1lSG3ERcXBxvvTWI778/R5EiOZkzZxKPPPKI6VgiIiLGqQy5OLvdzp49nzJo0CRsNhgxoiONGzfUaJCIiMjfVIZc2JUrVwgLG8m+fSfIm9eLhQtnUqBAAdOxREREHIrKkIs6cOBL+vQZQ1ISDBjQklat3sTDw8N0LBEREYejMuRiEhMTGTVqAjt2fEPOnLBixQwKFSpkOpaIiIjDUhlyId999x3du7/DtWvQtWsjOnX6L15e2sUiIiJ3o5+ULsBqtTJx4gzWrPmMHDlg1apJFC1a1HQsERERp6Ay5OR++uknOnUaQEICtGhRjT59uuPt7W06loiIiNNQGXJSycnJREQsYOHCrWTPDlFR71KqVCnTsURERJyOypATio6Opn37Xly+DA0alOftt/vh6+trOpaIiIhTUhlyIjabjSVLljNjxmqyZoX584fz/PPlTMcSERFxaipDTuLMmTO0adONixehSpX/MHbsO/j7+5uOJSIi4vRUhhyc3W5nzZr1jBu3EC8vmDUrjMqVK5mOJSIi4jJUhhzYH3/8QefOfTh1KoEyZR5jypSx5MyZ03QsERERl6Iy5IDsdjtbt+5g5MjZWCwwYUJPatasrslVRUREMoDKkIOJi4ujZ8/BHDlylsKFA5kzZxJBQUGmY4mIiLgslSEHYbfb+fTTzwgLm4jNBiNGdKRx44YaDRIREclgKkMO4MqVKwwaNIrPPz9OUJAnixfPokCBAqZjiYiIuAWVIcMOHPiSPn3GkJQE/fo1p3Xr5nh6epqOJSIi4jZUhgxJTExk1KgJ7NjxDTlzwooVMyhUqJDpWCIiIm5HZciA7777ju7d3+HaNejSpSGdO7fHy0u7QkRExAT9BM5EN27cYOLEGXzwwafkyAErV06kWLFipmOJiIi4NZWhTPLTTz/RqdMAEhKgefNX6dOnO1mzZjUdS0RExO2pDGWw5ORkIiIWsHDhVrJnhyVLxlK6dGnTsURERORvKkMZKDo6mvbte3H5MtSv/wJvv92PbNmymY4lIiIi/6AylAFsNhtLlixnxozVZM0K8+YN44UXnjcdS0RERG5DZSidnTlzhrZtuxEbC6+8Upx33x2Kv7+/6VgiIiJyBypD95CSkoLdbidLlix3Xc9ut7NmzXrGjVuIpyfMnDmQl1+unEkpRURE5EGpDN3DhAmzOHv2T6ZPH33HecIuXLhAp069OXUqgTJlHmPKlLHkzJkzk5OKiIjIg/AwHcCRRUdHs27dQfbtu8amTVv/tdxut7Nt2w7q1evAuXMJjBsXysKFs1SEREREnIhGhu7AbrczadICPDxaEBDwLOPGDaBcueduTqAaFxdHz56DOXLkLE8/HcDcuZMJCgoynFpERETSSiNDd/D11wf58stLPPJILXx9C2CztWD48Cmkpqby6aefUadOO3766SzDh3dg3booFSEREREnpZGh20hJSWH8+Eh8fUOwWP6aQf6RR+pz6NABGjduyalTiQQFebB48eybI0UiIiLinDQydBvbt3/IqVO5CQgod/Mxi8VCnjx9OHo0kXbtqrNz5zoVIRERERegMvQ/EhMTmTp1BQEBIf+6eszbOw9BQT359ttfsNvthhKKiIhIelIZ+h/Ll68hPr4c2bM/ddvluXNX56ef8hAVtTKTk4mIiEhGUBn6h0uXLhEZuZPcuVvfcZ2/DpeFEhGxgxMnTmRiOhEREckIKkP/sGnTLlJS6uHtnfuu63l758JiacOQIZNJSkrKpHQiIiKSEXQ12d9OnDjB/v3neOqppgDY7akkJV3kxo1z3LhxnuTk82TJcg44j812nqxZU8mWLR9xcXHkzZvXbHgRERF5YCpDf5s8eSFXrwYSF/cecJ6UlAvkypWDp5/Oy5NP5qVw4XwUKPAijz76KPny5cPf3/+O03OIiIiI81AZ+luNGi/w2GPHqFGjBvny5ePRRx/F29vbdCwRERHJYCpDf2vatDF79uTkhRdeMB1FREREMpFOoBYRERG3pjIkIiIibk1lSERERNyaypCIiIi4NZUhERERcWsqQyIiIuLWnLIMXb9+nVdeeQWbzXbHddasWYPFYuHgwYNp2vbGjRspXbo0wcHBlCtXjs8///y261WpUoVixYoRHBxMcHAwFy5cAGDmzJksXLgwTa8pIiIi5jjlfYYiIyNp0qQJnp6et12ekJDA9OnTKV++fJq3Xa1aNRo2bIjFYuHIkSO88cYb/PTTT7ddd9myZZQrV+6Wx0JCQqhYsSLt27dP82uLiIhI5nPKkaFly5bRqFGjOy4fOnQoAwcOxMfHJ83b9vPzuznNRmJiYpqn3MiWLRuFChXiq6++SvNri4iISOZzujKUlJREdHQ0hQoVuu3yQ4cOERMTQ/369R/4NdavX88zzzxDvXr1iIyMvON67du3Jzg4mNGjR2O3228+Xq5cOfbu3fvAry8iIiKZx+nKUGxsLIGBgbddlpqaSp8+fZg0adJDvUbjxo356aef2LBhA0OHDr3tOsuWLeP7779n79697N27l6ioqJvLgoKCOHv27ENlEBGR/9feHbs20QZwHP8FXKqVInYQA9LNwYoVHJwkUrXv5Cyu4pQu4tDBUVxU3Bz8AxwUXGqHF1y6iEWqBnRRFAIqggQddGjVkncQwtvX1rZqm+Z9Pp+pl8tdnnIEvtzdc4GN0XMx1NfXl7m5uc7yhdK2hqoAAAOsSURBVAsXOjcxf/r0Kc+ePUutVsvQ0FBmZmZy8uTJn95Eff369c72rVZr0bojR47k1atXP7yeJNVqNUmyffv2nD59etFlsbm5ufT19f3uvwoAbICei6EdO3ZkYWGhE0SXLl1Ko9FIo9HIwMBAWq1Wms1mms1mDh8+nMnJyRw6dChv377N6OjoD/ur1+ud7QcHB/Py5cvOJa/Hjx/ny5cv2blz56Jtvn371gmkr1+/ZmpqKsPDw531L168WLQMAGxePRdDSXLixIllp7wv5927d9myZeXJc3fu3Mnw8HBGRkZSr9dz69atzk3UIyMjSZL5+fmMjY11puBXq9WcPXu2s4/79+/n2LFjaxofANAdPTm1fnx8PNeuXVsxOKanpzt/z8zMpF6vr7jviYmJTExMLLmu0WgkSbZt25ZHjx4t+Z4nT55k3759GRwcXPGzAIDu68kYOnjwYI4ePZqFhYVlnzX0X+Pj4+s8qu9arVYuXry4IZ8FAPy+nrxMlnx/uOFqQ2gjHT9+fNlp/1CKq1evplKpLDn5AGCz6dkYAjan169f5969e9mzZ0+3hwKwKmII+KPOnTuXy5cvr/np7QDdIoaAP2ZycjLVajUHDhzo9lAAVq3y75+RWMmDBw/a8/Pz6zic7vr8+XP6+/u7PQx+gWO3cc6fP58PHz788PqZM2dy8+bNXLlyJf39/Tl16lRu3LiRgYGBJfdz9+7dTE1NJUk+fvyY27dvr+u4WR++e73t/378arXaqk5RrymGkqzpzb1meno6tVqt28PgFzh23ff06dOMjo5m69atSZI3b95k9+7defjwYXbt2vXTbffu3Zvnz59vxDD5w3z3elsBx29VMdSTU+uBzWf//v15//59Z3loaCizs7OeuQVseu4ZAgCK5swQsC6azWa3hwCwKs4MAQBFE0MAQNHEEABQNDEEABRNDAEARRNDAEDRxBAAUDQxBAAUTQwBAEUTQwBA0cQQAFA0MQQAFE0MAQBFE0MAQNHEEABQNDEEABRNDAEARRNDAEDRxBAAUDQxBAAUTQwBAEUTQwBA0cQQAFA0MQQAFE0MAQBFE0MAQNHEEABQNDEEABRNDAEARRNDAEDRxBAAUDQxBAAUTQwBAEUTQwBA0cQQAFA0MQQAFE0MAQBFE0MAQNEq7Xa722MAClepVP5ut9t/dXscQJnEEABQNJfJAICiiSEAoGhiCAAomhgCAIomhgCAookhAKBoYggAKJoYAgCKJoYAgKL9A6cpuAuJ7y5sAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 8))\n", + "# Set the axes through the origin\n", + "for spine in ['left', 'bottom']:\n", + " ax.spines[spine].set_position('zero')\n", + "for spine in ['right', 'top']:\n", + " ax.spines[spine].set_color('none')\n", + "\n", + "ax.set(xlim=(-5, 5), ylim=(-5, 5))\n", + "ax.grid()\n", + "vecs = ((2, 4), (-3, 3), (-4, -3.5))\n", + "for v in vecs:\n", + " ax.annotate('', xy=v, xytext=(0, 0),\n", + " arrowprops=dict(facecolor='blue',\n", + " shrink=0,\n", + " alpha=0.7,\n", + " width=0.5))\n", + " ax.text(1.1 * v[0], 1.1 * v[1], str(v))\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Vector Operations\n", + "\n", + "\n", + "\n", + "The two most common operators for vectors are addition and scalar multiplication, which we now describe\n", + "\n", + "As a matter of definition, when we add two vectors, we add them element by element\n", + "\n", + "$$\n", + "x + y =\n", + "\\left[\n", + "\\begin{array}{c}\n", + " x_1 \\\\\n", + " x_2 \\\\\n", + " \\vdots \\\\\n", + " x_n\n", + "\\end{array}\n", + "\\right] +\n", + "\\left[\n", + "\\begin{array}{c}\n", + " y_1 \\\\\n", + " y_2 \\\\\n", + " \\vdots \\\\\n", + " y_n\n", + "\\end{array}\n", + "\\right] :=\n", + "\\left[\n", + "\\begin{array}{c}\n", + " x_1 + y_1 \\\\\n", + " x_2 + y_2 \\\\\n", + " \\vdots \\\\\n", + " x_n + y_n\n", + "\\end{array}\n", + "\\right]\n", + "$$\n", + "\n", + "Scalar multiplication is an operation that takes a number $ \\gamma $ and a\n", + "vector $ x $ and produces\n", + "\n", + "$$\n", + "\\gamma x :=\n", + "\\left[\n", + "\\begin{array}{c}\n", + " \\gamma x_1 \\\\\n", + " \\gamma x_2 \\\\\n", + " \\vdots \\\\\n", + " \\gamma x_n\n", + "\\end{array}\n", + "\\right]\n", + "$$\n", + "\n", + "Scalar multiplication is illustrated in the next figure" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "hide-output": false, + "html-class": "collapse" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHICAYAAABNpu4dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmczfXix/H3mDGYTWM3pkHWsS9jTSFbJEtERekWsrRo0cJFZrOXNVKRH6JoISayC1kGWaIk68zYhmFmjNnO+f7+uF2PupHBzPmec76v5+PR43Gb+U7zvncuXp3v+ZzjYRiGAAAArCqf2QMAAADMRAwBAABLI4YAAIClEUMAAMDSiCEAAGBpxBAAALA0YggAAFgaMQQAACyNGAIAAJbmdZvX83LVAHLdww8/rFWrVpk9A4D78cjJRTwyBMB0iYmJZk8AYGHEEAAAsDRiCAAAWBoxBAAALI0YAgAAlkYMAQAASyOGAACApRFDAADA0oghAABgacQQAACwNGIIAABYGjEEAAAsjRgCAACWRgwBAABLI4YAAIClEUMAAMDSiCEAAGBpxBAAALA0YggAAFgaMQQAACyNGAIAAJZGDAEAAEsjhgAAgKURQwAAwNKIIQAAYGnEEAAAsDRiCAAAWBoxBAAALI0YAgAAlkYMAQAASyOGAACApRFDAADA0oghAABgacQQAACwNGIIAABYGjEEAAAsjRgCAACWRgwBAABLI4YAAIClEUMA8oTNZlPdunXVsWNHs6cAwD8ihgDkiSlTpig0NNTsGQBMtHTpUnXr1k1ly5ZVoUKFVKVKFb3zzjtKSUkxe9pfEEMAcl1cXJxWrlypvn37mj0FgIkmTpwoT09PRUdHa9WqVRo4cKBmzpypNm3ayG63mz3vOi+zBwBwP0OGDNH48eOd7t/+AKszDENXrlxRQkKCzsbHq3a9eipatGiefb9vv/1WxYsXv/73zZs3V5EiRdSnTx9t3LhRDz30UJ5979tBDAHIVStWrFCJEiVUv359bdy48abXzZ49W7Nnz5YkXbhwwUHrAOswDEPJyclKSEhQwunTOvPLL0r47Td5pqaquN2uY5mZql6rVp5u+HMI/VeDBg0kSfHx8dc/dvToUYWGhmrYsGEaPXr09Y8PHDhQCxYs0IYNGxQWFpZnO4khALlq69atWr58uWJiYpSenq7k5GT17t1bCxYs+Mt1/fv3V//+/SUpT3+TA6zgv+Fz5swZJZw+rYTDh3Xm99/lkZysIA8PBRmGGvj6KsjfX/5Fi2pXQoLy33+/SpYs6fCtmzZtkqS/PKewYsWK6tu3r95//3299NJLKlasmMLDwzVnzhytXLkyz3+P8DAM43auv62LAVjbxo0bNXHiRK1YseIfrwsLC1NsbKyDVgHu59uvvtKBr79W2fz5FWQYCvL1VWl/f/l7e8vDw+Mv19rsdk07dUrdIyMVHBzs0J3x8fGqW7euateurTVr1vzlc2fPnlWFChU0aNAgVa1aVf3799eiRYvUo0ePu/mWHre+hEeGAABweQ2aNtXhVavUpnBhlfD1/cdrD5w/r8B69RweQqmpqercubO8vLw0d+7cv32+VKlSGjJkiCZNmqTs7GxNnTr1bkMoxzhNBiDPtGjR4paPCgG4e6VKlVLbAQP0+dmzysjOvul1dsPQlmvX9ICDX/8rPT1dnTp10rFjx7R69eqbhlilSpWUkZGhJk2aaPDgwQ7bRwwBAOAG6tSrp/JduuibU6d0s6fA/JKYqALVqql8+fIO25WVlaVu3bpp586diomJUc2aNW943fr16/XCCy+oSZMm2rp1q/bt2+ewjcQQAABu4uHOnZVco4a2JyT87XOGYeiH1FQ90Lnz355HlFfsdrt69eqldevWadmyZWrcuPENr9uzZ4+6dOmivn37auPGjQoJCdGwYcMcslEihgAAcBsXLlxQ/KlTWp2UpONJSX/53O9JSbLdd5+qVKnisD2DBw/WkiVL9MYbb8jX11fbt2+//ldcXJyk/xyrb9++vdq2batp06bJ29tbo0aNUkxMjDZv3uyQnZwmA2A6TpMBd2/3rl369oMPJB8ftevVS9s++kj9SpVSQIECkqS5x4+r/muvqVbt2g7bVK5cOZ08efKGnxs1apQGDBigpk2bKiQkRKtXr1aBP7babDbVqFFDgYGB2rZt291M4DQZAADuLjs7W0sXLNAva9YooEoVvfD66/L19VV2RoaWzJ2rZ8uVU1xyspKDglTjJs/XySsnTpy45TXHjh3728c8PT11+PDhPFh0Y8QQAAAu6vLly5ocHi6dP69GPXuqXceOypfvP8+AadaiheJ+/12rt25Vkt2uZr17X/8c/ooYAgDABR397TctmDBBMgw9MXy4qv7pFZ0lycPDQ11799bskyeVlZamnnXqmLTU+RFDAAC4EMMwtG71am1ZuFAqWlQvjRhx0zdbLViwoHoNGaKU5GR5efFH/s3wvwwAAC7i2rVr+mTqVCXu26fyDz6oJ597Tt7e3v/4NUWLFs3Td6Z3B8QQAAAu4OzZs5oVGSmlpurhwYPVqGlTh71ekLsjhgAAcHJ7d+/WsunTpUKF9HxEhO69916zJ7kVYggAACeVnZ2trxYt0qFVq+RbsaIGDh0qPz8/s2e5HWIIAAAndOXKFU0OD5dx7pzCundXh86dORqfR4ghAACczLHff9f/jR8v2Wzq8c47qla9utmT3BoxBACAkzAMQxvXrtWm+fOlwEC9OGKEihUrZvYst0cMAQDgBNLT0zV3xgyd271bIfffr979+t3y2DxyBzEEAIDJzp07p5mRkVJystoMGKCmDzzAsXkHIoYAADDRvr179fW0aVKBAnouIkIhISFmT7IcYggAABPYbDZ988UXOrBihQqWL6/Bb70lf39/s2dZEjEEAICDJScna2pUlLLj41W3Sxd1fOwxeXp6mj3LsoghAAAc6Pjx45o3bpyUlaXub72lGjVrmj3J8oghAAAcwDAMbd6wQRs+/VQKDNTgiAgVL17c7FkQMQQAQJ7LyMjQvJkzlbBzp4KbNNHT/furQIECZs/CH4ghAADy0Pnz5/VBZKR05Ypa9e+vZs2bc2zeyRBDAADkkQP79+vLKVOk/Pn17OjRKleunNmTcAPEEAAAucxms+nbpUv10/Ll8g4J0UvDhnFs3okRQwAA5KKUlBRNi45W5qlTqv3oo+r0+OMcm3dyxBAAALnk5MmTmjt2rJSZqcfefFO1atc2exJygBgCAOAuGYahLZs2ad3cuVLhwho0erRKlChh9izkEDEEAMBdyMjI0PzZsxX3448q3aCBnh00iGPzLoYYAgDgDl24cEEzIiOlpCS17NtXD7ZsybF5F0QMAQBwB34+eFBL3n9fyp9ffUaPVvny5c2ehDtEDAEAcBvsdrtWfPWV9nzzjTxLl9YrI0YoICDA7Fm4C8QQAAA5lJqaqhljx+ra8eOq0aGDuj7xBMfm3QAxBABADpw6dUpzxoyRMjLU9Y03VLtuXbMnIZcQQwAA/APDMLTthx+05pNPpIAADXz3XZUsWdLsWchFxBAAADeRmZmphR9/rJNbtqhEvXp67sUXVbBgQbNnIZcRQwAA3MDFixc1LTxcSkrSg88+q5Zt2nBs3k0RQwAA/I/Dhw7p8/fekzw99fTIkapQsaLZk5CHiCEAAP5gt9v13fLl2rV0qVSihF4dNUqFCxc2exbyGDEEAICkq1evauaECUr97TdVe/hhPfbkk/Ly4o9JK+CnDACwvLi4OH0cHS2lp6vTq6+qXliY2ZPgQMQQAMCyDMPQjm3btOqjjyQ/Pw2IjlapUqXMngUHI4YAAJaUlZWlRXPm6NimTSpWu7aef/llFSpUyOxZMAExBACwnEuXLmlqeLh08aKaPfOMWrVrx7F5CyOGAACW8usvv2jRpEmSh4d6jxypipUqmT0JJiOGAACWYLfbtXrFCu344gupRAkNGTlS99xzj9mz4ASIIQCA20tLS9OsiROV/OuvqtK6tR5/+mmOzeM6/p8AAHBr8fHx+ig6WkpLU8dXXlFYw4ZmT4KTIYYAAG7JMAzt2rFDMbNmSX5+6h8VpaCgILNnwQkRQwAAt5OVlaXP583T0Q0bFFi9uvoNGSIfHx+zZ8FJEUMAALeSlJSkKeHhUmKimj71lFq3b698+fKZPQtOjBgCALiNI7/+qs8mTpQkPfXvf6tylSomL4IrIIYAAC7PbrdrTUyMfvz8c6lYMb0ycqQCAwPNngUXQQwBAFxaWlqaPpo8WUk//6yKLVuqZ58+yp8/v9mz4EKIIQCAy0pISNDs6GgpNVUdXnpJDRo14m01cNuIIQCAS9q9a5e+/eADycdH/aKiVKZMGbMnwUURQwAAl5Kdna0l8+fr17VrFVC1qga8/jrH5nFXiCEAgMu4fPmyJoeHS+fPq1HPnmrXsSPH5nHXiCEAgEs4+ttvWjBhgmQYemL4cFUNDTV7EtwEMQQAcGqGYWjd6tXasnChVLSoXh45UkWKFDF7FtwIMQQAcFrXrl3TJ1OnKnHfPpV/8EE99fzzHJtHriOGAABO6cyZM/owKkpKTdXDgwerUdOmHJtHniCGAABOZ+/u3Vo2Y4ZUsKD6RkYqODjY7ElwY8QQAMBpZGdn66tFi3Ro1Sr5VaqkgUOHytfX1+xZcHPEEADAKVy5ckXvjx4tnT+vBo8/rvadOnFsHg5BDAEATPf70aOaP2GCZLOp57BhCq1WzexJsBBiCABgGsMwtGHNGm1esEAKDNRLI0eqaNGiZs+CxRBDAABTpKena8706Tq/Z4/KNmumXn37ytvb2+xZsCBiCADgcOfOndPMyEgpOVltBw5Uk2bNODYP0xBDAACH2rd3r76eNk0qUEDPRUQoJCTE7EmwOGIIAOAQNptNXy9erIMxMSpUvrwGv/22/Pz8zJ4FEEMAgLyXnJysKRERsp05o3pdu+qRrl3l6elp9ixAEjEEAMhjx48f17xx46SsLD3+9tuqXqOG2ZOAvyCGAAB5wjAMbd6wQRs+/VQKDNTgiAgVL17c7FnA3xBDAIBcl5GRoU8/+EBndu1ScJMmerp/fxUoUMDsWcANEUMAgFx1/vx5fRAZKV25olb9+6tZ8+Ycm4dTI4YAALnmwP79+nLKFMnbW/8KD1fZsmXNngTcEu+AByBXnT59Wi1btlRoaKiqV6+uKVOmmD0JDvDfY/Nfjhsn7xIl9Pr48YQQXAaPDAHIVV5eXpo0aZLq1aunlJQU1a9fX23atFE13njTbaWkpGhadLQyT51SnU6d9Gj37hybh0shhgDkqtKlS6t06dKSJH9/f4WGhio+Pp4YclMnTpzQp2PHSllZ6vbWW6pZq5bZk4DbRgwByDMnTpzQ3r171ahRI7OnIBclJSUpNjZWSxZ/odRDP6tygzANCg9XiRIlzJ4G3BGeMwQgT6Smpqpbt26aPHmyAgIC/vb52bNnKywsTGFhYbpw4YIJC5ETly9f1rp16zRu3Hi1b99DJUtWUMmSIer56EBtmrNQFzzz650JE/I0hI4ePar8+fNr1KhRf/n4wIED5e/vr9jY2Dz73rAGD8Mwbuf627oYgDVlZWWpY8eOateunV577bVbXh8WFsYfaE7g8uXL2rNnj2Jjd2vjxljt2bNbly6dU6FCdXTtWn1lZYVJuk/3aLHu0TmdzR+j344dVnBwcJ5vGzhwoBYuXKhjx46pWLFiCg8PV1RUlFauXKnWrVvn+feHy8rRazoQQwBylWEY6tOnj4oUKaLJkyfn6GuIIfPt3LlTjRo1kr9/I2VkNFJmZpik+pKqSPrvk6EPqozeV7by60I+bz355DUtWPCRQ/adPXtWFSpU0KBBg1S1alX1799fixYtUo8ePRzy/eGyiCEAjrdlyxY98MADqlmzpvLl+8+d+OjoaHXo0OGmX0MMmc9ms6l58w7aubO2srLG/+9n5aWvVFbLdE5llKqXVbBgHe3fv02VKlVy2Mbhw4dr0qRJys7O1pQpUzR48GCHfW+4rBzFEE+gBpCrmjVrptv8lyw4AU9PTy1b9plCQ+vrwoVGkrr98ZlU+WqsSum4TqmjstRD+fK9p7ZtWzs0hCSpUqVKysjIULNmzQgh5CqeQA0AkCQVLVpUMTFLVajQAEm/Sjql4hqqQCXodw1Vlp6UlKkCBd5TRMQ7Dt22fv16vfDCC2rSpIm2bt2qffv2OfT7w70RQwCA68LCwjRpUpQKebdVWQ1TtrwUpzGS6vxxxVw1bFhftRz4ekJ79uxRly5d1LdvX23cuFEhISEaNmyYw74/3B8xBAC47tKlS5o6brzKZJ7SJc89StJ4SSX/+GyWfHzGa8yY4Q7bc/ToUbVv315t27bVtGnT5O3trVGjRikmJkabN2922A64N2IIACBJ2r59u+4rWlQZJ39Xg8efVKn7Cihfvtl/umKRqlW7T02aNHHInrNnz6pt27YKDQ3VwoULrz8h/5lnnlHVqlX19ttvO2QH3B9PoAYAaPL7kzXxtVdVUNK7n87TM32e0fHjx1W7dmOlpNSTdL98fcdozJhpDttUqlQpHTt27G8f9/T01OHDhx22A+6PGAIAC8vMzFSn9o/q6PrvlSJp28GDql69uiSpfPnyWrz4U3Xv/oSuXRumkBB/tWrVytzBQB7gNhkAWNSxY8dUpnCgfl//vYrVbaCE1NTrIfRfHTq015Ah/SS9qOjoYfLwyNHLtgAuhRgCAAv65ptv1LhCBRVKT9NT/x6p7Xt2ytfX94bXRkaO1MKFC9WpUycHrwQcg9tkAGAhdrtdQ14eouUzpskmac6aNbd8b698+fLpqaeecsxAwATEEABYRFJSkpqFNVbmsSOyFSmuAwd+UlBQkNmzANNxmwwALGDXrl0qV6SIrh07ovrdeurE+TOEEPAHYggA3Nz0adPVpWFD+Uj698efaPHSxfL09Lzl1wFWwW0yAHBTWVlZeuzRrjq0eqVSJG3Zt8+hb6MBuApiCADc0IkTJ9S4Ri35X01RkZp1tW/bZvn5+Zk9C3BK3CYDADezYsUKNShfXt5XU9T9rXe0a/8eQgj4BzwyBABuwm63a+hrQ7V0ynsyJH20apXatWtn9izA6RFDAOAGkpOT9UCDJko7ckjZhYvop4P7FBwcbPYswCVwmwwAXNyePXt0b+HCSj1ySLU6PaaTiecIIeA2EEMA4MI+nPWhOtavL19Jb334ob5c9qW8vHjQH7gd/IoBABeUlZWlHl17aP/Kb5QqadOePapbt67ZswCXRAwBgIs5ffq0GtWoJd/kywqoWlN7d2xRQECA2bMAl8VtMgBwId99953qhoQof/JldX7tDe3++SdCCLhLPDIEAC7izaFv6fOJ4+Uh6YMVK/TII4+YPQlwC8QQADi55ORktWjygFIO7VeGX2Ht/nm/QkJCzJ4FuA1ukwGAE9u/f7+CCxfWlUP7Va39ozp96QIhBOQyYggAnNQnH3+ih2vXlr+k16fP0LKY5cqfP7/ZswC3w20yAHAyNptNT3Z/QrHfLNVVSet27VJYWJjZswC3RQwBgBNJSEhQwxq1VSgpUb4Vq2pv7HYVLlzY7FmAW+M2GQA4ie+//141y5SRZ1KiOr40RPt+/ZkQAhyAR4YAwAn8e/i/9X/RUconadqyZerUqZPZkwDLIIYAwERXr17VQ02b69L+3Uov5KedP+9X+fLlzZ4FWAq3yQDAJAcPHlQpPz8l7t+tym3aK+7yRUIIMAExBAAm+HTup2pTs6YCJL0yeYpWfh8jb29vs2cBlsRtMgBwIJvNpt5P9taOJYt1TdLq7dvVqFEjs2cBlkYMAYCDnD17Vg1r1FGBi+dUsFxFHd+zU4GBgWbPAiyP22QA4ADr169X9dKlle/iObUdMFgHf/+VEAKcBDEEAHls9KjRerZVK3lKeu/LLzVj5nTly8dvv4Cz4DYZAOSRtLQ0tX7gIZ3fs0NpBQppx88HVKFCBbNnAfgf/KsJAOSBw4cPq7Sfn87v2aH7WrRSQvJlQghwUsQQAOSyhQsXqmW1avI3DA0YP1Hfb1jLsXnAiXGbDAByid1u17O9n9WWRfOVIenrbdvUpEkTs2cBuAViCABywblz59Skdj15nkuQ173l9PtPu1WkSBGzZwHIAW6TAcBd2rRpk0JLlZJxLkEt/tVXv5z4nRACXAgxBAB3ISoyWr1btFB+SeO/+EIfzfmIY/OAi+E2GQDcgWvXrqldyzZK2LFVV/N7a8fPB1WpUiWzZwG4A/zrCwDcpiNHjijIP0AJO7bq3qbNlZB8hRACXBgxBAC3YfHixXqgShX52bLVb8w4bdi6UQULFjR7FoC7wG0yAMgBu92ufs/10/p5c5Qp6csfflCzZs3MngUgFxBDAHALiYmJalKnvhR/Sp6lg3Vk3x4VL17c7FkAcgm3yQDgH2zdulWVihdXdvwpPfDMszoSd5IQAtwMMQQANzF+3AT1bNZM3pLGLFqkOfPmcmwecEPcJgOA/5Genq5H2rTXyS0blerpqe0HD6pq1apmzwKQR4ghAPiTo0ePqlG16grMylRQw/t1YOMaFSpUyOxZAPIQj/cCwB++/PJL3V+pknyyMvVsRKQ279hCCAEWwCNDACzPbrdr0IDBWv3RLGVJ+nzDBrVo0cLsWQAchBgCYGmXLl1S07phsp06LpUorcP796pkyZJmzwLgQNwmA2BZ27dv131Fiyrz1HE1frK3jiacJoQACyKGAFjS+++/r+5NmqigpNH/93+a/9l8eXp6mj0LgAm4TQbAUjIzM9Wx3SM6tnGtUjw8tO3AAVWvXt3sWQBMRAwBsIxjx46pYfUauif9morXa6h9m9fL19fX7FkATMZtMgCW8M0336hxhQrySb+m3iNG6cfdOwghAJJ4ZAiAm7Pb7Xr5xVe0YuZ02STNXbtWrVq1MnsWACdCDAFwW0lJSWoW1liZx47IXqSEDhzYq6CgILNnAXAy3CYD4JZ27typ8kWK6NqxI6rfvaeOn08ghADcEDEEwO1MmzpNXRs1UiFJIz6Zo8VLFnNsHsBNcZsMgNvIzMxU145d9Mua75Qiacu+fapVq5bZswA4OWIIgFs4ceKEGlWvqYC0VBWtVU/7tm6Sn5+f2bMAuABukwFwed9++60alC+vAmmp6vH2cO3ct5sQApBjPDIEwGXZ7Xa9/urr+nrqZBmSPlq1Su3atTN7FgAXQwwBcElXrlzRAw2b6NqRw8oqXET7ft6vMmXKmD0LgAviNhkAl7N7926F3HOPrh45rNqdu+nUxfOEEIA7RgwBcCkffPCBHg0Lk6+ktz+craXfLOXYPIC7wm0yAC4hKytL3bt018GY5UqVtHnvXtWpU8fsWQDcADEEwOmdOnVKjarXkl/qFRUOram927coICDA7FkA3AS3yQA4te+++071ypaVd+oVdX3jTe05tJ8QApCreGQIgFOy2+16a+jb+uK9CZKkWTExat++vcmrALgjYgiA00lOTlaLxs2UcviAMvwKa8/P+xUSEmL2LABuittkAJzKTz/9pODChXXl8AFV69BJpy9dIIQA5CliCECuW7VqlapUqaKKFStq7NixOf66j2Z/pA5168pP0uszZmjZymXKnz9/3g0FAEkehmHczvW3dTEA67HZbKpcubLWrFmj4OBgNWjQQIsWLVK1atVu+jX16tXTfSH3ac+yL3VR0vrYWNWvX99xowG4K4+cXMRzhgDkqp07d6pixYq67777JElPPPGEli1bdtMYio+P19F9B5Wyd6/8KoVq764fVbhwYUdOBmBx3CYDkKvi4+N17733Xv/74OBgxcfH3/DaM2fOqNa9IQq0Z6nTK6/pp18OEkIAHO62bpM9/PDDRmJiYh7OMdeFCxdUvHhxs2fgDvCzcx5JSUlKTk5W2bJlJUkXL17U1atX//Yk6Pi4OBVKTNQVm02XJG6LuSh+7bk2d//57d69e7VhGA/f6jqeM/QnYWFhio2NNXsG7gA/O+fx448/6t1339Xq1aslSWPGjJEkvfPOO5Kk7OxsLV2wQL+sWSP/ypU14I03VKJECV29etW0zbhz/NpzbRb4+fGcIQCO16BBA/322286fvy4ypQpo8WLF+uzzz6TJF2+fFmTw8Ol8+fVsEcPPfzoo8qXj7v1AMxFDAHIVV5eXpo+fbratWsnm82m5557TtWrV9fvR49q/oQJks2mJ4YPV9XQULOnAoAkYugv+vfvb/YE3CF+ds6lQ4cO6tChgyTJMAytW71aPyxYIBUtqpdGjFDRokX/cn2xYsXMmIlcwK8918bP7z94zhCAPJOenq5Ppk7VhZ9+UvkHH9STzz0nb2/vv11ngectADAHzxkCYJ6zZ89qVlSUlJysdoMGqfH998vDI0e/LwGAQ/HMxRuYOHGiPDw85M4vI+COhg4dqqpVq6pWrVrq2rWrLl++bPYky/ppzx7NGjZMstn0fGSkmjRrdsMQ+u/bdhw8ePC23rYD5jt9+rRatmyp0NBQVa9eXVOmTDF7Em6TzWZT3bp11bFjR7OnmI4Y+h+nT5/WmjVreGNIF9SmTRsdPHhQ+/fvV+XKla8f6YbjZGdna8mCBfpm0iT5BAfrjfHj//ICjH9ms9k0ePBgfffdd6pevboWLVqkQ4cOOXgx7pSXl5cmTZqkw4cPa/v27ZoxYwY/PxczZcoUhXKQQRIx9Devvvqqxo8fz8P5Lqht27by8vrPnd/GjRsrLi7O5EXWcuXKFUW/845+XrVKYd266Y1335Wfn99Nr//z23Z4eHhcf9sOuIbSpUurXr16kiR/f3+Fhobe9JXG4Xzi4uK0cuVK9e3b1+wpToHnDP3J8uXLVaZMGdWuXdvsKbhLc+bMUc+ePc2eYRnHjh3T/40bJ9ls6vHOO6pWvfotv+ZGb9uxY8eOvJyJPHLixAnt3btXjRo1MnsKcmjIkCEaP368UlJSzJ7iFCwXQ61bt9bZs2f/9vGoqChFR0fr+++/N2EVcuqffn6dO3e+/p+9vLzUq1cvR8+zHMMwtHHtWm2aP18KDNSLI0bk+Jj8jU6y8ois60lNTVW3bt00efJkBQQEmD0HObBixQqVKFFC9evX18aNG82e4xQsF0Nr16580FgTAAAZBElEQVS94ccPHDig48ePX39UKC4uTvXq1dPOnTtVqlQpR07EP7jZz++/5s2bpxUrVmjdunX8wZrH0tPT9ekHH+hsbKxC7r9fvfv1u+Gx+ZsJDg7W6dOnr/99XFycgoKC8mIq8khWVpa6deumXr166bHHHjN7DnJo69atWr58uWJiYpSenq7k5GT17t1bCxYsMHuaaXidoZsoV66cYmNjeTE4F7Jq1Sq99tpr2rRpk1u/8aAzOHfunGZGRkrJyWrz3HNq+uCDtx2f2dnZqly5statW6fu3bsrOztbn332marn4BYbzGcYhvr06aMiRYpo8uTJZs/BHdq4caMmTpyoFStWmD0lr+ToNyaeQA238eKLLyolJUVt2rRRnTp1NGDAALMnuaX9+/Zp5jvvSNnZei4iQvc3b35Hj8L9+W07Dh48qB49ehBCLmTr1q2aP3++1q9frzp16qhOnTqKiYkxexZwR3hkCECO2Gw2ffPFFzqwYoUKli+vwW+9JX9//1z5Z/MK1ADyCK9ADSB3JCcna2pUlLLj41W3Sxd1fOwxeXp6mj0LAHIFMQTgH504cUKfjh0rZWWp+1tvqUbNmmZPAoBcRQwBuCHDMPTDxo1aP3eudM89GhwRwRPTAbglYgjA32RkZGjezJlK2LlTZRo31jMvvKACBQqYPQsA8gQxBOAvzp8/rw8iI6XLl9Wqf381u8PTYgDgKoghANcdPHBASydPlvLn17Ph4SpXrpzZkwAgzxFDAGSz2fTtl1/qp2XLlP/ee/Xy8OG5dmweAJwdMQRYXEpKiqaPGaOMkydV+9FH1enxxzk2D8BSiCHAwk6ePKm5Y8dKmZl67M03VeuP9+YDACshhgALMgxDWzdt0tq5c6XChTVo9GiVKFHC7FkAYApiCLCYjIwMLZg9W6e3b1fpsDD1GThQBQsWNHsWAJiGGAIsJDExUdMjIqSkJLV8/nk92LIlx+YBWB4xBFjEzwcPasnkyZKnp/qMHq3y5cubPQkAnAIxBLg5u92ulV9/rd1ffy3P0qX1yogRCggIMHsWADgNYghwY6mpqfpg3DilHTumGh06qEvPnvLy4pc9APwZvysCburUqVOaM3aslJ6uLq+/rjr16pk9CQCcEjEEuBnDMPTjli36/uOPpYAADRwzRiVLljR7FgA4LWIIcCOZmZn67JNPdOKHH1SiXj099+KLHJsHgFsghgA3cfHiRU2LiJAuXdKDzz6rlm3acGweAHKAGALcwOFDh/T5e+9Jnp56euRIVahY0exJAOAyiCHAhdntdn23fLl2LV0qlSihV0eNUuHChc2eBQAuhRgCXNTVq1c1a+JEpRw5omoPP6zHnnySY/MAcAf4nRNwQXFxcfo4Olq6dk2dXn1V9cLCzJ4EAC6LGAJciGEY2rFtm1Z99JHk56cBY8aoVKlSZs8CAJdGDAEuIisrS4vmzNGxzZtVtGZN9X3lFRUqVMjsWQDg8oghwAVcunRJU8PDpYsX1ezpp9WqXTuOzQNALiGGACf36y+/aNGkSZKHh3qPHKmKlSqZPQkA3AoxBDgpu92u71eu1PYvvpCKF9eQkSN1zz33mD0LANwOMQQ4obS0NH343nu6cviwqrRurceffppj8wCQR/jdFXAy8fHx+ig6WkpLU8dXXlFYw4ZmTwIAt0YMAU7CMAzF7typlTNnSn5+6h8VpaCgILNnAYDbI4YAJ5CVlaUv/u//9Nv69QqsXl39hgyRj4+P2bMAwBKIIcBkSUlJmhIeLiUmqsmTT6pNhw7Kly+f2bMAwDKIIcBER379VZ9NmiRJeurf/1blKlVMXgQA1kMMASaw2+1a+9132rZ4sVSsmF4ZOVKBgYFmzwIASyKGAAdLS0vTx1Om6NLBg6rYsqV69umj/Pnzmz0LACyLGAIcKCEhQbOjo6XUVHV48UU1aNyYt9UAAJMRQ4CD7N61S99+8IHk46N+UVEqU6aM2ZMAACKGgDyXnZ2tJfPn69e1axVQpYoGvPEGx+YBwIkQQ0Aeunz5siaHh0vnz6tRz55q17Ejx+YBwMkQQ0AeOfrbb1owYYJkGHpi+HBVDQ01exIA4AaIISCXGYahdatXa8vChVLRonp55EgVKVLE7FkAgJsghoBcdO3aNX0ydaoS9+9X+Qce0FPPP8+xeQBwcsQQkEvOnj2rWZGRUmqqHh40SI2aNuXYPAC4AGIIyAV7d+/WshkzpIIF1TcyUsHBwWZPAgDkEDEE3IXs7Gx9tWiRDq1aJb9KlTRw6FD5+vqaPQsAcBuIIeAOXblyRZPDw2WcO6cGjz+u9p06cWweAFwQMQTcgd+PHtX8CRMkm009hw1TaLVqZk8CANwhYgi4DYZhaOPatdo0f74UGKiXRo5U0aJFzZ4FALgLxBCQQ+np6Zo7Y4bO7dmjsvffr159+8rb29vsWQCAu0QMATlw7tw5zYyMlJKT1XbAADVp1oxj8wDgJogh4Bb27d2rr6dNkwoU0HMREQoJCTF7EgAgFxFDwE3YbDZ988UXOrBihQqVL6/Bb78tPz8/s2cBAHIZMQTcQHJysqZGRSk7Pl71unbVI127ytPT0+xZAIA8QAwB/+P48eOaN26clJWlx99+W9Vr1DB7EgAgDxFDwB8Mw9DmDRu04dNPpcBADY6IUPHixc2eBQDIY8QQICkjI0PzZs5Uwq5dCm7cWE/3768CBQqYPQsA4ADEECzv/Pnz+iAyUrpyRa379dP9zZtzbB4ALIQYgqUd2L9fX06ZInl761/h4SpbtqzZkwAADkYMwZJsNpuWL1mifStWyPvee/XSsGHy9/c3exYAwATEECwnJSVF06KjlXn6tOo8+qge7d6dY/MAYGHEECzl5MmTmjt2rJSZqW5vvqmatWqZPQkAYDJiCJZgGIa2bNqkdXPnSoULa9Do0SpRooTZswAAToAYgtvLyMjQ/NmzFbd9u4IaNFCfgQM5Ng8AuI4Yglu7cOGCZkRGSklJeqhvXz3QogXH5gEAf0EMwW39fPCglrz/vpQ/v/qMHq3y5cubPQkA4ISIIbgdm82mlV9/rT3ffCOvMmX08vDhCggIMHsWAMBJEUNwK6mpqZoxdqyuHT+umh07qkuPHhybd6ChQ4fq22+/lbe3typUqKC5c+fqnnvuMXsWAPyjfGYPAHLLqVOnNHHoUF1LSFDXoUPV7cknCSEHa9OmjQ4ePKj9+/ercuXKGjNmjNmTAOCWiCG4PMMwtHXzZs0ZMULy8tLAMWNUu04ds2dZUtu2beXl9Z8HnBs3bqy4uDiTFwHArXGbDC4tMzNTCz/+WCe3blXJevX0r8GDVbBgQbNnQdKcOXPUs2dPs2cAwC0RQ3BZiYmJmh4RISUlqfmzz6pF69Ycm3eA1q1b6+zZs3/7eFRUlDp37nz9P3t5ealXr143/efMnj1bs2fPlvSfl0AAALN4GIZxO9ff1sVAXjl86JA+f+89ydNTz7z5pu6rUMHsSfjDvHnzNGvWLK1bt04+Pj45+pqwsDDFxsbm8TIAFpSjf0PmkSG4FLvdrphlyxT75ZfyKFlSQ0aOVOHChc2ehT+sWrVK48aN06ZNm3IcQgBgNh4ZgstITU3VzAkTdPXoUVVv315dn3ji+pN14RwqVqyojIwMFS1aVNJ/nkQ9a9asW34djwwByCM8MgT3cfr0aX0yZoyUnq7Or72muvXrmz0JN3D06FGzJwDAbSOG4NQMw9D2rVu1+uOPJX9/DYiOVqlSpcyeBQBwI8QQnFZmZqYWzZmj4z/8oGK1aun5l19WoUKFzJ4FAHAzxBCc0qVLlzQ1PFy6eFEPPPOMHmrblmPzAIA8QQzB6fxy+LAWv/eelC+feo8cqYqVKpk9CQDgxoghOA273a7VK1ZoxxdfSCVKaMjIkbzJJwAgzxFDcApXr17Vh5MmKfnXX1W1TRt1792bY/MAAIfgTxuYLj4+Xh9FR0tpaXp0yBDVb9DA7EkAAAshhmAawzC0a8cOxcyaJfn56YXoaJUuXdrsWQAAiyGGYIqsrCx9Pm+ejm7YoCI1aqjfkCEcmwcAmIIYgsMlJSVpSni4lJiopk89pTYdOnBsHgBgGmIIDnXk11/12cSJkoeHeo0YoUqVK5s9CQBgccQQHMJut2tNTIx+/PxzqVgxvTJypAIDA82eBQAAMYS8l5aWpo8mT1bSzz+r0kMPqcczzyh//vxmzwIAQBIxhDyWkJCg2VFRUlqaHnn5ZYU1bMjzgwAAToUYQp6J3blTK2bOlHx81C8yUmXKlDF7EgAAf0MMIddlZWVpyYIFOrJ2rQqHhuqF116Tj4+P2bMAALghYgi56vLly5ocHi5duKDGTzyhto88onz58pk9CwCAmyKGkGuO/vabFkyYIBmGnhw+XFWqVjV7EgAAt0QM4a4ZhqF1q1dry8KFUtGiennkSBUpUsTsWQAA5AgxhLty7do1fTxlii4eOKD7HnxQTz73HMfmAQAuhRjCHTtz5ow+jIqSUlPVfvBgNWzShGPzAACXQwzhjuyJjdXyGTOkQoXUNzJSwcHBZk8CAOCOEEO4LdnZ2frys890ePVq+VWqpIFDh8rX19fsWQAA3DFiCDl25coVvT96tHT+vBr26KGHH32UY/MAAJdHDCFHfj96VPMnTJBsNvUcNkyh1aqZPQkAgFxBDOEfGYahDWvWaPOCBVKRInppxAgVLVrU7FkAAOQaYgg3lZ6erjnTp+v83r0q16yZnnr+eXl7e5s9CwCAXEUM4YbOnTunmZGRUkqK2g0cqMb338+xeQCAWyKG8Dc/7dmjb6ZPlwoW1PMREbr33nvNngQAQJ4hhnCdzWbT14sX62BMjHzuu0+D3npLfn5+Zs8CACBPEUOQJCUnJ2tKRIRsZ86o/mOP6ZGuXTk2DwCwBGIIOn78uOaNGydlZ+vxt99W9Ro1zJ4EAIDDEEMWZhiGNq1fr43z5kmBgXoxMlLFihUzexYAAA5FDFlUenq65s2cqTOxsbq3cWM9/cILHJsHAFgSMWRB58+f1weRkdKVK2rdr5/ub96cY/MAAMsihixm/759+mrqVMnbW/8KD1fZsmXNngQAgKmIIYuw2Wxa9sUX2r9ihQqULasX33lH/v7+Zs8CAMB0xJAFpKSkaGpUlLLi4lSnUyc92r27PD09zZ4FAIBTIIbc3IkTJ/Tp2LFSVpa6v/WWatSsafYkAACcCjHkpgzD0JZNm7Ru7lypcGENjohQ8eLFzZ4FAIDTIYbcUEZGhv7vww8Vv327gho2VJ+BA1WgQAGzZwEA4JSIITdz4cIFzYiMlC5f1kP9+umBFi04Ng8AwD8ghtzIwQMHtHTyZCl/fj07erTKlStn9iQAAJweMeQGbDabVnz1lfYuWyavMmX08vDhCggIMHsWAAAugRhycampqZo+dqzSjx9XrY4d1blHD47NAwBwG4ghF3bq1CnNGTNGysjQY2++qVq1a5s9CQAAl0MMuSDDMLTthx+05pNPpIAADXz3XZUsWdLsWQAAuCRiyMVkZmZqwUcf6dS2bSpVv76eHTRIBQsWNHsWAAAuixhyIYmJiZoeESElJanFv/6l5q1acWweAIC7RAy5iEM//6wv3n9f8vTUM+++q/vuu8/sSQAAuAViyMnZ7XbFLFum2C+/VL7SpfXKv/+twoULmz0LAAC3QQw5sdTUVM2cMEFXjx5V9fbt1fWJJ+TlxY8MAIDcxJ+sTur06dP6ZMwYKT1dXV5/XXXq1TN7EgAAbokYcjKGYWj71q1a/fHHkr+/BkRHq1SpUmbPAgDAbRFDTiQzM1OL5szR8R9+UPHatfXcSy+pUKFCZs8CAMCtEUNO4uLFi5oWESFduqQHnnlGD7Vty7F5AAAcgBhyAr8cPqzF770n5cunp0eOVIWKFc2eBACAZRBDJrLb7Vr17bfauWSJVKKEhowcqXvuucfsWQAAWAoxZJKrV69q1sSJSjlyRKFt26pbr14cmwcAwAT86WuCuLg4fTxmjJSWpk6vvqp6YWFmTwIAwLKIIQcyDEM7f/xR382eLfn56YXoaJUuXdrsWQAAWBox5CBZWVla/Omn+n3jRhWpUUP9hgzh2DwAAE6AGHKAS5cuaWpEhJSYqPt79VLr9u05Ng8AgJMghvLYkV9/1WcTJ0oeHuo1YoQqVa5s9iQAAPAnxFAesdvtWhMTox8//1wqVkyvjBypwMBAs2cBAID/QQzlgbS0NM1+7z1dPnxYlVu10uNPP638+fObPQsAANwAMZTLEhISNDsqSkpLU8dXXlFYw4ZmTwIAAP+AGMpFsTt3asXMmZKPj/pHRSkoKMjsSQAA4BaIoVyQlZWlJfPn68i6dbonNFT9X3tNPj4+Zs8CAAA5QAz9gwsXLujHTZvU8bHHlC9fvhtek5SUpCnh4VJioho/8YTaPvLITa8FAADOhxj6BxtXrtSxb76Rj4+PWnfo8LfP/3bkiBZOnCgZhp4cPlxVqlY1YSUAALgbPIRxExcvXtSJzZv1QtWqOrB4sQ4fOnT9c4ZhaE1MjBZGREi+vnp53DhCCAAAF8UjQzexZc0aNfTw0D0FC6pHsWL6bMYMlQgPl4+Pjz6eMkUXDxxQhebN9cS//sWxeQAAXBgxdANXrlzRL2vX6uVSpSRJZQIC1DIhQYumT1fihQtSaqraDx6shk2a8LYaAAC4OGLoBrZt2KB6drsK/ekRn/qlS+vggQNKDAxU38hIBQcHm7gQAADkFp4z9D+uXr2q/d99p8YlS/7l4x4eHuoVGqpS6emKP3XKpHUAACC3EUP/Y/sPP6hGZqb8CxT42+fye3qqZ1CQNn/yiU4RRAAAuAVi6E/S09MVu3y5mpYocdNrAgsVUhcfHy2dOlWpqakOXAcAAPICMfQnu7ZvV+W0NAUWKvSP11UsUkRVz5/Xko8/lt1ud9A6wHVMnDhRHh4eSkxMNHsKANwST6D+Q1ZWlrZ//bWeLV78Lx83DEMpmZlKSElRwtWrOuPhoQTDkAIDFezrK5vNlqevOL106VItWrRIsbGxOn/+vEJCQvTYY49p2LBh8vf3z7PvC9yp06dPa82aNQoJCTF7CgDkCDH0h927dink8mUVDArSr4mJSrh6VQkeHjpjGDICAlS6ShUFVa2q+vfeq0eDguTv7++QY/UTJ05USEiIoqOjFRwcrL179+rdd9/Vhg0btG3bNt76A07n1Vdf1fjx49W5c2ezpwBAjhBDf9jx/fdKsdk0MzVVQZUrKyg0VPWCgxUUFKSAgADTXk/o22+/VfE/PVrVvHlzFSlSRH369NHGjRv10EMPmbILuJHly5erTJkyql27ttlTACDHiKE/dO/XT35+fqaGz40U/5/bdpLUoEEDSVJ8fPz1jx09elShoaEaNmyYRo8eff3jAwcO1IIFC7RhwwaFhYXl/WC4vdatW+vs2bN/+3hUVJSio6P1/fff5+ifM3v2bM2ePVvSf94UGQDM4mEYxu1cf1sXI2/MmjVLAwcO1K5du/4SOAMHDtTChQt17NgxFStWTOHh4YqKitLKlSvVunVrExfDCg4cOKBWrVrJx8dHkhQXF6egoCDt3LlTpf54NfebCQsLU2xsrCNmArCWHD26QQy5mPj4eNWtW1e1a9fWmjVr/vK5s2fPqkKFCho0aJCqVq2q/v37a9GiRerRo4dJa2Fl5cqVU2xsrIoVK3bLa4khAHkkRzHEs28daO3atfLw8LjlXy1atLjh16empqpz587y8vLS3Llz//b5UqVKaciQIZo2bZpeeOEFTZ06lRACAOAWeM6QAzVt2lSHDx++5XX/vc3wZ+np6erUqZOOHTumTZs23fS90SpVqqSMjAw1a9ZMgwcPvuvNwJ06ceKE2RMAIEeIIQfy8fFR1apVb/vrsrKy1K1bN+3cuVNr165VzZo1b3jd+vXr9cILL6hJkybaunWr9u3bx6keAABugdtkTs5ut6tXr15at26dli1bpsaNG9/wuj179qhLly7q27evNm7cqJCQEA0bNszBawEAcD3EkJMbPHiwlixZojfeeEO+vr7avn379b/i4uIk/edYffv27dW2bVtNmzZN3t7eGjVqlGJiYrR582aT/xsAAODcOE3m5MqVK6eTJ0/e8HOjRo3SgAED1LRpU4WEhGj16tUqUKCAJMlms6lGjRoKDAzUtm3bHDkZuG2cJgOQRzhaD8A1EEMA8ghH6wEAAG6FGAIAAJZGDAEAAEsjhgAAgKURQwAAwNKIIQAAYGnEEAAAsDRiCAAAWBoxBAAALI0YAgAAlkYMAQAASyOGAACApRFDAADA0oghAABgacQQAACwNGIIAABYGjEEAAAsjRgCAACWRgwBAABLI4YAAIClEUMAAMDSiCEAAGBpxBAAALA0YggAAFgaMQQAACyNGAIAAJZGDAEAAEsjhgAAgKURQwAAwNKIIQAAYGnEEAAAsDRiCAAAWBoxBAAALM3DMAyzNwCwOA8Pj1WGYTxs9g4A1kQMAQAAS+M2GQAAsDRiCAAAWBoxBAAALI0YAgAAlkYMAQAASyOGAACApRFDAADA0oghAABgacQQAACwtP8HrmTs2SxARwAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 8))\n", + "# Set the axes through the origin\n", + "for spine in ['left', 'bottom']:\n", + " ax.spines[spine].set_position('zero')\n", + "for spine in ['right', 'top']:\n", + " ax.spines[spine].set_color('none')\n", + "\n", + "ax.set(xlim=(-5, 5), ylim=(-5, 5))\n", + "x = (2, 2)\n", + "ax.annotate('', xy=x, xytext=(0, 0),\n", + " arrowprops=dict(facecolor='blue',\n", + " shrink=0,\n", + " alpha=1,\n", + " width=0.5))\n", + "ax.text(x[0] + 0.4, x[1] - 0.2, '$x$', fontsize='16')\n", + "\n", + "\n", + "scalars = (-2, 2)\n", + "x = np.array(x)\n", + "\n", + "for s in scalars:\n", + " v = s * x\n", + " ax.annotate('', xy=v, xytext=(0, 0),\n", + " arrowprops=dict(facecolor='red',\n", + " shrink=0,\n", + " alpha=0.5,\n", + " width=0.5))\n", + " ax.text(v[0] + 0.4, v[1] - 0.2, f'${s} x$', fontsize='16')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In Python, a vector can be represented as a list or tuple, such as `x = (2, 4, 6)`, but is more commonly represented as a [NumPy array](https://lectures.quantecon.org/py/numpy.html#numpy-array)\n", + "\n", + "One advantage of NumPy arrays is that scalar multiplication and addition have very natural syntax" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([3., 5., 7.])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = np.ones(3) # Vector of three ones\n", + "y = np.array((2, 4, 6)) # Converts tuple (2, 4, 6) into array\n", + "x + y" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4., 4., 4.])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "4 * x" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Inner Product and Norm\n", + "\n", + "\n", + "\n", + "The *inner product* of vectors $ x,y \\in \\mathbb R ^n $ is defined as\n", + "\n", + "$$\n", + "x' y := \\sum_{i=1}^n x_i y_i\n", + "$$\n", + "\n", + "Two vectors are called *orthogonal* if their inner product is zero\n", + "\n", + "The *norm* of a vector $ x $ represents its “length” (i.e., its distance from the zero vector) and is defined as\n", + "\n", + "$$\n", + "\\| x \\| := \\sqrt{x' x} := \\left( \\sum_{i=1}^n x_i^2 \\right)^{1/2}\n", + "$$\n", + "\n", + "The expression $ \\| x - y\\| $ is thought of as the distance between $ x $ and $ y $\n", + "\n", + "Continuing on from the previous example, the inner product and norm can be computed as\n", + "follows" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "12.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(x * y) # Inner product of x and y" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1.7320508075688772" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sqrt(np.sum(x**2)) # Norm of x, take one" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1.7320508075688772" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.norm(x) # Norm of x, take two" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Span\n", + "\n", + "\n", + "\n", + "Given a set of vectors $ A := \\{a_1, \\ldots, a_k\\} $ in $ \\mathbb R ^n $, it’s natural to think about the new vectors we can create by performing linear operations\n", + "\n", + "New vectors created in this manner are called *linear combinations* of $ A $\n", + "\n", + "In particular, $ y \\in \\mathbb R ^n $ is a linear combination of $ A := \\{a_1, \\ldots, a_k\\} $ if\n", + "\n", + "$$\n", + "y = \\beta_1 a_1 + \\cdots + \\beta_k a_k\n", + "\\text{ for some scalars } \\beta_1, \\ldots, \\beta_k\n", + "$$\n", + "\n", + "In this context, the values $ \\beta_1, \\ldots, \\beta_k $ are called the *coefficients* of the linear combination\n", + "\n", + "The set of linear combinations of $ A $ is called the *span* of $ A $\n", + "\n", + "The next figure shows the span of $ A = \\{a_1, a_2\\} $ in $ \\mathbb R ^3 $\n", + "\n", + "The span is a 2 dimensional plane passing through these two points and the origin\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "hide-output": false, + "html-class": "collapse" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHICAYAAABNpu4dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWtsHGd67/l736ruZl9I6kpdSFmyZHtky9aMZ8Zjz4wnc48nHs8kOMhmc4CzBzjZ4ARns9hssmeRIECQvZzkYJHFnhwgC+TDfjgbbIIsFlggm8zNk0lmPJn7XbIky7asGymJInUhu5tkd1fVux/q0tXNJllVbJJN8vkBlMhmV1d1dbPefz/P/3keZYxBEARBEARht6K3+gAEQRAEQRC2EhFDgiAIgiDsakQMCYIgCIKwqxExJAiCIAjCrkbEkCAIgiAIuxoRQ4IgCIIg7GpEDAmCIAiCsKsRMSQIgiAIwq5GxJAgCIIgCLsaO+X9pV21IAiCIAjbBZXkThIZEgRBEARhVyNiSBAEQRCEXY2IIUEQBEEQdjUihgRBEARB2NWIGBIEQRAEYVcjYkgQBEEQhF2NiCFBEARBEHY1IoYEQRAEQdjViBgSBEEQBGFXI2JIEARBEIRdjYghQRAEQRB2NSKGBEEQBEHY1YgYEgRBEARhVyNiSBAEQRCEXY2IIUEQBEEQdjUihgRBEARB2NWIGBIEQRAEYVcjYkgQBEEQhF2NiCFBEARBEHY1IoYEQRAEQdjViBgSBEEQBGFXI2JIEARBEIRdjYghQRAEQRB2NSKGBEEQBEHY1YgYEgRBEARhVyNiSBAEQRCEXY2IIUEQBEEQdjX2Vh+AIAjZMcbQbDYxxmBZFpZloZRCKbXVhyYIgrBtEDEkCNsQYwyu69JqtXAcB8dxIgGklMKyLGzbFoEkCIKQAGWMSXP/VHcWBKG/GGPwPI9Wq4UxBqUUjuPgeV4kdowx0VeICCRBEHYpiS5yEhkShG1CKIJC4aN1b8tfL5ETRpIcx+m43bIscrkclmWhtUZrLQJJEIRdh0SGBGHAMcZEqTBYLnYcx8F13dQiplcECYgiSLZti0ASBGG7k+jiJWJIEAaUtURQSFYxtNI+41/hY3an2EQgCYKwTZA0mSBsR+IprVCQbJbwWCnF5nkejUZjmUCKiyQRSIIgbFckMiQIA0S3LyiJuOhnZCgpK6XYtNYdKbbQqC0IgrBFSJpMELYLSVNivQi3W8lQvVmsJZDCSJIIJEEQNhFJkwnCoLMeETRorJRiCxtDxgmjRvEU21aLOUEQdi8ihgRhC9hKX9BmspJAAmi1WrRareh2EUiCIGwVkiYThE0miy9oNQYlTbYewuuQ53kdJm2lVM8U204UjoIgbAiSJhOEQcIYQ6vVwnVdYHunxPpNvEItJBRIjuPQbDZl3IggCBuGiCFB2GB2ki9oM4mLn3jUq1c3bRFIgiCsBxFDgrBBbJYvaLct+DJuRBCEfiNiSBA2gKRzxIT+sFqzyKWlpY7bZdyIIAjdiIFaEPqI53nLmiBu9ELrui6tVksEVwJk3Igg7DrEQC0Im4X4grYHMm5EEIReiBgShHWwW/oF7WRWE0iu63Y0jJRxI4KwM5E0mSBkIEyz9LNfUFYkTbY5yLgRQdiWSJpMEDaCXk0TZfHb+ci4EUHYuYgYEoSEiC9I6EbGjQjCzkDSZIKwBoPuC5I02eAj40YEYctI9MckYkgQViA00bZarYEUQSGe59FsNkUMbTPCa2/4PpNxI4KwIYhnSBCyIk0ThY1Gxo0IwuAgYkgQYogvSNhqZNyIIGw+IoYEgfZiExpeRQQJg0TacSPSLFIQ0iFiSNjVbBdfkCB0s5pAunDhAseOHaNcLgMybkQQ1kLEkLBrEV+QsNMIBZIxJhI+Mm5EENZGxJCw6xBfkLDTMcZE4l7GjQjC2ogYEnYNIoKE3UI8AtSLtbpp9xJIMm5E2MmIGBJ2PIPeNLEf7LTnI6yPtcRQL2TciLCbETEk7GjEFyTsRuJNHNeDjBsRdgsihoQdiaTEhN1M3DPUb+IG7Pj+wBdIzWZTxo0I2w4RQ8KOYreKoCxpEWHnstnvh9UEkuM4ywSSdNMWBg0RQ8KOYDf4glZjNz1XYW0GQRzLuBFhOyFiSNj27HZfkCwYQjeDIIZWQsaNCIOIiCFh22KModVq4bousHtSYoKwFoMshnqRdtxIvBeSCCShH4gYErYdu9UXJAhJ2Ql/D6sJpEajQaPRiG6XcSPCehExJGwbdrsvSBB2O2sJJBk3ImRFxJCwLdjtviBBEHoj40aEfiBiSBhoPM/DcRxc140uenLxEgRhNWTciJAWEUPCQCK+IEEQ+omMGxFWQ8SQMFCIL0gQhM1Cxo0IISKGhIEg/IQmviBBELYSGTeyOxExJGw53eZouZgIgjBIyLiRnY+IIWHLMMZQr9ejKJBcMAShP4QLtbBxyLiRnYWIIWHTiV8sXn/9dZ544gnK5fJWH5Yg7Ai2W/fpnYaMG9meiBgSNo2w90er1You2JZl4XneVh+aIOwYRAwNHjJuZPARMSRsCis1TdRaixgShD4iYmh7IONGBgsRQ8KGsla/IBFDgtBfRAxtX2TcyNYhYkjYEMIcedinYyWzoGVZ0dR5QRDWj4ihnYWMG9kcRAwJfaWXL2i1P0aJDAlCf/E8T3p07XBk3Ej/ETEk9I0sw1RFDAlCf5HI0O4k67iRhYUFisUiQ0NDm3m4A4d8fBDWTdg5utFodDROTIKkyfqDLH5CiIghIST8UBqPCoUfUlutFouLi/zRH/0Rr7766hYf6dYjkSEhM/0YpiqRIUHoLyKGhNXo7qZdr9cZHh7eykMaCEQMCanp5zBVrfWyRmSCIGRHxJCQhlqtJmIISZMJKfE8j2azGVWJrbecU5ouCkJ/CVPVgpCEarXKyMjIVh/GliORISER/UiJ9ULSZP1BogFCiDFGqsmExEhkyEfEkLAqGyWCQrTWYqAWhD4iwlhIQ7VaZXR0dKsPY8sRMST0pJ++oNWQNJkg9BcRQ0Iams0mhUJhqw9jyxExJCwjS7+grEiabP2EQlUWQQHEMySkQ9KqPiKGhIiwX1CYttqoaFAc6TMkCP1FFjchKcYYQPqUgYghgY33Ba2GRIYEob9IhFAQ0iNiaBezWb6g1RAxJAj9RcSQkJRGoyF+oQARQ7uUzfQFrYYYqAWhv4gYEpJSrVapVCpbfRgDgYihXYbneTiOg+u6USRoKy+cUlovCP1FptYLSalWq9JjKEDE0C5hK31BqyFpMkHoLxIZEpIiYqiNiKEdziD4glZDax1VNAiCsH5EDAlJkTRZGxFDOxRjTFQqv9W+IEEQNg8RQ0JSarWazCULEDG0A+k2Rw9aNEgQhI1D+gwJSZG5ZG1EDO0gBtUXJGw8YQdqQfA8D8uytvowhG2AiKE28vFhBxCKoEajgeM4UUpMhJAg7D4kMiQkZX5+XtJkARIZ2sYYY6JSefEFCYIA4hkSklOv18VAHSBiaJsyKE0T+4FSSnqjCEKfEDEkJKVarTI6OrrVhzEQiBjaZuxEX1DYa0jEkCCsH5laLyRFPENtRAxtE8J+Qa1WC9gZIihEGi8KQv8Qz5CQFBFDbUQMDTihL6jVag1k08R+IPPJBKF/SJpMSEq1WhUDdYCIoQFmJ/mCVkPmkwlC/xAxJCRFmi62ETE0gOxEX9BqSJpMWIk//uM/BuD3f//3t/hItg8ihoSkLCwsSDVZgIihAWK3iaAQSZMJQv8QA7WQFGOMNOgMEDE0AAz6MNWNRtJk60eia0KIGKiFJITzKwUfEUNbzG7xBa2GLOTrRy5qQoikyYQ0yHvFR8TQFrFbU2K9EDEkCP1DxJCQBNd1d+WH75UQMbTJiAhajmVZkiYThD4hYkhIQq1WE/N0DBFDm8Ru9wWthkSG+oMsggIg3dyFRFSrVWm4GEPE0CYgvqDVEQO1IPQPEcVCEkQMdSJiaAMxxtBqtaKFXqJBvbEsKxozIgjC+hAxJCRB0mSdiBjaAMQXlA5JkwlC/xAxJCRBIkOdiBjqI+ILyoYYqAWhf4gYEpIgozg6ETHUJ8QXlB2JDK0fWfyEEOlALSRBJtZ3ImJonXieh+M4uK4bRYLkQpQOEUOC0F/kGiSsxfz8PKOjo1t9GAODhC8yEpqjG42GCKF1ImkyQegfkiYTkiBpsk4kMpQS8QX1H4kMCYIgbC6SJutExFBCwqF24gvqPyKGBKF/yIczIQkSGepExFACus3REg3qL5ImEwRB2FwkMtSJiKE1MMbQbDYlJbaBSGRIEARhc6lWqxIZiiFiaA0kErTxiBgSBEHYXCQy1ImYXhIgQmhjETEkCIKwuYhnqBMRQwkQMbSxaK0xxmz1YWxr5D0qCEIaWq0WhUJhqw9jYBAxJAiCIAi7CPnwuRwRQ4IgCIKwC5GIchsRQwmQN4wgCNsB+cQvJEHeJ8sRMSQIgrBDkFEcQhIWFxcpFotbfRgDhYghQdgBuK5Lo9HY6sMQthiZWC8koVqtSll9F9JnKAFycdl4lFJ4nicjTjIwMzPDm2++iW3btFotisUiIyMjjIyMMDw8jG3Ln/luwRgjf0PCmkiPoeXIVVIYCMJeQ3IhT87S0hJvvPEGAM8++yxaa5RSLC4uMj8/z8zMDO+88w6e51GpVBgZGWF0dJRSqSTneYciaTIhCfPz8yKGuhAxJAwElmVJ48WEGGO4ceMGU1NTPP744xw8eBDP82g2myilKJVKlEolDh8+DPipk1qtxvz8PNevX2dhYQHLsqLo0cjICIVCQRbRHYCIISEJtVqNSqWy1YcxUIgYSoBcXDYerbUMa03A3Nwcly5dYt++fTz//PNYlhX9bqX3qdY6Ej0TExOA33Btfn6e+fl5bt++TaPRYGhoqEMgSXpt+yGeISEJ4hlajlzthIFARnKsjuM4vPXWW1SrVZ5++ul1f6rL5XLs37+f/fv3A35EYWlpibm5Oe7du8fVq1c70msjIyOUy2VJrw044hkSkiCjOJYjYigB8klr45E0WW+MMUxPT3PlyhVOnDjB6dOnN+T9qJSiWCxSLBZ7ptdu3rxJvV6Pokyjo6OSXhtAJE0mJEEiQ8sRMSQMBJImW87CwgKXLl2iUCjw3HPPkc/nV71/vxfCeHotpNVqUa1WmZubk/TaACJiSEhCrVbj+PHjW30YA4VctYSBQNJkbTzP4+rVq0xPT3P69Gn27duXaLvNWARzuRz79u2LjilMr83Pz3ek18rlchQ9kvTa5iFiSEiClNYvR8RQAuTisvFYliWRIeD+/fu88cYbHD58mBdeeCGxiNiq92g8vXbo0CHAF3P1ep25ubll6bXwa2hoSP6uNgARQ0ISRAwtR8SQMBDs9shQs9nk8uXLNJtN3vOe91Aqlbb6kDKjtWZ4eLjjYus4TlS9Nj09zdLSEkNDQwwPDzM6Osrw8DC5XG4Lj3pnIL26hCSIgXo5IoYSopSS4XYbyG4VQ8YYpqamuH79OqdOneLQoUM78pO9bdurpteuXbuG67qUy+UoeiR9UNIjkSEhCWKgXo6IIWEg2I1pslqtxsWLFxkeHub5559ft/F4Oy2Eq6XX5ufnmZqaolarcfv2bQqFAtPT05JeS8B2eg8IW0e1WpXIUBcihoSBYDdFhlzX5cqVK9y/f58nn3yS0dHRvjxuuAgaA9txPYyn18bHxwH4yle+QqPRYHFxMUqvFQqFDv+RpNfaiBgSkiBpsuWIGEqIpMk2Fq01rVZrqw9jwwmHqk5MTPD888/3feG64yruuP5jWuGXAo1BB9/Hb7cArTxsjf972v9bgGJrF1atNcVikRMnTgD+Yt9oNJifn+fBgwdcv34dx3E6mkNWKpVd65uRDtRCEhYXF7e1L3EjEDEkDASWZbG0tLTVh7FhxIeqvu9972NoaKivj+8YuOIoqqa9EDrBFwYIRU2XntfKoG2DUb2Fvo6+VCSQtIEcBlt5gXhS/n1M+3srvC34v1+iSinF0NAQQ0NDjI2NAb3Ta2GUKRRIxWJxV4gE6UAtJEXeJ52IGErIbriQbiU7NU0WDlWdnJzkiSee4ODBg33fR92Dd1qKuqdSpccs7YHtYlbZxgu+4ioqp1wayoFugbPK42ggj4eF5wsko9AoVIdoUtHvwtvdIKLl4aHpffHulV5zHIdqtcr8/DxXrlxhcXFxV6TXJE0mrIVkOHojYkgYCHaiGIoPVX3hhRc6hqr2i7sOTLkKL9UFzmDZHljpzrfCkMNFKY9VlU+v/RkXT3lEe1xt8yiIZairJRSG2/pe8Ku2aFJGowAdyKq2uFLYNpT2DlHeW+QoR1AomktNqvO1jvRaWL02Ojq6I9JrIoaEpMj7pBMRQ8JAsJOqyfo9VLUXroHrDjz00l3QFAYr52J0uk+HGoOtWqmTXQqDTSu1odsXXg6qK69nMLgYXAC1/P3i789B9Ur7lUCXYPRwkT2UwcDSYoOF6jwzM7doXKuilWa4MhJ9FYsldJD0U+2EYCS9Bg0RQ8JatFotGZnTAzkjCZELzMayEyJDmzVUddGFaw4sGl8qJN2FVh4qt3parBe28bB0i3TRILCMi1ZuasmQdTttPCzlJNrO4IGCQinHUGmUsUMlFGO4rsNCfYFafZa7t6/TaCyRy+Uol8uUyxXK5XKUXlNAzhiUwhdJpu2UokM4WWB0x+909L3VV1ElBmphLarVqvTw6oGIIWEg2O5iKByqms/nEw1VzcpsCyabKko3KQDj/6+cQBgFUREV/qtAWR7a9jAxJdROdpkVdI4hj4fSLmnTYjYuWqV7PU24vx4Rn7Xw95d+O8t4WKot9CzLZnhkhOH4cNpmk1q9TrVa5c6dO7iuQ2loiNFygUqlTKlURGsrUeoPwDYt6Dg3oT09qOMzbaFEZFG3wIsLKqvzS/kpWDFQC2shPYZ6I2JIGAi2a5os61DV1PsxcKMJ950eK67yewtFiSETSRwAtO3hWeCZYJGMZZC6k1AhFgatnWAR1xhMJLwMbRFllIpSWSYwO9s90ltrY8hn3C5nQh9Tmq0MObxAQK0u9HL5PHvzefbu3QuANi7NxSr1ep3Z2VnqC3UUKogelalUKhQKhWURGj/114rEahvPj1S179h9sGjXoM1az9Eir+9iWXm0V8OgMa6NMoF4UoHgUpb/SqmYkIq+FyG106nVahIZ6oGIoYRI6Hlj2Y6RoaxDVdOy5MHVJcViSp2glcHkTYq0WNifyENbLiiF2/W71XSDbTyUauEFRmYATCCWou0CKWWIhI/CJYeTLvjEGv6gVTHkcVGkfb8ZbOMLKLtUolQqRdWBnudSq9VZWFhgcnKSRqOBnbOpBKm1kXKJoVz6Kh5lwHK8hCLRBdNCK8CroxyF8npvt/KpVhijUY4NSmNUIJBiQir8Mqrz5+g+WkTVICOjOHojYkgYCLaTGNrMoar3HbjRSL9sa8tg7JXSXytjazdIi6UjF6WpOqNSvu6JH0RcVCk/vYWHS7zSLh578v/3gsqxaHPjYkVSTeNHqcJtzYo+HG18I3ha1hJeWltRyX5Is9mkXq+zWJ3jwfQNHMdhaGiISsUXSKVSaVUBrTyw3KRCyMfz/HNnVhFCq2FchXJcCM5twsyfv20rvk/li6NAGBllgY6JJ93+34SpP915u/+9fAjtNyKGeiNiSBgILMsaeDG0mUNVjYGbTZjtlRZbA53zMKmr+A05y+3ysqyNbyJuZYrOtNNb3c9Rxe4V/K9UIHNMILw8DComtHqdpzDy5OcRNS4aF9MtvExMwil/H+HvFAptDFaGSrp8Pk8pp9B7S8BhCIbTVms1ZmdnWVxYBKBULvnptXLZb8apFNoFy0svSo1nUI7OJIRwNcrJ8DdoFH72L75PA8YB1wFWFlXG0+jWKvtU2v8KxJHRui2YTCicdOfvrJiY0qEIE1EVIqM4eiNiKCGSJttYtNYD7Rnq91DV1Wi4cLUBi57y7SWqs4n0SigFKu9hUmYoNB6W5fbwsqy93Wamt1Yqt19tC/DFjd0hoLruozrvH0cHfZW8UECZ7rv7csx0CSqMR045nV4mpRgqFhkqFmPpNb97dr1eZ+rWLZYWF8krm5FSMYogJW0OaTwFTYNO20vSEESS0gsh42lUy5epqUkivoznf3mdoqozCkXH73qiQsFkgRcIJKstpCIBZVkYK35b7PsN6BO2FdRqNYkM9UDEkDAQDKrY3KihqivxsAXXF+JenRhdA1hVlBYCT3so26CMAheUisU3YpM4uk+zrYK0WMrTnzMuulcX6jWwjIdOWP4eRxsPWzkpt1qfryj0B3U94DIxZTpuV0GJvxsILyuW9Au2iExcBrRNeThHeXgPyoDturSaDer1OtVajTvTd3BaLsXiUGTQLpfLy9Nrjka5Xvo+Q54CpzuqkwzjalTLS/3ewQtElNuvKFSS7TyMY1Atx1euq9Dr6ThoWo4HloWy2kJJhaIqdruKRJRGWRZecFv0tcXVfvPz89EoG6GNiCFBWIGNHqoaxxiYWoK7zVX20bUQGwMYhc4bjNYYR7ev8yu4pqMIhjJo2wFtfMNsMOpeETp2TLSIG2Wi2w0eBeMG4mLjy+2h3fBxs4QXHZ2202zll/hbXaJtmbemQ5gFEsqARQssyBVz7CnuYc+BPf49gvRavVZndu4B129NgTGUymUqxTKVQplioYjSGg8FWmOUnxpUSrcX/3b4yv/RU/j2qbTCAj+q42YQQqFYzxKFMhrVzBaF8iNY2dLwLTROGMFyXUwsgr3WkTha43Q/V6UiERUXSKpLNHmW75lSloWO3a7D+2cUVfV6XSJDPRAxlJBBjVwI/Wejh6p20/Lg6oKiljJLqBSQB0+rNT/ttjfyo0Y6aL7oRWmilX074RVfYcgpD08p/N43Jvp9O3UUmpfjtf4eNm4UnUkjoyy8lFv4ZO07lNUfBJA3TqYeSZYxaFYWbUopisUixWKRAwcPAH7EcqG+yMKDGrfvTbG0tIRt27iui51TFMtD5HM56Gm9VxAYrH1vmQqq/gKM3zIh/N53XQWvpzGZU2oYDesRM80M4gsye6EM0DQaL0MEywAtpXr7II3xBZXr9jwTBl9EuWudY6U6RVIgqCrj49iFwoqbiYG6NyKGUqCUkiF3O5jNGKrazXwLri0qnJRvK2UZjK1SLw5JhrP23M542DqMeHRWenVGrGKGZhV2hTZdZudOedPO9gVREhWIElrtexgV3TGMXK1kms7SdwiClgIZIkntkSPprw2W56fUUm+HzWihwuihMvXKCEuNJiMjJa6+c5WlRoOr77wTVa+Vy2XKlTLlUhmtNLgKPK/LLtUz+RcQil4FTeU/T6vL5B7kYDtfSxVodOOn41qBgE97mkIxk/CF+V/+j7/g//37f+Ta1G2GCnk+88EP8qf//e9QXEUgdGMMNIzCZIlgKUUTMq0VBmiqhPs1Bs9xwAn8VFozeuLEqkIIxDO0EiKGBIHNGaraza0luNNIufQaULlACHX/alW/iMG2PUzK4axhykjr9IuCHw3qPVYjflvbHO7fqo1BK6dDQLk9+9ZEibyg6stD4wRrrUV7EQ/3aeLKq+NxevqDEuB7mbKU6oPlOegMAko5Kop0XLp8ja989TuUy0V+7V9+jnw+z8GDBymXyxja6bX79+5z4/okOFAuFqPxIsXiUKKod5RSa+dhO55Lx3lth5h88eNpX3x1/0l1mdja2qEdpTJN/OCW9tsnKBOLgnal/UIc1+VPf++/Y3zfQa7cuMm//nf/nv/9//5/+Lf/8l+s+TzBj5Y2vWxixlMK/zRl27YJyaO8MXQux56TJ8klaPMh1WS9ETEkDBSbPWhyM4aqLtunB9cWoOaEHXJ81qoYUwAFMDrd+ck6nDWq3lpX2Xw60qW32rGlUECF/bBN/PerVIv5Yq8VWFks32cT2y6qR+tRRWbjBCbydChDpuG1mKBs3vVYWFji1a99jwuX3gHg4IG9LC01O/5+FIriUJHiUJED+w6CA57rsrC4QL1e587t2ywuLWLbdsycXSGf7ypHcxQqbegyPOTVUmpdwlTFRFSHUbrTfb7CnlQUofz9f/Nf+tsCj4wf4aUPf5DLN29iLM2v/Nvf5Ts/O8dH3/8+/vKP/mc607ngomi6ZBIk6xEzbiCismxrF4vsOXkSK+EIIBnH0RsRQymQNNnGEp7fzRBD8aGqx48f37Chqt3UWnC1pljVy7ks+2X8nnS54MOw175+t4dhxNaJ2MZZh7NaZPPOqC5/UHI2S0C16ekPUr0SRO2Ftn2sftrGw16esDNhvKq9wKtAUFm4WMZvTpmkSWTHY7Z8YfHm2zf40le+Ta2+SM62+cTH3s/7nvXfvwboVlmReViBtjSVSsUX/Yf837darai8f+buDC2nRaFQoFwqUx4apjK0enPI3ii/Si1L48ewXD/VtdYXNZO3Z/iP/+mveO1HP+H2zCzNlkOj2eS//S/+OUp5/Nf//D/jX/3SK/zlF74CVufje56F23SxlPLPYTxqFf8/OK7QpG6MwdWaludltDRpmhm3zQ8PM/roo+gUkWxJk/VGxJAwMISNFzd60ORmDVXtZnoRbi2qta/xnR9W0TZ4dlBu3+U/jS7SBkxwB4XyRzLYnn/B9/zzGdk1VNu9E1+wQ3tzTjmJZnZ1k7V6K4xApe1ztD5/kJvJq9OrVH/Z81Vdiyd+pienPL/po4r5rbq2bo8xid3mgeW6LC01efVr3+P8+bcBw7GJw7zyCy+yb+9ItIHxvE4t5Gg/MrPKi5LL5dizZw979rSr1xpLTWoP6zycvc9k/SYYQ6lU8r1HYXptpQc1Gpy0YibYNDRKZ+De/Sof/Rf/mg8/e5Y//m/+K46OHcTSmo/+q9/g7BOPAfDR97+X1370k2Xbuq7GtFw0dKbhVj1Y//ct7acBcxAZz+N/X90Cu725oak1XvgB0POWCdnVKO7fz/CxY6k/xEk1WW9EDAkDQ9h4caMaGm7WUNVuXA+u1WFutbL5Xig/GuQlSIsppdqRSwVEzRd7XIi7w0SRtcaQ1361mIcNmGBxiA4Hpfz7hUEN/1ceObxIlKSqFjPZojrr6R+UVUCtp9IsZ5zuuvZ0AAAgAElEQVREbQVM/GQD2lNoz+HK1Um++KVvMV9dwM5bfOzn3stz738q+ODQ9kZ5lkHZQTfm0OOjdUdGKjpjJlb5F/yMAmU0Q3qIob0F2Ov/jXiex8JCLL22uIhlWZE4qlQq5HO5jihUatzs5e/G1XzltW/RaDb5iz/6HyKB8Jdf+DK1hUXOPv547+0MuK7yc9dp94lfMRav+uruf6SCnfQ6HS2twQ0EGMTCiD38gDGRZYDioUNUDh9OfczgVyImbeS5mxAxlAIpr99YNnIkx2YNVe1mwfHTYo20ZfP++PcwqJMY3SGEUuwPQ87qjs4EM9F6hT6C/xSQN2G0I77TMMEURjpiC0KwMlvGQYf+kI79eIGg6v33tp4IVBYB5Xewzlb1tfKk+jV3iuVBa3GBr/3DD/jJz94EYPzoQV757Isc2L+n186i8+x7fPz0arexeVkKNv6Tq1EuQQqpHcVUlk1ldITK6Egkgl3HoVavUavWmJmdpbXQYsjORwKpXC4lK0QwgbcoSxNG2r6kfSOj1BYX+dtvfJMzp07y6ne+x//6n/4vhkslTh0bX76dUbgtIEsqTykaZDNK9xJRXQe27KZQZCmlGH7kEQoZP8iJzWNlRAwJA8NGjOTYzKGq3cwsweRCgrRYF9o2eNYy49Da21kGz/JQKQ3WNh7KSj9WQ+NhrziOI7Qehz/GI1RhU8Ogz9GyB9DRtqGTwkP7AoFwxIXVjqLEIhwr+XCyR3UM+cyRpGyVZhiwXcP1a1N84Yv/xMO5Gpal+bkXn+WF559eVch7ru8tIp9h0etRwt5hao5u9O9i5zV78iPs2TuCaSlwPRqNBvVanQfzD5i8PYXxPIqlku9TKlcoFovRh8ro7yLUilGQy3RrtJ4YT3Hndp6fXS5z9dYQv/HLL/Brv/Q5fuN//PcUCnl++dOf4D9/6dP84PWLPT/Iuk16Co+1CI3SmYRQsK2XYVtlWYycPEmuD0Ue8sF+OSKGhIGhn5PrN3OoajeegRs1eNDo9g6sva3OBUIoDcagcwbHJFtEos2CtBhZptRnHMfh9x1KFtXpvk8Y1WnPF+tOK/R61LBs3sMYq202j4mmjhdHhY9s/POTMZKUw6CzlNwbcBcavPr1H/LDH18C4PCh/XzulY8wdnDv6vt1NTS9NLaT8IAxobcoLR1VX4qhoSGGhobYf2A/AJ5nWFxYoFarcefOLT+9Zlt+5VppmHK+5DeH7CnglxuYPU9xbXKIcxcrnLtUYvZBDqXgxPgS9aU8/+F3f4f/8Lu/4/8RrmRpMgrjkUkIuUrRzBhdMVrTCAzXabEKBYZPnsReZwNYz/NECK2AiKEUyJtoY+mXGNrMoardLDpwdU6xFFRcr3TZi6/fYQxF5f37ay+0MgcenVgaqVtUKQwUDJ4CUlV5G/LL0mIJt1tx2vzq+FVf6QWUgiDVlGoz4v6g7vPWFlPdETj/h3C+mBt12m4bm9vpvjCZ1xahvoDyoj5Jcav0ms/Tg1vXbvN3X3yNBw+qaK148cPv4UMvPLN6uskQjccwxqRLAUdiZmOGtGqt/LRZpRzd5jgOtflF6nNVZmsztFpN8vl85D1qp9cCg3JLcflqkfOXK5y/XKZas7GV4YkTC3zqg/d55vE6I5UuQR9FmVRktDEKPvdvfpvzb73NwuIST/3yL/N//rv/iQ+cebpdJRZUiPk6ufN5tXqN1kiIpzWNjNva5TIjJ0+i+3Adq9frlMvlte+4CxExJAwMlmWtK0222UNVu7m3CDerKpEFoaN3nRVrorhCtVjnxkHlr2XA9tMFGlBuaLJsx6PCxs3xYa2Wyjqlvh9VXykjSZjQuZSKrCX+flSnuwFjh/qMvSaRjA3WXN+TZDC4rCRIVHD6ghcxtKA3WvzT17/PD35wAWNgbGwfn3v5RQ4f3r/WAfsT3AMxY0yCMv0Qbx1VX1mHtAK2yrOnbLOn7Fc0GWP89Fq9zsOHD5iammRxyeLm9BGuTh3h2q39uG6OoSHDmVMLnH2sylOn6gwV1jjuuGscUK7m7/70f+txR6/z/t2iWWkaxk8DWjGTcyiRwz9ZFTyXUFCFAssJyu6zkB8dZfjEib4Nd61Wq5vSS207ImJIGBjWExnazKGq3XgGblbh3mL6fWZKiwHKNnixLtQG8IwKPtzGwk5dmTNLu2D5i3W4KLfXAP9C3l6iTWy5j0+Nj0VK1np+mMDnk37BtY2TSQilScV1YoL0X7ZKM1s1E+2jXcznn5Ppm3f44he+zr17c2hL86EPPsOLL77HLyjovGvsYRR4oJwwyqjas+a09h34UYn48pLt9YgZnIxDWleYVq+C9NpSs8y16Qrn36jw5tUizZZDMb/IqfHrHD9yi0eP1BgtF6lUKmjKGJNL9nduwLjZDdpN10TjMdov3UrNEYjOu8GfMWY8D7v7/PtPvNehEs6GK+zfT2ViItMxr4R0n14ZEUMpkDTZxpJFDG32UNVuGg68M6dYTNmIWPm5n0Rl8x3bARTSbwcGu6sLddsdEz5w92P6P+fwx0Z4HfMU/E++YbGS6twEhUEZDws3iEy1JVa3ubnXseYzRaD62z8o+T49rAz+INdx+O5rP+S73z2HMYYDB/bwyisf4ejRHjPxuk+Xq9CuS3xFVoDSHsr2refLNw4iFo4FxsPYnSX30bdh5RLKF1KxX2Yf0qqWTas3BqZn85x7o8y5yxWuT/l/u2P7m3ziQw949+k6x8eX/ONojeO0WtRrfnPI2dlZWs0m+UKQXgs6aFu2tXy/WZs/omh4YDJt2x7UqsInG6PXbXGGxscpbMBsRIkMrYyIIWFgSJMm24qhqt08WIIb8wo35bUy65BVrcDkSd1NWkdT6tMd6OrjOGIRpI7UkY+FH2HpXS3Wji3FgySKoEIt8NuouNHHKFCrDWldT/+gbJEkE0WS0ouv6duzfOlv/4HZmQcopXj++af56Effm8jfploKtcrfycpC0/gREhOKKBNuENu28/4RnoJWe0hrmOnrHM5KOOQeMP7rF2ThwrlmxuAboC+XOfdGhbv3/IanJ8aX+PwnZzl7usahA21haWKT7m3bZnTPKKN7RoPfGZqNpp9em5tj6tYUxjMMFf3oUblUpmgX0Rk+xHpoPyK0joqxTGXsWlM6fpzcnh6tE/qATKxfGRFDwsCQNDK0FUNV4xgDU1WYWYwt6CaZSNFd6a2kZC23zzqlXmOwM5ai58zaEZa2q6l9g8ZD04rK6X1fhv/98kGtbceGNgYbN7hv23hroO3PiXbqL6wqqBdb7g9Khh/Yc1KLL9d1+d63fsZ3v/UjPM9j794RXnnlIxw7dmjtjY2JRnKkJoyQZOoKrfAzgLHmgtE/nYKqQ3coX8y4ix5vXi1x7mKF85crzNcstIYnTi7wsQ/N8fS76uwdab8GxgTuZ0eB64vgDmNO+PBKURgqUBgqsG9/2BwyrF5bZPrmNEtLiyilAnO2Hz3K5/OrRvkdFK0MTRjBN0o3TTYflsrlKJ88ibWB7T9kFMfKiBhKgaTJNpa1xNBWDFXtpunA1QeKemAP6XXJM3RWCkfCII8/Y8yLOuSEtUiggmrgHmu+zifzFXXOzss6pd6v+rIyVX2ZbANIIRBQaQzW/v0sQzQste09j3mpeqb//HvbxsGowOxsYhGVSHOamCG5nQtUxs0kFO9O3+fLf/d17t6ZAeD973+Kj3/8/eRyCS7DBnRTZTM7ewr/FK3DKJ2SxSXNxUtlzl0oc/HtMksNTSHvcebxOmefrPHkYwuUir0fVynADSbd9wwsqsi5HCX0gp+1pSiVRygVR2D/QUDhOC0WgvTavXv3aDbj1WtlSqVSFJFz0JmFkKtU5hljemiI8qlT6A0eDSSRoZURMSQMDJZl0Wg0lt2+VUNVu5lbgusP1Jqd+xWda5bSCpMLLtxd25qu7Qj0gCIQUTk/B6Vjubh4lEeh8IIPz+0P6dmm1PtenWxVX5s9l2x9UZ34PtsCKH4EkahSnT2NfH+QiQ1oDaJMK/imjAHjeXzvOz/lu9/8IZ7nMjpa4bOvvMiJ40eTHbCr0Bmrvno1UkyEiW2bkLmqxflLFc5dLPPmlTKuA8Nlh/c9XeWZ0zWeeHSRXG6N5xD6klY1O5vYe73zZ+PG+iUFhrZc3mJ03wij+3zjsDEE1WsLPKzNM3nnFp4x5O0hiqUKpbIvkJTWkZk5MkWvMFrDCcrus1yVrEqF8smTqE2IcIuBemVEDKVAIkMbS6/I0FYNVY1jDNyqwnQ1/euvMjVRBKwgnRZGNpav1B3fGgAXtAGV93CNn2IIA01tf0/nkNb2wu2RU+mjOmFfHZVpany8Qi3dXrN2hbaMwVJNsqgDu6vSTAX/ruSbMihmZx/w5b/7OtO37qAwvOe9p/n4J56jUMgHib1Y6MN0bg0K5Rq0G0QSlQ5K6FX3nXsdbmd0JQ1ecqP09GyO8xcrnLtU5uqNIgAH9rT42PMPOHu6xomJJRJXhYc9jzIYliE0Sq99zErB0FCBoaEC+/fvxRhoNWGx7s9euzc9zeTiIlopypWK3yCyXKYQpNfilWAe4AQRWUu3O6dH/0fzTIKorQl9bz65ffsoPvLIpq0t1WqVwxlnmu10RAwJA0NcDG3VUNVuWi5ce6CoLg9YrYkuGLwMFzmVM5gM5fbaMrja68jRLVsaegxptfD8bVX7k2no1gntGlG0ChOYm00QYXEjY3Nwt0T4DRg3t+qrvc8s6b904svzPH70/fP80zd+gHGajIyUefmzH+HRk/EZWWHUabmRGQOWZ9DGpd2yyHT+H39hQluNBrTGNMPAl+7YR3TaOkJZ8QNX7Y7SPTAGbkwVgg7QFe7c9T+cPDK+xCufus/Zx2scPtjI0AU7MEpniX4FIipTGjCYT6aNoVwqUS6VGAuKMRzXpV7302v3791jqdGgUChE4qhcLuPlcssqxno+9R7Pyz58mMKRI6mPeT2IZ2hlRAylpNOXIfSTsJpsq4aqdlNt+EKolWXIao7UQigstzdpy+aNQecNjmdSrwe2clHW8idoiJfcdxwl4E8G08rtUS0WuTiiYwuDW+GCYeOignyggcTCZr39g7JOqk87X+z+vYd86Qvf4M7NOyhczr77CT7xqQ8wNFRIerjYrlm7K3SXgTlKz7aMf05V7G4r7ivmr3KVr551/PWDlgNvXxvi/IUK5y9WeFi10Mrw+KOLvPiBh5x9qs6eES/7xHlPo5oZtzXKr1TLJIQ07ioCzLYsRkdGGB0J02uGZqvlV6/Nz3Ptzh0cx6FUKkXiqFQqrRnlUUqRP3YMe/8aDTU3ABFDKyNiSBgYXNdlZmaGer2+6UNVu7kzB3eq4WKd/FKbtVosa7l9xziOVOuJIadd0OkXodyqYzUiF0fwo4pFjQw55eJP/VpJ4LaTCGEUCkIhFPxs/FBIezhrzOS87Giyds0OImYp0njGGH78wwu89o/fw2u1GB4e4jO/8GEee/yRxI+hDFiOh8qyuHsZhEFwXkzcW6RgaUlx6a0y5y5UuHC5xOKSRT7n8eQTC3z+TI2n3lWnXAreO64FLeOLeAWYzuL+eFdmZbpeJ4dUvqTOJ5zN3A3+jDMvpQBTSlHI58kVCpT27eNQMGdscXGRer3OzN27LATptVIsejRUKERpNWVZFB59FGuLBImIoZURMSRsOeFQ1XfeeYehoSHe+973Rp+uvvvd73Lx4kUmJiair400ADouXL8Hcyt0k+5ZKRb+bANWO8UQ+QtM4IteQehk7UKtLQ9jp/9MrDDYmzyXLDRYJzm69t7882fhoZQJtJ7uqhDrPo72c7KMQePgoWODWeN3iUdPOk1Z/nDX5CHBuYdVvvyFb3Dj2hQaj6efPsWnfv4FisWE0SBAeWC5biYTbtgVOvW2JtjW85ivWbz+hi+ALr9dwnEVlZLLe56ucfapOu96bKHTAG0CERU0f2wbyDvfV9G573oNjKv9CKEV3akzrmiIGZjDG/wULa7yc9hZegh5OrUQCnGDHkLE/sZLpRKlUinqdebG0msP7t+nEVav7dnDnjNnyA0NsbnNQNrUarVNH1O0XRAxlBJJk/WX+FDVs2fPcv369Y4w840bN5iammJqaorvfe97AIyOjjIxMcH4+DgTExMcPny4L72G6g24OqtorrJmR6mIAGNUlBYzCoitn6Zru+j/6AeDCv4CtdtemP1oVFtIRemqyPlsAgGV8gkClnLR2k2rZdY1l8wm44gL/A7W6QjTeGEnav88drg5usu+uvBL7sHDivtf25j2oxoM5376Bl//++/QarYYLud56TMf4l2nT6Q6au2C5WWYy2fIPnHeg7vTec6/XubcxTJXbwxhjGL/3hYf+eBDzj5V4+TxFQzQ6xjwiuen5KJjjomkjrhi8J5XMdEKxjd3Gw9s1f7jCH1T4UscDuULHi40MxvPwgtFVMrreNJBrZZlMTIy0v7QZgyObbO0fz9zi4vcPH8ex3Eol8uMjIwwOjrqjxjZBDuAlNavjIghYUvoNVR1YWFhWTXZL/7iLzI1NcXk5CSTk5NMTU0xNzfH3NwcFy5cAMC2bY4ePdoRPUo7mfnuPEw9VKn9m8oOzM4JxUUocLQGk/PL4rt9sV3fdtwY+YpQfobLEAkU7Sk8T3X0KjLRemHIZ0yL2YFXJy0Kv5dPphEXGTs7r8cfpAJ/kIqJ0p6FXso///NzNV794je49s4kGsPp04/w6c98mHK5GEg41TYix8aRxE+HUh6W46GziIouQZLkQ5oxcHOywLnzFc6dr3B72jdATxxp8AufvM/Zp2ocPdxcPeASGpazfCj0VObmj6Cg2bVtD9+U/33nfZTx04jaddDdEzu6/nhNmBuPGdMdo/BC/1tYcp/wOVijo5QefZRRrQlba3qex8LCAnNzc0xNTVGr1VBKRSJqZGSEYrHY9yqzarUqpfUrIGJI2HRWGqraq7S+UChw8uRJTp48CfgX/JmZmQ6BNDs7y40bN7hx40a03b59+yJhND4+ztjYWM9PXq7np8UeLmRIU+VNhhlh2btJaws/LRbss91fMfzZ+Bdsr/OB/b5DHq5SKON3aA4jXB0pP9plv0aF/ZyzNWD0ozrOppbqr6fpo8ZgJWykaIzhwvk3+cdXv0Wj0aQ0lOelz7zA6adOdi1ey4eyQix6AVie57dRWFl1Bd91RTI8fGEQ9koyxp+h1ePJuy68/U6RcxcqnH+9zIMHORTw2IkF/tln5zh7psb+vcnEru9LyhYZz+RpijbW0FpHtdkq88m6/VlRWi8QQi2j8Fyv7XLrukZ1RHJjD2IAa/9+cuPjy0SN1ppKpUKlUmF83K8wdByHarXK/Pw8V65cYXFxkXw+3yGQ1ttapNlsbvr8xu2CiKGUSK+h7Kw1VDXJbDKlFGNjY4yNjfHss88Cfi+iuDi6desW9+/f5/79+5w7dw6AfD4fpdWOHTvG0aNHwSryzoyikXbIasZqMViHPyjrGA/loXLtcRxhMiKMenSe7fbjKxOmxcDFjm0ZmJdN5yYqykWAxsUOtg2KkxKhSDbKoxd+/6D0w1Kj5o0J03G1ap1Xv/Qa77x1HYB3PT7BSy9/mEolndlfGXoLt46f46nTuOlYod3AaxPHw0+7amg0NZculzj3eoULF8ssLGhyOcPpxxZ4+ZMPOHO6TqXsdoqstne9NymbMHYeW3azc1RtluXSuw4RZQw0jFpzUKsK7tz50hly4+NYY2OJ92fbNnv37mXv3r3RbY1Gg7m5OR4+fMiNGzc60msjIyNUKpXUFgFZw3ojYkjYcJIOVc0ytR6gVCrx+OOP8/jjjwN+CHp6ejpKq01OTvLgwQOuXr3K1atXAVhoglU8yNjhCQ4eOcbY4XH27D2w5oVCB1VfaWd9KQ3YGabNm+TjOLqxLdcfx5HBH7R83ESnwXX581cYFUR1MLixldqNbQl0VBSFp1sZz+8fBP4nedUlAFYh+6R6vzJOJSjDM8bwxoW3+dqr32JpcYliIc+nX3qeM0+fSr24aAMWWea+gWqxYnfm+arm3OuH+eZ3jvDG5RItR1MuuTxzpsbZMzXedWqJQq77PJnlPwaG5bjP3I+s4PcwMr1eyxVeKwN4mjXbtq9E1g7aBCIqa7UZiqaXLPW4DK2xH3kEKyZqslIoFKIPf+AfT71eZ35+ntu3b1OtVlFKMTw8HPmPVkqvhc9FxFBvRAylRN5I6UgzVDWrGOr1OEeOHOHIkSM899xzgG/Unpyc5MaNm5y/PMXdm3dw67Pcn53ljdd/CsDQUJGxw+OMHZ7g8NFxDo6Nk8vn29EPCzy7MxNh1vo0DdnL5hVQyBKBMtiZxnGAbVwsnW0u2erCov148Wowg19pZim/6qsbvwTfF1fRFjEbjm1aaGWC4Z5Bqq8jNRWW3XeiMX4aL4HgWqgv8tUvvcZbl30hferUBL/w8ocYGUnnS4PguaY2hUN7SGvn8c7eszl/wff/vH2lwNzcPI+eKPChF+Z599kapx5d9C0uLZXMpxOmiFT7W78btYl8OJ1vx+7HjL3OBn/YqgFl6eiPxcS2iwoTexybCSrkMrGOKJaLoun2PqY1sW1yJ0+iU3oWk6KUitJrR4/641zWSq8NDw9TKBT6Vvjz5S9/md/6rd/CdV1+/dd/nd/7vd/ry+NuNSKGhA0hy1DVjRSalUqFEydPYypPcuAx//juz95h+s4kd29PMn3nJgv1Gjeuvc2Na29Hx7Nv/xiHjkxw6NgxDh6dYHhkT09PSuiPNSpIC4Wpnhz+X1nUnVZFAipu0F32eJn7DnnYeb/3TjqCqI5O36HZ7wHkJhIWnXuM+4NW22dnVCqsMLKiVFyHc7bnfuJNIC3jN4w0ShN1MoqHQaIbDG9duspXv/waiwtL5At5PvWpF3j3u7u9QWvj+4OyVdVh2kNajYGpWwXOvV7m3OsVpm75pftHjzT49Cdn2TN6iY98+Gj7PbpGR+lVybRtmHILhsOaWFQnOK8dZ26Z/g2iUi1ABX8D3X2LwJ9qbNp/d+39sq5IlKM0rYzRJFUokDt1ClVI3k6hH6yUXpufn2dubo5XX32VP/mTP+HEiRO0Wi2+/e1v8+yzz1IsFlPvy3VdfvM3f5OvfvWrTExM8Nxzz/H5z3+ep556qp9PaUsQMST0lUEZqtrN/RrcmFGEH6xt22bs8ARjhyfgPUH4uTYfiKObTN+Z5P7sNPfvT3P/wTQXL/0IgGKxxNiRYxw6MsHY0QkOHDyCncvFzMzhrFUFeVYtt4/o0DwGlcPvAuyZdkWLCoRUcH8T2zZEaw8s1+/LkgIN5PyVK9V20G5MmOUVzmf0B6XtRK0iMWXIKb9/UCzR0yVK/W8WFxb5x1e/xRsX3gQUjxyf4Bc++xH27al0JIX8YayKsKN2FD3BREJLQeaqOlwFTcNb7wxx7nyZ869XuPcgh1KGU48u8c8+P8PTZ+ocPNCi2Wxy/Xq9XQ23rmn1oZjJ4rXRgck6i9mZHvPJugzOsIIRTQVl9wbsWLPPuGM9DCwGn0jiXreWUThZhVClQu7RR1H2YCyphUKBgwcPcvDgQU6dOsWv/Mqv8Nprr/GHf/iH/MVf/AW//du/jVKK9773vfzBH/wBRxKOBfn+97/PY489FhW0/Oqv/ip/8zd/I2JoNzIIC/ugMghDVbsxBm7eg9n51V83pRSV4VEqw6OcevwMAK5pcvfebT9ydMsXSYuLC1x/5zLX37kMgKUt9h085IujQCQN7xnGy6V4n5i2VYOcwvMzQ9Hv4vfpta3CoHIeruX3YNEE86i6hrKGvev8NcEXWhbZh6VmL2H395nlTymrPwhMYvF15c1rfPVL32ChtoCdy/Fzn3ie97/vNFotfw0Mob8pPhK3TViub5SO6Yp2blUte2H9SEqrBW++XuH8z0qcv1CmvmBhW4bT76rz0qfv8/SZOsOVzvNgjGlfn9x1pJic7CmmyKeTxeNjFKpJtvQUqt1mIKZ9/G9Mx93aWdogYWfAdf1okt3R/DHcJnZbbIp9+L/as4fc8eMDvTbYts2JEyc4ceIEf/7nfw741+sf//jHqfoOTU1NcezYsejniYmJqP/bdkfEkLBuPM/j2rVr3LlzZ0uHqnbTaMHVu4qFLENW8wZUniPjxzkyfhzwF5vq3AOmbwfRo9uTPLg3w8z0LWamb8FPv4+yDOWRUcaCyNGhoxPsG1u7KaTumFKfHKUMKu8PhPVc1TkrrMdQ1ji2clCWwUVHVUWdC0XcZ2JiESk3SG9liCQZL6j6Su+Dyiy+SFZyv7TU4Otf/RYXz/lCd/yRI3zm5Y9yYH85U+Sr3ZagV0rULLu9XtdcvFDh/LkKly8WaTUUpaLLmTMLnH26xunTCxTyscXc6FiGKOzQrdpem/SnGBzt95vIgptxv+B3o84YlYFgyGuWCJgB11HgrjJstVucRdV3Bg4dQgfenUGnu8dQqVTixRdfTPUYvXxHgywC0yBiSFgX4VDVQ4cObelQ1W7m6nBtRqW+rkdl8z2u6EopRvbsY2TPPh5/8iwAzUaDmekp7t6e5O7MJNN3pqhV56lVL/LOmxcBsCybg0eOMnZkPBBIxyiW2gbLzOX2ymBywVyyFBgMBe1itNeuDvOfYPzZhk+6Y1tfzBCJrmgmmAlSDl3mjsguqwKDdYap8eCX+WdNqdkJxNfVKzf46he/Tm2+jmVbvPix5/nAB57OFIUygXBL0jTywX2b18+XOXeuzJW3h/A8xd4Rhxeem+PsMzUef2yRFXV0t3ZWBmW0Lxgjn1r77zFyrUUKKubyMgZCo3QscpX4OTsqWxdsWF8kah3zycKJ9axROt8TpVATE6gDBzLteyuYn59P5N1cjYmJCW7evBn9PDk5GRm5tzsihlKyU1Twemk2m1y+fJlms9n3oaod4f7U28LULNx90N5exYIlyxbsKHWkMFbQTToF+UKBiRMnmXj8pN/t2Rge3p/l7uFDQ4cAACAASURBVK1Jpm/d5O6tSR7ev8edyRvcmWw3hRzZs5dD48c4dGycgxMT7D3YuynkSijLw8vw16sw5Cwng8E6HNAaLvDLTc3dnXzDEIYfmXEDr024snd6NlTMbwN+H6MwdqLxW22HP/eqDuvG7x9kVhko69NoNHnta9/m/E8uAXBk/BAvvfIxDu0fydT4EQx5nBUjWMbA7dt5zp8rc/5cmcmbvtn2yJEmn/rUQ97zVJVHji2lTyEahdfokvCxrtcQe8WiOwWvmKd8X5sKexd1RxZN7LVVHVknYxQ43am+hO8tE4iorJEoL7uI8ozGW2Vi/apojTpxArXNZnz1Y0jrc889x1tvvcXVq1cZHx/nr//6r/mrv/qrPh3h1iJiSEhFOFT1+vXrnDp1ikOHDvVVIOqgj0mWx2w5cPW2orbYebuJRdCXLdjgr+W54ILftf5FfXBiHoO2gMJfPHKxJVop9u4/yN79B3nXM35TyMbiYtt3dGuSmTu3qM49oFp9wFuX/aaQuVyesaPjjI1P+P8fnaDQq9rDmKDzdY+nscYps/DQlpM+FbeOFJU2K3mSwqVZReeT2IKLAhuXcHK919FhMIpxxNIaMfOyaR9v+Pi9Kt1uXJvk1S98nfmHVbSl+dDPPcdzL7ybvPZI0nto2TMyhpxqLrvd8+Da1aFIAM3O5lAKTjy6xOd/6R7PPFNn7EALy13HtPpgYdcp+1hFRule+1VxIdWZLvWfWChGzHJDczz/136ZIiEbiSjA6PiuVjLHdR93dk/Uega1ksuhTp5E9fHD32bRDzFk2zZ/9md/xksvvYTruvzar/0aZ86c6dMRbi0ihoTExIeqPv/889gbUDmhtcZ13dTptvk6XLujcFJ+mF8tLQad9oAOFREIKE8vF1Cxu4CCYqHI8ROPcfzEYwC4yuPBg2mmb09x99YU01M3qT58yNS1q0xduxrtZu/+A744Gj/G2NFx9u7fjyqQOi0GkNOuPw00JdkHtPriK4s/yKxpdo5FpZZNOzdYyglmsvXqWwStZpNv/eN3+OkPX0cBY4fHeOlzn2Ds4F5fuBnVFs0qVNKrR6S0MdgxIdRqKd68XOT8uTIXXi9TrVrYtuGJJxb5xKce8vQzdUZG/NdDu/60+kzE/EGpP0S46zA7e2r19FT8wwNxoW5i3agDYbXS/k38tfUfRKEwDc+PHAYzwjDxINjq71PX05isQqhY9IXQABSGZKEfYgjg5Zdf5uWXX+7DEQ0WIoZSshvTZL2Gqm4UlmWlbrx4+x7cvpf+dYmGrKbdLuE4jvDaHBdSOmdQlsW+saPsGzvKk+/2m0Iu1GvcnbrJ9K1JZm5NMXvnNg9nZnk4M8ubP/0JKCiUhxgbH+fQxDEOjU9wcPwodtAUcuVovyFnuX4KJCVZB7R2mp3TnV8VpJmyiK+Vo1Btbt28zat/+zUePphDa83zL76f5z70XvKWwsLB0N1du/1D22UTOKWCQ7Rx0MqltpDj0uslXj9f4o1LRRoNzdCQy5NnFjh7ts6TT9UZGornmMByTcYhrSybVm9MshRiZJT2Mo64WEdDwzVFVJyoTUG4MdAyQao7bvbv3knwi7adzb859ETZOrqfMYGSMiYSVj0ZHkY9+igq5eiLQWJ+fp6JiYmtPoyBRcRQBpRSfevmOeisNFR1owgjQ0lwXLh2WzG/kGE/uWxDVtNOqY+2U0B+ZQFVKlc48cSTnHjiSSBoCnn3DtNTk8zcneTOrZss1GrcuPION668EzymYt/BMcYmJjg0fowDR45QLFfACi72ysO2g/npQeVRexhrvDpsuWE2H5mdUz7PdUSSkpqde2EH/Y5WotVq8e1vfJ+ffP9nGGM4MLaflz7/KcYO7cc2Hpq1RZ+K/Ruut7X7houvl3n9fIm33yzieTAy6vLsczWeeWaBx55YpB1A1bFp9mB5TjDg06JzFTaxFGCP89g1rT66eYVBrZ13WofZuYcAS8V6RJTRfiowSQ6tK6WtjJ8O1FFarf276L6x0xZJsEAoeXv2wcSxbf9BuF6vr9tAvZMRMST0ZK2hqhtF0pEctUXfH9TKMmTVzjhkNeOU+izdpG3bZuzoBIdPTOBp/xNsfX6e6alJ7k7d5O7UFPem73Dv7jT37k5z6cc/wngehaEiYxMTHJ4YZ+z4YQ4cOYytc/GjaX/bY13x02It/GSVjj5gL/NyxMzOUdQrQWRmxecbiZnUzuE1/Uy3p+7w6t/+A/fvPUBrzQc+9D6e/8j7sSwdVLglX6CNgbvTNhfOFbl0rsDN637K5OBYi49/8iFPn13gkeONVTVJVOqvV17a23PZwrBG8KOrUY4fGUHpjqiJpxTK0hh02+Nj4h4f/IqxTJPf1yeicLOX7BujUY2sg1rVqhPrexE3mpvDR1AHD2XY8eBRq9U6SuuFTkQMCR0kHaq6USRJk03fg9szKlqGI29J6BuIDM4dtk+0BcZOXOsSsRVT6tv7DH5WisroKJXRUU495RsWnVaLmdu3uDs16Yukmzep16pMXrnMzatvwDf987lvbIyxiXHGJsY5ND5OeYULYjigFXp5qFYTc/7kd6U83+gcrr8dZUfRP11RI0M+c/8gzzdZrxCFchyH737zB/zwOz/BGMP+A/v4+c99gsNHD/nNEBMOSzUGblzLc+FckdfPFZm9a6PxOH6iwWc/f5+nzy5w6FAr0TFnHtKqAEejXbcrbxT7vXLRFihr+bk0nkZ5BPPq/JDI8pcnlpaKv15GQbO3CX1N1iOiYF2DWtczsR6l8CYegT2D0TOtH1Sr1b54hnYqIoYysFPTZGmGqm4Uq6XJXBeu3YK5aueVsWeFGJ2iR+cNRiuMS1Rqr7rvpYh9Hvcv/UYbTC59WgwFOpdhSj3JGzDauRxHHjnOkUeOA+C6LeYfTnP3zhR3J6e4OzXFg5lZZm7fZub2bS784IcAlIeHfXE0Ps6hiXH2HTpEQSssvd5miN3jQjoN592PHUZIfJGpO7MbqmPDYOQF0UoddbFe4aju3pnhK//f15iduYdSivd/8Fk++HMfwLZtLLP2CBHHgbcvD3HhfJEL54vU5i20Njz+xBIf/9h9nn5mgdE96dKIlgnmqWVAtRRqjfSxobeBOt4VusMB1f3y9HpMT6EaRCX3oUZSqv3H0i4EM51T7KN0XrZr5XoGtabyJnVj2XjHH4Xyzkop9ctAvVMRMSRkGqq6UayUJltYhKtTisbyyuW1HzOc/B6vDDM9FuwYBtC2L6Di1WLtUvvAe9O2FuAB4d11TvlRneV2nJUxQSouQyTJUgaV9xjZv5fRg/t4/JlngKAp5K3b3J2a4u7kJHenblGvVrl66Q2uXnoDMORti7Gjhzg0ftT/mjhKMcHUbV/MrKcZYlwYdM4Ia0f0/Bs81a4Ms3DRKj7Jvh3NcF2X73/rB/zw2z/C8zz27NvLz7/yCY5OHAFlgm2dnkbjxUXF5YtFLpwr8sbFIRpLmnzB48kzSzx1doEzpxeolDO8AQE785BWg2ol8+mY8A0Z3YBfubXertA9NW1bTHXq1sCFFs4nsyAYrBcIKdWu/ArNzSZ4nkr5pm4DpqWWeaIS462jm3W+gHfiJBQ2xxawmVSr1Q0tftnuiBjaxQziUNVeYmjmPkxOq9TR7jAtlroUPYzq9PqUHQmqzrhSdGi2QdmK7ut4z35Fwb7CW1QejFZ+OkOReAGzLBcsj16tcfKFAuOPnmD80RPBcRsezt7j7tQUM5NT3Ju6wcN797hzY5I7Nyaj7Ub27uHQxDhj40f86NHBAx3tDtIOS41jk6w7cy/8KFRoQ25jgNm7s7z6t3/PzPQsAO9+7t18+OMfJJfL4QURLBR4fntmQFGd01w8X+TCuSGuvFnAdRWVYY93v2+BM88s8dgTS9i2h42DFQx4TfOcFWB7GYe0GtCtQCAkubvnoWPvWeOuw+OzrqhMl4iKi6Z4SlvFxVWwYxVEk3TMMxWL2GICz1PYUiEMVZnguXoWqftrhJTKeMdPwoAMW+034hlanZ35qm8wWy0Y+sEgDlUF3+MSpsk8D67fhgdzm2h2jvoOpWe1fa7Yrwg/LWbsQOzFr+NdxUHLhZTxxZcOj1ZFn7hXWrGVUuw9eIADB/djPfskClhaXOTu1G2mJ6eYnrrFzK3bzD94yPyDh7x1/gIAuXyOsfGjjB09wtGJwxwZH8Pu1RRyDXJm5e7Mq7FaFMrzPH70nR/z3W9+H8/1GNkzwqdf+SQTx8dj27Znk81M21w4P8TFc0VuXPXf9/sPOnz4YzWeOrvEIyeahLpPGYKRHAo3uFwawjiW6sw2xV+r4MW0jRttAwlL3wFchXbS+V2iPkOhaThLespbp8fHy+7x6T2o1XRl9MIfgrhuTEj5Z9ftHEUSF1KhT0pFD/v/s/fmMZKc6Znf7/siMuvoOrqq667qu9nNbrLJJilyLnJmRHI4JGdmtTLWgOQ1du1drCCsZXiNlWEYXksyYNjCSsZqARveBexdATas0czI2iE5FzUHZ6jhjEZDNu+eaTb7rLuqu6orq+vKjO/1H19cmZWZlRHZR1UzHqLYecQXERkZGd8T7/u872MfGKCzC9l7ALaJndCtwMrKCrsaiPh+VJGRoY8YtqupaoAgMrS6ZtNia0lNVpVPStKInd2UYmdF3bL5utusJ7Auu5CXEymF2M7XSmGM479v8IxGE7e9D2/CQ325ozwcJ2guKLS2tbP3yCH2HTmEIIgRrs3OMTMxycz4JDPjExQWrzNx4SJTFy7wtr/unr5ehsZGGBwdZnB0hJ6+3po3Co2apdYdW+W9q3PX+KuXvsvM5CwAJx++j8ef+lRI7rUYHIqMX7YC6PfeamNuxl72Rvdt8MwXlzjxwCqDQ6VN+1ZLW6Ri/6/8juLLuMrzmz+Wh/lUnYEKAQ90Scqpk8iWBEMQXzRsnyWGaVLj00RXaDEalbYZYjXyF7MiqaqTiumnpH8AGRxNt+0dBBG5IzrQnYKMDH2EsLCwwJkzZ7adqWocWmuuLsDcdTDG7yGs4sEOFUgMNk0OSmNJSYrb0rQESrl+2XzigekF1kob3wJkiw34kPBPyGsPtMHz75qrQkPP0DC9Q8OcePgRANZuFJi7cpnZqSlmrkwyNz3Nwvw1Fuav8f6b7wLQ2tbK4OgwQ6PDDI4OMzAyRL6lpamSe9sLevM3aozh9M/e4ic//CleyaOzu4Onnn+S/Yf2AVYAffkDlzPv5DnzTitLiw5Kw6F71vnEEzYCtLunejpF/Oq4NKm8yBOtdnVZGJGocvyVB454UG3OCkVqFWkj/6EpWWsN+9OIEeJGiJRJ0MenGprR+DRh1Ap+xVjK/ZbBMaT39lbM3gmIyF1Z9HMzkZGhFNhpabKNjQ3Onj3L+vr6TTdVvZkwBqZnW5i/BsPD5ZqcysdxKAUqJ1g79VhnWmXnAVHEO6+UEakwqpOWQKVNxblU9RfbcptNGrQ22gxRYoJmVwwdHa10HD/KweNHAStUnp+eYXp80qbYJiZZXipw8dxFLp27aLepFP0DvYyMDTM0NsTgyDC7d3f5jQYJU14VMZAQOfF8k9ZyLFxd4Lvf+D6TV6YAOPHgcT799ONAK++cznPm7RY+eC/P+qoilxeOnVjjvgdWufe+Ndrat/r86Uv9w31Oo4eSBrpRx4TLUWrO/zxFm9pSrkI5VchBLKoYyGysvYVNi+HZoJJdSvlO7g2cK37FWCoyIn40KXUjxiYqxpTGjO6Hzt3pxu9Q7LS563YiI0N3MW61qerNxPo6nL+kWFxyEUlYsRN0kxao8FIIUe2SGa8WUwhKbx6jqSwXby4tlqYBI0A9g9atYA1avYaJUBy5GmJnx3HC6rMAhetLNq02Yf+uTU8zPzPL/Mwsb7/+FgBtu9oZGh1maGyE4bFh+oYGyOVyoQ4n6LzsUkRU4JYuiGhEDG/9/G1ee+U1SsUS7Z3tfOKJz7G2epQv//tWzp/N45Wgo6PEyVMr3PfAGkeOrZHLbdr9qmimOg5ss8o0Y5VPhFJFVoTQZsKIwVU1LulxnU38eUmjjBflUYOVbjJeLb85USgr0PbEkii/LKy8tJ7a53lQMZZSmyRNONbj5jBjh6Bte94U3gqUSqVb4iV5NyE7OncpAlPVjo6OW2aqerOwsAiXJxSeF2iGGptQAlIiabU6QVTHZztS5Ya+8nLrOLZgBRPJEuJl9sHqbMm9P4H4y6Utm1dKIC+pDFpd5aG0l5h8pXGq7+zuorO7i3vuO4qLR6m4wdzUDNPjU0yPTzI9Oc3qjRUunP2QC2c/BCyp6hvsZ2hsmKHREUZGh9jdbcuaw+gUioXFJb73je8xfmmclRsdtLZ9nLW1x/izf9+OiNC7x+OxJ1Y4efIGBw4VsdIIK6KNPLukJiHUIjgqRTNEqOlW39hYhVPyYnHLBDDlWhkRQVcy+loQkllrVPiEWbd7L4pSxYlU2XYqtFViP7OU7Dkmjg7fKLMgqXc4PJVam0S+FbPvMOS2R8HI7cLy8nImnt4C23eG3MbYrtEVuL2mqs1CBManYG4+Op6WDG2dZkir1WkqLZYTPCfGeEJJRv2UnlJADjyjCCqGg8qwWHFLTJOrwiCXchrRB21GXB+UFE051cdEx7lcjpF9Y4zss+aQIsLSwnWmJiaZHp9iZmKKq7PzzExOMzM5zTu8gcLQ0dXB8Ogww2PDFJYKLC/d4N/88beYGh/k+sLDdHUfo2t3N8NjRX71uRscf2CdkZGNMl2S/dTxXGjseXiM/GiQGDSCiFPxPUgU4AjJgJSl9RwMTh19UD1oo9BeuvYEtny9PJW1qc9QzcGqqrdZYxvGdoVutHdR7BzyY0eR2ar2j3ECImU7YStw4q02/IhULS+3YKn2DmTsEHwERcRZ9+mtkZGhuwi321S1GWxswIXLihsVJquNRIbSanXS2nFYsXPKbWqQHEHfuXLdEhUkSmL/SLBNDSU/WaQqshnxiJRYmYcSQAx5t5Q8FUczTvVb9w9SStHdu5vu3t3ce/IEYJtCTk9OMz8+zszEJNMT0ywvLfPB0ge8e/pdXvrKfgpLn2dP/zV69nTz2OM9fOKzRU49Nk/PHgMIOTGpTWVdsULpaueExMQ5lV3OxR+LMhjx+xbFKpiIRaPsz9D4FMq+rz1r1JoG1Zohhtvc6jtvxqIiTMmlTG0l1QfFiZRfMRa/Cyn7rJXEPfaDEwXS2QND+xoji3chsu7TWyMjQ3cB7pSpalosLcGlcSgVfTFxMJErO2HW8iZTCmhJH9Vpqu9Q2lL9NNErsJ8z2F9V7rEWkSefTPkvGGPvmrVj8HyPsHB9wSTsh6IqY1miBFc8v6dOPbFHNSRPqQVoaclz+MAIRw4O+59FuDZ3jddeeY0fvvxDjOkBXA4fO8uJUxPk8xu88wZcubCbodFBxsb6GRkboq+/N2F1pCQ2aY2PzRM1f5Qy01ofKkrxWUTRCMez5M04OhwWpYjKEUSnwnUH3airfD1GTN0boKYsKpq01mjGsT4UaSfZdry5Y+8Q9A2n2/ZdgiwytDUyMpQC2yXicqdNVZNCBCanYGYmdvz862M0ZWik6PkRDj89oez1ULfYxZWEs3lDUR7dIqkIlHIFcVKInWkieqX8SFIaobTjIc7miTI+KXtl7yn//za6gsKSqNjIQGcb6EJCEhXqPCLRcVIKpbGdneODbizf4LVXXuPCBxfYd3AfD338DJOXV3jy+ac4fOwtpiammJmc4frCAoWFq3xgq/rJ53MMjQ4yPDLE8NgQw6ODtLZVvylQYg1pU+mDCHoepRBK43ej1hXkSQUJ082IRw3Vhra/h7IUUay0HgXasRGowCcmWLCJHkCYJsrXjZ/Sa8pjjHTbRmEG90L3nlTbvpuQkaGtkZGhHYrtYKqaBMUiXLyoKCzXX04pjWcktLMQUdZkVSm8LbIKZZYXPonC10mqsC5JVe1RVImm3ObdW2vQuhmC63p4SkjqAxo41Vff5OZKuuB1lG1oqJWHiZUeRYdWyjIXYfdsPwqiKeFQior/RDj73ll++PIPWVtdo6W1hU8/82lEXqa4Ps/s1AP8/d9qt9FDr8i1uVmmJ6aZGp9mcnya64tLXL4wzuULkaXInr7ekBgNjw7R29eDi2xp0lrzWIngphZKk7rpJAJ6QxH3eIl3Xo520KBdykvrxU9PKSk3W42RKExQtWcHxIXMzZS+Y4BS+v5DYSPGVF+Wgxk5CO0ZAYAsTdYIMjK0w7CdTFUbRaEAFy8pig3oTLXWUXMwBTqB2DlueaFcrMA6dh2udW9Z6RtmPcLs5BeYr0o4xddG+rJ5P3qVKpIkaNdDtCT2EHHFpHSqr60PUrFH8S4HofxY+ekpBONHoVZurPDKt77P+V9+CAj7Dx/gyeeeoqOrk7964bsMDF9h4arDxOUcB/atox0YHOpnYKifBx65H4XixvIKUxPT9m98mpmpOa7OX+Pq/DXeffN9ANpac4yNDTAyOsjw6CBDIwO0tDRWVdSUUFrAqdFBe0skseWoohmSOBkJzm/7TrSQE1Ek4u8FY2M3BYFIO0507WtWnBOm0QyWmDebVktz0Nw8ZvQQtCS3i7lbkZGhrZGRoRS4E2my7Wiq2gimZ2BqqnGTVa01nuel9whTybtJh9xLWwJlhDKPsFr7EImaBZXDTioSr0CqMvVU7FZY3ZZKnO2hXFOrtVJd5Cihtdm8Q1sivT4INjc0PHfmA1759vdZW1kj35LnU08/wYkH7wsbMwqKPQOTXF+EM6fz7N+/Zrtnl60VWjs6OXisk0NHjwAKz5SYnZ5jZmKGyfFJZsenKBQKnD93hfPnLgP4TSH3MDI2yMjYIMMjg+zu6Sr7XYn/edMayzpicEg3lpJCJ4jKRC0EoCl/MsGW3YeprZiQuSxvGn+NUKcjolAelgUGHbN9MbPyn8dfi4vNMdKUrQct7ZYIuQ02l/qIIHOs3xoZGUoJpdRta2++XU1V66FUgkuX4PpSsslWaw2Oh6S4ljUldk4hsA5TQnllewCZze9v3klCs0ilBXJ2Qd8LNCJRvi6qOokSHMeAW77BRj62wpbNp2oOSPqmhJVjV1dW+dF3XuGD988CMHZwL08+/zRduze7aufy6xw9tsa7b+b5/K9t/pzxp0HPKe24DI0OMzw6xKOP3QcIS9cLTI5PMzU5y9T4tCVLM1eZmbnK6dfPANC+q42RUUuORkcGGRnuQeUcrDGMJY+N6oVc46FTdrJWxeS9dIyxAmox1pYjlc5GaL4ZYlDpFiNOgeYsJFJlrwUbxvYvoiIahV2w7HuW4H/RaqW9Exk5eFebraZFoVBg3759d3o3tjUyMrSNsd1NVWthZQXOn1dsJM0qKHBbdYXIt8GhaT3CaMLYNSjVTzLUjxqFprBVshNVpzCJ7sp1ziBKUCa8nybSegCxV+MzSH19UH1ov+Q+zdhKw9MLZ8/zg299j5XlFdycy6eeeoL7Hz5ZNdIZeJPd/9Aaf/n/djE17jKytzFhlPVEi9KAXd2ddHV3cu999wBQLBaZmZqzBGlihqmJGVZurHLu7EXOnb2AxuBoxcBQH6Njg5YkjQ7S2d1RdhxCbhjTReXFs99CKPYP4lxbHEERS4RSkBEBMI7tP5RKm6RsH5/UqS3VeP+hatsuggrbasSiURXPIdAFxoZ39SF9Y43dEXwEkaXJtkZGhrYpdoKpajXMzsLERJQWC4pa7O6XT9D27s6/1ClQOasPkoSCy6Y8wnJNlOqnEFijUhq0KuysmxM8pfDt0CsgGKMrSIVdKKcMWns2haEUQe2XChvVqXBWr/QKc/0y8lTyjZi2aH1tnR+9/Aq/fMe2gRjZN8qTX3ia3b3V/aFcIm+yEw+s8fUvd/HO6VZG9m6hwgdcLAGrNzPncjnG9o0wts9aiogIiwvWUmRqYpLpiVnmZq8xPTnH9OQcr2NL1zq7dkXRo7FBBgb3hAUMSiCnNmJfT5hDCrergv9XfH/KCNozfgoprstpRC8EpgjapCNCYdVWWsd63xIk1diggWTabe8ZRXYPpBr7UUFGhrZGRoZS4lalyXaKqWolPM+mxRYXy6/E8R44ta7SyrFhD/H8YHgpShuFHWqDYEeQSvKTFarZsvnEA5vsWdSEQWuahpEC5LUB7fnHSdXozlxlfzHkQo8S7U/wligpkbAcXIXzekSipEIfdOnDi/zgm99jeWkZx3X4xK9+igcfPVVD97ZZl9S+Szh0dIN3T7fyzJeW6+x2+iaMKOjr7WCw9zAPPHAYgPX1DaYmZ5kcn2FyYobJiVkKSzf45dJ5fnnmPACO6zA03M/Y6AD7xnoZGe2no6P27zY4VmW6G1FoY2JVX1UGVTjWBy0mxGB7JniCUhoCx/oG3OqBqIljGjSjTYKoYiwNtMb074OOnnTjP0LIyNDWyMjQNsFOMlWtxOqqTYutrycfq93qZCayKKpBoFwssYjl1OKh81DX4b8WlNMrpSAwaE2IZjRJTRm05sT6oSWGkHc8SKFbUdjGgkGX6+h7CMrta30QsSXo2K7OG2slfvz9H/He6XcAxdDIME998XP09PVWda2vp0s6+dAaf/lnXUxNuIyMVUuVpddDVRN3g20KeeDgGAcORpYiV+cXmZyYYWJ8hsnxGa5eXWDqyhTTV8b5uT+up6eLkdEBRsfsX39/T83orjLgbGXLUam/ARuGMr5YGQPa2N+FU1lCWam/IUypSlGDMYhW9rUk6blmHOvBVoylJWGOixk6BK2Z31YjWF5epqtrsx4vQ4SMDG0D7CRT1UrMz8P4uEp0DQV/LnVubooqbk1UjUTZajGbEoiLnYPIhg5SUfF1+pOPUUBOparcSt2zCLGRrzTbxOCkdKp3mrDksIanduyVi+N8/6XvULhewHFcHvv0Jzj18Ues5UrFOEFwxPYAsl5v2o8C+pEm0dx7ch3954p33mhlZOwGlkarcLtuytL3JMJwmgWwFQAAIABJREFUpRR9/T309ffwwKl7EYTSyg2mJ6eZGJ9lYmKWyck5FhaWWFhY4r13zwGQy+cYGeln1CdII6MDtLW1+LYc6arNKv3JRILIUNmHI05WwlNJxBcrl2IO9VLuVh9vbuqTqjDu59mIkD2/dBQZaiQaJTTXvyjfaolQriXd+I8gCoVCRoa2wM6ZdbcZbkbUZieZqlbCGLh8Ga5dSxNhSReZQd0EsXOV98JUXsVddLjZnNiuvxVzVmV/ojJBZ7BMi9V/RKVnDe6vEiSXjgg5yqB1Om+yHN6WWptaCPRBxY0NfvKDH/POz98EYGB4kCe/+Ax7BvrqbNf42iJVJocK/jVK0dYJB44Weed0O099adWf+AVHDEoZjPi6nRgBEBE0vkZKBY035aaQKBDyFGlpz3H4yF4OH9lr99UY5uYWLDkan2VifIbFxQKXLk5y6eJkOLq/dzdjI32MjQ4wOjpA357uhq8r1fzJxDTgTQY0bK0R9waLH9OAyMRJVNn6o0EiQVI7ILXYthUCokGhKeuUvdWut3YgQwfByaauJMgiQ1sjO6PuEObm5vjggw8YHR3d9qaqlVhbgwsXFKuryccqR8Ly50TjbnPZPBD1AKqxzfjNcCV5CMhXWcRMKJusyvRQ0SJ+So0ynVQjEISc9qzTfWLE00SJc3mhxmfy8jjfe/Fllhavo7XmVx7/GA9/8tG6HdJzUmq4b9F9p9Z44ctdTE+4DI8VfaF04BEW7A3RZ1DK7/JT+ZkEBwHl4YljJ+u4M32c24YkKopEKRFyNbpRa60ZHNzD4OAeHn7kOADLyytMTswxMTHLxJVZZifnuDq/wNX5Bd56+wMAWlvyjI0OMDJq9Ucjw33Vm0KWqrvGC7L1dUQ0bMRCqElRY9tliMJPMRIlIH7Jv8TP+8rvPZbSC4sw/JRe+26k/6NrttoMSqXSjmjJcieRkaHbjLip6sMPP7ztTVUrce2aYXxcMAa0jt3tAUrpmgQhSIvV0gBVwob8/Yknl1LsTHpfMq1B8ummjLBsvnKzqnx9ErwQC4PovFgDz+AOGrBN6YjpoezCYRbDn3Acp0RJfOV5AhZlew+ls4pQGFw8SqUNfvbD13jrZ6cREfYM9PH03/k8fYP1qnyEvFXfNry9Ew+u89JXhHdP59k3uppKHyS+yDpspKgIxeD2fVXxXQUHRiOA40fArFs94fGHeHUeZZqojo52jh7bz7Gj+3FKBuOVmJ6+ysTkHOMTNr22VFjh3Plxzp0f98crBvp7bOTIT7Ht7uhG16i2jP9mqr7fjFErNNV/CPH9zbaMAFVGo+xr0j2I9Iyk2/ZHHLerH95OR0aGUiJpJGenmapWQkS4ckWYn68IdZQts/lCqVRQyq2tXVikw/VvEMsd2e0YjYhBKceSmbSRJDelJiml2zw0UeYP5U71ZW9WM0vw75axU7TKGTw0JXHLPnFAnMJMnopTJUHj4eKV3c03SqICbdH0xBTff/FlFq5eQ2vNI598jF954mN1o0Fp01O7OoSDRzc4czrP819MfpFXgCvpmiEKfhrRN4CTTURM/OhU7CSPQYugxUMchdI5RvYOMzI2zKP+N3r9+rKvOZplfHyW6Zl5ZmavMTN7jdff+AUY2NXWyujoAGMjA4wO9zM81EcuZy/jZR2oK3ETXOObqhhLS8KUQnr3Ih2Z2Woz2IooZ8jI0G3BTjNVrcT6unDhgmFlJcXkoxRGNFDdkqPaGh00YgxOi70T1zGvsng1TCWJCrd5p8rm06bxAmF3Gqd67dlO1AHDqUCU+GETx8lhtTaV9haxEbGGgjHLBAFNCc9b52ev/pTTP/k5IkJv3x6e/NIzDI4M1d9nCXy+UhwrMZw6dYO//HJ3naqy6mimgzbYdF56Ww7BoVTGkyqd6rt6d9HVe5DjJw8CUCyWmJqcZ+LyLJNXbATpxsoqZ89d4ey5K4DYlNzAHsZGBlhbXWJoeIye7s5oOwKUdLIqsTiCirFmPcbSQDuYvgPQlmldmkFGhBpDRoZSopGTK26qet999+3IPg+Li4ZLlwxeijlAaxeTovxKuwpPGzxR1LJ1qnpp9gXW6JhhZExHYntDVR9/R8rmqZNS2xKC6xokrT6I+vqgsIorEs6E7+XwmJue5gcvfodrc1dRSvPAJx7hsU9/kpzrWhVI7Pir2HO73UCgnUxVHgi073vQ8PWvdPPO6TZGxgoNjbVVbum6bysCx/l0k7prTCoSlcu57Bsb5sDQIDxqJ7WFxQITE7OMT84yMTnH7NwCUzNzTM3MMTc3xzu/uExX5y5GRwYYGxlkdHCQwb4eHMeJokZhtqpMXbWJ8ISNGNMkiwXwNKT1GHNymIHDkM/MVpvFysrKjulXdyeRkaFbgJ1qqhqH7XskzM6m6FGjrUAoFRHKCyrvYBJ2sy0jMzUaPFZbo1KWzOAoMEK8MrksCqWqj0/diVrSO9UrBCfnO9UnHgt5q2JNPBYE7a3zt3/9U9547WeIMXT39vDklz7P0JjfxTncUEwI6284JyWMsqobyt+1Q3znzvKfin3i+hVjAO0dHoeOrvPu6Tae+WJhS62Tg4eTMqJj03nVhdJbQQGOKaFTRqJUSZVFVZRS9PZ00dvTxcn7jwC2KeTk1DzjE7P87G9Pg8qzVFhh6RcXOfP+RQBcx2F4yEaPRv30WseuGpOj/2WJZ38P4oCKhSwth4qRKN+YuOznJvgdqVMSoVwbZvAwOJnZ6s1AoVCgo6PjTu/GtkdGhm4ydqKpaiWKRZsWW15OfhHXWodpsURQoPNW42PX0fiFVDuCyaUjm8r1CUkwY1eZM6uSKCyZEZS1QIi9ERQTB40eK1NUTTnVK0HlSqn6HTkY3NT9gwyLs1N8/8Vvc3VmDoAHHnuIxz77OLlc/UkrMIetLpSOkSYVLB3BaqKsF5vE0nn3nVrnP3y5lYnJFkZG/M+k4pM0gPFL9k24riSHzcGgU/cuAldSpuREUKXGnNtbWvIcPDDCwQMj7OnJc/z4cebml5i8PMP4pI0gXb12nSsTs1yZmA3H7e7uZGxkgLGRfsZGBujv85tCKqCChJWV2If/q/6pRZStVlOAq/1+FfHvVKLVVUm9SWsn0n/QlmNmuCnIuk83howMpURlpGenmqpWYmnJ49IlQ7EYpJUan0K0dnwilAxhGXq4Ho1pMLyeVrBs9UEp02J+FMoL+gdVYSa1pn3lxqJQUeipdhQqtuoyfVBCNNM/SHtF3vzJT3j9r3+K8Qxdu7v57BefYXT/3i3HBiataaBF0DUk8Mcf2OCFr8C7p1sZHg28ygK5OKCEHAZBKjRR0fkcP/7hSPGrzcqOVzJCowUc0qXkmjFqBcA4DHR1M3Cym1MnjwKwurrOxNScn1qbZXJ6jsXrBRavF3j3zIcA5HMuI0P9jA4OMDZgo0dtrQmbGopClSR2YMXvRVSnhtTmr0HAtPdCz162DPVlSIRCoZCRoQaQkaGbgJ1qqlqJqakSU1PRxBXduAUCPFU1hSGi0I6L8XRozNooqgmWlVYNRYZ0S3NkJs10E4qz0/CvspRajPHEjtemQyf+fXXOb3JnVGzythO3stwKMYLxPIJ+M8pfsFWbuvqgWhCEwtwsP3zpW8xOTgNw4uEH+ORTnybXQMQzbtKaFJVO95Xo6DQcvMd6lT39hXKvsvr6oMpIlP84eE/ZsnuUYPx0XuXtgAoyQ76oXILvCNB4ViidOA6FddQoJvwBxSCl6q7xbW0tHDk0xpFD1lLEGMPc/IIfObIkaXGxwMWLU1y8MBWO6+vdzehQP2PDA4wOD9DXW7sppEjKsn0/jCfdI9A5mHx8hi2RkaHGkJGhJhCYqq6tre0oU9VKlErCxYtFlpZqXcxUKLgsv06LXwafwyvFlMrBKBX/129k5/NEEVA5rDt3+TAc7SB1NEPKITWZCQXLacamjUI1MVYpsSRKK7wg31aFMRljMEahVB4xHmJAxEPrEiURRARHW0d7Xdb5Ufw1lJdli/F4/29+xt/+6K/xSh4d3Z189vnPsffQgS33udKkNQlsVKYxwfH9p9b4+p93MT3pMjxqSbwW45fsp9NiVas2q1xT1NwxqtIzEPYusrEsJza28jsLE6nR60Zwgj48SXddsF2hvcZIVFCBNjiwh0dOHQejWV68wcTULBNTs4xPzTI1c5X5a4vMX1vkrfdjTSGHBxjxCdLIoN8U0jRRMYbC9OyD9p0ZSd8JyMhQY8jIUEoYY3j99dc5ePDgjjJVrcTysuHChQ2KKaQRWucwpvYpVK0Bo3g+IdJQzZJJAVoUUvTCkvpYJB3lgKTUB6W18tiqE3Xdsc2U3G9pyRGQID+u4fd00lqjlcF1BCM5RAQxxpIiI4RxEKXQPjtVOpi2hcL8VV596SVmJqx1xPEHT/KJpz5tG4SGOqiKSqTg85K+gSMJSdSJB9fDVNnQaIEckj4V2JQtR1B2v3m/wzN40y5JSKS0p9DiRVfj8IS3FBVRkVYn4E+BzYURpETqtJp4NqLT0d7GscP7OXZ4P2CtgmbmrjHuk6OJqVmWllc4d3GccxdjTSF7exkb6Gd0qJ/RoQF6ujsbvxZqF9N7EFoyce+tRKYZagwZGUoJx3H42Mc+tmNTYgAzMyUmJ0uJo/LKZwfGpPjsW/iS2Uu8xvOkzJFeIGrAWCFBiTdyLHOrJxIvq1xd5ULt3Q08zdKkxZopuXcMdXgmcSJkSVD0jqs9tLadqLXfZdHxBalGjE+OxOppAkZqbAXh2Tfe4PVXfohXKrGrs4NPP/c59t9zGKjV5SAiRVoMLgaUjjRQZYTWErEgLlL2eTE4eIkExx2dhkNHN3j3dAvPPb+I1ukIgUN6Y1qAHBsphdLWYF6byhPafzM4n+Prjp9Oxv4pbbU5ovHdhqNvJRKTByTKEPiBifE1PlXgOA4jQ/2MDPXz2EP3AXC9sMzE1FwYPZqevsbM7FVmZq/y+ru2q/6utlZGhwZsam2wn+GBqClk+QZaMHsOQW5ndeDficjIUGPIyFATcBxnR7Y69zybFrt+PfnkobVGJO87iycc6zZmjaG1xsTudBv1CLN3zRWTrGPTYtUkSL4MChW/c/clG0qBOKQnM6lL7sUfW3OBKtGg6L2cExCK6tvWyq8Y8nlsoM1anL/Ka994iclLlwG4577jfPzpz7Krox1jTB3Sb7cTWlTEXvN3sObnCFJFWgwag+20rcJAShB9qvcLO3lqjRf+vIOZKYfh0WTn8yZbjoSo50/WwMZxPKlprbHlcKNQG7DJTDVeUVdxYxCdJsZ6jImvQwvCrvikX4I+Xcp/btfV3dVFd1cnJ+45CJ6iuF5kanaeiZk5Gz2anuXG6hpnL1zm7AV7HmmlGOrfY8nR0ACjQ/109w5aIpSZrd4WLC8vs3///ju9G9se2dn4EcPKiuHChSLr68lJnFL102K1xwFO49YYcTKkXD+6kgJbdZMObKQ2RYyUFTuLUlXDIUpFOqj4ULs6hcr70a+EGlqFoPJC7YBb7WiQQsg5yZ3qFYozb5zm59/7HsWNdTq6Onni2ac5eOwejPF8Q3ETfR9+Kg7wCVJk0pp0ywAOglZepL+J3gJUeM54OJTFO8SKlU8+sMKLX+nk7dPtDI0UKCcA9WKB6XVNdr+DLtrJoQQcz6S3t6jiWN/4YMp7AFWcxyrYwfjxU/HBCjzLkHItOfbtHWLv3uHw7YXrBSamZ0NyNDt/jcnZeSZn5+HN9yHXQmf/Xkb37mV0dJSxsTEGBwd3XFf+nYRCoZA51jeAjAw1gaj0fGdgbq7IxMQ6oIhu9P17SAk+j33VGMpy/1q3pEqLad+lPslR0lrheeaOls3XGytSroOKj1U5W1kTmaxGN946nrPwh9v0kQKM9SarvsU60SCsPkiX6kRhqmP5+nVe/cY3mTx/HhAOnzjGE88+TZtfCBBEg8QXYFtCJCExEuPhSgnjKJSQOGWcxK3eIop3OMqg8djVBQfv2eDt02089YXlmnqVINKkRKEw5PDPS3FiqdVAT1Xb4ysUeFfmahv9BKJwSh7JfhExFLUlMqmIkGrSYyzWkTp2LsdT0709HfT2dHDy+CEA1jc2mJyeZ3x6lolr64xfW2FpeZmlM2c4c+YMAK7rMjw8HJKjkZGRrEngTUSWJmsMGRn6CMAY4dKldRYWggt4/GIYPY5fI4M5xXE0xuQA42syVNny9ZzqG02LVUJrjeeUmvMISzyyuShUzZL7KANh+89VhpKw2iLj6miny1zqxZIgsZ5tSktMRAtaezi6RFnr7C0gIpx96x3+5q/+iuL6Kq3tbTzx7NMcOXFv9c8WE2aHrxkPZTZsRMcYBFtUICJox7GZuJrkKLlbfXysiyVCAe4/tcrXv9LNzJTL0Eh1khLFlARHlcqiUFH8qFyjFg+I2DYFgitFP5XqBG+gQh1U/c+jjUJ7tdsF1EVlRKfy7a0ITsOu8TWGp4xGteTzHNw3yoH7P4a09yEiXL16lfHxcSYmJpiYmGB+fp4rV65w5cqVcNzu3bsZGxsLCVJ/f/+O1mfeSWRkqDFkZOgux+qqx4UL66ytpdEHuXhe5IhtUX4xreVUr7Vj+w9V0+PEpo3KS7NyQLdpSispbEDSGrTShManmbHiV7hVjlUKI4J4BhNaH1itj5ggOmK9yXAUHrlwkiuf1oNIUrTBG4UCr37z24x/8AEKw8Fj9/Dp5z5He8euhnfbxViBdqxLcBA98owBEYxI1dSaq1QTVVvVU3L3PbjGC1+1XmU2VVYdSYTSatMTCf3JBOq60wevBVxPKdDGQ5tAXO7Tr0aJiVFY7lh7eQkq0Kq9Z1L2AApQo39RY9CY3QegtRuw50JfXx99fX2cOnUKgNXV1ZAYjY+PMzU1xeLiIouLi7z77rsA5PN5hoeHQ4I0OjpKW1vmW9YIMjLUGDIy1AS2ezn91atFrlzZSOzzBaB1umqxwJfMM7Unimp7oxRhd2aNQjy/tD6U3tQmUJC+bB7l24Dc7pJ7sGmxKtGvoBTeiE3XbFq9ElzXo9xsvkwySxk1ErvOD999n5+8/DKltRXyrS08/vmnOXL/CXQsjRlFOSrXYh+7lFBV4m6V0aN4ai2IGjl4QIkSCq1tU0jV4N1+PUuPzi7DoXs2eOd0K08/X82rTHCbEEqn8yeTsALR8Y1axYm/C/HvJ0IgIPfvHAx+9aTt6RXmaCs+o4ipzoWacY0HJEjLpYHOYXoOQa5+/7W2tjaOHDnCkSPWb80Yw9zcXBg9Gh8fZ3FxkUuXLnHp0qVw3MGDB/nN3/zNdPv2EcLS0lKmGWoAGRm6C2GMcOXKBlevJr8Dj8rm06W3UvmSYQXLgcmqwsGU2FRav3lfsZVTfjPkSqf6ei71ENcHJd7dpkrutQLJ2cxFHHESBFQlQkoL2vUSHeKV5WVe+/Z3uPTLX6Ax7D1yiE8//3k6uuzdYqCU8bcQ31p878hRwtjyo6pLxdNEStnO2FprX2ejUGIwnoMEqT8E/NSa4+ia5CjoXVQPQapsdtplcDiK/ihsJ+xmhNLN+JM1ZNRa9l0GNwACnrLRJB17r9pA8aM/rgPaL5vH6oMwEt20JUmRCVC031kqOK2Y3sPgJPdm1FozODjI4OAgjzzyCGCjG5OTkyFBmpqayiJDDWJ5eZnu7u47vRvbHhkZusuwvm64cGGNlTRpJuUiku6USOtLFkZX4lojrTHVOjJWjtUgrj8FV/m4tQgUypKK4OwP5qqgrHhzVVPFOoIu1qlIlGCqlOtvGQ0CHMfYxjQJtnv+/TO89u3vsL56g5YWl088/avce+qBRFFNje3MHGGzmWrweiWCiI6VS+VQrk8SiHodGWNsib8R8Eo2jaQ1jrKTcSOu71GqrJXB4eVw2zaSlTwyKvh+bmmF0jRh1AqbHOurIyL/ojxbFKH886Pk3yhUFmkF6bRAdxYQ2/hNgyc+EUqpL8p3ILsP3VSz1Y6ODo4ePcrRo9ZvzfM81tbWbtr672asra1lxLEBZGSoCWy3NNnCwgZXrmzgeeI3sE0w4ekcpnZzm5pQSoFyMClCJLU0PpYMbSFGTanTEfHH+lGohvYzprnReRvRKWsmKCpm0UB1slJDH9RINCjSBzU+Oa2trPDad17m/Pvv22jQwX185gvP0rk72R2ig/G9tlJECjE+iYqOVQBBhQ0CtT9pBqk1K8gWjCkiYvBEsVEUlJ9CVTo+gdu1dnYZDhzZ4O032njquWUc6vmT1Yf42qT0abUmjVobdKyvGOaTHBsRqkkAgwMX8vHyaCpGoQywqYFlbGl/W8Gqwi2JQEsP0r2vpn7pZsFxHHbtalzn9lFHJj7fGhkZugsgIoyPrzI3V03XEIXJVSj6jNzoN3eTLqujqQulbWlymlxRvR5AdY1aVZO2GilK7kNPtZyyLVYqdq1mBAr/SCqBnH2iPaslsQXe4vfw2dw3KFpRNX1QfVz85Vl+/K1vs3pjmda8w8eefJITj5xKTN5zeL4+KA0R8nDxqH50qiPQHbla+2TCRTu+T51je08ZJOyWXVm1dt+pDV78aidz0y4jwxsIOrohCBpRBpV6obB/s/A8R9KS/wiOiE8eU6AZx3qxbQMISt/TbD6oGKv+LhCcz7FtxIKcsmsI2TWcatsZbg2CG4wMWyMjQzscGxuGCxducONGrbvYmG4mvK0Lqoy030RRKO8uGCdKETkKNDjK76IokiaSxKa0WCUc7WCq3BkrvfXYWgg1PolH2rEml2xMKF/SIDk/cuR/JDGCGK8sGkSQvotxUa0NuMEkDvG9r1Y8tLa6yk//6ruce+cdQBjbN8pnv/QcXT27k+08PiFIOam6TaSXopRcLFKmFTk3qmoMhdmxqjUR4d6Ty3zjq7t4540cw1+w/bSiUyUUklXQnwCCFkGrIiI2wRYMj1zpg4iKqXrL4EggEk8BAb1BMl1PDKYEyhdap0KpCaG1UpiOvdC6J934DLcc2y2LsR2RkaEmcKdPsKWlIhcvrlCq4S9UG+JXi9UiM/69c0U5vYj4hCiHVOiDKh3qY6sJy+kNAvmtp9hqkSGVa6Jsvhmn+mZK7l1fHxRDXW2QRJxHO4LtaqBi/LViXYQcivEPz/HqN7/J6nIBx3X45FNPcP+jj8TOUYGqU3g5Ip1NGogfTUpHCKKUXG3UqloTY9jTtcGBQ6u8/UYbT35+EaDhqjVHrMmrQpUFOoPDLuGRhiBMFx5NwZrTQkxgXpY/ImjoWLWZo6fQJUnNY/C0NTZO0GsqhICkSMuF0A6m8yDks9Lt7YiNjQ3y+eQi9o8iMjK0AyEiTE2tMT29nnisnRtTdpOu40tWq/FiuF1H7F15bK4rI1CBBYBATmvw7LQigrWoSEtImim538LOo+52K0hUI9qgYDmrLWpoF9lYX+dn3/suv3zzTQCGx4b57K99gd17emt2s46nhOLpD+WntqpTrq32xZDDI127S793UYpoklIKR4GrBYXLw48W+cuvtDE3k2dwuFhWtQabyZEguHg4KdJiwfHLqSJBSwLCtRI7bHEiFcZZLUfyBOupa3Oxlgz7pElCFlwdAnjar8gjuU5HQNKm5QCcPKbrMLiZ2ep2RaFQyLp5N4iMDO0wFIuGixdXKBSSTxyWzOTSmazqdL5kULsTdS0CJUZT2jCIh+3FI4pAwxtO5Do2SQTzhgrvye2CKVNqTfUPCnRJujoRqkWC/CXRLbKp5L4WJi5c4K+/8Q2Wl67jOA6P/erjPPDxR7cQS1b2a7I7k/P7B5mKiTtaYnNyyXJXQYdEKHloQ/nRpLQkykHKxMonT63y9a928/7bnYzttQ0YjViyIH7VmhEJS/rzyqC0YEguMk1r1BrIybUBR+J6sLiXmlQMUNF5Dla0vyEoAVHa6tBU0NZCtuawRjVlzYHbjuk+ZH1vMmxbFAqFrOFig8jIUBO43WmyQsGmxYrF5Bcwrd30ZKZuSq02lAZ0ckKibMteaKmYXmOZBPGqr1PAVqlpS6AiwSdRmXOQvgs0IbHpvqatRgOoLJtvNBoU7lteGtKiFzc2+Nvvf58zb7wOQP/wEE/+nefoHexPvM+Ctcao1kgxWsbuffQ4guuTIa8Giar8OKH2BhVGopqJJlWm1Tq7DAcOr/P26Tae+YIlQ1rZ7t2BIZ8R2yVbmw1LAP3KRROLHoGqS47SNWL0IQkd62OpZ2tjp6Ao9pxRgXWL8ZuWxklUJbWySTopQbxAMFp9Y9cVyXchXQdJYgGT4c5geXk5iww1iIwM7RBMT68wPb0KBNd0eyUzxl68g+qwammq1N2klcKm1FJESHyD1jRw8r7oOMXYytRW/BpfNb1XMVbwS4vZrH+KT+OiKLv7rtQHNR4NCkiUNETApi9f5kcvvUhhcRHHcXjo8U/x8OO/guMk/ykrjPUIS3WkrWFpPX1Q9SSPJRqOT6KsW70TLl+ZwouIqg7fEwx5DKpGWu2Bh9b4+letV1m8AWMARykc5aG0Q9CIJxJlmzC1VoscuXjoBm09Nn16Ub5jfcrUlPE9xiqOrDFms2Yo1uMoPJ6erw+qaRsXMaTgWhL8DEQB+T1Ix1i6fc9w25FFhhpHRoa2OUolw6VLBa5fr30Xujnlr/wOwC7BV6z9viEiyu9BVJs82eUd36A1RUotpUErKtL4JOZRKr1Tvd1ubOwW+qfKCV7n/M9bsoMMxpaDY1vphKtVETkLvoNG9UGlYpGfv/IK7//8bxERegcGePLXvkD/cF/VfdwKkVg5XWrLDcvukyPQB22OGkWoTMpJmN4Tcohfz+XElgyVONx3aoOvf03x1ul2nh4uBPEQIPjcmztKK6VwnHJyFK9asyTJw5ESogXxiYdKoClTQlOO9fXMUhvSDAVC6XqLxQlUxc0AbaNI60Cync5wR1EoFDIrjgaRkaEmcKvTZDduFLlwocDGRtLqHAFcn8xAZRqimkwg+igKpXKAEyNQ1HWnL1uHk1KnE1oXhLeEAAAgAElEQVRjNDE28UiasuSo3Oeq0SApP96xw4zO+Sk6L5ZS8iejeORpZmKCH730AtevXUNrzYOf/CSPfuYTuG66NIWDl7oXTmXpe1LYrs7pqs1U1W2Xp+8E6Og27D+8wVun23jy+Rvhci4GMHixtsyVGqhwLUrQiljVmrGO9cZSGS/okO6fdFoHdiLVTyRlwPEqxekJsJVZqkhtLhQIrdNWjCmNad8P+eQtGjLcWSwvL2dkqEFkZKhJ2FLztDWxtTE7u8rExI1U69Y6ebVY1D8o54+tJFDVzTnjj5UTESYFNk3WQMWwcgVx000TzTjVq5yvLUpDhBx/n1UybRDg9x6Kjg/EUkqxVF6pVOL0qz/knZ/9FBFhd18/n/nCFxnaN2iJWIUXW5wSBOm8cjRX+u6GabE00aRIpJ0G2hdKN4qTD63xwle7wlRZrc8tVR+Xq5002LSackG7+FI4P1pkEPHwjKD88wDACavWFNpTOCZtI0Zs6fsWFV+CVL85E5BSExVjysV0HAI36/a8E5FphhpHRoa2GTzPcOnSMouLacrmbVfCVBof5SCSrDIkIGqhQWupUrBZsQ3sXK+D8LudIf3MhI2mCITG3Fshddk8TfYPio1Nog0C0C42LbbFcvNTk/zwGy+wOD+PUooHPvYJHv7Mp8m3qijdFiq1a60lWkohuCpopKgpX0NQFl67BMltKqIT9OFJd9OgEhIhgPtPrfHi17p493QLe4fXSCvStpGwcmuN4FMopXEcTXAZtVVr1nOt5D92Sh7aeBit7Q0DCh3r/WR/CjWOi2BL3xvQFwU9wMpfVM1VjDmtmF2HwGlJNz7DHUehUGBgIEttNoKMDG0jrK6WOH9+ifX15JOONVlNU+a6VQPG+khi0BroZUwQhcr580Ap9r4P5YEUBe2TjjLDSz89hSJyWWhwf5spmwefgPmC9STRIBFfl7TFYfY8j7de+2ve+smPMcbQ3buHJ57/EiP7RxKbtAYLKwyuL/iNEjW1V1QeFxFcKfrHP/49S8W/1VFZ+p4EtmxfSENkuroNBw9v8N7pPM89n75s301AwqKqNQBBeyWUIxij/W7Zdj+8IKAXNJB0/OMaP5RGoUr++VoWYY31IJJIdG9MRUNH8YXWac1W3Q5k10HL3jPsWCwvL3P48OE7vRs7AtmZ3iRuVprs6tVVrly5saVBaTWkSYtBoBNqTRlJUqQ1aG3EGkNrBxGDmKDSyG5Hu/Y6X9O6zJ/Jy5QkwYShQOVJVeWm/ABAJRFqJBoUCLS34oxXZ6Z59ZsvcnVmBoD7fuUxHvnMZ2ltcywRSgEHg6OSRVWiqjm/B5BSdXRg5VLnIAolKBwp2fRSmBzzI4kN7kWOEs30Hzr1UIGvf7WnZlVZPbh46a01gJx41rEVXVaiH5w3kTA7qloLyZE4tiM1UnZga8ddlTUPzjmIVoin0CVAKT8V6/uW1ajvq4Tke5D2/VsLsjNse2QC6saRkaE7DGOEy5evc+3aWvhauZg5egyBtsdWhdnHzXaTTr7Pt8qgtXz/FJ5nQkdziKIy9RA07a2sRtKugKMwFfNb/HqvkLKZ2gAahWhB5RSeCOI1Hg2CuD6o9jLGGN7+6Wu8+eNX8TyPzt09PPH8Fxnevw/HDSbV5MipUmp9kKZRn63NAmaIzE6r9R+qtH6tTJ/ZJo4pNS5E1WonH/R44Wu7eet0G88MFxoen6OETrl95UfSar6vNQ74lWuWHAn2HBBjMCWguIGHoJX2bzriqbVqsNEzpQRlfH2QDvYnvkzlw+jIB1ElyQ0gbZnZ6t2C5eXlrLS+QWRk6A5iba3EhQuLrK6W37VGBEXKHsffV8oBXF/YbGLWFuVpkEAYHVWCqSYbMDaeFts0NoHGx1avBQ1/mtQH1RkrZXOEYtP873uiGc+PBhlB69hxjmaTUBMVkDHtWiJUDwvzc/zopReYn54C4PjDj/DoZ58i35JD57xU4m4Q8ip9VCWyxkiX3GpEH1QuXI6242DQeP7XoBF/Vi/hoIIUUagui9Zk12D83kf299S927D/0AZvn27nmee3JkPNaps0glOHCFXdprb9k7TWqJIGr4S4GhNEH/2oked/dm1Pvk3kSIyA5zRWMRYT3JdpoVr2IvnMbPVuQkaGGkdGhppE2vL6hYU1Ll++juclvfBW1/hEZGezliNOqGxKTVDKTnblu6/8PkTiNyiMmjk2kxZrxKm+Eo6j7X424VQfWmOk9iazFclivDB9GXzfmyJqsao5kaDnEaEeSoX/s/96nuH9n/8NP3/1FYzx6Ojq5vHnvsjIgYO4jgE3HRHSoT4ozYQeNFKsjN0k2HYTZff1/MkC9VOgm5FN70AO8f+LfhsnH1rnha91MzPdwsBQqWzUv/rDf8sL/993uHRhnNa2Fj7/7Kf4X//1f0tbW3KvrTREKISACiq+AnIUf9u3ERETpdQCyhOk1swG6BQpdgsH03YA3CydcrchK61vHBkZus0QEa5cWWJ+fjXx2GZMVpXPSIKx4quZyyd1ib0XwXa4zoOoqBIM/FBIoC+x0adNaoaUpe9KaUR7SErD5UZ0STW37Qu0PRVFg1SDjSCF6vogCf8H169e5dVvvcjMxDgAxx44xaOffZp8SwtaGzwNyv+erHZWwskxjD7F67/8/XLwcFJ2RiYsu083odZqZtgImvUns3Kujar07eSpVV74WjdvnW7l6eeWw9cFKJY8/pd//T8wOtrPpXMX+J1/8vv87//bn/PP/pt/ZFOgxFsUiP//OC03KBSOpK+0Q0AVVd2KL5ta00E/SJtaE7HRI0/w1g0rN5Zpa2vD86xGC6X8ztlbQOUwbYfBaUu3/xm2NbIO1I0jI0O3ERsbHhcuLHLjRvJJoxmTVVs275Lqbr/CoLXRrsw2kGQFTmUXehUjTzXGgq3m9VJqZZSbvmzejsX2kPGiaFBDwSUFqo4+SER47/W/5fVXf0CpWKS9o5PHn/0Cew8dsYQnH5m0xqNMVCp/qnwHOe35hqORbUWk5gnEs/jS5vISehWKldPB9g+6mY0UG0fQSbvW1xOlytrKyBDAP/8X/zTsP3Rg3wCfe/ZxPjh7kYnxaf7pP/495ueukcu5/O5/91t88e8+6Y+Ks1xFDg9R4OGUHVFCXVl5QrAsNSUKVZTEpe9has1AaaPE5UuX0FqzZ49NcVnvtagzva1yq0KOdJslQpnZ6l2LGzduZJGhBpGRoSbRaJrs+vU1Ll5MkxZrxmS12bL5lGNtRs3eQxv/hU17VmWYArSgcqBdq3/QsbvzRoq5m9UW2bRYsmgQ2EhUva9oaXGBV7/1ItNXLgNw5MT9fPypz9PS1gbKJ0Ip9UE5x7OpzbCWq5FRNtrkiE2rBVN0XA4tVBKqShjyTUV0xCcy6dNqjXTSfuChVV78i27mZhz6By1pmxif5t/+q3/Hj3/0M6Ym59jYKLKxvsHv/Nf/EMdx+J/+5T/n5IPHmJu9xtOf+k958plP0N4eRU8CEqer7ntUBVauygmUTaBEoT3PdqwOi7xiFV9BKFGEqoaoRlG4tsSlixcZGR2ht7dc6xM2hDSyiRwppVC5bmg/ZH+oGe5aGGNw3WyabwTZUboNKBY9CoUNurtbKJVM2d9WjWFtZCaFY3wzJqsVKbVEY0On+hTQQM5XrIhDqWgwpfJqpWhDMQmOllAfFJSER4mNxmIOKi+UMJhSsmhQqA+q8xVNj1/h5a/9GcWNDdrad/Gpzz/P/nuO2Y/sm7SmIUIKIeeUUmmLFAqXEkp5VfRY1VcYrwtTGFw8/3hrP+IUm8y3gNMgkakOq21qNDV18pQlQ2+fbuOpZ5e5dnWB5x//DT7x+EP8wf/8zxgZHcRxNJ974h9w/4NHGRruZ2i4H4D+gV5293Ry7epiSIaqNWJMAm2wHanLQ3hUia8ShlKDtxWYomLy8jhLi9e559gxWlpayseLRA0hg9Sa3wTSGME4PZRyo0jRQykT6o6UUmVtADLsbNwKZ4S7GRkZahKNRIZyOYexseqhSs8rJ0fFYvTY8xyKRaFUEv812ZI82X1KnxaLOlGnSKk56aMyKleuLVJahU3qqiKmT1KA56gyBlYz8hT+K9HsnhM8Y804le9Q3rA+qKV2WixA3+AQ7R2d9A4M8smnn6W1vd3uh2vqRpPqQSuDq0s0HLqKQRDyKawxAprj+GX3kXkqVJnZw2cVdU844uEoQ7xNYORPXx8K6kRkqmN3j02VvfVGG08/W+CVb7/C+vo6/+f//Yfh7/fL/8+L3Fhe4f4HjpWNffP19ykWS4yODQHNNZEE0B5oSZhSjB3a9RtFLpw9R0dHB8fvu9fvOl+NRJU/VmLTeCo/hJMfwgmq1DwPYwJbkaiLtfY7ZmfkaGejamfyDFWRkaE7DMexd3AtDXa897yIGJVK4pOnOGFSlEoOpRINk6cAlfqgJEjtVA/ols0kytFO6Pxed2yDfYsgXnEHoFCO4CmDKQbRIB2Zdvt34WEVWJxIiSVA2jeHDTIata45bi7Hl/7+f2ZTYvgpqpwgKTMUrvLQjkcqsoshf4sqvqqhPE5khdJaGf9cKU+QhRVSROm5iCI5gGejWZQT4UbwwEOrvPQXXVybEXp6u7ixvMo3X/gBx++/h++9/GP+5F/+Ozo6d3Ho8N5wzLWri/wX/+T3+JP/4/dQSjWclqsKEdtAvAFrjVrjF2auM375MvsP7Kerq7vRgfYfBdJyANweIDKgjZOdgBSZeEm/Z4lbQIwycrRzYIzJiFACZGRoh8FxFI7jJCRPEpIjG2mi7DXPg1IpR7GYsot1Wqd6m8mrOlZpFTmD14BuSU/AVM7gKamtDQo1H5TN6IJNBYrrk6qKCni1+aYcpaC1tc2PZglOi5AiewlIKJROQ4Si1FQzZffN+JPV1wfFP5FUecUhIlHxMfGjUf48olIPPrjCN/6ig7dOt/O5Zx/nH/zj/4jf+a0/oLU1z9/9e8/w937jOX7+s3fCyWN9fYN/+Bu/y3/1u/85j338QUviUleMCY5H4khcAFMyXP7wChvraxw/fhw3l1DwrByk5RA49Q07K8lOEC0KyJHneWXkKEutbW9kPYaSISNDTWK7M29LnlSD5CkgRtFfsVj+3Eae7GPPSMzrKhm0W7/0XStdMzIUWmOk2LYg4BpKfh+AJCLpQB9UL6JTlqaXsn/8nkmqQsclFV2wIQhPiV+UFKT1cm46fRD4ZfcpoxpWLOylnsybTS3VM2qtFNWX/2u3mMNjd6/HvkNF3jy9i6eeXeEP/+Rf8Id/8t/7S0WxJvFFy//lb/0Bj3/mUf7j/+QLqVKK8R10vLSUHVaWVzj/i/P09/dxYN++5GlRnUdaDoNO0TvJJzlBt2xTJbUWPBcRHMfJyNE2QqFQyBzrEyAjQxnK4Dj2rzZ5KicoNvIEJZ9EFePEyYNSUYXvlTxb0dKIY7x2NKXS5sk7bd8iO1gQ1/cUS0CCoHF9UM1N++SvyjsVXbDZvBEl6JzBQ5dJncI+OJsEuOX9cYLy8TTQNFf6HqTV0hw2W/EWJiJTIRcjMp95cpmlJe1//+XbiaD4m5+8yX/42sucuP8evv3iDwD4N//X/8h99x/ZFImyIySW0DOREkrA9dJHk2am5pibnOHQoUO0t+9Kvg7djrQetiffTUCWWttZyCJDyZCRoQxNISRPNZcon8iM8QmTJ5TCx7G/kiVPLTlFqVh+N562bF4QlDaUVPJoEGC1Q1v4i9XedmMmrbWgtaDCbtRRdVxZGqkmVzDkVcmf7HUFIYnWIDVW4CC+PigdGWkqtYT4Zfspe01hrTXi40+eaqzR6cc++RAzN05XbeRYrb1DeUsDHYnMxbN6tlC2E2dgQlzxH3+vVCpx/oOL5NCcOHGizJ+vYbi7kfx+qpbl30RkqbXti+Xl5SwylAAZGWoS2z1Ntt2gNbTktyZPPa0ehcIqBw9KRJSAouc/N/6fp8qeVwrGRfy0mEoeDQJCo9VUUD4RSnmKaMdDuenIQGTLQUXVV2znqiCUK0sJraxVLf5aolRSpfR58zpyTaSWmm/EWDut1tj4wFYkHVzxReYVBXabSWf0HQSi/kKhwIWzF9k7PMqe3l6i0vqK/kP1Ym25ASQ/mnr/m0GWWts+WFpayiJDCZCRoQzbElprPM9LHHnyjCVORU/YKBnWPYMnyiaKBIomIk7FOnO1SHMRnUbc6mtuG8HNmdRu9Q4GR6UjAxIIpVWlOL3WB4kiTApbLeWoUhgliS8TFzTX3vfmolEugk5JhAQbzXKaiGa5klZkLoyPj1O4WuD40SO0tLRSWYsXQcVejkebFOIOQ24gxfZvDbZKrQVRpMrUWhBBypAemS9ZMmRk6CbAusJnDa5uJhzHCe8iE43ToJXgakOLY+gqu6hu/o48AyUpJ0glA56CIsq+5//VI09xaNdvwpjmWq4EN7Vbvd+DR6W3xsglTk1FqTuFwVGeP4VXJ1KVHyveL8hGo+K1YEn2Q3wilL6RYx7P1yilG+9KOpH5xsYG586do7u1mxPHjqEaiZJs0okpJH8AdKMl93cOjaTWAmSptfTIfMmSISNDGbYltNaJyVD8ggo0dHcZNOltqSrLqEKeJEaeBIr+c0+UfU0LRa0oYV9PMp2X64OSQRDy6mYIpdOh0Wq1yuMRVCPm8ECJv/fxTkN2AjS4VVJzkWj5Vpf914eQk3S2JAvXrnHlyjiHRg/Q1Zn2Lt5FcodBt6ccf2dRL7UW/Kbjz7PUWmPIBNTJkJGhm4AsMnTzkTQyFCdCtzLE7ij717LpOlylph6fPOETKGLkyY86Ff33RBtKjklpy2HIqfSTedR/KF3NVzPVao061kvVOJHyxxs/GuXE4iSbl9tMxQSHwPE+vVDbleRpOWMMly5dorTucf+RE+n9o1SrJUIqn278NkTa1FrlmI86lpeXGR4evtO7sWOQkaEM2xKBZmgrpIkG3U44yo88bdqlamJaa3JRAjx88oSEj72K55a+GNyU+iAAN0wNpelmHbjdN2fUmlYfVM0jrPqnCIhU+bsaQVHC21Rpp8K4lK22M0TJwGgtGsFJQYRWV1b48Px5BvYMMjTcl7x3ULibHUjuo2G2Wi+1JiLhtcLzvCy15iNLkyVDRoYybEs0kia7XdGg2wkHRfnUVv8zGTQlsZJfS6QED8FTAamS8K9UEV3JNdFIUYcVV+krvnRTjvXNVYzpCmuN8r2ojEJtnlBdDOBhQiJiO2RWNj8oU0+JMDM7y9zcHEf2HaG9JXkjxGiXehE3RRPGuwRZam1rZALqZMjI0E3A3TAJbzfUS5Nt92jQ7YRGka9GmGpwjIAYGQSDoeT/6ymJvWfCx9VW05ytR3J/s83j01d8hdVyqSvGam1fYkVe5ZYhBvBKJc5/eJ5cLseJo/fjli0TK5mPWo7X/gzOELhZ+iOOLLW2GZlmKBkyMpRhW6JWmuxujAbdTtjIU9hNKHqjBq8xCJ5PjoxPkKCEUTk8TOw/u9xWFWDN6IuC8c00cmwmGgaksuYoFJa4ePEiY2Oj9Hf2+uMbKJsXFZmtAYhG9Ci4e1Lv/0cJH/XUWhYZSoaMDGXYlqhMk2XRoDsDjULjUN53Ml+HPJkw6mQjTP4jJYgUQdkEVRR/aiy6FHSUTl/xha9vakIonXD7RgyTE5MsFZY4dvQY7U6uMSIVNmuU2HON6IOgsjv9tPiopdYyzVAyZGToJiCblG8+tNZhhV4WDdo50GhfYVMh6q3mYwG1qBOi7HMHF8H41hzp0GxH62pC7a2wvr7Gh+fP09XVxfFjJ8iZ9NYikEP0EVBNaIwybMLdnlrLIkPJkJGhDNsaQRt/yKJBdyMsddKV1CnkDa3Y3jndst9/Oa5o8vzknEFUxXP/sW6w/1EtBNYeSc66q9euMjExwcGDB+lq78Qx6YkctCP6kDXHy3DLkSS1Fiy/XaNH6+vrtLZmBLpRZGQow7ZEcOGZn59n9+7d6fuwZLirYJN2GioSd7WCLgEpiqTjfr2dsg0KhPJ6u/iK3IqKs63gGc/2DiqVOHH8BHntopsiQt2IPnDLzVYz1MZOTa2JSHbzmBDZDHMTkJ1wNw/xlNjRo0eZn5/nww8/RGvN7t27w79cLrtTzrA1VJVmBcCW5EkooSlGXZ+U7exU2QUqwI2VG1w4f4H+gX4G+gdwjGqOCKl+RI+lH5/hlqBWai24edtOqbWAEGVoDBkZyrBtUKkN6uvro6+vD4Biscji4iKLi4tcvHgRY0xIjHp6esjn754OvBnuHCLylPef+6glGJcSExOXmJpa4PiJz7JrVwtKSr5rfREkaI9ZTp7qQdQo6O1jtpqhPqpFj+50ai1zREiOjAxluONopFIsl8vR399Pf38/YC8s169fZ2FhgfHxcYrFIl1dXfT09NDT05PlyjPccmxsbPD+++/T2trKIw8/Hk6GKGrbqki8f3hEllTQX1ztBrX7dux+hluE7ZBaW1tby66BCZGRoZuALBSZHmkrxRzHobe3l97eXsBecJaWllhYWODMmTOsra3R2dlJT08Pu3fvpr29PfueMtw0XLt2jV/+8pccPnyYgYEEURzl4Bu0+M/tP9l9/N2LO5Fay8rqkyMjQxnuCG5236C4pihYf6FQYHFxkXPnzrGyssKuXbtCctTR0ZGRowyJYYzh/PnzXL9+nYceeii7+86QCrc6tZZ1n06OjAxluO24HX2DlFJ0dXXR1dXFvn37EBFu3LgRao6Wl5dpa2sLNUednZ13vAIkw/bG6uoq7777Ln19fTz88MMZmc5w01BJjkRkU+QIGk+tZZGh5MjI0E1AdlFsDHeyi7RSio6ODjo6OhgbG0NEWFtbCzVHhUKBfD4fkqOurq5IA5LhI4/p6WkuXrzIvffeG0YfM2S4VahmDZIktba0tERHR8cd2fediowM3SQopTIFfx1sty7SSina2tpoa2tjZGQEsKLDxcVFpqenOXv2LI7jhOSou7s763X0EYTnefziF7/A8zweeeSRrKVDhjuGJKm12dnZO7afOxXZ1T3DLcVO8hRrbW1laGiIoaEhwFYLLS4uhr2OgJAcZb2O7n4UCgXee+899u7dy8jIyLY9bzN8NFFJjsASpHPnzvFHf/RH/Pqv//qd2rUdiYwMZbhl2G7RoKTI5/MMDAyE1UKlUmlTr6Pu7u6QHLW0tNzhPc5wMyAiXLlyhenpaU6ePMmuXbvu9C5lyNAQvvvd7/L7v//7/Omf/imPPfbYnd6dHYWMDN0kZGmyCDspGpQEruuWNYIMeh0tLi6W9ToKokdtbW13eI8zJMXGxgbvvfce7e3tPPLII5luLMOOgDGGP/7jP+ZHP/oRL7/8MoODg3d6l3YcMjKU4aZip0eDkqBar6NCocDCwgK/+MUvwl5HATnKeh1tbwS9g44cORI298yQYbtjaWmJ3/7t32b//v185zvfydL3KZGRoQw3BXdrNCgJtNZ0d3fT3d3NgQMHEBGWl5dZWFgIex21t7eHXbKzXkfbA8YYPvzwQ5aWlrLeQRl2FM6ePcs/+v/bu/egquv8f+BPDJHbARERETDRAD14QQU0kXPaZnJnnbGmmfUPZzcveEndtdjRKbVia9UNZ7J1ytnuZBnglrM75W5lLQe8glohJleFQARBxHPjei6f9/ePfnx+Ym1egPM553Oejxn/oMzzMj58zvO8Pu/3652ZiaysLDzxxBO8nwwCw9AQ8eaL0Ju6QXfDx8cHGo0GGo1GnnXU3d0No9GIxsZGWK1W+Pv7y+GIs45cj7ODyBMJIfDFF19gx44dyM3Nxdy5c5UuyeMxDNE9Yzfo7vj4+CAoKAhBQUGIifnxRPKenh4YjUY0NzfDYrFg5MiRA7bzc83K8Ll69SoaGxsxbdo0hIaGKl0O0R1xOp3IycnBmTNn8N///pePdIcIwxDdE3aDhsats476+vpgMplw7do1XLx4UT5mpH/HGmcdDZ7D4UBNTQ0kSeLsIPIoZrMZa9euRWJiIj7//HNeu0OId9Yh4i1h4OYx8QC7QUNt1KhRiIyMlHeD2O12mEwm3LhxA/X19QAwYDu/n5+fkuV6HIvFgsrKSkycOBFRUVG8dsljVFVVYe3atdiyZQuWLVvGa3eIMQzRHWM3yPVGjhyJiIgIuRXucDhgNpthNBpx+fJlOByOAeGIi39/nhACly9fRltbG2cHkUcRQuCzzz7D7t27sX//fiQnJytdkioxDNEd6Q9BQggGIQX5+voiPDwc4eHhAH78vvTPOmppaYHNZoNGo5HDUUBAgNd/r26eHZSSksJF6uQxnE4ndu7cifLychQWFso/9zT0GIaGiFrfcG7tBvGNxL2MGDFC3o0WFxcnzzoymUyora1FT08PgoOD5XVHQUFBqr1Wf05HRwdqa2sRHx8vD8sk8gRGoxFr1qzBrFmz8O9//5vrBYcZ/+/S/8RukOe5edbR/fffDyEEurq6YDQaUV9fj66uLgQGBsrhSKPRqPL72j87yGq1Ys6cOTwqhTxKRUUF1q1bh23btmHp0qWq/Bl1NwxDQ0RNFyu7Qerh4+OD4OBgBAcHIzY2FkIIeTv/5cuX0dnZCT8/P7m7FBIS4vHf7+7ublRUVCAiIgKzZ89W1c8mqZsQAv/85z/x6quv4sMPP8SMGTOULslrMAzRAOwGqZuPjw8CAwMRGBiI6OhoAEBvby+MRiNaWlpQXV0NX19fORx52qwjzg4iT+VwOPDSSy+hpqYGBoMBYWFhSpfkVRiGCAC7Qd7M398fUVFRiIqKAvDjgmOj0Yj29vYBs476f7njbBOHw4Hq6moAQEpKCtdXkEfp6OhAZmYm5s+fj08//dSjPoCoBe8YQ8STOyj9c4PYDSIA8PPz+9lZRyaTCQ0NDZAkSQ5GYWFhis86unl2UP/wSiJPUV5ejg0bNiA7OxuPP/44778KYRjyYuwG0Z24ddaR0+mUZx01NTXB4XAgJDLnBo0AABwbSURBVCREfrTmqllHQgg0Njbi2rVrnB1EHkcIgY8//hivv/468vPzodVqlS7JqzEMDSEfHx8IIZQu446wG0T36r777sOYMWMwZswYAD+uM7NYLDAajaisrERfX9+AWUeBgYFDfn319fWhoqICwcHBnB1EHsdut+OFF15AY2MjDAYDRo8erXRJXo9hyMuwG0RD7eY1RXFxcRBCwGq1wmg04tKlS+ju7kZQUJAcjoKDgwcVjq5fv46LFy9ydhB5pPb2dqxatQoPPfQQ/va3v3F9kJvwuctOhme0PRRis9ncujPEbhAp4eZZRyaTCZ2dnQgICBgw6+hOQrkkSbh06RI6OzuRlJTE2UHkcb777jv84Q9/wM6dO7FkyRKly/EWd/RGxzA0hOx2OyRJUrqMn+CZYuROhBDydn6j0Qir1Qo/Pz85HIWEhPzk03JXVxcqKioQGRmJiRMn8homjyKEQF5eHt5++23k5eUhMTFR6ZK8CcOQq7ljGGI3iDxBb28vTCYTjEYjLBYL7rvvPjkcdXd3o7m5GVqtFiEhIUqXSnRXbDYbtm/fjra2Nuzfvx8ajUbpkrwNw5CrORwOOJ1OpcsAwG4QeTabzYaOjg7U19fDbrcjICBA3q3mrrOOiG7V1taGVatWYdGiRdi6dSvXaCrjjt78uIBahdgNIk/X09ODxsZGTJ48GVFRUXA4HD+ZdRQaGiqHI64fIndz9uxZbNq0Cbt378ZvfvMbpcuh22BnaAgp3RliN4g8Xf/soPb2diQlJSEwMPBnf1//rKP+R2t2ux0hISHyo7WAgAAXV070IyEEPvzwQ7z//vvIz8/HAw88oHRJ3o6PyVzN6XTC4XAo8trsBpGn658dpNFoMGXKlLt6pCBJkryd32g0ore3FxqNRg5HwzHriOhWfX19eOaZZ2C1WvHee+9xEKh7YBhyNSXCELtBpAb9s4MSEhIQHh4+6D9PCIHOzk45HHV3dyMwMFBedzTYWUdEt2ptbcWKFSvw6KOPYvPmzVwf5D4YhlzN1WGI3SDydJIk4eLFi+ju7kZSUtKwnXMmhEB3d7c868hqtcLf318OR3c664jo55SWliIrKwt79uzBI488onQ5NBDDkKtJkgS73T7sr8NuEKmB0rODenp65HBksVgwcuRI+bFaaGgoJwPTbQkh8N577yE/Px8HDx7EpEmTlC6JfophyNVcEYbYDSJPJ4TA1atXcfnyZbeaHdTX1ycvyDabzfIxI/071nx9ufmW/r/e3l5s3rwZdrsdb7/99v9c7E+KYxhyteEMQ+wGkRrY7XZUV1djxIgRSExMdOuAYbfb5XBkMpkAYMB2/uF6pEfur7m5GStXrsTSpUvx1FNP8RGre2MYcjUhBGw227D8uewGkaczmUyorq7GpEmTMH78eKXLuWsOhwNms1kORw6HY0A48vf3V7pEcoETJ05gy5Yt2Lt3Lx5++GGly6HbYxhytaEOQ+wGkRoIIdDQ0IDr169j+vTpqpkB5HQ6YbFY5HDU19eHkJAQORwFBATwZ1ZFJEnCO++8g08++QQHDx7ExIkTlS6J7gzDkKsNZRhiN4jUoLe3FxUVFQgNDcXkyZNV/Tjh5llHJpMJPT09CA4OltcdBQUF8efYQ/X09CArKwsjRozAm2++qZpA7yUYhpTQ19c3qP+e3SBSi/b2dly6dAmJiYkYM2aM0uW4XP+so/51R11dXQgMDJTDkUaj4c+3B2hqasKKFSvw+9//Hhs3blR1oFcphiEl2Gw23OX/Uxm7QaQGTqcTFy9eRE9Pz7DODvI0Qgh5O7/RaERnZyf8/PzkWUchISF8o3UzR48exbPPPot9+/ZBp9MpXQ7dG4YhJdxLGGI3iNSif3bQ+PHjERsby2v5Nnp7e+VwZLFY4OvrK4cjzjpSjiRJ+Pvf/47Dhw+joKAAMTExSpdE945hSAl3G4bYDSI1EEKgpaUFTU1NSEpKgkajUbokj2Sz2eQ1RyaTSZ511P9r5MiRSpeoel1dXdi0aRM0Gg327duHUaNGKV0SDQ7DkBLsdjskSbrt72M3iNTCbrejqqoKvr6+SExMZDdjCPXPOur/JUmSHIzCwsL4CHKINTQ0YOXKlcjMzMSTTz7J+7I6MAwp4U7CELtBpBb9s4Pi4uIQGRmpdDmq53Q65VlHRqMRDodD3s4fFhbGWUeDYDAYsH37drzxxhtIT09XuhwaOgxDSvilMMRuEKmFEAI//PADOjo6VDU7yNNIkiTPOjIajejr64NGo5FnHQUGBvI+cxuSJOG1117DkSNHcPDgQURFRSldEg0thiElOBwOOJ3On/xzdoNILbxpdpCnEUIMmHXU3d2NoKAgORwFBwfz3nOTzs5ObNy4EePGjcPevXv52FGdGIaUcGsYYjeI1OTatWuoq6vz2tlBnkYIga6uLjkcdXZ2IiAgYMCsI28Ns/X19Vi5ciU2bNiAzMxM3pvVi2FICTeHIXaDSC36Zwf19vZCq9XyE7SH6p911D8I0mq1ws/PTw5HISEhXrEA/quvvkJ2djbeffddpKWlKV0ODS+GISU4nU553RC7QaQGnZ2dqKiowIQJExATE8PrWWV6e3vlcGQ2m+Hr6yuHo9DQUPj6+ipd4pCRJAl79uxBcXExDh48yEX/3oFhSAlVVVWIiIiAv78/gxB5NCEEmpub0dzcDK1Wy9lBXsJmsw0IRwDkcOTJs44sFgs2bNiA2NhY7Nmzx2P/HnTXGIaU8Ne//hWHDh2CRqOBTqdDRkYGUlNTObiLPIrdbkdlZSVGjhzJ2UFezuFwyHOOjEYjJElCaGioHI484d5WW1uLzMxMZGVl4YknnuCHVO/CMKQUIQSuXr0Kg8GA4uJifPPNNxg7diwyMjKg0+kwZ84cfioht2U0GlFdXY3JkyfzMQL9RP+so/5wZLfbERISIneP3GnMghACX3zxBXbs2IHc3FzMnTtX6ZLI9RiG3IUQApcvX4bBYEBRURHKysoQHR0NnU4HnU6HmTNnquq5PHkmIQTq6+thNBqRlJTkVm9q5L4kSZK38xuNRvT29kKj0cjhSKlZR06nE7t378bp06eRn5+PiIgIl9dAboFhyF0JIVBXVyd3js6fP4+4uDhkZGTgoYceglar9drtrqSM3t5eXLhwAWFhYYiLi+P1R/dMCIHOzk45HHV3dyMwMFCeku2KWUdmsxnr1q1DQkICcnJy2In3bgxDnkKSJNTU1MjhqLKyEomJiXLnKCEhgW9ONGz6ZwdNnToVYWFhSpdDKiOEQHd3tzzryGq1wt/fXw5HQz3rqKqqCmvXrsWWLVuwbNkyrg8ihiFPJUkSLly4ID9Wq6urg1arhV6vh06n4yd3GhJOpxO1tbWw2WzQarX89Ewu09PTI4cji8WCkSNHyguyQ0ND72nBvhAChw8fRk5ODvbv34/k5ORhqJw8EMOQWjidTpw7d04OR01NTZg1a5b8WI2zX+hu9c8Oio6ORnR0NK8fUlRfX9+A7fwjRowYsJ3/dmsqnU4ndu7cifLycuTl5SE8PNxFlZMHYBhSK7vdjm+//RaFhYUoLi7GtWvXMGfOHDkcRUZG8s2NfpYQAleuXEFLSwuSkpIQHBysdElEP2G32+VwZDKZAGDAdv6bJ6AbjUasWbMGs2bNws6dO7kZhW7FMOQt+vr6UFpaiqKiIhw9ehQmkwmpqanynKOxY8cyHJE8O8jPzw8JCQmcHUQew+FwwGw2y+Fo165dCAkJgVarxaFDh/DnP/8ZS5cu5X2Ofg7DkLfq6enBqVOnYDAYcOzYMfT09CAtLQ16vR4LFy7E6NGjedPwMv2zg6ZMmYJx48YpXQ7RoHR1dWHfvn04fPgwAgIC0NXVhTlz5kCn0+FXv/oV7r//fqVLJPfBMEQ/6uzsxIkTJ2AwGHDixAnY7XYsWLAAer0eCxYsgEajYThSKUmS8MMPP8BoNGL69Onw9/dXuiSiQXE4HHjppZdQU1ODAwcOICwsDA6HA2VlZTh+/DgCAgKwYcMGpcsk98EwRD8lhIDZbMbx48dhMBhw8uRJ3HfffVi4cCF0Oh3mz5+PoKAgpcukIdDT04OKigqMGTMGcXFxDLzk8To6OrB69WrMmzcPL774Ih/10p1gGKLbE0Lgxo0bOHr0KAwGA0pKShAQEICMjAzo9XqkpaWxm+CB2traUF9fj2nTpmH06NFKl0M0aOfPn8f69euRnZ2Nxx9/nOGe7hTDEN09IQSuXbuGoqIiFBUV4cyZMxg9erS8GDslJWXATg5yL06nEzU1NbDb7ZwdRKoghMDHH3+Mffv24cCBA9BqtUqXRJ6FYYgGTwiBlpYWGAwGGAwGfPfdd4iMjJQ7R8nJydzK6iasVisqKys5O4hUw263Izs7Gw0NDfjggw/Y5aR7wTBEQ08IgYaGBvnokHPnziE2NlaecTR9+nQ+x3cxzg4iNWpvb8eqVaug1+vx/PPP875C94phiIafJEm4dOmSPB27oqICU6ZMgU6ng16vx9SpU3l0yDCy2WyorKyEv78/4uPj+YZBqlBWVoaNGzdix44dWLJkCbucNBgMQ+R6kiShqqpK7hxVV1dj2rRp8qGzDzzwAMPRELlx4wZqamo4O4hUQwiB/Px8vPXWW8jLy0NiYqLSJZHnYxgi5TmdTnz//fdy5+iHH37AjBkz5HA0adIkfuq7S5Ikob6+HmazGUlJSdztR6pgs9mwfft2tLW1Yf/+/dBoNEqXROrAMETup384Wn84amlpQXJysrzmaMKECQxHv6CnpwcXLlzA2LFjGSRJNdra2rBq1SosWrQIW7duZfeYhhLDELk/u92OM2fOyFv5r1+/jpSUFHm32rhx4/iG//+0traioaEBU6dO5a4aUo2zZ89i06ZNyMnJweLFi5Uuh9SHYYg8T19fH0pKSmAwGHD06FFYrVakpqZCr9cjIyMDY8aM8bpw1D87yOFwYNq0aZwdRKoghMCBAweQm5uLvLw8xMfHD+vrffnll3j66afhdDqxZs0abN26dVhfj9wGwxB5vq6urgGHztpsNsybNw96vR7p6ekIDQ1VdTiyWq2oqKhAbGwsHyGSavT19eGZZ56BxWJBbm7usB8B5HQ6kZCQgK+//hoxMTFITU1FQUEBBzh6B4YhUh+LxTLg0FkhBNLT06HT6bBgwQLVzNgRQqCpqQmtra1ISkrieXGkGq2trVixYgUeffRRbN682SXrg0pKSvDiiy/iyJEjAICXX34ZALBt27Zhf21S3B2FIY4OJo8SEhKCxYsXY/HixRBCwGQy4dixYzAYDNi1axf8/PyQnp4OvV6PefPmITAwUOmS75rNZkNFRQUCAwORkpLCxaSkGqWlpcjKysIrr7yCRYsWuex1m5ubERsbK38dExOD06dPu+z1yf0xDJHH8vHxQVhYGB577DE89thjEEKgo6MDRUVF+M9//oMXXngBGo0GGRkZyMjIQFpaGkaNGqV02b+of3bQAw88gIiICKXLIRoSQgh5bdCnn36KuLg4l7/+rfjImW7GMESq4ePjg7Fjx2Lp0qVYunQphBBoa2uDwWDAoUOH8OyzzyI8PFzeqTZnzhy3WYwsSRLq6upgsVgwe/Zszg4i1ejt7cWWLVtgs9lgMBgU6dbGxMSgqalJ/vrKlSuYMGGCy+sg98U1Q+Q1+tfhFBUVwWAwoKysDFFRUfLRITNnzlTk0FnODiK1amlpwYoVK/Db3/4WTz/9tGKPfB0OBxISElBYWIjo6GikpqYiPz8fSUlJitRDLsUF1ES/RAiB+vp6+eiQ8vJyTJo0SR4AqdVqh/2sr/7ZQdOmTUNoaOiwvhaRK508eRKbN2/G3r178fDDDytdDj7//HNkZWXB6XQiMzMTzz33nNIlkWswDBHdDUmSUFtbK0/HrqqqQnx8vHx0SGJi4pB9snU4HKipqYEkSZg6darbPK4jGixJkvDOO+/g0KFDKCgowMSJE5UuibwbwxDRYEiShIqKCrlzdPHiRWi1WjkcTZ48+Z7CkcViQWVlJSZOnIioqCg+FiPV6OnpQVZWFkaMGIE333wTAQEBSpdExDBENJScTifKy8vlcNTY2IiZM2fKj9ViY2N/MdgIIXD58mW0tbVxdhCpTlNTE1auXInf/e532LhxI0dCkLtgGCIaTg6HA99++638WK21tRVz5syRw9H48ePlcNTc3IyamhpER0cjPj6ebxSkKseOHcMzzzyDffv2QafTKV0O0c0YhohcyWaz4fTp0/K5akajESkpKYiIiMA//vEPvPLKK/j1r3+tdJlEQ0aSJLzxxhv47LPPUFBQgJiYGKVLIroVwxCRkqxWK9atW4dvvvkGMTExMJvN8rlqCxcuRFhYGNcLkcfq7u7Gpk2bEBwcjH379rn9QFPyWgxDREqpr6/H8uXL8dhjj8nnL3V2duLUqVMoLCzE8ePHYbfbsWDBAuh0OqSnp0Oj0TAckUdoaGjAypUrkZmZiSeffJLXLbkzhiEipZSXl8NmsyE1NfVn/70QAhaLBcePH4fBYMDJkycxYsQI+dDZBx98kAusyS0ZDAZs374db7zxBtLT05Uuh+h2GIaIPIUQAkajEUePHoXBYEBJSQn8/f2xcOFC6PV6pKWlcZsyKUqSJLz22ms4cuQIDh48iKioKKVLIroTDENEnkoIgfb2dhQVFaGoqAinT5/G6NGjkZGRAZ1Oh5SUFPj5+SldJnmJzs5ObNy4EePGjcPevXt57ZEnYRgiUgshBK5evSrPODp79izGjRsnHzqbnJzMKdY0LOrr67Fq1SqsX78emZmZXB9EnoZhiEithBBobGyUD509d+4cYmJi5ENnZ8yYMeznqpH6ffXVV8jOzsa7776LtLQ0pcshuhcMQ0TeQgiBuro6FBYWoqioCBcuXMCUKVPkztG0adM46JHumCRJ2LNnD4qLi3Hw4EFERkYqXRLRvWIYIvJWkiShpqYGhYWFKC4uRnV1NRITE+Vz1TgFm/4Xq9WK9evXIzY2Fnv27OHjV/J0DENE9CNJkvD999/La47q6uowffp0+bHapEmTuBaEUFtbi9WrV+Opp57C8uXLeU2QGjAMEdHPczqdKCsrk8PRlStXMGvWLPlctejoaL4RehEhBL744gvs2LEDubm5mDt3rtIlEQ0VhiEiujN2ux1nz55FUVERiouL0d7eLh86q9frERkZyXCkUk6nE7t370ZpaSkKCgoQERGhdElEQ4lhiIjuTV9fH0pLS+VwZLFYkJqaCp1Oh4yMDISHhzMcqYDZbMa6deuQkJCAnJwcrg8iNWIYIqKh0d3djZKSEhQWFuLYsWPo7e3F/PnzodPpsHDhQoSGhjIceZiqqiqsXbsWW7ZswbJly/j9I7ViGCKi4WG1WnHy5EkUFhbixIkTcDqd8rlqCxYsgEajUbpE+h+EEDh8+DBycnKwf/9+JCcnK10S0XBiGCJyhS+//BJPP/00nE4n1qxZg61btypdkksJIWA2m3Hs2DEYDAacOnUKvr6+SE9Ph16vx/z58xEYGKh0mYQf1wft2rUL586dQ15eHsLDw5UuiWi4MQwRDTen04mEhAR8/fXXiImJQWpqKgoKCqDVapUuTTFCCNy4cUM+V620tBRBQUFYuHAhdDod0tLS4O/vr3SZXsdoNGLt2rWYMWMGdu3aBV9fX6VLInIFhiGi4VZSUoIXX3wRR44cAQC8/PLLAIBt27YpWZZbEULg2rVr8jb+M2fOICwsTN6pNnfuXC7cHWaVlZVYu3Yttm3bhqVLl3J9EHmTO7rY+dGAaBCam5sRGxsrfx0TE4PTp08rWJH78fHxQWRkJJYtW4Zly5ZBCIHm5mYYDAYcOHAAf/rTnzB+/Hh5OvasWbPYtRgiQgj861//wquvvooPP/wQM2bMULokIrfEOw7RIPxcZ5Wfun+Zj48PYmJisHz5cixfvhxCCDQ0NMBgMOCtt95CeXk5Jk6cKE/HTkpK4qGz98DhcOAvf/kLqqqqUFhYiLCwMKVLInJbDENEgxATE4Ompib56ytXrmDChAkKVuR5fHx8EBcXh9WrV2P16tWQJAmXLl1CYWEhXn31VVRWViI+Ph4ZGRnQ6XSYOnUqz1W7jY6ODqxevRppaWn47LPPGCaJboNrhogGweFwICEhAYWFhYiOjkZqairy8/ORlJSkdGmqIUmS3N0oLi7GxYsXMXXqVPmx2pQpUxiObnL+/HmsX78e2dnZePzxx9mpJG/HBdRErvD5558jKysLTqcTmZmZeO6555QuSdWcTifOnz8vL8huaGjAjBkz5HB0//33e2UAEELgk08+weuvv44DBw549Y5GopswDBGR+jkcDnz33XdyOGppacHs2bOh0+nw0EMPYfz48aoPR3a7HdnZ2WhoaMAHH3yA0aNHK10SkbtgGCIi72Oz2XDmzBn5XLWOjg6kpKRAr9cjIyMDERERqgpH7e3tyMzMhE6nw/PPP8/1QUQDMQwREfX29qK0tFTuHHV2dmLevHnyobNhYWEeG47KysqwceNG7NixA0uWLPHYvwfRMGIYIiK6VVdXF06dOoXCwkIcP34cNpsNDz74IHQ6HdLT0xESEuL2oUIIgfz8fLz99tv46KOPkJiYqHRJRO6KYYiI6HYsFguOHz8Og8GAkydPAoB86OyDDz6I4OBghSscyGaz4bnnnkNrayv279/PQ3GJfhnDEBHR3RBCwGQy4ejRozAYDCgpKcGoUaPkQ2fnzZuHgIAAxepra2tDZmYmHnnkEWzdupUjBYhuj2GIiGgwhBC4fv26fOjs6dOnERISIg+ATElJwahRo1xSyzfffIM//vGPyMnJweLFi13ymkQqwDBERDSUhBBobW2VF2OfPXsWY8eOlWcczZ49e8gPnRVC4MCBA8jNzUVeXh7i4+OH9M8nUjmGISKi4SSEQFNTEwwGA4qKilBWVoYJEyZAr9dDp9Nh5syZg9rq3tfXh2effRZmsxm5ubkICgoawuqJvALDEBGRKwkhUF9fL4ej77//HnFxccjIyIBer4dWq73jdT6tra1YuXIllixZgs2bN3N9ENG9YRgiIlKSJEmora2Vw1FVVRUSExPlNUcJCQk/G3JKS0uRlZWFV155BYsWLVKgciLVYBgiInInkiShoqJCPnS2rq4OWq0WOp0Oer0ecXFxeP/99/HRRx+hoKAAcXFxSpdM5OkYhoiI3JnT6cS5c+fkBdllZWVITk7GoUOHEBgYqHR5RGrAMERE5EnMZjP8/f1dtl2fyAswDBEREZFXu6MwxO0JRERE5NUYhoiIiMirMQwRERGRV2MYIiIiIq/GMERERERejWGIiIiIvBrDEBEREXk1hiEiIiLyagxDRERE5NUYhoiIiMirMQwRERGRV2MYIiIiIq/GMERERERejWGIiIiIvBrDEBEREXk1hiEiIiLyagxDRERE5NUYhoiIiMirMQwRERGRV2MYIiIiIq/GMERERERejWGIiIiIvBrDEBEREXk1hiEiIiLyar53+ft9hqUKIiIiIoWwM0RERERejWGIiIiIvBrDEBEREXk1hiEiIiLyagxDRERE5NUYhoiIiMirMQwRERGRV2MYIiIiIq/GMERERERejWGIiIiIvNr/AV5wMTJvueVBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import cm\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "from scipy.interpolate import interp2d\n", + "\n", + "fig = plt.figure(figsize=(10, 8))\n", + "ax = fig.gca(projection='3d')\n", + "\n", + "x_min, x_max = -5, 5\n", + "y_min, y_max = -5, 5\n", + "\n", + "α, β = 0.2, 0.1\n", + "\n", + "ax.set(xlim=(x_min, x_max), ylim=(x_min, x_max), zlim=(x_min, x_max),\n", + " xticks=(0,), yticks=(0,), zticks=(0,))\n", + "\n", + "gs = 3\n", + "z = np.linspace(x_min, x_max, gs)\n", + "x = np.zeros(gs)\n", + "y = np.zeros(gs)\n", + "ax.plot(x, y, z, 'k-', lw=2, alpha=0.5)\n", + "ax.plot(z, x, y, 'k-', lw=2, alpha=0.5)\n", + "ax.plot(y, z, x, 'k-', lw=2, alpha=0.5)\n", + "\n", + "\n", + "# Fixed linear function, to generate a plane\n", + "def f(x, y):\n", + " return α * x + β * y\n", + "\n", + "# Vector locations, by coordinate\n", + "x_coords = np.array((3, 3))\n", + "y_coords = np.array((4, -4))\n", + "z = f(x_coords, y_coords)\n", + "for i in (0, 1):\n", + " ax.text(x_coords[i], y_coords[i], z[i], f'$a_{i+1}$', fontsize=14)\n", + "\n", + "# Lines to vectors\n", + "for i in (0, 1):\n", + " x = (0, x_coords[i])\n", + " y = (0, y_coords[i])\n", + " z = (0, f(x_coords[i], y_coords[i]))\n", + " ax.plot(x, y, z, 'b-', lw=1.5, alpha=0.6)\n", + "\n", + "\n", + "# Draw the plane\n", + "grid_size = 20\n", + "xr2 = np.linspace(x_min, x_max, grid_size)\n", + "yr2 = np.linspace(y_min, y_max, grid_size)\n", + "x2, y2 = np.meshgrid(xr2, yr2)\n", + "z2 = f(x2, y2)\n", + "ax.plot_surface(x2, y2, z2, rstride=1, cstride=1, cmap=cm.jet,\n", + " linewidth=0, antialiased=True, alpha=0.2)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Examples\n", + "\n", + "If $ A $ contains only one vector $ a_1 \\in \\mathbb R ^2 $, then its\n", + "span is just the scalar multiples of $ a_1 $, which is the unique line passing through both $ a_1 $ and the origin\n", + "\n", + "If $ A = \\{e_1, e_2, e_3\\} $ consists of the *canonical basis vectors* of $ \\mathbb R ^3 $, that is\n", + "\n", + "$$\n", + "e_1 :=\n", + "\\left[\n", + "\\begin{array}{c}\n", + " 1 \\\\\n", + " 0 \\\\\n", + " 0\n", + "\\end{array}\n", + "\\right]\n", + ", \\quad\n", + "e_2 :=\n", + "\\left[\n", + "\\begin{array}{c}\n", + " 0 \\\\\n", + " 1 \\\\\n", + " 0\n", + "\\end{array}\n", + "\\right]\n", + ", \\quad\n", + "e_3 :=\n", + "\\left[\n", + "\\begin{array}{c}\n", + " 0 \\\\\n", + " 0 \\\\\n", + " 1\n", + "\\end{array}\n", + "\\right]\n", + "$$\n", + "\n", + "then the span of $ A $ is all of $ \\mathbb R ^3 $, because, for any\n", + "$ x = (x_1, x_2, x_3) \\in \\mathbb R ^3 $, we can write\n", + "\n", + "$$\n", + "x = x_1 e_1 + x_2 e_2 + x_3 e_3\n", + "$$\n", + "\n", + "Now consider $ A_0 = \\{e_1, e_2, e_1 + e_2\\} $\n", + "\n", + "If $ y = (y_1, y_2, y_3) $ is any linear combination of these vectors, then $ y_3 = 0 $ (check it)\n", + "\n", + "Hence $ A_0 $ fails to span all of $ \\mathbb R ^3 $\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Linear Independence\n", + "\n", + "\n", + "\n", + "As we’ll see, it’s often desirable to find families of vectors with relatively large span, so that many vectors can be described by linear operators on a few vectors\n", + "\n", + "The condition we need for a set of vectors to have a large span is what’s called linear independence\n", + "\n", + "In particular, a collection of vectors $ A := \\{a_1, \\ldots, a_k\\} $ in $ \\mathbb R ^n $ is said to be\n", + "\n", + "- *linearly dependent* if some strict subset of $ A $ has the same span as $ A $ \n", + "- *linearly independent* if it is not linearly dependent \n", + "\n", + "\n", + "Put differently, a set of vectors is linearly independent if no vector is redundant to the span, and linearly dependent otherwise\n", + "\n", + "To illustrate the idea, recall [the figure](#la-3dvec) that showed the span of vectors $ \\{a_1, a_2\\} $ in $ \\mathbb R ^3 $ as a plane through the origin\n", + "\n", + "If we take a third vector $ a_3 $ and form the set $ \\{a_1, a_2, a_3\\} $, this set will be\n", + "\n", + "- linearly dependent if $ a_3 $ lies in the plane \n", + "- linearly independent otherwise \n", + "\n", + "\n", + "As another illustration of the concept, since $ \\mathbb R ^n $ can be spanned by $ n $ vectors\n", + "(see the discussion of canonical basis vectors above), any collection of\n", + "$ m > n $ vectors in $ \\mathbb R ^n $ must be linearly dependent\n", + "\n", + "The following statements are equivalent to linear independence of $ A := \\{a_1, \\ldots, a_k\\} \\subset \\mathbb R ^n $\n", + "\n", + "1. No vector in $ A $ can be formed as a linear combination of the other elements \n", + "1. If $ \\beta_1 a_1 + \\cdots \\beta_k a_k = 0 $ for scalars $ \\beta_1, \\ldots, \\beta_k $, then $ \\beta_1 = \\cdots = \\beta_k = 0 $ \n", + "\n", + "\n", + "(The zero in the first expression is the origin of $ \\mathbb R ^n $)\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Unique Representations\n", + "\n", + "Another nice thing about sets of linearly independent vectors is that each element in the span has a unique representation as a linear combination of these vectors\n", + "\n", + "In other words, if $ A := \\{a_1, \\ldots, a_k\\} \\subset \\mathbb R ^n $ is\n", + "linearly independent and\n", + "\n", + "$$\n", + "y = \\beta_1 a_1 + \\cdots \\beta_k a_k\n", + "$$\n", + "\n", + "then no other coefficient sequence $ \\gamma_1, \\ldots, \\gamma_k $ will produce\n", + "the same vector $ y $\n", + "\n", + "Indeed, if we also have $ y = \\gamma_1 a_1 + \\cdots \\gamma_k a_k $,\n", + "then\n", + "\n", + "$$\n", + "(\\beta_1 - \\gamma_1) a_1 + \\cdots + (\\beta_k - \\gamma_k) a_k = 0\n", + "$$\n", + "\n", + "Linear independence now implies $ \\gamma_i = \\beta_i $ for all $ i $" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Matrices\n", + "\n", + "\n", + "\n", + "Matrices are a neat way of organizing data for use in linear operations\n", + "\n", + "An $ n \\times k $ matrix is a rectangular array $ A $ of numbers with $ n $ rows and $ k $ columns:\n", + "\n", + "$$\n", + "A =\n", + "\\left[\n", + "\\begin{array}{cccc}\n", + " a_{11} & a_{12} & \\cdots & a_{1k} \\\\\n", + " a_{21} & a_{22} & \\cdots & a_{2k} \\\\\n", + " \\vdots & \\vdots & & \\vdots \\\\\n", + " a_{n1} & a_{n2} & \\cdots & a_{nk}\n", + "\\end{array}\n", + "\\right]\n", + "$$\n", + "\n", + "Often, the numbers in the matrix represent coefficients in a system of linear equations, as discussed at the start of this lecture\n", + "\n", + "For obvious reasons, the matrix $ A $ is also called a vector if either $ n = 1 $ or $ k = 1 $\n", + "\n", + "In the former case, $ A $ is called a *row vector*, while in the latter it is called a *column vector*\n", + "\n", + "If $ n = k $, then $ A $ is called *square*\n", + "\n", + "The matrix formed by replacing $ a_{ij} $ by $ a_{ji} $ for every $ i $ and $ j $ is called the *transpose* of $ A $, and denoted $ A' $ or $ A^{\\top} $\n", + "\n", + "If $ A = A' $, then $ A $ is called *symmetric*\n", + "\n", + "For a square matrix $ A $, the $ i $ elements of the form $ a_{ii} $ for $ i=1,\\ldots,n $ are called the *principal diagonal*\n", + "\n", + "$ A $ is called *diagonal* if the only nonzero entries are on the principal diagonal\n", + "\n", + "If, in addition to being diagonal, each element along the principal diagonal is equal to 1, then $ A $ is called the *identity matrix*, and denoted by $ I $" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Matrix Operations\n", + "\n", + "\n", + "\n", + "Just as was the case for vectors, a number of algebraic operations are defined for matrices\n", + "\n", + "Scalar multiplication and addition are immediate generalizations of the vector case:\n", + "\n", + "$$\n", + "\\gamma A =\n", + "\\gamma\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + " a_{11} & \\cdots & a_{1k} \\\\\n", + " \\vdots & \\vdots & \\vdots \\\\\n", + " a_{n1} & \\cdots & a_{nk} \\\\\n", + "\\end{array}\n", + "\\right] :=\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + " \\gamma a_{11} & \\cdots & \\gamma a_{1k} \\\\\n", + " \\vdots & \\vdots & \\vdots \\\\\n", + " \\gamma a_{n1} & \\cdots & \\gamma a_{nk} \\\\\n", + "\\end{array}\n", + "\\right]\n", + "$$\n", + "\n", + "and\n", + "\n", + "$$\n", + "A + B =\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + " a_{11} & \\cdots & a_{1k} \\\\\n", + " \\vdots & \\vdots & \\vdots \\\\\n", + " a_{n1} & \\cdots & a_{nk} \\\\\n", + "\\end{array}\n", + "\\right] +\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + " b_{11} & \\cdots & b_{1k} \\\\\n", + " \\vdots & \\vdots & \\vdots \\\\\n", + " b_{n1} & \\cdots & b_{nk} \\\\\n", + "\\end{array}\n", + "\\right] :=\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + " a_{11} + b_{11} & \\cdots & a_{1k} + b_{1k} \\\\\n", + " \\vdots & \\vdots & \\vdots \\\\\n", + " a_{n1} + b_{n1} & \\cdots & a_{nk} + b_{nk} \\\\\n", + "\\end{array}\n", + "\\right]\n", + "$$\n", + "\n", + "In the latter case, the matrices must have the same shape in order for the definition to make sense\n", + "\n", + "We also have a convention for *multiplying* two matrices\n", + "\n", + "The rule for matrix multiplication generalizes the idea of inner products discussed above,\n", + "and is designed to make multiplication play well with basic linear operations\n", + "\n", + "If $ A $ and $ B $ are two matrices, then their product $ A B $ is formed by taking as its\n", + "$ i,j $-th element the inner product of the $ i $-th row of $ A $ and the\n", + "$ j $-th column of $ B $\n", + "\n", + "There are many tutorials to help you visualize this operation, such as [this one](http://www.mathsisfun.com/algebra/matrix-multiplying.html), or the discussion on the [Wikipedia page](https://en.wikipedia.org/wiki/Matrix_multiplication)\n", + "\n", + "If $ A $ is $ n \\times k $ and $ B $ is $ j \\times m $, then\n", + "to multiply $ A $ and $ B $ we require $ k = j $, and the\n", + "resulting matrix $ A B $ is $ n \\times m $\n", + "\n", + "As perhaps the most important special case, consider multiplying $ n \\times k $ matrix $ A $ and $ k \\times 1 $ column vector $ x $\n", + "\n", + "According to the preceding rule, this gives us an $ n \\times 1 $ column vector\n", + "\n", + "\n", + "\n", + "$$\n", + "A x =\n", + "\\left[\n", + "\\begin{array}{ccc}\n", + " a_{11} & \\cdots & a_{1k} \\\\\n", + " \\vdots & \\vdots & \\vdots \\\\\n", + " a_{n1} & \\cdots & a_{nk}\n", + "\\end{array}\n", + "\\right]\n", + "\\left[\n", + "\\begin{array}{c}\n", + " x_{1} \\\\\n", + " \\vdots \\\\\n", + " x_{k}\n", + "\\end{array}\n", + "\\right] :=\n", + "\\left[\n", + "\\begin{array}{c}\n", + " a_{11} x_1 + \\cdots + a_{1k} x_k \\\\\n", + " \\vdots \\\\\n", + " a_{n1} x_1 + \\cdots + a_{nk} x_k\n", + "\\end{array}\n", + "\\right] \\tag{2}\n", + "$$\n", + "\n", + ">**Note**\n", + ">\n", + ">$ A B $ and $ B A $ are not generally the same thing\n", + "\n", + "Another important special case is the identity matrix\n", + "\n", + "You should check that if $ A $ is $ n \\times k $ and $ I $ is the $ k \\times k $ identity matrix, then $ AI = A $\n", + "\n", + "If $ I $ is the $ n \\times n $ identity matrix, then $ IA = A $" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Matrices in NumPy\n", + "\n", + "\n", + "\n", + "NumPy arrays are also used as matrices, and have fast, efficient functions and methods for all the standard matrix operations [1]\n", + "\n", + "You can create them manually from tuples of tuples (or lists of lists) as follows" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tuple" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = ((1, 2),\n", + " (3, 4))\n", + "\n", + "type(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "numpy.ndarray" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = np.array(A)\n", + "\n", + "type(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 2)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `shape` attribute is a tuple giving the number of rows and columns —\n", + "see [here](https://lectures.quantecon.org/py/numpy.html#numpy-shape-dim) for more discussion\n", + "\n", + "To get the transpose of `A`, use `A.transpose()` or, more simply, `A.T`\n", + "\n", + "There are many convenient functions for creating common matrices (matrices of zeros, ones, etc.) — see [here](https://lectures.quantecon.org/py/numpy.html#creating-arrays)\n", + "\n", + "Since operations are performed elementwise by default, scalar multiplication and addition have very natural syntax" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2., 0., 0.],\n", + " [0., 2., 0.],\n", + " [0., 0., 2.]])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = np.identity(3)\n", + "B = np.ones((3, 3))\n", + "2 * A" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2., 1., 1.],\n", + " [1., 2., 1.],\n", + " [1., 1., 2.]])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A + B" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To multiply matrices we use the `@` symbol\n", + "\n", + "In particular, `A @ B` is matrix multiplication, whereas `A * B` is element by element multiplication\n", + "\n", + "See [here](https://lectures.quantecon.org/py/numpy.html#numpy-matrix-multiplication) for more discussion\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Matrices as Maps\n", + "\n", + "\n", + "\n", + "Each $ n \\times k $ matrix $ A $ can be identified with a function $ f(x) = Ax $ that maps $ x \\in \\mathbb R ^k $ into $ y = Ax \\in \\mathbb R ^n $\n", + "\n", + "These kinds of functions have a special property: they are *linear*\n", + "\n", + "A function $ f \\colon \\mathbb R ^k \\to \\mathbb R ^n $ is called *linear* if, for all $ x, y \\in \\mathbb R ^k $ and all scalars $ \\alpha, \\beta $, we have\n", + "\n", + "$$\n", + "f(\\alpha x + \\beta y) = \\alpha f(x) + \\beta f(y)\n", + "$$\n", + "\n", + "You can check that this holds for the function $ f(x) = A x + b $ when $ b $ is the zero vector, and fails when $ b $ is nonzero\n", + "\n", + "In fact, it’s [known](https://en.wikipedia.org/wiki/Linear_map#Matrices) that $ f $ is linear if and *only if* there exists a matrix $ A $ such that $ f(x) = Ax $ for all $ x $" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solving Systems of Equations\n", + "\n", + "\n", + "\n", + "Recall again the system of equations [(1)](#equation-la-se)\n", + "\n", + "If we compare [(1)](#equation-la-se) and [(2)](#equation-la-atx), we see that [(1)](#equation-la-se) can now be\n", + "written more conveniently as\n", + "\n", + "\n", + "\n", + "$$\n", + "y = Ax \\tag{3}\n", + "$$\n", + "\n", + "The problem we face is to determine a vector $ x \\in \\mathbb R ^k $ that solves [(3)](#equation-la-se2), taking $ y $ and $ A $ as given\n", + "\n", + "This is a special case of a more general problem: Find an $ x $ such that $ y = f(x) $\n", + "\n", + "Given an arbitrary function $ f $ and a $ y $, is there always an $ x $ such that $ y = f(x) $?\n", + "\n", + "If so, is it always unique?\n", + "\n", + "The answer to both these questions is negative, as the next figure shows" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "hide-output": false, + "html-class": "collapse" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAI1CAYAAADVQv5HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdcVuX/x/E3MlQUcO+9UMGNigtzhqa40zKzYa40M6tvy5w50rKs/FpZuXCXO/3m3hiIOEBxK2puBRQHyPn9Qd4/SStU4NxwXs/H436g5zp4f4Rz3ff7vs51ruNgGIYAAACsKovZBQAAAJiJMAQAACyNMAQAACyNMAQAACyNMAQAACyNMAQAACyNMAQAACyNMAQAACyNMAQAACyNMAQAACzN6RH3594dAFKdv7+/Vq9ebXYZADIfh5TsxMgQANNdunTJ7BIAWBhhCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAixkyZIgqV66sgQMHml2KXXjUe5MBAIAM7NixY9q2bZsiIiLMLsVuMDIEAIBFREZGqnHjxjp58qRq1KihGzdumF2SXWBkCACAdObgkKKbqT8ywzD+sd3T01M9e/ZUqVKl1KtXrzSpISNiZAgAAAvZt2+fqlWrZnYZdoWRIQAA0tm/jeCkpfDwcHl5eZn2/PaIkSEAACwiNjZWzs7OcnV1NbsUu0IYAgDAIvbv3y9vb2+zy7A7Do84VGfeuB6ATMvHx0chISFmlwEg80nRTHVGhgAAgKURhgAAgKURhgAAgKURhgAAgKURhgAAgKURhgAAgKURhgAAgKURhgAAgKURhgAAgOkmT56sSpUqqXv37g9tHzJkiCpXrqyBAwem+nNzo1YAACzIMAwZhqEsWexjXGTKlClatWqVSpcu/UDbsWPHtG3bNkVERKTJc9vHTwAAAKS5EydOqFKlSurfv79q1qypqKgotW/fXrVq1ZKXl5e+++67ZPu99tpr8vLyUsuWLXXz5k1J0qhRo1SxYkW1aNFCzz33nCZOnChJmj17turUqaPq1aurT58+unv37kNr+Pzzz+Xt7S1vb2998cUXkqS+ffvq2LFjCggI0KRJk5LtHxkZqcaNG+vkyZOqUaOGbty4kfo/mHvJMIUPAEh1tWrVMrsEIN0NG2YYUuo9hg379+c8fvy44eDgYOzYscO27fLly4ZhGEZcXJzh5eVlXLp0yTh+/Ljh6Oho7N692zAMw+jSpYsxa9YsIzg42KhWrZoRFxdnxMTEGOXKlTMmTJhgREREGG3atDHu3LljGIZh9OvXz5gxY8YDzx8SEmJ4e3sb169fN2JjY43KlSsboaGhhmEYRsmSJY2LFy8+tO4PP/zQ+P777x/hp2uTonzDaTIAACykZMmS8vX1tf198uTJWrx4sSQpKipKhw8fVqFChVS6dGlVr15dklSrVi2dOHFCly5dUrt27ZQ9e3ZJUtu2bSVJ69at065du1S7dm1J0s2bN1WgQIEHnnvr1q3q0KGDcuTIIUnq2LGjtmzZoho1avxjzfv27VO7du2e8H/+9whDAABYyL0gIkkbN27U2rVrtWPHDrm6uuqpp57SrVu3JElZs2a17efo6KibN2/KMIyH/puGYahnz54aO3bsPz73333/vwkPD5eXl9djfW9KMGcIAAATDB+emifJkv69RxUdHa3cuXPL1dVVBw8eVFBQ0D/u37BhQy1fvly3bt3S9evXtXLlSklSs2bNtGjRIl24cEGSdOXKFZ08efKB7/fz89OSJUsUFxenGzduaPHixWrUqNE/PmdsbKycnZ3l6ur66P/BFGJkCAAAi/L399fUqVNVtWpVeXp6Jjt99jC1a9dWQECAqlWrppIlS8rHx0ceHh6qXLmyRo8erZYtWyoxMVHOzs765ptvVLJkyWTfX7NmTb300kuqU6eOJKlXr17/eops//798vb2frL/6L9weMQhq8cb3wKAf+Dj46OQkBCzywCQAtevX1fOnDkVFxcnPz8/fffdd6pZs6bZZf0dh5TsxMgQAABIsd69eysiIkK3bt1Sz5497TkIpRhhCAAApNicOXPMLiHVMYEaAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYGmEIAABYmpPZBQDI/G7duqWrV6/q2rVrio+P1927d5WQkGD7Ghsbqw0bNih79uzKkSOHcuTIIVdXV9tXR0dHs/8LADIxB8MwHmX/R9oZQOZ27do1nThxItkjKipKly9f1pUrV2yPmzdvPtHzZM+eXQULFlThwoUfeBQpUkTly5dXqVKlCE0A/sohRTs9ShiKjSUMAVZjGIb++OOs9u/fq/Dwvdq/f68OHgzXqVMnFB0dnaJ/w9nZWblz55G7u4dcXFzk5OQkR0dHOTo66Y8/HHXhwl4VKlRLBQrcVFzcDcXF3dCNGzd082acbty4kaLncHFxUZky5VS+vOefj4qqUKGivLyqyNXV9Ul+BAAyKDc3whCAR2QYhqKiTikoaJtCQnbaws/Vq1ceur+rq6tKlCilkiVL//m1lIoVK6G8efMpd+48tkeOHDnk4PDw1yR3d0nykRSimJiH13T9+nWdP39O58//oXPnkh73/nz27GkdOXJIZ8+eeei/7+joqEqVvFSzZm3VqOGjmjVry8urilxcXB7vhwQgwyAMAfhXCQkJCg/fpx07tiooaJuCgrY+NFTkypVb3t5V5eVVVd7eVVWpkrfKlCmrvHnz/W3ISal/C0Mpdf36dR05ckiHD0faHgcPhuvgwQjdvXs32b5Zs2aVt3c1NWzYWI0aNVH9+o2UM2fOJ/lvALBDhCEAD3X8+DGtXbtaa9eu1tatGxUbG5usPVeu3Kpbt77q1q2vqlVryNu7qgoXLvLEoefvpFYY+jtxcXHaty9Mu3YFKzQ06XHkyKFk+zg5OalWrTry82uqxo2bqk6desqWLVvqFwMgXRGGAEhKCgNbtmy0BaCjRw8nay9Vqozq1WsoX98G8vVtIE/PSsqSJf1W3UjrMPQw0dHRCgnZqa1bN2rTpvUKDQ1WYmKirT1r1qxq3LiZWrcOUKtWbVW4cJH0KQxAqiIMARZ29epV/frrMi1dukgbNqzR7du3bW25cuVS06Yt1by5v5o2bakiRYqaWKk5YeivoqOjtX37Fm3evF6bN6/Xvn17krXXqOGj1q0D9Mwz7eTlVSXNRskApC7CEGAxly9f1q+/LtXixQu1ceNaJSQkSJIcHBxUo4aPmjf3V4sW/qpVq46cnOxniTF7CEN/deHCef3vfyv166/LtH79b8mWBihRoqTat++iLl2eV9Wq1QlGgB0jDAEWcP36dS1dukgLFszR5s3rbROFs2TJIj+/JmrXrrPatGmvggULmVzp37PHMHS/uLg4bdq0Tr/+ukyrVi3XhQvnbW0VKlRUly7Pq3Pn51S2bDkTqwTwMIQhIJNKTEzUli0bNWfODC1dukhxcXGSki4hb9y4mdq3TwpA+fLlN7nSlLH3MHS/xMRE/f77Di1cOFe//DJfly9fsrXVqlVHXbo8r2effT7D/OyBzI4wBGQyR48e0Zw5MzRv3kxFRZ2yba9Xr6Gee+5FtW3bUXnz5jWxwseTkcLQ/eLj47Vx4zotXDhHK1Ys1vXr1yUlLTDZpk17vfhiLzVp0jxdJ6MDSI4wBGQCd+7c0YoVSzRt2hRt3brJtr1EiZJ67rmeeu65F1WmTFkTK3xyGTUM3S8uLk6rV6/Q3LkztWbNKtuVaSVKlFSPHq/qhRdeVtGixUyuErAewhCQgZ0+HaWffvpOM2Z8b5ujkiNHDrVv30XPP99TDRr4ZZoRh8wQhu535sxpBQZO18yZ03Tq1ElJSXO4WrRopV69+qtFC/9M87sD7B1hCMhgEhMTtWHDWk2bNkWrVi23jS5UquSlXr36q2vXF+SelBwylcwWhu659/ucOXOaVqxYovj4eElS2bLl1afPQD3/fM9M+fsE7AlhCMggbt68qblzZ+qbbybp8OFISUnzTgICOqlXr36qX79Rpr58O7OGoftdvHhBs2f/pO+//0anT0dJktzc3NS9+8vq02cgV6IBaYQwBNi5ixcv6LvvvtG0aVNsVyUVLVpMr7zSVy+++KpdXw6fmqwQhu5JSEjQypVLNXXqZG3btllS0jpQLVu21oABb8nPr0mmDr5AeiMMAXYqMvKAvv76c82bN8u2MnSNGrU0YMAQtW/fWc7OziZXmL6sFIbut2fPbn377VdauHCO7TioWbO2Bg/+j9q0aS9HR0eTKwQyPsIQYGd+/z1In302RqtWLZeUNCLQqlVbDRw4JNOfCvsnVg1D91y6dFE//DBVU6dOto0Qli1bXoMGvaNu3Xpww1jgCRCGADtgGIY2b96giRM/0aZN6yVJ2bJlU/fuL6l//8EqX76CyRWaz+ph6J64uDjNnv2Tvvpqok6ePCFJKliwkPr3f1OvvtqPydbAYyAMASYyDEOrV6/UxImfKDg4SJLk7u6u1157Xf37v6n8+QuYXKH9IAwll5CQoMWLF+qLL8bbbhibK1cu9e8/WH37vqFcuXKZXCGQcRCGABMkJiZq2bJf9Omno7R//15JUp48efX664P12muv80b2EIShhzMMQ+vW/abPPhtjm2zt7u6uvn0HqX//N5UnTx6TKwTsH2EISEeGYWjFiiUaO3a4LQQVLlxEAwe+rZdf7q0cOXKYXKH9Igz9u61bN2n8+JG2U61ubm7q02egXn99sPLmzWdydYD9IgwB6cAwDK1atVxjxw7Xnj27JSVdHj9kyAfq0eMVZc2a1eQK7R9hKOV27NiqceNGasOGNZKSViXv2/cNvfHGO8qdO7fJ1QH2hzAEpCHDMPS///2qsWOHa/fuEElJI0FDhnygnj17EYIeAWHo0e3cuUOffjpKa9askiR5eHho0KB31bfvG8qZM6fJ1QH2gzAEpJGtWzdp2LD3bBOjCxYspLfeel8vv9yby6AfA2Ho8f3+e5BGj/5IGzeukyTlz19AQ4Z8oFde6cOxCIgwBKS6PXt2a8SID7R27WpJSW88gwe/p1df7avs2bObXF3GRRh6chs3rtPIkR8qJGSnJKlYseJ6771hev75nnJycjK5OsA8hCEglRw9ekSjRw/Vzz/Pk5Q0eXXQoHfVv/+bnJJIBYSh1JG0nMMKjRz5ocLD90lKWrzxww9HqmPHZ5UlSxaTKwTSH2EIeEJ//HFWn346SjNmTFNCQoKyZs2q3r0H6K233uMKnlREGEpdiYmJ+vnn+frkk4917NgRSZK3d1UNHfqJ/P2fsexK57AmwhDwmK5du6Yvvhiv//73S928eVNZsmRR9+4v6f33h6tYseJml5fpEIbSRnx8vObMmaFx40bozJnTkqQGDfw0atQE+fjUMbk6IH0QhoBHdPPmTX377Vf6/PNxunbtqiQpIKCjhg4dLU/PSiZXl3kRhtLWrVu39MMPUzVhwmhduXJZktSxY1cNGzZGpUuXMbk6IG0RhoAUSkxM1IIFczRy5Ac6fTpKkuTn10TDh4/jE3Q6IAylj3sjnlOmfKFbt27J2dlZr732ut555yPlzZvX7PKANEEYAlJgy5aN+vDDIQoLC5UkValSTSNHfqqmTVswtyKdEIbS1+nTURo9eqjmzp0pwzDk4eGhIUM+UJ8+A7kqEplOmoShqVOnP7BzxYpeqlWrtuLj47VgQeAD31OlSnVVrVpdcXFxWrx4wQPtNWr4qHJlb0VHR2vFisUPtNepU0/ly3vq8uVLWr16xQPt9ev7qXTpMjp//pztkuf7NW7cTMWKFdfp01HatGndA+3Nm/urYMFCOn78mLZv3/xAu79/G+XNm0+HD0fq9993PNDepk0HeXh4KCJiv23xvft16PCsXF1dtXdvmPbtC3ug/dlnu8vZ2Vm7dgXr4MHwB9q7d39JkrRz53YdOXIoWZujo5O6dXtBUtLaNydPHk/Wni1bdnXq1FWStGHDWp09ezpZu5ubuwICOkqS1qxZrQsXziVrz5Mnr1q1aitJWrVquW2I/Z4CBQqpRQt/SdKyZb8oNjb5O1mRIsXUpElzSdLPP8/XrVs3k7WXLFlaDRs2liTNmzdbd+8mJGsvV66C6tatL0kKDJyuv3qSY+/cuT+0bt3/tHXrJkmSh0cutWvXSXXr1rdddcOx95KktD/23N1XS+onaZj++9+k9sx87En28bp3/vw5vfPOQO3YsVWSlDt3HgUEdFKdOr5q3TrAEsee1V73JPs49tLzda9v35dSFIZYgAKWEhMTo5Url2rLlg0yDENZs2bTwIFDVKxYcVaNhqVUrVpdU6fO0LRpUzR79k+6evWKZsz4XuvWrZa7u4fatetkdolAuuE0GSzh5s2bmjLlC33++VjFxsYqS5YsatDAT8880179+w8yuzxL4zSZ+WbN+lG//75Da9eutl151qzZ0xo16lN5e1c1uTrg8aX0NBmrcCFTS0xM1Ny5s1SzZgWNGPGBYmNj9fTTzygoaJ8+/vgT1apV2+wSAdNVqFBRL7zwskJDD2nEiHFyd3fXunX/U4MG1dWv38u2gARkVowMIdPavHmDPvxwiO1u8lWrVtfo0RP11FPNTK4M92NkyP5cvnxJn346WtOmTVF8fLyyZ8+uAQOG6M0335Wbm5vZ5QEpxtVksKzIyAMaOvRd2+S/IkWKaujQT/Tccz24JYEdIgzZr2PHjmrEiPe1ePFCSUn34/vggxHq2bMX9zxDhkAYguVcvHhBY8YM0/Tp3+vu3bvKmTOnBg9+T6+/Pliurq4P7B8YOF3S/1+5AnMQhswXGDhd0t/3hZ07d+ijj97Wzp3bJUmenpU0cuSn3N4Ddo85Q7CMuLg4TZw4RtWrl9MPP0yVJL36al+FhR3RO+98+NAgBCDl6tatp99+26pZsxapdOmyiow8oK5d26pt22a2NbqAjIwwhAwrMTFRc+bMVK1anho58kPFxsbK37+NduzYq0mT/qsCBQqaXSKQaTg4OKhdu04KDo7Q2LGTlDt3Hm3evEF+frXUu/eLioo6ZXaJwGMjDCFD2rhxnRo39lHfvj115sxpVatWQ8uXr9OCBctVsWJls8sDMi0XFxe9/vqbCgs7ojfeeFsuLi6aNy/pis3hw99XdHS02SUCj4wwhAwlImK/OnVqrYCA5tqzZ7eKFi2mb7+dqU2bQtS4cVOzywMsI3fu3Bo9eoJCQg6qU6duun37tj7/fJyqVy+n7777RvHx8WaXCKQYYQgZwh9/nNWAAb1Uv341rVmzSm5ubvr440+0a1fkY18lVrGilypW9EqDaoGM5Un6QqlSpfXTT3O1bl2Q6tVrqMuXL+nttweobl1vrVy5VI9ykQ5gFq4mg12LjY3Vl19O0Ndff6a4uDg5OTnp5Zf76L33Plb+/AXMLg+pIDWuJmvXroWuX7+udeuS38soPHyfGjWqqalTZ+jZZ59/0lLxLwzD0MqVSzV06Ls6evSwJKlBAz+NHj2RBU5hCq4mQ4aWkJCgH36Yqho1yuvTT0cpLi5OAQEdtXNnuD777OtUCULx8fEM5WcSvr4NtWdPqG7fvm3bZhiG3nqrv+rWrU8Q+hep1RccHBzUpk17/f57uCZM+Ep58uTVtm2b1aRJHb3yyvM6efLEkxcLpAHCEOyKYRj69ddl8vWtosGD++nChfOqXdtXv/22VbNn/6zy5Suk2nMtWBD40Ls+I+Px9W2gO3fu2FYbl6Q5c2YqODhIEyd+bWJlGUNq9wVnZ2f16TNAe/Yc1eDB/1HWrFm1aNFc1arlqaFD39W1a9dS7bmA1EAYgt3YtStYrVs/pW7d2unQoYMqXbqsZs5cqLVrt8vXt4HZ5cGO1a7tK0dHRwUHB0mSrl27po8/fle9ew+Ql1cVk6uzLg8PD40YMU67dkXq2We7686dO/ryywmqVq2s/vvfybpz547ZJQKSCEOwAydOHNfLLz+nJk3qaNu2zcqTJ6/Gj/9SwcERat++Myvc4l/lzJlTVapUs4WhkSM/VJYsWfTBByNMrgySVKJESU2bNlsbNwarYcPGunr1iv7zn0GqU8dLS5f+zCRrmI4wBNNcvHhB7747SD4+FfXzz/OUNWtWDR78H4WFHVG/fm/IxcXF7BKRgdSt20AhIUEKCwvVjz9O1ahRE+SeNDsbdqJmTR+tXLlB8+YtVfnynjp27Ih69OisFi0aaMuWjWaXBwsjDCHdRUdHa9SooapatYymTp2s+Ph4de36gkJDD2nEiHHKlSuX2SUiA6pXr6FOnTqpPn1elK9vA3Xr9oLZJeEhHBwc1Lp1gIKC9unzz6coX778+v33HXrmmSZq3/5p7d69y+wSYUFcWo90ExcXp++++1qffz5O165dlSS1atVWQ4eOlrd31XSvZ+/eMElS1arV0/258f9S60atZ8+eUcWKxeTo6KgtW0JNOaYyKjP7QmxsrKZM+UJffTVRMX8eAO3bd9ZHH41ShQoV070eZC7ctR52Iz4+XjNn/qDx40fq3Lk/JEkNGzbWsGFjVLdufZOrg9lSKwxFR0erbNkCevXVfho//otUqg7p5fLly5o0aZy+++5r3bp1S1myZFH37i/pvfeGqXjxEmaXhwyKMATTJSYmatGiefrkk491/PhRSVL16jX18cdj1KxZS9MnRsfFxUkSd7U3WWqFoQ8+GKKFC+coJOSgPDw8Uqk6a7CnvnD27BmNHz9SM2f+oLt378rFxUWvvtpPb7/9AQut4pERhmAawzC0atVyjRr1kcLD90mSypf31EcfjVK7dp0e69YZaSEwcLokqXv3l0ysAk8ShuLi4rRv3x7t2LFFI0Z8oJkzF6pt2w5pUGXmFhg4XZJ99YUjRw5rzJhhWrRorqSkKwb79x+sAQPeYl4hUowVqJHu7oWgxo191K1bO4WH71OxYsX1zTc/aOfO/erQoYvdBCFkDhs3rlWLFvU1depkjR//JUEoEylXrrx+/HGOtm0L09NPP6Pr16/r009HqUqVUhozZjgLNyJV8c6EJ3Zv1ejGjX3UtWuAwsJCVbBgIY0dO0mhoYfUo8crcnJyMrtMZEKtWwcoJsbQwYOn1bv362aXgzRQpUo1LVy4Qr/9tlWNGzdVdHS0xo0bQShCqiIM4bHdC0F+frXUrVs7WwgaN+4L7d17TK+//qayZctmdpkAMgFf3wZavnydVq/erKeeakYoQqoiDOGR3b17Vz//PF+NGtVUt27ttGfP7mQhqH//QcqePbvZZQLIhOrXb6Rly9Y+EIq8vUtq+PD3deHCebNLRAbEBGqk2O3btzV37kx98cWnOnbsiCSpUKHCGjz4Pb300msZLgBFROyXJFWu7G1yJdaWWleT4fFl5L6wY8dWjRs3Qhs2rJUkZcuWTS+88IreeONtlSpV2uTqYDauJkOqiY2N1U8/fauvv/7ctk5QqVJl9Oab7+r553tyKgxPhDCE1BAcvFOffz5WK1culSQ5OjqqU6dueuut9zJkyEPqIAzhif3xx1l9//0UTZv2je18fJUq1TR48Htq375zhp8UHR0dLUmsSWMywpD5MlNfOHgwQpMmjdeCBYG6e/euJMnfv40GDhyihg0bm76+GdIXYQiPbffuXZoy5Qv98st8xcfHS0o6T//WW++rRQv/TPNiEhg4XZJ9ra1iRYQh8wUGTpeUufrCqVMn9dVXn2nmzGm6efOmpKTbjfTr96Y6d+6mrFmzmlwh0gPrDOGR3L17V8uW/SJ/fz81buyj+fNn6+7du2rXrpN++22rVq/erJYtW2WaIAQgcytRoqQmTJis/ftP6P33hyt//gLauzdM/fq9JC+vkho3bqQuXrxgdpmwE48UhkaNGqqoqFNpVQtMcPnyZX311WeqXr2cXnihk7Zv3yJ3d3cNGPCW9uw5qlmzFsnXt4HZZQLAY8mfv4Def3+YIiJO6b///Une3lV14cJ5jRkzTJUrl1D//q8oNDTE7DKRim7duqX58wPl7++X4u95pNNkDg4ORpYsWdSiRSu98koftWzZWo6Ojo9TK0xkGIa2b9+iH3/8VkuXLtKdO3ckSaVLl1W/foPUvftLcnNzM7nKtBcYOF1S5jo1kBFxmsx8gYHTJVmjLxiGoS1bNmrKlC+0atVy3XsPrF69pl5+uY86d37OEq9/mdGRI4c1ffp3mj37J125clmSZBhG6p8m69z5OTk5Oel//1uprl0DVKVKaY0bN1Jnz555jLKR3q5cuaJvvvlCdep4qVWrxlq4cI7i4+PVokUrzZu3VKGhkerbdyAvBAAyLQcHB/n5NfnzNe+QBgx4S7lz51FYWKgGDeojT88ievPNvgoLCzW7VKTAnTt3tHjxQgUENFfNmhU0efJEXblyWVWrVtekSf9N8b/zyBOoL126qMDA6frpp+9sa804OjqqeXN/devWQ61bB2S49WYys4SEBG3cuE7z5s3SsmU/69atW5KkggULqUePV9WzZy+VLFnK3CJNcvhwpKSkm8jCPIwMmc/qfeHWrVtauvRn/fTTt9q+fYtte40aPnr++Z7q1Kmr8uXLb2KFuJ9hGNqzZ7fmz5+thQvn2BbazJ49uzp16qZXXumrWrVqy8HBIe2vJktMTNSmTev100/fasWKJUpISJAkubu7q127zurWrYcaNPDjxpwmuHegzJs3S4sWzbUdKA4ODmratKVefrm3WrVqK2dnZ5MrBQhDsC8HD0Zo+vTvNWfODF27dlWS5OTkpObN/dW16wt84DfR6dNRWrAgUPPmzdLBgxG27ZUqeemVV/qqa9cXlCtXrmTfk66X1l+8eEGLFs3TvHmztHv3/09EK168hJ59trs6d35y+oU9AAAgAElEQVROlSt7cyVSGjtx4rgWLZqr+fNnKzLygG172bLl1a1bD3Xt+gIrst7n8uVLkqS8efOZXIm1EYbMR1940M2bN7VixRLNnz9b69b9z7ZmkZubmwICOqlr1xfUsGHjDL/emr27cuWKfv11qebNm6UtWzba5njlzZtPnTp1U7duPWyjQA9j2jpDkZEHNH/+bM2fPzvZlWelS5dVQEBHtW3bUT4+dRgxSgWGYSgiYr+WL1+sFSsWa+/eMFtb3rz51Lnzc+ra9YV/PFCsLDBwuiRrTBq1Z4Qh8wUGTpdEX/g7Fy9e0M8/z9e8ebMUGhps254nT161bh2gtm07qEmTFqzGn0r++OOsVqxYouXLf9GWLRttQTRr1qxq3TpA3br1UPPm/ik6u2H6oouJiYnavn2LFiwI1IoVS3Tp0kVbW6FChdWmTQe1bdtBDRs25nTNI0hMTFRwcJCWL1+s5csX6/jxo7a2HDly6Omn26hbtx5q1qwlP9d/ERg4XRJvAGYjDJkvMHC6JPpCShw+HKn58wO1aNFc27xZKen1t0WLVmrTpoOefvqZTLGad3o6evSIVqxYrGXLflFwcJBtu6Ojoxo1ekqdOnVTu3adHzgN9m9MD0P3u3v3roKCtmnZsl+0YsXiZCNGOXPmVKNGTdSkSQs1bdpC5ct7MorxF6dPR2nDhjVav36NNm1alyxY5s2bT61bB6hNmw5q0qQ5n0weQWDgdEm8AZiNMGS+wMDpkugLj8IwDB04EK4VK5ZoxYrFya4+c3JyUp069dSkSQs1adJCNWv6cDrtL65du6YtWzZo/frftH79mmQf7LNly6ZmzZ5W27Yd5e/fRnny5Hns57GrMHQ/wzAUFhZqO7Vz/yQoSSpWrLjtAGrU6CkVLFjoSZ8yw7l27Zq2bduk9evXaMOGNTpy5FCy9hIlSqpNmw5q06a9fH0b0MkeU2DgdEm8AZiNMGS+wMDpkugLT+LUqZO2YLR9+xYlJiba2jw8PGwf+p96qrnKlStvuQ/9t27dUmhosDZsWKsNG9YoJGRnsp9Rrly51KJFawUEdFTz5v7KkSNHqjyv3Yahvzpz5rRt1GPDhjW2iXz3lChRUrVr11Pt2r6qU6eeqlatLhcXl9QuwzQJCQk6cCBcISE7FRwcpJCQnYqMPKD7fy9ubm62jtSkSXNGz1JJYOB0SbwBmI0wZL7AwOmS6Aup5d6ox703/qNHDydrz5s3n3x86qp2bV/5+NRVrVp1MtVpNcMwdOrUSQUHB+n333coODhIe/futt3rUvr/0bOmTVvaRs/SYhHnDBOG7peYmKh9+/Zo/frftHHjWgUHB+n69evJ9smaNauqV6+lqlVrqFIlL1Wq5KWKFb2UN2/etCwtVcTGxioy8oAiIyN04EC4du8OUWhosG7cuJFsPxcXF9WqVccWfmrVqsPoTxo4fvyYJKl06TImV2JthCHz0RfS1qlTJ7Vx41qtX79GW7ZseOCeaA4ODvL0rCQfn7qqXLmKKlasrIoVK6to0WJ2/8H39u3bOnLkkA4cCNeBA+GKiNinkJCdOn/+XLL9HBwcVLFiZfn5NVXTpi3UsOFT6bLAb4YMQ3919+5dHTgQnixdHjp08KH7FihQ0BaMSpcuq2LFiqto0eIqXryE8uXLny5XrxmGoStXrujs2dM6fTpKZ85E6ejRwzp4MEKRkRE6fTrqod9XqlQZ26eE2rV9VaVKNe6oDMsgDMFK7h81uXc2YM+eUNttke6XM2dOeXomBSNPz0oqXrykihYtpqJFi6tQocLpdpHM9evXdeZMlO197dSpk7YP9UePHrZd7XW/3Lnz2N7T6tSpp5o1a5sy+pUpwtDDXL16Vbt2/a6IiH22JBoZGfHA6Mr9XFxcVKRIMRUrVlz58uWXu7uH3Nzc5e7uIXd3D3l4JP3dxeX/A8i9NH7v661bNxUbG6OYmBhdvx6r2NgYxcbGKDo6Whcvntfp01E6e/a0bYXnv6ujQoWK8vSsrEqVvOTtXVW1a/sqf/4CqfTTwaO498nFivPS7AlhyHz0BXPdvn1be/eGKTQ02Pbh+eDBiGQXy/yVg4ODChYspCJFiqlIkaLKlSu33Nzc/3xvc7f9OUeOnMqSJUuyqRf3/mwYiYqNjVVMTPRfHjG6du2qzp49rTNnonTt2rV/rKN06bK2MzWenpVVs2Ztu5kXlWnD0MMkJiYqKuqULRidPHlCZ85E2ZLsvRu2pQcPD48/D85iKlq0mEqVKmM7QEqVKs3pLjsSGDhdEvMkzEYYMl9g4HRJ9AV7c+nSRUVGHtCBA+E6dOjgn+HktM6ePa1z5/7Qo7x/P4msWbOqaNHitjMuxYqVUPnynqpUyUsVKlS06xW5UxqGHumd2X7v35lFHh6l5O1dStIzD7TGxcUpKipKUVFRunLliqKjo22PmJgY25/vTe76/9T8/1+zZ88ud3f3Bx5ubm4qUKCAihcvrqJFi3KT0wzk3ioE/MrMNWyY9N13Uu/e/C7MQl+wT25u+VW6dH75+/s90BYfH69z587p9OnTOnPmjGJiYh76iI2Ntb2X3T9S4+Dg8Oe9u9zk4eEhd3d3eXh4JHsULVpUxYsXV758+exilCctWWKYwtXVVZ6envL0tOZNCAF7Nny4tGJF0lcAKePs7KzixYurePHiZpeSKXBPDAAAYGmEIQAAYGmWOE0GPEyzZs3MLgGwC/QFWB1hCJbFuXYgCX0BVsdpMljWvSsMAaujL8DqCEOwrHXr1mndunVmlwGYjr4AqyMMAQAASyMMAQAASyMMAQAASyMMAQAAS+PSeliWv7+/2SUAdoG+AKsjDMGyChUqZHYJgF2gL8DqOE0Gyzp27JiOHTtmdhmA6egLsDpGhmBZmzdvliSVKVPG5EoAc9EXYHWMDAEAAEsjDAEAAEsjDAEAAEsjDAEAAEtjAjUsq02bNmaXANgF+gKsjjAEy8qXL5/ZJQB2gb4Aq+M0GSwrMjJSkZGRZpcBmI6+AKtjZAiWtWPHDkmSp6enyZUA5qIvwOoYGQIAAJZGGAIAAJZGGAIAAJZGGAIAAJbGBGpYVocOHcwuAbAL9AVYHWEIluXh4WF2CYBdoC/A6jhNBsvav3+/9u/fb3YZgOnoC7A6RoZgWSEhIZIkb29vkysBzEVfgNUxMgQAACyNMAQAACyNMAQAACyNMAQAACzNwTCMR9n/kXYG7FlcXJwkydXV1eRK4OPjY5vEi/RHX0Am5pCSnbiaDJbFCz+QhL4Aq+M0GSwrLCxMYWFhZpcBmI6+AKsjDMGyeAMAktAXYHWEIQAAYGmEIQAAYGmEIQAAYGmEIQAAYGmsMwTLio+PlyQ5OzubXAlYZ8hc9AVkYqwzBPwTXviBJPQFWB2nyWBZwcHBCg4ONrsMwHT0BVgdYQiWFR4ervDwcLPLAExHX4DVEYYAAIClEYYAAIClEYYAAIClEYYAAIClPdI6Q/7+/salS5fSsBwAVnTgwAFVqlTJ7DIAZDK7du36n2EY/v+2H4suAjAdiy4CSCMpWnSR02QAAMDSCEOApCNHjsjZ2VnDhg1Ltr1fv35yc3Nj1AKWQV+AFRGGAEnlypVTr169NGnSJN2bFzdy5Ej9+OOPWrx4sXx8fEyuEEgf9AVYEXOGgD+dO3dOZcuWVf/+/VWxYkX17t1bc+fO1bPPPmt2aZkec4bsC30BmQhzhoBHUahQIb355pv66quv1KdPH02ePDnZi//Ro0fVsGFDVahQQTVq1ODNG5nWv/WFMWPGyNPTU1myZNGSJUtMrBRIHYQh4D7ly5fX7du3Va9ePb3++uvJ2vr27auXXnpJhw4d0qeffqru3bvrEUdWkcqioqLUuXNneXh4yN3dXR07dtSpU6fMLitT+Ke+0KxZM/3666/y8/MzqTogdRGGgD+tX79effr0Ub169bRt2zbt2bPH1nbx4kUFBQWpZ8+ekqQWLVpIknbt2mVKrZDi4uLUtGlTHTx4UDNmzNCsWbN0+PBhNWnSRDdu3DC7vAztn/qCJNWtW1dly5Y1qTog9RGGAEmhoaFq3769evXqpY0bN6pEiRL64IMPbO2nTp1SkSJF5OzsbNtWsmRJRiFM9P333+vYsWNasmSJ2rdvr3bt2mnZsmU6efKkvv32W7PLy7D+rS8AmRFhCJZ35MgRtWrVSi1bttRXX30lFxcXDRs2TL/++qs2b978t9/HKTJzLVu2TL6+vipXrpxtW+nSpdWgQQMtXbrUxMoyrsftC0BGRxiCpZ07d04tW7ZUpUqVFBgYqCxZkrrEiy++qIoVK+q9996TJJUoUUJnz55VfHy87XtPnjypEiVKmFI3pPDwcHl7ez+w3cvLSxERESZUlLGltC8AmZGT2QUAZipUqJCOHTv2wHZHR0cdOHDA9vf8+fOrTp06mj59ul577TWtWbNGhmGoVq1a6Vku7nPlyhXlzp37ge158uTR1atXTagoY0tpXwAyI0aGgBSaOnWqfvrpJ1WoUEHvvPOOAgMD5eCQoiUskEYe9vPn9GXaGz16tIoVK6YdO3aoV69eKlasmM6dO2d2WcBjY2QISKHy5ctr+/btZpeBP+XOnVtXrlx5YPvVq1cfOmKE1PPRRx/po48+MrsMINUwMgQgQ/Ly8lJ4ePgD2yMiIlS5cmUTKgKQURGGAGRIAQEBCgoKSjbP5cSJE9q2bZsCAgJMrAxARsO9yQCY7nHuTXbjxg1Vq1ZN2bNn1+jRo+Xg4KChQ4cqNjZWe/fuVc6cOdOoWgAZCPcmA5B55ciRQ+vXr1eFChXUo0cPde/eXaVLl9b69esJQgAeCSNDAEzHXesBpBFGhgAAAP4NYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFiag2EYZtcAwOIcHBxWG4bhb3YdAKyJMAQAACyN02QAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSnB5xfyNNqgBgaf7+/lq9erXZZQDIfBxSshMjQwBMd+nSJbNLAGBhhCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBpTo+y8/Tp0x/Y5uXlpdq1ays+Pl6BgYEPtFevXl3Vq1dXXFycFixY8EC7j4+PvL29FR0drcWLFz/QXq9ePXl6eurSpUtasWLFA+1+fn4qU6aMzp07p9WrVz/Q3qxZMxUvXlxRUVFat27dA+3+/v4qVKiQjh07ps2bNz/Q3qZNG+XLl0+RkZHasWPHA+0dOnSQh4eH9u/fr5CQkAfan332Wbm6uiosLExhYWEPtHfv3l3Ozs4KDg5WeHj4A+0vvfSSJGn79u06dOhQsjYnJye98MILkqRNmzbp+PHjydqzZ8+url27SpLWrl2r06dPJ2t3d3dXx44dJUmrV6/WuXPnkrXnzZtXbdu2lSQtX75cly9fTtZeqFAh+fv7S5J++eUXxcTEJGsvVqyYmjdvLkmaP3++bt68may9dOnSaty4sSRp9uzZSkhISNZeoUIF1a9fXxLHXmY/9i5fvpzsd8yxx7En8brHsffkx969Y+nfMDIEAAAszcEwjEfZ/5F2BoCU8PHxeeinPAB4Qg4p2YmRIQAAYGmEIQAAYGmEIQAAYGmEIQAAYGmEIQAZUosWLVSvXr0Htu/bt0/Ozs6aM2eOCVUByIgIQwAypIYNGyo0NFS3b9+2bTMMQ/3791f9+vX1/PPPm1gdgIzkkRZdBAB70aBBA925c0e7d++Wr6+vJGnmzJkKCgpSaGioydUByEgYGQKQIfn6+srR0VFBQUGSpGvXrundd9/VgAEDVKVKFZOrA5CREIYAZEg5c+ZUtWrVbGHoww8/VJYsWTRixAiTKwOQ0RCGAGRYDRo0sJ0Wmzp1qiZMmCB3d3ezywKQwRCGAGRYDRs21MmTJ/Xiiy+qQYMGtht4AsCjYAI1gAyrQYMGkqSDBw8yaRrAYyMMAciwcubMKRcXF/Xr109Vq1Y1uxwAGRSnyQBkWCNHjlSePHmYNA3giTAyBCBDiYuL0549e7RlyxZ9+eWXWrhwoTw8PMwuC0AGRhgCkKGsXbtW7dq1U9GiRfXll1+qQ4cOZpcEIIMjDAHIUAICAmQYhtllAMhEmDMEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAszcnsAgBkHjExMYqKitLly5d15cqVZI+rV6/q2rVrio+P1927d5WQkGD7eujQITVp0kTZs2dXjhw5lCNHDrm6utr+nDNnThUsWFCFCxdWkSJFVLhwYeXKlUsODg5m/5cBZAIOhmGkeOfYWKV8ZwCZTmJiok6ePKGDB8N18uQJnTp1QidPHv/z6wldu3Y13WrJmjWrChUqrEKFiqhMmXKqUKGiypf3VPnynipTppyyZs2abrUAsE9ubkrRJybCEICHio6OVkTEPu3fv1fh4Xu1f/9eRUTs0/Xr1//2e7Jnz65ixUoob958yp07zwMPd3cPubi4yMnJSY6OjnJ0dFKXLo6S3pD0Xy1YcFNxcTcUF3dDN27c0M2bcbpx44ZiY2N0/vw5nT//h86d+0Pnz/+h2NjYv60jS5YsKlGilCpUqKiqVWuoVq3aqlmztgoXLpL6PygAdoswBCDFDMPQkSOHtXPnNgUFbdOOHVt1+HDkQ/ctVKiwKlXyVpkyZVWiRCnbo1Sp0sqXL/8jn7pyd5ckH0khiolJ+ffduHFD5879obNnT+vIkUM6fDjS9jhx4pgSExMf+J7ChYuoRg0f1ayZFI7q1q0vNze3R6oXQMZBGALwtwzD0L59e7Rx41oFBSUFoEuXLibbJ1u2bKpUyVve3lXl5VVVXl5V5OVVRfny5U/VWh43DP2TO3fu6PjxozpwIFxhYbsUGhqs3btDFB0dnWw/R0dH1axZW40bN5WfX1PVrVtf2bNnT50iAJiOMAQgmcuXL2vDhjVau3a11q37n86fP5esvUCBgvL1bSBf34by9W2gatVqyNnZOc3rSosw9DCJiYk6evSILRj9/vsO7d4dort379r2cXFxUd269eXn11QtW7ZW9eo1maQNZGCEIcDi7o3+rFy5VGvXrtauXb8nO3VUpEhRNWv2tOrX95OvbwOVKVPWlDf+9ApDDxMbG6vt27do8+b12rx5vfbuDdP9r4lFihRVq1Zt1bp1O/n5NWFSNpDBEIYACzIMQ7t379LSpYu0ZMkiHT9+1Nbm7OysBg381Ly5v5o391elSl52MephZhj6q8uXL2vbtk3asGGNVq1arrNnz9jacubMqWbNnlbr1u3UqlVb5cqVy8RKAaQEYQiwCMMwFBLyu5YsWailSxfp1KmTtrb8+QuobdsOevrpZ9SoURPlzJnTxEofzp7C0P0Mw1BYWKh+/XWZVq1apr17w2xtLi4uevrpZ9Sly/N6+ulnmGcE2CnCEJDJnThxXHPnztTcuTN14sQx2/ZChQorIKCT2rfvrHr1GsrR0dHEKv+dvYahv4qKOqVVq5Zr+fJftHnzBtvpNDc3N7Vt21Fdujyvxo2bysmJtWwBe0EYAjKh2NhYLV26SHPmzNDWrZts24sUKar27buoffvOqlOnnrJkyTh32skoYeh+f/xxVr/8skALF85RaGiwbXv+/AXUtesL6tmzlzw9K5lYIQCJMARkGoZhaPv2LZo58wctXbpIcXFxkpIWOGzbtqOef76nGjduavcjQH8nI4ah+x05cliLFs3VggWBOnLkkG17vXoN9eKLvdShQxe5urqaWCFgXYQhIIOLiYnR/PmzNW3aFB04EG7bXq9eQ3Xv/pLat+8i96QkkaFl9DB0j2EY2rUrWDNnTtOiRXNtK3V7eHioS5fu6tmzl6pVq2FylYC1EIaADCo8fJ+mTZui+fNn295QCxQoqBdffFXdu7+ssmXLmVxh6sosYeh+169f1y+/zNf06d8rJGSnbXvt2r7q2/cNtWvXSS4uLiZWCFgDYQjIQBISErRs2S/69tuvtGPHVtv2hg0bq1ev/mrTpn2mffPMjGHofuHh+zRjxjTNmzdT165dk5Q0yb1Xr/56+eXeyp+/gMkVApkXYQjIAGJiYjRz5g+aOvVL2yXxbm5ueu65nnr11b6qVMnL5ArTXmYPQ/fcuHFD8+fP1tSpk3XwYISkpEv0O3d+Tv36DeIUGpAGCEOAHYuKOqWpUydrxozvFfNnAihbtrxef32wunXrYZfrAaUVq4ShewzD0MaN6zR16mStXr3Cdol+o0ZP6c03/6PmzZ+2i8UwgcyAMATYoT17duvLLydo8eIFtntiNWjgp4EDh8jfv02GuiQ+tVgtDN3v2LGj+u67rzVr1g+KjY2VJFWpUk2DBr2rjh2fZc0i4AkRhgA7EhS0TRMmfKI1a1ZJSrpbevv2XTRw4BDVrOljcnXmsnIYuic6Olo//jhVU6Z8YbuBbsmSpTRgwBD16PEKl+YDj4kwBJjMMAxt2LBWEyd+Ylsg0dXVVS+91Fuvvz5YxYuXMLlC+0AY+n+3bt3SvHmz9OWXE3T06GFJUt68+dS//5vq02dgplhKAUhPhCHAJImJifr112WaOHGMbXViDw8P9e49UP37D1LevPlMrtC+EIYedPfuXa1YsUSTJo23HUO5cuVS//6D1bfvG9wkFkghwhCQzgzD0IoVSzR27HDt379XkpQvX369/vpg9erVXx4eHiZXaJ8IQ3/PMAxt2rRe48eP1LZtmyUlBeu+fQepX79BypMnj8kVAvaNMASkE8MwtGrVco0dO1x79uyWlHSvsEGD3lXPnr2Y7/EvCEMps3XrJo0fP1KbNq2XlLQEQ58+b2jAgLcIRcDfIAwBacwwDP322yqNGTNMu3eHSJIKFy6it956Xz179lK2bNlMrjBjIAw9mh07tmrcuJHasGGNJMnd3V0DB76t/v3flJubm8nVAfaFMASkkXsTo0ePHmq71ULBgoU0ePB7evnl3sqePbvJFWYshKHHs3PnDo0dO1zr1/8mKWmi9ZAh7+vVV/txDAJ/IgwBaSAk5HeNGPG+7VRF/vwFNHjwf/TKK305HfaYCENPZuvWTRo58kMFBW2TlHSK9t13h6pHj1fk7OxscnWAuQhDQCqKjDygUaM+0rJlv0hKurJn8OD31Lv3AOXIkcPk6jI2wtCTu3fKdtSoD7V3b5gkqXTpsvrggxHq3LmbHB0dTa4QMAdhCEgFp09HaezY4QoMnK7ExERlz55d/fu/qTfeeEe5c+c2u7xMgTCUehITE7V06c8aPXqoDh+OlCRVquSloUNH65ln2nGbD1gOYQh4ApcvX9Jnn43V999/o9u3b8vJyUk9e76m//xnqAoVKmx2eZkKYSj1JSQkaN68WRo7driiok5JkmrVqqNRoz5Vw4aNTa4OSD+EIeAxXL9+Xd98M0mTJ0+w3SuqU6du+uijUSpbtpzJ1WVOhKG0c/v2bf3003eaMGG0Ll68IEny92+jkSPHq2LFyiZXB6Q9whDwCBISEjRjxjSNGTPM9qbRvLm/hg0bo2rVaphcXeZGGEp7N27c0FdffaYvv/xUN27cUJYsWfTii6/qgw9GMNKJTI0wBKSAYRhavXqlPv74XUVGHpAk+fjU1YgR49So0VPmFmcRhKH0c+HCeY0dO0LTp3+nu3fvytXVVQMHvq1Bg95Rzpw5zS4PSHWEIeBfhIWF6qOP3tbmzRskJV19M3LkeAUEdGSiaToiDKW/Q4cOatiw97Ry5VJJUoECBfX++8PVs2cvOTk5mVwdkHpSGoaypHUhgL05fTpKvXu/KD+/Wtq8eYNy5cqtsWMnKTg4Qu3adSIIIdOrUKGi5s5dotWrN8vHp64uXDivwYP7qW5db61cuVSP8iEZyAwYGYJlxMTE6Isvxuvrrz/XrVu35OLioj59Burttz/kMnkTMTJkLsMwtGTJIg0f/r6OHz8qSapfv5FGjZqg2rXrmlwd8GQ4TQb8KSEhQdOnf68xY4bp0qWLkqSOHbtq2LAxKl26jMnVgTBkH+7cuaMffpiq8eNH6sqVy5KkDh26aNiwsSpTpqzJ1QGPhzAEy0uaHL1CQ4e+q0OHDkqS6tatr08++Ux16viaXB3uIQzZl+joaE2aNE5TpnyhW7duydnZWb169de77w5V3rx5zS4PeCSEIVgak6MzDsKQfTp9OkqjRw/V3LkzZRiGPDw89M47H4V4s6oAABUeSURBVKlPn4HKmjWr2eUBKUIYgiWdPh2lkSM/1Lx5syRJuXPn0X/+87F69eonFxcXk6vDwxCG7NvevWH66KO3tXHjOklSyZKlNGzYWHXq1JUPFrB7hCFYSkxMjCZNGqdvvpnE5OgMhjBk/wzD0Jo1qzV06Ds6cCBcUtLtPT75ZKLq129kcnXA3yMMwRLi4+M1ffr3Gjt2OJOjMyjCUMaRkJCgwMDpGj16qM6fPydJatu2g4YPH6fy5SuYWhvwMIQhZGoPmxzt69tAo0dPZHJ0BkMYyniuX7+uyZMnavLk/2vv3uOiqvM/jr8BQbkrKSqCZmtyK8QWUstSvBQlapkXWrWWbl62zfTXZS01Q81LPTatVtPasLBVdzOveA8wNVPJNjdFLE1TvHMZEVBQzu8PctK0QgUPw3k9H495jI+ZafioY/Oac77nzOsqKipSrVq19PjjQ/S3v43RDTfUN3s8wI4YQo21bVuGRo16Ths2rJMk3XRTCyUmTlb37g+yhsEBEUOO6/DhQ5owYYySkz+QYRjy8fHRc8+9rMGDn1GdOnXMHg8ghlDz7N+/T6+++pI++WSupPLF0S+8MFpPPjmUxdEOjBhyfN9+u12jR7+gzz5bJUkKCmqqV16ZqN694+XszBcdwDzEEGqMvLw8vfHGBM2c+bZKSkpUu3ZtDRkyTCNGjFTdunXNHg/XiBiqOT77bLVGj35e3367XZLUunWUJkx4Q+3bdzB5MlgVMQSHd+bMGb333j80Zcp45efnSZL69Rug0aPHq2nTZiZPh8pCDNUs586d09y5H2ncuFE6fPiQJOn++3soMXGyWrYMMXk6WA0xBIdlGIYWLJivxMSXtG/fD5KkDh06ady41xUZeZvJ06GyEUM1U2Fhod555++aOnWyCgsL5eLiooSEQRo58hU1aOBv9niwCGIIDmnjxs/18svPadu2rZKk0NBwJSZO0T333Mfi6BqKGKrZjh49otdee0Uffvi+ysrK5O3trREjRmro0Gfl7u5u9nio4YghOJTdu3dpzJgXtXz5EklSo0aN9fLLierf/8+qVauWydOhKhFD1pCZuUNjxryoVatSJElNmgRqzJjX1K9ffxZZo8oQQ3AIR44c1uTJiZo9+z2dO3dOnp6eevbZF/X00yPk6elp9ni4Dogha0lP/0yjRj2n7dv/K0lq1aq1EhOnKCami8mToSYihlCt5eXladq0KZoxY5qKi4vl4uKiP//5SY0cOVb+/g3NHg/XETFkPWVlZZo3b47GjXtZ2dkHJZWvCxwz5jVFR7cxeTrUJMQQqqXCwkLNmDFN06ZNkc1mk1R+Ov8xYyYoODjU5OlgBmLIuoqLizVjxjRNnTpZ+fn5kqS4uAc0evR4hYaGmzwdagJiCNVKSUmJkpJm6fXXx+vYsaOSpJiYLho9eoKiom43eTqYiRhCXl6e3nrrdc2YMU1FRUVycnJSfPxAvfTSq2rW7Eazx4MDI4ZQLZw7d07z53+siRNf0f79+ySVf9v12LET1aFDJ3OHQ7VADOG8o0ePaMqU8Zo9e5ZKS0vl6uqqhIRBev75l9WwYSOzx4MDIoZgKsMwlJKyWOPGjVJm5g5JUkhImMaMmaBu3XpymDzsiCH80r59P2jixLGaNy9ZhmHIw8NDQ4YM07BhL3DWeVwRYgimMAxDq1ev0MSJY+3nCmrW7EaNHPmq+vXrLxcXF5MnRHVDDOHXZGbu0Lhxo7Rs2SJJUt26dfWXv4zQ4MHPyNfX1+Tp4AiIIVxXhmFo1arlmjhxrL7+OkOS5O/fUM8/P0oJCU/xRar4VcQQfs/WrZuVmPiS1q1LlVQeRUOHDteQIcOIIvwmYgjXhWEYWrkyRZMmvWqPoAYN/DV8+It67LHB8vDwMHlCVHfEECpq/fp0TZr0qtavT5f0cxQNHvwMu89wWcQQqlRZWZlWrlymyZMT9fXXX0kq3xL07LMv6rHHBhFBqDBiCFdqw4Z1mjTpVX3+eZokydfXV0OHDtegQX+Vn5+fydOhOiGGUCVKS0u1YMF8vfnmJPvCaCII14IYwtX6ZRR5eXkpIWGQnn56hBo3DjB5OlQHxBAqVXFxsZKTP9Dbb79hP0Q+IKCJnn76/4ggXBNiCNdqw4Z1ev31CUpLWyNJcnNz08MPP6Jhw15QixY3mzwdzEQMoVLk5+fr/fena/r0qTpx4rgkqUWLlho+/EX17dtftWvXNnlCODpiCJXl66+/0ptvTtLixQtkGIacnZ31wAO9NXz439SqVWuzx4MJiCFckz17vte7776ljz9O0qlTpyRJkZG3acSIkere/UEOkUelIYZQ2b77LktTp07RvHnJKi0tlSTdfXeMhg59VrGxcXJ2djZ5QlwvxBCumGEY2rBhnf7xjze1YsVSnX9t3H13jEaMGKmYmC6cLBGVjhhCVcnOPqh33vm7Zs+epcLCQknSTTe10ODBz2jAgAR5eXmZPCGqWpXE0KFDBYa3t/dVD4Xq6cyZM/rkk7maPn2q/ve/bySV73Pv0+dPGjJkmCIiIk2eEDUZMYSqlp+frzlzPtC7776lH3/cL6n8CLRHHnlCgwb9VU2bNjN5QlQ2wzC0cePnuu++DpUfQ15eXkbfvv2VkDBIkZG3XfWQqB727PleH374nubMSbKvB2rQwF9PPDFUjz8+WP7+DU2eEFZADOF6OXv2rFJSFmv69KnatGmDJMnZ2Vn33ttNCQmD1LVrLEsAHFxubq7mzv1ISUkztXv3LhmGUfkx5OTkZH9w69ZRevzxwXrooXh5enpexcgwQ0lJiVJSFispaabS0z+z337rra00dOizeuiheNWpU8fECWE1xBDMsG1bhqZPn6qFC/9tX1cUGBikRx55Qo888rgCApqYPCEqyjAMbdmySf/857tatOg/On36tCSpUaPGOnz4UOXHUEZGppGUNEv/+tds5efnS5J8fHzUt+8APfroE4qIiGRNSTW1d+8effTR+0pO/kDHjx+TJLm7u6tXr35KSBik6Og2/N3BFMQQzHT8+DF9/PFsJSXN0g8/7JEkubi4KDY2TgkJg9S58z1sLaqmcnJy9Mknc5WUNFM7d35rv71z53v12GODFBsbJz8/16pbQF1cXKyFC/+jpKSZ2rz5C/v9oaHhio8fqL59+6tJk8AKPy+qRk5OjhYu/Lfmz59zyd9TQsIgxccP5BT2MB0xhOqgrKxM69alKilpppYtW6SzZ89Kkho2bKQ+ff6kfv0G8IG/Gjhz5oxWrUrRvHnJWrUqxb5Vr0EDfw0c+JgeffRJNW9+k/3x1+1osh07/qekpFlasGCecnJOlD+pk5PuvjtG8fED1aPHQ2LR9fVz+vRp+wtl9erl9heKh4eHevbsrYSEp9SmzR38g0a1QQyhujl27KjmzElScvIH2rPnO/vtISFhio8fqD59/qSgoKYmTmgthmFo8+YvNG9esj799N/Kz8+TVL7eKyamqwYMSFD37g9e9gvBr/uh9aWlpVq7dqXmzv1IK1Ys1ZkzZySV74q5995u6t69l+69t5t8yv/Ph0p0+vRppaWt1bJlC7VkyQLZbDZJP79Q4uMHqlu3nhxGimqJGEJ1ZRiGMjK2aP78ORd94Jek9u07qGfP3oqLe4A9IVWgrKxMW7du1rJlC7V48Sfat+8H+30REZGKjx+o3r0fVqNGjX/zeUw9z1B+fr4WLfqP5s1L1hdfrLff7ubmpg4dOqtHj166//4eatDAv8I/Gxez2WxatSpFKSmLtGbNCvuJEaXykyP27TtAffo8rIYNG5k4JfD7iCE4gvIP/Ks0f/4cLV++2L5IVyo/oKh79wfVvfuDCg4ONXFKx1ZaWqoNG9ZpyZJPlZKySEeOHLbf17hxgPr27a/4+IEKD7+1ws9ZbU66+OOP+7Vs2SItXfqpvvhivf1Efs7Ozmrb9k7FxsapU6d7dMstEZwV9DcYhqE9e75XWtoaLV++RJ9/nmrfBSZJrVq1Vlzcg+rZ8yGFhISZOClwZYghOBqbzably5coJWWR1q5dqaKiIvt9N98crLi4B9SlS6xuv70dX1n0O44fP6a0tLVau3alVq5cZt8FJklBQU0VF1ceme3atb+qhezVJoYudPz4MS1fvkRLlnyq9PS1F72Z16/fQB07dlHnzvcoJqYrhzVKysk5ofT0z5SevlZpaWvsJwuTymPyjjvuUrduDygu7gE1a3ajeYMC14AYgiMrKipSWtoaLV26UCtWLFVeXq79Pg8PD91xx93q1KmrYmK6KizsFsuv1ywuLtamTRuUlrZGaWlrtH37fy+6Pzg49KetbL0UGXnbNf95VcsYupDNZtOaNSuUmrpaqamrdehQ9kX3BweHqn37joqObqvbb2+nP/yhRY1/EWVnH1RGxmZt2bJJ69en6ZtvvtaFfz/16vmpY8fO6tIlVvfd11316zcwcVqgchBDqCnOnj2rjRs/14oVS5Wevvaiw70lyd+/oTp27KI2be5QdHRbhYffKldXV5OmvT7y8vL01VdbtGXLJm3evFGbNm24aBdjnTp11K7dXerUqavuu6+7WrYMqdSfX+1j6EKGYWj37l1KTV2j1NTV2rAh3f49Muf5+d2g6Oi29jiKiGgtPz+/qhjnuigsLNQ332zT1q1fKiNjs7Zu/fKSIHRzc1O7du0VE1P+qSIiIpLzXaDGIYZQUx05clhpaWvtW/cvXAMjlR9gFBn5R/t7W1RUGwUENHHYD/4lJSXavXuX/UP91q1fKisr85LHRUREKiamqzp1ukdt294pd3f3KpvJoWLol0pKSpSRsVmbN3+hLVs2acuWTfYTBV6oYcNGCg0NV0hIuEJDwxUWdouCg8Oq1blzCgoKlJWVqaysndq1q/ySlbVT+/fv0y//7H19ffXHP7ZRdHRbtW17p9q1ay8PDw+TJgeuD2IIVmAYhrKyMrVuXar9A/Devd9f8ri6desqODhMISFhCg4O++k9LqxaRVJpaan27v1emZk7frp8q8zMHdqz5zv7+ZnOc3Nzuyj47rqr43U9eMqhY+iXDMPQ/v37tHXrl/ZLZua3Fy1au5Cf3w0KDAxSkybll/O/DgwMUv36DeTj4ytvbx95enpe1YvLMAydOXNGBQUnZbPZdPz4UWVnH9ShQweVnX1Q2dkH7Ne//CRwnqurq0JCwuwvkOjotmrRoiWLyGE5xBCsKifnhDIyttj3EGzbtvWiBcQX8vb2VmBgUwUEBKpJk0AFBAQqMDBIAQGBatw4QHXr1pO3t4+8vLyu+n2kpKREJ0/adPLkSeXn5+nw4WwdPHhA2dkH7NfZ2Qd06FD2JdEjlZ9jsFmz5rrttugL9uJEmrqIvEbF0OWUlZVp//592rWrvEzLt7rsUFZWpoqLiyv0HC4uLvL29pGvr698fHzl6vrzCZvOR9L569Oni1VQcFInT57UqVMFFy3+/i1ubm5q2TLEXvrnLzfd1KLG7ysGKoIYAsoZhqFjx47a9yKcf1/LzNyh3NycCj+Pt7e3vL19fvrQXx5HF77Xn/+1YZSpoKDgpwCyXbSW5/c0a3ajfa/M+evg4NBqtzejSmJIqj4x9GvKysp07NgxHThw4LKX3Nxc2Ww22Wy2CkfT5dSuXVs+Pj7y9vaWv7+/goKCFBgYeMklICBAtWrVqsTfIVCzjB0rzZoVpaeeytDYsWZPA1RPOTk5Onjw4GUv2dnZOnmy/MN6QUHBVf8MFxcX+fr62i9NmjRRUFCQ/RIYGGi/dqAv9LZmDF2J0tJS2WzlmwRtNpt9a8/P1fzztbu7u3x8fOwBxLkjgMoTFRWljIwMs8cAHF5ZWZlOnTp1URydfy+7cFmIk5OTnJyc5O3t/dPeER95eHhUm3VJlahCvyFLb7JwdXVV/fr1Vb9+fbNHAQDgmjk7O9s/uKPiWK0LAAAsjRgCAACWRgwBAABLI4YAAIClEUMAAMDSiCEAAGBpxBAAALA0YggAAFgaMQQAACyNGAIAAJZGDAEAAEsjhgAAgKURQwAAwNKIIQAAYGnEEAAAsDRiCAAAWBoxBAAALI0YAgAAlkYMAQAASyOGAACApRFDAADA0oghAABgacQQAACwNGIIAABYGjEEAAAsjRgCAACWRgwBAABLI4YAAIClEUMAAMDSiCEAAGBpxBAAALA0YggAAFgaMQQAACyNGAIAAJZGDAEAAEsjhgAAgKURQwAAwNKIIQAAYGnEEAAAsDRiCAAAWBoxBAAALI0YAgAAlkYMAQAASyOGAACApRFDAADA0oghAABgacQQAACwNGIIAABYGjEEAAAszckwjAo/ODY21jhx4kQVjgPAijIzMxUaGmr2GABqmK+++mqVYRixv/e4K4ohSVf0YACoiKioKGVkZJg9BoCax6kiD2I3GQAAsDRiCAAAWBoxBAAALI0YAgAAlkYMAQAASyOGAACApRFDABzWgQMH1Lt3b/n6+srHx0e9evXSjz/+aPZYABwMMQTAIRUVFalTp07atWuXPvzwQyUnJ+u7775TTEyMCgsLzR4PgAOpZfYAAHA13nvvPe3du1dZWVlq0aKFJCkiIkI333yzZs6cqREjRpg8IQBHwZYhAA5pyZIlatu2rT2EJKl58+a68847tXjxYhMnA+BoiCEADmnHjh265ZZbLrk9PDxcO3fuNGEiAI6KGALgkHJzc1WvXr1Lbvfz81NeXp4JEwFwVMQQAIfl5HTpdzBe4ZdPAwAxBMAx1atXT7m5uZfcnpeXd9ktRgDwa4ghAA4pPDxcO3bsuOT2nTt3KiwszISJADgqYgiAQ+rRo4e+/PJL7d27137bvn37tHHjRvXo0cPEyQA4Gqcr3L/OzngAlS4qKkoZGRlX9N8UFhaqVatWcnd31/jx4+Xk5KTRo0eroKBA27dvl5eXVxVNC8CBXLqw8DLYMgTAIXl6eio1NVUtW7bUwIED1b9/fzVv3lypqamEEIArwpYhAKa7mi1DAFABbBkCAAD4PcQQAACwNGIIAABYGjEEAAAsjRgCAACWRgwBAABLI4YAAIClEUMAAMDSiCEAAGBpxBAAALA0YggAAFgaMQQAACyNGAIAAJZGDAEAAEsjhgAAgKURQwAAwNKIIQAAYGnEEAAAsDQnwzDMngGAxTk5Oa00DCPW7DkAWBMxBAAALI3dZAAAwNKIIQAAYGnEEAAAsDRiCAAAWBoxBAAALI0YAgAAlkYMAQAASyOGAACApRFDAADA0v4fKqfw1fZXgFgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def f(x):\n", + " return 0.6 * np.cos(4 * x) + 1.4\n", + "\n", + "\n", + "xmin, xmax = -1, 1\n", + "x = np.linspace(xmin, xmax, 160)\n", + "y = f(x)\n", + "ya, yb = np.min(y), np.max(y)\n", + "\n", + "fig, axes = plt.subplots(2, 1, figsize=(10, 10))\n", + "\n", + "for ax in axes:\n", + " # Set the axes through the origin\n", + " for spine in ['left', 'bottom']:\n", + " ax.spines[spine].set_position('zero')\n", + " for spine in ['right', 'top']:\n", + " ax.spines[spine].set_color('none')\n", + "\n", + " ax.set(ylim=(-0.6, 3.2), xlim=(xmin, xmax),\n", + " yticks=(), xticks=())\n", + "\n", + " ax.plot(x, y, 'k-', lw=2, label='$f$')\n", + " ax.fill_between(x, ya, yb, facecolor='blue', alpha=0.05)\n", + " ax.vlines([0], ya, yb, lw=3, color='blue', label='range of $f$')\n", + " ax.text(0.04, -0.3, '$0$', fontsize=16)\n", + "\n", + "ax = axes[0]\n", + "\n", + "ax.legend(loc='upper right', frameon=False)\n", + "ybar = 1.5\n", + "ax.plot(x, x * 0 + ybar, 'k--', alpha=0.5)\n", + "ax.text(0.05, 0.8 * ybar, '$y$', fontsize=16)\n", + "for i, z in enumerate((-0.35, 0.35)):\n", + " ax.vlines(z, 0, f(z), linestyle='--', alpha=0.5)\n", + " ax.text(z, -0.2, f'$x_{i}$', fontsize=16)\n", + "\n", + "ax = axes[1]\n", + "\n", + "ybar = 2.6\n", + "ax.plot(x, x * 0 + ybar, 'k--', alpha=0.5)\n", + "ax.text(0.04, 0.91 * ybar, '$y$', fontsize=16)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the first plot there are multiple solutions, as the function is not one-to-one, while\n", + "in the second there are no solutions, since $ y $ lies outside the range of $ f $\n", + "\n", + "Can we impose conditions on $ A $ in [(3)](#equation-la-se2) that rule out these problems?\n", + "\n", + "In this context, the most important thing to recognize about the expression\n", + "$ Ax $ is that it corresponds to a linear combination of the columns of $ A $\n", + "\n", + "In particular, if $ a_1, \\ldots, a_k $ are the columns of $ A $, then\n", + "\n", + "$$\n", + "Ax = x_1 a_1 + \\cdots + x_k a_k\n", + "$$\n", + "\n", + "Hence the range of $ f(x) = Ax $ is exactly the span of the columns of $ A $\n", + "\n", + "We want the range to be large, so that it contains arbitrary $ y $\n", + "\n", + "As you might recall, the condition that we want for the span to be large is [linear independence](#la-li)\n", + "\n", + "A happy fact is that linear independence of the columns of $ A $ also gives us uniqueness\n", + "\n", + "Indeed, it follows from our [earlier discussion](#la-unique-reps) that if $ \\{a_1, \\ldots, a_k\\} $ are linearly independent and $ y = Ax = x_1 a_1 + \\cdots + x_k a_k $, then no $ z \\not= x $ satisfies $ y = Az $" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The $ n \\times n $ Case\n", + "\n", + "Let’s discuss some more details, starting with the case where $ A $ is $ n \\times n $\n", + "\n", + "This is the familiar case where the number of unknowns equals the number of equations\n", + "\n", + "For arbitrary $ y \\in \\mathbb R ^n $, we hope to find a unique $ x \\in \\mathbb R ^n $ such that $ y = Ax $\n", + "\n", + "In view of the observations immediately above, if the columns of $ A $ are\n", + "linearly independent, then their span, and hence the range of $ f(x) =\n", + "Ax $, is all of $ \\mathbb R ^n $\n", + "\n", + "Hence there always exists an $ x $ such that $ y = Ax $\n", + "\n", + "Moreover, the solution is unique\n", + "\n", + "In particular, the following are equivalent\n", + "\n", + "1. The columns of $ A $ are linearly independent \n", + "1. For any $ y \\in \\mathbb R ^n $, the equation $ y = Ax $ has a unique solution \n", + "\n", + "\n", + "The property of having linearly independent columns is sometimes expressed as having *full column rank*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Inverse Matrices\n", + "\n", + "\n", + "\n", + "Can we give some sort of expression for the solution?\n", + "\n", + "If $ y $ and $ A $ are scalar with $ A \\not= 0 $, then the\n", + "solution is $ x = A^{-1} y $\n", + "\n", + "A similar expression is available in the matrix case\n", + "\n", + "In particular, if square matrix $ A $ has full column rank, then it possesses a multiplicative\n", + "*inverse matrix* $ A^{-1} $, with the property that $ A A^{-1} = A^{-1} A = I $\n", + "\n", + "As a consequence, if we pre-multiply both sides of $ y = Ax $ by $ A^{-1} $, we get $ x = A^{-1} y $\n", + "\n", + "This is the solution that we’re looking for" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Determinants\n", + "\n", + "\n", + "\n", + "Another quick comment about square matrices is that to every such matrix we\n", + "assign a unique number called the *determinant* of the matrix — you can find\n", + "the expression for it [here](https://en.wikipedia.org/wiki/Determinant)\n", + "\n", + "If the determinant of $ A $ is not zero, then we say that $ A $ is\n", + "*nonsingular*\n", + "\n", + "Perhaps the most important fact about determinants is that $ A $ is nonsingular if and only if $ A $ is of full column rank\n", + "\n", + "This gives us a useful one-number summary of whether or not a square matrix can be\n", + "inverted" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### More Rows than Columns\n", + "\n", + "This is the $ n \\times k $ case with $ n > k $\n", + "\n", + "This case is very important in many settings, not least in the setting of linear regression (where $ n $ is the number of observations, and $ k $ is the number of explanatory variables)\n", + "\n", + "Given arbitrary $ y \\in \\mathbb R ^n $, we seek an $ x \\in \\mathbb R ^k $ such that $ y = Ax $\n", + "\n", + "In this setting, existence of a solution is highly unlikely\n", + "\n", + "Without much loss of generality, let’s go over the intuition focusing on the case where the columns of\n", + "$ A $ are linearly independent\n", + "\n", + "It follows that the span of the columns of $ A $ is a $ k $-dimensional subspace of $ \\mathbb R ^n $\n", + "\n", + "This span is very “unlikely” to contain arbitrary $ y \\in \\mathbb R ^n $\n", + "\n", + "To see why, recall the [figure above](#la-3dvec), where $ k=2 $ and $ n=3 $\n", + "\n", + "Imagine an arbitrarily chosen $ y \\in \\mathbb R ^3 $, located somewhere in that three dimensional space\n", + "\n", + "What’s the likelihood that $ y $ lies in the span of $ \\{a_1, a_2\\} $ (i.e., the two dimensional plane through these points)?\n", + "\n", + "In a sense it must be very small, since this plane has zero “thickness”\n", + "\n", + "As a result, in the $ n > k $ case we usually give up on existence\n", + "\n", + "However, we can still seek a best approximation, for example an\n", + "$ x $ that makes the distance $ \\| y - Ax\\| $ as small as possible\n", + "\n", + "To solve this problem, one can use either calculus or the theory of orthogonal\n", + "projections\n", + "\n", + "The solution is known to be $ \\hat x = (A'A)^{-1}A'y $ — see for example\n", + "chapter 3 of these notes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### More Columns than Rows\n", + "\n", + "This is the $ n \\times k $ case with $ n < k $, so there are fewer\n", + "equations than unknowns\n", + "\n", + "In this case there are either no solutions or infinitely many — in other words, uniqueness never holds\n", + "\n", + "For example, consider the case where $ k=3 $ and $ n=2 $\n", + "\n", + "Thus, the columns of $ A $ consists of 3 vectors in $ \\mathbb R ^2 $\n", + "\n", + "This set can never be linearly independent, since it is possible to find two vectors that span\n", + "$ \\mathbb R ^2 $\n", + "\n", + "(For example, use the canonical basis vectors)\n", + "\n", + "It follows that one column is a linear combination of the other two\n", + "\n", + "For example, let’s say that $ a_1 = \\alpha a_2 + \\beta a_3 $\n", + "\n", + "Then if $ y = Ax = x_1 a_1 + x_2 a_2 + x_3 a_3 $, we can also write\n", + "\n", + "$$\n", + "y\n", + "= x_1 (\\alpha a_2 + \\beta a_3) + x_2 a_2 + x_3 a_3\n", + "= (x_1 \\alpha + x_2) a_2 + (x_1 \\beta + x_3) a_3\n", + "$$\n", + "\n", + "In other words, uniqueness fails" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Linear Equations with SciPy\n", + "\n", + "\n", + "\n", + "Here’s an illustration of how to solve linear equations with SciPy’s `linalg` submodule\n", + "\n", + "All of these routines are Python front ends to time-tested and highly optimized FORTRAN code" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "-2.0" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from scipy.linalg import inv, solve, det\n", + "\n", + "A = ((1, 2), (3, 4))\n", + "A = np.array(A)\n", + "y = np.ones((2, 1)) # Column vector\n", + "det(A) # Check that A is nonsingular, and hence invertible" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-2. , 1. ],\n", + " [ 1.5, -0.5]])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A_inv = inv(A) # Compute the inverse\n", + "A_inv" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.],\n", + " [1.]])" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x = A_inv @ y # Solution\n", + "A @ x # Should equal y" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-1.],\n", + " [ 1.]])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "solve(A, y) # Produces same solution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Observe how we can solve for $ x = A^{-1} y $ by either via `inv(A) @ y`, or using `solve(A, y)`\n", + "\n", + "The latter method uses a different algorithm (LU decomposition) that is numerically more stable, and hence should almost always be preferred\n", + "\n", + "To obtain the least squares solution $ \\hat x = (A'A)^{-1}A'y $, use `scipy.linalg.lstsq(A, y)`\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Eigenvalues and Eigenvectors\n", + "\n", + "\n", + "\n", + "Let $ A $ be an $ n \\times n $ square matrix\n", + "\n", + "If $ \\lambda $ is scalar and $ v $ is a non-zero vector in $ \\mathbb R ^n $ such that\n", + "\n", + "$$\n", + "A v = \\lambda v\n", + "$$\n", + "\n", + "then we say that $ \\lambda $ is an *eigenvalue* of $ A $, and\n", + "$ v $ is an *eigenvector*\n", + "\n", + "Thus, an eigenvector of $ A $ is a vector such that when the map $ f(x) = Ax $ is applied, $ v $ is merely scaled\n", + "\n", + "The next figure shows two eigenvectors (blue arrows) and their images under $ A $ (red arrows)\n", + "\n", + "As expected, the image $ Av $ of each $ v $ is just a scaled version of the original" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "hide-output": false, + "html-class": "collapse" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAHLCAYAAADC2TzJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XV41eX/x/HnWcAYoxHZGCndIvFFEEQQGCndLSHdISo2IC0tXaIgKEiZ2IFBSIgggsCI0Rvr7fP74/PFn34lBtvOfeL1uC6uC93Z9uJwtr343J/3fTssy0JEREREbD6mA4iIiIi4EpUjERERkb9RORIRERH5G5UjERERkb9RORIRERH5G5UjERERkb9RORKRdOVwOAIcDscuh8Ox1+FwHHA4HC+YziQicjsO7XMkIunJ4XA4gMyWZUU5HA5/4CtgiGVZ3xmOJiJyU36mA4iIZ7Psf4FF/fc//f/7S/8qExGXpWU1EUl3DofD1+Fw7AHOAx9ZlvW96UwiIreSqmW1cePOWX37JpEhQxomktu6evUq2bJlMx3Dq+g5TztXr16lV69evPzyy5QsWfIfb1u9ejVr1qwB4Pr163zxxRcmInotvc6dT8+5cyQmwooVmXnooXgaNbrPkZL3SVU52r//jLVpUzA9ekBIyD1/GLkL4eHhhOjJdio952nrhRdeIHPmzIwcOfKWj6lQoQJ79+51YirR69z59Jynv7NnYckS6NsXcucGIEXlKFXLajlzWowdC5s2wZdfpuYjiYinioiI4MqVKwDExMTw8ccf/+uqkYhIWvvmG9i4EcaO/asYpViq7zny9YWnnoKYGFi2DDT8JiJ/d+bMGerUqUP58uWpUqUKjz/+OE2aNDEdS0Q8lGXBihVw9Sr072/3lLuVZtNq9evDsWMwaRIMHAhZsqTVRxYRd1a+fHl2795tOoaIeIGoKJgzB1q3hqJF7/3jpOm0WpEiMHQozJ8Phw6l5UcWERERubXffoO5c2Hw4NQVI0iHUf5MmWDUKNi9GzZvTuuPLiIiIvJPW7fCrl0wejQEBqb+46XLPkcOB3TsCMHB8PrrkJCQHp9FREREvFlior2Mljs3dO5s94+0kK6bQFapYpek116zx+lERERE0sL58zB5MrRtC9Wqpe3HTvcdsnPntsfoNm60x+pEREREUuP772HdOhgzBvLkSfuP75TjQ3x97XG6a9fs8TqN+4uIiMjdsixYvRouXLAn4/3S6YRYp56t1rAh1KhhXwaLirrz40VEREQAoqPt23SqVoXGjdP3czn94NmiRe0xu7lz4fBhZ392ERERcTdHj9oDXgMGQPHi6f/5nF6OwB6zGz0afvjBHr8TERERuZkdO+x7lseMgaAg53xOI+UI7HG7zp3tG7Znz7bH8UREREQAkpJg3jzImhW6dk27Mf2UMFaObqhWDdq1s48dOXfOdBoREREx7cIFuxe0bAkPP+z8z2+8HIE9hjd2LKxfD999ZzqNiIiImPLDD7B2rX37Td68ZjK4RDkCexxv4EC4eBFWrdK4v4iIiDexLHjzTXvT6EGDwN/fXBaXKUc3NG5sL7VNngzXr5tOIyIiIuktJgamTIEHH4SmTU2nccFyBPaY3sCB9o3aR46YTiMiIiLp5dgxmDkTnnoKSpUyncbmkuUI7HG9MWPg229h+3bTaURERCStffghfPGFfd9xliym0/w/ly1HYI/tde0K2bLZm0YmJZlOJCIiIqmVlAQLFtj7Hnbv7twx/ZRw6XJ0w8MPQ6tWMHEiRESYTiMiIiL36uJFe0y/WTOoWdN0mptzi3IE9jjfmDH2eN+uXabTiIiIyN366Sf74NjRoyEkxHSaW3ObcgT2WN/gwfZmkWvWaNxfRETEXbz9Npw8CUOGmB3TTwm3Kkc3NG0KlSrZY3/R0abTiIiIyK3ExsLUqVC2LDzxhOk0KeNnOsC9KlUKQkNh1ixo2xYeeMB0IhEREfm748ftjR0HDrTPSHMXbnnl6IYsWezxvy++gA8+MJ1GREREbvj4Y/j0Uxg3zr2KEbh5OQJ7/K9HD8icGebP17i/iIiIScnJsHAhZMgAPXu63ph+Srh9ObqhZk1o3tweD7x40XQaERER73P5sv1zuHFjqFXLdJp75zHlCOyxwNGj7THBn34ynUZERMR77NkDy5fDyJH2PcHuzKPKEdjjgUOG2OOCb71lOo2IiIjnW7/ePiNt2DB7Oc3deVw5uuGJJ6BcOXvcPybGdBoRERHPExcH06ZByZLQsqXpNGnHbUf5U6JMGcif3z7tt0MHKFTIdCIRERHP8Oef9m0s/ftD9uym06Qtj71ydEPWrPa4/6ef2mOFIiIikjo7d8KHH9o/Xz2tGIEXlCOwxwh79rTvR1qwwB4zFBERkbuTnAyLFtm/f/JJ8PHQFuGhf6ybq10bmjSBiRPh0iXTaURERNzHlSv2z88GDaBOHdNp0pdXlSOwxwtHjYIVK2D3btNpREREXN++fbBkiT2mX6CA6TTpz+vKEdhjhsOGwR9/wLp1ptOIiIi4rg0b4PBhGDECMmY0ncY5vLIc3dCypX2A7dSp9jiiiIiI2OLjYfp0+2D3Nm1Mp3Eujx7lT4ly5exx/2nToHNn77hcKCIicjunTtm3n/TvDzlymE7jfF595eiG7NntccQPPrBH/kVERLzV55/Dtm0wbpx3FiNQOfqLjw/07m2P/b/xhsb9RUTEu1iWfdN1QgL06eO5Y/op4cV/9JurUwfCwuxxxStXTKcRERFJf9eu2T/36taFevVMpzFP5egm8ue3xxWXLIG9e02nERERST8HDtgrJsOH65itG1SObiFjRnts8bff7DFGERERT/Pee7B/v31BICDAdBrXoXJ0B23a2GOM06Zp3F9ERDxDfLx9KHuBAtCunek0rsfrR/lTomJFKFjQ3g+pWzd7l20RERF3FB4Oy5ZBv36QK5fpNK5JV45SKEcOe6xx2zb47DPTaURERO7el1/C5s329jUqRremcnQXfHzs8cakJFi82B57FBERcXWWZV8tiomxrxj5+ppO5NpUju7BjVHHiRPh6lXTaURERG4tMhImTYLataF+fdNp3IPK0T0qVMgee1y0yL7TX0RExNUcOgQLFsDQoVCkiOk07kPlKBUCAuzxxwMH4N13TacRERH5f5s3w5499s+pTJlMp3EvKkdpoF07e5ptxgx7PFJERMSUhASYNQuCg6FDB/tYLLk7GuVPI5Uq2UttU6ZAjx4QEmI6kYiIeJuzZ+3THfr2hdy5TadxX7pylIZy5rTH/TdvtsclRUREnOWbb2DjRntMX8UodVSO0piPjz0mGRMDS5dq3F9ERNKXZcGKFfbhsf37a0w/LagcpZP69eHRR+3xychI02lERMQTRUXZP2dq1ICGDU2n8RwqR+moSBF7fHL+fHucUkREJK0cPgxz58KQIVC0qOk0nkXlKJ1lygSjRtnjlJs2mU4jIiKeYMsW+OEHGD0aAgNNp/E8KkdO4HDY45QhIfYpyAkJphOJiIg7SkyE2bPhvvugc2eN6acXlSMnqlLFfjFPngxnzphOIyIi7uTcOfvnR7t2UK2a6TSeTeXIyXLntsf9330Xvv7adBoREXEH330H77wDY8ZAnjym03g+lSMDfH3tccvISFi+XOP+IiLy/2JjYzly5Agff/QRi2fMpEPDYRw9eoYBA8BPWzc7hZ5mgxo2hKNH7THMQYMgKMh0IhERcaa4uDj+/PNP/jxxghMHDnDiwAEunz5NPoeDkPgkLh1LIHuZYNq3v890VK+icmRY0aL2GObs2dC8OZQsaTqRiIiklzNnznDwwAH+PHSIg99/T+ylS+Tz8aFgcjIl/P2pHxRESL58RF5z8McfEFnkT1r174yfLhk5lZ5tFxAYaI9jrlljX0lq0sR0IhERSQ8b16zh7MaNNLzvPmr4+vJAvnz4+vzzDpc/T0JsDOQtFs2xhKz0evRRM2G9mO45chEOhz3Jdt998Prr9rimiIh4lo69ehFbsCC5AgLIFxj4j2KUbMGBA5AxAxQvDh9cvECdjh3JmDGjwcTeSeXIxVSrBu3b2/chnTtnOo2IiKSlHDly0GvCBJZERnI5Lu6v/x8TA3t2Q+HCcP/9cCk2lr2ZMlHn8ccNpvVeKkcuKE8e+1Tld96Bb781nUYkdU6ePEmdOnUoVaoUZcqUYdasWaYjiRhVsmRJ6g0YwOLz50lMTub8efj9d6hY8f93u/4wIoKabdsSqO2vjVA5clF+fjBgAFy+DKtWadxf3Jefnx/Tpk3j0KFDfPfdd8ydO5eDBw+ajiViVP1GjUioVIkXvviVmBgoWxZurLBdi4/ne39/6jVqZDakF1M5cnGNGtlLbZMnw/XrptOI3L3g4GAqVaoEQJYsWShVqhSnT582nErEnOTkZJYuWMb37+3mWN6snMl0/h9v/+T8eao+8QRZs2Y1lFBSNa125cqVtMohtxEUBK1bO3jllczUqBEFhJuO5FUuXbpkOoLHOHnyJD/++CMFChQgPPyfr+PVq1ezZs0aACIiIv71dklfep07R2RkJC+Ofomze0/xnzY1eaJtc5Y9+yw5IyLIFxhIdGIiH8XF0b9KFX0NpIOQkJAUPc5hpWK9Jjw83ErpJ5LUsyx4/fXLFCuWA11tdZ7w8PAUf0HJrUVFRVG7dm3Gjx9Py5Ytb/vYChUqsHfvXiclE9Dr3Bl+//13RnQdRUJkLM/Mf4aChQsREhLCD7t2senZZ3k6NJTPzp3jXFgYPQYMMB3XU6XoqF4tq7kRhwPatIkhRw6YM0fj/uI+EhISaNWqFZ06dbpjMRLxNJZlsX3LdgY2HYBvBl8WbnuD6jUe/uvtVapWpWyHDiw5eZJPk5NpqK8R41SO3FD16tCmjX0fUkSE6TQit2dZFr169aJUqVIMHz7cdBwRp4qLi+Olp19mxpCplK1TgVVbVxAaGvqvx7Xu3JmYypUpWqcOwcHBBpLK32mHbDd1//326czz59s3bFetajqRyM19/fXXrFq1inLlylGxYkUAXn31VRppbVg83Llz5xjYZQiRJy7Rb9IAWrRugcNx81UdPz8/hkyY4OSEcisqR27Mz88+sPb99+2jRzp2tJfeRFxJzZo1Sc29jSLuaPfPP/PskxPw8fdhxrszKVW69B3fRzthuw4tq3mApk3hoYdgyhSIjjadRkTEeyUnJ7N80XLGthtDUHAWlm9flqJiJK5FV448RMmSEBoKs2ZB27bwwAOmE4mIeJfIyEhGPjWa498eIaxPMwaO6I+fn37MuiP9rXmQoCD72JEVK+DoUWjQwHQiERHvcOzYMUZ0HUn81VieXTaBmrUeMR1JUkHLah7G4YDu3SFzZpg3D5KSTCcSEfFclmXx0QcfMqBpfxx+PizYtlDFyAOoHHmomjWhRQuYOBEuXDCdRkTE88THxzNxwiSm9J9MyZplWL1tJfnz5zcdS9KAltU8WHCwPe4/bx7UqAGVK5tOJCLiGc6fP8/ALoO5dvwSvV/qR+sOrW85pi/uR1eOPJy/PwwZAqdPw9q19hEkIiJy7/bu2UOvsF7EXopm2obptOnYRsXIw6gceYnmzaFCBZg6FWJiTKcREXE/ycnJrFm+hjFtRxF4fxDLdiyjTNmypmNJOtCymhcpXdoe958xAzp0gMKFTScSEXEPUVFRjB04jiNfHqJ+z0YMHj0If39/07EknagceZmsWWHcOFi2zB73f/xx04lERFzb8ePHGdZ1BHGXo3l6ybPUfrS26UiSzrSs5oUcDujZEzJmtM9mS042nUhExPVYlsWnn3xK/yZP4XA4mL9lgYqRl1A58mK1akGzZvDqq3Dpkuk0IiKuIyEhgSkvTmVyn1cpWq0Eq7atoGDBgqZjiZNoWc3L5csHo0fD3LlQuzZUqmQ6kYiIWRcuXKB/50Fc++Mi3Sf0ol3ndvj46FqCN9HftpAhAwwbBidOwLp1ptOIiJjzy7599AzrScyF60xZP5UOXTuoGHkh/Y3LX1q0gFKl7HH/2FjTaUREnCc5OZm1K9cyqvVIAnJlZtmOpZQrX950LDFEy2ryD+XKQYECMG0adO4MWmIXEU93/fp1xg0ez6+f7eexLvUZMX6YxvS9nMqR/Eu2bPa4/9Kl9l5IdeuaTiQikj5OnDjBsK4jiL14nbELx1Gn7mPa7Vq0rCY35+MDTz4Jvr7wxhsa9xcRz/PFZ5/zVJN+WMkW87bM57F6dVWMBFA5kjt49FEIC4OJE+HKFdNpRERSLyEhgWmvTOeVXi9RuNIDrNq+gkKFCpmOJS5Ey2pyR/nzw8iR9rh/3br2GW0iIu7o4sWL9O8yiKtHI+g8vhudunfSNJr8i14RkiIZM8Lw4XDkCGzYYDqNiMjdO7B/Pz0a9iD6XCST102hS88uKkZyU3pVyF1p3RqKFoXp0yEuznQaEZE7syyL9W+uZ0Sr4QTkDGTJ9iVUqFjRdCxxYVpWk7tWoYI97j91KnTtai+7iYi4oujoaJ4Z/hz7P9pN7Q51GfXcSDJkyGA6lrg4lSO5Jzly2OP+ixdD8eL2jdsiIq7k5MmTDOkyjJiIKEbNG0O9+o9rGk1SRMtqcs98fKBPH0hKgkWLwLJMJxIRsX31xZf0a9QXKzGZue/P4/EG9VWMJMVUjiTV6taF+vXtcf+rV02nERFvlpiYyKzXXuelHi8QWr4gK7evoEiRIqZjiZvRspqkiYIF7Wm2OXOgQQP7GBIREWe6dOkSA7oO4vLhc3QY25muvbpqGk3uiV41kmYCAuz9kA4dgo0bTacREW9y6OBBuof1IDL8Kq++9Rrde3dXMZJ7pleOpLm2be0z2WbMgPh402lExJNZlsXG9RsZ1nIoGbMGsGT7Eio9VMl0LHFzWlaTdPHgg/ZS25Qp0L075MtnOpGIeJro6GieH/0Se7bvokab2ox9YQwZM2Y0HUs8gMqRpJucOe1x/zfegNKloVYt04lExFOcOnWKIV2HEX02kmGzRtKwcUNNo0ma0bKapCsfH+jXz95Ne8kSjfuLSOp9+8239G3ch6TYJOa8P5ewJmEqRpKmVI7EKR5/HB57zB73v3bNdBoRcUeJiYnMmT6X57s+y/0lQli5YzkPPPCA6VjigbSsJk5TuDAMG2aP+zdqBGXKmE4kIu7i8uXLDOo+hIiD4bQZ3p4efXvg6+trOpZ4KF05EqfKlAlGjYJffoFNm0ynERF3cPjwYbqH9eDKn5d4ec1Enuz/pIqRpCuVIzGifXt7gm3WLEhIMJ1GRFyRZVls2vAeQ5oPxj8oA4u2LaJK1SqmY4kXUDkSYypXhk6dYPJkOHPGdBoRcSWxsbE8PfQZ5o6eTdUm/2H1lpUEBwebjiVeQvcciVG5c9vj/gsXQvnyULOm6UQiYlp4eDiDOw/l+pmrDJ4+jMbNGmsaTZxKV47EOF9f6N8foqJg2TKN+4t4s++/+54+jXqTGBPP65vn0KR5ExUjcTqVI3EZDRvaG0VOmmQXJRHxHklJSSx4fQHPdR5P7gfysHz7cooVK2Y6lngplSNxKQ88AEOGwLx58OuvptOIiDNcuXKFXm2f5N3Z79BySBuWrFtM9uzZTccSL6Z7jsTlBAba4/5r18LRo9CkielEIpJejhw5wsiuo0mKieel1a9StVpV05FEdOVIXJPDAR07Qp488PrrkJhoOpGIpCXLstiyaQuDmw3EP5M/b2xbpGIkLkPlSFxa1arQoYN9H9K5c6bTiEhaiI2N5blRL/D68Bk82KAKq7etJCQkxHQskb9oWU1c3n332eP+CxZApUpQvbrpRCJyr86cOcOgLkO4fvoqA6cMpmmLZppGE5ejK0fiFnx9YcAAuHwZVq7UuL+IO/ph1w/0btSbhKh4Zr73Os1aNlcxEpekciRupVEj+8rR5Mlw/brpNCKSEklJSSyau4hnOo0je4GcrNixnBIlSpiOJXJLKkfidooVg0GDYPZs+O0302lE5HauXbtGn479eGf62zR9qgXLNyzVmL64PN1zJG4pc2YYMwZWr4YjR6BxY9OJROR/HT16lJHdRpMQFcfzK1+keo2HTUcSSRFdORK35XBAly6QM6d9FUnj/iKuwbIstm/ZzqBmA/HN6MvCrQtVjMStqByJ26teHdq2te9DOn/edBoR7xYXF8eL415ixpCplKtTkVVbVhAaGmo6lshd0bKaeIT777eX2ebNg2rV7F8i4lznzp1jYOfBRJ28zFOTB/JEqyc0jSZuSVeOxGP4+cHgwRARYd+LpHF/Eef5+aef6RXWi7hrsUzfOJMWrVuoGInbUjkSj9OkCVSpAq+9BtHRptOIeLbk5GSWvbGMce3HkCUkGyt2LKdU6dKmY4mkisqReKQSJexNI2fNsg+vFZG0d+3aNfp17s9bk9cQ9mRTVr23ghw5cpiOJZJquudIPFZQEIwda++offQoNGxoOpGI5zh27Bgjuo4k7moszy1/nhqP1DQdSSTN6MqReDSHA7p1gyxZYO5cSEoynUjEvVmWxYc7PmBA0/44/HxYuG2hipF4HJUj8Qo1akDLljBxIly4YDqNiHuKi4vj1ecmMnXAa5SqWZbV21aSP39+07FE0pyW1cRrBAf//7j/ww/bN22LSMqcP3+egV0Gc+34JXq/3I/W7VtrGk08lq4ciVfx94chQ+DMGXjzTY37i6TE3j176BXWi9hL0UzbMJ02HdqoGIlHUzkSr9SsGVSsCFOmQEyM6TQirik5OZmVS1Yyps0oAu8PYtmOZZQpW9Z0LJF0p2U18VqlS0P+/DBzJrRrB0WKmE4k4joiIyMZO3AcR7/6lfo9GzF49CD8/f1NxxJxCpUj8WpZstjj/suXw++/w+OPm04kYt7x48cZ1mUEcVdiGL/kWWo9Wtt0JBGn0rKaeD2HA3r0gIAAmD9f4/5prWfPnuTJk4eyWo5xeZZl8cnHn9C/8VM4fBws2LpAxUi8ksqRyH898gg0bw6TJsGlS6bTeI7u3buzY8cO0zHkDhISEpj8whQm932VYtVLsmrbCgoUKGA6logRWlYT+ZuQEBg1yh73r1ULKlUyncj91apVi+PHj5uOIbdx4cIFBncfSlz4dXo+35t2ndtpGk28mq4cifyPDBlg6FA4cQLeftt0GpH09cu+ffRo2JO4SzFMfWca7bu0VzESr5eqK0dXrlxJqxySQpe03uM01arBr7/6MX26g/79wwkIMJ3IfZ07d47ExETCw8Nv+ZjVq1ezZs0aACIiIm77WEm95ORkNr2ziXdff4fMBbMz/sXx5MyVS8+7E+n7ufOFhISk6HEOKxW74IWHh1sp/USSNsLDw1P8lytp49dfz7BxYzCdOkHBgqbTuKfjx4/TpEkT9u/fn6LHV6hQgb1796ZzKu91/fp1xg0ez6+f/ULdrg0Z/vRQIiIi9L3FyfT93IgUXRbVPUcid5A1q8W4cbB0KRQqBHXrmk4kcu9OnDjBsK4jiL14nbFvjKfOY3W0jCbyP3TPkUgKOBzQqxf4+sLChZCcbDqR++jQoQPVq1fn8OHDhIaGsmTJEtORvNbnOz/jqSb9sJIt5m2Zz2N1H1MxErkJXTkSuQuPPgpFi8LEidC/P+TIYTqR61u7dq3pCF4vISGBWZNf56Nl23mgZilemzuRoKAg07FEXJbKkchdCg2FkSNh7lx47DH7jDYRV3Xx4kX6dxnI1aMX6PJMdzp264iPjxYNRG5HXyEi9yBjRhg+3D5yZP1602lEbu7A/v30aNiD6HNRTF43hc49OqsYiaSAvkpEUqFVKyhRAqZNg7g402lEbJZlsW7NOka0Gk5AzkCWbF9CBV3iFEkxLauJpFL58lCgAEydCl262L8XMSU6Oprxw57lwMd7eLRTPUY+M4IMGTKYjiXiVlSORNJA9uwwbhwsWWLfsF2njulE4o1OnjzJkC7DiImIYvT8sdR9vJ6m0UTugZbVRNKIjw/07g2WBYsWadxfnOurL76kb6O+WInJzH1/HvXqP65iJHKPVI5E0thjj0GDBva4v07YkfSWmJjIjEmzeKnHC+QvX5CV21dQpEgR07FE3JqW1UTSQYEC9rj/nDlQvz6UK2c6kXiiS5cu0b/LQC7/FkHHcV3o0rOLptFE0oC+ikTSScaMMGIE/PorbNxoOo14mkMHD9I9rAdRZ64x6e3JdHuym4qRSBrRV5JIOmvTBgoXhunTIT7edBpxd5ZlsWHdBoa1GErGrAEs2b6EBytVMh1LxKNoWU3ECR580D60dsoU6NbN3mVb5G5FR0czYdQL7N3xIzXb1mHM86PImDGj6VgiHkflSMRJcuSwx/0XLYKSJaF2bdOJxJ2cOnWKIV2GEX0ukuGvj6JBowaaRhNJJ1pWE3EiHx/o2xcSEuw9kSzLdCJxB9989TV9GvUhKS6JOe/PpWHjhipGIulI5UjEgHr1oG5de9z/2jXTacRVJSYmMnvqHF7oNoGQ0qGs3LGcBx54wHQsEY+nZTURQwoVsg+vnT0bGjWCMmVMJxJXcvnyZQZ2G8yFQ2doO7IjPfp21zSaiJOoHIkYFBAAo0bBW2/B11+foHbtWAoUKECmTJlMRxNDYmNj2blzJ7PGzcDPkYFX3pxE5SqVTccS8SoqRyIuoH17mDDhaxo1+o7ixSEkJBtlyhSkbNmCFCpUkAIFChAQEGA6pqSx2NhYTp48yfHjJzhw4AS//HKcvT//RPTh/WQrGMy7OzeRN29e0zFFvI7KkYiL6N+/Lt988zPnz79EYOBlvvjiBB99dAJf359JTj5FSEgOypYtSJkydmHKnz+/CpMbiYuL488//+TEiT85cMAuQ6dOXcLHJ5SkpAL4+hbh9NE9cDoGR95Q3ty2RsVIxBCVIxEXcf/99xMWVpxPP/2a8+frkTNnCAUKVAfAspKJjj7Dzp0n+OCDE/j6/khy8mkKFszJ2LE9KViwoOH0cisnT55k0qQl/PHHRXx8QkhOLoS/fwmCguqTL18wPj6+XL8ezp6dQ/GLvkqmUvVp1zIrhQsXNh1dxGupHIm4kDZtwvj44zmULPkop0/7cfgwFC8ODocPmTPnI3PmfMDDAERE/ERMzHpy5cplNrTcVs6cOYmNjSdjxs7kyVPtX28/d/YfootkAAAgAElEQVQ7/vjqJRx+GSj++EwiI1fQvn0HA0lF5AaNPoi4kPz58/Pww6GcO/ct+fNDcDDs2WPvi/R30dHnSExcy/PP9yMoKMhMWEmRzJkzM2FCP5KT1xEdfeav/5+cnMjhXxZw4rNnsLLdT+VGy4mLu0y1ankpVKiQucAionIk4mratw8jIWEHlpVM1qxQrhwcOACXL9tvT0qK4/z5BQwf3kw/RN1EgQIFGDWqFefOzScxMZa4uCt8/3Fvrh54h+xl21Kt7iL8/bMQH7+DDh3CTMcV8XpaVhNxMUWLFqVSpRwcPPgDefJUw88PKlSA33+Hq1ctHI5VtGhRiNq1HzEdVe5CzZoP06bNMVaufI0rv/2MT2ICheq8Sp77qwL2Mmn58pkpXry44aQioitHIi6oY8cwYmN3YP33fBGHA4oWhejoT/n99x/Inj2r4YRyt5KTkzlx7DCXfl5EbNIlyjda/FcxsiyL6OhtdOoUpmNBRFyAypGICypdujQlS/px6dK+v/7ftWu/Exy8naZNCzJ+/A6GDHmFmJgYgyklpa5cuULdh+uxaeZScpcuwoOPPUR8fORfb798+QDFi0O5cuUMphSRG1SORFyQw+Ggc+cwrl/fhmVZxMdf4/LlN3jmmW5MmzaOWbNa8tFHJ2nceCjh4eGm48pt7Nmzh2olHuL8L0d4Ymgvdn6/kwkTehMZuZi4uCtYlkVk5DY6d9ZhsiKuQuVIxEVVqvQgBQvGcvnyQU6ffoM+fWpSvnw5HA4HTZo0YPPmkcTEQFjYC3z77fem48pNrFi+gg61muGIT2LahkW8NPFFfHx8KFOmNH37Pkp4+BtcufIr+fNHUrnyQ6bjish/qRyJuCiHw0HXrg05c2YhtWtn4IknGv/j7cWKFWPHjtcoViyALl2WMmPGUhITEw2llb+Lj4+nR8eeTOn/NI7sgXyw53MaNmz4j8c0axbGY49lJjx8Pl27NtChsiIuRNNqIi6sWrWq9Ot3ghYtmt70h2e2bNl4++3pzJu3mlmzvuHLL3ezdOlLZM+e3UBaATh16hSNajXEOnOZ8o3rsHT14pse8+JwOBg8uAehoZupXv0/BpKKyK3onyoiLszX15fOnduTOXPm2z5m0KBurFnzJMeOxRMWNobffvvNiSnlhk8++YR65R8h8cI1Bs18njffWX3b8+8CAwPp3Lk9fn76d6qIK1E5EvEQ1apVYfv25wkMhObNp/Hee9v+2gpA0ldycjIvPf8Kg5t1x/JzsPLTjfTp29t0LBG5RypHIh4kODiYrVtnERZWiBEjNjFixCRiY2NNx/Jo165do0GthqybPI+cJQvx7a8/UrlyZdOxRCQVVI5EPExAQADTpo1l6tTmbN9+nCZNhnDmzJk7v6Pctf3791Ol2IOE7z5Ik4Hd+PyHz8mZM6fpWCKSSipHIh7I4XDQokUjNm0aQVQUhIU9z65dP5qO5VFWr1pDmxqN8YlPYsq6hUyc8qomzkQ8hL6SRTxY8eLF2bFjMoUK+dOp0yLmzFlBUlKS6VhuLTExkSe79WFS39FYQRnY9vNOGjVufOd3FBG3oXIk4uGyZ8/OO+/MpH//asyc+Q3t2g3n6tWrpmO5pVOnTlG55EN8v24rZeo/wp7ff6Fw4cKmY4lIGlM5EvECfn5+DBvWk1WrenLkSCwNG47myJEjpmO5lc8++4x6FR4h/txlnpr6DG+/99Ztx/RFxH2pHIl4kerVq7Ft23NkygTNmk1ly5YPNO5/B8nJybz60kQGNOmC5eNg+Sfv0H/AU6ZjiUg6UjkS8TL58uVj69aZ1KsXypAhGxkzZgpxcXGmY7mka9eu0fixJqx9dQ7Zi+bn60O7qFq1qulYIpLOVI5EvFCmTJl4/fVnmDy5CZs3/06TJoM5e/as6Vgu5cCBA1Qp/iB//rCPBn078uXPX5E7d27TsUTECVSORLyUw+GgdeumvPfeMK5dg7CwCfz448+mY7mEt9a+ReuHG+ETl8ira+YydeYUjemLeBF9tYt4uZIlS7JjxyRCQ33o0GEhCxasJjk52XQsIxITE3mqV39e7jWS5Mz+bN71Mc2faG46log4mcqRiJAjRw7efXc2fftWZsqUL+nUaRTXrl0zHcupwsPDqVamKl+9uYkSdaqz++g+ihUrZjqWiBigciQigD3uP3Jkb5Yv78aBA1GEhY3i999/Nx3LKb766iseK1+DmPAI+kway4at6wkMDDQdS0QMUTkSkX945JGH2bbtWfz9oWnT19i27WOPHfdPTk5myuSp9G3YARyw5MN1DBoyyHQsETFM5UhE/iU0NJRt22ZQu3YwgwatZ/z46R437h8VFUWz+s1Z+fwMshTOxxcHvqd69eqmY4mIC1A5EpGbCgwMZN68CbzyShgbNvxG06aDOXfunOlYaeLQoUM8VKwCx7/dzWM92vLN3m/IkyeP6Vgi4iJUjkTklhwOB+3bP8HGjUO4cgXCwp5j9+49pmOlyvp162n5n4b4xCTy4srXmTVvhsb0ReQf9B1BRO6oTJnSbN/+KnnzQtu281m8eK3bjfsnJiYyqN8QXug+jORAf977/kNatmppOpaIuCCVIxFJkVy5crFp0xx69XqQiRM/o1u3sURGRpqOlSLnz5+nevnqfLbiHYrUrMzu3/dRokQJ07FExEWpHIlIivn7+zN2bD+WLu3Cnj1XCQsbyR9//GE61m19/fXX1Cpdjesnz9Lz5VG8t2OjxvRF5LZUjkTkrtWuXZOtW8fj6wtNmkzio492uuS4/8wZs+jdsD0Ab2xfy7ARQ3V/kYjckb5LiMg9KVCgANu2Tefhh/PQr99bTJgwi/j4eNOxAIiOjuaJBi1Y8vRrZM5/P5/t/5aaNWuajiUibkLlSETuWebMmXnjjRd54YX6vP32IZo2HURERITRTIcPH+bBouU5+uUP1Orakm/3fUfevHmNZhIR96JyJCKp4nA46Ny5Fe+8M4hLl6Bhw2fYu3efkSwbN2zkiWr18bmewITlM5i7cDZ+fn5GsoiI+1I5EpE0Ua5cWbZvf4U8eaBNm7ksX77OaeP+ycnJDBs4nOe6DiY5wI+N3+2gTds2TvncIuJ5VI5EJM3kzp2bzZvn0LlzOV566RN69XqGqKiodP2c58+f5+EKD/PxkrcpWK0iPx3dS6lSpdL1c4qIZ1M5EpE05e/vz3PPDWTx4k78+ONFGjUawYkTJ9Llc33//ffUKvMfIv84Tdfnh/H+x5sJCgpKl88lIt5D5UhE0kWdOrXYsuVpABo3fpVPP/08Tcf9586eR496rSHZYv62NYwaM1Jj+iKSJvSdRETSTcGCBdm2bRpVq+aid+83eemluSQkJKTqY0ZHR9O6SRsWjH6FgODcfPrL19SqVSuNEouIqByJSDoLCgpi8eKXee65eqxe/QvNmg3kwoUL9/Sxjhw5woNFy/Prp9/ycIdm7Dr4AyEhIWmcWES8ncqRiKQ7Hx8funVrw/r1A4iIgLCw8fzyy/67+hibN22mWdXH8bmewDNLprJw6XyN6YtIulA5EhGnqVChPNu3v0yuXNC69WxWr95wx/uQkpOTGTV0FOM69ic5oy/vfLON9h3aOymxiHgjlSMRcar77ruPzZtn0759aSZM+JA+fZ7j+vXrN33shQsXeKRSTXYsfJPQyuX44bfdlClTxsmJRcTbqByJSLrbsWMHJUqUoGjRokyaNIkMGTLw/PODWbCgPd98c55GjYZz8uTJf7zPDz/8QI1SVbly9CQdnh7I9p1byZo1q6E/gYh4E5UjEUlXSUlJDBgwgO3bt3Pw4EHWrl3LwYMHcTgcPP54HbZsGUtSEjRq9DKff/4VABcjLtLtsVY4ki1mb17B08+O05i+iDiNvtuISLratWsXRYsWpUiRImTIkIH27duzadOmv95euHBhtm+fSsWK2ejRYwWlipYn4MwV/PNk4+O9X/LYY48ZTC8i3siRmk3ZSpcubfn7+6dhHLmTK1eukD17dtMxvIqe89S5cuUKUVFRhIaGAnD58mWio6PJly/fPx534cIFzpyJJI91nRiSCSlZkgwZMpiI7JX0Onc+PefOt2/fvgOWZZW90+NSNQfr7+/P3r17U/Mh5C5VqFBBz7mT6TlPnfXr1/PBBx+wePFiAFatWsWuXbuYPXv2Px73/vsQGQlFH9hFy+qPUCyoGJOWT6S0bsB2Cr3OnU/PufM5HI7YlDxOy2oikq5CQ0P/cbP1qVOn/rFxY2IivP465M0LHTtC1WpVuZjRh4w5Ahnechjr165P02NHRETuROVIRNJVlSpVOHLkCH/88Qfx8fG89dZbNGvWDICzZ2HSJOjQAapU+f/3cTgcrH5/BTVb12bRMwsY1X800dHRhv4EIuJtUlWOOnXqlFY5JIX0nDufnvPU8fPzY86cOTRo0IBSpUrRtm1bypQpwzffwIYNMG4c3HffP98nZ86cZMyYkfEvP82I2aM5+MUvdG7UlVOnTpn5Q3gBvc6dT8+5EW+k5EGpuiE7PDzc0rlGzhUeHq6zpJxMz3nasixYuRLy5IGwsJs/5n/vxTh27BjDu44k4VosT899mhqP1HRSWu+h17nz6Tk3wpGSB2lZTUScJirKXkZ7+OFbF6ObKVKkCCu3LSdf2QK82P15Zk+dTWJiYvoFFRGvpnIkIk7x228wdy4MHgzFit39+2fNmpUFq+fRfkwntizcRJcnunH58uW0DyoiXi9V5ei1116jfPnyVKxYkfr16xMeHp5WueQWXnrpJUqWLEn58uVp0aIFV65cMR3J473//vuUKVMGHx8ffvzxR9Nx3NLWrbBrF4weDZkz3/pxN44Z+fXXX5k0adK/3u7j40OPPj14de1kIk9fpXvD7vx66FA6JvdsPXv2JE+ePJQte8dtXySNnDx5kjp16lCqVCnq1KnDrFmzTEfyeLGxsVStWpUKFSrgcDgOOByOF+70PqkqR0899RT79u1jz549NGnShBdffDE1H05SoFatWuzfv599+/ZRvHhxJk6caDqSxytZsiQbN26kVq1apqO4ncREmD0bcuWCzp3BcZvV/r8fM1KiRIm/jhm5mYcqP8SSHUvIkDWAoS2G8O4772rc/x50796dHTt2mI7hVfz8/Jg2bRqHDh3i/fffZ+7cubd8nUvayJgxI59++umN+xgrAg0dDsd/bvc+qSpHWbJk+ev3169fx3G773ySJmrXro2fn71353/+8x9N7zhBsWLFKFGihOkYbuf8efv+onbt4D+3/TZk+/sxIw6H41/HjPyv+++/n9VbVvKf5jWYP2YOYwc/TUxMTBr+CTxfrVq1yJkzp+kYXiU4OJhKlSoBEBQURKlSpTh9+rThVJ7N4XAQFBR04z/9//vrtv+aSvU9R+PHjyd//vysWbNGV46cbOnSpYTdzV2tIk7y3Xfw9tswdqw9lZYSp0+fJn/+/H/9d2ho6B1/aGTMmJEJk55j2KyR7PtkN10ad9UPGnEbJ0+eZPfu3VSrVs10FI+XlJRExYoVAc4DH1mW9f3tHn/HcuRwOD52OBz7b/KrOcArr7zCyZMn6dSpE3PmzEmTP4S3q1evHmXLlv3Xr7//K/qVV17Bz89P+2SkkZQ853JnlgWrVsGFCzBoEPjdxQFFN1sWS8nVaIfDQViTMGZvnkNibCJ9GvXmu2+/u5vYIk4XFRVF7969mTlzJlmzZjUdx+P5+vqyZ88egFCgqsPhuO2Ndnf81mVZVr1bve3vN2B37NiRxo0b88ILd7zPSe7g448/vuXbwsPDWbFiBVu2bOGTTz7RUmYaudNzLncWHW3fX/TEE3Avq5B3OmbkTooWLcqK7csZ1nsEE7o8Q/MBregzqPdfy9AiriIhIYFWrVrRokULWrZsaTqOV7Es64rD4fgMaAjsv9XjUrWsduzYsb9+v3nzZkqWLJmaDycpsHPnTiZPnszmzZsJDAw0HUcEgKNH7fPRBgy4t2IE/zxmxLKsfxwzklLZsmVj0dqFtB7Wjk3zNtCjdS9NdIpLsSyLXr16UapUKfr27Ws6jleIiIj46/uAw+HIBNQDfr3tO1mWdc+/GjVqZJUpU8YqV66c1aRJE+vUqVOWpK9ChQpZoaGhVoUKFawKFSpYffv2NR3J4y1evNjKly+flSFDBitPnjxW/fr1TUdyKdu2WdaKFZaVnJz6j7V161arWLFiVoYMGayXX345VR9r1/e7rMYVG1vNqjW3Dh8+nPpwHqh9+/ZW3rx5LT8/Pytv3rzW4sWLTUfyeF9++aUFWOXKlbNKly5tVahQwdq6davpWB5t7969VsWKFa1y5cpZ2FeLnrPu0G90fIib0Xbzzqfn/OaSkmDBAnjwQXvH67T0v8eH3KszZ84wqMsQrp++Sv9XB9DkiaZair4Fvc6dT8+5ETo+RETSx4UL9ph+q1ZpX4zSUnBwMKu3rKRyo2rMHjmL8cOeJTY21nQsEXFxKkcicld++AHefNPe7TpvXtNp7iwgIIAXp77A4OnD2P3BD3Ru3JUzZ86YjiUiLkzlSERSxLLsUnTmjH0+mr+/6UQp53A4aNK8Ca9vnkNCdDy9w55k1/e7TMcSERelciQidxQTA1Om2PcX3eUAmUspVqwYK7YvJ9cDeXi289O8MfsNkpKSTMcSERejciQit3XsGMyYAU89BaVKmU6TetmzZ2fpusW0GNSaDbPW8WS7Ply9etV0LBFxISpHInJLH34IX3wB48bB345SdHu+vr70G9yPF1e/wvkjZ+nWsDtHjhwxHUtEXITKkYj8S1ISzJ8PmTJB9+7gqdPv1f5TjUXbF+GXyZ/BzQaybcu2mx5jIiLeReVIRP7h4kWYOBGaN4dHHjGdJv2FhISwettKKtavzMwh03h+zIvExcWZjiUiBqkcichffvrJPjh2zBjwpr3pAgICeHXmywycMpjvN39Dp8ZdOXv2rOlYImKIypGIAPDWW3DyJAwd6l5j+mnF4XDQrGVzZr43i4SoOJ4Me5KffvzJdCwRMUDlSMTLxcbaY/rlysETT5hOY17JkiVZvn0Z2fLn4OkOY1gyfynJycmmY4mIE6kciXix48dh+nTo2xfKlDGdxnXkyJGDFRuX0bRfC9ZNfZM+Hftx7do107FExElUjkS81Mcfw6ef2mP6WbOaTuN6/Pz8GDhiAM+vfJHwg6foGtad33//3XQsEXEClSMRL5OcDAsX2vcV9ezpuWP6aaV6jYd5Y9sb+GbwZWDTAezYukPj/iIeTuVIxItcvmyP6TduDLVrm07jPkJDQ1m1dQXl6lRk+uApvDz+FY37i3gwlSMRL7F7NyxfDqNGQWio6TTuJzAwkMlzJtJv0gC+3vAFnZt25dy5c6ZjiUg6UDkS8QLr1tlnpA0bBhkymE7jvhwOBy3btGTGuzOJuxpLr7Be7P75Z9OxRCSNqRyJeLC4OJg2DUqWhFatTKfxHKVKl2b59mUEBWdlbLsxLF+0XOP+Ih5E5UjEQ/35J0ydCr16QfnyptN4npw5c7J600rCnmzK2kmrearLACIjI03HEpE0oHIk4oF27oQPP7TH9LNnN53Gc/n5+TF0zGCeXTaBk/tO0DWsG8eOHTMdS0RSSeVIxIMkJ8OiRfbvn3wSfPQV7hQ1az3Cwm0Lcfj5MKBpfz764EON+4u4MX3rFPEQV67YY/oNGkCdOqbTeJ/8+fOzettKStYsw5T+k5k4YRLx8fGmY4nIPVA5EvEA+/bBkiUwciQUKGA6jfcKDAxk+oKp9H6pH1+8vZPOTbty/vz5Wz7+1KlTPDtsmO5VEnExKkcibm7DBjh8GEaMgIwZTacRh8NBm45tmLZhOrGXoukV1ou9e/b863HR0dEsePFFMu7axSfbtxtIKiK3onIk4qbi4+1DYx94ANq0MZ1G/leZsmVZtmMZgfcHMabNKFYtXfXXuL9lWSybPZuyp07Rr2hRvnj7baKjow0nFpEbVI5E3NCpUzBlCvToARUrmk4jt5IrVy5Wb1pJvW4NWfXKCgb2GEJUVBQ73n+f6598Qut8+cgdEEC56Gg++/hj03FF5L9UjkTczOefw7Zt9ph+jhym08id+Pv7M/KZETy9+BmO/3SULmHd2LlgAX1CQvD77zhhw9y5+fTNN3Vem4iLUDkScROWZd90nZAAffpoTN/dPFrnUV5dPRH/qMvUPp+FbBn+/wax4MBAil69yldffGEwoYjcoG+vIm7g6lV7TL9uXahXz3QauReJiYlsX7OGJ0MzU7tEdnbvto93uSEsRw4+WrWKxMREcyFFBFA5EnF5+/fbGzsOHw6FCplOI/fq7eXLyfnLLzweHExQEFSoYE8ZXrxov71gliyERETw/XffmQ0qIipHIq7s3XfhwAF7/6KAANNp5F5989VXHF63jm758uFwOADw9bXPvLt6FW6cOBKWLRs7Vq7UIbYihqkcibig+HiYORMKFoR27UynkdQ4e/Ysb776KrUzZCDpJkeKFCkC2bLB3n1QOHNWspw8yU8//mggqYjc4Gc6gIj8U3g4LF0KTz0FuXKZTiOpFRAQQO1Ondj9yy9sPnyYoPh4CgCFLIsCQUEUzJKFXLn8CAqCffscPJoniO2rVlG5SpW/rjKJiHOpHIm4kC+/tJfRxo2zl13E/WXPnp02nToB9uaP586d48SJE/x59Chb9+3j5G+/ERQfTyEgf26LhHNBnD37K7/88gvly5c3ml3EW6kcibgAy4LlyyFfPujXz3QaSS8Oh4O8efOSN29eqlWrBp06kZyczLlz5/jzzz85ceQIJ/bt49JXccyY9AVL15RHF49EnE/lSMSwyEiYPRvat7fvPxHv4uPjQ3BwMMHBwXZhApKTkzl2LImJE2HAAPueJBFxHt2QLWLQoUMwfz4MG6ZiJP/Px8eHokX9GT4cFi+2t3MQEedRORIxZPNm2L0bRo2CTJlMpxFXFBAAI0bAwYP2tg4i4hwqRyJOlpAAs2ZBcDB07IjuKZE7atvW3tZhxgx7mwcRSV+650jEic6etZdJ+vWD3LlNpxF3UqmSvUP6lCnQvbt9876IpA9dORJxkm++gY0b7TF9FSO5Fzlz2q+f99+3t30QkfShciSSziwLVqyAa9egf3/tXySp4+NjX3mMjbU3C73JptsikkoqRyLpKCoKJk2CGjWgYUPTacSTPP441Kljv74iI02nEfEsKkci6eTwYZg7F4YMgaJFTacRT1S4MAwdCgsW2BNtIpI2VI5E0sGWLfDDDzB6NAQGmk4jnixTJhg5Evbts7eHEJHUUzkSSUOJifZu1/fdB507a0xfnMPhsHdYDwmBmTPt7SJE5N6pHImkkXPnYPJkaNcO/nsKhIhTVa5sl/LXXoMzZ0ynEXFfKkciaeC772D9ehgzBvLkMZ1GvFnu3DB2rL2j9tdfm04j4p5UjkRSwbJg1Sq4dAkGDgQ/basqLsDX1942IjISli/XuL/I3VI5ErlH16/byxfVqkGjRqbTiPxbw4bwyCP2cm9UlOk0Iu5D5UjkHhw5Yt94PXAgFC9uOo3IrT3wAAwebG8r8euvptOIuAeVI5G7tH07fPutfX9R5sym04jcWWCgva3ETz/ZR4+IyO2pHImkUFKS/a/v7Nmha1eN6afE+vXrKVOmDD4+Pvz444+m43g1hwM6dbIHBl5/3d52QkRuTuVIJAUiImDiRGjVCqpXN53GfZQtW5aNGzdSq1Yt01Hkv6pVgw4d7PuQzp0znUbENWm2RuQOdu/259gxezxa02h3p1SpUqYjyE3cd5+9LLxgATz0kAq/yP/SlSORW7AsWLMGIiJ8GDRIxUg8i5+fPVBw+TKsXKlxf5G/S9W3+ytXrqRVDkmhS5cumY7gFWJiHCxdmpkGDWLJmfM84eFxpiO5rHbt2hEREfGv/z9mzBgaNGgAQHx8PBEREYSHh9/y46xevZo1a9YA3PGxknYqVoRjx3yZMsWHgQPPEBioluQs+n7ufCEhISl6nMNKxT8XwsPDrZR+Ikkb4eHhKf7LlXvz+++wbh0MGgRBQXrO08Kjjz7K1KlTqVy5cooeX6FCBfbu3ZvOqeTvjh49w4YNwbRsCcWKmU7jHfS9xYgUjdJoWU3kbz74AL780r6/KCjIdBoR5wkMtBg92j4KZ9s202lEzFI5EsEe0583z963qHt3jemnlXfffZfQ0FC+/fZbGjdu/Ncym7gmhwO6dIEcOWDOHI37i/fSLabi9S5etKd2evaE4GDTaTxLixYtaNGihekYcpeqV4ciRWDSJOjTR4cpi/fRlSPxaj/9ZE+kjR6tYiTyd/ffby8vv/027NplOo2Ic6kcidd66y04dco+d8rf33QaEdfj52cPJpw/b/8jQuP+4i1UjsTrxMTAlClQvjw0b246jYjra9LE3ixyyhSIjjadRiT96Z4j8Sp//GFfMRowALJmNZ1GxH2ULAmhofa5bG3awAMPmE4kkn505Ui8xkcfwc6d9n0UKkYidy8oyD525KuvYMcO02lE0o/KkXi85GR7Gi1jRnsiTWP6IvfO4YBu3SBLFpg7194GQ8TTqByJR7t0CSZOhKZNQQfDi6SdGjWgZUt73P/CBdNpRNKWypF4rN27YcUKGDUK8uUznUbE8wQH29tgvPkm/Pij6TQiaUflSDzS+vX2zdfDhkGGDKbTiHguf397O4zTp2HtWo37i2dQORKPEhsLU6fakzUtW5pOI+I9mjeHChXsr7+YGNNpRFJHo/ziMU6csDeqGzAAsmUznUbE+5QubY/7z5wJ7dtD4cKmE4ncG105Eo/w6af2qP7YsSpGIiZlzWp/HX72mf01KeKOVI7ErSUnwxtv2OPFTz4JPnpFixjncECPHhAQAPPn21+nIu5EP0rEbV25Yo/ph4VBnTqm04jI/3rkEWjWzP46vXTJdBqRlFM5Ere0dy8sXQojR0L+/KbTiMit5Mtnb6exYgX8/LPpNCIpo3IkbvXOaIcAABJfSURBVOedd+DIERg+3N71WkRcW4YM9rYaJ07AunWm04jcmcqRuI24OJg+HYoVg9atTacRkbvVooU90TZ1qr3thoir0ii/uIWTJ2HlSujfH3LkMJ1GRO5V2bL2Uvj06dCpExQsaDqRyL/pypG4vM8+g+3bYdw4FSMRT5Atm/31/NFH8MknptOI/JvKkbgsy4LFi+1Tv/v00Zi+iCe5sf2Gr6+9HYfG/cWV6MeNuKSrV+3x38cfh7p1TacRkfTy6KP2dhwTJ8Lly6bTiNhUjsTl7N9vXzEaPlz3I4h4g/z57W05li+3t+kQMU3lSFzKu+/CwYMwYoS9u66IeIeMGe1x/6NH7e06RExSORKXEB8PM2ZAoULQtq3pNCJiSqtW9nYd06fb23eImKBRfjHu9Gn7cvpTT0HOnKbTiIhpFSrYS+rTpkGXLtoFX5xPV47EqC+/hPfft8d6VYxE5Ibs2WHsWHsbj507TacRb6NyJEZYln02Wmws9OunMX0R+TcfH3sbD8uCRYs07i/Oox9J4nSRkTBpEtSpY4/qi4jczmOPQf369veNq1dNpxFvoHIkTnXwICxYAEOHQuHCptOIiLsoWNDe3mPxYvjlF9NpxNOpHInTbN4M+/bBqFGQKZPpNCLibgIC7G0+Dh2CjRtNpxFPpnIk6S4hAWbNgpAQaN/edBoRcXdt29pXnmfMsLcBEUlrGuWXdHXmjH3jdd++kDu36TT/196dB1dVn2Ecf04SAoQ1gLIIiAgErGXR2mLZtEBAQShQRJBSsZYlAkI1gOM4nXHGgQSQRQwChhYkWKAyqEgtBW0YxYqIyDKlDNZiMaKsBcIacvvH29q0smS59/7Ovef7mXEmuNz7DGZyH37nvO8BEC86dLBLbTNmSA89JN1wg+tEiCecHCFi3ntPWrvWxnEpRgDCrU4dWwOybp20ebPrNIgnlCOEXShkSx1Pn7bFjomJrhMBiFcJCXYyff68lJtrP3+AiqIcIaxOn5aysqQuXaRevVynARAUPXvayP+0adLJk67TINZRjhA2e/dKOTnShAnSzTe7TgMgaG66ycb9Fy6U9uxxnQaxjHKEsHjjDemjj2xMPyXFdRoAQVWliv0c2rVLeu0112kQqyhHqJCiImnePKl+fenBByXPc50IAGxtSOPGtkbk4kXXaRBrGOVHuX31lW2rHTVKuu4612kA4H/dfrvUrJmUnS09/LDUsKHrRIgVnByhXN5/X1q9WpoyhWIEwL/q1rV1ImvXSu++6zoNYgXlCGUSCknLlknHj0vjxklJnD0C8LnERFsrUlhoa0YY98e1UI5QaoWFdjx9553Svfe6TgMAZdOrl60ZmT5dOnXKdRr4GeUIpbJvnzR/vp0WtWzpOg0AlM/NN0uPPSYtWGDrR4DLoRzhmtavlz74QJo8WapWzXUaAKiYlBQb99++3daQAP+PcoQrKiqy06LUVOmnP2VMH0D88Dxp2DBbQzJvnv28A/6DcoTL+vprewzI4MF2jxEAxKPvf18aOtR+3h065DoN/IJyhG/ZulVaudLG9OvXd50GACLruuts3P/VV21NCUA5wjdCISkvz06Nxo9nTB9AcCQmSo8+Kp04YetKGPcPNsoRJElnzkgzZkjf+57Ut6/rNADgxj332K0EWVm2vgTBRDmCPv3UbkjMyJDS0lynAQC3Wra00/Pnn7c1JggeylHAvfWWrdSfMkWqXt11GgDwh2rV7Ofi1q22zgTBQjkKqEuXpJwcqUYN6Wc/Y0wfAP6f50nDh0t16thaE8b9g4NyFEBHjtj6/AEDpE6dXKcBAH/r2NHWmkyfbgMriH+Uo4DZtk1ascK2XTds6DoNAMSG+vVt3H/lSntiAOIb5SggQiHplVekggJpwgSpUiXXiQAgtiQl2Y3ahw9Ly5cz7h/PKEcBcPasNHOm1K6d1K+f6zQAENv69pXuuEPKzrY1KIg/lKM499ln0pw50pgx0i23uE4DAPEhLc2WRs6bJ+3f7zoNwo1yFMf++EfpT3+y6+Q1arhOAwDxpXp1G/ffssXWoiB+UI7iUHGxtGCBVKWKNHIkY/oAECmeJ40YYX8AzcmxNSmIfZSjOHPsmDRtmtS/v9Sli+s0ABAMnTpJAwfauP+RI67ToKIoR3Fk+3Z7YGJmptSokes0ABAsDRrYmpQVK6QPP3SdBhVBOYoTq1ZJBw5IEydKycmu0wBAMFWqZOtSvvzSShLj/rGJchTjzp2zMf1bbrGN1wAA9/r1kzp0sJ/PZ8+6ToOySnIdAOV34ICUl2fjpLVquU4DACipTRupcWNbpzJkiNS8uetEKC1OjmLUpk3Sxo3Sk09SjOBfmZmZat26tdq2basBAwboxIkTriMBUVWjhq1Tyc+XNmxwnQalRTmKMcXF0qJFUmKi9POfM6YPf+vZs6d2796tnTt3qlWrVpo2bZrrSEDUeZ6tVala1dasMO7vf5SjGHL8uDR/fnXde690112u0wDXlp6erqQku3rfsWNHHTx40HEiwJ0uXWzNyvTp0tGjrtPgaip0zxFH5NGzZ0+S3nuvsu6//6ASElJVUOA6UXAcO3bMdYS4kJOTo379+qngCt+8y5cvV15eniTp8OHDV/z3EBl8n0fPgw9K8+dXU5s2Z9S5M9/n0dSolHtuvFAF5gwLCgpCpX0jlN/vfmfHsoMGSQUFBaX+n4vw4Pf86nr06KFDhw596+8/++yz6t+//zdfb9u2TWvWrJFXimvB7dq10yeffBL2rLgyvs+jb8mSY6pWrY6GDHGdJFBKdTMK02o+dv689MILUo8eUtu2rtMAl7dx48ar/vOlS5dq3bp12rRpU6mKERAUvXuf07FjNu4/bpw98gn+QDnyqX/8Q3r5ZSkjQ6pd23UaoHzeeustZWVlKT8/XykpKa7jAL5z661S06bSc89Jw4ZJzZq5TgSJG7J96Z137AnPU6dSjBDbxo0bp1OnTqlnz55q3769xowZ4zoS4Ds1a9palk2b7C+4x8mRjxQXS0uW2KKwX/zCdRqg4vbv3+86AhATPM/Ws+TnSwsX2mdAAscXzvBb7xP//KeNd6anSz/6kes0AAAXunWT+vSRpk2z9S1wg3LkA7t2SS+9JD3+uF17BgAEV+PGUmam9JvfSDt2uE4TTJQjx9askfbutWJUubLrNAAAP0hOliZNkj79VFq92nWa4KEcOXLhgjR7tnTTTdLgwa7TAAD8aNAgKS1NmjXL1rsgOrgh24EvvrDj0owMKTXVdRoAgJ+1bWu3XMyaJQ0fzu0X0cDJUZRt3iytW2djmxQjAEBp1K5t6102bLB1L4gsylGUhEJSbq5dThs9mhFNAEDZJCRIjzxiXy9ebOtfEBl8REfByZM2pt+9uz0KBACA8rr7bqlXL/tc4fnvkUE5irA9e2yh16RJrIUHAIRH06Y25Zyba+tgEF6Uowh67TX7ps3M5IGCAIDwqlzZCtLevbYWBuFDOYqAixeluXNtkdcDD7hOAwCIZ4MH22OnZs+2+1pRcYzyh9mXX9rz0caMkerWdZ0GABAE7dtLN94ozZwpjRhhfzhH+XFyFEbvviutXWvjlhQjAEA0paba58/69fYAW5Qf5SgMQiFb6njmjDR2rJSY6DoRACCIEhKkUaPs9o7cXPt8QtlRjiro1Ckbp+zaVUpPd50GAABbG9O9u30+nTzpOk3soRxVwN690osvShMn2s1wAAD4RbNmtkZm0SJbK4PSoxyV0xtvSB9/LD3xhFS1qus0AAB8W5Uq9jm1a5fdE4vSoRyVUVGRNG+e1KCBNHSo5HmuEwEAcHUPPCA1aSLNmWP3I+HqGOUvg0OH7Aa30aOlevVcpwEAoPRuv90utWVnSyNHSo0auU7kX5wcldL779sG0qlTKUYAgNhUt659jr3+uq2fweVRjq4hFJKWLbOH+2VkMKYPAIhtiYm2qPjMGenXv2bc/3IoR1dRWGjHjz/8oXTPPa7TAAAQPunpUrduNu5/6pTrNP5CObqCffuk+fOl8eOlFi1cpwEAIPyaN7d1NAsWSH/5i+s0/kE5uoz166WtW6XJk6WUFNdpAACInKpVpcxMW0/z+uuu0/gD5aiEoiI7LapTRxo+nDF9AEAweJ40bJjUsKGtqwn6uD/l6N++/lrKypLuv1/q2NF1GgAAou+OO6wkZWfb+pqgohxJ+uADadUqacoU6frrXacBAMCdevVs3H/NGmnLFtdp3Ah0OQqFpOXLpSNHpHHjpCRWYgIAoMREW19z8qS0dGnwxv0DW47OnJFmzLAjxD59XKcBAMB/eveWOnWy205On3adJnoCWY7277cbzjIypLQ012kAAPCvFi2kCROkF16wNTdBELhy9Pvf2zXUKVOk6tVdpwEAwP9SUmy9zdat0ptvuk4TeYEpR5cuSTk5Uq1a0ogRjOkDAFAWnmdrburVs7U3RUWuE0VOIMrRkSO2Hn3gQHsUCAAAKJ8f/MDW3mRl2RqceBT35ejDD6UVK+w4sEED12kAAIh9119vt6esWiX9+c+u04Rf3JajUMhK0aFDdiNZpUquEwEAED+SkmwNztGj0ssvx9e4f1yWo7NnbUy/QwfpvvtcpwEAIH716WOX2rKzpcJC12nCI+7K0d/+Js2dK40dK7Vp4zoNAADxr1UrO0V6/nlblxPr4qocbdggbd5s10Fr1HCdBgCA4KhWzT5/t2yxtTmxLC7K0aVL0osv2h6Ghx5iTB8AABc8z9bl1K5tSyMvXXKdqHxivhwdPWrjhP36SZ07u04DAADuvFMaNMjW6Bw+7DpN2cV0Odq+3R4cm5kpNWrkOg0AAPiPBg3sMttvf2trdWJJzJajlSulzz+XHnuMMX0AAPwoKUkaP97W6uTlxc64f8yVo3PnpJkzpVtvlX78Y9dpAADAtdx3n3TbbbZm5+xZ12muLcl1gLL4+9+lV16RHn1UqlnTdRoAAFBabdpIjRtLc+ZIQ4ZIzZu7TnRlMXNytGmT9Pbb0tSpFCMAAGJRjRr2OZ6fL/3hD67TXJnvy1FxsbRwod1X9PDDjOkDABDLPE8aOdL2Ii1Y4M9xf1+Xo+PHbQywTx+pa1fXaQAAQLh07iz172+f80ePuk7zv3xbjnbskJYulZ54wq5RAgCA+NKokTR5sq3l+egj12n+y5flaPVqe0baxIlScrLrNAAAIFIqVbK1PAcP2poeP/BVOTp/Xpo1S2rdWho40HUaAAAQLf3725qeGTNsbY9Lvhnl//xzO1bLyLBnsgAAgGD5znekJk2k2bOloUOlZs3c5PDFydE770gbNth4H8UIAIDgqlnT+sDbb0sbN7rJ4LQcFRdLixfb1488IiX4oqoBAACXPM/W9yQn2zqf4uLovr+zOnLihI3v9e4t3X23qxQAAMCvunaV+va1vnD8ePTe10k52rlTys2VHn/cri0CAABczg032FqfpUuljz+OzntGvRytWSP99a9WjCpXjva7AwCAWJOcbOt9PvvM1v1EWtTK0YUL0nPP2YPmBg+O1rsCAIB4MXCgrfuZNcvW/0RKVEb5Dx6Uli2Txo6VUlOj8Y4AACAeffe7UtOmVpCGD7evwy3iJ0f5+dL69TaWRzECAAAVVauW9YoNG2zkP9wiVo5CIbvp+uJFadQoxvQBAED4JCT8dw3Q4sXhHfePSGU5edLG7rp3l3r0iMQ7AAAASHfdZWuBpk+3NUHhEPZytGePtGiRNGmSu7XfAAAgOJo0sSn4JUtsXVBFhbUcrV0r7d5t+wiqVAnnKwMAAFxZ5crSL38p7dsnvfpqxV4rLOXo4kVp7ly7Y3zIkHC8IoB48PTTT6tt27Zq37690tPTVVBQ4DoSgDj3k59ILVrY+qALF8r3GhUuRwUFUna2jdPddltFXw1APMnMzNTOnTu1Y8cO9e3bV88884zrSAACoF07aeRIaeZMWydUVhXac7R1a7K++srG6RITK/JKAOJRzZo1v/m6sLBQnuc5TAMgSFJTrZ+89JKUliZ161b6/7ZCJ0dnz3oaPZpiBODKnnrqKTVp0kR5eXmcHAGIqoQEWydUVFS2x454oVAocqkAxD3P8zZKanCZf/RUKBR6rcS/96SkKqFQ6FdXeJ1Rkkb9+5dVQqHQrWEPCwClQDkCEBWe590o6U1KDwC/Y281gIjxPK9liV/2k7TXVRYAKC1OjgBEjOd5r0pKk1Qs6YCkMaFQ6Au3qQDg6ihHAAAAJXBZDQAAoATKEQAAQAmUIwAAgBIoRwAAACVQjgAAAEqgHAEAAJRAOQIAACiBcgQAAFDCvwApSX+qa57AywAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.linalg import eig\n", + "\n", + "A = ((1, 2),\n", + " (2, 1))\n", + "A = np.array(A)\n", + "evals, evecs = eig(A)\n", + "evecs = evecs[:, 0], evecs[:, 1]\n", + "\n", + "fig, ax = plt.subplots(figsize=(10, 8))\n", + "# Set the axes through the origin\n", + "for spine in ['left', 'bottom']:\n", + " ax.spines[spine].set_position('zero')\n", + "for spine in ['right', 'top']:\n", + " ax.spines[spine].set_color('none')\n", + "ax.grid(alpha=0.4)\n", + "\n", + "xmin, xmax = -3, 3\n", + "ymin, ymax = -3, 3\n", + "ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))\n", + "\n", + "# Plot each eigenvector\n", + "for v in evecs:\n", + " ax.annotate('', xy=v, xytext=(0, 0),\n", + " arrowprops=dict(facecolor='blue',\n", + " shrink=0,\n", + " alpha=0.6,\n", + " width=0.5))\n", + "\n", + "# Plot the image of each eigenvector\n", + "for v in evecs:\n", + " v = A @ v\n", + " ax.annotate('', xy=v, xytext=(0, 0),\n", + " arrowprops=dict(facecolor='red',\n", + " shrink=0,\n", + " alpha=0.6,\n", + " width=0.5))\n", + "\n", + "# Plot the lines they run through\n", + "x = np.linspace(xmin, xmax, 3)\n", + "for v in evecs:\n", + " a = v[1] / v[0]\n", + " ax.plot(x, a * x, 'b-', lw=0.4)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The eigenvalue equation is equivalent to $ (A - \\lambda I) v = 0 $, and\n", + "this has a nonzero solution $ v $ only when the columns of $ A -\n", + "\\lambda I $ are linearly dependent\n", + "\n", + "This in turn is equivalent to stating that the determinant is zero\n", + "\n", + "Hence to find all eigenvalues, we can look for $ \\lambda $ such that the\n", + "determinant of $ A - \\lambda I $ is zero\n", + "\n", + "This problem can be expressed as one of solving for the roots of a polynomial\n", + "in $ \\lambda $ of degree $ n $\n", + "\n", + "This in turn implies the existence of $ n $ solutions in the complex\n", + "plane, although some might be repeated\n", + "\n", + "Some nice facts about the eigenvalues of a square matrix $ A $ are as follows\n", + "\n", + "1. The determinant of $ A $ equals the product of the eigenvalues \n", + "1. The trace of $ A $ (the sum of the elements on the principal diagonal) equals the sum of the eigenvalues \n", + "1. If $ A $ is symmetric, then all of its eigenvalues are real \n", + "1. If $ A $ is invertible and $ \\lambda_1, \\ldots, \\lambda_n $ are its eigenvalues, then the eigenvalues of $ A^{-1} $ are $ 1/\\lambda_1, \\ldots, 1/\\lambda_n $ \n", + "\n", + "\n", + "A corollary of the first statement is that a matrix is invertible if and only if all its eigenvalues are nonzero\n", + "\n", + "Using SciPy, we can solve for the eigenvalues and eigenvectors of a matrix as\n", + "follows" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 3.+0.j, -1.+0.j])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "A = ((1, 2),\n", + " (2, 1))\n", + "\n", + "A = np.array(A)\n", + "evals, evecs = eig(A)\n", + "evals" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.70710678, -0.70710678],\n", + " [ 0.70710678, 0.70710678]])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "evecs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the *columns* of `evecs` are the eigenvectors\n", + "\n", + "Since any scalar multiple of an eigenvector is an eigenvector with the same\n", + "eigenvalue (check it), the eig routine normalizes the length of each eigenvector\n", + "to one" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generalized Eigenvalues\n", + "\n", + "It is sometimes useful to consider the *generalized eigenvalue problem*, which, for given\n", + "matrices $ A $ and $ B $, seeks generalized eigenvalues\n", + "$ \\lambda $ and eigenvectors $ v $ such that\n", + "\n", + "$$\n", + "A v = \\lambda B v\n", + "$$\n", + "\n", + "This can be solved in SciPy via `scipy.linalg.eig(A, B)`\n", + "\n", + "Of course, if $ B $ is square and invertible, then we can treat the\n", + "generalized eigenvalue problem as an ordinary eigenvalue problem $ B^{-1}\n", + "A v = \\lambda v $, but this is not always the case" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Further Topics\n", + "\n", + "We round out our discussion by briefly mentioning several other important\n", + "topics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Series Expansions\n", + "\n", + "\n", + "\n", + "Recall the usual summation formula for a geometric progression, which states\n", + "that if $ |a| < 1 $, then $ \\sum_{k=0}^{\\infty} a^k = (1 - a)^{-1} $\n", + "\n", + "A generalization of this idea exists in the matrix setting\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Matrix Norms\n", + "\n", + "\n", + "\n", + "Let $ A $ be a square matrix, and let\n", + "\n", + "$$\n", + "\\| A \\| := \\max_{\\| x \\| = 1} \\| A x \\|\n", + "$$\n", + "\n", + "The norms on the right-hand side are ordinary vector norms, while the norm on\n", + "the left-hand side is a *matrix norm* — in this case, the so-called\n", + "*spectral norm*\n", + "\n", + "For example, for a square matrix $ S $, the condition $ \\| S \\| < 1 $ means that $ S $ is *contractive*, in the sense that it pulls all vectors towards the origin [2]\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Neumann’s Theorem\n", + "\n", + "\n", + "\n", + "Let $ A $ be a square matrix and let $ A^k := A A^{k-1} $ with $ A^1 := A $\n", + "\n", + "In other words, $ A^k $ is the $ k $-th power of $ A $\n", + "\n", + "Neumann’s theorem states the following: If $ \\| A^k \\| < 1 $ for some\n", + "$ k \\in \\mathbb{N} $, then $ I - A $ is invertible, and\n", + "\n", + "\n", + "\n", + "$$\n", + "(I - A)^{-1} = \\sum_{k=0}^{\\infty} A^k \\tag{4}\n", + "$$\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Spectral Radius\n", + "\n", + "\n", + "\n", + "A result known as Gelfand’s formula tells us that, for any square matrix $ A $,\n", + "\n", + "$$\n", + "\\rho(A) = \\lim_{k \\to \\infty} \\| A^k \\|^{1/k}\n", + "$$\n", + "\n", + "Here $ \\rho(A) $ is the *spectral radius*, defined as $ \\max_i |\\lambda_i| $, where $ \\{\\lambda_i\\}_i $ is the set of eigenvalues of $ A $\n", + "\n", + "As a consequence of Gelfand’s formula, if all eigenvalues are strictly less than one in modulus,\n", + "there exists a $ k $ with $ \\| A^k \\| < 1 $\n", + "\n", + "In which case [(4)](#equation-la-neumann) is valid" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Positive Definite Matrices\n", + "\n", + "\n", + "\n", + "Let $ A $ be a symmetric $ n \\times n $ matrix\n", + "\n", + "We say that $ A $ is\n", + "\n", + "1. *positive definite* if $ x' A x > 0 $ for every $ x \\in \\mathbb R ^n \\setminus \\{0\\} $ \n", + "1. *positive semi-definite* or *nonnegative definite* if $ x' A x \\geq 0 $ for every $ x \\in \\mathbb R ^n $ \n", + "\n", + "\n", + "Analogous definitions exist for negative definite and negative semi-definite matrices\n", + "\n", + "It is notable that if $ A $ is positive definite, then all of its eigenvalues\n", + "are strictly positive, and hence $ A $ is invertible (with positive\n", + "definite inverse)\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Differentiating Linear and Quadratic forms\n", + "\n", + "\n", + "\n", + "The following formulas are useful in many economic contexts. Let\n", + "\n", + "- $ z, x $ and $ a $ all be $ n \\times 1 $ vectors \n", + "- $ A $ be an $ n \\times n $ matrix \n", + "- $ B $ be an $ m \\times n $ matrix and $ y $ be an $ m \\times 1 $ vector \n", + "\n", + "\n", + "Then\n", + "\n", + "1. $ \\frac{\\partial a' x}{\\partial x} = a $ \n", + "1. $ \\frac{\\partial A x}{\\partial x} = A' $ \n", + "1. $ \\frac{\\partial x'A x}{\\partial x} = (A + A') x $ \n", + "1. $ \\frac{\\partial y'B z}{\\partial y} = B z $ \n", + "1. $ \\frac{\\partial y'B z}{\\partial B} = y z' $ \n", + "\n", + "\n", + "Exercise 1 below asks you to apply these formulas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Further Reading\n", + "\n", + "The documentation of the `scipy.linalg` submodule can be found [here](http://docs.scipy.org/doc/scipy/reference/linalg.html)\n", + "\n", + "Chapters 2 and 3 of the [Econometric Theory](http://www.johnstachurski.net/emet.html) contains\n", + "a discussion of linear algebra along the same lines as above, with solved exercises\n", + "\n", + "If you don’t mind a slightly abstract approach, a nice intermediate-level text on linear algebra\n", + "is [[Janich94]](https://lectures.quantecon.org/py/zreferences.html#janich1994)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercises" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 1\n", + "\n", + "Let $ x $ be a given $ n \\times 1 $ vector and consider the problem\n", + "\n", + "$$\n", + "v(x) = \\max_{y,u} \\left\\{ - y'P y - u' Q u \\right\\}\n", + "$$\n", + "\n", + "subject to the linear constraint\n", + "\n", + "$$\n", + "y = A x + B u\n", + "$$\n", + "\n", + "Here\n", + "\n", + "- $ P $ is an $ n \\times n $ matrix and $ Q $ is an $ m \\times m $ matrix \n", + "- $ A $ is an $ n \\times n $ matrix and $ B $ is an $ n \\times m $ matrix \n", + "- both $ P $ and $ Q $ are symmetric and positive semidefinite \n", + "\n", + "\n", + "(What must the dimensions of $ y $ and $ u $ be to make this a well-posed problem?)\n", + "\n", + "One way to solve the problem is to form the Lagrangian\n", + "\n", + "$$\n", + "\\mathcal L = - y' P y - u' Q u + \\lambda' \\left[A x + B u - y\\right]\n", + "$$\n", + "\n", + "where $ \\lambda $ is an $ n \\times 1 $ vector of Lagrange multipliers\n", + "\n", + "Try applying the formulas given above for differentiating quadratic and linear forms to obtain the first-order conditions for maximizing $ \\mathcal L $ with respect to $ y, u $ and minimizing it with respect to $ \\lambda $\n", + "\n", + "Show that these conditions imply that\n", + "\n", + "1. $ \\lambda = - 2 P y $ \n", + "1. The optimizing choice of $ u $ satisfies $ u = - (Q + B' P B)^{-1} B' P A x $ \n", + "1. The function $ v $ satisfies $ v(x) = - x' \\tilde P x $ where $ \\tilde P = A' P A - A'P B (Q + B'P B)^{-1} B' P A $ \n", + "\n", + "\n", + "As we will see, in economic contexts Lagrange multipliers often are shadow prices\n", + "\n", + ">**Note**\n", + ">\n", + ">If we don’t care about the Lagrange multipliers, we can substitute the constraint into the objective function, and then just maximize $ -(Ax + Bu)'P (Ax + Bu) - u' Q u $ with respect to $ u $. You can verify that this leads to the same maximizer." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solutions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Solution to Exercise 1\n", + "\n", + "We have an optimization problem:\n", + "\n", + "$$\n", + "v(x) = \\max_{y,u} \\{ -y'Py - u'Qu \\}\n", + "$$\n", + "\n", + "s.t.\n", + "\n", + "$$\n", + "y = Ax + Bu\n", + "$$\n", + "\n", + "with primitives\n", + "\n", + "- $ P $ be a symmetric and positive semidefinite $ n \\times n $\n", + " matrix \n", + "- $ Q $ be a symmetric and positive semidefinite $ m \\times m $\n", + " matrix \n", + "- $ A $ an $ n \\times n $ matrix \n", + "- $ B $ an $ n \\times m $ matrix \n", + "\n", + "\n", + "The associated Lagrangian is :\n", + "\n", + "$$\n", + "L = -y'Py - u'Qu + \\lambda' \\lbrack Ax + Bu - y \\rbrack\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 1.\n", + "\n", + "Differentiating Lagrangian equation w.r.t y and setting its derivative\n", + "equal to zero yields\n", + "\n", + "$$\n", + "\\frac{ \\partial L}{\\partial y} = - (P + P') y - \\lambda = - 2 P y - \\lambda = 0 \\:,\n", + "$$\n", + "\n", + "since P is symmetric\n", + "\n", + "Accordingly, the first-order condition for maximizing L w.r.t. y implies\n", + "\n", + "$$\n", + "\\lambda = -2 Py \\:\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.\n", + "\n", + "Differentiating Lagrangian equation w.r.t. u and setting its derivative\n", + "equal to zero yields\n", + "\n", + "$$\n", + "\\frac{ \\partial L}{\\partial u} = - (Q + Q') u - B'\\lambda = - 2Qu + B'\\lambda = 0 \\:\n", + "$$\n", + "\n", + "Substituting $ \\lambda = -2 P y $ gives\n", + "\n", + "$$\n", + "Qu + B'Py = 0 \\:\n", + "$$\n", + "\n", + "Substituting the linear constraint $ y = Ax + Bu $ into above\n", + "equation gives\n", + "\n", + "$$\n", + "Qu + B'P(Ax + Bu) = 0\n", + "$$\n", + "\n", + "$$\n", + "(Q + B'PB)u + B'PAx = 0\n", + "$$\n", + "\n", + "which is the first-order condition for maximizing L w.r.t. u\n", + "\n", + "Thus, the optimal choice of u must satisfy\n", + "\n", + "$$\n", + "u = -(Q + B'PB)^{-1}B'PAx \\:,\n", + "$$\n", + "\n", + "which follows from the definition of the first-order conditions for\n", + "Lagrangian equation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 3.\n", + "\n", + "Rewriting our problem by substituting the constraint into the objective\n", + "function, we get\n", + "\n", + "$$\n", + "v(x) = \\max_{u} \\{ -(Ax+ Bu)'P(Ax+Bu) - u'Qu \\} \\:\n", + "$$\n", + "\n", + "Since we know the optimal choice of u satisfies $ u = -(Q +\n", + "B’PB)^{-1}B’PAx $, then\n", + "\n", + "$$\n", + "v(x) = -(Ax+ B u)'P(Ax+B u) - u'Q u \\,\\,\\,\\, with \\,\\,\\,\\, u = -(Q + B'PB)^{-1}B'PAx\n", + "$$\n", + "\n", + "To evaluate the function\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + "v(x) &= -(Ax+ B u)'P(Ax+Bu) - u'Q u \\\\\n", + "&= -(x'A' + u'B')P(Ax+Bu) - u'Q u \\\\\n", + "&= - x'A'PAx - u'B'PAx - x'A'PBu - u'B'PBu - u'Qu \\\\\n", + "&= - x'A'PAx - 2u'B'PAx - u'(Q + B'PB) u\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "For simplicity, denote by $ S := (Q + B'PB)^{-1} B'PA $, then $ u =\n", + "-Sx$\n", + "\n", + "Regarding the second term $ - 2u'B'PAx $,\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + "-2u'B'PAx &= -2 x'S'B'PAx \\\\\n", + "& = 2 x'A'PB( Q + B'PB)^{-1} B'PAx\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "Notice that the term $ (Q + B'PB)^{-1} $ is symmetric as both P and Q\n", + "are symmetric\n", + "\n", + "Regarding the third term $ - u'(Q + B'PB) u $,\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + "-u'(Q + B'PB) u &= - x'S' (Q + B'PB)Sx \\\\\n", + "&= -x'A'PB(Q + B'PB)^{-1}B'PAx\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "Hence, the summation of second and third terms is\n", + "$ x'A'PB(Q + B'PB)^{-1}B'PAx $\n", + "\n", + "This implies that\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + " v(x) &= - x'A'PAx - 2u'B'PAx - u'(Q + B'PB) u\\\\\n", + " &= - x'A'PAx + x'A'PB(Q + B'PB)^{-1}B'PAx \\\\\n", + " &= -x'[A'PA - A'PB(Q + B'PB)^{-1}B'PA] x\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "Therefore, the solution to the optimization problem\n", + "$ v(x) = -x' \\tilde{P}x $ follows the above result by denoting\n", + "$ \\tilde{P} := A'PA - A'PB(Q + B'PB)^{-1}B'PA $" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Footnotes**\n", + "\n", + "

[1] Although there is a specialized matrix data type defined in NumPy, it’s more standard to work with ordinary NumPy arrays. See [this discussion](https://lectures.quantecon.org/py/numpy.html#numpy-matrix-multiplication).\n", + "\n", + "

[2] Suppose that $ \\|S \\| < 1 $. Take any nonzero vector $ x $, and let $ r := \\|x\\| $. We have $ \\| Sx \\| = r \\| S (x/r) \\| \\leq r \\| S \\| < r = \\| x\\| $. Hence every point is pulled towards the origin." + ] + } + ], + "metadata": { + "filename": "linear_algebra.rst", + "kernelspec": { + "display_name": "Python", + "language": "python3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "title": "Linear Algebra" + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/0-pre-requisitos/2-math/orth_proj.ipynb b/0-pre-requisitos/2-math/orth_proj.ipynb new file mode 100755 index 0000000..b147a81 --- /dev/null +++ b/0-pre-requisitos/2-math/orth_proj.ipynb @@ -0,0 +1,1141 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Orthogonal Projections and Their Applications\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents\n", + "\n", + "- [Orthogonal Projections and Their Applications](#Orthogonal-Projections-and-Their-Applications) \n", + " - [Overview](#Overview) \n", + " - [Key Definitions](#Key-Definitions) \n", + " - [The Orthogonal Projection Theorem](#The-Orthogonal-Projection-Theorem) \n", + " - [Orthonormal Basis](#Orthonormal-Basis) \n", + " - [Projection Using Matrix Algebra](#Projection-Using-Matrix-Algebra) \n", + " - [Least Squares Regression](#Least-Squares-Regression) \n", + " - [Orthogonalization and Decomposition](#Orthogonalization-and-Decomposition) \n", + " - [Exercises](#Exercises) \n", + " - [Solutions](#Solutions) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview\n", + "\n", + "Orthogonal projection is a cornerstone of vector space methods, with many diverse applications\n", + "\n", + "These include, but are not limited to,\n", + "\n", + "- Least squares projection, also known as linear regression \n", + "- Conditional expectations for multivariate normal (Gaussian) distributions \n", + "- Gram–Schmidt orthogonalization \n", + "- QR decomposition \n", + "- Orthogonal polynomials \n", + "- etc \n", + "\n", + "\n", + "In this lecture we focus on\n", + "\n", + "- key ideas \n", + "- least squares regression " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Further Reading\n", + "\n", + "For background and foundational concepts, see our lecture [on linear algebra](https://lectures.quantecon.org/py/linear_algebra.html)\n", + "\n", + "For more proofs and greater theoretical detail, see [A Primer in Econometric Theory](http://www.johnstachurski.net/emet.html)\n", + "\n", + "For a complete set of proofs in a general setting, see, for example, [[Rom05]](https://lectures.quantecon.org/py/zreferences.html#roman2005)\n", + "\n", + "For an advanced treatment of projection in the context of least squares prediction, see [this book chapter](http://www.tomsargent.com/books/TOMchpt.2.pdf)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Key Definitions\n", + "\n", + "Assume $ x, z \\in \\mathbb R^n $\n", + "\n", + "Define $ \\langle x, z\\rangle = \\sum_i x_i z_i $\n", + "\n", + "Recall $ \\|x \\|^2 = \\langle x, x \\rangle $\n", + "\n", + "The **law of cosines** states that $ \\langle x, z \\rangle = \\| x \\| \\| z \\| \\cos(\\theta) $ where $ \\theta $ is the angle between the vectors $ x $ and $ z $\n", + "\n", + "When $ \\langle x, z\\rangle = 0 $, then $ \\cos(\\theta) = 0 $ and $ x $ and $ z $ are said to be **orthogonal** and we write $ x \\perp z $\n", + "\n", + "\n", + "\n", + " \n", + "For a linear subspace $ S \\subset \\mathbb R^n $, we call $ x \\in \\mathbb R^n $ **orthogonal to** $ S $ if $ x \\perp z $ for all $ z \\in S $, and write $ x \\perp S $\n", + "\n", + "\n", + "\n", + " \n", + "The **orthogonal complement** of linear subspace $ S \\subset \\mathbb R^n $ is the set $ S^{\\perp} := \\{x \\in \\mathbb R^n \\,:\\, x \\perp S\\} $\n", + "\n", + "\n", + "\n", + " \n", + "$ S^\\perp $ is a linear subspace of $ \\mathbb R^n $\n", + "\n", + "- To see this, fix $ x, y \\in S^{\\perp} $ and $ \\alpha, \\beta \\in \\mathbb R $ \n", + "- Observe that if $ z \\in S $, then \n", + "\n", + "\n", + "$$\n", + "\\langle \\alpha x + \\beta y, z \\rangle\n", + "= \\alpha \\langle x, z \\rangle + \\beta \\langle y, z \\rangle\n", + " = \\alpha \\times 0 + \\beta \\times 0 = 0\n", + "$$\n", + "\n", + "- Hence $ \\alpha x + \\beta y \\in S^{\\perp} $, as was to be shown \n", + "\n", + "\n", + "A set of vectors $ \\{x_1, \\ldots, x_k\\} \\subset \\mathbb R^n $ is called an **orthogonal set** if $ x_i \\perp x_j $ whenever $ i \\not= j $\n", + "\n", + "If $ \\{x_1, \\ldots, x_k\\} $ is an orthogonal set, then the **Pythagorean Law** states that\n", + "\n", + "$$\n", + "\\| x_1 + \\cdots + x_k \\|^2\n", + "= \\| x_1 \\|^2 + \\cdots + \\| x_k \\|^2\n", + "$$\n", + "\n", + "For example, when $ k=2 $, $ x_1 \\perp x_2 $ implies\n", + "\n", + "$$\n", + "\\| x_1 + x_2 \\|^2\n", + " = \\langle x_1 + x_2, x_1 + x_2 \\rangle\n", + " = \\langle x_1, x_1 \\rangle + 2 \\langle x_2, x_1 \\rangle + \\langle x_2, x_2 \\rangle\n", + " = \\| x_1 \\|^2 + \\| x_2 \\|^2\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Linear Independence vs Orthogonality\n", + "\n", + "If $ X \\subset \\mathbb R^n $ is an orthogonal set and $ 0 \\notin X $, then $ X $ is linearly independent\n", + "\n", + "Proving this is a nice exercise\n", + "\n", + "While the converse is not true, a kind of partial converse holds, as we’ll [see below](#gram-schmidt)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The Orthogonal Projection Theorem\n", + "\n", + "What vector within a linear subspace of $ \\mathbb R^n $ best approximates a given vector in $ \\mathbb R^n $?\n", + "\n", + "The next theorem provides answers this question\n", + "\n", + "**Theorem** (OPT) Given $ y \\in \\mathbb R^n $ and linear subspace $ S \\subset \\mathbb R^n $,\n", + "there exists a unique solution to the minimization problem\n", + "\n", + "$$\n", + "\\hat y := \\argmin_{z \\in S} \\|y - z\\|\n", + "$$\n", + "\n", + "The minimizer $ \\hat y $ is the unique vector in $ \\mathbb R^n $ that satisfies\n", + "\n", + "- $ \\hat y \\in S $ \n", + "- $ y - \\hat y \\perp S $ \n", + "\n", + "\n", + "The vector $ \\hat y $ is called the **orthogonal projection** of $ y $ onto $ S $\n", + "\n", + "The next figure provides some intuition\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Proof of sufficiency\n", + "\n", + "We’ll omit the full proof.\n", + "\n", + "But we will prove sufficiency of the asserted conditions\n", + "\n", + "To this end, let $ y \\in \\mathbb R^n $ and let $ S $ be a linear subspace of $ \\mathbb R^n $\n", + "\n", + "Let $ \\hat y $ be a vector in $ \\mathbb R^n $ such that $ \\hat y \\in S $ and $ y - \\hat y \\perp S $\n", + "\n", + "Let $ z $ be any other point in $ S $ and use the fact that $ S $ is a linear subspace to deduce\n", + "\n", + "$$\n", + "\\| y - z \\|^2\n", + "= \\| (y - \\hat y) + (\\hat y - z) \\|^2\n", + "= \\| y - \\hat y \\|^2 + \\| \\hat y - z \\|^2\n", + "$$\n", + "\n", + "Hence $ \\| y - z \\| \\geq \\| y - \\hat y \\| $, which completes the proof" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Orthogonal Projection as a Mapping\n", + "\n", + "For a linear space $ Y $ and a fixed linear subspace $ S $, we have a functional relationship\n", + "\n", + "$$\n", + "y \\in Y\\; \\mapsto \\text{ its orthogonal projection } \\hat y \\in S\n", + "$$\n", + "\n", + "By the OPT, this is a well-defined mapping or *operator* from $ \\mathbb R^n $ to $ \\mathbb R^n $\n", + "\n", + "In what follows we denote this operator by a matrix $ P $\n", + "\n", + "- $ P y $ represents the projection $ \\hat y $ \n", + "- This is sometimes expressed as $ \\hat E_S y = P y $, where $ \\hat E $ denotes a **wide-sense expectations operator** and the subscript $ S $ indicates that we are projecting $ y $ onto the linear subspace $ S $ \n", + "\n", + "\n", + "The operator $ P $ is called the **orthogonal projection mapping onto** $ S $\n", + "\n", + "\n", + "\n", + " \n", + "It is immediate from the OPT that for any $ y \\in \\mathbb R^n $\n", + "\n", + "1. $ P y \\in S $ and \n", + "1. $ y - P y \\perp S $ \n", + "\n", + "\n", + "From this we can deduce additional useful properties, such as\n", + "\n", + "1. $ \\| y \\|^2 = \\| P y \\|^2 + \\| y - P y \\|^2 $ and \n", + "1. $ \\| P y \\| \\leq \\| y \\| $ \n", + "\n", + "\n", + "For example, to prove 1, observe that $ y = P y + y - P y $ and apply the Pythagorean law" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Orthogonal Complement\n", + "\n", + "Let $ S \\subset \\mathbb R^n $.\n", + "\n", + "The **orthogonal complement** of $ S $ is the linear subspace $ S^{\\perp} $ that satisfies\n", + "$ x_1 \\perp x_2 $ for every $ x_1 \\in S $ and $ x_2 \\in S^{\\perp} $\n", + "\n", + "Let $ Y $ be a linear space with linear subspace $ S $ and its orthogonal complement $ S^{\\perp} $\n", + "\n", + "We write\n", + "\n", + "$$\n", + "Y = S \\oplus S^{\\perp}\n", + "$$\n", + "\n", + "to indicate that for every $ y \\in Y $ there is unique $ x_1 \\in S $ and a unique $ x_2 \\in S^{\\perp} $\n", + "such that $ y = x_1 + x_2 $\n", + "\n", + "Moreover, $ x_1 = \\hat E_S y $ and $ x_2 = y - \\hat E_S y $\n", + "\n", + "This amounts to another version of the OPT:\n", + "\n", + "**Theorem**. If $ S $ is a linear subspace of $ \\mathbb R^n $, $ \\hat E_S y = P y $ and $ \\hat E_{S^{\\perp}} y = M y $, then\n", + "\n", + "$$\n", + "P y \\perp M y\n", + " \\quad \\text{and} \\quad\n", + "y = P y + M y\n", + " \\quad \\text{for all } \\, y \\in \\mathbb R^n\n", + "$$\n", + "\n", + "The next figure illustrates\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Orthonormal Basis\n", + "\n", + "An orthogonal set of vectors $ O \\subset \\mathbb R^n $ is called an **orthonormal set** if $ \\| u \\| = 1 $ for all $ u \\in O $\n", + "\n", + "Let $ S $ be a linear subspace of $ \\mathbb R^n $ and let $ O \\subset S $\n", + "\n", + "If $ O $ is orthonormal and $ \\mathop{\\mathrm{span}} O = S $, then $ O $ is called an **orthonormal basis** of $ S $\n", + "\n", + "$ O $ is necessarily a basis of $ S $ (being independent by orthogonality and the fact that no element is the zero vector)\n", + "\n", + "One example of an orthonormal set is the canonical basis $ \\{e_1, \\ldots, e_n\\} $\n", + "that forms an orthonormal basis of $ \\mathbb R^n $, where $ e_i $ is the $ i $ th unit vector\n", + "\n", + "If $ \\{u_1, \\ldots, u_k\\} $ is an orthonormal basis of linear subspace $ S $, then\n", + "\n", + "$$\n", + "x = \\sum_{i=1}^k \\langle x, u_i \\rangle u_i\n", + "\\quad \\text{for all} \\quad\n", + "x \\in S\n", + "$$\n", + "\n", + "To see this, observe that since $ x \\in \\mathop{\\mathrm{span}}\\{u_1, \\ldots, u_k\\} $, we can find\n", + "scalars $ \\alpha_1, \\ldots, \\alpha_k $ that verify\n", + "\n", + "\n", + "\n", + "$$\n", + "x = \\sum_{j=1}^k \\alpha_j u_j \\tag{1}\n", + "$$\n", + "\n", + "Taking the inner product with respect to $ u_i $ gives\n", + "\n", + "$$\n", + "\\langle x, u_i \\rangle\n", + "= \\sum_{j=1}^k \\alpha_j \\langle u_j, u_i \\rangle\n", + "= \\alpha_i\n", + "$$\n", + "\n", + "Combining this result with [(1)](#equation-pob) verifies the claim" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Projection onto an Orthonormal Basis\n", + "\n", + "When the subspace onto which are projecting is orthonormal, computing the projection simplifies:\n", + "\n", + "**Theorem** If $ \\{u_1, \\ldots, u_k\\} $ is an orthonormal basis for $ S $, then\n", + "\n", + "\n", + "\n", + "$$\n", + "P y = \\sum_{i=1}^k \\langle y, u_i \\rangle u_i,\n", + "\\quad\n", + "\\forall \\; y \\in \\mathbb R^n \\tag{2}\n", + "$$\n", + "\n", + "Proof: Fix $ y \\in \\mathbb R^n $ and let $ P y $ be defined as in [(2)](#equation-exp-for-op)\n", + "\n", + "Clearly, $ P y \\in S $\n", + "\n", + "We claim that $ y - P y \\perp S $ also holds\n", + "\n", + "It sufficies to show that $ y - P y \\perp $ any basis vector $ u_i $ (why?)\n", + "\n", + "This is true because\n", + "\n", + "$$\n", + "\\left\\langle y - \\sum_{i=1}^k \\langle y, u_i \\rangle u_i, u_j \\right\\rangle\n", + "= \\langle y, u_j \\rangle - \\sum_{i=1}^k \\langle y, u_i \\rangle\n", + "\\langle u_i, u_j \\rangle = 0\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Projection Using Matrix Algebra\n", + "\n", + "Let $ S $ be a linear subspace of $ \\mathbb R^n $ and let $ y \\in \\mathbb R^n $\n", + "\n", + "We want to compute the matrix $ P $ that verifies\n", + "\n", + "$$\n", + "\\hat E_S y = P y\n", + "$$\n", + "\n", + "Evidently $ Py $ is a linear function from $ y \\in \\mathbb R^n $ to $ P y \\in \\mathbb R^n $\n", + "\n", + "This reference is useful [https://en.wikipedia.org/wiki/Linear_map#Matrices](https://en.wikipedia.org/wiki/Linear_map#Matrices)\n", + "\n", + "**Theorem.** Let the columns of $ n \\times k $ matrix $ X $ form a basis of $ S $. Then\n", + "\n", + "$$\n", + "P = X (X'X)^{-1} X'\n", + "$$\n", + "\n", + "Proof: Given arbitrary $ y \\in \\mathbb R^n $ and $ P = X (X'X)^{-1} X' $, our claim is that\n", + "\n", + "1. $ P y \\in S $, and \n", + "1. $ y - P y \\perp S $ \n", + "\n", + "\n", + "Claim 1 is true because\n", + "\n", + "$$\n", + "P y = X (X' X)^{-1} X' y = X a\n", + "\\quad \\text{when} \\quad\n", + "a := (X' X)^{-1} X' y\n", + "$$\n", + "\n", + "An expression of the form $ X a $ is precisely a linear combination of the\n", + "columns of $ X $, and hence an element of $ S $\n", + "\n", + "Claim 2 is equivalent to the statement\n", + "\n", + "$$\n", + "y - X (X' X)^{-1} X' y \\, \\perp\\, X b\n", + "\\quad \\text{for all} \\quad\n", + "b \\in \\mathbb R^K\n", + "$$\n", + "\n", + "This is true: If $ b \\in \\mathbb R^K $, then\n", + "\n", + "$$\n", + "(X b)' [y - X (X' X)^{-1} X'\n", + "y]\n", + "= b' [X' y - X' y]\n", + "= 0\n", + "$$\n", + "\n", + "The proof is now complete" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Starting with $ X $\n", + "\n", + "It is common in applications to start with $ n \\times k $ matrix $ X $ with linearly independent columns and let\n", + "\n", + "$$\n", + "S := \\mathop{\\mathrm{span}} X := \\mathop{\\mathrm{span}} \\{\\col_1 X, \\ldots, \\col_k X \\}\n", + "$$\n", + "\n", + "Then the columns of $ X $ form a basis of $ S $\n", + "\n", + "From the preceding theorem, $ P = X (X' X)^{-1} X' y $ projects $ y $ onto $ S $\n", + "\n", + "In this context, $ P $ is often called the **projection matrix**\n", + "\n", + "- The matrix $ M = I - P $ satisfies $ M y = \\hat E_{S^{\\perp}} y $ and is sometimes called the **annihilator matrix** " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The Orthonormal Case\n", + "\n", + "Suppose that $ U $ is $ n \\times k $ with orthonormal columns\n", + "\n", + "Let $ u_i := \\mathop{\\mathrm{col}} U_i $ for each $ i $, let $ S := \\mathop{\\mathrm{span}} U $ and let $ y \\in \\mathbb R^n $\n", + "\n", + "We know that the projection of $ y $ onto $ S $ is\n", + "\n", + "$$\n", + "P y = U (U' U)^{-1} U' y\n", + "$$\n", + "\n", + "Since $ U $ has orthonormal columns, we have $ U' U = I $\n", + "\n", + "Hence\n", + "\n", + "$$\n", + "P y\n", + "= U U' y\n", + "= \\sum_{i=1}^k \\langle u_i, y \\rangle u_i\n", + "$$\n", + "\n", + "We have recovered our earlier result about projecting onto the span of an orthonormal\n", + "basis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Application: Overdetermined Systems of Equations\n", + "\n", + "Let $ y \\in \\mathbb R^n $ and let $ X $ is $ n \\times k $ with linearly independent columns\n", + "\n", + "Given $ X $ and $ y $, we seek $ b \\in \\mathbb R^k $ satisfying the system of linear equations $ X b = y $\n", + "\n", + "If $ n > k $ (more equations than unknowns), then $ b $ is said to be **overdetermined**\n", + "\n", + "Intuitively, we may not be able find a $ b $ that satisfies all $ n $ equations\n", + "\n", + "The best approach here is to\n", + "\n", + "- Accept that an exact solution may not exist \n", + "- Look instead for an approximate solution \n", + "\n", + "\n", + "By approximate solution, we mean a $ b \\in \\mathbb R^k $ such that $ X b $ is as close to $ y $ as possible\n", + "\n", + "The next theorem shows that the solution is well defined and unique\n", + "\n", + "The proof uses the OPT\n", + "\n", + "**Theorem** The unique minimizer of $ \\| y - X b \\| $ over $ b \\in \\mathbb R^K $ is\n", + "\n", + "$$\n", + "\\hat \\beta := (X' X)^{-1} X' y\n", + "$$\n", + "\n", + "Proof: Note that\n", + "\n", + "$$\n", + "X \\hat \\beta = X (X' X)^{-1} X' y =\n", + "P y\n", + "$$\n", + "\n", + "Since $ P y $ is the orthogonal projection onto $ \\mathop{\\mathrm{span}}(X) $ we have\n", + "\n", + "$$\n", + "\\| y - P y \\|\n", + "\\leq \\| y - z \\| \\text{ for any } z \\in \\mathop{\\mathrm{span}}(X)\n", + "$$\n", + "\n", + "Because $ Xb \\in \\mathop{\\mathrm{span}}(X) $\n", + "\n", + "$$\n", + "\\| y - X \\hat \\beta \\|\n", + "\\leq \\| y - X b \\| \\text{ for any } b \\in \\mathbb R^K\n", + "$$\n", + "\n", + "This is what we aimed to show" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Least Squares Regression\n", + "\n", + "Let’s apply the theory of orthogonal projection to least squares regression\n", + "\n", + "This approach provides insights about many geometric properties of linear regression\n", + "\n", + "We treat only some examples" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Squared risk measures\n", + "\n", + "Given pairs $ (x, y) \\in \\mathbb R^K \\times \\mathbb R $, consider choosing $ f \\colon \\mathbb R^K \\to \\mathbb R $ to minimize\n", + "the **risk**\n", + "\n", + "$$\n", + "R(f) := \\mathbb{E}\\, [(y - f(x))^2]\n", + "$$\n", + "\n", + "If probabilities and hence $ \\mathbb{E}\\, $ are unknown, we cannot solve this problem directly\n", + "\n", + "However, if a sample is available, we can estimate the risk with the **empirical risk**:\n", + "\n", + "$$\n", + "\\min_{f \\in \\mathcal{F}} \\frac{1}{N} \\sum_{n=1}^N (y_n - f(x_n))^2\n", + "$$\n", + "\n", + "Minimizing this expression is called **empirical risk minimization**\n", + "\n", + "The set $ \\mathcal{F} $ is sometimes called the hypothesis space\n", + "\n", + "The theory of statistical learning tells us that to prevent overfitting we should take the set $ \\mathcal{F} $ to be relatively simple\n", + "\n", + "If we let $ \\mathcal{F} $ be the class of linear functions $ 1/N $, the problem is\n", + "\n", + "$$\n", + "\\min_{b \\in \\mathbb R^K} \\;\n", + "\\sum_{n=1}^N (y_n - b' x_n)^2\n", + "$$\n", + "\n", + "This is the sample **linear least squares problem**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Solution\n", + "\n", + "Define the matrices\n", + "\n", + "$$\n", + "y :=\n", + "\\left(\n", + "\\begin{array}{c}\n", + " y_1 \\\\\n", + " y_2 \\\\\n", + " \\vdots \\\\\n", + " y_N\n", + "\\end{array}\n", + "\\right),\n", + "\\quad\n", + "x_n :=\n", + "\\left(\n", + "\\begin{array}{c}\n", + " x_{n1} \\\\\n", + " x_{n2} \\\\\n", + " \\vdots \\\\\n", + " x_{nK}\n", + "\\end{array}\n", + "\\right)\n", + "= \\text{ $n$-th obs on all regressors}\n", + "$$\n", + "\n", + "and\n", + "\n", + "$$\n", + "X :=\n", + "\\left(\n", + "\\begin{array}{c}\n", + " x_1' \\\\\n", + " x_2' \\\\\n", + " \\vdots \\\\\n", + " x_N'\n", + "\\end{array}\n", + "\\right)\n", + ":=:\n", + "\\left(\n", + "\\begin{array}{cccc}\n", + " x_{11} & x_{12} & \\cdots & x_{1K} \\\\\n", + " x_{21} & x_{22} & \\cdots & x_{2K} \\\\\n", + " \\vdots & \\vdots & & \\vdots \\\\\n", + " x_{N1} & x_{N2} & \\cdots & x_{NK}\n", + "\\end{array}\n", + "\\right)\n", + "$$\n", + "\n", + "We assume throughout that $ N > K $ and $ X $ is full column rank\n", + "\n", + "If you work through the algebra, you will be able to verify that $ \\| y - X b \\|^2 = \\sum_{n=1}^N (y_n - b' x_n)^2 $\n", + "\n", + "Since monotone transforms don’t affect minimizers, we have\n", + "\n", + "$$\n", + "\\argmin_{b \\in \\mathbb R^K} \\sum_{n=1}^N (y_n - b' x_n)^2\n", + "= \\argmin_{b \\in \\mathbb R^K} \\| y - X b \\|\n", + "$$\n", + "\n", + "By our results about overdetermined linear systems of equations, the solution is\n", + "\n", + "$$\n", + "\\hat \\beta := (X' X)^{-1} X' y\n", + "$$\n", + "\n", + "Let $ P $ and $ M $ be the projection and annihilator associated with $ X $:\n", + "\n", + "$$\n", + "P := X (X' X)^{-1} X'\n", + "\\quad \\text{and} \\quad\n", + "M := I - P\n", + "$$\n", + "\n", + "The **vector of fitted values** is\n", + "\n", + "$$\n", + "\\hat y := X \\hat \\beta = P y\n", + "$$\n", + "\n", + "The **vector of residuals** is\n", + "\n", + "$$\n", + "\\hat u := y - \\hat y = y - P y = M y\n", + "$$\n", + "\n", + "Here are some more standard definitions:\n", + "\n", + "- The **total sum of squares** is $ := \\| y \\|^2 $ \n", + "- The **sum of squared residuals** is $ := \\| \\hat u \\|^2 $ \n", + "- The **explained sum of squares** is $ := \\| \\hat y \\|^2 $ \n", + "\n", + "\n", + "> TSS = ESS + SSR\n", + "\n", + "\n", + "We can prove this easily using the OPT\n", + "\n", + "From the OPT we have $ y = \\hat y + \\hat u $ and $ \\hat u \\perp \\hat y $\n", + "\n", + "Applying the Pythagorean law completes the proof" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Orthogonalization and Decomposition\n", + "\n", + "Let’s return to the connection between linear independence and orthogonality touched on above\n", + "\n", + "A result of much interest is a famous algorithm for constructing orthonormal sets from linearly independent sets\n", + "\n", + "The next section gives details\n", + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Gram-Schmidt Orthogonalization\n", + "\n", + "**Theorem** For each linearly independent set $ \\{x_1, \\ldots, x_k\\} \\subset \\mathbb R^n $, there exists an\n", + "orthonormal set $ \\{u_1, \\ldots, u_k\\} $ with\n", + "\n", + "$$\n", + "\\mathop{\\mathrm{span}} \\{x_1, \\ldots, x_i\\} =\n", + "\\mathop{\\mathrm{span}} \\{u_1, \\ldots, u_i\\}\n", + "\\quad \\text{for} \\quad\n", + "i = 1, \\ldots, k\n", + "$$\n", + "\n", + "The **Gram-Schmidt orthogonalization** procedure constructs an orthogonal set $ \\{ u_1, u_2, \\ldots, u_n\\} $\n", + "\n", + "One description of this procedure is as follows:\n", + "\n", + "- For $ i = 1, \\ldots, k $, form $ S_i := \\mathop{\\mathrm{span}}\\{x_1, \\ldots, x_i\\} $ and $ S_i^{\\perp} $ \n", + "- Set $ v_1 = x_1 $ \n", + "- For $ i \\geq 2 $ set $ v_i := \\hat E_{S_{i-1}^{\\perp}} x_i $ and $ u_i := v_i / \\| v_i \\| $ \n", + "\n", + "\n", + "The sequence $ u_1, \\ldots, u_k $ has the stated properties\n", + "\n", + "A Gram-Schmidt orthogonalization construction is a key idea behind the Kalman filter described in [A First Look at the Kalman filter](https://lectures.quantecon.org/py/kalman.html)\n", + "\n", + "In some exercises below you are asked to implement this algorithm and test it using projection" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### QR Decomposition\n", + "\n", + "The following result uses the preceding algorithm to produce a useful decomposition\n", + "\n", + "**Theorem** If $ X $ is $ n \\times k $ with linearly independent columns, then there exists a factorization $ X = Q R $ where\n", + "\n", + "- $ R $ is $ k \\times k $, upper triangular, and nonsingular \n", + "- $ Q $ is $ n \\times k $ with orthonormal columns \n", + "\n", + "\n", + "Proof sketch: Let\n", + "\n", + "- $ x_j := \\col_j (X) $ \n", + "- $ \\{u_1, \\ldots, u_k\\} $ be orthonormal with same span as $ \\{x_1, \\ldots, x_k\\} $ (to be constructed using Gram–Schmidt) \n", + "- $ Q $ be formed from cols $ u_i $ \n", + "\n", + "\n", + "Since $ x_j \\in \\mathop{\\mathrm{span}}\\{u_1, \\ldots, u_j\\} $, we have\n", + "\n", + "$$\n", + "x_j = \\sum_{i=1}^j \\langle u_i, x_j \\rangle u_i\n", + "\\quad \\text{for } j = 1, \\ldots, k\n", + "$$\n", + "\n", + "Some rearranging gives $ X = Q R $" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Linear Regression via QR Decomposition\n", + "\n", + "For matrices $ X $ and $ y $ that overdetermine $ beta $ in the linear\n", + "equation system $ y = X \\beta $, we found the least squares approximator $ \\hat \\beta = (X' X)^{-1} X' y $\n", + "\n", + "Using the QR decomposition $ X = Q R $ gives\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + " \\hat \\beta\n", + " & = (R'Q' Q R)^{-1} R' Q' y \\\\\n", + " & = (R' R)^{-1} R' Q' y \\\\\n", + " & = R^{-1} (R')^{-1} R' Q' y\n", + " = R^{-1} Q' y\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "Numerical routines would in this case use the alternative form $ R \\hat \\beta = Q' y $ and back substitution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercises" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 1\n", + "\n", + "Show that, for any linear subspace $ S \\subset \\mathbb R^n $, $ S \\cap S^{\\perp} = \\{0\\} $" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 2\n", + "\n", + "Let $ P = X (X' X)^{-1} X' $ and let $ M = I - P $. Show that\n", + "$ P $ and $ M $ are both idempotent and symmetric. Can you give any\n", + "intuition as to why they should be idempotent?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 3\n", + "\n", + "Using Gram-Schmidt orthogonalization, produce a linear projection of $ y $ onto the column space of $ X $ and verify this using the projection matrix $ P := X (X' X)^{-1} X' $ and also using QR decomposition, where:\n", + "\n", + "$$\n", + "y :=\n", + "\\left(\n", + "\\begin{array}{c}\n", + " 1 \\\\\n", + " 3 \\\\\n", + " -3\n", + "\\end{array}\n", + "\\right),\n", + "\\quad\n", + "$$\n", + "\n", + "and\n", + "\n", + "$$\n", + "X :=\n", + "\\left(\n", + "\\begin{array}{cc}\n", + " 1 & 0 \\\\\n", + " 0 & -6 \\\\\n", + " 2 & 2\n", + "\\end{array}\n", + "\\right)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Solutions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 1\n", + "\n", + "If $ x \\in S $ and $ x \\in S^\\perp $, then we have in particular\n", + "that $ \\langle x, x \\rangle = 0 $, ut then $ x = 0 $" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 2\n", + "\n", + "Symmetry and idempotence of $ M $ and $ P $ can be established\n", + "using standard rules for matrix algebra. The intuition behind\n", + "idempotence of $ M $ and $ P $ is that both are orthogonal\n", + "projections. After a point is projected into a given subspace, applying\n", + "the projection again makes no difference. (A point inside the subspace\n", + "is not shifted by orthogonal projection onto that space because it is\n", + "already the closest point in the subspace to itself.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercise 3\n", + "\n", + "Here’s a function that computes the orthonormal vectors using the GS\n", + "algorithm given in the lecture" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "hide-output": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "def gram_schmidt(X):\n", + " \"\"\"\n", + " Implements Gram-Schmidt orthogonalization.\n", + "\n", + " Parameters\n", + " ----------\n", + " X : an n x k array with linearly independent columns\n", + "\n", + " Returns\n", + " -------\n", + " U : an n x k array with orthonormal columns\n", + "\n", + " \"\"\"\n", + "\n", + " # Set up\n", + " n, k = X.shape\n", + " U = np.empty((n, k))\n", + " I = np.eye(n)\n", + "\n", + " # The first col of U is just the normalized first col of X\n", + " v1 = X[:,0]\n", + " U[:, 0] = v1 / np.sqrt(np.sum(v1 * v1))\n", + "\n", + " for i in range(1, k):\n", + " # Set up\n", + " b = X[:, i] # The vector we're going to project\n", + " Z = X[:, 0:i] # First i-1 columns of X\n", + "\n", + " # Project onto the orthogonal complement of the col span of Z\n", + " M = I - Z @ np.linalg.inv(Z.T @ Z) @ Z.T\n", + " u = M @ b\n", + "\n", + " # Normalize\n", + " U[:, i] = u / np.sqrt(np.sum(u * u))\n", + "\n", + " return U" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here are the arrays we’ll work with" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "hide-output": false + }, + "outputs": [], + "source": [ + "y = [1, 3, -3]\n", + "\n", + "X = [[1, 0],\n", + " [0, -6],\n", + " [2, 2]]\n", + "\n", + "X, y = [np.asarray(z) for z in (X, y)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First let’s try projection of $ y $ onto the column space of\n", + "$ X $ using the ordinary matrix expression:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.56521739, 3.26086957, -2.2173913 ])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Py1 = X @ np.linalg.inv(X.T @ X) @ X.T @ y\n", + "Py1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let’s do the same using an orthonormal basis created from our\n", + "`gram_schmidt` function" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.4472136 , -0.13187609],\n", + " [ 0. , -0.98907071],\n", + " [ 0.89442719, 0.06593805]])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "U = gram_schmidt(X)\n", + "U" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.56521739, 3.26086957, -2.2173913 ])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Py2 = U @ U.T @ y\n", + "Py2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is the same answer. So far so good. Finally, let’s try the same\n", + "thing but with the basis obtained via QR decomposition:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.4472136 , -0.13187609],\n", + " [-0. , -0.98907071],\n", + " [-0.89442719, 0.06593805]])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from scipy.linalg import qr\n", + "\n", + "Q, R = qr(X, mode='economic')\n", + "Q" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "hide-output": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.56521739, 3.26086957, -2.2173913 ])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Py3 = Q @ Q.T @ y\n", + "Py3" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, we obtain the same answer" + ] + } + ], + "metadata": { + "filename": "orth_proj.rst", + "kernelspec": { + "display_name": "Python", + "language": "python3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "title": "Orthogonal Projections and Their Applications" + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-I.ipynb" "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-I.ipynb" old mode 100644 new mode 100755 index a2e3eb6..649d31d --- "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-I.ipynb" +++ "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-I.ipynb" @@ -1,5921 +1,1128 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Optimization - Otimização" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Instalando a biblioteca `numdifftools` e suas dependências." - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: numdifftools in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (0.9.20)\n", - "Requirement already satisfied: numpy>=1.9 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (1.15.2)\n", - "Requirement already satisfied: scipy>=0.8 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (1.1.0)\n", - "Requirement already satisfied: algopy>=0.4 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (0.5.7)\n", - "Requirement already satisfied: setuptools>=9.0 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (40.4.3)\n", - "\u001b[33mYou are using pip version 18.0, however version 18.1 is available.\n", - "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n" - ] - } - ], - "source": [ - "!pip install numdifftools" - ] - }, - { - "cell_type": "code", - "execution_count": 119, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import timeit\n", - "from scipy import optimize as opt\n", - "import matplotlib.pyplot as plt\n", - "from mpl_toolkits.mplot3d.axes3d import get_test_data\n", - "import numdifftools as nd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Scalar functions" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [], - "source": [ - "def f(x):\n", - " return (x+3)*(x-1)**2" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "X = np.arange(-5, 5, .1)\n", - "Y = f(X)\n", - "plt.plot(X, Y)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "# Optimization" + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "567 µs ± 16.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" - ] - } - ], - "source": [ - "%timeit opt.minimize_scalar(f, bracket=(-2, 2, 4), method='golden')" - ] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "!pip install numdifftools", + "execution_count": 118, + "outputs": [ + { + "output_type": "stream", + "text": "Requirement already satisfied: numdifftools in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (0.9.20)\nRequirement already satisfied: numpy>=1.9 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (1.15.2)\nRequirement already satisfied: scipy>=0.8 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (1.1.0)\nRequirement already satisfied: algopy>=0.4 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (0.5.7)\nRequirement already satisfied: setuptools>=9.0 in /home/nbuser/anaconda3_420/lib/python3.5/site-packages (from numdifftools) (40.4.3)\n\u001b[33mYou are using pip version 18.0, however version 18.1 is available.\nYou should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", + "name": "stdout" + } + ] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "714 µs ± 33.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" - ] - } - ], - "source": [ - "%timeit opt.minimize_scalar(f, bracket=(-2, 2, 4), method='brent')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Function to calculate first derivative of $f$ at $x_{0}$" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [], - "source": [ - "def d1(x, f, h=1e-5):\n", - " return (f(x+h)-f(x-h))/(2*h)" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import numpy as np\nimport timeit\nfrom scipy import optimize as opt\nimport matplotlib.pyplot as plt\nfrom mpl_toolkits.mplot3d.axes3d import get_test_data\nimport numdifftools as nd", + "execution_count": 119, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Scalar functions" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def f(x):\n return (x+3)*(x-1)**2", + "execution_count": 120, + "outputs": [] + }, { - "data": { - "text/plain": [ - "79.99999999697138" + "metadata": { + "scrolled": false, + "trusted": true + }, + "cell_type": "code", + "source": "X = np.arange(-5, 5, .1)\nY = f(X)\nplt.plot(X, Y)\nplt.show()", + "execution_count": 121, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "%timeit opt.minimize_scalar(f, bracket=(-2, 2, 4), method='golden')", + "execution_count": 122, + "outputs": [ + { + "output_type": "stream", + "text": "567 µs ± 16.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n", + "name": "stdout" + } ] - }, - "execution_count": 125, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Test\n", - "d1(5, f)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Function to calculate second derivative of $f$ at $x_{0}$" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [], - "source": [ - "def d2(x, f, h=1e-5):\n", - " return (f(x+2*h)+f(x-2*h)-2*f(x))/(2*h)**2" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "32.000002647691865" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "%timeit opt.minimize_scalar(f, bracket=(-2, 2, 4), method='brent')", + "execution_count": 123, + "outputs": [ + { + "output_type": "stream", + "text": "714 µs ± 33.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n", + "name": "stdout" + } ] - }, - "execution_count": 127, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Test\n", - "d2(5, f)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Newton-Raphson" - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "metadata": {}, - "outputs": [], - "source": [ - "def my_newton(f, x0, h=1e-5, delta=1e-5, eps=1e-5):\n", - " \n", - " dif = 1\n", - " der = 1\n", - " i = 0\n", - " \n", - " while dif>eps or der>delta:\n", - " \n", - " i += 1\n", - " d = d1(x0, f)\n", - " x1 = x0 - (d/d2(x0, f))\n", - " dif = abs(x1-x0)\n", - " der = abs(d)\n", - " x0 = x1\n", - " if i > 100:\n", - " break\n", - " \n", - " return x1" - ] - }, - { - "cell_type": "code", - "execution_count": 129, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "74.6 µs ± 4.27 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" - ] - } - ], - "source": [ - "%timeit my_newton(f, 10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Derivatives" - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [], - "source": [ - "df1 = nd.Derivative(f)\n", - "df2 = nd.Derivative(f, n=2)" - ] - }, - { - "cell_type": "code", - "execution_count": 131, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "Function to calculate first derivative of $f$ at $x_{0}$" + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "185 ms ± 10.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" - ] - } - ], - "source": [ - "%timeit opt.minimize(f, 10, method='Newton-CG', jac=df1, hess=df2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Refresher of matrix algebra" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Quadratic form: $Q(x_{1}, x_{2}) = a_{1}\\,x_{1}^2 + a_{2}\\,x_{2}^2 + a_{3}\\,x_{1}\\,x_{2}$

\n", - "\n", - "This a algebraic expression can be written with matrix notation:\n", - "$\n", - " x=\n", - " \\left[ {\\begin{array}{c}\n", - " x_{1} \\\\\n", - " x_{2} \\\\\n", - " \\end{array} } \\right]\n", - "$\n", - " and \n", - "$\n", - " A=\n", - " \\left[ {\\begin{array}{c}\n", - " a_{1} & a_{3}/2 \\\\\n", - " a_{3}/2 & a_{2} \\\\\n", - " \\end{array} } \\right]\n", - "$\n", - " imply $Q(x)=x^{T}\\,A\\,x$. Notice that $A$ is a square, **symmetric** matrix. Therefore, there is a one-to-one relationship between quadratic forms and symmetric matrices.

\n", - " \n", - "*Definitions*:
\n", - "* A quadratic form is *positive definite* iff $Q(x)>0$ for any $x\\neq0$.\n", - "* A quadratic form is *negative definite* iff $Q(x)<0$ for any $x\\neq0$." - ] - }, - { - "cell_type": "code", - "execution_count": 132, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def d1(x, f, h=1e-5):\n return (f(x+h)-f(x-h))/(2*h)", + "execution_count": 124, + "outputs": [] + }, { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('

');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '
');\n", - " var titletext = $(\n", - " '
');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('
');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('
')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('
');\n", - " var button = $('');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# Test\nd2(5, f)", + "execution_count": 127, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 127, + "data": { + "text/plain": "32.000002647691865" + }, + "metadata": {} + } ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" + "metadata": {}, + "cell_type": "markdown", + "source": "Newton-Raphson" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def my_newton(f, x0, h=1e-5, delta=1e-5, eps=1e-5):\n \n dif = 1\n der = 1\n i = 0\n \n while dif>eps or der>delta:\n \n i += 1\n d = d1(x0, f)\n x1 = x0 - (d/d2(x0, f))\n dif = abs(x1-x0)\n der = abs(d)\n x0 = x1\n if i > 100:\n break\n \n return x1", + "execution_count": 128, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "%timeit my_newton(f, 10)", + "execution_count": 129, + "outputs": [ + { + "output_type": "stream", + "text": "74.6 µs ± 4.27 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n", + "name": "stdout" + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%matplotlib notebook\n", - "fig = plt.figure()\n", - "fig.suptitle('Semi-Definite Quadratic Forms', fontsize=16)\n", - "\n", - "ax1 = fig.add_subplot(121, projection='3d')\n", - "ax1.plot_wireframe(X, Y, (X+Y)**2, rstride=10, cstride=10)\n", - "ax1.set_title('Positive Semi-Definite')\n", - "\n", - "ax2 = fig.add_subplot(122, projection='3d')\n", - "ax2.plot_wireframe(X, Y, -(X+Y)**2, rstride=10, cstride=10)\n", - "ax2.set_title('Negative Semi-Definite')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "*Definitions*:
\n", - "* A quadratic form is *indefinite* iff $Q(x)>0$ for some $x$ and $Q(x)<0$ for another $x$." - ] - }, - { - "cell_type": "code", - "execution_count": 134, - "metadata": {}, - "outputs": [ + }, { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('
');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '
');\n", - " var titletext = $(\n", - " '
');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('
');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('
')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n nav_element.append(button);\n }\n\n // Add the status bar.\n var status_bar = $('');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n\n // Add the close button to the window.\n var buttongrp = $('
');\n var button = $('');\n button.click(function (evt) { fig.handle_close(fig, {}); } );\n button.mouseover('Stop Interaction', toolbar_mouse_event);\n buttongrp.append(button);\n var titlebar = this.root.find($('.ui-dialog-titlebar'));\n titlebar.prepend(buttongrp);\n}\n\nmpl.figure.prototype._root_extra_style = function(el){\n var fig = this\n el.on(\"remove\", function(){\n\tfig.close_ws(fig, {});\n });\n}\n\nmpl.figure.prototype._canvas_extra_style = function(el){\n // this is important to make the div 'focusable\n el.attr('tabindex', 0)\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n }\n else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n var manager = IPython.notebook.keyboard_manager;\n if (!manager)\n manager = IPython.keyboard_manager;\n\n // Check for shift+enter\n if (event.shiftKey && event.which == 13) {\n this.canvas_div.blur();\n event.shiftKey = false;\n // Send a \"J\" for go to next cell\n event.which = 74;\n event.keyCode = 74;\n manager.command_mode();\n manager.handle_keydown(event);\n }\n}\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n fig.ondownload(fig, null);\n}\n\n\nmpl.find_output_cell = function(html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i=0; i= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] == html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n}\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel != null) {\n IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n}\n", + "text/plain": "" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": "", + "text/plain": "" + }, + "metadata": {} + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%matplotlib notebook\n", - "plt.rcParams['figure.figsize'] = [5, 3]\n", - "fig = plt.figure()\n", - "fig.suptitle('Indefinite Quadratic Forms', fontsize=16)\n", - "\n", - "ax = fig.add_subplot(111, projection='3d')\n", - "ax.plot_wireframe(X, Y, X**2-Y**2, rstride=10, cstride=10)\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Testing definiteness" - ] - }, - { - "cell_type": "code", - "execution_count": 135, - "metadata": {}, - "outputs": [], - "source": [ - "def principal_minors(M):\n", - " if M.ndim == 2 and np.all(M == M.transpose()):\n", - " lpm = []\n", - " for k in np.arange(0, M.shape[0], 1):\n", - " lpm.append(np.linalg.det(M[0:k+1, 0:k+1]))\n", - " return lpm" - ] - }, - { - "cell_type": "code", - "execution_count": 136, - "metadata": {}, - "outputs": [], - "source": [ - "A = np.array([[1, 2, 3], [2, 3, 4], [3, 4, 9]])" - ] - }, - { - "cell_type": "code", - "execution_count": 137, - "metadata": {}, - "outputs": [ + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "*Definitions*:
\n* A quadratic form is *positive semi-definite* iff $Q(x)\\geq0$ for any $x$.\n* A quadratic form is *negative semi-definite* iff $Q(x)\\leq0$ for any $x$." + }, { - "data": { - "text/plain": [ - "[1.0, -1.0, -4.000000000000001]" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "%matplotlib notebook\nfig = plt.figure()\nfig.suptitle('Semi-Definite Quadratic Forms', fontsize=16)\n\nax1 = fig.add_subplot(121, projection='3d')\nax1.plot_wireframe(X, Y, (X+Y)**2, rstride=10, cstride=10)\nax1.set_title('Positive Semi-Definite')\n\nax2 = fig.add_subplot(122, projection='3d')\nax2.plot_wireframe(X, Y, -(X+Y)**2, rstride=10, cstride=10)\nax2.set_title('Negative Semi-Definite')\n\nplt.show()", + "execution_count": 133, + "outputs": [ + { + "output_type": "display_data", + "data": { + "application/javascript": "/* Put everything inside the global mpl namespace */\nwindow.mpl = {};\n\n\nmpl.get_websocket_type = function() {\n if (typeof(WebSocket) !== 'undefined') {\n return WebSocket;\n } else if (typeof(MozWebSocket) !== 'undefined') {\n return MozWebSocket;\n } else {\n alert('Your browser does not have WebSocket support.' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.');\n };\n}\n\nmpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = (this.ws.binaryType != undefined);\n\n if (!this.supports_binary) {\n var warnings = document.getElementById(\"mpl-warnings\");\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent = (\n \"This browser does not support binary websocket messages. \" +\n \"Performance may be slow.\");\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = $('
');\n this._root_extra_style(this.root)\n this.root.attr('style', 'display: inline-block');\n\n $(parent_element).append(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n fig.send_message(\"send_image_mode\", {});\n if (mpl.ratio != 1) {\n fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n }\n fig.send_message(\"refresh\", {});\n }\n\n this.imageObj.onload = function() {\n if (fig.image_mode == 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function() {\n fig.ws.close();\n }\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n}\n\nmpl.figure.prototype._init_header = function() {\n var titlebar = $(\n '
');\n var titletext = $(\n '
');\n titlebar.append(titletext)\n this.root.append(titlebar);\n this.header = titletext[0];\n}\n\n\n\nmpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n\n}\n\n\nmpl.figure.prototype._root_extra_style = function(canvas_div) {\n\n}\n\nmpl.figure.prototype._init_canvas = function() {\n var fig = this;\n\n var canvas_div = $('
');\n\n canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n\n function canvas_keyboard_event(event) {\n return fig.key_event(event, event['data']);\n }\n\n canvas_div.keydown('key_press', canvas_keyboard_event);\n canvas_div.keyup('key_release', canvas_keyboard_event);\n this.canvas_div = canvas_div\n this._canvas_extra_style(canvas_div)\n this.root.append(canvas_div);\n\n var canvas = $('');\n canvas.addClass('mpl-canvas');\n canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n\n this.canvas = canvas[0];\n this.context = canvas[0].getContext(\"2d\");\n\n var backingStore = this.context.backingStorePixelRatio ||\n\tthis.context.webkitBackingStorePixelRatio ||\n\tthis.context.mozBackingStorePixelRatio ||\n\tthis.context.msBackingStorePixelRatio ||\n\tthis.context.oBackingStorePixelRatio ||\n\tthis.context.backingStorePixelRatio || 1;\n\n mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband = $('');\n rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n\n var pass_mouse_events = true;\n\n canvas_div.resizable({\n start: function(event, ui) {\n pass_mouse_events = false;\n },\n resize: function(event, ui) {\n fig.request_resize(ui.size.width, ui.size.height);\n },\n stop: function(event, ui) {\n pass_mouse_events = true;\n fig.request_resize(ui.size.width, ui.size.height);\n },\n });\n\n function mouse_event_fn(event) {\n if (pass_mouse_events)\n return fig.mouse_event(event, event['data']);\n }\n\n rubberband.mousedown('button_press', mouse_event_fn);\n rubberband.mouseup('button_release', mouse_event_fn);\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband.mousemove('motion_notify', mouse_event_fn);\n\n rubberband.mouseenter('figure_enter', mouse_event_fn);\n rubberband.mouseleave('figure_leave', mouse_event_fn);\n\n canvas_div.on(\"wheel\", function (event) {\n event = event.originalEvent;\n event['data'] = 'scroll'\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n mouse_event_fn(event);\n });\n\n canvas_div.append(canvas);\n canvas_div.append(rubberband);\n\n this.rubberband = rubberband;\n this.rubberband_canvas = rubberband[0];\n this.rubberband_context = rubberband[0].getContext(\"2d\");\n this.rubberband_context.strokeStyle = \"#000000\";\n\n this._resize_canvas = function(width, height) {\n // Keep the size of the canvas, canvas container, and rubber band\n // canvas in synch.\n canvas_div.css('width', width)\n canvas_div.css('height', height)\n\n canvas.attr('width', width * mpl.ratio);\n canvas.attr('height', height * mpl.ratio);\n canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n\n rubberband.attr('width', width);\n rubberband.attr('height', height);\n }\n\n // Set the figure to an initial 600x600px, this will subsequently be updated\n // upon first draw.\n this._resize_canvas(600, 600);\n\n // Disable right mouse context menu.\n $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n return false;\n });\n\n function set_focus () {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('
')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n // put a spacer in here.\n continue;\n }\n var button = $('');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n nav_element.append(button);\n }\n\n // Add the status bar.\n var status_bar = $('');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n\n // Add the close button to the window.\n var buttongrp = $('
');\n var button = $('');\n button.click(function (evt) { fig.handle_close(fig, {}); } );\n button.mouseover('Stop Interaction', toolbar_mouse_event);\n buttongrp.append(button);\n var titlebar = this.root.find($('.ui-dialog-titlebar'));\n titlebar.prepend(buttongrp);\n}\n\nmpl.figure.prototype._root_extra_style = function(el){\n var fig = this\n el.on(\"remove\", function(){\n\tfig.close_ws(fig, {});\n });\n}\n\nmpl.figure.prototype._canvas_extra_style = function(el){\n // this is important to make the div 'focusable\n el.attr('tabindex', 0)\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n }\n else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n var manager = IPython.notebook.keyboard_manager;\n if (!manager)\n manager = IPython.keyboard_manager;\n\n // Check for shift+enter\n if (event.shiftKey && event.which == 13) {\n this.canvas_div.blur();\n event.shiftKey = false;\n // Send a \"J\" for go to next cell\n event.which = 74;\n event.keyCode = 74;\n manager.command_mode();\n manager.handle_keydown(event);\n }\n}\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n fig.ondownload(fig, null);\n}\n\n\nmpl.find_output_cell = function(html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i=0; i= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] == html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n}\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel != null) {\n IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n}\n", + "text/plain": "" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": "", + "text/plain": "" + }, + "metadata": {} + } ] - }, - "execution_count": 139, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "positive_definite(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 140, - "metadata": {}, - "outputs": [], - "source": [ - "def negative_definite(M):\n", - " if M.ndim == 2 and np.all(M == M.transpose()):\n", - " n = M.shape[0]\n", - " c = [(-1)**(i+1) for i in np.arange(0, n, 1)]\n", - " return np.all((np.array(c)*np.array(principal_minors(M)))>0)" - ] - }, - { - "cell_type": "code", - "execution_count": 141, - "metadata": {}, - "outputs": [ + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Testing definiteness" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def principal_minors(M):\n if M.ndim == 2 and np.all(M == M.transpose()):\n lpm = []\n for k in np.arange(0, M.shape[0], 1):\n lpm.append(np.linalg.det(M[0:k+1, 0:k+1]))\n return lpm", + "execution_count": 135, + "outputs": [] + }, { - "data": { - "text/plain": [ - "False" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "A = np.array([[1, 2, 3], [2, 3, 4], [3, 4, 9]])", + "execution_count": 136, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "principal_minors(A)", + "execution_count": 137, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 137, + "data": { + "text/plain": "[1.0, -1.0, -4.000000000000001]" + }, + "metadata": {} + } ] - }, - "execution_count": 141, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "negative_definite(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 142, - "metadata": {}, - "outputs": [], - "source": [ - "def indefinite(M):\n", - " if M.ndim == 2 and np.all(M == M.transpose()):\n", - " if not positive_definite(M) and not negative_definite(M):\n", - " n = M.shape[0]\n", - " return np.all(np.array(principal_minors(M)) != 0)" - ] - }, - { - "cell_type": "code", - "execution_count": 143, - "metadata": {}, - "outputs": [ + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def positive_definite(M):\n if M.ndim == 2 and np.all(M == M.transpose()):\n return np.all(np.array(principal_minors(M))>0)", + "execution_count": 138, + "outputs": [] + }, { - "data": { - "text/plain": [ - "True" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "positive_definite(A)", + "execution_count": 139, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 139, + "data": { + "text/plain": "False" + }, + "metadata": {} + } ] - }, - "execution_count": 143, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "indefinite(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Eigenvalues, Eigenvectors and Eigen Decomposition\n", - "\n", - "$A$: square matrix ($n \\times n$), $x$: column vector ($n \\times 1$), $\\lambda$: scalar.
\n", - "\n", - "*Definition*: $\\lambda$ is an **eigenvalue** of $A$ with corresponding $x$ **eigenvector** iff $A\\,x=\\lambda\\,x$.
\n", - "\n", - "Eigenvalues must solve $\\mathrm{det}(A-\\lambda\\,I)=0$.\n", - "\n", - "*Result*: If $A$ is a real symmetric matrix, all of its eigenvalues are real numbers, and eigenvectors corresponding to distinct eigenvalues are orthogonal.\n", - "\n", - "*Eigen Decomposition of Symmetric Matrices*:
\n", - "Let $P = [x_1, x_2, ..., x_n]$ and $D=diag(\\lambda_1, \\lambda_2, ..., \\lambda_n)$. Then $A = P\\,D\\,P^{-1}$.\n", - "\n", - "If $\\lambda_i>0, \\forall i$, then $A$ is **positive definite**.
\n", - "\n", - "If $\\lambda_i<0, \\forall i$, then $A$ is **negative definite**.
\n", - "\n", - "If $\\lambda_i\\geq0, \\forall i$, then $A$ is **positive semi-definite**.
\n", - "\n", - "If $\\lambda_i\\leq0, \\forall i$, then $A$ is **negative semi-definite**." - ] - }, - { - "cell_type": "code", - "execution_count": 144, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "(array([12.14984759, -0.28900503, 1.13915745]),\n", - " array([[ 0.30595473, 0.90505749, -0.29540249],\n", - " [ 0.43670868, -0.40912915, -0.80118592],\n", - " [ 0.84597709, -0.11612179, 0.52042146]]))" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def negative_definite(M):\n if M.ndim == 2 and np.all(M == M.transpose()):\n n = M.shape[0]\n c = [(-1)**(i+1) for i in np.arange(0, n, 1)]\n return np.all((np.array(c)*np.array(principal_minors(M)))>0)", + "execution_count": 140, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "negative_definite(A)", + "execution_count": 141, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 141, + "data": { + "text/plain": "False" + }, + "metadata": {} + } ] - }, - "execution_count": 144, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.linalg.eig(A)" - ] - }, - { - "cell_type": "code", - "execution_count": 145, - "metadata": {}, - "outputs": [], - "source": [ - "def pos_def(A):\n", - " return (np.all(np.linalg.eig(A)[0]>0))" - ] - }, - { - "cell_type": "code", - "execution_count": 146, - "metadata": {}, - "outputs": [ + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def indefinite(M):\n if M.ndim == 2 and np.all(M == M.transpose()):\n if not positive_definite(M) and not negative_definite(M):\n n = M.shape[0]\n return np.all(np.array(principal_minors(M)) != 0)", + "execution_count": 142, + "outputs": [] + }, { - "data": { - "text/plain": [ - "False" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "indefinite(A)", + "execution_count": 143, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 143, + "data": { + "text/plain": "True" + }, + "metadata": {} + } ] - }, - "execution_count": 146, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pos_def(A)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Multivariate functions" - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": {}, - "outputs": [], - "source": [ - "def f(x):\n", - " return x[0]**2+x[1]**2-50*np.sin(.5*(x[0]+x[1]))" - ] - }, - { - "cell_type": "code", - "execution_count": 148, - "metadata": {}, - "outputs": [], - "source": [ - "x = np.array([1, 2, 3])\n", - "y = np.array([20, 40, 60])" - ] - }, - { - "cell_type": "code", - "execution_count": 149, - "metadata": {}, - "outputs": [], - "source": [ - "X, Y = np.meshgrid(x, y)" - ] - }, - { - "cell_type": "code", - "execution_count": 150, - "metadata": {}, - "outputs": [ + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Eigenvalues, Eigenvectors and Eigen Decomposition\n\n$A$: square matrix ($n \\times n$), $x$: column vector ($n \\times 1$), $\\lambda$: scalar.
\n\n*Definition*: $\\lambda$ is an **eigenvalue** of $A$ with corresponding $x$ **eigenvector** iff $A\\,x=\\lambda\\,x$.
\n\nEigenvalues must solve $\\mathrm{det}(A-\\lambda\\,I)=0$.\n\n*Result*: If $A$ is a real symmetric matrix, all of its eigenvalues are real numbers, and eigenvectors corresponding to distinct eigenvalues are orthogonal.\n\n*Eigen Decomposition of Symmetric Matrices*:
\nLet $P = [x_1, x_2, ..., x_n]$ and $D=diag(\\lambda_1, \\lambda_2, ..., \\lambda_n)$. Then $A = P\\,D\\,P^{-1}$.\n\nIf $\\lambda_i>0, \\forall i$, then $A$ is **positive definite**.
\n\nIf $\\lambda_i<0, \\forall i$, then $A$ is **negative definite**.
\n\nIf $\\lambda_i\\geq0, \\forall i$, then $A$ is **positive semi-definite**.
\n\nIf $\\lambda_i\\leq0, \\forall i$, then $A$ is **negative semi-definite**." + }, { - "data": { - "text/plain": [ - "array([[1, 2, 3],\n", - " [1, 2, 3],\n", - " [1, 2, 3]])" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "np.linalg.eig(A)", + "execution_count": 144, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 144, + "data": { + "text/plain": "(array([12.14984759, -0.28900503, 1.13915745]),\n array([[ 0.30595473, 0.90505749, -0.29540249],\n [ 0.43670868, -0.40912915, -0.80118592],\n [ 0.84597709, -0.11612179, 0.52042146]]))" + }, + "metadata": {} + } ] - }, - "execution_count": 150, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "metadata": {}, - "outputs": [ + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def pos_def(A):\n return (np.all(np.linalg.eig(A)[0]>0))", + "execution_count": 145, + "outputs": [] + }, { - "data": { - "text/plain": [ - "array([[20, 20, 20],\n", - " [40, 40, 40],\n", - " [60, 60, 60]])" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "pos_def(A)", + "execution_count": 146, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 146, + "data": { + "text/plain": "False" + }, + "metadata": {} + } ] - }, - "execution_count": 151, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Y" - ] - }, - { - "cell_type": "code", - "execution_count": 152, - "metadata": { - "scrolled": true - }, - "outputs": [ + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Multivariate functions" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def f(x):\n return x[0]**2+x[1]**2-50*np.sin(.5*(x[0]+x[1]))", + "execution_count": 147, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x = np.array([1, 2, 3])\ny = np.array([20, 40, 60])", + "execution_count": 148, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "X, Y = np.meshgrid(x, y)", + "execution_count": 149, + "outputs": [] + }, { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('
');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '
');\n", - " var titletext = $(\n", - " '
');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('
');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('
')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('');\n", - " button.click(method_name, toolbar_event);\n", - " button.mouseover(tooltip, toolbar_mouse_event);\n", - " nav_element.append(button);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = $('');\n", - " nav_element.append(status_bar);\n", - " this.message = status_bar[0];\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = $('
');\n", - " var button = $('');\n", - " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", - " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", - " buttongrp.append(button);\n", - " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", - " titlebar.prepend(buttongrp);\n", - "}\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(el){\n", - " var fig = this\n", - " el.on(\"remove\", function(){\n", - "\tfig.close_ws(fig, {});\n", - " });\n", - "}\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(el){\n", - " // this is important to make the div 'focusable\n", - " el.attr('tabindex', 0)\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " }\n", - " else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._key_event_extra = function(event, name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager)\n", - " manager = IPython.keyboard_manager;\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which == 13) {\n", - " this.canvas_div.blur();\n", - " event.shiftKey = false;\n", - " // Send a \"J\" for go to next cell\n", - " event.which = 74;\n", - " event.keyCode = 74;\n", - " manager.command_mode();\n", - " manager.handle_keydown(event);\n", - " }\n", - "}\n", - "\n", - "mpl.figure.prototype.handle_save = function(fig, msg) {\n", - " fig.ondownload(fig, null);\n", - "}\n", - "\n", - "\n", - "mpl.find_output_cell = function(html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i=0; i= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] == html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "}\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel != null) {\n", - " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", - "}\n" - ], - "text/plain": [ - "" + "metadata": { + "scrolled": true, + "trusted": true + }, + "cell_type": "code", + "source": "%matplotlib notebook\nplt.rcParams['figure.figsize'] = [5, 3]\n\nx = np.linspace(-10, 10, 101)\ny = np.linspace(-10, 10, 101)\nX, Y = np.meshgrid(x, y)\n\nfig = plt.figure()\nfig.suptitle('$x^2+y^2-50\\,sin(.5(x+y))$', fontsize=16)\n\nax = fig.add_subplot(111, projection='3d')\nax.plot_wireframe(X, Y, f([X, Y]), rstride=10, cstride=10)\n\nplt.show()", + "execution_count": 152, + "outputs": [ + { + "output_type": "display_data", + "data": { + "application/javascript": "/* Put everything inside the global mpl namespace */\nwindow.mpl = {};\n\n\nmpl.get_websocket_type = function() {\n if (typeof(WebSocket) !== 'undefined') {\n return WebSocket;\n } else if (typeof(MozWebSocket) !== 'undefined') {\n return MozWebSocket;\n } else {\n alert('Your browser does not have WebSocket support.' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.');\n };\n}\n\nmpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = (this.ws.binaryType != undefined);\n\n if (!this.supports_binary) {\n var warnings = document.getElementById(\"mpl-warnings\");\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent = (\n \"This browser does not support binary websocket messages. \" +\n \"Performance may be slow.\");\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = $('
');\n this._root_extra_style(this.root)\n this.root.attr('style', 'display: inline-block');\n\n $(parent_element).append(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n fig.send_message(\"send_image_mode\", {});\n if (mpl.ratio != 1) {\n fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n }\n fig.send_message(\"refresh\", {});\n }\n\n this.imageObj.onload = function() {\n if (fig.image_mode == 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function() {\n fig.ws.close();\n }\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n}\n\nmpl.figure.prototype._init_header = function() {\n var titlebar = $(\n '
');\n var titletext = $(\n '
');\n titlebar.append(titletext)\n this.root.append(titlebar);\n this.header = titletext[0];\n}\n\n\n\nmpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n\n}\n\n\nmpl.figure.prototype._root_extra_style = function(canvas_div) {\n\n}\n\nmpl.figure.prototype._init_canvas = function() {\n var fig = this;\n\n var canvas_div = $('
');\n\n canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n\n function canvas_keyboard_event(event) {\n return fig.key_event(event, event['data']);\n }\n\n canvas_div.keydown('key_press', canvas_keyboard_event);\n canvas_div.keyup('key_release', canvas_keyboard_event);\n this.canvas_div = canvas_div\n this._canvas_extra_style(canvas_div)\n this.root.append(canvas_div);\n\n var canvas = $('');\n canvas.addClass('mpl-canvas');\n canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n\n this.canvas = canvas[0];\n this.context = canvas[0].getContext(\"2d\");\n\n var backingStore = this.context.backingStorePixelRatio ||\n\tthis.context.webkitBackingStorePixelRatio ||\n\tthis.context.mozBackingStorePixelRatio ||\n\tthis.context.msBackingStorePixelRatio ||\n\tthis.context.oBackingStorePixelRatio ||\n\tthis.context.backingStorePixelRatio || 1;\n\n mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband = $('');\n rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n\n var pass_mouse_events = true;\n\n canvas_div.resizable({\n start: function(event, ui) {\n pass_mouse_events = false;\n },\n resize: function(event, ui) {\n fig.request_resize(ui.size.width, ui.size.height);\n },\n stop: function(event, ui) {\n pass_mouse_events = true;\n fig.request_resize(ui.size.width, ui.size.height);\n },\n });\n\n function mouse_event_fn(event) {\n if (pass_mouse_events)\n return fig.mouse_event(event, event['data']);\n }\n\n rubberband.mousedown('button_press', mouse_event_fn);\n rubberband.mouseup('button_release', mouse_event_fn);\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband.mousemove('motion_notify', mouse_event_fn);\n\n rubberband.mouseenter('figure_enter', mouse_event_fn);\n rubberband.mouseleave('figure_leave', mouse_event_fn);\n\n canvas_div.on(\"wheel\", function (event) {\n event = event.originalEvent;\n event['data'] = 'scroll'\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n mouse_event_fn(event);\n });\n\n canvas_div.append(canvas);\n canvas_div.append(rubberband);\n\n this.rubberband = rubberband;\n this.rubberband_canvas = rubberband[0];\n this.rubberband_context = rubberband[0].getContext(\"2d\");\n this.rubberband_context.strokeStyle = \"#000000\";\n\n this._resize_canvas = function(width, height) {\n // Keep the size of the canvas, canvas container, and rubber band\n // canvas in synch.\n canvas_div.css('width', width)\n canvas_div.css('height', height)\n\n canvas.attr('width', width * mpl.ratio);\n canvas.attr('height', height * mpl.ratio);\n canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n\n rubberband.attr('width', width);\n rubberband.attr('height', height);\n }\n\n // Set the figure to an initial 600x600px, this will subsequently be updated\n // upon first draw.\n this._resize_canvas(600, 600);\n\n // Disable right mouse context menu.\n $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n return false;\n });\n\n function set_focus () {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n}\n\nmpl.figure.prototype._init_toolbar = function() {\n var fig = this;\n\n var nav_element = $('
')\n nav_element.attr('style', 'width: 100%');\n this.root.append(nav_element);\n\n // Define a callback function for later on.\n function toolbar_event(event) {\n return fig.toolbar_button_onclick(event['data']);\n }\n function toolbar_mouse_event(event) {\n return fig.toolbar_button_onmouseover(event['data']);\n }\n\n for(var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n // put a spacer in here.\n continue;\n }\n var button = $('');\n button.click(method_name, toolbar_event);\n button.mouseover(tooltip, toolbar_mouse_event);\n nav_element.append(button);\n }\n\n // Add the status bar.\n var status_bar = $('');\n nav_element.append(status_bar);\n this.message = status_bar[0];\n\n // Add the close button to the window.\n var buttongrp = $('
');\n var button = $('');\n button.click(function (evt) { fig.handle_close(fig, {}); } );\n button.mouseover('Stop Interaction', toolbar_mouse_event);\n buttongrp.append(button);\n var titlebar = this.root.find($('.ui-dialog-titlebar'));\n titlebar.prepend(buttongrp);\n}\n\nmpl.figure.prototype._root_extra_style = function(el){\n var fig = this\n el.on(\"remove\", function(){\n\tfig.close_ws(fig, {});\n });\n}\n\nmpl.figure.prototype._canvas_extra_style = function(el){\n // this is important to make the div 'focusable\n el.attr('tabindex', 0)\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n }\n else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n\n}\n\nmpl.figure.prototype._key_event_extra = function(event, name) {\n var manager = IPython.notebook.keyboard_manager;\n if (!manager)\n manager = IPython.keyboard_manager;\n\n // Check for shift+enter\n if (event.shiftKey && event.which == 13) {\n this.canvas_div.blur();\n event.shiftKey = false;\n // Send a \"J\" for go to next cell\n event.which = 74;\n event.keyCode = 74;\n manager.command_mode();\n manager.handle_keydown(event);\n }\n}\n\nmpl.figure.prototype.handle_save = function(fig, msg) {\n fig.ondownload(fig, null);\n}\n\n\nmpl.find_output_cell = function(html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i=0; i= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] == html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n}\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel != null) {\n IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n}\n", + "text/plain": "" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": "", + "text/plain": "" + }, + "metadata": {} + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%matplotlib notebook\n", - "plt.rcParams['figure.figsize'] = [5, 3]\n", - "x = np.linspace(-10, 10, 101)\n", - "y = np.linspace(-10, 10, 101)\n", - "X, Y = np.meshgrid(x, y)\n", - "\n", - "fig = plt.figure()\n", - "\n", - "ax = fig.add_subplot(111)\n", - "ax.contour(X, Y, f([X, Y]))\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 154, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from scipy.optimize import minimize" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Nelder-Mead" - ] - }, - { - "cell_type": "code", - "execution_count": 155, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization terminated successfully.\n", - " Current function value: -45.431122\n", - " Iterations: 76\n", - " Function evaluations: 137\n", - "[1.4541966 1.45419654]\n" - ] + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import numpy as np\nfrom scipy.optimize import minimize", + "execution_count": 154, + "outputs": [] }, { - "data": { - "text/plain": [ - "-45.43112199357746" + "metadata": {}, + "cell_type": "markdown", + "source": "### Nelder-Mead" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x0 = np.array([0, 0])\nres = minimize(f, x0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})\nprint(res.x)\nf(res.x)", + "execution_count": 155, + "outputs": [ + { + "output_type": "stream", + "text": "Optimization terminated successfully.\n Current function value: -45.431122\n Iterations: 76\n Function evaluations: 137\n[1.4541966 1.45419654]\n", + "name": "stdout" + }, + { + "output_type": "execute_result", + "execution_count": 155, + "data": { + "text/plain": "-45.43112199357746" + }, + "metadata": {} + } ] - }, - "execution_count": 155, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x0 = np.array([0, 0])\n", - "res = minimize(f, x0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})\n", - "print(res.x)\n", - "f(res.x)" - ] - }, - { - "cell_type": "code", - "execution_count": 156, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - " final_simplex: (array([[1.4541966 , 1.45419654],\n", - " [1.4541966 , 1.45419654],\n", - " [1.4541966 , 1.45419654]]), array([-45.43112199, -45.43112199, -45.43112199]))\n", - " fun: -45.43112199357746\n", - " message: 'Optimization terminated successfully.'\n", - " nfev: 137\n", - " nit: 76\n", - " status: 0\n", - " success: True\n", - " x: array([1.4541966 , 1.45419654])" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "res", + "execution_count": 156, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 156, + "data": { + "text/plain": " final_simplex: (array([[1.4541966 , 1.45419654],\n [1.4541966 , 1.45419654],\n [1.4541966 , 1.45419654]]), array([-45.43112199, -45.43112199, -45.43112199]))\n fun: -45.43112199357746\n message: 'Optimization terminated successfully.'\n nfev: 137\n nit: 76\n status: 0\n success: True\n x: array([1.4541966 , 1.45419654])" + }, + "metadata": {} + } ] - }, - "execution_count": 156, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Gradient and Hessian" - ] - }, - { - "cell_type": "code", - "execution_count": 157, - "metadata": {}, - "outputs": [], - "source": [ - "fgrad = nd.Gradient(f)\n", - "fhess = nd.Hessian(f)" - ] - }, - { - "cell_type": "code", - "execution_count": 158, - "metadata": {}, - "outputs": [ + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Gradient and Hessian" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "fgrad = nd.Gradient(f)\nfhess = nd.Hessian(f)", + "execution_count": 157, + "outputs": [] + }, { - "data": { - "text/plain": [ - "numdifftools.core.Gradient" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "type(fgrad)", + "execution_count": 158, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 158, + "data": { + "text/plain": "numdifftools.core.Gradient" + }, + "metadata": {} + } ] - }, - "execution_count": 158, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(fgrad)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Conjugate Gradient" - ] - }, - { - "cell_type": "code", - "execution_count": 159, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization terminated successfully.\n", - " Current function value: -45.431122\n", - " Iterations: 3\n", - " Function evaluations: 8\n", - " Gradient evaluations: 8\n", - "[1.45419657 1.45419657]\n" - ] - } - ], - "source": [ - "x0 = np.array([0, 0])\n", - "res = minimize(f, x0, method='CG', jac=fgrad, options={'disp': True})\n", - "print(res.x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Broyden, Fletcher, Goldfarb, and Shanno (BFGS)" - ] - }, - { - "cell_type": "code", - "execution_count": 160, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "### Conjugate Gradient" + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization terminated successfully.\n", - " Current function value: -45.431122\n", - " Iterations: 5\n", - " Function evaluations: 7\n", - " Gradient evaluations: 7\n", - "[1.45419657 1.45419657]\n" - ] + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x0 = np.array([0, 0])\nres = minimize(f, x0, method='CG', jac=fgrad, options={'disp': True})\nprint(res.x)", + "execution_count": 159, + "outputs": [ + { + "output_type": "stream", + "text": "Optimization terminated successfully.\n Current function value: -45.431122\n Iterations: 3\n Function evaluations: 8\n Gradient evaluations: 8\n[1.45419657 1.45419657]\n", + "name": "stdout" + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Broyden, Fletcher, Goldfarb, and Shanno (BFGS)" }, { - "data": { - "text/plain": [ - "-45.43112199357746" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x0 = np.array([0, 0])\nres = minimize(f, x0, method='BFGS', jac=fgrad, options={'gtol': 1e-8, 'disp': True})\nprint(res.x)\nf(res.x)", + "execution_count": 160, + "outputs": [ + { + "output_type": "stream", + "text": "Optimization terminated successfully.\n Current function value: -45.431122\n Iterations: 5\n Function evaluations: 7\n Gradient evaluations: 7\n[1.45419657 1.45419657]\n", + "name": "stdout" + }, + { + "output_type": "execute_result", + "execution_count": 160, + "data": { + "text/plain": "-45.43112199357746" + }, + "metadata": {} + } ] - }, - "execution_count": 160, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x0 = np.array([0, 0])\n", - "res = minimize(f, x0, method='BFGS', jac=fgrad, options={'gtol': 1e-8, 'disp': True})\n", - "print(res.x)\n", - "f(res.x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Newton-CG" - ] - }, - { - "cell_type": "code", - "execution_count": 161, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization terminated successfully.\n", - " Current function value: -45.431122\n", - " Iterations: 5\n", - " Function evaluations: 9\n", - " Gradient evaluations: 13\n", - " Hessian evaluations: 5\n", - "[1.45419658 1.45419658]\n" - ] + "metadata": {}, + "cell_type": "markdown", + "source": "### Newton-CG" }, { - "data": { - "text/plain": [ - "-45.43112199357747" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x0 = np.array([0, 0])\nres = minimize(f, x0, method='Newton-CG', jac=fgrad, hess=fhess, options={'xtol': 1e-8, 'disp': True})\nprint(res.x)\nf(res.x)", + "execution_count": 161, + "outputs": [ + { + "output_type": "stream", + "text": "Optimization terminated successfully.\n Current function value: -45.431122\n Iterations: 5\n Function evaluations: 9\n Gradient evaluations: 13\n Hessian evaluations: 5\n[1.45419658 1.45419658]\n", + "name": "stdout" + }, + { + "output_type": "execute_result", + "execution_count": 161, + "data": { + "text/plain": "-45.43112199357747" + }, + "metadata": {} + } ] - }, - "execution_count": 161, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x0 = np.array([0, 0])\n", - "res = minimize(f, x0, method='Newton-CG', jac=fgrad, hess=fhess, options={'xtol': 1e-8, 'disp': True})\n", - "print(res.x)\n", - "f(res.x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Maximum Likelihood" - ] - }, - { - "cell_type": "code", - "execution_count": 162, - "metadata": {}, - "outputs": [], - "source": [ - "mu = 18\n", - "sigma = 5\n", - "n = 30\n", - "S = np.random.normal(loc=mu, scale=sigma, size=n)" - ] - }, - { - "cell_type": "code", - "execution_count": 163, - "metadata": {}, - "outputs": [], - "source": [ - "def likelihood(par):\n", - " # par[0]=mu\n", - " # par[1]=sigma\n", - " \n", - " v = 0\n", - " \n", - " for x in S:\n", - " v += -.5*((x-par[0])/par[1])**2-np.log(par[1])\n", - " \n", - " return -v" - ] - }, - { - "cell_type": "code", - "execution_count": 164, - "metadata": {}, - "outputs": [ + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization terminated successfully.\n", - " Current function value: 62.562558\n", - " Iterations: 94\n", - " Function evaluations: 186\n" - ] - } - ], - "source": [ - "x0 = np.array([1, 1])\n", - "res = minimize(likelihood, x0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})" - ] - }, - { - "cell_type": "code", - "execution_count": 165, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "### Maximum Likelihood" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "mu = 18\nsigma = 5\nn = 30\nS = np.random.normal(loc=mu, scale=sigma, size=n)", + "execution_count": 162, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def likelihood(par):\n # par[0]=mu\n # par[1]=sigma\n \n v = 0\n \n for x in S:\n v += -.5*((x-par[0])/par[1])**2-np.log(par[1])\n \n return -v", + "execution_count": 163, + "outputs": [] + }, { - "data": { - "text/plain": [ - "array([17.57308836, 4.88133418])" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x0 = np.array([1, 1])\nres = minimize(likelihood, x0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})", + "execution_count": 164, + "outputs": [ + { + "output_type": "stream", + "text": "Optimization terminated successfully.\n Current function value: 62.562558\n Iterations: 94\n Function evaluations: 186\n", + "name": "stdout" + } ] - }, - "execution_count": 165, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res.x" - ] - }, - { - "cell_type": "code", - "execution_count": 166, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "17.573088308542683" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "res.x", + "execution_count": 165, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 165, + "data": { + "text/plain": "array([17.57308836, 4.88133418])" + }, + "metadata": {} + } ] - }, - "execution_count": 166, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "S.mean()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Consumer´s problem with CES utility" - ] - }, - { - "cell_type": "code", - "execution_count": 167, - "metadata": {}, - "outputs": [], - "source": [ - "def utility(x, *args):\n", - " return -(x**.25+(args[0]-args[1]*x)**.25)" - ] - }, - { - "cell_type": "code", - "execution_count": 168, - "metadata": {}, - "outputs": [], - "source": [ - "def demand(m, p):\n", - " x = opt.minimize(utility, .3, args=(m, p), method=\"CG\").x[0]\n", - " return (x, m-p*x)" - ] - }, - { - "cell_type": "code", - "execution_count": 169, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "(1.1062334943922492, 2.7875330112155017)" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "S.mean()", + "execution_count": 166, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 166, + "data": { + "text/plain": "17.573088308542683" + }, + "metadata": {} + } ] - }, - "execution_count": 169, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "demand(5, 2)" - ] - }, - { - "cell_type": "code", - "execution_count": 170, - "metadata": {}, - "outputs": [], - "source": [ - "price = np.arange(.1, 5, .1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Regressão Múltipla" - ] - }, - { - "cell_type": "code", - "execution_count": 171, - "metadata": {}, - "outputs": [], - "source": [ - "x1 = np.random.uniform(0, 100, size=20000)" - ] - }, - { - "cell_type": "code", - "execution_count": 172, - "metadata": {}, - "outputs": [], - "source": [ - "x2 = np.random.uniform(0, 100, size=20000)" - ] - }, - { - "cell_type": "code", - "execution_count": 173, - "metadata": {}, - "outputs": [], - "source": [ - "x2 = .9*x2+.1*x1" - ] - }, - { - "cell_type": "code", - "execution_count": 174, - "metadata": {}, - "outputs": [], - "source": [ - "sigma = 5\n", - "y = 10+.4*x1+.7*x2+np.random.normal(loc=0, scale=sigma, size=20000)" - ] - }, - { - "cell_type": "code", - "execution_count": 175, - "metadata": {}, - "outputs": [], - "source": [ - "def my_ols(beta): \n", - " return np.sum((y-beta[0]-beta[1]*x1-beta[2]*x2)**2) " - ] - }, - { - "cell_type": "code", - "execution_count": 176, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - " fun: 497096.51526724786\n", - " jac: array([0.09375 , 0.31640625, 0.15625 ])\n", - " message: 'Desired error not necessarily achieved due to precision loss.'\n", - " nfev: 626\n", - " nit: 24\n", - " njev: 123\n", - " status: 2\n", - " success: False\n", - " x: array([9.91014709, 0.4020818 , 0.70068662])" + "metadata": {}, + "cell_type": "markdown", + "source": "## Consumer´s problem with CES utility" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def utility(x, *args):\n return -(x**.25+(args[0]-args[1]*x)**.25)", + "execution_count": 167, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def demand(m, p):\n x = opt.minimize(utility, .3, args=(m, p), method=\"CG\").x[0]\n return (x, m-p*x)", + "execution_count": 168, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "demand(5, 2)", + "execution_count": 169, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 169, + "data": { + "text/plain": "(1.1062334943922492, 2.7875330112155017)" + }, + "metadata": {} + } ] - }, - "execution_count": 176, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "opt.minimize(my_ols, (10.1, .5, .6), method=\"CG\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## OLS with matrices" - ] - }, - { - "cell_type": "code", - "execution_count": 178, - "metadata": {}, - "outputs": [], - "source": [ - "import io" - ] - }, - { - "cell_type": "code", - "execution_count": 185, - "metadata": {}, - "outputs": [], - "source": [ - "DATA = np.loadtxt(\"data/regression.csv\", delimiter=\";\")" - ] - }, - { - "cell_type": "code", - "execution_count": 186, - "metadata": {}, - "outputs": [ + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "price = np.arange(.1, 5, .1)", + "execution_count": 170, + "outputs": [] + }, { - "data": { - "text/plain": [ - "array([[ 19.1503647 , 19.86175115, 37.76143252],\n", - " [ 74.48652608, 36.51600696, 118.1015082 ],\n", - " [ 92.52296518, 65.04593036, 415.2253619 ],\n", - " ...,\n", - " [ 71.10202338, 84.71663564, 470.9957971 ],\n", - " [ 57.05130161, 63.70372631, 382.7933641 ],\n", - " [ 30.32013916, 58.94863735, 200.9883957 ]])" + "metadata": {}, + "cell_type": "markdown", + "source": "## Regressão Múltipla" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x1 = np.random.uniform(0, 100, size=20000)", + "execution_count": 171, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x2 = np.random.uniform(0, 100, size=20000)", + "execution_count": 172, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x2 = .9*x2+.1*x1", + "execution_count": 173, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "sigma = 5\ny = 10+.4*x1+.7*x2+np.random.normal(loc=0, scale=sigma, size=20000)", + "execution_count": 174, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def my_ols(beta): \n return np.sum((y-beta[0]-beta[1]*x1-beta[2]*x2)**2) ", + "execution_count": 175, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "opt.minimize(my_ols, (10.1, .5, .6), method=\"CG\")", + "execution_count": 176, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 176, + "data": { + "text/plain": " fun: 497096.51526724786\n jac: array([0.09375 , 0.31640625, 0.15625 ])\n message: 'Desired error not necessarily achieved due to precision loss.'\n nfev: 626\n nit: 24\n njev: 123\n status: 2\n success: False\n x: array([9.91014709, 0.4020818 , 0.70068662])" + }, + "metadata": {} + } ] - }, - "execution_count": 186, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "DATA" - ] - }, - { - "cell_type": "code", - "execution_count": 187, - "metadata": {}, - "outputs": [ + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "markdown", + "source": "## OLS with matrices" + }, { - "data": { - "text/plain": [ - "(500, 3)" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import io", + "execution_count": 178, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "DATA = np.loadtxt(\"data/regression.csv\", delimiter=\";\")", + "execution_count": 185, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "DATA", + "execution_count": 186, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 186, + "data": { + "text/plain": "array([[ 19.1503647 , 19.86175115, 37.76143252],\n [ 74.48652608, 36.51600696, 118.1015082 ],\n [ 92.52296518, 65.04593036, 415.2253619 ],\n ...,\n [ 71.10202338, 84.71663564, 470.9957971 ],\n [ 57.05130161, 63.70372631, 382.7933641 ],\n [ 30.32013916, 58.94863735, 200.9883957 ]])" + }, + "metadata": {} + } ] - }, - "execution_count": 187, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "DATA.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 188, - "metadata": {}, - "outputs": [], - "source": [ - "y = DATA[:, 2].reshape(500, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 189, - "metadata": {}, - "outputs": [], - "source": [ - "X = DATA[:, 0:2].reshape(500, 2)" - ] - }, - { - "cell_type": "code", - "execution_count": 192, - "metadata": {}, - "outputs": [], - "source": [ - "c = np.ones(500).reshape(500, 1)\n", - "X = np.concatenate((c, X), axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 193, - "metadata": {}, - "outputs": [], - "source": [ - "def my_ols(y, X):\n", - " \n", - " results = {}\n", - " \n", - " (n, k) = X.shape\n", - " results['n'] = n\n", - " results['k'] = k\n", - " \n", - " beta = np.linalg.inv(X.T @ X) @ X.T @ y\n", - " results['beta'] = beta\n", - " \n", - " e = y - X @ beta\n", - " results['residuas'] = e\n", - " \n", - " SSE = sum([e**2 for e in e])[0]\n", - " results['SSE'] = SSE\n", - " \n", - " sigma = np.sqrt(SSE/(n-k))\n", - " results['sigma'] = sigma\n", - " \n", - " V = sigma**2*np.linalg.inv(X.T @ X)\n", - " results['V'] = V\n", - " \n", - " stderr_beta = np.sqrt(np.diag(V))\n", - " results['stderr_beta'] = stderr_beta\n", - " \n", - " t = beta/stderr_beta\n", - " results['t'] = t\n", - " \n", - " # results['p-values'] = \n", - " \n", - " ybar = np.mean(y)\n", - " SQT = sum([(q-ybar)**2 for q in y])[0]\n", - " results['SQT'] = SQT\n", - " \n", - " results['R2'] = 1-(SSE/SQT)\n", - " \n", - " return results " - ] - }, - { - "cell_type": "code", - "execution_count": 195, - "metadata": {}, - "outputs": [], - "source": [ - "res = my_ols(y, X)" - ] - }, - { - "cell_type": "code", - "execution_count": 196, - "metadata": {}, - "outputs": [ + }, { - "data": { - "text/plain": [ - "{'R2': 0.5985995381650879,\n", - " 'SQT': 9376178.724748027,\n", - " 'SSE': 3763602.4703605347,\n", - " 'V': array([[ 1.15445286e+02, -5.91775326e-01, -1.40469455e+00],\n", - " [-5.91775326e-01, 2.16566265e-02, -1.01166076e-02],\n", - " [-1.40469455e+00, -1.01166076e-02, 3.83194387e-02]]),\n", - " 'beta': array([[46.56424501],\n", - " [ 3.13088995],\n", - " [ 1.65078469]]),\n", - " 'k': 3,\n", - " 'n': 500,\n", - " 'residuas': array([[-101.5479714 ],\n", - " [-221.95191746],\n", - " [ -28.39493021],\n", - " [ -55.33220907],\n", - " [ 46.99151994],\n", - " [ -61.49876145],\n", - " [ -10.97375688],\n", - " [ 56.04286631],\n", - " [-107.07201378],\n", - " [ -22.64234823],\n", - " [ 18.65252702],\n", - " [ 4.20478851],\n", - " [ 58.73792368],\n", - " [ -96.97502295],\n", - " [ -32.86295192],\n", - " [ -20.22262579],\n", - " [ -67.86712849],\n", - " [ 31.87090306],\n", - " [-162.09171263],\n", - " [ -30.01260059],\n", - " [ 11.30891441],\n", - " [ 158.79214349],\n", - " [-114.42340488],\n", - " [ 142.02318218],\n", - " [ -7.57932036],\n", - " [ -6.49910448],\n", - " [ -44.32843848],\n", - " [ 6.77717352],\n", - " [ 27.23886701],\n", - " [ 39.42746732],\n", - " [-125.27544158],\n", - " [-312.31561908],\n", - " [ 35.88072314],\n", - " [-104.09877123],\n", - " [ -79.13277739],\n", - " [ 62.99108447],\n", - " [ -91.41741639],\n", - " [ 18.04156839],\n", - " [ 81.20209596],\n", - " [ 167.03597417],\n", - " [ 42.0640298 ],\n", - " [ 105.40291713],\n", - " [ 16.97150062],\n", - " [ -44.58504449],\n", - " [ 21.74017311],\n", - " [-119.24943519],\n", - " [ 44.37169876],\n", - " [ 46.01439546],\n", - " [ 76.43506709],\n", - " [ -3.24526726],\n", - " [-202.64255128],\n", - " [ 31.20018425],\n", - " [ 189.10460729],\n", - " [ -23.35534431],\n", - " [ 111.06580827],\n", - " [ 122.03248408],\n", - " [ 19.6059557 ],\n", - " [ 85.72600805],\n", - " [ 199.40993468],\n", - " [ -15.16393386],\n", - " [ 30.05152467],\n", - " [ -24.64764002],\n", - " [ -21.39643233],\n", - " [ 109.15564929],\n", - " [ -96.8452832 ],\n", - " [ 10.6165261 ],\n", - " [ 44.98996026],\n", - " [ 17.5538346 ],\n", - " [ 74.99139838],\n", - " [ 57.08109974],\n", - " [-103.42989143],\n", - " [ -54.15445582],\n", - " [ -80.42379658],\n", - " [ 105.22613221],\n", - " [ 17.60163826],\n", - " [ -84.46223973],\n", - " [ 58.74487388],\n", - " [ -98.38843651],\n", - " [ -57.53132956],\n", - " [ -86.94008465],\n", - " [ 74.25321121],\n", - " [ 66.92698085],\n", - " [ -59.01239301],\n", - " [-182.26613088],\n", - " [ -37.75723997],\n", - " [ -28.90642743],\n", - " [ 10.86710065],\n", - " [ 141.34484921],\n", - " [ 93.36643912],\n", - " [ 79.22696845],\n", - " [ -13.49699548],\n", - " [ 31.19637282],\n", - " [ 28.09608592],\n", - " [ 107.61569733],\n", - " [ 85.52565333],\n", - " [ 67.63855529],\n", - " [ 4.370889 ],\n", - " [ 10.2535358 ],\n", - " [-110.85158432],\n", - " [ -99.42686928],\n", - " [ 28.80679849],\n", - " [ -41.13217022],\n", - " [ 82.26697646],\n", - " [ 0.84861706],\n", - " [ -52.83297938],\n", - " [ 104.87647745],\n", - " [ -5.12211887],\n", - " [ 31.24030526],\n", - " [ -49.3991086 ],\n", - " [-120.22473235],\n", - " [ 67.42246154],\n", - " [ 22.78784737],\n", - " [ 62.42370371],\n", - " [ -44.05909589],\n", - " [ 33.27995053],\n", - " [-123.29471171],\n", - " [ -85.16575008],\n", - " [ -75.75880457],\n", - " [ -37.87498583],\n", - " [ -62.96929899],\n", - " [ 101.86481092],\n", - " [ 94.23284647],\n", - " [ 73.07195268],\n", - " [-117.88512509],\n", - " [ 79.72472231],\n", - " [ -64.44538218],\n", - " [ 14.22644226],\n", - " [ -34.61251184],\n", - " [ 85.21693507],\n", - " [ -3.38182631],\n", - " [ 159.57932115],\n", - " [-133.65984906],\n", - " [-220.12187744],\n", - " [ -52.28391002],\n", - " [ -62.61818894],\n", - " [ -63.10637861],\n", - " [ 14.74703647],\n", - " [ -78.82130204],\n", - " [ 10.9336829 ],\n", - " [-108.21194236],\n", - " [ 108.41923868],\n", - " [ -93.71377032],\n", - " [ 105.88677136],\n", - " [ 36.01765966],\n", - " [ -84.08827417],\n", - " [ 79.33084495],\n", - " [ -17.56642068],\n", - " [ 1.61921415],\n", - " [ 52.11176536],\n", - " [ 21.24481943],\n", - " [ -4.83874205],\n", - " [ 34.4028412 ],\n", - " [ -41.1694442 ],\n", - " [ -71.97469513],\n", - " [ -10.5282205 ],\n", - " [ 132.42414377],\n", - " [ -41.14052994],\n", - " [ 93.85825104],\n", - " [ 5.54528063],\n", - " [-102.08421457],\n", - " [-101.2525261 ],\n", - " [ -26.34363365],\n", - " [ -92.82507213],\n", - " [ -95.64195275],\n", - " [ 102.86431787],\n", - " [-125.75170496],\n", - " [ -61.04351189],\n", - " [ 36.53242613],\n", - " [ 63.19604717],\n", - " [-121.94036996],\n", - " [ -29.08640409],\n", - " [ -37.81013073],\n", - " [ 71.66432807],\n", - " [ 139.07554448],\n", - " [ 98.0285007 ],\n", - " [ 13.75349943],\n", - " [ 0.66487986],\n", - " [ 80.80062849],\n", - " [ 149.18500181],\n", - " [-104.23506815],\n", - " [ 35.42054448],\n", - " [ 37.19662996],\n", - " [ 75.85221312],\n", - " [ 47.49472216],\n", - " [ 99.36408343],\n", - " [-124.56424503],\n", - " [-136.76910575],\n", - " [ -21.60461406],\n", - " [ -2.85575289],\n", - " [ 13.40534834],\n", - " [ 6.87101313],\n", - " [-144.10257391],\n", - " [ -13.37941404],\n", - " [ -31.98826158],\n", - " [ 51.15112054],\n", - " [ -56.68792921],\n", - " [ 42.41272565],\n", - " [ -6.59041779],\n", - " [ 64.75262061],\n", - " [ 30.59657478],\n", - " [ 0.70872505],\n", - " [ 34.5089948 ],\n", - " [ 37.74967398],\n", - " [-122.9368161 ],\n", - " [ 51.1430415 ],\n", - " [ 12.74621679],\n", - " [ 109.12818117],\n", - " [ -92.6956237 ],\n", - " [ 1.44006582],\n", - " [ 132.61012448],\n", - " [-112.54238589],\n", - " [ 154.62747078],\n", - " [ -33.22687664],\n", - " [ 106.4492505 ],\n", - " [-137.45651495],\n", - " [ 28.81481772],\n", - " [ -67.06380283],\n", - " [ 23.44887046],\n", - " [ 10.0924554 ],\n", - " [ 114.89782724],\n", - " [ -20.31846722],\n", - " [ 21.73272829],\n", - " [ 149.54119515],\n", - " [ 111.24471443],\n", - " [ 99.48539882],\n", - " [ -35.16836302],\n", - " [-101.03350911],\n", - " [ 5.97295888],\n", - " [ 7.25257305],\n", - " [ 51.40076171],\n", - " [ -30.86662914],\n", - " [ 18.5159811 ],\n", - " [ 23.16362683],\n", - " [-209.4508955 ],\n", - " [ 18.32657647],\n", - " [ -17.78768718],\n", - " [ 123.10046595],\n", - " [ -9.64742725],\n", - " [ 69.10647314],\n", - " [-164.90965008],\n", - " [ 33.90077698],\n", - " [ -8.34156276],\n", - " [ 81.03494855],\n", - " [ -91.18612226],\n", - " [ -25.95547259],\n", - " [ -57.68636868],\n", - " [ 52.21787164],\n", - " [ -79.80093395],\n", - " [ -96.93575685],\n", - " [ 40.20106337],\n", - " [ -84.97110081],\n", - " [-176.65211321],\n", - " [ 8.84422442],\n", - " [ 46.25082615],\n", - " [ -78.30918897],\n", - " [-160.69327075],\n", - " [ 11.4988301 ],\n", - " [ -68.91145975],\n", - " [ 159.72108347],\n", - " [ -96.1293634 ],\n", - " [ 93.29661842],\n", - " [ -3.34290725],\n", - " [ -44.37403604],\n", - " [ 72.78003375],\n", - " [ 58.9726092 ],\n", - " [-120.2722184 ],\n", - " [ -10.23962428],\n", - " [ -15.23178661],\n", - " [ -72.45067441],\n", - " [ -24.58103381],\n", - " [ -52.95582732],\n", - " [ -32.68445947],\n", - " [ 22.92107052],\n", - " [ 58.30793965],\n", - " [ -1.94134787],\n", - " [-195.81366884],\n", - " [ -68.38699782],\n", - " [-133.16039657],\n", - " [ 176.34274647],\n", - " [ 119.58028278],\n", - " [ -11.16733305],\n", - " [ -36.53320335],\n", - " [ -29.89061742],\n", - " [ -8.5470335 ],\n", - " [ 253.78529229],\n", - " [ 73.91284241],\n", - " [ -56.34987242],\n", - " [ -7.53272516],\n", - " [ 32.47293837],\n", - " [ 45.3525632 ],\n", - " [ -62.21617915],\n", - " [ 12.03373577],\n", - " [ 71.69315111],\n", - " [ 51.26931421],\n", - " [ 82.19307397],\n", - " [-161.8850339 ],\n", - " [ 65.16107598],\n", - " [ 55.05160744],\n", - " [ 132.12975865],\n", - " [ -7.72943068],\n", - " [ 115.02356431],\n", - " [ 62.30344601],\n", - " [ 85.52811036],\n", - " [-146.2041484 ],\n", - " [-114.01867649],\n", - " [-146.59243508],\n", - " [ 24.68708032],\n", - " [-166.22366955],\n", - " [ 21.05365449],\n", - " [-135.30194749],\n", - " [ 128.71733593],\n", - " [ 139.90881929],\n", - " [ 84.5286062 ],\n", - " [ -18.7346335 ],\n", - " [-162.76454329],\n", - " [ -83.63409885],\n", - " [ -34.3897405 ],\n", - " [ -2.30820206],\n", - " [-142.94615367],\n", - " [ 143.00421992],\n", - " [ -30.33643127],\n", - " [ 0.70105601],\n", - " [ -81.80772148],\n", - " [ -52.18366292],\n", - " [ 131.82395509],\n", - " [ 116.4002786 ],\n", - " [ 87.21203659],\n", - " [ 55.19493985],\n", - " [ 0.73477336],\n", - " [ 59.55495105],\n", - " [ 154.46364059],\n", - " [-225.37742167],\n", - " [ 100.21140938],\n", - " [ -98.4036096 ],\n", - " [ 52.63610646],\n", - " [ 11.21453164],\n", - " [ 71.22375439],\n", - " [ -20.14484612],\n", - " [ -86.31817529],\n", - " [ 81.97505105],\n", - " [ 145.00287557],\n", - " [ -27.14528074],\n", - " [ -35.40432235],\n", - " [-138.65037835],\n", - " [ -50.8112898 ],\n", - " [ 8.05796719],\n", - " [ -86.45810587],\n", - " [ -99.40024209],\n", - " [ 54.44078033],\n", - " [ 13.20265305],\n", - " [ -83.12674952],\n", - " [ 54.23072453],\n", - " [ 142.61263906],\n", - " [ -94.10693382],\n", - " [ -51.6455085 ],\n", - " [-167.74786399],\n", - " [ -14.9176615 ],\n", - " [ 124.56501798],\n", - " [-147.92842575],\n", - " [-123.26242741],\n", - " [ 67.91845291],\n", - " [ 85.94901879],\n", - " [ 56.8292938 ],\n", - " [ 36.38058081],\n", - " [ 2.50780512],\n", - " [ 30.39006654],\n", - " [ 127.20394344],\n", - " [-117.73165514],\n", - " [ -2.91657795],\n", - " [ 130.09466648],\n", - " [ -65.3558783 ],\n", - " [ -77.74367354],\n", - " [ -93.52577826],\n", - " [ 22.82638954],\n", - " [ 97.91688948],\n", - " [ 53.87450743],\n", - " [ 13.75402425],\n", - " [ -28.26171893],\n", - " [ -99.63714579],\n", - " [ 16.60563733],\n", - " [ 69.64217385],\n", - " [ -48.15398647],\n", - " [-118.63089411],\n", - " [ 111.87660506],\n", - " [ 24.72343764],\n", - " [ -78.08036474],\n", - " [ -33.88756366],\n", - " [ 33.82069537],\n", - " [ 93.46996659],\n", - " [-247.63913812],\n", - " [ 125.80897024],\n", - " [ 89.26976925],\n", - " [ -3.17516635],\n", - " [ 6.49234628],\n", - " [ 50.69214318],\n", - " [ -96.48176485],\n", - " [ 64.27828339],\n", - " [ 45.58814614],\n", - " [ -57.13311006],\n", - " [ -9.63702525],\n", - " [ 97.76026444],\n", - " [ 9.9760717 ],\n", - " [ -61.11679856],\n", - " [-172.90145046],\n", - " [ 28.449908 ],\n", - " [ 27.95965117],\n", - " [ 97.41121182],\n", - " [-111.4052245 ],\n", - " [ 24.42075129],\n", - " [ -6.03706554],\n", - " [ 19.2155579 ],\n", - " [ 79.78392442],\n", - " [ 63.53156487],\n", - " [ -30.25166355],\n", - " [ 133.04310397],\n", - " [-148.69858107],\n", - " [ 29.30858162],\n", - " [ 202.30977745],\n", - " [ -8.43015243],\n", - " [ -78.15001325],\n", - " [ -3.32114832],\n", - " [ 71.20823193],\n", - " [ 49.14825274],\n", - " [ -12.91143505],\n", - " [ 17.58689208],\n", - " [ -32.32333969],\n", - " [ 68.64015904],\n", - " [ -18.49234881],\n", - " [-155.71407156],\n", - " [ -53.08093331],\n", - " [ -40.04314427],\n", - " [ -96.77421987],\n", - " [ 75.09998225],\n", - " [-142.26316309],\n", - " [ 144.07657567],\n", - " [ -0.9142981 ],\n", - " [ -46.88141109],\n", - " [ 104.18149192],\n", - " [ -7.3838574 ],\n", - " [ 122.98792883],\n", - " [ -25.1067871 ],\n", - " [ -38.86438531],\n", - " [ -29.94311814],\n", - " [ -20.84379604],\n", - " [ -45.63977493],\n", - " [ 120.47849375],\n", - " [ 54.38004088],\n", - " [ -4.38531758],\n", - " [ -33.28213529],\n", - " [ 83.76194741],\n", - " [ 141.38514588],\n", - " [ 66.76231509],\n", - " [-122.11997948],\n", - " [ -34.56647166],\n", - " [ 6.10989168],\n", - " [-281.5787354 ],\n", - " [ 176.19837602],\n", - " [ 44.85378175],\n", - " [ 88.58657353],\n", - " [ 33.0908565 ],\n", - " [ -38.92066434],\n", - " [ 21.62952278],\n", - " [ -4.22175343],\n", - " [ -60.49997326],\n", - " [-109.4640204 ],\n", - " [ -60.48590219],\n", - " [ -27.57076231],\n", - " [ 62.39724201],\n", - " [ 61.39945488],\n", - " [-117.07550313],\n", - " [ 31.65153877],\n", - " [ 20.12100501],\n", - " [ 85.92539889],\n", - " [ -61.86124012],\n", - " [ 61.49792896],\n", - " [ 165.73461627],\n", - " [ 37.26269992],\n", - " [ -21.53092624],\n", - " [ -65.38451959],\n", - " [ -68.93437777],\n", - " [ -99.90633439],\n", - " [ 160.65240439],\n", - " [ -5.26000289],\n", - " [ 72.74214152],\n", - " [ 85.47600172],\n", - " [ -75.87006958],\n", - " [ -82.28498281],\n", - " [ -53.84139672],\n", - " [ 32.14703738],\n", - " [ 111.38677626],\n", - " [ -36.82556496],\n", - " [ 207.45035291],\n", - " [ -75.70162734],\n", - " [ -9.97591029],\n", - " [ 104.25785348],\n", - " [ 39.10952468],\n", - " [ 35.37869775],\n", - " [ 61.97001728],\n", - " [ 52.44663671],\n", - " [ -37.8163759 ]]),\n", - " 'sigma': 87.02092153863731,\n", - " 'stderr_beta': array([10.74454682, 0.14716191, 0.19575352]),\n", - " 't': array([[4.33375607e+00, 3.16415072e+02, 2.37871820e+02],\n", - " [2.91393392e-01, 2.12751386e+01, 1.59940420e+01],\n", - " [1.53639303e-01, 1.12174729e+01, 8.43297595e+00]])}" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "DATA.shape", + "execution_count": 187, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 187, + "data": { + "text/plain": "(500, 3)" + }, + "metadata": {} + } ] - }, - "execution_count": 196, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "res" - ] - }, - { - "cell_type": "code", - "execution_count": 197, - "metadata": {}, - "outputs": [ + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "y = DATA[:, 2].reshape(500, 1)", + "execution_count": 188, + "outputs": [] + }, { - "data": { - "text/plain": [ - "0.5985995381650879" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "X = DATA[:, 0:2].reshape(500, 2)", + "execution_count": 189, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "c = np.ones(500).reshape(500, 1)\nX = np.concatenate((c, X), axis=1)", + "execution_count": 192, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def my_ols(y, X):\n \n results = {}\n \n (n, k) = X.shape\n results['n'] = n\n results['k'] = k\n \n beta = np.linalg.inv(X.T @ X) @ X.T @ y\n results['beta'] = beta\n \n e = y - X @ beta\n results['residuas'] = e\n \n SSE = sum([e**2 for e in e])[0]\n results['SSE'] = SSE\n \n sigma = np.sqrt(SSE/(n-k))\n results['sigma'] = sigma\n \n V = sigma**2*np.linalg.inv(X.T @ X)\n results['V'] = V\n \n stderr_beta = np.sqrt(np.diag(V))\n results['stderr_beta'] = stderr_beta\n \n t = beta/stderr_beta\n results['t'] = t\n \n # results['p-values'] = \n \n ybar = np.mean(y)\n SQT = sum([(q-ybar)**2 for q in y])[0]\n results['SQT'] = SQT\n \n results['R2'] = 1-(SSE/SQT)\n \n return results ", + "execution_count": 193, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "res = my_ols(y, X)", + "execution_count": 195, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "res", + "execution_count": 196, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 196, + "data": { + "text/plain": "{'R2': 0.5985995381650879,\n 'SQT': 9376178.724748027,\n 'SSE': 3763602.4703605347,\n 'V': array([[ 1.15445286e+02, -5.91775326e-01, -1.40469455e+00],\n [-5.91775326e-01, 2.16566265e-02, -1.01166076e-02],\n [-1.40469455e+00, -1.01166076e-02, 3.83194387e-02]]),\n 'beta': array([[46.56424501],\n [ 3.13088995],\n [ 1.65078469]]),\n 'k': 3,\n 'n': 500,\n 'residuas': array([[-101.5479714 ],\n [-221.95191746],\n [ -28.39493021],\n [ -55.33220907],\n [ 46.99151994],\n [ -61.49876145],\n [ -10.97375688],\n [ 56.04286631],\n [-107.07201378],\n [ -22.64234823],\n [ 18.65252702],\n [ 4.20478851],\n [ 58.73792368],\n [ -96.97502295],\n [ -32.86295192],\n [ -20.22262579],\n [ -67.86712849],\n [ 31.87090306],\n [-162.09171263],\n [ -30.01260059],\n [ 11.30891441],\n [ 158.79214349],\n [-114.42340488],\n [ 142.02318218],\n [ -7.57932036],\n [ -6.49910448],\n [ -44.32843848],\n [ 6.77717352],\n [ 27.23886701],\n [ 39.42746732],\n [-125.27544158],\n [-312.31561908],\n [ 35.88072314],\n [-104.09877123],\n [ -79.13277739],\n [ 62.99108447],\n [ -91.41741639],\n [ 18.04156839],\n [ 81.20209596],\n [ 167.03597417],\n [ 42.0640298 ],\n [ 105.40291713],\n [ 16.97150062],\n [ -44.58504449],\n [ 21.74017311],\n [-119.24943519],\n [ 44.37169876],\n [ 46.01439546],\n [ 76.43506709],\n [ -3.24526726],\n [-202.64255128],\n [ 31.20018425],\n [ 189.10460729],\n [ -23.35534431],\n [ 111.06580827],\n [ 122.03248408],\n [ 19.6059557 ],\n [ 85.72600805],\n [ 199.40993468],\n [ -15.16393386],\n [ 30.05152467],\n [ -24.64764002],\n [ -21.39643233],\n [ 109.15564929],\n [ -96.8452832 ],\n [ 10.6165261 ],\n [ 44.98996026],\n [ 17.5538346 ],\n [ 74.99139838],\n [ 57.08109974],\n [-103.42989143],\n [ -54.15445582],\n [ -80.42379658],\n [ 105.22613221],\n [ 17.60163826],\n [ -84.46223973],\n [ 58.74487388],\n [ -98.38843651],\n [ -57.53132956],\n [ -86.94008465],\n [ 74.25321121],\n [ 66.92698085],\n [ -59.01239301],\n [-182.26613088],\n [ -37.75723997],\n [ -28.90642743],\n [ 10.86710065],\n [ 141.34484921],\n [ 93.36643912],\n [ 79.22696845],\n [ -13.49699548],\n [ 31.19637282],\n [ 28.09608592],\n [ 107.61569733],\n [ 85.52565333],\n [ 67.63855529],\n [ 4.370889 ],\n [ 10.2535358 ],\n [-110.85158432],\n [ -99.42686928],\n [ 28.80679849],\n [ -41.13217022],\n [ 82.26697646],\n [ 0.84861706],\n [ -52.83297938],\n [ 104.87647745],\n [ -5.12211887],\n [ 31.24030526],\n [ -49.3991086 ],\n [-120.22473235],\n [ 67.42246154],\n [ 22.78784737],\n [ 62.42370371],\n [ -44.05909589],\n [ 33.27995053],\n [-123.29471171],\n [ -85.16575008],\n [ -75.75880457],\n [ -37.87498583],\n [ -62.96929899],\n [ 101.86481092],\n [ 94.23284647],\n [ 73.07195268],\n [-117.88512509],\n [ 79.72472231],\n [ -64.44538218],\n [ 14.22644226],\n [ -34.61251184],\n [ 85.21693507],\n [ -3.38182631],\n [ 159.57932115],\n [-133.65984906],\n [-220.12187744],\n [ -52.28391002],\n [ -62.61818894],\n [ -63.10637861],\n [ 14.74703647],\n [ -78.82130204],\n [ 10.9336829 ],\n [-108.21194236],\n [ 108.41923868],\n [ -93.71377032],\n [ 105.88677136],\n [ 36.01765966],\n [ -84.08827417],\n [ 79.33084495],\n [ -17.56642068],\n [ 1.61921415],\n [ 52.11176536],\n [ 21.24481943],\n [ -4.83874205],\n [ 34.4028412 ],\n [ -41.1694442 ],\n [ -71.97469513],\n [ -10.5282205 ],\n [ 132.42414377],\n [ -41.14052994],\n [ 93.85825104],\n [ 5.54528063],\n [-102.08421457],\n [-101.2525261 ],\n [ -26.34363365],\n [ -92.82507213],\n [ -95.64195275],\n [ 102.86431787],\n [-125.75170496],\n [ -61.04351189],\n [ 36.53242613],\n [ 63.19604717],\n [-121.94036996],\n [ -29.08640409],\n [ -37.81013073],\n [ 71.66432807],\n [ 139.07554448],\n [ 98.0285007 ],\n [ 13.75349943],\n [ 0.66487986],\n [ 80.80062849],\n [ 149.18500181],\n [-104.23506815],\n [ 35.42054448],\n [ 37.19662996],\n [ 75.85221312],\n [ 47.49472216],\n [ 99.36408343],\n [-124.56424503],\n [-136.76910575],\n [ -21.60461406],\n [ -2.85575289],\n [ 13.40534834],\n [ 6.87101313],\n [-144.10257391],\n [ -13.37941404],\n [ -31.98826158],\n [ 51.15112054],\n [ -56.68792921],\n [ 42.41272565],\n [ -6.59041779],\n [ 64.75262061],\n [ 30.59657478],\n [ 0.70872505],\n [ 34.5089948 ],\n [ 37.74967398],\n [-122.9368161 ],\n [ 51.1430415 ],\n [ 12.74621679],\n [ 109.12818117],\n [ -92.6956237 ],\n [ 1.44006582],\n [ 132.61012448],\n [-112.54238589],\n [ 154.62747078],\n [ -33.22687664],\n [ 106.4492505 ],\n [-137.45651495],\n [ 28.81481772],\n [ -67.06380283],\n [ 23.44887046],\n [ 10.0924554 ],\n [ 114.89782724],\n [ -20.31846722],\n [ 21.73272829],\n [ 149.54119515],\n [ 111.24471443],\n [ 99.48539882],\n [ -35.16836302],\n [-101.03350911],\n [ 5.97295888],\n [ 7.25257305],\n [ 51.40076171],\n [ -30.86662914],\n [ 18.5159811 ],\n [ 23.16362683],\n [-209.4508955 ],\n [ 18.32657647],\n [ -17.78768718],\n [ 123.10046595],\n [ -9.64742725],\n [ 69.10647314],\n [-164.90965008],\n [ 33.90077698],\n [ -8.34156276],\n [ 81.03494855],\n [ -91.18612226],\n [ -25.95547259],\n [ -57.68636868],\n [ 52.21787164],\n [ -79.80093395],\n [ -96.93575685],\n [ 40.20106337],\n [ -84.97110081],\n [-176.65211321],\n [ 8.84422442],\n [ 46.25082615],\n [ -78.30918897],\n [-160.69327075],\n [ 11.4988301 ],\n [ -68.91145975],\n [ 159.72108347],\n [ -96.1293634 ],\n [ 93.29661842],\n [ -3.34290725],\n [ -44.37403604],\n [ 72.78003375],\n [ 58.9726092 ],\n [-120.2722184 ],\n [ -10.23962428],\n [ -15.23178661],\n [ -72.45067441],\n [ -24.58103381],\n [ -52.95582732],\n [ -32.68445947],\n [ 22.92107052],\n [ 58.30793965],\n [ -1.94134787],\n [-195.81366884],\n [ -68.38699782],\n [-133.16039657],\n [ 176.34274647],\n [ 119.58028278],\n [ -11.16733305],\n [ -36.53320335],\n [ -29.89061742],\n [ -8.5470335 ],\n [ 253.78529229],\n [ 73.91284241],\n [ -56.34987242],\n [ -7.53272516],\n [ 32.47293837],\n [ 45.3525632 ],\n [ -62.21617915],\n [ 12.03373577],\n [ 71.69315111],\n [ 51.26931421],\n [ 82.19307397],\n [-161.8850339 ],\n [ 65.16107598],\n [ 55.05160744],\n [ 132.12975865],\n [ -7.72943068],\n [ 115.02356431],\n [ 62.30344601],\n [ 85.52811036],\n [-146.2041484 ],\n [-114.01867649],\n [-146.59243508],\n [ 24.68708032],\n [-166.22366955],\n [ 21.05365449],\n [-135.30194749],\n [ 128.71733593],\n [ 139.90881929],\n [ 84.5286062 ],\n [ -18.7346335 ],\n [-162.76454329],\n [ -83.63409885],\n [ -34.3897405 ],\n [ -2.30820206],\n [-142.94615367],\n [ 143.00421992],\n [ -30.33643127],\n [ 0.70105601],\n [ -81.80772148],\n [ -52.18366292],\n [ 131.82395509],\n [ 116.4002786 ],\n [ 87.21203659],\n [ 55.19493985],\n [ 0.73477336],\n [ 59.55495105],\n [ 154.46364059],\n [-225.37742167],\n [ 100.21140938],\n [ -98.4036096 ],\n [ 52.63610646],\n [ 11.21453164],\n [ 71.22375439],\n [ -20.14484612],\n [ -86.31817529],\n [ 81.97505105],\n [ 145.00287557],\n [ -27.14528074],\n [ -35.40432235],\n [-138.65037835],\n [ -50.8112898 ],\n [ 8.05796719],\n [ -86.45810587],\n [ -99.40024209],\n [ 54.44078033],\n [ 13.20265305],\n [ -83.12674952],\n [ 54.23072453],\n [ 142.61263906],\n [ -94.10693382],\n [ -51.6455085 ],\n [-167.74786399],\n [ -14.9176615 ],\n [ 124.56501798],\n [-147.92842575],\n [-123.26242741],\n [ 67.91845291],\n [ 85.94901879],\n [ 56.8292938 ],\n [ 36.38058081],\n [ 2.50780512],\n [ 30.39006654],\n [ 127.20394344],\n [-117.73165514],\n [ -2.91657795],\n [ 130.09466648],\n [ -65.3558783 ],\n [ -77.74367354],\n [ -93.52577826],\n [ 22.82638954],\n [ 97.91688948],\n [ 53.87450743],\n [ 13.75402425],\n [ -28.26171893],\n [ -99.63714579],\n [ 16.60563733],\n [ 69.64217385],\n [ -48.15398647],\n [-118.63089411],\n [ 111.87660506],\n [ 24.72343764],\n [ -78.08036474],\n [ -33.88756366],\n [ 33.82069537],\n [ 93.46996659],\n [-247.63913812],\n [ 125.80897024],\n [ 89.26976925],\n [ -3.17516635],\n [ 6.49234628],\n [ 50.69214318],\n [ -96.48176485],\n [ 64.27828339],\n [ 45.58814614],\n [ -57.13311006],\n [ -9.63702525],\n [ 97.76026444],\n [ 9.9760717 ],\n [ -61.11679856],\n [-172.90145046],\n [ 28.449908 ],\n [ 27.95965117],\n [ 97.41121182],\n [-111.4052245 ],\n [ 24.42075129],\n [ -6.03706554],\n [ 19.2155579 ],\n [ 79.78392442],\n [ 63.53156487],\n [ -30.25166355],\n [ 133.04310397],\n [-148.69858107],\n [ 29.30858162],\n [ 202.30977745],\n [ -8.43015243],\n [ -78.15001325],\n [ -3.32114832],\n [ 71.20823193],\n [ 49.14825274],\n [ -12.91143505],\n [ 17.58689208],\n [ -32.32333969],\n [ 68.64015904],\n [ -18.49234881],\n [-155.71407156],\n [ -53.08093331],\n [ -40.04314427],\n [ -96.77421987],\n [ 75.09998225],\n [-142.26316309],\n [ 144.07657567],\n [ -0.9142981 ],\n [ -46.88141109],\n [ 104.18149192],\n [ -7.3838574 ],\n [ 122.98792883],\n [ -25.1067871 ],\n [ -38.86438531],\n [ -29.94311814],\n [ -20.84379604],\n [ -45.63977493],\n [ 120.47849375],\n [ 54.38004088],\n [ -4.38531758],\n [ -33.28213529],\n [ 83.76194741],\n [ 141.38514588],\n [ 66.76231509],\n [-122.11997948],\n [ -34.56647166],\n [ 6.10989168],\n [-281.5787354 ],\n [ 176.19837602],\n [ 44.85378175],\n [ 88.58657353],\n [ 33.0908565 ],\n [ -38.92066434],\n [ 21.62952278],\n [ -4.22175343],\n [ -60.49997326],\n [-109.4640204 ],\n [ -60.48590219],\n [ -27.57076231],\n [ 62.39724201],\n [ 61.39945488],\n [-117.07550313],\n [ 31.65153877],\n [ 20.12100501],\n [ 85.92539889],\n [ -61.86124012],\n [ 61.49792896],\n [ 165.73461627],\n [ 37.26269992],\n [ -21.53092624],\n [ -65.38451959],\n [ -68.93437777],\n [ -99.90633439],\n [ 160.65240439],\n [ -5.26000289],\n [ 72.74214152],\n [ 85.47600172],\n [ -75.87006958],\n [ -82.28498281],\n [ -53.84139672],\n [ 32.14703738],\n [ 111.38677626],\n [ -36.82556496],\n [ 207.45035291],\n [ -75.70162734],\n [ -9.97591029],\n [ 104.25785348],\n [ 39.10952468],\n [ 35.37869775],\n [ 61.97001728],\n [ 52.44663671],\n [ -37.8163759 ]]),\n 'sigma': 87.02092153863731,\n 'stderr_beta': array([10.74454682, 0.14716191, 0.19575352]),\n 't': array([[4.33375607e+00, 3.16415072e+02, 2.37871820e+02],\n [2.91393392e-01, 2.12751386e+01, 1.59940420e+01],\n [1.53639303e-01, 1.12174729e+01, 8.43297595e+00]])}" + }, + "metadata": {} + } ] - }, - "execution_count": 197, - "metadata": {}, - "output_type": "execute_result" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "res['R2']", + "execution_count": 197, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 197, + "data": { + "text/plain": "0.5985995381650879" + }, + "metadata": {} + } + ] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "", + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "language_info": { + "mimetype": "text/x-python", + "nbconvert_exporter": "python", + "name": "python", + "pygments_lexer": "ipython3", + "version": "3.5.4", + "file_extension": ".py", + "codemirror_mode": { + "version": 3, + "name": "ipython" + } } - ], - "source": [ - "res['R2']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-II.ipynb" "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-II.ipynb" old mode 100644 new mode 100755 index 3900c73..d051859 --- "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-II.ipynb" +++ "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-II.ipynb" @@ -1,665 +1,539 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Optimization with equality constraints" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import math\n", - "import numpy as np\n", - "from scipy import optimize as opt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "maximize $.4\\,\\log(x_1)+.6\\,\\log(x_2)$ s.t. $x_1+3\\,x_2=50$." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "I = 50\n", - "p = np.array([1, 3])" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "U = lambda x: (.4*math.log(x[0])+.6*math.log(x[1]))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "x0 = (I/len(p))/np.array(p)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "budget = ({'type': 'eq', 'fun': lambda x: I-np.sum(np.multiply(x, p))})" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization terminated successfully. (Exit mode 0)\n", - " Current function value: -2.5798439652115133\n", - " Iterations: 8\n", - " Function evaluations: 32\n", - " Gradient evaluations: 8\n" - ] - }, - { - "data": { - "text/plain": [ - " fun: -2.5798439652115133\n", - " jac: array([-0.01999989, -0.06000018])\n", - " message: 'Optimization terminated successfully.'\n", - " nfev: 32\n", - " nit: 8\n", - " njev: 8\n", - " status: 0\n", - " success: True\n", - " x: array([20.00008839, 9.99997054])" + "cells": [ + { + "metadata": {}, + "cell_type": "markdown", + "source": "# Optimization with equality constraints" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import math\nimport numpy as np\nfrom scipy import optimize as opt", + "execution_count": 1, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "maximize $.4\\,\\log(x_1)+.6\\,\\log(x_2)$ s.t. $x_1+3\\,x_2=50$." + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "I = 50\np = np.array([1, 3])", + "execution_count": 2, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "U = lambda x: (.4*math.log(x[0])+.6*math.log(x[1]))", + "execution_count": 3, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x0 = (I/len(p))/np.array(p)", + "execution_count": 6, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "budget = ({'type': 'eq', 'fun': lambda x: I-np.sum(np.multiply(x, p))})", + "execution_count": 8, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "opt.minimize(lambda x: -U(x), x0, method='SLSQP', constraints=budget, tol=1e-08, \n options={'disp': True, 'ftol': 1e-08})", + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": "Optimization terminated successfully. (Exit mode 0)\n Current function value: -2.5798439652115133\n Iterations: 8\n Function evaluations: 32\n Gradient evaluations: 8\n", + "name": "stdout" + }, + { + "output_type": "execute_result", + "execution_count": 9, + "data": { + "text/plain": " fun: -2.5798439652115133\n jac: array([-0.01999989, -0.06000018])\n message: 'Optimization terminated successfully.'\n nfev: 32\n nit: 8\n njev: 8\n status: 0\n success: True\n x: array([20.00008839, 9.99997054])" + }, + "metadata": {} + } ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "opt.minimize(lambda x: -U(x), x0, method='SLSQP', constraints=budget, tol=1e-08, \n", - " options={'disp': True, 'ftol': 1e-08})" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "def consumer(U, p, I):\n", - " budget = ({'type': 'eq', 'fun': lambda x: I-np.sum(np.multiply(x, p))})\n", - " x0 = (I/len(p))/np.array(p)\n", - " sol = opt.minimize(lambda x: -U(x), x0, method='SLSQP', constraints=budget, tol=1e-08, \n", - " options={'disp': False, 'ftol': 1e-08})\n", - " if sol.status == 0:\n", - " return {'x': sol.x, 'V': -sol.fun, 'MgU': -sol.jac, 'mult': -sol.jac[0]/p[0]}\n", - " else:\n", - " return 0" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'MgU': array([0.01999989, 0.06000018]),\n", - " 'V': 2.5798439652115133,\n", - " 'mult': 0.01999989151954651,\n", - " 'x': array([20.00008839, 9.99997054])}" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def consumer(U, p, I):\n budget = ({'type': 'eq', 'fun': lambda x: I-np.sum(np.multiply(x, p))})\n x0 = (I/len(p))/np.array(p)\n sol = opt.minimize(lambda x: -U(x), x0, method='SLSQP', constraints=budget, tol=1e-08, \n options={'disp': False, 'ftol': 1e-08})\n if sol.status == 0:\n return {'x': sol.x, 'V': -sol.fun, 'MgU': -sol.jac, 'mult': -sol.jac[0]/p[0]}\n else:\n return 0", + "execution_count": 16, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "consumer(U, p, I)", + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 19, + "data": { + "text/plain": "{'MgU': array([0.01999989, 0.06000018]),\n 'V': 2.5798439652115133,\n 'mult': 0.01999989151954651,\n 'x': array([20.00008839, 9.99997054])}" + }, + "metadata": {} + } ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "consumer(U, p, I)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "delta=.01" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.020000000351583225" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "delta=.01", + "execution_count": 14, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "(consumer(U, p, I+delta)['V']-consumer(U, p, I-delta)['V'])/(2*delta)", + "execution_count": 17, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 17, + "data": { + "text/plain": "0.020000000351583225" + }, + "metadata": {} + } ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(consumer(U, p, I+delta)['V']-consumer(U, p, I-delta)['V'])/(2*delta)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "delta=.001" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "numerador = (consumer(U,p+np.array([delta, 0]), I)['V']-consumer(U,p+np.array([-delta, 0]), I)['V'])/(2*delta)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "denominador = (consumer(U, p, I+delta)['V']-consumer(U, p, I-delta)['V'])/(2*delta)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "20.000666372514335" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "delta=.001", + "execution_count": null, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "numerador = (consumer(U,p+np.array([delta, 0]), I)['V']-consumer(U,p+np.array([-delta, 0]), I)['V'])/(2*delta)", + "execution_count": 20, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "denominador = (consumer(U, p, I+delta)['V']-consumer(U, p, I-delta)['V'])/(2*delta)", + "execution_count": 21, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "-numerador/denominador", + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 22, + "data": { + "text/plain": "20.000666372514335" + }, + "metadata": {} + } ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "-numerador/denominador" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Cost function" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "# Production function\n", - "F = lambda x: (x[0]**.8)*(x[1]**.2)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "w = np.array([5, 4])" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "y = 1" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "constraint = ({'type': 'eq', 'fun': lambda x: y-F(x)})" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "x0 = np.array([.5, .5])" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization terminated successfully. (Exit mode 0)\n", - " Current function value: 7.886966805999761\n", - " Iterations: 8\n", - " Function evaluations: 33\n", - " Gradient evaluations: 8\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/nbuser/anaconda3_420/lib/python3.5/site-packages/ipykernel/__main__.py:2: RuntimeWarning: invalid value encountered in double_scalars\n", - " from ipykernel import kernelapp as app\n" - ] - } - ], - "source": [ - "cost = opt.minimize(lambda x: w@x, x0, method='SLSQP', constraints=constraint, tol=1e-08, \n", - " options={'disp': True, 'ftol': 1e-08})" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.9999999999996633" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Cost function" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# Production function\nF = lambda x: (x[0]**.8)*(x[1]**.2)", + "execution_count": 23, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "w = np.array([5, 4])", + "execution_count": 24, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "y = 1", + "execution_count": 25, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "constraint = ({'type': 'eq', 'fun': lambda x: y-F(x)})", + "execution_count": 26, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x0 = np.array([.5, .5])", + "execution_count": 30, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "cost = opt.minimize(lambda x: w@x, x0, method='SLSQP', constraints=constraint, tol=1e-08, \n options={'disp': True, 'ftol': 1e-08})", + "execution_count": 31, + "outputs": [ + { + "output_type": "stream", + "text": "Optimization terminated successfully. (Exit mode 0)\n Current function value: 7.886966805999761\n Iterations: 8\n Function evaluations: 33\n Gradient evaluations: 8\n", + "name": "stdout" + }, + { + "output_type": "stream", + "text": "/home/nbuser/anaconda3_420/lib/python3.5/site-packages/ipykernel/__main__.py:2: RuntimeWarning: invalid value encountered in double_scalars\n from ipykernel import kernelapp as app\n", + "name": "stderr" + } ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "F(cost.x)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - " fun: 7.886966805999761\n", - " jac: array([5., 4.])\n", - " message: 'Optimization terminated successfully.'\n", - " nfev: 33\n", - " nit: 8\n", - " njev: 8\n", - " status: 0\n", - " success: True\n", - " x: array([1.26191469, 0.39434834])" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "F(cost.x)", + "execution_count": 33, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 33, + "data": { + "text/plain": "0.9999999999996633" + }, + "metadata": {} + } ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "cost" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exercise" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "a = 2\n", - "u = lambda c: -np.exp(-a*c)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "R = 2\n", - "Z2 = np.array([.72, .92, 1.12, 1.32])\n", - "Z3 = np.array([.86, .96, 1.06, 1.16])" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "def U(x):\n", - " states = len(Z2)*len(Z3)\n", - " U = u(x[0])\n", - " \n", - " for z2 in Z2:\n", - " for z3 in Z3:\n", - " U += (1/states)*u(x[1]*R+x[2]*z2+x[3]*z3)\n", - " \n", - " return U" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "p = np.array([1, 1, .5, .5])\n", - "I = 4" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'MgU': array([0.08731231, 0.08730633, 0.04365353, 0.04365407]),\n", - " 'V': -0.13096546963056768,\n", - " 'mult': 0.08731230534613132,\n", - " 'x': array([2.43826386, 0.96156249, 0.40056072, 0.79978658])}" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "cost", + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 34, + "data": { + "text/plain": " fun: 7.886966805999761\n jac: array([5., 4.])\n message: 'Optimization terminated successfully.'\n nfev: 33\n nit: 8\n njev: 8\n status: 0\n success: True\n x: array([1.26191469, 0.39434834])" + }, + "metadata": {} + } ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# a=1\n", - "consumer(U, p, I)" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'MgU': array([1.46733761e-05, 1.62503376e-05, 6.30933317e-06, 7.55005789e-06]),\n", - " 'V': -4.5597092009686085e-06,\n", - " 'mult': 1.467337608573871e-05,\n", - " 'x': array([ 2.54778275, -0.03185392, 1.48407021, 1.48407214])}" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Exercise" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "a = 2\nu = lambda c: -np.exp(-a*c)", + "execution_count": 15, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "R = 2\nZ2 = np.array([.72, .92, 1.12, 1.32])\nZ3 = np.array([.86, .96, 1.06, 1.16])", + "execution_count": 37, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def U(x):\n states = len(Z2)*len(Z3)\n U = u(x[0])\n \n for z2 in Z2:\n for z3 in Z3:\n U += (1/states)*u(x[1]*R+x[2]*z2+x[3]*z3)\n \n return U", + "execution_count": 57, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "p = np.array([1, 1, .5, .5])\nI = 4", + "execution_count": 35, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# a=1\nconsumer(U, p, I)", + "execution_count": 39, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 39, + "data": { + "text/plain": "{'MgU': array([0.08731231, 0.08730633, 0.04365353, 0.04365407]),\n 'V': -0.13096546963056768,\n 'mult': 0.08731230534613132,\n 'x': array([2.43826386, 0.96156249, 0.40056072, 0.79978658])}" + }, + "metadata": {} + } ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# a=5\n", - "consumer(U, p, I)" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'MgU': array([0.01213578, 0.01212819, 0.00606456, 0.00606509]),\n", - " 'V': -0.009099936642525175,\n", - " 'mult': 0.012135779834352434,\n", - " 'x': array([2.55237217, 1.15077956, 0.19958579, 0.39411074])}" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# a=5\nconsumer(U, p, I)", + "execution_count": 55, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 55, + "data": { + "text/plain": "{'MgU': array([1.46733761e-05, 1.62503376e-05, 6.30933317e-06, 7.55005789e-06]),\n 'V': -4.5597092009686085e-06,\n 'mult': 1.467337608573871e-05,\n 'x': array([ 2.54778275, -0.03185392, 1.48407021, 1.48407214])}" + }, + "metadata": {} + } ] - }, - "execution_count": 58, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# a=2\n", - "consumer(U, p, I)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "x = np.arange(0.0, 2.0, 0.01)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# a=2\nconsumer(U, p, I)", + "execution_count": 58, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 58, + "data": { + "text/plain": "{'MgU': array([0.01213578, 0.01212819, 0.00606456, 0.00606509]),\n 'V': -0.009099936642525175,\n 'mult': 0.012135779834352434,\n 'x': array([2.55237217, 1.15077956, 0.19958579, 0.39411074])}" + }, + "metadata": {} + } ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xd8FPed//HXB9RASCBQQRTRe8CARXO3A2fHJaS6xgaXw46TPJI4l4t/RxLfJZfH+XKXy10cx+eGg1uM4wZx7NgY9wJG2GCqKaIIIYSEhHpdfX9/7OITsoQEq93Z1b6fj8c+dnbmu/v9MBreGn1ndsacc4iISGzp5XUBIiISfgp/EZEYpPAXEYlBCn8RkRik8BcRiUEKfxGRGKTwFxGJQQp/EZEYpPAXEYlBcV4X0JH09HQ3cuRIr8sQEYkqGzZsKHXOZXTWLmLDf+TIkeTl5XldhohIVDGz/V1pp2EfEZEY1C3hb2aXmNmnZrbbzO5sZ3mima0ILF9nZiO7o18RETk9QYe/mfUG7gW+BEwGrjGzyW2a3QyUO+fGAr8F/j3YfkVE5PR1x57/bGC3cy7fOdcIPAUsbNNmIbA8MP0M8EUzs27oW0RETkN3hP9QoKDV64OBee22cc41AxXAoLYfZGZLzCzPzPJKSkq6oTQREWlPd4R/e3vwbe8Q05U2OOcecM7lOudyMzI6PVNJREROU3eE/0FgeKvXw4BDHbUxszigP1DWDX2LiMhp6I7z/NcD48xsFFAIXA1c26bNKmAR8AHwDeB1p/tHikiMaWlxVDU0U1XfRE2Dj+qGZqobmqlp9VzT0MzA5ESunZMT0lqCDn/nXLOZfRd4BegNLHPObTWzXwB5zrlVwMPAY2a2G/8e/9XB9isiEm5NvhYq6pqorGuist4f4pV1gecTpv9vWWV9E1X1/ufqhma6sts7I2dA5Ic/gHPuJeClNvN+3mq6Hvhmd/QlItId6hp9lNc2Ul7byLHaJspqGjlW20h5bZN/fo1/uvW8qvrmk35mL4OUpHhS+8SRkuh/zhnY9//mJcWTmhRHalI8yYlx9EuKo19ib5IT40hOiKNfYhzJiXEkxIX++7cRe3kHEZFT4Zyjsr6Z0uoGSqsaKK1upLS6gZKqBv+86gZKqhsprWrgaE0D9U0tHX5Wv8Q40pLjSeubwIC+CYxMTyatb4L/kRxP6glhHk9KUhypfeJJTuhNtJzFrvAXkYhXVd9EcWU9RRX1HD7+qKynuLI+EO6NlFQ30Nj8+UDvZTAwOZGMlETS+yUwJj2ZQf0SSEsOhHnfeAb0TWBgcgID+sYzoE9CWPa8vabwFxFP1TX6KDxWS0FZHYXH6jhc4Q95f9jXUVzZQHXD54dbBiYnkJmSSGZqEmMy+5HRL5H0fomkpySQ0S+J9JQE0vslktY3gd69omNvPJwU/iISUvVNPgqP1XGwvI6D5f6QP1he+9nr0urGE9r3MshKTSIrNYnxWSmcOy6D7P5JDO6fxODUJLL79yEzNZGk+N4e/Yt6BoW/iAStrtHHvqM17CutIb/U/7y3tIYDZbUcqWo4oW18b2PogD4MS+vL/ElZDEvrw/CBfRmW1ochA/qQ0S+RuN49f9jFawp/EekSX4ujoKyW3Ueq2Xf0xJAvqqg/oW1mSiKj0pO5YEIGw9P6MmygP+yHpfUhMyVJwzARQOEvIidoaXEUHqtjZ3EVO4ur2VVcxc4jVew+Un3CGTJpfeMZmZ7MvDGDGDUomVEZyYwclMzI9GT6JSpaIp1+QiIxrLymka2HKtlWVMGnh6vZFQj52kbfZ20GpyYxLqsf180ZwfisfozNTGF0ejJpyQkeVi7BUviLxADnHEUV9Ww9VMnWQxX+wD9USeGxus/aZKQkMiErhatmDWd8VspnQd+/T7yHlUuoKPxFeqDS6gY2HjjGxoJjbDp4jK2HKimr8Z9VYwaj0pOZOSKNG+aNYMqQ/kwekspA7cnHFIW/SJRraPax9VAlHwfCfmNBOQVl/j363r2MCVkpLJiUxZShqUwZksrEwakka0w+5mkLEIky5TWNrN9Xxrq9ZeTtL2fboQqafP6rhWX3T2L68AFcP3cE04enMXVof/ok6Hx4+TyFv0iEK6lq4MO9Zazbe5QP95ax43AVAAlxvZg+bAA3nTOKGcMHMH14GoP7J3lcrUQLhb9IhCmraeTd3aV8sOco6/YeJb+kBoC+Cb05c0Qal0/LZvaoQZwxvD+Jcdqrl9Oj8BfxWEOzjw37y3lnVynv7Cph66FKnIOUpDhmjxzIVbnDmTN6EFOGpBKvb75KN1H4i3ggv6SaNz4t4Z1dJazLL6OuyUdcL2PmiDR+tGA854zLYOrQ/vomrISMwl8kDJp9LeTtL2fN9mLWbD9Cfql/KGd0RjJXzRrOuePSmTN6kL4ZK2GjLU0kRCrqmnhrZwlrthfz5qclVNQ1Ed/bmDt6EIvOGslFEzMZPrCv12VKjFL4i3SjitomXt12mJc2F/Hu7lKafI6ByQnMn5TF/EmZnDs+Q3v3EhG0FYoEqaK2iVcCgf9eIPCHDujD4rNGcvGUwczISdPYvUQchb/IaahpaOaVrYdZtekQ7+4qpbnFH/g3nj2KS6dmc8aw/lFzL1eJTQp/kS7ytTjW5h/l2Y8O8rcth6lt9DF0QB9uOmcUl03NZpoCX6KIwl+kE7uPVPHsR4W88HEhRRX1pCTGsXD6EL42cxi5I9IU+BKVFP4i7ahuaGbVxkOsWH+ATQcr6N3LOH98Bksvm8T8SVm6f6xEPYW/SCtbCit48sMDrPy4kJpGHxMHp/Czyyfz5TOGkJGS6HV5It1G4S8xr67Rx6pNhTy5zr+XnxTfi8unDeHaOTnMGD5AwzrSIyn8JWYdOlbHox/s56n1BzhW28T4rH788xWT+erMYbp7lfR4Cn+JKc45PjpwjGXv7eVvWw7jnOPiKYO58exRzBqpg7cSOxT+EhN8LY6XtxTx4Nv5bDpYQUpSHDefM4ob5o1gWJousSCxR+EvPVpDs4/nPirk/rf2sO9oLaPSk/nlwil8beYw3cpQYpq2fumRqhuaeXLdfh56Zy9HqhqYOrQ/9103k7+bMliXWhAhyPA3s4HACmAksA+40jlX3qbNdOA+IBXwAb9yzq0Ipl+RjlTWN7Hs3b088t4+KuqaOGvMIP7ryumcPXaQxvNFWgl2z/9OYI1z7m4zuzPw+idt2tQCNzjndpnZEGCDmb3inDsWZN8in6lpaOaP7+/jgbfzqahrYsHkLL5z4VimDx/gdWkiESnY8F8IXBCYXg68SZvwd87tbDV9yMyOABmAwl+CVtfo47G1+/jft/Ipq2nkoomZ3LFgPF8Y2t/r0kQiWrDhn+WcKwJwzhWZWebJGpvZbCAB2BNkvxLjmnwt/OnDA9zz+m5Kqho4d1w6P1wwnpk5aV6XJhIVOg1/M3sNGNzOoqWn0pGZZQOPAYuccy0dtFkCLAHIyck5lY+XGOGc49Vtxfz7yzvIL61h9qiB3HvtTGaPGuh1aSJRpdPwd87N72iZmRWbWXZgrz8bONJBu1Tgr8BPnXNrT9LXA8ADALm5ua6z2iS2bCw4xq/+uo31+8oZk5HMw4tyuWhipg7kipyGYId9VgGLgLsDzyvbNjCzBOB54FHn3J+D7E9iUEFZLb9+5VP+sukQ6f0S+NVXv8BVucOJ693L69JEolaw4X838LSZ3QwcAL4JYGa5wG3OuVuAK4HzgEFmtjjwvsXOuY1B9i09XH2Tj/ve3MN9b+2hl8H3LhrLreeP0T1wRbqBOReZoyu5ubkuLy/P6zLEI2u2F/PPf9lKQVkdl0/LZullk8ju38frskQinpltcM7ldtZOu1ASUQ4creVf/rKVNTuOMDazH0/eMoezxqZ7XZZIj6Pwl4jQ0Owf4vnDm3uI62X806UTWXzWKBLiNK4vEgoKf/HcRwfK+ckzn7DrSDWXTcvmpxriEQk5hb94praxmd+8upNl7+1lcGoSyxbnctHELK/LEokJCn/xxHu7S7nzuU8oKKvjW3Nz+MklE0lJ0t2zRMJF4S9hVVXfxK/+up2n1hcwKj2ZFUvmMmf0IK/LEok5Cn8Jmw37y/jBio0Ultdx63mj+eGC8STF9/a6LJGYpPCXkGvytXDPml38/o3dDE3rw9O3ziN3pK7FI+Ilhb+EVH5JNT9csZFNByv4xpnDuOuKyRrbF4kACn8JCeccT60v4Bd/2UZCXC/+cN1MLp2a7XVZIhKg8JduV93QzJ3PfsKLnxRxzth0/vObZzC4f5LXZYlIKwp/6VafHq7i209sYF9pDf94yQRuO28MvXTDdJGIo/CXbvPMhoP89IXNpCTF8+Tfz2WuTuEUiVgKfwlafZOPu1ZuZUVeAfNGD+J/rplOZoqGeUQimcJfgnLgaC23Pr6B7UWVfOfCMfxw/njdZEUkCij85bS9v7uU25/8COfgkcWzuHBiptcliUgXKfzllDnnePSD/fzixW2MTk/mwRtyGZme7HVZInIKFP5yShqbW/j5yi08tb6A+ZMy+e1V0/WlLZEopPCXLiuraeTWx/JYv6+c71w4hh8tmKDTOEWilMJfumRfaQ03/nE9hcfq+J+rp7Nw+lCvSxKRICj8pVMb9pfz94/m4ZzjyVvm6KJsIj2Awl9O6qXNRfxgxUaG9E/ikRtnM0oHdkV6BIW/dOjhd/fyyxe3ceaINB68IZeByQlelyQi3UThL5/jnOM3r+7k92/s5pIpg/nvq6frpisiPYzCX07ga3H8bOUWnlx3gGtmD+dfvzKV3jqjR6THUfjLZxqbW/jh0xv56ydF3H7BGH588QTMFPwiPZHCXwCoa/Sx5LE83tlVytJLJ/H35432uiQRCSGFv1DT0MxNf1zP+n1l/Pob07gyd7jXJYlIiCn8Y1xVfRM3PrKejwuO8dur9OUtkVih8I9hlfVNLFr2IZsPVnDPNTN0j12RGKLwj1EVtU1cv2wd24sq+cN1M/m7KYO9LklEwiiou26Y2UAzW21muwLPaSdpm2pmhWb2+2D6lOBV1DXxrYfXsaOoivuvP1PBLxKDgr3l0p3AGufcOGBN4HVHfgm8FWR/EqSahmZufORDdhyu5P7rz+SiiVlelyQiHgg2/BcCywPTy4GvtNfIzM4EsoBXg+xPglDf5OPm5evZFBjj1523RGJXsOGf5ZwrAgg8fy5NzKwX8Bvgx0H2JUFoaPax5LENrNtbxn9deQaXfEEHd0ViWacHfM3sNaC9QeGlXezjduAl51xBZ98WNbMlwBKAnJycLn68dKbJ18J3n/yYt3eW8OuvT9PpnCLSefg75+Z3tMzMis0s2zlXZGbZwJF2ms0DzjWz24F+QIKZVTvnPnd8wDn3APAAQG5uruvqP0I65pzjJ89+wuptxfzLl6dw5Sx9gUtEgj/VcxWwCLg78LyybQPn3HXHp81sMZDbXvBLaNz9tx0891EhdywYz6KzRnpdjohEiGDH/O8GFpjZLmBB4DVmlmtmDwVbnATnoXfyuf+tfK6fO4LvXTTW63JEJIKYc5E5upKbm+vy8vK8LiNqvfBxIT9YsZFLpw7mnmtm6rLMIjHCzDY453I7axfsnr9EoLd2lvAPf97EvNGD+O1V0xX8IvI5Cv8eZtuhSm5/fAPjs1K4/4YzSYzTHbhE5PMU/j1IcWU9Ny9fT2qfeB65cRapSfFelyQiEUrh30PUNjZz8/L1VNY18fCiWWSlJnldkohEMF3VswfwtTi+/9RGth2q5KFFuUwekup1SSIS4bTn3wPc/fJ2Vm8r5ueXT9aF2kSkSxT+Ue6pDw/w4Dt7WTRvBIvPHuV1OSISJRT+UWzD/jJ+tnIL545L52eXT/a6HBGJIgr/KFVcWc9tj3/EkAF9uOeaGcT11o9SRLpOB3yjUEOzj9se30BNQzOP3zyHAX0TvC5JRKKMwj/KOOf4+Qtb+fjAMe67biYTBqd4XZKIRCGNFUSZx9cdYEVeAd+5cAxfmqobsojI6VH4R5GPDpTzL6u2cuGEDO5YMMHrckQkiin8o0R5TSPfe/JjBvdP4r+vmqGLtYlIUDTmHwVaWhx3PL2RkqoGnvn2PPr31TV7RCQ42vOPAve/nc8bn5aw9LJJTBs2wOtyRKQHUPhHuA/3lvGfr37KZVOzuWHeCK/LEZEeQuEfwUqrG/jenz5ieFof7v76VMw0zi8i3UPhH6FaWhw/enoT5bVN/OG6M0nRtflFpBsp/CPU8g/28dbOEn522SRdollEup3CPwLtOFzJv728gy9OzORbczXOLyLdT+EfYeqbfHz/TxtJTYrn378xTeP8IhISOs8/wtz98g4+La7ijzfOIr1fotfliEgPpT3/CPLGjiP88f193Hj2SC6YkOl1OSLSgyn8I8TR6gZ+/MwmJg5O4SeXTPS6HBHp4TTsEwGcc/z0hS1U1jXzxC1zSYrv7XVJItLDac8/Arz4SREvbznMDxaM0/X5RSQsFP4eO1JVz89WbuGM4QNYcu5or8sRkRih8PeQc46fPr+F2kYfv/nmNN2HV0TCRmnjoVWbDvHqtmJ+tGA8YzM13CMi4aPw98iRynp+vnIrM3IGcIuGe0QkzBT+HnDO8U/Pb6G+ycd/fvMM3ZVLRMIuqPA3s4FmttrMdgWe0zpol2Nmr5rZdjPbZmYjg+k32v1ty2Fe217MHQvGMyajn9fliEgMCnbP/05gjXNuHLAm8Lo9jwL/4ZybBMwGjgTZb9SqqGvirlVbmZydys3njPK6HBGJUcGG/0JgeWB6OfCVtg3MbDIQ55xbDeCcq3bO1QbZb9T69d92UFrdwN1fn6qze0TEM8GmT5Zzrggg8NzeBWnGA8fM7Dkz+9jM/sPM2v0Kq5ktMbM8M8srKSkJsrTIs35fGU+sO8CNZ4/SvXhFxFOdXt7BzF4DBrezaOkp9HEuMAM4AKwAFgMPt23onHsAeAAgNzfXdfHzo0JDs4//99xmhg7owx0LxntdjojEuE7D3zk3v6NlZlZsZtnOuSIzy6b9sfyDwMfOufzAe14A5tJO+Pdk97+Vz+4j1TyyeBbJibqkkoh4K9hhn1XAosD0ImBlO23WA2lmlhF4fRGwLch+o0p+STW/f303l03L5sKJulSziHgv2PC/G1hgZruABYHXmFmumT0E4JzzAf8ArDGzzYABDwbZb9RwznHXqq0kxvXirisme12OiAgQ5CWdnXNHgS+2Mz8PuKXV69XAtGD6ilavbD3MO7tKueuKyWSmJHldjogIoG/4hlRdo49fvridiYNTuF43YheRCKIjjyH0hzd3U3isjhVL5uqcfhGJKEqkENlXWsP9b+WzcPoQ5owe5HU5IiInUPiHyC9f3EZ8b+OfLp3kdSkiIp+j8A+BNduLWbPjCN+fP46sVB3kFZHIo/DvZg3NPn7x4jbGZCSz+CxduE1EIpMO+HazR9/fz/6jtTx602wS4vS7VUQik9KpG5XVNPK713dxwYQMzhuf0fkbREQ8ovDvRr9bs4vaRh9LdZBXRCKcwr+b7Cmp5vG1+7l61nDGZelm7CIS2RT+3eTfXtpBUnxvfqjLNYtIFFD4d4P395Ty2vZibr9wDOn9Er0uR0SkUwr/IPlaHP/64naGDujDTWfr1E4RiQ4K/yA9/3Eh24oq+cmXJpIU3+7dKUVEIo7CPwj1TT5+u3onZwzrzxXTsr0uR0SkyxT+QXhi3QEKj9Xxj5dMxMy8LkdEpMsU/qepuqGZe9/YzdljB3H22HSvyxEROSUK/9P08Dt7Katp5McXT/S6FBGRU6bwPw1lNY08+E4+F0/JYvrwAV6XIyJyyhT+p+G+N3dT29jMP/zdBK9LERE5LQr/U3ToWB3LP9jPV2cM02UcRCRqKfxP0e/W7AIHP5g/zutSREROm8L/FOwrreHPGw5y7Zwchg/s63U5IiKnTeF/Cu55fTdxvYzbLxzjdSkiIkFR+HfRvtIaXthYyLfmjiAzRfflFZHopvDvot+/4d/rv/X80V6XIiISNIV/F+w/WsPzHxdy7Zwc7fWLSI+g8O+CewN7/d8+X2P9ItIzKPw7UVBWy3MfFXLN7BwyU7XXLyI9g8K/E/e+sZtevYxvX6C9fhHpORT+J1FQVsszGw5y7ewcsrTXLyI9SFDhb2YDzWy1me0KPKd10O7XZrbVzLab2e8sSi5+/4c399DLjNs01i8iPUywe/53Amucc+OANYHXJzCzs4CzgWnAF4BZwPlB9htyxZX1PLvhIFfOGsbg/trrF5GeJdjwXwgsD0wvB77SThsHJAEJQCIQDxQH2W/ILXt3Lz7nuPU87fWLSM8TbPhnOeeKAALPmW0bOOc+AN4AigKPV5xz24PsN6Qqapt4fO1+Lp+WrWv4iEiPFNdZAzN7DRjczqKlXenAzMYCk4BhgVmrzew859zb7bRdAiwByMnJ6crHh8Tj6/ZT0+jTXr+I9Fidhr9zbn5Hy8ys2MyynXNFZpYNHGmn2VeBtc656sB7XgbmAp8Lf+fcA8ADALm5ua5r/4TuVd/kY9m7e7lgQgaTh6R6UYKISMgFO+yzClgUmF4ErGynzQHgfDOLM7N4/Ad7I3bY5895BRytadS3eUWkRws2/O8GFpjZLmBB4DVmlmtmDwXaPAPsATYDm4BNzrm/BNlvSDT7Wrj/7Xxm5gxg9qiBXpcjIhIynQ77nIxz7ijwxXbm5wG3BKZ9wK3B9BMuf91cxMHyOu66YgpR8lUEEZHTom/4BjjnuO/NPYzL7McXJ37upCURkR5F4R/w5s4Sdhyu4tbzx9Crl/b6RaRnU/gHPPzOXrJSE/nyGUO8LkVEJOQU/sCnh6t4d3cpN8wbSUKcVomI9HxKOvyXckiK78W1s737YpmISDjFfPiXVjfw/MZCvjZzGGnJCV6XIyISFjEf/k+sPUBjcws3nT3K61JERMImpsO/odnHY2v3c8GEDMZm9vO6HBGRsInp8F+18RCl1Q3cfI72+kUktsRs+DvnWPbePiZkpXDO2HSvyxERCauYDf8P8o+yvaiSm84ZqUs5iEjMidnwX/buXgYlJ7Bw+lCvSxERCbuYDP+CslrW7DjCtXNySIrv7XU5IiJhF5Ph//i6/fQy49o5+lKXiMSmmAv/+iYfT68vYMGkLLL79/G6HBERT8Rc+L+0uYjy2iaunzfC61JERDwTc+H/6Af7GZ2RzFljBnldioiIZ2Iq/DcfrGBjwTGunztCp3eKSEyLqfB/fO1++sT35mszh3ldioiIp2Im/Ctqm1i5qZCvzBhK/z7xXpcjIuKpmAn/P28ooL6phW/N1emdIiIxEf4tLY4n1h3gzBFpTBnS3+tyREQ8FxPh/96eUvaW1nCDTu8UEQFiJPyfXHeAgckJXPKFwV6XIiISEXp8+JdWN7B6WzFfnzmUxDhdx0dEBGIg/J/dcJDmFsdVs4Z7XYqISMTo0eHvnGPF+gJyR6QxNjPF63JERCJGjw7/9fvKyS+t4erZOr1TRKS1Hh3+T60/QEpiHJdO1YFeEZHWemz4V9Q18dLmIr48fQh9E+K8LkdEJKL02PBftbGQ+qYWrp6lIR8RkbaCCn8z+6aZbTWzFjPLPUm7S8zsUzPbbWZ3BtNnVz21voDJ2al8YWhqOLoTEYkqwe75bwG+BrzdUQMz6w3cC3wJmAxcY2aTg+z35EUVVrD1UCVXzx6uSzeLiLQjqMFw59x2oLOAnQ3sds7lB9o+BSwEtgXT98k8tf4AiXG9WHjG0FB1ISIS1cIx5j8UKGj1+mBgXkjUNfpY+fEhLpuaTf++unSziEh7Ot3zN7PXgPbOlVzqnFvZhT7a+7PAddDXEmAJQE7O6R2oraxv4oKJmVwzRwd6RUQ60mn4O+fmB9nHQaD1tRWGAYc66OsB4AGA3Nzcdn9BdCYrNYl7rplxOm8VEYkZ4Rj2WQ+MM7NRZpYAXA2sCkO/IiLSgWBP9fyqmR0E5gF/NbNXAvOHmNlLAM65ZuC7wCvAduBp59zW4MoWEZFgBHu2z/PA8+3MPwRc2ur1S8BLwfQlIiLdp8d+w1dERDqm8BcRiUEKfxGRGKTwFxGJQQp/EZEYZM6d1nepQs7MSoD9QXxEOlDaTeV0J9V1aiK1Lojc2lTXqYnUuuD0ahvhnMvorFHEhn+wzCzPOdfhZaa9orpOTaTWBZFbm+o6NZFaF4S2Ng37iIjEIIW/iEgM6snh/4DXBXRAdZ2aSK0LIrc21XVqIrUuCGFtPXbMX0REOtaT9/xFRKQDURf+nd0M3swSzWxFYPk6MxvZatn/C8z/1MwuDnNdd5jZNjP7xMzWmNmIVst8ZrYx8Oj2y113obbFZlbSqoZbWi1bZGa7Ao9FYa7rt61q2mlmx1otC9k6M7NlZnbEzLZ0sNzM7HeBuj8xs5mtloVyfXVW13WBej4xs/fN7IxWy/aZ2ebA+soLc10XmFlFq5/Xz1stO+k2EOK6ftyqpi2BbWpgYFko19dwM3vDzLab2VYz+347bUK/jTnnouYB9Ab2AKOBBGATMLlNm9uB/w1MXw2sCExPDrRPBEYFPqd3GOu6EOgbmP728boCr6s9XmeLgd+3896BQH7gOS0wnRauutq0/x6wLEzr7DxgJrClg+WXAi/jv0vdXGBdqNdXF+s663h/wJeO1xV4vQ9I92h9XQC8GOw20N11tWl7BfB6mNZXNjAzMJ0C7Gzn/2TIt7Fo2/P/7GbwzrlG4PjN4FtbCCwPTD8DfNHMLDD/Kedcg3NuL7A78Hlhqcs594Zzrjbwci3+O5qFQ1fWWUcuBlY758qcc+XAauASj+q6BvhTN/V9Us65t4GykzRZCDzq/NYCA8wsm9Cur07rcs69H+gXwriNdWF9dSSYbbO76wrn9lXknPsoMF2F/z4nbe9rHvJtLNrCvys3g/+sjfPfSKYCGNTF94ayrtZuxv9b/bgkM8szs7Vm9pVuqulUa/t64M/LZ8zs+G03I2KdBYbIRgGvt5odynXWmY5qD+X6OlVttzEHvGpmG8x/r+xwm2dmm8zsZTObEpgXEevLzPriD9BnW80Oy/oy/7D0DGBdm0Uh38aCupmLB7pyM/iO2nT5RvKn4VRuUv8tIBc4v9XsHOfcITOPbVw3AAACoklEQVQbDbxuZpudc3vCWNtfgD855xrM7Db8fzld1MX3hrKu464GnnHO+VrNC+U664wX21iXmdmF+MP/nFazzw6sr0xgtZntCOwZh8NH+C85UG1mlwIvAOOIkPWFf8jnPedc678SQr6+zKwf/l84P3DOVbZd3M5bunUbi7Y9/67cDP6zNmYWB/TH/6dfl28kH6K6MLP5wFLgy865huPznf/OZzjn8oE38e8JdJdOa3POHW1Vz4PAmV19byjrauVq2vxJHuJ11pmOag/l+uoSM5sGPAQsdM4dPT6/1fo6gv/ue9015Nkp51ylc646MP0SEG9m6UTA+go42fYVkvVlZvH4g/8J59xz7TQJ/TYWigMaoXrg/0slH/8QwPEDRFPatPkOJx7wfTowPYUTD/jm030HfLtS1wz8B7fGtZmfBiQGptOBXXTvQa+u1JbdavqrwFr3fweX9gZqTAtMDwxXXYF2E/AffLNwrbPA546k4wOYl3HiwbgPQ72+ulhXDv5jWWe1mZ8MpLSafh+4JIx1DT7+88MfogcC665L20Co6gosP75zmByu9RX4tz8K/PdJ2oR8G+u2lRyuB/6j4DvxB+nSwLxf4N+bBkgC/hz4T/AhMLrVe5cG3vcp8KUw1/UaUAxsDDxWBeafBWwObPibgZs9WGf/BmwN1PAGMLHVe28KrMvdwI3hrCvw+p+Bu9u8L6TrDP9eYBHQhH9P62bgNuC2wHID7g3UvRnIDdP66qyuh4DyVttYXmD+6MC62hT4OS8Nc13fbbV9raXVL6f2toFw1RVosxj/iSCt3xfq9XUO/qGaT1r9rC4N9zamb/iKiMSgaBvzFxGRbqDwFxGJQQp/EZEYpPAXEYlBCn8RkRik8BcRiUEKfxGRGKTwFxGJQf8fac4WI+UpNtgAAAAASUVORK5CYII=\n", - "text/plain": [ - "" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import matplotlib.pyplot as plt", + "execution_count": 3, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x = np.arange(0.0, 2.0, 0.01)", + "execution_count": 6, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "a = 2\nu = lambda c: -np.exp(-a*c)\nplt.plot(x, u(x))", + "execution_count": 12, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 12, + "data": { + "text/plain": "[]" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xd8FPed//HXB9RASCBQQRTRe8CARXO3A2fHJaS6xgaXw46TPJI4l4t/RxLfJZfH+XKXy10cx+eGg1uM4wZx7NgY9wJG2GCqKaIIIYSEhHpdfX9/7OITsoQEq93Z1b6fj8c+dnbmu/v9MBreGn1ndsacc4iISGzp5XUBIiISfgp/EZEYpPAXEYlBCn8RkRik8BcRiUEKfxGRGKTwFxGJQQp/EZEYpPAXEYlBcV4X0JH09HQ3cuRIr8sQEYkqGzZsKHXOZXTWLmLDf+TIkeTl5XldhohIVDGz/V1pp2EfEZEY1C3hb2aXmNmnZrbbzO5sZ3mima0ILF9nZiO7o18RETk9QYe/mfUG7gW+BEwGrjGzyW2a3QyUO+fGAr8F/j3YfkVE5PR1x57/bGC3cy7fOdcIPAUsbNNmIbA8MP0M8EUzs27oW0RETkN3hP9QoKDV64OBee22cc41AxXAoLYfZGZLzCzPzPJKSkq6oTQREWlPd4R/e3vwbe8Q05U2OOcecM7lOudyMzI6PVNJREROU3eE/0FgeKvXw4BDHbUxszigP1DWDX2LiMhp6I7z/NcD48xsFFAIXA1c26bNKmAR8AHwDeB1p/tHikiMaWlxVDU0U1XfRE2Dj+qGZqobmqlp9VzT0MzA5ESunZMT0lqCDn/nXLOZfRd4BegNLHPObTWzXwB5zrlVwMPAY2a2G/8e/9XB9isiEm5NvhYq6pqorGuist4f4pV1gecTpv9vWWV9E1X1/ufqhma6sts7I2dA5Ic/gHPuJeClNvN+3mq6Hvhmd/QlItId6hp9lNc2Ul7byLHaJspqGjlW20h5bZN/fo1/uvW8qvrmk35mL4OUpHhS+8SRkuh/zhnY9//mJcWTmhRHalI8yYlx9EuKo19ib5IT40hOiKNfYhzJiXEkxIX++7cRe3kHEZFT4Zyjsr6Z0uoGSqsaKK1upLS6gZKqBv+86gZKqhsprWrgaE0D9U0tHX5Wv8Q40pLjSeubwIC+CYxMTyatb4L/kRxP6glhHk9KUhypfeJJTuhNtJzFrvAXkYhXVd9EcWU9RRX1HD7+qKynuLI+EO6NlFQ30Nj8+UDvZTAwOZGMlETS+yUwJj2ZQf0SSEsOhHnfeAb0TWBgcgID+sYzoE9CWPa8vabwFxFP1TX6KDxWS0FZHYXH6jhc4Q95f9jXUVzZQHXD54dbBiYnkJmSSGZqEmMy+5HRL5H0fomkpySQ0S+J9JQE0vslktY3gd69omNvPJwU/iISUvVNPgqP1XGwvI6D5f6QP1he+9nr0urGE9r3MshKTSIrNYnxWSmcOy6D7P5JDO6fxODUJLL79yEzNZGk+N4e/Yt6BoW/iAStrtHHvqM17CutIb/U/7y3tIYDZbUcqWo4oW18b2PogD4MS+vL/ElZDEvrw/CBfRmW1ochA/qQ0S+RuN49f9jFawp/EekSX4ujoKyW3Ueq2Xf0xJAvqqg/oW1mSiKj0pO5YEIGw9P6MmygP+yHpfUhMyVJwzARQOEvIidoaXEUHqtjZ3EVO4ur2VVcxc4jVew+Un3CGTJpfeMZmZ7MvDGDGDUomVEZyYwclMzI9GT6JSpaIp1+QiIxrLymka2HKtlWVMGnh6vZFQj52kbfZ20GpyYxLqsf180ZwfisfozNTGF0ejJpyQkeVi7BUviLxADnHEUV9Ww9VMnWQxX+wD9USeGxus/aZKQkMiErhatmDWd8VspnQd+/T7yHlUuoKPxFeqDS6gY2HjjGxoJjbDp4jK2HKimr8Z9VYwaj0pOZOSKNG+aNYMqQ/kwekspA7cnHFIW/SJRraPax9VAlHwfCfmNBOQVl/j363r2MCVkpLJiUxZShqUwZksrEwakka0w+5mkLEIky5TWNrN9Xxrq9ZeTtL2fboQqafP6rhWX3T2L68AFcP3cE04enMXVof/ok6Hx4+TyFv0iEK6lq4MO9Zazbe5QP95ax43AVAAlxvZg+bAA3nTOKGcMHMH14GoP7J3lcrUQLhb9IhCmraeTd3aV8sOco6/YeJb+kBoC+Cb05c0Qal0/LZvaoQZwxvD+Jcdqrl9Oj8BfxWEOzjw37y3lnVynv7Cph66FKnIOUpDhmjxzIVbnDmTN6EFOGpBKvb75KN1H4i3ggv6SaNz4t4Z1dJazLL6OuyUdcL2PmiDR+tGA854zLYOrQ/vomrISMwl8kDJp9LeTtL2fN9mLWbD9Cfql/KGd0RjJXzRrOuePSmTN6kL4ZK2GjLU0kRCrqmnhrZwlrthfz5qclVNQ1Ed/bmDt6EIvOGslFEzMZPrCv12VKjFL4i3SjitomXt12mJc2F/Hu7lKafI6ByQnMn5TF/EmZnDs+Q3v3EhG0FYoEqaK2iVcCgf9eIPCHDujD4rNGcvGUwczISdPYvUQchb/IaahpaOaVrYdZtekQ7+4qpbnFH/g3nj2KS6dmc8aw/lFzL1eJTQp/kS7ytTjW5h/l2Y8O8rcth6lt9DF0QB9uOmcUl03NZpoCX6KIwl+kE7uPVPHsR4W88HEhRRX1pCTGsXD6EL42cxi5I9IU+BKVFP4i7ahuaGbVxkOsWH+ATQcr6N3LOH98Bksvm8T8SVm6f6xEPYW/SCtbCit48sMDrPy4kJpGHxMHp/Czyyfz5TOGkJGS6HV5It1G4S8xr67Rx6pNhTy5zr+XnxTfi8unDeHaOTnMGD5AwzrSIyn8JWYdOlbHox/s56n1BzhW28T4rH788xWT+erMYbp7lfR4Cn+JKc45PjpwjGXv7eVvWw7jnOPiKYO58exRzBqpg7cSOxT+EhN8LY6XtxTx4Nv5bDpYQUpSHDefM4ob5o1gWJousSCxR+EvPVpDs4/nPirk/rf2sO9oLaPSk/nlwil8beYw3cpQYpq2fumRqhuaeXLdfh56Zy9HqhqYOrQ/9103k7+bMliXWhAhyPA3s4HACmAksA+40jlX3qbNdOA+IBXwAb9yzq0Ipl+RjlTWN7Hs3b088t4+KuqaOGvMIP7ryumcPXaQxvNFWgl2z/9OYI1z7m4zuzPw+idt2tQCNzjndpnZEGCDmb3inDsWZN8in6lpaOaP7+/jgbfzqahrYsHkLL5z4VimDx/gdWkiESnY8F8IXBCYXg68SZvwd87tbDV9yMyOABmAwl+CVtfo47G1+/jft/Ipq2nkoomZ3LFgPF8Y2t/r0kQiWrDhn+WcKwJwzhWZWebJGpvZbCAB2BNkvxLjmnwt/OnDA9zz+m5Kqho4d1w6P1wwnpk5aV6XJhIVOg1/M3sNGNzOoqWn0pGZZQOPAYuccy0dtFkCLAHIyck5lY+XGOGc49Vtxfz7yzvIL61h9qiB3HvtTGaPGuh1aSJRpdPwd87N72iZmRWbWXZgrz8bONJBu1Tgr8BPnXNrT9LXA8ADALm5ua6z2iS2bCw4xq/+uo31+8oZk5HMw4tyuWhipg7kipyGYId9VgGLgLsDzyvbNjCzBOB54FHn3J+D7E9iUEFZLb9+5VP+sukQ6f0S+NVXv8BVucOJ693L69JEolaw4X838LSZ3QwcAL4JYGa5wG3OuVuAK4HzgEFmtjjwvsXOuY1B9i09XH2Tj/ve3MN9b+2hl8H3LhrLreeP0T1wRbqBOReZoyu5ubkuLy/P6zLEI2u2F/PPf9lKQVkdl0/LZullk8ju38frskQinpltcM7ldtZOu1ASUQ4creVf/rKVNTuOMDazH0/eMoezxqZ7XZZIj6Pwl4jQ0Owf4vnDm3uI62X806UTWXzWKBLiNK4vEgoKf/HcRwfK+ckzn7DrSDWXTcvmpxriEQk5hb94praxmd+8upNl7+1lcGoSyxbnctHELK/LEokJCn/xxHu7S7nzuU8oKKvjW3Nz+MklE0lJ0t2zRMJF4S9hVVXfxK/+up2n1hcwKj2ZFUvmMmf0IK/LEok5Cn8Jmw37y/jBio0Ultdx63mj+eGC8STF9/a6LJGYpPCXkGvytXDPml38/o3dDE3rw9O3ziN3pK7FI+Ilhb+EVH5JNT9csZFNByv4xpnDuOuKyRrbF4kACn8JCeccT60v4Bd/2UZCXC/+cN1MLp2a7XVZIhKg8JduV93QzJ3PfsKLnxRxzth0/vObZzC4f5LXZYlIKwp/6VafHq7i209sYF9pDf94yQRuO28MvXTDdJGIo/CXbvPMhoP89IXNpCTF8+Tfz2WuTuEUiVgKfwlafZOPu1ZuZUVeAfNGD+J/rplOZoqGeUQimcJfgnLgaC23Pr6B7UWVfOfCMfxw/njdZEUkCij85bS9v7uU25/8COfgkcWzuHBiptcliUgXKfzllDnnePSD/fzixW2MTk/mwRtyGZme7HVZInIKFP5yShqbW/j5yi08tb6A+ZMy+e1V0/WlLZEopPCXLiuraeTWx/JYv6+c71w4hh8tmKDTOEWilMJfumRfaQ03/nE9hcfq+J+rp7Nw+lCvSxKRICj8pVMb9pfz94/m4ZzjyVvm6KJsIj2Awl9O6qXNRfxgxUaG9E/ikRtnM0oHdkV6BIW/dOjhd/fyyxe3ceaINB68IZeByQlelyQi3UThL5/jnOM3r+7k92/s5pIpg/nvq6frpisiPYzCX07ga3H8bOUWnlx3gGtmD+dfvzKV3jqjR6THUfjLZxqbW/jh0xv56ydF3H7BGH588QTMFPwiPZHCXwCoa/Sx5LE83tlVytJLJ/H35432uiQRCSGFv1DT0MxNf1zP+n1l/Pob07gyd7jXJYlIiCn8Y1xVfRM3PrKejwuO8dur9OUtkVih8I9hlfVNLFr2IZsPVnDPNTN0j12RGKLwj1EVtU1cv2wd24sq+cN1M/m7KYO9LklEwiiou26Y2UAzW21muwLPaSdpm2pmhWb2+2D6lOBV1DXxrYfXsaOoivuvP1PBLxKDgr3l0p3AGufcOGBN4HVHfgm8FWR/EqSahmZufORDdhyu5P7rz+SiiVlelyQiHgg2/BcCywPTy4GvtNfIzM4EsoBXg+xPglDf5OPm5evZFBjj1523RGJXsOGf5ZwrAgg8fy5NzKwX8Bvgx0H2JUFoaPax5LENrNtbxn9deQaXfEEHd0ViWacHfM3sNaC9QeGlXezjduAl51xBZ98WNbMlwBKAnJycLn68dKbJ18J3n/yYt3eW8OuvT9PpnCLSefg75+Z3tMzMis0s2zlXZGbZwJF2ms0DzjWz24F+QIKZVTvnPnd8wDn3APAAQG5uruvqP0I65pzjJ89+wuptxfzLl6dw5Sx9gUtEgj/VcxWwCLg78LyybQPn3HXHp81sMZDbXvBLaNz9tx0891EhdywYz6KzRnpdjohEiGDH/O8GFpjZLmBB4DVmlmtmDwVbnATnoXfyuf+tfK6fO4LvXTTW63JEJIKYc5E5upKbm+vy8vK8LiNqvfBxIT9YsZFLpw7mnmtm6rLMIjHCzDY453I7axfsnr9EoLd2lvAPf97EvNGD+O1V0xX8IvI5Cv8eZtuhSm5/fAPjs1K4/4YzSYzTHbhE5PMU/j1IcWU9Ny9fT2qfeB65cRapSfFelyQiEUrh30PUNjZz8/L1VNY18fCiWWSlJnldkohEMF3VswfwtTi+/9RGth2q5KFFuUwekup1SSIS4bTn3wPc/fJ2Vm8r5ueXT9aF2kSkSxT+Ue6pDw/w4Dt7WTRvBIvPHuV1OSISJRT+UWzD/jJ+tnIL545L52eXT/a6HBGJIgr/KFVcWc9tj3/EkAF9uOeaGcT11o9SRLpOB3yjUEOzj9se30BNQzOP3zyHAX0TvC5JRKKMwj/KOOf4+Qtb+fjAMe67biYTBqd4XZKIRCGNFUSZx9cdYEVeAd+5cAxfmqobsojI6VH4R5GPDpTzL6u2cuGEDO5YMMHrckQkiin8o0R5TSPfe/JjBvdP4r+vmqGLtYlIUDTmHwVaWhx3PL2RkqoGnvn2PPr31TV7RCQ42vOPAve/nc8bn5aw9LJJTBs2wOtyRKQHUPhHuA/3lvGfr37KZVOzuWHeCK/LEZEeQuEfwUqrG/jenz5ieFof7v76VMw0zi8i3UPhH6FaWhw/enoT5bVN/OG6M0nRtflFpBsp/CPU8g/28dbOEn522SRdollEup3CPwLtOFzJv728gy9OzORbczXOLyLdT+EfYeqbfHz/TxtJTYrn378xTeP8IhISOs8/wtz98g4+La7ijzfOIr1fotfliEgPpT3/CPLGjiP88f193Hj2SC6YkOl1OSLSgyn8I8TR6gZ+/MwmJg5O4SeXTPS6HBHp4TTsEwGcc/z0hS1U1jXzxC1zSYrv7XVJItLDac8/Arz4SREvbznMDxaM0/X5RSQsFP4eO1JVz89WbuGM4QNYcu5or8sRkRih8PeQc46fPr+F2kYfv/nmNN2HV0TCRmnjoVWbDvHqtmJ+tGA8YzM13CMi4aPw98iRynp+vnIrM3IGcIuGe0QkzBT+HnDO8U/Pb6G+ycd/fvMM3ZVLRMIuqPA3s4FmttrMdgWe0zpol2Nmr5rZdjPbZmYjg+k32v1ty2Fe217MHQvGMyajn9fliEgMCnbP/05gjXNuHLAm8Lo9jwL/4ZybBMwGjgTZb9SqqGvirlVbmZydys3njPK6HBGJUcGG/0JgeWB6OfCVtg3MbDIQ55xbDeCcq3bO1QbZb9T69d92UFrdwN1fn6qze0TEM8GmT5Zzrggg8NzeBWnGA8fM7Dkz+9jM/sPM2v0Kq5ktMbM8M8srKSkJsrTIs35fGU+sO8CNZ4/SvXhFxFOdXt7BzF4DBrezaOkp9HEuMAM4AKwAFgMPt23onHsAeAAgNzfXdfHzo0JDs4//99xmhg7owx0LxntdjojEuE7D3zk3v6NlZlZsZtnOuSIzy6b9sfyDwMfOufzAe14A5tJO+Pdk97+Vz+4j1TyyeBbJibqkkoh4K9hhn1XAosD0ImBlO23WA2lmlhF4fRGwLch+o0p+STW/f303l03L5sKJulSziHgv2PC/G1hgZruABYHXmFmumT0E4JzzAf8ArDGzzYABDwbZb9RwznHXqq0kxvXirisme12OiAgQ5CWdnXNHgS+2Mz8PuKXV69XAtGD6ilavbD3MO7tKueuKyWSmJHldjogIoG/4hlRdo49fvridiYNTuF43YheRCKIjjyH0hzd3U3isjhVL5uqcfhGJKEqkENlXWsP9b+WzcPoQ5owe5HU5IiInUPiHyC9f3EZ8b+OfLp3kdSkiIp+j8A+BNduLWbPjCN+fP46sVB3kFZHIo/DvZg3NPn7x4jbGZCSz+CxduE1EIpMO+HazR9/fz/6jtTx602wS4vS7VUQik9KpG5XVNPK713dxwYQMzhuf0fkbREQ8ovDvRr9bs4vaRh9LdZBXRCKcwr+b7Cmp5vG1+7l61nDGZelm7CIS2RT+3eTfXtpBUnxvfqjLNYtIFFD4d4P395Ty2vZibr9wDOn9Er0uR0SkUwr/IPlaHP/64naGDujDTWfr1E4RiQ4K/yA9/3Eh24oq+cmXJpIU3+7dKUVEIo7CPwj1TT5+u3onZwzrzxXTsr0uR0SkyxT+QXhi3QEKj9Xxj5dMxMy8LkdEpMsU/qepuqGZe9/YzdljB3H22HSvyxEROSUK/9P08Dt7Katp5McXT/S6FBGRU6bwPw1lNY08+E4+F0/JYvrwAV6XIyJyyhT+p+G+N3dT29jMP/zdBK9LERE5LQr/U3ToWB3LP9jPV2cM02UcRCRqKfxP0e/W7AIHP5g/zutSREROm8L/FOwrreHPGw5y7Zwchg/s63U5IiKnTeF/Cu55fTdxvYzbLxzjdSkiIkFR+HfRvtIaXthYyLfmjiAzRfflFZHopvDvot+/4d/rv/X80V6XIiISNIV/F+w/WsPzHxdy7Zwc7fWLSI+g8O+CewN7/d8+X2P9ItIzKPw7UVBWy3MfFXLN7BwyU7XXLyI9g8K/E/e+sZtevYxvX6C9fhHpORT+J1FQVsszGw5y7ewcsrTXLyI9SFDhb2YDzWy1me0KPKd10O7XZrbVzLab2e8sSi5+/4c399DLjNs01i8iPUywe/53Amucc+OANYHXJzCzs4CzgWnAF4BZwPlB9htyxZX1PLvhIFfOGsbg/trrF5GeJdjwXwgsD0wvB77SThsHJAEJQCIQDxQH2W/ILXt3Lz7nuPU87fWLSM8TbPhnOeeKAALPmW0bOOc+AN4AigKPV5xz24PsN6Qqapt4fO1+Lp+WrWv4iEiPFNdZAzN7DRjczqKlXenAzMYCk4BhgVmrzew859zb7bRdAiwByMnJ6crHh8Tj6/ZT0+jTXr+I9Fidhr9zbn5Hy8ys2MyynXNFZpYNHGmn2VeBtc656sB7XgbmAp8Lf+fcA8ADALm5ua5r/4TuVd/kY9m7e7lgQgaTh6R6UYKISMgFO+yzClgUmF4ErGynzQHgfDOLM7N4/Ad7I3bY5895BRytadS3eUWkRws2/O8GFpjZLmBB4DVmlmtmDwXaPAPsATYDm4BNzrm/BNlvSDT7Wrj/7Xxm5gxg9qiBXpcjIhIynQ77nIxz7ijwxXbm5wG3BKZ9wK3B9BMuf91cxMHyOu66YgpR8lUEEZHTom/4BjjnuO/NPYzL7McXJ37upCURkR5F4R/w5s4Sdhyu4tbzx9Crl/b6RaRnU/gHPPzOXrJSE/nyGUO8LkVEJOQU/sCnh6t4d3cpN8wbSUKcVomI9HxKOvyXckiK78W1s737YpmISDjFfPiXVjfw/MZCvjZzGGnJCV6XIyISFjEf/k+sPUBjcws3nT3K61JERMImpsO/odnHY2v3c8GEDMZm9vO6HBGRsInp8F+18RCl1Q3cfI72+kUktsRs+DvnWPbePiZkpXDO2HSvyxERCauYDf8P8o+yvaiSm84ZqUs5iEjMidnwX/buXgYlJ7Bw+lCvSxERCbuYDP+CslrW7DjCtXNySIrv7XU5IiJhF5Ph//i6/fQy49o5+lKXiMSmmAv/+iYfT68vYMGkLLL79/G6HBERT8Rc+L+0uYjy2iaunzfC61JERDwTc+H/6Af7GZ2RzFljBnldioiIZ2Iq/DcfrGBjwTGunztCp3eKSEyLqfB/fO1++sT35mszh3ldioiIp2Im/Ctqm1i5qZCvzBhK/z7xXpcjIuKpmAn/P28ooL6phW/N1emdIiIxEf4tLY4n1h3gzBFpTBnS3+tyREQ8FxPh/96eUvaW1nCDTu8UEQFiJPyfXHeAgckJXPKFwV6XIiISEXp8+JdWN7B6WzFfnzmUxDhdx0dEBGIg/J/dcJDmFsdVs4Z7XYqISMTo0eHvnGPF+gJyR6QxNjPF63JERCJGjw7/9fvKyS+t4erZOr1TRKS1Hh3+T60/QEpiHJdO1YFeEZHWemz4V9Q18dLmIr48fQh9E+K8LkdEJKL02PBftbGQ+qYWrp6lIR8RkbaCCn8z+6aZbTWzFjPLPUm7S8zsUzPbbWZ3BtNnVz21voDJ2al8YWhqOLoTEYkqwe75bwG+BrzdUQMz6w3cC3wJmAxcY2aTg+z35EUVVrD1UCVXzx6uSzeLiLQjqMFw59x2oLOAnQ3sds7lB9o+BSwEtgXT98k8tf4AiXG9WHjG0FB1ISIS1cIx5j8UKGj1+mBgXkjUNfpY+fEhLpuaTf++unSziEh7Ot3zN7PXgPbOlVzqnFvZhT7a+7PAddDXEmAJQE7O6R2oraxv4oKJmVwzRwd6RUQ60mn4O+fmB9nHQaD1tRWGAYc66OsB4AGA3Nzcdn9BdCYrNYl7rplxOm8VEYkZ4Rj2WQ+MM7NRZpYAXA2sCkO/IiLSgWBP9fyqmR0E5gF/NbNXAvOHmNlLAM65ZuC7wCvAduBp59zW4MoWEZFgBHu2z/PA8+3MPwRc2ur1S8BLwfQlIiLdp8d+w1dERDqm8BcRiUEKfxGRGKTwFxGJQQp/EZEYZM6d1nepQs7MSoD9QXxEOlDaTeV0J9V1aiK1Lojc2lTXqYnUuuD0ahvhnMvorFHEhn+wzCzPOdfhZaa9orpOTaTWBZFbm+o6NZFaF4S2Ng37iIjEIIW/iEgM6snh/4DXBXRAdZ2aSK0LIrc21XVqIrUuCGFtPXbMX0REOtaT9/xFRKQDURf+nd0M3swSzWxFYPk6MxvZatn/C8z/1MwuDnNdd5jZNjP7xMzWmNmIVst8ZrYx8Oj2y113obbFZlbSqoZbWi1bZGa7Ao9FYa7rt61q2mlmx1otC9k6M7NlZnbEzLZ0sNzM7HeBuj8xs5mtloVyfXVW13WBej4xs/fN7IxWy/aZ2ebA+soLc10XmFlFq5/Xz1stO+k2EOK6ftyqpi2BbWpgYFko19dwM3vDzLab2VYz+347bUK/jTnnouYB9Ab2AKOBBGATMLlNm9uB/w1MXw2sCExPDrRPBEYFPqd3GOu6EOgbmP728boCr6s9XmeLgd+3896BQH7gOS0wnRauutq0/x6wLEzr7DxgJrClg+WXAi/jv0vdXGBdqNdXF+s663h/wJeO1xV4vQ9I92h9XQC8GOw20N11tWl7BfB6mNZXNjAzMJ0C7Gzn/2TIt7Fo2/P/7GbwzrlG4PjN4FtbCCwPTD8DfNHMLDD/Kedcg3NuL7A78Hlhqcs594Zzrjbwci3+O5qFQ1fWWUcuBlY758qcc+XAauASj+q6BvhTN/V9Us65t4GykzRZCDzq/NYCA8wsm9Cur07rcs69H+gXwriNdWF9dSSYbbO76wrn9lXknPsoMF2F/z4nbe9rHvJtLNrCvys3g/+sjfPfSKYCGNTF94ayrtZuxv9b/bgkM8szs7Vm9pVuqulUa/t64M/LZ8zs+G03I2KdBYbIRgGvt5odynXWmY5qD+X6OlVttzEHvGpmG8x/r+xwm2dmm8zsZTObEpgXEevLzPriD9BnW80Oy/oy/7D0DGBdm0Uh38aCupmLB7pyM/iO2nT5RvKn4VRuUv8tIBc4v9XsHOfcITOPbVw3AAACoklEQVQbDbxuZpudc3vCWNtfgD855xrM7Db8fzld1MX3hrKu464GnnHO+VrNC+U664wX21iXmdmF+MP/nFazzw6sr0xgtZntCOwZh8NH+C85UG1mlwIvAOOIkPWFf8jnPedc678SQr6+zKwf/l84P3DOVbZd3M5bunUbi7Y9/67cDP6zNmYWB/TH/6dfl28kH6K6MLP5wFLgy865huPznf/OZzjn8oE38e8JdJdOa3POHW1Vz4PAmV19byjrauVq2vxJHuJ11pmOag/l+uoSM5sGPAQsdM4dPT6/1fo6gv/ue9015Nkp51ylc646MP0SEG9m6UTA+go42fYVkvVlZvH4g/8J59xz7TQJ/TYWigMaoXrg/0slH/8QwPEDRFPatPkOJx7wfTowPYUTD/jm030HfLtS1wz8B7fGtZmfBiQGptOBXXTvQa+u1JbdavqrwFr3fweX9gZqTAtMDwxXXYF2E/AffLNwrbPA546k4wOYl3HiwbgPQ72+ulhXDv5jWWe1mZ8MpLSafh+4JIx1DT7+88MfogcC665L20Co6gosP75zmByu9RX4tz8K/PdJ2oR8G+u2lRyuB/6j4DvxB+nSwLxf4N+bBkgC/hz4T/AhMLrVe5cG3vcp8KUw1/UaUAxsDDxWBeafBWwObPibgZs9WGf/BmwN1PAGMLHVe28KrMvdwI3hrCvw+p+Bu9u8L6TrDP9eYBHQhH9P62bgNuC2wHID7g3UvRnIDdP66qyuh4DyVttYXmD+6MC62hT4OS8Nc13fbbV9raXVL6f2toFw1RVosxj/iSCt3xfq9XUO/qGaT1r9rC4N9zamb/iKiMSgaBvzFxGRbqDwFxGJQQp/EZEYpPAXEYlBCn8RkRik8BcRiUEKfxGRGKTwFxGJQf8fac4WI+UpNtgAAAAASUVORK5CYII=\n", + "text/plain": "" + }, + "metadata": {} + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "a = 2\n", - "u = lambda c: -np.exp(-a*c)\n", - "plt.plot(x, u(x))" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "a = -2\nplt.plot(x, u(x))", + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 16, + "data": { + "text/plain": "[]" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xl8VPW9//HXJ/uekJAQSAJhCfuiEFFwRa1bK9Trhlptq5Zrq7W1u/VxW9t7e29v+2u1tnXXVqvWrfYWtW7UXTaDyr7vISwhkJCQPfn+/phBRwwEyMycmcz7+XjMI2fOMt/PHA7vc+as5pxDRER6vzivCxARkfBQ4IuIxAgFvohIjFDgi4jECAW+iEiMUOCLiMQIBb6ISIxQ4IuIxAgFvohIjEjwuoBAffv2daWlpV6XISISVRYtWrTbOZff3XgRFfilpaVUVFR4XYaISFQxs81HMp526YiIxIiQB76ZnWdmq81snZn9KNTtiYhI10Ia+GYWD/wROB8YDVxhZqND2aaIiHQt1Fv4k4F1zrkNzrlW4ElgRojbFBGRLoQ68IuArQHvK/39PmZms8yswswqqqurQ1yOiEjsCnXgWxf9PvXEFefc/c65cudceX5+t2cViYjIMQp14FcCJQHvi4GqELcpIiJdCPV5+O8DZWY2GNgGzASuDHYja3bW88KS7WQmJ5CRkkBGcgKZKb5XRnIiGf7u9KQE4uO6+tEhItL7hTTwnXPtZnYT8AoQDzzsnFse7HbW7mzg96+v5Ugez5ueFB+wUkj0rxQ+eZ+RkkBWSgI5aUnkpCaSk+Z7ZaUmkpOaRFKCLl0QkehkkfQQ8/LycnesV9p2djoa2zqob26jobmd+pZ239/mdhpa2vx/A/sdGOfTwxpa2w+74khLiicn1b8CSPOtBHLSEslOSyQ7NZE+aUnkpSeRl5FEXnoyuRlJZCYnYKZfFiISGma2yDlX3t14EXVrhZ6Ii7OPt9TJPvbP6ex01Le0U9fYRm1TK7WNbdQ1tVHb1EZdY6uvu/HA+zY27t5PbVMrexvbaG3v7PIzk+LjyE1PIvfjFUESuenJH3fnZSSTn5lMQabvb2K8fkWISPD1msAPlrg4IzvVt7U+kLSjmra5rYM9+1vZs7+Vmv2t1DS0sGd/K7sbWtmzv4WaBl//zTWN1DS0sL+14zOfYQZ56UnkZ6bQL8u3EuiXlUJBVson3VoxiMgxUOAHUUpiPANyUhmQk3pE4ze3dXy8Yqiub2FXfQs79zWzc18L1fW+vyuq9rG7oYXOg3YzHVgx9M9OpcjfZlGfVIpyUijKSWNATgq56UnalSQiH1PgeyglMZ6iHF9gH05Hp6OmoYWd+1rY5V8R7NzXzK76ZrbVNrOuuoG31lTT1PbpXwwpiXG+FUHOJyuFktxUBuWlMyg3TSsEkRijwI8C8XHm26WTlcKhDlA456htbGNbbRPbapuoqm1i294mqup8f1dur2d3Q8unpslMTmBgXhqD8tI+XgkMzEujNC+dwqwU4nQKq0ivosDvJcyMPulJ9ElPYmxR1yuF5rYOKvc2srnmwGs/m/c0smp7Pa+t2Elbxyf7jZIS4hjSN52h+RkMLchgWEEGQ/N971MS48P1tUQkiBT4MSQlMZ5hBZkMK8j8zLCOTkdVbRNb9vhWBptq9rOhuoHlVXW8tGz7x8cQzKAoJ9W/AvCtCMoKMhhRmElmSmKYv5GIHA0FvgC+3UYluWmU5KZx8rBPD2tu62BzTSPrdjX4XtUNrN/VwPwNNTS3fXIqanGfVEYWZjG6fyYj+2cxsjCTQXnpurpZJEIo8KVbKYnxjCjMZEThp38ZdHY6ttU2sWZnPat21LNy+z5W7ajn9VU7P/5FkJoYz/DCTEb3z2RsUTbji3IYUZipK5ZFPNBrrrSVyNHc1sHanQ2s3LGPVdvrWbVjHyu276O2sQ3wXYg2qn8m44p9K4BxxdmUFWSQoOsKRI5JzF1pK5EjJTGeccXZjCv+5OCxc47KvU0sqaxjybZallbW8Y8Pq3hs/hb/NHGM7p/FxIF9KC/tw6RBueRnJnv1FUR6JW3hi2c6Ox2b9zSypLLWtyKorGVxZd3Ht6gYmJtG+aA+TCrtQ/mgXMoKMnSqqEgXjnQLX4EvEaW1vZNlVXUs2rSXis17WLR5L7sbWgHITElg4sA+nDgkl6lD+zJ2QJZ2A4mgwJdewjnH5ppGKjbvZdHmvVRs2sPaXQ2A78KxyYNzmTI0jylD8xhVmKVfABKTtA9fegUzo7RvOqV907lkUjEA1fUtzN9Qw7wNNcxbX8O/Vu0CoE9aIicNyeO04fmcPjz/iO9pJBIrtIUvUW97XRPz1tcwd30N763bzfa6ZgCG98vgjBEFnD48n/LSPiQn6Aph6Z20S0diknOOtbsaeHP1Lt5aU83CjXto63CkJcUzdWge00YW8LlR/fz3JRLpHRT4IsD+lnbmra/hzTW7eHN1NZV7mwA4fmAO54wu5Jwx/Rian+FxlSI9o8AXOciBrf9Xlu3g1RU7WbqtDoBhBRmcM7of54wpZEJxtm4ZLVFHgS/SjW21TcxZsZNXlu9gwcY9dHQ6inJS+cKE/kyfMIDR/bMU/hIVFPgiR6G2sZU5K3fxwpIq3l27m/ZOx9D8dC6cMIDpEwYwRLt9JIIp8EWO0Z79rby0bDvPL65iwcY9OAdjBmQxfcIALjq+SAd8JeIo8EWCYEddMy8u3c7sxVUs3lpLfJwxbUQ+l5aXcObIAj1IXiKCAl8kyDZUN/DMokr+tqiSXfUt5KUncdHxRVx2QgnD+332oTIi4aLAFwmR9o5O3l5bzdPvVzJn5U7aOx0TSnKYeUIJM44bQFqSLmCX8FLgi4RBTUMLf/9wG09XbGXNzgYyUxK4dFIJV08ZxOC+6V6XJzFCgS8SRs45Kjbv5dF5m3lp6XbaOx2nlvXlmimlnDmyQI95lJBS4It4ZFd9M08u3MrjCzazc18LJbmpXHfyYC4tLyE9Wbt7JPiONPB7dIqBmV1qZsvNrNPMyg8adquZrTOz1WZ2bk/aEYkmBZkp3HxWGe/+8Ezuvmoi/TJTuP35FUz95ev8+pVV7NrX7HWJEqN6tIVvZqOATuA+4HvOuQp//9HAX4HJwABgDjDcOddxuM/TFr70Vos27+XBdzbw8vIdJMbF8cXjB/C1U4dQprN7JAjCcj9859xKf2MHD5oBPOmcawE2mtk6fOE/ryftiUSrSYP6MGnQJDbt3s/D723k6YqtPF1RyfljC7npzGGMGZDd/YeI9FCorhopArYGvK/09xOJaaV90/n5jLHM/dFZ3HzmMN5du5vP3/Uu1z9SwZLKWq/Lk16u2y18M5sDFHYx6Dbn3D8ONVkX/brcd2Rms4BZAAMHDuyuHJFeITc9ie+cM4LrTh3Cn9/bxEPvbmD6H3YybUQ+3zyrjIkD+3hdovRC3Qa+c+7sY/jcSqAk4H0xUHWIz78fuB98+/CPoS2RqJWdmsi3zi7j2lNKeXTeZh58ZwP/dvdczh7Vj++fO4IRhdrHL8ETql06s4GZZpZsZoOBMmBhiNoSiXqZKYncOG0Y7/7wTL5/7ggWbKjhvN+9zXee/oitexq9Lk96iZ6elnmRmVUCU4AXzewVAOfccuBpYAXwMnBjd2foiAikJydw47RhvP2Dacw6dQgvLtnOmb95k9tnL2d3Q4vX5UmU04VXIhFse10Td/1rLU9XVJKSEMc3pg3julMGk5KoB7LLJ8Jy4ZWIhFb/7FT+59/G8+otpzF1WF9+/cpqPnfHW7y8bDuRtLEm0UGBLxIFhuZn8MA15Tx+/YmkJSZww2MfcOUDC1i5fZ/XpUkUUeCLRJGTh/XlxZtP4T9njGHVjn18/q53+PHfl7J3f6vXpUkUUOCLRJmE+DiunlLKm9+bxpenlvLU+1s567dv8bdFldrNI4elwBeJUtlpifz0wjG8ePMplOal8d1nFnPVgwvYUN3gdWkSoRT4IlFuZGEWz94wlV9cNJal2+o47853uHPOGlradSa0fJoCX6QXiIszrjpxEP/67umcO7aQO+es5fzfvcP7m/Z4XZpEEAW+SC9SkJnC7684nkeunUxreyeX3TeP/3phBc1t2toXBb5Ir3T68Hxe+fZpXDl5IA++u5HP3/UOH27Z63VZ4jEFvkgvlZ6cwC8uGsdfrptMU2sHF98zl1+9vEr79mOYAl+klzu1LJ+XbzmNSyYVc/eb65nxh/dYXlXndVniAQW+SAzISknkV5dM4OGvlLNnfysX/XEuj8zdpPP2Y4wCXySGnDmyHy9/+zROKevLT2cvZ9ZfFukq3RiiwBeJMbnpSTz05XL+4wujeXP1Li646x0WbtTpm7FAgS8Sg8yM604ZzHNfP5nkhDhm3j+P381ZS0endvH0Zgp8kRg2rjibF24+lekTBnDHnDV86cEFetBKL6bAF4lxGckJ3HH5cfzqkvEs2rKXC3//Lh9trfW6LAkBBb6IYGZcVl7Cc1+fSpwZl907jycWbNFZPL2MAl9EPja2KJsXvnkKJw7J5cd/X8oP/7ZEt2XoRRT4IvIpfdKT+PNXJ/PNM4fxdEUlVzwwn+p67dfvDRT4IvIZ8XHGd88Zwd1XTWTl9n3M+MO7rKjS4xSjnQJfRA7pgnH9efaGqXQ6uOTeuby6fIfXJUkPKPBF5LDGFmUz+6aTKSvI4N8fW8Q9b67XwdwopcAXkW4VZKXw1L9P4QvjB/C/L6/iP/6xTBdpRaEErwsQkeiQkhjP7y4/jqKcVO59az076lr4/RXHk5oU73VpcoS0hS8iRywuzvjR+SP5+Ywx/GvVTq58cD57dPO1qKHAF5Gjds2UUu65ahIrqvZx8T1z2VLT6HVJcgQU+CJyTM4bW8jj15/I3sZWLrl3Lmt21ntdknRDgS8ix6y8NJenZk0B4PL75rGkUvfgiWQ9Cnwz+7WZrTKzJWb2dzPLCRh2q5mtM7PVZnZuz0sVkUg0ojCTZ26YQnpyAlc+sID5G2q8LkkOoadb+K8BY51z44E1wK0AZjYamAmMAc4D7jYzHcoX6aUG5aXz7A1TKcxO4csPL+SNVbu8Lkm60KPAd8696pxr97+dDxT7u2cATzrnWpxzG4F1wOSetCUika0wO4WnZp1EWb8MvvZoha7KjUDB3Id/LfCSv7sI2BowrNLfT0R6sbyMZJ742kmMLcrmG49/oNCPMN0GvpnNMbNlXbxmBIxzG9AOPH6gVxcf1eVleWY2y8wqzKyiurr6WL6DiESQrJREHr1uskI/AnUb+M65s51zY7t4/QPAzL4MfAG4yn1yg41KoCTgY4qBqkN8/v3OuXLnXHl+fn7Pvo2IRIQDoT+uWKEfSXp6ls55wA+B6c65wCsvZgMzzSzZzAYDZcDCnrQlItElKyWRR65V6EeSnu7D/wOQCbxmZh+Z2b0AzrnlwNPACuBl4EbnnB6bIxJjslISedQf+jc98SHvrNVuWy9ZJN3mtLy83FVUVHhdhogEWV1jGzMfmM+m3fv5y3WTKS/N9bqkXsXMFjnnyrsbT1faikjIZaf5tvT7Z6fw1T+/z7JtdV6XFJMU+CISFvmZyTx2/YlkpSRyzcMLWberweuSYo4CX0TCZkBOKo9dfyJxZnzpwQVU7tVdNsNJgS8iYTW4bzp/uW4y+1vb+cqf3qe2UffTDxcFvoiE3aj+WTxwTTlbahqZ9egimtt0El84KPBFxBMnDcnjt5dPYOGmPXzn6Y/0jNww0DNtRcQzXxg/gB11zfzXiyspyFzBTy8cjVlXd2aRYFDgi4inrj91CNvrmnno3Y0MyElh1mlDvS6p11Lgi4jnbrtgFDv2NfM/L61iUF46544p9LqkXkn78EXEc3Fxxm8uncD44hxueeojllfpwqxQUOCLSERISYzngasnkZ2ayNceqWBXfbPXJfU6CnwRiRgFWSk8cE05exvbdLpmCCjwRSSijC3K5o7Lj+OjrbX84NklRNINHqOdAl9EIs55Ywv5/rkjmL24irvfXO91Ob2GAl9EItI3zhjKhRMG8P9eXc3ba3Qf/WBQ4ItIRDIz/vficQwvyOTmJz9k6x7daK2nFPgiErHSkhK47+pJdHQ6bnhMB3F7SoEvIhGttG86d15+HMur9nHb35fpIG4PKPBFJOKdNaof3zqrjL99UMljC7Z4XU7UUuCLSFT41lllTBuRz8+fX86Sylqvy4lKCnwRiQpxccYdlx9HfkYyNz3xIfua27wuKeoo8EUkauSkJfH7K49nW20Ttz63VPvzj5ICX0SiyqRBuXzvnBG8uGQ7TyzU/vyjocAXkajz76cN4bTh+fzs+RWs3L7P63KihgJfRKJOXJzx28smkJOayI1PfMD+lnavS4oKCnwRiUp9M5K5c+ZxbNy9n9tnL/e6nKigwBeRqDV1aF9uPGMYzyyq5OVl270uJ+Ip8EUkqn3r7DLGFWVz63NL2bVPD005HAW+iES1xPg47rh8Ao2tHfzgb7p//uH0KPDN7D/NbImZfWRmr5rZAH9/M7O7zGydf/jE4JQrIvJZwwoy+fEFo3hzdbVuvXAYPd3C/7Vzbrxz7jjgBeAn/v7nA2X+1yzgnh62IyJyWNdMGcRpw/P5xYsrWF/d4HU5EalHge+cCzwBNh048FtqBvCo85kP5JhZ/560JSJyOGbGry8ZT0piPLc89RFtHZ1elxRxerwP38x+YWZbgav4ZAu/CNgaMFqlv19X088yswozq6iu1lNtROTY9ctK4b8vGseSyjruf3uD1+VEnG4D38zmmNmyLl4zAJxztznnSoDHgZsOTNbFR3V5JMU5d79zrtw5V56fn3+s30NEBIALxvXn8+P787s5a1mzs97rciJKt4HvnDvbOTe2i9c/Dhr1CeBif3clUBIwrBioCk7JIiKH97PpY8hISeD7zy6ho1Nn7RzQ07N0ygLeTgdW+btnA9f4z9Y5CahzzumqCBEJi74Zydw+fQyLt9by0LvatXNAQg+n/6WZjQA6gc3ADf7+/wQuANYBjcBXe9iOiMhRuXB8f55fXMVvXl3D2aP6MSQ/w+uSPGeRdJFCeXm5q6io8LoMEekldu1r5uzfvsWIwkyemjWFuLiuDi9GPzNb5Jwr7248XWkrIr1WQVYKP7lwDO9v2ssj8zZ5XY7nFPgi0qtdPLGI04fn8+tXVlNV2+R1OZ5S4ItIr2Zm/NcXx9LpHD97PrZvo6zAF5FeryQ3jZvPKuOV5TuZs2Kn1+V4RoEvIjHha6cOYXi/DH46ezmNrbH5hCwFvojEhMT4OH5x0Ti21Tbxu3+t9bocTyjwRSRmnFCay+XlJTz0zkZW7Yi9h58r8EUkpvzo/JFkpSby4+eW0hljt11Q4ItITOmTnsSPLxjFB1tqeWbR1u4n6EUU+CIScy6eWET5oD786uXV1DW1eV1O2CjwRSTmmBm3Tx/DnsZW7oqhA7gKfBGJSWOLspl5QgmPzN3Eul2xcd98Bb6IxKzvnTOC1KR4fvb8CiLpRpKhosAXkZiVl5HMLWcP5521u5mzcpfX5YScAl9EYtrVUwZRVpDBf76wgua2Dq/LCSkFvojEtMT4OH5y4Wi27GnkoXc3el1OSCnwRSTmnVqWzzmj+/HHN9axq77Z63JCRoEvIgLcesEoWts7uXNO7z1NU4EvIgIM7pvOl04axFPvb+21p2kq8EVE/L555jDSEuP55UurvS4lJBT4IiJ+eRnJ3HDGUOas3MmCDTVelxN0CnwRkQDXnjyYwqwU/vufK3vdxVgKfBGRAKlJ8Xz3nOEsrqzjhSXbvS4nqBT4IiIH+beJxYwszORXr6yipb33XIylwBcROUh8nHHrBaPYuqeJx+Zv8bqcoFHgi4h04fTh+Uwdmsfdb6xjf0vveOi5Al9E5BC+d+4Iava38ue5m7wuJSgU+CIihzBxYB/OGlnAfW+t7xVPxgpK4JvZ98zMmVlf/3szs7vMbJ2ZLTGzicFoR0Qk3L5zznD2Nbfz0DsbvC6lx3oc+GZWAnwOCDyycT5Q5n/NAu7paTsiIl4YMyCbz4/rz0PvbqSmocXrcnokGFv4dwA/AAKvUJgBPOp85gM5ZtY/CG2JiITdLZ8ro6mtg/veju6t/B4FvplNB7Y55xYfNKgI2BrwvtLfT0Qk6gwryOSLxxfxyNxN7NwXvbdP7jbwzWyOmS3r4jUDuA34SVeTddGvy2uUzWyWmVWYWUV1dfXRVS8iEibfPms4HZ2OP76xzutSjlm3ge+cO9s5N/bgF7ABGAwsNrNNQDHwgZkV4tuiLwn4mGKg6hCff79zrtw5V56fn9/T7yMiEhID89K47IQS/rpwC9tqm7wu55gc8y4d59xS51yBc67UOVeKL+QnOud2ALOBa/xn65wE1DnnetdNKUQk5tw0bRgA97653uNKjk2ozsP/J75fAOuAB4BvhKgdEZGwGZCTyiWTinmqYmtU7ssPWuD7t/R3+7udc+5G59xQ59w451xFsNoREfHS108fRken4763ou+MHV1pKyJyFAbmpfHF44p4YuFmdkfZefkKfBGRo/SNaUNpae/kwXc2el3KUVHgi4gcpaH5GXxh/AD+Mm8Te/e3el3OEVPgi4gcg5umDWN/awd/ei96tvIV+CIix2BEYSbnjSnkT3M3sa85Ou6kqcAXETlGN505jPrmdh55b5PXpRwRBb6IyDEaW5TNtBH5/GnuJprbIv/Ztwp8EZEeuOH0oezZ38oziyq9LqVbCnwRkR6YPDiXCSU5PPjOBjo6u7xHZMRQ4IuI9ICZccNpQ9hc08iry3d4Xc5hKfBFRHronDGFlOalce/bG3AucrfyFfgiIj0UH2dcd+oQFm+tZeHGPV6Xc0gKfBGRILh0UjF56UkR/RhEBb6ISBCkJMZzzZRSXl+1izU7670up0sKfBGRILlmyiBSE+O5P0K38hX4IiJB0ic9icvKi/nHR9vYURd5D0hR4IuIBNH1pw6ho9Pxl/mbvC7lMxT4IiJBVJKbxtmj+vHEgi0Rd7sFBb6ISJB95eRS9ja2MfujKq9L+RQFvohIkE0ZksfIwkwefm9jRF2IpcAXEQkyM+OrJ5eyakc98zdEzoVYCnwRkRCYcVwRfdIS+fPcyHkilgJfRCQEUhLjuWLyQF5bsZOtexq9LgdQ4IuIhMzVUwZhZjw6b5PXpQAKfBGRkOmfncp5Ywt58v2t7G9p97ocBb6ISChde3Ip9c3tPPfhNq9LUeCLiITSxIF9GF+czZ8j4BRNBb6ISAiZGVefNIj11ftZ4PG98hX4IiIhduGEAWSlJPDY/M2e1tGjwDez281sm5l95H9dEDDsVjNbZ2arzezcnpcqIhKdUhLjuWRSCa8s30F1fYtndQRjC/8O59xx/tc/AcxsNDATGAOcB9xtZvFBaEtEJCpdeeJA2joczyza6lkNodqlMwN40jnX4pzbCKwDJoeoLRGRiDesIIMpQ/J4YsEWOjq9OXgbjMC/ycyWmNnDZtbH368ICFyNVfr7iYjErKtOGkjl3ibeXlvtSfvdBr6ZzTGzZV28ZgD3AEOB44DtwG8OTNbFR3W5SjOzWWZWYWYV1dXezAQRkXA4Z3QhfTOSeXz+Fk/aT+huBOfc2UfyQWb2APCC/20lUBIwuBjo8sbQzrn7gfsBysvLI+c+oiIiQZaUEMflJxRzz5vr2VbbRFFOaljb7+lZOv0D3l4ELPN3zwZmmlmymQ0GyoCFPWlLRKQ3mHnCQBzw1MLwb+X3dB/+r8xsqZktAaYBtwA455YDTwMrgJeBG51zkfWsLxERD5TkpnHG8HyefH8rbR2dYW27R4HvnLvaOTfOOTfeOTfdObc9YNgvnHNDnXMjnHMv9bxUEZHe4UsnDWJXfQtzVuwMa7u60lZEJMzOGFFA/+wUnnw/vOfkK/BFRMIsPs64dFIxb6+tpqq2KWztKvBFRDxwaXkJzsGziyrD1qYCX0TEAyW5aZw8LI+nK7bSGaYrbxX4IiIeuay8hMq9TcxdXxOW9hT4IiIeOXdMIdmpiTxVEZ6Dtwp8ERGPpCTG88XjBvDK8h3UNraGvD0FvoiIhy47oYTW9k7+LwzPvFXgi4h4aMyAbKZPGECf9KSQt9XtzdNERCS07rri+LC0oy18EZEYocAXEYkRCnwRkRihwBcRiREKfBGRGKHAFxGJEQp8EZEYocAXEYkR5lx4bst5JMysGth8jJP3BXYHsZxgitTaVNfRidS6IHJrU11H51jrGuScy+9upIgK/J4wswrnXLnXdXQlUmtTXUcnUuuCyK1NdR2dUNelXToiIjFCgS8iEiN6U+Df73UBhxGptamuoxOpdUHk1qa6jk5I6+o1+/BFROTwetMWvoiIHEZUBL6ZnWdmq81snZn9qIvhyWb2lH/4AjMrDRh2q7//ajM7N8x1fcfMVpjZEjP7l5kNChjWYWYf+V+zw1zXV8ysOqD96wOGfdnM1vpfXw5mXUdY2x0Bda0xs9qAYSGZZ2b2sJntMrNlhxhuZnaXv+YlZjYxYFio51d3tV3lr2mJmc01swkBwzaZ2VL//KoIc11nmFldwL/XTwKGHXYZCHFd3w+oaZl/mcr1Dwvl/CoxszfMbKWZLTezb3UxTuiXM+dcRL+AeGA9MARIAhYDow8a5xvAvf7umcBT/u7R/vGTgcH+z4kPY13TgDR/99cP1OV/3+Dh/PoK8Icups0FNvj/9vF39wlnbQeN/03g4TDMs9OAicCyQwy/AHgJMOAkYEE45tcR1jb1QJvA+Qdq87/fBPT1aJ6dAbzQ02Ug2HUdNO6FwOthml/9gYn+7kxgTRf/L0O+nEXDFv5kYJ1zboNzrhV4Ephx0DgzgEf83c8CZ5mZ+fs/6Zxrcc5tBNb5Py8sdTnn3nDONfrfzgeKg9R2j+o6jHOB15xze5xze4HXgPM8rO0K4K9BbL9Lzrm3gT2HGWUG8KjzmQ/kmFl/Qj+/uq3NOTfX3zaEbxk7knl2KD1ZPoNdV1iWLwDn3Hbn3Af+7npgJVB00GghX86iIfCLgK0B7yv57Iz6eBznXDtQB+Qd4bShrCvQdfjW3gekmFmFmc03sy8Gqaajqeti/8/GZ82s5CinDXVt+Hd/DQZeD+jacoFUAAADAElEQVQdqnnWnUPVHer5dbQOXsYc8KqZLTKzWR7UM8XMFpvZS2Y2xt8vIuaZmaXhC82/BfQOy/wy3y7n44EFBw0K+XIWDc+0tS76HXxq0aHGOZJpj9URf7aZfQkoB04P6D3QOVdlZkOA181sqXNufZjqeh74q3OuxcxuwPfr6MwjnDbUtR0wE3jWOdcR0C9U86w7XixfR8XMpuEL/FMCep/sn18FwGtmtsq/BRwOH+C73L/BzC4A/g8oI3Lm2YXAe865wF8DIZ9fZpaBbyXzbefcvoMHdzFJUJezaNjCrwRKAt4XA1WHGsfMEoBsfD/rjmTaUNaFmZ0N3AZMd861HOjvnKvy/90AvIlvjR+WupxzNQG1PABMOtJpQ11bgJkc9HM7hPOsO4eqO9Tz64iY2XjgQWCGc67mQP+A+bUL+DvB253ZLefcPudcg7/7n0CimfUlQuYZh1++QjK/zCwRX9g/7px7rotRQr+cheIARTBf+H6FbMD38/7AQZ4xB41zI58+aPu0v3sMnz5ou4HgHbQ9krqOx3eAquyg/n2AZH93X2AtQTpwdYR19Q/ovgiY7z45OLTRX18ff3duOP8t/eONwHcAzcIxz/yfWcqhD0B+nk8fTFsYjvl1hLUNxHdsaupB/dOBzIDuucB5Yayr8MC/H77g3OKff0e0DISqLv/wAxuE6eGaX/7v/ihw52HGCflyFtQFM1QvfEev1+ALz9v8/X6Ob6sZIAV4xr/gLwSGBEx7m3+61cD5Ya5rDrAT+Mj/mu3vPxVY6l/YlwLXhbmu/wGW+9t/AxgZMO21/vm4DvhquP8t/e9vB3550HQhm2f4tvS2A234tqauA24AbvAPN+CP/pqXAuVhnF/d1fYgsDdgGavw9x/in1eL/f/Wt4W5rpsClrH5BKyQuloGwlWXf5yv4DuZI3C6UM+vU/DthlkS8G91QbiXM11pKyISI6JhH76IiASBAl9EJEYo8EVEYoQCX0QkRijwRURihAJfRCRGKPBFRGKEAl9EJEb8fxanBLSqqPI7AAAAAElFTkSuQmCC\n", + "text/plain": "" + }, + "metadata": {} + } ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3Xl8VPW9//HXJ/uekJAQSAJhCfuiEFFwRa1bK9Trhlptq5Zrq7W1u/VxW9t7e29v+2u1tnXXVqvWrfYWtW7UXTaDyr7vISwhkJCQPfn+/phBRwwEyMycmcz7+XjMI2fOMt/PHA7vc+as5pxDRER6vzivCxARkfBQ4IuIxAgFvohIjFDgi4jECAW+iEiMUOCLiMQIBb6ISIxQ4IuIxAgFvohIjEjwuoBAffv2daWlpV6XISISVRYtWrTbOZff3XgRFfilpaVUVFR4XYaISFQxs81HMp526YiIxIiQB76ZnWdmq81snZn9KNTtiYhI10Ia+GYWD/wROB8YDVxhZqND2aaIiHQt1Fv4k4F1zrkNzrlW4ElgRojbFBGRLoQ68IuArQHvK/39PmZms8yswswqqqurQ1yOiEjsCnXgWxf9PvXEFefc/c65cudceX5+t2cViYjIMQp14FcCJQHvi4GqELcpIiJdCPV5+O8DZWY2GNgGzASuDHYja3bW88KS7WQmJ5CRkkBGcgKZKb5XRnIiGf7u9KQE4uO6+tEhItL7hTTwnXPtZnYT8AoQDzzsnFse7HbW7mzg96+v5Ugez5ueFB+wUkj0rxQ+eZ+RkkBWSgI5aUnkpCaSk+Z7ZaUmkpOaRFKCLl0QkehkkfQQ8/LycnesV9p2djoa2zqob26jobmd+pZ239/mdhpa2vx/A/sdGOfTwxpa2w+74khLiicn1b8CSPOtBHLSEslOSyQ7NZE+aUnkpSeRl5FEXnoyuRlJZCYnYKZfFiISGma2yDlX3t14EXVrhZ6Ii7OPt9TJPvbP6ex01Le0U9fYRm1TK7WNbdQ1tVHb1EZdY6uvu/HA+zY27t5PbVMrexvbaG3v7PIzk+LjyE1PIvfjFUESuenJH3fnZSSTn5lMQabvb2K8fkWISPD1msAPlrg4IzvVt7U+kLSjmra5rYM9+1vZs7+Vmv2t1DS0sGd/K7sbWtmzv4WaBl//zTWN1DS0sL+14zOfYQZ56UnkZ6bQL8u3EuiXlUJBVson3VoxiMgxUOAHUUpiPANyUhmQk3pE4ze3dXy8Yqiub2FXfQs79zWzc18L1fW+vyuq9rG7oYXOg3YzHVgx9M9OpcjfZlGfVIpyUijKSWNATgq56UnalSQiH1PgeyglMZ6iHF9gH05Hp6OmoYWd+1rY5V8R7NzXzK76ZrbVNrOuuoG31lTT1PbpXwwpiXG+FUHOJyuFktxUBuWlMyg3TSsEkRijwI8C8XHm26WTlcKhDlA456htbGNbbRPbapuoqm1i294mqup8f1dur2d3Q8unpslMTmBgXhqD8tI+XgkMzEujNC+dwqwU4nQKq0ivosDvJcyMPulJ9ElPYmxR1yuF5rYOKvc2srnmwGs/m/c0smp7Pa+t2Elbxyf7jZIS4hjSN52h+RkMLchgWEEGQ/N971MS48P1tUQkiBT4MSQlMZ5hBZkMK8j8zLCOTkdVbRNb9vhWBptq9rOhuoHlVXW8tGz7x8cQzKAoJ9W/AvCtCMoKMhhRmElmSmKYv5GIHA0FvgC+3UYluWmU5KZx8rBPD2tu62BzTSPrdjX4XtUNrN/VwPwNNTS3fXIqanGfVEYWZjG6fyYj+2cxsjCTQXnpurpZJEIo8KVbKYnxjCjMZEThp38ZdHY6ttU2sWZnPat21LNy+z5W7ajn9VU7P/5FkJoYz/DCTEb3z2RsUTbji3IYUZipK5ZFPNBrrrSVyNHc1sHanQ2s3LGPVdvrWbVjHyu276O2sQ3wXYg2qn8m44p9K4BxxdmUFWSQoOsKRI5JzF1pK5EjJTGeccXZjCv+5OCxc47KvU0sqaxjybZallbW8Y8Pq3hs/hb/NHGM7p/FxIF9KC/tw6RBueRnJnv1FUR6JW3hi2c6Ox2b9zSypLLWtyKorGVxZd3Ht6gYmJtG+aA+TCrtQ/mgXMoKMnSqqEgXjnQLX4EvEaW1vZNlVXUs2rSXis17WLR5L7sbWgHITElg4sA+nDgkl6lD+zJ2QJZ2A4mgwJdewjnH5ppGKjbvZdHmvVRs2sPaXQ2A78KxyYNzmTI0jylD8xhVmKVfABKTtA9fegUzo7RvOqV907lkUjEA1fUtzN9Qw7wNNcxbX8O/Vu0CoE9aIicNyeO04fmcPjz/iO9pJBIrtIUvUW97XRPz1tcwd30N763bzfa6ZgCG98vgjBEFnD48n/LSPiQn6Aph6Z20S0diknOOtbsaeHP1Lt5aU83CjXto63CkJcUzdWge00YW8LlR/fz3JRLpHRT4IsD+lnbmra/hzTW7eHN1NZV7mwA4fmAO54wu5Jwx/Rian+FxlSI9o8AXOciBrf9Xlu3g1RU7WbqtDoBhBRmcM7of54wpZEJxtm4ZLVFHgS/SjW21TcxZsZNXlu9gwcY9dHQ6inJS+cKE/kyfMIDR/bMU/hIVFPgiR6G2sZU5K3fxwpIq3l27m/ZOx9D8dC6cMIDpEwYwRLt9JIIp8EWO0Z79rby0bDvPL65iwcY9OAdjBmQxfcIALjq+SAd8JeIo8EWCYEddMy8u3c7sxVUs3lpLfJwxbUQ+l5aXcObIAj1IXiKCAl8kyDZUN/DMokr+tqiSXfUt5KUncdHxRVx2QgnD+332oTIi4aLAFwmR9o5O3l5bzdPvVzJn5U7aOx0TSnKYeUIJM44bQFqSLmCX8FLgi4RBTUMLf/9wG09XbGXNzgYyUxK4dFIJV08ZxOC+6V6XJzFCgS8SRs45Kjbv5dF5m3lp6XbaOx2nlvXlmimlnDmyQI95lJBS4It4ZFd9M08u3MrjCzazc18LJbmpXHfyYC4tLyE9Wbt7JPiONPB7dIqBmV1qZsvNrNPMyg8adquZrTOz1WZ2bk/aEYkmBZkp3HxWGe/+8Ezuvmoi/TJTuP35FUz95ev8+pVV7NrX7HWJEqN6tIVvZqOATuA+4HvOuQp//9HAX4HJwABgDjDcOddxuM/TFr70Vos27+XBdzbw8vIdJMbF8cXjB/C1U4dQprN7JAjCcj9859xKf2MHD5oBPOmcawE2mtk6fOE/ryftiUSrSYP6MGnQJDbt3s/D723k6YqtPF1RyfljC7npzGGMGZDd/YeI9FCorhopArYGvK/09xOJaaV90/n5jLHM/dFZ3HzmMN5du5vP3/Uu1z9SwZLKWq/Lk16u2y18M5sDFHYx6Dbn3D8ONVkX/brcd2Rms4BZAAMHDuyuHJFeITc9ie+cM4LrTh3Cn9/bxEPvbmD6H3YybUQ+3zyrjIkD+3hdovRC3Qa+c+7sY/jcSqAk4H0xUHWIz78fuB98+/CPoS2RqJWdmsi3zi7j2lNKeXTeZh58ZwP/dvdczh7Vj++fO4IRhdrHL8ETql06s4GZZpZsZoOBMmBhiNoSiXqZKYncOG0Y7/7wTL5/7ggWbKjhvN+9zXee/oitexq9Lk96iZ6elnmRmVUCU4AXzewVAOfccuBpYAXwMnBjd2foiAikJydw47RhvP2Dacw6dQgvLtnOmb95k9tnL2d3Q4vX5UmU04VXIhFse10Td/1rLU9XVJKSEMc3pg3julMGk5KoB7LLJ8Jy4ZWIhFb/7FT+59/G8+otpzF1WF9+/cpqPnfHW7y8bDuRtLEm0UGBLxIFhuZn8MA15Tx+/YmkJSZww2MfcOUDC1i5fZ/XpUkUUeCLRJGTh/XlxZtP4T9njGHVjn18/q53+PHfl7J3f6vXpUkUUOCLRJmE+DiunlLKm9+bxpenlvLU+1s567dv8bdFldrNI4elwBeJUtlpifz0wjG8ePMplOal8d1nFnPVgwvYUN3gdWkSoRT4IlFuZGEWz94wlV9cNJal2+o47853uHPOGlradSa0fJoCX6QXiIszrjpxEP/67umcO7aQO+es5fzfvcP7m/Z4XZpEEAW+SC9SkJnC7684nkeunUxreyeX3TeP/3phBc1t2toXBb5Ir3T68Hxe+fZpXDl5IA++u5HP3/UOH27Z63VZ4jEFvkgvlZ6cwC8uGsdfrptMU2sHF98zl1+9vEr79mOYAl+klzu1LJ+XbzmNSyYVc/eb65nxh/dYXlXndVniAQW+SAzISknkV5dM4OGvlLNnfysX/XEuj8zdpPP2Y4wCXySGnDmyHy9/+zROKevLT2cvZ9ZfFukq3RiiwBeJMbnpSTz05XL+4wujeXP1Li646x0WbtTpm7FAgS8Sg8yM604ZzHNfP5nkhDhm3j+P381ZS0endvH0Zgp8kRg2rjibF24+lekTBnDHnDV86cEFetBKL6bAF4lxGckJ3HH5cfzqkvEs2rKXC3//Lh9trfW6LAkBBb6IYGZcVl7Cc1+fSpwZl907jycWbNFZPL2MAl9EPja2KJsXvnkKJw7J5cd/X8oP/7ZEt2XoRRT4IvIpfdKT+PNXJ/PNM4fxdEUlVzwwn+p67dfvDRT4IvIZ8XHGd88Zwd1XTWTl9n3M+MO7rKjS4xSjnQJfRA7pgnH9efaGqXQ6uOTeuby6fIfXJUkPKPBF5LDGFmUz+6aTKSvI4N8fW8Q9b67XwdwopcAXkW4VZKXw1L9P4QvjB/C/L6/iP/6xTBdpRaEErwsQkeiQkhjP7y4/jqKcVO59az076lr4/RXHk5oU73VpcoS0hS8iRywuzvjR+SP5+Ywx/GvVTq58cD57dPO1qKHAF5Gjds2UUu65ahIrqvZx8T1z2VLT6HVJcgQU+CJyTM4bW8jj15/I3sZWLrl3Lmt21ntdknRDgS8ix6y8NJenZk0B4PL75rGkUvfgiWQ9Cnwz+7WZrTKzJWb2dzPLCRh2q5mtM7PVZnZuz0sVkUg0ojCTZ26YQnpyAlc+sID5G2q8LkkOoadb+K8BY51z44E1wK0AZjYamAmMAc4D7jYzHcoX6aUG5aXz7A1TKcxO4csPL+SNVbu8Lkm60KPAd8696pxr97+dDxT7u2cATzrnWpxzG4F1wOSetCUika0wO4WnZp1EWb8MvvZoha7KjUDB3Id/LfCSv7sI2BowrNLfT0R6sbyMZJ742kmMLcrmG49/oNCPMN0GvpnNMbNlXbxmBIxzG9AOPH6gVxcf1eVleWY2y8wqzKyiurr6WL6DiESQrJREHr1uskI/AnUb+M65s51zY7t4/QPAzL4MfAG4yn1yg41KoCTgY4qBqkN8/v3OuXLnXHl+fn7Pvo2IRIQDoT+uWKEfSXp6ls55wA+B6c65wCsvZgMzzSzZzAYDZcDCnrQlItElKyWRR65V6EeSnu7D/wOQCbxmZh+Z2b0AzrnlwNPACuBl4EbnnB6bIxJjslISedQf+jc98SHvrNVuWy9ZJN3mtLy83FVUVHhdhogEWV1jGzMfmM+m3fv5y3WTKS/N9bqkXsXMFjnnyrsbT1faikjIZaf5tvT7Z6fw1T+/z7JtdV6XFJMU+CISFvmZyTx2/YlkpSRyzcMLWberweuSYo4CX0TCZkBOKo9dfyJxZnzpwQVU7tVdNsNJgS8iYTW4bzp/uW4y+1vb+cqf3qe2UffTDxcFvoiE3aj+WTxwTTlbahqZ9egimtt0El84KPBFxBMnDcnjt5dPYOGmPXzn6Y/0jNww0DNtRcQzXxg/gB11zfzXiyspyFzBTy8cjVlXd2aRYFDgi4inrj91CNvrmnno3Y0MyElh1mlDvS6p11Lgi4jnbrtgFDv2NfM/L61iUF46544p9LqkXkn78EXEc3Fxxm8uncD44hxueeojllfpwqxQUOCLSERISYzngasnkZ2ayNceqWBXfbPXJfU6CnwRiRgFWSk8cE05exvbdLpmCCjwRSSijC3K5o7Lj+OjrbX84NklRNINHqOdAl9EIs55Ywv5/rkjmL24irvfXO91Ob2GAl9EItI3zhjKhRMG8P9eXc3ba3Qf/WBQ4ItIRDIz/vficQwvyOTmJz9k6x7daK2nFPgiErHSkhK47+pJdHQ6bnhMB3F7SoEvIhGttG86d15+HMur9nHb35fpIG4PKPBFJOKdNaof3zqrjL99UMljC7Z4XU7UUuCLSFT41lllTBuRz8+fX86Sylqvy4lKCnwRiQpxccYdlx9HfkYyNz3xIfua27wuKeoo8EUkauSkJfH7K49nW20Ttz63VPvzj5ICX0SiyqRBuXzvnBG8uGQ7TyzU/vyjocAXkajz76cN4bTh+fzs+RWs3L7P63KihgJfRKJOXJzx28smkJOayI1PfMD+lnavS4oKCnwRiUp9M5K5c+ZxbNy9n9tnL/e6nKigwBeRqDV1aF9uPGMYzyyq5OVl270uJ+Ip8EUkqn3r7DLGFWVz63NL2bVPD005HAW+iES1xPg47rh8Ao2tHfzgb7p//uH0KPDN7D/NbImZfWRmr5rZAH9/M7O7zGydf/jE4JQrIvJZwwoy+fEFo3hzdbVuvXAYPd3C/7Vzbrxz7jjgBeAn/v7nA2X+1yzgnh62IyJyWNdMGcRpw/P5xYsrWF/d4HU5EalHge+cCzwBNh048FtqBvCo85kP5JhZ/560JSJyOGbGry8ZT0piPLc89RFtHZ1elxRxerwP38x+YWZbgav4ZAu/CNgaMFqlv19X088yswozq6iu1lNtROTY9ctK4b8vGseSyjruf3uD1+VEnG4D38zmmNmyLl4zAJxztznnSoDHgZsOTNbFR3V5JMU5d79zrtw5V56fn3+s30NEBIALxvXn8+P787s5a1mzs97rciJKt4HvnDvbOTe2i9c/Dhr1CeBif3clUBIwrBioCk7JIiKH97PpY8hISeD7zy6ho1Nn7RzQ07N0ygLeTgdW+btnA9f4z9Y5CahzzumqCBEJi74Zydw+fQyLt9by0LvatXNAQg+n/6WZjQA6gc3ADf7+/wQuANYBjcBXe9iOiMhRuXB8f55fXMVvXl3D2aP6MSQ/w+uSPGeRdJFCeXm5q6io8LoMEekldu1r5uzfvsWIwkyemjWFuLiuDi9GPzNb5Jwr7248XWkrIr1WQVYKP7lwDO9v2ssj8zZ5XY7nFPgi0qtdPLGI04fn8+tXVlNV2+R1OZ5S4ItIr2Zm/NcXx9LpHD97PrZvo6zAF5FeryQ3jZvPKuOV5TuZs2Kn1+V4RoEvIjHha6cOYXi/DH46ezmNrbH5hCwFvojEhMT4OH5x0Ti21Tbxu3+t9bocTyjwRSRmnFCay+XlJTz0zkZW7Yi9h58r8EUkpvzo/JFkpSby4+eW0hljt11Q4ItITOmTnsSPLxjFB1tqeWbR1u4n6EUU+CIScy6eWET5oD786uXV1DW1eV1O2CjwRSTmmBm3Tx/DnsZW7oqhA7gKfBGJSWOLspl5QgmPzN3Eul2xcd98Bb6IxKzvnTOC1KR4fvb8CiLpRpKhosAXkZiVl5HMLWcP5521u5mzcpfX5YScAl9EYtrVUwZRVpDBf76wgua2Dq/LCSkFvojEtMT4OH5y4Wi27GnkoXc3el1OSCnwRSTmnVqWzzmj+/HHN9axq77Z63JCRoEvIgLcesEoWts7uXNO7z1NU4EvIgIM7pvOl04axFPvb+21p2kq8EVE/L555jDSEuP55UurvS4lJBT4IiJ+eRnJ3HDGUOas3MmCDTVelxN0CnwRkQDXnjyYwqwU/vufK3vdxVgKfBGRAKlJ8Xz3nOEsrqzjhSXbvS4nqBT4IiIH+beJxYwszORXr6yipb33XIylwBcROUh8nHHrBaPYuqeJx+Zv8bqcoFHgi4h04fTh+Uwdmsfdb6xjf0vveOi5Al9E5BC+d+4Iava38ue5m7wuJSgU+CIihzBxYB/OGlnAfW+t7xVPxgpK4JvZ98zMmVlf/3szs7vMbJ2ZLTGzicFoR0Qk3L5zznD2Nbfz0DsbvC6lx3oc+GZWAnwOCDyycT5Q5n/NAu7paTsiIl4YMyCbz4/rz0PvbqSmocXrcnokGFv4dwA/AAKvUJgBPOp85gM5ZtY/CG2JiITdLZ8ro6mtg/veju6t/B4FvplNB7Y55xYfNKgI2BrwvtLfT0Qk6gwryOSLxxfxyNxN7NwXvbdP7jbwzWyOmS3r4jUDuA34SVeTddGvy2uUzWyWmVWYWUV1dfXRVS8iEibfPms4HZ2OP76xzutSjlm3ge+cO9s5N/bgF7ABGAwsNrNNQDHwgZkV4tuiLwn4mGKg6hCff79zrtw5V56fn9/T7yMiEhID89K47IQS/rpwC9tqm7wu55gc8y4d59xS51yBc67UOVeKL+QnOud2ALOBa/xn65wE1DnnetdNKUQk5tw0bRgA97653uNKjk2ozsP/J75fAOuAB4BvhKgdEZGwGZCTyiWTinmqYmtU7ssPWuD7t/R3+7udc+5G59xQ59w451xFsNoREfHS108fRken4763ou+MHV1pKyJyFAbmpfHF44p4YuFmdkfZefkKfBGRo/SNaUNpae/kwXc2el3KUVHgi4gcpaH5GXxh/AD+Mm8Te/e3el3OEVPgi4gcg5umDWN/awd/ei96tvIV+CIix2BEYSbnjSnkT3M3sa85Ou6kqcAXETlGN505jPrmdh55b5PXpRwRBb6IyDEaW5TNtBH5/GnuJprbIv/Ztwp8EZEeuOH0oezZ38oziyq9LqVbCnwRkR6YPDiXCSU5PPjOBjo6u7xHZMRQ4IuI9ICZccNpQ9hc08iry3d4Xc5hKfBFRHronDGFlOalce/bG3AucrfyFfgiIj0UH2dcd+oQFm+tZeHGPV6Xc0gKfBGRILh0UjF56UkR/RhEBb6ISBCkJMZzzZRSXl+1izU7670up0sKfBGRILlmyiBSE+O5P0K38hX4IiJB0ic9icvKi/nHR9vYURd5D0hR4IuIBNH1pw6ho9Pxl/mbvC7lMxT4IiJBVJKbxtmj+vHEgi0Rd7sFBb6ISJB95eRS9ja2MfujKq9L+RQFvohIkE0ZksfIwkwefm9jRF2IpcAXEQkyM+OrJ5eyakc98zdEzoVYCnwRkRCYcVwRfdIS+fPcyHkilgJfRCQEUhLjuWLyQF5bsZOtexq9LgdQ4IuIhMzVUwZhZjw6b5PXpQAKfBGRkOmfncp5Ywt58v2t7G9p97ocBb6ISChde3Ip9c3tPPfhNq9LUeCLiITSxIF9GF+czZ8j4BRNBb6ISAiZGVefNIj11ftZ4PG98hX4IiIhduGEAWSlJPDY/M2e1tGjwDez281sm5l95H9dEDDsVjNbZ2arzezcnpcqIhKdUhLjuWRSCa8s30F1fYtndQRjC/8O59xx/tc/AcxsNDATGAOcB9xtZvFBaEtEJCpdeeJA2joczyza6lkNodqlMwN40jnX4pzbCKwDJoeoLRGRiDesIIMpQ/J4YsEWOjq9OXgbjMC/ycyWmNnDZtbH368ICFyNVfr7iYjErKtOGkjl3ibeXlvtSfvdBr6ZzTGzZV28ZgD3AEOB44DtwG8OTNbFR3W5SjOzWWZWYWYV1dXezAQRkXA4Z3QhfTOSeXz+Fk/aT+huBOfc2UfyQWb2APCC/20lUBIwuBjo8sbQzrn7gfsBysvLI+c+oiIiQZaUEMflJxRzz5vr2VbbRFFOaljb7+lZOv0D3l4ELPN3zwZmmlmymQ0GyoCFPWlLRKQ3mHnCQBzw1MLwb+X3dB/+r8xsqZktAaYBtwA455YDTwMrgJeBG51zkfWsLxERD5TkpnHG8HyefH8rbR2dYW27R4HvnLvaOTfOOTfeOTfdObc9YNgvnHNDnXMjnHMv9bxUEZHe4UsnDWJXfQtzVuwMa7u60lZEJMzOGFFA/+wUnnw/vOfkK/BFRMIsPs64dFIxb6+tpqq2KWztKvBFRDxwaXkJzsGziyrD1qYCX0TEAyW5aZw8LI+nK7bSGaYrbxX4IiIeuay8hMq9TcxdXxOW9hT4IiIeOXdMIdmpiTxVEZ6Dtwp8ERGPpCTG88XjBvDK8h3UNraGvD0FvoiIhy47oYTW9k7+LwzPvFXgi4h4aMyAbKZPGECf9KSQt9XtzdNERCS07rri+LC0oy18EZEYocAXEYkRCnwRkRihwBcRiREKfBGRGKHAFxGJEQp8EZEYocAXEYkR5lx4bst5JMysGth8jJP3BXYHsZxgitTaVNfRidS6IHJrU11H51jrGuScy+9upIgK/J4wswrnXLnXdXQlUmtTXUcnUuuCyK1NdR2dUNelXToiIjFCgS8iEiN6U+Df73UBhxGptamuoxOpdUHk1qa6jk5I6+o1+/BFROTwetMWvoiIHEZUBL6ZnWdmq81snZn9qIvhyWb2lH/4AjMrDRh2q7//ajM7N8x1fcfMVpjZEjP7l5kNChjWYWYf+V+zw1zXV8ysOqD96wOGfdnM1vpfXw5mXUdY2x0Bda0xs9qAYSGZZ2b2sJntMrNlhxhuZnaXv+YlZjYxYFio51d3tV3lr2mJmc01swkBwzaZ2VL//KoIc11nmFldwL/XTwKGHXYZCHFd3w+oaZl/mcr1Dwvl/CoxszfMbKWZLTezb3UxTuiXM+dcRL+AeGA9MARIAhYDow8a5xvAvf7umcBT/u7R/vGTgcH+z4kPY13TgDR/99cP1OV/3+Dh/PoK8Icups0FNvj/9vF39wlnbQeN/03g4TDMs9OAicCyQwy/AHgJMOAkYEE45tcR1jb1QJvA+Qdq87/fBPT1aJ6dAbzQ02Ug2HUdNO6FwOthml/9gYn+7kxgTRf/L0O+nEXDFv5kYJ1zboNzrhV4Ephx0DgzgEf83c8CZ5mZ+fs/6Zxrcc5tBNb5Py8sdTnn3nDONfrfzgeKg9R2j+o6jHOB15xze5xze4HXgPM8rO0K4K9BbL9Lzrm3gT2HGWUG8KjzmQ/kmFl/Qj+/uq3NOTfX3zaEbxk7knl2KD1ZPoNdV1iWLwDn3Hbn3Af+7npgJVB00GghX86iIfCLgK0B7yv57Iz6eBznXDtQB+Qd4bShrCvQdfjW3gekmFmFmc03sy8Gqaajqeti/8/GZ82s5CinDXVt+Hd/DQZeD+jacoFUAAADAElEQVQdqnnWnUPVHer5dbQOXsYc8KqZLTKzWR7UM8XMFpvZS2Y2xt8vIuaZmaXhC82/BfQOy/wy3y7n44EFBw0K+XIWDc+0tS76HXxq0aHGOZJpj9URf7aZfQkoB04P6D3QOVdlZkOA181sqXNufZjqeh74q3OuxcxuwPfr6MwjnDbUtR0wE3jWOdcR0C9U86w7XixfR8XMpuEL/FMCep/sn18FwGtmtsq/BRwOH+C73L/BzC4A/g8oI3Lm2YXAe865wF8DIZ9fZpaBbyXzbefcvoMHdzFJUJezaNjCrwRKAt4XA1WHGsfMEoBsfD/rjmTaUNaFmZ0N3AZMd861HOjvnKvy/90AvIlvjR+WupxzNQG1PABMOtJpQ11bgJkc9HM7hPOsO4eqO9Tz64iY2XjgQWCGc67mQP+A+bUL+DvB253ZLefcPudcg7/7n0CimfUlQuYZh1++QjK/zCwRX9g/7px7rotRQr+cheIARTBf+H6FbMD38/7AQZ4xB41zI58+aPu0v3sMnz5ou4HgHbQ9krqOx3eAquyg/n2AZH93X2AtQTpwdYR19Q/ovgiY7z45OLTRX18ff3duOP8t/eONwHcAzcIxz/yfWcqhD0B+nk8fTFsYjvl1hLUNxHdsaupB/dOBzIDuucB5Yayr8MC/H77g3OKff0e0DISqLv/wAxuE6eGaX/7v/ihw52HGCflyFtQFM1QvfEev1+ALz9v8/X6Ob6sZIAV4xr/gLwSGBEx7m3+61cD5Ya5rDrAT+Mj/mu3vPxVY6l/YlwLXhbmu/wGW+9t/AxgZMO21/vm4DvhquP8t/e9vB3550HQhm2f4tvS2A234tqauA24AbvAPN+CP/pqXAuVhnF/d1fYgsDdgGavw9x/in1eL/f/Wt4W5rpsClrH5BKyQuloGwlWXf5yv4DuZI3C6UM+vU/DthlkS8G91QbiXM11pKyISI6JhH76IiASBAl9EJEYo8EVEYoQCX0QkRijwRURihAJfRCRGKPBFRGKEAl9EJEb8fxanBLSqqPI7AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" + "metadata": { + "trusted": true + }, + "cell_type": "markdown", + "source": "# Optimization with inequality constraints" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "f = lambda x: -x[0]**3+x[1]**2-2*x[0]*(x[2]**2)", + "execution_count": 13, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "constraints =({'type': 'eq', 'fun': lambda x: 2*x[0]+x[1]**2+x[2]-5}, \n {'type': 'ineq', 'fun': lambda x: 5*x[0]**2-x[1]**2-x[2]-2})", + "execution_count": 8, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "constraints =({'type': 'eq', 'fun': lambda x: x[0]**3-x[1]})", + "execution_count": 10, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "x0 = np.array([.5, .5, 2])\nopt.minimize(f, x0, method='SLSQP', constraints=constraints, tol=1e-08, \n options={'disp': True, 'ftol': 1e-08})", + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": "Optimization terminated successfully. (Exit mode 0)\n Current function value: -19.000000000000256\n Iterations: 11\n Function evaluations: 56\n Gradient evaluations: 11\n", + "name": "stdout" + }, + { + "output_type": "execute_result", + "execution_count": 18, + "data": { + "text/plain": " fun: -19.000000000000256\n jac: array([-21., 0., -12.])\n message: 'Optimization terminated successfully.'\n nfev: 56\n nit: 11\n njev: 11\n status: 0\n success: True\n x: array([ 1.0000000e+00, -2.6438182e-09, 3.0000000e+00])" + }, + "metadata": {} + } ] - }, - "metadata": {}, - "output_type": "display_data" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "", + "execution_count": null, + "outputs": [] } - ], - "source": [ - "a = -2\n", - "plt.plot(x, u(x))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Optimization with inequality constraints" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "f = lambda x: -x[0]**3+x[1]**2-2*x[0]*(x[2]**2)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "constraints =({'type': 'eq', 'fun': lambda x: 2*x[0]+x[1]**2+x[2]-5}, \n", - " {'type': 'ineq', 'fun': lambda x: 5*x[0]**2-x[1]**2-x[2]-2})" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "constraints =({'type': 'eq', 'fun': lambda x: x[0]**3-x[1]})" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization terminated successfully. (Exit mode 0)\n", - " Current function value: -19.000000000000256\n", - " Iterations: 11\n", - " Function evaluations: 56\n", - " Gradient evaluations: 11\n" - ] - }, - { - "data": { - "text/plain": [ - " fun: -19.000000000000256\n", - " jac: array([-21., 0., -12.])\n", - " message: 'Optimization terminated successfully.'\n", - " nfev: 56\n", - " nit: 11\n", - " njev: 11\n", - " status: 0\n", - " success: True\n", - " x: array([ 1.0000000e+00, -2.6438182e-09, 3.0000000e+00])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" + ], + "metadata": { + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "language_info": { + "mimetype": "text/x-python", + "nbconvert_exporter": "python", + "name": "python", + "file_extension": ".py", + "version": "3.5.4", + "pygments_lexer": "ipython3", + "codemirror_mode": { + "version": 3, + "name": "ipython" + } } - ], - "source": [ - "x0 = np.array([.5, .5, 2])\n", - "opt.minimize(f, x0, method='SLSQP', constraints=constraints, tol=1e-08, \n", - " options={'disp': True, 'ftol': 1e-08})" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-III.ipynb" "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-III.ipynb" old mode 100644 new mode 100755 index c87fe18..ff00af2 --- "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-III.ipynb" +++ "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-III.ipynb" @@ -1,582 +1,279 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Dynamic Optimization" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Imagine an infinitely-living individual who has an endowment of capital at the beginning of each period. This endowment is used to produce more goods according, and a fraction of it depreciates. The individual then decides what fraction of the output to consume, and the remaining becomes the endowment of capital available on the next period. Notice that there is just one good in this economy, which can be consumed or used in production (as capital).\n", - "\n", - "The objective in period $t$ is to *maximize* the intertemporal utility\n", - "$$U_{t} = \\sum_{s=0}^{+\\infty} \\beta^{s}\\,u(c_{t+s})$$\n", - "subject to\n", - "$$k_{t+s}\\,(1-\\delta) + f(k_{t+s}) = c_{t+s} + k_{t+s+1},\\, t\\in\\mathcal{N}$$\n", - "$k_{t+s}$ is the capital stock at the beginning of period $t+s$, $c_{t+s}$ is the consumption, $f()$ is a production function, $\\delta$ is the depreciation rate, and the discount rate is such that $0<\\beta<1$.\n", - "\n", - "According to [Bellman's Principle of Optimality](https://youtu.be/_zE5z-KZGRw) the solution to this problem must also solve\n", - "$$V(k) = \\max \\{u(c)+\\beta\\,V(k^{\\prime})\\}$$\n", - "$$s.t.\\;k^{\\prime}=f(k)+(1-\\delta)k-c$$\n", - "\n", - "*We want to find:*\n", - "* a *value function* $V(k)$ that satisfies the conditions above\n", - "* the associated *policy function* $h(k)$ that indicates what is the (intertemporal) optimal consumption $c$ given the amount of capital at the beginning of the period.\n", - "\n", - "Functions:\n", - "* $f(k)=k^\\alpha$\n", - "* $u(c)=\\ln(c)$\n", - "\n", - "First order condition (wrt $k^{\\prime}$): $-u^{\\prime}(c)+\\beta\\,V^{\\prime}(k^{\\prime})=0$\n", - "\n", - "Benveniste-Scheinkman condition: $V^{\\prime}(k)=u^{\\prime}(c)\\,(1-\\delta+f^{\\prime}(k))$\n", - "\n", - "Re-arranging terms: \n", - "$$k^{\\prime}+c=k^{\\alpha}+(1-\\delta)k$$\n", - "$$c^{\\prime}=\\beta\\,c\\,\\left[1-\\delta+\\alpha\\,(k^{\\prime})^{\\alpha-1}\\right]$$\n", - "\n", - "In steady state: $c=c^{\\prime}$ and $k=k^{\\prime}$\n", - "\n", - "$$k^{\\ast}=\\left[\\frac{\\alpha\\beta}{1-\\beta(1-\\delta)}\\right]^{\\frac{1}{1-\\alpha}}$$\n", - "$$c^{\\ast}=(k^{\\ast})^{\\alpha}-\\delta k^{\\ast}$$\n", - "\n", - "Parameters:\n", - "* $\\alpha = .4$\n", - "* $\\beta = .8$\n", - "* $\\delta = .05$" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import math\n", - "import numpy as np\n", - "from scipy import stats, optimize\n", - "import time\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# parameters\n", - "alpha = .4\n", - "beta = .8\n", - "delta = .05\n", - "par = (alpha, beta, delta)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# utility function\n", - "u = lambda c: math.log(c)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# production function\n", - "f = lambda k: k**alpha" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# function to calculate distance between two lists with the same indices\n", - "def dist(V, W):\n", - " d = 0\n", - " for (_, v), (_, w) in zip(V.items(), W.items()):\n", - " d = d + (v-w)**2\n", - " return math.sqrt(d)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 1: calculate steady-state" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "steady-state values:\n", - "capital: 1.6\n", - "consumption: 1.1\n" - ] - } - ], - "source": [ - "k_ss = (alpha*beta/(1-beta*(1-delta)))**(1/(1-alpha))\n", - "c_ss = f(k_ss)-delta*k_ss\n", - "print(\"steady-state values:\\ncapital: {0:.1f}\\nconsumption: {1:.1f}\".format(k_ss, c_ss))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2: define a grid for $k$ (and $k^{\\prime}$)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "g_size = 1000\n", - "kmin = 0\n", - "kmax = k_ss*2\n", - "step = kmax/g_size\n", - "\n", - "k_grid = np.arange(kmin+step, kmax+step, step)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: define initial value function over grid" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# V0 is dictionary. V0(k)=k\n", - "V0 = {}\n", - "for k in k_grid:\n", - " V0[k] = math.log(k+1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 4: construct maximizer function" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# given a value of k and a (proposed) value function V, find k' that maximizes V over grid of k. \n", - "\n", - "def maximizer(k, V0, u, f, k_grid):\n", - " \n", - " i = 0\n", - " for K in k_grid:\n", - " \n", - " c = f(k)+(1-delta)*k-K\n", - " if c>0:\n", - " i += 1\n", - " v = u(c)+beta*V0[K]\n", - " if i == 1:\n", - " vmax = v\n", - " cmax = c\n", - " kmax = K\n", - " elif v>vmax:\n", - " vmax = v\n", - " cmax = c\n", - " kmax = K\n", - " \n", - " return (vmax, cmax, kmax)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: iteration over value function" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "def bellman(V0, u, f, k_grid, eps=1e-3):\n", - " \n", - " T = {}\n", - " T[0] = (1, 1)\n", - " t0 = time.time()\n", - " d = 1\n", - " i = 0\n", - " \n", - " while d>eps:\n", - " \n", - " V = {}\n", - " C = {}\n", - " K = {}\n", - " \n", - " i += 1\n", - " \n", - " for k in k_grid:\n", - " v = maximizer(k, V0, u, f, k_grid)\n", - " V[k] = v[0]\n", - " C[k] = v[1]\n", - " K[k] = v[2]\n", - " \n", - " d = abs(dist(V, V0))\n", - " V0 = V\n", - " T[i] = (d, time.time()-t0)\n", - " print('i: {0}, d = {1:.5f} ({2:.2%})'.format(i,d,(d/T[i-1][0])-1))\n", - " \n", - " print('i: {0}, d = {1:.5f})'.format(i,d))\n", - " return (V, C, K, T)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Shazam!" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "scrolled": true - }, - "outputs": [ + "metadata": { + "collapsed": true + }, + "cell_type": "markdown", + "source": "# Dynamic Optimization" + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "i: 1, d = 11.47116 (1047.12%)\n", - "i: 2, d = 8.71175 (-24.06%)\n", - "i: 3, d = 6.23321 (-28.45%)\n", - "i: 4, d = 4.50341 (-27.75%)\n", - "i: 5, d = 3.30647 (-26.58%)\n", - "i: 6, d = 2.46702 (-25.39%)\n", - "i: 7, d = 1.86775 (-24.29%)\n", - "i: 8, d = 1.43191 (-23.33%)\n", - "i: 9, d = 1.10911 (-22.54%)\n", - "i: 10, d = 0.86617 (-21.90%)\n", - "i: 11, d = 0.68077 (-21.40%)\n", - "i: 12, d = 0.53760 (-21.03%)\n", - "i: 13, d = 0.42600 (-20.76%)\n", - "i: 14, d = 0.33841 (-20.56%)\n", - "i: 15, d = 0.26932 (-20.42%)\n", - "i: 16, d = 0.21461 (-20.31%)\n", - "i: 17, d = 0.17118 (-20.24%)\n", - "i: 18, d = 0.13663 (-20.18%)\n", - "i: 19, d = 0.10912 (-20.14%)\n", - "i: 20, d = 0.08718 (-20.11%)\n", - "i: 21, d = 0.06967 (-20.08%)\n", - "i: 22, d = 0.05569 (-20.07%)\n", - "i: 23, d = 0.04452 (-20.05%)\n", - "i: 24, d = 0.03560 (-20.04%)\n", - "i: 25, d = 0.02847 (-20.03%)\n", - "i: 26, d = 0.02277 (-20.03%)\n", - "i: 27, d = 0.01821 (-20.02%)\n", - "i: 28, d = 0.01456 (-20.02%)\n", - "i: 29, d = 0.01165 (-20.01%)\n", - "i: 30, d = 0.00932 (-20.01%)\n", - "i: 31, d = 0.00745 (-20.01%)\n", - "i: 32, d = 0.00596 (-20.01%)\n", - "i: 33, d = 0.00477 (-20.00%)\n", - "i: 34, d = 0.00382 (-20.00%)\n", - "i: 35, d = 0.00305 (-20.00%)\n", - "i: 36, d = 0.00244 (-20.00%)\n", - "i: 37, d = 0.00195 (-20.00%)\n", - "i: 38, d = 0.00156 (-20.00%)\n", - "i: 39, d = 0.00125 (-20.00%)\n", - "i: 40, d = 0.00100 (-20.00%)\n", - "i: 41, d = 0.00080 (-20.00%)\n", - "i: 41, d = 0.00080)\n" - ] - } - ], - "source": [ - "S = bellman(V0, u, f, k_grid)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ + "metadata": {}, + "cell_type": "markdown", + "source": "Imagine an infinitely-living individual who has an endowment of capital at the beginning of each period. This endowment is used to produce more goods according, and a fraction of it depreciates. The individual then decides what fraction of the output to consume, and the remaining becomes the endowment of capital available on the next period. Notice that there is just one good in this economy, which can be consumed or used in production (as capital).\n\nThe objective in period $t$ is to *maximize* the intertemporal utility\n$$U_{t} = \\sum_{s=0}^{+\\infty} \\beta^{s}\\,u(c_{t+s})$$\nsubject to\n$$k_{t+s}\\,(1-\\delta) + f(k_{t+s}) = c_{t+s} + k_{t+s+1},\\, t\\in\\mathcal{N}$$\n$k_{t+s}$ is the capital stock at the beginning of period $t+s$, $c_{t+s}$ is the consumption, $f()$ is a production function, $\\delta$ is the depreciation rate, and the discount rate is such that $0<\\beta<1$.\n\nAccording to [Bellman's Principle of Optimality](https://youtu.be/_zE5z-KZGRw) the solution to this problem must also solve\n$$V(k) = \\max \\{u(c)+\\beta\\,V(k^{\\prime})\\}$$\n$$s.t.\\;k^{\\prime}=f(k)+(1-\\delta)k-c$$\n\n*We want to find:*\n* a *value function* $V(k)$ that satisfies the conditions above\n* the associated *policy function* $h(k)$ that indicates what is the (intertemporal) optimal consumption $c$ given the amount of capital at the beginning of the period.\n\nFunctions:\n* $f(k)=k^\\alpha$\n* $u(c)=\\ln(c)$\n\nFirst order condition (wrt $k^{\\prime}$): $-u^{\\prime}(c)+\\beta\\,V^{\\prime}(k^{\\prime})=0$\n\nBenveniste-Scheinkman condition: $V^{\\prime}(k)=u^{\\prime}(c)\\,(1-\\delta+f^{\\prime}(k))$\n\nRe-arranging terms: \n$$k^{\\prime}+c=k^{\\alpha}+(1-\\delta)k$$\n$$c^{\\prime}=\\beta\\,c\\,\\left[1-\\delta+\\alpha\\,(k^{\\prime})^{\\alpha-1}\\right]$$\n\nIn steady state: $c=c^{\\prime}$ and $k=k^{\\prime}$\n\n$$k^{\\ast}=\\left[\\frac{\\alpha\\beta}{1-\\beta(1-\\delta)}\\right]^{\\frac{1}{1-\\alpha}}$$\n$$c^{\\ast}=(k^{\\ast})^{\\alpha}-\\delta k^{\\ast}$$\n\nParameters:\n* $\\alpha = .4$\n* $\\beta = .8$\n* $\\delta = .05$" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import math\nimport numpy as np\nfrom scipy import stats, optimize\nimport time\nimport matplotlib.pyplot as plt", + "execution_count": 2, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# parameters\nalpha = .4\nbeta = .8\ndelta = .05\npar = (alpha, beta, delta)", + "execution_count": 3, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# utility function\nu = lambda c: math.log(c)", + "execution_count": 4, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# production function\nf = lambda k: k**alpha", + "execution_count": 5, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# function to calculate distance between two lists with the same indices\ndef dist(V, W):\n d = 0\n for (_, v), (_, w) in zip(V.items(), W.items()):\n d = d + (v-w)**2\n return math.sqrt(d)", + "execution_count": 6, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Step 1: calculate steady-state" + }, { - "data": { - "text/plain": [ - "{0: (1, 1),\n", - " 1: (11.471163339929898, 11.620864152908325),\n", - " 2: (8.711751727405229, 24.175007581710815),\n", - " 3: (6.233207992621637, 37.45667099952698),\n", - " 4: (4.503406692265431, 50.7048454284668),\n", - " 5: (3.306469822288683, 63.64902210235596),\n", - " 6: (2.467018540510849, 76.81420135498047),\n", - " 7: (1.8677475739998395, 89.01143765449524),\n", - " 8: (1.4319148954993604, 100.75852632522583),\n", - " 9: (1.1091069779636689, 113.11196255683899),\n", - " 10: (0.86616526516008, 125.26574158668518),\n", - " 11: (0.6807749115680007, 137.06682467460632),\n", - " 12: (0.5375994977798054, 148.5941891670227),\n", - " 13: (0.4260043505473527, 160.18138718605042),\n", - " 14: (0.33841249069847884, 172.33310961723328),\n", - " 15: (0.26931662426805536, 184.27857446670532),\n", - " 16: (0.21460923643192942, 196.00503754615784),\n", - " 17: (0.17117894724320826, 207.51750993728638),\n", - " 18: (0.1366336975348204, 219.02280259132385),\n", - " 19: (0.10911729721855218, 231.41397738456726),\n", - " 20: (0.08717613476214513, 243.08990097045898),\n", - " 21: (0.06966772355821278, 254.6827666759491),\n", - " 22: (0.05568814245179515, 266.64171719551086),\n", - " 23: (0.04452161208020133, 278.3515884876251),\n", - " 24: (0.035598941252427484, 290.5835506916046),\n", - " 25: (0.028467578026808594, 302.8230154514313),\n", - " 26: (0.022766594712928367, 314.76684737205505),\n", - " 27: (0.01820850416251944, 327.0457673072815),\n", - " 28: (0.0145636707576875, 339.1297814846039),\n", - " 29: (0.011649095366938398, 351.3482563495636),\n", - " 30: (0.009317977551900567, 363.70199179649353),\n", - " 31: (0.007453545960504198, 375.41989493370056),\n", - " 32: (0.005962193499606321, 388.3381025791168),\n", - " 33: (0.0047694662863360495, 400.3460953235626),\n", - " 34: (0.0038154180630221098, 412.2888388633728),\n", - " 35: (0.003052163370817199, 424.21188163757324),\n", - " 36: (0.002441615428970485, 435.95243740081787),\n", - " 37: (0.0019532613639854386, 448.54394912719727),\n", - " 38: (0.0015626052734961952, 460.12600922584534),\n", - " 39: (0.0012500874972857857, 472.09953689575195),\n", - " 40: (0.0010000568097899912, 483.8269262313843),\n", - " 41: (0.0008000134337702209, 495.6525139808655)}" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "k_ss = (alpha*beta/(1-beta*(1-delta)))**(1/(1-alpha))\nc_ss = f(k_ss)-delta*k_ss\nprint(\"steady-state values:\\ncapital: {0:.1f}\\nconsumption: {1:.1f}\".format(k_ss, c_ss))", + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": "steady-state values:\ncapital: 1.6\nconsumption: 1.1\n", + "name": "stdout" + } ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "S[3]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exploring the results" - ] - }, - { - "cell_type": "code", - "execution_count": 240, - "metadata": {}, - "outputs": [ + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Step 2: define a grid for $k$ (and $k^{\\prime}$)" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "g_size = 1000\nkmin = 0\nkmax = k_ss*2\nstep = kmax/g_size\n\nk_grid = np.arange(kmin+step, kmax+step, step)", + "execution_count": 8, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Step 3: define initial value function over grid" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# V0 is dictionary. V0(k)=k\nV0 = {}\nfor k in k_grid:\n V0[k] = math.log(k+1)", + "execution_count": 9, + "outputs": [] + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGMCAYAAAAIiKIXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8lNXd///XmYSsJCEkYQv7juwJgigqiwUVBYpbQeBW\nXLu48HWpaFvrcitaRYsWq1WLCgX6q3qLFsUVEUGBhB1kh7AmYUkC2Zfz+2OSkZCFBJK5ksn72cc8\nmDlzruv6ZIrMO+c617mMtRYRERERp7icLkBEREQaNoURERERcZTCiIiIiDhKYUREREQcpTAiIiIi\njlIYEREREUcpjIiIiIijFEZERETEUQojIiIi4iiFEZEGzBhzwBjzhtN11BfGmE7GmCJjzESnaxHx\nJQojInWcMeYjY0ymMSa0kj7zjDG5xpjIau7ekftBGGNGFH+pl/d414mazqjvZmPMPRW8rXtoiNQw\nf6cLEJGzmgdcA/wSmHvmm8aYYGAMsNhae8LLtZ2vmUDiGW27nSjkDJOATsArpzdaa3cZY4KttXnO\nlCXimxRGROq+RcApYCLlhBFgHBCCO7TUN8ustYucLqI6FEREap5O04jUcdbaHOADYIQxJrqcLhOB\nk8DHJQ3GmN8bY743xhwzxmQZY1YbY8ad7VjGmKeNMfnltN9efAql1Rnto40x3xljThlj0o0xi4wx\n3av9Q5Zfi1/xMR8t571Sc11Oq2+QMeZlY0xqcU3/Ke/UVXHd3xpjMorr/sEYc0Pxe98Bo4DOp506\n2l78XrlzRowxVxR/3pnGmBPGmA+MMV3P6PN08bbtjTHvGmPSivv+wxgTWBOfmUh9pTAiUj/MAxoB\nN57eWPxFOxL4wFqbe9pb9wIJwB+A6UAR8L4xZuRZjmMpf05EmXZjzC24R21OAA8DTwO9ge+MMa2r\n9FNBmDEm6oyHqcJ2Z9ZY8no20AP4E/AaMBaYdUbdt+MObuHAM8DvgfXAlcVdngA2AEeAm3Gfsnmg\nokKMMaOAT4EmwB9xn3q6DPj+jM+h5DN8HwgsPu5/gKm4/38SabB0mkakfvgaOIx7FGT2ae034v7v\n+MxTNB1PDyfGmL/h/sKdBnx+vsUYY8KAl4HZ1tp7Tmt/F9gGPAL8rgq7ehc4PXxYoA1w6BxLO2Kt\nHX1aPQHAr40xd1lrs4wxTYCXgOXACGttmVEga+2XxpjDQIi1dn4VjvkCkAJcZK09WXzcj3GHwceB\nO07ra4AfrbW/KX79ujGmGXAb7iAj0iBpZESkHrDWFgELgMHGmLanvTURSMYdVk7vf3oQaYL7t/bl\nQFwNlXQlEAYsOH1UAygEVgPDqrifPwFXnPb4BZB6jjVZ4PUz2r4D/ICSz+xK3PNrni0viFRX8chH\nT+CtkiACYK1dh/v/k9FnbFJRjc2NMUHnW49IfaWREZH6Yx7ukY2JwAxjTCwwBHjZWnvmKZQxwKNA\nX9ynBErU1OTLzrh/y/+unPcscKyK+9lorf367N2qbP8Zr0uuLiqZN9Kx+M/NNXS8dsV/bi/nva3A\ncGNMozOCT9IZ/U6v8XAN1SVSryiMiNQT1tpEY8xPwARgBu5QAvCv0/sZY4YBH+L+zfxu3HMf8nGf\nLrjubIepoN3vjNeu4r4TgKPl9D/vUYdKaimvnhKFFbRXZR6Kt9SHGkW8SmFEpH6ZBzxpjOmNOwjs\nsNYmnNFnPJAJXGmt9XzxGWPuqsL+TwB+xpgQa23Wae3tz+i3q/jPFGvt0mrUX2XW2iJjzEncp5g8\niq88aXaOu92F+0u/F2VHKEodvor721f8Z7dy3usOJNfE6SARX6c5IyL1yzzcX6ZPAv0of92RQtxX\nz3hGD4wxHYFrq7D/ki/ry07btjEw+Yx+n+Je++QxY0yZUYoKLkE+U1W+8HedXkuxX3Pu/3YtwR3U\nHi2e3FqRTM4IQeWx1h4ANgG3Fk/qBcAY0xcYDnxyjnWKNCgaGRGpR6y1e40xK3Bfsmo54xRNsf/i\nvrR3iTFmPtAS+A3uq1x6nuUQnwIHgTnGmBeK26binsvgWWPEWptujPkd8DaQaIxZgPt0TTvckza/\nAf7fWY5VldMSbwKvGmP+DXwF9Mf9JV/enJSK9udpt9amGWMewH3Z76riutNwz61pZK29vbhrAjDe\nGPOX4ucZ1trFFez/QdyhY6Ux5m2gMXAPcBx3aBSRs9DIiEj9Mw93EPnRWltm6XRr7Re454e0wn35\n7Q2418ko77f0UuuHFJ9SGAvsAZ7CHWL+RtkrQLDWvof76pfDuNcZean4WAm4L9k9m6qMjPwd+Asw\nFPcltLHFx8wuZ/uK9leq3Vr7Bu5Va0/hXt/jWdxh5NPTur2K++qlqbg/75cr2d/nwFW4T3E9iXuS\n8TLgkuKRExE5C3PGJHwRERERr/KJkRFjzHRjzKripZ2TjTEfnrkUs4iIiNRNPhFGgEtx311zEO6F\nkxoBnxffzVRERETqMJ88TVM8kz8FuMxau9zpekRERKRivjIycqYmuCeZHXe6EBEREamcz42MFN/x\n82MgzFp7udP1iIiISOV8cZ2R2cAFwCUVdSi+odcoYC+Q452yREREfEIQ7lWZl1hrq3ofqkr5VBgx\nxrwKXA1caq2t7IZToyh7y3URERGpupspf+HFavOZMFIcRMYCl1trK7vnBLhHRJg7dy49evSo7dKk\n2LRp03jppZecLqNB0WfuffrMvU+fuXdt3bqVSZMmQfF3aU3wiTBijJmN+6ZhY4BMY0zz4rfSrbXl\nnYbJAejRowdxcXFeqlIiIiL0eXuZPnPv02fuffrMHVNj0xx85Wqau4FwYClw6LTHjQ7WJCIiIlXg\nEyMj1lpfCVUiIiINjr7ERURExFEKI+I1EyZMcLqEBkefuffpM/c+feb1n88telYVxpg4ICEhIUGT\nnkRERKohMTGR+Ph4gHhrbWJN7FMjIyIiIuIohRERERFxlMKIiIiIOEphRERERBylMCIiIiKOUhgR\nERERRymMiIiIiKMURkRERMRRCiMiIiLiKIURERERcZTCiIiIiDhKYUREREQcpTAiIiIijlIYERER\nEUf5O12AiIiIeEdqZiqbUjaxOXUzm1I2cc/Ae+jZrKfTZSmMiIiI+Jq0nDQ2p2z2hI6SAJKSmVKq\n38DYgQojIiIicu5yCnLYkrqFjckb2Ziy0RM8Dp48WKXtN6VsquUKq0ZhREREpI4rskXsObGHjSkb\n2Zi8kQ0pG9iYvJEdx3dQZIuqtI/moc3p2awnvWJ60atZL3o260nPGOdHRUBhREREpE5JzUz1hI6N\nKe7H5pTNZOZnVmn7JkFN6NWsV5nQERMaU8uVnzuFEREREQdk52ezJXULG5I3eELHxuSNJGcmV2n7\nQL9AesT0oHez3vRp3ofezXrTq1kvWoW1whhTy9XXLIURERGRWlRYVMjuE7vLjHbsPL6zyqdYOkZ2\npHez3u5Hc/efXaK64O+q3td4bm4uhw8fJicnh27dutWZ0KIwIiIiUkNO5p5kQ/IG1ievZ/2R9axP\nXs/GlI1k5WdVafvokOgyoaNns540DmgMQHJyMllZWeQczWHjgY3k5OR4Hrm5uVxwwQV07dq1wv2n\npKTwzjvvAPDII48QGBh4/j90DVAYERERqSZrLUnpSZ7QsS55HeuPrGfXiV0VbhNIII1pTDDBhLvC\n6RTeiXah7WgV1IqogChaN23NVSOuqnS0YuHChZw4ccLzOiAggKCgIM8jNze30rpbtGjB7373O4KC\ngggICKj+D15LFEZEREQqkVOQw+aUzaw9uJbNBzezPWU7+47toyCvgGCCCSr+3xGOlLt9p8hO9Gne\nhz5ZfTBJxUGjCEgDV4YL/yB/coNyOcWps542mTBhAn5+fgQHBxMYGIjLVb2F1Bs1akRUVFS1tvEG\nhREREWkQrLXk5eWRnZ1d6pGTk0N0dDTt2rUj+VRymdGOn47+RLgN5z7uowlNGFj8vxJ55JFDDrv9\ndtOzRU/6Ne9H3xZ96du8L72b9yY8MByAEydOkJGRQXBwsGcko1GjRtWatxETU3eviDkfPhFGjDGX\nAg8B8UBLYJy1dpGzVYmISG0oKioiNzfXEyby8/Np3759pdv861//YteuXRQVlZ0warEcjjjMosJF\nHDlV/ujGSU7yH/5DDjlkk014aDhdmnWhZ8ue9G3Zl34t+vF80+fxc/lVWENkZCSRkZHV+lkbCp8I\nI0AosA54C/jA4VpERKQKCgsLyc7OJjAwkEaNGlXYb/v27Xz77belRjJOFxAQwPTp0yvcPq8wj/C2\n4YQHhZOUmcSOkzvYfHwzJwpPkE02ueRi02252/q7/Lkg5gL6NncHjr7N+9K3RV+iQ6LP7YeWcvlE\nGLHWfgZ8BmDqynVKIiJCYWEhixcvJicnp8zpkby8PAB+9atf0a1btwr3ERQURPPmzQkODq7wUSIr\nP4sNyRtYe3gtiYcTSTySyKaUTeQV5p211qbBTX8OHMWho0d0DwL968YVJ77MJ8KIiIjUjv3795Oc\nnEx2djZZWVll/mzbti1jx46tcHuXy0VycjJBQUGEhIQQFRVVJkjExsZWWkPbtm1p27Ztmfb0nHTW\nHlnL2j1rSTySyNrDa9l6dGuV1u7o0KQD/Vv2p38L96Nvi77EhsXWmXU3GhqFERERH1VYWMipU6fI\nysoqN0hkZ2czZswY/P0r/ipITExk/fr1nuAQEhJCSEgI0dHRBAcH07Jly0prMMZw++23n/fPkpKZ\nUmq0Y+3htZVeRus5Pobu0d3p37I/cS3iPAEkMlhzN+qSBh1Gpk2bRkRERKm2CRMmMGHCBIcqEhEp\nX2FhIVlZWWRmZnrCRfPmzSu9uiIpKYl33323VJvL5fIEiuDgYPLz8ysNI6NHj2bMmDFeHTFIyUwh\n4VACaw6tYc3hNSQcSqjSXWgbuRrRq1kv+rfoT1xLd/Do07yPZ8Ewqb758+czf/78Um3p6ek1fhxj\nbfmTduorY0wRZ7maxhgTByQkJCQQFxfnveJERHBfYlpYWFhpCABYsGABqampZGZmlruY1YgRIxgy\nZEiF22dnZ3Pw4EFP8AgJCSEgIKBOnYo4nn28VPBYc2gNSelJZ90u2D+Yvi36EtcizhM8esb01PwO\nL0hMTCQ+Ph4g3lqbWBP7bNAjIyIiteXgwYPs3r271EjG6c8jIyP5zW9+U+k+mjdvTlRUFCEhIYSG\nhnpGNEqen20FzeDgYDp37lyTP9Z5ycjNIPFwojt4HFrD6kOr2X1i91m3iwiMKHWaJa5lHN2iulV6\nGa3ULz4RRowxoUBnoCTudzTG9AWOW2v3O1eZiNRH1lry8/PJzMzk1KlTZGZmlnkMGzas0pUsk5KS\nWLlypSc4hIaGEhER4Xl95ini8gwbNqwmfyyvyszLZO2RtZ7gsebQGrYd23bW7RoHNCa+ZTwDWg3w\nPDpFdqpTozlS83wijAADgG8AW/x4sbj9HWCqU0WJSN1RVFREdnY2mZmZ+Pv707Rp0wr7ZmZm8uKL\nL5ZqM8Z4QkVoaCgFBQWVHm/w4MEMHjy4Rmqv63ILcll3ZF2pUy1bUrec9aqWYP9g+rfsz4CWPweP\nrlFdNeLRAPlEGLHWfgtUb4F+EfFZa9asISkpqdTIRlZWFiVz5Pr27cu4ceMq3D4kJITx48cTGhpK\n48aNCQ0NJTg4uNr3AfFF1lp2HN/BqoOr+PHAj/x48EfWHVlHflF+pdsF+AXQr0W/UsGjR0wP/F0+\n8TUk50l/C0SkTikqKuLUqVMVPjIzM7nlllsqHbY/fvw4GRkZhIaGEhUV5RnNKAkXZztF4nK56N27\nd03/aPVSamaqO3gc/JFVB1ex6uAqTuScqHQbf5c/vZv1LnWqpVezXgT41Z27xErdojAiIrXOWktu\nbi4nT570nOqoyM6dO8tcShgSEkJYWBiNGzemSZMmFBQUVLp8+MiRI2us9oYkOz+bdUfW8eNB94jH\njwd+ZE/anrNu1z26O4NiB3Fhqwu5MPZC+jTvQ5B/kBcqFl+hMCIiNer777/nxIkTZUY0CgsLAbjy\nyisZNGhQhdvHxsYyceJEGjduTOPGjQkJCcHPT3MIalqRLWL7se38eOBHz8jH+uT1FBRVPhemWWgz\nBsUOcj9aD2JAqwE0CWriparFVymMiEgZJSt3njx5kpMnT5KRkcHJkyfx9/dn6NChlW67fft28vPz\nady4MTExMXTo0METLMLCwiq9AgUgNDSULl261OBPIwBpOWn8eOBHVuxfwcoDK1l1cBXpuZUvXhXs\nH0x8q3gGthrIoNbuANI2oq2ubJEapzAiIh5r1qzhm2++ISsrq1S7n58fYWFhZ136G+DWW2+trfKk\nikpGPVbuX+kJH1tSt2CpeJFLg+GCmAsYGDuQQbGDGBg7kF7NetHIr+LTYSI1RWFExEcUFRWRkpLi\nGc0o73HjjTfSpk2bCvfRrFkzBg0aRHh4OGFhYZ5HUFCQfhuuw07lnWLVwVWe4LFy/8qzTjJt2bgl\ng1oP8ox6DGg1gPDAcC9VLFKawohIHVdydUlRURFNmlR8br6goIDXX3/d8zo0NNQTJlq2bEnXrl1p\n3Ljye3RUdHdUqTustew+sZuVB34e9diQvKHSNT38Xf70a9GPi1tfzOA2g7m4zcW0CW+jgCl1hsKI\nSB2xb98+Dh486JmfkZGR4XluraV79+7cdNNNFW4fEBDA7bffTlhYGKGhoZr06SNyCnJYfXB1qfCR\nkplS6TYxITHu0FEcPga0GkBIoxAvVSxSfQojIrWksLDQEygyMjLo0aNHpTdG27hxIxs2bCAiIoLw\n8HCio6Pp0KED4eHhhIeHn3XiJ7ivRJH67Xj2cVbsX8F3+75j+f7lrDm0hrzCvAr7u4yLXs16cXHr\ni7m4jTt8aPl0qW8URkRqQEZGBj/88APp6emex6lTp0r1ueeeeypdgvyqq65i9OjR+hJpYJLSk1ie\ntNwTPjalbKq0f5OgJlzU+iLPqMfA2IGa6yH1nsKISDkKCws5efKkJ1hERkZWOvGzsLCQbdu2ERER\nQUxMDJ07d/aMcJQ8AgMrv7W5Tqv4viJbxJbULe7wkfQdy5OWk5SeVOk2XZp2YUjbIVzS5hIGtxlM\n9+juuIyWpRffojAiAqxatYr9+/d7wkfJPI0SgwYNqjSMREZGcs8993ijVKlH8grzWHNojSd8fJ/0\nfaVXubiMi/4t+nNp20sZ0nYIQ9oOoXnj5l6sWMQZCiPik/Lz80lLSyMtLY2TJ08SFxdXaf+SS2Ij\nIyNp3749ERERpR4BAbqnhpxdVn4WK/evZOnepSxLWsaqg6vIKcipsH+wfzAXtb7IEz4uan0RYYFh\nXqxYpG5QGJF67/jx46xdu9YTPtLS0krN13C5XPTq1avSQHHNNdd4o1TxMZl5mazYv4Kle5fy7b5v\nWXVwVaV3r40KjmJI2yGe8BHXMk6LiomgMCJ1lLWWkydPcvz4ccLDwyud+JmVlcXGjRtp0qQJUVFR\ndOrUicjISJo0aUKTJk0ICwvTrd+lRpzKO8X3Sd/z7b5vWbp3KasPra70Xi4dmnQoFT66R3fXBGWR\nciiMiOP27t1LSkoKx48f58SJExw/fpy0tDQKCtz/yF922WUMGzaswu1bt27N/fff761ypQE5mXuS\n7/d/z9K9S1m6dylrDq2h0BZW2L9rVFcub3c5Q9sP5bJ2l9E6vLUXqxWpvxRGpFbl5+dXeqt3gK++\n+orDhw/TpEkTmjZtSseOHWnatCmRkZGeEQ4Rb8jIzWB50nLPaZeEQwmVho9uUd0Y2n4ol7e7nMvb\nX06rsFZerFbEdyiMyHnLycnh2LFjHDt2zDO6UTLCkZeXx/Tp0ysdmp44cSKBgYE6lSJel1OQw8r9\nK/lqz1d8tecrVh9cXWn46BHdo9TIR8uws984UETOTmFEzstPP/3EwoULPa9DQ0M9oxolIxzW2krD\nSHBwsDdKFaGwqJDEw4me8LE8aXmlV7tcEHMBQ9sN5fL2l3N5u8t1ma1ILVEYEY+ioiLS0tJKjXJ0\n6dKFLl26VLhN69atue6664iKiqJp06ZnXdhLxJustfx09CdP+Fi6dylpOWkV9u8e3Z3h7YczrMMw\nLmt3Gc1Cm3mxWpGGS2GkgVu+fDkHDhzwhI+iIvedP/39/WnatCmtWlV+Drxx48b06tXLG6WKVMn+\n9P2e8PH1nq85dPJQhX1bh7dmRIcRjOgwguEdhhMbrnv7iDhBYcRHWWs5deoUYWGVL6B07NgxCgsL\n6dSpEwMHDiQqKoqoqCjCw8N1CaLUCxm5GXyz5xs+3/U5X+z+gh3Hd1TYt2lwU4a1H+YOIB1H0KVp\nF/09F6kDFEbqucLCQo4fP87Ro0dJTU3l6NGjnkdhYSGPPvpopfc8GTt2rBerFTl/RbaIhEMJfL7r\nc5bsWsLKAysrXOsjpFEIl7a91BM++rXop/u6iNRBCiP12N69e3nvvfc8p1aCgoKIiYmhRYsW9OrV\ni+joaIcrFKkZBzMOesLHl7u/5Fj2sXL7+bv8uaj1RZ5TL4NaDyLAT0v5i9R1CiN1TMkk0pSUFMLC\nwoiNrfgcdkxMDFdeeSUxMTFER0cTGhqqIWfxCdn52Szbt4wlu5bw+a7P2Zy6ucK+XZp2YWSnkYzq\nNIqh7Yfq3i4i9ZDCiINOnjxJcnIyKSkpnkdqaqpn5dGBAwdWGkZCQ0O58MILvVWuSK2x1rI5dTNL\ndi5hya4lLNu3jNzC3HL7RgRGMKLjCEZ2HMnITiPpENnBy9WKSE1TGHHQ4sWL+emnn2jUqBHNmjWj\nRYsW9OnTh2bNmtGsWTNCQ0OdLlGk1mTmZfL1nq9ZvGMxi3cuJik9qdx+LuNiYOxARnYcyajOoxgY\nOxB/l/7pEvElPvVftDHmt8CDQAtgPXCPtXa1t45fcnO3I0eOkJyczEUXXVTpUugjRoxg5MiRNGnS\nRKdXpEHYcWyHJ3ws3buUvMK8cvu1CW/DqE6jGNV5FMM7DKdpcMU3ShSR+s9nwogx5ibgReBOYBUw\nDVhijOlqrT1a08crKioiNTWVI0eOeMLHkSNHyM7OBtyTSbt3705MTEyF+9AEU/F1OQU5LNu3zB1A\ndiyu8LLbQL9AhrYfylWdr2JU51F0i+qmgC7SgPhMGMEdPl631r4LYIy5GxgNTAWer+mDZWdn8/e/\n/x2AyMhImjdvzqBBg2jRogXNmzcnIiJC/5hKg5SUnuQJH1/t+Yqs/Kxy+7UJb8PoLqO5usvVDO8w\nnNAAnZYUaah8IowYYxoB8cAzJW3WWmuM+RIYXJ195efnk5ycTF5eHh07dqywX2hoKFOnTqVZs2Za\nAl0atCJbxJpDa1i0bRGLti1iY8rGcvv5GT+GtB3C1V2uZnSX0VwQc4ECu4gAPhJGgGjAD0g+oz0Z\n6FbRRgUFBRw4cIBDhw5x+PBhDh8+TEpKCtZaWrRowV133VXpQdu0aXPehYvURzkFOXy1+ysWbVvE\nx9s/5vCpw+X2ax7anKu6XMXVna/mF51+QZOgJl6uVETqA18JI+fk7bffpmXLlrhcLpo3b05sbCwD\nBgygVatWNGumG2SJnO5o1lE+2f4Ji7YtYsmuJRWefhkYO5DRXUYzusto+rfsrxVPReSsfCWMHAUK\ngTPv790cOFLRRqtWrSI6OprAwEDPcPGECRMYMGBArRUqUp9sP7adj376iEXbF7Fi/wqKbFGZPkH+\nQVzR8QrGdhvLNV2voUXjFg5UKiK1Yf78+cyfP79UW3p6eo0fx1hra3ynTjDG/AD8aK29r/i1AZKA\nWdbav5zRNw5ISEhIIC4uzvvFitRRRbaIVQdX8cHWD1i0bRHbjm0rt19MSAzXdr2WMd3GcEXHKzT5\nVKQBSUxMJD4+HiDeWptYE/v0lZERgJnAHGNMAj9f2hsCzHGyKJG6rqCogO/2fccHWz/gw58+5ODJ\ng+X26x7dnbHdxjKm2xgGxQ7Cz1XxDRhFRKrDZ8KItfbfxpho4Encp2fWAaOstanOViZS9+QW5PL1\nnq95f+v7fLTtI45mlV2Kx2VcDGk7hDFdx3Btt2vpGtXVgUpFpCHwmTACYK2dDcx2ug6RuigrP4vP\ndn7GB1s/4OPtH5ORm1GmT4BfACM7jWR89/Fc2+1aokO0MJ+I1D6fCiMiUlpGbgafbP+E97e+z6c7\nPiW7ILtMn5BGIVzd5Wqu63EdV3e5mvDAcAcqFZGGTGFExMdk5mXy8faPWbh5IZ/u+LTcu99GBEYw\nptsYxvcYz6hOowhuFOxApSIibgojIj4gOz+bxTsWs3DzQj7Z/km5IyAxITGM6z6O63pcx7AOwwjw\nC3CgUhGRshRGROqp3IJcPt/1OQs2L2DRtkWcyjtVpk/z0ObccMENXH/B9QxpO0RXwIhInaQwIlKP\n5Bfm89Wer1i4eSEfbv2Q9Nyyiw9Fh0RzXY/ruKnnTVzW7jIFEBGp8xRGROo4ay0rD6xk3oZ5LNy8\nkGPZx8r0aRLUhPHdx3NTr5sY3mE4/i79py0i9Yf+xRKpo7Yd3ca8jfOYt3Eeu0/sLvN+WEAY47qP\n46aeN/GLTr/QHBARqbcURkTqkORTySzYtIB5G+ex+tDqMu8H+wczptsYftXrV1zZ+UqC/IMcqFJE\npGYpjIg4LDMvk//76f+Yu3EuX+z6gkJbWOp9l3FxRccruLn3zfyy+y8JCwxzqFIRkdqhMCLigCJb\nxDd7vmHO+jl8uPVDMvMzy/SJaxnHpN6T+FWvX9EyrKUDVYqIeIfCiIgX7T6xmznr5vDO+ndISk8q\n8367iHbc3Ptmbu5zMxfEXOBAhSIi3qcwIlLLMvMy+c+W/zBn/RyW7l1a5v3IoEhu7HkjN/e+mUva\nXoLLuLxfpIiIgxRGRGqBtZYV+1fwz3X/ZOHmhWUWJHMZF6M6jeLWfrcyptsYAv0DHapURMR5CiMi\nNejQyUO8s+4d5qyfw/Zj28u83zWqK7f2u5XJfSYTGx7rQIUiInWPwojIeSosKuSL3V/wesLrfLzt\n4zJXw4QFhHFTz5u4tf+tDG49GGOMQ5WKiNRNCiMi5+jwycO8vfZt/pH4D/al7yvz/tD2Q5nabyrj\ne4wnNCALFb24AAAgAElEQVTUgQpFROoHhRGRaiiyRXyx6wveSHyDRdsWUVBUUOr9lo1bMrX/VKb2\nn0rHyI4OVSkiUr8ojIhUwZFTR/jn2n/yj8R/sCdtT6n3DIZRnUdxZ9ydXNP1Ghr5NXKoShGR+klh\nRKQCJVfEvLLqFd7f+n6ZUZAWjVtwW//buK3/bXSI7OBQlSIi9Z/CiMgZsvOzWbBpAa+seoW1R9aW\nes9gGNlpJHfG38m1Xa/VKIiISA1QGBEplpSexOzVs3kz8U2OZR8r9V5MSAy3x93OHXF3aBRERKSG\nKYxIg2atZenepbyy6hU+2vYRRbao1PsXtrqQewbeww09b9AdckVEaonCiDRIOQU5vLf+PWatmsWm\nlE2l3mvkasSNPW/knoH3MKj1IIcqFBFpOBRGpEFJzUxl9urZ/G3130jNSi31XsvGLbl7wN3cGX8n\nLRq3cKhCEZGGR2FEGoRtR7cxc+VM3t3wLjkFOaXeu6TNJfxu4O8Y32M8AX4BDlUoItJwKYyIz7LW\nsmzfMl5c+SIfb/+41Ht+xo8bet7AA4MfYECrAQ5VKCIioDAiPqiwqJD3t77P898/T8LhhFLvNQ5o\nzB1xd3DfoPto16SdQxWKiMjpFEbEZ+QV5jF3w1xmLJ/BjuM7Sr3XOrw19w26jzvi7iAiKMKhCkVE\npDz1PowYYx4FRgP9gFxrbVOHSxIvy8rP4s3EN/nLir9wIONAqff6t+jPA4Mf4MaeN2qBMhGROqre\nhxGgEfBvYCUw1eFaxIvSctKYvXo2L//wcpkrY4a1H8b0IdO5ouMVGGMcqlBERKqi3ocRa+0TAMaY\n/3G6FvGO1MxUXv7hZV5d/SoZuRml3ru267VMHzKdwW0GO1SdiIhUV70PI9JwHM06ygsrXuCVVa+Q\nlZ/laXcZFzf1vIlHhjxCn+Z9HKxQRETOhcKI1HnHs4/z4ooXmbVqFqfyTnnaG7kacUu/W3j4kofp\n3LSzgxWKiMj5qJNhxBjzLPD7SrpYoIe1druXShIHnMg+wUs/vMTLP7zMybyTnvYAvwDuir+Lhy95\nmNbhrR2sUEREakKdDCPAC8A/z9Jn9/keZNq0aURElL7Mc8KECUyYMOF8dy3nIT0nnZd/eJmXfniJ\n9Nx0T3sjVyPuiLuD6ZdOVwgREfGC+fPnM3/+/FJt6enpFfQ+d8ZaW+M7dULxBNaXqnJprzEmDkhI\nSEggLi6u9ouTKsnOz+bVVa/y7PJnOZFzwtPu7/Lntv638eilj9I2oq2DFYqISGJiIvHx8QDx1trE\nmthnXR0ZqTJjTBugKdAO8DPG9C1+a6e1NtO5yqSqCooKeHf9uzy+9PFS64T4GT9u7Xcrj132GO2b\ntHeuQBERqVX1PowATwJTTntdktKGAcu8X45UlbWWRdsW8ejXj7IldYun3WCY0ncKf7r8T3SM7Ohg\nhSIi4g31PoxYa28FbnW6Dqme5UnL+f2Xv2fF/hWl2q/tei3PjHiGXs16OVSZiIh4W70PI1K/7Di2\ng4e+eIiPtn1Uqn1w68E8d8VzXNruUocqExERpyiMiFek5aTx1LdP8cqqV8gvyve094juwbMjnmVM\ntzFatl1EpIFSGJFaVVBUwD8S/sGflv6Jo1lHPe2twlrx5NAn+Z9+/4O/S38NRUQaMn0LSK35cveX\nTFsyjU0pmzxtQf5BPHzxwzx8ycOEBoQ6WJ2IiNQVCiNS43af2M20JdNYtG1RqfYJvSYw44oZWitE\nRERKURiRGpNTkMNfvv8Lzyx/hpyCHE/7ha0u5OUrX+biNhc7WJ2IiNRVCiNSI5bsXMLvPv0dO4/v\n9LS1CmvFjBEzuLnPzbiMy8HqRESkLlMYkfNyIOMA05ZM4z9b/uNp8zN+3H/R/Tx++eOEBYY5WJ2I\niNQHCiNyTgqKCpj14yz+9M2fyMz/edX9S9teyt+u/hu9m/d2sDoREalPFEak2jYkb+C2Rbex5tAa\nT1tMSAwvjHyByX0ma70QERGpFoURqbLcglyeXvY0M76fQUFRAeC+j8zdA+7mf4f/L5HBkQ5XKCIi\n9ZHCiFTJiv0ruH3R7Ww9utXT1iO6B2+NeYvBbQY7WJmIiNR3CiNSqVN5p3j0q0d5ddWrWCwA/i5/\nHh3yKI9e+iiB/oEOVygiIvWdwohUaMX+FUz5cAq7TuzytF3Y6kLeGvOWJqiKiEiNURiRMvIK8/jz\n0j/z3PfPUWSLAAj2D+bp4U9z36D78HP5OVyhiIj4EoURKWVTyiYmfTCJ9cnrPW0Xt7mYd8a9Q+em\nnR2sTEREfJXCiABQWFTISz+8xGNfP0ZeYR4AjVyNeGLoEzx8ycMaDRERkVqjMCIcPnmYSR9O4us9\nX3vaesb0ZO74ufRr0c/BykREpCFQGGngPtv5GVM+nEJqVirgXjfkgcEP8NTwpwjyD3K4OhERaQgU\nRhqovMI8/vD1H/jLir942lqFtWLe+HkMbT/UucJERKTBURhpgPac2MOv3v8Vqw6u8rSN7jKaOePm\nEB0S7WBlIiLSECmMNDD/3f5fJn04ibScNMA9SfW5K57j/ovu1z1lRETEEQojDUSRLeKpb5/iz9/+\n2dPWKbITC65fwIBWA5wrTEREGjyFkQbgRPYJJn84mf/u+K+n7Zfdf8mccXMIDwx3sDIRERGFEZ+3\nIXkDv1z4S3af2A2Ay7h4ZvgzPHzJwzotIyIidYLCiA/7z5b/MOXDKWQXZAMQFRzFgusXcEXHKxyu\nTERE5GcKIz7IWssz3z3DH775g6ctvmU879/4Pu2atHOwMhERkbJcVe1ojFlQm4VIzcgtyGXK/00p\nFUQm95nM8qnLFURERKROqnIYAa4yxkTWWiXnyBjTzhjzpjFmtzEmyxizwxjzZ2NMI6dr87aUzBSG\nvzucuRvmetqeHfEs74x7R6upiohInVWd0zRhwBJjzHXW2v21VdA56A4Y4A5gF9ALeBMIAR52sC6v\n2nZ0G1fOu5K9aXsBCPYPZu74uYzvMd7ZwkRERM6iOmFkN/A/wHRjzC7gZWttYe2UVXXW2iXAktOa\n9hpjXgDupoGEkVUHV3H1vKs5ln0McC/rvuhXi4hvFe9wZSIiImdXndM0Y621W621vwESgH8ZY4bU\nUl3nqwlw3OkivOGznZ8x7J1hniDSp3kfVt2+SkFERETqjSqHEWvt5tOeLwUmAZcaY/5mjImqhdrO\niTGmM/A74O9O11Lb3lv/HtfOv5as/CwAhrYfyrJblhEbHutwZSIiIlVXnZGRUqy1+dbaZ4EXgJeN\nMXfUXFlgjHnWGFNUyaPQGNP1jG1igU+Bhdbat2uynrrmxRUvMuX/plBQVADA9Rdcz6c3f0pEUITD\nlYmIiFSPsdbWzI6MuQ64Cfhfa+36GthfFHC2EZfd1tqC4v6tgG+AFdbaW8+y7zgg4bLLLiMiovSX\n94QJE5gwYcK5F17LrLU8tewpHl/6uKftNwN+w6yrZuHn8nOwMhER8TXz589n/vz5pdrS09NZtmwZ\nQLy1NrEmjlPlMGKM6WetXXeWPo2BP+G+uuUJa+2p8y+xSrXFAl8Dq4HJ9iw/VEkYSUhIIC4uzhsl\n1ghrLX/4+g88s/wZT9sTQ5/gj5f9UUu7i4iIVyQmJhIfHw81GEaqczXNX4HLT28w7m/AVkD74kc7\n3JNHhwMTjDH3WGs/rIlCK1I8IrIU2IP76plmJV/M1trk2jy2N1lrefDzB5n5w0xP28yRM5k2eJqD\nVYmIiJy/6oSRC40xTwKxuENHe6A1ULK42Om/mhcCB3Gv/VGrYQT4BdCx+FGy/okBLOAT5y2stdz7\n6b28uvpVT9vfrv4bv7nwNw5WJSIiUjOqE0aCgJI1xvOBA8D3wD5gb/Gj5PkBb61BYq19B3jHG8dy\ngrWWaUumeYKIwfDGtW9we9ztDlcmIiJSM6oTRlKAG3CfDjlkrS2qnZLkdH/65k/89ce/Au4gMmfc\nHKb0neJwVSIiIjWnOmHkU2vtd7VWiZQxY/kMnv7uac/rN8e8qSAiIiI+pzqLnlV6uazUrFd+fIXp\nX033vJ515Sym9p/qYEUiIiK145wXPZPa897697j3s3s9r58d8Sz3DLrHwYpERERqj8JIHfPFri+Y\nuujnEZDHLn2MR4Y84mBFIiIitUthpA5Zf2Q91/37Os8S778e8GueGvaUw1WJiIjULoWROiIpPYmr\n/3U1J/NOAjC221heueoVrawqIiI+T2GkDsjIzeDqeVdz6OQhAC5qfRH/uu5futeMiIg0CAojDiss\nKuTmD25mc+pmALo07cLHEz4mpFGIw5WJiIh4h8KIw/74zR/5ZPsnAEQGRbL45sVEh0Q7XJWIiIj3\nKIw4aMGmBTy7/FkA/Iwf/77h33Ru2tnhqkRERLxLYcQhiYcTmfrRz5fwzhw1kys6XuFgRSIiIs5Q\nGHFAWk4a1/37OrILsgGY2m8q9wzUomYiItIwKYx4mbWWqR9NZW/aXsB95czs0bN1Ca+IiDRYCiNe\n9sqqV/jwpw8B94TVhdcvJNA/0OGqREREnKMw4kWrD67mwc8f9Lx+Z9w7tI1o62BFIiIizlMY8ZL0\nnHRu+s9N5BflA/Dg4Ae5ttu1DlclIiLiPIURL7n3s3vZk7YHcM8TeWbEMw5XJCIiUjcojHjBh1s/\n5N317wIQHhjOgusW0MivkcNViYiI1A0KI7UsJTOFuz65y/N61pWzaNeknYMViYiI1C0KI7XIWsud\nH99JalYqAOO6j2NK3ykOVyUiIlK3KIzUogWbFvDRto8AiAmJ4fVrXtd6IiIiImdQGKklJ7JPcP+S\n+z2v/37N32kW2szBikREROomhZFa8siXj5CSmQLA+B7jGd9jvMMViYiI1E0KI7Xg+6TveSPxDQDC\nAsKYdeUshysSERGpuxRGalheYV6pq2eeHv40seGxDlYkIiJStymM1LBXV73K5tTNAMS3jOe3F/7W\n4YpERETqNoWRGpSamcqT3z4JgMHw+jWv4+fyc7gqERGRus0nwogx5iNjzD5jTLYx5pAx5l1jTEtv\n1/H40sdJz00H4NZ+txLfKt7bJYiIiNQ7PhFGgK+BG4CuwHigE/D/ebOATSmbeD3hdQAaBzTm6eFP\ne/PwIiIi9Za/0wXUBGvtX097ud8YMwP40BjjZ60t9EYND33xEEW2CIBHhzxKyzCvD8yIiIjUS74y\nMuJhjGkK3Ax8760g8t2+7/hs52cAtI1oy7TB07xxWBEREZ/gM2HEGDPDGHMKOAq0AcZ547jWWh77\n+jHP6z9f/meC/IO8cWgRERGfUGdP0xhjngV+X0kXC/Sw1m4vfv088CbQDngceA+4prJjTJs2jYiI\niFJtEyZMYMKECVWu8/Ndn/Nd0ncAdIvqxuS+k6u8rYiISF02f/585s+fX6otPT29xo9jrLU1vtOa\nYIyJAqLO0m23tbagnG1jgf3AYGvtj+W8HwckJCQkEBcXd841WmsZ+OZA1hxaA8DC6xdyY88bz3l/\nIiIidV1iYiLx8fEA8dbaxJrYZ50dGbHWHgOOnePmJYt7BNZQOeX6bOdnniDSt3lfrr/g+to8nIiI\niE+qs2GkqowxA4ELgeXACaAz8CSwA1hZm8ee8f0Mz/PHL38cl/GZKTgiIiJe4wvfnlm41xb5EvgJ\n+AewDhhqrc2vrYOu2L+CZfuWAdA9ujtju4+trUOJiIj4tHo/MmKt3QSM8PZxn/v+Oc/z31/ye42K\niIiInCN9g56DLalbWLRtEQCtw1szsfdEhysSERGpvxRGzsFLK1/yPP9/F/0/AvwCHKxGRESkflMY\nqaa0nDTmbZwHQHhgOHfE3+FwRSIiIvWbwkg1zVk3h+yCbAD+p+//0DigscMViYiI1G8KI9VQZIuY\nvXq25/WvB/zawWpERER8g8JINXy1+yt2HN8BwLD2w+gR08PhikREROo/hZFqmL3m51GR3174Wwcr\nERER8R0KI1V05NQRPt72MQCtwloxptsYhysSERHxDQojVTR/43wKbSEAt/S9hUZ+jRyuSERExDco\njFTRuxve9Tyf3Heyg5WIiIj4FoWRKtiQvIF1R9YBMDB2IN2juztckYiIiO9QGKmC99a/53k+pc8U\nBysRERHxPQojZ2GtZeHmhQD4u/y5qddNDlckIiLiWxRGzmL1odXsz9gPwBUdryA6JNrhikRERHyL\nwshZvL/lfc/z63pc52AlIiIivklhpBLWWt7f6g4jfsaPcd3HOVyRiIiI71EYqcSG5A3sOrELgMvb\nX65TNCIiIrVAYaQSH2z9wPNcp2hERERqh8JIJRbvXOx5PrbbWAcrERER8V0KIxVIzUwl4VACAH2b\n9yU2PNbhikRERHyTwkgFvtj9BRYLwKhOoxyuRkRExHcpjFTgs52feZ5f2flKBysRERHxbQoj5Siy\nRSzZtQSA0EahXNL2EocrEhER8V0KI+VYd2QdKZkpAIzoOIIAvwCHKxIREfFdCiPl+Gr3V57nmi8i\nIiJSuxRGyrF8/3LP86HthzpXiIiISAOgMHKGIlvE8iR3GGka3JTu0d0drkhERMS3+VQYMcYEGGPW\nGWOKjDF9zmUfPx39iePZxwEY0nYILuNTH5GIiEid42vftM8DB6B4gZBzUDIqAjCkzZAaKElEREQq\n4zNhxBhzFfAL4EHAnOt+vkv6zvP80naXnn9hIiIiUil/pwuoCcaY5sAbwBgg+3z2VTIyEuwfTFzL\nuPMvTkRERCrlKyMj/wRmW2vXns9ODmYcZG/aXgAGtR6k9UVERES8oM6GEWPMs8UTUSt6FBpjuhpj\n7gUaA8+VbHqux1x9aLXn+eDWg8/vBxAREZEqqcunaV7APeJRmT3AMGAwkGtMqRyyxhgzz1p7a0Ub\nT5s2jYiICM/rn47+BK2A3jCg1YBzLlxERMQXzJ8/n/nz55dqS09Pr/HjGGvP+cKTOsEY0xoIP62p\nFbAEuA5YZa09VM42cUBCQkICcXE/zwsZ/a/RLN6xGIA99+2hfZP2tVi5iIhI/ZOYmEh8fDxAvLU2\nsSb2WZdHRqrEWnvg9NfGmEzcp2p2lxdEKtkPCYcSAPdiZ+0i2tVonSIiIlK+Ojtn5DxVe7jn8KnD\nJGcmAxDXMo4zTvmIiIhILan3IyNnstbuA/yqu13JqAhAfMv4mixJREREKuGrIyPVtjFlo+d5vxb9\nHKxERESkYVEYKbYldYvnec+Yng5WIiIi0rAojBQrCSMu46JrVFeHqxEREWk4FEaAwqJCth7dCkDn\npp0J9A90uCIREZGGQ2EE2Je+j5yCHECnaERERLxNYQTYnLLZ8/yCmAscrERERKTh8blLe8/F6ZNX\nFUZEpC5ISkri6NGjTpchDVR0dDRt27b12vEURoBtx7Z5nveI7uFgJSIi7iDSo0cPsrKynC5FGqiQ\nkBC2bt3qtUCiMALsPrHb87xT004OViIiAkePHiUrK4u5c+fSo4d+QRLv2rp1K5MmTeLo0aMKI960\nJ20PAFHBUYQHhp+lt4iId/To0aPUzTxFfFWDn8CaV5jH/vT9AHSM7OhwNSIiIg1Pgw8j+9L2YYvv\nq6cwIiIi4n0NPoyUnKIB6NCkg4OViIiINEwNPoycPnlVIyMiIiLepzCiMCIi4vPmzJmDy+UiKSnJ\n6VKkHA0+jJx+mkZhRETEe7Zs2cKkSZNo3bo1QUFBxMbGMmnSJLZs2XL2jSvw7LPP8tFHH5VpN8Zg\njDmfcqUWNfgwsjdtL+C+W2+biDbOFiMi0kB88MEHxMXF8c033zB16lRee+01br/9dpYuXUpcXFy5\ngaIqnnnmmXK3nTJlCtnZ2V5dVVSqrsGvM3L45GEAmoc2x9/V4D8OEZFat3v3bqZMmULnzp1ZtmwZ\nTZs29bx33333MWTIECZPnsyGDRto3759jRzTGENAQECN7EtqXoMeGSmyRSRnJgPQonELh6sREWkY\nnn/+ebKzs3njjTdKBRGApk2b8vrrr3Pq1Cmef/55AP785z/jcrnYtm0bN954IxEREURHR3P//feT\nm5vr2dblcpGVleWZH+JyuZg6dSpQ/pyR9u3bM2bMGL799lsuvPBCQkJC6NOnD99++y3gHr3p06cP\nwcHBDBgwgHXr1pWqdejQoQwfPrzMz3fLLbfQocPPV2fu27cPl8vFzJkzmT17Np06dSI0NJRRo0Zx\n8OBBAJ566inatGlDSEgI48aNIy0t7Xw+4nqnQQ8FpOWkUVBUAEDLsJYOVyMi0jB88skntG/fnosv\nvrjc9y+99FLat2/Pf//7XwDPXI8bb7yRDh06MGPGDH744QdmzZpFWloac+bMAWDu3LncdtttDBo0\niDvvvBOATp06efZx5pwRYww7duzg5ptv5q677mLy5Mn85S9/YcyYMbz22ms89thj/Pa3v8VayzPP\nPMNNN93Etm3bSm1fnormp8ydO5f8/Hzuvfdejh8/znPPPccNN9zA8OHD+fbbb3nkkUfYuXMns2bN\n4sEHH+TNN9+sxqdavzXoMHIs65jnecvGCiMiUv8MeGMAR04dqfXjtGjcgjV3rjnv/WRkZHDo0CHG\njRtXab8+ffrw8ccfk5mZ6Wnr1KkTH3zwAQC//vWvCQsL47XXXuPBBx+kV69eTJw4kbvuuouOHTsy\nceLEKtWzfft2Vq5cycCBAwH3EvyjRo3izjvvZNu2bcTGxgLQpEkT7r77bpYtW8Zll112Lj86hw4d\nYufOnTRu3BiAgoICnn32WXJyclizZg0ul/tkRUpKCvPmzeO1116jUaNG53Ss+qZBh5HUrFTPc52m\nEZH66MipIxw8edDpMqrs5MmTAISFhVXar+T9jIwMwD3a8Nvf/rZUn3vuuYfZs2ezePFievXqdU71\nXHDBBZ4gAjBo0CAARowY4QkiJe3WWnbv3n3OYeTGG2/0BJHTjzV58mRPEClpX7BgAQcPHqyxOTN1\nXYMOI0ezjnqea2REROojb/0iVVPHKQkZJaGkIuWFls6dO5fq06lTJ1wuF3v37j3nes68uiY83H2z\n1NatW5dqj4iIAODEiRPnfKw2bUpfsVmyz8qOpTDSABzNPC2MaM6IiNRDNXHqxJvCw8Np2bIlGzZs\nqLTfhg0biI2NLTWScKaaWDfEz8+vWu3W2rMev7CwsMaP5esa9NU0x7J/njOi0zQiIt5xzTXXsGfP\nHlasWFHu+9999x179+7l2muvLdW+Y8eOUq937txJUVFRqdEDby5sFhkZWe5VL/v27fNaDb6iQYcR\nnaYREfG+hx56iKCgIO666y6OHz9e6r3jx49z9913ExoaykMPPeRpt9byt7/9rVTfWbNmYYzhqquu\n8rSFhoZ67bLYTp068dNPP3Hs2M+/2K5fv57vv//eK8f3JQ37NE32USgO0RoZERHxjs6dO/POO+8w\nadIkevfuzW233UaHDh3Ys2cPb7/9NseOHWPBggVl5kvs2bOHsWPHcuWVV7JixQrmzZvn2UeJ+Ph4\nvvzyS1566SVatWpFhw4dSk1QrUlTp05l5syZjBw5kttuu43k5GRef/11evXq5Zl4e64a0ikaaOgj\nI8VzRiICIwhuFOxwNSIiDcf1119PQkICw4YN4+233+bXv/41b731FsOGDSMhIYGxY8eW6m+MYeHC\nhQQGBjJ9+nQ+/fRT7r333jJrccycOZP4+Hj++Mc/MnHiRP7+979XWENF64FUtb179+689957ZGRk\n8MADD/DJJ58wd+5c+vfvX+6aJhXts6LaGhLjC+nLGLMXOH1KtAWmW2ufr6B/HJAQ9Jsgcprl0D26\nO1t/u9ULlYqInF1iYiLx8fEkJCQQFxfndDmOe+KJJ3jyySdJTU0ts2Kr1Lyz/f0reR+It9Ym1sQx\nfeU0jQX+APwDz4kXKr9uDMgpyAEgJiSm1goTERGRyvlKGAE4Za1NPXu3sqJComq6FhEREakiX5oz\n8ogx5qgxJtEY86AxpvwLt8vRNEjDfiIiIk7xlTDyV+BXwFDg78CjwHNV3bhpsMKIiEhd9fjjj1NY\nWKj5Ij6szp6mMcY8C/y+ki4W6GGt3W6tffm09k3GmHzg78aY6dba/LMdS2FERETEOXU2jAAvAP88\nS5/dFbT/iPtnaw/sqKAPfAYEwYKvFrCyyUoAJkyYwIQJE6pbq4iIiM+ZP38+8+fPL9WWnp5e48ep\ns2HEWnsMOHbWjuXrDxQBKZX2uhJoBX+4/g/c0POGczyUiIiIbyrvF/TTLu2tMXU2jFSVMeYiYBDw\nDe7LeS8GZgLvWWurFN90mkZERMQ59T6MALm4J68+DgQCe4AXgZequoPI4MjaqUxERETOqt6HEWvt\nWmDw+ewjPDC8hqoRERGR6vKVS3vPS1hAmNMliIiINFgKI0BYoMKIiEh94HK5ePLJJ6vUt3379kyd\nOrXax9i3bx8ul4t333232tvKuWnwYcRlXAT76469IiLe8M477+ByuUhMPLf7q51599uVK1fyxBNP\nkJGRUaavy+VqcHe/ra/q/ZyR8xUWEKa/rCIiXnQ+/+ZmZ2fj7//zV9eKFSt48sknufXWWwkPLz3/\nb9u2bbhcDf537npBYUSnaERE6o2AgIBSr621FfZt1KhRbZcjNaTBR0ZNXhURcdYtt9xCWFgYhw4d\nYty4cYSFhdGsWTMeeuihMmHj9DkjTzzxBA8//DDgnh/icrnw8/MjKSnJ03b6nJETJ07w4IMP0qdP\nH8LCwoiIiODqq69mw4YN51z7hg0buPzyywkJCaFNmzb87//+L//85z9xuVyeOs6s+3TlzWtJT0/n\n/vvvp23btgQFBdGlSxeef/75Mp/FggULGDBgAOHh4URERNCnTx9mzZrleb+goIAnnniCrl27Ehwc\nTHR0NJdeeilfffXVOf+8tUUjIxoZERFxlDGGoqIiRo0axUUXXcSLL77Il19+ycyZM+ncuTN33XVX\nuduNHz+e7du3s2DBAv76178SFRUFQExMjGe/p9u9ezeLFi3ihhtuoEOHDiQnJ/P6668zdOhQtmzZ\nQqW2gNAAAA9ASURBVIsWLapV96FDhxg2bBh+fn489thjhISE8OabbxIQEFDlU1Fn9svOzuayyy7j\n8OHD3H333bRp04YVK1Ywffp0jhw5wsyZMwH44osvmDhxIr/4xS94/vnnAdi6dSsrVqzg3nvvBdw3\nGJwxYwZ33nknF154IRkZGaxZs4bExERGjBhRrZ+1timMaGRERMRxOTk5TJgwgUcffRSAO++8k/j4\neN56660Kw0jv3r2Ji4tjwYIFjB07lrZt21Z6jD59+rB9+/ZSbZMnT6Zbt2689dZbPPbYY9WqecaM\nGaSnp7N27Vp69+4NwK233krnzp2rtZ/Tvfjii+zZs4d169bRsWNHAO644w5atmzJCy+8wAMPPEBs\nbCyLFy8mIiKCJUuWVLivxYsXM3r0aP7/9u4/OOo6v+P4800Ak/Ar5MIdZZjEudBQOO9OWTpXkEAA\nAY9w1KlCpWhjaWiVU2NbRY8ZxMEI05u5glfnIj/jnYiOQXvSK0zC1UHmBlAnHEg9roIm3okgSAgG\nEArk0z++m7ghP3eT3e/u5vWY2YF89/Pdfe9nvvPZ136+v8rKyiKuJ1a0m0YzIyKS4BoaGjhx4kS7\nj9OnT3f6GqdPn253/YaGhhh8ClqFjvz8fD76qL37oYYv9BiSxsZG6urqSE9PZ/To0RGd3VNZWcmE\nCROagwhARkYGCxcujLjGbdu2kZ+fz5AhQzhz5kzzY/r06Vy9epU9e/Y0v8+FCxc6DCMZGRm8//77\nHDt2LOJ6YkUzI5oZEZEEV11dzVtvvdXu88OGDWPJkiUdvkZFRUW7oWXKlCkUFBR0p8ROpaamNu9m\naTJ06FDOnj3bY+/hnGPt2rWUlZVRU1PDtWvXAG9XSVZWVtiv9/HHHzNx4sRWy7szM3L06FEOHz7c\nvKsplJlx6pR3/9clS5ZQUVHB7NmzGTFiBDNnzmT+/PnMmjWruf3KlSu54447yMvL46abbuL222/n\n3nvvbRGe4kWvDyMD+w/0uwQRkW4JBAKMHj263edDT4Vtz7x587h69Wqbzw0cGP1xMiUlJerv8cwz\nz/Dkk09SXFxMaWkpmZmZ9OnTh5KSEhobG6P+/m1pCkRNGhsbmTFjBo8//nibZwrl5eUBXsA8ePAg\nlZWV7Ny5k507d1JeXk5RURHl5eWAN7P04Ycf8sYbb1BVVcWmTZtYs2YN69ati+hicNHU68NIat9U\nv0sQEemWQYMGMWhQ92Z52/olngjCuWbJa6+9xrRp01i/fn2L5fX19RF9/pycnDZ3gRw9erTVsqFD\nh1JfX99i2ZUrVzhx4kSLZbm5uZw/f56pU6d2+v59+/alsLCQwsJCAB544AHWr1/P8uXLm483ycjI\noKioiKKiIi5evEh+fj5PPfVU3IWRXn/MiMKIiEjiGjBgAECrL/q2pKSktJptqKio4Pjx4xG996xZ\ns9i3b1+LU4Pr6urYunVrq7a5ubnNx3s0WbduXauZkfnz57Nv3z6qqqpavca5c+ea29fV1bV6vmn3\ny+XLl9tsk56ezqhRo5qfjyeaGVEYERGJqY4uVBauQCCAc45ly5Zx9913069fP+bOnUtaWuvbfMyZ\nM4enn36aRYsWMXHiRA4fPsxLL71Ebm5uRO+9dOlStmzZwm233cZDDz3EgAED2LhxIzk5OZw9e7bF\nrE1xcTH3338/d911FzNmzODQoUNUVVW1mpF57LHH2L59O3PmzOG+++4jEAhw4cIF3nvvPV5//XVq\na2vJzMykuLiYuro6pk2bxsiRI6mtreW5557jlltuYcyYMQCMHTuWgoICAoEAmZmZvPvuu2zbtq35\n1N94ojCiMCIiElNt7Vppb3fL9cuvvzfN+PHjKS0t5fnnn6eyspLGxkZqamrIzs5u1XbZsmVcvHiR\nrVu38uqrrxIIBNixYwdPPPFEm+/TmZEjR7J7924efvhhVq9ezbBhw3jwwQdJS0ujpKSE1NSvvl8W\nL15MbW0tmzZtorKyksmTJ7Nr1y6mT5/e4r3S0tLYs2cPq1atoqKighdffJHBgweTl5fHypUrGTJk\nCOCdkrx+/XrKysqor69n+PDhLFiwgBUrVjS/VklJCdu3b2fXrl1cvnyZnJwcVq1axaOPPtrpZ4s1\n68mEmijMbBxQzT/As4ue5eHvxV9KFJHe68CBAwQCAaqrqxk3bpzf5UiYHnnkETZs2MD58+cT8t5n\nnW1/Tc8DAedcZHc8vI6OGdHMiIiIROjSpUst/j5z5gxbtmwhPz8/IYOIX7SbRmFEREQiNGHCBAoK\nChgzZgwnT55k8+bNNDQ0sHz5cr9LSygKIwojIiISocLCQrZt28aGDRswMwKBAOXl5dx6661+l5ZQ\nFEYURkREJEKlpaWUlpb6XUbC0zEjCiMiIiK+UhhRGBEREfFVrw8jN6Tc4HcJIiIivVqvDyOaGRER\nEfGXDmBVGBGROHXkyBG/S5BeyI/tTmFEYURE4kxWVhbp6encc889fpcivVR6ejpZWVkxez+FEYUR\nEYkz2dnZHDlyhM8//9zvUqSXysrKIjs7O2bvpzCiMCIicSg7OzumXwYifkqKA1jNrNDM9pvZRTOr\nM7PXu7quwkjsvPzyy36X0Ouoz2NPfR576vPEl/BhxMzuBH4BbAK+DUwEtnZ1/f4p/aNUmVxPA0bs\nqc9jT30ee+rzxJfQu2nMLAVYC/yLc+6FkKd+35X1+/ftr7sqioiI+CzRZ0bGASMAzOyAmX1qZjvM\n7FtdWXnjDzZGtTgRERHpXKKHkW8CBqwAVgKFwFlgt5lldLbyt77epcwiIiIiURSXu2nMbDXweAdN\nHDCGr8JUqXPul8F1/w74BJgHbGhn/VTQBYVi7dy5cxw4cMDvMnoV9Xnsqc9jT30eWyHfnT12Bog5\n53rqtXqMmX0N+FonzT4CJgFvApOcc3tD1t8P7HLOLW/n9f8GeKmHyhUREemNFjrnunzCSEficmbE\nOXcGONNZOzOrBi4Do4G9wWX9gBuBjztYtRJYCNQCl7pXrYiISK+Sivc9W9lTLxiXMyPhMLM1wJ3A\n3+MFkKV4x478mXPunJ+1iYiISOficmYkTI8CV/CuNZIGvA1MUxARERFJDAk/MyIiIiKJLdFP7RUR\nEZEEpzAiIiIivkraMGJmPzSzGjP7MngTvT/vpP08MzsSbH/IzL4fq1qTRTh9bmZFZtZoZteC/zaa\n2cVY1pvozCzfzLab2fFg/83twjoFZlZtZpfM7AMzK4pFrcki3D43sykh23djyDb/9VjVnMjM7Edm\n9o6ZfWFmn5nZf5hZXhfW03geoUj6vCfG86QMI2b218BP8K7MegtwCKg0s6x22jfdXG8DcDPwBvBL\nMxsbm4oTX7h9HnQOGB7yyIl2nUlmAHAQWIJ3IcAOmdmNwK+A/wa+CzwLbDSzGdErMemE1edBDvhT\nvtrO/8Q5dyo65SWdfODfge8BtwH9gCozS2tvBY3n3RZ2nwd1azxPygNYgxc9e9s5VxL824A/Aj91\nzv24jfavAOnOubkhy/YBv3XOLYlR2Qktgj4vAtY45zJjW2lyMrNG4A7n3PYO2vwr8H3n3HdClr0M\nDHHOzY5BmUmli30+Be/CjEOdc1/ErLgkFfxxcwqY7Jz7TTttNJ73oC72ebfH86SbGQle9CyA9+sP\nAOclrl8DE9pZbULw+VCVHbSXEBH2OcBAM6s1sz+YmX65RN9foO3cDwYcDN7Isyr4y10ik4E301TX\nQRuN5z2rK30O3RzPky6MAFlACvDZdcs/w5s6asvwMNtLS5H0+f8Ci4C5eFfD7QPsNbMR0SpS2t3O\nB5vZDT7U0xucAP4R78KMf4U3W7jbzG72taoEFJxtXQv8xjn3uw6aajzvIWH0ebfH82S46JkkIOfc\nfmB/09/BadQjeAP3Cr/qEulJzrkPgA9CFu03s1zgnwAdPByenwFjgVv9LqQX6VKf98R4nowzI58D\n14BvXLf8G8DJdtY5GWZ7aSmSPm/BOXcV+C0wqmdLkxDtbedfOOcu+1BPb/UO2s7DYmbPAbOBAufc\niU6aazzvAWH2eQuRjOdJF0acc1eAamB607LgVNN0gjfTa8O+0PZBM4LLpRMR9nkLZtYH+DbetLZE\nR1vb+Uy0ncfazWg777Lgl+JfAlOdc3/owioaz7spgj6/fv2wx/Nk3U3zb8AL5t3V9x28KdF04AUA\nM/sF8Ilzblmw/bN4+3H/GfgvYAHeAZmLY1x3Igurz81sOd603jG8A6SWAtnAxphXnqDMbADeLw8L\nLvqmmX0XqHPO/dHMVgMjnHNNuwOeB34YPKtmM96AfRferx/pgnD73MxKgBrgfbw7nS4GpuJ9OUon\nzOxneOPxXOCCmTXNeJxzzl0Ktvk5cFzjec+IpM97ZDx3ziXlA+86ALXAl3iJeHzIc28Cm69rfyfw\n+2D794BZfn+GRHuE0+d44aUm2PZT4D+B7/j9GRLpAUwBGvF2kYU+NgefLwfevG6dyXizWF8CR4F7\n/f4cifQIt8+Bx4L9fAE4jXfG2WS/P0eiPNrp62vA34a00Xjuc5/3xHielNcZERERkcSRdMeMiIiI\nSGJRGBERERFfKYyIiIiIrxRGRERExFcKIyIiIuIrhRERERHxlcKIiIiI+EphRERERHyVrJeDF5EE\nZGZDgfHAMOCkc+5Nn0sSkRjQzIiIxJNcvHtibAHyfa5FRGJEl4MXkbhiZiOAT4CZzrlf+12PiESf\nZkZEJN7k492s622/CxGR2FAYEZF4Mwn4nXOuwe9CRCQ2FEZEJN5MBvb6XYSIxI7OphGRuGFmGcBN\nwE+Cf2cBPwIccMo592MfyxORKNHMiIjEk0nBf/cFg8kDeGEkD1joW1UiElUKIyIST/KBM8BJ4EFg\nlXPu/4D+QJmfhYlI9OjUXhGJG2a2FxgI7ACecs5d8rkkEYkBzYyISFwws1QgAHwI3Ai8aGajfS1K\nRGJCYURE4sVEvIPqlzvn7gY+BX7V9KSZDfarMBGJLoUREYkXk4A659z/BP8+hrfLBjMbBRT7VZiI\nRJfCiIjEi3zgrZC/LwM1wf8vAF6JeUUiEhMKIyISLwbRMnC8AtSb2U+BWufcp/6UJSLRprNpRERE\nxFeaGRERERFfKYyIiIiIrxRGRERExFcKIyIiIuIrhRERERHxlcKIiIiI+EphRERERHylMCIiIiK+\nUhgRERERXymMiIiIiK8URkRERMRXCiMiIiLiK4URERER8dX/A9rTDiqrpXTJAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" + "metadata": {}, + "cell_type": "markdown", + "source": "## Step 4: construct maximizer function" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# given a value of k and a (proposed) value function V, find k' that maximizes V over grid of k. \n\ndef maximizer(k, V0, u, f, k_grid):\n \n i = 0\n for K in k_grid:\n \n c = f(k)+(1-delta)*k-K\n if c>0:\n i += 1\n v = u(c)+beta*V0[K]\n if i == 1:\n vmax = v\n cmax = c\n kmax = K\n elif v>vmax:\n vmax = v\n cmax = c\n kmax = K\n \n return (vmax, cmax, kmax)", + "execution_count": 10, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Step 5: iteration over value function" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def bellman(V0, u, f, k_grid, eps=1e-3):\n \n T = {}\n T[0] = (1, 1)\n t0 = time.time()\n d = 1\n i = 0\n \n while d>eps:\n \n V = {}\n C = {}\n K = {}\n \n i += 1\n \n for k in k_grid:\n v = maximizer(k, V0, u, f, k_grid)\n V[k] = v[0]\n C[k] = v[1]\n K[k] = v[2]\n \n d = abs(dist(V, V0))\n V0 = V\n T[i] = (d, time.time()-t0)\n print('i: {0}, d = {1:.5f} ({2:.2%})'.format(i,d,(d/T[i-1][0])-1))\n \n print('i: {0}, d = {1:.5f})'.format(i,d))\n return (V, C, K, T)", + "execution_count": 12, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Shazam!" + }, + { + "metadata": { + "scrolled": true, + "trusted": true + }, + "cell_type": "code", + "source": "S = bellman(V0, u, f, k_grid)", + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": "i: 1, d = 11.47116 (1047.12%)\ni: 2, d = 8.71175 (-24.06%)\ni: 3, d = 6.23321 (-28.45%)\ni: 4, d = 4.50341 (-27.75%)\ni: 5, d = 3.30647 (-26.58%)\ni: 6, d = 2.46702 (-25.39%)\ni: 7, d = 1.86775 (-24.29%)\ni: 8, d = 1.43191 (-23.33%)\ni: 9, d = 1.10911 (-22.54%)\ni: 10, d = 0.86617 (-21.90%)\ni: 11, d = 0.68077 (-21.40%)\ni: 12, d = 0.53760 (-21.03%)\ni: 13, d = 0.42600 (-20.76%)\ni: 14, d = 0.33841 (-20.56%)\ni: 15, d = 0.26932 (-20.42%)\ni: 16, d = 0.21461 (-20.31%)\ni: 17, d = 0.17118 (-20.24%)\ni: 18, d = 0.13663 (-20.18%)\ni: 19, d = 0.10912 (-20.14%)\ni: 20, d = 0.08718 (-20.11%)\ni: 21, d = 0.06967 (-20.08%)\ni: 22, d = 0.05569 (-20.07%)\ni: 23, d = 0.04452 (-20.05%)\ni: 24, d = 0.03560 (-20.04%)\ni: 25, d = 0.02847 (-20.03%)\ni: 26, d = 0.02277 (-20.03%)\ni: 27, d = 0.01821 (-20.02%)\ni: 28, d = 0.01456 (-20.02%)\ni: 29, d = 0.01165 (-20.01%)\ni: 30, d = 0.00932 (-20.01%)\ni: 31, d = 0.00745 (-20.01%)\ni: 32, d = 0.00596 (-20.01%)\ni: 33, d = 0.00477 (-20.00%)\ni: 34, d = 0.00382 (-20.00%)\ni: 35, d = 0.00305 (-20.00%)\ni: 36, d = 0.00244 (-20.00%)\ni: 37, d = 0.00195 (-20.00%)\ni: 38, d = 0.00156 (-20.00%)\ni: 39, d = 0.00125 (-20.00%)\ni: 40, d = 0.00100 (-20.00%)\ni: 41, d = 0.00080 (-20.00%)\ni: 41, d = 0.00080)\n", + "name": "stdout" + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "V = S[0]\n", - "X = []\n", - "Y = []\n", - "Z = []\n", - "\n", - "for k in k_grid:\n", - " if k < 1.5*k_ss:\n", - " X.append(k)\n", - " Y.append(V[k])\n", - " Z.append(V0[k])\n", - " \n", - "plt.plot(X, Y, color=\"green\", linewidth=2, label=\"Optimum\")\n", - "plt.plot(X, Z, \"--\", color=\"gray\", linewidth=1, label=\"Initial guess\")\n", - "plt.xlabel(\"$k$\", fontsize=14)\n", - "plt.ylabel(\"$V$\", fontsize=14)\n", - "plt.title(\"Value Function\")\n", - "plt.legend(loc='lower right')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 229, - "metadata": {}, - "outputs": [ + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGOCAYAAABIXnNbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VUX+x/H3JBB6QgkCgVAiRYqACSIIKkVBUEQUwSCy\n4mIDG/7UXcuu6NrXsrgLrrq62DYuKgqIIqjYUFETcOkgvZNQEiIESDK/PyYhuSlw025JPq/nyQOZ\nOfec772PJh/mzMwx1lpERERE/C3E3wWIiIiIgEKJiIiIBAiFEhEREQkICiUiIiISEBRKREREJCAo\nlIiIiEhAUCgRERGRgKBQIiIiIgFBoUREREQCgkKJiIiIBASFEhEREQkICiUilYwx5jpjTLYxpmVR\n30vx9FmJ+JdCiYifGWN+l/OLMPfriDFmrTHm78aY00pxSpvzVdz3Fa6I95T/63Ff1lJMfb2NMQ8Z\nY8ILdPn8sxKRPNX8XYCIAO4X4Z+AzUBNoC9wCzDEGNPFWptRhnO/ASRYa4+VucqSyf+e8lvh4zqK\nci7wZ+DfQFq+dn99ViKCQolIIJlvrU3K+ftrxpj9wGRgOPDf0p7UWmsBf/2Szf+eAokpqtHPn5VI\nlafbNyKB6wvcL882uQ3GmLOMMZ8YY1KNMYeMMZ8ZY8452UmKmydhjIkyxrxqjNlhjMkwxmw0xkw3\nxlQzxvTLec3wIs43JqfvpNf1hjFmhjFmUxHtU4wx2QW/N8acnvOaA8aYg8aY14wxNYt4/cne20PA\n0zmHbs45b5YxpuVJPqtTfu6lqLGDMSa6tJ+dSGWkkRKRwNU25899AMaYzsDXQCrwJJAJ3AR8aYw5\n31r7UzHnKTRPwhjTDPgJCAdeAtYCzYGRQG1r7ZfGmG3ANcDsAue7BvjVWrvEi/cQYYxp5FGMtftO\nVlsx7bl/nwlsBP4IxAITgD3Afd6+N2AW0B64GriDnM8XSC6qHmNMJ7z73L2uMcdq4EtgQBHvX6RK\nUigRCRy5v8Bz55T8CTgMfJTT/yju/9k+1totAMaYN3G/dJ8G+pfgWk8CpwE9rbVL87VPyff3t4DJ\nxph61tpDOdeLBC4C/uLFNQzweYE2C4SWoM6CEq21N564gKvn93j+wj/Ve1tujEnChZLZ1tqt+c5X\n1DUfo2Sfuzc1Qgkm1RpjIoAHcfNfsoAUa+3L3rxWJJjo9o1IYMj9BZ4MbAP+g/sFdLm1dpcxJgQX\nBj7I/cUIYK3dnXNsX2NMXa8u5H7zDgfmFPilXdAbuIA0Ml/b1bhQ8bYXl7K4yboX5vu6yJsaT3K+\nlwq0fQM0yn3vJXhvXinF537KGvOdI9RaO9CLGhrknOMza+1fcCM7T5bm/YgEOo2UiAQGC0wE1uNu\nD+yx1q7N198Yd+thXRGvXY37B0Z0zt9PpTHu1sbKkxZk7VpjzE+42zX/zmkeA/xgrd3oxXUAfirn\nia5bC3x/IOfPBkA6Xr63EijN536qGktqKrDCWvtpzvc7gIdLcR6RgKdQIhI4yvsXeHl4A/ibMSYK\nqAX0woWn8lLc7YvibvFkFdNe5H0XPym3GnPmx8QDg3PbrLUfFf8KkeCm2zciwSEZN7+kQxF9HYFs\n3G0fb8+VBnTx4th3cs4djxslOYabyFleDgD1i2hvXcrzefvevN0grTw/99I4O+fP7yrwGiIBQ6FE\nJAhYa7OBBcDw/MtVjTFNcIHhG2utV7cGcvbi+BAYZoyJPcWx+4BPgGtxt3HmW2v3l+5dFGkDboLv\niRCRMzpweWlOVoL39lvOn0UFovznK7fPvSAvlwSHAKkFN88zxsQYYzTSLZWOQolIYPBmaP9B3HyT\nxcaY+4wx9wKLgTDg3hJe735gL/C1MeY5Y8wNOduuLy9i6/U3gK5AO9yKHG95857ewY1EfGiMud0Y\ncx/wA25lS2l5894Sc+p73Bgz1hgz2hhTq5jzlefnnt9q4PVTHPMVnFjBQ87fuwATrLWZZbi2SEBS\n0hYJDKe8nWCtXWWMOQ94ArcHRgjuF/gYa+3PJbqYtTtzNv/6C+62TDhuAuXHuJCQ31zcbRYDzCnJ\nZbyoY78x5nLgOeApYBPuvbXH7fFRYt68N2vtz8aYB4GbcfM1Qsi3SV2B85Xb517w1JziM7LWHjDG\nXImb17MaN9dmq7X2/jJcVyRgGTfaKSJSNGNMKLATt6fHjac6XkSktAL29o0x5jxjzJycbaKzjTGX\nefGaMGPMY8aYzfm2lr7OB+WKVGYjgEjcbRwRkQoTyLdv6gDLgFdx20J7413cvgLjcRPomhHAwUsk\nkBljegLdcHMqkqy13/q5JBGp5AI2lFhr5wPz4cQujSdljLkYOA+IsdYezGkuuImRiHjvFtyKm6W4\noC8iUqEq0yjCMOBn4A/GmO3GmLXGmL8W9XROETk1a+14a22YtfYca+0qf9cjIpVfwI6UlEIMbqQk\nA7fHQSTwItAQ9zAsERERCWCVKZSE4HZXHJO7mZEx5i7gXWPMRGvt0YIvyHki62BgMy7MiIiIiHdq\n4nZf/jRno8Uyq0yhZBewo8Duiqtxeyu0wE18LWgw3j3tVERERIp2De6p2WVWmULJYmCkMaa2tTZ3\n86cOuNGT7cW8ZjPAW2+9RceOHSu+QgFg8uTJPP/88/4uo0rRZ+57+sx9T5+5b61evZqxY8dCzu/S\n8hCwocQYUwdoS95W1THGmG7AfmvtNmPME0CUtfZ3Of3/wS1d/LcxZgpuafDTwKtF3brJkQHQsWNH\nYmNLtXmklEJERIQ+bx/TZ+57+sx9T5+535Tb9IdAXn3TA7cUMRG3FfOzQBLwcE5/U+DEw6ystb8B\nF+EesPUT8CYwG7jDdyWLiIhIaQXsSIm19itOEpqstYX2TbDWrsPNExEREZEgE8gjJSIiIlKFKJSI\nz8XHx/u7hCpHn7nv6TP3PX3mwa9KPyXYGBMLJCYmJmpylIiISAkkJSURFxcHEGetTSqPc2qkRERE\nRAKCQomIiIgEBIUSERERCQgKJSIiIhIQFEpEREQkICiUiIiISEBQKBEREZGAoFAiIiIiAUGhRERE\nRAKCQomIiIgEBIUSERERCQgKJSIiIhIQFEpEREQkICiUiIiISEBQKBEREZGAoFAiIiIiAUGhRERE\npIqxFmbPhnHjYPhwf1eTp5q/CxARERHf2LgRPv4YPvgAvvjCtRkD6elQt65/awOFEhERkUrvl18g\nIQGefRYyMz37jIH16+Gss/xTW366fSMiIlIJHT0KiYlwxRXQvTs89ZRnIAkLg/vvh8OHAyOQgEZK\nREREKpXjx2HaNPjzn+HQocL9/frBE09A165Qu7bPyzsphRIREZFK4Oef4a674Mcf3ShJfiEhcMMN\nMH489OzpbtkEIoUSERGRIJWcDH/9KyxeDN99V7g/Lg7GjoWLLoLOnX1fX0kplIiIiASZFStgxgx4\n8UU3JyS/mjXh8sthyBAXSEKCaPaoQomIiEgQSE+HBQvg889h+vTC/W3awNCh8PjjEB7u+/rKQ8CG\nEmPMecA9QBzQDLjcWjvHy9f2Ab4ElltrYyusSBERkQq2e7cLIv/3f7BnT+H+2Fh45RX3Z7AL5EGd\nOsAyYCJgvX2RMSYCeB34rILqEhERqXA7dsDgwdCsmbsNUzCQXHIJbNvmlv1WhkACATxSYq2dD8wH\nMKZE84T/CbwNZAMBtHmuiIjIyVnr9hN55RW3+2pBzZu7ia19+0J0tO/rq2gBG0pKwxgzHmgDXAP8\nyc/liIiIeOWrr+C112DhQti1q3D/bbdBnz5w2WVQq5bv6/OVShNKjDHtgMeBvtba7JINroiIiPhW\ndja8/z68+677Kig21gWRiRPhjDN8X58/VIpQYowJwd2yechauyG32dvXT548mYiICI+2+Ph44uPj\ny69IERGp8qyFdevgp5/cCprvvy98TGws3HsvjB7t+/qKk5CQQEJCgkdbampquV/HWOv1HFK/McZk\nc5LVNzmTWw8AmeSFkZCcv2cCg6y1XxbxulggMTExkdjKMktIREQCjrWwahX8/vewZEnh/pAQt9vq\n3/8ePLdnkpKSiIuLA4iz1iaVxzkrxUgJkAZ0KdA2CegPXAls9nVBIiIiAIsWwU03uSfxFlS7Njz0\nkLtFU7eu72sLNAEbSowxdYC25I18xBhjugH7rbXbjDFPAFHW2t9ZN9yzqsDr9wIZ1trVPi1cRESq\nvL174YEH4LPPYPNmz77q1eEPf3AraHr2hAYN/FJiQArYUAL0ABbh9iixwLM57a8D1wNNgUq4IEpE\nRIJRdjYkJLgg8s47kJHh2d+kCUyY4EZNKuNy3vIQsKHEWvsVJ9nczVo7/hSvfxh4uLzrEhERyW/z\nZvj6azcf5OefC/f37QsDBsDdd0O9ej4vL6gEbCgREREJZNu3w9Sp8Le/QWamZ1+1anDuue6BeZ06\n+ae+YKRQIiIiUgIpKe4WzKxZhfvq1YO//MX116zp+9qCnUKJiIjIKSQnw5//7B6MV9QqmmHD4I47\n4Oyzg/cJvYFAoURERKQI1rodVz//HN58E377rfAxN98Mo0ZB//6+r68yUigRERHJ5+hRmDcPnnsO\nFi8u3N+rF5xzDlx7Lbi9w6S8KJSIiIgAqanwzTfuNkzBJ/Qa44LIyy/DmWf6p76qQKFERESqtIwM\nuPVW95Tegk9eqVXLzSWZNEnLeX1BoURERKqctDR4+mk3X+SHHwr3N2gAzz4Ll14KjRv7vr6qSqFE\nRESqjB074JVX4KWXYPfuwv3x8TBkiAsj2v7d9xRKRESkUjt6FJYtcw/Ge/jhwtu/t2/v5ov8/vdw\nwQX+qVEchRIREamUsrPhrbdg8mTYv79wf7t28K9/wfnn+742KZpCiYiIVDpPPunmjBw4ULjvrLNg\nxgy3isaYwv3iPwolIiIS9DIz3QZnn33mbtPs2uXZ36WLW0HTq5cLI6Gh/qkzUOzZs4dNmzZRp04d\nzgygNc4KJSIiErS2b3dP6H3mGVi6tHD/eefB6NFw441Qvbrv6wtUv/zyCz/++CPdunVTKBERESmL\ngwddEHnqqcJP6K1ZE3r0cA/FGzvWP/X5w2+//cauXbvYtWsXZ555JvXr1y/22AsuuICBAwcSGmBD\nRgolIiISNJYudWHj558Lb3QWHu7mkVx/feUfFTl06NCJAJL7lZaWBkCNGjWIioo6aSipUaOGr0ot\nEYUSEREJaOnp8Le/ufkiX31VuH/IELc1fK9eEBHh+/p8zVrLtGnTOHr0KLVq1aJZs2aceeaZNGvW\njGbNmtGgQQNMkM7gVSgREZGAlJzsJq/+7W+wbZtnX0SEeyDexRfD0KGVZxXNkSNH2L9/P82bNy/2\nGGMMV199NfXr1yciIiJoA0hRFEpERCRgWOsehvfZZ3DvvW47+Pxat3ZB5LHHoGFDv5RYbo4ePcqu\nXbvYuXPnia8DBw5QvXp1/vjHPxISElLsa1u3bu27Qn1IoURERAJCSgqMGweffFK4LzrabXQ2aJDv\n6ypv27dvZ/bs2aSkpABQvXp1mjVrRvv27YmKiiIqKqpSjX6UhEKJiIj4zf798OijsHAhrFhRuL9D\nB3j1VTdfJMAWipRavXr1aNOmDX369CEqKorIyMiTjopUJQolIiLic998427RTJsG+/YV7v+//3Nz\nRfr2hbAw39fnLWst+/fvZ/v27ezYsYOdO3fSqlUrLrroomJfExERwdChQ31YZfBQKBEREZ/IynKj\nIY88ArNmFe6PjYU+fWDCBOja1ff1eWvbtm2sX7/+RAjJyHnCX6NGjWjevDktWrTwc4XBS6FEREQq\n3OzZbn+RPXsK93Xp4p5FExfn87JKZe3atSxbtozmzZvTu3dvmjdvTlRUFLVq1fJ3aUFPoURERCrE\n3r0wZYq7TbN+vWdfSAjceafbX6RlS7+U5yE7O5vk5GR27NhB27ZtCQ8PL/bYfv36MXDgwCo7GbUi\nKZSIiEi5sRa+/NJNXJ0+HVJTPfvbt4ebb4bBg6FTJ7+UCEBaWtqJeSC5t2GOHz8OwKhRo04aSqpV\n06/OiqJPVkREyiwrC5Yvh4cegjlzCvf36QOXXAJ33QX+3uH8n//8J3ty7iOFh4fTvHlzLrjgApo3\nb06zZs0Cdgv2qiBgQ4kx5jzgHiAOaAZcbq0t4j/1E8ePAG4BugM1gJXAFGvtAh+UKyJSZX34oZsv\nsndv4b7YWHj9dTdvJFCcffbZ1K5dmxYtWlCvXj1/lyP5BGwoAeoAy4BXgSLmaRdyPrAAuA84CFwP\nzDXG9LTW/lJhVYqIVEF797pVNAsXwrp1nn2hoXD33XD77RAVVbF1ZGVlsWvXLrZv38727dvZs2cP\nt9xyy0n3/YgLlhm1VVDAhhJr7XxgPoDxYjaRtXZygaYHjDHDgWGAQomISBllZMB338HXX8PUqXDw\noGf/GWe4+SIXX+w2PasIx44d49dffz0RQnbu3ElWVhahoaFERUXRrl07jh8/rlswQSpgQ0lZ5QSZ\nesB+f9ciIhLMcievXn89bN5cuL93bxg2zDfzRQ4fPsy7775LREQELVq0oFOnTkRHR9O0aVNCK8uW\nr1VYpQ0luPkodYCZ/i5ERCQYHTsG99/vntRb1HyRrl1dX3ltdJaRkUF6ejqRkZHFHhMREcFdd92l\nuSCVVKUMJcaYMcCfgMustSn+rkdEJJj8/DP85z8wcybs2OHZd9pp8PTT0K8ftGpV+mtYa0lNTWXr\n1q1s3bqVbdu2sXfvXqKiorjhhhuKfZ0xRoGkEqt0ocQYczXwMjDSWrvIm9dMnjyZiIgIj7b4+Hji\n4+MroEIRkcCTlQX/+58b+Xj++cL9gwbBwIFulU2BH5clsm3bNpYsWcLWrVs5dOgQAJGRkURHR9O7\nd29aBsJOalJIQkICCQkJHm2pBTehKQfGWlvuJy1vxphsTrEkOOe4eOBfwGhr7UdenDcWSExMTCQ2\nNrZ8ihURCTIrV8Lo0e7Pgrp2hSefhCFDyuda69ev55tvviE6OpqWLVsSHR1N7dq1y+fk4lNJSUm5\nK5nirLVJ5XHOgB0pMcbUAdoCuStvYowx3YD91tptxpgngChr7e9yjh8DzABuB34yxjTJed0Ra22a\nb6sXEQlsW7bAs8/CokXuIXkFXXEFvPwyNGrk3fkOHTrE1q1bT0xALU67du1o165dKauWyi5gQwnQ\nA1gE2JyvZ3PaX8ftQdIUiM53/A1AKDAt54sCx4uIVGnWQlKS21vk4YfdEt/86tVze48MHAhnnnmy\n87j5IJs3b2bLli1s3bqV/fvdQsdzzz1XT8mVUgvYUGKt/Qoodvcba+34At/3r/CiRESC1J49bknv\nxx8X7uvRA/r3d0t6mzY9+XkWL17Mjz/+SFqaG4A+7bTTOP300xkwYAAtW7bUJFQpk4ANJSIiUnYp\nKTB2LHz6aeG+uDh4911o08b789WpU4dOnTrRunVrWrZsSa1atcqvWKnyFEpERCqZtDR49VU3X2Tu\nXM++kBD44x9dUDnjDDAGsrOz2b17N1u2bKFDhw40bNiw2HN37969gquXqkyhRESkkjhwAL74wj1z\nZudOz76QEJg8Ga69Frp0yWLHjh18++2WE/uEHDt2jGrVqhEREXHSUCJSkRRKRESChLWWoh4FZi38\n4Q9uNU12tmdf48ZuvshDD0GnTjBr1izmzVvD8ePHCQsLo2XLlpx33nm0atWKqKgobdUufqVQIiIS\nwA4dOsQzDzzA4rlzqXP8OL9Vr06fYcP4v0cf46OP6jF7tltNc+CA5+uaN4cZM9xKmvw5pkmTJjRp\n0oQ2bdrQtGnTkz5NV8TXFEpERALUoUOHuLJ3b+5avZop2dkY3P4In0ybRo/XvmD9b98D9TDG0qTJ\nXlq33kTr1nGMGVOdAQOgbt3C5+zTp4+P34WI9xRKREQC1DMPPMBdq1dzcb57MgYYmp1N1m+ruee0\nG+jW7wratNlMrVpHMCaUCRNaEhUV5b+iRcpAoUREJEAtnjuXKQUnieS4lGwePvopXboMonfvHpx+\nehtatGhB9erVfVylSPlRKBERCUBr1ljs/uMUntbqGKBprdo8+OD4Iie/igQjzXASEQkAx48fz3ly\nLvz5z9Cli2FzWnWKe2SqBTJqhimQSKWikRIRET/Izs5m165dbNy4kU2bNrF581aszeK55+4mLa0O\nAPsYxjymcSmFb+HMDwmh72WX+bpskQqlUCIi4iPHjh3jl19+YdOmTWzatImMjAyMCePgwdZ8992F\nbNwYQ1pa7RPH9xn6GH9d9wUhG1czJN/qm/khITzfsSPvP/qo396LSEVQKBER8aGFCxfStGlTmjQ5\nh2nTYkhKak52dt6GZdHRMGwYXHopXHxxPdLTv+fZBx/k+TlzqH38OIerV6fPZZfx/qOP6uF3Uuko\nlIiIlJPidlzNtXt3GOvW3cPUqdXZu9ezr0YN95Texx7z3OysXr16TJk6FaZOPeX5RYKdQomISBmk\npqby66+/smHDBlJSUrjlllsKBYelS+GTT+CJJyA93XPJbpMm8PLLcNFFcKoH7iqQSGWnUCIiUgLH\njx9ny5YtHkHEGEPz5s3p3LkzWVlZVKvmfrSmpcEdd7jt3gu69FIXRK69Fho08O17EAlUCiUiIl7a\nv38/L774IpmZmYSHh3P66afTv39/2rRpQ618wxzLlrkn8n7zDWRleZ7j7LPhv/+FNm18XLxIEFAo\nERHxUoMGDbjwwguJiYkhMjLS43bKoUPw+efw6afwz38Wfu2tt7qgEhPjw4JFgoxCiYhUedZa9u3b\nR3JyMh07diz2OGMM55xzTqH2zz+HsWNh927P9nr14He/g9GjoW/f8q5apPJRKBGRKikzM5PNmzez\nfv161q9fz4EDB6hVqxYdOnQgJOTUm11v2gTPPQfz58Ovv3r2Va/ulvW+/DI0alRBb0CkElIoEZEq\nIyMjgxUrVvDrr7+yceNGjh8/TkREBO3ataNdu3a0adPmlIFk2zaYMwfuuQeOHPHsa90apk6F/v3d\nKImIlIxCiYhUGceOHeOTTz4hOjqa888/n/bt29O4cWOvltpmZcGNN8JrrxXuO/98GDLEzRupW7cC\nChepIhRKRKTKCA8P595776VGjRpeHW8tfPCB+5ozxy3xze+ss2D2bLcLq4iUnUKJiAS9AwcOsG7d\nOlJSUrjkkktOeqw3gcRaWLMGHnjABZKCJk6EceOgRw8IDS3cLyKlo1AiIkHHWsvOnTtZu3Yta9eu\nZe/evYSGhtKmTRuysrIILUNSWLoUrrkGVq/2bK9bFy68EG6+GQYPLuMbEJEiKZSISNBIT09n0aJF\nrFu3jvT0dGrVqkW7du244IILOP30072+LVPQgQNuROTjj+H99z37QkPhoYfgD3+AsLByeBMiUiyF\nEhEJGmFhYWzfvp0uXbrQoUMHWrZs6dXy3eJYC1984UZG9uzx7GvWDO6+2y3tbdeujIWLiFcUSkQk\naISFhXHLLbeU+TzWwlNPwT/+ATt2ePY1bAiXX+76IyPLfCkRKYHS/xOjghljzjPGzDHG7DDGZBtj\nLvPiNf2MMYnGmAxjzDpjzO98UauIlJ61lr179/LVV1/x9ttvY62tsGvt3An/+pfbXfW++zwDSXQ0\nLFoEe/fCq68qkIj4QyCPlNQBlgGvArNOdbAxpjXwETAdGANcCPzLGLPTWruw4soUkZKy1rJr1y5W\nr17N6tWr2bdvH2FhYbRv356jR49Ss2bNcr3enj1uG/jPPivc178/XHGFW00THl6ulxWREgrYUGKt\nnQ/MBzDe7GwEtwAbrbX35ny/1hjTF5gMKJSIBIBjx47xxRdfsGbNGlJTU09s6z5o0CBiYmKoVq18\nfyR9/z289RbMmAGHD3v2RUbCo4/CTTeV6yVFpAwCNpSUQi+g4L+DPgWe90MtIlKE6tWrs337dtq3\nb0/Hjh1p1apVmSaqFmffPnjmGXjySc/2sDC3PfywYdpjRCQQVaZQ0hQoMH+ePUC4MaaGtfaoH2oS\nkXyMMUyYMKHCzr9gATzyiBshyc7Oa69eHQYOhGefhU6dKuzyIlJGlSmUiIifZGVlsXHjRlavXs2Q\nIUOoXr26z66dnQ3ffQczZ8Lf/164f8wYeOklPZNGJBhUplCyG2hSoK0JkHaqUZLJkycTERHh0RYf\nH098fHz5VihSiWRlZbFp0yZWrlzJmjVryMjIoFGjRhw8eJDGjRv7pIbUVBgxwq2aya9ZMzexdfhw\n6NPHJ6WIVGoJCQkkJCR4tKWmppb7dUxFLr8rL8aYbOBya+2ckxzzJDDEWtstX9t/gPrW2qHFvCYW\nSExMTCQ2Nra8yxaplDZs2HAiiBw5coSGDRvSuXNnOnfuzGmnnebVE3fLIjvbTV597z23A2tWVl5f\nSIjbCO3VV90tGxGpOElJScTFxQHEWWuTyuOcATtSYoypA7QFcn/CxRhjugH7rbXbjDFPAFHW2ty9\nSP4JTDLGPAW8BgwERgJFBhIRKZ3PP/+cjIwM4uLi6Ny5M02aNKnwIJJr7Vq4806YP9+zPTQUnn7a\nLevV/iIiwStgQwnQA1gE2JyvZ3PaXweux01sPfHAcGvtZmPMJbjVNrcD24HfW2uL2JlAREpr7Nix\n1KpVy2dBxFqYPt3NF1m71rOvaVO47DK45Rbo3t0n5YhIBQrYUGKt/YqT7DhrrR1fRNvXQFxF1iVS\nmSUnJ1O3bl1q1apV7DG1a9f2SS1Hj7rn0kyfDh995NlXvbpb8nvrre6WjYhUDgEbSkTEN9LS0li+\nfDkrVqxg9+7dDBkyhJ49e/q1pjffdIEjLc2zvWdPuOoqtwNrTIx/ahORiqNQIlIFHTlyhFWrVrF8\n+XK2bNlCtWrVaN++PRdccAFt27b1S0179sAHH8D77xfeDr5mTfjLX9xTe0Wk8lIoEalivv76a776\n6iustcTExDB8+HA6duxIjRo1/FbThx+6SaqHDnm2n3ce3HUXXHQR1Knjn9pExHcUSkSqmObNmzNo\n0CA6d+5MXT/uKLZzJ7z4ohsdWbnSs69lS5gwwT3Jt5wfhyMiAUz/u4tUMaeffjqnn366366flQWf\nfgrXXguwRFNWAAAgAElEQVT793v2de/u9hg56yzw0eIeEQkgCiUilURGRgarVq0iJCSE7gG4PvbA\nAXjwQXj3XUhO9uw791y48kqYONHNHxGRqkmhRCSIZWdns3HjRn755RfWrFlDZmYm3bt3D6hQ8ttv\nbrOze++FjRs9+2JiYN48OOMM/9QmIoFFoUQkCCUnJ7Ns2TKWL1/OoUOHiIyM5IILLqBr166Eh4f7\nuzwAjh93k1RffRWOHPHsu+IK93X55ZrAKiJ5FEpEgszWrVv597//Ta1atejSpQvdunUjKirKZzus\nnkpKCsyeDf/4Byxb5tkXFQWzZsE55/inNhEJbAolIkGmRYsWjB49mrZt21ItgJampKTAjTfCnDme\nD8kDuO46iI+H/v31oDwRKV7g/EQTEa+EhIRwRgBNwti5001efeYZ2L7ds69lS3juOTeJVUTkVBRK\nRAKEtZaNGzeyfPlyLr300oAaBSnOrFluae/hw3ltoaEwebLbDv7ss7W0V0S8F/g/9UQqubS0NJKS\nkli2bBmpqak0btyY1NRUGjVq5O/SirRpE8yc6b6Skjz7unZ1E1t79PBPbSIS3BRKRPwgd1Tk559/\nZu3atVSrVo0uXboQGxtL8+bNA2bSakFTp8L//V/hOSNnnw0zZkCnTn4pS0QqCYUSET945513WLdu\nHaeddhpDhgyha9eufn32zMls3w5vvAEJCbBihWdfjx5w9dXuib4BWr6IBBGFEhE/6NmzJ3369CE6\nOjpgR0XAbQc/ahSkpXm2jxjhJrbGxPinLhGpnBRKRPzAn8+eOZUtW+A//3EjI8uXe/b17u2W906Y\nACEhfilPRCoxhRKRcpacnExGRgbR0dH+LqXEZs6E3/0OMjI82zt1chuitW3rn7pEpGpQKBEpB9Za\n1q9fz5IlS9i4cSMxMTFce+21/i7LK/v3u0mqCQnw88+efb16uTkjEyZoO3gRqXgKJSJlkJGRwbJl\ny/jxxx85cOAAUVFRjBgxgk5BsgxlxQoYMqTwpmd9+sCbb0KbNv6pS0SqJoUSkVI4fPgwX375JcuW\nLSMrK4vOnTtzxRVX0KJFC3+XdkoHD7rbNG+/DV9/7dkXGwtjx8KkSRAW5p/6RKTqUigRKYVq1aqx\nceNGevfuTY8ePahXr56/S/LKL7/AxRfD7t2e7U2auGfW9Ozpn7pEREChRKRUwsLCmDRpUkAv582V\nmQkffOBux8yd69l3xhlwzTVwww0umIiI+JNCiUgpBUMg+e03uPRS+PJLz/boaPcQvZ499WwaEQkc\n2mlApIB9+/Yxb948tm7d6u9SSiU7G776yq2YadLEM5BERcE990BiIpxzjgKJiAQWjZSI4Jb0btu2\nje+//541a9ZQp04dWrdu7e+ySuzIEbjkEli0yLO9WjV48UUYP949xVdEJBAplEiVZq1l9erVfPfd\nd+zYsYPIyEiGDRtG165dqVYteP732LDBPZ/mn/+EvXvz2uvVg6uucqtpYmP9V5+IiDeC56euSDnb\nvn07s2fPJiUlhVatWhEfH0+7du2CYq5IrkOH4Npr3W6r+YWGwj/+AePGQe3a/qlNRKSkAjqUGGMm\nAXcDTYFfgNustT+d5Pg7gZuBlkAK8B5wn7X2qA/KlSBTr149IiMjGT58eFDsL5LfoUNuoupTT8G6\ndXntISEwaBD86U9w7rn+q09EpDQCNpQYY0YDzwI3Aj8Ck4FPjTHtrbUpRRw/BngCuA74HmgPvA5k\n44KNiIeIiAhGjx7t7zJK5NAhN1H1rbfcyppcoaHwyCPuYXlRUX4rT0SkTMq8+sYY09UYU7tAW4ey\nnhcXQl6y1r5hrV2DGwE5DFxfzPG9gW+ttf+11m611n4GJADaDkqCnrWweDEMGAAvveQZSDp2hIUL\n4f77FUhEJLiVKZQYY/6IG8X4uEBXU2PMk2U4b3UgDvg8t81aa4HPcOGjKN8BccaYs3POEQMMBeaV\ntg4JXunp6Xz66accPHjQ36WUydGj8MwzLnj07ev5wLybboIffoCVK6F/f//VKCJSXsp6+6YB7nZJ\nRP5Ga+1XxpgmxphLrLWlCQWRQCiwp0D7HqDIURhrbYIxJhL41riZiqHAP621T5Xi+hKk0tPTWbx4\nMT///DOhoaG0bt2a+vXr+7usUklOhpEjCz+fpn59+O9/3dwREZHKpKyhpLq19p2iOqy1M40xf8NH\nIxXGmH7A/bjbPD8CbYEXjDG7rLWP+qIG8Z+CYaRPnz6cc8451KpVy9+llUh2Nnz+ObzyCnz4IRw/\nntfXrx9cfz1ceaVW1IhI5VTWUNLIGHO6tXZDMf3HSnneFCALKPg0jibA7sKHA/AI8Ia19t853680\nxtQFXgJOGkomT55MRITHYA/x8fHEx8eXtG7xsd9++41vv/026MMIuEAycqR7Tk1+YWHuib4jR/qn\nLhGRhIQEEhISPNpSU1PL/TplDSVTgc+MMbcWc5umbmlOaq09boxJBAYCcwBybskMBF4o5mW1cStt\n8svOfW3OnJQiPf/888RqZ6mgtH//fpYuXcq5555Lr169gjKM7N0Lr78O06bBli157aed5lbT3HAD\ntG3rt/JERIr8h3pSUhJxcXHlep0yhRJrbZIx5kFgljFmHfAhsAxIA/pSylCS4zlgRk44yV0SXBuY\nAWCMeQPYbq29P+f4ucBkY8wyYAnQDjd6MudkgUSCW3R0NHfddRdhYWH+LqXErHXLe194wfM2DcBz\nz7ldWIPwbYmIlFqZ9ymx1r5tjFkNPIWb05G7HeZC4OoynHdmzsTVR3C3bZYBg621yTmHtAAy873k\nL7iRkb8AzYFk3CjLg6WtQYJDsAUSa92qmcceg3kFxhcHDIA//EGTWEWkaiqXzdOstUnARTkhIgbY\na63dXA7nnQ5ML6ZvQIHvcwPJX8p6XQkcWVlZWGuD6jk0xTlyBGbMcM+n+d//PPtuuQXuuku3aUSk\naivXn/Q5O60W2m1VpKSstaxcuZJFixbRvXt3zjvvPH+XVCZpaTBwoOc+I+CW9z76qLtVIyJS1QX/\nPz+l0tmwYQOfffYZu3fvpl27drRr187fJZXa+vVuZORf/3LBJFevXnDzzTBqFATh3FwRkQqhUCIB\nY+/evSxcuJBff/2V6Ohoxo8fT8uWLf1dVqls2AATJ8KCBZ7tNWrAe+/BpZf6py4RkUCmUCJ+d+zY\nMRYsWEBSUhL169fnqquuomPHjrhV4MHFWli0CK65Bnbn21GnRg0YPRruvhvOPNN/9YmIBDKFEvG7\natWqkZyczEUXXUTPnj0JDQ31d0kllp4Ob74J//gHrFqV196gAdx3H4wfD5GR/qtPRCQYKJSI34WE\nhHDdddcF5cgIwPffw7BhsG+fZ3tMDHz6qVbUiIh4q0xPCRYpL8EYSHbvhilT3BN68weSvn3hnXdg\nzRoFEhGRktBIifiEtTYog0dRfvkFnn3WBY/8O7F26eJu4XTv7r/aRESCmUZKpEJlZWXxww8/8Npr\nr5GVleXvcsps7lw4+2wXPnIDSWgoXH01fPGFAomISFlopEQqzKZNm/jkk09ISUkhLi6OrKysoJzE\nai18+SU8/7wLJbkaNICbbnJLf6Oj/VaeiEiloVAi5S41NZUFCxawatUqoqOjueGGG2jWrJm/yyqV\nTz6B+++HZcs82/v0cZNY69TxT10iIpWRQomUm+zsbJYsWcKiRYuoUaMGI0aM4MwzzwzKuSTZ2e45\nNRMmuJGSXM2bw223we23aydWEZHyplAi5Wbp0qUsWLCAnj17MmDAAGrUqOHvkkrs6FF4+203kTX/\nfiOdO8MDD8DIkVC9uv/qExGpzBRKpNx0796dqKiooL1VM3Mm3HGH506sAEOGuLkkQTgdRkQkqGj1\njZSb0NDQoAwkR4+6nVivvtozkPTtCx9+CB99pEAiIuILGimRKistDV5+2a2q2bkzr/388+Gpp9yT\nfEVExHcUSsRr1loyMjKoFeQzPLOy4PHH3byR1FTPvhEj3KZoYWH+qU1EpCrT7RvxSlpaGgkJCbz+\n+utkZ2f7u5xSO3wYbrkF/vznvEBijAsjP/wAs2YpkIiI+ItGSuSkrLUnVtWEhYVx6aWXEhISfFk2\nLQ2mT4fnnoPk5Lz2666DP/4ROnTwW2kiIpJDoUSKlZqayty5c9mwYQPdu3dn8ODB1KxZ099llUhK\nCrzwAvz973DwoGffk0/CH/7gn7pERKQwhRIp0vLly5k3bx5hYWFcc801tA3Cx92uWAH9+nk+wdcY\nGDUK7rsPunXzW2kiIlIEhRIpZPny5cyaNYsuXbowdOjQoJvYmpEB//oX/OlPeaMj1arBtde6WzXt\n2/u3PhERKZpCiRTSsWNHRo8ezRlnnOHvUkrkyBF45RW3nDf/Et+YGPj8c2jd2m+liYiIF4JvxqJU\nuGrVqgVVILEWXnzRhY877vAMJJddBosWKZCIiAQDhRIJatbClCkwcaLnbqyXXw5JSTB7NrRs6bfy\nRESkBHT7RoKStTB/vps3kpiY1z5iBDz0kCaxiogEI42UVEHHjx/n22+/JSsry9+llMoXX0CfPjB0\nqGcguesut/mZAomISHDSSEkVk5yczLvvvsvBgweJiYkhKirK3yV57eBB99C8Tz/1bO/WDR55BIYN\n809dIiJSPgJ6pMQYM8kYs8kYc8QY84Mx5uxTHB9hjJlmjNlpjMkwxqwxxlzsq3oD3bJly3jllVcA\nuOGGG4IqkOzcCVde6RlIOnWCd991c0cuu8ztQSIiIsErYEdKjDGjgWeBG4EfgcnAp8aY9tbalCKO\nrw58BuwGrgB2Aq2AgwWPrWoyMzOZP38+iYmJdO/enaFDh1K9enV/l+WVgwfdEt+pU92SX4AaNdzS\n3zFjIDTUv/WJiEj5CdhQggshL1lr3wAwxtwMXAJcDzxdxPG/B+oDvay1uZMltvqi0ECWlpbGzJkz\n2b17N8OGDSM2NtbfJXnlyBH4xz/giSfgwIG89nr14M03Yfhw/9UmIiIVIyBv3+SMesQBn+e2WWst\nbiSkdzEvGwZ8D0w3xuw2xiw3xtxnjAnI9+grs2bN4tChQ4wfPz4oAklmJrz6qtt19d578wJJWBjc\neSds2KBAIiJSWQXqSEkkEArsKdC+Byjuea4xwADgLWAI0BZ4Efce/1IxZQa+YcOGUbNmTerUqePv\nUk4pPR0GDoQff8xrM8ZtD//II9Cqlf9qExGRiheooaQ0QnCh5cacUZWlxpgWwN2cIpRMnjyZiIgI\nj7b4+Hji4+MrqlafadSokb9L8MqGDTBhgmcgGTYMHnsMzjzTf3WJiAgkJCSQkJDg0Zaamlru1zHu\n93dgybl9cxi40lo7J1/7DCDCWjuiiNd8CRyz1g7K13YxMA+oYa3NLOI1sUBiYmJiUNzaqIwOHnTB\n44UX4Ngx1xYWBnPnwqBBJ3+tiIj4T1JSEnFxcQBx1tqk8jhnQM63sNYeBxKBgbltxhiT8/13xbxs\nMe6WTX4dgF1FBRLxr8xMmDYN2raFZ57JCyRNmsB77ymQiIhURQEZSnI8B9xgjBlnjDkD+CdQG5gB\nYIx5wxjzeL7jXwQaGmNeMMa0M8ZcAtwH/MPHdftcenq6v0vwmrXw8cfQtSvceivs2+faa9aEBx6A\n9eu1CZqISFUVsHNKrLUzjTGRwCNAE2AZMNham5xzSAsgM9/x240xg4HngV+AHTl/L2r5cKWRmJjI\n/PnzGT9+fMBvhrZnD4wbBwsWeLaPGeOW/urBeSIiVVvAhhIAa+10YHoxfQOKaFsCnFvRdQUCay1f\nfvklX3/9NT169KBp06b+Lumk0tPdw/K+/z6vrXdveP55OOcc/9UlIiKBI6BDiRQtOzubefPmkZSU\nxMCBA+nTpw8mQPdYtxYSEuCee9xW8QAREfDSSzBqlLaGFxGRPAolQeb48eO8//77rFu3juHDh9O9\ne3d/l1Ss//3PzRv55pu8tho14P333X4kIiIi+QXyRFcp4MiRI7z55pts3LiR+Pj4gA0khw7BXXdB\nbKxnILn0UlixQoFERESKppGSILJq1SpSUlIYN24cLVq08Hc5hVgLs2bBHXfAjh157W3bugfqDR3q\nv9pERCTwKZQEkbi4OM4444yA3DJ+40Z3q+aTT/Lacpf53nOPu20jIiJyMgolQSbQAsnRo/DXv7pd\nWTMy8tqHDHFP+Y2J8V9tIiISXBRKpNQyM+HCC+Hbb/Pamjd3t2quuEIra0REpGQ00VVK5cABuOaa\nvEASGuomt65eDVdeqUAiIiIlp5ESKbH334dJk9wOrbnmzYPBg/1Xk4iIBD+NlASY1NRUPvroIzIz\nA+8ZgsnJbsOzkSPzAkm9ejBjhgKJiIiUnUZKAsihQ4d4/fXXsdZy5MgR6tWr5++STnj3XZg4EVJS\n8tqGDYPp0yEAVyeLiEgQ0khJgPjtt9944403yMrKYty4cQETSPbuhauuciMkuYGkYUP4z39g9mwF\nEhERKT8KJQHg6NGjvP322xw5coRx48bRoEEDf5eEtfDf/0KnTvDee3ntV1wBq1ZBfLwms4qISPlS\nKPGzrKwsZs6cyf79+xk7diyNGjXyd0kcOOBCx9VXw759ri0y0oWU996DJk38W5+IiFROmlPiR9Za\n5syZw5YtW7jmmmto2rSpv0viiy/gd7+D7dvz2kaOhGnT4LTT/FeXiIhUfhop8aNDhw6xadMmLr/8\nctq0aePXWo4ehbvvdg/Lyw0kDRrAO++4Sa4KJCIiUtE0UuJH4eHh3HrrrYSFhfm1jpUrYcwY+N//\n8toGDnRLfTWRVUREfEUjJX7mz0BiLfz97xAXlxdIwsLg2WdhwQIFEhER8S2NlFRRBw7A+PFuWW+u\nzp3h7behWzf/1SUiIlWXRkqqoB9/hLPO8gwkd9wBP/+sQCIiIv6jUFKFWAt/+xv07Qtbtri2hg3h\no49ce82a/q1PRESqNt2+8ZH09HTq1q3rt+sfOADXXw8ffpjXdu65bnVNdLTfyhIRETlBIyU+sHLl\nSqZOnUpK/gfH+NDSpRAb6xlI7r0XvvxSgURERAKHRkoq2L59+5gzZw4dOnTwy26tb78NEyZARob7\nvmFDeOMNuOQSn5ciIiJyUhopqUDHjx9n5syZ1KtXj2HDhmF8+LCYzEyYPBnGjs0LJOecA8uWKZCI\niEhgUiipQB9//DH79+9n1KhR1KhRw2fX3bsXLrrITV7NNWECfPWVbteIiEjg0u2bCrJixQqWLVvG\n8OHDOc2He7QvXQrDh8O2be776tXdBmk33eSzEkREREoloEdKjDGTjDGbjDFHjDE/GGPO9vJ1Vxtj\nso0xsyq6xqKkpqYyb948OnfuTDcfbvwxe7Zb7psbSJo2dZNZFUhERCQYBGwoMcaMBp4FHgLOAn4B\nPjXGRJ7ida2BvwJfV3CJxdqwYQNhYWFccsklPplHYq3bGn7ECDh82LX16gWJiW7Zr4iISDAI5Ns3\nk4GXrLVvABhjbgYuAa4Hni7qBcaYEOAt4M/A+UCEb0r1FBsbS+fOnX0yj+T4cZg0CV55Ja8tPh5e\ne02boYmISHAJyJESY0x1IA74PLfNWmuBz4DeJ3npQ8Aea+2/K7bCU6voQGItLF4Mffp4BpKHHnLL\ngBVIREQk2ATqSEkkEArsKdC+B+hQ1AuMMX2B8UClf3rLsWNuNc2bb+a1hYW50ZFrrvFfXSIiImUR\nqKGkRIwxdYE3gBustQf8XU9FSk+HK6+EBQvy2iIj4YMP3CRXERGRYBWooSQFyAKaFGhvAuwu4vjT\ngVbAXJM3szQEwBhzDOhgrd1U3MUmT55MRITn9JP4+Hji4+NLV30F2b8fhg6FJUvy2i67zO1H0qaN\n/+oSEZHKLSEhgYSEBI+21NTUcr+OcVM1Ao8x5gdgibX2jpzvDbAVeMFa+9cCx4YBbQuc4jGgLnA7\nsN5am1nENWKBxMTERGJjYyvgXZSf3bth0CBYvtx9X78+zJ2r0REREfGPpKQk4uLiAOKstUnlcc5A\nHSkBeA6YYYxJBH7ErcapDcwAMMa8AWy31t5vrT0GrMr/YmPMQdz82NUVWeSOHTuoVasWDRs2rLBr\nbNkCF14Iv/7qvm/SxN2+6dq1wi4pUqG2bt3qtwdUioh3IiMjadmypU+vGbChxFo7M2dPkkdwt22W\nAYOttck5h7QACo1++FJmZiazZs2iYcOGXFMBM0ythUWL4NprYedO19ayJXz2GbRrV+6XE/GJrVu3\n0rFjRw7nbqojIgGpdu3arF692qfBJGBDCYC1djowvZi+Aad47fgKKSqfJUuWcODAAUaPHl3u587I\ncPuNfPhhXluHDrBwoZ5fI8EtJSWFw4cP89Zbb9GxY0d/lyMiRVi9ejVjx44lJSVFoSQYHDp0iK+/\n/pqzzz673J9tc+wYjBwJ8+bltXXvDp9+Cj58jI5IherYsWPAz+USEd8KyM3TgsGiRYsIDQ2lX79+\n5Xre48fh6qs9A8kdd7jbOAokIiJSmWmkpBRSUlJYtmwZgwYNolatWuV23sxMN3/kgw/c97Vqwccf\nQznnHhERkYCkUFIKixYtIjw8nB49epTbOQ8dgquucrdoAGrUgDlzFEhERKTq0O2bEtq/fz+rVq2i\nX79+VKtWPpnuu++gefO8QFK9Osya5ZYBi4iIVBUaKSmhhg0bcuONN9KkScHNZktn1Sq49FI3UgJQ\nrRq8+67buVVERKQqUSgphWbNmpXLebZtg8GD4UDO03qio90ISTneFRIREQkaun3jJ//9r3tezfbt\n7vu4OFi5UoFEREpnxowZhISEsHXr1qA4b0WZMmUKISEh7N+/39+lSCkolPjB7NluY7SsLPd927Zu\nlU29ev6tS0SClzGGvOeROt9//z0PP/wwaWlp5Xre0iiPWrxRXvUWdPfdd3PRRRdx++23l/u5JY9C\niY8tXQpjxrgt5AG6ddOmaCJSduPGjePIkSMeu29+9913PPLIIxw8eNCPlQVeLaXx1FNPkZ2dTXh4\nuL9LqdQUSnxo5Uq45BLIfeTHmDEupMTE+LcuEQl+xhjCwsI82gLpKfCBVEtphIaGsnbtWvrq0ewV\nSqHERz78EM46C3btct/37g2vvgoVMMooIgFg586d/P73v6d58+bUrFmTmJgYJk6cSGame47o1q1b\nmThxImeccQa1a9cmMjKSUaNGsWXLFo/z5M6RWLt2LaNGjSIiIoLIyEjuvPNOjh49euK4gnM/Hn74\nYe69914AWrduTUhICKGhoSf6vb2+t9LT07nzzjtp06YNNWvWpEmTJgwaNIilS5eeshaApUuXMmTI\nECIiIqhXrx4XXnghS5YsKfHnWpQtW7bQtm1bunbtSnJy8on2tWvXsm3bNq/e3+bNm9mzZw/nnnuu\ntx+JlIJW35zC8ePHWbJkCbGxsdSuXbtU51ixAsaOdVvIA7Rq5XZtrVmzHAsVkYCxa9cuzj77bNLS\n0rjpppvo0KEDO3bs4L333uPw4cOEh4fz008/8cMPPxAfH0+LFi3YvHkz06dPp3///qxatYqaOT8g\ncudHjBo1ijZt2vDkk0/yww8/8MILL3Dw4EFmzJhx4rj8cymuvPJK1q1bxzvvvMPUqVNp1KgRAI0b\nNwbw+vreuummm5g1axa33XYbHTt2ZN++fXz77besWbPmlLWsWrWK888/n4iICP74xz9SrVo1Xnrp\nJfr163fiGWPefq4FbdiwgQEDBtC4cWMWLlxIgwYNTvR17NiRfv368cUXX5zy/S1evJjOnTvr9k1F\ns9ZW2S8gFrCJiYm2OElJSXbKlCl23759xR5zMp99Zm3duta6WSTW9upl7e7dpTqVSKWQmJhoT/X/\nXbAbN26crVatmk1KSir2mIyMjEJtS5YsscYY+9Zbb51omzJlijXG2BEjRngcO2nSJBsSEmKXL19u\nrbV2xowZNiQkxG7ZsuXEMc8880yhtpJev6jzFqV+/fr2tttuK7b/ZLVcfvnltmbNmnbz5s0n2nbt\n2mXDw8Ntv379TrR587lOmTLFhoSE2H379tnVq1fb5s2b2169etmDBw8WOjYkJMQOGDDgpO8r1y23\n3GInTZpkrbX2hx9+sA8++KBt2rTpic+/svHm/9PcY4BYW06/l3X75iSstfz444+0a9eOhg0blvj1\ny5a5OSTp6e777t3hiy+gnPZdE6kSevSAFi0q9qs8l+Jba5k9ezaXXXYZZ511VrHH1ahR48TfMzMz\n2b9/PzExMdSvX5+kpCSPY40xTJo0yaPttttuw1rLxx9/XKo6S3J9b9SvX58lS5awK/cetZeys7NZ\nuHAhI0aMoFWrVifamzZtypgxY/j2229JT0/3+nPNtXz5cvr160dMTAwLFy4kIiKi0DFZWVl8/vnn\nXtW5ePFi+vbty6JFi9i3bx/XXnst1lqys7O9f7NySrp9cxK7du1i9+7d9O/fv8Sv3bsXRo6E3Fu+\n7dq5eSXl+Pw+kSph927YscPfVXgvOTmZtLQ0OnfufNLjMjIyePzxx5kxYwY7duw4MRHUGENqamqh\n49u2bevx/emnn05ISAibN28uVZ0lvf6pPP3001x33XVER0cTFxfH0KFDGTduHG3atDnp65KTkzl8\n+DDt27cv1NexY0eys7PZtm0bjRo18upzBRcMhw0bRtOmTZk/f36pb73nSktLY+XKlWzYsIHIyEiG\n5my5vXv37jKdVwpTKDmJZcuWUbdu3UI/DE5lwwbo29f9MAWIjXXPt8n3DxMR8VLTppXjGgXdeuut\nvP7660yePJlevXoRERGBMYbRo0d79a/vsu7FUdbrF3TVVVdx/vnn88EHH7BgwQKeeeYZnnrqKT74\n4AMGDx5cplpLyhjDyJEjef3113nrrbe48cYby3S+77//noYNG7JmzRrWrl1Lq1ataNeuXTlVK/kp\nlBQjMzOTFStWcNZZZxES4v1drvR097Tf3EASHu52b1UgESmdn3/2dwUl07hxY8LDw1mxYsVJj3v/\n/S2VUCAAAB0MSURBVPe57rrrePrpp0+0HT16tNh9PNavX+9xe+PXX38lOzub1q1bF3uNkwWXkl7f\nG02aNOHmm2/m5ptvJiUlhbPOOovHHnuMwYMHF1tL48aNqV27NmvXri3Ut3r1akJCQoiOjqZOnTpe\nfa65/vrXvxIaGsrEiRMJDw/n6quvLvX7Wrx4MQMHDuTNN9/k6aef5rLLLmP16tVkZ2eX6PeDnJo+\nzWKsX7+eI0eO0K1bN69fk5YGvXq5vUfAzR357ju3Y6uIVA3GGC6//HLmzp170rkZoaGhhUYkXnjh\nBbJyt3rOx1rLtGnTCh1rjGHIkCHFXqNOnToARQaNklz/VLKzswvt1BoZGUlUVNSJZcvF1RISEsKg\nQYOYPXu2xxLhPXv2kJCQwHnnnUfdunW9/lxzGWN4+eWXGTlyJOPGjeOjjz4qdIy3S4IXL15Mr169\nAOjcuTP79u0DYNq0aRw5cuSUrxfvaaSkGL/88gtRUVGc5uVWq9bC7be7DdIAwsLcdvJe3P4UkUrm\n8ccf5//bu/foqKrz/+PvPYAmCAmXcFURFEGqghBZohCJF6CwEAEBRUBZIFpAUWxrgYU/DEsMYotf\n8EIBtVhtsVQr2qpFo1Yk3FYTwEIJoAtqgAgB5CaBQPL8/phJyJALMyGZmSSf11qzmHNmn3Oe2UzO\nPLPP2Xt/9tln3HrrrTz88MN06NCBvXv38u6775KamkpMTAz9+/fnrbfeIiYmhp/97GesWbOGzz//\nnLi4uBL3uXPnTu6++25+/vOfs3r1av70pz8xcuRIrr/++lLjiI+Px8yYNm0a9913H3Xq1GHAgAFE\nR0cHffyyHDt2jMsuu4whQ4bQqVMn6tWrx2effca///1v5s6de95Ynn32WVJSUujevTsTJkygVq1a\nLFq0iNzcXL+WnEDqtSjnHG+//TYDBw5k6NChfPzxx373CAbSJTgvL4/169eTnJxcuK7gkn5OTg7R\nulGwYlVUN56q+KCMLsEZGRm2Y8eOUjpCFffww2e7/UZHm61cGfCmIjVKTegSbGaWmZlpo0ePtmbN\nmll0dLS1bdvWJk2aZKdPnzYzsyNHjtjYsWOtadOmFhMTY/369bPt27dbmzZtbMyYMYX7KejimpGR\nYUOHDrXY2Fhr3LixPf7443bq1KnCcqV13Z01a5ZdfvnlVrt2bb/XDx8+HNDxA+kSnJuba7/5zW+s\nc+fOFhsba/Xr17fOnTvbwoULA4rFzGzjxo3Wt29fi4mJsXr16tmdd95p69atC7pei3YJLpCTk2O3\n3XabxcTE2Pr16wvXB9IlOCsry9q3b1+4/5ycHBswYIBNnz7dtmzZUua2VVm4ugQ7s6o99O+FcM51\nAdLS0tLo0qVLufezfDkMGnR2eeFCuMD7qkSqrfT0dOLj47nQv7uaIikpiZkzZ5KdnV2uoQlEyiOQ\nv9OCMkC8mQXfj7wEuqfkAn39tXe01gLPP6+EREREpDyUlFyA48dh+HD46Sfvct++8OtfhzcmERGR\nqkpJSTnl58Pjj58d1KlLF/jTnzTBnoiISHkpKSmnF16AN97wPr/4Yli2DIrM8yQiUiFmzJhBXl6e\n7ieRGkFJSTl88glMn352+cUX4aqrwhePiIhIdaCkJEiHDsHYsXDmjHd54kQYPz68MYmIiFQHEZ2U\nOOcmOud2OudynHNrnXNdyyj7kHNupXPukO/xWVnlS7Jp0yZWrFhR6utm3q6/BZNgJibC734XzBFE\nRESkNBGblDjn7gV+B8wAOgObgBXOudKGG+wJ/BlIBLoBmcCnzrkWgR5z8+bN7N+/v9TXlyyBlSu9\nzxs2hMWLNaeNiIhIRYnYpASYDCw0sz+aWQbwC+AEMKakwmY2ysx+b2bfmNl24CG87++OQA6Wn5/P\n999/X+o02zt3wi9+cXb59dc1p42IiEhFisikxDlXB4gHPi9YZ96hZ1OAmwPczSVAHeBQIIX3799P\nbm4urVq1KvZafj788peQm+tdHjUKBg4MMAoREREJSEQmJUAcUAvYd876fUDzAPfxPLAHbyJzXpmZ\nmXg8Hlq0KH61Z9kyeP997/OYGJg3T+ORiIiIVLRqOUuwc24KMAzoaWa5gWyTmZlJixYtqFOnjt/6\nkyfh2WfPLr/2msYjERERqQyRmpQcAPKAZuesbwb8UNaGzrlfAU8Bd5jZlkAONnnyZA4ePEi9evX4\n8MMPARg+fDjDhw/nl7+ELb69dO0KQ4YE9T5ERESqvKVLl7J06VK/dUeOHKnw40RkUmJmp51zaXhv\nUv0QwDnnfMvzS9vOOfcUMBXobWYbAj3ec889R0pKCkOGDOHaa68tXP/uu/Dqq97nUVHeVhJdthER\nkZqm4Id6UUVmCa4wEZmU+MwFlviSk/V4e+PUBZYAOOf+COw2s2m+5d8AScBw4HvnXEEry3Ez++l8\nB0tMTOTyyy8vXDbzH7X1pZegY8cLf1MiIiJSski90RUzWwb8CpgJbAA6An3MLNtX5DL8b3r9Bd7e\nNu8Ce4s8fnm+Y0VHR9OzZ09iYmIK133+OWzb5n2ekOAdxVVERAL3zDPP4PFE7NdM0L7++mtSU1PD\nHUa1FtGfFjN71cxam1m0md1sZv8u8trtZjamyHIbM6tVwmNmsMc9cwaefPLs8vjxumwjIuGzZs0a\nkpKSOHr0aLhDCYpzDleJJ89Q1su3337LP/7xD7p37+63/le/+hW9evVi0qRJJW43ZcoUfvrpvI31\nlep8MUaSiE5KwmXxYvjPf7zPb7wR7r03vPGISM22evVqZs6cyeHDh8MdSkSprHqZPXs2kyZNon//\n/oUJz7Rp05he9Jq+z/PPP09+fr5fS3tRjz76KJMnT67Q+Eqzfft2Hn30UTp27Ei3bt345z//GVCM\nkURJyTlOnoRZs84uv/QSVKPWRxGpgrxjR4bOiRMnQnq88qqMeklJSeHNN99k8ODBpKWlcfz4cdas\nWUPTpk2pX79+sfK1atVi27Zt9OjRo8T9XXbZZbRr147ly5dXeKznWrZsGS+//DIbN25kzJgxXH31\n1QHFGEn0dXuO11+HPXu8z+++G7p1C288IlL1FNxL8d133zF69GgaNmxIgwYNGDNmDCdPnvQru3fv\nXsaMGUPz5s2Jioriuuuu4w9/+EPh60lJSTz11FMAtG7dGo/HQ61atfj+++/Pe/xt27YxbNgwYmNj\niYuL44knnuDUqVMllt26dSv3338/jRo1IiEhAYANGzbQt29fYmNjqV+/PnfeeSfr1q0r8ZirVq2i\na9euREdHc/XVV7No0aJiZUaPHl3iVB6l3Xuyd+9exo4dy6WXXkpUVBRXXnklEyZM4MyZM+etl23b\ntpGZmVlqHZXmvffeIyEhgcTERLKysmjZsiWvvvoqo0aNKrH8rl272LdvH7fcckup+xw3bhwvvvhi\n0LGUx8cff4zH4+Hhhx/mqquuCjjGSBHJvW9CLj8f5s49uzxjRvhiEZGqq+A+imHDhnHllVcye/Zs\n0tPTee2112jWrBnJycmAd3qLm266iVq1ajFp0iTi4uL45JNPGDt2LMeOHWPSpEkMHjyY7du38847\n7zBv3jwaN24MQJMmTQI6fps2bZg9ezZr165l/vz5HD58mCVLlhQrO3ToUNq1a0dycjJmxn//+18S\nEhJo0KABU6ZMoXbt2ixcuJDExERWrlxJ165nJ2HfvHkzffr0oWnTpsycOZPTp0/zzDPP0LRp02Jx\nlXSPSUnrs7Ky6Nq1K0ePHuWRRx6hffv27Nmzh3fffZcTJ06ct146dOhAYmIiX3zxxfn/w4pYvXo1\nTzzxhN+6VatW+SWKRaWmpnLttdeWeWkkNjaWBg0asHnzZq677rqg4glG//796devHxs2bKBZs7PD\nfAUSY8Qwsxr7ALoAlpaWZmZmH31k5u0MbNarl4lIJUhLS7Oif3fV0TPPPGPOORs3bpzf+sGDB1uT\nJk0Kl8eOHWuXXnqp/fjjj37lhg8fbg0bNrSTJ0+amdlvf/tb83g89r///S+o4w8aNMhv/cSJE83j\n8dh//vOfYmVHjhzpV3bgwIEWFRVlu3btKlyXlZVlMTExlpiYWKxs3bp1bffu3YXrMjIyrHbt2ubx\neArXjR492tq0aVNivEXLmZk98MADVrt2bUtPTy/1fZZVLx6Px26//fZStz3X22+/bffee29hvT3w\nwAN2+PBh27Fjh3Xt2rXU7caPH28TJ040M7O1a9fa9OnTrXnz5n51bGaWnJxsc+bMCTie8sjMzLQ2\nbdpYr3O+wAKNsahA/k4LygBdrIK+l3X5BsjO9vYyfvnls+smTgxTMCJSzLFjx8jKyir1UfA3XJbs\n7OwStz127FilxOyc45FHHvFbl5CQwMGDBzl+/DgAf/vb37jrrrvIy8vj4MGDhY/evXtz5MgR0tPT\nL+j4E885kT322GOYGR9//HGZsebn5/PZZ58xaNAgrrjiisL1zZs35/7772fVqlWF7yE/P59PP/2U\nQYMGcemllxaWbd++PX369ClX7GbGBx98wIABA+jcuXO59pGXl8fnn39+/oI+I0aMYOrUqdSpU4dl\ny5bx5ptvEhsby549e4q1+BSVmppKjx49+PLLLzl48CCjRo3CzMjPz/cr16lTJzZu3Fiu9xKIuXPn\nMn/+fObNm0dKSgqffvpp0DFGAl2+AdLS0rjkkj588ol3uVUr6N8/vDGJyFlpaWl89dVXpb7epEkT\nJkyYUOY+/vrXv5aYvPTs2ZPExMQLDbFE58463tA3cdaPP/5ITk4Ohw8fZtGiRSxcuLDYts459u/f\nf0HHb9u2rd/yVVddhcfjYdeuXcXKFr3XIzs7mxMnTtCuXbti5Tp06EB+fj6ZmZl06NCB7OxscnJy\nih0LvInJJwUn1iBkZ2dz9OhRvxG2Q2HTpk1cc8011K599qsxOzub2NjYEssfPXqULVu28N133xEX\nF0e/fv0A+OGH4rOhNGrUiO+++65S4l6wYAGpqam89957gPcem6+++orevXsHFWMkUFIC1K9fn1de\nObs8fTrUqhW+eETEX3x8PO3bty/19aJfIqUZOnQoZ86cKba+Xr16FxRbWWqVciIp+it15MiRPPjg\ngyWW61jBw0iXNWZIdHR0hR4rmOPn5eVV+rEDsWnTJm644Qa/dWW1JqxZs4ZGjRqRkZHBtm3buOKK\nKwp7vJyrYcOGpc4Vs2zZMt5///1S68fMcM5x//330/+cX8wnTpxg6tSpfoO6XXfddYU3VAcTYyRQ\nUgJER9fjo4+8zxs2hNGjwxqOiJyjfv36JXbHDEZZN4aGQ5MmTahfvz55eXncfvvtZZYt7wBkO3bs\n8Lv88u2335Kfn0/r1q3PG1vdunXZVjCsdRFbt27F4/EUTsvRpEkToqOj2bFjR7GyGRkZfssNGzYs\ncUyRc1tumjRpQkxMDJs3by4zzooemO2bb76hb9++fuvi4uJKHQclNTWVO+64g7feeos5c+YwYMAA\ntm7dSn5+frHeRHl5eVx00UUl7mfYsGEMGzasXDGvXLmS2NhYv1alEydOFCbxwcQYCSIvojDYvbsu\nBZeV77oL6tQJbzwiUv15PB7uuece3nvvPbZsKT6h+YEDBwqfX3LJJQBBDRJmZrxStAkYmD9/Ps65\nYl+8JcXWu3dvPvjgA7+ux/v27WPp0qUkJCQUtjB5PB769OnD8uXL2b17d2HZrVu3+t3XAN7LR0eO\nHPFLNrKysoqN4eGcY+DAgfz9738v876asuqlPF2CN27cWKylpEWLFhw8eLDE8qmpqXTzjRtx7bXX\nFpZ75ZVXyMnJ8Sv7448/VkpinJOT4zdv2/Hjx9mwYQODBw8OOsZIoKQESE8/22x5331hDEREapTZ\ns2fTokULbrrpJiZPnszixYt5/vnnGTZsGNdcc01hufj4eMyMadOm8fbbb/OXv/wloC+UnTt3cvfd\nd7NgwQJGjRrFggULGDFiBNdff/15t3322WepXbs23bt3Jzk5mTlz5tC9e3dyc3OZM2eOX9mkpCTM\njB49ejBnzhxmzZrF7bffXqz763333UfdunUZOHAg8+fPJzk5mW7dupV4ae65556jadOm3HrrrTz5\n5JMsXryYpKQkrr/++sJRVsuqlw4dOpR6WawkmZmZHDp0iE6dOvmtv+aaa9i3b1+xyzh5eXmsX7+e\nm2++uXBdwX01OTk5xS6HHThwgJYtWwYcT6BuueUW9u3bx+nTpwFYvHgx99xzD3FxcUHHGBEqqhtP\nVXzg6xLctGmKgVnjxma5uaX2fhKRClBTugR7PB47ePCg3/olS5YU68KanZ1tjz32mF1xxRV28cUX\nW8uWLa1Xr172+uuv+207a9Ysu/zyywu72ZbVPbjg+BkZGTZ06FCLjY21xo0b2+OPP26nTp0KKFYz\ns40bN1rfvn0tJibG6tWrZ3feeaetW7euxGN+/fXX1rVrV4uKirK2bdvaokWLSuzqm5KSYh07drSo\nqCjr0KGD/fnPfy6xnJm3i+vo0aOtWbNmFh0dbW3btrVJkybZ6dOnz1svwXYJXr58uXXs2LHE1+69\n995iXZOzsrKsffv2hbHk5OTYgAEDbPr06bZly5Zi+3j66adt3rx5AccTjJSUFHvooYdsypQpNn78\n+ML/42BjLCpcXYKdWWiHL44kzrkuQNpFF6WSm3sL48fDq6+GOyqR6i09PZ34+HjS0tLo0qVLuMOp\nlpKSkpg5cybZ2dk0atQo3OFEtBkzZtC3b18++ugj8vLyeO6554qVWbFiBStXrmRW0TlIgtSrVy9+\n//vfF46yGukC+TstKAPEm1n5+68Xocs3QG7uxYB3WHkREakZDhw4QHJyMocOHSI1NZVx48aVWK5P\nnz588803xaYICNSePXswsyqTkISTkhIAHB4PFLnsJiIi1VxcXBxjx44lNTWVESNGlDgvT4EZM2aQ\nlJRUruO89NJLPP300+UNs0ZRl2CfG26AqjAtgIiIVJwFCxYEVO7GG29k165dfPnll9x2220B73/T\npk3k5ubSs2fP8oZYo6ilxMc3KaaISJU3Y8YM8vLydD9JBRsyZEhQCQl4Z+194YUXKimi6kctJT5K\nSkREpKJNnTo13CFUKWop8bnxxnBHICIiUrMpKQGioqDIgHgiIiISBkpKgDZtIAKnABAREalR9FWM\nNykRERGR8FJSAlx5ZbgjEBERESUlwIgR4Y5ARERE1CUYuOiicEcgUvNs3bo13CGISCnC9feppERE\nQiouLo66desycuTIcIciImWoW7cucXFxIT2mkhIRCalWrVqxdetWDhw4EO5QRKQMcXFxtGrVKqTH\nVFIiIiHXqlWrkJ/sRCTyRfSNrs65ic65nc65HOfcWudc1/OUH+qc2+orv8k51zdUsUrgli5dGu4Q\nahzVeeipzkNPdV71RWxS4py7F/gdMAPoDGwCVjjnSrzA5Zy7BfgzsBi4AfgAWO6c+1loIpZA6cQR\neqrz0FOdh57qvOqL2KQEmAwsNLM/mlkG8AvgBDCmlPKTgE/MbK6ZbTOz/wekA4+GJlwRERG5EBGZ\nlDjn6gDxwOcF68zMgBTg5lI2u9n3elEryigvIiIiESQikxIgDqgF7Dtn/T6geSnbNA+yvIiIiESQ\nmt77Jgo0iFOoHTlyhPT09HCHUaOozkNPdR56qvPQKvLdGVVR+4zUpOQAkAc0O2d9M+CHUrb5Icjy\nAK0BDeIUBvHx8eEOocZRnYee6jz0VOdh0RpYXRE7isikxMxOO+fSgDuADwGcc863PL+UzdaU8Hov\n3/rSrABGALuAkxcWtYiISI0ShTchWVFRO3Te+0cjj3NuGLAEb6+b9Xh74wwBrjGzbOfcH4HdZjbN\nV/5m4F/AVOAjYDgwBehiZv8N+RsQERGRoERkSwmAmS3zjUkyE+9lmI1AHzPL9hW5DDhTpPwa59z9\nwCzfYwdwtxISERGRqiFiW0pERESkZonULsEiIiJSwygpERERkYhQ7ZMSTeoXesHUuXPuQedcvnMu\nz/dvvnPuRCjjrcqccwnOuQ+dc3t8dTcggG0SnXNpzrmTzrntzrkHQxFrdRFsnTvnehb5bOcX+bw3\nDVXMVZ1zbqpzbr1z7qhzbp9z7n3nXLsAttP5vJzKU+cVcT6v1kmJJvULvWDr3OcI3pF3Cx5XVHac\n1cgleG8CnwCc9wYx51xr4B94p3DoBMwDXnPO9aq8EKudoOrcx4CrOfsZb2Fm+ysnvGopAXgJuAm4\nE6gDfOqciy5tA53PL1jQde5zQefzan2jq3NuLbDOzB73LTsgE5hvZnNKKP8OUNfMBhRZtwbYYGYT\nQhR2lVaOOn8QeNHMGoU20urHOZcPDDSzD8so8zzQ18w6Flm3FIg1s34hCLNaCbDOewJfAA3N7GjI\ngqvGfD9y9gO3mtmqUsrofF6BAqzzCz6fV9uWEk3qF3rlrHOAes65Xc65751z+iVTubqhz3g4OGCj\nc26vc+5T3694Kb8GeFufDpVRRufzihVIncMFns+rbVKCJvULh/LU+TZgDDAA7+i6HmC1c65lZQVZ\nw5X2GY9xzl0chnhqgizgEeAeYDDelsN/OeduCGtUVZSv9fX/gFXnGYdK5/MKEkSdX/D5PGIHT5Oa\nwczWAmsLln3Nq1vxnsRnhCsukYpiZtuB7UVWrXXOXYV3lGrdZBy8V4GfAd3DHUgNElCdV8T5vDq3\nlIRqUj85qzx17sfMzgAbgLYVG5r4lPYZP2pmp8IQT021Hn3Gg+acexnoBySaWdZ5iut8XgGCrHM/\n5TmfV9ukxMxOAwWT+gF+k/qVNpvhmqLlfc43qZ/4lLPO/TjnPMD1eJu8peKV9BnvjT7joXYD+owH\nxffleDdwm5l9H8AmOp9foHLU+bnbB30+r+6Xb+YCS5x3xuGCSf3q4p3oD3fOpH54u0f+yzn3JGcn\n9YsHxoU47qosqDp3zj2Nt7nvW7w3Uj0FtAJeC3nkVZBz7hK8v0Kcb9WVzrlOwCEzy3TOJQMtzazg\nMsHvgYm+Xjhv4D1pD8H7S0gCEGydO+ceB3YCW/DOqjoOuA3vF6QEwDn3Kt7z8QDgJ+dcQQvIETM7\n6SvzJrBH5/OKUZ46r5DzuZlV6wfesQR2ATl4M+Qbi7z2BfDGOeXvATJ85b/BOwlg2N9HVXoEU+d4\nk5idvrJ7gb8DHcP9HqrKA+gJ5OO9bFb08Ybv9T8AX5yzza14W7Ry8E5cOSrc76MqPYKtc+DXvnr+\nCcjG2zvt1nC/j6r0KKW+84AHipTR+TzMdV4R5/NqPU6JiIiIVB3V9p4SERERqVqUlIiIiEhEUFIi\nIiIiEUFJiYiIiEQEJSUiIiISEZSUiIiISERQUiIiIiIRQUmJiIiIRITqPsy8iFQxzrmGwI1AE+AH\nM/sizCGJSIiopUREIs1VeOfbeBtICHMsIhJCGmZeRCKOc64lsBvobWYp4Y5HREJDLSUiEokS8E4I\nti7cgYhI6CgpEZFI1AP4r5kdC3cgIhI6SkpEJBLdCqwOdxAiElrqfSMiEcU51wC4DvidbzkOmAoY\nsN/M5oQxPBGpRGopEZFI08P37xpfgjIeb1LSDhgRtqhEpNIpKRGRSJMAHAR+AB4FnjOzXOAiYEE4\nAxORyqUuwSISUZxzq4F6wMfAM2Z2MswhiUiIqKVERCKGcy4KiAe+A1oDbznn2oc1KBEJGSUlIhJJ\nbsF7A/7TZnYfsBf4R8GLzrmYcAUmIpVPSYmIRJIewCEz2+xb/hbvpRycc22Bh8IVmIhUPiUlIhJJ\nEoCviiyfAnb6ng8H3gl5RCISMkpKRCSS1Mc/8XgHOOycmw/sMrO94QlLREJBvW9EREQkIqilRERE\nRCKCkhIRERGJCEpKREREJCIoKREREZGIoKREREREIoKSEhEREYkISkpEREQkIigpERERkYigpERE\nREQigpISERERiQhKSkRERCQiKCkRERGRiKCkRERERCLC/wencU6y3SaINAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "S[3]", + "execution_count": 16, + "outputs": [ + { + "output_type": "execute_result", + "execution_count": 16, + "data": { + "text/plain": "{0: (1, 1),\n 1: (11.471163339929898, 11.620864152908325),\n 2: (8.711751727405229, 24.175007581710815),\n 3: (6.233207992621637, 37.45667099952698),\n 4: (4.503406692265431, 50.7048454284668),\n 5: (3.306469822288683, 63.64902210235596),\n 6: (2.467018540510849, 76.81420135498047),\n 7: (1.8677475739998395, 89.01143765449524),\n 8: (1.4319148954993604, 100.75852632522583),\n 9: (1.1091069779636689, 113.11196255683899),\n 10: (0.86616526516008, 125.26574158668518),\n 11: (0.6807749115680007, 137.06682467460632),\n 12: (0.5375994977798054, 148.5941891670227),\n 13: (0.4260043505473527, 160.18138718605042),\n 14: (0.33841249069847884, 172.33310961723328),\n 15: (0.26931662426805536, 184.27857446670532),\n 16: (0.21460923643192942, 196.00503754615784),\n 17: (0.17117894724320826, 207.51750993728638),\n 18: (0.1366336975348204, 219.02280259132385),\n 19: (0.10911729721855218, 231.41397738456726),\n 20: (0.08717613476214513, 243.08990097045898),\n 21: (0.06966772355821278, 254.6827666759491),\n 22: (0.05568814245179515, 266.64171719551086),\n 23: (0.04452161208020133, 278.3515884876251),\n 24: (0.035598941252427484, 290.5835506916046),\n 25: (0.028467578026808594, 302.8230154514313),\n 26: (0.022766594712928367, 314.76684737205505),\n 27: (0.01820850416251944, 327.0457673072815),\n 28: (0.0145636707576875, 339.1297814846039),\n 29: (0.011649095366938398, 351.3482563495636),\n 30: (0.009317977551900567, 363.70199179649353),\n 31: (0.007453545960504198, 375.41989493370056),\n 32: (0.005962193499606321, 388.3381025791168),\n 33: (0.0047694662863360495, 400.3460953235626),\n 34: (0.0038154180630221098, 412.2888388633728),\n 35: (0.003052163370817199, 424.21188163757324),\n 36: (0.002441615428970485, 435.95243740081787),\n 37: (0.0019532613639854386, 448.54394912719727),\n 38: (0.0015626052734961952, 460.12600922584534),\n 39: (0.0012500874972857857, 472.09953689575195),\n 40: (0.0010000568097899912, 483.8269262313843),\n 41: (0.0008000134337702209, 495.6525139808655)}" + }, + "metadata": {} + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "C = S[1]\n", - "X = []\n", - "Y = []\n", - "Z = []\n", - "for k in k_grid:\n", - " if k < 1.5*k_ss:\n", - " X.append(k)\n", - " Y.append(C[k])\n", - " Z.append(f(k)-delta*k)\n", - "\n", - "plt.plot(X, Y, color=\"blue\", linewidth=2, label=\"capital stock: $k$\")\n", - "plt.plot(X, Z, \"--\", color=\"gray\", linewidth=1, label=\"net product: $f(k)-\\delta k$\")\n", - "plt.plot([k_ss], [c_ss], marker='o', color='r')\n", - "plt.xlabel(\"$k$\", fontsize=14)\n", - "plt.ylabel(\"$c$\", fontsize=14)\n", - "plt.title(\"Policy Function: $c$\")\n", - "plt.legend(loc='lower right')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 220, - "metadata": {}, - "outputs": [ + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Exploring the results" + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGOCAYAAACjachYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VOX5///XFRZBVhUJWlGK4r6waBUhiRtaAQG1/X1F\nRAGRWMAAyr5aUXABEUQUghBBxfqpyupKKWuryOpaxaJSSWQRZIeQyf37Y4YxExKyzZ738/HIQ3LP\nWe45TSfvXOec65hzDhEREZFokBDpCYiIiIgco2AiIiIiUUPBRERERKKGgomIiIhEDQUTERERiRoK\nJiIiIhI1FExEREQkaiiYiIiISNRQMBEREZGooWAiIiIiUUPBREQkxpnZyWZ2b6TnIRIMCiYiccLM\nuphZrpmdXdD3Urg4OFYdgIlmZpGeiEhZKZiIRIiZ3ef7ZXjs65CZfWNmz5tZ3VJs0vm+Cvs+5Ap4\nT3m/xoRzLoXMr7mZjTKzmvleCvuxKg4zG2dmH5nZpCIWvQ54w+mprBIHKkZ6AiLlnANGAD8AVYCW\nwF+AW83sUufc4TJsexYwxzmXXeZZlkze95TXF2GeR0GuBUYCM4G9ecYjdayKMgj4kMC5FiQF6BT6\n6YiEnoKJSOS975xb5/v3DDPbBfQD2gN/K+1GfX89R+oXbd73FE0KPNUR4WNVKOecx8wuAJ4pbBkz\nOwM47JxbE76ZiYSOTuWIRJ8leH+B/v7YgJk1MbP3zGyPme0zs8VmdvWJNlLYdRNmdqaZvWxmW83s\nsJltNrMpZlbRzK7zrdO+gO3d7XvthPstDjPLMLPvCxh/1Mxy839vZuf61tltZr+a2Qwzq1LA+id6\nb6OAp32L/uDbrsfMzj7BsSryuJdijheYWf1iHqcGQCLwrxMsdh3wcnG2JxILVDERiT7n+f77C4CZ\nXQIsB/YATwI5QCqw1MySnXOfFrKd466b8P11/SlQE5gKfAP8DvgTcLJzbqmZ/Q/vaYF5+bbXCfjO\nOfdJMd5DLTM7LWAyzv1yorkVMn7s328Cm4HBQFOgO7ANGFLc9wa8DZwP3AX0wXd8gR0FzcfMLqZ4\nx73Yc/T5GlgK3FDA+8+vBfClc+5Ep3IuAZ4txrZEYoKCiUjkHfslfuwakxHAQWCh7/XH8f5/tYVz\n7kcAM5uN9xfv08D1JdjXk0Bd4A/OufV5xh/N8+9XgX5mVsM5t8+3vzpAK2B0MfZhwD/yjTmgQgnm\nmd9a51wP/w6887mfwF/6Rb23z81sHd5gMs85tyXP9gra5xOU7LgXZ45QsgttWwArfdu7GmiLN/C0\ncs59AeCcG17MbYnEBJ3KEYmsY7/EdwD/A17He6FjB+dclpkl4A0E7xz75QjgnPvZt2xLM6terB15\nf/u2B+bn+8Wd3yy8IelPecbuwhssXivGrhzeC3hvyvPVqjhzPMH2puYbWwGcduy9l+C9FUspjnuR\nc8yzjQrOuRuLOZUWwEozux44DZiN92dGn90St1QxEYksB/QENuE9VbDNOfdNntdPx3sa4tsC1v0a\n7y+o+r5/F+V0vKc5vjzhhJz7xsw+xXvqZqZv+G7gY+fc5mLsB+DTIF/8uiXf97t9/z0F2E8x31sJ\nlOa4FzXHEvHd0nwJcC6w0zn3ru+leiXdlkgsUTARibxg/xIPhlnAc2Z2JlAVuAZvgAqWwk5lFHa6\nx1PIeDQ1FAv2HJsDu4ALgQvM7Efn3KZSbkskZqgcKBLdduC93uSCAl67CMjFewqouNvaC1xajGXf\n8G27I95qSTbeizuDZTdQu4DxBqXcXnHfW3Gv7QjmcS+tFsA/nHOd8faAmQ/+00wicUs/4CJRzDmX\ni7fBVvu8t7KaWSLe0LDCOVes0wS+Xh1zgdvMrGkRy/4CvAd0xntK533n3K7SvYsC/RfvRb/+IOG7\nq6ZDaTZWgvd2wPffgkJR3u0F7bjnV4LbhVsAH/v+/SXea0wAeplZ1dLsWyQWKJiIRFZxyvzD8V5/\nssrMhpjZQGAVUBkYWML9DQW2A8vN7Fkze8DXov3zAtq0zwIuBxrhvVOnuIrznt7AW5GYa2ZpZjYE\n7y/hb0682gkV572t9c1vjJndY2b/7wS/5IN53PP6GnjlRAuYWQXgD8C/8wx/5/tvVefcoTLsXySq\n6RoTkcgq8tSCc+4rM0sCxuLtkZGA95f43SXt9umcy/Tddjoa7ymamsBW4F28QSGvBXhPuRi+0wjF\n3U0x5rHLzDrg7b/xFPA93vd2Pt4eICVWnPfmnFtjZsOBB4Fb8B7L3xeyvaAd9/ybpuhjdLpv7seu\nPfoH0MPMRgNzyrBvkahneuaTiBTE91d7Jt6eHz2KWl5EJBii9lSOr3S62sz2mtk2M3vHzM4vYp1j\nTzb12G9PNM3/V6CIFM/tQB28p3RERMIimk/lJAHPA2vwznMs8KGZXVTE+dU9eMvBx85zqyQkUgJm\n9gfgCrzXWKxzzq2M8JREpByJ2mDinGud93sz64L3wrZm+Fo0F76q2xHCqYnEu7/gvRNnPdA1wnMR\nkXImak/lFKA23upHUbcsVjezH8xsi5nN9T2IS0SKyTnX1TlX2Tl3tXPuq0jPR0TKl5i4+NX3HIwF\nQA3nXMoJlrsG75NZPwNqAQOAZOBi51xmOOYqIiIipRcrweRFvLf2tXDOZZVgvYp4ewa87pwbVcDr\np/m2+wNwODizFRERKReq4O3W/IGvKWNQRO01JseY2WSgNZBUklAC4JzLMbP1eKsoBbmF4j0tVURE\nRArWCe9Tt4MiqoOJL5S0B1Kcc/mf3Fmc9ROAy4BFhSzyA8Crr77KRRddVNppSgn169ePCRMmRHoa\n5YqOefjpmIefjnl4ff3119xzzz3g+10aLFEbTMxsCt5nUrQDDvieUQGwxzl32LfMK8BW59xQ3/cj\n8HZm/A7vxbIDgbOB6YXs5jDARRddRNOmpWo2KaVQq1YtHe8w0zEPPx3z8NMxj5igXgoRtcEEb8to\nByzNN96V3xo+1SfwUeOnANOAenhbaa8Fmjvn/hPSmYqIiEhQRG0wcc4VeSuzc+6GfN8/DDwcskmJ\niIhISMVSHxMRERGJcwomEnYdO3aM9BTKHR3z8NMxDz8d8/gQE31MQsXMmgJr165dqwumRERESmDd\nunU0a9YMoJlzbl2wtquKiYiISDmVm5sb6SkcR8FERESkHMrMzGTq1Kl88803kZ5KgKi9K0dERESC\nLycnh+XLl7Ny5UoSExOpVatWpKcUQMFERESknMjMzGTevHns3LmT5ORkkpKSqFChQqSnFUDBRERE\npBz45JNP+OCDD0hMTOSBBx6gXr16kZ5SgRRMREREyoHExMSorZLkpWAiIiJSDjRo0IAGDRpEehpF\n0l05IiIiEjUUTERERCRqKJiIiIjEgczMTL788stIT6PMdI2JiIhIDMvbl6R+/fpcfPHFmFmkp1Vq\nCiYiIiIxKm9fkpSUFFq2bBnToQQUTERERGJO/u6t0dyXpKQUTERERGJIVlYWc+fODaiSRHNfkpJS\nMBEREYkhBw4cICEhIa6qJHkpmIiIiMSQ8847j3PPPTfmryUpjG4XFhERiTHxGkpAwURERESiiIKJ\niIhIFPF4PGRmZkZ6GhGjYCIiIhIlsrKymDZtGq+99hpHjx4Nyz7Xrl0blv0Ul4KJiIhIhHk8HpYs\nWUJ6ejoJCQl07tyZSpUqhWx/zjkWLFjALbfcwpVXXsmiRYtCtq+S0l05IiIiERTuviQ//fQTDzzw\nAO+//75/rEePHvznP/+hRo0aIdtvcSmYiIiIRIDH42HZsmVh6976zTff0L9/fxYuXBgwfsopp/D0\n009TvXr1kO27JBRMREREIuCHH35g1apVIa+SrF27lqeeeoq5c+cGXLdy5plnMmLECDp27EitWrVC\nsu/SUDARERGJgHPPPZe0tLSQhYLdu3fz1FNPMW7cODwej3+8cuXK3H///TzxxBOccsopIdl3WSiY\niIiIREgoQsn+/fsZNGgQU6ZMCRg3M/r06cMTTzzBySefHPT9BouCiYiISBz45ZdfePnll5k8eTL/\n+9///OOVKlVi8ODBPPLII1F1yqYwCiYiIiIhkp2dTeXKlUO+n7fffpu//OUvbN++3T9WuXJl7rjj\nDoYMGcLll18e8jkEi/qYiIiIBFlOTg5Llixh0qRJ7N+/PyT7cM7x8ssvc95553HnnXcGhJKUlBS+\n+uor5syZE1OhBFQxERERCarMzEzmzZvHzp07SU5OpmrVqkHdvsfjIT09nSlTpvD5558HvNamTRv6\n9+9PcnIyCQmxWXtQMBEREQmCcPQlWbt2Lb179+bjjz8OGG/UqBGjRo3i7rvvjvknDyuYiIiIlFGo\nu7euWbOGHj16sH79+oDxs88+mxdffJHWrVsHbV+RpmAiIiJSBjt27CA9PT0kVZLVq1fz4osvMnv2\n7IBeJI0aNWLixInccsstMXvKpjAKJiIiImVw+umnc+edd3LhhRcGrUqyb98+Bg4cyEsvvRQwXr9+\nfXr06MHDDz8c1b1IykLBREREpIwuueSSoGxn586dDBkyhFmzZpGdne0fr1SpEiNHjmTQoEEhfepw\nNFAwERERibDdu3fz2muv8dhjj7Fjxw7/eLVq1ejfvz/du3fnrLPOiuAMw0fBREREJEKys7OZPn06\ngwcPZt++fQGvdejQgfHjx9OwYcMIzS4y4uuKGRERkSDLzMxk1qxZHDx4MGjb9Hg8PPPMM9SuXZte\nvXoFhJL27duTlZXFO++8U+5CCahiIiIiUqCcnByWL1/u70ty6NChoFxwum7dOnr27Mknn3wSMN6m\nTRt69erFH//4x5jvRVIWCiYiIiL55O3eGqy+JJ9++impqanH9SK58cYb6d+/P3/84x/LtP14oWAi\nIiLik79KEoy+JIsXL2b48OHHVUjOP/98Zs6cybXXXlum7ccbBRMRERHg0KFDZGRkBK1K8tlnnzFh\nwgQyMjICxs866yxSU1N55JFHgv4cnXigYCIiIgJUqVKF8847j9tvv71MVZIdO3bQu3dv3nzzzYDx\nU045hf79+zNgwIC470VSFgomIiIigJnRqlWrUq+/ZcsWnn76aWbPns3evXv949WqVePpp5/mwQcf\njLv28aGgYCIiIlIGR48eZfr06QwaNCjgtt9TTjmFBx54gL/85S80aNAgchOMMQomIiIipeDxeBg/\nfjyPPvoohw4dCnjtjjvu4IUXXgjqA/3KC9WURESkXPB4PKxYsYLDhw+XaTuHDx9m1KhRJCYmMmjQ\noIBQ0rVrVzZv3sxbb72lUFJKqpiIiEjcy8rKYu7cuezcuZO6detywQUXlGo7q1evpmvXrnz11VcB\n4zfeeCMDBgzglltuCcZ0y7WorZiY2RAzW21me81sm5m9Y2bnF2O9P5vZ12Z2yMw2mtmt4ZiviIhE\nH4/Hw5IlS0hPTychIYEHHnigVKFk8eLFNG/enKuvvjoglFxzzTWsWrWKxYsXK5QESTRXTJKA54E1\neOc5FvjQzC5yzh0qaAUzuxZ4HRgELAI6AXPNrIlz7quC1hERkfiUt0qSnJxMUlJSifuSfP7550yY\nMIGZM2cGjDdr1oyMjAwuvfTSYE5ZiOJg4pxrnfd7M+sCbAeaASsLWS0NeM8596zv+5Fm1groDfQM\n0VRFRCSK5ObmsnTp0jJ1b/3pp5945JFHjutFUrt2bQYMGKBeJCEUtcGkALUBB+w6wTLNgfH5xj4A\n2odqUiIiEl3MjJ9//rlUVZItW7bQs2dPFi1aFDCuXiThExPBxLyPWXwOWFnEKZl6wLZ8Y9t84yIi\nUg6YGR07dizRE3r/+9//kp6ezpQpU47rRdK9e3d69uypXiRhEhPBBJgCXAy0iPREREQk+hU3lOTk\n5DB+/HhGjRrFkSNH/OM1atTg3nvvZfjw4brtN8yiPpiY2WSgNZDknMsqYvGfgcR8Y4m+8UL169eP\nWrVqBYx17NiRjh07lnC2IiISCw4fPswbb7zBxIkT2bBhQ8Br3bp1Y/z48dSuXTtCs4s+c+bMYc6c\nOQFje/bsCcm+zDkXkg0Hgy+UtAdSnHObi7H8G0BV51z7PGOrgI3OueMufjWzpsDatWvX0rRp0yDO\nXEREQikrK4tTTz2Vk046qUTrHTlyhAULFjBy5Ei+/vpr/7iZ0b17d3r37s3ll18e7OnGpXXr1tGs\nWTOAZs65dcHabtRWTMxsCtARaAccMLNjlZA9zrnDvmVeAbY654b6XpsILDWzh/HeLtwR7108D4R1\n8iIiEhI5OTksX76clStXct1115GcnFzsdT/66CO6d+/Oli1bAsbPP/98Zs6cybXXXhvs6UopRG0w\nAR7EexfO0nzjXYFZvn/XBzzHXnDO/dvM7gae8H1tAtqrh4mISOzL25ckJSWFFi2Kd9nhF198wfjx\n48nIyAgYb9KkCYMGDaJ9+/ZUqVIlBDOW0ojaYOKcK/J+LOfcDQWMvQW8FZJJiYhI2Hk8HpYtW1bi\nviRbt26lb9++/P3vfw8Yb9asGb169aJz585UrBi1vwbLLf0vIiIiUas03Vt//PFHevXqVWAvkmee\neYbU1FT1IoliCiYiIhK1PvroI/8zboqqkng8HqZNm8agQYOO60Vy//3306tXL/UiiQEKJiIiErXu\nvPNOqlSpcsIqybFeJH/96185dOi3R6nVqFGDzp07M3LkSBIT83eSkGilYCIiIlGrWrVqhb52+PBh\n/va3vzFx4kTWr18f8Fr37t0ZN27ccT2qJPopmIiISMxZvXo1Xbp0CehFAnD99dczePBgbr755gjN\nTMpKwURERCLG4/GQm5tb7Cf1fvTRRzz66KP861//Chi/4IILyMjI4JprrgnFNCWMdFmyiIhERFZW\nFtOmTeMf//hHkct+8cUXdO3alZtvvjkglDRt2pQ33niDDRs2KJTECVVMREQkrPL3JWncuHGhy2Zl\nZZGWlnZcL5JatWoxaNAgBgwYoF4kcUb/a4qISNjk797asmXLAu+4US+S8kvBREREQq643Vs3b95M\neno6kydPZv/+/f7xU045hW7dutG7d2/1IolzCiYiIhJyCxcu5LPPPiu0SpKTk8O4ceMYNWoU2dnZ\n/vEaNWpw7733MnLkSOrWrRvuaUsEKJiIiEjItWzZkquvvvq4Ksnhw4d58803mTBhAhs2bAh4Tb1I\nyicFExERCbnTTjvtuLFPPvmELl268J///Mc/lpCQ4D9lc8UVV4RzihIlFExERCSsPvzwQ/7617+q\nF4kUSMFERETC4ssvv2TcuHFkZGQEjDdt2pQBAwbQoUMHqlSpEpnJSdRQMBERkTI5dscNwA033HDc\n69u3b6dnz5689dZbAeM1a9Zk8ODB6kUiAfSTICIipZa/L0leP/zwAxMmTOCVV15hz549/vHq1asz\nbtw4evTogZmFe8oS5RRMRESkxE7UlyQ3N5epU6cycODAgF4ktWvXplu3bqSlpXHOOedEauoS5RRM\nRESkRPJWSZKTk0lKSqJChQrk5OTwzDPPMHr0aA4dOhSwzp/+9CdeeOEF9SKRIimYiIhIsa1du5ZF\nixYFVEkOHz7M66+/zoQJE1i/fn3A8t26dWPw4ME0atQoQjOWWKNgIiIixXbWWWcFdG8tqBcJQEpK\nCkOHDuXmm2+O0EwlVimYiIhIsSUmJpKYmMiHH37I6NGjWblyZcDrF154IRkZGVx99dURmqHEOgUT\nEREptr179/LII48wffr0gPGmTZvSv39/br/9dvUikTJRMBERkSJt376dkSNHMmvWrIALW2vUqMHQ\noUPp37+/epFIUOinSERE/LKyssjMzKRZs2YA7N+/n1mzZjFy5Eh++eUX/3LqRSKhomAiIiIBfUnO\nOOMMrrjiCqZPn86AAQMCepEAtGvXjkmTJqkXiYSEgomISDmXty9JUlISmzZt4sorr2Tjxo0By6kX\niYSDgomISDmVv3vr9ddfT79+/VizZk3Acrfeeiu9evWiTZs2EZqplCcKJiIi5dC2bdt4++232blz\nJw0bNmTSpEl8+umnAcucffbZTJ8+nVatWkVollIeKZiIiJRDHo+HhIQE9u/fz3333Udubq7/tQsv\nvJAnn3ySNm3a6E4bCTv9xImIlDN79uzhscceY+rUqQHjZ5xxBqmpqQwaNEi9SCRiFExERMqJX375\nhdmzZzN+/Hh++ukn/3jlypV57LHHeOSRR1QhkYjTT6CISJwrrBdJQkICHTp0YPTo0Vx88cURnKHI\nbxRMRETikMfjYcuWLbz//vsMHDjwuF4kN910E9OnT1cvEok6CiYiInEmMzOTOXPm8OuvvzJu3DgO\nHz7sf61NmzY89NBD3HzzzerYKlFJwUREJE54PB7+/ve/89VXX7Ft2zbmzp3rDyXqRSKxQsFERCQO\nLF68mCVLllCxYkWWL1/OihUryM3N5eyzz+bll1/mpptuivQURYpFwUREJIY45wJOwezfv58xY8ZQ\nqVIldu3axdy5c9m2bRvnnHMOPXr0oHfv3tSsWTOCMxYpGQUTEZEot2/fPsYNG8aqBQuodvQoBypV\n4sqbb6ZyYiKLFi2idevWLFu2jBUrVgAwePBgRo0apV4kEpMUTEREoti+ffu4s3lzHv76ax7NzcUA\nByyaNo0eQBbw7bffkp2dzbBhw+jVqxeJiYmRnbRIGSiYiIhEsXHDhvHw11/zxzwt4w1oC0wFOgMX\nXHwxM2fOVC8SiQsKJiIiUWzVggU8mieU5NUWuKxePZZ//LFu/ZW4kRDpCYiISME2b97MocxMCosc\nBpxaoUI4pyQScgomIiJR5osvvuDOO+/koosuYk9CAq6Q5RxwoFIlVUskriiYiIhEiZycHJ544gma\nNm3Kv//9b+6//37OvOwy3i1k+fcTEmjZrl1Y5ygSarrGREQkwg4dOsTTTz/N1KlT2b59O8nJySQl\nJbFt2zYaNm3KhP37SfjmG/6Y566c9xMSmHDRRbz1+OORnr5IUCmYiIhESE5ODgsXLmTQoEF8++23\nnHHGGfTo0YM6derg8XgYP3481apVY9++fYwfPpxn58/n5KNHOVipEi3ateOtxx+nRo0akX4bIkGl\nYCIiEgHvvfcePXr04KeffgKgVq1adO/enf3795OSksKNN97oX7ZGjRo8OnEiTJx4XOdXkXijYCIi\nEkbffvstY8aM4ZVXXgkYv/DCC0lJSeG6666jwgnutFEokXinYCIiEgbbtm2jZ8+evP322wHjTZo0\noWfPnnTp0oWKFfWRLKL/F4iIhNAPP/zA888/z4wZM/j111/94zVq1ODZZ5/l/vvvVxVEJI+ovV3Y\nzJLMbL6ZbTWzXDM74T1xZpbiWy7vl8fM6oZrziIix+Tm5jJlyhQuvfRSnn32WX8oqV27Nn369OGL\nL76ge/fuCiUi+URzxaQasAF4GXi7iGWPccD5wD7/gHPbgz81EZGCHT16lKeffpqnnnqKffv8H0Wc\nccYZdO7cmdTUVBo2bBjBGYpEt6gNJs6594H3Aaxkf1LscM7tDc2sREQK9/nnn9OlSxfWrVvnH6tQ\noQJpaWnUrl2bunXr6vZekSJEbTApJQM2mFkV4AvgUefcvyI8JxGJc//617/o27cvn376acD4rbfe\nyvXXX8/hw4dJSkoiKSnphHfciEh8BZMsIBVYA5wEPAAsNbM/OOc2RHRmIhKXDh48yIgRI5gwYQLO\n/fZEm0svvZTBgwfz3//+l5o1a9K5c2fq1asXwZmKxI64CSbOuW+Bb/MMfWxm5wL9gPsiMysRiUe/\n/vorgwYNIj09PSCQJCYm8pe//IXTTz+dzZs3+1vLq0oiUnxxE0wKsRpoUdRC/fr1o1atWgFjHTt2\npGPHjqGal4jEoF27dvHaa6/x1FNPsXXrVv/4SSedxOjRo3n44YepUKECK1asoFGjRqqSSNyYM2cO\nc+bMCRjbs2dPSPZledN+tDKzXKCDc25+Cdf7ENjrnPtTIa83BdauXbuWpk2bBmGmIhKPnHPMmTOH\nhx56iF27dvnHzYz27dszduxYLrzwwgjOUCT81q1bR7NmzQCaOefWFbV8cUVtxcTMqgHn4b2gFaCh\nmV0B7HLO/c/MxgJnOufu8y3fB/ge+BKogvcak+uBVmGfvIjEhdzcXP7xj38wYcIE3nvvvYDXbrnl\nFtLT06lfv36EZicSn6I2mABXAv/E25vEAeN9468A3YB6QN5PhMq+Zc4EDgKfATc655aHa8IiEj82\nb97M/fffz9KlSwPG27RpQ+/evbnlllvUHE0kBKK286tzbplzLsE5VyHfVzff612dczfkWf4Z51wj\n51w159zpzjmFEhEpsc8//5w///nPXHDBBQGhpG7durz11lvMnTuXKlWqBDRPE5HgieaKiYhI2Bw9\nepSnnnqKxx57jKNHj/rHzz77bPr27cu9997LkSNHSE9PZ+fOndSpU4dLL700gjMWiU8KJiJSrh08\neJBnnnmGadOmkZmZGfBaz549efLJJ6latSrLly9n5cqVJCYm8sADD+iOG5EQUTARkXLJ4/GwaNEi\n+vfvz6ZNm/zjFSpUYMCAAQwfPpxq1aqRmZnJq6++ys6dO9WXRCQMFExEpNx59913SU1N5aeffgoY\nb9asGS+99BJXXnklzjmWLFmiKolImCmYiEi58euvv9KvXz8yMjICxq+55hqmTZvGZZdd5h8zM/bt\n26cqiUiYKZiISNz7+eefGT16NLNnzw64m6Zx48b07NmTbt26FRg82rVrp1uCRcJMwURE4tahQ4d4\n5ZVXGDp0KLt37/aP16xZk2effZZu3bqdMHgolIiEn4KJiMSd3NxcpkyZwuDBgzlw4EDAa7fddhsv\nvPCCOraKRKmobbAmIlJSzjk++eQTbrjhBh566KGAUHLXXXexdetW5s+f7w8lmZmZ7N+/P1LTFZEC\nqGIiInHhs88+4/7772fNmjUB461atSItLY22bdv6x3Jycvx9Sa655hpuvvnmcE9XRAqhYCIiMW3N\nmjW88MILvPbaawEdWxs0aMDLL7/MDTfcELB8VlYWc+fOZefOnaSkpNCyZctwT1lETkDBRERi0sGD\nBxk+fDjJOvFWAAAgAElEQVTPPfcczjn/eP369enRowd9+/alevXq/nGPx8OyZcvUl0QkyimYiEhM\n+fXXX5k6dSovvvgiP/74o3+8QoUKDBo0iJEjR3LSSScFrFNQlUR9SUSik4KJiMSMRYsW0aNHj4Bn\n2lSpUoUBAwaQmprK7373uwLXW7VqFQkJCaqSiMQABRMRiWrOOd59911eeOEF3nvvvYDXmjdvzsyZ\nM7ngggtOuI22bdtSqVIlVUlEYoCCiYhEraysLB588EHmz58fMH7zzTczZMgQkpOTSUgouutBlSpV\nQjVFEQkyBRMRiTrff/89U6ZMYfr06fz666/+8Zo1azJhwgS6du2qrqwicUrBRESiRm5uLi+88AKD\nBw/m4MGD/vG6desyatQoOnXqRK1atY5bz+PxkJOTc9xFryISexRMRCTijh49yquvvsrkyZNZt25d\nwGt33XUXzz//PHXq1Clw3czMTObNm0e9evW4/fbbwzFdEQmhYgUTM+sBbHXOLQrxfESknNm4cSNd\nunRhw4YNAePdunWjb9++XHbZZQWul7d7a2JiIs2bNw/HdEUkxIpbMekFXGZmPwBTgJedc7tPvIqI\nSOHWrFnDlClTmD17Njk5Of7xc845hxkzZhzXsTWvY1US9SURiT/FDSaNgWZAK+BWYKiZvQNMds6t\nD9XkRCT+HDx4kGHDhjFx4sSAjq2XXHIJo0aNol27doVeK5K/SqK+JCLxp1jBxHk/Pdb4vsaaWVUg\nGW9IUTARkSLt3r2b9PR0pkyZclzH1sGDBzNixIgiL1796KOPWLNmjaokInGsVBe/OucOAR/4vkRE\nTqiwjq39+/fnwQcfLLRja34tWrSgSZMmqpKIxDHdlSMiIRGMjq351axZk5o1awZzmiISZYpumXgC\nZjbQzDaa2YN5xmqa2cNmdmbZpycisSgrK4v27dvTtm3bgFDSqlUrlixZwsqVK0scSkSkfChTMAHq\nAj8CHY4NOOf2AvOB+82scxm3LyIx5MiRI0ydOpWLL76YBQsW+Mdr1qzJyy+/zAcffMD1119/wjby\neS+IFZHyp6zBxIA/Oef+mHfQOfedc240cFUZty8iMSA3N5dJkyZx2mmn8eCDD/rbyNetW5fJkyfz\n448/0q1btxO2kfd4PCxZsoSFCxeGa9oiEoXKeo3JWGCQmY1xznnM7AJgIVAd+B749YRri0hMO1HH\n1o4dO/L8889z2mmnFbmdrKws5s6dy86dO0lOTsY5p2fhiJRTxe38egOQBKwCPnHO7QNwzu00s+eB\nIWY2DngceBf4DjgCvBGSWYtIxBXWsfXGG2+kb9++tG3btshteDweli1bpr4kIuJX3IpJPWCU79+5\nZvYV8C/f17+BicCjgMc51yfYkxSR6LF7926effZZnnzyyYCOrQ0aNGDGjBlcf/31xdpO3iqJ+pKI\nyDHFDSY7gBfwnrpJAlribbD2gO/1X4Cfgf+a2aXOuS+CPVERiazCOrZeeumljBgxgnbt2lGlSpVi\nbWvjxo3MmzdPVRIROU5xg8kaYLdzLhP4m+8LM6uNN6Qk+b5aA+3MbBewDHjDOff3oM9aRMImNzeX\n999/nz59+vDdd9/5xytUqMCQIUMYMWIElStXLtE2zznnHK677jpatGihKomIBChuS/rdeMNJ/vFf\n8V7suhDAzKoA1/JbWOkPKJiIxKhFixbRs2dPtmzZ4h+rVKkSd9xxBwMHDqRp06al2m7t2rVJTk4O\n1jRFJI4EtfOrc+4wsMT3JSIxavfu3fTt25dZs2YFjF977bXMnDmT888/P0IzE5F4V9Y+JiISR7Ky\nsnjooYf4/e9/HxBKLr/8cqZOncry5csVSkQkpPSsHBHBOcerr75KWlqavzkaQK1atXjuuee47777\nStRXJDMzk++//54WLVqEYroiEscUTETKsdzcXGbMmMHkyZPZuHFjwGu33XYbL774YrGf/AuQk5PD\n8uXL/X1J/vCHP1CpUqVgT1tE4piCiUg59d1339GtWzdWrFgRMH733XczZswYzjnnnBJtT31JRCQY\nFExEypmtW7cybdo0nnnmGQ4dOuQf/93vfsfkyZPp0KHDCdY+nrq3ikgwKZiIlBPZ2dmMHTuWxx9/\nPKBj6+9//3smTZpE69atT/jU34Js376dt956y/+Mm6SkJFVJRKRMFExE4tyRI0dYsGABjz/++HHX\nkfTu3ZuxY8dSvXr1Um27YsWKnHTSSaqSiEjQKJiIxLEVK1bQtWtX/vvf//rHKlSoQOfOnenZsydX\nXXVVmbZ/6qmn0rVrVz0JWESCRsFEJA4dPHiQoUOHMmnSpIDn2lx22WVkZGSUumNrQRRKRCSYFExE\n4sju3bsZOnQoM2fO5MiRI/7xJk2a0Lt3b+65554SP9dGRCScFExE4sSCBQtITU0lKyvLP1alShXG\njBlDWlpaqS5KzcnJ4fvvv6dRo0bBnKqISKHUkl4khjnneO+992jbti3t2rULCCW33XYbGzdupF+/\nfqUKJZmZmaSnp/O3v/2Nffv2BXPaIiKFUsVEJEZlZmaSmprKwoULA8Zbt27NtGnTStSxNa/83Vu7\nd+9OjRo1gjFlEZEiKZiIxJijR4+SkZHBwIEDg/Jcm7wyMzOZN2+eureKSMQomIjEiNzcXJ5//nmG\nDRvGgQMH/OOJiYkMGzaMTp06ceqpp5Zq2/mrJOpLIiKRomAiEgO+++47unbtysqVKwPG7777biZN\nmsRpp51Wpu3/+uuvfPLJJ6qSiEjERe3Fr2aWZGbzzWyrmeWaWbtirHOdma01s8Nm9q2Z3ReOuYqE\nysaNG7n77ru55JJLAkLJ9ddfz/z583nttdfKHEoA6tSpQ9++fUlJSVEoEZGIiuaKSTVgA/Ay8HZR\nC5tZA2AhMAW4G7gJmG5mmc65j0I3TZHgy87OZsyYMTzxxBMBz7Vp2LAhM2bMICUlJej7rFq1atC3\nKSJSUlEbTJxz7wPvA1jxruT7C7DZOTfQ9/03ZtYS6AcomEhMOHLkCAsXLmT06NEFPtfmySefpFq1\nahGanYhI6EVtMCmFa4DF+cY+ACZEYC4iJbZ8+XK6desW8FybihUrMnDgQB555JFSX9h6zP79+0v9\nsD4RkXCJ2mtMSqEesC3f2DagppmdFIH5iBTLgQMH6NOnDykpKQGh5LLLLmP16tU88cQTZQolHo+H\nJUuW8Nxzz/Hzzz8HY8oiIiETTxUTkZiya9cuhg0bRkZGBocPH/aPN27cmF69enHvvfeW+bk2WVlZ\nzJ07l507d5KUlMTpp59e1mmLiIRUPAWTn4HEfGOJwF7n3JEClvfr168ftWrVChjr2LEjHTt2DO4M\nRXwWLFhAjx49AioYZX2uTV4ej4dly5apL4mIBMWcOXOYM2dOwNiePXtCsi/L+0j0aGVmuUAH59z8\nEyzzJHCrc+6KPGOvA7Wdc60LWacpsHbt2rVBfQy8SGG2bt3K4MGDefXVVwPG27Zty7PPPhuUh+Xl\nr5IkJSXpFmARCbp169bRrFkzgGbOuXXB2m7UVkzMrBpwHnDsjpyGZnYFsMs59z8zGwuc6Zw71qvk\nJaCXmT0FzABuBP4EFBhKRMIpMzOTXr16MXfu3IDxsj7XJr+DBw8yY8YM6tSpoyqJiMSkqA0mwJXA\nPwHn+xrvG38F6Ib3Ytf6xxZ2zv1gZm3w3oWTBvwE3O+cy3+njkjYOOeYPXs2ffr0CfpzbQpy8skn\n06lTJ+rXr68qiYjEpKgNJs65ZZzgriHnXNcCxpYDzUI5L5HiyM3NZeXKlTz55JO89957/vHq1avT\nqVMnRowYEbQqSX4NGjQIyXZFRMIhaoOJSKwq7Lk2nTp1YtKkSWXuRyIiEs/iqY+JSETl5uYyceJE\nLr/88oBQkpiYyNy5c3n11VeDEkpi4YJ1EZHSUjARKaPs7Gxmz57N1VdfTd++fTl06BAA9evXZ8yY\nMXz55Ze0b98+KPvKysoiPT1djdJEJG7pVI5IGWzYsIEuXboc91ybhx56iLFjxwbtuTb5+5IkJOhv\nChGJTwomIqWQnZ3NE088wZgxY0L+9N+8fUlSUlJo2bKl7rgRkbilYCJSAgcOHGDixIlMnTqVLVu2\n+Mcvu+wyhgwZQocOHahatWpQ9qXurSJSHimYiBTTsmXL6NatG5s3b/aPVaxYkaFDhzJs2LAyP9cm\nL4/Hw/Tp09m+fTvJycnq3ioi5YaCiUgRDhw4wJAhQ3j++ecDxps0acLLL79MkyZNgr7PChUq0KxZ\nM8466yxVSUSkXFEwESnErl27GD58OBkZGf47bQBatmzJM888w9VXXx3Urq35XXnllSHbtohItFIw\nESnAvHnzSE1NZdu2bf6xqlWr+p/+q7tiRERCQ5+uInlkZWVxzz330KFDh4BQ0rp1azZu3Ejfvn0V\nSkREQkifsCLA1q1buf322znzzDN57bXX/ONt2rThp59+YtGiRTRq1Cho+/N4PPzzn/9kx44dQdum\niEg80KkcKdecc8yaNYs+ffqwZ88e/3itWrWYOHEi9957b9CvI8nbl+SUU07h9NNPD+r2RURimYKJ\nlFtbt24lNTWVRYsW+ceqVatGp06dGDlyZNCf/qu+JCIiRVMwkXJn06ZNDBkyhLfffjvggXj33HMP\nEydODMnTf9W9VUSkeBRMpNzIzc1l0qRJDB06NOD233r16jF16lTatWsXkv0uXbqU5cuXq0oiIlIM\nCiZSLmzatIlu3bqxcuVK/5iZ0a1bN55++umQVEmOycnJUZVERKSYFEwkrv38889MmzaNJ598MqBK\nkpaWxpgxY4L29N8Tuemmm0K+DxGReKFgInHpRE//nTlzJsnJyRGcnYiIFEbBROLO+vXr6dKlC599\n9lnAeDirJCIiUjpqsCZxIzs7m5EjR3LVVVf5Q0nFihW55557+Pjjj5k4cWJIQklWVha7du0K+nZF\nRMojVUwk5u3fv5/nn3+eqVOn8uOPP/rHr7jiCjIyMmjcuHFI9pu3L0mTJk247bbbQrIfEZHyRMFE\nYtrSpUvp1q0b33//vX+sYsWKDBs2jKFDh1K5cuWQ7DdvX5Lk5GSSkpJCsh8RkfJGwURi0v79+xky\nZAiTJ08OGG/cuDEzZ84MS5VEfUlERIJPwURiinOOf/7zn3Tv3j2gSpKUlMTYsWO59tprg/5sm2MK\nqpKoL4mISHApmEjMmDdvHv369QsIJFWrVmXs2LE89NBDJCSE9lru9evXk5CQoCqJiEgIKZhI1Nu1\naxdpaWm89tprAeNJSUnMmDGD8847LyzzaNWqFQkJCaqSiIiEkIKJRLV58+aRmprKtm3b/GMXXngh\naWlppKamhrxKklelSpXCti8RkfJKwUSiUkFVktq1azNx4kQ6d+4csutIREQkstRgTaLKgQMHSE9P\n5+KLLw4IJW3atOHLL7/k3nvvDVko8Xg8HDx4MCTbFhGR4lHFRKKCc45XXnmFvn37smfPHv94uKok\nmZmZzJs3j5o1a9KpU6eQ7UdERE5MwUQibuvWrfTo0YN33303YLxNmzZMmzaNM888M2T7zsnJYfny\n5f6+JDfeeGPI9iUiIkVTMJGIKaxKctNNN9GrVy/at28fliqJ+pKIiEQPBROJiIKqJPXq1WPq1Km0\na9cupPvOXyVRXxIRkeihYCJh5ZwjIyODfv36BVRJ7rnnHiZOnMipp54a8jmsWLGCVatWqUoiIhKF\nFEwkLDweD5MmTWLUqFHs27fPPx6uKklezZs356KLLlKVREQkCimYSMht2rSJrl27smrVqoDxcFZJ\n8qpSpYpCiYhIlFIfEwkZj8fDhAkTuPzyywNCSYsWLZg/fz6zZ88OeygREZHopoqJhERBVZKGDRsy\nc+ZMkpOTQ75/55y6w4qIxCBVTCSoCquSpKWl8dlnn4U8lOTk5LBkyRLefPNNnHMh3ZeIiASfKiYS\nNJGukuTtS5KUlKSqiYhIDFIwkTI7dsfN0KFDOXz4sH88LS2NMWPGUK1atZDuX31JRETih4KJlFp2\ndjbjxo1jypQpbN261T8eqSqJ+pKIiMQ+BRMplXXr1tGlSxc+//zzgPFwVUkAvvrqK/7+97+rSiIi\nEkcUTKREsrOzGT16NGPHjsXj8fjHGzduzMSJE8NSJTmmQYMG3HDDDTRv3lxVEhGROKFgIsVWUJXk\niiuuICMjg8aNG4d9PieffDItW7YM+35FRCR0dLuwFCk7O5sRI0bwhz/8wR9KKlasyKOPPsrq1asj\nEkpERCQ+qWIiJxRtVRIREYlvqphIgaKhSpKZmcnixYvVKE1EpBxRxUSOE+kqSf6+JC1btqRKlSoh\n36+IiESegon4FXTHTcWKFRk+fDhDhgyhcuXKIZ+D+pKIiJRvUR9MzKwX0B+oB2wEHnLOfVrIsvcB\nMwEHHOtFftg5d3I45hrLoq1Kor4kIiLlU1QHEzP7f8B4oAewGugHfGBm5zvndhay2h7gfH4LJrpA\n4QSioUqyc+dO/u///k9VEhERie5ggjeITHXOzQIwsweBNkA34OlC1nHOuR1hml9Mi3SV5JgqVapQ\nvXp1br/9dlVJRETKuai9K8fMKgHNgH8cG3Pe2zMWA81PsGp1M/vBzLaY2VwzuzjEU4050XDHTV7V\nq1enc+fOCiUiIhLVFZM6QAVgW77xbcAFhazzDd5qymdALWAA8C8zu9g5lxmqicaSaKmSiIiIFCRq\nKyal4Zz72Dn3qnPuM+fcCuAOYAeQGuGpRVy0VUlEREQKEs0Vk52AB0jMN54I/FycDTjncsxsPXDe\niZbr168ftWrVChjr2LEjHTt2LP5so1ikqyQ5OTl88803XHLJJSHfl4iIBN+cOXOYM2dOwNiePXtC\nsi+L5q6aZvYx8Ilzro/vewO2AJOcc88UY/0E4EtgkXOufwGvNwXWrl27lqZNmwZ38lEgGu64yduX\npGfPnpx22mkh36eIiITeunXraNasGUAz59y6YG03mismAM8CGWa2lt9uFz4ZyAAws1nAT865ob7v\nRwAfA98BtYGBwNnA9LDPPMKioUqSvy+JQomIiBQlqoOJc+5NM6sDPIb3FM4G4JY8twOfBeTkWeUU\nYBreZmy7gbVAc+fcf8I368iKtipJSkoKLVu2VF8SEREplqgOJgDOuSnAlEJeuyHf9w8DD4djXtEo\nGqskugVYRERKIuqDiRQtGqokAAcPHmTt2rWqkoiISKkpmMS4SFdJ8qpZsyZ9+vQJWxASEZH4E1d9\nTMqb9957j6uvvjqq+pIolIiISFmoYhKDPB4PkyZNYsiQIeTkeK/9VfdWERGJBwomMWbTpk107dqV\nVatW+cfatm3LW2+9FZZqxZ49e45rRiciIhIsOpUTIzweDxMmTODyyy8PCCVpaWm8+eabIQ8lHo+H\nJUuWMGnSJH744YeQ7ktERMovVUxiQEFVknPPPZcZM2aQnJwc8v1nZWUxd+5cdu7cSXJyMvXr1w/5\nPkVEpHxSMIly8+bN46677uLw4cP+sbS0NMaMGUO1atVCum+Px8OyZcvUl0RERMJGwSRKOed45ZVX\n6Nmzpz+URKpKor4kIiISLgomUWjr1q2kpqayaNEi/9jtt9/O7NmzQ14lAThy5AizZs2idu3aqpKI\niEhYKZhEEeccs2bNok+fPgGPk+7cuTMvvfQSJ598cljmcdJJJ9G5c2cSExNVJRERkbBSMIkSHo+H\nu+++mzfffNM/Vq9ePaZNm8Ztt90W9vmceeaZYd+niIiIbheOArt27eKuu+4KCCWdO3fmyy+/jEgo\nERERiRRVTCJs3rx5pKamsm3bNgASEhJ44403+POf/xzS/TrnMLOQ7kNERKSkVDGJoLFjx9KhQwd/\nKKlduzZz5swJeSjJzMxk6tSpfP/99yHdj4iISEmpYhIBBw4cYPDgwUyePNk/1qZNG6ZNmxbSazty\ncnJYvny5vy9JuC6mFRERKS4FkzBbvnw5Xbt2ZfPmzf6x4cOH89hjj4X01Ir6koiISCxQMAmj999/\nn7Zt2+LxeACoWrUqY8eOJS0tLWShRN1bRUQkliiYhEF2djaPP/44Y8eO9YeSli1bMmPGDBo1ahSy\n/TrnmDlzJllZWaqSiIhITFAwCTGPx8O9997L3/72N/9Y69atmT9/fshDgplxzTXXUKdOHVVJREQk\nJuiunBDatGkTKSkp/lBSoUIFRo0axTvvvBO2ysWll16qUCIiIjFDFZMQ2bRpE82bN+eXX34BvNWL\ncNwKLCIiEstUMQmBuXPnctVVV/lDScOGDVm6dKlCiYiISBFUMQmyd955h44dO3LkyBEAGjVqxMcf\nf8ypp54a9H0d60vSqFEj6tevH/Tti4iIhJsqJkE0ZswY7rjjDn8o6dChQ8hCSWZmJunp6axatcrf\nOVZERCTWqWISBNnZ2QwYMIBJkyb5x9q3b88bb7zBSSedFNR95e/eqr4kIiISTxRMyig7O5uuXbvy\n+uuv+8dGjBjBX//616A3TcvMzGTevHnq3ioiInFLwaQMfvnlF1q1asX69esBqFSpEs8880xIOrku\nX76cpUuXqkoiIiJxTcGklLZv307btm39oaRixYrMmjWLu+66KyT7q1ixoqokIiIS9xRMSmHHjh20\na9eOTz/9FIDTTjuNDz74gGbNmoVsn9dee23Iti0iIhItFExKaPfu3dx6662sXbsWgLp167Jw4cKQ\nhhIREZHyQsGkBPbu3ct1113HZ599BkCdOnVYsGABV111VYRnJiIiEh8UTIpp7969tGjRgi+++AKA\n2rVr8+GHH9KkSZOgbD8rKwsz00WtIiJSrqnBWjH88ssvpKSk+ENJjRo1WL58eVBCicfjYcmSJf5m\naSIiIuWZKiZFyM3N5b777mPDhg0A1KpVixUrVnDZZZeVedtZWVnMnTuXnTt3kpycTFJSUpm3KSIi\nEssUTIrw5JNPsmjRIsB7983ixYvLHEo8Hg/Lli1T91YREZF8FExOYOzYsQwbNgwAM+P111+ncePG\nZdpmQVUS9SURERHxUjApxOLFi/2hBGD48OHcfPPNZd7uN998Q0JCgqokIiIiBVAwKUBWVhadOnXC\nOQf89uybYEhKSlKVREREpBAKJvl4PB7uvvtutm/fDsCtt97Ko48+GrRn3yiQiIiIFE63C+fz2GOP\nsXTpUgB+97vfMWvWLBISdJhERETCQb9x81i9ejWjR48GvJWNN954gzp16pRoGzk5OezduzcU0xMR\nEYl7OpXjk5uby5AhQ/zXlYwePZqWLVuWaBuZmZnMmzePSpUqcf/99wft9I+IiEh5oWDik56ezpIl\nSwBo0KAB/fv3L/a6+fuStG3bVqFERESkFBRMgCNHjvhP4QC89NJLVKpUqVjr5u1LkpKSQsuWLXWB\nq4iISCkpmADz5s1j69atALRv355bbrmlyHXUvVVERCT4FEyAGTNm+P89atSoYq2zevVqVq1ape6t\nIiIiQaRgAuzYsQPwVkuK+8Tgq666ioYNG5KYmBjKqYmIiJQrul04j4EDBxZ72YoVKyqUiIiIBJmC\nic/5559P8+bNIz0NERGRck3BxOeOO+447hbf3NzcCM1GRESkfIr6YGJmvczsezM7ZGYfm9lVRSz/\nZzP72rf8RjO7tTj7adu2rf/fHo+HJUuW8MorryichMCcOXMiPYVyR8c8/HTMw0/HPD5EdTAxs/8H\njAdGAU2AjcAHZlZgn3gzuxZ4HUgHGgPzgLlmdvGJ9nP22WdzzTXXAN6+JNOmTWPVqlU0bNjQ3wlW\ngkcfHuGnYx5+Oubhp2MeH6I6mAD9gKnOuVnOuf8ADwIHgW6FLJ8GvOece9Y5941zbiSwDuh9op28\n/fbbACxZsoT09HQSEhJ44IEHSElJ0W3AIiIiYRS1twubWSWgGTDm2JhzzpnZYqCwq1Sb462w5PUB\n0P5E+9q5cyfTpk1T91YREZEIi+aKSR2gArAt3/g2oLAWq/VKuDwA77zzjqokIiIiUSBqKyZhUgXg\njDPOoGnTpmRmZpKZmRnpOcW9PXv2sG7dukhPo1zRMQ8/HfPw0zEPr6+//vrYP6sEc7sWrRd3+k7l\nHATudM7NzzOeAdRyzt1ewDo/AuOdc5PyjD0KtHfOHdfS1czuBl4L/uxFRETKjU7OudeDtbGorZg4\n546a2VrgRmA+gHkbjdwITCpktX8X8Hor33hBPgA6AT8Ah8s+axERkXKjCtAA7+/SoInaigmAmf1/\nQAbeu3FW471L50/Ahc65HWY2C/jJOTfUt3xzYCkwBFgEdAQGA02dc1+F/Q2IiIhIiURtxQTAOfem\nr2fJY0AisAG4xTm3w7fIWUBOnuX/7Ts984TvaxPe0zgKJSIiIjEgqismIiIiUr5E8+3CIiIiUs4o\nmIiIiEjUiPtgEq6HAMpvSnLMzew+M8s1M4/vv7lmdjCc8411ZpZkZvPNbKvv+LUrxjrXmdlaMzts\nZt+a2X3hmGu8KOkxN7OUPD/fuXl+5uuGa86xzMyGmNlqM9trZtvM7B0zO78Y6+nzvJRKc8yD9Xke\n18EkXA8BlN+U9Jj77MHbnffY1zmhnmecqYb3wvCeQJEXjZlZA2Ah8A/gCmAiMN3MWoVuinGnRMfc\nxwGN+O3n/Azn3PbQTC/uJAHPA1cDNwGVgA/NrGphK+jzvMxKfMx9yvx5HtcXv5rZx8Anzrk+vu8N\n+B8wyTn3dAHLvwGc7Jxrl2fs38B651zPME07ppXimN8HTHDOnRremcYnM8sFOuRtSljAMk8Btzrn\nLs8zNgdv48LWYZhmXCnmMU8BlgCnOOf2hm1yccr3h852INk5t7KQZfR5HkTFPOZB+TyP24pJnocA\n/uPYmPOmsKIeArg439gHJ1he8ijlMQeobmY/mNkWM9NfNKF3Dfo5jwQDNphZppl96PuLXkqnNt4K\n1K4TLKPP8+AqzjGHIHyex20wIYwPARS/0hzzb4BuQDu8XXgTgH+Z2ZmhmqQU+nNe08xOisB8yoMs\nIEuHvnUAAAQ2SURBVBW4E7gDbxVxqZk1juisYpCvCvscsLKIHlX6PA+SEhzzoHyeR3WDNYl/zrmP\ngY+Pfe8rtX6N90N8VKTmJRJMzrlvgW/zDH1sZufi7WatC49LZgpwMdAi0hMpR4p1zIP1eR7PFZOd\ngAdvx9i8EoGfC1nn5xIuL4FKc8wDOOdygPXAecGdmuRR2M/5XufckQjMp7xajX7OS8TMJgOtgeuc\nc1lFLK7P8yAo4TEPUNrP87gNJs65o8CxhwACAQ8B/Fchq/077/I+J3oIoORRymMewMwSgMvwlr4l\nNAr6Ob8Z/ZyHW2P0c15svl+Q7YHrnXNbirGKPs/LqBTHPP/6pfo8j/dTOc8CGeZ9SvGxhwCejPfB\ngFi+hwDivW1yqZk9zG8PAWwGPBDmeceyEh1zMxuBt/T3Hd6LqwYCZwPTwz7zGGVm1fD+RWK+oYZm\ndgWwyzn3PzMbC5zpnDt2yuAloJfv7pwZeD+8/4T3ryIphpIeczPrA3wPfIn3iawPANfj/UUpRTCz\nKXg/j9sBB8zsWCVkj3PusG+ZV4Ct+jwPjtIc86B9njvn4voLb5+BH4BDeJPylXleWwLMyLf8ncB/\nfMt/hvehgRF/H7H0VZJjjjfIfO9bNhNYAFwe6fcQS19ACpCL9zRa3q8ZvtdnAkvyrZOMt7p1CO/D\nLjtH+n3E0ldJjzkwwHecDwA78N65lhzp9xErX4Ucaw9wb55l9Hke4WMerM/zuO5jIiIiIrElbq8x\nERERkdijYCIiIiJRQ8FEREREooaCiYiIiEQNBRMRERGJGgomIiIiEjUUTERERCRqKJiIiIhI1Ij3\nlvQiEoPM7BTgSuB04Gfn3JIIT0lEwkQVExGJRufifUbHq0BShOci8v+3d4eqUoVRGIa/VcSgYjCZ\nDKLFZpNzjF6DYrUI3oBBMBkEi8ULsJwLEJPFcsQuJkWDHERQBItalmFG0AuYvVd4njKzmfLFl3/P\nnmFBfpIeGKmqzib5lORad79Yew+wDCcmwFT72fyR2Ou1hwDLESbAVHtJ3nb3j7WHAMsRJsBUV5Mc\nrj0CWJancoBxqup0kktJHm2vzyS5m6STfOnuhyvOA3bIiQkw0d729dU2Um5nEyYXktxcbRWwc8IE\nmGg/ydckn5PcSfKgu38nOZbkyZrDgN3yuDAwTlUdJjmR5HmS+939c+VJwEKcmACjVNXxJJeTvE9y\nLsnTqrq46ihgMcIEmOZKNl/Mv9fd15McJXn298OqOrXWMGD3hAkwzV6Sb939Znv9LpvbOqmq80lu\nrTUM2D1hAkyzn+TlP9e/knzYvr+R5GDxRcBihAkwzcn8Hx8HSb5X1eMkH7v7aJ1ZwBI8lQMAjOHE\nBAAYQ5gAAGMIEwBgDGECAIwhTACAMYQJADCGMAEAxhAmAMAYwgQAGEOYAABjCBMAYAxhAgCMIUwA\ngDH+AP80qw+Kyq1jAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "V = S[0]\nX = []\nY = []\nZ = []\n\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(V[k])\n Z.append(V0[k])\n \nplt.plot(X, Y, color=\"green\", linewidth=2, label=\"Optimum\")\nplt.plot(X, Z, \"--\", color=\"gray\", linewidth=1, label=\"Initial guess\")\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$V$\", fontsize=14)\nplt.title(\"Value Function\")\nplt.legend(loc='lower right')\nplt.show()", + "execution_count": 240, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGMCAYAAAAIiKIXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8lNXd///XmYSsJCEkYQv7juwJgigqiwUVBYpbQeBW\nXLu48HWpaFvrcitaRYsWq1WLCgX6q3qLFsUVEUGBhB1kh7AmYUkC2Zfz+2OSkZCFBJK5ksn72cc8\nmDlzruv6ZIrMO+c617mMtRYRERERp7icLkBEREQaNoURERERcZTCiIiIiDhKYUREREQcpTAiIiIi\njlIYEREREUcpjIiIiIijFEZERETEUQojIiIi4iiFEZEGzBhzwBjzhtN11BfGmE7GmCJjzESnaxHx\nJQojInWcMeYjY0ymMSa0kj7zjDG5xpjIau7ekftBGGNGFH+pl/d414mazqjvZmPMPRW8rXtoiNQw\nf6cLEJGzmgdcA/wSmHvmm8aYYGAMsNhae8LLtZ2vmUDiGW27nSjkDJOATsArpzdaa3cZY4KttXnO\nlCXimxRGROq+RcApYCLlhBFgHBCCO7TUN8ustYucLqI6FEREap5O04jUcdbaHOADYIQxJrqcLhOB\nk8DHJQ3GmN8bY743xhwzxmQZY1YbY8ad7VjGmKeNMfnltN9efAql1Rnto40x3xljThlj0o0xi4wx\n3av9Q5Zfi1/xMR8t571Sc11Oq2+QMeZlY0xqcU3/Ke/UVXHd3xpjMorr/sEYc0Pxe98Bo4DOp506\n2l78XrlzRowxVxR/3pnGmBPGmA+MMV3P6PN08bbtjTHvGmPSivv+wxgTWBOfmUh9pTAiUj/MAxoB\nN57eWPxFOxL4wFqbe9pb9wIJwB+A6UAR8L4xZuRZjmMpf05EmXZjzC24R21OAA8DTwO9ge+MMa2r\n9FNBmDEm6oyHqcJ2Z9ZY8no20AP4E/AaMBaYdUbdt+MObuHAM8DvgfXAlcVdngA2AEeAm3Gfsnmg\nokKMMaOAT4EmwB9xn3q6DPj+jM+h5DN8HwgsPu5/gKm4/38SabB0mkakfvgaOIx7FGT2ae034v7v\n+MxTNB1PDyfGmL/h/sKdBnx+vsUYY8KAl4HZ1tp7Tmt/F9gGPAL8rgq7ehc4PXxYoA1w6BxLO2Kt\nHX1aPQHAr40xd1lrs4wxTYCXgOXACGttmVEga+2XxpjDQIi1dn4VjvkCkAJcZK09WXzcj3GHwceB\nO07ra4AfrbW/KX79ujGmGXAb7iAj0iBpZESkHrDWFgELgMHGmLanvTURSMYdVk7vf3oQaYL7t/bl\nQFwNlXQlEAYsOH1UAygEVgPDqrifPwFXnPb4BZB6jjVZ4PUz2r4D/ICSz+xK3PNrni0viFRX8chH\nT+CtkiACYK1dh/v/k9FnbFJRjc2NMUHnW49IfaWREZH6Yx7ukY2JwAxjTCwwBHjZWnvmKZQxwKNA\nX9ynBErU1OTLzrh/y/+unPcscKyK+9lorf367N2qbP8Zr0uuLiqZN9Kx+M/NNXS8dsV/bi/nva3A\ncGNMozOCT9IZ/U6v8XAN1SVSryiMiNQT1tpEY8xPwARgBu5QAvCv0/sZY4YBH+L+zfxu3HMf8nGf\nLrjubIepoN3vjNeu4r4TgKPl9D/vUYdKaimvnhKFFbRXZR6Kt9SHGkW8SmFEpH6ZBzxpjOmNOwjs\nsNYmnNFnPJAJXGmt9XzxGWPuqsL+TwB+xpgQa23Wae3tz+i3q/jPFGvt0mrUX2XW2iJjzEncp5g8\niq88aXaOu92F+0u/F2VHKEodvor721f8Z7dy3usOJNfE6SARX6c5IyL1yzzcX6ZPAv0of92RQtxX\nz3hGD4wxHYFrq7D/ki/ry07btjEw+Yx+n+Je++QxY0yZUYoKLkE+U1W+8HedXkuxX3Pu/3YtwR3U\nHi2e3FqRTM4IQeWx1h4ANgG3Fk/qBcAY0xcYDnxyjnWKNCgaGRGpR6y1e40xK3Bfsmo54xRNsf/i\nvrR3iTFmPtAS+A3uq1x6nuUQnwIHgTnGmBeK26binsvgWWPEWptujPkd8DaQaIxZgPt0TTvckza/\nAf7fWY5VldMSbwKvGmP+DXwF9Mf9JV/enJSK9udpt9amGWMewH3Z76riutNwz61pZK29vbhrAjDe\nGPOX4ucZ1trFFez/QdyhY6Ux5m2gMXAPcBx3aBSRs9DIiEj9Mw93EPnRWltm6XRr7Re454e0wn35\n7Q2418ko77f0UuuHFJ9SGAvsAZ7CHWL+RtkrQLDWvof76pfDuNcZean4WAm4L9k9m6qMjPwd+Asw\nFPcltLHFx8wuZ/uK9leq3Vr7Bu5Va0/hXt/jWdxh5NPTur2K++qlqbg/75cr2d/nwFW4T3E9iXuS\n8TLgkuKRExE5C3PGJHwRERERr/KJkRFjzHRjzKripZ2TjTEfnrkUs4iIiNRNPhFGgEtx311zEO6F\nkxoBnxffzVRERETqMJ88TVM8kz8FuMxau9zpekRERKRivjIycqYmuCeZHXe6EBEREamcz42MFN/x\n82MgzFp7udP1iIiISOV8cZ2R2cAFwCUVdSi+odcoYC+Q452yREREfEIQ7lWZl1hrq3ofqkr5VBgx\nxrwKXA1caq2t7IZToyh7y3URERGpupspf+HFavOZMFIcRMYCl1trK7vnBLhHRJg7dy49evSo7dKk\n2LRp03jppZecLqNB0WfuffrMvU+fuXdt3bqVSZMmQfF3aU3wiTBijJmN+6ZhY4BMY0zz4rfSrbXl\nnYbJAejRowdxcXFeqlIiIiL0eXuZPnPv02fuffrMHVNj0xx85Wqau4FwYClw6LTHjQ7WJCIiIlXg\nEyMj1lpfCVUiIiINjr7ERURExFEKI+I1EyZMcLqEBkefuffpM/c+feb1n88telYVxpg4ICEhIUGT\nnkRERKohMTGR+Ph4gHhrbWJN7FMjIyIiIuIohRERERFxlMKIiIiIOEphRERERBylMCIiIiKOUhgR\nERERRymMiIiIiKMURkRERMRRCiMiIiLiKIURERERcZTCiIiIiDhKYUREREQcpTAiIiIijlIYERER\nEUf5O12AiIiIeEdqZiqbUjaxOXUzm1I2cc/Ae+jZrKfTZSmMiIiI+Jq0nDQ2p2z2hI6SAJKSmVKq\n38DYgQojIiIicu5yCnLYkrqFjckb2Ziy0RM8Dp48WKXtN6VsquUKq0ZhREREpI4rskXsObGHjSkb\n2Zi8kQ0pG9iYvJEdx3dQZIuqtI/moc3p2awnvWJ60atZL3o260nPGOdHRUBhREREpE5JzUz1hI6N\nKe7H5pTNZOZnVmn7JkFN6NWsV5nQERMaU8uVnzuFEREREQdk52ezJXULG5I3eELHxuSNJGcmV2n7\nQL9AesT0oHez3vRp3ofezXrTq1kvWoW1whhTy9XXLIURERGRWlRYVMjuE7vLjHbsPL6zyqdYOkZ2\npHez3u5Hc/efXaK64O+q3td4bm4uhw8fJicnh27dutWZ0KIwIiIiUkNO5p5kQ/IG1ievZ/2R9axP\nXs/GlI1k5WdVafvokOgyoaNns540DmgMQHJyMllZWeQczWHjgY3k5OR4Hrm5uVxwwQV07dq1wv2n\npKTwzjvvAPDII48QGBh4/j90DVAYERERqSZrLUnpSZ7QsS55HeuPrGfXiV0VbhNIII1pTDDBhLvC\n6RTeiXah7WgV1IqogChaN23NVSOuqnS0YuHChZw4ccLzOiAggKCgIM8jNze30rpbtGjB7373O4KC\ngggICKj+D15LFEZEREQqkVOQw+aUzaw9uJbNBzezPWU7+47toyCvgGCCCSr+3xGOlLt9p8hO9Gne\nhz5ZfTBJxUGjCEgDV4YL/yB/coNyOcWps542mTBhAn5+fgQHBxMYGIjLVb2F1Bs1akRUVFS1tvEG\nhREREWkQrLXk5eWRnZ1d6pGTk0N0dDTt2rUj+VRymdGOn47+RLgN5z7uowlNGFj8vxJ55JFDDrv9\ndtOzRU/6Ne9H3xZ96du8L72b9yY8MByAEydOkJGRQXBwsGcko1GjRtWatxETU3eviDkfPhFGjDGX\nAg8B8UBLYJy1dpGzVYmISG0oKioiNzfXEyby8/Np3759pdv861//YteuXRQVlZ0warEcjjjMosJF\nHDlV/ujGSU7yH/5DDjlkk014aDhdmnWhZ8ue9G3Zl34t+vF80+fxc/lVWENkZCSRkZHV+lkbCp8I\nI0AosA54C/jA4VpERKQKCgsLyc7OJjAwkEaNGlXYb/v27Xz77belRjJOFxAQwPTp0yvcPq8wj/C2\n4YQHhZOUmcSOkzvYfHwzJwpPkE02ueRi02252/q7/Lkg5gL6NncHjr7N+9K3RV+iQ6LP7YeWcvlE\nGLHWfgZ8BmDqynVKIiJCYWEhixcvJicnp8zpkby8PAB+9atf0a1btwr3ERQURPPmzQkODq7wUSIr\nP4sNyRtYe3gtiYcTSTySyKaUTeQV5p211qbBTX8OHMWho0d0DwL968YVJ77MJ8KIiIjUjv3795Oc\nnEx2djZZWVll/mzbti1jx46tcHuXy0VycjJBQUGEhIQQFRVVJkjExsZWWkPbtm1p27Ztmfb0nHTW\nHlnL2j1rSTySyNrDa9l6dGuV1u7o0KQD/Vv2p38L96Nvi77EhsXWmXU3GhqFERERH1VYWMipU6fI\nysoqN0hkZ2czZswY/P0r/ipITExk/fr1nuAQEhJCSEgI0dHRBAcH07Jly0prMMZw++23n/fPkpKZ\nUmq0Y+3htZVeRus5Pobu0d3p37I/cS3iPAEkMlhzN+qSBh1Gpk2bRkRERKm2CRMmMGHCBIcqEhEp\nX2FhIVlZWWRmZnrCRfPmzSu9uiIpKYl33323VJvL5fIEiuDgYPLz8ysNI6NHj2bMmDFeHTFIyUwh\n4VACaw6tYc3hNSQcSqjSXWgbuRrRq1kv+rfoT1xLd/Do07yPZ8Ewqb758+czf/78Um3p6ek1fhxj\nbfmTduorY0wRZ7maxhgTByQkJCQQFxfnveJERHBfYlpYWFhpCABYsGABqampZGZmlruY1YgRIxgy\nZEiF22dnZ3Pw4EFP8AgJCSEgIKBOnYo4nn28VPBYc2gNSelJZ90u2D+Yvi36EtcizhM8esb01PwO\nL0hMTCQ+Ph4g3lqbWBP7bNAjIyIiteXgwYPs3r271EjG6c8jIyP5zW9+U+k+mjdvTlRUFCEhIYSG\nhnpGNEqen20FzeDgYDp37lyTP9Z5ycjNIPFwojt4HFrD6kOr2X1i91m3iwiMKHWaJa5lHN2iulV6\nGa3ULz4RRowxoUBnoCTudzTG9AWOW2v3O1eZiNRH1lry8/PJzMzk1KlTZGZmlnkMGzas0pUsk5KS\nWLlypSc4hIaGEhER4Xl95ini8gwbNqwmfyyvyszLZO2RtZ7gsebQGrYd23bW7RoHNCa+ZTwDWg3w\nPDpFdqpTozlS83wijAADgG8AW/x4sbj9HWCqU0WJSN1RVFREdnY2mZmZ+Pv707Rp0wr7ZmZm8uKL\nL5ZqM8Z4QkVoaCgFBQWVHm/w4MEMHjy4Rmqv63ILcll3ZF2pUy1bUrec9aqWYP9g+rfsz4CWPweP\nrlFdNeLRAPlEGLHWfgtUb4F+EfFZa9asISkpqdTIRlZWFiVz5Pr27cu4ceMq3D4kJITx48cTGhpK\n48aNCQ0NJTg4uNr3AfFF1lp2HN/BqoOr+PHAj/x48EfWHVlHflF+pdsF+AXQr0W/UsGjR0wP/F0+\n8TUk50l/C0SkTikqKuLUqVMVPjIzM7nlllsqHbY/fvw4GRkZhIaGEhUV5RnNKAkXZztF4nK56N27\nd03/aPVSamaqO3gc/JFVB1ex6uAqTuScqHQbf5c/vZv1LnWqpVezXgT41Z27xErdojAiIrXOWktu\nbi4nT570nOqoyM6dO8tcShgSEkJYWBiNGzemSZMmFBQUVLp8+MiRI2us9oYkOz+bdUfW8eNB94jH\njwd+ZE/anrNu1z26O4NiB3Fhqwu5MPZC+jTvQ5B/kBcqFl+hMCIiNer777/nxIkTZUY0CgsLAbjy\nyisZNGhQhdvHxsYyceJEGjduTOPGjQkJCcHPT3MIalqRLWL7se38eOBHz8jH+uT1FBRVPhemWWgz\nBsUOcj9aD2JAqwE0CWriparFVymMiEgZJSt3njx5kpMnT5KRkcHJkyfx9/dn6NChlW67fft28vPz\nady4MTExMXTo0METLMLCwiq9AgUgNDSULl261OBPIwBpOWn8eOBHVuxfwcoDK1l1cBXpuZUvXhXs\nH0x8q3gGthrIoNbuANI2oq2ubJEapzAiIh5r1qzhm2++ISsrq1S7n58fYWFhZ136G+DWW2+trfKk\nikpGPVbuX+kJH1tSt2CpeJFLg+GCmAsYGDuQQbGDGBg7kF7NetHIr+LTYSI1RWFExEcUFRWRkpLi\nGc0o73HjjTfSpk2bCvfRrFkzBg0aRHh4OGFhYZ5HUFCQfhuuw07lnWLVwVWe4LFy/8qzTjJt2bgl\ng1oP8ox6DGg1gPDAcC9VLFKawohIHVdydUlRURFNmlR8br6goIDXX3/d8zo0NNQTJlq2bEnXrl1p\n3Ljye3RUdHdUqTustew+sZuVB34e9diQvKHSNT38Xf70a9GPi1tfzOA2g7m4zcW0CW+jgCl1hsKI\nSB2xb98+Dh486JmfkZGR4XluraV79+7cdNNNFW4fEBDA7bffTlhYGKGhoZr06SNyCnJYfXB1qfCR\nkplS6TYxITHu0FEcPga0GkBIoxAvVSxSfQojIrWksLDQEygyMjLo0aNHpTdG27hxIxs2bCAiIoLw\n8HCio6Pp0KED4eHhhIeHn3XiJ7ivRJH67Xj2cVbsX8F3+75j+f7lrDm0hrzCvAr7u4yLXs16cXHr\ni7m4jTt8aPl0qW8URkRqQEZGBj/88APp6emex6lTp0r1ueeeeypdgvyqq65i9OjR+hJpYJLSk1ie\ntNwTPjalbKq0f5OgJlzU+iLPqMfA2IGa6yH1nsKISDkKCws5efKkJ1hERkZWOvGzsLCQbdu2ERER\nQUxMDJ07d/aMcJQ8AgMrv7W5Tqv4viJbxJbULe7wkfQdy5OWk5SeVOk2XZp2YUjbIVzS5hIGtxlM\n9+juuIyWpRffojAiAqxatYr9+/d7wkfJPI0SgwYNqjSMREZGcs8993ijVKlH8grzWHNojSd8fJ/0\nfaVXubiMi/4t+nNp20sZ0nYIQ9oOoXnj5l6sWMQZCiPik/Lz80lLSyMtLY2TJ08SFxdXaf+SS2Ij\nIyNp3749ERERpR4BAbqnhpxdVn4WK/evZOnepSxLWsaqg6vIKcipsH+wfzAXtb7IEz4uan0RYYFh\nXqxYpG5QGJF67/jx46xdu9YTPtLS0krN13C5XPTq1avSQHHNNdd4o1TxMZl5mazYv4Kle5fy7b5v\nWXVwVaV3r40KjmJI2yGe8BHXMk6LiomgMCJ1lLWWkydPcvz4ccLDwyud+JmVlcXGjRtp0qQJUVFR\ndOrUicjISJo0aUKTJk0ICwvTrd+lRpzKO8X3Sd/z7b5vWbp3KasPra70Xi4dmnQoFT66R3fXBGWR\nciiMiOP27t1LSkoKx48f58SJExw/fpy0tDQKCtz/yF922WUMGzaswu1bt27N/fff761ypQE5mXuS\n7/d/z9K9S1m6dylrDq2h0BZW2L9rVFcub3c5Q9sP5bJ2l9E6vLUXqxWpvxRGpFbl5+dXeqt3gK++\n+orDhw/TpEkTmjZtSseOHWnatCmRkZGeEQ4Rb8jIzWB50nLPaZeEQwmVho9uUd0Y2n4ol7e7nMvb\nX06rsFZerFbEdyiMyHnLycnh2LFjHDt2zDO6UTLCkZeXx/Tp0ysdmp44cSKBgYE6lSJel1OQw8r9\nK/lqz1d8tecrVh9cXWn46BHdo9TIR8uws984UETOTmFEzstPP/3EwoULPa9DQ0M9oxolIxzW2krD\nSHBwsDdKFaGwqJDEw4me8LE8aXmlV7tcEHMBQ9sN5fL2l3N5u8t1ma1ILVEYEY+ioiLS0tJKjXJ0\n6dKFLl26VLhN69atue6664iKiqJp06ZnXdhLxJustfx09CdP+Fi6dylpOWkV9u8e3Z3h7YczrMMw\nLmt3Gc1Cm3mxWpGGS2GkgVu+fDkHDhzwhI+iIvedP/39/WnatCmtWlV+Drxx48b06tXLG6WKVMn+\n9P2e8PH1nq85dPJQhX1bh7dmRIcRjOgwguEdhhMbrnv7iDhBYcRHWWs5deoUYWGVL6B07NgxCgsL\n6dSpEwMHDiQqKoqoqCjCw8N1CaLUCxm5GXyz5xs+3/U5X+z+gh3Hd1TYt2lwU4a1H+YOIB1H0KVp\nF/09F6kDFEbqucLCQo4fP87Ro0dJTU3l6NGjnkdhYSGPPvpopfc8GTt2rBerFTl/RbaIhEMJfL7r\nc5bsWsLKAysrXOsjpFEIl7a91BM++rXop/u6iNRBCiP12N69e3nvvfc8p1aCgoKIiYmhRYsW9OrV\ni+joaIcrFKkZBzMOesLHl7u/5Fj2sXL7+bv8uaj1RZ5TL4NaDyLAT0v5i9R1CiN1TMkk0pSUFMLC\nwoiNrfgcdkxMDFdeeSUxMTFER0cTGhqqIWfxCdn52Szbt4wlu5bw+a7P2Zy6ucK+XZp2YWSnkYzq\nNIqh7Yfq3i4i9ZDCiINOnjxJcnIyKSkpnkdqaqpn5dGBAwdWGkZCQ0O58MILvVWuSK2x1rI5dTNL\ndi5hya4lLNu3jNzC3HL7RgRGMKLjCEZ2HMnITiPpENnBy9WKSE1TGHHQ4sWL+emnn2jUqBHNmjWj\nRYsW9OnTh2bNmtGsWTNCQ0OdLlGk1mTmZfL1nq9ZvGMxi3cuJik9qdx+LuNiYOxARnYcyajOoxgY\nOxB/l/7pEvElPvVftDHmt8CDQAtgPXCPtXa1t45fcnO3I0eOkJyczEUXXVTpUugjRoxg5MiRNGnS\nRKdXpEHYcWyHJ3ws3buUvMK8cvu1CW/DqE6jGNV5FMM7DKdpcMU3ShSR+s9nwogx5ibgReBOYBUw\nDVhijOlqrT1a08crKioiNTWVI0eOeMLHkSNHyM7OBtyTSbt3705MTEyF+9AEU/F1OQU5LNu3zB1A\ndiyu8LLbQL9AhrYfylWdr2JU51F0i+qmgC7SgPhMGMEdPl631r4LYIy5GxgNTAWer+mDZWdn8/e/\n/x2AyMhImjdvzqBBg2jRogXNmzcnIiJC/5hKg5SUnuQJH1/t+Yqs/Kxy+7UJb8PoLqO5usvVDO8w\nnNAAnZYUaah8IowYYxoB8cAzJW3WWmuM+RIYXJ195efnk5ycTF5eHh07dqywX2hoKFOnTqVZs2Za\nAl0atCJbxJpDa1i0bRGLti1iY8rGcvv5GT+GtB3C1V2uZnSX0VwQc4ECu4gAPhJGgGjAD0g+oz0Z\n6FbRRgUFBRw4cIBDhw5x+PBhDh8+TEpKCtZaWrRowV133VXpQdu0aXPehYvURzkFOXy1+ysWbVvE\nx9s/5vCpw+X2ax7anKu6XMXVna/mF51+QZOgJl6uVETqA18JI+fk7bffpmXLlrhcLpo3b05sbCwD\nBgygVatWNGumG2SJnO5o1lE+2f4Ji7YtYsmuJRWefhkYO5DRXUYzusto+rfsrxVPReSsfCWMHAUK\ngTPv790cOFLRRqtWrSI6OprAwEDPcPGECRMYMGBArRUqUp9sP7adj376iEXbF7Fi/wqKbFGZPkH+\nQVzR8QrGdhvLNV2voUXjFg5UKiK1Yf78+cyfP79UW3p6eo0fx1hra3ynTjDG/AD8aK29r/i1AZKA\nWdbav5zRNw5ISEhIIC4uzvvFitRRRbaIVQdX8cHWD1i0bRHbjm0rt19MSAzXdr2WMd3GcEXHKzT5\nVKQBSUxMJD4+HiDeWptYE/v0lZERgJnAHGNMAj9f2hsCzHGyKJG6rqCogO/2fccHWz/gw58+5ODJ\ng+X26x7dnbHdxjKm2xgGxQ7Cz1XxDRhFRKrDZ8KItfbfxpho4Encp2fWAaOstanOViZS9+QW5PL1\nnq95f+v7fLTtI45mlV2Kx2VcDGk7hDFdx3Btt2vpGtXVgUpFpCHwmTACYK2dDcx2ug6RuigrP4vP\ndn7GB1s/4OPtH5ORm1GmT4BfACM7jWR89/Fc2+1aokO0MJ+I1D6fCiMiUlpGbgafbP+E97e+z6c7\nPiW7ILtMn5BGIVzd5Wqu63EdV3e5mvDAcAcqFZGGTGFExMdk5mXy8faPWbh5IZ/u+LTcu99GBEYw\nptsYxvcYz6hOowhuFOxApSIibgojIj4gOz+bxTsWs3DzQj7Z/km5IyAxITGM6z6O63pcx7AOwwjw\nC3CgUhGRshRGROqp3IJcPt/1OQs2L2DRtkWcyjtVpk/z0ObccMENXH/B9QxpO0RXwIhInaQwIlKP\n5Bfm89Wer1i4eSEfbv2Q9Nyyiw9Fh0RzXY/ruKnnTVzW7jIFEBGp8xRGROo4ay0rD6xk3oZ5LNy8\nkGPZx8r0aRLUhPHdx3NTr5sY3mE4/i79py0i9Yf+xRKpo7Yd3ca8jfOYt3Eeu0/sLvN+WEAY47qP\n46aeN/GLTr/QHBARqbcURkTqkORTySzYtIB5G+ex+tDqMu8H+wczptsYftXrV1zZ+UqC/IMcqFJE\npGYpjIg4LDMvk//76f+Yu3EuX+z6gkJbWOp9l3FxRccruLn3zfyy+y8JCwxzqFIRkdqhMCLigCJb\nxDd7vmHO+jl8uPVDMvMzy/SJaxnHpN6T+FWvX9EyrKUDVYqIeIfCiIgX7T6xmznr5vDO+ndISk8q\n8367iHbc3Ptmbu5zMxfEXOBAhSIi3qcwIlLLMvMy+c+W/zBn/RyW7l1a5v3IoEhu7HkjN/e+mUva\nXoLLuLxfpIiIgxRGRGqBtZYV+1fwz3X/ZOHmhWUWJHMZF6M6jeLWfrcyptsYAv0DHapURMR5CiMi\nNejQyUO8s+4d5qyfw/Zj28u83zWqK7f2u5XJfSYTGx7rQIUiInWPwojIeSosKuSL3V/wesLrfLzt\n4zJXw4QFhHFTz5u4tf+tDG49GGOMQ5WKiNRNCiMi5+jwycO8vfZt/pH4D/al7yvz/tD2Q5nabyrj\ne4wnNCALFb24AAAgAElEQVTUgQpFROoHhRGRaiiyRXyx6wveSHyDRdsWUVBUUOr9lo1bMrX/VKb2\nn0rHyI4OVSkiUr8ojIhUwZFTR/jn2n/yj8R/sCdtT6n3DIZRnUdxZ9ydXNP1Ghr5NXKoShGR+klh\nRKQCJVfEvLLqFd7f+n6ZUZAWjVtwW//buK3/bXSI7OBQlSIi9Z/CiMgZsvOzWbBpAa+seoW1R9aW\nes9gGNlpJHfG38m1Xa/VKIiISA1QGBEplpSexOzVs3kz8U2OZR8r9V5MSAy3x93OHXF3aBRERKSG\nKYxIg2atZenepbyy6hU+2vYRRbao1PsXtrqQewbeww09b9AdckVEaonCiDRIOQU5vLf+PWatmsWm\nlE2l3mvkasSNPW/knoH3MKj1IIcqFBFpOBRGpEFJzUxl9urZ/G3130jNSi31XsvGLbl7wN3cGX8n\nLRq3cKhCEZGGR2FEGoRtR7cxc+VM3t3wLjkFOaXeu6TNJfxu4O8Y32M8AX4BDlUoItJwKYyIz7LW\nsmzfMl5c+SIfb/+41Ht+xo8bet7AA4MfYECrAQ5VKCIioDAiPqiwqJD3t77P898/T8LhhFLvNQ5o\nzB1xd3DfoPto16SdQxWKiMjpFEbEZ+QV5jF3w1xmLJ/BjuM7Sr3XOrw19w26jzvi7iAiKMKhCkVE\npDz1PowYYx4FRgP9gFxrbVOHSxIvy8rP4s3EN/nLir9wIONAqff6t+jPA4Mf4MaeN2qBMhGROqre\nhxGgEfBvYCUw1eFaxIvSctKYvXo2L//wcpkrY4a1H8b0IdO5ouMVGGMcqlBERKqi3ocRa+0TAMaY\n/3G6FvGO1MxUXv7hZV5d/SoZuRml3ru267VMHzKdwW0GO1SdiIhUV70PI9JwHM06ygsrXuCVVa+Q\nlZ/laXcZFzf1vIlHhjxCn+Z9HKxQRETOhcKI1HnHs4/z4ooXmbVqFqfyTnnaG7kacUu/W3j4kofp\n3LSzgxWKiMj5qJNhxBjzLPD7SrpYoIe1druXShIHnMg+wUs/vMTLP7zMybyTnvYAvwDuir+Lhy95\nmNbhrR2sUEREakKdDCPAC8A/z9Jn9/keZNq0aURElL7Mc8KECUyYMOF8dy3nIT0nnZd/eJmXfniJ\n9Nx0T3sjVyPuiLuD6ZdOVwgREfGC+fPnM3/+/FJt6enpFfQ+d8ZaW+M7dULxBNaXqnJprzEmDkhI\nSEggLi6u9ouTKsnOz+bVVa/y7PJnOZFzwtPu7/Lntv638eilj9I2oq2DFYqISGJiIvHx8QDx1trE\nmthnXR0ZqTJjTBugKdAO8DPG9C1+a6e1NtO5yqSqCooKeHf9uzy+9PFS64T4GT9u7Xcrj132GO2b\ntHeuQBERqVX1PowATwJTTntdktKGAcu8X45UlbWWRdsW8ejXj7IldYun3WCY0ncKf7r8T3SM7Ohg\nhSIi4g31PoxYa28FbnW6Dqme5UnL+f2Xv2fF/hWl2q/tei3PjHiGXs16OVSZiIh4W70PI1K/7Di2\ng4e+eIiPtn1Uqn1w68E8d8VzXNruUocqExERpyiMiFek5aTx1LdP8cqqV8gvyve094juwbMjnmVM\ntzFatl1EpIFSGJFaVVBUwD8S/sGflv6Jo1lHPe2twlrx5NAn+Z9+/4O/S38NRUQaMn0LSK35cveX\nTFsyjU0pmzxtQf5BPHzxwzx8ycOEBoQ6WJ2IiNQVCiNS43af2M20JdNYtG1RqfYJvSYw44oZWitE\nRERKURiRGpNTkMNfvv8Lzyx/hpyCHE/7ha0u5OUrX+biNhc7WJ2IiNRVCiNSI5bsXMLvPv0dO4/v\n9LS1CmvFjBEzuLnPzbiMy8HqRESkLlMYkfNyIOMA05ZM4z9b/uNp8zN+3H/R/Tx++eOEBYY5WJ2I\niNQHCiNyTgqKCpj14yz+9M2fyMz/edX9S9teyt+u/hu9m/d2sDoREalPFEak2jYkb+C2Rbex5tAa\nT1tMSAwvjHyByX0ma70QERGpFoURqbLcglyeXvY0M76fQUFRAeC+j8zdA+7mf4f/L5HBkQ5XKCIi\n9ZHCiFTJiv0ruH3R7Ww9utXT1iO6B2+NeYvBbQY7WJmIiNR3CiNSqVN5p3j0q0d5ddWrWCwA/i5/\nHh3yKI9e+iiB/oEOVygiIvWdwohUaMX+FUz5cAq7TuzytF3Y6kLeGvOWJqiKiEiNURiRMvIK8/jz\n0j/z3PfPUWSLAAj2D+bp4U9z36D78HP5OVyhiIj4EoURKWVTyiYmfTCJ9cnrPW0Xt7mYd8a9Q+em\nnR2sTEREfJXCiABQWFTISz+8xGNfP0ZeYR4AjVyNeGLoEzx8ycMaDRERkVqjMCIcPnmYSR9O4us9\nX3vaesb0ZO74ufRr0c/BykREpCFQGGngPtv5GVM+nEJqVirgXjfkgcEP8NTwpwjyD3K4OhERaQgU\nRhqovMI8/vD1H/jLir942lqFtWLe+HkMbT/UucJERKTBURhpgPac2MOv3v8Vqw6u8rSN7jKaOePm\nEB0S7WBlIiLSECmMNDD/3f5fJn04ibScNMA9SfW5K57j/ovu1z1lRETEEQojDUSRLeKpb5/iz9/+\n2dPWKbITC65fwIBWA5wrTEREGjyFkQbgRPYJJn84mf/u+K+n7Zfdf8mccXMIDwx3sDIRERGFEZ+3\nIXkDv1z4S3af2A2Ay7h4ZvgzPHzJwzotIyIidYLCiA/7z5b/MOXDKWQXZAMQFRzFgusXcEXHKxyu\nTERE5GcKIz7IWssz3z3DH775g6ctvmU879/4Pu2atHOwMhERkbJcVe1ojFlQm4VIzcgtyGXK/00p\nFUQm95nM8qnLFURERKROqnIYAa4yxkTWWiXnyBjTzhjzpjFmtzEmyxizwxjzZ2NMI6dr87aUzBSG\nvzucuRvmetqeHfEs74x7R6upiohInVWd0zRhwBJjzHXW2v21VdA56A4Y4A5gF9ALeBMIAR52sC6v\n2nZ0G1fOu5K9aXsBCPYPZu74uYzvMd7ZwkRERM6iOmFkN/A/wHRjzC7gZWttYe2UVXXW2iXAktOa\n9hpjXgDupoGEkVUHV3H1vKs5ln0McC/rvuhXi4hvFe9wZSIiImdXndM0Y621W621vwESgH8ZY4bU\nUl3nqwlw3OkivOGznZ8x7J1hniDSp3kfVt2+SkFERETqjSqHEWvt5tOeLwUmAZcaY/5mjImqhdrO\niTGmM/A74O9O11Lb3lv/HtfOv5as/CwAhrYfyrJblhEbHutwZSIiIlVXnZGRUqy1+dbaZ4EXgJeN\nMXfUXFlgjHnWGFNUyaPQGNP1jG1igU+Bhdbat2uynrrmxRUvMuX/plBQVADA9Rdcz6c3f0pEUITD\nlYmIiFSPsdbWzI6MuQ64Cfhfa+36GthfFHC2EZfd1tqC4v6tgG+AFdbaW8+y7zgg4bLLLiMiovSX\n94QJE5gwYcK5F17LrLU8tewpHl/6uKftNwN+w6yrZuHn8nOwMhER8TXz589n/vz5pdrS09NZtmwZ\nQLy1NrEmjlPlMGKM6WetXXeWPo2BP+G+uuUJa+2p8y+xSrXFAl8Dq4HJ9iw/VEkYSUhIIC4uzhsl\n1ghrLX/4+g88s/wZT9sTQ5/gj5f9UUu7i4iIVyQmJhIfHw81GEaqczXNX4HLT28w7m/AVkD74kc7\n3JNHhwMTjDH3WGs/rIlCK1I8IrIU2IP76plmJV/M1trk2jy2N1lrefDzB5n5w0xP28yRM5k2eJqD\nVYmIiJy/6oSRC40xTwKxuENHe6A1ULK42Om/mhcCB3Gv/VGrYQT4BdCx+FGy/okBLOAT5y2stdz7\n6b28uvpVT9vfrv4bv7nwNw5WJSIiUjOqE0aCgJI1xvOBA8D3wD5gb/Gj5PkBb61BYq19B3jHG8dy\ngrWWaUumeYKIwfDGtW9we9ztDlcmIiJSM6oTRlKAG3CfDjlkrS2qnZLkdH/65k/89ce/Au4gMmfc\nHKb0neJwVSIiIjWnOmHkU2vtd7VWiZQxY/kMnv7uac/rN8e8qSAiIiI+pzqLnlV6uazUrFd+fIXp\nX033vJ515Sym9p/qYEUiIiK145wXPZPa897697j3s3s9r58d8Sz3DLrHwYpERERqj8JIHfPFri+Y\nuujnEZDHLn2MR4Y84mBFIiIitUthpA5Zf2Q91/37Os8S778e8GueGvaUw1WJiIjULoWROiIpPYmr\n/3U1J/NOAjC221heueoVrawqIiI+T2GkDsjIzeDqeVdz6OQhAC5qfRH/uu5futeMiIg0CAojDiss\nKuTmD25mc+pmALo07cLHEz4mpFGIw5WJiIh4h8KIw/74zR/5ZPsnAEQGRbL45sVEh0Q7XJWIiIj3\nKIw4aMGmBTy7/FkA/Iwf/77h33Ru2tnhqkRERLxLYcQhiYcTmfrRz5fwzhw1kys6XuFgRSIiIs5Q\nGHFAWk4a1/37OrILsgGY2m8q9wzUomYiItIwKYx4mbWWqR9NZW/aXsB95czs0bN1Ca+IiDRYCiNe\n9sqqV/jwpw8B94TVhdcvJNA/0OGqREREnKMw4kWrD67mwc8f9Lx+Z9w7tI1o62BFIiIizlMY8ZL0\nnHRu+s9N5BflA/Dg4Ae5ttu1DlclIiLiPIURL7n3s3vZk7YHcM8TeWbEMw5XJCIiUjcojHjBh1s/\n5N317wIQHhjOgusW0MivkcNViYiI1A0KI7UsJTOFuz65y/N61pWzaNeknYMViYiI1C0KI7XIWsud\nH99JalYqAOO6j2NK3ykOVyUiIlK3KIzUogWbFvDRto8AiAmJ4fVrXtd6IiIiImdQGKklJ7JPcP+S\n+z2v/37N32kW2szBikREROomhZFa8siXj5CSmQLA+B7jGd9jvMMViYiI1E0KI7Xg+6TveSPxDQDC\nAsKYdeUshysSERGpuxRGalheYV6pq2eeHv40seGxDlYkIiJStymM1LBXV73K5tTNAMS3jOe3F/7W\n4YpERETqNoWRGpSamcqT3z4JgMHw+jWv4+fyc7gqERGRus0nwogx5iNjzD5jTLYx5pAx5l1jTEtv\n1/H40sdJz00H4NZ+txLfKt7bJYiIiNQ7PhFGgK+BG4CuwHigE/D/ebOATSmbeD3hdQAaBzTm6eFP\ne/PwIiIi9Za/0wXUBGvtX097ud8YMwP40BjjZ60t9EYND33xEEW2CIBHhzxKyzCvD8yIiIjUS74y\nMuJhjGkK3Ax8760g8t2+7/hs52cAtI1oy7TB07xxWBEREZ/gM2HEGDPDGHMKOAq0AcZ547jWWh77\n+jHP6z9f/meC/IO8cWgRERGfUGdP0xhjngV+X0kXC/Sw1m4vfv088CbQDngceA+4prJjTJs2jYiI\niFJtEyZMYMKECVWu8/Ndn/Nd0ncAdIvqxuS+k6u8rYiISF02f/585s+fX6otPT29xo9jrLU1vtOa\nYIyJAqLO0m23tbagnG1jgf3AYGvtj+W8HwckJCQkEBcXd841WmsZ+OZA1hxaA8DC6xdyY88bz3l/\nIiIidV1iYiLx8fEA8dbaxJrYZ50dGbHWHgOOnePmJYt7BNZQOeX6bOdnniDSt3lfrr/g+to8nIiI\niE+qs2GkqowxA4ELgeXACaAz8CSwA1hZm8ee8f0Mz/PHL38cl/GZKTgiIiJe4wvfnlm41xb5EvgJ\n+AewDhhqrc2vrYOu2L+CZfuWAdA9ujtju4+trUOJiIj4tHo/MmKt3QSM8PZxn/v+Oc/z31/ye42K\niIiInCN9g56DLalbWLRtEQCtw1szsfdEhysSERGpvxRGzsFLK1/yPP9/F/0/AvwCHKxGRESkflMY\nqaa0nDTmbZwHQHhgOHfE3+FwRSIiIvWbwkg1zVk3h+yCbAD+p+//0DigscMViYiI1G8KI9VQZIuY\nvXq25/WvB/zawWpERER8g8JINXy1+yt2HN8BwLD2w+gR08PhikREROo/hZFqmL3m51GR3174Wwcr\nERER8R0KI1V05NQRPt72MQCtwloxptsYhysSERHxDQojVTR/43wKbSEAt/S9hUZ+jRyuSERExDco\njFTRuxve9Tyf3Heyg5WIiIj4FoWRKtiQvIF1R9YBMDB2IN2juztckYiIiO9QGKmC99a/53k+pc8U\nBysRERHxPQojZ2GtZeHmhQD4u/y5qddNDlckIiLiWxRGzmL1odXsz9gPwBUdryA6JNrhikRERHyL\nwshZvL/lfc/z63pc52AlIiIivklhpBLWWt7f6g4jfsaPcd3HOVyRiIiI71EYqcSG5A3sOrELgMvb\nX65TNCIiIrVAYaQSH2z9wPNcp2hERERqh8JIJRbvXOx5PrbbWAcrERER8V0KIxVIzUwl4VACAH2b\n9yU2PNbhikRERHyTwkgFvtj9BRYLwKhOoxyuRkRExHcpjFTgs52feZ5f2flKBysRERHxbQoj5Siy\nRSzZtQSA0EahXNL2EocrEhER8V0KI+VYd2QdKZkpAIzoOIIAvwCHKxIREfFdCiPl+Gr3V57nmi8i\nIiJSuxRGyrF8/3LP86HthzpXiIiISAOgMHKGIlvE8iR3GGka3JTu0d0drkhERMS3+VQYMcYEGGPW\nGWOKjDF9zmUfPx39iePZxwEY0nYILuNTH5GIiEid42vftM8DB6B4gZBzUDIqAjCkzZAaKElEREQq\n4zNhxBhzFfAL4EHAnOt+vkv6zvP80naXnn9hIiIiUil/pwuoCcaY5sAbwBgg+3z2VTIyEuwfTFzL\nuPMvTkRERCrlKyMj/wRmW2vXns9ODmYcZG/aXgAGtR6k9UVERES8oM6GEWPMs8UTUSt6FBpjuhpj\n7gUaA8+VbHqux1x9aLXn+eDWg8/vBxAREZEqqcunaV7APeJRmT3AMGAwkGtMqRyyxhgzz1p7a0Ub\nT5s2jYiICM/rn47+BK2A3jCg1YBzLlxERMQXzJ8/n/nz55dqS09Pr/HjGGvP+cKTOsEY0xoIP62p\nFbAEuA5YZa09VM42cUBCQkICcXE/zwsZ/a/RLN6xGIA99+2hfZP2tVi5iIhI/ZOYmEh8fDxAvLU2\nsSb2WZdHRqrEWnvg9NfGmEzcp2p2lxdEKtkPCYcSAPdiZ+0i2tVonSIiIlK+Ojtn5DxVe7jn8KnD\nJGcmAxDXMo4zTvmIiIhILan3IyNnstbuA/yqu13JqAhAfMv4mixJREREKuGrIyPVtjFlo+d5vxb9\nHKxERESkYVEYKbYldYvnec+Yng5WIiIi0rAojBQrCSMu46JrVFeHqxEREWk4FEaAwqJCth7dCkDn\npp0J9A90uCIREZGGQ2EE2Je+j5yCHECnaERERLxNYQTYnLLZ8/yCmAscrERERKTh8blLe8/F6ZNX\nFUZEpC5ISkri6NGjTpchDVR0dDRt27b12vEURoBtx7Z5nveI7uFgJSIi7iDSo0cPsrKynC5FGqiQ\nkBC2bt3qtUCiMALsPrHb87xT004OViIiAkePHiUrK4u5c+fSo4d+QRLv2rp1K5MmTeLo0aMKI960\nJ20PAFHBUYQHhp+lt4iId/To0aPUzTxFfFWDn8CaV5jH/vT9AHSM7OhwNSIiIg1Pgw8j+9L2YYvv\nq6cwIiIi4n0NPoyUnKIB6NCkg4OViIiINEwNPoycPnlVIyMiIiLepzCiMCIi4vPmzJmDy+UiKSnJ\n6VKkHA0+jJx+mkZhRETEe7Zs2cKkSZNo3bo1QUFBxMbGMmnSJLZs2XL2jSvw7LPP8tFHH5VpN8Zg\njDmfcqUWNfgwsjdtL+C+W2+biDbOFiMi0kB88MEHxMXF8c033zB16lRee+01br/9dpYuXUpcXFy5\ngaIqnnnmmXK3nTJlCtnZ2V5dVVSqrsGvM3L45GEAmoc2x9/V4D8OEZFat3v3bqZMmULnzp1ZtmwZ\nTZs29bx33333MWTIECZPnsyGDRto3759jRzTGENAQECN7EtqXoMeGSmyRSRnJgPQonELh6sREWkY\nnn/+ebKzs3njjTdKBRGApk2b8vrrr3Pq1Cmef/55AP785z/jcrnYtm0bN954IxEREURHR3P//feT\nm5vr2dblcpGVleWZH+JyuZg6dSpQ/pyR9u3bM2bMGL799lsuvPBCQkJC6NOnD99++y3gHr3p06cP\nwcHBDBgwgHXr1pWqdejQoQwfPrzMz3fLLbfQocPPV2fu27cPl8vFzJkzmT17Np06dSI0NJRRo0Zx\n8OBBAJ566inatGlDSEgI48aNIy0t7Xw+4nqnQQ8FpOWkUVBUAEDLsJYOVyMi0jB88skntG/fnosv\nvrjc9y+99FLat2/Pf//7XwDPXI8bb7yRDh06MGPGDH744QdmzZpFWloac+bMAWDu3LncdtttDBo0\niDvvvBOATp06efZx5pwRYww7duzg5ptv5q677mLy5Mn85S9/YcyYMbz22ms89thj/Pa3v8VayzPP\nPMNNN93Etm3bSm1fnormp8ydO5f8/Hzuvfdejh8/znPPPccNN9zA8OHD+fbbb3nkkUfYuXMns2bN\n4sEHH+TNN9+sxqdavzXoMHIs65jnecvGCiMiUv8MeGMAR04dqfXjtGjcgjV3rjnv/WRkZHDo0CHG\njRtXab8+ffrw8ccfk5mZ6Wnr1KkTH3zwAQC//vWvCQsL47XXXuPBBx+kV69eTJw4kbvuuouOHTsy\nceLEKtWzfft2Vq5cycCBAwH3EvyjRo3izjvvZNu2bcTGxgLQpEkT7r77bpYtW8Zll112Lj86hw4d\nYufOnTRu3BiAgoICnn32WXJyclizZg0ul/tkRUpKCvPmzeO1116jUaNG53Ss+qZBh5HUrFTPc52m\nEZH66MipIxw8edDpMqrs5MmTAISFhVXar+T9jIwMwD3a8Nvf/rZUn3vuuYfZs2ezePFievXqdU71\nXHDBBZ4gAjBo0CAARowY4QkiJe3WWnbv3n3OYeTGG2/0BJHTjzV58mRPEClpX7BgAQcPHqyxOTN1\nXYMOI0ezjnqea2REROojb/0iVVPHKQkZJaGkIuWFls6dO5fq06lTJ1wuF3v37j3nes68uiY83H2z\n1NatW5dqj4iIAODEiRPnfKw2bUpfsVmyz8qOpTDSABzNPC2MaM6IiNRDNXHqxJvCw8Np2bIlGzZs\nqLTfhg0biI2NLTWScKaaWDfEz8+vWu3W2rMev7CwsMaP5esa9NU0x7J/njOi0zQiIt5xzTXXsGfP\nHlasWFHu+9999x179+7l2muvLdW+Y8eOUq937txJUVFRqdEDby5sFhkZWe5VL/v27fNaDb6iQYcR\nnaYREfG+hx56iKCgIO666y6OHz9e6r3jx49z9913ExoaykMPPeRpt9byt7/9rVTfWbNmYYzhqquu\n8rSFhoZ67bLYTp068dNPP3Hs2M+/2K5fv57vv//eK8f3JQ37NE32USgO0RoZERHxjs6dO/POO+8w\nadIkevfuzW233UaHDh3Ys2cPb7/9NseOHWPBggVl5kvs2bOHsWPHcuWVV7JixQrmzZvn2UeJ+Ph4\nvvzyS1566SVatWpFhw4dSk1QrUlTp05l5syZjBw5kttuu43k5GRef/11evXq5Zl4e64a0ikaaOgj\nI8VzRiICIwhuFOxwNSIiDcf1119PQkICw4YN4+233+bXv/41b731FsOGDSMhIYGxY8eW6m+MYeHC\nhQQGBjJ9+nQ+/fRT7r333jJrccycOZP4+Hj++Mc/MnHiRP7+979XWENF64FUtb179+689957ZGRk\n8MADD/DJJ58wd+5c+vfvX+6aJhXts6LaGhLjC+nLGLMXOH1KtAWmW2ufr6B/HJAQ9Jsgcprl0D26\nO1t/u9ULlYqInF1iYiLx8fEkJCQQFxfndDmOe+KJJ3jyySdJTU0ts2Kr1Lyz/f0reR+It9Ym1sQx\nfeU0jQX+APwDz4kXKr9uDMgpyAEgJiSm1goTERGRyvlKGAE4Za1NPXu3sqJComq6FhEREakiX5oz\n8ogx5qgxJtEY86AxpvwLt8vRNEjDfiIiIk7xlTDyV+BXwFDg78CjwHNV3bhpsMKIiEhd9fjjj1NY\nWKj5Ij6szp6mMcY8C/y+ki4W6GGt3W6tffm09k3GmHzg78aY6dba/LMdS2FERETEOXU2jAAvAP88\nS5/dFbT/iPtnaw/sqKAPfAYEwYKvFrCyyUoAJkyYwIQJE6pbq4iIiM+ZP38+8+fPL9WWnp5e48ep\ns2HEWnsMOHbWjuXrDxQBKZX2uhJoBX+4/g/c0POGczyUiIiIbyrvF/TTLu2tMXU2jFSVMeYiYBDw\nDe7LeS8GZgLvWWurFN90mkZERMQ59T6MALm4J68+DgQCe4AXgZequoPI4MjaqUxERETOqt6HEWvt\nWmDw+ewjPDC8hqoRERGR6vKVS3vPS1hAmNMliIiINFgKI0BYoMKIiEh94HK5ePLJJ6vUt3379kyd\nOrXax9i3bx8ul4t333232tvKuWnwYcRlXAT76469IiLe8M477+ByuUhMPLf7q51599uVK1fyxBNP\nkJGRUaavy+VqcHe/ra/q/ZyR8xUWEKa/rCIiXnQ+/+ZmZ2fj7//zV9eKFSt48sknufXWWwkPLz3/\nb9u2bbhcDf537npBYUSnaERE6o2AgIBSr621FfZt1KhRbZcjNaTBR0ZNXhURcdYtt9xCWFgYhw4d\nYty4cYSFhdGsWTMeeuihMmHj9DkjTzzxBA8//DDgnh/icrnw8/MjKSnJ03b6nJETJ07w4IMP0qdP\nH8LCwoiIiODqq69mw4YN51z7hg0buPzyywkJCaFNmzb87//+L//85z9xuVyeOs6s+3TlzWtJT0/n\n/vvvp23btgQFBdGlSxeef/75Mp/FggULGDBgAOHh4URERNCnTx9mzZrleb+goIAnnniCrl27Ehwc\nTHR0NJdeeilfffXVOf+8tUUjIxoZERFxlDGGoqIiRo0axUUXXcSLL77Il19+ycyZM+ncuTN33XVX\nuduNHz+e7du3s2DBAv76178SFRUFQExMjGe/p9u9ezeLFi3ihhtuoEOHDiQnJ/P6668zdOhQtmzZ\nQqW2gNAAAA9ASURBVIsWLapV96FDhxg2bBh+fn489thjhISE8OabbxIQEFDlU1Fn9svOzuayyy7j\n8OHD3H333bRp04YVK1Ywffp0jhw5wsyZMwH44osvmDhxIr/4xS94/vnnAdi6dSsrVqzg3nvvBdw3\nGJwxYwZ33nknF154IRkZGaxZs4bExERGjBhRrZ+1timMaGRERMRxOTk5TJgwgUcffRSAO++8k/j4\neN56660Kw0jv3r2Ji4tjwYIFjB07lrZt21Z6jD59+rB9+/ZSbZMnT6Zbt2689dZbPPbYY9WqecaM\nGaSnp7N27Vp69+4NwK233krnzp2rtZ/Tvfjii+zZs4d169bRsWNHAO644w5atmzJCy+8wAMPPEBs\nbCyLFy8mIiKCJUuWVLivxYsXM3r0aP7/9u4/OOo6v+P4800Ak/Ar5MIdZZjEudBQOO9OWTpXkEAA\nAY9w1KlCpWhjaWiVU2NbRY8ZxMEI05u5glfnIj/jnYiOQXvSK0zC1UHmBlAnHEg9roIm3okgSAgG\nEArk0z++m7ghP3eT3e/u5vWY2YF89/Pdfe9nvvPZ136+v8rKyiKuJ1a0m0YzIyKS4BoaGjhx4kS7\nj9OnT3f6GqdPn253/YaGhhh8ClqFjvz8fD76qL37oYYv9BiSxsZG6urqSE9PZ/To0RGd3VNZWcmE\nCROagwhARkYGCxcujLjGbdu2kZ+fz5AhQzhz5kzzY/r06Vy9epU9e/Y0v8+FCxc6DCMZGRm8//77\nHDt2LOJ6YkUzI5oZEZEEV11dzVtvvdXu88OGDWPJkiUdvkZFRUW7oWXKlCkUFBR0p8ROpaamNu9m\naTJ06FDOnj3bY+/hnGPt2rWUlZVRU1PDtWvXAG9XSVZWVtiv9/HHHzNx4sRWy7szM3L06FEOHz7c\nvKsplJlx6pR3/9clS5ZQUVHB7NmzGTFiBDNnzmT+/PnMmjWruf3KlSu54447yMvL46abbuL222/n\n3nvvbRGe4kWvDyMD+w/0uwQRkW4JBAKMHj263edDT4Vtz7x587h69Wqbzw0cGP1xMiUlJerv8cwz\nz/Dkk09SXFxMaWkpmZmZ9OnTh5KSEhobG6P+/m1pCkRNGhsbmTFjBo8//nibZwrl5eUBXsA8ePAg\nlZWV7Ny5k507d1JeXk5RURHl5eWAN7P04Ycf8sYbb1BVVcWmTZtYs2YN69ati+hicNHU68NIat9U\nv0sQEemWQYMGMWhQ92Z52/olngjCuWbJa6+9xrRp01i/fn2L5fX19RF9/pycnDZ3gRw9erTVsqFD\nh1JfX99i2ZUrVzhx4kSLZbm5uZw/f56pU6d2+v59+/alsLCQwsJCAB544AHWr1/P8uXLm483ycjI\noKioiKKiIi5evEh+fj5PPfVU3IWRXn/MiMKIiEjiGjBgAECrL/q2pKSktJptqKio4Pjx4xG996xZ\ns9i3b1+LU4Pr6urYunVrq7a5ubnNx3s0WbduXauZkfnz57Nv3z6qqqpavca5c+ea29fV1bV6vmn3\ny+XLl9tsk56ezqhRo5qfjyeaGVEYERGJqY4uVBauQCCAc45ly5Zx9913069fP+bOnUtaWuvbfMyZ\nM4enn36aRYsWMXHiRA4fPsxLL71Ebm5uRO+9dOlStmzZwm233cZDDz3EgAED2LhxIzk5OZw9e7bF\nrE1xcTH3338/d911FzNmzODQoUNUVVW1mpF57LHH2L59O3PmzOG+++4jEAhw4cIF3nvvPV5//XVq\na2vJzMykuLiYuro6pk2bxsiRI6mtreW5557jlltuYcyYMQCMHTuWgoICAoEAmZmZvPvuu2zbtq35\n1N94ojCiMCIiElNt7Vppb3fL9cuvvzfN+PHjKS0t5fnnn6eyspLGxkZqamrIzs5u1XbZsmVcvHiR\nrVu38uqrrxIIBNixYwdPPPFEm+/TmZEjR7J7924efvhhVq9ezbBhw3jwwQdJS0ujpKSE1NSvvl8W\nL15MbW0tmzZtorKyksmTJ7Nr1y6mT5/e4r3S0tLYs2cPq1atoqKighdffJHBgweTl5fHypUrGTJk\nCOCdkrx+/XrKysqor69n+PDhLFiwgBUrVjS/VklJCdu3b2fXrl1cvnyZnJwcVq1axaOPPtrpZ4s1\n68mEmijMbBxQzT/As4ue5eHvxV9KFJHe68CBAwQCAaqrqxk3bpzf5UiYHnnkETZs2MD58+cT8t5n\nnW1/Tc8DAedcZHc8vI6OGdHMiIiIROjSpUst/j5z5gxbtmwhPz8/IYOIX7SbRmFEREQiNGHCBAoK\nChgzZgwnT55k8+bNNDQ0sHz5cr9LSygKIwojIiISocLCQrZt28aGDRswMwKBAOXl5dx6661+l5ZQ\nFEYURkREJEKlpaWUlpb6XUbC0zEjCiMiIiK+UhhRGBEREfFVrw8jN6Tc4HcJIiIivVqvDyOaGRER\nEfGXDmBVGBGROHXkyBG/S5BeyI/tTmFEYURE4kxWVhbp6encc889fpcivVR6ejpZWVkxez+FEYUR\nEYkz2dnZHDlyhM8//9zvUqSXysrKIjs7O2bvpzCiMCIicSg7OzumXwYifkqKA1jNrNDM9pvZRTOr\nM7PXu7quwkjsvPzyy36X0Ouoz2NPfR576vPEl/BhxMzuBH4BbAK+DUwEtnZ1/f4p/aNUmVxPA0bs\nqc9jT30ee+rzxJfQu2nMLAVYC/yLc+6FkKd+35X1+/ftr7sqioiI+CzRZ0bGASMAzOyAmX1qZjvM\n7FtdWXnjDzZGtTgRERHpXKKHkW8CBqwAVgKFwFlgt5lldLbyt77epcwiIiIiURSXu2nMbDXweAdN\nHDCGr8JUqXPul8F1/w74BJgHbGhn/VTQBYVi7dy5cxw4cMDvMnoV9Xnsqc9jT30eWyHfnT12Bog5\n53rqtXqMmX0N+FonzT4CJgFvApOcc3tD1t8P7HLOLW/n9f8GeKmHyhUREemNFjrnunzCSEficmbE\nOXcGONNZOzOrBi4Do4G9wWX9gBuBjztYtRJYCNQCl7pXrYiISK+Sivc9W9lTLxiXMyPhMLM1wJ3A\n3+MFkKV4x478mXPunJ+1iYiISOficmYkTI8CV/CuNZIGvA1MUxARERFJDAk/MyIiIiKJLdFP7RUR\nEZEEpzAiIiIivkraMGJmPzSzGjP7MngTvT/vpP08MzsSbH/IzL4fq1qTRTh9bmZFZtZoZteC/zaa\n2cVY1pvozCzfzLab2fFg/83twjoFZlZtZpfM7AMzK4pFrcki3D43sykh23djyDb/9VjVnMjM7Edm\n9o6ZfWFmn5nZf5hZXhfW03geoUj6vCfG86QMI2b218BP8K7MegtwCKg0s6x22jfdXG8DcDPwBvBL\nMxsbm4oTX7h9HnQOGB7yyIl2nUlmAHAQWIJ3IcAOmdmNwK+A/wa+CzwLbDSzGdErMemE1edBDvhT\nvtrO/8Q5dyo65SWdfODfge8BtwH9gCozS2tvBY3n3RZ2nwd1azxPygNYgxc9e9s5VxL824A/Aj91\nzv24jfavAOnOubkhy/YBv3XOLYlR2Qktgj4vAtY45zJjW2lyMrNG4A7n3PYO2vwr8H3n3HdClr0M\nDHHOzY5BmUmli30+Be/CjEOdc1/ErLgkFfxxcwqY7Jz7TTttNJ73oC72ebfH86SbGQle9CyA9+sP\nAOclrl8DE9pZbULw+VCVHbSXEBH2OcBAM6s1sz+YmX65RN9foO3cDwYcDN7Isyr4y10ik4E301TX\nQRuN5z2rK30O3RzPky6MAFlACvDZdcs/w5s6asvwMNtLS5H0+f8Ci4C5eFfD7QPsNbMR0SpS2t3O\nB5vZDT7U0xucAP4R78KMf4U3W7jbzG72taoEFJxtXQv8xjn3uw6aajzvIWH0ebfH82S46JkkIOfc\nfmB/09/BadQjeAP3Cr/qEulJzrkPgA9CFu03s1zgnwAdPByenwFjgVv9LqQX6VKf98R4nowzI58D\n14BvXLf8G8DJdtY5GWZ7aSmSPm/BOXcV+C0wqmdLkxDtbedfOOcu+1BPb/UO2s7DYmbPAbOBAufc\niU6aazzvAWH2eQuRjOdJF0acc1eAamB607LgVNN0gjfTa8O+0PZBM4LLpRMR9nkLZtYH+DbetLZE\nR1vb+Uy0ncfazWg777Lgl+JfAlOdc3/owioaz7spgj6/fv2wx/Nk3U3zb8AL5t3V9x28KdF04AUA\nM/sF8Ilzblmw/bN4+3H/GfgvYAHeAZmLY1x3Igurz81sOd603jG8A6SWAtnAxphXnqDMbADeLw8L\nLvqmmX0XqHPO/dHMVgMjnHNNuwOeB34YPKtmM96AfRferx/pgnD73MxKgBrgfbw7nS4GpuJ9OUon\nzOxneOPxXOCCmTXNeJxzzl0Ktvk5cFzjec+IpM97ZDx3ziXlA+86ALXAl3iJeHzIc28Cm69rfyfw\n+2D794BZfn+GRHuE0+d44aUm2PZT4D+B7/j9GRLpAUwBGvF2kYU+NgefLwfevG6dyXizWF8CR4F7\n/f4cifQIt8+Bx4L9fAE4jXfG2WS/P0eiPNrp62vA34a00Xjuc5/3xHielNcZERERkcSRdMeMiIiI\nSGJRGBERERFfKYyIiIiIrxRGRERExFcKIyIiIuIrhRERERHxlcKIiIiI+EphRERERHyVrJeDF5EE\nZGZDgfHAMOCkc+5Nn0sSkRjQzIiIxJNcvHtibAHyfa5FRGJEl4MXkbhiZiOAT4CZzrlf+12PiESf\nZkZEJN7k492s622/CxGR2FAYEZF4Mwn4nXOuwe9CRCQ2FEZEJN5MBvb6XYSIxI7OphGRuGFmGcBN\nwE+Cf2cBPwIccMo592MfyxORKNHMiIjEk0nBf/cFg8kDeGEkD1joW1UiElUKIyIST/KBM8BJ4EFg\nlXPu/4D+QJmfhYlI9OjUXhGJG2a2FxgI7ACecs5d8rkkEYkBzYyISFwws1QgAHwI3Ai8aGajfS1K\nRGJCYURE4sVEvIPqlzvn7gY+BX7V9KSZDfarMBGJLoUREYkXk4A659z/BP8+hrfLBjMbBRT7VZiI\nRJfCiIjEi3zgrZC/LwM1wf8vAF6JeUUiEhMKIyISLwbRMnC8AtSb2U+BWufcp/6UJSLRprNpRERE\nxFeaGRERERFfKYyIiIiIrxRGRERExFcKIyIiIuIrhRERERHxlcKIiIiI+EphRERERHylMCIiIiK+\nUhgRERERXymMiIiIiK8URkRERMRXCiMiIiLiK4URERER8dX/A9rTDiqrpXTJAAAAAElFTkSuQmCC\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "K = S[2]\n", - "X = []\n", - "Y = []\n", - "\n", - "for k in k_grid:\n", - " if k < 1.5*k_ss:\n", - " X.append(k)\n", - " Y.append(K[k])\n", - "\n", - "plt.plot(X, Y, color=\"black\", linewidth=2)\n", - "plt.plot(X, X, \"--\", color=\"gray\", linewidth=1)\n", - "plt.plot([k_ss], [k_ss], marker='o', color='r')\n", - "plt.xlabel(\"$k$\", fontsize=14)\n", - "plt.ylabel(\"$k^{\\prime}$\", fontsize=14)\n", - "plt.title(\"Policy Function: $k^{\\prime}$\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 234, - "metadata": {}, - "outputs": [ + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGMCAYAAADuoWlTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VGXax/HvnRANoQTpAkoRC4u7KgFXAYUFFZUXRGwE\nKxaqBZQiK6tiRUBUVBTLgiwaEbHAwqIiYAFBTARdBFeliggJSA0l5Xn/OJOQhCSkzGRmkt/nuuaa\nOc9p9zmEzJ2nHXPOISIiIhIKIoIdgIiIiEgWJSYiIiISMpSYiIiISMhQYiIiIiIhQ4mJiIiIhAwl\nJiIiIhIylJiIiIhIyFBiIiIiIiFDiYmIiIiEDCUmIkFiZg+bWaaZ1SyDc7U2syVmts/MMszsL4E+\nZyBk3bNgxxGqzOwW38/UycGORaSklJiI5GFmN/t+uWe9DpjZj2b2vJnVLcHxzjezh8ysep5VzvcK\nKDOrBLwLnAAMBm4ENgb6vAFSpHtmZuPN7BMzm1gGMZW5YP9MiQSSEhOR/DlgFHADMAhYAgwAlppZ\ndDGP1RZ4EKjh1wiL7hTgZGCcc+4159xbzrndQYqlrIzA+/22J9iBBEhBP1PTgMrOuU1lH5KIfygx\nESnYfN+X+D+dc7cCzwJNgSuKeRzzf2jFUs/3Xt6TkWzOuQzgdODLYMdSUmYWU9jq/Aqd53CAQhIp\nE0pMRIpuId4XQlMAMzvZzCaZ2VozSzWzFDN7x8waZ+1gZg8BY32LG3xNQxl5+gCcYGZTzewPM9tl\nZv8saq2MmZ1jZv8xs91mttfMFpjZX3OsnwIsxqsBetd3/oWlugtHx3DM++DbLqtPzSlFuV4za29m\nK3xNaT+ZWd9ixNQELyFbWsxrKfR++ra5yncdF+Szfz/fuj/5lhv4ru93MztoZv81sz757Jd1b1qY\n2VtmthP4ooAYC/yZyq+PSY5jn2pm0333fLuZPeJbf5KZfeC75q1mdm8+5yzSdYj4Q6VgByASRpr7\n3nf43tsA5wEJwK9AE2AgsMjM/uScOwjMAk4DegH35Ng32fduwDvAOuB+oBVwO7ANGFlYML4vv8/x\nakLGAOlAP2CxmV3onFsBvOyL7QHgOWCF79j+VJT7AEf6Phzzes3sTOAjYDtek0UU8LBvuSjaAaud\nc0Vuyini/QSYC+wDruXo5OFa4L/OuR98/ZGWAxnARCAFuAx43cyqOedy9n/Jujczgf/h3YuCatoK\n+5nKr49J1vIM4Ae8Zq6uwAO+BKgf8CkwHLgeGGdmXzvnvvTdl+Jch0jpOef00kuvHC/gZrxfwn8D\nagENgevwfvHvA070bXd8PvueC2QC1+cou893vJPzbPuQb9tX8pTPArYXIc73gQNA4xxl9fG+WBfl\nKOvgO0/PIl5/LDAO+Afwd6DvMbYv6n0o8vX6rm0/0DBH2elAGpBRhGuYBLzg+/xX4FFgK3Bmae+n\nr/xN3/EsR1k9vGTm777l1/AStRp59n0L2JnzvuW4N/8q4r9RQT9TN+ctz3HsSTnKIoBNvniH5vm3\n3w/8M0dZka9DL7388VJTjkj+DO+vyGRgM94v4T1AD+fcVgDn3KHsjc0qmTfsdx2wC68moCgcMDlP\n2RdALTOrWmBwZhHAxcD7zrnsETbOud99sbYvbP9CjnuC7/wLnHOP4v01PqbQCyjefTjm9fqu7RLf\ntW3JcZ4f8WpRiqId8KWZZSWX/8L7N833d14J7ucMoC7QMUfZNb5zzPAt9wTmAJFmVivrBXyMlwAU\n5d74iwNez15wLhP4xhfvP3OU7wZ+BJrl2Le41yFSKmrKEcmfw2uO+Anvr8ptvi/GbL5+EX8HbsGr\nVbEc+8YW41x5R1D84Xs/Aa+GJj91gBi8av+81uB9AZ/k+1wcz+E1RWQlAFuA0YXtUIL7cKzrrQNU\nBn7OZ98f8ZoRCounOtASbzRSinNunm9V/UJ2K+79nI+XqF4HLPKVXQusdM79YmZ18EbM9MVrKsnL\n4SU2ea0vJMbSynvfdwMHnXM78ymvCVCK6xApMSUmIgVb4ZxLKmT9C3hV588Ay/B+oTu8v5iLUxuZ\nUUB5mY7mMbMTgXigS1aZc+7fRdi1uPch0Nd7Pl4TwxnA6Wa20Tn3k5+ODYBz7rCZfQBcaWYDgRPx\namnu922Sdd3TgTcKOMx3+ZQd8GeceeR334/1b1HS6xApMSUmIiV3FTDVOTc8q8DMjufouSUCMeFV\nMpCK1+8irxZ4fQo2F/OYbXzvxRrJQtHvQ1El431Bn5rPujOKsH874FPn3I1mNhyYDbQwswhfE0ZB\n5yzu/ZwB3AR0xquhAa9jb9bx9gKRzjm/joLyKatJ1AJ9HSJHUR8TkZLL4Oj/Q3cDkXnK9vve/TbB\nmu8L9mPgijxDQ+vh1Xp84ZwrqBmoIBHAbndkFE3WMZuZN3tsQYp6H4rEd20fAT3MrFGOOFrg9T05\nlnZ4NTcAq/H6mAAMMrPKhZyzuPdzAV4zVC+8Zpyvs/qn+I43C7jKzFrm2Q8zq12E6yiM33+m8lMG\n1yFyFNWYiOSvKM0K/wZuNLM9eMMwz8f76zklz3aJvuM9YWZv440smeOHGEcBFwFLzGwSXoLQFzgO\nb+hncX0G3peNcy7F9/lMoLdz7u+F7FfU+1AcDwGX4nVgnYQ3XPhO4L9Agc/5MbNIvBFBOYdaZ/VV\nqeycK6yppFj30zmXbmbv4SUmMXgjZXK6H69z7HIzexXv3tQE4oBOQGm+1PP7mZpdiuMVJpDXIXIU\nJSYi+StKVfndeB1jewPReLOMXoT31372/s65b8xsFNAfr/9GBL5J2koVoDdXxgXAk3hfHhF4NQW9\nnXPf5N28CMf7w8yuAp41szV4NR6bjpGUQBHvQ3E45743s0uACXidb3/Fm8+kAYUkJnidWLcAWX2D\nPgX6mtmjePOsFHbO4tzPLDOA2/CaembmOd52MzvXF/eVeI802IFXi1OSxDHnsf31M1XQv0/On9+A\nXYdIfsw5Pe9JREREQkNY9DExswvMbLaZbfFNrdy9CPtcb2YrzWy/mf1mZq9bGTxeXkREREouLBIT\noAqwEm9eiaI88rwd3tC2V4E/AVfjtTu/EsAYRUREpJTCoo+Jc24+3oRGmFlROiWeB6x3zr3oW95o\nZpNRe6iIiEhIC5cak+L6CjjJzC6D7CF/V+M9fEtERERCVLlMTJxzS4EbgBlmdhjvYVu78IYbioiI\nSIgKi6ac4vI9vvw5vMekf4w3XfR4vAdk3V7APrXwht1tAA7mt42IiIjkKxpoAnzknNtRmgOF3XBh\nM8vEe8JrgZMJmdk0vEdxX5ejrB3eU0xPdM5ty2ef3niPMhcREZGSud4591ZpDlAua0zwZmFMy1OW\niTeip6DOsxsApk+fTosWLQIXWRgYMmQIzzzzTLDDCAm6Fx7dhyN0Lzy6D0foXsCaNWu44YYbwPdd\nWhphkZiYWRWgOUeSimZmdhaw0zm32cyeBBo45272rZ8DvGJm/fFmn2yA9+TT5c653ws4zUGAFi1a\n0KpVq0BdSliIjY2t8Pcgi+6FR/fhCN0Lj+7DEboXuZS6K0RYJCZAa2ARXo2HA572lb8B3ArUB07K\n2tg594aZVQUG4fUt2YU3NfX9iIiISMgKi8TEOfcZhYwgcs71yafsReDFfDYXERGREFUuhwuLiIhI\neFJiIkeJj48PdgghQ/fCo/twhO6FR/fhCN0L/wq74cKBYmatgMTExER1YhIRESmGpKQk4uLiAOKc\nc0mlOZZqTERERCRkKDERERGRkKHEREREREKGEhMREREJGUpMREREJGQoMREREZGQocREREREQoYS\nExEREQkZSkxEREQkZCgxERERkZChxERERERChhITERERCRlKTERERCRkKDERERGRkKHEREREREKG\nEhMREREJGUpMREREJGQoMREREZGQocREREREcnHOBe3cSkxERESEvXv3cvfdd9O0aVNOOukkmjZt\nyt13383evXvLNI6wSEzM7AIzm21mW8ws08y6F2Gf48zscTPbYGYHzWydmd1SBuGKiIiElb1793L+\n+efz4osvsmHDBrZs2cKGDRt48cUXOf/888s0OQmLxASoAqwEBgJFrV+aCfwN6AOcBsQDPwYkOhER\nkTD2wAMPsGbNGjIzM3OVZ2ZmsmbNGkaNGlVmsVQqszOVgnNuPjAfwMzsWNub2aXABUAz59wuX/Gm\nwEUoIiKB4pzj4MGD7N+/n/3795Oamlro59TUVNLT04Mddsho0qQJt956a6HbzJkz56ikJEtmZiaz\nZ8/mueeeC0R4RwmLxKQEugHfACPM7EZgPzAb+Idz7mBQIxMRKWeccxw6dChXklBYAlHc5dTU1KB2\nxgx3HTp0KDQxcc6RlpZW6DHS0tJwzlGEuoFSK6+JSTO8GpODQA+gNvASUBO4LYhxiYiUuawvnpIk\nDEVJGvbv31/gX9sS+syMqKioQreJiooqk6QEym9iEgFkAr2dc/sAzOxeYKaZDXTOHQpqdCIixeSc\nY9euXSQnJ7N9+/Z831NSUgpMIDIyMoJ9CUUWExNDlSpVst/zfi5sXdbnY33RViQnnHDCMbfp1q0b\nL774Yr4JZkREBN27H3PMid+U18RkK7AlKynxWQMY0Aj4paAdhwwZQmxsbK6y+Ph44uPjAxGniFRQ\nzjn27NlTYJKRtywlJeWY1e1lJTo6usAkobjLeddFR0cTEREu4zLKj8cff5yFCxce1QE2IiKCFi1a\n8Nhjj2WXJSQkkJCQkGv/3bt3+y0WC7d2OzPLBHo452YXss0dwDNAXedcqq/sCuBdoGp+NSZm1gpI\nTExMpFWrVoEJXkTKLecce/fuLVKSkVV2+PDhgMQSHR1dotqGotRExMTEKHEop/bu3cuoUaOYPXs2\naWlpREVF0b17dx577DGqVatW6L5JSUnExcUBxDnnkkoTR1jUmJhZFaA5Xo0HQDMzOwvY6ZzbbGZP\nAg2cczf71r8FjAKmmNnDQB1gLPC6mnFEpDjS0tLYvHkzGzZsYOPGjWzbtq3AhCMQiUZUVBR169al\nTp061KlTJ/tzfu+1a9ematWqREZG+j0OKf+qVavGc889x3PPPVdmHV3zExaJCdAaWIQ3h4kDnvaV\nvwHcCtQHTsra2Dm338wuBp4HVgA7gBnAP8owZhEJA2lpafz6669s2LCBDRs2sH79+uzPWRNN+bNj\nZ6VKlfJNNApKNqpXrx60LwipuIL5MxcWiYlz7jMKmQzOOdcnn7L/AV0CGZeIhL709PRciUfeBOTX\nX38tVeIRGRmZb1KR3+e6desSGxurREOkEGGRmIiIFCQjIyN7+uz8aj02b95c4hEptWvXpkmTJtmv\nxo0b06BBg1xJR40aNdTnQsSPlJiISFjIyMhg/fr1/PDDD6xevTr7tXbtWg4eLNm8ibVq1cqVeOR9\nVa1a1c9XISLHosREREJKZmYmGzZsyJV8ZCUgBw4cKNaxTjjhBJo2bZpv0tG4cWOqV68eoKsQkZJS\nYiIiQZORkcHatWv5+uuvWbFiBStWrGD16tVFTkAiIyM59dRTOeOMM45KQBo3bnzUnEQiEvqUmIhI\nmXDOsWnTJr7++uvsRCQxMZF9+/Ydc9+IiAiaN29Oy5Ytc71OO+00jj/++DKIXkTKihITEQmIlJSU\n7FqQrGQkOTm50H3MjFNOOeWoBOT0008nOjq6jCIXkWBSYiIifrF9+3YWL16c/VqzZs0x9zn55JNp\n06YN5557Lm3atCEuLk79PkQqOCUmIlIiycnJfPbZZyxatIjFixfzww8/FLp9zZo1cyUhbdq0oX79\n+mUUrYiECyUmIlIkKSkpfPbZZyxevJhFixaxevXqAreNjIykdevWtG3bNjsRadasmSYWE5FjUmIi\nIvk6fPgwn3/+OfPmzWPBggV8//33BW6blYh07NiRjh070q5du2M+9EtEJD9KTEQk29atW5k3bx5z\n587lk08+KXDETERERK5EpH379kpERMQvlJiIVGCZmZmsWLGCuXPnMnfuXJKS8n9aeUREBHFxcbkS\nEXVSFZFAUGIiUsHs2rWLjz/+mLlz5/Kf//ynwCG8tWvX5rLLLqNr165ccsklnHDCCWUcqYhUREpM\nRCqAffv2MWvWLKZNm8bnn39Oenp6vtudc845dO3ala5du9KmTRsiIyPLOFIRqeiUmIiUU845vvji\nC6ZOnco777zD/v37j9qmSpUqXHzxxXTt2pXLL7+cBg0aBCFSEZEjlJiIlDObNm3ijTfeYOrUqaxb\nt+6o9c2aNaNbt2507dqVCy+8UFO6i0hIUWIiUg6kpqby/vvvM2XKFBYuXIhzLtf66tWr06tXL265\n5RbOO+88zSciIiFLiYlImHLO8dVXXzFlyhRmzJjB3r17c603Mzp37kyfPn3o0aMHMTExQYpURKTo\nlJiIhJn9+/czZcoUnn/+ef73v/8dtf6UU07hlltu4aabbuLkk08OQoQiIiWnxEQkTCQnJ/Piiy/y\nwgsvsGPHjlzrqlatyrXXXsstt9xC+/bt1VQjImFLiYlIiFu3bh0TJkzgn//8JwcOHMi1rkOHDvTp\n04errrqKqlWrBilCERH/UWIiEqISExMZN24cM2fOJDMzM7s8MjKSXr16MWzYMM4666wgRigi4n9K\nTERCiHOOjz/+mHHjxvHpp5/mWhcTE8Mdd9zBkCFDaNy4cZAiFBEJLCUmIiEgLS2NmTNnMnbsWFat\nWpVrXZ06dbjnnnsYMGAANWvWDFKEIiJlIywSEzO7ABgGxAEnAj2cc7OLuG87YDHwvXOuVcCCFCmB\ntLQ0XnvtNZ566ik2btyYa13z5s0ZOnQoN910E5UrVw5ShCIiZSssEhOgCrASeB14r6g7mVks8Aaw\nAKgXmNBEis85x3vvvcfIkSP56aefcq1r06YNI0aMoEePHnpWjYhUOGGRmDjn5gPzAax44yBfBt4E\nMoErAhCaSLF98cUXDB8+nGXLluUqv/zyyxk+fDgXXnihhvuKSIUVEewAAsXM+gBNgdHBjkUEYM2a\nNVxxxRVceOGFuZKSDh06sHz5cubOnUuHDh2UlIhIhRYWNSbFZWanAk8A7Z1zmfpFL8H022+/8fDD\nD/P666/nGvbbsmVLnnrqKS6//HIlIyIiPuUuMTGzCLzmm4ecc79kFRd1/yFDhhAbG5urLD4+nvj4\neP8FKRXCnj17GDduHBMmTCA1NTW7vEGDBjz66KPcfPPN6kMiImEnISGBhISEXGW7d+/22/Et71NI\nQ52ZZVLIqBxfh9c/gHSOJCQRvs/pwCXOucX57NcKSExMTKRVKw3ekZI7fPgwkydP5tFHHyU5OTm7\nvHr16tx///3cc889eqCeiJQrSUlJxMXFAcQ555JKc6xyV2MC7AHOzFM2CPgbcBWwoawDkooha6TN\niBEj+OWXX7LLo6KiGDhwIKNGjaJ27dpBjFBEJPSFRWJiZlWA5hypAWlmZmcBO51zm83sSaCBc+5m\n51UB/ZBn/+3AQefcmjINXCqMbdu20b9/fz744INc5fHx8Tz22GM0a9YsSJGJiISXsEhMgNbAIsD5\nXk/7yt8AbgXqAycFJzSpyJxzzJgxgzvvvDPXE387derEU089RevWrYMYnYhI+AmLxMQ59xmFDG12\nzvU5xv6j0bBh8bPt27czcOBAZs2alV1Wp04dXnrpJXr27KmRNiIiJVBu5zERCaSZM2fSsmXLXEnJ\ntddey+rVq7nqqquUlIiIlFBY1JiIhIrk5GQGDRrEzJkzs8tq167NpEmTuOaaa4IYmYhI+aDERKSI\nZs2axYABA3INAb7qqquYNGkSdevWDWJkIiLlh5pyRI4hJSWFXr16cfXVV2cnJbVq1eLtt99m5syZ\nSkpERPxINSYihXj//ffp378/27dvzy678soreemll6hXTw+sFhHxN9WYiORj165dXH/99fTs2TM7\nKTnhhBN48803mTVrlpISEZEAUY2JSB6rV6+mR48e/Pzzz9ll3bp1Y/LkyZx44olBjExEpPxTjYlI\nDu+++y5//etfs5OSGjVqMG3aND788EMlJSIiZUA1JiJARkYGo0aNYsyYMdllZ599Nu+//z5NmjQJ\nXmAiIhWMEhOp8Hbu3El8fDwff/xxdtkNN9zA5MmT9RRgEZEypqYcqdBWrVpF69ats5OSyMhInnvu\nOaZNm6akREQkCFRjIhVWQkICt912GwcOHAC859y88847dOzYMbiBiYhUYKoxkQonPT2d++67j969\ne2cnJa1btyYxMVFJiYhIkKnGRCqU5ORkevXqxcKFC7PL+vTpw6RJk4iOjg5iZCIiAkpMpAJJTEyk\nZ8+ebNq0CYBKlSoxceJE+vfvr6cBi4iECCUmUiFMmzaNvn37cujQIQDq16/PzJkzad++fZAjExGR\nnNTHRMo15xzDhg3j5ptvzk5Kzj//fBITE5WUiIiEICUmUm5lZmYycOBAxo8fn13Wr18/Fi1aRIMG\nDYIYmYiIFERNOVIuZWRkcNttt/HGG28AYGZMmjSJ/v37BzkyEREpjBITKXfS0tK48cYbmTFjBuBN\nmvavf/2L+Pj4IEcmIiLHosREypVDhw5x3XXX8eGHHwIQFRXF22+/Tc+ePYMcmYiIFIUSEyk3Dhw4\nQM+ePZk/fz4Axx9/PLNmzaJr165BjkxERIpKiYmUC/v27aN79+4sWrQIgJiYGGbPnk3nzp2DHJmI\niBRHWIzKMbMLzGy2mW0xs0wz636M7a80s4/NbLuZ7TazpWZ2SVnFK2Vr9+7ddOnSJTspqVatGvPn\nz1dSIiIShsIiMQGqACuBgYArwvYXAh8DlwGtgEXAHDM7K2ARSlDs3LmTiy66iKVLlwJQo0YNFixY\nwAUXXBDkyEREpCTCoinHOTcfmA9gRZg73Dk3JE/RA2Z2BdANWOX/CCUYtm/fzsUXX8x3330HQO3a\ntfnkk084++yzgxyZiIiUVFgkJqXlS2aqATuDHYv4x2+//Ubnzp1Zu3Yt4E0xv2DBAlq2bBnkyERE\npDQqRGICDMNrDnon2IFI6W3cuJHOnTvzyy+/AHDSSSfx6aefcuqppwY5MhERKa1yn5iYWW/gH0B3\n51xKsOOR0vn555/p3Llz9hOCmzZtysKFC2nSpElwAxMREb8o14mJmfUCXgGuds4tKso+Q4YMITY2\nNldZfHy8Zg0NAZs3b6Zjx45s2bIFgNNOO41PP/2URo0aBTkyEZGKIyEhgYSEhFxlu3fv9tvxzbmi\nDHIJHWaWCfRwzs0+xnbxwGvAdc65fxfhuK2AxMTERFq1auWfYMVv9u7dS/v27bM7up555pksWLCA\nevXqBTkyERFJSkoiLi4OIM45l1SaY4VFjYmZVQGaA1kjcpr5hv7udM5tNrMngQbOuZt92/cGpgJ3\nAyvMLOvb64Bzbk/ZRi+llZ6eTq9evbKTkmbNmrFw4ULq1KkT5MhERMTfwmUek9bAt0Ai3jwmTwNJ\nwGjf+vrASTm2vwOIBF4EfsvxeraM4hU/uu+++5g3bx7gzVMyd+5cJSUiIuVUWNSYOOc+o5AkyjnX\nJ8/y3wIelJSJF154gYkTJwJQqVIlZs2axRlnnBHkqEREJFDCpcZEKqB58+Zxzz33ZC+/8sordOrU\nKYgRiYhIoCkxkZD03Xffcd1115GZmQnA/fffT58+fY6xl4iIhDslJhJytm7dyv/93/+xb98+AK6+\n+moef/zxIEclIiJlQYmJhJT9+/fTvXt3Nm/eDMC5557LtGnTiIjQj6qISEWg3/YSMjIzM7nxxhv5\n5ptvADj55JP58MMPqVy5cpAjExGRsqLERELGyJEjef/99wGoVq0ac+fOpX79+kGOSkREylJYDBeW\n8u/VV19l7NixAERGRjJz5kzOPPPMIEclIgHnHGRmQkbGkfe8n/ftg717vdeePUd/zq8sLS3YVxY6\nFiyAKlWCHUWRKTGRoFuwYAEDBw7MXn7++efp0qVLECMSCVGHD8OuXUdef/yRe3nPHu8LuaAv+MK+\n/Atb549j5FzOWV6ax6JUq+a9qlfP/blJEzjuOL/d9rAXZn30lJhIUK1Zs4arr76a9PR0AAYPHsyA\nAQOCHJVIHs5Bairs3AkHD3pf/mlpXqKQ8z2/sqKsy+/9wIHcSceuXV5ZfiIioEYN70s5Kspbjoz0\nXvl9Lmx9VBRERxe+XUnXlfQYVaocST6y3qtUCbsvXCkaJSYSNMnJyXTt2jX7qZTdunVj/PjxQY5K\nyiXnID3dSyoOHPDe9+/3Eo0dO/J/5V136FDJz3/ccd4rKsp7ZX3O+57zc3Q0nH66l3DkfJ1wwtFl\n1aqB2bHjEAkDSkwkKA4ePEiPHj1Yv349AGeffTZvvfUWkZGRQY5MQk5mptdksX07JCd771mvrOXd\nu48kHDmTj5zLvsn6ClStGtSqdeR14olw5pm5y2rWhMqVC04m8ks0IiOVNIgUgxITCYqhQ4eydOlS\nABo0aMCcOXOoWrVqkKOSMpOZ6dVCbN0Kv//uvWd9zpl4bN8OKSleX4ScKlWCOnWgbl3vVaOGl0hE\nRx95Va6cezlvWUyMl2hkJRzqkyASEpSYSJmbPXs2L774IgDR0dHMmTOHRo0aBTkq8YvMTNi2DbZs\n8V5ZCUfeBGTbNq9pJacaNaB+fe9Vpw6cccaRxKNu3aMTEdVCiJRLSkykTG3ZsiXXM2+effZZWrVq\nFcSIpMgOHYLffvMSjl9/zf/9t99yJxyRkUeSjRNPhLPPhssuO7Kc8z06OnjXJiIhQ4mJlJmMjAxu\nvPFGdu7cCUDPnj3p27dvkKMSwOscmpICGzfCpk1Hv2/a5PXnyKlqVWjUyHuddhp06uR9btjwyHvt\n2ho5ISLFosREyszYsWNZtGgRAI0aNeLVV1/FVB1fdvbuhe+/h59/zj/xyDkUtXJlaNwYTj4ZWrWC\nK644koRkJR3VqwfvWkSk3FJiImVi2bJl/OMf/wDAzJg+fTo1a9YMclTllHNeorFqFaxc6b2vWgW/\n/HJkmzp1jiQel1/uvWctN27sdQhV0igiQaDERAJu9+7d9O7dmwzfyIpRo0bRoUOHIEdVThw8CKtX\nH0k+Vq4UFp6hAAAgAElEQVSE777zJuMCb7TJWWdBt25e/46zzvKaXWJighu3iEgBlJhIQDnnGDhw\nYPZ8JW3btuXBBx8MclRh6vBhL+lYsQK+/hq++QbWrPGG0prBqad6icfQod772Wd7TS6q+RCRMKLE\nRALqX//6F2+99RYAsbGxvPnmm1SqpB+7Y8rMhB9/PJKErFjh1YYcPuzN4fGXv0C7dnDnnV4S8uc/\nh9VDukRECqJvCAmYn376iUGDBmUvT548mSZNmgQvoFDlnDfcNisB+fprSEz0HsgG3rTkbdrADTd4\n72efraG1IlJuKTGRgDh8+DDx8fHs27cPgFtvvZXrrrsuyFGFiIwM+O9/4csvj7x+/dVb16iRl3zc\nfz+cey7ExXmTiYmIVBBKTCQgRo0aRWJiIgCnnXYaEydODHJEQXTggFcLkpWELF3q1YZERUHr1hAf\nD23bwl//6k02JiJSgSkxEb/75JNPGDduHABRUVEkJCRQpSL1f0hJgSVLjiQiiYneo+yrV/cSkBEj\noH17r2akcuVgRysiElLCIjExswuAYUAccCLQwzk3+xj7dASeBloCm4DHnXNvBDjUCm/79u3cdNNN\n2ctjxowp/1POO+dNXPb++/DBB14nVfBGxFxwgdc3pH1770m1enqyiEihwiIxAaoAK4HXgfeOtbGZ\nNQH+DUwCegMXAa+Z2W/OuU8CF2bF5pyjT58+/P777wBceumlDB48OMhRBUhGBixb5iUj778P69ZB\ntWrQtSvcd5+XkJx8sobqiogUU1gkJs65+cB8ACvaHOYDgHXOueG+5R/NrD0wBFBiEiATJ05k3rx5\nANSrV4+pU6cSUZ6ek3LoECxc6CUis2d7T8itV8+brr1HD+9ZMccfH+woRUTCWsASEzNr5ZxL8n2O\nBcw5tytQ58vjPGBBnrKPgGfK6PwVzsqVKxk+fHj28htvvEG9evWCGJGf7N0L//mPl4zMnestN2vm\nNc9ceSWcd56aZ0RE/MiviYmZxQGnAAuBS4Ek36r9wK1m9qNz7jN/nrMA9YFtecq2AdXN7Hjn3KEy\niKHC2L9/P/Hx8Rw+fBiAe++9ly5dugQ5qlJITfVqRN58Ez7+2JvU7OyzvRlVr7zS6yuiJhoRkYDw\nd43JPryEZCyQaWZ1gUXAZ865V8zsFqAsEpMSGzJkCLGxsbnK4uPjiY+PD1JEoW/48OGsXbsWgFat\nWvHEE08EOaISyMjwmmmmT4f33oN9+7zakDFjvGaapk2DHaGISEhISEggISEhV9nu3bv9dnxzzvnt\nYLkObDYJSAQ6ABfg1Zp875wr1Te8mWVyjFE5ZvYZkOicuzdH2S3AM865EwrYpxWQmJiYWP5HkfjR\n0qVLadeuHQAxMTF8++23nHbaaUGOqoicg2+/9WpGEhJg61bvAXfXX++9Tjkl2BGKiISFpKQk4uLi\nAOKyunGUVCA7v/7bOTcPbyQNZlYH2BHA8+X0FXBZnrJLfOXiJ4cPH6Zv377Zy0888UR4JCUbNsBb\nb3m1I2vWQN260KuX12+kdWs104iIBFHAEhNfUpJzObmkxzKzKkBzIOsbo5mZnQXsdM5tNrMngQbO\nuZt9618GBpnZU8A/gc7A1cDlJY1BjjZ+/HhWr14NQOvWrbnzzjuDHFEhdu6EmTO9ZOTLLyEmxusv\nMmECXHSR92A8EREJulKP5TSz4Wa2ysz65yirbmb3mlmD0h7fpzXwLV7TkMObOC0JGO1bXx84KWtj\n59wGoCve/CUr8YYJ3+acyztSR0ro559/5pFHHgEgMjKSV155hchQHJ2ydi3cfrs31fugQVC1qpec\nbNvmvV96qZISEZEQ4o/fyHWBjUAPvJoKnHN7zGw2cJuZbXDO/as0J/CN5CkwiXLO9cmn7HO8mWLF\nz5xz9O/fn0OHvMFNgwcP5pxzzglyVHksWQJjx3qjaxo0gEcfhZtv9uYdERGRkOWP2a8MuNo5d2nO\nQufcz865R4E2fjiHhJDp06fz6aefAtC4cWNGjx59jD3KSGamNyV827beFPA//wxTpsD69TB8uJIS\nEZEw4I/E5ElghJlFApjZ6Wb2k5ltNbOleH1DpJxISUnh3nuzBzsxadKk4D+g7+BBePVVaNHC6zcS\nFQVz5njPr7nlFjjuuODGJyIiRVbkphwz64Q37HcJsNw5txfAOZdiZs8DI81sPPAYMA/4GTgEvO33\nqCVohg0bRkpKCgDXXHMNl18exP7Ef/wBL70EEyfC9u1eUvLGG978IyIiEpaK08ekPvCQ73Ommf0A\nLPW9vgKeAx4GMpxz9/gzSAkNixYtYurUqQDExsby3HPPBSeQTZvg2WfhlVcgPd2rFbn3Xm8OEhER\nCWvFSUySgRfxmm4uANoDFwJ3+NbvAH4HfjGzM51z//VnoBJcBw8epF+/ftnLY8aM4cQTTyzbIHbs\ngH/8w2u2qVYNBg+Gu+5S3xERkXKkOInJN8AfzrnfgBm+F2ZWAy9JucD3uhzobmY78aaff9s5965f\no5Yy98QTT/DTTz8B0LZt21wTqwVcejq8/DI8+KA3dfyTT0L//t7QXxERKVeKnJg45/7AS07ylu8C\n/u17YWbRQFuOJCtDASUmYWzNmjWMGTMGgEqVKjF58mQiIvzRb7oIFi6Ee+6B1avhttvg8ce9mVpF\nRKRc8vvMUs65g3hPF17o72NL2cvMzKRfv36kpaUB3gP7zjzzzMCfeMMG72m+s2Z5w39XrIA4TUsj\nIlLeldGfvRKu/vnPf/LFF18A0Lx5c0aNGhXYE+7f7zXZtGgBX33lPWDvyy+VlIiIVBCai1sKtG3b\nNoYNG5a9/PLLL1O5cuXAnMw5mDEDhg3zhv4OHQojR6ofiYhIBaMaEynQkCFD2LVrFwA33ngjnTt3\nDsyJVq6EDh0gPt57uu+aNV5fEiUlIiIVjhITydf8+fNJSEgAoFatWjz99NP+P0lKije6Ji7OGwr8\nySfw/vvQrJn/zyUiImFBTTlylNTUVAYOHJi9PH78eOrUqePfk7z7LgwYAGlpMGECDBzoTSUvIiIV\nmmpM5CijR49m/fr1AHTs2JGbb77ZfwffuRN694ZrroELL4T//c8bDqykREREUI2J5LFq1arsZpvj\njjuOl19+GTPzz8H//W+44w7voXtvvun1KfHXsUVEpFwIWI2JmV1oZm3NTLUyYSJrzpKMjAwAHnjg\nAU4//fTSH3j3bm9ytG7doFUrb7K03r2VlIiIyFECmTQsBr4AfjKzfmamZ8+HuJkzZ7J8+XIAzjjj\nDEaMGFH6gy5YAH/+M8ycCa+95tWaNGhQ+uOKiEi5FMjE5HPgSyAWeAnYEMBzSSkdPnyYv//979nL\nzz77LMcff3zJD7hvHwwaBBdfDKeeCt9/79WaqJZEREQKEbA+Js65jlmfzexMvGfnSIiaPHky69at\nA6Bz585ccsklJT/Yl1/CLbfAb7/B8897I27K6tk6IiIS1srk28I591/n3MtlcS4pvj179vDII49k\nLz/11FMl6/B64IA3Y+uFF0K9erBqFdx5p5ISEREpMo3KEcaNG0dKSgoAvXr1Iq4kz6VZsQJuugnW\nrYOxY2HIEIiM9HOkIiJS3gVyVE6rHJ9jzaxGoM4lJbd161YmTJgAQFRUFI8//njxDuAcTJzoPQG4\nShVISvJqTZSUiIhICfg1MTGzODO71sxqA5fmWLUfuNbMOvjzfFJ6Dz/8MKmpqQAMGDCAZsWZDj41\n1aslueceuOsu72nALVsGKFIREakI/F1jsg8vIfkGuN3MnjWzK4CqzrlXgKYlPbCZDTKz9WZ2wMyW\nmVmbY2w/2MzWmlmqmW0yswlmVophJuXP2rVref311wGoVq0ao0aNKvrOGzZAu3Ywa5Y3WdqECZq9\nVURESs2viYlz7kfn3K3OuSbAfOB74CrgWzP7L9ClJMc1s+uAp4GHgHOAVcBHvpqZ/LbvDTzp2/4M\n4FbgOqCY7RTl28iRI7MnUxsxYkTRn4fzySfeg/d27/ZqSXr3DmCUIiJSkfglMTGzv5hZTJ7i/zrn\nXnfO3eScawr8Dbi+hKcYAkx2zk1zzq0F+gOpeAlHfs4HvnTOzXDObXLOLQASgHNLeP5yZ8mSJXzw\nwQcAnHjiiQwePPjYOznndWy99FJo0wa++QbOOivAkYqISEVS6sTEzO4Hvgbm5Vm12szGZC0455Kd\nc5klOH4UEAd8muNYDliAl4DkZykQl9XcY2bNgMuBucU9f3nknGP48OHZy6NHj6ZKlSqF77RvH1x3\nHYwYAfffD3PnQs2aAY5UREQqGn8MFz4BuAVvhtdszrnPzKyemXV1zpUmIagNRALb8pRvA/J9kItz\nLsHXzPOleRNyRAIvO+eeKkUc5caHH37I0qVLAW/q+T59+hS+w08/wZVXwsaNXp+Snj3LIEoREamI\n/NGUE+Wce9s5NznvCufcO8DFfjhHsZhZR+DveE0+5wA9gf8zs2L07iyf0tPTGTlyZPbymDFjqFSp\nkPz03//2mm3S0mD5ciUlIiISUP6oMallZqc4534pYP3hUh4/BcgA6uUprwf8XsA+jwDTnHNTfMur\nzawqMBl4rLCTDRkyhNjYXJU/xMfHEx8fX9y4Q9KUKVNYu3YtAO3ataN79+75b5iZCY89Bg89BN27\nw7RpkOe+iIhIxZOQkEBCQkKust27d/vt+OZ11yjFAbyJ1GYBd+bXZGNmk5xzA0t5jmXAcufcPb5l\nAzYBE51z4/LZ/hvgE+fcyBxl8cCrQDWXz0X7riMxMTGRVq1a5V1dLuzfv59TTz2VrVu3Al4H2LZt\n2x694e7d3vwkc+bA6NHwwAOaVl5ERAqUlJSUNWt4nHMuqTTHKnWNiXMuyddE8p6Z/Q/4AFgJ7MF7\ncF/V0p4DmABMNbNEvI62Q4AYYCqAmU0DfnXOZT0edw4wxMxWAsuBU/FqUWbnl5RUFM8++2x2UnLl\nlVfmn5T8/DN07QrbtnnNOJdfXsZRiohIReaXZ+U45940szXAU3h9O7KeAPcJ0MsPx3/H15n1Ebwm\nnJVAF+dcsm+TRkB6jl0eBTJ97w2BZGA2UGH7mCQnJ/PUU17f38jISJ588smjN/r5Z+jY0Zta/ptv\noHnzsg1SREQqPL89xM9XdXOxL4FoBmx3zm3w4/EnAZMKWNcpz3JWUvKov84f7h577DH27t0LwO23\n387pp+cZ0JSVlFStCosWwYknln2QIiJS4fn96cLOuRS8DqsSItatW8dLL70EQExMDA899FDuDX7+\nGf72NyUlIiISdOrRWAE88MADpKWlAXDfffdxYs7E45dfvKQkJkZJiYiIBJ0Sk3Lum2++4e233wag\ndu3aDB069MjKX37xmm9iYmDxYiUlIiISdEpMyjHnHCNGjMhefvDBB6levbq3kDMpUU2JiIiECCUm\n5dhHH33EwoULATjllFPo16+ftyJv802DBkGMUkRE5AglJuVURkZGrtqSxx9/nOOOOw7WrfOSkuho\nJSUiIhJylJiUUzNnzuS7774DoHXr1lxzzTVeUtKxo5eULF6spEREREKOEpNyKDMzk8ceO/JIoCef\nfJKIDRuOJCWqKRERkRClxKQc+uCDD1i9ejUAbdu2pXPTprmbbxo2DHKEIiIi+VNiUs4453LVljx+\n++1Yp05w3HFKSkREJOQpMSln5s2bx7fffgtA9z//mQ4PP6ykREREwoYSk3LEOcejj3qPB6oJvLlj\nBxYV5SUljRoFNzgREZEi8PuzciR4FixYwPLly4kCPqpShSqHD8PnnyspERGRsKHEpBzJ6lvyKnDO\noUPYRx/BKacENygREZFiUFNOOfH555/z+eef83fgZsCmTIF27YIdloiISLEoMSknHn30Ua4FHgdW\n9exJxA03BDskERGRYlNiUg4sW7aM/QsW8AbwQdWqtPQ9TVhERCTcKDEpB14dOZIPgBXAH+PGUSkq\nKtghiYiIlIg6v4a5VZ99xtDFi9kD3NWwIV/femuwQxIRESkxJSbhLC0NrrmGesB5wJAHHvCeICwi\nIhKmlJiEK+fY2asXLZKTuRjY36ABffr0CXZUIiIipaLEJFyNH0/N997jZuBz4Jlhw4iOjg52VCIi\nIqWixCQcvfcebsQIngCmAXXr1qVv377BjkpERKTUNCon3KxYATfcwPLGjfmHr+i+++4jJiYmqGGJ\niIj4Q9gkJmY2yMzWm9kBM1tmZm2OsX2smb1oZr+Z2UEzW2tml5ZVvAGxaRN068bBM87gok2bcEDN\nmjUZMGBAsCMTERHxi7BITMzsOuBp4CHgHGAV8JGZ1S5g+yhgAXAy0BM4DbgD2FImAQfCnj3QtStU\nrszf//Qn9mdmAjB48GCqVasW5OBERET8I1z6mAwBJjvnpgGYWX+gK3ArMDaf7W8DagDnOecyfGWb\nyiLQgMjMhPh42LyZ3959lxcuvxyA6tWrc9dddwU5OBEREf8J+RoTX+1HHPBpVplzzuHViJxfwG7d\ngK+ASWb2u5l9b2YjzSzkrzdf48bBf/4DM2bwxAcfkJaWBsDdd99NjRo1ghyciIiI/4RDjUltIBLY\nlqd8G3B6Afs0AzoB04HLgObAS3jX+2hgwgyQr76CBx6A++9n61/+wmtXXAFAlSpVGDx4cJCDExER\n8a9wSExKIgIvcenrq1351swaAUM5RmIyZMgQYmNjc5XFx8cTHx8fqFgLtmuX14TTpg2MHs24ESM4\ndOgQAAMHDqRWrVplH5OIiFRoCQkJJCQk5CrbvXu3345v3vd26PI15aQCVznnZuconwrEOueuzGef\nxcBh59wlOcouBeYCxzvn0vPZpxWQmJiYSKtWrfx+HcXmHFx3HXz8MaxcSXKVKjRu3JgDBw5QuXJl\n1q9fT7169YIdpYiICElJScTFxQHEOeeSSnOskO9z4ZxLAxKBzlllZma+5aUF7LYEr/kmp9OBrfkl\nJSHp1Vdh5kx47TVo0oQJEyZw4MABAPr27aukREREyqWQT0x8JgB3mNlNZnYG8DIQA0wFMLNpZvZE\nju1fAmqa2UQzO9XMugIjgRfKOO6S+e9/4Z57oH9/uPpqdu7cyQsveKEfd9xxDBs2LMgBioiIBEZY\n9DFxzr3jm7PkEaAesBLo4pxL9m3SCEjPsf2vZtYFeAZvzpMtvs/5DS0OLampXhNO8+YwYQIAEydO\nZN++fQDceuutNGzYMJgRioiIBExYJCYAzrlJwKQC1nXKp2w50DbQcfnd4MGwfj188w1Urkxqamp2\nbUlkZCQjRowIcoAiIiKBEzaJSYXwzjte35JXX4U//QmAKVOmsGPHDsAbHdSkSZMgBigiIhJY4dLH\npPxbvx7uuMNrxrntNgDS09N5+umnszcZOnRosKITEREpE0pMQkFaGvTqBbVqweTJYAbAe++9x/r1\n6wHo0qULZ511VjCjFBERCTg15YSCUaMgKQmWLAHf5G7OOcaOPdJXVyNxRESkIlBiEmwffwxjx3rP\nwzn33OzixYsXk5iYCECrVq3o1Omo/r0iIiLljppygun33+HGG6FLF7j33lyr8taWmK95R0REpDxT\nYhIsmZleUhIRAdOmee8+3333HfPnzwegSZMmXH311cGKUkREpEypKSdYxo6FTz/1mnLq1s21avz4\n8dmf77vvPipV0j+TiIhUDKoxCYavvvI6vI4cCRddlGvV5s2bs5/aWLNmTfr06ROMCEVERIJCiUlZ\n270b4uPhr3+Fhx8+avWzzz5Lero3u/6dd95JlSpVyjhAERGR4FEbQVkbMQJ27oTPPoOoqFyr/vjj\nD1555RUAoqOjufPOO4MRoYiISNAoMSlLn33mTaD24ovQuPFRq19++eXsh/X16dOHOnXqlHWEIiIi\nQaWmnLJy8KA35Xy7dtC/fz6rDzJx4kQAIiIiuDfP8GEREZGKQDUmZeXRR2HjRvjww1xDg7NMnz6d\n33//HYCePXvSvHnzso5QREQk6FRjUhZWrfKGB48aBS1aHLU6MzMz1xDh4cOHl2V0IiIiIUOJSaCl\np8Ptt8MZZ3gdX/MxZ84cfvzxRwA6dOhAmzZtyjJCERGRkKGmnECbOBESE725S447Lt9Nxo0bl/1Z\ntSUiIlKRqcYkkNat85pv7r7bm7ckH0uWLGHJkiUAtGzZkssuu6wsIxQREQkpSkwCxTno18+bbv6x\nxwrcLGdtiR7WJyIiFZ2acgJl2jRYsADmz4eqVfPdZO3atcyePRuAhg0bEh8fX5YRioiIhBzVmATC\ntm0wZIj39OAuXQrc7Omnn8Y5B8DgwYM5roA+KCIiIhWFEpNAuOceiIyECRMK3OT3339n2rRpAFSv\nXp2+ffuWVXQiIiIhS005/jZnDsyYAW++CbVrF7jZxIkTOXz4MAD9+/enevXqZRWhiIhIyAqbxMTM\nBgFDgfrAKuAu59yKIuzXC3gL+MA51zOgQe7ZAwMGwOWXe08QLsDevXuZNGkSAFFRUdxzzz0BDUtE\n/GPTpk2kpKQEOwyRoKhduzYnn3xywM8TFomJmV0HPA30Bb4GhgAfmdlpzrkCf0uYWRNgHPB5GYQJ\nI0fCrl3w0ktQyOia1157jd27dwNwww030KBBgzIJT0RKbtOmTbRo0YLU1NRghyISFDExMaxZsybg\nyUlYJCZ4ichk59w0ADPrD3QFbgXG5reDmUUA04EHgQuB2IBG+OWXMGmSN6FaIf9oaWlpPPPMM9nL\nQ4cODWhYIuIfKSkppKamMn36dFrk82gJkfJszZo13HDDDaSkpCgxMbMoIA54IqvMOefMbAFwfiG7\nPgRsc85NMbMLAxpk1pODzz8fBg4sdNMZM2awefNmALp168af/vSngIYmIv7VokULWrVqFewwRMqt\nkE9MgNpAJLAtT/k24PT8djCz9kAf4KzAhubzxBPwyy/w7bfeaJwCOOcYO/ZIBc+wYcPKIjoREZGw\nUe6GC5tZVWAacIdz7o+An/D77+HJJ+GBB6Bly0I3/c9//sP3338PwF//+lfat28f8PBERETCSTjU\nmKQAGUC9POX1gN/z2f4UoDEwx47M7x4BYGaHgdOdc+sLOtmQIUOIjc3dHSU+Pj7/WVkzMrwnB592\nGtx//zEvZMyYMdmfR44cqennRUQk7CQkJJCQkJCrLGtAhz+EfGLinEszs0SgMzAbwJdwdAYm5rPL\nGuDPecoeB6oCdwObCzvfM888U/T240mTYMUKWLIEjj++0E2XLl3KF198AXht1N26dSvaOUREREJI\nfn+sJyUlERcX55fjh3xi4jMBmOpLULKGC8cAUwHMbBrwq3Pu7865w8APOXc2s114fWbX+C2i5GR4\n8MEjnV6P4amnnsr+PHz4cCIiyl0rmoiISKmFRWLinHvHzGoDj+A14awEujjnkn2bNALSyzSoBx/0\nniBcyJODs6xevTr7YX2NGjWid+/egY5OREQkLIXNn+3OuUnOuSbOucrOufOdc9/kWNfJOXdrIfv2\n8eusr6tWwSuvwOjRUKfOMTfPORLnvvvu08P6RESAqVOnEhERwaZNm8LiuIHy8MMPExERwc6dO4Md\nSkgIm8QkZDjnPaTvtNOOOWcJwMaNG3nrrbcAqFmzJrfffnugIxQRCQtmdtQggK+++orRo0ezZ88e\nvx63JPwRS1H4K968hg4dysUXX8zdd9/t92MHkhKT4po1Cz77DJ59FqKijrn5hAkTSE/3Wpnuuusu\nqlatGugIRUTCwk033cSBAwdyzSS6dOlSHnnkEXbt2hXEyEIvlpJ46qmnyMzMDLuHxCoxKY4DB2Do\nUOjWDbp0OebmKSkpvPrqq4D3jIE777wz0BGKiIQNMzuqads5F6RojhZKsZREZGQkP/74Y9jNmaXE\npDjGj4fffoOnny7S5i+88AIHDhwA4I477qB27dqBjE5EpFR+++03brvtNho2bEh0dDTNmjVj4MCB\n2bW+mzZtYuDAgZxxxhnExMRQu3Ztrr32WjZu3JjrOFl9Jn788UeuvfZaYmNjqV27NoMHD+bQoUPZ\n2+XtCzJ69GiGDx8OQJMmTYiIiCAyMjJ7fVHPX1T79u1j8ODBNG3alOjoaOrVq8cll1zCt99+e8xY\nAL799lsuu+wyYmNjqVatGhdddBHLly8v9n3Nz8aNG2nevDl/+ctfSE5Ozi7/8ccfsx9rciwbNmxg\n27ZttG3btqi3JCSExaickLB5szfD65AhcOqpx9x83759PP/88wBUqlSJe++9N9ARioiU2NatW2nT\npg179uyhX79+nH766WzZsoV3332X1NRUqlevzooVK1i2bBnx8fE0atSIDRs2MGnSJP72t7/xww8/\nEB0dDZDdX+Laa6+ladOmjBkzhmXLljFx4kR27drF1KlTs7fL2bfiqquu4n//+x9vv/02zz33HLVq\n1QKgjm+QQVHPX1T9+vXjvffe46677qJFixbs2LGDL7/8krVr1x4zlh9++IELL7yQ2NhY7r//fipV\nqsTkyZPp2LEjn3/+OW3atCnyfc3rl19+oVOnTtSpU4dPPvmEE044IXtdixYt6NixIwsXLjzm9S1Z\nsoSWLVuGXVMOzjm9vOq6VoBLTEx0+YqPd65ePed2785/fR7PPPOMAxzgbrrppiLtIyKhKzEx0RX6\nOyKPuLg417Bhw4C+4uLi/HZ9N910k6tUqZJLSkoqcJuDBw8eVbZ8+XJnZm769OnZZQ8//LAzM3fl\nlVfm2nbQoEEuIiLCff/9984556ZOneoiIiLcxo0bs7cZP378UWXFPX9+x81PjRo13F133VXg+sJi\n6dGjh4uOjnYbNmzILtu6daurXr2669ixY3ZZUe7rww8/7CIiItyOHTvcmjVrXMOGDd15553ndu3a\nddS2ERERrlOnToVeV5YBAwa4QYMGOeecW7ZsmRs1apSrX79+9v0vjmP9/GetB1q5Un4fq8akKL78\nEhISYMoUKELmefjwYZ7O0dyTVR0oIhXH77//zpYtW4IdRpE45/jwww/p3r0755xzToHbHZ9jhuv0\n9PPdQykAABxjSURBVHT27NlDs2bNqFGjBklJSVx//fXZ682MQYMG5dr/rrvuYtKkScybN48zzzyz\n2HH+f3v3Hh5Vdf97/P2doA0BkwBBEAwa5AcGLxTBHq1yUyuXY7kVBCzmidAihYrgDfBXy+UAchN/\nco7WKMfGKoF6UEArFrC1tQWEcrE/oRAQoaJEnqAFVILYzDp/7MmQTCbJhFxmknxezzPP49577b2/\nWaxkvq6911qVuX8kkpOT2bp1K3l5eVxyySURn+f3+9m4cSNDhgzhsssuC+5v3bo1d911F8uWLeOr\nr76iSZMmEdVrkQ8++IARI0bQsWNH1q1bF3awRGFhYcRxbtq0ienTp/POO+9QUFDA3XffzfPPP4/f\n74/4GtGgxKQihYUwaRJ07w4ZGRGdkpOTwyeffALAwIEDuaqCxf1EpP5p3bp1nblHfn4+p06dqvBv\n1ZkzZ5g3bx7Z2dl8+umnwZdDzSzsWikdOnQosX3FFVfg8/k4fPjwecVZ2ftXZOHChWRmZpKamkq3\nbt0YMGAAGRkZpKWllXtefn4+p0+fpmPHjqWOpaen4/f7OXLkCC1atIioXsFLDn/4wx/SunVrfv/7\n35OQkFDpn6e4U6dOsWfPHg4ePEhKSgoDBgwAvIQ51ikxqcivfw27dsHmzRDBNPJ+v7/E9PPTIljc\nT0Tqn+3bt1dcqI75+c9/zosvvsiUKVO44YYbSEpKwswYMWJERP8XXtW5Oqp6/1DDhw+nZ8+erF69\nmg0bNrB48WIWLFjA6tWr6RvByMvqZGYMGzaMF198kZdffplx48ZV6XpbtmyhefPm7Nu3j9zcXC67\n7DL+I+T9yD59+vDOO+9U6T41QYlJeU6ehEcfhdGjI1oPB+D1119n3759APTs2ZMbIzxPRCRaWrZs\nSWJiIrt37y633KuvvkpmZmaJ2ay/+eabMuf5OHDgQIlHHR9++CF+v5/LL7+8zHuUl7xU9v6RaNWq\nFePHj2f8+PEcP36crl27MnfuXPr27VtmLC1btiQhIYHc3NxSx/bu3YvP5yM1NZUmTZpEVK9FFi1a\nRFxcHBMmTCAxMZGRI0ee98+1adMmbr31Vl566SUWLlzIwIED2bt3L36/PzhiqmUEM5dHg4YLl2f2\nbDh9GubPj6i4c475xcqqt0RE6gIzY/Dgwbzxxhvs3LmzzHJxcXGleiaWLl0a9r0H5xxPP/10qbJm\nRv/+/cu8R5MmTQDCJhuVuX9F/H5/qRldU1JSaNOmTXBIc1mx+Hw+br/9dtauXVti+PCxY8dYsWIF\nPXr0oGnTphHXaxEz47nnnmPYsGFkZGTwu9/9rlSZSIcLb9q0iRtuuAGAq666is8//xyAp59+mnXr\n1jF16lSSk5NZs2ZNhdeqbeoxKUtuLixd6q2H07ZtRKe8++67wTHs1157Lf369avJCEVEqs28efPY\nuHEjPXv2ZNy4caSnp3P06FFWrVrFpk2bSExM5I477uCll14iMTGRzp07s2XLFv7whz+UOUfToUOH\nGDRoEP369WPz5s0sX76c0aNHc80115QZR7du3XDO8eijjzJy5EguuOACBg4cSOPGjSt9//J8+eWX\nXHrppQwbNowuXbrQtGlTNm7cyPbt21myZEmFscyZM4e3336bm266iQkTJhAXF8dzzz3H2bNnS/To\nRFKvxZkZL7/8MoMHD2b48OGsW7eOPn36BI9HMly4sLCQbdu28fjjjwf3Fb3vU1BQwIABA3j++eeZ\nNm0a7du3r3Td1biqDuupLx9Chwv37+9cWppzBQVhh0aF069fv+AQ4eXLl0d8nojEvsoOF66Ljhw5\n4jIzM12rVq1c48aNXYcOHdykSZPct99+65xz7uTJk27s2LHu4osvdomJiW7AgAFu//79Li0tzY0Z\nMyZ4naLhr/v27XPDhw93SUlJrkWLFu7+++9333zzTbBcWcN6586d61JTU12jRo1KHD9x4kRE949k\nuPDZs2fd1KlTXdeuXV1SUpK76KKLXNeuXV1WVlZEsTjn3Pvvv+/69+/vEhMTXdOmTd1tt93mtm7d\nWul6LT5cuEhBQYHr06ePS0xMdNu2bQvuj2S4cF5enuvUqVPw+gUFBW7gwIHuF7/4hduzZ4/z+/2u\nS5cu5V4jVG0OF456QhArnxKJyZtvelXz2mvl/kMVt2vXrmBScvnllwcbhIjUDw0hMaku4b5oJXbs\n2rXLZWRkOL/f7956662IzqnNxETvmIT69ltvdtdbboHBgyM+rfhInIcffphGjfSUTEREYk+LFi2I\nj48nJyeHXr16RTucUvTtGWrlSvjwQ1i1CiIc2nbw4EFeeeUVwHtb+5577qnJCEVERM5bamoqWVlZ\n0Q6jTOoxCfX88/Czn0E5L2eFeuKJJ4Jvik+ePJnGjRvXVHQiIiL1mhKTUD6fNxInQseOHeOFF14A\n4KKLLmLChAk1FZmISJ0wY8YMCgsLad68ebRDkTpIiUmoCRMgsIpkJJ566qngmPfx48eTnJxcU5GJ\niIjUe0pMQg0dGnHRkydPBicQuvDCC5k8eXJNRSUiItIgKDEJVYnRNFlZWcGZAzMyMmjTpk1NRSUi\nItIgKDE5TwUFBTz55JOAN1Pfww8/HOWIRERE6j4lJudp6dKlweWjhw4dGnb5axEREakcJSbnIT8/\nn3nz5gHeYk6zKjGKR0RERMpWZxITM5toZofMrMDM3jOz68sp+xMze9fMvgh8NpZXvrJmzZoVfLfk\nJz/5CVdddVV1XVpERKRBqxOJiZmNAJ4AZgBdgb8D682srCUlewE5QG/gBuAIsMHMLqlqLLm5uTz7\n7LOAtyS2ektERESqT51ITIApQJZz7jfOuX3AeOA0MCZcYefc3c65Z51z/+2c2w/8BO9nvbWqgUyd\nOpXCwsLgf7du3bqqlxQREZGAmE9MzOwCoBvwh6J9zjkHvA3cGOFlmgAXAF9UJZY///nPrF27FoA2\nbdrw4IMPVuVyIiIiEiLmExMgBYgDjoXsPwZE2l2xAPgUL5k5L36/v0QiMnfuXBISEs73ciIiIhJG\nvV9d2MymAXcCvZxzZysqP2XKFJKSkkrsGzVqFH6/nx07dgDQpUsX7r777poIV0RE6rDs7GzGjBnD\n4cOHadeuXbTDqRErVqxgxYoVJfadPHmy2q5fFxKT40Ah0Cpkfyvgs/JONLOHgEeAW51zeyK52ZNP\nPsl1111XYl9BQQFXXnllcHvx4sXExcVFcjkREalntmzZwoYNG5gyZQqJiYkljpkZZhalyGrHqFGj\nGDVqVIl9O3fupFu3btVy/Zh/lOOc+xbYQbEXV837V78V2FzWeWb2CPCfQF/n3K6qxLB06VI+/vhj\nAPr3789tt91WlcuJiEgdtnnzZmbPns2JEydKHcvIyKCgoKDe9pbUhrrQYwKwBMg2sx3ANrxROglA\nNoCZ/Qb4xDn3aGB7KjALGAV8bGZFvS1fOee+rsyNQydTW7hwYdV/GhERqbO88RfhmRkXXnhhLUZT\n/8R8jwmAc+4V4CFgNrALuBavJyQ/UORSSr4IOx5vFM4q4GixT6WH0RSfTG3s2LFcffXV5/lTiIjE\ntqNHjzJ27Fjatm1LfHw87du3Z8KECfz73/8Oltm1axf9+/cnKSmJiy66iNtuu42tW7eWuM7MmTPx\n+XwcPHiQzMxMmjVrRnJyMmPGjOHMmTPBcl999RWTJ08mLS2N+Ph4WrVqxe233877778fLJOZmUla\nWlqpWIvuEW7fgQMHGD16NMnJyVx88cX88pe/BODIkSMMHjyYpKQkLrnkEpYsWRL2/NzcXO68806S\nkpJISUlh8uTJnD3rvaI4a9YsHnnkEQAuv/xyfD4fcXFxwV717OxsfD5fcDvSOqtMvYE3p9aRI0dK\nXaM+qCs9JjjnngGeKePYLSHbpVvxeQidTG327NnVcVkRkZiTl5fH9ddfz6lTp7j33nvp1KkTn376\nKatWreL06dMkJibyj3/8g549e5KUlMS0adNo1KgRWVlZ9O7dm3fffZfrr/cm2C56x+LOO++kffv2\nzJ8/n507d7Js2TJatWrF448/DsC9997La6+9xn333Ud6ejqff/45f/3rX9m7dy/f/e53g9cK985G\nuP1F2yNGjKBz584sWLCAN998k7lz59K8eXOysrK49dZbWbhwIcuXL+fhhx/me9/7HjfffHOpuNPS\n0pg/fz7vvfceS5cu5cSJE2RnZzN06FD279/PypUreeqpp2jRogUALVu2DBvXnj17IqqzytQbQHp6\nOr179+aPf/zjef17xzTnnD5et9x1gNuxY4crMmjQIAc4wM2ePduJSMO1Y8cOF/o3oj7JyMhwjRo1\ncjt37iyzzODBg118fLw7fPhwcF9eXp5LTEx0vXv3Du6bOXOmMzP305/+tMT5Q4cOdS1btgxuJycn\nu/vuu6/cuDIzM11aWlqp/TNnznQ+n6/UPjNzP/vZz4L7CgsLXWpqqouLi3OLFi0K7j9x4oRLSEhw\n99xzT6nzhwwZUuK6EydOdD6fz33wwQfOOecWL17sfD6f++c//1kqruzs7BLHIq2z4vevqN6cc87n\n87lbbrml1P3DOXHihHvooYfc7Nmz3dy5c11WVlZE5xVXUfsvOg5c56r4fVxnekxqW+hkag888ECU\nIxKROuX0adi3r2bvceWVUA3zKTnnWLt2LQMHDqRr165hy/j9fjZu3MiQIUO47LLLgvtbt27NXXfd\nxbJly/jqq69o2rQp4P3f/7333lviGj169GDNmjXBcsnJyWzdupW8vDwuuaTKK4YE7zt27Njgts/n\no3v37qxdu5YxY85NFp6UlESnTp346KOPSp0/ceLEEvvuu+8+nnnmGdatW1epx/mVrbOi+1dUb0Bw\nBvKK/Otf/6JXr14sWrSIvn37kpWVxbRp0xg3blzEP0dtU2ISht/v56GHHgpuz5kzhyZNmkQxIhGp\nc/btg2oaPlmmHTsgZHqD85Gfn8+pU6fKXZA0Pz+f06dP07Fjx1LH0tPT8fv9HDlyhPT09OD+0JEp\nzZo1A7wvy6ZNm7Jw4UIyMzNJTU2lW7duDBgwgIyMjLDvlFRG6H2TkpKIj4+nefPmpfZ/8UXpCcE7\ndOhQYvuKK67A5/Nx+PDhSsVxPnUWLv7QequM+++/n6uvvpq+ffsC0LZtW2bMmFGpa9Q2JSZhrFy5\nku3btwNw7bXXkpGREeWIRKTOufJKL3Go6XvEsLLme3KBUS3Dhw+nZ8+erF69mg0bNrB48WIWLFjA\n6tWrg1+kZc0JUl6PQbj7VhRLeWp7XpKqxFpcXl4eK1asYP369cF9d9xxR4kyffr04Z133ql8kDVI\niUmIM2fOMH369OC2JlMTkfOSkFAtvRm1oWXLliQmJrJ79+5yyyQkJJCbm1vq2N69e/H5fKSmplb6\n3q1atWL8+PGMHz+e48eP07VrV+bOnRtMTJo1axZ2vpDK9l5UxoEDB0o8evnwww/x+/3BnpxIE5Wa\nqrNI/e1vfwPg+9//ftjjubm5wZd2Y0mdGC5cm1auXBkc5tWvXz9+8IMfRDkiEZGaZWYMHjyYN954\ng507d4Yt4/P5uP3221m7dm2JobDHjh1jxYoV9OjRo1KPGfx+f3AqhiIpKSm0adOGb775Jrjviiuu\n4OTJkyWSpry8PNasWRPxvSrDOcfTTz9dYt/SpUsxM/r16wcQfLQfLmEqrrrrrLhIhgv7/f7gY6zi\nPvroI9544w2mTp1KcnJyjdXl+VKPSYgXXngB8BrUokWLohyNiEjtmDdvHhs3bqRnz56MGzeO9PR0\njh49yqpVq9i0aROJiYnMmTOHt99+m5tuuokJEyYQFxfHc889x9mzZys9+eSXX37JpZdeyrBhw+jS\npQtNmzZl48aNbN++vcT8IiNHjmTq1KkMHjyYSZMm8fXXX/Pss8/SqVOnMpOoqjp06BCDBg2iX79+\nbN68meXLlzN69GiuueYaALp164ZzjkcffZSRI0dywQUXMHDgQBo3blzqWtVZZ8VFMly4V69eABw/\nfpyUlBQAdu/eTU5ODvPmzeOFF15g2rRptG/f/rzjqAlKTEJ8/bU3MawmUxORhqRNmzZs3bqVxx57\njJycHE6dOkXbtm0ZMGBAcCX1zp0785e//IXp06czf/58/H4/N9xwAzk5OXTv3r1S90tISGDixIls\n2LCB1atX4/f76dChA7/61a9KjBhp3rw5a9as4YEHHmDq1KnB+UX2799fqcSkrMcv4eZC+e1vf8tj\njz3G9OnTadSoEZMmTSqRRHTv3p05c+bw7LPPsn79evx+P4cOHQo7DX111llonBU9UmrWrBmvvvoq\nkydPJj09ncLCQtq1a8e8efNwznHo0KGYS0oArLIv09RXZnYd3po8NGnShAMHDlTb8DURqfuKFinb\nsWNHqYU+pX6YNWsWs2fPJj8/v9QInvrm/fff58knnyQ7O5v169cHH1OVpaL2X2wRv27OuSp1Zekd\nkzAeeeQRJSUiIlJvtWjRgvj4eHJycoKPfGKFHuWESElJ4cEHK72kjoiISJ2RmppKVlZWtMMISz0m\nISZMmKDJ1ERERKJEiUmI0MlnRESkYZgxYwaFhYX1/v2SWKfEJIQmUxMREYkeJSYiIiISM5SYiIiI\nSMxQYiIiIiIxQ4mJiIiIxAwlJiIiIhIzNMGaiEgl7N27N9ohiNS62mz3SkxERCKQkpJCQkICo0eP\njnYoIlGRkJAQXKW4JikxERGJQLt27di7dy/Hjx+PdigiUZGSkhJ2BeXqpsRERCRC7dq1q5U/zCIN\nWZ15+dXMJprZITMrMLP3zOz6CsoPN7O9gfJ/N7P+tRVrXbdixYpohxAzVBce1cM5qguP6uEc1UX1\nqhOJiZmNAJ4AZgBdgb8D680s7MMuM/s+kAM8D3wXWAusMbPOtRNx3aZfsnNUFx7VwzmqC4/q4RzV\nRfWqE4kJMAXIcs79xjm3DxgPnAbGlFF+EvCWc26Jcy7XOfdLYCfw89oJV0RERM5HzCcmZnYB0A34\nQ9E+55wD3gZuLOO0GwPHi1tfTnkRERGJATGfmAApQBxwLGT/MaB1Gee0rmR5ERERiQEalXNOPGjy\nJICTJ0+yc+fOaIcRE1QXHtXDOaoLj+rhHNVFie/O+Kpey7ynIrEr8CjnNPAj59zrxfZnA0nOuSFh\nzvkn8IRzbmmxfTOBQc65rmXc5y5gefVGLyIi0qD82DmXU5ULxHyPiXPuWzPbAdwKvA5gZhbYXlrG\naVvCHP9BYH9Z1gM/Bg4DZ6oWtYiISIMSD1yO911aJTHfYwJgZncC2XijcbbhjdIZBlzpnMs3s98A\nnzjnHg2UvxH4EzAdeBMYBUwDrnPO/aPWfwARERGJSMz3mAA4514JzFkyG2gFvA/0dc7lB4pcCvy7\nWPktgUczcwOfA3iPcZSUiIiIxLA60WMiIiIiDUNdGC4sIiIiDYQSExEREYkZSkyo/AKB9ZGZzTAz\nf8inQbyTY2Y9zOx1M/s08HMPDFNmtpkdNbPTZrbRzDpEI9aaVFE9mNmvw7SRddGKt6aY2XQz22Zm\np8zsmJmtNrOOIWW+Y2ZPm9lxM/vSzFaZ2cXRirkmRFgPfwppD4Vm9ky0Yq4pZjY+sBjsycBns5n1\nK3a83rcHiKgeqqU9NPjEpLILBNZzu/FeLm4d+Nwc3XBqTRO8F6onAKVeujKzqXjrLI0Dvgd8jddG\nLqzNIGtBufUQ8BYl28io2gmtVvUA/jfwP4DbgAuADWbWuFiZ/wL+J/AjoCfQBni1luOsaZHUgwOe\n41ybuAR4pJbjrA1HgKnAdXhLpPwRWGtm6YHjDaE9QMX1UD3twTnXoD/Ae8BTxbYN+AR4JNqx1XI9\nzAB2RjuOaH8APzAwZN9RYEqx7USgALgz2vHWcj38Gngt2rFFoS5SAvVxc7F//2+AIcXKdAqU+V60\n462tegjsewdYEu3YolQfnwP3NNT2EFoP1dkeGnSPyXkuEFif/UegG/+gmb1sZqnRDijazCwNL/Mv\n3kZOAVtpmG2kd6Bbf5+ZPWNmzaMdUC1Ixvs/wS8C293wploo3iZygY+p320itB6K/NjM8s3sAzOb\nF9KjUu+Ymc/MRgIJeJN2Nsj2EFIPm4sdqnJ7qBPzmNSg8hYI7FT74UTVe0AmkIvX/TYTeNfMrnbO\nfR3FuKKtNd4fYy0K6T3GeRU4BFwBPA6sM7MbAwl9vROYZfq/gL+6c/MgtQbOBhLU4uptmyijHsBb\nxuOfeL2K1wILgY54E2DWK2Z2NV4iEg98iddDss/MutKA2kMZ9ZAbOFwt7aGhJyYS4JwrPo3wbjPb\nhtfA7sTrwpcGzjn3SrHNPWb2AXAQ6I3XhVsfPQN0puG8b1WWonq4qfhO59yyYpt7zOwz4G0zS3PO\nHarNAGvBPqALkIT3RfsbM+sZ3ZCiImw9OOf2VVd7aNCPcoDjQCHeizrFtQI+q/1wYodz7iSwH6h3\no08q6TO8947URkIE/tAcp562ETP7P8AAoLdz7mixQ58BF5pZYsgp9bJNhNRDXgXFt+L9vtS7NuGc\n+7dz7iPn3C7n3H/iDZS4nwbWHsqph3DOqz006MTEOfctULRAIFBigcDNZZ3XEJhZU7zu+or+ENVr\ngS/fzyjZRhLxRio09DZyKdCCethGAl/Gg4A+zrmPQw7vwFsCo3ib6AS0o/yFQuucCuohnK54jz7r\nXZsIwwd8hwbUHspQVA/hnFd70KMcWAJkm7eCcdECgQl4iwY2GGa2CHgD7/FNW2AW3i/bimjGVRvM\nrAleRm+BXe3NrAvwhXPuCN6z9V+Y2Yd4q0//L7yRW2ujEG6NKa8eAp8ZeO+YfBYotwCvV63Kq4nG\nksC8C6OAgcDXZlbUW3bSOXfGOXfKzP4vsMTM/oX3nH0psMk5ty06UVe/iurBzNoDdwHr8EZmdMH7\ne/pn59zuaMRcU8xsHt47Vh8DF+GtRN8LuL2htAcovx6qtT1Ee6hRLHzw5m04jDcEdAvQPdoxRaEO\nVuB92RYEGl0OkBbtuGrpZ++FN7SvMOTzQrEyM/Fe6DqN90XcIdpx12Y94L3o9nu8pOQM8BHwK6Bl\ntOOugXoIVweFQEaxMt/Bm+PjON4X0f8DLo527LVZD3iLp/4JyA/8XuTivRDdNNqx10BdLAu0+YLA\n78AG4JaG1B4qqofqbA9axE9ERERiRoN+x0RERERiixITERERiRlKTERERCRmKDERERGRmKHERERE\nRGKGEhMRERGJGUpMREREJGYoMREREZGYocREREREYoYSExEREYkZSkxEpE4ws1sCCymKSD2mxERE\n6ophwL+iHYSI1CwlJiJSV9wMvBvtIESkZikxEZGYZ2bJwFXAX6Idi4jULCUmIhKzzOxHZvYW53pK\n7jWzdWbWI5pxiUjNMedctGMQESmXmc0FhjnnOkU7FhGpWeoxEZG64Cb0GEekQVBiIiIxzcwaAdej\nxESkQVBiIiKxrhsQj0bkiDQISkxEJNZ9H8hzzh0CMLP2ZhYf5ZhEpIYoMRGRWHcDsKnY9oPOuTPR\nCkZEapYSExGJdXFAUW/J3cBb0Q1HRGqShguLSEwzs67AIuDvwH87516MckgiUoOUmIiIiEjM0KMc\nERERiRlKTERERCRmKDERERGRmKHERERERGKGEhMRERGJGUpMREREJGYoMREREZGYocREREREYoYS\nExEREYkZSkxEREQkZigxERERkZihxERERERihhITERERiRn/H2KC4utH2Ov8AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "C = S[1]\nX = []\nY = []\nZ = []\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(C[k])\n Z.append(f(k)-delta*k)\n\nplt.plot(X, Y, color=\"blue\", linewidth=2, label=\"capital stock: $k$\")\nplt.plot(X, Z, \"--\", color=\"gray\", linewidth=1, label=\"net product: $f(k)-\\delta k$\")\nplt.plot([k_ss], [c_ss], marker='o', color='r')\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$c$\", fontsize=14)\nplt.title(\"Policy Function: $c$\")\nplt.legend(loc='lower right')\nplt.show()", + "execution_count": 229, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiUAAAGOCAYAAABIXnNbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VUX+x/H3JBB6QgkCgVAiRYqACSIIKkVBUEQUwSCy\n4mIDG/7UXcuu6NrXsrgLrrq62DYuKgqIIqjYUFETcOkgvZNQEiIESDK/PyYhuSlw025JPq/nyQOZ\nOfec772PJh/mzMwx1lpERERE/C3E3wWIiIiIgEKJiIiIBAiFEhEREQkICiUiIiISEBRKREREJCAo\nlIiIiEhAUCgRERGRgKBQIiIiIgFBoUREREQCgkKJiIiIBASFEhEREQkICiUilYwx5jpjTLYxpmVR\n30vx9FmJ+JdCiYifGWN+l/OLMPfriDFmrTHm78aY00pxSpvzVdz3Fa6I95T/63Ff1lJMfb2NMQ8Z\nY8ILdPn8sxKRPNX8XYCIAO4X4Z+AzUBNoC9wCzDEGNPFWptRhnO/ASRYa4+VucqSyf+e8lvh4zqK\nci7wZ+DfQFq+dn99ViKCQolIIJlvrU3K+ftrxpj9wGRgOPDf0p7UWmsBf/2Szf+eAokpqtHPn5VI\nlafbNyKB6wvcL882uQ3GmLOMMZ8YY1KNMYeMMZ8ZY8452UmKmydhjIkyxrxqjNlhjMkwxmw0xkw3\nxlQzxvTLec3wIs43JqfvpNf1hjFmhjFmUxHtU4wx2QW/N8acnvOaA8aYg8aY14wxNYt4/cne20PA\n0zmHbs45b5YxpuVJPqtTfu6lqLGDMSa6tJ+dSGWkkRKRwNU25899AMaYzsDXQCrwJJAJ3AR8aYw5\n31r7UzHnKTRPwhjTDPgJCAdeAtYCzYGRQG1r7ZfGmG3ANcDsAue7BvjVWrvEi/cQYYxp5FGMtftO\nVlsx7bl/nwlsBP4IxAITgD3Afd6+N2AW0B64GriDnM8XSC6qHmNMJ7z73L2uMcdq4EtgQBHvX6RK\nUigRCRy5v8Bz55T8CTgMfJTT/yju/9k+1totAMaYN3G/dJ8G+pfgWk8CpwE9rbVL87VPyff3t4DJ\nxph61tpDOdeLBC4C/uLFNQzweYE2C4SWoM6CEq21N564gKvn93j+wj/Ve1tujEnChZLZ1tqt+c5X\n1DUfo2Sfuzc1Qgkm1RpjIoAHcfNfsoAUa+3L3rxWJJjo9o1IYMj9BZ4MbAP+g/sFdLm1dpcxJgQX\nBj7I/cUIYK3dnXNsX2NMXa8u5H7zDgfmFPilXdAbuIA0Ml/b1bhQ8bYXl7K4yboX5vu6yJsaT3K+\nlwq0fQM0yn3vJXhvXinF537KGvOdI9RaO9CLGhrknOMza+1fcCM7T5bm/YgEOo2UiAQGC0wE1uNu\nD+yx1q7N198Yd+thXRGvXY37B0Z0zt9PpTHu1sbKkxZk7VpjzE+42zX/zmkeA/xgrd3oxXUAfirn\nia5bC3x/IOfPBkA6Xr63EijN536qGktqKrDCWvtpzvc7gIdLcR6RgKdQIhI4yvsXeHl4A/ibMSYK\nqAX0woWn8lLc7YvibvFkFdNe5H0XPym3GnPmx8QDg3PbrLUfFf8KkeCm2zciwSEZN7+kQxF9HYFs\n3G0fb8+VBnTx4th3cs4djxslOYabyFleDgD1i2hvXcrzefvevN0grTw/99I4O+fP7yrwGiIBQ6FE\nJAhYa7OBBcDw/MtVjTFNcIHhG2utV7cGcvbi+BAYZoyJPcWx+4BPgGtxt3HmW2v3l+5dFGkDboLv\niRCRMzpweWlOVoL39lvOn0UFovznK7fPvSAvlwSHAKkFN88zxsQYYzTSLZWOQolIYPBmaP9B3HyT\nxcaY+4wx9wKLgTDg3hJe735gL/C1MeY5Y8wNOduuLy9i6/U3gK5AO9yKHG95857ewY1EfGiMud0Y\ncx/wA25lS2l5894Sc+p73Bgz1hgz2hhTq5jzlefnnt9q4PVTHPMVnFjBQ87fuwATrLWZZbi2SEBS\n0hYJDKe8nWCtXWWMOQ94ArcHRgjuF/gYa+3PJbqYtTtzNv/6C+62TDhuAuXHuJCQ31zcbRYDzCnJ\nZbyoY78x5nLgOeApYBPuvbXH7fFRYt68N2vtz8aYB4GbcfM1Qsi3SV2B85Xb517w1JziM7LWHjDG\nXImb17MaN9dmq7X2/jJcVyRgGTfaKSJSNGNMKLATt6fHjac6XkSktAL29o0x5jxjzJycbaKzjTGX\nefGaMGPMY8aYzfm2lr7OB+WKVGYjgEjcbRwRkQoTyLdv6gDLgFdx20J7413cvgLjcRPomhHAwUsk\nkBljegLdcHMqkqy13/q5JBGp5AI2lFhr5wPz4cQujSdljLkYOA+IsdYezGkuuImRiHjvFtyKm6W4\noC8iUqEq0yjCMOBn4A/GmO3GmLXGmL8W9XROETk1a+14a22YtfYca+0qf9cjIpVfwI6UlEIMbqQk\nA7fHQSTwItAQ9zAsERERCWCVKZSE4HZXHJO7mZEx5i7gXWPMRGvt0YIvyHki62BgMy7MiIiIiHdq\n4nZf/jRno8Uyq0yhZBewo8Duiqtxeyu0wE18LWgw3j3tVERERIp2De6p2WVWmULJYmCkMaa2tTZ3\n86cOuNGT7cW8ZjPAW2+9RceOHSu+QgFg8uTJPP/88/4uo0rRZ+57+sx9T5+5b61evZqxY8dCzu/S\n8hCwocQYUwdoS95W1THGmG7AfmvtNmPME0CUtfZ3Of3/wS1d/LcxZgpuafDTwKtF3brJkQHQsWNH\nYmNLtXmklEJERIQ+bx/TZ+57+sx9T5+535Tb9IdAXn3TA7cUMRG3FfOzQBLwcE5/U+DEw6ystb8B\nF+EesPUT8CYwG7jDdyWLiIhIaQXsSIm19itOEpqstYX2TbDWrsPNExEREZEgE8gjJSIiIlKFKJSI\nz8XHx/u7hCpHn7nv6TP3PX3mwa9KPyXYGBMLJCYmJmpylIiISAkkJSURFxcHEGetTSqPc2qkRERE\nRAKCQomIiIgEBIUSERERCQgKJSIiIhIQFEpEREQkICiUiIiISEBQKBEREZGAoFAiIiIiAUGhRERE\nRAKCQomIiIgEBIUSERERCQgKJSIiIhIQFEpEREQkICiUiIiISEBQKBEREZGAoFAiIiIiAUGhRERE\npIqxFmbPhnHjYPhwf1eTp5q/CxARERHf2LgRPv4YPvgAvvjCtRkD6elQt65/awOFEhERkUrvl18g\nIQGefRYyMz37jIH16+Gss/xTW366fSMiIlIJHT0KiYlwxRXQvTs89ZRnIAkLg/vvh8OHAyOQgEZK\nREREKpXjx2HaNPjzn+HQocL9/frBE09A165Qu7bPyzsphRIREZFK4Oef4a674Mcf3ShJfiEhcMMN\nMH489OzpbtkEIoUSERGRIJWcDH/9KyxeDN99V7g/Lg7GjoWLLoLOnX1fX0kplIiIiASZFStgxgx4\n8UU3JyS/mjXh8sthyBAXSEKCaPaoQomIiEgQSE+HBQvg889h+vTC/W3awNCh8PjjEB7u+/rKQ8CG\nEmPMecA9QBzQDLjcWjvHy9f2Ab4ElltrYyusSBERkQq2e7cLIv/3f7BnT+H+2Fh45RX3Z7AL5EGd\nOsAyYCJgvX2RMSYCeB34rILqEhERqXA7dsDgwdCsmbsNUzCQXHIJbNvmlv1WhkACATxSYq2dD8wH\nMKZE84T/CbwNZAMBtHmuiIjIyVnr9hN55RW3+2pBzZu7ia19+0J0tO/rq2gBG0pKwxgzHmgDXAP8\nyc/liIiIeOWrr+C112DhQti1q3D/bbdBnz5w2WVQq5bv6/OVShNKjDHtgMeBvtba7JINroiIiPhW\ndja8/z68+677Kig21gWRiRPhjDN8X58/VIpQYowJwd2yechauyG32dvXT548mYiICI+2+Ph44uPj\ny69IERGp8qyFdevgp5/cCprvvy98TGws3HsvjB7t+/qKk5CQQEJCgkdbampquV/HWOv1HFK/McZk\nc5LVNzmTWw8AmeSFkZCcv2cCg6y1XxbxulggMTExkdjKMktIREQCjrWwahX8/vewZEnh/pAQt9vq\n3/8ePLdnkpKSiIuLA4iz1iaVxzkrxUgJkAZ0KdA2CegPXAls9nVBIiIiAIsWwU03uSfxFlS7Njz0\nkLtFU7eu72sLNAEbSowxdYC25I18xBhjugH7rbXbjDFPAFHW2t9ZN9yzqsDr9wIZ1trVPi1cRESq\nvL174YEH4LPPYPNmz77q1eEPf3AraHr2hAYN/FJiQArYUAL0ABbh9iixwLM57a8D1wNNgUq4IEpE\nRIJRdjYkJLgg8s47kJHh2d+kCUyY4EZNKuNy3vIQsKHEWvsVJ9nczVo7/hSvfxh4uLzrEhERyW/z\nZvj6azcf5OefC/f37QsDBsDdd0O9ej4vL6gEbCgREREJZNu3w9Sp8Le/QWamZ1+1anDuue6BeZ06\n+ae+YKRQIiIiUgIpKe4WzKxZhfvq1YO//MX116zp+9qCnUKJiIjIKSQnw5//7B6MV9QqmmHD4I47\n4Oyzg/cJvYFAoURERKQI1rodVz//HN58E377rfAxN98Mo0ZB//6+r68yUigRERHJ5+hRmDcPnnsO\nFi8u3N+rF5xzDlx7Lbi9w6S8KJSIiIgAqanwzTfuNkzBJ/Qa44LIyy/DmWf6p76qQKFERESqtIwM\nuPVW95Tegk9eqVXLzSWZNEnLeX1BoURERKqctDR4+mk3X+SHHwr3N2gAzz4Ll14KjRv7vr6qSqFE\nRESqjB074JVX4KWXYPfuwv3x8TBkiAsj2v7d9xRKRESkUjt6FJYtcw/Ge/jhwtu/t2/v5ov8/vdw\nwQX+qVEchRIREamUsrPhrbdg8mTYv79wf7t28K9/wfnn+742KZpCiYiIVDpPPunmjBw4ULjvrLNg\nxgy3isaYwv3iPwolIiIS9DIz3QZnn33mbtPs2uXZ36WLW0HTq5cLI6Gh/qkzUOzZs4dNmzZRp04d\nzgygNc4KJSIiErS2b3dP6H3mGVi6tHD/eefB6NFw441Qvbrv6wtUv/zyCz/++CPdunVTKBERESmL\ngwddEHnqqcJP6K1ZE3r0cA/FGzvWP/X5w2+//cauXbvYtWsXZ555JvXr1y/22AsuuICBAwcSGmBD\nRgolIiISNJYudWHj558Lb3QWHu7mkVx/feUfFTl06NCJAJL7lZaWBkCNGjWIioo6aSipUaOGr0ot\nEYUSEREJaOnp8Le/ufkiX31VuH/IELc1fK9eEBHh+/p8zVrLtGnTOHr0KLVq1aJZs2aceeaZNGvW\njGbNmtGgQQNMkM7gVSgREZGAlJzsJq/+7W+wbZtnX0SEeyDexRfD0KGVZxXNkSNH2L9/P82bNy/2\nGGMMV199NfXr1yciIiJoA0hRFEpERCRgWOsehvfZZ3DvvW47+Pxat3ZB5LHHoGFDv5RYbo4ePcqu\nXbvYuXPnia8DBw5QvXp1/vjHPxISElLsa1u3bu27Qn1IoURERAJCSgqMGweffFK4LzrabXQ2aJDv\n6ypv27dvZ/bs2aSkpABQvXp1mjVrRvv27YmKiiIqKqpSjX6UhEKJiIj4zf798OijsHAhrFhRuL9D\nB3j1VTdfJMAWipRavXr1aNOmDX369CEqKorIyMiTjopUJQolIiLic998427RTJsG+/YV7v+//3Nz\nRfr2hbAw39fnLWst+/fvZ/v27ezYsYOdO3fSqlUrLrroomJfExERwdChQ31YZfBQKBEREZ/IynKj\nIY88ArNmFe6PjYU+fWDCBOja1ff1eWvbtm2sX7/+RAjJyHnCX6NGjWjevDktWrTwc4XBS6FEREQq\n3OzZbn+RPXsK93Xp4p5FExfn87JKZe3atSxbtozmzZvTu3dvmjdvTlRUFLVq1fJ3aUFPoURERCrE\n3r0wZYq7TbN+vWdfSAjceafbX6RlS7+U5yE7O5vk5GR27NhB27ZtCQ8PL/bYfv36MXDgwCo7GbUi\nKZSIiEi5sRa+/NJNXJ0+HVJTPfvbt4ebb4bBg6FTJ7+UCEBaWtqJeSC5t2GOHz8OwKhRo04aSqpV\n06/OiqJPVkREyiwrC5Yvh4cegjlzCvf36QOXXAJ33QX+3uH8n//8J3ty7iOFh4fTvHlzLrjgApo3\nb06zZs0Cdgv2qiBgQ4kx5jzgHiAOaAZcbq0t4j/1E8ePAG4BugM1gJXAFGvtAh+UKyJSZX34oZsv\nsndv4b7YWHj9dTdvJFCcffbZ1K5dmxYtWlCvXj1/lyP5BGwoAeoAy4BXgSLmaRdyPrAAuA84CFwP\nzDXG9LTW/lJhVYqIVEF797pVNAsXwrp1nn2hoXD33XD77RAVVbF1ZGVlsWvXLrZv38727dvZs2cP\nt9xyy0n3/YgLlhm1VVDAhhJr7XxgPoDxYjaRtXZygaYHjDHDgWGAQomISBllZMB338HXX8PUqXDw\noGf/GWe4+SIXX+w2PasIx44d49dffz0RQnbu3ElWVhahoaFERUXRrl07jh8/rlswQSpgQ0lZ5QSZ\nesB+f9ciIhLMcievXn89bN5cuL93bxg2zDfzRQ4fPsy7775LREQELVq0oFOnTkRHR9O0aVNCK8uW\nr1VYpQ0luPkodYCZ/i5ERCQYHTsG99/vntRb1HyRrl1dX3ltdJaRkUF6ejqRkZHFHhMREcFdd92l\nuSCVVKUMJcaYMcCfgMustSn+rkdEJJj8/DP85z8wcybs2OHZd9pp8PTT0K8ftGpV+mtYa0lNTWXr\n1q1s3bqVbdu2sXfvXqKiorjhhhuKfZ0xRoGkEqt0ocQYczXwMjDSWrvIm9dMnjyZiIgIj7b4+Hji\n4+MroEIRkcCTlQX/+58b+Xj++cL9gwbBwIFulU2BH5clsm3bNpYsWcLWrVs5dOgQAJGRkURHR9O7\nd29aBsJOalJIQkICCQkJHm2pBTehKQfGWlvuJy1vxphsTrEkOOe4eOBfwGhr7UdenDcWSExMTCQ2\nNrZ8ihURCTIrV8Lo0e7Pgrp2hSefhCFDyuda69ev55tvviE6OpqWLVsSHR1N7dq1y+fk4lNJSUm5\nK5nirLVJ5XHOgB0pMcbUAdoCuStvYowx3YD91tptxpgngChr7e9yjh8DzABuB34yxjTJed0Ra22a\nb6sXEQlsW7bAs8/CokXuIXkFXXEFvPwyNGrk3fkOHTrE1q1bT0xALU67du1o165dKauWyi5gQwnQ\nA1gE2JyvZ3PaX8ftQdIUiM53/A1AKDAt54sCx4uIVGnWQlKS21vk4YfdEt/86tVze48MHAhnnnmy\n87j5IJs3b2bLli1s3bqV/fvdQsdzzz1XT8mVUgvYUGKt/Qoodvcba+34At/3r/CiRESC1J49bknv\nxx8X7uvRA/r3d0t6mzY9+XkWL17Mjz/+SFqaG4A+7bTTOP300xkwYAAtW7bUJFQpk4ANJSIiUnYp\nKTB2LHz6aeG+uDh4911o08b789WpU4dOnTrRunVrWrZsSa1atcqvWKnyFEpERCqZtDR49VU3X2Tu\nXM++kBD44x9dUDnjDDAGsrOz2b17N1u2bKFDhw40bNiw2HN37969gquXqkyhRESkkjhwAL74wj1z\nZudOz76QEJg8Ga69Frp0yWLHjh18++2WE/uEHDt2jGrVqhEREXHSUCJSkRRKRESChLWWoh4FZi38\n4Q9uNU12tmdf48ZuvshDD0GnTjBr1izmzVvD8ePHCQsLo2XLlpx33nm0atWKqKgobdUufqVQIiIS\nwA4dOsQzDzzA4rlzqXP8OL9Vr06fYcP4v0cf46OP6jF7tltNc+CA5+uaN4cZM9xKmvw5pkmTJjRp\n0oQ2bdrQtGnTkz5NV8TXFEpERALUoUOHuLJ3b+5avZop2dkY3P4In0ybRo/XvmD9b98D9TDG0qTJ\nXlq33kTr1nGMGVOdAQOgbt3C5+zTp4+P34WI9xRKREQC1DMPPMBdq1dzcb57MgYYmp1N1m+ruee0\nG+jW7wratNlMrVpHMCaUCRNaEhUV5b+iRcpAoUREJEAtnjuXKQUnieS4lGwePvopXboMonfvHpx+\nehtatGhB9erVfVylSPlRKBERCUBr1ljs/uMUntbqGKBprdo8+OD4Iie/igQjzXASEQkAx48fz3ly\nLvz5z9Cli2FzWnWKe2SqBTJqhimQSKWikRIRET/Izs5m165dbNy4kU2bNrF581aszeK55+4mLa0O\nAPsYxjymcSmFb+HMDwmh72WX+bpskQqlUCIi4iPHjh3jl19+YdOmTWzatImMjAyMCePgwdZ8992F\nbNwYQ1pa7RPH9xn6GH9d9wUhG1czJN/qm/khITzfsSPvP/qo396LSEVQKBER8aGFCxfStGlTmjQ5\nh2nTYkhKak52dt6GZdHRMGwYXHopXHxxPdLTv+fZBx/k+TlzqH38OIerV6fPZZfx/qOP6uF3Uuko\nlIiIlJPidlzNtXt3GOvW3cPUqdXZu9ezr0YN95Texx7z3OysXr16TJk6FaZOPeX5RYKdQomISBmk\npqby66+/smHDBlJSUrjlllsKBYelS+GTT+CJJyA93XPJbpMm8PLLcNFFcKoH7iqQSGWnUCIiUgLH\njx9ny5YtHkHEGEPz5s3p3LkzWVlZVKvmfrSmpcEdd7jt3gu69FIXRK69Fho08O17EAlUCiUiIl7a\nv38/L774IpmZmYSHh3P66afTv39/2rRpQ618wxzLlrkn8n7zDWRleZ7j7LPhv/+FNm18XLxIEFAo\nERHxUoMGDbjwwguJiYkhMjLS43bKoUPw+efw6afwz38Wfu2tt7qgEhPjw4JFgoxCiYhUedZa9u3b\nR3JyMh07diz2OGMM55xzTqH2zz+HsWNh927P9nr14He/g9GjoW/f8q5apPJRKBGRKikzM5PNmzez\nfv161q9fz4EDB6hVqxYdOnQgJOTUm11v2gTPPQfz58Ovv3r2Va/ulvW+/DI0alRBb0CkElIoEZEq\nIyMjgxUrVvDrr7+yceNGjh8/TkREBO3ataNdu3a0adPmlIFk2zaYMwfuuQeOHPHsa90apk6F/v3d\nKImIlIxCiYhUGceOHeOTTz4hOjqa888/n/bt29O4cWOvltpmZcGNN8JrrxXuO/98GDLEzRupW7cC\nChepIhRKRKTKCA8P595776VGjRpeHW8tfPCB+5ozxy3xze+ss2D2bLcLq4iUnUKJiAS9AwcOsG7d\nOlJSUrjkkktOeqw3gcRaWLMGHnjABZKCJk6EceOgRw8IDS3cLyKlo1AiIkHHWsvOnTtZu3Yta9eu\nZe/evYSGhtKmTRuysrIILUNSWLoUrrkGVq/2bK9bFy68EG6+GQYPLuMbEJEiKZSISNBIT09n0aJF\nrFu3jvT0dGrVqkW7du244IILOP30072+LVPQgQNuROTjj+H99z37QkPhoYfgD3+AsLByeBMiUiyF\nEhEJGmFhYWzfvp0uXbrQoUMHWrZs6dXy3eJYC1984UZG9uzx7GvWDO6+2y3tbdeujIWLiFcUSkQk\naISFhXHLLbeU+TzWwlNPwT/+ATt2ePY1bAiXX+76IyPLfCkRKYHS/xOjghljzjPGzDHG7DDGZBtj\nLvPiNf2MMYnGmAxjzDpjzO98UauIlJ61lr179/LVV1/x9ttvY62tsGvt3An/+pfbXfW++zwDSXQ0\nLFoEe/fCq68qkIj4QyCPlNQBlgGvArNOdbAxpjXwETAdGANcCPzLGLPTWruw4soUkZKy1rJr1y5W\nr17N6tWr2bdvH2FhYbRv356jR49Ss2bNcr3enj1uG/jPPivc178/XHGFW00THl6ulxWREgrYUGKt\nnQ/MBzDe7GwEtwAbrbX35ny/1hjTF5gMKJSIBIBjx47xxRdfsGbNGlJTU09s6z5o0CBiYmKoVq18\nfyR9/z289RbMmAGHD3v2RUbCo4/CTTeV6yVFpAwCNpSUQi+g4L+DPgWe90MtIlKE6tWrs337dtq3\nb0/Hjh1p1apVmSaqFmffPnjmGXjySc/2sDC3PfywYdpjRCQQVaZQ0hQoMH+ePUC4MaaGtfaoH2oS\nkXyMMUyYMKHCzr9gATzyiBshyc7Oa69eHQYOhGefhU6dKuzyIlJGlSmUiIifZGVlsXHjRlavXs2Q\nIUOoXr26z66dnQ3ffQczZ8Lf/164f8wYeOklPZNGJBhUplCyG2hSoK0JkHaqUZLJkycTERHh0RYf\nH098fHz5VihSiWRlZbFp0yZWrlzJmjVryMjIoFGjRhw8eJDGjRv7pIbUVBgxwq2aya9ZMzexdfhw\n6NPHJ6WIVGoJCQkkJCR4tKWmppb7dUxFLr8rL8aYbOBya+2ckxzzJDDEWtstX9t/gPrW2qHFvCYW\nSExMTCQ2Nra8yxaplDZs2HAiiBw5coSGDRvSuXNnOnfuzGmnnebVE3fLIjvbTV597z23A2tWVl5f\nSIjbCO3VV90tGxGpOElJScTFxQHEWWuTyuOcATtSYoypA7QFcn/CxRhjugH7rbXbjDFPAFHW2ty9\nSP4JTDLGPAW8BgwERgJFBhIRKZ3PP/+cjIwM4uLi6Ny5M02aNKnwIJJr7Vq4806YP9+zPTQUnn7a\nLevV/iIiwStgQwnQA1gE2JyvZ3PaXweux01sPfHAcGvtZmPMJbjVNrcD24HfW2uL2JlAREpr7Nix\n1KpVy2dBxFqYPt3NF1m71rOvaVO47DK45Rbo3t0n5YhIBQrYUGKt/YqT7DhrrR1fRNvXQFxF1iVS\nmSUnJ1O3bl1q1apV7DG1a9f2SS1Hj7rn0kyfDh995NlXvbpb8nvrre6WjYhUDgEbSkTEN9LS0li+\nfDkrVqxg9+7dDBkyhJ49e/q1pjffdIEjLc2zvWdPuOoqtwNrTIx/ahORiqNQIlIFHTlyhFWrVrF8\n+XK2bNlCtWrVaN++PRdccAFt27b1S0179sAHH8D77xfeDr5mTfjLX9xTe0Wk8lIoEalivv76a776\n6iustcTExDB8+HA6duxIjRo1/FbThx+6SaqHDnm2n3ce3HUXXHQR1Knjn9pExHcUSkSqmObNmzNo\n0CA6d+5MXT/uKLZzJ7z4ohsdWbnSs69lS5gwwT3Jt5wfhyMiAUz/u4tUMaeffjqnn366366flQWf\nfgrXXguwRFNWAAAgAElEQVT793v2de/u9hg56yzw0eIeEQkgCiUilURGRgarVq0iJCSE7gG4PvbA\nAXjwQXj3XUhO9uw791y48kqYONHNHxGRqkmhRCSIZWdns3HjRn755RfWrFlDZmYm3bt3D6hQ8ttv\nbrOze++FjRs9+2JiYN48OOMM/9QmIoFFoUQkCCUnJ7Ns2TKWL1/OoUOHiIyM5IILLqBr166Eh4f7\nuzwAjh93k1RffRWOHPHsu+IK93X55ZrAKiJ5FEpEgszWrVv597//Ta1atejSpQvdunUjKirKZzus\nnkpKCsyeDf/4Byxb5tkXFQWzZsE55/inNhEJbAolIkGmRYsWjB49mrZt21ItgJampKTAjTfCnDme\nD8kDuO46iI+H/v31oDwRKV7g/EQTEa+EhIRwRgBNwti5001efeYZ2L7ds69lS3juOTeJVUTkVBRK\nRAKEtZaNGzeyfPlyLr300oAaBSnOrFluae/hw3ltoaEwebLbDv7ss7W0V0S8F/g/9UQqubS0NJKS\nkli2bBmpqak0btyY1NRUGjVq5O/SirRpE8yc6b6Skjz7unZ1E1t79PBPbSIS3BRKRPwgd1Tk559/\nZu3atVSrVo0uXboQGxtL8+bNA2bSakFTp8L//V/hOSNnnw0zZkCnTn4pS0QqCYUSET945513WLdu\nHaeddhpDhgyha9eufn32zMls3w5vvAEJCbBihWdfjx5w9dXuib4BWr6IBBGFEhE/6NmzJ3369CE6\nOjpgR0XAbQc/ahSkpXm2jxjhJrbGxPinLhGpnBRKRPzAn8+eOZUtW+A//3EjI8uXe/b17u2W906Y\nACEhfilPRCoxhRKRcpacnExGRgbR0dH+LqXEZs6E3/0OMjI82zt1chuitW3rn7pEpGpQKBEpB9Za\n1q9fz5IlS9i4cSMxMTFce+21/i7LK/v3u0mqCQnw88+efb16uTkjEyZoO3gRqXgKJSJlkJGRwbJl\ny/jxxx85cOAAUVFRjBgxgk5BsgxlxQoYMqTwpmd9+sCbb0KbNv6pS0SqJoUSkVI4fPgwX375JcuW\nLSMrK4vOnTtzxRVX0KJFC3+XdkoHD7rbNG+/DV9/7dkXGwtjx8KkSRAW5p/6RKTqUigRKYVq1aqx\nceNGevfuTY8ePahXr56/S/LKL7/AxRfD7t2e7U2auGfW9Ozpn7pEREChRKRUwsLCmDRpUkAv582V\nmQkffOBux8yd69l3xhlwzTVwww0umIiI+JNCiUgpBUMg+e03uPRS+PJLz/boaPcQvZ499WwaEQkc\n2mlApIB9+/Yxb948tm7d6u9SSiU7G776yq2YadLEM5BERcE990BiIpxzjgKJiAQWjZSI4Jb0btu2\nje+//541a9ZQp04dWrdu7e+ySuzIEbjkEli0yLO9WjV48UUYP949xVdEJBAplEiVZq1l9erVfPfd\nd+zYsYPIyEiGDRtG165dqVYteP732LDBPZ/mn/+EvXvz2uvVg6uucqtpYmP9V5+IiDeC56euSDnb\nvn07s2fPJiUlhVatWhEfH0+7du2CYq5IrkOH4Npr3W6r+YWGwj/+AePGQe3a/qlNRKSkAjqUGGMm\nAXcDTYFfgNustT+d5Pg7gZuBlkAK8B5wn7X2qA/KlSBTr149IiMjGT58eFDsL5LfoUNuoupTT8G6\ndXntISEwaBD86U9w7rn+q09EpDQCNpQYY0YDzwI3Aj8Ck4FPjTHtrbUpRRw/BngCuA74HmgPvA5k\n44KNiIeIiAhGjx7t7zJK5NAhN1H1rbfcyppcoaHwyCPuYXlRUX4rT0SkTMq8+sYY09UYU7tAW4ey\nnhcXQl6y1r5hrV2DGwE5DFxfzPG9gW+ttf+11m611n4GJADaDkqCnrWweDEMGAAvveQZSDp2hIUL\n4f77FUhEJLiVKZQYY/6IG8X4uEBXU2PMk2U4b3UgDvg8t81aa4HPcOGjKN8BccaYs3POEQMMBeaV\ntg4JXunp6Xz66accPHjQ36WUydGj8MwzLnj07ev5wLybboIffoCVK6F/f//VKCJSXsp6+6YB7nZJ\nRP5Ga+1XxpgmxphLrLWlCQWRQCiwp0D7HqDIURhrbYIxJhL41riZiqHAP621T5Xi+hKk0tPTWbx4\nMT///DOhoaG0bt2a+vXr+7usUklOhpEjCz+fpn59+O9/3dwREZHKpKyhpLq19p2iOqy1M40xf8NH\nIxXGmH7A/bjbPD8CbYEXjDG7rLWP+qIG8Z+CYaRPnz6cc8451KpVy9+llUh2Nnz+ObzyCnz4IRw/\nntfXrx9cfz1ceaVW1IhI5VTWUNLIGHO6tXZDMf3HSnneFCALKPg0jibA7sKHA/AI8Ia19t853680\nxtQFXgJOGkomT55MRITHYA/x8fHEx8eXtG7xsd9++41vv/026MMIuEAycqR7Tk1+YWHuib4jR/qn\nLhGRhIQEEhISPNpSU1PL/TplDSVTgc+MMbcWc5umbmlOaq09boxJBAYCcwBybskMBF4o5mW1cStt\n8svOfW3OnJQiPf/888RqZ6mgtH//fpYuXcq5555Lr169gjKM7N0Lr78O06bBli157aed5lbT3HAD\ntG3rt/JERIr8h3pSUhJxcXHlep0yhRJrbZIx5kFgljFmHfAhsAxIA/pSylCS4zlgRk44yV0SXBuY\nAWCMeQPYbq29P+f4ucBkY8wyYAnQDjd6MudkgUSCW3R0NHfddRdhYWH+LqXErHXLe194wfM2DcBz\nz7ldWIPwbYmIlFqZ9ymx1r5tjFkNPIWb05G7HeZC4OoynHdmzsTVR3C3bZYBg621yTmHtAAy873k\nL7iRkb8AzYFk3CjLg6WtQYJDsAUSa92qmcceg3kFxhcHDIA//EGTWEWkaiqXzdOstUnARTkhIgbY\na63dXA7nnQ5ML6ZvQIHvcwPJX8p6XQkcWVlZWGuD6jk0xTlyBGbMcM+n+d//PPtuuQXuuku3aUSk\naivXn/Q5O60W2m1VpKSstaxcuZJFixbRvXt3zjvvPH+XVCZpaTBwoOc+I+CW9z76qLtVIyJS1QX/\nPz+l0tmwYQOfffYZu3fvpl27drRr187fJZXa+vVuZORf/3LBJFevXnDzzTBqFATh3FwRkQqhUCIB\nY+/evSxcuJBff/2V6Ohoxo8fT8uWLf1dVqls2AATJ8KCBZ7tNWrAe+/BpZf6py4RkUCmUCJ+d+zY\nMRYsWEBSUhL169fnqquuomPHjrhV4MHFWli0CK65Bnbn21GnRg0YPRruvhvOPNN/9YmIBDKFEvG7\natWqkZyczEUXXUTPnj0JDQ31d0kllp4Ob74J//gHrFqV196gAdx3H4wfD5GR/qtPRCQYKJSI34WE\nhHDdddcF5cgIwPffw7BhsG+fZ3tMDHz6qVbUiIh4q0xPCRYpL8EYSHbvhilT3BN68weSvn3hnXdg\nzRoFEhGRktBIifiEtTYog0dRfvkFnn3WBY/8O7F26eJu4XTv7r/aRESCmUZKpEJlZWXxww8/8Npr\nr5GVleXvcsps7lw4+2wXPnIDSWgoXH01fPGFAomISFlopEQqzKZNm/jkk09ISUkhLi6OrKysoJzE\nai18+SU8/7wLJbkaNICbbnJLf6Oj/VaeiEiloVAi5S41NZUFCxawatUqoqOjueGGG2jWrJm/yyqV\nTz6B+++HZcs82/v0cZNY69TxT10iIpWRQomUm+zsbJYsWcKiRYuoUaMGI0aM4MwzzwzKuSTZ2e45\nNRMmuJGSXM2bw223we23aydWEZHyplAi5Wbp0qUsWLCAnj17MmDAAGrUqOHvkkrs6FF4+203kTX/\nfiOdO8MDD8DIkVC9uv/qExGpzBRKpNx0796dqKiooL1VM3Mm3HGH506sAEOGuLkkQTgdRkQkqGj1\njZSb0NDQoAwkR4+6nVivvtozkPTtCx9+CB99pEAiIuILGimRKistDV5+2a2q2bkzr/388+Gpp9yT\nfEVExHcUSsRr1loyMjKoFeQzPLOy4PHH3byR1FTPvhEj3KZoYWH+qU1EpCrT7RvxSlpaGgkJCbz+\n+utkZ2f7u5xSO3wYbrkF/vznvEBijAsjP/wAs2YpkIiI+ItGSuSkrLUnVtWEhYVx6aWXEhISfFk2\nLQ2mT4fnnoPk5Lz2666DP/4ROnTwW2kiIpJDoUSKlZqayty5c9mwYQPdu3dn8ODB1KxZ099llUhK\nCrzwAvz973DwoGffk0/CH/7gn7pERKQwhRIp0vLly5k3bx5hYWFcc801tA3Cx92uWAH9+nk+wdcY\nGDUK7rsPunXzW2kiIlIEhRIpZPny5cyaNYsuXbowdOjQoJvYmpEB//oX/OlPeaMj1arBtde6WzXt\n2/u3PhERKZpCiRTSsWNHRo8ezRlnnOHvUkrkyBF45RW3nDf/Et+YGPj8c2jd2m+liYiIF4JvxqJU\nuGrVqgVVILEWXnzRhY877vAMJJddBosWKZCIiAQDhRIJatbClCkwcaLnbqyXXw5JSTB7NrRs6bfy\nRESkBHT7RoKStTB/vps3kpiY1z5iBDz0kCaxiogEI42UVEHHjx/n22+/JSsry9+llMoXX0CfPjB0\nqGcguesut/mZAomISHDSSEkVk5yczLvvvsvBgweJiYkhKirK3yV57eBB99C8Tz/1bO/WDR55BIYN\n809dIiJSPgJ6pMQYM8kYs8kYc8QY84Mx5uxTHB9hjJlmjNlpjMkwxqwxxlzsq3oD3bJly3jllVcA\nuOGGG4IqkOzcCVde6RlIOnWCd991c0cuu8ztQSIiIsErYEdKjDGjgWeBG4EfgcnAp8aY9tbalCKO\nrw58BuwGrgB2Aq2AgwWPrWoyMzOZP38+iYmJdO/enaFDh1K9enV/l+WVgwfdEt+pU92SX4AaNdzS\n3zFjIDTUv/WJiEj5CdhQggshL1lr3wAwxtwMXAJcDzxdxPG/B+oDvay1uZMltvqi0ECWlpbGzJkz\n2b17N8OGDSM2NtbfJXnlyBH4xz/giSfgwIG89nr14M03Yfhw/9UmIiIVIyBv3+SMesQBn+e2WWst\nbiSkdzEvGwZ8D0w3xuw2xiw3xtxnjAnI9+grs2bN4tChQ4wfPz4oAklmJrz6qtt19d578wJJWBjc\neSds2KBAIiJSWQXqSEkkEArsKdC+Byjuea4xwADgLWAI0BZ4Efce/1IxZQa+YcOGUbNmTerUqePv\nUk4pPR0GDoQff8xrM8ZtD//II9Cqlf9qExGRiheooaQ0QnCh5cacUZWlxpgWwN2cIpRMnjyZiIgI\nj7b4+Hji4+MrqlafadSokb9L8MqGDTBhgmcgGTYMHnsMzjzTf3WJiAgkJCSQkJDg0Zaamlru1zHu\n93dgybl9cxi40lo7J1/7DCDCWjuiiNd8CRyz1g7K13YxMA+oYa3NLOI1sUBiYmJiUNzaqIwOHnTB\n44UX4Ngx1xYWBnPnwqBBJ3+tiIj4T1JSEnFxcQBx1tqk8jhnQM63sNYeBxKBgbltxhiT8/13xbxs\nMe6WTX4dgF1FBRLxr8xMmDYN2raFZ57JCyRNmsB77ymQiIhURQEZSnI8B9xgjBlnjDkD+CdQG5gB\nYIx5wxjzeL7jXwQaGmNeMMa0M8ZcAtwH/MPHdftcenq6v0vwmrXw8cfQtSvceivs2+faa9aEBx6A\n9eu1CZqISFUVsHNKrLUzjTGRwCNAE2AZMNham5xzSAsgM9/x240xg4HngV+AHTl/L2r5cKWRmJjI\n/PnzGT9+fMBvhrZnD4wbBwsWeLaPGeOW/urBeSIiVVvAhhIAa+10YHoxfQOKaFsCnFvRdQUCay1f\nfvklX3/9NT169KBp06b+Lumk0tPdw/K+/z6vrXdveP55OOcc/9UlIiKBI6BDiRQtOzubefPmkZSU\nxMCBA+nTpw8mQPdYtxYSEuCee9xW8QAREfDSSzBqlLaGFxGRPAolQeb48eO8//77rFu3juHDh9O9\ne3d/l1Ss//3PzRv55pu8tho14P333X4kIiIi+QXyRFcp4MiRI7z55pts3LiR+Pj4gA0khw7BXXdB\nbKxnILn0UlixQoFERESKppGSILJq1SpSUlIYN24cLVq08Hc5hVgLs2bBHXfAjh157W3bugfqDR3q\nv9pERCTwKZQEkbi4OM4444yA3DJ+40Z3q+aTT/Lacpf53nOPu20jIiJyMgolQSbQAsnRo/DXv7pd\nWTMy8tqHDHFP+Y2J8V9tIiISXBRKpNQyM+HCC+Hbb/Pamjd3t2quuEIra0REpGQ00VVK5cABuOaa\nvEASGuomt65eDVdeqUAiIiIlp5ESKbH334dJk9wOrbnmzYPBg/1Xk4iIBD+NlASY1NRUPvroIzIz\nA+8ZgsnJbsOzkSPzAkm9ejBjhgKJiIiUnUZKAsihQ4d4/fXXsdZy5MgR6tWr5++STnj3XZg4EVJS\n8tqGDYPp0yEAVyeLiEgQ0khJgPjtt9944403yMrKYty4cQETSPbuhauuciMkuYGkYUP4z39g9mwF\nEhERKT8KJQHg6NGjvP322xw5coRx48bRoEEDf5eEtfDf/0KnTvDee3ntV1wBq1ZBfLwms4qISPlS\nKPGzrKwsZs6cyf79+xk7diyNGjXyd0kcOOBCx9VXw759ri0y0oWU996DJk38W5+IiFROmlPiR9Za\n5syZw5YtW7jmmmto2rSpv0viiy/gd7+D7dvz2kaOhGnT4LTT/FeXiIhUfhop8aNDhw6xadMmLr/8\nctq0aePXWo4ehbvvdg/Lyw0kDRrAO++4Sa4KJCIiUtE0UuJH4eHh3HrrrYSFhfm1jpUrYcwY+N//\n8toGDnRLfTWRVUREfEUjJX7mz0BiLfz97xAXlxdIwsLg2WdhwQIFEhER8S2NlFRRBw7A+PFuWW+u\nzp3h7behWzf/1SUiIlWXRkqqoB9/hLPO8gwkd9wBP/+sQCIiIv6jUFKFWAt/+xv07Qtbtri2hg3h\no49ce82a/q1PRESqNt2+8ZH09HTq1q3rt+sfOADXXw8ffpjXdu65bnVNdLTfyhIRETlBIyU+sHLl\nSqZOnUpK/gfH+NDSpRAb6xlI7r0XvvxSgURERAKHRkoq2L59+5gzZw4dOnTwy26tb78NEyZARob7\nvmFDeOMNuOQSn5ciIiJyUhopqUDHjx9n5syZ1KtXj2HDhmF8+LCYzEyYPBnGjs0LJOecA8uWKZCI\niEhgUiipQB9//DH79+9n1KhR1KhRw2fX3bsXLrrITV7NNWECfPWVbteIiEjg0u2bCrJixQqWLVvG\n8OHDOc2He7QvXQrDh8O2be776tXdBmk33eSzEkREREoloEdKjDGTjDGbjDFHjDE/GGPO9vJ1Vxtj\nso0xsyq6xqKkpqYyb948OnfuTDcfbvwxe7Zb7psbSJo2dZNZFUhERCQYBGwoMcaMBp4FHgLOAn4B\nPjXGRJ7ida2BvwJfV3CJxdqwYQNhYWFccsklPplHYq3bGn7ECDh82LX16gWJiW7Zr4iISDAI5Ns3\nk4GXrLVvABhjbgYuAa4Hni7qBcaYEOAt4M/A+UCEb0r1FBsbS+fOnX0yj+T4cZg0CV55Ja8tPh5e\ne02boYmISHAJyJESY0x1IA74PLfNWmuBz4DeJ3npQ8Aea+2/K7bCU6voQGItLF4Mffp4BpKHHnLL\ngBVIREQk2ATqSEkkEArsKdC+B+hQ1AuMMX2B8UClf3rLsWNuNc2bb+a1hYW50ZFrrvFfXSIiImUR\nqKGkRIwxdYE3gBustQf8XU9FSk+HK6+EBQvy2iIj4YMP3CRXERGRYBWooSQFyAKaFGhvAuwu4vjT\ngVbAXJM3szQEwBhzDOhgrd1U3MUmT55MRITn9JP4+Hji4+NLV30F2b8fhg6FJUvy2i67zO1H0qaN\n/+oSEZHKLSEhgYSEBI+21NTUcr+OcVM1Ao8x5gdgibX2jpzvDbAVeMFa+9cCx4YBbQuc4jGgLnA7\nsN5am1nENWKBxMTERGJjYyvgXZSf3bth0CBYvtx9X78+zJ2r0REREfGPpKQk4uLiAOKstUnlcc5A\nHSkBeA6YYYxJBH7ErcapDcwAMMa8AWy31t5vrT0GrMr/YmPMQdz82NUVWeSOHTuoVasWDRs2rLBr\nbNkCF14Iv/7qvm/SxN2+6dq1wi4pUqG2bt3qtwdUioh3IiMjadmypU+vGbChxFo7M2dPkkdwt22W\nAYOttck5h7QACo1++FJmZiazZs2iYcOGXFMBM0ythUWL4NprYedO19ayJXz2GbRrV+6XE/GJrVu3\n0rFjRw7nbqojIgGpdu3arF692qfBJGBDCYC1djowvZi+Aad47fgKKSqfJUuWcODAAUaPHl3u587I\ncPuNfPhhXluHDrBwoZ5fI8EtJSWFw4cP89Zbb9GxY0d/lyMiRVi9ejVjx44lJSVFoSQYHDp0iK+/\n/pqzzz673J9tc+wYjBwJ8+bltXXvDp9+Cj58jI5IherYsWPAz+USEd8KyM3TgsGiRYsIDQ2lX79+\n5Xre48fh6qs9A8kdd7jbOAokIiJSmWmkpBRSUlJYtmwZgwYNolatWuV23sxMN3/kgw/c97Vqwccf\nQznnHhERkYCkUFIKixYtIjw8nB49epTbOQ8dgquucrdoAGrUgDlzFEhERKTq0O2bEtq/fz+rVq2i\nX79+VKtWPpnuu++gefO8QFK9Osya5ZYBi4iIVBUaKSmhhg0bcuONN9KkScHNZktn1Sq49FI3UgJQ\nrRq8+67buVVERKQqUSgphWbNmpXLebZtg8GD4UDO03qio90ISTneFRIREQkaun3jJ//9r3tezfbt\n7vu4OFi5UoFEREpnxowZhISEsHXr1qA4b0WZMmUKISEh7N+/39+lSCkolPjB7NluY7SsLPd927Zu\nlU29ev6tS0SClzGGvOeROt9//z0PP/wwaWlp5Xre0iiPWrxRXvUWdPfdd3PRRRdx++23l/u5JY9C\niY8tXQpjxrgt5AG6ddOmaCJSduPGjePIkSMeu29+9913PPLIIxw8eNCPlQVeLaXx1FNPkZ2dTXh4\nuL9LqdQUSnxo5Uq45BLIfeTHmDEupMTE+LcuEQl+xhjCwsI82gLpKfCBVEtphIaGsnbtWvrq0ewV\nSqHERz78EM46C3btct/37g2vvgoVMMooIgFg586d/P73v6d58+bUrFmTmJgYJk6cSGame47o1q1b\nmThxImeccQa1a9cmMjKSUaNGsWXLFo/z5M6RWLt2LaNGjSIiIoLIyEjuvPNOjh49euK4gnM/Hn74\nYe69914AWrduTUhICKGhoSf6vb2+t9LT07nzzjtp06YNNWvWpEmTJgwaNIilS5eeshaApUuXMmTI\nECIiIqhXrx4XXnghS5YsKfHnWpQtW7bQtm1bunbtSnJy8on2tWvXsm3bNq/e3+bNm9mzZw/nnnuu\ntx+JlIJW35zC8ePHWbJkCbGxsdSuXbtU51ixAsaOdVvIA7Rq5XZtrVmzHAsVkYCxa9cuzj77bNLS\n0rjpppvo0KEDO3bs4L333uPw4cOEh4fz008/8cMPPxAfH0+LFi3YvHkz06dPp3///qxatYqaOT8g\ncudHjBo1ijZt2vDkk0/yww8/8MILL3Dw4EFmzJhx4rj8cymuvPJK1q1bxzvvvMPUqVNp1KgRAI0b\nNwbw+vreuummm5g1axa33XYbHTt2ZN++fXz77besWbPmlLWsWrWK888/n4iICP74xz9SrVo1Xnrp\nJfr163fiGWPefq4FbdiwgQEDBtC4cWMWLlxIgwYNTvR17NiRfv368cUXX5zy/S1evJjOnTvr9k1F\ns9ZW2S8gFrCJiYm2OElJSXbKlCl23759xR5zMp99Zm3duta6WSTW9upl7e7dpTqVSKWQmJhoT/X/\nXbAbN26crVatmk1KSir2mIyMjEJtS5YsscYY+9Zbb51omzJlijXG2BEjRngcO2nSJBsSEmKXL19u\nrbV2xowZNiQkxG7ZsuXEMc8880yhtpJev6jzFqV+/fr2tttuK7b/ZLVcfvnltmbNmnbz5s0n2nbt\n2mXDw8Ntv379TrR587lOmTLFhoSE2H379tnVq1fb5s2b2169etmDBw8WOjYkJMQOGDDgpO8r1y23\n3GInTZpkrbX2hx9+sA8++KBt2rTpic+/svHm/9PcY4BYW06/l3X75iSstfz444+0a9eOhg0blvj1\ny5a5OSTp6e777t3hiy+gnPZdE6kSevSAFi0q9qs8l+Jba5k9ezaXXXYZZ511VrHH1ahR48TfMzMz\n2b9/PzExMdSvX5+kpCSPY40xTJo0yaPttttuw1rLxx9/XKo6S3J9b9SvX58lS5awK/cetZeys7NZ\nuHAhI0aMoFWrVifamzZtypgxY/j2229JT0/3+nPNtXz5cvr160dMTAwLFy4kIiKi0DFZWVl8/vnn\nXtW5ePFi+vbty6JFi9i3bx/XXnst1lqys7O9f7NySrp9cxK7du1i9+7d9O/fv8Sv3bsXRo6E3Fu+\n7dq5eSXl+Pw+kSph927YscPfVXgvOTmZtLQ0OnfufNLjMjIyePzxx5kxYwY7duw4MRHUGENqamqh\n49u2bevx/emnn05ISAibN28uVZ0lvf6pPP3001x33XVER0cTFxfH0KFDGTduHG3atDnp65KTkzl8\n+DDt27cv1NexY0eys7PZtm0bjRo18upzBRcMhw0bRtOmTZk/f36pb73nSktLY+XKlWzYsIHIyEiG\n5my5vXv37jKdVwpTKDmJZcuWUbdu3UI/DE5lwwbo29f9MAWIjXXPt8n3DxMR8VLTppXjGgXdeuut\nvP7660yePJlevXoRERGBMYbRo0d79a/vsu7FUdbrF3TVVVdx/vnn88EHH7BgwQKeeeYZnnrqKT74\n4AMGDx5cplpLyhjDyJEjef3113nrrbe48cYby3S+77//noYNG7JmzRrWrl1Lq1ataNeuXTlVK/kp\nlBQjMzOTFStWcNZZZxES4v1drvR097Tf3EASHu52b1UgESmdn3/2dwUl07hxY8LDw1mxYsVJj3v/\n/S2VUCAAAB0MSURBVPe57rrrePrpp0+0HT16tNh9PNavX+9xe+PXX38lOzub1q1bF3uNkwWXkl7f\nG02aNOHmm2/m5ptvJiUlhbPOOovHHnuMwYMHF1tL48aNqV27NmvXri3Ut3r1akJCQoiOjqZOnTpe\nfa65/vrXvxIaGsrEiRMJDw/n6quvLvX7Wrx4MQMHDuTNN9/k6aef5rLLLmP16tVkZ2eX6PeDnJo+\nzWKsX7+eI0eO0K1bN69fk5YGvXq5vUfAzR357ju3Y6uIVA3GGC6//HLmzp170rkZoaGhhUYkXnjh\nBbJyt3rOx1rLtGnTCh1rjGHIkCHFXqNOnToARQaNklz/VLKzswvt1BoZGUlUVNSJZcvF1RISEsKg\nQYOYPXu2xxLhPXv2kJCQwHnnnUfdunW9/lxzGWN4+eWXGTlyJOPGjeOjjz4qdIy3S4IXL15Mr169\nAOjcuTP79u0DYNq0aRw5cuSUrxfvaaSkGL/88gtRUVGc5uVWq9bC7be7DdIAwsLcdvJe3P4UkUrm\n8ccf5//bu/foqKrz/+PvPYAmCAmXcFURFEGqghBZohCJF6CwEAEBRUBZIFpAUWxrgYU/DEsMYotf\n8EIBtVhtsVQr2qpFo1Yk3FYTwEIJoAtqgAgB5CaBQPL8/phJyJALMyGZmSSf11qzmHNmn3Oe2UzO\nPLPP2Xt/9tln3HrrrTz88MN06NCBvXv38u6775KamkpMTAz9+/fnrbfeIiYmhp/97GesWbOGzz//\nnLi4uBL3uXPnTu6++25+/vOfs3r1av70pz8xcuRIrr/++lLjiI+Px8yYNm0a9913H3Xq1GHAgAFE\nR0cHffyyHDt2jMsuu4whQ4bQqVMn6tWrx2effca///1v5s6de95Ynn32WVJSUujevTsTJkygVq1a\nLFq0iNzcXL+WnEDqtSjnHG+//TYDBw5k6NChfPzxx373CAbSJTgvL4/169eTnJxcuK7gkn5OTg7R\nulGwYlVUN56q+KCMLsEZGRm2Y8eOUjpCFffww2e7/UZHm61cGfCmIjVKTegSbGaWmZlpo0ePtmbN\nmll0dLS1bdvWJk2aZKdPnzYzsyNHjtjYsWOtadOmFhMTY/369bPt27dbmzZtbMyYMYX7KejimpGR\nYUOHDrXY2Fhr3LixPf7443bq1KnCcqV13Z01a5ZdfvnlVrt2bb/XDx8+HNDxA+kSnJuba7/5zW+s\nc+fOFhsba/Xr17fOnTvbwoULA4rFzGzjxo3Wt29fi4mJsXr16tmdd95p69atC7pei3YJLpCTk2O3\n3XabxcTE2Pr16wvXB9IlOCsry9q3b1+4/5ycHBswYIBNnz7dtmzZUua2VVm4ugQ7s6o99O+FcM51\nAdLS0tLo0qVLufezfDkMGnR2eeFCuMD7qkSqrfT0dOLj47nQv7uaIikpiZkzZ5KdnV2uoQlEyiOQ\nv9OCMkC8mQXfj7wEuqfkAn39tXe01gLPP6+EREREpDyUlFyA48dh+HD46Sfvct++8OtfhzcmERGR\nqkpJSTnl58Pjj58d1KlLF/jTnzTBnoiISHkpKSmnF16AN97wPr/4Yli2DIrM8yQiUiFmzJhBXl6e\n7ieRGkFJSTl88glMn352+cUX4aqrwhePiIhIdaCkJEiHDsHYsXDmjHd54kQYPz68MYmIiFQHEZ2U\nOOcmOud2OudynHNrnXNdyyj7kHNupXPukO/xWVnlS7Jp0yZWrFhR6utm3q6/BZNgJibC734XzBFE\nRESkNBGblDjn7gV+B8wAOgObgBXOudKGG+wJ/BlIBLoBmcCnzrkWgR5z8+bN7N+/v9TXlyyBlSu9\nzxs2hMWLNaeNiIhIRYnYpASYDCw0sz+aWQbwC+AEMKakwmY2ysx+b2bfmNl24CG87++OQA6Wn5/P\n999/X+o02zt3wi9+cXb59dc1p42IiEhFisikxDlXB4gHPi9YZ96hZ1OAmwPczSVAHeBQIIX3799P\nbm4urVq1KvZafj788peQm+tdHjUKBg4MMAoREREJSEQmJUAcUAvYd876fUDzAPfxPLAHbyJzXpmZ\nmXg8Hlq0KH61Z9kyeP997/OYGJg3T+ORiIiIVLRqOUuwc24KMAzoaWa5gWyTmZlJixYtqFOnjt/6\nkyfh2WfPLr/2msYjERERqQyRmpQcAPKAZuesbwb8UNaGzrlfAU8Bd5jZlkAONnnyZA4ePEi9evX4\n8MMPARg+fDjDhw/nl7+ELb69dO0KQ4YE9T5ERESqvKVLl7J06VK/dUeOHKnw40RkUmJmp51zaXhv\nUv0QwDnnfMvzS9vOOfcUMBXobWYbAj3ec889R0pKCkOGDOHaa68tXP/uu/Dqq97nUVHeVhJdthER\nkZqm4Id6UUVmCa4wEZmU+MwFlviSk/V4e+PUBZYAOOf+COw2s2m+5d8AScBw4HvnXEEry3Ez++l8\nB0tMTOTyyy8vXDbzH7X1pZegY8cLf1MiIiJSski90RUzWwb8CpgJbAA6An3MLNtX5DL8b3r9Bd7e\nNu8Ce4s8fnm+Y0VHR9OzZ09iYmIK133+OWzb5n2ekOAdxVVERAL3zDPP4PFE7NdM0L7++mtSU1PD\nHUa1FtGfFjN71cxam1m0md1sZv8u8trtZjamyHIbM6tVwmNmsMc9cwaefPLs8vjxumwjIuGzZs0a\nkpKSOHr0aLhDCYpzDleJJ89Q1su3337LP/7xD7p37+63/le/+hW9evVi0qRJJW43ZcoUfvrpvI31\nlep8MUaSiE5KwmXxYvjPf7zPb7wR7r03vPGISM22evVqZs6cyeHDh8MdSkSprHqZPXs2kyZNon//\n/oUJz7Rp05he9Jq+z/PPP09+fr5fS3tRjz76KJMnT67Q+Eqzfft2Hn30UTp27Ei3bt345z//GVCM\nkURJyTlOnoRZs84uv/QSVKPWRxGpgrxjR4bOiRMnQnq88qqMeklJSeHNN99k8ODBpKWlcfz4cdas\nWUPTpk2pX79+sfK1atVi27Zt9OjRo8T9XXbZZbRr147ly5dXeKznWrZsGS+//DIbN25kzJgxXH31\n1QHFGEn0dXuO11+HPXu8z+++G7p1C288IlL1FNxL8d133zF69GgaNmxIgwYNGDNmDCdPnvQru3fv\nXsaMGUPz5s2Jioriuuuu4w9/+EPh60lJSTz11FMAtG7dGo/HQ61atfj+++/Pe/xt27YxbNgwYmNj\niYuL44knnuDUqVMllt26dSv3338/jRo1IiEhAYANGzbQt29fYmNjqV+/PnfeeSfr1q0r8ZirVq2i\na9euREdHc/XVV7No0aJiZUaPHl3iVB6l3Xuyd+9exo4dy6WXXkpUVBRXXnklEyZM4MyZM+etl23b\ntpGZmVlqHZXmvffeIyEhgcTERLKysmjZsiWvvvoqo0aNKrH8rl272LdvH7fcckup+xw3bhwvvvhi\n0LGUx8cff4zH4+Hhhx/mqquuCjjGSBHJvW9CLj8f5s49uzxjRvhiEZGqq+A+imHDhnHllVcye/Zs\n0tPTee2112jWrBnJycmAd3qLm266iVq1ajFp0iTi4uL45JNPGDt2LMeOHWPSpEkMHjyY7du38847\n7zBv3jwaN24MQJMmTQI6fps2bZg9ezZr165l/vz5HD58mCVLlhQrO3ToUNq1a0dycjJmxn//+18S\nEhJo0KABU6ZMoXbt2ixcuJDExERWrlxJ165nJ2HfvHkzffr0oWnTpsycOZPTp0/zzDPP0LRp02Jx\nlXSPSUnrs7Ky6Nq1K0ePHuWRRx6hffv27Nmzh3fffZcTJ06ct146dOhAYmIiX3zxxfn/w4pYvXo1\nTzzxhN+6VatW+SWKRaWmpnLttdeWeWkkNjaWBg0asHnzZq677rqg4glG//796devHxs2bKBZs7PD\nfAUSY8Qwsxr7ALoAlpaWZmZmH31k5u0MbNarl4lIJUhLS7Oif3fV0TPPPGPOORs3bpzf+sGDB1uT\nJk0Kl8eOHWuXXnqp/fjjj37lhg8fbg0bNrSTJ0+amdlvf/tb83g89r///S+o4w8aNMhv/cSJE83j\n8dh//vOfYmVHjhzpV3bgwIEWFRVlu3btKlyXlZVlMTExlpiYWKxs3bp1bffu3YXrMjIyrHbt2ubx\neArXjR492tq0aVNivEXLmZk98MADVrt2bUtPTy/1fZZVLx6Px26//fZStz3X22+/bffee29hvT3w\nwAN2+PBh27Fjh3Xt2rXU7caPH28TJ040M7O1a9fa9OnTrXnz5n51bGaWnJxsc+bMCTie8sjMzLQ2\nbdpYr3O+wAKNsahA/k4LygBdrIK+l3X5BsjO9vYyfvnls+smTgxTMCJSzLFjx8jKyir1UfA3XJbs\n7OwStz127FilxOyc45FHHvFbl5CQwMGDBzl+/DgAf/vb37jrrrvIy8vj4MGDhY/evXtz5MgR0tPT\nL+j4E885kT322GOYGR9//HGZsebn5/PZZ58xaNAgrrjiisL1zZs35/7772fVqlWF7yE/P59PP/2U\nQYMGcemllxaWbd++PX369ClX7GbGBx98wIABA+jcuXO59pGXl8fnn39+/oI+I0aMYOrUqdSpU4dl\ny5bx5ptvEhsby549e4q1+BSVmppKjx49+PLLLzl48CCjRo3CzMjPz/cr16lTJzZu3Fiu9xKIuXPn\nMn/+fObNm0dKSgqffvpp0DFGAl2+AdLS0rjkkj588ol3uVUr6N8/vDGJyFlpaWl89dVXpb7epEkT\nJkyYUOY+/vrXv5aYvPTs2ZPExMQLDbFE58463tA3cdaPP/5ITk4Ohw8fZtGiRSxcuLDYts459u/f\nf0HHb9u2rd/yVVddhcfjYdeuXcXKFr3XIzs7mxMnTtCuXbti5Tp06EB+fj6ZmZl06NCB7OxscnJy\nih0LvInJJwUn1iBkZ2dz9OhRvxG2Q2HTpk1cc8011K599qsxOzub2NjYEssfPXqULVu28N133xEX\nF0e/fv0A+OGH4rOhNGrUiO+++65S4l6wYAGpqam89957gPcem6+++orevXsHFWMkUFIC1K9fn1de\nObs8fTrUqhW+eETEX3x8PO3bty/19aJfIqUZOnQoZ86cKba+Xr16FxRbWWqVciIp+it15MiRPPjg\ngyWW61jBw0iXNWZIdHR0hR4rmOPn5eVV+rEDsWnTJm644Qa/dWW1JqxZs4ZGjRqRkZHBtm3buOKK\nKwp7vJyrYcOGpc4Vs2zZMt5///1S68fMcM5x//330/+cX8wnTpxg6tSpfoO6XXfddYU3VAcTYyRQ\nUgJER9fjo4+8zxs2hNGjwxqOiJyjfv36JXbHDEZZN4aGQ5MmTahfvz55eXncfvvtZZYt7wBkO3bs\n8Lv88u2335Kfn0/r1q3PG1vdunXZVjCsdRFbt27F4/EUTsvRpEkToqOj2bFjR7GyGRkZfssNGzYs\ncUyRc1tumjRpQkxMDJs3by4zzooemO2bb76hb9++fuvi4uJKHQclNTWVO+64g7feeos5c+YwYMAA\ntm7dSn5+frHeRHl5eVx00UUl7mfYsGEMGzasXDGvXLmS2NhYv1alEydOFCbxwcQYCSIvojDYvbsu\nBZeV77oL6tQJbzwiUv15PB7uuece3nvvPbZsKT6h+YEDBwqfX3LJJQBBDRJmZrxStAkYmD9/Ps65\nYl+8JcXWu3dvPvjgA7+ux/v27WPp0qUkJCQUtjB5PB769OnD8uXL2b17d2HZrVu3+t3XAN7LR0eO\nHPFLNrKysoqN4eGcY+DAgfz9738v876asuqlPF2CN27cWKylpEWLFhw8eLDE8qmpqXTzjRtx7bXX\nFpZ75ZVXyMnJ8Sv7448/VkpinJOT4zdv2/Hjx9mwYQODBw8OOsZIoKQESE8/22x5331hDEREapTZ\ns2fTokULbrrpJiZPnszixYt5/vnnGTZsGNdcc01hufj4eMyMadOm8fbbb/OXv/wloC+UnTt3cvfd\nd7NgwQJGjRrFggULGDFiBNdff/15t3322WepXbs23bt3Jzk5mTlz5tC9e3dyc3OZM2eOX9mkpCTM\njB49ejBnzhxmzZrF7bffXqz763333UfdunUZOHAg8+fPJzk5mW7dupV4ae65556jadOm3HrrrTz5\n5JMsXryYpKQkrr/++sJRVsuqlw4dOpR6WawkmZmZHDp0iE6dOvmtv+aaa9i3b1+xyzh5eXmsX7+e\nm2++uXBdwX01OTk5xS6HHThwgJYtWwYcT6BuueUW9u3bx+nTpwFYvHgx99xzD3FxcUHHGBEqqhtP\nVXzg6xLctGmKgVnjxma5uaX2fhKRClBTugR7PB47ePCg3/olS5YU68KanZ1tjz32mF1xxRV28cUX\nW8uWLa1Xr172+uuv+207a9Ysu/zyywu72ZbVPbjg+BkZGTZ06FCLjY21xo0b2+OPP26nTp0KKFYz\ns40bN1rfvn0tJibG6tWrZ3feeaetW7euxGN+/fXX1rVrV4uKirK2bdvaokWLSuzqm5KSYh07drSo\nqCjr0KGD/fnPfy6xnJm3i+vo0aOtWbNmFh0dbW3btrVJkybZ6dOnz1svwXYJXr58uXXs2LHE1+69\n995iXZOzsrKsffv2hbHk5OTYgAEDbPr06bZly5Zi+3j66adt3rx5AccTjJSUFHvooYdsypQpNn78\n+ML/42BjLCpcXYKdWWiHL44kzrkuQNpFF6WSm3sL48fDq6+GOyqR6i09PZ34+HjS0tLo0qVLuMOp\nlpKSkpg5cybZ2dk0atQo3OFEtBkzZtC3b18++ugj8vLyeO6554qVWbFiBStXrmRW0TlIgtSrVy9+\n//vfF46yGukC+TstKAPEm1n5+68Xocs3QG7uxYB3WHkREakZDhw4QHJyMocOHSI1NZVx48aVWK5P\nnz588803xaYICNSePXswsyqTkISTkhIAHB4PFLnsJiIi1VxcXBxjx44lNTWVESNGlDgvT4EZM2aQ\nlJRUruO89NJLPP300+UNs0ZRl2CfG26AqjAtgIiIVJwFCxYEVO7GG29k165dfPnll9x2220B73/T\npk3k5ubSs2fP8oZYo6ilxMc3KaaISJU3Y8YM8vLydD9JBRsyZEhQCQl4Z+194YUXKimi6kctJT5K\nSkREpKJNnTo13CFUKWop8bnxxnBHICIiUrMpKQGioqDIgHgiIiISBkpKgDZtIAKnABAREalR9FWM\nNykRERGR8FJSAlx5ZbgjEBERESUlwIgR4Y5ARERE1CUYuOiicEcgUvNs3bo13CGISCnC9feppERE\nQiouLo66desycuTIcIciImWoW7cucXFxIT2mkhIRCalWrVqxdetWDhw4EO5QRKQMcXFxtGrVKqTH\nVFIiIiHXqlWrkJ/sRCTyRfSNrs65ic65nc65HOfcWudc1/OUH+qc2+orv8k51zdUsUrgli5dGu4Q\nahzVeeipzkNPdV71RWxS4py7F/gdMAPoDGwCVjjnSrzA5Zy7BfgzsBi4AfgAWO6c+1loIpZA6cQR\neqrz0FOdh57qvOqL2KQEmAwsNLM/mlkG8AvgBDCmlPKTgE/MbK6ZbTOz/wekA4+GJlwRERG5EBGZ\nlDjn6gDxwOcF68zMgBTg5lI2u9n3elEryigvIiIiESQikxIgDqgF7Dtn/T6geSnbNA+yvIiIiESQ\nmt77Jgo0iFOoHTlyhPT09HCHUaOozkNPdR56qvPQKvLdGVVR+4zUpOQAkAc0O2d9M+CHUrb5Icjy\nAK0BDeIUBvHx8eEOocZRnYee6jz0VOdh0RpYXRE7isikxMxOO+fSgDuADwGcc863PL+UzdaU8Hov\n3/rSrABGALuAkxcWtYiISI0ShTchWVFRO3Te+0cjj3NuGLAEb6+b9Xh74wwBrjGzbOfcH4HdZjbN\nV/5m4F/AVOAjYDgwBehiZv8N+RsQERGRoERkSwmAmS3zjUkyE+9lmI1AHzPL9hW5DDhTpPwa59z9\nwCzfYwdwtxISERGRqiFiW0pERESkZonULsEiIiJSwygpERERkYhQ7ZMSTeoXesHUuXPuQedcvnMu\nz/dvvnPuRCjjrcqccwnOuQ+dc3t8dTcggG0SnXNpzrmTzrntzrkHQxFrdRFsnTvnehb5bOcX+bw3\nDVXMVZ1zbqpzbr1z7qhzbp9z7n3nXLsAttP5vJzKU+cVcT6v1kmJJvULvWDr3OcI3pF3Cx5XVHac\n1cgleG8CnwCc9wYx51xr4B94p3DoBMwDXnPO9aq8EKudoOrcx4CrOfsZb2Fm+ysnvGopAXgJuAm4\nE6gDfOqciy5tA53PL1jQde5zQefzan2jq3NuLbDOzB73LTsgE5hvZnNKKP8OUNfMBhRZtwbYYGYT\nQhR2lVaOOn8QeNHMGoU20urHOZcPDDSzD8so8zzQ18w6Flm3FIg1s34hCLNaCbDOewJfAA3N7GjI\ngqvGfD9y9gO3mtmqUsrofF6BAqzzCz6fV9uWEk3qF3rlrHOAes65Xc65751z+iVTubqhz3g4OGCj\nc26vc+5T3694Kb8GeFufDpVRRufzihVIncMFns+rbVKCJvULh/LU+TZgDDAA7+i6HmC1c65lZQVZ\nw5X2GY9xzl0chnhqgizgEeAeYDDelsN/OeduCGtUVZSv9fX/gFXnGYdK5/MKEkSdX/D5PGIHT5Oa\nwczWAmsLln3Nq1vxnsRnhCsukYpiZtuB7UVWrXXOXYV3lGrdZBy8V4GfAd3DHUgNElCdV8T5vDq3\nlIRqUj85qzx17sfMzgAbgLYVG5r4lPYZP2pmp8IQT021Hn3Gg+acexnoBySaWdZ5iut8XgGCrHM/\n5TmfV9ukxMxOAwWT+gF+k/qVNpvhmqLlfc43qZ/4lLPO/TjnPMD1eJu8peKV9BnvjT7joXYD+owH\nxffleDdwm5l9H8AmOp9foHLU+bnbB30+r+6Xb+YCS5x3xuGCSf3q4p3oD3fOpH54u0f+yzn3JGcn\n9YsHxoU47qosqDp3zj2Nt7nvW7w3Uj0FtAJeC3nkVZBz7hK8v0Kcb9WVzrlOwCEzy3TOJQMtzazg\nMsHvgYm+Xjhv4D1pD8H7S0gCEGydO+ceB3YCW/DOqjoOuA3vF6QEwDn3Kt7z8QDgJ+dcQQvIETM7\n6SvzJrBH5/OKUZ46r5DzuZlV6wfesQR2ATl4M+Qbi7z2BfDGOeXvATJ85b/BOwlg2N9HVXoEU+d4\nk5idvrJ7gb8DHcP9HqrKA+gJ5OO9bFb08Ybv9T8AX5yzza14W7Ry8E5cOSrc76MqPYKtc+DXvnr+\nCcjG2zvt1nC/j6r0KKW+84AHipTR+TzMdV4R5/NqPU6JiIiIVB3V9p4SERERqVqUlIiIiEhEUFIi\nIiIiEUFJiYiIiEQEJSUiIiISEZSUiIiISERQUiIiIiIRQUmJiIiIRITqPsy8iFQxzrmGwI1AE+AH\nM/sizCGJSIiopUREIs1VeOfbeBtICHMsIhJCGmZeRCKOc64lsBvobWYp4Y5HREJDLSUiEokS8E4I\nti7cgYhI6CgpEZFI1AP4r5kdC3cgIhI6SkpEJBLdCqwOdxAiElrqfSMiEcU51wC4DvidbzkOmAoY\nsN/M5oQxPBGpRGopEZFI08P37xpfgjIeb1LSDhgRtqhEpNIpKRGRSJMAHAR+AB4FnjOzXOAiYEE4\nAxORyqUuwSISUZxzq4F6wMfAM2Z2MswhiUiIqKVERCKGcy4KiAe+A1oDbznn2oc1KBEJGSUlIhJJ\nbsF7A/7TZnYfsBf4R8GLzrmYcAUmIpVPSYmIRJIewCEz2+xb/hbvpRycc22Bh8IVmIhUPiUlIhJJ\nEoCviiyfAnb6ng8H3gl5RCISMkpKRCSS1Mc/8XgHOOycmw/sMrO94QlLREJBvW9EREQkIqilRERE\nRCKCkhIRERGJCEpKREREJCIoKREREZGIoKREREREIoKSEhEREYkISkpEREQkIigpERERkYigpERE\nREQigpISERERiQhKSkRERCQiKCkRERGRiKCkRERERCLC/wencU6y3SaINAAAAABJRU5ErkJggg==\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } ] - }, - "metadata": {}, - "output_type": "display_data" + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "K = S[2]\nX = []\nY = []\n\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(K[k])\n\nplt.plot(X, Y, color=\"black\", linewidth=2)\nplt.plot(X, X, \"--\", color=\"gray\", linewidth=1)\nplt.plot([k_ss], [k_ss], marker='o', color='r')\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$k^{\\prime}$\", fontsize=14)\nplt.title(\"Policy Function: $k^{\\prime}$\")\nplt.show()", + "execution_count": 220, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGOCAYAAACjachYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VOX5///XFRZBVhUJWlGK4r6waBUhiRtaAQG1/X1F\nRAGRWMAAyr5aUXABEUQUghBBxfqpyupKKWuryOpaxaJSSWQRZIeQyf37Y4YxExKyzZ738/HIQ3LP\nWe45TSfvXOec65hzDhEREZFokBDpCYiIiIgco2AiIiIiUUPBRERERKKGgomIiIhEDQUTERERiRoK\nJiIiIhI1FExEREQkaiiYiIiISNRQMBEREZGooWAiIiIiUUPBREQkxpnZyWZ2b6TnIRIMCiYiccLM\nuphZrpmdXdD3Urg4OFYdgIlmZpGeiEhZKZiIRIiZ3ef7ZXjs65CZfWNmz5tZ3VJs0vm+Cvs+5Ap4\nT3m/xoRzLoXMr7mZjTKzmvleCvuxKg4zG2dmH5nZpCIWvQ54w+mprBIHKkZ6AiLlnANGAD8AVYCW\nwF+AW83sUufc4TJsexYwxzmXXeZZlkze95TXF2GeR0GuBUYCM4G9ecYjdayKMgj4kMC5FiQF6BT6\n6YiEnoKJSOS975xb5/v3DDPbBfQD2gN/K+1GfX89R+oXbd73FE0KPNUR4WNVKOecx8wuAJ4pbBkz\nOwM47JxbE76ZiYSOTuWIRJ8leH+B/v7YgJk1MbP3zGyPme0zs8VmdvWJNlLYdRNmdqaZvWxmW83s\nsJltNrMpZlbRzK7zrdO+gO3d7XvthPstDjPLMLPvCxh/1Mxy839vZuf61tltZr+a2Qwzq1LA+id6\nb6OAp32L/uDbrsfMzj7BsSryuJdijheYWf1iHqcGQCLwrxMsdh3wcnG2JxILVDERiT7n+f77C4CZ\nXQIsB/YATwI5QCqw1MySnXOfFrKd466b8P11/SlQE5gKfAP8DvgTcLJzbqmZ/Q/vaYF5+bbXCfjO\nOfdJMd5DLTM7LWAyzv1yorkVMn7s328Cm4HBQFOgO7ANGFLc9wa8DZwP3AX0wXd8gR0FzcfMLqZ4\nx73Yc/T5GlgK3FDA+8+vBfClc+5Ep3IuAZ4txrZEYoKCiUjkHfslfuwakxHAQWCh7/XH8f5/tYVz\n7kcAM5uN9xfv08D1JdjXk0Bd4A/OufV5xh/N8+9XgX5mVsM5t8+3vzpAK2B0MfZhwD/yjTmgQgnm\nmd9a51wP/w6887mfwF/6Rb23z81sHd5gMs85tyXP9gra5xOU7LgXZ45QsgttWwArfdu7GmiLN/C0\ncs59AeCcG17MbYnEBJ3KEYmsY7/EdwD/A17He6FjB+dclpkl4A0E7xz75QjgnPvZt2xLM6terB15\nf/u2B+bn+8Wd3yy8IelPecbuwhssXivGrhzeC3hvyvPVqjhzPMH2puYbWwGcduy9l+C9FUspjnuR\nc8yzjQrOuRuLOZUWwEozux44DZiN92dGn90St1QxEYksB/QENuE9VbDNOfdNntdPx3sa4tsC1v0a\n7y+o+r5/F+V0vKc5vjzhhJz7xsw+xXvqZqZv+G7gY+fc5mLsB+DTIF/8uiXf97t9/z0F2E8x31sJ\nlOa4FzXHEvHd0nwJcC6w0zn3ru+leiXdlkgsUTARibxg/xIPhlnAc2Z2JlAVuAZvgAqWwk5lFHa6\nx1PIeDQ1FAv2HJsDu4ALgQvM7Efn3KZSbkskZqgcKBLdduC93uSCAl67CMjFewqouNvaC1xajGXf\n8G27I95qSTbeizuDZTdQu4DxBqXcXnHfW3Gv7QjmcS+tFsA/nHOd8faAmQ/+00wicUs/4CJRzDmX\ni7fBVvu8t7KaWSLe0LDCOVes0wS+Xh1zgdvMrGkRy/4CvAd0xntK533n3K7SvYsC/RfvRb/+IOG7\nq6ZDaTZWgvd2wPffgkJR3u0F7bjnV4LbhVsAH/v+/SXea0wAeplZ1dLsWyQWKJiIRFZxyvzD8V5/\nssrMhpjZQGAVUBkYWML9DQW2A8vN7Fkze8DXov3zAtq0zwIuBxrhvVOnuIrznt7AW5GYa2ZpZjYE\n7y/hb0682gkV572t9c1vjJndY2b/7wS/5IN53PP6GnjlRAuYWQXgD8C/8wx/5/tvVefcoTLsXySq\n6RoTkcgq8tSCc+4rM0sCxuLtkZGA95f43SXt9umcy/Tddjoa7ymamsBW4F28QSGvBXhPuRi+0wjF\n3U0x5rHLzDrg7b/xFPA93vd2Pt4eICVWnPfmnFtjZsOBB4Fb8B7L3xeyvaAd9/ybpuhjdLpv7seu\nPfoH0MPMRgNzyrBvkahneuaTiBTE91d7Jt6eHz2KWl5EJBii9lSOr3S62sz2mtk2M3vHzM4vYp1j\nTzb12G9PNM3/V6CIFM/tQB28p3RERMIimk/lJAHPA2vwznMs8KGZXVTE+dU9eMvBx85zqyQkUgJm\n9gfgCrzXWKxzzq2M8JREpByJ2mDinGud93sz64L3wrZm+Fo0F76q2xHCqYnEu7/gvRNnPdA1wnMR\nkXImak/lFKA23upHUbcsVjezH8xsi5nN9T2IS0SKyTnX1TlX2Tl3tXPuq0jPR0TKl5i4+NX3HIwF\nQA3nXMoJlrsG75NZPwNqAQOAZOBi51xmOOYqIiIipRcrweRFvLf2tXDOZZVgvYp4ewa87pwbVcDr\np/m2+wNwODizFRERKReq4O3W/IGvKWNQRO01JseY2WSgNZBUklAC4JzLMbP1eKsoBbmF4j0tVURE\nRArWCe9Tt4MiqoOJL5S0B1Kcc/mf3Fmc9ROAy4BFhSzyA8Crr77KRRddVNppSgn169ePCRMmRHoa\n5YqOefjpmIefjnl4ff3119xzzz3g+10aLFEbTMxsCt5nUrQDDvieUQGwxzl32LfMK8BW59xQ3/cj\n8HZm/A7vxbIDgbOB6YXs5jDARRddRNOmpWo2KaVQq1YtHe8w0zEPPx3z8NMxj5igXgoRtcEEb8to\nByzNN96V3xo+1SfwUeOnANOAenhbaa8Fmjvn/hPSmYqIiEhQRG0wcc4VeSuzc+6GfN8/DDwcskmJ\niIhISMVSHxMRERGJcwomEnYdO3aM9BTKHR3z8NMxDz8d8/gQE31MQsXMmgJr165dqwumRERESmDd\nunU0a9YMoJlzbl2wtquKiYiISDmVm5sb6SkcR8FERESkHMrMzGTq1Kl88803kZ5KgKi9K0dERESC\nLycnh+XLl7Ny5UoSExOpVatWpKcUQMFERESknMjMzGTevHns3LmT5ORkkpKSqFChQqSnFUDBRERE\npBz45JNP+OCDD0hMTOSBBx6gXr16kZ5SgRRMREREyoHExMSorZLkpWAiIiJSDjRo0IAGDRpEehpF\n0l05IiIiEjUUTERERCRqKJiIiIjEgczMTL788stIT6PMdI2JiIhIDMvbl6R+/fpcfPHFmFmkp1Vq\nCiYiIiIxKm9fkpSUFFq2bBnToQQUTERERGJO/u6t0dyXpKQUTERERGJIVlYWc+fODaiSRHNfkpJS\nMBEREYkhBw4cICEhIa6qJHkpmIiIiMSQ8847j3PPPTfmryUpjG4XFhERiTHxGkpAwURERESiiIKJ\niIhIFPF4PGRmZkZ6GhGjYCIiIhIlsrKymDZtGq+99hpHjx4Nyz7Xrl0blv0Ul4KJiIhIhHk8HpYs\nWUJ6ejoJCQl07tyZSpUqhWx/zjkWLFjALbfcwpVXXsmiRYtCtq+S0l05IiIiERTuviQ//fQTDzzw\nAO+//75/rEePHvznP/+hRo0aIdtvcSmYiIiIRIDH42HZsmVh6976zTff0L9/fxYuXBgwfsopp/D0\n009TvXr1kO27JBRMREREIuCHH35g1apVIa+SrF27lqeeeoq5c+cGXLdy5plnMmLECDp27EitWrVC\nsu/SUDARERGJgHPPPZe0tLSQhYLdu3fz1FNPMW7cODwej3+8cuXK3H///TzxxBOccsopIdl3WSiY\niIiIREgoQsn+/fsZNGgQU6ZMCRg3M/r06cMTTzzBySefHPT9BouCiYiISBz45ZdfePnll5k8eTL/\n+9///OOVKlVi8ODBPPLII1F1yqYwCiYiIiIhkp2dTeXKlUO+n7fffpu//OUvbN++3T9WuXJl7rjj\nDoYMGcLll18e8jkEi/qYiIiIBFlOTg5Llixh0qRJ7N+/PyT7cM7x8ssvc95553HnnXcGhJKUlBS+\n+uor5syZE1OhBFQxERERCarMzEzmzZvHzp07SU5OpmrVqkHdvsfjIT09nSlTpvD5558HvNamTRv6\n9+9PcnIyCQmxWXtQMBEREQmCcPQlWbt2Lb179+bjjz8OGG/UqBGjRo3i7rvvjvknDyuYiIiIlFGo\nu7euWbOGHj16sH79+oDxs88+mxdffJHWrVsHbV+RpmAiIiJSBjt27CA9PT0kVZLVq1fz4osvMnv2\n7IBeJI0aNWLixInccsstMXvKpjAKJiIiImVw+umnc+edd3LhhRcGrUqyb98+Bg4cyEsvvRQwXr9+\nfXr06MHDDz8c1b1IykLBREREpIwuueSSoGxn586dDBkyhFmzZpGdne0fr1SpEiNHjmTQoEEhfepw\nNFAwERERibDdu3fz2muv8dhjj7Fjxw7/eLVq1ejfvz/du3fnrLPOiuAMw0fBREREJEKys7OZPn06\ngwcPZt++fQGvdejQgfHjx9OwYcMIzS4y4uuKGRERkSDLzMxk1qxZHDx4MGjb9Hg8PPPMM9SuXZte\nvXoFhJL27duTlZXFO++8U+5CCahiIiIiUqCcnByWL1/u70ty6NChoFxwum7dOnr27Mknn3wSMN6m\nTRt69erFH//4x5jvRVIWCiYiIiL55O3eGqy+JJ9++impqanH9SK58cYb6d+/P3/84x/LtP14oWAi\nIiLik79KEoy+JIsXL2b48OHHVUjOP/98Zs6cybXXXlum7ccbBRMRERHg0KFDZGRkBK1K8tlnnzFh\nwgQyMjICxs866yxSU1N55JFHgv4cnXigYCIiIgJUqVKF8847j9tvv71MVZIdO3bQu3dv3nzzzYDx\nU045hf79+zNgwIC470VSFgomIiIigJnRqlWrUq+/ZcsWnn76aWbPns3evXv949WqVePpp5/mwQcf\njLv28aGgYCIiIlIGR48eZfr06QwaNCjgtt9TTjmFBx54gL/85S80aNAgchOMMQomIiIipeDxeBg/\nfjyPPvoohw4dCnjtjjvu4IUXXgjqA/3KC9WURESkXPB4PKxYsYLDhw+XaTuHDx9m1KhRJCYmMmjQ\noIBQ0rVrVzZv3sxbb72lUFJKqpiIiEjcy8rKYu7cuezcuZO6detywQUXlGo7q1evpmvXrnz11VcB\n4zfeeCMDBgzglltuCcZ0y7WorZiY2RAzW21me81sm5m9Y2bnF2O9P5vZ12Z2yMw2mtmt4ZiviIhE\nH4/Hw5IlS0hPTychIYEHHnigVKFk8eLFNG/enKuvvjoglFxzzTWsWrWKxYsXK5QESTRXTJKA54E1\neOc5FvjQzC5yzh0qaAUzuxZ4HRgELAI6AXPNrIlz7quC1hERkfiUt0qSnJxMUlJSifuSfP7550yY\nMIGZM2cGjDdr1oyMjAwuvfTSYE5ZiOJg4pxrnfd7M+sCbAeaASsLWS0NeM8596zv+5Fm1groDfQM\n0VRFRCSK5ObmsnTp0jJ1b/3pp5945JFHjutFUrt2bQYMGKBeJCEUtcGkALUBB+w6wTLNgfH5xj4A\n2odqUiIiEl3MjJ9//rlUVZItW7bQs2dPFi1aFDCuXiThExPBxLyPWXwOWFnEKZl6wLZ8Y9t84yIi\nUg6YGR07dizRE3r/+9//kp6ezpQpU47rRdK9e3d69uypXiRhEhPBBJgCXAy0iPREREQk+hU3lOTk\n5DB+/HhGjRrFkSNH/OM1atTg3nvvZfjw4brtN8yiPpiY2WSgNZDknMsqYvGfgcR8Y4m+8UL169eP\nWrVqBYx17NiRjh07lnC2IiISCw4fPswbb7zBxIkT2bBhQ8Br3bp1Y/z48dSuXTtCs4s+c+bMYc6c\nOQFje/bsCcm+zDkXkg0Hgy+UtAdSnHObi7H8G0BV51z7PGOrgI3OueMufjWzpsDatWvX0rRp0yDO\nXEREQikrK4tTTz2Vk046qUTrHTlyhAULFjBy5Ei+/vpr/7iZ0b17d3r37s3ll18e7OnGpXXr1tGs\nWTOAZs65dcHabtRWTMxsCtARaAccMLNjlZA9zrnDvmVeAbY654b6XpsILDWzh/HeLtwR7108D4R1\n8iIiEhI5OTksX76clStXct1115GcnFzsdT/66CO6d+/Oli1bAsbPP/98Zs6cybXXXhvs6UopRG0w\nAR7EexfO0nzjXYFZvn/XBzzHXnDO/dvM7gae8H1tAtqrh4mISOzL25ckJSWFFi2Kd9nhF198wfjx\n48nIyAgYb9KkCYMGDaJ9+/ZUqVIlBDOW0ojaYOKcK/J+LOfcDQWMvQW8FZJJiYhI2Hk8HpYtW1bi\nviRbt26lb9++/P3vfw8Yb9asGb169aJz585UrBi1vwbLLf0vIiIiUas03Vt//PFHevXqVWAvkmee\neYbU1FT1IoliCiYiIhK1PvroI/8zboqqkng8HqZNm8agQYOO60Vy//3306tXL/UiiQEKJiIiErXu\nvPNOqlSpcsIqybFeJH/96185dOi3R6nVqFGDzp07M3LkSBIT83eSkGilYCIiIlGrWrVqhb52+PBh\n/va3vzFx4kTWr18f8Fr37t0ZN27ccT2qJPopmIiISMxZvXo1Xbp0CehFAnD99dczePBgbr755gjN\nTMpKwURERCLG4/GQm5tb7Cf1fvTRRzz66KP861//Chi/4IILyMjI4JprrgnFNCWMdFmyiIhERFZW\nFtOmTeMf//hHkct+8cUXdO3alZtvvjkglDRt2pQ33niDDRs2KJTECVVMREQkrPL3JWncuHGhy2Zl\nZZGWlnZcL5JatWoxaNAgBgwYoF4kcUb/a4qISNjk797asmXLAu+4US+S8kvBREREQq643Vs3b95M\neno6kydPZv/+/f7xU045hW7dutG7d2/1IolzCiYiIhJyCxcu5LPPPiu0SpKTk8O4ceMYNWoU2dnZ\n/vEaNWpw7733MnLkSOrWrRvuaUsEKJiIiEjItWzZkquvvvq4Ksnhw4d58803mTBhAhs2bAh4Tb1I\nyicFExERCbnTTjvtuLFPPvmELl268J///Mc/lpCQ4D9lc8UVV4RzihIlFExERCSsPvzwQ/7617+q\nF4kUSMFERETC4ssvv2TcuHFkZGQEjDdt2pQBAwbQoUMHqlSpEpnJSdRQMBERkTI5dscNwA033HDc\n69u3b6dnz5689dZbAeM1a9Zk8ODB6kUiAfSTICIipZa/L0leP/zwAxMmTOCVV15hz549/vHq1asz\nbtw4evTogZmFe8oS5RRMRESkxE7UlyQ3N5epU6cycODAgF4ktWvXplu3bqSlpXHOOedEauoS5RRM\nRESkRPJWSZKTk0lKSqJChQrk5OTwzDPPMHr0aA4dOhSwzp/+9CdeeOEF9SKRIimYiIhIsa1du5ZF\nixYFVEkOHz7M66+/zoQJE1i/fn3A8t26dWPw4ME0atQoQjOWWKNgIiIixXbWWWcFdG8tqBcJQEpK\nCkOHDuXmm2+O0EwlVimYiIhIsSUmJpKYmMiHH37I6NGjWblyZcDrF154IRkZGVx99dURmqHEOgUT\nEREptr179/LII48wffr0gPGmTZvSv39/br/9dvUikTJRMBERkSJt376dkSNHMmvWrIALW2vUqMHQ\noUPp37+/epFIUOinSERE/LKyssjMzKRZs2YA7N+/n1mzZjFy5Eh++eUX/3LqRSKhomAiIiIBfUnO\nOOMMrrjiCqZPn86AAQMCepEAtGvXjkmTJqkXiYSEgomISDmXty9JUlISmzZt4sorr2Tjxo0By6kX\niYSDgomISDmVv3vr9ddfT79+/VizZk3Acrfeeiu9evWiTZs2EZqplCcKJiIi5dC2bdt4++232blz\nJw0bNmTSpEl8+umnAcucffbZTJ8+nVatWkVollIeKZiIiJRDHo+HhIQE9u/fz3333Udubq7/tQsv\nvJAnn3ySNm3a6E4bCTv9xImIlDN79uzhscceY+rUqQHjZ5xxBqmpqQwaNEi9SCRiFExERMqJX375\nhdmzZzN+/Hh++ukn/3jlypV57LHHeOSRR1QhkYjTT6CISJwrrBdJQkICHTp0YPTo0Vx88cURnKHI\nbxRMRETikMfjYcuWLbz//vsMHDjwuF4kN910E9OnT1cvEok6CiYiInEmMzOTOXPm8OuvvzJu3DgO\nHz7sf61NmzY89NBD3HzzzerYKlFJwUREJE54PB7+/ve/89VXX7Ft2zbmzp3rDyXqRSKxQsFERCQO\nLF68mCVLllCxYkWWL1/OihUryM3N5eyzz+bll1/mpptuivQURYpFwUREJIY45wJOwezfv58xY8ZQ\nqVIldu3axdy5c9m2bRvnnHMOPXr0oHfv3tSsWTOCMxYpGQUTEZEot2/fPsYNG8aqBQuodvQoBypV\n4sqbb6ZyYiKLFi2idevWLFu2jBUrVgAwePBgRo0apV4kEpMUTEREoti+ffu4s3lzHv76ax7NzcUA\nByyaNo0eQBbw7bffkp2dzbBhw+jVqxeJiYmRnbRIGSiYiIhEsXHDhvHw11/zxzwt4w1oC0wFOgMX\nXHwxM2fOVC8SiQsKJiIiUWzVggU8mieU5NUWuKxePZZ//LFu/ZW4kRDpCYiISME2b97MocxMCosc\nBpxaoUI4pyQScgomIiJR5osvvuDOO+/koosuYk9CAq6Q5RxwoFIlVUskriiYiIhEiZycHJ544gma\nNm3Kv//9b+6//37OvOwy3i1k+fcTEmjZrl1Y5ygSarrGREQkwg4dOsTTTz/N1KlT2b59O8nJySQl\nJbFt2zYaNm3KhP37SfjmG/6Y566c9xMSmHDRRbz1+OORnr5IUCmYiIhESE5ODgsXLmTQoEF8++23\nnHHGGfTo0YM6derg8XgYP3481apVY9++fYwfPpxn58/n5KNHOVipEi3ateOtxx+nRo0akX4bIkGl\nYCIiEgHvvfcePXr04KeffgKgVq1adO/enf3795OSksKNN97oX7ZGjRo8OnEiTJx4XOdXkXijYCIi\nEkbffvstY8aM4ZVXXgkYv/DCC0lJSeG6666jwgnutFEokXinYCIiEgbbtm2jZ8+evP322wHjTZo0\noWfPnnTp0oWKFfWRLKL/F4iIhNAPP/zA888/z4wZM/j111/94zVq1ODZZ5/l/vvvVxVEJI+ovV3Y\nzJLMbL6ZbTWzXDM74T1xZpbiWy7vl8fM6oZrziIix+Tm5jJlyhQuvfRSnn32WX8oqV27Nn369OGL\nL76ge/fuCiUi+URzxaQasAF4GXi7iGWPccD5wD7/gHPbgz81EZGCHT16lKeffpqnnnqKffv8H0Wc\nccYZdO7cmdTUVBo2bBjBGYpEt6gNJs6594H3Aaxkf1LscM7tDc2sREQK9/nnn9OlSxfWrVvnH6tQ\noQJpaWnUrl2bunXr6vZekSJEbTApJQM2mFkV4AvgUefcvyI8JxGJc//617/o27cvn376acD4rbfe\nyvXXX8/hw4dJSkoiKSnphHfciEh8BZMsIBVYA5wEPAAsNbM/OOc2RHRmIhKXDh48yIgRI5gwYQLO\n/fZEm0svvZTBgwfz3//+l5o1a9K5c2fq1asXwZmKxI64CSbOuW+Bb/MMfWxm5wL9gPsiMysRiUe/\n/vorgwYNIj09PSCQJCYm8pe//IXTTz+dzZs3+1vLq0oiUnxxE0wKsRpoUdRC/fr1o1atWgFjHTt2\npGPHjqGal4jEoF27dvHaa6/x1FNPsXXrVv/4SSedxOjRo3n44YepUKECK1asoFGjRqqSSNyYM2cO\nc+bMCRjbs2dPSPZledN+tDKzXKCDc25+Cdf7ENjrnPtTIa83BdauXbuWpk2bBmGmIhKPnHPMmTOH\nhx56iF27dvnHzYz27dszduxYLrzwwgjOUCT81q1bR7NmzQCaOefWFbV8cUVtxcTMqgHn4b2gFaCh\nmV0B7HLO/c/MxgJnOufu8y3fB/ge+BKogvcak+uBVmGfvIjEhdzcXP7xj38wYcIE3nvvvYDXbrnl\nFtLT06lfv36EZicSn6I2mABXAv/E25vEAeN9468A3YB6QN5PhMq+Zc4EDgKfATc655aHa8IiEj82\nb97M/fffz9KlSwPG27RpQ+/evbnlllvUHE0kBKK286tzbplzLsE5VyHfVzff612dczfkWf4Z51wj\n51w159zpzjmFEhEpsc8//5w///nPXHDBBQGhpG7durz11lvMnTuXKlWqBDRPE5HgieaKiYhI2Bw9\nepSnnnqKxx57jKNHj/rHzz77bPr27cu9997LkSNHSE9PZ+fOndSpU4dLL700gjMWiU8KJiJSrh08\neJBnnnmGadOmkZmZGfBaz549efLJJ6latSrLly9n5cqVJCYm8sADD+iOG5EQUTARkXLJ4/GwaNEi\n+vfvz6ZNm/zjFSpUYMCAAQwfPpxq1aqRmZnJq6++ys6dO9WXRCQMFExEpNx59913SU1N5aeffgoY\nb9asGS+99BJXXnklzjmWLFmiKolImCmYiEi58euvv9KvXz8yMjICxq+55hqmTZvGZZdd5h8zM/bt\n26cqiUiYKZiISNz7+eefGT16NLNnzw64m6Zx48b07NmTbt26FRg82rVrp1uCRcJMwURE4tahQ4d4\n5ZVXGDp0KLt37/aP16xZk2effZZu3bqdMHgolIiEn4KJiMSd3NxcpkyZwuDBgzlw4EDAa7fddhsv\nvPCCOraKRKmobbAmIlJSzjk++eQTbrjhBh566KGAUHLXXXexdetW5s+f7w8lmZmZ7N+/P1LTFZEC\nqGIiInHhs88+4/7772fNmjUB461atSItLY22bdv6x3Jycvx9Sa655hpuvvnmcE9XRAqhYCIiMW3N\nmjW88MILvPbaawEdWxs0aMDLL7/MDTfcELB8VlYWc+fOZefOnaSkpNCyZctwT1lETkDBRERi0sGD\nBxk+fDjJOvFWAAAgAElEQVTPPfcczjn/eP369enRowd9+/alevXq/nGPx8OyZcvUl0QkyimYiEhM\n+fXXX5k6dSovvvgiP/74o3+8QoUKDBo0iJEjR3LSSScFrFNQlUR9SUSik4KJiMSMRYsW0aNHj4Bn\n2lSpUoUBAwaQmprK7373uwLXW7VqFQkJCaqSiMQABRMRiWrOOd59911eeOEF3nvvvYDXmjdvzsyZ\nM7ngggtOuI22bdtSqVIlVUlEYoCCiYhEraysLB588EHmz58fMH7zzTczZMgQkpOTSUgouutBlSpV\nQjVFEQkyBRMRiTrff/89U6ZMYfr06fz666/+8Zo1azJhwgS6du2qrqwicUrBRESiRm5uLi+88AKD\nBw/m4MGD/vG6desyatQoOnXqRK1atY5bz+PxkJOTc9xFryISexRMRCTijh49yquvvsrkyZNZt25d\nwGt33XUXzz//PHXq1Clw3czMTObNm0e9evW4/fbbwzFdEQmhYgUTM+sBbHXOLQrxfESknNm4cSNd\nunRhw4YNAePdunWjb9++XHbZZQWul7d7a2JiIs2bNw/HdEUkxIpbMekFXGZmPwBTgJedc7tPvIqI\nSOHWrFnDlClTmD17Njk5Of7xc845hxkzZhzXsTWvY1US9SURiT/FDSaNgWZAK+BWYKiZvQNMds6t\nD9XkRCT+HDx4kGHDhjFx4sSAjq2XXHIJo0aNol27doVeK5K/SqK+JCLxp1jBxHk/Pdb4vsaaWVUg\nGW9IUTARkSLt3r2b9PR0pkyZclzH1sGDBzNixIgiL1796KOPWLNmjaokInGsVBe/OucOAR/4vkRE\nTqiwjq39+/fnwQcfLLRja34tWrSgSZMmqpKIxDHdlSMiIRGMjq351axZk5o1awZzmiISZYpumXgC\nZjbQzDaa2YN5xmqa2cNmdmbZpycisSgrK4v27dvTtm3bgFDSqlUrlixZwsqVK0scSkSkfChTMAHq\nAj8CHY4NOOf2AvOB+82scxm3LyIx5MiRI0ydOpWLL76YBQsW+Mdr1qzJyy+/zAcffMD1119/wjby\neS+IFZHyp6zBxIA/Oef+mHfQOfedc240cFUZty8iMSA3N5dJkyZx2mmn8eCDD/rbyNetW5fJkyfz\n448/0q1btxO2kfd4PCxZsoSFCxeGa9oiEoXKeo3JWGCQmY1xznnM7AJgIVAd+B749YRri0hMO1HH\n1o4dO/L8889z2mmnFbmdrKws5s6dy86dO0lOTsY5p2fhiJRTxe38egOQBKwCPnHO7QNwzu00s+eB\nIWY2DngceBf4DjgCvBGSWYtIxBXWsfXGG2+kb9++tG3btshteDweli1bpr4kIuJX3IpJPWCU79+5\nZvYV8C/f17+BicCjgMc51yfYkxSR6LF7926effZZnnzyyYCOrQ0aNGDGjBlcf/31xdpO3iqJ+pKI\nyDHFDSY7gBfwnrpJAlribbD2gO/1X4Cfgf+a2aXOuS+CPVERiazCOrZeeumljBgxgnbt2lGlSpVi\nbWvjxo3MmzdPVRIROU5xg8kaYLdzLhP4m+8LM6uNN6Qk+b5aA+3MbBewDHjDOff3oM9aRMImNzeX\n999/nz59+vDdd9/5xytUqMCQIUMYMWIElStXLtE2zznnHK677jpatGihKomIBChuS/rdeMNJ/vFf\n8V7suhDAzKoA1/JbWOkPKJiIxKhFixbRs2dPtmzZ4h+rVKkSd9xxBwMHDqRp06al2m7t2rVJTk4O\n1jRFJI4EtfOrc+4wsMT3JSIxavfu3fTt25dZs2YFjF977bXMnDmT888/P0IzE5F4V9Y+JiISR7Ky\nsnjooYf4/e9/HxBKLr/8cqZOncry5csVSkQkpPSsHBHBOcerr75KWlqavzkaQK1atXjuuee47777\nStRXJDMzk++//54WLVqEYroiEscUTETKsdzcXGbMmMHkyZPZuHFjwGu33XYbL774YrGf/AuQk5PD\n8uXL/X1J/vCHP1CpUqVgT1tE4piCiUg59d1339GtWzdWrFgRMH733XczZswYzjnnnBJtT31JRCQY\nFExEypmtW7cybdo0nnnmGQ4dOuQf/93vfsfkyZPp0KHDCdY+nrq3ikgwKZiIlBPZ2dmMHTuWxx9/\nPKBj6+9//3smTZpE69atT/jU34Js376dt956y/+Mm6SkJFVJRKRMFExE4tyRI0dYsGABjz/++HHX\nkfTu3ZuxY8dSvXr1Um27YsWKnHTSSaqSiEjQKJiIxLEVK1bQtWtX/vvf//rHKlSoQOfOnenZsydX\nXXVVmbZ/6qmn0rVrVz0JWESCRsFEJA4dPHiQoUOHMmnSpIDn2lx22WVkZGSUumNrQRRKRCSYFExE\n4sju3bsZOnQoM2fO5MiRI/7xJk2a0Lt3b+65554SP9dGRCScFExE4sSCBQtITU0lKyvLP1alShXG\njBlDWlpaqS5KzcnJ4fvvv6dRo0bBnKqISKHUkl4khjnneO+992jbti3t2rULCCW33XYbGzdupF+/\nfqUKJZmZmaSnp/O3v/2Nffv2BXPaIiKFUsVEJEZlZmaSmprKwoULA8Zbt27NtGnTStSxNa/83Vu7\nd+9OjRo1gjFlEZEiKZiIxJijR4+SkZHBwIEDg/Jcm7wyMzOZN2+eureKSMQomIjEiNzcXJ5//nmG\nDRvGgQMH/OOJiYkMGzaMTp06ceqpp5Zq2/mrJOpLIiKRomAiEgO+++47unbtysqVKwPG7777biZN\nmsRpp51Wpu3/+uuvfPLJJ6qSiEjERe3Fr2aWZGbzzWyrmeWaWbtirHOdma01s8Nm9q2Z3ReOuYqE\nysaNG7n77ru55JJLAkLJ9ddfz/z583nttdfKHEoA6tSpQ9++fUlJSVEoEZGIiuaKSTVgA/Ay8HZR\nC5tZA2AhMAW4G7gJmG5mmc65j0I3TZHgy87OZsyYMTzxxBMBz7Vp2LAhM2bMICUlJej7rFq1atC3\nKSJSUlEbTJxz7wPvA1jxruT7C7DZOTfQ9/03ZtYS6AcomEhMOHLkCAsXLmT06NEFPtfmySefpFq1\nahGanYhI6EVtMCmFa4DF+cY+ACZEYC4iJbZ8+XK6desW8FybihUrMnDgQB555JFSX9h6zP79+0v9\nsD4RkXCJ2mtMSqEesC3f2DagppmdFIH5iBTLgQMH6NOnDykpKQGh5LLLLmP16tU88cQTZQolHo+H\nJUuW8Nxzz/Hzzz8HY8oiIiETTxUTkZiya9cuhg0bRkZGBocPH/aPN27cmF69enHvvfeW+bk2WVlZ\nzJ07l507d5KUlMTpp59e1mmLiIRUPAWTn4HEfGOJwF7n3JEClvfr168ftWrVChjr2LEjHTt2DO4M\nRXwWLFhAjx49AioYZX2uTV4ej4dly5apL4mIBMWcOXOYM2dOwNiePXtCsi/L+0j0aGVmuUAH59z8\nEyzzJHCrc+6KPGOvA7Wdc60LWacpsHbt2rVBfQy8SGG2bt3K4MGDefXVVwPG27Zty7PPPhuUh+Xl\nr5IkJSXpFmARCbp169bRrFkzgGbOuXXB2m7UVkzMrBpwHnDsjpyGZnYFsMs59z8zGwuc6Zw71qvk\nJaCXmT0FzABuBP4EFBhKRMIpMzOTXr16MXfu3IDxsj7XJr+DBw8yY8YM6tSpoyqJiMSkqA0mwJXA\nPwHn+xrvG38F6Ib3Ytf6xxZ2zv1gZm3w3oWTBvwE3O+cy3+njkjYOOeYPXs2ffr0CfpzbQpy8skn\n06lTJ+rXr68qiYjEpKgNJs65ZZzgriHnXNcCxpYDzUI5L5HiyM3NZeXKlTz55JO89957/vHq1avT\nqVMnRowYEbQqSX4NGjQIyXZFRMIhaoOJSKwq7Lk2nTp1YtKkSWXuRyIiEs/iqY+JSETl5uYyceJE\nLr/88oBQkpiYyNy5c3n11VeDEkpi4YJ1EZHSUjARKaPs7Gxmz57N1VdfTd++fTl06BAA9evXZ8yY\nMXz55Ze0b98+KPvKysoiPT1djdJEJG7pVI5IGWzYsIEuXboc91ybhx56iLFjxwbtuTb5+5IkJOhv\nChGJTwomIqWQnZ3NE088wZgxY0L+9N+8fUlSUlJo2bKl7rgRkbilYCJSAgcOHGDixIlMnTqVLVu2\n+Mcvu+wyhgwZQocOHahatWpQ9qXurSJSHimYiBTTsmXL6NatG5s3b/aPVaxYkaFDhzJs2LAyP9cm\nL4/Hw/Tp09m+fTvJycnq3ioi5YaCiUgRDhw4wJAhQ3j++ecDxps0acLLL79MkyZNgr7PChUq0KxZ\nM8466yxVSUSkXFEwESnErl27GD58OBkZGf47bQBatmzJM888w9VXXx3Urq35XXnllSHbtohItFIw\nESnAvHnzSE1NZdu2bf6xqlWr+p/+q7tiRERCQ5+uInlkZWVxzz330KFDh4BQ0rp1azZu3Ejfvn0V\nSkREQkifsCLA1q1buf322znzzDN57bXX/ONt2rThp59+YtGiRTRq1Cho+/N4PPzzn/9kx44dQdum\niEg80KkcKdecc8yaNYs+ffqwZ88e/3itWrWYOHEi9957b9CvI8nbl+SUU07h9NNPD+r2RURimYKJ\nlFtbt24lNTWVRYsW+ceqVatGp06dGDlyZNCf/qu+JCIiRVMwkXJn06ZNDBkyhLfffjvggXj33HMP\nEydODMnTf9W9VUSkeBRMpNzIzc1l0qRJDB06NOD233r16jF16lTatWsXkv0uXbqU5cuXq0oiIlIM\nCiZSLmzatIlu3bqxcuVK/5iZ0a1bN55++umQVEmOycnJUZVERKSYFEwkrv38889MmzaNJ598MqBK\nkpaWxpgxY4L29N8Tuemmm0K+DxGReKFgInHpRE//nTlzJsnJyRGcnYiIFEbBROLO+vXr6dKlC599\n9lnAeDirJCIiUjpqsCZxIzs7m5EjR3LVVVf5Q0nFihW55557+Pjjj5k4cWJIQklWVha7du0K+nZF\nRMojVUwk5u3fv5/nn3+eqVOn8uOPP/rHr7jiCjIyMmjcuHFI9pu3L0mTJk247bbbQrIfEZHyRMFE\nYtrSpUvp1q0b33//vX+sYsWKDBs2jKFDh1K5cuWQ7DdvX5Lk5GSSkpJCsh8RkfJGwURi0v79+xky\nZAiTJ08OGG/cuDEzZ84MS5VEfUlERIJPwURiinOOf/7zn3Tv3j2gSpKUlMTYsWO59tprg/5sm2MK\nqpKoL4mISHApmEjMmDdvHv369QsIJFWrVmXs2LE89NBDJCSE9lru9evXk5CQoCqJiEgIKZhI1Nu1\naxdpaWm89tprAeNJSUnMmDGD8847LyzzaNWqFQkJCaqSiIiEkIKJRLV58+aRmprKtm3b/GMXXngh\naWlppKamhrxKklelSpXCti8RkfJKwUSiUkFVktq1azNx4kQ6d+4csutIREQkstRgTaLKgQMHSE9P\n5+KLLw4IJW3atOHLL7/k3nvvDVko8Xg8HDx4MCTbFhGR4lHFRKKCc45XXnmFvn37smfPHv94uKok\nmZmZzJs3j5o1a9KpU6eQ7UdERE5MwUQibuvWrfTo0YN33303YLxNmzZMmzaNM888M2T7zsnJYfny\n5f6+JDfeeGPI9iUiIkVTMJGIKaxKctNNN9GrVy/at28fliqJ+pKIiEQPBROJiIKqJPXq1WPq1Km0\na9cupPvOXyVRXxIRkeihYCJh5ZwjIyODfv36BVRJ7rnnHiZOnMipp54a8jmsWLGCVatWqUoiIhKF\nFEwkLDweD5MmTWLUqFHs27fPPx6uKklezZs356KLLlKVREQkCimYSMht2rSJrl27smrVqoDxcFZJ\n8qpSpYpCiYhIlFIfEwkZj8fDhAkTuPzyywNCSYsWLZg/fz6zZ88OeygREZHopoqJhERBVZKGDRsy\nc+ZMkpOTQ75/55y6w4qIxCBVTCSoCquSpKWl8dlnn4U8lOTk5LBkyRLefPNNnHMh3ZeIiASfKiYS\nNJGukuTtS5KUlKSqiYhIDFIwkTI7dsfN0KFDOXz4sH88LS2NMWPGUK1atZDuX31JRETih4KJlFp2\ndjbjxo1jypQpbN261T8eqSqJ+pKIiMQ+BRMplXXr1tGlSxc+//zzgPFwVUkAvvrqK/7+97+rSiIi\nEkcUTKREsrOzGT16NGPHjsXj8fjHGzduzMSJE8NSJTmmQYMG3HDDDTRv3lxVEhGROKFgIsVWUJXk\niiuuICMjg8aNG4d9PieffDItW7YM+35FRCR0dLuwFCk7O5sRI0bwhz/8wR9KKlasyKOPPsrq1asj\nEkpERCQ+qWIiJxRtVRIREYlvqphIgaKhSpKZmcnixYvVKE1EpBxRxUSOE+kqSf6+JC1btqRKlSoh\n36+IiESegon4FXTHTcWKFRk+fDhDhgyhcuXKIZ+D+pKIiJRvUR9MzKwX0B+oB2wEHnLOfVrIsvcB\nMwEHHOtFftg5d3I45hrLoq1Kor4kIiLlU1QHEzP7f8B4oAewGugHfGBm5zvndhay2h7gfH4LJrpA\n4QSioUqyc+dO/u///k9VEhERie5ggjeITHXOzQIwsweBNkA34OlC1nHOuR1hml9Mi3SV5JgqVapQ\nvXp1br/9dlVJRETKuai9K8fMKgHNgH8cG3Pe2zMWA81PsGp1M/vBzLaY2VwzuzjEU4050XDHTV7V\nq1enc+fOCiUiIhLVFZM6QAVgW77xbcAFhazzDd5qymdALWAA8C8zu9g5lxmqicaSaKmSiIiIFCRq\nKyal4Zz72Dn3qnPuM+fcCuAOYAeQGuGpRVy0VUlEREQKEs0Vk52AB0jMN54I/FycDTjncsxsPXDe\niZbr168ftWrVChjr2LEjHTt2LP5so1ikqyQ5OTl88803XHLJJSHfl4iIBN+cOXOYM2dOwNiePXtC\nsi+L5q6aZvYx8Ilzro/vewO2AJOcc88UY/0E4EtgkXOufwGvNwXWrl27lqZNmwZ38lEgGu64yduX\npGfPnpx22mkh36eIiITeunXraNasGUAz59y6YG03mismAM8CGWa2lt9uFz4ZyAAws1nAT865ob7v\nRwAfA98BtYGBwNnA9LDPPMKioUqSvy+JQomIiBQlqoOJc+5NM6sDPIb3FM4G4JY8twOfBeTkWeUU\nYBreZmy7gbVAc+fcf8I368iKtipJSkoKLVu2VF8SEREplqgOJgDOuSnAlEJeuyHf9w8DD4djXtEo\nGqskugVYRERKIuqDiRQtGqokAAcPHmTt2rWqkoiISKkpmMS4SFdJ8qpZsyZ9+vQJWxASEZH4E1d9\nTMqb9957j6uvvjqq+pIolIiISFmoYhKDPB4PkyZNYsiQIeTkeK/9VfdWERGJBwomMWbTpk107dqV\nVatW+cfatm3LW2+9FZZqxZ49e45rRiciIhIsOpUTIzweDxMmTODyyy8PCCVpaWm8+eabIQ8lHo+H\nJUuWMGnSJH744YeQ7ktERMovVUxiQEFVknPPPZcZM2aQnJwc8v1nZWUxd+5cdu7cSXJyMvXr1w/5\nPkVEpHxSMIly8+bN46677uLw4cP+sbS0NMaMGUO1atVCum+Px8OyZcvUl0RERMJGwSRKOed45ZVX\n6Nmzpz+URKpKor4kIiISLgomUWjr1q2kpqayaNEi/9jtt9/O7NmzQ14lAThy5AizZs2idu3aqpKI\niEhYKZhEEeccs2bNok+fPgGPk+7cuTMvvfQSJ598cljmcdJJJ9G5c2cSExNVJRERkbBSMIkSHo+H\nu+++mzfffNM/Vq9ePaZNm8Ztt90W9vmceeaZYd+niIiIbheOArt27eKuu+4KCCWdO3fmyy+/jEgo\nERERiRRVTCJs3rx5pKamsm3bNgASEhJ44403+POf/xzS/TrnMLOQ7kNERKSkVDGJoLFjx9KhQwd/\nKKlduzZz5swJeSjJzMxk6tSpfP/99yHdj4iISEmpYhIBBw4cYPDgwUyePNk/1qZNG6ZNmxbSazty\ncnJYvny5vy9JuC6mFRERKS4FkzBbvnw5Xbt2ZfPmzf6x4cOH89hjj4X01Ir6koiISCxQMAmj999/\nn7Zt2+LxeACoWrUqY8eOJS0tLWShRN1bRUQkliiYhEF2djaPP/44Y8eO9YeSli1bMmPGDBo1ahSy\n/TrnmDlzJllZWaqSiIhITFAwCTGPx8O9997L3/72N/9Y69atmT9/fshDgplxzTXXUKdOHVVJREQk\nJuiunBDatGkTKSkp/lBSoUIFRo0axTvvvBO2ysWll16qUCIiIjFDFZMQ2bRpE82bN+eXX34BvNWL\ncNwKLCIiEstUMQmBuXPnctVVV/lDScOGDVm6dKlCiYiISBFUMQmyd955h44dO3LkyBEAGjVqxMcf\nf8ypp54a9H0d60vSqFEj6tevH/Tti4iIhJsqJkE0ZswY7rjjDn8o6dChQ8hCSWZmJunp6axatcrf\nOVZERCTWqWISBNnZ2QwYMIBJkyb5x9q3b88bb7zBSSedFNR95e/eqr4kIiISTxRMyig7O5uuXbvy\n+uuv+8dGjBjBX//616A3TcvMzGTevHnq3ioiInFLwaQMfvnlF1q1asX69esBqFSpEs8880xIOrku\nX76cpUuXqkoiIiJxTcGklLZv307btm39oaRixYrMmjWLu+66KyT7q1ixoqokIiIS9xRMSmHHjh20\na9eOTz/9FIDTTjuNDz74gGbNmoVsn9dee23Iti0iIhItFExKaPfu3dx6662sXbsWgLp167Jw4cKQ\nhhIREZHyQsGkBPbu3ct1113HZ599BkCdOnVYsGABV111VYRnJiIiEh8UTIpp7969tGjRgi+++AKA\n2rVr8+GHH9KkSZOgbD8rKwsz00WtIiJSrqnBWjH88ssvpKSk+ENJjRo1WL58eVBCicfjYcmSJf5m\naSIiIuWZKiZFyM3N5b777mPDhg0A1KpVixUrVnDZZZeVedtZWVnMnTuXnTt3kpycTFJSUpm3KSIi\nEssUTIrw5JNPsmjRIsB7983ixYvLHEo8Hg/Lli1T91YREZF8FExOYOzYsQwbNgwAM+P111+ncePG\nZdpmQVUS9SURERHxUjApxOLFi/2hBGD48OHcfPPNZd7uN998Q0JCgqokIiIiBVAwKUBWVhadOnXC\nOQf89uybYEhKSlKVREREpBAKJvl4PB7uvvtutm/fDsCtt97Ko48+GrRn3yiQiIiIFE63C+fz2GOP\nsXTpUgB+97vfMWvWLBISdJhERETCQb9x81i9ejWjR48GvJWNN954gzp16pRoGzk5OezduzcU0xMR\nEYl7OpXjk5uby5AhQ/zXlYwePZqWLVuWaBuZmZnMmzePSpUqcf/99wft9I+IiEh5oWDik56ezpIl\nSwBo0KAB/fv3L/a6+fuStG3bVqFERESkFBRMgCNHjvhP4QC89NJLVKpUqVjr5u1LkpKSQsuWLXWB\nq4iISCkpmADz5s1j69atALRv355bbrmlyHXUvVVERCT4FEyAGTNm+P89atSoYq2zevVqVq1ape6t\nIiIiQaRgAuzYsQPwVkuK+8Tgq666ioYNG5KYmBjKqYmIiJQrul04j4EDBxZ72YoVKyqUiIiIBJmC\nic/5559P8+bNIz0NERGRck3BxOeOO+447hbf3NzcCM1GRESkfIr6YGJmvczsezM7ZGYfm9lVRSz/\nZzP72rf8RjO7tTj7adu2rf/fHo+HJUuW8MorryichMCcOXMiPYVyR8c8/HTMw0/HPD5EdTAxs/8H\njAdGAU2AjcAHZlZgn3gzuxZ4HUgHGgPzgLlmdvGJ9nP22WdzzTXXAN6+JNOmTWPVqlU0bNjQ3wlW\ngkcfHuGnYx5+Oubhp2MeH6I6mAD9gKnOuVnOuf8ADwIHgW6FLJ8GvOece9Y5941zbiSwDuh9op28\n/fbbACxZsoT09HQSEhJ44IEHSElJ0W3AIiIiYRS1twubWSWgGTDm2JhzzpnZYqCwq1Sb462w5PUB\n0P5E+9q5cyfTpk1T91YREZEIi+aKSR2gArAt3/g2oLAWq/VKuDwA77zzjqokIiIiUSBqKyZhUgXg\njDPOoGnTpmRmZpKZmRnpOcW9PXv2sG7dukhPo1zRMQ8/HfPw0zEPr6+//vrYP6sEc7sWrRd3+k7l\nHATudM7NzzOeAdRyzt1ewDo/AuOdc5PyjD0KtHfOHdfS1czuBl4L/uxFRETKjU7OudeDtbGorZg4\n546a2VrgRmA+gHkbjdwITCpktX8X8Hor33hBPgA6AT8Ah8s+axERkXKjCtAA7+/SoInaigmAmf1/\nQAbeu3FW471L50/Ahc65HWY2C/jJOTfUt3xzYCkwBFgEdAQGA02dc1+F/Q2IiIhIiURtxQTAOfem\nr2fJY0AisAG4xTm3w7fIWUBOnuX/7Ts984TvaxPe0zgKJSIiIjEgqismIiIiUr5E8+3CIiIiUs4o\nmIiIiEjUiPtgEq6HAMpvSnLMzew+M8s1M4/vv7lmdjCc8411ZpZkZvPNbKvv+LUrxjrXmdlaMzts\nZt+a2X3hmGu8KOkxN7OUPD/fuXl+5uuGa86xzMyGmNlqM9trZtvM7B0zO78Y6+nzvJRKc8yD9Xke\n18EkXA8BlN+U9Jj77MHbnffY1zmhnmecqYb3wvCeQJEXjZlZA2Ah8A/gCmAiMN3MWoVuinGnRMfc\nxwGN+O3n/Azn3PbQTC/uJAHPA1cDNwGVgA/NrGphK+jzvMxKfMx9yvx5HtcXv5rZx8Anzrk+vu8N\n+B8wyTn3dAHLvwGc7Jxrl2fs38B651zPME07ppXimN8HTHDOnRremcYnM8sFOuRtSljAMk8Btzrn\nLs8zNgdv48LWYZhmXCnmMU8BlgCnOOf2hm1yccr3h852INk5t7KQZfR5HkTFPOZB+TyP24pJnocA\n/uPYmPOmsKIeArg439gHJ1he8ijlMQeobmY/mNkWM9NfNKF3Dfo5jwQDNphZppl96PuLXkqnNt4K\n1K4TLKPP8+AqzjGHIHyex20wIYwPARS/0hzzb4BuQDu8XXgTgH+Z2ZmhmqQU+nNe08xOisB8yoMs\nIEuHvnUAAAQ2SURBVBW4E7gDbxVxqZk1juisYpCvCvscsLKIHlX6PA+SEhzzoHyeR3WDNYl/zrmP\ngY+Pfe8rtX6N90N8VKTmJRJMzrlvgW/zDH1sZufi7WatC49LZgpwMdAi0hMpR4p1zIP1eR7PFZOd\ngAdvx9i8EoGfC1nn5xIuL4FKc8wDOOdygPXAecGdmuRR2M/5XufckQjMp7xajX7OS8TMJgOtgeuc\nc1lFLK7P8yAo4TEPUNrP87gNJs65o8CxhwACAQ8B/Fchq/077/I+J3oIoORRymMewMwSgMvwlr4l\nNAr6Ob8Z/ZyHW2P0c15svl+Q7YHrnXNbirGKPs/LqBTHPP/6pfo8j/dTOc8CGeZ9SvGxhwCejPfB\ngFi+hwDivW1yqZk9zG8PAWwGPBDmeceyEh1zMxuBt/T3Hd6LqwYCZwPTwz7zGGVm1fD+RWK+oYZm\ndgWwyzn3PzMbC5zpnDt2yuAloJfv7pwZeD+8/4T3ryIphpIeczPrA3wPfIn3iawPANfj/UUpRTCz\nKXg/j9sBB8zsWCVkj3PusG+ZV4Ct+jwPjtIc86B9njvn4voLb5+BH4BDeJPylXleWwLMyLf8ncB/\nfMt/hvehgRF/H7H0VZJjjjfIfO9bNhNYAFwe6fcQS19ACpCL9zRa3q8ZvtdnAkvyrZOMt7p1CO/D\nLjtH+n3E0ldJjzkwwHecDwA78N65lhzp9xErX4Ucaw9wb55l9Hke4WMerM/zuO5jIiIiIrElbq8x\nERERkdijYCIiIiJRQ8FEREREooaCiYiIiEQNBRMRERGJGgomIiIiEjUUTERERCRqKJiIiIhI1Ij3\nlvQiEoPM7BTgSuB04Gfn3JIIT0lEwkQVExGJRufifUbHq0BShOci8v+3d4eqUoVRGIa/VcSgYjCZ\nDKLFZpNzjF6DYrUI3oBBMBkEi8ULsJwLEJPFcsQuJkWDHERQBItalmFG0AuYvVd4njKzmfLFl3/P\nnmFBfpIeGKmqzib5lORad79Yew+wDCcmwFT72fyR2Ou1hwDLESbAVHtJ3nb3j7WHAMsRJsBUV5Mc\nrj0CWJancoBxqup0kktJHm2vzyS5m6STfOnuhyvOA3bIiQkw0d729dU2Um5nEyYXktxcbRWwc8IE\nmGg/ydckn5PcSfKgu38nOZbkyZrDgN3yuDAwTlUdJjmR5HmS+939c+VJwEKcmACjVNXxJJeTvE9y\nLsnTqrq46ihgMcIEmOZKNl/Mv9fd15McJXn298OqOrXWMGD3hAkwzV6Sb939Znv9LpvbOqmq80lu\nrTUM2D1hAkyzn+TlP9e/knzYvr+R5GDxRcBihAkwzcn8Hx8HSb5X1eMkH7v7aJ1ZwBI8lQMAjOHE\nBAAYQ5gAAGMIEwBgDGECAIwhTACAMYQJADCGMAEAxhAmAMAYwgQAGEOYAABjCBMAYAxhAgCMIUwA\ngDH+AP80qw+Kyq1jAAAAAElFTkSuQmCC\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Simulation" + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "C = S[1]\nK = S[2]\n\nk0 = k_grid[30]\nX = [k0]\nY = [C[k0]]\nT = [0]\n\ns = 0\nt = 1\nwhile s<5:\n T.append(t)\n k = K[k0]\n X.append(k)\n c = C[k]\n Y.append(c)\n if k0 == k:\n s += 1\n k0 = k\n t += 1\n \nplt.plot(T, X, color=\"black\", linewidth=2, label=\"capital stock: $k_{t}$\")\nplt.plot(T, Y, color=\"red\", linewidth=1, label=\"consumption: $c_{t}$\")\nplt.plot([t], [k_ss], marker='o', color='black')\nplt.xlabel(\"$t$\", fontsize=14)\nplt.ylabel(\"$c_{t}$, $k_{t}$\", fontsize=14)\nplt.title(\"Path of $c$ and $k$ over time\")\nplt.legend(loc='lower right')\nplt.show()", + "execution_count": 234, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGMCAYAAADuoWlTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VGXax/HvnRANoQTpAkoRC4u7KgFXAYUFFZUXRGwE\nKxaqBZQiK6tiRUBUVBTLgiwaEbHAwqIiYAFBTARdBFeliggJSA0l5Xn/OJOQhCSkzGRmkt/nuuaa\nOc9p9zmEzJ2nHXPOISIiIhIKIoIdgIiIiEgWJSYiIiISMpSYiIiISMhQYiIiIiIhQ4mJiIiIhAwl\nJiIiIhIylJiIiIhIyFBiIiIiIiFDiYmIiIiEDCUmIkFiZg+bWaaZ1SyDc7U2syVmts/MMszsL4E+\nZyBk3bNgxxGqzOwW38/UycGORaSklJiI5GFmN/t+uWe9DpjZj2b2vJnVLcHxzjezh8ysep5VzvcK\nKDOrBLwLnAAMBm4ENgb6vAFSpHtmZuPN7BMzm1gGMZW5YP9MiQSSEhOR/DlgFHADMAhYAgwAlppZ\ndDGP1RZ4EKjh1wiL7hTgZGCcc+4159xbzrndQYqlrIzA+/22J9iBBEhBP1PTgMrOuU1lH5KIfygx\nESnYfN+X+D+dc7cCzwJNgSuKeRzzf2jFUs/3Xt6TkWzOuQzgdODLYMdSUmYWU9jq/Aqd53CAQhIp\nE0pMRIpuId4XQlMAMzvZzCaZ2VozSzWzFDN7x8waZ+1gZg8BY32LG3xNQxl5+gCcYGZTzewPM9tl\nZv8saq2MmZ1jZv8xs91mttfMFpjZX3OsnwIsxqsBetd3/oWlugtHx3DM++DbLqtPzSlFuV4za29m\nK3xNaT+ZWd9ixNQELyFbWsxrKfR++ra5yncdF+Szfz/fuj/5lhv4ru93MztoZv81sz757Jd1b1qY\n2VtmthP4ooAYC/yZyq+PSY5jn2pm0333fLuZPeJbf5KZfeC75q1mdm8+5yzSdYj4Q6VgByASRpr7\n3nf43tsA5wEJwK9AE2AgsMjM/uScOwjMAk4DegH35Ng32fduwDvAOuB+oBVwO7ANGFlYML4vv8/x\nakLGAOlAP2CxmV3onFsBvOyL7QHgOWCF79j+VJT7AEf6Phzzes3sTOAjYDtek0UU8LBvuSjaAaud\nc0Vuyini/QSYC+wDruXo5OFa4L/OuR98/ZGWAxnARCAFuAx43cyqOedy9n/Jujczgf/h3YuCatoK\n+5nKr49J1vIM4Ae8Zq6uwAO+BKgf8CkwHLgeGGdmXzvnvvTdl+Jch0jpOef00kuvHC/gZrxfwn8D\nagENgevwfvHvA070bXd8PvueC2QC1+cou893vJPzbPuQb9tX8pTPArYXIc73gQNA4xxl9fG+WBfl\nKOvgO0/PIl5/LDAO+Afwd6DvMbYv6n0o8vX6rm0/0DBH2elAGpBRhGuYBLzg+/xX4FFgK3Bmae+n\nr/xN3/EsR1k9vGTm777l1/AStRp59n0L2JnzvuW4N/8q4r9RQT9TN+ctz3HsSTnKIoBNvniH5vm3\n3w/8M0dZka9DL7388VJTjkj+DO+vyGRgM94v4T1AD+fcVgDn3KHsjc0qmTfsdx2wC68moCgcMDlP\n2RdALTOrWmBwZhHAxcD7zrnsETbOud99sbYvbP9CjnuC7/wLnHOP4v01PqbQCyjefTjm9fqu7RLf\ntW3JcZ4f8WpRiqId8KWZZSWX/8L7N833d14J7ucMoC7QMUfZNb5zzPAt9wTmAJFmVivrBXyMlwAU\n5d74iwNez15wLhP4xhfvP3OU7wZ+BJrl2Le41yFSKmrKEcmfw2uO+Anvr8ptvi/GbL5+EX8HbsGr\nVbEc+8YW41x5R1D84Xs/Aa+GJj91gBi8av+81uB9AZ/k+1wcz+E1RWQlAFuA0YXtUIL7cKzrrQNU\nBn7OZ98f8ZoRCounOtASbzRSinNunm9V/UJ2K+79nI+XqF4HLPKVXQusdM79YmZ18EbM9MVrKsnL\n4SU2ea0vJMbSynvfdwMHnXM78ymvCVCK6xApMSUmIgVb4ZxLKmT9C3hV588Ay/B+oTu8v5iLUxuZ\nUUB5mY7mMbMTgXigS1aZc+7fRdi1uPch0Nd7Pl4TwxnA6Wa20Tn3k5+ODYBz7rCZfQBcaWYDgRPx\namnu922Sdd3TgTcKOMx3+ZQd8GeceeR334/1b1HS6xApMSUmIiV3FTDVOTc8q8DMjufouSUCMeFV\nMpCK1+8irxZ4fQo2F/OYbXzvxRrJQtHvQ1El431Bn5rPujOKsH874FPn3I1mNhyYDbQwswhfE0ZB\n5yzu/ZwB3AR0xquhAa9jb9bx9gKRzjm/joLyKatJ1AJ9HSJHUR8TkZLL4Oj/Q3cDkXnK9vve/TbB\nmu8L9mPgijxDQ+vh1Xp84ZwrqBmoIBHAbndkFE3WMZuZN3tsQYp6H4rEd20fAT3MrFGOOFrg9T05\nlnZ4NTcAq/H6mAAMMrPKhZyzuPdzAV4zVC+8Zpyvs/qn+I43C7jKzFrm2Q8zq12E6yiM33+m8lMG\n1yFyFNWYiOSvKM0K/wZuNLM9eMMwz8f76zklz3aJvuM9YWZv440smeOHGEcBFwFLzGwSXoLQFzgO\nb+hncX0G3peNcy7F9/lMoLdz7u+F7FfU+1AcDwGX4nVgnYQ3XPhO4L9Agc/5MbNIvBFBOYdaZ/VV\nqeycK6yppFj30zmXbmbv4SUmMXgjZXK6H69z7HIzexXv3tQE4oBOQGm+1PP7mZpdiuMVJpDXIXIU\nJSYi+StKVfndeB1jewPReLOMXoT31372/s65b8xsFNAfr/9GBL5J2koVoDdXxgXAk3hfHhF4NQW9\nnXPf5N28CMf7w8yuAp41szV4NR6bjpGUQBHvQ3E45743s0uACXidb3/Fm8+kAYUkJnidWLcAWX2D\nPgX6mtmjePOsFHbO4tzPLDOA2/CaembmOd52MzvXF/eVeI802IFXi1OSxDHnsf31M1XQv0/On9+A\nXYdIfsw5Pe9JREREQkNY9DExswvMbLaZbfFNrdy9CPtcb2YrzWy/mf1mZq9bGTxeXkREREouLBIT\noAqwEm9eiaI88rwd3tC2V4E/AVfjtTu/EsAYRUREpJTCoo+Jc24+3oRGmFlROiWeB6x3zr3oW95o\nZpNRe6iIiEhIC5cak+L6CjjJzC6D7CF/V+M9fEtERERCVLlMTJxzS4EbgBlmdhjvYVu78IYbioiI\nSIgKi6ac4vI9vvw5vMekf4w3XfR4vAdk3V7APrXwht1tAA7mt42IiIjkKxpoAnzknNtRmgOF3XBh\nM8vEe8JrgZMJmdk0vEdxX5ejrB3eU0xPdM5ty2ef3niPMhcREZGSud4591ZpDlAua0zwZmFMy1OW\niTeip6DOsxsApk+fTosWLQIXWRgYMmQIzzzzTLDDCAm6Fx7dhyN0Lzy6D0foXsCaNWu44YYbwPdd\nWhphkZiYWRWgOUeSimZmdhaw0zm32cyeBBo45272rZ8DvGJm/fFmn2yA9+TT5c653ws4zUGAFi1a\n0KpVq0BdSliIjY2t8Pcgi+6FR/fhCN0Lj+7DEboXuZS6K0RYJCZAa2ARXo2HA572lb8B3ArUB07K\n2tg594aZVQUG4fUt2YU3NfX9iIiISMgKi8TEOfcZhYwgcs71yafsReDFfDYXERGREFUuhwuLiIhI\neFJiIkeJj48PdgghQ/fCo/twhO6FR/fhCN0L/wq74cKBYmatgMTExER1YhIRESmGpKQk4uLiAOKc\nc0mlOZZqTERERCRkKDERERGRkKHEREREREKGEhMREREJGUpMREREJGQoMREREZGQocREREREQoYS\nExEREQkZSkxEREQkZCgxERERkZChxERERERChhITERERCRlKTERERCRkKDERERGRkKHEREREREKG\nEhMREREJGUpMREREJGQoMREREZGQocREREREcnHOBe3cSkxERESEvXv3cvfdd9O0aVNOOukkmjZt\nyt13383evXvLNI6wSEzM7AIzm21mW8ws08y6F2Gf48zscTPbYGYHzWydmd1SBuGKiIiElb1793L+\n+efz4osvsmHDBrZs2cKGDRt48cUXOf/888s0OQmLxASoAqwEBgJFrV+aCfwN6AOcBsQDPwYkOhER\nkTD2wAMPsGbNGjIzM3OVZ2ZmsmbNGkaNGlVmsVQqszOVgnNuPjAfwMzsWNub2aXABUAz59wuX/Gm\nwEUoIiKB4pzj4MGD7N+/n/3795Oamlro59TUVNLT04Mddsho0qQJt956a6HbzJkz56ikJEtmZiaz\nZ8/mueeeC0R4RwmLxKQEugHfACPM7EZgPzAb+Idz7mBQIxMRKWeccxw6dChXklBYAlHc5dTU1KB2\nxgx3HTp0KDQxcc6RlpZW6DHS0tJwzlGEuoFSK6+JSTO8GpODQA+gNvASUBO4LYhxiYiUuawvnpIk\nDEVJGvbv31/gX9sS+syMqKioQreJiooqk6QEym9iEgFkAr2dc/sAzOxeYKaZDXTOHQpqdCIixeSc\nY9euXSQnJ7N9+/Z831NSUgpMIDIyMoJ9CUUWExNDlSpVst/zfi5sXdbnY33RViQnnHDCMbfp1q0b\nL774Yr4JZkREBN27H3PMid+U18RkK7AlKynxWQMY0Aj4paAdhwwZQmxsbK6y+Ph44uPjAxGniFRQ\nzjn27NlTYJKRtywlJeWY1e1lJTo6usAkobjLeddFR0cTEREu4zLKj8cff5yFCxce1QE2IiKCFi1a\n8Nhjj2WXJSQkkJCQkGv/3bt3+y0WC7d2OzPLBHo452YXss0dwDNAXedcqq/sCuBdoGp+NSZm1gpI\nTExMpFWrVoEJXkTKLecce/fuLVKSkVV2+PDhgMQSHR1dotqGotRExMTEKHEop/bu3cuoUaOYPXs2\naWlpREVF0b17dx577DGqVatW6L5JSUnExcUBxDnnkkoTR1jUmJhZFaA5Xo0HQDMzOwvY6ZzbbGZP\nAg2cczf71r8FjAKmmNnDQB1gLPC6mnFEpDjS0tLYvHkzGzZsYOPGjWzbtq3AhCMQiUZUVBR169al\nTp061KlTJ/tzfu+1a9ematWqREZG+j0OKf+qVavGc889x3PPPVdmHV3zExaJCdAaWIQ3h4kDnvaV\nvwHcCtQHTsra2Dm338wuBp4HVgA7gBnAP8owZhEJA2lpafz6669s2LCBDRs2sH79+uzPWRNN+bNj\nZ6VKlfJNNApKNqpXrx60LwipuIL5MxcWiYlz7jMKmQzOOdcnn7L/AV0CGZeIhL709PRciUfeBOTX\nX38tVeIRGRmZb1KR3+e6desSGxurREOkEGGRmIiIFCQjIyN7+uz8aj02b95c4hEptWvXpkmTJtmv\nxo0b06BBg1xJR40aNdTnQsSPlJiISFjIyMhg/fr1/PDDD6xevTr7tXbtWg4eLNm8ibVq1cqVeOR9\nVa1a1c9XISLHosREREJKZmYmGzZsyJV8ZCUgBw4cKNaxTjjhBJo2bZpv0tG4cWOqV68eoKsQkZJS\nYiIiQZORkcHatWv5+uuvWbFiBStWrGD16tVFTkAiIyM59dRTOeOMM45KQBo3bnzUnEQiEvqUmIhI\nmXDOsWnTJr7++uvsRCQxMZF9+/Ydc9+IiAiaN29Oy5Ytc71OO+00jj/++DKIXkTKihITEQmIlJSU\n7FqQrGQkOTm50H3MjFNOOeWoBOT0008nOjq6jCIXkWBSYiIifrF9+3YWL16c/VqzZs0x9zn55JNp\n06YN5557Lm3atCEuLk79PkQqOCUmIlIiycnJfPbZZyxatIjFixfzww8/FLp9zZo1cyUhbdq0oX79\n+mUUrYiECyUmIlIkKSkpfPbZZyxevJhFixaxevXqAreNjIykdevWtG3bNjsRadasmSYWE5FjUmIi\nIvk6fPgwn3/+OfPmzWPBggV8//33BW6blYh07NiRjh070q5du2M+9EtEJD9KTEQk29atW5k3bx5z\n587lk08+KXDETERERK5EpH379kpERMQvlJiIVGCZmZmsWLGCuXPnMnfuXJKS8n9aeUREBHFxcbkS\nEXVSFZFAUGIiUsHs2rWLjz/+mLlz5/Kf//ynwCG8tWvX5rLLLqNr165ccsklnHDCCWUcqYhUREpM\nRCqAffv2MWvWLKZNm8bnn39Oenp6vtudc845dO3ala5du9KmTRsiIyPLOFIRqeiUmIiUU845vvji\nC6ZOnco777zD/v37j9qmSpUqXHzxxXTt2pXLL7+cBg0aBCFSEZEjlJiIlDObNm3ijTfeYOrUqaxb\nt+6o9c2aNaNbt2507dqVCy+8UFO6i0hIUWIiUg6kpqby/vvvM2XKFBYuXIhzLtf66tWr06tXL265\n5RbOO+88zSciIiFLiYlImHLO8dVXXzFlyhRmzJjB3r17c603Mzp37kyfPn3o0aMHMTExQYpURKTo\nlJiIhJn9+/czZcoUnn/+ef73v/8dtf6UU07hlltu4aabbuLkk08OQoQiIiWnxEQkTCQnJ/Piiy/y\nwgsvsGPHjlzrqlatyrXXXsstt9xC+/bt1VQjImFLiYlIiFu3bh0TJkzgn//8JwcOHMi1rkOHDvTp\n04errrqKqlWrBilCERH/UWIiEqISExMZN24cM2fOJDMzM7s8MjKSXr16MWzYMM4666wgRigi4n9K\nTERCiHOOjz/+mHHjxvHpp5/mWhcTE8Mdd9zBkCFDaNy4cZAiFBEJLCUmIiEgLS2NmTNnMnbsWFat\nWpVrXZ06dbjnnnsYMGAANWvWDFKEIiJlIywSEzO7ABgGxAEnAj2cc7OLuG87YDHwvXOuVcCCFCmB\ntLQ0XnvtNZ566ik2btyYa13z5s0ZOnQoN910E5UrVw5ShCIiZSssEhOgCrASeB14r6g7mVks8Aaw\nAKgXmNBEis85x3vvvcfIkSP56aefcq1r06YNI0aMoEePHnpWjYhUOGGRmDjn5gPzAax44yBfBt4E\nMoErAhCaSLF98cUXDB8+nGXLluUqv/zyyxk+fDgXXnihhvuKSIUVEewAAsXM+gBNgdHBjkUEYM2a\nNVxxxRVceOGFuZKSDh06sHz5cubOnUuHDh2UlIhIhRYWNSbFZWanAk8A7Z1zmfpFL8H022+/8fDD\nD/P666/nGvbbsmVLnnrqKS6//HIlIyIiPuUuMTGzCLzmm4ecc79kFRd1/yFDhhAbG5urLD4+nvj4\neP8FKRXCnj17GDduHBMmTCA1NTW7vEGDBjz66KPcfPPN6kMiImEnISGBhISEXGW7d+/22/Et71NI\nQ52ZZVLIqBxfh9c/gHSOJCQRvs/pwCXOucX57NcKSExMTKRVKw3ekZI7fPgwkydP5tFHHyU5OTm7\nvHr16tx///3cc889eqCeiJQrSUlJxMXFAcQ555JKc6xyV2MC7AHOzFM2CPgbcBWwoawDkooha6TN\niBEj+OWXX7LLo6KiGDhwIKNGjaJ27dpBjFBEJPSFRWJiZlWA5hypAWlmZmcBO51zm83sSaCBc+5m\n51UB/ZBn/+3AQefcmjINXCqMbdu20b9/fz744INc5fHx8Tz22GM0a9YsSJGJiISXsEhMgNbAIsD5\nXk/7yt8AbgXqAycFJzSpyJxzzJgxgzvvvDPXE387derEU089RevWrYMYnYhI+AmLxMQ59xmFDG12\nzvU5xv6j0bBh8bPt27czcOBAZs2alV1Wp04dXnrpJXr27KmRNiIiJVBu5zERCaSZM2fSsmXLXEnJ\ntddey+rVq7nqqquUlIiIlFBY1JiIhIrk5GQGDRrEzJkzs8tq167NpEmTuOaaa4IYmYhI+aDERKSI\nZs2axYABA3INAb7qqquYNGkSdevWDWJkIiLlh5pyRI4hJSWFXr16cfXVV2cnJbVq1eLtt99m5syZ\nSkpERPxINSYihXj//ffp378/27dvzy678soreemll6hXTw+sFhHxN9WYiORj165dXH/99fTs2TM7\nKTnhhBN48803mTVrlpISEZEAUY2JSB6rV6+mR48e/Pzzz9ll3bp1Y/LkyZx44olBjExEpPxTjYlI\nDu+++y5//etfs5OSGjVqMG3aND788EMlJSIiZUA1JiJARkYGo0aNYsyYMdllZ599Nu+//z5NmjQJ\nXmAiIhWMEhOp8Hbu3El8fDwff/xxdtkNN9zA5MmT9RRgEZEypqYcqdBWrVpF69ats5OSyMhInnvu\nOaZNm6akREQkCFRjIhVWQkICt912GwcOHAC859y88847dOzYMbiBiYhUYKoxkQonPT2d++67j969\ne2cnJa1btyYxMVFJiYhIkKnGRCqU5ORkevXqxcKFC7PL+vTpw6RJk4iOjg5iZCIiAkpMpAJJTEyk\nZ8+ebNq0CYBKlSoxceJE+vfvr6cBi4iECCUmUiFMmzaNvn37cujQIQDq16/PzJkzad++fZAjExGR\nnNTHRMo15xzDhg3j5ptvzk5Kzj//fBITE5WUiIiEICUmUm5lZmYycOBAxo8fn13Wr18/Fi1aRIMG\nDYIYmYiIFERNOVIuZWRkcNttt/HGG28AYGZMmjSJ/v37BzkyEREpjBITKXfS0tK48cYbmTFjBuBN\nmvavf/2L+Pj4IEcmIiLHosREypVDhw5x3XXX8eGHHwIQFRXF22+/Tc+ePYMcmYiIFIUSEyk3Dhw4\nQM+ePZk/fz4Axx9/PLNmzaJr165BjkxERIpKiYmUC/v27aN79+4sWrQIgJiYGGbPnk3nzp2DHJmI\niBRHWIzKMbMLzGy2mW0xs0wz636M7a80s4/NbLuZ7TazpWZ2SVnFK2Vr9+7ddOnSJTspqVatGvPn\nz1dSIiIShsIiMQGqACuBgYArwvYXAh8DlwGtgEXAHDM7K2ARSlDs3LmTiy66iKVLlwJQo0YNFixY\nwAUXXBDkyEREpCTCoinHOTcfmA9gRZg73Dk3JE/RA2Z2BdANWOX/CCUYtm/fzsUXX8x3330HQO3a\ntfnkk084++yzgxyZiIiUVFgkJqXlS2aqATuDHYv4x2+//Ubnzp1Zu3Yt4E0xv2DBAlq2bBnkyERE\npDQqRGICDMNrDnon2IFI6W3cuJHOnTvzyy+/AHDSSSfx6aefcuqppwY5MhERKa1yn5iYWW/gH0B3\n51xKsOOR0vn555/p3Llz9hOCmzZtysKFC2nSpElwAxMREb8o14mJmfUCXgGuds4tKso+Q4YMITY2\nNldZfHy8Zg0NAZs3b6Zjx45s2bIFgNNOO41PP/2URo0aBTkyEZGKIyEhgYSEhFxlu3fv9tvxzbmi\nDHIJHWaWCfRwzs0+xnbxwGvAdc65fxfhuK2AxMTERFq1auWfYMVv9u7dS/v27bM7up555pksWLCA\nevXqBTkyERFJSkoiLi4OIM45l1SaY4VFjYmZVQGaA1kjcpr5hv7udM5tNrMngQbOuZt92/cGpgJ3\nAyvMLOvb64Bzbk/ZRi+llZ6eTq9evbKTkmbNmrFw4ULq1KkT5MhERMTfwmUek9bAt0Ai3jwmTwNJ\nwGjf+vrASTm2vwOIBF4EfsvxeraM4hU/uu+++5g3bx7gzVMyd+5cJSUiIuVUWNSYOOc+o5AkyjnX\nJ8/y3wIelJSJF154gYkTJwJQqVIlZs2axRlnnBHkqEREJFDCpcZEKqB58+Zxzz33ZC+/8sordOrU\nKYgRiYhIoCkxkZD03Xffcd1115GZmQnA/fffT58+fY6xl4iIhDslJhJytm7dyv/93/+xb98+AK6+\n+moef/zxIEclIiJlQYmJhJT9+/fTvXt3Nm/eDMC5557LtGnTiIjQj6qISEWg3/YSMjIzM7nxxhv5\n5ptvADj55JP58MMPqVy5cpAjExGRsqLERELGyJEjef/99wGoVq0ac+fOpX79+kGOSkREylJYDBeW\n8u/VV19l7NixAERGRjJz5kzOPPPMIEclIgHnHGRmQkbGkfe8n/ftg717vdeePUd/zq8sLS3YVxY6\nFiyAKlWCHUWRKTGRoFuwYAEDBw7MXn7++efp0qVLECMSCVGHD8OuXUdef/yRe3nPHu8LuaAv+MK+\n/Atb549j5FzOWV6ax6JUq+a9qlfP/blJEzjuOL/d9rAXZn30lJhIUK1Zs4arr76a9PR0AAYPHsyA\nAQOCHJVIHs5Bairs3AkHD3pf/mlpXqKQ8z2/sqKsy+/9wIHcSceuXV5ZfiIioEYN70s5Kspbjoz0\nXvl9Lmx9VBRERxe+XUnXlfQYVaocST6y3qtUCbsvXCkaJSYSNMnJyXTt2jX7qZTdunVj/PjxQY5K\nyiXnID3dSyoOHPDe9+/3Eo0dO/J/5V136FDJz3/ccd4rKsp7ZX3O+57zc3Q0nH66l3DkfJ1wwtFl\n1aqB2bHjEAkDSkwkKA4ePEiPHj1Yv349AGeffTZvvfUWkZGRQY5MQk5mptdksX07JCd771mvrOXd\nu48kHDmTj5zLvsn6ClStGtSqdeR14olw5pm5y2rWhMqVC04m8ks0IiOVNIgUgxITCYqhQ4eydOlS\nABo0aMCcOXOoWrVqkKOSMpOZ6dVCbN0Kv//uvWd9zpl4bN8OKSleX4ScKlWCOnWgbl3vVaOGl0hE\nRx95Va6cezlvWUyMl2hkJRzqkyASEpSYSJmbPXs2L774IgDR0dHMmTOHRo0aBTkq8YvMTNi2DbZs\n8V5ZCUfeBGTbNq9pJacaNaB+fe9Vpw6cccaRxKNu3aMTEdVCiJRLSkykTG3ZsiXXM2+effZZWrVq\nFcSIpMgOHYLffvMSjl9/zf/9t99yJxyRkUeSjRNPhLPPhssuO7Kc8z06OnjXJiIhQ4mJlJmMjAxu\nvPFGdu7cCUDPnj3p27dvkKMSwOscmpICGzfCpk1Hv2/a5PXnyKlqVWjUyHuddhp06uR9btjwyHvt\n2ho5ISLFosREyszYsWNZtGgRAI0aNeLVV1/FVB1fdvbuhe+/h59/zj/xyDkUtXJlaNwYTj4ZWrWC\nK644koRkJR3VqwfvWkSk3FJiImVi2bJl/OMf/wDAzJg+fTo1a9YMclTllHNeorFqFaxc6b2vWgW/\n/HJkmzp1jiQel1/uvWctN27sdQhV0igiQaDERAJu9+7d9O7dmwzfyIpRo0bRoUOHIEdVThw8CKtX\nH0k+Vq4UFp6hAAAgAElEQVSE777zJuMCb7TJWWdBt25e/46zzvKaXWJighu3iEgBlJhIQDnnGDhw\nYPZ8JW3btuXBBx8MclRh6vBhL+lYsQK+/hq++QbWrPGG0prBqad6icfQod772Wd7TS6q+RCRMKLE\nRALqX//6F2+99RYAsbGxvPnmm1SqpB+7Y8rMhB9/PJKErFjh1YYcPuzN4fGXv0C7dnDnnV4S8uc/\nh9VDukRECqJvCAmYn376iUGDBmUvT548mSZNmgQvoFDlnDfcNisB+fprSEz0HsgG3rTkbdrADTd4\n72efraG1IlJuKTGRgDh8+DDx8fHs27cPgFtvvZXrrrsuyFGFiIwM+O9/4csvj7x+/dVb16iRl3zc\nfz+cey7ExXmTiYmIVBBKTCQgRo0aRWJiIgCnnXYaEydODHJEQXTggFcLkpWELF3q1YZERUHr1hAf\nD23bwl//6k02JiJSgSkxEb/75JNPGDduHABRUVEkJCRQpSL1f0hJgSVLjiQiiYneo+yrV/cSkBEj\noH17r2akcuVgRysiElLCIjExswuAYUAccCLQwzk3+xj7dASeBloCm4DHnXNvBDjUCm/79u3cdNNN\n2ctjxowp/1POO+dNXPb++/DBB14nVfBGxFxwgdc3pH1770m1enqyiEihwiIxAaoAK4HXgfeOtbGZ\nNQH+DUwCegMXAa+Z2W/OuU8CF2bF5pyjT58+/P777wBceumlDB48OMhRBUhGBixb5iUj778P69ZB\ntWrQtSvcd5+XkJx8sobqiogUU1gkJs65+cB8ACvaHOYDgHXOueG+5R/NrD0wBFBiEiATJ05k3rx5\nANSrV4+pU6cSUZ6ek3LoECxc6CUis2d7T8itV8+brr1HD+9ZMccfH+woRUTCWsASEzNr5ZxL8n2O\nBcw5tytQ58vjPGBBnrKPgGfK6PwVzsqVKxk+fHj28htvvEG9evWCGJGf7N0L//mPl4zMnestN2vm\nNc9ceSWcd56aZ0RE/MiviYmZxQGnAAuBS4Ek36r9wK1m9qNz7jN/nrMA9YFtecq2AdXN7Hjn3KEy\niKHC2L9/P/Hx8Rw+fBiAe++9ly5dugQ5qlJITfVqRN58Ez7+2JvU7OyzvRlVr7zS6yuiJhoRkYDw\nd43JPryEZCyQaWZ1gUXAZ865V8zsFqAsEpMSGzJkCLGxsbnK4uPjiY+PD1JEoW/48OGsXbsWgFat\nWvHEE08EOaISyMjwmmmmT4f33oN9+7zakDFjvGaapk2DHaGISEhISEggISEhV9nu3bv9dnxzzvnt\nYLkObDYJSAQ6ABfg1Zp875wr1Te8mWVyjFE5ZvYZkOicuzdH2S3AM865EwrYpxWQmJiYWP5HkfjR\n0qVLadeuHQAxMTF8++23nHbaaUGOqoicg2+/9WpGEhJg61bvAXfXX++9Tjkl2BGKiISFpKQk4uLi\nAOKyunGUVCA7v/7bOTcPbyQNZlYH2BHA8+X0FXBZnrJLfOXiJ4cPH6Zv377Zy0888UR4JCUbNsBb\nb3m1I2vWQN260KuX12+kdWs104iIBFHAEhNfUpJzObmkxzKzKkBzIOsbo5mZnQXsdM5tNrMngQbO\nuZt9618GBpnZU8A/gc7A1cDlJY1BjjZ+/HhWr14NQOvWrbnzzjuDHFEhdu6EmTO9ZOTLLyEmxusv\nMmECXHSR92A8EREJulKP5TSz4Wa2ysz65yirbmb3mlmD0h7fpzXwLV7TkMObOC0JGO1bXx84KWtj\n59wGoCve/CUr8YYJ3+acyztSR0ro559/5pFHHgEgMjKSV155hchQHJ2ydi3cfrs31fugQVC1qpec\nbNvmvV96qZISEZEQ4o/fyHWBjUAPvJoKnHN7zGw2cJuZbXDO/as0J/CN5CkwiXLO9cmn7HO8mWLF\nz5xz9O/fn0OHvMFNgwcP5pxzzglyVHksWQJjx3qjaxo0gEcfhZtv9uYdERGRkOWP2a8MuNo5d2nO\nQufcz865R4E2fjiHhJDp06fz6aefAtC4cWNGjx59jD3KSGamNyV827beFPA//wxTpsD69TB8uJIS\nEZEw4I/E5ElghJlFApjZ6Wb2k5ltNbOleH1DpJxISUnh3nuzBzsxadKk4D+g7+BBePVVaNHC6zcS\nFQVz5njPr7nlFjjuuODGJyIiRVbkphwz64Q37HcJsNw5txfAOZdiZs8DI81sPPAYMA/4GTgEvO33\nqCVohg0bRkpKCgDXXHMNl18exP7Ef/wBL70EEyfC9u1eUvLGG978IyIiEpaK08ekPvCQ73Ommf0A\nLPW9vgKeAx4GMpxz9/gzSAkNixYtYurUqQDExsby3HPPBSeQTZvg2WfhlVcgPd2rFbn3Xm8OEhER\nCWvFSUySgRfxmm4uANoDFwJ3+NbvAH4HfjGzM51z//VnoBJcBw8epF+/ftnLY8aM4cQTTyzbIHbs\ngH/8w2u2qVYNBg+Gu+5S3xERkXKkOInJN8AfzrnfgBm+F2ZWAy9JucD3uhzobmY78aaff9s5965f\no5Yy98QTT/DTTz8B0LZt21wTqwVcejq8/DI8+KA3dfyTT0L//t7QXxERKVeKnJg45/7AS07ylu8C\n/u17YWbRQFuOJCtDASUmYWzNmjWMGTMGgEqVKjF58mQiIvzRb7oIFi6Ee+6B1avhttvg8ce9mVpF\nRKRc8vvMUs65g3hPF17o72NL2cvMzKRfv36kpaUB3gP7zjzzzMCfeMMG72m+s2Z5w39XrIA4TUsj\nIlLeldGfvRKu/vnPf/LFF18A0Lx5c0aNGhXYE+7f7zXZtGgBX33lPWDvyy+VlIiIVBCai1sKtG3b\nNoYNG5a9/PLLL1O5cuXAnMw5mDEDhg3zhv4OHQojR6ofiYhIBaMaEynQkCFD2LVrFwA33ngjnTt3\nDsyJVq6EDh0gPt57uu+aNV5fEiUlIiIVjhITydf8+fNJSEgAoFatWjz99NP+P0lKije6Ji7OGwr8\nySfw/vvQrJn/zyUiImFBTTlylNTUVAYOHJi9PH78eOrUqePfk7z7LgwYAGlpMGECDBzoTSUvIiIV\nmmpM5CijR49m/fr1AHTs2JGbb77ZfwffuRN694ZrroELL4T//c8bDqykREREUI2J5LFq1arsZpvj\njjuOl19+GTPzz8H//W+44w7voXtvvun1KfHXsUVEpFwIWI2JmV1oZm3NTLUyYSJrzpKMjAwAHnjg\nAU4//fTSH3j3bm9ytG7doFUrb7K03r2VlIiIyFECmTQsBr4AfjKzfmamZ8+HuJkzZ7J8+XIAzjjj\nDEaMGFH6gy5YAH/+M8ycCa+95tWaNGhQ+uOKiEi5FMjE5HPgSyAWeAnYEMBzSSkdPnyYv//979nL\nzz77LMcff3zJD7hvHwwaBBdfDKeeCt9/79WaqJZEREQKEbA+Js65jlmfzexMvGfnSIiaPHky69at\nA6Bz585ccsklJT/Yl1/CLbfAb7/B8897I27K6tk6IiIS1srk28I591/n3MtlcS4pvj179vDII49k\nLz/11FMl6/B64IA3Y+uFF0K9erBqFdx5p5ISEREpMo3KEcaNG0dKSgoAvXr1Iq4kz6VZsQJuugnW\nrYOxY2HIEIiM9HOkIiJS3gVyVE6rHJ9jzaxGoM4lJbd161YmTJgAQFRUFI8//njxDuAcTJzoPQG4\nShVISvJqTZSUiIhICfg1MTGzODO71sxqA5fmWLUfuNbMOvjzfFJ6Dz/8MKmpqQAMGDCAZsWZDj41\n1aslueceuOsu72nALVsGKFIREakI/F1jsg8vIfkGuN3MnjWzK4CqzrlXgKYlPbCZDTKz9WZ2wMyW\nmVmbY2w/2MzWmlmqmW0yswlmVophJuXP2rVref311wGoVq0ao0aNKvrOGzZAu3Ywa5Y3WdqECZq9\nVURESs2viYlz7kfn3K3OuSbAfOB74CrgWzP7L9ClJMc1s+uAp4GHgHOAVcBHvpqZ/LbvDTzp2/4M\n4FbgOqCY7RTl28iRI7MnUxsxYkTRn4fzySfeg/d27/ZqSXr3DmCUIiJSkfglMTGzv5hZTJ7i/zrn\nXnfO3eScawr8Dbi+hKcYAkx2zk1zzq0F+gOpeAlHfs4HvnTOzXDObXLOLQASgHNLeP5yZ8mSJXzw\nwQcAnHjiiQwePPjYOznndWy99FJo0wa++QbOOivAkYqISEVS6sTEzO4Hvgbm5Vm12szGZC0455Kd\nc5klOH4UEAd8muNYDliAl4DkZykQl9XcY2bNgMuBucU9f3nknGP48OHZy6NHj6ZKlSqF77RvH1x3\nHYwYAfffD3PnQs2aAY5UREQqGn8MFz4BuAVvhtdszrnPzKyemXV1zpUmIagNRALb8pRvA/J9kItz\nLsHXzPOleRNyRAIvO+eeKkUc5caHH37I0qVLAW/q+T59+hS+w08/wZVXwsaNXp+Snj3LIEoREamI\n/NGUE+Wce9s5NznvCufcO8DFfjhHsZhZR+DveE0+5wA9gf8zs2L07iyf0tPTGTlyZPbymDFjqFSp\nkPz03//2mm3S0mD5ciUlIiISUP6oMallZqc4534pYP3hUh4/BcgA6uUprwf8XsA+jwDTnHNTfMur\nzawqMBl4rLCTDRkyhNjYXJU/xMfHEx8fX9y4Q9KUKVNYu3YtAO3ataN79+75b5iZCY89Bg89BN27\nw7RpkOe+iIhIxZOQkEBCQkKust27d/vt+OZ11yjFAbyJ1GYBd+bXZGNmk5xzA0t5jmXAcufcPb5l\nAzYBE51z4/LZ/hvgE+fcyBxl8cCrQDWXz0X7riMxMTGRVq1a5V1dLuzfv59TTz2VrVu3Al4H2LZt\n2x694e7d3vwkc+bA6NHwwAOaVl5ERAqUlJSUNWt4nHMuqTTHKnWNiXMuyddE8p6Z/Q/4AFgJ7MF7\ncF/V0p4DmABMNbNEvI62Q4AYYCqAmU0DfnXOZT0edw4wxMxWAsuBU/FqUWbnl5RUFM8++2x2UnLl\nlVfmn5T8/DN07QrbtnnNOJdfXsZRiohIReaXZ+U45940szXAU3h9O7KeAPcJ0MsPx3/H15n1Ebwm\nnJVAF+dcsm+TRkB6jl0eBTJ97w2BZGA2UGH7mCQnJ/PUU17f38jISJ588smjN/r5Z+jY0Zta/ptv\noHnzsg1SREQqPL89xM9XdXOxL4FoBmx3zm3w4/EnAZMKWNcpz3JWUvKov84f7h577DH27t0LwO23\n387pp+cZ0JSVlFStCosWwYknln2QIiJS4fn96cLOuRS8DqsSItatW8dLL70EQExMDA899FDuDX7+\nGf72NyUlIiISdOrRWAE88MADpKWlAXDfffdxYs7E45dfvKQkJkZJiYiIBJ0Sk3Lum2++4e233wag\ndu3aDB069MjKX37xmm9iYmDxYiUlIiISdEpMyjHnHCNGjMhefvDBB6levbq3kDMpUU2JiIiECCUm\n5dhHH33EwoULATjllFPo16+ftyJv802DBkGMUkRE5AglJuVURkZGrtqSxx9/nOOOOw7WrfOSkuho\nJSUiIhJylJiUUzNnzuS7774DoHXr1lxzzTVeUtKxo5eULF6spEREREKOEpNyKDMzk8ceO/JIoCef\nfJKIDRuOJCWqKRERkRClxKQc+uCDD1i9ejUAbdu2pXPTprmbbxo2DHKEIiIi+VNiUs4453LVljx+\n++1Yp05w3HFKSkREJOQpMSln5s2bx7fffgtA9z//mQ4PP6ykREREwoYSk3LEOcejj3qPB6oJvLlj\nBxYV5SUljRoFNzgREZEi8PuzciR4FixYwPLly4kCPqpShSqHD8PnnyspERGRsKHEpBzJ6lvyKnDO\noUPYRx/BKacENygREZFiUFNOOfH555/z+eef83fgZsCmTIF27YIdloiISLEoMSknHn30Ua4FHgdW\n9exJxA03BDskERGRYlNiUg4sW7aM/QsW8AbwQdWqtPQ9TVhERCTcKDEpB14dOZIPgBXAH+PGUSkq\nKtghiYiIlIg6v4a5VZ99xtDFi9kD3NWwIV/femuwQxIRESkxJSbhLC0NrrmGesB5wJAHHvCeICwi\nIhKmlJiEK+fY2asXLZKTuRjY36ABffr0CXZUIiIipaLEJFyNH0/N997jZuBz4Jlhw4iOjg52VCIi\nIqWixCQcvfcebsQIngCmAXXr1qVv377BjkpERKTUNCon3KxYATfcwPLGjfmHr+i+++4jJiYmqGGJ\niIj4Q9gkJmY2yMzWm9kBM1tmZm2OsX2smb1oZr+Z2UEzW2tml5ZVvAGxaRN068bBM87gok2bcEDN\nmjUZMGBAsCMTERHxi7BITMzsOuBp4CHgHGAV8JGZ1S5g+yhgAXAy0BM4DbgD2FImAQfCnj3QtStU\nrszf//Qn9mdmAjB48GCqVasW5OBERET8I1z6mAwBJjvnpgGYWX+gK3ArMDaf7W8DagDnOecyfGWb\nyiLQgMjMhPh42LyZ3959lxcuvxyA6tWrc9dddwU5OBEREf8J+RoTX+1HHPBpVplzzuHViJxfwG7d\ngK+ASWb2u5l9b2YjzSzkrzdf48bBf/4DM2bwxAcfkJaWBsDdd99NjRo1ghyciIiI/4RDjUltIBLY\nlqd8G3B6Afs0AzoB04HLgObAS3jX+2hgwgyQr76CBx6A++9n61/+wmtXXAFAlSpVGDx4cJCDExER\n8a9wSExKIgIvcenrq1351swaAUM5RmIyZMgQYmNjc5XFx8cTHx8fqFgLtmuX14TTpg2MHs24ESM4\ndOgQAAMHDqRWrVplH5OIiFRoCQkJJCQk5CrbvXu3345v3vd26PI15aQCVznnZuconwrEOueuzGef\nxcBh59wlOcouBeYCxzvn0vPZpxWQmJiYSKtWrfx+HcXmHFx3HXz8MaxcSXKVKjRu3JgDBw5QuXJl\n1q9fT7169YIdpYiICElJScTFxQHEOeeSSnOskO9z4ZxLAxKBzlllZma+5aUF7LYEr/kmp9OBrfkl\nJSHp1Vdh5kx47TVo0oQJEyZw4MABAPr27aukREREyqWQT0x8JgB3mNlNZnYG8DIQA0wFMLNpZvZE\nju1fAmqa2UQzO9XMugIjgRfKOO6S+e9/4Z57oH9/uPpqdu7cyQsveKEfd9xxDBs2LMgBioiIBEZY\n9DFxzr3jm7PkEaAesBLo4pxL9m3SCEjPsf2vZtYFeAZvzpMtvs/5DS0OLampXhNO8+YwYQIAEydO\nZN++fQDceuutNGzYMJgRioiIBExYJCYAzrlJwKQC1nXKp2w50DbQcfnd4MGwfj188w1Urkxqamp2\nbUlkZCQjRowIcoAiIiKBEzaJSYXwzjte35JXX4U//QmAKVOmsGPHDsAbHdSkSZMgBigiIhJY4dLH\npPxbvx7uuMNrxrntNgDS09N5+umnszcZOnRosKITEREpE0pMQkFaGvTqBbVqweTJYAbAe++9x/r1\n6wHo0qULZ511VjCjFBERCTg15YSCUaMgKQmWLAHf5G7OOcaOPdJXVyNxRESkIlBiEmwffwxjx3rP\nwzn33OzixYsXk5iYCECrVq3o1Omo/r0iIiLljppygun33+HGG6FLF7j33lyr8taWmK95R0REpDxT\nYhIsmZleUhIRAdOmee8+3333HfPnzwegSZMmXH311cGKUkREpEypKSdYxo6FTz/1mnLq1s21avz4\n8dmf77vvPipV0j+TiIhUDKoxCYavvvI6vI4cCRddlGvV5s2bs5/aWLNmTfr06ROMCEVERIJCiUlZ\n270b4uPhr3+Fhx8+avWzzz5Lero3u/6dd95JlSpVyjhAERGR4FEbQVkbMQJ27oTPPoOoqFyr/vjj\nD1555RUAoqOjufPOO4MRoYiISNAoMSlLn33mTaD24ovQuPFRq19++eXsh/X16dOHOnXqlHWEIiIi\nQaWmnLJy8KA35Xy7dtC/fz6rDzJx4kQAIiIiuDfP8GEREZGKQDUmZeXRR2HjRvjww1xDg7NMnz6d\n33//HYCePXvSvHnzso5QREQk6FRjUhZWrfKGB48aBS1aHLU6MzMz1xDh4cOHl2V0IiIiIUOJSaCl\np8Ptt8MZZ3gdX/MxZ84cfvzxRwA6dOhAmzZtyjJCERGRkKGmnECbOBESE725S447Lt9Nxo0bl/1Z\ntSUiIlKRqcYkkNat85pv7r7bm7ckH0uWLGHJkiUAtGzZkssuu6wsIxQREQkpSkwCxTno18+bbv6x\nxwrcLGdtiR7WJyIiFZ2acgJl2jRYsADmz4eqVfPdZO3atcyePRuAhg0bEh8fX5YRioiIhBzVmATC\ntm0wZIj39OAuXQrc7Omnn8Y5B8DgwYM5roA+KCIiIhWFEpNAuOceiIyECRMK3OT3339n2rRpAFSv\nXp2+ffuWVXQiIiIhS005/jZnDsyYAW++CbVrF7jZxIkTOXz4MAD9+/enevXqZRWhiIhIyAqbxMTM\nBgFDgfrAKuAu59yKIuzXC3gL+MA51zOgQe7ZAwMGwOWXe08QLsDevXuZNGkSAFFRUdxzzz0BDUtE\n/GPTpk2kpKQEOwyRoKhduzYnn3xywM8TFomJmV0HPA30Bb4GhgAfmdlpzrkCf0uYWRNgHPB5GYQJ\nI0fCrl3w0ktQyOia1157jd27dwNwww030KBBgzIJT0RKbtOmTbRo0YLU1NRghyISFDExMaxZsybg\nyUlYJCZ4ichk59w0ADPrD3QFbgXG5reDmUUA04EHgQuB2IBG+OWXMGmSN6FaIf9oaWlpPPPMM9nL\nQ4cODWhYIuIfKSkppKamMn36dFrk82gJkfJszZo13HDDDaSkpCgxMbMoIA54IqvMOefMbAFwfiG7\nPgRsc85NMbMLAxpk1pODzz8fBg4sdNMZM2awefNmALp168af/vSngIYmIv7VokULWrVqFewwRMqt\nkE9MgNpAJLAtT/k24PT8djCz9kAf4KzAhubzxBPwyy/w7bfeaJwCOOcYO/ZIBc+wYcPKIjoREZGw\nUe6GC5tZVWAacIdz7o+An/D77+HJJ+GBB6Bly0I3/c9//sP3338PwF//+lfat28f8PBERETCSTjU\nmKQAGUC9POX1gN/z2f4UoDEwx47M7x4BYGaHgdOdc+sLOtmQIUOIjc3dHSU+Pj7/WVkzMrwnB592\nGtx//zEvZMyYMdmfR44cqennRUQk7CQkJJCQkJCrLGtAhz+EfGLinEszs0SgMzAbwJdwdAYm5rPL\nGuDPecoeB6oCdwObCzvfM888U/T240mTYMUKWLIEjj++0E2XLl3KF198AXht1N26dSvaOUREREJI\nfn+sJyUlERcX55fjh3xi4jMBmOpLULKGC8cAUwHMbBrwq3Pu7865w8APOXc2s114fWbX+C2i5GR4\n8MEjnV6P4amnnsr+PHz4cCIiyl0rmoiISKmFRWLinHvHzGoDj+A14awEujjnkn2bNALSyzSoBx/0\nniBcyJODs6xevTr7YX2NGjWid+/egY5OREQkLIXNn+3OuUnOuSbOucrOufOdc9/kWNfJOXdrIfv2\n8eusr6tWwSuvwOjRUKfOMTfPORLnvvvu08P6RESAqVOnEhERwaZNm8LiuIHy8MMPExERwc6dO4Md\nSkgIm8QkZDjnPaTvtNOOOWcJwMaNG3nrrbcAqFmzJrfffnugIxQRCQtmdtQggK+++orRo0ezZ88e\nvx63JPwRS1H4K968hg4dysUXX8zdd9/t92MHkhKT4po1Cz77DJ59FqKijrn5hAkTSE/3Wpnuuusu\nqlatGugIRUTCwk033cSBAwdyzSS6dOlSHnnkEXbt2hXEyEIvlpJ46qmnyMzMDLuHxCoxKY4DB2Do\nUOjWDbp0OebmKSkpvPrqq4D3jIE777wz0BGKiIQNMzuqads5F6RojhZKsZREZGQkP/74Y9jNmaXE\npDjGj4fffoOnny7S5i+88AIHDhwA4I477qB27dqBjE5EpFR+++03brvtNho2bEh0dDTNmjVj4MCB\n2bW+mzZtYuDAgZxxxhnExMRQu3Ztrr32WjZu3JjrOFl9Jn788UeuvfZaYmNjqV27NoMHD+bQoUPZ\n2+XtCzJ69GiGDx8OQJMmTYiIiCAyMjJ7fVHPX1T79u1j8ODBNG3alOjoaOrVq8cll1zCt99+e8xY\nAL799lsuu+wyYmNjqVatGhdddBHLly8v9n3Nz8aNG2nevDl/+ctfSE5Ozi7/8ccfsx9rciwbNmxg\n27ZttG3btqi3JCSExaickLB5szfD65AhcOqpx9x83759PP/88wBUqlSJe++9N9ARioiU2NatW2nT\npg179uyhX79+nH766WzZsoV3332X1NRUqlevzooVK1i2bBnx8fE0atSIDRs2MGnSJP72t7/xww8/\nEB0dDZDdX+Laa6+ladOmjBkzhmXLljFx4kR27drF1KlTs7fL2bfiqquu4n//+x9vv/02zz33HLVq\n1QKgjm+QQVHPX1T9+vXjvffe46677qJFixbs2LGDL7/8krVr1x4zlh9++IELL7yQ2NhY7r//fipV\nqsTkyZPp2LEjn3/+OW3atCnyfc3rl19+oVOnTtSpU4dPPvmEE044IXtdixYt6NixIwsXLjzm9S1Z\nsoSWLVuGXVMOzjm9vOq6VoBLTEx0+YqPd65ePed2785/fR7PPPOMAxzgbrrppiLtIyKhKzEx0RX6\nOyKPuLg417Bhw4C+4uLi/HZ9N910k6tUqZJLSkoqcJuDBw8eVbZ8+XJnZm769OnZZQ8//LAzM3fl\nlVfm2nbQoEEuIiLCff/9984556ZOneoiIiLcxo0bs7cZP378UWXFPX9+x81PjRo13F133VXg+sJi\n6dGjh4uOjnYbNmzILtu6daurXr2669ixY3ZZUe7rww8/7CIiItyOHTvcmjVrXMOGDd15553ndu3a\nddS2ERERrlOnToVeV5YBAwa4QYMGOeecW7ZsmRs1apSrX79+9v0vjmP9/GetB1q5Un4fq8akKL78\nEhISYMoUKELmefjwYZ7O0dyTVR0oIhXH77//zpYtW4IdRpE45/jwww/p3r0755xzToHbHZ9jhuv0\n9PPdQykAABxjSURBVHT27NlDs2bNqFGjBklJSVx//fXZ682MQYMG5dr/rrvuYtKkScybN48zzzyz\n2HH+f3v3Hh5Vdf97/P2doA0BkwBBEAwa5AcGLxTBHq1yUyuXY7kVBCzmidAihYrgDfBXy+UAchN/\nco7WKMfGKoF6UEArFrC1tQWEcrE/oRAQoaJEnqAFVILYzDp/7MmQTCbJhFxmknxezzPP49577b2/\nWaxkvq6911qVuX8kkpOT2bp1K3l5eVxyySURn+f3+9m4cSNDhgzhsssuC+5v3bo1d911F8uWLeOr\nr76iSZMmEdVrkQ8++IARI0bQsWNH1q1bF3awRGFhYcRxbtq0ienTp/POO+9QUFDA3XffzfPPP4/f\n74/4GtGgxKQihYUwaRJ07w4ZGRGdkpOTwyeffALAwIEDuaqCxf1EpP5p3bp1nblHfn4+p06dqvBv\n1ZkzZ5g3bx7Z2dl8+umnwZdDzSzsWikdOnQosX3FFVfg8/k4fPjwecVZ2ftXZOHChWRmZpKamkq3\nbt0YMGAAGRkZpKWllXtefn4+p0+fpmPHjqWOpaen4/f7OXLkCC1atIioXsFLDn/4wx/SunVrfv/7\n35OQkFDpn6e4U6dOsWfPHg4ePEhKSgoDBgwAvIQ51ikxqcivfw27dsHmzRDBNPJ+v7/E9PPTIljc\nT0Tqn+3bt1dcqI75+c9/zosvvsiUKVO44YYbSEpKwswYMWJERP8XXtW5Oqp6/1DDhw+nZ8+erF69\nmg0bNrB48WIWLFjA6tWr6RvByMvqZGYMGzaMF198kZdffplx48ZV6XpbtmyhefPm7Nu3j9zcXC67\n7DL+I+T9yD59+vDOO+9U6T41QYlJeU6ehEcfhdGjI1oPB+D1119n3759APTs2ZMbIzxPRCRaWrZs\nSWJiIrt37y633KuvvkpmZmaJ2ay/+eabMuf5OHDgQIlHHR9++CF+v5/LL7+8zHuUl7xU9v6RaNWq\nFePHj2f8+PEcP36crl27MnfuXPr27VtmLC1btiQhIYHc3NxSx/bu3YvP5yM1NZUmTZpEVK9FFi1a\nRFxcHBMmTCAxMZGRI0ee98+1adMmbr31Vl566SUWLlzIwIED2bt3L36/PzhiqmUEM5dHg4YLl2f2\nbDh9GubPj6i4c475xcqqt0RE6gIzY/Dgwbzxxhvs3LmzzHJxcXGleiaWLl0a9r0H5xxPP/10qbJm\nRv/+/cu8R5MmTQDCJhuVuX9F/H5/qRldU1JSaNOmTXBIc1mx+Hw+br/9dtauXVti+PCxY8dYsWIF\nPXr0oGnTphHXaxEz47nnnmPYsGFkZGTwu9/9rlSZSIcLb9q0iRtuuAGAq666is8//xyAp59+mnXr\n1jF16lSSk5NZs2ZNhdeqbeoxKUtuLixd6q2H07ZtRKe8++67wTHs1157Lf369avJCEVEqs28efPY\nuHEjPXv2ZNy4caSnp3P06FFWrVrFpk2bSExM5I477uCll14iMTGRzp07s2XLFv7whz+UOUfToUOH\nGDRoEP369WPz5s0sX76c0aNHc80115QZR7du3XDO8eijjzJy5EguuOACBg4cSOPGjSt9//J8+eWX\nXHrppQwbNowuXbrQtGlTNm7cyPbt21myZEmFscyZM4e3336bm266iQkTJhAXF8dzzz3H2bNnS/To\nRFKvxZkZL7/8MoMHD2b48OGsW7eOPn36BI9HMly4sLCQbdu28fjjjwf3Fb3vU1BQwIABA3j++eeZ\nNm0a7du3r3Td1biqDuupLx9Chwv37+9cWppzBQVhh0aF069fv+AQ4eXLl0d8nojEvsoOF66Ljhw5\n4jIzM12rVq1c48aNXYcOHdykSZPct99+65xz7uTJk27s2LHu4osvdomJiW7AgAFu//79Li0tzY0Z\nMyZ4naLhr/v27XPDhw93SUlJrkWLFu7+++9333zzTbBcWcN6586d61JTU12jRo1KHD9x4kRE949k\nuPDZs2fd1KlTXdeuXV1SUpK76KKLXNeuXV1WVlZEsTjn3Pvvv+/69+/vEhMTXdOmTd1tt93mtm7d\nWul6LT5cuEhBQYHr06ePS0xMdNu2bQvuj2S4cF5enuvUqVPw+gUFBW7gwIHuF7/4hduzZ4/z+/2u\nS5cu5V4jVG0OF456QhArnxKJyZtvelXz2mvl/kMVt2vXrmBScvnllwcbhIjUDw0hMaku4b5oJXbs\n2rXLZWRkOL/f7956662IzqnNxETvmIT69ltvdtdbboHBgyM+rfhInIcffphGjfSUTEREYk+LFi2I\nj48nJyeHXr16RTucUvTtGWrlSvjwQ1i1CiIc2nbw4EFeeeUVwHtb+5577qnJCEVERM5bamoqWVlZ\n0Q6jTOoxCfX88/Czn0E5L2eFeuKJJ4Jvik+ePJnGjRvXVHQiIiL1mhKTUD6fNxInQseOHeOFF14A\n4KKLLmLChAk1FZmISJ0wY8YMCgsLad68ebRDkTpIiUmoCRMgsIpkJJ566qngmPfx48eTnJxcU5GJ\niIjUe0pMQg0dGnHRkydPBicQuvDCC5k8eXJNRSUiItIgKDEJVYnRNFlZWcGZAzMyMmjTpk1NRSUi\nItIgKDE5TwUFBTz55JOAN1Pfww8/HOWIRERE6j4lJudp6dKlweWjhw4dGnb5axEREakcJSbnIT8/\nn3nz5gHeYk6zKjGKR0RERMpWZxITM5toZofMrMDM3jOz68sp+xMze9fMvgh8NpZXvrJmzZoVfLfk\nJz/5CVdddVV1XVpERKRBqxOJiZmNAJ4AZgBdgb8D682srCUlewE5QG/gBuAIsMHMLqlqLLm5uTz7\n7LOAtyS2ektERESqT51ITIApQJZz7jfOuX3AeOA0MCZcYefc3c65Z51z/+2c2w/8BO9nvbWqgUyd\nOpXCwsLgf7du3bqqlxQREZGAmE9MzOwCoBvwh6J9zjkHvA3cGOFlmgAXAF9UJZY///nPrF27FoA2\nbdrw4IMPVuVyIiIiEiLmExMgBYgDjoXsPwZE2l2xAPgUL5k5L36/v0QiMnfuXBISEs73ciIiIhJG\nvV9d2MymAXcCvZxzZysqP2XKFJKSkkrsGzVqFH6/nx07dgDQpUsX7r777poIV0RE6rDs7GzGjBnD\n4cOHadeuXbTDqRErVqxgxYoVJfadPHmy2q5fFxKT40Ah0Cpkfyvgs/JONLOHgEeAW51zeyK52ZNP\nPsl1111XYl9BQQFXXnllcHvx4sXExcVFcjkREalntmzZwoYNG5gyZQqJiYkljpkZZhalyGrHqFGj\nGDVqVIl9O3fupFu3btVy/Zh/lOOc+xbYQbEXV837V78V2FzWeWb2CPCfQF/n3K6qxLB06VI+/vhj\nAPr3789tt91WlcuJiEgdtnnzZmbPns2JEydKHcvIyKCgoKDe9pbUhrrQYwKwBMg2sx3ANrxROglA\nNoCZ/Qb4xDn3aGB7KjALGAV8bGZFvS1fOee+rsyNQydTW7hwYdV/GhERqbO88RfhmRkXXnhhLUZT\n/8R8jwmAc+4V4CFgNrALuBavJyQ/UORSSr4IOx5vFM4q4GixT6WH0RSfTG3s2LFcffXV5/lTiIjE\ntqNHjzJ27Fjatm1LfHw87du3Z8KECfz73/8Oltm1axf9+/cnKSmJiy66iNtuu42tW7eWuM7MmTPx\n+XwcPHiQzMxMmjVrRnJyMmPGjOHMmTPBcl999RWTJ08mLS2N+Ph4WrVqxe233877778fLJOZmUla\nWlqpWIvuEW7fgQMHGD16NMnJyVx88cX88pe/BODIkSMMHjyYpKQkLrnkEpYsWRL2/NzcXO68806S\nkpJISUlh8uTJnD3rvaI4a9YsHnnkEQAuv/xyfD4fcXFxwV717OxsfD5fcDvSOqtMvYE3p9aRI0dK\nXaM+qCs9JjjnngGeKePYLSHbpVvxeQidTG327NnVcVkRkZiTl5fH9ddfz6lTp7j33nvp1KkTn376\nKatWreL06dMkJibyj3/8g549e5KUlMS0adNo1KgRWVlZ9O7dm3fffZfrr/cm2C56x+LOO++kffv2\nzJ8/n507d7Js2TJatWrF448/DsC9997La6+9xn333Ud6ejqff/45f/3rX9m7dy/f/e53g9cK985G\nuP1F2yNGjKBz584sWLCAN998k7lz59K8eXOysrK49dZbWbhwIcuXL+fhhx/me9/7HjfffHOpuNPS\n0pg/fz7vvfceS5cu5cSJE2RnZzN06FD279/PypUreeqpp2jRogUALVu2DBvXnj17IqqzytQbQHp6\nOr179+aPf/zjef17xzTnnD5et9x1gNuxY4crMmjQIAc4wM2ePduJSMO1Y8cOF/o3oj7JyMhwjRo1\ncjt37iyzzODBg118fLw7fPhwcF9eXp5LTEx0vXv3Du6bOXOmMzP305/+tMT5Q4cOdS1btgxuJycn\nu/vuu6/cuDIzM11aWlqp/TNnznQ+n6/UPjNzP/vZz4L7CgsLXWpqqouLi3OLFi0K7j9x4oRLSEhw\n99xzT6nzhwwZUuK6EydOdD6fz33wwQfOOecWL17sfD6f++c//1kqruzs7BLHIq2z4vevqN6cc87n\n87lbbrml1P3DOXHihHvooYfc7Nmz3dy5c11WVlZE5xVXUfsvOg5c56r4fVxnekxqW+hkag888ECU\nIxKROuX0adi3r2bvceWVUA3zKTnnWLt2LQMHDqRr165hy/j9fjZu3MiQIUO47LLLgvtbt27NXXfd\nxbJly/jqq69o2rQp4P3f/7333lviGj169GDNmjXBcsnJyWzdupW8vDwuuaTKK4YE7zt27Njgts/n\no3v37qxdu5YxY85NFp6UlESnTp346KOPSp0/ceLEEvvuu+8+nnnmGdatW1epx/mVrbOi+1dUb0Bw\nBvKK/Otf/6JXr14sWrSIvn37kpWVxbRp0xg3blzEP0dtU2ISht/v56GHHgpuz5kzhyZNmkQxIhGp\nc/btg2oaPlmmHTsgZHqD85Gfn8+pU6fKXZA0Pz+f06dP07Fjx1LH0tPT8fv9HDlyhPT09OD+0JEp\nzZo1A7wvy6ZNm7Jw4UIyMzNJTU2lW7duDBgwgIyMjLDvlFRG6H2TkpKIj4+nefPmpfZ/8UXpCcE7\ndOhQYvuKK67A5/Nx+PDhSsVxPnUWLv7QequM+++/n6uvvpq+ffsC0LZtW2bMmFGpa9Q2JSZhrFy5\nku3btwNw7bXXkpGREeWIRKTOufJKL3Go6XvEsLLme3KBUS3Dhw+nZ8+erF69mg0bNrB48WIWLFjA\n6tWrg1+kZc0JUl6PQbj7VhRLeWp7XpKqxFpcXl4eK1asYP369cF9d9xxR4kyffr04Z133ql8kDVI\niUmIM2fOMH369OC2JlMTkfOSkFAtvRm1oWXLliQmJrJ79+5yyyQkJJCbm1vq2N69e/H5fKSmplb6\n3q1atWL8+PGMHz+e48eP07VrV+bOnRtMTJo1axZ2vpDK9l5UxoEDB0o8evnwww/x+/3BnpxIE5Wa\nqrNI/e1vfwPg+9//ftjjubm5wZd2Y0mdGC5cm1auXBkc5tWvXz9+8IMfRDkiEZGaZWYMHjyYN954\ng507d4Yt4/P5uP3221m7dm2JobDHjh1jxYoV9OjRo1KPGfx+f3AqhiIpKSm0adOGb775Jrjviiuu\n4OTJkyWSpry8PNasWRPxvSrDOcfTTz9dYt/SpUsxM/r16wcQfLQfLmEqrrrrrLhIhgv7/f7gY6zi\nPvroI9544w2mTp1KcnJyjdXl+VKPSYgXXngB8BrUokWLohyNiEjtmDdvHhs3bqRnz56MGzeO9PR0\njh49yqpVq9i0aROJiYnMmTOHt99+m5tuuokJEyYQFxfHc889x9mzZys9+eSXX37JpZdeyrBhw+jS\npQtNmzZl48aNbN++vcT8IiNHjmTq1KkMHjyYSZMm8fXXX/Pss8/SqVOnMpOoqjp06BCDBg2iX79+\nbN68meXLlzN69GiuueYaALp164ZzjkcffZSRI0dywQUXMHDgQBo3blzqWtVZZ8VFMly4V69eABw/\nfpyUlBQAdu/eTU5ODvPmzeOFF15g2rRptG/f/rzjqAlKTEJ8/bU3MawmUxORhqRNmzZs3bqVxx57\njJycHE6dOkXbtm0ZMGBAcCX1zp0785e//IXp06czf/58/H4/N9xwAzk5OXTv3r1S90tISGDixIls\n2LCB1atX4/f76dChA7/61a9KjBhp3rw5a9as4YEHHmDq1KnB+UX2799fqcSkrMcv4eZC+e1vf8tj\njz3G9OnTadSoEZMmTSqRRHTv3p05c+bw7LPPsn79evx+P4cOHQo7DX111llonBU9UmrWrBmvvvoq\nkydPJj09ncLCQtq1a8e8efNwznHo0KGYS0oArLIv09RXZnYd3po8NGnShAMHDlTb8DURqfuKFinb\nsWNHqYU+pX6YNWsWs2fPJj8/v9QInvrm/fff58knnyQ7O5v169cHH1OVpaL2X2wRv27OuSp1Zekd\nkzAeeeQRJSUiIlJvtWjRgvj4eHJycoKPfGKFHuWESElJ4cEHK72kjoiISJ2RmppKVlZWtMMISz0m\nISZMmKDJ1ERERKJEiUmI0MlnRESkYZgxYwaFhYX1/v2SWKfEJIQmUxMREYkeJSYiIiISM5SYiIiI\nSMxQYiIiIiIxQ4mJiIiIxAwlJiIiIhIzNMGaiEgl7N27N9ohiNS62mz3SkxERCKQkpJCQkICo0eP\njnYoIlGRkJAQXKW4JikxERGJQLt27di7dy/Hjx+PdigiUZGSkhJ2BeXqpsRERCRC7dq1q5U/zCIN\nWZ15+dXMJprZITMrMLP3zOz6CsoPN7O9gfJ/N7P+tRVrXbdixYpohxAzVBce1cM5qguP6uEc1UX1\nqhOJiZmNAJ4AZgBdgb8D680s7MMuM/s+kAM8D3wXWAusMbPOtRNx3aZfsnNUFx7VwzmqC4/q4RzV\nRfWqE4kJMAXIcs79xjm3DxgPnAbGlFF+EvCWc26Jcy7XOfdLYCfw89oJV0RERM5HzCcmZnYB0A34\nQ9E+55wD3gZuLOO0GwPHi1tfTnkRERGJATGfmAApQBxwLGT/MaB1Gee0rmR5ERERiQEalXNOPGjy\nJICTJ0+yc+fOaIcRE1QXHtXDOaoLj+rhHNVFie/O+Kpey7ynIrEr8CjnNPAj59zrxfZnA0nOuSFh\nzvkn8IRzbmmxfTOBQc65rmXc5y5gefVGLyIi0qD82DmXU5ULxHyPiXPuWzPbAdwKvA5gZhbYXlrG\naVvCHP9BYH9Z1gM/Bg4DZ6oWtYiISIMSD1yO911aJTHfYwJgZncC2XijcbbhjdIZBlzpnMs3s98A\nnzjnHg2UvxH4EzAdeBMYBUwDrnPO/aPWfwARERGJSMz3mAA4514JzFkyG2gFvA/0dc7lB4pcCvy7\nWPktgUczcwOfA3iPcZSUiIiIxLA60WMiIiIiDUNdGC4sIiIiDYQSExEREYkZSkyo/AKB9ZGZzTAz\nf8inQbyTY2Y9zOx1M/s08HMPDFNmtpkdNbPTZrbRzDpEI9aaVFE9mNmvw7SRddGKt6aY2XQz22Zm\np8zsmJmtNrOOIWW+Y2ZPm9lxM/vSzFaZ2cXRirkmRFgPfwppD4Vm9ky0Yq4pZjY+sBjsycBns5n1\nK3a83rcHiKgeqqU9NPjEpLILBNZzu/FeLm4d+Nwc3XBqTRO8F6onAKVeujKzqXjrLI0Dvgd8jddG\nLqzNIGtBufUQ8BYl28io2gmtVvUA/jfwP4DbgAuADWbWuFiZ/wL+J/AjoCfQBni1luOsaZHUgwOe\n41ybuAR4pJbjrA1HgKnAdXhLpPwRWGtm6YHjDaE9QMX1UD3twTnXoD/Ae8BTxbYN+AR4JNqx1XI9\nzAB2RjuOaH8APzAwZN9RYEqx7USgALgz2vHWcj38Gngt2rFFoS5SAvVxc7F//2+AIcXKdAqU+V60\n462tegjsewdYEu3YolQfnwP3NNT2EFoP1dkeGnSPyXkuEFif/UegG/+gmb1sZqnRDijazCwNL/Mv\n3kZOAVtpmG2kd6Bbf5+ZPWNmzaMdUC1Ixvs/wS8C293wploo3iZygY+p320itB6K/NjM8s3sAzOb\nF9KjUu+Ymc/MRgIJeJN2Nsj2EFIPm4sdqnJ7qBPzmNSg8hYI7FT74UTVe0AmkIvX/TYTeNfMrnbO\nfR3FuKKtNd4fYy0K6T3GeRU4BFwBPA6sM7MbAwl9vROYZfq/gL+6c/MgtQbOBhLU4uptmyijHsBb\nxuOfeL2K1wILgY54E2DWK2Z2NV4iEg98iddDss/MutKA2kMZ9ZAbOFwt7aGhJyYS4JwrPo3wbjPb\nhtfA7sTrwpcGzjn3SrHNPWb2AXAQ6I3XhVsfPQN0puG8b1WWonq4qfhO59yyYpt7zOwz4G0zS3PO\nHarNAGvBPqALkIT3RfsbM+sZ3ZCiImw9OOf2VVd7aNCPcoDjQCHeizrFtQI+q/1wYodz7iSwH6h3\no08q6TO8947URkIE/tAcp562ETP7P8AAoLdz7mixQ58BF5pZYsgp9bJNhNRDXgXFt+L9vtS7NuGc\n+7dz7iPn3C7n3H/iDZS4nwbWHsqph3DOqz006MTEOfctULRAIFBigcDNZZ3XEJhZU7zu+or+ENVr\ngS/fzyjZRhLxRio09DZyKdCCethGAl/Gg4A+zrmPQw7vwFsCo3ib6AS0o/yFQuucCuohnK54jz7r\nXZsIwwd8hwbUHspQVA/hnFd70KMcWAJkm7eCcdECgQl4iwY2GGa2CHgD7/FNW2AW3i/bimjGVRvM\nrAleRm+BXe3NrAvwhXPuCN6z9V+Y2Yd4q0//L7yRW2ujEG6NKa8eAp8ZeO+YfBYotwCvV63Kq4nG\nksC8C6OAgcDXZlbUW3bSOXfGOXfKzP4vsMTM/oX3nH0psMk5ty06UVe/iurBzNoDdwHr8EZmdMH7\ne/pn59zuaMRcU8xsHt47Vh8DF+GtRN8LuL2htAcovx6qtT1Ee6hRLHzw5m04jDcEdAvQPdoxRaEO\nVuB92RYEGl0OkBbtuGrpZ++FN7SvMOTzQrEyM/Fe6DqN90XcIdpx12Y94L3o9nu8pOQM8BHwK6Bl\ntOOugXoIVweFQEaxMt/Bm+PjON4X0f8DLo527LVZD3iLp/4JyA/8XuTivRDdNNqx10BdLAu0+YLA\n78AG4JaG1B4qqofqbA9axE9ERERiRoN+x0RERERiixITERERiRlKTERERCRmKDERERGRmKHERERE\nRGKGEhMRERGJGUpMREREJGYoMREREZGYocREREREYoYSExEREYkZSkxEpE4ws1sCCymKSD2mxERE\n6ophwL+iHYSI1CwlJiJSV9wMvBvtIESkZikxEZGYZ2bJwFXAX6Idi4jULCUmIhKzzOxHZvYW53pK\n7jWzdWbWI5pxiUjNMedctGMQESmXmc0FhjnnOkU7FhGpWeoxEZG64Cb0GEekQVBiIiIxzcwaAdej\nxESkQVBiIiKxrhsQj0bkiDQISkxEJNZ9H8hzzh0CMLP2ZhYf5ZhEpIYoMRGRWHcDsKnY9oPOuTPR\nCkZEapYSExGJdXFAUW/J3cBb0Q1HRGqShguLSEwzs67AIuDvwH87516MckgiUoOUmIiIiEjM0KMc\nERERiRlKTERERCRmKDERERGRmKHERERERGKGEhMRERGJGUpMREREJGYoMREREZGYocREREREYoYS\nExEREYkZSkxEREQkZigxERERkZihxERERERihhITERERiRn/H2KC4utH2Ov8AAAAAElFTkSuQmCC\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + } + ], + "metadata": { + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "language_info": { + "mimetype": "text/x-python", + "nbconvert_exporter": "python", + "name": "python", + "file_extension": ".py", + "version": "3.5.4", + "pygments_lexer": "ipython3", + "codemirror_mode": { + "version": 3, + "name": "ipython" + } } - ], - "source": [ - "C = S[1]\n", - "K = S[2]\n", - "\n", - "k0 = k_grid[30]\n", - "X = [k0]\n", - "Y = [C[k0]]\n", - "T = [0]\n", - "\n", - "s = 0\n", - "t = 1\n", - "while s<5:\n", - " T.append(t)\n", - " k = K[k0]\n", - " X.append(k)\n", - " c = C[k]\n", - " Y.append(c)\n", - " if k0 == k:\n", - " s += 1\n", - " k0 = k\n", - " t += 1\n", - " \n", - "plt.plot(T, X, color=\"black\", linewidth=2, label=\"capital stock: $k_{t}$\")\n", - "plt.plot(T, Y, color=\"red\", linewidth=1, label=\"consumption: $c_{t}$\")\n", - "plt.plot([t], [k_ss], marker='o', color='black')\n", - "plt.xlabel(\"$t$\", fontsize=14)\n", - "plt.ylabel(\"$c_{t}$, $k_{t}$\", fontsize=14)\n", - "plt.title(\"Path of $c$ and $k$ over time\")\n", - "plt.legend(loc='lower right')\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-IV.ipynb" "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-IV.ipynb" old mode 100644 new mode 100755 index b264fe8..3f03ee6 --- "a/0-pre-requisitos/2-math/otimiza\303\247\303\243o-IV.ipynb" +++ "b/0-pre-requisitos/2-math/otimiza\303\247\303\243o-IV.ipynb" @@ -1,633 +1,315 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Dynamic Optimization with Uncertainty" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import math\n", - "import numpy as np\n", - "from scipy import stats, optimize\n", - "import time\n", - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# parameters\n", - "alpha = .4\n", - "beta = .8\n", - "delta = .05\n", - "theta_H = 1.2\n", - "theta_L = .8\n", - "pi_H = .75\n", - "pi_L = .65" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# utility function\n", - "u = lambda c: math.log(c)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# production function\n", - "f = lambda k, A: A*k**alpha" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "# function to calculate distance between two dictionaries with the same indices\n", - "def dist(V, W):\n", - " d = 0\n", - " for (_, v), (_, w) in zip(V.items(), W.items()):\n", - " d = d + (v-w)**2\n", - " return math.sqrt(d)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "nomes = ['Ana', 'Vitória', 'Elisa', 'Rayne']\n", - "numeros = [3, 6, 9]" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ana\n", - "3\n", - "Vitória\n", - "6\n", - "Elisa\n", - "9\n" - ] - } - ], - "source": [ - "for nome, num in zip(nomes, numeros):\n", - " print(nome)\n", - " print(num)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 1: calculate steady-state" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ + "metadata": { + "collapsed": true + }, + "cell_type": "markdown", + "source": "# Dynamic Optimization with Uncertainty" + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "steady-state values:\n", - "capital: 1.7\n", - "consumption: 0.8\n" - ] - } - ], - "source": [ - "def steadystate(alpha, beta, delta, theta, f):\n", - " k_ss = (theta*alpha*beta/(1-beta*(1-delta)))**(1/(1-alpha))\n", - " c_ss = f(k_ss, 1)-delta*k_ss\n", - " return (k_ss, c_ss)\n", - "\n", - "k_ss_L = steadystate(alpha, beta, delta, theta_L, f)[0]\n", - "k_ss_H = steadystate(alpha, beta, delta, theta_H, f)[0]\n", - "k_ss = (pi_L*k_ss_L+pi_H*k_ss_H)/(pi_L+pi_H)\n", - "c_ss = (pi_L*f(k_ss, theta_L)+pi_H**f(k_ss, theta_H))/(pi_L+pi_H)-delta*k_ss\n", - "print(\"steady-state values:\\ncapital: {0:.1f}\\nconsumption: {1:.1f}\".format(k_ss, c_ss))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2: define a grid for $k$ (and $k^{\\prime}$)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "g_size = 1000\n", - "kmin = 0\n", - "kmax = max([k_ss_H, k_ss_L])*2\n", - "step = (kmax-kmin)/g_size\n", - "\n", - "k_grid = np.arange(kmin+step, kmax+step, step)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 3: construct maximizer function" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# given a value of k, a state A and a (proposed) value function V,\n", - "# find k' that maximizes V over grid of k. \n", - "\n", - "def maximizer(k, A, V0, u, f, k_grid):\n", - " \n", - " pi = pi_H\n", - " if A == theta_L:\n", - " pi = pi_L\n", - " \n", - " i = 0\n", - " for K in k_grid:\n", - " \n", - " c = f(k, A)+(1-delta)*k-K\n", - " if c>0:\n", - " i += 1\n", - " v = u(c)+beta*(pi*V0[(K,A)]+(1-pi)*V0[(K,2-A)])\n", - " if i == 1:\n", - " vmax = v\n", - " cmax = c\n", - " kmax = K\n", - " elif v>vmax:\n", - " vmax = v\n", - " cmax = c\n", - " kmax = K\n", - " \n", - " return (vmax, cmax, kmax)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 4: define initial value function over grid" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# V0 is dictionary. V0(k)=log(k+1)\n", - "V0 = {}\n", - "for k in k_grid:\n", - " V0[(k, theta_L)] = math.log(k+1)\n", - " V0[(k, theta_H)] = math.log(k+2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 5: iteration over value function" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "def bellman(V0, u, f, k_grid, eps=1e-3):\n", - " \n", - " T = {}\n", - " T[0] = (1, 1)\n", - " t0 = time.time()\n", - " d = 1\n", - " i = 0\n", - " \n", - " while d>eps:\n", - " \n", - " V = {}\n", - " C = {}\n", - " K = {}\n", - " \n", - " i += 1\n", - " \n", - " for k in k_grid:\n", - " for A in [theta_L, theta_H]:\n", - " v = maximizer(k, A, V0, u, f, k_grid)\n", - " V[(k, A)] = v[0]\n", - " C[(k, A)] = v[1]\n", - " K[(k, A)] = v[2]\n", - " \n", - " d = abs(dist(V, V0))\n", - " V0 = V\n", - " T[i] = (d, time.time()-t0)\n", - " print('i: {0}, d = {1:.5f} ({2:.2%})'.format(i,d,(d/T[i-1][0])-1))\n", - " \n", - " print('i: {0}, d = {1:.5f})'.format(i,d))\n", - " return (V, C, K, T)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Shazam!" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "scrolled": true - }, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "import math\nimport numpy as np\nfrom scipy import stats, optimize\nimport time\nimport matplotlib.pyplot as plt", + "execution_count": 2, + "outputs": [] + }, { - "name": "stdout", - "output_type": "stream", - "text": [ - "i: 1, d = 19.71450 (1871.45%)\n", - "i: 2, d = 12.85047 (-34.82%)\n", - "i: 3, d = 8.91404 (-30.63%)\n", - "i: 4, d = 6.43776 (-27.78%)\n", - "i: 5, d = 4.77451 (-25.84%)\n", - "i: 6, d = 3.61480 (-24.29%)\n", - "i: 7, d = 2.78258 (-23.02%)\n", - "i: 8, d = 2.16911 (-22.05%)\n", - "i: 9, d = 1.70649 (-21.33%)\n", - "i: 10, d = 1.35120 (-20.82%)\n", - "i: 11, d = 1.07450 (-20.48%)\n", - "i: 12, d = 0.85688 (-20.25%)\n", - "i: 13, d = 0.68456 (-20.11%)\n", - "i: 14, d = 0.54748 (-20.02%)\n", - "i: 15, d = 0.43812 (-19.98%)\n", - "i: 16, d = 0.35071 (-19.95%)\n", - "i: 17, d = 0.28078 (-19.94%)\n", - "i: 18, d = 0.22480 (-19.94%)\n", - "i: 19, d = 0.17998 (-19.94%)\n", - "i: 20, d = 0.14408 (-19.95%)\n", - "i: 21, d = 0.11533 (-19.95%)\n", - "i: 22, d = 0.09232 (-19.96%)\n", - "i: 23, d = 0.07389 (-19.96%)\n", - "i: 24, d = 0.05913 (-19.97%)\n", - "i: 25, d = 0.04732 (-19.97%)\n", - "i: 26, d = 0.03787 (-19.98%)\n", - "i: 27, d = 0.03030 (-19.98%)\n", - "i: 28, d = 0.02424 (-19.99%)\n", - "i: 29, d = 0.01940 (-19.99%)\n", - "i: 30, d = 0.01552 (-19.99%)\n", - "i: 31, d = 0.01242 (-19.99%)\n", - "i: 32, d = 0.00993 (-19.99%)\n", - "i: 33, d = 0.00795 (-19.99%)\n", - "i: 34, d = 0.00636 (-20.00%)\n", - "i: 35, d = 0.00509 (-20.00%)\n", - "i: 36, d = 0.00407 (-20.00%)\n", - "i: 37, d = 0.00326 (-20.00%)\n", - "i: 38, d = 0.00261 (-20.00%)\n", - "i: 39, d = 0.00208 (-20.00%)\n", - "i: 40, d = 0.00167 (-20.00%)\n", - "i: 41, d = 0.00133 (-20.00%)\n", - "i: 42, d = 0.00107 (-20.00%)\n", - "i: 43, d = 0.00085 (-20.00%)\n", - "i: 43, d = 0.00085)\n" - ] - } - ], - "source": [ - "S = bellman(V0, u, f, k_grid)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Exploring the results" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# parameters\nalpha = .4\nbeta = .8\ndelta = .05\ntheta_H = 1.2\ntheta_L = .8\npi_H = .75\npi_L = .65", + "execution_count": 3, + "outputs": [] + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEbCAYAAADAsRPLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd8VFX6x/HPQ0BC764iYECqFCkB6aCCIi0IKDYU3RXZdd2isrrrrmLXFdvvZ0HcnyIsKIKKDRuigqBgKNJRUErAQpEWapLz++OZSZ0kQ5KZO+V5v17zmszMnblnEpjvnHvueY445zDGGGPyK+d1A4wxxkQmCwhjjDEBWUAYY4wJyALCGGNMQBYQxhhjArKAMMYYE5AFhIkLIpIkIk5EynvdllAQkUki8i+v22FiiwWEiQoi8qGI3Bvg/hQR+cnLD34R2SIiR0TkUK5L/RDub4yIfJH7PufcOOfcfaHap4lPFhAmWkwBRouI5Lt/NDDdOZcR/iblMcQ5VzXXZafH7TGm1CwgTLSYA9QGevnvEJFawGBgqu/2IBFZISIHRGS7iEwo7MV83/r75bo9QUT+m+t2VxFZLCL7ROQbEel7sg0Wkb4iklbYfn37fE1EporIQRFZKyLJubZtKCJviMguEdkjIk+LSCtgEtDN11PZ59t2iojcn+u5N4jIJhHZKyJv5+7R+A61jROR70TkVxF5JkDwGmMBYaKDc+4I8BpwTa67LwM2OOe+8d1O9z1eExgE/F5Ehp3svkTkDOA94H40lG4DXheReiV/B4UaCryKtvlt4GlfGxKAd4GtQBJwBvCqc249MA740tdTqRmg/ecDD6G/n9N9r/Fqvs0GA52Bc3zbXVTWb8xEPwsIE01eBi4VkUq+29f47gPAOfeZc261cy7LObcKeAXoU4L9XA3Mdc7N9b3Wx0AqMLCI58zx9Tb2icick9jXF779ZALT0A9sgC5AfWC8cy7dOXfUOfdFoa+S11XAi8655c65Y8Df0R5HUq5tHnbO7XPObQM+BdqfRJtNnLCAMFHD9wG5C0gRkSboN+AZ/sdF5FwR+dR3SGY/+k27bgl2dSYaRP4P/H1AT/TbeGGGOedq+i4n02v5KdfPh4FE34B7Q2BrCcdW6qO9BgCcc4eAPWgvpLD9Vi3BfkyMi8lT/kxMm4r2HFoAHznnfs712Az0EM3FzrmjIvIkhQdEOlA51+3Tcv28HZjmnLuhlG3Nsw/fYaNgD1NtBxqJSPkAIVFcCeadaMj591sFqAPsCHLfxgDWgzDRZyrQD7iBXIeXfKoBe33h0AW4sojXWQlcLiIVfAPDI3M99l9giIhcJCIJIpLoG3BucJJt/RbtEQwSkQrAP4GKQT53KfAj8LCIVPG1oYfvsZ+BBiJySiHPnQFcJyLtRaQi8CCwxDm35STbb+KcBYSJKr4PucVAFXRQN7c/APeKyEHgLnRQuzD/As4CfgXuIdehKufcdiAF+Ad6SGs7MJ6T/P/inNvva9N/0G/v6UBakU/KeW4mMARoCmzzPW+U7+H5wFrgJxHZHeC5n/je3+toyJwFXH4ybTcGQGzBIGOMMYFYD8IYY0xAFhDGGGMCsoAwxhgTkAWEMcaYgKJ6HkTdunVdUlKS180wxpiosmzZst3OuWLn5ER1QCQlJZGamup1M4wxJqqIyNbit7JDTMYYYwoRMQHhK238qYis95U9/rPXbTLGmHgWSYeYMoBbnXPLRaQasExEPnbOrfO6YcYYE48ipgfhnPvRObfc9/NBYD15q08aY4wJo4gJiNx8des7AEsCPDZWRFJFJHXXrl3hbpoxxsSNiAsIEamKFhn7i3PuQP7HnXOTnXPJzrnkevVCscCXMcYYiLCA8JVEfh1dhP4Nr9tjjDHxLGIGqX2Lpv8fsN4597jX7THGmEiQlQVbt8L69Xkvv/0tXH99aPcdMQEB9ABGA6tFZKXvvn845+Z62CZjjAmLY8fgu+8KBsHGjXD0aMHt27ePo4DwrTcsXrfDGGNC6cCBgiGwfj18/732FgI5/XRo1UovLVvqddu2oW9rxASEMcbEkoMHYd06WLs27yWtkDUFy5WDpk0LBkHLllCzZnjb7mcBYYwxpXDokPYA8gfBtm2Bt09MhBYtcoLAHwLNmuljkcQCwhhjgnD4cOAg2LIl8PYVK+oHf+vWeS+NG0NCQlibXmIWEMYYk8vx4zowvHq1XvxB8MMP4FzB7StU0B5B7hBo0waaNIHyUf4JG+XNN8aYknEOdu7UEFi1KueyYQOcOFFw+/LloXnzgj2Cpk01JGKRBYQxJualp2svwB8C/lDYu7fgtiL6od+unfYE/EHQrBmcckr42+4lCwhjTMzIytLTRfMHwebNgQ8P1aqlQZD70ro1VKkS/rZHIgsIY0xUOnxYA2DlSlixQq9Xr9b78ytfXs8WatdO5w/4w6B+fe0xmMAsIIwxEW/37rxBsGKFDiQHmlh2xhl5Q6BdOx1EjrfDQ2XBAsIYEzGc09NG84dBoMllCQk6RtC+PXTooNfnnAN16oS92THLAsIY44mMDJ1XsHx53kDYv7/gtpUr64e/Pwg6dNCxgkqVwt/ueGIBYYwJucxMPX00NVUvy5ZpGBw5UnDbevU0AHKHQdOm0TO5LGQOHMiZlLFmDQwYoJcQsoAwxpSpzEz49tucIEhN1d5BoMHjxo2hY8e8gXD66XE+cJyenjNle82anOvt2/NuV66cBYQxJnJlZWmJan8Q+MPg0KGC2555JnTqBMnJeunYMc7HC06c0JH2VavyBkFhU7YrVtRTsfxTtfv2DXkTLSCMMUFxTgeLlyzRi7+HcPBgwW0bNiwYBnG7QnD+Kdv+6/Xri56y3aZNzkw9j2p3WEAYYwI6eFBDwB8IS5bAjz8W3K5+/Zwg6NRJL7/5TfjbGxHS07UXkLt+x+rVgadsg37o+6ds+8OgefOIOSc3ogJCRF4EBgO/OOfaeN0eY+JFZqYe4cgdBuvWFZxnUKMGdOkC556r18nJOmYQdzIzc6Zs5w6D778vfMq2f3KG/7p1a6hWLfxtPwkRFRDAFOBpYKrH7TAmpu3cCV99lfdwUXp63m3Kl9eB43PPzbk0a6Zjo3Hl4EH45hs97Wrlypwxg0CnYPmnbOeeqde2rc7ei8KR94gKCOfcAhFJ8rodxsSSzEz9krtokV4WL4atWwtul5SUNww6dIizeQbO6TE0fxD4J2Zs2hR4+zPOyBsCMThlO6ICIhgiMhYYC9CoUSOPW2NM5DlwQHsH/jD46quCZxVVq5Y3DLp0ibNxg8xMPf3KHwL+yy+/FNy2QoWcKdv+6dpt20Lt2uFvd5hFXUA45yYDkwGSk5MDHOwzJn74S1P4w2DRIu0t5D8M3qQJdO8OPXrodevWcTTxLHdVP3/PYNWqwIeIatTIW7ujfXs9ZBRDvYKTEXUBYUw88x8u+vxzWLhQQyH/mUUVKuhppf4w6N49jgaSDx3SEPBPzFi2rPCqfo0a5YSAPxTOPDMqxwpCxQLCmAh24oTWKlqwQC8LFxasVVSnTt7eQXJynIwdpKdrb2DZspxA2LChYPfJqvqVWEQFhIi8AvQF6opIGnC3c+7/vG2VMeFz7BgsXaph8Pnn2kPIf3ZRUhL06QO9ekHPnnrafMx/6U1PL9gz2LChYM+gfHkNA/+EjE6ddLwgLhKz7EVUQDjnrvC6DcaE0+HD8OWXGgYLFuiA8rFjebdp0QJ69865xPy5GYcPaxj4g2DZMp11nD8MEhK0J+Cfst2pk55JlJjoTbtjUEQFhDGx7sQJ7SF88olevvyyYLWFtm01CPy9hNNO86atYeEv87pkif5ilizRQZbMzLzbJSToh3/u6drt2lnPIMQsIIwJoawsnWP1yScwf772EnIfMhLRAeW+fTUUevaM8UPjO3bkBMHSpdpLyF/MqVw5TUl/GCQnWxh4xALCmDLknJa6nj9fQ+HTTwuW4WnVCi64AM4/X4OhVi1Pmhp6/mJOuQNhx46C2zVqlLd+R6dOUKVK+NtrCrCAMKaUdu2Cjz+Gjz6CefMKfgaeeWZOIJx/foyecpqVpcWbFi/OW8wp/xlFNWpA5845YdClS4wfQ4tuFhDGnKQTJ3Ts4MMP9bJ8ed7PwXr1NAj8odCkSQyeZXTggIbA4sU507UPHMi7TYUKOoicu3fQvHkcFnOKXhYQxgTh++9zAmH+/LyHzStW1PGDiy6CCy/UsyxjKhCc01+APwwWLw48XbtRI52I0bWrBkL79nZGUZSzgDAmgMOHNQg++EBDIX+9tlatNBAuukjDoXJlb9oZEkeP6qmluQMhf40i/3Rt/1Ttbt20eJ2JKRYQxvhs2wbvvQfvvqvhcPRozmM1a0K/fjmh0LChd+0sc3v3ahGnBQvgiy80HPKfe1uvXk4YdO+uA8l2VlHMs4AwcSszUw+jv/uuXlavzvt4584wcKAGQufOYV/tMXR27tSaHQsXaijkf+Mielpp7t7BWWfF2HEzE4xY+SdvTFD27dOzjd59F+bOhT17ch6rWlXHEAYPhosvjpGTa/zjB/4wWLAANm/Ou03Fijpm0KuXXrp1g+rVvWmviSgWECbmpaXBnDnw5pta0iL3JN0mTWDIEBg0SMcSKlb0rp1lwn+6ae7qfjt35t2mWjXtGfTurYHQubMNJpuALCBMTNq4UQPhzTd1fpZfQoKWsBg8WC8tWkT5kRPntFTFp5/qwMlnn+XtFoFOzfaHQe/eeuppzBwvM6Fk/0pMTHBO5yO88YaGwvr1OY9VqqTjCJdcoqEQ1QuB+Q8Z+QPh00/hp5/ybnPGGZqC/lBo1SrKU9B4xQLCRK2sLJ2wNmuWhsK2bTmP1ayph44uuUTDIapPQ92+PW8g5H6joGuFnneezso77zwbUDZlxgLCRBXn4OuvYeZMeO01HV/wq18fhg3TUOjTR0/Vj0q7d+dU95s/v+AkjNq1tYiTPxCsh2BCJKICQkQGAE8BCcB/nHMPe9wkEwGc04XD/KGwZUvOY40awWWXwciROtYalVUcjh/XyWgffaSX/LU7qlfXw0X+QGjXLkrfqIk2ERMQIpIAPAP0B9KAr0XkbefcOm9bZryyerWGwsyZeb9E168Pl14Ko0bp2ZlR91npH1j2B8Lnn+etAX7KKTp20K+fhkLHjjaobDwRSf/qugCbnHPfA4jIq0AKYAERR3buhBkzYNo0WLUq5/5TT9VewqhRumZC1IXC7t1a6vWjj7T0a+5jY6AFnC68EPr3j8HaHSZaRVJAnAFsz3U7DTjXo7aYMDp0SAeZp03TQ+/+lSVr1coJhT59ouxLdGamroXw3ns6Iy//YaNTT9UwuPBC7SnUr+9dW40pRCT9lws0yuYKbCQyFhgL0CjmF+eNXZmZGgbTpumpqYcP6/2nnKKnoo4erWUuTjnF23aelL17tbLf3Lla5W/37pzHKlbUw0b+ULBxBBMFIikg0oDcJdAaADvzb+ScmwxMBkhOTi4QICaybdoEL74IU6bAjz/m3N+jh4bCpZdG0TwF5/Q4mL+X8OWXOd0fgKQknaI9cKCedWSHjUyUiaSA+BpoJiKNgR3A5cCV3jbJlIUjR7SX8J//6ERfv6ZNNRSuvlpLXkSF9HQdQ5g7Vy+5l48rX16DYOBADYaon6Zt4l3EBIRzLkNE/gh8iJ7m+qJzbq3HzTKlsHKlhsL06VokD3RW86hR8Nvfaq8hKj4/f/4Z3nkH3npLB5pz1wE//fScQLjgAityZ2JKxAQEgHNuLjDX63aYkktP10CYPFmXFfBLTobf/Q4uv1yXJY54GzdqILz1lh46yj3A3LWrDpQMGqR1jaIi5Yw5eREVECZ6ffstPPusji3s36/31ayph5B++1v9HI1oWVm6rrI/FDZuzHmsYkXtHQwbpvU7YqIOuDHFs4AwJZaZqeOzzzyjp/f7desGf/gDjBgR4YuOnTihgyKzZ2so/PxzzmO1amkvISVFizlVrepZM43xigWEOWl79sALL8CkSbB1q95XqRJceSXcdBN06OBt+4p04oSeXzt7tk6+2Ls357GkJA2ElBSdjRe1xZyMKRsWECZo330HTzyhh5GOHNH7zjpLewvXXadfuiPS8eM6uDxrlvYUfv0157GWLfXc2uHDbTzBmHwsIEyRnNP17B97TD9b/WO1F18Mf/qTzvmKyPlex47pcS//4SP/wAhA69Y6RfvSS+Hssy0UjCmEBYQJKCND5y489ljOimynnKKDzrfcop+rEScrS5fZnDFDgyF3T6FtWw2EkSO1PLYxplgWECaPY8fg5Zfh4Yfhhx/0vtq19TDSTTdF4Ak8/lrgM2bAq6/mnbjWtq1Ouhg5UietGWNOigWEAXRM4T//gX//O6fQaNOm2lu49toIrBKxaRO88ooGw4YNOfcnJelo+RVXaIVUY0yJWUDEuUOH9GykiRNzzvJs0wbuvFOPyCQkeNu+PPbu1V7Cyy/nHPcCqFtXewpXXqnn2NqYgjFlwgIiTh06BP/zPzrG4D/Ts1Mn+Oc/YejQCBp4zsjQ2kcvvaSDzceP6/1Vq+raoldeqZPY7JRUY8qcBUScOXYMnn8eHngAfvlF7+vWDf71LxgwIIK+fG/YoOfTTpumqwiBNu7CC/WY17BhEXjcy5jYYgERJzIy9LN2wgTYtk3vO/dcuP9+/QIeEcGwf78eQpoyRcte+DVrBmPG6ClUDRsW9mxjTBmzgIhxzsHrr2sPwT+W26aN9iCGDImAYHBOxxMmTdLFp/0z8KpV03GFMWOge/cIaKgx8ccCIoZ9/TX89a860Q10zYV779WKqp4PPh84oGVfn38evvkm5/7zzoPrr9fxhSpVvGufMcYCIhalpcHf/w7//a/ePvVUuOcerarq+VhuaqqGwiuvaG1w0LOQrrsObrhBDycZYyKCBUQMSU+HRx/VuQxHjujM57/+Ff7xD4/XsTl6VMcWnn467yIRffrAjTdqHaSKFb1rnzEmoIgICBG5FJgAtAK6OOdSvW1RdHEO5syBP/8Ztm/X+y69FB55BBo39rBhO3fqIhHPPw+7d+t9tWrpuMLYsVoozxgTsSIiIIA1wHDgea8bEm1++AFuvlnXZQDo2BGefBJ69fKoQc7BkiXw1FNaDykjQ+9v314TbNSoCF8kwhjjFxEB4ZxbDyB2pkrQjh/XSW733aeHk6pXh4ce0iM2ngxAnzgBr72mwfD113pfuXJaB+lPf9L1Fezva0xUiYiAOBkiMhYYC9CoUSOPW+ONL7/UAef16/X2lVdqWHhSSO/gQS3i9MQTOce3atfWAec//AHi9G9kTCwIW0CIyDwg0EfYnc65t4J9HefcZGAyQHJysitm85hy5AjcdRc8/rhWtm7WTA/x9+vnQWN+/llrdTz7LOzbp/e1aqWj4lddZbOcjYkBYQsI55wXH2Mx46uvdGx340Y9cnPHHXD33ZCYGOaGfPeddlemTNG6HQA9esDtt8OgQRFUxMkYU1pRd4gp3hw/rrOgJ07UXkOrVvrZ3KVLmBuyZo0OeMyalbOsXEoKjB+vAWGMiTkR8XVPRC4RkTSgG/CeiHzodZsiwcaNWkjv3//W23fcAcuXhzkcVq3Sgea2bXUQunz5nAGQOXMsHIyJYRHRg3DOvQm86XU7IoVzWt365pvh8GGdyzBjBnTtGsZGrFypdTne9P1ZKlbUgefbb4cGDcLYEGOMVyIiIEyOAwd0DtnMmXr7qqt0HDhsM6FXrdLBjTlz9HZiojbo9tuhfv0wNcIYEwksICLIunVadWLjRl0P59lntcJ1WHz/vZ4iNWOGdmEqVYJx43SM4fTTw9QIY0wksYCIELNmab269HQtx/3GG2GqW/fzzzr4PHmyTnY75RT4/e91wMOTiRXGmEhhAeGxjAytvDpxot6+4gp44YUwVLrev193+sQTmkoiulLbhAmQlBTinRtjooEFhIcOHNDSRB98oCcHTZyoVSlCWpEiI0NnPv/rXzkF9FJSdGm5Nm1CuGNjTLSxgPDI9u06r2z1al0O4fXXoXfvEO/0k090pvPq1Xq7Z08t+dq9e4h3bIyJRhYQHli2TJf7/PFHaNFCK7GedVYId7hpE9x2G7zlq2iSlKTdleHDrYCeMaZQETFRLp58/LH2FH78Efr21cJ7IQuH9HQdbD77bA2HqlXhwQd1ktuIERYOxpgiWQ8ijN58U9eDPn5cT1/9z3/0pKGQePttnWm3bZsGwXXXwQMP2CmrxpigWQ8iTKZO1VXejh/XgegpU0IUDlu36qBzSoqGQ4cOWunvxRctHIwxJ8UCIgyefVbPIM3M1JOHnnwyBEVPMzJ0Qeqzz9beQ7VqunjP0qUeVPYzxsQCO8QUYpMnw0036c8TJ8Ktt4ZgJ2vX6iEk/0pul12m8xusNIYxphSsBxFC06ZptQrQtXXKPBwyMnTQuWNHDYcGDWDuXC3kZOFgjCkl60GEyGuv6QI/zulUg5tvLuMdrF6tvYZly/T2DTfoIaYaNcp4R8aYeGU9iBD45BOtwpqVpZUr/va3MnzxrCxd0a1TJw2HRo3gww/1WJaFgzGmDFkPooytWaPzzzIydNLyXXeV4Yv/+KOOdn/8sd4eO1Z7DWGrBW6MiScR0YMQkUdFZIOIrBKRN0WkptdtKomdO2HgQK2xNGKEDkqX2Vy0d9+Fdu00HOrU0TOVnn/ewsEYEzIRERDAx0Ab51w74Fvg7x6356Slp8PgwVpjqVs3HaAuk1NZjx3TiRNDhmhxvX79dFGfIUPK4MWNMaZwEREQzrmPnHMZvptfAVG1pqVzerRnxQpo2lS/3FeqVAYvvH271uX43/+FChX0cNKHH9oZSsaYsChyDEJEGjnntoWrMT7XAzMLe1BExgJjARo1ahSuNhXp6ad1IbYqVbTkUd26ZfCi8+bp4hC7d+tA9OzZ0LlzGbywMcYEp7gexAYRuUtEKpZ2RyIyT0TWBLik5NrmTiADmF7Y6zjnJjvnkp1zyfXq1Stts0pt0SK45Rb9+cUXdSJzqTgHDz0EF12k4XDhhXq2koWDMSbMijuL6S/AfcB1IvJX59ycku7IOdevqMdF5FpgMHCBc86VdD/h9OuvWnwvI0ND4rLLSvmCR47A9dfDq6/q7bvu0ktCQqnbaowxJ6vIHoRzbjLQDHgDmCkiH4pIi7JuhIgMAG4HhjrnDpf164eCc7p0c1oadO0KDz9cyhf8+Wc4/3wNh2rV4J134J57LByMMZ4pdpDaOXfAOXcr0BY4AawSkYkiUq0M2/E0UA34WERWisikMnztkJgxQytaVKkC//2vjiGX2OrVWlDvq6/gzDP1uNXgwWXWVmOMKYmgJ8o5574FBovIRcDjwFUicrtzbmppG+Gca1ra1winbdtyCvA99VQpF/z56COdNHHokHZF5syB3/ymTNppjDGlcdKnuTrnPgTaAQ8Bj4vI4jJvVQTzH1rav1+XXLj++lK82MyZ2lM4dEgHM+bPt3AwxkSMoHsQIlIVaIMeamrju5QDzg1N0yLT669rwdQaNWDSpFLMlH7uOe2GOKcj3I8+GoJFIowxpuSKmwfxEDmB0BAQYDewGlgF/Bf4JsRtjBj79+ukZtBB6dNOK8GLOKcluv/5T7390ENw++22PrQxJuIU14MYiAbBM77rVc65H0Peqgg1YYLWy+vaVWdOl/hF7r1XewuTJmmZbmOMiUBFBoRz7pxwNSTSbdoEzzyjX/Sfe66ER4PuuUfDISEBpk+HUaPKvJ3GGFNW7KB3kP7+dzhxQqttt29fghe4917tPZQrZ+FgjIkKFhBBWLxYSyFVqgT33VeCF3joIbj7bg2HadMsHIwxUcECIgj/+Ide33KLLvt8UiZP1hcQgZdfhiuvLPP2GWNMKFhAFGPRIvj8cz2tdfz4k3zyW2/ppAnQgYurry7z9hljTKhYQBTjwQf1+o9/PMklnxct0slvWVl6eOnGG0PSPmOMCRULiCKsWKGT4ipXhr/85SSeuGmTrvh29KieD3v33SFrozHGhIoFRBH8FVpvvPEkFgE6cEBrcPz6q5bRePZZmwRnjIlKFhCF2LFDy2qUL5+zIFCxsrJ0nGHdOl05aPp0K9dtjIlaFhCFeOEFyMyESy45iTOX7r5b13GoWVMHqKtXD2kbjTEmlCwgAjhxQs9OBfjDH4J80rvvwv3361yHmTOhaVRVMDfGmAIsIAJ45x2tudSqFfTpE8QT0tJgzBj9+aGHdB1pY4yJchERECJyn4is8q0m95GI1PeyPdOm6fXvfhfE+HJmJlx1FezZAxddBLfdFvL2GWNMOEREQACPOufaOefaA+8Cd3nVkF9/1VNby5WDK64I4gkPPAALFmjt76lTbU0HY0zMiIhPM+fcgVw3qwDOq7bMng3Hj8P558Pppxez8YoVWoRPRLsdp54aljYaY0w4BL2iXKiJyAPANcB+4LwithsLjAVo1KhRmbdj+nS9vuqqYjY8cULXG83M1FWE+vUr87YYY4yXxLnwfFkXkXlAoDXY7nTOvZVru78Dic65YqcfJycnu9TU1DJr4y+/6JGiU07Rn4s8S/X+++Ff/4LGjWH1aqhSpczaYYwxoSQiy5xzycVtF7YehHMu2K/YM4D3gLDXp3j/fV0R9LzzigmHtWv10BLohAkLB2NMDIqIMQgRaZbr5lBggxfteO89vR40qIiNnIObbtJDTDfcABdcEJa2GWNMuEXKGMTDItICyAK2AuPC3YATJ+DDD/XnIgNi1iyt/12nDjzySFjaZowxXoiIgHDOjfC6DV98oXX2zj5bhxUCSk/Pmefw4INQq1bY2meMMeEWEYeYIsH77+t1kb2HRx+F7duhY0f47W/D0i5jjPGKBYTP55/rdaFnq+7aBY89pj8/+aRVaTXGxDwLCODgQVi2TD/zu3UrZKOHH4ZDh2DgQOjVK6ztM8YYL1hAAF9+qfPdOnWCatUCbJCWBs88oz/ff39Y22aMMV6xgEBLKQH07l3IBg8+CMeOwaWXQocOYWuXMcZ4yQICWLpUr7t3D/DgL7/ASy/pzxMmhKtJxhjjubgPCOd0/AEgOdDE82eegaNHYcgQPQfWGGPiRNwHxNatsHcv1KsXYGnRw4dzxh7Gjw9724yOVLZtAAAVgklEQVQxxktxHxD+3kPHjgEWB5oyRRcC6tIFevYMd9OMMcZTFhC+gOjUKd8DzsFTT+nPt94axNJyxhgTW+I+IFat0usCJyctWADffgv168Pw4WFvlzHGeC3uA2KDr25sq1b5HnjhBb2+7jooHxElq4wxJqziOiCOHYMfftBlpJs2zfXA3r269ihYzSVjTNyK64DYvBmysrR6a8WKuR549VVNj/79iyjtaowxsS2uA2LjRr1u0SLfAzNn6vXo0WFtjzHGRJK4Dgj/+EOegNi5ExYu1C5FSoon7TLGmEgQUQEhIreJiBORuuHYX8AexOzZeorrxRcXszC1McbEtogJCBFpCPQHtoVrn99/r9d5Bqj9h5dGjQpXM4wxJiJFTEAATwB/A1y4drhjh15nl9j45RdYvFgPLw0eHK5mGGNMRIqIgBCRocAO59w3QWw7VkRSRSR1165dJd6nczkBccYZvjs//FCv+/aFqlVL/NrGGBMLwjYDTETmAacFeOhO4B/AhcG8jnNuMjAZIDk5ucS9jV9/1TNZq1fPlQUffKDXF19c0pc1xpiYEbaAcM4FXO1ZRNoCjYFvROsdNQCWi0gX59xPoWpPgd5DZmZOD2LAgFDt1hhjoobnNSScc6uBU/23RWQLkOyc2x3K/RYIiGXLtHJrUhI0bx7KXRtjTFSIiDEIL/gDon593x3+3sPFF1vlVmOMIQJ6EPk555LCsZ8CPQj/wtTnnx+O3RtjTMSL2x7Ezp16fcYZQEYGfPml3mELAxljDBDHAZGnB/HNN5CerjPmTgt0opUxxsSfuA2In3znR51+OrBokd7o0cOz9hhjTKSJ24DYu1eva9cm5/BS9+6etccYYyJN3AbEr7/qde3awIoVeiM52bP2GGNMpInLgMjMhH379Oea5Q/p2tPly0Pr1t42zBhjIkhcBsT+/VqLqUYNSFi7Sm+0bp1vWTljjIlvcRkQ/sNLtWoBy5frjQ4dPGuPMcZEorgMCP8Ada1awMqVesMCwhhj8ojLgMgzQL1+vd5o08az9hhjTCSKy4A4cECvq1dHB6gh37qjxhhj4jIg0tP1ukr5Y7B7N1SpkqtqnzHGGIjTgDh8WK+rZPjOdW3e3Cq4GmNMPnEZEP4eROXDe/QHW//BGGMKiMuAyO5BHPpZf7CAMMaYAuIyILLHIA74an5bQBhjTAERERAiMkFEdojISt9lYCj35+9BVD7g60E0bhzK3RljTFSKpBXlnnDOTQzHjgr0ILKXlTPGGOMXET2IcMsOiH2+gDj9dO8aY4wxESqSehB/FJFrgFTgVufcr4E2EpGxwFiARo0alWhH2YeY3CGoU8eK9JmgnDhxgrS0NI4ePep1U4wJSmJiIg0aNKBChQolen7YAkJE5gGB1vO8E3gOuA9wvuvHgOsDvY5zbjIwGSA5OdmVpC3ZPQjS7fCSCVpaWhrVqlUjKSkJsXkzJsI559izZw9paWk0LuE4a9gCwjnXL5jtROQF4N1QtiW7B8Fhm0Ftgnb06FELBxM1RIQ6deqwa9euEr9GRIxBiEjuQYBLgDWh3F+eHoQFhDkJFg4mmpT232ukjEH8W0Tao4eYtgA3hnJnbdpAxT07qfnjPgsIY4wpRET0IJxzo51zbZ1z7ZxzQ51zP4Zyf6+8AqmDJ9CI7TYGYaJKWloaKSkpNGvWjLPOOos///nPHD9+vMjn7Nu3j2effTb79s6dOxk5cmSomxqUzz77jMGDB3vdjEKVpn1z5sxh3bp12bfvuusu5s2bV+RzBg4cyL59+wr8zbwSEQHhiR079Np6ECZKOOcYPnw4w4YN47vvvuPbb7/l0KFD3HnnnUU+L/+HTf369Zk9e3aomxvRMjMzQ76P/AFx77330q9f0UOxc+fOpWbNmhYQnvvZN4v6tEAnVhlTDJHQXIowf/58EhMTue666wBISEjgiSee4MUXX+Tw4cNMmTKFlJQUBgwYQIsWLbjnnnsAuOOOO9i8eTPt27dn/PjxbNmyhTa+BbKmTJnCsGHDGDJkCI0bN+bpp5/m8ccfp0OHDnTt2pW9vuUX+/btS2pqKgC7d+8mKSnppJ4fjL179zJs2DDatWtH165dWbVqFQBt27Zl3759OOeoU6cOU6dOBWD06NEFvpF/9tln9O7dm0suuYSzzz6bcePGkZWVBUDVqlW56667OPfcc/nyyy/55JNP6NChA23btuX666/n2LFjAHzwwQe0bNmSnj178sYbb2S/9oQJE5g4MWcub5s2bdiyZQsAU6dOpV27dpxzzjmMHj2axYsX8/bbbzN+/Hjat2/P5s2bGTNmDLNnz+b999/nsssuy9PmIUOGAJCUlMTu3bsL/M1Gjx7NW2+9lf2cq666irfffjvo321JxW9A+P/h1q7tbTuMCdLatWvp1KlTnvuqV69Oo0aN2LRpEwBLly5l+vTprFy5klmzZpGamsrDDz/MWWedxcqVK3n00UcLvO6aNWuYMWMGS5cu5c4776Ry5cqsWLGCbt26ZX8YFyWY50+aNIlJkyYV+Tp33303HTp0YNWqVTz44INcc801APTo0YNFixaxdu1amjRpwsKFCwH46quv6Nq1a4HXWbp0KY899hirV69m8+bN2R/y6enptGnThiVLlpCcnMyYMWOYOXMmq1evJiMjg+eee46jR49yww038M4777Bw4UJ++umnYt//2rVreeCBB5g/fz7ffPMNTz31FN27d2fo0KE8+uijrFy5krPOOit7+/79+/PVV1+R7jtbZubMmYwaNSrPa+b/m/3ud7/jpZdeAmD//v0sXryYgQNDWpEIiOeA8K87WquWt+0w0cm50FyK3KULeFZK7vv79+9PnTp1qFSpEsOHD+eLL74o9q2cd955VKtWjXr16lGjRo3sb7Nt27bN/oZc2uePGzeOcePGFfk6X3zxBaNHjwbg/PPPZ8+ePezfv59evXqxYMECFixYwO9//3tWr17Njh07qF27NlWrVi3wOl26dKFJkyYkJCRwxRVXZP8OEhISGDFiBAAbN26kcePGNPcV6rz22mtZsGABGzZsoHHjxjRr1gwR4eqrry72/c+fP5+RI0dSt25dAGoX86WzfPnyDBgwgHfeeYeMjAzee+89UlJSinxOnz592LRpE7/88guvvPIKI0aMoHz50J9jFJ8BkZUF+/frzzVretsWY4LUunXr7MM8fgcOHGD79u3Z31DzB0gwpzlWzFVJoFy5ctm3y5UrR0ZGBqAfav5DNflnkgfz/GC4AAEpIvTu3ZuFCxeycOFC+vbtS7169Zg9eza9evUK+DqF/Q4SExNJSEgodF+FPd8v9+8Acn4PhQV3UUaNGsVrr73G/Pnz6dy5M9WqVSv2OaNHj2b69Om89NJL2YcZQy0+A2L/fv22Vr06+P7BGBPpLrjgAg4fPpx92CYzM5Nbb72VMWPGULlyZQA+/vhj9u7dy5EjR5gzZw49evSgWrVqHDx4sFT7TkpKYtmyZQAhG+Du3bs306dPB/S4fN26dalevToNGzZk9+7dfPfddzRp0oSePXsyceLEQgNi6dKl/PDDD2RlZTFz5kx69uxZYJuWLVuyZcuW7ENz06ZNo0+fPrRs2ZIffviBzZs3A/DKK69kPycpKYnly5cDsHz5cn744QdA/y6vvfYae/boAmT+cZeifu99+/Zl+fLlvPDCCwUOLxX23DFjxvDkk08C+mUhHOIzIPzjD3Z4yUQREeHNN99k1qxZNGvWjObNm5OYmMiDDz6YvU3Pnj0ZPXo07du3Z8SIESQnJ1OnTh169OhBmzZtGD9+fIn2fdttt/Hcc8/RvXt3du/efdLPD2YMYsKECaSmptKuXTvuuOMOXn755ezHzj333OzDQb169WLHjh0BP/gBunXrxh133EGbNm1o3Lgxl1xySYFtEhMTeemll7j00ktp27Yt5cqVY9y4cSQmJjJ58mQGDRpEz549OfPMM7OfM2LECPbu3Uv79u157rnnstvTunVr7rzzTvr06cM555zDLbfcAsDll1/Oo48+SocOHbIDxy8hIYHBgwfz/vvvBzyNNtDf7De/+Q2tWrUKW+8BQIrqakW65ORkl7/LHZTUVOjcGTp0AN83AmOKs379elq1auV1Mwo1ZcoUUlNTefrpp71uimc+++wzJk6cyLvvhrRajycOHz5M27ZtWb58OTVq1Aj6eYH+3YrIMudccnHPjc8ehA1QG2OiyLx582jZsiU333zzSYVDaUVKqY3wOnBAr6tX97YdxpShMWPGMGbMGK+b4am+ffvSt29fr5tR5vr168e2bdvCvt/47EFkV+ur4m07jDEmgsVnQPjrfVtAGGNMoeIzIKwHYYwxxYrPgMheMaiyt+0wxpgIFp8BYT0IE6Virdz3lClT+OMf/xjwMX/p66LkLiIYLvFUAjw+A8J6ECYKxVu5b3/p63CxEuAFRUxAiMjNIrJRRNaKyL9DujPrQZhS8qDad8yW+965cycDBgygWbNm/O1vf8u+31/6GuC+++6jZcuW9O/fnyuuuCJP2e1Zs2bRpUsXmjdvnl3pNTcrAV5yETEPQkTOA1KAds65YyJyakh3aD0IE4WCLfe9Zs0aKleuTOfOnRk0aBAPP/wwa9asYeXKlQAFKrSuWbOGFStWcPToUZo2bcojjzzCihUr+Otf/8rUqVP5y1/+UmS7gnm+v8xGoIquK1euZMWKFVSsWJEWLVpw880307Bhw+zHU1NTef3111mxYgUZGRl07Ngxz+8hIyODpUuXMnfuXO65556Ah2yWLl3KunXrOPPMMxkwYABvvPEGI0eOzC4Bfu+993L06FGaNWvGJ598QvPmzbnmmmt47rnnGDduHDfccAPz58+nadOmAWsn5ecvAb5o0SLq1q3L3r17qV27NkOHDmXw4MEFDvH179+fG2+8kfT0dKpUqVJoCfDcf8fPP/+cJ554gpSUlOwS4LnLk5SFSOlB/B542Dl3DMA590tI92Y9CFNKHlT7jtly3xdccAE1atQgMTGRs88+m61bt+Z5/IsvviAlJYVKlSpRrVq17Nf3Gz58OACdOnUqtL1WArxkIiUgmgO9RGSJiHwuIp0L21BExopIqoik7tq1q2R7s3kQJgrFarnv3M9PSEgo8Jzi6sX5nx/ouX5WArxkwhYQIjJPRNYEuKSgh7pqAV2B8cBrUshv1zk32TmX7JxLrlevXska4+9B2CEmE0Vivdx3YXr27Mk777zD0aNHOXToEO+9995Jv4aVAC+ZsAWEc66fc65NgMtbQBrwhlNLgSygbsgaYz0IE4Vivdx3YTp37szQoUM555xzGD58OMnJySddsM5KgJeQc87zCzAOuNf3c3NgO75S5EVdOnXq5EqkRw/natVy7rvvSvZ8E5fWrVvndROK9NJLL7mbbrrJ62aExMGDB51zzqWnp7tOnTq5ZcuWBf3cTz/91A0aNChUTfNUenq6a9Kkidu3b1+h2wT6dwukuiA+myPiLCbgReBFEVkDHAeu9b2J0Ahi4M4YEznGjh3LunXrOHr0KNdeey0dO3b0ukmemzdvHtdffz233HJLyEqAx+eCQcaUQKQvGGRMILZgkDFhEs1fqEz8Ke2/VwsIY4KUmJjInj17LCRMVHDOsWfPHhITE0v8GpEyBmFMxGvQoAFpaWmUeP6NMWGWmJhIgwYNSvx8CwhjglShQgUaN27sdTOMCRs7xGSMMSYgCwhjjDEBWUAYY4wJKKrnQYjILmBrsRsGVhc4+ZoB0cveb2yLt/cL8feey/L9numcK7aYXVQHRGmISGowE0Vihb3f2BZv7xfi7z178X7tEJMxxpiALCCMMcYEFM8BMdnrBoSZvd/YFm/vF+LvPYf9/cbtGIQxxpiixXMPwhhjTBEsIIwxxgQU0wEhIgNEZKOIbBKROwI8XlFEZvoeXyIiSeFvZdkK4j2PEZFdIrLSd/mdF+0sCyLyooj84ltoKtDjIiL/4/tdrBKRqF9lJoj33FdE9uf6+94V7jaWFRFpKCKfish6EVkrIn8OsE1M/Y2DfM/h+xsHs+xcNF6ABGAz0AQ4BfgGODvfNn8AJvl+vhyY6XW7w/CexwBPe93WMnq/vYGOwJpCHh8IvA8I0BVY4nWbw/Ce+wLvet3OMnqvpwMdfT9XA74N8O85pv7GQb7nsP2NY7kH0QXY5Jz73jl3HHgVSMm3TQrwsu/n2cAFIiJhbGNZC+Y9xwzn3AJgbxGbpABTnfoKqCkip4endaERxHuOGc65H51zy30/HwTWA2fk2yym/sZBvuewieWAOAPYnut2GgV/0dnbOOcygP1AnbC0LjSCec8AI3zd8dki0jA8TfNEsL+PWNNNRL4RkfdFpLXXjSkLvsO/HYAl+R6K2b9xEe8ZwvQ3juWACNQTyH9ObzDbRJNg3s87QJJzrh0wj5weVCyKtb9vMJajdXbOAf4XmONxe0pNRKoCrwN/cc4dyP9wgKdE/d+4mPcctr9xLAdEGpD723EDYGdh24hIeaAG0d19L/Y9O+f2OOeO+W6+AHQKU9u8EMy/gZjinDvgnDvk+3kuUEFE6nrcrBITkQroB+V059wbATaJub9xce85nH/jWA6Ir4FmItJYRE5BB6HfzrfN28C1vp9HAvOdbxQoShX7nvMdnx2KHuOMVW8D1/jOdOkK7HfO/eh1o0JJRE7zj6OJSBf0//geb1tVMr738X/Aeufc44VsFlN/42Deczj/xjG75KhzLkNE/gh8iJ7d86Jzbq2I3AukOufeRv8Q00RkE9pzuNy7FpdekO/5TyIyFMhA3/MYzxpcSiLyCnpGR10RSQPuBioAOOcmAXPRs1w2AYeB67xpadkJ4j2PBH4vIhnAEeDyKP7S0wMYDawWkZW++/4BNIKY/RsH857D9je2UhvGGGMCiuVDTMYYY0rBAsIYY0xAFhDGGGMCsoAwxhgTkAWEMcaYgCwgjDHGBGQBYUwZEpFHRORjr9thTFmwgDCmbLUHVha7lTFRwALCmLJ1DrDC60YYUxYsIIwpIyJyGvAbfD0IEakiIq+KyPJYWK3QxB8LCGPKTge0Ns5GEWkBLEVrXvVwzm3xsmHGlIQFhDFlpz2wGhgGLAZecM5d7Zw74m2zjCkZK9ZnTBkRkZlAf7SS7lDn3OceN8mYUrEehDFlpz3wBlp+O5qXrjUGsB6EMWVCRCoDB4GuQDNgMtDbvwC9MdEoZhcMMibMzkHXQl7jnPtaRFoB74hIF+fcDo/bZkyJ2CEmY8rGOcB3uQak7wIWAW/7ehfGRB07xGSMMSYg60EYY4wJyALCGGNMQBYQxhhjArKAMMYYE5AFhDHGmIAsIIwxxgRkAWGMMSYgCwhjjDEB/T9XYTDHF4rw7AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# utility function\nu = lambda c: math.log(c)", + "execution_count": 4, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# production function\nf = lambda k, A: A*k**alpha", + "execution_count": 5, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# function to calculate distance between two dictionaries with the same indices\ndef dist(V, W):\n d = 0\n for (_, v), (_, w) in zip(V.items(), W.items()):\n d = d + (v-w)**2\n return math.sqrt(d)", + "execution_count": 17, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "nomes = ['Ana', 'Vitória', 'Elisa', 'Rayne']\nnumeros = [3, 6, 9]", + "execution_count": 9, + "outputs": [] + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "for nome, num in zip(nomes, numeros):\n print(nome)\n print(num)", + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": "Ana\n3\nVitória\n6\nElisa\n9\n", + "name": "stdout" + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "V = S[0]\n", - "X = []\n", - "Y = []\n", - "Z = []\n", - "\n", - "for k in k_grid:\n", - " if k < 1.5*k_ss:\n", - " X.append(k)\n", - " Y.append(V[(k, theta_L)])\n", - " Z.append(V[(k, theta_H)])\n", - " \n", - "plt.plot(X, Y, color=\"red\", linewidth=2, label=\"Optimum: low productivity\")\n", - "plt.plot(X, Z, color=\"blue\", linewidth=2, label=\"Optimum: high productivity\")\n", - "plt.xlabel(\"$k$\", fontsize=14)\n", - "plt.ylabel(\"$V$\", fontsize=14)\n", - "plt.title(\"Value Function\")\n", - "plt.legend(loc='lower right')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Step 1: calculate steady-state" + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEdCAYAAAD5KpvoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd4VOXywPHvgEGqoBQLRUBB6cWACAJBiogo6gUBUUFQFPXqtf2sIPYC1mtBLICKAoIiKoqNei0UKVIECyABhYD0nmR+f0waIWUJmy3JfJ4njzlnz56ds8GdPW+ZV1QV55xzLitFwh2Ac865yOVJwjnnXLY8STjnnMuWJwnnnHPZ8iThnHMuW54knHPOZcuThHPOuWx5knDOOZctTxKuQBCRNSLSIeX3ZSISF+aQ8kVBvjYXmTxJuIiS8mG/V0R2ichGERklIqWP5ByqWk9VZ+RjXKk/pwTzNbJ5zQ4Z9+XHtTmXE08SLhJdpKqlgaZAM+CBMMeT6iJVLZ3hZ0O4A3Iuv3mScBFLVdcDnwP1AUSkjojMEJFtKc0uF2f1vMzfwEWkqoh8KCIJIrJFRF4SkbtEZFKm5/1XRJ4/0jhFREXk9Azbo0Xk0Uzx3CkiS0Rku4iMF5Hi2cWWsv8doBrwScpdy/9lvrac3o+cXvMIrqu3iCxIef7v3sxVOHmScBFLRKoCXYCFIhIDfAJ8CVQC/g2MFZEzcjlHUeBTYC1QHagMjAPeBTqLSLmU444BegLv5MvFwOVAZ6AG0BDol0NsqOpVwJ+k3708nem6Ank/DnvNDM9/RUReyS5YEbkDu4O7DjgeuARYk6crd1HNk4SLRJNFZBswB5gJPA60AEoDT6rqAVX9FvuA7Z3LuZoDpwB3qepuVd2nqnNU9S9gFtAj5bjOwGZVXZBbXCk/k4/wml5U1Q2q+g/24d44u9gCPF8g70dWrwmAqt6oqjdmdWIRqQg8CFyhqj+parKq/qyqa47skl1BcEy4A3AuC5eo6tcZd6R0Eq9T1eQMu9di375zUhVYq6qJWTw2BhgEvA5cSe53EYfFdQT+zvD7Hiw55BRbbgJ5P7J6zUB0AH5W1cV5iMsVMH4n4aLFBqCqiGT8N1sNWJ/L89YB1VKakzKbDDQUkfpAV2BsHmPbA5TMsH1SgM/LKTaAnBZ7yev7EYgTgG1BOI8rADxJuGjxI7Ab+D8RiUnpRL2IlDb8HMwF/gKeFJFSIlJcRFoBqOo+YCLwHjBXVf/MY2yLgCtEpKiIdAbaBvi8bGNLsRGomc1z8/p+BGIhcK6INBJTS0TqBOG8Lgp5knBRQVUPABcDFwCbgVeAq1X1l1yel4R9eJ6OdQTHYx3UqcYADTi6DutbU15jG9AHu0PJVQCxPQE8kNIHcmem5+bp/UglIiNEZEQ2cX0HPIr1cewEPgJKBHJeV/CIL1/qCjMRqQb8ApykqjvCHY9zkcbvJFyhldKefzswzhOEc1nz0U2uUBKRUlib/1ps+KtzLgve3OSccy5b3tzknHMuW1Hf3FShQgWtXr16uMNwzrmosmDBgs2qWjG346I+SVSvXp358+eHOwznnIsqIrI2kOO8uck551y2PEk455zLlicJ55xz2fIk4ZxzLlueJJxzzmXLk4RzzrlseZJwzjmXLU8SzjkXRRIT4YUX4Pzz4aab8v/1QjaZTkTewlb/2qSq9bM5Jg54HojB1hsOdPEW55wr0P78E8aPhwkTIHX+8KpV+f+6oZxxPRp4CXg7qwdFpBy2cEpnVf1TRCqFMDbnnItIS5bA11/D0KGwc6ftK14cnn4aLrss/18/ZElCVWeJSPUcDrkC+DB1CUlV3RSKuJxzLtKowi+/WCIYPTp9f5MmcNtt0L49nHJKaGKJpNpNtYEYEZkBlAFeUNXs7joGAgMBqlWrFrIAnXMuv736Kjz4ICQkpO/r3Rs6dIA+feDYY0MbTyQliWOAs4D22Hq634vID6p6WKubqo4ERgLExsb6ghjOuag2eza89hrMmgXr1tm+k06CNm1gwADo1Cl8sUVSkojHOqt3A7tFZBbQCAhB14xzzoVWYiJMnAhffQWjRlkTE0C5cnD//XDHHSAS3hghspLEx8BLInIMUAw4G3guvCE551xwbdlidw7PPWd3Dqn+9S8YMgTq14ciETQ5IZRDYN8H4oAKIhIPPIgNdUVVR6jqChH5AlgCJANvqOrSUMXnnHP5afduGDwYnn8+/a7h2GPtrqFTJ2jePDLuHDIL5eim3gEcMwwYFoJwnHMuJCZOhGefhXnzrIkJrK8hLs46pM88M6zh5SqSmpucc65A2L3bRilNm2ZzHMCakGJj4Z57rGkpWniScM65IFmxAqZPtwSxNENj+W232bDWsmXDF1teeZJwzrmjtH493HsvvPNO+r5y5az/4fzzbThrtPIk4ZxzeTRqFDzxBPz6a/q+nj1tRvRFF0V3ckjlScI5547Azz/D2LHW17Bgge0rUwZat7ZmpQ4dwhtfsHmScM65XCQmwsKFMHUqPPYYHDxo+2Ni4IEH4L774JgC+mlaQC/LOeeOnqqV5e7VC/74I31/hw5w553QqhWULh2++ELBk4RzzmXhzTfh4YdtHQeA8uWtNHfHjvbfokXDG1+oeJJwzrkUS5fCmDHW37Boke074QTo0sVGKpUvH974wsGThHOuUEtKsoQwdSo8+igcOGD7jz3Wymjce29k1VIKNU8SzrlC6+efoUcPWLkyfd9551liaNUKSpQIX2yRwpOEc65Q2bvXZj9//HH6GtHHH2+lMjp2tP8Wlv6GQHiScM4VCvPmweefw/vv29KgYPMbOneG//4XTjwxvPFFKk8SzrkCbfVqGD4cXnklfd/xx8Nbb0HXrgV3fkOw+NvjnCuQpk2Df//70JIZ/fpBt27Qrl10FtsLB08SzrkC46+/bH7Dl1/a6m9gTUodO1qCuOiisIYXlUK5Mt1bQFdgk6rWz+G4ZsAPQE9VnRiq+Jxz0Wv9evjiC1vlbeNG21e0KFxzjZXt9ialvAvl6N/RQOecDhCRosBTwLRQBOSci25799pa0dWrw7XXWoKoXRsmTYLNm+H11z1BHK2QJQlVnQX8k8th/wYmAZvyPyLnXLRatsxmQZ9wAtx+uxXgi4uzUUrz5lnZjHLlwh1lPtm/H1580dY9DcESdxGTY0WkMnApcB7QLJdjBwIDAapVq5b/wTnnwm77dvjmG2tWevddu4sAaNIE+vaFW24BkfDGmG8OHoTly60E7aRJkJwcspeOmCQBPA/crapJkstfWlVHAiMBYmNjNQSxOefCJDnZJr716wc7dqTvP/dcGDcOKlcOW2j5Lz7e1kN96CH4/ff0/dWrw003waBB+R5CJCWJWGBcSoKoAHQRkURVnRzesJxz4bBpE9xzD3z6KSQk2L569eCKK2wCXOPGBbim0tdf28y/l15KLyZVqpQteXfffXD22SELJWKShKrWSP1dREYDn3qCcK5wUYUff4TPPrOlQdevt/3VqtmyoI8+CsWKhTfGfJPa1/DFF/Dtt+n7Gza0sbu33goVK4Y8rFAOgX0fiAMqiEg88CAQA6CqI0IVh3MuMv31F/zf/1l/Q6rq1WHCBIiNLcD9DevWWUXBr76y26dUV19tU8LDvHhFyJKEqvY+gmP75WMozrkI8umnVnDvp59sWwSuvx4uvthGLBXISqz791tb2rRpsGJF+v4TTrA3o1MnG70UASKmuck5V3hs3GitKp9+ChNTpsyWKGFlum+91WZIFzgHD8KaNTYl/OmnrW0t1TnnwFNPQdOm1vcQQTxJOOdCJikJRoyA//zH5jakuu46eOGFAnrXsHs3vPcePPDAoc1Jp59unSwXXhjRC2V7knDO5bvff4ehQ23AzpYttq9NG1vw58ILoUaNHJ8efZKTbVLH4sXw7LPW4QJWVTA21rJiz57hjTFAniScc/lC1T4jP/nE7hJSk8Npp1mfw513FsDO6G3b4O23Yfx4+O679P0nnmhzGu69N+qGZ3mScM4F3bZtNgt6ypT0fY0aWatLnToFMDksWwYvvwwffpheYbBIEejf3yZ09OkTtXVCPEk454JmyhQb6j9zpvU5HHOMVWK96CIbsHPsseGOMMgmTbLVjDLOazj5ZBvL26WLVRuMcp4knHNH5cABmDULPvgARo60fUWKWJ/D449Dq1bhjS/o9u61TugPPrA5DqnatYO77rILj7ARSkfDk4RzLs/GjLEhq9u3p+8bNAgeeQTKlw9fXEF38KDN6nv4YVi1Kn1/sWK2/N2gQVCzZgFsR/Mk4Zw7Qr/8Yq0skyfD/Pm2r04duPRSuOQSaJZjDecoomrDsn74wTqc4+PTH6tbF4YMsVLdBXzBioJ9dc65oNm711Z5u+uu9ErVJUpY8/vQoWENLbj27IE5c+CJJ2DGjPT9xx1ndwwPPxx1I5SOhicJ51yO1q6FO+6wOQ579ti+bt1s4E6HDlCyZHjjC5rVq2HqVEsOqZUFwS6yWTOrvhrBk97yiycJ59xhVGHJEvjoI7t7SJ0o3KyZreswaFABan7/5hubzPHKK9b3AFCpkrWf3XKLNS0VYp4knHOHiI+3IauLFqXvq1PHhreefnr44gqqpCRLCp99ZkX2UjVrZjOh+/eH448PX3wRxJOEc47duy0JfPih/ffAAShTBnr1si/U551XQOY4zJhhC1XMnm3NS6n69rWS3BdeGNay3JHIk4Rzhdzy5TZI55df0vede65VljjllPDFFVSvvmrTvefMSd9XujQMHmy3TXXqhC+2COdJwrlC6tVXrcVl6VLbPvlkuPtuG8Z66qnhjS0o9uyB22+3/oYNG9L3X3mlFY9q0MAK7rkchXJlureArsAmVa2fxeN9gLtTNncBg1R1cajic64wOHDAlk8eNSp9HYeyZW2Bn0ceKQDJQRV+/tlm+GUcvlqqlM2SvvJKqFIlbOFFo1DeSYwGXgLezubx1UBbVd0qIhcAI4HQrfbtXAH32mt2p5A6O1rEymbcfnsBGPa/Y4etYnTnnYeWyqhb1xb46dQJYmLCF18UC+XypbNEpHoOj2eoq8sPgKd7547Sxo3WGT1+vBXdA2tl6dHDfiJkhcy8W7nSymU8/jjs22f7ihe3pPD88wVwoYrQi9Q+iQHA59k9KCIDgYEA1apVC1VMzkUNVaurNHBg+tD/mBh46CGrMBHV/vkH5s2zdRveey99f+3a0LWrJYwCMRQrMkRckhCRdliSODe7Y1R1JNYcRWxsrGZ3nHOFza+/2mfnhAnpdeji4qxc98UXR+2SBmbFCpvX8NBDsGtX+v4LLrBxutdeW4Bm+EWOiEoSItIQeAO4QFW3hDse56LFwYNWubp/f9i/3/ZVrAg33ggPPhjFn52q8OWXNvV75EjbBqhVCzp2tDazuLiwhljQRUySEJFqwIfAVaq6KrfjnXN2t/DsszZSKXV50Pbt4Z577LMzaguU7tuXfkv0zTfp+zt2tFuigQMLQG97dAjlENj3gTiggojEAw8CMQCqOgIYApQHXhH72pOoqrGhis+5aLJ7t5Xq/ve/YetW23fmmXDVVTbAJ2o/P2fNsjIZEyemt5eJ2LyGrl1ttbeovS2KTqEc3dQ7l8evBa4NUTjORaX166009+TJ6RVZmzWDN96wUUtR+fmZnAzvvAMff2zNSqmOO84qr3btCvXqhS++Qi5ab0adK1T++ce+XD/+uJXuBmjZEnr3tk7pqFwtc88eeOYZy3g//ZS+/4orrBZ5u3bWseLCypOEcxFs0SLreP788/ShrDVr2rIHZ5wR3tjybMMGG6H06afp5TKKFUuvCdK0aXjjc4fwJOFcBEpIgHHjrJLEjh1QpIj12V5xhRXjK1Mm3BHmweLFdkFffZU+BKtCBXjqKTj/fKhcObzxuSx5knAugqxfb8NWP/vMljwAaNXKhreefHJ4Y8uT/fstMXz77aFNSvXqwQsvQIsWUdpWVnh4knAuAqTeOTzzjPU5FC1qSxtceaXNE4u6CcQbN1pRqM8+Sy8WBXZRw4fb7OgiRcIXnwuYJwnnwmjFCmuK//xzSEy0fTVqWKXWmjXDG1ueLF5sFVhTC0WB3QI99xx07uyluaOQJwnnwmDrViu6N2SI3UUULWpTAK6+2uaKlSgR7giPgKqt2XD33YeuXNS0qS1YERvrq71FMU8SzoXQ1q02AW7ixPS+26ZN7TM26laB27LFOlC++ip9Rl+RIjav4dVXo/CCXFY8STgXAnv2WMnup56yleBEoEMHW1r5X/+KsjuHZctg0CBbJzpVhQq2IPbw4VHYgeJy4knCuXy0caMtozx+vA1lBfs8/eoraNw4vLEdEVUL+pZbbA2HVLGx8PLLNu07Kqd7u9x4knAuHyQlWfHSO+6wzmmAs8+Gfv3sC3fUlOzetQtuuslmRadmuaJFrTz3iBE+t6EQ8CThXBBt2gQvvgijR9ucB7DP0U8/jbI7h7VrrdLql1+m7zvpJOtv+O9/bfU3Vyh4knAuSBYuhO7d4Y8/bPv00219hwEDoFKl8MYWEFVrOnrmGVizJn1/o0Y28a1t27CF5sLHk4RzR2HHDpsE9/rrMH++7atRA0aNgjZtoqSZPjHRqq2++aZVEgTrSW/Z0oaw1q4d3vhcWHmScC6PpkyxWkq7d9t2uXK2nsM990TJ6M8dO2wI6wcfwIEDtq9CBVsE+5ZbonjFIhdM/q/AuSOgCtOn20qa48fbvhYt4Oab4bLLomQo66efwv33w5Il6ftOO83qkPfoESW3Py5UPEk4F6CpU+E//4Fff7XtIkXguuts3ljEf66q2spETzwBq1fbPhGbyff883DuueGNz0WsUC5f+hbQFdikqvWzeFyAF4AuwB6gn6r+lPk450Jtwwbrc3jsMVvToXJluPZa65CuWjXc0eUiORkeecQy2caNtq9ECQv+qaegZMnwxuciXijvJEYDLwFvZ/P4BUCtlJ+zgVdT/utcyKU2K73yik0RSC3b3bMnvPtuFDTXHzhghfbGjoWdO23f8cfDXXfZT8RfgIsUoVzjepaIVM/hkG7A26qqwA8iUk5ETlbVv0ISoHMpkpJslvQTT9h20aJWOmPQIDjvvAhvWvrf/6zn/Icf0svKVq4Mjz5qNUAiOngXiSLp60RlYF2G7fiUfYclCREZCAwEqFatWkiCcwXfli3w1lt295A6TeCee6wgX0SPVtq/35YD/fJLWLAgff8ZZ1iJ7gsuCF9sLupFUpLI6iuOZnWgqo4ERgLExsZmeYxzgdq3D267zWZJ79tn+2rUsDLe/fqFM7JcbNtmQX74Yfr0bhG4/HJ46SUbzurcUYqkJBEPZOwGrAJsCFMsrpCYO9dGg379tW137mzDWTt3juAlEP76y5LD5MmwebPtq1DBymVceGGULoDtIlUkJYkpwM0iMg7rsN7u/REuPxw4YOs5vPgi/Pij7Ste3FbaPO+88MaWo0mT7K7hk0/SO6OrVoXXXoO4uCiZpOGiTSiHwL4PxAEVRCQeeBCIAVDVEcBUbPjrb9gQ2GtCFZsrPLZvtxJEixfbdrlyNtfhxhuhevWwhpY1VXjnHav98fnn6fvr1LHkcPbZUKxY+OJzBV4oRzf1zuVxBW4KUTiukElIsMrWL71klVpPOsn6evv0gVKlwh1dFjZssMQwZUr6etEiNpvv6quhfn0fxupCwv+VuQJt+XIb4PPOO+nLhTZsCO+/D3Xrhje2LK1ZY7WUHn/cOqbBOkceeMAKRXmxPRdiniRcgfXZZ3DJJenTBbp2tVFM7dpF2HQBVZg3D7791mZH79lj++vWtVWL4uKgZs2whugKL08SrkBRhRkzbKnlqVNt36WX2sS4M84Ia2iHS00OTz4JH32Uvj821jpJevXyzmgXdp4kXIGQmGgjloYPT59PVqIEXH89PP00xMSEN75DJCbCokXWhDRtmu0TsRnRcXHQu7d3RruI4UnCRb0dO2yBn9QRSxUr2lyHG2+MsPlkSUk2fHXgQOtJB+t8vuoqqxjYsmV443MuC54kXNTavx/GjLE+3rVrbcTS0KE2+CeiWmmSk+0258YbrfYHWLDnn2+L+zRtGt74nMuBJwkXdXbutOGszz1nk4/B1pOeMsWmD0SMgwet8NPEiYcmh969rUx3RLWBOZc1TxIuqrz+Ovzf/6WPDm3UyIrwde8eQdMG9u61YVTjx6cHesopNinjySdttSLnokSk/G/lXI527LAF1B580LZbt7almDt3jqDhrD/+aCVkP/ss/c6hcmV4803o1CmCAnUucJ4kXETbuhVeeMF+Ur+U3323fSGPGD/+aDXG33wzfXWiypWtrGz79p4cXFTzJOEi0ubN8OyzVkYjtZZd27a2GFBEFOFLTrZaStOmwcsv2zbYjL1HHoEGDSK4jKxzgfMk4SLOypVwzjl2FwHQoYMlhzZtwhsXYAtO/PCDLXidWl8coFs3u8Vp0cLvHFyBElCSEJEOwA5VnZvP8bhCbNcuWxLhqaesWmvz5tbM1KJFuCPDmpGmTYNrrrEKgWCjk26/3fobIq7Wh3PBEeidxLPAcOCQJCEiDYCNqrop2IG5wmPPHuvvfeqp9DV02rWzkaMnnBDe2FCF6dNtwtuGlDWwqlaFyy6zZesaNw5reM7lt0CTRC1gThb7mwOXA+cHLSJXaOzbByNHWl2lv/+2fS1aWJN+2Pt7Va13/LXXbKYe2FTuXr1sf8mSYQzOudAJNElsAyoCf2TaPwcYFtSIXKHwv/9Bz57pSzPHxsLDD0fAkNa//4ZnnrFhrCtW2L7jj4d//ct60Y89NozBORd6gc7qmQzcncX+oik/ARGRziKyUkR+E5F7sni8mohMF5GFIrJERLoEem4XHVRtaeZLLrEEUb8+fPyxrTV9wQVhTBAJCXZLc9ZZViVwxQq7W3jtNWsDe/11TxCuUAr0TuJ+YLGIfAIMUdWFIlIauA9YEsgJRKQo8DLQEYgH5onIFFVdnuGwB4AJqvqqiNTFljStHmCMLsLNmWOzpb//3rZbtbLm/rBWp1i3zjqkH3oI4uNtX82a8OqrNmMvoopAORd6Ad1JqOo/QIuU4xeIyH5gO9AZ+L8AX6s58Juq/qGqB4BxQLfMLwUcl/J7WWBDgOd2EWzpUrj4YvvM/f57a9p/6SVbYydsCWLnTiv+VLOmLXIdHw+nnmpLhi5ebCOWPEE4F/g8CVVdD1woIlWBJsBB4MeUBBKIysC6DNvxwNmZjhkKfCki/wZKAR2yOpGIDAQGAlSrVi3QS3Ahtm6dldEYM8bmmpUqBXfdZaNGy5QJU1AHD0L//pYMUpesa9sWevSw5UGPPz5MgTkXmY54Mp2qruPQD/tAZdXarJm2ewOjVfUZETkHeEdE6qtqcqYYRgIjAWJjYzOfw0WARx+1n/37rfDejTfaGjsnnhimgFautDriU6daISiwGXu9elmlVp/j4FyWQjnjOh6ommG7Coc3Jw3AmrBQ1e9FpDhQAfB5GFHi4EFbCW7wYNvu1cuGtJ5+epgC+u47+PBD63hOTQ6nnWa1liJiCrdzkS2USWIeUEtEagDrgV7AFZmO+RNoD4wWkTpAcSAhhDG6PFK1UaN33mlf2sFqL912W5iCWbXKEsMzz6Tvb9YM3n7bFrv2OwfnAhKyJKGqiSJyMzANGzb7lqouE5GHgfmqOgW4A3hdRG7DmqL6qao3J0W4pUutn+Grr2z79NNtFOnFF4chmG3bbFGfL75I39e3r82ObtXKF/px7giFtMCfqk7FhrVm3Dckw+/LgVahjMnl3datMGSIldRIToZy5Wz7ppugWLEQB7NsGdx6K8ycaR3SMTHWGd2jhxXf8zsH5/LEq8C6I5acbEsl3HOPzUErWtQSw0MPQfnyIQ5m+nR47z0YO9ZWhBOxO4YXXrCJcc65o+JJwh2R+fMtIcxNKfXYpo1Vbm3YMMSB/PqrFX4aPjx9X6tWMGlSGIdQOVfweJJwAdm8Ge6/3/qCVW3J5uHDbfRSSFtydu2yFeDuuCN9FbgBA+Dmm23Ba29Wci6oPEm4XH3+OVx5Jfzzj815uO02G+Ia0glxa9fafIYvv7TJFwBdutgEjC5dPDk4l088SbgczZ5tE5G3bbNlQ19+Gc48M4QBLFliw1ZHj4YtW2xfixbQp48liCKB1qh0zuWFJwmXpW3brBjf66/bdocO9iU+ZF/Yt2yxzug77kgvn1GvHnz6KVSvHqIgnHP+Ncwd5qOPoG5dSxDFitmw1k8+CVGCULW2rEqVbEhrYiJceCHMmgWLFnmCcC7E/E7Cpfn7b+v/nTTJtlu2hDfegDp1QvDiu3fbqkPjx6evBNexI1x+uU2EO8b/qToXDv5/nkMVRo2ylp1t26B0aVt/JyRN/jt32qpDzz8PCxbYvpNOsgWvr746n1/cOZcbTxKF3OrVMHAgfP21bV9wAYwYASGpwL5okc2G/vNP2z7uOHj/fVvD1DuknYsI/n9iIaVqTUkNG1qCKF8e3n3XivTle4KYORMaNIAmTSxB1KhhM/JWrrThrJ4gnIsYfidRCP39N1x7rSUEgO7drf5SxYr5+KJJSTBjhvU5jBplHdLHHQf/+pe1bfksaecikieJQmbiRLjhBhthWq6czXvo3TufRy5t22aZ6Jtv0vddeqk1LR17bD6+sHPuaHmSKCS2brUJy2PH2nbHjrbuTpUq+fiif/0Ft9xi42f374eSJW26ds+eUL++z5J2Lgp4kigE5syxWdPr1kGJElZzadCgfPyM3rgRJkywBX/WrrUXiouzEUvNm+fTizrn8oMniQIsKQkef9yWdk5Ots/nd96B2rXz8UVffNFWIEotvle9Okybls8v6pzLLyEdRiIinUVkpYj8JiL3ZHPM5SKyXESWich7oYyvINmwwZqUhgyxBHH33XZHkS+f1du3w3PP2foNt95qCeKCC6zPYelSTxDORbGQ3UmISFHgZaAjEA/ME5EpKavRpR5TC7gXaKWqW0WkUqjiK0imTrUVOzdvtuoW77wDnTrl04v98ot1Si9bZttly8IDD9hi1865qBfKO4nmwG+q+oeqHgDGAd0yHXMd8LKqbgVQ1U0hjC/qTZwIlStbqaPNm+1OYvFDGVJWAAAcpklEQVTifEoQq1fbIj916liCOOUUC+Dvvz1BOFeAhDJJVAbWZdiOT9mXUW2gtoj8T0R+EJHOWZ1IRAaKyHwRmZ+QkJBP4UaPxET7XO7Rw5qZwPqIv/jCKlwEVXy8dXS0aAHffQelStmiP3Pm2JyH4sWD/ILOuXAKZcd1VmNpNNP2MUAtIA6oAswWkfqquu2QJ6mOBEYCxMbGZj5HobJxo40onTnTauA9+qgNdS1ZMh9e7JVX7OTJybZdv77NfajkrYLOFVShTBLxQNUM21WADVkc84OqHgRWi8hKLGnMC02I0WX+fLjkEli/3u4YPvgAzj03yC+yb591QL/xht05gNVbuv56a8cqWjTIL+iciyShTBLzgFoiUgNYD/QCrsh0zGSgNzBaRCpgzU9/hDDGqDF+vFXQ3rfPEsOECXDyyUF+kX/+sSw0e7ZtlykD995rP865QiFkfRKqmgjcDEwDVgATVHWZiDwsIhenHDYN2CIiy4HpwF2quiVUMUaD5GQb1tqrlyWIAQOsxSeoCWL5chseVbmyJYiyZeHNN20GtScI5woVUY3uJv3Y2FidP39+uMMIid27bYmFDz+0QqnPPmtVL4I2c1rVJr717Ak7dti+Tp2so/qss4L0Is65SCAiC1Q1NrfjvCZzFEhKgoceggoVLEGULWtzIW69NYgJYswYG856wQWWIFq3ht9/t6ThCcK5QsvLckS4/fvhqqusUxqgVi2rl3fGGUF6ga1b7Zbk0Udtu3JlW4Xo9tttiTrnXKHmSSKCbd9u/cYzZtjSC8OGWXNTUKYirFsHjz1m07H37LF9999vhZ58PWnnXAr/NIhQf/1lLT+LF1un9OefQ6NGQTr5zz/DRRdZhVawfodbb7VV4ZxzLgNPEhHou++gTx9Ys8Zq402bZsVUj9qPP9rQqC+/tO3atWHyZOuLcM65LHjHdQQ5eNDWfWjVyhJE8+ZW7eKoE4SqrVV63nmWIEqWhJtusnYsTxDOuRz4nUSE2L/f5j5MnmzbV14JI0ZYaaQ8S0qyHu+nn4aFC21fly7w7rtw/PFHHbNzruDzJBEB9u2z2nhTp9q6019+Cc2aHeVJk5Ph2mth9GjbrlTJJlXcfrstT+eccwHwJBFms2fbUqLLlkH58vD119C48VGcMDERxo2zCXArVthIpeeft6nZXqHVOXeEPEmE0SefwGWX2ed6pUpWXqN+/aM44Wef2d3CHynlrqpVsxXjLrssKPE65wof77gOk6++sgXdEhPh0kutomueE0Ryst09dO9uCeL0063W0q+/eoJwzh0VTxIhlphoX/Y7dYIDB+Dmm2HSJKhaNffnHkYVPv4YmjaF3r2tc6NHD2tm6t8fihULevzOucLFm5tCSNWWYXjrLdu+7jp44YU81l/av99m202fbtuVK9va0gMG+Ixp51zQ+J1ECA0ZYgmiRAn46CMYOdKquR6xxYvh/PMtQZQrBy++CL/9BjfcADExQY/bOVd4+VfOENi2zeZATJtmC7lNmABdu+bhRGvWwODBMHas3ZYcd5x1VrdsGeyQnXMO8CSR7w4ehMsvt45qgNdfz2OCmD8f2rSBvXvtbuGmm6wgX4UKQY3XOecyCmlzk4h0FpGVIvKbiNyTw3HdRURFJNcFMSLZmjXQoIEliEqVYNEiuOaaIzxJUpJNve7Y0RJE586wcqUNbfUE4ZzLZyG7kxCRosDLQEcgHpgnIlNUdXmm48oAtwA/hiq2/LB7N3TrZp/npUvbIKQjruI6Y4ZVZ12yxLbbt4eJE4+yVodzzgUulHcSzYHfVPUPVT0AjAO6ZXHcI8DTwL4QxhZUv/5qi7ktWWKLBP3+O7RocQQnSEiwoazt2tlJTj3VajB99ZUnCOdcSIUySVQG1mXYjk/Zl0ZEmgBVVfXTnE4kIgNFZL6IzE9ISAh+pEdh926bHLdyJZxwgt1BVKp0BCfYs8d6uSdOtGqtjzxi8x66dw/iWqXOOReYUHZcZ/UJp2kPihQBngP65XYiVR0JjASIjY3VXA4PmY0boWdPq8NUu7aV+a5Y8QhOMHWqdUivWWMLWc+bZ7cizjkXJqG8k4gHMs4rrgJsyLBdBqgPzBCRNUALYEq0dF4nJlol15kzrUVo0qQjSBAJCXb3cOGFliAaNbJCTp4gnHNhFsokMQ+oJSI1RKQY0AuYkvqgqm5X1QqqWl1VqwM/ABer6vwQxpgne/bYQkH/+x+ceCLMnXsEdZgmToR69WD8eGteGj7chruedVa+xuycc4EIWXOTqiaKyM3ANKAo8JaqLhORh4H5qjol5zNEpqQkayGaOxfKlLH+5bp1A3hiQoI98YMPbDsuzory1ayZn+E659wRCelkOlWdCkzNtG9INsfGhSKmo3X99bauT0wMzJoV4FoQCxdahb/Nm61tatgwO1GeanQ451z+8RnXR+Hdd+3Lf0wMvPdegAli3Tq4+mpLEHFxVsypRo38DtU55/LEv7rm0eTJcNVV9vvjj9sI1Vx99JF1Si9daonh0089QTjnIponiTz43/9srhvAv/9ty0bnaP9+63+47DLYuhW6dIEff/SJcc65iOfNTUfowAFbkzoxEfr0gWefzaUrYd06u82YO9fapZ5+2kpt+MQ451wU8CRxBFRtstzPP0P16lbRNcf1faZPtyckJFhpjUmTfGircy6qeHPTEXjmGeuLKF0a3n/fFg/Kkio8/7xVbk1IsP8uWOAJwjkXdTxJBGjhQrj7bvv9xRdzKNiXmGgdFbfdZpMo7r0XPv8cypcPWazOORcs3twUgN27baGg5GQYODCHNSF27YLevW3UUrFiMGaMldtwzrko5UkiF6o2emnDBpsH8eyz2Rz4999We+mnn9LLv557bkhjdc65YPMkkYtnnoGRI+HYY+Hll7MZtbpuHZx3Hvz2G5x2mlVzrV075LE651yweZLIwaZN8NRT9vt770HLllkctHq1JYg1a6BJE5g27Qjrg7tQOHjwIPHx8ezbF7VrWTmXJ8WLF6dKlSrExMTk6fmeJLKhCgMGWPWM1q1tIaHDDnjvPWuL2rQJzj7bOqiPPz4s8bqcxcfHU6ZMGapXr474HBVXSKgqW7ZsIT4+nhp5rO7go5uyMWWK9T8fdxyMG5dp7psq3HEHXHmlJYjWrW1pUU8QEWvfvn2UL1/eE4QrVESE8uXLH9UdtCeJLOzebZOiAR59FE45JdMBw4bBc8/ZVOs777Q7iDJlQh6nOzKeIFxhdLT/7r25KQuPPQZr19popkGDMj04bpxNmBCxGXWXXx6WGJ1zLhT8TiKTX3+1xeEAXnklU9mNiROhb1/7ffhwTxCuwBs9ejQbNqSvMnzttdeyfPnyoL7GmjVrqB/wUo6hdzTxzZgxg++++y5te8SIEbz99ts5Pifje/z444/n6XWDyZNEJg8+CAcPQr9+cM45GR547DEr/XrgQPqMaucKuMxJ4o033qBuQEsvRr6kpKR8f43MSeKGG27g6quvzvE5Gd/jQpckRKSziKwUkd9E5J4sHr9dRJaLyBIR+UZETg1lfD//bK1JxYrBQw9leODrr2HwYPv9P/+x/ghv345eIvnzk4u3336bhg0b0qhRI65KWYxk7dq1tG/fnoYNG9K+fXv+/PNPAPr168ctt9xCy5YtqVmzJhMnTgTgr7/+ok2bNjRu3Jj69esze/ZsAEqXLp32OhMnTqRfv35p5xk0aBDt2rWjZs2azJw5k/79+1OnTp20Y1Kff8cdd9C0aVPat29PQkICEydOZP78+fTp04fGjRuzd+9e4uLimD/flp1///33adCgAfXr1+fu1Jo1Kee6//77adSoES1atGDjxo0B/2n27dvHNddcQ4MGDWjSpAnTp08HoEuXLixZsgSAJk2a8PDDDwMwePBg3njjjUPOsWbNGs4880z69u1Lw4YN6d69O3v27AGgevXqPPzww5x77rl88MEHLFq0iBYtWtCwYUMuvfRStm7dCsCCBQto1KgR55xzDi+//HLauUePHs3NN9+ctt21a1dmzJgBwBdffEHTpk1p1KgR7du3Z82aNYwYMYLnnnuOxo0bM3v2bIYOHcrw4cNZsWIFzZs3PyTmhg0bAqS9x/fccw979+6lcePG9OnTh8GDB/PCCy+kPef+++/nxRdfDPi9zTNVDckPtq7170BNoBiwGKib6Zh2QMmU3wcB43M771lnnaXBctllqqB6880Zdi5Zolqxoj0wZEjQXsuF1vLly9M3bHxa8H9ysHTpUq1du7YmJCSoquqWLVtUVbVr1646evRoVVV98803tVu3bqqq2rdvX+3evbsmJSXpsmXL9LTTTlNV1eHDh+ujjz6qqqqJiYm6Y8cOVVUtVapU2mt98MEH2rdv37Tz9OzZU5OTk3Xy5MlapkwZXbJkiSYlJWnTpk114cKFKW8J+u6776qq6kMPPaQ33XSTqqq2bdtW582bl3bu1O3169dr1apVddOmTXrw4EFt166dfvTRR2nnmjJliqqq3nXXXfrII4+oqurHH3+sgwcPPuy9Wb16tdarVy/t+vr166eqqitWrNCqVavq3r179YknntCXXnpJt2/frrGxsdqpUydVVY2Li9NffvnlsPMBOmfOHFVVveaaa3TYsGGqqnrqqafqU089lXZsgwYNdMaMGaqqOnjwYL311lsP23/nnXemxTdq1Ki090ZV9cILL9Tp06frpk2btEqVKvrHH38c8vd98MEH014783ajRo30999/V1XVJ598Mu19yvieZ/y7rl69Wps0aaKqqklJSVqzZk3dvHnzYe9nVg75958CmK8BfHaH8k6iOfCbqv6hqgeAcUC3jAeo6nRV3ZOy+QNQJVTBrVljC8fFxMB996Xs/OUXq+SXkAAdOsCQLJfjdtEmv9JEDr799lu6d+9OhQoVADjhhBMA+P7777niiisAuOqqq5gzZ07acy655BKKFClC3bp1076NN2vWjFGjRjF06FB+/vlnygQwqu6iiy5CRGjQoAEnnngiDRo0oEiRItSrV481a9YAUKRIEXr27AnAlVdeeUgcWZk3bx5xcXFUrFiRY445hj59+jBr1iwAihUrRteuXQE466yz0l7j4osvTrsDyM6cOXPS7rLOPPNMTj31VFatWkXr1q2ZNWsWc+bM4cILL2TXrl3s2bOHNWvWcMYZZxx2nqpVq9KqVassryf1Ordv3862bdto27YtAH379mXWrFmH7U+NJyc//PADbdq0SZuLkPr3zcnll1/OhAkTABg/fnxaXNmpXr065cuXZ+HChXz55Zc0adKE8iEoHBrKJFEZWJdhOz5lX3YGAJ9n9YCIDBSR+SIyPyEhISjBvfaa/X/eowecfDJWwbV/f9izx9aiHj8eihYNymu5wkdVAxqKmPGYY4899pDnA7Rp04ZZs2ZRuXJlrrrqqrRO0IzPyzwmPvU8RYoUOeScRYoUITExMdc4srue7MTExKQ9v2jRotm+xpGct1mzZsyfP5/Zs2fTpk0bmjRpwuuvv85Z2ZTfzxx/xu1SuawImdPf6phjjiE5OTltO/W9DvTvm1HPnj2ZMGECq1atQkSoVatWrs+59tprGT16NKNGjaJ///5H9Hp5FcokkdU7mOW/CBG5EogFhmX1uKqOVNVYVY2tGIQSGP/8Y0kC4MYbsXKvt94K339vkyQ++siK9jmXR+3bt2fChAls2bIFgH/++QeAli1bMm7cOADGjh3LubkUhVy7di2VKlXiuuuuY8CAAfz0008AnHjiiaxYsYLk5GQ++uijI44vOTk5rd/jvffeS4ujTJky7Ny587Djzz77bGbOnMnmzZtJSkri/fffT/vmfTTatGnD2LFjAVi1ahV//vknZ5xxBsWKFaNq1apMmDCBFi1a0Lp1a4YPH07r1q2zPM+ff/7J999/D1jfSVbva9myZTn++OPT+nXeeecd2rZtS7ly5Shbtmza3UdqPGDf5hctWkRycjLr1q1j7ty5AJxzzjnMnDmT1atXA+l/3+zeP4DTTjuNokWL8sgjj2R7FxETE8PBgwfTti+99FK++OIL5s2bx/nnn5/NuxhcoZwnEQ9UzbBdBdiQ+SAR6QDcD7RV1f2hCGzkSFt6+rzzUuozjXnbqvmJ2PJz5cqFIgxXgNWrV4/777+ftm3bUrRoUZo0acLo0aN58cUX6d+/P8OGDaNixYqMGjUqx/PMmDGDYcOGERMTQ+nSpdPuJJ588km6du1K1apVqV+/Prt27Tqi+EqVKsWyZcs466yzKFu2LOPHjwes4/uGG26gRIkSaR+6ACeffDJPPPEE7dq1Q1Xp0qUL3bp1y+70AEyZMoX58+fn2OR04403csMNN9CgQQOOOeYYRo8enXb307p1a7755htKlixJ69atiY+PzzZJ1KlThzFjxnD99ddTq1YtBh024cmMGTOGG264gT179lCzZs209z/1m3rJkiUP+TBu1aoVNWrUSOuwb9q0KQAVK1Zk5MiRXHbZZSQnJ1OpUiW++uorLrroIrp3787HH3/Mf//738Nev2fPntx1111pySWzgQMH0rBhQ5o2bcrYsWMpVqwY7dq1o1y5chQNVctGIB0XwfjBEtIfQA3SO67rZTqmCda5XSvQ8waj47pxY2tUnjJFVTdsUD3pJNsxcuRRn9tFhqw67ly6jB2k0S5jR3hBk5SUpI0aNdJVq1Yd0fOiouNaVROBm4FpwApggqouE5GHReTilMOGAaWBD0RkkYhMye+4Vq2CRYusRlOnjmqV/P7+2yZJDBiQ3y/vnHMBWb58Oaeffjrt27cPqP8iWEJalkNVpwJTM+0bkuH3DqGMByBlcAGXXALHjngBfvzRSn1/+KHVZnKuEDjS5qlIVr16dZYuXRruMIKubt26/PHHHyF/3UJfuyk1SVx+wU4YcL9tvPACnHRS+IJyzrkIUai/Km/YYLOsS5eGjlP+bcNdO3Wydaqdc84V7iSROr+mZe3NFHt/DJQsaXcRzjnngEKeJFKGR9P6z3ftl6FD4cwzwxaPc85FGk8SQOvNH9k06//8J7wBORdhQlEqfMaMGWllPDIL5PX69euXNhEwVApT+fBC23G9axcsWQIxcpDmOhcuG2CFm5xzaUaPHk39+vU5JWV5xswVV/NbqF8vKSkp3yepzZgxg9KlS9OyZUvAyofnJuP78Pjjj3NfWoG5/Fdo7yRWrLBaTWfqCkqUKmqrzblCIUyVwr1UeA527dpF9+7dOfPMM+nTp09aDaeMr/fmm29Su3Zt4uLiuO666w4p2T1r1qzD3quMvHz4UQhkxl0k/+R1xvWYMTap+nLGqV59dZ7O4aJHxhmnYagU7qXCNftS4dOnT9fjjjtO161bp0lJSdqiRQudPXv2Ya936qmn6pYtW/TAgQN67rnnpsWY3XuVUWEvHx4VM64jzYoV9t86rPBlSAuZ/EoTOfFS4TmXCm/evDlVqlShSJEiNG7cOO05qebOnUvbtm054YQTiImJoUePHoc8ntV7lZmXD8+bQpskDm7dSSl2Uaf4GujYMdzhuAJO1UuF5yRjXFk9J6fXy/z87I718uF5U2iTxPDO37CTMvzrnA22Xqlz+chLhR+d5s2bM3PmTLZu3UpiYiKTJk064nN4+fC8KbSjm5g7FwGOOTvrRUucCyYvFR5YqfDsVK5cmfvuu4+zzz6bU045hbp161K2bNkjOoeXD8+jQDouIvknz6XC77xTtUwZ1UmT8vZ8F1W8VHjOoqFU+M6dO1VV9eDBg9q1a1f98MMPA35uYS8f7h3XeTFsGGzbBhddFO5InHMBGDp0aNrQ3xo1anDJJZeEO6SwC0X58MLb3ARWCtzLgTsXFaXChw8fnufnevnwvPNPSFdoaG7jVJ0rgI72331Ik4SIdBaRlSLym4jck8Xjx4rI+JTHfxSR6qGMzxVcxYsXZ8uWLZ4oXKGiqmzZsoXixYvn+Rwha24SkaLAy0BHIB6YJyJTVDVj9a4BwFZVPV1EegFPATnPJnEuAFWqVCE+Pp6EhIRwh+JcSBUvXpwqVark+fmh7JNoDvymqn8AiMg4oBuQMUl0A4am/D4ReElERP3rnztKMTExaTNfnXOBC2VzU2VgXYbt+JR9WR6jqonAduCwOeYiMlBE5ovIfP9m6Jxz+SeUSSKr+emZ7xACOQZVHamqsaoaW7FixaAE55xz7nChTBLxQNUM21WADdkdIyLHAGWBf0ISnXPOucOEsk9iHlBLRGoA64FewBWZjpkC9AW+B7oD3+bWH7FgwYLNIrI2jzFVADbn8bnRyK+34Cts1+zXm3enBnJQyJKEqiaKyM3ANKAo8JaqLhORh7Hp4VOAN4F3ROQ37A6iVwDnzXN7k4jMV9XYvD4/2vj1FnyF7Zr9evNfSGdcq+pUYGqmfUMy/L4P6JH5ec4558LDZ1w755zLVmFPEiPDHUCI+fUWfIXtmv1685n4PDXnnHPZKex3Es4553LgScI551y2CkWSKGzVZwO43n4ikiAii1J+rg1HnMEiIm+JyCYRyXLBADEvprwfS0SkaahjDKYArjdORLZn+PsOyeq4aCEiVUVkuoisEJFlInJrFscUmL9xgNcbur9xIMvXRfMPNifjd6AmUAxYDNTNdMyNwIiU33sB48Mddz5fbz/gpXDHGsRrbgM0BZZm83gX4HOs7EsL4Mdwx5zP1xsHfBruOIN4vScDTVN+LwOsyuLfdIH5Gwd4vSH7GxeGO4m06rOqegBIrT6bUTdgTMrvE4H2IpJVHaloEMj1FiiqOoucy7d0A95W8wNQTkRODk10wRfA9RYoqvqXqv6U8vtOYAWHFwctMH/jAK83ZApDkgha9dkoEcj1Avwr5bZ8oohUzeLxgiTQ96QgOUdEFovI5yJSL9zBBEtKU3AT4MdMDxXIv3EO1wsh+hsXhiQRtOqzUSKQa/kEqK6qDYGvSb+LKqgK0t83ED8Bp6pqI+C/wOQwxxMUIlIamAT8R1V3ZH44i6dE9d84l+sN2d+4MCSJwlZ9NtfrVdUtqro/ZfN14KwQxRYugfwbKDBUdYeq7kr5fSoQIyIVwhzWURGRGOwDc6yqfpjFIQXqb5zb9Ybyb1wYkkRa9VkRKYZ1TE/JdExq9VkIsPpsBMv1ejO11V6MtXkWZFOAq1NGwLQAtqvqX+EOKr+IyEmpfWoi0hz7/3xLeKPKu5RreRNYoarPZnNYgfkbB3K9ofwbh7TAXzhoPlWfjVQBXu8tInIxkIhdb7+wBRwEIvI+NtqjgojEAw8CMQCqOgIrKtkF+A3YA1wTnkiDI4Dr7Q4MEpFEYC/QK4q/9AC0Aq4CfhaRRSn77gOqQYH8GwdyvSH7G3tZDuecc9kqDM1Nzjnn8siThHPOuWx5knDOOZctTxLOOeey5UnCOedctjxJOOecy5YnCeeCTESeEpGvwh2Hc8HgScK54GsMLMr1KOeigCcJ54KvEbAw3EE4FwyeJJwLIhE5CTiRlDsJESklIuNE5KdoX/HQFU6eJJwLriZYLZ2VInIGMBerkdVKVdeEMzDn8sKThHPB1Rj4GbgE+A54XVWvVNW94Q3LubzxAn/OBZGIjAc6YhV4L1bVmWEOybmj4ncSzgVXY+BDrHR3tC6B61wav5NwLkhEpCSwE2gB1AJGAm1SF7V3LhoV+EWHnAuhRti6yktVdZ6I1AE+EZHmqro+zLE5lyfe3ORc8DQCfs3QST0E+B8wJeUuw7mo481NzjnnsuV3Es4557LlScI551y2PEk455zLlicJ55xz2fIk4ZxzLlueJJxzzmXLk4RzzrlseZJwzjmXrf8HwTL4bgkzYt4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def steadystate(alpha, beta, delta, theta, f):\n k_ss = (theta*alpha*beta/(1-beta*(1-delta)))**(1/(1-alpha))\n c_ss = f(k_ss, 1)-delta*k_ss\n return (k_ss, c_ss)\n\nk_ss_L = steadystate(alpha, beta, delta, theta_L, f)[0]\nk_ss_H = steadystate(alpha, beta, delta, theta_H, f)[0]\nk_ss = (pi_L*k_ss_L+pi_H*k_ss_H)/(pi_L+pi_H)\nc_ss = (pi_L*f(k_ss, theta_L)+pi_H**f(k_ss, theta_H))/(pi_L+pi_H)-delta*k_ss\nprint(\"steady-state values:\\ncapital: {0:.1f}\\nconsumption: {1:.1f}\".format(k_ss, c_ss))", + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": "steady-state values:\ncapital: 1.7\nconsumption: 0.8\n", + "name": "stdout" + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "C = S[1]\n", - "X = []\n", - "Y = []\n", - "Z = []\n", - "for k in k_grid:\n", - " if k < 1.5*k_ss:\n", - " X.append(k)\n", - " Y.append(C[(k, theta_L)])\n", - " Z.append(C[(k, theta_H)])\n", - "\n", - "plt.plot(X, Y, color=\"red\", linewidth=2, label=\"consumption: low productivity\")\n", - "plt.plot(X, Z, color=\"blue\", linewidth=2, label=\"consumption: high productivity\")\n", - "plt.xlabel(\"$k$\", fontsize=14)\n", - "plt.ylabel(\"$c$\", fontsize=14)\n", - "plt.title(\"Policy Function: $c$\")\n", - "plt.legend(loc='lower right')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Step 2: define a grid for $k$ (and $k^{\\prime}$)" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "g_size = 1000\nkmin = 0\nkmax = max([k_ss_H, k_ss_L])*2\nstep = (kmax-kmin)/g_size\n\nk_grid = np.arange(kmin+step, kmax+step, step)", + "execution_count": 12, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Step 3: construct maximizer function" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# given a value of k, a state A and a (proposed) value function V,\n# find k' that maximizes V over grid of k. \n\ndef maximizer(k, A, V0, u, f, k_grid):\n \n pi = pi_H\n if A == theta_L:\n pi = pi_L\n \n i = 0\n for K in k_grid:\n \n c = f(k, A)+(1-delta)*k-K\n if c>0:\n i += 1\n v = u(c)+beta*(pi*V0[(K,A)]+(1-pi)*V0[(K,2-A)])\n if i == 1:\n vmax = v\n cmax = c\n kmax = K\n elif v>vmax:\n vmax = v\n cmax = c\n kmax = K\n \n return (vmax, cmax, kmax)", + "execution_count": 13, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Step 4: define initial value function over grid" + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEeCAYAAAB7Szl7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd4VVXWx/HvIgk1dBSQLiBSBYmRIggjICBNAUVGBEWCASwzllFGcXR0GMexFxRFVEaFGVBIkCoiSFGagHQjiqE3aQmQtt8/VngTQ5KbckvK+jwPjzk3596zbzJzf9ln7722OOcwxhhjslMi0A0wxhhT8FlYGGOM8cjCwhhjjEcWFsYYYzyysDDGGOORhYUxxhiPLCyMMcZ4ZGFhjDHGIwsLUySIyC8i0i31660i0iXATfIJf743EYkVkTZZfK+viIT6ox2mYLCwMAVK6of+WRE5IyKHRGRqbj+UnHPNnXNf+7BdF/5d5s1rZHHNbukf88V7y+LalYGawPYsTnkJCPJ1O0zBYWFhCqK+zrlQ4GrgGuCJALfngr7OudB0//YHukE+1BKIcc6dy/gNEbkS+MY5d9L/zTKBYmFhCizn3D5gPtACQESaisjXInIi9XZMv8yel/EvchGpIyKficgRETkmIm+IyCMiMivD814XkVdy204RcSLSKN3xByLybIb2PCwim0XkpIjMEJHSWbUt9fFpQF0gOrUX82jG95bdzyO7a+ZQK2BL6muVFZFPUtsZCvwBeCe3PydTuFlYmAJLROoAvYHvRSQEiAYWAZcC9wEfi0gTD68RBMwF9gD1gVrAdOA/QE8RqZR6XjBwGzDNJ28GbgV6Ag3QD+IR2bQN59ww4FfSejP/yvC+cvLzuOia6Z7/loi8lU17WwE/iEgDYAWwExjonDsDhDrnvsvDz8AUYhYWpiCaLSIn0A+pZcA/gHZAKPBP51yCc+4r9IP2dg+vFQ5cBjzinItzzp1zzq1wzh0AlgODU8/rCRx1zq331K7Uf7Nz+Z5ec87td84dRz/kW2fVthy+Xk5+HpldEwDn3Bjn3JhsXr8lOmbxFfC0c+5pl1qiOmNwmeIhONANMCYTA5xzX6Z/IHUwOdY5l5Lu4T3oX+PZqQPscc4lZfK9D4FI4F3gDjz3Ki5qVy4cTPd1PBoS2bXNk5z8PDK7pkciIuitv8uBl5xzc/LQPlPEWM/CFBb7gToikv5/s3WBfR6eFwvUTb3NlNFsoJWItAD6AB/nsW3xQNl0xzVy+Lzs2gaQ3WYzef155ESD1P92Ax4SkTAvvKYp5CwsTGHxHRAHPCoiIalrDfqSeo8/G2uAA8A/RaSciJQWkY4AqTN9ZgKfAGucc7/msW0bgaEiEiQiPYHrc/i8LNuW6hD6131m8vrzyIlWwGbn3A9ABPC5iNT0wuuaQszCwhQKzrkEoB/QCzgKvAXc6Zzb4eF5yeiHaCN0wHgvOpB9wYfo/fn8DGw/kHqNE8Af0R6LRzlo20TgidQxkoczPDdPP48LRORtEXk7i2+3BDanXmc2MBkdr8nNbCpTxIhtq2qKMxGpC+wAajjnTgW6PcYUVNazMMVW6v3+PwPTLSiMyZ7NhjLFkoiUQ8cE9qDTZo0x2bDbUMYYYzyy21DGGGM8srAwxhjjUZEZs6hWrZqrX79+oJthjDGFyvr164865y7xdF6RCYv69euzbt26QDfDGGMKFRHZk5Pz7DaUMcYYjywsjDHGeGRhYYwxxiMLC2OMMR5ZWBhjjPHIwsIYY4xHFhbGGGM88ntYiEgdEVkqIttFZKuIPJDJOV1E5KSIbEz9N8Hf7TTGmMJg06ZETp70/XUCsSgvCXjIObdBRMoD60VksXNuW4bzvnHO9QlA+4wxpsD7/vvz/O9/i9m79wRly97B21ltZeUlfu9ZOOcOOOc2pH59GtjO7zeZN8YYk4UzZ+Dhh+H++9exZYvjf/8bRIkSkJLi2+sGtNyHiNQH2qD7CWfUXkQ2oRvTP+yc2+rHphljTIFy6hQ8/ng8Bw4sZN26tuzb14FbbhEWLoTOnX1//YCFhYiEArOABzPZpWwDUM85d0ZEeqN7GjfO5DUi0A3lqVu3ro9bbIwx/nfsGDz/vGPVqq20a7eQuLgW1KxZg5kzhfBw/7UjIJsfiUgIMBdY6Jx7KQfn/wKEOeeOZnVOWFiYs0KCxpiiwjmYORPGjXMcO5bMoEGzOH68Iy++WJuWLb13HRFZ75wL83Se33sWIiLAFGB7VkEhIjWAQ845JyLh6NjKMT820xhjAsI5+PBDeOIJR/Xq39O792Z27x7ObbfdRt++EByg+0GBuGxHYBjwg4hsTH1sPFAXwDn3NjAIiBSRJOAsMMTZ/q/GmCIsJQVWrYJnnoF1636jb99oypQ5T/Pm/ZgyRSgR4FVxfg8L59wKQDyc8wbwhn9aZIwxgbVzJ4wcCatWpSDiaNHiBFdf3YjRo9tRunTBWDtdZDY/MsaYwmbTJp0G+9VXUK3aYSIioihVqi3jx7ehevUGgW7e71hYGGOMnx08CK+9Bi+8AElJjuuvX07nzmvo3v0PXHddayTbey+BYWFhjDF+EhcHTzwBr76qA9nlysUxenQ5brqpNB07jqZChQqBbmKWLCyMMcbHTp6Ejz6Cl1+Gn3+GkJBEhg5dStOm23jooXEEB18b6CZ6ZGFhjDE+kpwMc+bAfffB/v36WOfOh+jTZwYNG9amZ88IggM1FzaXCkcrjTGmEHEOpk+HBx+Ew4f1sbCwcwwblsCdd4Zy+HBPrrjiisA2MpcsLIwxxkucg8WLdUxi3jx9rEoVePzxnZQoMY9rr+1ApUrXUqlS4QoKsLAwxhiv2L0bRo3SabAAFSrAiy9CzZpfsHv3bvr2vZn69esHtI35YWFhjDH5sG2bToGdMQPOnoXKlWHIEMfw4bsJD7+c/ftb06NHD0JCQgLd1HwpGEsDjTGmkElMhGefhTZt4IMPNCiGDoX160/RqdN0NmxYRHx8PLVq1Sr0QQHWszDGmFw5exb+/nd44w04fVofGzYMRo+GJk2OMnXqVMLDw7n11lsJCgoKbGO9yMLCGGNy4Nw5WLAA/vIX2LVLH2vYECZPhtatj/Pbb79RterljBw5kipVqgS2sT5gt6GMMcaDhQuhSRO4+WYNimbNYMkS2LEjhdKlV/Hee+9x4sQJRKRIBgVYz8IYY7L0+efw9NNa8A+gVi2IiNDeRalS8MUX8zl27BijRo2icuXKgW2sj1lYGGNMBjt2wJNP6k51oMHwzDPw5z8DJLF69Wratm3LDTfcQKlSpZCCWPnPyywsjDEm1a+/wr33wvz5elyunIbE8OFQtSrs3buXqKgoqlSpQps2bShbtmxgG+xHFhbGmGLv5591+utLL8GZMxAUBP36aeG/evX0nPj4eGbNmkW3bt1o1qxZsehNpGdhYYwptpKSNBAmTNDZTqCD2G++CTVr6vHu3bvZs2cPXbt2Zdy4cUVqOmxuWFgYY4qdhAQNiSlT4Mcf9bGePfUWVP/+enzu3DkWLVrE7t27uemmmwCKbVCAhYUxpphZswbuvhu2btXjOnXgnXegV6/fn7d+/XqCgoKIjIykVKlS/m9oTsXGQrVqUKaMTy9j6yyMMcXC119DixZw7bUaFI0a6YZE27alBcWZM2eYOXMme/bsoUOHDtx0000FNyhiYuCee3TRx9/+5vPLWc/CGFOkbdoEr7+ut5wASpSAhx7S9RMX/hh3zvHDDz+waNEiWrduzWWXXVZwB7C3btVytp9+mjbQ8tNPkJKib85HLCyMMUXS0aO6+dDHH+txSIjuf/3oo1C6dNp5zjmSk5PZuXMnQ4cO5bLLLgtMgz3ZsAFeew0++USrGALceitERsL114OPw83CwhhTpBw4oJsPTZmigVGyJPTpoz2JFi3SznPOsW7dOrZs2cKIESMYPHhw4BqdnVWr4K23tCeRkqKP3XmnLiXv2NFvzbCwMMYUCSdOaC/iiSf0a4AuXeDdd3V8Ir1jx44RFRVFSkoK/fr1K5i3nJYuhbffhv/+V49LlNDdle65B8LD/d4cCwtjTKGWkqLrIh5/HOLi9LFu3fTuzIABv7+Nn5KSgnOO06dP06xZM6655hpK+PA+f54sWKClbD//XI+Dg7X++T33QOvWAWuWhYUxplBKTNSexKRJOh0W9DbTY4/pJkQZOwsHDx4kKiqK8PBwWrduXbC2OHUOoqN1Du+FzbtLl9aQGDUKmjcPbPuwsDDGFELffw8jR+p/QVdbv/WW9iQycs6xdOlS1q9fT/fu3bnqqqv829jsOKdzdx95JK0gVWiohsTo0dC4cWDbl46FhTGm0Pj+e3jvPf0DPDkZ6tbVP7zHjYNKlS4+/8yZM4SGhlKhQgUiIyMJDQ31f6Mzk5ysJW3ffBO++UYfq1xZbzWNHZtWkKoAsbAwxhR4Z87AX/+q6yWc01tM998Pzz2nf4hnlJCQwJIlS9i1axdjx44lLCzM/43OjHOaePfeC2vX6mPBwTB4sFYxrFEjsO3Lht9HdkSkjogsFZHtIrJVRB7I5BwRkddEJEZENovI1f5upzEm8E6c0Ds0jRrpEoMSJXQ8YuVKnR6bWVAcOHCASZMmcf78eSIiIggOLgB/E589C9OmwdVXQ9u2GhQ1a8L48XDwoK6dKMBBAYHpWSQBDznnNohIeWC9iCx2zm1Ld04voHHqv2uBSan/NcYUE7Nnw5gxum4CoE0bXTvRpk3m5589e5aEhAQqVqxInz59aNiwof8am51ly/T2UkyMHgcH6xqJiROhQoXAti0X/N6zcM4dcM5tSP36NLAdqJXhtP7AR059C1QSkZp+bqoxxs+c0xlONWtqqfADB6B9e4iKgu++yzootm/fzqRJk9i1axdly5YtGEExf74OUHfpokHRsCE8+yycPKljFYUoKCDAYxYiUh9oA3yX4Vu1gNh0x3tTHzvgl4YZY/wqJQWWL4cXXkibORoaqmMSY8fqZkRZiY6OZs+ePQwaNIi6dev6p8HZmTkTHn4Y9uzR45AQvd00frwuJy+kAhYWIhIKzAIedM6dyvjtTJ7iMnmNCCACKBj/IzHG5FpMjM5o+vprPa5YUevk3XVX1nXxnHPExMTQqFEjwsLC6NWrV2DHJpzTErZPPAF79+pjpUvrnqwPPqiBUcgF5KcrIiFoUHzsnPssk1P2AnXSHdcG9mc8yTk3GZgMEBYWdlGYGGMKrgMH4P33tfdw9qyGxK23arXt7Gr5nThxgrlz5xIXF0etWrWoWTOAd6hTUnQe77PPwv7Uj6jQUB2PiIgo1D2JjPweFqJFWKYA251zL2VxWhQwTkSmowPbJ51zdgvKmCIgIUE/S597Lq146h13wCuvQNWq2T/36NGjvP/++3To0IH27dsHbue6pCRt8Isv6mwmgCpV9D7aHXcUqZC4IBA9i47AMOAHEdmY+th4oC6Ac+5tYB7QG4gB4oG7AtBOY4wXnT2rRf3efhu2b9fH2rWDJ5+E3r2zf+7Ro0c5ceIEDRs2JCIigkqZrcDzh/PnYepU7U1sTP34ql5d10gMGlQkQ+ICv4eFc24FmY9JpD/HAWP90yJjjK9lnD3asKGuxO7SJfvnJScns2rVKr799lu6deuGiAQmKOLj4e9/1/tmhw/rY3XqaEj061ekQ+KCArBaxRhTVM2fr2O8336rx02b6uLle+6BsmVz8vz5nDx5klGjRgUmJE6d0p7E66/rbnSgSRcZqWMS5cv7v00BYmFhjPG6X3/ViUHTpulxSIiW63j8cc9/hCcmJrJy5UrCw8Pp3r07JUuW9P9+E8ePw4cfwssvQ2zqLP6WLeH557X+eRGY3ZRbFhbGGK85eFCL+s2apcelS2to3H23LrTz5NdffyUqKorq1avjnKNUqVK+bXBGhw5pwr3wQtrtpquu0rm9o0YVi9tNWbGwMMbkW3Ky/iH+0ENpu9T17Kn1nHJaZTs+Pp7Zs2fTvXt3mjZt6rvGZmbfPg2J559PewNhYXqr6e67s18VWExYWBhj8iwlRTcfevxxOH1aH+vVS2c85XSdbExMDHv27OGGG25g3Lhx/t25bs8eXUz3r39paVvQ+iKjR8OwYVmvCiyGLCyMMXmyc6duQLRypR7XqKF3b/74x4t3qctMfHw8ixYtYs+ePfTp0wfAf0GRlKQzmZ56Cs6d08euv15H32+7LWdvoJixsDDG5MrGjVqvadUqPa5RQ3epu/nm3L7ORkqXLk1kZCQl/TUWcP68rgZ84YW0kLjhBh1oyWybPfP/LCyMMTkSE6Nr0V5+WccoQG/n//vfuslbTpw+fZp58+bRrl07OnTo4LvGZhQfDxMmaKqdPauPXX65Ht94o//aUYhZWBhjshUXp9NeX3stbZe6++6Dp5/OeUg459i4cSNffvklbdu2pVatjLsS+MjJk1rtderUtJC48kodaLn+ervdlAsWFsaYTMXHw9y58Je/wC+/6Fhv9+5anuO663L+Os45kpOT2b17N8OGDaOGP3aEO3oUHn0UPv007XZTq1bak+jQwUIiDywsjDEXiYrSRcoXCqm2bq271F2diw2OU1JSWLNmDdu2beOuu+5i4MCBvmlsegcO6F4Ss2bp+ARAeLh2i8LDLSTywcLCGAPoLaYdO/T20owZ+li9ehoaf/5z7hYtHzlyhKioKIKCgujfv7/vV2D/8ov2JObM0bK2oLeZXnxRE85CIt8sLIwx7N2roTB3rh6XLatlxD3tUpdRcurId3x8PFdddRVt27b1bVDs3AmPPabb610IiV694B//0JXXFhJeY2FhTDH2yy9aSPWVV3RRXUgI9Omjf5A3aJC719q/fz9RUVG0a9eO1q1bU69ePZ+0GYBt27Rs7Vtvpd1uGjxYB1RatLCQ8AELC2OKoeRkePVVrdt0YZJQ//762ZvdLnWZcc7x5ZdfsmnTJnr06EHLli293+ALNm3SkHj7bV1YBzBihI5TNG/uu+saCwtjipPERB37ffllWLNGH+vZU6tb9O+f+z/IT506RYUKFahatSqRkZGUK1fO+40GWL8eJk/W3ZMuzN8dNEjvnf3hD765pvkdCwtjiol167Q8x+bNelyrlv6BnlppI1fOnz/P4sWL2b17N2PGjOHq3EyTyo1vv9VGfvihHgcF6e2m++7TKbDGbywsjCnitmzRP8rffFML/9WpA8OH652bihVz/3r79+9nxowZNGrUiIiICIKDffAxcvQoPPggfPyxHoeEwK23wp/+BG3bev96xiMLC2OKqFOntBrsW2/pcYkSWkL8mWdytktdRvHx8SQkJFC5cmUGDBhAg9yOgOfE/v1w//1pG2KUKaO3mx57DJo18/71TI5ZWBhTxJw6BZ99pqWQYmMhOBj69tXP2/Dw3L+ec46tW7eyYMECunTpQlhYmPeD4uef9dbSF1+kPda9u5blaNjQu9cyeWJhYUwRMnOmro24sMlbWJiuvG7VKu+vGRUVxb59+xgyZAi1a9f2TkMv2LFDexKLF6c91q+frrj25dRbk2sWFsYUcs7p4PXEifD55/rYlVfqDKdx47RnkfvXdOzcuZMmTZrQrl07qlWrRpA3d4vbuFHHJJYtS3tsyBAtHe7tQDJeYWFhTCH2yy8aCosW6XFoqG76Nnp03jd5O378ONHR0SQkJFC3bl2qV6/utfayerWOrF/YDAN0itbTT+v0LFNgWVgYUwgdP65Vt596SkuIly2re/dMnJjz7Uwzc+TIEaZOnUqnTp249tprvbdz3YoVuhnGxx//vs75X/6S+1WAJiAsLIwpRJKStBTHU0+lVbkYNAjeeAPy0wE4fPgwJ06coHHjxtx7771UqFDBOw3+6iudt3uhMmFQEDzyiI5T1KzpnWsYv7CwMKaQ2LhR79hs2KDHLVvC3/4Gt9yS99dMTk7mm2++Ye3atfTo0QMRyX9QOAcLF2pPYvZsfaxkSW386NFa4M8UOhYWxhRwq1drKHz5pS6qq1dP/1jv0SP/rz1//nxOnz7N6NGjvRMSc+fqwo4FC/SxsmU1JMaM0VF3U2hZWBhTQGW1nek//qED2XmVmJjI8uXLadeuHT169CAkJCT/ZcR37NA5u199pccVKsBdd8EDD+S+fK0pkCwsjClgTpyA556D//wHDh7U2/wPPqh3cBo3zt9r//zzz0RHR1O7dm1EhJIlS+bvBbds0WJ+K1bocdWqcOedulTcZjcVKRYWxhQg3tjONCtxcXHMnTuXnj17csUVV+TvxTZsgHvvhbVr9VgE/vhHeOkluOSS/DfWFDhemheXcyLyvogcFpEtWXy/i4icFJGNqf8m+LuNxviTc/qH+eDBWiZ8/35o106DY82a/AfFzp07Wbx4MeXKlWPs2LH5C4qVKzXB2rZNC4pRo3Qu77RpFhRFWCB6Fh8AbwAfZXPON865PBRONqZw8dZ2ppmJi4tjwYIF7Nu3j379+gHkfd3EV1/B66/rHtcXBlDuv1/vl/lqDwtToPg9LJxzy0Wkvr+va0xBcuiQrk97+mkt/BcaCgMH6voJb40Hb9q0ifLlyxMZGUlISEjeXmTePC3mdyHNgoJ0Id0TT2hFWFNsFNQxi/YisgnYDzzsnNsa6AYZ4w3e3M40MydPnmTevHl06NCBDnndHMg5HZP417/gv//Vx0qV0p7E3XfbFNhiqiCGxQagnnPujIj0BmYDmc4BEZEIIAKgbn5qHBjjB1u26JKDC9uZhofrpKHBg3O/nWlGzjnWr1/P0qVLCQ8Pz1t12AsVCZ9+Oq1UeLlyOhXrrrusVHgxV+DCwjl3Kt3X80TkLRGp5pw7msm5k4HJAGFhYc6PzTQmx9at0woXX3+tx7Vr606hN93knddPSUkhJSWF2NhYhg8fzqWXXprbF9AEGz8eli7Vx8qU0S7PxIlQv753GmoKNb/PhvJERGpI6gohEQlH23gssK0yJvfOnoVHH4Vrr00Linvvha1bvRMUKSkprFy5kqlTpxIUFMTNN9+c+6DYulX3sm7fXoOiXDkYNgxiYuDTTy0ozP/ze89CRD4FugDVRGQv8BQQAuCcexsYBESKSBJwFhjinLNegyk0Tp/WirCvv66fuSVK6NbRf/qT7n/tDYcPH2bOnDmUKlWKW265JfcrsNev1+XhX36pAymhobqfxMSJUK2adxppipRAzIa63cP330Cn1hpT6MyfryutY2P1uEULXVSXl+1MM5OUlATAuXPnaNu2LW3atMldUKxYoYWmli7V20+gDX7+eahY0TuNNEVSgRuzMKYwOnZMew7Tpulxq1a6Vi0iQguuekNsbCxRUVFcd911XHXVVbmb1LFoEfzzn2ljEiVKaN2mceOgUSPvNNAUaRYWxuTDgQM6eWjGDK3pVLo0/P3vOoEoL9uZZsY5x8KFC9m6dSs9e/akWbNmOX/y7Nnw8suwfLkeBwfrFKyICLj8cu800BQLFhbG5IFz8MEH8Oc/a0gAXH89vPeed/9QP3HiBJUqVaJGjRp07tyZsmXL5qxxX3+tgyYXNuUuVQoee0ynwNar570GmmLDwsKYXEhJ0Ts6//43LFmij/XqpX+sd+2a932vMzp37hwLFy7k119/JTIyktatW+fsibGxOuVq3jw9LldOp8TeeafO2TUmjywsjMmhHTvgnnu0lh5oNe5XX4WhQ/O/qC69ffv2MWPGDJo0aUJERATBObmfFROjBaUWLdLjChXgttt0xpP1JIwXWFgY40FiIrzwgo5NJCRoSNx+Ozz5JOR2WUN2zpw5Q2JiIlWqVGHgwIHUy8mH/JYtuiPShYUcoEWmXn/d9rg2XmVhYUwWzp3TGnrvvQfbtuljI0dqcFSu7L3rOOfYvHkzixcvpmvXrrRt29ZzUKxbp7OZVq1Ke2zYMG1c9erea5wxqSwsjMnEypV6y2nHDj2uXx/efRe6dfP+tWbPns2hQ4cYOnQol3mqJrhqlSbYJ5+krZO4917t9nizm2NMBh7DQkQeAJY55zb6oT3GBNSZMzoe/MYbOqmoSRP9A/7OO727bYNzju3bt9O0aVM6duxI1apVCcpuA4ulS+Gdd3SOLuhI+kMPaT0RCwnjBznpWVQCPhCR0+jK6pnOuWTfNssY//rtNx0L/vhj3V8iKEhnmj7xhK6d8KajR48SHR1NSkoKDRo0yL6e065dusHQR6l7hQUH64rre+7RHeuM8ROPYeGcexp4WkRqAD2ACWg9J2OKhM8/hzFj4OBBPW7TBt5/3zefxUeOHGHq1Klcf/31XHPNNVnvXLdjhybVrFl6XLq0hsSoUdC8ufcbZowHuRmzKOmcy24rVGMKlZgYePxxmDlTjzt21IoYHTp4b73EBQcPHuTkyZNcccUVREZGUr58+cxP/PVXHYOYP1+Pg4Kgd29d2JGfvbONyafc/F/iMxHJtMqNiHi5o26M78TGQp8+0LixBkW5cjrTdPlyuO467wZFUlISS5YsYdq0aSQkJCAimQfFjz/quogmTTQogoPhllvgp58gKsqCwgRcbnoWMcC7wPD0D4rIZcAc4BovtssYr0tJ0THiRx/VgewSJaBfP3jlFd+tW5s/fz5nz54lMjKS0NDQi0/YskWrwEZH6yIO0HUSb7wBNWr4plHG5EFuwuJuYI2I3Oecex1ARFoDc4EVvmicMd6yc6fe7v/mGz2++WZ4803frFtLSEhg2bJltG/fnp49exISEnLxSdu26cDIa6/pqj+AO+7QCoRt23q/UcbkU47DwjkXLyIDgZUi8j1QDZgGvOycm+CrBhqTH5s36xDA6tV6XL26hsTAgb653k8//UR0dDT169cnKCjo4qDYvBkmT9a1EhfWSYwapaU6rrrKN40yxguyDQsRWQhsBL5P/e9OIALtTQQDo5xzn/q6kcbk1vnzOuN04kRI3S+I4cPhpZegShXfXDMuLo4FCxbQp08fGmUsPXvyJPzlL3ofDPQe2IABWra2UyffNMgYL/LUs/geaA3cCVQH4oEfgGTgv8AuESnlnDvv01YakwurV2tZju3b9XjMGA2NChV8c71t27YRGxvLjTfeyJgxY36/c92xY7p4bto07UmEhEDfvrqI4xob5jOFR7Zh4Zx77MLXIlIdaIOGR2vzoukVAAAcX0lEQVSgMzqOkSIiPzrnbPK3Cahly/QW08yZuvq6cWOt69S5s2+ud/r0aebPn8/hw4fp168fQFpQHDigvYb//jftdlP79noLqkUL3zTIGB/KzZjFIWBB6j8ARKQMGhytvN80Y3LmxAl45BENBtClCQ8/DE89BWXKeP96zjlEhC1btlC1alVuueWWtDLie/Zo3fKpU9N2ReraVefm2mI6U4jlq5Cgc+4ssDr1nzF+FxUFkZGwf7/e4Rk7Vm9B+eqP9xMnTjB37lw6depE+/bt076xaxe89ZYmVlycPtarlw6SXHmlbxpjjB9Z1VlT6DinM0///ve0unrt2sGUKZCb7alzd03HmjVrWLZsGR06dKD2hV3nDh/WW0vPPquj6qAr/kaPhptu8u6uSMYEkIWFKVT27tUB6+hoPS5bFv7xDxg3Tm8/+UJystbNPHjwIHfffTfVqlXTYPjb37Q+yIXpVgMHQkQE9Ojhm4YYE0AWFqZQSEnROzyPPKJVYUNC9A/4f/8bLr/cN9dMTk5m5cqV7Nq1i5EjR9K/f3+9xfT44/DBB2mVB9u21cSykDBFmIWFKfBiYnTd2oWdQ/v10+GBWrV8d82DBw8ye/ZsQkNDGTRoEHLqlG4w9J//wJEjetIVV2iC2ToJUwxYWJgC68cfdVLRK6/A2bNwySVaMmnwYN8NBSQmJiIiJCYm0r59e1rVqoV89BH861+wb5+e1KqV9iS6d4eSmdbWNKbIsbAwBU5Cgi6ie+6535dNeuUVqFrVd9fds2cP0dHRdO7cmVYtWlBnxQrdR/XoUT3h2mt1nOKGG/Q+mDHFiIWFKVDWroW779ZirKDjEuPGwY03+u6azjnmz5/Pjh076NWrF01Xr9a1EceP6wlt2+rA9ciRvhtFN6aAs7AwBUJ8PEyYAC+/rIPZDRvqcECXLr697m+//UblypWpfdlldP3xR8q0a6cj6KBFpP75T93C1KbAmmLOwsIE3Ndf6+fxTz9pfb2HH9ax5LJlfXfN+Ph4Fi5cyL69e7nXOVpNmaIVYUFL0778MgwZYiFhTCq/h4WIvA/0AQ475y5aZytaXOdVoDdauHCEc26Df1tp/GHePK2xt2OHHrdsqQvrfF1fb+/evcyYPp3mZcsS8dFHBK9bp9+oWVOnWfXvbyFhTAaB6Fl8ALwBZLWfdy+gceq/a4FJqf81RcTRo7rHz8cf63FICDzxhBZi9eXkotOnT5OYmEi1n37i1tmzqbNypX6jfn0tHz5kCFSq5LsGGFOI+T0snHPLRaR+Nqf0Bz5yzjngWxGpJCI1nXMH/NJA4zPOaRHW++7TpQplyujtpjFjdB9s313X8f3337NkwQK6rVlDmzlzqAPakxg+HP76V8hsy1NjzP8riGMWtYDYdMd7Ux+zsCjE9u3TUIiK0uMuXeDddyHjHkG+8Nmbb3IsNpZhH35IjUOHdEbTX/4CTz4JpUv7vgHGFAEFMSwyu1nsMj1RJALduY+6dev6sk0mj5zTWU0PP6yTjCpU0BIdI0fqYLavpKSksHXxYlpMncr1S5ZQ5fhxSgQHa/XByEjfLtgwpggqiGGxF/QuQarawP7MTnTOTQYmA4SFhWUaKCYwkpN1I6LXX9dyHaAbxE2a5NsyHQCHf/iBqI8+IvjoURpFRVFNBB54QCvBNmni24sbU0QVxLCIAsaJyHR0YPukjVcULtu2ac/h22/1uFo1DY3bbvPxJKOffuLw00/zYc2adP36a9pu3Ij07QsvvggNGvjwwsYUfYGYOvsp0AWoJiJ7gaeAEADn3NvAPHTabAw6dfYuf7fR5E1CAjz/vG7tkJAAl12ma9puvtnH48c//si+Dz7g1Ny5XLl5M2PKlaNct24wZ442whiTb4GYDXW7h+87YKyfmmO8ZN067U1cWNcWEaG19ypW9OFFt28nccoUvt6yhU0tW9IrKQm5/XbKPfQQXH21rZUwxot8OMRoioP4eHj0Ua2xt3mzlun46it45x0fBsXZs7ooo2VL5u/axanQUCJ/+onmL74In3yitZwsKIzxqoI4ZmEKiWXLtExHTIzObHroIXjmGR+W6Th9Gl54gXOffMLXjRpxXZky9A4OJnjcON8XkTKmmLOwMLl26pQuU3j7bT1u0ULLdISH+/CCn30GTz3FrlKl+KJfPxodPUrwvHkE28ZDxviFhYXJlS++gHvv1b2w/VKm47PPYOxYOHiQuHLlWDJ6NAOaN6fBH/8IpUr56KLGmIwsLIxHzsH//gfjx2tlWNBexJQp2qvwyQX/8x948kncnj1sadGCvV270uuaa7h33DjENh4yxu8sLEy29u/XMh1z5uhxmTK6g9399/tgH6CUFPj0U5g8GZYv51T58nwxbBi/XXEF/YYPhzp1Ml3eb4zxPQsLkynn4P33ddD65EkoX17XTIwY4YMB7JQUWL1auy7Ll+MAqVyZbRMmULNFC27t2pUg26HOmICysDAX2b0bRo3SKbAAN92kg9m1a/vgYj/8oPuopu4pcbxRI6KHDaNLnz60u/pqH1zQGJMXFhbm/yUna1mOv/5V109UqwavveajDePWroXHH4elSyElhZSKFfn27rtZUb0613XqRJ3Wrb18QWNMflhYGAC2btUV2N99p8dDh8Irr8All3j5QocP69LuC5ttA8mRkfDccxxfuZJ7OnSgSpUqXr6oMSa/LCyKuYQEHYt49llITNSKsJMmaYVYrzp1SufYTpqkxyVKkPynP/FNp07EHDvGyEqV6NOnj5cvaozxFiv3UYytXQthYfDUUxoUo0drD8OrQXHsmJYHb9gwLSg6dODAwoW806gRB86d49Zbb0WsPIcxBZr1LIqh+HgNiJde0jtBDRvqrnVdu3rxIhn3UAUIDyfhnXeQ5s1JPnSIzjVq0Lx5cwsKYwoBC4ti5uuvdabThXpODz+s+2B7bTqsc/DBB/DII9qrALj+enj8cX5u2JDoefPoGhREy5Ytqe2T6VXGGF+w21DFxMmTWqaja1cNihYtdGnDCy94KShSUmDRIujRQ6fCHjsGlSrBO+/gliwhOiGB2dHR9OzZk5YtW3rhgsYYf7KeRTEwd64Gxb59PqrntGOHlp9duVKPq1aFV1+FoUM5dvw4VYOCaNCgAT169KCU1XMyplCynkURduSIToHt21eDIjwcNmyACRO8FBQbN0LnztC0qQZFlSpaG2TbNuIGDGDmrFlMnz6d5ORkWrRoYUFhTCFmYVFERUVBs2ZaaqlMGR3MXrXKS4X/fvlFa5Rfcw18840+dtdden/rzTeJPX+eSZMmUbFiRSIiIqxUhzFFgN2GKmKcg48/1mGDxEQdo3j3XZ3xlG9nzug9rNde0wuJ6Gynv/4Vqlfn5MmTJB07xiWXXMLQoUO5zPa/NqbIsJ5FERIbq7echg3ToBg7FpYs8UJQnDgBzz+v3ZJXX9XHunbVXsVrr+EuvZS1a9cyefJkYmNjKV26tAWFMUWM9SyKgJQUrer96KO682jFinrb6a67vFDTac4ciIyEAwf0uHVr3cgiXZG/WbNmcfLkSUaMGMElXq8PYowpCCwsCrkff9R1E8uW6fGAAfDmm5CvP+ydg+nTtYbTxo36WFiYLvEePhxCQkhJSeGHH36gVatWdO3alcqVK1OihHVUjSmqLCwKqaQkrcU3YQKcOweXXgpvvAGDBuWzN7Frl25iMXeuHpctCxMn6j2t1IHqgwcPEhUVRenSpbniiiuoWrVq/t+QMaZAs7AohDZv1gqxqVtAcOedetspX5/ZP/2kPYclS/S4YkV45hmde1ut2v+fdvjwYaZNm0a3bt1o3bq1leowppiwsChk5s6Fm2/WnkXduvDOO9CzZz5eMDFRZzc9+SScPas1QAYO1Prk6e5lxcbGcvr0aZo2bcrYsWMp6/Xt8owxBZndZC4kzp3TGaoDBmhQ3H03bNmSj6BISNC65KGhWiDq7FntRRw6pAUAU4MiISGBBQsW8N///hcRQUQsKIwphqxnUQisWqW3nXbs0PGIP/9ZazrlaTz53Dldsffcc3o/C+Dyy3VKbCb7SSxYsICUlBQiIyMtJIwpxiwsCrAzZ2D8eB24dg6uvBLeew86dszjCy5frjWcfvxRj7OoTX727FmWLl1Kp06d6N27N8HB9j8TY4o7+xQooPbvh06dYPdunYT02GO6eLp06Ty82JYturn25Ml6XLcujBihJTsy9Ba2b9/O/PnzadKkCSVLlrSgMMYAFhYF0oIFEBGhK7JbtIBp03QtXK4dO6b3rD76SI+Dg7WrMn48ZFLU78yZMyxfvpyBAwdSr169/L0JY0yREpABbhHpKSI7RSRGRB7L5PsjROSIiGxM/XdPINrpb8eO6Zq3Xr00KNq21ZmsuQ4K52DmTK0k+NFHWpe8f39Yv153OkoXFM45Nm3axBdffEFoaCgREREWFMaYi/i9ZyEiQcCbQHdgL7BWRKKcc9synDrDOTfO3+0LlI0bdWbToUN6q+mZZ+BPf9LOQI45p+Hw3HNp4xKdOulAxxVXXHT6iRMnmDt3LnFxcfTr1w/A1k0YYzIViNtQ4UCMc243gIhMB/oDGcOiWLiwVfXYsdqz6NgR3n8/08/27P3yiy6qW7RIj0NDtVzH6NEXTZtyziEi7Ny5k3r16tGhQwcrI26MyVYgwqIWEJvueC9wbSbnDRSRzsAu4E/OudhMzinUjhzRyUlRUXrcvbt+natB7JgY7Tm88QbExekGRBMnwu23Q/nyF51+9OhRoqOj+cMf/sC112b2YzfGmIsFIiwyu8/hMhxHA586586LyL3Ah8AfLnohkQggAqBu3brebqdP7dunC+zWrdPP9H//W4Mjx2snkpL0SX/7G5w/r48NHqyznqpXv+j0lJQUVq1axapVq7j++usL3c/LGBNYgQiLvUCddMe1gf3pT3DOHUt3+C7wfGYv5JybDEwGCAsLyxg4BVJKinYEHnkETp2C2rVhxQrI8Ziyc7BmjW5fumGDPtavn95u6t0706ckJSUhIpw6dYqIiAgqVarknTdjjCk2AjEbai3QWEQaiEhJYAgQlf4EEamZ7rAfsN2P7fOZlBRd3jB6tAZF377w7be5CIrVq6FVK2jXToOiXj1YuFD3nMgkKJKSkliyZAkffPABJUqUoHfv3hYUxpg88XvPwjmXJCLjgIVAEPC+c26riDwDrHPORQH3i0g/IAk4Dozwdzu97aeftGTHsmW6Dm7KFLjtthyWE8+4nWmpUpo4zz2nA9mZ2LdvH59//jmXXnopQ4YMsVlOxph8EecKxd0bj8LCwty6CzW7C5idO+EPf9BV2ZdeqrNbb7wxh09evFhX6P3yiy7lfuQReOqpLEfBExISEBEOHz7MyZMnadasmdfehzGm6BGR9c65ME/nWdVZH3vzTbjqKg2K9u1h27YcBsWcOVrgr0cPDYrWrXWsYuLELIMiJiaGt956i507d1KrVi0LCmOM11i5Dx9JTITnn9dtIkDHKl5+GTwOGRw6BPffr4svAEqW1J7EI4/oSuxMOOeIiori559/pm/fvjRs2NBr78MYY8DCwifOnNE1E99+q8cvvaSrsbPlHHz8MTzwABw/rgMb//iHznrKIiQAjhw5wiWXXELjxo3p1asXJUuW9N4bMcaYVBYWXrZ9OwwZoltF1K6tq7G7d/fwpF9/hXvvhfnz9bhbN60Q26BBlk85ffo08+fP59ixY0RERNgtJ2OMT1lYeNHatbojaWysfs7Pm6d7UGTp+HH48EOYMEG7I5UqaTdkxIhsp0nFxsYyffp02rZtyy233GKlOowxPmdh4SULF+pGc0lJEB6u1WKzmNWqJ738sobEuXP62M0362h4zZpZPEkL/yUlJXHppZcybNgwatSo4f03YowxmbDZUF7wr3/pmrgLe2MvXZpNUGzerNOiHn1Ug6JVK/jf/+Czz7IMipSUFL777jsmT57M/v37KVWqlAWFMcavrGeRT3//u3YQRPTz/7nnsigrfv68fnPiRE2VOnXgnXd08woPZs6cSVxcHCNHjqRq1arefxPGGOOBhUUenTun4fD661r87/XXdeJSpr79Vpdvb0utwj5mjIZGhQpZvn5ycjKbNm2idevWdO/enUqVKtkqbGNMwFhY5MHZs3DHHXrnKChIOwgjR2ZyYlyclul49VWdGtu4sVYR7Nw529ffv38/UVFRlC9fnmbNmlG5cmXfvBFjjMkhC4tciovTrSKio6FcOfjyS63rd5ElS2DUKPj557QyHRMmQJky2b7+oUOH+OSTT+jevTutWrWy3oQxpkCwsMiFM2dg0CCd+VS+PHz1FYRlrKhy4gQ8/LBWCgSt9TFlim6onY09e/Zw+vRpmjdvztixYynjIVSMMcafbDZUDiUnwy23aFBUrgzLl2cSFHPmQLNmGg4lS+qA9tq12QbF+fPn+eKLL5g1axYhISGIiAWFMabAsZ5FDiQl6ZjE4sVQrZr2KFq2THfC4cNw331p9Zzat9fAaNrU42svWLAAESEyMtJCwhhTYFlY5MD48VpWvGRJmD49Q1AcPAhdu8KOHTqIMXGiznbKZlV1fHw8S5YsoUuXLvTp08dWYBtjCjy7DeXBX/8KL7ygn/0LF8INN6R+wzkt1dGsmQZF06awZYv2MLL48HfOsXXrViZNmkRISAilSpWyoDDGFArWs8jG9Ola+PXC9NguXVK/sWeP7lS3cKEe33ij3naqVSvb14uLi2P16tXcdttt1K5d26dtN8YYb7KwyMK2bXDPPfr1q6+mW0exaxd07AhHj+pI9yuvwLBhWRb+c87x/fffs3//fvr06cPIkSNtOqwxptCxsMjEhSmycXEwdGjqyuzkZC30N368fqNLF+16VK+e5ev89ttvREdHc+7cOfr37w9gQWGMKZQsLDJwTtfSbd+uwxGTJ4OkJGvZ8P/8R08aPBjefRcqVsziNRwiwo8//kjDhg1p3749JUrY8JAxpvCysMjgzTe1wxAaCrNmQbl9uzQoVq/W3es+/hgGDMjy+YcPHyYqKoru3bsTHh7uv4YbY4wPWViks2+fLr4GHa++MmmLDl7v3w+XXaazn7p1y/S5ycnJrFixgjVr1tC1a1fq1q3rx5YbY4xvWVikcg7GjtVK4oMHw60VFsDV/SAxURfZzZ+f5W2nxMRESpQowblz54iIiKBiFucZY0xhZTfSUy1apNU6KlaE57t/Cf1Sg+LOO2HBgkyDIjExkUWLFvHhhx9SokQJbrzxRgsKY0yRZD0LtFfx5JP69fi+P9BgTC+t8RERAZMm6YYVGcTGxvL5559Tq1Ytbr/9dpvlZIwp0iwsgLlztd7fpVWTGPt5Nw2KcePgtdcuWj9x7tw5goKCCAoK4sYbb6RJkyYBarUxxviPhQWaCQCP8Tzl4g7DkCGZBsWuXbv44osv6NGjB82bNw9AS40xJjCKfVgcPgxffeUIlmSGH3tRqwS+++7vgsI5x+eff87evXsZMGAADRo0CGCLjTHG/4p9WMycCSkpQi8WUKUyWn88NBTQkDh06BA1atSgWbNm9O3bl5CQkMA22BhjAqDYz4aa8UkyALcxQ289VasGwKlTp5g+fTpz5swhOTmZK6+80oLCGFNsFfuexbMtZzBj5XH6t90Hf/wjAL/++iszZswgPDycW2+91cqIG2OKvYCEhYj0BF4FgoD3nHP/zPD9UsBHQFvgGHCbc+4XrzfEOTpteJVOrIF/LOT4b7+RnJxM9erVGT58OJdeeqnXL2mMMYWR329DiUgQ8CbQC2gG3C4izTKcNhL4zTnXCHgZeN5HjYEVK0iZNYtV5crx3nvvcfDgQUqVKmVBYYwx6QRizCIciHHO7XbOJQDTgf4ZzukPfJj69UzgBvHVqreQEP6XmMiPMTHcc889tPzdnqnGGGMgMLehagGx6Y73AtdmdY5zLklETgJVgaPpTxKRCCACyFfhvgtlOmwVtjHGZC4QPYvMPpFdHs7BOTfZORfmnAu75JJL8tygSpUqWVAYY0w2AhEWe4E66Y5rA/uzOkdEgoGKwHG/tM4YY8xFAhEWa4HGItJAREoCQ4CoDOdEAcNTvx4EfOWcu6hnYYwxxj/8PmaROgYxDliITp193zm3VUSeAdY556KAKcA0EYlBexRD/N1OY4wxaQKyzsI5Nw+Yl+GxCem+PgcM9ne7jDHGZK7Yl/swxhjjmYWFMcYYjywsjDHGeGRhYYwxxiMpKjNSReQIsCePT69GhtXhRZy936KvuL1ne795V88553FVc5EJi/wQkXXOubBAt8Nf7P0WfcXtPdv79T27DWWMMcYjCwtjjDEeWVioyYFugJ/Z+y36itt7tvfrYzZmYYwxxiPrWRhjjPGoWIWFiPQUkZ0iEiMij2Xy/VIiMiP1+9+JSH3/t9J7cvB+R4jIERHZmPrvnkC00xtE5H0ROSwiW7L4vojIa6k/i80icrW/2+htOXjPXUTkZLrf74TMzissRKSOiCwVke0islVEHsjknCLze87h+/Xf79g5Vyz+oRVufwIuB0oCm4BmGc4ZA7yd+vUQYEag2+3j9zsCeCPQbfXS++0MXA1syeL7vYH56MZa7YDvAt1mP7znLsDcQLfTi++3JnB16tflgV2Z/G+6yPyec/h+/fY7Lk49i4K197fv5eT9FhnOueVkv0FWf+Ajp74FKolITf+0zjdy8J6LFOfcAefchtSvTwPb0S2Y0ysyv+ccvl+/KU5hkdne3xl/8L/b+xu4sPd3YZST9wswMLW7PlNE6mTy/aIipz+Poqa9iGwSkfki0jzQjfGW1FvEbYDvMnyrSP6es3m/4KffcXEKC6/t/V1I5OS9RAP1nXOtgC9J61UVRUXpd5tTG9BSDlcBrwOzA9werxCRUGAW8KBz7lTGb2fylEL9e/bwfv32Oy5OYVHc9v72+H6dc8ecc+dTD98F2vqpbYGQk99/keKcO+WcO5P69TwgRESqBbhZ+SIiIegH58fOuc8yOaVI/Z49vV9//o6LU1gUt72/Pb7fDPdy+6H3RIuqKODO1Nky7YCTzrkDgW6UL4lIjQtjbiISjv7//VhgW5V3qe9lCrDdOfdSFqcVmd9zTt6vP3/HAdlWNRBcMdv7O4fv934R6Qckoe93RMAanE8i8ik6M6SaiOwFngJCAJxzb6Pb+PYGYoB44K7AtNR7cvCeBwGRIpIEnAWGFOI/fgA6AsOAH0RkY+pj44G6UCR/zzl5v377HdsKbmOMMR4Vp9tQxhhj8sjCwhhjjEcWFsYYYzyysDDGGOORhYUxxhiPLCyMMcZ4ZGFhjI+IyPMisjjQ7TDGGywsjPGd1sBGj2cZUwhYWBjjO1cB3we6EcZ4g4WFMT4gIjWA6qT2LESknIhMF5ENhX0HRlM8WVgY4xtt0Fo9O0WkCbAGrcHV0Tn3SyAbZkxeWFgY4xutgR+AAcAq4F3n3B3OubOBbZYxeWOFBI3xARGZAXRHK/72c84tC3CTjMkX61kY4xutgc/QkuGFdWteY/6f9SyM8TIRKQucBtoBjYHJQGfn3IaANsyYfCg2mx8Z40dXofs+b3HOrRWRpkC0iIQ75/YFuG3G5IndhjLG+64Cfkw3mD0BWAlEpfY6jCl07DaUMcYYj6xnYYwxxiMLC2OMMR5ZWBhjjPHIwsIYY4xHFhbGGGM8srAwxhjjkYWFMcYYjywsjDHGeGRhYYwxxqP/Azqllp6vdPoiAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "# V0 is dictionary. V0(k)=log(k+1)\nV0 = {}\nfor k in k_grid:\n V0[(k, theta_L)] = math.log(k+1)\n V0[(k, theta_H)] = math.log(k+2)", + "execution_count": 14, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Step 5: iteration over value function" + }, + { + "metadata": { + "trusted": true + }, + "cell_type": "code", + "source": "def bellman(V0, u, f, k_grid, eps=1e-3):\n \n T = {}\n T[0] = (1, 1)\n t0 = time.time()\n d = 1\n i = 0\n \n while d>eps:\n \n V = {}\n C = {}\n K = {}\n \n i += 1\n \n for k in k_grid:\n for A in [theta_L, theta_H]:\n v = maximizer(k, A, V0, u, f, k_grid)\n V[(k, A)] = v[0]\n C[(k, A)] = v[1]\n K[(k, A)] = v[2]\n \n d = abs(dist(V, V0))\n V0 = V\n T[i] = (d, time.time()-t0)\n print('i: {0}, d = {1:.5f} ({2:.2%})'.format(i,d,(d/T[i-1][0])-1))\n \n print('i: {0}, d = {1:.5f})'.format(i,d))\n return (V, C, K, T)", + "execution_count": 15, + "outputs": [] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Shazam!" + }, + { + "metadata": { + "scrolled": true, + "trusted": true + }, + "cell_type": "code", + "source": "S = bellman(V0, u, f, k_grid)", + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": "i: 1, d = 19.71450 (1871.45%)\ni: 2, d = 12.85047 (-34.82%)\ni: 3, d = 8.91404 (-30.63%)\ni: 4, d = 6.43776 (-27.78%)\ni: 5, d = 4.77451 (-25.84%)\ni: 6, d = 3.61480 (-24.29%)\ni: 7, d = 2.78258 (-23.02%)\ni: 8, d = 2.16911 (-22.05%)\ni: 9, d = 1.70649 (-21.33%)\ni: 10, d = 1.35120 (-20.82%)\ni: 11, d = 1.07450 (-20.48%)\ni: 12, d = 0.85688 (-20.25%)\ni: 13, d = 0.68456 (-20.11%)\ni: 14, d = 0.54748 (-20.02%)\ni: 15, d = 0.43812 (-19.98%)\ni: 16, d = 0.35071 (-19.95%)\ni: 17, d = 0.28078 (-19.94%)\ni: 18, d = 0.22480 (-19.94%)\ni: 19, d = 0.17998 (-19.94%)\ni: 20, d = 0.14408 (-19.95%)\ni: 21, d = 0.11533 (-19.95%)\ni: 22, d = 0.09232 (-19.96%)\ni: 23, d = 0.07389 (-19.96%)\ni: 24, d = 0.05913 (-19.97%)\ni: 25, d = 0.04732 (-19.97%)\ni: 26, d = 0.03787 (-19.98%)\ni: 27, d = 0.03030 (-19.98%)\ni: 28, d = 0.02424 (-19.99%)\ni: 29, d = 0.01940 (-19.99%)\ni: 30, d = 0.01552 (-19.99%)\ni: 31, d = 0.01242 (-19.99%)\ni: 32, d = 0.00993 (-19.99%)\ni: 33, d = 0.00795 (-19.99%)\ni: 34, d = 0.00636 (-20.00%)\ni: 35, d = 0.00509 (-20.00%)\ni: 36, d = 0.00407 (-20.00%)\ni: 37, d = 0.00326 (-20.00%)\ni: 38, d = 0.00261 (-20.00%)\ni: 39, d = 0.00208 (-20.00%)\ni: 40, d = 0.00167 (-20.00%)\ni: 41, d = 0.00133 (-20.00%)\ni: 42, d = 0.00107 (-20.00%)\ni: 43, d = 0.00085 (-20.00%)\ni: 43, d = 0.00085)\n", + "name": "stdout" + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "K = S[2]\n", - "X = []\n", - "Y = []\n", - "Z = []\n", - "W = []\n", - "\n", - "for k in k_grid:\n", - " if k < 1.5*k_ss:\n", - " X.append(k)\n", - " Y.append(K[(k, theta_L)])\n", - " Z.append(K[(k, theta_H)])\n", - " W.append(k)\n", - "\n", - "plt.plot(X, Y, color=\"red\", linewidth=2)\n", - "plt.plot(X, Z, color=\"blue\", linewidth=2)\n", - "plt.plot(X, W, '--', color=\"gray\", linewidth=1)\n", - "plt.xlabel(\"$k$\", fontsize=14)\n", - "plt.ylabel(\"$k^{\\prime}$\", fontsize=14)\n", - "plt.title(\"Policy Function: $k^{\\prime}$\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "def shox(A, pi_H, pi_L, theta_H, theta_L):\n", - " \n", - " if A == 1.5:\n", - " pi = pi_H\n", - " else:\n", - " pi = pi_L\n", - " \n", - " x = np.random.binomial(1,pi_H)\n", - " \n", - " return A*x+(2-A)*(1-x)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Exploring the results" + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEbCAYAAAAmmNiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsnXd4HNW9979HvXdZzbZkyd2W5d7ANs0Uh+aQUN/QCUnu+3IJIaTcBN+QBC4hCSEhAXwNJGDs0G1DbIPjhruRLLlLttXrqsvq0u6e94+zZzQ7OzM7s1Vrz+d5eLB2Z2fPzsz5fc+vnHMIpRQGBgYGBgZaCPJ3AwwMDAwMAgdDNAwMDAwMNGOIhoGBgYGBZgzRMDAwMDDQjCEaBgYGBgaaMUTDwMDAwEAzhmgYGBgYGGjGEA2DUQUhpIoQcp2HzjWFEFJMCOkmhDzhiXO6CyHk74SQ36i8X0sImePLNrkLIeQ0IeQqf7fDwDcYomHgNjZD308I6SGEmAghbxNCYjR+ziMCocAzAPZQSmMppX/24vd4BEJIIoAMAGf93RY1pPeNUjqDUrrHj00y8CGGaBh4ilsopTEA5gJYAOAXfm4PAGQDOO3vRuggH8AFSumAvxsCAISQEH+3wWD0YYiGgUehlNYD2AZgJgAQQn5KCCm3hYjOEEJW215/F8B4AJ/ZPJRnRKeZTQg5QQjpIoS8TwiJkPsuQsg0QsgeQkinLURyq+i9XQCuBvCq7fyTFc5xDyGkyPZd5XJhFqXfYHuvihDytFJ7CSFzCCHHbJ99H4Dsb7ExC8Ap2+eiCCEbCCGfyHltTn77TwkhH0mOf4UQ8mfbvzMJIR8TQloIIZXi0J3t9/yEEHICQK9UOOTum9TzsP39Y9s16SWEvEkISSOEbLNdh3/bvCrVthiMUiilxn/Gf279B6AKwHW2f48DG93/2vb3twFkgg1Q7gLQCyBD+jnJuY7aPpMEFqr5nsx3hgK4AODnAMIAXAOgG8AU0TF7ADyq0u4f2do619a+fAA5Msc5+w2y7bW1qxrAD23t/RaAYQC/UWjPWgBrAEwAcMz2b6L3t4N5WH0A4mx/BwNoBLDY9huKADxr+2wugAoAN4h+T4ntPkY6u98qfx8GkAYgC0Cz7ffMARAOYJftt6m2xfhvdP5neBoGnmITIaQTwH4AewE8DwCU0g8ppQ2UUiul9H0A5wEsdHKuP9s+0w7gMwCzZY5ZDCAGwP9QSocopbsAfA7gHi2NJYSkghmueymlx2ztO0kprZIeq+E3KLV3MZiB/xOldJhS+hGAr1WalQ+W09gF4FeU0l9RmxXW89sppdVgRvp22/HXAOijlB4GCx2mUkqfs322AsD/Arhb8ntqKaX9Km11xl8opSbKPM99AI5QSosppYMAPgUTEC1tMRhlGDFLA09xO6X039IXCSH3A3gKQI7tpRgAKU7O1ST6dx/YKF5KJoBaSqlV9Fo12MhWC9cBOEkpPe7sQA2/Qam9mQDqJYa/WuE7CFhILxfAHymlm1WapOW3bwATkXcA3Gv7G2BeSKZN4DnBYIadU6vy3Voxif7dL/N3jMa2GIwyDNEw8BqEkGywkeO1AA5RSi2EkBIAxHaIO+vyNwAYRwgJEhnP8QDOafx8EoBOZwdp+A1qNALIIoQQkXCMB1Auc+wE2/+vA7CTELKTUlqocF4tv/1DAH8ghIwFsBrAEtvrtQAqKaWTVNrt7L54aj8FLW0xGGUY4SkDbxINZmBaAIAQ8hBsCXIbJrCRtSscAcstPEMICbUlsG8B8E+Nny8GcCUhpIAwJhFCprnwG9Q4BMAM4AlCSAgh5JtQDs3NAnCCUnoSwHcBfEoIyVA41ulvp5S2gOV03gYzzLyM9yiAi7ZkdyQhJJgQMpMQskDjbwLcu29iPNEWAx9jiIaB16CUngHwBzDjaQKL2R8QHfICgF/YKoCe1nnuIQC3ArgJQCuAvwG4n1JaqvHzBwH8BiwX0A0WZ4904Tc4a+M3ATwIoAMsif6JwuH5AE7YPrcJLCm+Sa5yTMdv3wDmuWwQfdYCJjCzAVTaPr8OQLyW32TD5fsm+R2eaIuBjyHyeTYDAwMDAwNHDE/DwMDAwEAzhmgYGBgYGGjGEA0DAwMDA80YomFgYGBgoJlLbp5GSkoKzcnJ8XczDAwMDAKGoqKiVkppqpZj/SIahJBxYDNV0wFYAayllL4iOeYqAJvBSvEA4BNK6XPOzp2Tk4PCQqU5UQYGBgYGUgghsisVyOEvT8MM4EeU0mOEkFgARYSQHbaaeDH7KKU3+6F9BgYGBgYy+CWnQSltpJQes/27G2xlUK1rBhkYGBgY+Am/J8IJITlgK14ekXl7CSHkuG0d/hkq5/guIaSQEFLY0tLipZYaGBgYGPhVNGyby3wM4ElK6UXJ28cAZFNKCwD8BcAmpfNQStdSSudTSuenpmrK5RgYGBgYuIDfRIMQEgomGO9RSh3W46GUXqSU9tj+vRVAKCHE2ZLaBgYGBgZexC+iYds74E0AZymlf1Q4Jt12HAghC8Ha2ua7VhoYGBgYSPFX9dQVAL4D4KRtbwKAbV05HgAopa+DbY35fUKIGWzTlrsVdjEzMDAwMPARfhENSul+ONnEhlL6KoBXfdMiA4MRqqqqcPToUdx5553+bopBAHL06FH09/djxYoV/m6KV/B79ZSBwWji008/xezZs3HXXXehvr7e380xCCCsViuee+45LFmyBA888IC/m+M1DNEwMLDx1ltv4Y477kBQEOsWnZ1Od4M1MADABOP73/8+1qxZg/j4+Ev62TFEw8AAwIYNG/DII49g5cqVePPNNwEA3d3dfm6VQSBgtVrx+OOPY+3atfj5z3+OH/zgB+ju7salmoI1RMPgsqewsBAPP/wwli9fjs2bN4PP9bl4UTp1yMDAHqvVikcffRTr1q3DL3/5S/zmN79BbGwsrFYr+vr6/N08r2CIhsFlTVNTE1avXo309HR89NFHiIiIQFxcHADD0zBwzrPPPou3334ba9aswXPPPQdCyCX//BiiYXDZMjQ0hG9961toa2vDpk2bBA8jNjYWwKXb6Q08w8cff4zf/va3eOSRR7BmzRrh9Uv9+bnk9tMwMNDKs88+iwMHDuCf//wnZs+eLbx+qXd6A/epq6vDI488gkWLFuGvf/0rbPOQAVz6z4/haRhclpw/fx5//OMf8eCDD+Kuu+6ye493eiOnYSAHpRSPPvoohoeH8d577yE8PNzu/Uv9+TE8DYPLkqeffhrh4eF44YUXHN4LDw9HWFjYJTtSNHCPDz/8EF988QVeffVV5OXlObx/qec0DNEwuOzYv38/tmzZghdeeAHp6emyx8TGxl6ynd7AdSwWC9asWYMZM2bg+9//vuwxl3p4yhANg8uONWvWIC0tDU888YTiMYZoGMjx/vvvo7S0FB988IEwCVSKIRoGBpcQe/fuxa5du/Dyyy8jKipK8bi4uLhLNiZt4BpWqxW/+c1vkJ+fjzvuuEPxOB6eulSfH0M0DC4rXnrpJaSlpeHxxx9XPc7wNAykbNu2DWfPnsX69esVvQwAiI6OBiHkkn1+jOopg8uG6upqbN26FY899hgiIyNVjw0k0RgYGMB1112HnTt3+rsplzR/+MMfMHbsWKerHxNCEBMTEzDPj14M0TC4bFi3bh0A4NFHH3V6bGxsbMCEFz777DPs3LkT+/fv93dTLllKSkqwe/duPPHEEwgNDXV6fCA9P3oxRMPgsmB4eBjr1q3DqlWrkJ2d7fT4uLi4gBkpvvPOOwCArq4uP7fk0uXNN99EeHg4HnvsMU3HB9LzoxdDNAy8zpEjR/D111/7tQ27du1CU1OTJi8DCJzwVHNzM7Zt2wbAO6JBKcWGDRvQ0dHh8XMHCkNDQ9i4cSNuv/12JCQkaPpMoDw/rmCIhoFXoZTizjvvxNNPP+3XdnzwwQeIi4vDjTfeqOn42NhY9PT0wGq1erll7rFx40ZYLBbExsZ6RTSOHj2K++67D++//77Hzx0obN26FW1tbbo2VrqURcOonjLwKkeOHEFNTY1QhugPhoaG8Omnn+K2225DRESEps/ExsaCUore3l6h7n408tFHH6GgoACRkZFeEY1NmzYBANrb2z1+7kDhnXfeQVpaGlauXKn5M7GxsWhpafFiq/yH4WkYeJUPPvgAgH/j7Tt37kRHR4euPb8DYSmI5uZmHDhwAKtXr0Z8fLxXReNyzZf09fVh27ZtuOuuuxASon2MbeQ0DAxcwGq14sMPPwTg361TP/zwQ8THx+P666/X/JlAmNX72WefgVKK2267zSuiUVZWhtLSUgCX79a3e/bswcDAAG6++WZdn7uUw1OGaBh4jSNHjqCurg6TJk1Cd3c3LBaLz9tgtVqxdetW3HTTTQgLC9P8uUAQjc2bNyM7OxsFBQVeEY3NmzcDABISEi5bT2Pr1q2IiorC8uXLdX3OEA2DUc327dvx8MMP+7sZDmzfvh1BQUG4++67AfhnWYXi4mKYTCasWrVK1+dG+1IQvb292LFjB26//XYQQrwiGlu3bsXs2bMxadKky9LToJTiX//6F6699lqH5c+dERcXh6GhIQwODnqpdf7DEI1LgNdeew1vv/02hoaG7F43m80oKSnxU6uAHTt2YP78+ZgwYQIA/8TFt27dCkIIbrjhBl2fG+2exv79+zEwMICbbroJABAfH4+BgQGHZ8BVenp6cPDgQVx//fWXradRVlaGqqoq3QMOYPQ/P+5giEaAY7FYsHfvXgCORvm1117DvHnz/FLF0dXVhaNHj2LlypWIj48H4J+4+NatW7FgwQKMGTNG1+dGe6ffs2cPQkJCcMUVVwCAcI09Zdy/+uorDA8PC/fvchSN7du3A4AgzHoY7c+POxiiEeCUlJQIHVo6AevLL7+E1WpFc3Ozz9u1e/duWCwWrFy5UpgQ5WvD09bWhiNHjvh9pPjvf//b6QKJnN/+9rd46623nB63e/duLFy4EDExMQA8Lxo7duxAREQErrzySiQkJFyW4ak9e/YgLy9P0woCUgzRMBi17NmzR/i3uGNbLBZ89dVXABzFxBfs2LED0dHRWLJkid88jb1794JSqqu+nuPJnMbrr7+OtWvXOg0dmc1mvPDCC9i4caPqcd3d3SgsLMTVV18tvOYN0Vi2bBkiIiIuS0+De/BXXXWVS58f7TkxdzBEI8DZvXu3sKm9WByKi4uFB9YforFr1y6sWLECYWFhfvM09u3bh4iICMyfP1/3ZyMjIxEUFOT2SJFSin379gFwfh9KSkrQ29vr9Lh9+/bBYrF4TTQaGxtx+vRpQWwTEhLQ19eH4eFht88dKBw/fhydnZ1211gPhqdhMCoxm83Yt28frrzySgD2I/ndu3cL//a1aLS1taG0tFRol788jX379mHRokW6Sm05hBCPlE2eP39eCA9qEQMtx+3ZswdhYWFYunSp8JonhfnAgQMAIIyyPe3FBAK8/xii4YghGgHMmTNncPHiRdxyyy0A7I3Nnj17kJaWBsD3xvrw4cMAgCVLlgDwj9Hp7u5GcXExli1b5vI5PLF7HxcCwHOicfDgQcyfP99uTxBPXuODBw8iIiICBQUFdue+nPIae/bsweTJk5GZmenS543wlMGo5MiRIwAgLMLHO7XVasX+/ftlxcQXHDp0CMHBwViwYAEAIDQ0FFFRUT41OocOHYLVanVLNDyRANYqGpRSYT+Mzs5OxYUSh4eHUVRUhEWLFtm97mnRWLBggeCh+Su86C+sViv27duHFStWuHwOfs0uRaE1RCOAOXr0KJKSkjBz5kyEhYUJRun8+fO4ePEili5ditjYWJ+LxsGDBzF79mxER0cLr/k6mbpv3z4EBQUJ3o4rJCUlub1Q3759+zB9+nQA6qJRVlaGlpYWTJ8+HZRSxRHqqVOnMDAwgIULF9q9zke27l7jgYEBHDt2zO66XW6eRnl5Obq6uhyEWQ8xMTEICQm5JBd6NEQjgDly5AgWLlwIQggSExOFTl1YWAgAmD9/vt3rvsBsNuPo0aMOxtrXZZuHDh3C7Nmz3VqhNjEx0S3BbW5uRkVFhbBukdq5Dh48CABOj+XepVQ0QkJCEB0d7bZoFBUVYXh42Gv5kkBA3H9chffJS3EfEkM0ApSenh6cPn1aMB4JCQnCA1pYWIjIyEhMmzbN5w/uyZMn0dvba2d0AN96GpRSFBcXY968eW6dx11Po7i4GABw3XXXAVAXjcLCQsTFxWHx4sWqxx49ehQpKSnCLHsxnrjGXLzkPI1AFQ1KKdavX4++vj5NxxcWFiIiIkLwEF3FE57qaMQvokEIGUcI2U0IOUsIOU0I+U+ZYwgh5M+EkAuEkBOEkLn+aOtopaioCFarVXChpZ7GnDlzEBISYicmvuDo0aMA4ODa+9LTqKmpQXt7O+bMmePWedwV3GPHjgEAFixYgOjoaNVzFRUVYe7cuUhKSgKg7mlw71KKJ0Tj8OHDyM3NtZtBH+jx+a+//hrf+c53hGXenVFYWIjZs2dr2gtcDcPT8CxmAD+ilE4DsBjAfxBCpLJ+E4BJtv++C+A13zZxdMONM082c3GwWCwoLi4WXGu18NQTTzyBp556yqPtOnbsGBISEhxGwr70NPgIf+5c98YZSUlJ6Ovrw8DAgMvtyM3NRUJCgqoBGRoawvHjx4VwIiAvGhcvXsTZs2cVY+2euMZyHhoP8QWqp8GfBy3L6VitVhw7dsyt0BTH8DQ8CKW0kVJ6zPbvbgBnAWRJDrsNwDuUcRhAAiEkw8dNHbUcO3YM2dnZSE1NBTAyki8rK0Nvb6/Q8dWM1QcffGA3o9wTFBcXY86cOQ4jYV8ueldcXIygoCDk5+e7dR5no34t7eDejtp9OH36NAYHB52KRklJCSiligbNXdG4ePEiKisrhVJbTnBwMOLi4gLW0zh+/DgAbbsPnjt3Dj09PW6HNgFDNLwGISQHwBwARyRvZQGoFf1dB0dh4ef4LiGkkBBSeKlusSjl5MmTdkaRexTSJJ6SsTKZTDCZTB59qIeHh3HixAnZEX58fLzPjM6xY8cwdepUREVFuXUeNQPujK6uLly4cEGTaEgLF5S+kxu/2bNny57HXdE4ceIEADiIhifO7U/4dWtra3N6rCeS4BwjPOUFCCExAD4G8CSlVFpj6Bi0BajceSilayml8yml8/nI+1JmaGgIZWVlmDVrlvAaD0+VlJQgMjISU6ZMEV7v7e11WAJCT0fSSmlpKQYHB2VzCfHx8RgaGnI51KMH8QjfHbin4Yqw8uurVTQSEhKQm5uL6OhohISEKIpGSkoKMjLkHW53DTtvs5JoBKKnYbVaBTHUch9LSkoQHh6OqVOnuv3dSUlJ6Ozs9MvmY97Eb6JBCAkFE4z3KKWfyBxSB2Cc6O+xABp80bbRTmlpKcxms4OnYbFYcOjQIUyfPh3BwcHC64BjEpMbiJ6eHo/twaCWS/BVMrW5uRn19fVu5zMA9zwN6bXgonHo0CHcd999dpP3ioqKMG/ePBBCVEs1jx8/joKCAtkkOOAZ0UhMTMTYsWMd3gvUPTUqKyvR09MDQNsA6eTJk5gxY4au/cCV4M9PIF43NfxVPUUAvAngLKX0jwqHbQFwv62KajGALkppo88aOYrhIyexaHCjXFhY6CAmgKPh46IBeM7bKC4uRlRUFCZPnuzwnifKNs1mM06ePGn32m233YYnn3xS+NtZCEcP7ngaJSUlSEtLQ3p6OoAR0fjnP/+JDRs2CElZi8WCU6dO2bVXTjTMZjNOnTol6wWIP9ff3++yN6cmSoHqafDnITU1VdN9lIZ93cGd52c04y9P4woA3wFwDSGkxPbfKkLI9wgh37MdsxVABYALAP4XwA/81NZRx8mTJxEaGmpnnLk4mM1mu7CVmqcRFMRuv6dE49ixY5g1a5bg5YjxhKfx9ttvY86cOcICgJRS7Ny5UxjVAyypDAAzZ850+Xs4/Nq50ulPnz5t14bExET09vYKOym2trYCYLOPBwcHMWPGDLtjpaJx/vx5DAwMqIpGSkoKANfup8ViwcmTJxXFNlA9Df6cL1u2zOl1aWtrQ2Njo8dEw53nZzTjr+qp/ZRSQimdRSmdbftvK6X0dUrp67ZjKKX0PyileZTSfEppoT/aOho5efIkpk2bZldHzo0yIO+BiI3Q4OAgSktLhXJdrUamtbVVWB9JCqUUJ0+eVDRqnhCN4uJiWCwWNDYyh7O2tha9vb2CAQaYsU5JSdG9U58c8fHxIIToDk9ZrVacOXPGQQiAkVJpfs25yDkTDbV8A4eLhvh6aKW8vBz9/f2q9y8QPY0TJ05g8uTJyMrKcmq8uRfraU/jUkuG+716ykA/ci60kmjIhafOnDkDs9mMa665BoD2kdCLL76Ia6+9Vjax19LSgo6ODkybNk32s8nJyQDc82rOnj0LYMQoSv8GmBEWG2B3CAoKQmJiou6RYk1NDXp7e2VFg4eOeJu5aIhnHyuJRmhoqOL1Bdy7xmfOnAEAxWuXnJwszAMKJEpLSzF9+nQkJyejq6sLZrNZ8Vi5sK87GOEpg1FBZ2cn6urqHB5sbpRSU1OFJdHFr0tFAwCWL18OQLuROX36NIaGhmRHTmVlZQCgWHXCR8HulETzdnODy/9ua2sDpRSUUo+KBuBa2aSS9yBG7Gnk5OQI27YqfeeJEycwdepU1b1B3PE0SktLAajfP0ppQBnA4eFhXLhwAVOnTtU06j958iSSk5OFPJS7uFNIMZoxRCPA4MZZui4O9zSUPBBxaKGsrAxBQUHCulVaRYMbFjnD78zoJCYmIigoyCWDBrDRGs9lSD0Ni8WCrq4u1NXV4eLFix7JZ3BcmaB16tQpAOqiIfY0pCLH59yIK6zOnTvntAyUexquikZWVpbiAo+8lN3V++cPKioqYDabMXXqVOHaqN1L7sErVafpxchpGIwKuGhIK5QSEhIQHBxslwQHgIiICERERNiNds6dO4ecnBwkJiYiLCxMk2gMDAygqqoKgLJoREZGYty4cQ7vAWxWcVJSkstGhwsE4Ohp8NfkRvju4kp46vTp08jKyrILGXIDEhsbi8jISLS1tcFsNqOsrExWNKxWq7Dr29DQECorK4W5N0q4E54qLS1VFSV3vBh/IR7IOLs23Ev1VGgKAMLCwhAdHW2IhoF/OXfuHIKDg5Gbm2v3enBwMLZs2YJnnnnG4TPScMe5c+cwZcoUEEKQnJysycicP38elLK5lXKGo7S0FJMnTxYqsuRISUlxOTwlFQhKKc6cOYPx48cLr3lDNJKSklwKT8kJAW9bSkoKWltbceHCBQwNDSkey73DiooKWCwW2VJmMaGhoYiLi9Nt2CmlmkUjkFZc4KIxZcoUp/mFhoYG9PT0eGRSnxhXnp/RjiEaAUZZWRlyc3NlV+BctWqV7GxhbqQAZiDOnTsnGKDk5GRNIyHeAQFlT8NZh0tNTXXL04iMjERubi5aW1vR3NyMjo4OYWc+LhppaWnCqNIT6PU0rFYrzp49qyoaXKiVyoOlsXAl71KOlJQU3Z6GyWRCV1eX6v0LxPBUaWkpMjMzERcX59TTOH/+PABg0qRJHm2DK57qaMcQjQBDbPC1kpqaKhj6hoYG9Pb22omGFiOjJho8dOVMNMTipZczZ85g6tSpGDNmDFpbW4VwlVg0zp496/YeCFL4SFFp+1Up1dXV6O/vd2hHWFgYnnnmGTz88MPCdeBiIA07SXMT586dA6BNNJKTk3VfY/GIXO284jYFAuKBjDNPw1uiYXgaBn7FarXi/PnzTmPbUsaMGSMkkbkB4ufQIxrZ2dmIjY11EI0LFy7AarU6bZc74amzZ89i2rRpDgb3iiuuAAAh3OONkaI4v+CMCxcuAJA3Pi+++CKWLl0qXPPy8nJkZGTYbYsLQJhjIr5nqampDsl0OVzxNJwVMQAsNxYTExMw4SkecuPPZHx8PIKDg1U9jbCwMMWcnKsYnoaBX6mrq0N/f79LngY3QNJQhx7RmDp1qmyISYvR4e1oa2vTPGrnDAwMoLa2FpMnTxZEo7y8HOHh4Zg2bRrCwsJw4cIFtLa2YuLEibrO7Qy9tfbl5eUAoNoOcU5D7jipaJSVlWkeKLjizZWWliI6OhpZWbKLSAu4E170Nc3Nzejs7BSeSb6ml5qnkZeXJ7uagTtcisujG6IRQEi9BK2MGTMGXV1dGBoawrlz5xAVFSUYiKSkJGGegxKUUpSVlQmiIR1tanXtU1JShPJYPVRVVYFSiry8PMEonj9/Hrm5uQgODkZKSoqwd7anRUNv1dCFCxcQGRmpuBItMDJRrqysDHl5eQ7vJyQkICQkxM7T0DpQ0DoIEKOliAFwL7zoa+T6itq1OX/+vMe9VGDE81PrX4GGIRoBhJ7YthiexGxpacG5c+cwadIkwUAkJyfDbDarhl8aGxvR29uLSZMmyYpGRUUFxowZYzdBTQ5XK3D46J2LxsDAAE6cOCEIREpKirAEhJwRdgc+UdJkMmk6/sKFC8jLy3NaRcbPKSdyQUFBgnfY1dUFk8mk+Z6npKSgu7tb18rFFRUVmgymO+FFX1NRUQEAdlWGSqN+q9WK8vJyr4hGWloahoaGAnIJFiUM0QggysrKEBMTozqKlUMc7pCOqLRMeqqsrATAOqDcaLO8vFyTsXa1AkdsALjBraioEL6TezDA6BENNcTVXUqeUVpaGpqbm3UPFPTO1bBYLKiqqnLYnleOQApPVVZWghCC7Oxs4TUlT6Ourg4DAwNeEw1A+/MTCBiiEUBw46x3xioXDZPJhKqqKrvRlxYjIzba3NMQu9tiA66GqxPEysvLER0djTFjxgjnAGDnaQCQTSq7i55Ob7VaUVFR4TREJv4NSteNFy9wwdYqhnqvcUNDA4aHhx3m/SidO1BEo6KiAmPHjrVbdkWpssxblVOAIRoGfkbriFAKH+GXlJRgaGjI7hxaSim54eJ7kg8ODgob2wwNDaG2tlaz0XH2XXJUVFQgNzcXhBBV0fB0PgNgVUNxcXGaOn1jYyP6+/udtkPsaTgTDT4LPycnR1N79XoafECg5blKSUlBb28v+vv7NZ3bn1RWVjo8k+np6TCZTA75BUPvbMA/AAAgAElEQVQ09GGIRoBAKUVVVZVm4yGGexo8WSzuTHxxtqamJsXPV1ZWIisrCxEREQ4hpqqqKlitVl3hKVdyGuJQFEf6mqdDU5y0tDRNnZ6X22r1NJKTkxXLaMWeRlJSEuLi4jS1Va8w8wGB1vCUnnP7k4qKCofflJ6eLptf4JV4zqrHXMEQDQO/0drait7eXpc8jfj4eISGhgqiIT6HFtEQd0BpMlsu4ahEVFQUIiIidBkdSqngaYi/Pzg4WIhXe9PTALSLhjhhr4YWkRszZgx6e3uFVXC1otfTqKysRFBQkLAcixqBsv7UwMAAGhoaZEUDcHzWq6urkZ2d7bR6zBWSk5MRHBxsiIaB79EbphBDCEFqaioaGxsdkoMxMTGIiYkRNjaSQ+zqS70FrYaSt0NvXLyxsREDAwPC+RMSEhAUFIScnBxhKZXRIhoXLlxAaGio0wliUVFRCA8PV20v9w6PHTvmkmho9ebkYv9KBIpoVFdXA3AcyCiJhqsevBZ4JZwhGgY+h4uGK54GMGLs5QxERkaGomgMDg6irq5O+F5piKKiogKRkZGa9yCQK9lVQ+rJBAcHIzEx0U6kZsyYgYiICMyfP1/zefWgx9PIzs5GSEiI6nGEEDz33HN4/PHHFY/hoqHXuwwPD0dCQoIwx8MZcrF/JVwNL/oapTyNM0/DW2h9fgIF9afbYNQgTka7AjdCcgYoPT1dMTxVU1MDSqmDaIg9DZ6k1oLeWn85T+ahhx6yW8J61qxZ6Ovr89g+CFLS0tLQ3t6O4eFh2YUiOTU1NZpHrHKrEYsRb1erdxScmZmJhoYGTcdWVFTgxhtv1HRsoKx0Ky4RFyMnGv39/WhubjZEQweGpxEgVFVV6UqISuHGXm5UqeZpSDtgTEwMIiIihE4gzjdoQU2g5KiqqnIIqb300ku4//777Y7zlmAAI8lMZ6P36upqTbkBLbgjGhkZGZpEo7+/H42NjZo9mcTERISGhuq6f/6goqICERERDt5vfHw8wsPD7drPQ1neCk8B6qJRXFys2SscLRiiESBUVla6HJoC1D0NNdGQuvqEEGEkSynV3a7MzEw0NjZqXn+qpqYG6enpmmLu3kJLBczg4CAaGxs9NmLlIg/oD0lq9TR4yFOr6AcFBWkWJH9SWVmJnJwch4EEIQTp6el2zzoXDV94GnJLiaxcuRK//vWvvfbd3sAQjQDB3WSdmqeRnp6Onp4eYe6FmMrKSoSFhSEzM1N4LSsrC/X19ejq6kJPT4+u0XVWVhaGh4c1J1Nramo8Nnp3FS2iUV9fDwAea2tUVJSwLItegyYWdTVcKa7g9340U11drfibMjIy/OJpDAwMOCzV09XVhba2NsGbDxQM0QgA3JmjwXHmaQDyZbfcaIvLETMzM1FfX4/a2loA0LWcNBcfrYantrbW48tV60WLaHhjxMpnwDtb00tKZmYmhoeHnZbd8vunR+j4vR/NqD0z0vBoVVUVQkJCdC/Nowel54df/9F+PaUYohEAmEwmDAwMuBWeuuGGG3D//fdj7ty5Du/xDiMXoqqtrcXYsWPtXsvKykJDQ4NLosEnUGkJcVBKA8bTqKmpAeA5TwNgBk5PvojDhdnZNa6trRVCTlrh9360Mjg4iObmZs2iUV1djXHjxnl8SXQxSs9PXV0dgMATDaN6SgeUUlBKvTIJSA1PGKRx48bhH//4h+x7ahP8amtrsWLFCrvXMjMz0dfXh1OnTgnn1ooeT6O9vR39/f1+F43o6GhER0dr8jSkAusOL7/8sktLaotFY9asWYrH1dbWIjMz02mJsPTcFy9eRE9Pj24PyBdwQ6wmGq2trUIlnDfnaHCceRotLS0YHBxEeHi4V9vhKQxPQwf33nuvQ9WOL3DWEdxFydOwWCyor693+F7uLRw+fBjBwcG6RqoZGRkghGgarXKx9Hd4CmAdX61qqKamBhkZGR7t+AsXLsSiRYt0f46LhtqETcC10J8eT9EfcEOsJN7p6emglAplw96eowGMiIb0+eFtBUbv9ZTDEA0dFBUVobCw0Offy0XDk6NYMcnJyQgJCXEwMk1NTbBYLIqiceTIEWRkZOhy7UNDQzFmzBhNnoY3Qj6u4qwiyZPltu7CRdyZIaqrq9P9TPF7P1pDKlo8DYA920NDQ2hoaPC6aKSmpiI4ONjhfohFY7ReTzkM0dAIpRT19fXCZDdfUldXh/DwcLvVUT1JUFCQ7EhaSazE4Q9XvACtJaGu5Ey8xbhx4+w6uZSamhqvGx+t8GdF7RpTSl3yNLTmS/yFs2dGLBq8wszbz1dwcDCysrIcnp+6ujph3pUhGpcgnZ2d6OvrQ39/v+7tNN2Fjwi9OYFNbq6GUgcUl9+60uG0lm3W1NQgPDzcbs6Cvxg/fjxqa2tl55eMloS9GLEwV1VV4emnnxY2qgJG8kWuioba/bv66qvxX//1Xy602n1qa2uRlJSEqKgo2fe5aDQ2Ngq/wRur20oZP3684DlzamtrhfAjH6AFAoZoaETcSdRGnN7AlTCCXuRG/0qiERkZKSzp7W1PY+zYsT4vPMDFi4Atyc8ZP348hoeHZZPhLS0tGBgYGDWeBmA/K/zjjz/GH/7wB5SVlQnvu+rFxcbGIjY2VvH+UUpx5MgRHD582MWWu4cz7ykzMxNBQUGoqakR+rTH+1Z9PSCxEVLR4J7ezJkzERUVZXgalyLimyodMXgbX4jG+PHjhQogTm1tLaKiomT3fOCjM1c9DV4xoobPR++NjcCTTwLjxgG33Wb3Fv+dcgMGZ8lXfyAWZv5/8f11J/Sn5il2dXWhv79fmDjoa+RKxMWEhoYiKysLVVVVnvc0SkqA73wHmDABkHha48aNQ11dneCp8sjFuHHjAmLCpBhDNDQidh99KRpWqxX19fVeN0g5OTm4ePGi3QY1vAPKhcV4R3OlXVqre3wmGk1NwFNPATNmAEFBwO7dzNsQwdshd++5UfZFmEMr4uVauEESi4Y7xRVqE/z467W1tXbhMF9RV1fnVAizs7NRXV2N+vp6REZGIiEhwfUvrK0FnngCyM8Hbr6Z/f+NN2SfH7GnKhbtsWPHGqJxKcJvalhYmE/DU62trRgaGvK6aPDQiniEqNYBueF3daQKqCdTLRYLGhoavPu7Dx0CrrgCmDIFsFiA06eBP/4RmDoVkCz5oOZpcPET53r8zdixY2GxWOxi9+J7W1tbi5CQEKEcVA9qE/z468PDw04HBZ6mr68PbW1tTp/JnJwcVFVVoa6uDllZWa7lCnt7gTVrgNmzgZgY4O23gaoq4JlnmKfq5PkRe6dZWVlGTuNSpL6+HqmpqbIJLW/i7XJbDp/gJA1hKHVAd8NTgHryr7m5GVar1XuG+PPPgVtvBf7v/wWam4FXXgH4fJPISMBsBoaHhcMTExMRHR0t3PvOzk7cddddMJlMaGhoACHEJQPsLfhM8srKSsXwVFZWlkszobloyHkS4hGzNNzpbbTOZ8rOzkZdXR2qq6td61cnTwLTpgHnzwPFxcDzzwPz5wN8kmRsrINoSD1VsafBr6fWRTz9jd9EgxDyFiGkmRBySuH9qwghXYSQEtt/z/q6jWLq6+uRlZV1yYoG9zR4RzebzWhsbFTsgHfddRd+/OMfa958SQwXKLWF2rw2eh8eBn76U+Dxx5lw3HMPIJ2QRwgbPYo6PiHE7t4fPnwYH3zwAXbs2IGGhgakpaXpmlntbfiSMxUVFYqehqulphMmTMDw8LCstyF+zV+i4ayv5OTkwGKxoKSkRH9IsagIWLkS+N3vgA0bALnwqQbRaGhoQFBQENLT0zF27FgMDw+P+n1KOP70NP4OwNnuL/sopbNt/z3ngzYpwpPRzur1vfG9gPdFIyUlBZGRkYJh4fFwpU41c+ZM/O53v3PJtY+Li0NKSoqwwZIc3Ph4dCE5i4UlKo8dY0lLtdnWsbGAZNVf8b3nolZRUYGGhgb/h6b27AGGhoQ/s7OzQQhBUVERBgcHQQixM+J8EOQK3IuRu3/19fVCuauvk+Fac0t8gDQwMKDvGqxfD9x4I/D668DddysfJ/PsJCQkIDo6Wnh++EAjODjYTuADAb+JBqX0KwDt/vp+vYg9jYaGBgyLQhfepK6uDiEhIXab8ngDQghycnIEw+LRkX5fH4sBi8jLy1PtJPz7PSoaP/whS3pv2QI4m/uhMFoUjxQBZjj9LhoffABcfTVw9KjwUnh4OLKysrB//34AbEvcxsZGoWKtqalJ+7Vtt++mfBdFufvX0NCA3NxcpKam+tzT0DrQEJdGaxaNt94CfvlLViRx++3qx0q8VMDRU21sbBTaya+n2iBqNDHacxpLCCHHCSHbCCEzlA4ihHyXEFJICCn0hos3MDCA1tZWQTSsVqvPZsTyZJ0v5ipkZ2fbeRqAB4x2fz+wYgVLMIvIzc1V7ST8+10Jf8ny+uvAzp3A5s1ARITz42VEY9y4cTCZTMKGS8CIp+HNpbVVOXoU+I//ACZNcmhvbm4uSkpKAABLly4FwMIjfO8UTdf2/HmW2L1wQXiJrwqr5GlkZmbaPUu+orGxEdHR0YiNjVU9TlyRp8mD37UL+NnPgO3bgZkznR/PPQ3JyhFST5U/MxMmTAAhBBdE13g0M5pF4xiAbEppAYC/ANikdCCldC2ldD6ldL43Zg9zgeDhKcB3Zbe+HMWKPQ2+pIhbxpBS4LvfZQZHMos+Ly8PNTU1ih5bY2MjUlJSPLNj3/79rNJl82YgPl7bZ2RGi9zY1NXVCaJRVlaG5uZm/3gaLS3At74F/O//AgUFDu2dMGGCkFzlolFdXa19QGCxAA89BAwM2N2/kJAQZGdnK3oaWVlZQlmrLxEbYjXEW8E69TS6uoD77wfee49V2WkhJAQIDWUDJhFST4M/M+Hh4Rg/frwhGu5CKb1IKe2x/XsrgFBCSIo/2iKeBKQWz/UGmsII584B77zj9ndlZ2ejra0NPT09aGxsBCHEvbDY5s0scfjcc7KjYKvVqii+Wg2AU9ragHvvZeGFiRO1f07G0+BhjcrKSsHwtrS0gFLqe9GgFHjgAZbIv/12IC7OYW6AeP+VxYsXA2CioXlA8MorbN7KihUO1yIvL8+hD1gsFjQ1NSEzM1MYgPhynTaxIXYGv5dOReOnPwW+8Q3guuv0NUbh+TGZTLh48SJMJpPd9c/LyzNEw10IIenElmUlhCwEa6tvF32yIR6ZTZgwASEhITh37pzPvls1jEAp8IMfAGvXOr739dcs8asRcdktH+mHhobqbLGN/n6WQ3j1VSAtzcGgOYvjeizk89hjbDT+jW/o+5xMp588eTIA4Ny5c2hsbESEKMylaqxMJuCzz7R97/79wNmzzo/bvBmoqQF++1v2t4xo8AFOcnIy8vLyEBwcjKqqKm2hv7IyVkr69ttAQoLsuaX3rrm5GRaLRfA0BgYG0Nzc7Py3eAg9A42cnByhekmRffvYfXvxRf2NUXl+Dhw4AEqpXVsnTpx4eeQ0CCHqwUP1z24EcAjAFEJIHSHkEULI9wgh37Md8i0ApwghxwH8GcDd1NfLy9rgszjT09MREhKCvLw8u3V8vMXg4CDa29vVH+zPPwcKC5kbbf9h4MEHWRxfI+IJfroSpXK89BKwYAFwzTWyBk0tmQp4yNP48ku2htQLL+j/rEwFTGZmJqKjo1FWVobGxka7vS5UReMnP9FmePr7meewSTESyxgcBJ5+Gnj55ZG5ASqeRlZWFkJCQjB27Fg7L0nx+lIKPPww8KtfAXl57FrI3L/29na7FQS4R56ZmSkIli9Hz3oGGrfeeivuvvtu5TLpgQE24PjLX5ho6kXm+eGisXfvXgBwEI3W1la766mVTz/91GH/cW/irqexV/qCWsJaDKX0HkppBqU0lFI6llL6JqX0dUrp67b3X6WUzqCUFlBKF1NKD7rZVpdpampCcHCwsDT55MmTfeJp8FGaomiYzcCPf8yMoqRT4/nngawsRzFRYaItfMNH0i4b7ZYWFtr43e/Y3zIGjW9YJDe6slqtQpjDZSwWNjv3f/7HcR6GFmRGioQQTJ48GUeOHMHg4CCuuOIK4T3Fth4/Dmzc6Hh/5Pjzn9n6V86Ofe01Nmt95UrV9nLDzUMwU6ZMQWlpKZqamhAaGoqkpCT583/8MROw73+f/a3ixYhFX1zyOn36dADAWS1ekwfo7u5Gb2+v5mf23nvvxXvvvad8wAsvsGVlVq92rUEyObFJkyYBAPbs2QMADuEpQH/Yu66uDt/85jexbt0619rpAi6JBiHkVkLIzwFEE0Kks1s2uN+s0UVTUxPGjBkjVDBNmTIF58+fd3kGZ3NzM/7yl784jffy2LOiaGzcCIwZA9x5p32n7u5mYaG1a9mIyWzW1K7U1FSkpKTg7NmzzsNiajz/PMsj8G004+IcOlBQUBByc3NlPY22tjaYzWb3PI1//hOIinK908sYYYANGPhGXPn5+YiNjUVwcLDy8u0//zmrbnImBO3twO9/z0KNasf29jKv5fnn7V+XMezp6emIiIgQRGP69Ok4e/asMEdAtiLPbGalpc8/z/IZ/NwyOQ1AXjQyMjKQnZ2NyMhIn4mGR0vEef/5/e9dP4fM8xMdHY2xY8cKz4+4rXzAptcz497d6dOnXW+rTlz1NI4DaAWQAuDvhJBKQshBQshHAHwzgcGHmEwmOwM6efJkDA4OulxBtXHjRjzxxBNOO5SqaJjNLHzw3HMjBoOL0N//Dlx7LTPaMh1ewGIBJMI3bdo0nD592iFRp5n6epaUF6/yKRPeAJTLbt2e2EcpC9384hdsdrcrKIjGlClThOUzMjMzkZeXh/T0dPnlOMrKWCHA0087F41XXmHLmsyfr37s3/4GLFsGSPf+lhGNoKAgbNiwAT/60Y8AsHvb19cn7Lgoy4YNbCByww2q55YrCOHPKx9gTZ06FWfOnFH71R5DNeRmsQC33OIQLlLkH/9g815EhQS6cfL8SJedcdXT4KFzX11nQKdocK+CUlpNKV0LYDWl9BpK6QQA3wbwewDXeL6Z/qWpqcnOcE+xld65GqLincvZ6EBVND74ABg7FrjqKlbeFx7OJtFZrcwAPfkkOy4uTjlE9eSTLPcgYvr06SgqKsLw8LBrRvvll1mJorjNMkYHYNexrKzMYQ0jt+eIHD0KdHSw2buuouJpcDIyMrB8+XKhMsmBv/0NePRRNpFQLOpSurqAv/6VzQWIj1e+X319bPS7Zo3jewqDg9WrV2Pq1KkAmGgArExY0Yv8y19YWE8stjKiHxcXh/T0dDtjZTKZkJycLBRPTJs2TXZgVFxc7PGqKtWBxtatLPensse7gNXKwoT/+Z/uNcjJ8yMtMomOjkZGRoZum8JF4+zZsz6rVNPraXxCCBECxLZZ3Zw2SulhSqmG4G1gYTKZ7EYF4ioaV88HaBcN2bLXN94A/t//G/mbG+Zjx4CwMGDJEvvXpbS0AOvWsRi6iGnTpgmzhnWHp9rbWWnrU0/Zv847kOShzs/Px8DAgINL7nao4dVXWZjHnQmRMjFpwFE0XnnlFXz00UeOn+/uBt59l61xFRrK7klfHxOEd9+1P/Zvf2MCN3Gi8v0CmAe3aBGLtUtR8ObE8DwDb7sDhYXsuZCKrUKb8vPzcfLkSeFvaT+ZPn06qqur0SMa4RcXF2Pu3Ln48ssvVduqF9WBxmuvsf9rye9t28au5ZVXutcgJ6Ih107u5euB25LOzk7ZDcK8gd5edQGAQ20nISQTwD6PtGiUQSl1CE+lpaUhNjbW5QoqfnNPnZJdq1GgqakJSUlJCJcmcktLWejjlltGXuMd22RiYSk+UlQauf7tb2xmtOQ9p4ZFjddeY5sXSRfCCwlh39XXZ/fyLFuIRWx4ABUDUF/PVqUV89RTLBzHMZnYqPKhh/S1XYpM9Qsw0uljY2MRExOj/Pn161mIg18Lfn+Ki+0rqaxWNgD44Q/tj5NitbJZ9U8/Lf99amJjIzk5Wci9yN7b119nIicNtSl4MbNmzcKZM2dgtuXMpKIh9mw4fJb4UdGSJ56Al0A77I1RWck8z0WLtInGn/7EPHB3t1ZWeH54lEJuQJSfn4/Tp0/r2odELBS+ClHpFY2HAcwjhAhDXELIbABHAQRGkbFOOjo6MDw8bNcZCCFCaMUV9HgasqP9detYOa14tnR8PDMa7e2ArcoLgLwxGRpiovGjHzl0JN7RARnDcvAgS+rKQSkbQX/ve/Lvy4yEp02bhqCgIAfRMJlMiIuLs5sHAYCJwyefjPzd3888G/FyFevWsXkZSpVBWlEYKcbHxyMtLU1dUCll3o5Y4Lh4t7fbX/Pdu1lJ59y59sdJ+fxzdtyyZfLfqUE0gJFBgcNz1d0NfPQRK7XVeO78/HwMDg4KnqKcpwHYV1DxZ//48eNO26oHXu3nsIDmm28C/+f/sLlCzkTj9GlWon3nne43yImnKvf85Ofno7+/X9fChSaTCfG2VQ58VXSgSzQopX0A7gCwhhByJSHkdjAP4y1Kqcqyj4GLUl7BFVeSwzvO+fPnVbc8la1gMpuZcX7kEfvXecdua7M3mFxMxOzcydYqkhl9ZWVlCWv3OHz32rUshCHHmTOssmfBAvn3ZQxPZGQkJk2a5CAazc3NjntTUMoSlOI69i1bWPv5bzCb2WhZSdj0oCAaADBv3jwhTyCLraQSV1018pr4/oiv+dtvM0PNjZ2S8X/vPTZvQGkErFbwIIIPChyM1qefAsuXM+MqRSH0lZ+fD2DEU5SKRl5eHkJCQuxGwLyMnK+J5SlkS8StVnbdHnhAPVfE+fOfWZmxKyXaUhSen+zsbCQnJ8s+P0qetxomkwkFBQWIi4sbPZ4GIeQLQsiLhJC7CSFTAZwD8F0AnwNYD+C7lFK/7nXhTbiBlxqxOXPmoKGhQXcckVKK5uZmjB8/HhaLRTUvIutp7NzJwk+2mm8BbmzkPA1pZ/nkE+Cb35QVFEIIpk2bhpiYGPvwS18fq99XmnzEz6mUR9AYFweYYXHI4xw5wgzm0NDI5ki8yoW3acsWdm1mz5Zvgx5URGPjxo1Yv3698me5lyE28OL7093NKnouXmQexL33Oh4nZmAA+OILh33LHdqrlmy3oSga69ezEbkcCvdO7Cn29fWhp6fHrp+EhoZi8uTJdoMr3l/Ky8s9OiFNtq8cPMjKrmfPlh88iTGbmaflbliTo/D8hISE4OzZs3iSF6qImDFjBgghukUjLS1NsejAG2jxNIoBFAB4GcAZAN0AfgzAAjYn45w4OX6poeRpzLWFE4qLi3Wdr7OzE0NDQ7jmGlZkpuStUErlZ2Vv3MhmDUvh4iD1NKQd3mxmS1CsXq04+lq+fDlmSw3vli1sdrCSaHz8MXDHHfLv8XbIdKL8/HyUl5ejV7R0uqxovPMOGzHy39nZyZbcePDBkd9w+DCwapVyG/SgIhpxcXHKK6l2d7OZ6PfdZ/+6OHwIsH+XlwPZ2UCKaEk1HpIbGBh5bccOZvjU1gELC2O5CPHnZLjjjjvw2GOPCaNaAEBDA1tyRpwjE6Nw78Seotrg6tixY8Lf4mVF9BhHZ8h6p1wICXHuaezbx0psXdyYygGV5yc1NVV2Ic6oqCjk5eW5JBp8Do4vcCoalNKfUkpvpJRmAMgAW95jM4AdAJYDOAKgmxDiu9klPoSLhvSB5EZVr2jwzrV8+XIEBwcrikZ3dzf6+/vtxaq/nxn8u+5y/IB4JCsNT4k7y/79rGNMmKDYkV588UVhqQOB995jo2e5jldezsoZRTOkFdsnIT8/H5RShxCGnWhQypbW+Pa3R9rc1MS2Z83MHGlTR4e9AXYHlU6vypdfAkuXst8rRizqAPt3R4e9Vyg+VnytuBfnDA15jaysLKxdu9Y+X/T++2zRw8hI3eflnqKSaMyfPx91dXVCPzKZTMIaZ57Ka5jNZrS1tdk/M9xz4F6cM9HYtMn5Phl6cPH5kfO8lRgcHERnZyfS0tJw991345lnnvHJlrF6cxomSul2Sun/UErvppROBRALYAXY+lCXHCaTCaGhoUhMTLR7PT4+Hrm5uXajKK3nA9gyyVOmTFEUHVkPZ/t2ljCVS8KKY+ZqifBt20ZGlAodKSgoyH62cF8fi9N/+9vMgEtHsx9/zDqc2n7TCnFxPuLlBsRisaC1tdXeABQXs89PmsSSwTyhnJTE/ubeT3s7ILlPLhMezkJIot3wNLFlC5ukJ0Us6sDIb5Brr/SeffaZNoOmMa/hwOefq8+cj4hgIUGZazFr1ixUVFQIyXCpaMybNw8AUFRUBIANCBYsWICEhASPiUZbWxsopfbPzKFDbCtWvuGSmmjwQYmnRUPrZEIR+fn5uHDhAvoly6rLwb22tLQ0XH/99fjhD3/ok3133P4GSmk/pfQQpfQNTzRotNHU1IS0tDTZbU3nzp3rsqeRlpaGxYsX49ChQ7KTcmQ9nH/9SzmureZpiA1QY+PITNeICJYsVEnGA2AVPvPmsXNxoy3GWWhK3D4Jubm5SEpKwuHDhwEA7e3tsFqt9gbgX/8aWaVWXIWUlGRvDKS/3R0I0d/xLRY2kezmmx3fE4enCLH/DUrHAsy77O7WFjbRMFfDge5uVpJ6jcqcXEIUBWnBggWglOLzzz8HIB+eIoQIS2fwcEpBQYHuvqMEN552z8zWrfahSrVJrsePs7k0cvNfXEWhesoZBQUFsFqtOHHihNNjlbw7bzNql0YfLUjnaIiZM2cOysvL0aVjUUDxjV66dCna29tlk+F8B0JhTSNKmaehNMtZzdMQt088utUS6wWYd3LTTezf8fH2eY3aWrbJkrhSSKl9Mp2IEIIlS5bg0KFDABQMwOefjxhi/v1i0RB7Gp4SDUB/iOHQIbZIpGg7UQGxqPOFJJXaK75nHR3sGC3zBjSW3dqxcyeweDEzcs7OLXMt+Gz4rVu3AnCciBoTE4Np06ahsLAQQ/TGbmIAACAASURBVENDQjhl0aJFKC4u1jSidgbvU3bfvW2bvWioPefbt7Nj3Z2bIcbF8BRfOZn3BzVkf7cPMETDCdzTkGPOnDkA9JUPilfMXWKbtS33gHDREB6IM2fYaEhaNcVR8jSkhsRZzkMKpfYdUOppfPIJC3c523dDxaAtWbIEZ86cQUdHh6NomExsIiOfocvby40p/5tS/4vGF18oJ+LFOY0JE+x/g9yx/Frp+U2uiIZ0RK7z3AkJCZgxYwa6u7uRkJDgOBEVLK9RVFRkd2+XLVuG4eFhj0zyE4dpALBJoLW1rKSco/acf/klcP31brfDDq3PTl8f81Bt8C2l9YiG4WmMMlpaWhSVfIFtTsKBAwc0n89kMiE1NVVY0C0hIQEHDzqu+s5FI4Undr/4gnkZSqOh+HhmkHp77bc0lXYWqaFyJhrnzrHwFd8bWZxDAFiug3shaqiETvhWpIcPH3YUjZ07WVktrzaRhqfCw9mM8/5+ZSPsKnpF49//Vt7hTSzqXDS05DT0/Ca9OQ3pgEANlfvHBz9KxmvevHlobGwUwlFpaWnCsvL79rm/kITDM7N9OxMBcY5N6Tnv7WWVY848Zb3ExMjuE+7At7/tsEHX0qVLZW2CFEM0RiGUUrS0tCgue52SkoL8/Hzs3r1b8znFE6CCgoKEvIaUlpYWxMfHj5Tmbd9uv/KolLg4oLqaGSG5+QEcvZ7Gjh3se8XLkohFo7XVfnFCtfYpGJ0FCxYgODgYhw4dcnS5d+2yj7dLE+G8Tc3NLFEbHe28LVrRIxpdXWw2sU0AHYiPZ14TpayQwVlOw5U8jd6cxrlz7L6K1tNSROX+cdFXMl48hPXxxx8DYPc2MTERM2fO9JhohISEjCwhsnOn/V4jgPI8ja++YsUlzsJzegkJGVlEVAmzmX2/ZCHFJUuWoK6uDrW1tapfYTKZEBMTg6ioKE+0WDMeEw1CyHhCyCUlQhcvXsTQ0NCIaHz4ISt5FXH11VfjwIEDqjO7xUhnzS5duhSnT5922LHLTqwGB1m8XC1ZGRfHltOQGhhxZ+EhHPHo1plo7N3LRvocaXhKq1FTGQXHxMRg1qxZOHjwIJqbmxEUFDSyQdDu3fa/W+xp8N+RkMDWGJIKprvoSYTv3ctyA9KlTzhxcayNycnywic9Vhye0loRpjc8tWcPu7da8yUK98+ZaMybNw8JCQn4xLYEDB8QLFu2DAcPHhTWrnIVXqJNCGHP+J49jp6D0nO+Y4fnQ1McZ8/PiRPs/Y4Ou5f59XQWopKdm+IDPGnkqwAcJ4Qs9+A5/YpDMvrdd9kkIBFXXXUV+vv7NcdmpaKxfPlyUEodvJXm5uaR7/36a7ZTm7T2X0xcHBMXad2/OKna08NGP+K4s7NSxL17gRUr7I8XC1xHhzaj5sSgXXHFFTh06BBqa2uF8B2qq1mbRYsoOoSn+GuVlZ4NTfE2a91+c+dOtoeJ2rlqa+3zMFpFw1vhKTnjqnZuhfs3efJkZGdnj6xbZjbbhWWCg4NxzTXXCDPA+fO/bNky9PT0uF16azev5/x5NsqX7oUREyO/IdmBA/bPtydx9vzs389WUJCIRkFBASIjI52GqNSiIN7Ek6LxMIBPALzk7MBAwU40KGWjfV5nb2PFihUghAhbOGo5pzhHsnTpUsTFxQnVJ+LjhAfiq6/YukBqcEGRGpiICJZoGxyUN/BqonHmDBstics9pZ6G1pi7k9DJDTfcgL6+Pnz22Wcj12f3bseRsLR6ir/mDdHIy2NGSAu7dqmLRnw8K28Wi4bStXM1PKVk2BsaHEObSiNyJVTuHyEEJ06cwC9+8Qv2wqOPss2cRKy0hYsiIyMRbQshrrAZ65069rGXw040+G+Sek+8hFr6G1pa5Oc9eQJnz8/+/WwLA4lohIaGYvHixU7D3gEpGoQQYS0FSunfKaVrKKWL1D4TSNiJRnk5i99LbnBSUhIKCgo05TV6e3vR399vd6NDQ0Nx/fXXY+vWrXbzNezERYto8GUtpJ4GL6uVq6wC1EVDyc3no6f+fmYIlWYSi3HiaVx99dUIDw9HR0eHfT5DHBoTt1f8W3h4ytOiMXMmy1NooaICEK0Q7AAX9eRke+Fzlgj3RE6jtpbtICjm/HlWXMC35HWGk/sXFxc3sqnQ7t2sgkkEFw3xnKfMzEwUFBQ4DJi0Ul1dLVTcOYiG0m+QPutaPWVXUHt+KGVRi1tvdbApAHDTTTfhxIkTqKurUzx9S0vLSKGMD3HX09grfYEQ4sEZMv7FTjQOHWIrgEo8DYB1iP379zudr9Ha2goADjd61apVaGhoECb0UErR2trKvtdsZt/tbFMYHnZSC3foFY29ex07oLh6inc4N2PiANu57CrbdwkGQO53c09HPEqPj2dG2xuiobaS8a9/zUSTL6KoloTnos49jZYW5v3JJWCl1VPu5jTa29l5xEtM7NnDwjJac0BaQ191dUBNjUM/ycvLw4QJExwqEVetWqWp78hx00034eGHHx4RDR5OVRIN6bNutbLfJK429CRqz09lJQtNzZkjKxqrbBVt27Ztk/24nY3wMS6JBiHkVkLIzwFE8y1gRWyQ+0wg4iAaN90ke4Nvu+02DA8PK95gjpJo3GibsMdHXJ2dnTCbzex7S0rYcghyaxRJiYuTP85VT6OoCFi40P41cXhKbzmokyQt7yhjxoxh5zaZWC5H2t7OTvYfr5bh4SlPjxhzc1kb5JKZw8PAs8+OGOSEBHUDHBLCRIWLBi9akPuMuHhBj6eRkCA7qBEEQ2z0T5xg+5FrRWuSnZefy7Rj7dq1eOGFF+xeW7VqFSwWC3bs2KG9LTZqamrwr3/9C729veyZqapiwqG0t7f0We/qYqKttvyNO6h5GjU1bKfGxERZmzJ9+nSMHz9e0Qvr7u62L9LxIa56GscBtAJIAfB3QkglIeQgIeQjAMMea52faWlpQVRUFIvBHjzI6tllOsPixYuRmpqKzZLKKrnzAXC40RkZGZg/f75Qkmh33P792reejI9Xn2EsZ+TVRKOtje1vLT3elbWeoqLYyFplLScuGhkZGWzfjjlzHDt0fDwLt8TEMEMMMGPZ1OR5TyM4GJgyheV2pPCOzkVDazEAFw3pasTS41zJaUydytoqnRsgbitHuoS+lrZrKQo4eJCJkYwhvO6664TVnTmLFy9GQkKC7hBVf38/ent7MWxbJn/MmDFs+fzFi9XnMomFz5uhKYCFK8vKHJPv4u9WEA1CCFatWoV///vfspWZSrbEF+gSDULIdYSQhZTSakrpWgCrKaXXUEonAPg2gN8DUKkLDSyERFNvL6tpv/ZaWdEIDg7Grbfeiq1bt2JIxSgqeRoAcN9996GoqAhnzpyxfyCKipQ3NpLCjZLc63o9DYtF3nV31dMghI2sVHY7nDhxIrZs2YJHH32UVYzJ/e74eFYFI51rAnheNADl0SLv6G1t+kSD5zQAddFwxdPIzGQehaTuX1Y09BrMSZPYNsPOOHCArRAg5/HIEBISghtvvBGff/65IABa4H2JI4jGIpWUqtxEV2+KRnQ0S7KXy2xqyvuOgmgAwDe+8Q309PRg165dDu85TP71IXo9jT8CEOIFlNKvAIAQkg9gmFJ6mFKqcx2D0YsgGidOsFFDYiIbNcjsWXD77bfj4sWLqglxO9GQuPr33HMPgoOD8e6779qLxrFjI1uBOiM9HRg71vF1tcSrkmh0dbE4vNxIX5rT0Mrcuez3qHDLLbcgOTlZWTQiI5mHIZ1rAvhWNLhR1CMa3BOMjWUiqvQZaXhK6zUmBCgoYAvwybXVHdGYMYPljdQmq/X2AmfPsol1GkUDYM9+S0sLvvjiC82f4X1p4sSJANwQDW88M2LUnp/ERNam7m77fJONlStXIikpCe+8847De/z3p6amsi0L+JL7PkCvaEwCsF/m9YUA3nW/OaMLQTSKi1mohBD2kCm43omJiXj77bdVzxccHIyE2lrmRotIS0vDjTfeiPXr14+scBsTw2L14nkKamzaJL+nxaRJrDPr8TQ6O+WNijtLkc+Z41Q0BJREgxDWBvHv4LkNb4mGXDLTlfDUihVs8BEUxIRDqb3x8SyP0tvL/q8nUVtQwAY5Sm0Vv6bn3oWFsfCX2l4PFRWsGiszU5do3HjjjUhJSZE1jkpwo/nf//3feOihh5A/ZQoTS7U8jfRZ9+RS+kqoPT+JiWxQFhsr2wfDw8Nx9913Y9OmTQ6FAsLAMi4OeOMNtmioj9ArGp0A5IJo+wFojKEEDsIEu5ISZvAARXcyIiICDzzwAD755BPFLWBbW1uRnJyMoOJiVjsv4YEHHkBdXR3efZfpb2pjIxMMmV2+ZAkNlY/nzpvHwlx6REPJqMTGMmNmsegfqWnwNACw5dv7+9UTmr4MT504oZwn0ONp/O53IwMApfwTwO7j9OmswikuTl+iVs7T6OhwrPxzJTTj7P7xcyYlKYsGpcxrEXnrYWFhuOeee7BlyxZ0KIRqpHCjOW/ePLz11luIKCtj8yLUlgPxdXgKGHl+pIi/WyVEdf/992NgYAAfffSR3ev896e1tbHoxyj2NDYB+InM68G2/y4Z7NadKi4e2XdapUM8/vjjGB4eVvQ2WltbWWjq+HH28EpiuLfffjvGjh2LgwcPIjY2FmGnTmkPTakxbx7r7HpFg4/gxfBRMs+R6PU0jh+XdcXtOHUKmDVLPaEpJxreMADjxrH2StcBEo/eXRmxqokGwLysL77QL4RK4am8vJHnllJlT1INraLBZ1/L5ff6+1myXpKTeOCBBzA4OKjZ23DIDzoLTQGO8zR8IRoLFrC2SREPuFREY+HChZgyZQreeOMNu3lcra2tCA8PRyTfVkFyPb2JXtH4LwALCCGfEULmAAAhJAbAzwHIyGng0tvbi4GBAYxJSmIPeUEBe0MhPAUAU6dOxVVXXYXXX39dNqknTMbhnVoiPqGhoXjiiScAuJDPUCMjg41eT5xwNEKRkcyISGvw1TqUeEaznk6XlMQSwc5cabmqLen3+yo8RQibtStdB4gLhR5PQ0x8vPpnFi5ki1TqPe+0aSzxKs67dXSwIgT+vPX2sudBqwfLcSYaXIh4vkaun/DQpsTIzZ07F8uXL8eLL76oaY+N1tZWEEJGdtQsLQXy89U/lJdnX4jhC9HIy2P3QjpJTzzQUBENQgieeuopfP3119i+fbvwOh/QEr6B1GgVDUppO4DFts8VEUIGAXQBuBHAM55vnv/g7t9Es5kll7nbm5ioGq996qmnUF1dLYSYxLS2tiKVi0ZSkqxL+dhjjyEmJsY+l+IJ5s2T9zQIYXFg6WhIbSTK8xquJBK15DWcjYKVPA05z8gTyIkGN8SuioY0LyNlwQI2a1vv9Q0PZ+0Slwl3dNh7Gq4ay1mzWG5MqUJQ7J0qeeTcOEqMHCEEzz33HBobG/HGG843AW1paUFycjKCeehOy7O4aBEr5eYDOl+IhtKgQ2N4CgAefPBB5OTk4NlnnxW8DSEKcvw4y4+O4vAUKKX1lNJvAMgGK7O9GcBkSqnzXUMCCC4aEzo7R0JTgHq8FsDNN9+M+fPn49e//rWDt9Ha2oqJvPpn+nTZ0UFCQgLefPNN/PQnP2EJNGejJ61wj0WukyxfzpYqEaPWofgI25WwzNy5rOOq4awzT5zIJt5xEhKAjz7y3iStpUuVRUNPIlzMc8+p72MxfTqb2+KK97RoEZsvwZGGp1w1llFRLM+kNGFNLPZK/UTB0wDYWlRXX301XnjhBVx0MpFQCPWKz+ts0JCQwBL1PMfgC9EAlJ8fjaIRFhaGX/ziFygsLMSmTZsA2ESDD0CvuWb0ehpiKKW1lNItlNJtNg/kkoKLRnpTk71oOLnBhBD86le/QlVVFV5//XXhdavVira2NkwfHmahruRkxdHBnXfeidtXrmTi4qm18ufNY+eTSxQqiYZSJ5w9m1U3ueJpXHmlw0rBDjgzAC+9BKxePfI3Ic73KHeH+fOZoZQL+bjqacydq/6ZkBB2jCuisWLFyP0cHGQj63Hj3BcNgFXnKd0/8Xl1ehqcF198Ec3NzXj++edVm+EgGlp/09KlI4Lq6Z0elVDyNDTkNDgPPPAAZsyYgaeffhqDg4NobW3F5Kgo5lnOmDG6PY3LBZ5oi6+ttR/tO/E0ALYmzvXXX4+f/exnqKioAAB0dHTAarViYm8vE42UFPXRgZaRkx4WLmSb7cgll5cuZaN/8cxTtU64YgWr7HHF+CxaxDwotXWMfDUC1EpkJBv5ixf9a293z9PQwpIlgCv7Py9fztZgonTEOCUne0Y0rrqKnVsOLeEpFU8DYBtyPfjgg3j55ZdxQSX35bDCq9b+smTJiGj46jmbP595N3zQYbXat1eDaISEhOBPf/oTKioq8PLLL6OlpQWzrNaRAWggeBqXOm025Y6oqGBKztFwgwkhWLduHYKDg/Hggw/CbDYLIpTZ3s5iwyqeBgDPP9AZGcqLp8XFsRp8cdhILa+wbBnreK60MTKSjaDV9grwtGB6gqVL7UfYPE/gqqehhV/9CnjGhVRhdja7zmVlIyFEcS7OnfZyL0auAk5LeKqjg1XgqRi5559/HhEREbjrrrsUk+Ie8TR8JRrR0axA4euv2d/d3SyCwJfB0WBTADYXbPXq1VizZg26u7sxDmDhtpSUy8PTIIS8RQhpJoTIBkgJ48+EkAuEkBOEEA+UEWmnra0NSUFBIF1drBNyNHgaADBu3Dj89a9/xb59+/DMM88IohHb388MuDPR8LXh5KNTjlqHSklhD2t4uP4KHEB9tOrsu/3FddexPcA5HR1sIcmBAbZirTfaGxmpbdl5OVasYNdYvMZRe/uI9+Fqe7Oy2HOpNmENUPc0cnJUn/2MjAysX78excX/v707D4+iyhc+/j1ZSMgiW1TAoDDKmoUEwyagzqCyCEREHdCgoIg41wW9+IBXRR65zMiAKMyMjguIcB3Qq7KI6MzL6/W+yoAOWxQQN8iYBAZjhyWsCcl5/zjVSafT3elO0l1N+vd5njxJKpXqX1dV16/OUufs5J577qHKLUE5R3gdUFZW0xvK389L167mqfbCwtCeZ67nj/vr+pk0AF599VVSrVEf2kZFmf+NoJLGckyvK29GYJ5A7wpMBV4KQUzVSktL6Z+cjOrVy9wZOfmZNADy8vJ48MEHef7551m4cCEA8WfOmJO7vuqpUF84f/WruhdFX69/zTWNu1s935LGtdeaHmbOYTScA/61bWsedGzqOaYby3kT4KyeatnSdBQ4darx+9fb8XOvnvJ0IXS2BdVzkRs9ejS//e1vWbVqFVOnTq2VOI4dO0ZlZSVX7dsHH35oEre/87ooZeZo+etfA3/avjGuvx7+9jfzs3sHkgCSRrt27Vi3bh29evXisgsuqEkaDkfdB1CDxLakYY1b5evqmwus0MZWoLVSKkhTbNXlcDi4Mj6+dtUUBHSAAZ577jlGjBhR3euhxalT5oMVbiWNa681xWfnMOC+GsKhcUlj4EDT6+PkSc9/D8fqqeRk0134009rX6TatWv6ucmbwtCh5ibg55/r3v03Nmlce61p03Lnb+8pP5IGwMyZM5k9ezZLly5l7NixlFrbc3ZSSa6sNEPXO88Xf4/B8OHw1lvmmEaF6BI4aJApnXnqqh7gNSU9PZ09e/ZwcVyced/x8abEH8hUv40Qzm0alwCuj+EWWcvqUEpNVUptU0ptc55QjeVwOMiIiqqbNAIoaYB5YO+9995j5MiRtGzZkpgTJ/wraYT6wpmUZJ4NcF4M6ntWYvRocOkdFpCEBNO33NscCuFY0oCau0VnfM6xyMIx1s6dzQCWrg8INlXSuP56Mye6+/Ma/vae6trVr6Th7Im4ePFiPvzwQ7Kzs9myZUt1VW/i2bMmaQT6fm64wcwuGMrjFh9v2lM+/rhuvO3bm/k1KisD26brdkLYrhHOScPTbYPH8pfW+hWtdY7WOqepxpd3OBx0q6iomzScD7bVNxSGi/j4eNavX8/3331n2kj8KWnYceEcNsxcZPwZZiIuznwIGio3FzzNP6K1edo8VNUGgbjhBlOt4XpsnCWNcDRmjBnEsqmTRvv2puOEa2mjvNx8OWcv9Kek4Wd1ykMPPcTmzZuJjo5myJAhzJkzB4C4M2fMMPCB3mClppr4Q9Hd1pWn8wdMd+iOHc3cOYFwfd8hbNcI56RRBKaDgCUVqDvKX5CUlpZy2cmTdZNGbKy5U/rii4C2Fx0dTcfk5Jqhveu7M7CjimbYsJq63rg4816DZcwY2LCh7gQ1ZWVmHwXztRsqJ8c0en/xRe0LcTgnjbNnay6OTZU0AG66qXbSd68i8lXSuOQSs56vYdbd9O3bl507d5KXl8cmq+2txalTDStpgDnXQ33cbrwR3n/fc8eJX//aVJkFwrUKWUoaAKwH7rR6UQ0AjmmtD4XqxSt//pmWlZXmLsDd+PGwalXgG3Xvm330qPciaUMGlGus3r3NB3nr1uAnrMsuM3d87l1vw7E9wyk6Gm69FV56qeZCHM4ljZwc01PPGV/nzuYhxaZIGs6SorO04L7NDh3Mna/73a/z+NZXPetBq1atWL58OXv37uW/336b6GPHardpBGLiRPMeQql7dzPa8Lp1dUs5t90G777reZY/b1yvEZFQ0lBKrQK2AN2VUkVKqXuUUtOUUtOsVTYC+4HvgVeB34QqtjNnznDJ6dMcSUnx3Lg2YQK8/XbgdZCuJ3d0tO8pNOtriA4Gpcwdzx//GJoLYW4urFlTe1m4tmc4TZhQu6SRkhL6ag5/RUXBvHk1c7fk5cHrr5s70sbu4x49TFWU89kD9/M1MdGUdNxHrXUe3wYkDafu3btzy403ml9++qlhw9lkZZnJi0LN/fxxuvxyc4PqqYOBN5FW0tBaT9Bad9Bax2qtU7XWS7XWf9Za/9n6u9Za/5vW+nKtdYbWup4Bi5qOw+HgcuBU+/aeV+jWzdRB+uo26ol76cHXB8euO+68PFOEDsWF+4474M03/X8SPRwMHGiez3DGePfdDXsAL1QmTzZ3uGAeqnTekTbFPp44EZYtMz97Khnfey+89lpNaaSy0vSYc05725iL3JEj5vOTkGAmKgvX0qm78ePNd0/7/847a/ZnfaqqTNufa9Jo7iWNcFZaWsoVQPmll3pf6fbb4Y03Atuw+92Yrw+OXRfP7GxzkQnFa3ftaqrE3nuvZlk4V0+BuXu/++6aARMvuqj2w5/h7t57TZtRXFzjt3XPPaYevqzMc8l48GBzcXNWQTqnEI6KavxFznmeXHyxecAvnG80XF16qeny6+mcmTgRNm40bR71cX+qvLFJOACSNDxwljS4/HLvK911F6xfH9iJ735BDMeShlLmjqchYx41xLRptbvuhntJA+Dpp2H6dLujaJjbb4cHH2yabXXoYJ4HefNNz8dNKZg61bQBQe3SSGOThvP1Lr7YzKURzjca7j78sM50z4B5P2PHwvLl9W8jkFqLJiZJwwNn0ojt0cP7Sikppk5+6VL/N+yeCFJT/RtmOtRmzIBFi0LzWmPGmHkjdu0yv4d7SeN8d8EFMH9+021v2jT4wx+8tytMngwffGC6xrrXwTdVSePAgfC/0fCX8yaqvgZx98/JL38JTz4Z3NgskjQ8cFZPJTpn6/PmgQfMXZS/PR7cE8FvfgNLltR9Mrqy0nR7TU4OKO4mExsbuteOjTVJau5c8/v5UNIQNYYONdUkK1d6TvZt2pjOFS+/XPv879PHdILwMMOlX1yTRlVV87nR6NfPdElevdr3eu7VgRddZAZCDQFJGh4cP3SI1kCrnj19r5iTY6qw/H0y2v3uICPDjBj7ktuwWseOmTvCUA1xYLdp00y9d36+vSUsETilYM4c+PZb78ftwQfNZ6SwsOb8HzXKVG8tXtyw13WtnoLmc8449+fcub5vRm38nETIVSkwav9+DihFgj+D0P3hD2YI68OH61/XU2Ph7NlmUiHXRqxIu9tOSIDHHoP/+A97uhqLxhk50syT4q23YVqaeRp69uya81op+NOf4NlnTTIJlGtJA5rXOfPLX5r39V//5X0dGz8nkjQ8aFFYSJG/vUt69TL1tv/+7/Wv66m+PiPD9N12/f9IrNd/4AEoKDD135GUMJsDpUz389Gjva+zcKGphnU9tl27muPekE4FzbWkAWZ/PvcczJrlu6OMlDTCR9K//sXhQIa6fvpp8xT1hg2+1/N2oP/zP81DPR984Hu95qxFC9OnPxITZnMQF+d7lNkLLzS9rNwTy6xZplpy48bAXs+9pBGOY5U1Rt++5mby0Uc9/11KGuGldWkppYFctBMTzQVv2jTffay9XRCTkkxRdPJkM6VopFbRDBxoujHn5NgdiQiG4cPNPB+u4uNNe8d99wU0enStpJGcbEZYaG7mzoXNm+uOmgBS0gg37crKOBnoaLnXXguTJpkGPm/zRPhKBoMHmx4mo0ebaVcjMWmA2X8Nna1OnJ+uuw7GjTOJw9+JhJzVU5071344tDlx3kzefz8cdBurVUoa4eXCM2eo6Ngx8H+cO9c0+t18c80k8q7qq3oZO9ZUdc2fH3nVUyKyPfusadO64w7/JhNyHVX3uuuCHp5tBg40bT5XXw07dtQst7EaV5KGG11VRWplJdrT6Lb1UQpeecUMYHfTTbVPfuezFxdc4Hsb990HL7xguuIKESni401jekKCuVAeqmdA60jqYThrlhl4ctgwMz8K2Pr+JWm4KfvxR84BSQ0paYAZC2blSlNs7tnTPKSjNRw/7v+zFw8/HPphm4WwW0ICvPqqGepkyBAzJ7s3kdZh4te/NsOPOJ/AdzikpBEuyvbs4UfMBO4NFhNjGvdWr4bf/c4Unz/5JLJOciEaQinzvM4zz8Att5ivb7+tvU5VlSnF11dqb25yckxp7J13zHhbNg3JL0nDzal9+xqfNJwGTfQsjAAAEg1JREFUDza9ocaONY1Z4TrvghDh5vbbzei1OTlmWuEBA8wDoPv314yW2xx7TNWne3dzA7prlxm7zgaSNNyc27+ffwJtm+oCHxNjHmD64YfAp3MUIpIlJJj6/IIC+P3vTdVuv37mGYZIac/wRCkzpYBNYmx75XD1z3/yI/CrpihpuEpMhCuuaNptChEJkpJM76GrrzZD9nz/vd0RRTRJGm5iDh5suuopIUTTio+H9HS7o4hoUj3lJr6kpGmrp4QQohmRpOHmgiNHOJKUREyMFMKEEMKdJA1XZ8+SePo0FSkpdkcihBBhSZKGq+JiHC1a0EaShhBCeCRJw1VREf+KiZFGcCGE8EKShqviYoq0lkZwIYTwQpKGq+JiCs6dk5KGEEJ4IUnDRVVhIfvPnpWkIYQQXkjScFFx4ABFyIN9QgjhjSQNF1WFhRQjD/YJIYQ3kjRcRB06RDFS0hBCCG8kaThVVRHjcHAQSRpCCOGNJA2nkhIqWrakHKmeEkIIbyRpOBUXczw5GZCShhBCeCNJw6m4mCMtWxIdHU2rVq3sjkYIIcKSDOXqVFTE4RYtaNu2LUopu6OJGBUVFRQVFXHmzBm7QxFNJD4+ntTUVGJjY+0ORQSBbUlDKTUcWAxEA69prZ91+/skYAFQbC36o9b6taAFVFzMoagoac8IsaKiIpKTk+ncubMk62ZAa43D4aCoqIguXbrYHY4IAluqp5RS0cCfgBFAL2CCUqqXh1Xf0lpnWV/BSxgAxcUUVlZKe0aInTlzhnbt2knCaCaUUrRr105Kjs2YXW0a/YDvtdb7tdblwGog16ZYjKNHOXj6tCQNG0jCaF7keDZvdiWNS4BCl9+LrGXuximlvlRKvaOU6uRtY0qpqUqpbUqpbSUlJQ0OquzECUkaQgjhg11Jw9OtiHb7/X2gs9Y6E9gEvOFtY1rrV7TWOVrrnAsvvLDBQZWVlUmbhhBC+GBX0igCXEsOqcBB1xW01g6t9Vnr11eBK4MZUGVlJWfLy6WkIYQQPtiVNP4BdFVKdVFKtQDGA+tdV1BKdXD5dQzwdTADKi8vB+TBPtFwV111FQBHjx7lxRdf9Ot/kpKS/FovkG16UlBQQHp6ekD/s2nTJiZOnNjg1xTNky1JQ2t9DngA+CsmGbyttd6jlHpGKTXGWu0hpdQepVQ+8BAwKZgxlVdUAJI0RMP9/e9/Bxp/gfckGNusT35+PtnZ2SF9TRH+bHtOQ2u9Edjotmy2y8+PA4+HKh5nSUPaNOwzffp0du3a1aTbzMrK4oUXXqh3vRUrVrBw4UKUUmRmZrJy5UpuuukmCgsLOXPmDA8//DBTp06loKCA4cOH079/f3bu3Em3bt1YsWIFCQkJJCUlceLECWbNmsUPP/xAVlYW119/PQsWLPC4LW9OnjzJbbfdRlFREZWVlTz11FOsWbOmzjYXLVrEsmXLAJgyZQrTp0/3+n7mzp1b/bf9+/czbtw4XnnlFfr27es1jvz8fCZPnszZs2e577776NixI/PmzZPeURFOngi3SPVU5NqzZw/z5s1j8+bNpKSkUFpaCsCyZcto27Ytp0+fpm/fvowbNw6Ab775hqVLlzJo0CDuvvtuXnzxRWbMmFG9vWeffZbdu3fXSoCetuXtXPvoo4/o2LEjH3zwAQDHjh2jf//+tba5fft2Xn/9dT7//HO01vTv359rrrmG7Oxsj+/n+PHj1bGPHz+e119/naysLABGjhzJa6+9RseOHWvFkZ+fz0UXXcSwYcOYMmUKeXl5ABw5coQ2bdo0er+L85MkDYskDfv5UyIIho8//phbbrmFlJQUoKa0uWTJEtasWQNAYWEh3333He3bt6dTp04MGjQIgLy8PJYsWVIraXjiaVvezrWMjAxmzJjBzJkzGTVqFEOGDOHIkSO11vnss88YO3YsiYmJANx88818+umnZGdne3w/x48fp6SkhNzcXN59913S0tKqt7VxY60CP2CGdykoKGDChAm8/PLLDBw4sPpvjzzyCMuXL/f5fkXzJQMWWiokaUQsrXWdKpdPPvmETZs2sWXLluq6fedTzu7r1ldd42tbnnTr1o3t27eTkZHB448/zjPPPOMx5kDeD0CrVq3o1KkTmzdv9hkvwN69e+nbty8xMTFER0dXL//oo4/Yt28fCxcurHcbonmSpGEpLy+nRWwsLVu2tDsUEWJDhw7l7bffxuFwAFBaWsqxY8do06YNCQkJ7Nu3j61bt1av/+OPP7JlyxYAVq1axeDBg2ttLzk5mbKysurffW3Lk4MHD5KQkEBeXh4zZsxgx44ddbZ59dVXs3btWk6dOsXJkydZs2YNQ4YM8fp+AFq0aMHatWtZsWIFf/nLX3zGkJ+fz1VXXcXq1auZPHkyhw8fBiAlJaU6LhGZJGlYysvLSbbm0xCRJS0tjSeeeIJrrrmG3r178+ijjzJ8+HDOnTtHZmYmTz31FAMGDKhev2fPnrzxxhtkZmZSWlrK/fffX2t77dq1Y9CgQaSnp/PYY4/53JYnX331Ff369SMrK4t58+bx5JNP1tlmnz59mDRpEv369aN///5MmTKluqeTp/fjlJiYyIYNG3j++edZt24dYNo0Dh6s9ZgU+fn5pKen061bN+bPn89tt91GRUUFX375Jb17927U/hbnN+WrmHs+ysnJ0du2bQv4/7Z26MBbcXE8X1DQ9EEJr77++mt69uxpdxh+KygoYNSoUezevdvuUGyxfv163n33XWbNmuXzuJ1vxzXSKaW2a61z/FlXGsIt5eXlJEl7hhA+jRkzhjFjxtS/omi2pHrKItVTwh+dO3eO2FKGECBJo1p5RYUkDSGEqIckDcvDcXH8cMUVdochhBBhTZKG5eeoKCpkTmMhhPBJkoYQQgi/SdIQQgjhN0kaQggh/CZJQwghhN8kaQghhPCbJA0hzkOeZvJzTjcrRDBJ0hDiPOQpaTinmxUimCRpCIGZHjUzM5PevXszceJEABYtWkR6ejrp6enVE0QVFBTQs2dP7r33XtLS0rjhhhs4ffo0J0+e5MYbb6R3796kp6fz1ltvVa+fnp5e/ToLFy5kzpw5FBQU0KNHD6ZMmUJ6ejp33HEHmzZtYtCgQXTt2pUvvvii+v979OjBXXfdRWZmJrfccgunTp2qNaXsY489BkBSUlL16wQSe30OHjzIuHHjyM7OpkePHtWxiQiltW5WX1deeaVuiNatW+uHHnqoQf8rGm7v3r21F0DTf9Vj9+7dulu3brqkpERrrbXD4dDbtm3T6enp+sSJE7qsrEz36tVL79ixQx84cEBHR0frnTt3aq21vvXWW/XKlSv1O++8o6dMmVK9zaNHj2qttT5w4IBOS0urXr5gwQL99NNPV2/nyy+/1JWVlbpPnz568uTJuqqqSq9du1bn5uZW/z+gP/vsM6211pMnT9YLFiyos12ttU5MTNRa64Bj11rrESNG6OLi4jr7pqKiQmdmZur3339fa631yZMn9fHjx3VpaanPfVrnuIqwBmzTfl5jpaQhwksw0kY9PE2P6jqdalJSUvV0qgBdunSpnl/7yiuvpKCggIyMDDZt2sTMmTP59NNPadWqVb2v26VLFzIyMoiKiiItLY2hQ4eilCIjI4MClyH63aeX/eyzz3xuN9DYwUz56j5HOMDatWvp2bMno0aNAiAhIYHk5GQeeeSRet+faJ4kaYiIpz1Mj6p9JJu4uLjqn6Ojozl37pzXKVpjYmKoqqqqXt91mlfX7URFRVX/HhUVxblz56r/Fuj0soHG7suuXbvqTBolU75GNkkaIuJ5mh7V13SqnniaohXg4osv5qeffsLhcHD27Fk2bNgQcHyeppd1n/7VVaCx+9K+fXv27NlT/XtJSYlM+RrhJGmIiOdpelRf06l64mmKVoDY2Fhmz55N//79GTVqFD169Ag4Pk/Ty7pP/+oq0NjB85SvAJMmTeLw4cOkpaWRlZXFli1bZMrXCCfTvVratGnDnXfeyeLFi4MQlfBGpgX1LRynl/Vnylc5rucXme5VCBE0MuVrZJPqKUtubm51rxIhwoVMLyvCjZQ0LMuXL7c7BCGECHtS0hBCCOE3SRrCds2tM0akk+PZvEnSELaKj4/H4XDIhaaZ0FrjcDiIj4+3OxQRJNKmIWyVmppKUVERJSUldocimkh8fDypqal2hyGCRJKGsFVsbCxdunSxOwwhhJ+kekoIIYTfJGkIIYTwmyQNIYQQfmt2Y08ppUqAfzbw31OAn5swnKYicQUuXGOTuAIjcQWuIbFdprW+0J8Vm13SaAyl1DZ/B+0KJYkrcOEam8QVGIkrcMGOTaqnhBBC+E2ShhBCCL9J0qjtFbsD8ELiCly4xiZxBUbiClxQY5M2DSGEEH6TkoYQQgi/SdIQQgjhN0kagFJquFLqG6XU90qpWTbG0Ukp9T9Kqa+VUnuUUg9by+copYqVUrusr5E2xVeglPrKimGbtaytUur/KKW+s763CXFM3V32yy6l1HGl1HQ79plSaplS6iel1G6XZR73jzKWWOfcl0qpPjbEtkAptc96/TVKqdbW8s5KqdMu++7PIY7L67FTSj1u7bNvlFLDQhzXWy4xFSildlnLQ7m/vF0jQneeaa0j+guIBn4AfgG0APKBXjbF0gHoY/2cDHwL9ALmADPCYF8VACluy34PzLJ+ngXMt/lY/gu4zI59BlwN9AF217d/gJHAh4ACBgCf2xDbDUCM9fN8l9g6u65nQ1wej531WcgH4oAu1uc2OlRxuf39OWC2DfvL2zUiZOeZlDSgH/C91nq/1rocWA3k2hGI1vqQ1nqH9XMZ8DVwiR2xBCAXeMP6+Q3gJhtjGQr8oLVu6IgAjaK1/n9Aqdtib/snF1ihja1Aa6VUh1DGprX+m9b6nPXrViDk45l72Wfe5AKrtdZntdYHgO8xn9+QxqWUUsBtwKpgvLYvPq4RITvPJGmYHV7o8nsRYXChVkp1BrKBz61FD1jFy2WhrgJyoYG/KaW2K6WmWssu1lofAnNCAxfZFBvAeGp/kMNhn3nbP+F23t2NuSN16qKU2qmU+l+l1BAb4vF07MJlnw0BDmutv3NZFvL95XaNCNl5JknDFNvc2doPWSmVBLwLTNdaHwdeAi4HsoBDmKKxHQZprfsAI4B/U0pdbVMcdSilWgBjgP+2FoXLPvMmbM47pdQTwDngTWvRIeBSrXU28CjwF6XUBSEMyduxC5d9NoHaNych318erhFeV/WwrFH7TJKGybydXH5PBQ7aFAtKqVjMyfCm1vo9AK31Ya11pda6CniVIBXJ66O1Pmh9/wlYY8Vx2Fnctb7/ZEdsmES2Q2t92IoxLPYZ3vdPWJx3Sqm7gFHAHdqqBLeqfxzWz9sxbQfdQhWTj2Nn+z5TSsUANwNvOZeFen95ukYQwvNMkgb8A+iqlOpi3a2OB9bbEYhVV7oU+FprvchluWsd5Fhgt/v/hiC2RKVUsvNnTCPqbsy+usta7S5gXahjs9S6+wuHfWbxtn/WA3davVsGAMec1QuhopQaDswExmitT7ksv1ApFW39/AugK7A/hHF5O3brgfFKqTilVBcrri9CFZflOmCf1rrIuSCU+8vbNYJQnmehaPEP9y9MD4NvMXcIT9gYx2BM0fFLYJf1NRJYCXxlLV8PdLAhtl9geq7kA3uc+wloB/xf4Dvre1sbYksAHEArl2Uh32eYpHUIqMDc4d3jbf9gqg3+ZJ1zXwE5NsT2Paa+23mu/dlad5x1jPOBHcDoEMfl9dgBT1j77BtgRCjjspYvB6a5rRvK/eXtGhGy80yGERFCCOE3qZ4SQgjhN0kaQggh/CZJQwghhN8kaQghhPCbJA0hhBB+k6QhhBDCb5I0hAgBpdRCpdRHdschRGNJ0hAiNPoS+qeXhWhy8nCfEEFkjRN0Eoh1WbxXa51mU0hCNIqUNIQIrkpgoPVzf8wkOoPtC0eIxomxOwAhmjOtdZU1AF8Z8A8tRXtxnpOShhDBlw3kS8IQzYEkDSGCLwvYaXcQQjQFSRpCBF9vzFDWQpz3JGkIEXwxQA+lVEelVGu7gxGiMSRpCBF8T2BmhCwCfmdzLEI0ijynIYQQwm9S0hBCCOE3SRpCCCH8JklDCCGE3yRpCCGE8JskDSGEEH6TpCGEEMJvkjSEEEL4TZKGEEIIv/1/oaWlk/+j55UAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "V = S[0]\nX = []\nY = []\nZ = []\n\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(V[(k, theta_L)])\n Z.append(V[(k, theta_H)])\n \nplt.plot(X, Y, color=\"red\", linewidth=2, label=\"Optimum: low productivity\")\nplt.plot(X, Z, color=\"blue\", linewidth=2, label=\"Optimum: high productivity\")\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$V$\", fontsize=14)\nplt.title(\"Value Function\")\nplt.legend(loc='lower right')\nplt.show()", + "execution_count": 12, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEbCAYAAADAsRPLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd8VFX6x/HPQ0BC764iYECqFCkB6aCCIi0IKDYU3RXZdd2isrrrrmLXFdvvZ0HcnyIsKIKKDRuigqBgKNJRUErAQpEWapLz++OZSZ0kQ5KZO+V5v17zmszMnblnEpjvnHvueY445zDGGGPyK+d1A4wxxkQmCwhjjDEBWUAYY4wJyALCGGNMQBYQxhhjArKAMMYYE5AFhIkLIpIkIk5EynvdllAQkUki8i+v22FiiwWEiQoi8qGI3Bvg/hQR+cnLD34R2SIiR0TkUK5L/RDub4yIfJH7PufcOOfcfaHap4lPFhAmWkwBRouI5Lt/NDDdOZcR/iblMcQ5VzXXZafH7TGm1CwgTLSYA9QGevnvEJFawGBgqu/2IBFZISIHRGS7iEwo7MV83/r75bo9QUT+m+t2VxFZLCL7ROQbEel7sg0Wkb4iklbYfn37fE1EporIQRFZKyLJubZtKCJviMguEdkjIk+LSCtgEtDN11PZ59t2iojcn+u5N4jIJhHZKyJv5+7R+A61jROR70TkVxF5JkDwGmMBYaKDc+4I8BpwTa67LwM2OOe+8d1O9z1eExgE/F5Ehp3svkTkDOA94H40lG4DXheReiV/B4UaCryKtvlt4GlfGxKAd4GtQBJwBvCqc249MA740tdTqRmg/ecDD6G/n9N9r/Fqvs0GA52Bc3zbXVTWb8xEPwsIE01eBi4VkUq+29f47gPAOfeZc261cy7LObcKeAXoU4L9XA3Mdc7N9b3Wx0AqMLCI58zx9Tb2icick9jXF779ZALT0A9sgC5AfWC8cy7dOXfUOfdFoa+S11XAi8655c65Y8Df0R5HUq5tHnbO7XPObQM+BdqfRJtNnLCAMFHD9wG5C0gRkSboN+AZ/sdF5FwR+dR3SGY/+k27bgl2dSYaRP4P/H1AT/TbeGGGOedq+i4n02v5KdfPh4FE34B7Q2BrCcdW6qO9BgCcc4eAPWgvpLD9Vi3BfkyMi8lT/kxMm4r2HFoAHznnfs712Az0EM3FzrmjIvIkhQdEOlA51+3Tcv28HZjmnLuhlG3Nsw/fYaNgD1NtBxqJSPkAIVFcCeadaMj591sFqAPsCHLfxgDWgzDRZyrQD7iBXIeXfKoBe33h0AW4sojXWQlcLiIVfAPDI3M99l9giIhcJCIJIpLoG3BucJJt/RbtEQwSkQrAP4GKQT53KfAj8LCIVPG1oYfvsZ+BBiJySiHPnQFcJyLtRaQi8CCwxDm35STbb+KcBYSJKr4PucVAFXRQN7c/APeKyEHgLnRQuzD/As4CfgXuIdehKufcdiAF+Ad6SGs7MJ6T/P/inNvva9N/0G/v6UBakU/KeW4mMARoCmzzPW+U7+H5wFrgJxHZHeC5n/je3+toyJwFXH4ybTcGQGzBIGOMMYFYD8IYY0xAFhDGGGMCsoAwxhgTkAWEMcaYgKJ6HkTdunVdUlKS180wxpiosmzZst3OuWLn5ER1QCQlJZGamup1M4wxJqqIyNbit7JDTMYYYwoRMQHhK238qYis95U9/rPXbTLGmHgWSYeYMoBbnXPLRaQasExEPnbOrfO6YcYYE48ipgfhnPvRObfc9/NBYD15q08aY4wJo4gJiNx8des7AEsCPDZWRFJFJHXXrl3hbpoxxsSNiAsIEamKFhn7i3PuQP7HnXOTnXPJzrnkevVCscCXMcYYiLCA8JVEfh1dhP4Nr9tjjDHxLGIGqX2Lpv8fsN4597jX7THGmEiQlQVbt8L69Xkvv/0tXH99aPcdMQEB9ABGA6tFZKXvvn845+Z62CZjjAmLY8fgu+8KBsHGjXD0aMHt27ePo4DwrTcsXrfDGGNC6cCBgiGwfj18/732FgI5/XRo1UovLVvqddu2oW9rxASEMcbEkoMHYd06WLs27yWtkDUFy5WDpk0LBkHLllCzZnjb7mcBYYwxpXDokPYA8gfBtm2Bt09MhBYtcoLAHwLNmuljkcQCwhhjgnD4cOAg2LIl8PYVK+oHf+vWeS+NG0NCQlibXmIWEMYYk8vx4zowvHq1XvxB8MMP4FzB7StU0B5B7hBo0waaNIHyUf4JG+XNN8aYknEOdu7UEFi1KueyYQOcOFFw+/LloXnzgj2Cpk01JGKRBYQxJualp2svwB8C/lDYu7fgtiL6od+unfYE/EHQrBmcckr42+4lCwhjTMzIytLTRfMHwebNgQ8P1aqlQZD70ro1VKkS/rZHIgsIY0xUOnxYA2DlSlixQq9Xr9b78ytfXs8WatdO5w/4w6B+fe0xmMAsIIwxEW/37rxBsGKFDiQHmlh2xhl5Q6BdOx1EjrfDQ2XBAsIYEzGc09NG84dBoMllCQk6RtC+PXTooNfnnAN16oS92THLAsIY44mMDJ1XsHx53kDYv7/gtpUr64e/Pwg6dNCxgkqVwt/ueGIBYYwJucxMPX00NVUvy5ZpGBw5UnDbevU0AHKHQdOm0TO5LGQOHMiZlLFmDQwYoJcQsoAwxpSpzEz49tucIEhN1d5BoMHjxo2hY8e8gXD66XE+cJyenjNle82anOvt2/NuV66cBYQxJnJlZWmJan8Q+MPg0KGC2555JnTqBMnJeunYMc7HC06c0JH2VavyBkFhU7YrVtRTsfxTtfv2DXkTLSCMMUFxTgeLlyzRi7+HcPBgwW0bNiwYBnG7QnD+Kdv+6/Xri56y3aZNzkw9j2p3WEAYYwI6eFBDwB8IS5bAjz8W3K5+/Zwg6NRJL7/5TfjbGxHS07UXkLt+x+rVgadsg37o+6ds+8OgefOIOSc3ogJCRF4EBgO/OOfaeN0eY+JFZqYe4cgdBuvWFZxnUKMGdOkC556r18nJOmYQdzIzc6Zs5w6D778vfMq2f3KG/7p1a6hWLfxtPwkRFRDAFOBpYKrH7TAmpu3cCV99lfdwUXp63m3Kl9eB43PPzbk0a6Zjo3Hl4EH45hs97Wrlypwxg0CnYPmnbOeeqde2rc7ei8KR94gKCOfcAhFJ8rodxsSSzEz9krtokV4WL4atWwtul5SUNww6dIizeQbO6TE0fxD4J2Zs2hR4+zPOyBsCMThlO6ICIhgiMhYYC9CoUSOPW2NM5DlwQHsH/jD46quCZxVVq5Y3DLp0ibNxg8xMPf3KHwL+yy+/FNy2QoWcKdv+6dpt20Lt2uFvd5hFXUA45yYDkwGSk5MDHOwzJn74S1P4w2DRIu0t5D8M3qQJdO8OPXrodevWcTTxLHdVP3/PYNWqwIeIatTIW7ujfXs9ZBRDvYKTEXUBYUw88x8u+vxzWLhQQyH/mUUVKuhppf4w6N49jgaSDx3SEPBPzFi2rPCqfo0a5YSAPxTOPDMqxwpCxQLCmAh24oTWKlqwQC8LFxasVVSnTt7eQXJynIwdpKdrb2DZspxA2LChYPfJqvqVWEQFhIi8AvQF6opIGnC3c+7/vG2VMeFz7BgsXaph8Pnn2kPIf3ZRUhL06QO9ekHPnnrafMx/6U1PL9gz2LChYM+gfHkNA/+EjE6ddLwgLhKz7EVUQDjnrvC6DcaE0+HD8OWXGgYLFuiA8rFjebdp0QJ69865xPy5GYcPaxj4g2DZMp11nD8MEhK0J+Cfst2pk55JlJjoTbtjUEQFhDGx7sQJ7SF88olevvyyYLWFtm01CPy9hNNO86atYeEv87pkif5ilizRQZbMzLzbJSToh3/u6drt2lnPIMQsIIwJoawsnWP1yScwf772EnIfMhLRAeW+fTUUevaM8UPjO3bkBMHSpdpLyF/MqVw5TUl/GCQnWxh4xALCmDLknJa6nj9fQ+HTTwuW4WnVCi64AM4/X4OhVi1Pmhp6/mJOuQNhx46C2zVqlLd+R6dOUKVK+NtrCrCAMKaUdu2Cjz+Gjz6CefMKfgaeeWZOIJx/foyecpqVpcWbFi/OW8wp/xlFNWpA5845YdClS4wfQ4tuFhDGnKQTJ3Ts4MMP9bJ8ed7PwXr1NAj8odCkSQyeZXTggIbA4sU507UPHMi7TYUKOoicu3fQvHkcFnOKXhYQxgTh++9zAmH+/LyHzStW1PGDiy6CCy/UsyxjKhCc01+APwwWLw48XbtRI52I0bWrBkL79nZGUZSzgDAmgMOHNQg++EBDIX+9tlatNBAuukjDoXJlb9oZEkeP6qmluQMhf40i/3Rt/1Ttbt20eJ2JKRYQxvhs2wbvvQfvvqvhcPRozmM1a0K/fjmh0LChd+0sc3v3ahGnBQvgiy80HPKfe1uvXk4YdO+uA8l2VlHMs4AwcSszUw+jv/uuXlavzvt4584wcKAGQufOYV/tMXR27tSaHQsXaijkf+Mielpp7t7BWWfF2HEzE4xY+SdvTFD27dOzjd59F+bOhT17ch6rWlXHEAYPhosvjpGTa/zjB/4wWLAANm/Ou03Fijpm0KuXXrp1g+rVvWmviSgWECbmpaXBnDnw5pta0iL3JN0mTWDIEBg0SMcSKlb0rp1lwn+6ae7qfjt35t2mWjXtGfTurYHQubMNJpuALCBMTNq4UQPhzTd1fpZfQoKWsBg8WC8tWkT5kRPntFTFp5/qwMlnn+XtFoFOzfaHQe/eeuppzBwvM6Fk/0pMTHBO5yO88YaGwvr1OY9VqqTjCJdcoqEQ1QuB+Q8Z+QPh00/hp5/ybnPGGZqC/lBo1SrKU9B4xQLCRK2sLJ2wNmuWhsK2bTmP1ayph44uuUTDIapPQ92+PW8g5H6joGuFnneezso77zwbUDZlxgLCRBXn4OuvYeZMeO01HV/wq18fhg3TUOjTR0/Vj0q7d+dU95s/v+AkjNq1tYiTPxCsh2BCJKICQkQGAE8BCcB/nHMPe9wkEwGc04XD/KGwZUvOY40awWWXwciROtYalVUcjh/XyWgffaSX/LU7qlfXw0X+QGjXLkrfqIk2ERMQIpIAPAP0B9KAr0XkbefcOm9bZryyerWGwsyZeb9E168Pl14Ko0bp2ZlR91npH1j2B8Lnn+etAX7KKTp20K+fhkLHjjaobDwRSf/qugCbnHPfA4jIq0AKYAERR3buhBkzYNo0WLUq5/5TT9VewqhRumZC1IXC7t1a6vWjj7T0a+5jY6AFnC68EPr3j8HaHSZaRVJAnAFsz3U7DTjXo7aYMDp0SAeZp03TQ+/+lSVr1coJhT59ouxLdGamroXw3ns6Iy//YaNTT9UwuPBC7SnUr+9dW40pRCT9lws0yuYKbCQyFhgL0CjmF+eNXZmZGgbTpumpqYcP6/2nnKKnoo4erWUuTjnF23aelL17tbLf3Lla5W/37pzHKlbUw0b+ULBxBBMFIikg0oDcJdAaADvzb+ScmwxMBkhOTi4QICaybdoEL74IU6bAjz/m3N+jh4bCpZdG0TwF5/Q4mL+X8OWXOd0fgKQknaI9cKCedWSHjUyUiaSA+BpoJiKNgR3A5cCV3jbJlIUjR7SX8J//6ERfv6ZNNRSuvlpLXkSF9HQdQ5g7Vy+5l48rX16DYOBADYaon6Zt4l3EBIRzLkNE/gh8iJ7m+qJzbq3HzTKlsHKlhsL06VokD3RW86hR8Nvfaq8hKj4/f/4Z3nkH3npLB5pz1wE//fScQLjgAityZ2JKxAQEgHNuLjDX63aYkktP10CYPFmXFfBLTobf/Q4uv1yXJY54GzdqILz1lh46yj3A3LWrDpQMGqR1jaIi5Yw5eREVECZ6ffstPPusji3s36/31ayph5B++1v9HI1oWVm6rrI/FDZuzHmsYkXtHQwbpvU7YqIOuDHFs4AwJZaZqeOzzzyjp/f7desGf/gDjBgR4YuOnTihgyKzZ2so/PxzzmO1amkvISVFizlVrepZM43xigWEOWl79sALL8CkSbB1q95XqRJceSXcdBN06OBt+4p04oSeXzt7tk6+2Ls357GkJA2ElBSdjRe1xZyMKRsWECZo330HTzyhh5GOHNH7zjpLewvXXadfuiPS8eM6uDxrlvYUfv0157GWLfXc2uHDbTzBmHwsIEyRnNP17B97TD9b/WO1F18Mf/qTzvmKyPlex47pcS//4SP/wAhA69Y6RfvSS+Hssy0UjCmEBYQJKCND5y489ljOimynnKKDzrfcop+rEScrS5fZnDFDgyF3T6FtWw2EkSO1PLYxplgWECaPY8fg5Zfh4Yfhhx/0vtq19TDSTTdF4Ak8/lrgM2bAq6/mnbjWtq1Ouhg5UietGWNOigWEAXRM4T//gX//O6fQaNOm2lu49toIrBKxaRO88ooGw4YNOfcnJelo+RVXaIVUY0yJWUDEuUOH9GykiRNzzvJs0wbuvFOPyCQkeNu+PPbu1V7Cyy/nHPcCqFtXewpXXqnn2NqYgjFlwgIiTh06BP/zPzrG4D/Ts1Mn+Oc/YejQCBp4zsjQ2kcvvaSDzceP6/1Vq+raoldeqZPY7JRUY8qcBUScOXYMnn8eHngAfvlF7+vWDf71LxgwIIK+fG/YoOfTTpumqwiBNu7CC/WY17BhEXjcy5jYYgERJzIy9LN2wgTYtk3vO/dcuP9+/QIeEcGwf78eQpoyRcte+DVrBmPG6ClUDRsW9mxjTBmzgIhxzsHrr2sPwT+W26aN9iCGDImAYHBOxxMmTdLFp/0z8KpV03GFMWOge/cIaKgx8ccCIoZ9/TX89a860Q10zYV779WKqp4PPh84oGVfn38evvkm5/7zzoPrr9fxhSpVvGufMcYCIhalpcHf/w7//a/ePvVUuOcerarq+VhuaqqGwiuvaG1w0LOQrrsObrhBDycZYyKCBUQMSU+HRx/VuQxHjujM57/+Ff7xD4/XsTl6VMcWnn467yIRffrAjTdqHaSKFb1rnzEmoIgICBG5FJgAtAK6OOdSvW1RdHEO5syBP/8Ztm/X+y69FB55BBo39rBhO3fqIhHPPw+7d+t9tWrpuMLYsVoozxgTsSIiIIA1wHDgea8bEm1++AFuvlnXZQDo2BGefBJ69fKoQc7BkiXw1FNaDykjQ+9v314TbNSoCF8kwhjjFxEB4ZxbDyB2pkrQjh/XSW733aeHk6pXh4ce0iM2ngxAnzgBr72mwfD113pfuXJaB+lPf9L1Fezva0xUiYiAOBkiMhYYC9CoUSOPW+ONL7/UAef16/X2lVdqWHhSSO/gQS3i9MQTOce3atfWAec//AHi9G9kTCwIW0CIyDwg0EfYnc65t4J9HefcZGAyQHJysitm85hy5AjcdRc8/rhWtm7WTA/x9+vnQWN+/llrdTz7LOzbp/e1aqWj4lddZbOcjYkBYQsI55wXH2Mx46uvdGx340Y9cnPHHXD33ZCYGOaGfPeddlemTNG6HQA9esDtt8OgQRFUxMkYU1pRd4gp3hw/rrOgJ07UXkOrVvrZ3KVLmBuyZo0OeMyalbOsXEoKjB+vAWGMiTkR8XVPRC4RkTSgG/CeiHzodZsiwcaNWkjv3//W23fcAcuXhzkcVq3Sgea2bXUQunz5nAGQOXMsHIyJYRHRg3DOvQm86XU7IoVzWt365pvh8GGdyzBjBnTtGsZGrFypdTne9P1ZKlbUgefbb4cGDcLYEGOMVyIiIEyOAwd0DtnMmXr7qqt0HDhsM6FXrdLBjTlz9HZiojbo9tuhfv0wNcIYEwksICLIunVadWLjRl0P59lntcJ1WHz/vZ4iNWOGdmEqVYJx43SM4fTTw9QIY0wksYCIELNmab269HQtx/3GG2GqW/fzzzr4PHmyTnY75RT4/e91wMOTiRXGmEhhAeGxjAytvDpxot6+4gp44YUwVLrev193+sQTmkoiulLbhAmQlBTinRtjooEFhIcOHNDSRB98oCcHTZyoVSlCWpEiI0NnPv/rXzkF9FJSdGm5Nm1CuGNjTLSxgPDI9u06r2z1al0O4fXXoXfvEO/0k090pvPq1Xq7Z08t+dq9e4h3bIyJRhYQHli2TJf7/PFHaNFCK7GedVYId7hpE9x2G7zlq2iSlKTdleHDrYCeMaZQETFRLp58/LH2FH78Efr21cJ7IQuH9HQdbD77bA2HqlXhwQd1ktuIERYOxpgiWQ8ijN58U9eDPn5cT1/9z3/0pKGQePttnWm3bZsGwXXXwQMP2CmrxpigWQ8iTKZO1VXejh/XgegpU0IUDlu36qBzSoqGQ4cOWunvxRctHIwxJ8UCIgyefVbPIM3M1JOHnnwyBEVPMzJ0Qeqzz9beQ7VqunjP0qUeVPYzxsQCO8QUYpMnw0036c8TJ8Ktt4ZgJ2vX6iEk/0pul12m8xusNIYxphSsBxFC06ZptQrQtXXKPBwyMnTQuWNHDYcGDWDuXC3kZOFgjCkl60GEyGuv6QI/zulUg5tvLuMdrF6tvYZly/T2DTfoIaYaNcp4R8aYeGU9iBD45BOtwpqVpZUr/va3MnzxrCxd0a1TJw2HRo3gww/1WJaFgzGmDFkPooytWaPzzzIydNLyXXeV4Yv/+KOOdn/8sd4eO1Z7DWGrBW6MiScR0YMQkUdFZIOIrBKRN0WkptdtKomdO2HgQK2xNGKEDkqX2Vy0d9+Fdu00HOrU0TOVnn/ewsEYEzIRERDAx0Ab51w74Fvg7x6356Slp8PgwVpjqVs3HaAuk1NZjx3TiRNDhmhxvX79dFGfIUPK4MWNMaZwEREQzrmPnHMZvptfAVG1pqVzerRnxQpo2lS/3FeqVAYvvH271uX43/+FChX0cNKHH9oZSsaYsChyDEJEGjnntoWrMT7XAzMLe1BExgJjARo1ahSuNhXp6ad1IbYqVbTkUd26ZfCi8+bp4hC7d+tA9OzZ0LlzGbywMcYEp7gexAYRuUtEKpZ2RyIyT0TWBLik5NrmTiADmF7Y6zjnJjvnkp1zyfXq1Stts0pt0SK45Rb9+cUXdSJzqTgHDz0EF12k4XDhhXq2koWDMSbMijuL6S/AfcB1IvJX59ycku7IOdevqMdF5FpgMHCBc86VdD/h9OuvWnwvI0ND4rLLSvmCR47A9dfDq6/q7bvu0ktCQqnbaowxJ6vIHoRzbjLQDHgDmCkiH4pIi7JuhIgMAG4HhjrnDpf164eCc7p0c1oadO0KDz9cyhf8+Wc4/3wNh2rV4J134J57LByMMZ4pdpDaOXfAOXcr0BY4AawSkYkiUq0M2/E0UA34WERWisikMnztkJgxQytaVKkC//2vjiGX2OrVWlDvq6/gzDP1uNXgwWXWVmOMKYmgJ8o5574FBovIRcDjwFUicrtzbmppG+Gca1ra1winbdtyCvA99VQpF/z56COdNHHokHZF5syB3/ymTNppjDGlcdKnuTrnPgTaAQ8Bj4vI4jJvVQTzH1rav1+XXLj++lK82MyZ2lM4dEgHM+bPt3AwxkSMoHsQIlIVaIMeamrju5QDzg1N0yLT669rwdQaNWDSpFLMlH7uOe2GOKcj3I8+GoJFIowxpuSKmwfxEDmB0BAQYDewGlgF/Bf4JsRtjBj79+ukZtBB6dNOK8GLOKcluv/5T7390ENw++22PrQxJuIU14MYiAbBM77rVc65H0Peqgg1YYLWy+vaVWdOl/hF7r1XewuTJmmZbmOMiUBFBoRz7pxwNSTSbdoEzzyjX/Sfe66ER4PuuUfDISEBpk+HUaPKvJ3GGFNW7KB3kP7+dzhxQqttt29fghe4917tPZQrZ+FgjIkKFhBBWLxYSyFVqgT33VeCF3joIbj7bg2HadMsHIwxUcECIgj/+Ide33KLLvt8UiZP1hcQgZdfhiuvLPP2GWNMKFhAFGPRIvj8cz2tdfz4k3zyW2/ppAnQgYurry7z9hljTKhYQBTjwQf1+o9/PMklnxct0slvWVl6eOnGG0PSPmOMCRULiCKsWKGT4ipXhr/85SSeuGmTrvh29KieD3v33SFrozHGhIoFRBH8FVpvvPEkFgE6cEBrcPz6q5bRePZZmwRnjIlKFhCF2LFDy2qUL5+zIFCxsrJ0nGHdOl05aPp0K9dtjIlaFhCFeOEFyMyESy45iTOX7r5b13GoWVMHqKtXD2kbjTEmlCwgAjhxQs9OBfjDH4J80rvvwv3361yHmTOhaVRVMDfGmAIsIAJ45x2tudSqFfTpE8QT0tJgzBj9+aGHdB1pY4yJchERECJyn4is8q0m95GI1PeyPdOm6fXvfhfE+HJmJlx1FezZAxddBLfdFvL2GWNMOEREQACPOufaOefaA+8Cd3nVkF9/1VNby5WDK64I4gkPPAALFmjt76lTbU0HY0zMiIhPM+fcgVw3qwDOq7bMng3Hj8P558Pppxez8YoVWoRPRLsdp54aljYaY0w4BL2iXKiJyAPANcB+4LwithsLjAVo1KhRmbdj+nS9vuqqYjY8cULXG83M1FWE+vUr87YYY4yXxLnwfFkXkXlAoDXY7nTOvZVru78Dic65YqcfJycnu9TU1DJr4y+/6JGiU07Rn4s8S/X+++Ff/4LGjWH1aqhSpczaYYwxoSQiy5xzycVtF7YehHMu2K/YM4D3gLDXp3j/fV0R9LzzigmHtWv10BLohAkLB2NMDIqIMQgRaZbr5lBggxfteO89vR40qIiNnIObbtJDTDfcABdcEJa2GWNMuEXKGMTDItICyAK2AuPC3YATJ+DDD/XnIgNi1iyt/12nDjzySFjaZowxXoiIgHDOjfC6DV98oXX2zj5bhxUCSk/Pmefw4INQq1bY2meMMeEWEYeYIsH77+t1kb2HRx+F7duhY0f47W/D0i5jjPGKBYTP55/rdaFnq+7aBY89pj8/+aRVaTXGxDwLCODgQVi2TD/zu3UrZKOHH4ZDh2DgQOjVK6ztM8YYL1hAAF9+qfPdOnWCatUCbJCWBs88oz/ff39Y22aMMV6xgEBLKQH07l3IBg8+CMeOwaWXQocOYWuXMcZ4yQICWLpUr7t3D/DgL7/ASy/pzxMmhKtJxhjjubgPCOd0/AEgOdDE82eegaNHYcgQPQfWGGPiRNwHxNatsHcv1KsXYGnRw4dzxh7Gjw9724yOVLZtAAAVgklEQVQxxktxHxD+3kPHjgEWB5oyRRcC6tIFevYMd9OMMcZTFhC+gOjUKd8DzsFTT+nPt94axNJyxhgTW+I+IFat0usCJyctWADffgv168Pw4WFvlzHGeC3uA2KDr25sq1b5HnjhBb2+7jooHxElq4wxJqziOiCOHYMfftBlpJs2zfXA3r269ihYzSVjTNyK64DYvBmysrR6a8WKuR549VVNj/79iyjtaowxsS2uA2LjRr1u0SLfAzNn6vXo0WFtjzHGRJK4Dgj/+EOegNi5ExYu1C5FSoon7TLGmEgQUQEhIreJiBORuuHYX8AexOzZeorrxRcXszC1McbEtogJCBFpCPQHtoVrn99/r9d5Bqj9h5dGjQpXM4wxJiJFTEAATwB/A1y4drhjh15nl9j45RdYvFgPLw0eHK5mGGNMRIqIgBCRocAO59w3QWw7VkRSRSR1165dJd6nczkBccYZvjs//FCv+/aFqlVL/NrGGBMLwjYDTETmAacFeOhO4B/AhcG8jnNuMjAZIDk5ucS9jV9/1TNZq1fPlQUffKDXF19c0pc1xpiYEbaAcM4FXO1ZRNoCjYFvROsdNQCWi0gX59xPoWpPgd5DZmZOD2LAgFDt1hhjoobnNSScc6uBU/23RWQLkOyc2x3K/RYIiGXLtHJrUhI0bx7KXRtjTFSIiDEIL/gDon593x3+3sPFF1vlVmOMIQJ6EPk555LCsZ8CPQj/wtTnnx+O3RtjTMSL2x7Ezp16fcYZQEYGfPml3mELAxljDBDHAZGnB/HNN5CerjPmTgt0opUxxsSfuA2In3znR51+OrBokd7o0cOz9hhjTKSJ24DYu1eva9cm5/BS9+6etccYYyJN3AbEr7/qde3awIoVeiM52bP2GGNMpInLgMjMhH379Oea5Q/p2tPly0Pr1t42zBhjIkhcBsT+/VqLqUYNSFi7Sm+0bp1vWTljjIlvcRkQ/sNLtWoBy5frjQ4dPGuPMcZEorgMCP8Ada1awMqVesMCwhhj8ojLgMgzQL1+vd5o08az9hhjTCSKy4A4cECvq1dHB6gh37qjxhhj4jIg0tP1ukr5Y7B7N1SpkqtqnzHGGIjTgDh8WK+rZPjOdW3e3Cq4GmNMPnEZEP4eROXDe/QHW//BGGMKiMuAyO5BHPpZf7CAMMaYAuIyILLHIA74an5bQBhjTAERERAiMkFEdojISt9lYCj35+9BVD7g60E0bhzK3RljTFSKpBXlnnDOTQzHjgr0ILKXlTPGGOMXET2IcMsOiH2+gDj9dO8aY4wxESqSehB/FJFrgFTgVufcr4E2EpGxwFiARo0alWhH2YeY3CGoU8eK9JmgnDhxgrS0NI4ePep1U4wJSmJiIg0aNKBChQolen7YAkJE5gGB1vO8E3gOuA9wvuvHgOsDvY5zbjIwGSA5OdmVpC3ZPQjS7fCSCVpaWhrVqlUjKSkJsXkzJsI559izZw9paWk0LuE4a9gCwjnXL5jtROQF4N1QtiW7B8Fhm0Ftgnb06FELBxM1RIQ6deqwa9euEr9GRIxBiEjuQYBLgDWh3F+eHoQFhDkJFg4mmpT232ukjEH8W0Tao4eYtgA3hnJnbdpAxT07qfnjPgsIY4wpRET0IJxzo51zbZ1z7ZxzQ51zP4Zyf6+8AqmDJ9CI7TYGYaJKWloaKSkpNGvWjLPOOos///nPHD9+vMjn7Nu3j2effTb79s6dOxk5cmSomxqUzz77jMGDB3vdjEKVpn1z5sxh3bp12bfvuusu5s2bV+RzBg4cyL59+wr8zbwSEQHhiR079Np6ECZKOOcYPnw4w4YN47vvvuPbb7/l0KFD3HnnnUU+L/+HTf369Zk9e3aomxvRMjMzQ76P/AFx77330q9f0UOxc+fOpWbNmhYQnvvZN4v6tEAnVhlTDJHQXIowf/58EhMTue666wBISEjgiSee4MUXX+Tw4cNMmTKFlJQUBgwYQIsWLbjnnnsAuOOOO9i8eTPt27dn/PjxbNmyhTa+BbKmTJnCsGHDGDJkCI0bN+bpp5/m8ccfp0OHDnTt2pW9vuUX+/btS2pqKgC7d+8mKSnppJ4fjL179zJs2DDatWtH165dWbVqFQBt27Zl3759OOeoU6cOU6dOBWD06NEFvpF/9tln9O7dm0suuYSzzz6bcePGkZWVBUDVqlW56667OPfcc/nyyy/55JNP6NChA23btuX666/n2LFjAHzwwQe0bNmSnj178sYbb2S/9oQJE5g4MWcub5s2bdiyZQsAU6dOpV27dpxzzjmMHj2axYsX8/bbbzN+/Hjat2/P5s2bGTNmDLNnz+b999/nsssuy9PmIUOGAJCUlMTu3bsL/M1Gjx7NW2+9lf2cq666irfffjvo321JxW9A+P/h1q7tbTuMCdLatWvp1KlTnvuqV69Oo0aN2LRpEwBLly5l+vTprFy5klmzZpGamsrDDz/MWWedxcqVK3n00UcLvO6aNWuYMWMGS5cu5c4776Ry5cqsWLGCbt26ZX8YFyWY50+aNIlJkyYV+Tp33303HTp0YNWqVTz44INcc801APTo0YNFixaxdu1amjRpwsKFCwH46quv6Nq1a4HXWbp0KY899hirV69m8+bN2R/y6enptGnThiVLlpCcnMyYMWOYOXMmq1evJiMjg+eee46jR49yww038M4777Bw4UJ++umnYt//2rVreeCBB5g/fz7ffPMNTz31FN27d2fo0KE8+uijrFy5krPOOit7+/79+/PVV1+R7jtbZubMmYwaNSrPa+b/m/3ud7/jpZdeAmD//v0sXryYgQNDWpEIiOeA8K87WquWt+0w0cm50FyK3KULeFZK7vv79+9PnTp1qFSpEsOHD+eLL74o9q2cd955VKtWjXr16lGjRo3sb7Nt27bN/oZc2uePGzeOcePGFfk6X3zxBaNHjwbg/PPPZ8+ePezfv59evXqxYMECFixYwO9//3tWr17Njh07qF27NlWrVi3wOl26dKFJkyYkJCRwxRVXZP8OEhISGDFiBAAbN26kcePGNPcV6rz22mtZsGABGzZsoHHjxjRr1gwR4eqrry72/c+fP5+RI0dSt25dAGoX86WzfPnyDBgwgHfeeYeMjAzee+89UlJSinxOnz592LRpE7/88guvvPIKI0aMoHz50J9jFJ8BkZUF+/frzzVretsWY4LUunXr7MM8fgcOHGD79u3Z31DzB0gwpzlWzFVJoFy5ctm3y5UrR0ZGBqAfav5DNflnkgfz/GC4AAEpIvTu3ZuFCxeycOFC+vbtS7169Zg9eza9evUK+DqF/Q4SExNJSEgodF+FPd8v9+8Acn4PhQV3UUaNGsVrr73G/Pnz6dy5M9WqVSv2OaNHj2b69Om89NJL2YcZQy0+A2L/fv22Vr06+P7BGBPpLrjgAg4fPpx92CYzM5Nbb72VMWPGULlyZQA+/vhj9u7dy5EjR5gzZw49evSgWrVqHDx4sFT7TkpKYtmyZQAhG+Du3bs306dPB/S4fN26dalevToNGzZk9+7dfPfddzRp0oSePXsyceLEQgNi6dKl/PDDD2RlZTFz5kx69uxZYJuWLVuyZcuW7ENz06ZNo0+fPrRs2ZIffviBzZs3A/DKK69kPycpKYnly5cDsHz5cn744QdA/y6vvfYae/boAmT+cZeifu99+/Zl+fLlvPDCCwUOLxX23DFjxvDkk08C+mUhHOIzIPzjD3Z4yUQREeHNN99k1qxZNGvWjObNm5OYmMiDDz6YvU3Pnj0ZPXo07du3Z8SIESQnJ1OnTh169OhBmzZtGD9+fIn2fdttt/Hcc8/RvXt3du/efdLPD2YMYsKECaSmptKuXTvuuOMOXn755ezHzj333OzDQb169WLHjh0BP/gBunXrxh133EGbNm1o3Lgxl1xySYFtEhMTeemll7j00ktp27Yt5cqVY9y4cSQmJjJ58mQGDRpEz549OfPMM7OfM2LECPbu3Uv79u157rnnstvTunVr7rzzTvr06cM555zDLbfcAsDll1/Oo48+SocOHbIDxy8hIYHBgwfz/vvvBzyNNtDf7De/+Q2tWrUKW+8BQIrqakW65ORkl7/LHZTUVOjcGTp0AN83AmOKs379elq1auV1Mwo1ZcoUUlNTefrpp71uimc+++wzJk6cyLvvhrRajycOHz5M27ZtWb58OTVq1Aj6eYH+3YrIMudccnHPjc8ehA1QG2OiyLx582jZsiU333zzSYVDaUVKqY3wOnBAr6tX97YdxpShMWPGMGbMGK+b4am+ffvSt29fr5tR5vr168e2bdvCvt/47EFkV+ur4m07jDEmgsVnQPjrfVtAGGNMoeIzIKwHYYwxxYrPgMheMaiyt+0wxpgIFp8BYT0IE6Virdz3lClT+OMf/xjwMX/p66LkLiIYLvFUAjw+A8J6ECYKxVu5b3/p63CxEuAFRUxAiMjNIrJRRNaKyL9DujPrQZhS8qDad8yW+965cycDBgygWbNm/O1vf8u+31/6GuC+++6jZcuW9O/fnyuuuCJP2e1Zs2bRpUsXmjdvnl3pNTcrAV5yETEPQkTOA1KAds65YyJyakh3aD0IE4WCLfe9Zs0aKleuTOfOnRk0aBAPP/wwa9asYeXKlQAFKrSuWbOGFStWcPToUZo2bcojjzzCihUr+Otf/8rUqVP5y1/+UmS7gnm+v8xGoIquK1euZMWKFVSsWJEWLVpw880307Bhw+zHU1NTef3111mxYgUZGRl07Ngxz+8hIyODpUuXMnfuXO65556Ah2yWLl3KunXrOPPMMxkwYABvvPEGI0eOzC4Bfu+993L06FGaNWvGJ598QvPmzbnmmmt47rnnGDduHDfccAPz58+nadOmAWsn5ecvAb5o0SLq1q3L3r17qV27NkOHDmXw4MEFDvH179+fG2+8kfT0dKpUqVJoCfDcf8fPP/+cJ554gpSUlOwS4LnLk5SFSOlB/B542Dl3DMA590tI92Y9CFNKHlT7jtly3xdccAE1atQgMTGRs88+m61bt+Z5/IsvviAlJYVKlSpRrVq17Nf3Gz58OACdOnUqtL1WArxkIiUgmgO9RGSJiHwuIp0L21BExopIqoik7tq1q2R7s3kQJgrFarnv3M9PSEgo8Jzi6sX5nx/ouX5WArxkwhYQIjJPRNYEuKSgh7pqAV2B8cBrUshv1zk32TmX7JxLrlevXska4+9B2CEmE0Vivdx3YXr27Mk777zD0aNHOXToEO+9995Jv4aVAC+ZsAWEc66fc65NgMtbQBrwhlNLgSygbsgaYz0IE4Vivdx3YTp37szQoUM555xzGD58OMnJySddsM5KgJeQc87zCzAOuNf3c3NgO75S5EVdOnXq5EqkRw/natVy7rvvSvZ8E5fWrVvndROK9NJLL7mbbrrJ62aExMGDB51zzqWnp7tOnTq5ZcuWBf3cTz/91A0aNChUTfNUenq6a9Kkidu3b1+h2wT6dwukuiA+myPiLCbgReBFEVkDHAeu9b2J0Ahi4M4YEznGjh3LunXrOHr0KNdeey0dO3b0ukmemzdvHtdffz233HJLyEqAx+eCQcaUQKQvGGRMILZgkDFhEs1fqEz8Ke2/VwsIY4KUmJjInj17LCRMVHDOsWfPHhITE0v8GpEyBmFMxGvQoAFpaWmUeP6NMWGWmJhIgwYNSvx8CwhjglShQgUaN27sdTOMCRs7xGSMMSYgCwhjjDEBWUAYY4wJKKrnQYjILmBrsRsGVhc4+ZoB0cveb2yLt/cL8feey/L9numcK7aYXVQHRGmISGowE0Vihb3f2BZv7xfi7z178X7tEJMxxpiALCCMMcYEFM8BMdnrBoSZvd/YFm/vF+LvPYf9/cbtGIQxxpiixXMPwhhjTBEsIIwxxgQU0wEhIgNEZKOIbBKROwI8XlFEZvoeXyIiSeFvZdkK4j2PEZFdIrLSd/mdF+0sCyLyooj84ltoKtDjIiL/4/tdrBKRqF9lJoj33FdE9uf6+94V7jaWFRFpKCKfish6EVkrIn8OsE1M/Y2DfM/h+xsHs+xcNF6ABGAz0AQ4BfgGODvfNn8AJvl+vhyY6XW7w/CexwBPe93WMnq/vYGOwJpCHh8IvA8I0BVY4nWbw/Ce+wLvet3OMnqvpwMdfT9XA74N8O85pv7GQb7nsP2NY7kH0QXY5Jz73jl3HHgVSMm3TQrwsu/n2cAFIiJhbGNZC+Y9xwzn3AJgbxGbpABTnfoKqCkip4endaERxHuOGc65H51zy30/HwTWA2fk2yym/sZBvuewieWAOAPYnut2GgV/0dnbOOcygP1AnbC0LjSCec8AI3zd8dki0jA8TfNEsL+PWNNNRL4RkfdFpLXXjSkLvsO/HYAl+R6K2b9xEe8ZwvQ3juWACNQTyH9ObzDbRJNg3s87QJJzrh0wj5weVCyKtb9vMJajdXbOAf4XmONxe0pNRKoCrwN/cc4dyP9wgKdE/d+4mPcctr9xLAdEGpD723EDYGdh24hIeaAG0d19L/Y9O+f2OOeO+W6+AHQKU9u8EMy/gZjinDvgnDvk+3kuUEFE6nrcrBITkQroB+V059wbATaJub9xce85nH/jWA6Ir4FmItJYRE5BB6HfzrfN28C1vp9HAvOdbxQoShX7nvMdnx2KHuOMVW8D1/jOdOkK7HfO/eh1o0JJRE7zj6OJSBf0//geb1tVMr738X/Aeufc44VsFlN/42Deczj/xjG75KhzLkNE/gh8iJ7d86Jzbq2I3AukOufeRv8Q00RkE9pzuNy7FpdekO/5TyIyFMhA3/MYzxpcSiLyCnpGR10RSQPuBioAOOcmAXPRs1w2AYeB67xpadkJ4j2PBH4vIhnAEeDyKP7S0wMYDawWkZW++/4BNIKY/RsH857D9je2UhvGGGMCiuVDTMYYY0rBAsIYY0xAFhDGGGMCsoAwxhgTkAWEMcaYgCwgjDHGBGQBYUwZEpFHRORjr9thTFmwgDCmbLUHVha7lTFRwALCmLJ1DrDC60YYUxYsIIwpIyJyGvAbfD0IEakiIq+KyPJYWK3QxB8LCGPKTge0Ns5GEWkBLEVrXvVwzm3xsmHGlIQFhDFlpz2wGhgGLAZecM5d7Zw74m2zjCkZK9ZnTBkRkZlAf7SS7lDn3OceN8mYUrEehDFlpz3wBlp+O5qXrjUGsB6EMWVCRCoDB4GuQDNgMtDbvwC9MdEoZhcMMibMzkHXQl7jnPtaRFoB74hIF+fcDo/bZkyJ2CEmY8rGOcB3uQak7wIWAW/7ehfGRB07xGSMMSYg60EYY4wJyALCGGNMQBYQxhhjArKAMMYYE5AFhDHGmIAsIIwxxgRkAWGMMSYgCwhjjDEB/T9XYTDHF4rw7AAAAABJRU5ErkJggg==\n", + "text/plain": "
" + }, + "metadata": {}, + "output_type": "display_data" + } ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "np.random.seed(1910)\n", - "C = S[1]\n", - "K = S[2]\n", - "\n", - "k0 = k_grid[30]\n", - "a0 = theta_H\n", - "n = 200\n", - "\n", - "X = [k0]\n", - "Y = [C[(k0, a0)]]\n", - "A = [a0]\n", - "T = [0]\n", - "\n", - "s = 0\n", - "for t in np.arange(0,n):\n", - " T.append(t)\n", - " a0 = shox(a0, pi_H, pi_L, theta_H, theta_L)\n", - " A.append(a0)\n", - " k = K[(k0, a0)]\n", - " X.append(k)\n", - " c = C[(k, a0)]\n", - " Y.append(c)\n", - " k0 = k\n", - " \n", - "plt.plot(T, X, color=\"black\", linewidth=1.5, label=\"capital stock: $k_{t}$\")\n", - "plt.plot(T, Y, color=\"red\", linewidth=1, label=\"consumption: $c_{t}$\")\n", - "plt.xlabel(\"$t$\", fontsize=14)\n", - "plt.ylabel(\"$c_{t}$, $k_{t}$\", fontsize=14)\n", - "plt.title(\"Path of $c$ and $k$ over time\")\n", - "plt.legend(loc=\"lower center\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 164, - "metadata": {}, - "outputs": [ + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "C = S[1]\nX = []\nY = []\nZ = []\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(C[(k, theta_L)])\n Z.append(C[(k, theta_H)])\n\nplt.plot(X, Y, color=\"red\", linewidth=2, label=\"consumption: low productivity\")\nplt.plot(X, Z, color=\"blue\", linewidth=2, label=\"consumption: high productivity\")\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$c$\", fontsize=14)\nplt.title(\"Policy Function: $c$\")\nplt.legend(loc='lower right')\nplt.show()", + "execution_count": 13, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEdCAYAAAD5KpvoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd4VOXywPHvgEGqoBQLRUBB6cWACAJBiogo6gUBUUFQFPXqtf2sIPYC1mtBLICKAoIiKoqNei0UKVIECyABhYD0nmR+f0waIWUJmy3JfJ4njzlnz56ds8GdPW+ZV1QV55xzLitFwh2Ac865yOVJwjnnXLY8STjnnMuWJwnnnHPZ8iThnHMuW54knHPOZcuThHPOuWx5knDOOZctTxKuQBCRNSLSIeX3ZSISF+aQ8kVBvjYXmTxJuIiS8mG/V0R2ichGERklIqWP5ByqWk9VZ+RjXKk/pwTzNbJ5zQ4Z9+XHtTmXE08SLhJdpKqlgaZAM+CBMMeT6iJVLZ3hZ0O4A3Iuv3mScBFLVdcDnwP1AUSkjojMEJFtKc0uF2f1vMzfwEWkqoh8KCIJIrJFRF4SkbtEZFKm5/1XRJ4/0jhFREXk9Azbo0Xk0Uzx3CkiS0Rku4iMF5Hi2cWWsv8doBrwScpdy/9lvrac3o+cXvMIrqu3iCxIef7v3sxVOHmScBFLRKoCXYCFIhIDfAJ8CVQC/g2MFZEzcjlHUeBTYC1QHagMjAPeBTqLSLmU444BegLv5MvFwOVAZ6AG0BDol0NsqOpVwJ+k3708nem6Ank/DnvNDM9/RUReyS5YEbkDu4O7DjgeuARYk6crd1HNk4SLRJNFZBswB5gJPA60AEoDT6rqAVX9FvuA7Z3LuZoDpwB3qepuVd2nqnNU9S9gFtAj5bjOwGZVXZBbXCk/k4/wml5U1Q2q+g/24d44u9gCPF8g70dWrwmAqt6oqjdmdWIRqQg8CFyhqj+parKq/qyqa47skl1BcEy4A3AuC5eo6tcZd6R0Eq9T1eQMu9di375zUhVYq6qJWTw2BhgEvA5cSe53EYfFdQT+zvD7Hiw55BRbbgJ5P7J6zUB0AH5W1cV5iMsVMH4n4aLFBqCqiGT8N1sNWJ/L89YB1VKakzKbDDQUkfpAV2BsHmPbA5TMsH1SgM/LKTaAnBZ7yev7EYgTgG1BOI8rADxJuGjxI7Ab+D8RiUnpRL2IlDb8HMwF/gKeFJFSIlJcRFoBqOo+YCLwHjBXVf/MY2yLgCtEpKiIdAbaBvi8bGNLsRGomc1z8/p+BGIhcK6INBJTS0TqBOG8Lgp5knBRQVUPABcDFwCbgVeAq1X1l1yel4R9eJ6OdQTHYx3UqcYADTi6DutbU15jG9AHu0PJVQCxPQE8kNIHcmem5+bp/UglIiNEZEQ2cX0HPIr1cewEPgJKBHJeV/CIL1/qCjMRqQb8ApykqjvCHY9zkcbvJFyhldKefzswzhOEc1nz0U2uUBKRUlib/1ps+KtzLgve3OSccy5b3tzknHMuW1Hf3FShQgWtXr16uMNwzrmosmDBgs2qWjG346I+SVSvXp358+eHOwznnIsqIrI2kOO8uck551y2PEk455zLlicJ55xz2fIk4ZxzLlueJJxzzmXLk4RzzrlseZJwzjmXLU8SzjkXRRIT4YUX4Pzz4aab8v/1QjaZTkTewlb/2qSq9bM5Jg54HojB1hsOdPEW55wr0P78E8aPhwkTIHX+8KpV+f+6oZxxPRp4CXg7qwdFpBy2cEpnVf1TRCqFMDbnnItIS5bA11/D0KGwc6ftK14cnn4aLrss/18/ZElCVWeJSPUcDrkC+DB1CUlV3RSKuJxzLtKowi+/WCIYPTp9f5MmcNtt0L49nHJKaGKJpNpNtYEYEZkBlAFeUNXs7joGAgMBqlWrFrIAnXMuv736Kjz4ICQkpO/r3Rs6dIA+feDYY0MbTyQliWOAs4D22Hq634vID6p6WKubqo4ERgLExsb6ghjOuag2eza89hrMmgXr1tm+k06CNm1gwADo1Cl8sUVSkojHOqt3A7tFZBbQCAhB14xzzoVWYiJMnAhffQWjRlkTE0C5cnD//XDHHSAS3hghspLEx8BLInIMUAw4G3guvCE551xwbdlidw7PPWd3Dqn+9S8YMgTq14ciETQ5IZRDYN8H4oAKIhIPPIgNdUVVR6jqChH5AlgCJANvqOrSUMXnnHP5afduGDwYnn8+/a7h2GPtrqFTJ2jePDLuHDIL5eim3gEcMwwYFoJwnHMuJCZOhGefhXnzrIkJrK8hLs46pM88M6zh5SqSmpucc65A2L3bRilNm2ZzHMCakGJj4Z57rGkpWniScM65IFmxAqZPtwSxNENj+W232bDWsmXDF1teeZJwzrmjtH493HsvvPNO+r5y5az/4fzzbThrtPIk4ZxzeTRqFDzxBPz6a/q+nj1tRvRFF0V3ckjlScI5547Azz/D2LHW17Bgge0rUwZat7ZmpQ4dwhtfsHmScM65XCQmwsKFMHUqPPYYHDxo+2Ni4IEH4L774JgC+mlaQC/LOeeOnqqV5e7VC/74I31/hw5w553QqhWULh2++ELBk4RzzmXhzTfh4YdtHQeA8uWtNHfHjvbfokXDG1+oeJJwzrkUS5fCmDHW37Boke074QTo0sVGKpUvH974wsGThHOuUEtKsoQwdSo8+igcOGD7jz3Wymjce29k1VIKNU8SzrlC6+efoUcPWLkyfd9551liaNUKSpQIX2yRwpOEc65Q2bvXZj9//HH6GtHHH2+lMjp2tP8Wlv6GQHiScM4VCvPmweefw/vv29KgYPMbOneG//4XTjwxvPFFKk8SzrkCbfVqGD4cXnklfd/xx8Nbb0HXrgV3fkOw+NvjnCuQpk2Df//70JIZ/fpBt27Qrl10FtsLB08SzrkC46+/bH7Dl1/a6m9gTUodO1qCuOiisIYXlUK5Mt1bQFdgk6rWz+G4ZsAPQE9VnRiq+Jxz0Wv9evjiC1vlbeNG21e0KFxzjZXt9ialvAvl6N/RQOecDhCRosBTwLRQBOSci25799pa0dWrw7XXWoKoXRsmTYLNm+H11z1BHK2QJQlVnQX8k8th/wYmAZvyPyLnXLRatsxmQZ9wAtx+uxXgi4uzUUrz5lnZjHLlwh1lPtm/H1580dY9DcESdxGTY0WkMnApcB7QLJdjBwIDAapVq5b/wTnnwm77dvjmG2tWevddu4sAaNIE+vaFW24BkfDGmG8OHoTly60E7aRJkJwcspeOmCQBPA/crapJkstfWlVHAiMBYmNjNQSxOefCJDnZJr716wc7dqTvP/dcGDcOKlcOW2j5Lz7e1kN96CH4/ff0/dWrw003waBB+R5CJCWJWGBcSoKoAHQRkURVnRzesJxz4bBpE9xzD3z6KSQk2L569eCKK2wCXOPGBbim0tdf28y/l15KLyZVqpQteXfffXD22SELJWKShKrWSP1dREYDn3qCcK5wUYUff4TPPrOlQdevt/3VqtmyoI8+CsWKhTfGfJPa1/DFF/Dtt+n7Gza0sbu33goVK4Y8rFAOgX0fiAMqiEg88CAQA6CqI0IVh3MuMv31F/zf/1l/Q6rq1WHCBIiNLcD9DevWWUXBr76y26dUV19tU8LDvHhFyJKEqvY+gmP75WMozrkI8umnVnDvp59sWwSuvx4uvthGLBXISqz791tb2rRpsGJF+v4TTrA3o1MnG70UASKmuck5V3hs3GitKp9+ChNTpsyWKGFlum+91WZIFzgHD8KaNTYl/OmnrW0t1TnnwFNPQdOm1vcQQTxJOOdCJikJRoyA//zH5jakuu46eOGFAnrXsHs3vPcePPDAoc1Jp59unSwXXhjRC2V7knDO5bvff4ehQ23AzpYttq9NG1vw58ILoUaNHJ8efZKTbVLH4sXw7LPW4QJWVTA21rJiz57hjTFAniScc/lC1T4jP/nE7hJSk8Npp1mfw513FsDO6G3b4O23Yfx4+O679P0nnmhzGu69N+qGZ3mScM4F3bZtNgt6ypT0fY0aWatLnToFMDksWwYvvwwffpheYbBIEejf3yZ09OkTtXVCPEk454JmyhQb6j9zpvU5HHOMVWK96CIbsHPsseGOMMgmTbLVjDLOazj5ZBvL26WLVRuMcp4knHNH5cABmDULPvgARo60fUWKWJ/D449Dq1bhjS/o9u61TugPPrA5DqnatYO77rILj7ARSkfDk4RzLs/GjLEhq9u3p+8bNAgeeQTKlw9fXEF38KDN6nv4YVi1Kn1/sWK2/N2gQVCzZgFsR/Mk4Zw7Qr/8Yq0skyfD/Pm2r04duPRSuOQSaJZjDecoomrDsn74wTqc4+PTH6tbF4YMsVLdBXzBioJ9dc65oNm711Z5u+uu9ErVJUpY8/vQoWENLbj27IE5c+CJJ2DGjPT9xx1ndwwPPxx1I5SOhicJ51yO1q6FO+6wOQ579ti+bt1s4E6HDlCyZHjjC5rVq2HqVEsOqZUFwS6yWTOrvhrBk97yiycJ59xhVGHJEvjoI7t7SJ0o3KyZreswaFABan7/5hubzPHKK9b3AFCpkrWf3XKLNS0VYp4knHOHiI+3IauLFqXvq1PHhreefnr44gqqpCRLCp99ZkX2UjVrZjOh+/eH448PX3wRxJOEc47duy0JfPih/ffAAShTBnr1si/U551XQOY4zJhhC1XMnm3NS6n69rWS3BdeGNay3JHIk4Rzhdzy5TZI55df0vede65VljjllPDFFVSvvmrTvefMSd9XujQMHmy3TXXqhC+2COdJwrlC6tVXrcVl6VLbPvlkuPtuG8Z66qnhjS0o9uyB22+3/oYNG9L3X3mlFY9q0MAK7rkchXJlureArsAmVa2fxeN9gLtTNncBg1R1cajic64wOHDAlk8eNSp9HYeyZW2Bn0ceKQDJQRV+/tlm+GUcvlqqlM2SvvJKqFIlbOFFo1DeSYwGXgLezubx1UBbVd0qIhcAI4HQrfbtXAH32mt2p5A6O1rEymbcfnsBGPa/Y4etYnTnnYeWyqhb1xb46dQJYmLCF18UC+XypbNEpHoOj2eoq8sPgKd7547Sxo3WGT1+vBXdA2tl6dHDfiJkhcy8W7nSymU8/jjs22f7ihe3pPD88wVwoYrQi9Q+iQHA59k9KCIDgYEA1apVC1VMzkUNVaurNHBg+tD/mBh46CGrMBHV/vkH5s2zdRveey99f+3a0LWrJYwCMRQrMkRckhCRdliSODe7Y1R1JNYcRWxsrGZ3nHOFza+/2mfnhAnpdeji4qxc98UXR+2SBmbFCpvX8NBDsGtX+v4LLrBxutdeW4Bm+EWOiEoSItIQeAO4QFW3hDse56LFwYNWubp/f9i/3/ZVrAg33ggPPhjFn52q8OWXNvV75EjbBqhVCzp2tDazuLiwhljQRUySEJFqwIfAVaq6KrfjnXN2t/DsszZSKXV50Pbt4Z577LMzaguU7tuXfkv0zTfp+zt2tFuigQMLQG97dAjlENj3gTiggojEAw8CMQCqOgIYApQHXhH72pOoqrGhis+5aLJ7t5Xq/ve/YetW23fmmXDVVTbAJ2o/P2fNsjIZEyemt5eJ2LyGrl1ttbeovS2KTqEc3dQ7l8evBa4NUTjORaX166009+TJ6RVZmzWDN96wUUtR+fmZnAzvvAMff2zNSqmOO84qr3btCvXqhS++Qi5ab0adK1T++ce+XD/+uJXuBmjZEnr3tk7pqFwtc88eeOYZy3g//ZS+/4orrBZ5u3bWseLCypOEcxFs0SLreP788/ShrDVr2rIHZ5wR3tjybMMGG6H06afp5TKKFUuvCdK0aXjjc4fwJOFcBEpIgHHjrJLEjh1QpIj12V5xhRXjK1Mm3BHmweLFdkFffZU+BKtCBXjqKTj/fKhcObzxuSx5knAugqxfb8NWP/vMljwAaNXKhreefHJ4Y8uT/fstMXz77aFNSvXqwQsvQIsWUdpWVnh4knAuAqTeOTzzjPU5FC1qSxtceaXNE4u6CcQbN1pRqM8+Sy8WBXZRw4fb7OgiRcIXnwuYJwnnwmjFCmuK//xzSEy0fTVqWKXWmjXDG1ueLF5sFVhTC0WB3QI99xx07uyluaOQJwnnwmDrViu6N2SI3UUULWpTAK6+2uaKlSgR7giPgKqt2XD33YeuXNS0qS1YERvrq71FMU8SzoXQ1q02AW7ixPS+26ZN7TM26laB27LFOlC++ip9Rl+RIjav4dVXo/CCXFY8STgXAnv2WMnup56yleBEoEMHW1r5X/+KsjuHZctg0CBbJzpVhQq2IPbw4VHYgeJy4knCuXy0caMtozx+vA1lBfs8/eoraNw4vLEdEVUL+pZbbA2HVLGx8PLLNu07Kqd7u9x4knAuHyQlWfHSO+6wzmmAs8+Gfv3sC3fUlOzetQtuuslmRadmuaJFrTz3iBE+t6EQ8CThXBBt2gQvvgijR9ucB7DP0U8/jbI7h7VrrdLql1+m7zvpJOtv+O9/bfU3Vyh4knAuSBYuhO7d4Y8/bPv00219hwEDoFKl8MYWEFVrOnrmGVizJn1/o0Y28a1t27CF5sLHk4RzR2HHDpsE9/rrMH++7atRA0aNgjZtoqSZPjHRqq2++aZVEgTrSW/Z0oaw1q4d3vhcWHmScC6PpkyxWkq7d9t2uXK2nsM990TJ6M8dO2wI6wcfwIEDtq9CBVsE+5ZbonjFIhdM/q/AuSOgCtOn20qa48fbvhYt4Oab4bLLomQo66efwv33w5Il6ftOO83qkPfoESW3Py5UPEk4F6CpU+E//4Fff7XtIkXguuts3ljEf66q2spETzwBq1fbPhGbyff883DuueGNz0WsUC5f+hbQFdikqvWzeFyAF4AuwB6gn6r+lPk450Jtwwbrc3jsMVvToXJluPZa65CuWjXc0eUiORkeecQy2caNtq9ECQv+qaegZMnwxuciXijvJEYDLwFvZ/P4BUCtlJ+zgVdT/utcyKU2K73yik0RSC3b3bMnvPtuFDTXHzhghfbGjoWdO23f8cfDXXfZT8RfgIsUoVzjepaIVM/hkG7A26qqwA8iUk5ETlbVv0ISoHMpkpJslvQTT9h20aJWOmPQIDjvvAhvWvrf/6zn/Icf0svKVq4Mjz5qNUAiOngXiSLp60RlYF2G7fiUfYclCREZCAwEqFatWkiCcwXfli3w1lt295A6TeCee6wgX0SPVtq/35YD/fJLWLAgff8ZZ1iJ7gsuCF9sLupFUpLI6iuOZnWgqo4ERgLExsZmeYxzgdq3D267zWZJ79tn+2rUsDLe/fqFM7JcbNtmQX74Yfr0bhG4/HJ46SUbzurcUYqkJBEPZOwGrAJsCFMsrpCYO9dGg379tW137mzDWTt3juAlEP76y5LD5MmwebPtq1DBymVceGGULoDtIlUkJYkpwM0iMg7rsN7u/REuPxw4YOs5vPgi/Pij7Ste3FbaPO+88MaWo0mT7K7hk0/SO6OrVoXXXoO4uCiZpOGiTSiHwL4PxAEVRCQeeBCIAVDVEcBUbPjrb9gQ2GtCFZsrPLZvtxJEixfbdrlyNtfhxhuhevWwhpY1VXjnHav98fnn6fvr1LHkcPbZUKxY+OJzBV4oRzf1zuVxBW4KUTiukElIsMrWL71klVpPOsn6evv0gVKlwh1dFjZssMQwZUr6etEiNpvv6quhfn0fxupCwv+VuQJt+XIb4PPOO+nLhTZsCO+/D3Xrhje2LK1ZY7WUHn/cOqbBOkceeMAKRXmxPRdiniRcgfXZZ3DJJenTBbp2tVFM7dpF2HQBVZg3D7791mZH79lj++vWtVWL4uKgZs2whugKL08SrkBRhRkzbKnlqVNt36WX2sS4M84Ia2iHS00OTz4JH32Uvj821jpJevXyzmgXdp4kXIGQmGgjloYPT59PVqIEXH89PP00xMSEN75DJCbCokXWhDRtmu0TsRnRcXHQu7d3RruI4UnCRb0dO2yBn9QRSxUr2lyHG2+MsPlkSUk2fHXgQOtJB+t8vuoqqxjYsmV443MuC54kXNTavx/GjLE+3rVrbcTS0KE2+CeiWmmSk+0258YbrfYHWLDnn2+L+zRtGt74nMuBJwkXdXbutOGszz1nk4/B1pOeMsWmD0SMgwet8NPEiYcmh969rUx3RLWBOZc1TxIuqrz+Ovzf/6WPDm3UyIrwde8eQdMG9u61YVTjx6cHesopNinjySdttSLnokSk/G/lXI527LAF1B580LZbt7almDt3jqDhrD/+aCVkP/ss/c6hcmV4803o1CmCAnUucJ4kXETbuhVeeMF+Ur+U3323fSGPGD/+aDXG33wzfXWiypWtrGz79p4cXFTzJOEi0ubN8OyzVkYjtZZd27a2GFBEFOFLTrZaStOmwcsv2zbYjL1HHoEGDSK4jKxzgfMk4SLOypVwzjl2FwHQoYMlhzZtwhsXYAtO/PCDLXidWl8coFs3u8Vp0cLvHFyBElCSEJEOwA5VnZvP8bhCbNcuWxLhqaesWmvz5tbM1KJFuCPDmpGmTYNrrrEKgWCjk26/3fobIq7Wh3PBEeidxLPAcOCQJCEiDYCNqrop2IG5wmPPHuvvfeqp9DV02rWzkaMnnBDe2FCF6dNtwtuGlDWwqlaFyy6zZesaNw5reM7lt0CTRC1gThb7mwOXA+cHLSJXaOzbByNHWl2lv/+2fS1aWJN+2Pt7Va13/LXXbKYe2FTuXr1sf8mSYQzOudAJNElsAyoCf2TaPwcYFtSIXKHwv/9Bz57pSzPHxsLDD0fAkNa//4ZnnrFhrCtW2L7jj4d//ct60Y89NozBORd6gc7qmQzcncX+oik/ARGRziKyUkR+E5F7sni8mohMF5GFIrJERLoEem4XHVRtaeZLLrEEUb8+fPyxrTV9wQVhTBAJCXZLc9ZZViVwxQq7W3jtNWsDe/11TxCuUAr0TuJ+YLGIfAIMUdWFIlIauA9YEsgJRKQo8DLQEYgH5onIFFVdnuGwB4AJqvqqiNTFljStHmCMLsLNmWOzpb//3rZbtbLm/rBWp1i3zjqkH3oI4uNtX82a8OqrNmMvoopAORd6Ad1JqOo/QIuU4xeIyH5gO9AZ+L8AX6s58Juq/qGqB4BxQLfMLwUcl/J7WWBDgOd2EWzpUrj4YvvM/f57a9p/6SVbYydsCWLnTiv+VLOmLXIdHw+nnmpLhi5ebCOWPEE4F/g8CVVdD1woIlWBJsBB4MeUBBKIysC6DNvxwNmZjhkKfCki/wZKAR2yOpGIDAQGAlSrVi3QS3Ahtm6dldEYM8bmmpUqBXfdZaNGy5QJU1AHD0L//pYMUpesa9sWevSw5UGPPz5MgTkXmY54Mp2qruPQD/tAZdXarJm2ewOjVfUZETkHeEdE6qtqcqYYRgIjAWJjYzOfw0WARx+1n/37rfDejTfaGjsnnhimgFautDriU6daISiwGXu9elmlVp/j4FyWQjnjOh6ommG7Coc3Jw3AmrBQ1e9FpDhQAfB5GFHi4EFbCW7wYNvu1cuGtJ5+epgC+u47+PBD63hOTQ6nnWa1liJiCrdzkS2USWIeUEtEagDrgV7AFZmO+RNoD4wWkTpAcSAhhDG6PFK1UaN33mlf2sFqL912W5iCWbXKEsMzz6Tvb9YM3n7bFrv2OwfnAhKyJKGqiSJyMzANGzb7lqouE5GHgfmqOgW4A3hdRG7DmqL6qao3J0W4pUutn+Grr2z79NNtFOnFF4chmG3bbFGfL75I39e3r82ObtXKF/px7giFtMCfqk7FhrVm3Dckw+/LgVahjMnl3datMGSIldRIToZy5Wz7ppugWLEQB7NsGdx6K8ycaR3SMTHWGd2jhxXf8zsH5/LEq8C6I5acbEsl3HOPzUErWtQSw0MPQfnyIQ5m+nR47z0YO9ZWhBOxO4YXXrCJcc65o+JJwh2R+fMtIcxNKfXYpo1Vbm3YMMSB/PqrFX4aPjx9X6tWMGlSGIdQOVfweJJwAdm8Ge6/3/qCVW3J5uHDbfRSSFtydu2yFeDuuCN9FbgBA+Dmm23Ba29Wci6oPEm4XH3+OVx5Jfzzj815uO02G+Ia0glxa9fafIYvv7TJFwBdutgEjC5dPDk4l088SbgczZ5tE5G3bbNlQ19+Gc48M4QBLFliw1ZHj4YtW2xfixbQp48liCKB1qh0zuWFJwmXpW3brBjf66/bdocO9iU+ZF/Yt2yxzug77kgvn1GvHnz6KVSvHqIgnHP+Ncwd5qOPoG5dSxDFitmw1k8+CVGCULW2rEqVbEhrYiJceCHMmgWLFnmCcC7E/E7Cpfn7b+v/nTTJtlu2hDfegDp1QvDiu3fbqkPjx6evBNexI1x+uU2EO8b/qToXDv5/nkMVRo2ylp1t26B0aVt/JyRN/jt32qpDzz8PCxbYvpNOsgWvr746n1/cOZcbTxKF3OrVMHAgfP21bV9wAYwYASGpwL5okc2G/vNP2z7uOHj/fVvD1DuknYsI/n9iIaVqTUkNG1qCKF8e3n3XivTle4KYORMaNIAmTSxB1KhhM/JWrrThrJ4gnIsYfidRCP39N1x7rSUEgO7drf5SxYr5+KJJSTBjhvU5jBplHdLHHQf/+pe1bfksaecikieJQmbiRLjhBhthWq6czXvo3TufRy5t22aZ6Jtv0vddeqk1LR17bD6+sHPuaHmSKCS2brUJy2PH2nbHjrbuTpUq+fiif/0Ft9xi42f374eSJW26ds+eUL++z5J2Lgp4kigE5syxWdPr1kGJElZzadCgfPyM3rgRJkywBX/WrrUXiouzEUvNm+fTizrn8oMniQIsKQkef9yWdk5Ots/nd96B2rXz8UVffNFWIEotvle9Okybls8v6pzLLyEdRiIinUVkpYj8JiL3ZHPM5SKyXESWich7oYyvINmwwZqUhgyxBHH33XZHkS+f1du3w3PP2foNt95qCeKCC6zPYelSTxDORbGQ3UmISFHgZaAjEA/ME5EpKavRpR5TC7gXaKWqW0WkUqjiK0imTrUVOzdvtuoW77wDnTrl04v98ot1Si9bZttly8IDD9hi1865qBfKO4nmwG+q+oeqHgDGAd0yHXMd8LKqbgVQ1U0hjC/qTZwIlStbqaPNm+1OYvFDGVJWAAAcpklEQVTifEoQq1fbIj916liCOOUUC+Dvvz1BOFeAhDJJVAbWZdiOT9mXUW2gtoj8T0R+EJHOWZ1IRAaKyHwRmZ+QkJBP4UaPxET7XO7Rw5qZwPqIv/jCKlwEVXy8dXS0aAHffQelStmiP3Pm2JyH4sWD/ILOuXAKZcd1VmNpNNP2MUAtIA6oAswWkfqquu2QJ6mOBEYCxMbGZj5HobJxo40onTnTauA9+qgNdS1ZMh9e7JVX7OTJybZdv77NfajkrYLOFVShTBLxQNUM21WADVkc84OqHgRWi8hKLGnMC02I0WX+fLjkEli/3u4YPvgAzj03yC+yb591QL/xht05gNVbuv56a8cqWjTIL+iciyShTBLzgFoiUgNYD/QCrsh0zGSgNzBaRCpgzU9/hDDGqDF+vFXQ3rfPEsOECXDyyUF+kX/+sSw0e7ZtlykD995rP865QiFkfRKqmgjcDEwDVgATVHWZiDwsIhenHDYN2CIiy4HpwF2quiVUMUaD5GQb1tqrlyWIAQOsxSeoCWL5chseVbmyJYiyZeHNN20GtScI5woVUY3uJv3Y2FidP39+uMMIid27bYmFDz+0QqnPPmtVL4I2c1rVJr717Ak7dti+Tp2so/qss4L0Is65SCAiC1Q1NrfjvCZzFEhKgoceggoVLEGULWtzIW69NYgJYswYG856wQWWIFq3ht9/t6ThCcK5QsvLckS4/fvhqqusUxqgVi2rl3fGGUF6ga1b7Zbk0Udtu3JlW4Xo9tttiTrnXKHmSSKCbd9u/cYzZtjSC8OGWXNTUKYirFsHjz1m07H37LF9999vhZ58PWnnXAr/NIhQf/1lLT+LF1un9OefQ6NGQTr5zz/DRRdZhVawfodbb7VV4ZxzLgNPEhHou++gTx9Ys8Zq402bZsVUj9qPP9rQqC+/tO3atWHyZOuLcM65LHjHdQQ5eNDWfWjVyhJE8+ZW7eKoE4SqrVV63nmWIEqWhJtusnYsTxDOuRz4nUSE2L/f5j5MnmzbV14JI0ZYaaQ8S0qyHu+nn4aFC21fly7w7rtw/PFHHbNzruDzJBEB9u2z2nhTp9q6019+Cc2aHeVJk5Ph2mth9GjbrlTJJlXcfrstT+eccwHwJBFms2fbUqLLlkH58vD119C48VGcMDERxo2zCXArVthIpeeft6nZXqHVOXeEPEmE0SefwGWX2ed6pUpWXqN+/aM44Wef2d3CHynlrqpVsxXjLrssKPE65wof77gOk6++sgXdEhPh0kutomueE0Ryst09dO9uCeL0063W0q+/eoJwzh0VTxIhlphoX/Y7dYIDB+Dmm2HSJKhaNffnHkYVPv4YmjaF3r2tc6NHD2tm6t8fihULevzOucLFm5tCSNWWYXjrLdu+7jp44YU81l/av99m202fbtuVK9va0gMG+Ixp51zQ+J1ECA0ZYgmiRAn46CMYOdKquR6xxYvh/PMtQZQrBy++CL/9BjfcADExQY/bOVd4+VfOENi2zeZATJtmC7lNmABdu+bhRGvWwODBMHas3ZYcd5x1VrdsGeyQnXMO8CSR7w4ehMsvt45qgNdfz2OCmD8f2rSBvXvtbuGmm6wgX4UKQY3XOecyCmlzk4h0FpGVIvKbiNyTw3HdRURFJNcFMSLZmjXQoIEliEqVYNEiuOaaIzxJUpJNve7Y0RJE586wcqUNbfUE4ZzLZyG7kxCRosDLQEcgHpgnIlNUdXmm48oAtwA/hiq2/LB7N3TrZp/npUvbIKQjruI6Y4ZVZ12yxLbbt4eJE4+yVodzzgUulHcSzYHfVPUPVT0AjAO6ZXHcI8DTwL4QxhZUv/5qi7ktWWKLBP3+O7RocQQnSEiwoazt2tlJTj3VajB99ZUnCOdcSIUySVQG1mXYjk/Zl0ZEmgBVVfXTnE4kIgNFZL6IzE9ISAh+pEdh926bHLdyJZxwgt1BVKp0BCfYs8d6uSdOtGqtjzxi8x66dw/iWqXOOReYUHZcZ/UJp2kPihQBngP65XYiVR0JjASIjY3VXA4PmY0boWdPq8NUu7aV+a5Y8QhOMHWqdUivWWMLWc+bZ7cizjkXJqG8k4gHMs4rrgJsyLBdBqgPzBCRNUALYEq0dF4nJlol15kzrUVo0qQjSBAJCXb3cOGFliAaNbJCTp4gnHNhFsokMQ+oJSI1RKQY0AuYkvqgqm5X1QqqWl1VqwM/ABer6vwQxpgne/bYQkH/+x+ceCLMnXsEdZgmToR69WD8eGteGj7chruedVa+xuycc4EIWXOTqiaKyM3ANKAo8JaqLhORh4H5qjol5zNEpqQkayGaOxfKlLH+5bp1A3hiQoI98YMPbDsuzory1ayZn+E659wRCelkOlWdCkzNtG9INsfGhSKmo3X99bauT0wMzJoV4FoQCxdahb/Nm61tatgwO1GeanQ451z+8RnXR+Hdd+3Lf0wMvPdegAli3Tq4+mpLEHFxVsypRo38DtU55/LEv7rm0eTJcNVV9vvjj9sI1Vx99JF1Si9daonh0089QTjnIponiTz43/9srhvAv/9ty0bnaP9+63+47DLYuhW6dIEff/SJcc65iOfNTUfowAFbkzoxEfr0gWefzaUrYd06u82YO9fapZ5+2kpt+MQ451wU8CRxBFRtstzPP0P16lbRNcf1faZPtyckJFhpjUmTfGircy6qeHPTEXjmGeuLKF0a3n/fFg/Kkio8/7xVbk1IsP8uWOAJwjkXdTxJBGjhQrj7bvv9xRdzKNiXmGgdFbfdZpMo7r0XPv8cypcPWazOORcs3twUgN27baGg5GQYODCHNSF27YLevW3UUrFiMGaMldtwzrko5UkiF6o2emnDBpsH8eyz2Rz4999We+mnn9LLv557bkhjdc65YPMkkYtnnoGRI+HYY+Hll7MZtbpuHZx3Hvz2G5x2mlVzrV075LE651yweZLIwaZN8NRT9vt770HLllkctHq1JYg1a6BJE5g27Qjrg7tQOHjwIPHx8ezbF7VrWTmXJ8WLF6dKlSrExMTk6fmeJLKhCgMGWPWM1q1tIaHDDnjvPWuL2rQJzj7bOqiPPz4s8bqcxcfHU6ZMGapXr474HBVXSKgqW7ZsIT4+nhp5rO7go5uyMWWK9T8fdxyMG5dp7psq3HEHXHmlJYjWrW1pUU8QEWvfvn2UL1/eE4QrVESE8uXLH9UdtCeJLOzebZOiAR59FE45JdMBw4bBc8/ZVOs777Q7iDJlQh6nOzKeIFxhdLT/7r25KQuPPQZr19popkGDMj04bpxNmBCxGXWXXx6WGJ1zLhT8TiKTX3+1xeEAXnklU9mNiROhb1/7ffhwTxCuwBs9ejQbNqSvMnzttdeyfPnyoL7GmjVrqB/wUo6hdzTxzZgxg++++y5te8SIEbz99ts5Pifje/z444/n6XWDyZNEJg8+CAcPQr9+cM45GR547DEr/XrgQPqMaucKuMxJ4o033qBuQEsvRr6kpKR8f43MSeKGG27g6quvzvE5Gd/jQpckRKSziKwUkd9E5J4sHr9dRJaLyBIR+UZETg1lfD//bK1JxYrBQw9leODrr2HwYPv9P/+x/ghv345eIvnzk4u3336bhg0b0qhRI65KWYxk7dq1tG/fnoYNG9K+fXv+/PNPAPr168ctt9xCy5YtqVmzJhMnTgTgr7/+ok2bNjRu3Jj69esze/ZsAEqXLp32OhMnTqRfv35p5xk0aBDt2rWjZs2azJw5k/79+1OnTp20Y1Kff8cdd9C0aVPat29PQkICEydOZP78+fTp04fGjRuzd+9e4uLimD/flp1///33adCgAfXr1+fu1Jo1Kee6//77adSoES1atGDjxo0B/2n27dvHNddcQ4MGDWjSpAnTp08HoEuXLixZsgSAJk2a8PDDDwMwePBg3njjjUPOsWbNGs4880z69u1Lw4YN6d69O3v27AGgevXqPPzww5x77rl88MEHLFq0iBYtWtCwYUMuvfRStm7dCsCCBQto1KgR55xzDi+//HLauUePHs3NN9+ctt21a1dmzJgBwBdffEHTpk1p1KgR7du3Z82aNYwYMYLnnnuOxo0bM3v2bIYOHcrw4cNZsWIFzZs3PyTmhg0bAqS9x/fccw979+6lcePG9OnTh8GDB/PCCy+kPef+++/nxRdfDPi9zTNVDckPtq7170BNoBiwGKib6Zh2QMmU3wcB43M771lnnaXBctllqqB6880Zdi5Zolqxoj0wZEjQXsuF1vLly9M3bHxa8H9ysHTpUq1du7YmJCSoquqWLVtUVbVr1646evRoVVV98803tVu3bqqq2rdvX+3evbsmJSXpsmXL9LTTTlNV1eHDh+ujjz6qqqqJiYm6Y8cOVVUtVapU2mt98MEH2rdv37Tz9OzZU5OTk3Xy5MlapkwZXbJkiSYlJWnTpk114cKFKW8J+u6776qq6kMPPaQ33XSTqqq2bdtW582bl3bu1O3169dr1apVddOmTXrw4EFt166dfvTRR2nnmjJliqqq3nXXXfrII4+oqurHH3+sgwcPPuy9Wb16tdarVy/t+vr166eqqitWrNCqVavq3r179YknntCXXnpJt2/frrGxsdqpUydVVY2Li9NffvnlsPMBOmfOHFVVveaaa3TYsGGqqnrqqafqU089lXZsgwYNdMaMGaqqOnjwYL311lsP23/nnXemxTdq1Ki090ZV9cILL9Tp06frpk2btEqVKvrHH38c8vd98MEH014783ajRo30999/V1XVJ598Mu19yvieZ/y7rl69Wps0aaKqqklJSVqzZk3dvHnzYe9nVg75958CmK8BfHaH8k6iOfCbqv6hqgeAcUC3jAeo6nRV3ZOy+QNQJVTBrVljC8fFxMB996Xs/OUXq+SXkAAdOsCQLJfjdtEmv9JEDr799lu6d+9OhQoVADjhhBMA+P7777niiisAuOqqq5gzZ07acy655BKKFClC3bp1076NN2vWjFGjRjF06FB+/vlnygQwqu6iiy5CRGjQoAEnnngiDRo0oEiRItSrV481a9YAUKRIEXr27AnAlVdeeUgcWZk3bx5xcXFUrFiRY445hj59+jBr1iwAihUrRteuXQE466yz0l7j4osvTrsDyM6cOXPS7rLOPPNMTj31VFatWkXr1q2ZNWsWc+bM4cILL2TXrl3s2bOHNWvWcMYZZxx2nqpVq9KqVassryf1Ordv3862bdto27YtAH379mXWrFmH7U+NJyc//PADbdq0SZuLkPr3zcnll1/OhAkTABg/fnxaXNmpXr065cuXZ+HChXz55Zc0adKE8iEoHBrKJFEZWJdhOz5lX3YGAJ9n9YCIDBSR+SIyPyEhISjBvfaa/X/eowecfDJWwbV/f9izx9aiHj8eihYNymu5wkdVAxqKmPGYY4899pDnA7Rp04ZZs2ZRuXJlrrrqqrRO0IzPyzwmPvU8RYoUOeScRYoUITExMdc4srue7MTExKQ9v2jRotm+xpGct1mzZsyfP5/Zs2fTpk0bmjRpwuuvv85Z2ZTfzxx/xu1SuawImdPf6phjjiE5OTltO/W9DvTvm1HPnj2ZMGECq1atQkSoVatWrs+59tprGT16NKNGjaJ///5H9Hp5FcokkdU7mOW/CBG5EogFhmX1uKqOVNVYVY2tGIQSGP/8Y0kC4MYbsXKvt94K339vkyQ++siK9jmXR+3bt2fChAls2bIFgH/++QeAli1bMm7cOADGjh3LubkUhVy7di2VKlXiuuuuY8CAAfz0008AnHjiiaxYsYLk5GQ++uijI44vOTk5rd/jvffeS4ujTJky7Ny587Djzz77bGbOnMnmzZtJSkri/fffT/vmfTTatGnD2LFjAVi1ahV//vknZ5xxBsWKFaNq1apMmDCBFi1a0Lp1a4YPH07r1q2zPM+ff/7J999/D1jfSVbva9myZTn++OPT+nXeeecd2rZtS7ly5Shbtmza3UdqPGDf5hctWkRycjLr1q1j7ty5AJxzzjnMnDmT1atXA+l/3+zeP4DTTjuNokWL8sgjj2R7FxETE8PBgwfTti+99FK++OIL5s2bx/nnn5/NuxhcoZwnEQ9UzbBdBdiQ+SAR6QDcD7RV1f2hCGzkSFt6+rzzUuozjXnbqvmJ2PJz5cqFIgxXgNWrV4/777+ftm3bUrRoUZo0acLo0aN58cUX6d+/P8OGDaNixYqMGjUqx/PMmDGDYcOGERMTQ+nSpdPuJJ588km6du1K1apVqV+/Prt27Tqi+EqVKsWyZcs466yzKFu2LOPHjwes4/uGG26gRIkSaR+6ACeffDJPPPEE7dq1Q1Xp0qUL3bp1y+70AEyZMoX58+fn2OR04403csMNN9CgQQOOOeYYRo8enXb307p1a7755htKlixJ69atiY+PzzZJ1KlThzFjxnD99ddTq1YtBh024cmMGTOGG264gT179lCzZs209z/1m3rJkiUP+TBu1aoVNWrUSOuwb9q0KQAVK1Zk5MiRXHbZZSQnJ1OpUiW++uorLrroIrp3787HH3/Mf//738Nev2fPntx1111pySWzgQMH0rBhQ5o2bcrYsWMpVqwY7dq1o1y5chQNVctGIB0XwfjBEtIfQA3SO67rZTqmCda5XSvQ8waj47pxY2tUnjJFVTdsUD3pJNsxcuRRn9tFhqw67ly6jB2k0S5jR3hBk5SUpI0aNdJVq1Yd0fOiouNaVROBm4FpwApggqouE5GHReTilMOGAaWBD0RkkYhMye+4Vq2CRYusRlOnjmqV/P7+2yZJDBiQ3y/vnHMBWb58Oaeffjrt27cPqP8iWEJalkNVpwJTM+0bkuH3DqGMByBlcAGXXALHjngBfvzRSn1/+KHVZnKuEDjS5qlIVr16dZYuXRruMIKubt26/PHHHyF/3UJfuyk1SVx+wU4YcL9tvPACnHRS+IJyzrkIUai/Km/YYLOsS5eGjlP+bcNdO3Wydaqdc84V7iSROr+mZe3NFHt/DJQsaXcRzjnngEKeJFKGR9P6z3ftl6FD4cwzwxaPc85FGk8SQOvNH9k06//8J7wBORdhQlEqfMaMGWllPDIL5PX69euXNhEwVApT+fBC23G9axcsWQIxcpDmOhcuG2CFm5xzaUaPHk39+vU5JWV5xswVV/NbqF8vKSkp3yepzZgxg9KlS9OyZUvAyofnJuP78Pjjj3NfWoG5/Fdo7yRWrLBaTWfqCkqUKmqrzblCIUyVwr1UeA527dpF9+7dOfPMM+nTp09aDaeMr/fmm29Su3Zt4uLiuO666w4p2T1r1qzD3quMvHz4UQhkxl0k/+R1xvWYMTap+nLGqV59dZ7O4aJHxhmnYagU7qXCNftS4dOnT9fjjjtO161bp0lJSdqiRQudPXv2Ya936qmn6pYtW/TAgQN67rnnpsWY3XuVUWEvHx4VM64jzYoV9t86rPBlSAuZ/EoTOfFS4TmXCm/evDlVqlShSJEiNG7cOO05qebOnUvbtm054YQTiImJoUePHoc8ntV7lZmXD8+bQpskDm7dSSl2Uaf4GujYMdzhuAJO1UuF5yRjXFk9J6fXy/z87I718uF5U2iTxPDO37CTMvzrnA22Xqlz+chLhR+d5s2bM3PmTLZu3UpiYiKTJk064nN4+fC8KbSjm5g7FwGOOTvrRUucCyYvFR5YqfDsVK5cmfvuu4+zzz6bU045hbp161K2bNkjOoeXD8+jQDouIvknz6XC77xTtUwZ1UmT8vZ8F1W8VHjOoqFU+M6dO1VV9eDBg9q1a1f98MMPA35uYS8f7h3XeTFsGGzbBhddFO5InHMBGDp0aNrQ3xo1anDJJZeEO6SwC0X58MLb3ARWCtzLgTsXFaXChw8fnufnevnwvPNPSFdoaG7jVJ0rgI72331Ik4SIdBaRlSLym4jck8Xjx4rI+JTHfxSR6qGMzxVcxYsXZ8uWLZ4oXKGiqmzZsoXixYvn+Rwha24SkaLAy0BHIB6YJyJTVDVj9a4BwFZVPV1EegFPATnPJnEuAFWqVCE+Pp6EhIRwh+JcSBUvXpwqVark+fmh7JNoDvymqn8AiMg4oBuQMUl0A4am/D4ReElERP3rnztKMTExaTNfnXOBC2VzU2VgXYbt+JR9WR6jqonAduCwOeYiMlBE5ovIfP9m6Jxz+SeUSSKr+emZ7xACOQZVHamqsaoaW7FixaAE55xz7nChTBLxQNUM21WADdkdIyLHAGWBf0ISnXPOucOEsk9iHlBLRGoA64FewBWZjpkC9AW+B7oD3+bWH7FgwYLNIrI2jzFVADbn8bnRyK+34Cts1+zXm3enBnJQyJKEqiaKyM3ANKAo8JaqLhORh7Hp4VOAN4F3ROQ37A6iVwDnzXN7k4jMV9XYvD4/2vj1FnyF7Zr9evNfSGdcq+pUYGqmfUMy/L4P6JH5ec4558LDZ1w755zLVmFPEiPDHUCI+fUWfIXtmv1685n4PDXnnHPZKex3Es4553LgScI551y2CkWSKGzVZwO43n4ikiAii1J+rg1HnMEiIm+JyCYRyXLBADEvprwfS0SkaahjDKYArjdORLZn+PsOyeq4aCEiVUVkuoisEJFlInJrFscUmL9xgNcbur9xIMvXRfMPNifjd6AmUAxYDNTNdMyNwIiU33sB48Mddz5fbz/gpXDHGsRrbgM0BZZm83gX4HOs7EsL4Mdwx5zP1xsHfBruOIN4vScDTVN+LwOsyuLfdIH5Gwd4vSH7GxeGO4m06rOqegBIrT6bUTdgTMrvE4H2IpJVHaloEMj1FiiqOoucy7d0A95W8wNQTkRODk10wRfA9RYoqvqXqv6U8vtOYAWHFwctMH/jAK83ZApDkgha9dkoEcj1Avwr5bZ8oohUzeLxgiTQ96QgOUdEFovI5yJSL9zBBEtKU3AT4MdMDxXIv3EO1wsh+hsXhiQRtOqzUSKQa/kEqK6qDYGvSb+LKqgK0t83ED8Bp6pqI+C/wOQwxxMUIlIamAT8R1V3ZH44i6dE9d84l+sN2d+4MCSJwlZ9NtfrVdUtqro/ZfN14KwQxRYugfwbKDBUdYeq7kr5fSoQIyIVwhzWURGRGOwDc6yqfpjFIQXqb5zb9Ybyb1wYkkRa9VkRKYZ1TE/JdExq9VkIsPpsBMv1ejO11V6MtXkWZFOAq1NGwLQAtqvqX+EOKr+IyEmpfWoi0hz7/3xLeKPKu5RreRNYoarPZnNYgfkbB3K9ofwbh7TAXzhoPlWfjVQBXu8tInIxkIhdb7+wBRwEIvI+NtqjgojEAw8CMQCqOgIrKtkF+A3YA1wTnkiDI4Dr7Q4MEpFEYC/QK4q/9AC0Aq4CfhaRRSn77gOqQYH8GwdyvSH7G3tZDuecc9kqDM1Nzjnn8siThHPOuWx5knDOOZctTxLOOeey5UnCOedctjxJOOecy5YnCeeCTESeEpGvwh2Hc8HgScK54GsMLMr1KOeigCcJ54KvEbAw3EE4FwyeJJwLIhE5CTiRlDsJESklIuNE5KdoX/HQFU6eJJwLriZYLZ2VInIGMBerkdVKVdeEMzDn8sKThHPB1Rj4GbgE+A54XVWvVNW94Q3LubzxAn/OBZGIjAc6YhV4L1bVmWEOybmj4ncSzgVXY+BDrHR3tC6B61wav5NwLkhEpCSwE2gB1AJGAm1SF7V3LhoV+EWHnAuhRti6yktVdZ6I1AE+EZHmqro+zLE5lyfe3ORc8DQCfs3QST0E+B8wJeUuw7mo481NzjnnsuV3Es4557LlScI551y2PEk455zLlicJ55xz2fIk4ZxzLlueJJxzzmXLk4RzzrlseZJwzjmXrf8HwTL4bgkzYt4AAAAASUVORK5CYII=\n", + "text/plain": "
" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "K = S[2]\nX = []\nY = []\nZ = []\nW = []\n\nfor k in k_grid:\n if k < 1.5*k_ss:\n X.append(k)\n Y.append(K[(k, theta_L)])\n Z.append(K[(k, theta_H)])\n W.append(k)\n\nplt.plot(X, Y, color=\"red\", linewidth=2)\nplt.plot(X, Z, color=\"blue\", linewidth=2)\nplt.plot(X, W, '--', color=\"gray\", linewidth=1)\nplt.xlabel(\"$k$\", fontsize=14)\nplt.ylabel(\"$k^{\\prime}$\", fontsize=14)\nplt.title(\"Policy Function: $k^{\\prime}$\")\nplt.show()", + "execution_count": 14, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEeCAYAAAB7Szl7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzt3Xd4VVXWx/HvIgk1dBSQLiBSBYmRIggjICBNAUVGBEWCASwzllFGcXR0GMexFxRFVEaFGVBIkCoiSFGagHQjiqE3aQmQtt8/VngTQ5KbckvK+jwPjzk3596zbzJzf9ln7722OOcwxhhjslMi0A0wxhhT8FlYGGOM8cjCwhhjjEcWFsYYYzyysDDGGOORhYUxxhiPLCyMMcZ4ZGFhjDHGIwsLUySIyC8i0i31660i0iXATfIJf743EYkVkTZZfK+viIT6ox2mYLCwMAVK6of+WRE5IyKHRGRqbj+UnHPNnXNf+7BdF/5d5s1rZHHNbukf88V7y+LalYGawPYsTnkJCPJ1O0zBYWFhCqK+zrlQ4GrgGuCJALfngr7OudB0//YHukE+1BKIcc6dy/gNEbkS+MY5d9L/zTKBYmFhCizn3D5gPtACQESaisjXInIi9XZMv8yel/EvchGpIyKficgRETkmIm+IyCMiMivD814XkVdy204RcSLSKN3xByLybIb2PCwim0XkpIjMEJHSWbUt9fFpQF0gOrUX82jG95bdzyO7a+ZQK2BL6muVFZFPUtsZCvwBeCe3PydTuFlYmAJLROoAvYHvRSQEiAYWAZcC9wEfi0gTD68RBMwF9gD1gVrAdOA/QE8RqZR6XjBwGzDNJ28GbgV6Ag3QD+IR2bQN59ww4FfSejP/yvC+cvLzuOia6Z7/loi8lU17WwE/iEgDYAWwExjonDsDhDrnvsvDz8AUYhYWpiCaLSIn0A+pZcA/gHZAKPBP51yCc+4r9IP2dg+vFQ5cBjzinItzzp1zzq1wzh0AlgODU8/rCRx1zq331K7Uf7Nz+Z5ec87td84dRz/kW2fVthy+Xk5+HpldEwDn3Bjn3JhsXr8lOmbxFfC0c+5pl1qiOmNwmeIhONANMCYTA5xzX6Z/IHUwOdY5l5Lu4T3oX+PZqQPscc4lZfK9D4FI4F3gDjz3Ki5qVy4cTPd1PBoS2bXNk5z8PDK7pkciIuitv8uBl5xzc/LQPlPEWM/CFBb7gToikv5/s3WBfR6eFwvUTb3NlNFsoJWItAD6AB/nsW3xQNl0xzVy+Lzs2gaQ3WYzef155ESD1P92Ax4SkTAvvKYp5CwsTGHxHRAHPCoiIalrDfqSeo8/G2uAA8A/RaSciJQWkY4AqTN9ZgKfAGucc7/msW0bgaEiEiQiPYHrc/i8LNuW6hD6131m8vrzyIlWwGbn3A9ABPC5iNT0wuuaQszCwhQKzrkEoB/QCzgKvAXc6Zzb4eF5yeiHaCN0wHgvOpB9wYfo/fn8DGw/kHqNE8Af0R6LRzlo20TgidQxkoczPDdPP48LRORtEXk7i2+3BDanXmc2MBkdr8nNbCpTxIhtq2qKMxGpC+wAajjnTgW6PcYUVNazMMVW6v3+PwPTLSiMyZ7NhjLFkoiUQ8cE9qDTZo0x2bDbUMYYYzyy21DGGGM8srAwxhjjUZEZs6hWrZqrX79+oJthjDGFyvr164865y7xdF6RCYv69euzbt26QDfDGGMKFRHZk5Pz7DaUMcYYjywsjDHGeGRhYYwxxiMLC2OMMR5ZWBhjjPHIwsIYY4xHFhbGGGM88ntYiEgdEVkqIttFZKuIPJDJOV1E5KSIbEz9N8Hf7TTGmMJg06ZETp70/XUCsSgvCXjIObdBRMoD60VksXNuW4bzvnHO9QlA+4wxpsD7/vvz/O9/i9m79wRly97B21ltZeUlfu9ZOOcOOOc2pH59GtjO7zeZN8YYk4UzZ+Dhh+H++9exZYvjf/8bRIkSkJLi2+sGtNyHiNQH2qD7CWfUXkQ2oRvTP+yc2+rHphljTIFy6hQ8/ng8Bw4sZN26tuzb14FbbhEWLoTOnX1//YCFhYiEArOABzPZpWwDUM85d0ZEeqN7GjfO5DUi0A3lqVu3ro9bbIwx/nfsGDz/vGPVqq20a7eQuLgW1KxZg5kzhfBw/7UjIJsfiUgIMBdY6Jx7KQfn/wKEOeeOZnVOWFiYs0KCxpiiwjmYORPGjXMcO5bMoEGzOH68Iy++WJuWLb13HRFZ75wL83Se33sWIiLAFGB7VkEhIjWAQ845JyLh6NjKMT820xhjAsI5+PBDeOIJR/Xq39O792Z27x7ObbfdRt++EByg+0GBuGxHYBjwg4hsTH1sPFAXwDn3NjAIiBSRJOAsMMTZ/q/GmCIsJQVWrYJnnoF1636jb99oypQ5T/Pm/ZgyRSgR4FVxfg8L59wKQDyc8wbwhn9aZIwxgbVzJ4wcCatWpSDiaNHiBFdf3YjRo9tRunTBWDtdZDY/MsaYwmbTJp0G+9VXUK3aYSIioihVqi3jx7ehevUGgW7e71hYGGOMnx08CK+9Bi+8AElJjuuvX07nzmvo3v0PXHddayTbey+BYWFhjDF+EhcHTzwBr76qA9nlysUxenQ5brqpNB07jqZChQqBbmKWLCyMMcbHTp6Ejz6Cl1+Gn3+GkJBEhg5dStOm23jooXEEB18b6CZ6ZGFhjDE+kpwMc+bAfffB/v36WOfOh+jTZwYNG9amZ88IggM1FzaXCkcrjTGmEHEOpk+HBx+Ew4f1sbCwcwwblsCdd4Zy+HBPrrjiisA2MpcsLIwxxkucg8WLdUxi3jx9rEoVePzxnZQoMY9rr+1ApUrXUqlS4QoKsLAwxhiv2L0bRo3SabAAFSrAiy9CzZpfsHv3bvr2vZn69esHtI35YWFhjDH5sG2bToGdMQPOnoXKlWHIEMfw4bsJD7+c/ftb06NHD0JCQgLd1HwpGEsDjTGmkElMhGefhTZt4IMPNCiGDoX160/RqdN0NmxYRHx8PLVq1Sr0QQHWszDGmFw5exb+/nd44w04fVofGzYMRo+GJk2OMnXqVMLDw7n11lsJCgoKbGO9yMLCGGNy4Nw5WLAA/vIX2LVLH2vYECZPhtatj/Pbb79RterljBw5kipVqgS2sT5gt6GMMcaDhQuhSRO4+WYNimbNYMkS2LEjhdKlV/Hee+9x4sQJRKRIBgVYz8IYY7L0+efw9NNa8A+gVi2IiNDeRalS8MUX8zl27BijRo2icuXKgW2sj1lYGGNMBjt2wJNP6k51oMHwzDPw5z8DJLF69Wratm3LDTfcQKlSpZCCWPnPyywsjDEm1a+/wr33wvz5elyunIbE8OFQtSrs3buXqKgoqlSpQps2bShbtmxgG+xHFhbGmGLv5591+utLL8GZMxAUBP36aeG/evX0nPj4eGbNmkW3bt1o1qxZsehNpGdhYYwptpKSNBAmTNDZTqCD2G++CTVr6vHu3bvZs2cPXbt2Zdy4cUVqOmxuWFgYY4qdhAQNiSlT4Mcf9bGePfUWVP/+enzu3DkWLVrE7t27uemmmwCKbVCAhYUxpphZswbuvhu2btXjOnXgnXegV6/fn7d+/XqCgoKIjIykVKlS/m9oTsXGQrVqUKaMTy9j6yyMMcXC119DixZw7bUaFI0a6YZE27alBcWZM2eYOXMme/bsoUOHDtx0000FNyhiYuCee3TRx9/+5vPLWc/CGFOkbdoEr7+ut5wASpSAhx7S9RMX/hh3zvHDDz+waNEiWrduzWWXXVZwB7C3btVytp9+mjbQ8tNPkJKib85HLCyMMUXS0aO6+dDHH+txSIjuf/3oo1C6dNp5zjmSk5PZuXMnQ4cO5bLLLgtMgz3ZsAFeew0++USrGALceitERsL114OPw83CwhhTpBw4oJsPTZmigVGyJPTpoz2JFi3SznPOsW7dOrZs2cKIESMYPHhw4BqdnVWr4K23tCeRkqKP3XmnLiXv2NFvzbCwMMYUCSdOaC/iiSf0a4AuXeDdd3V8Ir1jx44RFRVFSkoK/fr1K5i3nJYuhbffhv/+V49LlNDdle65B8LD/d4cCwtjTKGWkqLrIh5/HOLi9LFu3fTuzIABv7+Nn5KSgnOO06dP06xZM6655hpK+PA+f54sWKClbD//XI+Dg7X++T33QOvWAWuWhYUxplBKTNSexKRJOh0W9DbTY4/pJkQZOwsHDx4kKiqK8PBwWrduXbC2OHUOoqN1Du+FzbtLl9aQGDUKmjcPbPuwsDDGFELffw8jR+p/QVdbv/WW9iQycs6xdOlS1q9fT/fu3bnqqqv829jsOKdzdx95JK0gVWiohsTo0dC4cWDbl46FhTGm0Pj+e3jvPf0DPDkZ6tbVP7zHjYNKlS4+/8yZM4SGhlKhQgUiIyMJDQ31f6Mzk5ysJW3ffBO++UYfq1xZbzWNHZtWkKoAsbAwxhR4Z87AX/+q6yWc01tM998Pzz2nf4hnlJCQwJIlS9i1axdjx44lLCzM/43OjHOaePfeC2vX6mPBwTB4sFYxrFEjsO3Lht9HdkSkjogsFZHtIrJVRB7I5BwRkddEJEZENovI1f5upzEm8E6c0Ds0jRrpEoMSJXQ8YuVKnR6bWVAcOHCASZMmcf78eSIiIggOLgB/E589C9OmwdVXQ9u2GhQ1a8L48XDwoK6dKMBBAYHpWSQBDznnNohIeWC9iCx2zm1Ld04voHHqv2uBSan/NcYUE7Nnw5gxum4CoE0bXTvRpk3m5589e5aEhAQqVqxInz59aNiwof8am51ly/T2UkyMHgcH6xqJiROhQoXAti0X/N6zcM4dcM5tSP36NLAdqJXhtP7AR059C1QSkZp+bqoxxs+c0xlONWtqqfADB6B9e4iKgu++yzootm/fzqRJk9i1axdly5YtGEExf74OUHfpokHRsCE8+yycPKljFYUoKCDAYxYiUh9oA3yX4Vu1gNh0x3tTHzvgl4YZY/wqJQWWL4cXXkibORoaqmMSY8fqZkRZiY6OZs+ePQwaNIi6dev6p8HZmTkTHn4Y9uzR45AQvd00frwuJy+kAhYWIhIKzAIedM6dyvjtTJ7iMnmNCCACKBj/IzHG5FpMjM5o+vprPa5YUevk3XVX1nXxnHPExMTQqFEjwsLC6NWrV2DHJpzTErZPPAF79+pjpUvrnqwPPqiBUcgF5KcrIiFoUHzsnPssk1P2AnXSHdcG9mc8yTk3GZgMEBYWdlGYGGMKrgMH4P33tfdw9qyGxK23arXt7Gr5nThxgrlz5xIXF0etWrWoWTOAd6hTUnQe77PPwv7Uj6jQUB2PiIgo1D2JjPweFqJFWKYA251zL2VxWhQwTkSmowPbJ51zdgvKmCIgIUE/S597Lq146h13wCuvQNWq2T/36NGjvP/++3To0IH27dsHbue6pCRt8Isv6mwmgCpV9D7aHXcUqZC4IBA9i47AMOAHEdmY+th4oC6Ac+5tYB7QG4gB4oG7AtBOY4wXnT2rRf3efhu2b9fH2rWDJ5+E3r2zf+7Ro0c5ceIEDRs2JCIigkqZrcDzh/PnYepU7U1sTP34ql5d10gMGlQkQ+ICv4eFc24FmY9JpD/HAWP90yJjjK9lnD3asKGuxO7SJfvnJScns2rVKr799lu6deuGiAQmKOLj4e9/1/tmhw/rY3XqaEj061ekQ+KCArBaxRhTVM2fr2O8336rx02b6uLle+6BsmVz8vz5nDx5klGjRgUmJE6d0p7E66/rbnSgSRcZqWMS5cv7v00BYmFhjPG6X3/ViUHTpulxSIiW63j8cc9/hCcmJrJy5UrCw8Pp3r07JUuW9P9+E8ePw4cfwssvQ2zqLP6WLeH557X+eRGY3ZRbFhbGGK85eFCL+s2apcelS2to3H23LrTz5NdffyUqKorq1avjnKNUqVK+bXBGhw5pwr3wQtrtpquu0rm9o0YVi9tNWbGwMMbkW3Ky/iH+0ENpu9T17Kn1nHJaZTs+Pp7Zs2fTvXt3mjZt6rvGZmbfPg2J559PewNhYXqr6e67s18VWExYWBhj8iwlRTcfevxxOH1aH+vVS2c85XSdbExMDHv27OGGG25g3Lhx/t25bs8eXUz3r39paVvQ+iKjR8OwYVmvCiyGLCyMMXmyc6duQLRypR7XqKF3b/74x4t3qctMfHw8ixYtYs+ePfTp0wfAf0GRlKQzmZ56Cs6d08euv15H32+7LWdvoJixsDDG5MrGjVqvadUqPa5RQ3epu/nm3L7ORkqXLk1kZCQl/TUWcP68rgZ84YW0kLjhBh1oyWybPfP/LCyMMTkSE6Nr0V5+WccoQG/n//vfuslbTpw+fZp58+bRrl07OnTo4LvGZhQfDxMmaKqdPauPXX65Ht94o//aUYhZWBhjshUXp9NeX3stbZe6++6Dp5/OeUg459i4cSNffvklbdu2pVatjLsS+MjJk1rtderUtJC48kodaLn+ervdlAsWFsaYTMXHw9y58Je/wC+/6Fhv9+5anuO663L+Os45kpOT2b17N8OGDaOGP3aEO3oUHn0UPv007XZTq1bak+jQwUIiDywsjDEXiYrSRcoXCqm2bq271F2diw2OU1JSWLNmDdu2beOuu+5i4MCBvmlsegcO6F4Ss2bp+ARAeLh2i8LDLSTywcLCGAPoLaYdO/T20owZ+li9ehoaf/5z7hYtHzlyhKioKIKCgujfv7/vV2D/8ov2JObM0bK2oLeZXnxRE85CIt8sLIwx7N2roTB3rh6XLatlxD3tUpdRcurId3x8PFdddRVt27b1bVDs3AmPPabb610IiV694B//0JXXFhJeY2FhTDH2yy9aSPWVV3RRXUgI9Omjf5A3aJC719q/fz9RUVG0a9eO1q1bU69ePZ+0GYBt27Rs7Vtvpd1uGjxYB1RatLCQ8AELC2OKoeRkePVVrdt0YZJQ//762ZvdLnWZcc7x5ZdfsmnTJnr06EHLli293+ALNm3SkHj7bV1YBzBihI5TNG/uu+saCwtjipPERB37ffllWLNGH+vZU6tb9O+f+z/IT506RYUKFahatSqRkZGUK1fO+40GWL8eJk/W3ZMuzN8dNEjvnf3hD765pvkdCwtjiol167Q8x+bNelyrlv6BnlppI1fOnz/P4sWL2b17N2PGjOHq3EyTyo1vv9VGfvihHgcF6e2m++7TKbDGbywsjCnitmzRP8rffFML/9WpA8OH652bihVz/3r79+9nxowZNGrUiIiICIKDffAxcvQoPPggfPyxHoeEwK23wp/+BG3bev96xiMLC2OKqFOntBrsW2/pcYkSWkL8mWdytktdRvHx8SQkJFC5cmUGDBhAg9yOgOfE/v1w//1pG2KUKaO3mx57DJo18/71TI5ZWBhTxJw6BZ99pqWQYmMhOBj69tXP2/Dw3L+ec46tW7eyYMECunTpQlhYmPeD4uef9dbSF1+kPda9u5blaNjQu9cyeWJhYUwRMnOmro24sMlbWJiuvG7VKu+vGRUVxb59+xgyZAi1a9f2TkMv2LFDexKLF6c91q+frrj25dRbk2sWFsYUcs7p4PXEifD55/rYlVfqDKdx47RnkfvXdOzcuZMmTZrQrl07qlWrRpA3d4vbuFHHJJYtS3tsyBAtHe7tQDJeYWFhTCH2yy8aCosW6XFoqG76Nnp03jd5O378ONHR0SQkJFC3bl2qV6/utfayerWOrF/YDAN0itbTT+v0LFNgWVgYUwgdP65Vt596SkuIly2re/dMnJjz7Uwzc+TIEaZOnUqnTp249tprvbdz3YoVuhnGxx//vs75X/6S+1WAJiAsLIwpRJKStBTHU0+lVbkYNAjeeAPy0wE4fPgwJ06coHHjxtx7771UqFDBOw3+6iudt3uhMmFQEDzyiI5T1KzpnWsYv7CwMKaQ2LhR79hs2KDHLVvC3/4Gt9yS99dMTk7mm2++Ye3atfTo0QMRyX9QOAcLF2pPYvZsfaxkSW386NFa4M8UOhYWxhRwq1drKHz5pS6qq1dP/1jv0SP/rz1//nxOnz7N6NGjvRMSc+fqwo4FC/SxsmU1JMaM0VF3U2hZWBhTQGW1nek//qED2XmVmJjI8uXLadeuHT169CAkJCT/ZcR37NA5u199pccVKsBdd8EDD+S+fK0pkCwsjClgTpyA556D//wHDh7U2/wPPqh3cBo3zt9r//zzz0RHR1O7dm1EhJIlS+bvBbds0WJ+K1bocdWqcOedulTcZjcVKRYWxhQg3tjONCtxcXHMnTuXnj17csUVV+TvxTZsgHvvhbVr9VgE/vhHeOkluOSS/DfWFDhemheXcyLyvogcFpEtWXy/i4icFJGNqf8m+LuNxviTc/qH+eDBWiZ8/35o106DY82a/AfFzp07Wbx4MeXKlWPs2LH5C4qVKzXB2rZNC4pRo3Qu77RpFhRFWCB6Fh8AbwAfZXPON865PBRONqZw8dZ2ppmJi4tjwYIF7Nu3j379+gHkfd3EV1/B66/rHtcXBlDuv1/vl/lqDwtToPg9LJxzy0Wkvr+va0xBcuiQrk97+mkt/BcaCgMH6voJb40Hb9q0ifLlyxMZGUlISEjeXmTePC3mdyHNgoJ0Id0TT2hFWFNsFNQxi/YisgnYDzzsnNsa6AYZ4w3e3M40MydPnmTevHl06NCBDnndHMg5HZP417/gv//Vx0qV0p7E3XfbFNhiqiCGxQagnnPujIj0BmYDmc4BEZEIIAKgbn5qHBjjB1u26JKDC9uZhofrpKHBg3O/nWlGzjnWr1/P0qVLCQ8Pz1t12AsVCZ9+Oq1UeLlyOhXrrrusVHgxV+DCwjl3Kt3X80TkLRGp5pw7msm5k4HJAGFhYc6PzTQmx9at0woXX3+tx7Vr606hN93knddPSUkhJSWF2NhYhg8fzqWXXprbF9AEGz8eli7Vx8qU0S7PxIlQv753GmoKNb/PhvJERGpI6gohEQlH23gssK0yJvfOnoVHH4Vrr00Linvvha1bvRMUKSkprFy5kqlTpxIUFMTNN9+c+6DYulX3sm7fXoOiXDkYNgxiYuDTTy0ozP/ze89CRD4FugDVRGQv8BQQAuCcexsYBESKSBJwFhjinLNegyk0Tp/WirCvv66fuSVK6NbRf/qT7n/tDYcPH2bOnDmUKlWKW265JfcrsNev1+XhX36pAymhobqfxMSJUK2adxppipRAzIa63cP330Cn1hpT6MyfryutY2P1uEULXVSXl+1MM5OUlATAuXPnaNu2LW3atMldUKxYoYWmli7V20+gDX7+eahY0TuNNEVSgRuzMKYwOnZMew7Tpulxq1a6Vi0iQguuekNsbCxRUVFcd911XHXVVbmb1LFoEfzzn2ljEiVKaN2mceOgUSPvNNAUaRYWxuTDgQM6eWjGDK3pVLo0/P3vOoEoL9uZZsY5x8KFC9m6dSs9e/akWbNmOX/y7Nnw8suwfLkeBwfrFKyICLj8cu800BQLFhbG5IFz8MEH8Oc/a0gAXH89vPeed/9QP3HiBJUqVaJGjRp07tyZsmXL5qxxX3+tgyYXNuUuVQoee0ynwNar570GmmLDwsKYXEhJ0Ts6//43LFmij/XqpX+sd+2a932vMzp37hwLFy7k119/JTIyktatW+fsibGxOuVq3jw9LldOp8TeeafO2TUmjywsjMmhHTvgnnu0lh5oNe5XX4WhQ/O/qC69ffv2MWPGDJo0aUJERATBObmfFROjBaUWLdLjChXgttt0xpP1JIwXWFgY40FiIrzwgo5NJCRoSNx+Ozz5JOR2WUN2zpw5Q2JiIlWqVGHgwIHUy8mH/JYtuiPShYUcoEWmXn/d9rg2XmVhYUwWzp3TGnrvvQfbtuljI0dqcFSu7L3rOOfYvHkzixcvpmvXrrRt29ZzUKxbp7OZVq1Ke2zYMG1c9erea5wxqSwsjMnEypV6y2nHDj2uXx/efRe6dfP+tWbPns2hQ4cYOnQol3mqJrhqlSbYJ5+krZO4917t9nizm2NMBh7DQkQeAJY55zb6oT3GBNSZMzoe/MYbOqmoSRP9A/7OO727bYNzju3bt9O0aVM6duxI1apVCcpuA4ulS+Gdd3SOLuhI+kMPaT0RCwnjBznpWVQCPhCR0+jK6pnOuWTfNssY//rtNx0L/vhj3V8iKEhnmj7xhK6d8KajR48SHR1NSkoKDRo0yL6e065dusHQR6l7hQUH64rre+7RHeuM8ROPYeGcexp4WkRqAD2ACWg9J2OKhM8/hzFj4OBBPW7TBt5/3zefxUeOHGHq1Klcf/31XHPNNVnvXLdjhybVrFl6XLq0hsSoUdC8ufcbZowHuRmzKOmcy24rVGMKlZgYePxxmDlTjzt21IoYHTp4b73EBQcPHuTkyZNcccUVREZGUr58+cxP/PVXHYOYP1+Pg4Kgd29d2JGfvbONyafc/F/iMxHJtMqNiHi5o26M78TGQp8+0LixBkW5cjrTdPlyuO467wZFUlISS5YsYdq0aSQkJCAimQfFjz/quogmTTQogoPhllvgp58gKsqCwgRcbnoWMcC7wPD0D4rIZcAc4BovtssYr0tJ0THiRx/VgewSJaBfP3jlFd+tW5s/fz5nz54lMjKS0NDQi0/YskWrwEZH6yIO0HUSb7wBNWr4plHG5EFuwuJuYI2I3Oecex1ARFoDc4EVvmicMd6yc6fe7v/mGz2++WZ4803frFtLSEhg2bJltG/fnp49exISEnLxSdu26cDIa6/pqj+AO+7QCoRt23q/UcbkU47DwjkXLyIDgZUi8j1QDZgGvOycm+CrBhqTH5s36xDA6tV6XL26hsTAgb653k8//UR0dDT169cnKCjo4qDYvBkmT9a1EhfWSYwapaU6rrrKN40yxguyDQsRWQhsBL5P/e9OIALtTQQDo5xzn/q6kcbk1vnzOuN04kRI3S+I4cPhpZegShXfXDMuLo4FCxbQp08fGmUsPXvyJPzlL3ofDPQe2IABWra2UyffNMgYL/LUs/geaA3cCVQH4oEfgGTgv8AuESnlnDvv01YakwurV2tZju3b9XjMGA2NChV8c71t27YRGxvLjTfeyJgxY36/c92xY7p4bto07UmEhEDfvrqI4xob5jOFR7Zh4Zx77MLXIlIdaIOGR2vzoukVAAAcX0lEQVSgMzqOkSIiPzrnbPK3Cahly/QW08yZuvq6cWOt69S5s2+ud/r0aebPn8/hw4fp168fQFpQHDigvYb//jftdlP79noLqkUL3zTIGB/KzZjFIWBB6j8ARKQMGhytvN80Y3LmxAl45BENBtClCQ8/DE89BWXKeP96zjlEhC1btlC1alVuueWWtDLie/Zo3fKpU9N2ReraVefm2mI6U4jlq5Cgc+4ssDr1nzF+FxUFkZGwf7/e4Rk7Vm9B+eqP9xMnTjB37lw6depE+/bt076xaxe89ZYmVlycPtarlw6SXHmlbxpjjB9Z1VlT6DinM0///ve0unrt2sGUKZCb7alzd03HmjVrWLZsGR06dKD2hV3nDh/WW0vPPquj6qAr/kaPhptu8u6uSMYEkIWFKVT27tUB6+hoPS5bFv7xDxg3Tm8/+UJystbNPHjwIHfffTfVqlXTYPjb37Q+yIXpVgMHQkQE9Ojhm4YYE0AWFqZQSEnROzyPPKJVYUNC9A/4f/8bLr/cN9dMTk5m5cqV7Nq1i5EjR9K/f3+9xfT44/DBB2mVB9u21cSykDBFmIWFKfBiYnTd2oWdQ/v10+GBWrV8d82DBw8ye/ZsQkNDGTRoEHLqlG4w9J//wJEjetIVV2iC2ToJUwxYWJgC68cfdVLRK6/A2bNwySVaMmnwYN8NBSQmJiIiJCYm0r59e1rVqoV89BH861+wb5+e1KqV9iS6d4eSmdbWNKbIsbAwBU5Cgi6ie+6535dNeuUVqFrVd9fds2cP0dHRdO7cmVYtWlBnxQrdR/XoUT3h2mt1nOKGG/Q+mDHFiIWFKVDWroW779ZirKDjEuPGwY03+u6azjnmz5/Pjh076NWrF01Xr9a1EceP6wlt2+rA9ciRvhtFN6aAs7AwBUJ8PEyYAC+/rIPZDRvqcECXLr697m+//UblypWpfdlldP3xR8q0a6cj6KBFpP75T93C1KbAmmLOwsIE3Ndf6+fxTz9pfb2HH9ax5LJlfXfN+Ph4Fi5cyL69e7nXOVpNmaIVYUFL0778MgwZYiFhTCq/h4WIvA/0AQ475y5aZytaXOdVoDdauHCEc26Df1tp/GHePK2xt2OHHrdsqQvrfF1fb+/evcyYPp3mZcsS8dFHBK9bp9+oWVOnWfXvbyFhTAaB6Fl8ALwBZLWfdy+gceq/a4FJqf81RcTRo7rHz8cf63FICDzxhBZi9eXkotOnT5OYmEi1n37i1tmzqbNypX6jfn0tHz5kCFSq5LsGGFOI+T0snHPLRaR+Nqf0Bz5yzjngWxGpJCI1nXMH/NJA4zPOaRHW++7TpQplyujtpjFjdB9s313X8f3337NkwQK6rVlDmzlzqAPakxg+HP76V8hsy1NjzP8riGMWtYDYdMd7Ux+zsCjE9u3TUIiK0uMuXeDddyHjHkG+8Nmbb3IsNpZhH35IjUOHdEbTX/4CTz4JpUv7vgHGFAEFMSwyu1nsMj1RJALduY+6dev6sk0mj5zTWU0PP6yTjCpU0BIdI0fqYLavpKSksHXxYlpMncr1S5ZQ5fhxSgQHa/XByEjfLtgwpggqiGGxF/QuQarawP7MTnTOTQYmA4SFhWUaKCYwkpN1I6LXX9dyHaAbxE2a5NsyHQCHf/iBqI8+IvjoURpFRVFNBB54QCvBNmni24sbU0QVxLCIAsaJyHR0YPukjVcULtu2ac/h22/1uFo1DY3bbvPxJKOffuLw00/zYc2adP36a9pu3Ij07QsvvggNGvjwwsYUfYGYOvsp0AWoJiJ7gaeAEADn3NvAPHTabAw6dfYuf7fR5E1CAjz/vG7tkJAAl12ma9puvtnH48c//si+Dz7g1Ny5XLl5M2PKlaNct24wZ442whiTb4GYDXW7h+87YKyfmmO8ZN067U1cWNcWEaG19ypW9OFFt28nccoUvt6yhU0tW9IrKQm5/XbKPfQQXH21rZUwxot8OMRoioP4eHj0Ua2xt3mzlun46it45x0fBsXZs7ooo2VL5u/axanQUCJ/+onmL74In3yitZwsKIzxqoI4ZmEKiWXLtExHTIzObHroIXjmGR+W6Th9Gl54gXOffMLXjRpxXZky9A4OJnjcON8XkTKmmLOwMLl26pQuU3j7bT1u0ULLdISH+/CCn30GTz3FrlKl+KJfPxodPUrwvHkE28ZDxviFhYXJlS++gHvv1b2w/VKm47PPYOxYOHiQuHLlWDJ6NAOaN6fBH/8IpUr56KLGmIwsLIxHzsH//gfjx2tlWNBexJQp2qvwyQX/8x948kncnj1sadGCvV270uuaa7h33DjENh4yxu8sLEy29u/XMh1z5uhxmTK6g9399/tgH6CUFPj0U5g8GZYv51T58nwxbBi/XXEF/YYPhzp1Ml3eb4zxPQsLkynn4P33ddD65EkoX17XTIwY4YMB7JQUWL1auy7Ll+MAqVyZbRMmULNFC27t2pUg26HOmICysDAX2b0bRo3SKbAAN92kg9m1a/vgYj/8oPuopu4pcbxRI6KHDaNLnz60u/pqH1zQGJMXFhbm/yUna1mOv/5V109UqwavveajDePWroXHH4elSyElhZSKFfn27rtZUb0613XqRJ3Wrb18QWNMflhYGAC2btUV2N99p8dDh8Irr8All3j5QocP69LuC5ttA8mRkfDccxxfuZJ7OnSgSpUqXr6oMSa/LCyKuYQEHYt49llITNSKsJMmaYVYrzp1SufYTpqkxyVKkPynP/FNp07EHDvGyEqV6NOnj5cvaozxFiv3UYytXQthYfDUUxoUo0drD8OrQXHsmJYHb9gwLSg6dODAwoW806gRB86d49Zbb0WsPIcxBZr1LIqh+HgNiJde0jtBDRvqrnVdu3rxIhn3UAUIDyfhnXeQ5s1JPnSIzjVq0Lx5cwsKYwoBC4ti5uuvdabThXpODz+s+2B7bTqsc/DBB/DII9qrALj+enj8cX5u2JDoefPoGhREy5Ytqe2T6VXGGF+w21DFxMmTWqaja1cNihYtdGnDCy94KShSUmDRIujRQ6fCHjsGlSrBO+/gliwhOiGB2dHR9OzZk5YtW3rhgsYYf7KeRTEwd64Gxb59PqrntGOHlp9duVKPq1aFV1+FoUM5dvw4VYOCaNCgAT169KCU1XMyplCynkURduSIToHt21eDIjwcNmyACRO8FBQbN0LnztC0qQZFlSpaG2TbNuIGDGDmrFlMnz6d5ORkWrRoYUFhTCFmYVFERUVBs2ZaaqlMGR3MXrXKS4X/fvlFa5Rfcw18840+dtdden/rzTeJPX+eSZMmUbFiRSIiIqxUhzFFgN2GKmKcg48/1mGDxEQdo3j3XZ3xlG9nzug9rNde0wuJ6Gynv/4Vqlfn5MmTJB07xiWXXMLQoUO5zPa/NqbIsJ5FERIbq7echg3ToBg7FpYs8UJQnDgBzz+v3ZJXX9XHunbVXsVrr+EuvZS1a9cyefJkYmNjKV26tAWFMUWM9SyKgJQUrer96KO682jFinrb6a67vFDTac4ciIyEAwf0uHVr3cgiXZG/WbNmcfLkSUaMGMElXq8PYowpCCwsCrkff9R1E8uW6fGAAfDmm5CvP+ydg+nTtYbTxo36WFiYLvEePhxCQkhJSeGHH36gVatWdO3alcqVK1OihHVUjSmqLCwKqaQkrcU3YQKcOweXXgpvvAGDBuWzN7Frl25iMXeuHpctCxMn6j2t1IHqgwcPEhUVRenSpbniiiuoWrVq/t+QMaZAs7AohDZv1gqxqVtAcOedetspX5/ZP/2kPYclS/S4YkV45hmde1ut2v+fdvjwYaZNm0a3bt1o3bq1leowppiwsChk5s6Fm2/WnkXduvDOO9CzZz5eMDFRZzc9+SScPas1QAYO1Prk6e5lxcbGcvr0aZo2bcrYsWMp6/Xt8owxBZndZC4kzp3TGaoDBmhQ3H03bNmSj6BISNC65KGhWiDq7FntRRw6pAUAU4MiISGBBQsW8N///hcRQUQsKIwphqxnUQisWqW3nXbs0PGIP/9ZazrlaTz53Dldsffcc3o/C+Dyy3VKbCb7SSxYsICUlBQiIyMtJIwpxiwsCrAzZ2D8eB24dg6uvBLeew86dszjCy5frjWcfvxRj7OoTX727FmWLl1Kp06d6N27N8HB9j8TY4o7+xQooPbvh06dYPdunYT02GO6eLp06Ty82JYturn25Ml6XLcujBihJTsy9Ba2b9/O/PnzadKkCSVLlrSgMMYAFhYF0oIFEBGhK7JbtIBp03QtXK4dO6b3rD76SI+Dg7WrMn48ZFLU78yZMyxfvpyBAwdSr169/L0JY0yREpABbhHpKSI7RSRGRB7L5PsjROSIiGxM/XdPINrpb8eO6Zq3Xr00KNq21ZmsuQ4K52DmTK0k+NFHWpe8f39Yv153OkoXFM45Nm3axBdffEFoaCgREREWFMaYi/i9ZyEiQcCbQHdgL7BWRKKcc9synDrDOTfO3+0LlI0bdWbToUN6q+mZZ+BPf9LOQI45p+Hw3HNp4xKdOulAxxVXXHT6iRMnmDt3LnFxcfTr1w/A1k0YYzIViNtQ4UCMc243gIhMB/oDGcOiWLiwVfXYsdqz6NgR3n8/08/27P3yiy6qW7RIj0NDtVzH6NEXTZtyziEi7Ny5k3r16tGhQwcrI26MyVYgwqIWEJvueC9wbSbnDRSRzsAu4E/OudhMzinUjhzRyUlRUXrcvbt+natB7JgY7Tm88QbExekGRBMnwu23Q/nyF51+9OhRoqOj+cMf/sC112b2YzfGmIsFIiwyu8/hMhxHA586586LyL3Ah8AfLnohkQggAqBu3brebqdP7dunC+zWrdPP9H//W4Mjx2snkpL0SX/7G5w/r48NHqyznqpXv+j0lJQUVq1axapVq7j++usL3c/LGBNYgQiLvUCddMe1gf3pT3DOHUt3+C7wfGYv5JybDEwGCAsLyxg4BVJKinYEHnkETp2C2rVhxQrI8Ziyc7BmjW5fumGDPtavn95u6t0706ckJSUhIpw6dYqIiAgqVarknTdjjCk2AjEbai3QWEQaiEhJYAgQlf4EEamZ7rAfsN2P7fOZlBRd3jB6tAZF377w7be5CIrVq6FVK2jXToOiXj1YuFD3nMgkKJKSkliyZAkffPABJUqUoHfv3hYUxpg88XvPwjmXJCLjgIVAEPC+c26riDwDrHPORQH3i0g/IAk4Dozwdzu97aeftGTHsmW6Dm7KFLjtthyWE8+4nWmpUpo4zz2nA9mZ2LdvH59//jmXXnopQ4YMsVlOxph8EecKxd0bj8LCwty6CzW7C5idO+EPf9BV2ZdeqrNbb7wxh09evFhX6P3yiy7lfuQReOqpLEfBExISEBEOHz7MyZMnadasmdfehzGm6BGR9c65ME/nWdVZH3vzTbjqKg2K9u1h27YcBsWcOVrgr0cPDYrWrXWsYuLELIMiJiaGt956i507d1KrVi0LCmOM11i5Dx9JTITnn9dtIkDHKl5+GTwOGRw6BPffr4svAEqW1J7EI4/oSuxMOOeIiori559/pm/fvjRs2NBr78MYY8DCwifOnNE1E99+q8cvvaSrsbPlHHz8MTzwABw/rgMb//iHznrKIiQAjhw5wiWXXELjxo3p1asXJUuW9N4bMcaYVBYWXrZ9OwwZoltF1K6tq7G7d/fwpF9/hXvvhfnz9bhbN60Q26BBlk85ffo08+fP59ixY0RERNgtJ2OMT1lYeNHatbojaWysfs7Pm6d7UGTp+HH48EOYMEG7I5UqaTdkxIhsp0nFxsYyffp02rZtyy233GKlOowxPmdh4SULF+pGc0lJEB6u1WKzmNWqJ738sobEuXP62M0362h4zZpZPEkL/yUlJXHppZcybNgwatSo4f03YowxmbDZUF7wr3/pmrgLe2MvXZpNUGzerNOiHn1Ug6JVK/jf/+Czz7IMipSUFL777jsmT57M/v37KVWqlAWFMcavrGeRT3//u3YQRPTz/7nnsigrfv68fnPiRE2VOnXgnXd08woPZs6cSVxcHCNHjqRq1arefxPGGOOBhUUenTun4fD661r87/XXdeJSpr79Vpdvb0utwj5mjIZGhQpZvn5ycjKbNm2idevWdO/enUqVKtkqbGNMwFhY5MHZs3DHHXrnKChIOwgjR2ZyYlyclul49VWdGtu4sVYR7Nw529ffv38/UVFRlC9fnmbNmlG5cmXfvBFjjMkhC4tciovTrSKio6FcOfjyS63rd5ElS2DUKPj557QyHRMmQJky2b7+oUOH+OSTT+jevTutWrWy3oQxpkCwsMiFM2dg0CCd+VS+PHz1FYRlrKhy4gQ8/LBWCgSt9TFlim6onY09e/Zw+vRpmjdvztixYynjIVSMMcafbDZUDiUnwy23aFBUrgzLl2cSFHPmQLNmGg4lS+qA9tq12QbF+fPn+eKLL5g1axYhISGIiAWFMabAsZ5FDiQl6ZjE4sVQrZr2KFq2THfC4cNw331p9Zzat9fAaNrU42svWLAAESEyMtJCwhhTYFlY5MD48VpWvGRJmD49Q1AcPAhdu8KOHTqIMXGiznbKZlV1fHw8S5YsoUuXLvTp08dWYBtjCjy7DeXBX/8KL7ygn/0LF8INN6R+wzkt1dGsmQZF06awZYv2MLL48HfOsXXrViZNmkRISAilSpWyoDDGFArWs8jG9Ola+PXC9NguXVK/sWeP7lS3cKEe33ij3naqVSvb14uLi2P16tXcdttt1K5d26dtN8YYb7KwyMK2bXDPPfr1q6+mW0exaxd07AhHj+pI9yuvwLBhWRb+c87x/fffs3//fvr06cPIkSNtOqwxptCxsMjEhSmycXEwdGjqyuzkZC30N368fqNLF+16VK+e5ev89ttvREdHc+7cOfr37w9gQWGMKZQsLDJwTtfSbd+uwxGTJ4OkJGvZ8P/8R08aPBjefRcqVsziNRwiwo8//kjDhg1p3749JUrY8JAxpvCysMjgzTe1wxAaCrNmQbl9uzQoVq/W3es+/hgGDMjy+YcPHyYqKoru3bsTHh7uv4YbY4wPWViks2+fLr4GHa++MmmLDl7v3w+XXaazn7p1y/S5ycnJrFixgjVr1tC1a1fq1q3rx5YbY4xvWVikcg7GjtVK4oMHw60VFsDV/SAxURfZzZ+f5W2nxMRESpQowblz54iIiKBiFucZY0xhZTfSUy1apNU6KlaE57t/Cf1Sg+LOO2HBgkyDIjExkUWLFvHhhx9SokQJbrzxRgsKY0yRZD0LtFfx5JP69fi+P9BgTC+t8RERAZMm6YYVGcTGxvL5559Tq1Ytbr/9dpvlZIwp0iwsgLlztd7fpVWTGPt5Nw2KcePgtdcuWj9x7tw5goKCCAoK4sYbb6RJkyYBarUxxviPhQWaCQCP8Tzl4g7DkCGZBsWuXbv44osv6NGjB82bNw9AS40xJjCKfVgcPgxffeUIlmSGH3tRqwS+++7vgsI5x+eff87evXsZMGAADRo0CGCLjTHG/4p9WMycCSkpQi8WUKUyWn88NBTQkDh06BA1atSgWbNm9O3bl5CQkMA22BhjAqDYz4aa8UkyALcxQ289VasGwKlTp5g+fTpz5swhOTmZK6+80oLCGFNsFfuexbMtZzBj5XH6t90Hf/wjAL/++iszZswgPDycW2+91cqIG2OKvYCEhYj0BF4FgoD3nHP/zPD9UsBHQFvgGHCbc+4XrzfEOTpteJVOrIF/LOT4b7+RnJxM9erVGT58OJdeeqnXL2mMMYWR329DiUgQ8CbQC2gG3C4izTKcNhL4zTnXCHgZeN5HjYEVK0iZNYtV5crx3nvvcfDgQUqVKmVBYYwx6QRizCIciHHO7XbOJQDTgf4ZzukPfJj69UzgBvHVqreQEP6XmMiPMTHcc889tPzdnqnGGGMgMLehagGx6Y73AtdmdY5zLklETgJVgaPpTxKRCCACyFfhvgtlOmwVtjHGZC4QPYvMPpFdHs7BOTfZORfmnAu75JJL8tygSpUqWVAYY0w2AhEWe4E66Y5rA/uzOkdEgoGKwHG/tM4YY8xFAhEWa4HGItJAREoCQ4CoDOdEAcNTvx4EfOWcu6hnYYwxxj/8PmaROgYxDliITp193zm3VUSeAdY556KAKcA0EYlBexRD/N1OY4wxaQKyzsI5Nw+Yl+GxCem+PgcM9ne7jDHGZK7Yl/swxhjjmYWFMcYYjywsjDHGeGRhYYwxxiMpKjNSReQIsCePT69GhtXhRZy936KvuL1ne795V88553FVc5EJi/wQkXXOubBAt8Nf7P0WfcXtPdv79T27DWWMMcYjCwtjjDEeWVioyYFugJ/Z+y36itt7tvfrYzZmYYwxxiPrWRhjjPGoWIWFiPQUkZ0iEiMij2Xy/VIiMiP1+9+JSH3/t9J7cvB+R4jIERHZmPrvnkC00xtE5H0ROSwiW7L4vojIa6k/i80icrW/2+htOXjPXUTkZLrf74TMzissRKSOiCwVke0islVEHsjknCLze87h+/Xf79g5Vyz+oRVufwIuB0oCm4BmGc4ZA7yd+vUQYEag2+3j9zsCeCPQbfXS++0MXA1syeL7vYH56MZa7YDvAt1mP7znLsDcQLfTi++3JnB16tflgV2Z/G+6yPyec/h+/fY7Lk49i4K197fv5eT9FhnOueVkv0FWf+Ajp74FKolITf+0zjdy8J6LFOfcAefchtSvTwPb0S2Y0ysyv+ccvl+/KU5hkdne3xl/8L/b+xu4sPd3YZST9wswMLW7PlNE6mTy/aIipz+Poqa9iGwSkfki0jzQjfGW1FvEbYDvMnyrSP6es3m/4KffcXEKC6/t/V1I5OS9RAP1nXOtgC9J61UVRUXpd5tTG9BSDlcBrwOzA9werxCRUGAW8KBz7lTGb2fylEL9e/bwfv32Oy5OYVHc9v72+H6dc8ecc+dTD98F2vqpbYGQk99/keKcO+WcO5P69TwgRESqBbhZ+SIiIegH58fOuc8yOaVI/Z49vV9//o6LU1gUt72/Pb7fDPdy+6H3RIuqKODO1Nky7YCTzrkDgW6UL4lIjQtjbiISjv7//VhgW5V3qe9lCrDdOfdSFqcVmd9zTt6vP3/HAdlWNRBcMdv7O4fv934R6Qckoe93RMAanE8i8ik6M6SaiOwFngJCAJxzb6Pb+PYGYoB44K7AtNR7cvCeBwGRIpIEnAWGFOI/fgA6AsOAH0RkY+pj44G6UCR/zzl5v377HdsKbmOMMR4Vp9tQxhhj8sjCwhhjjEcWFsYYYzyysDDGGOORhYUxxhiPLCyMMcZ4ZGFhjI+IyPMisjjQ7TDGGywsjPGd1sBGj2cZUwhYWBjjO1cB3we6EcZ4g4WFMT4gIjWA6qT2LESknIhMF5ENhX0HRlM8WVgY4xtt0Fo9O0WkCbAGrcHV0Tn3SyAbZkxeWFgY4xutgR+AAcAq4F3n3B3OubOBbZYxeWOFBI3xARGZAXRHK/72c84tC3CTjMkX61kY4xutgc/QkuGFdWteY/6f9SyM8TIRKQucBtoBjYHJQGfn3IaANsyYfCg2mx8Z40dXofs+b3HOrRWRpkC0iIQ75/YFuG3G5IndhjLG+64Cfkw3mD0BWAlEpfY6jCl07DaUMcYYj6xnYYwxxiMLC2OMMR5ZWBhjjPHIwsIYY4xHFhbGGGM8srAwxhjjkYWFMcYYjywsjDHGeGRhYYwxxqP/Azqllp6vdPoiAAAAAElFTkSuQmCC\n", + "text/plain": "
" + }, + "metadata": {}, + "output_type": "display_data" + } + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Simulation" + }, + { + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "def shox(A, pi_H, pi_L, theta_H, theta_L):\n \n if A == 1.5:\n pi = pi_H\n else:\n pi = pi_L\n \n x = np.random.binomial(1,pi_H)\n \n return A*x+(2-A)*(1-x)", + "execution_count": 15, + "outputs": [] + }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGMCAYAAAD0nYndAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXeYHFeZ7t8zOYee6RmNNCPNKIdRlqMs5AjYYBkbr7Gw\nWZKBXcyywGXxYpawy2XZBfbaYAO7gAGD1yYYsGXjJGPJyJatNMoapRlpcs6aHM7946ua6VDdXVVd\n1d01/f2eZ56WuqurT3edOuc9XzpCSgmGYRiGYZhYJCHaDWAYhmEYhgkECxWGYRiGYWIWFioMwzAM\nw8QsLFQYhmEYholZWKgwDMMwDBOzsFBhGIZhGCZmYaHCMAzDMEzMwkKFYRiGYZiYhYUKwzAMwzAx\nCwsVhpnFCCG+IYSYEkK4IvBZm4QQbwohLgkhJoUQa+z+TKchhPiIcj3mR7stDOMUWKgwTBQQQnxY\nmbDUv2EhxBkhxCNCiCIT57tKCPF1IUSOz0tS+bMVIUQSgKcB5AP4HIAPAagLcvz3hBA7hRA/sLtt\n0SDa14NhZhMsVBgmekgA/wLgXgD3A3gTwN8D2CuESDN4rqsBfA1AnqUt1M8iAPMBfFdK+TMp5ZNS\nyr4gxz8AGn/6I9K6yBPoevwKQLqUsj7yTWIYZ8JChWGiy0vKpP5zKeXHADwMoALAbQbPI6xvmiGK\nlcdg4mQaKeUkgGUA3rCtRTYjhMgI9rLWk5IYs6lJDDMrYaHCMLHFa6BJrgIAhBDzhRA/EkKcFkIM\nCSE6hRC/E0IsUN8ghPg6gO8o/72ouJImfeIg8oUQvxRC9AgheoUQP9drtRFCrBdCvCiE6BNCDAgh\nXhVCXOHx+i8A7AZZiJ5WPv+1EOcsB4mbvXraYKAt71c+f4vGez+lvLbS47m5ym/RKoQYEUKcEEJ8\nVOO9aqzPCiHEk0KIbgB7ArQx4PXQilHxOPcSIcQTyvVpF0L8m/J6mRDiGeU7twghvqDxmbq+B8M4\nkaRoN4BhGC8WK49dyuNlAK4E8BSARgDlAD4NYJcQYqWUcgTAHwAsBXA3gH/0eG+H8igA/A5ALYB/\nBrABwH0A2gB8OVhjlEn9ryBLyX8AmADwKQC7hRDvkFIeAPDfStu+AuD7AA4o5w7GZgAnpZS6XT86\n2/JnAJcA3AV/IXEXgBNSylPK+YoA7AMwCeAHADoB3AzgMSFEtpTSM35GjSv5PYCzoN8tkBUr2PXQ\nilFR//9bAKdAbrH3APiKIog+BeAvAL4E4B4A3xVC7JdSvmHiezCM85BS8h//8V+E/wB8GDSxXAeg\nAMA8AB8ATWaXAJQox6VqvPdyAFMA7vF47v8o55vvc+zXlWN/4vP8HwC062jnnwAMA1jg8dwckFjY\n5fHcVuVz7tD5/X8E4FHl31cA+CaAFgCVFrTlf5VzCY/nikHC5kGP534GElh5Pp/zJIBuz9/e43f8\ntc7vF+h6fNj3eY9z/8jjuQQA9Uqbv+jxfC6AQQA/N/M9+I//nPjHrh+GiR4CtFLuANAAmlj6AbxP\nStkCAFLK0emDhUhS0oxrAfSCLCN6kAD+x+e5PQAKhBBZARsnRAKAmwD8SUo5ncEjpWxV2npNsPeH\nYDOAN4QQqlD7Nej30ByTDLbltwCKAFzrcYq/wYxlSeUOAM8BSBRCFKh/AF4BCQLf31frd7QKCeCx\n6f9IOQXgoNLmn3s83wfgDICFHu81+j0YxlGw64dhoocEuXHOgVbObVLKM54HKHEkDwL4CMjqIjze\nm2vgs3yzTHqUx3yQBUcLN4AMkKvDl2qQqChT/q0bJWV3FShTqFNK+YLy0pwgbzPSlpdAgu8DAHYp\nx9wF4IiU8rzSBjcoI+eTINeKLxIkdny5EKSN4eJ7jfoAjEgpuzWedwFhfQ+GcQwsVBgmuhyQUlYF\nef1RkLvgIQBvgyYpCbIaGLGITgZ4PhrZQleBXBLLASwTQtRJKc9ZdXIp5ZgQ4hkAtwshPg2gBGTB\n+WePw9Tf7gkAjwc41TGN54ataqcGWtco1HUz+z0YxjGwUGGY2Ob9AH4ppfyS+oQQIhX+9TnsKCLW\nAWAIlEbsywpQXEWDifNuBvAXKeWHhBBfArADwAohRILi8rCiLb8F8LcAbgBZbwBvt08HgAEAiVLK\noBlKJolUUTe7vwfDRB2OUWGY2GYS/vfpZwEk+jw3qDxaVvBNEQ2vALjNJ522GMB2AHuklIHcRsHY\nDLIOAcBJUIwKANwvhEi3qC2vgtxbd4PcPvt9YlumQAHF7xdCrIIPQohCE9/LE8uvhxYR+B4ME3XY\nosIw0UOP2+V5AB8SQvSDUlevAlkJOn2OO6Sc79+FEL8BMA4KsAyXfwFwI4A3hRA/AgmnTwJIAaXL\nGkIIkQjKWvJMiz6vPKZLKYO5VnS3RUo5IYT4I0ioZICycHz5Z1DA7T4hxE9Bv68LwEYA1wMIZ5LX\nuh47wjhfMOz8HgwTdVioMEz00OMe+Cwo0PaDANJAlVxvBPCy5/ullAeFEP8C4O8AvAtkhakIu4FS\nnlKKp30bNCEmgKwhH5RSHvQ9XMcp3QCaAKhxOX8B8EkhxDdBtWKsagtA7p+Pg9xCv9c4X7sQ4nJQ\nqfvbQdsXdIGsPIZFmM+5rboegX5Tz2tv2/dgmFhASMn7YzEMwzAME5vEfIyKEOLLQoj9Qoh+IUSb\nEOJPQoilId6j7kw7KWZ2px2KVJsZhmEYhrGGmBcqALYAeARUvfJGAMkAXgkUdOdBH6gug/q3IPjh\nDMMwDMPEGjEfoyKlvMXz/0KIjwBoBwWKBdt5VUopO4K8zjAMwzBMjOMEi4oveaBAMt9qjb5kCSEu\nCiHqlZ1HV4Y4nmEYhmGYGMNRwbRCCAFKucyWUm4NctyVoF1oj4HKjP8TgHcAWCmlbI5EWxmGYRiG\nCR+nCZUfg1L9Nqubtul8XxJoD5AnpZRfD3BMgXLuiwBGwm8twzAMw8QNaQDKAbwspeyy8sQxH6Oi\nIoR4FMAtALYYESnAdPGnwyArSyDeBdoenmEYhmEYc9wD2tHcMhwhVBSRchuArVJK3x1G9bw/AcBq\nAH8OcthFAHjiiSewYsUKM81kYozPf/7zeOihh6LdDMYi+HrOPviazh6qq6tx7733AspcaiUxL1SU\nUtnbAWwDMKjs7QEAfVLKEeWYxwE0SSkfVP7/VVDFyvOg4NsvAZgP4GdBPmoEAFasWIENGzbY8VWY\nCJObm8vXchbB13P2wdd0VmJ56ETMCxVQCWoJYLfP8x8F8Cvl32Xw3g49H8BPQPVTekD7blwlpTxt\na0sZhmEYhrGUmBcqUsqQKdRSyut9/v8FAF+wrVEMwzAMw0QEJ9ZRYRiGYRgmTmChwsxatm/fHu0m\nMBbC13P2wdeU0QMLFWbWwoOgdQwNAdEuucTXc/bB19SfId4+1w8WKgzDBGX/fqAzbxH2fPDH0W4K\nw8xaxseBp9/3BIayi9DT7ZxCrJGAhQrDMJpMTgLf/CZw9dVABoawsqgz2k1imFnJuXPA5s3AMzsS\nUDjVgeyk4Wg3KaZgocIwjB9jY8D27cA3vgE8+CBQUJ6DwpT+aDeLYWYd+/cDV14J9PQAX/teDgAg\naYjvNU9YqDAM48XgILBtG/Dss8Af/gD8278BIjcH6OfBk2Gs5LXXgBtuAJYvBw4cAJZuIqHC95o3\nLFQYhplmfBy4/XbgjTeAF14A3vc+5YUcFioMYyXPPAPcfDO5Vl95BcjLA91nAN9rPrBQYRgGAGX1\n3H8/sGsXsGMHrfSmYaHCMJbxq18Bd95JlssdO4DMTOUFFiqasFBhGAYA8L3vAT/9KfCTnwDXX+/z\nIgsVhrGEX/0K+PCHgY98BPjNb4DUVI8XWahoEvMl9BmGsZ8//hF44AEKnP3oRzUOYKHCMGGzezdw\n333Axz9OiwIhfA7IzqZHvte8YIsKw8Q5Bw4A994L3HUXpSNrwkKFYcLizBngjjuArVuBH/9YQ6QA\nZF5JTeV7zQcWKgwTxzQ3A7feCqxbB/ziF0BCoBGBhQrDmGZoiILU58wBfv97IDk5yMF8r/nBrh+G\niWM+9zkKon3mGSA9PciBubk0eEoZYCnIMEwgvvhF4OJF4NAhJbsnGCxU/GChwjBxyssv0+ruiSeA\noqIQB+fkABMTwPAwkJERkfYxzGxgxw5y9fz4x8CKFTrekJMD9PXZ3i4nwa4fholDRkYoFfm664AP\nflDHGzgbgWEM09tLgbPbtgGf+pTON7FFxQ+2qDBMHPLd7wL19cDzz+v05HgKlTlzbG0bw8wWvvMd\nik/57/824DFloeIHW1QYJs5ob6cB9B/+gUp364ItKgxjiOZm4OGHKQ6spMTAG9V4MGYaFioME2d8\n61uU3fPggwbexEKFYQzxr/9KAepf+pLBN7JFxQ8WKgwTR1y4QEF9DzwAFBQYeCMLFYbRzdmzwGOP\nAV/5ChlIDMFCxQ8WKgwTR3ztayRQ/vEfDb6RK2YyjG6+/W2guBj49KdNvJmFih8cTMswcUJ9PfDk\nk+Q3n94ETS9cMZNhdFFXRyn/3/kOkJZm4gQsVPxgiwrDxAk/+hGQlRVgLx898AAKADj728M48MDv\nMTUV7ZYwscj3vkfunk98wuQJcnKAsTFgdNTSdjkZFioMEwcMD9MmaB//OIkVU7BQAQCc/NYzKP1/\nX+ACvYwf7e3Az35GrtWw7jOA7zUPWKgwTBzw5JNATw8VeTMNCxX09gJvV+fCldDLQoXx4/vfB5KS\ngM98JoyTsFDxg4UKw8xypAQeeQR4z3uARYvCOBHXd8CTTwJdk3lIHbtEWwowjML4OFlTPv5xID8/\njBOxUPGDhQrDzHLeegs4epQKvIUFW1Tws58Bizcpu8rxfiyMB88/T66f++4L80QsVPxgocIwGtQ9\ndwx7bvgGBvpltJsSNk88AZSVATfeGOaJ4lyoVFUBhw8D79imCJXe3ug2CMC+Lz+DvZ96PNrNYEAi\n9oorgMrKME/EQsUPFioMo8G+n5/Eltf+Fcljg9FuSliMjQG//S1tPJgQ7t0e50LlsceoFPrl74wd\nodL52LNw/f5/ot2MuKehAXjpJXL7hA0LFT9YqDCMD1ICL75Fk1HaSPQno3B4+WWguxu45x4LThbH\nQmV8HPjNb4C//VsgqTA2XD8NDcDZjjzMSXd2H50N/PKXVC7/7rstOFlaGkXkxum9pgULFYbx4a23\ngNNtsbNqDocnngBWr6a/sMnJifrkHC127SLB94EPAMiLjb7xxz8CAwl5yJlydh91OlICv/gF9Q21\ngHNYCBHX95oWLFQYxocnngBSi5Ww/Z6e6DYmDPr7gR07gHvvteiEcWxRefppyphatw4zpvkoC5Wn\nnwaKl+cjode5fXQ2UFVFe2hZYrVUieN7TQsWKgzjwdgY8LvfATe8PzZWzeHwpz9Rccvt2y06YZxW\nzJyYoN/yzjtpsYukJFo6R7FvNDcDb74JrNycB4yM0B8TFXbsICPbli0WnpSFihe8148Pn/vcjGXX\nl7Iy4Ic/DP7+++8n33Egtm8PPnHU14cuFvToo8D8+YFff+op+gsEf48ZfL/Hyy8DXV3A+z6SB/wI\nqD8/hs9sC/4Zsfg9AFpxb95M57fkehxZgafwLHAbgBT/12drv3r9daCzk4SKyv1Tj6Dhv68Admuf\nw+7v8cc/UnD0tw+9E9/Fs8BtAkgN/j20cOL10CKa32PHDuCWW+h+s+x7NP4QeDYDqPd+3SnXw2qE\nlM5Pv7QCIcQGAIcOHTqEDRs2RLs5TJT44AeB48fpD+npwH/+J/DZz0a7WYYZHAQKC4FvfhP44hct\nOumuXcD11wPnz4dZOc5Z/P3fU0ZHbS1mqtGuXg1cdx3wgx9EpU1bt9LGki98eQ/wjncA1dXA8uVR\naUs8U1cHlJdTZt1dd1l44ve+lyx3zzxj4UntpaqqChs3bgSAjVLKKivPza4fRhdNj72Enp0Ho90M\nW5mYoAnp9tuVJ/LyHOv6efVV8gbcdpuFJ43DtMnJSbJeTLt9VKLYN7q6gDfeAO64AzET2BuvPPcc\nkJwMvOtdFp+YXT9esFBhQiIl0PvpL+Pk//l5tJtiK/v3U+zszTcrT+TnO3YC2LGDFthLllh40jgU\nKm+/TdVG77jD54UoCpVXXgGmppR+ykIlquzYAVx7Le0uYSksVLxgocKE5Nw5oHXMhYTe7qDHtRzr\nQMtr1RFqlfW8+CLgcgGXX648kZfnyKyfyUla6W0LEVtjmDgUKq++St1guk+oRFGovPgisHYtMG8e\nZjaVcWA/dTp9fcDu3RZbLVVYqHjBQoUJyauvAj3IR8pQ8MGw+lMPY+Kmm+HUsKcXXwTe+U4gMVF5\nwqGun337gI4OGwZQddkYRwPozp0UljPdJ1Ty8qJS52JqityT01a/zExqnAP7qdN55RUqBPje99pw\nchYqXrBQYUKycycJlfSR4ELlaIMLhYnd3r58h9DWBhw6RNH70zjU9bNjB+B2074jlpKaSg75SA6g\nUtJsYJLhYWB8yNz7+/vJ9XPTTRovRknEVlWRCJ0WKkI4tp86nZ07yb26YIENJ2eh4gULFSYoExOU\n7NGX6ELWaGDXT2cncLzJhfTxgbAmlmjx8sv06BUU51DXz3PP0SrPzwoQLmrFzAgOoCfK34Oja8xX\nrDv0oYcwlOXG2Jjx977+OrnRNDdzjJJQefFFugRXXeXTFgf2UycjJQkVTRFrBTk5isp23lhqByxU\nmKAcPEgW7qKl+cieDDwYvvYa0AUX/ceBq7sXXwQ2bQKKijyedOBKtbUVOHWKXFi2EEGhMjkJnG3J\nwUR78NioYByvy0Wu7ENKwoTh9+7cSamnmpnYeXn0O0xOmm6bGV54gSbH5GSftjisnzqd2lrg4kWb\nhQoADAzY9AHOgoUKE5SdOyk0Yf46F/JkD6YmpgIft0AJ7Os2P7FEg8lJ8jdPm9NVHLhS3b2bHq+9\n1qYPiKBQOXYMaB13IWPYXH+SEnj7rHnx/OqrZE3RdGVGIV6nq4vij/z6aX6+4/qp09m5kyyWW7fa\n9AFxGLgeDBYqTFBefZXqWqXOyUcCJAaa/G8c1Qy68hplUnCYUDlxgpp8ww0+L0Rp1RwOu3eT33zO\nHJs+IIJCZdcuio3KGjPXn06eBC70m+uTjY1UQy3gijkKacGvvUb3ml/NDraoRJxXXwWuvHJGT1gO\nCxUvWKgwAbl0iXYSvvFGEioA0F/nv3KrqaEKjRtvUiYFh63u9uwhU7pfCqqa+umgwWLXLhKWthFB\nobJ7N9ANF3ImzQmV3buBgSRzQuUvfyFLyvXXBzggCkJlzx5yQ5WWarSFhUrEmJwk0agZu2QVLFS8\nYKHCBGTfPorluu46IH0eDfiX6v0H/J07qdrzlTc70/WzZw9w2WVUMd8LdTJyiPBqbgbOnrXR7QNE\nTKhMTgJ//SuQ6HYhF/2mMnd27QIWrDcnVP76V6qSX1gY4IAoCRXNje/Y9RNRqqro57YtPgVgoeID\nCxUmIHv30ni8fDmQPZ9EyHCz/4C4cyeZQbOL0oG0NEcJFSmDTAAOq/ppe3wKELG4nSNHKIh75WYS\nGr0XjV2DqSnK2ll/vTnxvHcvcPXVQQ6IcN/o6wOOHg3STx3SR2cDO3fS5tl+FlgrcdgiyW5YqDAB\n2buX0iATEoDsBTRhjLR4D/jqRD/tbnC5HHVz1dYCLS1BVqqAYyaB3buBlSt9MpesxuWKiBDdtYss\nXKu3Ur8bqDP2mSdOUPDplnem04kMtLm7Gzh9OoRQUYNpI1T0be9euteCChWnVlp0GH/9K10Hr8wr\nq0lPp7pFDlr02QkLFUaTqSkqdqUO1tlzszGJBEy0e4uQ2lqqoXLllcoT+fmOurn27KFYhM2bNV50\n2KrG9vgUACgoIAVgM7t30zXJrVBcjg3G+tTu3UBKilJvxGCffPttegwqVJKTqSpshETsnj0kQBcv\n1ngxP598ZZcuRaQt8YyUtCfY9HhnF0JE7F5zAixUGE1On6YxWB2sE5IS0CvyMdnlPWnv30+P02bQ\nCK24rWLPHopFUDWJF+qq2QEWlaYm4Px5m90+AF3fS5dgqoKaTiYn6bpce+2MJW+02Vif2rWLJpP0\ndBjuk3v3kihYuDDEgRF0uajuSc1UaYe5KJ3MuXO0brG86rMWDhtL7YSFCqPJ3r3k8vH0ww4k5UP4\n3Dj79lEmwnTQocNcPwHjUwAqlJCT44gJQLUCaFqGrKSggB5tHECrqymGcPNmILec3G+jrfo/T0rK\nVrvmGuUJgwP+W2+RJSbkVhC5uRHpGyMjtCAI2E9ZqESMffvo8bLLIvBhbFGZJuaFihDiy0KI/UKI\nfiFEmxDiT0KIpTre9zdCiGohxLAQ4qgQwrdMEhOEvXuBNWuArKyZ5wZT8pHQ7y1C9u3zWV04yPXT\n2korpIATAOCYom8HD9JuuiUlNn+QS8misXEAPXiQRMKGDUBaXhoGkYFJA9Vp6+tp76bpfmlAqExM\nUJ8O6vZRiZBF5cABMmAF7Ke8g3JIxken0FPTHXZNpP37gaVLZ35yW3G5WKgoxLxQAbAFwCMArgBw\nI4BkAK8IIXyTSacRQlwN4EkAPwWwDsCzAJ4RQqy0v7mzg7fe8h+sh9NcSBmYGfDHxoDDh32EioPM\nlXv30uP0ylsLh5TRP3iQtgCwnQhYVA4cAJYtm8nQ7Et0QXbp/zx11WtGqBw/DgwOxpZQ2bOHskzW\nrg3SDsAR/TRanPnJ68hfXICzL9WGdR6/hZmdFBQ4Ziy1m5gXKlLKW6SUv5ZSVkspjwP4CID5ADYG\nedtnAbwopfx/UsozUsqvAagC8Bn7W+x8urq0sx7GMvOROjSzajt6FBgd9UnTMzApRDtJYf9+Kp41\nb16QgxyQ+illBIVKhCwqnt9lINkF0WNMqCxYABQXK08Y6JNvvUU1gTYGG11UItQ31Mkx4CaTLFRC\ncryFfNMVOeb77cgIpc1HVKiwRQWAA4SKBnkAJIBgI89VAF71ee5l5XkmBGq8w1U+v9Z4jgvpIzNC\nZf9+Sn5Yt87jIDVGRYcKqc7ahNe3/ZcFLTaHrsndAa6fmhqaoyLiN8+3t6jf2BgJYM/vMpTmQlK/\n/s/bv9+8lW/vXnI5+RX/0yJCQqWqKoRwSk2lBsd4P40mB2rJEpjc12n6HEeOUAHMiAkVB1mn7cZR\nQkUIIQA8DOANKeWpIIfOAdDm81yb8jwTgv37AbcbqKjwfl7m5iNrfObG2bePREpamsdB+fnk6A+R\nKjkwAIihQRSMNlnYcv3otkI4wPVz8CA96rIChEtSEk3QNq30Tp4kK53ndRnNcCFlUN+APT4OHDqk\nYeXr6aGc+xDs22cg9TQCQqWjg/Yd2rAh+m1xMntOKS7LMPrtvn2kCdessahRoSgooGs6YXzn79mG\no4QKgB8BWAng7mg3ZDZz5AgNjH5ZDwUu5EzOrNo0/bUufSXLjx4FOlGIuSnmVzjhcP481erSZVGJ\n8Qng4EGgvDxIuXersTHI78AByjbztNKNZbuQrnMH5RMngOFhDYvK1FTIcuR9fdQvdLvQ8vJsL/h2\n+DA9slAxz+gocKQ6FWOpWVT0yST79gHr11N9noigjqVsKUNStBugFyHEowBuAbBFStkS4vBWAMU+\nzxUrzwfl85//PHLV+hkK27dvx/bt2w201tkcOQLcrSEFEwvykYMBjA+N49JoMs6eBb76VZ+DPG+u\nBQsCfsbhw8B8UYi8iegIFdUKocuiEuMDRcTiU1RsDPI7eBBYtQrIyJh5birXhaxafZ+3bx/FcnhN\n7J7iWbNgDnHkCD2uX6+zsapQmZoidWUDVVUUVByyposD+mm0OHGCjBJT7sKwhcqtt1rYsFB4Bq67\n3RH84NA89dRTeOqpp7ye67NRtDtCqCgi5TYAW6WU9Tre8haAGwD8wOO5m5Tng/LQQw9hQ8jly+yl\nu5vSO73iThRSiik+oa+uF8da6MbxmyB1xjBUVQFlBYVI6DoabpNNcfAgubbUsSAgMb5SnZoiV8e/\n/EsEP9RGi4qm6HK5kDOhX6isWeMtdLyESpAZv6qK3JjLl+tsbF4e+RAHBmaKA1pMVRXdiyF1UIz3\n02hSVUXiNaWk0HS/7e2lKtwRXxAAMRlQq7V4r6qqwkab/M8x7/oRQvwIwD0APghgUAhRrPyleRzz\nuBDi3z3e9n0A7xZCfEEIsUwI8Q1QltCjkWy7Ezl2jB61hEraXBrw++t6cOQIxe8tWeJzkE7XT1UV\nkFoa3gonHHRbIfLyyJcwOmp7m8xw5gyFA0UkkFbFJovKyAilB/t+lwS3C3myB1MToWNM/AJpAUN9\ncu1aCsPRRQQqF1dV6XD7AI4I+o4WVVXAihVAgrvA9HhzVFlPaY2LtqGz38YDMS9UAPwdgBwAuwE0\ne/zd5XFMGTwCZaWUb4GEzScBHAFwB4DbQgTgMiDzd1qahgABkD6XrCVDjd04epRWrn4pk7m5FNwS\nZNAcGaGgybxF0REqk5NkhdAlVGJ8Y0LVhRVRI6BNFpWjR8lE73tdkotdSIBEf0MfRnpHcDz7apx9\n+pjf+/v7qaqt3662BoSKod/R5r2g+vooo0tXmxwQ9B0tqqoUd16heYvK0aMUSLtsmbVtC0oESgE4\nhZgXKlLKBCllosbfrzyOuV5K+TGf9/1BSrlcSpkupVwjpXw58q13HkeO0N43WqtKdd+V4WayqGgW\noEpIoAE8yKRw/DiJheJVhWQ2j7C14swZKuql26ICRHUSOPUPP8a5eVs1X6uqoi0MgoReWI9NFpWq\nKup3q1d7P59WQv2u70I3anecwOpLb6Ht+QN+7z9+nDwxfhN7VhadOEibBwepdpAhoWKzaV6NmdFt\nUWGh4sfEBFmJN2wAXS+TC6MjR4DKSpt3TPYlNZU2vmSLSuwLFSayHD0a2Lyp7rsy2NiNU6eCmEFD\n5P+rPuPSdUqaSoRXDIbSeSO0g/L5bz6F6qW3ab52/MAI5jYf1Hzt2LEgFUvtwqZCVMeO0YrVK90d\nQEYpCZXBhm507SJLymRrh+b7k5I0YkyECNknjx2jeB9DQkUNcOzwb4sVVFWRe1XXKp6DaTU5fZos\nuBs2ICwo9Cy3AAAgAElEQVSLypEjEXb7qHDRNwAsVBgPxsbIJRNo4kt3pWMEqWg63oOJiRBCJcig\nWVUFrFwJpMxVhEqE3T8HD9J+HbriHyPk+jn8ahcWnnsJcsq/UF51pxuZGMJQ55DX81LSBBuxug4q\nLheN/kNDoY81wPHj2t9FteQNNXZj6oji8tHoM8ePk0hJTdU4eYg+efgwrZZXrTLQ4OxsylW1qf8a\nipnJyyPrJNfc8KKqih7XrcOMUDFYEnt8PPi4aCssVACwUGE8OH2abspAAkQkCPQl5KPtdA+E8DfR\nT6PDojK9wgHCHujHRiWG2i/pHoCCWY38UC0qNptfqzvdSMUY+psGvJ6XEjjSRCv37jPeK/e2Nvrp\nIi5UbNjvJ5joyiknoTLW2o2ciyRUknq0LSrh9MlVqwKInEAIQX3YRouKoVRpgN0/Phw+DCxerOwb\nVVBAQi5EPR1fTp+mRVxULCpcnRYACxXGA9UnHmziu5SUD9HbjcWLvXdW9iLIDsrj47TytVKonPzP\n55FRnI2GKn0TxqlTBlbOmZnki7DZ6qOKkd6z7V7P19cD9SP0Wn+N9/dTM7QCTs52YUOQX10dGQS0\n+l6mOwOjSMF4axfm99GXTh3w/i2kDGyRmW6zHvFsFLfbFqEyOkoTpO5VvOqGilIWXaxy8iTFlgAw\nPd7oGRdtgy0qAFioMB4cOUKBmdnZgY8ZTHUhHz3BB9AgZvbqahqE168HLXOSksIeXM900yA9N6k9\nxJE0p3R2kutJF0LYNhmptLcD5/q0xciJE0AH6LXBi96vHT9O9UJCFgOzGhssKseP06OW6FIteaL6\nFApkFzqEGxmD3n2mvp4WymaEyugo/c6mhYoN4uDsWYqZ0S2oi4ro0cZ+6kROnfK419V+a/B6HT1K\n95hNpXKCwxYVACxUGA+OHg29ghtJz4cL3cHNoEFurlNKgnhlJWZM52EO9MdaaZBO7AotVNTP1y1U\nAJoE2kOf2ywnT86IkaE6f6EymE6vjTZ6t0F1ddhUFDUwNlhUjh0j70VpqfbrA0kuzDu3GwBwrvQ6\n5IwZtC4F6ZOqy9NUDIJNrh/D/VS1qNjYT51GXx/Q1OQh9grNBe8HzHCMBGxRAcBChfHg5MnQboSx\nLLKoBBUqQVw/1dVAcfFMjKoVQuVAnbKa1DFInzpFRpzFiw18gM0WlRMngIFkWu2NNfkLleXr0tCP\nbEy2+E/OEXf7ALS0TEiwXKisWaOxv5TCYKoLi8aqcQmZGFtzGfIn/H+LYEInmFCprqZHQ+JVxaa+\nceoUMGfOjCYMSX4+pdKxRWUav+tqwqIiZRQzfgAWKgosVBgA5KlpawtdPnwyJ1+f6+fSJVqm+lBd\nTVUipwkjZRCggeTQ6UyMJ6XpFipLlxrcWMxmi8qJE8CSlcnoFi6/tNsTJ8j61JPkhvSYhCYm6LtE\nxW+ekGC5STpofAmA4QyasS9krUZSaTGyMIjh7mG/9wcSOtPt1Qi4rq6mS6xbFHhik+vn5EmDwikh\nge4ltqhMc+oU9Yfp9O60NIo5MzDeNDfT4VETKi4XFfmJ0crYkYKFCgOAzN+Aj4jQIKnIhcKEbsyb\nF+SgILt+nj6tIVTCGOhbW4GeXoHxfH1iwvAEAETEolJZCfQmuYFObzFSXU2vDaS6kdQ989rZs5SJ\nEBWhAlhanXZkhIrwBbMOjWdRn+opXY20eWTC7zk3029CWpdcLvrBNFKq/fqkEdT+OxW6vL8RvGIr\n9FJUxBYVD06epNiS9HSPJw2ON2rp/Ki6foC4j1NhocIAoAlRCLI2BGPjDz6M5OefCbxyBQJuTDg5\nSROsl9UmTKGi+vITivUJFdMTgE0rVSlnhMpAutsr7bamhhZSlZXAUKYbKf0zr0Ut40fFwuq0p07R\nPB9MdE3kklCRlWuQsYDiMfrO0+8xMkL9KqhoC1JGv7rawEaEvrjd1LEtTAseGwPOnTNY00VtC1tU\nptHM7jPoSjl9mgLWy8qsbZtuWKgAYKHCKJw+DZSX+6w+NEhbtgAFN/tupuJDAF/wxYs08XqtXsMo\naw3QYJSaCqSUhRYTXV3k3jJlUentpRnEYhobKVulshIYznQj1UOMnDhBj5WVwGiuGxmDM68dPw7M\nm2fSXWEFFlpU1Iyf6TRSLfLpi+Zesxo5i5QsqDrqN9XVpBXMCBVVPJu2qNiQFnz+PFnT2KISHpqL\nEoMLozNnaPEW8YB1Fd7vBwALFUYhrFWlL8XF9OgjHNTgNqstKsuW6bOomA6aVFM/bYhF8BQjY7lu\nZA7NTDQnT9I8WFQETOa7kTPibVGJmtsHsNSicuwYpcUHrMsDZedbAAveuxquZWoWVMf0+4EQFogA\nA76meDaCDWX0TWWmqW1hiwoAqslTX6/xGxq0qJw5E+GNCH1hiwoAFiqMQlh+el/y8ym1pq3N6+nq\napqMvDIzCgspbsBkOfbpVZMO98ypU7QyCuXe8sPGPV1OnKD4vvnzgUmXGzmj3haVaSuD2428CW8R\nE9QCYTcWWlT0fJfV//cDeOuLTyN/kQsZhRkYQjomlCyoM2fo9wtW/yfQNdQUz0ZQU14tFipu98yp\ndcMWlWnUmDsrLCpRFSpqxWG2qDDxzsgIUFtroVBJSKBB00eonD5NE4JXfIvJ2gYAxXdMB8fqECon\nT1JasqEy6cCMRcWG1eqJE2QJSEgARJEbrsmO6cQUz8DfpBI3cjCA0f5RjI6SJSDqKz2LBs+zZ0N/\nl/xFLlz13fdP/7870Y2p9s7p9y9ZEuJDsrMp66O11evp06dJKJqOQSgooA5toUAwFfANzGQgWRzY\n60RUq5SfADUgVPr6qLtE9T5LSiKxwkKFiXfOnaOxzTLXD0DuHw2LiubAAZhyq3R00P07LVQGBoDh\n4YDHGyqd74mNFhXPNiXPdSMDwxhsH8TkJMUqqL9XaunMfj81NSTSDFuGrER1/Rjc4M0XVXQZ/S79\nqW4kKllQZ8/qeL8QVJgkQJ8MGhwejMREsi5Z6BY03U+LiuhGjnM3AUBir6KCRKgXqsDW0W/PnKHH\nqAoVwFI3q1NhocLoTk02hI9FRcoA7qUwhIqXL19HCXFTGT8AjXYZGZZbVKT0nmRVMdJztgP19RS7\nq1oKMsrp+/Wd78DZs/RcSCuCnbhcFPE5MBD62CCoosvodxnKKERKXwempkho6xI6GuJZtfKFhYXV\naScmaII0bVEBOE4FQe71wkKq76Sj38aMULHQzepUWKgwqK6m+1eN27IEn0mhvZ3KqlhpUfGqMhtC\nqAwMUPGmsNJQLbaodHZSxo86SWcvnNnvRxUj6gQ8nelykV7Lzp6JWY4KFlmZfL+nXkay3Ugb7ERT\nE7kudQsVD9ePlBoFCM1gYd+oqaF51JRQ4f1+pjl1KsB1VQc5HRP/mTOUWRcsyDsi2FzHyQmwUGGs\nGax98REqatCi3+dkZlLQiEmhsnQpkJyMkHEk58/To2krhA21VM6do0e1nL8qRoYutuPcOaqeO38+\nvaZmuow0dExbYUy7K6xgzhx69In5MIpZ0TWR70b2iL+gC4qP60cVz5YIFYtcP6p105SgZosKALJE\n1tUF6BMGFkZRD6RVmTMn7PvM6bBQYawxf/tSXOw1YJ4+Te78RYt8jgtjY0Ivk786AAUYpH1FgWFs\nWNWo4kltk2spfYfRRpqAFy+m3wwAMt0ZGEQGJprb9cVk2I2FQsWU6CosRN44/U5JSVQDKCQ+4jks\nUeCJxRaVzMyZn9cQeXn0Y8T56vviRQrV8RtrAMMWFRYqsQELlThnaopuSFssKh7BrWfO0MChuceO\nSaFy/ryH8EhNpc3yglhU8vPDcG/ZZFEpKZkJ+EvNSUUfcjDR0qEpRnoSab+fmBAq+fl0MVtawjrN\nuXPmrFwJxW7ky26cPjmJhQtpfg6JKlSUQMrqahKCpsWrioUxKufP031iylomBNdSAYk9IMB11bkx\n4eQk9c2YEColJXSfhRm47mRYqMQ5DQ2kJWyxqADTK1gvUeGLCaEyPk7mXa9VUxAxYXZCnMYmi4pv\nm3qT6HO0xEh/qhtTrR1oa4sBoaJm0VhkUTFK6jw3EiBR/Wa3/vfPmUMdR9mD6vx5ssQY2qBSCwtd\nPzU1ASwBeuFaKqipoWuquR9ZRgb9hbhe9fUU+xQTQmXOHPJnWbhNg9NgoRLnBF19hIMaM2KTUKmv\np1WPXqES9PP1YJNFxVeo9KcVQXR1oK7O/7XBTDfGlSJnUc34UZkzJyyLSn8/6RwzQiV9PsVjtB7v\n0P9+H/FcWxumKFBxu8MqWuiJalEJqy1xblE5f55Sk1W3qR867uWYyfgBZvyAYVovnQwLlTintpYW\nxwsWWHxij0lhagq4cCHIAGzCdO4b3wHAfotKf79l261LqS2ehjLdmGyltFvfCXg0242s4RgSKiUl\nYVlU1LghM0Ilq5ziefImO40LFaXNNTW0u27YWFSdVrUShi2o2aIS/DcsKaEUwCCcOUPeZDWYPaqU\nlNBjHMepsFCJc2prqSpn2OZvXwoLSQG1taGpieb3gELFxIRXU0NxCV4VRQMIlf5+WkSHPQEAlk0C\nnZ1U+dJXcIx67PfjOwFP5LvhRgeKimYqa0eVMF0/4dSDyV9KFhU3DFhU1JVpWxuktNiiAoTt/tG0\nEpppS5xbVEK6z+bODWmdOHOG+mVAq0wk8RHY8QgLlTjHslWlL0lJJFba27WtH57MnUsCwMDuxDU1\nZN71CqIMIFRU91bYFhXA0qBJwP83mXSRGNFK2ZVFRcYmZrtRg/xMcvYs/axmRFfugjxMIBFudOi/\nrllZtD14Wxs6O4FLlyzq+xb1DbVPcIyKeaamdAhQHRaV2lob3OFmycqiP3b9MPGKZatKLZQsi5oa\nMq4ETCGdO5ceDawYNH35qlDxiY4POzVZPTdg2Wo1UJuE2z0tRnwzP5LmuJGPXqxYPG5JG8Jmzhz6\nPSYnTb1dd0VZDRKSEtCTUICS5M7p7hMSIaaLvtXW0lOx5PqpqaGaQKb3HQJINHV1mb4mTke13ga9\n13VYVC5coIVQzBCmm9XpsFCJc2prbbKoANNC5fx58vUG3AxQnWlCrHI80TTvFhWRVaa/3+vpsFOT\nAVssKp6pySpJJW5k4xJWLRrxe0+KUmJ/dYl1+8qExZw5NCGaLO8dbpp1b7IbS3I7kGBkFPMQz4BF\nfT89nS6kBUKlvFxnqnUgiopIqMdpyXVdVqmSEvp9AsSbTU1RLZaYEipxXkuFhUoc09tLe13ZJlSU\n/X50+YwBWg7pYGoqQMBcAKtH2IG0wMxkZKFFRatNaWUkRtaU+E96mQvotRWFMWLaV4P8TJikffc5\nMsNwphsVWQZ/C6U6bW0tGUJycsx/vhcWxIaEnfGjtgOI2ziVkNZbIKQFt7mZ1ju2jYtmCDPDzumw\nUIljVPN3JFw/QT/D5aJoXp0WlZYWqnGgaVEB/AbpsFOTPc9voUVFS6hklgcWIxVXl+C863Js3BAj\nhZ/CqE7b3U3BxOH0vfJnHsbqP/6rsTd5uH4snYjmzTNkEdQiZLaKHuJ8v5+amhDWW2BGYAe4Xhcu\n0GNMWVTY9cPEK5b66bUoLoZUXD9BB2AhaJWjc6BXzfZ+k1wA94wlFhX1/BasVKWkNmn9JmWbitGa\ntgAbK/3N0pkr5mNx1z7kX7s27DZYghrta2Kld/EiPYYzGeRsWYus9QYvrCKebREqOi2CWqhWQrao\nhIcuq5RqUQnQb1WhomtbhkgR5xaVcLyhjMOprSXTt8tl0wcUF0P09GAEY1i0KET+swGhcv48aRu/\nicblAhISvPZzsSQ1WcVn912zdHWRNUGrTVnLS5E1fDHsz4gIqan0m5v4TVShEvHJQAkArsUUNm+2\ncJ02bx5w5Ijptwe0EholJwdIS4vb1XdNDbBpU4iDQlhwa2vpVs/IsL59ppkzh8yQo6MhzEWzE7ao\nxDFqarJtu/AqK243OvStcgxYVObNo/HYi8REuqE9zmNJarJKaWlYq2YVdcUWUz5ws5gM8rtwgUJ+\nwgpwNkNxMTA+jqGmHmt/f7VvmNyPxbIK0UKEbd1xKoGKKPohRNDU+gsXYvDeVN1VISxl4/3D2P/t\nv6CnpjsCjYocLFTiGFtTk4FpoVKMNkuFStDBqLQUaGyc/m9AN5EZyspoc6QwqaujR8urAUcDk7VU\n1KwK20RyIJQ+WaSnTxph3jxgcNAv40wvqpXQkrgIi/qp0+jspH1QdV3XILVUYi41GdBdRr/leCcu\nf/BGXPzN2xFoVORgoRLH2JqaDExPCsty25CdHeJYA8GIQX35PkKlrs7ClXtpKZlfw9zTpa6O6jfZ\n5nKLJCYtKhcvRikGQBnwi9FmvUUF8Op7RghoJTTbFpPtcDKGkgOC1FKJaaES4l67MFKCSSSgZGJ2\nCVUWKnHKxARNmLYKFSWwb1VhW4gDQQNHb68uERBSqHisJuvryXJhycpdnYzCNKtfvGhhm6KNySC/\nqAkVRTzPS2zT3l3XLOrJTPYNSyfHOBUqqqVSV78KYFEZHaVLGHNCxe2m+LsQ91pdUxJaUIKCIRYq\nzCzAkn1FQpGaiv7EPCzJ0SlUgJBWlf5+0jMBB6OyMj+LimUbi4W5alapq4uxjIJwMJE2KWUUhUpW\nFsaS0rEiv9XafVzU/muyb6iC2hLUeJmpKYtO6Azq6oDsbCA3V8fBASwqdXXUP2MuRiUxkVLPQ9xr\ndXVAa1IZkttml1BloRKn2J6arNCUshDF+Tr28NEpVOrr6TGg+CgtJUe1Eitg6QSgrpotECqzIj4F\nIIvKwADFZ+iks5MOj8qqVQh0p8zB4mwd4tkIKSk0kZi0qFjaJ0pLaSvmOKulUl9P44IuS2VJCXVE\nn/3FYrKGiooON2t9PdCTPftilFioxCm1tWRJtHsb8xVDh7D11a+GPlCnUAkZiOpj9bDUopKRQYEl\nYQoV1fUzKzCxBX3UUpMV2kUx5qXbUGJ+3jxTfWN8nLp9rFn+nIYhsRegOu2FC2S8UH/CmEJH4Hpd\nHTBcwEKFmSXU1dHNmJxs/2fpWuFkZ1PUqw6LSlLSzPzoh8cgfekSxb5aKsbC9P/39pKxZ9a4fkxU\np422UFnduRsbD/yP9Sc2mb6uemkstagAcSdUVIuKLgJUp62tpXOEtd+SXei0qEzNU4SKyVT5WISF\nSjhIiTcWfxj7vvp8tFtimPr6MHdptRqd1Wnr62kcDhhf4BEroLqJLLVehClUZlVqMmBaqGRn00aR\n0UCkpSI9w4ZIZpP1S0K6M43idtMKJM6EiimLio+FIiZrqKiEECpSKgu5ijKqHjiLNqZkoRIGE5MC\nC2peQ/Ih5+WsNzTY7/YxjA6hEtKVk5JCmR0eQsXS7xlmjQrVmjBrhEp+PlXKNLDPTdRqqNiNSRGr\nilfL+mlCgl/222xHDbLX/RsWFJCY8+m3MZmarKK6fgIESXd2AsPDQOZyZQU6i64/C5UwaG0F6rAA\nxSN10W6KYQyZSSOFTotKyEleGaTr6mjMtjQN1QKLSlrazDY5jkcIEm+qKtTBhQuzyPXlybx5NFuM\njBh6W309zZuZmRa2Jc5SlA1bTwNUp41poTJ/PgX/BqhOq/4GrnWKUJlF15+FShg0NJBQyetzllCZ\nmqI+HFOuH8AaiwowPUjX19PcYam/ubSUsikMTkYqavtnlTVhwYIZU5EOopaabDdqbIjBXZRtyQKL\nU6FiaPHlU0tlcNCGmDYrUTtJgHtNtczNXVdMgx5bVBiA+sFFlCO97WK0m2KItjbKNIi5G1IVKgGC\nwNTsiJCDulJLxdLUZBWTk5HKrMr4UVmwYGaUDIFaQyVmV63hYLLomy3WTYNCRY6M4o0vPoOW/c6c\n3OrqKG5NDT3Rhc/CSP25Ym4Bp6Kq+wD3Wn09kJ4OFBYpZmQWKgxA/aAtdQFESxPNog7BltgNK5g7\nN+h+KWp2hF6LiqWpyZ7nBkyvVmdVsTeV8nLdQqWjg/zos+43AALW2fn9kgfx/P/ZFfBttlpUdGZ+\n9PdO4Zr/uh31v/iLxQ2JDCGD7LXwCX5W5/WYFSp5ebQ7doB7zctaO8v2e2KhEgYNDcBw0QKIqSlH\n7VYaszdkiIJquv3QpaVAby86L16yfgIIs+jbrCr2prJgAfnNdWx/oBbUmpVCJSeH0pk8xgI5JXHL\n+e+jdN/Tmm9RMzVsEdSjo7ozPxq70tGCOSgZvWBxQyKDqfuqvJw6pCLm1HHR0pg2qwlivfSyILNQ\nYVQaGoDJsnL6jwEffbSpr6fAvWilhwZEnb0C/JaqUAkpsDz25LF8AlBrdJsQKoODFGs5K4UKoCug\ndtalZ/vis0rvvdiLTAyheLBW8/CuLtJ3trkodfbTxkagFgvh6nOmUDEl9ioqZm5K0HheVERJbDFL\neXnQ8XH6N/DZSsTpsFAJg4YGIGWx0jN0mr5jAUOlpiPJ3LmUMnhBe7CsqwMKC3VkRyiDdMlUoz0T\nYphpqLPOmqD+yDrugcZGun55eTa3KVr49I2Ow/TvvG7tPm2bG9aEULmACmS0aguqWMeURUUNlFLG\nm4aGGLQy+xLEouL1G6hCZZbs98RCJQwaG4E5Fekkwx0kVGL2hkxMpFm8Vnuw1L1qUmy3ZWiwJw7H\npFl11loT1OAAHVbFxkY6POZEslX4WFT6TlA/SWu7qDlp2NYnio1lfjQ2Ah1ZFUi46DyLiuktCFSh\noow3MTsueqIKFZ/Yo+Fhiv/ysqiMjc2a/Z5YqJhkbIzqqJSVIag5LhaJyRoqKhUVQS0qutqdloaR\n7EKUotGe72nSonLxIs0dhjITnEBSEk3QOsR6U1OMxwCES1mZ1+8wfI76iRgd1awqWl9Prga32+J2\nqCkwBiwqlworaMY3mXofLUxvQZCXR/5vJ1lUyssxvTeIB37xe2Wzq+gbCxWTqFm0ZWUwlJ4ZCzhV\nqBhJN+7LKsWilEZkZ1vYNhWTQqWxkeYOQ5kJTkHnPTDrhcqiRTQ4DA8DAKbqPfqJhqXQ1ro6Bvpp\nYyMwXlox0ygHEZb7zGO8icnaUr4EcLP6/QYsVCKPEGKLEGKHEKJJCDElhNgW4vitynGef5NCiCKr\n2uSVOeMgoTIyQgkaMXtDqgOHj2lTSmM7IbellGFRqk3BZGVlVIxmdNTQ25qbZ6E1RSWAVXH35V9C\nzfPV0/9XXT+zlkWL6FERJYmtjTifXknPaQhwW2r9qBioGNzQAIhFyiY3ARYKsUpYWxAo401/P1VF\niNlxUSWAUKmrI7E7vQgoLCRTHQuViJIJ4AiATwPQuyWkBLAEwBzlr0RKqV172ATq9S8tBQ3S9fWO\nCFxSF1gxbVHp7wd6erye7u42lh3Rs+kmTK3faEMDQZORlAFjaQIxq60JGmJ9oHkA1x74Lhoe/gMA\nuj2am2fxbwAAixfTY00NACCjqxEdruXk29EQALbU+lFZtAg4f17XoY2NQNbyUnLjGezX0SasLQgq\nKoDa2tgt2eCL201V3XwWBY2NtGdhSoryhBCzar+nWNzM2g8p5UsAXgIAIQwZSTuklNrVw8KkoYGy\nVLOzQYP0+DjtGxHjo3DM35Dq1qW1tYDLNf20UfPu1qf/weKGebBkCT2eOwesWKH7bU1Nhg53FgsW\nkAoZG5seLTuONCEbQNJFmiw7Oug2mdUWlTlzgIyMaYGQd6kRDfNXASnaLs36euC977WpLUuW0Aw2\nNERtCsDAANDXB8ybn0g3mMMsKmHFlixcCNTXo+HiJIDE2O+bQmguCjQXQUHc6E7DKRYVMwgAR4QQ\nzUKIV4QQV1t5ci9/poH0zGijTvgxe0P6pAyqxJTAKinxmoz0MustKlJ6reD6qqk8eU77OQAzyTCz\n9jcAaCJZuBCoqYGUgHtM8XUtXOjXp8fHyQ1r272oWndCWEjU61JaCkdObmFZ6SoqgIkJ9BxvhBAO\ncc3qFSpLlgBnz0auXTYyW4VKC4BPAXg/gDsANADYLYRYZ9UHeKl4hwmVoiKyHsYkLheZqXwGy+Zm\nCkItsizKKAyEoEng3DndbxkcpFWrIwZCM2jsQzJ4jmbAkksk6FS346wWKgD1jZoa9Df0IQcDSF5Y\nOu1i8ERNArKtT3ha/oKgXhenCpWmpjB+Q2VhNHzqAkpKqIxTzKOxZYVm/NvSpbSYckBIQihmpVCR\nUp6VUv5USnlYSvm2lPLjAPYC+LxVn+ElVHJyKM3NASnKMZ+CJ4TmYNncTIaMhFjpsYsXG7KoqHuf\nzdpJWu1UHvfAxEUSKm7Zjv7GfjQ1UQhETIhNO1FiQ9Rib1nLFKHS2EiuMQW1T9gmVIqKgKyskP3U\nS0BqWH5inbAsleois7Y2tsdFTzR2K9f8DZYupewzB23vEghHxKhYxH4Am0Md9PnPfx65ublez23f\nvh3bt2/3eq6hAbj9do8nHJL5E9OpySoag2XMZcwsWQL85je6D5/1bo+0NIrP8LgHRHMTJpCIJEyi\n6fXzaGragJKSWZqe7cmiRUBdHfqOXgQAFKwtpQlD3dhHccnYLlSEoH6qw6IyXTq+ooIC2Xt7HVE+\nWHWfmb6v0tKAuXOR0nwBZTbF3lvOggV0jQYGgOxsjI7SLgCaQgUg94/FKuypp57CU0895fVcX1+f\npZ/hSTwJlXUgl1BQHnroIWzYsCHoMSMjFBjode0dUvStqQm49tpotyIEFRXA8897PRVzQmXxYpp0\nRkd1bQ5i+6QUC/iYpFM7m3AmcwNWDR5Az/5zaOzbELuxUVayeDEwMYHEfXsxBYGitSVA+yS9duGC\nl1BJTqaMFVvbosOiMn1dPGPE1q+3sWHW0NpK+i+sBcDChcg5esE5FhVPN2tlZeCxpbycTJhnzwI3\n3GBpE7QW71VVVdi40R61FyuG9KAIITKFEGs9YkwWKv8vU17/thDicY/j/1EIsU0IsUgIsUoI8TCA\n6wA8akV7VFOpV8c2kAoYTVpaHDBZVlTQTejhWw3LD20HS5YYSlFuaiIPYVaWze2KJuputApZ/c3o\nnkyHxz0AACAASURBVFuJbuHC6MnzszuY2BOllorr+G50JBQjJSuFBouEBK/+EhF3pg6LSkNDAKHi\nAFRLZThjg6yogHvwgnNEtCpUlGsU0K2clER9cRYE1DpCqADYBOAwgEOg+ij/BaAKwL8qr88B4Ckb\nUpRjjgHYDWA1gBuklLutaIxX8JnK8uXUcWK4/LS663tMTfhaVFSQL1+9AxGjFhVAtziNi0l66VLg\nzJnp/7pGmjBZPA/NGUuQfPHc7C/2pjJ/PpCUhLlNB9CVpnzh5GQSKx4CICJ9YvFiGrCUSrlaeF0X\nt5sy2hwmVML5HUfmVKB8ykExKiUltOJR7rWgv8EsyfxxhFCRUr4upUyQUib6/H1Mef2jUsrrPY7/\nrpRyiZQyU0rpllLeIKX8q1Xt0TS1rVhBFgADmSCRRs0yKCmJbjtCstC7QmZAH2w0mTuXBnSd1zsu\nhMqKFVSxt6cHk2OTKJpsQULpXPQWLUF2exxZVJKSgPJyJE2Noz/XQ5n5BIlHRHyrmT9KATotvISK\nml7tIKGSmhqe+6wjqwIlaMV8d2AxF1MIQQvjaqr43NREQ5FPaCWxdCkLlXilpYUErZcZf/lyeqyu\n1nxPLOCYOAkf06btaZxmUFOUdVpUZn1FVmDmHjh9Gp2n2pGESaQunIeJBYtRcukcBgbi4DdQUdw/\nI26PZfrChX6un4gJlQD9dGiIqj57WboWLYrpBZcn6m8Yzl5J7ZkVGEUKFiQ5KDvGR6gE/A2WLqVx\ndHw8su2zGBYqJmhp0bBKFBSQ2fT06ai0SQ+qUIl5i0pGBjVSGSxjVmAZqKUSczE2drBsGY2W1dXo\nPqEUe1sxD8krl6BItiMb/fHh+gGmhYqc5/GFly2j8UHZxyoiQkVNUQ7QT72KvamsWgWcPGlzw6zB\nivtq0+euQdLYMIo3L7amUZFgxYrpvhR0EbR0KTA5abmF7PW/eRR7y+6y9JzBYKFiAk2hAnip3Fik\npYWqm3tUpo9dPAbLmBUqS5bosqjExR43AFURLC8HTp9GfzXNgAWr5yJvE00Ai3F+9v8GCiOl9J1T\nKjwUQGUlcOkSUF+P4WHKMLW9T6spygH6qWa8XWUlKQCf/bZiEUvciYmJSExOsGcHa7tYsYKuT3t7\n8N/AM0XZQtobR7Gu+YWIFZNjoWKCgEJFVbk20lHTj6lLQ6beq2YZOOKG9BEqqalUUy+m8ExRDkJX\nF1le42KSVsT6aC3VUClYUYR515L7YTHOx57YtInOXLKoZC7zESoAcOIEWpRCCRH5PYJY/jSrBavt\ndIBVJS4WAFp4hBoEFSpqLJ3FQuWErETG1GDEaoexUDFBUKFy5oxtKnO4uQfuxbl444HnTL3fEanJ\nKpWVtAocHrbED20LS5bQtda5l0pcDKiKWJ9qaEJ7YgkSUxKRV5GPbuHCuoxzSEuLdgMjQ9/qa7DT\n9QG4bvCoRVJWRttDnDgRWSthkBTllhYKwvTas3DZMgoIPnEiAo0Lj7gJ0PZl8WIgKQmy+nRw95dq\nUbNYqBwcmRHdkYCFiglaW4O4foaHbVOZbWP5aMJclPYcN/V+1aLiCCorSQScDnEjRhM1RTnEIGBF\nrQfHsHw5UFuLtJZadKfNzCDNGUtQmeqMAE0rWLXFhZu6foP5q7JnnhSC+nWkhYqaojzkb4ltbaWC\nwl6kpJDLIMaFSn8/edLi4r7yJTkZWLQIo0eqMTISQqzZkPlzrHMuhtPyWKjEKsPDVF06oEUFsM39\n09ICHMdqFDYfM/1+x9zUK1fSozKox2S7586lMuPHgwvHpiYq6lVcHKF2RRMlTX9x0+u4lDtz0aYW\nL8HCgt4oNixG8BAq6ekBUkrt+ExAc1IJuOhS2hnLxJWlUosVKzBxnGIiQwoVj/pG4TI1BbS1C/TM\nXcVCJVYJWoukrIxsqDYF1La2AsewBpkX4sCikpNDe1rEslARAli3Djh6NOhhzc20ak2Khw0rFLFe\nONqM0YKZ0XNN1eOoPPdMtFoVO1RWAtXVaGmcjJw7s7KSlLJGP21p0bCoqO85cWI6Q8mXV//jIJ5z\nfxSTE9qvR4JZv9FnKFasQOJ5WhQHHR9XraIfq7vbko/t6aGYu5HFkROzLFQMogbBaU74CQkzKYg2\n0NoKnExYg8T6i4DBDaAcU5XWE4/VZ8y2e9064MiRoIfElR+9oAAoLAQAyLkeXzpmtr2OMqtWAaOj\nmDxbE7k+kZ5OLjmNfqrp+gGonV1dtOOfBkm7XsGtnb9EYmv0ao/ElUtVi+XLkd7RgExcCv4brFN2\nngmxoNKLOgdiVSXNdRGo0cKjh0HUi6R5cwO0orTJotLSAjQXrqb/GFSyjqlK60llJaaOn0BfXwxP\n9OvWUdDvwEDAQ2I2xsYmJpeRVSV5QRx9ab0obpiM2hOR7RMBBHXAxIAg7iIAEG3KgFJVZVEDjdPU\nRJmA6elRa0J0UayXV+WdRkpKkOOWLqUfKcSCSi/qXJK2qZK2OonAHncsVAwSshaJjbVUWluBwdLl\n5EMIERfhS0TTIa1i1SokNNQjG/2x2+61a+kxyPVwVGyQBVwqpQE0Y0msqssoUlQEFBaisDXCQmXt\nWuDYMa+MxOFhMsxqLroWLaKaAAGESnJ3G/3j8GEbGquPuE1NVlFSlC/PCWHBT0wk4WmxUMnbvIr+\nEQH3DwsVg6g+3YC+5RUrgppMw/3sgrmp1EGPGQuodUxVWk+UVd0qnIzdiX7lSorADzIItLXFSSCt\nQkchDaC5K+N5FgmAkvlT2hcFi8qlS16p9G2K1tAcExITqW8HmIQy+mPDohLXQiU7G51p87AmWcfC\nWEcsnV5aWiiEMGOBmwY2FiqxR0BTqYrqD7ThBp72J69ebViotLTQfBrO5l0RZ/lyTIkEVCLCg7oR\nUlJoQA8gVKamSLMGdBXOQpqW34gDiVfAfVl5tJsSk4wtrcTyiShYVACvfhrSjR0k8yd3iIVKLHAh\new2KM/pDH7huHXDqFLlqwsQrU2xVZDJ/WKgYJKRQWbSIUlYPHrT8s6c7yJo15GoIEJGvhaOq0qqk\np6O3cDHWJZ9Ednbow6PG2rUBVytdXbTVRjxZVLZ+ZjUum3gb2e44qe5mkO65lViCc5hXGLyisaUU\nF5Mi8einqgk/pFDRKGDpGm9FS9llVJ/FBuuxHhyVxWgTl7X9GdceeyT0gevWUdDrqVNhf6ZXAHaE\n0thZqBgkpFARAti0yXKhMjXl0UHWrKFqR/X1ut/v1DiJxtxKrE+O7XoOWLeOLFwTE34vqeb1eBIq\nTHCaXZVIxgQWjFpbhCskPgG1ra0U7hbQyrp+PbmLfIqFDXcNIRf9aN94Cz0RhTgVKePPUqmJ3pXn\naiUJwwL3j1dKu1pBfGQk7PMGg4WKQUIKFcAWodLdTfPgtOsHMOT+cerqo2/rNoxtuCrazQjOunV0\no2qUKQ+5amXijrUf34S2Iy2Y967KyH6wj1BpaSEBHTBz/LLL6HH/fq+nu06R+p64/GoKVoiC+6e3\nl7wYfF/pJDubKhRbEFDr5frxqCBuJyxUDDAxAXR06BQqTU0eCefh45VeXFqqqyKqJ061qGz52Ydx\n7Z5vRrsZwVH9/xqrFbaoML4kZqSieO0cJCVH2A+7di25arq6AASpoaKSl0eB+/v2eT3de4Y6dfbS\nErK6RMGioo6HfF8ZQEfNJz149Zv16+mcaiVxm2ChYoC2NjI5hhQq6krk0CHLPtsr8E0Icv8Y6HRO\ntag4ApeLqhJrXI+2NiAry2fTN4aJBj6FvwKWz/fkiiv8hMpgDakE18o5wIYNUbGo8ALABGosnYHY\nRl9GRqgy7bRQSUuj8wYt5BI+LFQMELQqrSdlZYDbDRw4YNln+7kQrrwSePNNXZ1ubAzo7HSmRcUx\nbNjgZyIH6LrxYMrEBEuWkGpW+mnA8vmeXH45TW7Dw9NPjda1YgKJcC0poH5fU0O+mAiiChV2/Rhg\n3TpSGQ0Npk8RNKXdRmwTKkKIDR7/zhVC5Nn1WZFCt1CxIaC2tZU2MJuuwrhlC5lJLlwI+V6+qSPA\nNdcAb7/tl/7X1sa/OxMjJCYCV10F7NkDQIfrByCLysSEl3tnqrkVHQnFSEhKIKECRNz909pKi/mY\nzgaMNdRrFcYCOmRKu01YKlSEEBuFEHcJIQoBvNvjpUEAdwkhtlr5eZGmpYUCz4qKdBysCpUwzGy+\nn+3VOTZvJkGkDDrBULMHeWVvI1u20KrTxwweb8XemBhnyxbgzTcxNT6pz/WzZg0pAg9rYUJ7K3pT\nlcFo2TKKZdExDlmJel85qtxCtJk7FygvD+taRSs5wGqLyiWQQDkI4D4hxMNCiNsAZEkpfwKgwuLP\niygtLeTRSUzUcfCmTaQQGhst+Wy/QSU/nyKudXQ61aKiS2Ax5tiwgQJRfK4Hu36YmGLLFqCvD31v\nnpjJIgxGcjL1bY84lZSeNlzKUjp1YiLwjncAu3fb1mQt2FJpki1bgDfeMP321la65Mq+oxHDUqEi\npTwjpfyYlLIcwEsAjgN4P4DDQogTAN5l5edFGl0rEJVNm+jRojgVTX/yli2GLCosVGwkOZnihnyu\nBw+oTExxxRVAcjKGX6F+qms88wmozbzUipE8j0593XXA3r2219LwhBcAJtmyhdx0QTZRDUbIlHab\nsPPjnpNSPial/FspZQWA6wDcY+Pn2Y4hM/7cucD8+ZaZRDX9yVu2UDEm1WQSgPZ2ss7aHJjNqKsV\npZLn5CSls/OAysQM6enApk1I2Eural0i+oorKBauowMAkDfSislCjzdeey0wOuqXHWQn7FI1yZYt\nND699ZaptxtarFtI2EJFCPElIcRRIcTfeTyXA2ClEGI6z0RK2SGl9K/F7CDa2w3eHDfeCOzcacln\na3aQa66hxxCmPL6pI8SWLRRVr5Spjsfy+YwD2LIFOcf2AJD6hMrll9PjW29BTkkUTrRClHi8cc0a\nckXv2mVHazVhS6VJli2j+AWTC2hdAdg2YIVFpQhAHYD3qU9IKfsBPAvg40KID1nwGTFBe7tB98lN\nNwEnT4Zd+G14mLL//DpIaamu4CjD7WbMceWV5MBVrgdnWzExyZYtyOhpxprsCzNZhMEoL6e/V15B\nf2M/0jGC5PkenTohAdi6NWJCRUpefJlGCFrgmhQqulLabcAKoSIA3Cml9MzygZTyvJTymwAus+Az\nYoK2NoMT/vXX0+Orr4b9uUAAk5uOOBUWKhEiM5MCD32ECg+oTEyxeTOmIHBzps7JSgjglluAF19E\n10lK+8hc6DNbXXcdped71Fuxi54e2l+P7yuTXHMNuelGjW+KGS1LlhVC5dsAHhBCJAKAEGKZEOKc\nEKJFCLEXwGILPiPqjIzQPoCGbo6iIiqyE6b7J2hK2NatVBFVKYutBa8+IogqHKXkMt9MbJKfj8bc\nSmyBgVX1zTcDtbUYf43ek7PEp1Nfey3VEDIZ+2AEtlSGyZYtNKEZrJyubgQZjfFMt1ARQlwvhPi6\nEOJGIcR0mR0pZSeARwB8WQiRBuD/AngBwL8D+CWAu61tcnRQ4siMWyZuuoksKmHUUwlaZOfmmyk4\n6sUXA76fLSoR5MYbKSX95Em0tVFBKi6fz8QatZs/hMx1S/S/4brrgJQUFDz7cwBK+XxPKitpG+YI\nuH94ARAm69eT9deg++fSJdI3brdN7QqCEYvKHABfB/AKgB4hxDEhxH8LIf4WgBvA9wF8A8CklPIf\npZSPSCl/osSrOB7TZvwbbySloQRYmv3shIQA27HPnUt7Cz37rOZ7p6ZIZLFQiRDXXUeDwI4dbMli\nYpZr//xPuPbFB/S/ITMT2LoVhefewjDSkFOa4/16QgJwww3ASy9Z21AN2KUaJklJVPvm5ZcNvS2a\nZS6MCJUOAD8EUApKM34dwFUAfgHgNIAaALcASBVCRHj/cvsxfZG2bAFSU8OKU+noIBUbMHf9ttto\ngNDwOfb0UAVsvqkjRFoa8K53ATt2cK0HZnZx880AgM6kORAJGiVht22jatxNTbY2o62Nsqy5fH4Y\nbNsG/PWvNEHoxClC5SCAx6WUzVLK30op/0FKuRZAAYDbQILlEkisHBVCdAghnhZC3Gl9syOPepEM\nm73S06ncvUH16vvZQT932zayy2lUh+Rib1HgttuAffswVt/KfnRm9qAIld60AJ365psp6+255yz/\n6M7qDpx+ivYTUhcAXD4/DG69lWonvPCC7rc4QqhIKXuklH677Ekpe6WUz0spH5BSXg0gF8BNoLiV\nXABftKy1UaStjUoFmCqaduutwF/+AvT1mfrskK6bykqgokLT/cPl86PALbcACQlYfv55tqgws4dl\ny9CaXo6hrACd2uUil8KOHZZ/9In7Hsa8D74DQ51D7FK1gnnzqHq6gWvV3k7iUDMEwWYsr0wrpRyR\nUr4mpfw3KeVNUsorrf6MaBBWQOr7308R8c8/b/qzg1pUhCCryo4dfkG7vCFhFCgsBDZvxtUdz/Lv\nzswehMCBT/4MPX//YOBjtm2jRZnJEu2BSGxvRjYu4ci/7eBib1axbRslYfjs+B6I9nYa2nTtdWcx\nEa7Y71wM11DxpKyMioH9/vem3q4rGHbbNvIN++ze295OVqCcnADvY2xh6tbbsGXsVZTmD0a7KQxj\nGbc+fAPe/bXLAx+wbRtNfK+8YunnpvZT2mXSb/+XY7+s4rbbSFDq3FAymtmjLFR0Enb++J13UsCr\niZVGSIsKQEG7RUXAr3/t9bQqsNifG1m6r9mGdIxgVUt4xf4YxlEsXEiuaIvdPxmDHRhCOta3v4Se\nc50sVKxg9WpgwQLd14qFigMI+yLdeSdl5fz5z4beNjUFdHbq+OzkZODDHyah4pH9E60CPfFO1vol\nOPbvz2PxJ6+PdlMYJrJs20ZubhOVTwORO9qOQ0s/CAGJdw/8jsc0K1BDBp55hgJrQ8BCxQGEHcC1\nYAHVOzHo/unuJrGiK9voYx+jNzzzzPRTXOwtOqSlAWu+/B4UlHMOJRNn3HMPjUMWWlXyJzowuWIV\nDrvfhXvwvxyjYhX33kshAzqqp7NQiXEsK5p2552UDtavvwaeoYq4y5fTPg6PPTb9FEfIMwwTUVau\nBK66ymscCofBjiFkYRDJJW6M3XUvNmMvFkzWWnLuuOeyy8hVp+NasVCJcXp6yDIW9kW65x7aTevx\nx3W/xXD9lvvuI3V84cL0+9miwjBMRLnvPgqorasL+1TdZ2i1lja/CJd9cxuO3vgFrLssOezzMiD3\nz333UWkLdbLRYHJSZwiCTbBQ0YFlJZvnzaNU5UcfJTONDgzvMXTnnVSy8ee0JwcLFYZhIs5dd1HZ\n/V/8IuxTDdTQBJpZ7kZKfibW7vwvJFWUhX1eRuHee0mw+CRieGIoBMEGWKjowNKKfJ/9LHD2rO70\nvfZ22pohL0/n+TMzgY98BPjxjzHcOYiBAXb9MAwTYbKygLvvJqGiI1AzGJcu0GotdwmvuGyhoAC4\n/XZy/wTYPDfaFc6TovOxMcznPuenCpY0A88CmP+dMuCnPwz+/vvvBxoaAr9+993Ahg3AI48A7363\n/+v19cBnPjP93xvOAH9OBMRtHsc8+igwf37gz1i8GOjuRuLVV+BZLMSVPwTwO4/Xy8qAH4b5PbZv\np79A+HwPTUJ9j6eeor9A8PeYgb/HDPw9iGh/j54eev3nPwc+8YnA5wjxPUrPUy0i17Igy3m+HoTZ\n73HffcBNNwGvvUaqxOd7FHfSHLj2awCW6/geFiNkAAUVbwghNgA4dOjQIWzYsMHrtUceAf7pn4Dh\nYYvqkTz+OFk9zp4FlgTfav3++4E33gCOHjX4GR/9KMZe2Ins9hrsO5yKdetMt5ZhGMY4UtKOyu3t\nNICZLGm6+z3fxfoXvoVc2WtxA5lppASuuIImuLff9pvofvtbWmP39gK5udqnqKqqwsaNGwFgo5Sy\nSvsoc7DrRwdqnIdlRdM+8AHyx3zrWyEPNZ1t9MADSO5oxofwa3b9MAwTeYQA/uM/gJMngSeeMH+e\n9nZ0J7Pbx1bUa7V/P/DHP/q9HO0K5yxUdGB5im9aGvDVrwK/+hVw4kTQQ3VVpdVi+XJc3HAH/hn/\ngcK8CXPtZBiGCYfLL6cEgq99DRgZMXWKxJ4ODKRFKYoznrj+euCd7wS+8hVgwnvOUBfM0apwzkJF\nB7ZkznziE7Tj8YNBNvhCePVbev7uQTRseB+SJ80NEAzDMGHzrW9RUTGTcQ1p/e3/v717j7Kzqu8w\n/vxyIxcll0aSiiDQKIqrjcmgEoWCF8pC1xqtIjQS0FIRBK0NdlG0aoqiBRWqVlDRVoyW6aJolaux\nsLC2kkjXjCAoxKJcGiGXCckQM0mAZPeP9wycHOacORNnzrvPzPNZ611Z572cd8/aOe/5nv2+e2/6\nZ9ii0hIXXwxr1z5rXJWye48aVJowKpU0ZQpcdBFcf33xEEqDc+9rl7DF717Ma7s/WzyBL0llOPxw\nOPtsuPBCeOSRYR8+ffsmnphli0pLLFoEp59e/IDu7X16tUGlDYza6K6nnFL8x/jABwadanv3bti8\n2XFQJLW5iy6CadPgvPOGfejMXRvZPceLYMt8+tPFoCkXXPD0KoNKG9i0aZQGupkwAa68En72M1ix\n4lmbN28uHsYua5AdSRoRs2bBpZcW3UeamFdmQEowZ/cmJszzItgy8+bBpz5V3P65/XbAoJK9Xbtg\n2zaYO3eUTnDkkfCJT8All8Btt+21adij0kpSrk49FY47rrgN9NhjTR2yfeN2prODSc/3IthS73lP\nMQ/QmWfCtm0GlWZExDERcV1E/CYi9kREZxPHHBcR3RGxMyJ+GRHv3Jdzb95c/DtqQQWKQVqOPRZO\nOw3Wr3969bDn+ZGkXEUUv9L7+uCtbx30dnetLWuLi+C0g70IttTEiXDVVbBuHbvffgq/7XvKoNKE\nGcCdwDnAkCPURcQhwA3ArcBC4PPA1yLi+OGeuCVBZeLEYpyBPXugsxP6+wFbVCSNMYcdVkyAt3p1\n8Wt9iAFH++4vLoIzDvUi2HJHHAHXXsuEW37A5/grnje3vMFh2yKopJS+n1L6WErpe0AzPbnfC/w6\npXR+SmltSuly4Fpg+XDPPfDg86gGFSgmLLzhhmJwpNNOgz172LgRJk8ub5AdSRpxr3lN8Wt95Uo4\n55yGE7T2P1i0qMx6kS0qpTj+eB6+4Eu8j8s57JH6vVNH21id6+co4JaadauAfxjuG7UsqEAxB1BX\nF7zlLfDud7P5wCs54IBJpQ2yI0mjYunSYk6SM8+Exx8vgsvkyc/abde6okVlzotbcQHWYOZ95Ezu\nf+kf8cK3vqq0MozVoDIf2FCzbgOwf0Tsl1La1ewb9fYWsxe3rFWjs7P4pfGud9F5cB83zb0a2K9F\nJ5ekFjnjjOLC+o53FBPxrVwJhxyy1y67H93IlpjN7OnPDjFqjalTYcGp5YUUaJNbP2Xq7S1mwW5p\nq8ayZfCd7/Cyh27kskf/rIUnlqQWOukkuPVWeOghWLgQvvnNvZ9b2bSJLZN8PmW8G6stKuuB2iHa\n5gGPD9Wasnz5cmZWTQ95zz0wefJSoMHU2qOhs5Pui75PPPFka88rSa10zDHFWFLvf38xKur118OX\nvwxz5jBpy0a2TfP5lNx0dXXR1dW117q+vr5RO1+kIZ66zk1E7AHeklK6rsE+FwMnppQWVq27GpiV\nUnpjnWMWA93d3d0sXrz46fXLlsG6dfDDH47UXyBJGtQ11xTjrEybBh/9KHf+7TXsmDqbJb/5dtkl\n0xB6enro6OgA6Egp9Yzke7fFrZ+ImBERCyPi5ZVVh1VeH1TZ/vcR8Y2qQ75c2eeSiDg8Is4BTgIu\nG+65e3tb9CCtJI13J58Md98NRx8N557Lyx+7jSdm2qIy3rVFUAGOBH4KdFOMo3Ip0ANcWNk+Hzho\nYOeU0oPAm4A3UIy/shz4i5RSbU+gIQ08oyJJaoEDDyyG2l+7llsWfpDfdp5adolUsrZ4RiWl9J80\nCFUppT8fZN2PgI7f9dy2qEhSCRYs4A13frbsUigD7dKiUhqDiiRJ5TGoNLBzJ2zfblCRJKksBpUG\nWjLPjyRJqsug0kBLh8+XJEnPYlBpYCCo2OtHkqRyGFQasEVFkqRyGVQa2Ly5mNDzuc8tuySSJI1P\nBpUGBromt3RCQkmS9DSDSgOOoSJJUrkMKg04fL4kSeUyqDRgi4okSeUyqDSwebNBRZKkMhlUGrBF\nRZKkchlUGjCoSJJULoNKHf39xeLDtJIklcegUocTEkqSVD6DSh0Ony9JUvkMKnXYoiJJUvkMKnXY\noiJJUvkMKnX09sJ++8GMGWWXRJKk8cugUsfA8PlOSChJUnkMKnU4hookSeUzqNTh8PmSJJXPoFKH\nLSqSJJXPoFKHQUWSpPIZVOoYeJhWkiSVx6AyiJRsUZEkKQcGlUH098POnQYVSZLKZlAZhMPnS5KU\nB4PKIBw+X5KkPBhUBmFQkSQpDwaVQQwEFXv9SJJULoPKIHp7YepUmD697JJIkjS+GVQGMTB8vhMS\nSpJULoPKIBxDRZKkPBhUBmFQkSQpDwaVQTh8viRJeTCoDMIWFUmS8mBQGYRBRZKkPBhUaqT0TK8f\nSZJULoNKjR07YNcug4okSTkwqNTYurX416AiSVL5DCo1BoKKvX4kSSqfQaWGLSqSJOXDoFLDFhVJ\nkvJhUKmxdWsxGaETEkqSVD6DSo2tW73tI0lSLgwqNbZu9baPJEm5MKjUsEVFkqR8GFRqGFQkScqH\nQaVGX59BRZKkXLRNUImIcyPigYjYERFrIuIVDfZ9Z0TsiYjdlX/3RER/M+exRUWSpHy0RVCJiFOA\nS4EVwCLgLmBVRDSKFH3A/Krlhc2cy4dpJUnKR1sEFWA58JWU0sqU0n3A2UA/cEaDY1JKaVNKaWNl\n2dTMiZ56yhYVSZJykX1QiYjJQAdw68C6lFICbgGWNDj0ORHxYEQ8HBHfjYgjmj2nQUWSpDxk3ZKY\nEQAACnhJREFUH1SAucBEYEPN+g0Ut3QGs5aitaUTOJXi77w9Ip7f1AkNKpIkZWFS2QUYDSmlNcCa\ngdcRsRq4FziL4jmXhgwqkiTloR2CSi+wG5hXs34esL6ZN0gpPRURPwUWDL33cs46ayYTqtqali5d\nytKlS5ssriRJY1dXVxddXV17revr6xu180XxuEfeImIN8JOU0gcqrwN4GPhCSukzTRw/Afg5cGNK\n6a/r7LMY6J46tZsdOxaPXOElSRrjenp66OjoAOhIKfWM5Hu3Q4sKwGXAVRHRDdxB0QtoOnAVQESs\nBNallD5cef1Rils/9wOzgPOBg4GvDXWiWbNGofSSJGmftEVQSSldUxkz5eMUt3zuBE6o6nL8AuCp\nqkNmA1dSPGy7BegGllS6Njc0e/ZIllySJP0u2iKoAKSUrgCuqLPtdTWvzwPO25fz2KIiSVI+2qF7\ncksZVCRJyodBpcbMmWWXQJIkDTCo1LBFRZKkfBhUahhUJEnKh0GlhkFFkqR8GFRqGFQkScqHQaWG\nQUWSpHwYVGoYVCRJyodBpYbdkyVJyodBpcaUKWWXQJIkDTCoSJKkbBlUJElStgwqkiQpWwYVSZKU\nLYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRsGVQkSVK2DCqSJClbBhVJkpQtg4okScqWQUWS\nJGXLoCJJkrJlUJEkSdkyqEiSpGwZVCRJUrYMKpIkKVsGFUmSlC2DiiRJypZBRZIkZcugIkmSsmVQ\nkSRJ2TKoSJKkbBlUJElStgwqkiQpWwYVSZKULYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRs\nGVQkSVK2DCqSJClbBhVJkpQtg4okScqWQUWSJGXLoCJJkrJlUJEkSdkyqEiSpGy1TVCJiHMj4oGI\n2BERayLiFUPs//aIuLey/10RcWKryqo8dHV1lV0EjSDrc+yxTtWMtggqEXEKcCmwAlgE3AWsioi5\ndfZ/NXA18FXg5cD3gO9GxBGtKbFy4EVwbLE+xx7rVM1oi6ACLAe+klJamVK6Dzgb6AfOqLP/XwI3\np5QuSymtTSl9DOgB3tea4kqSpJGQfVCJiMlAB3DrwLqUUgJuAZbUOWxJZXu1VQ32lyRJGco+qABz\ngYnAhpr1G4D5dY6ZP8z9JUlShiaVXYCMTAW49957yy6HRkhfXx89PT1lF0MjxPoce6zTsaPqu3Pq\nSL93OwSVXmA3MK9m/TxgfZ1j1g9zf4BDAJYtWzb8EipbHR0dZRdBI8j6HHus0zHnEOD2kXzD7INK\nSunJiOgGXg9cBxARUXn9hTqHrR5k+/GV9fWsAk4FHgR2/m6lliRpXJlKEVJWjfQbR/Fcat4i4mTg\nKorePndQ9AI6CXhJSmlTRKwE1qWUPlzZfwnwQ+BDwI3AUuACYHFK6Rct/wMkSdI+yb5FBSCldE1l\nzJSPU9zCuRM4IaW0qbLLC4CnqvZfHRHvAD5ZWf4XeLMhRZKk9tIWLSqSJGl8aofuyZIkaZwyqEiS\npGwZVBj+hIfKQ0SsiIg9NcsvqrbvFxGXR0RvRGyLiGsj4oAyy6y9RcQxEXFdRPymUn+dg+zz8Yh4\nJCL6I+I/ImJBzfbZEfEvEdEXEVsi4msRMaN1f4UGDFWfEfH1QT6zN9XsY31mIiI+FBF3RMTjEbEh\nIv49Il5cs8+Q19mIOCgiboyI7RGxPiI+HRFN549xH1SGO+GhsnMPxQPW8yvL0VXbPge8CXgb8MfA\n84Fvt7qAamgGxcPx5wDPemAuIv6GYo6u9wCvBLZTfD6nVO12NfBSiiEJ3kRR118Z3WKrjob1WXEz\ne39ml9Zstz7zcQzwj8CrgDcAk4EfRMS0qn0aXmcrgeQmis47RwHvBN5F0TmmOSmlcb0Aa4DPV70O\nYB1wftllcxmy7lYAPXW27Q/sAv60at3hwB7glWWX3WXQOtsDdNasewRYXlOvO4CTK69fWjluUdU+\nJ1D0Apxf9t80npc69fl14DsNjnmJ9ZnvQjGlzR7g6MrrIa+zwInAk8Dcqn3OArYAk5o577huUdnH\nCQ+VlxdVmpl/FRHfioiDKus7KBJ8dd2uBR7Gum0LEXEoxS/u6jp8HPgJz9ThUcCWlNJPqw69heLX\n/KtaVFQNz3GV2wj3RcQVETGnatsSrM+czaKoi8cqr5u5zh4F3J1S6q16n1XATOBlzZx0XAcV9m3C\nQ+VjDUUT4gkUgwEeCvyocj97PvBE5YutmnXbPuZTXBQbfT7nAxurN6aUdlNcSK3n/NwMnA68Djgf\nOBa4qTLaOFif2arU0eeA/07PjEnWzHW23iTB0GSdtsWAb9JgUkrVQzXfExF3AA8BJ+M0CFJ2UkrX\nVL38eUTcDfwKOA64rZRCqVlXAEew93OALTHeW1T2ZcJDZSql1Af8ElhAUX9TImL/mt2s2/axnuKZ\nsUafz/VAbQ+DicAcrOfspZQeoLgOD/Tksj4zFBFfBN4IHJdSeqRqUzPX2XqTBEOTdTqug0pK6Ulg\nYMJDYK8JD0d09keNvoh4DvAHFA9gdlM8gFddt4cDB9N4ckplovIltp6963B/imcVBj6fq4FZEbGo\n6tDXUwScn7SoqNpHEfEC4PeARyurrM/MVELKm4HXppQertnc6Dpb/Rn9w5qetH8C9AFNTWvjrR+4\nDLiqMkPzwISH0ykmQVTGIuIzwPUUt3sOBC6k+ND8a0rp8Yj4J+CyiNgCbKOYTfvHKaU7yiqz9lZ5\nnmgBxRcRwGERsRB4LKX0fxT3xD8SEfdTzGz+CYpeed8DSCndFxGrgK9GxHuBKRTdKbtSSv4Cb7FG\n9VlZVlB0XV1f2e8SilbQVWB95iYirqDoPt4JbI+IgZaQvpTSziGus/9T2fcHFIHkm5XhBn6f4nP8\nxUpjwdDK7u6Uw0LR5/9Bim6Pq4Ejyy6TS1P11kXxpbWD4inzq4FDq7bvR3GR6618gP4NOKDscrvs\nVYfHUnRl3F2z/HPVPn9H0UrWT/GFtqDmPWYB36L4hbYF+Cowvey/bTwujeoTmAp8nyKk7AR+DXwJ\neJ71medSpy53A6dX7TPkdRY4CLgB+C3Fg7SXABOaLYeTEkqSpGyN62dUJElS3gwqkiQpWwYVSZKU\nLYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRsGVQkSVK2DCqSJClbBhVJbSEiXleZnFDSOGJQ\nkdQuTqKYpE7SOGJQkdQujgZ+VHYhJLWWQUVS9iJiFvAy4L/KLouk1jKoSMpWRLwtIm7mmZaUsyLi\npog4psxySWqdSCmVXQZJaigiPgmclFI6vOyySGotW1QktYPX4G0faVwyqEjKWkRMAl6BQUUalwwq\nknLXAUzFHj/SuGRQkZS7VwOPppQeAIiIwyJiasllktQiBhVJuTsK+HHV6w+mlHaWVRhJrWVQkZS7\nicBAa8ppwM3lFkdSK9k9WVLWImIR8BngLuBnKaVvlFwkSS1kUJEkSdny1o8kScqWQUWSJGXLoCJJ\nkrJlUJEkSdkyqEiSpGwZVCRJUrYMKpIkKVsGFUmSlC2DiiRJypZBRZIkZcugIkmSsmVQkSRJ2TKo\nSJKkbP0/5A0l25iCnOYAAAAASUVORK5CYII=\n", - "text/plain": [ - "" + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "np.random.seed(1910)\nC = S[1]\nK = S[2]\n\nk0 = k_grid[30]\na0 = theta_H\nn = 200\n\nX = [k0]\nY = [C[(k0, a0)]]\nA = [a0]\nT = [0]\n\ns = 0\nfor t in np.arange(0,n):\n T.append(t)\n a0 = shox(a0, pi_H, pi_L, theta_H, theta_L)\n A.append(a0)\n k = K[(k0, a0)]\n X.append(k)\n c = C[(k, a0)]\n Y.append(c)\n k0 = k\n \nplt.plot(T, X, color=\"black\", linewidth=1.5, label=\"capital stock: $k_{t}$\")\nplt.plot(T, Y, color=\"red\", linewidth=1, label=\"consumption: $c_{t}$\")\nplt.xlabel(\"$t$\", fontsize=14)\nplt.ylabel(\"$c_{t}$, $k_{t}$\", fontsize=14)\nplt.title(\"Path of $c$ and $k$ over time\")\nplt.legend(loc=\"lower center\")\nplt.show()", + "execution_count": 16, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEbCAYAAAAmmNiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvFvnyVgAAIABJREFUeJzsnXd4HNW9979HvXdZzbZkyd2W5d7ANs0Uh+aQUN/QCUnu+3IJIaTcBN+QBC4hCSEhAXwNJGDs0G1DbIPjhruRLLlLttXrqsvq0u6e94+zZzQ7OzM7s1Vrz+d5eLB2Z2fPzsz5fc+vnHMIpRQGBgYGBgZaCPJ3AwwMDAwMAgdDNAwMDAwMNGOIhoGBgYGBZgzRMDAwMDDQjCEaBgYGBgaaMUTDwMDAwEAzhmgYGBgYGGjGEA2DUQUhpIoQcp2HzjWFEFJMCOkmhDzhiXO6CyHk74SQ36i8X0sImePLNrkLIeQ0IeQqf7fDwDcYomHgNjZD308I6SGEmAghbxNCYjR+ziMCocAzAPZQSmMppX/24vd4BEJIIoAMAGf93RY1pPeNUjqDUrrHj00y8CGGaBh4ilsopTEA5gJYAOAXfm4PAGQDOO3vRuggH8AFSumAvxsCAISQEH+3wWD0YYiGgUehlNYD2AZgJgAQQn5KCCm3hYjOEEJW215/F8B4AJ/ZPJRnRKeZTQg5QQjpIoS8TwiJkPsuQsg0QsgeQkinLURyq+i9XQCuBvCq7fyTFc5xDyGkyPZd5XJhFqXfYHuvihDytFJ7CSFzCCHHbJ99H4Dsb7ExC8Ap2+eiCCEbCCGfyHltTn77TwkhH0mOf4UQ8mfbvzMJIR8TQloIIZXi0J3t9/yEEHICQK9UOOTum9TzsP39Y9s16SWEvEkISSOEbLNdh3/bvCrVthiMUiilxn/Gf279B6AKwHW2f48DG93/2vb3twFkgg1Q7gLQCyBD+jnJuY7aPpMEFqr5nsx3hgK4AODnAMIAXAOgG8AU0TF7ADyq0u4f2do619a+fAA5Msc5+w2y7bW1qxrAD23t/RaAYQC/UWjPWgBrAEwAcMz2b6L3t4N5WH0A4mx/BwNoBLDY9huKADxr+2wugAoAN4h+T4ntPkY6u98qfx8GkAYgC0Cz7ffMARAOYJftt6m2xfhvdP5neBoGnmITIaQTwH4AewE8DwCU0g8ppQ2UUiul9H0A5wEsdHKuP9s+0w7gMwCzZY5ZDCAGwP9QSocopbsAfA7gHi2NJYSkghmueymlx2ztO0kprZIeq+E3KLV3MZiB/xOldJhS+hGAr1WalQ+W09gF4FeU0l9RmxXW89sppdVgRvp22/HXAOijlB4GCx2mUkqfs322AsD/Arhb8ntqKaX9Km11xl8opSbKPM99AI5QSosppYMAPgUTEC1tMRhlGDFLA09xO6X039IXCSH3A3gKQI7tpRgAKU7O1ST6dx/YKF5KJoBaSqlV9Fo12MhWC9cBOEkpPe7sQA2/Qam9mQDqJYa/WuE7CFhILxfAHymlm1WapOW3bwATkXcA3Gv7G2BeSKZN4DnBYIadU6vy3Voxif7dL/N3jMa2GIwyDNEw8BqEkGywkeO1AA5RSi2EkBIAxHaIO+vyNwAYRwgJEhnP8QDOafx8EoBOZwdp+A1qNALIIoQQkXCMB1Auc+wE2/+vA7CTELKTUlqocF4tv/1DAH8ghIwFsBrAEtvrtQAqKaWTVNrt7L54aj8FLW0xGGUY4SkDbxINZmBaAIAQ8hBsCXIbJrCRtSscAcstPEMICbUlsG8B8E+Nny8GcCUhpIAwJhFCprnwG9Q4BMAM4AlCSAgh5JtQDs3NAnCCUnoSwHcBfEoIyVA41ulvp5S2gOV03gYzzLyM9yiAi7ZkdyQhJJgQMpMQskDjbwLcu29iPNEWAx9jiIaB16CUngHwBzDjaQKL2R8QHfICgF/YKoCe1nnuIQC3ArgJQCuAvwG4n1JaqvHzBwH8BiwX0A0WZ4904Tc4a+M3ATwIoAMsif6JwuH5AE7YPrcJLCm+Sa5yTMdv3wDmuWwQfdYCJjCzAVTaPr8OQLyW32TD5fsm+R2eaIuBjyHyeTYDAwMDAwNHDE/DwMDAwEAzhmgYGBgYGGjGEA0DAwMDA80YomFgYGBgoJlLbp5GSkoKzcnJ8XczDAwMDAKGoqKiVkppqpZj/SIahJBxYDNV0wFYAayllL4iOeYqAJvBSvEA4BNK6XPOzp2Tk4PCQqU5UQYGBgYGUgghsisVyOEvT8MM4EeU0mOEkFgARYSQHbaaeDH7KKU3+6F9BgYGBgYy+CWnQSltpJQes/27G2xlUK1rBhkYGBgY+Am/J8IJITlgK14ekXl7CSHkuG0d/hkq5/guIaSQEFLY0tLipZYaGBgYGPhVNGyby3wM4ElK6UXJ28cAZFNKCwD8BcAmpfNQStdSSudTSuenpmrK5RgYGBgYuIDfRIMQEgomGO9RSh3W46GUXqSU9tj+vRVAKCHE2ZLaBgYGBgZexC+iYds74E0AZymlf1Q4Jt12HAghC8Ha2ua7VhoYGBgYSPFX9dQVAL4D4KRtbwKAbV05HgAopa+DbY35fUKIGWzTlrsVdjEzMDAwMPARfhENSul+ONnEhlL6KoBXfdMiA4MRqqqqcPToUdx5553+bopBAHL06FH09/djxYoV/m6KV/B79ZSBwWji008/xezZs3HXXXehvr7e380xCCCsViuee+45LFmyBA888IC/m+M1DNEwMLDx1ltv4Y477kBQEOsWnZ1Od4M1MADABOP73/8+1qxZg/j4+Ev62TFEw8AAwIYNG/DII49g5cqVePPNNwEA3d3dfm6VQSBgtVrx+OOPY+3atfj5z3+OH/zgB+ju7salmoI1RMPgsqewsBAPP/wwli9fjs2bN4PP9bl4UTp1yMDAHqvVikcffRTr1q3DL3/5S/zmN79BbGwsrFYr+vr6/N08r2CIhsFlTVNTE1avXo309HR89NFHiIiIQFxcHADD0zBwzrPPPou3334ba9aswXPPPQdCyCX//BiiYXDZMjQ0hG9961toa2vDpk2bBA8jNjYWwKXb6Q08w8cff4zf/va3eOSRR7BmzRrh9Uv9+bnk9tMwMNDKs88+iwMHDuCf//wnZs+eLbx+qXd6A/epq6vDI488gkWLFuGvf/0rbPOQAVz6z4/haRhclpw/fx5//OMf8eCDD+Kuu+6ye493eiOnYSAHpRSPPvoohoeH8d577yE8PNzu/Uv9+TE8DYPLkqeffhrh4eF44YUXHN4LDw9HWFjYJTtSNHCPDz/8EF988QVeffVV5OXlObx/qec0DNEwuOzYv38/tmzZghdeeAHp6emyx8TGxl6ynd7AdSwWC9asWYMZM2bg+9//vuwxl3p4yhANg8uONWvWIC0tDU888YTiMYZoGMjx/vvvo7S0FB988IEwCVSKIRoGBpcQe/fuxa5du/Dyyy8jKipK8bi4uLhLNiZt4BpWqxW/+c1vkJ+fjzvuuEPxOB6eulSfH0M0DC4rXnrpJaSlpeHxxx9XPc7wNAykbNu2DWfPnsX69esVvQwAiI6OBiHkkn1+jOopg8uG6upqbN26FY899hgiIyNVjw0k0RgYGMB1112HnTt3+rsplzR/+MMfMHbsWKerHxNCEBMTEzDPj14M0TC4bFi3bh0A4NFHH3V6bGxsbMCEFz777DPs3LkT+/fv93dTLllKSkqwe/duPPHEEwgNDXV6fCA9P3oxRMPgsmB4eBjr1q3DqlWrkJ2d7fT4uLi4gBkpvvPOOwCArq4uP7fk0uXNN99EeHg4HnvsMU3HB9LzoxdDNAy8zpEjR/D111/7tQ27du1CU1OTJi8DCJzwVHNzM7Zt2wbAO6JBKcWGDRvQ0dHh8XMHCkNDQ9i4cSNuv/12JCQkaPpMoDw/rmCIhoFXoZTizjvvxNNPP+3XdnzwwQeIi4vDjTfeqOn42NhY9PT0wGq1erll7rFx40ZYLBbExsZ6RTSOHj2K++67D++//77Hzx0obN26FW1tbbo2VrqURcOonjLwKkeOHEFNTY1QhugPhoaG8Omnn+K2225DRESEps/ExsaCUore3l6h7n408tFHH6GgoACRkZFeEY1NmzYBANrb2z1+7kDhnXfeQVpaGlauXKn5M7GxsWhpafFiq/yH4WkYeJUPPvgAgH/j7Tt37kRHR4euPb8DYSmI5uZmHDhwAKtXr0Z8fLxXReNyzZf09fVh27ZtuOuuuxASon2MbeQ0DAxcwGq14sMPPwTg361TP/zwQ8THx+P666/X/JlAmNX72WefgVKK2267zSuiUVZWhtLSUgCX79a3e/bswcDAAG6++WZdn7uUw1OGaBh4jSNHjqCurg6TJk1Cd3c3LBaLz9tgtVqxdetW3HTTTQgLC9P8uUAQjc2bNyM7OxsFBQVeEY3NmzcDABISEi5bT2Pr1q2IiorC8uXLdX3OEA2DUc327dvx8MMP+7sZDmzfvh1BQUG4++67AfhnWYXi4mKYTCasWrVK1+dG+1IQvb292LFjB26//XYQQrwiGlu3bsXs2bMxadKky9LToJTiX//6F6699lqH5c+dERcXh6GhIQwODnqpdf7DEI1LgNdeew1vv/02hoaG7F43m80oKSnxU6uAHTt2YP78+ZgwYQIA/8TFt27dCkIIbrjhBl2fG+2exv79+zEwMICbbroJABAfH4+BgQGHZ8BVenp6cPDgQVx//fWXradRVlaGqqoq3QMOYPQ/P+5giEaAY7FYsHfvXgCORvm1117DvHnz/FLF0dXVhaNHj2LlypWIj48H4J+4+NatW7FgwQKMGTNG1+dGe6ffs2cPQkJCcMUVVwCAcI09Zdy/+uorDA8PC/fvchSN7du3A4AgzHoY7c+POxiiEeCUlJQIHVo6AevLL7+E1WpFc3Ozz9u1e/duWCwWrFy5UpgQ5WvD09bWhiNHjvh9pPjvf//b6QKJnN/+9rd46623nB63e/duLFy4EDExMQA8Lxo7duxAREQErrzySiQkJFyW4ak9e/YgLy9P0woCUgzRMBi17NmzR/i3uGNbLBZ89dVXABzFxBfs2LED0dHRWLJkid88jb1794JSqqu+nuPJnMbrr7+OtWvXOg0dmc1mvPDCC9i4caPqcd3d3SgsLMTVV18tvOYN0Vi2bBkiIiIuS0+De/BXXXWVS58f7TkxdzBEI8DZvXu3sKm9WByKi4uFB9YforFr1y6sWLECYWFhfvM09u3bh4iICMyfP1/3ZyMjIxEUFOT2SJFSin379gFwfh9KSkrQ29vr9Lh9+/bBYrF4TTQaGxtx+vRpQWwTEhLQ19eH4eFht88dKBw/fhydnZ1211gPhqdhMCoxm83Yt28frrzySgD2I/ndu3cL//a1aLS1taG0tFRol788jX379mHRokW6Sm05hBCPlE2eP39eCA9qEQMtx+3ZswdhYWFYunSp8JonhfnAgQMAIIyyPe3FBAK8/xii4YghGgHMmTNncPHiRdxyyy0A7I3Nnj17kJaWBsD3xvrw4cMAgCVLlgDwj9Hp7u5GcXExli1b5vI5PLF7HxcCwHOicfDgQcyfP99uTxBPXuODBw8iIiICBQUFdue+nPIae/bsweTJk5GZmenS543wlMGo5MiRIwAgLMLHO7XVasX+/ftlxcQXHDp0CMHBwViwYAEAIDQ0FFFRUT41OocOHYLVanVLNDyRANYqGpRSYT+Mzs5OxYUSh4eHUVRUhEWLFtm97mnRWLBggeCh+Su86C+sViv27duHFStWuHwOfs0uRaE1RCOAOXr0KJKSkjBz5kyEhYUJRun8+fO4ePEili5ditjYWJ+LxsGDBzF79mxER0cLr/k6mbpv3z4EBQUJ3o4rJCUlub1Q3759+zB9+nQA6qJRVlaGlpYWTJ8+HZRSxRHqqVOnMDAwgIULF9q9zke27l7jgYEBHDt2zO66XW6eRnl5Obq6uhyEWQ8xMTEICQm5JBd6NEQjgDly5AgWLlwIQggSExOFTl1YWAgAmD9/vt3rvsBsNuPo0aMOxtrXZZuHDh3C7Nmz3VqhNjEx0S3BbW5uRkVFhbBukdq5Dh48CABOj+XepVQ0QkJCEB0d7bZoFBUVYXh42Gv5kkBA3H9chffJS3EfEkM0ApSenh6cPn1aMB4JCQnCA1pYWIjIyEhMmzbN5w/uyZMn0dvba2d0AN96GpRSFBcXY968eW6dx11Po7i4GABw3XXXAVAXjcLCQsTFxWHx4sWqxx49ehQpKSnCLHsxnrjGXLzkPI1AFQ1KKdavX4++vj5NxxcWFiIiIkLwEF3FE57qaMQvokEIGUcI2U0IOUsIOU0I+U+ZYwgh5M+EkAuEkBOEkLn+aOtopaioCFarVXChpZ7GnDlzEBISYicmvuDo0aMA4ODa+9LTqKmpQXt7O+bMmePWedwV3GPHjgEAFixYgOjoaNVzFRUVYe7cuUhKSgKg7mlw71KKJ0Tj8OHDyM3NtZtBH+jx+a+//hrf+c53hGXenVFYWIjZs2dr2gtcDcPT8CxmAD+ilE4DsBjAfxBCpLJ+E4BJtv++C+A13zZxdMONM082c3GwWCwoLi4WXGu18NQTTzyBp556yqPtOnbsGBISEhxGwr70NPgIf+5c98YZSUlJ6Ovrw8DAgMvtyM3NRUJCgqoBGRoawvHjx4VwIiAvGhcvXsTZs2cVY+2euMZyHhoP8QWqp8GfBy3L6VitVhw7dsyt0BTH8DQ8CKW0kVJ6zPbvbgBnAWRJDrsNwDuUcRhAAiEkw8dNHbUcO3YM2dnZSE1NBTAyki8rK0Nvb6/Q8dWM1QcffGA3o9wTFBcXY86cOQ4jYV8ueldcXIygoCDk5+e7dR5no34t7eDejtp9OH36NAYHB52KRklJCSiligbNXdG4ePEiKisrhVJbTnBwMOLi4gLW0zh+/DgAbbsPnjt3Dj09PW6HNgFDNLwGISQHwBwARyRvZQGoFf1dB0dh4ef4LiGkkBBSeKlusSjl5MmTdkaRexTSJJ6SsTKZTDCZTB59qIeHh3HixAnZEX58fLzPjM6xY8cwdepUREVFuXUeNQPujK6uLly4cEGTaEgLF5S+kxu/2bNny57HXdE4ceIEADiIhifO7U/4dWtra3N6rCeS4BwjPOUFCCExAD4G8CSlVFpj6Bi0BajceSilayml8yml8/nI+1JmaGgIZWVlmDVrlvAaD0+VlJQgMjISU6ZMEV7v7e11WAJCT0fSSmlpKQYHB2VzCfHx8RgaGnI51KMH8QjfHbin4Yqw8uurVTQSEhKQm5uL6OhohISEKIpGSkoKMjLkHW53DTtvs5JoBKKnYbVaBTHUch9LSkoQHh6OqVOnuv3dSUlJ6Ozs9MvmY97Eb6JBCAkFE4z3KKWfyBxSB2Cc6O+xABp80bbRTmlpKcxms4OnYbFYcOjQIUyfPh3BwcHC64BjEpMbiJ6eHo/twaCWS/BVMrW5uRn19fVu5zMA9zwN6bXgonHo0CHcd999dpP3ioqKMG/ePBBCVEs1jx8/joKCAtkkOOAZ0UhMTMTYsWMd3gvUPTUqKyvR09MDQNsA6eTJk5gxY4au/cCV4M9PIF43NfxVPUUAvAngLKX0jwqHbQFwv62KajGALkppo88aOYrhIyexaHCjXFhY6CAmgKPh46IBeM7bKC4uRlRUFCZPnuzwnifKNs1mM06ePGn32m233YYnn3xS+NtZCEcP7ngaJSUlSEtLQ3p6OoAR0fjnP/+JDRs2CElZi8WCU6dO2bVXTjTMZjNOnTol6wWIP9ff3++yN6cmSoHqafDnITU1VdN9lIZ93cGd52c04y9P4woA3wFwDSGkxPbfKkLI9wgh37MdsxVABYALAP4XwA/81NZRx8mTJxEaGmpnnLk4mM1mu7CVmqcRFMRuv6dE49ixY5g1a5bg5YjxhKfx9ttvY86cOcICgJRS7Ny5UxjVAyypDAAzZ850+Xs4/Nq50ulPnz5t14bExET09vYKOym2trYCYLOPBwcHMWPGDLtjpaJx/vx5DAwMqIpGSkoKANfup8ViwcmTJxXFNlA9Df6cL1u2zOl1aWtrQ2Njo8dEw53nZzTjr+qp/ZRSQimdRSmdbftvK6X0dUrp67ZjKKX0PyileZTSfEppoT/aOho5efIkpk2bZldHzo0yIO+BiI3Q4OAgSktLhXJdrUamtbVVWB9JCqUUJ0+eVDRqnhCN4uJiWCwWNDYyh7O2tha9vb2CAQaYsU5JSdG9U58c8fHxIIToDk9ZrVacOXPGQQiAkVJpfs25yDkTDbV8A4eLhvh6aKW8vBz9/f2q9y8QPY0TJ05g8uTJyMrKcmq8uRfraU/jUkuG+716ykA/ci60kmjIhafOnDkDs9mMa665BoD2kdCLL76Ia6+9Vjax19LSgo6ODkybNk32s8nJyQDc82rOnj0LYMQoSv8GmBEWG2B3CAoKQmJiou6RYk1NDXp7e2VFg4eOeJu5aIhnHyuJRmhoqOL1Bdy7xmfOnAEAxWuXnJwszAMKJEpLSzF9+nQkJyejq6sLZrNZ8Vi5sK87GOEpg1FBZ2cn6urqHB5sbpRSU1OFJdHFr0tFAwCWL18OQLuROX36NIaGhmRHTmVlZQCgWHXCR8HulETzdnODy/9ua2sDpRSUUo+KBuBa2aSS9yBG7Gnk5OQI27YqfeeJEycwdepU1b1B3PE0SktLAajfP0ppQBnA4eFhXLhwAVOnTtU06j958iSSk5OFPJS7uFNIMZoxRCPA4MZZui4O9zSUPBBxaKGsrAxBQUHCulVaRYMbFjnD78zoJCYmIigoyCWDBrDRGs9lSD0Ni8WCrq4u1NXV4eLFix7JZ3BcmaB16tQpAOqiIfY0pCLH59yIK6zOnTvntAyUexquikZWVpbiAo+8lN3V++cPKioqYDabMXXqVOHaqN1L7sErVafpxchpGIwKuGhIK5QSEhIQHBxslwQHgIiICERERNiNds6dO4ecnBwkJiYiLCxMk2gMDAygqqoKgLJoREZGYty4cQ7vAWxWcVJSkstGhwsE4Ohp8NfkRvju4kp46vTp08jKyrILGXIDEhsbi8jISLS1tcFsNqOsrExWNKxWq7Dr29DQECorK4W5N0q4E54qLS1VFSV3vBh/IR7IOLs23Ev1VGgKAMLCwhAdHW2IhoF/OXfuHIKDg5Gbm2v3enBwMLZs2YJnnnnG4TPScMe5c+cwZcoUEEKQnJysycicP38elLK5lXKGo7S0FJMnTxYqsuRISUlxOTwlFQhKKc6cOYPx48cLr3lDNJKSklwKT8kJAW9bSkoKWltbceHCBQwNDSkey73DiooKWCwW2VJmMaGhoYiLi9Nt2CmlmkUjkFZc4KIxZcoUp/mFhoYG9PT0eGRSnxhXnp/RjiEaAUZZWRlyc3NlV+BctWqV7GxhbqQAZiDOnTsnGKDk5GRNIyHeAQFlT8NZh0tNTXXL04iMjERubi5aW1vR3NyMjo4OYWc+LhppaWnCqNIT6PU0rFYrzp49qyoaXKiVyoOlsXAl71KOlJQU3Z6GyWRCV1eX6v0LxPBUaWkpMjMzERcX59TTOH/+PABg0qRJHm2DK57qaMcQjQBDbPC1kpqaKhj6hoYG9Pb22omGFiOjJho8dOVMNMTipZczZ85g6tSpGDNmDFpbW4VwlVg0zp496/YeCFL4SFFp+1Up1dXV6O/vd2hHWFgYnnnmGTz88MPCdeBiIA07SXMT586dA6BNNJKTk3VfY/GIXO284jYFAuKBjDNPw1uiYXgaBn7FarXi/PnzTmPbUsaMGSMkkbkB4ufQIxrZ2dmIjY11EI0LFy7AarU6bZc74amzZ89i2rRpDgb3iiuuAAAh3OONkaI4v+CMCxcuAJA3Pi+++CKWLl0qXPPy8nJkZGTYbYsLQJhjIr5nqampDsl0OVzxNJwVMQAsNxYTExMw4SkecuPPZHx8PIKDg1U9jbCwMMWcnKsYnoaBX6mrq0N/f79LngY3QNJQhx7RmDp1qmyISYvR4e1oa2vTPGrnDAwMoLa2FpMnTxZEo7y8HOHh4Zg2bRrCwsJw4cIFtLa2YuLEibrO7Qy9tfbl5eUAoNoOcU5D7jipaJSVlWkeKLjizZWWliI6OhpZWbKLSAu4E170Nc3Nzejs7BSeSb6ml5qnkZeXJ7uagTtcisujG6IRQEi9BK2MGTMGXV1dGBoawrlz5xAVFSUYiKSkJGGegxKUUpSVlQmiIR1tanXtU1JShPJYPVRVVYFSiry8PMEonj9/Hrm5uQgODkZKSoqwd7anRUNv1dCFCxcQGRmpuBItMDJRrqysDHl5eQ7vJyQkICQkxM7T0DpQ0DoIEKOliAFwL7zoa+T6itq1OX/+vMe9VGDE81PrX4GGIRoBhJ7YthiexGxpacG5c+cwadIkwUAkJyfDbDarhl8aGxvR29uLSZMmyYpGRUUFxowZYzdBTQ5XK3D46J2LxsDAAE6cOCEIREpKirAEhJwRdgc+UdJkMmk6/sKFC8jLy3NaRcbPKSdyQUFBgnfY1dUFk8mk+Z6npKSgu7tb18rFFRUVmgymO+FFX1NRUQEAdlWGSqN+q9WK8vJyr4hGWloahoaGAnIJFiUM0QggysrKEBMTozqKlUMc7pCOqLRMeqqsrATAOqDcaLO8vFyTsXa1AkdsALjBraioEL6TezDA6BENNcTVXUqeUVpaGpqbm3UPFPTO1bBYLKiqqnLYnleOQApPVVZWghCC7Oxs4TUlT6Ourg4DAwNeEw1A+/MTCBiiEUBw46x3xioXDZPJhKqqKrvRlxYjIzba3NMQu9tiA66GqxPEysvLER0djTFjxgjnAGDnaQCQTSq7i55Ob7VaUVFR4TREJv4NSteNFy9wwdYqhnqvcUNDA4aHhx3m/SidO1BEo6KiAmPHjrVbdkWpssxblVOAIRoGfkbriFAKH+GXlJRgaGjI7hxaSim54eJ7kg8ODgob2wwNDaG2tlaz0XH2XXJUVFQgNzcXhBBV0fB0PgNgVUNxcXGaOn1jYyP6+/udtkPsaTgTDT4LPycnR1N79XoafECg5blKSUlBb28v+vv7NZ3bn1RWVjo8k+np6TCZTA75BUPvbMA/AAAgAElEQVQ09GGIRoBAKUVVVZVm4yGGexo8WSzuTHxxtqamJsXPV1ZWIisrCxEREQ4hpqqqKlitVl3hKVdyGuJQFEf6mqdDU5y0tDRNnZ6X22r1NJKTkxXLaMWeRlJSEuLi4jS1Va8w8wGB1vCUnnP7k4qKCofflJ6eLptf4JV4zqrHXMEQDQO/0drait7eXpc8jfj4eISGhgqiIT6HFtEQd0BpMlsu4ahEVFQUIiIidBkdSqngaYi/Pzg4WIhXe9PTALSLhjhhr4YWkRszZgx6e3uFVXC1otfTqKysRFBQkLAcixqBsv7UwMAAGhoaZEUDcHzWq6urkZ2d7bR6zBWSk5MRHBxsiIaB79EbphBDCEFqaioaGxsdkoMxMTGIiYkRNjaSQ+zqS70FrYaSt0NvXLyxsREDAwPC+RMSEhAUFIScnBxhKZXRIhoXLlxAaGio0wliUVFRCA8PV20v9w6PHTvmkmho9ebkYv9KBIpoVFdXA3AcyCiJhqsevBZ4JZwhGgY+h4uGK54GMGLs5QxERkaGomgMDg6irq5O+F5piKKiogKRkZGa9yCQK9lVQ+rJBAcHIzEx0U6kZsyYgYiICMyfP1/zefWgx9PIzs5GSEiI6nGEEDz33HN4/PHHFY/hoqHXuwwPD0dCQoIwx8MZcrF/JVwNL/oapTyNM0/DW2h9fgIF9afbYNQgTka7AjdCcgYoPT1dMTxVU1MDSqmDaIg9DZ6k1oLeWn85T+ahhx6yW8J61qxZ6Ovr89g+CFLS0tLQ3t6O4eFh2YUiOTU1NZpHrHKrEYsRb1erdxScmZmJhoYGTcdWVFTgxhtv1HRsoKx0Ky4RFyMnGv39/WhubjZEQweGpxEgVFVV6UqISuHGXm5UqeZpSDtgTEwMIiIihE4gzjdoQU2g5KiqqnIIqb300ku4//777Y7zlmAAI8lMZ6P36upqTbkBLbgjGhkZGZpEo7+/H42NjZo9mcTERISGhuq6f/6goqICERERDt5vfHw8wsPD7drPQ1neCk8B6qJRXFys2SscLRiiESBUVla6HJoC1D0NNdGQuvqEEGEkSynV3a7MzEw0NjZqXn+qpqYG6enpmmLu3kJLBczg4CAaGxs9NmLlIg/oD0lq9TR4yFOr6AcFBWkWJH9SWVmJnJwch4EEIQTp6el2zzoXDV94GnJLiaxcuRK//vWvvfbd3sAQjQDB3WSdmqeRnp6Onp4eYe6FmMrKSoSFhSEzM1N4LSsrC/X19ejq6kJPT4+u0XVWVhaGh4c1J1Nramo8Nnp3FS2iUV9fDwAea2tUVJSwLItegyYWdTVcKa7g9340U11drfibMjIy/OJpDAwMOCzV09XVhba2NsGbDxQM0QgA3JmjwXHmaQDyZbfcaIvLETMzM1FfX4/a2loA0LWcNBcfrYantrbW48tV60WLaHhjxMpnwDtb00tKZmYmhoeHnZbd8vunR+j4vR/NqD0z0vBoVVUVQkJCdC/Nowel54df/9F+PaUYohEAmEwmDAwMuBWeuuGGG3D//fdj7ty5Du/xDiMXoqqtrcXYsWPtXsvKykJDQ4NLosEnUGkJcVBKA8bTqKmpAeA5TwNgBk5PvojDhdnZNa6trRVCTlrh9360Mjg4iObmZs2iUV1djXHjxnl8SXQxSs9PXV0dgMATDaN6SgeUUlBKvTIJSA1PGKRx48bhH//4h+x7ahP8amtrsWLFCrvXMjMz0dfXh1OnTgnn1ooeT6O9vR39/f1+F43o6GhER0dr8jSkAusOL7/8sktLaotFY9asWYrH1dbWIjMz02mJsPTcFy9eRE9Pj24PyBdwQ6wmGq2trUIlnDfnaHCceRotLS0YHBxEeHi4V9vhKQxPQwf33nuvQ9WOL3DWEdxFydOwWCyor693+F7uLRw+fBjBwcG6RqoZGRkghGgarXKx9Hd4CmAdX61qqKamBhkZGR7t+AsXLsSiRYt0f46LhtqETcC10J8eT9EfcEOsJN7p6emglAplw96eowGMiIb0+eFtBUbv9ZTDEA0dFBUVobCw0Offy0XDk6NYMcnJyQgJCXEwMk1NTbBYLIqiceTIEWRkZOhy7UNDQzFmzBhNnoY3Qj6u4qwiyZPltu7CRdyZIaqrq9P9TPF7P1pDKlo8DYA920NDQ2hoaPC6aKSmpiI4ONjhfohFY7ReTzkM0dAIpRT19fXCZDdfUldXh/DwcLvVUT1JUFCQ7EhaSazE4Q9XvACtJaGu5Ey8xbhx4+w6uZSamhqvGx+t8GdF7RpTSl3yNLTmS/yFs2dGLBq8wszbz1dwcDCysrIcnp+6ujph3pUhGpcgnZ2d6OvrQ39/v+7tNN2Fjwi9OYFNbq6GUgcUl9+60uG0lm3W1NQgPDzcbs6Cvxg/fjxqa2tl55eMloS9GLEwV1VV4emnnxY2qgJG8kWuioba/bv66qvxX//1Xy602n1qa2uRlJSEqKgo2fe5aDQ2Ngq/wRur20oZP3684DlzamtrhfAjH6AFAoZoaETcSdRGnN7AlTCCXuRG/0qiERkZKSzp7W1PY+zYsT4vPMDFi4Atyc8ZP348hoeHZZPhLS0tGBgYGDWeBmA/K/zjjz/GH/7wB5SVlQnvu+rFxcbGIjY2VvH+UUpx5MgRHD582MWWu4cz7ykzMxNBQUGoqakR+rTH+1Z9PSCxEVLR4J7ezJkzERUVZXgalyLimyodMXgbX4jG+PHjhQogTm1tLaKiomT3fOCjM1c9DV4xoobPR++NjcCTTwLjxgG33Wb3Fv+dcgMGZ8lXfyAWZv5/8f11J/Sn5il2dXWhv79fmDjoa+RKxMWEhoYiKysLVVVVnvc0SkqA73wHmDABkHha48aNQ11dneCp8sjFuHHjAmLCpBhDNDQidh99KRpWqxX19fVeN0g5OTm4ePGi3QY1vAPKhcV4R3OlXVqre3wmGk1NwFNPATNmAEFBwO7dzNsQwdshd++5UfZFmEMr4uVauEESi4Y7xRVqE/z467W1tXbhMF9RV1fnVAizs7NRXV2N+vp6REZGIiEhwfUvrK0FnngCyM8Hbr6Z/f+NN2SfH7GnKhbtsWPHGqJxKcJvalhYmE/DU62trRgaGvK6aPDQiniEqNYBueF3daQKqCdTLRYLGhoavPu7Dx0CrrgCmDIFsFiA06eBP/4RmDoVkCz5oOZpcPET53r8zdixY2GxWOxi9+J7W1tbi5CQEKEcVA9qE/z468PDw04HBZ6mr68PbW1tTp/JnJwcVFVVoa6uDllZWa7lCnt7gTVrgNmzgZgY4O23gaoq4JlnmKfq5PkRe6dZWVlGTuNSpL6+HqmpqbIJLW/i7XJbDp/gJA1hKHVAd8NTgHryr7m5GVar1XuG+PPPgVtvBf7v/wWam4FXXgH4fJPISMBsBoaHhcMTExMRHR0t3PvOzk7cddddMJlMaGhoACHEJQPsLfhM8srKSsXwVFZWlkszobloyHkS4hGzNNzpbbTOZ8rOzkZdXR2qq6td61cnTwLTpgHnzwPFxcDzzwPz5wN8kmRsrINoSD1VsafBr6fWRTz9jd9EgxDyFiGkmRBySuH9qwghXYSQEtt/z/q6jWLq6+uRlZV1yYoG9zR4RzebzWhsbFTsgHfddRd+/OMfa958SQwXKLWF2rw2eh8eBn76U+Dxx5lw3HMPIJ2QRwgbPYo6PiHE7t4fPnwYH3zwAXbs2IGGhgakpaXpmlntbfiSMxUVFYqehqulphMmTMDw8LCstyF+zV+i4ayv5OTkwGKxoKSkRH9IsagIWLkS+N3vgA0bALnwqQbRaGhoQFBQENLT0zF27FgMDw+P+n1KOP70NP4OwNnuL/sopbNt/z3ngzYpwpPRzur1vfG9gPdFIyUlBZGRkYJh4fFwpU41c+ZM/O53v3PJtY+Li0NKSoqwwZIc3Ph4dCE5i4UlKo8dY0lLtdnWsbGAZNVf8b3nolZRUYGGhgb/h6b27AGGhoQ/s7OzQQhBUVERBgcHQQixM+J8EOQK3IuRu3/19fVCuauvk+Fac0t8gDQwMKDvGqxfD9x4I/D668DddysfJ/PsJCQkIDo6Wnh++EAjODjYTuADAb+JBqX0KwDt/vp+vYg9jYaGBgyLQhfepK6uDiEhIXab8ngDQghycnIEw+LRkX5fH4sBi8jLy1PtJPz7PSoaP/whS3pv2QI4m/uhMFoUjxQBZjj9LhoffABcfTVw9KjwUnh4OLKysrB//34AbEvcxsZGoWKtqalJ+7Vtt++mfBdFufvX0NCA3NxcpKam+tzT0DrQEJdGaxaNt94CfvlLViRx++3qx0q8VMDRU21sbBTaya+n2iBqNDHacxpLCCHHCSHbCCEzlA4ihHyXEFJICCn0hos3MDCA1tZWQTSsVqvPZsTyZJ0v5ipkZ2fbeRqAB4x2fz+wYgVLMIvIzc1V7ST8+10Jf8ny+uvAzp3A5s1ARITz42VEY9y4cTCZTMKGS8CIp+HNpbVVOXoU+I//ACZNcmhvbm4uSkpKAABLly4FwMIjfO8UTdf2/HmW2L1wQXiJrwqr5GlkZmbaPUu+orGxEdHR0YiNjVU9TlyRp8mD37UL+NnPgO3bgZkznR/PPQ3JyhFST5U/MxMmTAAhBBdE13g0M5pF4xiAbEppAYC/ANikdCCldC2ldD6ldL43Zg9zgeDhKcB3Zbe+HMWKPQ2+pIhbxpBS4LvfZQZHMos+Ly8PNTU1ih5bY2MjUlJSPLNj3/79rNJl82YgPl7bZ2RGi9zY1NXVCaJRVlaG5uZm/3gaLS3At74F/O//AgUFDu2dMGGCkFzlolFdXa19QGCxAA89BAwM2N2/kJAQZGdnK3oaWVlZQlmrLxEbYjXEW8E69TS6uoD77wfee49V2WkhJAQIDWUDJhFST4M/M+Hh4Rg/frwhGu5CKb1IKe2x/XsrgFBCSIo/2iKeBKQWz/UGmsII584B77zj9ndlZ2ejra0NPT09aGxsBCHEvbDY5s0scfjcc7KjYKvVqii+Wg2AU9ragHvvZeGFiRO1f07G0+BhjcrKSsHwtrS0gFLqe9GgFHjgAZbIv/12IC7OYW6AeP+VxYsXA2CioXlA8MorbN7KihUO1yIvL8+hD1gsFjQ1NSEzM1MYgPhynTaxIXYGv5dOReOnPwW+8Q3guuv0NUbh+TGZTLh48SJMJpPd9c/LyzNEw10IIenElmUlhCwEa6tvF32yIR6ZTZgwASEhITh37pzPvls1jEAp8IMfAGvXOr739dcs8asRcdktH+mHhobqbLGN/n6WQ3j1VSAtzcGgOYvjeizk89hjbDT+jW/o+5xMp588eTIA4Ny5c2hsbESEKMylaqxMJuCzz7R97/79wNmzzo/bvBmoqQF++1v2t4xo8AFOcnIy8vLyEBwcjKqqKm2hv7IyVkr69ttAQoLsuaX3rrm5GRaLRfA0BgYG0Nzc7Py3eAg9A42cnByhekmRffvYfXvxRf2NUXl+Dhw4AEqpXVsnTpx4eeQ0CCHqwUP1z24EcAjAFEJIHSHkEULI9wgh37Md8i0ApwghxwH8GcDd1NfLy9rgszjT09MREhKCvLw8u3V8vMXg4CDa29vVH+zPPwcKC5kbbf9h4MEHWRxfI+IJfroSpXK89BKwYAFwzTWyBk0tmQp4yNP48ku2htQLL+j/rEwFTGZmJqKjo1FWVobGxka7vS5UReMnP9FmePr7meewSTESyxgcBJ5+Gnj55ZG5ASqeRlZWFkJCQjB27Fg7L0nx+lIKPPww8KtfAXl57FrI3L/29na7FQS4R56ZmSkIli9Hz3oGGrfeeivuvvtu5TLpgQE24PjLX5ho6kXm+eGisXfvXgBwEI3W1la766mVTz/91GH/cW/irqexV/qCWsJaDKX0HkppBqU0lFI6llL6JqX0dUrp67b3X6WUzqCUFlBKF1NKD7rZVpdpampCcHCwsDT55MmTfeJp8FGaomiYzcCPf8yMoqRT4/nngawsRzFRYaItfMNH0i4b7ZYWFtr43e/Y3zIGjW9YJDe6slqtQpjDZSwWNjv3f/7HcR6GFmRGioQQTJ48GUeOHMHg4CCuuOIK4T3Fth4/Dmzc6Hh/5Pjzn9n6V86Ofe01Nmt95UrV9nLDzUMwU6ZMQWlpKZqamhAaGoqkpCT583/8MROw73+f/a3ixYhFX1zyOn36dADAWS1ekwfo7u5Gb2+v5mf23nvvxXvvvad8wAsvsGVlVq92rUEyObFJkyYBAPbs2QMADuEpQH/Yu66uDt/85jexbt0619rpAi6JBiHkVkLIzwFEE0Kks1s2uN+s0UVTUxPGjBkjVDBNmTIF58+fd3kGZ3NzM/7yl784jffy2LOiaGzcCIwZA9x5p32n7u5mYaG1a9mIyWzW1K7U1FSkpKTg7NmzzsNiajz/PMsj8G004+IcOlBQUBByc3NlPY22tjaYzWb3PI1//hOIinK908sYYYANGPhGXPn5+YiNjUVwcLDy8u0//zmrbnImBO3twO9/z0KNasf29jKv5fnn7V+XMezp6emIiIgQRGP69Ok4e/asMEdAtiLPbGalpc8/z/IZ/NwyOQ1AXjQyMjKQnZ2NyMhIn4mGR0vEef/5/e9dP4fM8xMdHY2xY8cKz4+4rXzAptcz497d6dOnXW+rTlz1NI4DaAWQAuDvhJBKQshBQshHAHwzgcGHmEwmOwM6efJkDA4OulxBtXHjRjzxxBNOO5SqaJjNLHzw3HMjBoOL0N//Dlx7LTPaMh1ewGIBJMI3bdo0nD592iFRp5n6epaUF6/yKRPeAJTLbt2e2EcpC9384hdsdrcrKIjGlClThOUzMjMzkZeXh/T0dPnlOMrKWCHA0087F41XXmHLmsyfr37s3/4GLFsGSPf+lhGNoKAgbNiwAT/60Y8AsHvb19cn7Lgoy4YNbCByww2q55YrCOHPKx9gTZ06FWfOnFH71R5DNeRmsQC33OIQLlLkH/9g815EhQS6cfL8SJedcdXT4KFzX11nQKdocK+CUlpNKV0LYDWl9BpK6QQA3wbwewDXeL6Z/qWpqcnOcE+xld65GqLincvZ6EBVND74ABg7FrjqKlbeFx7OJtFZrcwAPfkkOy4uTjlE9eSTLPcgYvr06SgqKsLw8LBrRvvll1mJorjNMkYHYNexrKzMYQ0jt+eIHD0KdHSw2buuouJpcDIyMrB8+XKhMsmBv/0NePRRNpFQLOpSurqAv/6VzQWIj1e+X319bPS7Zo3jewqDg9WrV2Pq1KkAmGgArExY0Yv8y19YWE8stjKiHxcXh/T0dDtjZTKZkJycLBRPTJs2TXZgVFxc7PGqKtWBxtatLPensse7gNXKwoT/+Z/uNcjJ8yMtMomOjkZGRoZum8JF4+zZsz6rVNPraXxCCBECxLZZ3Zw2SulhSqmG4G1gYTKZ7EYF4ioaV88HaBcN2bLXN94A/t//G/mbG+Zjx4CwMGDJEvvXpbS0AOvWsRi6iGnTpgmzhnWHp9rbWWnrU0/Zv847kOShzs/Px8DAgINL7nao4dVXWZjHnQmRMjFpwFE0XnnlFXz00UeOn+/uBt59l61xFRrK7klfHxOEd9+1P/Zvf2MCN3Gi8v0CmAe3aBGLtUtR8ObE8DwDb7sDhYXsuZCKrUKb8vPzcfLkSeFvaT+ZPn06qqur0SMa4RcXF2Pu3Ln48ssvVduqF9WBxmuvsf9rye9t28au5ZVXutcgJ6Ih107u5euB25LOzk7ZDcK8gd5edQGAQ20nISQTwD6PtGiUQSl1CE+lpaUhNjbW5QoqfnNPnZJdq1GgqakJSUlJCJcmcktLWejjlltGXuMd22RiYSk+UlQauf7tb2xmtOQ9p4ZFjddeY5sXSRfCCwlh39XXZ/fyLFuIRWx4ABUDUF/PVqUV89RTLBzHMZnYqPKhh/S1XYpM9Qsw0uljY2MRExOj/Pn161mIg18Lfn+Ki+0rqaxWNgD44Q/tj5NitbJZ9U8/Lf99amJjIzk5Wci9yN7b119nIicNtSl4MbNmzcKZM2dgtuXMpKIh9mw4fJb4UdGSJ56Al0A77I1RWck8z0WLtInGn/7EPHB3t1ZWeH54lEJuQJSfn4/Tp0/r2odELBS+ClHpFY2HAcwjhAhDXELIbABHAQRGkbFOOjo6MDw8bNcZCCFCaMUV9HgasqP9detYOa14tnR8PDMa7e2ArcoLgLwxGRpiovGjHzl0JN7RARnDcvAgS+rKQSkbQX/ve/Lvy4yEp02bhqCgIAfRMJlMiIuLs5sHAYCJwyefjPzd3888G/FyFevWsXkZSpVBWlEYKcbHxyMtLU1dUCll3o5Y4Lh4t7fbX/Pdu1lJ59y59sdJ+fxzdtyyZfLfqUE0gJFBgcNz1d0NfPQRK7XVeO78/HwMDg4KnqKcpwHYV1DxZ//48eNO26oHXu3nsIDmm28C/+f/sLlCzkTj9GlWon3nne43yImnKvf85Ofno7+/X9fChSaTCfG2VQ58VXSgSzQopX0A7gCwhhByJSHkdjAP4y1Kqcqyj4GLUl7BFVeSwzvO+fPnVbc8la1gMpuZcX7kEfvXecdua7M3mFxMxOzcydYqkhl9ZWVlCWv3OHz32rUshCHHmTOssmfBAvn3ZQxPZGQkJk2a5CAazc3NjntTUMoSlOI69i1bWPv5bzCb2WhZSdj0oCAaADBv3jwhTyCLraQSV1018pr4/oiv+dtvM0PNjZ2S8X/vPTZvQGkErFbwIIIPChyM1qefAsuXM+MqRSH0lZ+fD2DEU5SKRl5eHkJCQuxGwLyMnK+J5SlkS8StVnbdHnhAPVfE+fOfWZmxKyXaUhSen+zsbCQnJ8s+P0qetxomkwkFBQWIi4sbPZ4GIeQLQsiLhJC7CSFTAZwD8F0AnwNYD+C7lFK/7nXhTbiBlxqxOXPmoKGhQXcckVKK5uZmjB8/HhaLRTUvIutp7NzJwk+2mm8BbmzkPA1pZ/nkE+Cb35QVFEIIpk2bhpiYGPvwS18fq99XmnzEz6mUR9AYFweYYXHI4xw5wgzm0NDI5ki8yoW3acsWdm1mz5Zvgx5URGPjxo1Yv3698me5lyE28OL7093NKnouXmQexL33Oh4nZmAA+OILh33LHdqrlmy3oSga69ezEbkcCvdO7Cn29fWhp6fHrp+EhoZi8uTJdoMr3l/Ky8s9OiFNtq8cPMjKrmfPlh88iTGbmaflbliTo/D8hISE4OzZs3iSF6qImDFjBgghukUjLS1NsejAG2jxNIoBFAB4GcAZAN0AfgzAAjYn45w4OX6poeRpzLWFE4qLi3Wdr7OzE0NDQ7jmGlZkpuStUErlZ2Vv3MhmDUvh4iD1NKQd3mxmS1CsXq04+lq+fDlmSw3vli1sdrCSaHz8MXDHHfLv8XbIdKL8/HyUl5ejV7R0uqxovPMOGzHy39nZyZbcePDBkd9w+DCwapVyG/SgIhpxcXHKK6l2d7OZ6PfdZ/+6OHwIsH+XlwPZ2UCKaEk1HpIbGBh5bccOZvjU1gELC2O5CPHnZLjjjjvw2GOPCaNaAEBDA1tyRpwjE6Nw78Seotrg6tixY8Lf4mVF9BhHZ8h6p1wICXHuaezbx0psXdyYygGV5yc1NVV2Ic6oqCjk5eW5JBp8Do4vcCoalNKfUkpvpJRmAMgAW95jM4AdAJYDOAKgmxDiu9klPoSLhvSB5EZVr2jwzrV8+XIEBwcrikZ3dzf6+/vtxaq/nxn8u+5y/IB4JCsNT4k7y/79rGNMmKDYkV588UVhqQOB995jo2e5jldezsoZRTOkFdsnIT8/H5RShxCGnWhQypbW+Pa3R9rc1MS2Z83MHGlTR4e9AXYHlU6vypdfAkuXst8rRizqAPt3R4e9Vyg+VnytuBfnDA15jaysLKxdu9Y+X/T++2zRw8hI3eflnqKSaMyfPx91dXVCPzKZTMIaZ57Ka5jNZrS1tdk/M9xz4F6cM9HYtMn5Phl6cPH5kfO8lRgcHERnZyfS0tJw991345lnnvHJlrF6cxomSul2Sun/UErvppROBRALYAXY+lCXHCaTCaGhoUhMTLR7PT4+Hrm5uXajKK3nA9gyyVOmTFEUHVkPZ/t2ljCVS8KKY+ZqifBt20ZGlAodKSgoyH62cF8fi9N/+9vMgEtHsx9/zDqc2n7TCnFxPuLlBsRisaC1tdXeABQXs89PmsSSwTyhnJTE/ubeT3s7ILlPLhMezkJIot3wNLFlC5ukJ0Us6sDIb5Brr/SeffaZNoOmMa/hwOefq8+cj4hgIUGZazFr1ixUVFQIyXCpaMybNw8AUFRUBIANCBYsWICEhASPiUZbWxsopfbPzKFDbCtWvuGSmmjwQYmnRUPrZEIR+fn5uHDhAvoly6rLwb22tLQ0XH/99fjhD3/ok3133P4GSmk/pfQQpfQNTzRotNHU1IS0tDTZbU3nzp3rsqeRlpaGxYsX49ChQ7KTcmQ9nH/9SzmureZpiA1QY+PITNeICJYsVEnGA2AVPvPmsXNxoy3GWWhK3D4Jubm5SEpKwuHDhwEA7e3tsFqt9gbgX/8aWaVWXIWUlGRvDKS/3R0I0d/xLRY2kezmmx3fE4enCLH/DUrHAsy77O7WFjbRMFfDge5uVpJ6jcqcXEIUBWnBggWglOLzzz8HIB+eIoQIS2fwcEpBQYHuvqMEN552z8zWrfahSrVJrsePs7k0cvNfXEWhesoZBQUFsFqtOHHihNNjlbw7bzNql0YfLUjnaIiZM2cOysvL0aVjUUDxjV66dCna29tlk+F8B0JhTSNKmaehNMtZzdMQt088utUS6wWYd3LTTezf8fH2eY3aWrbJkrhSSKl9Mp2IEIIlS5bg0KFDABQMwOefjxhi/v1i0RB7Gp4SDUB/iOHQIbZIpGg7UQGxqPOFJJXaK75nHR3sGC3zBjSW3dqxcyeweDEzcs7OLXMt+Gz4rVu3AnCciBoTE4Np06ahsLAQQ/TGbmIAACAASURBVENDQjhl0aJFKC4u1jSidgbvU3bfvW2bvWioPefbt7Nj3Z2bIcbF8BRfOZn3BzVkf7cPMETDCdzTkGPOnDkA9JUPilfMXWKbtS33gHDREB6IM2fYaEhaNcVR8jSkhsRZzkMKpfYdUOppfPIJC3c523dDxaAtWbIEZ86cQUdHh6NomExsIiOfocvby40p/5tS/4vGF18oJ+LFOY0JE+x/g9yx/Frp+U2uiIZ0RK7z3AkJCZgxYwa6u7uRkJDgOBEVLK9RVFRkd2+XLVuG4eFhj0zyE4dpALBJoLW1rKSco/acf/klcP31brfDDq3PTl8f81Bt8C2l9YiG4WmMMlpaWhSVfIFtTsKBAwc0n89kMiE1NVVY0C0hIQEHDzqu+s5FI4Undr/4gnkZSqOh+HhmkHp77bc0lXYWqaFyJhrnzrHwFd8bWZxDAFiug3shaqiETvhWpIcPH3YUjZ07WVktrzaRhqfCw9mM8/5+ZSPsKnpF49//Vt7hTSzqXDS05DT0/Ca9OQ3pgEANlfvHBz9KxmvevHlobGwUwlFpaWnCsvL79rm/kITDM7N9OxMBcY5N6Tnv7WWVY848Zb3ExMjuE+7At7/tsEHX0qVLZW2CFEM0RiGUUrS0tCgue52SkoL8/Hzs3r1b8znFE6CCgoKEvIaUlpYWxMfHj5Tmbd9uv/KolLg4oLqaGSG5+QEcvZ7Gjh3se8XLkohFo7XVfnFCtfYpGJ0FCxYgODgYhw4dcnS5d+2yj7dLE+G8Tc3NLFEbHe28LVrRIxpdXWw2sU0AHYiPZ14TpayQwVlOw5U8jd6cxrlz7L6K1tNSROX+cdFXMl48hPXxxx8DYPc2MTERM2fO9JhohISEjCwhsnOn/V4jgPI8ja++YsUlzsJzegkJGVlEVAmzmX2/ZCHFJUuWoK6uDrW1tapfYTKZEBMTg6ioKE+0WDMeEw1CyHhCyCUlQhcvXsTQ0NCIaHz4ISt5FXH11VfjwIEDqjO7xUhnzS5duhSnT5922LHLTqwGB1m8XC1ZGRfHltOQGhhxZ+EhHPHo1plo7N3LRvocaXhKq1FTGQXHxMRg1qxZOHjwIJqbmxEUFDSyQdDu3fa/W+xp8N+RkMDWGJIKprvoSYTv3ctyA9KlTzhxcayNycnywic9Vhye0loRpjc8tWcPu7da8yUK98+ZaMybNw8JCQn4xLYEDB8QLFu2DAcPHhTWrnIVXqJNCGHP+J49jp6D0nO+Y4fnQ1McZ8/PiRPs/Y4Ou5f59XQWopKdm+IDPGnkqwAcJ4Qs9+A5/YpDMvrdd9kkIBFXXXUV+vv7NcdmpaKxfPlyUEodvJXm5uaR7/36a7ZTm7T2X0xcHBMXad2/OKna08NGP+K4s7NSxL17gRUr7I8XC1xHhzaj5sSgXXHFFTh06BBqa2uF8B2qq1mbRYsoOoSn+GuVlZ4NTfE2a91+c+dOtoeJ2rlqa+3zMFpFw1vhKTnjqnZuhfs3efJkZGdnj6xbZjbbhWWCg4NxzTXXCDPA+fO/bNky9PT0uF16azev5/x5NsqX7oUREyO/IdmBA/bPtydx9vzs389WUJCIRkFBASIjI52GqNSiIN7Ek6LxMIBPALzk7MBAwU40KGWjfV5nb2PFihUghAhbOGo5pzhHsnTpUsTFxQnVJ+LjhAfiq6/YukBqcEGRGpiICJZoGxyUN/BqonHmDBstics9pZ6G1pi7k9DJDTfcgL6+Pnz22Wcj12f3bseRsLR6ir/mDdHIy2NGSAu7dqmLRnw8K28Wi4bStXM1PKVk2BsaHEObSiNyJVTuHyEEJ06cwC9+8Qv2wqOPss2cRKy0hYsiIyMRbQshrrAZ65069rGXw040+G+Sek+8hFr6G1pa5Oc9eQJnz8/+/WwLA4lohIaGYvHixU7D3gEpGoQQYS0FSunfKaVrKKWL1D4TSNiJRnk5i99LbnBSUhIKCgo05TV6e3vR399vd6NDQ0Nx/fXXY+vWrXbzNezERYto8GUtpJ4GL6uVq6wC1EVDyc3no6f+fmYIlWYSi3HiaVx99dUIDw9HR0eHfT5DHBoTt1f8W3h4ytOiMXMmy1NooaICEK0Q7AAX9eRke+Fzlgj3RE6jtpbtICjm/HlWXMC35HWGk/sXFxc3sqnQ7t2sgkkEFw3xnKfMzEwUFBQ4DJi0Ul1dLVTcOYiG0m+QPutaPWVXUHt+KGVRi1tvdbApAHDTTTfhxIkTqKurUzx9S0vLSKGMD3HX09grfYEQ4sEZMv7FTjQOHWIrgEo8DYB1iP379zudr9Ha2goADjd61apVaGhoECb0UErR2trKvtdsZt/tbFMYHnZSC3foFY29ex07oLh6inc4N2PiANu57CrbdwkGQO53c09HPEqPj2dG2xuiobaS8a9/zUSTL6KoloTnos49jZYW5v3JJWCl1VPu5jTa29l5xEtM7NnDwjJac0BaQ191dUBNjUM/ycvLw4QJExwqEVetWqWp78hx00034eGHHx4RDR5OVRIN6bNutbLfJK429CRqz09lJQtNzZkjKxqrbBVt27Ztk/24nY3wMS6JBiHkVkLIzwFE8y1gRWyQ+0wg4iAaN90ke4Nvu+02DA8PK95gjpJo3GibsMdHXJ2dnTCbzex7S0rYcghyaxRJiYuTP85VT6OoCFi40P41cXhKbzmokyQt7yhjxoxh5zaZWC5H2t7OTvYfr5bh4SlPjxhzc1kb5JKZw8PAs8+OGOSEBHUDHBLCRIWLBi9akPuMuHhBj6eRkCA7qBEEQ2z0T5xg+5FrRWuSnZefy7Rj7dq1eOGFF+xeW7VqFSwWC3bs2KG9LTZqamrwr3/9C729veyZqapiwqG0t7f0We/qYqKttvyNO6h5GjU1bKfGxERZmzJ9+nSMHz9e0Qvr7u62L9LxIa56GscBtAJIAfB3QkglIeQgIeQjAMMea52faWlpQVRUFIvBHjzI6tllOsPixYuRmpqKzZLKKrnzAXC40RkZGZg/f75Qkmh33P792reejI9Xn2EsZ+TVRKOtje1vLT3elbWeoqLYyFplLScuGhkZGWzfjjlzHDt0fDwLt8TEMEMMMGPZ1OR5TyM4GJgyheV2pPCOzkVDazEAFw3pasTS41zJaUydytoqnRsgbitHuoS+lrZrKQo4eJCJkYwhvO6664TVnTmLFy9GQkKC7hBVf38/ent7MWxbJn/MmDFs+fzFi9XnMomFz5uhKYCFK8vKHJPv4u9WEA1CCFatWoV///vfspWZSrbEF+gSDULIdYSQhZTSakrpWgCrKaXXUEonAPg2gN8DUKkLDSyERFNvL6tpv/ZaWdEIDg7Grbfeiq1bt2JIxSgqeRoAcN9996GoqAhnzpyxfyCKipQ3NpLCjZLc63o9DYtF3nV31dMghI2sVHY7nDhxIrZs2YJHH32UVYzJ/e74eFYFI51rAnheNADl0SLv6G1t+kSD5zQAddFwxdPIzGQehaTuX1Y09BrMSZPYNsPOOHCArRAg5/HIEBISghtvvBGff/65IABa4H2JI4jGIpWUqtxEV2+KRnQ0S7KXy2xqyvuOgmgAwDe+8Q309PRg165dDu85TP71IXo9jT8CEOIFlNKvAIAQkg9gmFJ6mFKqcx2D0YsgGidOsFFDYiIbNcjsWXD77bfj4sWLqglxO9GQuPr33HMPgoOD8e6779qLxrFjI1uBOiM9HRg71vF1tcSrkmh0dbE4vNxIX5rT0Mrcuez3qHDLLbcgOTlZWTQiI5mHIZ1rAvhWNLhR1CMa3BOMjWUiqvQZaXhK6zUmBCgoYAvwybXVHdGYMYPljdQmq/X2AmfPsol1GkUDYM9+S0sLvvjiC82f4X1p4sSJANwQDW88M2LUnp/ERNam7m77fJONlStXIikpCe+8847De/z3p6amsi0L+JL7PkCvaEwCsF/m9YUA3nW/OaMLQTSKi1mohBD2kCm43omJiXj77bdVzxccHIyE2lrmRotIS0vDjTfeiPXr14+scBsTw2L14nkKamzaJL+nxaRJrDPr8TQ6O+WNijtLkc+Z41Q0BJREgxDWBvHv4LkNb4mGXDLTlfDUihVs8BEUxIRDqb3x8SyP0tvL/q8nUVtQwAY5Sm0Vv6bn3oWFsfCX2l4PFRWsGiszU5do3HjjjUhJSZE1jkpwo/nf//3feOihh5A/ZQoTS7U8jfRZ9+RS+kqoPT+JiWxQFhsr2wfDw8Nx9913Y9OmTQ6FAsLAMi4OeOMNtmioj9ArGp0A5IJo+wFojKEEDsIEu5ISZvAARXcyIiICDzzwAD755BPFLWBbW1uRnJyMoOJiVjsv4YEHHkBdXR3efZfpb2pjIxMMmV2+ZAkNlY/nzpvHwlx6REPJqMTGMmNmsegfqWnwNACw5dv7+9UTmr4MT504oZwn0ONp/O53IwMApfwTwO7j9OmswikuTl+iVs7T6OhwrPxzJTTj7P7xcyYlKYsGpcxrEXnrYWFhuOeee7BlyxZ0KIRqpHCjOW/ePLz11luIKCtj8yLUlgPxdXgKGHl+pIi/WyVEdf/992NgYAAfffSR3ev896e1tbHoxyj2NDYB+InM68G2/y4Z7NadKi4e2XdapUM8/vjjGB4eVvQ2WltbWWjq+HH28EpiuLfffjvGjh2LgwcPIjY2FmGnTmkPTakxbx7r7HpFg4/gxfBRMs+R6PU0jh+XdcXtOHUKmDVLPaEpJxreMADjxrH2StcBEo/eXRmxqokGwLysL77QL4RK4am8vJHnllJlT1INraLBZ1/L5ff6+1myXpKTeOCBBzA4OKjZ23DIDzoLTQGO8zR8IRoLFrC2SREPuFREY+HChZgyZQreeOMNu3lcra2tCA8PRyTfVkFyPb2JXtH4LwALCCGfEULmAAAhJAbAzwHIyGng0tvbi4GBAYxJSmIPeUEBe0MhPAUAU6dOxVVXXYXXX39dNqknTMbhnVoiPqGhoXjiiScAuJDPUCMjg41eT5xwNEKRkcyISGvw1TqUeEaznk6XlMQSwc5cabmqLen3+yo8RQibtStdB4gLhR5PQ0x8vPpnFi5ki1TqPe+0aSzxKs67dXSwIgT+vPX2sudBqwfLcSYaXIh4vkaun/DQpsTIzZ07F8uXL8eLL76oaY+N1tZWEEJGdtQsLQXy89U/lJdnX4jhC9HIy2P3QjpJTzzQUBENQgieeuopfP3119i+fbvwOh/QEr6B1GgVDUppO4DFts8VEUIGAXQBuBHAM55vnv/g7t9Es5kll7nbm5ioGq996qmnUF1dLYSYxLS2tiKVi0ZSkqxL+dhjjyEmJsY+l+IJ5s2T9zQIYXFg6WhIbSTK8xquJBK15DWcjYKVPA05z8gTyIkGN8SuioY0LyNlwQI2a1vv9Q0PZ+0Slwl3dNh7Gq4ay1mzWG5MqUJQ7J0qeeTcOEqMHCEEzz33HBobG/HGG843AW1paUFycjKCeehOy7O4aBEr5eYDOl+IhtKgQ2N4CgAefPBB5OTk4NlnnxW8DSEKcvw4y4+O4vAUKKX1lNJvAMgGK7O9GcBkSqnzXUMCCC4aEzo7R0JTgHq8FsDNN9+M+fPn49e//rWDt9Ha2oqJvPpn+nTZ0UFCQgLefPNN/PQnP2EJNGejJ61wj0WukyxfzpYqEaPWofgI25WwzNy5rOOq4awzT5zIJt5xEhKAjz7y3iStpUuVRUNPIlzMc8+p72MxfTqb2+KK97RoEZsvwZGGp1w1llFRLM+kNGFNLPZK/UTB0wDYWlRXX301XnjhBVx0MpFQCPWKz+ts0JCQwBL1PMfgC9EAlJ8fjaIRFhaGX/ziFygsLMSmTZsA2ESDD0CvuWb0ehpiKKW1lNItlNJtNg/kkoKLRnpTk71oOLnBhBD86le/QlVVFV5//XXhdavVira2NkwfHmahruRkxdHBnXfeidtXrmTi4qm18ufNY+eTSxQqiYZSJ5w9m1U3ueJpXHmlw0rBDjgzAC+9BKxePfI3Ic73KHeH+fOZoZQL+bjqacydq/6ZkBB2jCuisWLFyP0cHGQj63Hj3BcNgFXnKd0/8Xl1ehqcF198Ec3NzXj++edVm+EgGlp/09KlI4Lq6Z0elVDyNDTkNDgPPPAAZsyYgaeffhqDg4NobW3F5Kgo5lnOmDG6PY3LBZ5oi6+ttR/tO/E0ALYmzvXXX4+f/exnqKioAAB0dHTAarViYm8vE42UFPXRgZaRkx4WLmSb7cgll5cuZaN/8cxTtU64YgWr7HHF+CxaxDwotXWMfDUC1EpkJBv5ixf9a293z9PQwpIlgCv7Py9fztZgonTEOCUne0Y0rrqKnVsOLeEpFU8DYBtyPfjgg3j55ZdxQSX35bDCq9b+smTJiGj46jmbP595N3zQYbXat1eDaISEhOBPf/oTKioq8PLLL6OlpQWzrNaRAWggeBqXOm025Y6oqGBKztFwgwkhWLduHYKDg/Hggw/CbDYLIpTZ3s5iwyqeBgDPP9AZGcqLp8XFsRp8cdhILa+wbBnreK60MTKSjaDV9grwtGB6gqVL7UfYPE/gqqehhV/9CnjGhVRhdja7zmVlIyFEcS7OnfZyL0auAk5LeKqjg1XgqRi5559/HhEREbjrrrsUk+Ie8TR8JRrR0axA4euv2d/d3SyCwJfB0WBTADYXbPXq1VizZg26u7sxDmDhtpSUy8PTIIS8RQhpJoTIBkgJ48+EkAuEkBOEEA+UEWmnra0NSUFBIF1drBNyNHgaADBu3Dj89a9/xb59+/DMM88IohHb388MuDPR8LXh5KNTjlqHSklhD2t4uP4KHEB9tOrsu/3FddexPcA5HR1sIcmBAbZirTfaGxmpbdl5OVasYNdYvMZRe/uI9+Fqe7Oy2HOpNmENUPc0cnJUn/2MjAysX78excX/v707D4+iyhc+/j1ZSMgiW1TAoDDKmoUEwyagzqCyCEREHdCgoIg41wW9+IBXRR65zMiAKMyMjguIcB3Qq7KI6MzL6/W+yoAOWxQQN8iYBAZjhyWsCcl5/zjVSafT3elO0l1N+vd5njxJKpXqX1dV16/OUufs5J577qHKLUE5R3gdUFZW0xvK389L167mqfbCwtCeZ67nj/vr+pk0AF599VVSrVEf2kZFmf+NoJLGckyvK29GYJ5A7wpMBV4KQUzVSktL6Z+cjOrVy9wZOfmZNADy8vJ48MEHef7551m4cCEA8WfOmJO7vuqpUF84f/WruhdFX69/zTWNu1s935LGtdeaHmbOYTScA/61bWsedGzqOaYby3kT4KyeatnSdBQ4darx+9fb8XOvnvJ0IXS2BdVzkRs9ejS//e1vWbVqFVOnTq2VOI4dO0ZlZSVX7dsHH35oEre/87ooZeZo+etfA3/avjGuvx7+9jfzs3sHkgCSRrt27Vi3bh29evXisgsuqEkaDkfdB1CDxLakYY1b5evqmwus0MZWoLVSKkhTbNXlcDi4Mj6+dtUUBHSAAZ577jlGjBhR3euhxalT5oMVbiWNa681xWfnMOC+GsKhcUlj4EDT6+PkSc9/D8fqqeRk0134009rX6TatWv6ucmbwtCh5ibg55/r3v03Nmlce61p03Lnb+8pP5IGwMyZM5k9ezZLly5l7NixlFrbc3ZSSa6sNEPXO88Xf4/B8OHw1lvmmEaF6BI4aJApnXnqqh7gNSU9PZ09e/ZwcVyced/x8abEH8hUv40Qzm0alwCuj+EWWcvqUEpNVUptU0ptc55QjeVwOMiIiqqbNAIoaYB5YO+9995j5MiRtGzZkpgTJ/wraYT6wpmUZJ4NcF4M6ntWYvRocOkdFpCEBNO33NscCuFY0oCau0VnfM6xyMIx1s6dzQCWrg8INlXSuP56Mye6+/Ma/vae6trVr6Th7Im4ePFiPvzwQ7Kzs9myZUt1VW/i2bMmaQT6fm64wcwuGMrjFh9v2lM+/rhuvO3bm/k1KisD26brdkLYrhHOScPTbYPH8pfW+hWtdY7WOqepxpd3OBx0q6iomzScD7bVNxSGi/j4eNavX8/3331n2kj8KWnYceEcNsxcZPwZZiIuznwIGio3FzzNP6K1edo8VNUGgbjhBlOt4XpsnCWNcDRmjBnEsqmTRvv2puOEa2mjvNx8OWcv9Kek4Wd1ykMPPcTmzZuJjo5myJAhzJkzB4C4M2fMMPCB3mClppr4Q9Hd1pWn8wdMd+iOHc3cOYFwfd8hbNcI56RRBKaDgCUVqDvKX5CUlpZy2cmTdZNGbKy5U/rii4C2Fx0dTcfk5Jqhveu7M7CjimbYsJq63rg4816DZcwY2LCh7gQ1ZWVmHwXztRsqJ8c0en/xRe0LcTgnjbNnay6OTZU0AG66qXbSd68i8lXSuOQSs56vYdbd9O3bl507d5KXl8cmq+2txalTDStpgDnXQ33cbrwR3n/fc8eJX//aVJkFwrUKWUoaAKwH7rR6UQ0AjmmtD4XqxSt//pmWlZXmLsDd+PGwalXgG3Xvm330qPciaUMGlGus3r3NB3nr1uAnrMsuM3d87l1vw7E9wyk6Gm69FV56qeZCHM4ljZwc01PPGV/nzuYhxaZIGs6SorO04L7NDh3Mna/73a/z+NZXPetBq1atWL58OXv37uW/336b6GPHardpBGLiRPMeQql7dzPa8Lp1dUs5t90G777reZY/b1yvEZFQ0lBKrQK2AN2VUkVKqXuUUtOUUtOsVTYC+4HvgVeB34QqtjNnznDJ6dMcSUnx3Lg2YQK8/XbgdZCuJ3d0tO8pNOtriA4Gpcwdzx//GJoLYW4urFlTe1m4tmc4TZhQu6SRkhL6ag5/RUXBvHk1c7fk5cHrr5s70sbu4x49TFWU89kD9/M1MdGUdNxHrXUe3wYkDafu3btzy403ml9++qlhw9lkZZnJi0LN/fxxuvxyc4PqqYOBN5FW0tBaT9Bad9Bax2qtU7XWS7XWf9Za/9n6u9Za/5vW+nKtdYbWup4Bi5qOw+HgcuBU+/aeV+jWzdRB+uo26ol76cHXB8euO+68PFOEDsWF+4474M03/X8SPRwMHGiez3DGePfdDXsAL1QmTzZ3uGAeqnTekTbFPp44EZYtMz97Khnfey+89lpNaaSy0vSYc05725iL3JEj5vOTkGAmKgvX0qm78ePNd0/7/847a/ZnfaqqTNufa9Jo7iWNcFZaWsoVQPmll3pf6fbb4Y03Atuw+92Yrw+OXRfP7GxzkQnFa3ftaqrE3nuvZlk4V0+BuXu/++6aARMvuqj2w5/h7t57TZtRXFzjt3XPPaYevqzMc8l48GBzcXNWQTqnEI6KavxFznmeXHyxecAvnG80XF16qeny6+mcmTgRNm40bR71cX+qvLFJOACSNDxwljS4/HLvK911F6xfH9iJ735BDMeShlLmjqchYx41xLRptbvuhntJA+Dpp2H6dLujaJjbb4cHH2yabXXoYJ4HefNNz8dNKZg61bQBQe3SSGOThvP1Lr7YzKURzjca7j78sM50z4B5P2PHwvLl9W8jkFqLJiZJwwNn0ojt0cP7Sikppk5+6VL/N+yeCFJT/RtmOtRmzIBFi0LzWmPGmHkjdu0yv4d7SeN8d8EFMH9+021v2jT4wx+8tytMngwffGC6xrrXwTdVSePAgfC/0fCX8yaqvgZx98/JL38JTz4Z3NgskjQ8cFZPJTpn6/PmgQfMXZS/PR7cE8FvfgNLltR9Mrqy0nR7TU4OKO4mExsbuteOjTVJau5c8/v5UNIQNYYONdUkK1d6TvZt2pjOFS+/XPv879PHdILwMMOlX1yTRlVV87nR6NfPdElevdr3eu7VgRddZAZCDQFJGh4cP3SI1kCrnj19r5iTY6qw/H0y2v3uICPDjBj7ktuwWseOmTvCUA1xYLdp00y9d36+vSUsETilYM4c+PZb78ftwQfNZ6SwsOb8HzXKVG8tXtyw13WtnoLmc8449+fcub5vRm38nETIVSkwav9+DihFgj+D0P3hD2YI68OH61/XU2Ph7NlmUiHXRqxIu9tOSIDHHoP/+A97uhqLxhk50syT4q23YVqaeRp69uya81op+NOf4NlnTTIJlGtJA5rXOfPLX5r39V//5X0dGz8nkjQ8aFFYSJG/vUt69TL1tv/+7/Wv66m+PiPD9N12/f9IrNd/4AEoKDD135GUMJsDpUz389Gjva+zcKGphnU9tl27muPekE4FzbWkAWZ/PvcczJrlu6OMlDTCR9K//sXhQIa6fvpp8xT1hg2+1/N2oP/zP81DPR984Hu95qxFC9OnPxITZnMQF+d7lNkLLzS9rNwTy6xZplpy48bAXs+9pBGOY5U1Rt++5mby0Uc9/11KGuGldWkppYFctBMTzQVv2jTffay9XRCTkkxRdPJkM6VopFbRDBxoujHn5NgdiQiG4cPNPB+u4uNNe8d99wU0enStpJGcbEZYaG7mzoXNm+uOmgBS0gg37crKOBnoaLnXXguTJpkGPm/zRPhKBoMHmx4mo0ebaVcjMWmA2X8Nna1OnJ+uuw7GjTOJw9+JhJzVU5071344tDlx3kzefz8cdBurVUoa4eXCM2eo6Ngx8H+cO9c0+t18c80k8q7qq3oZO9ZUdc2fH3nVUyKyPfusadO64w7/JhNyHVX3uuuCHp5tBg40bT5XXw07dtQst7EaV5KGG11VRWplJdrT6Lb1UQpeecUMYHfTTbVPfuezFxdc4Hsb990HL7xguuIKESni401jekKCuVAeqmdA60jqYThrlhl4ctgwMz8K2Pr+JWm4KfvxR84BSQ0paYAZC2blSlNs7tnTPKSjNRw/7v+zFw8/HPphm4WwW0ICvPqqGepkyBAzJ7s3kdZh4te/NsOPOJ/AdzikpBEuyvbs4UfMBO4NFhNjGvdWr4bf/c4Unz/5JLJOciEaQinzvM4zz8Att5ivb7+tvU5VlSnF11dqb25yckxp7J13zHhbNg3JL0nDzal9+xqfNJwGTfQsjAAAEg1JREFUDza9ocaONY1Z4TrvghDh5vbbzei1OTlmWuEBA8wDoPv314yW2xx7TNWne3dzA7prlxm7zgaSNNyc27+ffwJtm+oCHxNjHmD64YfAp3MUIpIlJJj6/IIC+P3vTdVuv37mGYZIac/wRCkzpYBNYmx75XD1z3/yI/CrpihpuEpMhCuuaNptChEJkpJM76GrrzZD9nz/vd0RRTRJGm5iDh5suuopIUTTio+H9HS7o4hoUj3lJr6kpGmrp4QQohmRpOHmgiNHOJKUREyMFMKEEMKdJA1XZ8+SePo0FSkpdkcihBBhSZKGq+JiHC1a0EaShhBCeCRJw1VREf+KiZFGcCGE8EKShqviYoq0lkZwIYTwQpKGq+JiCs6dk5KGEEJ4IUnDRVVhIfvPnpWkIYQQXkjScFFx4ABFyIN9QgjhjSQNF1WFhRQjD/YJIYQ3kjRcRB06RDFS0hBCCG8kaThVVRHjcHAQSRpCCOGNJA2nkhIqWrakHKmeEkIIbyRpOBUXczw5GZCShhBCeCNJw6m4mCMtWxIdHU2rVq3sjkYIIcKSDOXqVFTE4RYtaNu2LUopu6OJGBUVFRQVFXHmzBm7QxFNJD4+ntTUVGJjY+0ORQSBbUlDKTUcWAxEA69prZ91+/skYAFQbC36o9b6taAFVFzMoagoac8IsaKiIpKTk+ncubMk62ZAa43D4aCoqIguXbrYHY4IAluqp5RS0cCfgBFAL2CCUqqXh1Xf0lpnWV/BSxgAxcUUVlZKe0aInTlzhnbt2knCaCaUUrRr105Kjs2YXW0a/YDvtdb7tdblwGog16ZYjKNHOXj6tCQNG0jCaF7keDZvdiWNS4BCl9+LrGXuximlvlRKvaOU6uRtY0qpqUqpbUqpbSUlJQ0OquzECUkaQgjhg11Jw9OtiHb7/X2gs9Y6E9gEvOFtY1rrV7TWOVrrnAsvvLDBQZWVlUmbhhBC+GBX0igCXEsOqcBB1xW01g6t9Vnr11eBK4MZUGVlJWfLy6WkIYQQPtiVNP4BdFVKdVFKtQDGA+tdV1BKdXD5dQzwdTADKi8vB+TBPtFwV111FQBHjx7lxRdf9Ot/kpKS/FovkG16UlBQQHp6ekD/s2nTJiZOnNjg1xTNky1JQ2t9DngA+CsmGbyttd6jlHpGKTXGWu0hpdQepVQ+8BAwKZgxlVdUAJI0RMP9/e9/Bxp/gfckGNusT35+PtnZ2SF9TRH+bHtOQ2u9Edjotmy2y8+PA4+HKh5nSUPaNOwzffp0du3a1aTbzMrK4oUXXqh3vRUrVrBw4UKUUmRmZrJy5UpuuukmCgsLOXPmDA8//DBTp06loKCA4cOH079/f3bu3Em3bt1YsWIFCQkJJCUlceLECWbNmsUPP/xAVlYW119/PQsWLPC4LW9OnjzJbbfdRlFREZWVlTz11FOsWbOmzjYXLVrEsmXLAJgyZQrTp0/3+n7mzp1b/bf9+/czbtw4XnnlFfr27es1jvz8fCZPnszZs2e577776NixI/PmzZPeURFOngi3SPVU5NqzZw/z5s1j8+bNpKSkUFpaCsCyZcto27Ytp0+fpm/fvowbNw6Ab775hqVLlzJo0CDuvvtuXnzxRWbMmFG9vWeffZbdu3fXSoCetuXtXPvoo4/o2LEjH3zwAQDHjh2jf//+tba5fft2Xn/9dT7//HO01vTv359rrrmG7Oxsj+/n+PHj1bGPHz+e119/naysLABGjhzJa6+9RseOHWvFkZ+fz0UXXcSwYcOYMmUKeXl5ABw5coQ2bdo0er+L85MkDYskDfv5UyIIho8//phbbrmFlJQUoKa0uWTJEtasWQNAYWEh3333He3bt6dTp04MGjQIgLy8PJYsWVIraXjiaVvezrWMjAxmzJjBzJkzGTVqFEOGDOHIkSO11vnss88YO3YsiYmJANx88818+umnZGdne3w/x48fp6SkhNzcXN59913S0tKqt7VxY60CP2CGdykoKGDChAm8/PLLDBw4sPpvjzzyCMuXL/f5fkXzJQMWWiokaUQsrXWdKpdPPvmETZs2sWXLluq6fedTzu7r1ldd42tbnnTr1o3t27eTkZHB448/zjPPPOMx5kDeD0CrVq3o1KkTmzdv9hkvwN69e+nbty8xMTFER0dXL//oo4/Yt28fCxcurHcbonmSpGEpLy+nRWwsLVu2tDsUEWJDhw7l7bffxuFwAFBaWsqxY8do06YNCQkJ7Nu3j61bt1av/+OPP7JlyxYAVq1axeDBg2ttLzk5mbKysurffW3Lk4MHD5KQkEBeXh4zZsxgx44ddbZ59dVXs3btWk6dOsXJkydZs2YNQ4YM8fp+AFq0aMHatWtZsWIFf/nLX3zGkJ+fz1VXXcXq1auZPHkyhw8fBiAlJaU6LhGZJGlYysvLSbbm0xCRJS0tjSeeeIJrrrmG3r178+ijjzJ8+HDOnTtHZmYmTz31FAMGDKhev2fPnrzxxhtkZmZSWlrK/fffX2t77dq1Y9CgQaSnp/PYY4/53JYnX331Ff369SMrK4t58+bx5JNP1tlmnz59mDRpEv369aN///5MmTKluqeTp/fjlJiYyIYNG3j++edZt24dYNo0Dh6s9ZgU+fn5pKen061bN+bPn89tt91GRUUFX375Jb17927U/hbnN+WrmHs+ysnJ0du2bQv4/7Z26MBbcXE8X1DQ9EEJr77++mt69uxpdxh+KygoYNSoUezevdvuUGyxfv163n33XWbNmuXzuJ1vxzXSKaW2a61z/FlXGsIt5eXlJEl7hhA+jRkzhjFjxtS/omi2pHrKItVTwh+dO3eO2FKGECBJo1p5RYUkDSGEqIckDcvDcXH8cMUVdochhBBhTZKG5eeoKCpkTmMhhPBJkoYQQgi/SdIQQgjhN0kaQggh/CZJQwghhN8kaQghhPCbJA0hzkOeZvJzTjcrRDBJ0hDiPOQpaTinmxUimCRpCIGZHjUzM5PevXszceJEABYtWkR6ejrp6enVE0QVFBTQs2dP7r33XtLS0rjhhhs4ffo0J0+e5MYbb6R3796kp6fz1ltvVa+fnp5e/ToLFy5kzpw5FBQU0KNHD6ZMmUJ6ejp33HEHmzZtYtCgQXTt2pUvvvii+v979OjBXXfdRWZmJrfccgunTp2qNaXsY489BkBSUlL16wQSe30OHjzIuHHjyM7OpkePHtWxiQiltW5WX1deeaVuiNatW+uHHnqoQf8rGm7v3r21F0DTf9Vj9+7dulu3brqkpERrrbXD4dDbtm3T6enp+sSJE7qsrEz36tVL79ixQx84cEBHR0frnTt3aq21vvXWW/XKlSv1O++8o6dMmVK9zaNHj2qttT5w4IBOS0urXr5gwQL99NNPV2/nyy+/1JWVlbpPnz568uTJuqqqSq9du1bn5uZW/z+gP/vsM6211pMnT9YLFiyos12ttU5MTNRa64Bj11rrESNG6OLi4jr7pqKiQmdmZur3339fa631yZMn9fHjx3VpaanPfVrnuIqwBmzTfl5jpaQhwksw0kY9PE2P6jqdalJSUvV0qgBdunSpnl/7yiuvpKCggIyMDDZt2sTMmTP59NNPadWqVb2v26VLFzIyMoiKiiItLY2hQ4eilCIjI4MClyH63aeX/eyzz3xuN9DYwUz56j5HOMDatWvp2bMno0aNAiAhIYHk5GQeeeSRet+faJ4kaYiIpz1Mj6p9JJu4uLjqn6Ojozl37pzXKVpjYmKoqqqqXt91mlfX7URFRVX/HhUVxblz56r/Fuj0soHG7suuXbvqTBolU75GNkkaIuJ5mh7V13SqnniaohXg4osv5qeffsLhcHD27Fk2bNgQcHyeppd1n/7VVaCx+9K+fXv27NlT/XtJSYlM+RrhJGmIiOdpelRf06l64mmKVoDY2Fhmz55N//79GTVqFD169Ag4Pk/Ty7pP/+oq0NjB85SvAJMmTeLw4cOkpaWRlZXFli1bZMrXCCfTvVratGnDnXfeyeLFi4MQlfBGpgX1LRynl/Vnylc5rucXme5VCBE0MuVrZJPqKUtubm51rxIhwoVMLyvCjZQ0LMuXL7c7BCGECHtS0hBCCOE3SRrCds2tM0akk+PZvEnSELaKj4/H4XDIhaaZ0FrjcDiIj4+3OxQRJNKmIWyVmppKUVERJSUldocimkh8fDypqal2hyGCRJKGsFVsbCxdunSxOwwhhJ+kekoIIYTfJGkIIYTwmyQNIYQQfmt2Y08ppUqAfzbw31OAn5swnKYicQUuXGOTuAIjcQWuIbFdprW+0J8Vm13SaAyl1DZ/B+0KJYkrcOEam8QVGIkrcMGOTaqnhBBC+E2ShhBCCL9J0qjtFbsD8ELiCly4xiZxBUbiClxQY5M2DSGEEH6TkoYQQgi/SdIQQgjhN0kagFJquFLqG6XU90qpWTbG0Ukp9T9Kqa+VUnuUUg9by+copYqVUrusr5E2xVeglPrKimGbtaytUur/KKW+s763CXFM3V32yy6l1HGl1HQ79plSaplS6iel1G6XZR73jzKWWOfcl0qpPjbEtkAptc96/TVKqdbW8s5KqdMu++7PIY7L67FTSj1u7bNvlFLDQhzXWy4xFSildlnLQ7m/vF0jQneeaa0j+guIBn4AfgG0APKBXjbF0gHoY/2cDHwL9ALmADPCYF8VACluy34PzLJ+ngXMt/lY/gu4zI59BlwN9AF217d/gJHAh4ACBgCf2xDbDUCM9fN8l9g6u65nQ1wej531WcgH4oAu1uc2OlRxuf39OWC2DfvL2zUiZOeZlDSgH/C91nq/1rocWA3k2hGI1vqQ1nqH9XMZ8DVwiR2xBCAXeMP6+Q3gJhtjGQr8oLVu6IgAjaK1/n9Aqdtib/snF1ihja1Aa6VUh1DGprX+m9b6nPXrViDk45l72Wfe5AKrtdZntdYHgO8xn9+QxqWUUsBtwKpgvLYvPq4RITvPJGmYHV7o8nsRYXChVkp1BrKBz61FD1jFy2WhrgJyoYG/KaW2K6WmWssu1lofAnNCAxfZFBvAeGp/kMNhn3nbP+F23t2NuSN16qKU2qmU+l+l1BAb4vF07MJlnw0BDmutv3NZFvL95XaNCNl5JknDFNvc2doPWSmVBLwLTNdaHwdeAi4HsoBDmKKxHQZprfsAI4B/U0pdbVMcdSilWgBjgP+2FoXLPvMmbM47pdQTwDngTWvRIeBSrXU28CjwF6XUBSEMyduxC5d9NoHaNych318erhFeV/WwrFH7TJKGybydXH5PBQ7aFAtKqVjMyfCm1vo9AK31Ya11pda6CniVIBXJ66O1Pmh9/wlYY8Vx2Fnctb7/ZEdsmES2Q2t92IoxLPYZ3vdPWJx3Sqm7gFHAHdqqBLeqfxzWz9sxbQfdQhWTj2Nn+z5TSsUANwNvOZeFen95ukYQwvNMkgb8A+iqlOpi3a2OB9bbEYhVV7oU+FprvchluWsd5Fhgt/v/hiC2RKVUsvNnTCPqbsy+usta7S5gXahjs9S6+wuHfWbxtn/WA3davVsGAMec1QuhopQaDswExmitT7ksv1ApFW39/AugK7A/hHF5O3brgfFKqTilVBcrri9CFZflOmCf1rrIuSCU+8vbNYJQnmehaPEP9y9MD4NvMXcIT9gYx2BM0fFLYJf1NRJYCXxlLV8PdLAhtl9geq7kA3uc+wloB/xf4Dvre1sbYksAHEArl2Uh32eYpHUIqMDc4d3jbf9gqg3+ZJ1zXwE5NsT2Paa+23mu/dlad5x1jPOBHcDoEMfl9dgBT1j77BtgRCjjspYvB6a5rRvK/eXtGhGy80yGERFCCOE3qZ4SQgjhN0kaQggh/CZJQwghhN8kaQghhPCbJA0hhBB+k6QhhBDCb5I0hAgBpdRCpdRHdschRGNJ0hAiNPoS+qeXhWhy8nCfEEFkjRN0Eoh1WbxXa51mU0hCNIqUNIQIrkpgoPVzf8wkOoPtC0eIxomxOwAhmjOtdZU1AF8Z8A8tRXtxnpOShhDBlw3kS8IQzYEkDSGCLwvYaXcQQjQFSRpCBF9vzFDWQpz3JGkIEXwxQA+lVEelVGu7gxGiMSRpCBF8T2BmhCwCfmdzLEI0ijynIYQQwm9S0hBCCOE3SRpCCCH8JklDCCGE3yRpCCGE8JskDSGEEH6TpCGEEMJvkjSEEEL4TZKGEEIIv/1/oaWlk/+j55UAAAAASUVORK5CYII=\n", + "text/plain": "
" + }, + "metadata": {}, + "output_type": "display_data" + } ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGMCAYAAAAbX+LjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXm8HFWd/v8+3VV9b3b2TZB9R1lFIiLqoI5fFRlANKIi\nzqLDqDM4izOOo844M/ob9cXoqIMbyohGVFzAJSA7ISSBkISEQAhJWEIgJISEJHfp6u7z++NU9a3u\nrqquvapvzvN63VcnXd1Vp2s55znP5/l8jpBSoqGhoaGhoaFRVlSKboCGhoaGhoaGRhA0WdHQ0NDQ\n0NAoNTRZ0dDQ0NDQ0Cg1NFnR0NDQ0NDQKDU0WdHQ0NDQ0NAoNTRZ0dDQ0NDQ0Cg1NFnR0NDQ0NDQ\nKDU0WdHQ0NDQ0NAoNTRZ0dDQ0NDQ0Cg1NFnR0JjEEEJ8TgjREkLslcOxzhBC3CuE2CmEaAohXpn1\nMQcNQogP2tfj5UW3RUNjkKDJioZGARBCXGYPWs7fqBBitRDif4QQ+8XY32whxGeFEDO7Nkn7L1MI\nIQzg58CewN8A7weeDPj8l4UQfxBCfC3rthWBoq+HhsZkgyYrGhrFQQKfBt4H/BVwL/CXwAIhxHDE\nfb0G+AywR6otDI8jgZcDX5JSfldK+WMp5faAz38S1f+8lEvr8off9fg/YIqU8qn8m6ShMbjQZEVD\no1jMswf2a6SUHwL+GzgceGfE/Yj0mxYJ+9uvQQSlDSllEzgWmJ9ZizKGEGJq0GavN6VCPaMmaWhM\nWmiyoqFRLtyOGugOBxBCvFwI8U0hxKNCiBEhxBYhxE+FEIc6XxBCfBb4L/u/T9hhpWaXL2JPIcQP\nhBAvCiG2CSGuCaveCCFOFUL8XgixXQixQwhxqxDi1a7t3wfuRClFP7ePf3uffR6GIjgLwrQhQlsu\nso9/jsd3P2xvO8H13kH2uXhOCDEmhFgphLjc47uO9+d4IcSPhRBbgXt82uh7Pbw8K659Hy2EuM6+\nPs8LIf7N3n6IEOJX9m9+VgjxCY9jhvodGhqDCqPoBmhoaHTgKPv1Bfv1VcBZwFxgA3AYcAVwhxDi\nBCnlGHADcAzwHuCvXd/dbL8K4KfAOuAfgdOAPwM2Af8U1Bh7YL8bpZh8EWgAHwbuFEK8Tkp5P3C1\n3bZ/Br4K3G/vOwhnAw9LKUOHgUK25bfATuASesnEJcBKKeUqe3/7AYuAJvA1YAvwVuB7QogZUkq3\nn8bxmfwMeAx13vzUrKDr4eVZcf5/PbAKFSJ7G/DPNin6MHAb8A/ApcCXhBCLpZTzY/wODY3BhJRS\n/+k//ZfzH3AZanB5A7A38DLg3agBbSdwoP25IY/vngm0gEtd7/2tvb+Xd332s/Znv931/g3A8yHa\n+UtgFDjU9d4BKMJwh+u9c+3jXBjy938T+Lr971cDnweeBU5KoS0/svclXO/tjyI3n3K9910Uydqj\n6zg/Bra6z73rPP4w5O/zux6Xdb/v2vc3Xe9VgKfsNv+d6/1ZwC7gmji/Q//pv0H902EgDY3iIFAz\n5s3A06jB5SXgAinlswBSyvH2h4Uw7BTkdcA2lEISBhL4Vtd79wB7CyGm+zZOiArwJuCXUsp2Zo+U\n8jm7ra8N+n4fnA3MF0I4ZO2HqPPh2SdFbMv1wH7A6127eBcTCpODC4GbgKoQYm/nD7gFRQq6z6/X\neUwLEvhe+z9StoAH7DZf43p/O7AaOML13ai/Q0Nj4KDDQBoaxUGiQjprUDPoTVLK1e4P2L6STwEf\nRKkvwvXdWRGO1Z198qL9uidKyfHCvsBUVNijG4+giMUh9r9Dw07nPRGVQbRFSvk7e9MBAV+L0pZ5\nKNL3buAO+zOXAMuklI/bbdgXlanzF6gwSzckivB0Y31AG5Oi+xptB8aklFs93t8LEv0ODY2BgiYr\nGhrF4n4p5YMB27+OCh1cBSxEDVQSpR5EUUabPu8XkUU0GxWeOA44VgjxpJRyTVo7l1LWhRC/Av5E\nCHEFcCBKyflH18ecc3cdcK3Prh7yeG80rXZ6wOsa9btucX+HhsZAQZMVDY1y4yLgB1LKf3DeEEIM\n0Vu/I4tCY5uBEVSKcTeOR/ksno6x37OB26SU7xdC/ANwI3C8EKJihz/SaMv1wAeAP0KpONAZAtoM\n7ACqUsrAzKWYyKvwW9a/Q0OjFNCeFQ2NcqNJ73P6caDa9d4u+zW1onA2cbgFeGdXqu3+wBzgHiml\nXwgpCGejVCKAh1GeFYC/EkJMSaktt6JCXe9BhYAWd3ldWiiT8UVCiBPpghBinxi/y43Ur4cXcvgd\nGhqlgFZWNDSKQ5gQzG+A9wshXkKltc5GqQVbuj63xN7ffwohfgJYKNNlUnwaOA+4VwjxTRR5+gug\nhkqljQQhRBWVzeROmX7cfp0ipQwKs4Rui5SyIYT4BYqsTEVl53TjH1Em3EVCiO+gzu9ewOnAG4Ek\nA73X9bgxwf6CkOXv0NAoBTRZ0dAoDmFCBR9HmW/fCwyjKr6eB9zs/r6U8gEhxKeBjwBvQakxhydu\noJSr7AJrX0ANihWUKvJeKeUD3R8Psct9gWcAx6dzG/AXQojPo2rJpNUWUKGgP0WFiH7msb/nhRBn\nosri/wlqqYMXUGpPZCLWte+0roffOXVf+8x+h4ZGWSCk1GtqaWhoaGhoaJQXA+FZEUKcI4S4UQjx\njF2W+vwQ37lUCLFMCLFLCLFRCPE9u0aFhoaGhoaGxgBhIMgKMA1YhqpJ0VcKEkKcjUrj+w5wAnAx\nKk7+7QzbqKGhoaGhoZEBBsKzIqWchyr0hBAijCnxLGC9lPIb9v+fFEJ8Cx2/1dDQ0NDQGDgMirIS\nFfcBhwgh3grt9MaLUYucaWhoaGhoaAwQJiVZkVIuAN4HXC+EqKMWNdsGfLTQhmloaGhoaGhExkCE\ngaLCXkr+q8DnUIWkDgS+jFqE7M98vrM3KsXwCWAsj3ZqaGhoaGhMEgwDhwE3SylfSHvnA5e6LIRo\noVal9S2wJIT4P9Sy6O92vXc2aqXZA6WUmzy+817U0vIaGhoaGhoa8XCplPLHae90UiorqIqVVtd7\nLVQmkZ9B9wmA6667juOPPz67lmnkhiuvvJKrrrqq6GZopAR9PScf9DWdPHjkkUd43/veB/ZYmjYG\ngqwIIaYBRzFBNI4QQpwMbJVSPi2E+AJwkJTyMnv7TcC3hRAfQVX6PAi1au0iKeVzPocZAzj++OM5\n7bTTsvopGjli1qxZ+lpOIujrOfmgr+mkRCY2ioEgK8AZwB0oZUQCX7Hfvxb4EHAAcIjzYSnltUKI\n6cBfobwq21Blvd1LxGtoaGhoaGgMAAaCrEgp7yIgc0lKebnHe98AvuHxcQ0NDQ0NDY0BwqRMXdbQ\n0NDQ0NCYPNBkRWPSYs6cOUU3QSNF6Os5+aCvqUZYaLKiMWmhO8LJBX09Jx/0NdUIC01WNDQ0NDQ0\nNEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRKDU1WNDQ0NDQ0NEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRK\nDU1WNDQ0NDQ0NEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRKDU1WNDQ0NDQ0NEoNTVY0NDQC0WrBQ1++\nhUd+tKTopmhoTGpsfWQTd11xPXLnrqKbUjposqKhoeGJp56CT34SDj0UWn//D2z6wveLbpKGxqRD\nqwU33gjveAe856SVnPu/72Hdos1FN6t00GRFQ0OjA+vXw+WXw5FHwne+A+efD0cda3Du2Y2im6ah\nMWnQaMCPfgSvfCW8853w/PPwkY8aABx5qH7WuqHJioaGBgCjo/C5z8Hxx8PNN8MXvwhPPgnf+AZM\n38NANKyim6ihMfCwLLj6ajjmGHjf+5Ryec89sGgRXHiJMfEhjQ4YRTdAQ0OjWEipZOi/+Rt45hn4\nu7+Df/5nmDbN9SHTVFNBDQ2N2LjtNvjYx2D1anjXu+AXv4BTTnF9wDTVq37WeqCVFQ2N3RibN8Pb\n3w4XXADHHQcrV8J//mcXUQEwDN2BamjExI4dcNllcN55sM8+sHQp/OQnXUQF1HMG+lnzgFZWNDR2\nUzz8sCIqIyPwq18pb4oQPh/WZEVDIxYWL4Y5c9TE4PvfV6Ql8DkD/ax5QCsrGhq7IW67DWbPhpkz\n4f77lcHPtwMFTVY0NGLg97+H171uQk354AdDPGegnzUPaLKiobGb4Xe/g7e9DV7zGpg/H17+8hBf\nMgxt+tPQiIBf/1pNAt7yFrj7bpVd1xeGNtj6QZMVDY3dCDfeqPwpb3mL6kxnzAj5RW2w1dAIjd/8\nBi6+WD1rP/85DA2F/KI22PpCkxUNjd0ES5bAu9+tik9F6kBBh4Fc2PXo0yz+zG+KboZGSbFgAVxy\niXrOfvzjCf4RCjoM5AtNVjQ0dgNs2qRmea94BVx3XcQOFDRZcWHu5bdw5uffwebnZdFN0SgZVq1S\npvUzz1RExYiawqLJii80WdHQmOSwLLjoImg24Ze/hClTYuxEe1YAuPZauGehGlD23VMPKBoT2LkT\nLrwQXvYyFWIdHo6xE+1Z8YUmKxoaHth48woW7/kWnpi/oeimJMYXvwgLF8INN6iONBa0ssKjj8IV\nV8BrzinP7HfRFddyz+EfoF4vuiUaH/sYbNigQqyzZsXciVZWfKHJioZGF6SE//r0S5y57Rb2ru0o\nujmJsGwZ/Nu/wT/9k0pVjo3d3GDbbML73w+HHAKX/Vk5TJDbt8P8/1vHcZvupFYrtCm7Pa67Dn7w\nA/jmN+HYYxPsSBtsfaGLwmlodOHb34b7HlCPxozhwZVj63VV1+H44+Ff/iXhznZzZeXqq+GBB5R5\ncvjZckj1n/407GcZ7LXH4N6jkwGbN8NHP6rW+fnABxLuTCsrvtDKioaGC088odbGefsFg99pfOUr\nqnz+D35A8pn3bkxWnn0WPvUp+Iu/sNWpEsx+H3hALTD5hvMMqq3d87qUBZ/9rHq96qoUdqbJii80\nWdEIhWd/fAfP/uj2opuROa68EvbYA678++IHpCR47jm1xs/HPgannZbCDndjg+3f/q1K8/7CF+w3\nCh5QpFTemVe+Emafu3uH54rGypXwrW/BZz6jqtQmRrWqXnfTZy0IOgyk0RfNJjz84a+yx7QGB176\nRt/P7XjiBZ5b9CRHvzuN0TF/LF6s1si59lqYvkc5pP64+PSnlZrymc+ktMPd1LPywAMwdy5ccw3s\ntZf9ZsEZG7/4hVoi4c47obp09yWRRUNK+MQn4IgjVBgoFQixW6uYQdDKikZf/Oxn8OLO/oPVPX/7\nS45+z+lsfWEw60986lNw4olw6aWUQuqPi2XL1OD6uc/BnnumtNOiOlApFVuOiVZTsnVzU+0nBj7/\neTjmmC4vQoH3RqOhiOhb3gLnnstuSyLLgNtugz/8Ab785RTCrG5osuKJgSArQohzhBA3CiGeEUK0\nhBDnh/hOTQjxH0KIJ4QQY0KIdUKID+bQ3EmFVkt12A0MKi3/GdyuXfC7W1Qnvtes+INLUbjtNvX3\n7/9uK7EDHDv+x39UGQkf+UiKOy2oA118+l+ybt9Xx/7+kn/5FXvtZ/D0Qy9G/u7SpWp5gk9/ekKd\nBwq9N667TqVQ/8d/uNoygPfoZMC//RuccYZarTxV6GvqiUEJA00DlgHfA34R8js/A/YFLgfWAgcy\nIOSsTPjFL1RVxqkzDCoBRr5vfQteGnHJ45FLNxYHKdWAdOaZauExoHCpPy6WLoWbb1ahi8hVaoNQ\nQAe6ZQs8+JDBG8z41+CGXxu8CjjkgOj7+Pd/V4vPzZnTtaGge2N8XKllF18Mp5/uakvTVo4Cl/PV\nSBN33QX33KOKv6V+2ndjf1gQBmJEkVLOA+YBCNH/1hBC/DFwDnCElHKb/fZT2bVwckJK1WGfdx7s\n9aRJ9TnvB2h0FL70JfjM60y4k4GbFSxcqP5+8xtXxzOgYaAvfxkOO0wNaKmigA70m9+EmU2DqhHv\nGixcCMtXxVNBVq5URP2aazx4d0H3xvXXw5NPqlWzPduSKjvVCMLnPw8nn6zW/0kdWlnxxGRVGt4B\nPAB8UgixQQixWgjxJSFEnALIuy3uvhuWL1dhBVn1V1a+9z14/nm44OLBVCO+9jU46ih461tdbw6g\nsvLkk2pAu/LKDIStnL0Ro6Pw9a9DA5NqQPgxCF/6Euz/MnsAj3gdv/51Ve33fe/z2FhAGEhKdZ/+\n8R/DCSd4tGWA7tNBx333qZDxpz+dkZilfUiemKxk5QiUsnIicAHw18DFwDeKbNSg4eqrlbnwjW8E\naZieZEVK+OpX1SqjB7588NSIZ55R5bE/+lGouJ+GAVRW/vu/YeZM+NCHMth5zrO9a6+FF16Ao44z\nqMrox12zRq2DdOEl0YnFjh3wox/Bn/+5j1hRAEG47z61avbHP961YQDv00HHV7+qPGEXXpjRAbSy\n4onJSlYqQAt4r5TyATuM9AngMiHEULFNGww8/7xaS+YjH7FnD1UDw2OGO38+PP44fPjDDOQs7+qr\n1YJjH/xg14YBM9ju2AHf/a6qvzF9egYHyLEDlVIV2LrwQthjXxNDRr+fvvpVVffiLW+Prqz86Ecw\nMgJ/+qc+HyiAIHzta3D00SoLqAMDdp8OOrZuVST4z/+8a3KTJjRZ8cRAeFZi4FngGSnlTtd7jwAC\nOBhluPXElVdeyayuVajmzJnDnB6X3eTGD36gHsbLLlP/l4ZJxWOGe801qs7A614H3D5Ys7yxMWUM\n/uAHPRYeGzDidcMNKiPrwx/O6AA5dqD33QePPQb/+7/Af5iRlZXRUZU1c8UVMDQt2mAupSKw73gH\nHHywz4dyvjecxfGuuspjgByw+7QotLbv4PY/vY6TPvl2DnjVIbH38+MfKz+zZ3gwLQyAwXbu3LnM\nnTu3473t27dneszJSlbuBS4WQkyVUo7Y7x2LUlsCl9G96qqrOC2Vkp+Di1ZLDeKXXNJZCKtbWdmx\nA376U7VIXqVC5I5z9U2PccDLa8w6+bDU2h4FN96o1vX4q7/y2Dhg8vp118HrX68W2ssEpqlujFYr\nwymlwnXXKaLw+tfD3f+fEVlZ+dWv1CJ/H/wgsDOasrJ4sfJpffGLAR/KWc343vdgypSJiUMHBuw+\nLQpLbtvGeTdcwYqzjkhEVr7/fXj722H//VNsXDcGwLPiNYF/8MEHOb2dppY+BiIMJISYJoQ4WQhx\niv3WEfb/D7G3f0EIca3rKz8GXgC+L4Q4XgjxOuC/gO9JKcfzbf3g4Y47YN26rjodZu8M92c/U7PY\ndicaseMcmfMhll7wucTtjYvrroNXvxqOO85jY6Wi4l8ln+GAmnnffrtaFTgz5DRA1+vKJHzppTYn\nMk2MiMrK978Pr32t8ltFbfe3v62yqd785oAP5UgQpFRp6BdeqPxIPdDKSij88jfqmp14TPzztGwZ\nPPhgRp4wN3QYyBMDQVaAM4ClwBJAAl8BHgT+1d5+ANCmy1LKXcCbgD2A+4EfAr9GGW01+uD661V9\nidmzXW8aBtWuGe4118Cb3uSazUfoONesgW27TI44uJhOdssW+P3v+8i5AzDDATWYDQ3BRRdleJCc\nyMrvf698Ac51EaaBQfh75Kmn4NZb4fLL7TfM8MrK+LgKp33gA33EoxwJwkMPwerV8J73+HxAKyt9\n0WxOkJWgWlH98P3vK0WlI2swC2iy4omBCANJKe8igFhJKS/3eO8xoNuOptEHjYaS0S+/vCstr2uG\nOzoK994L3/lO52faO+mD66+H2VWTg/Yv5qH86U/VrPXd7w740IB0Gj/8oSpm5znzTgs5kZUf/hBO\nOQVOOsl+wzQxCH/Ma69VIZN3vct+I0K7b75ZhY8C7wm7TWH3mRQ/+YkKxZ53ns8HtMG2L+66CzZu\nTkYwm001KfjAB3IoZzMAnpUiMCjKikZOuOce5ePomaUbnTPcsTH1uscenZ8BQj1o118Pe+/nnWGU\nB370I1WzYt99Az5Ukk5Dbn2RbXcu81zf5qGHYMWKjA1/kIuasG0b3HRT528RpoHZpazcdfLHWfnd\nhT3fl1KRlXe9C2bMsN+MoKz85CeKJHXUMfFCTgRBSvWcXHRRwACpw0B98ZOfwEEJyyo4/eIll6TY\nMD8MyCQpb2iyotGBG25QYZ1XvarzfWF21rtw+saOTjTkjPPhh1WF0P0PMQvpZNetgwUL7AULg5Bj\nGGjb7Q/y0Bv+WsUiurDgUzexxxtOxRrpPVc//alarLAnpTVt5KAm3Hij8qy4Qx6iZlJB0mq02u+d\n/tA1bPnF3T3fX74c1q6F977X9WZIYjEyoo7fV1Vx7zPje/f++2H9+j5t0mGgQFiW6tMueneya3bD\nDcr0fcYZKTbODwMSfs4bmqxotNFqqRLjF17oUZnRNDtmuM6z1EFWQnbi11+vUoX3Oyi9GcSOl2To\nlXXnzlW1SNrrAPkhR2Xlju88zivv/BovPT/Ws23hA+okj+/sbcuNN6rshFykacicrJx5pqoc60CY\n6riN0YnfbmJ5tuPGG1Uo7PWvd70ZUln53e9U6ncospITQbj+euWR6Pg93dDKSiBuvVV5oC6eE6+S\nMah+8Ze/VP1ixolwClpZ8YQmKxptLFwIzz7rbdRURsc+ykqIAc2Rti+4AKpD6SgrT/3+YWbMqrDs\n6t7QgBd++1sVApo6tc8Hc+w0Fi9VJ9I9KIMSWpautLeNdbZl/XoVAkp91VcvZExWxsZg3rxeAlkZ\nUr/dGp04ronled/8+tfK/Firud4M2e7rr4dTT1WF1/rCGbEyvDekVBOHiy7qWvG5G9qzEoibblJ1\noE4+RagTGeM8LV6sKl1namB3Q5MVT2iyotHGDTfAAQfAa17Tu03UTEwayJZSLwLDQAEE5JFHVMGv\nd72L1OTO+QtVh33M4f2Jz9atsGiRIit9kZMc+8ILsOoxW0HoIiR33QU7x3vVBVCDc62WQwgIMh8U\n77hDKRvdxKutrNjnpVlvUkH23GNPP63SSnvUshD35OioIrChVBVQsmPGqttjj8ETT8Db3tbngzoM\n5AspVXbZW99qK8Uxr9kNN8B++8HZZ6ffRk+UxCtXNmiyotHGvHmqc/SayTmDRrPeBOIrK7feqgbY\nN7yB1B7KO+arRkw1++/r1luVrBtqgM+p05g3D8alt7Lym9+Ahfe2G29U6za1zaRZIuNww69/rWbA\nJ57Y+b6jrDi/ve3b6brHbrpJNbEnrTTEPTl/viIsfYmBGxkT2Xnz1HNy7rl9PqjDQL5Ys0YRvvbE\nxIyu5EqpyMoFF/RRuNKEVlY8ocmKBqBkzlWrVN0UL4ha16BhP/Mdq/uGmMX+4Q9qhjJ1KrE6j27U\n63D3feFnl/PmqYwP31LqbuSkrPz2t9AU6jc0xybOh5Rq2z4H9G7bulWtit3Xd5MWMpzBt1qKbLzz\nnb1eqTZJHlfHnSArvSrTued2ZadB6HvygAN6iVIgMiay8+apJSymTevzQa2s+MIhfG3PTwwSsHKl\nCrdmtmihF7TB1hOarGgASnEA+KM/8t7uDBqOdyCOsmJZcOedrpoRKcwg7r0XXhoNN7uUUnVgocMm\nOSgrjYaSqk84udeXsnq1ylyafU5viOj3v1e1H97xjkybN4EMw0BLlsDGjd7em25lxXkVruuyfbsK\nI3kSt5Bq33nneZjKg5Dh7Hd0VD0noUKVWlnxxbx5cM45roU9Y0yObr9dEZ7XvS799vlCKyue0GRF\nA1Ad9qmnqpVqveAMGu0ZbozU5YULYedOl3qTgrIybx7stV84p/+KFcpAHGoQgFw6jfvuU/VFXvM6\nW0FwqSe//a1aEfrUV/cqK7/7HZx+emfmTKbIkKzcdJNKv37ta3u3VWqdyopD2ERzoh2LFqlL73ld\nhW2s9Lk3Nm+GpUv9FUVfZDj7veceZTiORFb04NaBsTEPwhfjeb79duXhmzIl1eYFQ3tWPKHJigZS\nKrIS1GG3lZWRzjBQlNTlW29Vg1J7ncgUOvx58+CcN4YjK/PmqfCT16DoiRzk2N/9ThWmO/GUXkKy\nYIHqKKfO7N32/PPK45EbMhwU77hDKXodIUUb1WFvZcUdBhqxlyrdc0+fAwQMUrfdpl59K8T6IcMB\nZd48RUL7FqcDHQbywT33KIWqQ0WNODlqNpXB/Y1vTL99gdDKiic0WdHg4YfhueeCO+xQykqfAe0P\nf1CDUtuolrDD37hRVXB941vCddg336yMvcPDIQ+Qwwzn9tsVSTSndp5fUJ3trFlQHTJ6tllWDrVV\n3IhQCTYKRkdVaqifkbRbWXEIW8VFVjzvRTcCBqlbb1Wk4KCDIjY8wwFl3jylCIQKS+kwkCfmzVPX\ntL1sA0QmK0uXqhDjG96QfvsCoT0rntBkRYM//EEthBekODiDRrfBtmOAqFTUn0eHsH27GpQ61JuE\nYaBbblEd+hvf3L/DHh9X/pZIM+iMO41du1S67TnnuAjJWOcgbJoT6oLXttyQkbKycKEySft5Arp/\ne9uz0uwkbtCnJL1Hu6VU937kEJBzsAzujQ0bVHp/aF+VVlY8cdttauXsDsIXkWDecYdSYs88M/32\nBUIrK57QZEWDW29VA2ZQXLY9aAQpK84bHg/anXcqWbWDLCTs8O+6C04+GfY5sP+sf8kSRVjOOSfC\nATJWVhYvVj//ta+dUK5a4/5kxWtbbsiIrNx9twrfdMyAXXBIcqtue1baZCW5svL442qV5sghIMjs\n3rj3XvXaN2XZ3Q7QyooLL72k/Gk9k6+Ik6Pbb1f76CgymAc0WfGEJiu7ORoNNej7ZQE5aMvxzgzX\nq9w++HbiTz6pwi8dPouEHf5999kF7PqYKEENAtOmKXITGhl3GvPnq1TbE04AY0p/slJoGCgjsnLX\nXYpA+pUx71ZWgsJAXp6X9gaPdi9dql69iiD2RUbKyoIFcOSRqghZKFQq6v7Xg1sbixerdPie6xrh\nebYs5XvJ3a8C2mDrA01WdnOsWKHCEf1Mp92+iajKiufgmiAM9MILKrW33SH16Yjmz4ezzgoY0LyQ\ncRjonntUzZlKBYxhf19Ke9skCwPV64pwBqkIzn3nKCttstLqPBfVaoDHw+c+c9aM7LvsghcyIrKO\nqToStMeRn41IAAAgAElEQVShAwsWKLXu2GO7NkTob+6/X/WLuftVQCsrPtBkZTfHokXq2Whn6Pig\nbbAdC/CsgO+swHNwTfBQLrSXAZo9m4mG+HRErZZSVkJnAbnbl9EMp9FQA7XTpjDKiqwXSFYyMNje\nf79KMQ2qYeGnrHR7VgLPhc991jd8FIQM7o2REVi2zHVPF9iWQcaCBeoc9qh1EcjKXXepytD9+sVM\noMmnJzRZ2c2xcCG88pX9Z5fd3gFf6T0nZWXBArUi7eGH99/X6tVKiYlMVjLsNB56SNWccdoUREgc\nItOsT7Sl0Rh8ZeXuu9WAcMop/p/pVlYcMldtRiBuPveGZU1EECMjg3vjgQfULrWyEh+tlurTPAlf\nhMnRokXKWBtJiU0LWlnxhCYruzkWLVLhkX6Y8E2kqKwk6GTvu091SG3pP2Bf8+erAenVr454kAxn\nrPPnK+PeGWfYhxruHJShNwwkJ5nB9q67FFkLGhC6FSe/MFBcZSX2OcxgQFmwQFVb9TMbB7ZFKyuA\nyqTavt2H8EUMA73qVem2LTQ0WfGEJiu7MV58ER59NNwg3p7hujwrnj6BKMqKYagUISkjtbvRUCSr\no0MK6LDnz1ez98gL/mXYacyfr2ZuTs0Xp85KYDZQkWGglMlKq9UZBvODn7JSaUUIAwUoK4nISsoE\nYcEC9SxGVnr04NbGggUq/OOZbhzyPG3cqP5yT1l2oMmnJzRZ2Y1x//3qNQxZ6Z7h+nb0UZUVZ2ME\nrFih4vsdZCVg1nTvvTGXd89IXpdSkRX3QO2cX2n1EhKHyEgP1SU3pJwiu3atSjF1lCU/tEmcTdTa\nYaCilZWU7w0pXdltBbdlkLFggcr4a68H5EZIZcXpFwtTVvT19IQmK7sxFi1Srvmjj+7/Wa9sIM+O\nPqpnBSI/mAsWqK+efnrXvjw6oueeUwNjZL8KZDbD2bhRrVHkJonmFDvU40FInG2F1llxCv6l1Iku\nWaJeO66hB5z7TnZ7VqKQlQFQVh5/HLZsiUlW9Ey8DSc87IkIZOWAA3Jcd6sbCZQyKeH+/d7G4n/9\nfcqNKh6arOzGWLhQSZ1+NS7caM/86ykqKzFn6/fdp1z6HWXzfUjShg3q9aijIh0icJ9J4dT3OPXU\nifdEtUKTirfBdrj3POVOViDVcMOSJXDoobD33sGfm1CVbGXFUsevRgkDDYBnZcEC9RrZVwV6Jm5j\n61ZlpvclKyGv2eLFSlWJtAp3mkhwbz37LJyy+RZqG59It00lgCYruymkVMpK2M6x2zuQqrISkax4\ntjuAJLkPFQkZzViXLlWK1stf3vm+helJVkRFYGEUm7oMqZOVfqoKuMzFNklxTMZVWbCykjJBWLIE\njjkmYDHGIGhlBVBp3xBwX4VQVqRUWVmFhYAg0fVcvlz1IwfvP/nuB01WdlOsW6fSecNkAoHLs+KU\nPfdLnY2jrETo9HfuVGEdtyoBBA5IzubIyMi4uHSpan/3zM3CRDa8FYMGRltVkLKA1GVI7XxIqdZE\nCkNWqjXlNnU8Kw5hK9yzkjJBWL48YnXl7rZoZYXly9WSIccc4/OBEOdp7VqVeFA4WYmReAATZGWv\nmZqsaHQhxv1UCkQ1kbVnuGHCQBkqKytWqHPe07EHKDruQ0VChmGgHrIFNIUBPuqJxQQZ813qIGsk\nXHjSwdq1Kr00TMEtR1XCJmoOaanKEmQDpXRvSJmQrOgwEKDO4UknBWRThbh/nX6xn/E7Uzg3ZbMZ\n+avLloE0zI7lKCYLNFlJiGV7voE7X/NPRTcjMh56SBnI9tkn3OfbWRlWiDBQ1GygCB3t8uVqnDjh\nhK4NAxIGevFFeOIJb7LiJiRSqr6qfYqE2SYyiX5TEqQ0QIc11zpwh8ecVyNKGKjk2UBPPaXIWyJl\nRYeBWLaszzkMSVaOOCJ8v5gJEpQJWL4cRC2dSUXZoMlKAkgJYsd2ZsltRTclMlasgFe8IvznuwuT\nWZZPMa8oA0MMg+3y5XDccTA01LUhizBQBjNWJ67uRVYaYuI3dLe7idH2bUwGsnLIIbDvvuE+38CY\nCI/FISslzwZy7gmtrMRHvQ6rVvU5hyHu3yVLClZVIDZZGRmBxx6z6zJpsqLhxlNPwXjLZO8BjA9G\nJSsVo0IL0TFgpqasRCQrnh1SH7ISa5n3DLwAS5equHrPImvYYaCGNyFpCBPRmBzKSli/igO3qtRW\nVig4GyhFgrB8Oey1Fxx8cMwdpHRdnrx3A2PPDd7EC1RxS8sKXrohjLLywgtw4IHpti0yYmZJrlyp\nii0aUzRZ0ejCypW2mWn6YN0Y27fDk0+qNYGiwC3Hp+JZiTiDaLVU+MqXrAzAYnVLl6rz7hVXb1Z6\nlZX2KQpQXXJDCoNiFHOtgyau41olUlZCnoufnPMNfj7nBt/tDgGPnSqb0n067ZxTufd9/5t4P0Vg\n+XL1Gtinhbhm9XoBz1U3Yiory5erMhS1aZqsaHTh4YehWa0xrVYvuimRsHKleo2irICS490z/7yV\nlXXr1LLtnmQlC89KBvK6n7kWgtWTRmUiU6ibyOSGFAy269cr305kZcU5rv1qMjjZQCcuu46D7v+V\n7/ZE5lpI5T7dsgXq0uSAvQdzkFu+XC1qOnNmwIdC3L+FlAToRsximcuXK8W2oj0rGt1YuRKGppuI\nAbsxVqxQM/vjjov2vQads/u8s4Gc2VOcMFAZlJXRUSVX+5GVVkAYqCWMSREGeu459dpdYyYI7vBY\nW1lxhYH6pnEXXGel2rI6yJUbO3ao7KhEZCWF+/SRR6BOjf32GKyJl4Ply/uEgGBwyEpMZaVtME4p\na69s0GQlAVauhKkzB+/GWLHCx6TaBw1hpOtZifhQLlsG+++v/qIcV4gYi8M57UtRWVm5UmX4+JGV\nZiVYWRHW4JOVOG1vVHqVlSotWo1W+624ykosL5Ozz5DPfbVlYUrvz65YoV4Tk5WE12XVKjukPWOw\n+jJQocW+mUAQ6jwluifSQgzPihMiP+UUNFnR6ESzqWYjU/cYvBvjoYeih4Cg1zdRhLLi2yFFqZwb\nFqYZuziTF1auVMTppJO8tzcCyEqzYkJz8LKBxraN0axP1IuIY3huCqP923HVj7BG+tyLDgr2rCiy\n4q1Y+KbiR0EKYaBVq1T4wF1sb1Dw7LMqjNWXrExiZeWJJ5RK11ZW6oOpkAVBk5WYWLcOxsZgxp6D\nRVakjJ4J5MAtx/tK73HK7Yd8KAPJSpTKuWGRoN6BFx59VK2HM2WK9/ZWxUT4EJJShIFizNgeP/hc\n7nnXV9v/j9P2pktVEq5r0Rjro/I5KDgbyJAWhk8YaNmyeCpn5wGSh4FWrYLqgGaRBIaH3QhxnkpB\nVmJ4VlatUq8nnYRWVoqEEOIcIcSNQohnhBAtIcT5Eb57thDCEkI8mGabHJPqzL0H68bYsEFlA8VW\nVhp9ZrMZLWS4bZtKFfeNS2flS4DUyMrq1d4pyw5aFX9C0qxOVKUcJGVlr7GN8MzG9v9jkRVhtEmc\ncCkrjdGClZWQz73RqndkL7mxalW8Z7EDKSkr5tTB6sscrFwJ06fDYYf1+WCI81QKshJjkjQyol5n\nzkSTlYIxDVgGXAGE1uSFELOAa4Fb027QypVqxdjhAfOsODHyqGnLYCsrYTwrGYSBNm1Sr761KLII\nA8Wsd+CHfmSlWTWpNP3DQH6qS26IQVYMaXUQjLjKSjv8EycMVPCqy4a0MHzCKzt3wh57xGyDuy0J\n7tFt22DjRhiaXhuovsyB81z1Tf2exGGgjudqkpKVvJMfY0FKOQ+YByBEpGoEVwM/AlrAO9Ns08MP\nK8lN1AbrAX/oIcW+o2RjOOg2gPpWsM3AYNvX6+Bz3ER1E1IMA1mWyvoIVFaq/oREVgyED5HJDXHJ\nijURP4/T9lZlQllxr3nSHA8ZBio4G8iQFg0fZSWVuh4JDbaPPKJeh2cOpteh3ySgDec8SenJbJpN\nZVQtDVmJMK7sDmRlUJSVyBBCXA4cDvxrFvtfuRJOPJGBMzM9/LBqd5wCVN0VVvNUVvoOciUPA61f\nr9oSlC4uK4a/shKguuSGFJQV51GJRlYmQmCxwkAF11kxpYXR8u4jUsk+SRgGWrVKFRObMmAqsYPQ\nZKX9MHkvEFjYc9WNBMpKtYq6oQbwOvbDpCQrQoijgf8ELpVSttLef72uHpBBNDOtWRPywfaAe4ab\nimclAhkohKykGAZavVq99lNW/AhJ0LbcEONer1FPHAbqUFaallqFmU6yElggr+BsIAP/MFAqYYeE\nYaBVq+DII6E6NFh9GagCg5s3R1BWwPc3loasxJgkOQqdEAzcmBQWAxEGigIhRAUV+vmslHKt83bY\n71955ZXMmjWr4705c+YwZ86c9v/XrlX30QknAOsG68ZYswbe8Y543212VVhNrKxEIAOhyEoWGR+Q\nirKyerUyAR50kP9nWlWTSsubkMiqQcUa89yWGwxjwskXEiZWO3wFqu2VivoLC7eqJJoWo0zBZEf4\nMFBW2UCtlvrr82NMLOpZkpUUlJUTTgBag9WXgVq4D+CYY0J8uM/zXBqyElNZabc7B7Iyd+5c5s6d\n2/He9u3bMz3mpCMrwAzgDOAUIcQ37PcqKLtLHXizlPJOvy9fddVVnHbaaYEHePxx9Xr00QwUi926\nVf0dfXS876eurDijVhpkJcvU5ZSUlWOOCQ6/yapBpeXjWQkgMrkhYhio1WhRpUWl0elZiRr2kBUD\n0ZpQVsYqU5nZ2kFzLGQYKEvVrdEI/EGyJalhMVpyZeXSS4HVZmQyWjQcxTISWSm7shLTs9K+DXMY\nk95+3p/w/874I2YdvV/7vQcffJDTo6yjERGTMQz0EnAScApwsv13NfCo/e9FSQ+wdq2qlXHggQwU\nWVlr60xHHRXv+81qysoKhB4A+3odsh6QEuLRR/tL1dIwqQaEgfy25YaIZMXJ1ql0KStR2+0OgVWa\nFuMVVagmNFnJSlmBvuejMa78EX7F1lIjKzHv0R07VEmAE05AjXYD5L8DRVYOPhimTQvx4T7Pc18T\nf14YAGVl2ce+x/Axh6S9dFogBoKsCCGmCSFOFkI4VTaOsP9/iL39C0KIawGkwir3H/A8MCalfERK\nOZq0PWvXwhFHFBMfXPXjZbywYmP/D3pgzRr1euSR8Y7dcs1woygrUvYhNxGUFd+OpOQG29Wr+6/F\n1DImKoj2KCuGv+qSGyKGG9IiK7JqULEVvWrTYrw6FYBWPUI2kEcl4jyIrLVLDf7uc+BGKtlACcJA\njjJx3HEM1MTLQWhzLQyOshKj38mbrGx6sYaJhVFNp7p3GAwEWUGFdZYCS1B1Vr4CPMhEps8BwCF5\nNWbtWteAn/MDvu/73sxDn/hBrO8+/jjsuy90WXJCo9VVmCyssuKY79MgK7l6VlIKA4U1AUrDpCL9\nw0B+RCY3RAw3OAbYarMzDBRLWbF/e6VlUbfJSiRlBXrujzzuDYewuc9BdxsSz+QThIFeekm97rUX\nA0lWHnssAlkZFIPtACgrz71gUkH6ZlZlgYEgK1LKu6SUFSlltevvQ/b2y6WUbwz4/r9KKYONKBHQ\nQVZyTBN76SUYlzX2nhnveI8/Ht+vAp3Kim+5fY+OM7ATCClhF+JZSUlZCZMJBIBhBCgrnWSlWo2X\nfp4IEcMN9V29ykocJcHt5ak2LSwjYhjIZ0adSxhotPccpNYGd1ti3qMd99mAkZVWS6nFofwqMKkN\nth3PVQ7XceMWm2HneL8MBFkpE5pNVTOjQ1nJKc67fj1YmOw9I97x1qyJ71cBe3bv8k14pos6HadL\ncg/sBNJWVrKQ+hM+kA5Z6UcUZdVsp7g6h3Sa0K26FNKhRiQrzVF1n1aThoFcXp6KbGCZE2EgJ7pT\nVmWlTVYavZ8L1fawbYl5j8YlK/f+YA0PGGexcW3iqHpsPPWUWp9t0oWBYhpscyUrm+2D5ehx0mQl\nIjZsUPdBEWGgdeugTo09psVXVpKQlVY1pGcFOuTBvmQlrTorXcd1vhdbZk/JYPvoo3DIISFMgGYn\nITEMl3piGB1EZhDISjsM1EpIVqpG+7xUWxaNmk1Wxq1wA0wWykpYz4odBhIeykpqg2MCg22HcT2C\nwdZcs4ozmouobd8c67hpILRi6aDPNYtTsDATlDwM9OKL8OKIVlZKDydtuYOsyHxid+vXq1onU43o\nbHbbNrWMepIwULeyEkhWXA9a3zBQiBve6Uh8i3/5zEbKEAZ6+ukQi6yBIiTS+/xK06Tqsy03RAw3\nTJCVZJ4VdwjMaFk0ayoMFJqseNyTTomU/MJA3qqfe1exkUIYqFYj0iDnhOBMn9Wk88Dq1Wq16tBL\nhwyKsuLEeCOSlbxSl9etUwo/oJWVMmPtWlUa5NBD7Tf6PABpYt06YKjWURE0LJKmLUNvHRBfpcT5\nAJ3/TBoGMs0An0aWs+eE17Zeh+HhEB80zTZZ6fEEGSbVMoSBIpwLZ0AzupSVyEqXYbR/e1VaNIcn\nwkCRlJWwBDpkmzp25APnHHh9NnVlRUbPzIgbBpJ159oWl+r82GOqP6tWQ35hUAy2EL1MQI7KiqPw\ntw+cEzRZiYi1axWT72CxkMtFW78eqsPxPDJJ05ZhIrXWEZJSU1ZChoHKaqLsh9CmUhdZ6W63MP1V\nl9wQ1bNiD9RV2UlWkiorsk1WIiorYQl0GISU6oPIivMYp7I2EMRSd+OSlda4arwpiyMrkRMGBsVg\nC6UnK0PTtLJSenRkAkHuyooxNV720eOPw957w557JmiAraz0VUogM2XFFz4dURmUlbBqgiIk3uqJ\nDCAyuSEmWTEShoG6lRU5rMJAMqpnJU1lJSSRdUzGHQdNqw0OEtyn9bpSK6tVoikr4/a19VlNOg/s\n2gUzZkT4wqCEgSCyipk3Wdn3oPzGPQearEREUWSl1YInnoDatHjKStK0ZVCFyaqyzwARVVlJi6xk\n4VlJyWAbug2miYGfslKSMFAUz8qIuk+NhMqKW3EypKXKRwPSChkGylJZKUsYCGLdpx1EOkIZBicM\n5F5KIW9EDikOSgVbiF4moDt1OWZYMAzWrYP9D6lNHDgnaLISAVJ6kJVaPrG7555TaXpD0+MpK0nT\nlsGR41NWVnaDMFAUsmL6khXDd1tuiDhja3nMvmNVbHUpKyYushI2DJSlZyVBGChVg22ItnihZ0Ye\ncvBxyEqeM+tuRH4OBklZiWia7rmOkErlbS+sXw8HHKKVlVJjyxa1loanspIxw1y/Xr1OmRlfWUlK\nVrBTSItQVvoOcj4PaKJy5ikabMO0oVIzMPBRTwKITG6IGQYy01ZWaiYWRniykoWyEnJAcAgb0PPc\nliEMFDd80CYrBa4lFPlemuQG2zx8lI0GPPkkHHioVlZKDSejpogw0Lp16nXKrHjKyosvqlL7iWAP\nGs4zlLeyEijPllxZCeVZqakS1s16s1dZqZnUsJAtOTBkxRmoTZJ7VgyXsiJMkwYG0iqBslKGMFCa\nykrY8IFVn9hBQajXI4ZsBs1gm8Sz4ryZMjZsUKfvZYdpZaXUKJKsrF8P++8PxpToykrgQoJRYMvx\nzk/1rHkymTwrlYrnPqMidBtq6kONUcszDATQarQGkKwkU1ZEbcLLY2IhaiYWZrGelbAG23F/spJa\nNlBCg22s8MEgKit9+urSFIWD5NlAzpspw5k0H3KkVlZKjXXrYJ99uhzoOSorRxxBrLWIAhcSjAJb\nWUnVs5IWWclCWREiUXXQqG2o2GTFGm30fKcyZG8b6SUyuSFiHH2CrDSQLTVbj2yKBKWs0KBZb1JB\nImomDWHCAHhWZABZKZ3BNkpfZg0gWQlhsC1kzS0vpOFZyYisVCpw0KFaWSk1NmzwqJaYI1k5/HAi\nmeAcpDmDq6btWUnbYJtm6rKz35zqrFRq6tx5KSuO6lIoWTGMSNWaW2MT96lTyTWusmJiTZSuHzJp\nomTywpSVkGpGKw+yklYYqBZhtuw0vuAwUNoG21KoKpA8GwgyIyuHHAK16VpZKTWefhoOPrjrzRzD\nQHGVlTQ7xd1KWYFEi8S52xDWswLehMQhMs3xXtUlN0ScwbdNmEyswByLrJgGFST1napjrDjKSqPA\nCrYhCYIcd3Xmg2CwDbkf4XhWClZWIk3AnFK3k5Cs5KmsHHFEtsfwgyYrEfD004pVdiCHizY+Ds88\nE19ZSatTFKaS41NVVkIqF31nUVl4Vpz95hUGskM9XoSkUhZlBWKRFUdZiZOdJezzMr5ttP3/RkWR\n3ECzd3e7J6uykiAMFHtGXgJlJfJz0CesWzqyUkKD7aZNcOCB5Fayww1NViJgwwYPspLDRXvySaW+\nx1VWUgsDOXJ8GGUl5YUM+86islJWQio/QQjvWfEPAzlExjNElBcSkBUnhBOn7RXbXDy2dUT9v2bS\nFAY0BsCzUs+BrCQYnOJ6Vtrrkw2SZwUCn+dYfqqsUNLU5XYGlnMMHQYqH3buVCsX+4aBMrxozz6r\nXg86iGKVFSOCslJUGChtz0oKykrYFMu2sjIWQFbGCgwDRfRGdCgrdjXbuJ4VmFBWKkMmzShhoAKz\ngcKQldSygdJIXXY3LABtslKwZyWOWXsgwkAlNdi2j1OtKqetVlbKhw0b1GsRYSCHmwwNUahnxakD\nMj7S9N9fHGUlDYOtx4DUbCpFqmiDbdhOsDrsT1aqQ3bq8ngJlJWQ959XGCiWsmIrTvVtSlmpDqsw\nkHAZbD3T6B1koaxUKiqs0O9cWP5kJbVU2bQNtiGub7vMfkHKSqul/mIpK4MSBkpKVjK4Nh0EMcbE\nOQk0WQmJp59Wr0UYbDs61hg3SFphIGEPGuO7GhPt6YbPLLZSmShb0oEMDbapkLSUDLahyIpNSLzU\nExFQgyU3RJ3Bu+5TN1mJeh+207ZfspWVmkFLGIhmgdlAzn5DKCst7FzYEhpsPT0rIfqXvMNAy79+\nDytmzO5IgYcY525QlJWI/U5e2UA9pEgrK+WDQ1Ze9rKuDXmTlQKVlbZ3YKflvz+fWazvsTMMA+U1\nIAUhSkG+oDBQW3UZb9Bo9FESskJUsuJWuUYThIHs+87abntWhkyaFRMRNQyU9r0RQnWTdYtRpnYe\ntKsNia9lAWGgSjPfMND2BQ/zip0LadaVqhtblQq4ZomW5kgbJc0G6lHitLJSPmzYoCrIDg11bcgx\nDNQ2NhXlWXG8AzvVQxRYwbZrFut77JAPZei1gTxmz4kUpYSzBycUFaYNDiHxCvU4qosXkckNCchK\nkjBQm6jtHG3/v1k1ES6DrZOV6gkh1AeKUN0si9GKP1kxjBSKkBVhsHXISk6DlRNSdNLXYz/bfQy2\nmqwEoycMpJWV8sGzxgoMhLKSVhjI8Q6MF6SsBLa/QKk/CFHa0CYkHqnLQX6W3BD1XncrK/YaOXFm\nr+0sqZcmPCutikGlOXEu+g74XTPqvO4NYdUZE1M6D+pqQyrXsQBlpdrMd20gp16NtauTrEzaMFAM\ng20e2UBaWRkAeNZYgYnc/d1AWXHCFPWR6J6VQLKShsHWMcWkTVYSGmyjtMGYEqCsuMJAA6OsNHrJ\nSiyDrX3ftXZNKCutioloRjgXXc+oZU0ILrER5t6wLBqVWo+y47QhletYhME2Z2XFaVO3sqINtkq5\nbTS0Z0XDhmeNFQcZu6I7pO5aLVLJc/f3E4eB2p6VALLikIawykqEOit925/V7DnBAxlJWQkIAxnD\n6tzL+uCEgYRlMYJSFZJ4VtqZUDtdykrVbBtsQ+3P495Ixdja594QDUulWXvMQmOl3vq1A3I12FZz\n9qw4bbJ2jrv/O3lTlyP0Oz2FEfMKA2llpZzwDQNB5gyzQ+qO0KE4SCsM5AymToGvsAQkF4Otx77K\nEAaKcu6D1JMg821uiKGsjArl12iOWbHTTZ3zIkeUsmJMMWlVDapRyEqUezIswigrDUtV2/W4z8sS\nBooTPqi0ilFWEoeBJqGy0mM21srK7ouXXlJ/gcpKxmGgDjYLkY6XWhjIqXcx0vBPRYaeBy0Ng22o\njsRjQIIBCgMN+9dSCQoR5YaI4YaKVWfMNpc67XbvJiyc+45RN1mJGAYqSlmxLJpZk5W0wkARBjmj\nlXOdFbtN7uKCEJOsBCgrpalgG6Hf6TkXGSsr2rNSYjgF4YpWVtrHgkg3SdqeFWvECt6Xh8KRVFkJ\nZczs2lcqRbdyDAO1CYlHqKdNZOol8KyEPB+iaTFWnQaoFZidr0UdEBxlxU1WZNWk0ipYWQljsG1Y\nNCu1bMmKM2uIcZ/GNtg6ykpeM2t74cTEZGWQwkBxyUqCsGAQHG+MzgYqMZwaK0UpK3FNcO7vQ/IH\n0fEO1EcawfuKoqxECAP1HeSy8KwUYLCVHoQkiMjkhojhhkrDol5Nrqw4950YVZ6VWGGgLJSVEPeG\naFg0qxkrK0LEvk/jFhOr5hwGEnabHO9T7ND2IIWBQvbxPc+Vcz+kPCb1eGO0slI+bNigrv9BB/l8\nIM8wUAk8K43RFJUVh9hIGXjswsJACZWVKOfenOJvom0TmTKU2w9rsG1a1M3kZMX57WLcpawYJpVW\nsmygPMJAlaZFK+swUMi2eCF+GChfZUXkoKwMalE4T8UygzGppy/Tykr58PTTqiCc74AzIMpK0kqZ\n7XoXYykrK9A3u2lQDbaxwkAehKRNZKwShIHCKitNC8tUYSA5Xo8dlnOUleqYUlbMqSoMVI0SBsrK\ns9JPWWnayorHLDRVj0TM+7SjDZWKSjkMMREyZL6eFacInTurDLTBFnzORQZjUs9xtLJSPgSmLUOs\nQm1REDe90IFlpVMp0/FNNEat/gvHRVFWoO+DGZqsDHAYqFqrtr/UQ1amqv80x6zkizPGRVSDbcOi\nUVPKiqMWuXcTFg6Jq9ZtZWXYQBpGNLJSUDZQtVGn5RMGSnUmH/M+7TkPIQc5Q+arrFRsZSVxGGhQ\nPCsRrqfnJCAPsqKVlfIhMG0Z1EXLuM5KkmygtOo5tNNnxzNQVvr8nkKVlZwMtqIisDBoeagnFbNK\nCx4DMgsAACAASURBVNEuWz8IBttqs07LMNVvSkJWbJJs1Ecm/m+YVGT5s4EqTQuZtWclZFu8kJis\n5KystMayzQYqDVkpobKiw0ADgI0bPRYwdCPPMFBMZSWNh7C9KnCanpUQZCX0YoAlTF2OOgO0MGmN\n9RISIdS2xlhAQb6sETUM1FIDdZ0apKCsGI1RLAxERSANE6NoZSXEgFJpWb7KSqqDYxoGW2c/JSQr\nFbsacjMNsjIoYaC4BlvnPzoMlD+EEOcIIW4UQjwjhGgJIc7v8/k/EULcIoR4XgixXQixQAjx5rjH\n37RJeVZ8kafBNqZnJY2H0Bk0UlVWQgyAzqZQ2UADrKyAIiROafruUFsDo71tEMhKtWnRMkwaKOUx\nqbJSs0awMNttqcryZwM552BglJWQIe0a+a4NVLHXIpJJycqghIFKqKzoMFA4TAOWAVcAwWkjCq8D\nbgHeCpwG3AHcJIQ4OeqBGw3YsqVYspJUWUkrDDSx0F6+ykrojikLz0qOBluAhjBpjnurJ24iMwie\nlWrLQho1LGF2eFai3ouOX8dsjk6QFdOkGiUMVFQ2kH0O/Ay2qZKVpAZbCB3SNrFomMP5KStdYaCs\nUpcHuShc7tlAOSsrCfND8oGUch4wD0CI/jZRKeWVXW/9sxDincA7gOVRjr1liwpDlIasFKisOING\nKwvPSsCDGYmslDQMFLYNTWHQHPcmJEFEJhc4q/5FISumSUOYbdMwRG97xVBzqqHmiNqXvROjaGUl\nBEFQhM1fWZk6NWEbHMS4T5tNes3aIfoy2ZIYNBkb2gMjp5m1s8pza1wrK93Qysokgk1wZgBbo373\n+efVa2nCQCXwrLQiKisdK4J2I4RpM3THVMI6K1HVhIYwafmQlaZQRlWvbbnAWaY4rMFWWmCYNISa\ngcVNXRYVQR2TodboBFkxjGhkpahsoACykmo2UIz7NG4WibM2WGNoWm4za2fhRHcYKNaq2dpgGxs9\n94v2rGSCv0eFkn4a9YubNqnX/fYL+FDJlZW0wkBtZaWebzZQkjBQ4BpGYZBQWYkTBmr5qCdBRCY3\nROhEjVYdaZhqIb9GfGUFlF9nuNWtrJQ/G8hRl8posI07yDmLCTaHpubnWbGL0Mn6RBgoVp8WcJ5K\nVxQu5LnNO3W5qGyggQgDJYEQ4r3AvwDnSym39Pv8lVdeyaxZs9r/V+sCzWH//ef4f6lWg507E7fV\nDx2x1AKVFcfoWKUPWYniWQlh2gwdn45y3LDI2WDbFAbSRz1pCJNWvcAwEEQkK+oCNIWJSBAGAuXX\nmcIo28Q+AIiaiUFEZWVkZGJ/FgwPR29HB0IQBLNVB0dZ2bGjY1vRBltP1S+EwdZRVppTpsO2zZGO\nGRfthRNdYaBY506HgWLDfZy5c+cy99e/VgPk+SrfZfv27akerxuTmqwIId4DfBu4WEp5R5jvXHXV\nVZx22mnt/3/lK7BmTZ/YckhTWlzU6zB9uv0fp2cpIgxkFy0z6RMGKkpZMQzYtSvcccMiocG2Xo+m\n7jQrpi9ZaQkDigwDOQcO61mR6gI0KrXEykpTGNSkvYIxgGFgRiErHsrKjBnR29GBMMqKfQ68+oii\nDbaxlRWbrLSGp+U2s+5eiyj2uRuUMJBpQqul/vp0HkWEgebMmcOc1avhu9+FG28E4MEHH+T0009P\n9ZhuTNowkBBiDvA94D22QTcWnn++j18F8g0DhRjcu5FWGMgpWmbQ6F/BtqgwUJeykvh3pxAGitKG\npjCRlk8YKIDI5IYIM3hDWkizRrNiUrHipy4D7fBP035VykoJsoH63BuGQ1Y8FIuiw0C+4YM+EyGn\nMGFrytTcPAttZSUpWQm4ZqUiK04H22cZEsgvG6jnODobqBdCiGnAUYCTCXSEnYa8VUr5tBDiC8BB\nUsrL7M+/F/gB8HHgfiGEQzdGpZQvRTn2pk19/CqQi8G2/RBVq4ppF6CsgJLjQykrXZJ7kjBQEs9K\nGcJAUdrQrEwcr9dga/puyw0RZvAmFqJm0qyYiKTKit1VNSv2Csw1kwoSa6yJaYZwWWZxb4QgCIZb\nWfEgK6muDRQzDBR1Ru6UvJdT8jPYdhehS+RZ8fh9johROrIS4kbV2UDlwhnAUmAJqs7KV4AHgX+1\ntx8AuFfv+XOgCnwD2Oj6+++oB+5bEA5yUVaSsOY0yUrDVlb6elZKoqwUHQaKTlb8CUmrYiAbA+RZ\nkTZZqXaSlTiDTMMO/zhhIGEvqlnf1WedqnZjiqmzYkr74c3aYFtAGEhOnaZG+BCz/6RwVnl2Vl9O\nFAbyOE9JiHQmiFCA0TORIMMwUId/UisrnZBS3kUAsZJSXt71/zekdexNm+DMM/t8KM8wEESW39Ls\nFJvCwJQhlJUUDbaRPCuu46bi7k94baPOAFu2CuEc2o1mRRlVvbblhgiDYg11AZrVGpVGsjBQUzjK\nivpypaZerdE+xNlBVqpbP2XFVpe87qPUFzJMw2AbRlmxCxPKadMmdhQ5hzga2qs8JyUrPgRzkMmK\n531kmh3+vTTQc44yXsC3G4OirBSGMnhWega8iMdLy7MC0MDMXVkpPBsoR2WlVTGg6a2eNO0UYK9t\nuSGkN0K2JDV7oG5VTSpNi3pdjWlxVv92vCotR1mxF9Xsu06Vg4LqrJhY4JCVQTDYhhiAHLIinKyD\nHAYsE3WMSn0cSD8MlET1ywTORQmprHiSlbzCQDJMUfnk0GQlAFKWg6yUSVlpCCOcZyXswJB2GCgr\nX0LMBzJyGKjqr6y0qgaiDGGgEPd6s65CAw5ZEc0ImTte+7O9Ks2qrayYIRfVdFCAn8lN2CaTwdYh\nKzjKSg6hANNWVkQjG4PtICsreZGVer2rEJ/D7BJM5qJAk5UAvPiiut59DbYZy2E9N2OBnpWmSFlZ\nSdtgm4WyArHj8pGVlarZXmG217OiBn2vbbkh5Aze8TWIoRqtao1KUrLiKCsOWXGUlX5LP7jbnbPq\n5qyQXfEJA6WurORksG2M2MRhuisMlDHaykoanpVBCgOFOLd5Kium6VJGQ0w004QmKwFwqteGUlYy\nrrPSU7ipgIUMwfaslFVZyWpAgtizh8ielapJRXqrJ62q2e60B4WsVIZNWoZJtVlPRVnpJit970UH\nWapuPmgTtgCykmo2UMwwUNQQs1NFuU1WMlZWHIUKoJJUWTHNidQfF+IuBZEZIiorPfdRBmNSjzcm\nRs2vJNBkJQCRyMpuoqw0KiGUlRKV209lQOrTviBEbYOsGr6EpFVV595rW24IGW5wanFUaiayalJt\nJVNWHK9Km6zY2UChyUoB2UAT6lIOykoCg23UvsUJA1Vm5ENWHIUKoNJMmLrsQwJKp6yU1LPSQ2yd\nDTlAk5UAhFrEEHIx2JbFs9IKo6y4zkff+gWDEgaKqazECQP5kZUgIpMboiorQybSMBOHgVq2siJt\nslIdLoGy0i8M5BC2oVrPTFfK4g22nmpCiJC2o6xUpudjsHXuJYBqGsqKswP3McpGVtLIBsooDNSG\nVlbKg02bYGgIZs7s88EclJWo63e4kWo2kK2sBNa2cHWcfTsBx62VRjZQVhkfkBtZkQHqiUNkYq02\nmxZCeiMcX0NlyESaNYxWPVHYwzHWtozOMFBflc+n3andGwHnYoKsmD3PrHM7FWmw9VVW+gw+LXvl\n4+osew2QjAcrZ+HEMYaoNlMw2EL5lZUSelZ6SJFWVsoDp3pt31TLIsJARSkrlWjKSt9OQIi+s8JS\nKCsxr29UoiiNgDCQESIElzVCzuCdgbo6rJSVastKVFekR1kZihgGKkBZcRSB6rArDGRnlaU+OOZo\nsG0rKzPyMdg653FETGuTlUSpyzCplJXCwkBaWSkPQlWvBXVjSJlJJUcp1f0aVap1I9VsoIielVCd\nQJ8Hy7JCLgaY1YAEuSorJpb3762GIIpZIyRZafsahmtIw8RI6lmxSYo0YoaBCqiz0qGsOAez+4hM\nyErOBltzlh0GytqzYp/Hkcp0qq2UwkCDoqyUjKxoZaWkCFVjBSae9gwumm+HUlA2UKsSstx+WGWl\n6/NeCN0xZaGs5G2wNfzXXmoFbMsNEQ221WETWatRlcnIinSUFbsTd8hKaKXJ1W5nXpEKkQ2YpDiE\nra2sQM9zkVo2UI4GW2cxzerMfJQVJ6Q4Xp3WXtAwcRio7MpKRIOtZzZQ1mGgyaKsCCFOc/17lhBi\nj6yOlRUiKSuQKVkpi7ISKgwUVVkJEQaKNHt2Se2Dpqxg+JNBWZYwUIh7zz1QC9PElMlSlx2vCo6y\nEjUMZBiKVEiZ3sDU595wFvzrUFZcqwan0gZ3W2IYbHv8T6EMtuo3GDOmTOwoQzjEd8ycnpys9AkD\nlaaCbUmVlUmTDSSEOF0IcYkQYh/gj12bdgGXCCHOTfN4WSMyWcngofU0lxbqWQlZFK4oZQU6pPai\nDbbRPSsB6ontZwm1cF9WiBgGclQFIzVlxVZUpkQMA7muY2pEoc+9EaSspF7XI6bBNs4gJ+sWdUzE\nUD4za4f01c0JZWXSpy5H8MoVlg2U4bjnhbSVlZ0okvIA8GdCiP8WQrwTmC6l/DZweMrHywxSThhs\n+6LkykqaYSAZxjcRR1npkw0Uqv1dg0cZDLaR22D6k5VAIpMXwpIVe4AxpqREVhxlxez0rETKBgKw\nrPQGpj73RgdZ6QoVl8VgG6uYWN3Covc3ZQVHWbFq0zAzUlYGvShcHmTFNww0iMqKlHK1lPJDUsrD\ngHnACuAiYKkQYiXwljSPlyV27YLR0eLDQHHX73AjVYNtNYKyElZy7zMrjKysuAaEyRQGogxkJeQM\n3jFhVodNGKolDgPJqjFxfMAYjpENBOkqK/3CQDZZMabWfD0rRRts4yorDTdZyVpZsc9jY2h6e/Xl\nSW+wjehZ8byOdtgzLfiGgXJSVrIUlG+SUv4e+B6AEGJf4IUMj5cqnIJwZVFWktRZSZOsyIqBya7+\nSglAq4VlqYB4LmGgrpnuIBpsg5QVYYYwN2eNiGEgY4rtWcFKpPB1KyuRw0BZKCt9BpQOwkbGZCXG\nTDp2+MCqUxe9BCwrOAbb5vA0ai6ykigMVHaDbURlxVkAuw33tUlJVu/pywZNWRFC/IMQYrkQ4iOu\n92YCJwghDnLek1JullK2PHdSQmzdql733jvEh/MOA0VQVhxynVo2UBiTp+t85Gqw9QgDJf7dOa8N\nNBBhoBD3uTNQG1NriJpqd6rKypSIYaAslZU+YSBzaq9nJXVDZ5rKSr8yDHWLhshPWXHupdbU6ZhM\neFbSDAOVlqyEeNZ8r2PI74dFT182gJ6V/YAngQucN6SULwG/Bv5UCPH+FI6ROxyystdeIT6cdxgo\ngrKSdizW8az0rWAL4QeGtJQVDxNj1rPnfog8QNcCyGCtJGQlQhjInKqMmBUk1lgzPllxvliLGQbK\n0rPiFwZyCNsUs6djz0RZSYOshJktW5ZaBbtaVelEGc+sHf+TnDqNGrtZBdskqcvOxpQw8MoKIICL\npZTu7B+klI9LKT8PvCqFY+SOSGSlxHVW0n4IZVjPin3wIsnKIBpshelvYB6kMFCrPjFQO6XxrV31\n+G23lRVh78CcGjEMlIWy0ofISjdZyctgG8GjEDjIBfUvlkWj4pDHaOuUxYFDfJk2DYMmzXozdYOt\nZYUsPJkX0jDYOhtTgm+5/QFSVr4AfFIIUQUQQhwrhFgjhHhWCLEAOCqFY+SOrVvVtZg2LcSH8w4D\nRVBW0icrIbOBIPzA0GcADB1KycKzkrPB1vF3eH4naFteCDmDl/b6MeZUE2GrIeM7E7Td/qKzr2pN\neaHKnA3krKHToay4VL9U2tDdllb4SLuvZwUC+xdh1ZWy4nw+a7Jin0cxQ61FZI0k8D8FGGxLo6pA\n8oUMM5hA+xpsc1JWQhtshRBvBM4B7gUWSSl3AEgptwgh/gf4JyHEl4F/B34HPA6MAz9JvdU5YOtW\npar0XRcIMmWYSbOBQi8CGBLSHABlJc3U5YQPZNROVdRMDJqYhkSJlq5tZSArMcJAlWF1AqyRBG23\nO2+HrIiKwCLC8gNZelb8lJW6y7Oyy9uzkmoYyNlxyFUuY8/IGxZWxb6pI5r946DZtRZRfWcdyxpO\nFgbyUFZKUxAOJmSeEikrPcepVlUby0ZWgAOAz9r/bgkhVgEL7L/7gK8CnwOaUsq/TrORRcAhK6GQ\ng7ISNxso9U6xAGWlFGGg3JQVdbxho0E7g8TZFkBkckNIg227JHut2g4DNUYShIEcZWVoYgcWEchb\nltlAfsqKi7D5GWxTV1Yi3KdxBzlhWbRyDAM54TRnlWdrV4I0+IAwUKmUFQj9rBUWBoJcrr+DKGGg\nzcA3gIOBS4G7gNnA94FHgbXA/wOGhBAnpdzO3FE2shJXWUk9DBQlGyhvg22Wqct5kRVbOZhi9J6P\nSs1NZApCSGVF1i3GqSEqYsKzkoKyUjEn5lcWEZYfKEhZaSFUyMrHYJvq2kABbfGCp5oQInwgmhZN\nh6z0eXbTgHTK+8+ylZUd4/GVEJ9rlooZP22EfNbyVFbyWIPID1GUlQeAF6WUG4Hr7T/sNX9eiwoR\nnYMiLOcLIbaiCM1PpJQ/T7XVOaAsZMUzjBMjGyjNFMnQyspkCAMlNNhGDgPZA/twtfd4DpFR2wrq\nWadMgR07lJEzKEZqqSqnQ0xUm7VGrPj3YZdnBaApDExZAmUlgKxYmAxVRD4GW/eOQyDuIFex6jSr\n+Skr7TR4ey2i0e22H2qyKyvOs9YHhWUDQTmVFSnli1LKBzze3yal/I2U8pNSytcAs4A3Af9j//vv\nUmttjigLWSmbshJYYdVB1FlsBmEgKdUuBy0MVA1QT9pkpUhl5YQTYNs2eOaZwI9JpxYHtD0r1Vb8\nMJATHqu4wkANYYZfKylLZcXnuXfISsfBShQGCjTYBvQvomnRrNYmPp/1zLpeZ5wa1alDAIy9tJuQ\nlRNOgBUr+n6s0DBQSZWVUJBSjgG3238Di7KQlaR1VrIw8vUlK3GUlZ07fTfX6x4VGv32Yx/X6bOL\nJCtxCFOnetKJdhjIY1tuOPVU9bpsGRx8sP/n6vX2QO0oK4nMwfZ56SYrpcgG8rs3rAnC1t1HZLKQ\nYVBbvJsXT1lpWLTyVFZs0ledoghSIrISUGeldGTl1FNh3ry+H4ub1RUVvgpO2ZSV3Q2RyEoRdVYa\njVA1FQoJA3XNYnuWoff6fMqeldQGJKfxMa5tHMJUCQoDBWzLDYccAnvuCUuXBn/ONVCnQVaE0aus\nNEWEbKCopu8wCBkG6visS1np+1xEQZ5hoGa+ZIW6hSVqao0lJshKrD7Np5BdKcnKKafAmjWBEzko\nMBsIcskGc6DJigekLI+y4tmxRiBHWSkroSrYWiFLrGdQbj/V3x2jlDnEI4qOejJU7T1e1R6ovbbl\nBiHUjG/ZsuDPWVa7FoczI05EVmqdxAcmwkBRQ4R5hYGEVe9VVlwG21QHx5jZQHEMttVmfYKs5BQG\namC2ycr4jgTKCng+z6UkK6eeqgajhx4K/FjhYSCtrBSHXbvUNQ5NVpyOIqM6Kz0zsBBxZQfpk5Xo\nqct9j522wTbNAcnZSYyHPk4bHOVgqOIfBvLalitOPTWUsuLU4nDW8amRwLNS81BWKjHCQDl6VtyE\nrXtGHzubxQ8xBqe44QOlrLjqrGQ9WNn3kkNW6jsTkhWP57mUZOWEE1Sj+jxrhWYDaWWlWDil9vfc\nM+QXhAidEx8VcWc/DtIOA4kwnpUu0pC7spI2WYmprMRpg6MceJKVACKTK045BdavV0ZbH4jGxEAd\neYVkD1Q8lJWmMKhhhSuRnsW9scceyky1fr33dstVlh46OvayKCtxDLaVltW5CnbWg5WtUHWTlUSZ\nZYNAVmo1OPHEQLLSaqk/razspoi0LpCDjB7auB2K+/vuryRF0No1bRSlrGThWQGYPj1wYPZDIrLi\nEeqpBBCZXOGYbJcv9/9MY6IWRxpkxckG6iArFTP8ufBQVhL7RapVOO00uP9+z82iYdEQrhHVdZ+n\nPjhOVwXTotyncWfk1aaLrOTkWWkKE3NaSsqKTxioVBVsHfQJuXp6GkF7VnYXlImsJF33IXWyUjOp\n0sKsBqxBElVZ6XPuQtcqycqzcsopsGRJ5K/FUbWqQ/6hHsPeVqsU6FkBOPZYGB4OnPEJy0VW7Blx\njXrsAcFRlbrJSuhz4XFPhlpKox/OOAMe6KnooNDoUlayJCtHH63qckS4T32zO5yNPjBa9VyVFdGw\naFRq1KbbyzbsSj8MVMqicKD6nhUrfM+xb1ZZymSl1YJmU2cDlQ5lIiuBHUoEZSWtWYM5JcSAGVVZ\nKXsY6Mwz1ew5woq2djMit8EZlGuixGEgw4BXvCKYrDTqbbISeYVkDzh+HTdZaVUMajGVldQGple9\nCtauhRdf7NnkJmxAR8ee+uBoGHD66bB4ceivxFZWWhYtMz/PirDqNCoTykpjZDcx2IJSVup1eOQR\nz82+fUzKZMX3OFpZKRZbt6pZ16xZEb5UUmUl7XoOp3zkLB77m28yNCXg1pk2TZ3AF17INwxUqbRN\njKmTlRdfVINSBCQJA3mRwfY2DyKTO/rI05WG1a5ymopnZahzXwCtislQ2HMRNUMtLM44Q716qCui\n4VpDB7JVVkDdpxHISty+pSotyDEMJBoWzUqN2gxVFM4a2U08KwAnn6xefZ61vMmKVlb6QAhxjhDi\nRiHEM0KIlhDi/BDfeb0QYokQYkwI8ZgQ4rKwx9u6VZlrQxn3HGTEMNNSVtJ6EIdPPpZjrvpLAnOX\np06F44+HxYvDKytpkBVQH0w7DPSqV6nXCAMBxDv3xrB/GKhaljAQKHl61SoYH/fc7K5y6syIk5CV\no957Jnee/gkOOuvl7feaVRNThDwXQsBBB8HatekOTEcdBTNn+pKVdll66DHYpu6ROPNMZfbdvDnU\nx5MoK+3P5RAGqjRUeX9HoWsmVVYGiazMnAlHHumrYvr2MY4hKyUioZWV8JgGLAOuAPpq8UKIw4Df\nALcBJ6NWhP6uEOJNYQ4WqcaKgzwNthE9K07WZK6YPRsWLgyvrKQRBnL2ZVnpZkHttZfqMCKSlVie\nlQD1pHTKSqPhWw684lIVnEEmSeryrEP34PUPfKVN5gBkxYh2LmbPhgUL0h2YKhVf30qlWc9XWXFI\ntZ+HpguebXA6i4BBzpQuSSYnZaVVMREVQR2T1thuFAYC9aw9+KDnJl8SIUSqY1KgN0YrKxOQUs6T\nUn5GSvlrIMyw+5fAOinlP0gpV0spvwH8HLgyzPFik5WM6qwkyQaKupBeajjrLFixgsrIzlQMtlHJ\nStqKUlSJHWIqK1P8CUnQttxxyinqxrrvPs/NlaZFyw4VVM0KTSrJyu17oFU1o5OV+++nOZZuOzjj\nDM+MoEq3spI1WTn8cNh779D3qa+60+d5NKSFdDwreRhsXSpdnRrNsd0oDATw6ler+8vjPAd6ElO8\nNr7H0cpKYpwF3Nr13s3A7DBfLpuykqTOSmEP4VlnQavFy569PxWDbeiOyQ4pZUJWHnww0jVOEgby\nCm+0vR9hQx9ZYnhYGTrvvddzc0dJdsAiQrXZkGhFCQOBIiujo+yz8aH0ycrTT8OmTR1vd58D94Qm\nk+dSiEik2ncSEIKstFe/zkFZqTQmKuZaokZrNKGyUqvByEjHW6UmK2efDaOjnr6VQE9iBmTFc+Ks\nyUoiHABs6npvEzBTCDHU78tlIytJlJXCHsLjj4cZMzjs2YX9jz9rlloKvasDcVC4ZwXUIDA+HmoV\nVAdJlBXTKwzkeFbKoKyA6kTnz/fMkqo260jXQF2nligM5AVZNTzPky9OOw1Mk5c9dV+6z4QTfulK\nG+6o9AodfURmqbIOWQmRueb7XPWZLRvSai8smcfMWql0dtqyqCHHE5KVV7yi51qVmqycdhoMDXlO\nDAL7GB0GmvwoE1lJIxuokDBQtQpnnskRm0OQldmzVRL/okU9m3wrNPohqzDQqaeq3+RTAMwLcTwr\nE6Xp/cNApse2QnD22fDMM/DUUz2bKq2JMBBMrOOT5r3YMsxo58JWg17+zIJ0B6ZDD1Xhl657o/sc\nZFrB1sGZZ8KWLfDEE30/6tuGPn2ZiYVwG2wzHqzcaxFZYkLJiX3+zjkHVq7sSDfPxPCcFoaGFCEu\nkKzoMFB2eA7Yv+u9/YGXpJTe6Qs2rrzyStasOZ9bbjmf889Xf3Pnzu1/xDzDQIOgrADMns1RWxZi\nGn1meSeeqNjhXXf1bIpMOrIiK1OmwCtfGbmORdQ2OGZUg97wxpSZatvMqSUIA4EiK+DZiVZds2GI\nuOhgSMzYy2TGlIjnYvZsDns2ZWXFCb90+XeqTatDXer2rGQyOIbMXJOyj2cloG+p8f+3d+dhUpTn\n3se/92zMAAoqCEZEJSioqCyigKyDYRQUgqiICueNEo5LFsnJpsmJJ/FoYtwSY1TUREXNGDVRcSXu\nSxSNEI0b7r5oBBQXlGWY7Tl/PN1DT09Pb1PdXc38PtfVF0x1VffTXdVVd93PVg9d8jfOSuyIuY0x\nmZWsv79x4/wXEHPchnZQuKixY3154zJmhcqs1NbW+uvj/fcz/a23mD59OgsXptUkNGvbarDyDDA5\nbtmUyPKkLr30UsyWcPrpS1iyxD/mzJmT+h1zFGEGMYJtwX6Eo0bRc8tH9GtoZ+6UqJISfwJ54ok2\nT2V8wY/URwcerIBv6Pb002mvnlWwUlXGyr2nM3jyrm2e69Kjko9ue5yh/xV/aBdI796w996Jg5XY\n+WPwd8RBBysHPrOIgaufymyj0aPp9eV79HFrgisIwIQJvkos5jdZEvcd5LyBLfh9MmBAyuO0qclf\n9zK9yDU3NlNKc8tcTXnputy8NfBtLKmABn/lTDrzezIDBsAuu8CTT7YsCnU1EPgbg9Wr22TM8p1Z\nib7PnDlz/PXxmGNYsssuLFmyhEsvvTSQ92pPUQQrZtbNzA40s6GRRQMif+8Wef6XZnZDzCZXxpV0\nVgAAIABJREFURda5wMwGmdnpwDHAJaneq67Ot2UKSzVQR9usFKwaCPzFHdjvy2Wp1x0/3t+Zxn2m\njAe1GzoUnn02N8HKxImwcqU/aaQhmzJYaQmDX7+LPickCEhKStj5mPGU9N05/RfMtUMPTRysuNYX\n6kYrD7zNCmVlmU/wM9q3sR+6OeV9S2YmTfLTtce0hYgP2HLewDZq4kR49NGkq2R7kWvY5JdbdPbr\nPGRWypq2Du/fWFJBScMWyso6MByDmb85KqZgZcwY/2/cb63g1UBqs9LGQcA/geX4cVYuBlYAP488\n3xfYLbqyc+49YBpwGH58loXAKc65+B5CbXz5pf83TMFKUfYGAujVi39XDWTw52kGK3V1ber9k3bN\nS6S62o8zsX49kINgBVJeCKKCnvE6lA491Dc6/uKLVotbDRyGn8cn6MxKVvr1Y13X3ThwY/oZsrQM\nHw7bbdfq2Gg1hw7kJ7MCPnB66aWkg8MlvcglyRJHg5V8ZlZKY7pKN5ZWUO6yn2Oqxbhx/jyxeTNQ\nBMHKjjv6TgtPtc4kJj3H5KOBrdqstOace9w5V+KcK417nBx5/hvOueq4bZ5wzo1wzlU55/Zyzt2Y\nzntFrnHhHmclmv8Me5sV4M0Jp9DtoH1Srzh0qD/Zx1UFZZydmDQJmpvp9ap/naxTxYn06ePb1zzy\nSFqrR8seaBnC5tBDfQvoZa0D0rLm+q1DsoOfNTcMwQrwxo6j2WdDZmPmpFRW5i+AMcFKaXMDrrxA\nwQrAY4+1u0rWmZXIJIIllflrs1LWXN/yPTaVBNSrbNw4/xkjjfoLfZ5MS4IsZqGqgVq9hzIrhRG9\nQQx1ZiWD0QkLWg0ETLz/x4yvPS31imVl/scY18g242BlwADo35++rz7SsVRxe6qr086sNDSQmzKE\nyaBBvidMTEodIt1bY3ZaY1AXmQDs/+hl9Ht5afAvPGmSv5hETt5lzTGDp0Gru9CcNujcdVe/X5IE\n1SkHE2vnAtS4OZJZia0Gik7JmyOxWbqm0oCOoyFDoGfPluO2KIKVsWPhlVfa9GIC9QbqlDqUWclX\nm5Xo+xVBZiUj48f7k33MAHEZBytmUF3NV15/NDefu7oa3nkn7a6h23QVELR83zz4YKvFrUY5JUTV\nQMB2A/uw41cqg3/hiRP9WEGRqsxWE/5BfnoDRVVXJw1Wsh1MrE2wEn2BHF6wfODrv6zAgpXSUn9z\nFMnkFsV5ctIk3yr64YdbFmmclU4smlnZYYcMN8znOCuQdkRbFD/CqAkTYMOGVvNgZNVQtrqa3h++\nSJ/SdcGWD3wZzdLKroS+O2RQamr8BfrTT1sWtRo4jMikgwGPsxI6w4b5iecix0Z8dilv1UDgL2xv\nvAEffJDw6WwvcgkzK5DTC1bsXERNZT5YCeQ4Gj/e95rasqU4zpP9+/t2K0u3ZgWVWenEvvjCN53I\nuJ1BPquBou+XZmalaC4QI0f6Lz/mx5hVI9VInf1EHguubFE77OAbU6bRbqUoToBBqKnxVQEPbW2/\nXuZiBg7DtzUIS2YlZ0pL/QUw0lYkPmDLW28gSNkYvKNtVqKTauYtsxI5ATSXBVideMQRsGkTzY8+\nTlNTkfxWa2r8+TEy3koo2qw0NqY1YnJHKViJs2GDH/09Y/kcZyWD9yuqu/vycpgyBe67r2VRVpmV\nfv34ZKe9GN+cXtuSjEVT7Cl+oJ0mWOnXzzc8jgkyy4mZP4bIpIMhabOSU9XVvipz06Y2AVteMyu9\ne/tBDFMEKwlvApKcW5rq/PLSqpgGtpD7zErkWAo0WBkyBHbbjeZ77gWK5KaupsbPQ/Xaa0CKdnH5\nqgaKFiTHFKzE2bgxy2BFbVaCMW2ab6Ef6XaZ7Xgpb+9ezdj69HrtZGzyZPjwQ3j11aSrFVVWq6Nq\nauCBB1oCuArq2wQr23xmBfzxW1cHDz3UJmDLy3D7sSZPhr/9LWFQnW2blZZgJZpZyWAYhWyV09DS\nVdoFWQ1kBtOmUXL/vYArjmNzwgQ/bUTkxiDpzWjAmZWSkgTDGuUhWI1SsBJnwwZf7ZyxfFcDZdBm\npagumEcc4U+uDzwAZB+sdD3jZNac/JPcpCcnTIDu3eHOO5OuVlRZrY46/HAfwL3yCq7ZUUZTgsxK\nw7bdMwr8iL6DBsFdd/l5i+KrgfLRGyjqqKP83E1xk/ZBGtUH7Vx82gQr0RfIZWaFmGqg8oB7lU2d\nSsk7b7M3bxTHb7Wqylc1xpwf2y13376+3VIA58CkM3RHC5JjClbidChYydc4Kxm8X9FdMPv2hREj\nWqqCsg1Whpx8MOMWnZSbfsOVlT6ouuOOpKsVXVarI8aN8yfSpUtbBg5rmT8Gn77vUpKfXgMFN2MG\n7u67fXDWTrCSl5uIceN8t8YEx2m2bR2aNke6ZVflJ7PSVN9EKc0t36MLOliprsZ16cI07i2e32pN\nje/FtHlz8nPMjBnw9tvwr391+C3bfZ88ZNaiFKzE2bgxy2ClosKnfwOW9CDZ1noDRU2b5u8cGhtz\nM2x+EGbO9Hes77/f7ipF+d1nq7LSZ5weeKDtKKf4GZIrLD+9Bgpu+nQsUo1psRFJPhvYgm/McNRR\nwQYr8W1WcpxZaTmWIoPQBR6sdOvGltGTii9YqauDxx9PfhxVV/s2DX/5S4ffMmlHD1A1UCFk3Wbl\ngANg7Vo/d0yAgugNVDQ/wqipU+Hzz2HZsvAOWT91qv9ik1QFFXpAvrw78kh4/HGaVn8ExMwfA7gy\nXw3UKYwahevVG4jp4gv5bWAbNXOmb4z5+uutFmfbwLZ5i1/eJrOSq2Al0vuoJUNVHmCblYiNE6cx\nnieorP8i9cphsO++sMcecOedyY+jigqfXQkgWEna0QOUWSmErDMrRxzhu93++c+BlieI3kBFd8Ec\nOdL3Zrj77vBmVnr08HcuSaqCijJQ7IhZs6CpiZLbbwXiMysVnSezUlpKQ82RAK2rgaqq/Ammri5/\nx8aUKdC1a5ugOmkD2x12gFWrEo5K2yZYyXGbhfjMChXBj4T8xbhplNPITm+mMYdZGJjBccfB7bfT\nVJei0fqsWb4jQAdvopN29ABlVgoh6zYrlZX+LuaWWwJt1NkpMyslJS3fZcOWZiCkn2HmTF93/Mkn\nCZ8uyu++I/r2hYkT6XKbn4arpREmQFk5FdZJ2qwAdTUzgLjMyte+BvX1uHvuzd+4HlVVvvFzXFCd\n9CZg1iw/s3iCbs/RNivlXfOTWWncFJmLKGYQuqCDld0n7snGd9ay38Ipwb1orh1/PHzyCbu//Ujy\nm9EpU3xngA5mV5J29IiukGMKVuJkPc4KwOzZPoJ96aVAytLU5Mfa6nRtVgDmzoVVq9jxFT93Ryg/\nw4wZfgfdfXfCp4v2u++I2bMpf/0VoPWF2pX7rsudRcOkKfxth9nY8GFbF+6zD4wcibthMZDHY2Pm\nTD8cQMxotkmDlYMP9r2aFi9u81RzfSSz0jVunJVcZ1bigpUgs8UlJdBtz52La8LRoUNh77058LVb\nkh9HlZW+DeDtt3fo7VL2BlJmJf/q6rLMrAAcdphvfX/LLYGUJdvuhbGKshoI/Lwde+7Jnk/6E2Yo\nTyR9+/rRcq+7LuHTRfvdd8TRR+MiO6sldQ/0Gbk7DQMGF6pUebdTvyqmfHoLhxy3e+sn5s7FHriP\nnViXv2Nj+nRfFXTDDS2LkrZZMYN58+Cvf/V3bzFcpBqoJbOS44tVdHj/aINe6xKeCTELygxmz+aA\nd+6ga+mW5Oseeyy88ELLQHLZUG+gkMo6WKmo8CnUgKqCsm0EF/8aRfnDNoO5c9lz+W10L90c3vE5\n5s/3VUFvvNHmqaL97juiVy82jjoMaF0NtM9V32Wflcm7encKxx/v/yHFHXGQtt/et3H4wx98JpAU\nbVYATjrJt6+Jqz5y9XHBSq67Lm+OG95fwcpWxx9P1/r1jNuUYgbxI4/0M6P/4Q9Zv5V6A4VU1tVA\n4KuC3n0XlnW8sVbKUSa31TYrUXPnUlH3JUeX3lXokrRv5kyfTUtwIijq774DPp3iL8it2qyI17s3\n9ZOnMpcb83tszJ/vz0uRdigNDf5+oM2IpFG77+7nF4qrCmquiwQPFZEN85xZKelSQQUNlJflfi6a\n0Nt3X97vOYSvfZaiU0eXLj5Ttnhx1vtJvYFCKuvMCvgf+IABcMUVHS5H0mqgbbk3UNTAgfx799Gc\n0HxjoUvSvspK377m+uvbnAg6a7DCscdy17D/ofuYAwpdklDaMHMuh/AcPdcEO8xBUmPG+DYz11wD\npHlszpsHDz8M773XssjVN7CFCqwkkurMc2YlWrVYVdZ52j8l897071Jx0IGpVzzlFD+FSTvt61JR\nb6CQ6lCwUloKp50Gt94KH33UoXKkrAba1jMrwBuHzGNgyTt5+TFkbf58v6/vuafV4qIOFDug/+Cu\nzFhxDrvv3aXQRQklN+1I/tHv6/TtsTl/b2rmj9M77oB169I7Lxx7rE8z//73W5c1NNBA3NgxkPPM\nSrSrtEWClcrOMhpyCuNumM/E+36YesX99oNRo+Daa7N6n5TVQMqsFEaHghWAk0/2TcyzPDCiklYD\nde/u5/1IMBZCrGIPVibdPJ+v1r0a7qv+kCH+RHDVVa0WF/t3L7nRq18lI9+/g71nD0u9cpDmzvVt\n6a6/Pr1Aunt3WLDAZ2MiDW1dfQONFnNQl5b6c12OgpXouC7RaqDSaGalJEWjUmlr/nw/AeKqVRlv\n2m41UK9evvfrxIkdLl4qClYS6FCbFfBtGE48Ea68Ehobs36ZpNVAc+f6od5vu63d7aNdn8N8nU+p\n3fnPQ+bb34YHH2w1aZyCFQmV3r1hzhy49FKaN29J79g84wwfqER7EtXX00jcht26+RunHIifi6ik\nymfrqkqVWcnY7Nk+AL388ow3bTezUlbmb9a2267j5UtBwUoC3boF8CJnnOHHNbgr+8ahSauBRozw\nc0Scd15LC//2ttcFMw+OOw6++lU4//yWRQpWJHTOOgtWr2a/529I79js39/3cPztb/15pqGBBos7\nIZ10km+j9+WXgRc3OhdRdFyXaJuVLp1ogMHAdO/ur0tXXgmffprRpmGYEFfBSpzu3QO6kR82zE/l\nff757QYTqaTsXviTn8DLLycdlCzp9hKcsjL48Y/92BSvvgp03jYrEmKDB8OsWRz69wuoLEsz63vm\nmfDmm75NVkMDjSVxJ5Szz/aByu9+F3hx3ZbWmZVodVCnmcE7aGee6bP9Ge6rMNx4KViJ0717gC92\n3nmwYkXWowcmzayAnwJ+/Hj/PgnGdUm5vQRr3jzo1w9++UsgHD9wkTbOPpudPn+HmVvSHLxy1Ch/\nnjn7bEq2bG7dZgX8Mb9gAVx0EaxfH2hRo5mVim6tg5VKZVay06cPfPObPlOWQSas3WqgPFKwEieQ\nKqCosWP9UMc//WlWraVTZlYA/vu/4R//SDj3Q1rbS3AqKuAHP4DaWnjtNQUrEk7DhvHKHlM59bM0\ns75mcPHF8MorDHv1ZpriMyvgq5c2bfIXwQC5uOH9o/+qGqgDvv99H6gsWpT2JqoGCqFAgxXw1UBv\nvdXukOzJpFWNc9hhfoTC733PjziZ6fYSrAUL/PTt3/42DfVO372EUtmFv+KTX13re/Kk46CDYO5c\nttv8EY0lCW6xv/IV3x7iwgsDbWzbvKX1xIkt1UAKVrLXv7/vsXr++bBuXVqbhOHGS8FKnECrgQAO\nOABOOAF+9jP4/POMNk27Gue3v/XjfJx3XsLtC32QdSqVlXDZZfDwwxy+8faCp05FEhl0zP4cfOaY\nzDY6/3zqS6sSZ1bAZ3m7dvXZxYDEz0UUzaxUoGClQ84912fVfvKTtFZXNVAIBZ5ZAbjgAp8i/dGP\nMtos7WqcAQN8486LLoLXX2+zfaEPsk5n6lSYPp1zN36Prs0bUq8vUgz69WPpEb/h1b1mJH6+Z09/\nrquthccfD+Qt3ZZ6GihrGTG3vJsyK4HYeWcfsFxzDTz/fMrVVQ0UQoFnVgB23RV+9Su4+mp48sm0\nN8soM/KjH/n03kkntUQpyqwU0G9+w05uHcOf+X3qdUWKxFF3L+DYfya5G583D0aPhm99K5CB4lx9\n6xFzlVkJ0Gmnwf77++q7IhhcVMFKnJxkVgBOPdXPz7FgAdTVpbVJRr15qqr8bM8vvugbu6FgpaD2\n3JN3Fz3IgMvOLHRJRPKnpMSPufL662lXMSTjg5WtJ8BoZqVcwUrHlZX5MVeef75NE4J4qgYKoZxk\nVsD/iK++2s98evrpCbsax8u4N89BB8Gvfw2XXAL33KNqoALbd8FYdtlD8+NIJzN0qK8OuugiuP/+\njr1WQz0NMV2le/SuYH3ZjvTvXwSjWheDMWPgnHPg5z9PWnWnaqAQyllmBfxkUldf7XsGpTErc1aZ\nke9+F6ZPhxNPpHzlS5lvLyLSUWee6YdtmDevY72D6luPmFveqwc9Gj5h929PD6CQAvgM2LhxviPI\nxx8nXEXVQCGUs8xK1Lx58J3v+B/zo48mXbW+fus8YWkzg5tuggED2O8HR7ArHxT8IBORTsbM35RV\nVfnhFdauze516utpih+EToJVWgo33+xHtp0yJeFQ/GEYjVvBSpycByvg06MTJ/oMyNNPt7ta1tHs\ndtvBfffhSkq5nyPosjmzLtMiIh3Wuzc8/DB88QVUV/vhFTKVaHh/Cd6uu/p99cEHPrj87LNWTyuz\nkgEzO8PM3jWzzWa2zMxGplj/TDNbaWabzGyVmV1iZikbEOS0GiiqvBzuvBOGD4fDD4dnn024Woca\nNe2yC2/97gGadupDt9L0GvSKiARqr73gkUf83fqECbBqVUabW2ND4kHoJHhDhvh9tWoVTJoEq1e3\nPKVgJU1mNhu4GDgHGAa8CCw1s17trH8C8MvI+oOBk4HZQPImz+QpWIm+0T33+EHjJk+GP/+5zSod\nbdS0/3H7MHTdQ/Qc3LcDBRUR6YBBg+CJJ2DLFt+t+aWX0t7UGlQNlFf77w+PPeZHth0zBt54g6Ym\nP36cqoHSsxBY5Jxb7JxbCZwKbMIHIYmMBp5yzv3ZObfKOfcQUAscnOqN8lINFLXddrB0KXz963D8\n8b4dy5YtLU+HIZoVEemwvfbyVd69e/s50669Nq0ekTQ20FiqzEpeDRni91VVFYweTdPim4HCTx0S\n+mDFzMqBEcDD0WXOOQc8hA9KEnkaGBGtKjKzAcBU4N5U75e3zErsG954I1x+ue8hNGxYS7VQGPq2\ni4gEom9fn2GZNcvP/DtlSqsRtxMpaahvf3h/yZ3+/eGpp2DKFCpOPoklTKfHhuDmfMpG6IMVoBdQ\nCsQ3J18LJKzfcM7V4quAnjKzeuBN4FHn3AWp3iyvmZUoMz+K4IoVvgBjxsCpp9Llkw8LHs2KiARm\n++3hj3+EBx7wE7zuuy/Mnw/vvZdwdWtsoEmZlcLYcUeorWXDzXdxUMkK+nz8ckGLUwzBSsbMbCJw\nNr66aBhwNHCkmf001baVlbktW1LR9NtFF8Ftt/HDawbyw8/OSm8adxGRYlFTAytX+gEslyzx85tN\nm+b/39jYslpJUwPNyqwUVPcTprPLhrc45Gc1BS1HWUHfPT3rgCagT9zyPsCadrb5BbDYOXdd5O9X\nzKw7sAj432Rv9r3vLaRHjx6tls2ZM4c5c+ZkWu7slJXBwoXwjW/wwuyLGPLmexkOtCIiUgS6dPGD\nWJ5yip8qZNEimDHDd6M95RQ4+mhKG7fQXKpgpeCqqlr9WVtbS21tbatl69evz2kRzKXTyKnAzGwZ\n8Kxz7ruRvw1YBVzmnLswwfrPAw86586KWTYHuAbYziX40GY2HFi+fPlyhg8fnqNPkgXnfDWRiMi2\nbsUKH7T86U+wwc9Y/mzfGRyy+s4CF0xSWbFiBSNGjAAY4ZxbEfTrF8st+yXAN81snpkNBq4CugLX\nA5jZYjM7P2b9u4HTzGy2me1hZl/DZ1uWJApUQk2Bioh0FsOH+2Dl44/hoYdYNuks1nz91EKXSkKg\nGKqBcM7dGhlT5Rf46p8XgBrnXHQig35AY8wm5wLNkX93BT4GlgAp26yIiEiBVVbC5MmMmjy50CWR\nkCiKYAXAOXcFkHD2P+dcddzf0UDl3DwUTURERHKoWKqBREREpJNSsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhVjTBipmdYWbvmtlm\nM1tmZiNTrN/DzH5vZh+aWZ2ZrTSzw/NVXhEREQlGWaELkA4zmw1cDCwAngMWAkvNbG/n3LoE65cD\nDwFrgKOBD4Hdgc/zVmgREREJRFEEK/jgZJFzbjGAmZ0KTANOBn6dYP1TgJ7AKOdcU2TZqnwUVERE\nRIIV+mqgSJZkBPBwdJlzzuEzJ6Pb2ewo4BngCjNbY2YvmdlZZhb6zysiIiKtFUNmpRdQCqyNW74W\nGNTONgOAauAm4AhgIHAl/vOem5tiioiISC4UQ7CSjRJ8MLMgkoX5p5n1A75PimBl4cKF9OjRo9Wy\nOXPmMGfOnFyVVUREpGjU1tZSW1vbatn69etz+p7mr+XhFakG2gTMcs4tiVl+PdDDOTczwTaPAfXO\nuSkxyw4H7gW6OOcaE2wzHFi+fPlyhg8fHvjnEBER2VatWLGCESNGAIxwzq0I+vVD34bDOdcALAcm\nR5eZmUX+frqdzf6Or/qJNQhYnShQERERkfAKfbAScQnwTTObZ2aDgauArsD1AGa22MzOj1n/SmBH\nM7vMzPYys2nAWcDleS63iIiIdFBRtFlxzt1qZr2AXwB9gBeAGufcx5FV+gGNMet/YGY1wKXAi8C/\nI/9P1M1ZREREQqwoghUA59wVwBXtPFedYNmzwJhcl0tERERyq1iqgURERKSTUrAiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQK5pgxczOMLN3zWyz\nmS0zs5Fpbne8mTWb2V9zXUYJl9ra2kIXQQKk/bnt0T6VdBVFsGJms4GLgXOAYcCLwFIz65Viuz2A\nC4EnclxECSGdCLct2p/bHu1TSVdRBCvAQmCRc26xc24lcCqwCTi5vQ3MrAS4CfgZ8G5eSikiIiKB\nC32wYmblwAjg4egy55wDHgJGJ9n0HGCtc+663JZQREREcqms0AVIQy+gFFgbt3wtMCjRBmY2FvgG\ncGBuiyYiIiK5VgzBSkbMrDuwGPimc+6zDDatBHjttddyUi7Jv/Xr17NixYpCF0MCov257dE+3XbE\nXDsrc/H65mtUwitSDbQJmOWcWxKz/Hqgh3NuZtz6BwIrgCbAIouj1V1NwCDnXJs2LGZ2AnBz4B9A\nRESk8zjROfenoF809JkV51yDmS0HJgNLAMzMIn9flmCT14D945adB3QHvgO8385bLQVOBN4D6jpc\ncBERkc6jEtgDfy0NXOgzKwBmdhxwPb4X0HP43kHHAIOdcx+b2WLgA+fc2e1sfx0+C3N0noosIiIi\nAQl9ZgXAOXdrZEyVXwB9gBeAGufcx5FV+gGNhSqfiIiI5E5RZFZERESk8wr9OCsiIiLSuSlYERER\nkVBTsEL2kyRKYZnZOZFJKmMfr8Y838XMfm9m68zsSzO73cx2LmSZpTUzG2dmS8zs35H9Nz3BOr8w\nsw/NbJOZPWhmA+Oe38HMbjaz9Wb2mZlda2bd8vcpJCrV/jSz6xL8Zu+LW0f7MyTM7Cwze87MvjCz\ntWZ2h5ntHbdOyvOsme1mZvea2UYzW2Nmv45MiZO2Th+sZDtJooTGy/hG130jj7Exz/0GmAbMAsYD\nXwH+ku8CSlLd8A3mTwfaNKAzsx8B3wIWAAcDG/G/z4qY1f4E7IMfzmAafl8vym2xpR1J92fE/bT+\nzc6Je177MzzGAb8DDgEOA8qBv5lZVcw6Sc+zkaDkPnyHnlHAfwD/D99hJn3OuU79AJYBv43524AP\ngB8Wumx6pNx35wAr2nlue2ALMDNm2SCgGTi40GXXI+E+awamxy37EFgYt183A8dF/t4nst2wmHVq\n8L0D+xb6M3XmRzv78zrgr0m2Gaz9Gd4HfvqbZmBs5O+U51ngCKAB6BWzzn8CnwFl6b53p86sdGCS\nRAmPvSIp57fN7CYz2y2yfAQ+ko/dt68Dq9C+LQpmtif+zjt2H34BPMvWfTgK+Mw598+YTR/C39Uf\nkqeiSmYmRqoUVprZFWa2Y8xzo9H+DLOe+H3xaeTvdM6zo4CXnHPrYl5nKdAD2C/dN+7UwQrJJ0ns\nm//iSIaW4dOJNfgBA/cEnojUb/cF6iMXt1jat8WjL/7EmOz32Rf4KPZJ51wT/mSq/Rw+9wPzgGrg\nh8AE4L7IqOSg/RlakX30G+Ap51y0bWA659m+JP4NQwb7tCgGhRNJxDkXO6zzy2b2HPD/gePQlAki\noeOcuzXmz1fM7CXgbWAi8GhBCiXpugLYl9btAvOms2dW1uEnN+wTt7wPsCb/xZGOcM79QTOCAAAD\nmElEQVStB94ABuL3X4WZbR+3mvZt8ViDb0OW7Pe5BojveVAK7Ij2c+g5P6nsOvxvFrQ/Q8nMLgem\nAhOdcx/GPJXOeXYNiX/DkME+7dTBinOuAYhOkgi0miTx6UKVS7JjZt2Br+IbZS7HN8qL3beDgP7A\nMwUpoGQkciFbQ+t9uD2+7UL09/kM0NPMhsVsOhkf5Dybp6JKlsysH7ATsDqySPszZCKBygxgknNu\nVdzTyc6zsb/R/eN62E4B1gOvkiZVA8ElwPWRmZ2jkyR2xU+cKCFmZhcCd+OrfnYFfo7/4dzinPvC\nzP4AXGJmnwFf4mfp/rtz7rlClVlai7QvGoi/GAEMMLMDgU+dc+/j68h/amZv4WdEPxffW+8uAOfc\nSjNbClxjZqcBFfiulrXOOd2J51my/Rl5nIPv1romst4F+GzoUtD+DBszuwLftXw6sNHMohmR9c65\nuhTn2X9E1v0bPii5MTIUwS743/HlkYRBegrdFSoMD/yYAO/hu0Q+AxxU6DLpkdZ+q8VfuDbjW5//\nCdgz5vku+BPdusiP6DZg50KXW49W+3ACvptjU9zjjzHr/A8+W7YJf1EbGPcaPYGb8HdqnwHXAF0L\n/dk64yPZ/gQqgQfwgUod8A5wJdBb+zOcj3b2ZRMwL2adlOdZYDfgHmADvnHtBUBJJmXRRIYiIiIS\nap26zYqIiIiEn4IVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyJSFMysOjKhoYh0MgpWRKRYHIOf2E5EOhkFKyJSLMYCTxS6ECKS\nfwpWRCT0zKwnsB/wZKHLIiL5p2BFRELLzGaZ2f1szaj8p5ndZ2bjClkuEckvc84VugwiIkmZ2XnA\nMc65QYUui4jknzIrIlIMDkVVQCKdloIVEQk1MysDRqJgRaTTUrAiImE3AqhEPYFEOi0FKyISdmOA\n1c65dwHMbICZVRa4TCKSRwpWRCTsRgF/j/n7v5xzdYUqjIjkn4IVEQm7UiCaVZkL3F/Y4ohIvqnr\nsoiEmpkNAy4EXgT+5Zy7ocBFEpE8U7AiIiIioaZqIBEREQk1BSsiIiISagpWREREJNQUrIiIiEio\nKVgRERGRUFOwIiIiIqGmYEVERERCTcGKiIiIhJqCFREREQk1BSsiIiISagpWREREJNQUrIiIiEio\nKVgRERGRUPs/+yZ/uz+HgI8AAAAASUVORK5CYII=\n", - "text/plain": [ - "" + "metadata": { + "trusted": false + }, + "cell_type": "code", + "source": "import numpy.ma as ma\n\nmask_H = []\nmask_L = []\nK_H = []\nK_L = []\nB = list(A)\nB.append(B[n])\n\nY = []\n\nfor i, a in enumerate(A):\n \n b = B[i+1]\n \n if a == theta_H and b == theta_H:\n mask_H.append(0)\n mask_L.append(1)\n elif a == theta_L and b == theta_L:\n mask_H.append(1)\n mask_L.append(0)\n elif a != b:\n mask_H.append(0)\n mask_L.append(0)\n \n K_H.append(k_ss_H)\n K_L.append(k_ss_L)\n Y.append(f(X[i], a))\n\nX_H = ma.masked_array(X, mask=mask_H)\nX_L = ma.masked_array(X, mask=mask_L)\n\nY_H = ma.masked_array(Y, mask=mask_H)\nY_L = ma.masked_array(Y, mask=mask_L)\n\nplt.plot(T, X_H, color=\"blue\", lw=1)\nplt.plot(T, X_L, color=\"red\", lw=1)\nplt.plot(T, K_H, '--', color=\"blue\", lw=.5)\nplt.plot(T, K_L, '--', color=\"red\", lw=.5)\nplt.xlabel(\"$t$\", fontsize=14)\nplt.ylabel(\"$k_{t}$\", fontsize=14)\nplt.title(\"Path of $k$ over time\")\nplt.show()\n\nplt.plot(T, Y_H, color=\"blue\", lw=1)\nplt.plot(T, Y_L, color=\"red\", lw=1)\nplt.xlabel(\"$t$\", fontsize=14)\nplt.ylabel(\"$k_{t}$\", fontsize=14)\nplt.title(\"Path of $k$ over time\")\nplt.show()", + "execution_count": 164, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGMCAYAAAD0nYndAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXeYHFeZ7t8zOYee6RmNNCPNKIdRlqMs5AjYYBkbr7Gw\nWZKBXcyywGXxYpawy2XZBfbaYAO7gAGD1yYYsGXjJGPJyJatNMoapRlpcs6aHM7946ua6VDdXVVd\n1d01/f2eZ56WuqurT3edOuc9XzpCSgmGYRiGYZhYJCHaDWAYhmEYhgkECxWGYRiGYWIWFioMwzAM\nw8QsLFQYhmEYholZWKgwDMMwDBOzsFBhGIZhGCZmYaHCMAzDMEzMwkKFYRiGYZiYhYUKwzAMwzAx\nCwsVhpnFCCG+IYSYEkK4IvBZm4QQbwohLgkhJoUQa+z+TKchhPiIcj3mR7stDOMUWKgwTBQQQnxY\nmbDUv2EhxBkhxCNCiCIT57tKCPF1IUSOz0tS+bMVIUQSgKcB5AP4HIAPAagLcvz3hBA7hRA/sLtt\n0SDa14NhZhMsVBgmekgA/wLgXgD3A3gTwN8D2CuESDN4rqsBfA1AnqUt1M8iAPMBfFdK+TMp5ZNS\nyr4gxz8AGn/6I9K6yBPoevwKQLqUsj7yTWIYZ8JChWGiy0vKpP5zKeXHADwMoALAbQbPI6xvmiGK\nlcdg4mQaKeUkgGUA3rCtRTYjhMgI9rLWk5IYs6lJDDMrYaHCMLHFa6BJrgIAhBDzhRA/EkKcFkIM\nCSE6hRC/E0IsUN8ghPg6gO8o/72ouJImfeIg8oUQvxRC9AgheoUQP9drtRFCrBdCvCiE6BNCDAgh\nXhVCXOHx+i8A7AZZiJ5WPv+1EOcsB4mbvXraYKAt71c+f4vGez+lvLbS47m5ym/RKoQYEUKcEEJ8\nVOO9aqzPCiHEk0KIbgB7ArQx4PXQilHxOPcSIcQTyvVpF0L8m/J6mRDiGeU7twghvqDxmbq+B8M4\nkaRoN4BhGC8WK49dyuNlAK4E8BSARgDlAD4NYJcQYqWUcgTAHwAsBXA3gH/0eG+H8igA/A5ALYB/\nBrABwH0A2gB8OVhjlEn9ryBLyX8AmADwKQC7hRDvkFIeAPDfStu+AuD7AA4o5w7GZgAnpZS6XT86\n2/JnAJcA3AV/IXEXgBNSylPK+YoA7AMwCeAHADoB3AzgMSFEtpTSM35GjSv5PYCzoN8tkBUr2PXQ\nilFR//9bAKdAbrH3APiKIog+BeAvAL4E4B4A3xVC7JdSvmHiezCM85BS8h//8V+E/wB8GDSxXAeg\nAMA8AB8ATWaXAJQox6VqvPdyAFMA7vF47v8o55vvc+zXlWN/4vP8HwC062jnnwAMA1jg8dwckFjY\n5fHcVuVz7tD5/X8E4FHl31cA+CaAFgCVFrTlf5VzCY/nikHC5kGP534GElh5Pp/zJIBuz9/e43f8\ntc7vF+h6fNj3eY9z/8jjuQQA9Uqbv+jxfC6AQQA/N/M9+I//nPjHrh+GiR4CtFLuANAAmlj6AbxP\nStkCAFLK0emDhUhS0oxrAfSCLCN6kAD+x+e5PQAKhBBZARsnRAKAmwD8SUo5ncEjpWxV2npNsPeH\nYDOAN4QQqlD7Nej30ByTDLbltwCKAFzrcYq/wYxlSeUOAM8BSBRCFKh/AF4BCQLf31frd7QKCeCx\n6f9IOQXgoNLmn3s83wfgDICFHu81+j0YxlGw64dhoocEuXHOgVbObVLKM54HKHEkDwL4CMjqIjze\nm2vgs3yzTHqUx3yQBUcLN4AMkKvDl2qQqChT/q0bJWV3FShTqFNK+YLy0pwgbzPSlpdAgu8DAHYp\nx9wF4IiU8rzSBjcoI+eTINeKLxIkdny5EKSN4eJ7jfoAjEgpuzWedwFhfQ+GcQwsVBgmuhyQUlYF\nef1RkLvgIQBvgyYpCbIaGLGITgZ4PhrZQleBXBLLASwTQtRJKc9ZdXIp5ZgQ4hkAtwshPg2gBGTB\n+WePw9Tf7gkAjwc41TGN54ataqcGWtco1HUz+z0YxjGwUGGY2Ob9AH4ppfyS+oQQIhX+9TnsKCLW\nAWAIlEbsywpQXEWDifNuBvAXKeWHhBBfArADwAohRILi8rCiLb8F8LcAbgBZbwBvt08HgAEAiVLK\noBlKJolUUTe7vwfDRB2OUWGY2GYS/vfpZwEk+jw3qDxaVvBNEQ2vALjNJ522GMB2AHuklIHcRsHY\nDLIOAcBJUIwKANwvhEi3qC2vgtxbd4PcPvt9YlumQAHF7xdCrIIPQohCE9/LE8uvhxYR+B4ME3XY\nosIw0UOP2+V5AB8SQvSDUlevAlkJOn2OO6Sc79+FEL8BMA4KsAyXfwFwI4A3hRA/AgmnTwJIAaXL\nGkIIkQjKWvJMiz6vPKZLKYO5VnS3RUo5IYT4I0ioZICycHz5Z1DA7T4hxE9Bv68LwEYA1wMIZ5LX\nuh47wjhfMOz8HgwTdVioMEz00OMe+Cwo0PaDANJAlVxvBPCy5/ullAeFEP8C4O8AvAtkhakIu4FS\nnlKKp30bNCEmgKwhH5RSHvQ9XMcp3QCaAKhxOX8B8EkhxDdBtWKsagtA7p+Pg9xCv9c4X7sQ4nJQ\nqfvbQdsXdIGsPIZFmM+5rboegX5Tz2tv2/dgmFhASMn7YzEMwzAME5vEfIyKEOLLQoj9Qoh+IUSb\nEOJPQoilId6j7kw7KWZ2px2KVJsZhmEYhrGGmBcqALYAeARUvfJGAMkAXgkUdOdBH6gug/q3IPjh\nDMMwDMPEGjEfoyKlvMXz/0KIjwBoBwWKBdt5VUopO4K8zjAMwzBMjOMEi4oveaBAMt9qjb5kCSEu\nCiHqlZ1HV4Y4nmEYhmGYGMNRwbRCCAFKucyWUm4NctyVoF1oj4HKjP8TgHcAWCmlbI5EWxmGYRiG\nCR+nCZUfg1L9Nqubtul8XxJoD5AnpZRfD3BMgXLuiwBGwm8twzAMw8QNaQDKAbwspeyy8sQxH6Oi\nIoR4FMAtALYYESnAdPGnwyArSyDeBdoenmEYhmEYc9wD2tHcMhwhVBSRchuArVJK3x1G9bw/AcBq\nAH8OcthFAHjiiSewYsUKM81kYozPf/7zeOihh6LdDMYi+HrOPviazh6qq6tx7733AspcaiUxL1SU\nUtnbAWwDMKjs7QEAfVLKEeWYxwE0SSkfVP7/VVDFyvOg4NsvAZgP4GdBPmoEAFasWIENGzbY8VWY\nCJObm8vXchbB13P2wdd0VmJ56ETMCxVQCWoJYLfP8x8F8Cvl32Xw3g49H8BPQPVTekD7blwlpTxt\na0sZhmEYhrGUmBcqUsqQKdRSyut9/v8FAF+wrVEMwzAMw0QEJ9ZRYRiGYRgmTmChwsxatm/fHu0m\nMBbC13P2wdeU0QMLFWbWwoOgdQwNAdEuucTXc/bB19SfId4+1w8WKgzDBGX/fqAzbxH2fPDH0W4K\nw8xaxseBp9/3BIayi9DT7ZxCrJGAhQrDMJpMTgLf/CZw9dVABoawsqgz2k1imFnJuXPA5s3AMzsS\nUDjVgeyk4Wg3KaZgocIwjB9jY8D27cA3vgE8+CBQUJ6DwpT+aDeLYWYd+/cDV14J9PQAX/teDgAg\naYjvNU9YqDAM48XgILBtG/Dss8Af/gD8278BIjcH6OfBk2Gs5LXXgBtuAJYvBw4cAJZuIqHC95o3\nLFQYhplmfBy4/XbgjTeAF14A3vc+5YUcFioMYyXPPAPcfDO5Vl95BcjLA91nAN9rPrBQYRgGAGX1\n3H8/sGsXsGMHrfSmYaHCMJbxq18Bd95JlssdO4DMTOUFFiqasFBhGAYA8L3vAT/9KfCTnwDXX+/z\nIgsVhrGEX/0K+PCHgY98BPjNb4DUVI8XWahoEvMl9BmGsZ8//hF44AEKnP3oRzUOYKHCMGGzezdw\n333Axz9OiwIhfA7IzqZHvte8YIsKw8Q5Bw4A994L3HUXpSNrwkKFYcLizBngjjuArVuBH/9YQ6QA\nZF5JTeV7zQcWKgwTxzQ3A7feCqxbB/ziF0BCoBGBhQrDmGZoiILU58wBfv97IDk5yMF8r/nBrh+G\niWM+9zkKon3mGSA9PciBubk0eEoZYCnIMEwgvvhF4OJF4NAhJbsnGCxU/GChwjBxyssv0+ruiSeA\noqIQB+fkABMTwPAwkJERkfYxzGxgxw5y9fz4x8CKFTrekJMD9PXZ3i4nwa4fholDRkYoFfm664AP\nflDHGzgbgWEM09tLgbPbtgGf+pTON7FFxQ+2qDBMHPLd7wL19cDzz+v05HgKlTlzbG0bw8wWvvMd\nik/57/824DFloeIHW1QYJs5ob6cB9B/+gUp364ItKgxjiOZm4OGHKQ6spMTAG9V4MGYaFioME2d8\n61uU3fPggwbexEKFYQzxr/9KAepf+pLBN7JFxQ8WKgwTR1y4QEF9DzwAFBQYeCMLFYbRzdmzwGOP\nAV/5ChlIDMFCxQ8WKgwTR3ztayRQ/vEfDb6RK2YyjG6+/W2guBj49KdNvJmFih8cTMswcUJ9PfDk\nk+Q3n94ETS9cMZNhdFFXRyn/3/kOkJZm4gQsVPxgiwrDxAk/+hGQlRVgLx898AAKADj728M48MDv\nMTUV7ZYwscj3vkfunk98wuQJcnKAsTFgdNTSdjkZFioMEwcMD9MmaB//OIkVU7BQAQCc/NYzKP1/\nX+ACvYwf7e3Az35GrtWw7jOA7zUPWKgwTBzw5JNATw8VeTMNCxX09gJvV+fCldDLQoXx4/vfB5KS\ngM98JoyTsFDxg4UKw8xypAQeeQR4z3uARYvCOBHXd8CTTwJdk3lIHbtEWwowjML4OFlTPv5xID8/\njBOxUPGDhQrDzHLeegs4epQKvIUFW1Tws58Bizcpu8rxfiyMB88/T66f++4L80QsVPxgocIwGtQ9\ndwx7bvgGBvpltJsSNk88AZSVATfeGOaJ4lyoVFUBhw8D79imCJXe3ug2CMC+Lz+DvZ96PNrNYEAi\n9oorgMrKME/EQsUPFioMo8G+n5/Eltf+Fcljg9FuSliMjQG//S1tPJgQ7t0e50LlsceoFPrl74wd\nodL52LNw/f5/ot2MuKehAXjpJXL7hA0LFT9YqDCMD1ICL75Fk1HaSPQno3B4+WWguxu45x4LThbH\nQmV8HPjNb4C//VsgqTA2XD8NDcDZjjzMSXd2H50N/PKXVC7/7rstOFlaGkXkxum9pgULFYbx4a23\ngNNtsbNqDocnngBWr6a/sMnJifrkHC127SLB94EPAMiLjb7xxz8CAwl5yJlydh91OlICv/gF9Q21\ngHNYCBHX95oWLFQYxocnngBSi5Ww/Z6e6DYmDPr7gR07gHvvteiEcWxRefppyphatw4zpvkoC5Wn\nnwaKl+cjode5fXQ2UFVFe2hZYrVUieN7TQsWKgzjwdgY8LvfATe8PzZWzeHwpz9Rccvt2y06YZxW\nzJyYoN/yzjtpsYukJFo6R7FvNDcDb74JrNycB4yM0B8TFXbsICPbli0WnpSFihe8148Pn/vcjGXX\nl7Iy4Ic/DP7+++8n33Egtm8PPnHU14cuFvToo8D8+YFff+op+gsEf48ZfL/Hyy8DXV3A+z6SB/wI\nqD8/hs9sC/4Zsfg9AFpxb95M57fkehxZgafwLHAbgBT/12drv3r9daCzk4SKyv1Tj6Dhv68Admuf\nw+7v8cc/UnD0tw+9E9/Fs8BtAkgN/j20cOL10CKa32PHDuCWW+h+s+x7NP4QeDYDqPd+3SnXw2qE\nlM5Pv7QCIcQGAIcOHTqEDRs2RLs5TJT44AeB48fpD+npwH/+J/DZz0a7WYYZHAQKC4FvfhP44hct\nOumuXcD11wPnz4dZOc5Z/P3fU0ZHbS1mqtGuXg1cdx3wgx9EpU1bt9LGki98eQ/wjncA1dXA8uVR\naUs8U1cHlJdTZt1dd1l44ve+lyx3zzxj4UntpaqqChs3bgSAjVLKKivPza4fRhdNj72Enp0Ho90M\nW5mYoAnp9tuVJ/LyHOv6efVV8gbcdpuFJ43DtMnJSbJeTLt9VKLYN7q6gDfeAO64AzET2BuvPPcc\nkJwMvOtdFp+YXT9esFBhQiIl0PvpL+Pk//l5tJtiK/v3U+zszTcrT+TnO3YC2LGDFthLllh40jgU\nKm+/TdVG77jD54UoCpVXXgGmppR+ykIlquzYAVx7Le0uYSksVLxgocKE5Nw5oHXMhYTe7qDHtRzr\nQMtr1RFqlfW8+CLgcgGXX648kZfnyKyfyUla6W0LEVtjmDgUKq++St1guk+oRFGovPgisHYtMG8e\nZjaVcWA/dTp9fcDu3RZbLVVYqHjBQoUJyauvAj3IR8pQ8MGw+lMPY+Kmm+HUsKcXXwTe+U4gMVF5\nwqGun337gI4OGwZQddkYRwPozp0UljPdJ1Ty8qJS52JqityT01a/zExqnAP7qdN55RUqBPje99pw\nchYqXrBQYUKycycJlfSR4ELlaIMLhYnd3r58h9DWBhw6RNH70zjU9bNjB+B2074jlpKaSg75SA6g\nUtJsYJLhYWB8yNz7+/vJ9XPTTRovRknEVlWRCJ0WKkI4tp86nZ07yb26YIENJ2eh4gULFSYoExOU\n7NGX6ELWaGDXT2cncLzJhfTxgbAmlmjx8sv06BUU51DXz3PP0SrPzwoQLmrFzAgOoCfK34Oja8xX\nrDv0oYcwlOXG2Jjx977+OrnRNDdzjJJQefFFugRXXeXTFgf2UycjJQkVTRFrBTk5isp23lhqByxU\nmKAcPEgW7qKl+cieDDwYvvYa0AUX/ceBq7sXXwQ2bQKKijyedOBKtbUVOHWKXFi2EEGhMjkJnG3J\nwUR78NioYByvy0Wu7ENKwoTh9+7cSamnmpnYeXn0O0xOmm6bGV54gSbH5GSftjisnzqd2lrg4kWb\nhQoADAzY9AHOgoUKE5SdOyk0Yf46F/JkD6YmpgIft0AJ7Os2P7FEg8lJ8jdPm9NVHLhS3b2bHq+9\n1qYPiKBQOXYMaB13IWPYXH+SEnj7rHnx/OqrZE3RdGVGIV6nq4vij/z6aX6+4/qp09m5kyyWW7fa\n9AFxGLgeDBYqTFBefZXqWqXOyUcCJAaa/G8c1Qy68hplUnCYUDlxgpp8ww0+L0Rp1RwOu3eT33zO\nHJs+IIJCZdcuio3KGjPXn06eBC70m+uTjY1UQy3gijkKacGvvUb3ml/NDraoRJxXXwWuvHJGT1gO\nCxUvWKgwAbl0iXYSvvFGEioA0F/nv3KrqaEKjRtvUiYFh63u9uwhU7pfCqqa+umgwWLXLhKWthFB\nobJ7N9ANF3ImzQmV3buBgSRzQuUvfyFLyvXXBzggCkJlzx5yQ5WWarSFhUrEmJwk0agZu2QVLFS8\nYKHCBGTfPorluu46IH0eDfiX6v0H/J07qdrzlTc70/WzZw9w2WVUMd8LdTJyiPBqbgbOnrXR7QNE\nTKhMTgJ//SuQ6HYhF/2mMnd27QIWrDcnVP76V6qSX1gY4IAoCRXNje/Y9RNRqqro57YtPgVgoeID\nCxUmIHv30ni8fDmQPZ9EyHCz/4C4cyeZQbOL0oG0NEcJFSmDTAAOq/ppe3wKELG4nSNHKIh75WYS\nGr0XjV2DqSnK2ll/vTnxvHcvcPXVQQ6IcN/o6wOOHg3STx3SR2cDO3fS5tl+FlgrcdgiyW5YqDAB\n2buX0iATEoDsBTRhjLR4D/jqRD/tbnC5HHVz1dYCLS1BVqqAYyaB3buBlSt9MpesxuWKiBDdtYss\nXKu3Ur8bqDP2mSdOUPDplnem04kMtLm7Gzh9OoRQUYNpI1T0be9euteCChWnVlp0GH/9K10Hr8wr\nq0lPp7pFDlr02QkLFUaTqSkqdqUO1tlzszGJBEy0e4uQ2lqqoXLllcoT+fmOurn27KFYhM2bNV50\n2KrG9vgUACgoIAVgM7t30zXJrVBcjg3G+tTu3UBKilJvxGCffPttegwqVJKTqSpshETsnj0kQBcv\n1ngxP598ZZcuRaQt8YyUtCfY9HhnF0JE7F5zAixUGE1On6YxWB2sE5IS0CvyMdnlPWnv30+P02bQ\nCK24rWLPHopFUDWJF+qq2QEWlaYm4Px5m90+AF3fS5dgqoKaTiYn6bpce+2MJW+02Vif2rWLJpP0\ndBjuk3v3kihYuDDEgRF0uajuSc1UaYe5KJ3MuXO0brG86rMWDhtL7YSFCqPJ3r3k8vH0ww4k5UP4\n3Dj79lEmwnTQocNcPwHjUwAqlJCT44gJQLUCaFqGrKSggB5tHECrqymGcPNmILec3G+jrfo/T0rK\nVrvmGuUJgwP+W2+RJSbkVhC5uRHpGyMjtCAI2E9ZqESMffvo8bLLIvBhbFGZJuaFihDiy0KI/UKI\nfiFEmxDiT0KIpTre9zdCiGohxLAQ4qgQwrdMEhOEvXuBNWuArKyZ5wZT8pHQ7y1C9u3zWV04yPXT\n2korpIATAOCYom8HD9JuuiUlNn+QS8misXEAPXiQRMKGDUBaXhoGkYFJA9Vp6+tp76bpfmlAqExM\nUJ8O6vZRiZBF5cABMmAF7Ke8g3JIxken0FPTHXZNpP37gaVLZ35yW3G5WKgoxLxQAbAFwCMArgBw\nI4BkAK8IIXyTSacRQlwN4EkAPwWwDsCzAJ4RQqy0v7mzg7fe8h+sh9NcSBmYGfDHxoDDh32EioPM\nlXv30uP0ylsLh5TRP3iQtgCwnQhYVA4cAJYtm8nQ7Et0QXbp/zx11WtGqBw/DgwOxpZQ2bOHskzW\nrg3SDsAR/TRanPnJ68hfXICzL9WGdR6/hZmdFBQ4Ziy1m5gXKlLKW6SUv5ZSVkspjwP4CID5ADYG\nedtnAbwopfx/UsozUsqvAagC8Bn7W+x8urq0sx7GMvOROjSzajt6FBgd9UnTMzApRDtJYf9+Kp41\nb16QgxyQ+illBIVKhCwqnt9lINkF0WNMqCxYABQXK08Y6JNvvUU1gTYGG11UItQ31Mkx4CaTLFRC\ncryFfNMVOeb77cgIpc1HVKiwRQWAA4SKBnkAJIBgI89VAF71ee5l5XkmBGq8w1U+v9Z4jgvpIzNC\nZf9+Sn5Yt87jIDVGRYcKqc7ahNe3/ZcFLTaHrsndAa6fmhqaoyLiN8+3t6jf2BgJYM/vMpTmQlK/\n/s/bv9+8lW/vXnI5+RX/0yJCQqWqKoRwSk2lBsd4P40mB2rJEpjc12n6HEeOUAHMiAkVB1mn7cZR\nQkUIIQA8DOANKeWpIIfOAdDm81yb8jwTgv37AbcbqKjwfl7m5iNrfObG2bePREpamsdB+fnk6A+R\nKjkwAIihQRSMNlnYcv3otkI4wPVz8CA96rIChEtSEk3QNq30Tp4kK53ndRnNcCFlUN+APT4OHDqk\nYeXr6aGc+xDs22cg9TQCQqWjg/Yd2rAh+m1xMntOKS7LMPrtvn2kCdessahRoSgooGs6YXzn79mG\no4QKgB8BWAng7mg3ZDZz5AgNjH5ZDwUu5EzOrNo0/bUufSXLjx4FOlGIuSnmVzjhcP481erSZVGJ\n8Qng4EGgvDxIuXersTHI78AByjbztNKNZbuQrnMH5RMngOFhDYvK1FTIcuR9fdQvdLvQ8vJsL/h2\n+DA9slAxz+gocKQ6FWOpWVT0yST79gHr11N9noigjqVsKUNStBugFyHEowBuAbBFStkS4vBWAMU+\nzxUrzwfl85//PHLV+hkK27dvx/bt2w201tkcOQLcrSEFEwvykYMBjA+N49JoMs6eBb76VZ+DPG+u\nBQsCfsbhw8B8UYi8iegIFdUKocuiEuMDRcTiU1RsDPI7eBBYtQrIyJh5birXhaxafZ+3bx/FcnhN\n7J7iWbNgDnHkCD2uX6+zsapQmZoidWUDVVUUVByyposD+mm0OHGCjBJT7sKwhcqtt1rYsFB4Bq67\n3RH84NA89dRTeOqpp7ye67NRtDtCqCgi5TYAW6WU9Tre8haAGwD8wOO5m5Tng/LQQw9hQ8jly+yl\nu5vSO73iThRSiik+oa+uF8da6MbxmyB1xjBUVQFlBYVI6DoabpNNcfAgubbUsSAgMb5SnZoiV8e/\n/EsEP9RGi4qm6HK5kDOhX6isWeMtdLyESpAZv6qK3JjLl+tsbF4e+RAHBmaKA1pMVRXdiyF1UIz3\n02hSVUXiNaWk0HS/7e2lKtwRXxAAMRlQq7V4r6qqwkab/M8x7/oRQvwIwD0APghgUAhRrPyleRzz\nuBDi3z3e9n0A7xZCfEEIsUwI8Q1QltCjkWy7Ezl2jB61hEraXBrw++t6cOQIxe8tWeJzkE7XT1UV\nkFoa3gonHHRbIfLyyJcwOmp7m8xw5gyFA0UkkFbFJovKyAilB/t+lwS3C3myB1MToWNM/AJpAUN9\ncu1aCsPRRQQqF1dV6XD7AI4I+o4WVVXAihVAgrvA9HhzVFlPaY2LtqGz38YDMS9UAPwdgBwAuwE0\ne/zd5XFMGTwCZaWUb4GEzScBHAFwB4DbQgTgMiDzd1qahgABkD6XrCVDjd04epRWrn4pk7m5FNwS\nZNAcGaGgybxF0REqk5NkhdAlVGJ8Y0LVhRVRI6BNFpWjR8lE73tdkotdSIBEf0MfRnpHcDz7apx9\n+pjf+/v7qaqt3662BoSKod/R5r2g+vooo0tXmxwQ9B0tqqoUd16heYvK0aMUSLtsmbVtC0oESgE4\nhZgXKlLKBCllosbfrzyOuV5K+TGf9/1BSrlcSpkupVwjpXw58q13HkeO0N43WqtKdd+V4WayqGgW\noEpIoAE8yKRw/DiJheJVhWQ2j7C14swZKuql26ICRHUSOPUPP8a5eVs1X6uqoi0MgoReWI9NFpWq\nKup3q1d7P59WQv2u70I3anecwOpLb6Ht+QN+7z9+nDwxfhN7VhadOEibBwepdpAhoWKzaV6NmdFt\nUWGh4sfEBFmJN2wAXS+TC6MjR4DKSpt3TPYlNZU2vmSLSuwLFSayHD0a2Lyp7rsy2NiNU6eCmEFD\n5P+rPuPSdUqaSoRXDIbSeSO0g/L5bz6F6qW3ab52/MAI5jYf1Hzt2LEgFUvtwqZCVMeO0YrVK90d\nQEYpCZXBhm507SJLymRrh+b7k5I0YkyECNknjx2jeB9DQkUNcOzwb4sVVFWRe1XXKp6DaTU5fZos\nuBs2ICwo9Cy3AAAgAElEQVSLypEjEXb7qHDRNwAsVBgPxsbIJRNo4kt3pWMEqWg63oOJiRBCJcig\nWVUFrFwJpMxVhEqE3T8HD9J+HbriHyPk+jn8ahcWnnsJcsq/UF51pxuZGMJQ55DX81LSBBuxug4q\nLheN/kNDoY81wPHj2t9FteQNNXZj6oji8tHoM8ePk0hJTdU4eYg+efgwrZZXrTLQ4OxsylW1qf8a\nipnJyyPrJNfc8KKqih7XrcOMUDFYEnt8PPi4aCssVACwUGE8OH2abspAAkQkCPQl5KPtdA+E8DfR\nT6PDojK9wgHCHujHRiWG2i/pHoCCWY38UC0qNptfqzvdSMUY+psGvJ6XEjjSRCv37jPeK/e2Nvrp\nIi5UbNjvJ5joyiknoTLW2o2ciyRUknq0LSrh9MlVqwKInEAIQX3YRouKoVRpgN0/Phw+DCxerOwb\nVVBAQi5EPR1fTp+mRVxULCpcnRYACxXGA9UnHmziu5SUD9HbjcWLvXdW9iLIDsrj47TytVKonPzP\n55FRnI2GKn0TxqlTBlbOmZnki7DZ6qOKkd6z7V7P19cD9SP0Wn+N9/dTM7QCTs52YUOQX10dGQS0\n+l6mOwOjSMF4axfm99GXTh3w/i2kDGyRmW6zHvFsFLfbFqEyOkoTpO5VvOqGilIWXaxy8iTFlgAw\nPd7oGRdtgy0qAFioMB4cOUKBmdnZgY8ZTHUhHz3BB9AgZvbqahqE168HLXOSksIeXM900yA9N6k9\nxJE0p3R2kutJF0LYNhmptLcD5/q0xciJE0AH6LXBi96vHT9O9UJCFgOzGhssKseP06OW6FIteaL6\nFApkFzqEGxmD3n2mvp4WymaEyugo/c6mhYoN4uDsWYqZ0S2oi4ro0cZ+6kROnfK419V+a/B6HT1K\n95hNpXKCwxYVACxUGA+OHg29ghtJz4cL3cHNoEFurlNKgnhlJWZM52EO9MdaaZBO7AotVNTP1y1U\nAJoE2kOf2ywnT86IkaE6f6EymE6vjTZ6t0F1ddhUFDUwNlhUjh0j70VpqfbrA0kuzDu3GwBwrvQ6\n5IwZtC4F6ZOqy9NUDIJNrh/D/VS1qNjYT51GXx/Q1OQh9grNBe8HzHCMBGxRAcBChfHg5MnQboSx\nLLKoBBUqQVw/1dVAcfFMjKoVQuVAnbKa1DFInzpFRpzFiw18gM0WlRMngIFkWu2NNfkLleXr0tCP\nbEy2+E/OEXf7ALS0TEiwXKisWaOxv5TCYKoLi8aqcQmZGFtzGfIn/H+LYEInmFCprqZHQ+JVxaa+\nceoUMGfOjCYMSX4+pdKxRWUav+tqwqIiZRQzfgAWKgosVBgA5KlpawtdPnwyJ1+f6+fSJVqm+lBd\nTVUipwkjZRCggeTQ6UyMJ6XpFipLlxrcWMxmi8qJE8CSlcnoFi6/tNsTJ8j61JPkhvSYhCYm6LtE\nxW+ekGC5STpofAmA4QyasS9krUZSaTGyMIjh7mG/9wcSOtPt1Qi4rq6mS6xbFHhik+vn5EmDwikh\nge4ltqhMc+oU9Yfp9O60NIo5MzDeNDfT4VETKi4XFfmJ0crYkYKFCgOAzN+Aj4jQIKnIhcKEbsyb\nF+SgILt+nj6tIVTCGOhbW4GeXoHxfH1iwvAEAETEolJZCfQmuYFObzFSXU2vDaS6kdQ989rZs5SJ\nEBWhAlhanXZkhIrwBbMOjWdRn+opXY20eWTC7zk3029CWpdcLvrBNFKq/fqkEdT+OxW6vL8RvGIr\n9FJUxBYVD06epNiS9HSPJw2ON2rp/Ki6foC4j1NhocIAoAlRCLI2BGPjDz6M5OefCbxyBQJuTDg5\nSROsl9UmTKGi+vITivUJFdMTgE0rVSlnhMpAutsr7bamhhZSlZXAUKYbKf0zr0Ut40fFwuq0p07R\nPB9MdE3kklCRlWuQsYDiMfrO0+8xMkL9KqhoC1JGv7rawEaEvrjd1LEtTAseGwPOnTNY00VtC1tU\nptHM7jPoSjl9mgLWy8qsbZtuWKgAYKHCKJw+DZSX+6w+NEhbtgAFN/tupuJDAF/wxYs08XqtXsMo\naw3QYJSaCqSUhRYTXV3k3jJlUentpRnEYhobKVulshIYznQj1UOMnDhBj5WVwGiuGxmDM68dPw7M\nm2fSXWEFFlpU1Iyf6TRSLfLpi+Zesxo5i5QsqDrqN9XVpBXMCBVVPJu2qNiQFnz+PFnT2KISHpqL\nEoMLozNnaPEW8YB1Fd7vBwALFUYhrFWlL8XF9OgjHNTgNqstKsuW6bOomA6aVFM/bYhF8BQjY7lu\nZA7NTDQnT9I8WFQETOa7kTPibVGJmtsHsNSicuwYpcUHrMsDZedbAAveuxquZWoWVMf0+4EQFogA\nA76meDaCDWX0TWWmqW1hiwoAqslTX6/xGxq0qJw5E+GNCH1hiwoAFiqMQlh+el/y8ym1pq3N6+nq\napqMvDIzCgspbsBkOfbpVZMO98ypU7QyCuXe8sPGPV1OnKD4vvnzgUmXGzmj3haVaSuD2428CW8R\nE9QCYTcWWlT0fJfV//cDeOuLTyN/kQsZhRkYQjomlCyoM2fo9wtW/yfQNdQUz0ZQU14tFipu98yp\ndcMWlWnUmDsrLCpRFSpqxWG2qDDxzsgIUFtroVBJSKBB00eonD5NE4JXfIvJ2gYAxXdMB8fqECon\nT1JasqEy6cCMRcWG1eqJE2QJSEgARJEbrsmO6cQUz8DfpBI3cjCA0f5RjI6SJSDqKz2LBs+zZ0N/\nl/xFLlz13fdP/7870Y2p9s7p9y9ZEuJDsrMp66O11evp06dJKJqOQSgooA5toUAwFfANzGQgWRzY\n60RUq5SfADUgVPr6qLtE9T5LSiKxwkKFiXfOnaOxzTLXD0DuHw2LiubAAZhyq3R00P07LVQGBoDh\n4YDHGyqd74mNFhXPNiXPdSMDwxhsH8TkJMUqqL9XaunMfj81NSTSDFuGrER1/Rjc4M0XVXQZ/S79\nqW4kKllQZ8/qeL8QVJgkQJ8MGhwejMREsi5Z6BY03U+LiuhGjnM3AUBir6KCRKgXqsDW0W/PnKHH\nqAoVwFI3q1NhocLoTk02hI9FRcoA7qUwhIqXL19HCXFTGT8AjXYZGZZbVKT0nmRVMdJztgP19RS7\nq1oKMsrp+/Wd78DZs/RcSCuCnbhcFPE5MBD62CCoosvodxnKKERKXwempkho6xI6GuJZtfKFhYXV\naScmaII0bVEBOE4FQe71wkKq76Sj38aMULHQzepUWKgwqK6m+1eN27IEn0mhvZ3KqlhpUfGqMhtC\nqAwMUPGmsNJQLbaodHZSxo86SWcvnNnvRxUj6gQ8nelykV7Lzp6JWY4KFlmZfL+nXkay3Ugb7ERT\nE7kudQsVD9ePlBoFCM1gYd+oqaF51JRQ4f1+pjl1KsB1VQc5HRP/mTOUWRcsyDsi2FzHyQmwUGGs\nGax98REqatCi3+dkZlLQiEmhsnQpkJyMkHEk58/To2krhA21VM6do0e1nL8qRoYutuPcOaqeO38+\nvaZmuow0dExbYUy7K6xgzhx69In5MIpZ0TWR70b2iL+gC4qP60cVz5YIFYtcP6p105SgZosKALJE\n1tUF6BMGFkZRD6RVmTMn7PvM6bBQYawxf/tSXOw1YJ4+Te78RYt8jgtjY0Ivk786AAUYpH1FgWFs\nWNWo4kltk2spfYfRRpqAFy+m3wwAMt0ZGEQGJprb9cVk2I2FQsWU6CosRN44/U5JSVQDKCQ+4jks\nUeCJxRaVzMyZn9cQeXn0Y8T56vviRQrV8RtrAMMWFRYqsQELlThnaopuSFssKh7BrWfO0MChuceO\nSaFy/ryH8EhNpc3yglhU8vPDcG/ZZFEpKZkJ+EvNSUUfcjDR0qEpRnoSab+fmBAq+fl0MVtawjrN\nuXPmrFwJxW7ky26cPjmJhQtpfg6JKlSUQMrqahKCpsWrioUxKufP031iylomBNdSAYk9IMB11bkx\n4eQk9c2YEColJXSfhRm47mRYqMQ5DQ2kJWyxqADTK1gvUeGLCaEyPk7mXa9VUxAxYXZCnMYmi4pv\nm3qT6HO0xEh/qhtTrR1oa4sBoaJm0VhkUTFK6jw3EiBR/Wa3/vfPmUMdR9mD6vx5ssQY2qBSCwtd\nPzU1ASwBeuFaKqipoWuquR9ZRgb9hbhe9fUU+xQTQmXOHPJnWbhNg9NgoRLnBF19hIMaM2KTUKmv\np1WPXqES9PP1YJNFxVeo9KcVQXR1oK7O/7XBTDfGlSJnUc34UZkzJyyLSn8/6RwzQiV9PsVjtB7v\n0P9+H/FcWxumKFBxu8MqWuiJalEJqy1xblE5f55Sk1W3qR867uWYyfgBZvyAYVovnQwLlTintpYW\nxwsWWHxij0lhagq4cCHIAGzCdO4b3wHAfotKf79l261LqS2ehjLdmGyltFvfCXg0242s4RgSKiUl\nYVlU1LghM0Ilq5ziefImO40LFaXNNTW0u27YWFSdVrUShi2o2aIS/DcsKaEUwCCcOUPeZDWYPaqU\nlNBjHMepsFCJc2prqSpn2OZvXwoLSQG1taGpieb3gELFxIRXU0NxCV4VRQMIlf5+WkSHPQEAlk0C\nnZ1U+dJXcIx67PfjOwFP5LvhRgeKimYqa0eVMF0/4dSDyV9KFhU3DFhU1JVpWxuktNiiAoTt/tG0\nEpppS5xbVEK6z+bODWmdOHOG+mVAq0wk8RHY8QgLlTjHslWlL0lJJFba27WtH57MnUsCwMDuxDU1\nZN71CqIMIFRU91bYFhXA0qBJwP83mXSRGNFK2ZVFRcYmZrtRg/xMcvYs/axmRFfugjxMIBFudOi/\nrllZtD14Wxs6O4FLlyzq+xb1DbVPcIyKeaamdAhQHRaV2lob3OFmycqiP3b9MPGKZatKLZQsi5oa\nMq4ETCGdO5ceDawYNH35qlDxiY4POzVZPTdg2Wo1UJuE2z0tRnwzP5LmuJGPXqxYPG5JG8Jmzhz6\nPSYnTb1dd0VZDRKSEtCTUICS5M7p7hMSIaaLvtXW0lOx5PqpqaGaQKb3HQJINHV1mb4mTke13ga9\n13VYVC5coIVQzBCmm9XpsFCJc2prbbKoANNC5fx58vUG3AxQnWlCrHI80TTvFhWRVaa/3+vpsFOT\nAVssKp6pySpJJW5k4xJWLRrxe0+KUmJ/dYl1+8qExZw5NCGaLO8dbpp1b7IbS3I7kGBkFPMQz4BF\nfT89nS6kBUKlvFxnqnUgiopIqMdpyXVdVqmSEvp9AsSbTU1RLZaYEipxXkuFhUoc09tLe13ZJlSU\n/X50+YwBWg7pYGoqQMBcAKtH2IG0wMxkZKFFRatNaWUkRtaU+E96mQvotRWFMWLaV4P8TJikffc5\nMsNwphsVWQZ/C6U6bW0tGUJycsx/vhcWxIaEnfGjtgOI2ziVkNZbIKQFt7mZ1ju2jYtmCDPDzumw\nUIljVPN3JFw/QT/D5aJoXp0WlZYWqnGgaVEB/AbpsFOTPc9voUVFS6hklgcWIxVXl+C863Js3BAj\nhZ/CqE7b3U3BxOH0vfJnHsbqP/6rsTd5uH4snYjmzTNkEdQiZLaKHuJ8v5+amhDWW2BGYAe4Xhcu\n0GNMWVTY9cPEK5b66bUoLoZUXD9BB2AhaJWjc6BXzfZ+k1wA94wlFhX1/BasVKWkNmn9JmWbitGa\ntgAbK/3N0pkr5mNx1z7kX7s27DZYghrta2Kld/EiPYYzGeRsWYus9QYvrCKebREqOi2CWqhWQrao\nhIcuq5RqUQnQb1WhomtbhkgR5xaVcLyhjMOprSXTt8tl0wcUF0P09GAEY1i0KET+swGhcv48aRu/\nicblAhISvPZzsSQ1WcVn912zdHWRNUGrTVnLS5E1fDHsz4gIqan0m5v4TVShEvHJQAkArsUUNm+2\ncJ02bx5w5Ijptwe0EholJwdIS4vb1XdNDbBpU4iDQlhwa2vpVs/IsL59ppkzh8yQo6MhzEWzE7ao\nxDFqarJtu/AqK243OvStcgxYVObNo/HYi8REuqE9zmNJarJKaWlYq2YVdcUWUz5ws5gM8rtwgUJ+\nwgpwNkNxMTA+jqGmHmt/f7VvmNyPxbIK0UKEbd1xKoGKKPohRNDU+gsXYvDeVN1VISxl4/3D2P/t\nv6CnpjsCjYocLFTiGFtTk4FpoVKMNkuFStDBqLQUaGyc/m9AN5EZyspoc6QwqaujR8urAUcDk7VU\n1KwK20RyIJQ+WaSnTxph3jxgcNAv40wvqpXQkrgIi/qp0+jspH1QdV3XILVUYi41GdBdRr/leCcu\nf/BGXPzN2xFoVORgoRLH2JqaDExPCsty25CdHeJYA8GIQX35PkKlrs7ClXtpKZlfw9zTpa6O6jfZ\n5nKLJCYtKhcvRikGQBnwi9FmvUUF8Op7RghoJTTbFpPtcDKGkgOC1FKJaaES4l67MFKCSSSgZGJ2\nCVUWKnHKxARNmLYKFSWwb1VhW4gDQQNHb68uERBSqHisJuvryXJhycpdnYzCNKtfvGhhm6KNySC/\nqAkVRTzPS2zT3l3XLOrJTPYNSyfHOBUqqqVSV78KYFEZHaVLGHNCxe2m+LsQ91pdUxJaUIKCIRYq\nzCzAkn1FQpGaiv7EPCzJ0SlUgJBWlf5+0jMBB6OyMj+LimUbi4W5alapq4uxjIJwMJE2KWUUhUpW\nFsaS0rEiv9XafVzU/muyb6iC2hLUeJmpKYtO6Azq6oDsbCA3V8fBASwqdXXUP2MuRiUxkVLPQ9xr\ndXVAa1IZkttml1BloRKn2J6arNCUshDF+Tr28NEpVOrr6TGg+CgtJUe1Eitg6QSgrpotECqzIj4F\nIIvKwADFZ+iks5MOj8qqVQh0p8zB4mwd4tkIKSk0kZi0qFjaJ0pLaSvmOKulUl9P44IuS2VJCXVE\nn/3FYrKGiooON2t9PdCTPftilFioxCm1tWRJtHsb8xVDh7D11a+GPlCnUAkZiOpj9bDUopKRQYEl\nYQoV1fUzKzCxBX3UUpMV2kUx5qXbUGJ+3jxTfWN8nLp9rFn+nIYhsRegOu2FC2S8UH/CmEJH4Hpd\nHTBcwEKFmSXU1dHNmJxs/2fpWuFkZ1PUqw6LSlLSzPzoh8cgfekSxb5aKsbC9P/39pKxZ9a4fkxU\np422UFnduRsbD/yP9Sc2mb6uemkstagAcSdUVIuKLgJUp62tpXOEtd+SXei0qEzNU4SKyVT5WISF\nSjhIiTcWfxj7vvp8tFtimPr6MHdptRqd1Wnr62kcDhhf4BEroLqJLLVehClUZlVqMmBaqGRn00aR\n0UCkpSI9w4ZIZpP1S0K6M43idtMKJM6EiimLio+FIiZrqKiEECpSKgu5ijKqHjiLNqZkoRIGE5MC\nC2peQ/Ih5+WsNzTY7/YxjA6hEtKVk5JCmR0eQsXS7xlmjQrVmjBrhEp+PlXKNLDPTdRqqNiNSRGr\nilfL+mlCgl/222xHDbLX/RsWFJCY8+m3MZmarKK6fgIESXd2AsPDQOZyZQU6i64/C5UwaG0F6rAA\nxSN10W6KYQyZSSOFTotKyEleGaTr6mjMtjQN1QKLSlrazDY5jkcIEm+qKtTBhQuzyPXlybx5NFuM\njBh6W309zZuZmRa2Jc5SlA1bTwNUp41poTJ/PgX/BqhOq/4GrnWKUJlF15+FShg0NJBQyetzllCZ\nmqI+HFOuH8AaiwowPUjX19PcYam/ubSUsikMTkYqavtnlTVhwYIZU5EOopaabDdqbIjBXZRtyQKL\nU6FiaPHlU0tlcNCGmDYrUTtJgHtNtczNXVdMgx5bVBiA+sFFlCO97WK0m2KItjbKNIi5G1IVKgGC\nwNTsiJCDulJLxdLUZBWTk5HKrMr4UVmwYGaUDIFaQyVmV63hYLLomy3WTYNCRY6M4o0vPoOW/c6c\n3OrqKG5NDT3Rhc/CSP25Ym4Bp6Kq+wD3Wn09kJ4OFBYpZmQWKgxA/aAtdQFESxPNog7BltgNK5g7\nN+h+KWp2hF6LiqWpyZ7nBkyvVmdVsTeV8nLdQqWjg/zos+43AALW2fn9kgfx/P/ZFfBttlpUdGZ+\n9PdO4Zr/uh31v/iLxQ2JDCGD7LXwCX5W5/WYFSp5ebQ7doB7zctaO8v2e2KhEgYNDcBw0QKIqSlH\n7VYaszdkiIJquv3QpaVAby86L16yfgIIs+jbrCr2prJgAfnNdWx/oBbUmpVCJSeH0pk8xgI5JXHL\n+e+jdN/Tmm9RMzVsEdSjo7ozPxq70tGCOSgZvWBxQyKDqfuqvJw6pCLm1HHR0pg2qwlivfSyILNQ\nYVQaGoDJsnL6jwEffbSpr6fAvWilhwZEnb0C/JaqUAkpsDz25LF8AlBrdJsQKoODFGs5K4UKoCug\ndtalZ/vis0rvvdiLTAyheLBW8/CuLtJ3trkodfbTxkagFgvh6nOmUDEl9ioqZm5K0HheVERJbDFL\neXnQ8XH6N/DZSsTpsFAJg4YGIGWx0jN0mr5jAUOlpiPJ3LmUMnhBe7CsqwMKC3VkRyiDdMlUoz0T\nYphpqLPOmqD+yDrugcZGun55eTa3KVr49I2Ow/TvvG7tPm2bG9aEULmACmS0aguqWMeURUUNlFLG\nm4aGGLQy+xLEouL1G6hCZZbs98RCJQwaG4E5Fekkwx0kVGL2hkxMpFm8Vnuw1L1qUmy3ZWiwJw7H\npFl11loT1OAAHVbFxkY6POZEslX4WFT6TlA/SWu7qDlp2NYnio1lfjQ2Ah1ZFUi46DyLiuktCFSh\noow3MTsueqIKFZ/Yo+Fhiv/ysqiMjc2a/Z5YqJhkbIzqqJSVIag5LhaJyRoqKhUVQS0qutqdloaR\n7EKUotGe72nSonLxIs0dhjITnEBSEk3QOsR6U1OMxwCES1mZ1+8wfI76iRgd1awqWl9Prga32+J2\nqCkwBiwqlworaMY3mXofLUxvQZCXR/5vJ1lUyssxvTeIB37xe2Wzq+gbCxWTqFm0ZWUwlJ4ZCzhV\nqBhJN+7LKsWilEZkZ1vYNhWTQqWxkeYOQ5kJTkHnPTDrhcqiRTQ4DA8DAKbqPfqJhqXQ1ro6Bvpp\nYyMwXlox0ygHEZb7zGO8icnaUr4EcLP6/QYsVCKPEGKLEGKHEKJJCDElhNgW4vitynGef5NCiCKr\n2uSVOeMgoTIyQgkaMXtDqgOHj2lTSmM7IbellGFRqk3BZGVlVIxmdNTQ25qbZ6E1RSWAVXH35V9C\nzfPV0/9XXT+zlkWL6FERJYmtjTifXknPaQhwW2r9qBioGNzQAIhFyiY3ARYKsUpYWxAo401/P1VF\niNlxUSWAUKmrI7E7vQgoLCRTHQuViJIJ4AiATwPQuyWkBLAEwBzlr0RKqV172ATq9S8tBQ3S9fWO\nCFxSF1gxbVHp7wd6erye7u42lh3Rs+kmTK3faEMDQZORlAFjaQIxq60JGmJ9oHkA1x74Lhoe/gMA\nuj2am2fxbwAAixfTY00NACCjqxEdruXk29EQALbU+lFZtAg4f17XoY2NQNbyUnLjGezX0SasLQgq\nKoDa2tgt2eCL201V3XwWBY2NtGdhSoryhBCzar+nWNzM2g8p5UsAXgIAIQwZSTuklNrVw8KkoYGy\nVLOzQYP0+DjtGxHjo3DM35Dq1qW1tYDLNf20UfPu1qf/weKGebBkCT2eOwesWKH7bU1Nhg53FgsW\nkAoZG5seLTuONCEbQNJFmiw7Oug2mdUWlTlzgIyMaYGQd6kRDfNXASnaLs36euC977WpLUuW0Aw2\nNERtCsDAANDXB8ybn0g3mMMsKmHFlixcCNTXo+HiJIDE2O+bQmguCjQXQUHc6E7DKRYVMwgAR4QQ\nzUKIV4QQV1t5ci9/poH0zGijTvgxe0P6pAyqxJTAKinxmoz0MustKlJ6reD6qqk8eU77OQAzyTCz\n9jcAaCJZuBCoqYGUgHtM8XUtXOjXp8fHyQ1r272oWndCWEjU61JaCkdObmFZ6SoqgIkJ9BxvhBAO\ncc3qFSpLlgBnz0auXTYyW4VKC4BPAXg/gDsANADYLYRYZ9UHeKl4hwmVoiKyHsYkLheZqXwGy+Zm\nCkItsizKKAyEoEng3DndbxkcpFWrIwZCM2jsQzJ4jmbAkksk6FS346wWKgD1jZoa9Df0IQcDSF5Y\nOu1i8ERNArKtT3ha/oKgXhenCpWmpjB+Q2VhNHzqAkpKqIxTzKOxZYVm/NvSpbSYckBIQihmpVCR\nUp6VUv5USnlYSvm2lPLjAPYC+LxVn+ElVHJyKM3NASnKMZ+CJ4TmYNncTIaMhFjpsYsXG7KoqHuf\nzdpJWu1UHvfAxEUSKm7Zjv7GfjQ1UQhETIhNO1FiQ9Rib1nLFKHS2EiuMQW1T9gmVIqKgKyskP3U\nS0BqWH5inbAsleois7Y2tsdFTzR2K9f8DZYupewzB23vEghHxKhYxH4Am0Md9PnPfx65ublez23f\nvh3bt2/3eq6hAbj9do8nHJL5E9OpySoag2XMZcwsWQL85je6D5/1bo+0NIrP8LgHRHMTJpCIJEyi\n6fXzaGragJKSWZqe7cmiRUBdHfqOXgQAFKwtpQlD3dhHccnYLlSEoH6qw6IyXTq+ooIC2Xt7HVE+\nWHWfmb6v0tKAuXOR0nwBZTbF3lvOggV0jQYGgOxsjI7SLgCaQgUg94/FKuypp57CU0895fVcX1+f\npZ/hSTwJlXUgl1BQHnroIWzYsCHoMSMjFBjode0dUvStqQm49tpotyIEFRXA8897PRVzQmXxYpp0\nRkd1bQ5i+6QUC/iYpFM7m3AmcwNWDR5Az/5zaOzbELuxUVayeDEwMYHEfXsxBYGitSVA+yS9duGC\nl1BJTqaMFVvbosOiMn1dPGPE1q+3sWHW0NpK+i+sBcDChcg5esE5FhVPN2tlZeCxpbycTJhnzwI3\n3GBpE7QW71VVVdi40R61FyuG9KAIITKFEGs9YkwWKv8vU17/thDicY/j/1EIsU0IsUgIsUoI8TCA\n6wA8akV7VFOpV8c2kAoYTVpaHDBZVlTQTejhWw3LD20HS5YYSlFuaiIPYVaWze2KJuputApZ/c3o\nnkyHxz0AACAASURBVFuJbuHC6MnzszuY2BOllorr+G50JBQjJSuFBouEBK/+EhF3pg6LSkNDAKHi\nAFRLZThjg6yogHvwgnNEtCpUlGsU0K2clER9cRYE1DpCqADYBOAwgEOg+ij/BaAKwL8qr88B4Ckb\nUpRjjgHYDWA1gBuklLutaIxX8JnK8uXUcWK4/LS663tMTfhaVFSQL1+9AxGjFhVAtziNi0l66VLg\nzJnp/7pGmjBZPA/NGUuQfPHc7C/2pjJ/PpCUhLlNB9CVpnzh5GQSKx4CICJ9YvFiGrCUSrlaeF0X\nt5sy2hwmVML5HUfmVKB8ykExKiUltOJR7rWgv8EsyfxxhFCRUr4upUyQUib6/H1Mef2jUsrrPY7/\nrpRyiZQyU0rpllLeIKX8q1Xt0TS1rVhBFgADmSCRRs0yKCmJbjtCstC7QmZAH2w0mTuXBnSd1zsu\nhMqKFVSxt6cHk2OTKJpsQULpXPQWLUF2exxZVJKSgPJyJE2Noz/XQ5n5BIlHRHyrmT9KATotvISK\nml7tIKGSmhqe+6wjqwIlaMV8d2AxF1MIQQvjaqr43NREQ5FPaCWxdCkLlXilpYUErZcZf/lyeqyu\n1nxPLOCYOAkf06btaZxmUFOUdVpUZn1FVmDmHjh9Gp2n2pGESaQunIeJBYtRcukcBgbi4DdQUdw/\nI26PZfrChX6un4gJlQD9dGiIqj57WboWLYrpBZcn6m8Yzl5J7ZkVGEUKFiQ5KDvGR6gE/A2WLqVx\ndHw8su2zGBYqJmhp0bBKFBSQ2fT06ai0SQ+qUIl5i0pGBjVSGSxjVmAZqKUSczE2drBsGY2W1dXo\nPqEUe1sxD8krl6BItiMb/fHh+gGmhYqc5/GFly2j8UHZxyoiQkVNUQ7QT72KvamsWgWcPGlzw6zB\nivtq0+euQdLYMIo3L7amUZFgxYrpvhR0EbR0KTA5abmF7PW/eRR7y+6y9JzBYKFiAk2hAnip3Fik\npYWqm3tUpo9dPAbLmBUqS5bosqjExR43AFURLC8HTp9GfzXNgAWr5yJvE00Ai3F+9v8GCiOl9J1T\nKjwUQGUlcOkSUF+P4WHKMLW9T6spygH6qWa8XWUlKQCf/bZiEUvciYmJSExOsGcHa7tYsYKuT3t7\n8N/AM0XZQtobR7Gu+YWIFZNjoWKCgEJFVbk20lHTj6lLQ6beq2YZOOKG9BEqqalUUy+m8ExRDkJX\nF1le42KSVsT6aC3VUClYUYR515L7YTHOx57YtInOXLKoZC7zESoAcOIEWpRCCRH5PYJY/jSrBavt\ndIBVJS4WAFp4hBoEFSpqLJ3FQuWErETG1GDEaoexUDFBUKFy5oxtKnO4uQfuxbl444HnTL3fEanJ\nKpWVtAocHrbED20LS5bQtda5l0pcDKiKWJ9qaEJ7YgkSUxKRV5GPbuHCuoxzSEuLdgMjQ9/qa7DT\n9QG4bvCoRVJWRttDnDgRWSthkBTllhYKwvTas3DZMgoIPnEiAo0Lj7gJ0PZl8WIgKQmy+nRw95dq\nUbNYqBwcmRHdkYCFiglaW4O4foaHbVOZbWP5aMJclPYcN/V+1aLiCCorSQScDnEjRhM1RTnEIGBF\nrQfHsHw5UFuLtJZadKfNzCDNGUtQmeqMAE0rWLXFhZu6foP5q7JnnhSC+nWkhYqaojzkb4ltbaWC\nwl6kpJDLIMaFSn8/edLi4r7yJTkZWLQIo0eqMTISQqzZkPlzrHMuhtPyWKjEKsPDVF06oEUFsM39\n09ICHMdqFDYfM/1+x9zUK1fSozKox2S7586lMuPHgwvHpiYq6lVcHKF2RRMlTX9x0+u4lDtz0aYW\nL8HCgt4oNixG8BAq6ekBUkrt+ExAc1IJuOhS2hnLxJWlUosVKzBxnGIiQwoVj/pG4TI1BbS1C/TM\nXcVCJVYJWoukrIxsqDYF1La2AsewBpkX4sCikpNDe1rEslARAli3Djh6NOhhzc20ak2Khw0rFLFe\nONqM0YKZ0XNN1eOoPPdMtFoVO1RWAtXVaGmcjJw7s7KSlLJGP21p0bCoqO85cWI6Q8mXV//jIJ5z\nfxSTE9qvR4JZv9FnKFasQOJ5WhQHHR9XraIfq7vbko/t6aGYu5HFkROzLFQMogbBaU74CQkzKYg2\n0NoKnExYg8T6i4DBDaAcU5XWE4/VZ8y2e9064MiRoIfElR+9oAAoLAQAyLkeXzpmtr2OMqtWAaOj\nmDxbE7k+kZ5OLjmNfqrp+gGonV1dtOOfBkm7XsGtnb9EYmv0ao/ElUtVi+XLkd7RgExcCv4brFN2\nngmxoNKLOgdiVSXNdRGo0cKjh0HUi6R5cwO0orTJotLSAjQXrqb/GFSyjqlK60llJaaOn0BfXwxP\n9OvWUdDvwEDAQ2I2xsYmJpeRVSV5QRx9ab0obpiM2hOR7RMBBHXAxIAg7iIAEG3KgFJVZVEDjdPU\nRJmA6elRa0J0UayXV+WdRkpKkOOWLqUfKcSCSi/qXJK2qZK2OonAHncsVAwSshaJjbVUWluBwdLl\n5EMIERfhS0TTIa1i1SokNNQjG/2x2+61a+kxyPVwVGyQBVwqpQE0Y0msqssoUlQEFBaisDXCQmXt\nWuDYMa+MxOFhMsxqLroWLaKaAAGESnJ3G/3j8GEbGquPuE1NVlFSlC/PCWHBT0wk4WmxUMnbvIr+\nEQH3DwsVg6g+3YC+5RUrgppMw/3sgrmp1EGPGQuodUxVWk+UVd0qnIzdiX7lSorADzIItLXFSSCt\nQkchDaC5K+N5FgmAkvlT2hcFi8qlS16p9G2K1tAcExITqW8HmIQy+mPDohLXQiU7G51p87AmWcfC\nWEcsnV5aWiiEMGOBmwY2FiqxR0BTqYrqD7ThBp72J69ebViotLTQfBrO5l0RZ/lyTIkEVCLCg7oR\nUlJoQA8gVKamSLMGdBXOQpqW34gDiVfAfVl5tJsSk4wtrcTyiShYVACvfhrSjR0k8yd3iIVKLHAh\new2KM/pDH7huHXDqFLlqwsQrU2xVZDJ/WKgYJKRQWbSIUlYPHrT8s6c7yJo15GoIEJGvhaOq0qqk\np6O3cDHWJZ9Ednbow6PG2rUBVytdXbTVRjxZVLZ+ZjUum3gb2e44qe5mkO65lViCc5hXGLyisaUU\nF5Mi8einqgk/pFDRKGDpGm9FS9llVJ/FBuuxHhyVxWgTl7X9GdceeyT0gevWUdDrqVNhf6ZXAHaE\n0thZqBgkpFARAti0yXKhMjXl0UHWrKFqR/X1ut/v1DiJxtxKrE+O7XoOWLeOLFwTE34vqeb1eBIq\nTHCaXZVIxgQWjFpbhCskPgG1ra0U7hbQyrp+PbmLfIqFDXcNIRf9aN94Cz0RhTgVKePPUqmJ3pXn\naiUJwwL3j1dKu1pBfGQk7PMGg4WKQUIKFcAWodLdTfPgtOsHMOT+cerqo2/rNoxtuCrazQjOunV0\no2qUKQ+5amXijrUf34S2Iy2Y967KyH6wj1BpaSEBHTBz/LLL6HH/fq+nu06R+p64/GoKVoiC+6e3\nl7wYfF/pJDubKhRbEFDr5frxqCBuJyxUDDAxAXR06BQqTU0eCefh45VeXFqqqyKqJ061qGz52Ydx\n7Z5vRrsZwVH9/xqrFbaoML4kZqSieO0cJCVH2A+7di25arq6AASpoaKSl0eB+/v2eT3de4Y6dfbS\nErK6RMGioo6HfF8ZQEfNJz149Zv16+mcaiVxm2ChYoC2NjI5hhQq6krk0CHLPtsr8E0Icv8Y6HRO\ntag4ApeLqhJrXI+2NiAry2fTN4aJBj6FvwKWz/fkiiv8hMpgDakE18o5wIYNUbGo8ALABGosnYHY\nRl9GRqgy7bRQSUuj8wYt5BI+LFQMELQqrSdlZYDbDRw4YNln+7kQrrwSePNNXZ1ubAzo7HSmRcUx\nbNjgZyIH6LrxYMrEBEuWkGpW+mnA8vmeXH45TW7Dw9NPjda1YgKJcC0poH5fU0O+mAiiChV2/Rhg\n3TpSGQ0Npk8RNKXdRmwTKkKIDR7/zhVC5Nn1WZFCt1CxIaC2tZU2MJuuwrhlC5lJLlwI+V6+qSPA\nNdcAb7/tl/7X1sa/OxMjJCYCV10F7NkDQIfrByCLysSEl3tnqrkVHQnFSEhKIKECRNz909pKi/mY\nzgaMNdRrFcYCOmRKu01YKlSEEBuFEHcJIQoBvNvjpUEAdwkhtlr5eZGmpYUCz4qKdBysCpUwzGy+\nn+3VOTZvJkGkDDrBULMHeWVvI1u20KrTxwweb8XemBhnyxbgzTcxNT6pz/WzZg0pAg9rYUJ7K3pT\nlcFo2TKKZdExDlmJel85qtxCtJk7FygvD+taRSs5wGqLyiWQQDkI4D4hxMNCiNsAZEkpfwKgwuLP\niygtLeTRSUzUcfCmTaQQGhst+Wy/QSU/nyKudXQ61aKiS2Ax5tiwgQJRfK4Hu36YmGLLFqCvD31v\nnpjJIgxGcjL1bY84lZSeNlzKUjp1YiLwjncAu3fb1mQt2FJpki1bgDfeMP321la65Mq+oxHDUqEi\npTwjpfyYlLIcwEsAjgN4P4DDQogTAN5l5edFGl0rEJVNm+jRojgVTX/yli2GLCosVGwkOZnihnyu\nBw+oTExxxRVAcjKGX6F+qms88wmozbzUipE8j0593XXA3r2219LwhBcAJtmyhdx0QTZRDUbIlHab\nsPPjnpNSPial/FspZQWA6wDcY+Pn2Y4hM/7cucD8+ZaZRDX9yVu2UDEm1WQSgPZ2ss7aHJjNqKsV\npZLn5CSls/OAysQM6enApk1I2Eural0i+oorKBauowMAkDfSislCjzdeey0wOuqXHWQn7FI1yZYt\nND699ZaptxtarFtI2EJFCPElIcRRIcTfeTyXA2ClEGI6z0RK2SGl9K/F7CDa2w3eHDfeCOzcacln\na3aQa66hxxCmPL6pI8SWLRRVr5Spjsfy+YwD2LIFOcf2AJD6hMrll9PjW29BTkkUTrRClHi8cc0a\nckXv2mVHazVhS6VJli2j+AWTC2hdAdg2YIVFpQhAHYD3qU9IKfsBPAvg40KID1nwGTFBe7tB98lN\nNwEnT4Zd+G14mLL//DpIaamu4CjD7WbMceWV5MBVrgdnWzExyZYtyOhpxprsCzNZhMEoL6e/V15B\nf2M/0jGC5PkenTohAdi6NWJCRUpefJlGCFrgmhQqulLabcAKoSIA3Cml9MzygZTyvJTymwAus+Az\nYoK2NoMT/vXX0+Orr4b9uUAAk5uOOBUWKhEiM5MCD32ECg+oTEyxeTOmIHBzps7JSgjglluAF19E\n10lK+8hc6DNbXXcdped71Fuxi54e2l+P7yuTXHMNuelGjW+KGS1LlhVC5dsAHhBCJAKAEGKZEOKc\nEKJFCLEXwGILPiPqjIzQPoCGbo6iIiqyE6b7J2hK2NatVBFVKYutBa8+IogqHKXkMt9MbJKfj8bc\nSmyBgVX1zTcDtbUYf43ek7PEp1Nfey3VEDIZ+2AEtlSGyZYtNKEZrJyubgQZjfFMt1ARQlwvhPi6\nEOJGIcR0mR0pZSeARwB8WQiRBuD/AngBwL8D+CWAu61tcnRQ4siMWyZuuoksKmHUUwlaZOfmmyk4\n6sUXA76fLSoR5MYbKSX95Em0tVFBKi6fz8QatZs/hMx1S/S/4brrgJQUFDz7cwBK+XxPKitpG+YI\nuH94ARAm69eT9deg++fSJdI3brdN7QqCEYvKHABfB/AKgB4hxDEhxH8LIf4WgBvA9wF8A8CklPIf\npZSPSCl/osSrOB7TZvwbbySloQRYmv3shIQA27HPnUt7Cz37rOZ7p6ZIZLFQiRDXXUeDwI4dbMli\nYpZr//xPuPbFB/S/ITMT2LoVhefewjDSkFOa4/16QgJwww3ASy9Z21AN2KUaJklJVPvm5ZcNvS2a\nZS6MCJUOAD8EUApKM34dwFUAfgHgNIAaALcASBVCRHj/cvsxfZG2bAFSU8OKU+noIBUbMHf9ttto\ngNDwOfb0UAVsvqkjRFoa8K53ATt2cK0HZnZx880AgM6kORAJGiVht22jatxNTbY2o62Nsqy5fH4Y\nbNsG/PWvNEHoxClC5SCAx6WUzVLK30op/0FKuRZAAYDbQILlEkisHBVCdAghnhZC3Gl9syOPepEM\nm73S06ncvUH16vvZQT932zayy2lUh+Rib1HgttuAffswVt/KfnRm9qAIld60AJ365psp6+255yz/\n6M7qDpx+ivYTUhcAXD4/DG69lWonvPCC7rc4QqhIKXuklH677Ekpe6WUz0spH5BSXg0gF8BNoLiV\nXABftKy1UaStjUoFmCqaduutwF/+AvT1mfrskK6bykqgokLT/cPl86PALbcACQlYfv55tqgws4dl\ny9CaXo6hrACd2uUil8KOHZZ/9In7Hsa8D74DQ51D7FK1gnnzqHq6gWvV3k7iUDMEwWYsr0wrpRyR\nUr4mpfw3KeVNUsorrf6MaBBWQOr7308R8c8/b/qzg1pUhCCryo4dfkG7vCFhFCgsBDZvxtUdz/Lv\nzswehMCBT/4MPX//YOBjtm2jRZnJEu2BSGxvRjYu4ci/7eBib1axbRslYfjs+B6I9nYa2nTtdWcx\nEa7Y71wM11DxpKyMioH9/vem3q4rGHbbNvIN++ze295OVqCcnADvY2xh6tbbsGXsVZTmD0a7KQxj\nGbc+fAPe/bXLAx+wbRtNfK+8YunnpvZT2mXSb/+XY7+s4rbbSFDq3FAymtmjLFR0Enb++J13UsCr\niZVGSIsKQEG7RUXAr3/t9bQqsNifG1m6r9mGdIxgVUt4xf4YxlEsXEiuaIvdPxmDHRhCOta3v4Se\nc50sVKxg9WpgwQLd14qFigMI+yLdeSdl5fz5z4beNjUFdHbq+OzkZODDHyah4pH9E60CPfFO1vol\nOPbvz2PxJ6+PdlMYJrJs20ZubhOVTwORO9qOQ0s/CAGJdw/8jsc0K1BDBp55hgJrQ8BCxQGEHcC1\nYAHVOzHo/unuJrGiK9voYx+jNzzzzPRTXOwtOqSlAWu+/B4UlHMOJRNn3HMPjUMWWlXyJzowuWIV\nDrvfhXvwvxyjYhX33kshAzqqp7NQiXEsK5p2552UDtavvwaeoYq4y5fTPg6PPTb9FEfIMwwTUVau\nBK66ymscCofBjiFkYRDJJW6M3XUvNmMvFkzWWnLuuOeyy8hVp+NasVCJcXp6yDIW9kW65x7aTevx\nx3W/xXD9lvvuI3V84cL0+9miwjBMRLnvPgqorasL+1TdZ2i1lja/CJd9cxuO3vgFrLssOezzMiD3\nz333UWkLdbLRYHJSZwiCTbBQ0YFlJZvnzaNU5UcfJTONDgzvMXTnnVSy8ee0JwcLFYZhIs5dd1HZ\n/V/8IuxTDdTQBJpZ7kZKfibW7vwvJFWUhX1eRuHee0mw+CRieGIoBMEGWKjowNKKfJ/9LHD2rO70\nvfZ22pohL0/n+TMzgY98BPjxjzHcOYiBAXb9MAwTYbKygLvvJqGiI1AzGJcu0GotdwmvuGyhoAC4\n/XZy/wTYPDfaFc6TovOxMcznPuenCpY0A88CmP+dMuCnPwz+/vvvBxoaAr9+993Ahg3AI48A7363\n/+v19cBnPjP93xvOAH9OBMRtHsc8+igwf37gz1i8GOjuRuLVV+BZLMSVPwTwO4/Xy8qAH4b5PbZv\np79A+HwPTUJ9j6eeor9A8PeYgb/HDPw9iGh/j54eev3nPwc+8YnA5wjxPUrPUy0i17Igy3m+HoTZ\n73HffcBNNwGvvUaqxOd7FHfSHLj2awCW6/geFiNkAAUVbwghNgA4dOjQIWzYsMHrtUceAf7pn4Dh\nYYvqkTz+OFk9zp4FlgTfav3++4E33gCOHjX4GR/9KMZe2Ins9hrsO5yKdetMt5ZhGMY4UtKOyu3t\nNICZLGm6+z3fxfoXvoVc2WtxA5lppASuuIImuLff9pvofvtbWmP39gK5udqnqKqqwsaNGwFgo5Sy\nSvsoc7DrRwdqnIdlRdM+8AHyx3zrWyEPNZ1t9MADSO5oxofwa3b9MAwTeYQA/uM/gJMngSeeMH+e\n9nZ0J7Pbx1bUa7V/P/DHP/q9HO0K5yxUdGB5im9aGvDVrwK/+hVw4kTQQ3VVpdVi+XJc3HAH/hn/\ngcK8CXPtZBiGCYfLL6cEgq99DRgZMXWKxJ4ODKRFKYoznrj+euCd7wS+8hVgwnvOUBfM0apwzkJF\nB7ZkznziE7Tj8YNBNvhCePVbev7uQTRseB+SJ80NEAzDMGHzrW9RUTGTcQ1p/e3/v717j7Kzqu8w\n/vxyIxcll0aSiiDQKIqrjcmgEoWCF8pC1xqtIjQS0FIRBK0NdlG0aoqiBRWqVlDRVoyW6aJolaux\nsLC2kkjXjCAoxKJcGiGXCckQM0mAZPeP9wycHOacORNnzrvPzPNZ611Z572cd8/aOe/5nv2+e2/6\nZ9ii0hIXXwxr1z5rXJWye48aVJowKpU0ZQpcdBFcf33xEEqDc+9rl7DF717Ma7s/WzyBL0llOPxw\nOPtsuPBCeOSRYR8+ffsmnphli0pLLFoEp59e/IDu7X16tUGlDYza6K6nnFL8x/jABwadanv3bti8\n2XFQJLW5iy6CadPgvPOGfejMXRvZPceLYMt8+tPFoCkXXPD0KoNKG9i0aZQGupkwAa68En72M1ix\n4lmbN28uHsYua5AdSRoRs2bBpZcW3UeamFdmQEowZ/cmJszzItgy8+bBpz5V3P65/XbAoJK9Xbtg\n2zaYO3eUTnDkkfCJT8All8Btt+21adij0kpSrk49FY47rrgN9NhjTR2yfeN2prODSc/3IthS73lP\nMQ/QmWfCtm0GlWZExDERcV1E/CYi9kREZxPHHBcR3RGxMyJ+GRHv3Jdzb95c/DtqQQWKQVqOPRZO\nOw3Wr3969bDn+ZGkXEUUv9L7+uCtbx30dnetLWuLi+C0g70IttTEiXDVVbBuHbvffgq/7XvKoNKE\nGcCdwDnAkCPURcQhwA3ArcBC4PPA1yLi+OGeuCVBZeLEYpyBPXugsxP6+wFbVCSNMYcdVkyAt3p1\n8Wt9iAFH++4vLoIzDvUi2HJHHAHXXsuEW37A5/grnje3vMFh2yKopJS+n1L6WErpe0AzPbnfC/w6\npXR+SmltSuly4Fpg+XDPPfDg86gGFSgmLLzhhmJwpNNOgz172LgRJk8ub5AdSRpxr3lN8Wt95Uo4\n55yGE7T2P1i0qMx6kS0qpTj+eB6+4Eu8j8s57JH6vVNH21id6+co4JaadauAfxjuG7UsqEAxB1BX\nF7zlLfDud7P5wCs54IBJpQ2yI0mjYunSYk6SM8+Exx8vgsvkyc/abde6okVlzotbcQHWYOZ95Ezu\nf+kf8cK3vqq0MozVoDIf2FCzbgOwf0Tsl1La1ewb9fYWsxe3rFWjs7P4pfGud9F5cB83zb0a2K9F\nJ5ekFjnjjOLC+o53FBPxrVwJhxyy1y67H93IlpjN7OnPDjFqjalTYcGp5YUUaJNbP2Xq7S1mwW5p\nq8ayZfCd7/Cyh27kskf/rIUnlqQWOukkuPVWeOghWLgQvvnNvZ9b2bSJLZN8PmW8G6stKuuB2iHa\n5gGPD9Wasnz5cmZWTQ95zz0wefJSoMHU2qOhs5Pui75PPPFka88rSa10zDHFWFLvf38xKur118OX\nvwxz5jBpy0a2TfP5lNx0dXXR1dW117q+vr5RO1+kIZ66zk1E7AHeklK6rsE+FwMnppQWVq27GpiV\nUnpjnWMWA93d3d0sXrz46fXLlsG6dfDDH47UXyBJGtQ11xTjrEybBh/9KHf+7TXsmDqbJb/5dtkl\n0xB6enro6OgA6Egp9Yzke7fFrZ+ImBERCyPi5ZVVh1VeH1TZ/vcR8Y2qQ75c2eeSiDg8Is4BTgIu\nG+65e3tb9CCtJI13J58Md98NRx8N557Lyx+7jSdm2qIy3rVFUAGOBH4KdFOMo3Ip0ANcWNk+Hzho\nYOeU0oPAm4A3UIy/shz4i5RSbU+gIQ08oyJJaoEDDyyG2l+7llsWfpDfdp5adolUsrZ4RiWl9J80\nCFUppT8fZN2PgI7f9dy2qEhSCRYs4A13frbsUigD7dKiUhqDiiRJ5TGoNLBzJ2zfblCRJKksBpUG\nWjLPjyRJqsug0kBLh8+XJEnPYlBpYCCo2OtHkqRyGFQasEVFkqRyGVQa2Ly5mNDzuc8tuySSJI1P\nBpUGBromt3RCQkmS9DSDSgOOoSJJUrkMKg04fL4kSeUyqDRgi4okSeUyqDSwebNBRZKkMhlUGrBF\nRZKkchlUGjCoSJJULoNKHf39xeLDtJIklcegUocTEkqSVD6DSh0Ony9JUvkMKnXYoiJJUvkMKnXY\noiJJUvkMKnX09sJ++8GMGWWXRJKk8cugUsfA8PlOSChJUnkMKnU4hookSeUzqNTh8PmSJJXPoFKH\nLSqSJJXPoFKHQUWSpPIZVOoYeJhWkiSVx6AyiJRsUZEkKQcGlUH098POnQYVSZLKZlAZhMPnS5KU\nB4PKIBw+X5KkPBhUBmFQkSQpDwaVQQwEFXv9SJJULoPKIHp7YepUmD697JJIkjS+GVQGMTB8vhMS\nSpJULoPKIBxDRZKkPBhUBmFQkSQpDwaVQTh8viRJeTCoDMIWFUmS8mBQGYRBRZKkPBhUaqT0TK8f\nSZJULoNKjR07YNcug4okSTkwqNTYurX416AiSVL5DCo1BoKKvX4kSSqfQaWGLSqSJOXDoFLDFhVJ\nkvJhUKmxdWsxGaETEkqSVD6DSo2tW73tI0lSLgwqNbZu9baPJEm5MKjUsEVFkqR8GFRqGFQkScqH\nQaVGX59BRZKkXLRNUImIcyPigYjYERFrIuIVDfZ9Z0TsiYjdlX/3RER/M+exRUWSpHy0RVCJiFOA\nS4EVwCLgLmBVRDSKFH3A/Krlhc2cy4dpJUnKR1sEFWA58JWU0sqU0n3A2UA/cEaDY1JKaVNKaWNl\n2dTMiZ56yhYVSZJykX1QiYjJQAdw68C6lFICbgGWNDj0ORHxYEQ8HBHfjYgjmj2nQUWSpDxk3ZKY\nEQAACnhJREFUH1SAucBEYEPN+g0Ut3QGs5aitaUTOJXi77w9Ip7f1AkNKpIkZWFS2QUYDSmlNcCa\ngdcRsRq4FziL4jmXhgwqkiTloR2CSi+wG5hXs34esL6ZN0gpPRURPwUWDL33cs46ayYTqtqali5d\nytKlS5ssriRJY1dXVxddXV17revr6xu180XxuEfeImIN8JOU0gcqrwN4GPhCSukzTRw/Afg5cGNK\n6a/r7LMY6J46tZsdOxaPXOElSRrjenp66OjoAOhIKfWM5Hu3Q4sKwGXAVRHRDdxB0QtoOnAVQESs\nBNallD5cef1Rils/9wOzgPOBg4GvDXWiWbNGofSSJGmftEVQSSldUxkz5eMUt3zuBE6o6nL8AuCp\nqkNmA1dSPGy7BegGllS6Njc0e/ZIllySJP0u2iKoAKSUrgCuqLPtdTWvzwPO25fz2KIiSVI+2qF7\ncksZVCRJyodBpcbMmWWXQJIkDTCo1LBFRZKkfBhUahhUJEnKh0GlhkFFkqR8GFRqGFQkScqHQaWG\nQUWSpHwYVGoYVCRJyodBpYbdkyVJyodBpcaUKWWXQJIkDTCoSJKkbBlUJElStgwqkiQpWwYVSZKU\nLYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRsGVQkSVK2DCqSJClbBhVJkpQtg4okScqWQUWS\nJGXLoCJJkrJlUJEkSdkyqEiSpGwZVCRJUrYMKpIkKVsGFUmSlC2DiiRJypZBRZIkZcugIkmSsmVQ\nkSRJ2TKoSJKkbBlUJElStgwqkiQpWwYVSZKULYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRs\nGVQkSVK2DCqSJClbBhVJkpQtg4okScqWQUWSJGXLoCJJkrJlUJEkSdkyqEiSpGy1TVCJiHMj4oGI\n2BERayLiFUPs//aIuLey/10RcWKryqo8dHV1lV0EjSDrc+yxTtWMtggqEXEKcCmwAlgE3AWsioi5\ndfZ/NXA18FXg5cD3gO9GxBGtKbFy4EVwbLE+xx7rVM1oi6ACLAe+klJamVK6Dzgb6AfOqLP/XwI3\np5QuSymtTSl9DOgB3tea4kqSpJGQfVCJiMlAB3DrwLqUUgJuAZbUOWxJZXu1VQ32lyRJGco+qABz\ngYnAhpr1G4D5dY6ZP8z9JUlShiaVXYCMTAW49957yy6HRkhfXx89PT1lF0MjxPoce6zTsaPqu3Pq\nSL93OwSVXmA3MK9m/TxgfZ1j1g9zf4BDAJYtWzb8EipbHR0dZRdBI8j6HHus0zHnEOD2kXzD7INK\nSunJiOgGXg9cBxARUXn9hTqHrR5k+/GV9fWsAk4FHgR2/m6lliRpXJlKEVJWjfQbR/Fcat4i4mTg\nKorePndQ9AI6CXhJSmlTRKwE1qWUPlzZfwnwQ+BDwI3AUuACYHFK6Rct/wMkSdI+yb5FBSCldE1l\nzJSPU9zCuRM4IaW0qbLLC4CnqvZfHRHvAD5ZWf4XeLMhRZKk9tIWLSqSJGl8aofuyZIkaZwyqEiS\npGwZVBj+hIfKQ0SsiIg9NcsvqrbvFxGXR0RvRGyLiGsj4oAyy6y9RcQxEXFdRPymUn+dg+zz8Yh4\nJCL6I+I/ImJBzfbZEfEvEdEXEVsi4msRMaN1f4UGDFWfEfH1QT6zN9XsY31mIiI+FBF3RMTjEbEh\nIv49Il5cs8+Q19mIOCgiboyI7RGxPiI+HRFN549xH1SGO+GhsnMPxQPW8yvL0VXbPge8CXgb8MfA\n84Fvt7qAamgGxcPx5wDPemAuIv6GYo6u9wCvBLZTfD6nVO12NfBSiiEJ3kRR118Z3WKrjob1WXEz\ne39ml9Zstz7zcQzwj8CrgDcAk4EfRMS0qn0aXmcrgeQmis47RwHvBN5F0TmmOSmlcb0Aa4DPV70O\nYB1wftllcxmy7lYAPXW27Q/sAv60at3hwB7glWWX3WXQOtsDdNasewRYXlOvO4CTK69fWjluUdU+\nJ1D0Apxf9t80npc69fl14DsNjnmJ9ZnvQjGlzR7g6MrrIa+zwInAk8Dcqn3OArYAk5o577huUdnH\nCQ+VlxdVmpl/FRHfioiDKus7KBJ8dd2uBR7Gum0LEXEoxS/u6jp8HPgJz9ThUcCWlNJPqw69heLX\n/KtaVFQNz3GV2wj3RcQVETGnatsSrM+czaKoi8cqr5u5zh4F3J1S6q16n1XATOBlzZx0XAcV9m3C\nQ+VjDUUT4gkUgwEeCvyocj97PvBE5YutmnXbPuZTXBQbfT7nAxurN6aUdlNcSK3n/NwMnA68Djgf\nOBa4qTLaOFif2arU0eeA/07PjEnWzHW23iTB0GSdtsWAb9JgUkrVQzXfExF3AA8BJ+M0CFJ2UkrX\nVL38eUTcDfwKOA64rZRCqVlXAEew93OALTHeW1T2ZcJDZSql1Af8ElhAUX9TImL/mt2s2/axnuKZ\nsUafz/VAbQ+DicAcrOfspZQeoLgOD/Tksj4zFBFfBN4IHJdSeqRqUzPX2XqTBEOTdTqug0pK6Ulg\nYMJDYK8JD0d09keNvoh4DvAHFA9gdlM8gFddt4cDB9N4ckplovIltp6963B/imcVBj6fq4FZEbGo\n6tDXUwScn7SoqNpHEfEC4PeARyurrM/MVELKm4HXppQertnc6Dpb/Rn9w5qetH8C9AFNTWvjrR+4\nDLiqMkPzwISH0ykmQVTGIuIzwPUUt3sOBC6k+ND8a0rp8Yj4J+CyiNgCbKOYTfvHKaU7yiqz9lZ5\nnmgBxRcRwGERsRB4LKX0fxT3xD8SEfdTzGz+CYpeed8DSCndFxGrgK9GxHuBKRTdKbtSSv4Cb7FG\n9VlZVlB0XV1f2e8SilbQVWB95iYirqDoPt4JbI+IgZaQvpTSziGus/9T2fcHFIHkm5XhBn6f4nP8\nxUpjwdDK7u6Uw0LR5/9Bim6Pq4Ejyy6TS1P11kXxpbWD4inzq4FDq7bvR3GR6618gP4NOKDscrvs\nVYfHUnRl3F2z/HPVPn9H0UrWT/GFtqDmPWYB36L4hbYF+Cowvey/bTwujeoTmAp8nyKk7AR+DXwJ\neJ71medSpy53A6dX7TPkdRY4CLgB+C3Fg7SXABOaLYeTEkqSpGyN62dUJElS3gwqkiQpWwYVSZKU\nLYOKJEnKlkFFkiRly6AiSZKyZVCRJEnZMqhIkqRsGVQkSVK2DCqSJClbBhVJbSEiXleZnFDSOGJQ\nkdQuTqKYpE7SOGJQkdQujgZ+VHYhJLWWQUVS9iJiFvAy4L/KLouk1jKoSMpWRLwtIm7mmZaUsyLi\npog4psxySWqdSCmVXQZJaigiPgmclFI6vOyySGotW1QktYPX4G0faVwyqEjKWkRMAl6BQUUalwwq\nknLXAUzFHj/SuGRQkZS7VwOPppQeAIiIwyJiasllktQiBhVJuTsK+HHV6w+mlHaWVRhJrWVQkZS7\nicBAa8ppwM3lFkdSK9k9WVLWImIR8BngLuBnKaVvlFwkSS1kUJEkSdny1o8kScqWQUWSJGXLoCJJ\nkrJlUJEkSdkyqEiSpGwZVCRJUrYMKpIkKVsGFUmSlC2DiiRJypZBRZIkZcugIkmSsmVQkSRJ2TKo\nSJKkbP0/5A0l25iCnOYAAAAASUVORK5CYII=\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGMCAYAAAAbX+LjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXm8HFWd/v8+3VV9b3b2TZB9R1lFIiLqoI5fFRlANKIi\nzqLDqDM4izOOo844M/ob9cXoqIMbyohGVFzAJSA7ISSBkISEQAhJWEIgJISEJHfp6u7z++NU9a3u\nrqquvapvzvN63VcnXd1Vp2s55znP5/l8jpBSoqGhoaGhoaFRVlSKboCGhoaGhoaGRhA0WdHQ0NDQ\n0NAoNTRZ0dDQ0NDQ0Cg1NFnR0NDQ0NDQKDU0WdHQ0NDQ0NAoNTRZ0dDQ0NDQ0Cg1NFnR0NDQ0NDQ\nKDU0WdHQ0NDQ0NAoNTRZ0dDQ0NDQ0Cg1NFnR0JjEEEJ8TgjREkLslcOxzhBC3CuE2CmEaAohXpn1\nMQcNQogP2tfj5UW3RUNjkKDJioZGARBCXGYPWs7fqBBitRDif4QQ+8XY32whxGeFEDO7Nkn7L1MI\nIQzg58CewN8A7weeDPj8l4UQfxBCfC3rthWBoq+HhsZkgyYrGhrFQQKfBt4H/BVwL/CXwAIhxHDE\nfb0G+AywR6otDI8jgZcDX5JSfldK+WMp5faAz38S1f+8lEvr8off9fg/YIqU8qn8m6ShMbjQZEVD\no1jMswf2a6SUHwL+GzgceGfE/Yj0mxYJ+9uvQQSlDSllEzgWmJ9ZizKGEGJq0GavN6VCPaMmaWhM\nWmiyoqFRLtyOGugOBxBCvFwI8U0hxKNCiBEhxBYhxE+FEIc6XxBCfBb4L/u/T9hhpWaXL2JPIcQP\nhBAvCiG2CSGuCaveCCFOFUL8XgixXQixQwhxqxDi1a7t3wfuRClFP7ePf3uffR6GIjgLwrQhQlsu\nso9/jsd3P2xvO8H13kH2uXhOCDEmhFgphLjc47uO9+d4IcSPhRBbgXt82uh7Pbw8K659Hy2EuM6+\nPs8LIf7N3n6IEOJX9m9+VgjxCY9jhvodGhqDCqPoBmhoaHTgKPv1Bfv1VcBZwFxgA3AYcAVwhxDi\nBCnlGHADcAzwHuCvXd/dbL8K4KfAOuAfgdOAPwM2Af8U1Bh7YL8bpZh8EWgAHwbuFEK8Tkp5P3C1\n3bZ/Br4K3G/vOwhnAw9LKUOHgUK25bfATuASesnEJcBKKeUqe3/7AYuAJvA1YAvwVuB7QogZUkq3\nn8bxmfwMeAx13vzUrKDr4eVZcf5/PbAKFSJ7G/DPNin6MHAb8A/ApcCXhBCLpZTzY/wODY3BhJRS\n/+k//ZfzH3AZanB5A7A38DLg3agBbSdwoP25IY/vngm0gEtd7/2tvb+Xd332s/Znv931/g3A8yHa\n+UtgFDjU9d4BKMJwh+u9c+3jXBjy938T+Lr971cDnweeBU5KoS0/svclXO/tjyI3n3K9910Uydqj\n6zg/Bra6z73rPP4w5O/zux6Xdb/v2vc3Xe9VgKfsNv+d6/1ZwC7gmji/Q//pv0H902EgDY3iIFAz\n5s3A06jB5SXgAinlswBSyvH2h4Uw7BTkdcA2lEISBhL4Vtd79wB7CyGm+zZOiArwJuCXUsp2Zo+U\n8jm7ra8N+n4fnA3MF0I4ZO2HqPPh2SdFbMv1wH7A6127eBcTCpODC4GbgKoQYm/nD7gFRQq6z6/X\neUwLEvhe+z9StoAH7DZf43p/O7AaOML13ai/Q0Nj4KDDQBoaxUGiQjprUDPoTVLK1e4P2L6STwEf\nRKkvwvXdWRGO1Z198qL9uidKyfHCvsBUVNijG4+giMUh9r9Dw07nPRGVQbRFSvk7e9MBAV+L0pZ5\nKNL3buAO+zOXAMuklI/bbdgXlanzF6gwSzckivB0Y31AG5Oi+xptB8aklFs93t8LEv0ODY2BgiYr\nGhrF4n4p5YMB27+OCh1cBSxEDVQSpR5EUUabPu8XkUU0GxWeOA44VgjxpJRyTVo7l1LWhRC/Av5E\nCHEFcCBKyflH18ecc3cdcK3Prh7yeG80rXZ6wOsa9btucX+HhsZAQZMVDY1y4yLgB1LKf3DeEEIM\n0Vu/I4tCY5uBEVSKcTeOR/ksno6x37OB26SU7xdC/ANwI3C8EKJihz/SaMv1wAeAP0KpONAZAtoM\n7ACqUsrAzKWYyKvwW9a/Q0OjFNCeFQ2NcqNJ73P6caDa9d4u+zW1onA2cbgFeGdXqu3+wBzgHiml\nXwgpCGejVCKAh1GeFYC/EkJMSaktt6JCXe9BhYAWd3ldWiiT8UVCiBPpghBinxi/y43Ur4cXcvgd\nGhqlgFZWNDSKQ5gQzG+A9wshXkKltc5GqQVbuj63xN7ffwohfgJYKNNlUnwaOA+4VwjxTRR5+gug\nhkqljQQhRBWVzeROmX7cfp0ipQwKs4Rui5SyIYT4BYqsTEVl53TjH1Em3EVCiO+gzu9ewOnAG4Ek\nA73X9bgxwf6CkOXv0NAoBTRZ0dAoDmFCBR9HmW/fCwyjKr6eB9zs/r6U8gEhxKeBjwBvQakxhydu\noJSr7AJrX0ANihWUKvJeKeUD3R8Psct9gWcAx6dzG/AXQojPo2rJpNUWUKGgP0WFiH7msb/nhRBn\nosri/wlqqYMXUGpPZCLWte+0roffOXVf+8x+h4ZGWSCk1GtqaWhoaGhoaJQXA+FZEUKcI4S4UQjx\njF2W+vwQ37lUCLFMCLFLCLFRCPE9u0aFhoaGhoaGxgBhIMgKMA1YhqpJ0VcKEkKcjUrj+w5wAnAx\nKk7+7QzbqKGhoaGhoZEBBsKzIqWchyr0hBAijCnxLGC9lPIb9v+fFEJ8Cx2/1dDQ0NDQGDgMirIS\nFfcBhwgh3grt9MaLUYucaWhoaGhoaAwQJiVZkVIuAN4HXC+EqKMWNdsGfLTQhmloaGhoaGhExkCE\ngaLCXkr+q8DnUIWkDgS+jFqE7M98vrM3KsXwCWAsj3ZqaGhoaGhMEgwDhwE3SylfSHvnA5e6LIRo\noVal9S2wJIT4P9Sy6O92vXc2aqXZA6WUmzy+817U0vIaGhoaGhoa8XCplPLHae90UiorqIqVVtd7\nLVQmkZ9B9wmA6667juOPPz67lmnkhiuvvJKrrrqq6GZopAR9PScf9DWdPHjkkUd43/veB/ZYmjYG\ngqwIIaYBRzFBNI4QQpwMbJVSPi2E+AJwkJTyMnv7TcC3hRAfQVX6PAi1au0iKeVzPocZAzj++OM5\n7bTTsvopGjli1qxZ+lpOIujrOfmgr+mkRCY2ioEgK8AZwB0oZUQCX7Hfvxb4EHAAcIjzYSnltUKI\n6cBfobwq21Blvd1LxGtoaGhoaGgMAAaCrEgp7yIgc0lKebnHe98AvuHxcQ0NDQ0NDY0BwqRMXdbQ\n0NDQ0NCYPNBkRWPSYs6cOUU3QSNF6Os5+aCvqUZYaLKiMWmhO8LJBX09Jx/0NdUIC01WNDQ0NDQ0\nNEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRKDU1WNDQ0NDQ0NEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRK\nDU1WNDQ0NDQ0NEoNTVY0NDQ0NDQ0Sg1NVjQ0NDQ0NDRKDU1WNDQ0NDQ0NEoNTVY0NDQC0WrBQ1++\nhUd+tKTopmhoTGpsfWQTd11xPXLnrqKbUjposqKhoeGJp56CT34SDj0UWn//D2z6wveLbpKGxqRD\nqwU33gjveAe856SVnPu/72Hdos1FN6t00GRFQ0OjA+vXw+WXw5FHwne+A+efD0cda3Du2Y2im6ah\nMWnQaMCPfgSvfCW8853w/PPwkY8aABx5qH7WuqHJioaGBgCjo/C5z8Hxx8PNN8MXvwhPPgnf+AZM\n38NANKyim6ihMfCwLLj6ajjmGHjf+5Ryec89sGgRXHiJMfEhjQ4YRTdAQ0OjWEipZOi/+Rt45hn4\nu7+Df/5nmDbN9SHTVFNBDQ2N2LjtNvjYx2D1anjXu+AXv4BTTnF9wDTVq37WeqCVFQ2N3RibN8Pb\n3w4XXADHHQcrV8J//mcXUQEwDN2BamjExI4dcNllcN55sM8+sHQp/OQnXUQF1HMG+lnzgFZWNDR2\nUzz8sCIqIyPwq18pb4oQPh/WZEVDIxYWL4Y5c9TE4PvfV6Ql8DkD/ax5QCsrGhq7IW67DWbPhpkz\n4f77lcHPtwMFTVY0NGLg97+H171uQk354AdDPGegnzUPaLKiobGb4Xe/g7e9DV7zGpg/H17+8hBf\nMgxt+tPQiIBf/1pNAt7yFrj7bpVd1xeGNtj6QZMVDY3dCDfeqPwpb3mL6kxnzAj5RW2w1dAIjd/8\nBi6+WD1rP/85DA2F/KI22PpCkxUNjd0ES5bAu9+tik9F6kBBh4Fc2PXo0yz+zG+KboZGSbFgAVxy\niXrOfvzjCf4RCjoM5AtNVjQ0dgNs2qRmea94BVx3XcQOFDRZcWHu5bdw5uffwebnZdFN0SgZVq1S\npvUzz1RExYiawqLJii80WdHQmOSwLLjoImg24Ze/hClTYuxEe1YAuPZauGehGlD23VMPKBoT2LkT\nLrwQXvYyFWIdHo6xE+1Z8YUmKxoaHth48woW7/kWnpi/oeimJMYXvwgLF8INN6iONBa0ssKjj8IV\nV8BrzinP7HfRFddyz+EfoF4vuiUaH/sYbNigQqyzZsXciVZWfKHJioZGF6SE//r0S5y57Rb2ru0o\nujmJsGwZ/Nu/wT/9k0pVjo3d3GDbbML73w+HHAKX/Vk5TJDbt8P8/1vHcZvupFYrtCm7Pa67Dn7w\nA/jmN+HYYxPsSBtsfaGLwmlodOHb34b7HlCPxozhwZVj63VV1+H44+Ff/iXhznZzZeXqq+GBB5R5\ncvjZckj1n/407GcZ7LXH4N6jkwGbN8NHP6rW+fnABxLuTCsrvtDKioaGC088odbGefsFg99pfOUr\nqnz+D35A8pn3bkxWnn0WPvUp+Iu/sNWpEsx+H3hALTD5hvMMqq3d87qUBZ/9rHq96qoUdqbJii80\nWdEIhWd/fAfP/uj2opuROa68EvbYA678++IHpCR47jm1xs/HPgannZbCDndjg+3f/q1K8/7CF+w3\nCh5QpFTemVe+Emafu3uH54rGypXwrW/BZz6jqtQmRrWqXnfTZy0IOgyk0RfNJjz84a+yx7QGB176\nRt/P7XjiBZ5b9CRHvzuN0TF/LF6s1si59lqYvkc5pP64+PSnlZrymc+ktMPd1LPywAMwdy5ccw3s\ntZf9ZsEZG7/4hVoi4c47obp09yWRRUNK+MQn4IgjVBgoFQixW6uYQdDKikZf/Oxn8OLO/oPVPX/7\nS45+z+lsfWEw60986lNw4olw6aWUQuqPi2XL1OD6uc/BnnumtNOiOlApFVuOiVZTsnVzU+0nBj7/\neTjmmC4vQoH3RqOhiOhb3gLnnstuSyLLgNtugz/8Ab785RTCrG5osuKJgSArQohzhBA3CiGeEUK0\nhBDnh/hOTQjxH0KIJ4QQY0KIdUKID+bQ3EmFVkt12A0MKi3/GdyuXfC7W1Qnvtes+INLUbjtNvX3\n7/9uK7EDHDv+x39UGQkf+UiKOy2oA118+l+ybt9Xx/7+kn/5FXvtZ/D0Qy9G/u7SpWp5gk9/ekKd\nBwq9N667TqVQ/8d/uNoygPfoZMC//RuccYZarTxV6GvqiUEJA00DlgHfA34R8js/A/YFLgfWAgcy\nIOSsTPjFL1RVxqkzDCoBRr5vfQteGnHJ45FLNxYHKdWAdOaZauExoHCpPy6WLoWbb1ahi8hVaoNQ\nQAe6ZQs8+JDBG8z41+CGXxu8CjjkgOj7+Pd/V4vPzZnTtaGge2N8XKllF18Mp5/uakvTVo4Cl/PV\nSBN33QX33KOKv6V+2ndjf1gQBmJEkVLOA+YBCNH/1hBC/DFwDnCElHKb/fZT2bVwckJK1WGfdx7s\n9aRJ9TnvB2h0FL70JfjM60y4k4GbFSxcqP5+8xtXxzOgYaAvfxkOO0wNaKmigA70m9+EmU2DqhHv\nGixcCMtXxVNBVq5URP2aazx4d0H3xvXXw5NPqlWzPduSKjvVCMLnPw8nn6zW/0kdWlnxxGRVGt4B\nPAB8UgixQQixWgjxJSFEnALIuy3uvhuWL1dhBVn1V1a+9z14/nm44OLBVCO+9jU46ih461tdbw6g\nsvLkk2pAu/LKDIStnL0Ro6Pw9a9DA5NqQPgxCF/6Euz/MnsAj3gdv/51Ve33fe/z2FhAGEhKdZ/+\n8R/DCSd4tGWA7tNBx333qZDxpz+dkZilfUiemKxk5QiUsnIicAHw18DFwDeKbNSg4eqrlbnwjW8E\naZieZEVK+OpX1SqjB7588NSIZ55R5bE/+lGouJ+GAVRW/vu/YeZM+NCHMth5zrO9a6+FF16Ao44z\nqMrox12zRq2DdOEl0YnFjh3wox/Bn/+5j1hRAEG47z61avbHP961YQDv00HHV7+qPGEXXpjRAbSy\n4onJSlYqQAt4r5TyATuM9AngMiHEULFNGww8/7xaS+YjH7FnD1UDw2OGO38+PP44fPjDDOQs7+qr\n1YJjH/xg14YBM9ju2AHf/a6qvzF9egYHyLEDlVIV2LrwQthjXxNDRr+fvvpVVffiLW+Prqz86Ecw\nMgJ/+qc+HyiAIHzta3D00SoLqAMDdp8OOrZuVST4z/+8a3KTJjRZ8cRAeFZi4FngGSnlTtd7jwAC\nOBhluPXElVdeyayuVajmzJnDnB6X3eTGD36gHsbLLlP/l4ZJxWOGe801qs7A614H3D5Ys7yxMWUM\n/uAHPRYeGzDidcMNKiPrwx/O6AA5dqD33QePPQb/+7/Af5iRlZXRUZU1c8UVMDQt2mAupSKw73gH\nHHywz4dyvjecxfGuuspjgByw+7QotLbv4PY/vY6TPvl2DnjVIbH38+MfKz+zZ3gwLQyAwXbu3LnM\nnTu3473t27dneszJSlbuBS4WQkyVUo7Y7x2LUlsCl9G96qqrOC2Vkp+Di1ZLDeKXXNJZCKtbWdmx\nA376U7VIXqVC5I5z9U2PccDLa8w6+bDU2h4FN96o1vX4q7/y2Dhg8vp118HrX68W2ssEpqlujFYr\nwymlwnXXKaLw+tfD3f+fEVlZ+dWv1CJ/H/wgsDOasrJ4sfJpffGLAR/KWc343vdgypSJiUMHBuw+\nLQpLbtvGeTdcwYqzjkhEVr7/fXj722H//VNsXDcGwLPiNYF/8MEHOb2dppY+BiIMJISYJoQ4WQhx\niv3WEfb/D7G3f0EIca3rKz8GXgC+L4Q4XgjxOuC/gO9JKcfzbf3g4Y47YN26rjodZu8M92c/U7PY\ndicaseMcmfMhll7wucTtjYvrroNXvxqOO85jY6Wi4l8ln+GAmnnffrtaFTgz5DRA1+vKJHzppTYn\nMk2MiMrK978Pr32t8ltFbfe3v62yqd785oAP5UgQpFRp6BdeqPxIPdDKSij88jfqmp14TPzztGwZ\nPPhgRp4wN3QYyBMDQVaAM4ClwBJAAl8BHgT+1d5+ANCmy1LKXcCbgD2A+4EfAr9GGW01+uD661V9\nidmzXW8aBtWuGe4118Cb3uSazUfoONesgW27TI44uJhOdssW+P3v+8i5AzDDATWYDQ3BRRdleJCc\nyMrvf698Ac51EaaBQfh75Kmn4NZb4fLL7TfM8MrK+LgKp33gA33EoxwJwkMPwerV8J73+HxAKyt9\n0WxOkJWgWlH98P3vK0WlI2swC2iy4omBCANJKe8igFhJKS/3eO8xoNuOptEHjYaS0S+/vCstr2uG\nOzoK994L3/lO52faO+mD66+H2VWTg/Yv5qH86U/VrPXd7w740IB0Gj/8oSpm5znzTgs5kZUf/hBO\nOQVOOsl+wzQxCH/Ma69VIZN3vct+I0K7b75ZhY8C7wm7TWH3mRQ/+YkKxZ53ns8HtMG2L+66CzZu\nTkYwm001KfjAB3IoZzMAnpUiMCjKikZOuOce5ePomaUbnTPcsTH1uscenZ8BQj1o118Pe+/nnWGU\nB370I1WzYt99Az5Ukk5Dbn2RbXcu81zf5qGHYMWKjA1/kIuasG0b3HRT528RpoHZpazcdfLHWfnd\nhT3fl1KRlXe9C2bMsN+MoKz85CeKJHXUMfFCTgRBSvWcXHRRwACpw0B98ZOfwEEJyyo4/eIll6TY\nMD8MyCQpb2iyotGBG25QYZ1XvarzfWF21rtw+saOTjTkjPPhh1WF0P0PMQvpZNetgwUL7AULg5Bj\nGGjb7Q/y0Bv+WsUiurDgUzexxxtOxRrpPVc//alarLAnpTVt5KAm3Hij8qy4Qx6iZlJB0mq02u+d\n/tA1bPnF3T3fX74c1q6F977X9WZIYjEyoo7fV1Vx7zPje/f++2H9+j5t0mGgQFiW6tMueneya3bD\nDcr0fcYZKTbODwMSfs4bmqxotNFqqRLjF17oUZnRNDtmuM6z1EFWQnbi11+vUoX3Oyi9GcSOl2To\nlXXnzlW1SNrrAPkhR2Xlju88zivv/BovPT/Ws23hA+okj+/sbcuNN6rshFykacicrJx5pqoc60CY\n6riN0YnfbmJ5tuPGG1Uo7PWvd70ZUln53e9U6ncospITQbj+euWR6Pg93dDKSiBuvVV5oC6eE6+S\nMah+8Ze/VP1ixolwClpZ8YQmKxptLFwIzz7rbdRURsc+ykqIAc2Rti+4AKpD6SgrT/3+YWbMqrDs\n6t7QgBd++1sVApo6tc8Hc+w0Fi9VJ9I9KIMSWpautLeNdbZl/XoVAkp91VcvZExWxsZg3rxeAlkZ\nUr/dGp04ronled/8+tfK/Firud4M2e7rr4dTT1WF1/rCGbEyvDekVBOHiy7qWvG5G9qzEoibblJ1\noE4+RagTGeM8LV6sKl1namB3Q5MVT2iyotHGDTfAAQfAa17Tu03UTEwayJZSLwLDQAEE5JFHVMGv\nd72L1OTO+QtVh33M4f2Jz9atsGiRIit9kZMc+8ILsOoxW0HoIiR33QU7x3vVBVCDc62WQwgIMh8U\n77hDKRvdxKutrNjnpVlvUkH23GNPP63SSnvUshD35OioIrChVBVQsmPGqttjj8ETT8Db3tbngzoM\n5AspVXbZW99qK8Uxr9kNN8B++8HZZ6ffRk+UxCtXNmiyotHGvHmqc/SayTmDRrPeBOIrK7feqgbY\nN7yB1B7KO+arRkw1++/r1luVrBtqgM+p05g3D8alt7Lym9+Ahfe2G29U6za1zaRZIuNww69/rWbA\nJ57Y+b6jrDi/ve3b6brHbrpJNbEnrTTEPTl/viIsfYmBGxkT2Xnz1HNy7rl9PqjDQL5Ys0YRvvbE\nxIyu5EqpyMoFF/RRuNKEVlY8ocmKBqBkzlWrVN0UL4ha16BhP/Mdq/uGmMX+4Q9qhjJ1KrE6j27U\n63D3feFnl/PmqYwP31LqbuSkrPz2t9AU6jc0xybOh5Rq2z4H9G7bulWtit3Xd5MWMpzBt1qKbLzz\nnb1eqTZJHlfHnSArvSrTued2ZadB6HvygAN6iVIgMiay8+apJSymTevzQa2s+MIhfG3PTwwSsHKl\nCrdmtmihF7TB1hOarGgASnEA+KM/8t7uDBqOdyCOsmJZcOedrpoRKcwg7r0XXhoNN7uUUnVgocMm\nOSgrjYaSqk84udeXsnq1ylyafU5viOj3v1e1H97xjkybN4EMw0BLlsDGjd7em25lxXkVruuyfbsK\nI3kSt5Bq33nneZjKg5Dh7Hd0VD0noUKVWlnxxbx5cM45roU9Y0yObr9dEZ7XvS799vlCKyue0GRF\nA1Ad9qmnqpVqveAMGu0ZbozU5YULYedOl3qTgrIybx7stV84p/+KFcpAHGoQgFw6jfvuU/VFXvM6\nW0FwqSe//a1aEfrUV/cqK7/7HZx+emfmTKbIkKzcdJNKv37ta3u3VWqdyopD2ERzoh2LFqlL73ld\nhW2s9Lk3Nm+GpUv9FUVfZDj7veceZTiORFb04NaBsTEPwhfjeb79duXhmzIl1eYFQ3tWPKHJigZS\nKrIS1GG3lZWRzjBQlNTlW29Vg1J7ncgUOvx58+CcN4YjK/PmqfCT16DoiRzk2N/9ThWmO/GUXkKy\nYIHqKKfO7N32/PPK45EbMhwU77hDKXodIUUb1WFvZcUdBhqxlyrdc0+fAwQMUrfdpl59K8T6IcMB\nZd48RUL7FqcDHQbywT33KIWqQ0WNODlqNpXB/Y1vTL99gdDKiic0WdHg4YfhueeCO+xQykqfAe0P\nf1CDUtuolrDD37hRVXB941vCddg336yMvcPDIQ+Qwwzn9tsVSTSndp5fUJ3trFlQHTJ6tllWDrVV\n3IhQCTYKRkdVaqifkbRbWXEIW8VFVjzvRTcCBqlbb1Wk4KCDIjY8wwFl3jylCIQKS+kwkCfmzVPX\ntL1sA0QmK0uXqhDjG96QfvsCoT0rntBkRYM//EEthBekODiDRrfBtmOAqFTUn0eHsH27GpQ61JuE\nYaBbblEd+hvf3L/DHh9X/pZIM+iMO41du1S67TnnuAjJWOcgbJoT6oLXttyQkbKycKEySft5Arp/\ne9uz0uwkbtCnJL1Hu6VU937kEJBzsAzujQ0bVHp/aF+VVlY8cdttauXsDsIXkWDecYdSYs88M/32\nBUIrK57QZEWDW29VA2ZQXLY9aAQpK84bHg/anXcqWbWDLCTs8O+6C04+GfY5sP+sf8kSRVjOOSfC\nATJWVhYvVj//ta+dUK5a4/5kxWtbbsiIrNx9twrfdMyAXXBIcqtue1baZCW5svL442qV5sghIMjs\n3rj3XvXaN2XZ3Q7QyooLL72k/Gk9k6+Ik6Pbb1f76CgymAc0WfGEJiu7ORoNNej7ZQE5aMvxzgzX\nq9w++HbiTz6pwi8dPouEHf5999kF7PqYKEENAtOmKXITGhl3GvPnq1TbE04AY0p/slJoGCgjsnLX\nXYpA+pUx71ZWgsJAXp6X9gaPdi9dql69iiD2RUbKyoIFcOSRqghZKFQq6v7Xg1sbixerdPie6xrh\nebYs5XvJ3a8C2mDrA01WdnOsWKHCEf1Mp92+iajKiufgmiAM9MILKrW33SH16Yjmz4ezzgoY0LyQ\ncRjonntUzZlKBYxhf19Ke9skCwPV64pwBqkIzn3nKCttstLqPBfVaoDHw+c+c9aM7LvsghcyIrKO\nqToStMeRn41IAAAgAElEQVShAwsWKLXu2GO7NkTob+6/X/WLuftVQCsrPtBkZTfHokXq2Whn6Pig\nbbAdC/CsgO+swHNwTfBQLrSXAZo9m4mG+HRErZZSVkJnAbnbl9EMp9FQA7XTpjDKiqwXSFYyMNje\nf79KMQ2qYeGnrHR7VgLPhc991jd8FIQM7o2REVi2zHVPF9iWQcaCBeoc9qh1EcjKXXepytD9+sVM\noMmnJzRZ2c2xcCG88pX9Z5fd3gFf6T0nZWXBArUi7eGH99/X6tVKiYlMVjLsNB56SNWccdoUREgc\nItOsT7Sl0Rh8ZeXuu9WAcMop/p/pVlYcMldtRiBuPveGZU1EECMjg3vjgQfULrWyEh+tlurTPAlf\nhMnRokXKWBtJiU0LWlnxhCYruzkWLVLhkX6Y8E2kqKwk6GTvu091SG3pP2Bf8+erAenVr454kAxn\nrPPnK+PeGWfYhxruHJShNwwkJ5nB9q67FFkLGhC6FSe/MFBcZSX2OcxgQFmwQFVb9TMbB7ZFKyuA\nyqTavt2H8EUMA73qVem2LTQ0WfGEJiu7MV58ER59NNwg3p7hujwrnj6BKMqKYagUISkjtbvRUCSr\no0MK6LDnz1ez98gL/mXYacyfr2ZuTs0Xp85KYDZQkWGglMlKq9UZBvODn7JSaUUIAwUoK4nISsoE\nYcEC9SxGVnr04NbGggUq/OOZbhzyPG3cqP5yT1l2oMmnJzRZ2Y1x//3qNQxZ6Z7h+nb0UZUVZ2ME\nrFih4vsdZCVg1nTvvTGXd89IXpdSkRX3QO2cX2n1EhKHyEgP1SU3pJwiu3atSjF1lCU/tEmcTdTa\nYaCilZWU7w0pXdltBbdlkLFggcr4a68H5EZIZcXpFwtTVvT19IQmK7sxFi1Srvmjj+7/Wa9sIM+O\nPqpnBSI/mAsWqK+efnrXvjw6oueeUwNjZL8KZDbD2bhRrVHkJonmFDvU40FInG2F1llxCv6l1Iku\nWaJeO66hB5z7TnZ7VqKQlQFQVh5/HLZsiUlW9Ey8DSc87IkIZOWAA3Jcd6sbCZQyKeH+/d7G4n/9\nfcqNKh6arOzGWLhQSZ1+NS7caM/86ykqKzFn6/fdp1z6HWXzfUjShg3q9aijIh0icJ9J4dT3OPXU\nifdEtUKTirfBdrj3POVOViDVcMOSJXDoobD33sGfm1CVbGXFUsevRgkDDYBnZcEC9RrZVwV6Jm5j\n61ZlpvclKyGv2eLFSlWJtAp3mkhwbz37LJyy+RZqG59It00lgCYruymkVMpK2M6x2zuQqrISkax4\ntjuAJLkPFQkZzViXLlWK1stf3vm+helJVkRFYGEUm7oMqZOVfqoKuMzFNklxTMZVWbCykjJBWLIE\njjkmYDHGIGhlBVBp3xBwX4VQVqRUWVmFhYAg0fVcvlz1IwfvP/nuB01WdlOsW6fSecNkAoHLs+KU\nPfdLnY2jrETo9HfuVGEdtyoBBA5IzubIyMi4uHSpan/3zM3CRDa8FYMGRltVkLKA1GVI7XxIqdZE\nCkNWqjXlNnU8Kw5hK9yzkjJBWL48YnXl7rZoZYXly9WSIccc4/OBEOdp7VqVeFA4WYmReAATZGWv\nmZqsaHQhxv1UCkQ1kbVnuGHCQBkqKytWqHPe07EHKDruQ0VChmGgHrIFNIUBPuqJxQQZ813qIGsk\nXHjSwdq1Kr00TMEtR1XCJmoOaanKEmQDpXRvSJmQrOgwEKDO4UknBWRThbh/nX6xn/E7Uzg3ZbMZ\n+avLloE0zI7lKCYLNFlJiGV7voE7X/NPRTcjMh56SBnI9tkn3OfbWRlWiDBQ1GygCB3t8uVqnDjh\nhK4NAxIGevFFeOIJb7LiJiRSqr6qfYqE2SYyiX5TEqQ0QIc11zpwh8ecVyNKGKjk2UBPPaXIWyJl\nRYeBWLaszzkMSVaOOCJ8v5gJEpQJWL4cRC2dSUXZoMlKAkgJYsd2ZsltRTclMlasgFe8IvznuwuT\nWZZPMa8oA0MMg+3y5XDccTA01LUhizBQBjNWJ67uRVYaYuI3dLe7idH2bUwGsnLIIbDvvuE+38CY\nCI/FISslzwZy7gmtrMRHvQ6rVvU5hyHu3yVLClZVIDZZGRmBxx6z6zJpsqLhxlNPwXjLZO8BjA9G\nJSsVo0IL0TFgpqasRCQrnh1SH7ISa5n3DLwAS5equHrPImvYYaCGNyFpCBPRmBzKSli/igO3qtRW\nVig4GyhFgrB8Oey1Fxx8cMwdpHRdnrx3A2PPDd7EC1RxS8sKXrohjLLywgtw4IHpti0yYmZJrlyp\nii0aUzRZ0ejCypW2mWn6YN0Y27fDk0+qNYGiwC3Hp+JZiTiDaLVU+MqXrAzAYnVLl6rz7hVXb1Z6\nlZX2KQpQXXJDCoNiFHOtgyau41olUlZCnoufnPMNfj7nBt/tDgGPnSqb0n067ZxTufd9/5t4P0Vg\n+XL1Gtinhbhm9XoBz1U3Yiory5erMhS1aZqsaHTh4YehWa0xrVYvuimRsHKleo2irICS490z/7yV\nlXXr1LLtnmQlC89KBvK6n7kWgtWTRmUiU6ibyOSGFAy269cr305kZcU5rv1qMjjZQCcuu46D7v+V\n7/ZE5lpI5T7dsgXq0uSAvQdzkFu+XC1qOnNmwIdC3L+FlAToRsximcuXK8W2oj0rGt1YuRKGppuI\nAbsxVqxQM/vjjov2vQads/u8s4Gc2VOcMFAZlJXRUSVX+5GVVkAYqCWMSREGeu459dpdYyYI7vBY\nW1lxhYH6pnEXXGel2rI6yJUbO3ao7KhEZCWF+/SRR6BOjf32GKyJl4Ply/uEgGBwyEpMZaVtME4p\na69s0GQlAVauhKkzB+/GWLHCx6TaBw1hpOtZifhQLlsG+++v/qIcV4gYi8M57UtRWVm5UmX4+JGV\nZiVYWRHW4JOVOG1vVHqVlSotWo1W+624ykosL5Ozz5DPfbVlYUrvz65YoV4Tk5WE12XVKjukPWOw\n+jJQocW+mUAQ6jwluifSQgzPihMiP+UUNFnR6ESzqWYjU/cYvBvjoYeih4Cg1zdRhLLi2yFFqZwb\nFqYZuziTF1auVMTppJO8tzcCyEqzYkJz8LKBxraN0axP1IuIY3huCqP923HVj7BG+tyLDgr2rCiy\n4q1Y+KbiR0EKYaBVq1T4wF1sb1Dw7LMqjNWXrExiZeWJJ5RK11ZW6oOpkAVBk5WYWLcOxsZgxp6D\nRVakjJ4J5MAtx/tK73HK7Yd8KAPJSpTKuWGRoN6BFx59VK2HM2WK9/ZWxUT4EJJShIFizNgeP/hc\n7nnXV9v/j9P2pktVEq5r0Rjro/I5KDgbyJAWhk8YaNmyeCpn5wGSh4FWrYLqgGaRBIaH3QhxnkpB\nVmJ4VlatUq8nnYRWVoqEEOIcIcSNQohnhBAtIcT5Eb57thDCEkI8mGabHJPqzL0H68bYsEFlA8VW\nVhp9ZrMZLWS4bZtKFfeNS2flS4DUyMrq1d4pyw5aFX9C0qxOVKUcJGVlr7GN8MzG9v9jkRVhtEmc\ncCkrjdGClZWQz73RqndkL7mxalW8Z7EDKSkr5tTB6sscrFwJ06fDYYf1+WCI81QKshJjkjQyol5n\nzkSTlYIxDVgGXAGE1uSFELOAa4Fb027QypVqxdjhAfOsODHyqGnLYCsrYTwrGYSBNm1Sr761KLII\nA8Wsd+CHfmSlWTWpNP3DQH6qS26IQVYMaXUQjLjKSjv8EycMVPCqy4a0MHzCKzt3wh57xGyDuy0J\n7tFt22DjRhiaXhuovsyB81z1Tf2exGGgjudqkpKVvJMfY0FKOQ+YByBEpGoEVwM/AlrAO9Ns08MP\nK8lN1AbrAX/oIcW+o2RjOOg2gPpWsM3AYNvX6+Bz3ER1E1IMA1mWyvoIVFaq/oREVgyED5HJDXHJ\nijURP4/T9lZlQllxr3nSHA8ZBio4G8iQFg0fZSWVuh4JDbaPPKJeh2cOpteh3ySgDec8SenJbJpN\nZVQtDVmJMK7sDmRlUJSVyBBCXA4cDvxrFvtfuRJOPJGBMzM9/LBqd5wCVN0VVvNUVvoOciUPA61f\nr9oSlC4uK4a/shKguuSGFJQV51GJRlYmQmCxwkAF11kxpYXR8u4jUsk+SRgGWrVKFRObMmAqsYPQ\nZKX9MHkvEFjYc9WNBMpKtYq6oQbwOvbDpCQrQoijgf8ELpVSttLef72uHpBBNDOtWRPywfaAe4ab\nimclAhkohKykGAZavVq99lNW/AhJ0LbcEONer1FPHAbqUFaallqFmU6yElggr+BsIAP/MFAqYYeE\nYaBVq+DII6E6NFh9GagCg5s3R1BWwPc3loasxJgkOQqdEAzcmBQWAxEGigIhRAUV+vmslHKt83bY\n71955ZXMmjWr4705c+YwZ86c9v/XrlX30QknAOsG68ZYswbe8Y543212VVhNrKxEIAOhyEoWGR+Q\nirKyerUyAR50kP9nWlWTSsubkMiqQcUa89yWGwxjwskXEiZWO3wFqu2VivoLC7eqJJoWo0zBZEf4\nMFBW2UCtlvrr82NMLOpZkpUUlJUTTgBag9WXgVq4D+CYY0J8uM/zXBqyElNZabc7B7Iyd+5c5s6d\n2/He9u3bMz3mpCMrwAzgDOAUIcQ37PcqKLtLHXizlPJOvy9fddVVnHbaaYEHePxx9Xr00QwUi926\nVf0dfXS876eurDijVhpkJcvU5ZSUlWOOCQ6/yapBpeXjWQkgMrkhYhio1WhRpUWl0elZiRr2kBUD\n0ZpQVsYqU5nZ2kFzLGQYKEvVrdEI/EGyJalhMVpyZeXSS4HVZmQyWjQcxTISWSm7shLTs9K+DXMY\nk95+3p/w/874I2YdvV/7vQcffJDTo6yjERGTMQz0EnAScApwsv13NfCo/e9FSQ+wdq2qlXHggQwU\nWVlr60xHHRXv+81qysoKhB4A+3odsh6QEuLRR/tL1dIwqQaEgfy25YaIZMXJ1ql0KStR2+0OgVWa\nFuMVVagmNFnJSlmBvuejMa78EX7F1lIjKzHv0R07VEmAE05AjXYD5L8DRVYOPhimTQvx4T7Pc18T\nf14YAGVl2ce+x/Axh6S9dFogBoKsCCGmCSFOFkI4VTaOsP9/iL39C0KIawGkwir3H/A8MCalfERK\nOZq0PWvXwhFHFBMfXPXjZbywYmP/D3pgzRr1euSR8Y7dcs1woygrUvYhNxGUFd+OpOQG29Wr+6/F\n1DImKoj2KCuGv+qSGyKGG9IiK7JqULEVvWrTYrw6FYBWPUI2kEcl4jyIrLVLDf7uc+BGKtlACcJA\njjJx3HEM1MTLQWhzLQyOshKj38mbrGx6sYaJhVFNp7p3GAwEWUGFdZYCS1B1Vr4CPMhEps8BwCF5\nNWbtWteAn/MDvu/73sxDn/hBrO8+/jjsuy90WXJCo9VVmCyssuKY79MgK7l6VlIKA4U1AUrDpCL9\nw0B+RCY3RAw3OAbYarMzDBRLWbF/e6VlUbfJSiRlBXrujzzuDYewuc9BdxsSz+QThIFeekm97rUX\nA0lWHnssAlkZFIPtACgrz71gUkH6ZlZlgYEgK1LKu6SUFSlltevvQ/b2y6WUbwz4/r9KKYONKBHQ\nQVZyTBN76SUYlzX2nhnveI8/Ht+vAp3Kim+5fY+OM7ATCClhF+JZSUlZCZMJBIBhBCgrnWSlWo2X\nfp4IEcMN9V29ykocJcHt5ak2LSwjYhjIZ0adSxhotPccpNYGd1ti3qMd99mAkZVWS6nFofwqMKkN\nth3PVQ7XceMWm2HneL8MBFkpE5pNVTOjQ1nJKc67fj1YmOw9I97x1qyJ71cBe3bv8k14pos6HadL\ncg/sBNJWVrKQ+hM+kA5Z6UcUZdVsp7g6h3Sa0K26FNKhRiQrzVF1n1aThoFcXp6KbGCZE2EgJ7pT\nVmWlTVYavZ8L1fawbYl5j8YlK/f+YA0PGGexcW3iqHpsPPWUWp9t0oWBYhpscyUrm+2D5ehx0mQl\nIjZsUPdBEWGgdeugTo09psVXVpKQlVY1pGcFOuTBvmQlrTorXcd1vhdbZk/JYPvoo3DIISFMgGYn\nITEMl3piGB1EZhDISjsM1EpIVqpG+7xUWxaNmk1Wxq1wA0wWykpYz4odBhIeykpqg2MCg22HcT2C\nwdZcs4ozmouobd8c67hpILRi6aDPNYtTsDATlDwM9OKL8OKIVlZKDydtuYOsyHxid+vXq1onU43o\nbHbbNrWMepIwULeyEkhWXA9a3zBQiBve6Uh8i3/5zEbKEAZ6+ukQi6yBIiTS+/xK06Tqsy03RAw3\nTJCVZJ4VdwjMaFk0ayoMFJqseNyTTomU/MJA3qqfe1exkUIYqFYj0iDnhOBMn9Wk88Dq1Wq16tBL\nhwyKsuLEeCOSlbxSl9etUwo/oJWVMmPtWlUa5NBD7Tf6PABpYt06YKjWURE0LJKmLUNvHRBfpcT5\nAJ3/TBoGMs0An0aWs+eE17Zeh+HhEB80zTZZ6fEEGSbVMoSBIpwLZ0AzupSVyEqXYbR/e1VaNIcn\nwkCRlJWwBDpkmzp25APnHHh9NnVlRUbPzIgbBpJ159oWl+r82GOqP6tWQ35hUAy2EL1MQI7KiqPw\ntw+cEzRZiYi1axWT72CxkMtFW78eqsPxPDJJ05ZhIrXWEZJSU1ZChoHKaqLsh9CmUhdZ6W63MP1V\nl9wQ1bNiD9RV2UlWkiorsk1WIiorYQl0GISU6oPIivMYp7I2EMRSd+OSlda4arwpiyMrkRMGBsVg\nC6UnK0PTtLJSenRkAkHuyooxNV720eOPw957w557JmiAraz0VUogM2XFFz4dURmUlbBqgiIk3uqJ\nDCAyuSEmWTEShoG6lRU5rMJAMqpnJU1lJSSRdUzGHQdNqw0OEtyn9bpSK6tVoikr4/a19VlNOg/s\n2gUzZkT4wqCEgSCyipk3Wdn3oPzGPQearEREUWSl1YInnoDatHjKStK0ZVCFyaqyzwARVVlJi6xk\n4VlJyWAbug2miYGfslKSMFAUz8qIuk+NhMqKW3EypKXKRwPSChkGylJZKUsYCGLdpx1EOkIZBicM\n5F5KIW9EDikOSgVbiF4moDt1OWZYMAzWrYP9D6lNHDgnaLISAVJ6kJVaPrG7555TaXpD0+MpK0nT\nlsGR41NWVnaDMFAUsmL6khXDd1tuiDhja3nMvmNVbHUpKyYushI2DJSlZyVBGChVg22ItnihZ0Ye\ncvBxyEqeM+tuRH4OBklZiWia7rmOkErlbS+sXw8HHKKVlVJjyxa1loanspIxw1y/Xr1OmRlfWUlK\nVrBTSItQVvoOcj4PaKJy5ikabMO0oVIzMPBRTwKITG6IGQYy01ZWaiYWRniykoWyEnJAcAgb0PPc\nliEMFDd80CYrBa4lFPlemuQG2zx8lI0GPPkkHHioVlZKDSejpogw0Lp16nXKrHjKyosvqlL7iWAP\nGs4zlLeyEijPllxZCeVZqakS1s16s1dZqZnUsJAtOTBkxRmoTZJ7VgyXsiJMkwYG0iqBslKGMFCa\nykrY8IFVn9hBQajXI4ZsBs1gm8Sz4ryZMjZsUKfvZYdpZaXUKJKsrF8P++8PxpToykrgQoJRYMvx\nzk/1rHkymTwrlYrnPqMidBtq6kONUcszDATQarQGkKwkU1ZEbcLLY2IhaiYWZrGelbAG23F/spJa\nNlBCg22s8MEgKit9+urSFIWD5NlAzpspw5k0H3KkVlZKjXXrYJ99uhzoOSorRxxBrLWIAhcSjAJb\nWUnVs5IWWclCWREiUXXQqG2o2GTFGm30fKcyZG8b6SUyuSFiHH2CrDSQLTVbj2yKBKWs0KBZb1JB\nImomDWHCAHhWZABZKZ3BNkpfZg0gWQlhsC1kzS0vpOFZyYisVCpw0KFaWSk1NmzwqJaYI1k5/HAi\nmeAcpDmDq6btWUnbYJtm6rKz35zqrFRq6tx5KSuO6lIoWTGMSNWaW2MT96lTyTWusmJiTZSuHzJp\nomTywpSVkGpGKw+yklYYqBZhtuw0vuAwUNoG21KoKpA8GwgyIyuHHAK16VpZKTWefhoOPrjrzRzD\nQHGVlTQ7xd1KWYFEi8S52xDWswLehMQhMs3xXtUlN0ScwbdNmEyswByLrJgGFST1napjrDjKSqPA\nCrYhCYIcd3Xmg2CwDbkf4XhWClZWIk3AnFK3k5Cs5KmsHHFEtsfwgyYrEfD004pVdiCHizY+Ds88\nE19ZSatTFKaS41NVVkIqF31nUVl4Vpz95hUGskM9XoSkUhZlBWKRFUdZiZOdJezzMr5ttP3/RkWR\n3ECzd3e7J6uykiAMFHtGXgJlJfJz0CesWzqyUkKD7aZNcOCB5Fayww1NViJgwwYPspLDRXvySaW+\nx1VWUgsDOXJ8GGUl5YUM+86islJWQio/QQjvWfEPAzlExjNElBcSkBUnhBOn7RXbXDy2dUT9v2bS\nFAY0BsCzUs+BrCQYnOJ6Vtrrkw2SZwUCn+dYfqqsUNLU5XYGlnMMHQYqH3buVCsX+4aBMrxozz6r\nXg86iGKVFSOCslJUGChtz0oKykrYFMu2sjIWQFbGCgwDRfRGdCgrdjXbuJ4VmFBWKkMmzShhoAKz\ngcKQldSygdJIXXY3LABtslKwZyWOWXsgwkAlNdi2j1OtKqetVlbKhw0b1GsRYSCHmwwNUahnxakD\nMj7S9N9fHGUlDYOtx4DUbCpFqmiDbdhOsDrsT1aqQ3bq8ngJlJWQ959XGCiWsmIrTvVtSlmpDqsw\nkHAZbD3T6B1koaxUKiqs0O9cWP5kJbVU2bQNtiGub7vMfkHKSqul/mIpK4MSBkpKVjK4Nh0EMcbE\nOQk0WQmJp59Wr0UYbDs61hg3SFphIGEPGuO7GhPt6YbPLLZSmShb0oEMDbapkLSUDLahyIpNSLzU\nExFQgyU3RJ3Bu+5TN1mJeh+207ZfspWVmkFLGIhmgdlAzn5DKCst7FzYEhpsPT0rIfqXvMNAy79+\nDytmzO5IgYcY525QlJWI/U5e2UA9pEgrK+WDQ1Ze9rKuDXmTlQKVlbZ3YKflvz+fWazvsTMMA+U1\nIAUhSkG+oDBQW3UZb9Bo9FESskJUsuJWuUYThIHs+87abntWhkyaFRMRNQyU9r0RQnWTdYtRpnYe\ntKsNia9lAWGgSjPfMND2BQ/zip0LadaVqhtblQq4ZomW5kgbJc0G6lHitLJSPmzYoCrIDg11bcgx\nDNQ2NhXlWXG8AzvVQxRYwbZrFut77JAPZei1gTxmz4kUpYSzBycUFaYNDiHxCvU4qosXkckNCchK\nkjBQm6jtHG3/v1k1ES6DrZOV6gkh1AeKUN0si9GKP1kxjBSKkBVhsHXISk6DlRNSdNLXYz/bfQy2\nmqwEoycMpJWV8sGzxgoMhLKSVhjI8Q6MF6SsBLa/QKk/CFHa0CYkHqnLQX6W3BD1XncrK/YaOXFm\nr+0sqZcmPCutikGlOXEu+g74XTPqvO4NYdUZE1M6D+pqQyrXsQBlpdrMd20gp16NtauTrEzaMFAM\ng20e2UBaWRkAeNZYgYnc/d1AWXHCFPWR6J6VQLKShsHWMcWkTVYSGmyjtMGYEqCsuMJAA6OsNHrJ\nSiyDrX3ftXZNKCutioloRjgXXc+oZU0ILrER5t6wLBqVWo+y47QhletYhME2Z2XFaVO3sqINtkq5\nbTS0Z0XDhmeNFQcZu6I7pO5aLVLJc/f3E4eB2p6VALLikIawykqEOit925/V7DnBAxlJWQkIAxnD\n6tzL+uCEgYRlMYJSFZJ4VtqZUDtdykrVbBtsQ+3P495Ixdja594QDUulWXvMQmOl3vq1A3I12FZz\n9qw4bbJ2jrv/O3lTlyP0Oz2FEfMKA2llpZzwDQNB5gyzQ+qO0KE4SCsM5AymToGvsAQkF4Otx77K\nEAaKcu6D1JMg821uiKGsjArl12iOWbHTTZ3zIkeUsmJMMWlVDapRyEqUezIswigrDUtV2/W4z8sS\nBooTPqi0ilFWEoeBJqGy0mM21srK7ouXXlJ/gcpKxmGgDjYLkY6XWhjIqXcx0vBPRYaeBy0Ng22o\njsRjQIIBCgMN+9dSCQoR5YaI4YaKVWfMNpc67XbvJiyc+45RN1mJGAYqSlmxLJpZk5W0wkARBjmj\nlXOdFbtN7uKCEJOsBCgrpalgG6Hf6TkXGSsr2rNSYjgF4YpWVtrHgkg3SdqeFWvECt6Xh8KRVFkJ\nZczs2lcqRbdyDAO1CYlHqKdNZOol8KyEPB+iaTFWnQaoFZidr0UdEBxlxU1WZNWk0ipYWQljsG1Y\nNCu1bMmKM2uIcZ/GNtg6ykpeM2t74cTEZGWQwkBxyUqCsGAQHG+MzgYqMZwaK0UpK3FNcO7vQ/IH\n0fEO1EcawfuKoqxECAP1HeSy8KwUYLCVHoQkiMjkhojhhkrDol5Nrqw4950YVZ6VWGGgLJSVEPeG\naFg0qxkrK0LEvk/jFhOr5hwGEnabHO9T7ND2IIWBQvbxPc+Vcz+kPCb1eGO0slI+bNigrv9BB/l8\nIM8wUAk8K43RFJUVh9hIGXjswsJACZWVKOfenOJvom0TmTKU2w9rsG1a1M3kZMX57WLcpawYJpVW\nsmygPMJAlaZFK+swUMi2eCF+GChfZUXkoKwMalE4T8UygzGppy/Tykr58PTTqiCc74AzIMpK0kqZ\n7XoXYykrK9A3u2lQDbaxwkAehKRNZKwShIHCKitNC8tUYSA5Xo8dlnOUleqYUlbMqSoMVI0SBsrK\ns9JPWWnayorHLDRVj0TM+7SjDZWKSjkMMREyZL6eFacInTurDLTBFnzORQZjUs9xtLJSPgSmLUOs\nQm1REDe90IFlpVMp0/FNNEat/gvHRVFWoO+DGZqsDHAYqFqrtr/UQ1amqv80x6zkizPGRVSDbcOi\nUVPKiqMWuXcTFg6Jq9ZtZWXYQBpGNLJSUDZQtVGn5RMGSnUmH/M+7TkPIQc5Q+arrFRsZSVxGGhQ\nPCsRrqfnJCAPsqKVlfIhMG0Z1EXLuM5KkmygtOo5tNNnxzNQVvr8nkKVlZwMtqIisDBoeagnFbNK\nCx4DMgsAACAASURBVNEuWz8IBttqs07LMNVvSkJWbJJs1Ecm/m+YVGT5s4EqTQuZtWclZFu8kJis\n5KystMayzQYqDVkpobKiw0ADgI0bPRYwdCPPMFBMZSWNh7C9KnCanpUQZCX0YoAlTF2OOgO0MGmN\n9RISIdS2xlhAQb6sETUM1FIDdZ0apKCsGI1RLAxERSANE6NoZSXEgFJpWb7KSqqDYxoGW2c/JSQr\nFbsacjMNsjIoYaC4BlvnPzoMlD+EEOcIIW4UQjwjhGgJIc7v8/k/EULcIoR4XgixXQixQAjx5rjH\n37RJeVZ8kafBNqZnJY2H0Bk0UlVWQgyAzqZQ2UADrKyAIiROafruUFsDo71tEMhKtWnRMkwaKOUx\nqbJSs0awMNttqcryZwM552BglJWQIe0a+a4NVLHXIpJJycqghIFKqKzoMFA4TAOWAVcAwWkjCq8D\nbgHeCpwG3AHcJIQ4OeqBGw3YsqVYspJUWUkrDDSx0F6+ykrojikLz0qOBluAhjBpjnurJ24iMwie\nlWrLQho1LGF2eFai3ouOX8dsjk6QFdOkGiUMVFQ2kH0O/Ay2qZKVpAZbCB3SNrFomMP5KStdYaCs\nUpcHuShc7tlAOSsrCfND8oGUch4wD0CI/jZRKeWVXW/9sxDincA7gOVRjr1liwpDlIasFKisOING\nKwvPSsCDGYmslDQMFLYNTWHQHPcmJEFEJhc4q/5FISumSUOYbdMwRG97xVBzqqHmiNqXvROjaGUl\nBEFQhM1fWZk6NWEbHMS4T5tNes3aIfoy2ZIYNBkb2gMjp5m1s8pza1wrK93Qysokgk1wZgBbo373\n+efVa2nCQCXwrLQiKisdK4J2I4RpM3THVMI6K1HVhIYwafmQlaZQRlWvbbnAWaY4rMFWWmCYNISa\ngcVNXRYVQR2TodboBFkxjGhkpahsoACykmo2UIz7NG4WibM2WGNoWm4za2fhRHcYKNaq2dpgGxs9\n94v2rGSCv0eFkn4a9YubNqnX/fYL+FDJlZW0wkBtZaWebzZQkjBQ4BpGYZBQWYkTBmr5qCdBRCY3\nROhEjVYdaZhqIb9GfGUFlF9nuNWtrJQ/G8hRl8posI07yDmLCTaHpubnWbGL0Mn6RBgoVp8WcJ5K\nVxQu5LnNO3W5qGyggQgDJYEQ4r3AvwDnSym39Pv8lVdeyaxZs9r/V+sCzWH//ef4f6lWg507E7fV\nDx2x1AKVFcfoWKUPWYniWQlh2gwdn45y3LDI2WDbFAbSRz1pCJNWvcAwEEQkK+oCNIWJSBAGAuXX\nmcIo28Q+AIiaiUFEZWVkZGJ/FgwPR29HB0IQBLNVB0dZ2bGjY1vRBltP1S+EwdZRVppTpsO2zZGO\nGRfthRNdYaBY506HgWLDfZy5c+cy99e/VgPk+SrfZfv27akerxuTmqwIId4DfBu4WEp5R5jvXHXV\nVZx22mnt/3/lK7BmTZ/YckhTWlzU6zB9uv0fp2cpIgxkFy0z6RMGKkpZMQzYtSvcccMiocG2Xo+m\n7jQrpi9ZaQkDigwDOQcO61mR6gI0KrXEykpTGNSkvYIxgGFgRiErHsrKjBnR29GBMMqKfQ68+oii\nDbaxlRWbrLSGp+U2s+5eiyj2uRuUMJBpQqul/vp0HkWEgebMmcOc1avhu9+FG28E4MEHH+T0009P\n9ZhuTNowkBBiDvA94D22QTcWnn++j18F8g0DhRjcu5FWGMgpWmbQ6F/BtqgwUJeykvh3pxAGitKG\npjCRlk8YKIDI5IYIM3hDWkizRrNiUrHipy4D7fBP035VykoJsoH63BuGQ1Y8FIuiw0C+4YM+EyGn\nMGFrytTcPAttZSUpWQm4ZqUiK04H22cZEsgvG6jnODobqBdCiGnAUYCTCXSEnYa8VUr5tBDiC8BB\nUsrL7M+/F/gB8HHgfiGEQzdGpZQvRTn2pk19/CqQi8G2/RBVq4ppF6CsgJLjQykrXZJ7kjBQEs9K\nGcJAUdrQrEwcr9dga/puyw0RZvAmFqJm0qyYiKTKit1VNSv2Csw1kwoSa6yJaYZwWWZxb4QgCIZb\nWfEgK6muDRQzDBR1Ru6UvJdT8jPYdhehS+RZ8fh9johROrIS4kbV2UDlwhnAUmAJqs7KV4AHgX+1\ntx8AuFfv+XOgCnwD2Oj6+++oB+5bEA5yUVaSsOY0yUrDVlb6elZKoqwUHQaKTlb8CUmrYiAbA+RZ\nkTZZqXaSlTiDTMMO/zhhIGEvqlnf1WedqnZjiqmzYkr74c3aYFtAGEhOnaZG+BCz/6RwVnl2Vl9O\nFAbyOE9JiHQmiFCA0TORIMMwUId/UisrnZBS3kUAsZJSXt71/zekdexNm+DMM/t8KM8wEESW39Ls\nFJvCwJQhlJUUDbaRPCuu46bi7k94baPOAFu2CuEc2o1mRRlVvbblhgiDYg11AZrVGpVGsjBQUzjK\nivpypaZerdE+xNlBVqpbP2XFVpe87qPUFzJMw2AbRlmxCxPKadMmdhQ5hzga2qs8JyUrPgRzkMmK\n531kmh3+vTTQc44yXsC3G4OirBSGMnhWega8iMdLy7MC0MDMXVkpPBsoR2WlVTGg6a2eNO0UYK9t\nuSGkN0K2JDV7oG5VTSpNi3pdjWlxVv92vCotR1mxF9Xsu06Vg4LqrJhY4JCVQTDYhhiAHLIinKyD\nHAYsE3WMSn0cSD8MlET1ywTORQmprHiSlbzCQDJMUfnk0GQlAFKWg6yUSVlpCCOcZyXswJB2GCgr\nX0LMBzJyGKjqr6y0qgaiDGGgEPd6s65CAw5ZEc0ImTte+7O9Ks2qrayYIRfVdFCAn8lN2CaTwdYh\nKzjKSg6hANNWVkQjG4PtICsreZGVer2rEJ/D7BJM5qJAk5UAvPiiut59DbYZy2E9N2OBnpWmSFlZ\nSdtgm4WyArHj8pGVlarZXmG217OiBn2vbbkh5Aze8TWIoRqtao1KUrLiKCsOWXGUlX5LP7jbnbPq\n5qyQXfEJA6WurORksG2M2MRhuisMlDHaykoanpVBCgOFOLd5Kium6VJGQ0w004QmKwFwqteGUlYy\nrrPSU7ipgIUMwfaslFVZyWpAgtizh8ielapJRXqrJ62q2e60B4WsVIZNWoZJtVlPRVnpJit970UH\nWapuPmgTtgCykmo2UMwwUNQQs1NFuU1WMlZWHIUKoJJUWTHNidQfF+IuBZEZIiorPfdRBmNSjzcm\nRs2vJNBkJQCRyMpuoqw0KiGUlRKV209lQOrTviBEbYOsGr6EpFVV595rW24IGW5wanFUaiayalJt\nJVNWHK9Km6zY2UChyUoB2UAT6lIOykoCg23UvsUJA1Vm5ENWHIUKoNJMmLrsQwJKp6yU1LPSQ2yd\nDTlAk5UAhFrEEHIx2JbFs9IKo6y4zkff+gWDEgaKqazECQP5kZUgIpMboiorQybSMBOHgVq2siJt\nslIdLoGy0i8M5BC2oVrPTFfK4g22nmpCiJC2o6xUpudjsHXuJYBqGsqKswP3McpGVtLIBsooDNSG\nVlbKg02bYGgIZs7s88EclJWo63e4kWo2kK2sBNa2cHWcfTsBx62VRjZQVhkfkBtZkQHqiUNkYq02\nmxZCeiMcX0NlyESaNYxWPVHYwzHWtozOMFBflc+n3andGwHnYoKsmD3PrHM7FWmw9VVW+gw+LXvl\n4+osew2QjAcrZ+HEMYaoNlMw2EL5lZUSelZ6SJFWVsoDp3pt31TLIsJARSkrlWjKSt9OQIi+s8JS\nKCsxr29UoiiNgDCQESIElzVCzuCdgbo6rJSVastKVFekR1kZihgGKkBZcRSB6rArDGRnlaU+OOZo\nsG0rKzPyMdg653FETGuTlUSpyzCplJXCwkBaWSkPQlWvBXVjSJlJJUcp1f0aVap1I9VsoIielVCd\nQJ8Hy7JCLgaY1YAEuSorJpb3762GIIpZIyRZafsahmtIw8RI6lmxSYo0YoaBCqiz0qGsOAez+4hM\nyErOBltzlh0GytqzYp/Hkcp0qq2UwkCDoqyUjKxoZaWkCFVjBSae9gwumm+HUlA2UKsSstx+WGWl\n6/NeCN0xZaGs5G2wNfzXXmoFbMsNEQ221WETWatRlcnIinSUFbsTd8hKaKXJ1W5nXpEKkQ2YpDiE\nra2sQM9zkVo2UI4GW2cxzerMfJQVJ6Q4Xp3WXtAwcRio7MpKRIOtZzZQ1mGgyaKsCCFOc/17lhBi\nj6yOlRUiKSuQKVkpi7ISKgwUVVkJEQaKNHt2Se2Dpqxg+JNBWZYwUIh7zz1QC9PElMlSlx2vCo6y\nEjUMZBiKVEiZ3sDU595wFvzrUFZcqwan0gZ3W2IYbHv8T6EMtuo3GDOmTOwoQzjEd8ycnpys9AkD\nlaaCbUmVlUmTDSSEOF0IcYkQYh/gj12bdgGXCCHOTfN4WSMyWcngofU0lxbqWQlZFK4oZQU6pPai\nDbbRPSsB6ontZwm1cF9WiBgGclQFIzVlxVZUpkQMA7muY2pEoc+9EaSspF7XI6bBNs4gJ+sWdUzE\nUD4za4f01c0JZWXSpy5H8MoVlg2U4bjnhbSVlZ0okvIA8GdCiP8WQrwTmC6l/DZweMrHywxSThhs\n+6LkykqaYSAZxjcRR1npkw0Uqv1dg0cZDLaR22D6k5VAIpMXwpIVe4AxpqREVhxlxez0rETKBgKw\nrPQGpj73RgdZ6QoVl8VgG6uYWN3Covc3ZQVHWbFq0zAzUlYGvShcHmTFNww0iMqKlHK1lPJDUsrD\ngHnACuAiYKkQYiXwljSPlyV27YLR0eLDQHHX73AjVYNtNYKyElZy7zMrjKysuAaEyRQGogxkJeQM\n3jFhVodNGKolDgPJqjFxfMAYjpENBOkqK/3CQDZZMabWfD0rRRts4yorDTdZyVpZsc9jY2h6e/Xl\nSW+wjehZ8byOdtgzLfiGgXJSVrIUlG+SUv4e+B6AEGJf4IUMj5cqnIJwZVFWktRZSZOsyIqBya7+\nSglAq4VlqYB4LmGgrpnuIBpsg5QVYYYwN2eNiGEgY4rtWcFKpPB1KyuRw0BZKCt9BpQOwkbGZCXG\nTDp2+MCqUxe9BCwrOAbb5vA0ai6ykigMVHaDbURlxVkAuw33tUlJVu/pywZNWRFC/IMQYrkQ4iOu\n92YCJwghDnLek1JullK2PHdSQmzdql733jvEh/MOA0VQVhxynVo2UBiTp+t85Gqw9QgDJf7dOa8N\nNBBhoBD3uTNQG1NriJpqd6rKypSIYaAslZU+YSBzaq9nJXVDZ5rKSr8yDHWLhshPWXHupdbU6ZhM\neFbSDAOVlqyEeNZ8r2PI74dFT182gJ6V/YAngQucN6SULwG/Bv5UCPH+FI6ROxyystdeIT6cdxgo\ngrKSdizW8az0rWAL4QeGtJQVDxNj1rPnfog8QNcCyGCtJGQlQhjInKqMmBUk1lgzPllxvliLGQbK\n0rPiFwZyCNsUs6djz0RZSYOshJktW5ZaBbtaVelEGc+sHf+TnDqNGrtZBdskqcvOxpQw8MoKIICL\npZTu7B+klI9LKT8PvCqFY+SOSGSlxHVW0n4IZVjPin3wIsnKIBpshelvYB6kMFCrPjFQO6XxrV31\n+G23lRVh78CcGjEMlIWy0ofISjdZyctgG8GjEDjIBfUvlkWj4pDHaOuUxYFDfJk2DYMmzXozdYOt\nZYUsPJkX0jDYOhtTgm+5/QFSVr4AfFIIUQUQQhwrhFgjhHhWCLEAOCqFY+SOrVvVtZg2LcSH8w4D\nRVBW0icrIbOBIPzA0GcADB1KycKzkrPB1vF3eH4naFteCDmDl/b6MeZUE2GrIeM7E7Td/qKzr2pN\neaHKnA3krKHToay4VL9U2tDdllb4SLuvZwUC+xdh1ZWy4nw+a7Jin0cxQ61FZI0k8D8FGGxLo6pA\n8oUMM5hA+xpsc1JWQhtshRBvBM4B7gUWSSl3AEgptwgh/gf4JyHEl4F/B34HPA6MAz9JvdU5YOtW\npar0XRcIMmWYSbOBQi8CGBLSHABlJc3U5YQPZNROVdRMDJqYhkSJlq5tZSArMcJAlWF1AqyRBG23\nO2+HrIiKwCLC8gNZelb8lJW6y7Oyy9uzkmoYyNlxyFUuY8/IGxZWxb6pI5r946DZtRZRfWcdyxpO\nFgbyUFZKUxAOJmSeEikrPcepVlUby0ZWgAOAz9r/bgkhVgEL7L/7gK8CnwOaUsq/TrORRcAhK6GQ\ng7ISNxso9U6xAGWlFGGg3JQVdbxho0E7g8TZFkBkckNIg227JHut2g4DNUYShIEcZWVoYgcWEchb\nltlAfsqKi7D5GWxTV1Yi3KdxBzlhWbRyDAM54TRnlWdrV4I0+IAwUKmUFQj9rBUWBoJcrr+DKGGg\nzcA3gIOBS4G7gNnA94FHgbXA/wOGhBAnpdzO3FE2shJXWUk9DBQlGyhvg22Wqct5kRVbOZhi9J6P\nSs1NZApCSGVF1i3GqSEqYsKzkoKyUjEn5lcWEZYfKEhZaSFUyMrHYJvq2kABbfGCp5oQInwgmhZN\nh6z0eXbTgHTK+8+ylZUd4/GVEJ9rlooZP22EfNbyVFbyWIPID1GUlQeAF6WUG4Hr7T/sNX9eiwoR\nnYMiLOcLIbaiCM1PpJQ/T7XVOaAsZMUzjBMjGyjNFMnQyspkCAMlNNhGDgPZA/twtfd4DpFR2wrq\nWadMgR07lJEzKEZqqSqnQ0xUm7VGrPj3YZdnBaApDExZAmUlgKxYmAxVRD4GW/eOQyDuIFex6jSr\n+Skr7TR4ey2i0e22H2qyKyvOs9YHhWUDQTmVFSnli1LKBzze3yal/I2U8pNSytcAs4A3Af9j//vv\nUmttjigLWSmbshJYYdVB1FlsBmEgKdUuBy0MVA1QT9pkpUhl5YQTYNs2eOaZwI9JpxYHtD0r1Vb8\nMJATHqu4wkANYYZfKylLZcXnuXfISsfBShQGCjTYBvQvomnRrNYmPp/1zLpeZ5wa1alDAIy9tJuQ\nlRNOgBUr+n6s0DBQSZWVUJBSjgG3238Di7KQlaR1VrIw8vUlK3GUlZ07fTfX6x4VGv32Yx/X6bOL\nJCtxCFOnetKJdhjIY1tuOPVU9bpsGRx8sP/n6vX2QO0oK4nMwfZ56SYrpcgG8rs3rAnC1t1HZLKQ\nYVBbvJsXT1lpWLTyVFZs0ledoghSIrISUGeldGTl1FNh3ry+H4ub1RUVvgpO2ZSV3Q2RyEoRdVYa\njVA1FQoJA3XNYnuWoff6fMqeldQGJKfxMa5tHMJUCQoDBWzLDYccAnvuCUuXBn/ONVCnQVaE0aus\nNEWEbKCopu8wCBkG6visS1np+1xEQZ5hoGa+ZIW6hSVqao0lJshKrD7Np5BdKcnKKafAmjWBEzko\nMBsIcskGc6DJigekLI+y4tmxRiBHWSkroSrYWiFLrGdQbj/V3x2jlDnEI4qOejJU7T1e1R6ovbbl\nBiHUjG/ZsuDPWVa7FoczI05EVmqdxAcmwkBRQ4R5hYGEVe9VVlwG21QHx5jZQHEMttVmfYKs5BQG\namC2ycr4jgTKCng+z6UkK6eeqgajhx4K/FjhYSCtrBSHXbvUNQ5NVpyOIqM6Kz0zsBBxZQfpk5Xo\nqct9j522wTbNAcnZSYyHPk4bHOVgqOIfBvLalitOPTWUsuLU4nDW8amRwLNS81BWKjHCQDl6VtyE\nrXtGHzubxQ8xBqe44QOlrLjqrGQ9WNn3kkNW6jsTkhWP57mUZOWEE1Sj+jxrhWYDaWWlWDil9vfc\nM+QXhAidEx8VcWc/DtIOA4kwnpUu0pC7spI2WYmprMRpg6MceJKVACKTK045BdavV0ZbH4jGxEAd\neYVkD1Q8lJWmMKhhhSuRnsW9scceyky1fr33dstVlh46OvayKCtxDLaVltW5CnbWg5WtUHWTlUSZ\nZYNAVmo1OPHEQLLSaqk/razspoi0LpCDjB7auB2K+/vuryRF0No1bRSlrGThWQGYPj1wYPZDIrLi\nEeqpBBCZXOGYbJcv9/9MY6IWRxpkxckG6iArFTP8ufBQVhL7RapVOO00uP9+z82iYdEQrhHVdZ+n\nPjhOVwXTotyncWfk1aaLrOTkWWkKE3NaSsqKTxioVBVsHfQJuXp6GkF7VnYXlImsJF33IXWyUjOp\n0sKsBqxBElVZ6XPuQtcqycqzcsopsGRJ5K/FUbWqQ/6hHsPeVqsU6FkBOPZYGB4OnPEJy0VW7Blx\njXrsAcFRlbrJSuhz4XFPhlpKox/OOAMe6KnooNDoUlayJCtHH63qckS4T32zO5yNPjBa9VyVFdGw\naFRq1KbbyzbsSj8MVMqicKD6nhUrfM+xb1ZZymSl1YJmU2cDlQ5lIiuBHUoEZSWtWYM5JcSAGVVZ\nKXsY6Mwz1ew5woq2djMit8EZlGuixGEgw4BXvCKYrDTqbbISeYVkDzh+HTdZaVUMajGVldQGple9\nCtauhRdf7NnkJmxAR8ee+uBoGHD66bB4ceivxFZWWhYtMz/PirDqNCoTykpjZDcx2IJSVup1eOQR\nz82+fUzKZMX3OFpZKRZbt6pZ16xZEb5UUmUl7XoOp3zkLB77m28yNCXg1pk2TZ3AF17INwxUqbRN\njKmTlRdfVINSBCQJA3mRwfY2DyKTO/rI05WG1a5ymopnZahzXwCtislQ2HMRNUMtLM44Q716qCui\n4VpDB7JVVkDdpxHISty+pSotyDEMJBoWzUqN2gxVFM4a2U08KwAnn6xefZ61vMmKVlb6QAhxjhDi\nRiHEM0KIlhDi/BDfeb0QYokQYkwI8ZgQ4rKwx9u6VZlrQxn3HGTEMNNSVtJ6EIdPPpZjrvpLAnOX\np06F44+HxYvDKytpkBVQH0w7DPSqV6nXCAMBxDv3xrB/GKhaljAQKHl61SoYH/fc7K5y6syIk5CV\no957Jnee/gkOOuvl7feaVRNThDwXQsBBB8HatekOTEcdBTNn+pKVdll66DHYpu6ROPNMZfbdvDnU\nx5MoK+3P5RAGqjRUeX9HoWsmVVYGiazMnAlHHumrYvr2MY4hKyUioZWV8JgGLAOuAPpq8UKIw4Df\nALcBJ6NWhP6uEOJNYQ4WqcaKgzwNthE9K07WZK6YPRsWLgyvrKQRBnL2ZVnpZkHttZfqMCKSlVie\nlQD1pHTKSqPhWw684lIVnEEmSeryrEP34PUPfKVN5gBkxYh2LmbPhgUL0h2YKhVf30qlWc9XWXFI\ntZ+HpguebXA6i4BBzpQuSSYnZaVVMREVQR2T1thuFAYC9aw9+KDnJl8SIUSqY1KgN0YrKxOQUs6T\nUn5GSvlrIMyw+5fAOinlP0gpV0spvwH8HLgyzPFik5WM6qwkyQaKupBeajjrLFixgsrIzlQMtlHJ\nStqKUlSJHWIqK1P8CUnQttxxyinqxrrvPs/NlaZFyw4VVM0KTSrJyu17oFU1o5OV+++nOZZuOzjj\nDM+MoEq3spI1WTn8cNh779D3qa+60+d5NKSFdDwreRhsXSpdnRrNsd0oDATw6ler+8vjPAd6ElO8\nNr7H0cpKYpwF3Nr13s3A7DBfLpuykqTOSmEP4VlnQavFy569PxWDbeiOyQ4pZUJWHnww0jVOEgby\nCm+0vR9hQx9ZYnhYGTrvvddzc0dJdsAiQrXZkGhFCQOBIiujo+yz8aH0ycrTT8OmTR1vd58D94Qm\nk+dSiEik2ncSEIKstFe/zkFZqTQmKuZaokZrNKGyUqvByEjHW6UmK2efDaOjnr6VQE9iBmTFc+Ks\nyUoiHABs6npvEzBTCDHU78tlIytJlJXCHsLjj4cZMzjs2YX9jz9rlloKvasDcVC4ZwXUIDA+HmoV\nVAdJlBXTKwzkeFbKoKyA6kTnz/fMkqo260jXQF2nligM5AVZNTzPky9OOw1Mk5c9dV+6z4QTfulK\nG+6o9AodfURmqbIOWQmRueb7XPWZLRvSai8smcfMWql0dtqyqCHHE5KVV7yi51qVmqycdhoMDXlO\nDAL7GB0GmvwoE1lJIxuokDBQtQpnnskRm0OQldmzVRL/okU9m3wrNPohqzDQqaeq3+RTAMwLcTwr\nE6Xp/cNApse2QnD22fDMM/DUUz2bKq2JMBBMrOOT5r3YMsxo58JWg17+zIJ0B6ZDD1Xhl657o/sc\nZFrB1sGZZ8KWLfDEE30/6tuGPn2ZiYVwG2wzHqzcaxFZYkLJiX3+zjkHVq7sSDfPxPCcFoaGFCEu\nkKzoMFB2eA7Yv+u9/YGXpJTe6Qs2rrzyStasOZ9bbjmf889Xf3Pnzu1/xDzDQIOgrADMns1RWxZi\nGn1meSeeqNjhXXf1bIpMOrIiK1OmwCtfGbmORdQ2OGZUg97wxpSZatvMqSUIA4EiK+DZiVZds2GI\nuOhgSMzYy2TGlIjnYvZsDns2ZWXFCb90+XeqTatDXer2rGQyOIbMXJOyj2cloG+p8f+3d+dhUpTn\n3se/92zMAAoqCEZEJSioqCyigKyDYRQUgqiICueNEo5LFsnJpsmJJ/FoYtwSY1TUREXNGDVRcSXu\nSxSNEI0b7r5oBBQXlGWY7Tl/PN1DT09Pb1PdXc38PtfVF0x1VffTXdVVd93PVg9d8jfOSuyIuY0x\nmZWsv79x4/wXEHPchnZQuKixY3154zJmhcqs1NbW+uvj/fcz/a23mD59OgsXptUkNGvbarDyDDA5\nbtmUyPKkLr30UsyWcPrpS1iyxD/mzJmT+h1zFGEGMYJtwX6Eo0bRc8tH9GtoZ+6UqJISfwJ54ok2\nT2V8wY/URwcerIBv6Pb002mvnlWwUlXGyr2nM3jyrm2e69Kjko9ue5yh/xV/aBdI796w996Jg5XY\n+WPwd8RBBysHPrOIgaufymyj0aPp9eV79HFrgisIwIQJvkos5jdZEvcd5LyBLfh9MmBAyuO0qclf\n9zK9yDU3NlNKc8tcTXnputy8NfBtLKmABn/lTDrzezIDBsAuu8CTT7YsCnU1EPgbg9Wr22TM8p1Z\nib7PnDlz/PXxmGNYsssuLFmyhEsvvTSQ92pPUQQrZtbNzA40s6GRRQMif+8Wef6XZnZDzCZXxpV0\nVgAAIABJREFURda5wMwGmdnpwDHAJaneq67Ot2UKSzVQR9usFKwaCPzFHdjvy2Wp1x0/3t+Zxn2m\njAe1GzoUnn02N8HKxImwcqU/aaQhmzJYaQmDX7+LPickCEhKStj5mPGU9N05/RfMtUMPTRysuNYX\n6kYrD7zNCmVlmU/wM9q3sR+6OeV9S2YmTfLTtce0hYgP2HLewDZq4kR49NGkq2R7kWvY5JdbdPbr\nPGRWypq2Du/fWFJBScMWyso6MByDmb85KqZgZcwY/2/cb63g1UBqs9LGQcA/geX4cVYuBlYAP488\n3xfYLbqyc+49YBpwGH58loXAKc65+B5CbXz5pf83TMFKUfYGAujVi39XDWTw52kGK3V1ber9k3bN\nS6S62o8zsX49kINgBVJeCKKCnvE6lA491Dc6/uKLVotbDRyGn8cn6MxKVvr1Y13X3ThwY/oZsrQM\nHw7bbdfq2Gg1hw7kJ7MCPnB66aWkg8MlvcglyRJHg5V8ZlZKY7pKN5ZWUO6yn2Oqxbhx/jyxeTNQ\nBMHKjjv6TgtPtc4kJj3H5KOBrdqstOace9w5V+KcK417nBx5/hvOueq4bZ5wzo1wzlU55/Zyzt2Y\nzntFrnHhHmclmv8Me5sV4M0Jp9DtoH1Srzh0qD/Zx1UFZZydmDQJmpvp9ap/naxTxYn06ePb1zzy\nSFqrR8seaBnC5tBDfQvoZa0D0rLm+q1DsoOfNTcMwQrwxo6j2WdDZmPmpFRW5i+AMcFKaXMDrrxA\nwQrAY4+1u0rWmZXIJIIllflrs1LWXN/yPTaVBNSrbNw4/xkjjfoLfZ5MS4IsZqGqgVq9hzIrhRG9\nQQx1ZiWD0QkLWg0ETLz/x4yvPS31imVl/scY18g242BlwADo35++rz7SsVRxe6qr086sNDSQmzKE\nyaBBvidMTEodIt1bY3ZaY1AXmQDs/+hl9Ht5afAvPGmSv5hETt5lzTGDp0Gru9CcNujcdVe/X5IE\n1SkHE2vnAtS4OZJZia0Gik7JmyOxWbqm0oCOoyFDoGfPluO2KIKVsWPhlVfa9GIC9QbqlDqUWclX\nm5Xo+xVBZiUj48f7k33MAHEZBytmUF3NV15/NDefu7oa3nkn7a6h23QVELR83zz4YKvFrUY5JUTV\nQMB2A/uw41cqg3/hiRP9WEGRqsxWE/5BfnoDRVVXJw1Wsh1MrE2wEn2BHF6wfODrv6zAgpXSUn9z\nFMnkFsV5ctIk3yr64YdbFmmclU4smlnZYYcMN8znOCuQdkRbFD/CqAkTYMOGVvNgZNVQtrqa3h++\nSJ/SdcGWD3wZzdLKroS+O2RQamr8BfrTT1sWtRo4jMikgwGPsxI6w4b5iecix0Z8dilv1UDgL2xv\nvAEffJDw6WwvcgkzK5DTC1bsXERNZT5YCeQ4Gj/e95rasqU4zpP9+/t2K0u3ZgWVWenEvvjCN53I\nuJ1BPquBou+XZmalaC4QI0f6Lz/mx5hVI9VInf1EHguubFE77OAbU6bRbqUoToBBqKnxVQEPbW2/\nXuZiBg7DtzUIS2YlZ0pL/QUw0lYkPmDLW28gSNkYvKNtVqKTauYtsxI5ATSXBVideMQRsGkTzY8+\nTlNTkfxWa2r8+TEy3koo2qw0NqY1YnJHKViJs2GDH/09Y/kcZyWD9yuqu/vycpgyBe67r2VRVpmV\nfv34ZKe9GN+cXtuSjEVT7Cl+oJ0mWOnXzzc8jgkyy4mZP4bIpIMhabOSU9XVvipz06Y2AVteMyu9\ne/tBDFMEKwlvApKcW5rq/PLSqpgGtpD7zErkWAo0WBkyBHbbjeZ77gWK5KaupsbPQ/Xaa0CKdnH5\nqgaKFiTHFKzE2bgxy2BFbVaCMW2ab6Ef6XaZ7Xgpb+9ezdj69HrtZGzyZPjwQ3j11aSrFVVWq6Nq\nauCBB1oCuArq2wQr23xmBfzxW1cHDz3UJmDLy3D7sSZPhr/9LWFQnW2blZZgJZpZyWAYhWyV09DS\nVdoFWQ1kBtOmUXL/vYArjmNzwgQ/bUTkxiDpzWjAmZWSkgTDGuUhWI1SsBJnwwZf7ZyxfFcDZdBm\npagumEcc4U+uDzwAZB+sdD3jZNac/JPcpCcnTIDu3eHOO5OuVlRZrY46/HAfwL3yCq7ZUUZTgsxK\nw7bdMwr8iL6DBsFdd/l5i+KrgfLRGyjqqKP83E1xk/ZBGtUH7Vx82gQr0RfIZWaFmGqg8oB7lU2d\nSsk7b7M3bxTHb7Wqylc1xpwf2y13376+3VIA58CkM3RHC5JjClbidChYydc4Kxm8X9FdMPv2hREj\nWqqCsg1Whpx8MOMWnZSbfsOVlT6ouuOOpKsVXVarI8aN8yfSpUtbBg5rmT8Gn77vUpKfXgMFN2MG\n7u67fXDWTrCSl5uIceN8t8YEx2m2bR2aNke6ZVflJ7PSVN9EKc0t36MLOliprsZ16cI07i2e32pN\nje/FtHlz8nPMjBnw9tvwr391+C3bfZ88ZNaiFKzE2bgxy2ClosKnfwOW9CDZ1noDRU2b5u8cGhtz\nM2x+EGbO9Hes77/f7ipF+d1nq7LSZ5weeKDtKKf4GZIrLD+9Bgpu+nQsUo1psRFJPhvYgm/McNRR\nwQYr8W1WcpxZaTmWIoPQBR6sdOvGltGTii9YqauDxx9PfhxVV/s2DX/5S4ffMmlHD1A1UCFk3Wbl\ngANg7Vo/d0yAgugNVDQ/wqipU+Hzz2HZsvAOWT91qv9ik1QFFXpAvrw78kh4/HGaVn8ExMwfA7gy\nXw3UKYwahevVG4jp4gv5bWAbNXOmb4z5+uutFmfbwLZ5i1/eJrOSq2Al0vuoJUNVHmCblYiNE6cx\nnieorP8i9cphsO++sMcecOedyY+jigqfXQkgWEna0QOUWSmErDMrRxzhu93++c+BlieI3kBFd8Ec\nOdL3Zrj77vBmVnr08HcuSaqCijJQ7IhZs6CpiZLbbwXiMysVnSezUlpKQ82RAK2rgaqq/Ammri5/\nx8aUKdC1a5ugOmkD2x12gFWrEo5K2yZYyXGbhfjMChXBj4T8xbhplNPITm+mMYdZGJjBccfB7bfT\nVJei0fqsWb4jQAdvopN29ABlVgoh6zYrlZX+LuaWWwJt1NkpMyslJS3fZcOWZiCkn2HmTF93/Mkn\nCZ8uyu++I/r2hYkT6XKbn4arpREmQFk5FdZJ2qwAdTUzgLjMyte+BvX1uHvuzd+4HlVVvvFzXFCd\n9CZg1iw/s3iCbs/RNivlXfOTWWncFJmLKGYQuqCDld0n7snGd9ay38Ipwb1orh1/PHzyCbu//Ujy\nm9EpU3xngA5mV5J29IiukGMKVuJkPc4KwOzZPoJ96aVAytLU5Mfa6nRtVgDmzoVVq9jxFT93Ryg/\nw4wZfgfdfXfCp4v2u++I2bMpf/0VoPWF2pX7rsudRcOkKfxth9nY8GFbF+6zD4wcibthMZDHY2Pm\nTD8cQMxotkmDlYMP9r2aFi9u81RzfSSz0jVunJVcZ1bigpUgs8UlJdBtz52La8LRoUNh77058LVb\nkh9HlZW+DeDtt3fo7VL2BlJmJf/q6rLMrAAcdphvfX/LLYGUJdvuhbGKshoI/Lwde+7Jnk/6E2Yo\nTyR9+/rRcq+7LuHTRfvdd8TRR+MiO6sldQ/0Gbk7DQMGF6pUebdTvyqmfHoLhxy3e+sn5s7FHriP\nnViXv2Nj+nRfFXTDDS2LkrZZMYN58+Cvf/V3bzFcpBqoJbOS44tVdHj/aINe6xKeCTELygxmz+aA\nd+6ga+mW5Oseeyy88ELLQHLZUG+gkMo6WKmo8CnUgKqCsm0EF/8aRfnDNoO5c9lz+W10L90c3vE5\n5s/3VUFvvNHmqaL97juiVy82jjoMaF0NtM9V32Wflcm7encKxx/v/yHFHXGQtt/et3H4wx98JpAU\nbVYATjrJt6+Jqz5y9XHBSq67Lm+OG95fwcpWxx9P1/r1jNuUYgbxI4/0M6P/4Q9Zv5V6A4VU1tVA\n4KuC3n0XlnW8sVbKUSa31TYrUXPnUlH3JUeX3lXokrRv5kyfTUtwIijq774DPp3iL8it2qyI17s3\n9ZOnMpcb83tszJ/vz0uRdigNDf5+oM2IpFG77+7nF4qrCmquiwQPFZEN85xZKelSQQUNlJflfi6a\n0Nt3X97vOYSvfZaiU0eXLj5Ttnhx1vtJvYFCKuvMCvgf+IABcMUVHS5H0mqgbbk3UNTAgfx799Gc\n0HxjoUvSvspK377m+uvbnAg6a7DCscdy17D/ofuYAwpdklDaMHMuh/AcPdcEO8xBUmPG+DYz11wD\npHlszpsHDz8M773XssjVN7CFCqwkkurMc2YlWrVYVdZ52j8l897071Jx0IGpVzzlFD+FSTvt61JR\nb6CQ6lCwUloKp50Gt94KH33UoXKkrAba1jMrwBuHzGNgyTt5+TFkbf58v6/vuafV4qIOFDug/+Cu\nzFhxDrvv3aXQRQklN+1I/tHv6/TtsTl/b2rmj9M77oB169I7Lxx7rE8z//73W5c1NNBA3NgxkPPM\nSrSrtEWClcrOMhpyCuNumM/E+36YesX99oNRo+Daa7N6n5TVQMqsFEaHghWAk0/2TcyzPDCiklYD\nde/u5/1IMBZCrGIPVibdPJ+v1r0a7qv+kCH+RHDVVa0WF/t3L7nRq18lI9+/g71nD0u9cpDmzvVt\n6a6/Pr1Aunt3WLDAZ2MiDW1dfQONFnNQl5b6c12OgpXouC7RaqDSaGalJEWjUmlr/nw/AeKqVRlv\n2m41UK9evvfrxIkdLl4qClYS6FCbFfBtGE48Ea68Ehobs36ZpNVAc+f6od5vu63d7aNdn8N8nU+p\n3fnPQ+bb34YHH2w1aZyCFQmV3r1hzhy49FKaN29J79g84wwfqER7EtXX00jcht26+RunHIifi6ik\nymfrqkqVWcnY7Nk+AL388ow3bTezUlbmb9a2267j5UtBwUoC3boF8CJnnOHHNbgr+8ahSauBRozw\nc0Scd15LC//2ttcFMw+OOw6++lU4//yWRQpWJHTOOgtWr2a/529I79js39/3cPztb/15pqGBBos7\nIZ10km+j9+WXgRc3OhdRdFyXaJuVLp1ogMHAdO/ur0tXXgmffprRpmGYEFfBSpzu3QO6kR82zE/l\nff757QYTqaTsXviTn8DLLycdlCzp9hKcsjL48Y/92BSvvgp03jYrEmKDB8OsWRz69wuoLEsz63vm\nmfDmm75NVkMDjSVxJ5Szz/aByu9+F3hx3ZbWmZVodVCnmcE7aGee6bP9Ge6rMNx4KViJ0717gC92\n3nmwYkXWowcmzayAnwJ+/Hj/PgnGdUm5vQRr3jzo1w9++UsgHD9wkTbOPpudPn+HmVvSHLxy1Ch/\nnjn7bEq2bG7dZgX8Mb9gAVx0EaxfH2hRo5mVim6tg5VKZVay06cPfPObPlOWQSas3WqgPFKwEieQ\nKqCosWP9UMc//WlWraVTZlYA/vu/4R//SDj3Q1rbS3AqKuAHP4DaWnjtNQUrEk7DhvHKHlM59bM0\ns75mcPHF8MorDHv1ZpriMyvgq5c2bfIXwQC5uOH9o/+qGqgDvv99H6gsWpT2JqoGCqFAgxXw1UBv\nvdXukOzJpFWNc9hhfoTC733PjziZ6fYSrAUL/PTt3/42DfVO372EUtmFv+KTX13re/Kk46CDYO5c\nttv8EY0lCW6xv/IV3x7iwgsDbWzbvKX1xIkt1UAKVrLXv7/vsXr++bBuXVqbhOHGS8FKnECrgQAO\nOABOOAF+9jP4/POMNk27Gue3v/XjfJx3XsLtC32QdSqVlXDZZfDwwxy+8faCp05FEhl0zP4cfOaY\nzDY6/3zqS6sSZ1bAZ3m7dvXZxYDEz0UUzaxUoGClQ84912fVfvKTtFZXNVAIBZ5ZAbjgAp8i/dGP\nMtos7WqcAQN8486LLoLXX2+zfaEPsk5n6lSYPp1zN36Prs0bUq8vUgz69WPpEb/h1b1mJH6+Z09/\nrquthccfD+Qt3ZZ6GihrGTG3vJsyK4HYeWcfsFxzDTz/fMrVVQ0UQoFnVgB23RV+9Su4+mp48sm0\nN8soM/KjH/n03kkntUQpyqwU0G9+w05uHcOf+X3qdUWKxFF3L+DYfya5G583D0aPhm99K5CB4lx9\n6xFzlVkJ0Gmnwf77++q7IhhcVMFKnJxkVgBOPdXPz7FgAdTVpbVJRr15qqr8bM8vvugbu6FgpaD2\n3JN3Fz3IgMvOLHRJRPKnpMSPufL662lXMSTjg5WtJ8BoZqVcwUrHlZX5MVeef75NE4J4qgYKoZxk\nVsD/iK++2s98evrpCbsax8u4N89BB8Gvfw2XXAL33KNqoALbd8FYdtlD8+NIJzN0qK8OuugiuP/+\njr1WQz0NMV2le/SuYH3ZjvTvXwSjWheDMWPgnHPg5z9PWnWnaqAQyllmBfxkUldf7XsGpTErc1aZ\nke9+F6ZPhxNPpHzlS5lvLyLSUWee6YdtmDevY72D6luPmFveqwc9Gj5h929PD6CQAvgM2LhxviPI\nxx8nXEXVQCGUs8xK1Lx58J3v+B/zo48mXbW+fus8YWkzg5tuggED2O8HR7ArHxT8IBORTsbM35RV\nVfnhFdauze516utpih+EToJVWgo33+xHtp0yJeFQ/GEYjVvBSpycByvg06MTJ/oMyNNPt7ta1tHs\ndtvBfffhSkq5nyPosjmzLtMiIh3Wuzc8/DB88QVUV/vhFTKVaHh/Cd6uu/p99cEHPrj87LNWTyuz\nkgEzO8PM3jWzzWa2zMxGplj/TDNbaWabzGyVmV1iZikbEOS0GiiqvBzuvBOGD4fDD4dnn024Woca\nNe2yC2/97gGadupDt9L0GvSKiARqr73gkUf83fqECbBqVUabW2ND4kHoJHhDhvh9tWoVTJoEq1e3\nPKVgJU1mNhu4GDgHGAa8CCw1s17trH8C8MvI+oOBk4HZQPImz+QpWIm+0T33+EHjJk+GP/+5zSod\nbdS0/3H7MHTdQ/Qc3LcDBRUR6YBBg+CJJ2DLFt+t+aWX0t7UGlQNlFf77w+PPeZHth0zBt54g6Ym\nP36cqoHSsxBY5Jxb7JxbCZwKbMIHIYmMBp5yzv3ZObfKOfcQUAscnOqN8lINFLXddrB0KXz963D8\n8b4dy5YtLU+HIZoVEemwvfbyVd69e/s50669Nq0ekTQ20FiqzEpeDRni91VVFYweTdPim4HCTx0S\n+mDFzMqBEcDD0WXOOQc8hA9KEnkaGBGtKjKzAcBU4N5U75e3zErsG954I1x+ue8hNGxYS7VQGPq2\ni4gEom9fn2GZNcvP/DtlSqsRtxMpaahvf3h/yZ3+/eGpp2DKFCpOPoklTKfHhuDmfMpG6IMVoBdQ\nCsQ3J18LJKzfcM7V4quAnjKzeuBN4FHn3AWp3iyvmZUoMz+K4IoVvgBjxsCpp9Llkw8LHs2KiARm\n++3hj3+EBx7wE7zuuy/Mnw/vvZdwdWtsoEmZlcLYcUeorWXDzXdxUMkK+nz8ckGLUwzBSsbMbCJw\nNr66aBhwNHCkmf001baVlbktW1LR9NtFF8Ftt/HDawbyw8/OSm8adxGRYlFTAytX+gEslyzx85tN\nm+b/39jYslpJUwPNyqwUVPcTprPLhrc45Gc1BS1HWUHfPT3rgCagT9zyPsCadrb5BbDYOXdd5O9X\nzKw7sAj432Rv9r3vLaRHjx6tls2ZM4c5c+ZkWu7slJXBwoXwjW/wwuyLGPLmexkOtCIiUgS6dPGD\nWJ5yip8qZNEimDHDd6M95RQ4+mhKG7fQXKpgpeCqqlr9WVtbS21tbatl69evz2kRzKXTyKnAzGwZ\n8Kxz7ruRvw1YBVzmnLswwfrPAw86586KWTYHuAbYziX40GY2HFi+fPlyhg8fnqNPkgXnfDWRiMi2\nbsUKH7T86U+wwc9Y/mzfGRyy+s4CF0xSWbFiBSNGjAAY4ZxbEfTrF8st+yXAN81snpkNBq4CugLX\nA5jZYjM7P2b9u4HTzGy2me1hZl/DZ1uWJApUQk2Bioh0FsOH+2Dl44/hoYdYNuks1nz91EKXSkKg\nGKqBcM7dGhlT5Rf46p8XgBrnXHQig35AY8wm5wLNkX93BT4GlgAp26yIiEiBVVbC5MmMmjy50CWR\nkCiKYAXAOXcFkHD2P+dcddzf0UDl3DwUTURERHKoWKqBREREpJNSsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhpmBFREREQk3BioiI\niISaghUREREJNQUrIiIiEmoKVkRERCTUFKyIiIhIqClYERERkVBTsCIiIiKhVjTBipmdYWbvmtlm\nM1tmZiNTrN/DzH5vZh+aWZ2ZrTSzw/NVXhEREQlGWaELkA4zmw1cDCwAngMWAkvNbG/n3LoE65cD\nDwFrgKOBD4Hdgc/zVmgREREJRFEEK/jgZJFzbjGAmZ0KTANOBn6dYP1TgJ7AKOdcU2TZqnwUVERE\nRIIV+mqgSJZkBPBwdJlzzuEzJ6Pb2ewo4BngCjNbY2YvmdlZZhb6zysiIiKtFUNmpRdQCqyNW74W\nGNTONgOAauAm4AhgIHAl/vOem5tiioiISC4UQ7CSjRJ8MLMgkoX5p5n1A75PimBl4cKF9OjRo9Wy\nOXPmMGfOnFyVVUREpGjU1tZSW1vbatn69etz+p7mr+XhFakG2gTMcs4tiVl+PdDDOTczwTaPAfXO\nuSkxyw4H7gW6OOcaE2wzHFi+fPlyhg8fHvjnEBER2VatWLGCESNGAIxwzq0I+vVD34bDOdcALAcm\nR5eZmUX+frqdzf6Or/qJNQhYnShQERERkfAKfbAScQnwTTObZ2aDgauArsD1AGa22MzOj1n/SmBH\nM7vMzPYys2nAWcDleS63iIiIdFBRtFlxzt1qZr2AXwB9gBeAGufcx5FV+gGNMet/YGY1wKXAi8C/\nI/9P1M1ZREREQqwoghUA59wVwBXtPFedYNmzwJhcl0tERERyq1iqgURERKSTUrAiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQK5pgxczOMLN3zWyz\nmS0zs5Fpbne8mTWb2V9zXUYJl9ra2kIXQQKk/bnt0T6VdBVFsGJms4GLgXOAYcCLwFIz65Viuz2A\nC4EnclxECSGdCLct2p/bHu1TSVdRBCvAQmCRc26xc24lcCqwCTi5vQ3MrAS4CfgZ8G5eSikiIiKB\nC32wYmblwAjg4egy55wDHgJGJ9n0HGCtc+663JZQREREcqms0AVIQy+gFFgbt3wtMCjRBmY2FvgG\ncGBuiyYiIiK5VgzBSkbMrDuwGPimc+6zDDatBHjttddyUi7Jv/Xr17NixYpCF0MCov257dE+3XbE\nXDsrc/H65mtUwitSDbQJmOWcWxKz/Hqgh3NuZtz6BwIrgCbAIouj1V1NwCDnXJs2LGZ2AnBz4B9A\nRESk8zjROfenoF809JkV51yDmS0HJgNLAMzMIn9flmCT14D945adB3QHvgO8385bLQVOBN4D6jpc\ncBERkc6jEtgDfy0NXOgzKwBmdhxwPb4X0HP43kHHAIOdcx+b2WLgA+fc2e1sfx0+C3N0noosIiIi\nAQl9ZgXAOXdrZEyVXwB9gBeAGufcx5FV+gGNhSqfiIiI5E5RZFZERESk8wr9OCsiIiLSuSlYERER\nkVBTsEL2kyRKYZnZOZFJKmMfr8Y838XMfm9m68zsSzO73cx2LmSZpTUzG2dmS8zs35H9Nz3BOr8w\nsw/NbJOZPWhmA+Oe38HMbjaz9Wb2mZlda2bd8vcpJCrV/jSz6xL8Zu+LW0f7MyTM7Cwze87MvjCz\ntWZ2h5ntHbdOyvOsme1mZvea2UYzW2Nmv45MiZO2Th+sZDtJooTGy/hG130jj7Exz/0GmAbMAsYD\nXwH+ku8CSlLd8A3mTwfaNKAzsx8B3wIWAAcDG/G/z4qY1f4E7IMfzmAafl8vym2xpR1J92fE/bT+\nzc6Je177MzzGAb8DDgEOA8qBv5lZVcw6Sc+zkaDkPnyHnlHAfwD/D99hJn3OuU79AJYBv43524AP\ngB8Wumx6pNx35wAr2nlue2ALMDNm2SCgGTi40GXXI+E+awamxy37EFgYt183A8dF/t4nst2wmHVq\n8L0D+xb6M3XmRzv78zrgr0m2Gaz9Gd4HfvqbZmBs5O+U51ngCKAB6BWzzn8CnwFl6b53p86sdGCS\nRAmPvSIp57fN7CYz2y2yfAQ+ko/dt68Dq9C+LQpmtif+zjt2H34BPMvWfTgK+Mw598+YTR/C39Uf\nkqeiSmYmRqoUVprZFWa2Y8xzo9H+DLOe+H3xaeTvdM6zo4CXnHPrYl5nKdAD2C/dN+7UwQrJJ0ns\nm//iSIaW4dOJNfgBA/cEnojUb/cF6iMXt1jat8WjL/7EmOz32Rf4KPZJ51wT/mSq/Rw+9wPzgGrg\nh8AE4L7IqOSg/RlakX30G+Ap51y0bWA659m+JP4NQwb7tCgGhRNJxDkXO6zzy2b2HPD/gePQlAki\noeOcuzXmz1fM7CXgbWAi8GhBCiXpugLYl9btAvOms2dW1uEnN+wTt7wPsCb/xZGOcM79QTOCAAAD\nmElEQVStB94ABuL3X4WZbR+3mvZt8ViDb0OW7Pe5BojveVAK7Ij2c+g5P6nsOvxvFrQ/Q8nMLgem\nAhOdcx/GPJXOeXYNiX/DkME+7dTBinOuAYhOkgi0miTx6UKVS7JjZt2Br+IbZS7HN8qL3beDgP7A\nMwUpoGQkciFbQ+t9uD2+7UL09/kM0NPMhsVsOhkf5Dybp6JKlsysH7ATsDqySPszZCKBygxgknNu\nVdzTyc6zsb/R/eN62E4B1gOvkiZVA8ElwPWRmZ2jkyR2xU+cKCFmZhcCd+OrfnYFfo7/4dzinPvC\nzP4AXGJmnwFf4mfp/rtz7rlClVlai7QvGoi/GAEMMLMDgU+dc+/j68h/amZv4WdEPxffW+8uAOfc\nSjNbClxjZqcBFfiulrXOOd2J51my/Rl5nIPv1romst4F+GzoUtD+DBszuwLftXw6sNHMohmR9c65\nuhTn2X9E1v0bPii5MTIUwS743/HlkYRBegrdFSoMD/yYAO/hu0Q+AxxU6DLpkdZ+q8VfuDbjW5//\nCdgz5vku+BPdusiP6DZg50KXW49W+3ACvptjU9zjjzHr/A8+W7YJf1EbGPcaPYGb8HdqnwHXAF0L\n/dk64yPZ/gQqgQfwgUod8A5wJdBb+zOcj3b2ZRMwL2adlOdZYDfgHmADvnHtBUBJJmXRRIYiIiIS\nap26zYqIiIiEn4IVERERCTUFKyIiIhJqClZEREQk1BSsiIiISKgpWBEREZFQU7AiIiIioaZgRURE\nREJNwYqIiIiEmoIVERERCTUFKyJSFMysOjKhoYh0MgpWRKRYHIOf2E5EOhkFKyJSLMYCTxS6ECKS\nfwpWRCT0zKwnsB/wZKHLIiL5p2BFRELLzGaZ2f1szaj8p5ndZ2bjClkuEckvc84VugwiIkmZ2XnA\nMc65QYUui4jknzIrIlIMDkVVQCKdloIVEQk1MysDRqJgRaTTUrAiImE3AqhEPYFEOi0FKyISdmOA\n1c65dwHMbICZVRa4TCKSRwpWRCTsRgF/j/n7v5xzdYUqjIjkn4IVEQm7UiCaVZkL3F/Y4ohIvqnr\nsoiEmpkNAy4EXgT+5Zy7ocBFEpE8U7AiIiIioaZqIBEREQk1BSsiIiISagpWREREJNQUrIiIiEio\nKVgRERGRUFOwIiIiIqGmYEVERERCTcGKiIiIhJqCFREREQk1BSsiIiISagpWREREJNQUrIiIiEio\nKVgRERGRUPs/+yZ/uz+HgI8AAAAASUVORK5CYII=\n", + "text/plain": "" + }, + "metadata": {}, + "output_type": "display_data" + } ] - }, - "metadata": {}, - "output_type": "display_data" } - ], - "source": [ - "import numpy.ma as ma\n", - "\n", - "mask_H = []\n", - "mask_L = []\n", - "K_H = []\n", - "K_L = []\n", - "B = list(A)\n", - "B.append(B[n])\n", - "\n", - "Y = []\n", - "\n", - "for i, a in enumerate(A):\n", - " \n", - " b = B[i+1]\n", - " \n", - " if a == theta_H and b == theta_H:\n", - " mask_H.append(0)\n", - " mask_L.append(1)\n", - " elif a == theta_L and b == theta_L:\n", - " mask_H.append(1)\n", - " mask_L.append(0)\n", - " elif a != b:\n", - " mask_H.append(0)\n", - " mask_L.append(0)\n", - " \n", - " K_H.append(k_ss_H)\n", - " K_L.append(k_ss_L)\n", - " Y.append(f(X[i], a))\n", - "\n", - "X_H = ma.masked_array(X, mask=mask_H)\n", - "X_L = ma.masked_array(X, mask=mask_L)\n", - "\n", - "Y_H = ma.masked_array(Y, mask=mask_H)\n", - "Y_L = ma.masked_array(Y, mask=mask_L)\n", - "\n", - "plt.plot(T, X_H, color=\"blue\", lw=1)\n", - "plt.plot(T, X_L, color=\"red\", lw=1)\n", - "plt.plot(T, K_H, '--', color=\"blue\", lw=.5)\n", - "plt.plot(T, K_L, '--', color=\"red\", lw=.5)\n", - "plt.xlabel(\"$t$\", fontsize=14)\n", - "plt.ylabel(\"$k_{t}$\", fontsize=14)\n", - "plt.title(\"Path of $k$ over time\")\n", - "plt.show()\n", - "\n", - "plt.plot(T, Y_H, color=\"blue\", lw=1)\n", - "plt.plot(T, Y_L, color=\"red\", lw=1)\n", - "plt.xlabel(\"$t$\", fontsize=14)\n", - "plt.ylabel(\"$k_{t}$\", fontsize=14)\n", - "plt.title(\"Path of $k$ over time\")\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" + ], + "metadata": { + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "language_info": { + "mimetype": "text/x-python", + "nbconvert_exporter": "python", + "name": "python", + "pygments_lexer": "ipython3", + "version": "3.5.4", + "file_extension": ".py", + "codemirror_mode": { + "version": 3, + "name": "ipython" + } + } }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb b/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb old mode 100644 new mode 100755 index 3818fa2..01a5936 --- a/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb +++ b/0-pre-requisitos/3-sql/0_conectando_python_em_db_sql.ipynb @@ -16,22 +16,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 69, "metadata": {}, - "outputs": [ - { - "ename": "OperationalError", - "evalue": "could not translate host name \"data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com\" to address: nodename nor servname provided, or not known\n", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mOperationalError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mpwd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'trainingwrite'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mconn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpsycopg2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconnect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"host='{host}' port={port} dbname='{dbname}' user={username} password={pwd}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/psycopg2/__init__.py\u001b[0m in \u001b[0;36mconnect\u001b[0;34m(dsn, connection_factory, cursor_factory, **kwargs)\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0mdsn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_ext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake_dsn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdsn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 130\u001b[0;31m \u001b[0mconn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_connect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdsn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconnection_factory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconnection_factory\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwasync\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 131\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcursor_factory\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 132\u001b[0m \u001b[0mconn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcursor_factory\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcursor_factory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mOperationalError\u001b[0m: could not translate host name \"data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com\" to address: nodename nor servname provided, or not known\n" - ] - } - ], + "outputs": [], "source": [ "import pandas as pd\n", "import pandas.io.sql as sqlio\n", @@ -40,18 +27,18 @@ "from sqlalchemy import create_engine\n", "import io\n", "\n", - "host = 'brdh2-ds2019.cpvwsnqnnd2w.us-east-1.rds.amazonaws.com'\n", + "host = 'data-science.cjkghcc9gsud.us-east-1.rds.amazonaws.com'\n", "port = 5432\n", "dbname = 'db3'\n", - "username = 'digitalhouse'\n", - "pwd = 'Digitalh'\n", + "username = 'trainingwrite'\n", + "pwd = 'trainingwrite'\n", "\n", "conn = psycopg2.connect(f\"host='{host}' port={port} dbname='{dbname}' user={username} password={pwd}\")" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 70, "metadata": {}, "outputs": [], "source": [ @@ -61,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 71, "metadata": {}, "outputs": [ { @@ -162,7 +149,7 @@ "8 8 4 4" ] }, - "execution_count": 3, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } @@ -180,15 +167,14 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 72, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1.04 ms, sys: 743 µs, total: 1.78 ms\n", - "Wall time: 1.04 ms\n" + "Wall time: 0 ns\n" ] }, { @@ -219,53 +205,53 @@ " \n", " \n", " 0\n", - " 0.237575\n", - " 0.313269\n", + " 0.452313\n", + " 0.337163\n", " \n", " \n", " 1\n", - " 0.135886\n", - " 0.245108\n", + " 0.597845\n", + " 0.869110\n", " \n", " \n", " 2\n", - " 0.803706\n", - " 0.380767\n", + " 0.891261\n", + " 0.471389\n", " \n", " \n", " 3\n", - " 0.578443\n", - " 0.160269\n", + " 0.683479\n", + " 0.692223\n", " \n", " \n", " 4\n", - " 0.898139\n", - " 0.492082\n", + " 0.706336\n", + " 0.873535\n", " \n", " \n", " 5\n", - " 0.682028\n", - " 0.468385\n", + " 0.302285\n", + " 0.394499\n", " \n", " \n", " 6\n", - " 0.853587\n", - " 0.138461\n", + " 0.378814\n", + " 0.650194\n", " \n", " \n", " 7\n", - " 0.004633\n", - " 0.237382\n", + " 0.852873\n", + " 0.106283\n", " \n", " \n", " 8\n", - " 0.873710\n", - " 0.609603\n", + " 0.038916\n", + " 0.499037\n", " \n", " \n", " 9\n", - " 0.334734\n", - " 0.015687\n", + " 0.047853\n", + " 0.874112\n", " \n", " \n", "\n", @@ -273,19 +259,19 @@ ], "text/plain": [ " col1 col2\n", - "0 0.237575 0.313269\n", - "1 0.135886 0.245108\n", - "2 0.803706 0.380767\n", - "3 0.578443 0.160269\n", - "4 0.898139 0.492082\n", - "5 0.682028 0.468385\n", - "6 0.853587 0.138461\n", - "7 0.004633 0.237382\n", - "8 0.873710 0.609603\n", - "9 0.334734 0.015687" + "0 0.452313 0.337163\n", + "1 0.597845 0.869110\n", + "2 0.891261 0.471389\n", + "3 0.683479 0.692223\n", + "4 0.706336 0.873535\n", + "5 0.302285 0.394499\n", + "6 0.378814 0.650194\n", + "7 0.852873 0.106283\n", + "8 0.038916 0.499037\n", + "9 0.047853 0.874112" ] }, - "execution_count": 4, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } @@ -297,15 +283,14 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 68, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 147 ms, sys: 72 ms, total: 219 ms\n", - "Wall time: 3min 49s\n" + "Wall time: 2min 37s\n" ] } ], @@ -323,33 +308,23 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 63, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 15.6 ms, sys: 2.73 ms, total: 18.3 ms\n", - "Wall time: 5.46 s\n", - "CPU times: user 5.73 ms, sys: 1.24 ms, total: 6.97 ms\n", - "Wall time: 6.22 ms\n", - "CPU times: user 415 µs, sys: 129 µs, total: 544 µs\n", - "Wall time: 335 µs\n", - "CPU times: user 15 µs, sys: 1 µs, total: 16 µs\n", - "Wall time: 20 µs\n", - "CPU times: user 5 µs, sys: 0 ns, total: 5 µs\n", - "Wall time: 9.06 µs\n", - "CPU times: user 391 ms, sys: 19.8 ms, total: 411 ms\n", - "Wall time: 412 ms\n", - "CPU times: user 5 µs, sys: 0 ns, total: 5 µs\n", - "Wall time: 7.87 µs\n", - "CPU times: user 4 µs, sys: 0 ns, total: 4 µs\n", - "Wall time: 7.87 µs\n", - "CPU times: user 42.3 ms, sys: 31.5 ms, total: 73.8 ms\n", - "Wall time: 12.8 s\n", - "CPU times: user 432 µs, sys: 104 µs, total: 536 µs\n", - "Wall time: 171 ms\n" + "Wall time: 4 ms\n", + "Wall time: 3.3 s\n", + "Wall time: 0 ns\n", + "Wall time: 0 ns\n", + "Wall time: 0 ns\n", + "Wall time: 419 ms\n", + "Wall time: 0 ns\n", + "Wall time: 999 µs\n", + "Wall time: 11.7 s\n", + "Wall time: 142 ms\n" ] } ], @@ -394,7 +369,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.6.4" } }, "nbformat": 4, diff --git "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula.ipynb" "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula.ipynb" new file mode 100755 index 0000000..46d1fb8 --- /dev/null +++ "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula.ipynb" @@ -0,0 +1,1211 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

Table of Contents

\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Science\n", + "\n", + "\n", + "-> Método Cientifico:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import HTML\n", + "\n", + "HTML('')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Análise exploratória de dados\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "\n", + "## O que é Análise exploratória de Dados?\n", + "\n", + "Em estatística, a **análise exploratória de dados (AED)** é uma abordagem à análise de conjuntos de dados de modo a resumir suas características principais, frequentemente com métodos visuais. Um modelo estatístico pode ou não ser usado, mas primariamente a AED tem como objetivo observar o que os dados podem nos dizer além da modelagem formal ou do processo de teste de hipóteses. A análise exploratória de dados foi promovida pelo estatístico norte-americano John Tukey, que incentivava os estatísticos a explorar os dados e possivelmente formular hipóteses que poderiam levar a novas coletas de dados e experimentos. A **AED** é diferente da análise inicial de dados (AID), que se concentra mais estreitamente em verificar os pressupostos exigidos para ajuste de modelos e teste de hipóteses, além de manusear valores faltantes e fazer transformações de variáveis conforme necessário. A análise exploratória de dados abrange a AID.\n", + "\n", + "A análise exploratória de dados emprega grande variedade de técnicas gráficas e quantitativas, visando maximizar a obtenção de informações ocultas na sua estrutura, descobrir variáveis importantes em suas tendências, detectar comportamentos anômalos do fenômeno, testar se são válidas as hipóteses assumidas, escolher modelos e determinar o número ótimo de variáveis.\n", + "\n", + "Os softwares atualmente disponíveis possibilitam que esta técnica se constitua em uma ferramenta para descobrir quais tendências, relações e padrões podem estar ocultos em uma coleção de dados analisados. Seguindo as diretrizes propostas por Tukey, os investigadores deveriam iniciar sua análise pelo exame dos dados disponíveis e depois decidir qual técnica aplicar para resolver o problema. \n", + "\n", + "### Etapas\n", + "\n", + "(Existe vários frameworks diferentes com essas etapas, e certamenta alguns funcionam melhor que outros dependendo do problema enfrentado. Até mesmo as perguntas mais elementares como \"Entendendo o Problema\" pode ser que não exista em algum caso especifico, então usem como um guia, não como a verdade).\n", + "\n", + "Etapas básicas:\n", + "\n", + "1. **Entendendo o Problema**. De longe a etapa mais importante e potêncialmente a mais dificil do problema\n", + " \n", + "2. **Entendendo os Dados**. Na aula de hoje focaremos nesta etapa. Faremos um overview sobre os dados e analisaremos as medidas de centralidade.\n", + " \n", + "3. **Analise Univariada**. Na próxima aula iremos um pouco além, entendendo mais a fundo as estatisticas descritivas dos dados.\n", + " \n", + "4. **Outliers, Nulos e outros**. Nessa etapa, trataremos os dados para que façam sentido para os nossos algoritmos.\n", + " \n", + "5. **Analise Multivariada**. Aqui vamos entender como as variaveis estão relacionadas entre si.\n", + " \n", + "6. **Inferências e Relações Causais**. Por último vamos responder nossa pergunta\n", + " \n", + " \n", + " \n", + " \n", + "### Problema:\n", + "\n", + "- Muito se fala de desigualdade salarial entre generos. Existe desigualdade? E se sim, de quanto ela é?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Abrindo o arquivo e acessando os dados" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "import csv\n", + "\n", + "\n", + "with open(r'data/data.csv', 'r') as data_csv:\n", + " data = csv.reader(data_csv)\n", + " print(type(data))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['seq', 'id', 'idade', 'sexo', 'anos_estudo', 'cor/raca', 'salario', 'estado_civil', 'regiao']\n", + "['0', '11001901101.0', '53', 'homem', '5.0', 'Parda', '63600.0', '1.0', 'norte']\n", + "['1', '11001901102.0', '49', 'mulher', '8.0', 'Amarela', '', '1.0', 'norte']\n", + "['2', '11001901103.0', '22', 'mulher', '11.0', 'Indigena', '4352.400390625', '0.0', 'nordeste']\n", + "['3', '11001903101.0', '55', 'homem', '15.0', 'Amarela', '96600.0', '1.0', 'norte']\n", + "['4', '11001903102.0', '56', 'mulher', '15.0', 'Amarela', '157800.0', '1.0', 'norte']\n", + "['5', '11001903103.0', '30', 'mulher', '15.0', 'Amarela', '88550.0', '0.0', 'nordeste']\n", + "['6', '11001904101.0', '52', 'mulher', '5.0', 'Branca', '6734.400390625', '0.0', 'norte']\n", + "['7', '11001904104.0', '29', 'homem', '5.0', 'Parda', '14875.20068359375', '0.0', 'norte']\n", + "['8', '11001904105.0', '29', 'mulher', '11.0', 'Parda', '6734.400390625', '0.0', 'norte']\n" + ] + } + ], + "source": [ + "\n", + "with open(r'data/data.csv', 'r') as data_csv:\n", + " data = csv.reader(data_csv)\n", + " \n", + " contador = 0\n", + " for row in data:\n", + " print(row)\n", + " contador = contador + 1\n", + " \n", + "# print(row[2],row[4],row[6])\n", + " if contador == 10:\n", + " break" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "list" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(row)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "str" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(row[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Medidas de Centralidade\n", + "\n", + "### Média\n", + "\n", + "\n", + "*fonte: Wikipedia*\n", + "\n", + "Em estatística, média é definida como o valor que mostra para onde se concentram os dados de uma distribuição como o ponto de equilíbrio das frequências em um histograma. Média também é interpretada como um valor significativo de uma lista de números. Os valores de uma lista de números podem ser representados por meio da escolha aleatória de um número. Se todos os números forem iguais, o número escolhido aleatoriamente será a média. Então, a média pode ser calculada por meio da combinação dos números de maneira específica e da geração de um valor significativo. Entretanto, a palavra média é usualmente usada em métodos mais sofisticados como média aritmética, mediana, moda, entre outros.\n", + "\n", + "Seguindo uma definição mais informal de \"média\", pode-se assumir que no campo da estatística, dados possuem posições. Por exemplo, cada valor dos lançamentos de um dado possui sua posição em uma planilha eletrônica. Em estatística, média é uma medida de posição que indica um valor uniforme dos dados. Por exemplo, o conjunto x = { 2 , 1 , 6 , 5 , 10 } possui média aritmética 4,8. Embora 4,8 seja o valor médio, ele não é o valor central definido pela mediana.\n", + "\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "\n", + "A **média** é calculada por:\n", + "\n", + "$$ \\overline x = \\frac{1}{n} \\sum_i x_i $$\n", + "\n", + "Por exemplo, para a mostra 8, 5, 3, -1, e -5, a média é:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Somando 8 + 0 = 8\n", + "Somando 5 + 8 = 13\n", + "Somando 3 + 13 = 16\n", + "Somando -1 + 16 = 15\n", + "Somando -5 + 15 = 10\n", + "\n", + "média: 2.0\n" + ] + } + ], + "source": [ + "numbers = [8,5,3,-1,-5]\n", + "\n", + "somatorio = 0\n", + "for number in numbers:\n", + " somatorio += number\n", + " print(f'Somando {number} + {somatorio-number} = {somatorio}')\n", + " \n", + "media = somatorio/len(numbers)\n", + "print('\\nmédia:',media)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Fazendo a média com nosso arquivo original" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Média da coluna Idade: 41.67\n" + ] + } + ], + "source": [ + "with open(r'data/data.csv', 'r') as data_csv:\n", + " data = csv.reader(data_csv)\n", + " \n", + " lista_exemplo = []\n", + " somatorio = 0\n", + " for i, line in enumerate(data):\n", + " if i < 10 and i>0:\n", + " somatorio += int(line[2])\n", + " lista_exemplo.append(line[2])\n", + " \n", + "\n", + "media = round(somatorio/len(lista_exemplo),2)\n", + "\n", + "print(f'Média da coluna Idade: {media}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Calculando a média de Salario, anos de estudo e idade no mesmo código." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['0', '11001901101.0', '53', 'homem', '5.0', 'Parda', '63600.0', '1.0', 'norte']\n", + "['1', '11001901102.0', '49', 'mulher', '8.0', 'Amarela', '', '1.0', 'norte']\n" + ] + }, + { + "ename": "ValueError", + "evalue": "could not convert string to float: ", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 14\u001b[0m \u001b[0msomatorio_idade\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0mint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrow\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 15\u001b[0m \u001b[0msomatorio_estudo\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrow\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m4\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 16\u001b[1;33m \u001b[0msomatorio_salario\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrow\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m6\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 17\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mValueError\u001b[0m: could not convert string to float: " + ] + } + ], + "source": [ + "somatorio_idade = 0\n", + "somatorio_estudo = 0\n", + "somatorio_salario = 0\n", + "\n", + "\n", + "with open(r'data/data.csv', 'r') as data_csv:\n", + " data = csv.reader(data_csv)\n", + " \n", + " lista_exemplo = []\n", + " somatorio = 0\n", + " for i, row in enumerate(data):\n", + " if i>0:\n", + " print(row)\n", + " somatorio_idade += int(row[2])\n", + " somatorio_estudo += float(row[4])\n", + " somatorio_salario += float(row[6])\n", + " \n", + " \n", + "media_idade = round(somatorio_idade/i,2)\n", + "media_estudo = round(somatorio_estudo/i,2)\n", + "media_salario = round(somatorio_salario/i,2)\n", + "\n", + "\n", + "print(f'Média da coluna Idade: {media_idade}')\n", + "print(f'Média da coluna Anos de Estudo: {media_estudo}')\n", + "print(f'Média da coluna Salario: {media_salario}')" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# As linhas NULAS não podem ser convertidas em valores números?\n", + "# Como resolver ? Podemos criar uma FUNÇÃO que resolve isso?" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "def substitui_nulo_por_zero(entrada):\n", + " #\n", + " #\n", + " return saida" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Mediana\n", + "\n", + "\n", + "\n", + "Mediana é o valor que separa a metade maior e a metade menor de uma amostra, uma população ou uma distribuição de probabilidade. Em termos mais simples, mediana pode ser o valor do meio de um conjunto de dados. No conjunto de dados {1, 3, 3, 6, 7, 8, 9}, por exemplo, a mediana é 6. Se houver um número par de observações, não há um único valor do meio. Então, a mediana é definida como a média dos dois valores do meio. No conjunto de dados {3, 5, 7, 9}, a mediana é (5 + 7) / 2 = 6.\n", + "\n", + "A mediana é uma medida comum das propriedades de conjuntos de dados em estatística e em teoria das probabilidades, com importância central na estatística robusta. A estatística robusta é mais resistente, com ponto de ruptura de 50%. A mediana não fornece resultados arbitrariamente grandes desde que mais da metade dos dados não esteja contaminada.\n", + "\n", + "A vantagem da mediana em relação à média é que a mediana pode dar uma ideia melhor de um valor típico porque não é tão distorcida por valores extremamente altos ou baixos. Em estudos estatísticos sobre renda familiar ou outros ativos voláteis, a média pode ser distorcida por um pequeno número de valores extremamente altos ou baixos. \n", + "\n", + "Exemplos:\n", + "\n", + "- Ímpar:\n", + "\t\t[1, 2, 3, 5, 7, 8, 9, 10, 15]\n", + "\t\t#elementos: 9\n", + "\t\tA mediana é o valor da posição 5 (a posição do “meio”)\n", + "\t\tMediana = 7\n", + " \n", + " \n", + "- Par: \n", + "\t\t[-5, -1, 0, 1, 2, 3, 8, 20]\n", + "\t\t#elementos: 8\n", + "\t\tA mediana é a média dos valores nas duas posições centrais\n", + "\t\tMediana = (1+2)/2 = 1.5" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Função para calcular a Mediana com Dicionarios\n", + "\n", + "Material complementar para dicionarios python: http://excript.com/python/funcoes-dicionarios.html" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " OrderedDict([('seq', '0'), ('id', '11001901101.0'), ('idade', '53'), ('sexo', 'homem'), ('anos_estudo', '5.0'), ('cor/raca', 'Parda'), ('salario', '63600.0'), ('estado_civil', '1.0'), ('regiao', 'norte')])\n", + "\n", + " OrderedDict([('seq', '1'), ('id', '11001901102.0'), ('idade', '49'), ('sexo', 'mulher'), ('anos_estudo', '8.0'), ('cor/raca', 'Amarela'), ('salario', ''), ('estado_civil', '1.0'), ('regiao', 'norte')])\n", + "\n", + " OrderedDict([('seq', '2'), ('id', '11001901103.0'), ('idade', '22'), ('sexo', 'mulher'), ('anos_estudo', '11.0'), ('cor/raca', 'Indigena'), ('salario', '4352.400390625'), ('estado_civil', '0.0'), ('regiao', 'nordeste')])\n", + "\n", + " OrderedDict([('seq', '3'), ('id', '11001903101.0'), ('idade', '55'), ('sexo', 'homem'), ('anos_estudo', '15.0'), ('cor/raca', 'Amarela'), ('salario', '96600.0'), ('estado_civil', '1.0'), ('regiao', 'norte')])\n", + "\n", + " OrderedDict([('seq', '4'), ('id', '11001903102.0'), ('idade', '56'), ('sexo', 'mulher'), ('anos_estudo', '15.0'), ('cor/raca', 'Amarela'), ('salario', '157800.0'), ('estado_civil', '1.0'), ('regiao', 'norte')])\n", + "\n", + " OrderedDict([('seq', '5'), ('id', '11001903103.0'), ('idade', '30'), ('sexo', 'mulher'), ('anos_estudo', '15.0'), ('cor/raca', 'Amarela'), ('salario', '88550.0'), ('estado_civil', '0.0'), ('regiao', 'nordeste')])\n", + "\n", + " OrderedDict([('seq', '6'), ('id', '11001904101.0'), ('idade', '52'), ('sexo', 'mulher'), ('anos_estudo', '5.0'), ('cor/raca', 'Branca'), ('salario', '6734.400390625'), ('estado_civil', '0.0'), ('regiao', 'norte')])\n", + "\n", + " OrderedDict([('seq', '7'), ('id', '11001904104.0'), ('idade', '29'), ('sexo', 'homem'), ('anos_estudo', '5.0'), ('cor/raca', 'Parda'), ('salario', '14875.20068359375'), ('estado_civil', '0.0'), ('regiao', 'norte')])\n", + "\n", + " OrderedDict([('seq', '8'), ('id', '11001904105.0'), ('idade', '29'), ('sexo', 'mulher'), ('anos_estudo', '11.0'), ('cor/raca', 'Parda'), ('salario', '6734.400390625'), ('estado_civil', '0.0'), ('regiao', 'norte')])\n", + "\n", + " OrderedDict([('seq', '9'), ('id', '11001905101.0'), ('idade', '46'), ('sexo', 'mulher'), ('anos_estudo', '15.0'), ('cor/raca', 'Branca'), ('salario', '54300.0'), ('estado_civil', '1.0'), ('regiao', 'norte')])\n" + ] + } + ], + "source": [ + "input_file = csv.DictReader(open(r'data/data.csv', 'r') )\n", + "\n", + "contador = 0\n", + "for row in input_file:\n", + " contador += 1\n", + " if contador <= 10:\n", + " print('\\n', row)" + ] + }, + { + "cell_type": "code", + "execution_count": 190, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('seq', '66469'),\n", + " ('id', '53117018102.0'),\n", + " ('idade', '37'),\n", + " ('sexo', 'homem'),\n", + " ('anos_estudo', '5.0'),\n", + " ('cor/raca', 'Preta'),\n", + " ('salario', '460.3500061035156'),\n", + " ('estado_civil', '1.0'),\n", + " ('regiao', 'centro-oeste')])" + ] + }, + "execution_count": 190, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "row" + ] + }, + { + "cell_type": "code", + "execution_count": 191, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'37'" + ] + }, + "execution_count": 191, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "row['idade']" + ] + }, + { + "cell_type": "code", + "execution_count": 192, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'centro-oeste'" + ] + }, + "execution_count": 192, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "row['regiao']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Criando a tabela como um dicionario" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('seq', '66469'),\n", + " ('id', '53117018102.0'),\n", + " ('idade', '37'),\n", + " ('sexo', 'homem'),\n", + " ('anos_estudo', '5.0'),\n", + " ('cor/raca', 'Preta'),\n", + " ('salario', '460.3500061035156'),\n", + " ('estado_civil', '1.0'),\n", + " ('regiao', 'centro-oeste')])" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "row" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "dict_table = dict()\n", + "dict_table = {}\n", + "\n", + "with open(r'data/data.csv', 'r') as data_csv:\n", + " data = csv.reader(data_csv)\n", + " header = next(data, None)\n", + " \n", + " for row in data: \n", + " dict_table[row[1]] = {'idade':row[2], 'sexo':row[3], 'anos_estudo':row[4], 'salario': row[6]}" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "'11027211101.0' in dict_table" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'idade': '53', 'sexo': 'homem', 'anos_estudo': '5.0', 'salario': '7128.0'}" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dict_table['11027211101.0']" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'5.0'" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dict_table['11027211101.0']['anos_estudo']" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "dict_table['11027211101.0']['anos_estudo'] = '6'" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'idade': '53', 'sexo': 'homem', 'anos_estudo': '6', 'salario': '7128.0'}" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dict_table['11027211101.0']" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "del dict_table['11027211101.0']" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "ename": "KeyError", + "evalue": "'11027211101.0'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdict_table\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'11027211101.0'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mKeyError\u001b[0m: '11027211101.0'" + ] + } + ], + "source": [ + "dict_table['11027211101.0']" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "def create_text_histogram(txt):\n", + " dictionary = {}\n", + " i=0\n", + " for x in set(txt): # função set\n", + " dictionary[x] = txt.count(x)\n", + " return dictionary" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'m': 2,\n", + " 'p': 2,\n", + " 'r': 4,\n", + " 'g': 1,\n", + " 's': 3,\n", + " 'a': 6,\n", + " 'c': 1,\n", + " 'e': 4,\n", + " 't': 3,\n", + " 'i': 2,\n", + " 'h': 1,\n", + " 'd': 2,\n", + " ' ': 5,\n", + " 'o': 2,\n", + " 'f': 1}" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "create_text_histogram(txt='teste de frase comprida para histograma')" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "contagem_idades = {}\n", + "\n", + "with open(r'data/data.csv', 'r') as data_csv:\n", + " data = csv.reader(data_csv)\n", + " header = next(data, None)\n", + " \n", + " idades = []\n", + " for row in data:\n", + " idades.append(row[2])\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "histograma_idades = create_text_histogram(idades)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(histograma_idades)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'27': 2017,\n", + " '36': 1723,\n", + " '60': 951,\n", + " '37': 1712,\n", + " '24': 1892,\n", + " '31': 1796,\n", + " '45': 1627,\n", + " '43': 1699,\n", + " '41': 1552,\n", + " '34': 1737,\n", + " '50': 1461,\n", + " '39': 1759,\n", + " '20': 2104,\n", + " '59': 999,\n", + " '42': 1673,\n", + " '52': 1244,\n", + " '32': 1852,\n", + " '25': 2014,\n", + " '38': 1727,\n", + " '30': 1996,\n", + " '44': 1688,\n", + " '53': 1249,\n", + " '51': 1260,\n", + " '23': 2014,\n", + " '48': 1505,\n", + " '54': 1221,\n", + " '29': 1943,\n", + " '21': 1987,\n", + " '28': 2056,\n", + " '57': 1092,\n", + " '26': 2040,\n", + " '35': 1672,\n", + " '56': 1087,\n", + " '55': 1133,\n", + " '22': 2034,\n", + " '40': 1732,\n", + " '58': 969,\n", + " '46': 1566,\n", + " '47': 1446,\n", + " '49': 1429,\n", + " '33': 1812}" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "histograma_idades" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['27', '36', '60', '37', '24', '31', '45', '43', '41', '34', '50', '39', '20', '59', '42', '52', '32', '25', '38', '30', '44', '53', '51', '23', '48', '54', '29', '21', '28', '57', '26', '35', '56', '55', '22', '40', '58', '46', '47', '49', '33'])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "histograma_idades.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_values([2017, 1723, 951, 1712, 1892, 1796, 1627, 1699, 1552, 1737, 1461, 1759, 2104, 999, 1673, 1244, 1852, 2014, 1727, 1996, 1688, 1249, 1260, 2014, 1505, 1221, 1943, 1987, 2056, 1092, 2040, 1672, 1087, 1133, 2034, 1732, 969, 1566, 1446, 1429, 1812])" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "histograma_idades.values()" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_items([('27', 2017), ('36', 1723), ('60', 951), ('37', 1712), ('24', 1892), ('31', 1796), ('45', 1627), ('43', 1699), ('41', 1552), ('34', 1737), ('50', 1461), ('39', 1759), ('20', 2104), ('59', 999), ('42', 1673), ('52', 1244), ('32', 1852), ('25', 2014), ('38', 1727), ('30', 1996), ('44', 1688), ('53', 1249), ('51', 1260), ('23', 2014), ('48', 1505), ('54', 1221), ('29', 1943), ('21', 1987), ('28', 2056), ('57', 1092), ('26', 2040), ('35', 1672), ('56', 1087), ('55', 1133), ('22', 2034), ('40', 1732), ('58', 969), ('46', 1566), ('47', 1446), ('49', 1429), ('33', 1812)])" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "histograma_idades.items()" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20: 2104\n", + "21: 1987\n", + "22: 2034\n", + "23: 2014\n", + "24: 1892\n", + "25: 2014\n", + "26: 2040\n", + "27: 2017\n", + "28: 2056\n", + "29: 1943\n", + "30: 1996\n", + "31: 1796\n", + "32: 1852\n", + "33: 1812\n", + "34: 1737\n", + "35: 1672\n", + "36: 1723\n", + "37: 1712\n", + "38: 1727\n", + "39: 1759\n", + "40: 1732\n", + "41: 1552\n", + "42: 1673\n", + "43: 1699\n", + "44: 1688\n", + "45: 1627\n", + "46: 1566\n", + "47: 1446\n", + "48: 1505\n", + "49: 1429\n", + "50: 1461\n", + "51: 1260\n", + "52: 1244\n", + "53: 1249\n", + "54: 1221\n", + "55: 1133\n", + "56: 1087\n", + "57: 1092\n", + "58: 969\n", + "59: 999\n", + "60: 951\n" + ] + } + ], + "source": [ + "for key in sorted(histograma_idades.keys()):\n", + " print(\"%s: %s\" % (key, histograma_idades[key]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Moda\n", + "\n", + "\n", + "Em estatística, moda é uma das medidas de tendência central de um conjunto de dados, assim como a média e a mediana. Ela pode ser definida em moda amostral e populacional.\n", + "\n", + "Em relação à primeira delas, a moda amostral de um conjunto de dados trata do valor que ocorre com maior frequência ou o valor mais comum em um conjunto de dados. Moda é especialmente útil quando os valores ou as observações não são numéricos, casos em que a média e a mediana não podem ser definidas. \n", + "\n", + "Moda amostral não é necessariamente única como média ou mediana. Amostras que possuem uma moda são chamadas unimodais. Por exemplo, a amostra {1, 2, 3, 5, 5, 6, 7} tem moda 5. Amostras que possuem duas modas são chamadas bimodais. Por exemplo, a amostra {1, 2, 3, 5, 5, 6, 6} tem modas 5 e 6. Amostras que possuem várias modas são chamadas multimodais. Por exemplo, a amostra {1, 2 3, 5, 5, 6, 6, 7, 7} tem modas 5, 6 e 7. Amostras que não possuem moda são chamadas amodais. Por exemplo, a amostra {1, 3, 2, 5, 7, 6} não tem moda. \n", + "\n", + "Por exemplo, a moda de [0,1,1,2,2,2,2,3,3,4,4,4,5] é 2.\n", + "\n", + "A moda não é necessariamente única. Pode ser que existam dois valores diferentes que sejam os mais frequentes. Por exemplo, no caso de [10, 13, 13, 20, 20], tanto 13 como 20 são a moda.\n", + "\n", + "
\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Vamos criar um looping para procurar a pessoa mais velha da base" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A pessoa mais velha na base é o id 11002710101.0, que tem 60 anos.\n" + ] + } + ], + "source": [ + "max_age = None\n", + "oldest_person = None\n", + "\n", + "input_file = csv.DictReader(open(r'data/data.csv', 'r'))\n", + "\n", + "for row in input_file:\n", + " age = int(row[\"idade\"])\n", + " if max_age == None or max_age < age:\n", + " max_age = age\n", + " oldest_person = row[\"id\"]\n", + "\n", + "if max_age != None:\n", + " print(\"A pessoa mais velha na base é o id %s, que tem %d anos.\" % (oldest_person, max_age))\n", + "else:\n", + " print(\"Não tem ninguém nesse arquivo\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prévia da resposta para o nosso problema. As homens ganham mais do que as mulheres? Quanto?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "toc": { + "base_numbering": 1, + "nav_menu": { + "height": "417px", + "width": "637px" + }, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "calc(100% - 180px)", + "left": "10px", + "top": "150px", + "width": "296.758px" + }, + "toc_section_display": true, + "toc_window_display": true + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula1.ipynb" "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula1.ipynb" deleted file mode 100644 index 997f9bd..0000000 --- "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/aula1.ipynb" +++ /dev/null @@ -1,350 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Analise exploratória de dados com Python\n", - "\n", - "**Primeiros passos**\n", - "\n", - "### Habilidades em Python:\n", - "- Iteradores;\n", - "- Condicionais;\n", - "- funções.\n", - " \n", - "### Habilidades em Estatistica:\n", - "- As diferentes formas de centralidade\n", - "\n", - "### Habilidade de Negócios:\n", - "- Pensando no problema a ser respondido\n", - "---> Homens ganham mais do que mulheres nesse dataset?\n", - "\n", - "\n", - "# O que é análise exploratória de dados\n", - ".\\\n", - "..\n", - "\n", - ".\n", - ".\n", - ".\n", - ".\n", - ".\n", - ".\n", - ".\n", - ".\n", - ".\n", - "\n", - "### Etapas\n", - ".\n", - ".\n", - ".\n", - ".\n", - ".\n", - "\n", - ".\n", - ".\n", - ".\n", - ".\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Abrindo arquivos com python" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['', 'id', 'idade', 'sexo', 'anos_estudo', 'cor/raca', 'salario', 'estado_civil', 'regiao']\n", - "['0', '11001901101.0', '53', 'homem', '5.0', 'Parda', '63600.0', '1.0', 'norte']\n", - "['1', '11001901102.0', '49', 'mulher', '8.0', 'Amarela', '', '1.0', 'norte']\n", - "['2', '11001901103.0', '22', 'mulher', '11.0', 'Indigena', '4352.400390625', '0.0', 'nordeste']\n", - "['3', '11001903101.0', '55', 'homem', '15.0', 'Amarela', '96600.0', '1.0', 'norte']\n", - "['4', '11001903102.0', '56', 'mulher', '15.0', 'Amarela', '157800.0', '1.0', 'norte']\n", - "['5', '11001903103.0', '30', 'mulher', '15.0', 'Amarela', '88550.0', '0.0', 'nordeste']\n", - "['6', '11001904101.0', '52', 'mulher', '5.0', 'Branca', '6734.400390625', '0.0', 'norte']\n", - "['7', '11001904104.0', '29', 'homem', '5.0', 'Parda', '14875.20068359375', '0.0', 'norte']\n", - "['8', '11001904105.0', '29', 'mulher', '11.0', 'Parda', '6734.400390625', '0.0', 'norte']\n", - "['9', '11001905101.0', '46', 'mulher', '15.0', 'Branca', '54300.0', '1.0', 'norte']\n", - "['10', '11001905102.0', '52', 'homem', '11.0', 'Branca', '42768.0', '1.0', 'norte']\n", - "['11', '11001905103.0', '22', 'mulher', '13.0', 'Branca', '34500.0', '0.0', 'norte']\n", - "['12', '11001907101.0', '26', 'mulher', '11.0', 'Parda', '981.0', '1.0', 'norte']\n", - "['13', '11001907102.0', '20', 'homem', '7.0', 'Parda', '1581.5999755859375', '1.0', 'norte']\n", - "['14', '11001908101.0', '30', 'mulher', '5.0', 'Parda', '5136.0', '1.0', 'norte']\n", - "['15', '11001908102.0', '48', 'homem', '5.0', 'Parda', '', '1.0', 'norte']\n", - "['16', '11001909101.0', '30', 'mulher', '5.0', 'Parda', '', '0.0', 'norte']\n", - "['17', '11001910101.0', '27', 'mulher', '6.0', 'Parda', '3712.0', '0.0', 'norte']\n", - "['18', '11001911101.0', '33', 'homem', '6.0', 'Parda', '10256.7998046875', '1.0', 'norte']\n", - "['19', '11001911102.0', '30', 'mulher', '11.0', 'Parda', '378.0', '1.0', 'norte']\n", - "['20', '11001912102.0', '34', 'mulher', '15.0', 'Preta', '15187.19921875', '0.0', 'norte']\n", - "['21', '11001912103.0', '28', 'mulher', '15.0', 'Preta', '', '0.0', 'norte']\n", - "['22', '11002702101.0', '25', 'homem', '11.0', 'Parda', '16560.0', '1.0', 'norte']\n", - "['23', '11002702102.0', '26', 'mulher', '11.0', 'Preta', '7792.19970703125', '1.0', 'norte']\n", - "['24', '11002703101.0', '32', 'homem', '7.0', 'Preta', '8904.0', '1.0', 'norte']\n", - "['25', '11002703102.0', '36', 'mulher', '5.0', 'Parda', '2805.2000122070312', '1.0', 'norte']\n", - "['26', '11002704101.0', '40', 'homem', '5.0', 'Parda', '24564.0', '1.0', 'norte']\n", - "['27', '11002704102.0', '38', 'mulher', '5.0', 'Parda', '31044.0', '1.0', 'norte']\n", - "['28', '11002706101.0', '27', 'homem', '9.0', 'Parda', '5550.0', '1.0', 'norte']\n", - "['29', '11002706102.0', '25', 'mulher', '11.0', 'Branca', '', '1.0', 'norte']\n", - "['30', '11002707101.0', '42', 'mulher', '15.0', 'Branca', '38844.2783203125', '1.0', 'norte']\n", - "['31', '11002707102.0', '43', 'homem', '15.0', 'Parda', '2034.0', '1.0', 'norte']\n", - "['32', '11002708101.0', '25', 'homem', '8.0', 'Parda', '2476.47998046875', '1.0', 'norte']\n", - "['33', '11002708102.0', '22', 'mulher', '5.0', 'Branca', '', '1.0', 'norte']\n", - "['34', '11002709101.0', '31', 'mulher', '11.0', 'Branca', '7062.0', '0.0', 'norte']\n", - "['35', '11002710101.0', '60', 'mulher', '5.0', 'Parda', '4240.0', '0.0', 'norte']\n", - "['36', '11002710102.0', '24', 'mulher', '11.0', 'Preta', '7233.240234375', '0.0', 'norte']\n", - "['37', '11002710103.0', '22', 'homem', '9.0', 'Parda', '5428.2001953125', '0.0', 'norte']\n", - "['38', '11002711103.0', '28', 'mulher', '11.0', 'Parda', '2180.0', '0.0', 'norte']\n", - "['39', '11002711104.0', '30', 'homem', '11.0', 'Parda', '5203.60009765625', '0.0', 'norte']\n", - "['40', '11002713101.0', '55', 'mulher', '10.0', 'Parda', '5328.599609375', '0.0', 'norte']\n", - "['41', '11002713102.0', '32', 'mulher', '8.0', 'Amarela', '723.2000122070312', '0.0', 'norte']\n", - "['42', '11003501101.0', '35', 'homem', '5.0', 'Parda', '24564.0', '1.0', 'norte']\n", - "['43', '11003501102.0', '31', 'mulher', '5.0', 'Parda', '', '1.0', 'norte']\n", - "['44', '11003502101.0', '40', 'homem', '5.0', 'Parda', '15960.0', '0.0', 'norte']\n", - "['45', '11003505101.0', '58', 'mulher', '5.0', 'Parda', '', '0.0', 'norte']\n", - "['46', '11003506101.0', '48', 'homem', '6.0', 'Parda', '25440.0', '1.0', 'norte']\n", - "['47', '11003506101.0', '27', 'mulher', '5.0', 'Parda', '5940.0', '1.0', 'nordeste']\n", - "['48', '11003507101.0', '24', 'homem', '5.0', 'Parda', '6300.0', '0.0', 'norte']\n", - "['49', '11003508101.0', '31', 'homem', '6.0', 'Branca', '13080.0', '1.0', 'norte']\n", - "['50', '11003508102.0', '30', 'mulher', '5.0', 'Preta', '2199.0', '1.0', 'norte']\n", - "['51', '11003510101.0', '41', 'homem', '5.0', 'Parda', '24091.2001953125', '0.0', 'norte']\n", - "['52', '11003510103.0', '47', 'homem', '5.0', 'Parda', '', '0.0', 'norte']\n", - "['53', '11003510104.0', '32', 'homem', '10.0', 'Parda', '', '0.0', 'norte']\n", - "['54', '11003511101.0', '37', 'homem', '5.0', 'Branca', '52320.0', '1.0', 'norte']\n", - "['55', '11003511102.0', '29', 'mulher', '11.0', 'Parda', '', '1.0', 'nordeste']\n", - "['56', '11003513101.0', '58', 'homem', '5.0', 'Parda', '15120.0', '1.0', 'norte']\n", - "['57', '11003513102.0', '34', 'mulher', '5.0', 'Branca', '0.0', '1.0', 'norte']\n", - "['58', '11004302101.0', '35', 'mulher', '8.0', 'Branca', '3780.0', '0.0', 'norte']\n", - "['59', '11004303102.0', '49', 'mulher', '11.0', 'Branca', '23674.80078125', '0.0', 'norte']\n", - "['60', '11004304101.0', '46', 'homem', '11.0', 'Parda', '23544.0', '1.0', 'norte']\n", - "['61', '11004304102.0', '39', 'mulher', '11.0', 'Branca', '23544.0', '1.0', 'norte']\n", - "['62', '11004305103.0', '26', 'homem', '7.0', 'Parda', '8652.0', '0.0', 'norte']\n", - "['63', '11004305104.0', '23', 'mulher', '10.0', 'Parda', '', '0.0', 'norte']\n", - "['64', '11004307101.0', '27', 'mulher', '5.0', 'Parda', '6489.0', '0.0', 'norte']\n", - "['65', '11004312101.0', '45', 'mulher', '14.0', 'Branca', '19080.0', '0.0', 'norte']\n", - "['66', '11004313101.0', '41', 'homem', '8.0', 'Parda', '10747.80078125', '0.0', 'norte']\n", - "['67', '11005101102.0', '27', 'mulher', '11.0', 'Preta', '3985.449951171875', '0.0', 'norte']\n", - "['68', '11005101103.0', '26', 'homem', '11.0', 'Preta', '3195.5', '0.0', 'norte']\n", - "['69', '11005101104.0', '28', 'homem', '11.0', 'Parda', '31392.0', '0.0', 'norte']\n", - "['70', '11005102101.0', '40', 'homem', '11.0', 'Preta', '13812.48046875', '0.0', 'norte']\n", - "['71', '11005103101.0', '41', 'mulher', '5.0', 'Parda', '', '0.0', 'norte']\n", - "['72', '11005103102.0', '27', 'homem', '7.0', 'Parda', '', '0.0', 'norte']\n", - "['73', '11005103103.0', '26', 'mulher', '11.0', 'Parda', '1278.0', '0.0', 'norte']\n", - "['74', '11005103104.0', '23', 'mulher', '7.0', 'Parda', '1291.5', '0.0', 'norte']\n", - "['75', '11005103105.0', '22', 'homem', '11.0', 'Parda', '3270.0', '0.0', 'norte']\n", - "['76', '11005103106.0', '21', 'mulher', '8.0', 'Parda', '1726.4000244140625', '0.0', 'norte']\n", - "['77', '11005103107.0', '23', 'homem', '11.0', 'Parda', '', '0.0', 'norte']\n", - "['78', '11005103110.0', '25', 'homem', '11.0', 'Parda', '', '0.0', 'norte']\n", - "['79', '11005104101.0', '43', 'mulher', '10.0', 'Indigena', '3296.0', '1.0', 'norte']\n", - "['80', '11005104102.0', '46', 'homem', '11.0', 'Branca', '', '1.0', 'norte']\n", - "['81', '11005104103.0', '21', 'mulher', '11.0', 'Parda', '', '0.0', 'norte']\n", - "['82', '11005104106.0', '27', 'homem', '5.0', 'Parda', '5288.400390625', '0.0', 'norte']\n", - "['83', '11005105101.0', '52', 'homem', '5.0', 'Parda', '5129.400390625', '0.0', 'norte']\n", - "['84', '11005106101.0', '50', 'mulher', '8.0', 'Parda', '5179.2001953125', '0.0', 'norte']\n", - "['85', '11005106102.0', '26', 'homem', '11.0', 'Parda', '', '0.0', 'norte']\n", - "['86', '11005106103.0', '23', 'homem', '13.0', 'Parda', '6104.0', '0.0', 'norte']\n", - "['87', '11005106105.0', '23', 'mulher', '11.0', 'Parda', '', '0.0', 'norte']\n", - "['88', '11005107101.0', '35', 'homem', '8.0', 'Parda', '6092.099853515625', '1.0', 'norte']\n", - "['89', '11005107102.0', '34', 'mulher', '6.0', 'Parda', '9450.0', '1.0', 'norte']\n", - "['90', '11005108101.0', '52', 'homem', '15.0', 'Parda', '', '1.0', 'norte']\n", - "['91', '11005108102.0', '49', 'mulher', '13.0', 'Parda', '21624.0', '1.0', 'norte']\n", - "['92', '11005108103.0', '22', 'homem', '12.0', 'Parda', '', '0.0', 'norte']\n", - "['93', '11005109102.0', '27', 'homem', '9.0', 'Branca', '1671.2000122070312', '0.0', 'norte']\n", - "['94', '11005110101.0', '22', 'homem', '10.0', 'Branca', '4987.600006103516', '0.0', 'norte']\n", - "['95', '11005112101.0', '55', 'homem', '5.0', 'Parda', '6249.599609375', '1.0', 'norte']\n", - "['96', '11005112102.0', '48', 'mulher', '11.0', 'Parda', '6249.599609375', '1.0', 'norte']\n", - "['97', '11005112103.0', '21', 'mulher', '15.0', 'Parda', '6249.599609375', '0.0', 'norte']\n", - "['98', '11005112104.0', '40', 'homem', '11.0', 'Parda', '1562.39990234375', '0.0', 'norte']\n", - "66470\n" - ] - } - ], - "source": [ - "import csv\n", - "\n", - "with open(r'data/data.csv', 'r') as data_csv:\n", - " data = csv.reader(data_csv)\n", - " \n", - " for i, line in enumerate(data):\n", - " if i < 100:\n", - " print(line)\n", - " \n", - " print(i)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Estatistica Descritiva\n", - "\n", - "### Medidas de Centralidade\n", - "\n", - "A **média** (ou primeiro momento) é definida da seguinte maneira:\n", - "\n", - "$$ \\overline x = \\frac{1}{n} \\sum_i x_i $$\n", - "\n", - "Por exemplo, para a mostra 8, 5, 3, -1, e -5, a média é:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Somando 8 + 0 = 8\n", - "Somando 5 + 8 = 13\n", - "Somando 3 + 13 = 16\n", - "Somando -1 + 16 = 15\n", - "Somando -5 + 15 = 10\n", - "\n", - "média: 2.0\n" - ] - } - ], - "source": [ - "numbers = [8,5,3,-1,-5]\n", - "\n", - "somatorio = 0\n", - "for number in numbers:\n", - " somatorio += number\n", - " print(f'Somando {number} + {somatorio-number} = {somatorio}')\n", - " \n", - "media = somatorio/len(numbers)\n", - "print('\\nmédia:',media)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "### refazer com a tabela" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A **Mediana** é o termo \"do meio\" de uma amostra ordenada. E ela depende se a amostra tem uma quantidade pares ou impares de elementos:\n", - "\n", - "- Ímpar:\n", - "\t\t[1, 2, 3, 5, 7, 8, 9, 10, 15]\n", - "\t\t#elementos: 9\n", - "\t\tA mediana é o valor da posição 5 (a posição do “meio”)\n", - "\t\tMediana = 7\n", - " \n", - " \n", - "- Par: \n", - "\t\t[-5, -1, 0, 1, 2, 3, 8, 20]\n", - "\t\t#elementos: 8\n", - "\t\tA mediana é a média dos valores nas duas posições centrais\n", - "\t\tMediana = (1+2)/2 = 1.5\n", - " \n", - " \n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "### refazer com a tabela" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A **moda** é o valor que aparece com maior frequência ou mais vezes na distribuição. \n", - "\n", - "Por exemplo, a moda de [0,1,1,2,2,2,2,3,3,4,4,4,5] é 2.\n", - "\n", - "A moda não é necessariamente única. Pode ser que existam dois valores diferentes que sejam os mais frequentes. Por exemplo, no caso de [10, 13, 13, 20, 20], tanto 13 como 20 são a moda." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "### refazer com a tabela" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "### fazer uma contagem para cada categoria usando dicionario" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/exercicios_dicionarios.ipynb" "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/exercicios_dicionarios.ipynb" new file mode 100755 index 0000000..1de7268 --- /dev/null +++ "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/exercicios_dicionarios.ipynb" @@ -0,0 +1,470 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Prática Independente de Python Avançado- SOLUTION" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define-se uma lista de dicionários com que a prática será desenvolvida." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Dicionário de filmes\n", + "\n", + "movies = [\n", + "{\n", + "\"name\": \"Usual Suspects\", \n", + "\"imdb\": 7.0,\n", + "\"category\": \"Thriller\"\n", + "},\n", + "{\n", + "\"name\": \"Hitman\",\n", + "\"imdb\": 6.3,\n", + "\"category\": \"Action\"\n", + "},\n", + "{\n", + "\"name\": \"Dark Knight\",\n", + "\"imdb\": 9.0,\n", + "\"category\": \"Adventure\"\n", + "},\n", + "{\n", + "\"name\": \"The Help\",\n", + "\"imdb\": 8.0,\n", + "\"category\": \"Drama\"\n", + "},\n", + "{\n", + "\"name\": \"The Choice\",\n", + "\"imdb\": 6.2,\n", + "\"category\": \"Romance\"\n", + "},\n", + "{\n", + "\"name\": \"Colonia\",\n", + "\"imdb\": 7.4,\n", + "\"category\": \"Romance\"\n", + "},\n", + "{\n", + "\"name\": \"Love\",\n", + "\"imdb\": 6.0,\n", + "\"category\": \"Romance\"\n", + "},\n", + "{\n", + "\"name\": \"Bride Wars\",\n", + "\"imdb\": 5.4,\n", + "\"category\": \"Romance\"\n", + "},\n", + "{\n", + "\"name\": \"AlphaJet\",\n", + "\"imdb\": 3.2,\n", + "\"category\": \"War\"\n", + "},\n", + "{\n", + "\"name\": \"Ringing Crime\",\n", + "\"imdb\": 4.0,\n", + "\"category\": \"Crime\"\n", + "},\n", + "{\n", + "\"name\": \"Joking muck\",\n", + "\"imdb\": 7.2,\n", + "\"category\": \"Comedy\"\n", + "},\n", + "{\n", + "\"name\": \"What is the name\",\n", + "\"imdb\": 9.2,\n", + "\"category\": \"Suspense\"\n", + "},\n", + "{\n", + "\"name\": \"Detective\",\n", + "\"imdb\": 7.0,\n", + "\"category\": \"Suspense\"\n", + "},\n", + "{\n", + "\"name\": \"Exam\",\n", + "\"imdb\": 4.2,\n", + "\"category\": \"Thriller\"\n", + "},\n", + "{\n", + "\"name\": \"We Two\",\n", + "\"imdb\": 7.2,\n", + "\"category\": \"Romance\"\n", + "}\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercício 1" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Escrever uma função que pega um filme (movie) e retorna True se sua pontuação IMDB for maior do que 5.5\n", + "# e False, caso contrário\n", + "def filmeMédiaMaior55(movie):\n", + " return movie['imdb'] > 5.5" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Definimos um filme como exemplo\n", + "m = {\n", + "\"name\": \"We Two\",\n", + "\"imdb\": 7.2,\n", + "\"category\": \"Romance\"\n", + "}\n", + "\n", + "# Testamos a nossa função\n", + "filmeMédiaMaior55(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercício 2" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Escrever uma função que retorne a sublista dos filmes com pontuação IMDB maior do que 5.5 \n", + "# (Hint: Pode ser útil usar a função definida no ponto anterior).\n", + "def subListaFilmesMédiaMaior55(filmes):\n", + " ret = []\n", + " for f in filmes:\n", + " if filmeMédiaMaior55(f):\n", + " ret.append(f) \n", + " return ret" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def subListaFilmesMédiaMaior55(filmes):\n", + " return [f for f in filmes if filmeMédiaMaior55(f)]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'name': 'Usual Suspects', 'imdb': 7.0, 'category': 'Thriller'},\n", + " {'name': 'Hitman', 'imdb': 6.3, 'category': 'Action'},\n", + " {'name': 'Dark Knight', 'imdb': 9.0, 'category': 'Adventure'},\n", + " {'name': 'The Help', 'imdb': 8.0, 'category': 'Drama'},\n", + " {'name': 'The Choice', 'imdb': 6.2, 'category': 'Romance'},\n", + " {'name': 'Colonia', 'imdb': 7.4, 'category': 'Romance'},\n", + " {'name': 'Love', 'imdb': 6.0, 'category': 'Romance'},\n", + " {'name': 'Joking muck', 'imdb': 7.2, 'category': 'Comedy'},\n", + " {'name': 'What is the name', 'imdb': 9.2, 'category': 'Suspense'},\n", + " {'name': 'Detective', 'imdb': 7.0, 'category': 'Suspense'},\n", + " {'name': 'We Two', 'imdb': 7.2, 'category': 'Romance'}]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subListaFilmesMédiaMaior55(movies)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'name': 'Usual Suspects', 'imdb': 7.0, 'category': 'Thriller'},\n", + " {'name': 'Hitman', 'imdb': 6.3, 'category': 'Action'},\n", + " {'name': 'Dark Knight', 'imdb': 9.0, 'category': 'Adventure'},\n", + " {'name': 'The Help', 'imdb': 8.0, 'category': 'Drama'},\n", + " {'name': 'The Choice', 'imdb': 6.2, 'category': 'Romance'},\n", + " {'name': 'Colonia', 'imdb': 7.4, 'category': 'Romance'},\n", + " {'name': 'Love', 'imdb': 6.0, 'category': 'Romance'},\n", + " {'name': 'Joking muck', 'imdb': 7.2, 'category': 'Comedy'},\n", + " {'name': 'What is the name', 'imdb': 9.2, 'category': 'Suspense'},\n", + " {'name': 'Detective', 'imdb': 7.0, 'category': 'Suspense'},\n", + " {'name': 'We Two', 'imdb': 7.2, 'category': 'Romance'}]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subListaFilmesMédiaMaior55(movies)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercício 3" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Escrever uma função que pega o nome de uma categoria e \n", + "# retorna somente os filmes que pertencem a tal categoria.\n", + "def getFilmesDeCategoria(categoria):\n", + " ret = []\n", + " for m in movies:\n", + " if m['category'] == categoria:\n", + " ret.append(m) \n", + " return ret" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "def getFilmesDeCategoria(categoria):\n", + " return [f for f in movies if f['category'] == categoria]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'name': 'The Choice', 'imdb': 6.2, 'category': 'Romance'},\n", + " {'name': 'Colonia', 'imdb': 7.4, 'category': 'Romance'},\n", + " {'name': 'Love', 'imdb': 6.0, 'category': 'Romance'},\n", + " {'name': 'Bride Wars', 'imdb': 5.4, 'category': 'Romance'},\n", + " {'name': 'We Two', 'imdb': 7.2, 'category': 'Romance'}]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "getFilmesDeCategoria('Romance')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'name': 'The Choice', 'imdb': 6.2, 'category': 'Romance'},\n", + " {'name': 'Colonia', 'imdb': 7.4, 'category': 'Romance'},\n", + " {'name': 'Love', 'imdb': 6.0, 'category': 'Romance'},\n", + " {'name': 'Bride Wars', 'imdb': 5.4, 'category': 'Romance'},\n", + " {'name': 'We Two', 'imdb': 7.2, 'category': 'Romance'}]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "getFilmesDeCategoria('Romance')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercício 4" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Escrever uma função que receba uma lista de filmes e calcule sua média de pontuação IMDB\n", + "def médiaDeLista(lista):\n", + " soma = 0\n", + " for f in lista:\n", + " soma = soma + f['imdb']\n", + " \n", + " return soma / len(lista)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6.486666666666667" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "médiaDeLista(movies)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exercício 5" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# BÔNUS: Escrever uma função que receba uma categoria e compute sua média de pontuação IMDB\n", + "#(Hint: funções já definidas podem ser reutilizadas)\n", + "def médiaDeCategoria(categoria):\n", + " filmesDaCategoria = getFilmesDeCategoria(categoria)\n", + " return médiaDeLista(filmesDaCategoria)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6.3" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "médiaDeCategoria('Action')" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "6.44" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "médiaDeCategoria('Romance')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/.DS_Store" "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/.DS_Store" new file mode 100755 index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6 GIT binary patch literal 6148 zcmeH~Jr2S!425mzP>H1@V-^m;4Wg<&0T*E43hX&L&p$$qDprKhvt+--jT7}7np#A3 zem<@ulZcFPQ@L2!n>{z**++&mCkOWA81W14cNZlEfg7;MkzE(HCqgga^y>{tEnwC%0;vJ&^%eQ zLs35+`xjp>T08iNH@~mAV>%ZNOvRM z$b7H5-N${;-v4v%x#xc0{r=aPA2ZCnPpoIX>sin0L5?7&0epFBIcWd_K3%~lfIJ6i zZ{3uPb@ZU8w3JOR+q&@P}|z=pxFu`w_(uyL@# z2hM-u0YSTP0TYJ#bpRY}%>Pu^@3SCVASnO1bl3$9Oe_ch{eBI6 z{eJbQi}(Nv1PVn#g`%OMqJqPCg4Y040yM%)+>+=-D)(UY_QX8C;jb?+TrX-QQT?#R z$ZO>A7z2~^A{jXa(`9BB)+>D1_yq)ogr#oWl$Mc|lUGyM(A2u4tz&F*-_*?9!qU;n z`Js!eo4enWr~U!Yo(D!mzKn{Fc@-O%lKLhsJtH$KyZCKMX<2ziWmQviOKV$u$Ggt{ zfx(YM!y}(YXJ+T-7Z#V6S5~)ocK7xV4v&sc2tbfgP*I_%u&*FPP+Y)2C;=+kC2n*= zNfp>Vdm?%s-wVXo!(SIQVleQkZjl%{e841S%$(19Ptk`OD;;Z%(+qjPKi?K_$2%lCKPL8| z@b0Xe{?QBxBw2jzD;6xVU})!|jRbg4o7e4-KrbH>sJlr64p~qkmWu>pzswv6dN0NO zan!9-Dv8~0iOq1CqKvbg&v;f}0rCu?Jzh*c>_{CMIM+CYl_u{>)PS>}?JAwltE_|5 zT{-m|?LAJOq%{sWcgy&)!*T#l7UkKvVRqKLiC5H&1VjgZLHY})zv%SWj{3&TesQT^ z{Pe$gMtT3oGl~ESTpj-Hl=*%fF@L&5yVDIeJpXn`e*cnlWQMk({`+C3{_P~)70@UT z5p)R5b`S>G0*G#N1gwCq zHtf1SZD!sY2oh=>*=fUF5FBnIb^D_130- zsY&TQ64>SgyqmhKkU%nq1TPY3>4P8vEdI6gM~r8^NPq|qJG(koaJ==a-!HuUqL*L$ z;lH0x1e{gK9Vee(_Q5;SE|)sjGdV*7CxZZI%UBBh6x&Z63493#+|z>JRr_AP&!R77 zEhg=ujHYk=Mds{+R$|~0?z%u*2y+7x*r6Koo*1a#Q{Q(roI$icGRxAkZ~Ar2{t_|% zp@;zsEk6sciuvNclH9XXldHM4FLq0ynNw;A54v^j+X>slVftmxPIv&n`@AU*-=_WE zEvR=P;(yeimk3^`56*ehKk?VR^FIspAE>w#hLF;5^xh&1gxc__C!3hgy!ek@7`MXD#qKmzn1_Ls(X z@v;!7==DfIa;*0Zy$}h^>xkE!dfnUSqrE$f1eQhIkbut+?b!>NuOo}6`>j)e=NQaZ zVv7PaZibtm>~0(f4EA~Y86pA1#?m?Tj`t2bt$}Af*GU{+p%oI?qpm>$4OV#PH&fSo z%NJ?YB>w<$iKpAaS@SP||D71VQM9Im1pM0*9a%nZ5XA~ehmU6;n(Raic2LWXDrLA& zCUMJsT6P?4s>o^CPZU3=zC9|^Wr~NrT+D#G+CZ=;C>oMdYb*7B?D_)t&zteDPnU@^ z9QPL{ZlR9PlfM{yT09Gh!!K$0S6x82Ujj}Dv{vAuBv_yB3wbHi<{K7>Gz_pe zq-FoKuW;jO7TJ@hwcBK zp{+?&6H5^KgQO!y`%T^cl+|huf5*(MoFZpi!rJ_(FInjgwh7rh4f&ZZLe#g(Sb?Ps zO9uJf`N-nW%&H$21M9;xQY;--H3un!-aMk@r z#2YD&MpzC$Y)wxz|3F5gU+W%K7R&nwWbRq0UN8CPDh8D9%|9g(m&u5Zq3W|kWz4Y;UL8c?KfMYOgU}J} z5l48!oSyKur82z)>=S~_2J)zKwXS=nur~^%&-K}mOGqXREO?9vMK>@9l}A%6gwBlf z9-Hwwl;-)xJ|NU<#b^n6=1J~zZu*q;06w2uNmVXK#VJfccay!5Opv@y+9Fec=^`Q_ zLQ95VYq#BSD@jM;A^Z8e`3@r6*hRAfp^;ZB10=QX;*Dt@v8q`coN2l4I1bcMZ7GzD zFzE{i*Hk{F+K<2ofIX4}zH^f0dWHo{Hn}(M`j#d? zYjrf@Q#<^thWl&j-XfhlMY_#{`&?7lwRl<*EB|%Ettd17#<~Z;iUl{ARU< z?;uc*YbD486PULVwa?YpmCI`^wZ0c)+T%ur1fBv;C-osT=ag7hS96C?6$tw9X3xwa zjD!0)9CEXPhPAK^oAz7TQgVy70r#|13I19LzeCV|Kg+xsA;*mMG1o^7Qq}|hBTI=A?4wnX1Lp9*{7IX3U;Zl=cKK zn5WeY(D5)@mq`aXV|6fkyW-xKAz8lXMqIo5f}p$WGY#|fiwT-$&9{#i$CUf`f$@^i zOChGClGq`inu)@$&j}XXF5yIn`s$Ro)Xi7c z;WPGQ`65Gv>I;Guy1fb%8G@}@RC-CIr!u}VEyenJVuPHgr50o2~$kde-)LSfE2%;w8XjRkB;;DW*0~s`Ka(M->6Bdt+3amzYw%Z@CpHXL;KR4Zx zI|wj!_Hd}Nz6uZ8gs0Tr2Szsr~WlnS9awN#W3S; zjvQk(PhLEq+zLJ@a(1-4U(8dYavZ$yI6R-`ioow$Z?5MTA!(=h?6?ZHyjt4LV;;vhmjy7qz8>?V%Pv_7rU zHff~2utDcNw>zCJ^7_znv}cXX;e7?@35?mD>I=j%iu@SNiqiHr3sbb?239neKHLj& zv!>aZ#OWoc%MlU31Hikl*atBPn5?sQs@iK=E+B#D;^Z-nG-TW|ZuU;Q1`Oo)1?_j_ z!o%FDhSbd{K3=SfShv#Tc_tuUGxABgd5HsE9W!GtS$?TU) zpVO>MIOGOiI=d$_hmOe&mmc%&mDLPxek3NFiRtnerP~ij_lO)2S}abbk=>PlXXv5V zpHq`Z{eIJLI3`SQ^+a!jUJ4bSO9j;;r|@>wtWEV$mOa?pg^DZcv34WaFQk?%m3*9vU}rcy>EfagHZ0z_Pq8C zpvv@2?K<_Xe>GkV6#=c~5*=TF5_^|Y`;pAnsdjm3ZEQwa zLRczOF}g$)7n@9u;w&w`p_C)h#MOI4jIhs%Z%`l%uNQs9WM*t)vsN^BS~JmQKfMdS zGwAE;4{|DaVyf3p;uCrj?o4Q#&N)I zp14S!l=er?H{|q$ZwlazTryOuDCbW!l~DCB^K>rlF8YXYqPeP48(uG}h~d_2;0f&u zNq>#i-=7hKvz=7LNfuE9g9Yv~|x ztiSYA{v%KJ1#@5zf!jazMfD3B9m^W+s>Jm5nsKcLmzg>~dvO>N2wQx6{y7l|q-10_ zApsn8<~cF>>YhK4#D76e{a2~uSHGY4~gRjrx?HkzZXS81P@jJD=K=$as^z`)B^A04gCF+w}vJMZr2WER8>_9 z$E9>%&Cl(`j}Wbo!5Unm8x)nY=8Gu5p@WEc`yk$uf5upyw}rLLx@y4NWscWdb4r6wWHmx;a`R)51%;?x2x^#PxvkolQTrBoUgwL- zPHLgd#`ME8>a1^iQzi`b#-;2Rrr&ZH6D0V=UIzr1=!QZGk6#X|nm?6fso-C?u&l>+ zn$W%JcRlvaCsPSWt}BeHa*Rthlb|-Tx8kQlbt9F-dHA*JYjT;GqVCo$`IdLKV%-b# zJEQyyob=&?_*}}<_9KrylA>~2tNBu*-Vc#qj<=P{+O}m1lGG}5Ou^#PCFbB%MrVjGYS6q{vi!o6N{WbOTb5mBQoAaN zW-IE8H!HW!c;5FJz;M^KTz84?jb4W|tVD?ps}~Wz{HVZ|igr_)gPN=?8Hcah6Z^=) zkjKM%5#A&7DqkAPssUvvr|!lh;P5stxwlTA`mS$rLmcZpuIesbX&jQ8{AzSz z^d=Pe0Ry;}UefhrqexGch-N0Maua8r_U18aW6hEw{e=)kQMy3BD-4$~=q+AB;zSBs|tuCZ$yEMjvcKXv*`t7(#X&Do}^U=4_z!SBP>&pwwxJtO6eEqhwZ>esd|RHGcKTkqv5wP6 zwvi31cw@WlkmZ=SmyVQ>0G);RI&-%7%A@@s+IsfcgT2ndmY+F?sAv7W^!|eg?>!Q3Os!F_-MZn__cZ-aREB?a)_m8R;s8i1AFuB= zUVyXEW?NR8(gHq$Sg^63xWP|pD{*5nB`&{QAn7hy;8kqweF+2to85b+bk)*2*IaQ-_iQez#%~arF;3$(qxf(+BLQ5?ixerAaq4w)CK&Y7G=lpl z$}sH=T}5kr?eTZaYWoP3O@-20>w)xHu?__0)KA&nCA zNgq1wS>82;y&b+!H!#nH8hY>yN`NUmSLw0qB@rX%JGw!~`R+wFC6J|}M?CeVgxb2} zMoroR#oI}>5<0+M*SM?qEdrfRKy`-qa@J~LeY52Aqh8hg-6ubj!M|#R`PJ`#dU6P!z)>>D3r>|z zF<0tO)T5pn`kwH*8&Xgk(j9`QxxeTOvaYby!7zzL41r>-w92J8vlbR-PC`A``$l&U zUO$ha%dyt5ft_JiGfB2#rmpoZ2AeESSJ6BkkPfio@mrRK?Q}ah)V0g-=;%ef&M{YM zI$CSnKBB*17Jd1Z5=#&o-QA?KVSNgYy#D2U$HB}joiA;x=e#kBNo`~g7Ah3sH*P%- zE__ag7yqTt!80pcKyiYNaCP(@d(WmFm5CN7+j7W@H}tXvhZi2W<9kO@<=H%5d%fg^ ze-r=<+_Zh5$pAZWj50Ig8VQdSpK`hONey@9&0$qt03RDGf7x3xk~>_TVKSL3dYV=W z)LOc)AG^LAC70X7<~=seiOPSxsQ=Cqlj1%8{b$M|k-mzT4~Q&m_=N~nUfyl~D9f;y zJ`l1@q+}!?9$u0OuJ*Az3S1&ei)~#AT&$LJkc|;B?)64^)xGN~K#W)>Oc*>Hr zX;gXUefd>1Zqu93xLvDG4w?jYh%&0#xas^`f?{csU9JtQ`n`$#obNc0oj&ft`#}m9 z5u`<()UMbU@6Q_^_|W4HN7%p>R?Isn?$|-eX;cM;l`;13*T}l?QwI~2BbWV0uQR@& z>%?y!@jJ`3w{pVBC_G`PBKj0|#th2teDw!JA0_tc+)pXIG4~9^cRqUYyWh7o`e$sk zcbGA~qP_=M&^w+EoebbN2bxQ{rlV}bVZ?1z%8*vzKk))bM+37&;5kkPbQS zw}whYYr5c&{PIUyiXhW_Nh(l!EZ1#E1# zCM)HNK%1Kk_7P0yn)ShD0UQ3CURW;(BG8l_xZ%`!yO<|oBf8(elzc}judY1nW zIBICD=&fNd{_XlRhGKn1v-=NxA2%(KKYQ_BOgLhq$F7#!V1kK4-7`h&!H((p>W;xX zas$YK+Vvw}PZP!n^>TleMfuh@3|&DBuXbd6#CUL7M+Hf+^Tg6iY&rP6 zH(o40f8*#B$^#8TW``$8QY#;r zaL?J3;0fIVtM&nFJWPq( z74O(eoUif^w{R4iU<}JLUUfIyD@e>CAulNt%T}zo+?y=Uauj&5*@|xt-B2{6$SENW zQq_JTtqT+|Vw+KOM-D;_YB4SO#`o%zrMmM}b~E=l9*LC?ITa9W1dg6h$tGT4eW>5W zWpKfC`qB9QyA?IV2=z_p_thjf-`yUvWUg=>(2SA%V6%^9A8S2xwZ<&LcVJAYfFp=_ zF{SrdVIT%%)!KYhI_dd9>)OHds3c|PH|;BbZI+b+*bvvc{imEdbl+W zbdx+;gkL1qN*@I(OnA4FCJ{uhnm<51g_hW;q~A+?f9G!5jPE-Jy1A^J$3d)B@2rjq zE-zeDti{s7E*HPB-E?F#>Xv`iW)5c3W7u_>KZY&BKDgSmap`ipg?ics#al!AlnLR4 z=gXf>9&s5{gErP!In@-03xagV{W}+yE!XnsYQhuQsWv9!lku*J#D~Hx)fD)O6)C$) zN2SeF+PGRG#0ss1`waT|b+jo4;tw2#b>GJNY1T^Mm{gtKm~^cG6c+1aLrWpSr{%^} z&MU39?`UnU*mP~flX(xc>eZNAC`dlX%*1mN<)?Zuz0dVYy){P6%SCDL*M_I+7?&y7 z>5$f$d*fy5g`TC?N5lHXH3NH*S&Ht%E?jJRrI9ard0Bck>Xv+49aQ~PW7s3~k-&5! zQQSiCp&7$;&e|8s)~!37W7c{3%F$&tVI6jojg6v?z4=xtB}OX(saDyV+!_4YOxgOO z`8i8N%LfK65*VQHjl=on$-dGT&WeJzu9JNmIMEc|$YK=)L)g?4xDgmycf?tEw)c6M|gaAx7-ZRP5B z{zzutyUho0!xrDW_t{zKQ6J<>-YnknHf=Z(pa3LFYb23?IKvL83BeA^pGhpWc*&fZ z1K&pp?LY#-0PW}`9T;;=a7??6fPR~4R)XOi%vtzXhVS_A9sV2i5O7s+iG}vPZ;Psb z29q#q69ZR{rYk{Yr8U;VfA`qBWXt{B31W6?*g}p3LTUTHE>z^dy12i`9W#hi*jWX5 zJHF#osc>!!gbL$J!7OgFQTz0_TjPxn4K4iI1TyvSMD^c8^YfhqEGOw`cfQ}r0IhAj zZ#44_$e;fGPD$nv@Bg>SwB(O~up&dqg#XcpmLuA8skq+LDwp%X zq#Ud>KCiS{|-OEuJ>~=MFXz{bO7eZgAPEsI~qr{sb|3}kE{lr zANfrrtCoqTwoYNCZsWd*` z;;UZlGgiOmxZJqPs_0d@IoEMn^xInyCg1t(cACMZ=Zo^JI%AlEUYcVrmErfd%ucW6 z-+Mcl&%VxaXj2xfZbr9(J)hX<_(|F`M=5V|I3y>FR?DJVgt>3C25?jG7+-IVW)6Z(GQMnY^;B+r#G4mZ{Y*G@h^aPKt=3aSO zn^qGvg@4BHXIL{(U|zo^hAFOV8|7N$_JW#1xA&X?K(%el!o|SvyyD&mlgflYp~}Mmd5%6 z^mnd2{D6{b;TY~JF|#L*UsqcnXc|=tyV|J*;aNYTO4u3MxGDcRMJ_L@Zu%*W^pqp> zjU&bTZ$>OBOd>@;SUy!qKx0v_q;wNnSd%l-wNy~RFI>4?op5qS=rYg~WuL7lXPH;U z@)#``ccY!HB3jHN#O)x@t1NO+MK0D;dn_hi>eHS+x04mi1C{p+wS4eWJh=bw=wjD_*g(i_7af5U$UcQzh4$lhN0dMk4UO#Ds=o zi{x{tS6s;JtlrET`Q>M;1c39X1C(EO<93>Bk7!Zg^{1?o6P-)14YhA(HXM{=)v>DQ zaAsb6M=mImnwG|7>RRHBo<49mw&I@Gofz~cx*U_zZ_swU;^b+;%~|!*muj9pBmwqE z_wSD^i{9KS9@geR)EwwC%hXP3i(%d6)>x@@;BkK4h-Ofx~ z$<4Ag5|2)5_gmtk5p(8oH?c}+D)h<)=Y*D(NUm{HtwmqyDx8rD-<6w)JkpwJE%)cx z%zu(6IM_u_5Cf4C5d!9yHjPVJXQ}!%OQQlPuHe)yk;58B^5R@m2RR5kmlzumoQ(4} z*6nuWqSksRLr6fkwt&QWuzhu?HYqVAP~xfP_K|fB7YAjh8)}lxr1#Ks?sAs`YAcD{ zukIv864cl49L@{2W^r`ke$BzWj1OC7!#Lzd@5>fZX3ptkwUUxBF-ZUP{@wEwQFT!i`K87lQfjnYrNI+q! zpy+q$(=1&x{jY`3nxFGp!y8V9Gs|RN9bSa?d8xN>LJQ9_Av|KR1vplF`2rk9GZh6; zd3dP<_8Z5_kU#mVVec#xn0`nM#L_(W!48##qr(sgsPBj}Bz&0#;<`us*Zp6CJs4i% zu~#|qK^l%|7p>ldMNn+Mn%b}8Spo)P^;ZDF190@YF))25)V9+H_YYs8&h^=Ez;UK= z;lvPm%2SUFRwA}yJNUXe$|Nj99*AK87xWX@(1AZ41?s!<=L`GeTJ6NZB$@vcG|*5> z;I?1rRaH-qu%Y+CLxT&P^^qc})sm(pgCE;hX_~%?Z zKPfT4I{a*7{hu5!=vLo?1dd^&-XmIyNTB~s?v*pV5App+eXGY9HoaN8XtGU-$@lc> z-f(4@vZeNx6g=Y}&3I-b$`jV{R)_7a{KNITL4o%E>^<8-zWrZ41IeYkr6J}YZ+pGp zqnIlVL8SB+=0ARc&GHrt@rIHLZ8LNu_mSj9|2T5&0gf5EvBF33$H(PPa~V1t>XhlL z50@RPvXsI$*Fq*j5+6r5V*;$74oI59nqHxi0$+y;5onv_@oVI_@UW+RUwo_ZX{e2) zUAqJ~l$PB|<;`kYbhH+Cmf9!Ao|Lv_gRxczM0PiYEMyg$c^9vu+i0$H-7@iGmj*wJ zu*zLbIEl&x;ep8?bn~RTw&bSTi}R044TFDtORcWb6ydeZ}Z`QcknqZG9 zjHOyzpv%GpC8B_b{1-p0a;3e8Ioa^w6(O*Elu`D+%ZLyhfM4ab?1TcC7R5N+6azy# zC_w&c^amLqRa6-!Gz%sw0h@AX&*BXx<`;io5e-Op7NzIq_9OLQ?%LWtdBX z2L&LI-04H3lm^fV&4U>&OQis6c<%}v=muB?5$OKCV&WyhDqubr2q@dbag6MJ;bhPj z?qHcyuGG!3#If5`;NsPXM9uD{+%6lwsu5p@3jFe`-=+ZCp(n~_=8R(?hcCnrI5IA+esElv z7z@M!4RG+fJiO3%!*P8A@<7%j-yE7=TB%SmWZt7O$i>jthq?!p{KOeSPX#8>IV3UY z-2n3Ag75rT^cO$=Umalncl_A$2R}YK{>qQBUGBWB4$DSFD8Yeu%p;ierE<^@v{Y*a zR+*&>lTnVjlf6(8@=Hc#AMjmKQ6*UR$9WBJ-sWJHRtZj?bake%u6VcX#E%5hceUJfN9l?S z&gEsyGFsF3cJc{C)#Mwag^Bk`S2Eey`L8{_+@H)_ximCNbpjSI!MWXu6?^r0h|$i? z;0380n2#mfW+gk8LQ03U2v{ z7)?Q;b1V8>FEpRb5!VwXSzEEZTXvpg+~!ZUpT=T`_pCV#T;a=p_!bBr403Q!c3%n> z%;HU%6HHu%miq?X&0&li#l3N6S9^{NDEihrg_FiDAb8UJXIJD=Y#BeNA? zP_M71yfv}j?M#zo*co+vmr#WN&nJnHFgL1`8>fr2?w%2x4MinkwnP!7juP^PvzTjL^uW&@hCZR@(Uhlj;{ z*7TyjuP-$dl5n?Aw5v51+~x^dTyc0)MdNXsK!Z5(l=il(nVP4uLTO!?wZ}7taG#aR zFw*uix%N`mQsec-*-)K?%9MCf8J)q;XXJCw(kkMl(pMFHa@)J4C0H9oajHR6w69ji zZGs&6cOD(POU&|VV;{m?@iZ#7X;O1t16OBdOGcvApOA{+b2Ht+eUkE6{Eb=`$%Upk zh1kvUOU%ry<)2gEJ3lwJ5^@%!SkkF9zw^1$lzxzEHwvR+?>MKJp!Bt1tC!i;xFO|8 z5l+h07>ahEz3S?+-OC=Y1cauGu$Y;t%vSEG1wOUN-01Aimg`K={Txh7xi`wGZgvX;dr7!92%%u%b!6%H~M-Q2w`%YlNS zZmrQV>L9~VCgYxSJ&}n&(&V&1b2eT)dh0x%Kl~m}R7?8e9W5()2dsq11VW`p&IP#E zaueq6TYA~=KV^k1+nP#kC7;9lk-&(OIw;y5udQ30v3>B8>C!m*v=Wu|?1!-OHQdPc z)VpIW%X>IK_H2`_v(*+)ZLs+f&z_jccW=YEj?wSlUU|Td41p&!^hnYrb3!rA{D^QY zH0gHdM8I4(;B-!NG1*9I0|lp{XO;yDRo(8icw2&FD-wPt|0J|e8I5S0p3aWlMv2Zl z$94;WyV`kVsC&Gc8%y4dO#r76*_xeS9ZfH|+RVgwQ`N2E%Od}?SgS?1$DR0;ge`Xc8X%C$6hi-Kwg~5bcvupMkXMtyBD| z`%!Vc31>lG%HofG*j*#r;_~WBzq~NU=e+6`lx(QB0w=KW;`m7F+*e9nG*u>N|3R7u zZvjp@%KZHE+~DPYj==Y;@pE?W`*WdbfU%YPd3kC_OzwwxZ!Wgx@Gy)vPjl#SUWQe? zb0Rtx;;vXnFPI=kOT#?uY!#m;{EmdF+z6W7P7L{Q#MUBk68vV%0C6$eB-Qx!y*6`b z%+Q%)t~nvoese0kxAZkx#}e4tsH{prGsm8c{Qfv>&Vur8tTxC)3!OLq5;@80=vsF5C=V(F_L3tCP8=oHEO@F_M4gd7$=K2!TPjEjC}=n%b#J+4KZ7!%xhK;pGA9 zrQ5+@DyrYw75AD~e?$T`H7CmGV!hALr1+CbO9AzA4Xtn`dvHwJS?L_N{5uxI4_`?! z%ztqxfecukU;X%q)z+LG)!zZ%eLh538SM+D$~KSNfF(hCTjLXG12#I3Ih6ZMC1+XZ ziJa^9xTMpV-G%pNTL`RCH4IUMbzwK=V`Z5AoK^Y2o=5E5%tu@a&~f}^i)q%?5e&4q zi9tT^m0nw5qBEwdxZm2N=f);9ZxfdU)CYjW)R{;=CD&?NE8+catEm-9@ri`w7& zfWiZ{Ikc)|h_iH!%`Fdj)*<0OaXlPP^|9cYvv%q03|(0c`cQGJyZ7wJ=zT74OBdyh zy2U7$*tI`!EDYbxoCiH_dF)%;w*Hf|k|iZ3VIl-@QZI7-_(U46mPi^c=8;(+F~UFS zC0`Bwza-_ajQamCc7^|bINj=7q2;$rjT`jUZZn=hoSsCkvr*JT_e}Td_*e=;qt{QO zibz_p94VWbS?P{R!NJ%mY0Sx?p}oIlGk5z`F)uxfk5u64i|d)ZyAPRNPt58` zR=-&A#p|T@oK$Nmm^!)JHdRw9;g$R6-?w_DJu1oZfs&28gAUy$QFw<(u-o{mf};jQ zTClMs%MLHYts}#1i$ylujrf4Va_9SgHV_T#F}z+M5wD7zXnH&YL$^o@o{*TnPiaDGvD#pNV% zcU-h9x1G;H+8ARYw?}W|Zc7BOZ^M4dofmD~3NtQf*L#$zgglh|F7ii5uCQiz(9Kh@ z2?ltmrFN6hwAx-gV-IKvwRW?0IM5oBCt$w$?k)lnUU4_1otgZaQ;~Sj3g}yi?OS}S z!>8U~M^u|sgkI~GrR3oVG`kh~)w8H=x;^oM%=z_a--+s&A+d_c)X{sdXgFiitQK>p zk26^@ZrR90qqDr?lE3(?wH~)LZ25)x%>3v{sVJD2xrJv>KtnPfVoSA)J1W0`Bg8bZ z4P%KB64@x4C<*m82{oq2S}P!y+Gfu@rI^VUQ`;5y>~r{vB;+lAF!Ax)a;-8=o6 zD++O!OX;#XG~Fo9sA?UAqIIQMF!>n`P`7{a)!97ICsz{ovph8Joxpq^?6G6ih*NbDXV1!EJ~ib$yMsCh3*)`9R;e`l zaD?Hev}gdtYRg~|i`6M~Lp!?Zx_nDf5H=EUb@L%u6*<2)v~9Vn`H^Z$({g*+$vvQ{ z!gdeK5H~*KMsYYJ(FI@jLas)|Y3$Ey6+>)97FE#`*Nn}sZ!53AJJZ_goN5WvAx_*V za2gE0RH3nS=-Q^mK+Yg`8!t~$RLaj{?P4FZq#T<~AO&sH@x716!`Hfo2lMk9@cs2r zN9ABlq1WZw#M~D1U7vQnQ`8n~#Uy<+uxw+F1n^QnoJl&*UaK(k=$mdb1}-0J%^VWi zm(x0FsupxBs+LVC1aoLtCOy|!6StS=EW9nV#yAJfZj}!&s|+ zDm9?}y$ok-I^7RXDXPs&2ywQ2nDF%68l2|h4EwzjeJ$m{b5`u#TWMq*lC%PkP6L61 zQ;VRYfV;}&wvuqFhp8D>ggxEXSFV~N=zUlcc@0pF?wst6!KpvK*({fQ(>eglv9$KMY^5GC{2~K@@ z@U*Pxjf`hjV>rD(0YSwsoa$PJpLFJ-u-|q1;MXSQp=9mU=D@%{+p`)m{)p|uDh*c> z`$2wn+6*BC-iWLTQKp>!=Sm$US&`=FJO*Q`=Ey3%f8xm+TZNk0SYdj zLMakw3aR6mvzNlB1UKO{w$lM@IhL5q9ZX^CMqGG+J)G+K^GEEnSZQ_snq^g&qSeW% zkHo~xq24WJ6ed-~1*n`9ya7FZlrE-iZV2ppytNZP)zRAR$R2oR=#?3*WW6|Gbzda! zoS{7Wnwca~@bsffIxx|5S~|;_zrfozt6gN8z$RN<&w8#FFdZ{@Q8Op#rn*%;I^pKe zBQ(|xxC=ZlkeFfX>+hT(>*mt97h0KsqLj`8?Q`p2|?jn9v((IX4L> zd8bF(3udMm42n+T?GTX3mL0Lk2(<}=3PbSF>*RBSG4g0;3DZX%z_Cxq2Asl+a|peF zCiYs5YVlRShgxCWQ{WoC7%a7-N3S}ptj<4*KL~xrA#H!83`;VsnxYoBx^vk&AFG;E zstq)d^<8@#q%c>0y^pE`O;=N)lE;PK~DnR2qqQ%_10{_oKZ4HjZV)SWu<{6w03!jHhN- z6=KW4LIwe_{?iNg()~RL2ASAbk7ZCjl+ia^sl^vJZxN2Ny4?*o!4!Ea3JzaD-Rx;g ztlD}-?+P$o0QmY%`Ur`!zp@xjS+_F@?|dx0)bGPr!&fZvlm-YYel}vwkhBL06P0p& z?dm1SJ`2R2P|HK$cmsHb7;@KK@Lu%!Fz-BNeX$r z3;E*u6?0%64|!nI=|$UsD1GB#+dRpr`}{#G@X!#K?{HwxHCm-~YLQ_TOfO#kp=AF4 zTO!zbf2@}It2WcmR*C<9A@YCN4CvyuDUGvO=1?UA%h8NdX%W&_!VL@8rFKBje4H6yW_QwSd7z+x<+~*=1$#-lQBP@VIO9oL6RWY2h$n2tm6Q`!xX6z2F>+v;L@+ zRxLSZl2*sZ`wv6#dEWLiboI1^AOVb*w7W~$U{q}JDG~_!urGA%IrC2r-u>5uOa9pq z^Z$7`aBL}brLnH1XJ!jAuEZel&iuZu6LB(#rbMAzfn64trPjf4tClX*b{vEq2`Ivb z5S;%EX8rgf}c*naRy|=VIkwBaINy1s(*2y6BoQOqYsaFFDG~Pc% z0_3TyjytE#e?9mk7vX~Ejivn?%q7p;hO4TB5hEG-9rrO9xXBwa;hUr7X?_-y`q)>D zqVkA_`PeC_Q99Yh$39<2nCzRLGus{{7Qgq1u$oYa(xzc^ak-ZD>}Pw~&)KEUKV_E| zvwce~4P*sdw*nkrUoNu%?JIEfab+~Mdk}BFwzS@D5^@CAB`(KhZa7vsF#w*pU^C6Q zPRhrkgPM&UjHW(ZrBm3=`EDv*Eh@s5k`2}w3=9>sKK$pcWEw#%BYqJ3hIRx33xx}v z_^u}lO2xo5-r})U{jhmApo0a5W9S+AU@Joc0llv;+;HreXW#9A7|jOW!?vsD(7vj@ zuLb64l#3-3)T$fy)U!hoM0;h2lkyVvadt4fIcWi6RAiU zhm4eO@-_n2WkI#FApd%}&&N9vVB}XG%kTK0;R&uoh9=(j!X*Yc+3r&)^9};bKpARI z1}y{)giHx4WqUU@_o3)M#5!#lA~M~>zP&>}^r5#O(_NQNWoAS}@wxg;L%L7!3kwQy zaUi`mKC9?Ft~rF`!AvC*&z{`vCvsoDVu;d_9rRqFmI0-Pgl)~( zi-CF8xw&~Qx3m>1^oXg<5pB#sfQA}G=~Xwip*S{&V*FJ<%m0Nq;{ zh+=05BEjTx55n~-fe;HnB5f&A$&MU`5<|?o*5D+I19?kyT@*sp7|KdZfq?ddONpYD z1lkf+aE2WOT1XpNWS8tmtv&z^5MwtEme2OVQwG`>;Mn{sB;4!z0Y`S+$I4LjcpGBQ z=n4Zr^M(_9IH6dsO_FY=NgIDS*b+yV%vd=vkk|>p#smzDn(}Jsu!Zr_%~6cv{qdyW zRFlawulBmKIOs%Fy|hKlR^XHh>0_zKFDNkZwyl9a)MTR<55M@iyr< zas--!Nzi8vOeH%sK=y+_83WxuF+`EC+I*z=Mxc@^F(&ZxP7@+C7%nCa;{)bPLbyxS zSyp@iFldQuq{)?~0tq;IKLxOiF_uKh^#`FfNieM=LHQ#Q)X!V?2QE?XaiT~ws zWjo3>I5m~Z1$Fu$Gyt+O>ciOf6X`?j;TVBm%X&f60FyP^?ai+xxt5ITpw+)ha{V%X z{h9p_)+XWOCsV9tnPTk>w3#1NQ;;tkf^?Y#iv-&*1w-=kdvvr_7VC6=Ce=Ye@B=U~y_B!cr2F!khU_}o?I1WaZrm@_<{ z`Mq5b*p3tI0Xr)K$3s0I`2!3;M)v+41dG3cQ1A^{R1g^O2#)3kXQ>}O2Y&o`t;(hFI5JBENcPe-log3@RS0 zle7_Ct^9{!FRa$?yIF6Y#<403O6^#8mJJM->i{R8|IWMjv$F78sKHn}gwoKu1 zbaMy>0t~{``|J{$x1nt2;J9Cx`t#t}SK$aiz!LD1JyC`v zD1TcqI3b7#7AV`D-zvKP5FelYs_6Q^+PL(m?qf8M-hD#vVFB>R6%@gm-&o%BYW))H zwBV0?qzw6pjDA%`e&74QhXDQY%RkhFoEZM8CS=F=f{^S#itb}SB*=2?a{%KsY{luv z8gm-opo-*UU`|vK!D(KW0H0ri{tIZ**J}BwJuE=4C2-vpfoo{6jp{Daj&e58+r*hK zj0A*%*8Un3#z7=dR6yM7Aic1D0aU447e=+EO&)Exi7i6|w+ccoZL?3bCYT#rsrkhL z(coUzu8L@DeDuk>ZH0S`y5bOlLyPSiB7xt~Q_t42K<#;<9Xu1&1;4paP$&R7!QkJR zfw$N0dA0YpI%L@tEJ5-O2k2$!a&yFxIU3wSzAqlS)nSi^HM>iAX+DWUKs$Mf6EV1F zfrh=WTh$5V4Zd)6dpOoWAaD!(5b_d$f?NxN1y)euux|y-R?Dr8Ee{C_UUl#gyMQq$ z55sdx7edEu@LS-FuR-~-ySzm~ri#CSvhBEOp6VLlPOP-ZViUXQ!vtDMJVlfN9DsG! z2S1Dj%Bwaw)4wsgYFvtM0-6N$h0n#LCv1#_{25=a0>yfk(PvYgKoK`mne7VY0Mn1S1@iMC}Qs=EPX&u->hl z&miz#V?Ap$6;uI>zY4L6I=*RHps>3zeX5Ke9Xl(+emClEn52hE5d!bZP(F<<#i;JP_vTMB#du_q048AeqEB*mLs<663>SmCff%x} zNzw7@?u7=yLj+#(Ih8N%GiU3XM-vjlK>b!_a8FjY0`pal`v#t<0VqC{Tcgs7-s(Qy z+1fm?2MJ5Zn80D&S0sbQ;3L3@%-0A!i7i?@Hzc56f0PaE@xn2_SqC2b2yv3H=A?~q zu@^0U8724>@8gYP4sF)_JkWH0sieC6LEh?m4D|7tgEudnCURS(<>DyLOD!FHTG65` zn(7fekd5iZ4b{*5KkU7CRFz4#KKvenAQ>d*C@2}p8IdF+Ip>@t=O7$Fas~+!j{=fW zat=xokeqYQ83ZKyy>?IcboaD9bJv}9*ZuBq{%|c1=RI##?W)>Ud+%pIJBK(b>wbe< zQ7Enl@56a8VZ>rfn6~NQ=Cx(z)T-?SQ(-_L{ScJpYsaNxLda{cUo3XA;Aay`hkVm!yZI(3=X#nxl0S<-x(t)CeuQ zHK!F#G<^`?I_Nd@RXgN5jTuuf{WQ!x6ZQ_P50@kUsvWRw4teLYotjLYv{PsW&Fi}@ zAnr6=3qzSBJCv+0v=}E)DqwiQCf@gS<_ILT8oIJ$&J2pX*s#m6M0+e?%OrZm0GYaO z9E;9nX~xE+W{6#;fi^xx2ZZ}O&D)%cU$U-1u-pts*x~(#pbVPs%L-*-7f9%A6}&QR z9tiN6V^A({p@ODjPIdgV`tqAH9EX4nzMGejS@)hck%I`!VvmUGS^fM41*CNOCDiRl zl_SQlvX3X-+WP>z$AC|9$(A0$sM^uu=M;hWeG|{+!f;aF;60BoD|0%NInRg|gm} zkJb({>T5H@PBX}uzbOEMeD7EjHx+Pha~~yIh_A<}#4x~R#O8esP{>#pwJhZ%n&y7` zTmo=uMsE<$(<`10dh=nu^m*#>_`ADMwgyGtf+^b(>UtCd@ALalhiW@SSgnBSqOV)3 z_@V6F2Q!jHt7OsQqGbCoa#%=n`lsGJ!=pVC!LWe$`x@`KU$R*xa?~}$PF6u%p&XSjOKi{2IX`2mhd&qlQ)Rt+%PheArZL;&kMr<@ltImZ__S{ zl$ngiBoW0#*px*HxP;90@ZVb>cH>j3$RPJ&fXDCIbK!UW{F;vwLLb~9QD~VGITn!DwbnywCY{aKPs1yc4w!4|yJxkvG-kiytj@GH zNGtPyAW9|@#^ORJmCo{l)wbUMo(MPpUgu)~%=E?El7Fpj#fC*^gm=DuYy(5pK}m zP;g~=<@}0Oge3ftaKimRgcJY#Uj6^b`M*NYk;wd3st6tQR3|E{2{2CwV!5 zsM+9v)ezS=Hnp^Cvw|(pB>lK!WtWDq$411x#2!MA3&C$(-tZP+%CxSm#jm>bo-PjV zQN2(2ewnEN^Rqf7me>k0kg9OFnjZNLIMtGHa&TIe;GQsy6QxNK(0rv5xcNOvp|GLx zlB`@OWKOQIzDI(t|GmQP{zXyJrtoEw=dN3F_bp5-YO!w%=8GX_*|gqofy4&HrbRu7 z2m?Nhp9~(HSJ)89R(UY3#Z0|WIO1priHq}I>=~U$%72!*Pk1?SYp#4*f5#L@C}AWv zo)5y$`$X=K$q(J6qGMryYpyjo8P`nvt);Lhh-hB75~fwM^=#}4!7)na14&L z&imQEDPWWG@H((PZnmTBm7ZA@{xnJd@nBekDSM60ltvZz3&gIe2cm>2-+(BSo4)j& z)=7P>UL0A{Jk_NRx496I+inZ=D`JG5n^!EhahDspODwU zt)|$;RCKh&^5`DsF{t2jdz_BN4Nc|93rq*3mkK)wyGHV02LG39;u~E_5n<^mEP0e! z3wTCQ*Hx-xBDRVmnJz)uIs;rteLHso!1R!9kPrCvrjwUzumcbjd?j{kx@EfEIv9)g?BMw{!dz84HcB2AGIHdo`&Ye=W39?vaw=Bk6fYH~^!$;M1)xpn(KgI9f zrllK4qA_M!2J<+k4x0iUN;cGvv|jVz7sb60I(3v}fCvhdu#^~wEz7&_VR?V<`uLtq zQi^l{35jS#&E|36)|h2ZayOOZZG~I`hiMSDHr7O-C2yL=#KT||OIC*5nFBc8(8>lL z%B3BC+{ZNtGQi+d5-A2m+KEj^E>3c07#>rnW$wkf_X74~ta+{6S>|rmOvj&&Je05= z@6aw_%rd~|4#XBahuCnDJp8oxQM4yL01U6|qkq-V+Ma(l4Bu`-kU+c3oCzM`BJBt% z%d%|K9YeLwlnnil4=}X;I~F)!Q(G0qh&g&uf{;DqfMtq6z}($jP5U)^!dNDKDg@OP1A*sO@YqiM}AF`AeTuib+aV@Mg)g#`L5 z*9;Dd*K!u=Dv<|grhC@!#|Feq!Z1>{mX`Gf2&Az&X81kiYm7;aIUyaG=sI6fm7;bH ztm{3DkryFG*nPbbsoniVgU^(X?LR~ATcq}aXS)Q9*MPh6s$hUF!XCTxzr9! zx`0PUL5SV#ggvh9fWeel{`^LgC)ejEWz&U4&!pxRFlIatH${oqw+P&t2>C5463hZn zyE9XXR=|{KkHMVrD_YK_w|p;9xHB+Tf#qXdNUyuB!X;jXr|RyDNG2&my4%VDXLUwU z&cq@2D=ii!d~IJw3j++Kr$P+C!EEt}9?1S9oo?t5=!k(ymIqfI%(=ZSu&aM2M^xiD z$YcCr^Lzk_&cbfbdAeArXw|y7_Z8VwVT4gV^_lCUgg2aJbp+fQ)Wb`cD$+21 zR(i`$@E#V{qa3bQl_FiFM{tyC&9M+C^;80IoFXM~y&t0cVBf-!O#qv@>db!QxmO>w<^+j8TtG*qnT!*w; zeVx3EnDlf`&vCa8SeeHnuK(F}A_&bxK zvX5Q&y9mSk6bShx&u7cgw$DU4Ar1{hPA<7R;?{4cHr6R?t$aZs5(;O0-P$$S5DfM&Ga}QhS2bR^pGWiulDP4iZ~pC3Kc%8^db|U8q@KJ z(QYMKj;*CpeMa#lAPgA(u~+|JaOZ;%D1!k=faooB;I4oIg5>P&E+A7!0U=e&)*nia z2q5_2LNwoK3SR_7y&~Iy(-=pMFvbOLUII1Xm4r|M(KUp04_F_AKHwsw7Pxe+6rpBc zCpDjfGHYnG8=_2qe64s3fT2<&D92ExDd)-fbe?<-~wUD ztAvt2F`A%oS1x=5-u{&4046%#MgRWD3u54jrvicz9(sBWNJa9F(9oYlXan*Vw}nJf zh+Pyz$xZl{*%r=3OxDOH7G6iiv@rkjH5;3)NVk?4n-jmI2in( zGoRQ{!e&~XzKIV8fj#6-An}S&fNMu-V}nwDfrFA8s}mZa1Jsm?frO_pWW7nij``sO zI1Z#dFgtgU69nC&>(5pkrq=9{ma*@~4ncVu=oZy08f!;wRV2@(sDK5~7cqoG*~|dO z2+(ESmjx0;>6;iJ{U|l9(0N5s^dmfV1Az4{1B9kpx@jp;_#>1SMGSTe)qS-3ex5K4 zq>Vu)h~eV|GBo-Dv;lbGz5r+el5#sBq(J!*$_`=*uhV&KQD7I#DL~A_+F3tv(%_I2 zw5dcv@$54@rJ;dXctSrKk^4}2B_#b~fKfXug2P{^9bj?@2^!VSnu6Zj((?AqMn_m? zm@&Q>K=5=;OmT)A^)bevCLY^s2FTEstLyG+k08VObY-@LKy$r+%ldRNpnfwy z>=x2AZnH)jli{r$LYl_1lZGJ=8q`(qjNRYSRkq!s)jTHVQygU<_fVs9nCEQ=#PRD5 zUE{dY+X$FZ$~jt@9I-3ze3IndoP!cAUhBF{6YeKGF;Yy=&08lc7bW5Rqe1?A+5X5p zA2mU*2wYfLxcrIFub-oS=<4ZFxws=fhmT^0e{$ITq%b4J(GeIy5GnHpA?PAB$1p@< z`LN)thUh*h=1wM_Z~v#O4TwltgPO?dijOnkYwG^)#z$)XiP&}gQuFyaMLIwMz66A@ z$DV`OykGuCe<~l=`O`}XF6rBSkN?)hFE26q`qN85sGoe;H(>qyi!*rnsd3Vh9-KN)-TpNJg( zH_tWvZ5j}Meam+V8sF$it^Z+c{~*F&M`?H+yY%kYx%tBcgM{I~^bd3A-EX@8$H_tc zM?ePh`ES4dWyIgV z{kdPi9i85<>o;Mk^c%nm?t;II|2K2&`|BowzhwNER`u_uK@zasZiLo|`>bOjlP+dR!qX_NJ54PvKmiA;pC*mc3?272Tf*x(!BZ zV+ZE$RbFZqnMW;}4DUahHw!fKBRNA<*r9lUnYy277}byhobCsI8nkfjUdTsr7bJfR z72y9JCg2|sN${Q1Hu!2#jP9NpZ%G!DUT@Qco#1~uCanD_5gaQ`;g;M@ zv+-N3YK|h)5a3QkoIL})Dk*=ka*U+ZzyN&SKa0)~F`SbO-}(tG_-fu==m3||5LT~$Fl!t)A|qV z>HowJIzb+xtSBThkcqTOYu)wMz784~;UMemx>I)G%Km9Pjg%Nz@gdjk&HL&mpRpS; zTv;J0<)b-oG4t8CL7o;ok}NAcG37r(iA$-Uk1Bov6yRIn{o4PTR{qibbL_Wp8{}C> zZm@wq5rQw+NE6vo#s8Yx4j8PW!K{CXUMJ6N&>WJy*sBf%o&oywUI=hlP{oH^A-bH(*eC)X+C5 z;Lc%2j_x}0f1s#;ZN2>7mia&SNrLyYt;nR^iUoY|SM#F{ZZI<0PpN!!zVz>f+`fc> zRkk!$op)lIH!bJqph9my1W&%{JR>+)Kzw7*yDf^%lo~Z4MfN-oPT@O_o*AHj3?KrM zrV2NjloU?}5CW*7_}~`fS3nR8;pGI5=F$}4;4FYH7(@;b_>N4+(Lb^I!UDv$H*$85E%`^ueJev__PEA$`NpCs7at*u4*z zqy0(+xm%oJ#`1@;>zDF!`gS{APld`)4>L;;9iQ8ECE5 zo>X2nM_&P}cP<4w^uOQ^gE`);V8#@~#ng>{=MCT(3_jodC(mQ<>=S~JZe=+z``e`X z>V4L>^|>#_S4cO-pDQr=+v4G@z9k>H4NU_FqJ z(Z%mpuY4Df7<|p$dv5$w>~2u$z5%O&6x#YdU%?~^427G%!=!6O&iN~R5OUOmB3#v+ z1TJJK>FewCWr_+9p<5~eZI*Y$84+Z+?bVof>6~NP_Tl<{j+*|EO@sset$NI@0w^Sb`Siu9{xg6{yNpQ|FX9K)2aSz%{vFqv8pK8dgZ{jNsCzut8fv9e8!4ZOcMImUO&IM}gNO*9 zuQ*I5)s%eMD+%Q)fc|>D`Xw~>UomX{?-|BKl-;pAz6pSRGlq{YJ9s_GP|VXN>|SE(v1Tfr#?P?RGJxckttp$^ zQgtMftN`5pf(s!CaZwrMJb#yYqj^{KjF#bA8ipbMQO@(i$%?~tt&VO~UQ{F)3@|_N zW?c%u76;3hv9zdG)1U|)i;`FI`)~qpz_tpVo+F0sr+>tB3ImRPNp%~z54W|PQv>Uv zi%-SG&&t7UkNq!^VqCJ)CBu84!4S*Y0Mf<4t@Q7MMM~ZFTCjzjpoEoz@FFxc+|a|NTV3k-r2}YC&@1jznuYueM@q2Sy^$ z85Ti`kqdeax#W^T_UpSKt_k$EAw32-5W!qKFqH)~Z}ft}JX{9w3v_@hs-5-}0mQ0* z{OZ;rTf9X;?EWxloXqRwd!Efc1SD%i`2Oz`SZW;nt+Dk~?kRKD>@MqS#DW5%2#UL( zw~PrZwyUiWCI}t0_~)*o|4{~GNP5u>S9)Y`o3|j_6PfY<$shlR0n0t*Ngs zYZA94_l9($g}Q`pERo44@QzPX*WI|J^oMH0e%kG5%=&F9KK`n9+3e*J1x1e1(wk|L z5e|D2TH#)(#^UlLHYd_*Ykd+a1RLFs!Wporg@rIV$BmYXJ!+*L`-0o_0~j*dNc48g zjrdz)xIBoHsYXlp-fQ!A?6cbGJxKE!ON+E3;NR+NVTK3WgKKP`;Z7A?*SH$j7SA0Zw%a`2N|YW&RL z&i~!BLiylCPH9@A%4>T32o{bwkLC~uEQ$$9Z`^;Wlb%%*iK1pL7D$Peo<(0N;QT#j z$fhz`c+}+Pnf6MwE0K?Twna9f0cH<1$2uYJCt8D1-Wma+Hj9ynpOvWS&#RK{!HF(6 zv)+(4iC^*_jm7jvOGLCoTEN6ujCa{XGm+NIO&4akzBQ*h$q0Ynnb-lJFvgAL($I;~ z-&@C!brJN=)GWGV-{Ph??NE8g)z2RE*Art6DEsr)r3C`7Or>!fBJ#pVlc7i>X%L;J zKuk3>h;obvf-~hAE`Wn;k_PFbhvDAp(Ba=pcc70)AFYTphu~ODmTy+D^PRTqGd|?9 zx`hi3+@p>hqj%P%?Q3I#=bmq@l<6^Uf^>Qo3boj@kElU8`$~fhV5J=zU*Knk9$!L? zK&8R}WP#HE%-^2ZNNjdB>)~VDQe^*%hN!%* z^?`4>Ka6}Xta<=lLSsljU(I!!_v)0kXB7lupq_ez2Z>_&DALgYtKYuy;4ib@&s@8TEI!8v5GGF zYzdK;Xcn(n{JG}-_3iq3EK&pm-*(hrk}=4 z3lY#8OH#O$x)2&_OTNrL79|pJaTq$mToxr8i(W@Ynj(Gt4VWWifdBl(jd5xF-Gg^8 z>zy{^MRDm!8azM0YN^(pKkFVqn8y;fag#wm6C7W^`3k#zLrZ0Seb4x^!}z3QtQV}< zElg}zopD5xPveNzQ}G@sSSNkX0RQHzX331Tr~ZY4z=E*e@|6ZiUYid3voF4v>pK1h zK&~(QFLrC z5p{xzr6z}JwcP1h!nx*Mk*YVa7!alJ5$3+GtFb&vA3_&S*GIbcZ|AM<3~UgiaJB9vS7=u_LcBTxMFeuUOY{lC;~1WGQBwVo21TCfpzvH$ofuh) zJuqk9CpF*t^qwG3R&T;n8ruom;DcVk+;Z;j=$Bq2Apr#kPB+Q~%Ig{9XfTy+|4PxT zSg-f(M)tib1cA(b3>cX7+3C#{cO+!3z|;C5kW66N1+aF{Y}1;H2v(UXgyTg=7EA!M zjkZ(BVO(Ae?`}z@_?3#1l2Gvnlm-_BJcvdu;nlAlgQiKOx>}}3p z-1jVEJs2?Zc`#Dgu=vx_3-{mCuV{AIU>tcT~0SJBYL6NVZ6%>MF%=mpJyB_gM|cxFj2EWjMDt)uy;i zu&J|Q#v~jqQOIV(6Il{D&<$p~)b@+;$vGWaYqG}lioBTj5BHfYcDbc#7t>%w(?>^` zT+EJ)FsdW7F)osAzJ2p3=KFJZ07(fm=Jh)d(lfdDnMDavk23gjE7PmtN#vTE51-Y^ zHTKRN{h;v00qc;Sd5~|(7fkx6Y6ETtc(d^ON8&_L&u+GXV2z6_ho92>) zw+2O#4dJfGG_&hW;0cVGq7*|8vb$69XflLc>GFBf0t-M++XibEz<_0(M%T!&BT z4<9PLdf-o(NO{_BM?z=DDsJdAyJVx*F}ZKcOqC>FU6){R)NyX&+Jkf0B(lJpOZ%E6 zXGD@EhiN>KxTKJ4=RkL}8XWmFpChOH)X<3ay4r57EQPq~PkF0mWs=8JWEsZ7{hwe=(n8qdrE|8j4 zr6^3gUcHcAk~V+PpS!tsw55B0Qcp8wix;0`<8x$n_w{!Ai`d}^*4U5t1habYE(C1mA4&8U=|FB-a~Tbj2Jd zB8CV;5jo>LPvFNIxICEmVy#`+XPFW=K0nvCqmNeJ)NxcxNOFu8I!G`78aH5FtzO>g zIMkIqIA|OKA6@?PzPny9pYLg**}0Ysj-!_9-Y)s@V?Xo6t$l^jCl2Bq(?Kdtb!M!L zG=`!|qJ*>&X4P?L)6bJu0$y7`N!4o{ddK;dEaKEN_oYHV(aUM%5AHb6>t#*+iz}+N z65kZHq?~F|Z>q-GXP$)8YRBEhmJ;Z!VDdX6N{EvAumQiSUcW;^w*Ep{X(+djKQ3Gw zy|hAxdBhE!1T9!#R3*?zYOY@_K%+n5ots0}5RFTM_-nKx2zXVF@D~axc^*a~{j)MF zjM|VQIB30*D5N+8p`3$5>O-BzcNz}k|MF3aX7yh6#AfB}E$?>HKm$Uj!7`x&O93`>>+CcQFc>zD-24TxD5suqS2>&y zOg@arynt7V+Q1|l7UavBapx;p3**g|^$L~vc(eD&`IyLLE}JwTIFeqDk#MfI)P7Bi ze{*k?i=xcZYi}X;nQ={`wzQgNdU`q**(UYh#2GdT<;YYEbc@PHHwA7j&c2K1 zy*)ZaENF&i7F1>$lZvg>T`YJLxRh`$3=4tXagL(avodb4x3o+fN9JvrQUW;N5#N>$ zBb>aYssbP9^qzr+h*TkAX>RKEjst;B{2R*`1j~&fufUxBlJDZ)rRvf-c^~0xKrL4DELSfrV z+$q-j2{TcX)NN(XhMt@?ec`)}k1 z%UNVUE#%p9IC48^b-s^UU&1JKd9#s3kjO$^6X6{pDM~*=UilJdt(=7K(TIx;ys9>8 zVO67SFZbTA>>Jj2=Gqq!@^<~$h9UdQ=x)C4^fcvYj=h*b8`m{PX6kE{@JLAunwpsV zd(K9%eBOoU>|r|fC83b;BCDybNvpcg1RbiJ>z`@kX&ZhZbah?dS6Wf3+abZNV7At6 zi0i&a-`Vt_e*T8YW|Y||NOE<_fw(JqJibW^P3nn*YyvYOTE#fm2Sbl{y{^P0_tqns z6S*KQrV_^_2OPsq{_U0~x46tdRlm-Sy2wSi{ldyrt zAjf74IQ4ntTM85xk&sbDo_G~=%*~Of(C4=$Zzk&X zW~OF3dhKmt8gckjC?06BoiAx)gIVm6xYFXJ%|Z4Qt-ZmWifJVLV=HxXnKbAV3!2yo zn8-b+_mCQFe|N4l0((!=lEz#;%lOS$z1hZd{;-!GczC0(C8`aT5+dBvR8oXUW0g_W z=uuu8hpstx53K4;duMxJx=~XX<62u*^O~w1y@(LIp<>~WP-WQ6i|qB%87bn@eEM4G zG}D~4l(`}CbdxSM3lC`*r{bw%a(XjUsK3R^@GQ}-*GpuNhm{iL9xokz>@|zf>O!v* zig;f}H7nRlf@kKqup29?z}rs?K6@Tw+8lc<2R#qZ8MJ+zXA5TI?l%BRE>Osl%5)6}dOLN~Ony z%38-3Ax5$Zlsw%6&X4c$;0?yz&0lJK%osHCWjee*oU=|Ntbx7w?Z73isxO1| z3RbIq62y;iDJ8JNLI@*cYF}gY#Ov$O7p;lST~r(Fd`BV^Gm=!wy960L&aD_u_%a?5 zE7^x;`8HlQ&n+F?Tnt@&5k}1`-iShuHl`%p`o^!!O~H#o_j>$di~E%%erWjVrY$s6nW_5lz2Z#2?CcB#`{h( z?Jn@V)>EhHucx=wc_f$Q9!cOxkkViiam*P2_~s}%p1VEp)s@03voSpc{A2Z5np+&f z4T;E{=ec1^r?^qld)OL*Bs7skY!IS{&t<-sA>Cv47hfV|t=JaNFGn}JttY-JaT!4T z(Fv*RgB?%igU_VSxfX>b(~v250>y?}*?NIJTKCQk{fcYLg_RqKRCwOq`3)HTce>xBB-98^(S%xPPGD%3CuAIB@^>WzY3WIx4*1>&27`Eg zuB>3jdGMeGNgrO3xm$d9Y0&5Lu1cn=!Tc~TByvIMsciZ^Lx=G2XC2+{d=EvhIzWE_ zX_epNtWjqh0e{ga1a-N7uom@BF`+G?xsccjm<%^WKA3xb)VwH)iS-7(0EQ{bCh{0K zlvDpWRULd1%Jm%mQNF8GDn$*%7p$JMAI^n(8A;~6Ic|EgT;O3`=2UY-s(|#y-TE={ z-E_nZw!udQJ}@+pZU`MLfI>M!cbuNa1LMVoNZnwi8V-V&>ZUyS?Dy~GgsD()L{C7T zC5+m|!n~8@lW+`;l1_a^Q9`#Wb$-J7@w+7N=*e|tH)J5bIRO9m$LfolBx^VOiRNmj z`%&o*of{1Brrsi6MS9|1-h!o8!A9SJif(n#F(8iMdCWBB-Ie@wMHAD-4&;UcT<6FK zsRy1dSA-bkok!;jS3nv-_5iwXfZDvcD7o)~NHgfk|2>7&pTgZhF1aS&=BULtLs2J} z;((?X2Iv$@Iy7&cP?k0->!pfxqmGXuL_1&?#a$kMnze9lv#NePh=)AoXumyu07EC) zmKyV>JM~hvV>hH=VUvN66(#f`7~yO*8zUiEWO#+FdWAN;);48EM2jTae_dRSEZ?@r!K)QTPIuqoeP|2t;j_+!xV9Izm?ku4dg2tU6k~ z5Y!j_tcEgV#Nfb5lw9uJs|LoUZ@_MNwy~+bpBwb)kVprVOPJFA!}`$Bw)C7a2Q2pE z)dy7c*+#J9;-!u{|J!syRNB}V21D=pW?Tml>TbPlLLRp>9vMuqqqU^6zuk8_g9H*| z2UhaUtB&ktMUJM3%-SmP7`rmSr>1H=SC*{36iw8gZDn6r^s#Lv%Y)y*1e$j7r~R`j zKM5K^1+BP}TAG+LK$cK68&(e07Ft%J2VVznRYx}%9iwV8@f4?aH#vv#p=Nj~AnM+? zSUp5jY9-B3mhhv2?^-VgWM5l5xGSqSS2tsn>9DgexU8IkJVV5ck!H+#xRFD$ksWMe zM1-*075ey6<}leeUAX=iw5CTNGe91sV!I+e%NxST*HWPkEp+EkSCu?q$SnKRbq&LB zt2Ip(B+m)SF(kc=pu(^hYh1!G1%!X%x%^+}&FC@CDzce?&mjSn2o;dHioc3TAL8aa zv6?|;`^b)a; z*}C6TMk`1nUlp(#@J{;%`%qNA)DbsDk&bNCKr<{)yLRfe+TzA9ZQ>N5A{{_hkaAs< zNg|crar``&ogpXn0A4`(z%{nW!}nQLlsFvnKx}sh@9oUJOVxW7_#_?+*Th%3={9!= zRj3aj$oy1bFD3>*4-{ETWofoDDQ8QUX-lm>67BfZf4~Ym&99#@CCNm!baOqL?6o5i zcc4$F#uBz{fWr1XKc6e_j^zbLW;VZ2g$!;uMO^Wf_AQK=6Pi^d@)7QdXXaKJ zNP{k~dPjGQls>m08S&ZkLK-D`-@aWc^6z{yc37b&reHi>Zf8@|!M+)FpVi!+PgkTx z3qMKFO|2?ciW5!iE_`yAQn2}%UPTcjN#cc2PEo!fJGBfh>a&PjC?A6v zLDZ26xoEzljW+C=M{bx8dGC_!BrUr}k&_LDC40PM2!=E%BK<%jnYG1;q8eV*u+o8R zbOCbYNrPjm33irrivZaN5rBIL11PySIg9zmDH2J=Zf&jc{56B(K2l5F#$_$fgH|W4lYq z1Py*UsS4j2=HA3A5w8Mf=5hhFOBBA@J$$P21GC7tAGjL02eZ{FZ~IX^7hB-=!WiMJ z!snNDr>P31dVv^4ry@ZHmj@9&1%Ug6T?L}wz2eD;DsB&Xn}aBhm^Houwe&YpaZQN= zgz38qzekCZyB+jLqfh#NebmU}F4`K5+L+5xJ^9Zi%QuF>x0bBD~G;gVL6iiNRSvNpJ4;GH5rv$2K0X+MFios5G+es%?GWNva}FjVx-` zX3z-BnEl0M0O&+VIw*Qq+~H6~fmzYZ@BTKT?{J#koq6SDWdoX+PCGtZvKpnq0lLK& zcddkR_L#HRbJx)w+YfAAXa4EA$9eKeDhNE}6cu$1;R*>dDX1Pc@tH~8$sHz$4qbP- z)~kgp&ZpEiYc$q&n@BcYhuRsuaf>&Bv5T9f6aqYj{-w^zNw^}WVK`N3{NLUt8$VDTQYRIJWk zSJJ)@c|fJv%Dz2^b0++R#ToW2&CHXrEu~rWm!A^1RPr@c{NCFLxbL=W=gs+9lW5Ha z+bp5lmFWge5b~Fil|e)Xn zNmbp6wcR0PW5#FmF~HP&6R4PDgJdL-37OFCY0|WfKnx(!7raggTP6x7q>0wTQ%gt) zG(2lUDyysU%FC%Mw+!JZF6zL28Fj>f?J#rhFGzb4ZtGw~3B_ehQy1L~b4nw_4V-E!=UaK#h;sPz5Kphs?9 zX(0QZ&nDGjhU6U>oc)->i9>pR<20^zjU z_Sw~+JyznZo);C{z;!BGzSf$QbrQ64o3}YGbHr%rW)raQ6t2vCK-ArSFf1Fnd{?$Q zYHmTN6}9gPyL6dHR*zhb>iqO@ShLlxp~g-n2}32XUZ0vN1|NIXB*8#FX~2eqW?`pd z+Uh$$=dbvN_QUgBpM9Rh>2{mN_k1$&3n7FgXn5iwRa$Iy)!&F2yg!i02^DE>Oh>c9 z=@j}9OCw20%|&Um>?bo~CkHpiIp2zpV;P>sk6#gqhbPkmEeC~PCia0OrIFir9gUbOKa5WL! zi&0N$^vB1t(zn;}>4qz;pWj=Lo531)e3jkRryEL79uVJtcY65!GpiA_B|(vI01bEL zH$ca^{~B(qafjz%JU@Qs3(5}dj{=hayNu2MLF;>=f$GSLxWXqXwRyjB?cbW!0Z}_7 zd+idj7?$4D37U%iQ`H||JDA@s_Hbet!PXLOkAmpL@Lz&9q&NGBEf+d5jZ56d<2{k~ zfQSL4H+MQfLbb@oZ0<6FHb1mrCMl-~@H*abivcnd^&Kq*5_3B*IEWIJTfUd&n5hej zMe3GbQMl!QJOriH0`y)2Lktl9YYVva(U z%}*J?@Z(D$?(al)^FI;UU8w?|V6lcD12x1mKvPPa*UVt=^(#*tKGY7*iBKq z#E-KoZ`-G4p|}uE*TJ@WV+EKq9Q5AZXj9TA&$dF=v-b}~F*D_=Q^X#0yp`Dao>qcA zErrSOT4vi1tU|WCTq}-SKqjx?0Yj;p(k+gA>CYu$3j^s1@$rXnABI8i2}U@GVrcWK z3c|9?-|}ANK{j#P;PL>BWRU4yYpa7~^=MsmdqWbeW>d$NB7W);`ber^!3ath{J!26{gc*;x_>8Gk7MT+JiihVc9<_>2laiPc@FDWR) zsfVR3pE^drkfH#^Zn@g?B|R@S2?nAV;NY`0Js!??%QN|6+ya@(T-6St*tm$BEz6)7 zN;nH;YwZ!_yqXQ1k6bpFPeaD?Q4LfY`0kO!0E_X%I&zTQG6 z1jkZpSv8OsNuyBUcnb*^0=orHxW(@y9e@1vKT4cJI7jmhh|yiY_MGwE$j!cG9sm}f zLCp0XkIcOZiE46v*KsYE*qM4IUsEloE$x3}oy?R&V5Vrp)kYU~ooOalpOt1>+V7+_ zG{_xlYJ;TRH0ZpY|0Y3cV0P!djpEz6LGMX;2Lhax>(7a1dXiF{GIxhBcaY0%4j=A* z>6w089VS~W>>P|t8+A{-;Qf6%s_}i}wazDBvL*{BpAqn!h~QZB%f0D!yH2+jEQ1hB z4^=4?;=pyR&WZV*aj?gSB@oVy4VWcCuQchyna$#yHP$L$y?*XDN(d$7D9YqTlwPbY zS|``7B4)3Q#!e?t8_5nsN|BWlo-)9f(e_zSM#S1BKHOE z5jLk%QA%*s#|8U!q3|EKlcwXmCm9o_8nJOB* z>bZPgo`YH)+*#iX)c8)IUKRMBnTa}@)9jo%kbcl3CRfE+U_uys~IV_Q^YQ! zBEbJje|A^~<^r2jB7*GCmhlIsTSM88e-^07d zPnxCECT6B&JjmWMU#%qwPQG}oC)WXVYp?69V5t)=1F^;O`|_-$HKSAzGWzc5VW|sU+v7zUmR#4}M*g%R1+6BinR|Sj z=Zi$*pjUZC3UiZ<@uAF5{CT2eLon1mSdeG%`~;7u@+EW~cW(KHRuxm zHK(gnhCcf!y@(5KHsak;RHxrJOEY>`(&A?SHCW|+-TU_=aT8rWeW+qcr4`CBsZDG2Bs(og%!m#)_5BRGJK(GHkq* z1}djhd!1XWrsZ&UDml)5y`$75!7vX(6uWA7PWB@kizeav`o@atT3Jh)5mbP=;p6Gb zqoHWQQpV^cv(;q}(h*+T%$UB`cK$DQwDz5r#Jz4_93N0>so>dx@))tHT7-p_sDzg^ z&pW;dE}{D>3~J5DCxDkQ&S(} z58z1dpLC(NKglwEbM80f9aX8m#$JDPhs+8D)` z=;>yjoZYE~!TVP>%PEVmjN|0O_Tvam&=*zc=>jmM3s=g^@%qFXoLovYtP**sIWvZk zS7eG4Ed~=NobQmGlREP9EmhddYV07%884AN-F-dG`NA)|sF_mjJt0{e zmMjnHN%m6WyF8GtebHck9-Uu^dyFSjQ9EXv5l1`qQxj6svGStZC z!;_PSV@;`3hCL?Zh?(0@>P-@sF^mJO&B;^8);fc=G+^>v83|Kt$^sz_Th{U}jp1sUEfNmNE7$x%?RkJ>!O>b$TIM z{Zj$hzi6Z1NYu0b9G)NVAHSiERO@up$w34RzNYM7iae>Q>3Nq3T@ys2V54B!d(iJ$ zQy8)`-{F?wtYw>IayEP&MpD+xqzEkmS_w>h?p)8^j5e2VJLqI!QqY|gr%q}&jC+Q} zblTObz+Mz|_kDgC_^_wXV}^Y$cXH}FMyIb~%;nbTmz>(rohNZRp$5lzqaVfD)#wQG zkt_^ue_9qCbu3Xg;0}(W<`?82kGo`HL9dCXv8VQ+oRNQGiuxQ~_U%Zmq>;>$mmJ8d zK0-vF=)USdX*?UVGyReFv9Jm$&W( z!3x4=V*;_Lx}4)!)3nmvMOtQ44W)p=NiTzV`m{A;z(Dtqx3-ImP;cPwtIEczP&4VP ziAj^l^5{86TqO*6Tf?#Z;i`|d+G2+bqg>e8Gg7$94bQe$bw1eN8jxiS(e1{9TuvZW z-cw#xC+h{N3%`cA`!G~VjuQ|l6=6NhhC5=THAzEMjFO?m)JpD5UBMLZ^V(a^(8}QPcT7IrdPB&?X_y>%>>lA%W`aS_FQrI#JH=AG z!;|_JorLWuX0|+aSFhA~ur#&XJ&8ADkqyS?tbF#k1wzfDS8Z~{1P{>3dsIqF=GO?Q zlG=!Ks;Z2J7vio-H@+0T2P=lQ+A@B0Vt>$=vOHEU*8&CHsi>$p$I6hx92LwvKBpm!v# z-!U<1rrP<4)LZ23>ir~=2jBK&3NU2^2r!|kyen8V{WlQBsi2=NIn5G;$u8LC4LH1W zxS}gZasT){eaDgj(r-9BE;HrCU{5dr@Iw#?F&~rv6L3;!cL*m z2n-=o$PFHgiF1#6_;w&i%4Cj4bNH@~N!p&QX_rjGwSJUrhJl8u?*b zVt0s(B1SOIV~)8zzn*a}3V?h6Bn3F5hSLn=^6oJ~dYx?B9$}AhZ=#wau?y@W`i59g zaX-WVD)D){(-zT_T0$rvU+2iGec-dY^GfKqRRak)17)_0*ZN{#Yf++*U%!hX;B~0h{h*kCkIm;9EthO;Jo{_AjH-ht++&V$VQ)~zwJess zN*h~P(igq2a<=MZEZoG%mL|68i*#vfwLxpynJLT1*F1elzCYfzY;9^F7pvhU z1YL{|*zkxY0)U;l;b`MlSORdJT2rOoA3}J-?w0DU`Nr?o`~T0kbpHSSM2zR}DPyH3 zC&{c1xe9v>IDn<2pZ*dB9=1ov;6$XvqDrD0r zGED=B>z(SC4VZ798o{$+oty|s0%<+e5VV0jE^t6N1t3vkI_!gA5}vaK-=66KrXhv= zlKLDt7uwujn34iXg1`MKn#z(WslPGQzf$zD-Btt;V+PT{fmnh3VnAZ+CZM&Z+tlea zw@I!+P@*V6yi}bR&_IGPXfIU9bhr*6@_(QenmwQyFKHe;Ba9+xukOBCT|iZLD+RFAeE z-w9z~D0b6LrtNl^X0nUC=5eg73)|fL8vi1ZFQrW#M~a~chbI{$ek|Oz@}+tfBT*{N ze)447Y2~O2ikX8x0d_ZD3K8X!HQQeJYEPc>OeZA*7h4+Zqw$gjGL%Mtg?UN7ny5o7 zp((>JY)=(Hum_!_zA&lf?D5>q#Zz<0b(4OhxmJAsX8FbzW6P-bdra_os4Nk_G;8rY z>RLbEkUGm9 zJWZt~C0?Xhio;4_g5JbqDIaoOcYyAsEY(_)u?R+&EWAlw9J2bXHQuG~qmVRWNu;UC zLt&ub6G7s7lK19(JMS-7oLAUv(T2*?C>_ zBJ%^-dk!*36v&gI7F9^-Tg7ib)RJ%_)}6zOiicj(kGcqOo@t`MBR1laD*t3qQ>=RI z;U*rgHJmd{ts7)R+R{5>i%59@v!!tm&$#-S4~?i9FV5AkAsg%*k708ENf1tBM3Sl= zl}nhDYx4Xh@~9F^;xpxv%Ed-Bkw69b%6IA-6Ft;Hvm)GrA^L)D(bl|VZEW&Lhv=O` zR{NLQv@g_q8~H61C-EHK>gG;pJ0m9b_soEpV^6s9^Ro*WN%V}N%2mrP&L2(@dA!?- zGn`3201^UxUajygS#w?UwKC5vt{A4GdGzrnJLm9>i6X-1OVStv+s(pgMaYosVo9Al z9Q923zz9p-)zq1HR*K$uaPhOSz{q&r{5PPLsZ@`TLOGSs9GNuFkr~@ZD5I38KB{M- zdHa&KGgc8Nr`iqqDfFG<1fOZ4jqFiW#Hk-c28$!gc%Y{PPjMLJ7mtF>ebAr0?Lxq| z%Q{8Dj$g=#n%%LqoK>%_tzwN@(t)R+f9CVri8$TZdn&@wy|(m7$xSQB*rz>EnCz>Q zjnHVh)9GkU#TCcLrz_+yB;g*pAo49QCl8&*l}D)7raQk>7+ibX*AV6=t)oPV+f4ns z?BhkLO9+05k5oqj<$gB(5p#f^Rog5X|1n!&))m*+f_y=&ooTEmd_?h#)krY5{t6N{ z@&vZtUmop4)P3DA>nCdC6@u|+GQ)e2mQ%W3;6;PD5n)qP%;ZcA^a~hqncNB7Srm>G z8m^vKM0BHNgt0RA9Np{CckiZ6pc(E(1Fk2rBmSYCHN47XQa$V| zP6XYRt>aRV2*QXN+~McMr5&zAf{&+3qhjagY^&0Kr{6OM&;CUYpS*M3S@@ga)kRp_t53d` zT9=yA&#J?Qq>FtP41N2>=`xfekSOV<#5v+fN4`ljvZ-=`kv92#B(PN?3Un!m^SM66 zuys=}wdJiuCxdYx(kbz|qIarfm|(8s-ZLrY5Ogdlkm|E-qw7#Th*p!*=vyc$eBvbP zjSB0G(78u$@r??WpbR2LJd8wQkYE4l_so!|sr{;-N+2%H-Mc?)Oa zucE-~8;omPz)?s%U$3@E!N-fu{c#R=Np8Px2xg8QNsw=0-$Go5ucITY}= z7h+8I)plSI?4MxGxDwmnn5hU%busHDmhDrYMxw=>a!8!+@J@f~%k7O~j1#x#HP0h` zwNSm+u8N zWns6*M?ryeo5+afuK5rnE{6AybYbS}<+Q4+YsL(`pUx(qLNSkoGjY^fO@DDBOQKxS zuwNr!9+9NWF0E26u~nkt*kk^hA6B_L0;<# z$nA4yIj952gzdOS{m5k(W~FaMPLw&LAzey%%yl}E&tzYoIKCGC@#h*_# zjoB_>#IEC8V3r+)j6%MHwj&C&)X0yYQuJe*}jQjffW6C8(GEgu2)MGOUySI|xxL|3j#lhqy89Wz36?e5`vV z7f*Sqs%KhGF6=g59c7y_`?Qf#?~7*_uueppPjbLoXSXsI>|4CZ_Etkk@Qsr{T;k0p zm|QF=#qj46Vtv7*Y$w5_g1g^rvzj;ePAOLNnWZhkXT;;xsKjw5elmC&Jb%kNkyX|t zdseS#GP*0pQvPM5^Cw=UE}f>SZZgv4zFnW37V33-uC+I;ET;<6%j{z?zo#d>>zjfUJLZRQ1B zz~gxmabqjtDM4l%@P}si4o-&P2f_HKa4el7HCw5!OXcVvYd%k?GQIpp)41=M%|xhJ zEHzoMMd$Ox?tuW=Y)wQH`}`V$l*b7HJ-Y9`dj>>CbcMdq;;QaQQmv3AO-1tqAAFi;jutcj9Gg zqa-nBx!KcWcAfW$(KSjirX0DG?S^-7_uN#KdCD>1W*&JkLsFS@@k|JNaeD5TFTo;6 zpz;cYEi>44;Oo6p;slm)G@4OqM%9I+UaSY#E!5*)mkcY#BKOsJ3OlSf<`bgDJs7`g z?%5m7ggt!5+u?e!rP7DX>Rj7mYo>xb8JZEOF|kWTD|XOJ)P)G4WLtTPBN!@Hqy~GX_%&~$41r;Wj#-we?6Iz8&B+KW1xm8?Xcj}6pU9ic& zlA3c+aHc#8r5}VZUhBT5v=X+H1!}`gKE^3ce4)JCG&x*HUofjRIlX18e!=Z{ICWvo z2)+0$k$L4Uu|Bus&eF)J`=$V>hR2unSUGqQw@2NW?15w8#S{`PtX0QBDj9F*{*YY_ zit2E5bE$B=M=lbc$I0>-!}x--bebSN!LoOU^J;GDSK-zYbqJ=1x_EuunRpyD%VLnB z967rI#^Q*-woLxpv&jFVb@_h`7tD9$Or0QT z$zvEGfl#NF;M0%i?^QGz9_4Nf){4_k)tK~P6$~EYQlldKJV~lp3t6oDc%Ei>q3fz> zJ-xYI#3`_Q*-@Bgk`D77B$*$+^?5sN?&A~fZGpKve$>3chVezVlYw%|1X)8*%NMwwkOSf~FDs*RW8kd-I_Y_Qt zeEUkI&s5^u)vb)0U{Te#lqwXggrj8d!bM*r`(<}4tLZ0#^rP+}c15=`AaC<^1A!~) z=O1+sFB^j;Gn^L$G-LdLkTAkdWJrRN*oV`P^59I~mGJT{A8(10md=AQOkLq>J3mg} z6p5SrZ+Lrmz7!?-2IvR=wVr6g`7ZVPRg)2hv&cr}2`ALL%a8FN|E5yuR?qQ&>woh9 zpz&Km74^ps@$T4l;u50uj~m>Vwte{p^D%Z5NwPtZ5(B7fQzG}(w@2kR8g}PXGU~im z?+p_y-!jQ}gbkHuPz>u3z#&ppg5c3*NWacD+uE>dtzYL$e@Y5)UA^B`ZoQIUa*3#Te{#ZkArFsU_qzJuT0Vb`@9qi5wfS$_}XTLZaC&67EU z*PO!_Y|}2*t(1}2Nfp%$*`gP+kI1j&x5sx?O3vf6OgWlS;q^#Hap@-s6dtTNnNN2K zTOuC!6MRKaQaMD4FDD~0snOqoZ7`#vVmhLd9TaQ zN~V6rFG8Ads`o*e`6gm7Luy;t_*bj#9o);{HM#E~q}fCk% zcXG11lyDC4XXdRp)xfP44f}VReiNGtoM}8rsffU|%uJc;4l^O;)z^QqlxLt&|ELQ# zg5Nt*f~G=L_^jj7B0ZpoU88*D!6KIrkF5@GTL4N+a)=S^vX0`Rkh{+k%e7tZ{b~LT&x!YY%DLl9|AzN@cM&tzo;iYG>MW+M{#ru5nYr^Oq+_> z9TGiPs;3Bv*!ZaNovyl%VFyb4EL-uHf_Y5PTb_8wTfWF-WVG!3lI4)QJ=;<}xRDt0 zs=P*1j6}Xu5;ODlwo*&+bv}2sJ>5VS)UUUD??yhuQVr(PrHEg~LA+PS5N*@ZLcAX4 z8P$F1@_-EDkgKuV3%@)~+HmCiz&&efW3K2R(p{`a%0MVE)g|}Gy!s-HI#?Wv2rjwK zA3eC|O*|jSTktIsWdLyn#$eK0?Zf00BWUENr|DoC5rlpmn}Ut4c#-FZF75)ZPe?UF zsgoLeqM9kXl=KcSg0CuR?EDpg9E;yJYL6(NT#|+`_Ln|=`}7?gt`4@Em%Jg=?N8AA zFVJrvA~Qif^`a}idjQGnATu@n{$L0-bo;%De)A2s>g%D{e<)TAfXFRs!Y;Uj_5)zx zr}ty|ksbR$nfB#8z$QW+#u3)!ptp{V<%V3kT?SPFjYc{eOHy)M@OubGhxYUYB zIb_}vVmJzOUS`?`p^7qF$`|p}D!BakN{oBkB05YCqzwEo?pgtK>z^z5cgVkk7#xiy zivm&~FCE9X^)G}|`4St-2~ZM)Y(lOsRgAs?fx~xHrfsjRz!Aq!A`OTl{7KV&M5Go? zGCyvmkEZfY>9OaNdKDua_L&?uG&__~P>4%5on#voo3rypY3Uj0h}1lSC~gmE+LKhf zLi3(w8;!Gg@uxzOrQjN~_*x?n5FEd6eZa%UXwKr@SfdJaVZ?c%t!o)6#E1=~eb|;) zlSWU!_w1S@(Y??fXK>Z?!9hb_mUcH>PO@bo^9Wx2mnV+Q1L9#@bueSZV;1}mqiSQ* zzAUGxJ)K}iZ*3)v-TkB+@9I}o8YkBFwAKcx%8$tfDzKTHltbg>HNMn(?bO=Q4t3l5do{)qfm?bjfq4N72oMPGMJ!A`6@H<| zdb4i~C9+@$T=efJ0Pp#VLY*gAimZe*o;9b#eh2v_AY32(TKS7F#2JW@?4Ae$%0B|q zN8Pp{bK3$S19wnqyfDtyBEbDf;Js*30FN$_wKt7t-RUq8Tz#^m7VWF$0jTdF6n2b@ z1=gEGW6&?~_v0ZKx5(YX?-7}YzXcNa9dy*8eKr5j<$=2yf(E~L4M?$chw3ja{JaLj z_3tg*cAp*SJ{klYG+fzEr_E0 zBiesLL^oMJn!y$%wiYmG##SJ)7X2!2N+PBrOq-Gc8 zIloecMP_AWSuDqP%tN2#*{P#Z&<>uMp?F9?@gJC`$+NMca(d*YD4jGYrFGEjmoo6s~le~uIa&K0mnju9dI2fOc?yj z?imkaRek5;U=E7n<@qWqXgXL5GtDAiZM|YH45}i`NLZ-C`X~-tyhGuQfLa(Ca^$@w z%N}eK?Ito}WRUCZdWfd$)+zcRTDrXAW!i-qev<3bfR&cpYR*fQ0Vch0q`9KdoCzi! zX%i>n&mYL)o|;DqIp?jR;M<+EZLif<)C}j0ysu5j0-_6Khw(@tBR|im$b-d<0x^a$ z${AORmCUUZ!jAIiw=xx zVfj?|X;W+Oz4~FfM<)s}JKHKoI=BVB)w%A)dBL!J48_;UpMcH44P6WZNpiGgZlsrj4%o>)|)~92dc!hGmJED<57s?%Mb-+ZP2;MPtTip9>X8nVi+= zkI4{kZ}HFcFpm?cjfy1&=dEB>q;06E1&{6U5S(+5g(yv1gH6R2GV@E6Rd) zu)^Zn3{g5xg>LyI_S>~&W`7Qe;AHnQgTINQFF8Jg7u|&i5pTQZkkfN<^!kMzg~Lr} z%R-|@za3p^Hj>_EY+0N)-q)Y2`KEfK&>tean&k*C#R**7Z=Xp`$PqIyk~zsqL2I0} zphZ6DDoJOni8aul<*1GcgOlT5jaKJw8KoX6Baz7{kJ}yHw2)!0tEewaQ4n?SCU_9Z z&8h$3bIJ;LoZ(_rqEwR-7;&@WXlm2749nC`(uf%E!K{CXq*Wpsr0HMrrMG!Q=0r(9&JdMa%TfkOI5w2)Z-beGOB1*E)!XidAVb-SE`u`_1roWMV$MW4Yd-CBWi2wY!xpP+ zv<5&Cm8g;b`N~UVLCqNqahCZG@*bPJj+S89ZkWfoEeI^~_rdcHXWv0ogFUsZRWJ~o zc);Ul?akadiN|+PH>Yh;@9yoIY_RYhbg{q#LC^*t$`JnyCX?IGs(1b`wf;ZRqyH3U z2|#7RtB%&DRG7Dp*{c`J2Fyd3=RI@#n065&lO1#`n(@;Jsn^ui!=BWeXSD^(6~j9j zHzT^I*9}JxUZ*sC^KpzGpj*qnBlji7Ke6V2g0{Cf|94Bqe@e%nN!#CtS*>Dl25gx> z-x>k-lfHvsJ~dv@r2Sl4e=6+%HIhJoi*MaQZjt9yZclL`H9x!mLAaJS@k#$Re3)Vl zxxho{5OmN#1ReYLdQ1KnFiszKMfl-~#zs8tQFLY-GLO<>T*H=tzhAWFF9rnQPfo~E zpwYHAfi$i>w?#pM?Z6wDVyoNFxOX35iAJ1&RIQ}Cm*IWh<9FYoegXBU-a`V&Ec)&i ztRn{7?Sm@Mrw`Zb_wK4g)l1j_iCtG&fj1<+uD8|i+5`OyfIrr_L-98pZhHW7c?%#4 ze}{?JFDNqK!SzDh6u3<~dxygIU2j2mD3H%)R$Z@y&~r1eL7Tss*cZ9L_otI8hRT4z z)Q4PXOi@_mUfg0AZ|KN5C2k7QTFR@-+40cvdu$%)kS`Q1ZUR^i=xW6wP zh&~>lcAfBC%!L$)+>@3<44%qf`wpUcLE#=wfN|k6*tn0i_Z<{Xho34J(zv!I4j2rj z8zIlLi?>_558|(HjOWggoB)_H8cbu4fI0xs(BFX~3Ieu&5q{q9pi1d}$n$h=49bqj z5G{MFYuH*~V(w8X-X@j!5$yW~okMrvye7iW1A*2AB4!#uz4q+CLmoin2tb5BP`H1I z0?19uF9Lzq0v{THXrq65{;dW~v5PQpYD+650;0&W08=)5gxcx-?t_R8yG-yr_1tam zaP{7h-j+!LW`8JFkqh<&ie(_th^IYp6t=u2h-llPyS~WE+Hd^@M1rx5_j09M|*^v~_QL}8mV zI!L>|UjGg{M*>33bjKh*w)(xpw*-K>?Hka@AN}Utv{n$yPDx$tah{(Av#44kJmNVrdu<>ug5Xk`YgMC>*oL-(hRer^THHF~u~~ux z*^GrP#vn_bLz=@kpX#!_4A~{;AM(Bofk}Nz|DiA0h}vkGmru+RX@(f9mnD{Jt>fP2 zTh6FtjZO~nKy=V}_A|ldB3|+^MmJjQJi49IlF(`OH7mPM2aQ3ik(?H^vT>_!D1nbl zLM!B~c_&fkBU+Q^?NTMAT4JfHbE)@O{L2}HDDg7#7It{lhw2_%*yXCuO>FEPYDn1b zFu1o8c{8wu>|S2kyyO#mVJbblks+@TQk3e?9iORv-q=o9lpKGC8`05JEFl;|4AHK@~O_mqh&+h?{1r(6UoQ7&C-t4J!LB5+#(t5;Hiv_6)kXFvwE~@G{?oIo7ciQ zq|q-w9G#rJ_g-*ISzSoHXY=amTa_wRf}jSIo{j#8;LhZ8=y)P`O(57#0Sb@igj*~F?gral#!#bp~g!Qog`@Y4@{e!1#&B6!t? zAT#EG_V|jOSw$g*R00U>M~{jYW$pW#2x?;!0lsGANQ`Y&l2u05G%nh`aN4&;m~G^E z4sO#4T8-39J&gu8V$Zqtqmz(S9BuN^PP>ehyn}9`{W08VzqIKDfym*{xdz)O@*w_?dY)eCc~<7h=iaxGTI9 zl5EqDv!oLIW?HXgQ$9N8zTSz4;Z*D7ZpsHOtm4NOc^o)!fkezTP^0xs2$L72o;=&B zj7$BKwwwE0x&FFWoJQegJscFIA99f!_o+?KFz|OhVXh^L!zI!nSR}GI^>G_>cpMDX z3PD}UlqktdAY{-P>$#dRa5PKLjtA_+;n#O6s_2FAOJp_h9I&Evc+rxI>~9bdhNg;a zeFleuSg&bkNr3X9X*UqLgLI_(o&2!LIT^+_8|=VW5y*WR3<$UoytfHF(H*4v%fg)$ zfww*aPjZ0$M=KIo0RWxe*#Wo%Q13|{hhJO+>W9X+5KgEE&e75~F*RP{CU`&`?l0-J z{zvVvV&Zl`(@vBPRzIU8pIO%bLHp?jKOl}FCv}?$mq6u8c#7{Z8ghZ%#(L^ed3_iT zxgc8*MY>6|0JMaefR<3=`~}pXo}j;jjHbZ-bl*XHk$@5~ZQ^w9s7K^#8SDr8TOghS zN#TF3@+0KGe9e05@aZ?a5KbLF0IB5U0R<%GH62v0Tm{+TuWbWBTOn!^fOa)}KOOE0 z?#FV%&8GbAWH*O&pewlIAL@fkcLJ_I|I%fIAG-hhZ)_0w_r3xd)_)}sHfVx#ODDuV zYaRUN1p>okiNT(=P7b^f3A}wBc0NEixc8A;F zFu7A07Y4t)zo)A17$kB>*G8Z}v_0YBrvL+>J$$A<#r{z>_t)PT+gHDUqys_vD}Y1W zEnyyb{l)8h(tSkNhfw#Ab zS$;?8_Tf?P4-yGb?iY#tTjKR!5yo3q{2>s4@ZU1&cXEMDP8;t=!hd_ae>pb(guJQ9 z${mA18>gASBlQQjfMEf1#Se(xuVdtoFF)t*?J)X7s(|4J-Sgp*A3jVvHdI0Z7#LpO z$VVmGP&5ALgKf@akjIJrS2a$M;M9DSYfk*MkQ0VIUa{X46Mtbm`_WqZS4E&xGt5r6 z)C%pwh3P5#b50o3Mk9#jyd5x4sfSoZoLq9inSw?>3aoMTc;B?hLn8;GFv!RJUZJy_ zeAI3SSN4d)r#ncNZ1=j%&l@O4`y;rV+Pl*V}v}@8HOhLG)er?$yWV{W;J7rXe_m4O}`hL)5s_~)xZsb03uIQ6`IlB#iX z3uqK&%nwGJ`(EKgtnxYd$h^%}2B{77D6?{)M4><-q%lxylWBgt_IW_au0d5x{N2QF z-MDAM)lI@0Z|ox&?ZW6_^jaYdzG`3VK90s8*f1AVq33?Her7L}AbAGu#h>`wndje- z5)^VEN_OvB_nc#G^DS*as(Subd6bET>h5@cNL55C3~oyvjDRc}$RX|XZh&1@`$wYj zRHP{5MTSkqo9VO>33Iy<0zQLe3 zsa~7x_dV`?8+yu!DsKT}6>nR&eB_Nu!ZurN^mX8pSfsde4>KBY+kM)2mQJ=$^a;YD z=C-D}Uyqsp{`~RtidsplI07B*x>U_xqy2~8m!l=Cn|8XSWbxClQvGg1=ld^?0)X?> zDv-*GF^`Nd`sVYGHuq-w9;s5x^77@AiN)d+NcZ+@k0=OzF9xi7SRuyE zksYv$FiV>g0-tIDPN^-Jmd;;bATSQVTa&BRmzSR>NK?$-JB#tk83f;C%>kb*}{4s{f7DCOhQ@uLH ztxz2!hr24oAZJX>?(QuO+cm41@k=QT^vu1&=V|9+%$?36dr7w}y;?Kk#w#gFKbMd$ ztCMuV@iDU|vUPD{j#BjFedyhK&-IqCHY%sMHNtOrw?a)AzH*^*A%!w?igRlMfG>k5?8-zK%qP9Yn5i) zrjU2mi2dDm!;tH5)a(W)X2#`0!f5xKw+Qnm#WWcFg`Z3p!_W!{B#-I4ajY^-B^++Q z7`+x*a7$7SYnjA1;+>p*z7?+ZL?05%A-A2haKYE;QnEG&43x0_U%ARGPxd4gcM9Qm z6lwqzu;YbW8t_V{&YfC4iApQ!^O{kI;;0__J1!M>hnf}PX=BbWR`WGFlr-Li&o_Su zu~-B7hy~}apK4tZTYvUESQ$R28O$;aY`Ry%z^xGiEsJoOCbj6kF@E{V3iW+;T$afG z8};uXSF)?sweO&ip_@g+#_jsB{8nMSfr3|$KenSa>12R{7m6S8T@A8uXx>}hbWzQf zhG>%L4A$X`tn`sxBLJGYz{2wJgVD9rEn$pdOO{k=93MI&qL;nZ8rB?5Z^EkgG(N93 z1Ps2OC5u0M`;rw9X0YlVSJ~8x?268{+GhlsEACBqoC!aPWHcBv=DV{AzGw$@G)LeAuCcr$IS+2Wa4cs%(K^+RcvSA~tUVe=zpkA#J@e6* zma`k13m%E!dcGtPRPF@ws*);owRj-k#)>L<8F}q&vB-@D-!v|GXsz*@>0ku%AWTL; zVfAnt~M##Qai9T+S*59SF6{Yn-klG10vs+>8!AgpyHa->~ zgfEi1BJMiW#&mXS8><|W$(=zgOd`7f)u96$rb!HePsl7vaZ|)^{L-C;5Fy@4tgM#_i4AlGL9q)>*MTXb9*hr)fkWUHdt9%Jj$P)Ah&5Dz1ZSX^isi-BrdlxYJmO#0s9`HjYk4A*Q5w2j*k!b$H$s zCd3^Lb|DnHih8|EFfcfsbc&V-juOKIZSxthABQb9?X_250*;J7Qe@P#@6!=UI9|N{ zEhF`domJYm$c^fW+`{<*%wKij;BNOg7a%ao=j^RFemQ;nB#I7`S|CgDMQ4#J2&o@f zfePGXCT%SRv>zqDvF){bpq>)-IU<0!SqNR+Mqzkei93^OrDU_5P3kjG*^1d9|0UM}W5SM=k<#{T;;iY4i|KVBV6<;D)sY!dO`?$zlc5mbI(R z)n|*&J1($PZ-%d^UWz}}iGnIPtosC8<`u1V4Pbc9v% z6C4}ACnv6?o|Krr$*(dH@Bjjy9K$KXjNwd_022?oO8exIv+FGVAgsUI(p$KSdEs3< z-(E{gY25ePBnb5Ee5`%d2*j_L|C)4vx^?*XR8gl-d9NcP|g=hyYQU*?7-BuaQU)q zG#yd!z?)Qfk0?pNHS8TZ;d&}{)nPkT>M2_&Y#PTpOXdDYW)je!18%K?!ZMfJPa00byiPEs$CPoS}s9B zLkaE66yvWRA$sUqopI+pt?`68pW`adRQBGFGjzeV;5WVF(0!QQw*taQnm*W?Qhp!8 zGPLRuCS`4@tRgP~Sc#EciQJ~%=A&FC(Xpbq3_N*=&!aR~E=U}oXl zl%`BS+BMs7ok*^x3DZ{xEBEa~1Q2Gm*uJd`NT2LghjWmWl$pI5GG>T|TXN?${j(6= z_7kFIR49H#m$YgDo3dOKQ9@6B8!Yk!&ytl4|$yO6|=UekE-b-j_xLY@At`oxM z4BVyQiUf`2+Ync~q-+`c;S19Za6{R{TokCgmV{3ohaVpxEV3-=-YV-e7;!GXjfB*WT!>S8vKrgV643kM(w z{RJXtP3f@0_(NUI7Z%$wF1|e4WNLX z3o_^^iJ5y!>OeNz%82k0-bC5xq%REB%<|I6{Ey1Nho9ul!`XJ3+5Y5f6#UCM5i4}I%ByZz-L`N5MbO@kC>)o9FCn}J}^SatHNj-gbskhB&rwri13j~7uK zt9;+rW}Gs#%WcxZINu+=YZTB5z^Lw|qw>`~)w8l@riwrc?3 zK_Hv&7$_W2JOAMc`@b9)0~@M$YZj|)Ow$r6YI2wDO_lc~AL!U33kgr8ncU#?LkxDA z-grAH*65huSWy!R!UX5hWs-YZNAW5472J5^e$ZChF4|1L@bLxLID)E zZ{#!p#re$~1Zo4Y)`vmFB9^wM9lN2?909tnx8QHF9heypl3CWqX^I^i-Jd4j z?!P_?vcZ-hd2XC_#+7B#L54^YYfAph`~s7BfZ$i?F#nlbr#9f7rS646$fYGdQ))@Y zi?f%a#3#AIyJaYT!|u;OC z?oX@H&z}eq`wGzmjF?ZF+pP1kt0!A5;cdR`ups?1sJ2yLF%F_GG9XRCz&}TeG_+qr0QZ4m<05H2Lv#Ai!xv@Xhg!3?7=_;r-zgPIK}re)PG%oOaE^ zd-%66)R0h?X|n}XvDht2L-~T>rEk$V9Z8vegFps1%lO@f{a`rIJnze3L@1Hbml^AnE7hI`Ht; z2+B*tTx-SL(zK^T$t!{6&ZfnqCoNb{Krm&U-1~` zF-NS$T?u>S?dKS$3HX9J2`F<%OQjP+xsQ2mmO`0#mrDW#x)F7+AA(ryx?y-vx3m&l zB(tWZyWGtCo?lz+4>-yUtsuR;%H#L-z2=%c>?sLOGNHk(3O}fAl@CwI?!2)B6ca%o z)a+NX^n*$^v`9t^>ST;7N7X}E2a16nG=E~LM|u%Yb%s{KBN%ghW0nBdeveiI%+ET& zI?z0J@>UzYiN!Luu5etpTEK4Zt_uvZpK8j`f{rz1`!y@oYuR6MuRps5m6s8ea zm9Wq}1o1)j_1lnSLZ|UVGgkCm|2m26=KFX@OW(3}tuY?-!h~4YEeYr3u&wZ$sW=pR z29ziV+{S~013AG3}#wch9 z?NJ7=O9YI_KX-##e1{~}V%akI+7BA{U0XWrhP)f{C~h8x&h1VI_V%tDaKR0cZrl-7 zH-Q`1=S^NQf>Z{AlsYH|zGWDc1=wnILw%Zuy#1hx74F%mzkbe*9)ozq8Z4+f6@KX+ za3N%~$SM7eOfu%vtRirVwY@=6?u0M^`UV~CoBE>clKK8cqxVV#e`E6b>mqP6VuKDS zYK8aIK{j?$d05ju7ZS#RD9x}wgK4c8Tj^pumIdi3P2U73WIpO~zIf~0ZkFaR zwSL4=+rkFZbj$HNtC}rgk}N)V{~Xcp-n~9zSs03^szv#uRxisJzW23oKsDmtDuw0v z+ahvza2YjbnsxovgRro*3bt`17Tb_<_=K>i`xx_57I^g!aErOhm8FUBv-~IC;T)x! zyY!{cziY{Qt)3xJEX%lVU6w-aG_qg9r8pD+c${%qaQ}~e=kK<>Ki$BZ8T;V|R@Xlq zL+%kM-j709q=PPB*_;wR{PacMu1t@{OK|Pgxi@!!W%RUqO<7_2ed3Znc!XD=W0?mB zdxey#PuNO72*}ANf*PrOs92^MLJ~nMNge#QSpLs(1c6BQ2hOdsDQzaS%uV>5P(uj# zed271pr;8K2dt}fFlh(OA%vkZIdbn9ct8hDLe|DGe&G?-0Q3uJX-Hv%zn37e9ZqvSg4BW!6rt7?K`)?ny?8|eCy~t(pOi$_ zJZrW;={inFB||t5)HpZmGiPi{LcR(EBIa`jM2i;RSAV?PZ{P8_%uz4ZGX|815SFA^ zllH7Ju+{d%7bs#(Us0R}lG*kg6CM@zh{#SGThDi~UqPlai(4gz4!k->6XSc1zZYD8y?%aK9D5-P}Da$WOw;Ulr+|Au~vvj zBKRU8mMG+b{aP`!7u)NDxSV(?7G@HrY1|`3auEFX+K?BQ$O3b9U8P$uT}b2;xkqPS zTfv~&{kgz}1CkF_zCP$Aa!Nv-YoY|N;@`#r)}2}%)Mh8Uxk)byIRZ%w(?So-U>9v& zicPr>>B!*ylq57s`~3AUw$J^REWdWj6@p%;1>sG4r%uV1xv(&&S+cc*%$-#h@kir~ zEp?48cM$rCtR**^E(hS~A>>*cV>Zk?rJWW6Z<1)K%UBI;S?OOvq(e9QMlv4~f#$$E$B$hOx{ z>+3393M{A`y(bLtH_DDgNl0UtYNhL$HiyaRDZ8wvUkBh{u6hafcWN;=j@Y+sn0E9j zuu*8SZHbbM#x5Fj3XuZZ@CxTaJvjx%7chJ7b~FJ_u!PCtyq19|v`-NR06|`#HGOmR za#h2UOt$U?LbMt9o>iHN`vkN0_Uo4T&b$uK7^uxS9upU24cZw8R3W}}bVikfH$fZ| z8}dX+fergwHo>4zCW~Li)H$f)idb-hx7&fdwSr)w_AiMZ*EB>i$_5$^FhgG4*Q`qz z=g)BG11GsF3}G?Hu%Y0CmfktA*$(CTnfKvWEGytQifHb(wK0GhK3Rt85oj{_2Dw!yDJoW zq0(%p!~+PaTIVO}6`GQIG=oV5q^V_4#?C8TNbQ9_d(pjEj_ab77Xxq`f*PDtln#0H ze!dn;g1AB@qQrjvZR#`Jixe)V-B#Akdgi1zbTD~x`1d~+#SIp-lUvWW8F~?kgbod> zK|12NwWB?E$I}rl-Hp$XI8WIUbjzu@1$G1n;0^N*xS6?!P>$}G*`?GupbZnhfOQ08 zEsHxfdhaX=wnm0dtiyqKV=kbummt?Hz z&g}PYaD~60YLY)gfs@`s@sPr;s0lR) z>L5_nzXy&yBMt@~efqp93}buRV3?Wd@X%xHt$gZp3CODs{x=kAE*E{)Ab}l5mGaSa z^?Z6<)uarP`oK+$l5{kNfA2gYxX^!1L)aL{H_RCicSBo?uOoyk_Dtkt5K-_2Lgw*L zmb^O?-tP~eyN_O@LB%Z9pZ?x4l;X28bLD1Hc>3F2 zP&zE9U&*V*UB)Lz)CQpvj=W@rCWw5sPc<*l9^`#1RA!@(dl=d!;Eypd+R);(vf^}% zRc$!B%h+~A4utX^S@w(#+31Nbi+=7#phZ29et@3F722|^hP^cMkQj4MQ`NK|LxGEO zF#i($1_S;4seRlSo-omfUQkx4BPIdn} z1b2r(fKfgnNBzTKFPZbRwbq=U z{64K2VCgmgC4x$MnuavjHIBf}%K05xhEiQ^lqh9z#1a-z&R!IbKfoi-86^N$KTTHM zm%2wH2fq$4UqdCWe638MP)IaiTH53vqoQVMfCEZB-&ihUH=$g7cUVVNrXtU{$()~j zT$Hg)33W4FWM>n{C{aTdXk4#IX^AiY8clMWjtUn%`0W!_0jggvbA2`094*S(O7Jq( zXK8>fXgN=mfH=#N$kt7McyFR*7BBuyDl3&eYO3;!(pxgfto`o zmG4}6Ue?pAelD1I`Z_f@Jb5{O)1*29?y`9%?urDiYEGIIkAv@l^{uBQaz4_xkt-Vh zIQn@~G5p+ZF|9^&l1q=!O;0x<>@7Y3`%ED6$^#u8fH;fC$bukDk5t$_Q#3P12 zIr-GIR&chv5kX=n_jw8CQ8^aTBs1?=hu_>($@AX>z1_{Et@4f2L(iy7BcU6=hPIP1 zDQ*>3OwZvwr#n)khAn>P&7eLf0)VF)l(c<9Ti8{-k@uW-KowH^8iNTdZv2|HpkaUr zkPER~sWdiL+0Mf3$Kso_ciXW&$} z_iSzPT}c6I#O?2?Z|FkTMgY{~R{lMZtUH-hfIRmjfD9)wAQQGn<_sBx_XXY1Rs~uK z)B`go{B!hU9AY(8u|i-ahYS^5IZnN{cZBHhB`)bDkRQ^?{7MgB4}9;MU6RgJqm zU3bAxyJ8`h@3=YFDS5A(()r>PrxSyI1L0~iG&W68T?IrN313I%xWsH6#>;K%#C0(- z3&UOsgqvtXX`_?4ebP|VMZ0WHIR_QtbST?Gik_n=Fhl!50d8#+mN#!$LJXK_@Dg)C zE_qH)_%lQ%h<#)PqSCKTlb<;v)g(hxZnB{P(g3{3U`EY{osaFoZFu?Hco zA;xlI0)3Z|$WsfkKowtQc6kabg$W;EPwT15@D;<_IIcy)jU#u_Ir>u;k8+d{jGvy^ z>Yh}m_7_Xd5dhTW^Ehly(ks#72O96b@Va|1(Yy2pi&ESo!OwIL0RHB|V%zI)6@8&W z_dacxmyI)henOwpKfN9PKYiQ&ao_Mac5TKFLUgxSX##k5f?>>ECmc+)$LxzvJVMv1 zt@uD}7w{yv0bHEU>l9adoE?*%6nn7!1`-6^f8K!CVWZlvtYeG`a4M@^n>=_ZKRf__ z=|0mfUB7f)z~@_fGIn>Je}4z~jU#}vN-%#D;M)$+Udy;SmH%}k^c#pcJI)Es)fwHcy#ly% zu8)X{E9{2=&+5Mr%cE|vlK}W<|G!8qgVr6_$x*7WhGjNdK3RNR5XtbN5Q`+GJ94`2 z=p^?HHXL)8Hx0FY1c%`wo7eE!|FoaC>l3-_1o_f=Ck^SM%YLbxk{37g6V#`14TCm(M6 z@J{C(AgLv9p#^Ag{_0B&^)N0jii$IdMaHxOSU2mysV*JY1?%CI%ruF`uL-Z02Br@_ z@s^`3347VgJ!(zV=0J#Ne`aD=*677|c4+Zvd7adZS@y@$X#)0J2i)gF(Zt=kQ6$_0>`>}G z=_J)NHuI*`7JU7Cz<6AWBnbJ0>g@0pakXa0x%>Ym(s(_9YA=TtrKK z^igb{53K6rvPZMLXJ*nl=LfQv=da1%th{Yi1w6C7MiJMP>k$6I<4Nrw$htk&$o%T! z-zCB31NEopnP`40r(PM3YpQjS<0R-}2{4`T4mpI4L*Ya+YoD9Z=6NqEF%*4-C$lWb zsqI;^&@*iqt zsBp=&1NrhS=S*;?k<=d7=R%pnsM9qwSJk#Xswbiq}rIZXA<<~D@q=*9Bwl=?4j zzSMMt4vKVN2xs*Q_MGgRNrisQI*k*%%g#qUexN*{Q-mpW&6KK+Plj{G=GfPh28Q)) zn=sr)I++J$SY+|ON<{%&eZ4=bz4UyY8;z)YuFpFmALy!}x<*^Qq%RTqwly|e@~m0R zU{eA1w%ot^=9tUu3f;`n>RAUkPywE8Y97Mv>HJH{la(-K{X@j)#toC>E)hqwV}$qRIgP{PRJxN?u4m2U+YMN%YPjuG zW+HmPFt+44YsqD^gcwq6$>YOjjQIgh9M-DJsUwCjwcD@w_pujbN40%6(DvWju>@N|4_z%8T-)-devvNM{6XH3Wa3V<`Afn4t z@*Air-+Q-kzoM;6q&pKo{60;OH%tt3%edR!yy)S>QWzk!++ z5T27v9x<>=2)~59x_0iVG(WUF-moB+V4|!|0Hu0k$;MQD*+*g_BTb}*1);V6TVJ`q zee*V&^-G4{6S+A?jue=qZoL+&uYW0(GNI@)cJ&?X2KqkkpusO>LL6RyqwsuWY4e?y z6ybd#(bu{LcBsn#u3bFT&x|h7NGuC(V39QR8|a>)WyYQ{8O&MPR6DJJ$bfkqw&Bauhkbq%NX~BF83!9%)=;hIgIz2Dvl>ex zo;DYT0oC|<;Czmm`?8;7WdrVBOIZZxhfe_gFS2b0Gf#M6S8Ycvj_ll`iWLnvtH18*v=U~a zqqy+?=wmI*Uq@$Im91Kkm}H*Q&S=ajKZ)Q~j3|~wbklHXD4Q~KIyS*?0QZnW_n26` ztY)3X7$W>(@`0X!bxnl?gv8?0ga6?r2c0`D)rTg=5z4aa=Nqa)N+%3vOjI#SM&TOJ zGMM8qE6H|QUm`wBk4yikWN~A6=klrcK4c`B9}dr@(Cy;sAp6j2fzLf!y(mc7gjop= zx%-fgZ8~vuZ0#`-Wwp)<75T#`R~(6Cp-8W+_meaCk87Q0z+y8Hs2hWf=mkwPUILL6 zAGqlJ>^r$o)y9Yk%O6>+sqiuIDx}Kum4$wnw%a?Q=f-T)-|A4#%dvM4*|sBtV^~hp z(=e!q`0V(cghpG(;7k2d<8Na<86a>VhaL}iCre4(jeB@Tcgb`_Y#BP7*L{QRV!K$(H^4?V9NA7T=`VmUpEFgHA zr!hjE%5|jtIZpLGUj#gNFHd<@pL7IHszpwmlsHxX#bPAIz74vI+iVw5jQRenZm`_O z0Dp$Pe)>$w{!mg(TqH+oVzUG1N3HRl6J@=#Sr{OP71$w6hP#EH!X|Ne(!KnZZhh!9 zHY5Z0Ub#6Ab#Avdqyj zADDG$@_23vkYh{M6;>d_`u*M0G)S zb(B0ZIKs5^mZqUsSzBB;y$GJJ+$d4&%L~)r1CdxD1z5Ju1cZqot_LKv#} z+#FPm&Z1hRlonou`hi-9ZZULYMy`AmVnb2IXBq2+P;e1E<&(_U35ka9C63wrl^dNr z-7Uu5Nu{;+c;#}@E^6x>s7Y<{j6I>SPcGtF;LiT)bwje;`s} zGJZ{6y<7C#)8#3ptIj)6E@YA{J06sZ6_#J5XsY7SP~(eT!|Nd7&~D~F*b)VCI%$MsWo}YAi*(!V zso~?UcO>`?k|jD`KjCmq!i0YV6>vQ)&lHQsH8rLCy#0R%X8qrfNsd3oBm>QY*@WRu zK_eji9w0jrx@M``Ihvg{e4@S!UEfF;k9LiblkzN{tauj@CLi z!EcRE3}iP>Wug^)iFl*uRSm_-`M?gs2my%zYaFZ}C12XYx;{2VU1p+rKVZ093C_Q% z?#B5+MnN%sl?lH~g6k(y$r+I)`cmt)@J&*KP$|e%^V(~$$3I#OJ4kdE|NJ}?nKv-W zrs!3|$EMFynVCo!KyE_BQpx1A7uLlKCz*)VZRi?%;QQxf{tg0ffQDc0?4S=2lyN9w zlmvg9FPUgC?cQFG(Zukl4%`5bnK0*>NcsklQKk@dJ~(IRj^98R3UG`@!d0^hlHSjU z3+x&WO`+>gW>WDrUVn*p3WNcZBxNF=-@}i+MXQ|%p3(UM)9MC9h_pzN&1Q~`Bgg_G zHX@*eOjMF>!6@L;B}phVRsjyMXML+55x&MERI zA*^I4)(LP8)o+A9H5P6|IIJ9GWVpRXkgS5ku#beFX%01TAdGEz zVjYLXuh?Gnm8hN=%@jtO5p5I!HCZeR#h`H0O9d(+&xKEVa*IvtHHEcTMjYsEI_{L% z*vA)&6u_2AzJ5=bu%fee;~h}S2_#nHJ8PlF9i}@>`0j*_!^W7#TUlGqQ!!_(^?*Li zUF*Lc$JqQDEcVgPZ39>cZ!9BCurJxDwz$`aHV(y6Vn3vggIkDsSNb`da0e*hYX=5H5ffV{|%rl8LGG&R9^Kg=@c1->dP>#jCzX+H~lX zGlgn92{Zey_N;)WNrZ^V?E{3ea-6|osdN4ngV1uH$L%6ND z=#tjYfYhP_-XUB{Z)Ka zLzht7`Lzp^Q5%!LRiH2P0rMQGF&#*s?I-~IbNx>~#K@3c}Yy;0&jqvw+K$@Q9 zlQQ`?rI_*12W{2zKxZv1TR#ngIW8oJPV+I z?p>aVT&fF?ZxG7!12_0tthSJU!>6bdSLdO?ziXj^UiuN>Fe0MJ^g-(El*q+K^| zS^5$eL+rUQOB7Egs!ty@gt+G^yat$jP2>gX$qPLv`c=M)6$0)^7{G~auL;2Y%KZkK zQ2u7<9q5O7nx3n>g8(d=|NhPR4}U=oxJ2rucWO8+aVY7&K4cNT`A%eUl^aD1Td)Jd zW)K0LYD_2RmGwsZJtn%=*!~*0SlHFM0IXo<#lvp=jC$X<5!V$h3**o&^lMQL`CB{= z{a+gZS(^m<+6l%)Ux3>_6#fPhg)auO-OX0+{3K_#zJqDJJMoLW$2*DuAOZp)1D9;# zqQOaIkn|+bJmZ|%yzQzt4PcSo(^@ymF6iz>a{fIELHYe@zV{g_>HiG-KSKB)OZflg zbm_5En|b9yRwUZre{lE|RLGXCsn9o8pagjbA|EIQ(; zM<1b3S_YYgXfG+KvG+QqrFX-td9}tx{`MAx8ol=G!byJ-hUh2G@6lz8vA`}n&06O{ z;#6-efd7V40nBE#uHA;*ICmZEwHZ~hPsf6Mi7W)q65tc9l(7B_*D(h1YG7XgJ zzncmSl*4r8bx?g9LRbrsX<}(tRg96!L}TkztJ;qlSf}5l_Dxudx`JrC^#kodL7$Trf2gGBhLz1P3ph*5I&qtHu@YAN6FZjF zBQiA5cFTUop@V1SU31Lr0Bd|up80%FnV+R~Sww$qz^cjTaRc>FNJ^#jl6EqAYdDxf zCvdN>p)$5)q6_T=ei#T^oz_;`o(j%eppsC_xRd>0FDngl7^Qe?@LU+&ruFMB9QXSw zReB*WCqXg=9 zr4}za2?(vjC0qsuIitUR_f7~Z`IPm>onMSJEu!90a;y!7y|~nTogPQF*6nTX_c6XD z-zbm}O*=`_cIyIrp**VWs1UJOT#L}!uwF#}?HtNSUiEF+a0CS|1@62QZBx}l5+(FC z(l~Xt;~pny4m}8ZX9C;ti@8Gl)i%s?&3DtKHQjL8HS_u~naiOAw?wnwwl1&=Wl*l1 z>$cezN|)T7S%^ogBZ5J6BQ;&E@OHGUFhg${!;cIw~WbB#eyZyK1vqA z2-X}Kn(`taa5#i$xkdJ$3lPdiihT{4;K3l%Sw%^;bAc%=r>l|Fv$iR4MV-7@&^64} zR%5($p1U(bJyPan&H0>M$Jxo>)xGlk*^+Fg*|-eH0VaYaS3G`G3`@ICdUmdRy$))u zEr)R|cFwQZWWD^PYYN4TwcbMeycJ2tZzCJUnc>=S8AQg%?clKFtIF{RL4WfJGYQ;Z z(P<@PMXO1xIgpSH_m&`GK0~LJ@?WeBv%p@J+IOovH^$Xx? za=x=x1Iib$7)dbR7tsuUUxcBqO0~aL(?HD2mnqf)C+)}AA=*Bd!5?f41kZ)dhH}?S z^&F@9k1?F4Ex4o~@pBlBzHv{2wvMf%kRosxKTU_ z{fPGiR(cpRZ`f-K zGYX;ZFd=E0p%`1w#Eoo0zLROL#;t{GJA@?z&82h$IcUl+k;FV?C=T0gvfaE6%m)~+ zLgw8PWu#0!qfIPp6)2G>Igt1qNWR?!Nb!EQ_tYK1*c4<^F1?QFk`K+Oicfzn6qE_N z#2@j5C%nRQ{pM})y0kRXFyUVFR(*J=&~{R0`sQc*2Ek0m!$S>F-7%+z)p(oUYuN1F z*`~bPxW~`@l&o~qBnF_B>7)Gyn(di=h~==I_PWDOI-jF#Ee&qH3t9Pe?utDGwC!>mfAZF68RPa0><~{_*H@7q z^u-5v)KNsgD~JE9OiV5;n!w@Kbj=&(C*o1(xKdmA`)< zB@^?SdYR|LqJ#^vxMu_f`fEDwhMcT~_2GrDl|M32`3VbL)bRCH8n~2oD!gRUayBTo z-wBa{Ydi$GFyuNNR^%FH$-j6r~uGtRygEG!N2=``!6S}{qI65|Gu}S zI?U*GyRlEIdO@vZ;uur&X>F+uTOYB1MA1h)dV^n67&QhKr5A9QlO#4G*q;0nVzmr>0z>Qs~rkF(&_^{R2jd0alwXsLgXbO050df z#y2DM`^5lGuyYCeO%M>+@ZbQZOFMvhFnpRp81b<;Q{`_U;U~&~$xHv79BAJ`t<`o9 z1C;c(5&)2We`DbBG9B;XC#rx@u>Zkdd;%l_lM+8t2u$kuIH}CjqyTzga{F(f#7CAD zpnyrYA1B=d#PNuKCbY)?_uGIi*&i&E_TDxDS%L~I_cNJj`dxbT)0Pk8hF_xx5;Edi zc42@God1C)9#CrH@o$c+e=W}uc?*6df$I_b>`9osPr__FNi*O0QwqTA#Q(>i8hO0V zvH1L9^htAn2>p?z^GB9|6J!5+Vj4tBZ2lYQNrmPha72wQpz2579<^C&@Ha_4P4XA5 zGv$BC;OV-55`5o1%+{ZRukp(G{ts=9mI-bDDPa3YN%86l%{^IIjrZ@YKB_qNfb{%# z(?buxaKhtts6U^ZhSEaE-p3i%V`PkuRI03a31Rf^v@eeQ(=e#-sCnxF9X-(p@^CE9 z0JPWl3-!rJM*pG}?q4+icQbSR(^#L(Lj4aLe^U6&Usm>L|2u!3g9Zu|9H01j)XQJ@ zJrVJwiANTnRQ71m;JdEhe+>Z0MC-4sfQR5w#{V*OiL-Fxx0{ z62kB*g2Na}9dIL#!&=iot(>F+;2(bwBD#_G7wyQvv+#G7{T>M4- zp$2RG&*yXymWN|^k9@UK!~l59i1Md6tKCj9B=`L*r}aI!}Cl6MH|X(88Whg`i8 z)WD;9Ml|ESG}U&la-pHWmf3x0QmF3Q2}CFUa~lBHLDUD12GssY@yhp?uUrcPDfY2o z&Vev_jxrOqVZoxTh4tBjm^GEinHU1xCo&`Ie4PwKz1Iwz4)WMbi~B;~d2=(X)3SbM zvkYy2QF!xWK!t9Rgfsew)*z0$u(M>0*Bic&DK1~LbV`Ka&GD405gHZ*zW3q6 z@=I>FP2V~~$x(KS2Fu(C**l|GO~)7WACYbS+Q&HfTOdvFbw;)pm%I7lr9ql(0VI9g zWWO*n%+uALyT^_cQiA^|FbcPJgtX^Jkt9kWR^(_){CFf=X1H!$Sizzk z0D|`1zQ=UU#F*lpJdPQLG~@Cyc64H<(h}bDT&dlB3Oq`cGiDt0=X3fDoxP^VRJBUO zK9v#mqmrV2{r%Z-nJihSTOo_{nmW-av$dfP%+BP;^PJXrlxd4Z1`#ern@%%_dHim+3?F`UeZd+8~`ctDYSwYVfb)GH71e6z{Ymf=03@-W%~{_|0&UUw5Ly9!P& z6zl$lu$@`~bBT|$t$bA>4^whqjT_t>?h@v^U5#LmNomoi@W7{~D#R%m6Ef?lg2+B* zl&2-#M++J20$8b5V19!r`(8FciL)ONSl@u`q*hgKP`1iF^o_8a&%O^457+kV^x}m< zgb#cX2KL$1vgkhxg`EH5CQH6msdZ0OG6=G5cLW#cL1I{KCo^6dFfF_I$xp3I9aD!> zB*a?oe7sO-pmdAk{-Kn02~8jQd@nvKw|f?&L@Dgc<}pboNSmbDb~!?g5L3QfLt8jO z>1`-hHqByMSL-+wkbgwv{6*ZyZSt6K&j0ebN@6ikIm(Q~0C}jsge+#?={pv}Bp*pg z0W!-S=%s(zp`X!+(3;RRT-#;crDeuPyJBB2^@caCT!{@h*tgFHK$xwp!vH0A`^>$JM+&#*Ei%d3)fZVDRwMO{O zXkR$RxTQm)m~$>+!=~*jIEFxM(Gd+tAsH`H#aALqVs5A8zq%aj9q;semPp3)7aA`M zDv>63t`d2CA1f;&?zSrbRNdR~>sfu|5n=7&rpL2FGJQ1}-v_#8MM!Gg zwX+)a8_1z8J`?HRm@JO=5g7YaeJ_ArZV~}cSE5q;26Y8w9O>~cfqoadXFZM1EW0*h z|7E-Zia8-)6)Urwam4qr8lrG0ft6tPUx?x@-KTvo`Ud6So-Yb_?%Ze5(o|3oOiJ3@ zqAZXHe#dC;+=yBwO*Gm9rNX3}ok3<#1rvy@SQgiDBUWsPW3;or{D1&8D=W zeIO-Bm@kb&`|B(jE{+l+)&(&>x}zh1A=nq;*4SQ{;NSBafm05|T$+@1Q3WjsS*uo< zf0f+~J1yUVCL>aa-NwP$MgCAK22cQtWuJ{!UxM<~j$V)0)x=~?O(fg6meVt1BnFnwKa+i2a^S7=bLK5DJkxI}(-{Ki zHYg~*^c58QZ-HI-z|joxIA=YV&f=z(b!J3Hczshus_vQ+Is;8t$aC2_*WU8u*a>pJ zd60}1rHJ%O9aJL3WUZsLu z&76cGg}Kufbe&W6pd+Qh$@w`6zrvq(Qu}>Zx>B37-`1Ju_{DA(FMb07H3*2s`(6yE z!V$fDFG67Gz8*d|UcF81c~8WNj+Co}*<6}e@M`?lcNyx^F+?Pe1}joQ0-@Zm@RjF) zv!yt(P*6SitsK zkiLeU73{CwswHteBQ^8uRVLy4B!aD{anr4Ym5}+b(x*~_8a~e}l|+!Qk|aGq^2+++ zl8Ew%*dc}V)ny5Z_IA6GS|=v{WG89)F+s!0qK%sJ>HJ zdR;F(Q#4-7(Hf3RN78^GP7KPNx=LM8ON6v6rf8#H?i)n$Z*N{0(f! z@0Kri%ijklTc27TEDW1`+Pe)3VJ|)if6Z+eW0A0xF+5nXN^?K^R{gtl;PX^C@p-)6%+Oze@xUew91mI=p3XZ$jzPsSrcq0AktZOUwtEb?HUvSx32q4bl)zNu-0 zdx(X)0Nj@AG4q~VuI~5&tArxa_x**s><$TCJ}eTNWL}9(I%uc zO+LA5@#(vfc&`i*+8ffDnp~-GG5%^BZ%#dN zxXW{kmAL5ydp}pt&$c#&T_NU&3<{i8gu}yYtfEWb#Nl$87FS7%vkrgRcoBO=Oh*L< zn`C2783mu(gq57TOU3gTx##Lo^0mI}i|756{;*OnxHXPID2#W^n(kd?lOF#NZ3tbhEIqCTzw zeWW-C{LvS=QGovIihrB{wLmgqkauZ7oe`Z7)MDVD`Bq;D?mHmeK^FK0Z_vb&bkAtDS`eO(XKp=9B zq~Y&WKGARp973!CVBMI$5eI+>AL)H068Z7a%ST?CfJ0D~kH2~zIRkisdb+#=pzV<) zxcTe~fWW^KkNG&eZV}%fG(VjS{e!XJ&pk5s#Lv@}fBiy!6vLnQ3gcD)v#U7$E>6TJ zvT^?u=Mxk(P$ zR=02#@CYc{@{Xu0%978>45}>GU*j)8Y2;Yu}HEyY&4bO_e4w*ZTeS zr}VnJl}n*gWcIF9^E&9uY<%Qm)`44~xR>0);-sBCWeF!abCIeOHL5d=50jNcpv9po z6=Uz%4L%JRzqyU%ZSyXElkS;$JD2ort9Jr21MV*V^2T+)q>z$OW?aB{{48blZO)R0 zgcy5jZh?hgYN|0u@_SHkNG&5wjNerrvECQpV~4_g9p3y6gpPGn3NC6H*VrjP4-GYL zd|w+~Vs+7F%h4z{7qehF^s7G3+a*il(@BUOu0Vm3y7N(HxToD&p9aoVvSVuR%m*XmCcXC!Rw0}O#` zZ={P!;}RG!w~368HZ-bJt!ENo%BQR0f;7Ks)4vaSSyBIK*cMhk36G9P6?vc+#$C;0 z;Wli2!xwoBIh>qOO6_dfK|7W+MnY4zJIAA!nMyZ@sL%ik3^7|Cz1pS7I&BS`e}A0e zY+7!TFG5uKYVL5oo|f&9rQhl<2_Cv6#27JdDZHI!Fzj>76>3EO+EQsVv#zWatTF8w7-6BnyysR{Fke$rCu9}EVt!zGg)|78 zJ*X7ChOg;Ew!!Cf)LUsj*vZ2=^>X5<n zt%EC8K_kOjHXA#bI#Rml!YD43KIs-!tWqsrWBZ?IxB|t}iCR{S3HD``Otx28tL_{6 zt(9GM6UojOe7Q?*O3n?9^4li721lu*ltXn>$rMZ} z#f$nqd@I#~+|}Jl#zJO4DWa|8zb}~GXw;=7&XUD-WSv&k)WR%y7#cZyX6nwH^|XGY zD$bGQe%Hgyvw`C2vfYq58MoZS7D$knRJdpN-E4+!VJY_uEJs)+7E~0wmyuXz%txm{ zstP$YR(A9GC4|nI<1&=-xfSG4ZHK8w;v;k0@Sd6q`d^al%)-gv`(7 zwg(!re>Z~ZqV<=>5C1gRyvec=*kEN0_Fj`2@cwJfa35H#g5{<%tLn7hyqv33?s%8*T-5({{@|JM5F5@A zD{+o-v@%YLRanNFF*??5j^7bH{)d1p_fUItMW9Q z0IGZcO3`niIUyM!VKd?4cIvRH-cJRo^SzPjH?7)mT!Y!u8S^gW&B zEXK{%$D^H>xjhq^06kRg)+leE_L5kR<)`otv@mZo`qg`R-GGoy>t1n?lghufn6+DG zI0av#7CZ~TN{}O~3A58u-{5{Yv`8YYoo0tJ>Cz%F<+K1VCk@27@>a(*3{?uq3GVM? z(fPDvK>AcAYP6LqPdl9Y$M!zu46U==fKIt^d86XI^v2_aby{7`E5StNUW>K#021$w z-$2hS2;iFSOl#Y$qE{@KX05VecM!+Se{?D5E6x{JT~un506Ise?xT1xgn76h(VP9o z-1hU-d-aWaoyh5()MJ{}Hz3mi@XHr^R`szQc} zo=Kj=jD|vMFQ$ZcwpSh=sIMmuf%qOn>ozmViz)D3^8yeL>;?d+1j6-!k=vc`D7AoL z68;#tzhUVY}h*=P~kyu$b2~WoaKurjLGNhqj$W?`1#eWdg7Yk9Vo*0fP-48(JU&(K?bO zpyeI2_sTTTJE!0hTPQ}~9{DlaN0I^@2in#Ac|0CC4!)ywv$?w$`9m_%T^LZ`+jQl6_ zD)&!%dspGzDVYcKne}^k$OmfeB`XT=s(vME2(6L-si8;CivVS80xEjch2&i`z|xaV zbtT^Ra69U)HKAORK&M=1C80y|H&ZeB z{Ra9cUjBs+BY)$>iAuqs1lD+gYaopBlBt@EXJWEe8Xm{gB$dfUQpsd zu1NNEzO?TIe|1ND_Z%=ky1a&2@3m6&kZ^fb3ylGo}i{7~zk?o>@K2Na_Rv(&Z2Nne_hP*1bBsClaW29lmG+l=~*e@1!3!_)r0y?>q?Cf9SzT*c%yR>8Et zcZzDEjO@f7`f1D$Jc5@+LPwtf^RVd9^uU}c6>2W!V@o-C+n68BuXEj!q^@okIsvW0LV1^#dcL*9;yBmEe@aMt7bsgE$0xDcB0_d?r2jsyGxi0~bgU8A z$xHGxl93!XIFck8 zHhJcp1wUWdQ=-M%RryZ7oEYK z;O4E)bg{I;Lcia$JFfB397m_R73U_W9alV)X$lsRh(+7^YK{Ftk{;=ah4(k}8x7RK z4TbSDmLxHFsRQ}62OOfAWfp}q-Bllv?+$><>C@U<%3Fpwoc zb?<@lSGuh2bRk`peM-{@CtWnc^`JYK1@GBSp7jz8Y-N9GK+ed6;TYw!wa^1dPL zyZ4cQh@aJ(J25$B8{ZG>{0~aV|92@{|HtQG`W7A}mSi4U9L9E>_0;HH+|u(1*Al)Q zkhh3e@%PnNcmK820D=;r#NXlc>oZ}=A>0RTL}s;I6J{f1Y-3TG?grjkpaXdG9FNs6ipq%U^x9*iV1ZXl9qW6GRXzmYyId!ebsd( zF}UHK2=Aig9hHd|*_lpXeX0V#KK4at6X%1b|rpYyy5)PB{voEDl}hgnFeJ z_;jrRNDTfizr(sgg-=04xZTT1H0Sp}W%rkT9e}ja8{DI@2op9gH=y}h+fbt@x^()w z{Xzm&X75KI;0!rFuc8QpwEF=t{A|sN>)dy2=GNOvg9xNF)a3vUB~TgU$ft3ZYt;RDX8b8^r`|oMxi=8;papso8-J=;-XAL;&ap=u9aM67`vZ;MUSW zHA(8ZWP;xT5g-rIFezC5PBf8cX!lRlvx&{SWHCcx6_V+uY2?fKP z_m6uCz}Zh4(Au{$blchQ$u z0nVofM7s`w0;($iSit@_0!aK!Y}<5f`VCa^58gvCTUfW3sG$b{OmDg4nEeGZ` z$PNVFlUs#@;vqA3?g6Q_wgk!6#T>8IiXtUAohuHoPqwxT0D@?G&;0A(bVZuR=k_XcvlIL%bz4Z4UpUk3En# z3K3|sY2c8Fa_z`x5n5o+`nArYzCUd?tQB~UvSgqao+AhHRuoeJTE`bYzX z_+8L9i7jIiWgY*CF1 znfTTcEm{!EV31`c^KSoAWM#hqfON}w3#8lmEoxmu?(_PA;uNI%h0g&pahvo`Kd~Tv zX`#uWbC*1+aVboA349bZ5%BmpZ0tYp|DcGfN)RUByv~9imKO#CSjj)T6uCZ?uXHCM zKSX5qnLAk?*@2^`u5|bS6+0Gep6j? z&#C88h1h4EW2bEdFgXt~ufkDv*Xlo&FA}S)ui{=O|mJaqtaklvC-%Zs3(b5 zQAY>2xGHj@wuoi*XsoB+nBjQ$A^vY9umS^ukS2t}SNGed26CtZ_X?41+oJ%(hZF$m zhJEO?GBfvjkH^l(tloSyAU5kF7GT7rrzRp!Q`UGfbma{u4?x;=X z*xJ*QK06%EGuziEC_e?MO_FPMdD7#R_c&%XO6Kb_$RxKPXji@zTGjG!fARtB!qz-s z%eHS{qPF}o(RKDeT;F}PE;}!8JRm(OZsr5P=9K)FmHkd#e1WU1dTyvU>iR&?G>f+F zxKQY(QLskiHs#-6J!*n|U|>N-y>*Isx&y-T5xM(n8goYfQs2(ql-kvQQpUe2SXo4Ajc0FEB6W+QDB&a+&ez+9}a08_Q^Kk6)YuixoKO6i21S!^beXYOVzhVB>IUo=DdxF9BWY&Y8 z5YPsD%`j;mB2Y5rPN~RgQYEM$XjCm2-=D#fXY$N z@zJ{Y?F3@}s5_uDC^3KPO#aUy_}8j`>Zmm9q8rr7U}x@=?jI_>%daNakW$)292FJG zYr|k~^NBkbPYu7FBs~riC)dAtBzNS<+l09`OiJp0(D<3>I0C>sm(lm1(8&yw68X8b zLu~_`50VcmNq$$$z%BDnowN_iGxDMNM~d(%&ARCh#vg#o*JtTMbtQdw43EPE?WbiZ z53+)o;}k)1Rgj%^OiIufU2u5V9EcW1X8MGx1cjn4#l)?6uc{_<_sR_AQPhK}?q%s?5idBfHh`*VI~C zEY z{Sx5TNDlgvxS&}rncYh*ru3d=k$S$xuu^S5q_C{sYZ}M6yiG=!SsVw{S712HMyCl= zxJMaq`aP;Q=x}Q7-J$|{M+YGUec^F>SHBe#{<6@i!Krl9#(~$O7ty;&i^KzmVUn>B zvh{G}fDmxsnwRcU=2j|6?<6g|X#FrfaSmM?bNc=86^70pm!GkzvLb(T6Oxa=r%8Nj zV*}wktlg2lyWQVFFc~4er#(iV#5E(C)2BmyUxu04v;x!L9$4TDC5rWz$W6XG8n?fj zBncgjm7*42&jtChrrumN=;#F?c~IClKT}Rf>fRrXIVeZ*S9AV8<~o}&2*RY^R{u-sI+3X#O(RP2f07Jw2xBi*>{*VChZ-0&q)E>SLc z^iJMUuws*5hYlC9ys&wB@!|wM>kCimh`vgDW}HQyGTZ;b68XP>2Is#4xm=q-`@@&} zjPF(-jzmgg7t5z;&l23OTex%nT_Dd%k2YEz-|S)- zq@N^$fe*JT0dR>$#rLYS@{wyf6~Jyjse*R+oz3{(kC_b;IaNdbUc>e?#`-_+{2xlWf#ne{ca7)Ol;w+JtA>!fT}?qYAZo43t+G^HsMcqx|YQc{WV)qYl6$2ZT8MpB}d# z0VbHWFW}K(5cMw)H(>IF`Dj)=4SOq~^}umC<-~)FjRK4nCODv4%9cwTAXYG96gx$L zrfptywyUx4R|*nF4Yk6YDl~SGXGK zizY$?L8*0V%1%SH`vxJpUK!AZ0sNkOW8#N2rHH;XZie)A*coVl9yycly6baUtDM)= z-X`Zs-1rxG&;4Jr0HC0A#4Qz#HIJ8_0IA63H=)I=?B}{3Gip!6jSW-9k%~Rf7g%o- zuI>T6e#$jS*i(OjT%IrmM(bfyMSQPHIOxLjvS}aQM*V6Eap;@7UB9xVNjPZX6gPZn zZk1zL04BMT%(kH&wBh^>fNyl0@3~6~DQ!HUpu;;1g;;oFPGlbnW9~h@oV>sazuN=Z zQc*g>CL(!d3haO<3@452YjGXZa{#Y&2)i(e5o}cHWf_+or_wvrIwKzpsBZv3ii`r@ zcV`EV{nw;cs>m~x&dFhcQUIfr(|AQL!;=YxaacC0uV4MSN-L^3H z1uDM$UBoUyDx4jb*-IxpFQBz^d&zOy!sEhe3%+9$sh~5>X5X)tcX?c1U9=VYT(bjQ zQZ%0>V1e()ys=qUiog?PQfCx3C`yTSI$u$Qm4WAdy;`H!8#fulPOa{2aN}8yOI2+mN!R%OG6DG2W~;*e@$Ud9(N6970=Wi~G|_2nG%ff?&9JOW zT{yQ(Uy?Ke-9oP=5vqwWe(UqojGj7i3jv?Fw)?VCl+VHJb?kqa<*^=~KQyB#zsO%=DnISJH%h0Yscok})_jgbT-V3T%qr z6uy)y*L3l^1>hRiexv=GOG(Vt(G8`<(9zN18YOEN?F9cv3V4Q?rzF1RqMWEM{IaN5 zXAvTubcR(`kA4()ne^Pu6sckk9-+L`ffy^(ql6r97bmIBBWf8-fBA>Ou&4cK8 zsjuLv5l*M|@%id`t`*x4Zn%vyyu!`sK?gd>T;gWp&|KpFvUL8}ZYuWKCAjWpePz~r zxwZ^KzBt)h^nP`v?=qBlEf|yVc9#MQ`fY7e1iNp0zA<&ZGG4?os_kcdYwa1n0qstQ z2TN@2X@dQQCdWf8l>m}dCHR?c%Rcqq9gsno}mtQVyj7WYz<-`kgs|0w;SZL4GdV*g;EDR-fA z5I+_vycY$KA9vAaq&rwqyl|g)L)&)v;Hs}tueq|MI#_JLtX_F_ECe2oP2<=_;F(39 z@nVR3CdVYr7>8^`k?89&M(bivGX9F5@0V)EKdy$&VA5tpT2Pd`H^y8`xW<>xyk}kU zsI8{0mK?Z5#~BM7(grmgu%2~XVOL2PjL*aEG~2s7=IMxkZ9l5`@utinT%O8*gPWfB zgInzGunDs7QZ6?n3#(>0o=cjO#p2zv2TZz_=$hD><+cR%?Nx8b zYqiL+tsQwYc77$<%nFdi~Wc%%cuz|?7M9!E{<#Q&o9{X%6c!62zYX9F?FpK z`x#${q%xTBzV6y^8YC!xo1L+;ooXw=wCjsT(!(?_H!+7DC#{WVfFaeLM@2{eF^nq9 z36cn*hym5aDD$ev6#fRXTK3IVO5)xgI>Q@sl8{EkxBa?a?QhrjU3;%lTMMBlq|VoO zb>9F@6W}4D|M4Tg3qy{*pTlnT+dKot&44M=iFCIvMtW^|EidA{cL_whthy z+~ihFTjlBLt+iE(KzK^XM}7BqeW#L?MSao;IX_O*k-Sy4q)QkH3EY%rKkd!w;>^S^ zNfvf8=t^=Na}!cZXsI~AO3JHpcv*mVs6y4CQ&Y?i=}moi!j)Cf$uKARWeM&@CKv5a zrfQ`Tkzp=7MO1rGE_EFYS~1~XQz7GG^&_ttEOm8#o@_3(48AmHJiiM$~$Ys$cg1%@lqXT&?k#7>Zwx^I7-XQ zJJS~VBKbN&;rZ+z+qE<5Ps9Wp44jMYaa-eXi_D0+ z$@Z_nhbSwBAfhU6?!G-?zWKCDoNgUoca4+D#+rsW4V*i}rZAcY@7@s6O+@x49w_1E zaw6mOT%3etZ>R!+K&!@{SeImX+^WH6lf^F@JQKKP@$lBojqs?}5kTA|2}y-T+U>%r zB@5b|bz$mvZf%)IFy1EYcv7ib+wN3)-)+%}j+-lVJc(6y=;H-&VkWr*I(P7&;D zLe_1rEz5Pa^yaWmmQNjz#ieY-Pwifk+MMm=Hq7_o3+eekDo^4HW7D5BB)4i4on zE)HtInK~H5KvWp?Z-BwiZrK}<$3ZZ+g7GMT1shud}(_WFp218QdHEm_qm zjG$|-Q!~Fjf-IrC7P`L~+35uA7b<6ALYKe!NIkd1Y5dUi3PMUW-??HeOSPSi5It0w zx_G{~G0BeH#>WR8X9qBuXc{ZV_T;Duwi^X>`G3B8|9n!=@y14ItzcU6 zQP99|SI><2g*Tt#n@c&uZ;Cs2`O~G;R#YwR^uhoTU;DSM7O(mS)z5{Trfp(9)<+v& zECIF`wxZk0TKdu~)EJ3mpnNeTBofIX>w?Hc8SBJ2Y0Wp={7NT*z1_U^Q%B~pa6cNU z!N}zxL7PBcx6)Le$Q`A-Mwx-DxB0RrQ;asb%1E4D4LItk8Z=9u zGrh$4fGF-SpHK`vF$?`GoS18f5qI>A=QyW^+|)KNavk;#VTof?z_=P8^(w#a8UTZP z!hYN1`%V`70kgKtCVn2qPv)a?I`&4fetvMdOy7f4YmwLqO^K zvGgY_w#$-9fD0stFE$i5_MyEvA6BluU+aB^78%YL=m?MtP;<;niX^pnIL^Vu)^Sd5 z!YTwM6^g4jc9MWk(^bO$wZF*Mc|X4k`;*++VHc>=J@vEl*FNzRK~Gp2blrM6snF$U z%H?qK0)?{(wbzb%76W{>=_I)@zQRQby6#}UE?#=b6`Q714@Zh&IX;1$L!ennAZ;qBy z@_ry3brRtwHOa|sZi8Y`JcO8b7G_uKwG(l;Z$QpYc;I#1Ie_{>kT93oQXuUhV#+&! z1QJxN<=(yA*PL)~E8I7+`YKQ78g9|5A+qr+umGFnBQVY6@`xy3TkjjEThsBnp2it5 z%!v&O{AE9UxSwY5niwsYH`Y0@F}&%Fe|vp%*S%sQmw%XslB7W-bNyIjX~RlIjlMOF z9bS(Ke*W#hG+6GETlu4-%USJpFsL@7@;c+ zq3*$vL?_OhjxpL{irrN6X>~UrkxP3Ug$MfbpW}kTcpAKPi^Fo{OH$FH|=fhZg7L|s$Vw!rR>(NbwelxHRNvQ z5$34vgl#Wt`U~JMuDK?=4Sitng**lRdRBH{RpX(_zzH?wX8~B%9K>?W#GyjaF&?m~Qb%*b%5`TD0F4(BE2Oa@{>**XM*m-WU_ zl#IENkC3r%bTY+;X;ogO!6bAi1)b`5@6J5}*Ero@v17UIfjS~B7EFy>o4C3M&_ZyK z%Uo@*5%?Cin`x|2!yimICg}UI;|FF9xv7(3Ovo-u)Ah8B%2^}z(kcxc8dKZQnI?2j z1xga=@pNucJb>*LUrdR!+2Q!N$@HZ?gWz7pJ9D^N(TeDo*{FlqCv5KVZ%ru&E@Pmr zXU_2rCz;8W0WKU3xMo*AjmZ0%0tIv#gz?~~busoQ?AB_bEgILKgQGTf*(h|r>)R)2 z1OyV6wE>Z3%sf5UQ@)$R2K+fQ3qf`{ziyD8V>SX>H~7^+I~Rzg05`TsPf9M!?%)^w zR?MbIe_aJ!lB7UF`ma%z|24{mk9IK+_kc=#Y{)K{>Dp*KOb^}G&QZ*^mCFZF&zf3z1! zK`VYAgw)85;usn4lIOg<*?zUFU6rJ>aPc+pAM@@1+g0da+?fC4^bPWC1ntDL-P&QE*B1qaKy=Nf#E0gM>K93(LFKf87e4y(mL1@=_&Ilf1lUN?zPEM-{gR=TyT{;cbe5seUrKxUS0vpK@jZ=dee{n{9iIKFIshf?+$y z#VywE6MO(Rs%p5BXhb@n^P6zcbq8A>3L7%W=XiD4#X~{2rFybcoapR0S^^K2lGqZg z&^uRCv$&MZFX;mj^uWiXpM)Csk#CabXXTcc{d5Q}e4qsnT@rq;-0{+zFTz`KFhF># z53utBAHW)-p44tK&Vd$ExR(nI0jP7vjJj0IYnEHw6%ccag<-e0~xg$_9en22eGa|= z=uFu)PZkrqn^QkWFeYh;zDb#kZ3%Lj1K_u5WHE32v~)7uhop`vb*12YjwJV!&uk6(3TREvPMn)!CzkxV57lLlpUrD)x859< z<}-1;M^Pm*#Nc($MrIP+!#P!D6DA!vlczFt=(H~Z**>t>NA7tAqKVajo8^W%T*>P2 zrx|Bo^}|-6URp(7+j<2`9C3~ueLg#pH~pZ>i3fGhj~>i4ia89jdw4T-?BdHlRJDMz zLYyo_e+{_3A|V4o65}%MA5a07+F_6{?ivK1Q;q@xc}pS{Jua94wULGB zqhkL_lbBR#=#`?BY7uf%Lyu$$i0im(*>Yy9rqvSzTVa7B5Nzh#IQonfg+VsY`a@52 zNfNot2gk#GVVn{lE2~!_@)-zC3wfekF;)w3Ab_*;`{`?C>3plkJo@k0u_V^CRG0m0 z{!BNW-6#8_T8P+In8T4xAcqtHdwlslzZ?g_Vtz@dGR_2pQFw%VS8b@H8&U>snH<;8KmGMP>mu1Qt%OZb(;x<1 zrzvU*t>DGv93l>j4{_ceF7)0S@>!(cptPDiuU(WWdffxOy!Y71sHW}rzzgrDm>M}d z0A|DHz1JFhe#yFyyS73zn6*TXDoQ&N)OP`T%;^=+>)^M7KvT3N(NF$4H6jx^$ZMNPgjD4D`QDE187RJc}zpGsx!MWJj z9Q#F_JVQ`vOjBZjSVA7V6Dq!!BVlfok;@)#m;Fa~fk5M9>MRsOh%2lAOK9HmSdR-k z?}=^qdd>0iiwHd&(yAXci6qW}BOCDxRaLAHa)!-DaWvD$gE&bJZXzGK=SID7QmY8jjo(giyxYIqar)H!9Lqg z85{BnH%=7yzG#c@z~D;7@~X(mMu*UyYfS(3sQf3Xyk}YpqNs}2Dz#tC#cnL##C>y# zx63jX&M_wRSIonnYY&A%gEO43S}OWj;HX&ySs5njH`BCDKz#p>E$)nu->?E<=x9hn zt6{`*KT>7e8xSTb+^+W5o;vl_=ET`xeW_U%Qs$jSyfQF-S5UM#^^3rsNNvva=U^h4 zkfE1B_#~QUw6oi!Y;o{BG(7vm%;q>8#4zDXA!-3IUP0fm`D~uc05~C1WHo4CLPm>( zKiWvB8cA*Qqwu`QnC)shIm+?{;9{`-YRRH~k{;KPR^{Q^@daLbepQAT;Uvq{NaxjS zwkNr0ZrC~X`3I|vyo92RB(XBc#y-42M3e|#4OS|7bxVbF%fC2(8vme^#`9gD?)+s1 z!H$=;j<|6JSzU*Di*WODvv`7|khlYqHo zc3}%EeXQ{do;O!7;Wmt-x;LC)uQi6;XWI@wj~&YOw?OxV6y|9|6dzOXSUI$i1GS`# zMvLgwRr)ujxT!2s6K>tWyn`Lu^67Ei&l>4231)~U9a%051RGivmE z$C1G@bkA9Dz~k0n5j(Pc6hv8}1`yWB#Msd~85!Mayt`<@Q4vTdq$Z0Rrm93kRcwW{ zemkhY$lJI=)NCrUOw!&EMZD?yQs4xz$rViL;p-{f7t_61FUPOAVV4YF(&4NXLH?#f zfAk@VE~8kt!J(683yCnZM)!bGNZ}+pK0g@(aaG~ae-oT4jo2OM#u~d&-Y?+UOU#|O zHH&WbgfMo|khC>DOV!^5!A%?p=@C74LqLHY0Fg}IE`2i^`&r5U;jYamhwg8SFWR?@ z;395CDy0|Dh|bf;x82G$0s4X<*Q*ITr1?72emc2DcTe$$;_cP}p3HA1`V+D>6{(O2 zk1nT0Y^xLtW({)b{`Q{rQIr~{fE?w2AfW>JzbJ@6W>IV#Aei#E$-jYeS@xGY9}u^U zuLTI2V1AD)|H}_7ewoJ`{lUlF{5~5_s$F`hN~OpC_50G2(Q;^!2WDDm0mAP5qv!F( zy;sDqAG?M2NNBvK4W#f@8k>4IlWED>vT<Ie;=eV`SnR76+DFun_LY3&*4!jAFZaeV*G>;FIjhg*6HE z$>kmNVjLGz5ATK`M!IHrg+=?5@r$9@XI)`!L@ITLq8lgzmgP2{wPh>Ayo=jY_W7xb zI1)b?^NmGk`Jc^4r(1BB=_gS*Ip$*}6{*%RQSz-q%W(WKHKB>8I!h5tvXA$+og0!@ zjZRs|uC*9E#E2?0^G5U9^Z>EQ7`||n0>+XNHcoe8c&)`tjP_yu!aI_36z**80-sx>v33iL%$N zXYp-t_0e9TaYBDZj4~mPov}3IJ&iM`8l!TNjOw1mD_Kb+FOoZyXFhGpns$fs?c|jC zB!->}5vzXiQmIRsBkxU>9MO%(c;nc59r@shCj$=km(UsIPR?uR1aliEA(_;Ae3Hp3 z5hy02suoeRD;i9^xW$DE;=W#%>T_8^`F z#i7d)cPZ#~BKZ(<@f+y+vh4ABM@8PXzC~5clF+I_;f0<{=07leeHMXCv)+PGzx_49 zP?sU7|7xX7QZQlYw|GjrVo;cPsv|XB!{miuZ2O` z0@^bT$W5Aeq*CK+<4n0V?~F{um2MDj8>h^)?VR@JDS9#)QoQlmceped^`$yl_nbO! z3HG8X^00GX#A=WM2gD!>KxVGk)1Cbjef8a<{kETfC@S(SUEh0Czv|@&HJb3^3nxGS zYOX|4vu1b>+ffBl4Z8ITMb;u|g~AjLoXSvO!@zEds7#L|>H1F|_^TI2Fk zc77J4?i$(Sk_es$ZKQ(~tgjrf$tBA87vsb)MipRoad~M%-kHK%RlW^-s&ojrTcX#AS~|2FD@I1Fjdch94XjLull4}8S(Jt7XZ^&*xS3lVOY-jv41R;A~FHz{cZ6L%E56+Qe+ly#eST}y_k zH+-pcs3+YV5x39nxHjkQmK1DTDkd@^>qSoIZ5AgNta~;ZT;0KN&?(R4hoHZ3A*e&q zy%bR}B7!DUz>nk2Ak6AGLETjIj^555|8o-k|J76SH!$NRjl}RJl7hmJ8?zm+KD>SX zPd`XZ7W5OkfT8ID78huLBm_{nrm`7pAD9veTL2lPB!|<(Ia@A)$k^P&BtPX?@PyAS@^eU!0yjB}WeQ=G@%G+csVhsbr-qtzitr zNn!~ZB>R|UzwwwhXuyCsAI*A^4O2aSSX{Bu6BeC9ObgZagDcR0UyL->FNO#>&*Oun z_}q3Y%;d{U$QR0#=-^~3MUV?0H1-?xHKC@ni#tV_bF1kYIEo|=7b08Aa8T4m1P}Q= zdnbPA{X68gM9}M0lq`a;jOfo48o5pYd&~S-uBJ7nzdnpA(nTE~3yQcl#=rY+~OO_0xrnSb|#{CrVu5 z9*R=NRblxwO%=f^QdJRz`jX4WqV* zi6YA%ETOigD(O`_(sYiI8~_$Eirv~m(hn6By^jly0Dh2QGK5OV+~Y%spMOBzSvJC{ zC9iMe`}MjoHF;qKZoyCfjJmr?Gdgc7a&7J#hyhV>;Ed@&Q>Y1htr+`btj#f0v&x6> zcohOdkr6;th=Q?#F;d+?ZU*nsg5QwogW8F|fa&c~ttJMq!kE^q{8}}(9(JJ4EZs2r zs`$~X!>%>Uex}(>y5XE`^b#=t25Je21d?$Q^hqbO&Exny60?rca%li|Dx97S8;X~3 z69WP&L;xd~Ix6b!)s9K{5|y%(us-{~Foy0CZspF?s z)(EaYL(jz>IEVv~M+^?F(b}=V=Y7Hq&+s9!VNPIMKPNOWG881tWY^|yfu7IT&&A{DZGJAxiu^n z7(Qwta*91CfTJ#|dK?qmdx|hZ7}-A6tnwn%u|(DuE=lJ_IRc3&_Hf5*p?Wu{w%UVr z&M{i+<|B#^r;_2_XI2t(U2?9V`lyFnE{Pz%#L(Cz!{?I1(!D=(cp&c`PHpa@T0e3Q zku#^Md(&Z4QEeF1_1jyvxe(1^Lwg-SA zRK9)QEe&cYS!u&tx=CF3eA^d0NOBcy7JrBq$6lV>kv5Q(_?{A$d)R_DuNv&$Lqgs( zD*jbdG?{%#ml2_oCrZQ^L>~=zVel&!5EY{Ir;=RCSGPtSIYMIn{GiF$KTfOhS6}P6Y zm+3vw1YNAq^!_fcdXge{=)M}3)phOAUNc@ivt1m#C`+$^Dbv9fOKGeci_e&jfimg@ zi>+G`?GJ(Yq1)LUZBHDwj>KE-l4fmvd>>~XX2#mP*?#lpCDaI^(6?wA)hQsMN!J!& z`7O+x`xJK+G&MaiywNT6lvwY?-)d zWY7A_b`WkMc&TAk^XrD;iaN5^4;%Ioe!lghVPoI3$2dGO87lvNvieAgZjrgsFHXV> z!ZsiY_>u*TSq)akxAeoF)Ggywa#pUiA_%uVtLW#oV)wE5WGig&T>jE1jzRKq+5#Qh zVxMmcw5PWk(B|j5O)NOd`#F+PN<}TU)X*yZVX2bw03ck=o^}U)k}1aOVYelLq{D4^ z$vgHDQQi;peQ|JOgV0WUw|G4$&N|#nyoe^%z#ea3S;ut-2@P=U33POTKHNU(#>1JU z*$ua`vsK6~(DBE;bW~K3&*eKtgH(9<$z`b};6^V|z8IS-X9Hbx#zifLRt#$1B&$`m z)l^O!1>-8KpK0Tov-V}bjOwH?#a?hn*^hMYiKbuLf$g#)psjvO@A!MELI5E_O^qM3YoC{z`Y|HG8jb1|p_TD8CNlThxii09h~tfBICAnZDiSi|UXrsuP|?<1JG>;tw!TB$ zf2F}Dg4`GYk78nBC~e#c>#*}&il2mGB7>2b;5U%QJ9|1$CZu(DoO@C^4~ir2L!5E% z&nz4ta@+)@>DlCbNO;i;v>igi1Yk0T7ZnsjRcqs>T~Ud?swG^*7&ll>x|kQ>nt%Kx zsD8p{;DOlH`=)7`IDehrFAj7&E z9lOsF(^FS)qHcdKooT3{_F2Q3MVOtB?5eE{v6y0GtP#_eR0Jg!Vm&jLp`Z6>$VD+W z5i{Gn!VbYR_1kyJ%mvP?9uLxMdPbbRALFHw@9QJja1>z$HDQR-FOBqZSdGf7mk1EA zlV(a=^9qIwReGLi@7;1qvYd$rtxl!3jELky=%V~%uLJtmTl6szpUF+C1b&%L_9m#a zMO8hKXiQx|F$`O&3#)xyMw;YSM$86j?@_u^o|aMGn`nqpsfiO0ldWi1ih~Tv9QEaf z`Gt{?Mun%%2B-uI+O;LR6?00Ie&Ry{0@TT?M}b!?58e-SkLm?y0b^Dq6cd-Da_`(`wi0<%ZW6;-48C7^$VRiqY=?hU+KLO4Ix7n{8S%bP+RSUTiJ$Rjm>&|D zRSw+A+94!q;*jO#0Q4P>>>4)6Kmeb+UxrsJaP+pUbN7}1gTae*F>#YG8Dq4!$&M>` zwhvLhBjmlrL2Bw%fpxYazKm)*Fag~@oVPAC#ta$vsPRz`CISM0Y5qm~>FQg>In8@l zWWNsHV&2aMPWup!(pK#X(_TV}A*c~w$nnc+huHzPd^zti?YhtFNnz}gopTBimxt;C z=H5Xh>Erk~n3OL}wk^*(V*7Y{_SU<;!-p0y3UJM)Ijx)Mgl(6tFe z+S><{nzfmTvN{Mmzw9bAwsA|phYG#DC>L;Q*V6}weRmSO3e(a19Q?^14^U4yuq34RxndpRW6Repuxv^oOmzlW~@Nr2< z_w-97eeF^j)ctD$LQShyxVb#pe)Q4v+ZEFw)}ujH*)5lSOaqpJdVq-Ou;z!GPv0{v zy)aZF#XlX9;CwQSch88$lxxR7u`l+O_XveW!*UkW4HRtz+FprOMA)v&5gg$*gdDvH zrx2@kfFhP8!@L0>>aoD;qb4cF+4nK(jX#JN?7tZ_;&)EySqc5@WnNV%nosQ&YdLZ? zI=`zMBifM)W##{KMwRoI$)07Ewj_j)o)WG`QbtRY^pdVt%r;J=(oVQTf}o{m29_}F z_@C*StX(DN4R2O!un-9LQ=TMuEx zg`#XTE!St>jVczQH`5XHU$dAb@mj<0!fbPvZ|u9!JW~5v4#gOqEJ8sqDZh|mKJ53D zNoZO%IxoT#UiMC+rF`yj7Nnc`4YW#J7jBzrk;Wz-xlVZgU2KAwfv#0G>*I28XY=cP z>~UrT$0$PkQ-8t6pN!I9)*y+q7X+rkf7=}YAIz$M*<$~7@h2S>fwE;1MaS*iL7XT_BXjtJ~K~uz&W&E951lpLfgZB$7N4700qql zkN>@!9Q#iILrWGXa0s#OZW2mDXV}YAyerkkmOc=S**C(sKIhNO+^}Yfr}I*1#o*Bz z6#s;Qiskn`6~KP_`B!L_>{RmMw(RlpH_$Y|tn;^eb`-jKEgeF}iw4`T$l#cuN*Z)gd{Ji=_}P18`wjk~Zw7||rQcuFukPV5qYsdFk(~nP z@RNa^>Q8n4+1P?7-`|xC1n3MF>aFwdQbq*&ob{*7f3^KjCHs5Z$!7kdjeNkEW5)bh z3OukU{>z8R@<2uM^Lt|bha&%X>iDm}0`J7iVfbxje}2A?#kFa|{R%@LE*68kD__R56kD|_*c?Oz(EqT9 zx4N`q8)+7?1TecI?%25^=4CSI1lPYWM$7BU4Sj8;%xN3pUx1vX6fzPgnaCGvkg(lioJBi?tndwePuZZ)%=Br(Tfz`@D>%5hPUMH1JmTw7k|8@k z@EhoTF~qNfJ8MpH&wFIw+u05i3`6v=$esxiv}M}j!;8H^p-p;*`Rb0V;6)xcQFZJf ze&p%3WU9Q^>2$Rkj}GK(d9iRNRF``#s>AmJYh;ELw=W(`x^ewvipvaf`$;SJ%GQOLcvG;`p~|229GmP=uopYdCzp-0 z4dJ`%+s4|Dj#si}jGbhr(v*p8a0|pbNKJ2*>$#~&YOLMVy`i2hhtz1TM6>$D@rGc8 zm1J9HIb#Sa&<4-JDfzQu+4a9Dl%w%R=y7f9toqz(c7+&^J(6iozlmuAKY)*GzW7zh ztx5DtuVA&e+(Sp#D37WUo2~s2yVLmTT^D z0632?vfgr{Q?er>dL!o{*#_hrKJwP3IM0Vi`?)8NteU_+VV~C3R!5I)<}^%fd#)vX zEvKGJOiUbOSl|Df;Cx#H;wK|*uClL#CSD*1i$SPmJ&T}=opP<3xl*3%t}A+KC{y$~>2hL$EX>*%ZJ1)0NwofTn5D-1PB!)0YYJJsVIw90t763U?4@K3b| zC=QOxC02(xwb<`SQO##L*4>tWz&kMG%+iMp47`wP9&T!`cBsFt6!rI@Qa#WAy1?kJ zJstJD!HDal6KcF8epJObP$WRTF*|LoTe{9;%lGYC*8AB}k()hoVC6imxGYKHhyQtQ@6C0?-3(HSCkOc1-<0XMwM1a zV#`B6{3n>!f86tOj+rV)gBg&}Bt&4pke!HRqw;2T&a~phmih4A54ur*p2%nwTSznR zMXPi0FE;%RgaR;RX9=HD7rZxSv6GR-pJ&8?j(@!rLkMbj?KD9S3bX`g1Mwtodz?Lt zMgF&>(zC7v7+JO0tqHGlbLy$ z()~0q{F(oQd+7hZtK}#92&&Nf+;5<#PTqp2#C~Doo3#(M2wYHBk-tKGzdM~U68(8q zz~7!;w#^@L4ATpmChhSc+rxb2rQF2GUE^afla??@$pof@CM(C!lH6Ghgvd1G74``HN>9XT2y z(-2xG(Bpz-I_kA>spq8YE2=tg`>T{lU-p>Mt#GG}xMbs408a>s@W7on>RlUStS%1d zlD;z#w%~cog4b4o%%>j(cToGuxbP4{S#r4dh!`I2M5(to-9Nd`Df=!E-A~mm~*PCO;^w(*IMo-?((078erA9F$`T6mgdybS2liL4@PP?y+g`W7;p6z zA2gMIo?EE1%j)~-aGLfT*qI2$gLI@cgHFw-TstB0`^Q!~k9>Y9V_#0eF^kUwl?vQK zFQo5tt6aA6%SPFXUrpt*SRe9+_Z!qb@UTCrjb436zL}Sqdc&n2R~%n$?bd@x|Ik2I z8JJ6q%1^>O)37ls@$TuUx(bqy*LLq~&x;VlS^d+H1PH@ventbtR?2_VrBfJkA2F*&sQtro?|(9a+g|l zrULN9hpP~J7l_E?m%KL2%~Mdv5_1*OsOY7lGixf(8vvkOX%MLa-3r9fG^N6oC+e zI|TRO?iPYeaCd^cyA}W8_U)P5_v@bS{${3U*7x7FVAZOsbN1e6*Oqs`@AE!SySjkQ zA@~E?gf&y9<xJS-O_gm>Q=AUD{6*2wrU0Uv z7<^G4p@GRyW!dy{mmm75_NfDnNh29C_&V+--7TAgxsN?0MKewT^7CJODP&lH%2|mn zvI+o!lF@q%iw5M&VW6vL&%>NdcHGb^FU(4MTi{J1hxAawM0HB=->A&4;TRIUEu6p7 z&l!Z`*WFUq)GL*=EuyhE)zb7ojjByb%1l|$PgYy!%Hgb(H(wpa_MEC{xYRPSI3=`^ zSww}Vx~w;%_AE5UnN#4W1O*;(uuTD|gD}=hAjgG-WAW??9XhD#cp7*nHoT^;2w;n~ z*RFAkE{|LQnA=O}!leBFFiB_@FP~N}Y>T@TSIM_g#|Dzx?!mDKEQP?YSc=KFXSm%b zBrAEJSssIkAQ6J_kO5lI;8h2R;2y-42FnIA@ zhwq1A5j5ESFKiGX3FDCVxceSN{_Ds8R?I_f{lC`r zaHs5_iu$$mUz+gnF;K~0R{z`k*gy|t5Co*FvX34r#$)?U{SOTV$_MB^H?n{EC;0W5 zektzv&Bg{9JamEB751Nse7F{p5)CpYh35b1u^;OFH`R?aB)$G0B=3%nThdxkK7%}?HWw18TBCM_HzcWZpl+v_(BZVes@`LT-C80RE z514rzkCgYx4?nn2&mEK2>n6Xl!Atk9CrknGd7eb061MEUFEl#p%81)@=(0 zzMqK09TAMA8WXc~Ehi5d4uH8DFU@g=^AXzAq5AT4a3z^zWOHj^kZR@yp7* zD60iUtHYk24}~EFPGcBGwof${AGXAcc6B@pZZd^yv`8L4sK3Fyl0}5L-Zc`NSi@@V zI~<1V_7f)QB|F{{;wcS8LCFB4+Th+&5!|g9>|7&o*wW@7Wp}SE^Bqu$Cs=Z&m?i4X zWO#3pJOyX`VIu15NV6^$m}G0uDOR4U{R!JA+SORb2;QH``8S~w$l@zizyJ`kL%cP9 zoaD^1&`pJ@<(Wde6dZt}XNxbt;l6rCD8^4`hq&cnX~u6x!64TU-#OF6<7$Oozj|~z z#;zByz7br+2Yw#9P9KNZuppkX_za*ho3;548`Y8@%pdmQKR^;K#c0U%xdAl{ar7FVBEu9WOFMDf@h&~el*1F}QsB(Wz} zk)FqMh}VI9R2W;}bl1Pit-)Mx1njZFhtjo24hkGF;VbmTw655qM6~W}CS72Qa>7O( zE{0BQcdi5Y8ESUPt-Yl%qiJ!qc#1HimH1a63VwS)pt{P>zGT=#%(AF5;!SxQdmV`Z zYfc=w?}ciyOz(WC>w3BE8h*cV`*{LI7FGatilCa_2fiL;CRl;Fuoy{@w0j`7buRw- z0-br2nqDxb(TwvmAZyu!lQEYT7bQy^Mv)oFsR__OD!VptNhtuiWi@-f$WJJ z-Yn#?eTSA~UdsZ~@J$tAcOw0#Bq^FJVK>_xX>bBabwN=6vk*DY6jfreArwb&5lGa7 zy`&8=EUwGIXA3YiP+v+1P)p8bFIwES!_E{Tfm}20jXwIVgDhc9!k){84R{0o^?vD>XEP$ej#Vs8c@LV#@&;t#Z@*EGva8-f zdy#=4gtjhJ5d>-N92vc{n`_xwf2~5QEd}BhpmwoIE^^1VyqlauKTdlh&S#u42gz^r zYyPPUeecb_G+wwt5bBZ$g>POF#Eo61zA5(KY`ZmiB()8{8~ku0C7E0%Np$41eW6Lo ziN4n2aAa8>e<-fHHs_25L$O8x8iK1{;HhY==cpcBP;FGiV z(^n9?(Gifzn&~O2=rOc6YVd1EM!}3Y?oL9&NHQ?s%tQu-wSME_NxjC+L9LG4BJ54i zoQh+9-jxhukS5Zr#(KL!7|JS$x9j0<={a4Itz#)M^g9kt)1D7(nf(hv-=Y?X}i*_sw;B3k}zI8IKMUrT>9 z9f*ZC?VNOsNcvJ8QsI5>kRfTS9KlP!2`|$u>ke&%B?Y;4X#f1wTBc#R<)#0f?_<69= z;~u1jg=QSrMP2b5(>@f)-)XpS+DvIm@W~tUmT5$pFoq@6f@QETIl4Nk3k=;G$vM_c zrs!eMo_|6g$^Z1i#guz=ejjgB?Qqg>*Mr84p>mB5e>Ildi2nx>Ow=Ms*>PtOlgTYi zUTygvgnw%hYcG<)!u_H2f=Y}b{wC11Q*ia>v?Qn3#x_6Mlr3eL{(V(kmnTanl@B5J zIOgk6ceKKdVHI!xKFIK^p6XpY=)WRkP+RLe*sZ1(20{^t4SqH&D4 zXMe241to~}Qbn^Y#*kg9Nxvq%n(Q#FEt$UM-LdHoO+4LNmTo(`ke@8VPp`@{{NCCa zv#>XkTA|mC!~Sm{b}We-*Y1zE8&8htm*cDCa%L#}>OSMyHF|g00Y_!=>&cqfwc)6Z0xE}7>MfJt zJM!X=;8sgeJp49J}uv2( zW}x>e*As0K2=?Zhw5=t;@k{?ABf)m=^u?bd)d;D#%&<_*AK)8nfLNYYF@*KoSHDtu zckiYb-n2jhQY9$9gADh}$E-HpG-HaDFZz%lU_KTIQn!A zl=4p8U^o-J8Eb!Sf)$ez!;@Kao7v<qo?PM zCVugq7RCgW^~fRJH0?3V>xkE+X6{HR;;`AwevID25+=I{A67TR3P*)rW#*4=CsE6H`*ZuO$&JUmP&?G&7znLsP<8tff#b(GA zsOl;?DT0^^lT;%sEi9JEgOiZHh7ZgLO12kp+IwARw1yr=R^=J~~h0txP_% zMCO$Fh7&ukH{akgAeNy4Xq&8pdv>BQ4@(q1(Uh_!fDZt*j6~~S)G{FF=k=LoOM}bC z8A=4dcX$34Vf)|q9YV_GkG2}lr@}?1g6w-~1}0&TmT_m)Sf^W*Xs5_L+DJLX*wwv; zP3w8+6wj@@*U{VEB^B1TpYnfPIS{tV)+GH-6ehgTn8)ziDP(%9YkN;C>mvXPO3i`{ zy$0X91Hqx(dyv^~Z#8K*AlGb4dWsPSY~uhaD(%C^ty2&(;OgXmzdG}-paMnj))$KF z6mbs{LIiwk2T<~`^Wr{6|6}w^wHdKHI0_)!rui}uJk#*%|LI}_4~~pq2l}~LD}}yEJ*=n^U%l+v}As~#zD-Ljze1u$H+=DR1Zd8nL+pZ998TKfkK9~U4{Nk<1 zuXU0B=L^02YlWWv6D=h@`D4WVF>U@>JN}Hb*m|J8dQ0ZrJRBdB|u69p4$vDhyZURY}rwv(uIo#bT8< zz8Grsc(mXUfzJ4Wa+hHmcC9#<-JH|>X<4^ent8Rl(npq=c}Xl8SE~8s$kMO;FQ^+$kA-**USy3VWSCTOzy~{PDhbSl|muArO1C?0(8mhgj zB%9=3&Pu5`qKII0P1ur!w`hi&ccB#^CCY#ov)OJn66HQpLi&AP-xg{w<_qSN5Mb^Q?QIfj0*eH zPb^WSeS|85wPDm_*IUM7GeYvl^2UT~-pW|X9;OU)BM}=3A245iupM^$7vhQz2YV4l zQX!J1l_$@%Ama6-dsCDZt=oRz_Lp;D%2K0K&=CSxf+V7CRibv(_oD>DsN>i(gRFsc z{Mj$7jZ)R1 zSMIKubA~y(r8)av_FZRgI2**gv@Q@y!D)n|mXS|ex7TNi35j?sPs9zmRqN7RBV>== zd~^Q{sUv4PC$M)-H|f1`1b&4iw$L`V`j*^kswkDt=68yv13RUg5<2Pev*pX=2@T)z+?K;qWPJf@1q zMr=L(-uF-VdK_`$lpA$WNi=pAol%kVg#p^!KlE`^wFYk+IiwAt6H zdVB2M`N!mi$&i;4;GS0GM}GG+8HKH~T61%`QYpa1qCkh?Akog|j==9OY)T)yK0va8g*^*}XW9tbC?5Yk+Qu zz(IqzJ1wvP>bemTx^SvCjdqNcN<8l4spY0sI_pxPx~zg zarRGfLQlS5+Y9k`%vEz%vxrA@)nBjk1`x|ufKct<;V70-FmTfZc4lgbgrH9BRWXuk zKAVrp+?JEH&~-_7iB+9q!7)6^3P2{#aUM)s@tq2i<|~@wc(IN9Y$Ds9DccgMye>{G z60wHoDNawUa)^YeUhSj8w~=Y5W~Lo%DLvZ=#95cda;XYs4N=mKzPqh*_Ka(N3IuAc z!C!mUc=3HF;T~}nWz!ZMm*KI6psQ3i2J#CGoVWJ8Yc{Q^s|(bi3CRdY+*?*#W!?`j zW_<>#8{ko_6N{Y}^om-#Q?tfe=zSvmu8dr%Rxsrty5QAFfj6)e*)&|! z&L}vI;3e~ZzL~9>8LxEkG%;kvYv$9BRRk;sMy_c0myyf~cG2qfZs)Mmr#~8I1FW!) z(JQ*J({(Ld8aL1BSahG(tW(+8xD3!oOk2p6{W*o=uPd{~^8?Ckt-oLoe#LnH`T|q( ztec}270AigpL4O6tiK28m|Igrny^UMX<@OfKS2qS_C1-}Yc9SG;))IJb*CYMm(({+ zp&YROYSn&Jk_A;5PEtg$R-P>$1DzODlqSd>bHdW13 z-VJ>W@%bumt{G-QJPSVld?5(_C?iv4H?ElZm(@D4(ggBCWMQkwI%T65LMBnjgb_pD z;CF`$U*ooj{hHRJ%>3 zI}-1#BD_^XCkRl_K83E#A_M)VEbFoE;ieyj30 zmbZy@uMT&SD2hPtA^)ve9WW;{ADA*m`4kFKa#SVi8}*ue4lgvKk0AlBID>%8WdUHM z-HFp6IRaqe@PGg$7z6T)MD}PhiE(MFkyh2%Uhx1~EI0Esu|~;If@yqj;-~FSKe-Rd zj`=gw96f8H928v6N?=VauB;i+qij0*4jc%ez9howQ3IP6{<^U*LT_n05`*0#gZxmT13xP&D0@)qnauI7x zv5FDa+tNJe=SpsX63N)G&D(1V3MdvapY8c)@WC=9L^x7RW_)8hkWUyOiyLeQUmSru zQ(1&|X>JRLtLp>zJi3VuwBwag!OR_Oqf@PNHcoEXOs9+jXMHssM{hR@Sm?m(3VgS3yASdd?VC}&i>qWXIF5&XILcx`T1^J(RhR^NP>+J?}V{GNg5pR&I}@~ z_5(*ge=TWs(rD@qaB9UQKQ1mXcbNrxnXnjhEXnOB(Io#3es6SoeOdau?}PQ@MHY!a z5>!{LYK@h+&RWPunnFL1M2|1WYr6OYWGktEdLS8=m)j@1Joej<pGn8~6maH!{7vuhe)IFxHs39G=YKu2RXr>5 zG$o6I4y*~QxVmUZC9OD--xzPK{PtMP!0i* zM2Fno0)8&Y(_2&fOc|h)-hXX+zl&-0oH7YS`7Y9vJ7ZJ&<8tvRJ2b{wjJ>E%dHa|U zdy%(LGRbg?cJQk-ys5<02!{O#wL!}B(kWY8GyuTE|Mb?3ipr8;l!)&tuKt2g;d_nf zjb_Enf@uv;1^2*S5N!o!q&ot0t&Y~$@{C#a%Pp?v@#Aw~Bn%pjb0-o4ua*qKHa)k5=#RQlWR^UFx4a@+DG9`4wpZg6Xev`$ zJKJC$&50py9ldb_3xLMk%hx$~|1qO~?+yIf8EGLa;2a4 z<>utlojgA>e9Op8)Igx$g^4S}aW1XX(R=my73s*=)*3yOmw?=K&{Tmy>o51(09GjK zx6G3qTf3?u&qq_z(c0fR-9lGR@?H#xCmN}=cGE0(zp5c_5yV@mDt4zua>F)$d@#k0ufY0BTNQ zQGe%d5dfOl;~lkBrEiTK2_Gxwr75TQI-MDuby@a%p4a>E z1cL6EFExIi9m@FcRW5^4btCO~dw=3>3=u7R^P~L^pZzNc_<#8eI#=o)Y^Q)jGlScw zxW|oePFd9FwED??cdD1TE=s^yiJ^XP4hlM_#^`(PDE#oOzxoP(!9k-%e}8xl2j-f^Z{xu*skx@g3HgX6>wUkvnd z>ND2Wxq<{*9c}^YzOQLfEXJ9WYR@00{9i<{pFejy5+oYPT#-T-=e4#j(iI3}p&Lwt zJ4-`Ny;Mzbm{SvR_1v_y%!-E`WWm842tK;ZRITHx9A19`33QEIBv~Wo^dd-mOw$pU z>U<;6A!Dp&WP555uK-pe_hvG=#w{?nW2$=cRwD++e|myT{*n04drCglyTtfoJ~;<_Z;QF)5f9tu{( z@do8;gg1!izgM*P*J%mJ1Zo_vu@jyYsfwY-p?#qCdA}V66U+M_`!014){YIq?!!<9h8cy16-!>1)nuugB@i$gFP(iZgIiJf zc+7&ZfG{?mJF6d=ZLDCQ3FODo+`%9~QGr9$WncqQ4s*ejncG~3`ye_)C^jvP!e<*K zGLJO0jVj@gfnLXXDgy&ZD?P9cyqwSWc2EpJ{x&qe9XZN50gxi)s*ECE|;{NI^d;IK7v1tfbj-Yo#{-f^cU~lGG zo^9QzbU}96Kp65|*i|fGn88Pk*-@12*g*?nTWctwh5(^QOP0eG2A^h1>Z(($dP;Ln zYxSXt5Jj+_qM7mr?9poot8z>jk4*fWMw3cAUKtzKrckEsC(;?^+prdxj249MeOsNw zz`4*ALST2a72n~MVjWhkqq086gJPNkaFJgs9XU7Gy`F0>AeN30sL2pMH|K{F!>8PP z7L5?q17?Z3o`?uz@_!;xAG$lrbMd*m>m0D~T0)wEP?C~9aVX9$v%_lH;j#f>Q*_G< zoW)g$WtGVXmJ{BC5UaZHLGhO0LsMcZxWI=hp4CgI=9$=gW(>Cd!2UvCYi3J=Zv6%G zS}AvGBTs8g*;o!pr39M#3i$UW1hfY#xdt>;M$Z_n^lY7%)*=NT?eioFdrNfnf)2LS zYUlQHv__OgRS$ou$o8QknF;`kuMu|!C`JW%e(kHlaB-9uA5i*~gNJa`eMgr|Y0UTT zYvDk<`2vMDxa>E-5=0}(KZub}Y+3c4zL;vF)lh$~pzR6#CbpZ32)8KOu?lbQ#5q6u zD;^*3%a&zAh`q=SDBa)KP)lXj7 z_1xrl;xHGhi>RKW@1bM0SXECXyzU-o6OiAUMml6W*$wYjBdcZ4A47_$zL!_AyrLd zqF{lTK3Aeiw;xuimLVW>E+Lnbnx`jz=n$Eq?i-%V>RD@lwjCKxvV$-spZ5qhicfu2 zq(libRrNKU$If)nx{6%va06#wD=i4UXQy?g$XQSb&B-a^R%<9i7pT%P+qZ|lkooLZ z_@UC>aWvXd!P%S|@|2+XT8U0b-L~QC3mu!$mH_4?7WvFX2uZrruH-v*#LPjNC0T@3 zdgStt^UH-{qFg!Hkt1FFxgLB+3>QzRiW9Lh%C7WpETk$uZTqdIi@4~yk_$);jh{-k zeZx75^DmBFN5OABjSyKSa6J7%*R`ZR&_pK|Bii-EL#$f)ZC5Gq6Szb{y?ucR#BmS0 z6>+6Wumd=na(7q>6PwW)BEwI6@F}g&^q|l>C zg082suvq%~AOK(g1_S-(^DGd?$4+1kS~CvOa*^zue9Bi~A*U69a+i_HBqPmLtR^2d zU9oLq#AYfYs+h6pj??AKX9HgQ0IV!NkPyRNs@uLz=vX@7@Y26P<|AD3hK!Nk;?rD? z=d)<3B~`q5!uHT0GeC@i!6e_|T@1+hMsyKKv7s-bC#9lsntA0RazrS5I0rAKApNQT zZSq$s`EdY=;eZ2|swY)Yfc8XGqA7|mrA_$As{whN!-l!0t}kLkR_-{KYXuxvWmC`6 zbQOPA+L!wp87*2v%L0IPd}Qq+JpuaWXA7h=t~7EoKDOc=4*-&6z6scCq*yU`l^3mM z!2CdemzL!1X1}AD+rwMO`XW9CsiTuEBQ$|KRhXsEJ4FJ<1A)5% z!V~W9jfLtEZZRi)4d!%tCgyDHJ9J$w=k`Dlw4DetCJM-1e=g1{^oSatE6CmcM%`Ew z2{+tW9my%UI0H;CIzuuN3=*V4qM`AA)1KE7RT;)%kXFJK4||va$R=6yil%%fO=W^W zdCD)%dk=jLX(d<*yZQ+^)NNi-yVHjB^+LzmfRp`~yUy5%rPODpleU^a%#6g7)uL`h zfce9vhumMa3{p=)w_=%9O26TXy9Sq%1Shq71 zmR1Pe@$XuIoys^Ayz$H6y9b5Ph(h{0?(+O)E}3saLQvWkSVycW>J$0~B9fwcf&np$ zMK#hdMRX(4#IqJZJM{BZf`aKf1p>PYo6tu&EL$Wn|ma!tK`p27tXv;z6(@F-CB&P|!C z_|w#xFOY{{Qs+{b55Q{ip+iyeZcT5HAgs^&ZFZoVUHd$#$fhZ;4sS;!?RBkUTD^1R zg4SAkZoZ!tExnbUujuMnp<4#~KPDB?9}3M}PFz|O$!W=n>Plqq)qG6cEgo!4Q7u7| zHu+YW@2Pv67qQeMnt2M%c}?!fW#`TxnsCR;$OiH(+~zslY9+TJ%D9>o9R?;W{d(KU~V z!~FHtUS=U0@ahYlNKinW*hpDxC_W6b!3>0benldhS{Sj-_9F?h$p&gZEF~j7L7RXa zs@Vewod@z2lt<{-2@eOAv^Z!;zl;`z?e3a0d~* zNn8l5MCCx9=x2Z`C<+tgG6A4o z(G|J}3GNx+gC56$Z>0bhm{P#VOLMBY2l@O+g^~kUX;lo!&~KXc_gXRZ`&Q8Y7q#LZ z^zY4hD){%B@qhO4@0)@Bmz@##`_2&geP>X6KU>6PSSH-47-w7|1sIHOKCcLE@Au*e z?#p1qOl{RC7neMmS9==;a7Q=}`_i4Q+D0sdXUdOHRDWsS4lLeO-^zWMFWyX`umWmSSvT@l0yiS|p4!B38(!aobX`)R zzQ9G7^g7UY*=J^+U$p$s5d!W(o2peWkwDuF(xwj0=XfJc-7SPxs&??K0gq{=zdep8UYs48=N z?B-Pi`Y!rY;HNbLwx7oU15Z!1r+TUpp5EPuWym!uU`_lif?TnL6)5bs?t)AC0OzVu zBIFjQc4VYl@%>n+U>eJ&j41+f`&P><#Xci;hGY`p#oc9OAkZy z9#2ng@kmt%SX4Wims4)?M!Hpy?7AmxOUAvC$b9$9@dcEIxR$^LZ(u02-41iT?EPy0 zRw--hgnf*Hbl!5~SgOA z0mcckipEIOVy1nHkl>H8SM!QxgK6Ap=;L=xJq|nKmKdPY&ddywa8VZpBtgG+4cJHIXO z$aQu5QUf$I)5s|~UpL5bzh8;c!Z!aS&yEfor^Ue$b=hemGIxPTy)aHt{kdp3*hQhL z^j*elY3^>~f`qK5gmr#C64D(d{^Y%}vqdyBJoT7JP3`ZN)K+D<^B-oD(3;NHC%3&x77OpaK4vhot!7%Dgb z-m85${zNJyxV^c^{M4qtpRe=s@;MN-j0*&B0?F$aw*X+BZeS5fN4X6$IDP?X0gll~ zI|2i1FQn zq8GPot*@@X9b8fuhb*UJXwP>&S%{rDENkmEdQz!-5|YVxG*QeFbEeF_Bb$!6ko;!R zoFsFkeh?{%G_Yz6MdJJGcvFV+(yFXgtEaz}ET-PuVadcz0+ zf<k=$|dMiQV>Y51FGwznU=k}=<|HM|GCRG9}vM!`!gM`Cv{sZd}Q zg_1``16=~N4Tx43>;q<=8~P_l`a9{VA9)&t1ily)FPqo!+YDePX^xA()Qqbhm0^4& z&f_hqU8r>qrE!^b&yOq^r9^}G9K^|Vnp*Rbmf*)+wR34}-)v_JUVUWaaWu;BwPyR) zUgOO*;?m(B{kV?vEoSOrJix@)2kh+{$wr`e%*vqxl7UuHwoHk@SE z)cPx%#+;Y(MsxR+HFKAk_-vOYU1royoiNE`-y6d{2I#0O(r^a%sH3cSNyc8Ox<$%{ zC^_v`ZbS7erNnmawyyUIA;wh`Yd8Gk^+_26d*uWwA5J(B?LUO)^D3XN_2V#Y1O=s^ zsgI;XKAtbc)NT0vF5>i$ug?GDS3bf;W|0PM181fWuFFlNGRy1d6V#-wqwPegf(%LM!&064c0$011TMembn6HMe1*EWF%-35WTNEM;KBs z_dvWPj131l({!gN2H}uRxgl7M)`X^wTZq}kV;R+@K*VTIVhT0z(KhJ$rDZm~b**{B z*Mp4(EpdP7bmLd%Q$S;6v+$NN%k*|uO}$<0hyfFxW~@{*YG2v})&`Ub>kY_msQ>l- z{$w6+{YW5dA@+Rd(#k#z5LH3`d(MM@b!_@K^>KxuFP%rFnZ+f{R|@aB`F=7Y^V+pg zq9?r&#!&m*0_5$dq4tZtX*euu+n#xJP!qo2P>PS-)>!@Xh{!i7e@_J=T$KsL%l}lf zYH}}jzvtrlQuN_b?NX!&mw_WUY9S1qL)w#nEQAPCF8%-q!V#6k0)ZSUQ$Qq@Fl&L7 zmti)f>tTY`9v^xMx3CZA!=^_g5m26!-Ojpz8te}nMB{X-j~L__@HoiPnlw68c#?mZKnax+mbhx`tt|J%gik!Dsdp)~+DX)G zo`5Vb&0C!oh?T=}Ya5gHQ?}*R)$q@I2HJ^n*;{EhGrV~c{`wgGoxKFRo~#h|Xc|aR zoJ+mdu+@yIu8BV|Ol^lO84t%owiWJ%ZwtP@=po_P3Av6n3w|?0_qgp*)DTl!HXF=4 z6}(5WZM9#pAGd{$fsDR*2O>CCqaq9CHi!UZMD5t{t-8qJ4XDUYI2~K>^hUy~2`d%o zm~H5gce$|7VN8Lq-4sY#K5U5uG+=z#64VL`6h1?SwG0MhwvTMZnFOjOEXaZgD8I~t zV0viMU=unsoJ^gJt#CDC@_L%Emw~`pFQesZ)#1J`cK0yP_BpqTd?6S@BP&R8lr3V{ zLhZ25s$|QWq%~Tz8s=E++w&jy`R_XBHxuQ5;J!!M=jqnjt&^N~3>cj(0~;XpB9IJr z9uGrVc=tAe_@>e)A(D1LZYdguurI>%T74T&{@MSpV}SWaB2!RuH54mg-`08`|=9<7WH9 zK)CAV+@2^mBMuAUla&TG$`OMv%`c)C1G;Y?4Ow_GH~R z8onpOgifD5r}6E&>_TdLK&L<4UG^wc_2h_59_8nL2RS|Rrv67x41e=v87Q&hf2aQf z(kKWu@+QCWthqf4gWl*IrNQo?zk^>xs&p-l;fLo9su(iHT z-kN~^xaE%?`xg!vq|A6Kf{+;h8%k1u?fY-L+lB4zagr?gcFVf(8Tz_FAQlPmThIx? z%aU6!sA!6Imk3;dRlSrQf}%I($FQ>SgE{F(#dG24uSXo*rO@Ur8T2vQeL-kB^8srC z`x5;i)4yHQUmDpSlX=grAI(_8E$>VFf{$-(HLIek{j1_6UT0cY2n1E)`-$C9Tqz&T zbj2vFcx6k;D27Q0QTFcQ|FqERI$Bk-Ob-Cu@klW_w;t*pY_UiCBK!p9ARJ-~xwU%HrlY576`uf7 zJ}K2=3N;MA;-V^Vy@&xc^mh~0a^xEYmr7@OjFK)N$O3n4TW8A*ray$rc&tYaVU9ZF z(d(gnB%lGg4Lz2W5}mm$pB0b951pK`ue>Hwz_e!r^ddpt!=>lA-p|B|T{88s)5eO5 z4b5G$#3I3s`9kz(9c=z(B-!~L+2oD+e|oe)ZNc}zLERJxaPET-fCzxLe_BWrr(%$z zFy-4#m`-A+)Ygyisc&K5$0XmXwDi#kXjEG6c6X?H!99B~qk$)e9mq{e>=M#Qm#JwM z;e9OVoskmU;SGD1XEo44>G~R zOJ_?q|BNm^=`JWB-?k-4K*D+ylj_5EK4$G(N`M%V$;zvr1B-I@K6Akv%;QCIt3D2B zyuR7B+*MrXRn#xl&jcG;+b21(!JH3%DDjXf*;MA_IMB1SI((4{%TOMk+VF$^4F*x( zPiB%+mJqUS4A`uGq8iu4aTck*OLy%BV0S(QC zS~IdIAm%t87*wa);|SXaNY3pvb0vS-kVyi+h%-;A%o93AmSg9PLW8jHDK4-V659xsH9BTn_3AaZ@g%# zJ*?!>IG@A$2dCC=i?98ee4gc?f{Ac$NFRQCVCF!C&Qm05CtAo04Tzf z_Z|eJ2Y4wT4o`j>OE0fsw-zr^fW`Cyeehxt2{J?~4TRHG{{*B^zLbP|Upqq|0qbx3 z!}^O{)2efdFxq^GOA4h1a1?(u-12j@#@Go>ZofLRa2{VQ zPKj%S+?$_=Yk~^V`$aAY<~zs+MB?L3{131B2#L3Rm6FX*X0nnw=Tf+~ocV=S*gwv5 zx}*eWnsjB$D-ZP_*fq`c4%OB?H+isa-d`cP zEWZA#%Pi2Tc8}QtPPNO+zI!>zb1h9H%6|5iBOy}l`NT7h2E8~;)E7|$!`}xM;=8!= z-An?sdP+QmziySgayrXu^aSrkzESQP3O5r~0Ng!4-TL{k%!YFKc5XW@F zM!m#;A72=YOu(~-R}u9@z}?gQtHzh2Fzd>QH9r!?<1E9+;o(k^+yn$f4nLPGJcGoz zmvsoXQm}>2ubh6+V7~TlEGK;<0tcmm9h-2T=q?}iN8?n{sUR>SEcn3ug<508*8?jk$N{%-^m&9KTj@Kvn9!y~UCKjH zztJh9dHPCqDyESqg3_dc$fMqMm!h#lO4SkmIx@)9IO1ys4QgJs*|N{occnIc%x3zvl@#LJv4SKoL3*d29GV1{qC~dpAEH1xp6@QJGz}pX$lM zUNgq!5dLX_-dELTQqx9I_qKZ%^1&Y9@ZeC&9*^+)yy<~=c;3}wqy~g2>*{%PVnShS z>@ctjPI078VJn-S;uC3vQvoAjlaR=`gw)TN5!X-5Qzo^@i$$vgH31j^63cI*TVuO( z^gt0CtT3gb%uxfbL<-u6d)@93|0p?0Hl7L!tygo)%zpB&Gh75+@0N=;Wn}A*IAZiE zglvIPRL~+8gX2Gjg_t{K{Co+5yE!aoLvlXN>TD-!BouCBhxo$|ah2p#)n+hmq;dL; zb_)bQW#UZ&$L3~B^c^Clve6`;*vfe()wckgnEI;?msF=kK&A zIu__kD?UwofNkE$k;87x+WW!s4W{-P)wqA@D%+bVmtdehE{WYuE4Oiq8Z$7k-8JKx zs!F?Bmo%ACLmLxeXg@`Um$-c_IgE#Y!WMfVJm{h0j+SnjHK*|^l4imJxpY%7#-H?a z2GjOtUdw3I$Cw0u>fFA+>plEWJ8BC&T}e`{sm8i2WGTcqhGlVSjM*<9aD!-c9I_Rea(HQ6wA{C_AqOWQYNi4Y4{5K&*2>E}sDA0j8$c z2mp32g|sqe0&wS$R46Q9ptQ^F(cBImppXGmQ$q}xnuOq6c)$SpoH-+NmAZf{^!rl8 zDpOCujSRj}OiNOzhXnw-dj@DsgqecZAuehNx8yV6+e^TO|C0@TD?$QP2t6!EzZ9v2 zTpd*aR*4DZGLSzD$ilf>G9Wz+GPwtxtQZ3}(9i=u-yJ~2v);4ZLVeNJmDU8r1_Y8WU?nQQ5pEr`>_;8MJ0 z5mf$RQ{mroR7qTa9$cZA=Zwk$6F$-jP&7;*`nNCt74D@!n@xY!miikXA}}t$MEzP) zy*(XLoR08njs}6^l9HH&gOr{g*4wT@^%00{$m89lLNdLgkZE3L9dl|O5Bilk4A>Q& z8v-nbz)W9E!M00E<%FiFHf=A^#7Hu{nM}3${N=v|cI*{1ij1(uj`Rfw zz0$UUkyYILp&Rv`4aN>ayoEc$#`0FUvqROA55vX;H11(+{#C@1&9>k1{G=Mrk03r2 zX%mLbcCrejemEHr)lP13Y*<-a5iZ7u70kj)>#)m0fT(LbH1t@?xMS<9b_mnVg8A$q z?YrT2fz@|vN&ziI(Ygo4(s zB11kq$!T=h5-IdqF&S2cat+7Ns3vuaf@mK5Yw8mX!Rub8WW9q=_FSK?W>WZJJ(st+ zR;{}VPljfbGvdwW$nWH-eIQ*rLiMU>*W8n#MX|OD*3J)&KrEpJ5K(xpx%a$O@bT;c z@z%_{3*5Mlp9#abf<(FlA>pWe=&vFR5jDfbnm~>=nw8Z%+@hiei)*QkXsnfC2TofP z-rQeq&Gi|BRgU)c_`9a%Ux8gWTsw)g-GaF`Lcj3SKFU(hUPxXBB;30VtHyLq_naS- zNWSha?}&kY-Z)0rzkgnGdCQn9BlA3*v=#OV^O7kYRo78 zO<1t}<%cIRT~m8SR@OAQTXxEn@8P78e!P;0!QXV{ua|wyOBzsJQ)IC`u}v@8r5d{| zK8^8i@nx)#+&zd9?3}dX2r@C9$=)w1(z=pXksd{u?lZ$<)r>)>UMCBu5Dn6mZ)~ud z?*tK>uiOb7wxPb3sTyPzw0s-ECjH_6WA7`Y>ROg{7fx^p?he5nf)jM%?g4@Xceg-D za9Fqp_aMO?g1ZH0;qC+oA$Z>0diObR-*L~m@7;g*PsU(EX3y@buCA{7>Z_;_seZMm z)(By60%USINP2542hjU;i{%QD_TvDndKO&5h@cvAzK=WNDjfJD7K7s;5S&@B5mjhU zwJdGK#gHpk7n)jBU3^U~0wEG94UTg^BOHfUpZ!+&*NWm=?^B!=b!jp0K@>?7L?dsS z+|59W((Abq`Q%$7$>gaD)7A_t2F~HByx^_mQKf;Yz~|@Zyu#ZJg8mmHu0-*(ifm}Z zoLPKtzJm64C*(o?KVs15BIbSk?9ne%P|ZlWVTpxG4Q1XAzz2?&`&cM}+*ECu3k>!4 z8!y1TvomZ*LLUQ9u$2xym~zZ^VRK+&3%1^g6X|C)^3@luyxezbQz=$p5YjB)osG%F z94!vvY?CU5e;O;p2>a5k_v=G2*+UG0P8W59@vT<^CA(-8;Tv2SqaXd*3$=WSlr1xr zCzN1%udVe`RfSq6JM=XxIFVqG2Qga(MzbZ}LxW#)Vk~kOJWhFm2UBP14_ufr*)279 zcUpYy6av*Q&cW^0|Wb2N`j|`!nT~IeF_MgNg$}~D2D4) zApX)OVz!4_2<7gn9&{PH_2Wy6%g!{BredXTAlI-^1gNy~2%5CBrR(KI(;kSkQj1nb zifEuk8Aun4Jv0t;&1=ud>!m!XRuUfM{i;@ngdenDdOgFKpOvivxwOs@sWh=W%dcu zMn-dfL-^hrcYzIhU5-U6<6a|uef?;I$Q(ZoL-chj z&8!|Gz7pqnq2ZKw+8JDiG8l7=63~^|Krv>F^>51E(g6fEa0*|(vNghUE-7keja4@Q z4BiXnbS*}&t3?$ZaSrCQ(5t3Q6FHL)j8$o3==8N|M|;A0(6$0p1u8=-%;~?|-Ntm@ zCZ^X%8aAMz^JH6C5TZL^o~HWjc#rX!H}VQgZ20r{p802J1Y4@Q6eMfQ91jm`y+z7G zH<>q6ilNKGe0nd|s%Ex(m`>RbP&GU$e(xhw4eyfU=|8YqDrD6=Z#L7$zq!KShn+mV zt4A*U#B7{4YU{M+X|qc8ZbhDUh-XZjZU@eEx?9i7F+e4{%xH`Ag4GExWSsRB@?^d! zcuw9xRWNNMNOS=dWjeWD9yxpC1ZwaQC zOp23)6+s^3&!?ximOZ7z%NOw+6ZKj{HeM+DO1qfAlkzpL z@RJWP!)Ks%m`UwODKoOgef(tA1sTfvXsU1@YDO&zaS$$kQrb6$0rWRyG`+;!tN3?x zbulctn$>qr8gGZTFUwyQL}z!q&r#GNg?zG%m?FsbtE?{Jn|j+EhB_h6C8J`q+-DWz z9^F&&tAc1$%k`a$5o_%|_$vJb_}PCt4*T3xV;JxW)=J$BC---^nQ zN48-vrPGmWNj0?G$9;95^2+_YP5!rA@xS{JiR2t>t4FYu)J(bcC+G_%_-$=LV1p`5 z=LK*Ln#AvLDDEAL%hf{zICuag^DFh!7axPb3?P`9gay?UDWtUhRe`2CpyDGNSAu7+ zF<#EXfm}N}ksDzEI}>P+Li?_>b3!sm?X$XyN~I|T)#x1I&L(bOkgJysje66&Xh<&a zwVNU(k}o$+6i$wb>jX(Zb4r%M({0_xS;snL`t06#gB#Aoi=y`&maMUweeXiXVK*{_ z_XrCuSgEci-}GeAw2R!Bj^KGQFg5l!nm)} zbwo=;R7*rmjiPhw=nGS#xD=FS{6S-hcUnw-kSG! z6os)x`&E_qxSpfNsEQnB3enm3xfV|et5}vRUVZV7Q^6^#Q?DFYScI;_N@%=Wqal5( z#wc*g3Ec}XzZcsn9P&(dk#d%5-S&e8!%>=mz_b8&S(IS|Iz*$#NXTG`xm{9C)KGP` zzKsd1EUt#DMDuAHDmSKbQbFlrA-3U>nJ5|A6L>xhWQNsR zXXj;e{j~^|OC-pX`yqx@oH(i0<&tp&A`oNOcGj{+)bqeyVWF)A_d>o>KY&r@K>bBH zT7c*zZV7WM(e`#c(~4*qoBfj4mV8r9iYgb6nt=dBE6$l(PI>l4PIg*qV9wJI5Sy2L znL)dJXwJNks~~oAJ$!iUdUWz7G_VS%}k=S9QI#U+XLHovH}fR7?;nE@n1`j zb^Wb9?&Wtdk7IBHCQbjNgcx`#nP~jCPgVZ*saTCLa9fjz{Ij&UaOoUFgF)%cGmNLS zvXb?CnCIcshdg_zY1}Sye&`N`Es2h~!hrDhkNhKr#!b?qM&QH5_BkE@ESRoqeM2=& zu}IDcWS{%~ERLQ!xejFvF!#!Te24#g#r1D5$bEePCVu}WA)V+V$qjgXGbX&i* z%LIlE6!b@xYCL<$(_6w!@_sGmy?ik~(9Cep2xs(Pz#sn0br4`D4XFGQaLkSLm|&!e z+;S z!c)oxzHdXPvbZq31A+NXNjrj&j~NRMGp#6*2_G0QAh;ex>#FdL9mE+Y#IN2$t?KsZ zWiv<9dY$>OrJPdU@<-9pRmJ!Q5fG*uL7smNN9Zcej^Ris6YD}cKM{d9$AVw2?!_E zG=D4ddNlnamQE^7<%H(-T#MoPRSulgnRb~iV)j)v?3itd;Y(%g#YC2xG|&q*1uRUb zI+$t6jnf~@SAkYJ{v4sxGGI&w9ou(xuSigG5l>pdLo0zWOMPtR zKlqlmf`nebjh@69JrLEg8Mvz=<7{Q|$jW8~c{hY^%sCRQDm+b|t{_#WX1*vqp3G~~ zm<$YhE`zk@@l~9RZiMgCW(f|KUnUb&JMFwP*&}jT-1okE&|n&FE>K8BN4jR7>W(iL z#ZWrdLtt=l-&YkL>XBhz(AkizR*oh6Lk$tvaw*t@iSEV!`!eT5tCotut2 zv+xV?QH#*Q9x%0qp5G{J?^l5?P-(@rLa(iD`Tnh&c7nl?kr`cYZJRwshC^&kohcIh zsk+44BqR|AYQ0L>T0gVX=AWgR?#I`I=DJI1vPkmgD-9B`^k^l1L~qjRiaz*#5`;bq zrQAT)SRHx?kQ@~3$T$$aCVW6sXWP;FM}k>N)UgglkCTmN-Gj8z)aFRDXrRX02vC2` z*_%%mWenko-Hr~a1HO*UZG{cb8L9o#xca+bOe5PI#+N4%&lB#9`xsxr_Z1pcC7r+B zQzrB_`9aME@%3A+gCTD$I!qr=*(@_#I>Hl1HCQ83;87D+vS8?KOobysEH5+^k?GyS41%55MC?Y37<@2XerUv+N` zA=xe)a^tE7v?F$_+-(L5T3w90%wfKfxBv95Ww5*cL zE%((Zdjat%mF{#}a;i}EwwW9~dw1Wjb+qajC|$VPgT2nt{pd%>5;;%ql{S#0%kh02 zGHhM#QMv7`^%29v2)!cu*coCM2OR2P#`Ujddxl9BD&S}TfRY!IfeAJ~<-JwZ} zl|IVXTS3S~N8)5i(SCH!TSXDGi`3J(#&xt2;G|Qe+uTWnXbJl@PS&{2K9KY#>d27_ zI+>7~l)cPNKy7!Y0`tvU6IZ2{$6FGjH0SrAKm#I5^3Y;E*333eEYuz}=hFc(reNVm zT+mT(9CfmSw501!Rg5R7LsYyM*5kC_OIQ^t@mf;;oIcaX;k$tl*nv$KHS%+V+-cn2 z`w$wN9BOtcfK^Lb#tU>M_)D0H;sOn*7OHBf_z5Z|i2z;x-^Gs%5bv1^$HV_t;Fs&PFsQTC5dXsfOT*;=FheqQ&p3`2DB}r_E z69JsKMgOY1`1>JzGroE2iwOq>+nqekC`H^65a3TCqL4KFZp_po64im?PVAp{Nmfcv zC)#tPJz_ReQbC{MA{$QI{~aBY2HIMFot9cb+yw2!-j|WxQF(=df@|UoNvsso)dz7Z z!WDuf>DpZUFSUPyyd@q@i(jGPJF!y>^gq9ge8fHF8s}6rK;)F~A=c#RI*<-5vn@8z zO|kWwqItG_C&N#n0lBn8dU7r#K69^781VYwHRqmScw4s)XAsFR)RAz)E?msS5z5OM zSrF{0sO&lR5rVJD1n?`%0xx%7sXDa^9u@b5rfy_K^DWT&WuGI4W1ZJ*dkX(4 z`^c`Ni5Xt*$iBuqrG|#2O6qVNJ<&TxP=koG$}8QvbDAxuU)SXzD~Sd#Ux&~H`H~X* zMhhu6_r;k&A0+`UjQn^v31|cvN(PnrVQD%VfTJXINhLGBGoEN?Koh_E{LL+MKwHjF z5T`mdrv>bXu*rZOg@UK8`lPr>4x9xV_5w36ici)7SvQ9%lgqg^vP2)I;R2 zQI84CLLQIZ&tKg|bhcxBEAxB*=e<{fwXn|@EH-Ob7{A9n>I(w~K2Ut`7khxQ-97YE zTqHQ60?MpmqCf2qeOd$;4}Qf_44FFU`rQoyYptkTrC8>Cs( zHrB^;$%V^+m8$JkF{WT>-!6UPo!m_~U%2#VJ3QSUWm~@!fau6|SU7TV$mt0%IBdLo z7sNeS=@GwRNm5}Ag(OsBVp&i6w>+;W^_ZU3r07s3jq?tS3sOkudbR}$ASt)c!2j&N(e>0^TiDU^;7Ug8UF&=Y^;4atmY!bj~Ar-=@Sarw&%U5{smCJ>v~D~<4m*Kdn$bZVjg zSwb1nBAyRzoxU)z!!n@)^UI-avY* z+j9ZnU6UgldXDtm)LPS%c(Sxq|Ii1cti*T;%6m_oR3~2^FBSb%ihh}5)Ix}pk{Kc( zT3?_auK+ZW8oG8Eec&QAMiR7BU~T?tK;Sind+t&Q!R`SVT}8$Zi4%08P@3c!1tO;eyI0h$qH`9E z1Yhxc$QKK?Gpa(3t|hhSPaOBM7EcPZ)$7|J%Z5zCaT263iAuPEvQ!u2)9oG&7}C6S z6mBf;#9*xAS1KKs_VxTxXnB?bzfb|O`m7p+vdsq+YfE&VOZmu!=@ zPy9)>FATsaf;5#sFlyLShXn&eNjJg|(kbVeA<*y-BwpNFGdwr+O^xx-LQ1c`*pdxK z$VQsepbD#(fJG(iz7p~lb1C^Cp9*8<(6c|U{gO>p>KzSYnH82sYv z=XC@zjD7vAjE|BJ*$6AasowgBB$0_(Xnb3DNnCO|Y%aMRxL5*xIMx*sR=yU_iNC`@ zob=i6qi;Vwyu1ATKosyx({~va*MBFBv-O6`2>fc}=qOBiUe1dKQvNaEg^dvurnzWA zwh-E930fj+vn7UER7If3`IM2-mR3XI?TwL*owYN^m{P_G!Yt)|#-9f}NErnQi4+NW zZR0am8MEVG5#gVw86wQgXC4<+awE|XhGPKIQj85W>Ph8Xs2T5TgHP#%%z}w!1sG6r zYDqDaLBbf;g_FqT?71^1Q>P23Ar{N;gPJK`zyN^4F)M^&0~qzkTUIWp!N|KB60cP~ zLRhD;!qjzGWe@`h$5%uCmI|Y;1#*Sk^nUlbCf5h-SZ`8N?CZ(d%)nYXQ!M1Jed`MH zKxcp`IlMc^%*qK2?kj;@h&|ffHzLC>W3c$Hw}n{Q&)>(o$?XZlXXFJf zNkvEDza|1*I=K%1y}O1%)B8x1{3JnoN<2lQ86LuweC|YSts>noE-l>rT=hi*h}VyI zW6+P^?p0KpWl~ha`27%1#fZ?;aV|NnyOJg?7;z9>-rv9bKP^)Jo23?TBwre}xBs-R zL1XP%ZNvo=KN!xU2qKfiIlXBd_uQI}Op^nhd}1_gx8vE%l=bC529uOy74l}gl7-(wMnbMEJIo>_+h@*uFZ z&#>w6G@D1TKrH^sg4wQrEks4Lic1w@N>)5EMU?Sb|4!67E(ky^#IXm^oVNQv215+2 z;24UO1wVN5z|j5n9WX@empRA?2L!h%;B# z!b9t|vS#cP!zj|HgM$KF^&s#sIVzZx^24iJva(gfDyb;vtnz`=JV^Pd7sz}PN#yJ& zNHIfkN*1bP-srl#T0@TFU*pZjhrO6E3Y9I%!I=A}ARJ{&OT;jJ*2WxTK0?}ZuohfA zSO7Lqc&E~_%|p@SwE`K1fb|W;H*Uog36s?F(Fat%q865e@lAfp-c7;1wmSM%2xs6& z!Mp0iQQuk|@OC=r%fG8%aJ&AR!Dn>2!kG0#K)du5ydmQak^2gxG9$&S5f!|HXDIKy z?U2<5GAWAhW(!`&uaLSs)qC%pD!dtOCWzoE{UA%W(kg_7C-o&BybnSL{z1_H;GsnN z6sVj3&`-HEdyBBO6wdtQGwO&@Mv3E#~GP z$n}0c2cWx}&08yEVp?VQ@pq{K-3A2#6FZFn#T9@)jwqZU-xn>@@(=yN?XtQlRDjbx zyx&8W7=(O9^X^)!*dGFx?poX*7^3biObu2WVhBWP=g*0E@sNQzcZe0+xmW^tp$353 zQEk8TmuhoW^+q4rPhSCLqz-XF8ENv`k4LdbCWzM$$=eF!?Udy)W_0y=4fVPB0Rf{Y z(X*WsiYE+s*2UGq^6CXAJoA+yq4K_jsVSng({{^!yrbBIZFtsZ+7zm~*w+!Ew2hXU z9N!trsi7B&pZ;lx6k*?dm5;NJVE@s2%T08_M-_VL<`Z+_V6a;1?HN#bs00>?Dt=MO z>)ltlKbBsbI@&RN!ZYe$X_d3`!*4)yV%nLg)J2Uy_?hO^lh2Z3k2ouo0VBXFJ^r#t zrF$`M_TS}4julSL68d};V#_@3zyfgNG4TQGnyv#)S;Xb;&H=9cv+n|RVtuf++aNL( zx#+XYe4J^OWTw$RwN+YV%?u#dKE7j3>fIAO4^sdX^bcYvzX2p+@!Z({ZbvR{Qfchxnz= z&V)f=F2z^xPKbnDIx*ze;~-B41jeLNn5#ynR7hnp4nx1BV(wZqHdfimBh%2tDcFOy z?fhQi7Y49Kmn)y^w@S12uhZyhKC^)9fJ1ALHA<>2no^Y2+LI0PWFz=Q6Z1(}+rxxu zG^#ZzvE&rF^WI0jRv$Fe6#lqXW>!f^`bH)r(%>!q_pP{ZZhN1m=aK@qEzZ$9X9H@L z@_92r(XMR)<#y*g_CrxHBd3SrOZp|&V@`t1?)B4O>^C^O!@F}RVU7`Ph4@SG&C{rM z7FEg9C<6q+{8hu&C1r*gCJ@+xUGFAxH6&8RiPb%UfeKLrDgv6U=gKthreZCfKo0|O zQ6rp?_FRRVbol9#NtVT1LH{3UGTwv~&xVTfcB<^GNWu~k*>cE3ow{yGzYJdyW%yPu z9?S#%K%4Z~`EOow_*J2r@5Qun9w|vf_YH_yU2(9=_n+*ef|UKA7Y^UTWVwfh6!4T& z@GM1UuJu$6e%U%oVmOeDPU@WT)D79Ak}ajgoQqf54>3J>L)kd%z*doaWU>!gBmujv zqGT(&mnD+g(Y$`HuF^ETa7np!QDU8gxBcgTe4nv^JT@wy8=0dqc}gfI`9WjHR~PA~ zgy78%>cer=8~rbyEWLg9Wvc?;#)|?pl{mio4}j%QyvVM%_^rb zFL=>;n=m|e`}e5CPvzjg=glwhaXPx+`7)O&aDQvaxhSwJz(ZsljgA)yL23sK)|$z} zJOMVh9Y$e09NMGam@Kn?Akmi0!b?dXd=T(6n@$soWwgO7cl3vq97Ssu&sspR?oG;1P(J(7O3yv=(5Vlv2hP8W^(H0g!@R-g#k}1V zyEN5o4?JPsEo|izp5EL>b>3)=?Mq~vqf^ElNti&2(Vt7{r8ha+L=C9k*EaQCEP@yW zuXt5aN^zE@qzw6;aIwvR+=b5#WC%P>+ab6rt{<(gu2QB2Q+ey&n(N_ZVi{I~5_7bn z0@{m{Xc4V0jTV#WE5;h_XHn^eS#dm#+GkJ$#UfcWlVqK=mu;O*FhT4H%ADyC%@cpn zm&UqT*5pm~QuKm!|G^}s+m*UcJDhs3<=FNP&nZv3#Ml*en8I*Hr?2i_3V|CVz?C%B z1^~gKJbpE;BW)OA0&egcXX7x+I?NIH#p9Ws4?z#=UB&|jUz;mS^$@K=BqA*p$RZFX zrUTKRIV(?ITT(XbXt0B_@f>|T- zsDo;rR1><;pi^pMY;ceUs~QNSY^B#u7Pz~o!$q7SEzkS}9dif#1m#xv(}@N9(9nC% zmIVEWqtthf*o+ivXa2cq#}v*6g4&8z^6p`m(h`Yi9D@ls*~PsQ-*DE>g0r>GpG+?# zMA{-jII$j&V^~~oAY$Qx5?Orb35T+5y+f`qKBSWY3?q$xB0oWr+W7#h1mEZTP_2hF zz~*MF-vteTbFJsHXm$MAdj;!Z@Gh)Sh~*@wj^S z;{jbCAg_P|WZ`7Ce~#PV5y3NoHE!>=hI5$0%|yVMf?p5}4;!#Gk;8(tWmsR8R5g-b zN2(2dI}4n{m;gC>efHf?kS)-W$i15;a;EaqpM2x^tDj0~kFYF8w5ttDw&Y`|Q8Wvl z&zHSIB)S!}{D;fspXV~1r^07l@8FScmW{zgm)cN2 znaZ1i!t6v>t4pV6Aghj4#{*yR>-7r;if_bo0bd^gPljqfizaQJYPyY=TB7tiL8~EN zdiCQE{G6n5F0sj5bJJF<4Vz8JW78e`V~w}{)6G3vOIH%?&&}f!(WBmR#Ar?SH3^# z+n4UOe7>(s^4sgs*PMjq6WpBy6)s-`xlB3=5`^d~B zLwnBr%T(vT`+B(`{>Yj^%X;@He59{gtZ$f@v}Vp7_q%Sz{H|L*VvDJtZoX4i1vp%L z1&q#?0DudnUnKYCAtOTn?im8)aJt*xAIH$(D7`mMKKIM}t0s$Av9h-mFP?v5QgvGb z$`V&lP1?@VrZ;>uqFr?%j3IkwA|)tD>H(Ac?+u~vwU!pqHUb*kgvEAkW&+OW=YN7? zk7o27o*kCTu}~~^{3>%GF#fB|ivd+PzBn{?(miss$DqKHxM~+No;{^p*6~rXk=Z%q zz7oyn-JLCD!r3koHpjk8fL)cU+0__@yiCsp5FISY7E=7jphdS_o&<*QGQcB zB_Es#@ape9aM$zM`oW4k%}jlL&@0mgs3`J>fKgjL;7W1@SP8?&K&KSqhIiJ?UHlR5 zwDI)j?)-es+UiUyJeal@Nhb>v`=^Cb`CSR{`RjyiF>!=s3$J6e znyvbGv6uDZ^C``NFSv~}bg!CqTI-LDDbYQ^4El%th6N%1rv8QJV0CV*k2uk#x9=tT zSP4^4iP*ls?QDo~SSh)eMuH^sFRh~fLELlMzv)4BeeOW9SAYipfU}Jp z`RDV!UyaLO}>69cD{FF6bu-b zqx2}!l-Og707tK1R9@kCm2VNNMd|FgdrckqUVCQrE~CvE9Fc&n z@z(tfW>dWVt|4!$*;7zZd3xwF_6!=<$X8I^?}W7Q z08{?agcH|nLOlc6cT100z;Uq83-lUUy8}$qr)RCm-E)^qD(HDbAH71g8}yza0|T2! znPXmxE>dKAsP)YB@)L8q*j9~O9j#KRC7x^NHo2`h+vtd{>jlX+$j-HX{$uX@_sm<# z-s;fZLv;BmYbh*aagMApakOuN1vWwZs$m1Tf`LaZbe**)H z%gf5Or1Q3dokq_z)}$0~`(m-<}^QLkD;RrtN%k zd_NGBxx_`dp5tp_yyvPKq=}Wd%t89U_`OI&!|&ywdJ5)|q1!C{AtMoZNLI|G3fce zG{|4#PIMod2sJypU7lK2@DF}#Zu+8|3%oS_<2_{A9(aRR%Nbe1@bto%dy(88o87i1 zns0oKEEDE6N(AWLBbN7H^#LGF`QHbB*&qMA9{;Nj|KsX_>OqcJU7zMqY2Gx$_Vjef zle*bBFHe@-fB5NvI9bv^84a@|{ga}%NZB5DE*^OpMzSK<1f}$W&ry|de)PFSp7<;B zg-IG5tY?30AKG#S2;!1q-wSB31<4`h<*~?PgS6BFL7i}uC?NNLdhg$xrhl+kUiI~b zA?fj6#=R(cODE{82}4N{njUL)95g?|X+(9z+!KG47n1Ccf8@1zVR*Tc*3bcSHbjKA z6tHIb6BJo;r3M{v9hmj`Ce~SPzn+b;IGoUjR|6(N)W#g7+{XTP#lr-)3rprJNcxZo z**01#=}i8Wk+e~MAo2Um@El9siVH>UD&gyx=g@J^xXV}IK9RBg*(3t5eV2fRsL^20TVso5n-1-9o_bq;;KufKHSD~u7#T#)EpJs|e z{i6IDjosx<~5I(Ov7byL_B)q$!GI z1{??!K#PY7634q^AWrR0KFplE`2Du*M6A>A4gA@%a%JoiYyp<%CFM57XC-xoTuc&e za5257GmuBi#ntk^!xJ3mz7EzwN>Z=Rc-408H)R;myZ8l{3t1abaG7P}2VMSKuBxzzE2Z!no{y;!N;? z30+L4(ZE0^gfW4Zsi~88`@5+(@5cy8*f*vbcZ)IBF{HMJS9K%g$a{On=O3-cL|-an zsK8!3$gsU?po6H4`vBgMdrWPN*$jlQTwPvCHwKtAdcdD^W{dJA{!N^#lb0_kditQf z5>FCH8k+Wq2DC+s>Y{Kx1ddD@^z?|gX_>UuPwED ze5wq^>DL78&QY|}{jNCD1JqnkTpuS135N(`7Z34X{3i*%zsZOFcmMKlpfS#tNDt02 z04>Ltjw zvc|j5e}aSeEs@HRu}Qf^=A?N*|4TtZ$`4iY7$B3R^iCyfe{sU*>f)GsbwX515l_P6 zMhnJ->%|Y+EZZy}W}vACLqzwF-e|{7UNFyP4W>;BoExI)*luh^5?3JgQvdPO#&%7% zl-4Hh;OW(|O9K%m1z+vDrWwa!uutgmIn#&`!|-5_D+spiBgAJ9wqD_NW;*u17;?(- z`JqRg;E=sz3EsOA^*DIGt79p-7r{!S3m}lP+>zcKSbwGdZsAM#If{^ofksn(Tf{Jp zrOhX@zU4RO@!X{Xjp|YSR3MxJ4q6lUo}%)~>_NrLm{6A?{?KFSYs**o{CqAis&5YYz5lV5D-G7AGkSsb?O>9n`+Uw7S7rHArRiP#My!Sm z-jh$zjq0`S9tUNHrT40MvFIDFhd#5+MiW(`vi1diC5NhB_SAA>HHIe*N+rge9|A$z zX5(^0xy2S^?E?+{qk>}<_Z>uy4T%aY;P50DdAwQ_$@5^7&Y+5SSu>1_4OiGB*2y$# zDs{#x7MA6#U28mV`!1^9;HjiECsuOcMYzs|RGb|n7XAn+uV?g=EP45YzNJ3ivcZ!i zogtd+%jVz>AqNukJ0&47Yr-c0RwOe65CvJwGUAzpq-}iNv~1`Y5!Ahnl6uq+kmiR zNY>h}M&ieco7T>TLqRgh<^**Ia zzp{e5F(qGs@$X7u%Lt*%-j+7e`L;5PT|=;8%&b3_iS~^My%}cfZVFk(AIa-1%|4`9 z(uFfLGcdGUYSHDL@~E66yh{I})G%}A7H*z$LiH0g%M&QOUH-YJ>K*&)jaT`>@ktZ+ zXqs7d?OaOFVBDgAN1yJCsOm7~F1A^%p%@~}YPn~vB^9d`uE>{|a0kiB=?N;uW9HRu zDCDcX94{nHX`QQa#RQ(;KoDi|5-+uh>CT}`D&^K!ErUoh@y|xfDCrTKH7Mfg*DHl< zpOIV-lATNO=*08_ypAOPD6ZB8ixS1r0_8OY^PHy*(Qlp1!clNp zvK%{Fbf}sJabI;dJ4s!5ze*8+4_Z=|dGgUVNnmwf=Csz{zR;#-O}>G+mG=UR!fPgn zRj@=iG-cE&0U#U$UCeAnBv!V9MoR4KGF8_GlLc!>yrKwCi9aAT1mY?B6_^K1h%?sT zzcZzJ-BR$w@gvy6wuE&nY^Mo>ZA&^%@r|Un`7sTZl%32IB-oIOhE9Jn8{`mfD*lN+=rd(gJiu+_x<&cA`4Z$YeGMekq~l+Q#%3tERPEgVthqDgS0Wlz^a zB;Iz%&H8BU`FGDT+hh@*?cB%e1NcGVYARi7XY#M?3``%rpM5w(#i1m;QH1q9J~pK;gsZE=ycM+mB$|bpP*af`6-QSojfi}|G#36F!|4CY+VEL^yJ_q zT}$L^o)Mwp^dD-$d-mjIcbAIlxFHl@TW%~8w(9ER^v3&z-7v)a=oFLoU?W(~q#LPQ z7+T&l{RCkIOavD{!VNs)1wg&BZ|=nIp9J4SVkFO2vo~hUr*k3}&4p5>A_6~{(J~SV z5CRE+h@|gj4D342hAWj4qyQ&%&jYG@=4qu}g+;n#vS%<+xCofme7;zP%qUTl>N#y4 z7@P}qpW4v5c71#cc&3;X*V=1P-QR|SJjygguaD96d?U#eokO*jPh`iHi>`~68xC}m zLn7~Pwl)2@Nx-Tn54J6{lhrUpmL(~7g1cRJ73yknxQ`8g@%glQ&xAp*dxH&G++;K$j|77 z5|;b~&K^EQ^6>GMoX2V<1KcN`@EA-CsisWQ-CFe1E6+I%PeFa&iZaU8xr?@w4_S|d zr_}Hqda8oko;|S4MM>6^eltsv7aqiuJD)dny?zm1_AkQI3Ajq83m5^eP3wwffYm_h z>B+vt1ibG~FJRFVMxD97%m8!l3!rIkXn;)dhR`90aeT}N!Ayb#Q7(#>mlEqu8EtM^ zi&~KuKjlHZYA}Ydei_qTJJDA8eRF9e!HN*#z%$^*pMQNZ#no3}(87npaN`R=eV&r_ z0IC`)w%0uk@Yrnue$%}0QxqQ>V*~}(cyUy5m zeAVW97;E!XYr`q=+E$M$=K?@iL4sHkU3gIj?-TR$^>gi<1~x)NF%3{v?vY~dndkK& zbj(b^DbSgwbMf?dQ3F@zUqwyv#|8rSYKGJ#i=WU_iDF5-I)}SOQ)zJnka;lZX&|CM zsFJvTFU;?|`BHu5O0QkE{7(COr$!3&dofpi|SYoa(&fo-9!Y*bNgxPKJ$id1Q@rycRpvN>yb4s2mMJ_c`*npF_brPBOKo$&TD ze+VTW?51v2FuZnFE-WCn`=>VB0ul$(6~8D}YNg$N7S>do7>!afw9B3*id!0oie@qi zG*4%zrGJ!MutT@IMB)$0YVx4n;SGS_zdc^F{#@6XWr(mwD|hmCiG>?t`=v0dBGj<1 zn6YxGPHXhjwbmmkklFg(Jbd}fV8(-=i>{HRrWg#$6ojl^$DFpjh#1KdpfuO!<*Yv( zh%eZlw*)q;S;V&|&;2dC(v{m8vsLSZHpTfu;%Pkwigcewe9ez23)L=sChg7lnQFCP z>^DO@Df)-X9{xppJTF)m?nQvwv#CSqF!Wj8b6GhxJ!Q^V@j(HRGN#mD%)=qLa$G5R zd>(ISApz6iY$Y^I&1}XbV#kcOBnhvRfryerV4t}%+9%ax<(WX^;)2yK?X}rPpSn!8 zb*I?HSBm1PcH~{%j8Cf*0lOCTUSh%P298MAaa$xxNn^{CW-)AXG}_@QWGGmikfiB! zt*e@1zSA4L2PuDBD+Ng+5&36gKL$U2pw0S^Wc0t_69gU3F)w7TZfMIDs#ivFl>_j? zEnJx0w``)MNpd|aR*DOqBVbcZMT`mu3qX2)i15QgLJl0LVXt3z63O@<-uU0((!f>`_9(GPOBR^4NDI?~n@I>{ zgd5K``h4zIVVkoH?Ng?mA(LAbs`!ZA9P_|q5`i=trOXAh_b6};Q|tu+SZ61acw9=_ z;)b{krHr|R_~{BkAMizBE1eKP{xD{i_?hq?4Tm_4n$(PhAQ*t-O#gozb@dN0t!+Qa z&AKT)yYemmmZ;B%CtD|3G0aZY{etnmoD^=HojE8_hWCqXGM~zuT4%z#DQ+wsisNIS z-L*Gzpcuf3Ab>nB{~=8HFGLb?VKynSIs~mA;nK>{TwfaH?DD>dC~nwIFriuDM**F$ zA>Nyx6ZC$53bl?+s;c4QiKjL8DgZE`)*K}0jn-rs&f*lNYX@`C0($5LZBuZ^r3<5l znAUS#n1O)qKWX5BBkNZhc*{R%;EnHx2>S(y=+$jY6|nSPCJBY`l*p9S9j1vUNe;LQJ>xZ3u;FWickr$!J} zN__W$rcZKkCq*Vh6+s>I`{wDBov0ms!ZX>LzyMXC=FFPj?)|KrfszpeWK&?VAbJxA zSH=ya5G-Rsi~S+SCy9Y9s8`#FqOQIsR3!;#SI7b-#9UU`v&#_f5;l|`F|4Lhca)m3 zS1Ep|+9Td4zNu@%4`TiD6joo?Ko_>5S{gP>E*cL;bVIz*1IG20y>CoiAL$Z?&Zx8> zg<2CSMIq1sVec)V>e#Y%;ew3?hu}_t;10np2_Aw=&;Utrcgx1zHGv?(3GVI=A!u-y zKp?mT+3ft4)2C0L(|!8yzW2R*$A91d#)yony=tvmQftlm&2P>*KZ_!tud75IM~~Yg zd4M+lUa~*lH4fzKJEU^l`0=;qKJYEU%awc=8~))=2Pv)OUbnl$*L29i9b<`#Q*>_#{)7q}{a+aVi@RW+Y|f_J4}X zn1M`eO38<}NE@!9{ist*Wk|MxCg4idwGOdH_+?&;4U)L{!k$O?>+n zz2{CF7NB*HHSp6Ic*TSY^DBj|MT3>Rd=}0;OzsIcYm5Bi~W0~L-yVCc@!ua zM}H;zNUlKGmcC4Ufk72Z6Ijjr2X%M`XKBoII)=+A;k=2D@Cnp+KWGED$i!BK_>|&v z*$=*uM6x-WGBw{hXN@X20f)UOMyVzUQ?(nPE~=!M4Eebr;L9Z=*ts6jwvJ&VJUt8- zdmm2WaMLg@afZv(Oe%VDtp7gT`5ErHw#v}!EPrN38{c3`@%dSnZcNqCK_)!HhY6i5 z0J%H`g{j!rrSFLR6V`Dbhwab@`WbrUNHWzH9F-gS489Wv!H26)+a@<3ZM&R`)_@^m zeD=ZVc3T82T&)D=ALE9#ZxTNy zBKGZvgg+7#gM4pe`CRZ+Mc3kJ8=fljJ!obZQoe0?KrKiAVpOKA>*2pC5kdSf-~Z$@ zga7Eu!Xp(@Dk$^37uy(jt-X)xh12Uw%dB`yYda=%uB2Ly2CJ5tRaNfzBQu=b#Ky~S zVj_GtpS$<8YNMa5ETy2k&{9>m^Wusw__LHF-V)W5kIS#ngQ6M?3dHvKl>}andEu7# zM5M{tzMhCRkVlIch@X2Q_afedh-AZ#dnw=!iS1R$@F=CZ^TaHNh3;jVUiDPYWUX|y zu~>TVM4Izkg*T61(Agz*-oRo}yi78yBPIkeW_3iJoH*igEnhJOrdCVR8>Lx#R33_m zTOYZThi#NuQi=#red=`b{oJCBwLf*es4_n^&GRk#!Rg4R|5DiPB>gbi%V8jxxA`&v z6Mad&&R@hUlgKJXTl?s1oGzR23sr>?dj__(30cs!<&8CMw<)ASh%hzK#)CUSdV^h7 z-%7-QjMcfZu}X0+V^i+e#)0#$b)w^8v=Cwu@nUHH+2@} zPU${YmQAGN4yjvwlDGfF-Hn;5!2AsbJLH(^Vo$4jvJ5MIiY!7dZrF@ssBn-V0rEwj zEsTbh6!M(XX`*yOfkWZDUeKsz86WSzLCriZCxs4}cCTFEXM*O6`Wl3tL|@RwTsHQO z!t^X+l&@iuB!TbKL_iI}yaE{v)uTXyOm2=ihA`oKSMWWc`kZBXke*AVBU@fmUYe0S zlme$OZ>NS#RHO@v50hU1(iA=UBwUE^swHgVnLkgvsBx(1^U3I$yW_LFWiIWclFgHf zbqPQ`(U#L0#7*e^*9vR-qtm{bW!CtM1&u132is5GlXASb0<$0Dh_yY%d6eopmN4n5 zcEZG53NX!re((e~703X!0+Po{#QD-gj6F&^Y3|z(yK1Lz5sV2xpsd^{h{V6ay&IQ8 zp{5H9J`)_VTaPZvy-ajBV9T+%k8YEnEQPO}MC}}p@+2)5VJh5WY1ZbM{_cv_aVV+5 zgV{{wS{g8$S>cNuYMEnr!!?WyyEZS4u<4n?Q*!SYz2x#ic1?2&(O7(wkU3NWUo6@T z)s1p8Lw7p0s>TKl8~n{sTY8!hf3<#mqEBOige1nZtDhOmndT=SHODp8+GPEhI&rycQ%MacM=*7ZBF&!R_ z=VGYg;J8orWZbWeP^+k@jlUDD5s|ksMV%I~uggDNk!j37N_5%(s4jm0%)KC*wlR=5 zjGFQ&T#>>>-1n|})~B1!WrmpECJnL@#jUF$H`?9k63xUL|NP+6N=9Y1a9)?-Mn&fN z4v2HbfHBthC-3h_dfMv&rxOWd=9{l6-NE?K&nE`jl(vfB*c!t(Bc^;k=I2(wZ%@?J zg+-W-SpaH4KB$_|pvxf^BKl&g0a-|NqN;Tr9{oLOBy24VB@yluxEBI!op|a_B+)wi z5H_!b5xoSj$_zg#6{zoW_xcAd13|ER2i7G34bqw|GqD8$S z^4r6j+W2jS*n^Bg$9)7iGrQz49!!aNBq80;Ns{s)>BEAR)}YtRd&5XMEJKdsnW~Gf zSy*Jh30;tkW9rcNNBa$Noyi_)!}Web9=T$8sOkrj>%KfK+-r0DTM62q2SAs?T~uZp zQX$+&vn)p#jw6xDLVO4d|3J?AXSAt*qI952lwT%~c2^cPnY>Kg4<;bbdpjx}h5E67 z23UQOfebjtxq}AZ-URmT&^!Jk*v6BwYsxwL6<6u)vzUdbn1N%cIlbt5S;S)lsvuG4(=Mfho3?m^2VmJ8(G3tK1A}Z z$WujT0L*PJDz=tphtsEEo4RXg));$`tR*HdM(BfwSV&3aD=hrml>9;A`+rsGA=@kA z%fyvnw(cgvNT%y|fIR;JHoK|Nd^{lyubk{qq$46Xq!e)Y0RU|zyHr@yE_cq|6-3c! zf{stb*Gt=Y7YPOg8AIBB+^Sv^tf2}d%mK5g8W9vLjDtT=j=?C z=JELAlXeLSWI0LlbfdJ9p;C-nLS^U;uie}a)Lc2BT^3-sB@N8rFkO(({?hSQ&0t)= z6LfUT>%T>C$-FtX`T-0kwiSu*2nE3JD#lzR?n!)K2Z_Q7OxL+LSzmB2l{h4JFiJqa zL4*F-E*|tsAS&eE=%zq(YND0LN~h%3x76OIb%DX@s`qZBgo=r8r!ts zXgcUNz*jL5Tc9YFzW*_PzgetE7Y4B?q&%hBAN1 z#W(}p=-eZS_Ug4=S|Dn@zUFCA1X)4g`>C@XzAte(UJvAH-byaU->V8)$at;wTt-Gp zbVAL+4IDdMFn_5vZz-vv_O6GC zbUbZB?fUZD&17l`)amkhBiV`)T__SpQS$or)&V_H)q;o(MuUPzGBx)?R1U`IbbNXp z25G8Y_n`Gb%}qqamkcq=Hw!&9cv1OxXb=YC>bairwnGGWczcC2_QH3G#Dp8iKCyOC zJE?4ZcyR4mBAjq1^6iRN_TRu2NWVD8lZ$P|WFFOt_4CANG&+SgnivNIcjr95 z%#<&Dp0Xhf7B$1q=o#LYuA3;UDKOLDBs|kn;Egw!<+W`b^9LoQzt#5JVE~G^4D7zg zrB)jZ(FsLM=3}~shKo9d9+-GJOlt232Vb8@w$rrjUDjOF})6 z5HEuslpIr}HlyKlhaiH7EiQIw^_LLlIAh`L#`g+l>y|KbMP5IQ&hj}?NHX!!Kt#Ri zi>kpOrMh>lR2~EiZheL%z{@6X>1!Ib7^KXVjQofj9St>Mlpr~}o4Xboszqj4KouT0 z>gGak=!J&&%p~HSXrzHXHa2&>y}2hB+wA4{CoN;pwfl?Xa~?8}T7V760WL|@=9)uB zL8-b{MM7I}e=z^0w`zW8u^xR~w{yurRiQQ@!byXV;=1WH7NAs&D6lI-03aUR4cEI)|ck>w3yW78Sc%N{tMvaWIA1ExoY-J$_R@%avJ-&rbxBj|Za5 zBV!5uUQ$G&0!0^MyF@`)pU?4fb>-a$PSG?P<$O6L_iFI7GH#{sf8&c5(Y$<{`!&^| zt}I{iO)bjfx@cq^w&)FemAphmfT2o~gm2%N6a;L)LD%Sxg66oZgz90?W5P)t}-5l?0Z&={^f>lwm9MwjcMRy_eJCh=cfuimUAQLUi7MW5w( zx0_E*BdJc!tdxenF&54JRh{Sk`&A?KZ+Vx{@?CL~_Sg~u1`g*V_o%59{6I_DR#%TTH z#n#x5`_%nJx_#vy?`5j`oeDrl5H2Py(!NdFFxCUfU8b-0mh;4Cc6aCZ>b14%{AP6q z?s>>jsf&+2Q>{`YV6?L5>Il~>4!>{}o$T;5o)EQIC%M#U&|@B#1yBUg-M_OA=Aq^o zgl8&JZE4Z`y*VKk^b6&@BB+Jlpe};!|GIostKW2pER25#zW;+9jARCe$V*p$+;X&d zSiA%A6tQit6s6B;smKW9I_smLZfV$rl#TQ6DdXxzq}^W>7Ulw@lmyEft-TaNEgV>l z3y>uLwM~<~`SbdaQr+F146Y)w$d>5-J7k=suS|d)6h}FVF;s!IRur%1nEhLGh!4v; ziDzDk!NW4ofw_-Se(zW|wg!R2!ryj-U$zJcr~33a=NBtJJdz@aj{Q3yFsM6JP}zR~ z7$V)7r&pi{7YFom1hffMw+MmJ5Hhb2w|@YUKeN34A5Z`>CTyAF>%}O{&*=xyXAUWv zQ@P7va|9ds&Z(&6? zkgB;m0BAl9Pt&iI6NgCzImzQ1pE)+rr5=5la7daM`^;Ni zW~)7GEX(>0;a~hkl~~8Yo4@pg(2q2|A_+&j%1?@smg{>~I^m|k-Kn?R@M z<9V5PM2FOt4RHsy+>v))c6ytBHH2xi$PMi7cKmG-;*eZ+e|H|eKJ@wlx+<|H0z=EV}{+%wDXY)|2O{x1dtNVMq5_zkbWg0c?X^ZcsC!F zZAue|c^gYCTa*Rbdh&4{xIij_GUkSpUXHDTLr<#qqj+VBuDZK1S2pB>U%%%$J)M>( zZ4ax_zO27}`yhZnIXA;;$%IuW<<@kO`*tN|g|_V#-6h2K%1PzB7Q48?r_t^Q@v|1L z$umfAP3ptQX%NvQAG~uoxm_0C;4kJ;m`{6K#A-Sq&L=96im@{kynb=Jp{VD+fY0YI z&B};`8;93A3wy7zxxt_2=IP8Q_oWTh!clL>t#X$(x-4M?>5$j%4NFgkt{r`SvcQAR zcQ5K#ExZL}SY=IzyvcJE*KNdc5Z}r@AWNJyVv;!7yDRq~ZfBCjm+Fd=>FI?};O)Xf z(M3{Ht}Cvr4Psz4A=(FFAO|twrL@ilzYnB`IE9lvx@6j3U@25juWjY>ZqG;PU3Dvh zS75%&^*AtwEn7Mjj)&QR~SueD4~#~zl_n%smAh;f-h6IuVji4h4NPDqQm(H2Ct=97E>0f+FH zrtDTQj>MF8_2>YBFn$}V6(zIqi}`0}yzfc;sh4bdaIP&PWzeqb z+Jwne#-sIgE_#q9Q4{v|ln&@?Dz2ZD#w3W-8Y!=qlZ+P5GxJ)`>n$wMARRRDO7i+G zGMi@1mTdU6jF8Lge~$@+q!G@^s&dTzu z`=O8AS2Sq0ZGwEo`#-j<-b~x?S}<5qRsMs>f+FWyL|2INfn}eQOWaDZ#bJx%Tl#a~-c1Qh~*z?JyhIqdQEP0$l0U z3+?z_@W_Jnf=fMe9Wx{lQk4Y{lvlggwQV7m-|KCvnEKayjtFJd!1!5+<`6IyS46t& zzPD8A{Vs$X!W>7MsJ3s>t)k!66Eai97GA40090XrcOsF_w`Da+NA=!B4O<{pS5WrI zeUe=#@)e>+zjS2IHZarBY?|WeNb$}R3?fgACbTY*`>NN64r;5hYjXE|MQk1%Sw4teX6jm$ zrpWTVgDXfKY>v49hf|E;@EpU31*Ne$&N!Sq{-Y#ShiAMyx)8lD!hK&+5a=q{$kIe= zdKJ59_eG>QX~*>}9&I7ZZfO{%V6QQT>Xv8m0OZTgKa;8GN%!5%_|{*{eb5u{^`8j# z^+$Q|KYRtbYcR7fDu$ZryjZzFp@5;tnh`<9@hs*hYt_*`3tMgBVe7F*7?_9rq*Nm$ zKpB-qqG?8uUhWoF^^D-O2CoA(`yQL+uU>b6Gl2acNkjfSRM}CS<(Tt=g`qV2>N;v} z&IWCByCo*3nZPvpRo6B~`bPx7Ey$aPk7?N}_(tZv>+;K~{lQlqUH4yqlLItV{rnoD zdg2kLRZx+O-Rri>awnach<4q%w@2t~>H}l3r=Lr?b#9q14!u4i;m6kEkEE!Pk(!37 zwLXm&TA27=1Y$B*PGIlWx=AEtWYom)mIT0hfUA*wn=l>wp9 z@|B~4kCCmB30oCwZtEM9H{?G6M)NOnPZMK(%6nJNQ9y)rzU)Q7oSaO{v7-wdOgJ?- z&*7(*Fl*d?Y>u=ovjK01cBSxe&MHeAYk@d@t}Uue|7{ycdZidJ?2@1FmZ)iYHux#3 zpZeqmPS7}Rq@8KflDZvEi&Qz@p&rot{ZegPZrqqfEcS3elVG1Sof^T-x$Wzfm+Ggm z>srP6CGc$zi7GH9Dl3*GHZC%Gc%5IQ8TggA=utV{MsoiEjM~?f-_mHjxRB&*(Un7uMHCVe*Y%!TjwtSL2zLadwKwfnOa{ zT^sE#n77uMV-M=yh8z`deslV)_OPs*L2BMXesM^}e(}&U^iNQafATf|&o7BdY1(!D zsy${O!}(3Q%rG5vMYXCG$pxjIYxt2BTJWOnA9Y7ZDkR1eKtx=(2yb z25N{mZQIdI3`cnhhYjK==EsXwef_A5TVm?At>B4~Z?XiASz?F3aCNsqt|uL+NFVPC zsi4AGaX_AZ0bI5b%;GlXn1yqxMFp}?GnHX6pcd9&_-AiAJ>gB7v*YM7tu;)Mx%?{r zp?I*Y_iK{;cs+#4$v{LGX|HRZ>{3s@ZXzk5^xZ?T4jWXY zczZ?D@}l>Zd8Pr?EfXzz>kp;^<64C8iG8r6vuJQd&Wrg1;VyI!qq+U&&n&ALZ4jfF zqEl7>h(4j`Lk|6+Apo(h_>+A?p$LlEv#AUWLRVI{TEN z%FLcm8w^^MS;F}RJrDIpN1OrS^AB3`QOOGrV;;@eiawmVgGsD4 zNWQSY&?Xld`C?HIInZ8*><~0ZWe@~LswFO244Nuh>l1Z{^A|nx{E2vEOr6cE zNL>S3s2*Vpo5fB?QcVjPMKujsWRNw~l3GO^Uzn@DKIO~ggfx(n_9`_l1!poR9H+^r z8lg+k0}1(yx=UQDp9Z>FZTg|_)NMy4!&}F{3PZ#8?~iF4E~UM!xp{;)*d^OKbGzox zeS5%Ckl!O)+3Wpah0fqIKs|{rO~Zv-n$G`NFWcEcvfuVYrC$dH zZ{LZRUEfn)rJXR{>a>>R?%p=O+F*KOh)i9ocG}@RMY!ctUqE;1 zzz-Gl*vJaMTKi83pNM(Ax2-uPPI7TA@9tFs^+zzly8rRSLw zcgkdq)j@^OF`5VHXJMmVdTwidrdFL+h){eWVOpm(rB%LuXnN5lTT`)PV2|ymbxCM`$HUAraBWY>|NuDn_mH_qAGSr03{i=_B`g_>7xhIqo3Yw?+GArwkdi zWhMydffVd}6as_EgL38%;D!Y_S3=dVJ*G_5O$s2cZy=8g?WDmM_K^lOkB!3ETWIq} zOO}JJyri}41K302Oi8E@1;Ol5y|zC93n;b}rn)rY$2MC<-!~^6CS3h-4I6?R{z6}T zIW1Re%z~YF){=3=_g|@uY~_n)c?oTzQZIq%WPST(TK?P)-eopH>TZ|h9d3?iJg(^* zb<`w(Z z>%-UF?tOgFs6JFl8GtPfc#MX_X^cRCbfQJfn&yFLpyecQF)0F16J;a?OVkJ9Vkb$e zM*G$7`xAmPJ3di>H}g^V`V(=i8UDBDW{r(n9`Pgz-UapzjK1>dhyeo>=)iRvI2pY@ zbnB$?tT;U6pl%FDW1Qx8@tq~k$)sE1~ijPMw;!@3ghM_i0I-d%bAhom%^30F>%L}&ZD zqncV?%xW$&^S#*i%ONYNK>UqL-K6QM?WUZ%;Nmuf4?$+5$J3@n-huz4Jov2*+pj19 zc}4CSoQHnOGZl#WnBbg)ASyl$fBRtb8poT z*BA5JFw)ZqcA&a)vQKmJ38VQfG}D>W?9(05M0%;9u!n?hw6?cZFmGWAJ%5$hK-<%$ zJ_)g1;hfqQs~kYd3obP)I(Xnjzkp3{{0XNOF#liWrukC_yQB*5hR$7kcNAaN9YaEM2KeMOg`uSqOs7YsX!`||{5+~F!<&siiM#yo z$%7zshw(4Woy1|$f)}`qE2)phHGCWrqM0C^U2RkuV|B&FNhz95)FL>I=v0sKUc3XD zJ1*9cUcj{mL0L6%VSa?=c4s{<DX)Q(9d^5dsEA{mI$EV!s z<%|?(BqZgWc+MLH`);QDRqpBz#ag)XUAucj9Gtm(W2<3fafOS+q5j)u7Y=ZrW z&F6K;`7QSdlPp~SXN77;fo=;iNks}DwzrY)Hp&k|wn@an0M*K$w_#uQ1hbOb%F6e^ z3g39sH>uWG@`iSHaXfu&cE~KW6}A+-K}tcPdhStPXLegE3-@Nd2K!B0dnw@gfgmci-OePbR1EW2yP+_NI)w|=6MbgCW z1maYK&`)|OuafeNm~B0UMKwFYz;5z@kMUBGZ4C5<4B(Eu$8DErn!iOt{~`kdIn?|{ zS^ClRwpclpMD0T&ug}wK{2P7E7m8|KiWv>! zjP@fmoGu%gS1F@Yo5uHS^qKVu4GQ(Pg&+`G*W}LaRI$LOj|Hh?@=V4PuiK%LDQgTn zO2tJ_$Sn&$IrOpjETdD^F zFEYLT_LYpcteh}z48v0dDzx^Ymk6kxH*Yj`EP1Ym@87~!v3U@aCAiP&V=NVM7%qZO zQ=eXBm)d}vA5aNBN?qR!j!}8X>%{C7+vBr{JXZrbA6O5O0s%&XQ%{Y<5o!K$BfAd0 z@}QK24}%;z+^K>W2l^j2UvLn+0URiI=wqLHml zyYcGdWaAn5%1vM4-nZI425Z=$;LgF`Tt6I-5YBs=B&QHxm8f31FHSJ^;`5mm`BnS0 zfv(=iOZZtFYyGa(xVYrX?~mj^75V=Uyb0;}0hm+jsYN^{lZio^xoe3@^a!8VI_$OS z00j{XF=Zzo!tshP-^yKgBi#tK$#1q)dP0aJB>I#k1T{AC+>LTDEZ}w8oW4&PQl=H- zoA-4U-I&pVuJ?S|#{OihM%a?TFOjI_IMZYMb|bwtrPnI()onPlTd1^XbWUEef+`|! z4*F{TkwyCQV|l7WgK%PrXckMwjHd=mof#G-?oB@c&6${BKKzQ>7DJn@JtmhxDtx|2 z-9loIY&wwqtaP59DXr=erhLu~+cBi!o_CDzDCEr*)Pre1u^>Skn3N*N&8^d!-{G8a7GIn{KJZKZ(9!dsMsd(}DjW>L2KEaM zEtNQg8NoC`Yi+Xm%IPgASwq)B|E)p*>AjA`m(8{k>BJZ=!lRc8XTR$l!bkTE33T^10x&+c&8zVH%f%OO zI+k|r7te|+KKak|=n^I>A`!bfNRtIgKg&k{fC2yy0EnN)J%{yH66o-6eawvohvx5k z@#OFN%?M*iN#;${2pI#cQI<3Hqbs);b??*|^C;Jnc)lP6oS_2~?%QSVaNU}K(ofc~ z2bcC9_d%Qo(G*+}MfGDy5?JEo*K?{zcIk#ri34AuAKU2HSo7Inxt=jL<&Z z=(kIU(+M+D?3h0QEY3g}Ery;2@0?`x!n?5b#s1G}uFC3>*ORSDL0>F(ufN26m{T^r z&9T9mH;HH86V*$U%Twh1Bt$x}T`G6MbZG*`x_sIt#?y5&ZW8Lk+uJw`T6mk28H@N0 zA1chJfoJl#8%-0@__F<_2y zRt2TzFZ!+Qx?!RDl}Pu>$^FY}c#|ddHIsJxTj+545$!i0kOliI?YumLzVh!(6#vAq z`Foj{3ZrONUwM6RZ*H0N{iOBUTe^5cM}m^lx(76g^w|f-gB_y^K)Y3m(bum2o*5;~ zuu}dSW%S1%j%6KHB#E92v`y^1(CQ$uHiOWR2^+SSTPk|_e9`N-Fm>Ql@VgV&V?mC! z!a+>l6imOlot1@2(xSBP*u)p?rRFUa+U236L$V<6^aW+1@zZShHyREdr)YDCyr}7i zS?NMO15qcC27htUWlSP@JVL>PuY$>n!&gqa3P}ZaT=s2OjpXxSZI7FjHuw8Q#$<9b zpU5q$ppu)G>+6_%isc2Z#M#fgv;-5>-8_lRW*~1Q$8+j?7E-~7aPRU50OG^n>~#3+ z=NVF2n+x|x`s20;(Y%AS7(XsL1zjnC*)`2xu16$JJb#|!HbU>l zqZi2PTb7lKDN8a4;DX!o%Mt-P$tev_zGTu{PPAKd1n3(3^g`0uA@N*Z^(b7#Q5xWc z(O=(y9Ul@Sv+@QZ$!fgoF~k_$%dobCg!4XHFTRww)$2}^O1?g}*iZ^Y2^PR; zpOdg2 zG26ml*jCIOqd;c!Wwvb4Vkp9bi*79(;dYwYZ{AnD2@J!xNeNP<4Z%=fJGEIjc(>WG z`}2n(?KL+2*H4r8xabZE7)=q*I6%O(ITbiM4EbJfL=02Sm-o!vnI|lf>fGcGdK+7D zpnv3aIfgpcPIy>e@~TFU5)lWNSzbVN0qPJyMd*lwGbnKo4xC8rw_3pitvE*{Ko8z) zuZ~kC@hBUH-c$>=JY?bi6Lrr&)>m`*yx6t~SOc|1C@a1v@3TqX}oYj5_L^}1uc;ktKEC(Bd!{DzHLZDEf8L7xOQbdW==Fs|>pn>ctFNqzy=)%fov=O{OiZR6$ybV3 zYc(9w8uiTf9nJ%ap|62gqY&GJoOpA{E;X{ZSX#&N65o8%bkRlVB{77`@Uva>X}$jG zBv{4Vk$~YOAI@DXC(G(y>ylS!6AlR%@p2SY4jCe2C?TCXGn$uvMV9lrarsDZP=F72 z?=Q8@G3acR3mr;Q>$?}jB|$>_`8J4VXB+wo8exsBALl*u;IcrGsM7n!>EudMo|vYH zU@2*BN`sHEBbS9$F4AXo+6^Ai9mS*Y$64s9P43yJ^6kN2L`ZV2o;{{EP4%ERV{yz? z!c^dCM1SP-%?$j`Rz-!3EnFO4bY06dRfkKm&pfd*5n#D0qVEJcpYxtlZpWnppDK=g z(k|WPE!ed8QBEEtzIp8wyAT0u>>L%!!cjb0PNGU$w~=NyCb}50v6Xy0N9r9b*MY8Q z4s5(bkR*lkoY;6vn|hQyp0tp+vk!l)%;%tA{ZKW7Pun^XAK5;aY4HwuBe2b%E~}jE zW#vVv#H(PQpTvQkdPOe1#7vby$w-CT>u8w;b>1*b0JGAD!PmA~R9=onuUbgwg z`&rF!T+v$kgaN=wlDv%|O|BaM*#wUp%S2yq0EEg4r=M$AjnwQ56)5 z>lUqfiYAO)F!DPFRNx@+E?(_HZj!znZhyUL(Wf7P>XeBu$7O(W>$^SwWg+y2iQx}L zC~~ojq?*FEeNxXw9Kel8HOD9Vut!DT9M3~5Zmvqds_W?eC+~&<=Z7B)ELJHHA~#KZ z#T@^PLHl1}OG2V&8eByOPD>y4q@h^$_Ox@6=LWFaIsUm z;bgT(->hjqCVX^LcA#Bi8@=5&jrRny;t3^HI|vZQ{!AwS0~7K0=gV(L&?+(n@|!h?gA9!q)57W$1-%^pJtu(-W6_%aEb@$DS+~rxZ?f z*vdn>>Dj(wKgZ?Mw8Tc=2E0KLT=(E+X8)P-PM*7#DA(=syE#gsaQ^Fdu^(-(&TVbchg zzxnF01je7Icp-21y=Bthtsk8b^R69jnj2Oh_jLS>)C!pNki3iJ*yU3U13ZttwnlZ7 zfs~Fflbm!XZ)Nd8#%I} zum`bqA%(2Ag7JHYUhm7;1iEgOi$5h5DE$B?YdopDSFVVh%WqJ1p*x{_EmwCd{{N^| z0$Dg>N23Slw+6zt@x-uoY49ioQzf(fxi{56x`f(Hy!Sh852_VmM~4zwo(`quv?jP> z8xXpcn34)&endPDIMlwdW<2&F0|iz-@>W*ahPJjx1gW))DSjllYxIm3#=FD8B*61< zJ85H=u|02{3Z}gy}UugC8iM-C<0sDGWWVbL|r37a5`=k&sWtskSQnlKcn_Rm4 zl3%}uO4Pu>o=Q&r06INEC8vpv>yIUN{_criu0eF+jU#lm6?(aZh_f$&2^|xXI5KR9 z*#-tv&%Y)CO*_B-3jFc%m%=}Qzn1n3xyTHL?oec2avH$})KHZRc2e)>ATIVATNcsK zqt=A!`OC7X)5Tq>KQ{o!-styZpO4HgD?7$l?AF{|Qx#64QQfT9h3GfPxLLGIPElpq zMr=>&y!leppYNO|M#Z~Ls@Sq?(G6@);;+rA8~<$mx63DxKg?Ioz|U(sxbff*z#jwx zH=NPHk>UkMYV)rnmEK*uPx0;wH(ePx$2>+s>dy5uc>B*+=z2Q^cics_izCa)VDB+n}WVW;aM@$76 zDUalUK4MNrNGfoy``4|e`}lsl-CC5m&C_pwgiQyXG`3=iW{p|cGL!w;N<>PAYbC3u zC!O#F^2hpT+OZE1)V~KybqMwXF4Mvv@Aob5o>;l?et;b};DN?{9-RZyRquX21d0sS z@zsdY_=`Ccn%FNI7`~E>LVXA{)P-5d%7i~LICfn00#+Ea zBn|kqTt9#k@{qxmFYrUE8U){E#*iB=N`An-j4ikIZZP=+`nUqh(0fV?P0v-3TSa=w zo|f|J&MxaMj!?PD5)>XZ>?Ntm^#Zp4{3L&lgRO^glP(>>yWCBIPun*V7Xl$69mIAT z&F7Y+n9e-fUG8&#c5qO}_HA*{<|T8)fM4UhMu`hj#btL^4lAbZZsXa0J{Yq59Tz5v84?w#)ZV-=uXb0en#Ia&_8dy4zi3R_t2=D6 z`X};YUSo)ifi-W=zKm}q5N=sGN%j?ta!7X18%Bgu}kMCj8LYQnBg{K#d3 zB;Mt(O48O}lq4K<=m1$ayrs1LOhE!Z*&;>|RasV)M1VSQl0_0Iq zOeo8LCI!HsO4$G6CbHh%4&N-*?$>D&6SYqV4?p-##k*(W2)$}QzCx7XRUYRZK1m@C z7~N0hzVVc=nMmwSwbOm2zsad5 zT=b5tH^bQ|r_y!Do);1`t)tEzS|cu zlE`e&^SE@$ITvphd3`R%en2-NP6aYMs`H?;!k{4eSk^G?xZn6cjtc&!wf&1V^(WSu zf2|4rH`Phym5syMGoR|bgw>My)&*1^B&mY_d?=_)j}Z^VBvi-B^4A6J4h%x!yI)gs z;r?ZKPTrM^*xz>VFr+M)49kpr6!+5;E()IazEr~&h|%ba;X4utI2+M^QZvnu@!0BW zW*_@gE?3-@h+m&vze6uyiLCkzA~JyBD+oA*o7RSy5?FKf{=(3fLlRZ#SZ(1frnJ-e ztcOs#Zx+2wM0c6;kw zXq(bCN119)8J*W`-+F`Az$hW0zv`)i;&P&U>7+S%SiU}&pBEU1f|o2;_IBg>r*M+3 z9DF7bW%lT+EbLe8wC5x?u-RudH>EBN{`b{@y8F02u=9!r{1SVL+7 z=X$a!UBcyZ3-_w9azgrg&8V~y%%GCKm-7sYS0u4U-)AYgxmT8FnICj_P?ab&Vt<7DTA7QG4$q_%+ivm7t3HE zD+!Qj|NR=w1MZ8n-zourT?&RxI|J=z0QG_=6n3iz#w*$RnWP$!s5|=sTwT|Lmf-Q9 zra}PvzxxGn_fp-r_kVjILC{p;>mEk_aO~89Vf5hOzRF{*qs;TXH!*M19m9!5>*PtY zaHJ}0l*E@=b=o%ZauwmbOsd!DK<(dcxDS--a{FzsQ|d%fQU>wouML;iR zzn7d^g7PQ4SxEN7OeY7eU)bXIX;8_k`-%btnvW$g!W6?Pe9%^5byn#U`$HMi~1Vs|Yyy~8Or!+J47UrL^_l($DlRm_=W%uq8? zJ`&m$FLp^`Qa{^EDNidT3h*dDL5~XOkyyJoi3)4|xuiiXhzukv$klXrH2qxBAR^JL zjuquFN|%QyI@(W-JJXrakKjA{B_9^U8}la8J5F$aF+8X>ial?z1>qQxlahWyisZ4M z|JJiN_)bf4LL~dCbKOb$-D!GMQ7RV3OU!^ekcG0I1VX$WZVCVsB6EZKS<%aGmtA-2 zZsy3;S4Ahtr0;?$Y_F*4C@W*8TVMk7=i>b$QR$pVoMY$IA?+t@UyUxX!JT{@Zzk9K z*(`_~{}(N_|BpydDEF(^MR0JkyuLnu+4jv6V+h`SPjW(BWM4fpMmKrN?I)raQ~>UE zqwL^5hAf-{x?ZSl$GCub4li{*C159?C63gKpeO7U#|GNVATz}R+_+AMH9#=yDR{~b z)HwAwfhJZMyBIax!!q-dd8+-2DBAtIkte7Y|5~y7uNB`LAEnv@ZC*z;XV9yy575;D zFr)9LuF%Gk&kh7mlo11FqpDSg5$qblB4kCq%3HycbQ0Vax08QjTj`*oAkO@kR}(h4 z+pFsq%2TJ7$?ajDCmZ~dDxXx79b*mje5<-HXhJ!qwxu z3WDXK!gV?CcT$M2MNO=VU9fQ@x1_G3MOK~qr}MsA5mOZ;>|`(;!`okCzkg|G#m1Z6 zR5fA~ElYQ}NhpLwC542GR;pVW&Rcs(;QeHbCjLYZjcgfLC(-?dO-}hBId5i%hV`%> z)yAqFE;YeUa%v7CkN(3b8p8-$)mER1Ig)*)*rs$d1vc%t!OPhd=!=g{I;M_rU93!Z z)`4PLBm1C6is+oUXSK5v5A@!J1jD$zDa+rmAJ`tS+p#-sEh^J@3E@RQ^X@lk_CIl_ zSk){T8`9H1uhifZj_vX#>qkr&!^v!sSm(ssGt-|oVaTaUUZ3xpWeHteNPf5xb?|Y( z>0Q(!r=_yAz3x!I$m$`b`}e*Fb{;RSYzGNOAur!Qq(qEI9~fHc5$Y3TDb0Q{=-5nl zonL({+{er2N_4{FFNZHV(w|+NEFp;{)0>fVw9(^ccz-;nX)5-ScggW$uYbOPmY`ZL z;+==3ld)2Vy1G4-+Y0`n`H$}LAZk?5(G?E#$u{gVdHp}^y>(bz`?k>Syg1cLt**WKS_vw3XPv7~bXP%kon}70< zT~%A&{gYSLTCX{mN4a0E{6YP#e*W|1+wPxA%zSU0Y3pU_9NveynZUU6Fg}Y|B%p14==P(&J(0ydyj+aHYWSJU zn(aw5*7yb&- z3^`57Hd$=<>{GVfi-=Q)C-uXsR+YpH8j&-t?v@$mE7I<7hhcW|F5|k!)wy=AM=$F*^+0--N1R#E3V$CBa5*oZ=*z}WfZCaqnj zOFkG%>DGI1Gu~k2A6<*@FAWcn2P2ufSHoh;x;{PcwpY>*NOn`|Rg#B@$A{@lQd*r5 zy{?_~rYlL2HB6N@a*i@`@hPL`SD#ZPHjD8fu*D+F3#r_8{S(c_A2X_Zi6r?aU$$%x zNGL3f!f%_zZ$b1RUX<|f9AR+Wn2Sz$v%#CH&w&zVEERspV9P!$jHpK-!oi54M0(JQ zJ-aA{%|GR1A#C{~lBB5njuccvg1({ua=ZVbi&N@mVh1A$-euT|xRAxsQ~IHabE}Lh z3G#`17@eDK zdq*5R#kUgSEHkDeJ*EZ%pg`6Cz~h*XG=3cgX2N(PC5Bpw8o&S^vGt~L%95M@P8_3? zD40_f6K};<*0mwpQyFcTxY-ylN~#Ts$ec8}!#w3lD_}!ef+fMearpFwJUE#$b?+N1 zqniA>3<74?Adk7pSLa~v-QhNTAFU7IvrH`a>-mmddlz9LocV)9!1|7W^%d@c7bhkR zSRc#+Sbr0+ehScqJ^-*jiVk4?e!%*?$5#(Xfb}tcJ>Eya`gW^Fw~qkplK|H5`Mu1! z+_8L)2Uwp2uzu9+|M1}2z1Z4V{$Qi& zXUKf5tn|R+j6^C=;f^S3v1yDqpL|AT@j=Vj*D`a8E_zyBhlNyaG0|~2(=_!!({?Xk<6c|tqFAg=NY0eSF^)7|2uye@wQp7{;2_KI!uc^hcH1lO^J*HsRLoGm z*1UFa2lAI-zL{uo6|paMOf!AI$V5d zIhJ&p2G+KnFHs6stxbMkP!VdFe2_jR=q)t1S&#rRC3IilLoe*oc;)($!nq)~{SmgI>&o|XyY=b5JhAxUz` zGna78yu_p}Q*;zH((YF>qN4=-boA@*^Iholv*YedxZskhiTT*rSbrgNB~&5PIEq`6 z?;H~@#q&e_=b@B*Pg840HD01XlLCkXI?6$$@{ZABK;yPdezHhGEf12cX7|y`xhygx z{~42*`0FznG*~tF2tW#g{jS#9srm$FYGnjBSpHqp^@Oq}rsIxN7jg>ZSbkS-{ZKT6 zRn*R(6{Nm8Sml4l|2QWj3zU6~?^nriqXgu~2`GU4I3T={eaEZ%jwIav6Tmf}IPJS~ z^Zw>GzsouI?Vh9dL8)Zecs?)X4(&YS-^X-W-l6}O$8=z=DfYytqKAseAhF9C=vEHw z3K+eSAczgH>ZVr$VYU^V3*=L`4EO8-H2TZ0M-eXPVK;k_hs&0AQPg=GAYS_K{07K# z{rU}3AGHie1hLl>SOU;*;xB6lc<>vJ4P`anb@0KG4Ye8W&uaLm`Y8?k*O z^#1yE9^Y;CyF)2M#=qKX*8H00XfpcPBs)@>EWqqs>=1P1j9C9J^6_E;3%w`VQ+uYb zbj}}h=~LdeOg3`%dyly8neNRvZe#wP)CkhuY+e$EE4u8K>WqUI(!5F>T(G+xF?j6} z386W7WbH=Cgng$)w$7kzKBfBB^bh>lKUmp>jMlLiC!l-HNATqG;(E+`$=wz%?rea~ z52y=20;2wMbJ#g@N%3zWT>X+)%R9QQ_&?kBM2UOcui%NvyMzop8VdI28+5UB0^pp!2swov&?(eQAV3(TQPB{aV30wn@ zQV052H^J05Mvk{meZ2?CV@z6ZC|(s>X&WDLZjFQ_YCtiC zB%D^m`(SGto*1|9Y()&a(y3&7`WuLMJ8jqb@`(mZe-JRSsGRE*xG=U7&>&I1CrzX^ zGWUhl9-qo$#u$fL=-a%HEEs1uMFWwk#o6xR!LV-IDM{++jytaE;|D*nK<*ON2Kae=W}=kH z{$b~XmBvh;MdAAGWiD@f3t{eDPqpZjIP=V1ez=X_iP#VNh$sNWrEi)3cMQTH@R@%3i~_U$M>Aoeh=wS0KuF7c*fqTGmj z`SlsmfnY_Y0RCJF``8sZMMo}eZKV!V%y!0;kWlUh=Tg?$ysDa|dZMOE(*8{N0g=U$ z+dJ6>_P#Cr@xx~h0tx$#(w)7&Z|kn+470I5yXV9N_y$PGaV)a;S@+LfMRGwXELn0E z7wPJf^7<*wED#@xjG@e;Pn>WwQY-lBKXhVH3P3z+a?It^X4i<;zt6-lfff` zH*OrwX%T=hqXOqeES<{v3f}mPmgI!67h&vi^Lvpp_o=`eZTNqH<_*I-r2j#8#Q6(Fu9+|!2U>3cYKi7j4xt* z8{s-+XVrpnWUsn`S@Y0kYUp~d+NGg`d#-TFp8>f(wUVVee)v{tkyKx|$92WY^LmPx zxdiX!E%9Qh9pG8oFoEk#OCkGT%tSUo~qdR#?6XUoJ-n9Lw>GAUVD1=kl-@S0^CS6(YHf*Ig z&B1xC7cDwdwsMU!vnUgZgNYFtBO>HPAbC7P6Xa|5big zy70bmbG%blk8bdUw0;BWxnMuwGA#}oX788Ye=z$o^`{8-_!0A8Qmo`yL8tD~ z8u}^l{$*Vq@rDN=GW~_&_{$gnl9@%=YQdH=`W}CGb((s+0(4+~<%^H7t@cm+@}K$& z3Ty4^9fdF3v&$FPo4O`?*hPG8NWS`+qo{<{R=()8x<^x7xjWR+=eTjAFC^4WO}mN5GhlE+(g zJduN?@KJn#>IRdhd?8l02OzZLE?qZb@zporJN*H?fFR6FB^4nR;OZ`v`R5h1*3`8E z8i?#b9L5D|nGvwNznzCI1D??}&`GVrdHLp|4oJ8E@iFY}PRrRI;05>^0R=2`5WH;y zwly^mzX!a9P5?d{m0H{im`hnr;i z)em%O>nM3*RsvE37R^&5^X!C*S*ijOE`%NDe`?SHe$(I+<5YynWYC$7bZ1gJ_2-%v zjD&Wc`IJkttoLp*em$Rg-<^TJ#gP$bV&!+hNotNaByHL}as>0zB^tGKFHEhmTR|WS zK>3vGpSXYTR&#I~ewDNE2ioGN2pdT3q$YbFOiSdk2oCvy^zFjd7QX`>4yO z$)Shmv(d*o#+JzrgHC08GMO#tY>+Ml%2B-eDvvq)FExnjQS8A!WiVc1_#qCvwt+m! zyiR&xgc>1dztUlJuPTCf&M$n0DAv4e@iw|dS2-NneERl%W7DFg%HrT)*ZS8;*F!kL zAnIdOknzdVhccDsSHiyI^KGP4@y{~P6mqq7Mo32-?iQ=rKNQ9W6fB6>VJ&OpO~%jO z3zyAahk?D`#p4)$>9<*~S*MwFXge6F@J$T z7yVO~{w#;uL#f|4IM{+>Y;_sS`2CJ{^2@<4{q?}n=Th_0g^L;OUtc`0H>ZspI% zQidO2!6nm};B8Z|TWW!G>^Q-{#07t?zW<;6mD6HD$hFd(&Z5|2O&g80jU{o3Bcr{^ zCvYe)t{M{}kp(bXH>XP0ZVa`hLVop`eT;qceg?L}WpJ-xe`lFS+h2tZ^t#0d(o<3y zK&EmGXhZ2`nK9Vj3k6zotHS+BVQ{b{u&j<96u~&rsepo)!K%_Nk_E6ZV-f+&sdQc8 z{UCE7&~!Nnx{Z?$07QPBnsP4x?8X1knP~)HACJ2W5Ki6;U>41<=2lCDdl;f(f9UB4 z$cq|aA)L|Vom{!Phc>lV?R;}Q!_4!`6Wwxxmen11{vLy^wixQ#VDJxt*muQfI!+P4pb7R2Y zpRUNqzb8#=V^33e@^UW6Q>{Ms%U7>0|Nc090qpPD;K20vk9EU!Fp8Eqrsu|eOpuFa zwRUmmK1Chzyp(ULCZr!|uNYndlds1yHmANxa)GsKFuS+(XlScNS=&-AVo*!iY>Y5% zlpR#b#579ANO9cs@U`J*D|tm^$V|4>2`L%*)SJz5S!~SjG+If7eU?syz7WKQoUAr$ zz}v2XSt1u^K<=Zw)T00tPHvS zBQ5_`=GX_=;!}3_J1kWGkU92d>y9@A$ejRN)jH?MP0$7LbkuOs*<f-iVav!_hxAtWGB1 zfh*PJ!;wj@mM7@S?IH*{Ak$)b87KC$(17FFb85537gWVwfv@|uDSbsqA-Cw3z=S5@ z1*8zvYQQ>@$FgI#iAQ%5%8heqr)8|hahw@%OsQh$qn`VXgpSpGC!Hifk*ycPHpFzA z)bUKBV70tvf{T)xJp>*=&(j4KKeP6boCL^QoWu5~B)>L(OTe9DTVKMy?Oa*Ogu1U_ zTolyROD^^I6au{p&EuZPBPln1+KfWsklj^sQlAyXi?-B5tvo9~Kz6)Mh-?XAwwb!T zy%_x9XR@XlGDNj*`LNPps(aWvq>$n!F-sYFT*_>Ce2~M#7<;3Fw)K*D-adnQwHtNh zXUKwAYK+X!x}?}-p}npY(?;f^x0pP;@hN_wGR0;?7sjN z*CrLDSJfLWZ^cqYri&Bc>Sv`p6fkrU`RfL;g*w&J%9kBYd7U+t`?WSnyL zvd*Y>UN2c2b@esub0#x~5nSbB`?P zw+-~53VIUSwH)=)>4}=Cpx@mof=&+( zX~RTN^@>`JuejnW1|^P1qi@13flABoqYyQ7rw%$hH8$@Nr?AOjz@g4Y^VW#DGfwtU zNjs@FrcS78`~7tYny_Nb3tv&%d)*6XvUrtu)y}B`&$}7*r%6Yz<$5H) zw)`mbCc%l(Ufjb~a1HH1;}O3R@*|2LcJwp?(qmSy&D?jRYjdkZUQJNWA>(vlHWd}D zFcy*fFw)lr21gv12MDl4HLc#P1FhH(A@#%CRhcd$pO#->pxsN#>F+i;`kqxDXe$Le zD?EnPTGa8>#UC*Jlz1$4r^vy}fQkyHu9+F!{&^R94(%_3;$BG7Y%F8LdQ;X$Zg&b` z+h6qICclALTUvvCbp9-=@Yl+ly?{pFnva;LZ2-!BBKOEn*k2l6{0ANnHuTz&^BpG; zWu0!oUswGGk^`Opm%2hwVYsmVQ1RaDxg8$fCvzSCLZNolxq}_?H19w**=PV&&ME4J zIfCya_rvuLslAT55AOR%nV&lKv|c*h*zAH3y4@gev_W@ntu3dlJFwp|Pvh>}U~qTx z@RwZ6MqN*5N8Qg;=faHwSq*RMXU1(!kc}3WN_fe^Kyi^28Zoq4I{@fdAWvmbMXe!s zMxc{3J$>!Q1k!Zo+XXtRSD!=>Rns-jFFuV82zLLV5+4yi<2j1Lc2DoLuwLWIXGw*w_#?cc~|!$;@h^NvYv}MO)f~ zR>h<0OC;<8U`jJ5?8;o4eUEdZ5|b6@?Vf8E$=jcl3?8ClAURR#Zeiqvfi%6nFy_2@ zt? z8=ISJ>%UdT4bQ7eds%3$n+hW0(yF=6e-%h*6S>aBitkFNjc%`dcKMPcZilqssnpin z%xd<>MUOT^AwUmD!>)Cv4=jYcx3j8)P4%@B7=?_y>AU`cOt43`VxW_5_e@M-`7Vc@ zX;p3F*~sR?Mp`2z4DampZx6!T;IQyD{ahNYb=efsns+5VpRu;=7zW*JV~o=CS~6o?9<`|fXL!&>Y^5vM>q zL>)vY*L^@E7(zEs`%ZHsV#RnARb$o1**#t<>RxJ;^H3wQ@}sk13CAPU*ch>GbMWVr zmir(fpjQ44aLp!MEo(RnOd;)=3l)jJH$2nJpC1?LUP1D zGyWHY8=-3%4<%()>mz}PdU{F{LdBTW<1PL z8UP{TDRw~9m0ZgY;nhCZh6HfgUgLDSCBl$ir@NS(+DHbT;y9liRAa) z>B*JgiSCRhy!K$M3-$G5HMB}t3ioTJ!HM^iCE=$v{dx?<;dw)A>x^!0S46!>-~T=L zM{jF@BIutQX8#`(K)(kRf1eflFFoin-NAN4xZkn>ykKcr1E|4u#1CsrD}8!}XUE7WL~P(v@oYu&heL07f}qmow8^Ak8m6|2V)4{>IsM17G?p>wAcxTjwcF+(C$ zhK6q;@>UJ0vM>i967eu}G;PD88I|gRH{eQIr}*R+GuMMrbd~#8wLaD8I$umpPPKQk zO(G$DyBZ0AE*?36i4seOQ=Nn!pOoe#?=*!O{~fDr5y>;eDB zlk22{Sx6vs0}Nznr-Sn0@jV8w44rHK{*|Jpd2{j|A7nWj<1%4OY{}Te5Sg|BPCia@ zX;hd3A@AgbI&-^B>Cyr{ncTPVr$*gQ2|c<-wQqAx-lc9Vf&IVC;-7X1=#hQR*GpNC zt=j;p6{^-4bEJlScO@iVLJ0dgeuzF0YW8*V)ibMLG{_Sf+DLpxq{nD9hZ})?^hnx8 z>lK>YunKDUq=JE$N9?@MN8mz7W()4a`*i~A6vZNLRtTXsEAm!v>fR(uTngql>K@#D zZbeoaxN=`77CFB;uh4Wqmi#)tH7+zO)KuKSIt$lp%V{8@lOBlt@?9lHap~q~O2NER zRs8~CWu({fYF_%Ty!>4XpUaaLi!g4#Ba=wOUW=!$%DrJ|7^oz~w8<@&?cMN%m2Iw+ zCad0!*yQ1%l8-zK9Gow^QXXUNcM3e=7gBf3;HW@9K?u0EQ$;P-)ML0Z4Qd51#QQ5I z^+1%pC=_GZO>D7MkPL1Sr^h}e<0G^#!;iYurQx31iYNG2tVPx zq4Ym$&^8caFUb7*0SK2ub1%(Tt_g=9=BQcHxb0bdt#6b;ptm3aklu; z@sGxHw^2X3w_mb=J3WQ(o@Cg1Fq5D68oNcnmZwmPNbA0ZCic1o9{~Np74wVxTbinI zc1F#rr5j~GoG;LQfLuwc_qVr56r3al9(=PgdPs3Um3-vvdKwlmPy9l)LDPoTsoQ6d z$;$C^v=SOrnxEWlI1H`wf09XK(a(r@Z=8VkcqPgr*Ua9_F{yS@n*ycXMtn7qZzVE? zRlLmMG(eF(vGv|U7=e;z#em@2w=Hk#B2B;VLQe)v{g5YIcYJJAFS+RV#Ad-WX~Aho zy_c+E#>#-iny5AmCX)O@Be83rTyw%{!pfell*`yMlN3zaZgEHA70gVEq9Q~; z0W;dX!;%^nHGI77+=#NHW3gJd2-3)JQD8h^| z3;~qG&=l9j59a)8-}p|T?CtX$d{JPzE}ibpel|r{ZBJJS;dZ^yeY10#J-953H8Qr09d=vCKd`Weq zR_mH9#r!grPw`UySr1PB4tlx!<+^^vVf}>l zdKHq-1iuHRScaM^2_O85Yi<8C$0Dtl4fQ2|3(*d}?pV3==E|au{FB>89Ick8*{$E6 zujR+LqMPPCRML?eg0I5OP?sOH8}6B8>6y6X)U9u!GF7A|3C*82bj0u_c1Rgva`Ql@HMOo5(tgDovoobYI^x3>PisAvWJ0(Thh~Q6hSRH# zWK{Y}+bgn|g;&rVPVX*1}Y+abQt2sc%i>S^v4u(&WRbx5P8(gu z|LF6yx8jMhr*H(1ik_H>NX{BN^Eji2a>6rNsWk+eO_k{+l;E;`xiQ`F4qwh=yI|*Q z=XpK#-W;mUXz2ES0ZSR$Y&iLTs$*M$&2qo_U6R{QNlMO5Wz4$wKE#s?NfBgkiPmd&h_F zTgavc#dHy=h~n|pedu>)K<+;|1Rh3kWU2r)vD=Uk`NhFhfjl@VJs@d}#A*J;2j*jf z#&;!2+)d%|Zc>+@XJTFc72EVHqJO~+BiM#R-X`ZB)TU61rmIC{;a8>|rt4)aqR29De0=+8#D&GKL z+R@{T2V?+U`#1zpY0bo9YK1(x=QhekYWTtYF1Czyrg)*VG`R6oAyu9IK(Okf%r60g z^8Y2*2Dmu?nHj+HuTHxCOZr*PAH;`uRmZ5)d5x}_@I)yT{^#6O99bkM44ITmLSlExeD2huZ=m#UI`zRTp!3C=OS;z>ZN(Wo$GVJ<;YdZ*|zyYudGO{ zkA_iZL>shiEkw_fm)GbYE619KnK+8&Ci&CkEIq`%b*~F#TJLWr@RHOZIc23uKHyFf zO$&Sg7Peg@9n~nUHv~?p-scGAMY>8}rOiJ|l$bqPN=j1HGI$PUW|-xpn@>fs z1bC!XL`eztiIU(rvs`sH^}Ml7a{K&eCj4}MJ&aANa6|@Bd^?^{GSHt8EM+r}0a=1& z4`2_BkoRKquPCG1xL6?Xo05GRH}6Br2`kHq5}Rv{2%HE5=~!u6$4J_dN)T_y7G*_e z6@Yd?njJLS-t{1vr<|SSa136u*tH;YaP)F~7bn(R=X`nVp zN{9Z4ANCwYN}5wIceCKaCCbH;?J6mYESbMK%DVFg0Bj#oN+Z- z@{)g|7rPtbrnu+S&-6cTYI^sXW1d6`n^4HitW(W&PBE~a6v0Y4PX!zrh4~y zRnlIy-2!T@lsL&mqcgqvcUaVM_Aqya_<0kL^`ABiTYzdmw(haX+}v)p4o9Ex;`q{h zCepj?NPHTnK0(=a3UjcXTBRLir|yJ_nCq^z)D7>s)@RV-##uD;5qeAH43e>_ABhFU zw7>J`_1N#T6qWCcNDI&8>e)qS?mF3LazL&&!#cEnPIHi8yVo|1?VGwf78T8dgVKF; z^D)$*b3vTk1wq_q25^fW!L*Kzf&J;+$o@S0@DZ16lQ6q~gfhaa9?m_~ka^=B%_CZ$ z{ueI}HL-j+Maj1!0jAya)uTIfC_JUS;2#pH|B}B1XPjV%+6Zx@C2q&lh8Vxd1QY~k zjl|B_FIxG?lR=yNLc(5aveT+3#IvMnQ@8ferU)4NNZ{S9SBzp8v=wayJoZBzR0IP1 zp@OhQ84%3>gJkM|nzR6ioJcj>$CZU<``sq=pDwCT(R3)$zw?Ke@M3IAq480X=~Eov zQ&Q9tj@}PFZxmLI-MI@vZ;;~LL0GaPt;(n=3+`cO zT~U|%8V*TUop2RM$c! z9n6C-+v&Vhowp{d`C5L_MyLfx z{soF%^Eza?b;OOpxzn@&dQc02%=Y+}2j1s-TzV`Lgm!>xlk#nmh|ph3En zM6MxuFjP}9@H8Ck+1U6(R3s6=|!b~-ZeG+M~T_TPLrrxtAUuD10~M4 z=p^%J@05*WzHNo&b6260l73Gpv6$<;&5Ok#vVhr&WCBqG-^$uVZ=tHbb8 za}c))(O6KJHuOC=nM!tT&qs(-Lrd}sQyi!P&l)E#&=oymgN?G*p%8y_%L+LdAa#?# z0M^s$IMnSj(9z_s$8_V z6cOY(6?RIhSyaLpX=UW65>J$n)%jBB>!?$`bZrauL^GuLpY7vGt*tlq>!|!f$4tqu z6)$(Y6Qbffp{E#40J<6g1D>m@Nv!E-8~XwZ;4#0jWcq}FC>Dhed+7M+@8R;FVrWVe z7c1DxUZ^eCcH)s@gA>zy2+j~j2tvfu?^*3e3qkIKWtySvX{fzE#~BY zo(`ylQ~1gQgE(_B{#FC>!)%dY&|33e0zU4~TI!r;sA)nX{X}OqSf+PqMp!x*TBOv7 zWw?C*4DcOC$$(pIAzZ#slHZL#4EzLL<<5Zn&5b-<0|2^>Mv+31ZT>(w9`L1YOhC_L zIou8|pZ#C(&9K+nmcCrE)Xnuayz)^mW5?AY=BZz>3VIu4))!FrW$uDC!2D%JYWx%% z&qkEqpdpqch=M#3#+wn5GqKRM9+pGT<9`DQQ-3$O`^g2J@)P_wX|jK}rv6nr^P`_O z=(*o(P#%KlBN=S)!xx)mVJu92s#kLg8$>wknIeYI>E{V}H!Zv9vW4+hr!pI-LhOo> zG?!HjYUGGwjQPZ!{8Qgk6sy0(`&z&a01~B@Cu}Y>6>2xExLB@YyVcewUoY_RA6<(I zK>^?(;qukKDgtyBbbJj6>!aJnWK2q{LQtpE>L(J7q)tV6er@>{ikYi872-j5d<3(v~kh{0T7!loic?xwBV?Tn?sSs=Nh2NC=h$B_PrxQTc;5%&M0rUEcB4tG&4Q>vTSx{x@p5?~*f({9ExmLsW@h&j9=8TRJL^ z+BDK>{o1(pTXtqV)+yDa1y7ur@rtrBxwCdp{VW=yx|4-Z8iriiPRQ#mlmQt!!E^X6 ze|kX-B&H*6$*dWS3p!eD_?4-}MIf;Y)LL{gP7RguQf~Ke;oEWU{+N~BQqmI9mI_u5 zWnI1R-(Mdy{c2GfSa)K>aJAO}BiY^m}!;&x=U18+(DN6G$xj~_SVdPzU z_`jBJ3vf*T2;m=7zdFHETr0PyR&$#wkdjAr%{tF*2pKP0(RdczzMdaboY z27p@Ifa)-TxhL4x;;n;U)4gia^ z02~$Fb4%);cH}z&kC?OU`su-Wa3;I?=;% z%PJsD<5Pcs5)QvMI0jI^BJ*(fuHQi3Y}d*N4;cVjSO^$&--+%SK=2V@DNJXFEu+Kn zK`^s<*a&gU5m0M+41!i4v}{EfTmfX7AP{8sa`~*A?QRv;4xohpw_Jv^7K&*xS0jb~ ziN<7KJc!XpjJS=W0F2$1q}n;{$vsgsZsAzO9N~C`k@*dI#O<_o!7JSy{PoX{)<573 z{l)A3cMB>5V(mf8+`(r3u+YpR=T5WS79ej!)OwpWGneP@`;sWxFx*8$@MTQTsTd=k z-~1ZdASz>LltVJ;{Dse-FZKjzt<<}7APPe8#4z;(eencwilYAm@5m2%1q0g>goau$ z1p39JnvOLjOAS()i~~VJGqJgwK6`7GYn6Upw#t&b;uz$YO3R8{G?Wti_~?zgbi zOC#1wp%rcNhP+ZF@FWw9nhaCAd*Ad2!M<||{BRJmw7?+5-9}EG{{8jQK@tFR9<#AA ztcrYFFB!!}{6@tOl=)~Il!1Ss5egJycHVr3L16;aUq8#5c%S!q~O}Sg#(<%t91X zrwPf-c6}5bO9fyn(wW{sJv-J+?l(|{O9uQyRMSZO|Mk${G)`qDgr*&V826Hhh|44$ z*$*_SpK?u*UiQxN$6Hp|eM~EjW^5+%HBZct$fM*Qg#sjX0H3SZ0>o@(*e1|Tn1h=b zV68I$U$l6@wfTbL- zQ-9X3Y2HgkW}DL=I4(rS=}MvNbl^Y*NkR^168ejn2nDMn5T)OcvR-*=CXUEV>`y4v z1`o3}*x@^{-BlKd-9Emo<7D}Z8x9eKkA9~}QXbb(u4+tPI$VgUI~kx3PZ0X38T;LX zh=lmHy`q;gYS%Kh5RKD%r0=rA)6cI`4oRvLB1Oy=loV#>IPYI#)gat{F|nY`Kys}B zRknwPp%Om^LHhsF_X`zy4I1A`%5>iLT^HCq@g*RUAh*BNIR7ZDZNTu4XeaWB|)Q}{8J|wx%gYymxMml^`8WigiyaeCB(6jB6CCSU?-Cu0*U+5OCv{IB@t@i z3;@k$GiV==_5Rd)Z=xl~$;3*hkH9i%#D(Cx-VjBum(FXB zNWdP~+Xf~ydpeK|I;>&ChoP4lq5MiyK1W43Cnn7ANAcN{ODd-WTL5ou;g^8@_2evrLs zb9UEh&W~Rc{_I<9?#aYfw4#;2^)w4Dl&L0w&W;)SNv-#dQ~h^O<5A>hgSD5W-qR{N z5|;@R?hSSV#K-f5;;|)Vku*pq{GuK7wr+?Zq{iv!s5A^W*Qq`3lFCQlrWDH8%;pa20St%qY?K;W|f@4){V z_CW19?vas5idX*Zl{1%cK9+Hn9p@@V*+~jIWVU8G?@e49<_e&_DVcFm&n48dNVdC^-!zs~dC(hLm|1AhWIsOsJ{--JLKaI+N9lu*b3Tq7a z!nWkk(|?-c%+HrEC#$cjVGYFb^0#N+eDdQI#s9{>dSk71!6N$}=v9Rgea}w+CYbFo zYh#Oe!E+1I?+>>QOWxo_%~Lm^dzjO!VBm^neaqI9Yv{^Q@h-JYda(~^D5dd!PCnsB zZ4Z&#ithpc3mxzr@yNheXO4t3Y=xOjthGNL;xTDeQq@qt=u|E?QOe#kvP zlYiC3zDoZMq{;mauBg*U{~P}vasG0VCfTm@S9j!J_{E#~T0GU}DK> z2>8WGj(5TIofJ4fU-%SJ_1inPvaR%NLjAMnJFEf+*q=Lj@%wb-oxmf()>fa|5R_1< zf~gSMC!OZ=J$7Gf1~D!yDxbJi&guO7vhq+1p#U?71!%DJ!;4UOO|o zQ}dGVB4e-euxmQYaqY!g(a2hg07@Sm^*Wa_BXF^hEC95`qyy}dMsB5 zroPxqbtZQa@*3UiXe8}FVKJB;I0Vww@2@0>$6N@-lU9RYa4zS$?@Z5S)P*=JUD`go zymVZe$EXL4ru)>nF&a#c7re3ZPVvz_GGMVD=4u=wTPaz)^+nP(mB$O+#D@@08&H{8 zA0Oysx!h8?gfcYCB*~DfypJvJHxNL1d*35o72hWx?rg^FD<%4fctKX5vv=1K=n3#p zLYVZjqy?v?I%%POz9*TbKS{p8?+vrqTP#$4EG!=s4llK$(d{wE0SB)AG=8fM2}q|f z=0Z1XHWKDSDu#~|B-lxQzN3+4(>)h}^KV{ZC9M&L;u7(y#6SjCwtj9+2$4fl@|!h) z2a_9MXPE~co!r|atLnrBTL_^U)}2%z;%r{^?KP|;b_;@?8#d6<7&I7N$8tp;hrOhW zm7e3T`R>4U+G%n`c<$p)t!ZYo>M=96)#?EUiI^-+MXkDO8%6~c&<4i6{N?pT(f?c` z;U7)tKW7O3b(a4xI*9f&Krm>QvA7UUh!CijnPKkhE{DADYu zNl~V%*iSpM-ankDaN{V0Dn9fw^QX1Lr$+Ir+Aojjb+%h*7xjbYTZ(QYXb2g;n$4C{P5 z$+x7Rjp^y>R4k7kEH!#3>mR->S>QtV`%o_5jHFFCfT6oSd+8p=Pl@PM1Yvqzry@zU zDI=kD-HW@W(F(2Pz9i+J<2G%n`F;aIu3N8ZUctwoa8Dn-W@FK@xapvnom=F&bt_91 zCeZgCYVrsWQi7AR0HqHiwg*71>45tjGHd@!+xqq<;S~GYya#fIo&s(fh4)3G$cfLex{oc8r8bO_3}4vPeQH_Y)#T_BPgqk|FdZFP_u&&5Ox zzXjdAJz$BC`fBa_#+j;UNUX`AAUdPx03fuS|I68LB@-lImM!Ie^=j`3xbMLvo-~EqiX8P^7yQ{jo z>Zzv&avY0naGQ%P%qsh)kBN=eXolsq=M%PR9*vhnwaTL$O%79RriQuY%J_*s6!_JI z?Y0ERz!tvF!CftYAkQ9rSY4*5qSomvyiVuZ9sZE9{kmxx*voS_-?Fc$p+_e$b%qO) z>ixBL@Ajyp=|{T7S3G`k%4a6iDE-rKv`9`CKJ0JZdqU71yBMF?5FVpW#t+OW5W{*`e|Gf)R5F(I9RLE|&b4>P zi77zY(H|^h!1fZV+=L1CzvbE2YJ)a!mNu;dlJu+V@mx$?e zIL_BYaSwV*S4lOI0%#tu0N5pRC$J;yuO#fnse$C%=${ifv47TXGtNq5%(5{gM87I( z6Jznf0eM;^f;nJ~5UR4;qI2*C!pgEUz$Y>&@S)D8BfQI*-0`(3f*87y{_nSR&U$1jEY{>Gco4JCmKf{SFz&Fb zWKCmCZc%O0H?~ns(C%D1<&|9c;MDkVqf+!B_*}n|e;uFl7m3{a0n!nKb&uXSwjbg+ z51Piqbh>|eeW9X?SL&0`w^pI#>ob@#@QH%*`iT!$Zy37^;v;9jl!d#->k&3wD)vZN zh_!yQrf5Ex^XqqKDH}z4x~0{Ys8Tj$6R*dunm$y;FcN9+7w4FHf@EuY&7uVaP3hHt zil5Ostmq4H;ZZy}qLFL_3Oo}m!8I*lxAG%%SV89m=z|XzP@!`h1^D#v{0J(6^MLE= zgRn{pjd=9qW85Qo&Fyq5IvEF_^d;#1Bvb?D&9CI(Mt?**}6jGt3pk#Y}{%1%30^2?yKIMFO+=LZZX|B7{4M|>yg6Hv93(3_d zg`ok7qpMo$vdv;I!s}w|8KI)e0fNB%Y4RUqsWJHf+2Hwc}0h-Xgx@Z@`Jon6d zw;pTZkBGf_xH>yTsToRG5ktnLMIM2nY}xo&*9Gl43ST6JO}cb#=;FmUWs;{s@?cs* zq1OWN-7x|n^NbM7Q7GoCx10lS74JwVjv|?cI(C7mj($y{M`(<|qw{G_-Uj*!+sQN8 zx~kHW;cnH9GqPC+ugbfS-KB^sk>#*uTKDB?E~`}+rX2WFsi#p@JF|(#pDxJmJt*xe zt_fI>VT6WNC?J)`RJh<=mmo+UwI8ahs84W-0PuqE<%;(^k>L8sq#-*Wu-K}W9-p-f z3gGS5=vXBiL`i0vQpT9%9lm>iSM0F`u46f^RG!F?3+?2!2v=^J|AzH9hh8zlu{#lD zLK%EEcGg5$WjMs{=H%b>5xoQH^YT8@&B>GpP0EJ}beUeK%9dJp{JnB$kgHJWYo(AZfV+MR)tp0ihzRO97w~Yd=6QR6u+BzuAfyXp4}`1a5dU zmmWMK7jTp!ES=7wg?xYC&KdYzyRM?PwDQ%XMVpvaZ^~@YYi}95cdkLn2vxyuR^0v- zrC-a++1tL;nS7042yA(?LljzIUI0HR2iJ2Fv~hy^$7$!9Hng&Od84B3P-5x6v9tAs zt#lEI67bFEs9O_cJ`%PCr7WmpY(Bj4ID5e3kUmaViX8bij8n55Zy~_2rv>qYjtr19 zch&&fxz?Qjeqyv`tk&_8;S<|f{{{`ro_(GuAHXfv8 zIEksa(*&F`DTu0|&P*m5qrpi?K&+4GneJNp=pKtQi*>or8S|U5BSJ=0(NOAF=(Cz; z_frZfxyu8zh+K5@n*$a4XcT>uE3Q~u4sU`KLYjQpZhZ2zpVZ_w3g3JOC$k`Y(b+$f zcAK<&C~liCnU0qN3SxRpB4_qILe|-=jTZ0TbQvd5)$fwT)8QtazC7!~fV-*S6^>A( z5QJVic$WUf5`y*oNk8cRdAiUjy%i0etk|LWcNF=kkMq7*!vR>s*7}GjEOhFMRYkQU zjy}tU4uRcxqBPVk_=J=pZ;Q{Rk-_suDGLi~=!q)A0@U+7dK$*nf}Q;AZ$L~yu;8+MawQR`s6sVce;!fZ ztSk+;+3xMdXX>kVqWf}=Z7y7x_s-eYM4VXDKACP`>3K<{AjG(%XLL4PR9ON=Uc>!$p99v~G;2CBs#=GWLae#6xIY8@O|QGEuSLbMC~ zGoWHCz#1R?xDC{JRCSP3`Wm1qFARdNRj&SBoZ)Y=M*mrI8zI+NvFR68*3r&}cgSx6 z;2^3WcQH078N;aAp18HO*{G_ccX?V6bAR&XH5I}SP?U$`5c~TcIS}xbUBDG0tl?68 z|CZ4f2Vu=djjZ~BHdk|DF6s%l-Uxv%OJg$yc`%dY_r3?23dtC8g8MV+-b*x~=Pcfz ziaTt?X-INjGU-a%M@h@Q%kI|ie9TausjH9 zV%Q7o8myOfgMbs$SXs4(nm#0AI}dRueyT^cV*N1pz1~&}I$7uh6rrtvXOgT9!*Xzq zb#Tuf@Hg#4XT*}^ z0cC*xxxaLfx*xjUnr z^JQdIub5Yxfth-sRCuHp@8n%(SeN;Ly#-gbHnNuQ(1_p5KKF|P*N19)%LEx(q935C zXcatcswYXKkvllm`g~IhdD(`=)ElmKgV5;cQL-m@Rx}iE?rOLtJ2A_jXy@x%@@%F= zJRPcefAgtOW_-c9^dkb71^35K+@%~H7p@@JQ$Dt3n@w)H8+rP4@&0eeE2>}d&gFBN z_qgnx7GcXzpf9-ewiBFywEf`Byfq@P>1WOxa~7Ev?5E#|H(`7cCeViy4u z46Y-61lWt~h2t6b8<=|t+M#wkV1KE>T z)1zxg#(eVHKz>51I!bBAK^)TKJCKJFT94OEudA$=crACtG_i+PixvsXt&oS|C|Yn_ zh3wBjD#JT|YX;b&0e%mY)b)k=_$=_Ei;k~kRbScJ+5Z5ET3*wPvh7H)L(EL9lzf(W zw6zfdygh*(QHWqcf#YI1yp1bU=Ja)YpO$&>BiYGr2c^>j!~hIX zUP{-$S;hP}IaK~Z7w&;N@%5vkgS<+eTv4G9)2ePJT$EQ1XU3VW?}mlP0O=kX_+}Lzq7JPs`b3ptZrC%tlhaQE#h1n|cgz z8rA-tXXNMNp+Co3e{1X2n@hp{i26Vj!q^c&sN_tJ&Yk&q-!O#|-*&xWu`M%a9dI_B z#qw17N+O*;H!f{h?ymLw$ZjP9T2fPR2XflQv|&EBnS3Xy|v z-n&ZlI_q5Hvxb7!+Zdo3Hin+sqKB=&C5?9*>ffc)P>E8`u?naJB- z)qopVc@}I=#qE%}$iy0r-_0!38sdJH1)2qFo zk4o@R357;>$nW`jY2>+5h6804%}r9$YdLOX)oCJU$7-F#ZRq^ygTOb|^|Df^NG7 zRO(-M%UyVIUM=mh!o!)Bd1}l7+c}}+6c?VzlLFqi40!&FQ{c^=Hs-DqlzsAM>FO<` z_E$5cGL3((>nlzXp-JLx_P<$1=OL$wT|Rz%^%jdnqEVbHw%a)fk53FNe3t}&U@Q&m zsm+GX+1mi~rSRc#c#C#td$|BMFg){0 z>`c?Vd$IeNQys(5CHVAqx23L8rhKITv!Mn_5g20M0M&>$(>Et?A0(g2aZTSm;SUUT z?hiXIAJ|+rIJS8gk|N%$0_=K_L!1`9zFkc7mSAZ%(baRxMMEN$OXUn zrPF6WJM{)S9sB`e`fa@wfxY3`db5;t5~@9r;&(o0E*wFkrJ4)Uk{V zXgcy{xp14__E>COtNeJDWn|je6w@%3Wa@TLeBpbq;G%dtpg#!KPq_dbh#uemAS}1i zW~2QVvDnRmB>xoGY__SH6rs4metW*1`>Vh1eU&RQx(8ad z9=GE>-{;}Xbf1VCF5s)ErGyIT|CDUy(m__}{a)O*LLzHx>qFYY@4{2xmt`Z2++8YV z5bow|?R92YSWJtgxCT-G#GC-`>7Vy(*e}=YN6ydom({2WjR@a=;a-Y*rno0UOJ5|k z6q-;(9j_Pv!G&?Vq#g@j)O2@e@;iqmkzP-Xc>tRnQpcuzFbje^X7g2RsryR@4|qp$ z6eqcKdY`sub2FNG2{luC4?%c&XfMdh9^WfY#8}YZ8$MLU4hBC$@S-Y9x;jg0b72Z^ z(1$;CZ?^1=DhtHb1#{R=S(FV21htT~3?Pg0kY{!ykLFH&Cwn*9Ym$qks#H=~qB*hs zK4rC2zGFuK$Ak~6E@(r160lE*9HAgd8Ehtq6><^kn0v(k`6al7IJrn8NC^=s3Z!bBCS7v2Q7&5%##Q#x^TfT z&+S*+4wvLdbi_<{n@E)!vD$oakY!#(b-r(jBnqQKjBdrez&(Lpp7CE|--1wnv;58L zxQ5s2h8??EkLYRjyiTdw?}(I{lO^v&k%Ku%zPYfKytf!ub=55mRSIE$YPLQzIfPIX{jiASzed_6rav#VH6|AM8E&snSv6Q{v;%6sp3ok92^w8%1q< zlwgObCmXZ^W^#Aa2M+>X6ZBqS0}sp_Wq(I{oB!sp$AOxvo0-Ig>ZuC{N6rb97=9*= znZAK^9hJP3xB#o=RKsT5Az7W~+rPzz?$9m_FQ__b1Gh?KApyh;VgN`Ouo+>K));D*>WnVAySWJRq^R z=Z_5|KN}#|Wl2CS5a2|=z;nSoSFVCwpZ}Osw zy8wXp{!iP;Z_D_gu>%&t(Io5|p&qb}3;_te?mG0h&nmZ{_5bGc-~RvaK7-+^z|rag zoW9qAKo&La3>fb4YlFW4{_zhG@p^2$+g*C=4tta@iF1^L5-o4<@HK>sVpI?v{>&Qr zO}2j*$3K6lsEt=60cCfdX zyzdE+xFcarCi~$kEeU$cBgkP2+yOw-zxyZuDA!=OgSn1RoxH3@PXJ4C1q=Y?|AUa| ze}2FF57g{GyM&OKm-cm#k-V@UAjXZVh#gDf&P9&&@SBeo^)tYw;8{Q+;p7aUK6Z9L zR0+~z6bUzzM!4NQK{6M3@HhG%tn8uj)6X;H!qePRmCDBiX^xfk_l$9=jb(bsK?)|}`d-TB5aF6jPT*NAN_rWslj`>2tBR{K36L(Vsc@iv zEnysvZiNYdeTyRt0(|~FyY>588L&g3Xz+f{r{@=IRzE=Q#4mq*vnD zCfI~tM+%TUTQbEtM{AVr)FM-#o^3K4XoqD4KyBEcyaL&kd+>-rTVPmI8(hYzr))X_ zVdbY@Uk@+LfjX;!-vw*vr#&HwcUcfl(ywWV(cpG7u=#c%7P)+zD5JEle$)q$3*F)J z{sDS&s|irsUjQ1zM*W;|g#QAlZ+x!6g@1ii1=Ir#`U2dL;lQyi7XNVH03{RYuA%H7zTcQ`U$p!BZYw(*>{g0dW|6n5q_q&6a zs!})6X~NH0pAsG(T~#1#JZVHSR$CC0xxrZ;0N3y@yc*W#^1Qk!mWkf$ySWdY_jKOY z=l_ln7uYhd0nY!I4p*cCT9mf`W*f)>LGK}8Xn>?01CQq9b!as=kjeG@`lwgTC=s$O>h zbnzp2fN0>3bNIqDy$bl~__Ugu9-|QClDA;HkWyF^$XtXv=tXJ(bspAU|LWrWX|M2X zwX+w!6E{k3>V;1Ag!Oco&FPj;t!9OG&<+VRackRTn6!liGr!&K=k{N0jq-7BPB++j zD74CSAHglRM0<(0cbp=M;!rG~O(`NxJGeAGq)YlVEbR3-`;+rhGEuVkeCw6c6O)3C z{l=B;#P$kxbDi=2RPbx(BQB}HJA?|HwBLlBJu4`A85sK{L6;*=x|2$q%4FtM8Tp&u z?FZJo8ao(qX0yuRFC3li97GRc%GQJ6&M$Z=)V}Jy$mOk9{xOabg%NCbgi#*P$7`S` z#yhh_JvpUUe!?LVE6(7 zI@SBqVrt`%nX;!rdjT@bV?$&v_TkZYVq7Lex!hiv&Wqe$0%vLo^9MX^?AT(}9}Nrn zd$@?o7(>1joVKf!`k0CvT8cjlAf6t7{$9H6yyW2BO`_4W1ytA1RRx-fN%RPfjg6;Y z7Kz@+QWFXpzUpFDJW;?__srOG^e%76}OEayJ@SR}2qLY_ejj}TirdhG|tZg<0 z0701aFXuE%R*)8ZHKMr&UD<8*Jj~c0>F@YfcdYm7;9+|kJL86p!X5ee9rOm% z7cgG}&_;RQ%Hsg5)Ixm2XAc)G*uB!Ir#rvDJBHm+?>9BKTDWR6&?)#%!Nfl6plm@# z>kzU*tydu!A0NK))bXVPFJi`DQ40L4*Ma|5#faW3rCdCia%B2V^ubL^=OtA)v_Zz0 zu3-fRWM+PZb#DT3{p?^k>+7wm+oLXNq5k4V{V&;>Rl6=g{^mK5zp403IwyT~GGIZ& z9|7o@Q2^d@n~v$9w+?XFz<^x%wG-H0F95T7`1P;4I{BIC`OkNSXaw_tlT?}$+4v|O z_gGS0PclFj^;g9+h*K?Svq+c-r5u2zlP zEBY|uF0PPGfy)pxDnucY`2 z_|?{L?MkLk>gnQ;Owd79TMs#>b_k-4NN1n<$dLeX`Q$<~l#wCHc2_<6X4m#wA7P-M zXshn2qPje(_bLhwC~Ugb6ka;S_XEU?yfhw01@;}M(*WSjbmlNlM|!G#IP; zz+VRhWeh@j9`XPLnkq^L@F>OVuJk335`?d0fbhL1yd$fbn4zb86QE0N1v#1jnSk*-}Jk<_8ea_8_Ygxc*Sk7+E?7Az7Wh$Z`*t9r6J-AKS1b{=k`pbJ>joy zBzU|(6_s1`Ub}1v5a0XVDe_YS?O?ul92LJIv|o#}s^1W5zNHKD+LFEQh@#A`nu^P2kdjBk!P^NA!qU0PQO@6mS1$wcKP>hXoly5sZG*ej{M zhaZjmm4<^)Mb2eb-h1!p)(u~^;)SFOy*)rHe&$@a9~0 z-Yoiy%0|9|3LxXXcb}BHNSY;AZd#-DlgdQ&r*Aqf2Ix^88&qC!+)c*ReBEt?IXME? zI}2pPyXcRKfo=!yrvUMm(#-4rJ^XEHaDspM_zKR2qBhBxk)+<4&#A)FsF45tYZ2R4d}iH#xJ1FxwR)mh}$= z$JEa<@>;IMc6#84g2txLdvG7kf#4<6ikex)D$n?9U=s_(ShlA`a))UH&SS71_yKYN z@OA=DF9L>FfVb&4(K`#eqTruabMmB@pHLezGT^THlcS{G;rXykDRpa1^O-vFV_U zTAA8z60FqlB*^j^EyD7@L)&o2Gy>Z?z_xUg`!LVTmn7&82a)2v?=Oa`cNx-crV%42 zkh$yTao(SSzV1~Z<2!#qRn(%Ho_uLX=(T{YH074}CE`X9N&XpYF;=Us3G>2@uG1Yd z=guefQ^p}-j*-|D7Q&V5adT9)xB~JZbj9))Cg$T`;uNTD&lYEW=LtHhBBX5G%O=SP zJAZ(T2(bW&PuE(hHMZ$Fq?NMGp7vq$V~=U{2&9l&j?T*gposT9J*A5eI1V9Hh!L^5 z5zsA4PyX3R$dRT1j`o3YFy>rc@f-W;CjPhqNRsWDT=7WCa2j(vpWpbD=@Tz`TQjm~ zH0HKe$J#5KJKQ$L_ak6;6w}a1j9(EBvr!?i8?2o~s zD2)lQd2?s6%Z!kMVvi6^4j{0Mbbmom2gc0R*l(OQ-?s)$FR>sD+S2U=Rc7P`$ZZIcPA$(* zp`3o(BiGwKDBrtqG@VI`V*&MJZLnST`+ua%f6!Zgg}X%1$xYx@-ga`8JF?&42U?*e zHxhR+QYxpFwskwC8mC0T?li-Ke5H25`2+%SBqN^EWWSe$A?5u5k;_(ySIosf312YL zn&r3$09R4^dj)Vy<;1KcUQfw~HBDs7mpUAFZD9}yj|B)1EV<3Tot2!K$p8aL4u|jC zvpXpY`y-4uIVSTlgpS)MNWq_zYJ(&|%I7eHjv~2SWwzE?p&GVXg>Z{K*;o`!D}*_%|-_ zm!3CP&*9r9j;)Ccgw8#kijkTLOrgNn`T=@(>cUk>00KBMfGqm&&HMR!UVG$9JF6e3 z<~*C;+$>dSFaXXuOY2e7I0FtAgq=@+m5%(YXd|q~w&j{HR;Leq5_?Fc#cjGL8%%{2 zj{bc1LweMk&xf2c_dqr(l99$=Ri8x0-d*(3K$sf|A1U0Gdg{Ug0)=r<=Kjp#{y%Fn z{yO?UeWkx@lo?@tg6ub6?+ZidV*1VB|lt3yiHuw9N?dmnP*anw^kJIWI`z^Q$eVW?| zw^mk^f+NQ>k}-vfi@l{hjdyORqVz4$=L9+`=rpH$R^77?k5g@y;&*dM^1jQUdQdoHJkX97Nyt%%h49S8fNI-oW!x^Djx zvSPeF-&`{7K9+~nV1^W>kW#-6A$%Qnw-EwyZeWa){MBRwU4)uqL(c?HLFhkl8kPxJJ$s zWTaTgR@Pq7N!FA$?E&x?N`gpI6KNPjRn=bFR_`o}3Cu@mG(aU$GVPIlg3=9(ZsL2P z3B%p9)x{g-oHsP$R+wZbqHXM;k-~P%29p)|*nvb1m#@;;bjR3cDwH8Rq`I){qFjfh!-8i3OreIvrx?9m%~nOKkvD;0sXfE@Eyx!|~-zVzA)?wAXy_iS?EMy$RD6Gx#$^57>1@?0BggK^dv&@I5cTpNB zu(^&DWl&gBz9Z7E^JBwG_L58VN@GlAL|&C!>$#-rN))Ymbv&{GC9xYO>EfeF5p5}Q zNu8ced{7k#IDcRg+SDN(QY}2_8gB_Wg*Gy}!xk(v`DpRky(U{ILefI3?P3c2E5O(f zrffBqPv6DM9jXdWFFW!d;2Dd^1&b%-njjCodAp+=95s;fM4e){Pnf`XjYq!9`rVAD zCAZK4&n2Z-?$ZaVZHLv*9Lh~QgKbD|%n*+6W#sQa5u+2uj4hhsU*OvGxf}Cp(}mXoj$0QowoL4B z+$7P5>$3INN7NU`la_!3i2Jjomin2TUW_$0x7>+vox z2*W0D9poz<$*V!*+Ni27x%?P_J#rzjkWP7 zo+!Jq+MM@B(Gtn)A917or|Q1WGLJqeOt=I|b)m6gOiM$wQuI$JakG>s>01Ol;gnk4 z+)0bNoD^^{7}16GPlx(Hr4a+BcJQRk#qY@s?GbUoR2#cEjXm|HePWXf=M8srv`Wub zmaV@L7xCDsK@v5>L}&k=E;ySw3sVSk$AuRJN&!F=|DrD$+;{ylvp;{D-Mhqwv7({2 zO8vqn(B;Yf^j{OJ|>tL~$x%@BQ4q3Xu4M(F~^N4kgGu#lqN`7*Iu zkRmknBx53H#c!&5pO>FyM z?mLQK0i?RZs=OYqAzvBvAIpQU$- zc?4;O(L{*O&5HRY5b2ez)CHjj2XSBblN>Sv1R!_Yq ziT$;@sfdOmOjq$3Zd=oIO2e4jQXhk$X~ zLKet0ZO?uX-o_0R*o6)1w* zp2@dX`TN;|n6`6M7e^SoDdfd?E!ikCpqF_JrZ~kxXzE-H6o0RU>22)e|D~>~$1K=3 zr7?2C>S9TbM>7Ml)!QYRneMcd#&F!nhNh3->VbVThO*Xi*ZiUjcf)NSLNYRN$$nf_ z>UT(4p764jEK-O3vHJ*?0EuN2KhpPq5#k2KCF%wrM5AgkasphMXpni2EA3Su|Da7RY4K-d`UD9W(y z(9sO(5=0{Lz-okyNQ2k^YG#gpfbJWWa|Mo{VtB!Z2y|E1vQ*k^w+6qNSSK%Q(JRt~ zU?d3wHO;vV%dA~I-$m(i+7TW0?TjV_)3%36>VyA6efDp4c%XOZ8aB1oRL8~HLa&M> z9zr`mKLp*P^Myl!+~+aa`2);f0yR$_id_Ey0Wj|QH@}n$i7kx4$0Q2qkv*Qj@j^Bu zlHND%Sj7ed3Z9yv_DW8k#5;G)sK6n$2fTZ}l*a7MkL~oW`!fn|M%1^PxVkCT1Sa_F z<558yHJl6LQunf1xYH`*cN14-s|?~QtvNaRUv;7~K!CbghJWu5LbaLntc$^_s1DWe z6-A!jc^mE;K494t=2-`X^Q2>|pFH*`V|Om*A|<|6#~j=7aQT^e0~L7@>iJW;_cU$?*YY(a+R~wCgICV}K&Z_93WkLV} z{gQi#Z5xUq`Rq+0kveZ!5@R5Co;rf>p)j+lSDWM@PyF63l zK`ogcB)?wQ^(^rR+sMeSWbqKn`cC@_>@CmL`rrx@*vFSRtJr7UAhLEAf&bv_b270 z2lA*Il3Ag@Y4B9DjP9Ut4PqYVfm^NeFVfiX9X{*6vzrhBds#cozid$lkhuyc{Q#x0 zpKOvZJgHni?)=}3H2zz)>i=G6M~uinKyIsX+hcnUY5k;;GWS)CY)osuGDd|lyU0;> zC4A@cJKB<78{>{j@U36aPzAi?UWLFYI%8q!9Z#2h%XXjKygQ-yhtV`NE$-qDB+NMod_+TAza#tMhHXLd$^*a zVechOvlTyp6s3mZxr}e$15^xh4_(uE33a5P!ec_X%31Fprj=qrn4+*$jzEHPZ;bm13-aW{(D!y&h1~t zAO4v}2;mZ)%wiuE%N4k2PbRJ-@SIP@wax&?>X$TWfX_kEKZ$8e1;-@=dx}oh55u3|X5F$30p}f~IW{*nw=N0Msu) z1up$#JhJJ4FYgmE{hG8q#@K#!1}_>iw+*Z~-ejZAE*S%LcTI7>FO=OUy)Nt=O^SQF zpNIyV8>HB+zbM9*XE(bOZ^xdw- z7i&Pyo8?Qn1IkmUpgh*6Ga2f+p)Spk2!FaM)f^WekGKKLv(tF=%vBe5ddHX9wh~qj zM*dMFiCvF4b5~->6l6aglGEIkVWo}}RFCGhkN_EP9Bn2-$7qkQw!X7+oNz4ne-23x zr!cQc?>+=7#D{na-|Y0yCf}RG+Z^Y5cWJ1~*IHHYg(8eF^N2(-#60P(`k+vb7@$8F@yO+{+)JU@QTm zD@V~GbvRGmAZ+7Q+>RdM`hx<&Su)0hMYZgV^SEZ4Q-w?Uu2u@}fa0PiY2htWQ~FmJ zlK9C$py6Dr@p8{squOt{c^qF|-x`r4Mc1nT#?rXcbvm+*YXCC!P)O}@*%(XN0ZXBn z{ij;_x>sP0InCys3o%Hz3$jqjn_0h_#hUR|<#V-Yb{ls5q8%#-FOm=Uv#j0X-0~nj z!j?gnu}AAO)fY(yu^cbr4Md#f9QFzFMbDXO-W53sw;3s=>XRsS<@lI&%m_j@IZu1_ zc=0^jEthM-i%GtpjC>tAi|7=knfOCVLtoIET?au8Am(>fGdOw13LH0^BAgP_2jD3C zt6#n~nUuz5(&w8fi7s*Y@l^=PH#GFu*{)_Aqwn?X2JOy^t?-A*Yfns}xyi9%3^i!% zKnNQlxN!p|cEkDp<;2k{qQu3x?Z>emjMa{sz^z(E(@-%j5=7e9vL=q>CeBcH~dhTeQWgr#|QnxdN`U% z{rQZTDqzIjjIdEgl}N-YvEDIJiM6e7%g!kN#eaOyvD)xjwOdA<+#hJAx|tN`is z8i4@r^R?;LkVsRv<={rxKXXq1k8mXYVGs({wQfz!tlc?p^PhZn;qM=E;oz)McgTfO zHnYvzuidjV|C~EKb7#y>6uzO<2tQ9o*}g^%?<$Yo-phKI+2wtq0g(Rxg%D{3SMP;{xx6N<4=5#5BPHZLB1%{)y z$KrV3hJn%=1o<+d-k8}Ctq@ey{J5(q@h*SI6^TCL$}cZS#O~`T!qmg^o&d$_S(`ZY z#Cq`9K!?2kF_{%*e1P;hAt|K!Nw2k6_CA84;i8uHmlouKCVmv^NJtrG?*99F*K+vItR3>>FG z&b*3Z085~e6jyCRkEwRd9R2I89YT%oZFiF~XdO-VL*rHb8@-Ibz7Jf{8;1P=skm_M z-9Mia+0V^Uyi90nHZ~LRlgw(#TL`evXF=$aIw)>pJ44YQ?@$xq(?EGOGr+j*>@omh zJ}6!+nFSY?aj}H3?hNnBhobw9EvV90=)jrWIoI_OPa_Ywn%mTfD^$`aM9R1vITxRS9v$Smq`cVUBuUx^gHH`}LTU)a6 zpi^NrI({mBcM@e1rGai3nhW|AJJ&*t**u^+qy8?(Ol_$n1o7=56N5;`+J*rBNk9IE z8d1S}Md<|1l5pKlOwyVj+%{edD#Y6Mpiip2OuQzGE2M?-V4~pA8j?80%syT!Fj(lk zb|Jxj=OdkoTR&-w5n03$<`vROze!B;y+ETyJnw~_7rf-sm7?@(@}Gov^OWV*l995V z^_IP2h9ojEBg3yuQE_IjCF~uI&GMFL7&dL0&{&ECi zY75RZ#Pj@Pd2Cvb^?oNjr*P$viOsch(S>sk<632Z+&2$7GH~+dOWm>sV!+()+T$xr z0F5mHkU~J0T4Lvh0dk8WJF36t&T-ovqnS{fw8F&c=-9MpDxhw-5hQcrq=6zTDeb;| z(zDNEeBaH$rpf0<{(*kO2B4()rS^F}J+e6scGajRsT?oZeXzVxTi60qh-?;J=z>v{ z=+bIk6b?V;VQ-RFhf=@Mlab^k(d^?`0yc(!(mkbFaZ8qsnz>g*%!tl1p?J?+gYMEx z0tkFumZZCr1`qtdP@FNfCCUL&!tk!(tI+H0QU@D=eVKqOvNb=@R5BoxCu&SvjBeSq zxU)k2#0bsUcnCv05z(z;S_}k!-QS?%6gKTMJKyO@{@~5fs*Kj-Y{(?TcS1_2CrB}T zp)cB;DBF4*U#2hP+oAzjGW(Hf0J-NQYfjo4BF0{jxaR&3kYr)ZuK)BqDOyaEAu0M( zMn0y>NiJi8r67H9_V7otA!E(La-^3=*e?kvDJTrF1bO=gnDoK;iu(!Qa?PHL_ZwLj z2n|h%lG_Ae3z=A#$>Du~T#1aiu$JUfPYIQY(@Zx+foMLNnr%75 z>t*(R8boOQipJ&6nnXHI;$Jb|2}0y z00Z!V*=Vv~!+LFCTc(Ie0LRFp_7!15`0Xo9Fku9s2_XBaYy(RI`eiy`$iuz z+7Dw6XQO@i&8UOk`8KzCQkqbio&+?AFJrY1M*=V_kV)jqX>FXELolSGqb9|z9#x#> zp<=>hH;`yEU9^VGLZO8HrJM-~pHl@|}Kyf4SzGcB19QSFwF69MJf z91A3D&F_+EIRi=Dzx-aD(H5$eOrhMdBo zc&@roiK6?zsC(5ZtwK3xSXz!GpWI2ZDs)1PG7-37$ZJgy8P( z?(Xi=kgsy?duPs>bMCy~+>vMA=Yct#pRF=B0i|cP1g3+c3H2b{-%-R5ox$@jJ19 zKKxFH-&>4Z>hF)z|2vfNA9=fCHxH~xbDLxZ6N9h2gz}@M2!Vo{Mp0lDyo(g% zH6fNo$#WidUSU}>l&VF5vdyAf^*e)|5&k^ERXMm$d%#o$$?Ndl-L%_HXpM~aC=2j8 z3xEWoWI}TQ;XmIV=({6z0*DxVC;#m zD$sI{vtt_url|j?%TfPr?=BE|XbJ7*a7`;l(i6}7RFM2Qu|j{6FF$i1MAiva1-%LCdTRMVJZ-liu~|dT%)Uz zlo#^H;9&?>TQ9$*S*2?zXoAs1;P*TndXkCldpQB4pj1@_8`Sc80`7!BCX%t98e|UB z!5YfTB(QnU8Dt~>ZRi_FNTyx}{4T%^WF+~(h3gg(l)A$)!TELNEl5h*Ed2zo(YC;j zI#LI4=KPJ8oB)f$ze{-gMNFagUI%jP^D#S(kXP7hR}(A*uCeTlnBgmrE6 zz=+|}%V$R%Ej6!CYxqXg46{9)8qr%7@yb`BA##{d4ye!y0fawoNz9_Ho*<}yu1tIP zk+n>A^Y?Z+ued`>!;Cbifg*sK&~>XUBdl6BvG-`M3u(1ry>(fkJ3p3L3o(cgW`K>% z$qaqEyb)X$McPaHfly0Q0PYkK(M`&RP7#PcX+qFp&B|YlHzLRJ4LIIq}9rXeGVh7x7~0O zT@MtMZoJUq55VM0d5ETUQlhkq`wHHQ*SRYm8p!91l>-Lc64s5)elfpJkaereJ&xSo z9!3pvxEkHVsIcd0qDTe02k%#hEfH>gpG9kkGo8selVh&fpsWTRWs1>3%dmu{w-dy8 z)8q*l$%(Jb-QICdL#gMXHGz;#g{@Rz541QXwa;k5f7pNUfPGeXL-6>VR>ZHi`Br2- zkYB=b;p*P{PvGlOzyoGzJKW_b!0<)oC*aL-i>ij;`MsG;wz&C5xqcqCL%`<6~y%M=Anwj>{+Zp9S=^TiIy`9N1oj4ayjT?FgwGZTH}hzk#2y;Exa2 z+i%!W`;kqVv#-OKQRjmKMI@$?=j{YEhFm9`nn& zV5jZPVKWIUvKqP_RzLsCbf*ZQ|FS8!?TasLXqQ96hu~cENlz%f zBX>VJCaUOJCog2TUgYv=*5sx8it>=b!~4aiZ&J)yDT=9-vcA8^j9g(b3+w}YZ{7Tg ze0fX5RF4?ra_6^tmFRbWShz7U6vnPyxEz1y6cftC3V5yc#DB8YH{-l{$)G?c2YEgZ@o;z8%g^IdHTijp?jn2W}HWnwA)6Ug@uTuk3MA71vf zvRCQ)aWb9YXiaH9*qf@@CH@{86dSA(5mk@p6!49-K2?tcc)A-ZM;2p|wKFmKdz?yM z(r3EOKYv~dwh-MyTllLHzRRZAn+v5bOIKUr+&p%cigwQw(P9F?XO{)|;^OCEETGpz zK|e14j5-ZuZTlu-%2*AMW}n8v`B!HJZck8MK)%N4@>R00RXOp6MY-K-IpVE-5^ap{ z%6uRLSw#eg#HiKb^XLVe4~8c0x~iFIOTacL?HV<&4XlIAzRl8-`-#+;!l0xm3U39arNGzS(*5`eJ-2Rc^(NH zh9jxJ)BE5IFhAohQN@Y)gg}1PGyEIYQ}Lj-UoD&N!~{T^r4CTzqlN)%f3OSYOhy1) zzrOf?y(M6DrPo610+I3(CBDzhBk~+{IufiC5j*M!{a)vV2Oh@5+vlRW8(NpaE;(2l zUu{q4qGH(Eqx<>yyVxSL@&H^fzNfxX3^IN@lV_j_2pO19&#UZnbBK7%(fiDZi^3lI zGI%1IRkP4MW&Rl%NPa=cqaSeUW^IsPu9P3SrLicrrQ3$0P$ZKlPg+PQ9UCNSeo!4; zTw}ZUSW!nzjNjiP$IAD2GSR}A0k8>`F6F<2H~JqM6Y`d?hTiY??R~>?RQL#y+!B>j z4OL1e#)JUZ^N&d$+Cy^6Twv$aAPR8Dm!WHd5^C2skM`7qU40C7Tch-5SR|j>Zxg|W z1A6;e(qox)M!o83;$xHYUp%PbO9s$ETRuKeWO7;I8MqPF3j7Q}H$lA**a`jDq@+_i z)1XDlh~}_DjQWqQbfRTW=Rw8Y7FylUTqvOd zoW&%O0|ov_u>OX-X)9H^nWX0wZkeHPE=_OXT)7ENH*8*1p@AZw|Fg5kAA$XU;ZK74 z9v$cYlqnx;D(ai7Gxt&4+^6Q$EdpLZ({A+@sNO4L-wbbAOc zvcx-+=UPH}TF7Mhd#9V_&awPo=9HZfe$rx~yqvBvqlYxon7$7JOP!zg??e=+Hn3P) zxix9)2EOHsX4noQb~#4Ap%vG5M8yfA7Yi4=&4*&h53-dJCApd~Ts$^V%r!E#Jymne zq>E(v9LUM-tjGZUXhp=8L@Qr~5J-VaPan7U2jm1(}VsVU0bmgA$-}xbmlf#azYH{^2Y6?#z;9bObMhag%E~N^9>RJ zI`n@&533Vx=Xp1(=%DtK!4EVqDf1to>;Rj*fkgQUUPzqN5i&i4<~h;u+yF1a;-}a& zdV6q$9;%*~BSnD0xaf27WD52Bkt1lvCwfG9SN{3VMak52AX~0v7+!AU@WRCbt8L)C z;D;#f_`;eHNf0pxfR%7XgR0VvoUJn89T zSaHM`=^d53L=p1#i=)O+gm8wN8|$SS^55$d|8~nzoqGQR855}%lEOJX7^^^KI5pA| z-O-crBoyB(NFyC0u=m?uA(kH8GWlP){rb$W#&lx6vISj6y%Iipza%O1n z>g{_tuc52@Hm=;`M_hU=t$q>UaVs#&q=Lf?$+6QkKV-{QT~;Oz(4Dw~-&v7nLx|xJ z>>T>CObu-LGY)4B9whc1PHdT@DQ9U zPbF(wuFuLAMv=gYIyjQ#t^3-3QE%KpYSe?mUgn9L&lXP{! zF~m4XK{16I9I71k2>b~ep9$~*_ty7 z1NGDCKu$O6P+|UpPi;$G_7X}!MZn>W(rB3=oR7Qf991d=5*YBd zl+>>Bj(!^CYdJ8Vd-^=mCmT|o!oz%_x0?7O2(57&guyX~15G~x98Xns;rfhwMFRst zyQEtF9(Lq%!bbxHkP**{CLOJ)qLAET)I_y?ITV|ZXPSGbG%?n|i3rEkMoW?lTi-+Y z7CExEStS-Oi!<^N*?UaTa?|DuoNMSuk`uj1D(s$J_=1gu!0v0IF!y^3JdmRC3JKf2TIx|8_Ib@woWzJ(s;`GehZyjU{%H)D zW86Rt7aH=lL3F=qz@ zm;R#~p0Inr6O5`0ER%A8d_ZSc(Jk-7EfculPycy!#U^i^r%CH4ql!jMeY=xnUtou~ z*uyB29$rN%By{Bne1t4OhUx&yjpDmUFR)K`oc*Vaa_+uT~LmCJoV7pW#y zW~8N3lFQ6U>uoL;+JRAGXDrVIplx|@4mfaDjgasjlKO502!3aK!`_Bj=)v3!@W+8q z!+x!Yi^VEKs_hQnZaXs_JCvW^OF*LQ7?X+qy+uJAV4Cszf)#5uPdWMSK2pfxN$6xy z`*+HyHUHDAN5y4GJCUGZV|<|XaDJYgdGN?KnYL^3%LYcI8_5pXy(oCoK-g0-xA|?F zD2O#m?tI>~Q>3k~u5)$Ksh)F%YBm+9@HxUO`?6YASB59ewu8{kPPpLm9+@+|31i#i z2uA$0eRys`#p;FCd3X`ijp#7xxPTVckBDXy4%omsX5oMO>lk=VX6B{gJ)7 z7pe&C$+5$vAoNp=H!xN)v}?ynQxPiaIztA%0_Xov$e>5Xp9#lbFkZB#wF+Ekzo>K= z?)GU>UmQ1o(&hOS)A4J&Akl(0b+8{yi)pXT_4L?Gl-gz5^ZU6!1?{O9OTi`9~Rn78Q>%?_mbQA*dJ-!;DCK`xS(ttxXPoIo9YiiHp zh>PxuX`e}^qy?_=$>TsfluWs&BezRR-d)@eHdD3?fDv+q!NMZ)19=A$p|fco-M*cV zZ#AO3GY7#_q0R(4DcHFBu6YUftdMi2HOallodsRr<3?h(44wwmUS(v;u?RArUit}B zCFFol{O^SjWAcqXF2fIE|N0^PXCL1G!Q)UUSBgn>Jc*Ukp4HGZXUkG~#Y>6HP;0iU zzUTw|9k&+n&vXs%;Si7t=+(aBGL0%d4s;3%cG$m#TXJ<0J*(S+09M4Lza|A8Pn)^V~1%8nR;+f)xE3#;_g(DKs z>iUl_n$mz3ptL2>)cQc+4q_N^%tz7FunZ#0zqv=xJHQb@S^BEAP;x*kj>Lqh8Q6uE zF*8lxcfVy%x5n&y-4izwCQJd{5d4mWvQkn^=N2dv_dbdbb?Yr;lq=Ph0a`X?XlhZ~ zRz*tH8X=VI2okh^F*IoX=KwOP8?_6UNT7hGbJT?$6ncVUodt069Pny5M8Ek7#O1H+ zgWX4xT< zS_|+fdG3SDz(3sq@V0=+_s{nLc|37>j#bBjy?;sPapw*LyZ>u$xsF5R)Oa7{4*6$L z!~Kkpch4ZrzT8*7VwM>vef(fydj7vfC-Gmg--T=h+(UsY7lA@tNmlAxsxnC0iZnrW zd5YC%J2KuKTWG&UhzUKs5D`Z<`b_A4|VZGcx&0k0y6V=)V>MZMQvx$lw`+CY^Z z&O@TAy_9L=lr!QhkJCw zo*x?A>3i(s>1Ihi>`4tXtiK|2!6;^vCUl}R@(ir;r)I+mGT>sk%k`*%UEAD0i%Rt>Ml zIIVQLJNq#VzM_T>l%)#|QRfWfTqMbY2gRzP^n(uF{#^5(s#@O@V3pCHn5KQ$9`q-T z^q0Dn*xby};d&}xhaq3bH<(|`i7&}B-v$=?Tsd4Q45+k$*xEf%cpy}U5&>Tb8Ei5H zi|WMBAd}WQAHK#w^%sdX1fg)%lCJYiYypMKf+aim#pjdOoXSFis4}k;HZj8^ zRC94atkvx=ak-&+=v%ElY{B2-#_&nc)$A!Y&wx?i)gVf7UTX%H*y4zmT7`hj9x8@W z2JFTc?3rk+%EYR3Xq~nQT_z^W>D4Sv4;e7Lc!mHz`+;1p65)50M{LU@%JmV;F7bFW z5gn9Hb;P_7rf`3n%Yf#XHS39z83nINj~dL=?)IbkA}6K z3akt3nvmq9C+VY*IOhAU5&AR5it z$b8jvugkvHv{ckI6UfrY1h=n!OpJ_ppH(1H_S z45(?XjJZpA2*yhOZT0h9FI`e`Cy#p0`_blMeXaEOK8El?iK*ps8kW|j(8*wId4}NV zG6;6@qD@blkBy6kiOa*flGpZ;-{eKPJ(zp&M9`XU8rS3rAnFH8cc0BF;MKEWX$Mb2MMcXPpCy1k$`55>#gb574 z>|<>bz+>wI{lBe-#mY)v?>7T(@}{?)XV;oYc;X#D4|YfnQoq5IKq zA=BWpLBOXxlsm2BF1Li}z$k2C$wUn@z6U||9F|mkRQhGj^Sh>ewUhEI(b!7-K0xb@ z8gjG8SP_q7lAcj!3)y=_n#p?uXa6dQfhHYg zL@XX^CbJj2#;~cGuu{!+2yIopbwA65Hr2BPx2Njqw0#zRqWYnLad3sI=6TpENQwUi zH2DpT{$IB`(3m6D@SG7TZL7~rW9;?XCK7It#l8m{wpOEu%0?lWo|za1q=(Cvcp@UC z2khF4E+T$g)K?*TAHEElg4TM!YpwYYBT3D=z}cA|^jOTeY6NeDZrH#EjLKRR&(9)v zOVNTsVp^CH)2s*8l#wV%)*Mw|BW?zfmIhqgviufpZXZwI?L0}ECf}3pR>ylk(}sx@ zQT(nm^6`eVqU0#{C}i5&Tf~Mq)&8RcgE{#F9d*h6GfUG*TNYH&N--GNLV@`}l+by+ z`nED&Z2F`|%HLLwtef@4x^J!TP|}r$Z#F3YqRD8U?*HJ1wH|-|b-|SAdr^x*pxw0^s6(DG1qwQHaUFYdmsL4jK4-s!_x(i;{0M2o~0^7qj@n| zVr_5{D{=qt^TektokH16QgPr#U&1gPhigV zO?7^n z7~3$3UTHc`ze^T-Ss7%7EvB4$LiHf;lk9OAoQ`bZ7E?I+_7aR8Lr)%GgXarL-{E0d z+=Wsq-@&aG;34w=)h{;u)tJA%xNw}gCWJ!(r%7v_*Go;x5-%KwcVKOIP#|7(evh6y z_O@_$non&L*^b9n&j_u@yQJ3(l}%GrVBa(4(vv=alU3S?LVp3zf*z+!Hj#GnZM7>Y zZAQg744#TeU_a0OklX&E{MCzlKJ|k>$Z;v9n>;TEoiyon{$l43Dswnj=w>;k$|3|7gPz6dC2n+43crn;d~S6(f+r5Jn#MaH;p*?oA zq4Izulsg_cEB0sK;^8T@58JeEbqv6|)2CsApQLKQ!*>o~lzV?&ulf(q(Es%Z;3*@z z1b+KmiO7iw1zKWZG{-nJXP}&ewT9g15}uZyl`dX$U)F8lrVte@gMFBQ(^?cwOTYMG zR8dhGTXolc2zSyYF%Dv#8lE$WCPY2%`cM-`z>Yot zJQM{K0g%_xb%O!6MT;LyZi2MqntuY-qzZ;D1i;J(vgSj&SzSr)wq`WCsAe2l%shvs z2tc=vtof3;x;)5#}t(g+>=KYbE3KH8=? zn^9+K0q-)=i?b%XF7_533ZG=GmqCsP+7^PRGoor`(KiRBt;{IPj1|kXEh%c#0ySpp z0-FRk;$V~>K@t{X_gdJKb>4`7bR)&Yz>mwq-YzK1xFod(PK!g)@3kDV91{5)qLegL zw*kICft$zkdgOi7s_v#G>GD=E23Fj|ue!Hm9v!2D$R2ypB|G94Va7C%ELqCJ9TwEJ zH)|e}RBOhPpq(4heif)b&Y;Lm{Rt=@wkBs@ealWa61|r}<8lW6j}2v7uUsY2W~>fA zH76zK`XWWWtBPdBon%v_ZN{2&_CA4;2jIg=i!L)ar@yAsHzc(;kM^0+2hCLZ?NLc{ z#!?owdx{PsNkA`~r$iO86TfUaZV5NDUg7H&mg3%!1Ri~l)d)&=ii`l3Y9ahTiY}9% zC5`u}julTUR^;YRO@7iul!>AXF2kzB9-}Y;H9QiSqG-jQ%7%4Sqe@M3i!0>=n{4Hb(ZasK!Y5hx< zXP&ZD>@=@q=a+Qfq}iI7r&Z{AOtEDU-DWm%7Pwr3E@`sr2rkLw?XWyvWI!3|0311x z_e>SPV+Ds`e#@VHh|S@E&OCa3{jwY_?BdZguLxo*{Vc$O5^U;AZVKObjiI#Ww=b~Y zvJ>(&VrZq*Pzvechp{=ud#3_vi{?=;RzA2qtv%v?ICs7F>gl~E3-TFz`8g&_&@%{B zL;9dZ-D?iO;#HB%ERSAhO&L@%jpttwiX)T;W@7E8+nl+veFjkm>LtoXi{V^E6`&}_ zD(Rl6IhtLMUuKvVYutK;TAq;JDmpN9nN~0_5a^1kTp46cq}g><{$RRjn}C^yS`vKJ z+Q15>B^mY0!UNYy}Zgohy__(eZ? zytn}l*zF*`(yl|9hM0ag%xFv~tx6W(kqJ~h-GUJn)+*<03p_Nj@^BCvHQ~T?&Qi!4 zi^Xp_B7k63yeYHk$;z8q(CKl<#zf<_W2VoaBzFgmh5g?Y1=uLN5%p!5RC@Ac)Ro26 zfSXkZH3*DE=RCpfi(K5)f}T}mR8{)i!@2h+N2s7%;X3xdX? zH1!4Wrp%_6hEXG2sy69dM11Wyr?@A=`V%PD?+kYt%OTN_2+zbRuN7FD3uvjhMrsIm z2!Ur<)=u(Awn}`@yHb9cOn=k*9z^wnr@*~vRcqj~t5$Y7;Eg{^&2X8`O3tKJVG9e& zA(vDK)P=~+)};*72}VMVv1jj^@w#Hrn&uhuJUhdqSZP zf2zW_W$c>za3-o&KJ{WzY>;EXtPmpK~PF&aLio?@IhSit5 z&xpoZb8+aejGv?8B}vCM=L?ZQ??)>(Hlk=9soyE9=opq=zO#zmGi2{4#9=eVRt`Zr z^f3?Qu1AE+j=70>JK)UCQ$8LrspYA*eNn1x>PVjcir=pkM)e_Q%YZAUy@J?7{oc|! zx0hl)H*nwGH_(B?e%lf{n-64SV}N?$V{V%O74QS5xccX4J)xL;o^iaWarB15=UcTk z+9>n!QfU1sw73ZUa{x*ljIj3MQpK=u&(8UcT%Nnfz=O@;%NK8MN;3f?zm+5*Hbr3f zw{7=7znxg;YapDq9L7*1Tfb^I`SHp=@%vyRDRcVQ7VBumHo%ziW&UN{tLf8p*$R!4 zmnC_F11ul*=RZg1%Oj}(9_8mp({d$^UnracKYs=tpEChRBtRL|FL|{We>AWpRw?rI zwZ}=SDZRspIZ(vCLj!%4*Ju>HzwkIi63sHFY&P98FlM`Q^@-@7Nxy5&N{aTem<^wj z;F6K22~L*B25bYSW6h?KF5&|BK-d{|Tc3kIJJp%cyuxx+ zVn#n1Bn#;NBWeO2Sn@T=8sM3+K4&qj8kuSeH{ot#rn0rU8+t&FqhEQTKGyT9O2=Yg z!rj}|M?`?vtYS)O3kBISAIqv%!ji6VC|HkG-18= zMse{~>^y5JM!X!mG1J2dk@wfw@3AMpJTt8y;r2?R&LQ#ZEE$;!m$6x{dGr~Hv^tC` zDxTcwTxg&mdsFr5T~^AAk?~0JRSnf|vS_bGwJhQ#Noyisj))%2jg&hnPpbIkKJ7ic z7=9(b%D=5^n(S5_VcXpmOzYEG9kU;}$b1f1)LWkO+?iWp_F#06=C`>Ix=uLFIq-OX zZvBw+)UH=~6vSfVlr@nQ7axbxZXT)iI+pEObNS~7jqD!E-2=0kX$0_F_AEUcH+7_3 zI=+gb=w!T*ST}pt$2mOAOM5~0oNNMHtIb_@L!#~{pd3Te|G24PRR~J%)Gn)4nsLG- zxUOx-At!A2(Ymc{hWl68vwmT1K(0)yK*4-pJ6GdJwbYwO_fucYkJ4Vys`O=tG9(7*&-sm!vktJ(BNvslo@WUpyk@LnBfrrYg*@C>TPyW}H8Sb(1 zTu_oYUzF#HZyxLWJ~1Yzr`~!U3HW%WSDy2UH-otyC&f3aD5iCh0f+cAs#v`a>h*Rc7~gpIUndW_7UzT8_4n4;4F!$S{#uH}BzY`68&lOYOW93 zWOb%3{Vk8aGCb(ZS;v$*8Y>EBHSquIw|)OW zK>43N5oAN>aACQKj(<%yH-}NgUh^CJ!jsCC9X-z|nr?X)hBxRb6d})$-lYdZ;#Ers zm&j7EmLKvFF6`miMIx;7ONDN|w{MDz_}GU^xLyg0MQl%TQVj?c1i|T7e;wQSL zBX7lek6H_B-X>8Le_j!yel+-L5=;0jXc|j;K=oTXVpaF*dy{CF^vOPoVx!59aZy7% zlkA?t=LEG1WPH;_6^x2mZxYH9+iz!!1v~1j(0vCIH(5Ve^Pgdj&`|f6PG-Ft3`<^~ z)8SiENlLxkt4hD*@l$w`ky-44b4btV&FB8tZ=lynKKtF4y zkZ_joX7RdrDPKw*1lRRiCV#o1Y&j%q+fLF`cvwP@t}*C9>A^Wu_OfXJaWSie+<^6n zvOh&EH#zr{qECKjXQ-5n(`UJ3o^r^;WOl6Stoijuu(5@=G&I>>AxyJ6prlSjNma)WlbT|tQO={kuD*I;jXtFde zavAis`yoAzSo^k*TvrkK!*cn@Sn-Px-aRQZR|+IqTr5z0EvqMyMExrAbW`@k zG(&KgfG^vO3;gBX$=onIGxqOqqcvlCv7cJ8XZ6aEcGB1%NC!n=q&Ey#MF<9jQ6H`O z`~+S^Jq1@Dv*Mh*L-`?+^gwUTAVG<+jE9NM0nT?@0gMFyi)-(HE7ds~aNO>H%$EEK zsHS_|USkX_)&I2`3}Yz+9tf8Eib2)xt)Tv|b~#c{`bS4&8Iyd^*djdWKhDqzh<-6z zDHc^jN!nWY-u~LbiQr;_SnFtplS`Tv{w6pUb;A+<9Y&cE<47~j%%VU>UT zX}x`$xm9UUoY*)XHq{}T?lMB5hUkxdDUj`{bh+KOUfhnx2RU|mWNG&OEMVzXOn~SJ9qgQt4w9AFo zdn#~G&vA*el>XuHWRH4kfc3U0SmK>z6D3z5Gt{Hq0QcKbed_h&teURaFJ`Eig?ThV zk_RwSap2M^7cN|pH1lYF!P2q+7*~6*e<&6O>IC0}MvvD+H?MOGuSf6cP4jL)1S0PE_E0Q zfuF%ELY_9Uw8dvRQ1pD}++|2z`)wdu0Db$an7t^SQ(x5XVYlg4e_(|}S zT7Cp4A*}J2Y=}ZNTw>K^@F%bjO2)H${>aXv3{*^0Enr$>#|Gs5SdGr+IKW1K@p5Me zbO8C9=i-pH?cKaRBpMY!VBA;xZCP@S`%1xUx+x;sQLx_L;zDuSw0@l)G{f zOpBIeobO}*j5(X)G!r!q7M0NYXne6O8d2t};*%PP1n9cJOQtxoFUrSPNNyTE{epcc zNO8oB)>L9oIlAg93UK_Ur}9}W@|$SGG~V`;vhpF_t0#>gXMGPU_qziw*v~ed+>(;qnAe=@gSwCOE#IM<3MOgS>T+UIoKFB*6qb1DYn@J!(Snhq3v1xF z&lXIAnR2{pexKeL-@su%3dRmCV7uktQAmXLD&J=Ix60Q<;)<+Xt0AZy`h%V+he!=! z`|gqj&xKMsA8UCcxhJ*5nEU#11b<1%RTVFziZ`7uh5f_@Kf>aEO!>0XQNJ~PKm%zK z6ar-qKaM(@{a}~a1I^b`MQvk0dbvAY%J?VOv|cprcQZrhL`m~hvMrPN1?X+Z$4g{s zD3*r#G^yY5LaM+Sp6d7~Fad6r2UP%nAK!bUwNG=K{CywV5H2~tVLYcDjCKDOY4ma- z4h+tizN3OujM@(_Xw>VYhP)~i~a6&0vz%^}=d zqu>OjymEVIV?CRFBXw`z@3n)LL3hwgyQ0l>^f6xL%0vzhj4K6lnl(xWK>AVKcp)p(#eua?mKMnLcdGqf>9i6LD-5ORu7xYy zgzg5H<;^Wp@icj&3g5^7& z8p_z#U=Fsh{ZH83s>PD?fn1_oOIyR5<7e;1^BgOuvDK$}f@t3eZUvGaV#K}YPy+TX z|Iq69AEXj^&K_!x$iJF3=q_o`Vko_XnI`N)cpQ+cdb-d;N{pb9ZtNn$I~ zXo(;?o(Jr(c(e&E7!nmQ%cLbLNTE()bg6z$a%N$_n*Nv*lq-4vy>ce_(4&QCMvu}0 z#)@@GT^D|YH5{{)K<#!N5{umK^%O=b4aLpM2kF$<#^SljF9URnp8&_l^+2|NBgT8@e-kYzfd3naZwv-t^# z8iVYq)g9<-X+8}q7fBiprUOC%>Z$UElXi}q^Nb}J%DG)J{OHZyZQi9C)45&V-_MEwHUdxo%WwXjYy16q{^9?FFKdB_!qpz`r$InH zhz^v3{Lg=Or}aN3?1gN2gSyaE)mty?jBCOur)6p5!ajah`Z# zSK9r2a(1?@h>~+w?`lwoFm6vJFYO!5>{(1txWN8JH1T@BP@kP=QL8Ii-yK-G(juA` zdtW+t|8tOd3olzHCdmajD+On~y|)udF|KPpO-dimTc>n(_Qi^cSW~mh`X^u!@77%S z@e}zIcsXXbf{07pgacu2k}->?L(6yaIwCRk$<7jO<<^3A)NgXF#!ZR(T9FpKRq>Bo z9&l9;+1fvhXRIho&@vkKi=Fkt^K!&vP$QYetE|Gr&8K-EZJn5=+Nn$M;#-nFhXK*2 zczKdNxOGC-!w;Dn0y^b~OCsrFWU0Gr*DW2VIp9&(#kawy z4Y#BL2J6&|a;h#vUrPQm>KrpfnsHIYW>ky3v6_~03~ zvO%FzC#?BO0oUkkgH))9qD(PN&pCAZcI!`O0-l@vXRq-l?xkw(zoKrgn> z_)%(oU5JUNClUvJwVmeD{(f=NeI7e)cqxWMOwTj)EKCR!)Ey8aWX~y!ZZe*$c=c7K zv97+(=gqqpo^}~MQKBEVpLG&GLyip7erP))hCH$zN36?x4%+fleD~i?OJux%wR__^oh-mEK`G=A3<>S?DKh&hYnJ7 znCvj0GHGOW$c;g!)Envq0vNvJ{3Gk^a%4`=)zPlpGOAX8+QZS*qE^tqpyj#2wEeSK zx=K?=jkvfbbFx7LcWS0 zTXqj$XqSs3OxSq3iBz$#jpFlJ9IwRma1mNg5hBFI#VK@dP>i}{pJHHuhMvJbSo;Ou z7tPaXcEj`p3iW#7xckhR-;Ka#HR;qJvD(TG5Jj??saXR>@eC81cvN&6A+_#^V@O>y zvfyk76XG!v#jSTp&_(0-?FuKAd;_l|UA>%Mn^mcJC`FLM%83SI8bKg7Ia?N1tP0-~ zhTRGbsu(bGM4~0;@)!hhCG7>EQTn%u;gL)F%}7UB*)I6$QM~uQ^y0`tifKw0}a9Sd{>iUoQ@85e;M|-3IsMvD_HNK8kE>s zzxWBLTo6DOz+xoc>#T=sq3SD_lBDqOseo)czi~vjwws!q{1RweUIwTk+VI-95xybuZ)>>-j#a_^_NRzD!G^85^>DDP|#nqS;MC zXoMunq;_@)@K&EY}K5U4v`e4qH{PHZ;4W^Z8Md2W{RP7#F{f`6HNBKra-{9&)v zpn+~^Jn~P#ON(1}yLU66rwI(_QC6PuxojN=CC7F{D`svI5%J6jegE&Egg@Nc{~)%Z z@>s!j?Nfd{VR$FDCwgNQbAi9pCH~?kVD^aS-i+f{>mlbi3YL2-ag1t1vE6c#C^W$a z(8t0&FV-YU=wp<0fryWu08SnOfT+@M*x&o^$zmNre^BXm2~%p=kuy*Dj?hY+*gHo*R58>81J=CzIZ^CZexIoi@@`Kh+VkS|1I5R1;HRoL zn*mW2@w<@o{DAt53y`ZI6S_aiPHi1_v-K13!#T?Ow|_~D^8*yVi`~1sre2X}r~$w+ zuQvbXNa&s#h_q$E{*AE9p)U5uKMiy-^6wnzCvoucj@Mba1ZDc;-F3i%G~9AE+31fa zMCv!uJMv3U#rjc$k#+^aosscS==DT_3aWXhkCi=8Qnf?!A+DwTq@20+1*r?mg{RBO zQGV`Z!-cITU~0aDYV1JPIXf~sHy<0LNrK_J&_DGmUm4~A-h_Yt@FLsiWliniT?v#jbj`R+Qp+K7-yy1@u>J(lds-S! zwihn%d4T;4n-Ga5Z7`JA57gfy*n{?3x1bL}p|1$&Vo(ISb_oQ){XrW8O>s)lhd>jo z3Z^yONq`nwtkl@xd;BF}QDxyLKn*$>5XOWBY>YJ=G9G{~-@lv?&^vyAmR}uRCQA!f zXAW?*8qm_~6!bzUJv@M4SKJ}af$jd+pqat{&dU%JC-d~?$9(u$zNl>krlCmA|;=9R4Uo6jklVHQ^=ZAMdc_GCfH?o`V0u|n_C3-1^W=Rxu z`=I_8)07z+sK6w;sD>hcc(KBmc!a*JOK!RPqvo~pmAXq6iaIuNo>Mfpm?d<>5Cbk1 z)+8=8vHydyGM&!;Qz!x3Rl?qr5{R=@)aTikjhQ%E;*`E7!*{d;_Y-TKb>^f5ywoZ7 z4OS^Q=uzk?)R5&Gj+(K^j+eW!_>WI^)k)UkkVlccW8L{>0XML_yq?J_0FN%N?Dj~- z;jWw%nbc+0wX>_;QD`|(3|o zM6W5t>wl<3+p};n`jXz1GorYld9Sn1|l?c3`Cbyq6={m*iS1#A*@72V_d7 zkEOnR&%bhtcMfat23ig;_OL$fq<*sEmJ~~SJVP6A5Un~lTk|Y;e>UAwWDrGbB_Kl0 zllzQ!$->3YiNU}THyRyf*xObMcI2RltK6(r9_@ zI?rCC;`1!B!-kljC}z^V@-5Xj!K*k&1Y}BW`%D~V(5&Il6V>m5;lHePe}2(LXCtDp zj9;6g?85mc@VWezLz47vR_5J_J1Izo3at*FsS*gJeQlUxi(!2M#nlcNX`R!Rn2Q9p zD+w^lwZup=TPY0fagtag7EGMGstZu3`WX=Z11trd5;>MRFmua@JSnCPC3}egWEsQ>#}2y!h0Lw4!$Bk?o)n5h`56=cE5YYpj<-9<^QY zL;IGS;Rjv8oBelHAcB0O+{uykyy$~jRJ+F8Rb0zI12o9G0n?F6Qvy|;|2YumDgH^JRu6EsK&7Ti4~NC*-jxVr>*3mbR0;2zxF-QC^Y zo#5wNxwq=pxvkEXSJJA!_TC>Fu;1ykY4asaS(bPP-D6HgPrfV4-{9#cjx; zb3qB28>Eg&eLXcl!iBBk2orv1dj;pKi2iE}g5yZFtv0lKnn={Mn}9#qJ{C-JL18pll# zqQL8^HW=uK!?%dPx;TMidn)2hzxSiCG-9mNs#Jx!6kMm8y0ITkF$h6xz1S72_O}x} zdX!!PzF#FxCX_P`$5hQqT);m5tI@OigZ?*rfd%9O27|gE$45Co(GX3%db<+SWk1{Q z%-dTbh2LJDAdrWf!A=QQmLpzV@ZL~j%-_A+e8w{W^j`VLDbFCG|7Rd(?(U4MIYYRN zd5t1sfs|a*6c{%!@2Rt)A%lb{*ix~F01tG9^#+(qpcB#iUu)g@At&G5yQ?8}g9Sdt zU=ko6JKqzHAL}gRUZZ>{J=(SuF10iwfNGM;_mT!(7Bv8Me25v%(Duw2yPESQPv|Vm zC~0rg-eUZdXO$C^bzl_gJTTJgRNu<&MI(>k0*f!sx5`wvBxxD3EFC>M>Y>dxQhS1UOSn8&@? z3Q4;X*uuPh3GB-5r<4HcmEqOuKrCc2u?VMl`FXtM-I0oplYVu89{aQXM?q)9Yn5;0 z3?C+AS0%BiatceX&)@z~A~PDP=uv|RZjQE^egg)}2o(?(mK@)w<25Wq-L>!?KKHb! z^$sl_*cWnx=ez}S559>j6LZ+qfz|BDAvj9r zpJ*@m)udoW)Ze_=SmK1*U2xztf~U_XSt8nH+mvIu)fl2(H`AFu6z-i?zJYxOp~%=$ z?8N|F>wkZ${U3TS|MBDVpXf-8jmFB4MuCT`lZF6>Bpo2>qj#nVkbmpufAZ1a9jI)K zLhy5^`1GczIoTzfHyAMS?n&tfA-=TeMZRzd=~y> z!C3cpYr%E({fh`j>eiMJj896AHlvumKO-*?GUS8iDe-yp$iimW{ctgRypal+K*W$^ z)quFaif{ZbR*Q*ALexfr$;&+(g8^H% z_$=+|#aF>I62Y^~Hqx^~H)^0hRucLneE8#=GWbW@RYYL6uRDRFTARS-^uO%m|FiD^ z>UQ(9yS_i-0PNWyLu=@wuv|c}(Nq zDUja^22q6AK23U|3BhPbwYjGK7YyaErZWl5kC-HKeVA29F43TfBgiEnQudpdPt+W0 zfi?~h=n>nRvbVcxLIe| z=3d*Qb$OTt>@x$vDS0)1{oUEu`?!S#@LV(iTL$_qAgX~D4qQ!7YJML7c)#~cOc?Ni z`s~~dNp!RyEJIp%XT^YCM-#Xy_!T0^{DE!+kxk#~rC&(4BDoT@9pE#Ff;oSiv-_3k&^^P8Y^<)qLob!cn zp8@Q)Uv=7J8F*U9BV?h!A@!7=W2@6cE%KkR@Ob2izkzB+8`r(9&dUT9kTIgveUGT1FSm|Z?dNKr-xDezhQT+HrA$G2jY9CmL4)1#?O?u@@+q# zk8<;k!B1;)Rn|?h(H)x6KV_-~N18ePvz2tH@O{0<4wnAYq39Oy)0ap=#f@l3rW^n0hHy!6Wv#`)(K-O zP=*P!!wL{zvoC?QZJcSX0gXZG4#q$d>~TIC)RgTm#Y&+H#C1FKq3-X|kZg{}-BLFq zS@<+J`G#8W?gr9;6r??K99RLF$aj)7)>Zmw1k!*`H1+NN1~F&P%a(BS^pCaibZ-XV zA=1Um!C9d{h>bxf%ff~SF*gZfxN#CSHHhgJc`V@5qaO-kx+zYPpZ)AQ=2dJNa)=bM z`1GBtBTz(-fZF1E1PBQ5Zjc6DjpE(@{7^r>i!a;DUV#6_USrkxozO~wG!F@LB53aR zyXQ0AK5ZL@;w0JCZy+^(5a(u$X)4cnf)H#fQ3P|cBnhh!VH)PQSEju^f@dKNr#E=X z8BmQ#j%E5vZ;O~*%7s`%^80b1b_IwqbGr^P@v>f5HTqd>!?31A88}n>9(#$gLHz_O zLj6s&0EQC~*A|_W9wf5%8X6M%0v#p64*xI_Q`D6Y^7Wp;LK~36k9d zn%{*%R|WdLqkkUhai5+}56&e7E&APAb-e#iK2X0kAZZgQeU~Fpvb!VD$%pm^I_r<4 zM<~P|oo8leKGDp>*p`0!8{)}!`Z|4AWF&wqezr^jJko>?D6oBrX+9-4{N~nFt(EXQA;vw=KM8X+mmI44Ha@q@J-#WIWb{jU=|HcmmtXsPJ4n&}m$x~En431kZm;=A zT|AWh_3#rnRBM^;1hAakN8G%cxfIE)Y!_!+^K!189B2%0V~Voh3!vY+S&@Ge6`Ua* zJv^1tS*v;H-17S4h$_C|`j=ZbQ9ZmheeXKbWIbX+0)k$FswW>_%%}Xo)s%?b4s$rB z0`jjJdQrR9%LlHWi<8td;W}uY&(pw4G0ogcq_f0cB)`b`b_eezVEMDI=cJC(F>6kw z%)@kpa|inw7Y~9#9W|$Z*|fE#7ri>=dMQ@s58w-Cx{3uNglmA*^C0|1vi2@iA8{SU zWLTQ2mXbffQK?~;JjRkb>+FmWH;kha+OisX@uE(UHWki#G;g$6P=};PYvFs!T{UgE zzW^AGkc?JbAM>tra7hS$YlIoXl{F^}&=#06n{x^eL|aiF>6;NKV9Z&)xKBf_fBqU> zYc(^vGdd~iBRwS+u@58*PF88Vhiild(BxQ&75@Uu+`0 zu(Mo}v#U6p&yDS@pl96e`?qJSrKVjZ+gRcN;=1gzGYzPn+uW=Kx<~G_%C0isKnEf} z6&&vS8k-MFW&XMz)z);<=Da9^XnZWfON-x6?iQ@H=!K~rY*U%gwZ%_?wb6c_>Y}nR zM_9WxST}|urQ6zNWYW9Ea&eWrZ{o#&Dh;fz2NasufeJ59Zs9R{Bu)#~sabrf#=xhj zM&OvLNP3`p#UmXr94|I_oeGHyyodfRcj{99i00lc|;8;^4{CIrnxAJ|tmTP&{QT0_(nC@^L18@6%5pv?BcD}C;yAJSr14Td*4Q*oU4{GO%W2*keX2_d?q^7* zA99J3)la-~5a2pCf&4G`GXDuj^pBfBZM2f=C3+x^T3UosR`wH_1|S+zMnm8!&&Oop z`@bRH(v@hM){JR2?oCLNF1*r3i1DGel4X(;!l?n@pFtwBb;N(c>TxsAA&b~w2*J!RZE9(!9SE`bFQdzh=La+fixq2+O!^P#e2_dS zvkeFG2DC4PYr$B2v~HHaC7vFFHNgt|0Xm;v8bo|y8fEz&`nW{5DbT3aK8^w@sfA{O+bnJ;g(+X)Ia=;6M8d8)MZI0!-Q{L z^U2m@u2FcrxZ!h55V@*#SV}#sY1l)NdhRXsQ=Y zR(5G$thqU144js&CXJ+bSP*`=|4t*8?`KbxyVq|Z@u{s1WXXOk(W6#V&tpBx8#oCC zS@;a-$jD#y7Qt3dW}j+W%;o5uqOLC+wCijmtF|6I!*f7XrG9LKbhA@yH9@@nj+O~Z zXo~?1(I-McQBGuZ6qCd+L-8{X<07`)dXzzRM)ZJvw@NP|a0OCx(vz%gHkU>=&T5Ll zxP>X`r1(6*h<~nWrJ$YbaIqF z+Y&UIINq!dxp;31CsRmL1fY?-qbLL2*}J(3Rn_*fGG(Gv$eci#eD0Q zJ+P-(p|coyGmmir`RNHZ|7vwaEI|Q*+8=)(LH0|TR7U{?1h4%D>gqofS%l)+0vJ55 zn~YThGdwU_3;47SO+g;x8T^m)VuN)aqfG6i7Jd-ITqmYsrqQ1TK|I`@Ga{3XT%nK+{z4D0<8bXD++(F4~&=T!tv111acLf1tH zfNWgXwYrT6KxMck!Fnp-&hsf14)vw?a+ZSa(@6{z!nxE=!254xwajFj$8iUv79I=M zamM&h`O3fK!Bkd+^WN9uRZxy|4Ky$rP)uP){2pI{y3CfOFlIrxi3AEt!QKd)XKyM- zKyoRf%))9V9r+(?2IQNc;qUAPynw`hh31yez3UpxbLXaRGShLULtem5Wfp?_(|L#$ zJ%-M4j)GX^ zBM#Ii`29e#w9$Xx9F%qzv~QICmq8IK)*uKT-40ZQR=94pjS$-f9qQU;k zCALb*Dml9kP(2tKj>7iuLu?78Ig2Pw7ZCLmBg zh6=K;X+4mC>VAILqN~;_uQ$}>ZcgubuQ8!6U0|sr0&;sVY_L_rBD1L`V%X#}s!(DR zj(0xe{iBz>H@8Piqp2=TJVhlW(v!BSq>G4BmuVBmHlq1bgUQ^ooVvWNC^ECpk?RYJ zyEruUIs3@Z27;Y5JTlkfx5!Q@nI@LxvIF8|#}TCzHEW1K-kDlC>rj(Ok?G4Vj$pRyIE9M9LnE7)r1|2pHJpW>bmJ#sqe5Hd1}K>1*Yv$L(1CNb}vF?kOzKZ z(H1hHDWdY39wOx#pS>#| z-1QPT{^%7vg~EuWmE>xP-fLAzF<>t@L3AQdR3ahm5&Q$q=|zq8Pc_YVb6Lfv_oD%9 zi~KrUe#8O?7jQw#vI+0?Yi3MpJ)@W1T6=PYKh#~94SRr{ZXVv%)x`}sQTq**JQ#Q; zoZ+f;jyBP9u!v%w_n6|cO|Pt}&bZk+Tjn9l^YJLaAy5TL29OxknK)Vq9rTgUd-kKI zEW^<}uxr;JaPmOP%c7n?ae2Wf)R2J5@p)x3dT~dxoNY3WoTjgLs`G|34>&72YHF3n z8q|6T(1J#CI3-(m2i79DOAskit0%H>GnYQ(KflskYMSL>c}G!O$CQ)dxgrs(PUFFc zLBT~;bM)=|vgCYD9Z9XTo@McZGrma+L99x|mJ1U+m>aIX1&_7&k$D}Jirrn_jX;t> zwu4i!kE5LHuDP&4?&p_=0Pz-z)fLz&hL<$2Tzx~o`n)w@X3G?0JtkNH(_A7sJAvt% zuJgAv-rdk^-nMpOy)AXtH;-C;|2P$@UW! z3^&W3FsHOV)@$=SZxAW2ef8*2%in{S^;W#F$gT|H)^U>U0uS^Bg=DudUA$q4Zlks| zO%-occE!DZ2(_8*oW1uen5kuQ_fqjeCVbsuY=UIPL!`-%$fz@>lU1f zM~LJuwS}TK49ozT04CWK7DDut!Y`9C5SQHR@36#V^so_<(L{j<6wG6DMu%7DHdN)Mg*&t zR0Bu+(7BVVbh2u|nn}oH&nzWqpb-3lCi#SvS*Hp`dm==kTE`~QX;!5rT-s}aOSiry zafg89gL#q;lA?kp8kmU}k?66paoXmCDI9g+^|8gKcypDruH>@7{Q^fK8*PQ?iBN|H z6`IiK&^!V0!6x{}gECs}=NY~add^1K?`NVlG{ji@>F7j*E1l)?kfR}4banba35url z3ZY56Qdy?ijGQ(aYNE`PV}E!ur1ZNb@5nH}7xL^y6XVAHn5J@CC zo={^%hF@1>X(4KzEN>QvrL}^VTOhbBD54&0_qpd0Ky4z`J^|rnh3D$4Lp|)~AO9&7 z6>66O5W8vEF|OKw?)La^fe~uG7zb;2z#2^j6NqmH_-0(wKHf?wZgaH6F5mvA80SK2t@U|N;8oW54 zV6W32k!7Bl0pcH7C;-H|1Mim?lRzr&uacVx6dq$*0FK)R7(<&tp4I=N%Vitl<<3N? zy1Tm)!{RO|Z4&$}$X43%WSFeU;mGP1l9U*tLom=kiebI6=T-!HAE1+sLH|8l_D?q5 zKeRKD;%_iaW%-LI5MRZ9tVs1CJzOFIVx=4KzSYgVKUJj*$ZJU*cpJ52{i=>#8BfRr@OV8J~`V3oaqJ=H%2`hOq)H!RD{*+{edL$RcyBIIei zs_KD0gg2aNNebezoQ^j7X_Dc}%&xLhn1~sLHhf3M#x?Z{>f4|EwO`fOol|oiIYZwr zicc=}{#dMGEKzz^jquo9pg8fE5hR19g<7ry^w?68dE98sEq-N$7i2*IR}jzm?|4do zdv|dkTXx;3A|SE?NLIjFfMuNM5v~nDzr_W-;Nc(91-GTUGvGOZmuP_av|0MZ86RSl z5h%O)>_T(~wWMq^v!Fm{Y4oxa3kCMG=QH(rI&#(D_ZVS`C8cVni&rMj@s#z!29_RM zK#I2WcFyuD#88dy#x;ewPxh74m_4-2i89pq3GAEDVpRbw9u)@O+j6CB)gPDf_@^DNx8Psj#JBW9W*N-m^G~;HcT!TCd)%Q7GhPX?Legz#J=J>ky7SKk<)&34 z{w-9BD8EHW;+SD1dyban(79cMsrG)Q8#kNu=h@4glR{{XF#PxDX#s>?oFqguxwRGX zR7ZU^^wIAndWeSVb;d&MbBN_@HlnsG_gw5(l1dwN7iDWhn^pVD9$O~r?k6fm6qz3B z3Y@$aZcci;df=7yu-mOI2|{0zJ4Ccq>a;6T>aXeg9W`}~W+a>eF6ES)p0#y}`XD6- z^T64HTJAtd@Qj4ZDRpSJc`v`Ml7;eNT~cEOzah8Wrz7pTLoYOemRMfD1+*~z7*Ymr z?X@*;@BMCmKM8TzAJ9axatitoE5NI;F5Ezs`d%>SrId$_5}vo%Ejg);)9<_iHmHg< zm`o5_q{j+fuiree;?Z}^IJRT|;m@$PtoHewp(G>g0Na^!!ER%DCqSnrYEfDLY3B>y z&4{r}&aK~2dxg*5Gga;66>nkV^wt51otJW!x^>@|#aDc5MtKE6II-3ITh>C5F*c{R z2vV>*ESYW}oTiPm{uWxYQR2E*x6!nMVq1Id^xUBUkb2mcpAF=lhmhWbN;bEpZ~i;u ze*f?&|F3iX{_x>8%k0Y`f>VUSa0d8R;Ua)0@tWgvPhI2Lln=mc<4RnlE-vb>0m;af zL|H(e_^AVBjrV>Z>>)x+0BS9nQarn;siZxuiE{yAgZgx|`(JAY9dH{9y>zRk;PWN(M}6)9!+xdU11ksuOX;+Svl}?id$#3=u8LzS{;Q zc#kDO#gkt$Z zb`c!%qTfr1fDfsf-Auv-HsI6^>te~hWa7q5BFEGGL`9ApWiK71HUzJ?hMvOInd+P& z#qcbwE5+GXvtYWvSJ6*>BePIr0nOr`7xnO*uu1GXcED>>?5juo?Imm&9kV;v-t^mKsph)QeSD|2%iH6Pmehs8&$^dtnWDlDU_-3P9gqwa zYt>Z`jqCgP??)yFD`<67lShRf^c?0d#i&}NQ9P%GhQFhoNKSGU!A}CNarh6s5!baCSl`$*bln znV()?=B!DWj+;F+bhJKQ5ti$U!bQ=l%KxL`2#?)k9XD5jD(_ZwRz7jZ%&SYYt&At^g)i-wm@pAIS+Qm+0on49XV}z} zj!nsyDT}w}B@C(4IK5cl$e0ov2mu(nJ(@bK+B7p*E~pYWkns`aa%tGs$dx^6r6Xb~ zQ;ab1z3G4ttJio0L1kIUZsNzxkHcuaDw+EdnJOYWgseGDW?;jIt~Wh0^`|Nl%S#;G z_-FJr@$yT1KQH(59ai+mvaKZvY?w6gWIH&tK~$g-_#D$8#U^w&xPgXeBHpOoIoI9I zSD4>JXYdpw!G7f8Tg!xQZI}@bo6s+O*{aN>+jXxrabBzOCN(Bl7)`Dyp$!!75WLGD zD8Us%Vgl-m?2e;#yPiU;uJ*bU_LBpcfdo;JC{*BvZlC-t%oQI=%(S#@x#3{PDeiRj z)Am%nBZmp4&H~rw3gwc3K?p3Yh_<$ENU90<+eC!kDL2rpBfia|mXrxxwupLLWKa7l zn4VH+=d~yllF&xJf`m%3V!NJ^_*uwH{^8~+8{X<1$mA3TlPsTQ)8=g@7`)$~Z)?u= z(~-Eyu2w#$h>C^Yi2{#oul@&V+6{}FUfxEjJ>owsDtLNZyx zuBY8?K^2nOQ`E#meph_k-Zv7lr$wVZ2k{yud%#3@0*Y)m#YJTx@>4y(xLb zL2=Z^>+5mZ4FZ(|k!!q!Z3(Nl$4%eGu_SiI$`Sjak{qD8xL~%%;Lvh5Qv?{uPn9NL zd)=zMzrYFlV)0p`(_B}H>of@D{o(vM%|3JfP&K)1f8&{DFRHJwj}oIXfFTUA$2u~# z3TjH#tik=MyrrhzOU;15L{Wjcgy%%tp@erU2-HWyK4GDgDv8{vmJets6X0!Nc6iyS zB-54>HDYAtlL1K)Yo`H;;Q`k$<*EGK*m_Ojut#z=HW^r4Gl~ve^cposV6cTTpu^Op zmZiKDOc%VUT!PpecPUzgxQ9TGKwZW~T@A8>@<#EFaE7t#2H9RX)r$HZ9-+IM)^aay z6J((`KGZEo%x_w%1D^Zj)Tv*R3Bx*J9KymUv~^J{fhwrWr`BVrB!y|}iIS{IO-qX7 zS6Q^+)HUv}jzIFus^dlqqfAZE#l-=kaS5h=$RK%-iaMMeG=>a(8K6HTy+SrAH~H{> zSuI%R?sO+NK27SOW_OW09qERIZh~E^W8`ANmdH>EbC?h}#NGia@C(6KGSmv>b>;c% z_-_MowGNZKg)9Y9gjj_sLm*u%CL0%&mmsgv?nHqMtFOnF=7x1d&L(VMyTa0~abBh!=?%dMrfsH8HrhZBk~w~vDP0K_=YsZn$y2SZbHp`A_-;Zn4C^pn>- z=!Uu&WG%pP>ubF}7?4%2hM4IT;xp=uBE1!XsVh(WwB~5(_Ik`}o(u!6_tQC!kwmb< zv_W+>*6Uq^l$Wr)VYmiMU&5Hsz>o7UAZ&KUjxw_t{kiHQc7>hbY^BBLn+faGc_2wi zlULS_H-Gom?xBXHTRXywza0b=V4NFAvwP5WNpkYIQXPX!`46Z3;QW0rmjr&YnZIIY5>cv)OOvpC&j(ctO(eZ#d!>>-3?kC+w2Uv8L&Z#>7xWkl?j!dJCBk zl((V*bTjLB@%FzS2UKYB;f*G-_c8v2v#B($5F!x1>p#6a zC%CSCpmhb^1O#D{(4Qr;4sm`1C475z?R~6UUj>ja`D95=43KER@+fj}dGsOEjMZ3wn8eqe z9SCj})h8bGNF?!#-qh3Qrv_w`hroiMe%IR0wBx4cFEW!P%6+4)LMj>144zwyU#Fl9v4!i%DIn&=jer_0Fc){)w&1o41^Fl zNFSqr*AMC6>qgvT=nwY8*u*ors)lrpix0MmBNh?)5=c*Pk2<7^w;88DdhX=}dlo-7 zODv6uoeQoV_;2Kth*(<^FPXy}P=*P8iG`4PPhmI#r53W)A9=rqvmA;TZhlgAF|$kaWThMM*1_> zQ4+tAhZe2ZTZp(i<+>#UBXvT2H?V>4Yf0|jfOtCcdtU-RC?OD8NZ1FE+X~ES2A{(& zY?H7@EDXFhyM#1GvUZ43-rCEp;)+_^)jIQlAFac|k2aX0yI+cc$W2W8Afn5Fp}73I?;$xr-jK zq8!Iqi9)kjY4Cpzrxp9GTJ!EPl$5Y<<{tMkGNq&@I>Ob9;;SMShhIrA4z=ts;}p*V6)j4&^djaDr%QS;`oaXiSGtY*nCj$xRIQxl$NX$N78h& z-D%d%k%(V(Gi*@J``uAemOGQieNB!+?)iEAu9NL1e-WMFZ<9q`@}V`u=m zGt=kIlhkz^Hsa_4abdkuk1@DI;Pe3)cehWnN#y5+nK=_AyfS(PvxVZ*{;K6GdPim0!RzDvoQ zq{hgdQ32Z>UfbSG-;NM#Pt{gO5#r_XF10yLO;gQR)e{DiYWdH@6^if(-TH%8h$F0C zaJIubs0yL_#{=qTfV7<0dVCmRVAao>k^KeA_|e#KB_rb=<<#tIiLcTPh|K_DdSYVdrdmrL zMk}4K)7-rVQF6&Yz`Pij@Wq0POn%ez!5lIFh)((N@bh2Z3C^RTnLPZ{xq;+hJPVzM zURRT#6TMSH^5d%|W9V@OKLR4}v9T8bIqqMsAn`DNXvG^5+|3CheOQkHZjigJ5Q*oX zKJM33iRoEmDI@b9^PYk5^-LWIz{3q5RhshXM&CHr$Wxx>8mGP*^gUWDt>fMtDfHiQ z4D-#^{rN~u@$Bg``V0~Th$-r;U*hcqe(i!Sk1@tyuoL`mppCryqQ>+c^jm4MrxyTL z1@d^N4KEmMK>JU%1M&-P1o!ZNfq2k>M1_L8qQ;ml{9lbmY}#NMp6Q=!2P8*g1B4=> zW+R{gG_du8vJNUvyuS;sbCX^n18^H~F5MOg6u#X9vLKVg?_mM35d?@$ejx=WOw=Xs zCKR+RIhbp@SHL2vTnGBb@Tb0+VZ*x$H9iXRjC3j{GIcvr1xMD|6QE8x{`t%6fk&th zcq}ym7zu*@8>sv9wTh$g&>wX0Yrp+(YiadIclnR*3XmZBPb?ykboyVqKmK69>H2OS z2ykj0T~((^PwI2kM{R$S?l2qQsd5hu` zh7FcL+gZF?U;<>U1LQ&9zF>qC#s6Tr+eRTLKDqsxS@NT7ojs#~;0sWT#zEESx_dOSw1 za97?k1$t#x4kp`VpkP?mxnLV=&OV+|XWTGulOv{-D-qPTLk9XDbG1V-Ed3?NBU>H+7>B|>kS}o6HkTH~{;WRy)7TW&BLX~2n#fDn6sRdQw z{D__cC2iD;=m?olx)3J2aO6W`>3XV%KC@|deq3A{qAK7bs@ zo#I97CM*~pIkVXkt5Z|;QYdTfzYHlmZ7sC*x2AGYk^q&hI&N(`?tgZ*kWP_HbdvI0 zs2#N$`Mtil6%tzoUDHb=kW_)<7v$&m??=K5OlCP>9$#Pfn=l2Yxv({6*+t)iz+`A0 z5P_<*9N*(`|Kg%kM9zG(^8Ujn?~sQOPXKW1i6bFysHrt4?P73+y;x2VbTrth3g6k* zcxyulU-|?6Bj`a)!E@Aq%U6W;DcBgsZR<{X%fl%(YX%~~SbauP5ARoW&G{fT9NT=z zKNHt!Ie@T84$5eZ5FW8%4qGE$4byIPcNo=FNM#_AqzuD~TQ$KO-u5+4#amQ&75g<)&OS#o@)}XJb(sPFG;+5Tk*K_0U^Bx--_%7ev8W( zJm&f^(eUdO*zp#B*|M+BG@wNi|+3H#;p>Pg(dMSn2$ z={G}s-u5{-@mE5~-a>dyN~+JR44^2sktuHmFeZbW=c622C=_Ebz$g zNmRnJ_+7cJ=o57mgxyZ?4jvG(ooy1lXE27A`=3F^(2%8W3yq8S=q!L%VZxfH2sDX)_qVJ7G5 z#ea2-1j@+YA2*FVHD`k1A|p9i?HF+J%7wvHl~3}C7L^Z*GD(5&92PZ~e^;Bhb`ts0 z3E5G{(wd>6{3jildMWV%!3^gyJT9>+QDbDL2=d2i8UUj@UlA%M1OpJc%OeAz#T`c; z`&G{!vtxR;d-;@EJQ1o4>Y|$6lGW2L;ZfL+YbT)7t6}LyrCP~Gpg0lPKtgXEvm1n5z1mYf_FqdCVy+9^m3!W*KW zuDR}kR|r%kdeT$SiZoz5`2cSBjxMg!%k11#MBef$kf_ArLOq>{rTpq(ltrdT-)Kg0 zAalu)5j59zw_R~KmV=zbiPWdQQmQ4Ul#&Dgu`)Oxm;*quGq(&aU1tJ!r_iB5BtP4Jh1c9}j-__VjbT0{boFR_Asm2c+Lz`y>f`-s| zi3<8Z8kwBGHhU82!=EJg?>9O3x@ZxB8Bs_V1#|K3Wc2KrTr{JQ`pNg}q0V|UCKR6( z5%@@dS8^gssd%N`7U_k!=o#5<^3DERkL7aY6k|sy&YVo{098WCqFX!*OZCXpqBr~; z?#I;cLd*+3$7Q1;l{I*>y%sqMx*vqp;$8`XqL>idw$^0%gEiiOWnpaIUeiU@!|2-+ zobX)m${C|`*WRjS^}qW6T$`E%Fe3aZ6}6&mIDAIc}{-opUeuRi;+^tdWc>D z(Jwf-0=ihO`nT#M%i&r$k;0!~e!$05ynm)_pvqQ>8dfp{iGCUo=F^Xm)Pq4c-3mV^ zxWc6v^zqhEt1mvQ1?bPz&rN{YKL%@`Cg520KkJSElf9F;p2H>@Ojd1J<7MRa!gNmK z5$pnr5=iID(+1n7hY&F>Qq0W+)Yq_?BbtO#6>+4RKd$R+Vu0T3bc$d7j^^&Nscu!-IsYbvTSqbWN=qQ=7&)Nhq=S$>+$navI zLg)zLJ>jd&nK6`Rr7pae6r%AH0iU*f1{#elSR_7Zr|a8vi}9PrsLiS27nP<@>0&Q3 zMX`vZK!GBxtRq-h$HLHM#q&*y;naQ+^yzg`+3hJe+yyoeb#>Zdx0S(0W7)-tN1Zh} zx+?p)CkcP?lI5qq>P;1ASAB;I(|;qp-}mgF2w32xD<5ktvo)eD>=IBbv8OXX1yJ#i zCVor^Kx;?`?XJZiHO6{FDy zUq4a=PYCTeVbh5yByzIE82Zvu3!p1Cec`U1Iw^SzZds*lG*=wqC@_Lf?SKe=a)Vw! zUw20u{q+3imC)|=87FBEg!jLn48w))7rJd6InRl$BEiN|YVX0G-A;Pa_XEOv5Bh`_ z18RN)g#e$I4%-Gur+Q9SgWke_1k%@EcmfHUO#E+NaA&Aw8HXu|=SawVLBBwRvEw^) zeF@s-<6e6}M1b)jKzdT!VGu|aB$YJ*!GoXx zJ$)x;76K$G0-G2OHUJ6xk4OB<`1}F~=I99~xFSZ#T z1>HidW;rGnMR}`g5ypD5mKyWY(fq|jGb(CB>-4>-D3-{*@5kVL|0f_ac>IlU%znfD z920G+{AKsIXk@b^wQs0|*aM}Pa%2LutI)W-wQ-J?f0smyfh3G({4A0?GoQhHWVpuw&F z_AM*FraBWUi@hs@O1_d2*Fq^m;p)j8Jilu_2_mwu;g$G&SlpEMqnc*pQPSCqO66T8 zS-8aPtWA>EF83CNIZNtnt$NHnA4Q1@ci${s^^MrB;xd1hW_ZJkJP;rEBXZirJ@Hv9-g+lj5!2LD2u>WVqRsAFveMrBu8wzdapRc&yrD>Q6Oy*{NLSv3#Sie)5@q ziV`i{?h&#~qAdNG1I{;3PfiL;O3+hinyR{meLm%w)u@G7B2g|BlyDvyX{>T@F>eyh zoCgI(hbvdoHD=$l8oJATZm4aY)~mmOOS5MCEL>$y2a_c8owYy0eT9pk4()yYms%yZ z9ha7#Z-pDg68aBcCYMx{35|2Yj4|~?k$XyZ3|2}nqMYVL$GCTrb%^DrS7xwdsx05T zxbI}#nDd{KKb`bR=0l&lH4(X9vvg-tMJvAcwvjis6j_>^j;$&Py`B`Z#>L6J5KrkhM?u5SxMd-Y={UJ`3Eo?%$N zm_6CWi!U5IcpT<6jyzqB8d7>i$p+5F5Qt!>!t};ccXGSwa{!-A;k>Hp`H*3lBps_Y zR2}ABLANyPc0YM!WaOn$YHX89hn!?a8ee9Z_whoizq>JY183xl>L^_nnNTTK&wxD4 z8u1q9YEZ{`T%ek~T3z!!KA#}f^;3-M_4N7sNR(3q;qC1Ac!)n+E*Mw1`n8>M*fQR} z_b03#S`M>W?cxbhy0Pi9*s5%)$2hH1_K^;ogJY`XgM`h07_BzxCsA4^$H~raWL;=b zO0MPA>}a^RI5eU*3!V;_Z=40d+m% zg6-GyR~5&U+-$IZI#Bq=^Hl*@1Jdwx02i7KGU^o6%wFPlNi)E+BBaR5Sl`r{CYGV? zyxb7jpaznDv5>I92q&|_&>yC9x z^aodm`PXf$We4vODK4|z&yrFy1y_U0MdlP<%YlIyFoxV*y)e;FCWFH7FM0bdVNPqi z;>tpg1BURna;di|htQOAKl-R>4YvS{&&TTdaf}X9zxG%uraZ-B5Iq;x8926vGz**ej;3F@Pn<^22#S&aZ%e+ zZG2hB=2KJ!_vnUK>JSfcD^u@9zIl*U76BJAoHzkLoH)sq`1ieV(iHQAxmsTf^%H7` zLG3F zxO^06C0M8|%1mC;p~3ss=5hIbj-uWT@wzk%w0kKR7isLrNm;}1=c&0s{F_1M`Mv`9 zwgLFE*0Y2Iy=QIJw5Mx5fCLfKCb-Tz^&4mp76^K*DhfU(e1d+)=9hVf{G|nuUSb4% zIEE|_P+f~W?pQqGA78tqJ%OqP9}aqd14Yw({VekN9CoA_vAX%}B!iD3q?dY5MVeo@ zF?%e!raQ?4cXc5>h!|Qg;_@dR}5yd?kpo_NluA7#ivX&Ot)~X_^qUb#&kbEq4%}US)miw8m=1u^xowDp4E(=@4 z+0`VUGwKeNhzVKdElYENL(Ek_3V)$f_U4EgKknFH|^@dO>b zK^Pwk+4s7idWs_?PpE__y@b2F89)Q)BCEIYo%eB->__F@MA7f#tcwI>#lx0MJ{d}l z2_*v9K8U+D~g@S^Vpmc|n zh=g>ANQ-pmT7ZDGfP^%X(%s!5-Q6kO?fbZE_UzevX3v>9XU_S3-oIGfPu%%jeSNPL zUPV>aDb>VV;f^&aI++dWLSltgg?dqXlGj2!@rUgkBVM+u|vF^MxJCgkD1s0)%)Y2dKcd(@Sz9(2ukgh*baE4@nX zY5)C5F?9YnWVrY72-{IscyZ`m=EKKBjO=w}cTtDB!X_>=)SXghEbpp3zO5T%N$e|@ zgA~HP6sUkbMjetI(yQOvybyrzD#LS0hdZ^q@A3_Zh~qlWTJzxYE2`~Xs@!F`DVZ#O zWVlJ?`P9I+->dllfH|k;bC(V*i<0(a3ncPjExDo?2 z9!7=;OqHASzuBoN|GXs4evtR()#~`rW??5X+WncTt(+CZ%SnA(x)PmTNw)$qaMhVuQKFh zk4yK6-rJ`zsi_nh=9oRmed!jb#Y8Vu!688PbWgp=IOHv=W@4Tt4yUZ`aGiWFuSmx0 zBS-zvN|zX4#g91p)&+1p(E6RV;>g>v(ZDHYjOLc_y+f zzwW{(0r&A=G||7+0BOh$z{H=pw9lF+4RZ&vBwv(RSfnO~wmrN{-71J^mV#SsvFiw( z@gQAaVaV1_U9TEd3*_FsNe)PTr<*nZ5S@nWw1+3q)if<83OELsnR)(_ar2iM{5>7w zziczj zc|o+OArp}$?A~#z#LDrdeFApw|H1kGW{++TG?Ye^-glbEd|P2i%&N5WSxVQU@2EuA z_Ibx?V7&wiAjk@t{zvtf{`ScKz0cv#UR&aonHTw#p{_GCoO>mU`Suf87SG zM}SL30NATHdOr?Wsel)~CK7jP+8m5)iw$ROA5Va^C*b7#UDFQ+u!~I}VD|!ci02I! zbvm-yKLJAt_~VzI${u*0MMrtQRg1wj=HF%#@*4l*O%eUUi{yxHNp!C=E>v0RA;ZP} zw9#fW6p0B2l`2SbaLM%)PKKu7qW6$C74EOX7 zq^BXX@nP>aFKE)#8W^x!RxGGvN*y9 zFXC<-;lPC9CnmQnlRQgyB&B8B2onb)zVJ)LiAmlPtefXsq&@Ya6Ppp_%!z*;vd?uH zT^n3#Fe}a8Es=_(%ns&Vh?ab891JSPpBU*AGXLICOgH4AiJ4Js52 zB{OIusyc%0a)gF%Y802eNUIIcbu=p?IUvtH17pFhtW-iHX&x;gBW!2qWB8^d!z(Ek z2&Ar~*PSZpP&E3Q$%+d+@L-jUX}=qg$#Y#LQinQpFhu!tinc%KN~02j?c)}K%n=_{ zMp=&t14C%#r*3i%-l1&B@CTrR!0LTmo#q<)*2|A}$;J}EIo}?2TB^K~!s59>?Q6NK zI|tXC+4<8 zI_E*^TS*yh&=!hVypYbFTBR*e8J0eXd?FFH;7l~w+~hcW!QP@caR=JWm9eh>LYsUsNd zoS7q&c1E~*rJt9X{FACi=CC6cf0=lh{jp|H!0*cfY^r6Zax-cmcD#W@yPt7$`|cnf zK3_uyR}Ts$#GJ<*Rp!wsYJ_BI)E=K`#N{0V!@g?5tDV+rvhHCB1FN6QL&+rs-iRfM zZhN=J3biASqrB-{UV)L)-t@hM&Z}Sy;-PB7!r-8$KHDNlDK}s7)F4NHj()MEj{gxR zdk?eDOs7`IXUS&P3eP}S0f>>g2IjlR`4F0@JCf*ru6CwlK`$H^*fh3=F$uS8$PC9l zI{I7Ym`I(2>F3!kftga66JQl%(H~^kt1=be$WDZ9xz|EABTn!fxi1{=F+J>;mj5FtB$2V5r>G+<{qhIW@bHkUt9w>xGsG!)sVvw{U6-)hr(2-(kFjcIvNOhMxynqQFjnd@ zuy>cxB@0><+7QlWOUmZ#l}(V}Nv zcqGfz{mj^$KRvY|x#siey=^Mz*H#(=uF?dR$)O@Alh^oWwv`JY@9XB*>&E>m8(V@j zwE2PCAJ^E@T|!SjCoK`}?YJFsbm5LzwC znl)kXm*MoeXF=NJr989LO4*oU&hj3b`-E$vmqF(wsovd*n6lrbFNYDY86|+L)G*W( zjr>)F?W2w`l0%Zr04Y=Y>*^Pr1LMT}1IsR{#8sc~26Pl!;lB*{p- zw-lU^KJo3QM^9oAH=&Zmq|%z)tr@b}Vg5u|*$m%WAXtQMXl$0p+#CNEQPWr(~H^&M329}$}W zp-JRXnjJ?+`4 zi*H0xUCrR%UGG-SgVX_=|8StZg-vIK(-G`eui8F-n9|&wu&Rm!VWeje7k4^_U(LU$`i%Djmo(D$XgTczbdBOMY{=23JTE(s{ zgZhks$kin%leMg#Wk0L`4-Yu)rzO5UwB`IHbwJQpl6NL7C-#ZZb&lyb@v-qFcW*lifP*@p~`<$z(_cQoo2SNG|$|HyN`332+u*ew6?>n_gsTfzO-J0Q*60KR}~w zEp_+D1)lTt*XjAx{ z!SmHuJYcD35$BvGMr-;L+Y95UuD7dW>e7sUflZS|>M~b?ug5Z-S|s=B9pdU`Rf_6p zA=pT~h4VH|g`zr16HkW=Un}P~FN>M4yOEV^xwYZuufK0j7o{FCl>EB zz3nIJ#6vel=!W1hb7kKi>~>T+c5za7!C?(%G&QpeVV}5D$;8rWYF)>*kozQDwG+&s zi@!pEh0ag?z!F!_k<)u^Muz*QHcj7@keQT=3Qr=3jc*5c^H^eILpa`X4y=3w%!ePU zeR^+i{|#uWn7Aqf{RauYQ<=m~6NI$A_YojN!e)CQ$Qw?p1|!fci1A@0$m0`4(@b`{ z5qwD4N={d}PS-AlENyFcrVmn!nNvd6__JLP(8WPG>0JIJX7u0FB>q=iv#Oy5zx+}# z+ihB7m%9u38(^uh>gtbq`$$KQcAp;7ksAn-n{R+cj+*9##sidk6Sl!;@T!0}q1x){ zxL)MwP~W|~USXF5Qs8}_(MjI`D_Jn#<^}kptyn-Q{-75O&evc4222hL>?o&$2|J9i zKWuFP=>R5&_|-B-T$5KkN)8Of7Jd@j0emxP^}O+X2ZQ8To<_T z6CX;uWc{PIsNdd4Leq?WlaOitl2C}D_35A>U@3WT0)VvN3(Ax^Gi1_h-Ysni-6j08 zeYF`jcO@%#X!H$u%48(ED<97ON$$a;A1lV}iN5I67e z+1Wx%DQ?PIVDDN!d8wVzdp)XcA=Adt_)2QOhKoA(IbUGAXp?(JvQ$dyu}b1QZACHQ zc%ghkrwlyM)GByINl3qfv&cT;sYuh(c3U*}#7 z4K8#4t4O*(TxGD<3nj+O?-=^vg!$1f6SGaNUG#DeI>+LsXOUUudZ-wysxeB4GtAEG zpK;G(Fn9^=KQ(JL2lV{B4O(|om|oqI35xg*AUq7Fd|0RR@ehu<>d-pa&iOw^bd_rkin-xqDp z*)o;hq!V+HwVA%Hr+tOlUtE1>V&iP7xw>626TehRmH^;4X-i`()HhPubW{j`@Z`I; zgTji~9eP>AP>$1~GRD*w-Uf6Auf;9eqEH;R)cW?MeKv6S3@e5|O8pHcwaotunAB+P zw|>GJbHuZ!Jii58jGYY4M#lrjZ;k@)sJsXdnapIyu-b2Z@0cS5hGEM>b6mTkRMmah z7?qagEU4{^O2d^;-!E8qWQ}SEfeGuRAVAGV#~*5uI8rSYycH!eEdxkLL!QlI(Rx*F6KJf9nhM#}uRD{o!pV9DL7f=EL%ao3%nM`)^$~t@BkmSI_P2Lbl0GuSNMj_pBr!`=-{UmW)WDLL`@twN07xwgq!W5Tl!?8)(I|)-L~z4st>`44u4sw z#gFlG(C#}B0q-Sw+zapRJmqby^?t0N?s9tiY^vTdR4u%*XV`}Rx44$#FVN<@*JGLgF9VJN6 z1S%iQ2|`iq#MTMySiO*b1Xe!;o0%vD39FYB`UF{tNKRi6oMuT>HzV9?IKwZBT=huQ#Ixg`Mu-RN%9C-{C?cft5CfV1=ao zQ2?bwk9VZKlUhaZ#FE#x&0)eS*GncmTL{U*IP}e#EHvpy(YFjCV-@WR(_a>i0?V|D;X}rC+E$C9;t@hrWQX@qU2h zf=OQdBUja+ve;)Vc+2`Xlm2m${-+xuFSfSmiPh%k-dc!ZKB54SFRoa@Xjq%%8jcE0 zWm(}Ulgh1v68P!s4p;Th$_eeKbI;pIi8r;20LPcavlhO8m*D(bW5NKk?Ho|w>N`cK z=)A~Uq=orhDM0EZ=cT2Zx?k=rx+>;zx(LrbNflU|zQfTrvz=ueC_?cNQvS)Fe?a2H z^b@tc%NB}tc$COSd3V!+pgApa*1t(Rz;ZDYDIVGE${t_TeaJkwV8f*>ww{#*L9ru% zbQ+y)_IT$gOO8B~J1GHUV8bl~-MO4vnGdawfuByW^EzWns8FRu-;$H2>5~%-P5ZR#9{>z@QLP~RSS;Bn)!t|thlFoLm#?FL@_u+HyK(LK6UX~j#5)y^3LkEZk+f<7 zurg|xdtIxZJjZPT0yGu4ftDLFPazq+p)%;AXk}@|eL2FoHu8%*$+^6Lk_eVg$ zOT32mDECw)PKzKcqlt80*N-ObGTNnzX`WqtVDvOn;OWYEe6dR;Lk;=s*0$Iys)r6Q z*G7`MCyF+LlJ*|?a2|KFC~m^^_48Opj)MnAF5WGkglm_v2c&5^bacerA?(B>!d}*a zQpHW}eqTHOMDihtQFpkn@C?a7u9p<MRNCf(yqnaZdW)iU)po^>)t{U-=NtKhJ9$Fe^ie4-pWwzuZnt0^hAQwyU*w z#IF|Iy2}-NQz&)D#8UWblgEh!0((c`q&)Uv@8lr!x* zhp3hxKJXQm$7lVz+3b$hf-vQK=-eF>=qP`bo2*h>_$jWK%1mx;mn(+6!sNKaHhwB$ z(dH}V!gSE6D!qAy3$A zN%_jk^>^TP*i*hG!`EEtByaxDvyES{YW}4NL?}t7JwMkH$G8G`j&VQT7Gs7u-^T;aYNg|fv~3JVIR2P+&6yhM<9otk--dt)7%&gZKn?H z0@VIZoZ@!|_3U5~INRL~7E2goJ)JOPIoW166?$JrlxH{)rm`6nn>SIXVE>WGzT zcsFN}2NZ>Y3;=iu`Z%otTLPfyPl_*~L1&IlfV71PC-&208=fUjJ^!m^(1|X+bnX+l zs;Y8876s%Q&9)bFi5~mtpTEiMP|NK!A}S4MS&o0s@*Zx7gy2KPe#7Im7unA&`RCq>|aDzgvG$lDM?v1NtSslQg{M-6^sqvRC8IC{7Gt7UI! zL$hUL=}vOCe+=5IFSN)5gdT_vAtk__8-z^<6F}8~*+V{zZ@{zaP{rP=RAWS~QE|lE z59t`xVyL!KMLN`*yx}M@{rQrk2xC{u7Zo?I^Z1<$;ttTTX7M}N5uMvm6kf=BG zTo{dVMXf_MMtYz^W*4}i2z`seEA8%}%x1N-#U%(ZZ~`;9V$Jf1(`>$)9089N(##Jn z8=gH(^8t2R+MG7;ku20C#ug$TyDcldiQ3=3%DG)Lj4;9)-a`8Edc zp1XqrrEK4TGoTc90P=?`R#nU>&8Dk~k+WFTpSpO`=DeqNujL!?=4*&f}vedH%-IqtkT>v(#7 zPX}~(Ch2|y@Dgx59`EXf7qy@=n%Th4I*kyLvd6^j(DmeAsPy0Jpb)Y?hE=dqB6pbf zI(j`U4EPRGy6D2Bo{Q5hX-t9@zW5CwFKYer)akJn$Z-&|&`&>*3Ue5qtGW}%)zSs{ zRgee6vjMw<-_kFn>jb(n5U_XvEpnG>&K9qQ`M8UZq4m3G6Vbtq8XWd74`lf-y!iw% z2SHtSOjRhgF1#c?U*x*yV>tvsjD%qPHxi})itdW0GQ8nBb@}0*Ov$OMS!jH`zC|TD zOT2S0TFQ4x2My+Pux8_O=cr-EFnqm#9{re%>GYMgW)reoxz{rssE#1f!Gvv5kr%Y( zAB@?sB`3qgu%%>xJ5-y;d48!nD!5BZKMhC5(PXX3d{4 z8+h`J2IT4SgawThL38;C-U45#E+z8Xadl_+t1`>5)yD9Ra8c|hVprORB=C+ zE?Hi(OkMQY7eU5?JrH0BVS7m;CPyv zV=B_@u|)CK>CWkUXc}N~0yl&M{~%(qnSO|%E+84ttd7}KeTi5%M%a~mYz%u z@sf6J5DQduw%D9L(|BkNBv*J%&!6HupC4NXQ%7hk6z)f{5x+^_YosMZhyqR{z9G8@ znI8u9q?}4Tn;vpuWGp@Fmz=elM({rVdQ5S%xY~_s@b-|>kiN>+R@b6w+#9*7K9(pw z{|Ax$^0KoY{`V=7wVrCK^~)4B4Tu}xjct5lP@^77^^SZY1a&`|*3Ofr6F}{G4YUPG zSKf?bTOE9GaVfuKvUROIGBIGROrmo`jCgJk?KlD3hz);EB-^N<$HB_PbeP_(VqUyV zxe^0|u_>rp>(lzDvbg)=TqA&Vy^d-guX;f_KwarY zVxz*i&v#xS5#(I5N2hw)b?dYI1l*QH83kM;7vVHYn4BQyf9?}^sL6#}%vYB7v8L^9 z-sY^Wc+ps0#W*d-%k=_Z1W5!B9qOd5gY(feJUoNSix49N4M08%ZReAuj*|w||C|nZ z|Mjhak}yn-X^HobJ?_T32aS9_Kn@io!y7p?BMhbRBq=CZHOs-veYn9cd0}GEdCCTsubEz_D&kFIND}u!FJ0A@N4z7a&Z(W(d$r7q62-p9# z2zGW&1wN|*yRZyv_>K#&mk93_YXniZL964!2MsPQeHi$h)&c&{&p|rQnZaP0PS9FMO3s8x-=);kzA7WZBl>?`z@i0?T)QZhTd^@qG}#8a(CS zv@rio3-XUGT7Q``!~m>a@V&cV-YoQEOYN@*kPD(V|9V~ge1BM%1W-YG^2@^f&RXU0 zE01}D^Fs$Uh=89L21og~T_XL?+fcukTlmeA68_jG3@-C8Z-deQb|FYH{{HKJd9>_Q z>xVvsVf(+{%I_P3`|Az)n|*x#(?Ep&!G6n=|78-t^!n5EYyYz1$YH-Zc9B`<7&Xkj zlb)JlO`&y2>qs)a4ji0rhh2Pp3s(cS4SywhU;x6x z{&4^(a+Fubw}z7PKn<82aBPYNFB%WG9!Yw*)+04Y*ayg+4l2ZQ&7UpMZsaftlFMQYQ8I z`lHi$N9n|4=w!OqtJp>Xx}awusFt{c0rmx>iFxAudqO=f5@>oGWl-HRg5_ZQ+M1fI zg|TVoa?S`t&u#k4$&PN}b0nyYkRaJn?%d|1h65>%+>%*rT^y{PmL&{oeJD<&rBd~{g&)x;P{x)lm5S;*opSCOTQ)bFVfG$pH% z_u{~9ZNu7D&a=e1z6uiS)N$i|=s9{kt$V{|jopW^$*sX`G?^27FMTDK05akh_y^+u zpX0F@f22M9na6PjcG2=JGA843SF=kjA(iE1ek##a$oU_4CWO}f-&@r|K@_&(aqJA$ zv7ELAa>-7Xt?t%vox#w-pLE{eerUfvMO4f}A?8qdLu9wA-TbPLS-d>BM*$tzb18XD z5~)0vB_OB~R}TI+2JRq8QcrH@+#|ZW6S>YI5*9>iqP_iYeuaNoER-)_kitEK3Zj6D zi~#D8M`eEnLI2zS{zYOT&ftz>M7s4UTtM)l5oFKoU0~({->YFQ&PMFnutIdKAd&Bjk! zpE0ux8qOC%I z3Uy@8mPe8U*>FFhEK@X=VKB7&vnkx`)>xQrmr$qvvY*OE zZG_sbGk*b0n|hLa^JCG#<~ak^G8Si>T+5@Lx#`dpY+G};Iz_x zDSEogI7%F5rw3%atAgzWL$^v!4#7FlDJifX-u0McO1X8%$HYzV{%!W%kR-|_&UN&y zYb)7Lk`!H%?l0^}uZf73BrTpOXN>#YDUKQ%)-J1@5G`Y$Z8ab!S+%D^K|s|8#)j0a zNG|PAc{s$w(k7kZScmCyGO>mmSu*UwmgsWs7XDa{2GbD*88v-c8g(4mxJ`jtp5qhT zujYr8&AR+l%+n~ME#cfRI&$}KG1wyY9N#(vD`0ynW|cg$GWo#!YM8>Mr}ISN9Nb6w z)}^nGDDa(3wo+}Z(wi*|i+Lq)nW++ppPeoT8K|3TUphT_abRe?P6Wd^tYz3NE3u^n zYV|!G-^=hgk|FM6VyO?&Mq z`i)NLk%Z+nvY^V*gU?4c@JRmJi0uuwLwek|j)l%aR%ZESFBv~UNj7ZzHePRkQUAgW z+n>!RY9JTv*cibR^LRU9g0Bx@N3ukRnrT2nd(d*n6toPRmx&n#EKW9*WxU42s^rEc zEsU^IJ|=zx#NSrNaolg?L6Az+5i?jtg+0p{h}6=ozt6?Z%~sq_bE2BnF>%Yuj8SJC zV?sFPUCX1rm>d2f0!)TSitw0W;tLd;BUm6<^?-52Jdvj44T9Ju3cu8!%sFP()rKj| zY?+R8qgw0uChS3jrfP!TxoEk?-lxkbN{r+7iI`A-iqYe=jf{zfL9KCO9J6B=p2@r! zEH=06pJZNR(1A$^qTYOB3$axo@E6&oLk8GoWKizQ8~t8aFZqd#_J7y`XybS_^or*Z2j)&;nwjs3aXt zQ$zi+MtLii1l4PVBP7I7A!B^9Znuod)JD9c#kq#Cyjb7Yc#7+8&{Cs%-8EoknV6XR zN;PS0Xzk8bDWZA`w<)A`ZY%Ax*vQS163ei*@$g4oGT;Nn%9|bIV(7Gr(GR8%DZP8?} zP~$(FT@kwG5(IwcD|~!jZmeR*^h}I7DYQ2(CI%wi|KlMospA6PmL>Ix!Luioxc>@2{Fi)^eC;S`wA3q?6|EuQU(f6AD#mO0!H+C?Qj;cIULnh-eeHi^l7x&WJT zBA*Rj;plAG^#{0Eh~&Pwx!^o|UOmgS{5uHlTYt4KyfcbgCt?>OXz8_#C15#AtJQnL zYGXYw(H%Tk4%C1HU(hz@bK)C)fC+xz8n{aq_*WkwBjY6}a=Hr>|CoEk$Tn7@+UT>9e z$X)Bl!cqhA5pn&ZvU&j$ahU-ekYaOBJn=MnvmkNXUt11P1VEz=(ZBFT z{KL-@nMVao10)SPn|pBO_Zm3eek?fRO1y}6>nSys4ZrY8+@$UZ*2p%M&U#+p=#x@@ zpYjUdcHZ_W9ifY-!a-kVmG$~3Pt)rMZG9{66bv!i;7MoYe<30nt>53-<}G)}Yi zUr3S_s6Goia@8farel8gq%D24j(33|dkEVha&7l{qt~Ju=BP+Txcp-`bqtlc4)kt7 zpgCrD#Fr@Y61x`HzVpd0cgLAclhx(Nd|J)AH0Ss0AnFO=F*@K#pQ!$v>dDE+#Mj5K zIxy3}1jRp~r}M7Ax@kW|x}zhkreP-1TcJ>mV&3O0+?O)g9ms^IK_6LnM-VgTVPXe* z`$}Py5$>zdi)XzH)$G{jiNiXkG7WHBq$NY@vmRs5f?F@&*t9DPV&_=sD0N3K)g;`9yZc3^J_Q0 z-0x4xe!~~mX_7nI!lb(VSRD=1T%A(vsWBy%1oGCyQj)JY za=lD(wJHu0)mNZR8;g`1tcl?M29(qlh~M0;c==T4ybdb__gPFYeRx|B`TdPY-COem z-+&@8luviiG_f*FP4TVF9e0mq9?mfYSKS)~x5aa!UNce4ZO@gw@+b=(C%&~(GbSPG z5DDMWZpcf5I5FE$#aE^!;${*rjW(!7=}!&223~_TJo-uYjvK3~8f&P^hiv$4OqlM5 zU%A8^(%OEibSq+M0|jro@Ot{0wljLc-l8rXWQt%E_FjpJU37@bd$jEckM~giLG;OH zN+NRPYHnpwzrRR({*i&{}2T!NJc+7S-;7HW^9oClSs4;zAc2bQh zTDT%`xvS~jis7;!N0+7LgrOF+sS9tJgAqoy|B!aj?)ey=WyHWs4nTqVVR(m zMZ0dFB)9V!&pw=QxY2V^8>Kl&{VmC!%yG=ypn=2$T+!kR-#xatsbQ5EJxz2y%3~CB zLnOyv_&IXi?lb?2qiDAHDO=6Hy!C@W&o5 zl#nqe;KU)g9+2O=#94*srR@dd9wcB--M;9gx4k;RhjkJB3ZtBDQVf#?BjcguEWpzX zjnwE7Xd(&7jxOS+e&CaXH=L`8*{ zfItsl`{KUf&HqmF|4&O^|GUG-xNvWrykFB}Jtw@eZs&j}%r%aNEKPH)^VC1ott`EV zGXax=cxQeUukgw8{L$=od6`)?Rh$HDD!_G}vJL|P3vdnmV^Inco$>XiBN^KIm4f@- ztqnApV`V;-qwn4sk(sYAm`JUgP3UDzOCQ~1(tQq^6F*s;R|U-nxx&Z5OT+cVW zyvY;y)+R3Xn%=fQ3LPv8lmac>)_6$?0BF1WGXloHV7r0DX2DwnS})BbK=rN|a6U{< zJCpGoQ#Xd|334ssA6W!%xSYAN)jxj{%%2N2%TSWmx*}e$dDNVaiD~S|_OKo$C5LLF z(!61V`ekf}h(RfDpC-SSbxfRfqUyPm>i7sJuG>*Wt7>_bVX{}hlr7Xt#XnA0_oaD? zyH~6EqpvD+AHpVsl=(7+Utrqa@9#Oi$l2Mrwcjkd;EbfDEkoDx1BU zk9gi)MUOE$W_-);U2u<&Ua>(}3t6Yx(i{qz30*S#PRv&K)=*Kl3I8jpaOG7KQHxX! zXSQ>!2hj2HhEa*ng|oK(e8C*$9GakO0}EErK7Ltb|$&Ot-I4NPb$$gjBCLn zRBG^%l(!TLV>RxSfYFyy?#j&g%*n# zBp3T_g|N3_hYxv8=A_xIAK*6RwIniSDc>fziCt)J6%@%X`R0)3UaGeAs$hwkQO-#e zHY19>i~B^U%7+J>AIvj=9*PeS-WD7;k;^oea+CXW%auB{#?5Tdo0WFSliT4@ow~oB zgz;K|aJEv@ns2Xe1||4*9Z?ebR0V@U6&tW&pPUA-=y-agGlqyWzVtyhb<*3Y9fee% z7(1Tkj0H>vTYisA&!NzKYp69fV}ENi)pzCTP|??Hh0r%&Nur42zP?Y}W(}4& z-BQSL#LyV-O`9ATH09-=CLC-@Hi?kc;TY$5yWi9riJ02=!rvH$&MCyTlN49p?%SFx z804iJsA$PfZA-`pZj?Ook9&lW#ua-$%uOPIXTaV4F_%A@*$^$$@Lsq;tm4h-UI}$m z%gw=dr15#geN@#z$guPi+oUg~}+J%mbb^n!e@Qoz>ni#Q2&o zMGDO+G>E54W43yxuNaQI6pCEMjMS~X``EB?1{!Z=*OV{8jUD!{DQVUk8TrBJP2mpj zCj+Vr$9>?|ee}k?XV5wi{eU#aBh-2@Zg+gJm_j=%GsWDz+pzSDcP@ zWOX<5z70O0Dzs=|h7w5U!!4~^Re66R_4fOfE8sPShj^C&b`cDf-P7z|CS&x};T9!p!|;Ep1K@=_=Pm%DPuW!P(ZzoFmHmc}|C8=J9SaQU9ffY(UYbsO!NE3ewB;2XwO+p zz;?NDC3IAKxQ%<|rv?oCCx^T2EHlr#bAj9`V&T9wW@4I#&ESoA)IHcv8V@yWuU``+ zta>mvGElmH%j4Q1PZddWD>~O5+WPK6jkrhcUj@ls{*mC0{6f@6svILJM6wPR0GLPA z(3cHT8w=ow9F+@=A3q2y@gCf&fB5ha9m%VO!+#k;Gr&tiV1+HB6kJR?*SARQ``}31 zkDBtVkm8g8G64yM68{e@7uKfE6|bql*SEE2jOoZLT_io@RZM<+Af`|%(z8dcV|A^0 zG>192;+uR9Ii;Dy98Y25MaFkFLEm!_+n90EGSmE4(RI%2`0oZO4*=XHVc$T|N^UxK z@BS&CC3h>r8ryYYGb-!@2M4L}X&}yK5+@mcU3+o_ZR69On;xIaLK-@VN!0D>aHm@) z_hdL(w@na3wL3@gpJm9WCh4!yUv6We{Ci z9AbJXu;2Ueb6qRtbD0FSR!OVW3C;21x4W4Wk|aK#sFrBO`jZ`Xe3jN8;fn1j`OPic z4Vc_1bx<}g@Cd1$YNrWwe7@|2Hhv3a+hLOyBE0vhZNKDV1UJ2jH_zo$Mka_$PI>7q zT2NXZe#9wf%0wuy3Y^9&^C(t(Ed*s_N@Fk|%y^%n1z8xiQd{R!3h58KCD@kd!V=)PBp!Aib`Q2z1YYK>{{d(?uN%j?CT`>{AOiyzT zujWTWuJUT^Oxvkf?nS)6c`!vcB8E^KZOIe6Tp+O}| zi4};E$A`{~=UU7NscYSdZwSVF{7hE!QM)=4-ZY*;@q0f*w zW2y*3`Cp~@{UIs-6K-@Cn_66z6E9fdOcS*tm)PoVseVA~7k_Rqd33&2WKgvCnQ`BH zcB%6e>Q-On1}Af9gPzOW-=IY1ZHWiBpAPX3(;BU1-!%kSa&CV-R{u%V7~ zNAOliuAKPrs82+A2z&Z=(smSoy?>hIzcVc+Hf)N5U?zRf~!z@rW1tW#7Z z25YBa0CE5Bi0gm#Z2YJ7cq~TarV2an2%C#ed;uG@7fRm%TWV}7c%8yvIqlYly!1xk z^Q)URZkJzYE{I;kE&`r!f_9c|(Q_^^uJ+vH=Sw%&!As&r-un-#p@s2#wPgZx#;dUD zY7kq^6!gEe4LV7{AD;I*{r^w>6RVMHw`=v-ohXE`CQ4LZi6w33zHKW8rn)ByUprEe z5$>{>&Fyz94D167XmxLY*hA++adhX* z#%lc`TSuuncJpP3VUp1_tG>$nbOTD=JK=N*rGhGM>!N@|6%5}rt=fgn+G)-Lqh;?w zw9#I&r+YrXD~@d`5Zd|#SSuF5E6!d@@rV6??7ekV9No4r+IVnx4-kU8I|L6NAUMI@ zrO_sk5L^QUhu{vu-QC^YHMrB?s~oxSob&b@ckgTOj5p4I)y3*n#j4e{)|~SvmN+ZC z7CQOw!130O32=^{re9TyW#s6itl(^pKUP%{ftMs02Pr0N0uZORWLDDx!-hBp$yDL1j&9YJ?Qymc8w{(ERR=^1Nu8bx;keY4 zn0f*Zt5wK)$%Hz|HaM1J>)y$%433XP@Ww{~Mu>W~ZPUz)Zp&U}KfxWE_3|`Ysz{)B zuV~;ZbwLaN2lk+_0bI4w_ZJO+fyx1R{y|+9W~N){j!p{~nL;;|PHT73H7-LkvQ!X% zHR!}PxS*euQZp#*u}quE_XRUoJI{k=H)Cs>R#1JxGUXV^M_vEMJYvZm#2>kP8&3U^ zDp8*a2S!x4PLRa;?(=~I*tGW?oGWL)*%&lPMOh<3D=>cN+p7=7J2g?R{3Ef)=4WOF$C?T)8)ayAGv+{90k}YA z=C|22%g(Ahyft&|>8Dy+ln-ZA3VZ#$4sz{axgDQ0LfrQDolI)D}L_1C=|+x&oemt5*7 z7!TCUe7P)h{%85Tp-!A5L<=eqt)#pN2z0}(+gVkE;q8_Wr&ws8Oj?y@ndUYo!T@^Y zg-f{*3qAE^aH!Y*v>+5R`C2A+HH01|3>Eh){pX1f>v|YVWEq(k%EM}nVUsL8@YXvY zyG7EwsF=lvxny8JXUJ2*jM|#0sNz#s9>soD{g)6OzXEh=B(^Fxly_pQvTax}?r~5B zW<6Dtq-y(SQ?vqtPSl-wiAD2_E1J%Yi1PRkJn}Y0WBt#rk^eJWp1)&P^ba+Gi{9JHbJ!na%Lr#d@45Cp)vyjvWd052ETa=tJ~yB=b(Zo|qf?Nkhlu z_Maj~Gjc#%0V0S31ezFMI5Q-Ws3zbJKv|#w8BD4Pq_le-m2b6*tuPIr$CsI}CS)02 z%Y7@-(UQl^icv+fE@M4LO}MH50omcrLNkJ`J4Nh)cr4KYzH+K;*I5|9fQ^k=95bWA zfTmiU3ZPskPGQ8g;`=Uj=yM7>;+vP9@R+;Og0C{Cpra8Ow#&_c0V;}Qdwcxvits2^ zy+kO*fKE;aNEQBHHgmuf{7(aAaA^Ysd}BR7`~|9X--pHzijzFjKL?#cj@Kw(2x?#o z{`Y3;&1{!yyfHFGbNE*3B6G!n<A%nnk*53_fAnT+h< z4=PO@S6HGZO1{0`Q{Pim-uaP}aD36IE6|u~U>zH#`gy{PXAspXz3@>`&4U1iwb%F% zIDXrVia_|u4A0;8IdJ%=m%#9)gid$G3GAL-ZT*Bj&h?DyQ;q^vezhkyNAU^mqXd<3Y+zWy z@hQttu+NafGyM7my4@HTr!Xxv(A8ZyTJk9P3q<`CUJ_)H>;KX{)YqFO=3_z~?y-Uf z*Fa$fYgB*m=orFA*kex=bEt(%l$tgSjUi)<58T6eEgw=^!awyJUg2Tw zOYsBa;=a>{>zEasMt4$^&>?`Iwll&G$wwfftSK8@P4rD)R&?R&TQN2X;5>2Uek!ql z)35O0p6c_3Pa*5!LIy{Tp+UsyW5N13e=kTj&rmkkW^z$y*s>(lG1nrbXSi_rA&!fy z<>z~%trhTP#{!2qrTqVq9|`eN|1)?6GLHB0a1p9B=p9%BC*N;q5NyYX*ex=Fi zr_#o&DU8nR?j1%|@2|Ws=w$~Ru3CI2HvfJSO!qV;mURtBLytsUw$GzvkYPxO%B=rD zJ?*)$FN}Nf29r=<-uS#VZwF;;l4FGz5jDMoP2f`>f9av7CTo&ZHF=T>oF%>6tq5lm zMgJGy)x!If;ci2*=C}uQ_qZ-ln>wKY<{K9zg<{)PE=N6zFn?O>%7t|GxA}Vf`BB8H zGkqpkav%H(gpyp}+F{q=^jyg5;WhurpuNwEVzcL#qxcJS;t|O`kIj#ai$6raYHaY0 z|AeETJH=G_Rz~&Gl#G=C1JbxU>lf%_%oxPrn9cE2 zzAwGI#kKjS+z`0%YHnc2BXuyZE7v(N%^~Il{mOeQy|iV}TZqJ;;y(E9YP{emF}h%F zS<(Ssx;ykWC~lxrJD**Kf1v1^ctHQzAzp=`-cwg;#@pkkg)SEjW`H&c`unBwO9gT@Tr!$Z~Fg_zot*|>qbT!-XD$S(U5A3xw#x;_s?6hN%sB+n1d~1?23K?lp!Nqep-ejIVM5iXxB#&qPPfGUedsHW- zg#4BUtsX&Xp2S71^^B`gZ1O5-Hhfw%(v?wLIM{++E9)(IN+&&l z5dnhm?VYo%rt527seQ@B2Y zlttb%im@C1xH%^r@$T~JxHvW^wbZBv0T5gn5JL+8-olYDkiZPF|6bGdKEt;7#>b+6 z3CriZAyOI0{Yt+dQqXc9b1@3{D|RASYAS$Tl%nnwV+Gr?<0l8Q?nElm}AO%#tL%eN{6cA1iG4iCSd&v zdMU37!hsyzB;?`v&Z;rGX9fC;R)x9E#Dh%evON<5{q+}uo>aob z4p<1Gs6c<)Gob&v@_%Qv8EjO+(V8_WUE7)w-R^iX1B5Ceuo&?qG(k-FB?JVP~ zI6a*BdRgWc`=HM$pqtHqAeVsM&+W25Z0?sER1*})Pqm$mRCp{-#@0*ufM3h@cnfg8 z%&VO5V?S#5f4EP+ak^LAHxy`|vr`!V@>?5kKm5dUbj;N)+Z?!1V5|(iop*uBb

UaS06Sbl!JWjaaR zzOxUF`tdezq;1QO@>S}jp@bI$suPenp^i(n!c8` zmDlnaWWkpniTP9R@qMyvDdirO!stQaZYWbvDjB>^17nhE0Q)Gf}BDS$+s&m zjD>O96Jbj39jjh>Xi^dIF>PyY4z(_HG1lRW)BrP#n2*Pa^GqSdjS9wA?RveM&xhOPMvZPLFX|^B zh|qW;OYPzpTBqWHcHY%u;SqMExSk5Ktb}ifG+X`Q6)ltn%le0-WR4IzzK&H ze>ZqACFK%y*DPNwFuzb3*N9wOn!B=!ToWMSUU-rvVxqy$XlFO%(rFQ6iT8mbhSmOd z2sR36do#R6%23c&pE?pWV%JNwF!Z&uWMJe6Q6ERf_0i;qCHY%?#xeQ2$Vj%W#PlLV zbb;)qng(|kqI4|Be)C0|s}pDW%_aT8RrgDh@(RlwfpuhGwM>IVDC!To=mD>HoXn z#>vG#BEs@d80HsrOgL~PW?;(6Y?(L#R21Zv=wsV&bDEzU|l+YX~2XCxqqO@gZ$iOlQ@;A0m7n!~HQ zfRN_lxIyrmz=j_vRc+r;5-nII^^L1W>1k4X7;x)lxeOu0Y_AOmdc?oZ8W4^J__2>q6J;NFG%cOz40^3@W;kSc0_V>q|~W#!2z z{<0E{+t^B{8ThziFdyA6n{wzHh1Z%G?WnM2%4+P zmY!<1%uco7=zrTsO0#<0c;Xv2@zAb&L2@tEPpCbwRqu(VVvc4tAvuNKnM;e?@%#9l zxz+N>H%jllxq|Jyi?$@^yhAN*HGKp8dNof6H4bW6d9Hz%73m$~K7{~*Ud@UkBNPF0 zO3C(nh@;oW;U_+V#|RvGTOT}2L@n_OybiM>c=QODS2VF0kClWDt@{3>KK@&>8T0^F_6Y-L9kQ7R&63h@B+iND*ks zgrP?>${;=0EaXyc@Abd_1;KwLa5Y2^mui~HPm=vL1HW$K?vt9;39>W6Zb$pLk%9L) zs%0+pZAn%gG`Jw5ran`4B3n-JfzX5QJGBt($siTxcUA%Vy!V5-C$*eL-Syr{A;QwI zIWqN$yoY!Zxipk(=cHuYZ36h%lO%1um{|9H`~7uVYZTLVtU1joa*>@WTx1@HxFwBi zVABK`$$c8`xLL()woTijYokTv8iL%b-B*|VP(W#2GV0sV(rr6k#n+@RBhwb!C;2#J z-mXz1RBA_d{*5A}Ku+%+l*Dpyw~dPXC34 z7Neb6z?~Sc&T?vM^4ln5xrZ0Z6E$>rJy^ChB(dxN`1-4k`Q=r!=^2&hgR=NGkB@%1 z0r^<$wuUbcCiY9zA@iwZH=2d85DIZ^&q2PWA9lsnpxhV8lh0lVr>A+Vqj`}<*fm%+0g9|Ej~Ji7AqntcO>HN=i#9rk zM3uGZU((fWQ#I+7`lge3SScOB^rR_7NEC3VS*ABez^UHeoNZ*LnY`(r#Y+A^Vy7GaB7M`L^Lu-4;Ru!2_RD@1pEI2!2m3nZMRmyAtm``6FB}NCItkS?$J=#&OctKxA9QR zyRR|-k1zPh{{`ZD>KYK+#GC+%`s6_FBcKv+XchS%> zdHgpj)jxVi|7b@+P^=eB=;t}HdsL)9Ub#yu51DHO693@s{A0Z!JySnYzQC12&IvF9 zuiKi;E3p>l|7~4h-b-DJJt6^#s10UH!1&i%Y!3p~LH>XF4_~ceObqnj`h|?=l~O_B zsc4Sg-o_hz{J2j8+@QS-e7&WhRyKW{iH9Y@RXz5P#Zcoofe(x6#VSLfUT-(XMxWBr z5{hiYQ0l)OT#?AfvVtV_k~wK#Ln+ht|YL^?b9X|l;BHYN}n zHxxsbh(TsfngFgx7*L$|st@F|jxhwAc)U^KVnU`*s{PIv=O+&%XSxsz_+uBGuhv@? ziZwffGw()chF=7-FxGU`;W_0bU&HEz{y`t!W?`}>jo(MJ4lHI*yoMwPYyJ+)2=fm2 z>lR9)u!2KV3!$RObaW)owS{M-iTY>cKENpZcUedTkk@$V#IfLPBB0!PaT42leYm6< z`b94C=%==9ze|p=nKro>f4@Yor%g6U6Gof}1n92^oG^7cJf+$R#{5BJXn_6{5dP`# zPZg3KMf}gXtbaPw!SE;JNmd_z{kiz?((ZxP81W+=r8fg^`jB@-fCM?Fb4PiYx^o;| z${O)(dworbk_xH+q9fitc}ov^^jzClJ2Qtref>RPN#W_Oc-#WrWeCDrwmp2%93Kt= z(!wbojA9-j4>n-4COpY46lCe=68k<2C-)NOP@F`NFtp}34$WZxNOh^Kt-S~`F|-Dz zRh-PfYu|I?V*6Tx9S-wIA! zcCL))7*e|+_vTBL!SFNxW6i`&O_<&bgr*Ah54UPO%1Juz?L###N@?oB4^ zc-FRresV>RO5nld<@+k0pA~mfwS<1W#)$Cjv8Wc+a zIni%r2G4A)$#96{NM8tbyQKfT#fDxXP$pBUB7HI~Tsl&Fm~-iOro78>cYmIV6(_WU z3vRiO-Fy+XtZQhFqzese%E*fP8NdYTnmM0;hV}!G*C_g0$zs!_ZvJIabNZGNq)jAC^!ovRq=u~xy<>KD|)v(6Is}ZXfZO) zWfpo9AmR}_C+z<7fDmyCx=a1zt;wG`^jruF{kj#&*AsRMOrnq|QtQJ^0I~pboIs*1 z0bfZ^l#`4-?oy|N=rC1@%>3P8(nJ~Vt3h9w^MhR636wUb9N^>nU)H|F|^Jb7%RPIC@Jy3nTbnf2sVA_aD7gn+T$Bf7HwG zGEeD_CGM%5g$GMui=8uq&aD2{k6KU_L7oTI3Noii;-@2f#SN25AL>>JnKRUTBVrK& z0pLc5zCN1^Vskbg$k3Y^nuk`9rWp3Kz%$9$(#)H&50GJ75>Uvq>?9;mo)&=gISl|R z|0pS-dp^DU_|kj5p80uQmYGQ@x|yigG2~yk5GVcOT;4|{F@1wymY zs`vJ-YSOK=E!2!`b7|oaSn4lFhMV{>Y_fSlvj%J#wfj}JEN8nnWi!F;PhPuNhjj$r z>8VuAN$+#)K1W*`zv_F%KOl0PA09ZT?(8pv?{yodL{{S%n7xQQl3z( zRoN#a>DHw-#cRg>o{AsDo`~Q@u6m({aeXb(HAdl9 zN0*oIJ(av*u!iD=*f;y16H9YTigL-{R~|~@iIL!C+dWRU;~0yT)7HhfR4Qd~1D$_W zjZ}26W9wPnB_@_qXKbt5286OpG1Fbuk7$u{3O;viht(Qp@~q7%o>x)ydHmuLCfpEF zl)Jz=x?0XFtE%C^$4&krry{^YQ#Gz1RDV-gri=59Rv}M8HDSjMLg33%2rllLL+9j9 z(X;JIkCV|<4~v7v*n)wtg!jh%xLMqn@X(Z_d%bcxWVvwgxN@tl<>@VxY)2PlQc9;i z#!q7wNg4=q;=(RZH5ZlZRi3|yf>X~FCM&Qh_AO;Dy(sjyF5RSZAky(RQ-u77F@nMG z8jMEasDMjb?;j!jx#_EObyeTrj`I28hq|dC-RH6wUryV>R%5K$eLMD2-ii{*(955zJ^>{=#%1V{f&q~C99I|)RbE- zy2&J#ID+}jzLqtL*6DJyRqiWUmKq$zJuefH2Pp;rc*(_$?_0E0~O>h229T2+SB;$oylI<04FST6ilbzumJP(spw4O8XbV zu04j>vyNvqsbIF#8$xYFc>>;uh#j(DiDb9WLR0PxVV+&s!o@y^=shvuGfx6n1z zQnvPJTLQP{&8%2;iB5N!mUt520$dQK;AZw}zuGuy9YyRaxL6kW3Qe;53S{Y8*LTqM zHVu$5A;P&$@plpNBGsxx`TA8OEzD^#5CK<8Lhj{~8qkkN@pI5DU{^ALy>!o2KVor@9N9VHq2WxTd-4 z<1-h_?9Ul*j(;g}NV#2je2;Ae!jHYpk6#z3G#*4|}EZ!G@ zBoXF`wJFCti98ie%Z^$z(G03V>_X^86({v>01Gh?p$UxDKE7x=q*o~B9>Y{=jkaQ|`s zO8$=ei#~(>mz{FrB=`;2ez61`{qhcbz@~LT*tNulOaDz~!SWz}>2Jgb$CiAPZ}2Bi zLK~EKk!~)u<%5Dx?f8dHdbxyG{RrK~nQY7pEN3Ot!m!RM!%3C5T=p$q`71Wl2l?Xh z61!jN#ab*?doYtC8#@P2KOEMSBPLXYUxyE8R(86R>ceUeKYSkGr!p6(rRbR2@qk0= z-l9k^N*$nz#n~F%i_{GN^xP8gu-p|NaYLmk=)l`hZculj)RtiG_@>z%R$pI+?q#V` zvf_$$f-ep>rg@AHyBReNezQCkt%ANsgppj+?OUv727ZFsL#1aNYye>exvR=zvp%bx z9ykgc{!V)oy+-S57-N&c>75H6LYp+>J|(v??{o}tRZ0?h98AeJIeD4Vc~kVs(K700 zCFwM&Yla_#i%7uC)J?dE4V!3}W(K>Hj%(*NReQaYg zw40a}4MyAN4I*_CJyXW2tu(%E6+sOqL4FbKt!FIH*VB}eQPfH*nzQBCqJ%Cu5nQ$2 zZn>NGS|gs^!1M<8!Z|HkN!SAyuw#fapd)`{P9zsjMlW5M6i8T2nYu@9O{2VpxV&0} zQ>(HZ=<|sZ1`B8zLU2f^A=1L9))LFaRXC2)QZ>ddPVS^c773&LyN|%|qo8l4fqdHv zKIe}aS?AYO#+zig!9%Q~7F}_T19_;vx`@3(m?0$YFE?|E0Qwu`g8Wk+5;$Do~P*%$?D!a1OG4>lcQEGgJv}mXLk0{?r?JIE%z^U(lh3;o; z;_&BQrZ-ZXbqIlx(%6N)r*?f{T;I=@@r1NZnlg?PI5)b^cu)mMJccQ`oFP$OP==#Q zt=KGSA45Pq%fa`du?L=fs*5t_4ent)#LPW_9chK#$d0eb1)R)<()FW50^gEZjnbtc z=IXYSKH`}CFveQT1d{FF&S+q%IHQ4(SF!k%PD(Njb1l~b_-)tGmxqOn!2Y|;6^+a^ z=3tB46sm5jTgKs_pr8mWjBk>&qmMkT!|&KmE9*IWdS{6)+c`9!hJ*Xh&-#=(#W`yo zF;_&ZtxG>97=+WcE>-nCdBOyt!8J}!!Ujbrq-Lrj`(o!Q{X87CcABgXZ(bDhSpH5s z@2W^d4~K?5!{3h{JH{oBU;Bdi)ZvT*INm4Qp(m&c5Pk-mwfs7M?+_$yc{>^a& zW=RU(W1#9?HZ}+aaLohwmoRjHIGF#24&e3D{~W~uSs;PDFxQupsdQd3(mNUw7XoeY ze)sk-?mSU+I@dh-K=;m;tHu};Dhi|V?lrc^T{Y);!pS|{lTY#&N{D*oq>Mv42jQk^ z=gmLLaD+#HP!L(qb0+WwG9qJtfj*w!wB{G&9^vYg&O0q}zeSv)!%*D0BNa4l*FDX~ zXDXP~54JxR6>d0xJ6#h>ovPE?7R^Lu9ChXzAoJ>W3{18$_2FUJhgN7|*PSwgZz=QJ zO)?8}?(~fT8RIai9Oa-6pM8=??;t6L23+AoiL^9>%oB%xeg3mf`{Xm5ZJ8~v@+sTm zwl)shidP77g3K7F*K+)P+4~}TKBBLqC7I#lmgeL=kLEqv+V!w&L$eD=4RmTjJ8-q~ zz8Iu=DwT7CWw1L-mc0kU!^z+gxeg0U zTnOpUvtAQ#)uhV(YMI&4gz$?kWn1HW{Ccph;k=5-5SssBEyJkj5&wYex=_|e-|H+| z@4&J^iSdQm69~E1$Sy9Q81A`TffIW*_QeK?+F z_4MtLCf`uy{;Ar10$`FNh{!@kEPw$~ha9}A{nqnk%yl#AIjl+cC8!K?t)M+cgWGWU zudv(y-lBTN76z!!7C;sZryrEW@!!I>&W?Dfw)XVfIWt($SHjUwAniLe`?+q78v5jF z(AMJ!F-AG%(8Dc<A8m9phMkfy|B}Cb4zBzF!3n$j~abdJvwi;7%1l_omxM&yj?b zH)E79fa?~0_c-C;Myn>P-s?3<9Jd>(=Z`n4E;TSWNPVb<6~1rpu-L&nR*N6qsDi{P zG@k?^1Ika(RzTBACJgkr_~Uh=FbG*pLYxxhD>;|h>rb8Wk?ZwC#(R)!f<~0ImOi}Th4qr0?SV&59Hf^q1~I5a$C()BE(Ww{ove(L0I=O zYUl12@NcB-YKLQXHxMNqE~)d(;PI=1`LY7DoR+rDe<1oDCV9&-z%#{#G?K)z)_#A; ze372~d!Q6$rxo0)uPo~Fy#hE7!GHy1>>bFvLjt;w?n=RYrd>)Cv`pUd+KGJfwC|ul z+jX4=_SWr?Zhpv&%3mP5_9s7(cYSx}x6JbZS!c>6|M}ZQt?{JY)1_Da>%RMdrO@FA z7}*a1pblUyA4g<9!l@$dBW9YvIW6zz-2uSUTfXIMpl|ex_ zV|n3GD>9-mC44FHjx44m{__dwO@L5lpy6w1?>s_jfgNA5iNFD6TxO^-;YAi^-2vQY zW@P3iw?1T^A99TXI`U;W7ZFyPk0bly=-96{{o5791sB#lY*4`mQmkf zMxR|Sc9tAQ5j#g5Uwg$jrIAO-eV|D0c6fdZHzG>r%bePea#zop>hn&>)6{ifaR)6n zKw#K)oM@jLX7c{`MmX4i@P?e#B7+~VrmCSEfvlPdZVbr|vkYYUOm^`y7G3xz)@}FX zENT|bb$4(f(3^o6-g_H(8n)ZfVP`euqD(?>I7GJbJ;|_%kf3U1Eb@&2;mUs$&2;sm~w7o_5~6W0e6r@jNF_G&Y< zUrLyv)f_B_9EA^`CGs+#IMg3aikU9Qi)z{kqc=#~1m zPe+xQ$5dHxP~3y)mFXK^(Qt>%xlcgmS37L1$f>TYTdf|A=wZ4e6lDW9_!AeFGJ8A2 zAeA%l$iygD`l)MM1NVed-!*_`8N2U0vC%l<^N8(-Z?X*; zxzztP+{X2JR~(mAo{YTT={gJ3b=uPFdf-j$1&Gv<;Pt-JRFF^3H%=nzQ z;n2>~N5{>lBy`)7)le?~vs6$NSqVEW#?Dp%ha0ka{hV7#s(aWRi@3r#o;Hh+ARb!2 z-A_=r=X*4=C}(lvZl%j>%6qwY)#;L?6F5@TUD>f8vh+=@(I@unxnW%U`EoS;v@XZE z0}VKNVYl=W<$V{jSK8jgyy_G0T=Ap;kAo=cDH7;Iu7?@unptUgDzzkf`-HfyCeel#5^Ihkt=| ztbj9KJHn6WTLCPx=Xc!~e#39SZS4ceUc>0lC2k{^De8ON=TVTAbhh>R%P?5>rCI~1 zb)eEH*DA;Kh{k3C+8u9ezk16A9TWql6yFy%z+kn&mV&Br-aUy+iaT|?R-)D$^CohI z^6V?6F6cJ;Ui$jrdVY#!L(ZNyqR&(u)Ja*fEngm_YvU!8UMTiW;b3Xm%e8}7S_qb= zQF>FKPkhI?DYHo#M#OgCnaE2kgsk@f7Pwb0Y3&K=&lhJw zPcrjR9{>Rj!F{&&5r8mZfbS$;a%_Qj0f2*U4~267*UA4M4v4hSs(-hN6m9hzB=KA! zN@GHL9_JheA)TLeS{&MqIU8jZJ|&I5Qhvl=^CZx7mAd<3gwoSItmPy>xGe|>Y#*{; zw|=*~6ZLOZv1Z{F5o}f#{~LwSSMbIF=~_thoHw;-__nZn(IC3n*>3Ga&^03jKMO5d zsHcsTKN(lInzEn5qzRaV<(A$fe#-Z4-vJ#QD95yWoN1U8-tk@54=n*8kd1|50)DG?&cq-iQ_fIuIoA`{`?+$dx|6KYyl9Q2Q*C-ubm?64K|evqj3c z*QQ0Np9EE}C578nE)aIsIGd-)udLD2)Qe4Xs`=>!u3^iWR`>h>b|poc%BL{tWTRyd zTgXeo9%k)>i6dKkqT*Y}Y)08ld0Pmz2)aoJnOi>Wh2n${5?*iR*MKAOyd9)W@UdRg zo;AIFvTjY$L#RKI3~%;aUp0V|TL(;j+AwuMS;Hh?ZFO16ofoLd)nPT-}Q1NvMc& zuDQ^u4R$eu zLZvoBRdCNQZ!gh9Jp)qvX^6L{iMJvHcK!lwvVJRwbp_tQ0KA1zHtUwptyPJKoAb3i zkw%1Evx>wRCwT8m>Fd?i{}yj}h=w7`KNnttY8s+0iO#46qRe!#9!mm-AXw63R10Y_ zh<=QEl{9-Wt{0R>P0bCH`89e(zgbPbDCp>!X$aePz`Lo9c^!X9Na!1PI=?0<_2!hV z;I@ZUwd_U2B@gx?gI-oViW2*3((}t!E>elKFcH`Kh(wnUWOfCBKm!-mU!r4tSN}V= zl2^u_#qxL3=~csmshcI=gMXVC_+L9=|6R`E@95g=3{bG5;jISj9%{y4@SP0}nauQ+ z>!7zHf=G?u1>`zSut{Y4e^FVOp1|8y%>YK)R@Nb&o%JW8-*-0YEz zEkSR+K^Da+P?ldeBX>~Yt4Q{Ud&DW>`YMB70y$Xr2N#1XnsW*JPL%WKnHg!FGcLkT z!ONw4$B|3ch(zoGLtOZ(fqkEbk8{!nJHbTDu^EE1O15S_(Xzi9pUkjV?5$dQ(X0B1 zT^GNZ2+av`Wb!Zc<}R$RmseT(Uy1CLm*KZg(@>k%1d-s2eJ<~>i^Q#}-FgEZY)d(o zjXNW4F5J|xnd8)#aKcK@&f^g54(Jz3=2%O!n{Txj?pUl%zV`D!(<{-|`F&cpw2;e2 zYv|_0_=`IvBKA`!v4^Uxl=>-M&LpO3s7&Lm!*zesX`Eqqao0SyUz8ln>4dT;7F1W} z=mV?)D%@0g_Ts7p%Wh)!OOid}Y*pMDu}4pPlhf-MNl)KWIeix;-RiYDLl5jcd)g+4TFb(t z+i1$AQZ1UD<(A@jruf<~a!^AlSX2bHfpL6{QSOZHg|UXIv$83n#nZfusd2;h#)dD{ z7FGsl1Pofj4lztEE&7Ab_GXEatz5}|ye^Pq?wGptu<2-1pf zB=i>;`Avjj)NKu6n;Z80y=_Eqejr`t+7}GTc6K7Asm3|icAKWnUMnf~W-g`lmU8M6 zpZu(?m1qAoyxZK|sP2*#41<4L=V^v^_0u^#%=-?@`eO0el`U=QOPrqWip(TW_%gHA zd6Te-3JW&$7TeTS*2wTkj?(I?>2g5X!)*hr^;+_}0$ecmT)fHR*V1y+@)kVEKUFKt0fprd zI-GUT?O5HVupOYV%=wd(8i^QV$cqT?k>2l%Yf1i*ApJMDNSh&KfW-g)t7#mlUHW3Og8y&f5`63q}Q+VlaN^GuQ zC^0}(9GQDMYd^uu+eWl3Ou2+v=N@Job5YyH?MNkb`ScN%t6vqfu(Vh&i$-?K$~1rZ z)qu8Oc|uJ_z)Kq%?)_YYWAsih&8}l)6H@g13f=<)b>_c z>1(wQ^9r;S0Yrbh9;#8E7zsVO07MI>P(Uj8a=wyj=DGy>(cc7M_v(acZHVvlIFs&K5V+-#J~qkDQh-8wS6 z{`2O-LTF)L5i4DvLl^kGy!r_F2eL2-yJ8mZ6+3U2Uh+y`ziiY+kG{$tUXjP6P7hcS zw}#_&1rSTw^)2n^d5=0uwAx}zF)Hq@pQ7H#Z$|1=?-pL+mG^4-)*)g7xh;>>EqiZN zayGq|hA=P>!|NzL^H4(L1X|;xO(_Bd5L0>s0H}LaDy-y*CT21nhiaR8s(Z9Zi(UK^ zK4Edk9Q9jFA*}&x~Z&Gv-b`kdPG#5=W7*Ft4A*7tAo-_D@#52Mgn4x?uUVhUuT zl}YsquEixidhb1+b(a0mm&G}|w0vtY@``<&q>36}`NWMIrgqZ^pRTudcC`0+JuhqR z$ZjWakDZW~)cmWNzf%cX|7-atjvNr9G0QKk!plHXbk?K3nzNu=3yW-tY zh3oGDgl@f+MeC9PoU7FYeCBx-x5~pQJrr&Qa#0L|JTsGHLj5`Z0@>vOQV4Hhw)>kX zpI@jRgDJChK{4QcsXy>Aq}h%vWXLAZMEgE;0%fN~#fMphDz-ay^^suld#yv_+)Cm)S>{1Jjp!p#jI}0y;iS*^dubO!!z9#kExs;9fz&Oi;(CH8+=dMc22e z8J?U2&oGqZ+h8#;Cg`lERz#w0Z*z_NE-4f9MoB|;@Kmf)o zvh5U`;>anzuVJX?8J_Vy7J4B){&XMbM6&CpDn&ha#RXPG&wQqD*OBg|O&L|bdcXVy z`d0QV2Jy7$>az9tysZPe%m&#*Rs;0|*u5z7GwZ^V1dXOq-Go%gz=#kWiGpEMK|LE1 z?ogJNDCCHyFO=+{G;>aVo;1cwKEEF)E-}wk&9i4b=!!j_YDzwZOMa35W2IHH6uVCT z=8|$|hO1n3JxP>{>_;SDbL*DyS2TJGqlj}tJ3;k{$bLCi@TYgh zw-@@OEV`(K?nYmlHfG)RS}CAws7mf1^ko^j(iQOr!u%Xg{k9|m zRDcHFaaEd&DreFn5Hal+C4}G~R3Drx-dZNZmR!|GeXff8a7QGju=AynZe++dduNU4 zUZBwGaW1J8(2)txlcjYeFI6H=@>L;n@vT`|w5xK>XyBP=JW~6vzLNU!k+Ef~3&=wvh(zwLqM-x@$e;`^X0}GVhJ;Jdg_%Wv*64!9bGy zW0zTV0fR5&JffjMrtL%%%NJ$aF%OM{QXNF+n3`I|E-&3{SUZ$bcD0Txp z<12A;?GT;;VFB|u+3xXVdSJuSkxoq+@E|Q(9DwA5%Tysn^$~D%SCqe=`Q|X2kR3Cm z|25K-UH)~VhjA7Th6;Zc%EYr|Jvy^?;+3u<9^$Ur5(8Ql+uGYto}h9W&9KS=K(zyR ztHxo1?biLA@UUqhmhe%2x!ol4A>ssW@%!sd6@gxmgLQ_WfqLKG5tGo@#>&)zl+g%9 z#=$CDIA;hG0=b^YOM@@~n>HNY;;EUt16&42ZFy4)uf#{uD(WO96Tq}_Txo8Yu`8EH`nr*>dwnC|Fbu#94agJjSK59C)%rIH>9e@2ef>fh@GWi?J{5 zmroAsX9HybWg%W1i!b^bV9O=NKvv~Rfn`$)IMZW~4cRU2e_7Vc2M7fw6%y-YY4vITotl&m{C9LVc2um<_ch)psnRISD zT+sT7EiQ{w`dX3vwAJ+`oFpr~D6w46{v%i)4h3#@VA2_gU^an!Ljc)6i~nEjy=7Ef zQMN5yXp!Iqf>R_wAi;t|kRlK~NJ4N8?(SAdkl+Lh?ht~z1b27W;O+#0>S#r+VXUp1q%{A9t$C4r9r6<^#$H(IF)Ht7P$|2v{(uC_ck%s477KT?$ z?*yHsOlGMTlG9=g*xmJMOwI>E&d`dyyH7{Wdy~*}lXP5Hc)}_!T!NE4#Gl_V%Hvz3 zb1g44fG-_4P6*q?yuf@%VCJ-NGS{*LB*)FL)wGEXS3uY4q$IvY>39@`f&aG6B{+5P zs*dt1ARV{d1FZxXf4h1*d!r96dUgW4&0EOqKD~LJ3w-Y$agQ+qF7v0(gfKf@L*v z*GNH1YRFgAp;pi%GSCfwXZ-PQDoI^KwdJU+Wg}3C6$q&~g~pF*b=9jyS@jC3eGYE2 z9U8-+iEsm*mjF;@5aeteXl2W17<>cdNq3yetW8N02jJ=sl7XZ_GNEA zMs@LEMGyJ{b}c!aq)YG{%9Izu96T3WXF)9>Yj{~j%9z6%D)&Lzu z0$Vq#zk?QmJk5`X5n}zUH|x+8klixnlW=)#4qoyvE`6y#?-qbag-c+IsX;^sR{oVX z7#I&{yR>_ZhoGyp(4{Ac_7OUNa*OFYe@~~<_Na3}O_1`Kwf$t5EM_jO_Z?B882T#s zi0&tTYORuuS0&OGf~get03KlQ$=mV}^#o5G#6%Z?>V}L4@?2giQsWxrUP5q0379Ph ztu!l`pseZq=Qz(z^oq(|@D$`?@E7RZAqFY_Bo$-xc(65^G%RWyx=e~f1%Ku(8Zfnd!Bodn2sLzb*G zfQZ-ayU+C1aeQoLQGUj`7@OWu-t#LHN8UuChYQ8P2~7(qP+ld(04LKSH~m)K!Ms>@ zMg#V~rpOSihzJx7ltT#@WK6Y!;4g7POT1(=^_N|N2l+j$5ZWaNz!q)0F~tk#y`~h z^PWK3rUC;C#vRB`Ep<#oM0X2Qiv0)S!afdxH)_e!w1^f~=uCY`P{>vgAgKCM^H6Ze z&IDN|?cok_&9j@;p*f8>67~j$A#t{TBKkZ^HwE<7jv!w;1$<$JbX_zQ5YjlvHW<`4 ze)l}vlq2Z}Bfq)pJl_{yeetd6vlo87dwarw?A0e7$y@pPrcU$AqWOlSXHXvJtD1ww zG>=VhR>~Ix9aEbm4GAO_Kp>xk!Z5+sR}M^T91Mz+A$QF_%MK%x4SRg4pwX{~`Al-C zi<+SE0m@Tvc7R{>aEDChx?0(3MDl^|Njq67^Mo%Uej;cD(O+@uHMrin9{r<#<_C{4 z-+ZVs4PUo9Xt?1xH|m=v5C`TrEhcrU{31%ur)k-0^j>nlTd;OVm^`Yh^jr8#d_vH7 zbP!59kQtK>9{Eq~ls_Ovgh!RPmU1-Ku7u9`JRf3-ChnDdAUTY?N`ev_$;n2)r5Zu7dL&soWkHP45Hq%@dB<>gvj2_&C13WGN0Yz= zv!Y^5fbD0a9hAFYZrq@INxod9{K>h?+{BE2F8(kwkW$m+e+de7%jkkQp2Rm~2Yt<@UgDJ3BA zWI(BvP(g|ec+dU^k?B{#AV6{Wp9MPqkqiD5?LWzRpuE*~K=Phk+DFbt^1dzEXTo7` zT)?RIMTr-;PzCB(o3gwtRCE+U3-6MDFfSar2^83i9-1T7dq@~Zy+yxyEsnv-^QF=sY`<;<}7JeWtzaTvyB5ryN<* zL`Mft;kq%JuTt-|2H8 zSNZY=8pLwJ*#CL!!KTP*nNL<6!FN&~BBl&KYZ}{+waI7iQ!1HvGGskojo!V9YMOO= zqinn2&t3;+m%Yt8vxoFYHu4E5`qi)zOm_)kWGkVc98VTzQ8@m)y>pZ?PJ#%FM->@0$VCI6XhPHni$-L>5 zthIH4Iq|40QMowt0hK+Y(1^g6hDT3FTGA#7-yr>o7OGNQj-bwmXvHxBsOxiCb> zsc3YIWy`uzuGj7+!E$`rp7JZlp$haAmub6>OOLl@(dFykPUiTm5+;!Y-#M8m@Uy;KC`!CwlZ!3dq~A@ReMUf z4U&@LHB4%IC_h-m@`Wnd5nCxRYSU&Dc56io!3(864F7O*p;8HEoy2l zl<~AAfy8bP-=tNstQ4f_^xbzuByMX&9lI&R)TC^;f^KkRXop52*mdn8@*2uqe)Pna zfa~gP!*gp)jSgD({7+BS*r@|w3~s({kCl%nMVz2C8n2tgE3!%*2k+fFVtef}8$&r2 zzA2iL4%r2x&tmM~ z+uKyl;%jsIAfTP1N{~;)oGEHP7;~eL6Zgq$uWmZ3P|C?sc@-k=pUfMX? zi*0@!v=5<|0=Jz)oJQj;YZ{nsZ`oOI8gM>@t|#j{-h5#F%zj{?c^nb)wwn8Kvwr>C z`T4xBiW`t0uWQrfuFs3eDyR>+`a8!9>Fez)#U53A1>4?C5irwq-a#^5sx6;lCNWFT zkrb~IGZcZCnq1CacK7qqIMdS$nj2=8Fs89hi(ZSduG_!}9kJx)N0$`xOj>J!;{>G_<;Ji)Nk z7p_=oU>UcfB4b>EgD(b#oTZKfVl%X5znM<$SaOXW#B@g%_3+InqeR_ND)cr?%(tU~(Io7*glhd4L2I+30mKxC%D4_HBc~PXi8fvZ52uWBk7c;1gTH`*J z_2r?Kj2c40^kkoQkh)fHKKXKVb|6 zO0fG!?7@xoEBwA^!3RsMLi8voMl;Gx?j%8iXPqD^%bzAimYZQ#N7$471-)+Std$ki zZRbI6Kom$D`jp?00fe#PId0&RM#L-g{(_Vy%g)w_0o`Ut`B(}m|ASA%0@1>huN4-B zq3WQI{A!xWv;}>X{;TP!0A2`f`j4vHa?oL7w_jzyy6r5PY zr6tJidD@*UNa8*OIPD2d{Q_NWLJ`lrN$-6C1Y$U+<{lmbl-^0lq2s)@gm&Q<6|!jr zjBYYL6%&?hs9E<%q2JTwP4nCQAeYo}(|U}EbqJ z_ZJuFs#W7^ZcPg3%$L56y7=MiSli@-?j5a)^z@qPk))K3t&U+FRc)BDyywFOMpVNE zAr*RZ)h)l&t~$?{B8QYf`_u|}cebYa8Qe{z^qOBplk>Z>iuF&WISk&`+wLNhZ7!mh z&7y9wU@G$J##a_KBROq7dWK9O0+h-OzLgr=2<;bwp$G2#XameDYg7?gEROtyB}Zx9nM_z|P_n%E6zK`KIoDHR&Pm{j$IAUTj`%n+OLU{o;s0wuFztoI#EF+*oDM*zL{3`rE0R6m`{swjV}H( zr$)g&U(rEHk+L|R=D@>GB3Xk`-m+!YN9|KZBQ{^cuP{@B;Yadgl}WNPnswDR<~{nh zWv$`j4p<&vq*xjy`2_6MZl7~cD7U&}(sz{Lis{v7G=%IIZ*qCI$16P0gt?%jMuO~z$GmIRO+8(QPL)-dVZUB;jA>-UU+K`uZkm<90Yog>! zcGHS^&W+I86yGwmEUlU6T^xRc>e&~v7K{l^NFEzr~si;m416LE&mu2e1T_X*; zFqR{<8f}l>DG;zK~MI0?(G1)<~3)=3AJ$y+_{B}KC}UnBl>-wHq>EHQ##Ay zyGP9W%U#&gf?&Z8{^yN3>-`<5|DBX^zM5owy@4~vSoceB+;kgk9@aZ1)iC8NK{nporOk_EW}7K}5@YROV^v7NGf z_w6a|=T|*?PRdHxBB4L4?W4xL`5IYU<_hgquP;mASXhm@S~ZP~_1Zj^?evYipQZVJ zw#_C?RkbR^(_H#xiQ(xF7Vx2=-nTXCs9OBWD{O$93h2F5Hch1e@J=5u%Hck3HL{}G zd2@M2J3rv>hZ>pNmLB@Nhx$yIoEw4vBatt1XX=t&u%hi5F)Kemx6rnJ(8wAsWp|!{ z0(u|({k~L&kRqAH4Fa|^rs}1mlhVB+OhVS|QzezA7`LonbeM;>+PX>7aV%zS`Kaym zIl3Sa7CEOLL3KiaCk$n!<}jF=mQnG=u{w~!wkZ53K$TE4>$Ngec~hn^0}fl%(hd;+H0HGyfA}s>4IX>aTA)>+%e3$XIaTig=c=@DQu!ChNSj0;a!HKlj{GZX|2T&6TzGvnk zHW|n1e16EAe)gg2UL9v_5DyuJ2X@tq`xX%0 z?O_fRCy-b@Q0@Vrp?eE~$E^sk#h)*%a;0ddiQy(AJ|NvZNQXDeoN&A{jV?UEL-V}^ zw95s;+t>W7QqFI@sz}51Vxyh~5pesp81nI5@S)5BL5E>-7smHNNePAPSbWM4ngLzT z;Wc3h1-z*8HcZ_<^Z8?owO(ylJx4g4IoVwSJS~+cpW}i$w-8p|ZGiF|@hEofI2|{} z1EoM?TYa(WVvR81F-UCKyNNR<8DD{5SjFU8pV)mO<(K1;V`;e%KM8SgWk2q3akw$cGZv{f*?O*9W8{C`dr+@&{?9 zEAF6Ko8+nMbLy_q{Tz;8Amnu1CvaepXvDhj?E?Y$FCAC!7`GD}MP!7T$(sJT0LID$ zi_P2c_T~&iq)ix+(DRZIpgJ@syBdwP(Z_%&?5sbkdbWZ=M_wp!Zg;e3%?43O z@(*fd5`O#sdt7QazeLcckf4jQxyJd_>U+yWJc%ce_NQO$mXiEH&_#e6z5?#Vq-(b`V>%be4eav^w5~k{5Narm ze}S@3M!@g>a#rPU(W8IGv!e(v`?)78HaJ=4jyWQv5n@MFff&Qnhk5qM1EUo6xcNKW z0ORg8@tkEh#JXC14qSL*7^**cg*GfknvSz3KT%XAsk}M#CY7F4MFayH3)1=veBi(6 zwB@VS^$S$-5~Va9 zToOt@<|U7(-uRWmGgqM3!gIC-ndwrQ$#WZ}qN1s0;;Gt!fmEh#tO2#JAfORs21L^T z;-mk6eEBDN{P&~+b$4w1$o4tHAywY(V*xr&2@Rc9@jtcMNNF1Hv2JV z@&UP$_ybTXN6Ti+^RBcu%iwMRSDb5%5EfAGj&n`9@}@ddZkqHs&P4QDB3tl@UE>|5UCmrnm<=q1KR(^- zP=Nc%*K6oLQDu3`cEm1TcyOB1ZhGA_ggX}F(EN2-Vx~_%;3hTNnPKFD#yC%_e@n`0 zG|)hAen#XPNi-E_0~V8PKZyCd(UG5#^5vq~#^M8y=Ov@%yKVjU znz$^vfUf;kG;d5Be-!dq4C3fJ+EOOTL$l~N>fQQd*~UrT$Cr$IdqtvJk!H-cn-ZuN zwZTi^o`>J129o5k6864;_Tzti8%k=c$GxL@<)E(KoEUf8#x~?sQQ<8`&+n}34&q~}a)UVml@UG>Wk&!tGxsM1Dz)RY>H-}}XvjUL!Z@qfc z5_*mJ*p0tPZE-n|wRy_BjO-s4GOgA$CmlFr)VfxGTC#JU<0WK&T2z-|Z;riSL^^5^ zR$uVV5UODJ!a{9J#S0@%JaQ4PELI--nO&p5Nye1_IHxtNVo{X=aln=9YjV!3F7}D^ zm=^QQawpk7!i=ukhmuFgVU&|uu}eL!;@iAtPEOIn7uD#ExR`9(jYwlo4hsOsZqiH8tyupho3Ou*!i`xtu6)@km^Cn=+mvN)K{ z6U9l4QQonJ6^?}J?x&_Ya@KuJn8>+$)*jEUcDIsU>BO!f4Sp9e5EVy(T#lybR~h~y zy4q*kjUt~mGWI=zvIvUf!wy}D2bBq0#zr;lp`~7_Lw(G`Zh2okw%1<#*_vaNbi_(1 zyH6?pscrI^_&oNH)B@yJ;ssBzR)qD?k*Mv2w@3vmM4z}O)Zb^v*E|?w@i2>l_JxL( z z=Mybs-+#@@|Es&h-@1;7wUGIOSAFW>v55hR!N*96u~_fb_?5{*8q3DRd`rCBGEsM0 z+w}7{C=bE9j8J2o9%o7b0Yb3eJTQmCU&h}tTq+=xuF!z!;hoMo!4&NHBP;yfe#TwF zAtn$Sgg0-~6#^2BZ92zUv!d533&cPu@&q;_qXtxc_|&{2Q66|&Qp*AX&cZ-=GOpqm z$nOEHEy56YL&ruFx}pP|VO}!>dnP(iL(`wC57O84vliCY9D?vwA4Xu&0WA@XfyR2a z0`w?<81X%7RoWei41&;|0ruk7cjYfNw5!JZqp(_)pe~4AYJv_ZBG~!I+t&5Fn757X zMcBGHGJmw-2|AFN-@sboXwtL2(u^c@nvr+=VJHceepm1R{xIOzX}N)NhNi_J@fX0?teyyOn zQz?%->*7X({Ymd-w|$L@)8WvfT7;e1*t=1T+3$Z_n+N@e#rq}iv_5ZMNPut{NpxD` z?K>;jTyw2;e=5Ko8TkuG0s+KY1PL&WbO9pMdHGVUEfhTPEl$AG6!0JetH{j_*=3oN zdx9F(5->pS(b}>+re-F?i3m~??i)t6oI`)N`p`Fr_4mthB>ChKM?Csp08N8)GbzEm zJWEM+Qk7RMW!by--7B?RgmI@AspcAA^~|{k8hQ-RW?~u7K>DaySW5PtU4uoHn3Ri6 zN$x8pWDC2*uN-RdbTqokq#la*M1$;q*cXrBzDHUkN{Z1WXlga5vRw7#=xBOc(^%73 z)pTpNXf2r`IW`5qH~(>u79Cmz$0!{&bEu%A=*bzyBMZ z3oorP$>2k?QI$#V#~ebCoy0ve8hL-KywR-6#HTl*_#G!4Z+4?P%hkLzBOmni3~J^* zj&4k8>v)9|>uI@yt>6CMv<80{5UTrP5z!x|*uR`5lS4|9o2!4JDZE5!l9jr$evGp} zgREb_0|2m%kFitmwgQ53kEOV`I zb+Ond#=-&HyxWUGh_0bBTB@qD^5uMCVXhi2e-JIrOO#YQmo?HYGJEmF4Y@0#2-YzH zdS`u;dYm8D1)Rr=u0hp%=I{7GopRtKGYIsC^AK=6=j&co>=q_dThREgnq3T;%KB@)e#N`}!7 zYFA#jUS?*m^%`8DM&wsP;1@}VIw@e&NIY9Pc{)4f!Lio%UoE{&$$%5rD_0+vCB`31yXZn`C6%GH5 zQ#!6w0G-ccPLdBGqSK*L4$V5>T& z>zL*qZ`fRABgM+FK|$|nhe(6AE`YjA%BfE#=q8G-HVEWygFlf_qJxLWgFzRIG;c%1 zDgxS;gAUeIr>jN0**%B&(jOw8j6OLb`ZQHa5%J3VG5l)jwXPC z1dWC*m;J7Nhg#}2oaor_nW5opjG?YT*&Qw9=vD!&vj+87PGygKkXQTVktK2q@;APR zs_PqpP%e-y?0D$L`3@lqBo=o6F1808Mtp?GHCza!va1uecpef4DAcxsL)p&Lv7q=K z1fx~Gsk_{9Q>IczjAzg3o5nui4tet)!HpR`mrwDct?zAsW8HQi=;-eGF--ipqrgE_ zYeC$ugn{J!E26iN7{BqIz#>!A!dY3}eSN9%kGkx_yxY70n1J~U6yQAGyme}QdkKZt z1JHNM`O)=V65>7r!Qw4Q-;xTdIi|3eu;dtGAyti2sGY-D!}2siX->zm`bdl~K>JfN z^wW(Ms__L-8GQcIb^L4eWp5pjpk4sH(oYA_Hn7@L*l@HDji{19_s%2WY`DhCP}s_& zP1W{#J+{r>GicL;ZQLA?vjftK`fy7Dw%(=rR(&kls^}91Z*O^B=U~vlpR{qif$`X= zzpeh0TMQ4o^ojAq9uQx*XZLRfjYPo9K1n0IBP~CX%XpTRqK>+}UP?NZaTPC@Ck-{zZ2>c}+=n zU0imBl;UdArB>(?n!0CWfc7uggQoh}51 zBAKtxdv%2YR68ti|G=F5u%Ypb82B*zqaAc82WLq8d7`o|i2Rv1; zgwBy-SC5c)nmEO@UTZk0&1}z0Z(WB2$-a>bh@onWj#keXIDLAG5#0lTz<|5VeH!Nv z30!x3=CN>TRD8dK$ieQFL6CcHQm%%{<&LQ_Sv!_Kz}En8ETl>unji}rb~y2%g@dE1 z@1*gdiou|Bc{Ccabkm@Ata{IMnvoEfR)|kJ&hHWa3+JPM{mVb*hZ9`2;4kCFPner3L{|ZPcV_wkNNvxPI-yD{D&Bh@Cwku= z6X~gMQw%*y1kL}W*w;VWn;caU@RR?LD5*}zMH*p#uaSmLs!$K8C%vu={irHj6g`~2 z&lqfe6(y8}O;155rz78R!)e1BGLwzpro>Z<| zu6i7=)099sbYMdP4J|p&h}zkRHhLk^To#X*EtngfVKovg4Pq#@cxJl)__6onuunXM z$RnD1u>s6%MAqO#9mpcIFIR(nY|QpT$gT281Cf)nHPkAEd3fM=5!bD$x^D+(f)?HI zkWq-FirR|*zX)pnm4W~7^_`JgU79wvq*WXEjHLVBcr@#iNs5r3ibnM%2%C(A;&tE) zQx@eEIw|BdP&3&wC;?{T7f9fC1pHw2C`n@kgdpDwxPw+4b^}&iG#!V&i|oxI&E)wK z>;3~9@LhEvLcMJ%J@nPpLP&%N(#UpV2iZZg^Hkn*>UC#vFit2x`^y(Crx;JYxlI1V z@!9!%05OvGL3R6+b8#qqCmn}prR`vp<`>A!9AH~C6&qUbb%LBf{5h0N<+%!fHg3)A zA&OiXVnRlq{W^|&%uY>seLq^i8tS8ZS!_1474D}_DVLHzw>uJ&^!&X`QWgz5MAX+t zLIjuk*u2fg)~PJtD|dJRIRyIhA=3z0n(GXd348)R+_f-NfHDW2L7Bq?AH}}G7bcU)8kmY!m} z3_`GfQCL`|M_yaXx3-{^^q_YAM<9;%D(#UR6Gw>19N9eL(KyQNS88^J*l9i zh5JKL2!a5JaHmlM6d1Jl<~t)G>@7Wx@Nl%gd#nuz`6U8-KcoEh$z=1fnmbTE#N>C> zy9m0~4KUza4Uc|-NP)2V|GUHgP(Ktd@l;7ojTSkw@n^m2aM&x|5B|V`c3Q3^!$6CL z+%6~v0-&c)`TuWt{x6!Q|8+Dmo$3vNQaYr%+-GX0Nq(|)ZJZp^gzMr_ylR95NJfmI zSjLH{c;LI z;9}!-5U)|Cv*H=K$Z(Fu{iX#c;r&+KGjGnyG|HXCm}dQiu&^Wf3M~|@>|da9uE^(6 zusLCgMv#-kztAOr)hkz+{LmQNRzlm(0C^wEfU@~)5?Yo%!bPuU5HQrn?|eFp?6QV0 zV0lP_C!sl=q*U80qd{|E*Yo1s?Bg^m$D#AF2SBd;q&N4o)bTws+Y?pXB#@`Db{>VI zYHU@)qh5OQCX@TM;VwpnA+)M4d>-SElr5lj+eoS2wNS^WNgXVo6JUBn)0+`X;$9qT z^Mf0UuLT307SfHzl}q*Ugl4&4y@4Lr7sYlMP1)A*Aceaf zvxWW)OXsQwxU;_BSiv4<1-mQfI6TX+>02r!#K}L$SHt~N-RIzI z5pFx%mW>ZSX>KKjECcb;LklM{n(m9F<98-i0kj{@pINJ(B01<}*$dcPieh4*^> zgMhRaX(hYVpq4cE1tqjAgmd9zO{%buGxu0J2kb%5Pk^#H$x2xN?0wI7?XeiIbAda< zDw58sE)=}(kJleOw*;I7@Ta+S)U*U1nWH*L2=GM)yCip?@KL7s^8sNr+sxMd^n1^AsEMhwiDU z>4Y@cz#A<-)K=9ovxLVN}LmoA@BpU$cvD zPL;#2?ciOcgPteC$nY?E*|0NM|N8)1L@}vNq{EqO`VKRd%jC(o6Jv0 zdU0vIjP|VDqcv<%;P{dy5GkaYisRVXTT)c>UtR8k*|X z#tU&6RUj8sU8VeO#6Dk+m&yHhLeoo;fhaL!n^QK={!pR^DGT_~{-`J8Bzx-aUcFy| z!8O|=tT$_Vb953RXF>8bRSCgPV?zvq@#*{|q2H6=!`C8-lYM7SPvlu8CJrAqrZ~dX z7$PDmKFCXEq&Vmjw+*Fo9Tql+7D-gRYA!XaJrjS|Y@V49pEpD1t4h$bvDqS7;5ZHE zy9q~QEn*pf%_z#OhTThT!G|retX8MiHXOzJVzEdbB}e(wKpalpl{^idjBI;f@M$FS zJByXTH7+xFlFa>kXbo{5CHboR8h-dvdH; zxiH2!=PQ2{EhxUk^a+(9F9Yd<%*}94>b8uc-WBu{mrMMc>0bTW0UzC~AYUw7z1Nkm z?M?RD#JLjHeg_hu7?5~u70daqw_rKq{NT-XG45S?2tu_@kh|-V%h9v7C2xLp(AhE( zkb!P5@(Wb*BjWx^eLAiP;PDIeZAkc3=~T0*NKeu#eZ~D@?J%PhJwjVlr7@b21O%7H zk+6^`{Cd*S{z-TsC!ex98X}nug|7e*@yhAJ2taSfS-u*tfT@G_xBtZN18$Dz-42cf zD0bwo$7k&~pNa%KV`ORUBw6b2h$g&ZxwX6tfVgIJJM?S?a(~783q+A;I18xhlpGJ= z!6klyJo^FF35N20Z|I5&+!)~jxP?s{K()gdH78-nalswH@e%@8>(a;cgBlmE zgdhdn8w`M)R|h19Kh}x_-@O2;6#=~cPq3?n<~zF(mL3!Y5i9_<)dsyi)Isox#q0iS zml*)8(f`u+%>Ht~UGmpiNxMFdK-|UyY6I{754_HQZ@V1apn;qRNYX&+i50F^9X;Yk zPvau9*8+X=<-ZQM{cW^qN0`cTg^O&n$a58algqknj%rEMAVJGB$C?RX%rc;i{VBlk zPtM}M{q%qKX2{_gx$|aGB&;-2Ss#51Ii^Q0AOQ?00oJ&?O~gV*KCE+=#6|x7RN(AK zpTPFMqq`hye^$u zW783detsx1AQbwt{VW}a`Hrm+?#}MwbvFFTj_Js5FXFJ1{eTVkZ8tqtCDPe&S98c* zPW&wAw~Xkw6U^(xkHS`B4xsg?3usKA0*91Rp59H`?5g zRXimq2xvKc`}4K_FHMIomvmh2#^bJxY`L>-ktKK6byI`#x@!f=^$Gz+5JG#C?yIZ( z7b#SS{Bq9F4P5`K?R}97mslL}&$)iPTu-5wZQ)9@#0TGDoK2UkX{**Z$fnJ3cIcgt z#EX5Zxx6!(BLh30&$QG{fw^TUD6gV^y1}~rS(IjSw6m3BHmu)y3=^RIxW$znVoN)q z8UFbdXy$7eM-0GU8h zYrjCW&rgfnE+?T0_iF;f1Ocq~pYzZK(4xPK*%p1XFVD|+Dp|lzQ^^xJh|yq3qgwlnQ^ni)qy8K5W;!DPs8(*2v^U2SkkI? z+DxJ~^nyU}7wDiZT=i1q@&cNw<4!2Q`f>ctIPBQK9cWKH&cwCKM|ZQd0mMltg3b|R z?pfjo3ZMII8{A@{R+(7KkKZqz9%ds>*#*Sg!EeTGecA4_7jgd3m}|~DnprX?S*6O2 ztKjD2s61I*Ss;e9PU{8)a?mKE_CK8v>CDG3^$IK#L|ps+@4l9gVhM_{R=nQ0Dm@dB z8NQR^Tmt^z(en#*ibfGq4ynn%1G=+-^|MOu=iG?f&%fWR@5d9MiG!?-;kOc>0q|JQ z6d>xBM#F$B3d)JA^Y6xPXD}lkA^BvQ)(SRPM*IR%zw7$}uF3~$%06{Ep$W?q9k)$h zyOq2EVu2Ajm372=v2Ib$it$V0Djmkffw@<|KwqPsL6B>kL(pBmokST-?R#}{(@CFz zcp#1FI1=Q7;P*74b$=ottC9u$uyQAv9hI@u0Nn3$6!6Xu`DkX+tX2N^Tcs?|BwBgG zD#KytzG<}X)R!0BTk%WX_gNh+>n8P9u3NW~TdBYtS#A_knn^Q?f@rS0A4bp#B)!j}srG%~1!mg43I3v~b`;YV+fFuTe2+&IC zJ}rRV&HGanlr~n$Z^GP3PF>UTHFe-VrlTFN`?Kl-@o5}$YZED4|qzXP`G9zwhB|Cj)z0&=fEjGoVYMnDhH zJ@clmXH=ZWZH9~JiAI6BkYdQ%n5fSB=@7fm%xxiGa6tH)O(azl@A2)xceRk-aDg@z zU$1wmWXc>d$u-Uw{JRw|{|PJk_ligS_wEUxbX@)haA#smImOPL;sbiYoVs-he8g!N zPeu3;4et;G%IGTq_n>lLExE?o*15Q{1*p_KoJiXM&W%PXFYBjT71ww0CUPh=Ja04r z2Um}y_4jcNho?Q$fL(U+C5|k}p`JK|^A`vY zId15^!|mm1ffzgfG+V7QHO%$3=mfz_6O`XipCK;9HJ@V=^6hN# zQKN)AJ!kdBS-?+qi`AF0cXP;5)W>oO=?qMxk)rC-Xox6&+G*?QhMC1Llqa;U188dk zXtaPs#OS|EFQ0-KbsssX|X?Bn3pFN8x zQQYsm;JXq_L-TlY0`+kuoaEfQec9XI^>&3$bdmz&nzVJN6%;N8(axIHJImo8;Sc016N6OgrnA1jOQNV0UJ}@7%s?f9QuGfINl`Q_>(1 zi-4c-U8qsM0ylrS9``S``1h+oSDu_0-<^y>j}DfB44;Fp^dAkg2 zkK-ogt7!~d37wRE5qF@RDQx9I+D`g$%13dlfS#WN zj5hB95xW~1L695KZ(|ImT*JoE5+`gN?}>Oa^DN1OMDM?_cn8}*AD4W zmU1OwE9>jWza5oskRpdwhCWOMKlSD@`Dc#pSl0N}gDm?1PF~r576#O!d6Me*(s~C=NMQIH{)?$Zqvk=lJuyN1*EXboOyEOP0=!DcQP=&z)ph z#5-Zi+>ljF2%hNH&S_yE4hb?3jk7YPQXrtkVD$HRGAR6NKg==7ld^9|UNePUNX`cC zGLWt}J*rZ5*e=FpUt*|>9aeU2cI^e&9WTYsm5`gH8y0fMxA#2-Nf=&hf26pmKcamT$yb{6K%nqWAqLDael3Bx{l-;%`D*VK#i87aQDqujuu)yxdRSE&`+ zpIiP6bNhQXgYv)oK=?m>0R1b^Bc}}^h_@s9Kp^!Kgf1o2^1F(Z70(G(7JZO0>T9Y! zchrw#T(nX`{G8!xf@7R~TOgFtKMbM3EntjZnk-*T!S3l&y#>+#IJIy&r+8d=6v;YX zz$!`-^qZ7`v&wr&9KW|9rlk~gnZ=C^bROdvC7OYzij1-SdL93Q5VZSGaJRNRG!fbn zPOzO2+~J5l;l~1;soK#7esD|X?hS&6|AuF}Kg=73UFY7Mxqesr1z&Faqe=qMmA<#& zAjn<_ZCrh*Wl0V?Rt3-v_1seK-r(MrGRXi8L(_j#QwnT2#D(yueZY+KSfUUm!x$nagwehTVn7KLv~tb)O~dOi)HFxX3N#o(LxA za~fwo0iPY>mH{%UbANOE+fSf(zO2oALtDQ z=rpz~SC)YM7&GXqB1S6o}l&Z3E853TR5Xmgq5%@r64EN`$$ z7@q*SICTQik6SvBoxy|)G+F9ABhr>yUeC0D6fW+nGYy-=DBHX3O?WV!d?o~XxEm~e zh4k|HsK3!Pnv*aLJ{RxT=}oB9W*OM7(!tX)b$)5eq4`u(>JbpfpHBd34SX-a_?cY% zfaxXQR*pe>%7$fX=NXsDa)yXCiJ7S>dHq+F16HhfJ#Z)k>iy4`WbN{YDW`!@cN?9&ap$$*Dj2BF_u@Gx-F zxiQvwi%mPlwjIQ(s|5CBCb<~R?>{m#%TB<|VMzm+H5=PV#WfhWHRJk8iPD$iF#n?z z3x|?dT*gU?O^VH%Y?0I84Z)zUg&U>X+c6n21L^2@vR7P59dlzd3ws(rZ@FU18DCdy ze&M8nLXT?%bSZA8q#snF{ove$5x>!%ux6>6wKA?|qgCf{4f@hW(f>5-a6N7Dr`5w2 zHoooWr!TDIYwPOn54#+55P5}ranp}0Xz>U0#2CeUYe9yQufiqx{XRCbbrT*CfpcpX zR6P3TRUut9(^Qs&S)rnAVa#4b1BMSj5EymghfB?&;Jg~Uv{i>{#11VL9I|M^%MZA~ zzOM0a!_--y)76+hcC^WT+-@E{j zjjmqRQg>rmaR7HQ8F23wn3QYK4TV_;H9;|uQ->MEd~ z|0ab{d6ob;R(JM2faQ*|kATxh{?KwH_0us%IMvjOXeT@St5kngT_6~RtKdp80tT%D@o)GTiUrQ9E3D&gmQvbUs@9zov|4Q8O_atq9 z44tli0Ebr6$1^{{=#a_H5{vjp4dvS9WyQaW7C!1eb9Qew6^i zNC_r$T2}5eFsiY8)&`U6{KY1d-dN12t7afs1FmV!Y(S`SA9rIhKYLGkpt-==bd$=* zXhwx)2*(f+!D`PjsH_U)wGL14tfR9bAr97Tj6$;ba=NS!%;oi1lY&PdqzrmRFG?1K z_JN+4KZoiimBmyc#wX@DAeOw;kyaiF|zer2KHLEOk1i{ z2s<*TIU}m$3sje=dZCq>y_##%n%Shi(7j(0LZz zlDcXpf5$*eRf{_EYEn!Qf;zIWrfo#6HYd0!w|i`fL$MVBBq*z~Dy8>YZ7&GzT}gC1R?a_A=KN zw_Ht~JPZaXy9GNqatusEV~PB36952c2;`6bsIG~oua;Jr%9%B7N#Zu=nW?Kl7gFiP z*G13No#$(`SV}~wX#J+{hf-e?wZiH7s-`(*m!mN`bBvKNx<#Nj!li56vZQsRBjla+ z!imc}p1=y~FwGmnFL5h!$+2Z!;iIu&eCT%{D9I5KhV}FUSerrrmojojOFKU?b?)YF zTZ)$5nR%^T72Y0gh?zOSB<^4=BuJDkkwzdTQLB8$w=K*yS=t!R*AINY|6hv z0`quBW_GXZPI9NZ3uREF?B$8^XdxFV^~pxpHw3(v&kNv?*Raxp!Sh616VKA4I@U>R z2deE^szspC_^5s8B7?g-kL*Z43%dW%GOTWH_*MA2!s{m^dcsEWcM~D51Fvzf!moe# zvu|wEL0)ryLgBr*+H@+Rqz@*1tR84~cQ8Yk8+G0Y&+XD)i>=ZZi1bsKiAe9Yb!MvLnPoR9)tu)FFDofw21-zK{k7 zQ1?3zDqDi zmt4S}Aq^RDQuK#h>*~~d?}9o3>HN#mFM(pDD_Cov^N$$^+~|F!sGap3SLrK<^3?JA z)W^6=GLmmnWQaf@4jfA;*Y`?o&$15rF-GI2kjxZ1jZoFuPVvALz`?=an8(4-M%BTc zH}*M1W`JhwD+RcUy6r+7Tjzmt^h3nDX3=O30fNz+jeX-bTi7zpb~!;K<1c_3d=_1B zQXZRz8Er~PQ*(b$di1YOosSY6d zOd&>xJ!yI8$dJ{y)MNG9mxIu-M;V6ThM^TXT(+oK_%|?3gWmwXKRa*tQXPsBmT$j? zq;jO0x=tWnW?}G53%GffSTi|rE;O_R251@%v+<#2tqSjr{rf#Z5`$M+FSevd{!I`rloosuu!gIsfo%j(kI4=^9R zKs;j-gXv@X4=1T-u(kLf`9DLhp4I) zLlLj&yWWVxh|~L5_uR)4=FR7QzX8layJdT$E1i$IUC2F&k#(v)6~^AAja`50A? zZIxUYP~k34{u`h`)yN&=E|wO)Ssj%j1u~m>m;%ALv7bt+$fElQ z;7xkV_xzD$UDH+X9FZKVp_>m5*lcEz(dPo5bWx&e>O&JqfnR!CuOx2IZ|0j#T}_nh zDJd+gpMS#GT%Njd+FBWz0^Zp$j%hZSxyIFb9TL2!G~umaB!mCy4?By(}FLH}7hg^yHcHw~~ZqyA0p;+aR;2 z)~ItNYIf`I-38Y1r$RC{=QKuJI>Kko0r2@s9}6@x*>+E=!8hw$H50y zE8PczU!_pkkdZ(cfPDMzYVDQh^>g#rSPGr4!L#M6@~=5>ndTz?`20j^#ld~Urv(AP zgEU!BRx6K)y`!*l2;g0O7mg?31-_{>23eR6AZm+?aS%BxPSNmPil1n;%BXU~9Jx-a z6`qX2N2jT)D2}Kn@7sc{g^+@8ki4w_01r{bnSLT%V&1|r-3Fxr1cwU}Z}Ix-LVrJK zw(MX$T;?76B2au6z>VfmVR0I_H3S}SZxI}7Kkkt5B4h8gJ4k^phFBy-=1R>PxP z7P|3%KTpcU$AY68kdZ}47;u|B;p{C2R*RXat{wEl>CQF|+=BF0Yv?D9cXqvdNxZlms-M4HEvAnBLSYT_( zCGXn7C7MFih-}kx%Uk=E(zA;>gGv6;uAs?z+1}JLJJwhX0PjLKM1$X*g+AN!Zq*}R zx^`aAr=cy7idHzJ3I<}#`5j0FX66aALraAr1}juyxeAL2$$uJM&%w`3dFSnSPaue4 zswZTyNG$gUwPP{>y%O7T=_qOprW=yo&8{m|E783jE6#u}st!aT6+^fD3uV#6zkJU~ zLC>(lIJ)_QS=~b2(&)q`Q(3nZ7~{EoLii(hjN&6qA2<`;hwyEntDG-0t3bcr73Z!;@w z_%6L~_|x38(BB<*xg5DGjTRdS&exasKzm<@g3Mg~*^tsY+vv-X5T3dW&*cG_ z>j9)r-wC~wW|!A4@+Cnsyd;KkI3Y=bQP`Bkun2=*9nu+S?&GjQ!LZ->Hr)=IGAH#!3tW` zr-9nEx~LFCl-4yJw(kma{5gy9HqEFV=ef3d)mj2!iZus zReBkb??wOe8u#BVMg%3YWCN}_=4{;YDDeH^BPdO|)i|0Em)x*2Sd1v0} zUmzK1Zya=i+vnD?T3Na z&6RdlxYbs|x{8e_+Pwf)szFXJNyAGt)F}~O8QulQ$wI_om+a4G;}b>XS0SDQCgCoh z=M^;RzKd;Uywi}#26C+o3YczXdMDkK>!`NPa-pcluG4OPiQ7GWid)UJjZL7>jZO$c zq9mIQAxmF`VkM+h7u%tDKrT@X8%`;f6j@SYq=AI)xXRU1Nbr=Ms!FFUatW0f%C>H6 z=DgRx#EvZUf|Z)(Ab}>zbuznZy{Blg!Lezs`6pWs3GQJ{b34sC%ZXeY`1(teO#Kn3 zPA}Vz2?v-0zKAB8m~kW^B(BYCM%?A#A0ht_lN8!9Ck3z`PbQPvU9D~?|;S3fQrDQ;x0i-Sp|Zdyfkd`aq6HuYE<6r z&%s;Xt*tk~N=-Ia+FDA>!`8~L^j3XZ$yOie}br3 z9@0zvG<#0R8YZ&N-cHhd?@tj>r0RU8hR@3|#5J$*dfmZ1zc7C+pSt{Ii{;@B3>|ZL z7i&50ILaD4nY6|4!1a}bJ*P}IBKM5AFK`uDA=AUM?oG%yY}rVsxK(b%MDD3B=gKjP z(+IYmY3Q3wCTm>Me9abriPkZ1oj^EUIh3p-ld?U4?FoS_+zHvNdFG$xHZpdbFa?lZ z-uoxpFwhQa>yI#K)R5MBGY!BP*TxLg#&I#pa=;e6LI0SM!EwAtcFi|%aIf}K3XvFG z8@JG%<;G5)7>XkmmNQQ&u5%NajalEpLNk!0Qm*d@i*o1rXv&(UgF+grioKT$xn%}N z$w_z|gLb%SY(sei75!-)qR>2(-Qzh(`SvR+!m}~md`RvT%$0DpT-%P7_k-LckeNye z>1V%Xz>3%QzJM~ltib4lUTDFu4NjvYueP5>5sJ~*zV<7iF8Ez+2`Q(!D~(r0_4dWj z5`5g5@zfU>;gz=38Q!l~JnT%7FHnqjS;pWQ6qJY}H@XJvd1t~~yx8@?3_2!rEI&GW z&6v)3Jm0jf`a;Nk{CN8vi`Hd@EKDGgPtn{nKFY;<<5sLz%#^LM>Y9Ed(|NS}KgtHU zn5vvtQ!C#uniluam8bBT@Nu_tv|Ui=aJB-euRhj3l|(5Gx#QuZ;Hxvs3<2nF1W*^L zc&}vF(7$!4W$)J9hd$pMIVc; ziDtB~K^F$$m9ERo1+x}bas6@vD7FM__3$-qySyN02-^yVF`EW5Tl}tf4VAi_TD3K1 zvEF^CM(B#;TXS^=-^_xtg>>go)omXB2$csqYwM=Hg-KEl1ZV|-N6|X z*H67U2|sTWmBgP%Ny#otx}N$Hp_rH(K=SIxp`GrL2uzqc_|6R}s;-uf=DmFn-F_(H zP{sPCN~?(0x)!{hq{?pqHZoL;C|Y<6jeFOYh&vXvoB1??08*Nn?-X_vK|f%xgM$@u;_ld6 z0+;tDO(d#(*eC3zh@T6oImtdEn850=v-bu)hu;%3vB%x1pc%F`inUID&i;_kxqQ#3 z0Mnxmghxm=bFPiIi?RK-<{1_#=+i451R#ZTAzE;76cTV8;JQvcO>w@SYL_oEcA?c* z%^-yGCKu2E01BQ1ZnMx*0JQLvHx8-&1Rlb@4*VFEln*e-?SBmM3%+ddbWRMS^h+&8 zu~*$lFlQU#^UdU*yYVbtHXCsGXkn`x%IL7YVwnM(qD)Y5nrVO+)t@8e;fC)^^^(Cd z<+f`2&ktjc3>KCHJVRY?AkvAGlu1MjF3A*4_{vYhjcvd7>IElq`F6wQL9~TUl8u&C zxmCu4#9)ENNJfduvsMDl~qnBhQNb2FQSkqi_CB zXbhx$6PDgHB>Y|5lJu&_;0d)IM#&5ls#a~%LV9A5hky2vgUO}BB+O!^7wFwl$Y8{K zt1SP?*Z$}1cfSGRXkkbFZc2Jy&WZ8xo#h!379d?pl4=%18H1m33;y%@bB}TPKmN`x zYf5-Or1KsKqfQRv_!<{F)?nPLryxC@C;tY3XYqfah%WnZhWGbeC#plJ5Q$T0LrmZ# zkNc-gefvLLl<+^{0!T0a?;jGyd-WD1ODd$r)BkmsC_c`&{|IFBw&85_GOl`ycNH^^ z%!aZjwu#t-h4KY8lguP`4x(JKx*N-+dGpF#?(>4?#7?X@9r1jq=#yyW`=Gy$mip)6 z*8X};T41sd210&~-fERi!>VQc^Bi)dzKl_um`eF87G`|(_XqF)U10w&{0x7k^V5mj z&{OMDl9IwbxHEYbKV=o0N(5R#Ws-Q^0)eOK`%*i6nFe0{jd!EOTf$F zy?}SVDE-_7_ht>gwS#?C;7fVnwW~n1gZ4kxEkH$6?OD;U!dN-oh6oR24buF2iYSE% ze9Xa(k|J5B2#;qSu~S5Btz1Z)V;E|Tre1xWf*%aK@g?0|s5>NJTi6=qpcZ^Df+r#f zg|U%x?gh|(Ls`;^ZD$o0(GbE3*F~Z zzGs#=5P!!flKHlRyt2dy6C^Zy;ohIR7i()rjioi-4Id;XAfhCY7rt^F)whOh(Bfg< zqKe=MTWD)ieJ7e^*(mN%l8s!dPe{s(z@El+@jc37br@dU8Sz#A>r2ZUy-&0*){Rmh zgkDsKEy$@{H77Ya?Q^iC!~>dK$wiRp(UB7;@dt7B=hu&?KFU)Wk9bIGuiNOfwzl>+ zsj19z>Lf5A!U;6RdPRW|rj8ia>DPmm4wehuvvk&=OtZ=8F@jBi2wO){L7_VVm<7wY z!Ybb8XW{So^^aWT1qP#4-)N#^CFwZme@7SB}b3Z#Q)5Ll`8P}Uje!|jMl}!30MlC=SHr5+;y*xjP z=7$uYq18m4gq^ad*Jx!^lT2%C!*!E!HFY{ltOHY6prOMcuz*|nu9{$Cgc`rSR^z#= zl?(BB|NQvMYPE;)*ZvxAvWgFRVDc^y+Qj;Gx}=Sy*4>$~MfoZZmoEjeIaQGJNHK*h zcMSRtAF=56LUly5JdwRx>-lN>ZeOy3uE4^$Z5L)_)Q33U#|_$j-rI6qY2q)A?{^*A zNS&NYblU6tZXpW`uWhM92KTU{egiPPrgY;|VHb-64={Lqh%kOgT>D`{C)&)c$7l=Q zEETTlwSymbpelVEwZ(0~%kO(jl^B!U1x3b$Rr7|`YFjn*!f&k?wApgIZp|lb_&_Pr z&9T&RyWf1a8Er{;hC~8#=}+Of&k+WY z`5H17vTw6Ti3#6$c0Zi020kfY&EmD{Xdfo+sW6m@d%oqPWPIP9%`S8mhtJ7G!n^&7 zZ6&TKzP;|W$eG_>9A*k5m6EM?V{7?(=kj|Bcl6kj6i~;OPw;Uj+Cx+em!8JB>(5%?!HZ;eN zdz)H@=o`_?q4t^XTW))j%ojGy+Ih#Hbes*^o`Yh)>e@@GgpeFby%JXLcV3@3IA}=X z)4_NZ$!+RU$^1NtZ7-)X?a46Vl*us8kTD>x)AFTMNB`IR1S0)tg@KOd9PvsW-xP?) z`N$#26e)6Uhy4t-`E(>Uc%~+#nRqn8Gckg;4a2_E$|gKK^&3mMd|r+0^x5UGN#bh) zTBD}u)@a+Ej89sp#JFe1#qNxg-(Qh>Sn8o8XMxt8-X)ip_P)T>oF92;y;Nj65CJ9UwZPWTKBtDP&Yk|cR9|EWgwQZb41 z@)WD9LuqeO7tm!j$X+8uDj|^!z};%b%iA?!>86v+Q@F{6kW7biFEshcPE5@m2dX#o zFca&rmdUFbLZMUXit{rg`>Cp?9iJ@S^0rpJ<^Y`QVJt|pr!y;Xr-5CP+t&Y@+{^KE zfFC@`T%l^JL|H33>+am)aoXHpj|BcBzW%GdalUfzXQAupN0e1qt+V)e9>&YS{7C}g z*nG%XG?4n|x}L*z-{Z$qS7)q@50T#OtpxCo{0UWl^-J|xDi!1BP38lPx$yh^PHFCj zmebpcg*nxfwPH`W5WblvfEGTEggb1PrjZq@saIas_=ajEi=Cd1e0DTWG{8}|T7A$O zFm&G8C(#}>!+&2v>0P^9K1xxB^BJW?!944ZyL-70aWMxD5UMoJSkS7Ivd*BaxSPGWjg6jEA(so4>ofPSv{zZq4Ff@!RjAN=fT9kfF+_two z6#&A1-4@yE5@pIubP2P2NM0AHtBI4DK}ij%N47Wpf*H5!{Hd=wR>x5V|MUD10!&8X z z!rKqREK#%e{)7_{_@M{9(2o&5oKzK#vbBlE%md1~v>xhX7WWQrm43Q-aS&;J-eY7X zF@yUsvVZo{oZsVURl%j-W~A9OCTd2d8-D=K5q(Mlj&~D#0!~l?W2OeU_hrk@Mq#eJ ztRDYlM`surr{PhTz2eg6(?^2Fq!_*j+PdF35pR;>ViS?#v~$eCqM{@0_Lj zc6^U2%`ExcL|t+nfQNL>OsE@t{*2s%mrs*to~aPi&CPuxw+RLkDUOVb=sq1%44pNq zwhXh=I$Ox+9aoLjX0^2sSu~WLz1mK{y6zJf-9o}` z(T)v>t=_uZ7{=9%otemA$cCMvBbTxR6g-HoR=G$f!1`S>0yg~IN`9-SwIc|KTR_Y;b^je#j-!i(-70Q58Qm6IFC6} z9ctw`Y6mW=Xf><|=biJgXBuuH63_!X0keF4Xn7uoIT)-tEd82X3H)kTtN}n%@rua2 zcE?KB*rQfIzSmLG>x}@3j}sKj(d5e#VvM6pm1)}cu>#v31TAE~O~SSwh3VazL^MPn z%DrF==}t z7ki5mnK?+H`1LkMmr{>Xz#H;j%~TClZOz0?_r+__FAjOt_=T01L!TncY)_b&e}JHi zRiF{O?G()=_E5$UDf9{F)_MF0pDfs+)&{Ex6t_;9`Dt%Bcpo|UZEbN!`Av(J0_Dz7 zUr{TP#~4mEq4z#6be=j1ebmZB@>W?5wg0#3umy?)VJY;Q>By@ zEGuWB42Pj{mp6!dLFl10gunGFQbN^FKPH;HQrMwMZ1@6?F|ao-VF? zo@@LIy}U5`!6W2l^A}&U&oRW(?pnafJHAc$x*4}oCTDW4h*J7Hc=E;N*s2k~ESM{A z>ED-h{qerRO69iBiytUSr9<8vtq=;(7GgSoK@wYX%-+!J$QY`RDeZK&Br0TO*JjYUoX+nNN z{ta+{3b6m1xn}=uE@;2r&v-5Xx%9-U>KSf?%pNyV3V*GnW}Z}?^-cPOQmE)(cx)o; zUC{CIbVW;!dEw*L#~lt6cYFh%MICUz>;hlnT$+Q6V(;P|=7!$kTicoTYH&_$$CW7e zW_EjTUhu(7Gu{oiDqOu|c25B&(3$}JpaD^mwKDuSeKB4ZVY5ritJx%r@_6~B zo%p{(*MSAK&Dgq=JJNv5@LD@Yd`#x?Pe@1*4*{iO>XVEwy7sxUx4^eiOj|+Ue{97~ z*l-ZEvDA99pJLjQho$c(pjH7g9N8^znV$HO>Kme^sFI`X@;oWpr0OhlI3mXh5hE;U z*jm3Q69q@*BHSt@mK&5Hf@nqq@gF3bQALN4BH-iDkW&DC_+mDFwJN z$dUx*E0bwt5FVByg;bu=5Isteg6N>_g>-fMgZ^-5v##I53a8!Lebmap#Yq7)l)=e) z!l{a!`Q1L>1BR{ZUiF6`HUxb6muz(#MB=_~xOFkZFV^Ci)>0_jgOXOnWctBs=0N-| zKC(?>;(c0-YJt;BehWsBN&pGU`4L(i(KqYiYTmU#m^G4vfmDqWEkg=BYS zH0bhPf|0q*4yp_q7f!R4qzVmnO>G&xedW8JMq(s8ZDHQmfGZ7TtE08g2~fQ_y2%P1 z8{y>|@^5%YU@a3RMEy0eX~NkiLoq&KFlH1IS5Dzb>OrT9=h+PB_Jwa*1M3FGkl!?I zpmEm~!Y5%m!m3xuV3-3h4Y<(wS5E!d>ISKf_9&T5hK{!ts>}QGH^^P5J`6I%LEPd` z?NMt`^Lb*f>6oMCWn0ZDH!X*Hn}hJ=#z-=cs<5iJ;M!y}zs$??MKzCe8f$bd`iv$6&`$?CU zMj;6svE*><6K@cR70v+LT+{DlkCScejR=wy9-$`!!do&oy^Q<>gyF^=rnbseq>usB zh!Jr+TW1WSu>Eu)c`rgSpB3AYpOs)HFbI$8(*Gz}rYKk;YO$@# zHQwIdpWa`yzCYxCc`gF$W3Xaj6~bpB9gFA1*$D=Im}kJHybq18@vnxK$LkWBH&Y0P zlYQ+%NB9`#K$PALU$2^N$5LK-ubXMJo2}UAN1v%!KbJ8!%GfZDTse{@0Rq{p80-<5 z#JmDIE#fMq#Me^0Sb684(x}?K`_A;ktVOKBMRzEfU-KiFRV&@p_Kna{fYkctg{-5z zi=>q|I=c-R(p+h>W#tgHQ`4+T49rdVT-D{eJwCMY#7A`3Z+0^0>YzW6_9JI%r;V>X zTu(l`g@=x5OXiWvBORp}?eg=U3s4REV%rMg2?}sez>ZuL#~+!geemM zTzRxI$d#U=GyXuV?K6>ule-9#(9N5mxYns+xnzkj$TQ1ZZfB^p9a~dFj3iezTj{_) z(jMb??o-1DR6o^O0riZLaq4U9!`M?!`&C?{iQ zH-;XE8Yjdvdf?j@-8vsN;TU_op2N2uYFDVQn`I`y#q*%7rg6(WSi|Z#ut^f2!LPkE zb-w?F`~pkXL_JK-3RNW+2gE&ZkIYewz}k(pNRi{ZCM;d;n8_XTuJVgtx63V|ji&>R z=F>7B(^rXY!f^J>tQ_#|HN@FyOiwO#n4<1!7~n zxv-)cYUyN;#bc(QbX)}ckMwnhl5Uf+$Wk#wBqUXEFQ~Vm8DiV9a_bd_(>jB_z1`z}t^&@~cLm_oFnns>a_Gpn5{i=7p}i1C0~<0PD@Y*DKiqOq z6+Ej8tu`#-*UNR0xKOcfL^ETQx8qghQcK~6hQy`~oWUUw1s@Jr(X&XnzLJ-Yt0|-;D$EEgz$xy2rHrt?v7r8j<@LmmW$%iOZ{yD zDiT+v|KNHojLq-u{|i^ptBG_=SbSo@hm>RG_+T>gpBVdLpx(D%D5~6B-d>7Y;m+p| zQI0upmIY)coEi$9VQh<#5O4ZNx0L;iNbya|M4h!>{Nadbuxq8xNzeKVM>@mTYYGVp zZiR>Nn54N*`gkkB|1qfD&=SUkIt)pNrjY!97w*BREu%0u>USR&SXs4n zY@{<=n-xSHOkloutC6JI7fc839rb#Gc6Q7Zk*L$MGozfg0l|cc;5Dl2e^E*Oso%t8JwYWSx~GA2JsL1S)0D)z-fn&z^B^yW?35Mv^abs-;LCGJ$h&o=!Zg~BlBJZ-VAoLyWiYTz)Al~Vs~)uS!%G?9b@i3q zP-^lpQ*GgU-RN5$%l!SavRFkN(yx=UX3KzAk0$(Kwr)*BOb1wD-jTE?Qy5K1OwD-Q zJPDVJRz=7ESqX5cl(N2Qc`SrIR}ZY`3Pk=@C^MV&9tFT zYZSb(mZavACFtssoOy$iLUY1P$;50oNhOhyP%`_+rXN~spd0w)#%VW(X(U$=+8gpL{Jq`C8z?142I?S2I-&)$e|^8T=sNH#koi&Z{ZBcui+ zM3vXY;gsYCpN8ok7JP+iDo0<3r(1w6Z5PLq=*rIo+5-0&u|ege0)7`t1sF)Y6&_&8 zns2>=71>+q8WVC_C*%aKw_9MT$#w2A056$SfEURcgBukla2@abadp_p!r!LI^Y*3l z`;e7^L!j6}?+(2uG8_$JLSaEF-08c$c)VsKp>*CcceXmaYomy0uf6bHcX5HyZZGv( zniV%Dbr$+(6lDvWrr@}e{vG0mkz>sL$NE`1NiC)jr`r_f{31Q8S>4r*`qTCmush=n zYv3!R&XH&eigd9A)yvKOcB`>CD_hE$HvSw%3zL$(Slgtd%RQNU!gK=KM0Bs%m@YrA zxb&1o34S8bJM&T#v%F>fUatj5s~Cw3ty;?Pe3`kjN)nJ7fOTRsU^8X*o4&l8F>$sf zK~%6sfkAs&4RgBSv7EJzPf0Syr3^dRU4+Lei6(ZOPhQx~{180V5jaUx* zc=K}jyUmtjszyMTMVP&uQuTo!NnP_C*KxXAmN&l@Q&yv7j9r{`WP!Q4!Yh<^u_U6M zt(y30^4y{eho?X;jGvb+Fx(4BgG z4Y#i^oOtuH;rz6@uO%WB z`ji|392*x#CV_V;T+nH+WO9=%^rM024V91fj62}(PKh2%?3vjrk^r555U~WGGT%m; zZ^LJk>Z*nDR3FYd{u{tQhmPi1Py}D;-b8ac&EL!#jS;p0c+X=M>E9<{2&B2Lk^jNE zRtxyv6mgqP~=fiyZ|N7Qc2#j#CA zM?9!f{x?9(Eetwzpfs>|Xo+G|1Vx@8zT;FW)NXs*04nN5|(r)D7>nl4qJ0ah*So%j`;2v%6F6Ek8wFJ4fE;oKG=p zR7>V|MF}zX`^wp#v*Yx9GqN);G&0C%^BqlGHf&&PuJ6vvBORHoN5G|q!*ItaFw$wV z-1?~4yHfI5%5Qv7tvTE**WftDI;Jy`c*|f_ARR{UW9^Nev{HZ)AM&WajACq`uGH*D*o{uj#;LSlGg|5sHqRC` zVry$f*Sa;m{~=7LH(ha3N^})F6|2fuke<4jwT+k3vb25yiFGQ~CaYP!4Y&EsY=Y5K z9V8iVMTx)G2pl@rnobF+xUDtt%$I3qp!_C8G+)nm_JbvawSB%sa(CX zkvjAO*6B3Pral|b{=VGz^Fy<)Rgt=Zv)wvN@-sr$F9t4UhKhsPcn3-i@tM3?^Nu*N zS8Z)PucJl`g9J!@2K-S~(&lpUE5bIynb~&j?ieb<>5pcQfF!yLJ-EbosLsAk#rri? z&2G(~^6wS)Mjv^+=^hd8YKEh>cJt_>o!ZP>h)uV)T2{|FKCC46%ywVtz&ex@g^KFl zpR>;z*-uf|yVY283&-Y}OLh&$I>|nqvQYARFx$Mg(6lReAaBk9C+>ZZ8QWdcHMLh7 zgKS#hBc>MRmqPq^h@zN>E#2NRe_~EA($g2}N`8%8QhEMh7{s>ZGFWfIcLi!C5ECe` zDX7i2esdIi^iz9~!4ty)_kYm7xQ&sq;7d!f1zaR(l#rE9uSHT(?bDdu`laOeuq1t^gwb3TqqS#0XcSmI}xEBMk%!J0wi zlETUEF`uyVkXD`a)p87KJPu4f>6!8gIN6v3euak zV?K1USI4_=t|@5dwVFriw5HZIrvS!c-%&^t^vCq_$_zL=>hKMf`{wC@PZDEc?KSR3 zqqjkorj2v+aVzunw5JQa-wBmb6;4*G9Koo3#MbkcgAyeXKIbwl&%1 zG%HfYhxj7}E47q3WxW?^x;hSWUy5MKU{WD0%RQLNJvu=`o8 zq}$yTk9Q+>Du(UDUJJKuu(oD-;l08G7yem@veh9rU-D3rSbXRS`4uvYGg!pggG+yg z&fU*=C*C)vbo22slJ=lcNJ$Q&(U=VSMB7#5HsPp2cFsqMi|nLuP$6wYjPdFEOW7G} z&5HKQckUnI$tD{}PCbt#)-<4nh$hMM=~=zQhL+HmP&UO{exIf3+x-e2_=rsl+#q{? zenQTcsJg0#*}42YWt~!@SSk8|B|tQGicb?A-nV6VI<|?|cr+ zXxGKKAkE%45yJR(>UM20`SH&&!T)%Gi1hM;p?lh6TdZjo-|s%#1H*|OZFtg96Ra)2g-F^MQo#`S%YW63HIue}!ZvaZO!e1UR=4q~a z0RPWFK^{zF%Sx2H%#4CC#4xM@VG9$4RF|jI#`;Z4fXPZ6IO705eq!q_|2O)FELA!y zD_Y}taOnE(En4g@L4YsZ5vZn@E?r1kf7ZStaoO5?XI`Cu%zj}5XsJ)^Y_e|)idqj7 z2t{}d+bv5Cm$4CV{gaMB8)A8O(GlVw0#-8Q|J=BgdGWhEAb>95_y0p>j`P@89j~EP zlu>aWOh(!-BV5jTTJ%YCsk=ZVsiBA>l)N6(3&8IZ|1h<7^J0zsBf#mIZ;rBV#-ibI zc70%>YC!0!ZL^P6@U0W%T8(Q~ifNc#Yxba_+{DPvj%Fih9e?%LPUMH@oc3!|E7kvF zElI@JO8cnj8|^{7KY#kc)EfNogwJEF?^>=wk0< zE+?_I3re?mIUh^E*`1-6=%G z*fKqvV1-#OhA))0NjldYh)eb_+iF4d6H>e%-p5A%s!jp4Zh@IyA0N>$=)1FTTF$-~ViiuXN(m-fX+?xEchP-l|@&BTu8!q+`RdCM97Jx}z{HLLO%tSa`V& z;0&wANajc9$gq47S{8f2y-xW&_U&`%!iy+fKJ~FQ!~x!881vOlyCLo8S$#>b;P{y1 z^0FwSazB{_7QR+vY+anQpwp=cP+PF<*3oiha;3torKL%R`U-?vNhq8clr1fJ;Om)% zOtG!AI6gjSgQ}sdS0l}s@+r>ngV}@7H{a*^Kj@#SjkRDqlwnkJD;zTuq?geJj!rlIo^;k; z4)Ret@)ulVi@ox5Op;|a12a-827EI5*^|j6v!}s&=&z}$s)JHH88|tK4XqKqH6nDN z+A=CK-9z1QiF4nb%PD;WuN?<8Z8?5Cg(m3 z@Pzw@?vBhbRWuqelA376O#T|X%2a&+Xu;X6zrCkXZMd!@U|`7{N;|p1+Y>veKbYpn zS+)?|0?l>V5_~se?%rSdh)6UH^h%E4{KYOO5htRmWK8Mkr}Tp3ObBXnB&nUZV&_Ue2hNAiwJh2) ziq&0#j75-lZjiD!9Wjdg#e!MBQNpre@#2>g*C(Vdy{A-MTCKDhKfgC`TX zguzRa9=&PlXlZR@RJ=vZcP2DYJ76)f_Kk0{@V&(hwSPM~;jt_n@h8HG=%_$Z~0n^S(mAgU^whH$|2yCt56}aAv`Zg|X z-aiqpu05WVOE_x7E)(mxL-O`G%_N@&F*Gk|RI6qVg{f|sJo*Q~%lj%y@Tbz&6dgs( zg;Yw90lh1vQOaG7hKxmj;}gz2Pge8PI7h#>U!eu@rEF1LoJ9S#>D*9ihBm>yWM=i`CjCWa$iZQe4_Ix{22w^sqcx8o zaepnXBL+#jBJ+;7-XB(q$|c+`~w!ud97@7Fw^@=8|be5s-00{HKqXJc{x} zvs)}nQTb-+vQ>YNmz>`GyeCn4{aQgZOwaN6r{X;pg&AE*aJh;E`90EgUUwc-N$%34 zOz|++N>QJUzJN9=*j*OYX$J?imqRPPXGrYk`+c0yrD$?{6?7u%ty#1rdCV$jjz5}m}3yqdKAxx4iM6}$XDYRs1 zxaEQ%!{%A*4rkz@3CNH&Sa<#CFh{W?NS{|v^loT}Lh`n>5yCqBygUno7f{z_e2ypl z9uVvXda$WUE|lZyh>>$6V(nx83|0josHIBXaszqWNcXIvY2*dOW|;3#Ke-JySM1n@ z(y68P`#VUBOn(4BrSK=rD@ofX*Uz0L&f3|rrtb&7VQv+HV_ zrG&qb5QM)4`G9`UdagR>NNLSBMnfrRXMuE=Z<}N2RyFNK!pN`#F$3K+a+i$`?UZe+ zmVS&Z+|JU~58frK(mu+~Bz}pQOPr!zWVOyYj^rZ#?Sz{7;LUJg@7`E?pL}dL$}AD4 z@bbMnSfLA`RTPM$yi{afVc=kvp`c;hPF_;7;p&iSq@XMs$pKd%5R^8SuS4o$bxQG<4;3-R9tHNpAWq@CLdQG)}qT!YZ7Wg&!IjXkr*wcjK6p;;6H-ye{Ao;*Sr zUG4A^xo^aA4Gm#Ryp?q#3BfN^M~G|jnh=JNLnMw~2$X|(=Te2)UWy3TJT-M!yA%aO zSalRE=wy9gH^12R-$u?(n-nO|WIe%=@-a9y5o4N35`6fe7qNMNpt?D^nI2~|vM;k) zv7F)NPp{elrTOq!lIiyABDSSyXyMDAPD@;wZ?DR1Wj|cbkUq3fufB8L>1L9a=(-|? zZ!OXbPkWrZdWjkB)x}pcMX*~uCK{!5zZ~sSwG|!gHph7gtV)t5!H9N*C4G|fQGKX4 zjaCm^R!%Y6P-;Tj;37FCMTaQsZL?zpHRp?N3a6;hh7d8e<-sO_s!fH_Pm7$%GUPFB zRn7zb3oMafCQ2d=zx@M&M>qXTuKR@ivqp?+Oa$6&EaIPMKQ&UCn134$M4L7#*_}GC z3kUIkLI~{Lu^>f75+GuT<&OF;7eFHj*0p9+8W8f%vPln)S3(9?O2)%g3&}oZDQgt3 z)MmYpQSe$JqB1N=BOshu*hfW0MIzq#0xL*Z@AqIaf+wDpNK|Ye-_D0hA&5I=W>cRUW3{+?ImXcklp>S>3oP35dv z{sFvzc0T&YRcT#5eEBawS{={ywG-RGQuU1$GFa*;HQ4G#L}_mNraar!)ji+zA6=mS zPhZ0$rcgioKLGL8!ROa5LBDR`|KWD;P?_P>Cx7p-f7j^zwvU{%2IlUI24!h@`9og9 zBM(lqD7_||)k8gZR9@E82Jgl+ovTzTzg1kg7SMa>GyO2Kjd$eLFwn=w{!-<8sx3GR=ia!Gk zfRZE=+~F$FLCg)7J{5j zIrxs+kYw6mi$t`@ed4vbJq}Gpgy5e z!UcZW#Czf@W{(NY;q6Y75#k2|@RCpj`)9mBlN>WR?Tze5c#E&(AiOylL-oAi==$L= z2Alt%*cbG_@_lg7*gyOp43D&M`U~l5xRzir!IztUj*8iXkmIQt5ptK3Rg8xg>&_0N zlXQ30)NHI|VtSe(I`UvET;YZ3;=J>SVVbc|+Dvh`CE%tQCNZ}}V3f1W)Ep1*d z%D;L~{Jqcrr$CE9m18%b3DrF99Pi7m<|r1M&lU+t=Ah4apf9mvny~}HLPQWHB3z<^ z5IQC4Z}{pG5x;Yh&^;z(84=lZdt1Gmw0^*u7cD1d4k{%?CFpPwPK7A00jb$!a56xh zfh`y@TmE1wscexZIo~UD`5U5K^qP$);^TqL1@FCiQvW^+WjGDo4@MtecRgDAI%``93@3T#qoK``>qy z27o0YuSyrT?$~!%R0^g5LK$SherxE^elR0qaz}M4k83{w>bvPa#f)dItJ$1{M8%b@ zvM#wZg(7^0a?qMJx#C<|wVN5Q1d-Q|*dd_%xFpJ*srF*#uxZ4`92dzG@a=@M9X(qQ zYjFJQy=+i8oc%AO)YnjPo;HfKP0w1%>7F`4K2Bg_EG~)c)pqp@J3#Asb#j0!2Sa0s zLN{uFY$3SQvu=<+=xcUXDN<0;Uy;kd+<&Nwa0-b&$mBhi!A0K7nP z&9&~29CIsk9Gc3|fHI`|_x#vV6Ma@#$yx*q*}-p2w6xa}4*9M8Vx!KDeItwyFw>C;#Kf zAWFf?{_z6g9UrRc0_%0qttTxHU&0uEAV|nr}soM?=r!FMx?~|yX*d_wfck`*dafE zzP0M+2rEsTc3wo(DFtSP{eI%8&fGwTabIvZX`^hvSfCnB-1n!_nuvEm6Lfla3P$=R z;Hj+BqMON-^$1bz*-V;PlXAS*%BSCF*);oTwKH$n8yu6pFGB%m&iRQu?$S{h#Vc!9 zujd!!r9gJIWSc&ky;}Yof8^-|y$L4R06jl$y6t}(rMi9ss$k^vA;!f)AXJU#q z3CHWI>DR4LJRqgU{mm<&izuU`tND*Yf&G{Elo~)ExfXtsb{!lp*4pKFFWYn^KqT6l z!9`6kkdd<8){D7J&iF>Q-Ru>pPn%jh=3bj4*BMG$i}(bXg9(I;=x)Y@1wV_Jv> zUnI{cdwmaSXq`S*oBj~}ZnjEprRvkD&^>sWw>|#6O{?Mk=R2@JCxhMFa-;HbyVDSn zMaMiXX_qoPp-)-lkZdnV6Q}XO!X*bM#PRLc5dI?7?q_S-%&l_gnWXAQgO5WB%PgW3 zU;3SSR+d-`RO|GJ(jE_3A1|#AEYTBM;(|N*UU+~qb+o|AE6^X7im9;)vV*<4gMVtzS0N3ute#h@0NO ztc>X9q;d*lnH>MYJ5xDlWT0bk&FQ17EIQ(DxVEHZ36F9e9d9|<^nqe?mWfoY5Nq;T z-<2UF^7ibc?UDJcnx7UVU>`$@Z%$B~PXV$1G8#4Sv+AR|gsBJdACR?NrCSd=vrO zvDO>x+4I`^yx_=6e2{#$A$8Xpj8!G&ge4UxCFd-gCMc4K3OyGOl(~o{mKht_FRav+ zP-*Ku%efBjiU2Kg6QMOw-gF1W@f)@h!u$gd7`9`TMb8#PwmZ$Y56T%Ua>RC4!h$gf z2(_qA+Z|5#mezSudyBGm()oU3WDQnOCQpv9aS=mFl#tP@rWa>z(8Nc9lc))gyPd?D z(Mw(skf_Z87-UH|TBX3&Y){Wt2lBH;Fsh!BHAE#E@avZo&D6feG^Wo}S+q&^1A0}+ z(00MJA?i@@<-I#2yrFF``dnoLnVDwL#AZJs19rm)uhB>!8kl1Aj zpKOfUzBh^Te~1~#LUgaWwHu^G=1(bz_s90%t4&la2xJH1-LuVIyk_nPufOKdY;K9& zBTh)io4vEqb~Z9*wZdNAlYT4DAnMp;)Z`wMI(aRqk$gO?-qi^oYPJ>`a^NoGW=sfz%1~jhzrej2#7HjhHJ=)+qGYqR%X`HwNt9umyHli0Yco za!m773Q*k8w&@4Y;tc*<*0$0t#pHYU(b%t677hDQ`W&g2Pqec8vS5}KBy++9>e;XAGhp5j5whR}mf&64o{rBcSrxDIpm44sO9l(e@F{I`Q>OUxKu#^|7oWGgv@4J= zqkfqe=?g|>CVVR`oO>NP9@8KF>_yj8bWpgE)7KSf)xj5Z7wy4tc6%xd-CyAVvaJ?I zNJgiP=bXyO03X<5j(4Yhmf9C+0lD1sc+*2135;x<$G{sF1blA$vQX_j-QdF=`75J%bCIbW{H zS7Z?Dt<-?JM{pqbxK=s{=v811-W4r+8kI+7^_AllE;0 zUje3gy6Og6cn8_J&ryC&mr2tC2eZuX2wI0iZJVRKA_^3oFNjrMTF^3<)S~WAZbr>$ zsP8t+mUo!}=4)q3GODyTGC@a_`eY;?jL1Fzn8>>|^@i z)K+JM3)^wkt~y&sM{$w=B?=TbNj6=TS>|)nnYINPzJ|noYNpQWl(%XCt+0Y|Rke~| ziHw)IpP%#9k2?6z;j`S>iF2O;a>J843A>LfqeEE4Csg;=SpxDk%BkF@7~D2ky5V=G z*}y3#uGrRaO#R3zBia;B;<@K^USGbgc1T|DM=NNWDVe9517_>Cx&oWJE-QL>X(|=f zi8Y;~sbT#RYuPvX_N9$QQ2OFb$hGh!*7DklUA)0+;w_}{WnX3vw+(krjsH%D(MeUc zXFo4qYxaj4WPh)w)LZ+oB8no6u}_mshkhMJ+)hi{iF-pH!LDvIZQBJJdpghqchU5Q zj^P@!l$krVFY4I=UhS#we%_Q0xIGf+`Pwndidjpt%!J-@nyRbdcHrGoj=vE1;`IT_ z_f))>#vz8xA={X4M1a~OqC1Ml{U1M6$4;PamSd1C`jY2vrEkP3Z%P{?Y3XDKB-CnY zcNxkPLATZGR>?}dQ+vCg_Q%S~4?m>9VyP_g43a!ha1xWQFmGc3qpt4WNC|31pS0cF zVZRA((ymGk9h&Nu9E%$px+=NS(+c-X|pMtq!()b~0n}*_qdLOLDq1@y44gU;swB+b^^Rb|m+A^pAPSy~^iL z8BoxX@w2k1!H#@P1iM|9!DNLrl?8=iJ@%y)Cfn>vB0A|wE62PDc0)7-sv?+$1wa^$ z8wPH!CHm4NxxHMnu_sweWx7FZR!u<*WS#@#@Vp}@^;>2CP^>EF@YBM8-D4jW7(4K! z3WQDO$GTl~w%+q`QFZ9r1sT?FUvdKVqmL=_dCmG3=?XYOL#@b>3lqLD(*DFkTMe$C z`}s3->2Imz{~%rpcv4@K!s<8A>oE_9(&~;hnWB~8Kqw7#4!x(Q=jlc4>36RT;wy)y zlv%dQ2H8Y~J4;q1%G{EXyV}UNb8J(w`XE?mk`g4YHO2$r_MA{x&w1Q2(kWVlm>W)OK8Mx$g@?8j{gm;1!~ zO##y*zo}SMD`i90HV}PJ3ty5G0o5dhA9mcPGpJZ6b*ir|*K zHuh0NwY#g*~>h1>pkxv zSokZBO;_sx>M)pXM4JF}x3;0L005D+^)n9#{hKMN0X*b%*r)Da11OPH({ z#n<2HtX*ZmN`2#jD@h)AIRc;hT57l9;ghJ3Ri21rgz-k)bnMl`G2Qa?9W ze*hSAJvrC-^>B%b!)G32%meXFyI-2mAx)-tPvQg7dB&)ZY?SChQ#zy1e*h)FracMa z0OLPigEAG=Gksq2gyPhB_B$wsP|}m~9P*I~jzb!9JUr)Y%S`Jg1Aue0~UBUMbPY{T`R_4h<(AP>TmSrpdZ(N z03_@o|H|39tysSd#PHzgZ&m8kAAsrw+>n1g3;Dlt_P?Dq^xv5BPwvOMkNW3@!#x$S z`Z_TtwghgJ-g*lFKBO_Mq_c;5de;rrm--G_o4uskfh)><$h-c}x=;Tv9*7s8ii!*z zE=U8Gz`m0<bQ^q2t|l$MbR2W+ZrIC;LG=n-u1Vj9fmLE1Q?wLOf&FIrMwI5KW`K6c zW)WDRYDUWw#loz z!caE3XA8>;;_9P`v3k=(_oEReO)dBEjoQ+rAe#|s;h+9T$M{IL&(rHy@sd`F&;U7m zs5o1Og;&PI)iz%rjIL zj_@0uf>obhP)ne}nJ%mPOn*YEWP*NXa&SC{OqPcR7a+S12mt?UK_IA!cmZtvlanv+k;e3@vEYn!@?kaZOJ3&l6+&0yZ!SW?G-z7cm z0E8uYVE}~LC;$Md1P?*>^m%d4=X37BJdT8l(?%P>m5K99#wOAhMhG*t`k8|I_mJDVG5u#Xlg5mPKV#nAbBd&LOR`1V!|jt;t1@(o3W2`vPXn zIrKK-oLWi&_3S-J%$zZ3ttDYfnbrFO0*+4@C`yY%FMpvR7L3`Ll_RZ;W1y@ELx~(M zRSHAHK@GD(4i?KL@wRA{*+STuJ66LKAX7t}0pubBFi{bM0e}rR2`3`TWB?oBEnvUn zT`e}20l+{451@&_2eKsdS3|rmM8w8=@eKh^^9%^~p8`n0lQcrEOn(U!{srFu$M9_< zO^SH^0Z^tBK83;~H2E4w^iHH}65;au_2R)v1F(S{u)^@jjr(ZUSXlA_YU@cOPS>}o z7>X>0U>@r+r)zNtjNpfuVip(F$p0Qg^fRw*yf4%kp+_UQEWBtF9HzM8@?Nqf7I8H6!|`PG`E|(s?MSh|&fbd= zq};vmYv-H!{;k0vrEzvv7p#xgWG^+?#KA6&z&I8q{U$ar2I%Fr-ouBPT(S-`9rBV* zUu3UbV*5$iB>fBfRN_lpt2CEZzZUg+J4<=|RpjAXFNK$w&oo4Zd0D;r8IRqxa7OsFZHqharVty-_GXFyCHauhG35CeyZz(i0P{7!%k2r zyX~rA(W=-a_A|=ghHLHx_GTOR9$y5x1)U{4KHi2eik7q`-@joAv0ge6H@J0p0)-% z{PApdDkpWmt|q4)H7@x4C!WRsZ_YRr(9KaS>;c;EkybEi+G|hqAuH$du1k1_&`x2r z>3QCZ)htI{8WS}oI#u-cQY|y%%;7n!i0Zok zCIKA$drml5LKk~6ffeKM#&p}1$lTWT%kr?xFv2}%eIHCA+jKyfX*kZ>${NOKN&53m zzHQqQp-a489|7AAit*XyS@)U*Zuj{gz<6_W>pc7V{TXX||6mG@cFZ@v9ksK@Fmdtp zV1nK*D7KNoq)(}mXS%O-2se=gen>D;B&i1=*SSmJM1n-!mwjFI?Y4|PaegaU0b~1B zOxgFBXzj>)3Q~Bg#Vg8yvU;hKxV%F2QKf%N4 zWt|j>O9-WT*CtiAszUnZ^O*#m2-!F2=J2v!jkUf_A}$}PbF<3zf8-5`k<-ad|XN;eY2~sbxM9Ncdt^bYS?j-PGfik06Qt>k zWVdNu0P=hhN%5}lWu3SXPr2lAimD4gezzM}4J%hSiVc9=zAgAT!XiBhtl6L5Xo1$J z$m!o$hn8@Cy0Vv-q;RouN`Afc#NsETP*I&hcGz6vyq8jEUm9fNfMcY@4D(Zim{*Go zYd?;O>0#YCy`=K5wjWFuB`EkfuAhax{wX@(brL@zuG~|O8@qLU8zE^FxDTssIuL-L z=l~R^-!V`jR7lfd^Rsm+I*Rf0;DM&P^>Qgt+kxEWMTcGYyd6uN=S zIW<2Coo0{Hol=>|J7)SmKxHfi(k#7VS6{3)Gay7|dc<;Szmy&3X*A_j)KFfrT;`|& zPxL4aM>ESHDej7$Bk+@V2wvBSr>^fBPmDf5MWW^BI8GWJ32;@|T%to#31w}~yLB!v z8eiVLT5~gQ02w)hRfo1gg+6Z!oK5;DDV=Ta6(P`s}TxoB;0OWDCL+@YASDj;USgY$QMm^kS#9)IX+((yI`w%;wj zSu6FTIdewr!(dUGw*#ONvs_8i%&iEaKTb@tdvU?gF z*qN0Le=JT-8}lU|cwigJPmh=U;LCfxx{%0cuxS-yTyfPdqgS7h3Ci6F7ShSAYfaLq zw*iif%R>ta4u#lLZWpJTk5Ln62%W8B5&rSF6w9N??tZ#&sDwv)0Xe z`ORo)&QW>2jMng<9!13+!CF*>#hPd(xhQ~GQ1MPxDSNQSM4`lfQCIENFiLwpLr|Lf zH@6%7eMtsh!p4bZVVO?a5vxX=$%6I9)jQ2qMLI7(=-a)QgH}PkkgU#7e*&d+f_h^W z(oSz(dXmu5L)9A67VwQN!0kl@3|qD5a-cP4twJipA_8WI1n zG~SBgQp0f{iEmF1)?%Y|(vMcupwqy;mXy_% zVNMT^CVesyn?Hw3s`iap$&V?i8(YA0)9 zZr6w{%=BI(o|^DN49v?1jrp3h?Z`dQ@`y#SoZC)$Fc*31uP<*x0#UpeWtqHM-?=CH z+xY{l`p1McRNWd+!E+*?F|~_uPJt!OteBz|2}P6EjT1>f*w**SH+S@_EEi5|s!4R# z&nUAVDqooIMg#^AR=c~6dnzvOsGAg{-|ji>vho_vf1j;k+i5094;|=%5}H_w0AE#$ zyCP`qN)CC%e%ph(Mt#xIH3rQUjkR%&5hlKmv?i-^BtI)YMcFBPuARx}IdeC*!XpRcT|vTB;r$XjQO2`dUNjX%vu2ng(G^)o?Fi>wTtnH;Qt z!a%7Sj@WP%i;CcrLD)#1IgXQMuoA9nhb}YdO;e#DKZ_^RXsPLu?v*}^GKqoo%Sely zp@-p|cktlm&E*5|r|u|TqLqh|R-DrLV`_9!&*H9Ct6umwwHbyPN#5LlzFzgDV zizbm5$K!{v%xwzY{MKW}5u?!t;W#n}9}?@NAnOsxRpEyt?^Rj9(^#yFwYz19a-tqg9v;f3JqEOg9wIkLb%e78$IX8clkn zVLw&YjFc<<;HP8A4|R51NuS_L%5YQgu5)*0qFWy3UUPtHxtXqhsIsq?cBT*rLbu@Ba72 zvHw9G_!NHIHNPIGI*-{qf6D~uY5$_konF(O$auwBMje3?F8w*-TC{BKIM^GGLQx51 zOd?B{8k0t6M5mc?v4$numnt<;pn7EqRyeuI zKQp5ZAIkJQKX&~C7-&;DcDoBV^86_So5J`DsZ5BL?c$`BZd3~($9 zztp$J9-0=HB9LFIV7k*m4z&M?Lnsye4lr26QcF@t!``or9smG5wraK^W@iLA2H}8* zlectzhd-E!I1l|CB-YhIT~#|HCn6-ElMGcWs0JYA80ebm@_S#ZI7KskWB6t%z+fY> z7WW}uoW#FM)<8>(R0|*q=z1(O4$cL<6Y|%X<0Gogw_+~;vIuzf6llK|kyu2XiTaPH z{|;96;|aM!-D(LqQb*x0rb?I@L>{vLjCc~aFF_Idueb&Ni=Chl_6Wr<1yuh4%mPfG zSlX(YA1FRCSUPHj>}@URRTdK5VK&D~At4L?40$PH+vxXGdenfsyYhzIqt}G3VQL~5 zR&O*g=|M_o)_<9pna?B{Ook{cEA+(}$Uq7kbW~L9s0@5#WQ(u?FEMVcGFUO5@r+?V ztV~qHjU?74P2QnQGn~brS7zZ`7zEO_7^N>cCvF+L^gPp25H32SJnDMy1vmyrfEh_s z9g(%k>a*pam@~Cfxn?yo@d_r%c^Q3uw!BKh+xc2E_fD@T1KHXwHn)E?Q-nz%JA7%{ zVoVku8C6Eqs$pT{X>sfidgEp1iIMS>1>TkTRm(CD|u5%h2Df!)&e!8_)r0GA5}4c>8r+lqA;rr`FhCkHvg9UQF7al!+Mq> zn_Nke+ayAVGKHIJ)NG`>h0$%wY*ww_5`_DqXZAbQQ955^^&6Cd5|n}pWF1m7iQKyG zoBhw@h9TYuMrHj)v(nRBzp8BA_!98m4fPu1Itd~TbB3~33ngB8S9T=V>{uQHgJ{B_ z+rQx144Zy}tz}3OeQ_jQj%80|2Wj#G9god+l~!dTaQQW~?;E5_SgEloY+s{uj(UyE zNq2muIp(st=T$Zr=S-Zf_gTKQXZ4Cdo#sVO3`HOpi_!rHswX>1NJlr|OM$ibjcDW^j;wW1 z67#9xHsDp}qL9HdS(&5dZU^d?cMX5UR(osWGaX6t+`_^}d2pN3eGng)UNTaR|EcF9 zL%Jxc0;7Gas8S#0n+*B+!l@G{hK}YaO8z?;S6Q?JzirAmhi=W*HoH&kztJbmv5O)pKG{ARi zfU*2`Eqfqqu+MO)(xQXJXeupTo5_RD`&lo}8G~36Yu%Y%;`y*tO}7p`y`$P)=tn<> z3-&LK2leO^J`PJaJlv-#MiuzK*AM(z)~cge-@+p{}3R?!krc05v>VY zyr%r^0;$Ovd{n=FQuRSO@6;@*p}Il07{JS_!I#LIHUH$NCJA`3La*q^?pt<-a`CX? zTrab;pQc&2wk3Mhhv2ILaCuQPIT&)bY)%YRbQM{w-dox%duUG`-{e;KQCty^ykm_m zDZvcYL&}zQ4VaTv5ysm}Gl7@C#T$x(B|^|L0`iDQH(oD`gl&*_?ThS-%-+V{5z;93 zd4I>7b=m^I+@fayD0J+&OJ#m;S&jhQBBKlbP)3lX)c~@?{E%m;xLASMBIhx8sRtgK zW79^Z(GMh3GOsA~E>E(oBK_{k70l#BBN@^^j+>4dRjAUkyS%XH$8Eoqz>r^Aat;i= zd$CHpR?8>rgM$2fK0vmKA%UE<3oL8y^_rA@rqBwXmWb+xXse-3WiLgiZc^`;xYBHq z{zf?Ndj(lrAExZlj@aqrccK+?>W!AX$c_9Qtec&YRj2CKkpt+pLpPKWB46ex0jg`-jX5l*VpydIL z1ciHsW>9o(Q&IH9`W%o&Ta=yKB$*jnzHy3)roOUXF9dz8>GTJ=LEag;fi!PHMiG!~ zqFKvEaJQMd3pb(Xeu}_-LuS~9`%9jdwNtV8$&u9OC!x&8~Tw@a-p~7hj77D}r zbo=Y!{7{vy`~-rm%|Kx#Z}2)t+GnG-_ODDw6?@!3%~f`Uk`qd0qy*}wY=T+O>*ZI5 zY63}2KFpPQ!OX-F5=c0qJr5clPIwxm{9%x`(FEV=vTyPGmh}}0UA8i2)xHDzsvo?| z_w60nwWp#?Q4ZfI&WZriNZpJl8+=e*DK{mZ-ktQC)J4>{q+@Sz%yPx1@ef1A3D7?~nB_AAM-uyCq#xH#q4>!GUk zF{xL$?<_!L-Fmht{G68;i7^>&iBYpzr*bq)PA0gsY#RYypnLa?7JE9I?fCbg-9@79 zSDbRf&F*w;onhCdRoTNda#0)Po8Q{RosFXf2VF8^mx^~5hu{wd?k}Ye>1%8zG{b20 zMD5uY`_=Sod#~;gT8bv7?r|zg>{EV!kiyVj3f>3nfdf)3^m5#lrG3~~>}-z22xh$$ zK25t3p1Fk#oe`S}p*!^H4#XViGPz}TfFgI+F#f&>WU)c;ZD-4upr zf;UUm%&*=jbk-+hE2#1lyH8t2&MbQYBmk zhR?%-qDMw6Qx0e^3gEY#mUTeHcTcs?)7ktmAtt+J{UmSXgy9>Wd0EH-CPrSJqdh)I z2^k$%pi5hQ34Ofn$OJ~D@k?4MeftE6xs2gLZ9GlfdTKWx!a1oiqHv}=abh8ee~sVH zP%JtKgOLqqEwMkF1b#4VuMZrVDqe^X#1Y9Ro!xD5T!`?SDU+kB)kRSxKfoNIS0J`# zSWnL|@WyfaGDW!fJcJ?Z_fZ*U@JT@PhkRsDVQtmwl=w zkx_rNv!jvv00$jDP3O6@MJsI@bF!KI^}w^-gK`s6yGXkyHkOd~kjbtxXKq0sBkh#2 z!kwrFmM(Q@0jy(#qZWl_tO|n6C3O3-5Rbacd=@N>Lzp9XFM)oyhLvsVuBi6M0bsc# zRr!V`NPXhg03(5_@%($1RRx*4Ij(k^R$F{Mqgj!p1s-7h5`^imKCw_LNYLvn!c=Uu z`c$`x2<#r#vC=UgvX!AGZzGCquW4wWR?fe&~(|BW9D-9^3F+fP+Khk z{<>cvr0JL_eC2kiPjbv@E!*`9QvnItT~7U%Pl+S?PVzr9+`$W+OU%&WB^3Xox$$4l zR{zP>60>H7s7%{H6Cjp+_T?g?_2sl4=quMqf(tF^>yOUT!-d9>wg#MjhaWEI)nFLN zAf|t3RyOL>)X>Gi4AxCuc{#q!gm;QF>U!082Ae8#f0W&mvoIHp8R6lxf;Kq%dw*Pg zp@dtefL&gSHjE-Kl6>F1Yw%E=Yk8QO-Wc;erhGg|6rLoPAv^#6gQ_x5f;re3v#p`c z4;geq&LRi21b&q%cYuXOwEha)(+!ZcJ0E&bDoLaJ989fC3qZ)+is)D9f4B6rUBAqT zue8;Po5xkTculw*Cu;aK6BR2p4}ICSnnq2C2(F2bNP$}^J~8fQ+hXPCmV?9=t}k8N?ullGwh z`r3u958R_|?OueK&;3Fh18lhKwCit~j6olOu;>4&#w%B!H@PrTezEoBq+tR*t*K&? z+I0!7qU<*DS?CLBkyLy-2w`vJ+M4w~PO8uNT&n^oR;phG_N{}=baekqKnTghB1q#}+a+z#t(Uj3ZAK=9 zF5iY{X%jeyLT%{ab4CrzT#pxb!Xf@oZ1@9*n%z0P1+U3%)baW{(G$&bF(e!SL}>B{^`Dt)w1qS zab1A!s_e&Qcz&nPW}0PMH;`}s2v035>x>YQ^n|v4j_7^)ewmC>a!5@-a+vOh=xs(R zcsI5;`F$!YpWsi9P*`@x=FYTw<>@!$QP)E^Ql1a>o|G&VEF9GV*X3Ssk{_eJG*kH# zOqG7|dJ!a+F0C5L;iadnB}i56NY^DNG1}7Ylp^n#QG|tS8yn`XS;3%EPiMX3KKe7P z*K1M%z~6yALOc##M2Td4db@F(N?9z8b2;{SE5<6&!A}^?7upM1ZphIjhj%R8VPv($ z8v$49#IT<&nGWv7ZJE6Ly)HP0>kbX}K73`EjhFItvg{FBOw7{3q%~@eruKx6*L=5i z-knl`N}J@njZN_|-Z963e3xFuuZ3Z1ZA-yjajoxK1c&#)<&EFFDp%_ z#2VvTJ^^|3?14z5ma=_komnhSI(ssztZzuqaExe899-`KhIx9M2;O1D7KU@NVvqnC zavBb&0_!*YlD|wV54n1gvII{~;zq^e{{ZZ$5K;A`!VVMTdcp-_=Hir+YQAF~r8oYb z6kaw6ZHB}4FhShSIkAmOk+rsnjV93xSPn!%|Fw3Mj$Grf48^uNh#zDH4cTLqFsWYL z`JExi!|1|ZxFLm0QP&nUevY_6{+6h6KiNwuh*>5f=N(#dQrpY(m#BM#l}f9uSI6gc>d!n<;x_4zd@aPW z?x*jkkAj>zzCdloIZWE;1GLA3SO`y2`T3J$s&u;yI$|rt>NXEIVwE1Onp$E#>1BuJ zkp`qOKdHIO86@*sdZa1ZdpdgS!(5ny)i6XU^=-%$}9m^Ua=r_%+o~Z&mf%^;SL4 zUDrJUC7C!4-)U~uZ%!$IyrvOzpi#6jc`lHU*@y3U<8=)V*{U^AcTn{7U&Xe#f`_qS29-?nZ7GoB{}SgV?9 z8tH63N+o>VDP(geT`cJ+F!Ob1{dxCQFgC0~NJJTCt+0Ts)zqwI9dr0@PTL?pCL7A2 zB%_;v9>G}TqWX?(>V?F#TWA)gkVbpV7BOChHGxK4<#P9j^SFF^L`1s!tFnDqWoxU) z+{~F(m!XQDHH4=+jsGY=SorKq<_m_GspRGcL7jk@Wm`?@2HbM|(!KYnr;|SwQxp1q}s4KL0J$P*u5HeaH9$nc2r$+m?Ga#}GE0+8OKmQ5W^Wg-r zA0^(%HCl#2OztUO-&qC-wF&L=pax&nveZ=fSqM<>9Q;kMga1+pS8{*lR63j)oXVo3?!fLP~|?LpXg=!c+X)!Ge)XQFnXSB%OC7BEe@? zk+2|PUXFUzVV5fUR1W*FFmZbHf;s{VfQ488C=o4_!CwDiV4<=s}Qa)a%$YTvAI~f$85H;PZ8d*0ttdXGSU=#_{PIGxHQzk>)QvIAWOy?-h zfDosOW{V2u;=LYgnzkLY@Q8R7BdF-|W2UWaH~GZ9v$n}?+4vXg z(az*z68r+#Sx?M)S9~SVvb2$pdQONKfaN-q$DL2N-b%-kp%u))#PS z8m=5`92;TuYUt#%S%!%%S<*hq%J+$~@4tx= zm>yF&DC5-3dcg3^;+%e3k=9ZF<{?l(k4MXFn_p{TH13tC@mDtN*T*|i4;g01Z5Jf2 zgYGq=rBEq{+md8nf96AZJW*j-_Dk`NEx?ASLDWo4W`_ODFTe+MPc;UcS&Z+4smi(N zy`N_kL##7XHL0Hg7c*f}@&=;z7V!`(}{z03$oXj@y8j6;Zy43C{K$jBH@dd!s3wH?jD0xr8vRtR9I zk#$;3p?AfNFZ9URz6O`(CQS4Dj)QKfGB(tmUsg+1AhD3Nh2%5&S$kUMy_QP~EusAJ zXNh;;R56kgTmrhtkcs*qNy5ifBO$v6Oak1g<3IEDTE=JQ?ealIZ7quK+V&BA%#Dgq z9n$@nN#3YC+|jz~L7a?ET+vw_&exeAgfw-iv!?MrX*0h7mJyk6FbBX-?1Z#{#1g5erVOAYw^_rk2@-pZRYB z6$RW;%@pmGx}6VAjp)s7@I=Ki(et0kF2N-+g0>@z`R;t~eyL+#<$4KSS9Iq@-6O#8 zCok$LIlleq?0qYxGa1WWF-*^<>E_~79L?_LNVoF93axbHt2gf(C6WEWM?n2bxAq_e zfH+D+b_t6}T9_vigv7+Uif;5=lN2Rz55%|BH^&I15+?y=-51VqTTtM3kyrx6BGztG zM6QkDKg7b2SJn=pdZJN10Pld3T1da6w78Jb8Sa^#tjW+ z-jBE2-Wq(8QFKFCyFvf{uDcqc`PNna5bAa1!MtEM?5qEvb+vk=jnj!=aLOHY9V~1T zSLh{{;wV^>lXV>hof!lTRiZOwGsTm-e82 z65nS37iUN{D_X_YCfyt8(H6m9lZLO!>SWG=9kc-!$bI8F8-O2%%NP(D;Bsn?JFnu1FttT3eXJBfj4PjPI3A!IOr-5l2Sp%LivtScb zo%QHmqRnJWdJ$PhW;TsaB|`gm6iEg9vOBLM9vv{mY2W#`HLtf=PlkiuJ&ENeGX>M)d9WJ=zH@l z3=4ycjA4}jV9%iXBX^5(s$!DCcgQb*M*R$R^Nh4=frsm0BW^b!rw$nK1)( zD-tBVy$!MNi&g#^b?wP}b523puk{koVrbmKzU)xpsmb!k!KSH6H(ZrgZPaOdD7Tg0 zy1kwfwsP_<9&Wqrs}kig7)VXn3Wd_Y@|nxTN8!Y`sgrzzr1_BPb`!t63a5QEN3gRe z4Qd^YunlgB>4>y(@`(5wWO=fPJ&k<28xQ@A{mjhnRC;Dy_Sg#Uh?L_@@>D%4C~))C zKX@XVw9;zUL=Y;(7JRkB8oIx|aw}~;eps0K+3Y;nN{dvUxL-|z|9cFhuaKyQwrIxC zRP|JYy#j(K_Zt~2XN*S7U=T?yq%GY6JNLU;6;Eb9p+n({(%alFFIV-3x*7WoYBbD2 z25ck<4k^&Q?v?XLmV6sy@so(XM0Vs^MIu?P%+x9R$f}-JFsBsB9;6TNS?{n0uq5#; zCZCjJRj3@>JYnm=%*dl*&$WKm-EFMG;&U7U4m&zO%aCN=PUAL}RUhMY&QB=W+mH`sZ}RXn6v{?)hDX+ zDgBeuraYp@dk;kETACYc!t_=aj$4|Zv4r8H&dn2JsSHm!k1*$PSFDu4G`Y11_K{~o zp(TpIQnoB}f=*Ifm~nI%f3Hv~=lnj}9>}*by1x0ky{cA(uxmE9#HMkU^WlbCvUh3& z=}`onoTr)~zZ=x9&I^7a{x>u^+YKi_?p%%6vcZR2F8<>jUH)o>3Q*Pn5sMb+g6zqL5CBk516m{xSVN+f?nHM^LS+~DVj ze;|?AoVVqYHDm|Wr*lJ|LzM9POs#j4wq>GDRdMLhnQjdZR2 zdG}ayns!n${oQ!J0PXYd7TSm(dY>euo0v}bh91cj5S+>u9}@X$dKi~eV=o`m&^w5a zBCUVoYS#HWAxy)4QZiZ@27H`8AI}Z0ldb7(u3{_m#NEu||Jn(q6>0H#3Qt>qP1B0! zZw&!L+@tewm6!)s^xY*55}K;X0qccuXtNeBHo_k7sggCWY~bc5?7R(VMO%jsk(TDd zMMvl#X7doj)$^ixT^9&;*QGp?(9$(e+DuKt((oQq3@A<_-e@2@WHp_MT+=5jo}B)nvigFD+5AUrNBiNA!HOR@HjlX*;1T@5Ie~8{8q!Rt)0h$K`WtTBLHH zH8fUkjbI_m;mIlsQq@R`J=r~-YfP!eu4@mq!&OAnZTh5rH?SBZ^#rx}h_+d0Y+RTR zy!Nm?H+00t$9)0fGIm2Ku%yE3DpX8JUaP^XTN8Tbq0!u;t(&J72~-nSRt;k%<$SJ7 zR6>ik;Ka#aRJ2|Z2y=ZWGXB_)ALZQ6u?PazaI3Yu$e!16hnTC8OA){c^%A`bRW{5k zcM;vyKe6QkC%`ypua@~Ch9g5;U%xtS9%G5MWBKj5erfigofO6|vQc7*&+n)0mPIr2 zrm%$Y!Za5o6|p!*yfz9&JqTzf-(eKmxccP*J)J7zZ)%0hahq0jH2ZNF$)2YW6&{gS z5D+S#%BB_>KsQZwfnf>H(`;zv!@sA*_v?(H5x?OFx^W9MRxs-v98d=az!#W3R)Q-5 z`6XYPO+`?y{N_d{fta_mr6K!PG!x(%D!7^-TO>P{P-2mn%k0!`bSwUUfQE^JfpX4g zNpPu!;1j`th0wXQJ`f_Gc{Wa5NYx|*)A=y$suex+k=#o_PO2c#>-aecgC)#|v)cH5 zFfQ}Z7C3j~ykRUYDcg9wyh_yr|hp=CZZ{dxNkyA+YO6bNh(!0O%dF@h_ zA-b6`(nkLL(kbkDvOy)t;1~&8GRi=6et+%zdgZ8AWmo%O9oG0~JB{`)8z_m0Ng?q) z0`UF#9+#Dl?=xk}-X~0#@seKvnZ(rJj& zTj3Fr%ICyugEq&GCp_sP*1>nIYqCU+bhtxAF^gHCSJ=kbKJ@JF5^ku>d^A!zV@8kb z%y+uc(B;-z<`7I0KB{`V;y?_hCaJ)@q8D4r?3Nn29%;+?=BHadJ8{>uvNo)h1WwYn zL0gN#-!@_de{5$9zC}%>RQ>db{ZTdf3S@5bkW1d`glx*YEm>JSl`5v<(>${k5#8u` zMmyQog1180K4rhMsMgMhswrF{9j2zUY#w7*$=Ml4M)8bdg5#%V+pPzd?DY*!&zewr zxZZ|(>)q>e3<<0$4V>~QA!CGO=ct{#{4|lW*v?{SU*1RRoqOsq*2_glj+%l#2;*1y zd~N;_Ws>^!*`8Y2VyZvi%~GXOdla1IEV-$}UO})MDI#O_6cgOan<;NfT8fZTjdbS* z#n&VxrY)nN@6eXDvwcshe`oy?q(@wlNM5xqajVrw$NG5k3PR`=!z*06aE!3oM9JsvG1i+Sb(6{EiqgmR!e2&J~4d*b!eJNP7=&#E~)Z~GIvB4^%c^%gGw z6eXSXF^~T+B|74T$idU7z?lVSy`bHip6`ch9TUf?M>&Q2KqDl`2NBzS*zL zYf#DH^bs3mHV@X;AU!sS&VKqnCX)Hc7BVa*IaT2yb#;CuvD7Y&7crb4!0O z50>*yV%|(9=B_ZgGwmhe>@~AMou${nxA?xE_=M}29NbsEQE@7CRSN}av4;H`%f}-@ z-GVP?a%Ezqkgm>I#s&aFKxJ8p@1@7s$hE;YeDlX(hE@CVAe6w(%*w)PHl?Xg<3Rhc znO9l5m?4rINyb>pToKdL3QJ`(oEj_bFj!LIJ}+C~_Qlb2={8Ak`NGgwg(;Yu&P$sy zJ~J*5u+m_Z!P|I8t?^k+$c(IMwrR6|0AOUj?4bS@@k><$lk4V}v>LToo+wsur}F{w z*-%Ba4^=N980<>=^7?5$>4!sk=u7Q*{oAPljpJhplpxxyjU&Or(SJzfd z1qAx6_0nm@wWmry2nIW6(P&FPxAF1bx;i$+8ml+c$UY&yOop14$tTWb z_B?*cy>eC7gO&PzNf|J>Dxw+l7ognf=gurqg$bLStFBzCPH}~o*XrQYt$NtZ@epS( z)tj&RM=MdqffcGM?@a5X6^+OE*BwDA*Locn})u{d(_Ni@+~8hxg(0O%Oz z=gvzrHCvuGi&G=oTCykiG<>|1q)@@l1(2|F#jdKkteasQ>~O6nz)1jLSvaLH8uSLN z@%j-@KeeZ4X;>(ozAi3FbG0Mij1C2%HUr`7FnSg1lyCIp=N+2jJ)h93on6;a#)*vv z$g1nNni_gHh1_OK)N~!bmu(r_4ck#--jtE9%nC*)QtwB<@fo?d&tAWGna}Sf1L0C1 zIpsh!;4yRm1YN<%+`OXOxUTQv@n$uU-Os5=gPao8$Twsl62gO8K6LFY$p9HK+oXl% za+EqBwy*=9VG3540ev)(bgII!QJL?nYy44Sm$q~TJ}rSre^f&yPx9?jFNgLNiw|$4 z<4ZwKM35X@dHnGswJ%K5DZYHgynSuOUOvA7iX5HK_U_17(7R0~7ZI%nR^Hn;-$;x| zUhe6(6z^N-t=~sOeL;pUFnf^{82y{VfPNz5Wij+L*DIH883o~i9zQb)Lqpc_jN*Aq zkSstbg6#XPW!Px)qp4Fzd(8V^fX=$1Ymkk{%vD;XV{@cw&61{Sl%2QXKp8&`lDUhL zZCN>RrreaA&yUv%jGysFKT?w@TzwGZafBmwpk=9Hn^(1VOTZT!%V^KSxS_+MPL7S5 zgXWc5Pn5~%aQ$Y0YZ4h&V54iK9`to0nNd2a&vraTiv?{|K~5aztNjWrDQqV&zhe9{ z3B0Ynd^T%BEeP|vG&3EIz{B(OFh5(lj~FizR^KwmKaEqVm)hFkCR>yF*d;U8LL{85>(0Sj^%WOg@t8>Z&}I2fAih(WEs`HB8ROt<~x0 zL(UZT(TWBO`?qZgwZF31lPSa(5i1i#0XPzpH)k%F9R1=G6BJ;RUY6S{YgOC_2{tTe zu!K^Xc=CMli0`~kUoo8o$ieK^X~vhUiz4l*Z*semX{-5( zMgSCvNy^$eOKc4StXzsy4h4SCic|KS^!stFLR2HSw0Ks#_|bJEpGYuqdP7_C;P%V) z7B*t8xou|O?^3qwAm<08u}a$Vc{=fU<#Jo^x&f|DRjO+Hg@kxbtm>XhmozF*U)L06 zUCY!r7vQoyMLv8YAN55oAmhhq1HGoBy$81C)vo)(ND@Jl6>HQy8s`R0S@o8VZ#kfA zNn6-r;MksFS!b)Fo!0ZJ91NAcIHK;Sjp6T>k8G6D9DI(z8bbW&K6#X=zNy#t9+{%Q z&DAba&olJIEksdYaUz+65<(YFoP;9Zm7Q+Am$8GNo|atYDnm$409)xOsBAIg%^EV( z4>o5(mS5t?AQ`~jeAhD|JkU*28Q7ZHPB66fw7y0j6|gg?mP1)-n=h(0m+=Bbd*U9%?pBh6D|VY~wl|t<3GFVqm=$7|FZL^BUMEclnL&bj z-|X(Q-oF;BqgP2BW*@ZYAajgS54pKL>}OJ*0O4mw?9<*=gY*Jso&`Q=9Xcj{{oEt=`!PoO#aM& z0G{Qpy}d=BgOl&!nhg?>5S1;H-_SE*=HJY@Kak$!YD(`be#6r~hWPI?!|h;xBiR1E ztt>vY{ae>D`uF$fA^NYIr1%$o&lGF0bNvM{{M{({c>WiL4*mDgNu3FG#hx#$N_aEg zRWI@!rgFqYU*{?`HZP1i zNQ{QPQ|rD|=EC)62s^W1&iQnI0cN9TA48r3e4hPtCuxyfCCI-K6=}v38J7bFW^8Q#(e^JtiQ&#c{dg{woda!f zJE8xPg)Q2~TZTc8_#Z!h*;#pej|rcqHzVGaSHn96hm~}7tzMk4KO!6b0-Vc`{r%Ej zN~jl#Z2e4qxz2j3{qg5HItfqjkBsQtxmBp`~rxc!!39$PJRJ^sslku9@sy%C@A3GQr`ZjoNy;92m^fJ zlRU_>G24ZMUp2bM47+=DooQtRT~dw1?sj4@Y&f}n4EhC7x=Q+P_P?1Lxt058yS!YsFI?i-))&PXD?2;-UlRx9%A7p(tom?l*Sfvx&wG4XyCoREgE9zKJm&8@RY< z($UGmZt3~JD+*$<>Cc?rOXS#hEhoAoyb6k?&dHS`5k~A^X54(e9WSrz&R@#V3FIaf z0ISt63i@(fts4>#%M`-aN!EFm)rD6Ov;VLdSIh=;aqV^8xHYu__5PEu>Xe>iG(JQ5g-K+9mM`497-Hz z-sDfvDZm|z*pkX`vKD~S;^W;PaZfpjhtHWt-YUcV8fdGZ>-CYW2?A@aLfI{wHy>|LR`(zg-Jr;2Gaw zrS<3@?HC;Fl_w!ie)P}1T>Kl4kN;EHoVc|p-lpQ4eN`SP&mlKJEbNk|0pP5Z4;Cf3 zxwKKvwd}Av*13u3=;ktM#cm;GsuDNAvPN{3ISYxYT(z{H`4ri;Xz&cec(s`ys}!^H zGY6~kAM}M5R($;n5O)P%^}QYQ-}^lA*`M-EZt{o766LoCxt~pP_P&Z)Fk#1diPxtX z%*dSwoiH(yi#?V3fgL~j3udyy&`kGI+eYnS^99?vf-GnI0EJOfSzM8*#W(^ij3Y7j zW#|$_$>{nX6VLDjtTQ#Xw0f`*axZm__N*htWIT%?S(|1GfivnhP)I|=qnPOSOZx=n z3(MX}JIks1@<@G)RhEcc?IL-1u|AS->8cRB3EQ(;js__8(P8}!l?tz+NKX7(-_vhM zScJlkq{?IRPir88Gc}NH&v9GJ^&8Drva9mEw+HtW@ZHY-AWhr8`{zCQtXX*9r#VXh$`JhSit?IUCUmIZ+O== zqaznr2gMR&Yc?ZfqAW<`i0p(UzV`1kTTex_TB-$&SAKlEhJjr-=1D=1Pj`N-+tYByP8|(e^ejSsFDjF;hoYKrr7KP4hxFi<(0I22!rjj)@=o z81{+^f#a1j_jQAK`vcF>A_cVjF^N6x0gNc*G7g1=Hhf?=PFqFk;P%tu<>>Dnua=f& zcnaHJC)bvN$l^mWQBBMGTwZyalbvZF(Xg_ciGt+Jm8|ksyxwomYSh(whT9i3L8b)j z#~rkb4cQ2LyBoaoZ!6XFfnH2D${kZ9F7vJEq`vmDK!Y38*j8F9R1-g?M36L^FCC~uV4;1U9v z*tX?Tx?-~aO#V4Rb+VGSp(O;`e$t@gOx6Dv1;I=^vK2y#si84-sQKbOdCYgiglhWy)n&xn>jX0Y2Io zKAB({6C1mK#V6VOhb=D2|JMZj--I{$->cZaISnCnO8o-RxMg2G`vq7ydxPTp7ac=L zh1#edc&O{VRw(SYC$<1`9;@*&5>Z8M;;aOSF$?P#+P){5p_{1OOc})t!TaQ*t8-rn z5)R!cMvAosJUsu&w?=Rp`_X>AdHJd>>BWe?P!Rvp^PNZUpr+FtY^}ecF8N<$@qha% z^B=h$7DkUhTX}x`19Sk7ms^f%uHxjPAJ=`cpEKS8gN9=t%(2jw zh%dd;u|9W~pp>i!2>v5Brhi|D4nKTP_5&#g)&3~2UWE-wXBN07t_pEcMse{;vu^}K z|L97MfZ81PC6WAH=eNn04DmpPX2*!pCXv6_-W{RER45c8bVPk@Kl ztQBA9)j&qjScDW&o$R5RmfFFz1Tm%Rl%`9KAu)+^hhsU){9PT{FxCtefdx89b?M!= z(oU$nnu?U3VoI)Y%zo4|f-&0d6YtVGwmtLLcr7?(P+NrGP6^4w`hb5uK&xQZa&k6YR^43soNr zihCcdrKB@CW|z>5^*X8qg&v6MadIM)QVDMg^-WZ#I`NV`B1Owy1j`jhE>fQczXj7W zDh{)?ohg6UEr}0O1$($xnRtk!47?nFa_GMP2bV*Se9EhW5HxEDUzk8WO_mEIZsoOTo#sY2D zLw3dQR@JK7sJpB)fXM}$Dkf2{>!oi>z6q&dIiCy*f|x|cxWl(r=}XM0*TDhAAc3!a zJLJ}NlC8J`8;S9x%=rBLRNrsO-13H>j*YwGm=U?J@H01?zb76RdezF|;0_C2-ibi* z07bn-LxUiD9@{Y}&(jm1Xyrpwv9z?MTj{D7T7{t)i)GLAy-}Qdha||JLz9-rTLUHX z-fYd$FsGdH$V)k4+`4r^%*WFbRIdtP5!<7R|ec$E8J2!z(g}ErAiH!^?EYq z`of0eG$Xqqfdw9mRFrSPy6R31x8->>Jj{!^P`vRWt{2P!&Ph}kdp#Cl61tDVk(4Vh zeb2@B`g55Nnde5QcqnW2NyAV`%2(Kpx{@B-23KE8l^PS897 zU0&VWlw6}Q+gVzt9k$lTzF4fMcyp7|D(Eosr2OT}T2Z?|@m=roL_DovS?%%kJz*CP zX$wo0b_Ar@5^`ozZW}j6c@uF=8v?O*$p>Y|#p){4=~BT$S(9gMYwP}X$?Kl(ZH?u2T|ZNu1I`E!ejo(m7f`%g8(1NR-T zZ`xHYY#r{m8CqRJQ{tQuNSimZgfJ&H78_b4GnsGjFRKV7N|vA*@rq#X_*7Hf#Hy5l z5?U7&s_KD~|IQ;FwKz-2+{VHP>)?-7cqF2C_jfTouKqVlzxjXj@!x$>0go6{`=8y46!_*;fBCDX{dHsi zy5!&2d6^~>p>PH0i0O>oo~&5aPj!hSIag} z73v&VT48_Yn(>;AO4OjlPofj$5eX_zwmbD>6#ZRmhLuJQIU97=?hG!K%&LZT{yd;= z^=}ylc%&&eSwOq#YmzLb9wz&)sLoMu-ylQ(t5K+bOaGWD;7+ z=!#+JI!^yBYroYpUbZzZ8Y#L;di|Ei#ukjDhjD?gafZy%-F4>Pda@|m$-Zv;Y3%Wj z`R(G=DE~>3AN>kT`*-A;?ESfYdyZxg4aTjELzW9F4fZUuqpa=Fn@2IOv&!(oe&!QD zOqw%hkEy+TFkZYKU7=$(pGuMyg6k)VB)48C36w`fgDI#lm+dEo-L;)BHuY^#Td&~K z(xo0UFr#t&*V+nIg-&^XCIU4CVqq(?S#2hjgqo1$mbQ%Pddua8bT7+@b(*5?)!p%a zGD*pcK;Cu;6@RLBJIGqq zBUD^i%{c-uTyy`ZyTa&q*nvAlI|4y)gI&7l#1DuZrdD5})w5QsHqLfJq(M3|GS!5yksM-62 zAE)3no332u@s|R6ufcdbbFZ&m&OBS6?GMuifYBu8$-2b|2wJgrHNgk&+6kYYiAk>5^hLxidr)K#^wip)Khg)9vF>UXL#4@Y1 zJT?X^(ZhjNEz>G~yc|F3iul4K4lwg@j1^EUG1`V+XE2f-jp{A%X-v1JDz4jH3B0^2 zXqtpr>C|uVtiUo2CrLl`<34q>v+@|q%5>H1kz47gl-ky6>}i9FyobGv*>cEDR}D*Q z(vGIatUXr!aX1s5tI^eUq^dM7o%W~`|fe}}&BfJdX_rL>R(yLY$lA>ZK z_Bzikn^SuiUCs1?*L`>t7%sjWJlUKey~U(~;|I((G+dp_!Wl)spn+CO0pn23)Fh-} z*KZ+c**?YQTi_=h`Mwaam<8cX{Cq#ApmvgI7j-|7ZsXlMGC}f1zN3B^SFZwN;lK$v z_&BYx*Y&%;W_?2vO^agl(Ba@#Ig?x)Qr@v8&;j`4Bx0-VcseG+wtwm33*jh5uDfpw zw4$JaDZ(N~moA;GT&_`P8pVLTYL#bJi2btj8gsFQvtU_+1z% z57;h`G@ND$+2q-s4#NtqW87)3a)5(%Ar}Qm)SFmAF=8agiJ$5>Cl=nzZ>ic6>O*w& zs#2Or?60jt6{XHoXxqmFo-V0(q@U-Nzu6{D%enHK-1ja2+6}=!6Ym+2T(pAK2CQWqT z4o%4J^C@{Zq^K^^P+9t{eo&;=Q0FGrAr==^r`tie-UetA!UlXfBD>C^&qGRIc=-4j z3Ql{J^Um+czB*LQdu|_H$|r<@ce1%7){{AZ&m5sAw{k z1IKV=xGQZHJKacYti$S3Y3J8M57Mgw$?+HT%&7_?a0 zEy_H8d!`xeliX0Gzr^UJGoS?YRU)f~KwVg_v8v%7&gDvl=MZccia8M;Jh}t zs^gL``X;HdvFJ+-^y!67<4N1#r#ImSj5N$!gK_dlsvkXE{FnW6-8CnStXM1e#`e-O zv=of%s|k)xbRlwKeIpp>KsBOzw8s8`s-weHSUX+^$!ELDon7 zB)?Bl7Qu30Ck9j&4bN4aR@*LpF7g|aJ>P$1zDxJj?U_8}lB1EYK^bBtWhvwR?tK2> zD%XZjNU<8L=C{4T0)FO+Glj$sOsT8KrZy*tv_;EA;WtfB@kE+}%`$1rk9V|>aUThS zxa%XlqnIkw3t%vK2wdPRO@{Ff4~J5R2dND!pTHu1+Q99Vh@cm}<%Ff3UJuZ^7MWCH zm8Gp<@mk0JR_k1KEAsK2EBdBz*FmS>lzu|27LD(9*O8DS!F=#V`_kEU6I|43{+Sgz z)^KI-I^)h?MHgI|&Ej!k4(HGhG#~S#(TK(DuYF{C|F|M&SLNvG$_J{Sp^D2?*k9OY zajIUZXTdJDY)-^Es`mqf?u6bSao?}rBT0KdPRIDdJU}IH_mVH3jJ2P1NKoN~tTo2> zXz~qITJdc;W z(uVAzy0t!ABT_MoacQq)@JeShn!s?<39+Be942ZkE6cxLT5|Vk;WnPaV#r;~Mdz7{ zA_)$#+Q0sY#ou`=Bb5tw!ZmnZVGbpJyJ&*~u4s1MGJweIu56 zxECA7MzIrD)u}~r|i?{!vtAGEe<8dT@K~D@Zkscpf4S)is${~c=CQQ zuZqulE<_1NcN2_^Aklekno@DdHRM?&AtT;o*0l+5;C*6>(tAwFJRX0)K7OpURbS~a zwa0j|77$lC*^GG#B8IuD6C_rKPHxpGeAkmGv;h~@tLk$}v!{fUBV|e2UEm4E-wh!K z0*)EW`Pl4l-{%}d6wTUBWyOAAPoIwy@5vW}Nwuo;#Z)RO>&KC+p!?7F-((A}b#B$;=a$jrwVr8X}l z2wI+iM8>6FB&U3gpQ2*nEDLx5l(}wi&HGqe4GwH|#596;d6xZ^`~-pr9g#+v*__He z7}URZ0s~PREH9%f2lblgekfdwOs36#**KAht6%})uRt2&{xy~;sV>QSfkCv*s#Sg<@Qb2RdgrQxpVQHw@qo3=rU+UI~+) z!ej)%tAN*qDzBRGm3){Gp{5T~;x)(ls?UNdP(*?Z=Q95d<)2a}GG8yU3A$UK9uJhL zze@hduYYI3j`IspSyOUBFDr#{gQDs&5FyS2AfK0 zue!#fDTpIc3MW;Are`W{kd23t-cb>53fDQnY<7&NWZU(o3u=_gZVT8nv7 zB9RcZhzPuORX(cGmG)iKH-fc|(?*#jFcD!(a`jH)8FsUznhm@zUEs`i+bELdzubt> zHme1e66*=^Q^yU(=k@&pcz+A%-SjL9#W4K%qg>?1!akcZE zoMj*q&fKRGZzSW#0({ICK5>!9V^U9C;ntvT1=leGo}>po{~nWyi7I+i_HKMB$*RVI zL2X&unL*mSa)~#H<)OqUNl@>FSSFhIw<+_G z6#?~uc+GqoQu(L9N4Da4rf}X)ioBtrSqFzkT+~7w&+V9SQAE7hqsKg=+Cb+ZY>{^f z$cZNumxNV}LK=#NjZ`U4L)=$%f?z|vG(&KW31yK#%yz2{)ZUffI4#|__K;o&s_6iT zqF%(vUvgIp;q=>J*4$u)jsF5Tl`tPn77Eo9=syE9P_Wn4Tbm-1qDMEAiy9>w=G4w5 z6R9mD{q9jj4nQu%HweKN5l@NkG{v6adz@cq3`d zvH9X5HQ)%cyk@_Mz}J4UOp+SwdJfvp6K?Y>oTrNhg7@8k3QxD2YR=vggJb@^9@_-2 zapIZJc(?{Ve(tWc6WuVK_(UqqrBFMUE!kK4@gKDIbzSl_c-jPe>qDhE1es~bYLk#& z?8`}lF*=4T8VQ7Sa-N#Wh>Ifukj04r8`Wff4BIB=p%UPykZf99S^>+2CsEh*M0rQM z1gcE>E4tvgAY#yZ0zYQ^D>Y8ZW~37Sn}FWjvbvb=-9fDb`wJk&+X2aDrD7xo1Rbnk zHhz(sg#^cv3H_J$6*+aI^BeL_E*=a9+3(Pm8o8l00@1ob&oS7gVq|?bCXxSd?EgD%an2;4bgYho(l8390aINA^g4OJ@ zLdmZ~ldrtYy>;#F4QUlEG&L@0Xp_Q;_$in7^kwrSY#gSemUvY1c=VV_&l7Mkdn+8z z#nwM&Pt>)^Cd*8sMCKIh`unzw_IJ8QOzA!dSJKfWny4~Par4it(LvM?Au&gDx&f7 z=R*k0eL%NcAN7vFZb$nUp;|K3DxXm)`G{^hyf%Ihqm*%7;9{7W{3*wI37LB@d5c&k z*${}fTFUBa9hVe|?1)Q`#uGTc0{X0Gp4uwf9Kio95Va5PJcY84O$`|{qi>4Y!gOWo z`&d?uMEUhhiMJ8I(p9fGL|vVu+rrvz-D{I~ysV5%`hXf&78PMy83hHu-j;u5aRH`G z*ktbZVs3HS{vsd5>$g0BC7Md6#iT@{`ywokyc51d%y5lWDI_$jd7`7=4JDC{fZ!TR z1`uVng$j(mo7^_7rE~;8OFR5PKzk63Ap1Tr!IMO5?$e;*;whgQaWDTt)U9RGElNrx z?n@TH)7CfvvA23`-@2Xjq`=v<1R}lkwjupL_z#pC(SSOo#KYj#v+Dx?IipqhS#A}h zN|c|mV;42qC_`7Rw_H2l{y~zjKV|5JAN_C0;Ky33xxd`%K66@skDaP2JspD?RchPl+qu^VGjst*J*Dy=Gg9~HMT%)wGS}Iq%4XJU>{z;wupbtF)-NX z^#;`xWiZb7s&p$t9?PSv`#lwb;QKGm&KRBEPSp*y-5TBw=K+h6FSeg$N?-(C+ZGb_ zG#6F}pUFivU@)ggMzeWWQrD)MxhZOaEtsi5G!W+1pjKMG z%*4hGO)(P-Ymu;#twQ!BHF9xEb^(+{{B#AzU9RG@dT^=ln|D zPp|;M4H0qt4E)u&m5*60o~@K&Gk$t!R_B*37M!(6I)U|t;fR#f-?O}X)mK`%ZGho( zrG;Lj>P=HeTH4L6wH+6-dq;XmH{ur7l+lAxKbEsli~G_hojC8Myvw{k%0=p>t*K4e z%MMzU6+hwd2Sgb15RdYtM?}^kQfizv779tY=qd3jr!5G~tg#N2n45e88EmO)p8~D2 z7~Vt}`Gxw5W;(G!O;QalaiycT>Cx{J$@e*(pcx+$Iu8u4t}D2@K6O*j`3ZLE>6bgP zAInq+d|Sjf+(MW;Su&LNOJVH00hhu!9C+sv@|tE(ESwnp&r8US~!i0!U^)#|G7fCO05UJe&`CBufD>trZFPEdI%W5= zMHg}?2w$f~nY=}c+Mq`=!{q8hoGf$(=`NbaH@x}d^84Z>obntSu12qJOoCHxPqp8Z zZrpGJeKdV7P5wd&_3vD>{drCHFZVY8Ex#djdL3*Dn%&wqnmyj8J_UHz{}VRyAJ?R3 zZn}8o0RvuCQGswr5G;c0PRkiH-yG!yw+FqK7kYz7Ksh0~2WRUTpA2X5XCGm)Me>cG zsXyL{%D&Xv5Q18meO;uNwiKbUv?POzl-BDK30KQ2WkA z+e3!i*6byJ%VvWQo?W{fbf3Z~->%64m=aqT>3{i_K|m^;_hdO_zOI7lLeB;@dUfY^2 z2L6Neeal%r`quF0yq3m#(Tz{qh{6BI-dl&ox#j7iMQ{lag1fr}cTdpZ?!mPRcSs>2 zxNC5CcMtCF9-QFrl2f~9&fMP9d(QN9_nbTTKK)lc_0+0m-}=_i-#0mRXFk{@nc=WP z@c1~vsjkjqLLi*Hxu3b0^u#QVt*{e7{I&kZ(qgXdW7G01aAKEwt_~4+4P?F=*~juz zAkdYdNVyHCM;9x8{k>&tXUs9i+FYJ>JJqA%0grC*QbG?kWC$`dwQo+tvi_z-d8x|S zACylnXz5YUx`(0pE1{jbk;at5bbz{z^;6Od1-6@l8XEY{ZM9X)qmEQp?7VVApNCB3 z4%j<|^fv|p>7s<{F?qNj1`n-;TV)*L;?x6kIb!x*;G~zw6A-?AI}bmC;_cYau)3Vh zozf=q=p}ZwEwxHezrpXhCHC@2=^|dX`VtNT(Cwf@?;t~P&itU(orzkbTf*xkY1pOt zPd+Vj733`(@b#9>4V0eb#~v-?n53v7!y9osP5@1N)p8ibmTob2!?)AZ!rN2~zK5J| zH^=NL)V!iV?gzxI`g@=9i4|Cm!9g>#s~m0C>I4cjEMir($`&0Yaw}OLJCzt$k#o(x zSjikC$)J>~orM_?C}u7Dx1>(r*!$_Oil-}VaKh!4S$V{{ycw$Jt(DGGk8})N5rw7+ zyB*+6%fh|n^p<0xVOBlPOeCghoyItn`_?)tN)y5F(s94l=)ACwiWU=rZ2v^V(Uu&u z3wg;J+a;T1dy-eLTSgc`Abo4v#8Ig%311WB#`|)m2zgO@JUfKzk}&e)&$%)VI!?^J zB?tO6O@3ob;G^>!j^_9+H8V5sB+*@XC?VsPux->2%$i-d8YCQf*8I5oxUH?S407a4 z#+VI>$&ugeUM0LD2wn|&g#_{Y1K$7AQJIcMMH>j7p%unCJbAbv5$ z5~_irPy`hL2{%2ALEA2pJ}%6h*O8|`OX5^}Ual@jk7_p8rusQs$BlagPv=cyczhQF zGa{8oY?xZ1*y$P7kR?mcxMbs;b2yi*^{sQvn1jg&(X?tYT()>p*74Ck(ftss$uG4B zG_JG<9_d+>_{3?90Rhb)2&$rJH-aeJ*8)OKt5%XX^)LB;G)5qIKkQ~Ew_>ZbjnvQE z$VWfb%!uxgGYTZosap|=t zFn;^PV0cdOJ<_X_;dBwK+{`%D>@sI?Z%poelg>ifW@vuQ=H}+esQryJjz_4IwUd(# zmOF}RC`y#wp}#zx_IMGSt&`Ir7`(|)V`DeGxrO3kUPFRd!{+Z_Yt(*aeDHmd2+ z$KBl0RJL4~R?BCAWOZS!ZR6?)pyZFgxuTLsB<`z9bvKFO4lA!%*t;saX2B3>m{|2r zz-8X?B~?`}t^7FI6jjNTxFoeS1m}Ujq@?&pCvF9c{th;> zwCRT+$>9JsVRj5}w+`a_Vj22DCMl41%TMD4s@z=2+LfEXd z*N{6lnn{*p-W|)gIe1I zV{=UBtcO?KcPh@DBclTDswU6Um7gB*Pvu@4M2Ttm@p$UyB1Q2~-$V_gQ=|BHt9RrX zX4=j1gvA7rRp*EgsH5~CM8*UhYu?}E327{7jXo92q(+G+QbPG_JBac#4erL*E$lJ& zt`#r`QmWJyC9H|Pm&p?CiVdKbFoSERIg}y(I`yRc9*gm zA$~Bez8;$W(-&Hot@NunGAwszcsg#2D?ynxOY)<9m|V_g>+ZJ=ZE z%Sl@#_T))jz*+B7CyWBH`WN6foSMY;)Rm~|fVbDRj>M8g)xNh~@{+TbRzqo~l&O41 z7Dijuft+V0Z#5S}ObQdAcED4hvI6Y(3?aUdK62KFexA{&AAHGQR&0uRGs9?gha?zh z$BFFysW9j1hY(g-g0HIaH+r5(*s@)& zH}nGCr8vN7``VRH<0vfR}t5Jp8hVXc~HuM4CLE6C0pH$f78DMzlEq*gniCDdQD?}Du%|` z-)ync8kbStlv)U4VbVtqAdL<-j1X8j9xp7HR?E4Sp#vVy4b2=tOEo}`g9bK(o=L(6HIz-{|JZ=#-5OUk3^A;R4pUh=f zP5x{aZ1=ZF;PMH|9^)pgV(k5vbj#Qi<1J@OGjbvruI>A$2p4>Y7bFB0~F|B)XyF^mwp(GU6%>_h04bXWkw!8#lIkc24wZ&-dxB7~7) zPKTj)N1unjO8Bc(eLIg#pxslCACuZpHQCA#v4F1pqj&y)URvMZQFw#E3^ZyD>*iyO zt|To%@k4`b3Ss)&*0UG0vynAr=vZS`>czJACMF#Ug_7e$w69JQw=}8aw5+1*zj?3m zR_%OmRSwIcdm-v24D-r77a^)74T}){8+Q%5r*`}v&HBgnGyF@+F~iI|VMNiV&5vtUs)8|9jd+LHpXcPM z!$4(>W?r5fbtg8rBzJSM(hUKYU>}Gussz!{+`9GC#Ex^c<;^C~H|ZvL2%`Eu^btwG z*EQ;$%d}{EIzM#+{1?LJ=q_4vB+5$-E%h<$rwVi`*gS)c6__amzADi10V64PaCsio ztBXd;tnvB?%XfFP3{eYgsq#8jF^ALw3pwKq7$7b$LA*ekFB~`1D$OCPp zJL9{zPEP=_D|79WKa$3ywR_#X-Wubj<+|_1TwpbP+lg!8u+sF6;o)`JEmqU1)}|_= zPpkNx+t7|)+XB(7(&wbME?hgw!qb_BBuTxxeWlgvPRh9z>H~%iP!<+BOT_Zze4@nt z*A(9ed~emUr~CzQi&r6m!vRX4<(?>iQ<@& z1of`_Nh6CRqe~cnG_*rR-q%AdxxZz-vGi~uvxQnyMti5y#+3yDzCWAYnWu^FZ>GA|R1U8ZCXyo;6Q`Ru^!c(yl)B3i~>Bklf-8+df zt&e8{H=v>7-6a+5vk)xTb)p4DOiw6j)suas#Xpy zix?Zu*3sauw*}ccxk65_&0B_J=#Zo@jor+kcTq){4n%U6+MFf>YqZ@7mcAy!6Tb)G4=NLDAmeb4jCZyN)tw^ zVJVl4B+Cp2tL)Sq+5Fg7w30&}L*$x5H16!flcEsHiHHwLWbO;sEh={N_@NfhjF;!< z=Bt(f&pKFF6~6*?FAvpUr)xf(e^|wgGixzs-b0LUTIa_vmD`qpsMk}i%O;=F4Kj_R zz^1I9LLi|NxG6K_SZ=BIMk&CKsV@!e)9btu-{LFOLf z+bqu0$-_O04?uFc{Z{6@?#WPO7By%Wy~=f;B`wo)nwntJhe#89s&womv+T^Wn84CX zX6Z6W>7Zau{=O2&Pns?{|b-Xr&%6Vr7QK%4dC zInplv1oNo3v55deLi-M^455Z24f?vUeE~9)uH|9Nb!&vDLVY?U;RHJwcBo4_`rL>+ ztX!+cRVR}R;I=IHmm``GOfa+yAhEaEkJB7kddWn@;YsdbZQIN1YnTV z1uL~+q^z3x-OhZ`#2mHnln?u-smz9!glDL?^2OzjeK`5>pm?vbIhur}q#8G|dCx(Z z#CMEgCKiTC{m9>Ss{xWccx7sGjPoO-T}wH_@{=dmuO$v1Rlo9NrK44s%Iw_ctJZL- z*{6O&^_U%!VU=M~l?inKCf^X__$x%~(KI`Wh<%{!%@%R%%74eYJe4(b@!Lgzn1z!5 zy6T;dPM?|ok$~8_l=27MPJ)i@H#4re#hjjp_KiT0--?^WoTawgPE&o%2etUjq(0N7 zEOBWcSFQ;tp_y6vaD#@ZCZ?LI$$n5(4=El!jx7ykm~rgkspb!z*Ugn#x$& zpm+62GNs5~3n?y7g!XCu#PMFI-(-uaM5%^Cxb@L%8l|xCtzB!x36;Caq+g*!DR(%a z@~MZE$TgG=IL(&Ua@K~E{}6A$PRRVCteL?7E$MmJ>}159rp=hnk!_1uMLF~TprHJB zfsg#5cb^z6{1n0Z3$TE1@XYwN(OwvSq%h5Ur2>*oXkp@{tOf z?8efA-!_)Q+~N#7GNp?ajdHV(GaB3cPD*o@HFC|E_f*dzOhp8 z-lF`+Vaj2LQ>JeCa0<83K362qwCIxjMaYOuy}D4k&l}lTm#Z09{sB z_l2z~sK_@44a7f(JvU$;Y5gM5-WoBd$2Vuem_N&S+`A*Io_;Qx^P67^izs?Q$sbFdDAq3@?zmrrRGXtti>mV1cI_pS(&HC z)qJV1Mh?hoKxFJEfJtI=vkjP%US&gF`qL&H4&$s z6EocHG(S@HaH;3-n>BeM%q-OgiA7Y~vTnG5I{6hyLx_Yl%o}wZOtHJ5M3Zm8H1XZ|^8DMh6+OwtM! z)DcxacHb*(R@R=~G<)aTOQX}+Sk+h`(|0m$>6UBal@pc|7#2r*!J6uaYRxO22>i;g zf39pX|3t={Tb8F^1NrDizNSF;$g!q#dZM3}v>^+{Xj|a1t9Q;AjFo^_1c$);mnrR4x6vfG|m#1>~UziLV|IaoW1^9bk-unGen@(T| zz0#97vF9thUQiY&NJN5J5FyAE$wY-GRD`Q9dn+}%zRL8zi@~|E(Q~i>yec(DA-Ac( z8Jd()g3fgrHUXn__i`ZR^a$jdqH1huPVe1xtmiSQi%_9nEoJk~CjFEe5eEgAw}l)G zJYl@%dGDHlGgrmExRb!MYRX#OT;1sXU1(0ihE*j>G!r%4OS;6WA$Ixagic-C7eBo8 zja2r*Cu`z4fDLra7CZ$elsp*E$`N_F1%cFBj>axkYIJwNSnd+RrBbv8CCBYPk<^YpRI^&5JR64b0X2*&#aJO+oJdDjoFNV*xu zeqrM#n*skRyoImA(rG?h7MM^?S$AFiTHxxmxx|v&G7wY*h%a6P$wcY-3RXeU{cpq{ zI%i^k5nsA}28;dz$j93%&AO{WfwqdA;X} z>iuz=D;;zrd8=Ah(bnm@o){Cf!gN$W4fR>rhvNvnBi^yVl}l66wTP8jZwE2?x7EFuiO8$gMZr3=K;qoZ_BUf`Bnp1W51 z2T}|z4I@{EOK+=Lsr+QDAm>xKwIAZPp!$SF2?D9ix3%LimCdBeLuxuBfQ!uI-2C_- zF4%%-vQwsYQ^wQGdF(^=FCSyy_-z*{FAVNwXm_@OLIhgxgnQ7e&2uX2ABi)-wstgY zUW0~T_sx)Zj(cnhGv7AdzIo!^%2N#kJ=D&xGvF|L;dmRmJKQAHC*IuFe7jX(=sBx_ zMQMckQgY!3Kj4_IV6mrOgG`)Te@c|GIH|}J_(}Kksmlsf*z?GF*i|V@S)cpsitgc( zmg;FyxJ1yo9OmYddE&8{S_c&_eJ=zGoZI=PJj0^QL@sm*?Ta%Lo2;khF=IM|N@P7E z$;cy)h?fJctNoy~luGzzz+;7Ib@mSq0-0@0jGzkZ%ZZyY0z~Pt*%)<5bqWu{|)57vthu)Dz$`r~`4fPuFw9>h=+<28? zwdH8*30(BP#a1lMlfd=SYm+662G99vNNK+#=#k$7R!S7Rm zAHvL18N``^a`3Q{(A;{aowBUvmOh(jj2X>K!|+axcDcTRwi{5+J78t6q1V-WXp6ii zja3zcY)uoW7_q+H3>9mxe0NxmJ*ZGG!fv zs^s04pB>*7<#d4jd+Lxg3y+h$qVB>2OWRk=%d&6-xop_xl8TS@(^?4_t3*$?6RTJohXuip zI{IvCL)zTZU>AWa%+6v@+M%og8N2n(hE5ymfoG9%L?2?bn$1T1UKraRo2^~$+vkbK zy|VYaxuw3?FO=Z^fXowTAOrM17>cu=U<)%+rowLIZ@&Nj?ZSWcpI>o*QnK6uu@`6vHMsH)n&DYIKxroWDO)&+3R+Fc@A&$}wFjPvzYAqIZZ+zR!?lq=*L*t4e*SO;jwcHzf|AITsD~;?~7obdck^W?-C&I)K|^?0&Jbo_zaRU`cl0cq7ubP zVw3;5-OVaA14Z4iZoMjsJvO(y!~liSW1KuON?&~TQ3Y}9V(>66+|T;=1b1~SJis23+#!5_^2qqpNDx5xKW~`#*G`G>{Dk;V>%{*DuJeyOz292-d)Arw zM?3mo8L8;+e0u-5v6Rkz*pg)WN14OyYG$2Z|njn;0ZC3A%z!mpWm1Ya3SaQ zi*Q`V(+9{K{pWoFe&ahZe(^(pQ3ju50)8Vp==cRl`m?t0gm?d%exWP>;J^RRoMC=H zEZpzEiv0eo(f@JE@W%O5&dq|CL$7b5?-+*PRQSf3XO`_kdh@r-|PzC%u3su-U^#C>DGj?up=;F0RAgX{1#MKI%{;e zlw-+j3!{P_0#Ak2gSq(x_6k^`QO>T|g9@uy=ILchLTA8y%-Ka-bl#xwhN(ry8YKAC z>5}yeFi_iG_6~CQ4owQTx&8w99gF`0L|Z)6{>H`e`*z;ih7MGBIhp*mvQ&dkeLMKx z_om|%4$mnR6w%S6B5oXGS=~6mtHMh^(27THIG#k@^GL zn*aCSz<<5N;NDW}{U+Ws^mFB_G6Kay#A`^2AQGU$-tzUtG9P2;&yF__ z6Y#vw>jr2)932a^WM7_J<(}qz*vGr|V8Jsw$OaF$)P&w##+XnfPYla$O$}``8-hOH zn;@h*UU*zDae(hI|UeXz5i#aK&>1;yzRRaFCs!1ad#MF@mpWDIprA1o@^9 z$Huu(to=*z&17U|W2kV#QwU(@>j~a3z^qi{%OL}p+~QU5Zx-YK2Vs; zUgx>lrV)3iuFaQq#ZJS}ZMZmgVHBh-O zT^vQ_{RL`aHO0G!Ldusot$=U#Nu*Rk00-%HB-kPuCiyAXH@yPPd)cKyn$G~rNwYw+ z(3vkviK?{?#)LK91QEqk~+WragbhZh@6n|ODF&o@x%W0D0r|%i5__T{CIqFnV)(zj#?zuO>{P~+`e`R2dR0*TT4}`16wbe5G-o-y-qoeTD>?$3 zMmjr0#6LS2r6q{aUOx?wmqmQBdpMczN>HLXqT@fZlm1iLi^76&@MFQl=C;E$TM^ym zlF~Fn;L+B3^c4@x+2=fK7>#C|sBq=2+eB9!QTy~=DZ#bGF@@#CD-ZT-g6 zT|-|;9zW{ni~Rza-pzoAcPgIGz;_{gJ7rG;H-hCl5ayUY2tiCIUk1vOb^X|$Ryy89 zWRygUl+Z5#ZFvw~|CYtYxk|Up54F(9qM4P_Z~_D=t#>Z56U4J6-^EAsH*-_xTV{#1 zoxbDmy$CabPyHdvs|G>1^^??t=In5c?#vGOa6~EZZi3|Q2~rx>js{U?#llUlt$N1F z4TddLV!-p?4yxc(q3&%^q7T}sfH)1Fa~_tm?Rgvri=Hj!p;p&;SMwYOKkO!t;~NG++VIyXQxQn& zJ(|*V2z6T9DqaH7RM>QRN}y^4{3A)XyRX5x`odKz(gqfcx6;OD+ zBvjyN%T&19_D0J1BCU}hUZPXrs*J8L8{BHuk4>Hbx@*BghVAkfAW#s&KZ2p`o)}~0 zl1WnT+=USG~ZhLa^nnnY5f99EQmW_t$+`~^T&c^N)0 zczV%>5R1Y80t6NAl!1dae=P0HxfJj}Kpv?ejdaKXgXYw8f^59fE*lCRXd4Ap80jc{ zYTj{=zOjj0PFoO#<*l~0E39ypSqOmr`-tw|GznelZr%-1#0ultneCyHgC3&;c=0pD zHqIC}cwC3r=2&A}IysUR#|}U4Z-u|VASSmX&c$dsTkiVWZiKb6=}`Aa$N3qjAhjFu zebp?Xlhos{hoJ?BJT(i7BM20~0{GeSjRVD(rkh4apLG12rCNxdyzX;RAu&1ohHfS?)Z1|X$e2nPt6 zi2v%>Dl!GbWqy@4$DpqvqYz-jDCO-JL&!vSg34enGq-g}V3Whw9YL0S^NGmkKuv)X zg*Xl{oMtvQYUXaLh8@~&V;aI@q$Uco?|`PM1E@~5$`u^SQ&h(dJR--l4ulmWsI=)} z=9qrP>Z;oI5upUwD#BxJW}xk>L>}`uVB?^NF&zPSq`v(`_Cux) zV^Jyw$rPLV_MDZY%iUIvashTR`d6`IYN>oX7$?lXwP7fAfSuuHCWpv$2g_KS7e8 zOQedA!iESo?WAr!jko#O3F@9eV+cQ6E5)=K1H_r~P)_gy;IqTq*In%@p%pauVm}()w@JCvMta zMg0c`}ukI z)%mS%(9O`T0_J~%lU4+?gBIFv61;6XYrn_@1)(&gwSaERh5Gn6`D*_gCiq_qlA`Dt z^k{>8(#>-0u_^@x`jMos0O<;K07v*fSC2$|;tYESH0c7kC6e3tG<%3=v01_cS_DOi zWd1tBng87K&Eac5n1PqWLGDzArm%u~T4-0fGf-?^+N4Oe^qO?&$NOtIb?*Y<)s8C& z-n`wbFx20qZknKNAN2mx5Y?U=E zmEi!R>oDaV+EwZnSIZsDopc~V9+-K&z}sjMn08p8VAvXQONuEzs;3Q9DlXOdaw&Q_;NL`b2G0RC{j;5V+Dk0p>M&?;xtqR{F>rF8 zSLMj!FJ3it9|?qkD-I|LJ^C^5btOc9IDH>@Uj{H6-C!aHx0!_m z@()47FFU<6;0Kst5iGRs79NPdc5e4(dD`R%qC$UfH$O}UM82T6$)f_VM@3Kv$rr29 zhGv9!`+SHwz?cv@3(!4I;1=3-TiA>&E3~^i0ZlF=$b~97i%}m0)s^L|G7(17*ZM^w1+_>Cw==% zwkY0XEheH7?68Y*R8dGQr*}0Wtw>W6bDDut!+!WX8|@%U>v|=ne|le?M;U6cRe7Xo zDXLy1(_M777H9SUx zXeFo}^tYEFhG94;$38o8nOmFOrt+PM@%nT5s_jrZ;~0X_(AoNi#wOnlvoEB42hSKtJJmvoOAs#l&Ih)=pqM=IF@mq~e)n5_UlggpqN>`SKAds-&GBogV%&5#@ zzMXL?sj$|j*Y332-1L?ko3;j0)Y4Yr=~5adwHQjlY%{x}i}WJVJ^8VQRZR8bd1;hu zYmO)FNJea8HZ-<2xP1&|Uhm8q+RoCAX_3H1@kp)uNm!+wJrUdUeaX?H>w%c*Wv0em zm~XxK-ijNzBv%#Z2vHTdu!>$CSxF%(A!}gE2@lTKoCb z5d#5FkX0d`rtluaR#{eCO*W9HbCcDl0(u zRT*KflkQV*C_ld4{oeV`w?`^8ty;db;Xb1L^ zgP1<9*Ktsu&Bf+Q-YfunY|X;StJ%MjVa6b?UT&j!EjK?*q<}g{ma97U)0yUM)7LI& zLEEyyeuHQWxjIf?s$i#VPXX+WRVwMJ>JfAd&Rq5(>IZy>y7TD_&&muz#tqZ9yS}6s z!EBO51A!QPJ4D|5 zwgbJGx?mTXo@Al665R#4(jP0!%S&P=BH7f8?}o6F5<7W$08lX&mNX_`rsN0l9)yEA z=|JgyN8?Owqp4F2D>|GlaH@_;7XTAd`zQt8Q3Lv^-itCuS0TWbXf1^L?HAz6CjLtU z@7_5!6L{M$^rhog_(983Z^8T9zM+eGfrjPJzg-!z6Mh@<18vNkrs@}9>d{JE=A>UO z&&uAa^8U=+Y){{9hbZc$*#1~CZPZG|>F8U5HZB}3AopD_fQS}d5o*f!E9*xc8%%&x zrlAO;?1b1JW(OS#Pd?x^fC)fFhS)EIG_&502OdBaK0H9n zh_YrPnIN>VJayC+tCU6H>k=v0m$yIN5aw!+=qGe|)w$et!`Bl=n`CR`Rer^YMS;6| znaXjtLE@jecu3^&igrBu2$`tUtwE-u1pKh;=kvBV;{>8@r1Pd|=gPll%(8B0M!dG3SUywZ@o*4|9Wt-OEs!D60q!u_*J zSvw~H590$u%h(aKD{v1F270XaS^M$BG!w@#cd|5#GsD7~)5X(fmCTWS(uiU1Pld!t z5nAZ!CzPeGL09a2>PI%*@Dg22wzM_#y#y_x*OMMLL71VacZQZ@w}680$#=3zVK(PrG~=~ zxzEi_YRPyoI+#Ntomm%K63BSqO|zlGab8MjgUzvx%=Q_KhBQjkq>Q3Q9)i7T<$ts)FQQF)xUn3J7o?_^A=9H}@ zdnqn_usa1+F~$ny`i7r3!$ukos1i2r`p~sRumJn!-G<_W=F#00^P9%($~VOX2DBj8 zaFa`t(GcCO&l7O)!vg{n@CA2PI{UT5uCqA9ZLE>J-Xt^+pCBp;gb5CO^w^?RN)fTN zr`HqwZ~YV5Trg3Qt~lwX=uxJsDkURtwIlH z7Q-viK@RKU6%)krttzzNJICb4#OADVST&;if~>J zr$Kc!uAceGSxjv`Rm+CGg`EWVgzBRC9DXzwnR@9UT zuM!E~z3gs5hq3{7tVzM+9ymZ%m1#8uT$1WS+d&-H&Us@w8;{4d za^B3@$t}2M(lDY*t>36I`gi)i(6ZWeW0MG%(?T!&g=K-#X7Ijdp6rqHN=)^DO{O|S z&6zCju?Q|N_sUqVU)7H3Y%pqbUSsAs=NO+rUF`u6XySNRRSqthKE!k?zQzuQq!=Jg z?Y;OXSL_%<{OGFfWwQ4gnH>7T} z@S%=n#~{etsNfPp!L5_=fNJ$U9uim~Q@XY?82XO>(5tWuAzp3}z9O6jGoZbQ zkN-?|9g;CZa#jWc|Ku%xQ73r{ken?7(?5wHVhJY+Z)mSTIO84Fo=S!9ks?c!U)1gb z=jg%jz+H7skO1#)$-O4{0*gdF@2TV*tyJ~pw>YsigpFNvRO15TZQiCA`sX_S`8@u4 zuKxLc{PVv0=e_%P$&aqcuMVs|4}Aq3-jnTpnUP|~wGt%$(2}$JOxaPM9x1vfP6lX; zZXPVueXO_wH5ghe4>eVcKY}|3JFup*vrB7vmu=N;W-2%)W7PJD@F z`u`?K9qv+Mkkc`ltiA%F<_qBo_;JHkcwdCD#%=6W<=%+^v0QXtu#f5ZrRjbLvRDql z&e=;-iPuuueZBY`GP+`2OhOhqm^M2m_j_qyI^;02qF@UyX z-Ba<^zssC@#r73eYJdWUL|lZ}+(M_L*{24gLtt3nP{Ro_nbYhBw;<#Wu->3hjo4aAH{GS&CcQi)MxMWr1 z6F25Mv1Cdo=-B;v4jTFgJgf|>`UM|<63L`P!PuYbgZg7?d0ta&9N`mBT6%sCs%R}p zcd4SGvFj&`G|-+Lf5~T;h1h65Y6G94A04k_0g$~UN$<$B+pG|bjNn}Gu9V? z%u_F$n+G?VP@117>6{~7xUpcow|vJ7=1Njz$yXjIL6#mLJ*46!E~NKlE;3jfKDA)e zw}&8h5Cw?7Ug7j6ehqqK>)2v6Q2n|9-oczCkb}mM#;Ck$W7*qv*d1Srrom`Z4%sFe z5mp}8g)~aiBlk!-J`6&`Ccf^e0<;&L?Y&e`QUh% zjVtihWJ0%_e^el`i!<4hgbgdWf&A-H=3b-+Z!_thCsVkbL3jO94{JAF3|Bo_Rs!`R zqYd0jiOax7nBecX9WF);ZpV3zbupv)tg>&9?U*UuDV06_#ukVI z41^sOEFMxk-~-psj+8%urUv&$rU$0#Z_T|xRE<|faZO=6%w}c>?WheiC&|~;jkO6T zZ$@w2QH)dp021g}9~>bF7y+c;OSRMDlc|0IzA%q|S#ydVxmElCQ!VwFmOw5OV}DyMukfc`tghx1u4HPT zw06F8 zYqzznIf5C3E}w~*)wjw1@{`lP#^@r>=pv%^dZUf0imkIdRivbjKCQ9NPqfmb;>uuC&82 z#$lo*3FWKWF-(GDO6Y$9aCAwOdI?wI$0t1QK7$^Ap#=}LK%9hnrQffbmtq&DNHDIM?%uvY0tPorTfYD@l%9?x z{mGDc-JivrFcP|GsS9k5=}SXXY_HpcXD&R<{rk0XAOs(Q-=0LzIqDS`*DNk;hA1&` zjR@wX@Y(cs6h&1d*vyngSB5ZAk`vupT#0I%7VbVf)lSXb?4BOek$+3yI17O~!l5KD z#O+fcO)tQ*l|#@zP@fh68drSFoYFIG3YLB!C%{0%vr?)U^NoVBcwt~Op%+uQR^XHH zPWMMhe*XP0z&%_HG`se!EwBzKSZ)?EYgpTye6Ysr5J~#(UIv+-JG%!f?O|_%rv2F3Ojgca(&pVctQsvdk~?C?VN$Sa5zcH9er{U@pFMt02pRU zP{@;sqJ9U?ZL3%$qBPtM{t~u5R1FnAbT`0r@8QIg`I-s7D;XS!uf?dCvjV)-Os$C@ zLnhu!2FN)=m^OomdCMoiRQi=r0;_Jg*Tg!!`#LCHJ2H`SI-126nBz!E%p}=J$46qY zSKD-IK)mB+0E?fWiR#WC8tc|R=Hgfqwh%S-(-5L$jQKFXreC#{&&7GB?B2G8R5p5c zA476#d^n)SGoUOQTMTLn@k8NLQP~dO;o5f+x7PxWSvr=~W7$`F2?VCaCZsOvZ`_iK zXnP_ghiG5Pv3DkeV)<4&!rO_u(2tu8Uw0!Ul8};aMa)3e6j*N?`#}ck7XHg!$BeRsNJAO?{di{lzQUxPgplL}pa5*%B4bbq zMeZaAmEJIHc&GY%7_S_d5J3NVpkG8D3}Rj|sJJTJi~&2g5HOO&eh|_m{9YFdli<5KEs}K+|ZQxulhiFc(NjcO9|y zEEC029vi_k3~u^xmogenGfhpc07I~ra?0T$xrv5na~ZIuH^>+%o(;*;iWhh%MCmFJ zwhVLQy9qep58v9BfsOFV*)k0iBm7u|@cP#O)U2ht`hT(a)=_nBS@!US zOMu`I+=B)U?izvzCpdxN?k<5q2=4A~!Ciy9y9Rf6x8HeP)!nbE^QvA|z3wr-@zo!U zaqs1xv-jQSoVDj#Yp%JfR9=p;+)Ql^Fg0lO5{JBfrF+^2lHBr05bs{t@UqeMC}%0yiNbB0&LMM?T!LczVUQa`$Q$@%N8=e%{X7$5s%!Lr7e! zo*Y`pZd}lKc^5MyfiZ!7K9tT=P=Usp5j=7zZXIaIVdgxL)(N0JmSM25nnFLV99G0C zBSI04rD2doTN!B>J1!_z;@BcFQ@RFodwx|u+|s-aoujXV@$@zLvjBnAU*re=`P9b$ zlH2h2N(lb(VIf+L@UKJFNUx>*_!Z2ufLna=ui*9{KjuF|`Tx74Lj-@j_LUxmxwY?* zExXGbN}r#7!5w$|3@QP%soaI-QqrHHBExikR;)NL!h1Qm(X+MyF$h9jIWScL!k|S@ zpxISk?J~^((e!xV6y$ty7=V4M`|j8wG8^SYpj?7~qjG(i{ox_5(fjc>4JkGIH*OG! z%!~nXN2}S|Rj?MZyK; zUf~~72Fb#>1D4(fcgee`ic|QYpvvdgecq2xUM4I5ih`hwx(Vi;wk)*b2kOS-v!WV* zUDR}L`A1@@1{dcvy*78%%a_CbBO@?rLQK+LV)2^TkcC+o#OK5zuzVSw#NSJ+Cv+J! zJMmB06{9hLLcSIi)LU5?q({idL0f*`!<=!Aq_`UA>Vty~$xT|_$2w|UP;jGEkrBSB z1H~%F+5sCxHui<7b(7m#WEI;M2S6Mt!t0o`XsRns;Z$+ozJj23)1bedrU2Aalmqchar>PN9SU9Gv(B0vCE*9}u<=@D*(m&855q!qE6j*95viS)9=& z;l~S0hR2B$DyZ}>NV z{bAG3&Z+zJDK-8JQ~Db-`t^E@?(?+oE`EH-UnRPQ7z9ckr}*z3LJMwuC;yef|JHi^ z{n0;e5-FV_AIP8pi2)?bdn6#$yH@Fn%oP@bTJP) zh)`4aoReZa)3ayQ_xTMw@%L??^Ao5O`35T&=+H2wb*pJEzOTU&0ibFWU706P^)%6~ z9G$+5Wb#Z+q4_L9k(qNFCVcO*{0tOQuBR{qwM^c;x+FeYk3a3Y-$*IKI;8YyQW8kK z6ILC|R-n&j7xP#;rd-UQr!|42A2jsBNavfhG&{ZZI7zHJ^js{JCqSJ zVY?|9hY)gP^G3rZmssUUF`7<7HMg_*-SUS1V6}(HM3srI|@y9VOX; zEDYKDN$)p|Le(soXcgq^B8%p|PX6;(d&zEQm*kK8-=#dh@}EM=+}=%ioUhnxQieI6 z|NYDL>n#_*xL~=6RGECUMkSm7bPm#d^Irc;mhXuPs7nTEum1JDR~2$)$9KA;C=S9l zJuQxh4?+TPZidcT$@QD5Jn&B--lC|5x9*qin_RE&u3Odt^-PiIRXT2UoU+;g0|Gfs z$&!j3N2*J0M36afq5gjWPkwX#@v(e8);~^rER6#c6<`l_{r}8rU~`rDpAVuse)u7Z zl}1T+2Vw$1!n{-069@>J@^Tq}-r?=NfIMpoQeo14^vQF zM2DqmNC^O;IlzguP6)lPIEdlBC-Eb+C(oq^yq1%Tko`(LWS8^~Ed^QITCLAnJr=Lc z+rW9FApz(v|1}y-c?Er|BHd4^pXNNGn-_&z?D*S$ym%NDAaDl(-0Yaidz@@j%7Fw_ z{QfJ0FLCP%yKu)ccP%3@e0IZV*G`*lE3Bpf$vy_lqoKCDs!tyY#*#D@h_0IR5v$UA z&A$)Pq~54~Zc{7De?BDG9%@r?o`$qa6`{ZMf+l}k(TiUK6amcr*RhEIwRgyfsj5w} z9W|#PvPO4qnP}rf>=oal&<+ga_{GDYwb-?o>8+80btR|N=-#tR-Wd~XYGUH4B6i0? z=4`$-a;rpTN%=^8WYa#54&gAqia#AT>`a*YsGAFiNnN_m3PEd(s~K|Nfgfm6 z*)=dT4Y477@6(<)zF(!N@m47HWU-w$R%SPT#fvS{YQ;FIj)3H9mxeGOiv7W;-ae_o zBKCuRp^Z3MEXj+Av?OHeHysxT0(fkn_{Orw=&Jhbgp;e5HB&5X2%@ToqX-3HN_PY> zoxHdOlBk`nFpt$VQ(fxyKYUleqAb0^vx zwl2t^$j>e7>!}?{V^sm>-+QUToQb+{?gyEcBt#hd^A_hive=fQDMQ3RX$yk;m2S@q zuc8CDZBt&BmyML1&&we8jGBx|5yj)nGZ)MwQ5bt;wwkXdFZ=sgW}3$%-%93{Z#;~ZNkkvB9|$gZa6xp@A$OoQvx@g-ur zbp&iT1~2{ldi>bH1vjmg^Qp>K*2>F>?7@b5zl}LxB*rthkRYc=T4V|G!%BF?`%sy& zqj81Gucx&8wf^K9$5y-8dJY^sldOF`fh36KYVh0(`Qr!a|B|l^Im>^S%vBX;%j_#n+Tc0$=j)( zt7@2C?5da_$kq#P+N0V<7P?WKF|hc&qDj-%b7G7+I-B(c3w3LgG{;7Kja3<({vYm# z1ZbV^p6%Fl+*G(#yl4uQkP`}nbI41Np1ge{b_@NrrzJY5QIK zDy+aq?;hS@kgZy(_j!@xVahXA7!t8FJnvmN?H3o&o{V_y^^0M)Stig<-S?$UGA!W_ z6EVzKvD@&Z%PtpbFrnC*JE`Xor4kv+7l<+>9k)iK~j}8VazGxtg$Zg zS>_gPwhhOe&2t3q0FbZDweQDo^WP_<9GTySJEwm^1FhKit-sV#Eq0ArjI; zL*2R|3q)kj^=ZFilCUNE=0c!PJ!3f7*<|3y!!kqevnZgWs#p(Hf=uv1m4AnokQK4{ zJiQvzOZP8dTkl#RVf(4QLzo3n)!YQeEs9CMJeSAwJzcKT`-m{?^(Ip{$Wx3KLz;tZ z1O{jtqIAn!85?Us@)d)2K#&Jn0D>%~1yXz&(g+-1byA7N2vEz5*G_fMFw`&y^7jat zm~5}a5q}BIrTQ0Y>|QC!Nf~}i6tX9C1V_*B6Ja+#}Mbyu3P2R4KayW0R&r!x*Vs3am9GLjKxTCddaXIMblJ*9vgx(TF2q zDWU`kdf&V>mNbWZe)Cn`v-8c1dqs%&JU7{~^BsfWh?TX9aJSu4m4^o-XS3&RmM-ws-TuOxmvfo(;P4Z_p;la0->Yk3W= z2pyh4E=td49;86_zxIQE+bF@LI;HfP!)-mHNwG1Lilkd=2f0n7&`WRNL&q?Pe>gZT z1~98bf-KTGLY0yNdd!LA2+9$rQ65v{xN#4!88+$WPKAac8zLgCKv&i^YE|__w z4~0Ceaf*vhQNk17D|xaT{VD^7lr#d3-$Xe^H`7gbk-(LNVd|&oy)9@Zm_-x*1Zq>y z0D>lO`hlo>8US&&;eGGP>t8=W(Ka7bBR|r60>T{s{>C4?9(A;Q6k`_nqKF4sAwQm} z`>Fb$gE%RV)98cib^j3`Va4FsxuI@y(NT+3)#oFGZ5^mu1v|-;IZQ=6WwsNfuXe4V zQXkPrr=+f6oXz0$4qAbB$dgt?_T(Ey3l}My?I6h5co8+F|83nE?pr2}@9i|f^8)dK z2q!7r%S0w1w7Ln zL9}7(yoaVA)dv9r#AI>uqEPF3fEtI$aZFi0Te@|=q)GWMms$0zFdR6MF)G>46jlR` zq!i{EIM6`dwQHWJQ!Mb5e{29)x?e{ETVI|csGpJ7qH^3^-M3ahOr{}iwek_gw%rOh z#dBvx2sEfhz7)TN0*AJFa@GHZHRPizeMqcAM%kU_`dURjt0r!BSeA~=oNwmcB_~L9 zU~!p-taSp@UIgFrh!QBIUdIGbHM)=;+3C6Z5Af;>m^OxZRE zStGNYFeO`@a1zy#HD7AH+`ZW3ynunv?K(O~c(oa8yNR$#*%d2bb5km)r*%!-f$gGI zgF(ZFGe6`YxPgW+bfx+0E#;RS)9+j_E@S1J?25|%niavXWIrM|gHpwrNcq=Jnc`9=0&BwA$LekOoM7b2<<1AcH!{NEOSpy500k>YE zJGT}>8jkHi^5g1o@}_)CQYSS61{%gYHTO_Eeo}-`dZkaFw)&74&j*eCT~juwE7BFY zu|x1c%eTwN);scYp%1Bmd&U37V;*)J#lukR2{gO|lsKY}Fgy-519kF1bmbFi79<}0 z$`j~y?&E#80Q{eh0A7o}d-gc|UtdatuXdP5d9gKQIQ*_FKlEkC1SkRvx)UCl?L4)$voEqRayi$5(v#h{ z1RXZ)SM26t?z-m1%>e=XU_Y`@wB|GjSizC-@~Wc>*c{?@aAN!KWxy;vJCcRFQ^{5HfXIdt@W@58HF)l8i@ zuRkvE2_E`H)=!H$g{I!U)mNWgrg8Dh5qEfe78RFX(k4`?WH~$%s_*wud@pKfMXf;bKX+! z5$N?tyvd?_Qp2pdAWijd$REP^Ud$w~Z+oWXuEduQ@t3vj)1a>@+u6As>iDvzM5U`@ zx;QXCY!vGmW9qDzIT#R80r_tARYa22Cy;zuy$`t4gz}7O=5CcY^JGr&JPnz9yz%un zH7y~EWMhg%iz2Fq&&3^6<21s=uzoGk3sg#drEnZwuOQ|ezu2RH7cQ$w6|dm4sta0p zzN-DeldY{PPM)}7M(-jE)w`0cb0#x>&&^sdgqh4DMLrWQQU3-Hnxo|hPA|^-vL0b2 z#M1SeP-+LRVoZ$B+uai>YzvG<986)6ozptmqJ1fljmx}KsOC7~5Dlr$HVPWOf?bQ% zNmr|25Fx{lTR2eLSR;YUYfFptQZ6@kT-MGgQ}THY?xDkMM=S$sSeTS3hziRLlSjO! znn^nI&SP`7#XhIE0iiEi#yE^-ykK=-B7VN-90aM=1!`1JzMLj0RSlX7g{oe)LxhhF zj*4wXs#QV|AgD`2D8g#vDrBoysq-g|nU-&EsFhvuA|LD+%YnW7A;twXlw|j^PweSn zXOm$)U3gB`5AP;=q6+MZ&we-|3^{%jFJ>jvT5a6xbrJ2(N<87MTx3h&M@ zR#zqIbl(3ZLGm+6Y1mtQ>aH|BOXS|(F3vpxbnWA=eCT}iTg}3H`M{WnEvz@{#=1J4 zeI2dU@y~}Q^yg&KIzg^J|8xrX_xZyA6W;u->T)%u|bX-pV1-4?0z>00;Pe1P6P;b67OO1ZnQl* zV&x*e=Z045<_{1uIfmi-(ufknkfr~8I?`V*exVb&UgDk5+o+w`wTMyAkFgK&>BRYn zqw$d9+skJ_1k7njib=8Tg!WCFBe!lX&K>R6gD)rS)}wO;vtt^vAQWo&*q=-ol9tM` zMRbwdSsQ6$UIN-kAF^&eQ+C<*oo^LLn<9Eu23c?BM{$t_myiPnCHO9%MTZO<-)(#S zcH~*!C*oOkF}jPWNU`Knn7OY#NhzZPZ?ck3PDfzu@dK%SgT5-^K;e5KTMHonY4YGf z9%W~~vb^q_wm6e-LWJzoakxW#7x z$bVi~RmFbL1jMq}BR@D+#@hDU>;Fi6L>;7gbSvUNCVc%!63f#NI421>^PJfp!_m2q z;7%aHAva9FazG9UOX80;Z}kBv90IUktFN|Vtu7+~A?FZdt+Ne4INI|B5XH6auXPo7 zM7|bfDY-cXiuPNany&*mHvom?2H$(q1m*i1HIHQ;t$ShoQ$V0uv;8kd4{>%xHl_#A zJ?v&Qpr59cdW{U|P@{_SH27A=0;KCNwi19FKqGSx10Yqu%oNS`f6w*j>)K;@TpVuo zm93&i*0meAt9|>#$DVKHbIvz$d)$2TiO@Foabw4^YlmHtcsZy`8-DtcEwk{l$Jejo zy4HG^dRccAQki&Nn72f;l(zm+(N8OWlCDV15OEJ>? zI&?oXANOfUH>f?x*%ixxmrd7#x9pwhv$X@JBdvfXp>pK_oK01FgZB?}g3qD4lgyF! z6-=()n;}t~JLWy2yO0@?%4T|UfJYp@>1FFk!2LN0!?ZGGmRldw#+hlFXs;AQ-0nhS zXso{rF=w4BA>h2#A!W08)m{UT`=%kXs}ts^aItPOJgV9Xv-10DWJM-hvOHp^rd z%Xa#n%gXQBT(uM3Ku|uo@ABVT)fWvj904)JpE!!Y^Fv5x0sN`_?+P`oUbut)fa^H--wlK*l!VQtmI>sp!Zo zyo|34BwEz=jGKPgsQb=M%K1A^i>{h|GMFQ(1s6V2!N$uDMlr7790!7VSF zcTw*wDOG+f*5Xs`IY!^MqRUw_bt7r+OT$MLME*zj1Hkz4KT^a_?s{-MmLabrUkd=b zd^cDBVZVTUZ3173!cF@g%A){agTMguDb*FQK|p5LKXdnjKZ)<(hx~iR{(Zyz`+4~V z?)=+a{9jqiqTjU1lYg?w%=R)M<2J~}cXAkaC6KUs3L_X!mr343NP>s3g&We@7{kM^ zSh!)|ZaC>|jyx|C{X1@X&v5ANE+O=ISV}ntY}go>lTVT$lH+%!Tv$w8#d0TB3XlzH z?0AvtrLF#j?e#B{HzWy*+`&yIzB8@Uq#PfU7_M-5?na<0|C%iULziW8wrFyj9Ms^J zh*^oUti5V#O?t@tsN4MxNO)Z5lG-B}yOPx_Wyd z=cOUBx77!C#ab=mPvY4fBThvU-8fYfIRZV+`&DAst?z~50lmlV|8%G!lrFmvMJQ_O zgZ2Hpa8&eAjKIU|BNsByk(t{ME*n_)atAulKRkg9A`yc;5QN{$IAW(EMGBs1#(a-k zqkA^tCT`9!OU-T_6xLq*YJhQx69mrr)5V9ZT8P3LjVngg7r~}(K@kR7qd7gNm5EQ& z=+9=?qUTSUNxe*?O?z;(j_d>}5t2+-f@@UE@ASZrAIxBNLyyFvyy#L^2&K6UJh=vG zfYOR`W@9d959{&}hleUt;U&Dv&eaQTkPVM{?4iAg;P2A8c#E zq)N_~y_suak-$Fx(eM>oj1qsZuh1-`(1r7*GY^ESGmd)tR!j;f`|Z7paHVQR#PfCa z2gBQ3(6Z5x|XB zhMvZ!S|9JY?-7`Rh zQpjKR1S*eP!9|ZIpQoZ7vcfV7{d_3JCu$nKzff!>x#mvZIAeaOYwGuQ%~;i;poPfE z5j8Abf?z=!Vh$NcqcBB8XLzk+{ODl0K@al^Gsk?CrfI7eM1jJ_+ZRy$<_4*JsbkK3 z!r@GmEBbp_I}8GRU*6E@8jccNh?tqKF@XuEmM)*@_iE}rJ~FQ^yigLAx0kN(GURvt zYa!V&M0vbmTUaJkURCqUofsr$akV?r&#DTUzjb^m&8J%?Jvxlj%IgaQAMH!CfS>En zqiUV|V|8qIl9Z8#R$i2bpq!Y*nCz`3EtPp2Q#04+7>y*O%=C*DuX3YcBXG$Z_c``?{_)1-f(K36W5-^M4Ce>OK}(-GH*bM8o1fF`TSs9vcleW zUX7(e^JY8WySA6KYp60m5qmB#M712v!vLl2#Yym;O0A>H9ErJ;kFR`WHRToAk~2uI zlC&I}KGT#zK5aRLxr?(?&D)^No9)m|K{rD}${*9;^K30b`E#3TGLU1790mB-B8-$`^W@N#6KXbp%oJOn-q zC%L7bnv64EBGs{d%SPPl`nTai1}CbOOal_RF_CS%nqFo7)XP>j9pGt}rH-I_!sJ}f z>JyNV4(qxd|EqOZ+#J>ndihtcAgCZVl!#8bH9e*SJhtVgxvq!Rv<~+srmuCMK*WIk zEBP+^1d_&jKjuvNPY@gbIvWdR=q-RhRI+?Pss8e?Xr!;%K^RX@VYiSA7u0TvXv!r( zm${2bjTCd$rw=nD(_p8&gC`5d>f-tu!L~Q&R{D9$RRjwK!IAund}x~A2#i$rb*3cH z!}gHW#^Xx_;Lf>mC;PJ_4yX0ujMI0ud?Fg2Ms=-b4yOOM(8y zmpHfiPasjt_M3o}j(dc?_IsnV61bDq{(X-TdVuF6@tTH*vh~bhro``}?>v;_AKxv1 zcDMihEMTwWqx&GPqq|#=$M68qkKn3pudWi8HZ#_I?Il4yxVnSBdH{BdN=yR7Ao)T>I{w?XtxjoA~D-hcx6gmc%3QcCD%D;Ojx6 z(>cioX9IrKtne)UKv@{^|Fa+a$E-Zo`4i~H4sOAX5_@&5yoUpxUzTMregc$*EW_`C zzKN~wf6GiN| zIu+<;fw-iPwZ+)-yAWU2kD#Knt5%YS3sX9RLT&vMoOECX;N%pyAh97R$>mNK_Qch7 zZ%|!H{XnN}&%DvcoEY|IT^CB^bp2QJEQ3E@eCzV_k6O&msknRWS4R* zFO?49ycV^IZ`|7{^9y4e@)NG?Ir16_@{Q*n6UiKH`i)JE?R**o^;Ft<%TRSVqI5K~ z19h!VuSw~W>&AmqZ4Ko()Qg5C##x`2q}V6GRHI1fzFF6K-@T;afjphC^+}XjiQ@>Z zYACsQ*2G#}(jGzSim^G0Nl1Lde0bWpNY_+l3bR7QekjtTB=O*bt3$Qn_+~}b=YV)@ z@v6Y4F)K-8xLhc3&!C20W_p%hy8cMtq}}Yk{FJH6QBf7t_`%8x^;gmOU5&ydO!bJx z(y9|yE~`FtcN(NL>~ovJev>RkO7pT4bSWbBf_)O6Bkc zs!WUC=^AQA^_9p-y@xpyv(O+zv|diXt)>nAE>~3fjr_!zg0fI3tb}J5!TT|hGWcxJ zSf|srq%oA(pcMCSM>CU^M>+-DF2PxB^)<6eH)?}j8J9hR;V)CTqh!%v#6s)S77W9L zP@U1(geI%U_5{j~v(lN+8LXI-dmj{Fg@pzWVPJ^2?DX*9qb^1mKWD`>XFY#}Y5M-X zsXAhH?!tV)_AS_KzK$m!hFnAsPaMMKOwvA`AFZ6su3^lAm6SZGBKQNx03OIacRwH1 zOP&e!eJhR`1+;Cz>kRk;a`zAi54ff68n&y*!2I+(bcf+fQS#MrvIL=Mg}Uf3={9Mh zktvMt2kNng>M=J)UshFDCBVB&%)MtWm%(9r_f`2vKbZ&HTi;EHFrO|YYDItfvYiwZ zuFy*}kGZ9jv)JC3?*l9?Y3tMA3KfjCL0fr4rkrZG*u4eY&d~?e=^sDlZF>zFZ#C9C zXU2nGoiv7r4QzR~Q1wMNq`;_6?b(_Z9cBCOCXg?t=6&DqbteBlSXGZ)&Pa~Sp&OiO zr4kxcv&MVYbEuL%aaCst12J2^ypKBKwYj6`HLzeW&QS8j!kW}vI z$ORVx>B%t-wD21ScB;}3*+7G?^V@SHGnZQP_}z;+mzV!oaUw*ko5-4^$YHEQAzy|* zi6?hnh@8g)QJ*K#&&~t$?1cSM_@;U9d+1~A+z1{)hjpQl2`IA|)crvQJaOv2Ll!n~ zX(Jug0YGZvw2xxoT=dR$ug|^`0t8fn+B*Vmo-cO9L>w=LW5~5CS_4xr*81K_cJaHg zJ)VW|nVkr9Co_%A!;?Z$ObWC;*#~lFz384rdzyTzX2am~$J4tY3}CD7HYLXcyq?MLtdbRV$;aJ~ z0>J*GpA_OE48ejPeN(ozQ4>P2YNY(3?vH|9tm6Ca;IZ{=m~T|7B2j;pIO zJbLitjCBa;j(iiEWw@c2Z*3{3JTV##^R|DOCYYV1?eWI3Gp$8B&-riXk4R#KzgXHc^T$-7pw&41 zg6qt#ghB&#Q~e47c*JG9dm~6ZUe|86QFz|~?)2flMB7_g=*`Fzf1PNvi+RV=q-Fgm zpW$ij2P5$8{?W_kVEr0?s2> zV@~`>V;(0gwtV}X*$cjx!lCzf|9Na?{ME-n`hEU#T92(oR1n=@1`>f8#=+K7r`}#}E6< z58D$oXH)Z>)TJjBOy7iaY>@fEF5p#AY1kn1c<~A=8mwN?vyx-gxwa&9+y)m;#rnEW z#am64H(wp+)0&Cqe-*oOsg}WMxkx)Kb`6VVdUr@8B=CEnGBV$ZbUa(ERTJshNL2^e ze1ZnxfwL`dVLyRV!Z!klE)zM|Km;+d`SW|2ql>e(5jas?4Ckagw?uMtp0EE~NeEF- z`I!o|LMxOWQC=D{--H_$-It;~Cj+^UcHMSirLRr-^PEnzaq3}|Af%s*biqDLrs)b8 z2UOVK+RdL`y&w9RNYsf?tJyw*f!(t{0%Hfu6B703$Ph$})7nZ?>7tAQ$3zT=L!-(Kc_)J~CVRGQO% z+skodaTg(FrM&H2n;br2ny^sgTZDUi9_@pJet^TBr5yn3*&TRhmF*tNDsoH8FM8sT zTJ+95%`n7X;8C%ltPg+1v$tohNFh*|gCm*#Vk^A+gD3`>iT)lg(8f}qKGR0rYeBLu z2$};-2_~gH$%%A96#kBgog*H_gdzyKzySrF?MO^v6s2uM^qK~KiMNL)Q0;}|D~Insge(?enKUMlIVA8~>4NI33B z)nQ&fWLNn!_^TfcT05K&NMt<4<*XCaNXe*({<|sSJ(nEW4~`wshhK6s{3Q0i7G0D zdkt7U<7Uk2yTYvyc14V0#Ch8{bov#7L@@06@*%At$a=g8b8Ky6Y_l|6d=7Rvjg&u{ zPL3v zP5UlBssKR;3}ZUbtrIu_4Za&O&&_8wv8^YDz~D(0U1IOgW2Kd$@=R$Fo6=hfdbi)+1>1V)9ebZq zcUSqHBUoS~7bCJ{)u3;@85HJDPQCQ0xxWm2e0+U9)g5Pp8@OvDJ!t4|h);P~(EZ)> z>LZu;4P0-&9WSm;My7GDP3XOJ_k9Pg$I&Q&UJ?Rj>T39iD!7seU zl7(E`Z(Kgr{L{iuAP=m2Q(e!MO|I7PAT^(WbR9+P@;6(aGIP*k1k%v%&$K5>(sxDd z&?Lkc+tK#~f_5=Ej_yhxcQVHCQV8cL9FCV-^3pf`O2K4Yo-&`<@s+mE$W3?3ybFgN zne)d>=swEweI!OhbN7p8yulq3Kj+%6w|*pH@no?2U1tQ0y1E}}TxfWFbQF<%`b79a z?fYiZ6ik`LnKh49M<8y6M|5}YaYIpBIV_WkRL|5|VA4w+Uj}Aemc%G~rMI5Fb|E++AS5v>UKM&eJ1J zEj9utdBB;fu@9#2z8ej_acq|1wSJheGm>z{TncpoIh}-LXSvmHCeoUGH>|X*6n;EI zEQ{-|RtKm~V>^U2V^y6Cy0-XV>@`+=%U}Rq#F78rO#UlI?F0n!dlrDQqUn^xCs6ta z<>-J#!sd0CILoged3ACdo~Hy2=B7 zyWFInnyg$MWh^sjlisG?yD!Oli3Q^1L+S|tHG4g*t&K__G8LS_uVZrQaA9@fU=JCu zM_{&*eQ__&=N%_z)lOEGqQ3dyC2qFJd9rz--vxl?eh+^6+y2x)_b5R3UdaH8dy#G& zz_wutc>E=Lk5y}v*YV3!*R$y*J6Fp5O#u&;cTSn)ml-J{(x>}^AfyG3yx?jQwwa=3 zcljgbG2Qy6n{3)$B8w$PjM9>tAdAQNqqot?VL4Hn;mK=K$_it86{c+dblG(wRN_DM zUxpGRHV9lTq?%Yuv%)wrizjd^}(UihwVO1KAUXLZvYh;D=8r{RmVZ>lUq$J}@`DAutDG-p>lp zy3LKP9iIi7*QJo6h|PQTfqRMv(!Ay|zG7=fCJcvlD(wA8x$2T27h@?fw&x@yPr5-w z`x4wjtujcaOAkv8L75Z=ZEOQW>5in^f%|=O10XFM(x+eM(T#~~e_nkKt$MaaIuI^N z3gMYn3j(K@Oqc}*nFTxDn;YsI>tp1{+?wV|cHxZby^2FRZ5#@Kr3D7}=YfQHX~X26 zsHb&YZk|=+zwD(-pPM3SZP|oDLnauwDH0}JV-lkwCW!!g&XJYYs$f1}HgAkIw#&9^ zyzDB@BpC80NQAM6u^}IZ=VJj|ogI^D^vnv6!kT0pNwc>^Rm%FT5OK^Vo4-62+l#In z)VOpU^KaH((9+M$u}z9C;T%miR@TVNYbtACryV0z+pS6bNu<7Q^Envn2}qWjJtJG! z^Ms{vW_37}p(vi$*kwVqAVN{iK8Fa`BF@ycVc5;erxv@A7fsJIjTNFKRMs8l(Oor{ z=$G$GXi+l`M5t*u;*Jql9?-a?0y{VRm}3`cCZl?7G<@)tE4c13zQVjzim6zVaegs~ z+o1!Zh9WDAcndxXi7%Ys2eTsHs7q!@N&OS*`6 zJ&2`xj*$ragA6yiM5NRal2p{#+6n6t?7QkYQI=Di*|9-GnYQFrMZrJ(Eop>kXMJ=< z-YY#)2{CY&ofhaeapbR`kht6=4^ed4|7x8rMisN z&hoGHIV0Y35{EEOrB)DC=$jJxWgO4Hn^I<&S?nPW*%;t z|2$T8A1b+{5{KX14kV(0ZK-*mI`!7FyhJCpEz~8nB~+>?#Pj!_JCt~!=p{D^s;&d zE*ZI()Ln&IFeE<1@_%V1uQFfjGy{!&(KSAS#+in=`=4QyGkBRBTvm_Ut8xBwy!w@r zkuz&vB#+f0;FpUo^#O8bRjTF-$qh}@NX$V=hQ$yZ#bQQQ<71oj`DrHn2DQ_yoI0v2 zr3@`GotGKa@SF~c=G_}>*x1Ww$^#{O#=xJ#BumF=q22Tg4Oq)V63sV;@iR9c-UYEU z@>8?4vGS}Tdbeg=HOI7nKiVksSvC9$uj$Y)71f(dkrD#gw4GUNzB0uImG>|s^3tjQ z#Y95wm1`{FgH#FA_}hshb>ZkkT~|Ec#t_b+bT7Z^hOmz35M(bY9dOD`g4W&6X!#OKz)*&h;djmxB7meq_FAEhT11I@0R z4TR(3!H1gP!l8Q*hXk;BcP+ok=qOB5mQ9&5OHy8*ibt-!$C2jb2DJ*<4g5MV(jI4@({;eRW2_*caBgZYv*A8=;K1v7^TCS41(6EsZ77 z?EJ;X`AgWPp3U=i_Q4d}y|IG*`GF#5*2886X307udphdJ$%C{zx55wD^n|Jb;x8Dm z-~=FIdAy{j@$GVR22AFeit}RFZ)xj&&gZKf>ZyB9?{}(>^U5N_5*?~R^D&g)rRV7U zW@pXp=DJhAnaq8`l2>iho}+7;wx*?ErM9MpkS(_L8pw5U;x!sI`7;`uu|DxEjuJ4NHZe_9TWA=8xzB7x`G+WS~RU{yPZs2Uj_{`gZ zl(W;6wP>oV3bQ7p)3omVKuayzUe!yLJj-U*H>?{+>AgV$&oT}e6BL>R(aD-2Oovt$ zpVRr;PukZquW?bM%tYVQL5Nyp1h#PiMb#lCxD|hrjx*tu$|!3(JhH$zW=%R_%w}_} zTNy4fxeVPv>7B*CCknI`40=hG*JV{m&U(9kKD;@X)Rcc#&**-nOXTJceQ!WWp=Zdc zi(7vCP-1qeE;(n1aVKosB?*~*&f;+GtD~`IW6%26m03K>=mp#`E(B}EROX6(H4~}a zQJhoLK;yJs*w2L7EzkE5|%f@!xJ2JXc``nPF(m(+~ z%v-r0Gq2^JK%=+rjw3VYrSr^_dzI&J{-HqcE3o%CXnJcUt zIM6S$fIo?mGO~Ig8h;{gnWUpTg0yOK6Q|%lsl}It2D;B7!+DI50ywHg#RJf3<6lv6 zQh5A~>-Y!>SkeEGdV_0kOFf4La`Tu(kH1L8DG{OrBmfbB1mIcvXRWu=GAi@94 z_fKkZ7`{II+o(YDo|gYV)aD9#r~u{QU?3(8@$r{RDj?(U^KnJy77E}1z#{_{PXM>z ze`_Kz_icad%y#UGkYz?9`^L>zDuXUmbXBHLWuJje{vj9P*D(Dj&d`5>eVEsU*UX~R zsY8v`!MQ{Z_OcaJ7pek_x!XoySSMxGG0xE{Dgqd>*A-k3Jez0aa_8s}ME4Y2IYINR zgKY1E?CUE?fcSK9+uG?@Pp)8^P8X$$&xW>mKprT@?48XcqZpdtbrHyp<-Z2}Wio%D zV+SinH~|V;fnK!&_2!UnHsfAa+k$?RLW>F)gDGFjIfiKcBZH_!R z<4Z8irfcLo_+|5N5D}^LY@f2xQ+o_NiOZ9V(_f%^xymxlVrP+Xu1NX~FnRVYe}x&j zSPdh5ofzt)RzHliIeM6g0Bw!K%dt-daX#s@ulD7+Ef_jP7$M6wK#1N|_HV8BU;pp# zIdV!)GTxhmWm>3v(L01z|In#_dILNU6qc;8^NaZbjJ0ry@+1^NY@pz?>k;Le%x;)aYAeUC0n#Fk@~~;` zF7Iq1lQ!!v7hoNHS_XvK{`P7A&d8WQw>LjELjTN%5asUU0GD`u35kDQeY|;ZmcPj9 z;uD1vYZIH?NlswF9&;;3Zp^I<;&|J>Y~OP7w}HZNdxAdkG+@oreFl&AGB|IxFVL^Vza>4>CeOd zZD;d#TKe?Eyh3!&0)>#kDRt($1>Q7lgFq_`Cq;;UZaB}KGqzgL>*Gbm+On8M;g~6S zxo7SB;fv2y))-*tv|E=*ay#96UP&NAHc0%VZ~o|{F_ zDPj!SWNjrR7WvoDv|IYVFm4-Koe*+n%|a7oQLs>q9MIF*ejlq#^$sC|p*v_fU~5~s za@(YTrJ$x=hBF~&tyl~)mhP7LSQar1YElTDQ3fcVoMtrzdUaqqp&)|n(`D>8 z$rbE39dDmS#bBDEmkC*{k#!?EK)TPyMef?F);QWy0qlTxM2Kb=sP=r-MXU?w3|&mDZzXCf{mjMRmHoSJe053*ZBDmG7QabvB?lTQY`q zxm><)&DwDF?{~E)0t$7bhcERnLN?A`vp%N}yM(>+S_ThmW)i94SDy-O)kKh5BAe7p z4X)Q4MpB!&5;XqsMks)Lqke?AQ_adPf@C|)auW$dcExPzhRUN9W;`7OiRpw&)ME6x#^n29?3Td z#KbtA5Ms+`n>)_K%bSyNRkV?1sf$r6c8Z}1x&DeQ%o|%H!a77sGNz;MU|nBy`7UeJ z?t$6nrkY)xJEc=eT;=ny21k0oQpc9VlI@u33vleUJD@gud-dR>`~;G^e7~=7Eq63_ z{r}i|>!`YxY+rce5Zv7*xVsaA2MMmh9fErZ7Th5~aJL}A-GW;P?(Xg$*yme0efo6w z>GY9%?|0w(jtz786hIG$h~J7I9YUoS-5G-KHre#`r2cy_*e`ZJM}m_8 zTP`xF4=xy=0u@tIFzrZB675a=-VU?Qz|(KT zpJjGoK%PXHeNF^Jh;We|rlx$*=rLl%VptGBNHbuxOVq0zf1^U46msQd@!aO^NwS5e z&DWa`3ev>V>Xg~#{AaF>JL?qlP5hxp>y3)cCR&(eM+WeNF{-OK(2zp#Up$&g)VuOR zsl^EaOYrwneG|lNlAQo3C;s|5btDM|TjhJ~j$Kws-lIK*>q$3jGy~h< zjP|Z3B2^X{C@Q0{b7V|9v2GhQp`^uy2iEz@qKJpgxOzK9wLMyFd%kZ3cC-@%AiL5nz&6~Yl563xnv-bXNf3F$_rZzHWYl@jgrl_v znZd=FAWpH|VP>U_=&QlD7i#NRsS6IO3$zORrMU!^mr2CNLO#(K1evl(_zg`}3ed+~ z2+(FXuM`EMp_+}X*P!(+)$92c<%bX}2@+FJRkv|Eo zOiP8(8A>b2-<~!)+yl=wE6fE$t&GyhKsj<@BD3BrczMt6k!X6&4(6#XN zp7ggYTZL^LkWl-HID|0o59e$OBI_qhD5NY!kSws_iu(m!v zc_n)&@YiBizN<3HeZh9p`;}}Y-H>8gDB}~4&wY-cg8gYBdw#R%ep!21px*<@fK1FS z*0Dt6nmP=HW{aq9e3Cm6zwb^`;LAI88)`|r1d~`IXns6^lPS>KHKnJ4gla?!v2vOT zs5_!Z=0MfGB#{SsAd30lZd8zyUZ70-oN74%iqR;fPiMzFpJ4&5pFp2YzXD+#qKE)0 zHYDjioVCa;W8?QQiSKdE;NRQ`^h14ws?B`B(FIf|P9Pw+BN*&A{}qhL>~os}XkP~6 ze?-O)=mOL+*Xo}@{zI8y8bCqQL<6Fo{)sTS2S#|GUEK^kj!7<#veAR z_-`yn4PGZn-e%MYbt_1QSG7K{WP17GQq58nI-^4g&bbs1RwYJK48Q?^`5k*CRO*x< zdENm&kNVh&$oaU?m`tWVJ4N(eEy!taO}ya#`@`M#J1jLcMGE@H z3bvpgO{7(mS%#Chrz;t;DoG(}BrAja(=NKTaB6kJax=mLrvc{0jJE~80_ahbAQebH zOixa4o?_AuS@2~{-~qH?z8+S_C@WD~C;^S}tm(teswToXQF}!-p^yhlB)|n3l=1*3 zo&+Em3+yS4ugzZb&}|wEx#z)+=~+Ph(ChyL^9Z1sK#8aV*!8XtA|J|$6gx&*M0%qI zPU{~clUA+~ze9DT4u1Vd^c>}XKYDKM;bp0wcMdV8tU*$eVfq#&#WGBXCEL<~0i~|5 zeV=_FuWDws27v_3t#yw4#XgW7YN_z{a^`ve=FLt7>g%bErVGzPV>uLHx*MGSJo|(g){ff8h z!nlC!v8{hR_34eaQ@Q(~1$6s^7Rdp#(ycz&uWsdL;3p7)(9cwoo|e900i@l6-M7u3 zK#?TNg%_+7!kC)qz!g2okn-F*===-!#{epz_7Nb6$BF>!*kwOvDr4HNA zQI9vDIW+JH@e%iNZA}Fz?1aBUmfdmFEyPp80hT-B&juJAys?tURTO>`s4&m6pz=D> zaUiu2#^Ae9hWz|@p{V&YT@~Md7V#|14Mu6X0smpY{F?s6NHz|z+cLrkEInJ14=rqT z2}Q$@LqjF@-B-*aO3BArihUXWx_{)>!RK<(tGMV=oFJF(O^GM!O>p*4qV?j)h{;RPI+Oab}J4ym2f>kxb9~H=2 z-UMSbpB`|n1TGmtCwd{s;EZDq%!(Q#W;DXz2`8^Y=|4YMfng0DG(CBZoOg7=s*CA;0@o*a?-@YbVm zVyvG~k~+&9RQ1EzjuR#)b$g&#rUV4cFmR$$1k2^lcE9Qb&MNTr zA%Gy`Km{XW0ue#G*KDYUz!v>Zr`zWeA22|}g#H8?aQ4CruJHBgWLg)wM*@y^{@p+@ zRg+MJ_^hbN8qOK%Bdj5Ca5M5b*CXjAKO`eP4R?#X1qAPr}Nx7 zFE@v4FXAss2VTX{MR#Lm;ly~-0?OAGP*p$#S+slmL5j~Vg)if8X8*sgh5v9x;zWhG zu82N_+>dIVOQmBhSlpPx6>DNRdK7sIR|K0Ma(s+mwr&>a#vV{Bg)bDyP*cNIh)qZR z)O6}vu=KXCy9;cvX$($91=BR7%hr#>O-R86Sn`BaAKBef_;ebt+ucKxe!CaBO?fr_ z>HIDAqZDvp78AK+dB7|?ZL9rgRiJnzz+r^>dbq*%Zo~`880w-t#qoU`mvLXuXs*;P zHXm4B08>YZTQJX~yn5Z+v-en<@v_U|32CAtEAv`Z!)Ku0ysQgmRp_PW8)lq5tdG;1 zN!Iv2ryp)p!G3UHa5R{v`Z~cU{)``->kllugd3mFoR>bB2RHRH$jcvW*PMdlhv6)) zddE`6If|CjY#i2E8?==i^K~-x%8bVk%5?8`3i{C3z1`HuO{Fh~Fg+t0%~5cz%?TX> zGWbfL(n+mp2)&_x!WDmgC6qb1!v-WiMu)Zo(AOusfWBm%IX?wf?7nLITjzj#30R>| z>(1OlsS+^csXlVhnq5c@B7icRXPs0(snG65&px97{$7XAYVZS%Fb%*FF(3*t_d5#Kyc$5MB9y<} z3#qlAK+u=zILF)9Q#38XhZC$rQt1nd1@2#5CF;tjqSHRXtE5KqIY~7-o@E@NL1 zt0ufkjpD^WikDwv$fcE#m64fq6Rd18UN?{?5bLvB2EIeXl5DsHYWKaxYK1M$8P40x zQ$WrGQv?uNtN^_}fLy|q`rBy0{z;HR~C!m>CwKIfNlPW4j7XZ6ZP)h-_}Ui-zLl3f1WIi+V1t; zPA_7I^6|z#z}j)X$!+YN&sWaB@=JI@f`R@TFT8CUV3X&^9bz`Uut&uYo&uB^XUzHD z`3s@W2gV+B22WrY{0`CxLhG@QOVVexRriMyYwmFW(-c|xK0|`=lVTBI-YLh{~94^jpDJ#qFssTulJV1hU0RCh0_P?zbzp0`+ zzss}F2JDE?F`2BaQ2ow=&Gs~RHD$G$KhkJC7-Lvyr$8@_C}*U(%Tux2z&t?g?{8v z{`KZgtk&xR{^)lgi^_{KC1+W8;LMuiy3EsNK*-cm>)3 zXuU6Q3)RPk^_&!KbHO^Z4H;x2E$d=XpBhx(kN^m=#5l?8tqg#bH(KW%(}b}Z&)0%E z$oN|*QG%J7*uCrXr9lTG^qL6o_c$U$VW5uF=!lxH1asj>^e-t)f>pY5QHEPv#dZOM zYPZNk(pNHHZ3Ch!zBe<%g6|&%FARggj(2_YG z^Y!H^OBiPNy@`hC+F5O%eODRCHOCjn7cI?66u&947&eJCRRCJq9?sDl24u3=Mq5Am zI;BUP>SOb%6pXi%C^0W5sOFD`^uO!YgiGDqaEst#_n0f(Yxb^}@opwbp6595du7J* zJUnz|CdT5|Z}2VdkK_Q%l*zsn{gwUT!{hUqo%twsakQ=NjYID^!`c~^wK7My)Z zTBwshsH~3x_Dah|X~cj5N@B~|C&8~K)O{*bOAH+qpoN{^nkkA^yB>ZsDoHqI3f-Bq zIr@-S-9=ceMn6uG{xv<^Uu?+Wi1^fDJTBb8T<11y;js7kYQ0j7F?L&PZQ;YF$;g#= zvVc>)K$3taEVLT$frVc_Y@wwS+y?3cbOnBf}$FH4?vosE(HM$e;alqO??($KKPq<@_GP%!(%5erz?f+`Drz19jq(b*>ldbj$~o6qZn zFj}ks6!O3yiL!t6_S-jEUD}Z>m&ujt$KXuARnf5xW(+Wznkab%8lb>s<&AsAt!M1e z0jhMN1Q?wE6DU9r*q`I9JdEcs2S|pFQE%0>S#GXa9tieD9^$1Ky~sABO>f{H=*w`w z-6w&OU4V3q+(e<6JIXol&p<0B|J;hjR|qHDzs8*50-l&eIf^X~k9SDuGI_`|&+h-uneQa_ z>HIa;p!|*ckAIH(zjLhSUpOZA!!iBWKVS65kG|5M>66^?Kk)I*@6U~9!_$T56I)sj zjmKIjs(MShOGT8~2o8*4@Q0%Pf?<5hbEt6)s(#=E?Wt@2!FKq|uK4pGxXjyX z$&C4R5%fLL$Eq>eFKDZ}3u!o##E1n@l6~8FrYaXPKy5BUjrtiT%C;KYG1A&^xK!ldvdJc7?d+<~qGYm@S@N;oC;`_frLuO1B$E>m@^t<|?k9tMdgFYTBq zh&g6#!tk6axrPsDn~5Ah;WeXv^9g_C^clQ(u=H}4nl>V}JM$@szI){pNwNg@=Py}a z2OO}W*59^INIiTK>CLPcyZR8k@Swk!3)aX4Y`%ZtQf?vZe)xqQfd2leTibRzfy0um z&kH(+Bdd8aM}l6L79489hF&laP&NCOF3esd<(3Vr%t>-jH{ z`J0!2rds?6%yKyfC^TQs3Xj%FwL-kxd%!6oTONRo+C6yMNYQu$afmSFNKgzKh%&J- zh}G@rUZ~D&ifl-Vs9cjfLh7a+LSv9tRUVzkR=t$Unf^oYZxYf{Yg_{4uOTN)@LI|n z@=v6p-%Ka&yYmqvlos5njjaUcm8dFtS>KVg=PS%`#{wCz9%Gu1($G^qOGH;W**w@| zDR?~sc(Am1M&VD^o`HHmcsX52DriPAu(TDxzb-70ksmCbCO4AG_y0R*iHRZ$D$jc1 zc|Hv(Z4ssUhRN|5=fSi&$i6O}mh0Dm+`%3j8{5l zgzf<`(;^2zh9fDK2t2cvS<;&g2=2^fF@I6Tm876fohrI&X{#l0ohm{TobPhOZeRPsu zHq@QA2E4hk5j<*H;~4Sg{lZCEKkmF+W6fKd1A>2#BIK2l1>{;sD1!u*popJ`D4pVA zKin2Tb5|g0c8lkX!uURDA2JHVIU_h$vq`T+F<-K6l>D4!9 zmTS$%YbVH+^^b>1tR6c^L_zfpOf5USj94-5BfRB%GETA!n&G%_r1JH2zLbgONg6+6 zqM{9xt+67%xGrJ(dWhx0zOtkf*A9phOg6_PXOdzISy3LBLPTZ2@^Np-n8 z|0TQiM8d>(ALMM`Z>=M7Ai6;W3s@W&2)f2wcERe} zf}~ZJ1((ex(5?6_*iTQ}aiu7Vr-vZGO2&13fVlQSL!Ua0l{JkXy-MnRW4~e0;74D0 zJl=sR28K)Y1AgXUTc34#+x}aZs6KdHt?Q(6~hggN|9?7!mUc4?8clG_<|qD=Y1-dIP3gRHbj+`6!u4(<$jS zO8k!nh;IJY1|hS!NaMV*nS^qNZ;jJb(p0MVKa=!jAGm_aYIPRm!E)8~NqTulyi`aT z9HTeod=fo#@2w|6e+N5*3Orj`obWm1DD>IAKkj_+p#d}!l-92QpEZ(S?JvJs^H6>* zk0)VANnrOmAliPVH&*0Y8+20iKjLoVABFp{+$)Gsl>UrNL%Q9bS;@J+!4cd1vUATg0ao<{ur*`xlY5YWzK=kQr@|90wv(*~{A+QIe-0wD&nF?&tH4_6UpJbhxE zS`afcmXegWMUZ8g;oB2bIxH9x*L)w2qSn}L3xtR5jg4mvm!eOU;NFxH!79TG!EY)- zj{XPv{U=2HKVE^@$;1%xFgLgInOfRcuaFgKB}`gukAg85q8R>Y3HuN^3R<;?aWDLO z>=3Yy6S&Puvxgl!Y@;BGQfR5Wfe&p|vuTzV?UZM$Fh>2ua;1YjfPN2e?zsG9C zF|Fi~G(iM+2*`Y$P7i*aA4;Y9zL^LHUqqG>f#bt?i=lbRaNTL2eO$v*opfEyhyK_$ z<9C7}uQ=ZA;+~vEg30~Xk4T41AhV&53!mMv19(n$kopDCd=m$bI=IwL9b3N;T^Cd3 z7wxlJ;+%N6cJdm5nn`>yu-@i9vDAOg`6-9p*#~FO^DqdJZdyiksXAuCrv+l4K22BF z-hrRuv)I#mnw;+05>p?PY~0M(3%QF!8ELuLhF^0b>E`EQ%ChaqkgoF>;1qzM4G4&@ z0I(IG520whMN(kU?Kx7EFB!|}ZHIZOI_ZeF)5a<&Hd=&1Mztu}G{ zvM&_O*eV}3x`~<33dFf{e_uo>?|*AugG+f3J^RuZkkLsf$5A9-tc!=i_B6>KM7Cpm z_O+1MQcA;6h>PQLB}5~7-R@T6)8RCN_Nd-nsPL7j&g)LW+JT*NDTRdB!bd$0!hk=s zc(VPFrO0PbcM4HDy!gO4%rsc`*Nq*5Lo|RB>6eWjBM&AEdhdk}!syuB0A6W8J9kV1 zcZ~Y%+4ivhX}l$*NEOkEtDHz5Xg65K!wXo~opQk9nYbcZS*=u|(}hRO-5YRk<}29x z{%LqES{8`$av6@a$K(6S%JbKgRn1>GS>bz* z!IKbQtvw$+c~yJw^2sPr3Vb=KYQkTJN(@^q!hR-3$U>|XjiHt9P=oU2?E%UCJrLj@ z663dX0QPP1Pau+`TOT%E-b}xAcR-hOTeG_(WNAOdHT?;c&y$dWxq4S^qtWfTZ^l4|iV6uQ)0Dy!G8rX)kP3gV-R?*KW< z>@p10i;G4{B#8HlGav;i!&6S8e z)qP^gQxwr0jX9^ikB~1t{4^;Wz6Z*d89NR6<8Uq+2FJuFY~3bZl%Om_QS8V?3ZJTD zNTUn`g>USVCk0|ySLkMbfn-lWg~SgSxtO2NLHhkBk6>S+Hlw|EsKA_^nj9i-YIkw~NQJy4oF z;eCXEo(Y;1SwMhfi6~X>OBfI_-N7hQKl9O5i5quZ+`AgD(FFRga#U#aeYyiQhTRk* zeyrEAoN+bfCUG*l&CM7Ja%@i{PB}WV2P$TpA9L-la}8U(^CYR+E;5B&}s5M=_ z64O@KcC@M#4bHe0dqF3To166aFUY9RcLezJ!NK|SVNF;o(ZW@pF4b^vhLA5-JVQ~? zt5S1^i}!c*!Bo_;Vu}n)55n?|(o%+DVW6kDG9wqgkN2g!2W=U2u*ZnuLpuVym+*U= z@A%j#xP3lO@_=qN0wmPs9yBAKJ%l9oWzW=^{dZ@{Zzt(L&!FFVW{(EG>BYR4$Or6g zEAmdx@DG)uKPnmw%Ur*XD1zEe)8d`q@LbJ2PV%rQ1QGKj0;N$w^xw75Ahl;;&(7i|Ck-v7Up zKUBf%w4ohS&Id=#G`tsPXtDt!%ikC$s-mwyfcWF!IH#mrG3ivp$2i6elbO*?Lj!Vs z2M52e53b@$>R*k65ZdP>47XIZ4KJxUC@D*jg4Cf|DHkzCNxavF23lCWfS{o1tez|b z9fbztOg4@Sok}2LmeQZ&CSj6JKpI4n@FN)xV?D%cw`OhqUdt%PFt&qUDjO~UXp!0P z(0YvlAyXm?_DWL!3}J?anz zka3Uia`Oe`qWU{)>(4G}60bANNA+Z&@_RVT4z;Pu+S?$mw+NnuwHu_u?g03<-Q|Hd z%^4Ryxn|p($2L_&%cpc2F_nS-BY(wwJBB^uj~e4k5#EsN_k&CXQzmiCbaA^MIj~7I z5w<+S!6P!8_VnpNhXjn(nk#*_A8QxmUp?mV9%r{+*yax_vp&uyc^dLXgk0yse8$6i ztOeVid{PDdFAAWVYybsY{P$*NR?^x)fz_{p?*HPalH1O`gU{#i>; zyX(WG8y@z@^!x;g1t4dO5r^Vd1z$h|YU}z7!Saxyz=f8LBY_$?JAXe>`S~G5Ym||J z*Bo=6cSTE)o@N!pYf&Bsl7!SG6HX8iIx;(;Theia}O?r6J;LX;Uhu@-4FBV zutz1eu*OCggC3d+&2=7oQQz$m_z|$S8<-ALwK$6+awe_cW%V*P+N1L|vdd%x1=U$Cmuypp( z0RSU^ z*)LhLU&{092&$~dH7$p@wh|&j?Z-WmpkGXM?)xv5V=vf4B=-^r*!1`3OgHZ{>(JaM zFmoZ!XpFBlH{hHesMp2n=6%|3!3cMYeKYDNJQKSyqQHH06y_>ZxG6w2aW0^b{QO>_ z)jOYR;)_j%&Wjw6SIXsJd&knv7($DF68~y1-4X5HM}?$bK@08ZM|V9S)G(Bu94OLA z_we#cKnM;jR+o8o1P2b+zW$ocW%2u(H7ewpP~Oa^b?LIPJST?&LsgSB?S=ThitUPz ztqYVB9Rn&K)6x^$Yod4tBht4B3%IALYvXEh!C{t?SQxk@=} zY))_NazVW!YYxdliu(FmzkW)4SoL_jqHk$a65kRps6Tn=RC;xgD3_h<%zrV-0qRx|A)I(RVYW%e3?cE|}ecfftmBN9Jmug}Da;!t$hQW0y;7ENc zgkK?nk~f<8cA6A&w(N3D&e0^nNILt8iJ6_~a2D93xUCLfzw<4SR{t(>+l#L3>BLU0 z^d_B1Qe0d_2`bYf3ctVDbxCcgz$amm6PCwIk=~eLZy()o(TVNJP4z?ud;E9qO#U4h z?4lcdf|q%h&}MtfoE6h{7(?=Qwee^vQW5^KlpqZ+3}GW_LJdZaeh>z6;HJxE9sYI( z#q{ga2Z=(hXIlmh7#`t|hb-8Ad<~Nk>cjVp+$7kn2_FZ%#%jaIeEPRo9{mh}RECAH zBVp&iViSVu%LGdvNr77~S0107x0I@%UIFO7e=7m<=Yf==upn03@mvZUt?f{>iH6+B z*!`xI+_F%Hk<7B}MWCZ4gVd{5ng=7bu2<+?JGMYv%^zj{wz@p7iR zHm0qqVjg=3(L%+XZl^Mr*}J5!4fzy{KQLTg^?*D{glHjXe}5hS91!roog#7($pe;r z)Bu0J*9S+mf8xNcd28A|e-=Swi}8q^!f`D#veoMz8pQ`~umKnKZUZjm!g7ydZZljs zd+iABMSXQcV}rMRPP79nY@oDmp48wxqB&x#eykqR#~110xb?5d#+>zJHod}K^s64@ zEK~4l#Hr5m+Fhxiv92(0ifA`3&p7SBtV?Fv9`eJ*d`@K-KNuy* zU;_mwyg2O|UM1~?$G$g1#~fIqyQ2F_#>q2ktUh52@@4-l2A5%d)?Ktp+L?yQ`?zP6 zK?izgNYz$}4qvyWJkNTw7DBMe(t5>9o|!Uj6(hY!M!s>4q6H)i^D?o%My6KUJ`Z<* zoXa`+JF!Yl9dUA`S5M9K4&9ez$D+kj)Cta1g!=!^>djIme3;BXUrTr8*g9);`_N zEt=g|A9MHjenyxYN-Y`@lZwA!T=6{C0Opym9$a!mAVhNGuq;F3F3L=wXW&$eYofYi zs`?~zZoOp(Os*su_m__HYq+g`O3Lig;(Tw(uR@Jp(J;CPJUAEf-kjWZX56WU_9i|o z{vo-D&Gw6^3XTl<5;8i5HWs@j>lWr(lo!i%NBQhrlQHZFEr}Md*oa=n5Xfiw%N`zO zSm_$U>ZLF3YT0mkrOPf~Z;x!gOCUR^qN{i6p;#yygay$Wu|D|QTTLok^*>SP@eB@n zc$$kS00d>JMvahXQV}|{!Z9G6S8&u1sgT7yEIECllaRHW@@oiPAJVa&WqLb`)kCPm zc>=YFAjg|v%z#n21h3*LGOSb7ftX0kSFHWE-aJYFtLcSrQFP0#^3jTh$IhkPIAE6n$2l%q$9` zc$2jd1~NDP@t3KdqmJl9u<`&;QnlNM6U-czVIY^HXuGUO=8!3r;*6%&(9p%ufuYB~ zDX{gUJc9&Ptdszx<5|x0VXOqjcz?;m6e0|31z!$j9ul~zTEhOq6tIprI*qt+rx?cK zL+;S?J4YU;_&ASVP|f=!=J}vL=`Y3Zjt2^K-ppC^C4%f!olJhi?6TEQlL)Y%j2%)6 z*gr(9PFvCK)dp8;ba@74n-+_qvHTNps;eZDw_V6zP7Uh z$#7Ln`1r#gs1=vVFw-va`nd9pa?0JRMM$w^!?(&I6Y23guPE8gJ8;tWg8_l z*tHEE5F0_zo9AI`n4?Ji_=N}D#qS1=E<0@}9SGAQ34S&A;lF4j`)_Jt5Igha7cKI| zGCzR?*Xo1MmuN)J?m?FXznWry-7ioXg26Ny)RWYi+XM#w%ODTL?axGqtFA^S3>gg@ z`Svrm79I`BTsi#r7hf4^AxhVT&!B{B#=W1&v<55B>Hro$cv?K5G{jqJy1DGRto%xW zUyOj*PuuG25_zd(DHFXrsmvfUU-Q_)#YcAW?!~_Fykr`MkTd-GO=!pG@pMt5_;_f8 zl45X06e+H=mbH~%A9$13^`zveYP3!7{E4n*$bxq4#@Al5!l{sL@wux!{-Jm|yU3jPpjUAg zik6GF@#l@9X|-Agm{t8}nQf6itxg!og^$JP#$q!-AxNN{+N5o*CeHqdL<&Bv+NeM3 zx)499C#d4L~JkGF=0u-D&3(Cxfy+Q0InO1{^osURX52&Ndp9qb2uK8+D z-$upZ2bN0Ag{S$889B-*%f=}R(cfkCrkxnSvgMz5lc9>#%7!MVJPztG5HRqie?8F5 zarnSduy_8LvkWZ*Ywy_i+Vc>pM}=%-3o43V&57-Tt$59wnT5l&i8d{O?5?g7I>z;Q zo{#Dw%eJB(={Tbg)U!=wIOPrD^{~X zgbiW{hp8sLxgNtQB4E5EIcemYs_k?nx#-JvYKi++5}_Q?xd1FE(8hHUML>Dm`Z+aC zjl}L{vt}|eg{V=8XqxwI@Iy7};Wq;2p5YM|xl=~h`H1=(1{))1wmu{}iUPd2UWqs< z`M&5YtAHp8eGy{~6?v4fzRnc&WQs4=Hn9Wv)P#&Zj_?9*q=-P^3I4E`Z~RugNn!EVF}8 z6J-{VoK1b&mc%IorIQuKc=$vM{;PhnCff+#0N;re2a0Q`$?0)AQ`1~+%i9-Hv{~5n z-fHiIpl`^l932%bwhe~|jK&xZ!+0^UG}jy`n1v6D7fJaB3_J#?wi9L>lWlFXqg-n+rv%9fl7kATjl8<8;}k)4sQwD=P{nx@h0gkvzyy`1DT@l zrFR|o^F;-=G&be2N~jD}sCrIuDTg6rpYCOW>e~;Mx7J-i0DkGk^CVmvn)9P|MxLfR z{=gADbbtD`ss1_5u`|8l>f0Hy(W(Br8ubR}!^4k7c{kMJ+UQJ zk$FSj*-}_HI2*$jTS(%PEp1Dsh4#9!2N6d3&Ft&3TVoHV4QGt5uEIEeuWRK3ksYgG z&uvAiHDzjw;mBeTk&rOcrU#hrF&?M3T}d%&^pAuPXqw??5;?R-${W>y8m(Ok15}Xt zy$C|qaK}SpeQQG8)B5~)n+L7f4L6`^|Jkjp6&%38ra<-$`)XOk^_!Omwb)T3R>XZ& zEp09?7)Rvs*_HkSWGbM37syQS5}aHg%Ja+}+j4U+)w2n{aEBw~g^u!^z;9C!DuPJu zE6NgU^_GCb^}G)Q$sg>~Lb!b@%7R{Q1Ms`{zk_T6S5Uw+MKRc`D=ZsU;K2t(;0GWY z;1ZC#)w+Q0=p@rPd5TaMng_b1Lh^M83p&agZ@lpC>(M7F2*nKz49wXBLfwFbTdiCp z*8Mg!HR)B%*hFkk2Ih6yn{$CVK_-VY?U|$d=8)1tKZ0K9Cof))`J1|ZHtKw4-}ppL zQgw5)o;h#%o}|Rwg(e}t^gg8&*$&6#NkX%gykMAio^YMyN>Fdf*|QnR=_{;I1ON4P4|Miis3A1_ zVL7xR8ZYPmlB%$F6^6Qb9gB&mr4_Jo)RvvWFnOUvNx{mJ)`W~i>y^NIv0f<9yaE*4y&p<(t1fVc8I;@Bm zY)Q(4fEQ2ZZOXW+q!%l{u(Du|#~?~W`eOJZDZzbsqcpaaG0kK&!yue;Ku%dKYTtFv zMafT!xR3E5hI12#T&F|}<0TkS?&Tm#GDHABNgtW*3DEo)vFc63piy~Vzt9W|-$xG5r$Tz;8Xp@K^eO!kJCywNbt-a8T_Az< zu`Iq|@1o9-!QR)L3TTxbYgHU>>Tz4MG~Ir`Jk1EQ%)4!;gnOdQk;3FGz7o>l6y|gX z;z`y__N9k@H}2>1BX24n$aZ2?x33X#%HLq-FD`P8MdbFc%Rq8Z#eQCDoOI#aPU6sp ziR66{F-B`dz=OQq_PHMEiO#%*EP9}GV&(Ys1~-2>kM_)lyLhX6*R`qF;XRVbyHyjf zC*^Jxnkgdidk)2l)LPneWq3RSS!U)Y!p+IEnZ>#3N3)FPd+n%~-t?*sK@{WN_%E00 zu{C;CNrpN)3P(D-Q+)h5)7jUUb0U-1s5*)38K3*-_2#`Pv}CxXQoRt+WVAidrY>l= zu{lwB^E`++tm0c~VKr1g=lez%QB%vePsVEklgWbJ=HFBGjBJqM_nv!RaVgjtRAPVf zt0{TrD%tbG4o%YNrE#n*d(q*OxOQ3HVMgZERc{u#)Fbp<8Jgb67iH~3Kv}P3Qu;br zsW(sFoMdT|oifMTSzRN-bB|*Ss}Oy(CHs^p5^M=7=Qnsca)XGh2x%#U74zN=^9X5p zvjSd5zOZgwhE!Ykv$6Q|(=Um>dPiyz)y8kCxcBgwUHxZ?kkU{l`FOH4qxDWRGS_jV zbh_=>(VjJNPtSX13r%irdX467WC7Oiu15kn-co2`UG;N(3R>4H4r2%PKEethMM*I| zFm&ToI2Ji?8WA#tIr-JgrF2%ci^o$@18X#MBJhiCrX z449K|`c8Ax4{-^aiua^;^&*}HK#_7_S8@zN?8;wzfz+FPln>5Xb; z7v3_+Oi*Uf8V)W~`6-()kt9O9$oe;DtPoO(vv>Ac zsD)TgH8@0Xkb&YmhmhQw!)*@svoS*v9)V|Zvm3m*>4A~*m|fFvNu}ht=uK_M1&F^= zqCmKAP@%xp%EianIAt(76zN;0sETlQ-XqRH-BQ%rZ`KzaKf8~yZb!uZGW;T1>XX6n zpRvIGs&xG}LFYe(!~O9OF52NTc{FFJ!CRLOs9DvuKHJ;ALKy#^^awS?>2rsA(0+Ac z4pcP5x!Rf8_0Y@+*3*5Oh6VBYc0zGXu)Ti&G(1^dgdXp{IW4Y)VDrsZD*oOCm3nNu zxTbz~@#>I32{Os_@WVJWt8+vnfQEJncf1 zkDr(zj}V(4J-3u{VC?0y@3DAWnvkePlw@Fv#<{^u-b_-6=$Kz74H)Nj?~2Xy@0K-E&Z+Liz7S!kA3uvHVR8|(s(8Y zajF}F>XEPJ7pGg$LDJhs;0I#Cui@!|jV;q`17-L(~*Z zQ{G*%XmtaosI%5-cp{UJpj&FX;jp6<`sB@!fA+MbW_|+w6CD2Aq>gBXvdGSVn&(gfXRiZ!W4Vr=ZcQ=< z4+rEAlb(;`-t>LN-`SBMf{KBdut*suILdjYLz>Vx+}<69LX78XY9MxRVlM%*{;`z? z5)IEFB3fLOh#E+WLoWSN*zH3x}c8rAx#`hu|tyBQ$z!Kag1a$ET6sd8KcrM$_dR9plr%(tsdR4?OQ_ z{bvHoR{Nb+`+XS&+2y;LyYqqX?t?~f*87I+SY6GdG=hhWCqGvEx-WXpKo?nOZ_A;a z9LE73=9eA-Zjr4%_)!~3xYJXtF!9z3exSz9yo8zh33M{`>1PxWyx+YE`=dAi{LTMz zM+q!%?C-5S>b2F2pWvv$Y}DYJk*lI!j>u3UJrN2(En!~)2I6!1LrVV3o&JqEKWy`d zH~&v{6cfpzdKM9iebsE)Wb!(WU$$dW;bp)_cA8D;8;FKbqKd(dw8-M|EjM!sdZMVq ztM_6A?_LHffk=GqVO)tfihgJIovnneU_HGxzt;Ma)m+?KP$`~p}l3j`u zV$hPbW+jMau+KS3z1*wDqF-e7nf%J_7RXs!Km3S^*=6Z9)A$1Cyn`;CI{9JN%k#R4 zl~!{)M}~AxI{xuZJw=1+MqH)5p^jK_)NZpBHx2eQ@3b_1@xjtJl!6(&Z8PNnc7z1C zy%-d$a(S1fV{UxHLX_x%w&Z~DHb%2mUuhnC&kefDE(rWAuY?3@1JROEn9QOnfD-Su zx*UKR*7+&W09B|%Btb%mIb$QSM11rux%?-tQdeQ3aOayi59LKR2-_U8<9K2@WBP_& zX(7PZ|3vZq`UCcwx6~TA_A%KOsoqm<6H#!++t5xl z0+$u6E83bz^qg4#0XMD|bf~HHooF(j4sp`X3hU%NtC|-lrH0=G(YpYn?1mbESf+}) zr)`@Jzx769?TdfBetzQ9$yVU=wZcf9($|*=n0@e z;*a+|G)vt1TlFony zi23IZVGZ>QgD#sJoWJG!6Q;J@p;y=pMC?FA3XtR}6W8!&Mx%cL2yCBYRIQ0$TLUPfu|+6{hZVd)4Fuu81M;YbwU}4X1XJpceGBI9wWo>Uz_`uTJSP1 zyk9l(8zs3Cz>0>Psf{%1>!6g(lxwVNLbNs04S7da6WfiV{%l3qp_4SZ;{RjsEyL>A zmbKAICX%4Rg6o9f5ZpDvg9mqacMBHW0t5*`L$F}M-GaNjySr;{XRVbbduQ*n&OPUz z^E~(a{>&fUvqz5}QdOg>-nU%V3#O%1-W9l~in%l4naNAuw8x#4 z*dd|KxHzW_^o|b1r2s_*wf-71RJeaDoHgHq&hz*YPY3o_Lze;0)ob|GcMKdo#itw= z!dxn9qXv6GX2D=+Bo2UI)=}X4pu^vSgbDJ(|o%d^k@1KZepjweaBgOKR(R@Ygo%?XCS_I0CnoB8=z*- zVL*|CxZc8m$U)%stu~OY+U`M-#5DN_k1$4C;?0af_n45V1b%p{g%-8&fdG0Hf29Rv zuVD4YEde5tyT7Z5na^Y{FRWXxLY7)@5qDZ{O->pSygH`<9%r3ehC8ad{KHhZz7Kj0 zkO`V$p2h!?atFGEXz46eaRgIbUIVQYAS$FJHtXOrs~a1b0~yJb6wiA$xrY7{sCjnt zK|K$zGv435HP*0c6K{7(_RcnDb^@s}<+cd>dUGLm<8t&)o?z1c*>RozPR8r+ zh}todxj<$Vns&Y#_BHo=7SHdu;bK>aH1UoBrxh+=F7mEN^O{S?gvf0X!0Y$pD6%m8N(&(DBT@`>;`_O|@?cCT=ve|P(P=l*>E zr@i^IuKVu>;+J8BH2n6d-&^}JZv4NFo6%ps?aMz5)YU(H3jII+T@TM1Tk@DC@fGo* z7J0R?-1f(p>3ko2Fg%rLj9L<=0pMc*=@72udouUhnK0K%w7X@v7Xo}LEBH%~saNCL z*U8S?so^_C<&=p3t4s1> z5C=GgMyw}RWt@3UsW_7&Fgpd$C9A&5lr9S$2g|^c6251xv)Erg&`GRAmX}JqQ)AA; z_%ie>y7`5iCc@U9aH(|&$BKWfw$<>I1KFw*S)`enMvaPXDs_2y^{G)+O+}4)aNrc? zScXCcXQ={G`vUN+&9*h4Z{$#rKZICLoO=k(^To+n~zkZdkGW5~FgT&fAn;9#lVb6_y7saWK}B+oBlOZBofglV~oZVE-u z)dT4jkd}7T;*c_BkVSPpP34zFnKm`YlfAUVHmpzLjvLJoTkYqQ4JLiiuqq}#U_;Fr zv`);2QOUS9gymrhpNA!rM9U{SaHi#QAd@`5W?weLIdr(@QC7x2L8KdC%|)YA3?nkD zj`uYf-ykMXKkP_xk0-=YeYkz(QW9$d>#e3FqH?!zTb0Tb8K1fco;_96!@1grO=z6h znFFgbd~wA}GGLKli*a^l)j3s>A@Z-#MkZ75LwKxk*>H^7U#)OrP|XM^R0?r=ppYap z=#J8p)}pd7^`bpthG23~Zz?iY`eDm6*-A;z!7I{z1c=H4JovHvcSTYW>bgs$=&u;7 z%7*LulH8czqG&j-m%gh`?#-k(c5=WZg8|tspfs+M0EXG5BLC@vp;jBeKj9sN4`H%8 zp8sFm@Pzug0z3$>r+Yz#@op=7Ly@)6f$;Q-UjAa>{-!2)jj(7jxGYi9?)1R`C6F)I zW1xbY<6j#1BQOk=`q`ANrWeWF6HN-;3jt)~&Xn@Gr4$hrphAA=uxH$y!KLb{Agv{p zU-Tg%KKI!0?fzTjS_3Bwj~t+W>$V5~awrjMyV}rscak`?cL$H?(6SAIXgW36>8Upt z^?$-H__tEvyXNL7B5*m7K7{dU9955r!jQaJv*Fv0Y&A%M6%k8A@%E59Qh0UgS2!(c z*N(?gxb$p>>MP}mGEDKs2Z9-n4GgGjb&Hv0kuzcb1PmzFe=!<=31|GCpx#BM@~ZZ2 zNL{oT2t{57=*i9j(bf~owdW9R$q~aOYX`wo{Rf@s3r>vl-qhjxty}>0j6iWjH}kOi z6cm|T&_`=VnKVbByfaVs3cHUZuXc+wd;CO^Gi&tK7Q8U-i;z_26+N2DZjM>;G!&jo zszb=0mU0k}h`&BGYki*YqkTd}o|Pe)(Fg$VPRJlEd_ErS5vPa7LXifM55oSx|M2`aXv`EPYvVYxhE+_o#AS6g$`vc z>wkpWU1zWo4PW|z_wKW$vCXD~ldobhOtZo>xw4q*YOOVr#&hjD zCgkzfW8(?0LsOkKtyB_rZnLelRfdZ7(Fl7i!YkOhTsScrx0k-@Ni9JDu()v!VC)nu74T`k z6eORl#7m?st}C(wJ9eb4ms<6jYOFaj1YaAa>g&1&##yQep1Z%IHhSt=g)}8(b(OFr z^03c@?(INu+%}8<_!OgUM$LRXGQxudTJO`VDmZ*wIV)9~2V*RD3pjq!zy;O!Dy0HnDL^Uj z$XKE{qGvac{H{H>IK8s6MGUp3_FR$ha)6^B>5;i^J!}|P#sqavAH&5H(heKh9v<`Of1~iz=nDOPR!)iJ000aDr&H>-kjPPm!=*v z&`QIc;UrZ7PTM=nfJtMB-CXK57%m_CN4=T#+9#N;M?!g7sQ9_vl{BUoK67c66KbI#wajKi^ z`|8t=ai%ZqU7fx~l_B`WW4L;bCM92nBK76ycYgICn`HR?iPrO#yXXG#1QWb>Ip9qK z3Rx-naqgT>8tQ1@OKQ#d z%_X134CWDGwN?~h!2B+Ye(qcRn{c-OFI#~E$my*3ktZc{BoKmL#R^^|H~M4EMLvje zQYLRuwC~qFd_RGqzbx~iOW9@d4WW}r&U4$@(xhwn6GPR7=UvIJT0;~7O3pRS zYoO>}r0N@Jr98DfD!wumfVBPjYMHw#-2dXmyL`Wyfhw=Bb%XpHfGZiI;dL~vHU9kk zWS{7;hy`$9&^KP;0#JpBk@FI)zuC|F-`f89nEXGr&y4r zW%ynQvgWVqX1yETwZm`t6t(|am0yY*e#{p5VH$cGm`tv~BE z;9i?GP&l>v{Up)`az6cMn}JX@1L&O>fR-uxz<)2YV9rp!XFt zxw@0j1{!fbwtVqje+nHagq4fPaedOp4U>S7;B1=y`}QH=5B1y^#1>DO!d=OIDbV{fOAfO7(#7o?)^DI2`0V=+yLpq@hZzf*hmesx zeVf0G#sivAm;DSABiW-W>h2a|zfpkkjLkbb(H8;;Gf~XeE8HBehzFU24^1$uqbNJJV{kIpv zNk@ti?_INd9TPHA#>tFzi912a9lp%F!XS@y(;Kd2webbbk<1&+){=tGvM9Sy9Gk7j z7QSJjEogXT4j549QtzaoQQI$Pqdrz}8BoFzPGLY9{afeOAIlHSccWA~^0>>H#pd%F zZIk}t&b2JuQx8vT*W=Ce3*7gcgcz;F0M?S~CSyT2?V&1>WH$$_FmDP=<_XX3?|TcF6X&4BaRxbc#wphKeJZbY7IC0D)L)F-TFK6)F6}&B10mAW;)Lb%_B6B5>HwDhL-fe2&>fBFYPG%UeA%h4x%MJ^w%BjxtZkpuhhg?k` ztBT>&Y{ID||A7W?T9K)t_PQ0`t-{8`+xLa4TsTGw~4 z^QMXL*73Xm_aZ(jafs<4;#Lv1py8)cl1jTmxKaKb0k_I6cK)z(nTz2H zKl67=HPJBV(SH`I|H=k}S{VRTuoED0wcM=l{r`cDqvY?gaUcm0S{^-b(>@H{9A>g- z?bz3o8-0)5&-Xsdd&2`RJsd?WT;=us3R9r;OfDOPDZX;}P5ZnRSOY7mw`&|wP9mie05o*#1OzYDj~ z_l&Df9?YydtUp1UHL||;RGu%8AP1au$y-pyD7CbcadQJlopwfv43&mrvo-!nclhr} zkN;V3^Zz^7-p`cmzm~;37t8!?6_jp#1=)Ehip(IvbJnE$CjcDW=s@D={mFsNr{6u4 zh)DJ-sp6=i=9~ws@lH>`k7p|Ji{r#b!70zgd5&Ji_JmolvbUs=gtp4^07?AE&5-9T zOnVFXK@ug=VV$mUv3e*4NOo^Bx|v(~s7emIA({tt%+SIwjJotARFD83hX=YZ^!vVu z@XQdPB{!kY8fELT4Q_nLb(&(uT|3O{R@K@BVd9w#*sVg}vRj?!$<@@b$kxFld8|dvlU?FL;pl%0j?YM>}(f!IrDe0***@~dw4SHc)I40U|bS33wp)? znlQ9yoNf5~7u$rx%In*FE6rR4V`WMTs_OOig)4}bXc&=B?3Nlj#$b*eA5m`U9h>uL z={uE5KKLQ})ezO)f>n3fPy`l}m%5B!s36`|*c~tB70h+1sy1t)Qy-ba-rT563!d)= zoZOb5Fr`s)A0>IGA-h4zBu~$QlV{@739@}p)gP_aRFqVPn8rqns*Ez{EtV96$=F~8 zcS1PlTQ;03U#JdwFlJslJD+Rjv!xg>97icQ@jCe=N=vK9P;pvWzk2*b_JL&K=nil0 zg>b)t?)(-0T#6KRYwVv&k-}00IdIeo8jVMzg}*%#<1ks%*mZ=w6%pgOM-z1ebsc6^ zvo3nF%M)s4>N!bpOZdI1l2MFxD(;vwq6YG6oLK&iR$vnwSEO8I`au{(>^ngBzb%~e^g_-xfB)ij#E}lft(BQ2l%xR;}Xoe@VtQI2rBHTrY zfEp*%F8JU~PJp2P-&m{vN*DdCf36eZ>NjTVBQ3T`1v5B>9hqgqc0kbwP07a%wE#mL zF_Z`#01Y4fk5BO51qTesUM(_=C7dRBU!R`emu`fA`E7m#KdJyWq-{DS%W3o4q77xP zs@5O?ycLUV1-F6(lDhLN+)mo&@-BZqj)zGTnc0lmb1e(g!vJM+Zif))tvSmez8{=o zaeWnSSb8}Krw5YrY5HS+p#%s`GfmI0Q_72G=1BX{WppGsV5DhvA;d?`pwY6FuwiD0 z1r`V63}Lh;Uyde4Sr9l4oQ6TiLMqiYw=Y5c=9i`b8m%AO9qM6c8^sqwx=)vS2hD_( zuC%awc&ZF!+fYvt3hD?`orJJb{3v+fA>|2@)jKw(6%`|r_K0#FtnCYI!m_wh)iZTI zaWhpbyiA^^^k26nP4%sHvbar#F^!B#FevGFRVRJs65=Rw$zl{M{7&cqcL^*d_^BqG zOyZFv72T3~t7aZ&_{+~3Up%b9Gb|Q_&x=kak>pmQ&*$+1D{YQgf(rE=IT7FZmHVus zcCuK&C0w=xges^zYz=tjz^S=(Y}`}GNxryD;0V5Wy8}A88b2)YO?jhUO32)R^eBrt zff{*bgD*`&hR$~M$C^9_5hx$10BIDpitG15QK^-Q#YVsiE-5&X8=A`02kjafaz>&u#3oYM_e|dtzHWC$;gbRuxpz_`pASQa& z26DLwmb-;4b6eUm#3581uXnsm**MCA8;(2qbd;atOyk`YDa193nDT$DQN?iUZVD(& ztdYi3m;8;xQtDKMQ+D%qEBGclZmnXr||T+Bx~l3rF>hZam+8$}Yla@E33 zrQ3aqtuP=FYG!Py+UoIQ;&hMeMk-?6 zRF-KA)kQ7X@ZsIfY^(eDP$yw-<4%ml?^i5^r1-@@?B335Kv_RLXmCOWcU*wu`F!k5 zTRbKFi*h&Ep5SKtv+{B+A9Fw|(sdR&D{ZoRFD7-yoHm_t~qG_|FAirg*rvo$rQWehz{on5U; zN@(!#3+(%pCKhQemHH#CDmSRKzGheYw<>?1Y6?m3qwD|bgQL+Et^h1co(#1=|u35H#D>;$*yrhl926c$EI!!Xn+$Ucs&FHr2&PY0b>?>AY-q6>79O|7{_ub3!hSuMfo1TtUWS@hU$yp5}^ldO92#FC?4mz#cT#xT;<8{x-5BygjpKx z*lhBrIPe5Hd5+q+8IK#<*ZP``RVUo@# z=TB}ohld?$Kyz4Ajh&}@poe^5kxHB`w|7R0-cKGU=S6r7w2Whd~$XgWrA)~HH<@6w& zr;(-rXN&?(tF-62@zLjZt`5|4tAn}ANM1KjCEZ=L=8URhUj;9is2oZ@)9h9)Edv1q znNA#LojdvpXBRLt{xha1fW(#wb&w1Wb8Cn_-d5sg@)=%cxH7d`X*ipGe5Oo2S1f=x zja-ggZxsL529J8%#bi~B0NW8pMt{<8-ka^G%k{@aFp=sYt>b3hhs`(vz8$;5z%c?b zM}8sZ1s14Q(w&q?D;J6L3A{daKAz9K9}S5Lp!YUiB_%~e&6vC2@g6sfNpZ+EUXiM z#(j|5T?zMj`m2~=L~G}8w7YMEuQxC9f20$^3@T&%C3N?LBq^)=@Q}*zOgow9<$@%h z>evLE;3%%h;4>>aI^q$CRkSAO`=f10cn0-+FEW4tHFyo3czG~>hLE@D_BH>D5N~{^ z%38z(NHkWCuok>t-WCoZ zPidiFr4F0?3M;-6EkJlicf4)-kh4LBrgVrj%1Ds(G2p6>ctiL`L34;nnts4e_vPDv zY7p%$3?8Vg>Bpc#F@}Js9;)g8;gJ1(n8BGK@&`N_t>^YV%bxTG;fWlrwFwV|*4$IZ zn&la$1ydE?cyN*Y|E0oRM1ZSO z8+Rvnsqd+K2Z@+w?tUvil%x(%>QY=dd90tAv%p=poIVvrj=UYegfr@9tD7QVJN<&H zgc5l466zhB;LRsH-r7MhL^upa(4T-&02#yk_jD49Edl(2FbBnn)7%14rZfhk!leNW zP%7N5_|xLdyXe)(a+PBLKo63pfhBq7N!yUWvyKPG_*do{QPyb!(GQu6P>wSCZ|MLZ zpW(%w?{4F1)^X`q4TkXFWFe^WXfGSc?9m3;$A*?m zQ@{3p_Fx#CE5b?TyMPz^y^-)`alY$3{VW0g{zOX)mg!0109HJq9Jm}1)RkW7ms-rF z-|lnVZq}+lu(Y5I2f<^2xDXLh(mpOZu`WhDk5|;+enqrSDOC{gL5<`FL*M84bkX+o z^y6|BCR`5Oj+js^(kM7W#M6YZ<)w+paE5gjEI+mL7tMVZLEOTo5RCI_#w&dc&4^t^ ze{_FEjYAvI$6fl?V+ca2-rni2_xvZ9a4DyMeec)MkONx@Ups-$P1A=uzO0-N)6P2O zlCDp)ofPL=%YuLZHcIfjMqnqz0~U)jkpDY`I`Nt)cWbF8C0%nP>(3|7-;dY!DbHfM zhpZ!CPWLum%vv;#d(&Q8@zY3@%Ir@!@gJkDd$Z;Iz9)Z~Y^cmJF?j*~K?8$37!a5D zzj64qGXyPFrM|2Q>0NgA6(r=^r*-ZA*QeNkG| zWHls$+vOt@r?cXl!c%<~{i4F%#1B>v3sG8Z`CUrfQ>*QP=OssNA=_ALub4X4+s=pT zZ6sE}2l|y0A^r4S?**rrW5&V~p|7V(yj@>9+=6jT-f_s$*1|1JMfYOmViw+JP4mg~ z!vJ)*Z^A#7C(X5Ybw4;)#%i_b!(@D^jxZ{0j8|;Q%wJr zYOEp6O}3+~IFv_o5}{cB%35_2PbJT}DrrOMc-9DNUC@~nm(J(>?4DptgIHhBT}vek zeKMy#_4?TUz{5`$KqXA8S(jkzGv|ikq5U`{#-?trjIPw`6R2o7Exy=CDt$C2{qBNM zR;=}eE)?k1rqEkR88aOZ*+vM$#JRsTL5)zr6=BQ_WhuPgd3hEY$jHORp)4P`#~uj% z*v4vuc=6gVYEN}^&J9BSq3DHcMJ~FqS8nrXE%LWD2?>6atUWyVSFbhlNcX5>j$^UO z?A%RKQnp!SWE=^XKDN@G-k8KrD@M#?BDa`xpynXr8HW1&h_6Opfs8ZQ5DYI7hTjKqW)F#B@Tc`|O3p@V9G9Cayz@K{c0LZln z8=XUV4-g`&5#j+^3KZXGUMK~WfIpe=)lcX;-Uflwx z5iI^&qtLW<&6fKofdSt@8$gl|F+e|Ylt}OQf1CU79=lrIBe3A;+GF*(^tY#o(e3;P zxu{rYA9r-t)d_-#!y;mZ|FWVGR`RM1DnmueII6}B9(&co%~xCNuRdY}Lf!!NaCq!T zm1csn=a0~+83qww*Gqv^|H-0*2OZ0xU4Fc|N8@0@lPObgB~kqp%^|P3wrYqo$KtN1 znL*dpzf>9a76D;-(&|i%zO~XcE63d7tw^3J%l<3hgLN!`0q|uj*1GkFQLytp`W(-E zPqs)rTA#%Y`4l!~D*aw>oA*rQ%TzN^H$Nszrpg+l)E6JO_wk~{+ zTA7O+u-Zt66Z^B-9x~@A13LOA>F+TO<)|L8K^Zublps4h>15s9!AH^KgbA&PaCnKGN@?JL(WjXOYIyTHXKac2p-~0(8ZPIUynq1Q$J)YYA`kTi zaLazWuc1x`!Xg$f#i3T%adnAgO4SkXnA_}?hAE2UMHB0ki&h8JhFJ5+iha~fno)@% zK>Y&;_mMX%28ALJ6y<4&A@{@#jp98X?TcvuC1Kh}xIr->=dHh7H=X7$HT;~<`z{l_Oeomyt2l+J8xW3J;@y1x-QpV)4i+J{|4e+ z27qo8x8I4;8S)hGl}rR}3BDc#`{iy5cHU9%*I-M~BM&PX^p`<_Rue`pU|%h#L2I$sO=28uiKS}?z7 zk_i>oTtluuP@AQdB{|=#>6|wP2 zt|eWczO=$6X1AXv076UowITc?O{v#FuT+3R((~5lcc;Xwuk{M}I(R-VeTq#u*YS>N!jC!4(35Wn>g8Gs zIW+#QEy>)`FK1dqz>MhrF(Vt1ws&fuZ)nRcy{w(1phKT>?djNF;bxK#w!g}jS&@3u z)y53rvs4(ms~@G|A-_b4^!0yq5dO1X1<=r|R-;}!15)2WgGDsmZPqB-$Gk7uTNs{? z3%i9HxJKG!5&uL`{m{`+l;HJ&p!gV<##Xj@f=coN%SLxQ(U-m;g@f@=qWPp`55KfO zi^`GZ1!1>=xG~d!(8_OVTxbc8XT5UYo^s<6MWw;Ji5r*8w{9eYh9A8B;Y1gBBmmFB znTCQFCvr#>GQ7=L(V@^})s25Bemxp?ZN`q4jmzyJGJm)hyITFiW&`xw6lvVPZ3Od^z-@2rS{G9d;&BNRR@ZcyS#Qi(8xpUz z1hav-bShjI70Rs518Eh?PtiQRW-;{L zHR4XxN9pFt0;LiiV=(9%V1ghI-yXJ?sRk5{mc{V89MI-YD7x7iE>A4Z?*`(Owmt@w&$HuW> z_b|f4O2djbt-gh;2XP9ezPBB)o%J-`DOPsJnE?F5xlvD}Fq%S+sUXz(HlHGe+!Vz3 zeJE-eT6aikI();@-$f)qAVmJicY+JK$!y`!6NB3?P+9Zs+7meNjHVhP>HM`C3hSmS z9(_;Wl#lK07f}=kK2_JrQi6AS&_d$8Vrt2h36k8Razxt zB)bqwgYq?8zEMC~;trv#oZ=N}j+{RT#fq{Pp@NPCPR%Xy6)_YnsOc16&Zc%7+SqS6 zdPGNA9sA4Hc_N;c8RsOuSc;ttxI5^n!0rR$e(I|aB@FLtUsPvli{`46k3z+9imV}K zN;8Q_ynWcu#KdJUK4(JVu&V`+o(A4(qZ4-iQWpH!+s&s#!mZ%({&1F(86IhodRt(!Y>e~?M; z65Kg=#b0MQSFmeE(Tx$n3(`atPQ|;Le+mV>M*HP_e4^+$mz7WQ} z_Faju7n0JbJ7h5q05yR3w45?=)`7vshtinv?B_F{Rikfte*sT_6Ue-ep?QI9JWE--k3Uc) z=RC`qYV+}+%ARjYc)@1f^J{3sQtypFmgnz(C-|5D1c0so;+a3aqWZb)2%V!!7*-Tn zr#qKlq$8Q3Ogc7cVvMGQg6-7%*T^;T67?Ti;*p0xF?xRNn~k%#!jX$gT1#l{55WmG z+7{=T$d&f!JU0Onw4>CMNqz*l0j&p|)KI=moS7FG=Rax7FR&lEu&h{WIy;Gbfi%a_ zPYE9Up;7-dZSbHK!y$UIBjV9RzMi|3inU6RM>9)5z#4T^n9b2q53-THG*;)*AjF6s zr7N$?{cyyhu7;tvf(m!?=F_4<7Gol4&jAU3M69ZPb{uMB;m- zlZfHuBoeat@`DB}RHJJ&vjAcEA{~v~Fl}b2JQHZ7bf%4E!6Xh_LgWeO)7g7{IAr_! zDjjA4g0_E<)xSw@SLbjZI`ZCu9QCi(q$#Ws$79+(u1}cqqea@@xds=DFrN@pLy^IE z+iWNqOW_Wnkjvv0L~=bzc^tZy*r6ODc=1lfEE?nq?m&QezKT+z<&lwFk4-6Du*2HD zM+80VSj$57wj6Vl)rZY87gQX+dPjVL!H@fCRG$Bn&OID5&*|oruf## z7q5t)uv3iYeZIVTK2Dd?zrLVkVu-E7lKj%Zm{<4<J|q8N4Ry|BRE>$Gm3rztoyPZSI^FU2QLB>HG-OHHTCTtGzU2G(SdEt z;6i^)0@T&9ob8?z_4xJ6_)jmx@dQ8b=?DT*S&_`aZ=jiSehAr>ntA#L1BxGZ+znyz z0RJ)4SmR}z&SsX|QLkCEU7lyB^c8z&JHR`m5CYyB+t;W*G51d;K~XI*cqboWFX#4tmXrc%-I=S z?M?H_hINW@jXraMGJHT_Z!Y-uSEH4@Tq@J=uxRNna2kydjc>1Zh%V{A_sw{h)ZrV* zbo}@x%3ZqZFe26_Ugm?XNagJuYv_o!*CIY*54e@csT{AV4eD3M)yk>jKg6?5Z7+R?QOQlYOcChp({q>F zoO-g6@3mN|1OR?81IL!#h^8Iu8de`HG<$FC{+NkZIqlr=sPB zI;HC`5g4yz9g@YCUV&hxDrCU9>osV#7;5^5_Ydrn0*BdOIzaT7G2z$6VA$iDF};A)4D&dro5byynp@}5 z%7syKNoUz!e$X>_X%l_n>S)$oR-IYx<`wKF+-iy5{CO`*qViV4k)#EY=*sDoRf$n1 zHkUqPBZ-9&QBP%R2S3_t6)(^E8>j-af3q!RxHnIjtROoY{U4WT?l~&ad9pP_H33E7 z?enD~#L{yA!omOnu(9MA9>>;2K|hU2v#5SR!&8^Yh-m`B%k)pFSGu3Sffh65fg_38 zNaxawg8!H`4|)D9>s((};cx>xYL;0>TGOJs&&c$bSaP}n`8cjj%pL^K&b}LdKmLsY z6<{{4fMm6HYTh?W9iqRy9_zFx_2Cv4m8-RBKJAyJTrQ)}He!%;Z@*?*Q?6I_YDjkNVnNc ze=K8eYZB_yY)ZcpEJkoR#amslXNkJpFD=zmJ$R`tkSc9@Mj#v~C3NK{p}gPz`N1bf zz`jlwP7_RsSDyd*&Dx2lD0OZ9B#TgW_R zdJTIK{Axlx=1URDjJ}?Bhv@b>;&o59(UbHC?Zr@}2lxUK5Qg(%ew-$u&$GbN&qS@R zP7eeghU7d;K$yV*9ku<6gZxzsN`O{*T+@@C#iJnDDJb(VL}hzAo3BHnK6oMU05O?I zukFIe2wAZr#!v!CIIs^aB7vWNFg};F!E&1=iUIP^T zn7?M4zYf@Q>AkwBl7IZhABO_u%p(gzb|s+vUY_Nr!}HTjePm!a-iv7B-OT~H$S*`S zFJEV82W-3fJE#03yFaYV`B~r$uqHh&?`I(=9%1(U# zruI&>)QzqphDx{-3}TW9J<2SQH^B8EhfZHscrHrNYkXPg$6C!c$HM4&bpJ0>M>^n0{Ey`6g=2iJZ# z&(Ct^SNGc*vM{db?asH5t!uNC+KlKu?{gZus(}W6c#xe7vtkX9VI5KIB)DCXhY#-s zCmzASsCtq1Xk;laM1^;_&t>H@`+e8-5~4YPWfC=B3a635t}ORwT+q?Ks*u?cz&CD_ z0aZq_XzzxKNE)9k+pM`LD#3KhDpL@^ikLju@NU2{xd&CEPPP*+`mAekz=}c!7cB|B zUy}{OApL{@By9m_o5s)_pJX4BxNR81P!g-E8u41QKjL$C^|Wo9U7I7vVoi#=JzKhC zw%N4h?gVP6XsJn$6n+eK=TR{d>DLeuX@TQr4V@TulSGrvA(mk-$sP3@affiG0lAt- z?i=q7-?koGsz7u;E3qifM9ao;TD@D?i*W)F^ddK+)KuB3QkM+Gb>uM9jn%Et&eH97IYb`w1$5uBqL= zPhLWOOZQWz`E$!v?%1Z_WjFJDtX4u&m08)&%-}dv`SEkXBI2V z9%1g4YBysvs7vMwn?*0#!*g1;+AxXXy{fQjC3M3wSFz&8si_;eWS1MY+S^FHH}^y( z7pXF^%crOze!T~|g2F2fJ9gbtif6Gn9UZ3u(!4t!fh;o`_`uVXvgJ94ArWy7%k_Z%QlEukn}Z)b$T0J77vwV<4U5;x#H8N7SSHUtKm9PUrvLLgif6R z-MSoEF(%Zv8QvWEnXCGIag61Ho}bMplpeX;np(mn*?ks}lSy#4uO7NwiHdM(CfG6w zhkUYLH#Q+8t#61C4cXT0vbi|ye~6u+{%PC4nLs8k-_~2k!d9w7S+^>$7Ik4KF)$`K zv%ckp&S>;Q9HIMtW?Zz-j9~^b(&OTRbkP=HSo#FZbIT(4xED%8Wy<#Fus*EA3V*GP zEhCv1*L-uxXGR~GwXUH>K6+qrS}S$(q}F_hrI_hcKV5bl3)FiYL2B>nN&6JgXIr_^ zY#0LZg9FDM8q7BXF~D3 ze==})z+uEHObTLch#GKw{zeO#?MYL+`_S<6@NCaMmo|(U`hvQKu-&>-X>Ht;AxCde zFkT=>6U7F#7|3?GB)U8-tH5}6*9@`$C-Bhu%)^X-f`|Tg+5!`44(Uu35cV(Xu)%ZO z4As2t+;+#*L1}#6oQ6pBXeUNuAj8b-DZt&{k(PpgzwdB{$fpbhE<^6B(vYWr=Jxp| zzW@7K4%uDnus$$I7NM*)xYu69NfKvQu_HSj+8sbh*2EPr4#X%Zjj@c~RN69JzW{)# zQY))s7Ol75yCO6%^fNvu;D?$=S}VP5XEd1U&+0Os-Cd*c&GSo;v85uOGP88qKQOggs3 z29L>b`B2%%0td(IRpk=(6`2%nQ8)(L;`a~Ippz(Ft}eQo24K_GbKhBxu6m#pE||r$ z$4#IMds>=xlhyUJs8zQOW{rO4^X;^?X-t6)u%pFDNzY&x!0Z+yJNUb*~rdwQOm zs#UIouC%Lm6{&~z2q5;b?a(rJ7p9XA6(+Y^PhO#D@SQ4rSYCDGHEApmAZ&_3gQ-yM zL_?E{_*|c(`P0&v1#)t^I&Q^1tMC3&dPPNTB3aZj`y*^dIHBkEwOJy}+oJfR$J`nb zqUH&S{H;Vx!^bCbl~o}$V4FVbrWdbY;YC2v+dmx|2}_m8mN5u*m>U+}@-QY?m6f!h zrvt<@cC>gwMAw^O8a*a5ExwoW8`facxwr3V$z>E!q%OVBtvwi)s}u1gb07ENyM|!< zJ!Y@)dSf^5_w+-cZjEQe^+2nW^Mw4Akm{$(%7C?qg?DY7Z$(~h#N1?ccHp~>Ry8)vg*Cq>sBMc_k zD-s|#ws|T9k)s(-84tH=Mmk&5eWe!f>D%2z72=rgIF~`}sM7KhXT&#F_}@UtC>ly0 zVLee1@$Khd*9t7ts%wuWg0-+)NS{D?_bZ5=D#G z-~7yEMpqCdsZMAy&zdSbdOAs$R$WnE>l*BuF&#siMk%}c4OD->1y^t0WnkH5=w!to zkuTRg#aO}Qs%`p^C;1MpFSSMnuil2SPX+>+DlO0N1xRwuwXg6=07p3Qz#qK_i8LbM2eJvx6|ez-(oUj9BL5gnls5 z4=Y6zr%p47>7p3-emYi`G?18uukhNTAgZCSHg#W+ zIV^5iugOEkNc`#aC0znWgN3|#Kj%XS z`X}(_4>i&K8e%?ijZtAV<}1q5jJFka&jPjmq*sefe>CT*H~ALO`9DPq0K&@ebAfZ6 zed}JiblYaL{2JDA>7K=P!M}0Uq5)X4n(_DV=9OGz{MP%5wNZCsw+L;1tl57t?0;(h zfA60_kz=fT-ZCJk9bs$Xnn%h0QZ-h_{~9QA%)BwbBqo}0IiMY|F7Ck>K)j3@XV0?p zz(Q|EPM!OGQictNk55%t*berLf=l~!vbBGCkRwoXsMg?EHatZeTPT%=k{a-^Hxa)T zl?cf1UCr<3*SPef_p{sKk!3Bjqh{-B(Xg~Iye)3(;9-P|i2WGe2SG^04GcYizF;(U z%Cmox;N6y_v)ORMe(?vGT4ih8@dP1Hy&JR5_!8p(o!`#ReVi~xi|rq&;a zw6-jz6^AbK1Y!`k4RR98=64LKA|@1T#*|<)q@2o7Zk=aOZHegUsf@_Gj~b-|+pB|*v-8@RdCzmC)>1Fy#D=1xPWJXWm$T#At)2{ak9!!}>LS&* zl{u|hSw=4gXQMXu)>e>)mEt?M&t80%+f)mvATB?Gn8#1E&K0{9926XAe(Z;$v>dep zE$(qwq)hRZ*-h_!u{)mQ^B)M}>bnm%w|<%ky@yj_>S5yBG2EbT+(22}~u}p31F}Pw)uR`S)^Jz9C&d zUQ+#9YWd>DcK@8~D*d3eU_TY**8fA^TL#s&ZR?_wkRS;joQV_M-60TQ0zrbiySoI3 zKya7f?(PfJpAIvId)$F5>-rDG+x7NP)eYT<; z%3Oo#fxau#su|}ei1Sr0TaGH(u{4#&37n{@U!bGKdokRT;tLP-tH)~Jgo&;WH-&Sq zk|9&SC$r#F^x3-t?baGihvqa&6-5hqa{&p}I~)h=8%M$?RD9?4``??BUv9?q07c4y z>sg!SLN{k|1+<)O7$~21oR^`#aHN$R-n4&iC==cQ3xuWhbDau6RNy-8m52_d#%C`R z7iz1q*zB!tHjKxPZjhQ8)P^t3c_K*2Mqg`l1KlmD@7QuOqg}JXKskqhM&@e9ip9wU7ho(>mAC{8& zL3203*ILkMDbtm=?m8^>S8}I)9446STH~Ki+4Sf%Lj4h5lwz{{R^$J*$$dNM- zbu5SPoH3T0cQRnix#Kf+UD@-C`7>Cb&RAJgG{5-HBYZlROtxiasfZcU4_t~hB$$G7 z7Mz&jQ&;~X*_<1ViALsS5=n{~toNq388Ot*j+2k_18^l#YnPjU{dgboag& zEDKwE`H#08P@((xiWC7qsxuc3#sV48tFmE5)qiY`xE@ILw?;`@1D<|b8jzyHL{nKquSO9zeu%U8<+gF6&sFq5qR7}l2cPjP5qS5N&`Or}0acWwmDFoiW-b0`=`F@%ExD!IHAJftyHS#oPNs7ZMv z(E+jF9>l}m`gkhT^w@?1AtJCdrQ$q%EzN^f(?Y)}TCXn2iuxh34ZnY1{8+}$l{LAM zZfPus^gn^?QvN4!-Cr&qex~KecN!r#2^S$>IVjZYLvm$8M*6JUKX%n4-VHKyvDXR# zlma`jC8+%!djBJzc&!*w zOww7snJ;<-SNwQE#PwYyax8)P;=Gs$KKD$t>E76c6ki>O!H=2jDpk*Z^aOHIG$FFK z^Tu{1q8GiP0Yo}!W~{_29jDhZg=$Ny=E&9O=z(JK(RBwO{4Ib6UujAdAnAI9*upUk=k?(cmjOQZIENUgv z{)SKowY4r@8lyC|vX^VCcd9s@qNKw-$h|N0eB?tciBhy^2L*J(bK>+$aNP*+j+dn( z%$|<(2l7~Z^dIm$!sOU zBIFY=QVfmeV}ZXu_Mo!&n7O%~)_5XCgPd;@L8!g_+eU^Di@ufA=-?D%42?n0o|Hk) z?$ukdS{bC(mYzg(=cr{Bb=B0->OnVqrj;eTh+Quv70W$^om^{@l&Mlre<{*-j#J^> zZW~mo9QmAWX{SUz1H8}1@wr2_mEb*1;(NNM<8(4Dw0KTKrHjZV5lSAtLGgt57dgr5 zAZC9fFvn-BxQHR zm->KK089^V)uW^yK2bndI#2auvrx%-O-WT@`yEFldq5xbOmW&a*HUxot=h9&A)Zt% zI|p5bh?}*I{zvKp7zeqsZ5vVc3Yu^?Ik{JSY;%{(&XSheQfa+5%1I=d5mKG6#IKiN zJc`K}bh=vNf9F=Zaz=w;CZy9x2wxWi54987Yc#@i8c3{XD%@=-#M z?2Mm0f~9%_5J%FOCrr107~qT7()nvRq8h%%=W5G9YW*-<%J$R!K&&6kYw@}t&siDZ zFd%4XKZN|h(T4cf+5d0;_unNF#i8oputGl1Kqk6X8j#LFkGOsCO!o(Uwkj@G-$S{( zLG+14ch++OA=?Y$Bz+C^s%G7p$_uM2il58g>1~w&HLoul380vs?lZjz;)VrXfkMY% zmVeh1R=nNv*zNvo6uY zlfVbVU(Bud<+81_ z@k1l}6_3m49t2s1R}TC5_wf0RAOY2xzxVU#7V>4()I%xg^HX9MrHo+qoh-~p+)L#I zOH&JuJ8h3<=)J29gnnK_1huB0rFbRb&3-8CSG}bmCq3_9+^Wp5=upXpnzf5YOwag_m$a_g|cyD8PCy6XT4noUNW)6Dh(ZLD*dBbf!@E`mUxh17%g{ zV?V9cIZcig{FmYa0;3H$o2SZP3CTj#q=~121?8`fsHVAQ+-}{krfa__or~Fp_bK$S zbTBhI>Uo8L^)ck4o9X2>Mk{Wg36?y(MR>=g-0%-pNWZIRyqi|&IjbZqTww7<{)jqa zoYwUqX`#jc_D4%)(!}l|<}hvDajSm4Ni3XkxYBBZUU!|2y-!+f%Ji{hT46Sg!YNXw zE!$~*^l;YH$j1am)|mE(oWPQgVCwSz2E=@XA-8Eak-5nQfH7xIC7Fiv=nV{0&s!Vp zmp-8zl|Sma$^pQ`Gm5KMC6?$#%;%M-@}ULWh`Qv`ZzJ|KhaG6-299m=xti*Y)Num}cRyLlitom9yt*K@rV6~#rw(b` zooOO{=edB-7;C*KYGp=%Jgs?>SN?$L)yyT${nUpXmLm3mw>48DJ!H=;H|t z>~n=3-yR8N3EP}iP_vx-&xs=0CnfOIJw#D0*Do!c8Tr$<8WGhy2D{`2n}X1$x~M_zcBrG_iqaUa(`v=Fy7 zGwgD`v4XDhZL!E#5=+d;m?0{v0RhUJYhXuG&vjxR&BeUK8CN=!JXc^o^MdHyJ%lxy z(@s;PukU!%YtW}2L`CE$A=gwP;XW|KT3h;h-|Z)xB|BuZ(T9LsH7Z zN==n#p@w983#wnr9r?U8_6H}OWKLb4w#X#>c;`8`kRHUbcTZ`_J^D_y_x=v{Bc_0j z8>P}s*~KKEGDjaZpV7~y49V8z&FEijG{A&Tl z2iAc z%V3q>JwYtJTdz#viMjeGholXeCmb4Cm=u1D3Cm7erO4hE9Gp0iT?u2S%Uv6(UjRB( z25Ylo4X#U=NP!Hk$jI1_RQvlKZz4aT%GwLwf;jiv87eOQCZOTCu%Gv(Y~z7X|0pX6 z@pTs&DqMnLau5-Y^>V`qw*9F5EQvQ~RIcgl%DZ?db3D55FI>~z=N=@RSX~1lL}Z!9 zwBuMS&{i35JSk3NUul1uJR)ssQBr1-q}`wr+N9YoDMmVnL2qK-EgU}=fiRo`XqMIKicQW4~pH+^D{tswq~75vFETCb`tAGIOSOH~U5urD@#n_r(! zn=dnx$qPi%jwCHV;-n5J^pZ@;glI8p7H>5%CnAGQ3IJ}w`j;|+s}VpDO#I~h`~!gP zU;3_mzkfoec{_Gc{N*ATH+52Fq2DH%L$r}V|D{YZ6A_5NW}>-LTyt*2onbSxZ1qP{ z&w`lBmn=zuH>6)jv0^v?&%mXC3urKHUXCGtlpMyKi0ZZg5xs| zyBF$@#r)(z67jO(-8sE*E@%<5Ttz<`U$KOMt=&+^B8Q_wtJK<`xT4ubQl$>8vFMz&ui+-( z(L}Br+Gm|qc3%7O~LU&b~J@+1exO;o6PF+s%yuKTK0tfBmdgL8hxb%AfRUu$J!oN^t^tG z1X_Q6?KHw~Wuhv^(BN}7qjYMBd!d*-#9b&2LiZ6f&2YJU>e?Fl8#-BqHG*&&JKC3s zYZIrJaG z6FQR?Tmt$TJ|Tz%DTk)SMoHt__c+ywx=pd^lQ(KcP@lC1*YZhRm*Y5P0u8_g+IT`ekowBrK3m=+=cGq0pZh)qgGv{pCw2ElG&cZy;4%fro+oyI|0^ zyL{%}rudJT!@7r=k*$Dp{Uzk+N56WahhR|VdiveVd9T^r*5@FJGm0|-`CVh+1K|Cn z!Npjv{o-`4xuiu~7J>u)g2bmf(rY&(Q*<+wp{zRT*bngjy1nurB%e7!|gEmR$B9;omBu;Jrx-AGTD_Pj=ZqFXT?wg ziT#43DY|e%l?xY)29nT$acIW;>_N zI{2b(x46C=_F07*b3dbMQ7d$VE^KS)sWN+cBN>_x+$%*%__6ipRE}R>D1J_O=s_evhAb_FPZVR4ma!;~tp$u{uFH|yRMAcFhX}9psOiuHy-Ts+a?KjWYgdfVC z#WPX`h3=GVPpn(xm*zF!!*f65UW#K^r7op3@ywnyW3m&*(iqiAy%`gY1oMi9m40~Skgx8yK}ZHC-z-IX zM_eLrNu_I{+TK}ES#CJ?BDS$kk^SV$6nlvwF6|Gh0S2irD;XVhxE?)_V9sbpE29bO6df?m~kykbBO z$*Cjs^VlnE7?aV=y{JyEWqW#~)Q6fXol1d>M@s0T|0>xqa(TGFLfO=OfRy~wsq#U3 zd&O&n1sUH2di?J()28Dpd`Q1Q4QnG}Ku+qr_va9SMqV$+sT&J;SYvc3f~buNE10;F zjLIpQB{?rg+wf9o!j|55P)47o&IIvm|9!8)??Ltdu`=y{uM8h55e{%JoFP^6rw3;F z?5Lt2QzPTQ2gq=wLq0F4SF5UUyOt*OK*+Ahz412GCp|XsnL7--KH#XzNVQ{!J^@Jy zq}3iBM9iO*(5Q@0h#*6E2EsEbm3vp3M}Lq5Hy|}abP99Y4m z+!+B|Se!WiZM&x#NY^KF!2{zbWOs6$LtlAypwc{mI>=@7uyW4~a-mxPwdROOQ{hVt z`Ox%2bg0xby4{J)Nd}zO3B5)UC$QB(1?k?3H(%a_JS|hJRA0_BDJzs7;5ni?ezu&@ zNuayrF6Z(ytgeu}Metsey;W>P(_wz*krdq3QwTO{4||XIt50J(df#5dP)0i zo#R)>>v_XT=zzJ&pK1zq=@_@6-I2hE-%s=ka*}2y*bLDHc727G)FVApQn^FeWq@UB zpf>q8(2@r*@z~;SX}7VH6ZUWa+I1xelLn4fA&x`D`@MeuYKlBJ}A7IcVXZ zN!15Vr_CD(wm4_X-=R=Kr=3v*8%jywzwRV(-?XoHklsBfyQFN&8;jRdt;oIhnoNU93zw=buT6|Ia=X|C5K$^`uMt_IeVK*k;K0`gx{0 zx^AS%kM+}PHgq)IEyeu@|5)kPdD;;)JT8e-e+_q|P{|^@FBoI%s_2v9Ie+&NOZR83 zvU3qr?&dZQPU1*^u1@#;MlEDgJ}SE!dZjN_XI61ujCJ*?YN8|KwNva+6sCqy6;Qkc zDdPiUb~UmBD6A;!{4?oH)JXH}$4ZpSPD92vq&NqP{q)^#TuzuWICGlwni_jmCFiPn zJ3=Kn#+k&iU;cgn9WpKqGh{vo7V5udty82@y@* zWm5FJUZkez_NSCJ{uh}GU6r!gu%U0$%{0Osu*edGM$$J@Srm-aRi{Hu40MDk`nVfb zisJ~f5@>|BO{`KkN?DZB59?xFqt_zYIbSl!;lxrwA6#a3XL8mSv$9EPO^N`tF%xil zeHxL{;y*#M;uNsnRAeh{F>c_pubbu`S~~zPs@PCZe~}6yC%~V~a$o?D_?tJ=2xqZv zm1sC3+3*uhSCVJd5k^XfIEq1`l6=iB0yJgc+Bvm`+R|`$)>BWer70`>Bm~VokLERa zdtNcc$0r;^Fx(itIFZj)n+F}L;3ctVk+!WHTUvN2?hg$ zh(I-X1d*{Jmw`LG<6TZ-CxdWg&Tf8DesNr70-A{pOe0jDI z~(TL8{MX?mW-ru-0xQcQVkSI%&q z%wS6=%lzAlq9yy8q!2emk(MAU-cNaIi@mO72U|fw*JE8$Au5`#3_ ziL4s+n+6epC8;xV^?*@&xY-$|jTdzxT)D!oc`kgm2Ulu~d8ymxhhqKx#K69+(>qmR zoh=<7F&e>*@m%}jMfKRgzAW>=oOtwIW?Hk{z|D-6#1a0}ysSCO`g1N1ik|CU@w%xi zQOqMdPDN$+6k}+;n6bAbl-nM#efM~sUH8Uwtu>FA5A?P>x=p)yPMe;GXJL)kxdYc& zG-}w~`Jr^%6%Sg;_F%JjDl6i8adn286(n#t-{L?X(>>CM-iVaVbGcYJU!+*Q&aHq4TUKnt)QG*$xee}AGm@nG5QhCKwwMNF z?-u}yv~k6tr^9JzNOmMkNz2ImE}s2@nSGy^@P7Rd0E2$FHoQB>#;Mxb3^jvrem z0~)F;yl9nO_d;(?Pd69>Dl}EqrDqv6M#u#ZYP0b$oVHl3_EOF+Gmt<2hjRk%5UL~r z2;gbRK!R=~J<57ev8um`KIE?uIs(J~)Nju~exHGa)un|MxAQzdj;(HHizEgqlP?U` z5jdOODm=7rgNX=m|Af?vC%QjVU*TSlIbn0wuom^SMG|<`9>_?V!ClzWkSBG(yhxA>;V9)7garn-SoP%?2@O75xAL;H3HUl zc`?8W-RDs_c0YBsZ{?M~$FDpcuScKHr$Yg~Q}&fpW$dnBcVy?6m##6)#4+>Y`~2OZ zxYZ?}V_U7@oXk%7|qCEEr z=}4KHxYu02+6;hJor#h(_ALBI;`{2eUF5D8u2-J#Hz?SncxliX;bswn+wFTM8zQxbCIsDB4>zV+?0$hGL%bEQF{Y8Y?ta2d&eQk$i|}x12MeWsf6U z+q&Xaw4ckBn`LcX$8BhEgFm4VO^|7d-o3F2obGIAeZdRMxj;U0>}>gv%}eiri)@;$ z*^>?zx}QG+REyh3mwp2&J_N2m-wfYycp+=JP3%yl^vAR(Tq|SVBxz3B4qBR7LgMiU z2D;%bPVgX^P?x2O78-PieQOFzNgVACE*@(|=@HYe8Gf0_0qTwNA+%Try+{gGUdU?l429+ij= zt7y$6I>TkLrc=4LnW}J98n!7PKeC96wSv&XQN1*;A%d&b4racqfLGVX3%NjQy3cB z1sdkBGmuj}!7kS7x0aids6~tYFZxN}e@E!qP&DyD;6ZB(U3-v){rTV0w9~oGe-@nm z4Rp0@{~IVv3sA@b8hQK32cKI2_Qp#I*`UE&w0o8H5;Cf|0cnO1(N?O+kDhK(Iz%&Zv71KW=96_zR`hw+qh?AsQjqjYBv z7K#q$BT64bWO!CLr8iRt1m_{K(T(z zndU`E!EqlKPMmG}$Lmow{1`n;dq_vMNPUE4f`an%sAO|Fi(RE+WJ#JjB;##84ruMM zOKvZ3J-22FVx3(Rp^_})FOu3*Y~i!zzrdMgZm!_^SOViH+*rYsLLj2P{27aGbML;Y z1a*i|S(9GhfvmcoXTzs-JkfxsBh#oKHGYdAAf(s~OX()ucSeeRS9wzG>ljV1sZH(| zt4#310IFu9*bsK;)lRNyBmCk9%O#!*g}S<1^K^Ynz^>~Tm4@_Tq+S?ZVmWLSXMOBm z^yI@Dcpj}m;py-0$k!M%P@F2Gpco%kgHx`bEZv6qL&Rrb(U#(c+iD5F4}eC4rsTCF zndpAStHmZUW5u2k$YM04SnHsfRqHU>Q2hWs)@)qsO%gx>SQs#)$$r>7JJ!kN1XdQ+y7mhzD-;r8K)TQd>|_H;^{ys9~!S!V3yg!H{1RkmOK7_lOi z^cC$G|0)L`F$8sY5NaRw=`;U!j~f3D#!7-NVs6X)H|_bnQuL~ZdY5c}ya6Ok-e!xn zYSg8A^y8B`uG9xCUNH}2SG((DEw2X)N~B%8^5MO^2*tL6N=SPaY2VSK|cDYsCr86Li}ym}8Nh z10Rn-JnjQ|Wa)EKi~8u4eB;A3?=U3jGJ9J0sRp4vY&q-IyYa=9g41_v+JXpsX0) z3WYh-Ep{U2rbmCsoKLps^rOa}9efw~8k*leral*>JL;U{va!Exd4l<2(g=&W4K-oN zfT*jhK_(90*-#jIlC%^EhrL1^Ql&Q!of4?XIyr$JK`?%9ERFtCvjHx8DNIH z#;>r)3x5fdWV%$up*RI-?9;zSa$K8hOEA%A+R_a^iK8;?L{UAOKsWs{3PPB%Q1xsE z`)mQe3-xDa#w}(J*|u{;knNkoeJ!|1;iCAK3H!hk^tY_gRZA2+v0kH!WKq9?XnVK- z5jyn(YyCe(=m-b?3I6#Xwq}F3j?JL~lUI5fabnE4xs z!SDHT$?GghS;X!~=hv>^K!`vZaQ9gd0EKL__Sbqp%AC&q21*$6T6~lK%p&;Ct^{&4C!#(@NlW_yv%+YCWy~&hjq>-DQB0{vcL-S8UP^TrYhc;4EVR z7#M#a3M*q37z-C*Z}{VaG+B4rx?X=BOhcp80qYsl`K!P`$QBI(Jt{eEc?g!q$TZJ)fHg<{ut>69x$|6r|`4(AFEfUO>;%V=*jQFP|_*ter_vuWy)1&;4q2aqr$9@@<<6jMm z`wxTWx?v35|FY=qzgYCI6Zj7`b$#?t zLd`@H!e9bCut&w;ZMRKXU-j2}5g7v=FqBiyNd@rT1^Z2(?<^2-Q-?NcudGIkgsz7xn5-P!hZ=4MOjU*kbuM1UbWA@D*{0AWFkK@lO}}5v73KOYkG9 zv$G|8uB{{4+s^nvsyjh&_|tPN)Z{JZ#)0zK*lK9sPld|;wooH)s#~EMYh)SrWZM*; z>MlT{BSrRQ{WEHFmJw2>i`JsCzj!SHP!^gA415>d(k|yupDawNc}k_Hwj=# zr|rIL3KDNVjw#^Ti30|-@obW5B<`>k1_ARFGYs%S0ELVAFNLPo%w_4j z2MOFCQPqacSaX+oqkHr~cLdt;iEmo%9p|I`Mn9X*$EMRX>svfB*i-mv%LJohZ25{( z3X0nAVs^fb_};LU=9060;)=HIx^j;;M0Tcm$WoeeJ#+0;56|87ElGx%BI59D*Hp*Z zfO#8A);>kPrHm)njsf<~gWIiTDdPI1o;aq;i7uQDCxKcg4N>&R6u;U;n^#ny#y zO{rL6midxl0&+BS5f+Kj4S19p&|+y5;Qili=14 zVP2>|Wo`7hM4d*^IvrSzWOKIL;!z@oz74=P*D{DpY>Ji``uRv@jX0B6A3$@)i^6Jn ztT>L&q>-@%@>KS1gq||0j$w`&8$ZjDU)0)5Dv|BCMGWf-WA4gbqK&^0#U>i$7&?f| zNU|8fh*XXV2PacD|OPc0MX{pp|8p4RFsatZq1+uQ;@%!j6 zpdEz+dS;%{Y)tdAy_jP@wI&83{wU1dYqG4_bH@J`=HIc9$r9w{jpjWNC~7z8lk&n= zoK?caC^>UgRkhcF&e-J0k;QK2oc%6|q!NG#F}+)MiieIL1sMlh<_*|M{j@$HAa9tp zjP_v1E3hPOKDU}DA=!N$(LiE(p=^GHAQXVJw#i1b{5iU1ws3IK#p>R~5x(^3Sjfvn zMKed4R!w}PUfns;u%E0xe(_WI`wkSiZj-H&sO+RFP3Z@SY3;Hjo5|63O@b@)N3>*TWR`vdm}`6n*bfYgtJ};I{+0qgzjLpeC)iE52>j^hVu{1DRk%*uSfQteQnLT_z#MCVhDK@ zDcR;tcwj#^K*-fcaFylvIjP8UKLkjV*DMod4V{om_=>2I#IJv^+asl=+?HKipL@m0 zdumEqNy*G7*7I2@0n8#rW!NNl8kikz6s3$aS4qP}YO{v$tUy^IYvGX}>d?ICa=a0H zXE#J7+xK%r$_ zH~9BkB>%r@J^n|wQ#}1NDU+U~wff%XdwIIEtur3sag8&xL<3)+#=X2^>J@I6#C>Y{ z7k8oir(!(+^RgoY6M7T}q%UEE&qLnuZ=d3E%0-!Xl*LNn?P;=$i)sJZjb6m(8nNMt zmtwDJh>(4_heyd2CN{0*e9>A8O+{WK`LgcZgatT4JN8eyes2OS{iOaF9TZ_JTHtIVL+5nZ zwm4}8!?YJ3YlfxwMG+eWH3@o6-*G4sCjU-QK#dJ!ZY{$BIy~i5ff=y~sVOKz z2+*!!LzE3*BPxW3Eof^$>bw8s#8at=0fYYPsI41I*NLR3@J4~b69i6cO$GiXkh5B? zvD#~f7D!j4zkbv56$P$+OKwru?295ipi1e7euY1W0ZZgFswI$$n`s6Yg1z8PeGdXX z`s0QJQ<2qGpd7IQf$yJ8rs#W_zv8L9K$aC1+ZHWQD-F0auQwX6&s##!pTwt}a@KPd z?;U7mkcK6ck?8=$dxUBrn+O>`V<>Qdpw1XiiG*sO$fsy=5QtAkkg{5@+L&ow&~ezv z!%5)w$`_`p&T}FliY#74peuO;3fsK|Ng-3*aK2}e*zQ2x^wD8~!h#>R_*{_gJ%6HbQ@paj1EY0uj z>~mqmmy>Jr^v|h3S&T53_AmP^A;`jVZOo<8vOUa`IQp*Fj8jh5X@pe{bD@4!QMlx41OT zmL@puHEK9WZp2(AeOhI4a?|H4fX<(^eC1!l-syv2k{(3{s zAL&>y=prNnQR~*s=*Q_ifv{oTWXc8wpQL(B7sKqfTvWXc1RZL^#kre3jYRa^S=bhJ zk*y{pXPj{@K(rHMblK)LXD0wM7sP+}FXhL-qcDVR8S8^~tfGp!?kRy1DmCcr39AF; zcFe0oyo9x!ZJfcZm?o>;I%exm7aKH6FypkZlIB{nWaThfdN>m$GxfEXeL>rY^{h}M z`QZzT7+g3_f2Wa7;zn0_{btR{TQ4tKhKksUN{8g zaA1uA^8RvxQ+gm*7(SylI-J_7?lnl*h{gIF2yW4|y0pt~shZq|V8>ZYluIeH@LowQ#;9(R!$obQI_&#rQj-s z*%tDLffphcvILJ3%Rjj2Ht5N%sB-c_8!to{?+o5AKC3+SW}9+reCFldf=Tod2SU0JS7Z_>8FfKAY*izL zJ8@0Nx}?=IbVp3u*c_RGk82seB2iDQCRNm}Ld7G^yd^iy?(AV%UQO8WQ}>iFg}w^j zs$U2j+Sx|*{U}ktFW>vMOIAwtVse%IcUCG-Ju|JPBJ0Ea9?~|W7&$UD{tw-sB*AWL zN~sn$)zl}Q*FT7<+$S`8cSLjGc9YoJaR^Dc%UriM$@64e)$tW7k&>!{JqwC~^~XT!%ABNbRUF=uML_n-okqi{q9Mh%DCA{636e+-S;cIF(teNWrE3uGT( z0fpDIg~6ENG~aI4(m}$8_iH?i_PbiP04;|z;iFyB*JQlzy3&5ahQp(E%<&S*Xj0jX zO0qQsgvx%3shF6RnnmGJtK%Kf%8brZi;Faq$M2g1Ns#IkV}5n|&$cO>wUS}?$rB}e zTKxj@$j>M|0(VD1Ce6oL;L$02K6g4*;Fs4m%uevK!GsaV<51XjzLeyxifH4hfL%hE zraZr5EYzG*+Lj#qi7!m0vhwzSpX$xIR2U;bz*Ke4Nh-?R$XnUss+NtQu zb}D-gx-#PfTrl@U(Z`95&}iO5gTRYka&|ef%Dw`#o!EUhIysrC-QPg#P*p%=Hk*En z1r$1a&G?dzM_Nm3uk~-RE?40e_UucC(c~y)OxtwrKNZF^2A?AyGuzq}h&50_jdA&>7qT zZTL@{n38))GtcwiZi7tgRkeR-kkxq(3gU7*__H55+;yhVvbam$bR%%x4D5}X+6dlV zHfsd+1GJ!>=yhyL4H4c-dMJwHo_&^44dZ-Xg@&d5e9Z|ZaRGT;?XOAh`})z6`J!vZ znn26bm>)6hS;|Cin+nr7;#NiIER z@lw4;2QKQV>+oyIv1{(?f9*{~Ch)q$t0la@nDn}&891+0@0@*%kViZn9J`9r%92jrQ2HNu|fD(i8 zCRI@BHw3+%+KdrI+iU^71L++!b>Y5BslWM%K_a)5VsH)eF#F!=y&i-~_(kllL1-CU6C*DgZj?*mE4iE%%ww*2?^k!-|-0n{o_ngiW6rq^jQIFGmYkKB!;ekqRi?gQ{mI@%iTpHT+j(GQ<3Vv zQ)bO(vdgoqAhFCCfac7c%k?3`#7E+K{0W`bc!qB3ndCri5P5$4GkbNyn_KsH8Y=9J zmySq`f}~?(FJATH^A$i%{jKBY|1u1xKQRCYg%V+-ac(q6Ik*lSH!v6_23Hk6N<`ht zS1%RwX!LraewhkL-4fr9#yTQw-$5C!#vX-Ir%OYE;VRl5E7PQR@Sm23hd#sLjw*na zvw5lo18#H4B$jBTHr>uC}u?;8si*vX#Ih7e%r($o>V`PDu)NibPXg%}vYFD2` zx&lc}S^7WuVwEwq9W8_@`8A6yw>c8&m)8>Ge9pmiMhUVS`xrk&u3@J*g@O$dBVr;9 zlWUqYJJ7r2pkg&;uhfG2JCehc8 zIM_I(%M>SaEY^8mO;B0gHjYimIh;`q15oUo^YTlwLN{BftN>@%~MhrkF zq9;z#NR}k!XSuJH0|8oKz`4JH9z&Zr9-1Pa1H+q7pJZeZr>0ZB&+R&c+&Bw1N^d~!fShmXC6TUpT8wQU>P=K5Jbwd2H)bD|3o@)`*w3P0tYEY#7 z0c3{SAU}3WP@6m|$!&^0HYHKTcpoJBRip3rPH5LzI7L6acCt2crl$I*>0XlI?ic#U zJ3P&OX+aIKvG>OxlW`Ng^X@# zzIWp*pW6&yrh}jcxmS>3!J6t`7{hY*nwjQSP?0Tuh{tvO4HVFmSRiR}A!csP%G{RD zTFD|wLqo}l7^j0Q{fcH;)rzK&hOY1A>dgtNjA?cAkmz-PX>B_ znrP6SAE=iH04lD!3crCSJ>uNZpV8f>JYRlxv~YL@auvGR&twKK!R4Ntx z5-7}#UqaP~?v`UvFMr%L-`8`o@8aMNn;uCn5US9ex1iPcIBV)F+JC>mXw!x|%D10W zQWg>`r!1zcnn>V~Mma-&T(((J8N7jqlSHDnIp|Cc=_8Q8x8b=gZIr7WzSE0tm6z!4 zLD{!il(Ir&;cKst=1Mp3*&uRB@0-~XN$8@1a&$BVFDAuL2B!D8&0os^w$Wy4}bj~9D=77p7VIlV{f zW-8n{HS=X-#W{s*ye+47)$ZmDXla#(9Jmq`X|%(nI2Kl4~5+^TmRw6Sx+lqI^h zXZ4<}hH3{A4+nye^Vf||MEVJBLe9QuE*I_{U}|KlbV@v+i!+OeQ$w5DnGzEs+2ESJ zOw@Z7xWSi3^BAVrcX5dHR;EFj_^=orF8M#brf z_AXhsIuY3@Vxe%Y_NAKFV#C{orycv+OpG?aJlwB@Be~CtP}r`Xohh=)CLGYoJOVSy z&KV80j$c)O@Sx|ca4wyY<1 z56=^Md;jBNM-ToBG-FbLx$y{~$!u{HdN1zkJxFHGc9(k411y`DfH_1W-0%UAz<_~- z1gP3?76NdWn!In2Eyyl!08(kx)`i_3X`cvyivmm6h@tv-Q1evtT@a)qQvX63;MbI- zJ@^rJ-#=6Vkhq}82M=(0q&@%`djix`{3)@+^Af-tdvtGgM&y64&E4z|cy-Ub95V}c znoT^gY|&Dzng_8gyWaGNHwbin-TZLzTQ3B?|99@j{~JRepcuqk&dzt49GFRXx~@G) z5GlHXPhkk;Su_ZMt(Ic6i|9GD+Fz{n__D@A zzUq|1J|HniPO#^T2!X^MJ@g8_)T2f?5L)_*4~aPOd0OyZ@j=#juPN&%1L6EcLv}FH z2&M~_)AO(BfQvrL-$QUf?k(2<>HOmDIhz-L17DK7R8_~=`nkoyU zIP#q^6?|#i!NOd>Qs}+vfI2eTrIBt7#a5rK+!_-@D~Q1TWvEH%N5>M3^s0KpYNmjm znz}Q3#jmlqqcJl}2b&<6k+;K?|3n)9Ig5}NOdf<;y?6baZ&>nX%yec>BmG5b2@is- ztSQ-3h%8JISsLEVC|TcTTHB4M6}=+J*Krmqc(njWAXZuIb{H(I{CVdai)+zY-8l=B zbc8zo;|4#Sr|;%_$@38!c*EyM@^bYb`?xf7>>rw~Kyx-Labj2?(JU$s5c;0Hk)wTM$JQLmRjIyH4BuU$>zB4B` zr<=6EUb+a`cZ>b;XYt?~El_&L*C?bUao8h=w&pMWvxr+I8>*ASS_Q6DkZDXr!Ur8v z52xywHS4IN;e-KWhEl%74U%kCe&saH=JNNR%&TW84jm6f#$PHbQudyAy{?l_d6xq> zV|_}FApt|{aH-vAi*3D1Tm1~lIh;j>spxsz#m)UjHg}?6*c2b;>_M0oU5W#en{sDm zUz3I~7L%<2PQoB={l}@46^5clvwSU`XXR~ET?D1AkGoHd7s;)+IPIS)dR#KjtFK#C z_3k7x2@tjdgcOog3Y9q{DppC}kHT7n8-*O*!RYmLlzTbV?Gmb-wc;{aB zXySc1g@r69fqluVLYhzf{bJY_f?dJc8X~*uz212XbA!%X!pkTX&#DCdHME~#q`*SU zA}P#Oo|V!WXEc1$WDQ@iudVuPn` z##f!36YP{XOfq?<+%QCCC90ldl_gQ7+_Hw>>)b-Tku79uW<|8;rOBVu3+b_O4rOse>R-I==pf?7E8sXzq@YlWtq zs^BBv0r8!#s(DGS%r1I-10Q51@=l5Xb|8hI3aFF)2T8c|7jZBKklTJp1$cVU_Ai10 zxYPic+LGPe)o4^*!cr@ycTyJU;mF=b(`PfN3ifIj#L+D+JQy(vp&8R^exE+AU&N2@ z<7D*wLrwlI49LHg6e#rRW5;yleTZz;WE8}WurI_O=Zh(Hc4VOAAg=^ZQKMZCJRclE zI?BK=tY(-Wyo6i{k4n5L{)mgkI7=rIxepjocH(%ALM5~n2;j9;u>>g*)gbWEFc6LG z2Iv-2GN^>R?Hd8zI#8}b$oOsjO_@IUOSYNL35|SN%50NjG z&dM~EAZj~$RhT&++8;wy`CET}`)Dz<3avc?QIEjd^_1s13SdJ~j=<#q`5KTCNc@#A z6u2aJRh*QjfEl29@?=jIR@|pJ&(wx_BhnqBNlf{O#*I1g^LQ9FRO=u2Wdx$SkHN@a zM^pw<5bTZ|ixaOsV2rU6_p(%44)#(TC4*)vOZ^nXBrQX+4bzq1isPr!PIbj1$TV3b zHK`{yDS{pxp}+x^(&L$Ye0m}Ps?AlCTbhpA1Q1?+XN3PEr@77*uP$xcuS1qQ?vQue z?@Ujdk-U3my}pC=8`$m{8Viroz=J6UO;poNW5P>+vvvNbw1@tw>ObG;f7vhL%N4de z4>Q0i2yeXk%(ZaysDd#K>5R{!%VhXVTa+)*%9EGlmfp+kwF&EYb%cF$GOe-tE?5e+ zN-`*Ik#Q#HMdOzWarfg9<4Y6gPVyH(e5)ocAC2{fkJePzU0Y8@)xP5NAmHcNN~~1Y zYZ5N7Fe`pGYrB}&omfv^-6wR65y{v1s74zBMH#1Li@N+FqB3^YEf%l*RFH^-g`31g z*29dJC2wBA+Ot!phJDlnoA`$6(12p)G$Q47F_s6)AIc~Vs$({$JgP%2mg$sPUIE|D~IAhn#@P+j+ z4>f7WC#G0(^HJJcm$scOT<^A-GkqsJL=7=Zm^eAq=+=;BSRt>TdCZ+N0DqikW_06D z&tdJw%M^15siZ6%sCV$0$}0|3k?3HeKisV3&r382AsOa=2brjE-Ar%}O(*h|Niqo+ zx2{I#^r0*8-uc0#Z%!p#>ONjf5`DMD{iJ+yt+sxOm5^!62{H2t*ZVo{2>a4ctdPDP zY?4e&m_;5mdG*1qnBXpE!JKkd>$#1-u^XYJ$Fg>A!VX&g22{`(7&-yaO_K&CwVN>( z^4TME$KmneI?j-Bo6V*#j?DqD-?2qItE?<;z!-GM9mnulQI~Iq#8*W#sTybOiZXtT zm266-R1S!5&nMa?6q~2NdWoWXe)S75WmTG0W_U@8A(NtbU=bJjK!! zUAxpJj}#o|BB~`*s;LRJoHx|tMSy?mvrLIBYtI$onw41;73ZY3XEO6u$86l(Ihgq| zPnm`)i%E>>s^{By6VoP z7Q|kpI?$FlxLHp>8e5+n_^eAsYLCkm1%;1~Uvy|CNWxeB5rwJNiN$(X$;_mpy3W^G zhIHe=mAXdho$@CMjAwO1{2bU83?pQEz~F7| z!WEB%Z3I9X{QD`re$buW4#IL@9Me2xOcBwql!wl#vYxKque*9Pg3cKK5gTE%QEItC z52KALjbjkW#@BI0otlJ{cge388Hy;bJQXn=Sp=2~f>nmylyEiWp zHv)cDkKsV7H5GxQAD5-VbF5BqK)5!~cieLAzE;Ud30SghrV8a#sU@Sg@sZ<-&wRx` zCz#`ksKq|C0(+QhXORQqlFR8C<+w)B-t=hUsELp^G}qO*!aQ~wYiGZQ>pqpbzA~|$ z&*#tV*r+~GBg%H#$-l^_-(;#n>IAevWDt2jZ;5B-C0}yFRZ0c3bM*)ZX`9T4H#mFG z$LKG&nWRWlw1@%#xXHU`GY<%@%J%F#X!It)c7+#`5;99fN->c$#(iDFl3|hmNx2-m zYvZ+kW@Dh|Cbu7C`BN!Ol7PgyqTgCvcRFp4N z_jHC+uZ`uDi{2~LZ7xZDI8U?1bBKT=e{fZsE+9zrA@-_UXC;sA=i|<5DdpJJ^+B>z+`QE(`&jZ` z%qFG`l#0~lv{OTzsx7UpgKV5clX9C@pUteRHJ|Vv8}40JE9|7BguJ`$CGnw4bC8u^ zIfJ7)bSKs>;wiTvd{vPuTg8-rm+*oJUuF-de+`61@nA_Rs-(b}2${*6iY&`DyC^}} zG2W<7-F`j3|4Q12>9x9q+GCA427XxFwi8k7T1~M=O}UHl=VXsZN;(7?D;2S%4Bd!R zN`-S{`(}v1ey!W7@havwcnnNi7OoyIEQsju*mx>O%uy>kimIIPpoZsQ0=tOrZ7#3Z zUF=k*8W#{PbgcuZtLwg$j-T=G8wVcrZBxhh`9w2vB}DP_Tg|_P;&fko#AZ>ZJMF?n zB$M0x~-n8Hfhr5rjX7>DTAp3oNwVg?WTxsIBQ+J zykpWaS_}Mv^sTJgS%&7!)(WUEK4ADtnH(c>KhU}leQ~g}$bQC*FsALMrHWO2*>*g? z-YX`d&N5_dk*eg0SLkX#uJ|QzYoRxHAcm)YzAHR50m2%UdN|X4jo0PQ$yFd25a;^+Hk!WxjB0-T4m%l z_0?llMJW3lcvvLT>hI|}dTQX!sODN$srm8w1@fEnuVW|WZnU@V#MvA_(zX%7Cg2Cf z)JQKtQV3xQW;hW97GfIx&OdEe6AJL!Ip3%*3^r9Bb-MODPQhb2&aWpLcImuj?luKQ zA;LjmQR4xAJPpmkwRS_Xq)Ya&9dAfY)DCAi#z~k3P1V=XM~rKU^Z3_KEY%r^WLxoR zRa0*<3l9g&_Ak~4WQ>Wl^S*)&BOsgFhdpa=r0M*;*SLxSZ=J!khbRf%A|RyMI@(*( za2@au^U81N!QXxm<7VELV9$!(omD1_^?Q5=$^B6R{|hyd!>I&KefRj?;U`o>q0Bci zPZm=7ZhP7*SP{}u6{M$yY56?ohEhck@S@r75CW3K4~!OP7}8N|q>teu8px82>Fq^N z&{dv@MiK=$-M#Qof*<^c0RQ7ogw$a<(MqVTiJ!H0 zc;|wwxm~q=6EDJHPMlToQL@^Fs+G;eBKi5sG-Gbi24-1&7aMv<=c0)#p_ zKh`~@rIiG3)ij%GUZ$Q|Rpvkl4Wf{P@_FRQpHoT1TjfQ$s9l+;*r+n1oe81z^HqHd zYvi~z0*h&i8#8EQ-{;wn!-UuiB?$+nYF;2Qw<=+GERDKy?nAWRP(N`ZX*NT4VG0O) z0zcmM2pMDXi)aE~Qm3gmxRGypcR7D{zGew$WOlAQF^+3@Rl5E%7QN?_95NoH z8hLjFM?(d9O(jm&`*z%+RFNG1Py2lkBM(yJE?_3wmh>I5QyT)iV|4D&kBatAwFfQN z50cjGHmX}ryf&q_ioF{JhPl}sQA#lG*hU&vE>0FZDPjhZ?JDiLtxET=wM&>qmBY?@ z&$BIrg5)t2k22e*2?ej-$lFhG$el_zL~Jd5ZNPq05Yu6IM@K^M9?Ytuh~f#!hrfp-sLAkqSEhZq2JBe`#?o-bYtIq4aj*nSaYS9KD*75A!$=RCXIS! zxFO^hHAwf(@W8DT*@M(KQ~#0RBaqWCkiZ{zd;cQaEtEKlbzs!g)^)=0g9u=8ElUN= z3i7Xt<%IetE&&uAh3$xHyKhhUcm3rD2?5pB`w$vG%8mp%iGWwd$waUEI}>$T zC%^$`&`*t4HkREPH(`M&L+Pkv?JZN^Z~|c~Db#4%ZyHGDu@2lmV-$bkPX{~xvG>0y zWT>eVErFhuD)c1EJ~vUO(8Y;Zl9nN>W@qV0_w-O^KZ%b(A1rJrwN;5wy;pE8D5z7& zxlN`p13(0X6943qnc{xYaQoQ^1(|ncw^`1uXDd-;QgaKP9+<;0UM4}f|5?H5qhx~N?fc;;y4||~2Lv5i33>$jC&~Q( z!(_z32w<~vH^|qixGhJ>8r(+oA+e%LqiLIba2({Go5`9RMVHSoJC(l(st(8=a>1V# zI2X3}8s@%E9`PJDm@TVeqQsB2ygq$t+PHhT+plVXV;iH(riQ>3aADz8f(3DF^Y+7zE1gFq9nKoY_rsd{Wo2Kq#NS-3v2URLKO}>;-F%Q`;p26YC?e3vdn& zSWRlH=STu#;(Wi+x3f;Qu?;kZ*(H!^kF3oI@JcvkY`ese*VepUlOmE(?U7nSc994J z*?%ch*ave-_eq!KJ%M_G41x!d`k-J=RyG6ft&SpIE|7IqYr2as)bB02J*{1vrh!< zbDUd?2RmXnl!Axt=OV&<&nJK!SZ#k<=!-m@lf4=fRgQ@<8pFJBu*>eD(ovtc@J8BX zWu4lIti@>e9}L-|-5=$PlVty{xIje~o2oUDSM%0bM7cp!)MVx>x>n)TNhQF$$)Gjv zBKO_)M2xK_a;tBzX3adMF+Ck49<%3*3Uv23!ZS8Aq@zLpA;eI%I^N(#>dXqOeEGOX zaAHk4Uk7p2Z;j8ij8cs|r?H)(q`_e!zzm705a=9j)Iy)B5!4P5i810``9{yCN%x_g@?@^My zeCKWK+VJ49O?HI_a9Mk~@BNj$bSduRR}QZaGrxnDL;%|>_2?h2-1-js?NSefpve`o zSzT6us(J%?fcfTq@{F{N;@map;$>*_W>fTckk4h>T`Z*Z-G8b|vACXwFDsf^F8muJsFP`dtjK)2QpYy_0nsqZ{ zd(M+kwO&&*FM>YNJnyboq?bBIb}dG>I3OoTW&DYD4tqKpL;dsIt2Pbe>*p%t`>Xz` zP#&_ZgyLvCb`qmGf;Ai~;8Y@B(q=Zy9cm?+`?^0l{{2i26-w;k^Jz%9T zZ^rKNmij5vbXE~|qNFG2T0Grxg;M8@Cvp?rRMo&eoWZ(A+;D zrr!{kzx`NqY6feXmt5o_%`CDpI9NOLi|v1=>ewm+00@4yUd%nl?}(-jO0csEk+%uKuT6XXopLB57Ew zFG&&ctw42e*wVu!UU}(TR+?tn1+!_&PY)|iTTjE1U3v}}R&$7x6#XtGepfs|;#A-$ zQ<&j%wntyh62UKyX4UD02hF>2r$y_u-(m+@?#jcf2$?;ZDSy`lB(%p1M7 ziZB7T4d>|&4`ci)YgNPf-RJ&4J!6>evj5)=3)?q$! za)Pg}t3VhAvd~5gr~=VI4VGjfNsu5cntl4 zyXo|u*zDBc$pt3+gMp6-FOT{JBQoO=XvK&6S1aP5<|b6yXYcNYH)I1ZQR$XUbjemB zAFs3?r27wV;by(JpRJqtUx`}I;~bOL=|*qp2Lf;O088FymQbK+Azl zG6l)4Odq~J2qetSP0=4@)F)hMVC!_lz$!nC@yUOb7P({|q|Nqm`+OIsrEhNIU_ z*r=xRK0#npzDGaAjLMWMi3Vk8_(O(D<5G<>gb`J$F0;TjO=Z-iX6#@inAI9%(`*br zT7^f*xlkhT;_C~e^5fY3$KmHXP*OrwBPC>^=N>8QDmdZR)J?d)W>oYs6d2K*-MxCv zHP(uZZ_EW$+v91UBsYhU%HJy6nKjF*#%G_P9mY?7rAutaSdy0T+V3S}QT?Qv`K4y$ zY!F6Su<4_PXS;=VD|R7Rd?=&?O<%Utkfv|%75zzn+^H8?7hjD_2AlP#N^g$I%FAkF zuh0+Jb&FN+-$wC18c%$NH!vRy{2Pi~Avs^tntxnEq|I#cnq{UeI2*BfpP)rQXn<)w ziv6XFyJx;Baj8#CV{`PGt&3qMMgkM2qBO0DGaAYomxQq!{N z36pE1@$bSo;miuM;efnu!%6IXXEeS%E}S9>SkN&m-x;4QXuJp@c(zJM9KV`o zj;+!Fhh2P&*||zoJ@&EKnzHIk;C9i|PcZax`CyI~k~ap0@JLH!E13zyQt9@y`xy%3 z-8IKE-`rZBIazU|w^B*1fw>aqhSA-4;Sdy2XMz23vD8Q|oJU6a*BwImI+~3lL0z8e zNam{$HgYJUo^_6y49Y9vvhl%E%qFop?<(5W!%8*ME;_!_ zcg;tkSFsO%0QPsqOm>$9DSHQ~t#_0UfD>hUXY&IR_&bPJdC!2f4GM6IYYrCM;;{J+ z@&(9jy>TA+L8U(4Z2(9823ZSGg-g9pj7hsF_Q=WprcUtxA$1Z1jK#f1`4tjDri)2n zQ;YmIlhD>Go7(7h(L#HT-rBENWb1+h?G+3_R`=KINIS!?`3`CYc#dm*B4Ls<;$q8q z$8`7bK)lT(b+K#CNJI1sbhIm}J6V8V8R~t9i}vs|bEZSYALaqW8`FElVDUQ$&hI-Y zmi|Yjp#MYa#6a_{(pp^DanDcqdcU<_BvrtEkbQUUD$+G)9{0R<5+T>2X?%}-Y)M}J z1%@PMfGRNve10x6Xj2^|r#6bm5cZQk^z)mICUzWsQiTHeV{N*T12oepVeeZWko&*6 zE>B6>RRP#HtkIhnP@9+E5IqnHZ`&P6MAu>l5s8Xki=B-Lhw)|l+QpuH7=hky;^RF5 zShpF1R?9-Fr%iK)yVx_&hqVQ1(LkwLFwGDRkP$`P34#E4O9~|T2Zad6=PD9#dVEcr zhS)I|-=UTt(HKibcDq4|HsvE!YoLx{AQ2$-D02kLM~o4O-}Ogr?ssd1Knc35=Cq!w z%K)Czhjs_Ne&%O8Xto}H({n!T%)$_tGxOnU)fFNk;1(!!b!yP5NxBH8D?ob|I!U z2)Z8{rUrJ+Zen#?L)u)EHAqzx^HW^*^b2vF{tZv6#74Q^mkrXpaN=vkHe+r3ojaUFk$wXBjSCSkT_+;IZ z_|S`}2N2X?!Y~jI=VH_*-bglqBq_!Y*#g(98o$KvXBa5PV^+{Br!I6ce(PWv)*g>2 zy1317C&wkDn?<(ldfs{}JV_6I8eaQ)xau+UDO)%v!O}SQd14Qq<_F5>G2obB<}f0% zHaV#67_R4DkaCX7aKS-O52PzgM)mob9<~9g#@wWVR9!{JAx{6LBM!~%%r{0&?`}x5 ze%W8}XP1(StV9B#?tRBFEJ@z<7jH*39f1dG%1o^B*E~LWF;Y=qY&ofBGBUF2ndy*r zY7%GsWFGtXl4$%x&HVx6LWh7J15^r=PCQMgs?c!NNeZeD(P@?*Bj7=0*Pxfjh56~~ zGE;NTC!%B5D3ma5B~2n*Fk6R@T&4TloL7ic;f_yxAOqcXbl-dgzq$ZWlg_w*BE~n9 z_Y)$du_M472410uE>6Lcu*_SvfHr&UBEaqAME=)FQ#IbX z&?loHT$rryLiH`{wL;k^&D~O-q8&txKz4|tx1kIgRLr>Mm9o=@=3&$5`%_X`)3_UF zAgOAZurXd_pSqb%IhUVZ?Q)!p5|EyKs`8e7o7cQE;t~q?e1xJoE7oNgFG&{_^AWN8ka6x3RK43NEa>O@z-3 z)QeXVyAAL?SptIgUAS~)ZERU#BP%i6 zt?|r#J~y*T!Q^ubpbXTelK2YPb4ObrzYqL28no=i{2>a<$$r6F@N8(N%(^`*utJpWXN^*FuUDLTox3?aO;Dx2Rj`(2zT$JGvm+{=5xE7)x`b{|NwX?IPsQYrd;tO;SuW63oQJG{9TZmMz;qrD( zaSutiy;u)ktLYP*RpSKz&CP04KBqpy_>r8DKQeE%a-2UgJCB?d z_GfNJSNMgZgY^1Ti(s~7IyXJ2DH&P%-Wn)d^&@tUF7{`{dv8V~D~=x13?#Y-3{0Oq zvz#iXdGy)9bNz8T$hHF$Uh(-L>YK+-f;6SKY;Z-5QAr0mb%Fh~Q+Nol)Mr*ZFg^XF zPXj_u!;Ho@QN1Y&mNHp7uoiU&-ALjB)hVM5iHHm6X{DecEr#u7;QWm=(FClN8iub^ z(h|Q)LNJZMtzroGR_5Als|$1UUf~v1SlZJ{OYm63mZ`g|b#6Y8WZ^Fh9aO9CcTmT8 z$HjVw6c3N!=7|B z{)mm;<=sL&Vfv?zsM=n5xZv^1q2a{%w7y!|zObL%QCi z>SmgX9j+aB-y8rs$S*MJ-(LUILFj~xTrKmcs;V_vVODk(DP+-FeOriTbyq zaj2RzA1`rN>jK^%Mgz)wf^kyN6HUY8fG`)7X@zEcrJLCw2m&pIvL{Zd4)T2sS3^?NEyyb zorL5?SjQDjEMzEa%u*Z!=|_>uc7|S{40tI#gJv^`>db)(5m&v%sg2$^$vmY|D!#>Y z$Q!~*AuuM2fTBiDdoCWNIVWL=A2`Py$a9-d_?iBO(FeT55LPBm?3}xd?_{OPqHtEO(q!6L!(aWu_Y$g~%CKS$bxyar!Un2G1UKvA~Y0(BH`r#%OImhieC0%~{Ls$Sa=tc=7fenHY2b+Vk-SV}}@{H?a_?1wL zTfLL8p;p}wyXdo`W?b#@n(OII9aRj}womz9-&<;8;Y4 zhe}6Nm=vZm;fa}_`85Bfc@R;eGEgsvE4px{Le?P?X%5&zsSgcPY>Occr5h%sNz1d^J0)xRJAr(9w3wuq@x*+ zc|Oavhz_xwm$ zpDhqSZ_gL{syJpjH)H9sH&UYF4fw`lA)HSfJj zI?2uueqaqiFvAlX()Iz-q75>OW5_-953J#J^Ib5c^c1bYEoklzuv>`(SOY-`ka$>m zPq=;O+pCLaZ0`|D0BnH&;SCz+@qg?5FO8?c{ofU*`(H8i=w4a_7K1DKfjwvQTF%z6 z;csXVA4bEpy7WljPK#E0!20d<*Nt82wbMyrYA?uM6x@D79yc^?xh?Ce6Ef6osUQZx zdzfMlB{hg6d42&^Q33bQ+bqPEULYyruqU!YHg84|-`$smM&(vr}M=sP5Y!tOnW zQh9MmjxNp(_;rwx46axSZnP`K^}AVc$tDQD&%Ukze3_B%;o(4D4F3b|=Vzh!&*k-J z*=ef_a}A#hXhV}Gin#|Yz?$$HNZ|OFp8TY^`~g_`^Dqe?uGnK`b*=i5X6A@3)m*GM zi<`oXMAziK`U-PB0+aVI3;wwp;1|r0DBZK{ZB3r8{JbuL{qalYBn{8;4i5si<#z_C z(oldtIjHXWEPrmNzc?$#tBM9Qn20(iOP}v)7zkmNTnW5==;LWgph?%uk&k4O29YZs@~%HIQv2>{5pUi@i+`Dr+z+IB^; zVgw@c)A`FM1nZ;Uvx1!x*k8h4I5A4JQUpqXsxn-wMIIaG>QR(WWReM^0o056fZA_C zWi8}u4q;KKzq3;Qfl3u)0=i9gx&_2xSQO*RjGN`rl#~6&#nhZVLf6<4Ma$hTetUca zN!2lGqaogfYUGO|XMU-izf*JmN|yV}$o`9G081sT1SBvxFF~pa+*hjnq*rz2_w2(f z=Y2E}w7xfnF(R%vYV46rCQg=;g`bjZ7|RZL%G!P&nbl#yWa|u2Ky=-09s=BS)tFq} z0dc+as)@jzw47-|i)z3lfa8a90cCfk1W#I5tabHfp}5$gN-V(5P@GgttXqTcXb#m^322atV;OJr9k&MKru8sa$i;Q7V6+D zUszk~$Tc^aF9Nv_g)ZyxwQo_Cy`^gD+B1%v7=eEna9r_0&ld{-NsxR{mNSupmd1a5 zU<%zu4-;?<3cY#T5T7ChoQYbyIMk3$`G{bvK$#)u zU*P+vx=Nk813?(l5!(#2LCO={DLTr?e9F{49_)i4H{ODy*VArkPf~S6RU85YwD0*_ z(vdSQR-2I-=ts?!a;4S;?w^6E#qfBnguOc!Wov^-x2*@a+jP;V@g%e#BNW#VgZpbt7Ww%Zi*}6Ec z>94QJ@TA!4LNnS1QxMh>R|(p2=FlCmvQime-uvz~pXHoXw0V;8T7_IiYM02I`u?Zo z#=rZL{tgoVe_jCQI%?Wj2AJ~~@-Zq*`-BS~c4 z7=?+4SIOnSEMCTdn0n0%y&HFmee7c%}Syd7c%v%7WlV9#` zT|~d*IwpRZcl1sDDe`mt_kl00VSwn|bulwK-D5tY2~(cRIj-K&4|Z65PgLEEL?5)} zP7D{VMYeTVI_9)K0P&XqUsp8mVSuc41pgh_lSSt{ux_QAUP=H-OT^k2PrrHJK{W&B z8gqd}N8-_gCV-a$B+&ubTw)I(KtDR+A?~k7HNDhx^==zJy1ctg`wjvDCa-J42;&7X zw?|2%*s{r$$Abqj{eAd=+l50o5B!ovroWLLRosaHJTrh0)M01=3PA|k7{1I;8kz&sEayZw1eQ0r*XMZNd6oHB=<1_u= zXeRt<;4~)XDT?!E&ei*?R{)r>8V9vF@^{PSzgCR?xw3)LjtNC>sJkEB8acfe>!N`- zHev*700{4S?X!yR5WO_nS|#*A>w=IQxd$c-nO7eXlRPdGKo zd98#uq3d>DtO=M;Ubs7Pb^A4c$+v)Oh|c>;KU|9T_6(lArM0F3tW3lBH&l*t;|f9;@Z#Suz%8ouw;rCK0I3z*_@54N^R@^TS_QhKZ6v zfbY<}`3+ng?^;4dMOENaU;;wJM0Ti|%Wl<^sG7=!s3Z&sgprEN*z+HRi%*tS1w<1)j%#IlkfrP-rmuqCnZwCR^1?QQ% z|KMZsi!7z2?kaLBtPHESaix0*!|PK%;3OriD7z78PQ~=gi>!tCmJQltnIJjAlvZYi z7w^)eWu2pr32PFYO`ThqWgelb`!MiXAe;C#%8Gt@O{DC%C+PnqG{sgv3qqYUTejXq z$QdTb1;_ki$rnCS%3h&Vu5J$BWSmMYUZ$&8*bbc}UUmx+M(pVb5y9eI?*5`ahRn-8 zOt(e0I8K@QkMlKlsd)HQ$#}{l%%;JsETxDI z6bp_A51Lw?cPz0FWhoz+UzJ6sSW8RgrM^4p1UZnhAEVt-5lU_36Bd?hw45R&RUgc8 z`AW-xCmzYad==wr*nw2Cjho!?7CdjYn)2$^$#n>kwW9Xx{H;A|M~W^^gzggakAb#D zKmu6$$aV`%{H*er-63Qbcu4qTxGr{=7zKxx6@N6znjb@%=#ulJkx)D$K87;+{pigq zaOCiSz2JR-o{Fs)S0@pOIi$Z%hG_?(dsF-oK9-L(#76FK+>ic7#-Sg}pfMgN)R+}& zY9R^0rb^f3Kxko5ifhV@-{^BiT1L9Zjn8~@%$B92u_(x#{51H%tiVWS50a`(YgEGZtgDbHa6$H#&eTlbZE`)dE`zT zn z+2RX;oQS_PMdsDo&Uet_Z+HLW_jU8ttJS;an+Z^pTFL#@uLDCDUvS}ib@8LAuvQlN z&5P`5S7<O{XE?>K&Ng)34wm5+(_Sjhg!rdT0gdoni8ia~A@(8rw(*2w0 z{_hu*_m6AR&+yX!#5t(VH+&A>PPwMv`yg zU#}$jaTX}G_gfj2rtzXG{xCed!qL)JWUjDF@aMG02vlVSfJr{DxBG?C5zRzt$`?#$ zGoq)_!ay=r-cvC9frva5kx^>Z?(;;>x&xIoVQY63bL+nh7&z6{@%jzbWX8F?hWB9w z=XcOv9MqQM-;T(?aS*Ea>OkayYy$1>v?5jU_7Y3%EFGnYpk_vkuMmT5h$kI|@h5kP zzY+Mtxou=Z<|;L;b5%E3iz%MHnVyJGEdvb%01JTqR!o>sW zn9%8T8O2USAIide&LVNPZ+c^dUfXda)h$I63izH5$IW;W>)Z9Nq=dii%(U*?x5>~L z)xoJ}em7csQviajKDYL*s(hldqjsbtWw0N7fC~xtQe$ZtUas>N^ei-I^RU!0EX5UA z!s@1rl=wPU#`_xm7^f!50#QTxaLzc`C_K6Xf##A4^a7o;?zY93pGUiRTIxhdhv*!a zvV#u`$u#vfavP5c1$G5`dJGPPxf}nH03GOgDK+|2Rw|7boIxO;mICApMmO-xsI_0s z69e;`T{Bi}Ep6@Mv4fGW;YuS^XkVRRs&(SG30o*C;r(H(7BgQ{dNA!HQI9`Hu(uek z+VYb}`}y?@Fr$5 zu4mnh`|lvtRU*&_w>hh8Pj8F}E%GEFu&IaPj>Sku+0LtK zlY*CaTLFKv-C-!&kW5%1_mxYpA{Robpc$Y6RyRyjmj`6$x)Dhobxchik(mUAy{TeZ zefKnm(EQu7&v&(;J#I1#4c8DXo|LtWd1jMf$~W7Tq{=}VFkz%;P;~${{(4vJcp2Ch zXwv`@Sgd6CUbyJy2EGBni4!F6EU_B~i;#qqb5TF`D+ccX0{4LKkVc7>`OtgXIixRQ z5X_mbn7*?71oc%nYS<`wP>~n`^@we4bO0(RJU)HlZ?$?^H{X< zUCW4qLsUz&Kg|m?_i?8;T{e(4cd`x-0X;~fQk5C*t~~q&D6B;|>dle#P8L}9QGhY| z8dezLu$8<{B>PcN_`w6E`HA^ELKZCfawl6pDv=2vOuHzpe)UDuEk1ihDm)91j>WzA zr0$xEIlJyGmDQySI^y{*G`D@1h+Lm#2&XiNQTp~rp%fb%Y&j5ZwovvB)308o)0WU? z7U&K;3C-@fAle`)l7~=6cg(jHKzAH~3IkT5q$gm@xV#;kvTqkL&2C%*3Jsf*TTh!@nflZdl;fJ{;JzbG1AeBt|OI- z(|qe9-@eAb*M9mX5;y;=_hDkDxb5q!W`51Zj0q`-*J%b6LelO_j#+02X_WG27AxKe z7WF`|$Z5^^#>8l_S$4P~#{S7FddD^rJy=ZGQav`tmP2`gv)ZO?blbOIW#mkRXP>6| ziw>ng3{OMC5KkC_pAe@kVFh%*&n!P3c6Ng)W?Ap9C}s0_BUjGs{bwyEp^pkHQwK)T zMy^(kE0010Q7)k)l+0)!28--K zAl9cZDR`_Xnj|vq^;qS;y_fAS-g8Qgq5p@yw~VS|&ALW6!98ejCqV+iCAdQf9vp(Z zyK92Gy95bNkd3>$OK^90f}UGB)_v^l(|zx_V|@L+KXid&O@U4B(gh( zn@4-N{nS(MyM!{V_-aQMSC()i@u|{#0k5o`*OL`&2@VF_i3?-6gUr(LLlot)F*d;* ziGB_!G9+6y6%|KDh4Xs0xG?FDWMklzpyd93THWCBXKa62Pkn0Hh!VSYUJ_iy<}KMYC=`T+M|ow;%QI(u?7x-;J*h8bP#^-_GAB27pLZl zm0_qOzYb==A9Yngv%~puv;k=pA{oTY4`U4a&Xi*Ko%k`0>ItWwDrRmm(n$w;@#gzx4-*Tu;S)9PO&AOcHgi701mwdM zX8pzX`LXC&ip7>H-uu5#8~Fc4-1?iK%Vjw6gYv23;_jw>gFQI# zYLRo9$;Z`hj$@0UgJ+jYgk7tD7?4P-Bu-#09Pdj?~s#iSERziL}<;l7|9jikmO zl*|7_^dmn>_x@^eC0M!I2?xFBdLq)c`P=&GXE5IA$^~rtfM$x6|IxZEICzG;#QITB zgwqmD1H}23QNt#^s<^~#uKTPi=1q@H5nW$Z%z^DoW@t*y7-t-)hsA-6;mYtWxn+g) z6PQnSg~st;mBS6vg$L@^U)(ChM+gj2T+n|@pBSk@uNoRkm9=!??RD&3CqOz6)#E|2 z6SjAQdYRt+s$<|TO>o#LUAZ=hUejX9>he)`cN=90fEpDhOX?Oz z)su;yTj0r1Pf;@pNR&R>aLxpnS`rdxEVyZUd3Mj}*RM<*UViE1n3wV2 z?wfV9q2;eWT2(X3WO>bLtuJ1N+W#C5o{IvAb=8~F>G2N@o>N{bOWRoUN8LmaJV(b@MaJVSW zXlAL8g0foJIJb!hc9ap%L#^BVDW+q7w9$xTVDI2Y=2@$vAqQ&fu|%7e)W?<5!}7@; zUNR497w}!L=YX3jRyxCyE~Z!g&Yf)83mV%He<=Hnj<9OxSc}5fg&%%a{eVn8sUaet z_S*LcqQuO_uSG&DJdJ#&25h45yX~es2z*DrjMhm%Fl}ENF7It2rch8Qh>s7|}DAP6$ zEu-C!pnUnG4HCScSy@&&PIt|+TLg%hw{F2V097Y?u#-LlB> zsdZfQ%Zh$4q()7-VSj5F08>TpiuBk!ee=P~J;w^EJF~H#s0TH0L0iGf?+~ z><4}+k=~$E2ieUOOa5qCEFi3hCqUa(d*wGX>rTHU5}$F$i@0;J*iu>Ifapc(L-`bq zDo(K>lUJ*T$CU0mX})<|sAR9eA>UMYT#l^klLm2AMd1y_Q!)JVU4;QNtvc@NHxGl7 ztTj`|E0te!Xbp&xtmx{wu)-zMK4UOrcxz(mwhp^o7n$8Su|(Ij)u9H)_dj|a?6de} zRe(_vo-vo*s0wIN3VNP|AJ%GLab{7;g%D-~Z3ok~9Cfo-&E4XbPR}Uy;#D@|&@@u5 z^YfJ{?1VIHV89c0^(Rod(N{Q$eMZn5QFG;-PZ(hP^XgyW%hVO;eF~ilmy`?II8{7R zKm8n0(GgFBavaZ_WWV8XJYE&iUL2NvQbd;EpBK+%hG@VUy!l4ahrw9w1?L8Hg0oVFGgb0A)d*jdRZ}5==u6xSxtVTzzh}z+5#Sn(tClt`o=K! zJE9`Df|@{Llj>k{lcwr}zrw&P!2}jpa;!=(jwma;)(c+(=vvkw3#`C0=Ai&asP1 zw(OhlrPM!Y@burxE=&=f#~u8o73@m5~Vm{}*5 zVa^3M6i=W$A#aBb?=7;40hF}>sqR?Ts)Q#_)bUb=B*Nlbbv}?Wo*PU}xi3>_X%6*j ztiKY$%2R%F%y{pyCY>BL6EiZ^&d8T%EEP~VsN^8rh&lua-u4iCRHl+`fL2>@)a06N zOwu$54TJt2S}%!Xk2xNlPOSYgl(DOj_?40@|3qE_sp95DMqJPf@)(hNh|*ium>fnh zmD1FQcDOY*S$>0y?=nxa)iWbg?xZNdR z=*PweOTzEm1`R+d{rrN91ZST zFMFXNZxrd+@QEE(!q6`**3*ZdsZ*RCwkh1@;M`z9X}f1fnDT3CA?-%ZRwq}FA&M>5 z6J~x|lCVU*4x)H4Mh>pm`oN-zZdIkC+F`{Z8ZjtxQ_U$q5G?~$xZ#Gt?fuaiRRBHd zu?seFJSfD1^IRwh^0HNXg&nd4A7a`k7`lA>={@Vji^j%=$(7)fC7EsdOHP?4ZY)+wUm;)|`Glf{IFj}Vjn zFpV4`hzznxSmN;Qwu7jtwJyf6&76}s;MJDd zLYaF3jdXi20+Zy8Wh1bWQO_y)tMg10{58=MYgQgEvCzZdJ^t~hHj&H#g1ZRd7nqCOr3Sj%-1)r<2O&o$3j4d$96XI7G~YGZkJS3I?=a@$iTk}@7fD7r zp$|e*S))wjkn=>Sfy)07c6=w9|GD=3zh(R1g=9YmXhJrx)jB7{1#?VQgLXi;&%HUc z{KvRXyrYLE{m(*G1&DaoCLtgb>!)olV3icC$(cdAvh~6uH&QDiDr^U zaW1q#?qhSbtaO2vi|j@uh=lP-&lCxjHI$Jj5(WNkT7V02PtqZ9~e7P2JaL z93>cAH+Xp?U-a@%YWywrA|#qp1Lyh?y-&+X`)XglTgQ=yeA2oSo;YMgZKB61DJ?&o zySk{!ir>&gBWVzz;Lq_HBVfUwGD&%=puYoiFYzD zKQk!`BG=*enNOb6)ng1d6MZaNQSU3cgxhjc(Vxtzh*Da_)eTguXVkEOIzsfeme`x* zJhb%Qu8Eo^g#G~l*-l=U_F8xjE2PH6a|M{YFRO)HyfhlhZ5$T03V3@$iVRi5c5SE8 z{aos#q94TAn=6ya2}u%;`n)JZ{^s)K!Z)^~$KJW#WRDb&!toVEj-;n0;M2El6+R&h zp*}O{TyjJG2<{E|cmaNRcXH7ey+s7oUIz0YY6;30Cva|>t7w!crMr>dqfYsS#lE7; zZy3|W8yb};Z*M?Z3iEyV2Cyzz&Q+@$oJ)Y~>9f}kyTjh-H&iRs6QU^1 z7b<^1EfKjy&~`%son{Lj*oV7lg&#nbSO3l++OM(M&nAkXmg?z{a|+}~xX;c7sUXu% zkkT#vjF%5M?sIJ(s35=m>(mRf-<|xfdh(Mcp@Z2rdGqWGLm{BBMi6|qzcYf5c1nnK zm0(mzB{@S{_l{GJ#e@Xv8lnw!7rZ4^5)P0dj z%*>qSCbM5!cY9|$2x9TmxD~8iV`>I4AL%=%w4XZrP5}^1I|7p^e_ve3f}RC*awu{_ zWtakq9{F{4LP?WViO<2V7IUjQ6CvHpx(|IuEe&2olyFs*O_&J}gcw)`2bPN#p)z_0KOugH)BcE)b)c+s zg>Qo|v?;dP+qK9>KdtM8ZP1N~eG^1ZaXua5H>-3mJaGvl)=*uOmbHph*1gF%VPZgO za~Nz=H3__jfvjmXl0;EoVfo-Y(M^TWd~<#3RzREpay)LPwAVkwoSY$07p*c0!CW(U zz=~cO=cU&6OHn8H*%1~E`py_BaGbsbY0$JykdWv{@z*+SI64u>h9Tf*#=c*LCJthI zEX=GBm||%O7&B=W-}%WRq#}g}G;uYrZ+Q&id=Jb(!I?CG&KIZ^gaU%}h82*P=mh`^ zr(r?T!gvLjBn3ZYL2noutUGJ1*y5BEGrnMf zfNebvlv=YwS=wbEf7Vp)uO#2|^7J(?ip&cgVxY`tEXz7`dF*$4`T0wxN{4Az^7!yH zwSbalX&DKLB_wxvHd&>-jL7IxF0Q;ppDIs;ND*gO7YMTz2sj~eav;VNzu)JNIQ8!! zbpW9bd_Vv(zG(%Z>in>8ero0dDE4218#rlda~SC3;0q5n1uGX16Dy|6aP`2bZdU`< zHr#7Wh+gNE&L!fIgX_Vogo!#v_4ssRDwy7=kcJy=suxaNiO5AUU6Nxn9xQD4sAkY5 zK5Xae!Ri}Ae+!XP{Wk*{C=6}?Gv zReB{{U0E_$q6BU83uVoY{QhVNTwFp?W7GD!Psu{e4upmSVv24zt5wPz3M@f5dOL`b z@Ei77S5KPMiIY%5xvGnQOzIjG!$X2>NL-BF%EN_GJxRDQ2wwRuP3X=@#HwkW*_d48_{scidH8Rp*h=|YM@?@sI7-C?+ z&f*(OV15?oSYn50c=2hw1Z1D^NbWy-A7ZmTsNgKJU-R|;G7~wB_uF!3C8lwR7vdAt zHB=Ue-0^>wD0&S5!a*)0f!va2g!iuR=GRdBB8#B89~Qs$?DG@Gr?^RFwD(1OL&G%S*ZpWbR!%^%f{0uX#C{pL(V?7-Eotf9uePWtZB)OAB;EW51>F# z;^eKX0o4GyD{7caPz?A)9OQP9iQwco{w?EuWt|WH!L&)dp?tPY4>1E#EX2XL*49IQ z_+M7^cLM-}0uW<%`H8ffsV0uAa7p4qpUj+<`U$13JBs7>)Rcf6l$*(Y=k=9-05wI6 zECe<=`lLRlx{ktx#}yF1L8BJ^xZzuh5OuTW&H9IW#jmgKzi(RePs^JB_CXH5pl9gx zA(Ux#^SoJo253h_D>pg;qp72?dOD`@Y^U?xPjbWyK|2goPZs|?i?H^>^x9AWKzRG@ zK$A_R>iKgm@DCsb;=2%_HVmZg2RD6|1DHX7a%V3Yv&1+Jpu#_T+sMf6RTGa#`i6i~ zMD4=Gg!r$peN_JRZEkaapJ5@Y1ONgoBM&e~O=`pthpUf}*mQZ`xN0VtK&&SUCFtpc1aG~F%-9?a`tGvq_wo}YKI?US;j(V<Lgns(dERG+ol(Scb>}|Q zm9&uJZLq+8Ef04)c0jp7tdtSu^oTyow}VyewSorV?02rv&rpkG0HFOpJ+la%S0uOK z`w#!WeN$*HrNC3t;)McJI;NDRP6Xefxa1*Gp2_EY$^2+3_9L~6EU=%o)2R%kwP%&A;;5jK7V z*YjM>3s(5T9nQgN>MF`5MqYq0!fK%|S=x+^+bpmO4}8!m_p30e?qeau-Ei5j*kcBo z7Z1l6IHIu~e*iUq%zu4npX0Ca*gx5_U6Sz#$@c?@xDahrt@~8C;Q9DoCZi%v&h=bQ zIpq9{eTg6dI3K{uI_)k|lA>pmA{-zcF8(2ikPdKe4(XqAUw%Z=|1g9otgx`}`ShEq z7veWteDxe-%jZt%#xvSE(R#M))oj6aTn9#kC@rF+eC4@yi5fE2R+Q)BNpTc=7!8;Y$_E6@N&dE(%mL953`k`Y(-~ZdL{a2^bPMPpB#=Y?>r#^u7hc zo($0?j;+;TS3i=qjN0RS(67H$hey8>O=cB+0!6A!D&V!`2R+Q>rc|I=GY;suM_p3o z(;1UnBa_8%4^DfX9=>`Ay&}FH;N8kg_ zAwTZ3*K}bML6kv~;VXK48V;E#=<9;b6AqPLx+$w^*v#oc;Pi|%kgL9qH$=V9$nT4s zki6HD)h+l&Vfwc|QQtKE~sJ0;4{nKF+$HXy9%%z-_LW&?1=EWg2S{KE~w z!k&sfituPXHqrxZf%3WrcQThis`euy1NkRJhWJlp>Hk=j2sQCPfXw_>QBGZgmEFx1 zzmnrB0SXPBa%FTVj;|2GjuA#z`&;yFjq5g~aW?lfcQw#Ft*q|dsU3zV*+5X8+0r6} zfqkyDCP2H*&E-D;kq*HvH>AB)PPy%mchD|!c=28k>S5vRRg$mtE<=YM!AeYwH#EUC zG%beY>U8v_Rr9R#C!0IJq|O(ha6M%3HutF*tKX0XjGD7WiKTx1oxz5$7W1_X7uckQ z&jwM)(P*Rf#+q?FB!Cg?i(m2_=NkLhagSVnq-%6$5npLt%8HNM(Tt<6a)Z2j3ZmmE z5om!68k$F(i#Fuq9W&SzK8Ny)eU@8YWP*Q)g#Lbb#a+OfW^u3JlGj<*6w9FA{54*L zig;)s6HfGMj)@7>x-klkuZ6d$sxns+i|WF2mF;EfyXL6-88;66?0n`9?Y7GCD4VB|ImG<4VE3#0T{ib?g77a^CZz8-r!y6)XZL4~X}lQ@Emx+0LyhaN&I##rY8c=^(D!9$ z!4x|iU6kXQENTm)BVEmNvISVgXjl@+ywR$B)_vi|YHoIcd@M4l-}n zo!=#wzxzc<^ACmtZ*Uvasd$pS^)9p;y+Fp0Q87Jqu1oKO4D9lW(kFh9Cw z@qjo?0DyX3Q$v7s=wL#*CLEJujRL?6Gs5uq%g58g0U#&`j%OeJB$=5 zCxcBDpMpvr*7F$%$mkB!5x(i@ooox%29s1Q4Oo$;uM;y9(={vd2tuZ!jz^G|5DpN- zHnP~$p)c9qJ9Uxe2S6*%n0X_5te^AmmgQy-`Mi7e}W(W@rUAv0?b1_xgZh% z>yrPQKfn22A%gy1Hwu^oELrWRg3-^95F;0abCC%O2JtiUBMO3YAe6PSLsX!46|_-e zRRAU<;GrS%qr|dWBaQV#h!jHzg0i)-y_u_iRx)1cY_Umm_6j3%0!rEVuUZbC82~^T z_Bb4w4_ia!T4?)myF}K%>}bDMsD3QG{WpFha$33Hb4|}HW?wXkABWtBqAK<};~E6i z2ZVoTf4_Q^zug;yh$}J8n7JykC3l(8k*DfbU943kAd*<;D138^h2?>alUNU4?yX;+pKZBOf-zEnilQ2}f0S zfC=pzg3!i~oBX-ND!V&+5xs~a1btP~{WvWfGIQlziY&S=PsC3#r%aa!M&|R@Un^DbA-MvvgT0UZ|`74|wUCwZQ)u&Ou zijzzmjw|8RYI6wFqvhiNX7dE1Q`6bqc^qN*OpS$cFq8K(vytQK zAwL0q<*JmJIG$8#^4_^v!Lmk@8k_O@Ga~m^aZF#(Ihzsri%*%zU%xr=9I!JlE%;B- z=LRdLv&<8SE;~gRhD9sBjmD^rc5>L|f2Ms>T4H0zR*=6ikAGFoR_21n;ma{6zTweF zD?X^v4QWvBYYmG7l0kN6+I~BkqS$CAzT9^vtn?I&#xX$5q-ba{?!G7r3k*J91pmfP z|GvlLcm;8vF&E`ELZ_q;FeqRH@XShCShs(!rTv=*=@MRL`H0YD;W@}`a=v1Uy~Ff0 zJV7phg8>%Zrvq9V0xA+!thz4vj3ONdU4+J8R34!sDpG*psR&5sudb@Q_eeHjkAQf!?uxauR{#i?}3()vyypVZnMtt_P zSsf?hzM`BTC*r6v20mgPSH=`HJ<*7fv)khwFp^LZy_)Vgk`MG_0Y-`^J~Ohg?+Twn z%Yq0&E2!;2;Ev=O3z1TMs`Kmgh-imqIM-@;m06*)XFILY(sZ>_xj0|_{*xzsjIufD z-4od~5}dRz%6AmSIKW8M-hX_2BnaBS#FpOQeL7IG|4VwxUoHP9As#qsD#$@@n}T^$ zw)m{+cPahTV6aChz8T_7MahRY!nOkGJG}nXPnHH|2d;i{k-xh(Z1`TzuII~W)$W-~ zE_DaLhG$?Cr@XsP>0B{|58-i}Ycbbqv&`citi`TiSCwhH0J|H!G2Kis(`}V>+e4+r zo)@{yzU;H9LPylY6f1=rJl-nMKmH^(ok^@zFvC}E(Im5Bd^-ubH^l{eHB?h@A4aU^ z?V*;Z{Wx2F$rqKqFN<3A?tplnZ7J`J#lsZh(lqVEo#FiCqi944KW~XbnV0#zYew(b zWj^fxUh4no2WZZfaknx4o29__<0~!~-Bw0v6=~nlUr$whsmP){^;r|ItMPdSTyE^$QmhIVYmA1dPZZ!rdRliWXcO3 z$}PDvdM6)D3HyK**@ZdP{>H7_qh8U&6xu`0;Q0G;1(3YS872G~z}jQIOayV+r7z%N z(?F`2T#86)s$!NWrn`b(D{{Yk4LkL@TEs(0_D=aIOFPizrO@^cTa+|Mz0Cq|32(O@ zQy$2dC$u$USdj0{m>zWma8qU`bFtQ>7#OLilc%Z!&!i4ek$D5t_mzTTu7&+!M}y;n zz2osbf=H)z=eP&`uV4a#0edjhm;A}5fS-&A*b1&|cuo!CX3w?Edq$1RqIR3j@NGpr z^pAD9qwDwB$jgCM_&YcLKwp_@v2iBdB++R0h0Jh0LqRuQqON`_n8&gS@<(^_hy3fi zkNGb<2uZHh@;ESYMBmmSf>`0!JpR-}G7`2f6A9pMG}(STb_n1MBKsd3whfaiFPPB2 z$-@5S=JNM@4Upa3Vys)ar2{%-f>$T%-6uKMQsz08y!skKREAJ``Q*lH^b3wj~e9E!0Tq- z@U)kAWK&zTlL2y&QxMf%SuiYWGTY#bp68azrCFMqrqbqGbSKSR&z6gh9-}{cCU+%Q zJXFLH!ppc~f&#T=X0f*0hTQ3RtLO6sw@;e&&1na=)T3>kU)9)LcAL5=rZq&aXIEbX z4YtFS`4D{PHJg|0YH@?M%!4|D!RrH}u@otCeYDrsVm2~y#>zCKm4#}Wv%AlVxCH5j zx}tn>ERlNyZvqAf64&Q&4(4k4?9T<2prY$(zs+4q-muaRV5tyGi#}Y`7*az;wG+57 zz$G&D;yf3qy)_K%BqeN|J)F}&=1oBwwmr5imMNfu=gVLXQHqNip)^q?B1$0{C!fk{ zh^vxw!4pk4))mqq<9@HQZ52Cg?Fx}TRZ=}6WM5rB+TdV!HQ=Eq+fwVyiik^~p6T)V zX_@E_xpYZgkmc)W5w_xs8A~=tNx^ULrZ1_LRnjG`nbEB1J(vKuD1mK)u|*P3b)esd$Vn+na?1Xppa#v&Uu zXcRcu!JF9aU{g|@?93{IQ=$^q<|?iZe=VxVsSy>t?zewfH@1w`n zc#t9bB+OJwx566gwP`cWT;gWQNovQ+d+yG<^EJkwOM9`->HBY~e2S`jg?>mQaonek znpv!0Y&WE`TBTnz{Y*VYF)cg3SB9|hyH{qU8MRXx0mraRH zW$ofU{OtdHHSsBDIio2)9^I4; zmQdR=w_ju;EhDu(WRwaK7ROHqx#)4dsWv~OA*K;ijtaz2LqQdx2>11Vxr06C?0G|y zjIWq}`2w*}P5P{VsQdjEBwpY*8i;e86A!8<{s~*oW)DPMW-e9m#d&9}h+F}2TTx_& zuk6smghk3!bmq6`xB%8T`vyraw5(+lsRo6{WK!3*plA`@7Sr<8_m_~Hq-`P&hW>d<2P2`Q_yH1^@1)| z?0SD+C;1-BLZ(k~E9V+#vpX?qxaSh{s8s<9t|*fz2=N1lOG>RDWn>Twj!wnSR!uPOsvh zYm)#@pOTr~mdfpqoT1vuj%0@%Axo|lC_f~mMmqBfCgO={SHix2tr34VLiy0t7!|L~ z`_5PDo9wJS!WRmg-659JwjEdfTfeF#MDB9oo=Cze31U&Q2om@zT6JBh2@zbKNIYSU z52K+`QOAIKmj4!h#HDn!Hso2EB`V2@43sUZ=Ojc}scFnitCoy-siA6CShkC>j!+qr zq=h?!LY-`A4J0{dcFD&J(a_|$s%q>tl~1-1bK^AW9zn3gevtIpMc(}aQ2I}8;Q*4S z{7g8*M&J3M9Ptz8bEYpujZs}BGr~&!V(V42NZ8yX$(N;Kb8as2!Jp$P0Ris!4la_g2Q^3~Nhq+Z%o zc#9h;k`N_9g+ityn{0$m19?T_~GPEMQOsbV&4gDl z?A1zWIM{pWE35MbE$6GxNV^EzrWOl5WtxLU8AS;32P~mlFs69^1%_W;V_Jt;LQg4h zp5v&*VA@7@;>IBaF}7Os_ihz^A~biflOe1)j*Dj{R86EJ4r(o+I!C7MzQ&6PqrZP0 zh7^x|g|^Urx>A#<#;UD>4tFy`poe8*V#7SHJ85AU(-&@>E|3wWDQWX{6PDX)Jviz> zeyYm(B}wef7{yrUQT}k|1~vI61xD|^sd{y*T{G0F(0)C1X-NT#?0~g*U9a%sL|9Mg zt^WFFDHBRVVMi`5w|vV4ca-RSj(!H6jJE~kyptgm(eM16#QTG}%0YHV&Y5u9%{6tp zkpl#wEzaacXqTX9K0HXBiaoY6zPOiTqCbEZjT9|it;M+k%5n)SlA0}5bY6&?BxPS~ zR0?Z}*6U1lj3O9ZSdufiOx?eBA*}WCcndel6Tgv_S5yDq*4?EVuQ?;%t>6EHtUQv3 zl>qn@x@Go@g6)So73-ajY;s4P^eTFqH-k9~4r&CrC(p|*9cTAeb&2gYR6~M5he^C+ z*j~p`8diufSFfj^n+fo(BAlZBq#C9MsD>p>nOxn!xt;8IeEQ`nfDQjqB@CdNjiI_N z;av{&Fx3IX*Z^tbpTyY4zKgMWC}mi6@>Veb3SzXKd_Sp@8GlzL<1Lb@StC|U^lHai zBmPOK4Gaji5i91+pQ4t${oR!#3MUS~1x$Y?KJjx7_(>Ly?z=49_Zt%0S3vzH*a(1I ze^fGy0F=!3z;~Xcmjwa$r0+=q{K|L1II-`7ahGZyEl>aV{{Js{{@Ya^qr^aW%LaMw}dNKd-{1(H}tnyAJ=h9m)Ttxj+6Zt4921 zfASw&wdXHZ4f{`44NR+ieDxPT=GiYk=DQf=FFr=*Uwe)3=l|Egw&ld{+s|I&nOL-X)FOU($WgS8`)sf$deE($N6IlLt2mtPxQLZH@V~HH@u&3{Ksvy4>(m^q zKkR_tJ5@eQcWy6n0oyz0;iT6Daz)7J$Fv5u5_!u$`Kz6nfVhkJ2J_PE_PdTDz-knf zaL6~=^SB03$CEX(H}Kl3SNznC@0+~9M>evWFIlUlzJ426Ja7OHK@7}VfkTAPM{p`j}phG;WE5t`~aB0X6;#y!|u zf1(+lUC>vcC4$xJoE3&HK2`1FR_QCyY98v-);grj8W*f!qB7q!dccY!KfSkvs}n+` z#$u|-z`*u|p_afVoMTtPF=)$}bkzRN_&(6$Q}`3xjjDUF?C${+N=?AYVAv}*2fxE)jz5=Lfjdi?}D&JM>K~EaUP$0v*iD&zxf*nA^8+1NT%uZ zE9zxW-!`bYIwA4ks=&x|LOtOGDlZ*)X~QwL?wmyg1L#}BcH>(Rqn5`k+E@;Jj0glD z8Ymz~|M|k4B??`)(&3I88lfLMh>z*iQ&kZ+kh{ZC84UoXiNfi} zxLTsd9)1)n1XI^qaBG zCgQFzkp1MZZ~Dh~2DIva0QLBdJXk0Eh#P0ketVAk!4oeffw0Ua0#~aOQ9&0c zXR$|;pJ6yxJ84ny-XF~f9Syrp_Q=S(nvG`X?_!TGsGC-5nkX|pPbWKLHJ%|Slj0Qf z(U)qC?1BOH7oxSnq+OOBI#^G-D>$tJY{lK!N|MN*vvo-ts%pY~#b`zGW(uiRP3+ujCtqEv(-y@H10IT2v{-%XVS!gekI$Zj5L(jn?7eW4 z99?WZx|V5nH(LAGEJ0nfP9K;2>;f zmaQqn#VxvmxW~bghAo@`ZO|Dk)>|GFy)LPoh-dBfVFnW5 zHj~q`OX3B_*?K7_4~PC?z|2YYDDDMxolK=*2O8Ur?;BYH)E92Fu9#RwWAK(XU!NuD zX&7Jdl>;4~gjWP=j0S;2)p}^L^q30;0NzX#6S9k?X`JHVAXshO1hTE(IgZ@I?og@4 zjLXjP`O7boZqR-Xrp8ZhJ9rrX(-XKZyJ5ShjgZ?Jx8DBs~j zg13-Vw%}$m_H;$Wf{1@AEEm)~oCA%9>)vr!Ue>%mnT%dBDdPr2tj|9Buw2KIn+!O% zn5bgS5!cTnwLv_L-qcv)Gl{yrqda!Oyil_=`vx=KzvNcHvTLq}8_X<{_X8+j4B^=~ z(Jn`VI2?*-@e)TRicMaYz{ja9V0aCFIOeLrbB=s@4dgcyYSYJKCYGZTJyXQ?33};Mp4Lo9u4-d_ zs80MS(;fnmqN@B(H=FM=12Ef3VQZ>eCFO`&UGCUt&v%H5M(CnzAv5AderTF|pFww@ zQGSz|R=3>HxBl7fU32`A{QXOv9Xbo_nAM3=QV-$*>$_MmA}_H{9Te8tsdsMo=$(`a z9mVlX*jmZL1uATc)2YSS$y%YY?l38dkK-Kv(D)G}^b_(I37hZ;cHTY_PjVgbclC0< zHTR|yq&5q}TR7>FZ{EG-s<)fqp%zc{Cv%}%Y$M|YKd?&3b`wV5Dj7FMnlNuj<>89}d!axf=hv+nKJiJFQ{ zymrx-&SW;)w8ep#l0v5VI4S>%7*8_{MpIqi(_R_9{TXtN>DyCZ(SvOS=8^YP+{rWP zBKD2Jx7}Y#%%nVE;wY<1sy@D~#LaSfuWYznj)`0}tj) zfrgq%GH>i?2m6)AGo~TyFq)5Z`IuyVXfM@qxo(N#Xb z6l<%K4!33_{YGigGou9~_uF0&oU5=}gsakPhFk9`%$n5{*-r12&v2JZRfwE@b$3(J zHl$iXN5oR;>wz*X5mA{EVf{4XEYk@<4lL=w-E-@Aaul%(0v0cEjrCxUC2TkxXfTmK zf%bi+-hDD&w5O2;yCeuToTgVfeVXl|^A5{PUgHo;hL>yP?1P9s1v?dI#VmBA$-Aa{ zT_uF@ezo}wf51I&?AMcV<>FZJ6g6(sBah^WW4STZ3)x}-!&Aki&TzT=wSR3jwyRZ) zm5UoxIs$$YYOj$D6Q6G?haxwhIn0TBa=j7u>n3tsRfR;m2w61!J+hstIAr6P^)%aUS_XYP}P@g69 zW#Q&Rv($aK?s+#asibB zmPn=!9Apj-4JDN%L#V%yMN=&?qDGI=Ql#X1tY7y#A!pd1j=*=R?MS0ltuJ+Z2Cb{# zTuQ2QZq+nZH!~IXL4zaxX7R=0qPAnj;bb`!_Z#K{pyIuEb4tUPyXF?=kR#)#uqA^w z#YvH`g`r0 zjMhtwxN%l%v<CW(C)%*`?^hMSBz^dEWQGRbA|$`#L*z zc(@%g@N!V-X2^l;O}~>7qY)1rfuilsz(%8Hcw3`l(L#q!i5kAag!vH>24we^3pO>t z%=m^9wH5G=q-~!@u%YV$v8ZOp?rv5y*)sT z{}q`TsIWJDkq>BfQ}Ob?2;P0&{!1J1SM=jbqr%xfo{-msNy6hTnwQ@nq^WGB>#9|$H-2RTVlh>>b;MB4cd$ifJen0>Qg7pjzR_T zh}YEAR7pH1o8p$A*hSKf)xUlnwOz>O%%=w0`EjpDiG|ocH@m&cdF!f_ab+;feYZs& zVPgq0BK#KX2?lkZ7+mF^o7I2(3cB>2L3H!70pCPFDjiM6HFLCr==(4vw zTy3TR^Wpt})@c7lzwnC-Fef8RB=+Lut76q8H&0%V1=*YFE4HX!%x%3ua%lC@;Mj>V z0I8T66J0*HpeE$l@FI-zeS@Z=zlU{eu&2LJ$)PS-iylfmrgTy^`$a*!H?%@ zp}#=u6($6;nqV&(l|N%BsT^4E^D`Wr!yZhSjwQHF2u;PPhh}K#$=P zBY+t(Vb>kHoFs2D1KXFU{w4%7N_Z@9QB;JccDG8r^&XnxMKIjqs2F;&aT6B5BH=ek zkR3l%nb_;ZO+|YiMQ?4-%nkV&xWnSi3TTV<@TV?hEbpLhBQy0UAkNi$tUq%q>I+S& zz`&l61oI17<*CiF?T`jP?`8@twAqb=jIfMt)irU9s=n~0)OE5%%jBv|n?+3BPQA=6 zD}JrXHtlpy>Hos!UJ4KUzW2ptre1RUV)hx5Tw;JQRRippO~iPjIq%XqKI`lg3dz(% z5d`LaKagQ0&eHRfi}%mVEqD#7LQgr#aUT{!NC-}SWg!ntN(ei0!z49d&kZD!g+C{O zp$g7fpUlU-Hz}usPLQrn7GQ}IJwpla&Gmn+6G)-AuTVBXB=5iM(||J!W3!uHd-WMA z?Y9B%Z$Aljfn4$;UTHUg!B1beB$Sw#&P!XjU%mWrM5EB$Rm-8;r*=n_^p5{OSJV7w z03PH>qxugZ(iT8sn|vRdmB7m{yX|NTN1*T-?Ap$5=Cl zv>g)}9J+3%w`UC5)r{?~eCjYoZg6(`UZN^f-QsBU+h#t(mB!aFVeK zR1jBTZ4xAGoNXlN%o8O44|{JJR@auS3oj%PBv^2Fw_w3FcyRaNEEet(f(3U^a1DXr zuEB!4yF0<%b7yv+-Mzc_?mpeOPe1p&-*bQPgEhyjS))dcIjcs=YcGuPOCHi6yn+Ab zd|gVx=pi5Nug=$7RFWEwzdRH|26^{naT@2$)f9L33(;7WTPY4eHiTDSl*b0DnHYPj z6%h6I@FJWMass8kIdt_-*OfTzO zba$m?tW;Y&RGrC1&Ig`>kVk@|Y#r0)bUwU1cCQam0S>M&ha0J6O%l3zICa-A6FF>~ z(9G-7A+o(i>&?PRFUb8U=ZdoYZJr~AW#qDlGy%bfvxyayCeRZxS2mk% zRO~4GH7}V<&v|f>bzapS`OPPR{rPq87yJc;*2)>*RMUYjV;d5^rxfP0$5x3NF4NN* zv5UQigfXId(4>;Wsh^Erf&{Nrmh)%?c$Anu97^&|^_T898iehZ9Uo1wm!t9=@ z()5|*^wC^Wik?Cay1fR-v5EX5*OxLlg9gioNT4NQxw6|=4{WTkUq!Ca8Y!zU?CeMZ zU@Imk*W+7E3iTZCP!q?N`zxChk&-^SBaECt4g7omNZu58U|!$M`(u9sYuTDIot%d*h|MU0vBPz2u!rHosiZopA+ z=D#%75a8H@^sam{A3t*uIDetEPe;4A((4fVS?wv6jKQ za7Tn1>_ponW?{8y7Ph4!{rpIhd>ay(8lHZEFf+sw-&%DnEuG)c+?06g*(l98`%yF? zQWSySHyGBMh<7UWa%Or?$H>dL_0nVNBU}t0Z@1Ow(C;0XidgYyW8%0r9;yW#hcYSh zTM64iq>Xho^~j^up}Z0}k%Um`P3TqVvdQgRtSzf>koxsF)uzNt2CpsJS!gUa1~Mj6 zqv6x?J%PRYgL2)=nb7f8Y8cBn{eI4`8N9=`2*O!1iF~?&RF7A%;gO5rv$@MXA+X88 zM65Sd5ZEYiPs)n<6Z@dWXRgZ1n}`~@*6ha9KDejrdCa!0KsdmIuO~-S$ylUX@rlw7 zsFlR0DEu|*-x!$cfPv}u_YF+F(>-3mz??O>+hGB+jQ^d&8Q>KJ$K0H$?G`#Sr(eJj z-P7mNWW%FHVc5r;t`#{7SWlef_HHB8Rld8iAxsIy*hqzkxSPl z9aXhSd>u6h7}?Q;R&pjcEidVz5Y$_79cKSf0GHy9RW4iW6jA)iT?@}Xirs-87Et^Jc^4CVJgDq8emj|8CNE8`qtC=grA3c)f;*rOMGsSV)lWQ|*kAB$h+_j7 zTm=2Grrxepb^ZPeH}*S+>94J#fAk;3DVMYUj5Ghbptbw2mqn{vc2UTXB>ctrUx1Vg$0aw|1Gs0 zX8%WQ+W_w!79cFJqAGN+hl7*}GzLpqHMm9E1yGr>023ESynRP#)$Cg1(QnTC@d=O^ z*E#C+hx9W5*64+{enTwF`%gFC{(7Tb1Ar6#6${9stH}VmODq2DNu>8=bkiG;Uwm~K z_u9rSV;veN<38RQT-JOUb?r(f99cDNu+}LTC=EZ* z?Mbp9G&ydcCNP%}9i@KBb_hd>0i`q~PrI?tEdTA6C8VXs1hJ-;Rg&B`RExq?QrCnq z0m^{~lkY19f_<0onJu&E#f5LCZ0jPHW7%v!jOQO9~e zwV(S|q{XwmZ`fnqSq?3#P*eIg z5;83j7(1FszG&VUjoz8B^4}EQreH9WUMlL&i4eZC>}8ZM-1B(S7nRl$DAXhkLb2G~ zCrk@rc4dW~~Yo z5J3o)5wsDobOvL&6BH9VYIdR8H=+@CXg8*l3iOBdb@sqC;VTxCoy}vt?D2s#fv;k9 z>C2te6&NF9zIj&|Q1n-s6f%nu z3-FD=e|D2xV~$u4N)*7C%-CPS!|mGhrv$x3_v_~A)-}1zMA`Z`zU)7@wRU8hZQ*=# z-W-Ba^qYc5<2s6RTyh`&+oi+rt;|f-IG$-l9~fU+_s?wyL^{B~@DI?^iGI;MTOkFX z*G=A+wN94cLoZ3{-$Qzf5Ayogl5OB|PB7*mEvQRkR(V@a!l9Yv!zp+>JltLKe2Ad# zsJ7e0QqsCS~uLVi!=6Mi{{k9fV&6lDZbith8mcpkPLixNwo*!9W1hU1is zeoJuDRPcm-1Klj$R4#swoggQdB_xX~$RN?DtxHJA`_QNJ+tOR~F$<^-%S(7fJ1``# zj=6Hc1)7#P6|?l<7&(k?FpT&X0{Ll2y_u0gqXXt8Xap`G-#52<^nfFdEwQprtN(!e zP2-~?um9P_WhO#(6byB>vnR)?5#M*G_p~G&ws;a+JbkHba6suOfW=K5w3;U0C0rYk z?~dLz`b9?vcl&KbR<48021+BAh`?tU^5ItAcx_dD!YfwJk_<``Gt-D~>8i+xMY-k5 z^Ac=@Il!2_6P&=qBbMTe2x`sD=4y$s=Q;dr60h9q2iZ)df zhqg`+S4)`RO+v-a&iW9jvx)`CyWG!iY$Su`jtv5q+b>VM8FB;$KB-Ho#Xb#r#8nDo zqj`(ro{7@;$GY_EQSUFcHZ{4*qo3Sa+KAweq(;Xed5E?4I{nzVTuND@2;E}CVuOZH z9cs5c>IzSaaV3OIH80C`(uJ#9|B-?DFJFT=by5Q+>BEx0Yu4P>fv8vhHxH-sRo_0& zeQp{e)bg#ed}8(c**&8#5=C!vE{$T&v7Cq%|DTEad%xh{h*JEH82m@K^gS;}W&9^q z5znfWLTuBx9SDeZ5xs*3VA+Wse3J+_949l#M>dO9Vzg{5W&k`DDT-+nYW|&q`y0C&oH%Y$9rD^eHsFo%@@+$T~W*Cy@zRkfQ|xwfDm~y?6#Ba?w-`% zpGG}i8yx3+yh8aoMCbQI$^g`DB>)~8=@HXWaCMk@^%BYUW|QRMxMfw6?~w5HkmOAb z0C4^5kgw}M2|xP{VI2O(px>c~-y!_@L-6es# zbCzqRfx967#<1T!iTzN}-SzoC_VQVu(A}zcd!+dS&*p-`?-;fh?D$C-u*iNA-ty{5 z*X#JJyLA7SVZmP*{>PH|L-zh=Qhzjqpc(5wuL3ade_@FDuX2b=*Bf}I(_V8GbfE6N z<9dSJ!EZo^%nJ_#6`fAx))&jhI~DzTZO~9%$#ch<7;TzFe|!oY*#AK5;;H{^CiHfbS~dwfSVQ}bEmMi1+hikjpD?8>;VFIgjb4A) zrYrxQ_;K?$cG@JFnwnVJT!X6O{;#+tBgQHi+b-_CxL3tGXIwV(>@ui`OWk?kOB0$D zbEnwe-d42_JZ;@H#2v}HbLEbf4=Db!qa{q7^A8fjU&SY|%e(!Dc9I=#a951PyJ`3* zYO`NS@5F?xl~!2*vGl>18h8A~gLHzA+Gwf`z0E|%NzsbXjqb3imz>XvbUEb+r-Pin zEZTG}eYb>eXkQe>J$TVge@H9iH!~+prNKRnS7 zOV+$zr9GW!g5yA%MoK=zsGP0e_R^o8J=*2Q(pauAKXset6C9oN7xz#(?M1m|EbvPp z`Pp*Lf%0^wDs-d~6P3`%Iquq|>f6KaP~A z8J*$f2)hGNutM&hp(+@1Cc~E%sEan%1ZyP!_vdFZQE> zJyQSg@1jDLsz^ZM~aCW?l!Vzpw_L6=&T8FDTIHrfG-EvuCR!>SiI zkvwuc7dME?qu)>YjDppMME4{h( zIw-=n#tjvZF*nyphu6Y#xsk1*F#**`BP#S+I_a=EMGmNsaq7A35v1%GSLqOd*Tl7u zKAL<~lD-S8#_5N3rmnjQI7S;yw*N@L`Tv?MYyaZFO$T(akS+?rAA?Ur#VmP zU_X}sk?zcCB7t*gb6mMQ;w=kv$)#(V7}31ujc@UWON5?@V(yp18az8G0=os|$SOLU znkP(C(;W8%c{M4RokiK>uS-yRHrbN8-kDQ9hffC$s|>zwe!X!&)K|&=OL!i|5oksE z;=9mA2aqH;V)K16>zH_nWJQ3yLH=(MTR}b&sH7wC+wk2{LAEOoR*Q3F*!UqV*zicq z@7w^4X~XYzC!HWK$77bZ<>TOMOH@u5J$+w$E;kChKC&xeI}4cE&;MrV44Q5wa*Hd_ z6qUfQsEF+;1uXg@EzA%;K?{`hmdMxduZ)v|9hp7~XbT;+dnDY*ph+z@B7y+>{Zqs$ zfhTw)!5p$nA(hAlzv%*%YkOE&KzWk7Vw~!OD&=QV7hxKHD2>UMp=KEEjb;HY^G9*@ zUqtrX5aOTa^YmZn>w&yz{>abl{e8*y0eb?f?=9CvacPr4zN9UA&xqz6rH?mEnA>Uo zf+}@-SH*iEEMI-e*QRR1#QJw0{ddf>oHvLd<2u0O#6-zGh6iHr!bxRPZOT%!QNnoA zLc-5LT7#t69}tp(zH*}WvTwMpUuu7ya7OC&cE*md%p(7AI@XsuaMJ@#xy2qAy|Y+m zp<_uLBu1QrJQn75Xatrye3~bVb17 zD+Z1nByZ6UiLQqF*PY`oPTVS1&v3B>M4uAAIlu9~J-#MG`>%T|3UK>pe1Us#miFDWflQ5%%;2(&jnsC$(2PS2yANq(V1 zXDBOau$>kDuEQSYj0384>(es3!~XY13f$ZCOxQ@1Xj42*lofvfk~eOus(aFzi1~7M z?FBfAy?MC5z(X#~$^`5pbB6n!%Ym0*m8s z%RfvMTC?2EVou=|8ln1(2 z#A)Boc<(Z~Uq_5?uGLCv>Cz#BiN@y85Tbg^boX==M^bboA7*{FOuBq|lFMLWd^#y* z9Q4X65pUygh`rNdOqv5sn}<0%wOria`rV|LaN}(RDV4|tDNIIR7GCiXgY?9OtN`Q= z|IwsbqZ$(R0$nM~)JZrTOV!XHqkdzp8mzrF#E`h1IYkX05BW;pSUa^fjsaBg1mcp# z$aS^q_BOg8q0CEe>vZwz?uN4vq!g^p6uqg9lzbd(s6*+q#&KvUuqvbH@~NZuF!AG^ zaM+Wi{^YzIl}selH^!$mN6(EH% zdPMi(HfTHaZC3A0*Vw%yb2iK9YAlR7|4HswE!r=@!BVuuqdS&z5L1zERzJjr{isRH z+qqB+oER&M>@X+dOgTEAn{NI=cth$vr8$oo2#bf%s92(JD-@A_TN1o>ZCylG*AP=; zR+q3AVjLb66TjjUngen*f({Q)7dP!Q?9;KuA)gQPg}7+;7{735X+lHjy|J&2#3jlP zCl+T`a)>UC;uz1b$+;VlWQiWRvE6px#toLNwKrR+Yo*x2bl}(*l=Q^oWeG3gB$BzI z47E5YCiNYI3&S|{x(jYUvYx>uTqjhko5fzWNV$~^JE+zvE#q+1(cM48qK-&%KtX^F zci}e|oJ3(__*lpNCC&7|TBu+``5s^SfB6BLG4g((sVX(gXpefA)Ef1wSZ)Y)E$Tkh zqvgR3h<5JO4A&Z>{ai>DMdiH z%9$UW0JxZoj;n^eYNG1W&>X^9?`)8WyAfq)V4@N&=#RO7MG&?a`8Zp4_Sk!w;$3A< ztdTT);4{Bu-X6}`Zqe~WcISxU9Dkz4)ax#UUU~v#NztbQ^!3^r zEHQcSwt$kCm6?j0n0?1;9ghPeN1uFd%4j#jV@pPJBbA z_UvUP3%XIR$HcsuY$3oMayB{vyNm7(Ce*-N*=puG^t`IOQ_W8u7j7xyYehY)CZ; ze9017Kb|i)+IUqa>y{e1>+S3Lxg9FXA{E8d()YB*M;Rf&A9He*C6_Zn|MsK&4=kxl zKJ`iKb6Jh%M(dbYY#y;*(7r&qEeL_5=DEwnipn=Zs)-hFV~9Bz#v#n(^yVA!`yxKS z?YrVYqNi~6X%?L`8_w%EhQP82vOI1@{Q!CCd!KMLH%Z?Ph}}s717*ZM;oK6Vk#{*4=zfblda%Y)^lkSE5dDgOLmdg) zf%!QJPq(P=FHjFiZ~zQ0z(N07Ds-JJ&?NT%t>17TDNcwJ?jA&^#MnL&XfxI+_BWh{E6RJ)cJFd2@*B#BF$Wz)oukU{l62vTW9zhjd;=_$3l3ep3K4#2^sZeT$Cy8I{uMxy*Q|BNX)86N>P)|0Abu zzmL}9H4NYXe8Wv6{A|x|D(SrEX1o8;1=P?V`r2tS0x1divwfTo!gRLsnG0NL(C9=ZGUFG1R8ckEgc4Oq$S1F zx`*~RLBvre1C&k$ zDSD$5s^%Am*7!jlDWlZJt&7haeX)k>u&i|*URm+?QnvQO^l2!rye;YNp;UqBI8j+U z;&e^1UVC;Rt$r7)yc3C2P?q0fa(UFPz;MtClN#!dm8OoHoX=d(t{@qb~^?<=49D4Yz zdI5rzIm_dWhud_?(`2rqh+^@5Wts zD2IJJjMV~Pz8D5W9HYomdLf&VAB%<7=M3)f_Jz)C@HetAk_ryjW0mquZS6_q zrVUpD{tx=UmDYJbf+xW;aKUSkj7_( zmf;9c7AsrlUcmO@(x+oAJ~${X%}kL_QW5mj8m16|6-ST7NsClxr{nXr_9Xzfhbuk- z+Y0t1-?~{^U!LRzc1fGWa!)324_eG3p|Rpn3(f*wf-JPikBFm@LM{o1#{ zdOZQNW^XoDCw%XQ2x{Cj5v-itstooC?j$n~URq(8yXQss6+NfFo7r%%LzSO^8r&n9 zt@XgXY6xHXUhMtUV&g-ITIW7qgdtN5e)xf6BR8xQCX{RU^vRy%-Y|i-mTW$mcL%t?ftUei&GJP8+8SwS~z~B16-WU0;E%1-$ z_b0C<>hE|h&y0jA9qfT7P^eVpHPiDd0BX?q*yd>8d_tpIJ17Fib{WkqUqb}p|$iJyra<3>V6Z81$SkM&4ZyTCfjFKXb*X~#UEHs8&(Wc*Ee~F ziQDsZL^YU`Zc=}M{H-nocxIMot<%?;1lIK!i;lv5&_q*I`04#yyQC>Nl_4gobF)NU z2}~PhHZ2ikDUK1J=L1K+kqsBlJ;$sR=OYDXz*wqfGX|^vA%kL-rV&qG9a#-w;N^`(An7oT%8 zcP@9^O5tr=Ch1|@>8ywi{Gt&(VPbF)RrbF7L&ke&yb?x}#Qy%es^&;YNoA~lG1>%UMoMht3EEo^5U59Q}c<}Zn1C|>?DGmWn(PlvSFy2s=Bi?2J*@rW0tB{-70XFq9-^% zlFbMCd8|CEwk1Va_-g^7w&YJKR#)gc60x0ydFSeWMypxqt$A;!V2=i@tD^1XUQ#)v zj+<3A2sQ#;GnRwZ+adiBi%ca}mx0%^f!1MF6|p(~;bU8&Bf6t9?bnbF9Io2|{OAg7 zG)bG$-iFPsm<_V}4yY=V%ax1EY-RPbJdVkj?~_9g|Mkwq6+&$Qa(FIrfy^N31BTiB zV~XXxW66E*Ia^J4rM|R3&U4zNRfS);ylT9v?< z$UE3avPW6QkJ*mIkHwvHm>zFNH%&{`>N3@x2BJ(-k0Q{vIC1T#`lenLd<~mOx5gKrEf^1H zynuV1CrdyhGj7rY$N5W`cg@Tmw(@*u4pY;~P3d!4tGLAX5qm@+GpL&KAyx^VEao&3 z<}?N2Yj0TA*}ltZBv;JJ#=uu}XpGW^xQyL4Yo04kgz9Xp>5<*;S|5LF1pfUT4y~;v zcIqSbF{f<+&V;O?-gIAkLZl3R;oU`DiARH^SYo3kFA*M@gaUL^TnDr$;7ncsz#7m# z__*lN67U9=pf9H0wx6>S$HYHkeMBPbLC!~RQFP-tFr4e`69teq5ZeMpU_BKHkO2Q& zq9W&oIBCTN=#>4tux2a}k{1@)m1tF|p0F+@)-2x8B3`VKDRfY(ztI^vcFUe3P-jX+ zn(&=Zr$yTX4wO3yphvd(Q6Gao12GhP1;}f8 zMFG;McL(OmCsYG94X?8M`eyG7nEj3tr9n>;3DZ8Kp(mMoeOrO5+D^>VmqYJXudN)l z5$0#{TGp9tL0}TPL8)(UYNUw!&bA)_RKM%rJ^E|6Jlq55jT^jz<;*>TmCOKW9?n-F zgKr7QFZ2F+M@DUu35hoFcO16tJp$4A0cuIixDS&3j z&#&`Z{Q-JWZ1DJ~?R`o_q6rNB{cy=Cs#*9c(^>d?@~h=@d;ov$XcI`=BpW^0{MUZJ z2mz+`@sF3q%S@l%d4F`nsi)La6J5! z+dv})yX>_&b`WFS?rmbeHRbggvaKbI@h6S_6v>q*EI)MsSfiK!rDT6uJX_`-gFluE z>c65K0!@u%e=tkpB|s;u|E$}8dF+4j^Y7{;@Yp}p)qn6inV0477DEV-g7=@L@aM&l zod>k~pV#dF^v?Nz^#9Mkx&D7Ie~5+lVA7G5vuAytzNmh%>HGCc#uviZ0>^6w8m^L`(6wUY+D+V`FL~;Ir(20e+h*CO)^|x zWCXF$@k^^otS?`%SBh6XzUtG^IQGfh+V*r*zh;zd46e zD*LSk^0z+zFV~*PrXYDPAO+`qpkV-Tlh~&Te7o#;6`#b5hd)uok`#sm-9ibY{NnKX zZ7uPAPDY65cYrR+H9>PD_3xAwn>j0my~b8R?x(AFN+)n}J0GpxuB|bSBjA!Ua>*xU z22l`BGGPTnbkZXz(T8gX#J%3L9V)t%?MO(%x=5PN;7(kp*l!E*mzhrp~&FzXzKH4bldTNCmJJiIDm@(7Qk_5s#7` zZ@%ZXuDxw^dRpJ5P{0in>;A-+6!;2A&T_x1hN0wV*&uj4N6pwdCWq*vV%ah87(`3L?j#l z4PxUoKndB8NK7`Wxbe3~S-RNJerqW`izL!!%V;bldTajE7RuonU+`WR>J<|F{OPh=<1d zo@8BULA-mQBQp~rPG+1XYF-_eip^)qtkZfS@L8(!5Q@hLY%M-jz{J%#a_VYrBy^pQVH**`-~{EhPcht6pKTaErhHUH252%iN0nTTSbgZe;KDumv^ z-=x0to#Fl2Peb@$&<_~+)hj)N$BySeK)V8Yo*a*`p66em-Vz6Cr+gr$A02AR)d%|= zyi7dp$dKF9xE(X{BU*vK1>(FAWCQclE1j zPrJGsCHP~?cP{Ej+-pOHHcWtc&-Z1OM|I~xja43od#VRVdHm}4mtM%D6$QINU5bw= zQ1=W2VU_%DjqH6uiy^gV2Cy>qUe%$*9I6<TUn(j*+jr7!N?27?MNV3G0LzVJ~b%MA6LK6rOc&pCgK zo7F}7;>N6u6JlK!if6yM=Ip~sRCRc zdScCWL>&tn3mO_wstd=BZRU+_R`sXr!b^t4z&%^RiMf7uJVM^>WT?Trk6~lBz)Qn5kw{Srbkp)d$nZJIIA^ zE#S$7C6dme)>MbW}&@>{0s^n+Am+SeUkwXzGcv6stB!N$!z7uBA@bS|%i-F3tt zL`RNjQAlfun)hfn(|8 zL~RIG2@%tW!g6UntRxpZf~{^vNmxITHtwSRfg5c`X?Ixkn=xtpS9W5RpY=W7e)Ao+ zu_!C*nOCZodVjzn`g}}`99BqTXn88^$w#s#9|>wU2@2bWyJ_%IhdI2D0$dnt<;-Bq z$+O4|Q|9c`uFK1nB#T8I+=FQQx^oyFnot*GC0o(Snqsgs;({cH#7mHWGoO#0dzUZ; zMUBNKMA#l8a%$-kL*8@N9t;4bhX-S|EK;sKVit9p&(sy+!YM!H_v3-}@RxlvQ*?DX z+D8gD(o&G>|Ll0K?D{T#AKOUbv-VtFC^$Q0KD#Nn$Z-b&_7NIjiV0hdAOy-jHLgp* zQA%H2(-}!?xi8cr_pP~QPtnZ990K=MCm#nN=ZHb=ynBoJnbBFxcKXFKkh*N{x-0HC zVAT*&gz?lQnKJ%dA_gnc3p3hVhOvFPtiqD3tcNt#B330_VvN)={e!aOunkZ40OLSE zkvb%-G5C|zYHgr+C=MI+X>Y_37YYa}$ztf#F#!g)Q44e3)XDl|jAoW8GTa&)8_q;z zrssK{k(H9Q`a&mV&0!KX7Gp1FOr;%r?a>q1^PA8pW!kbE&6x{NdstT-l*DYM=t^n) zn1kp|X+T!NSNRZl28mdfPm&oC z*4t|~=e7}Dkzeq%s-!+|Tk*hW8etk)7g`l43(zZZd@4I!?$;?{@NRI~^Kd)X6UAPm z=N8{VFi3^Ez#QXC({XkSt+pyu%OX{oH)0q&9~;<~)b9mHtV9fP z8FAQ}r?ti6hhWWp^HY4${_+-Q!o~!D^jg&LSRS~PFmV}X>V=mzS5Hj?H8&zWDtIfR z3SfP2#ww`?5v;we-7_j>3Fkd-Y)S#R5__2`Bu%F)J8kdMSnfKSZD)OWl{56#Bk{&3 z86uw^XUTEkG~d(Y227CMa=AQK?Y9pb8h@=#6yoJEw&*69oG9^Lf+s1)HZ-4!sOFQJ zXjDKfOvPp+1>HVx1l>6U0_#T`CTd3@bB;lkkU-Ag5g|_~V$f9LHw`z8ZvbhDJp=d%HJIcys;%MDI>L~yo!A&GB_P6-|EgOt*Iv{Wu1A@p+Vm_`zd~i9CQP4U( z)~ro}aA5cdGxjBS{}&SmkvG>2!n3ZgwHhOQMcewW3hLW6s!m0eNO?`7MNZ<_90OP> zO)XK@30(>?_Gw4ffzm+Y0fog_0jFD+oICYU6U2q+$pFdKh0t{&PtKy(<{jb}4FvBM z#&LCIHeNM@@}X(wC<(Q?38tbRt<6Ys31L??N{{du>0U`!W2y1f$EUSBDL~1w_3rwk z{u|(MuK*|kRz2%(xEmBK)p+z82GE|oH{{^*!4C7J$#evxM4FGnajLoLgXr`sftBI0 zXL2~w-PPS>9WpLAgYNI!fOATfAE3~@VdC#cT(`{zH&;UUPh!QtXbr7#=LamD ztHl7httb}C3T7b*_|Y2ilu5}Jqr0ka%%#7~3U^YbV>+*Vk@E3BMCd8l3f+sC#E;bo zr<`{BNCJ?Dd=NU?^FC2^1mw|o+YCUHGjIL?`BWSK)wH!Y{H#h!|kNMXVzsUIUr;Pgn z85^%pG3LFA8Af`s0~;)T3$oY>o6Xk4kI}G;)ej#X)bbUzRv(+Kk>yY-+bbq7An_%g zsHbX_7|m0bIewpf`a0~+QQ-$D<4^pm@t+)iJ^h9D&-F9yhxFLALEJGEQ4l1Mq0YIf zi#aY|#8W9qf67QMXRiy#{+SV+3MKI^cPV)AaRDg7`7I%!t(V%ay!SN{Cd38a*B<`i zLE(`;(&8L)^gK(=a+M0`qgW}ei5}B)Sy=BsE}5miu2@saXP(F%vH|a``)HyHFj}4q z9`c6OIhRXl`HKvGfUsoK1*Vt47alEVhX&V3OghW+iyJ!qgmvG`C(AF|IHmI|*%Elh zuh-W1k{Q{9yEJ{^mEABe*=24i`0i|4z5BoYN%PY!is$Zz0z^ypFaT}R%$QFkIXn9k zqe=XprA_bJOHXA1NtlJJQ1($q_2yb^j_2mQD`G&#}}R5<7h&@H>)Nmczzr`S4%{!C_IpusW-*-9>U` zJEStDjMuR|mswS{BcHpJ$LMM|RR4-!$)Ehr|CwJwCjCA$^lpCUZJ#gX81H-tlP#t9 zN7-_e5l`O(dl?_^3oET$;p}`(uURM;ky@@A#W4*hinOytUxYM67Y3x4jpd+O=r222 zX%N_UEPEH;e-ej1F;`QN%HvR3rE@yinUAM6BB7k9_?x3lH|z?mve!vy?z9*@4m_AT zzi8Dvw6A9cO31#qS z^}XOEZr1d*J405ZUH!||HU)L*bfckmFKdq7qL-Rb}66NvTlf$opRURFZqiB0zsJEtc)IYlMU2mgAJc~TBuswQ8U*EFHcMKorf zPHdBSZqZ9EUaS>!T1PyW)^67UHx#*cx!a1(Vc5eb`hz0jR+?I;)*M3&b8})hp~y9l+q{GMEJ&f);H1vYAP&mgoU_$aaVgFT{7k^`Dx6n zvaYR7`Nf6f7vWDVudVBQ>F_Rm9p3AcDYy#=t|*lVs*b#FKrl zdD+Re26xkD44pEs7ZiLHfu|uksp5Y z?pt>*@hQaI%M@KsV*S7YyT>l{gDwhdmSi!F&HLUG0GW_7;IER8{!u)g7A9os9@VyB z$kv)B<8_m53un1*%iT#|g=qIf4xa5hIkC{hEeF5EogN^#1`m8ZGavJQfZjPBJ&Jw4 zRNOb;H=Ge#g#unkJ3FoM{O?WaKRui{10~%BMs?z-8W&!Z>W-gw`G~;6 z&_O_ApLnf6CEP`vUNN$OIKH{YSl*3`SeOHX8UgXDfBH57we^)zP$8JZJ>~uB z#nZ~ih3x4!w`s*ud5-GW@-jf$>)3R>TM)^oYx;iK$wSVbWHHVqc07vy@B_p_+%6G2 zxI=k}Bn;PS{3U^Nt1W4=NN5zUgK%2dH|8`J!`uZ9J7$|+$VeGbItC7~9kNVf zb=jA7WvNA%;Ig*z48!L!L!J*^(RZwTve@){d_26xGh_|kJXKSYRz|#0lF;&1^4pBs z0-rGl+d#7M^4xI2(=OAMON;u=epPk|@97I8@WO1!L-|(~U^go#l6medUaHjizd43Q zn;(8N{Srg#wX7tJyP@?=Y-hH!2(>FA0Kjn|$y)z->Zt&mE8%WyQ^In{Y`ru+^x;)8 zAsgyPC8J30E-82_1WE^w(P8T<=1BRSSdOUtX*r?J#>xXj!`Kf zPoq4Up)E@}zSM`Kj=GZc6-jsJC&l~eR#T%lf;!UCvWFG}Iox>A!e1xf{s3B;R*mcR zHzfJZD;iMQmSk4D#o}3y2#@xJ;fDK}geQ<#-i%y)ltH-4qGU1yl*IEV^CLN)y@si6BP7 zQA1{8pQY+m-5EvlsCB$dpBOVXD_&aR? zeD4-L*+L=rVwW2pO?s7qAx-v?gJjL9KXlI zXv@{fe$50a{R8#GU;RgZb39*mtiG^{o-G!~hmC&7JY8!oAl`2H5er@zD)A zJKp-0CvUh}R1a@SXPWZfGYX|Ta@l7xU>mjMp*P-D=pmrua+Lgj-9r!^E?n|-{{TeI zy6N`G#RR^5K3SwJld^QFu`z^IXzm4eg2<_qv!Jfl0^ArE3lEk6!X1;&maUwjz(Zsy zXU%3q)#TC^)R1epwWa6-ioB#)D05M?o;E|j3a@O+F#67IRPg@f#9|eK&3mrR>QIaO zF)X{8SXRCAp%ME~59%c0E7jN?w!xxO{_kN(jWlliW*UAySd>;)?(2?*6LI}-H;$#V zS{Ptl#-`X0o5J`!31&-*)YZyoFZHCJ6MiJ!BKaufVIRJcE{ z$e?;5y>FFQs9+>Ov5z0oSzrCNDqty;ULl;A1`Bh4uYEEs0`>uJP%FjZ!^gQ+C; z<%+9I2laA{SC7&0>30nWU+A%I?eWoSw@EIi(yJvgQI&jh-dAYzhZ&zUfyeg+! zBWNKtM=ukf8dN?lb}gU(0b;bnZ8?tr-uY~=8LC+$tJcZNnaBBgt}azg>{N77Et>KE zch1!0)?nR3rOlp~4L2>{ zJO~j#9?bWIrWn|g3*jw*YaYqR=e69{tL_A*UJuqVEjP?JQqmoDm?#GhwIR*UtVd?o zV8=d@l8Eyvl&U#fgtoR`oo5e$r{}Mw|AH+)oMy+Xp7MRVyyntNLyVr3M1E?eHeSKT z+$TpYKKwA0@q^#Wlka_Rp2tnZiC@%lmAIzUhjw?A&(7qk*VIg#RMl#DCetorS|jTn zn|SSOxKki5;D2a-ojvc$d{1Y)Xo;Si?nLK$_erUmtKyKFa|bO}=3pgK66-m2eoWf> zW~`UgGvxluolM(WT-5u<=cffd4BHr#r*#X0|BJl00E(+y(}kPh1PKIpcPF?7ry;nz zO9M@C4VnPKq4CCoySqbhcb5=6XwcyK`dcvMZryWd=D#y_tGcVJch#1)_R{x# z#9=>5!22;Gq@rr*>I_3P3JPumc|9;Bcj_31bay-KHU;=PuV=L{sJLbsq&NKC=HgFx zrN|0@pK^tV{_J{;S{Z!u1!X_@{*yU8EOdlCc2)XA_@BYM`uGtIiBvrQ| z3r25k>qP7uRFaC>k${7v9v#EwyUIMb@yk*K258VccFo6x$62m`@7jmrm!mQ;mKiU{ z^Skn=5V3EO!r~2F_Rq!vJ2kL-sQ`b{H|0#Qm+QzxsG_Xz9wLA2`Cd8n#JsKWYJqu> z*8%Jxxm(6kCEZ2q&W0SNYdV@|@!V|u8*rgy?--Vq&0f64E=F{i!u@7OE;q$RFJ@fc zG7GqMiT5!Nx%E-+NQ$d(R)H%MauIun9q_e$E?_@75|+`hGkHu?T+%qXt%YT3xlArE ze*@@Z@5o}Z3%sfng4n<&GBJdqb0+k+n?9Cnkbu_)FpthydeHZ;1=Nm z+uMUWT5yY8l7F+nfWJY(vG3dnc1mBg?P3<$rMicI2;lzY&C$vBFOU+BV^)Sk+>zU3f(R8LzdtE)6n_Tu_=umti)4~fmJ+|oBW$Xr}Ov-GeEU?mQ%^Q_3c|h zpx@{|sP5BkF`<9zGzT!Sxv9JrUYL#uji0(?p3k(IR9k;c*-OpX6qP&LB$yHNd(>zp&O8n9G#zp*R885}%E=(fm8*vKE%2iwJYxev8tfHGj zCeX=WD#CpBduN#i_nHKG1Vq-8#bHhvs}kcoMQUO3SD}KtG!@Q1O~bm(#r%Mw6KOGS zGP>!mv;MQ+0NRC{18+H+l3RGa`F;DczG=&}bC?1w_Uy7__Y(_~dQ_8Kfg+jlCru`W zVQ-FkT=DPPc7NL@pQ~W6WFq$DoylLz56r!_>B}OE&Y7KvM3Y}l_0~B_?k2jc42Mw> zSZsTwUdP1KXVDj!f>3i*=TZ@=Yo8Y>A56nL5Gp(LGT<*vLU&%!SV)wAXo#UK4 zZ$`;L0FE%@){$9#9=i!70Ls<%cV+LaQgZ0R_Xw~v@7mx0<5~FMn4oxl?CnoidG7x- z-0Od&>HvFVI&xPP7RsErS~1K^rOlZv3O5&u7xHUall{L?%pppIdBG?b9I_Jkh6~Xq zQV?z@JGJSG7>Z{+N0@MvNWIC!Hf%G#GqUeS`O73y)IDu0w?*^nHvm0gNaa=w`ZwK! zQIirj79po?LF-D2ZecCa%BCy?eF`e5h~+BEWL~Chne+6-YRsjgg&lv{h(=U z`Bj%#<|ilTsK+J+AM$IQ;4Fv`qdBvgK@!2pMmob?9xQ$mqF4MIFv&*nd^^{5$6b4a zyQtC+JG_$G@EgGKm!?=y;Pu*Int^~%F}I%)!SUi6fAfKNnWDfDBujxNSh{V$XqaT> zevq;gQ{1~vGnoF@-uNL_5L7CV9vccR7>j;Wb5MS&$hBO8o^aLPZ+h@mzu_*co`+P4 zcNBG*1IEdS$9iO5mwWcM?fNwUix3SbcKk6szImSO515>MOcvkqAofVu>Y!g|W25+E zJi_~sz8we@)!)g=zvgX?h^SqGVo^t4F^0UnS&$}YqU%R4X@Ar+WLgf_g;oSUbvY`#*TqhqJ zq~q8zt${?E+L}oniqBQ#3JI+zmR+fWRVCd|TWb>ssN-URNrDN(V>jWZIARP?=QETTiy3c9M-m70ikK9PV zwu0TeL;0q>`yYTW{dwe@#%STBUDWnh6S(1Zh{=|x2s7oOUJT$xpdiJ|15ce_41M}b zzX6Jg<|}JYtMXXus^a@)u~1n-Q{5^603eG02ZRc)R<^c84lXGO0Xt6O5asF%7JJr0 zKv+Vw!A4duy|1L$PmRAj; zLc}mFD?tyHu#k-l4rEC$PBwGUMO8>f{bqaUpQ!7>s!9oiMKV_$vkBH?id;)jscfMr z!~5~{!|r0QJ`cMK4E6Fy@L!I#1h7tnU>F2(;#LMc0s+3WO=hb#3<{D28{VCjG z6og|g@#lmUojR3Gxh}=c*qj6RlIH(o03x#J78t?)CQG3!K}4A@Se4r%$+e*-K7Nvh zhL_DqH(V}FFGIvcspv*YPCkp@F~^$r9*+ITu1NgM+8nLO7he{l z3KWwjg&P(>zm}^uySCPzeROeGw5@Wus?fLh{iH`7Z~DaA8Rg>F9ws&n&A5ma9U&B7N*q;s-2WD=w53x|Ujv;<6h zJmJs!_0=0g!xdH>9Q${habyY5^UwjizW$`=*Tr*T{<-zowa1p~UF*zTcNVxt6(Jst zuU4gXMj6wQWmY)F(akfLPJfY7%fLw%zZ@bYq>xxi>i58^f%9C+qu?Qhi*@n!v&E1d zM3+ZSE=E?X2MC^W9UaLmo!;Qf)1-&vnUL`_3Ox3sHdH6rn;qr=wBX+U;dv24g`Mt| z)|9BeeH#(=>@_ajkfUS&*4{R=35NQ4l#vk6;*r_tPS?kE*KUM}*BCa(o|yLK<(SJ+ z`P~&(wGy{_N)uy*WMzWL8e$d{tzNwcIEtB!NWDUm9~8SIuPi=oq+R_85rC)30u)wF6^u`HnEAag?%&tvgiwwJR=vx^ zGZp)U{o{xFtaSatZiDJaGyr*^c|0u;jBewS%OonVinWI*+!3+oi&uXKW>1)`y;xS{ zPLYA%lV$7`Kn_Kqa8_Ek9XPGGN@@(p+?7Ta98$&fbB(F5>>nFjm(rTOT2S;IjNxmh zWX6WkH3UVoeFvAV%+{QND)F{t7GdcLBjquLNfqWEq0W! zz$5s?;RVXP0-|bBF&d|T9%1gWj_>EjbLvD*)uPf607dZtV;k9WZ1Is$Kp0eDp9Qtq zsT5ndrkkzasb!nKOk31aXkW6ivolO1VIQ&~NFyV_sBP3ji@mr@m;)S?MpG7|G3+5S zVa-jX_^N3EL()3-dwkYiHAo5%rb_&-18}67vdGYABd=2TrUJ??;~8R(!BNB)cr?=S zlZD7HP<>L(TY`Hmei0B$GYY_kQZQE2>|*KB?E%$6*Hy)?+kbLvY5uT>G)oJn0+S-XLh zbUH0BqqcvpOhdcZ-<>Eb;qRg$z-T%9+fxn#v|8?T}zwjUP zHxr4%?q52})S+~&V`~6JfcI&v8Gqy%fzg~+UfrjJqLt=BW3gGr=Le28lkezjP{7s5 zUxP8Ss@-J(iOr8Qfg%H^1N+@g7{#EG*&jT7N9huy1_=wc$dX;(Vq*eBw{hVPJP3Z; zInmAMl~<4CB&FmaXLsL!96EbT@PDP)|AjUB4_z95wEpal@VcrZ>>09{{dt|-n8i(T zo6XJy%l4Phrk2Ekg?H#j?J^e9Y5)!)|72#JIw@Klr3S8cQ+NXB?zBI14StVSQfeL}60 z{r)I%KX$a|V6*pIc7ItKM?nYEefpv*W@*tobxt=Wd!45FV|5L;1^u`b4A+|vV)N+H z#C-$ux2Ez|sn@&= zf6yC&r(DXWuEVEug4@ewDajx(4oi*2wNDoEs6d#c)xk$Z$Ka2<_~ND!%7rhx1K|et z^!zZ;Gm*+mGLdrYDKBimjD0HNNb@Q~Kg+!jAg{tN0p+e9Vn))nLln6p=;NzR z2oV)N2F0wih_bFnt(UJy!9*2S^0Ay&41c946_%D)mf4dsZa%K|g`kI2dm>=K{K3i$ zGzC^x@~l@i=S0-}lYuS^*!^bj-3E9iXMo%^uP?E#?FaX4l0)iAY4yi@TvnCC0Y zuU2Ke>7dt@kINRX%A*=jh(nAXRPnz}tnrh2=FpWlzh&*|EXTy`hJ965AN zqYYA|(13^+yi3XqhwdiDvQJ+{jvhTJE82^4|B%_n`1N_5Qs4kZ1thM zf^DxQLXV+YQ_^IZ3N1IjL2vnE23!a-spc|EEi1%fwH>U)QBe=)vppUI%x}5a#;FZn zwNNFnrFl>5TK^G>SK*7QzqY{X*e+AX*0f~N^3oZzvJq)Vj)((0!g^S;4SpBNNt9{X zumLY1UaF6+*kIXSh^>Ent(-5|YtJ%D9-cWRDv&S9p?XpaIm%RHR?c)*&cbE)8q7yV z|8?Q6$%OPx6}ogT%J-GhHigU<0b18A5U4V!V70N|NJV1-=jlqfur*`(Ys_pfS!;V0 zB?3N1J)-d^283j=@0I;HGK)Uni|U{MR&w`VonN&38YgpycplDrYP;PA5j{=Oe~h% zPbBK2g%0lsd<_gnnX5`-_)NvpNEe0lm-Zssn$mV=myIj-BK^F*e#sub=Nzo%BF5J= zeQk>XMn+yFU6fsvQywmJP~xj7i^RG2sSbBH7&=v|S0mC!@Rm%9isE^X+7ZYu3uJ&M zCWQkHG`R2gl)UTn>;rhXO+*|n4DwwDHmOz)hPt?SENJ3CPJm9Ps={)Xu}*x~t^L?p zE)npZ^o2P?@gcGaH01cA~{+RkzqPCVq_84QYG=Jt!RrEvq zq9S|6q8X}36T>MFEL4rJT>tWzW)2Y9ufVTu)*nqx=zHPoO*zv!D|+%kJBFZYaOUMo zNG%sHZTlr@h?RfGM%c^wY|8lzjIM%p8>!J&TRW4KJODbYVk1{0r5q$HNox#|*a;^x zUs7;x-c^y(oN2QXC~I0KTMXr8X_z~6GidRjV@)QqNG&bHOC93ln}TDuU=VfcU8#ks zzC~F>fVmjzz9%*YLZS_$x>Dfx`)#ttlQeadYM1bzR0jnPov@HXa+|kL%d!IUj`&-( z<1GqTh>Q(JJ7kP?7sNR~S6W-ti@oBx%y8kkShxTl?Zl+foqN;FwiAgJ{t(fJj^Hqu zQ0-mxMOCypnGwK23hvG%6Ko1~1Cm2aDXN6UWa#kK2NfgtQ z`_qkVjAw}L!y#MtS`Eo^_CYUBl4N(7c1ce}c75PhBUrP7MhSA*8Wzf|*b}_zE|pu$ zN}xFLccwyRA(BYDDcTUQ#scmB(o!)qK;BVmN8DNF3j&d@I^YW=jKr)*^7Pd{UyWYkvVL>3LfMI$114;N)FR?rKN49!b}NNdKtk{g9xVTjnLOtVC(~9 z=B{+*>C-AU1IrpoW4>+y5!20|{-3m2dyVd2Iw|#QKe3WaNp3d~3@LxR8IAguXQ> z(?VNT&pbNii@JPVE7CSIvXnk;RvU4CR+S>Y2wnxy9p=!R!ms2;tz++-?j8xE4fR@A zMOK#})Mn<=pey_wUhzhHgQazjZh`epI!S^J-WtCO3o}j41r*Tc`7!o7EIvYQ+K?Ke zBbao~SK?Te_w+^NM=>3A1NYtMb?Hw@1CyLo7eRyH_N#b3RMhV@enmDxE1L?H0&KLy`oFYLppod3y_tMlVMPSg*V-XBDFb>KwdBzbG>v7B7^R6_rRh00yi?26G#pvY< zac9Uu3>56y%4~RPzf7VZ7U@|3GJVvbaKkcK@ED+qy5=Dt2zN=iye)dm(4fLL-#_Z^ zDy+WXp3<&FroTPbSRVo0Y0~us@-Uyi-!Mf$S9v)gi_)(Sw1a(2n&x>`>VKg65f`jY z+mV~PMYV8!{!mK@Uq{tx`U(D<04{9S)LmH?#lgJb+ArK55#Qa4;MXz%ii%TUpo^n{g~ z2{lSuQV3T)s%_F#p7K&L#W!KJV>)&#Q+@0Hn`Tp5lN>0ZC|?Qy#&9R1p-C7bv)d|P zyq;=i*P%GdvG1Kyw5dAsgsitpymuxUNq=q6*br2!%#TqvI68-ZUBEt!<_F;^f0QdT zFkVuQbr%hJ>iN|1)gZT-iKax_@LkbP_ecnh;65IZp|GE^1k@Pn-^QM^g+UB9_idC9 z{Sr@?o9lpzci)#2!~b4bifcm35|ar;#!6@VP(tS52~BPiJv3NPC%o#9rgp^92)B6h04MajA zogPWB{ZPV}ykC8=2=cSS=yM?niHE~US~7XcZ6*Ppa&mh0yLJ$b(piIM{_rXM11j=A zHF$$GbcB=Qf~SeomjM6_(`EtSAu0-hOTz7d&jgYn&B|~P!)fA<|RA ziR0krFIXx7#_mnbxxY~X0KBC^j=G=P*xvg`1 zRp#NeH!fon(ONH+16GjV0R*aZJ&Jk4ey7Xh>cxiePpkkU4f$mpG&9j%`>KGcKs z;&~SBV0N+6+YOjHQ>3RRiyuTmTZA(#-QQXQxEW-b4{ljn)&^tV{h4VQL4iQ=*;uZ1;Ob6ESf)8-eMpWlb1k@=WfkX_mljWJ z1tbi3&3HCxj$B--ZZA<%Uv6=m{Ea)_a2 z@?JdDAo(i$g}(m5&Arjt#7%#urKDQ?a=0)FZ6Fdd?LLuUiOa%4il}3>t_Vd@Kh9Ta zNJx_PI&Da5>(h*iMAQ`kErnh&;fjxDrs8{hf~rj4rEHC`O(~VNT5K6{dV*&SeOi%J zzW$(<9bfN@Pcla#xcq*){9~u1bK(CLdE$S|QPb*z*(ieoj$nbs1NuOLZy{Y5Otvs7 zQA`*dW}4+K+3w%xF8&fl@#g5AyaTNI+585~gqIDKo!9kLJ<1v_wo{pHG3BGbh1|MJ1W=``E}&eA|5-3PHuEv(#YDbxs}fK#jfX zyJb5pRM5iBxdAg-wKBT|tKyp;y$=J9JE4LnifNIV8@p}USj$GkB6V^tRa6)B!vePF zP2_8yxGhke1QY7aluyUy?U|jHq0`IX*&ibC(KrPt7*RNxE-}VyjdXhXeCl)el+KmQ z>c+z(xTJzLuMwPtqN1E+(6n(9VnQoI5`7#{!I&rU`y}DkJIS;O!@~^s&g#o-*8)Gp zNI^IvA;~7}dLpw}snUw{o2yB3f;&B7-su)de#&PFSWRDK9GEVtmp2Qo>3-e zLaTrG0c&}N~$Ni3)1``q;%c^0vBg<0r0WfCV$?0x#+*-N)IC**gga1ny3cN=@- zp^@*46c(|OxQ9udd1{8OB0a_)qE99}Sgz=XhT48Ar+LB~v~rhCEDCB_&z=I}o28@-SYJiC+wv8+(P3-ye(+4GoY$^xzpqs&$$SQ%3># zKmhnB*V*M%gaE9lG5X2 zt~*#*Zec8X5`%1*oVKpM9QP}|e7`a03?I0; zs~0(KaqGjFDGn*`i{ryLIOtL{usA%9{mnBs)`QO+`}pqh68Yd2b$j)}R!eKaWRc{4 zqpxMwPsMC}uX&C?P+6GwePsQtmWMq|WvOWv{KZ|wIhl65L(E!7Sg_@pLJH((;aPNw z3KF}~qoq?9!(5ts79oYT6+c$>tYltxe{ztHh9YaQQC%1G92F&UY>mWA?Hi>tq;sxi zsUy#T*e4}~wSj4T`I0KLTgS^V#~mKPuj&Ke*Iq{U;{eTccIdNyXlp z_hqIrAd4#NUMi+4%P_T*6^M_EZu{9+vG6H=n0Ti11Ca78DLdfhK(4Qntfx9S6P zeYf7^8?s5{a;&RMh_o;Ow<$m%FO@Vco}f3Antli;bwPsFnFuS11U@_7Pw)U(x^Lwx zYmnW&;y&J!rNNUYPtQq&`e}&73*6-!1{a7iHq;C|l3UOzq8GDd7H~DmKxzYR;-8uxzoM$W z^(|N$B^})tY)Vu_YyVXKj>HM&3ntIf{*hEVLA@^-x;|b8r;1(4L)kEGvKGUcNa~tj zU69(?nTuh%=dl?m>&2{FOHOm_1VmAC0G>AFlUdwggDhYLH;xK>5gG(MQLbO!*?n1YiN zM&<(@ijh>$v$Iv6=3%jg)8h}5xBw{cKL+)jA}S>4=P{ZC0j}fSb>zk5Ip$3jd8qXWo*Hoxo@nm`Zf3xW+&rOHH+)YTg}wq>&{bu zh5)*EAM-RF=ULt9ri*L+D$lHd4xgD{sawq@HE6)94#P>`@Zjcqt1fNN^VL^HSC6Y}ba zkS!h(d>q!Iu~ExLAfmF1*Xp2ymaBn!%Zev;dNG zJva^#61*GFI(k1*h%U-VMylXs&|J*1=rD@yUEt$_bAh3;0 zcCc@YyCP)3BH(s_v#>1fES;k!XDZf!k=Ep=sQKxiQ$4Q61TcJUIt*W51?Kq;cyIrQ z$KnFT=3Q2j5rgTU=WhP((&+yrZ}cC#%IgTgC0NqtykixV95r09(#b(@Eb>cZydC^B zwWiQ3f+P{_3BZzSYKocR4aP$yHDxZ|1PGx4p#KUV3W)mYql%nv2Q^y!R7s&bom5aC zciLWKe0#*(48NN|;Vp<26j($X=y5MwWnZaZaFP&Cm1v3m`1x4Q`7N>LKawW$1!h);AyQQ`TSLJV=(0_aNXMYqTJdTLB@jo zKbMAS$ql}(!_df~L(vt+nig5#qiiVj9r3{!vvu~hE!Gc%uRxO@>T=*!xPpR_Q)f=U zM#UkopS~>^t#08Xczf<@r&FZdBCoB1okqN2!pj$`#XN|n_3W@s*ex=(Z6=`W`T4Y< zY2i(3o`?J{WPeOm9v%M;jni4MGNYnIzi%PVqXH0ZZID#S{Ni&EPHeqtX08gYb9Dw* zN4rf@*-m4KuduBHfAkD2_-OOFU?7`6j%t!yIR54X#l0PoSV+xEUSf=L2O9J@Ae#M3 z7Gq~Mb%8g2zG#(SREq|1b#4A7>so=1(L}0gwt=vLMWAYXq+djlbA6755oVkCR%Dwu zLED4dZelPq;OpqS$aqrgzVV&?aSGe-W7dB>2d8*{8@#Z0g*S#@w#2Uu(aw-6@`b^P z##y>$*3h>F1I`Z(r@hVKyp0%%3m8G@JY;_Tx}jn>r!i73yr9wVdpcU^JNYl)ffCt? z)hAG8z9nUR7%xqxG8zfNT}osTr~H+4GvdyNO&ocElZzcrONK>2{73h#^e1LI#RnOK zw(y0Qnh{FFEZjU0z2MqX<{F1eFJXz&-D49Dts3L~LGB;b#*s(hCa9aF1unRSHoC4M z&tt{g%1SsmqvRwQB>8|L`QRY7IH03u^pv1c$G2gX-{h3&vjU zYw<azgbyR%NQCM+G(na07Q71?fineF?O zp=c81sl242hR~(?=5xM+_n@0Juvw#r6COK*<{b(HZRKx3deKN*>)gd5yOu95xRZKN zEXz@vuCjB64IkH3Yu6gBz%c%y{neN}0=vJuSLqH#-9tQkgL{eLkJHwWcI{(`tSq~S z40YTxk|ezI!0zfK;RF*MIEXeYO!Rv!UQdC(N&ALF-OBKLA`Pxgqk^w*YlLC6Yt`kK zM=O`<3FjP9}|wD=n!T>#{;M2iuTi%1^Hi-_(06m8XAB zBwTMV$j*SslgwqO$xj+;$H1r`jCE~4H_D!x3Rg|GLCxWYu~JjdxwUo^1L}sAgHdE& zV?e!Kke- zh2Q6Bzmub2I)gBK3nd)icjj%LpWTF1r0cHMr$B>~b@hTj2cx&iFAHcn&}(wB_C{HT z@6tdP{jluf2*Lb$rXPbj?T8yg!7c~R#NT4~rYhGNLXjF`tUf1Y5d9pq4PbOalHaU; zZ#OM@u)x_m>pJBwyfbq`-w}teXq%<2MP!bx_$qHMDCkU&&eMVx26odoiMDEvP+V=! zi5aHm@s3xn6$+ZRlK7>&|7B>xMaK3!7{ie5%Mk_9gmr_G>~sb7TrFF=lSRAi%$-Z1 zzYbR(MPluag{Oj`up6clSu5e>Iq@}kdrmg%#ENcIKNN={b;kSTMWT9-2TvvUSU%}_ z)NA936};n`2s_;o3-b&nrqt zk5eEeBB`UO_a<>_Sv=vl9p_fQmeK%_UFZ`Y`3i}(qBFa>x(0-(F$7~i{6#$oWC4-^ znS*(@7}7)*epP?51+VOo=!t9&r8jZ>gs~HuHeX=My=f835%Mu2?j$_dTIiy*4#sVa ze_1vtG;}lsXC*OGGYRfC-MK1puBBGnl~w68IFV&?dmzC$Oi6%=f+qGIt0tU;ymT@_e8P>Z~^ffZ+-TnyYq397@741h;_d{jj|w8sBm1D?9S}C z=$VXdHB`M`x&5fz*yyfle_=8TOU#MJ)i8|5WgNStD-@eA_Yl&~7hlxQ8R|Z948SYR zY(;D!wLn>>i$2fDI2i@HGclQ#!@>>_EW$xtmv5?0orV2P(Uy&h(`5!vP_Te>zXkY+ zGBt=$(&J)mq&*N$)OlQmeu02~*qzDlnP#ryYBaL!$fhnzmYhFSZ4V%~?kKxRb^{S# z$&oXlR9hIT+u|Txvwer)EJ3S?HZ%bIs?bYh8XpLx^aOuNSO~#pG>rK*nBP#Y|3R%j zB{_bBW5w##mzcLGZ`V!}_9z$;d}nuRj3-tzPogdi-$KT+G+K8Ps2a1)Q4u^5Jj$Vs zp%{8gP4W`|X4EG8U#DMw{M`vKrAQcA#d<;fXccC+zPfU4`vJKj>{iUCKnJ+=pEMu* z=~(|CJLrAdR=Q@N64rY!h1)%TGWAfMvppiU0TSHwo7ZTLDyAe$PAOPDXq;Zw`w~N_ z$y|JM>IXbjaUBQP{>iG^yR$Ce*vr~;!3__Kr14>usymUQgH<%yY%YdB>T$W7lB_Vg zeC4Qd)Z2P>dXOfM29tyKyh1qJ^ zPxd*+a^STJjeHlG4O?Q@0aM$Wr)_e+OUM)A-odk4()w75LL}^O5$8294bkWE z0&=)#sDz2|6tCMh)=K`s%qcn)`ZT(q=l#C()M+(Ip>a`CVKe5-Raqh=B`Iaco~eLg zW%PnCy_-NkN@q|bi#}V`HuIfYJgEx)@rSB5m&bJy(L?WrWLf`dkX5b_2Mk2L@S2E2 zLpfR!OkvSvn;9d=I;KL1928?`#d7?v$S)ehKnkpIKXN4?VLHpDj%hNkWsKzjE>Rxo zE78;4zN$hnwzUF-b(A3!{A&;;2mK!!f~)PX@?*v{vo-Vu*XHM1N=m(G?S$5Zn$jBA zCDTsM`)2xF(LddACA|x1Q!lbI$31R&H?GpdKl{yS(%~i=I~+XPWr!^1UxQFmS<)mA!kMLIo=AyE0LbqZ77 zvS}oCOU|;FuT=uK{(x`sP~Aq8XZ1){f7?yF)vz!7JgvJ7W1az@Crc#uD%}O&MR;V; zD?7;re9cRZaasB~`?7*>e~fTu%XZ21@!<>Sj*p9{>q?B7>#53CG?J1dp;CSD%QC^4 zEo8G6&q6QvL(TmR(|c?MjzqN-_NcF2KTm7QWk?qjR^|L`oSN`E738TTvGd&Hgn6pn zJdn}3vbc1{l2-{PlEZDavU_w|%XMb$cw}zYCFueQlRl|Qr!jxwvS#oV#?gH`_Q=ax zVGEl`jrGm50?S-iKBxHOghmA^IV(}JhCS%Y^3_Kg5BFPyT!14K7#ZBz5|C`aUnaPF`0M=saW zNszbg)SG09xn8$uT1*N@-P}0O61DpMKwZxQBA3&5)_E-x_e3cHzeIT zzYis3Zt{9X)2GB4E!IL zXgjad(2Lc(#J&n^&_wH**`;-;p|NL*o+TtgAl>K9&^JiyFK8KC)m7PyCf}2xKT~aq z-+f7(S>?=u^0_@pA_O7hm$~=2hTXfi60xDf4;%%VuN51sEs~qUHJ^O4_ca(iT?K{P zG8&4)u1|>f4wZz!BE8;%>96~pjDRPpyE0EK%C;-xJjPxtW!v*X76{ITKoBOIv@KerAZ0vlH|D*)y&|yFzlf$LkmHGcN${2sEZQm{ehT&|C2$_Ny%jK zJ1dmdknH6|(_Io7E0z(QPqT~je8|S zmO4VyYrD!5`>9etFYMdG={g_S>Rk**;Rnqj(zR)Pj~6V$^cs#jw#cl@lZ2}oKW-vx z3Xnftv$T}Ql!!U|8dikV+*C{O%ae#B=bx*j$f6?4U?YDT8f}T>8Xg}04Ip-b`cRGJ z+6|NOhhGUcxCh(w%U2#3zLvB^7?3}V!Ts1!%@d48imgWEa$rN`vd)u`-XoNi4~+0<}V((gW`uP_Hw^rUFFmiy%Y23R&?%TW^^L*$dqcQJq9WhU&d z4gkctN?coOxHIQtvJIxbX|>k0$Z6ugZZAinZMKDqpu15vdKX9TwqU2Q4PAZ1YKXqR zUTwCVLyP%Sb;TK->Af`C_st}F)&&*=M{Xp_X4*W z0N4edDtnjhzj1$UY%Lz~furn)K3|c&87sH$MBP|T>Ut$|YC#q)v&X9m-C)h8@j$P_ z{4@p7)1Zp?_X<^`&YS|J_Y|vOs-{eK?A7;)<=A;kqaPmzh8$ut)HQ&5afOh&Q){d+ z*VR=$!i|NkiykAa6|+mqBwAK^re8sbwJ0=kJcGEdhvJ}$@gWg5cUrzt=Nkdq#xBL$ z#<`q>QG+5_jOOh*}_?OqT_jED&jX>BdBHrzt)Zg3BSMH7cnnOV{i+bNNAN|`3*oY z=~y3I7`LJ}?u$=p4arZ&C>{9#Aw<+@6X-c$D#=$bPEKYuz7@JrBry_24Ed_R-0z^j zMFiXa5$8Y{)=p+8wS|FPoy8xkZV;9qtZf1}s*zaiB0&w5S&eSYA>&-vP% z=!^*Ds2WI;cAKdeXnHaS-vuQQIuZpE3ibmWZHY(&#e~4!E=Zew8G-ITiC{G>qej6fwc+6Z%(*Vhh6FOAoSVZON-aP(fW69x07;vGhFdg0)c+?lUxa zuGObwMgj7x7G0OR?AqI~!u7*T5Zu>0=kD|2%WU34?%>qri(`}`+Rd{;3+>IBcTGzD z^bQn+AnK!Iaa$9Cu9PUg_3h~NnkLWf+qsK+ITobzP)HMfpW%R`whH3_JcO3=RelI1 zDW^z=s~pR*nB3BE^*OjQ+YE7_%oDfP7%75kQB!~Ft&0$<%Cq^w?c zf9f9|iwif_61zsyR(ej4rf~$elHN2`gyW^+c99(uGjfr| z$fIFYUHZ+h4+vfvc7%+~f8IV%PGH3`qP>fF0iPKgXArXOsO&l*PHb3Z=F;%xL7dbuH_Cd6GT{Ia2}$9WoZtRolM5TFkg$4BTf3e@8DN+!UxgdcBg(HIAF!`PF&p^* zA1^TK|C|brMR)7{8$e0&z8n^p zSL5}%_UH5BedcpGx<3}9Xs{3GzA*iqYtqHC9in!huq+|6jhA8J$~dquN)cYg(Jlr( z>1Yj46sdAFa9+iYsr!VGM+tN+ey-Pz0BgQl|welwuE%u$Km&6n3cQ)WNPZJhEmFVS}Bfi$FD zvEyf@F3XFO5l9qV_kkB4Y3%>U-dl#n)otmbg%ezYySuwvkb(fg-Q5d!Ptd|C2n0xQ zch}(V?hxDw4uK@6zLwp+_x<*{=RCdpcHi@yAN2!jtyy!;HKvR)-toSwNW4ecBb3EIR~H_Z1an8tVr9LfXAuw_>0c zUk4P`DwMHpzH}#EQ`n(Pyy!^`TjK&p^rnP~sEyuZ$Tx!hq3m76Mok%>WowGfsFva$ zPpKDz%f&27Er~Fz@hx75+WU5>g( zxs%hRp9|43{*raC!3W^NOI@KM;5T4nquDu_)PJF*b9B!?KR;8mIj%7AgTj10*Abo^ zP`n#$-WMxfCcEw`Eumx`RmmYWS(`{L0;YDJi5Z4wnz&0lcF)!$h+~%S)7i|1-0Ve? zSKK;bohAHv_gZ*X(j0hZv@hwNZmvV4$UY@7bI~)|Siz8U9Z9_)gb>r-utG>*=qq}F zbj?D3yhy1!Nh?|USf2&ucLArhlqsTekc0U?Vv~T2s8xa8l7x9{i|zq}W~oj$TilnX zjeH@p=Xtj}A@ZYvmaF}$PZfs8OBXdg=#33C;zY3xQ^Ga9;k{9*hno$1GrYFPjjw0w zU3Ub*iGgVfmN5rJbTSNB|CV({nP|S2+nIF8QCk*Hn2910u^|RZxq5R^ORF_(3Ogs`9Lnw4)6Tt#Yt&Mbb-Z2!fS0S0_zjZVb9KU%66%c$-w5#I z>)*I>i^;=dNm3?AGwZw36_brC`w#qZ4k2fWhOp!FdnTZ5yoPKvs!S^k@hP%F2%B_j zu0DL3J-b7flMPcErb#zN8)6TQhYbU9`wnP+nX6;gT=kMyHY+hW0aZ@qN1F$MI|Wad z;3>>m_$w?I8mz^0cg|UqTJXIEP*Sc^VLrxf2so)D1|DD6wHogU1o6$BIg5{ojSev~ zBQrlDbX$!%t#T8Rw;cYlABgweP2nH6A+taqdywDbEe{T0n87{^)^(&PZ<(>l+OA8m z{?}O3yr&TUM%9vAiH_q>{?hZ)7-#l-SwY^j_Jx>>+v#%9LPnC$ghvdv??ndsXDab!wz&lI(<`t!4AU^S&Si} z(NejW%Z^Oo{nRPuNyDiyIo;iSSTVecwUaSAY8Oc8YBEjfWxQU+<1Nz3L0xOj^dUQg}EoLnkKy^v<1n2dC+AHN{)TKfz9zUr}qd;T*xWlhx z`?v%zKfs4x*rysSH{#z5{X`nLEML_%qM#Gs;+r+gNUf9NjVhw5xuDbJL1Y0xRMKH+ z0A*57B$_M4hxsst#7FyKI7EO90FO!FE@8!!@t|R~g*Ya553!M|FDrJR9Y=br(I@gr z6m|+xC!;O>fa)(#CNiIzuU_=y&d>1Cao1K>WI%P|k3$(WlNHsew2auL!x|4|>#Qk! z9%m^R9t7lEbG-9llXdymQ&{Qdm%*vKtSxULBczGq5YlSsQhgMg^7#2}Q@ygB(tCU; zw`aL)O2;ALI~a5K9>Q(ti@hhHS?-(eaB?V%J&p8G5@C{N{mMC-bu9%r3>{?7B4+Bz z&!264CUXGQr7BuHk40z$ZUs#-Fe_!0v37RY%d1vw&Ghfp2tF!Eg(+DOb-z<3BKk20 z>2&H3$xqhD$gP{x-@M0i*~LuFVj2wjaM>q5hd64 z9&-g&$g2@;jczen(h4Et{!ED|R=$1fxqVz;OC$g{gh6oF6nPRuJe7A^u;s#yoad@^ z+J&v5-8+UQwsPFq%1iSdhM=qvYd41)c<;6x%wA=OEJQyUwlwfV^O~-tE$)Kwj5+t~ zA_79>M(@vUUz%|BooAfwXIwofrD9hLe%b@db=J8dCwjcftRxbdkC;&5=ya?8d^tnB zheDP3;F1FUCiNf%xdkcwI)U?!3Rg~t#$I6L2>amdDZVp33v-fP|3{8z1h#YG8JD z=fKZ?g(b!{MQ5v|{K20ejn*x3kl}4e=dat3RB5_CjJZH(fi{$>2o$kO6X~AR5DvzY zgi`NX@V4qtLrsfal~{M9n{KWsM&>?>%0*xt9CX(k!b3#&NrH0lRX3~f+&h1Csm+10 zDIz;!&!OcDXMCYhKv;E%s-%JQrfMgV7*)Uy5`q%Rl_P*${S9tVoM z^P=GMbH4_0xYfQF3ZB16iv4%-Wc5E-3IKTLW`5X6k*HuhW??Ww}Q~{&^p9-b(u0uitGq(v_tt>W_jfVpE&4a z`^#~@!D31{z#K2Xo7P1-$RZ290PXGzW?^2EwQLfGR<~)O6cN((7o_R`qkv@pOF$D} zFDUCM4SC~T4fMFKe{)5WKQ`bTU)Q3_`!5O3n_x0S6DhG0u;I^;^qYw<^iIoA(C9-< z!5zzG<|@9tEPr}w-^!6H#%CTQgRP-BwF{>W!Vy<|t=`csE;~WuG)-6sqK13UPpTHQV-gW}PG`E(>f3>vw%DFbD?hN>9&==6k2oD{TQMq1sMx4}EP zWAe@i&We*8lM?;YC;D0G_ugD4BV6e}@daNgX#hMK$49k@YF=5n85HB$6~w(x)+dww zyei67qU7u8#Mkfb)ig%(CdYzC9?i9Z6;Uy4*n}2-WbdHf`DA#aVIlF^!quwUa6_zO zrmt*8zYkjrUY6F$Ll;;t!bvBS5;}57xgcblZl2YkR6BAkPM$W(*pRIvCJi)ik?VJS zi{l6}vfd;yg)i|!ld+(L!cj8Uki?qA;CffzG`ZPdE8`EgcG|>65qUg|q9BX8ws4X^ zRqV5AfuWy_-huqFqT^M~`1Gc>4~;2r=$lkI*>?&CXamAqAu4(x{<}&;$SuFS&YXqu zs*=w*vNWShhSW>aK-7Gyz_yele9z}{!(&BjMv~FI4xk;e`j4uc*P5a9 zGEVR%lj})9+Yx;+y-{6T`n{86L;bDJ!gZ|o+zNx=hS}1MraBexHNuaC@Kj`l$cDl! z=O_9{L{#~6qQVH;;>q1I20Bu z`G#}+32ta&>`W~h({ZF|WSPH(NU%or(S(D;q!2^cHwLXD-Wcm8g^=$nyoQ@ehxOOV>D^=N8)+8P@HbWkQl}n;(h~QSAiC}dIpmyBcv#V zOvm?~s%a zgyuH~GS4!`vU85nt=JCb!lZy6h>G?tlSv@Sz&jhN0=x7aiiEfGHjQbzj*C78(FE?j zhWm87L*pQrggy9>!zMcuxwa1rnFiT(=eJ*1`E#i8y(uge_M;Q!Gt@qL(Orjd2RxyG z+G{$%<{$E!)wLJ9iWp}&*mn%_oo9wTtLRpHyPXvRN+TYOW0S`cK~jUV;tmo?h9eS5 zl{;h@7x$OC&!TT)vqfobz9dV=z=qF>np&sx$IdJ2v-yS7_=MitJoDzV7Fa^8qpB7) z-#hog3`+H3U|^sVG!9KToXG635ZzAL8$1x0ShR-H$Tg_%69Le`(P=Q>Riw{%Q?lL_ ze#vJOorIE|YbPxqgJe*Ya4@;TCVthpK-MqzcIl$wYA9X7+Unlc+}<`(j}coM3p*{% z9Wg(Y_S@By`ia=I=^)4fRW#|~!%K+(Q=PY#>4otvBOFTPH#?Y5h|qVw^hYRzsT|^R zBe*nhBbuTDd697_)Lqq|K-HZh>rWB2!p7lVLEZx#yuFnUx|~>T;~4YL*4giz=w#?i z$wpFZ(tWSvEg%3c2&wp1$Qsg2D*W;#1uRe~&tEe2SyQ{tAZFKgwCgrmbGq+eUC5E(iuZ66| zUwoXBd)}jDflQgtL#63PfB+c@Tmjg`-~wL( z>2kYLl)n9R-Z}ACiq3DDV>OM-i~fuw=j@%!jIq_#I*C-tf2++j!kY}`gG@l*S|;PN z`j9f#+{T^{FKwl+O)aOh|D2CR4iV5#8n2k~emmo$#`}h=!+PV6gL6B9V}hgRv+@dI zeujSEfnlW|>5JN?Y`*@Z{~6EEve^S3p7%djPz<=AK6^e`2F?yGmYqBto3}zPXZr$- z@QX|1M*uZ)JMAkfZAs{_dpzOHr%m8`3}I`9p5 z);7iYaTw29KsM`ECm>9-PYTEs=beT1(I){|0SFRNCwW(}@ z@$su7lgV@?G(SWBI#iIpt`!V$+~MY2uxGUx{$|iYo-Pobj(0P%_>p;(gavMo_KLP% zw54S@F%1RPNwh@pn*x%M;6ZD_q@I|H@!*LGnmxglk-oC){c}+!k$J+n9`-Us-V|es zl@yc5c1Ur~qr$CdS5vjRw?kOTt;*z<)@Sy?=Hf@Io=ZtkGF&WFfRkt1oB}5Lv zfr#$NiHNart#oD7SyUp>pLVex$~tSiDw%ePLqL@uujTU*{A5a?F5sjwMH@50H`ki! zQ0z|3c*n-y_qM4;sm1ZvHRK2vvoidhwR4J)FA9ZYr2Ue5o6o5qxC#th#n+o{iJm`|fr!sjXu<_x(d$!KNZ!D}V?7!a1 zFh-1XCt*#(PW}z>z?))LumCgC#>5FQNS|+p`+NF&&_vg=N87=sbaUrs)mdI8wb-06 zw?bwNM~|vq%k8<3wXu89HySv(WdrMQ4@R{Mm^bDcfZd> zIF%_ely`BP{td9xH;SryW#>%wfo(kGlD5_q44aZ=<~j&%b}3gy@pO8tCE{{`7&3m} zG`IHVhr0~PXoT2QC&n}hJg6X`+Y{=FomI%rY6p(-oA2s>R%ncvb{Ig`IxPC9Sq zdL7q-gXog}V3lq+=_-3ZuhV!ZMk2YCZUQWf;g1(&@X`82m}07K1PZ#)trnYKMAz+A z9HJ-#@<&&Xl_7^7jPC-O;5?vjy`fAD2iZ+y!|vEDPw2q z118WuLTx{~Q35tQhwtOI;Z@xt8_V zvuf+4xn^|=jpx{FTIPUCgQlSQ?XpG~R|gs=QWvMJhW!Zoh(7Z(zegK=3a{U~H}0D^ z4uw(8+}|kzgbaUd3y^1&xSh#Bsx4CHZcjUL*hJptZ0ecSwa>pzqQ>{YU02>$tOcip z^h8W65K=cdiN#sb-WnXyW_tcAMa=a{tNY^c=&bz;fX=Hxi^i!U5yg)wM8*@Nqf{z7 zA~rcBmu%#2B;4_C%*g@o^U4SW%?VoI@EhP7VqPY=F2^k>IAFt22;MuZoVSTTPgHjD z`RW+414BLJY8zqHet)48g*fb#pIiX44X@D%DCSNmUlq@&H~|5LJ`~5RGIJd`CgQ$M zcx@53Oww(Vnj=}(wm^MRF{4Po$aY?Ru^qOv!hWZ_mk5t8*m&(Ulfy?uS5x^Acr!D?)H?C^rdm-UM?1yhgVEm0wVtJAzjvTL(O z(fnCaNQhN#|EXbxd% zZ!8g^A&EB{uHjA8jvi&2wLIg0_Qv~Rv;r40`UY#5%ID#g)b&b`IY5pf2^xNhb$bS% zj>O9~jXv_EdcQp%=QvZXihDdQZ;avM%#42n2e24S1|5s-@TGj)VT16 za2_BL7^3vvrnd&Y5fLc3c4Q~Ja`FR(BTdI8Uq}LP?SwdCt&%;zE7^kane`o_fd#;l zd2(1<1mw+kIL|f0j!iYHBnzuk-)A^t0&U z&SWt?AVpurr0xuIz5dHk!tE&>gTdB*ZF>@0wFk zgVYHKy!&2k?1JUvJnI`y*ALtq2cy(=1VGCHFeZvW>r48vasK@u|L+zx`g1quf1ddJ zlV|uda$iqKuW#uF{{!V zqyc}4@nVa~_Io=FWvg>H_S`z@jn3$7t1}x*w(&N`I{1fo$$Xr=`oB zDqOH^9{iJ`q1yU$cS2Bl4~5M1sRroJ)17}ZQvZ{oeY(GY<;=!sWOjLB(ONUlp0)xX zMI%Kvq6wxSuSqmRru})rB}vS$KDE={J}`e#RQrtASsQI(1!jV>nHvXiXC=|pneGR@ zwGjG(wt=M8ewDiFSybst*PvX?H-@|{XOk-G&`}G&!|8|S_A-qmmS?hYysF%kZPunx zb=RrQL@}j{THvjt5@Tb#r*)$zUAvOLuBDia3^?+Hs*%$ubpT0Mq;Cv! zxSX2t3ZnJHw1})jLQsBfY5z`dlTYetgjcS1qP1&6UGW>H*LBp^p}FS6&)V|qhaiiF zDmj2K8UO6F$rbuW;rTvPBTr9P!Mxc6d3JaSW;rb`8p(7JdG~uaQsdvCef|z}tBtLK zaWP)#q}n|1nvpgY-s&rJGzvRfcFjH9Fm9gZJ@V~2eMj}S<#4Tq^9B(OZ;-+VJ&iq* zc-;?%Fc-4CpHTVj@d3M(6mMte_2Ubu1kkpzKPw`Yq4x<6PZe@5*i(T7hmlTYKib2D zZetISAbkA8?qBQ>^V`&p*qXTG>m4~FGLoH%IRs4u+6B0Op52Y+Fjt(rRh+xOL6OwuEAU(m(s-p!Gsjth5sTmJkkfx6;b2S?T+sQCurW6BIRaE$AW zXF|+UUFB_au{~-@H#@vrH;Dx8@%}K^$@?su=1O$IBMf%-fuG%^mNv6V!cn>$@S%@8 zaWZP|l8$Qg)l14v$w%eDeI^myG>e}Lt1AmD{*mp>?aUuHfe?k6xeBnpoM-Thk_%xDRV__CQHZohHJn`NK zGHxKlRx+??S-@>dQTlHdWq$OgfBO$CF@CFQO9JxB4D!|@01N{k)dvR#AC^=wtF8C>Cuu{11I?RA`yw6p_StdT7!+LG7+Bd+5#ws&p;o5&X2v@C$w;`07Nw zS)-+^`k(a7*`b`tqL#k_-Jhy|iODaXcvCEVgX*6n%=`u%fR~o6IdtO4JrVm{2)?AyM8}%K&{Y!QX&1?%-`@Xn81k{;8)(?0->D|2M|?k2hs; zRPW=Yd=buC(?R2J(B4q{wtS2V2Ol&JvpTwq9wvhp-pQ)jnw+kYQ$;LVIh1>*PhL*m zY=Qn_$a>sP4t}Lg@f{yN2=DgQh7mcgwiloM``0jWJLvWtn7U)Z0xVeHv%uVo619us~t^y3V#P3|{DuL_zWCBDza5h?lh$p_6%xt#) zKTM1Q_NdCZnkKn`d>DRllx4F0bk;1A=7{PQ{T?N2A#pY{I4`+sACbp3O`|7O7cFy4Pu|2`Oy zOrZo99@ULb58VK*STbmmkc_}9Nu(I>+c}&%Ps`HSHs^%wziCyYPnpd?3255|tIy-j zv+W?q-rz zESZh2S9;191SlmA750lRHtTdY$|q5bS;-|L_JN&tJFU>inJz#}^<9zP-bj&!zNW&# zpV)_P@aS*Mv`o7bN&9cOh9ubiwX^y7kE;$U3$$02FETysGQB#1%F8&Hn|T{qN(`a` z8IuNCFP*mf?VRydvrnX5pZ5%o?uoM-$41IKhmE?t9w^5cxd?mcEV|)K3CaBD(&DPZ z)8fi)J<^3|S5_QmrUYXwGhLYUxPj z4PMBg^XIW-kU#FJCS=!Yy`_9`tTmxf*|WfbGZ1nzF+y@UM34b+ z?Q14euZ>#|^v#x!SX25nm0;M~nrtL%o~)NX`SUmt(T?(ZWL+9-xEu^X6fE&p88auF zt6Sc4bfybeo8veq-h}aYQ_GJz-p`o1_L}^FCr|S{M227@mr*SDSw>n1$h#J2Y!HpB zAAg%y{qaq7Y@rm&P}awLoEA7cV?RwVBjmF-@(26L?}M|T{nyZRv26*%T?P3e%X$t} zuT&?dpDV4Np#;bkYYv4CTNW&Q1tCFlrJWnJ9V`$@sHHM~ShhBlcU(hBn`?|<%>6_=AwmB=-tWmOvECAqSfKzS+ zp{1Lo5Mqe1L#)4nPN1Tu8nyK3_4$~u48~YDtNbViqMPJS2-UQ5XdU=i1mTm5&r9tG zsCIppsc8mLEG*2r3bgeRQS7`i50{)-{Or%;tnb_z9;PV#w<-a|U&DBny@DG}R{BKy z0h7b8Oa)=$g#c)#(})XIDRx#o>peJ7!9P;xlP~xR&A#@kdCpGxP0Ig|^4q`TSXfiU zm^F7TojYD$5O2;@6uX7F(9yc`N+RwdcGHFg@~o!vDu0QHZUEV+&ucF@vhCs69jYfI zALQ6X69baC%g1BR_cJmTZsH1ckV5rs8~N(Atu~|wPx|D#fQ3!AX!q8HPF3XJ%)~8x zGi(&@BcJ$7-~)=@FOB1>IuZJeK0iwy0B-HVDdW@N4RhcdNYN+mV>uMvr6|p zUE-Bj;^2~3VpzYAW42@WShn)|xx1E+FR{reZt-~SKw!l}2&7~25S0OTroU+kb-wZU z75pgU?cjM(FdIdeNVFrOrxk{SxTqDFFUI0vWS1w*=2;Zg3P0jvQ+$%v%nd9zG=`?D z57KOOT9{Z}$ldS=_K67J@ysS~PMK@p`(xV^o2;GlWvc+I@DHZmLD*KTOsQaYOp@eL z6Z=X1wFE}b+VNLo>&~1Cupd>Sj-s(I^(U3goqc^ducUnW#G0v>1`!`Idx7c6msQe> zPwu?LIT_xL(>-{1J=*ai&6zfF!-ARIp;8o={6es$XG`WA6>~>^k^QJ6XANnbJa1^z z2=^c=Xs)8eRo(G&nvf||_tn~nLtgyi9QfG|u8Ik<@Wy^DI}X+`p@1bieRGi1w`H`u zNfrOawnmG5kGYF?vsLVDd=9TDlTm%D)lEn6<|fw^BeXLVnai1ohS}mJi_XoC9e9-b z>iJX33<{r~4VQRSXxf_EZe$`bM(Lx@nPFYQoYF|5nw?(L8TJh`WG?;BjF%qIo+*L^ z)0nBdm-thvg>T5f+fU9mvbl6yQS@_}{;7>kjUUnk4?Ga+vbw~---|t!J2tbB>Ojg) z4ldOA3LE!3uI16v1?pwlT2!d1sZiN_a}7V3lh#hrE*PF>m6U}fkAVg|?{^C^S^>-}|RD>O_UT$C``rQwx1UdkZ>=*{ z8Zy|m1-w!Mdo#jXkRCsohxui_t9Za^Xr5D_sBFr{Px+aPusafTUo{>yt<;W%O7M0M zA~+~N_BhXfebPXTjo_6sxPSZmhne+i287x(%f*)5p;907_ev6;wc;)GwZ%~fbR-&Zz1JdWW` zrqwpgCYBPXnfn8{RrgKUAsb1z%4-@~vmMGm%ee>B(z#@)(_(g{2xDZ4D63Y8rCQts z@(!t+AmUp7)hb2y-d+kT^L!$K%o4)KF;rA;*jp)QF+habjo7bpLes3cco_;I_s@~`EU;05pZIoIp|u9r9g(7 zqIIpAgo0CnEBl$_dLx#k`?@!76(!k~IrWxcHLSyd_C zTmeG6VsgIh=JQ}5cdtd2lGnlc6RgG>!M-7}LH=RPCu(4I*R$%IH@y{Aa~HZTSLFGi zABL~I@t~3aD(g(07y*PlTWLm&Q37hYNlbg!LIeUP`a7i?l2Vox5i*W&&rg;5A|Ki< zQ&%TvXs_Z*xl3t4aG`TZ@Zeio9WsTIuimOOer_)A^;PbFCm;!59@!tAHvajW3pq&x zR5|nzNbNnT5pKx(vIl{VrJw;SEXZxm^=go3amqL*M6kPosr*t z1G(mKKT#V!$zd=Oc-J)7kwLi8qRIoHJ|w$I_C1bS<-N#iClb1D#Fa5#_*(0v+*_SN zWvQ?`DNtWyi1~#sp@t7DZYxPWpk!dtb3;c7N0}^n#L0ysgC+ws4(lAu<{I9dD3Cfr z4rws`w9oD4s>9H6B|cn5@4-ajVNQYG6V=4{iXDG7#* zw3u#OmzsGi>_DQM)4|POn=26I$`cBDQ2(#*uxo@C0PbD8krBb}%GY9xi%0PeylrGe zRC1~SZNviD3yfKYpSNFkwML&&GrZ|7LR7y@Kxur?*EGh>uI{Ekc)mJ|S?0~7VOBt8 zKR~W{cfRWi*iM;JJk@l`TR*r@yXE(kz%}kGY055MjZKS3$c_$-L>rIsVBPh7t$#imeukm_H<^8a(JUv%GJf@qqQfC|VdeO&N}Xw*(?3Y1|axp^FrbsBaZ zcex>j`Z=|{#t25OUypCJHr5Wh4@&z zuW?{DKJJ44DBRb#ctt(%Ivp$GCp46lJ7Qxq>6-PjJY_6Am->lW!;SC416}x9!`0OZ zzAh>3l9&g3E?H`d)LmnI@qH;@9vlBB`=<>w8?Go7H5GHBejA!pB0=M<944b&cV5l< z@4vE(Ig=Mxk&UEalKIeJP6S}G{H;IpKm}GLoVJ(q7uK{Orrp}ud2hU8=x!96L(i(ey8-LySMjEH`M!HvmK#4MCSdTDMw!%809$k#z1 zaOfN7ZS%Y`wE1v)DZANw;7<&p{qXPDWq8{NDKHW;@C!j-PcHcM_Tt*PefdXP{NjfD zPSE{%Z)2cZ*$T9NboS81(m!akLc-kH(B97!!&DUf+KI$2vA>Cttl|$#0E!hQ;s=wz zhbx}tZSio>Jv$%7p&RtCC)Z0TwMbUI{elh)hei(729+e&b0>QA^jWGse8#xC0Y%a| z?mMH6{ahxANDQ18*#b`^l?+jj=1xPa3BrW2{IDf4|IHBp;=Ns)M1H=8Y5Fns8&HU= zlc2L}6K?PbZY_P(UelS+n`d93S76(F|K^0yYEOQXTac29)Qi4|t zxitfCD3W)rHS@sV))F$fXe}!e!F2=6>9dW)&2+=}#hov=sdW~Kf*?Z@@sq@R9aV7m8$(hEfg6cA-e99ekcw%h7T#IFrq$mSw!vwL=jdK z=QS9QG;sD6ya%5^t$^)#!}rY$^BpCBT?62 zw!*p@B!pSMMO0m-zt~Cblg+nt0Tp-y11bD{<~0k$x~zTOU0OFEA;O){JWL}=D~}Fu z=Y}1iZJK3q#(AUN0g@8MLWdf~tx3l{q0@as+``?-2~9ogWi$jkr`@ObkU_*XYZf{u z?|BcKWA+d-@MYBr5dk56xkMKt#M#lEO?XZ_K(vz>I#awXn3m9K+$Hk)3j&_126W+j z6Y-r@BHCTnnNkKa0oR)#p`wE6`OF!-#?R=w4qPoc$okrG`Fg~BtgVEkNiSlZA{y$p zg#tJv!6+*vs7k0u`EAc=TyH8)FuCMPlX609hmR+biw-V51O)u^71`K(DkmC1y-v}z zgV>^Vez*y3d{!aiis#G)3^B$*MQiO!cooPO$h30#5hubROb}Pj?NiQxyV!?T z=%V3c!L!zXfPhN=E}%>hMesTQxl^p^7|m>lzn zSBZq+4^x77Lxmz3} z$nPWs@7@TrD|EWp;NJDV#4UQ)iP$L^nAy7wNBadp7$U(l!0fi?{c0#fcRZnY)>c2$ zo|s#%W-?Et1%n`jyKYdGDiw@}ghrTU2?a_Td(1r%4t}O&+f&T?*!N%!AF$X32{I+qPCSJFqlHEKTh=ij! z4PluQrMVVXJ5P>PY76!pI;*-nbMeu5)AoHOUFFF{RoZyv8t#il3NA)vGc6(wEljd1 z-;}z&SMtmq-+M#eBQMW!=fAVzX!Y$F7mQge|4|3suKG|Fd|T!BOc=m2{RDhboxeqy z9%qD`2%-xvoBa(q<8b;7$g5(>Y3|{WDT*A7X4xY@oTr%xuqcVTLq*Vaw!~k81wtdb zo+w^7t(svzqB=&rtyY!s`f)cbG;+sZn>|0W4F*jW7q42vn?6nQ_f}xKu9|r z4u2Jkc`T@$K728$9P#&AWv$tiH4P1#;pLwlJ1hshRjXq{DIlxr%lU#OPdpbBbJ+G( z`R&14K&h>5N8&)Goi|D)UPDteRxho#bo?M}nOcq3M=@7adaR~ zn|fH(T@DiytVns+W`9sAq*sZd{cTQq;evjCJM)?(%1nVympH)JG#WdM3fT}MhIrn! zFz3lwr44Dm;jE8cFr2<(jrM4>#6Pk~HfW)XLpigGrw7s^fKYZgr3eX+92nURn#<&p z7e}1E1zdTjJM5a>nc%#<4!7*k6LJw-FKyf%>?|hCzXuh?SLnR$HdR5m_Ytdi2mi2% zx$rDq9g*mJiPusDZXOn$vyjh$KMaxa#IGD4=Qu=5_#JBK>wfpAKrt~m{=StY*4qP` zRVp5VXiNH7zQctKj7$9EZ-*ItEbdc3i6hS~R-l}BlEUT*9Krf|WCfQUH;?_G%VN5VBqR&e z9R+D<+wgW#&!0AH6egF+!TY$syX3+WHPL44$TdG6r}1 z1V7Oym=4_8A-&M)P~0Ld{04j{r}zcTU*`N#kNK!rC2@oa1p#e~O1z}V*O=WwGvt4B zZ{Nwd#5d*^C?l|V^>083G)H)?Ox_c@@G-bo%k?)vGSK8V00s(g+shOS$1LZBW-iNi ze}(+``U?(9FF3;Mk4T|y_8ag@Yv?D;UGNK1=XBVc)T-qL*xuUH=Bm(Mp_b zo7kqZ zV$Kz9)Y0(dSA=;OBey8dBjqa*3B|`q97-1+<<$ahE>tjk9JB1bAU8*+P%H=A#|WUpkb_0$JZv| zEY=yeGhxn*DjGQ=ai?wo`%MU*oY3T1j-N)1cFRt~SEV!A!u|je_OyCh9MKt7s${`c z?y{ITFcB%fkPyT5>zurxD{~Wkhgdt8%4oL5$%`MG8%`a`MrN7Elo-}Gh`RaCEca!P_*zlk3(c|44VlD=dxndY6H?ls$bdPoceiq>j3xP>McZ|gx9WU zb&H0az*#i8rhpgSwEc*Hw6}uLIf3h-VX$d`&u!3WWhNqBGx91K*d)xtm8cLV(Z$Ix zvDg4)L)TQFx$xAtiDKxOx2^-_QrAa-Bo94ez*6^Pq?*@fN)bcUTUZSKY!a-Ah9}hD zR!vxklPYi=cPK}7YiJ&q2p`J!>VstcMFjRde_Q7)%J(afiIX&Kv zHm#60uWHi2{};!+M{9wSLCM>+S{5berb@1j$@4kinW!GPgrwm^>MAA!O*_JJ`#9YW z*)pF9A2#0Ni19|SKnjr6+K~uC_$G>6;u73-A<<^LueK1$98qz2n{B_V@cm~Cfttbk zn5*!GEwMY5&eMC>SGe<@0Z_nOQ@btx;{Ej53;GU8rPr&03$&(sUW5K1?W>fC>t^v@ z$vqdB$~WokgYGf$14cR;i_VS3Gq`K#}Jlg_=w;8np0b~2%Gx&Z3XPzwg_|_r6riwG$T^sXX8Pz7nLuLiXh$KQ*&A$6d zyW9n~v{qUQ54q<3{6N>{_|_fPl=&%$Y}5DzgKq1L$66oT{5vD@T3>>X(+#0p6NyQr z)RJx>1rr_^sl%97w(N#F-sG<=O=&V`K~(lEc0MW0s@^W12$k(0C)(N#qxv1MF49eP zfqo4L8Cd8ax#BGoK!TayAlf+@|;f2ns_X6%Kw(}1sJfaR2S ze3q4^^s&3y()T+P8Ob{&I|6;AXb~Gms7yDpNsQ{!DYe|(@`Xw_`|$SwliUf7_{) zH)>#$WoU|2Dtj#Y4d^?yDmI+JZtK!XG(;vWaD77q?@KLhbVCg#Zw%wM7jh|Ej@P_1 zAkx{SnfGKPz5oW4B0&1>C#UP^#+@2NHMc&FCc`{^PPAJ=VwRo4er&t$>G$&-XP#b@ zr!hd)&c2osv=cq*x0eJ2RQb@x*o)05qFOhL5%jHoy`M~XDs4M^R&IN%>E7%YLDS@_ z%V%Seqc}NyeRYL#zxT6hAt{dl9jgJ0M?^09<3`s^3xY*MjR|YK&k=9 z>h;dsCJrZfV)xJ{1#kl6pyHt)JSApl#8e@^lB*sYe8i2`g6FASB||*2GjEjhTUG2t z1mDEE@J{i7l*l2txFV=x>psVtW0Li1vf!*WSfNHLilZErx>t^s)rw2Fk4Bp2iLT1C{cGp(dtV6Ko zpulUIKwt++^@anBE7>xJ)81-Ig*9CUN*FRYjah1##@$OOPq8;y$%0|WDxWV)0LXjg ztE1gFCclPz(E<*-a!ng@`KS?T*1M*AyE<`U{ZP9r9GOr}n{#@`El<3nVx~)s2q|Wi zyE#Bo!!8@V&Z10;! zP`@_F)uV6$uV|2?GB?%9u4FKQJL158)H^Tg>&~{eqCZBK+Y~|XXbnwF<6@-LZeY-jbo|y?yBTnQg>9_gT7kf#=^$E9$tsm& zlW@|W8oUjK^U`FsT#YX_HI+1LKkyijQM0XsYU0#6iK3g=4T88~U5IFeh$@AIGp{{s z(KadP`NXIn70lDm5{Pc}5fv_|+}!dcco@4wfSb#=2asg*eIQhPZa_dk7=n@Q{#uo+ zOkr_np^Eg^87D%=(R+J2C|hgKBsz-N^e)~4dHA;pwZ?2=)I*~LZf7g9C_2>>o^w5* zTRZ7BR1$@xe653=d2SE)?HI4SHGM#T3z?cEp?E8Og9$2sTq}8G(ISJ;gpbKDIVX!> zoefhzJFB%LyZv>8!w>wlJhDUo>k?|dHc+O3J+b`YB{3-eRd#I&k>$~4&)Y1B+n_zv z1}&v#v>&{OQNWxgG1_I#b>Jobp-apC!`zEsv)oD*n@v;L6NDc4vf!r|hXuRymmOWV<6&sIbun+fDJSc~_TFpibaGNs7IZ#enRqEre$4!JCul zhrj=AuC%Hp18p;9pjyB%J{Dd4o`Os{8sOvcX|lp@5mSkCP8tEXcI|}zW6{OVt)4Gd z$fTs1xZ;;7_AcE%a?UT!K|Ym%kocIS#>Ah2w!mO|?tPr3MDW zRLPn^lDsr1b>7`q;=?`v0;ln`4^5_J1~o(lX-!P+EIF=DS9o;sBCSpgF_U_4q=QpS ztVJ}F5+(l!dv5_1_nM@QH#7u?K+xdO1b24}9)i0BhsIq)u;A{&A-KD{ySoR1I|R3U zeecZd%@z#v?9bjmnjd z0u_N!ZdIExi;Hrq$gxo;nz?YK?2^-}7GJBLxsyinaE2CI%m7jnm`zdct&xI%q}vyQ~AX`%=c|uIu%Cn$5<;j~JIcW*^OB+JsL$MYt`-@%HLC(ZF_2 zujLS+CITrC0Ny>+KwmW7t0o9FHD+RPCd9cd@3;i}TkU9r_KKB>(=#8iX15KB>wfP2 zp~OV3)ufHtWg%7nJblS_-4Dh-GM@yYZr*604&x3=zVG?&Q=F||-^Ls$&$P%I=Qe2h zyjjf(3&k_iewyen(;^1|=Tnu!v=-h=nb~NK)uWdbz^g%dlf%K~Nth27^I``}!jO;apl(e-tVmE5lN;eaa#4LnZD$S2!?qk# z8QSUq-Wc;t1Z(ogQrb(bdyExriX1DpRFGa}$2f37Q6>}D-6puyiMwqWV<;AuZjj81 z3JSQxO`dx0>xDSk*{khOyXUBql&KW4CubsYR{kukMtqGq^Am7cXa0cbg?RZP`l9v| z=YhM5rNKW4k^id(BmV)s^q-0D{DuZmT+};FNL9okb@k8`<)i^WJgL#bouEo&GLDvU zjH|+)7IXIIK`wxg6|sx!xd3;SKf&pEO>MC@rAw{xOMxK@eh2VdEa@ZpQ4(xWgRVBp zjZ-Ibfwj)7e0nKT<1$}xPJBH^Ux!JejVx>2!Px;$_x@jlJ)=6N5{)xSL{k@9*kUvv zYbB5o#%aEVMfBrgB|GmKKhWK)Jz2RCBoIJ;Q)l|-r31rJCz+4?Pz6I z$HyDfrpXqrko&KHEd>_2up7Zt+E##**ve4JdnV`zKxsC6=>x0ljOKdvV??6T8OFMt z10AQsQuilOZBblpUa0WS$dS+9P>4cYSjlNMl`&~Gb-ke(unf1R6^+S#JMdzS2~4Fs z;td^+mRaOxog~o<6M5_k+4)mP8Sm@WK}jb%4oOB2BT|&9w#=yjE`Ty;=}1aje%ftH zN34v6E8B2zG(+k;%Xu@2xTXZXtpItUL3xogu2Rh7#v0R=#l|xW9Vx;sPFD4?xyj`* za>On%6+B|jRsArycTD{+68Zhdt-aHMzDq+>b4zY|8SgRR8Pr|~QCLmAP`YR^3=0_8 zjBs)8JtkZ}acmMu<4D1$=p9LnVYOzF#PR|Z`z!p?q&lhI0Z#tRE5qYWmcA252K!La z__n`OtXYRac~l7|>`Ep9)Hs&3>O?Is*pS03aCz-px2GM9S_l4@4y7F?80@ump4ix^ z9KzH{#ZDswNQbNd&XaNS`CukJM>9VnBYDQzhS$`ta! zumtWg<_>~O0@PWSMCR1o5eLo4fLaJ9{8Gl##*QNFMIY7M%Aj?R;9L`t@))KPcuSXW zJ2i^Z9ET3Z?6_K`qoIPZiwo>2B4dKppHo=uwFm1RxG6ztU$cgG-n$SM-YT!I47-^+ zP=qBa1fB5JivLiiQn>k1+2x%zjSBcSrC8^uROgTPh=75wI$cIl=>eY;!Xc(M5a+w? zw}l}&&OfTg^^{xgC`{SCfXsBK_DaIT#`Z?!6me`?vaD<*JdX5p1oU_FU2kRyu37OW z_;xgXrqzD-nTz299=@tN;0rMoSfOvW**-pU8CrogbJvU-w`>xus~@z7J-B_2znUrw zBP&9+kmcdf*CH6OUPPE{KbXm6h-LBVqSgf--MT=U9#%d;U+(aya1vivj-uMwHAUP| z4}LSt)-tJrY?jS2&R`QURg>^#J5|-8^iTVJYLvKx`C~-W1BE{Uh$oo!5nR^!GC_pds9dZRaw&JfSQ7Ze&Rk-q-qXX5Pt8$G zJyHn7os)f7X-%txaUQ{e66z|9eKMp81K_5|ajy$GG3JJ^y1Wh4t$SeGjZo()h z2u&-?LHBKBN4Pk8Ydl;T2^V04!L4W|y`vTnoqhcFqT=8oUI|fdxF+Es$FGz9(y>88T1MQFk87#%b3Yl_59D?a(V`dIeu zBpb3L8oHn`0CT)HdDc=+02~O~9Z~ywPp+n36s<>7ypS+28Ip*#=z5NdE_s?)T z9eLX%u&@;&_MTFC$?jEgv9o(%*>4yZG9aATrP39<(h&uJT5_^uI=nWcfsQ-)eYqud z{@ftOLR0Kk@dmXYC5lDdo*OQ!Xm?LdP*mpq*=k#cjh&fP0`H)%2Jm}vQ6aHh z)NAdoo#la{sTOjMSda|i)3BzNS8<(Q4lJNR6*5oWX!yZfK;>OeM2Du@2tTdKjd^;_ zG5a9|aCL27l>nF?N7!+Xc2Fq<|1hJP6A&!X46okV z{xnwa=uCZ;q(hrfu}?%up+9hsJ7=|*+5xYP>a6=V3FDO$MUCXpHadDe4^I;_9Sf7P zEf@cOpLTXwqdOr*4xo)LK0^bqmqH9o@at)-|>Lv*jdN zb~g9JNb`ju{kjQje=d03*ic0w*RUjJlCs`Hs_MMOgmPR}Ri`wgfRa7!=)~01+Rby_ z=j5o2ZQ9C?eYQ6K$ePqMq@o9b&LL{bkk5Lh!VAFnC7`rYh|08#GY3e7JOT@U7T zEyv}Wp${G$KLKq(P72}WW2JGMXqw#8ygvVRziLPi%d*^x)ShU`$)bjMc`L<%JDppA zHP9J=*MUjBAe|eLJ~Xhjlv@(R_n>4bxx4%Eiq7-B1@EB)X3DUvqv?EPY*v2A8$zPiuzgtcsWG%D3?0O}>K* z`_}o}iLxtY`S8e%cU0trcCqWZs4f%ME)&bMmxEV;fVl%1YI4wtm>M!XNr1!eI* zb-1p@BV%eGZVXCE{*KOIH+27&(v91(tQ7y{>lpV|6of}qqxdqC=H$sTk_i0xFlvmT z@9LefjiR+eLwYxd68tqH*9jAcj-JeH7F;C;bo{j)Pmy#fnw6p-NTTm5V+;eq+3ICK8hJtjBE&;ykNZ~Ok+NW%cu$}XNRt+-u5!{LO}BN9W_r{uU}Ktrq} zMM;9^1o{O`RL>D&YMQrij-O95qfshOdBJgciWaRNvU z`70;$zzI@?UVa&vc921beTKN%<9fm?AUeD*kdC?XZKMJhqL6mO5*n`dcL0H7zd74Z z@+aYPI!*3jH?JDgiYDMtGpBHFT|kG#7GcZ_G+R=&Z>a=r_}n{%50!SSjs|N|rFiap z!dMBprVdCD?CFPR+G8Ta*!ua=`EZSQr62AJE)0#mI11u?=mW>R{NB9Qo(IZ`i{PSV zkk^#Jc%>i%d*fGy8u}7m@&D8-)*Iv|Jsg^@V zz8ul9VJ4M2ua_Xi@wz4cag8bRWO@$FhVf()`MbkrQ_<7IQ|&2>^h1l3oIAQ3KF)WO z?D(E<<}SXCIvCp6?Z_E!9~sMkQj-U`aWJbcEPgYB7Al+NYIicbXHASQb$8}q|0q|y zBIiLJFt>x7yqG>}joD+UGng1WV%6@(oR*)SIzwrE5?<=Ld712}TApO4GMG89vhjOrQ7YxoRR<~WUB|re1`8Cwye9}7?5W<>_o;Sxa{mT zPjxeBn`cOWe|qvFIo6W_eE7OAhF)^gYU5(f^=nh&kx`Dc!q9+xZ!luj=ZDgodag1j zJbI%i^z1mz8r8J-BI<8B-1mdiwVZ2V1Q**z!j=KN3WniY07F}tRHw4fr&Q~oAid>P znLZs%8&*yw^xddT=S-5KBYC(9Ozk6yG^>k!wpReMVi~}J^wL?!>B_#&G^e3gTO?K< zvG)@PyQe8G#(t##35d3yemcx}qD^n>BSyRwQ1p6r#SdM>iU|1eA^5{VP5T4Vve#a5 z$ZqMG%*1}y`B&*XxW+5^yPp7shM8|o^Sxo{a=>?A6_-PczL2d9`H`M+_aX56l&f-V zMbvplvPk`qkwx)nuEqds3S^Lv8d4OagOu)2$i*rZ_$Kx`;!O;){0Li_P((s*a_OfR zChOu1i8^TyIHJ1qbyoPW=Q-On;^f-QHWo_A-MSN0UFfnxPnN_{XvH5VKajMAV#A$)G?X0EV967ZiwkDiRDaVftTRE|zOZUH#%(f)Q zekPMRH`<+<=T|RSEGy*PaujY=GxVM7m^YluYimp_#GK^O zvY!KDS6VgGvy3ZJG<+erTn^iTWK3f@0k&UI?WHWYb{dM7Q&txa^FQgh z@TDj<%;;OW(PxEdNijN)95?2KYtF6kmgo^~sKEg+JZYy@xAMwOt#C$D86Kym-|w_O zb(b_*M;ek3>&;mooXc&omEwgfyAADqI;>p4r^M^*$1Ny#S6t-}$G3=o8z~>CP(Agw z9tR^QVSW<+V{?MZMNTx7)FQ#%XKNB0I=hfB4L>wMs0W;uRz36gv&RQ7l5{7#gvgsY z4vH|bqQ7J0f5F|Qhz}h0St~5)b-~)Yo@lfyHCILBm3nixIYk~_M>rWA9K=_YO(QhS zM4}gIo{(*9RmQet{S*$wO83bVD7$fSLB7tD!Z}tHxEPKx5RWP`mg1tqWc+B5`!FT1 zAiXA5O13)Y^{%0P(ut9d&*x2L!xvHd<<+{|YfPJTDQG8hcp>hxfNToW+?peYyv>uQ zgkx(^P2IGUnRQjuy+V z?Oj+*x$H>TG8pg^3Z7;?vk#gsY;1e_KfL|0{^4QID;(R?Fa8>>M(pVda?uF9oittG z{-F2AyMJiokG1i?axWMJWR))LE8v~%L{RnHcVFHVDcHzhW-eEW$w4oUv)wdpcd>m~ zqQ~gQM`rRxV;wdj40S8*w?w=G_eZN=?~5+>^?#k~+xYLq;3EYcO3ZFhddzJMC@b7z z0DjLf%JZnypN?~!H`4O7%M%vvg*n2kI{Nd?8TIOgBav;whw^RSdD~qMY^E(8(2@f+ z&So@6d?nI1U*hPiC#k3tH6n+(5g1Eyl^QB^8*(ctt}Ikm2EO;9FP#C|p%n4+rh7^a z3S6bcT5lH=6q7jxuu;S-zZxU~NL{ftrq2^5>c5j5At*{9M13JKah2=bYkr;WRX);_Rk=~AD2E3W<2S%i?OEUmrm<#E! zM2Yf&lm~Y2Pa8^_5hux+OjPJv5dhJb{9?2<*l*(k*rxx)_NJ1`gwkZ2GV``OICP*>Er^ivCIqlD3I&kc7xFLcJu;_08u_F>FO=V&#=8!}79(c@~*` zCIk&J1p>MHWM!;Q*y5ZC`G#%qrFYH6bHCif;!$2;$?IO!+sQ7`wVw@P`*qg^eFqD8 z7%rZeI0=SS2!?xpW(yHe^?JoS^e0x&n~zc8Dk5xt&BZU*NZZ=T8J5v^^XxW0_k@^^ z$)NIRj|{~+YSDbHmA$NYyaKqL3}OyF73jyproMK+HdGB`%~TD)Ek#B7^c zvD9Cvh|BVX>2s`{H1D5F-bkJixH#}Jt<5sknOJbOo`sp~44R;Vb zwIW!Axk|CbYe+j;WY$r^OP|3gJ&1$wU3yjVL_YEHmB*02#AXDq*yu|1rVX?_jM012 zFfr`XTVkXhWkp?F=xNPBJf5x1(vx2c8?7KI?RCp4_72ZO1^0*_$Hf-33r1qQ?u{yt zAnKz~uPUJ9h@H21f!uhh2v@6^q8aloj9#saMLS2+GgQnXpDucs2Gb=enH#ua1ZDyP zpjJveA5<%ob${H3ZNr_FhA*EYgPUT5tuxWcyg6Suf>2ZHSWX@tG>XD;213vGRil}m zf<>7UMnY26nDDXg$ExE8Jw&YY^A4cn=6X#Osa*4=WLA%hZS3}SmZ0R>}o1o)$m}% zL?avHVjKi>MUxvsEl~6|HpRRnGq$lwQX#ej3w;&)@|`J!{sZ%FHA8VmN3N)LD_8QG z#FzG05)d&hggX4M%=P~#!|T7N6oLa0&HPV5#j&@yTVg#OX>E|brs|0&20IG*tG-zh zqbPW2NMEhtOwIVHyLuO7lcvO$SPs_H&+?V|5Adx#@^G?$W2zubrt#7`?tVn1Rf?kSsvy_BE_w)K7rF&W7AQtol#D`ez8triw)J=a*m>{`?Xh zwlL(4=B|uO#LAz5c7$h4bvnOiEEj*lJuFDOj8Cr~sVX$!9%)Vyy(Vb-pC2i274)jm zZdKMWAv`CQ$fsMmv#*^-#An4V)DVhOG4aD$#)g>hfZ&FjtJ1TNs^HCrU{@$?lvh{T zS^g7riPveDmp}HuiScie{UOHR&eQ*3ZG@${Y()BRPM4(#lQ%7 zE|U96y((H)t&Mj7Q??ZDovEXAiTa>sHYyn=A-v#zP?Qw^C^izg*B{I4kIe=-bpAuD zoDuvCb#@&~)lfBEO24fXb>3Cf5%Gltawzc}8T!1_|C zF5E2=7W=evuOA0g((^oY9{6}R<#onz2tl;=J*D{f20+roeOx{~21?9iuLjN&>;3(s@7>3FRNQ|*B3{&m5N6X~%RR%cdR-6_D@HmK z|E5BIm(V!B`F)j7zxjl}>%;#*9R|PsD1v1IJ<+b5nsbqfWimEa;OI6aju=rUxD&n@ ziB~kln*hRY8dvsOK00vom+@EB#q?-uzA&}n`a!UgGc*Nz09@cjxrE_31te<6eD#FQ z_)>jXUl57rth=aUTiwG?adtK!gSLq;x>jZ##p~_7 z5~`2^w*ZPZsNB`k!?99&4q~$HAX7Om)qaNh1A?_2W*o%x5(=sZ+CqrS-yv%-J=W_R z;VvY(fAUH?&F}E#3GrDfSn$V`%_Fb{vJBk?3Y9864G6oRUxiaXyURit(JmQ}krJ~s z&S)i~4gYTRz5CqvomW9FXt(d#GVb;{pP|;gF8GO+3l{_`Q6ZdZgg(eR`32_c;2nRK z$Ucb25xVc;4Sb}0E%$ht@)H0!6}%&gEK)uq{+}WsFWemIir@y*^p}? zbWKPs9r(67q-(({WEBf%<``gfA3Kx2(>ha95{cE87tj3HGwi?m%=}mVKGoKi(Dyzk zWw;WU(i&e<0dR$xsKi~@7Z&rBJ@o}D#Zx~d-3A4XX zyakT8$YihV*NgUOay>m7;y8alSry_rhirxHjp)D;=eS*GcsQNxgX{b49GAK9CTeks zqA2OAild>9V&DLYpU`W^f1ZXh*_D6L?aG~sQaw)k1N2-`ZuXqpkBZBm&S}dpGf|uV zT8a4o;)?%ELN!8|9aMlEsCUrb$ch!Pe{KFl4N!v2ViYVBYTQ3h`G0KDzj$^;x42Pff}UrhAU(P(7u3*^MxNE zj}qP!1JM5h=m9C@nDGQ#ay}ViLiIj!BeQYEcPduvGQg8;*jNL;-Fw4d5lq0DSJ7e= z2^;qbk(2YY@S4KmWx~k=HN`}*f?%7Vg(&xUpD_WfMaY$i{8Ak|-gvux2>6M#HvtlO z`{}NaX3!!+czjS}W>DzA&`pNKh2cp2R?z#Xpk@HQ(dzMv2)dc*(N~1+uK}Ka!5ATu z{WnHq{`mHPrFr<6^dJLXiVVu1cC=zaU@$V6Hed%qyS&k8qPj7FbYGLdb$VcDkBdGK zAWe%=CY?fZp;3rF<-cE?KphB0r2~r` zhDey`vpigq(DB*xvDF94w=Jd-c?Lu)}DaV|0ako zv+4PU_rV{5*;E361(R(^s{TSd%;+UN_og?O7pD1AU8_Y2MOf7GBKUk9NL#j>6i*;E zHeCaaIt5P|HUVU4k+aKH2RkRYkl}rJU+aLOIqF3EH03=)7NGE&z>vNkL?92VAwYhh z#$%o2T6isa`aQmk;WNfaREsh6o8IuDU?B6#0rU|`l;i+h@vW)6r*s!@FlE4TitP`* zhwuOrTcM>6+e4q)DqeZGRPEc89yRL1bq)3s=OwX~sGwCTx6gK>q{z-u**7gOg%8tb zpt3ABOFw*=Ntl+wK3h(aWJtdg$jwJoer3goRgrxw;EYPR` zf(cl9&6@|7)1FtKF|5*OtSo&-UZT!GO&w_V6_*i;EX%rDmDU`3#<+zx=DLK4eEV2h ztIP)XtVX5FuNNTid{MXb8qZ9O51m0~l!BhU|9!1T3p@`dc%MZr4Z;;$xZE z4mTT_Yxxgbsc@46UIS(V`O|cwl{t0jhCJlAH6UGN}uSV2B zO}P^HR3F;&jJu$8!yxNl=&qRsA8!v5Sjs!n3GWisK<%^r``!JAA^MM;O8@5c{O>WQ zKn-7N6D~vq&?Uf$4Qk7Z|1`qLjc<|e^0P?=a81y2w<~N zE%B|}m4*F2hVa>qD4||d#)n!+3;6T;Y3=+sAKHh}{3Uv3pessw_ zB0~1U_e&2jTzv*4(DGk2tkFM|7Q#YD+!b1FKN@X8e(@kXXSbgr$aS5)EXm*U5cyvw z-*0NO_7`o^4(IFKvf&?-X;4&$?xYW?vQUS4?)Wd?gzO2}B&9OJ+9JSMA&y;}%JLjH zOJ3>l+|$2bqHRDmOv0Mq6Swv37d=67hrgV(|I6i-@B3z8Xw5o;*@aAzxHYz|VFVT) z!xjdr+Y%1m>caOqZ$ZAqP1Jm^QVnyQ*nvs)6%m8*l%S0Wu`Wlv9z(EU0$+?7@QP*3 z&I!h$Tnb&=t0Rv1Pzd|?--v-p^DTl5WkYAHpC3`XmphYX&qBMCrs@z1lNfFA~F43=5;_sw#^6P7=*(3c4iZ^>&E) z$S;{Zrz3E&Go;0s6VUyQdw*2v<@m66W@tZ1A`1}Rm63Iy9$7rm{7Z_#Aqj{J2SnvOn( zSn^TrN8Z||A9`A${t!A8%cw~yamj)&uTtTyPQ+=bb-T zNoFT=g=yiDp<;eK=LH7pN3Eg&aEQ_LBh=qaos>ZeNY`tL=wA%Fs=@92Aot23=M7+S z_Y-=_*sV@lQ(If#+#Dc-my^sr(__TQFtvR1RynNT8&xI}!r8^_v1xr%x<~No8(+5* zg8VO|HZ;Sp!${=4%T{2=rsw%4U`s_i65K;|Ya(eNJ>^?$7!V)x*xup`D0zz@@AB<< z(;f&w$rK0Y*R(WMYAww1#(nOslMfjx{n4|ng}O-M?JykzD2MF*9bTKNwlv7>P^5j; zu!$U^2f@GKgv`A))Q~spk~bl7cc_I06+L~KwL$uj#+!gW+>y>)k^xl11(oYE@y-cD zOu)m3K-J1+9j#SuZ5=5ukb@LoIBvXg(6%m1bWtH(x^hI1fj5KZt@H^fo^qBkkLAt4 z!WXDeyzVj*Ks#RotSd1+Kv49|9L!l-B*$0pVnrN7B>dX{ov%1~IE%VZ%;J6@_W&ID z|GLHh?=fh9cs~Cr&qv=iH^l5_qy^p7Uiju^E5Jb)M=VmR3Xw@*80t}z-M|Y&N>KBh z@|<%3Mw$Xg@b4Gq&toHk$n2W%K6@FzZP=p&-$Enzt zM%_OD(iyerk~5|lPCQjYcy^A8gZs0?tKrj>0kc zb+)KJNRo>27gcL>-Xxyri12v94Lyk0HG!rIDVIz9EL(UTeIi%;3m)a~10kRb@oPbf z<9gk3M1qMnj`blf)!%(Odr6|fL*0c|=XOqOZwV;_?I5P_J8}daV)UMHOa3wW3V#W2 zI>P2@fTlzcr)>V7W?Q1|iXX-TZZ(8X_`H&7+K9)0F7xXkH~cBxM2s_+o-9j!r{c2| z$!pB`JWru0HBs=R-vnI<3m}3K&GC<(-l}tYT>@v@FC=~fV!;oRH)s~WfLTb;r_bK* z_0N)!3c*&4zbWmX1qytmLu$W=I#|CWhdgtQ$8U~6G{xV&)D1z@Iv~DdCQ&J*Zm{5E z%AZ7q0BY(uf0e=PSIHol95(Fw6X43`F&cu@Eq(gU0VHZ7ZLcdJs9psFq_{j>vDX&F z;d?XrCr$l3!CG@X0)JyBGX6A#88}^_s^yF3nwVXlw%}^SF{ZVEuVk{M&ov9Qhe>j> z2M%7J7Hd-}%I|~;fWEgT4p|ZzcXu;_mm5w(gvb9%0kJ;}*njhE>baIb3qcYYuC^T@ zRr__lxld8N2Hp%mw?e3gm(ps%g2DG0ypUfhPA~L-bwA=zh`9#>2+8QNWoQFu$(zKJ zg)PWmbZ_VV=)xlLn|EQK&)dJ`wJuw7S3huiqOe}qzzKCCU|HM0=%r|RqdLNI-NTdD zuYqp#PAc9Qz;O}~0|vE9DN57s-hE+c%F8n5VQ<#a)LdB_($-9Iv(Ea!Iu_J}&NrH^ zkFNw%3FOKaUZb@dJ$)q$-qhji&s%)Q>;T@eu5qo;YzV5ji+1ssmvI6Bll@Ox2Xqfx z`yu70JP1X`PL{`NDuY349IBP?45NI3HR5>Uc+O={Nl@P83I=&sx>95UkdQp~ z6ff?nt{fXv$H7&y0eG{EB$7%u#!0NTOs@Pzu~O|KaWOU%wVPV~GmNjv>YeM}EPfiH zzr2diTg#>L&QE%_Lg|3##iczs+Zj`a3uE%vJ;~8-& zF2+SMBEQ}j_y6Q|!df&B(2=uh4@C7ez^?ih40a5HQ00JY>CL1$Ye5wyxX`G=Tf~Nv zB9{>P{z{bt@+wc0&K{@FZHUrFu+D1TYRJhCxxqN7VQ*fteNNS^SPyj1St<()w|5z| zVjoR1obAo+N$6aD%13`;cp&S+>>|;QfBxaG1R0KFJ z_l)GY|b)LijML~Wr3RfwN;l+;qKxk-jfcT@XwunfnG z_i&k4Sqy&C_b2#;6#=wKM2ZxX`wq;^0~iG;q`9dO7$8i(IiMJtWg8 zBNNE>q8S0Xa^>qF9%>j%jwAVu;sOVGOG~Jne;EV55xC}+uU(^W#0xpP4tZ=kS~#dc z5h!9&p+Lwz1h4MCwzhYs4t{+fdqZO)jIcbdgkPAZTc9s3q_&o=kW3-;tovE)R`9U( z<~eayt&uP>>(cI4EeofIxIOzPV8MX+iK3;T@T{7r9f|X>kMBa-IEY7 z{R4`a%|bTj%{lnB&2^>kxwQ>_G+ct3`ImeHEr#V3ng%}97Ww*VA+7x^>(id4li`PD zn`(-(L|Q+5a@Ju2HwK_JG;0k3fxvq%ERMGq*?AS`bT`Q@*RaZ>*lA$b_O*3h?H4dN zfVU0b=TiJ*^!67iS9VhR>Rn#z)J~1tfF0~lIBMvb^%^(GQB%(c>0l{d%2R7Singc7 za3U9DR_b~tSY%KqbIrrAISAo9b2Qv>Ucv1YZAry_i{*#wa?eRFEta7e!CA0}sUUxw z)|$PEyWIc71zh5DmwWkhsC zs)hdUod5qi8n}o9K3qUWKDX7PJ#p#C!+HJ@%lIRt@t+E5{H;HLOGFDvA!h#xcyiN* z+~X26Q9ZgpTp(0I&Sx2~Cye+_naxl6W8;utjODR{!H&&RZr-9!_E7t~Zzn*e)1(x! zg!i-bf%i|y}dz_sS%lyJYLbOk{=7aP|;W3(6 zjwseUcA2#^BVr?*htwt=(b+K+kzQOTK&~-4&uN)+&||QEQ7IGTFMD$aL{OTp5Mj{BE79F&uGQPsNyCO z(6Y9*wY^iE`B47asT;LWmeaDb5|6CdP`VOi)(uwmUjkSeayiZ?4A7dvCfLU~UA=x6tkq|2#Q zh+LKJ7n7$r-hzDA`9<$LpDK&0JFcw8p55!VTz9?MIqvPSeh*~3s>&Darg|a{7rwlR zlj@7=84AhQ#%J19^qu*1sOZKFbd?McgCr4$Z#u)IH^!#({%|*`BvCF0&^3N zGME+Vn+gS^m`bcV+!r$^cZM#pFRi)n;>uSKRg4xctyV3~2A}e?)z>mO)HhztbXDo# z2Tz9gK!V9FEWAgyqn(xx5pgw56*WzjSzrr?(!+VCVHXEX>`ASGN-=V>1R4ZTG0<<- zo#+Y7%i!y*gX+32_Y}59&goE=Q;*mtk^U_IMobi{ZgqQ$nv$2(E;%RucuQ0I`hwm< zX?4FTEb%_8DPes4vlx5YZXzaW5~c)u)rkMIL*Uc0ktsK3jB352VkCW2T6zUGzk_sR zU|=$D&@ur|f&<)PKU!V=`b{Q0B zqP4FV;nU%QOLszc+$bBG)A4p1Xo|)rB&*0ie~4DLT7vcl@FBj}+by@iS4$`Iy*@8D zru#T-Q&r^%i^TgXz42}!chm}Dr_$fzTSCYhl1%8JHCa_dgey?ubsTz50Xc=6?b{@} zMVmPH>>nGMebGM)!D&1SUVf*?7HTy-G zYqMhts-R~}1?vUWpMZuTow2RXyQVXmnd8QVxU%Us(2>yt-Xu1vaGv1mB8{+glUiGa{QeQZXx1Z)nwGL_*80J12A@}s8qXi z*J$9-ADla^SNz=kt zH+fJ5YXXqKX}^~?WXG!C|8lt4?8w+hwgu+P1dh(uizhiT;V@=HJ$1k5Y zi+QXdbRTkBhjq|yD?#^;Np3)fO>P(cF}gvpJJtA()F9eu0gjvt=6(eK(cLhTN>V;k~#^kUQFwACu3(LP@myXMqKtiDxB z8}m=~6?elktO!fBTn?LcU}^kPmyR`cMC##6f<%xjQ|Lx)Cyw0GT)E**0u6^*M$nh@ z+7r^=!43l^LB8mSH36y1Z;UI~PJ74(VPDqi`nz?2=W@OA^~v*1V)O9oX}tiX2X6O{ z2NI`0TXSee-7s{`9ZEw@iaifT%43zoIPH8gcWI^rTZt&PKl#CN(JD`q7*4zeMjz}sF{gu>eBBQxwr!56M0^EsZc@3;JJ zec`YFYPE>}q17T754j4QED05ktXbg^20*wt;y{;2C>H_VlDpZUtw)Gqw4y{&M zfZ1)VRU6v_;n{;?LhT4jN*F+$QVhycM2lg$8rP?svkCl?21>@|21>fysay*3z3oiuxu5Gdy zA1OJ$67zLBryB(mz@JsMcJoxDfr#4xBI*&T?o(SHNQ zE4NrIbgK6VKRC;#SD4uBnXWCDr`RKpw0UCX87ETY!Ey&fAFc&CPjQt@I(CG5zLhR`p) z7t6=4Z|(99*MmcAwnc|1W|3o_Riv^cz$}{{SM}2RbHR3?zK9>}i-E0k{-)KQO-s$T z^!bGaw;<>>lgDrRZp)E<8RVL1(WOZ4oWau?Q6T4e1@c121W8CyD8Z#YgfV3oECvQp z16LX(0xA#n>&^6^VmHx{ZoAKURc@`ejt@ zFXia#1KEbPR4qc2II2s+>yJ4x-u2cEwA0|p39dr2(pRHTmN>sVzp$I;KR-?eIQ=(A z_5b#6^oQ;H|97YXeuw}|KS~^)zw>|!IFP<}(=o+oK+VV&=p4fl1f(dtrrR5kq$k?c z(ct79Q8NXk)5JB_2Jg;hjhtc#pToU9Wy`$xjQQ~s5T?di8Qp(GvGCzmorm)A8geCt zV*G_sXh?GX>IedXI?CN0Gd@G>LP&{3eZohS3lMa9FXPA3hew!S$&UPCehYFHUR|A& zg1a^Cw+O$|{XFpCDl+sS@U-7ov^%Tc|L@dDzcnV>Z@u_$U*t6o_Bz9WJW}-DH4B=) zKqmxlhI^UDq)dl=hLg8kvtOV8SXs#=| z1+@4w*qOc%k58o?mGEBVwTu}&bS;Gldr&lGk1S;@XNmN{3E^5%!odWL=M$R8#Sbg0 z5!?$@mU3h}xWG79rwtOvLULEB;i9$3e8&H|vxvTbb6 zIhv{!aMcT@$|aD9zdCg%RCP_*H$%RVplYh&#!;PH=Lcn(Rq^W~>YNrc=*5;Vv;+d` z>n+qoX4I{`K%WMuqMbVb9~56X`A~AqH7&IH*ORbvQeazas*-fcn(Nb6q3e`k742%$ zuUNp*9BCz%Vma^9Nj%?uAFvPvIsCBsL1vx)MQJVmsDy%+mdMTNn+DwpLuX~6V#tMR z0w)*|3$+N30#**+hotN@E`nDzb*JSXq3l*pp{21Q_$aF_z*U9*T~#zz8I~WFPL5wp z0}ZP4j}UVyR94BgnzP#NW=-CHg0IV>*o^pOn_=@9uPtHBTj)e?b83EX6d}PyWe|o;C4wL8>w?OaRdb0SlMr_LNL{3T=x)S$ z6OH7?fHQ)=OQF#C?u==HFQTu~e2F|+dWrmNA&9!PuU>-ltoT_7QkG~zP6g6#H+H%c;+grHl0B$!i?k2pCP&9U#I2_&s4b zV42yr;kGBFTa^~?tV>-wwJLca)j=m(_RIG?F1bS!jhaYSnqwDAur22@G{{w;kP)a8 zWelNw6TkSZ;ld@hol%pZ6{^7?o;z>%xUr2p#cCw}Bi$S+)r0G`UKa>_UpP2iq2Q0l zFS*Ap5I1$ima-tpcw9#M@Q$VL%uv9fDz4+e1sFLO%AToF3V-Y*BeSq%0sflI^`mie zHr{R?gzETmx@nCsE3TG%9T@qnYrn;uN(@R`dH zzu4Oob;{PPS_J&nBQ&U#oMr3~(_+w+RM}Ii1G5#1p_`tOq%BO=f=m`~@4UiTPy_+< zSg-o6OH+7Ra#q<+1gxRAk&}>I=86QHRt0FSPxdDG@{qTI?J(F7&4nO_)I`T$$wtxj zuKr_N1J@W$obF+kIhxwSWQuZSg^{mDmVZu1INmIhJB*^Z7nG8TY?3&NBS+r7^5mCP zaSH!ISd*|VjE23TP9LQ)fTiC5Y459p;`-8Un?N8CBqX>dNFZ1Q3m)8pyAvch1Z}(% z0tpb@IzR)#-D%w2rSZmsyE`<^>))+;@6CO0rs~ezTT?SN{MB7ueNOGO&)$1|vcB~N zd)MmQ^Jwwo$UA9ntRaa(-84qm*jr6kjy1*B0`wan4vNKL)&qY|arm>;7fP7oqtLxh zy-lgb$A~=s`VhCyuXD3`;m+@96!NU9cvbZp%O-(Uq-cXB zrq+c@Sh1C2r|BERXyKh|PAV#Uc2-6N6@6pu&X}pz&A(Z#C-+ml3n%XD>v?TBkNIWo zB=~-dzc5V$jh-WMPic{Ig}D4vE0nDyTQU^(8Sg|+DC*Z2kiy%fJhjwY{<=syanK@R z740$JSkr+k%6RK>saY^-EGD?T2)%i^xEJq5?)8)Vp(e)X(0rptX{uHG(hD!mpoPpZ z-3av)Ri$B=!#95B&9i+3`IZPGR-@E!$I1DEAI@Z^AfW1s@wrW>o}8wd*Mt0oJ33L9 z0Vw6K+r%#cItZLW@fmqlZvidi3%3A9*t$>fRXu2ZiHEBgusJ!?IBJ)pYqwda)##0q z>*Ce-4_Ne1iq~?{jbFl8v%j*N3=X_h(T6~6cukqcmbQxWq3$VnNLD;uK-j9Vcl+Re_tP$(h_rR!kclb-U3qoG`Cu%Ln}@|8obJ2 zDT&cjQVkPyypIQ%fP*R2>{9(c5}2@8a1mG*V>cLhNk@AjVb_IdbA5@RMiEDk3^;(( z;ae#6gp|M;m@n;SRd46ojB*9bJ7qZZc#nFh$F);vE83xZJy$`kEF}7bd#H{25oqX7 zD=2?z{pf9>UYnb)@a6rijL6Pr?9M{BIT_`7z1b4M2!>ImtXwO!GF z>i37X4tnH^L~Yg&fuNJPqcRk`1m_QSNtYmc+itpF?=3(V>d(fXam*DLui3{cNrsz& zYwA?x3mqAu2E&9xK-e9`?N??_3u0iN!j!Vim`Fw19#{9(n87W_DDB^?pF8k2Z7g31 zvBiB={Nlj$-6ZyR|Is#9zb((vcjZV$uK;GiGCHxs^h|dZt1RQp2`_gd(Wt{IQKiyz zOxRe7vRE93^JeuupUYgu4gbCRJqs&U9cwJ9@V4q}^Ll|IYU1X1cI4V}{d{xJnyHRN ziOzh_I(BY$10Mub)aePBe^|n(yZ>$CSOd|;I9F>6*J^t2sJ2i_eND6Okgqp8H}HY* zxsCESMPZdS+?+wrz52C&V6?s13WU~HbNIp_ zbn!sIA+>#>P4El|_Ea<-Wf=SA{d0P>M?GcGkz`{!onshcZy3M(RW{>vwgTpRwpv^^ zz4glI{T0N%O#HEc?sN~XV994c zD-T^fPMc$P53xnn6Jaif0Y}|t9n!ae{OWOFU%Fts2cWb}$PcG(a#J=#PKtp<#Ho~i*+$HW4R zYkC(TBE4e!XLa(60_}P|RW|OCpQ8ncGa{md8;48-Tidz_l(P- zQFA0%)ljdW-L03wJbg5sFRM=kfrWHC6&xHrI@TX&bgba&SKQ+}ep}t*KD2N{CP}v4 zClYmUcG4No%#u$=N8*yB3|x2$icS()uTLgFAFtI6G@iN<*lSF zA|A6Ex~sSSZ_Wc&mFQjSkxUHkolEXl9y!yMl{NbG+_&?zX{>4p4 z<9bMR`65f7mvCmQq=(*3;)p}d@q{u-%15Rk&zqx@TbR`JS23k&^ApR#Pj3W9>mD}v z6`z$TE};@(F#DQ5nX+kM|Ww?v>u+ z<7(%@;oV37B7F2bkFZSO;B8jMQbDk)qo&j^GBPTh#Asmk7qJ7ty`-tV4xC5E0IXkW zOLc%$Ph6iD`W$4tN*~yH?xRTonrUK+9V@Q_)nBy$!aaeN&53$A>V$rnLdUy%IvaMP7eXFXn1u#|zprdxuV$eyi>tjARG25TTQRLk)(*fije)E{oN zto=h5V{cX|17e6DM%7hJZZfYl`)PY*$(fmP^En2^S$di9HwsCba82#MynV4C-Y8!p zLPF$>2qto}YV(ff$Cs2$$=U$;2s!^*Rsu(gqwmE-yC*$8T~DcSuOS4T-%coWQ&`<; z^ukG}h4XVS66{{DCu@dH+ncIJ?g@zMFkl$3qm#`9XB2+m@m%d_L%bR0IJM$_80z4z zhL#lDXd01Ejw^}>IRJf&Nve2I)DViQYxl`l7}ipqVDQ+p*Vt#I_YTQ_VHL;l?xF7{ znG~V)!RPyG=Uj}!b}ISi%X5#fmH6`vq~coQu_Jy?@h`tv?Iu1C36Hkllcs`6+NFM7 z4%|DPBjh%CyyPXjbLd4j!yu(0VKO{GdEciX15r>jOG+OM-mCM|hf^Za4_V#o#Gw=9 zxa>}$H3T0+=bs~{v1z&zMh6~O48t2HD|WdN`F;5|7R>_Y32$ex8YhiE`8dj?r63ru zm~JpovhUAnksP17*<1w_ROF`>hCWFnhXB9r&RCy5jx-U3zy~Y+R zkB#ng#aiq9jYf6C&8lT`ruBB8xXbx>HGSPky*My;i^habC!S=xf3Am}q9TMe#D1pJ zb0TuS-9=!|v>m96%*=GxIfoB;U}%A1Vja5lL?+ItzK0L#bEF2}gothjC-Eg1pj$4~ zY$l`xvI+7`oSlb^JOn>#@1Xi+|B4~vh0Jj>Zpg3WA)?~KFYK7J?!`(~jp6U{Vfq6Q zHkl*;F2t$jcpTN)vD|v4bpa(6b7kW}Rj>)GBiGf(G6qa?9f)54kI2=Ph@5qdkTBWi z-0&m+iu1_rki2EwH$s=$AF?L8lD(D5V02wK_qkGT_;iP{(ntR+M)7}ZGwy!;-*o=F znfPzb1hciLEk#2`98kXTg%+;Bl^=l#{sZ9(|4H#du>9fkFV{cJziU-0(jPOB9Os4k z$v!Z1!XhUu@;V-Hk_)!qSd63Qb&)+=cmf)xd5IvGyajZ!2z^NzuW#FJM5&?v5;VGa z^8=N?RM|n_n*Z>h{>OZVcIxoz+99ZEgMbu?n}*UAA@TxTRsHm-YF{|PLS2Qa0y+#9 z`s}0EFFdp4aD|T2G5N~ebkRZ6EL^xoYj?&C3rzo|0YJMzJ1uGm+x_v^45|MQ zk0}#kPlm0}+`8K(S@cN_Uv)_6DHW3o5qNgg$9e?@dHKQ|iBpS)n`_TOVM=vD@kR zm7b4U>Al(s;Tk-kZgb(W9R~w#T~kFQy?sl1KoG`N(s$w*()zx{b5(=EA6%|cOtg6L4OpKd-^RC9fiAoiggfspX$ar%DHHhLfurm54SQ#W{rS6?CUW})p4rZ(4Ot|<7v>c|r3fiQ-a)Rbb3xZiKPioWt zN{-+TfB&pJ^bUCcTfqDGuchPgV127csI0ykN}yphwh&-xjY=L+kD?L>f_tDC?tzz~ zG*EVCb;Fe087bVv)3D!i2Dwm*?4H0KBjIoEpq#A zd(#4mZNc~=1rN^*%OZ=LBjKV{0cfEA0vMycm(@;)X#I%|i=eSMe4;T~Xg4v`cJ_E) zaD}a$RU)5?DTv1*QoC0@0s&jAx z$qP_IO0UkE3u#Rrmk#$V8+>{({cC|_7Ys!|r2BmfU`hJ+$=QaMP*6Ot#hPmcRuLB| zJPfN)<&=2vCbYLBruN%A06kL_rUF-O&}N!&U?_$)(I+ARR!Mr!vy;y+KG$@h^A$h7 zuzyMTF3_NG-A^)(Ji$G2(q5!(Fu-D_%JCGA zjlP*+wwo&SEIn|fp1>h|@m=HqN#P$w-3^geFz4Mr1NN%XM7!=Mj?ULJupXTR_@yY!?M7cg`;mdj8Szi4%0_(tv8&U^ENzIzWA@ z$y212B8PcaUmso4y>s4g2<(Ct8s!EkS=<6R_K$h32gMVcD25;lCOm00JeO&zH++K= z=tYiQas$UM0;xN8`}0Ui_C~tXQk0d3irFu1`Rvmxoq_g!X;-YROf~R96?j$PFu};D zcGJ|rQnF4@XNU&tDc_ct$R!XIU#Cme#qG>LZrJX>lR=W)HE7e9Q_rUBSS0HcuW{>$f;R8)|p*awYLxA zOy#zCHeiHjGvH8~C`v%--2nzEIzvBiLyTPt7I?+WXnN;wkdp7+!za3smx;H4AGzm< zP|)<`F>2_Ro9UX5LD`9>G$N}J5j>#Z@1hb>0-IN)Hx+Wv)1P~9 z?ZxW5cYe$TWwy)u60kP{SnW&7d*vJ@O9lweDk>Os9~cFOeNUd%mtL;hU@r)d&(wZj zKJ@k$pv5*qJ={g<;z*Sj)?Wk2Rdw#*`gjVo$Q{T1o7eK)1^=mE+duFW`8S+-zB$uY zUB!BFYm$+{zL79>q@{XF=jYd`rgRq;NN<#sR^uuv8WIBlwH6-?Audqt8K1seKo>Ir zMSnJ0Ou0M=M_!{S;9<&WC<(--Hj(2++MDy2w*abN=qTFLH_&>k$n~BPlJ6a=G2Sfz zH~jL`-*y2?D%Kx#KHG$F`iyF&heV02raZU>?AL%URspD1dI-*2fG{EIxOPHi2zvql zqQmwE;UajSVCj*4QHwm51BpK)LWAqgbXfW^6Prqs;rs%Kph-3Vc}K*5$Ap}@b?sbo zaB9&CcKxDO{_8XJXkD?#DXo>9G0Ox&Q>~~P-fdKXEoxSPIyPEvp{%`)t*+X=#mPNk~0ki#J+%GuJQldasevcKY9Cn-LO+-i;4O z15RFJ|Lo4Khyq{<9*TAZ6&xI_%Uw+!{!j|98Xcf|KKP2kRe#Su^>u4*d zLS3PuP8P5yUi)CWQ}ajhIVz4-bD?-8F+SoEQFw;x*3J$2?)XHaua@EaEjImzdfVBk zV5L=Ud8x_x+G&zJxxeQr@8Uvt+u@(XmR#``_3>it=hsZ=!zj-ej3%t^AnWc$Z*dYu z|748+2G3tJhSk;bXd!-P_PKzEh-kqyD%9 z^HTOYP2|LwEV>gQeEP)EZ%sLy`5c9qM`F&aFy~y-5w4;eA=p}^IcVv}Vy1g)d|G9g zz|YiYqVWb0bUqC-*XeUL3qwiALF}#>QC)UuAAAC__b4QQS#J_=p~LODl^~p%20cJU7x2GN2%QHMO*rijg@tpRgH4RKozvrdgv^?LOd^ ztF)PZF7w?2|L0iXckkivcn|1(f{r<|nfiUM*wYN2E}4|qh4G(2=mVZ_-E)hy$`hJ? zJ8FU%SE`gjx!jZf_GSksy1wDOQ+q!%!rv}JB7jkzQSDzZwAiiq2AYHfBQj;L8F7?i zH}*Vks#+Tq$JfWW6I+0*Gjht1JslFB*Ke7!x^NZ(SlC+~tu|c>x6|LI`$P1SbewfL z<`v;0(PP_!&wQ`q%8C1%d`_x?rsL*G&KJwv3%Y_a5Y66nMC7=f{wV6iphHaWaIew? zEj2yb4gY3R(^QGtmv(YI-VrNM!Q9db5{Q59f| zk>atfiXmKs9;+ujsV*6v8K2wG!@k0yvDyZ3Lg-*1%*_x{xo7x?BF{R~j~8@4oO6bX zn58(roEBLJ&s$i>@rQqZ${*0M0%k?SV^BMy=KNX_UfU)}MFGPnHlhy>J+n!tQ;B69 zBImUm-2o22=b)F>+Uw41+h`_4YzO5FxbaWaM#0GbGA-F~C zQtfs)^zL3HRRx@yO;l_YDcioC+8j$K(iv}v#l%G3@qw&HSiA6js)+F%OIVK$$+g?51kAm6 zU(J-}i#cO&_@(<#k5|e3IT0D5;mR2_?UN>{WH!3i!tz=d2Bf>0?93faylDvATL3y` zJC879v|_SeU%vYic3d#?kzY{;@!Y>h0VT@;F#;rTK8 z7C?j2=Ra+Id4py%2yVYIT661KH2iVI#q#jZ+xf5TgS%P!$IKFXzc8b&Oy%Kxi{S9v zIA%x64|3&|vSfnCA=fy2ZBQUdw5EevSnY@`4^&<}qILpGi)~$%^3egR1Me_1)A<>9 z@8bixNAKq1Fjgowlmjfqu4HTAGgd`e_^O#NoVJP5o09$emO~Z$jr7GI#hNt0cUqD@ zeBU{gt+Ot9+veT%6g^H*{hCZzVy>97Fm{1clNH`8IKZA+993qav9$Y9=lAIEZ=mv) zoc>()c6Tz>i~uRS7J0(4l|yZqpQ2rUbruYiTPQ0a$z;xyZ+H5bbowx9Qe~#& zOh&MrS)jg^dJccIj*6^@T&;z;u1!jKcY(8^&N6y(|Fw3IhzDbDq3_k4)j6fJJMy@% zt|^$=x5Jz*!j|E3Z=(YZ9SEora9g)mbT80&F#pQ#Se9uedTe~cO3sQyyRv>S#N{Hg z;0+x#t%KoMuZt>5noh#|OrwiEss|E9iDA41y=oA$W6j8bEAZ~!0^(Dul9P86t)7p{ zt3ec;_qT!GXW2(3n++%~61mv=e8R{Byut~#p{-R})g$`h5 zaaK~O=%Lt^?Q9zn-NaklELSIQ7)QGW4)A_2czKntLwY=|VPb)Mtzu@b>5_DJ^^l=P z^~dpfA=1KPX@RV7F{f}Z?im9wGs3xAzJe^m__#i)y3-~hmRO~Fen4+;3n_KVQftLk z0ldC?8Q)6~bpB+z&oeTEj+02HAZ+Ixw+JRds3Xh#)^WBV?3|NIh#a!JKD!cpGm6>gNt@5@0WpK$?jEwggn9rVk zGUUgZ<`|zdB|2exQC%(CleHDav9r6w7xJ_H6*W^ zMl{=t<5)P>~SFxsBS6(Fz^;w!&GJr2k zOtka)HgbTbj?HAxYc`AApFcw~Vw z**1f1QKIuK)z?lyhieXBhZvM^UO<-JZhB)-iyNCy6~cDv=uqsMqh~_`ADHE> zJxk5ba5Jmd9F}`!*3urfI>YFN_9X&)03RQs&nyOv3sZ2}iT#$9&B#*jr!vhnS%>nq z9tKQ6e3$DArt`+jI)2pbOn8ofgnVmB%;m4)Ljn zx0yxnjqf|uL-Ro0zFo)~1w`n3kpL0!ntoFdtrV~Rp`PCCEx>G(@W+6}XE}@WPv|3A z^m}0!-3-9AB+4$hx_1e}D3vqcVrMgds7i8ei0I<`;((5QLDY+|^gPA>)lWQ9q!(sCH8!bLkxOyZBN`*}Z&nVG19Rd-498KFP$bME&k@oQ1Ij!Gd)Rdv} zm9b4XpHMXJce;Z{PfkJcC>8lML@18mT^{EykMmEIB*^y4p4noitCfsJ$HZxS`sRpW zOykAdZPJhOa=P59itBAxJ~ML1qLk2P$(YFVb_uQz4PuWToN&uIg+|%wo*gx!+Fo)H z0&8{Qw*dBFEgJlhz40g;?Ibft`g`@90qVFuisKqrXzF=`{JGrb=9^7xOo{~3#0|)g zvGYI7eQeo^p2@OL0;Jkj$u__2qT<7imX#?^5R*w(UAH$2EuNe+g^9Wn#-Tr0h=0G{ zlJ<47QL=ykjj79cVmbc~MN_C^Bv%Z7W z5nTsyQRjH>6Q$&{kA|wE$c)#wu+!lK94OOlSP1fRz}$E3dHTV+Y~42jZ4-G*%_Y7S z2}8!I=2&|vbTmI70nO5OMfRS`1yAcv=(mRJ8#}E%j#iAqHS?*|G@m}6$5Rd7$iNz0NOM_ zvXq%`z<%^mW5Mr4Z@G2}MovH#dqPGVu~eavC%qUg!LJ;5C?#3k7D_jxY$x6m`dLPm ztQS!dsLrypKJ4kJD=0DR!EtWacn%y35W~@*Fkq|GE1jO367|djKPY3fFMIkSspvaP z+boTw^Yi6$=y>D%4J)Auczl&G+33q>Hafd$QKS+5-CAFtZLQy=Cqu0>miEcHU{!sk z_z>N4xyh#fTvERZZQS>9pK>c1Is&f!OP#ca!HkXB+=lS1#^Xtla7v_bFU~~pr~^kf z-%_Ye+o(KyWg$T_+^LJ+91YIMz%g3=q?hWXFjp*3PJOPXsA~5XfN!prB_Iqi?LFVjCN(ehVCwGxlHc{6M1 zv}1G#PRCfz3YgPLu@8w>7Vx&Cj*&F~4T3sz9fBb2JxjC82Ga-`Qg6p)gJedM+5b# ztasdkYiQwpXoVeOeucD=dU)@V-ki97H;mkm2h+^<-fuIrr1Z#5%{+D8j)uac9r*y> zba^jC&l0S{>jnK(gfs*009o%hDet|f7Edb`eVkQSd6H(z7gkh5=xrDhX4XutkwPV~ z^=s;WUfli}QbJbND74nqPR}bX5nhf2$Z@+^;!0H9nXcsxH;*lTVoqmNfh?uW8~R8M zGg^(FLcRqz2U2nd81zbj>6}y{4pO)p<1cdlsRmIyy5_SmuaQ;(TUDTJC-H=+*3;I6 z!QH9^&VJ3JB!=I1l9@I^ExfiQ`6CnT`I&pV47gDd2+n}RwNz(^T(WGwIPpEVMN<$YGT0eUQ)*`Xdvk}uF_R3|=Mk#ccVbqgpW1Z_Oj z>09zGJ{F)qD3-jWAif`PC#-rGg#K3uLVHgyhjQ#KD^K7m_xG_kj<5jLiN{UMD$?TK6A?9 ztg~VQyu^S2ScoN6AxmSX`_eY7Tfr+X>*O33dkuTL>2F;Qd<(g&&Ol&hXruHPV{Zwa zYvdt0SvT94w_7&FGotdz+X?KVpl^LfjqAK+Ni}Sj<{nLY4I=bK2XTeYi(cQG#%znS zC}Qhz!y>x(DbtdMYXdkSkv(Yc+xp|id6^I7SR?zSU<$mo8!l?m8JF4Q!e*5U(3NYN z+@)>Sa3Xj6B}y~P?CL6$(ki^941Zz&latdT3I&yXQg&4@WVX5bmYOv`Pvs51?q~;l zj+H~E$$EvbZ*G5}`^t&eKCj~!O&Qu91(ousBNzv<}mXC7o^MJ3A0t;}dL zaxKmm-{SiD1&4HehCEx-_V+8fblbVj=kMUzkmY-InYyzRj<7U&hi_MiFiH8vT2Pza z{vjwnWr=8lW4F+50NNcT!2PxhgN@R4+izeUHQ%zK7d?lGY?Re^iT?R&v6B;`8)PbU+&HC2# z;K5A%%4zM)6bN6> z{*E#CV3mg-&%e>CdRf%t@u)E+2Ya6M+s?Msje)&%{7RtUZ(pQ$NwN|p=WZoe0eeUtd3WR`pW!coWu@{l4mjOIcU0JY8o*Zx8e9R^d;Bw|3p6Aza|ml^*c;v07^RPj|!((fBN>uj!RyiwWfGcp?uEnSWn39WEpC?wn~gu zHWffjvQp)hFdqLQ7=XI;J^~Tc zilqGzNn~&ia@TPaJ!1u3uF~EdG%ZRl0M7%!X2JsQseGZt1bI2M-KuqaB=RQKcf04V z-s~(-J&TF_c{q9V^J2bpQ!#gy*L&G~XyhFn~ sG`vH@J2bpQ!#gy*L&G~XyhFn~G`vH@J2bpQ!#gy*L&JY88s1L-FN<@Gh5!Hn literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/analise_dados.png" "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/analise_dados.png" new file mode 100755 index 0000000000000000000000000000000000000000..b3e7d54dd00b7d6c47439bdd5b9395639c65bf94 GIT binary patch literal 52411 zcmafa1yEc~(=IN--JKx8-4=Hb?(V^z#a)62cZU$%-Q6uX!QCAez2yDm|Eq4@x~FPu zXJ@*5&a~~EdHO_rRggsbg#QT)3=BzHN=z9H4E*rp;|vG$(Q|i|9t8%53$PLu{VFXg zO8V8w-rUN@3=B*&BuNWa6;rnEJZ++l-e`p9Ak%qL$w@i*Gn}mX2&s}7nmF|5PhZF( z@>9Wt#e|v3$!P-7#G$Y{!pX^xkaE|bH{LTJCQqEr?^lmMu3zWJzx2R7=6}x2Y%#Ne zp~XA8Sjb|KDKgoUt#SK6;qlT znealFSz}3Xv!~4=JPPIX8WHMv_~t>45o2SQhd^O)D(}mF-Vk5aQPd+LbmI&|CYQ%o zW3-yC#gJL}JT1PLUN=XwN_7GgB^}70C#{ZT-0U<9bLUOj0mA0{1ScY9u;Q(+vm|P` zL>AjGkzG{0YgagezbI(doT3>6H{X_^QZ`I1w&NxmYxLQ}W1L<7Oe0NT%QQHyO@lK) zp8C@=LyC|R17CzO;h^i^juxzTS0!Shb0K))V1$LNrLI1#(2jXkYIr_t9d@-& zo|)27=j`zp2(3dKdbJIUW&oCu^^7aXKmxMZPud6-uR2v-AeIYe6c&5tSQe91B?E2F zSA%o}a4+W2L(3~`*SB|FB5jEHUoo7*CluFc%a+LOC~=ZyWNdf^NbxQ6Xvc!C(eHKJ zUA7=uY~ctn3~qP{s8T=cZkoQIZ<3?wMQ>J-NF6Wlnq#+$Q(cQjPbkmOT=ULzdB0W&!MP&2;?0M(wuZi+MmL>!?L62_o;(GUIa$7QklZb1TB}E@@mAdG zTODbTgd@m&*WsftR+<@c(RPr^jAKEs2nsHzfW+JlR!vN70N0FsCCJ+=yYZ9@<0gKQ zN05gWQb8qKf6TyUM-+NSpj<x(!Cc_dE*`w!@^_Ep&hcr*xAh zqf-XQ7s9~>cQ%CN1lQPvZX|a@7QUw?q6|DEMc57Wb^s%U+1sSy20!k`a{#XoM4pDW z3-mGs1Heqhb+Cd91may1(Tku42Mwdr^&`QHY{$_TLRbmI#POKI@`&okkzgW zS<=np0IvHvri^>;ZPiwN%X~QwZo@&t56Yzo&1t~~gh^G{sOfwu3-=aQoc*1l9l9@a* z*WwaIaSUQ$L`nDW8h>YLNHv#Za&n_$-l)-}hgC-}i^$|>vZ3L`YQxcquILEg`${u!Pl*sT|`7s@DpSR|417(*{2ub0jPCrVYp-HZJU&~&-W|Wq{NrR5*EJOM^%qh?*h;{P2F_syJ8Is|j9__xBG2Wg~ zvjo#Ra|E+73%&<*!GP_!&FX!)gQY3Q0F%@mYHGm}77J7h z;sdQo;YlE)J|jgXX(hj|yl!lZuM>h}hI5!B$*$d=Z%@#E{FdXk^ls_)(O%lV+0OhP z(&nE&uYd)7tU|XRB$z(9+(f?3+O4aMQ zNXUI1*SBd~vZ^WBhH_-MLcK!2(%HU2|A9`7-bShYxtOwrvf{G}rJ}4r3b`zv%z%`d zEdP%|8EfeJA1ti{sC5}^A|>q$qf+FsP0Us#D*sakL=mzHl+kXf--2`D2kK+jdqyOv5S|CX1Y z=c#oUnO?3Pr=7GC&Rf>n@x*v%cV~tqkJLJ-75$KIobH=0$)00bW5x6BY`(Q3dWLgm za{7E)e|ly*Vy-3kCZ)37F4ZpRJTbdaKTbb-y}2`7K<&NxEj1u6Ag6~Vh(**$^p{b? z76FA)flz^VfwYO$&et7@ohd3ADwhQF1fUAh9Q)jfISrd^9l!bOKBhC*jnhpEHaT_= zb_s(y{XByTLzRwExlIMKHh;~26LNKBQ+CZvy>#7Cjajv84MUTU3AKr2lXX+rneA!h zX%1gFpBQhw9YjVs7nZH(7R?dvj>iD}$?l=**6pO$GO+E20Y@FjAO$AnqLQleSudwW zx@DlvwT-RC-m%I(=Yjc#<`(xx^;Yht{a|26{HFCZ`o`^{@-BPTrW16zAHi^}?){3+s6F7iX2OH#`D6H#|o|KssTjdI)Un3=H|>}c|+=qQOsswz9t7T*td(@xfEr|Qw4$EQkf z1t3X3;sPQ99y?%rk#>ITBhxAMuB$`bv$&dz`; zqj#%EmzSf5XdQgm$<(YCZ}qp+E2@~{7w1jgmll+R*GUwE>W*n2rIYPt+3l1V_BzfB zs{rjEI_BD<+Cz+9dcI5Ma|?eeSJ%D8w?<2mw_?7RooYO|qw_iQYE%{JX0#Fe__WeB zTeq(^Juf3o5yX0CdOmsCdf9K(Hv@N)uPUsY?(E&yW?JUlG*0YJ_@liTe2#r49_BB& z9;|Ph0Mp(MKq0T(*Sz(*8v15xbKgg_h++WlYG~0+tNKF zPqay;F%Q@mumU!3%vUT=JKHYj)X9pH0J|^advBh{87oca zJVPxh8x);PlNX?#*8)3X>#YUF*qnsO2-)VMS+k?Pd#u%@gEF+TvKdugSAHxZGL&{( z0aT}b_d&lGsk#6PUD0(`?EfFiEUh?3nqKS_Vn^O6(< zY4C~_f+YTVOKRf=2z4@PJ&#?ApVf!kWb8o z42^V@OszDwyuJeP$4b4Ad%8iZIShqUW2GsUdD!Xnl+i@m%5s`cJ)LQjKC$GwlYnPc zPbb@R1F|l6vo58F)P1!`jdFxj>9;iP7SE6;v}l>EFOdbpLo%_knTAy?0!JzYz%NCN zO>c&x14jwb@)j$T>z4R{hoivDfkRnHhS`d(6xmhn6%yUFQ_Z8@=3?(Z9c9&CzlMG_ zZSQ|e@+`NS;Z(yU+6WbGuO;Ew^SKcb@wev+HABqV&C1?#gd~bCE$z zeFkY!j|-@OyE zZ$RrHQLC-#DGk}Rv1~eyvNG#us5mgDAD?+C8Wbr!V5LQrrd?BUCPOWhW`2?!{=qep zW8y?E@qhk)L8Xd5Cl!F0ZHgnINaeThk?bu)bON@Df-J2-Qb~Re+iohr_tpXNDq?Cx z9UqhrxlIZ0JOWj!eH6yJv75SAg!vn@A*nt|O|4K3`giI)*_}N;#;~ocPMds*ev>Yf zf#5vpZ-=`0pqhw?;?lshRGwJqy3Y$vGv5Y1d(HbBrz+>(GDYu-$%hC_G%bEb7L)~K zl=G#)4(>!AI9IK%<8YDu`Eh{JHb1nurWi9S^Sbp;o=aCvW%X$EZ7Fm6oN9fWztqir=OOpv&^yxqNO@!0xO;X<+x&>1MMll&Y!+k7B_wB z*JiJr+Fr{^UPNVC$BVsHi!S_KJ+mgiW!uvH%C_#$_%1HupH(ls9xMbc2|ZZDiIlx| zpSdlX_ob(X+e-Q^zE9~HPRGm=e6tpZ}354q68Ge1w1~l2gj>HJ_I)mwwm`ou;4N z5PHW+1vnDAesh_0adgCTe?50w?O3B2S6PhQy&HeN-A`mt7a$a{Z_0j{xU4I3QXYDp zf+>X3hN^+$UsWd{#K@NwoqH0M?S1Jj>gy8IjTw)s4W|-&7&t9j?cX->+Ns?^+Qz}q z#xP01{IO2GSom0cT_~`kA7`F~T;gtCXrXO(Wx-$`d)A!g>}w%zH(43}=Nt&*MR`2} za`wu(Xj7W5exD8~4~hu6%|8^C(*8=Qg06zEhpnYhcFDJ`Y^7r6{`)}l`fBue9V17v zcJW(wZJBeW`?n=;-iE8$v;nFyXYm6Ay~K{h>9u*8*3((_mA7)y$8R17^C#tcd4IS( zJ-l}8?l+Q~6Wkt@a>idz->$$P!umwPWA{VdV=tq!f#$c~k7oO+uLLPgu^8J@F(=|#g#W0wj( zgn=Rf$FqxqzDy&L5f88?ou_sMeg~f#wbOM(CSnD9J7HsNh1G zO%^X5UnmU25V~WE&JzHbJnUZ@DC|}38=vs@59zK=fKaK`VkrmOjN6!G$OPt|5?`+7X3PdBb2?%`sPIQnCfu;q>FWz^O~8F4QNJXMr`jm z_kDFE6u*0%fi69X9;{T2sz{cxs>Rf!I7rJz)sDvZnpGzsAhFOiv#DI?6ESw zWpu_AevXOY`_p#Xe$+yR?Yc&zfo(_Qbj2SGN9U=t+BOa!`PVE+6j*AKot(qibFcfe zq6f_zZmU4vd+x?vV_}Mi`L>hG-KhI1H0i zg9iGS#FtklW-c3uu%583lS|1$b1rea1Q}J5Z)gmW>w%0y?s*5ythir_F>g?1d$o<- zjlCQ+Gm-2B?Vy-KV+S74AK@Z`jq*9Ka3iE-DCJo_Sl6gCe(>Qo;OeBZr>>+TrP-5n z9MgObXB|tQ7#vg|vKtl{MVlHKT<+bQKyv1~_P9d#;CnPiGf;%jL@$J=h4aBVM_*<- zrYruUfaym!!=OcxL`_7uLw!PN!B|z2Tl%xIFt5D8IR9H!qZYq1g+`tFNx=R0%5?q2 zH?1Ho3fmpR1Tr@18^lNp_11+X&M~)`dvRoUE(RW2ZrE1U76EbZ_JNz`#juHE9k)kB z(D&y7Wxf{;h`XTKM%NHj%kwQaz!zQ0goA`k4=ZYqDOjRVrIG%$DKvGf~UHK zU$T_jbxdBCObc|IzyZ&x)v&>ug=)2r-%UV^NL~JMU$C*~h*X*|D1zc~^yjZFlcynT z#p?Opd1FPa-w5ow-|7X~))QT_UA7KCH|)1n_@*4JxVvBK*>>*FK)Z82Oxs=mIqpgT zDpp*GzDER11ksBw62k((DXmFl+4;poGd#wW^jki_*mCzAF9kP=FwxUrbwAe3VALnkK)H}+gm#sbx>c$| zD+oRsZPF-@OfV^f`avvDaKF#u;C?+7c zN|y0=CK0);a>`o$TX2C^^#ipH74oGWd7`J^1~>*!tn^6iJZ^8-R9jqMkoW8+J3!A{ zulBIs#4*S~fG6we)9&QY(Yam=5(C_JdXKy9hL?=ns{r^Jcj<(OjYwaqM-Ly*y}D}y zPBwjmc5|Z6V;_vHzKIUdxiWI9I)f|;@#j4_7BqVPHwO3{RgO!Wu>a=qA4%OYhrK9Xk=<{Y{uwe z>+pdyfPn!#ct4u9W-dmg9=0}i&b%J{3X3i!~Rt_#!_I9Lygo%Zbnd!f>KUe{OdwIWFd6?N~idos3**SmAA;8Yf4fu!t{~Gz9 z8UGij*8gy_ak2bw&i^&?Z%zQy-v#`y1^r7~|MY&SOW+fL>A$KM_~hy_t_=nz1STye ztm*-NngyF_D&FuurLdH?JbYfeTP+*&MVc8*R-MHJ%!mAt?PY-eNo+&qHZ2=XDMw38 zXeJE)EATtS6I5apl#x+NJr7fcyZMt}XUX%e>c-J}+R?|A#>0`5-P&~gyHusCwMik% z`D7hGWsVdLB0z`~6%Oj-D>o0-@*9nnNa}w&NKu)gM1+Sz{x$qT#ZC&5mrGEsB2xHY z5=<9e$p1=!BuD+!3eNXg?9*R)f5m>VbNv6j-Jb&mUlw20l^4=Sq$=&OVQBXV7?vCfRvmyn55$qY+@Swl?Z~rK;Lz5NSC&2 zDO^We`@0~_r$jhN*nr62OscS@%G#rB{P#}87B??1S3@Kzf^S!`3JYcH#u90e9^52? zRFk6$GfvkjMp_A!Dd2#fyZcr96h-fCjO)3ax8J++Ni}oRBo!4E3)Hu;3v@led9i9= zX2;Wo3LWaM=RX&_MA!586d@9UB6783;sR*lx;%t;_Y&@KsxI5Qd7b82i* zK~UM)9>;b&9jvTgKB*cH{_LiatgLCGD&%wt;>>VW26*6jQqeTp@vv^q>=><%p$w`U zn!k)>1wv^clpfx*ctSkFVi>s zzOB*qq;?f5Wj(%bv&LSCRtwbBynN|;e-;Gx5v-GH=mU!goyS?O1>bK3uXEl(IaIQq zJ3wHpO14$Hn)>6xo!853N~h||>gt|_;Ioz%i0*3q`oY;4<#&AYgG&imU}W+=T)@RFj*KTwcNC4#%!uf;Mg83P&;|S z?8bZB25;Bg!EF0BAE!g=yz|)(xX+ejwb&!8e~k`WS?r{;2af5C8@u@;j@BmxINj_| zP))_~ozn~vdzGJdKA#WpKK)4WX1+>2FMGsEw_iV}#O&lVKS5@wiz#K|j%e$FGhrTPKy|L{ z)#1&!MQW_T)6bWauD7z6ZJaJ<@z?c-PL2C@FMH6%`o$o03<^{Itm+wkI; zvy#)PAj}ybRv^SMS*(@Dowzr^=jaoSVS+Rr{%0kc&4IK z93|5FbiwbhPnlk?k|aL$guvZ+E0%)KMml%heP+_JddO2jieKpJU*M)4UJ6KFrI2|K zNkJR$uLht8zxN09PD7^;W2QrhUD>WRE4@7}c8%6$-_e6U8v3(1m$E@)B7AVaL+CRT z4u*DlDoTpjvtfvah}*lu;S=+6a4}yAJJE)U=y~qCVyCVtm!WXS4l^w?u*8vuzTwdARo3@v&d7rtXb10as zGJ|3lt@@!oXEUkz-Sibs%(|ZDt480S{oWNBTXuht8(6~kPxDmV+;j>fEAFI{m?`tj zd3!izzs4)%+KgtH%x<256n2hi{bm6qPxgM#t4?pA1DvWLd+!|rrzNAXkq?Jo&M()8 z5m<*QlY4KW&n&5J23XbU8f8VvB;me z@Q!){4~QILz@fQ%!BD3WCV#pnXJqiYezOBz@3~dt7%IRbNQAGMrRbSk=``6fY?b4f zU#)@SgtU6WVF}~f9=9XUnr8(|vWexO?2i&Z=Z}>QGyzFzaweXj$ zZmZEU$v^C{-?w^w8zBjZHF3FLwmA5WVT3oWlAW6KWj9khm8U^9l3V04h~%aFNu**H z(AVo%#V1e6Ag>rpH=;pH)VY3v0=V=a$yKjWYcd;4UQ47^aoTu)dpINHJ-&9E9b}sV z%w4~190)wLWGZw!{c?~sr4&r+Ie8fpe2dRuHVWMOQRJAt%)OT|AW{LM2SyMw@`=&f z`DV*In_FdNOJo*%X{AH}Viqg)GUg)e&p#s0?>w9$hWQ1+v^U`R#ej1P}tqOaeGOhQ_u2VCngb)Or?+U2pzPc+=^t|Th!IhKkcQ+wS-aX~t z%2ffdCyP~0%dG6pBb_gMOk)#V8}w5?=gt#%u?X_^av4?>u~X?hgRO;(mMHwUUo(6J zulg}UiGa;!HJSFUM^p(XjjMKb*Sx7(TG`S}n$_LqHiwQV3GU}D2cy!|S(G^5j}T=K zA1;yWeI#p8Tg!-GC#DwOTW4&V&qN!x2nqBE-dd>oBGYpGt8DkUtctS?yG+8K+N-_W z1Wb477kw1WgIfbQeG9QF{IcsnK~!TSXAi5ypm-$q@?G#4K8^t6$w!VJ-+h^|_chVS z-Q~SYRDo_$uh2F-<9ih^$tVGDIm~$IxbV5Y>_b6de0Y7>FwlQqS^N}h3os1Wnc14@ zy~%m^Zd0!rcfGc9GOaQpW_=CLf9yg$MgnIMI_jz^0&em(fTAzaVs9r#VcmZ;{ z$>Z~-OA+8;D#u>^#Bqqo0^~7t2-!P|MOX1^I2r2&4ft>fKW%|Uf(Pu^*rKslMUvL` zwYlH!eMnrm$N=Q$LrFpH`lWaVf=ejJEY=v*u5;I_1UxqL;g1+{@4M&Q0L5GtGWFaA zA}}&zCqgRj3S}cOwNIbJUZ6O<-&Oh9GCGfv!7g?^z^)TLWj&AfjV96UHB z*9wNAPzG6_a9eS@9tZLzB3~B$UQ;sNj;-9f{6AFmVgasmPFG3$l(o4Sxrp_Van73I zAceXub~UFls1?R1viKIw!#zb;Z1nz=@et)YqX<0aI?nenl$=}gEm*|!xH|6t4oNC# zM`q^f&??Uq5S*}W`s2o9K6N}hag=LfrvKQBv;W&Q+w1kjAV=kMmdfY!IcOEmjC9XaMV;5-V9CvBd+&nzDm#+` zrH6K{l1VA7u9;Fgff5YZx~Hu(fUAfRc8-F8)3opX7`=@LtO!g4v%zCa!n~E??`~6@89X zczh@g?^=uUF)(+^g2WVZjC6G3bYL-VDCN@GX(j#8U8<+fS`M;#)Jzu`)lzw$GT%Ut zLxR~VDfM?H>-sIv=WSD?sLtyK2-?(EgBzc4-nNuxz-OMa8uh%+8hF&use+K5c(Q)) zHV+Q(c;@<5=UVYS?ihUyv2^+g!Bwg2JX|z&J7H3Q!Pmz4=Q{+-lPWd$LNdww;}8!~ zv$LU8n^lSeJ|ab>i5fDG&u^3V9&9Z_lPpX;djOl?(_D_68-Rn?k=ZkAI*p#!@}N0J zjYZQ-ZA7cnfQeS|DeyU%T`wqpZX|T(8U+Qywy$`!^XR2sm8D+xuq%2@58=yjo@0jl5Sbu%dWkyTP6cu>o>%G2q^Fm z%sxR;Yh}Uo=I_@`??3onZ|4}M-j666GQaTl#j#&5Ta{!v)kk=R*M#JLnms33$-|Jj zDK8yczP6;kR^l?5y7Oyae~Rf8lR)tRsyaSfDImep6<`p`s`Pa~9tTgHYpoPufHJ>4 zZTs~3NN*fd4z@>a_ATWi%%1Y*SHb&Etw_I|gn-r6{PkgbUKlDE2Tb-JdsY}`J1`g< zJ2*R4JN!VDsI|*Ih)>;EcxLcxzgwmH69ZB}s~d0Tko%%2{HD^)%}VF`p<;GayPJbl zn-FeIX(-ve2~(vUHlUY2weem5&30VwKOLu^!U7f`8GVn9z$kLdUGj8i24wI7E{(Q; zQUYi&zXoI*!{>1e0Z1(t=EqVq{loxiQQqa;_9pPXe$qXwe&0DZ+`P5ltc^YO1qBo( z$<6b9-LZ7%=sxtq(|CRg40L?=e$8M1>_s6OmM3Rfq%wFwwTA}@pXY*8+ zi>_!_;V6$w#HVxhY&>mjRVG4Zo=8 zp0)L(Rd#;P1OxNQ?Ck~QX3N&>x%s4|7?;H=ovT--QFVX%Beiua2pz_mBq|Gzur#)t zG7ug=s1ue7k4E2P+We76kxIGkv{u$}yD&LJ-jImk9NyH~3_>vxMJ63S2{sY+0jZ}- zdWu5gXgY;9rf|b~il39^0lr)@dA?4x5qc#MQP&TO3Uy7#cjCuj;kB*3S4P7OHCc9* zK4Av8Q%*obWl{Bs2tOi^-|pp+qTh;xN&6KT|6Q?_fRQi@x(kb@0zamHzcH1G01u?| zAQ_bjG4rS9;+H2Q<1trl+QV&$3__1i&u?;!L*sK4=L7-AK8~KB#SVpq@)|MRZR?na z^eoS>`x^?rOWbZ_`&53bUekiXr#eSGImOy!^!pQ+HFT^>!Y44tN`uh03Tc54RPBd5g z7y?cma(5%{CoU4!>YqrRP^N_fYo@$$OU6{Xp_g+3qbnr~LGyc$Jz)UTymF@6?Nqg! z=DXZG5+}5uD%47DQF6`Onht}bmg>E8=Es4t3e7fq9Ci-68TBf#JNac;`t-?j0e?(| zVSH~h6conIU z<0XN{mB6fNEicUx1%AVUyGS~M7x-IRM(+j~29lOpfxWe(ZUTTMUG0@r;QhAUe9y*H z7%yC%`NWsTXltRQn0ZkF@1H@P5OgUT)XMw4i_%RUpN1M_4V1H;bc5=%BsrVoXvapq zu&uWhilYmUpyseSt~Em?;clrP1L0p~{bn@IMPTdLtK;H^PyqV*`jz6uk{ut9&5W)2 z@mZX;%vjlm;U_t6KO}e_uW_M(F3R=@)LLt!J9rKy{KF7~!}7U^K*Q|-K$n74AAd!H z8(kmA&JIB{IgVM20Zkvv^`(?qjDYV>4P@*Fp7=^H3r1nfu_66^x?qZdSn*ClFbhxT=_C#xR$X6v35+J3lxAPZ#K>m}{33 zasBc;5L3_4q^vwotxVMXD0jp^6XsX}@*sPk1w;c$g;FkH@tLF6Z@;L8TQ0=vGS|d+fL0<(8y>vMbmv^#iIkA9onZtF(i* z24PIlhG+~*J6t~vZT8WxCfVDXq)VG;!VdM9^iXQ{3(v*2V2usN-v_O02vFOJ)GxUQ z*+MW7pvrb4gp|2G=H6bxM1n;s4E6;4u8DZR+L9_1tS7}8M?nL0ZOwh;^b2X1p6p10F`ml0<2UL+E~AHX`z z=NF^J-8V6CBE8G@(>Q=_SsnLvqc3Ss+oK}Z%bS1#C(qf0E(!@aY z-35BpuyYGswBN{GmFlQI8ht!|`n<$N_->~{t7uYc2DNMVl5@d`9=^hMn8@J=I0xpe zM!XfAA?73QPkX=JqgDU%2umOErg5gCxy&Or-n~AFsAvC!i}?oh0!&zC z5uYS3rgkHYrNwF)x+=puDQ81})3l|R+2##R1{{2B93hfvZ`ZrzcmY#2lp8@Q2bm@i z-bX4va;8E2faXChZ!tj@BY*6*a24OggEf$+oX(@s-3*KmI~mTe>%CQocIPOY`iNTk zZj(GJ1WwwEZ2ERd4?0c5h^XI+B>9>(==>h9A4dz>Dbf5S%gxv?Lp(s@%#yi+M@>r^ zua|Yx8j|cUl^6hUIrdalGCKBtC=axsL7N!r*F6Cv-xnu3CJXb5T8frRF3Cv*rrXLh z`Rw(P%tQu6lzlMGn|n4+>c8(8z(er6i%UCYs)}?oQ5nM^!jRB6kmx;85ahN9YXQfj z>YO;Zt|rZBDe1)&{*J9m_UfxYu)9#gLnJqT*oB>5RAra6`HCvR6gfcL&MQy z+5U2NJk8#S%%vP6KAS;wNop4~5Q$W_3kNe)6p-fH0t5aoByeBLHGed(-2!U?#g&>c zD2X_Xx;bEEkWTpyf6z_UYR96UQJctXtCiE!1n82qN+a8cFKnwtLK>ZrgdnlYbG%HO;r->^~>~j`j-^#xqgbl$F zRzszIy~?hF^&pKLOX$##L(108&@8{zS%Fc{?MvXT_E*vW4c>LiG177qf@5|lSt*<- zU~dqoXyBAHjZ+V)-+T_*65jINoPn*>spMa$+0-s1Nd=&9UM$8mp+#+pI{^8aYz0A^ zqa4CgR+f;>j~(4mE{&e&KXJq-`jNE`hj^U#HGwPLl(FzQW%qb&xHzc}sGCFm5V25u zEliHmb1*1t8C=H&Fz0Gdi7as@=g^OrH;z$m$~dnR{ltX056w7uP3`=X9|Z|e*B$!l z*cPio{s^i5MZw}dU?bv#1A{km`c0P>>WJpeUwt-b2N>?J;LV=}yyhQV&x-wFtC)<4 z9Q$rQL7uC@2*3~pF3Rg^9{SEHqfFhU;@x<|@AZ=IPo>igIg4Zy2@g#Km<@KH2VuO_ zkmeTnW;2M0zShq{vKeBoMLe~_+X{^si(f@Wch~9b)N@^a;7dlNwlKb zpgvgOi|ZFtsgn@u1ax{jddQV=u#rtEziDI`D|&i;ag*GFuCG+LYzc&wu#emZ4wJ|$ zt=*&gdRrht49b;X2n)NwDX;9LgF65w<=qt|7bfqkRL-=)aL?T~F1iZW*}agC6{JkW z2||e2^Vj}cNT=&eJPl?$eSyN>9em5Joy8gxB!ie96fVF6%pwb}L&qi=*;l6TgouQ& zm5Rq7FqdrsA+B>YS;O>_bv3Ixu<X50m&p%pl;;!3@5~*!V2;1p>?|*lzl-HiDwrhfT?JQ zdzETMxXXC!CLME;*=lpVKlB+TTh~jDzB}F%m-^89oDG7VMyHallEqRN)Ef(CABCi^ z*N-o8RGgr<;K;mXMo3o7n8?jupB4eVh|oM2d*o_~)!#)9QKKb+_Wg~>A>L`ufy~+H zDSDUfYjfN_4iWn_8#4%Ln4W+uk*WI%A;;VNQj>}X5fg3?9x-^i)yE+?)C3|K$`$0F zcuhs(j>E-;0SluKaU1M(_e@XpX4MuK?`d&lC~*mZVQd2E>K|_{t%C8p0tF7n`_r_Z zyU&_MG)e(`v-d1PL*I?Q8pTmI>k@kT44*-wAN`J>?SWib4snGdoMYU!A)txn0++*c z$rILp>`NJeScqynErs>e6Sjl=atmcS*GUx(nEkV|gTF(FfESr138ibX>*ceHQSEyO zdn|0ljWkq9QK0iQJtr`WyX*S7Uf$5dZkY6Y6Rb_mVCveX0#m>VuGZH$sFXzo)`QO6 zNJSa+I5IkfqhW({d~%eNWoo=kuS-@&LEEC77h?J$6#U}@Nq<-jqH{rq&yRKLqjUC` z?%pG?f}>ve9ztWm;hT$?d)%SxEcsQml3gGUA-vgK>Wa07{k^e#9k>91 zM_ai^#3AIAByklA{^Zr~%QP*GUr`wKizmX^gBa&rIk|1#xbPl#sopFxXw^$SxZW!C z^lWcQ;-r`^TAIIPcZ;`*F9XQNLJ%_I_Me5sTMZrwH85)1X9;HQ2@f)6J+=Lgry9XK zUuHRZx@-p+QCI*zxrK5(%eCz^lDW})9)(VxdebFCnHYd*PpdE#kduV?6uC``Q*l51VF07_)SD z(Q}^5J%d`hWm_quP=Z}l&wYFy3qLbhU%u#Z%?~eX;H9w9$=(C#2tc<927SLpwZC|M zM*>~?Q+Z82btEuM@#GOIdZ5idF_69CeZYmV9%PTvn>gx?%_uU3B}24XDW3&pRcNP< z0B*j^H}&mvsC;@w-XBNA9dg>8gjpp?1xzXXw^o@88O0i36nT5bfOvur-ip);z$8BR zmA7jL-)Z|YfvKt4XP`Q^;=|J3wTI62op{3D2oHF+K((=+5$%r5J|0~%U1V)_v4fTI zYauu>?Z)lWk#ZXUhDiyT!rYT{CPTvB08pE2h;}1Upy=jSrvBr|)+fnbpIC*He=@rS zNQhB;UBWK$^-)71x%0ZNy}hztmk0k^PoPBp!8233KJqU6&V*~j1lrb5NvMp$9A&vb9xWme_+?2XdhOvhBB>&{}11{h>zRR&c|#2 zFZPR1_5s{V2*G6h2iN_7irF<>dh{yle+$YfK?!wFJc|~>HW^ypS^rFK#ta9w9wcnP zX$BkAv;o=gZJ%Y3&goz^C=r2KaO+WB5sQ+9h~0yq@=(P-pK4nziz>wuQ)TqI8*#>H zlV7Y`-B1UieQT?2t);j0s~#ma+;2|+JOVGcdoxN4+CrtCPG${q6QH2s&7~XMzC0LC zG)(9_*Q&}>W4fru&eDG7_JmuBjT`H<5Q)zook0zMl@HgifNR{yTf>Qk@`g_zItbY% zeSAb3i0PVA#!|AV3OUOkfW~gvkA8gYdwzW;nY}&xIX@|D$0_mYx0Mh#uDhS|5ft|?j6PHp>_Rzs>mzmCUT%{#!2UJhG&5Xt z*}{%$wUd>VFX19_fP>>A@!TfvUrfI{T#VG!u}&!J!xH2K9DyOo2%b>x`r*X?0R9YU z4s>Ztu~~liYjYIDyimP?#Jn~^&i_nB@d>;sxh6A(UW;5dg%JtC6W5EG{?G_Y@E7u5 zH_DAi6=JF5jzX~`^tqksJyCzy@aytXL)_yhRIgu@9p7jSTzRD`NLj`{lNv^V=12FW zHAVb~5gD!-LZTYh)ZOfm+<&>g|1MU0il}7u&uwxgukl$mP5V7-juE+)+!mDxsqhJ!-*7npKQ7#X zDnwG?mtvz&_x%1Qvb<8UF-fA)>itW6ijPZ>K?CrR<+N}vDWg%Tqdge?^3W_Qym;~@ z((~Uj0TTs=U7vnsj^%z*lVve(>4P^udjo6$A>aE$69s-mR2bNAL%e@Qc2A-Q3p!a?hS zr%L^!P{VSv%{HxQ5<&gW`-UnkobLgmGzU)xNO`#@vB2N|7*j};d{YJ&+GmpIAaVE* z_&LInwGb|mF@#|DSK!|y@>jhS6mhL}CT$~I7p2v?VO=O9f&Zuj9|FATM}&^H%zV%R zM{ur*Sa@~rkd&k(+rJZs1U5vGN@4tGFDZh5#E^a!g>rB-p~Yxx%WzgC2*=90-tHqy zf&gUPiBeekBv}q=d(s@%EbPpz|0Dkk>E@@@4^LwEIzLJ>E}=f3(&)(SMDMCeCH~|| zfA3k(^Uv+E!Zpv2RjMQ4FtUH{7-MWh91YZOb1hhFKHbtM!Kpc(ugzZL6;?=XG0>y8 zv?sylH~3tJ`G_bZtKzI@`im0sC@;4uL}3^DuZ@^PQ5~QM71XJ-Tz*`(&S$x=(|(jR z6qmyo?>#+KA5<7HGPNB=lFMtk7JRFAPB`T;u?L<)zgvC67~qcMg<0X4BuMdeJ{lSx zt#x{;O>>nRCsz;qQtnB#*btC>C}wN_fN~z=RcW7_Ol`kxbUQFPaJ=nwDDH5C3>Zm^x;*B%SfI|k|k+X zC^Y$XUOrQhJMW8gv_i>e(3!zluu3Ovw{P-y<^XJ+kxIlMgTM-JnD zMy@}YFU&WbW%@{B=Qwg7FFXH@hL525jT7*7`fh;l+dmm4*9gsli<5=G{8DxfU;R?) zi)M4Pq}7l_-9N;*G!W;5RQDza@%#_B;bF)DXcodHbuG8tAvE$Nn^L9(E)#=?bp2jBW zw&CNha(M*Z&*wc&uU#+oQ4Zsg_VK(!Yc={8hU8=e>?Nw0ZudvHp{;-5*y;}-)hl#U zAFxY#f$m`FNdxNN-3~+mnNau8SL4Cm@-0>O5Q0=Hy;i$wn7ZAl!~3rnXCTfHGp>%fC$G5@KRiBuNR4@ORv z`wtM;X6DyJB(_!hb-@ty)tE``$tXvE#vRP7Nr#bmoQ)ctO)L8A;0a~@D5rFGqitEOv4*5y$ z9YoMa;R4xTfZgMxa_Txh)?4hOYJ#NYZb2uqGE3WE7qU4}{GY!CS8;#GrJ?P-(j~Rq zX@?7vMTxk)+QL3_VTvCHV45xVJ|{Xw1qGt#%{wvqI?!cl7IQR1nh1MO~S+JCEr zv<6j*4?|ZO7;66yS#KFv#rMUH3W6X=NrQlbgmgCoA|Tz}orms{5Reur=|gvSgLEFc zOB!hoA^psO-~Zm{bMG7V4bJR6d)BP=Ev)A%Gbs_|Vh<LfY7KB z`n5N)a*9N=5j16N5`qoZJ zU6HrFIT~I(hswktk zloh`31RrB5Nql01@d*F9yCboyOxO3%MMgLTpdCA3MHA07rDKcdGr(I2I+W1sHrLNS z__=~Af|A$KY8P#_*BAMGmS$ReDu!9Q7w|m{ew-oM0&8UN(RoGYQsV&#_vlL3Y-}y# zBp5*4l~S>Ep-o!7HL?P3mcyT>^jlJEwq&R62?+588iZ;$8pFjeNWVe;*$-Fh4-$c% zdoOrOS95Z444&c+nmA9q)|hHg&^+TOu61$k51)Q%+HN5dHj_J%DD9Ez5b^PRBWC)= zX(cO9OK&8@CU>q(+7|m%S7$C5O+M~dP!B#NW;UIZ6vbs0YrM6fyUxZ^Xp_Wl4IfJ9I1pP zSKn)amNqZ{(yz#F>Ha)X0_tt;6p`&sU;m-S(sm~crw1l33i@3NMemb&hjJ|ozd~yc z3TL__ECYA&x%X2h%>HWVMCY4z+wqEqFKW<;JJeIApQg6}G;u=78 z;n7AxwW{+c-eK0kU+`$*+Z~~kk zqJ5H)iU-VbsCxCL0l-|=bn6W5JcAHpVA#082hhV2Me3Y9Ct#1El3_gtXT0$OHiiKu zg%Hz3XIEqou7O`@{oH+C-)R2ZtG)nhtRPajX)|x|vb}!@t(Kb-=1_1`A4*o0>W$rXShPWk-NLPJ2gk7r34sB#C0Ia&T!kp3d=9@*HV)Eb- z+~&az>`+#2blR7#lYahNv$!>R7@_Vshk?GA6u43su#(u=U@Z2P?LbB7@d#wCiz~?&K~0x zeb9A^0u#3nXwI>b87;foHl6u)51s;D8j0bNM1y^Lis*Bwx6J}w-f>dyv3#VehzIaI z$iBU=5W*6w+W=kC1raVjG727|%ypRV895-J@-dV=@1ux{ovSiiaMV)usOsk~s*~e8 zU~gCpr9+_n3h3$x(WDLC0E zoeRzG@yGI_ zQtsO(0}Xb%k_n?ipEIO=kuv&c>3@!DdO zX&?orw+luN2*Sm@71LnWexh002XPYT*woG#cKSn@w8>P!NXAi?*8vSre;(`IQ`7Yp z6KIuyE9$<J@YZ#;7j>^f>y0962u;24XN0F&A?>s*H+_@NV6R4(%~w-+_m&R$uzD zZ}&ni$_6Kti0CjMo*J%haqjLMBh zX#L4GVVf-8?cWt{=TGdr{ycaM?umYrQd1U!(w|gNw{0fllM86+?UCTI6A!32V85oyflO{Lo|!^Z z*tW|T}Wcm z5?sExM-JA9hp|?8%Oyv#yT&j0wKigQO~Pet(<}!Guvl6Dl>$xFyA%d%i{L$-?pPa?ajUE4 z#s*^KfW%WAyc%t?#rK?g`x@|V^C2o+dsU_?Nd^95 z3a8qQDoc$4F7|ZX^*$A>SL`&0)@}(10+*2Qs_RsYe>i^2eiDueHoS#~;tIn(P;&b)nh8iQssFm`so5$>W`Ve2%JE%6dap ztLCOf?kLe>_fo0k6@%-&`hDfGOZ0R|bv6>OF2+K+=JLbPOka4dMAFn$%nVo@aJN(& zeJXyOeE&xH3Vby+%cZ)Tq=uv|IME@;R<=FYvGu#w(EGb4CJ|+26GL^EqeofABFJldwf>wbi1%~eE|Pi$5EKq1@AdR5gh@xGXjly)y0jU!q?sF z4$ChRpM)_!Gh<{e*8aBh>$)Q=Ek8h ze0s&(X~cZZM)A&6=yb+Y1!Z-qNxNli>vIGBZR#0c`aRWkVBI72^&xySHkj@nF(gs3 zDvO-~^P^KlWVD3;H^dn0sOFmBRPEZg{BXkS?r_p_-GOo8J#A{P`|TR$C2DmO2R$BF zc6#`Iq?Vc@B~7han^U{!D`I2qI$lix=`z@@va`oP-B+-9oOL3Cg_!U!d6#T{nvD}c z?yVb7x=3qY2OGlA1YYk|KU7Aul)|S>sqm<-a}`Y5+1x(iM$00rxwSFxvb?k7vF;p z4p?OcrWy`QPNSde(cefX6`;1AnkY65rIx(xqOfS{uSUz-1%O2Jzr*HIzzV}95dOJv zlJ0gVPY+N!eq|b8Eag7luV4MmiC;r%yF_D~a(?UYKawB;*J(Kt(SATR!5N+l&=gq( zTv-gT6Gnw)=jt5RSgAFiJL}VD`FwlExjF>>Eslj;eOK}HC|_p3Bw z*KBn9PNw^=_scZpa;H4B7AeO}HE@vt|Z;Hlw2Mi4`X&qxW*DSL6SCd;r{qE(ml zNsI?D{j59mlDN)F3Y#m63eYn|NdEWuu0OZ;Sb2)lz2gvcbs!CP76wzHB%$j7qqx^L z-^!S6q3a+p#lKI#+c(?%Da9B~SJpfp%f34*`t+^EG?zwL`~mpv)G9e`ap%Sp$?6Cj zjc!Xl^QJxvuh07&cOaRJXG@G1YsKg|PpO>3d?<{q{|p2KKceFQru(sgmrA`sofh%qpVWnFKebr?9?0U4&CYp zpb<}vHlLP;dWrQ0c1Bwqc0bnt+stT-Q0QXcIbX6(cDst?aJl4)DtQGsg7QBY7ykvY zqCP^ilz05W0KRWeHC?AI{8%D|-pZRHEPf}CJfPZp<&*gLMGp9nxOnR(gKdRckxlEB zsXJgtqfEWFcaA*)>?PSEYR^Am4>Y{Gj()-$pTBG8K3I_9bgd4luG{FfS@KuJAo?<1 z@lJ9Ig;%8>1OojgXGs&N;vRZlrgmZlni}q;_z$OKXNM zvxmIG;BSqvKmaEfaw+B=gHGe*N9Er$U2a?9Qa1pW7eiNC|JzhQMf`uKO&ft=F!}uC z{esL#uMSG`hjY(<+-b~Rp_O|7D8>Fl)lv1)E%Y&23R7VMvJV}aJ>4?mMk<0Avqt{o zTZ!xz|Jy$zY`7kCpQZ4rS2Lg2&&ZY!07|K40{C$a3D;QzB&8l2Gwo%XJpjF%jpgXg zNU8eX{X{@S1o{%|l4iwTv6(EXXGXrX@E|2no71K@TAYCaoG`Q7>7i?zR@!;7S%0JR z-bR||VKj7v4?=Hk4vzS5xM2Q`+3w$y87Z%Z@S+5qXn|G!W91~$wXdXZnf8%ps@_ma zzmEL?QX7%gn!yt@dHg~kz~701i|g289otTdDF1+Q*;5l~myIHM#QwRrZywM!RaMJk z+y8e=1K#Xh5fAtR#}J?sHA_rg-vEs+4ELqEgQ)z zx49{Hzh7pgNc{+jc`Ten7=FzxQ#t_IP%^o4I z^y%N~8>Q_UcsnK9a1jo;t2egMA|8Z>&8nG0k~pMbgjSrhNfxtGcWP}cKYTN{tX}`x z;#ZidYKRS+Y0v9!aW^H%3-CUy?gBoml3qxO(0?HLH*#=Rfy4;+%-j-XYJ<)07M($& zkZw$5FJ3I?@8fs!asDo%K`OVSA{cW)1T>Ww7Z+=0A6q1>Ibanu$?!dcirYxAliE;e zUq1!-v%nA44+4XA+8X0vC@*(eSCo^vKoIAr$3sDZ3)hOgwXPwhR8{>Ys*Vk$RJ4Uf zuyUZ3UYZ@EW1ok(=GKRqFDcx_-Yj-rq<1H&TB>caAUTpQsAoEoVi8J|1Q-&PWqCGn z=4{*UimMddO26EF@*9a`yAfXj&=QAsIHcJ^J9DzHxAs@tf)5t_rjRt9=60A9v*;3r zHWVo35n*hj$wglMoU1e$+yJ~~KP)D4HRd9Sx#p=zrQgtmRR+0?Ws06geZ3ViEuenp z9?cYomG<=35)>f+LM$=TNzfb-blW%8sJOD=@Rf{Xmuz<26XOBRbXqs*TR@_sPC}=S z&#u8Z?08V|kEd8Mw;|MNKlC21XJEMU@Zz$1D}Xt#9C$7+R~N%OQzA2<4#6xk{mt&s zeJGgCbch)dLThL002A?_h`Bp@0rp*Wf&E|SrLHZ5s?mIcv4?0}i*MC*oa4q89R?Xr z(=MBP8SAAO8@f0z^cC9?{LMB1Pe6PaQ>!{BXx^CA7v=!HXi!Y&u3tPR3tjcnxo0O0 zz3$m`1pSUho75vjnikiJIbHuHLpRM$P+lRw<_`oef2nr=syk%rW&_c8Y5v(z1;4q-sgD*{5_h)Hv|Dlx_Sj& zx=qjuUMY$Fq0{re(-wI`-k&Kw1848P#*0Qha3@zqII5}t_(lBL2!}2d5EUC*HueZ3kq4FsO|h3VMOuh3zxg&tyjUAK(Q408$bD;TwN+IraniKS0= zXb zEgDuBfthXq^1!8{^4Kwru`UnmspbPb{LUEmn{(2v@<`_&)hUUfn4BE%!s=SNvHI;9 zvFq%_N|$vH_v7a)xK~5Y;}Jy*xa?@Eq;u`F$wB+>bF3HA{0w=$4a*LlGgq4go@~w< zEt}(tey>R_Dxv4>Q{+CgN3$+Bv?8gewfzc&Nv%H%E5QY`aS6S_ZydgByKlxhoKL9@ zj){|jBom<@l&YaxnxTw4#SZJu0HL6J?2kX|+SGQI!-TsuLSysM*B>=`sS?(dSk08i zo$t*ImNp$)4#XZXWQb5DghlYGmgzF^9aP7RokVgD%u!=B9n>a&aL`55sxS;ZFcEM+ zHHJ|^#ji>|Vw>gI-*n*|Tl1yl&J*~|ku_WD$km)i^f>srdV6vllkzqzv_{(M_Nyqe z7p^)LcMK03mfOoLQPRFVUz%F7@aL?H!Y5oY^pbhVc=NIgkwkx8=?}L`ibW%d=Nx}9 zKXD0N9!kS!8@!S@tR;({cV7r~H;p9=2WDn48bH@SYfIX@=6^6Fgpekp)W5%aqnY>( zAN8oxi&fMkRW%3P@;XXETfJ4idgW&MatJZP^Vd?z>~QF_l8L|QEOxbrW=?dr;qdEk?XyIj_rm6yE^R2W2M!A=8g_HTzp zJcbZ_&9*cs538rT82OGO`Cd#Nhp^s>`}&yrs}1_>e?2gYdfnX6+wgV##$x}S!UA5F z9d%vx;95->DoVJ0QTW=Zy~FM}SjZX6nxZ#-gJD=? zuSd#(6yMBQjn&L-9rM5mOHrjoiuHW++%(FrjQTRKYV>NI`d*cH;ov}OLI{U=GAC$q zsyhcVZDAfIZI#pHUNw+P2JMIHvwnDxZ4pcNSd&QZ`;kBr6`cjruA<-7o+&yI)!jkw z*3TjGE7D5nA1K+&2^2?uj;!)wCsxoOD)R2A?cx3u<|V};LxDVRH%1bAF7=WotVU9r z$Uf&8MxK;~eB%gU95x!LH@sjs9A8ajK=oGD-BFsOl1(u`yktj9vh=SbeiP5AW2yT* zoq5v#D+g=D7OTbAstY*COV3}Pg5g`W7~%_x&4fbKGD*fUdd4ApO`HP$0D;i)RTIi? z@;$zUJ<<>pq~^j;FPXV=zAs;9WK|UThj=vy&LvQUZ|20OaG6W42z{nw<)_Ep#2NaX z@y^*U+h}A9Y?d0zVEq>NSUSmV6 z;DM6T8|h9%Aaf(;GTk z2aAVY2-lZb>q!T8-vAy;ZBoyDmV-rAcYs>76>Jlp5OdhyJ>KFUrbe4#pQhjKIy^U0OoH>z9DD(Y z@A%QBi$`OXd(}zaM968$9uW)FRfrpjlPK5dpHIRS-lCJ9kxeK>X@iu!{T z0X;u6OzAT=GHbX-VgJ~g5ZClJCJI&b9v7X8U2WOux5=gl*~(ZcQ_b$B(7*^iE%VHV zFrB%YVSOoJ>4wbdyY5%?CZXh+L4+h6Z;A%dy|0TZIM&_?zxasLb+RqXr~@7){rnG3mmIygZ#^8xR>}vsr}F z<8+$HG%_g%#IIJmYoV^q(EBqv%aiq%<_ol#;v!OrwBKM2k=U-adzv%;0RFI(X)qM# zDnbMq#p})#9*pm&tsAF|3FlD@IBpn`_4j-*DY!&2$vC-gj!KP4r9-Qja7*hwlx58D zb4^@jAF0EaAXlO!l5^Fq?ihbh5K;rIkSoOk*ppg zDKPg5nbOm67cW2|f^F&;H=n)&ZCgT&+{Za{Ox6YY?=5~b_Gv6lQ@1JG{JsBt_KnEc z(vGukQ+OOVfHpG@<`u8JT=rZDmbXh~5q1N-)U>^1Uz?dFR%@7a&w*@?_%W8}Mj{xx zOP_51>A$R+zs*gysZ?3)YcDeF>w=gj1>(iUwEW=ML0+CClMb#N5k?jGO^C33e$d|T zxpUk@yj5RA#>0?j22Wy7~?MbDBhOUX*kB#Qr`p<_BthfV0M{wU#W+$QL<0@6TYzX`DIWxMpdd~(lHuD8>HoT@H%AdRe2gb*c7Kw$g# z^!m&CwpYckD!TMPapR-dDKWCgl|VN>4TrYZ^`>*4F_4Y@kU&YeKv8!8DP>~{@nuGdi-Li)j6C=%{ zGS3Bh{ttPF44hc{Yztnm)H<>z{;qqdgT>q#_b?>f~(H}{^G8}TPiBhLGd{6 zRrm_==5D*;K6 z+`(X>5g=+M^yjtXN+?3~6JARo;#)$d<#g*cn3^ys6LyqfdWT@5b{dV<%0E@(956Ju zD}Ocer>qW*QS-&WiZDMR%b1o6iV}}38IHJ||X{*#nF~~d)0l6&Ymw;*S7K~MBRg>?1KL~F!sH-fx)I9mK#Eb?B2tcrr>p`trQaQgd$}j zz>)o1a5l@yjptnYR>06^q?F+;QwVO-sztd%$YU~|;je6oP??jDDp{LOE#a;OC2^2q z3oq=VxOu@{N*-)M3v;uBk&}UsL+ffce(S$wPCtRW#Mx5sxE-tQDy zzrK>Ks_;`->Hq{gdA=&>y=skinr#aLjh?5s(i9uNa0{~I3`5-D_JayFZKJ*73%oPU zD%#DNLyvC<@-+oYa08>0pLPm4@`ekQzu*N{ybMHA1u^NhE^4pb%d)wP2tc9N6#pYL z5a2h9g<~P=3gd+{yvo9Y|IQ4rHgwd!ho?_Aok(UuY&N?RZ}vFT5icL!zAaO(wnQ9$ z1&`0wwqVmFb4ieDIn9d4(Ii@tjMMbxWOo=_mOEqT5M5NKfR0??@xZY9y}Wpw;S!8pHe-G`A8S)44>DQ~pBH5bt)Ko2#$^%}?_VnZB0l(**W;L(!j zUCQ5WHvjSjkhJHEJ!|Ps$yO3{Pg<|aGr_5b7zHWzs+b5jol6fPNzT43Ec4AF`Hv0; z_#u61wW5J=h6Ni3D<6_*0lf&G^Z_3Q>SQRjI~5mja(jmtODguiEe@-D>k_ zZ2(;Do?0kg-P$e%?dVisNJ(Xl|91#LJ}3bhxJ zzlfiD;GP8H>zarD>!(hS1%hQ>CL4o)Rg`OdzWA%wHox=Rztn6-Oy}vQUcr%Ng$z5` z&|2GNuk%B4DFFFlArAXM0>sP3$*B)W)G~ls{HdVZkOV+BHLup?MkRxkm9Mb&Ciq-? zB{E|Ev48+DH77iqvQSc(f--e0o&}FB9lBveDR?~=Wqi2UFg`s^<+wEz4ImF!-RMCdpFj^k zAtQ2qqw2^5ujkF~iot!~IK4Y1dk@^YE!BC8VHnPwnX3B4{@rbXoVO$ln}VrrL7701 zjoR$;s8=2_CAtpHuEFkh{u4y@5v!aG%S9u+v#afNz1R~#Ef)WnSajM?O&p=MBQLg@#jVq@!gJ5j(KhqC*d`fVb zqxR18|6ZOB2D%PXA2mo`(xlPrG$Ljq?Jpf3$^uy$7pJy2shOIZXt{-PRjh+MW_-ih z?n_u04Dc#I!`)SIDhijC4H(KL33-{;udx0nVDR&eOl6Q6u5_EwZ1B7iAt#wo4!H=g zQq^){L!f}d_uI!k^_{1Yhn5)e=rpp7gqeOE-ZSqoJesWZ9KlDr{nX?}V^?D2Q$cI*EfJrKznox6k1TSgokrT1Vdwv;=H6Ewb zrXowAa!hj#)7l%@8{td@k6z zsownQA>yDswenp7q*!0Q54c-{-{01vAYPRNd`ILV%fp6v+fRG+27U_yGIJhI$hNUx1!0W726VnLu*^u&y@vN}vQLb?A9DGRfe7^0FrAV5Gxj@l zwP=_3ZWy5GUl$>*h^czBdjs>t?C>{M@55k|R>WoG<|5N7gH~-Htc>g7bS@pFKRaiA zDh15rn0BI4i;EDQtY+z~x~Yw>?o{<5&RWOFO2+Mbn=`Qp{VRak(b;8$u`U4J>G|Sd zz~f}C`}8+{>u8$j`d=3-PlR>cOrWr|6NtB?{fN-f+UQ54!$lh!JT-`VIgz8Ir*+D@ zSwKY3F=umn;m#$A-GfUW1dzEsze`CUuwz0-m9k1?6& zsQkGsi8oKoGfk8)F%e#rRVBpml%5yuqE8hnX|Ck|LV)uqk9N(**~}HRSWH&6GkHK| z4=QT^vj&jiz)~hMZp(kzHlK)HokV@L9!QFc*H?jpYz$okZxFRE!u%?~x(RDgKkHg=q^Of9E z5m_~2#CXp0OF*93aQ(MvvkO};77(8<5&4S_SM5$ut2)}p5J)y2dcVO1=&g3CXIh2UOIq-=(dU zW||vU0X50BYtXcMjsJxPF3AAY#HE}U5OQt;VR_ldW3M>}RvXTcfLKh!&QCn}8Q%k7 zC+GkfCp@8KNyqZLOM$cE-}0ddphHWtf#k*2V$mxT&p0nGmz%^CH|~-~_ijlX<_9Rd z9MG#QS{g)L=vw7p0Nsnu+;~QP*~`3ipT@@!Q-BKkwdu8!5v<9}eu7>tj0HPD`o(X- z>!j=NAz%gTH+gvMyGv=yZwDYa)tbPJSr#oWc!dpEJ1#r#V2YSVQ()Gcj;3YDUjnk^ zD1j{1mg9T2X*R*%B(96^0PjbcbRuha@xJ`{3#rGcyTaEuGU5)+=J+hZCx1s8{S|Fo zOF@>5UX^9^n*)7Q7T=3kab89dwgnKAXCcz&q|PhdDexND>StlJydE*;E_h zxYL-4(?8)bfR%`T+nOdOmNEo7Pa$99?~*gPEpS!64QuHf?TrNLs;m3PbEGx_=C1G! zkV2YUtS}lI@*m?2`^%d`{+ygeZIu4m`kukQ@p;qA-AHTOFx1?o(qkE#Mh#1a8_PV@ zN@@L|J=P=&B&!azy+&J1Z58bO0BNN}eKL*#eLH6<9)H@B7O!Zn%VtaZtm+A)(-NO6 zF#THCn*sZ@>@X&Z-w*5nH9b-1!LZ{l;9Q&I#TVtmG)bUU|JS704La;C1&35Y>gdMm zn?DT5N(opTJB@QkKHhA*xp;d|<48&61Rw-&7qyM!BW)2*nxq(Ln&-ugyx8K>z5#gp z($Bl{U$=%lA@_%D49=Upm?qm^ALMxS?0R@Qpa-7@sBtGy^17k)Xje2)_Vy@wMu9j! z2JGI)ViGQfU_CU+lvK0J^_!ZcJ{bKs8}x;wI;3-aNri4l+5L)TU<8-cVtQ`An7yP- zRj~*6ezC!EGhWMvg>pEd|6lkHpg1;OYINR`)vL8mOmP_aa8X(#_aYyabo2oTn~Vb@ zBOlWnVTu5i;at*eXo;O_qFgfP@Qy8D*J-%gO5XH+j?U~s^~S})VS$AM-hc=N$DFZ#6+Y_$P$gKcf!h_1y+UI{+H(?gX#uzo zZ@@q%>)%}si){jw?2G5M$eve7Roi_mMiLNS?50F}OiJJ~B_GAve2_GT|82rW<#%^k zndDV=!l<#D)ZVYrupUK^2f9BKd`-V98FAd{_(rR@o zd!RgZ>v)CRPwA9+Tghr-p5pv6y?8Ouwk3z1@F)39tMR~e!YMuL?mBpKWdX^)rK-+) zjvQ!Ni$1IZ8I1DifcRQz((4%_q6gr8>W5i#P~uThpMC$}3b3^OKtwdtk%oEQkilcBs=hM#c#8%}8XR|Z(ACA|&*WWXLrUqN zB6PbC+LHrUa~JOY_q_p?;2S-ehYvdaitu5HxPNH0@KO${CuA!DQ<9X?Id|BYooJbQ zMJ9KX;WKqW2y{mUFgT(3ytOUww{Xitu&GhpQ&UqbEvE_%Nu6a=c~tP1J|tF(kX6Z$SITZ~GIfsaMP^IM+w<*B zmqvTesvU!0>--`U6rbU12?lw6nTX-X0k+eB%n2Zz23Tp+Z$n&Bjh9nbSvTYv$%Cm!}Yon zlw8EA2q88&FbE^hjd0v9#|X53xRp{FD{K#ip7wkOWb<%=5G2i2uGwdL^9Pkspfw|j z>X^pb^u)AlmdJPjT;7Ivzj80-d&l&#o~gmluwK5q#Jhypt(92j8CJ=|Ehr-BG=8^~ zbWEn#shZSok0XqzIuah$1$i;Cc8d0<;?k)Nyx^d9!c>%&>`yUG-70%iS4kfcCx4OJ zc%5`4_tv``%xB4d#*if4#c;#6Y;}Z`&jws5mQ-b8f_l=Ec5SJEQb`)Xws37$Y(WizRiGi4hkkd?pF;XNtUAj4OA}-HI6z zBQ3S#p~lD=dfy&b1zk-cJLi_$kPJ9-L>tzB?%W<6f&}T-sNZ6p@_*3ZBnEA^$aUat zhR=N4>%1|ju5qnjh*=vxk3b5$F{?keQKg&;WzENIRDrWK@a#i@LtL7kBv(3PVr#vm z^~);*-0|Jub4T@%N219n&U>IE%vR8kd-XX0(PAP1*F1C7EkeVeLJe{V~*ZGJzNP2sy2w z$Y9!DoXv?wOD_{$$%(P$ci5WqDu*cE#jG4f886C0L3Dk_cTEf=;PXUk*QO6Y_bgYo zoYhJNiByFhq2tW(&uPM1c^>L$XT6P023)F4+Qx(Wo~SBesNAnZ84z$#5Z7KwT`!*R(x*5VJTRHb7a%iKQ;66S z(XVNXH~s@9Np`)LPLF@(;#l{%PPG&YFpvF)DM$xcSf`oqH}XOiHEZkt;JHH(q zXxd%VqpQ!Z$Hw1G;)ukzLt;D|-vCja8DoRx@43+`W)gBL;QMQ=@$6nEY`j;}`>CWK zqo!VbGGNO!XK55ORbawkr?@&np;WNCxiK^7wRy}u(h0J>m4i)p$~9kk;6J@ZI?NdT&MJ##q9y03kk=Nyaxh@ z12y`}+=s2Cu}%f-FG{x@bJYI=LD-h}pJ@92_%>!+ht{fKtn;+ueRLn)aj9(? z8rQO};Nd~8s*Zl4;Nldiop)9&HT!nl&k4`gUUi?i)0Ccd&{(wi7Yq6iW5{u+e4D(|% zT>sYWneWo(753#z#?-w*6@| zFlc0Os7?UrfS!Wr{MDG0Tc9B6tQ2ZtK;()-PZ`k{baYb~xf^|c`1)28PN%>0BMMmsl zqznNC@_TIe9w2f{f7ephL)SLcIwaaL?IZrk$sMToEf7Gm+ZCiVsuB20z%^EpQZi{p zI@>di%#$!m0un?I;z_bjvPApZT0o=#OA_Pnz1_SR6G z`#3^AagiqC8Z@*#Fw*l_I*nLon%R!GgeK4ZSVDb2WZnK_(ZvsoLzM}PlG*4b$Wh5u z$SSvxR?FLmfr$@ST!Wyfdx@Tki(tGU2S!((R~GZ%RYwb6mpbuh?;t{9E73vTXf)Q` zL%5n#a_#%NbSY(FkxZW2-!z^ZejcV%MRoN4Xz|7k#3wZ;P>2vml525MKLIDV>{ZD0@}r^Xx{LlcUs5{0T{A zXN12JHM}aL;gp*m7NWw_zS;q4FJb)+1u}^mf0M)k)|qzsx2vk8E7Qw`D-)$>Mkg_d zQNf>nVGT{#O>Q6UaoWaiwzY|DFgZF$q-c(BEimbG`7dyde~vO6r6}qB1WP2@3G`*M zG3*T6LJ3Mcf&)qN7I)|p{M3iyd3Rf0UDvQaI6hERYStz5i(LlTj2+nazgiqv<5Ug- zVqH+?R$&<^&LX}HZ|7XEws4^v=~ijuQC8I#{Cp}OT zdQ;&hQ*{?$V<58Jiwv z$PbiM#@-(>6`jUM6m0}kd#Rhsj7GSOH#dIaR-~0!#E>>zEIK&(V$nkr&4zPEv)gAb z_Li9l>)32iy3dqbYSoH=Npw-r65F=}kOe zEQvStmGZz6pwKOtVP+rAcdL;2Kf$O?isq_&iS6VpN<*a7h+o7z^7v!+xt$OO8Xo9| z!<(hMMErp#^3IRr7wpM1V18lP`TDU%ozr=Dn>t5X!RQz?b!2qJY2WCb%a+EZ7S;Tx z#P{_A3(G!0h>=bT#{yIw@^Pj)z*@XwfG_a(*=1Py*+93w7rN$B!p^e0e|2hkwPR3L z6~VZ6<#6t8xQrM$Z5UfgyJw$U?6=5TXhuqj1dGjr6TySIsld9(*@ru|R5}X9bmhrs z2_GYBw+EAYsPJ_zMi`SQKTRP!f#OmDH28VjwM)Yt7GOQe5zQ0HNGa-Z#6$#aQ1Hz( zM8I=B7kQSR!{=hq1 zMfVy-J=jakTV*s8g~&wqcst$Y^+OOM9MmvBX9%ItB-DnBN1`ryLu3)iq*A}8NE3c? zTroESZXymqmcy(I`v`FC>vvbOt|VNUw9*7)$0`$X-+AVLn09UUcBa|EnlX82_m-I* zxt?_hqtE+>JvFkvP`-RJ=^UC~QtDgRfs9CsVo3aK>h0jQVqNkgAiP<82(yiD6TBAp zwr%10NUrqUy2tI(aP6byt_>GyuT~s zc{Y>dOAVqUN#}18!DKxBZAWbX3Ijyk5qcsfKF;_6j-ty&1>!2ynNyGgfdP= zy0<_Hhi8rkP7eoyq7?U$<)NpL?BFW`CLBM_5jthzuV-oLyL@$8%1E)a=6oy7s_3b$ zdD7;DWgef}EO8C`Fxw^k65wq^0pU=Nl*4df2vOpchg6XC+So8)ZreFrG1qxJYKx$V ze@SP17s+4Y1N>gi6H7ka7v`Ijna`cJx6V(4TDJQSJdLy?&r_X?2!)qN-%4f89`rY`a9rgitv5K>DLZKb*YSg)w=pc zuYHsK#j%OANL)Bsw8=h#-dO=z(YOb?)I(V_%5Oh}W{I8~ z1ecc?;3FX7zrjs_7=IjDHA^`uTW|eMRu?^HK!AjMe#FT5oEA);iRl9W3rz1nfIg7q zeURM*6BQ*y&lFX z6?2FUZ-nb-4DPiY%=Mr|c=27x`dQxmJ3N_T>^uFiaa<>*9qT!q`F+pfdTz+GFsTg+ zOgNeG<2t9gZ~f>4@+pE3b#cxPKt3Mps7SCg?T2?jrr;kM<^KKtI+zJ6D9I(4_(EA~4e99iZgND|&rd#vyh z$c(*uQ@ku<)Dv&5;0bLTp1aQMT7=oIW+*e)tu`JzjBtT~=p|B_NIjhqM@*^pt1<9P zu>;yc?n{J+qfy5dugAK-$@G$+Kl73*XSj^l^1MZ?E5w3NVr8-(D&dWjV{3?kOBc>+ zoHYln1-X9A0NmOVgyZ{(6_$VZ#cAW$-XkfpvM$0o2=|2XqCT;>6d%ric!DSH_Cg8d zxmRuW{Z-)8uAg^XUlVKR4voeboyi#9LSXHe50uDYNL=D@iQ8UfdcaX-l$IncW^~Z~gGv?V|51 zdFb&U+qUL^Z{L50_G(;BBjwLU#FVHFFqoHT&Y8`#zjV8V^Af9z76Go2gOmHl&1`cgiU0V1%wNr%bP+s;EXd%t!i)S0`PD$c0*h?JAR8 zs+93oVX3OrvhXCA+A ziRg}@IloS@aeV(UMi)5rmYjOJ&lQ43NVqgA34BuCp8Zf2Z=47loJVD@qjt_atRu27 zI;&j6*~HPf8m)K}%vY7g7%ViS-MWyu+c6aFrJ8D9vRZ8l^g|r&8bmsX)GdOVxIN_S zuHu%+qtgWz`gRo8u=u>6D}y{S<*JNA@Ow5imBuSxlh^EAqI%6OD2ir|NvD2Nc8P)mAd6(a$9LiXT&DqBv$sm##0JVb}faUhw9h2YTC!<520Z zO?J}*J2T(=8Db&_BVRp|dtDeGKr0m$_ri+fzLu~FI9tD^J=)E?mnfXlpfcVZ)!3y` z^;>C?Ymd)S=U$tZ%zeJm1LSZqB&(;teeR06a zY|VN|vx{f>Yll6aFKJ(3ZO&Nk;)Ciuxp>pbmCsUhjYYT7+Rjm1;NlZ5k>%&UNvn_V;RlR_0P95lkFNN}j&MmE_p8RwNpX?c;z@Q-E$}?;n5PdDglBoL zoEi0Zc5D`(Fg>pgQeMbB`!p3{K78di^JgKw<7Be8nNpS84P}yHTp}Y$s&LJzr{@N# zZHgJ%fu?ATJfIFavR_&h4+{R8_xPSnu%wMv1Wq*B0S-x^+7P41^rSj%*9ua{pL4An z`3i@q$}*};ttp+93^gLr;$M(*;_C<1wo5$4Zu#5l^oN{13)Pu_!wQobGf}hloXA>t#}Pux|_yrywd>=F#&vw^A_!wKdWJZOiBMlOKUP z#^GgeN?m8Kw+3gNOf#Ix3l>*oC~eq^m$THy6kQ@%Mm+TIB>7QRvxJTCA12>2%jE9A zTk9cUU?mR)@4Ov$c$$;M&29EvmVL=;ZEmmsy&I1hj;i^dT9%fb#_zQ#H@&H%qalRQ zV)Y>)9y-@Hb%dek$M_d-ALsUnBmxA;TqdWQN&3$UP7 z3D|ydO2>l?>S0gwpS;970n}#8=yY8Rq_V!#JG_!CyoImSz@oheYiM}=3`dVbi*)Qg z9bHGz&?bk;-(*xw+}Kbc8qCgZdVI6>?;Nwgf=1foujw#doPQUxn}@uIefVXsJx4WO z!?x&%jy$^QAotW}li=zvJMFs67X2p&^iu2(wo9)VeO;d}hS>}ZH>4Sog zF8)4$Z2Mf)c_-RVp#D$Uw=l{j6Zy19M^eQ4PpB+fSfdFATsldSvUuTpPh`$frXi|M z_yP3tk|ERjkJ!%$PsB^sWw^A~$fk!uB7!{&XFrUg*5m$C{LS`=3CJzw?#K2LA$z>T z+YU0L1fMd#56`s&oT^tmyfP?NrhSKot@fuQfocXSrSWS`hnY-cSWIqQ<;&6Lpw1rQ zHuUT<`OhsT&c^Nm1dT1r?ocy*DkkO_HDX8oS2+AhUD&<<6>)e}>}dxi9`^R4S*?iT#jw^Ne-q_!_!-$`;B1nqNQLoN?27k)Ssl!iC;zE5z)< zEsWI)lmmiVEnnn(g(Xr82~+O!f=unSaP~unHQtnFWP5C+9Tjr>uvXX9gaEm1!L?2M zwkv>yUd?Yyu+0~_UYryW#lFt3mR|a^=Wtaw5ar}cGZl&6l$*w z{(Otpf6G$qAAg-%DM?W)Yd?4|bMz=;B~|tbS8gv)-e6s7(W9|*d!>AUE0wphX_}O= z^-!R&dX;93g{$A0P9Vv>wKhmo&KJd*OX4mjjT$*o`;>(!^sfBH2HY-8dg5_i$)ic} zsNO`9xxWeQ8wrIZQ>k)}9=?nsDZLL3?}_-vE4v8^Qjp`hDBqBaP<(v@&WJH9*3uxh zV-zrBW2QXbSN}ZOu3x~eQoTdPD4;Nac>*0Xi;rlOWsp$R+-}Y#6lgVM0Ysx! zAZs!k#?^E(>TtDR8=4<2@;xVY@*&@Fh1!F?HaN;)slK zeqdYav>OIP3*`yT+DAyyyOrjIt>wdnnlLHlTgAUGeFtzTuV%)$#x{aH)XnEWaPCYf zj3{!;@z$9!f_slB)!vASz3E9F2c`h?qTA}B&SqY$(lR3@X67Vs>tW-{8+b9BDpN`Y z^Flwvo^ZI0=YiLH5km1Ct^83zkC<>fx&Q1XM}4(hg;IR_)9QLwDoPi0mG{;c{$vxK?%-mW6kYU^{gqE7G`-UkLh)-vm?hv;RXT;_{!!nTi^X` z+Aq>X&$#NenAShVAZ1agK2sORB{GTGa6dL~ot8QT3i@rS9P}kRyyLa_zw5t7K%}%0 zfCM$#7)Vqn;ZbYakw1$yV{ zUtUK;chvVxC|bnM{!J6SIpfdG5K4nuUKFhJoBNBOw5ncRuZQyKZ4Z?D+GJO?f6Q)X zM>L%Ue>#r3FRd*!M^Q{ZD8{O5z7*1Y8BijV3SYnq2YDt?$edU4OHdr>+}OZ3lZQf? zL^}iC)n~L+|1vVe90mL&=4bvga=O?n$@0)UVo$IbsZ)%&I`3aqu#AlKI_ug0_b|QA z#nraFZgjI>ugBB^Vt-Gy`PC10b5K-LmtC)%*GOrJbKtQt;{tmvg)yoBgdR=qhm0S6 zxfM1(K|5(LBs)yM)2Ukt#Ve&p{hK{dexR@6JJ25$mo#GQEmCUxyOc;zuMoyT0voL$ z;Y#rP_?v>|IG5V(^+RtPY0Wo6?6X-vfAZb-G|f0xH=LhfTZfVUEOT^wW>&jmi1xUW z)gm{YUFNfQ;Ba1NN=O=ECv~4&3lrya)&3p*F>R6|VcYVIB&2UwK+FITVp1f8!g#hu z0-{1lV|dt%UZp>orKneQe7rbbGR)-RX)HNYATpU?=-y>ZkbD6C`&bOW5jL{>mbT&d zqOX%??3_!nJTm7A;r1|U;*aobbmA^U!|uM$_k^xDglnIaCYy)Nlwwk9J@mE&7Y@IO zJ$K=(I&<`G@{#4M=SqruC2&&9IjR3ZZwD2C7!{gLI&;0L;jN9y(t_?rzSqjrL3Lwe zN;!A%Y2d1=A|3Y+oqgt}%=m5>n|n-GxL|mm7j&Yw<7T+y!+x6N$bgKB;u0P~-Yovx zW#Y~xtFC}@$U-$%jopF>Rm*;DDM&;P;DY?|C7}=8(9L+YFX+Ubd_29O@actUoa#a_$ z?nAEsaQ`5(P)@gCKWpX=t5;GN45@jSPF+$2_3;q?vmTY}^S7YvAQ4_SW2bm}1H$w1DIhYXx1Yw7glTRqs3#iS-$HgXtb5jT(gtbNI$SROkL!nywm1n{K{jsY6+vA z>-sKqB$a5ruewXW`h#oQ;Ji7^3ukGPH4S^fLwOr-P16QXzIFhAZm1f2aF)?6_-x^k z+m59x4O_K+u~Hs({=w-7Cr7sGxo)1HAFNX=>~vKZ&?g1#d&7caHrmaTF6WX7UtKa- z`a+K1o0}>7YHKZ4`oKhb1zc@EPTTjNl$&1#DyzC9#y)@_o-RSoDo(8AH1$9JZg(Rs zBI}zw^A{JMStLX=#(& z@232=`vOV6IR%o>6_C^^y-c)THG7cv8g>FVa;gv44Au1SO>R!pvq$21J!oD{nIP>Q zudHOCUPOp0MNy67IA8%Xc>P(J?`&dj3g z*eg0bwcG>R?KGRheVw_Qh3)Kb90iHj!7;21Unbsqj|p##$=KpRaK)%2{6t-A-K zl7gM!jA^c4njl%tFrOTk`M8m{_Z(50=h410ch7=t0=tGU=|F3;YY}s%V7dF%*-E}{ zd*wYCL!pn3rO=cxDv3J{)5-b_(l4FC65ia~sdLI1UEB3OB&kN{xmjQ0FrurO^b`#SCM-JP5 zkIklZ*wu8Sl&oq({%rMkNdEW$0BoC|c57ArS{NN&<&NwErBQZwr&9FQfp#r5Yd)_m zn883=i%laMB4;{_8|@TD?&gRQ-&&oh-74!oQ{yA9QYh>5C8O7RO#cX!lPArqI9(nm z{8s%Uf0gZcHXrUG$*r6mvtsq+?8lGKMM8em*1srzKlHvtvkcD+hW5U&ZoK^L5o@ga zU5^PQLJcx6ToG$K%9?&NjBDOC(SJWhfsZ%v=d*-A1nyRUbUiX`9?y(gvvdh$6|NJj zj_-+`J@kIK-lUam%3Yu9!@i5pclwpN`p~^&wB{v4qo(b4dGBT?&kt?)xz5V)Gufg( ztuIO%lx2^Tw_f=PAPOy%b+d@6zess{)m>osYeb-nT&RZQS4iT$eKndg}E#sh~Yy__tP`NJ2H zK(WYj9J_+0n%IgnTS40y%BgY?WuO+8t8Oa4g^D{s=DN`quy+}%A>-I??21Y-8l>F& zfsNpf5$i4|vP`)^5S)3rjGtCF_V%Jb$ur`9wYFSV3sZUgE-y}-5}_QRZYIw5qjEm) zp20+%?N6rP=Wy?i&+FEGB_VPs_W)tP?`@ToUyK)=`ab6`zl)lm7;dfQ(<4qMJ1*0^ z(g;+4E-+yC4}m^<%ouPAfW! zY&ZCePNJEc_H{yJyS74}59d5(@Bxstp$JPxY@~!9vZ)QC$Ts@zH5_gDWUPOe&!N3sDCeZ>Kz?_hEY)5C@Z_rQ>v8h! zfU}y~ZPtoeXjtd(q~7VDG!{~zhZNM>BQ5zm9AH48&mFbIS^${I=||T@!OCZ}bE5*K z0m+p{-|+2$#9rT#d4>KEWDQ%vEF-Y#jf%#KIpyhtY<+Cn)w|8R^K7JpPk316Iw&on z<}0+YWRkB|g`5rl*&*WxRD}C?i(YR7Q?4zhVQbyiP4d=Fl#`NUbZ;7M+zSLX;@SVx zvIdjg<9L6PxA!_Jt&deU=bZ4{D8?n_5#%r45eq|okfbynJ`G#pAU-TbnBg;VT zs>!$i7VpCv5Uy}go}K^B&eCt@*9F3-Byxh{T5 zN!Bqneh9Si(+#R}q4W&C;)mQEt8Dv_K){PTRJ@v9y)k2N>iqr7+mI6qEeQc!%jvg* zkb66?2{rcLE`VMbesIwX0o9E@v&JMci3QS%??o_{@GtK^RXdh#fAS6g-tu>-UHfmQ zSPj$oE-g>a7UPXXxZ(Xu_Xw%y?wcblD$N+i77A>mKv<|3YYkVT#;{JPPG8c0w1m5c zW5d%}jbYbdAzoN7knvL^8ow)&QEBE_hI(iM-%aXM!5gOvsQy$Y)c)>h%Kt$zh@WP> z&Bqh;_QB_Ov7KPBX!v)+o!C7{zo9y?O&_$zA4y0fN%zWSVsf2^G~K}q$GSIJi5fKbP)BbYuXpMg zzu!K3l!d;^SKSVj&(YUn#u3BRKm~9qDUgvLwnqz%ZZ1z(0IQ-(3mJ_-Wg$3-zhc1c zZlwEY9U#gA#b+=O0N?UbN%WbJ`+eiayT%zXax4)93?_-(xlaQ4r?p2`9xnzWMf#q(HvOF?C zNPgdWxK&qR{nwN}RaqliK_cN2aIzBu8R;hitdjeR_8ifa)vbS-B`#joZ5O3qcV_MW zY!S}@2tzBeGDNIIhWLMHw?L%y;tHSQ>HzCeJ22YQ?mDFhxRq9d9RTK8k`4Z3QD^tY zQyPkcTEM}G=@x1xQ4u?RD>STNZ2+jU+WN1H+m}S&`&brM3w-Fx0azKx$76AG$w(3p@xrLK5iXF_E!p*X5FI9z-2@>`h3PBdw=G6&%4#6(eE-?15ou=A7HlJ z2yhD-0SnV@uL?XiOLrf*Zia)JXuxE7;;@ls5dv6n>~RY1ZNqvc?Kz#E_sQe%N$yu5 zX^nu(b!OYjsF++3{g%PoM9`445x|1%zS?=|{V~<;Wtkfup6WF~;u2W{z&Do+)F+wl zWo<;pzY^SCoWqa1C96Em&p*jOL>PY_E4FHHa@+p{ADx&$CFD<(XkMwPah{0Y419O9 z6);qBc_i|fupY3YJ%|KFmDFMLD?!rz{%PH#8>H2uEnLAi`WS((7|Vz#`?ib)tNfyhWR#<%e+0c!2eNrx3!r zor-%p{+hau!4h8PpI#ug@vp#^fpuibTPFv<4`~60Sz@_y*F(Q0X&YRA|1f#9mtP+K zhK;QWPc$%pW*|oT)$xIZkv>&aoNtxP2{2kO*7)z{koYcPM54@lHH;b5G_3$?5ZteR zr#oI}%0#_nPu7uG{Pf;(NkG^U053BE@_lschD9HzLC51u2=9$r@t{^YR{?4S^B!eH`@#|v!teqGHbp>h$Mpey(xw2XBi~rSMDtVXI}KE>T_))iu0C_ zuw)yEx$w*#{ea{5vGq8s>h9RW)X1njnMW^fUr-}@g=%1TK-+N;Bcp-*#T&W zNN?1sAu|3XH-5HyET?YxGh74$b80m_Qc4Vg+29Z>l=CKQ!_|KP41fX6K|>WpNFXQM z0y1y`5@^)(9j9#6Km!tkK!0xeFtWHv3-ol>tnd=b%ajvdwzR3wO$W6#6&7}B4)abr z)(JiqprtS(T8t6D{PwRoJBfd-b`%uo%r_kMRlT?y=&j32%876ZL`QV+DnDetFNbr_ z<5H2DXe}c}-?nL#{Nt~e6LDO2O6JCJO1JVT9r-wU#$ArV9XOhFyz!8 z_FtUBjtMG(LEVYf44Pg|j|NBW7my~sh6>8;TWvWhXeOYL07?)^=^Pcjf~nx$`!>eu z|9jcA(E;+Y;jp5|f6A1*SO06~`|$x~q~&3@z#spoaDxH?2`o^G8>I}$-T!y6OhANa zP-$hV`OlH>J_rHd14Lg?Q(`Ugz3Txiihp~O=UK1UB-n6kF5xnQ)cr5sXD|~b2tL;3 zNN5M*SdJ#)sE(M5H`kL#&tlMP$du8-g0e? zK9|S&ncC8hUaRa2mSs0^L5KZJ$p`D|YEYMH*5?P?U#3l1S{19&G1Dlv*qdR!g&4H7 z6;RF-{~D8&oT1E!vx1uz7ag>}sbnKYck>~QM#lS7lz5Y8c+lM{5TuL3(Aw8(&r7xx zK0G8}poNAe?kH$ADyF|CW>l;K81RI-8I2qNk*8WlZ_&_{CcF{& z-4FT*Ux$b!U)v--e;pe=)=IX-o{@5p=6P#*)Z2Z0F$hE@gaRYwSIp|dbpAM$#%Yx+ zsq%u({bQ-olm_D?`8A6 zC!IThfc@_1Jmwy1^+hvZjoyj&4Rf1W6NHBQmLHvI&8`ekyuS2Ob8V~JG1Jc zoPWBHgi{;`tzn$J(S81B06FR5l!0FpOu!L%^QC}|kCG7aQchjh&u}fG*Wh2zMisdU zf$`+;RO}eTYKQd>)G<=)ZSBU~=iwX2akiAAZD9Ukg$=7y@@DgAoJh!-6SNeR%KVP5LY^>I;12Iq$(R9{0#Dt%wVHBi;V2YNm@o2+q~5tRvoUZAI?5tdBIcQxGNorM+3G(R0cL0LU9Cf`%=1b+Vx#Ikj z2MEe2j9_+!0|w#iBT6P{XT(o_t7VC8oq57}%&+evnPDn&NaGwsR43a@B8HnE_CD<1 z2hQ1l1290DdHmOZ`y1HB=J{Zz=oIeB9Z73U9|%dQqc<|^$oXUSQdRt-fOrwGHoRUQ zcsJ-E4%oV+fB&GobnfY)I|d+_UCe}c)uUeW6u^!Z&*6ddTiyUCn?Q+4|Ma_NJ@wxG z*u#mRzOI%ZJ~(UNVvrJ-;mIaaD>4@u(%lLX*idS%U`Gd0S5vZU;8_;lvty^&axA6f zH5`tM9zpDuRw4WlaHB`j;+K{!J-8a+M!*M{k!{fgfQWIyJwTO6bq0*n3yB-zEb$M* z^LvO*FcAjVPfPWiLpzK)u4#Tf#Lo(99^rHKw|M}UT;9s>$tr-JVZ<4>I0!hXpR$6v;)&6&_Y3zR-&9aHvAgtG%Y1XyrnuXBeNvF z^DVzoeCsJZ13;&Vv*vK#H4p5myk{dCoS#?j+OEjS(N8on;SKk0rGn3bpz!Tf2q}nI zgUrPg#7Mnest>W`(J;80o$@|1OFsr+8sQ&RYG@=*i&ZaLJFq^hbsHX)reUL6Zg*QU zgsxfmhempnLU=8O0{bM7f!ModI3AslPAoVNVqDX&?Q=w(F0}^~*a2h4%WuVp`dMIU zJcbYp4ca?Qj<;fhllDaU!$s#9v8DrqTXae$vBw>r0M?`Z%fB~CQ-9m4f|s6piT@%O zJP%MpIvi#+xt%>$+7wRizKZw@WFdm9q32khXuTjB;=)8%+7}1)hGJ0Ps7MK^1I5@4 zcY0f+D?%thcsL5T(*eAs*us%)2@sHNO+0j(w+2#jN68%;{&iaWH4KITo&W=K*ZVS8 zuz$y}GEqqNziVK?ga_phYXH=z4>X}_xn)XtJPxYU>yrD#oFbu05a!hp#qtJV7ty$A zs4V8vmH?lKX!tuFg8#^_ca%{dB==-~S%!us6g|uc76C!^{JAY~)tSrXh>k2Y?|Dow zwAEGJsAOw3x>u+QGy{*^)w2hIR{$IDLZgvj_%Cif;6IYEH^Cr|T5+PELteU_1lJ&M z4*%WSFY`XC%pI%7tqfQKn6<9!$8g7gdnB+S}4Qn9HUsDKOgkh8V?))s-y%?hzGLhtPax= z==cY*QsjT8zS^r&bq7$2hd9qxY5@vzv$UZoFqQkSkt)I@Ms)HopH>xL$kg28ncz8Z z!(C|F-zZ#W&}%Tlto%lP5!l2p=u<>47JtpyA*BNufzHkW7_eQ2meo_{--M8tktofU z%Xjv~8fDD zN#X0AZKPs}zMohx980lgGTUMUU?LZ)|4vl(xwjl4Gk1XD=6j~^`Z|veZx0SLLN+nF z5Gv?PH=S0P2_8+f#c;I{qCWN8Ya*j{vyTB}te(h0T+dJy!zbEmPZ?6F9Xm;)p@<3d zpfs2AJc9<8;x(cgh==z?U@sG9xfMsLEqMYylxf93OUvP~&d}(vB8`j?dGin0^C8F5 zmh)ovCsUTAh?b9@hXvuH$6yXhmv!<#SiL%B3& zI8=Q7xD*6guKOkt2;-(8iBXdV?Z`m+=n_e$0xO{dGh&8MJE}xL*63vu4!kPswj+Nk zvo_)j_ibEoSSYvEd_uIk&+)4m8r${=mvuD}K6Qi0hsWzA-0OxpU6z$-S=vaVrsHuLY>F_SkY%m-~aTZOd8n|ou) zyxK;V733I{+tx-P9(52OVCO>kP3>k|NjH?nE!Ez>g0H}NZF;sq-D#wFCf-z$BCuN_ z(A!0Kk=pD5ji^Ye2q(@0Fc;dxkzvbEjngawKW9rIDr=L?%(U=A5SzY}p-y<9p+B$@ zr|3cnsbkLaYS$ePo*qXM4zeX&BFpw(h&XvH_XsR@ktsZa&TqJi*yfI6Qq(oS9yGw$-kl^HNktGF+*8h9Q}s4H;iL=m7VDQL0kZQHqZ-QY-9NXwi!%8 z^q%RtQnv$}(BL6H;Tbb@3-sa0^KFVsfl5DC0KMrWqti})mKr;#WNt1)mN&Y02FHCNzPw;@E48*Gj>S2y+53<$JL)dq| z{)97E4k1UktE-qf5X(9BbSest6MC4w;Ne(jrcHxHwk6dz&RAQpr;T z=*~9Eg@gEpyWee{?KHjm4Cd}n=sh!A_(wZ;4N}cYB|_~)0Hf7Bav~cFwBlwG-wS_D z!6Z=49-=IVRT@jCom&2ALs;-qTF>2gAVTH+ibud%sG#Ahv@eg8h8y0n>TJ*^2JSmr zaAx>5=<;zWEu944Y7c3x*lA(bxT4Nz&kI@?YF+p4elO4#*YW$LhXkhUPqUB$mtkLA zf}HS85M)J}4n4r|KzK*>SJRMaL2TS#53G*XvIKLuN0zoMdZZgq-g|sb0kaXnkS5d^ zI^2}mKcrMAs+Tk_fr8$gCCV0WaD%vUxHDtP9z=7>*H}z!S1W^PxU+|)v`=|oR<5qr zlh5VMcTjwBClAudf{)PQqS|#FG4P!(>r4@z)Hn7!J&LyD`19KJGNIH;TJ9k|-@!An z>H8l+KKfZEqDf)*yC0Y!#r8j`J&<66^?XJsy>YJ(=VQeQ)vd;EbgZVgjo9;~9WVi# zcKaKr#wCymrB>)Ed9@MG#711!Qf+KuMK}19oSHhx(b7Wc7=BYh@J!7`}f3IV#1Qx~IWo4QwASuFGnsHnwI9)$<;038v=$1ro5X$Fr9MB6}Wic5911*n)eo z>NMQn_)fYXgX6rFilv~k6CV9oHPy+Ie-?zxc^VLM_CRLc;xP^(IySVKp{Z!z?SrZd zSiauyr58GnT2$BigV9DCWw5wp(1RckJ$Uz~maUW}V%pg#!RW9>??eIiZZPrRMLlkZi9&!r0@1mBwdt9>^pe=TX&UmhwtCf#_yal<{$jxMlA9s@a5E$sx9<>&O zdwarTc)GQJ6A!=A7$K2|CkJ?K)h(Bl_q{=QgsthTScQkCU=q67l9I%9PL!Uys|GG$ zE&6xAjG$;nw<{u8aMK(*QAzpLh#MwimFqPgtIm=}4*P{Q_G|~{?Dg=9pyab>Q9r!h zo(S;9aiBA;aBcxR4anxiQ$w33F*=DbW!FYqWW9fbnW(|W+t0&9AJrFHL^)+}p-rpp zIm-CY(2P}+{P@P`DKsal;|4$y_$Fsz5Gh^sgV{)iWQl%mm9-hpxiK($zs9ytuwpcc zn~R+)q=?$5zTxvvw3)|7SAx6?3e$bz?$T;PTNC1;o72elo6?upR;;699@T!6q$phTQYOsn_u3v!pzE=Zb36gex-4=AJMTm~|WVK0qw zoVIO_eoq&P3aWwH*^KGTcP!j1zP@YETHl9sI`Xw2H-TJMpF~61RRw=g`()H+8TA(O zrCRp9nykxGp!(3fqtLW^q*byhxuaf7R-LFH{`^tyAG!{VpBB(^92Xpo#n6hVFYjyLU_Xw_0 zyyE}*z4;8Sc}X$NNBk`cT(*vy(#(Z-`t*OAzlMMbX71s8o%wCX3M1>8w>JOn8%J8+ zzw~-ldRR*#@8TNo@V`c}B^dZWK1HuYXpRj)1U~o|wUnd7i6nNb6)2)c!=_~1S65FE z;(aNbiqVbLPo^MvFL95^26vtu*9GiMP13PI(P%b82_gnfjg7`@8EB|?ofg-@8U`Na z;ADampd~c1I36jek#6Br$bKjp_xW#^8Jj+;I3oZJV-Z6oId`DJ?{mQS@ldRqBwZHl z?8C1PV{kn#Z0IPM8;Cs-L7F{Pnc+YwJ%=&Of0&dxb)yl1_oNZ z^|g69SJpjGS-Tk~De(osBd_)E*u)4#>#eF4zoDT~RrbVOth(vfi{u~2N} zIHMiiSeLegqw|m9bmHkl3{UkFhmbq03Ep?%P_PS-#Du(uG3@;)V}iHk6Q)dtBY5;{ zM|4uR$B*#-OEzw*p{Bm>%`H)tv#{+%+J4ea1`dkNi0v+hqIX$x$GnyB=7h*Bd;%gH zAkCFIe4h^7rc^h=M7_;IG4_Z&b9D_4B0ms*BE9*bL%w=F>M$tO%S9o@$QYODK|WBR%gI z$Vd8Al28}F@>(l^VXDPEJFuTNXg2r{`(zBJ_D{2mkrSRbd=3mTpzdOy{V7o+{K>^34aUX9S5@sJR}S|Hg$ML zn6Hd5qEw>Ez?rN6n(xfTb(|4UqC!MW8Q{%Enx!C5OWm05dub(c__l=BKgeM5fy8Pr zGN-4&AKqtDDOuOlv@lc@3Lhqp}1Bsh9|T$7Rv&IA;0LYy^v7-y|b4d_&ZrDAK^H(;?=)jXN&0 z#^@7xUGSl?h}*I>$A)XPzrKN1h_&sT0ImxIHExizzX+Z4XQ3P($ksDTw);HP7-bm} zJE65g6_t#SlRRA4$88cJ8_DKEThtseCPxLM!&pqX`8Z!NBdv*T%P-Tu7 zm;D<{b7sN=qZ@{oF&-(DUu2L|KXndIr8WAD7>CrX@4z6-rSB=f^x}l1CPDfFrJc$} z(Yy&V0T9ee1T_nk^ubYHH29Oa`+}pzwE3lA^Nz(4NR!CdA}3#^ohq#tN3|~)R_B0+ z=nJll`**qf^Sm;x>nU@cqTEhQpk}_vj!I}DA>8)!S#IV?9F*U@j%!pZ&9o+cv63O^ zmJ~_nKUgJ`PoyI1uwvJ+UF1(|Qcdf*ML*RB$ftjZtK@~YnX93pb4%`PQH$Fv4^&MJ zT_bd>X&l$3{tYuS*=;>vsry-8^^Bo@En4(aE%b!SCAr!Emg9YO4=x9o)pgvXe>|!U zBqmd4TQk$`n$Z@85B7`_=Znh$pTty-I9}q2!|53+9l_5K#V`>iKP;22x}PVh#cHRH z9OLQY!9+Yvl)6%x|vU2G<4Jj+3|Ged+ktE(ntE-v8TG<*%NK-o;}dqCN|w&rvxX-S13|IKFc8$ng=4B8OM>J}yk40?2)P+EXP(E>&iR>8a$> z#c_v#EXKioXyvk2d7oV(mHKYYr{vYwJT&A1+d=+)!lhU;`NNKz18M3{S(0*%dit^2 z4CSZ^{o71i)1P~3K&Au+HP>-r-sKdyVlDRP;W~h3toL|fNJ4+-kpR0Za>}so<$J_C&cN74 zgRVd`b>%1AiyTp)sn-EK8k^`h9}^?-i2@mMX8Sjq2dHQ%!SIVV><8%*e$DKeiCA4& zB@EH<_9Q%%2p|tMay$Xc%1?F>OU&cG-ie~dEaMv-$2Uf8<#$wB{BaXADQ`6-300|0 zS2LHCtQ{ek-3G)XhYTz3)ij{S8VL*j5c#8hR5nQpVW!rd8%nzaBF&E+g$qL=RP8|RjWj|1p_M$$5N#6HYUnv z#>HS0yzgt(8v8gR?+y?z9S37B^G(JBngh#dy!I-}mOAs7ww@VLC#YWvoJ!gCDcjjR z^|u@8-lE%A)#2}zQ5~V`e(jPGQ2}jgwRrkU;stka|FlAj%waE8OvEbEU9Ke{%gNpQ z#mtFzx72Dm^sbfh*U;E=^c8b`E>l#Jcq7yz7b!?ja2e6oy=-D}r!)99es@gseev%N zvsty~=<8Gyb-C-_SmKA{w9Vw+cCz?6r{#c8xY$4t_266YHnrS{+$$|5km z*U(=^^a6;=rE)VhYHi2nJIBDgkOC}VoG=UnZWOseXK`FE10k##?0qB?@Rs~ocbG)p zcZ59(KAQUMn+=a?`F)BfSXl*9@)vpPsV*b0h1^RJKg)0EV|J9qNBet;IVrp;7jh}) z2B&MLg`tleAOafETbv0jt_r{K1q@&M&ZbV>(-~?fTfp_B_87^&%PF(-p7Bwei{;8} z4}~R&FhxPUnOv(GiLwfe?#IdOD~skSmgc;ofNg`f6GLwq*olN43rNf*^9=Z28Z{OR z1+tWQM)F1Ty<FZfN@$PMsF?m3aL*G)?eta;%SaG){A;pZ)Y$~piV*;_=R;v%l;Rp3~7DCvC>$I}wk3`oZ`Mp2L zLSjSta@!WX|Nd!ykEDC8xih%jSMwG8Q0t9EO{?SjpFVEtBdQU6Rb)|Bzs30$#bt;I z-LmgRB}#lv9tqX5YdY1Kdbd?)Q4>Wks|j2+!*I1w^3dD7ge{3o=;A2ZFG3&12HBPz z8_Ql??p{UxgETz;Z@dxAgr3`^0u^QPDt@x^JnQQ+8w<9wGL+ScVJduhYC_%^`oPgx zC_{9{7R?R8`_XOtEe0H#y7H%=xJ7#C`pFqk{K8Tna|2+fDt0z>bTqObvu@_9ni-=U z&EClA=SV+2kJ-%|^$hAPL?8Y#}s&G~$dzZRNz z2uxuP8qr&wkmwA>7p|9I zCjHfPI5$CoCo8|=Pf6ST)^E>1UqBs>s;HMHa`!oDD36YzV4iORL0Gun=-0HU$Hc0A z6B>9q^bA1fV^kZT1j%o0Yw(hM#4{vA;wU8Khq0-YIAuI`D%{lU=o9Q%01Vu!p{w8Y z%bBA+O+Dx(T$!@EahWYwIyi_KbCetcVcRT-Q*7cLIZC;EkuF1%VAt1aJ*53C`r{-G zaxULRryqenQlD2psH^Iix#D~2&yDGa1m>c1oVOVF>GYUk`w{eoQN2UYlytndo}l`$ zzGvpHiDA#e7?7>4;n2nSs7foWt~7ZLEWcPH2vB z0t0YptG3YQ@Z{T$pn!_UVzOMyBE5m7iCwE<%~7{VpBUdl$1j&_ecN|Cs}yU$ajavp z_KFGriVY}vJA)yIsoy8$b>dG|+8x@Nc&%jdYT?T7k#Va?G?FhVBE|~OV*B#<(1z-H zA)Y^sYf>UuR$DdFWN~1b*Ai?8md2%a@K*&@qFi^dZ=>ZBYSX0lWA* zQ9KuBtH`saMQ4AmxuL4Ys&h6~U%%}<#oH};|C(;I(^^WJ&sKfG{q#@9roxLTvrv8C z(*vS|pGK-v(%Kn5|kJ8i-WT46Q?OGd9(L<{6s^V!uXBogj?LU;1J&{9OI*Waa=YmZ1ZUI z;>fQ&3bV>(wW(dISeBSJTXyz7rd2pA1MxU^XV?i~g^OcV!D>RQAPhI@q8C4C<8XYR zEsHdq=*6oLoBobw1k~2CuBtw2Z{6c(KM4>3Mk+SFIoO%ZBrK z)XhNW6-HbPsDO~5_{k*%5(3pBknKxx|52L!>NxgKC4TaigL_<_45CSXLLeb9Fa(Cw zK&w-$Gb3s;&I4<(M4b?b5yb{%ukN$@oL$ws zI#N+y0v-kj1_%fUUP@9_83+it;osv21@TW4^{(y@1cb$FB_g6IB_cwk=tA zmZ8LL5xeI1tMxcW1_B=`PYmw&N(wYx(sweX4f1VbEfjn+vhNr&)rf_b`^;L)L)yJ< zPoWXXW;gMXCL?xF8jR>$`#kweLNd5Nj|)e6>ds=yEtb6^)S_`c^{cp$oNm zJ_p>Lh-=kxO_X#%|6FuB5p%LqE-zfSw9CmVMJtdV2o!n$xt%TX8$tCf(7F zvvK?W(Z$yWNvw=x7rG$5M_#i;U`0%js3K;;E{0F+SVBG*aEtwE+V8V_lfe**1VZJ6 z76+>cu<559{PQgV$SVD|iiYp`{L!3vRG8^oF?vV*04K?B{W%uB64w*m5_T)RF5p(I z5rlGscf(!^@9Yfwxr}YQ@Hu#~oxXSvA$GR>VIzE6$+1z7R^zUD)VDg*AdG;Oj?&?w zEmN8schz>3%t>HEsR<6LCIv-13{g!fF;{R{wb5X6pdrS`OV`GeD@dvkK=t6DrApFepuoN3QXoMMNFd%j3bDN1?*x7 z$_}it3*JiNjv(|*g-;fAMFe{ouw2|f`~4BH0$(- zfE%$zNN*PZl$aH!Cv01!X;uLXoTcBEQGgbhW1GcGp}ez3g6jaYi|#Vp+^!6VW;n>R#H5V6TCVY&bONO~DgR?t1<4%JnEu=b1Rb&nygDoXHdKacnq}_o2DF0BL$%!K;9)~swhchLbH@S84gvlsx-Gmr<}K( zwqXI|7-I&rtx<#pr6K3AW3Exk9!;if8WC<{&$!beh%?_C#M`eoNK%?&kYY9yA`=J` za1+=Aq5}(ZkYvterUmsfv@+weXj#OJvP|enl*zJ5)nnIVm}B;1ib)sRYFYqowkC<@ zb0cg0rcq|mE+q<@i!{-%aOWWBVCLy4V{|h%GkC+TzuJTA6Wo8p%#ux;%wf$YEO-W& zXV?ejjWkR=EEJ6E4Eq55BZ2z~yYr?dZnl7vEl(nY5ItBkCJtmc;rnSu;|I*AOn^suCw3}4cSw2f4_l!i3o zSU>YQGchwdGoq=H7Q9xLZRw>5S4>W;Zi#NoCaM>Nm&qI0+roVvIw#sCS|hqPIzLSm zl{XE6YIkXSQAsUYt!nY3Y-W*daZb%>T^t^z8Ml{_NarkVVkr}= z1H}XJgBfyZa@S<@WG@x`1=fWNb4nJOCO-48V>B0z2j_=$3=)jL80B>4v`cgk${R6(nEY^q;2jh<)Rrvn6NjsSp#buJ)&jC!lLDpP!u}VbccD#vYgiMTq(B%dU!-wNhwT77MPppqchOc+yr!}x)?t; z5aRK#xIVcuxej>fJo2W^CQDEF*GjuCPVFD<*RQ{Mm%1CfQ~3gYu8(PsFi#k+;8%S- z^6z`+{i?t>VBTMBF6+2|^C5W|z838L?G#QMNEx^z`6x;g5e|RGdv{-bxy?0h*)RSz zl=Pa^pxiY-VPj8hxFO|NF-y{MEit%x|?7g~6 zwTn7m!Jb72B0boy+1li-bF1r)DyHi6_|d(rtEW3^%k`Ujdjso?eym-5YHmYw$C;@!mP! z?>=@u4m-{5UI%G+H8yQe4j!9x9SiOn7xou?u|9Nu=YCT!OE(-ZHjiz*v%ZdAf<6Ub zh1-MELW6&6iJJxr%J7ed%?JYK7NiV`0aaXYB*@{Ry-$@;!1dMJ1`ba*!Oeina2HP^(m) z60zW2(R@)1h83z^5IcFxPP8Vl8cUMP;kEf@%x0jcXkHho!{?$Rx(!$EtOs4gX1F|8~ z9|E!_ImQe&Fw92D54?BoOQl!3L)E;v%9w4;WZCi&oKdGyzqlJ|N~sv>Mkx$AeR;2> z^=3bhEQ3yS2vXjGXF<2ar!t^)^EG?vG8@|Kgu0oRnrDaYWxiWIRrNlVqm^y@$Nw5shndacZPc5l zZo*Z<4Ibid=wOCHgUlGG_^Dn3&joh< zmsaEb{;u5QaTVm7FaFg4)!Z`KfKS&4mnnk|mO=wO^QGP>-{ic9x9v9(tG(G74Vle} zJQ}vDDw_|m1R#c_U)-cE3Z$NpQo>5JZW)-+TgH>ps zg){FQW*n8GEuyugHm9nom8gL)W-JjuIpCm<*}3U-$(8H3=`t7yED>emV|}551B-n6@6?rNCBXZs5NR!^ zKY+bBo~S%0Jr};vVfya;9Q9xR4JFwmt{qe!&iZ9u8fTV05lnL`F;DHGhEBlee7Sfx zu@p>!AuqjR&y{MhqWjZqRI2nE^R|{y=69k!6VUs|-^$`)Q2pNQi(T7iE!79VD))S4 zpl-#LukY`?$)ZeGW|Au3$vYy_r4p$SM~b}R}Xl;36gcV z=pJ9!?i)Ruq?0Nu(T7iyACJc=bn5(g{0?n-FH^TorOwKuUo#LTVA@~}V0;_uxOk{V zG9nA_A~FM?1Eqs~qPlUDF^v)AqA$ajr5i*0CO!v^2k`rtsM@F|$!JO26e}gKW%nig z>-q`isR-pB<|P)|W_K2J=J8kUxi0<|V)oOu5nI<@5I$u0<8LlL`8Qokv-Ll-fz`p0 zp^rtUB9hvQcq%9=IC>ab@>RDy`^r`-W*& z`OIPR2^X;w1HF`CVe}_4V&+kymTalckGly}~UHZ%>~C`{$js_GI@LrTodS z%kMkjm+(Om;P~S(kNDe|JTLP{-&eEaj4#~uHpuO%J^|LPk6|}|*Qp=ezPTEyT{3E!!L!sLP>#d-#s{n}`8ocLgy@#D72~zrG;kgl!5cPW?{VAIZY-P2wUY zDr=ExL6@auN?Z8~_l-vJ)@ zk0*B14+7{Fi7d(6X&32pNQ{Z1ko}0hi*Nzq2Q|alWBB;NO`PRle&$w1Y!HnA!5+^NOh;Ou^tr zB?!B3FJQ@eJ6*^vpBQZ!kk^5wE?tu)3??7_aB%ab!Alb66O- z{9Oee2}TG#L8!pLrgNg~F|b#2YMQS&A8puJ%4Nf}mN{3(v5d{0!O1rf_<7&YJdRne zvD?;YHL&YxovqnIb#j@xYV2b3ll#gAMTDdvJjg$dzxH{)Dt*y>;Isq_Dc!xX8M$Rf|uVRHI4#BJeq?HcLO{TPs+L)b0Q;nV3cD0WR7? zy>mI0eZoENSq#C0gN}=e6S7magI~@R;9}sR{oajyRwvi9sCYEOAs=Thv=rI_H1N z{D>3=Z4y2{x;dECFulrriJQYq5B~zh5I8f?N3MxNk2D;CPKGdV^soDKZY1hRQ;KW| z9*;XiPjX;vU{$`PGSHk@om@3vQ*dl|N#g8kS8iu(?|W#zGr!e(a3SgKrS{Z}h%+U! zF5)$|JiNwE$4bRZ@&2uP9B*a-@JlgJE}RHxZ&QqoqGm%WgCobyf1S{aAEhbWn@$~IhbI#YK`@8tpHzObhpwiU0R zpqdhe)3qH-BT186>spUV^-SyOO4H9x5&rrxZ~ewC?`f)h4d-AQj>9Uys`GaTmX}rY zaAQl2Tt!cz$ffl#+sK8L9-+PGqtg}S-=l6tawUG2?_dn6j%+-j< z)6Ul3h1-*lzxb zk&?=2c78v}whpj|&sf4$BRcS>En=#XG5p;K58)umn5Pb~Nw#25_#2CyF#F#ra^I

A$~Nz5CUZ|%nKH(PZI0GY0Tn4B+HIgCBIF_ zy9&kqi>Q}|gloK>3|HW2M#t3{V(Q*6)u)BBE-@&8t{zyRip94Om-Vfz*L8XzjdozR z4Sn}^q_TAO)COOIdvNL5^x~cP;zvMGmxTPb%b%fo(221bJoPenk`V`$5kdII9Eb$R~x`_KpM;K^cj*x z_{A`=kZ&6il3P1cB!Mab0+pi0?&{}YduQOMZ6(Xl-?~ODSpjI&bC9t8OJZlhiK56r zUhmEHB-$}2V|jwH*TWe*yfUrHlN3@s|D*2P$#vw=t3dZ*{|mcBg2%qprqrWelnB1z zst;_GL^!sT5LuZ1T^C!KiuKM~cHw0|vjlq7{5RL!**-opZpN4hKmi~y8jaI7~7arfst*sAi!@N>gS1FH>D$NcGNkQeev7#DF#@QOOqnbUJh z!S5x*fQJ)WiE1q~`a4#kWN9lSFv72#@x2!3OMWNS+#~B-{mdTHpVhbxD2LcoM1`xV@_ zNHu{^rqwYd0r-clyE6GDegnSu=kkX^a{8GEd8ait|#@k;S^dA$oB zeTt8~^75mwwajmKlU6jmJ>iv=QLL|RW%$1=x2Gb}pINVAMX=e;os3tu3nzpDJEY)A zxSzrsdRe~;CcwO4J)E(YPVBM?!6-%}yRK52Zc=iUx#e(BZVC6phR-e~QEyqIkutEMx-fuBJW?3K05T$cD`9e+NMEA_?Z(QR+FepHoMoU{K$Fs1M4KJnn* z=v{Y)n4~dPyqp2mM%zhyd5aDZIL_JEX?;-s{FMRslsy?!1sJD7qV7tt0uXf{z^wYX6B3yg^ODz zR__V^umRP|D`|+68go~Cr%b870$2uEuj%Sh>0H<_m9n$)s&bQ(ma?#Eg^i5LoW+Ub zu3%)D_GpzwnAX95Eoy@BI}SNM!WH&Dl-I1SK0`pvs8`Bsz`-tcpSfdj=Ss z#8Juv03Ef610E`OQ_%_^PfL~>a z_%)p-x$L&cIL>L%jvA$ArZHKxiqa=}eZj8SB~OO0dB5GE|5!m9A&A%9L3}}O4S4N{ z8$*g2Qz$2`UG3jZ5V|7P#2ZFF)}Ld6Fz%%924DOEz&`1 zHSy@q6t7fzkFn`I|2?;O3zVV%^Xh|(wko$wEm!KQ#@7 zuD+N7xBjR_xmK4xyIejk6xL#5{?qr?+x1+rys)RF z$Os6FHEt``5pofxk~?l!q0cG+?Q<_43`G4g8QLfT%2A?bk40vU=+SDXMFV8e6q)UsdNVv^58TGg-{pW7(Dxpxhs-+ zMu4;NRd%H2349fgZiphbxsyr^$)yCt1SP=pVx|H1J7A9%XYy%A4SX9Wi(Hp$_2_UX zV6hR0nOV7%xDhuE_&+;lQWZY8H2@O)FQLlUJ#8t--uy68q*Pcma?E|EjanI3^?QM~ z1!0iD5K$;b*-#bE$gH-Xq>j53Dy(^IU%v&vxZjw6UprK@bfhz@bFI_JK5E7akp=~= zwU$plIz#%y&3W2QPp7qbY|}Y>zET|R<2r=#*34{E;@ZSqO0lsrYloGU0TxN)Q%3zy znvRkUzN9-&n)2xeCE|u63~sOU)b`*COE{N=v)kh`3avd^=SnI!f&NUss`h?tSJ5wX z2JbBi{0l1O z5gwZtAEQ=TH<#nDESb$b#&#a;+Fue@*wM)Z`Wcuwnrxa$ zUl8~a>+nBU)#`C7wymp0fgDCg!j@c{jd7dUlOUu*^nYJCYM2Qqea)}%B7l^S;D=yJlk+BjqpRof!KG1)!{7@zLYEdaLT45w zYIFIO>H6)JI^X;3FktEj^h_2xs#};BIkAM^s^a0g`gSga1NOoR=@I?URgN0!W|`gx zFae420oArF=R1uJ!eK#!?4~jImr!dDtyi0>$VqP01-8xBnUf-23d8xdJD4s!UaFs> zrX1bYul7bau=gK8HSL$EM`Z*^vQF7FYF$Z7p4JA`^s8eF1qlLv@6ANt+BLa9uY^Ab0qa#j zK5sj0F~##B@WfEhBAc8y=&>2_TKrKW`$>x$;wiY;&7r?JVJ;Z^y2TJJu8%Y(vIBmm z?vDk0yEZ+qQkkXWy@K2tq*5TNFwAh&6_WgOT#F|~>X?PQ{EuBb+}};lI=2huu}ykx zOK??$2M6gllM|zcf^2@tw-2#6+JWqgg}f?Uf=Z!Y-?MrzsDhmsaAxKAoc5&$@YuDi zv_I*6UFiJqcv-*mc&&V1lU?asJ=5m9!oQt231T&h5FAgd>W&CeoYiS#t*=wsq|>L< z2z+^Qedqtkcpdfm7FQc^YH+(WnHht6ksOmX<5FB>;a5N(7I$^)rqLVFr^n$lOkgsk zDS0pFB6rH69!x@&;$@!H!-O~Yrkb%l>76O3%FwC!;i`#@vTO%`@4XQO*h8Af>fCKH z*c>eXy92c0synr-bq0^v46d=jn>Fa4kP%RM`^tJX{*7uZqA(^!x>vqLn)|KycE$jx z3b;!@B54w(v6xAjI~rz=t(Kc#l_LgM>BpBy6VCu%&C;Qi!AvYa7zLa^U7T{J2`7{m z(l>$0GP!r^nNoHgRo`>C|Kf~o6;wNe0j>hZrf?)1$UCwv3YazM+ZLB4X`>1u#V!A{ zF60p$jQv>&1Xlqt@PRz;GG}7tFj(I4?fSe8_z(a@-ux6)=kw`Yn;p7kpdEz7E8a;U z)gmuXbh28SyvmW9QWqiPG^68mnK<<7%lAF0YxR1!Y)(ARu6`k=7_t8r1uZjNA10Yn z&r`mX!#?hIRY55Y5x8XQ6rb!a3ULC zbQ_&U`qwQ<^~*7L;($(*wdoHp+ta;ZPVcA`3!bic9t7tc|#BQEB|>^ zUVL%r#udD_P2G?De7qceD)=h_j%3V|aw85l zaM#9wXOemGQ_=iW8~)nfH!v)SImMvpV_;5vcDNjU;yR>suvh?w*1a>0ArEHB{BE#1 zX^6Pc(a=S}O}T{6BAiGp8F)S)VG7#>-zYD+pnu1U#qP83@o9F-W!*S#9?uy5`*U!= z^?S~?=HZH%GThr(-})s|%SL{|*_hm5DUHf65#!^?e6S zpfA&fts=4ZHfU!IL31^Fz)u)!4Nw&z129x}V6s<&9*TukU@H*BHz4JQ)V17IGX|`d=?0JBw1KcnIEB&)vtfmO7U1T0A+AC{>uLRkPP!}Ym=VkQ8 z9Z#9KN9*GYX2*w_jc#A!9r5@vA||I4N8^`~0+Zfa?r*6yyFfHCo+}i7{EU5e{`g=O zI6Lh<;?>@*JK~mIH=TNw;ewKWG#PzXL6`7B9yg6cARdH~$&EU)Qzwc%M z**mZ5Yn*hHIqU)d)&0$1cU9=2$DoFMc6vR>V?=WN|qSUteo(!L#z@qZl=!TdhU zO-(Kbto?jWIUh?1P~lbwa`|yu7cZ8u^uBQtrN^@y0z-Q_ZdgNx#ofkG`HU?<0L;(s z(M`{tGrPQNXzA$EkWt(-TM5L=R84u%X z6UeG;UEQ|!gzcQ$W%cB3&2P(Z_RO~(nbvUze}9yAXoWGiz=s!K5$C~kGr`vNsl^2x zY#g08F{IFyWlLCYhQZDxG_l?1&0$I{xyW-%kXn+Kecm$qXo^Q1NY(`N*68KSc?k^;ZtIZT&K0{tMG%~SC;bVwkFu;-{CXzo&2_0sBcsQBR3OmQl^C^@q2pQ2N!xuWs z=qzshixKmS6mwyV4=W%H*cD6M18YCFk%&VY50}Mf5_ZJ`5SmO;bkfAe11h@9mj+LI9jMrD9g~(G*!oAjE84d`yB?(D_{4qp8pA{2s2&&I z9=$JiBkqw{*Y2HzfY|L1v}A2Oejf2M9{Y421IySPZopfcYs7R4G7erjB);7*og@!@ z3F$G}$Be)N6clAw``_baNQ{}=;8S>3dVkSd4<(R$W^CQ@?ZW*=e zJHwKBkL@Z4-A6{^dE}e-!|XJ)0TAG24t$ArKU5aaOp$kjfQ9VFIe^4K?;Wf3IPihYHFu zPj@h_@UYwKGHC4h^Ry1x>v!sxaif~u|CLCAPzHhY-5j9zVED@=_#dT7F zywwZHEhyAAaSgb9!<<;+*fy?oF5_kOYEKd2txZq#*AZK`l$=nSD9Tr`TckblFDu(% zm^NI!D(T2=4}LrKuRHSye$)T7$0VHjqJpaxvr;Zgx@&0l4orMu(5Gbh76?#L&rrUm zoh(*ZK3!$x`-7meL*y; z{&Sme9rVucD1XC5@(F_q!0%kg61>3|FI8--ue7(N7WSfb8Teub?CSg|(to~|o2BYc zuL6{5V{q&dMSr2dCt)Wvn$(Gh22Io~>S_et9+LXlsj701)GMiEi2EVs(8C`ibrthT+dvfNxDJhaH5u7|M-XtHO)`ju?o6_8$8KIy8epUvfO>(*-SaRK_Ird&{pRWM z#=g1rpNRuKkd$wW+E8CbXL=)etRi^ovB`X@2JS*4o=Q#*pvxUE{2zy(ebZ5ll&D7mtG{5^1=Yyhie3UPm-($m%AUVRw3_^d_tWYgln8 z?c0NtbLnz=0r)Wd=iiN=`wRc$i}% zM}N0E7K?lT9Ar6yxv1I-<#HFTV@Xmb$Y_NSk04a!u?O5DeveKf16zXbnw5*?qCEvR zPm{%l#0lpmkX}C;LO^pFk+lN6*WOGh0A_LMcFxsMQ>x;dpMle`Jz(8}EBT(*XVk8r zxC@AX2OHtDaDaa*+pJUcj48&gL!NzB#>_h;1ZnJ2fuA1hcAB9{T)ZA(_ALu}=X$Ne zjbNfK;3n$&wCLxH^*H^aI`+kI@XB6--ZED!2)2M>>yTKtJTteoDW89wR&88Q)DavpqMkMK3siHk9YAYLH%eLT5VT(kOM$)R(D&i zPfh@&%@K;)$%$D7=F^a{YOrujzTs~8pdx^E!xx)LAcr$SyOsg^Wv4AVUQsdb2=Li48IP>?ZN$KDe z;r1&sczHQN@!x)up2xa-95YbQF@=Ze0hBhTmU#`2?ozP{Qt8EqQ>`p4t!?$k9jvNf zk@K1}uMX*Co@P=c!hMpBT$)=^`K+u(dG}mqq-0`TCMIE@20Q^3x&cQm&Y@c&qz@dc zDGkCD;$NaC-~~+HDnFDnodhYzSBA-yy_A!Bi& zF7J{VMfLbik)xQX0m1L6m^aq4`spN83SN=jF+KvEIZb{~N0gsgy?8H9f&eX2 z5yuC_5YNca&Kvl@Xm)&G-!b26J`Nm?FDDc>1lc z1XiOIRYvA*Y@HaJk7Cs=xg3H^s*U{Vha0tQG|PJ!i$`;DgyVg7xuB44!_ccpz81^5 ze;Pe1kCh~m{FF9MK1WqfsTH=PseU$oOm>yxrig2zH-ISlK2c$5?m8ff=TrPuMpNO znj7T!vG#nhzpcm?;D!n*ZnVOwbOJNaR9Xu?pa3}4#%q~KTjpGnXU0EkSDl(63#7n< zX!#7F2)wUQGKvl8YZ;<~moGv|OgDu~G!|;(`aV|c^HCuhtzyr|CmTM0pw}7XCxR%8 zkh*ENvo3q8-5lq}W?0GMF51qUhe&Hw8NnqKw$z*OrR3I#R8!H;oA6B-nR~R`>$M|= zZ@2B~Y!?**ocz#-LH%?gnPj<8lhD^J7WJyAS#f2)8gK-b;`-JurA$)iS|voVt~#_V zv!-XT7&~*&wasHMa}9bY1J67}u<`efGp7Asif$Cm`wx+j5TlYbZe_?qC~(Ya5#KyI zb^F>0;BU5M#W6<X%OLT(rjh~47fEI(i_yce~pQ`Ce2~%z1G;vpp@&5 zOk3?!3gB=gP_ZyC$%#7c!OHH4iZ8-3+_^R}YC#CdA<}_EZRyaUom|l6Y zo~_rhZy}=eb%4Jtk7q_38EM zY>iAy655+2Ku*-v#_)Tx$cnrcDYD@3U>xg!2kp0c@&$ujqja;-j#Y8+Jsk$QWM?KG z1ZDIO$1#4;%R)xhG8Z!q%M(CQ^~%s9LWK2yBj|?4_-(k5YC1=$2s|(n-J#WW4noy2 z3Q^e3kL_%m9F9ENof&1mcw1+6J=Mmx-YRQ75+m-{zX#pa_RG|%`t^sTfbAO)>|bmO8hSn(RvuGwHmDk z(XEllXUu9oNz??no?E$}0u!!h{8*(|J@bUHGA3(}vrAb;T{JQyJ~t&@8vyU~g|r}? z-Q?m#b!oQDnZ{+n4%{@_4Kr0oPjmv4@agfF!0~mD2(m`n=5wzcsuao0cY*9G#%#?u zn>injHMZ=1xlKPa`0b(!`|!xejbbtQXPf#Tk^7WBrJwA^(0DNDBDli}k9dpK(o)y( zZzg5vb!l&I#<9hO3+2r<@1u=LBqzDG^@?P(m;?R;K=M7vj9&T<(H6N%G|r6cnrsMd zh%+$hAp~JkLB6eN0t=!XjgLM-&1KkU5<*dh3yk+B#fr zOO<=vtXgqD!QK9YWqbb)v!*t;)Lm#CHKq`b5sGxyuJ>%{q}NGtU1QBc-+3K4-rp50 z;;QvXLkS|u?S33tOh#s}8xIEloyCZ&a!>EsZOCXkf2@Xh6w?MWeOV|PC|_l>i&d%C z1pyU$W|WPB6QN^}W=D_dY*kj>!%x@mQKOTz<7?9Q6v$%@0Y` z(1fC~43u?4CbzW*GgkAeP4`~m83}MsfN;-3%s87qRJR$-Fis8_)SbP3zbJvOC)?uL zUm~%6j6FYE)CU~%YQ!)lpcm#A+b6w>ooI)*4>4IBCF}p@6Eqsh)q!Bb_Sl;{uoI-uB1AL-MCBx`RSc(H$;G7gECF+&?Wc!o}0AH z4Q+th23vYsOy*n)l(`;wK^)zmFZ8~n(fdMH^yIaC8@iTiW~m!k{Us3JJhVH5`b#P z@oWIfeBF6lP5GpYz*{9Jcq^3h2g6+*(_wx8Ys;zjT}5e(BEA}=r5PR3$ZAXid&il@ zb$VUOLBK=)#68bV3c@`r09$0Gnnd9V)e6+#Y9FC2j zWVMfS`&YAD`x8@EGQl6<7cbuej9T|;!+7`$Tndu^Y7~T0Uzg{tP12wvE%SkFqlc%}eG)C-C1y*t5*9^-PY|?*;Pc(xXq~c-t#`ZW@NiRcb(HZCoBe3Gy3^^r9=$=pDHPfNw#{`xw9Gt*}jB zOEOu$<6os~F(_qJ!YQ9_nE_9@tyxQwTvaHTA`Ona+F{2Hg(PfGihZ)CjLR03@2SOY z+ixk24&H*+mBH8T5$Uzkv+jxu#!pE|bvh1;oo=Ob^ovqtkEY+c;hbksR^wM-LKywP z{GVOB3}2Z0=HZC9&xIW`)t??-)G%H*&ftuDQa_PY(O{&uDVpf-OoDB@{%myZe6iO~ zK(0H@=6T~l=OAF!R7;$yy2;ERf4dHNRD4ogCe$Lh!p>7xs!&!Q(W2^6b zuhasLzFs$Jl)%$CXX-TDFytOzgi3*av@$ZB0=}Fe!@S@Sc^)&87)Qn^i*9IDVcNEL zm+oFvUMN-xa}lZdQ&XW7WaGvDv}&2dneF6ut2@QAbQx4pUhy zCd|Z5U8+wMNW$^OU#GFePIj!E9yJe%1s&7E)^#sb!x7)<4%^eHc*2NC#kjvz=Lk9u1D27no&&N7Pb{IP+ zTJ?B&Mt8Z0fVCAhst{usr_~x98nfK0>N4cGJCREy=X9ijBs_HByj|B`ky5tIbsd?0C?8a| zVAG~nS%S1Je`bI^F(G50I7C17Sue-F()S-j^%Qaf))3s-OIEQe<0Z~a$q)lo+p^L& zE?Vw~V8S$5S(%w8Ql}WYS$FYHB&|}Swc)`tp|fktaRqL!o~GfVPv$(ATTgf2>S}&R z1FrYbnFrs7&6iS!)Q@_BG5F_$cz$K}a&iE3lx^S?&T%Zauz9k@oD{O(eQfv8if?K- zW$eZW2LKIz4~hlh!Zoh8=SjZf@%*BcrK{hoSROli29gV)pdC>+&iAAK1%#n09a(`U zlWqhrP8FP*=N%0JA&CxD|5VLZ4Dm`X9a8!ge9sf1qEeE3`o#PH0BAs$zoVp0xs|4B zRM^-lU(`*lM#WDh9$(L3o&Lg)eo{_7{S4nPJjLbWOUR2?OR;Mld zkH8(~Lzvv4z@0I4aDcr5iI>TQyMlOcl~wXt$DcL{)zOV@_D*HHyJMqmw&cnudKU?Q* zI{VTqW%ie^mesT8=y0rL119ZB7L5qACP-B9(GE(CdZ5#$dV|r|D(@x2SLm=zbGPQ9 z`|m6F@+p=w!4?hJH|%sJ$1xT;D8Iy|4$H2!v3@#%V7QsXK9AS&jnKetAt#9|4Vq~4 z*qHg}*;o%^JE9w54X*>P3$OgLytO!AE+D55{O<3T2R{9oa^xc)jgJLKXIo-`Lypj> z56GqPJ#(8ZZ`VcwYNJggMZq|s#{rX)7i1AC2CT#{9r-4H&(wgP$IX@xMk6MoBHl(` zhs1LD%pC4KA0s@=I@lWD-x>4nIk&6Axthd9P{HKX40aq={JydJRf^=hx_aLI$T!() z+-OutkVAMOnir3HBABO;^Dvb6P~tcV*I0X*KXJ00=h~qg-1E3_;#67r`h{}zQ=cpo zk3Lqq_wX@Jdtyv@$2_xKC#`vg3bh9nLwwO{2~1SD^oz(^P3rqM%K2pD35;qtL2d|f3e*2pimsu8ZE7DYGbsi+qOT zGT*tIefym<&BmW`Z^5_mr10Vza->c9fd;80S@vfq<7njX?G5Y9Py_GPh4`4_?1|%L z{p5*q-|v079Hudy`Ve0N=J5TH-<*nmH`p^`lLXaB>r~8&OQk0HnROE>XctUreB?=3 z4e_ZlE7V`lTbkXvAsfUsO4mcU7utB&(DbjHWioo!cqo88IYYEf-QHxDPO zgJty4k+=O@(@?%j;jfzCRN(L&B&Wvz@$uP+}zUgq9?w=93@%jKajeyJRN^2yTW+loVMQ1bwO zJ^$LP6Tol}g2rFzRU4$NHR&0uG2$3Y3ieGVH+H4AVHH}n_v7zo+i^}TDiM@#zjsS? z5WhBzTiFvHh?{pUqP5Ngr%t21@_M=a%n!<`@BgTb^F1f$nq34}NOJyPL56@Zag5%w z0%C7LMPM9B5^)21=HYKP6Zy7x6+I>5DhM`!62CqH19z=3(YuNRUa5d&VeBFTFE91< zY?^88jJfr7lG`3e)|ndM!p;jc$QNIKy^L}VjXTb|N7yAaN`JzMa^ax->UxRTZ#uW_ z;%&5)Kn=h)aK_&G7$}sROq1p&|6h}bGO^S2`BK9yTbQQErl=}6hyaY3dd`|l7=I+n zc=e5km5okMs3XqM%yTox>A(EDvdqY6c2mA{B?HDw-QqsKA_ zvroSCQdwZZzRTkMAx2}{(^JuyN)KTnSkR!M3a^kEg#>$uuyh1ojUr9?PZ{Q|oqwLz zU&Jxq&5t>@&2Dk_^J}L)hV{~<7|FP< zy7Kd9%du~MyQ~~PQAUw3a`|^=L|I>2MSAVZe{?2cg(N8{!?0hPo>CgOjx&Mn_C=Y+?(`9RFyv)*oE^z6C zYhU71*L#(ts{8Ex#_SZ~vfMasEK>$RjR&1cL+1|44(qLp?5@7@`Wtk#PZT7Huaoly zMyAa3mVDA#*BbiezyZnBUBLy+>Im9rdDc&(tVB;I!h6I+P+*)4 ziwzT`kGWvND;Ywu;|>9|WCXMo-j2csGKo`7-*`o%8Bik+-~mX139$g@I#;Zp5ES4p zkGsw~Oa*zl@T9xe5SWW7p7U%_xxvB2BYu+HvtKbY2t*E!ET7@oHE-}=}8y4>?8e_Ga#94U)b z>Sg3^qmIHHP1_lvQ(^wr=`|W-3dT%fe44{eO=BpqDR5n*mwpjBI`PKqWrLZE3Gf;7^Fd5k(?*g5ZGT^EVDNldqj_b;TyKw19n{5!loxK3+cc z@BX{;#J~KPW&Fucl$GhpkhMAD&x6tu>6dx0!{G4JiSL2!C}W$RM#xyaL4Yu&SZkVy5K(GFmdW*R8nK8NIbmz!XX0Id z-?v7r*8^%7a90!>&law6@Q>l~CRg#y(#yHPj-Lg32V)F*od@p1m>ilzpoS7A*U$AR z^;I-34FRH(Viy(T)pz>0{0t{B{&?4UYyE`hpGw7sDHR?0keTpm(R+tvuV(YYD5WaT$G;`foW8^tCiQ-{8D5e*QPjSfuY|SW4lZ#H}#0DR$ z)gu~a<2f`nxF#_i|H>D`bpJX{&>9>P4{#A5-94ll$+u9L@F!eXJkW$$nrI+m*H^^A zBSu~cF2}1h6igYG3ztHcF0lZ=_U`dA!DfpQ&gZ#HOeNQe-Xi(8iAF`=AfH9Rjy(Q& z`OqJHy*&J<|Ez3tjn4|lCf4lf+Iga(Qb9S*tP*iIW1PXEmn|P-N{L2o1Z6PJTId4n zS!+x)ZlNGtYy zr@@etFBBlT5ywaVyhosQEcvXfKO3RFI> zOSvU}lo^3>rWz-a!&%nJR%yrzo0aIcpp&wQF&e`ia%0BYo6=Yob&=;Cl_Pa$J~;{P zw7YkEx*dO!vu|^pr(C1a_A-Z&QM%$|bhyQjbX(BKcaYT|Gr@!(?{L;1!l`DxIF$hr z44kZcy26K7^TwwdY1@8os}XA}zzXnI?}G}uvXZD%bXxf#7sXLDXTSLmW%k9F$~MFH z3Dy_9>@ufUYB6Pue+pRh=(eB@auFsm_;1rMy!4BpgtFt;2pE6!K|nw>lt{o=SPiph z!#n)QL1n|AN>M?H22R`}JaO=PnMoR-QAV4aG-THpl`XP9v&yEGE${L}Xq|c*rnjRK z16sgLOd5oI0XLLR0~;^!pz>+ah=rk0O#=7u?V}w941Z~D zd8l{M>^SYEBJ#1ol|sG3OB~mnnBMX0%1h6`9NXzh~jN$NS)$A4R);Z^?5fJZ7_woLPvO&tIMX~jkRAC;z0-1#!Rd< zp}z=~??@)@#4{3zKXPC>Ce*c*%PY}tAWv>e+T;VDn_hc`UK-`7hsOd0;PhyA2F)P| zparAAq%GcLDqS=wM(GGD2iXxM+{j3~+`WepfoJL64QtT*HGDamP!{X7-BUImM)1LY0&UAfu#@Xpk z9!PFYGNeaeELQl0AGt?PxT)pa}5h#K+_~syK zBkg#ShdFAtV#~h~dc!V=Z`1f}FeSG*IbJ^V@BeMN|98Jowzvi=rVwcqXt9F+Hd@M^ z4VhEh`o}|hM`F3=1g`jxGJ-qIOv7b(eVq+Ihu~kA_0qt-DXYA`saF~lN_h*J16SAV z=<39}YaDE)Dov5c5a)sBICy`Ywb!dBU4vWVe3|R7M-xwAMWbt6;X2&69x9yBB&NKy zMPP6w8$R-s-pN-SA8?~gihUMRWTkA@7aOrCK@+U6#f@JzZ5E!gW&}5D`4Qf2*TT5m z_xw}Oa7g|aTrI_yzoFeIN$gZe8)pV0r;v+ABts^;ObxQOIyGG${K}Whr~cc2!y4-o zWo4YRg`H8RrCBAl0YfHS7q`(1f`?mw8#31YeHf7ymLTp$Ppokue&(HHWth=e{Zy5m z5^vz}7W|MGN)}}Vzxr4Gv!m36BUA2R>~h=3VH&GRI?-E8E9ElZ*E_>H^6Z(jeC&0# z9AO9LFw^E8>Or7M8VRWQYw@oqGQPa^>%i)&n8b-r9>B)W9=TscJC4(H2;J@g3BS}CP>rTJ#gIpS_cVUd^AutG&u z?Zv&7yIqFe>^0w-ca78buVM9F`rW&+&|t-+HR7(`a-V<&Pm}PUFcJVR&_r{oACN?4fyszKr3@s?#?gd8|D4 zum43E`S=rMmFeCM6pd?Nan?&kMaH2j95oYWPuj*S1d|5Ui-B!d?S$Fbl;t(PQTI++ zU~R0+eS2f}dhrff?qQJ>k)!!E<+a=~IwyaG$G*8#@uqznUSW)o*Ep7O=;u{!dF9aY zvd!I$Q%nbSy~4_eben8KQ3i+D-mNxK3585bP)#GNzRW3EVuA?$fd42Zl&Obna653e zj2h`>xs2z37Oa-f`XfD%Cp$$b@2x8{<>Wtnn+ELXW#f#WWI{KY2egmf)Ig{m^XS|N z)cOg*+)mF4vNFz*j0YIi-}8t6q^vTcTEc&w&0j+_Vj)L1TJSjJ$VN^1Bu+G5yyGrS zg&i|YCu@lfK8weXm1PdbPv9?Sm8X;s%WT1XFc3pqZtCGJn5MYFW8^v3%kUI!FB~2r z|LGCrhIQq2rom^JIlA~JyD=SsvU_p#C}+&<0a~Y^LzF-2WY(x2{e$MQMTrSF^1~*uQeyu!XMvbzWc0AK#I-|=#?B+0OZ0$_eC4h3Fw==l zvdMQ+R|~dAh?>&kiFY$P+3?mNc7t9Y3>*(0&jTg zP?>u8;d11$N6XwBZHZo#^J# zZFgPT|KfHME(e&sda=B99k+&=v;OunW1iXFh>XInz3@W0 z%1QE-ix&)ffU{rtcxfja_n;yp2y)O<$ zL$cTtXeK<;A!rem4KI|IO2bK2)~&1{z%EoY6gRyjGS@ohT3g(I1sVAN_C{rGXxDYkqWyfF1vqQ;T_} zUu2Fe-0{BipWBhQDyO^UHVCI3*D$e9e5F!flH{1h(^nI4j2r~!9SNl)jT4<~H)5@^ zv~l(OKj2ePZCRCoMAKN}}U_UmN042=&x`e-@C8La7s ziBA9kKmbWZK~$J(#(&7QRU0T^<#7vA64!Lff9$?SK!_1?l^e<$0i)tia%<77MXy7fKvylytd%Rz z{+#<5k8zIo)w22fzgOJ?U7g&7zL%;E8IbM_4nNl>!l5RDFm&2oQ-1iQ8+Mo`KLcGvur(|;2UAX zUM&R^;-on}m5ruM7FLxJurq^jC5bXpD3MB&i0O}2`yeJ^*OXOuo!hPd)bB@>Dr;c^tvMbLUkR$TF^rjKj&dGBvwwv|U4;$Hc+; zs^poxjsl zKlo7@Wh2EH=k!LURb0H#OA;N^3L@5QVTEpa=rr`&80$#)-&;o5rE1&gRGmZitx#C# zI>u{GUD|kUMOZUJvk{|C#Jw@p_2@{+XJ9y`H$f*PW@XGxU4VZcbOt=I)Jv9K8S*Vf zlwL(hsZX4NXQ*{gF#IUT%90(X4VHYI!Eh7NJ?P_U@LOR`aP|jR$`79YetG=&zfzw3 zSASkU@-O~*DQsM^Q>0`&Q1$ag6bfKyz^L2SS##zQCxZwhDt-+fdfmd@b|ZERczXu7 z6;{u#@`cc$fcad&D!ZvJJoUY@!UE+8yQRP|Jh$U=zmL;7sEnTC%Z zAhYFh?uSp>l?5u#apvRCawp>hU-(@4Fb5Oy$At zD2E*YZo^?-I~B_=i7T-PQnal^RMZ*U_+;KV@ibdKs zD44N!(#NO~+^zWdhVqZ872HkzwJ5P2dXuTnO|C48E!p4{+9U#%-LN!2I@%t{hq3}) zJp8PQUOY&kTY5309MDCa=oUqfdUTb$7;%lzV?RpS=1-g`&;7;!S*DpHd-SVcEua3U ze^iE<>KeL-&)O@40333+g3TFj2o?E7Vf4O3Q)S`~lP8aw#Dg*%<=z#r2+N3e;2>?= zVb~33(~YCBOE3JgT>jZFIJt=^h zxEmrIjXRBNylh4wF9NJCh>?n&EIeYG5t)Wua?V9`*1%~8E2Qx2t*5|6vU>)R;W-7yhF+9=AjJnjG zaKX`mcsuDr?mJBrT>TXa8Lgu7otcY^xZ!C;ymf17oZ%9%Y=~Pr@NueWR3%G!jP118 z(6CB`bSS-Yk@YfeF1gH(yVVn?%MAqQ(Jy|HLzAB<9j1l2qX;3fHjo5ZiI2Ges}Y)X z?fl)1KRaXGxobbzH7qL?I9Cnc$Yym0(RM?jA+I!zY3Zf4vVLKvod4mo+|Kb<8Dh<8 z+zKZ#jU!}?uI7}Y7JhG?+7n#T_jE^uCE(+wD`S&pfEtaM};4Me07iA2Pg z@UnM_g&gI9Q#$f+7=9LduN#-Ha!E96bTlYKOwY({xo&)ozYWR(A>0j3a_Y(+tu@5B zGGO1D>0%lhIOm)2{Q)S^!f$W(+dJv!*1Z@y*NK~iTGEYipuwm96 zp29N6#vAXJ8_&K}W?z4^jBwXxcQZe;q~aB5Y=j^WMZx6CSn4QZ(Dvfi95K}4h;T6G?{T7PI^9WoKe>tQ`Q?C;-A09 z$2c#XXGZOKdFV@DEDv%?fV(h8^gW)yauJ2wJ@VeoU^h?tV45t-7O{FOwC}=D6 z#^sr^`0Cr`{7;|bsK(jYPCv$+J`)ycCWX+)H z*E!HSOhe{1JPP9$!sryxW;7%=Kk~e(`~Z%!lU`rfsG{LPd2KTdwZ!I%HDC_2b8wWc zgdry|dyrnj(}b5+@9R9qSyT96&{_AMSxFL^nzW%rhbBQ(^Exyll2 zWivCcmN%KUzL#6_AEq%|{U?7=ra%2;8E4A6%PkTdGz%rEKn9IS7kn_^$TV{{_r6Wn zElh*=En@8&JV>wIB4zC)q#;SAlSpRPQbYPyJwhEeP`c5`Z(W-$H-7SLS)h}>!EDil zx4barmyI9s;@=L14GoX^z$hfdAmBiLga$* zN@dE1OnM7bnF32P5MT2cb~6YE`Ik9}JkO!$4m|bRJ4fEeifLtWh_VMZx*C(E56Ox$ zWVoa6IK~t>_i5zXd$>%7JUSw)CO77-m&4#Ry2|D}4%*MqQJZ`BM46}IUtul($RGYe zIm{@3jBD72xZiUd*^A~dbUb$30*ro%nXbM~SI@MHB3AE%G2>P)13C0Vi05P}=XPe9 z&N%n%^JNldjJsGGX)Kuaj}$O+6T&HO$x(AKA0A&lv%`V!pu6U-zxKiK9-sqRDl{W& z54Q>ji;8EbNq7FXQc_48Ywt+Z_>Cyb=uOl1_B$i2O~7D#aPAcHc6`s5P1EyPW_swx z*^A}Hzy8}Y_VUZ+@jv`p`O5$B?@K{g3cKIjimSpQgMb;d+lka|yY^EY`-Sb5(amY3 zO>(zKrJf~%3=ZWGB!(_g0c>~}DJ^lv@Cs{(t88ExvqMC~q4J1n9+iw5!TJZ2vKmp{ zRanXbVbSa5e2g6|Z;>xdbK()*uabHOBQJTshAeC6!f@)jGce&^5rqCB&plT@_h9U?gXV`$XA}$_7j!c>V0oWt8Z&A#ZhR8&#=$FY>=4=8eFRZ~nO$T_UfJJ}$Y~NG z;9G+*B5G{cCaln2m2&l|r^^j?{A{9hM%cR9W%@=qsUNTfA+rJ|;ACO|Y#@dm;#K&G zofUWI69frAVt`6aU75~IqC~t6@0HF-iFcHMuo_Qy6e|M)1@Y5qG#gxdP8LAMhar#- z2ttaFLM81ZMZ(ofm~LS4JemvraW0MYc*Ua=a z(EtbU+uLR|x591q$N%mdY&K!nDO2X7!;bpIKj|z!+VcrV??==V`}7KX&$FgU{$`2v zqX6KqJ9^mQXT#?dR)evaQVhR$h5{mfeCh}VG;`uO=M~u%%lV@z%G^2X+H2GIMYFk) zC~v+1LSz^e=+~!2kT7`0Q)NE*X%R%PWda}K?I|k*VXdTL-8CH{S-zx55Tdb)v$7QV zB7f1TF%LQxLu?FMeCyqEfi>tk4mEfA{?_O!%N)^or^1hOf~2=DW`mP}^H+GO1KdEg zNu*6=1W8~g=yd6R^szGasZWF)bvu0MbeO}-K}6~`bajf-&TWpIEkW|KgUrQRC7s^T zqwweQ_r6!Iu_5jd`qVFHcx*>BeR5A@!yoXxNw$dJ#=3^rY1ZVcsF}Y!*N)Yv(QVRQ zcc#fWb}U)dqe0^`2kPh+M?J0|KT)pnY;sf~?qeKhvlI=OaGXtu9lt7}o?vMA(PaJ+ z*ZeTPZtL2qNHy@&fDPZ!do`o*F*L-((q$aNqt^@rHtCHlbN|?7gkA6YiH*2yy7O)lvyWx#H-U%L0@{GU?k4ytr{?urFA~mpTMBfpq0b&uN48FBBctkKi zW*!0B(;7~GA};Y$z%#60nI%bv^iht?f>a*ZwXqXBNhfF@Q@E4S$`;#S^+$n^K_))| zvCUf9!kN=$_3~xbajumG4))4{E)7{H?qehY!W9qJgy=gnNes-_I0~bw4Q=>n)W#=X z;l2w$HDfZ%GAH#cr!-C+G9T#?;|%cA-8wzZe_F2m;0I;lwO^KrMLR^?jYxS_ z-i|!%?}g!I4w``82vI0O;}B$MjLK}x81>Gs&3hK2Oh0g68F_&1(TsAN)B&}2)bx{2 zc3+kCI3!DlV(991rli>2_ILk<_1|BXaXM_1HeQ^+u|#4PR1RFip~ub#XEhNdZLs*X zax3Dp$H9EG>jy2^2E+jstMo(qK!VW0do+*%`BIn`EI$)AYhFR zOh@6HQW^R3R^~%4Eo%Y*zbtk@dWP?zJa%bPFh4aEwVvvj!TBu*)eR=F_u5HMA@N}@?$nZS!6aa6J}&;fYOur z-d-ctzz9GU81MA1nd<6CjKWcfy519EDBU3{h-(5iU~YllJasaL>YkTMlm+90X`^l8Fm)V;|UaGlZ}f9xZ)VVv`VHipHNE$xxJCPVQ=1BRSC#ksaj zFZ5bjVSDzar=BTqee0WLiVoZ~>vSX3g)R6MYbhabfrvkWS6KG>3B30S&!Ad2!7UU* z(k!J*T1!|V*>PdZKjj`po>V+jmVI@-TxY84^xJQj>s(x{GV&~=i}aqO^L(1hheD8E zCELhHLt}C1>03Y?A!39Knk@*6;)o!ytt`wL-EJR9-g6}mY#p9T;cNZ z%g;Sq4l#{5K}W|!leaBRP%t}4UQ`|O z#HH>lT(wuA#VE%E;?7Y<``#R5xl>PC3ZO}hmOKSf8n4@H#7MNm09#}SpY+LmT`bRq z$shr-!Nx|69b@zKMqm5uzhPR1iowBNcesQCAWcrfN(i9|0|whm2?Q(=rj>smizcXv zVh`MDlbA*k5=^aA8v4hSiV_wrySb_1A!Jl`^A~UbYM#6kiA11rgoxqqlz}}iP4wy_ zmhOa*RKV>&`R9}6>@{}84on)n|k=q5cAM(pxC@d-)Dg=YBq^zz(}myyC@e0XD8qXi>lLhh8=g<|75bBk<1`e))&z z-7^jB1Ze&}N|9TTtCyFfL}?Xdj$Sis2-jxH!neK?x72T(I8mlhLVmAHnn_DxSPY!- zC*J`OKf^RJEk><0JkGU1M|tQL`(Zr%?$YY)V!1+NS#B_j;!Dn>hglzUx1#c6W6%6= z+}>bLZYEjgE7E+taPh}KEbsi~UzIaYKUJpbjUJAM0{r0Ph>P=N8YK>75~GS&Vt1#% z%3Z@T_$)uO#6oW#Xq{H#(I{mdRGyFsMkJ0ArWh&ssg8|nH_GW>vWu8+;*BxtKYR$~ zLoeEkg@qjF=fZ}3GGehaB=DMVR8<4p`Pisik) z=B(>Xv3=-~N6W~4_i&4gJNF>64HkS*2G^K^4$%U_5RKPiACpAyu*FsLM4= z8|65&2uyK(PmNd>E&)ZRO##IqwiAm&D8tA-3J~#VdFQxE{35;58!x;_Wnl3grPD>} zh^-8c%Soj?2uJTp*pVUb#;!AQkc^d-)i0t&xD_a-QGjce(o^Ebys-`d+pt*@0~1mc z(HFu168U6?dSWtuz7lp^^cq1nkja9IS-_7Z2_#boMh&C}0|G)wz*nKKBZ-LLpkae9 zPB~&iXrqBAC&KG|d6&f;=cA`296iaI^JmMcx8E%Dm-!+9mkLkvDF?2j$etT5f`Sn= zR`Fn|fAv!fNvEVx{k5p?*(4zZ+2lI_kwRH)@d;Vr6;V|r)^w)4R$h6v9RKUTE1T~g z=fkOdY?Nt4M-;U;Z2T~Sz!K?wThwqjibewP=&Es2LAjL|o|4}d3+Xc`jhS=j$}(RX zA4Zvbq3{rENJGdn+x$?1+#>(>8|4zyo5#NSjdJokPnAVBOiZA(4%09=(uv#W$vfcl zu9!r|jVrwG_{S1xnvw)_(_VQSG$lsLKaw8Po2F0^W-L2;ZU7mDR%6u95fu6cXWXta zZGDjrgVS1GRy}fr&Qa*#Bx)}^AXQkErh!@fWPMH?8&r9{FGjuwZ^;s-i?BY3YiTV~_P42P&)XB(g5lR54JRYJvy$8LvuYS_jM9O7YAe4gpUlYjU3<;wSe zT*m1XO)*LwYev!5e?f!^0S5v9>l3(!SA%gAxA)4#M33-D8}?elj2Ph#0Ei%6W0t8& z6M74Klpka$3L{Zx)^c51S#lO)5ZWCB@``g}l^OWm!c@u_O%T=S?_)0MZ*j?*N`Vr_OIM7*D2<=;4pveLk7-~gEIk^700j7mK+K5T7l0Zq z-ohYUtm{H+Cd=|fUJ5UkZ!N z4kALxX~-h`M2OU6$iHmWKg*BheKh7%pMEydF#iGvBe?j^?#!i=Tm{4-)cLpGE|W9Y zxmt>8A1a7+PAL?B6C_-@V#lEI3V(mxY!*AiR5A#yBU|-Bj!elFn5Y?)_C~qR#mtM) zbMy2GrU_pv*SSKdOQ&Fn&Vel7=5XvXYrJ#F`Yg(R14T2**7~XFSeU=PdjHJR=|tAu z$X{hwP2X01cD{*z0Mo?c6)e@MCEk^ryrZ1rgrwL{*VGs<+&66-_r z%k$;BpANdgr$9K?@Yo;!ahd$oldSPDGDA689)&6toYsJaB{SEOCKypmD^5-RHT*8U zLwd+Y?NZBV*7Yo9D1WBtHjW*q^T9XgPM(Obua9`fkWPmkYReE)za&h}0df`f0X!|g zwLi;~W%5@Ub0^;fBascJ{pWtcy4xoA5nj4b4u9@<%F#z2;RC9CZD5SUG#%C*QS!wv zG0fdyJ?UbZ;ZE7h&plt}8HtUswlq!SJE{!X0WrU5Si(xZRtJlFy6f-$6gE_9r3v=5 zdD2R3oUCP(3;(EZ6g=x#g+Ls1sGWv9oKFgHbwuVx#p6tY49~BZnYZW46*`1|!))Wm zV)^JF{c#z4=usljusbUd4N0~PF=Yxo|6Bt+unD0IK_qGO&aznyO?_LMREBOJB`?Bx zGxzUY^9q+#E-{2$XDB(j$a;;vX4oBygVG0V36Dv*+8{`+1OmkAYp1Cm4e=mc4+@-! z-a!;XaK?dA3}IDpGC*Tf5KO~uT8R(oW0En#1GJH4li~3SJi|)3QM60oY+Cy84GmhD zHj~D$aFTkaB5lAi?*Sv@cs8oQ!dU0h-9}sU6|?NQkgr2{)-(>`>3xjLE9>Rj>wNBI zhVKF`td&Fe-e1N({i*1Qn$z&GQ)84pLVlBhVeEs-joY|sr-D2%%n5n68aGm1H zDz|M%qd*pNxmPZG&~_ef7U({Ld)W5lhV(StcO`B#=8b2{n1RHjKG^GzZ`TnXD$F_( zl|ki=5&~}bBsJM|LCWDb84n^=_ozI)Z)YwAK``u)f4bgqQOt%T0Fr8 z$jH@vU+^esa?$s-0jP3Lt zZmI9mFvO>FK;H5zjW%jM!eZ+ib4nUkS+?+&-x(@5d2I7BR!6soQQ$+fH_Fu?|FqmV ze!M(L=e|QjHuCVJW#}m9sYa){eP$&#Y^`26N8Np`oOtp1vITC_jDYV&Zk$5Q-L1T0 z8N`yMeo}YI#^7gQl|PAL%VURC>iFz!YI@73se^!YWoohL>Di!pHexnpChK_a481i@ z{rV8{bOb$ig$o?6%>JZYJwxL>#^-9j&gX-eZVgbB)y}q@bGL8!LDbu7#43W4WM?5I zm<-j3UY1N>Ti;-~X;3bOq4Q~O6rX+VwKB?-#I#C-IMKVYrNx~GH!GP$IU(v(AFKy9 zA!-oHCZP^Bp?pvS}UNL{#h}lBPD=_n_JG?C;i9SQRin5w$_*mLJN-~JXiVt&^f+J z>!;6u|9|~oP&`kdp{ShfaP)(BPET57I^bpzxR_51O)=X4$1d&qxn&bvt-;UL+zB@^%nrcUY&fGH$RYG=yTeVZWa*{Cc~L zA5DDWuUOwcGF2Y^^FJ%ooC6BQEpZT<%v)PH+gUaqZA5y(ciEC7Uum#`^0ea+EelBb zJ-5Pi@HI9YoTXlLx$WO|`Ys2FN2xP;YmUXY1n3fY9~fIXT1J&+ z6eF*38w0)*X9q<1))A{lbeu!mQ%>Y^n2toOe+N=6WbcwS^rU5shrG;3f!0Ud)Kg&P zot$niQ-arCnfQ^UdQfEvN9p561a9?+q5X=f3;Ba`AgVC|f5^ zF$(hky<^?>pm9ftZ~cj5w4MP5Ihk91V#=yUGJcr)MzN73p^~zNQxh@pv&>Nj zl2v@I81Al1cdalD+@K#NW|v|#M0m$xN`yT8fajrKhgXg|mKX_-v;BUI&%2D=%bEt2 zD`6)M<%>!^_(54@zc^d0CdZ2IdwORn{LL;;8+!1=jCt%0$Ci55DTXdw<_ynw$_>u& z44psEeRc~p94cT(;3yf>V5DE->aS%9P(eR8aoC8t87E`GKWG@6e&l_$;BpjLRR#qB z@l}bgZTRP{U_M=djpFXohj6RI2=Th1$w+Ud!?^w;sKicuK*9$jPY-Ht6*WjkE~>Z8 zt^YP{q$g5rhp)hbR+Ky5c={i9Ab@n;Oe9%6R2#`CmU6O*Qk`eoYl_V-NABnPGv2ED zpnsH4no-^;cmNJ8a<{SdMw47x@7HpcP^#BynMkPv!}xB6e$QFf5Dp|zEzdN%QlV+6~9Y&0^W zpLN{h9NX-U_1?uJAOBd;-%rq}yCOH@D_gg+ zOhT(YH1dK#HhT6CJeU|2P&|-2r&J>E{ts#KH}mk*g25yFu%Vk( zGou?z{$f-F2`k^J7!0iOrCUm^G$eZW(IQP_PoMYpTgxFx^RO<3;t^qm1RTWB zc)CMQj7z-qs&SNkFvc_MzSN>#u}jY`J!H+c_?m%UF_r`}mT#ovwkuiJTLTXBz zR#FN#aWbRY;Ye%@$#89V#eiST@Q_*HubX-i({LCt zCTPhmKWRvphIe#qD;ImdJeJ3i4lgvLQ{Mz+#04&kFS`KLp`1`}pe zHn(WdJkCJAo==kj+C!_lqm{xqqEwH@z(FZixs#8wYg#*W4iuuZ(%{1@j5t-Zn|(LG z8b97aj-)}z1_`oGWO<#6Pu?n97(38nCmn;9DQ7tFr!3Ii8}biRkB6BRT0eV+(Ew3E zuD|iC<>+TVStcHPn2j%7r>6`XJ9PEHbmCxRLA;$N5KgZsT>mGLBB)nrEfSXDtSc(( z43%e@Yd(+SxtDo#htKwaWEi*vGesT|WxotG2suYO8&9`7G6U{@YRuJ+GCRNOQ zn~xR2Uj)y_1$(A$$7|UGUdyc&zZfBycSEO$p}&C`M_GXyHF_1OYF9rWje0Ikp002?$40|@d8iE5EVE^sKBp+C-A#w0#ks8XhN4PgW$CV zjdeg%M>E?ryvy8naqOw5inqLs(m@*GK<3Mo=Dc1HS&qlJU(Y{!A}^;b#ivg|Z7a zq3Rj#wA}hPa3Gqw>@+}>o)R(eCTreFVpC;`=&b#J#J%UUX2*4}*C)LvP6TEE5QEGB z<{*irm3S$U)V;Utk9L(m_}}w4*R`vzt&*&pB#{(@C{iRq0vHU!48maY%*oNu^IP5T zIRla+WwXlroc-?J-K$sX)j4eC<~>6_2_j5Da(A1^B4G35J1zi#fT@l4C;7_F|;Z_3_s!jzg@u;)M74qrDguJ@IR!* zzfVK%Hs#ail`CzHc~y_TOWuOC!*QxWJdRSRrBaEyQJT_6aVZp6{D~VUQ~}kx4V|@O zp#iVEdMC`sfzYp3Xfw_`IzP)2Auh@z%1RqsZn!@}**mx`o6^g*=LW1FKwV%J-w{J` z?%k7j|AOBlI2RG68s_!z{rHlfaZOEgc>KDjd=nP_eIjx6fv5N~l@et5l6Py{4k4CX z`op^q8yFpoo)yy`G>D$$OA325f)1E>zQ#hEr~l#`ZE0<}r$u!- zN7mi{!b2X4n*y?RV}*F+>Ky_!V#A|o7d_yay<-$W``jDwvk5=D^ojQ|26?mf@0n!F zWawq)FDCMev8Ck%zv6RedUz*MWPX=;7LHz_M_gsHfXz^*+A3Q!VgV9CqpzRxI{qzW zL?_hY0{~|!h{my^T3VhmQEPhj_lQAQL)W`syi)f?Lq39jwRXJX34FmU+ z7&(_vbyyP6@^_Q6g>hF82rAtNGz0({&c`1LWP-(tTMV6DP-9}iu)%AT-;S6^d$21C;B z6Vu-MmGVP_PA00>F?xhA@LGsPIXd5wFDGx6%Z} zks`l1;OG!1ZZ^JO(YEp50DjMkkWb`Tp3KsdTxE3PG-bjmhTp27v)s}N1JE(Or5<*` zb9~9f$xDb2`;G8lj%{x3q9>jdN<~tuE2||{ANJyqv)Je46Cq6#kJw7@61^NzIm`bp z%+K*Pjtd`otnIOf?gu~pNxSgX-)k$6*~p#%WBvvaM5y$C9mB=I$=~A^GK{Jf*m-z- zKVBFBVRjo~>W~)l{eS#NPEp`<-b~h=qnqxgX6-(dO|TP03Tt_s zg0E>An9z76L6w{^jp+zO*k>`rHh`PxVV}97r3)9^qkPU}(fOejmI`A)ha3RAdxzmr zmVT~t{LTR_|7HCB$ROKcvzWldanwYbCZuZBHsxDd*kBbLxDEH;>Y;`S1hU96w(kDJ z>u~zaEl3;*5pZe<$)p`e}i_T=iORV~1=)9^z-<6>w_zqT{cip^-c%(vw#aD6*Xx!MaAgv;^{oPwY%( zmO%!F$kiJS!5|Mm*v{Z(*r_`3QhvA3Seflx;!-HBoMH2~Ul?Yw#}QX(3%@D)NrEXFd;2m1%I#U+_2#>Z10H@KsgCoAY(v+j}vhj34 zp})^a$|mLI&V<#TXHN4)_s835RuoUr^&AH>J8Zts$ksmFW_I6yuU%(#pL;_WLGKqB z=<-z?qZpBLr&rF{L+I-dJMdGI_HZ6$cU7Vs`wrKDHhqEZbf)CQ&8>g*Lgk|lLz0?Z zyNYF~E5fYAJaW(8<^_6UD||e3gDo2eSKn%z?9Dvq)qdA?*ro~QiQ{vMhW6Zx;s zD3Nb)9YKAOQE;Tr@;zxHGYO-J=CI5|4$br{vYVWd=;yp=*~nJo%#}HZQ5e_DxVj@) zT>5$uV&IAEWSrq$ApRD94bUE5wHQ!1sT4z^klsgWn^s~h3qC|yt502OXP$Ysow>xp zoGf&hTV_`fO5JC;%}-VMLCU+Yz1r?yd7ZPrIMsY(n@Lu1A35#}#V)(NNKZvcs|+J7 z83er2!51*rvIHh;YQTgfP_3P}WLVwe5rFQW6 zbApcLqXy=8!hCLA;Q&##XWYAdxh*pfHqYdHR*ofFWhnKn(rsW>;oP~#U)0{w4~`<` z8-Io;a(ol0YozO#FT*SFR`QZEA$%qsleUsS#!)baOUJm!mvpCB0H<$L$24Ci0SYK= z0+HDL$Hzc1(!=+BF<9E6uTMdRYa-c0lEzqIqHSuypAxF zoPGQwtf*sk8SVv+I{Sc);QOqeYlmlR%+W%%V%4+QhlNw`dK1EarY8)-+F z(G$UfTeQLW@DpQqBtl&rQts?fK5bKx9iC>cnjY@zbI-KX&pp>xE zcUeWb#s0AeZ@tlGUVWu)@wu2i%Bw{>5Gyd^*P!K5n~4cUkZ!xOGQDIB*rXHT%9EdX zPod(73_|y7$fO-1=hSv2n6k-9B}eV5*Hw6xw-DLJw!`4T=X-W+mRH*Hg$r$gJ*<{( z9$WQ*lT%LLd(alB#Exu)pd-`tq2a{eXb9mLA>lj9mVf+A6f?ATZ3oQ#ULrrdcc<+# zwNp-@(yK9njh8tg7_ZA1C6K>K@1a26)kVm6=&3tVRK+ns;)??=E&J?& ziQVPRCXluLKDGD*eD7iilNX+APyERrwvYYkpYTyh7B;MM>umTNzAIc(hH4jNYMpR z3+hGF(#yizxY2`#k@y-U@}RRA34qF)o|X<_B5CPgcQk|ibF^+;{=G+!af6}UIa)cZ zOuV0Z>M|`7fj?dQbwCitPYnNCa?QmR9F@Q!ENd$FgmQ405vq0#>Lce~KJ&gh= zQiHn2#UaGMlxi5*MgqpJ(J~kI{y+RfyTc~=88#9xXA`Q0j_FE|Kp3Xwfa#WK0#_Edv;_5Q! zTN*B|JJ@gi82b6O5jx)~r?3$}U*oF70~Q3`;qy<|*rM?$^I)FJ;VQvl17Xnglt0)F z-$`6G!+RItgc$M9GySb%s%YOVQ+>{}#l<=KO?tO?=xu%E%U^2G z{+mB;kMgn7BMSD$GIYMrL?nsO9_4wOy<(5uyWM7(BmM~oOyA(+!uB%#DuF8*QxF!@ zi8hilHk!16r*5~&_t3Ahh&%;3~Fa>{7ip#i;2k89jU?$0tgI5oH8S_{d&uOK*j)8nh7*tJk0Ilh zMlyLX#J338;6#BlU-)#p@E2d_bL?MiGmkt<<+Z?A>>QJdR5;}H8I+g$LtNlsX-K}M zwD9<(o#pch&#iB_H&Fh)AN;5-ag0-T^@nKnz)V0*!2*EjVbgclCqN>)Q^ryu6@{MM z^~4Bt6Ih8|iotXumv8bU(&G@^pitiO!%dn50zNgCLu6VzPocwv>E!fU+b8pG(L=t+ zmspuy;!xYuDg5mf)ha(tQWRh`Z8g||JOKvQHPUiw6C>c)JO_LQi%i4BhUDJ@M|xz2 z8O|l#WLw6YfBjd@qk!g^1DK_uWP#~$uR4)m3+X79_>~d0Pdn5+WxaA#Cr26+7Eye9 zqpD;mAb8DXcwl%MRu^e9g{Tw}M*3>rzX35)D|Rh2TygvCZVREj;ZgjgR45Ai;i;7f0_Jc8eze=G>5!zDQKPR2MO z(1Pa?RwSN%@^R)^8NI-kHYsR4$zz{=dxxamkqafFdkM-UJcNdre1XR>pBE%C@VC1j zwxM4Yr-TVk${$A^_8Ds1`q@kE78Tgen^)Qj!*0&2S~ynPRjS4Ik_yH1NLTghmEW*> z;vN4g-%3VvkAEFw;^n8JR2p=*qcz*;^*+zV=bvehGCK75H~+lN$lH`j``Eju zsz^O}8E(wz3^?{@=6E#2A3KxV&?+5cX^B-=I<7m+BwC#gwymm z^U=(8`exYB7MssGr7P!_CL*|Mu}rVT1{1&OnL=}rMiav>qfT4Bx#?N)ous=QpK_b? z?B?FT!R9@Wma+<9Sc~`;I9}?ZT)4Y&4}YI0uOt{ArP`B@f|~mGNUCrcQ{MGyNH}z4)hp z)b2B(y2WJb&b`;#DhB0=4x@rkW{2a*Xu^kWeyt#RPX(zzcQ#e0(jrWv@$16mfxa=e zsl9udV1Pn3nG!DwF=3o6b}`2pdSJ`v&N8ez({?yD50d&lyEHKX@MISN)WyO#Y;Yw>0fgVxe|}KHioRE%yHYCDR+zW3E%$y_u4AQ?JQC8 zYEL;#RXW-tMQe;6SN++OEB;MCZMRaOxYFD#NR?%n-gxTyVeSnR)+=EFE~rr{31P)w zaMCN-5zn{bE*xSTKDzM@(}mZN3attxZhnf-f>mF+v6=L=Fe(e4;q>hy-4{-cptnxstK#t+*_> z-DgqV=FMA-6wzbrWkMF(3_fH?w>S7=Kiv+sDa#{mOi~3}5e2D8Jd(eBud8%cx>L@F zHCXZE2NHR=2dYh-K6fsM|1NND$WX65y-9!?Ab z6s}-0;XIQ=XPM8S&^dz0!JBX9fXZ7O3G@g+vz#O6FxxzZ=7CIT%u?sag2*y60_pcF zt`uzem*^e#Uy2YMBJJj<0!fL9KED1iU-6tqM5tjW^R6wmDNixywG0!^KZ5vu=3b^zD#~{ zNHLWr^pr%Mj7lo@M7iV!=}h?$)1!clv2f`H! zd}t8iE-Mr7Z?q5PG{Nx06+jqL_t)dfz3jjw|?$S@AV zTEJ_@X26k?JmsLb1s|e5NIm5FuYCcDf>tYqf*e{8Xz4u4eAWwJ{wk+!pKbf>Y1!vn zNu0D9BXK?}{7}GTxENXUy)6`NcYl_OZpM8IDszsr^T?=cpL((Fto%)eQCR0!OIz8m zG~bN@#0m`!DlTu6wVG>5*h<_IF8r!fjU(KfUKpCjaBLy)M7X>P#uXjoPJ!3snb6Wq z=0J``hCt6f#tJe%n?Yi<^$%{ftFOJqpsCQOZwg+GvpRS1;$&@ON2}XoF~x0%xAH3tcp0VVv(m8JEU^EpFwH zp72vO781Se^o_eNGm%#$!L6!J1Sf17zXL}XRqFHzf|(74tb%_asncM5^G{yJT@d0b zOArTFPs=I)cv%UHIfV?$NyCSyg-umrC8M}XfS?IQ<7phJgkmJYq%RjS6qq}4@kuXE z5b|;@hwr?T_R(PnG+m50#~jSc+F7=ve1yitB6Ah%ZJoV_@4WtM+qy@qAKOo{MPn(8 zqz0uhRxA`By7e5lga%hQe;1bmXe=yfy7jZ4=bLlOoXWAlu%~;hv>VKuC&ejjsFg7? zqz1h_2z=-`9{P31iBuRtkSpD)<`mo5Yv70!eGYjC65g|abY-bM{nanGQy=|k+dXxv zZQ7{daDw6wZa_Fog=R8P+ES5G;eeT}!v!+w`K>^cX=SY~e&I`P@$bHqMIJlssa&R# z^NR_outDl5jf;75BwflV5Of}gFjYQ5JG>%A?8+Cc+BjbEgQhGLAb!R~uDnO9fm63o zl?)ZKidQDKXmIetBC9T0&A|}jPP=yb)%O0ISK7v14)%u35*wfE%t>Ne{My?<&VO}J zOr{hZY)heaLQ3bQDI;{(I`91Ly{KxMK zJg#4Y9RdBBaDLQ}m+YFM+<<(*H+$x7JwEq5B_fL%?4rg5Pz8m9kQw{MeIUDCPFD=c zr80+G48V!aS(LtfiKY3@3B2=Oo7;6Fl7gNLkrjU8PC)=O!37Q&b7tWnnHO{sPG*bY z(vAKGl;jB^ey*;6gN9cJOR(6hB2Ko!)PZB4$r3%#Ra?!}&RgtzyTel4+gGpU)OQVU zjtYK-?-}KU0x*a}U1*tRK~t&<;qWfI-pa-B&H)AE`z++R zk4;Tjm6UJJIgCh`%~TLH6_)Z+>C382neJt$yywCLrUu1iG-3M{=Lqb6<5fJB4g?%~ zPGv8wCjyLblxXXiX7|Sb*e~g#vZ63FtUckj@~U1sQsS2u^2sMKCHF%tft$Yw!;dV9 zIxVqK%6l#SFPZ@zl0*c4l25DHD!#-6&jJ%%y*KM6zDLJW=SA$w&y=j+z0=-jFV8)O zd!1*UWoh&bJ>?m;srUus5a-t`q{2dRP%NmK5vb$CS7LR!;iq1exFal&luaXQ=Q;EA zMA+i1)OR?U!>=AJv#?`<3e01Uv?XnPWXI%B(aIx1nHx?T`R4uM>qCB1*kd@o%$HuN z1kwwyaD7crhiQ*kjd=c}A8U*3RXuRDL_5+RkTW(9lOBiXi}CcclFSVbd*n8d&CfIL z2YrG@2Ga*yOdrg!fW@;#ZCqQ4mBxmBfgyfqv;s=E;2&_^8^Tf>K;0FYdt4NkicCMi z^5AI$-o;jtSB?p=sZ4>B?E+`m|F+0>pFO_*@ZkQP_5mx}w^>h-)ycpu(o7$asfz^J%#nkWJG^~STdnRO?ZOGFi;Z6Py{F$q%9neA=r4v%h(1&!Z^Ho%fCg~ z5-WXH`QDXFppV$*aF2Pso7eboBk8n23nxpiX{9ZnVuQEMo-klKRT^7?rE^F+>K<7@ zU39Ye7JZ-cTng&XWA>(SwV*+0Wv|STp&aaEpA5IjUa+_MsN@ctX4jm2r*O2ul%qi^ z83S6%TotZigFa5_=E9F>>2(@ip9((tdr~C*iDoVqNg!@EOS4$CjGAM7*@A`ARI4y)Ck-s3QXT}EHD5BZ)4W`>>xOXu*A zA<#}msP{pbw@~pnWy2KCIN|KrCrFIpRXX?Wp$d%m*o1Pppo5|F8ytCe>&HKCdo-|5 z^X|NA4){e!qD&qjzgAio{@A8U8RSk#P@V*YpZ*Yz_bzU@Qa)5Z@t{0ag4eNx`?>1|HAxY)K> z%r(pWz0HYXl9pafR~s^F4^=lLX)471dudAsKCrvhe(`d%z|;^^8J^8(SH7yf8EaCzSmYY5(*whX)`XK79fn* z2qy7RblUgu6J{dhprhX}U%wQprSz*Z+j!%t2vjut2TUycg5U=Xlg+LzwYf+5r2Kg{ zU=l7r8brY;X^LeE33#Q&lGT*>ieIplDWpic-zeOJffpE_JAL7N+h!SY+X9Yo=WKTA z^E*UfMKUgpEqj=(20S9k)a^!|#UpZ}!RG4mgb~LHd412y!_+MB1#@aQpZdVCM(bT8 zI^<-6GwkD8!w5Wm#D>F7jN~pm;4QDBA?N6p*h0WE-dXp@g=RNUUhAWcRdo&S>W#pM zE_p48YV})47l0vNWxBp`%d18SP+D(Br5CmZe^>wV|IF8s7yQtry?Qe=e^z6roYA8z z`6FRMRaz44#Htb&&g>#dF?1Lox=&o=-GVe}ZaNKQ0}dSV5?Huk@hNZo;-9jHVEGeI z3Ls!p@Hp>B^_VTW_ zsC@8n>xf=Cq}T#GP0XGYO1s#8)pw&T@Gwm2I{v98s8img%gEWUvV_Q97lNk7bz{ zq@VVYUOVBAs^m;dhX^eLkl!nfpEO1qJ!a&SduVViCw9yewUp=vD=3@s zGyE5BHI!F>P=;k72m|l4pensmIVOaBgqH(}VG*ERreqFiI4`a)wR0RcF^4RNe0FB@ z)~$B^%4Gmp5Xg7ef}4iZGQ-z?nx@j9Qb1l2h!Z>T^O_RJ1Fon3T`2`5d&C;X0cg$! zW3k5Dtbn=tU;nPHaO%S%tua4g?mXGaYrLIA8Nbjj(I0~E@neWRAc+Km_Cg|Wtlj(8fI+WP;kV6fU)J9^SY238$ijtgV&A00$B*U|4n-!IEoX>mO(9bRUNDz zLS7ToAvxg=s5oK*DWF9qKBd*HOV-f>SKl_CyrPe;pbn0&@P;IG`iKEKCJkT;OCbTZ zg4KB3oa$i78m+Mf3K!+tX4&&i=E62;Xv{D#=Ha0>L>87fXr$Rm%J385o55-QxQ9g{^Sj%nezy14m`p$hO-zj7$ zbgb|!j@9q%g=c$M=+!ghJT35dP9o_=mRMn@`7#-S;U<&Uxs97%JDhXA%rgT}^)Ep)NCGIxne%%PowJkh{$vO!DHfd+hJ;GoI%f2OK3D#5Yq)jCVT3t$DWl-O`N^a;LdyOEA zq0V=CrRSv{#K-MoGKZx%`G(=O|L}jbBfbE>^nm@Up7cU5Y}R>gGak4-BUFctgYj9O z@JX1eP-Q&wl0|HB%hW^GsPFNmjrbS&ge5v;thiEHK+Add$bsC|ps~`&PAJ?L(DgX~ zv+NIBp~Cf>T;se!pYxpOYDH$A_rU6T;-*|CzmQ1N9+z|@i+m^y@Ja8;CVzP1=ikt~ zzJk?N{+3%t*II{v;vw9z9Rf={egOm{?sOI)>>&o)ITNRCp5fDZdg~57`_b74luNfb zePo|6qtDO*Ny9;1uo`^L;cINK7?QR(@<+j)Ng2yk)Vq85@zfu-{7)~y2o58@@>;v` zea=UG>E(9LZ}9Y^fQ0MCUE+vo>`N(Cl>vx#3J~{)e!3P5je#vurh{<)|zqLMk#6+wVzP@d@X#Ef(t0UnaNWv5q{ORt`6>Q+PMHEkez{XG{t`U8?S)_TWGmQoR+qVJ zqTKIoS&_|a3*gES5bthnu&~w+ic|F>PI)N0v6D_WJa#5agS^PAcNi>LOqX1G;|T7A zS3^PA_)Eg@Jn<7oy75ga2aVzKbqK%aV=G*Tb26+$p|ejuze6wi9$(bnoy4#hX`@Q7{)fIj6Jx(O}?l{X$~ zBp5J!2Ui5I-lXXe(4|mDW~Rj#`+NEIqI{X@JUw9^y0a zPs4Z7>2}7vniEXxG-C^;`Jx=2}LJ!6lmv%RABb(vtNh-18hu<)j z;l#n*=mIA&C<-X=0u8`8&<=)hz=ZB~TFmP|{^vGBi)=#IJ)e#SCY1ouRCGm``Cvnl zI24QkbvUk*1xd&e5Toq?2@kwKJs}cSG?Li;og$=SnJ5slK=Cw+BUdERb8^WGjhIwY zCbq+)8i#NexH)qUGGcb)tzlss1BmeuX=ZP`9k8@`>ozS>)*aKf00v|lA1S68L_Tqb zU$J$$%O!!zL_8xiMDpZ44xXa)5|=pbc^N!(Gjv=47CMMP0peWPa(Y)BW5dxp_b7BW zS^j+J3ctiBD?n^-hcOWe z9NtNP1&RmhLaTB6{de-Yo*O^(=EqJkrZg?S@F6fRY$tt-BK+oR9$Ao-Qyk+y#MO1tsh@3;G} zUT%+JOUw98C<7cuBzdCO=pJy%RAuOkJXN^7OQ-TYetPqs$X%lG7-^eO;>)FJQQ5cb zz^LLZIdE$yK+&{rdsMJC5-dF(UbwY^vNYcDH@Fld{nD9b#<<4u zbyisRc4rrvzF^*Tfdwp9t`8`e?z0ln(IRE_xW7zwQ2EXSv%rw(oU2{MY2v8>Zby@* zSIBjmVJIQTu8M@GEn~fDC2zd_cKgL&{dJpXZ`e61hC?Rgv+|#CQH_KWRTQlwmqMD9 z_-lA4uFk>2SSPL|h~Xf22xoy-qh0J>zdT3gT4L`}W3^km_*hyo ze!s^do_(Gvcu3e71~@fb3(tHM(}F6sN%hP!VT`b0L>lR_{Tfy9e9! z!tS=av~+BIRKjCSD9}RJ;lv4>og2Ne40VMP!xx>ZBu*Nne2lAj;%#^)p~uVcADr=S zI0`nMO!}-oqEI>5-D>at-QRK`>krz&yVu(};cPK;t1BB3ewA8YU|K{adr*r17~UT$@lnBXi8gB6e16+BJTA{7%5WS;12kzxmXaNg9yy-w7wA;Kyhu^Aaf!7hf7 z2F<$41M>gSrHvU5IAKv=*P)=^Q$B{0;|Z661BUlV0+R5EzD7Lrpv9z>R$A%e9Pk2p zN!-i$Rz~l$v^kaj_-qjwxuyt0BJ)lwKDG(`eC>K1_PihV)u5oZ}dSVg_ z0f}^iKH}8RygC@*)oc1%@ZyYLej`bzm=cXTP}XpPl8Kl5R;K$Fg}F2 z^(&i?#EA?J?I>j^$pgr;i|mwL-D5+yS=qW}1tuB<%&@L;aa(!K&|_0ac+{P=LN~nS zDpil*N>D+^6~29u5eT|!<^fAq-}%q~h0nyl+a?(FqC*M_-xE#&5~Zs^oeZ2^Kc$bb z4c-CQnG;&NW6WONE8v(n2yPIXh#GPY*O0orXa9o}=O}HS0?2u<6%1v|1Bf|AWbf^F z+x$mg0G}oa5?hb78g1!l1k&fI2`FQHF(|Sc&(cZR~#@8IAc$aRznIA z6ES^fCAQKFIKT3n2R}L_R4`LtXjTR=NPeU(oDagH$PN<_U{dRLLjm9Xgvy(VcfT3t z$-kEAa3rv@fdv7>U2qa;bbf|SX+PPYMMG$Tw9U9a_T-5!>cIlv z?tF$5J4flwz^{KHNBYFK%XudKFj1Vq_!pu*f)J z_}Y#24o!>i_!``oPu?Io%AaGniWOe<6wpid@`4QH3)xKhVE!dAN0rg&Ii%-tvMH#p_F z_yk%T;V)^0{n)6^)*DBGaNA(Cva-(csJk6H2De^$rJaBNxwgdV6*+?y8#B*j;g|Nt zyoGakX`I;LCNBTf49w43Hq(1{!OamBms33l?_6*5oIB{Jqs)I%8a&H;8mUI+J~G35 z$v)wRdR4IR>bu*HM1|3tD`jL)XZ7F+j*X^Fgh zIKrJu$$V+w1~N7jmpGJtmPS-ox|(>y?nyUxG<7cIgiGGM%v>k0^d!P`6&{Bl+-UbW z7xC(U``fmJk*qQ=waLDEa-BfE!a9Uf&voZzLJLZ8-PqsMIf(o^P9o-6VT(0pn z)Z44lp=8&HG%8cXzhp*W%p4OEd}1X=#@S_v_W_NJErvbQdjxSRFt{?AG55A)cb(OX zZZtHvM*He5R3$8x!HJx4KV&1u=@$;&m7Wj(>gyFdz)+)O3LTH`y3V}CCZ}^O@!hr+ zhE!&qTV(~OEke`UJf+SCC&42wZvBE9p3BE4m-?AHi}sKy_9wjm+}clU$_&`;DZ^ta zaIi5ODC*?IZREO9ihCZ zjcomaM-gf4q)|d0?3nh5UBdtV3vo zS$>!vB_tf_p*{JO3o9>eMfubL3s`InUjNaL`6%(NwnF!h4Mp`A{*grHBM}bShIfOa za{{M%DlUP$jT%uv$QUE}NFKDEa4L=}sbl-%Qok^58RY_&MUK{TC9CS%p@O}0O2TVPV@0dJIgXt>=~z6!%7zhTJ|U)?t&JB@LjPH%y$^d3?!j|q(IiU6HG5dffJViE)`S-i%$)rKdm4r zTr>&`nmODt8j%quQilhtrCfNN^kge9OE_=0_y754ZS9MnZ_A(iG)wMTxu+(GI$CDZ z6ir%KsU13#x*0Y(Vio2N$Jea0d2;vN_u6S%p0f;DsB|UuLxDMZikBF_o?K$-&f~YT znrT2~mJuv8vG_lZhf6u9*hp-=%m^BdtCtojL?&(w#HhEayw>mB<=ajyl0a9mSuG?8 ziN&;?uqoB?=?D!ajVU+5)mN2fC>WvNJPJc()Hm1QH9U1#{07G*F8D#`D9QmD?j9}1 z%WThB;vnKxdh`pn$N+Sx+013yTG?U&atE3E?G*DK`eqj2{PBsWnPD(k8ID)*WfGi% zM425ToVaoo{UkG!S)`eU2J{EM*aH+|zwjb8FeHu~@IBta1|lF z*obs1m5W{DWZqlhyFAG+>O;OFGhuL99UHmj(o30r<_CU6jyrnfCr^Wei7+||_#zLB zG?=Tmf$gyL22(P3Z{NxYkv+vx{!7V`q8S?2r#Mt%j`A#dpp%uF_lZi3H?Cpm^)`No z5U}8wEj_Qx^uVrv@B8g>gq+Y#Z!EWUayKnzg&H-nRFX_EgZJpFkFn^eB#HpcXoCY1 zDFqFQpWz%6f!pDY%tiQ)vFI0NYIUN3pP_gs)t#8us8Se_h>J|VTbQq3yVl<`}fCC8@nN5OqO-rSt9XgLd%R72^L@+olpfL$7R!O7swe zGR-mJ7-S`UPkaQ9ZX;s}T&*a5<-PpsZ5WJx`V6$GQBW|L=LFsoUb%#D@{jHFPkC$ zOEeuKQZB{t8l*&`4aBBmI}|dccN#y)uijE=0hc%yG(Eo0y2POrz~E^EDSr`*A8UJJ z4fuHD<5qk9&GS|G=olR0Mh&S7Z6Ho#kM4J733mupQzX zkU}NQL0iB0lV_3Q_A4ifWI!hyUS! zZ}U`OYff>H-z`2prpQ9@fINQOfW{`|2RWk4=%>+wCM|9p+j8+nhINYXm^>5?|tVx?dsqBm$uBJj%6Aii+H;--272;YQ@ql`syWRvT(|Z zf2M^7|MtsT_BI z_OmueH+7BHm_4wVDgq~?M9@;I$>i>yx@55mhhj#Cy5dP>6T@!z7#`FhELf)VOd6^c zl6*o-<>fg3AeUbG4a0E-pS=>Lv-PF1$=VY4KA(oU&ru8- zi0=J?h6$c?3GG4B)jxcjqji4r<96*k-);w&FSivk4QF65cSAwt*qCtWNxnzHEBzR> zoS+~zFtv$L6T)N;NkDYrmxwr(Osn##j`_<;CwYfI^@8yq*#bn~1tveGzfX(IUfAY6 zK3xJ|>;~hsep+wfaQuCwfrJ-1j%$(Su0#xviZ73*UtMMzbZmgW0l?Lt2v~9DsH?Nkr>s;7EJa^}3AcY<#hXU2E159< zl_8Cz9_CnuR5oSr>bOyqh7B1dvLMK`m519u-#elHJcg}3Z4d)Q3ziqbwZai6X_eQ( zZ*h#*2?uV(I;mTOD<2iAtnv+Rq?B3UE%2llata@$SXK%bJc3{vAj*{SriX=0kHABn z+R!k4YY|HJPLi>NT6WlnhNA`BK54T~1-6ULJJ)f*%1raifsHpSYG_(8ImhGD=^5=w zJCon&QjFsY!}X$Fl>qhLg9b!#(%*tY*?ngyN&byb&)pRh9x3&~-!qIzBl9A|h)y3Y zP>4HM?+F!N4&i0^v)+gg1;b+dc!Ezgr!e(3aj>CoJ9Efw!+5->VZ{5er_6mCPZlG$ zZfHnH+}fN^f-AhF7j%N>8mip9al74O+tLrN6Vl!gtQ-FjOl8OFhgQs}_o=sl$%z`u+Z zG`LNOagE+gyuceCMzDNom|PiZfSz@XUpZc+rN6_Mr#Jukr|qVvSlqbNR$q9&Epd{^ zf|-xypB%e^anNho+GF)0d%E)rWkhAdGtT z00y3-Z+R4`U(q{whyfh8IFsjm=hdG9tNv2>=r0c9@vw*L5TfUc+3MS&7q(7IXUA1a zWU@Wt?2xHgnCa&;SLaurpcB>-hFd;5R7Y8Fyu`qGQ~Sju z;#kpQOYx&SvA@L-TKiFv8T7&W5n~jPDeC~%W zdgKbp?7@730m!*PLL{S2Gz z9WOSI7D=hAN$Gc9x(|D!-4O4B0z0>d*y&e~45B^$zJU!)ZNxlI7|5VX3BR1zjZ zHmc$X>v01VyGWuCCMUpHZDbKSTLCt%UTe20Vd_<)%9%VseIyfpmw4Ix)v*&nn}h^E7azb42H7iwbO)bUNfiVf$2K8}!gl zU%c2>_%7YXO*YWei*)n+0+n9oSEsMJ3^lUqQ z>G8Js*dw%hT;u={Eun)u8*S&^TkYOeK54*b4Gx$OIK==8yBo-(_E41@^DBnnR|7%& zXjwVrAggs!h!;Qp%BxXgE;wv0MQ-H*HWU3CS*{-9E4M?X>Hx$s7GWKCcizIoimkvl zF#ZQl@B+6>COq<(Am%p~Fr=;Zd+mTq!~$TSp2~zuY$=tPj1-S$gm6Wog`ARDU_>I> zsN&IA)tXZR!k#!}ns@^|Uf`mzQ9nlvBW{22UVHuj{;Rh0>MQLOcI4;b{W^eph}MXs ze3mL{#p(+qV{Rf$+55!?tf)K*X2g02pRuKHW5~v&^6oG!ci+{m49(eZ z+b7R&xuTVdYRx2Sno=WUUd!iEavqqg{=&2BSiNQFm5;C#Xlk2jESX>BlfT%VuZhf0SC%rTbeC82Dsl8nUQ^tx;v+e9LhM9Ufkw~6R8mrtE1-|-N4@Eb;S zuP7?8z6qm*dQ<|LC_*Wu-nLHcihJ(X5_4L6RA%>ny3uaD`ir)|!r1I8wf-D(kO}74 zbUWE3W3#_(iKChpFoFrI=H^JfRFmK{qlAP6bx2C<$mO&1BpfvB8sYIQ8I0(qf#Qq` z^uj121MZxbf>++VQMwd&fl4fU-bj~iR{U&o@35qJkCyRW!p>fLvc2$y&$Tm8eWbno z-EX&dU;0@)Vgs~e&$jI5sN|9;F+S*^BL|AqwGD!BJ6MK(XRG{qAD1A+>Y0Q$D`L{a z0sxir4o^2fXb%{cy}`uu88*zHLC`%X-_dQpDJDFGi(HRunxcr~-a0z65+h@z(811P z*)a;j!UsPh;r88UHFPSx6s)IVzx*r?IxfOfi3X2$1ia~FT&@f|2a%{SZo<`rc|x&M zx$^Xzdiyqc;a8EY%BndDJjmu5Mn9nEqqH_oavF<08s4q+vWUQ!Qb)-pA9$H&#Hu?6 zL?J^1%a~V=u+!WK=-rjg#3 zIpr&|ASA5&RHPGXRtGi+3RgG?Y{AE_dR)JeH&1e{VFwfJXos?Q_u92~{rU&(ZB`r3 zo;}wN>7BT!W1rJFX2~~8G%oCUogv;L$Sv2Vqdp|Kc1R1-q^-22ys!c55GxWVuQ?hp z*jGOaH6%>@GL-lySY#R#Hm6AmKfTqZ_J^O-9hUhE*f1i6XBP%-u;65i@EuO!IC|`{ z_Qn6{e{AQ!{Cmj5X+rCF+DoteoM|6A3G_TyS=ixOqZTDLsI?AUq1BY zRtf2&r9+yqjmSb^Li6H z0?rxj@%iV22MFm0CDFk=8DPS9SzPqtA(h%V?L6=(x5h44GM9Ds#V7H?YQM^0Z0%(@~XSaD0MECAP;W8dg@Z>S>`hKG3uRr4E=6XSTYWM4+hsh z|LOMl*T2>t{ll+vBoI8`c!wdpH;|QyZx**KvRcS}8c-FPfkR~;cNSfPca9q0N=#NPu&lsRIRcTM zsp=NIGob#ZQRz^Da#LkbPtCk^4oxDX6JK4Kd_4rdEpU{N1`(?f9Y(Z5TBkv@bLMnA z^Z75d=l=b_YiGas#dh@bpS2rzZ_rzKDe=!yC@pdhr*fD-V2ZmpY}HSvJ7^U^IDwwp z;)-B#_;Sn`Z_^%>IAQ#dBj2`JDf|JaysWY9Ijmo%y= z!E8uVy4oO8m9Z(AllOk9J>TQi{Sz8~^;ho&quc=`;RG#FaQGse)OF_?{=VSP?*jQV z>5g>>rVbaVnD@vZ^GDm9?9N;=1-f{x@Z9^hgf3Rlh3h|}b4n* zm)dCzxz7+u+C6&fD=&VmefEF&@7wu5{gXC%^nBal@ZWVCA@Xi7jNbl)tp;w_5Pit; zQ`21b#FDv+DftKlkOJnFn%a%MH#njGE_|Tdx8HTtOkpDuL zOs;xZXpb>Cu216AC19Cz3kvrDDBOT{$*_#^EJDzL}?;?LUB zN1x+>-Ro_KPsjVgJu~-Y1tX!*sUuy)D=$2`!e89|om{RSg&F#*kZF`@%pia#3jk3@ z?M9`bS%39%yUu*%lf17YhZ#}xsbN61Rt2C%PfmU}BWlDZxquK?Z4O!JP9Z|9@Z!5J z!vj~a#jvn)#!tsn{`!@@7}S9}Zo_mMH-X(Fo>S0B8Qde-^u>cX%HS{(Q}FQY2U>wf z_n9-|X$29xBIBm_Pfwp>iePTy9a70VZj-%B=1F;1m*Q6uxqRa3-P1^?QsL1<42uUK zWml=xO;^xnXdK)g5FpqALvq_JfsQ@l|A3*wvoC(4J^ANfYnT4*HyD#Y)3#|4?P5>6 z=67Pvvlzt9sUy9mCRZVQOuqY8=v0I$q%n;5Py{@{k|3Wr(8Uf5%&vd`hwbp{yIB~t zO1`&26nf~c8q&j#%q!Y3PZ}6Dkkq9Mom?cAO01hf80bGm5&-os&hQ3c+~hl+@%-?+ z@LaLaIJKb@1oTUs!YPily~#CJH2TssO~aYVfVN8DuKOpI58hRQq$3M4_N<_kPqY@s zBtrJ0@n+hl4CKjw!W6$2QYf0XNlfiPcgG^GDvya2MHK#W6KX;S2A+-UUoY>(IgVbl zQL#niVq=rVX4usRJ+p-uo@tN#@mJcVe@~D8!V}ar!0@fN_t-b;d5`ndH4B~+!^U~b zSosoXS#!uTh%u~3>M?g1O4`62P6cNip}qIBm)pHJ-fEBX71tHKwz<&`nT#=TwT>WJ zm}eyhbB2u@nz>?s^lqeNn5^L7U!jXFpT6fdtQ$>0aff}pRj{xHFB&}a0FTa2znsvD zrve$rXLsWtr6>;uU?Gt+1~BSWW3+%XM*&5LSRC889TVM{@v)*Z%IcdHXZiuCpoYu5 z)*=n9&VSwg)!?b_h3~h%i33lzmJ%Pk70!k=D}>mY|(1oW>wFV z|J_&HrEh(so&NNTjG=F}##prD(VGlKtg__Z^YG>vRUOG%EqWAS zp)e{klgG<IS2YN^*5m#Wygl}EtlNhhGBR&s*{uE!Io#lX1WXYGX9b!uw)!v%S z4Rxf+v?#&VU)pHwsFasqEl6z>R5);FPAc&7JY}{pMh^V+Pnh8a^N?N1&k39v=T}xe zAvSa%^)!(17T>hDqyp(F?@@W};JR-U+|k-q!UqdA277N&0?I!mWX*W`XctX zh;Gu$w%^9Pgf(yD7%fb6gL1?{yY-Tv@aRLs<(bd_^w4<88+Vrwx7!+MFvvfJ&L*wq zZ5l)lOK&rTxO?t&d*)C7xIOo0UvJHC@=++=V^!RJY%WY;Pm|TtIkU5Dz0xFnNVnJs z2c}n;iZ=lS>XRQ|>#aX!UMGU{jIF77dhzS*(|q%LKWwMq^Axh!Uw7+7F7lnjg7z#e z-0czM=6%?MDyUD{L}MjK7!EhQ10X*>!Ijm(<)J6)>-vk~`NJLfievdQ#bJQF5acD; z)PQ`)BO;QX5jVIiZ&}P*-nwa9;}^mcQdp8qB}~Hz*xf@KM37IzkM~(BdHNa|O`4~b z;yyBMC$oAgk;anc7p9ps-=zm+p0A#h-1RgGqx@Lr$TLvF)gmJCbbbx8jF1R`YQ|)e zo+~I_k+{J;-X`Vi4vn4XzWN94sc(F}wdbGV)E*XfQ6_EOs}hV2UF0b7O| zpY?I0v$)DurCEBn;~Ii?&B{9DA};s>kg@P~`K`9~`dgd`eTPlGe94uJ=CLw46qmwM zeib6$l`%h}5#IFdf=X~;6;4j1oTAZy{$5WxO+hyNA&{1i@8TqG;o~W;ymXvB%!ij$ z0uLwTwIWLrDY$sV$qkOW ze9DDk#7j^Q%Yz^FJfLu<#T1`13=1U>752@_%%n1t&M^9B#hdJkvF=&`l3u%HY+E^- zXV_5qsgJi8{+Iu`tvvr+_@kfBN=(j;yv^}b+qCv6blg2Z$4#PwPzFkQilL}JRe>4D z);glp4*?dLT{=Dc)orQ2CB3y18KJ^y9k#!Y_y&u;i~*^I z16N`PR=vp^=`@9f|D+BJZIEM~G}}MJM+%?5)E;^9g|__Ig*H#-bj;sYrgJ-`vu0*vigvKL%!v-PG!oVMB4!CHZ9^$eCwO-{MWwL+S5-{HZZKk@X-4E zH`~_rn{5#~yU^ELhMhlU)WOP;}?$fwlf9;L- zEa$7OS{j3HhQ&)BX(Uk_QSRN+J~~BI(&vJt3rt3BdYYoiaAPs8#-wa|$2NMH097Ul zUAC8aU6k0C1&8()h6u$OQFWZWI&Q&i1jWYH8?xB2O9NKMiM&r4G@-G%i%j@qkWrU8rUed=J^96XRVsx;dNzyL<(m7n7^$HI=g+c>-W)t0(pa&)leSYZwZ(@t zl38`rd5tw8k9Jlz2M+UHSo4=KTfPdS8)saWS(Z;!VB7Gsj{5=grWd~Sh4$Fjzur!N z;R}(?@@Jn0+~&1++B&`KSq#teHz##)Vn^%=T)kR_MqR1IqTQ}oi%Q6&1dW7RoW%jR z|M{i1&v}DOtan^tKhXlr9XYN~fpkc>wh{(}2$)ucoQuWodj2%rc&WPl4OSu~v{S$f zqmn-KUbs5z8pR0ju-Zdef$nXjP`znW~rV$HPbY|2aLQM&4*!pvReQbXg?M{wm#dJ;6lK0B7Uwfmg8xx;Y5Ia-iQ zWWqUSv1cY^Bnt7I(j7%sTr;il(-4VmSYUwI+jrB!7hs|{l{4ZG70?EQ7NbC z4Z^b6!c~IfY27z$0MdyQ#s&xIGHEZ1`uWRKd(%H*9Ts=lqIP$}ZE$D^-eEt)TQV6z z;SSuEmukYEk+kI9-n@;XU3&LN%s;L@@sak(V^45|-UYr~kKXCoM|;@G4AVc`G=w(j zt==ck%`mFQ>{44oFLPA-u?5Ns`E+Q0)`qMtAPJd|f+#<6rVQ}aMk#m{zj*EWycbfD zoalChESp@Yv<@#@)EV0}+74LA@$@&o(awD0<8797J7DN=mIZWo-+sH@eC@Ti&+>b1 zeI9-$ti)`VPqwI~2F^5EdHQFS4MV63#n>Y$c7gRG%tG(|mtSdf_coZjperlm4*8%! zR(E8Hq@5GvD|4ld2?rc6lEsxLp&dXv*5HPE*Oi1dP9e!t!>QQ7sjw05lY}f9121?m z5-|?74_p933Itv_lYa%&?X5pQS&<~gD9CUN1^BgvqMU(Dl83&CobQsk;7BEwrZ22? z0zN{B2gWg8_01)Hjm8UiRTf|)eheg@xD!S}h5@9joUMN1W9{JLg|^E9&3p7zgtKLo;Tr_Yd<_|D zkxFCv{JFMv;Sum0w$0bBv@JHR&r!)xBAlQtzucyU%n+R6=&+&n;4nO{;ij4cUVf7| zt;CE^IlzP*VXPFTF|^HQVN9g0(<4~E^kjSLt6ynnKl9nPz{d%_kqU$C002M$NklIIz5gJzq?hJoz!rtib&H)t45)UH|9{$jTt; z)!%{k?YG`)Yw%AomqVIa#?W68mlykj8mPLOFn_oLLws;nX;K7J!8^Ley@zc*0K>s4 zjsbg|Jyn-3wX@GW)0U{j#;Qe!r(?V5WR@~vkFRVjy>qqAUVgo8zVRjv4nD=?XK84B zyRy#)f#vD}dt{1x-(g3ksSjRCSM{DfjmR<<1O+I7iex160{I~_P=O`iYfmgR+f+tu z`s`;v*B<%GSKA^-Yo&2OInl81JFi{l#Ff|DB9)rD_2a9HR$}xnNk|Fg8Y{HbS*=dg zfJHt40E;mAA9y$;E6EmFUcO4#&Tnq{ZJ}%i#^4VS5OP$K#OU$M5DJF^2AAl$NAgr9 zrkKT8$Ol0osYEtrmt z^-if!L=ncn7p|8P`r;M64WRIpx$ z40GOp`)b?Z@M!nnt?&U(TYc{2pQA!MTHquITaTb28}`D77x}V~>G&%x_2lN?LN|2y z)omqGHXsNg@{<4V_Qk|ZaM?yCwButGfh*3?MGyqOXo(?=rovKYE!$}PY8Sli)6?9c z2X=Vzk@n~xe6g)Ew7d7nx%Pm_?ARa z{DMMY{WbQ|k%p6fhVm(428-H93KsB+Gxi52-Fc6wrcJO5RPyn#MVs`q$4i0Z>Rms~ z=tnO1=!ID!>@X+sD0_IGWp0%(U6MF7cz`*;=5D<8W?R4UK|7>@(RpfD3cCCB#2(Nvx(J{7Og(wZ1wbpz z^SZ)K46$u1Xx};+bysez3U^TgMj6ye{!|=p)7Ubv{s}K6`c3%(vJ%9YjzAf;+Z*uW zk0~U~ha1!0leNG>WtnXzemz=|Idj73|^@m)bLb_{VMjx#t}Q zfiG9;ytDs)~Rn!lZFq>2iVb)hflz(eC3u88^`#;J!M5{Hj0x!@2F8O>4hC| z?%q246CP!F!Lih|nrtaD?tMhpeTz>>?@=IWA{ji45l9RyQIJ9r_|QeTY63R&We(U} zC~PF2tZ85a>=;Je+&$jZC`545518}_Mbz<|JmSnd1!LkSjyk8>Fw9_Nv{xovu}?9D zOjb@Aw$YzTJy#GKiEwCX6h<1uG*cX%URpNdp}^2QYz2pwPtj0IR!c)(g%BAA$0HN7 zS_6%WI-{kAbhow`Hek|!m!q)PSLfR&zViF+;^#ldxk0o~<%bGnhZSCptpg|5G2iO!kcLBifY)L{7JKug6z4Ry$@dOT+u&QL0kX_6 z=qd$f`_zk6PNbZ4s7&`5rh1dpR<=I4o-c3vrSu7f(%fmjN#_?4EJM(PBnCH9mM7m0 z@EKJXqa&b)4^LqOnP;S;(&f;-cEJ4Mk#jy-OoklJ`=HxJPJM6{-yXKM18f!ukv1b4 zOEcgH?O6RB`;l2Z)5|c>aDQ^iyYBK=7W0Z_UxW~Ohpk4G^a^%L*w>Ux1*$5gV0gjC z123Ode#xJsJs!ifjXj+D`19=%HU*#he{x0=T+q%=}@94 z*q4z&II2Q78VznQ8@w@A*%hBmx~$pS^nfwUo%i3TH}(KQ5ti1vSI)s=sqKV<$Fs>? zg6jrOdlnuF8W@OJ@Hqi(D(fqaN+=a<5sKJk^kGEuR0|`5V(J!85QK3UHZJ$^aF4i+ z3#lR>%tc*cmFZ8~!TsB9!g*^Ny&IjE8M^YrnI$Xf5ka8I ze@Pw*Vv!7~@F%;TZ>6%K33HL)P zklkPWyxsrBFWM0&dC-@n%H_x;ChT2eZ%@n~V$uPBMDjO0;fy=KBSFivLUboz6z9SP zLDIN~SxB;|qu%Rt0UgFAASuCe`cZ8>@BpJ|gzPo}{(D-p_r16C|w{lO2jsAEE<<`jhsT;^$nXU}0Nv}lAE zIhLT67?&cLU>bd;qy-gwjM!1_3Fw|Qp1lg{KFS3ir8w!frokYzhl08ZFH1hfW+I{7 z7*DLGrwRz%3xv6WLxhF2?2|ZML4oEc{#wwuE#-(WTvdKT$~_l9@^@SacMoW#(47Ja zo0mLEk~}F(bEz8dzzD}35#p5)liWA%dQVh-GPFhR4M*sph75&)NIu=F6Y8D5N*hw$=)GL>aE0p%_rp9i2C%GzuJ~R`f-lVI*VZn$j*Lx zVHP+y*#$rE&<}AvTyu}5Jrj=(a(TUah4#3l8@cd+bkah;l6eE9%@jl#I1#u?&J#YQ zoo`1N^oFaBC?pr5BPEkxW3|FrSX|2|BjjVp(;@5`WJx)&0$YjM0++9(pLmN0DUZS; zy++syNcc1TxuK{T8Bm#(Cmt5I@yoN^$8k-!3K)&1vZW%R{8L=Yh_}N&o=>@Y@zHjQ zUd-I%k5kxC$g+yYHHfHwc*-p=PS~yBNc4<`qhI28b};xmxTj! zXHT_9>CvD4*bDRuDJ~44!Meo>@t#w-|L!|&flAd1Vh?^MOH^X^!n7wcluOsGSfDn& z;2NEFKNF5iz2%DWbk80u4L@USvY{e7ZB&}@@)Dlq(e&ljWH7+6?lJ65*yucFqFXy4CU=!_6*qR$ z@tO#t$`6h-)b$WoQirE9^L~KcJG*y4K0U**?im_I`xhQV$?-=_S;QpXf>24kv2SC@9@TJd!YS4-@V=+N5ijiDWXNhM&x) zLXlw}zva_)#EgeE`sH93f*f(Uu7&JKca;nm(7=4Sb7Y8y21E)lLc4l8ufR?X!l)*W z1-gYS{F+es31b?DXTZc*iwsH*6Sj;<8S#s(IDJzI+({qZgctDy=e7Ujk={@bI{7HR z`2~@@1Vx(HnhP=#yBUy>|B}KW&?DUu)-Sc{{wagZ>T} zd!D6RKf|0t$!i6wtA6wFy$g`mkHU6|bd77sSYf;&lNBvwBA;gT4RGJP&b@ zGW`39#`@EAcNp4A#5`(2qwP6-eZc3Gc4&-x)~1D~b74<>>eFrclb>u2xr7(wo8`jPZokE5sD%JN7-cNk(FX6ehH;KIwa4kJrTcV30lO`626DuUt0DUc33aE!Qs8n@EkMw=AyI=twg`6InS;%JAaw|9D_HjD@tcWht2PV+slOPAUO zdUH45VUZPI^stkntGw7vI}Wyy8tmu227U)8>Q+V}MM8DK017!1G#0TSeLC9ZZ! zg`^GYcZL24Y5y2WKPh5&Lke2K5rzvhaN}p%dtY6?-g{;A`F!)<>gvIOicmb`q# z+LI?wo;-Q-WG4K;fw}mG1X7kTC2%gy2%t+A!UseVLF!Zp?!=Q<$)|Mp6pal``Ulb$ znij1mr=EYVOq@B1FOj7?j`mr+aG`wo_y15f5sW4fNZj)=%4{@!@`6$4Si}D-4vCz& z;mMRMBeA%VXo_x$B{UubddYPrlr4}5O@n|ZDox6oET(El@ z@8wHwQQCYPxpj}5$yK*XK-JqYme*$pbH_8KZUPxMfl>gI&8O+MRKPRo7_9NE!J2e* zHv38zd4}j6!s<@2v^5&pHb<9iaSvfoqja;*JXnuLEVEl7nGLpZ89#QS3_tf0=cBRP zwTw+OXe6Dh|M?wu-#=gWZ;Y^Bgn17b4?Ah0EQh$TWE^4x&Sc1M3z=9G*7ovU{O-P5 z|N8Vd1+78&to1=za8_5|ho(9<0^Z#d5WZ2@yio>GHY%~p2pt_VSGR&?mB-0!K-^j~ zW&~&BH5;Wp@e4>Y|8)LjWPQ34#vrLSD~2%XPHpIZ6G`+`-tV`u_)B7y3CIY-SV*VU zEL1Bt97xBGOy#?yV3V{3xe$8;n%>aBfh}}~u`t|1eP_50GP6Ey4yn_?MH$G`PF5uY zNd<02M$;dFE5nYAV*oP4L6dBb>S9()N$3>7xmj@=AWR@WwgYG;g|u9TCrr{qfPj&2 zLqi3#X7{ukz-+dd=TdTCCya|xH!&DE_UbETV*i1psWFa8EL`}w-2Bxq%AIr26C**V z5Hu=~v3a7nr#ff8513$$!D~%m_pk6Y*REGxNGhdkd_VKh*D%nM0v&%j6OJ^phb#1@ z<#Y!myVFS)2eZEI_%qKSkh8qw;e8fxKg5s#+M^D|mUGQx&|MV@Oh|F0mL~#^^&&(( ztMJl_E_NWKKt37i^OQ$b!I`k6U*pRqtg*^t&9l}AX<9GxJ88ftadZN_(2C*ue$%#x zF!UKZd$Me>JBsPrd9@7O^efaPPUDbnjhj(0PvP{>Hs>;yG3ICIP8}=vSuzC^LBoSV z75sV&nh4DRkDXKal8s0@A|2bCq-MvTwPFebev@vW&d_IsB7}u?wR7+-XDzM*|zeCsK^eYo?B>m4^F-Zf~Tt3K;OC<0P zA!lAerAIyXRWJ&sO`yR)ykLHl&!8>b#1t z6q-!E(^=ph#vw6C1Odp36(Ga&4nFg2;|ZVP(_7$W8U{9O;w2*A#FG+r^GbXlhV`z_ zJMT@Qt;$ql;*fF^oOcB@A6Ls{S0H8M&dR;aAlO%z#Ik%GZ7>^ z`mKSMdu&<+^HDvpPUocrrN7o#Yp90CQC}T;`Y8_4Vt!+Oz%E3>sBq@lqT>|DGYbtTpGPJ9zC zjD(jk7hz~Bu(}(GK)LY?M9^tE1L;S`MV%Q<@1$3sGCBif1mzPDqygAyI^tpQT43tB zwKOek1{7RC&AWJU1lRO8VLaJJC=m%_KyigMo~00uVhL>bAOneYm$31z6`NsW6rvNC z?MS4{94dAw56of<NTcF1bVz#gt2&od zJF~Vku+nOM3Wo3gnvXzPx4Z*~?N>KDCYiXjW4LsOV?RO`oy0b6OHG{7 z(tDGi2}GdN5d_;_1E&F`FEWwdW8kEKZRf{4cIb(Y&C?G0&-LLka-GBVg4ux5dbMrpKNI0BG98iqxnSVFzY*Rf+*yWGbR+jYFK&yabav0m$mr`da{*jYMKN<31`#iU;y) zg(fr7P07r$z9&K73Ekvnh6s~rxXb8pD(U_g02I^Hc^hFpi?yWo(2%HWglM^`173g9Ex&ji}#;cH4yxfCn; z2QKGPZKxLAeB4?lyR@qkg6M~#CzWwsXlWeU8=u)zw)WELvPiRx-DO|MMMh;z1gk;? zKiGn#-B&oI5#bbn4fK}NcibyI@nx8V6GFpPI!h-PY!fG8@W(qeX4S}G3{J(T(+sYl zLf!GGzorRYvSeUbV;LC^Y1s&KCKd2F86M3<14m_;z+eKT6J~5U)2BkhKpXn8EygsO zVVevB3O6@?h1D|F@(81qnLikwBQTv37P?XGvyG7Bh;M+P>2ByQNHttYlFoM+CO3NO zWEP{EfrehI@4sK}(t)jBy2!}`2(Qf?ZQ=l1hxJRN>BNA;|9I4Lk$CVbtor5Y`(u~z z>r4wQ+61e(wOx?+mJri8C`60CSYd+V+j0I6?(>5cMpQmfaSgmSc+oV z*mv%gxmu3|=}?xA_!Ia11%8o+Q>{brsDJ87H|fR?DXgU_AjGlCAk~;Ve%mG+!0j1JY=8KRr zL)Hb|o zCp^<12TvZW$34;3w;1Hi|NNbD`DZ^bcQ2ePwDN#k>r!!xrbGR9rlzZ*Pzohrz~s9L zbNOgTqm}04Sevy0+}>o0`4S7Qx`Jss3R};q>Z9I~8M?FZ?=@ACEc2_4ocHXeCbTz(tr7N`6XWO(geu)SNqIbglx%Gmd(CmieUp$4_GAh6F7= z?Pp=fPxi=v@pgFBoDXTs4iU8n5O{o&qNQF@lK}f_K$RVI-Db|D?jJ z?=mv;=g$-kA`{bcP7`E}FdSL8J5Wg3Zc6Q4Rj0O3U?h*U5!wY`8HQ!$hxj2VrU3X>!{na=mI9E%*d{9J%~h6Qk&n|zeaeK_ChhpXtOHzDh8g7;CJs0CIH+(^?2bDcFW&16*9| zvkB-z8DTxyWYO@6j()7gfQ|0)9qny{p`7ton2duDPr;u)KGX~J0fQlA* zl{f;e`CGw+N$*M}g-mq@A-abKY#e!qsBkb9erlWHS>KI>AGiHon@;PdOFA*jZ5)62 z4}#33y>`F1ZaYsS7^A&D?_0>B24Oa=xA4@A@~!mc#c zEPjj=<+ z6#~$OlrF?V!*3os@}Cc$Fo8PCieuwf5nvE+tIH&P+8G#EcS$rM@eFMdz;8PzC&yQ@ z%5ql(xKKLpI*&};Bq+_9cOw}GENjsgRl_8I6Rf>Yo*G>&!2sM7Fr}oL)9Fe}_TT~1 z6l_g?0}cx)HNqb)khk3fopov_Sm3}Ipp=I`QV7ppIR^hvq# zH-BAj{q&tO%2rd8q|;$ESk-vuNigmS>UWemn>dhnMGDXV4=?kw5{9!g2=k{%?DCNX z&Zz3qxw_!j<3_gDQK!SJmX{xvJGXC?2@D53SaR;vnbJAPzLj$a%HHX{W$MWB(r2yP z0{#lyZbCao9eNZ^M#0FAmM3-3OX@H@s=|@7=BM#%!=@4gEzs#$X)~(5)=%$*=ZSZv zC0d@ZECWT?04IEv*fuGumFlhNh@{=#mNQD)>RO z(HL0wyLfFjd@!iLf0R%hH zHLjAiVeGJs>utsILxDu?uJ8EU0P~U{HA2l(SHDfazQ>{dm>yRqF@5H%`Jv*?CmmIs z_^JhpTjCf%0^t^_Gz@@N!jW?A*xlfFlMPn4INfyAea;{jB}9!Q%+KPRg#AxPp#lkX z2o*{BP83Hh;0K+^42*OWI@ z@>nPfn$qqdzKxXHK3d9p?SUk)%ft?I|P24wf<2F)kxbuVK2sMR=6o&=MmQ;1#Y48-NHucYV}% zJ0%@t0M!Gy^GbO90=`eeM9@j_mRgKb-DNbYfc;kBbJJG$iQHaX#*z;;DDgamHFZna zT6xqpaqMp5ZhiA!X|;g^W)Za`@i~C0^ia(&(}|5yZ`NSw9IuSPh?{xXq=Tc+2LI0U zqo$r^CJNL05V-s0N zg)p@U0lV6sqv(#-WZ*)|2ojrD9Fk9*b*mW8BcIK;n8+niUc18jnp=96H*pU!Qd+}= zehVDA7EyAu{#7k11a7+PJN38-+@7(wy1d50u&2t@(PNCt_LdGtP~&^|m*GQClr9Un zSJ{E2$3d-Xn>;wzHI4Qvb_0%#Rrlt&raBZ4ZCFKt+k6c!kPTf`+OTf%;BKFW3!VtO zvp&}JtxHl1%{lo?9M{0L>Rydi)MmJ(ChI7JH^ZBbFhWy2D;{-hkS1J|$K5fu5wf<~ zwI?HT(Wq8JdDsrRY|Klbcu#Sle>U8qIcb)MRm!BFt9sl zPGz|Hk3TA#?|#79a|`9hxeI~oG|Pcbz52y+7^9Evk-ud*>k8YeE>T?=pxKEz3Ujm# zi~)oEQ=a;R8*9l@C_VT{p$Qx+uMJlgCT<<_#9TUMb5w`!q~u06_%3wdtC_NEc+E zenSi)3f?P0=mor1h;O>*rc$k7V9BVfjgMa#jx@wy(%j{jZ?n`d55w26A&lxOM7hFf zn)krjfU3VKBpk5$=0jNhPv?~Y6?Q#q8T7C3bwM*Yg~2#X-(r|Pp78`{3&J^6)?ZoJEZvmrLLO0ju9X;S}yAwhJRJ2@JTESRJj{*{h0~z@l^r zJ-aH0dXZQzU>A>hCzq5b*lXUKU?OVgs-fEyQfU1mR>A}_5}PUWNV(Y}iw?^5AhvaB z$imosRS#rfK}Xhyq4Y87Ug6Ni^_BbVk@sx&i|b?# zlXf713ROnvfL_AJzSBvBo%0O`*$W0@pUtb77jLAaU!Tro6-|d`<ytR7Y3Zz@Ez$~ISP2w>7C}4Z7lxDe%jnSch6+SlldaKFxuDf#+RL`R#ZsBI zOP9*SAODznFgmec{EGb>&y@p^N!N7AOx|G`%qqeo^*Uz9(l8zK|D6jr=}PP+Qy+P+ z&xXPp7vr~K_2;sXI$2q0dPcaN+g(O*_UM`sI%GQ;e1m6G5Wn)3b%dPd^_%QL32%C^ zQ1)OjG?)n;xc@+O3=L>vVwpM(r*A-K&8LKo0bs37D;o1`R-$Enf2VC z{aJb9^;gRlg6-Hl?=qBUQ*7cyt;>7PIK)p_EJunf4e;GwJL<$o?gX|lhEOl7)gih` zhv)-_*;Nf8f&kBi32Q+FdW?Glsc3*|Xz9ka@&MEBF__EgSC-0NcEBD#b2_X3_oAQP z`^-~imEq-ej;LQ|7Y8R;Cm?QTW@M)}zElD~R=SlPg2B%MIJt?F=nAZsDa1n>A)Lg+ z(Sk@g1Q5m=UHAH4iAV%B-$~xeYr-am`81dA@vAPD|B+`6V``=sKb(SFy~50!@KC!s zq+@e53y~>7wVfFHKBQ*m9U(H0Dwn8~4BaG`SlsnD8$5ui3H;}O{cgDn!;y40Ah2l~ z-xQ=fK-%7Bejw^KkmTNYo6Lobb|;w6WRe^6V%1=6x=H-8AIl27waAb8{IeeclOGYl zp}Rt_9JQT9FaeA$4>UU~Pu?58(M2RMZgHUeIwrcA0$J(Evp1kgegd|RcV5%SBZ zUVI2Y-+HD|S`^>?1MZy;PP&3dZSYBh^2qd-@7`tPa=VNx(W{ozGLvxGt;3{i28kQ+ z+8^_kiHH{sc^F98NiW}I7jowTL1$nPHW9@o^OX05iHdGMqz!TEvVuPjd#)@Ni&y^=CwLJ`mN5Uw(Dv>^YDj2l=jhOy6pMs?jS>SnmHQ}Mj8uO%I+xB z`SzqOdGS2~-HlU*0d4B;xlhY2_Fde^?(WA~M&NNEL#RT#7^QU)wD&&ybb0XcN9FFv zAD8>ru9rEOFQ^HvYK%1M5(*qL)@b-jODi5~Q9HASc7#<2uALE=g=y$UAS>-zMrl+p z0sueu7U?wCm=ah=C>nBfjAqOVFj?1jwS1+wt-a<14x*;IS9KQmJEf-NvViS zP=$NIEp3D~DNR~XnUBF!9#PI;TQ;8cy-6hQrdY!@bXGIaueprl7a-whSl?@Tbxi*G zHGr2gIu$Jw%0*}hM+PBUW$G!3!+O*4!}93|I$f_(cR*qN1`S3th&2eLkFa1xM$#l~ zwxHt4bY+>O%%d2~cp9olfH=f=ot_=%2t*)^?(X1U;1Cvs6fL$8!x|WbTv+PUcWYUP zN7yhxb2W|?AG-PWC~PG)$_MSl7cp*zebAJyG+vR=ox4zyia-=p&?rfxQk8|H{6xpR zBbIO*j5e>J4tj9;S~>XK^JVTuwy>c=456+beR;MVL!zEPe~$YC#vgZCh}+NZ=F$8# z@I@F3&iOI%)HSd}JLWB&4>8|kLk>;hRi$Q&hd*@Y-iVpM#Lx9z@+1C(FD=|AVJ@pk z@hj{aKE@*RsTZHeOj;3*l0g^Ql$N>=C71@d@XJw3RAE_80aHO3**bTrEWQ6x*+i8$ z3p4G&G+H`VY93+ULn9yScB`2n@YHo{LKAIwN>Sq8X70Mns6>^U7Q;@$k1{#EjcQj$ zrPS=n2%62izr*l0%VUT;!Klrh!bjb#8Q4?9DL)c8uv=HosZ4PEO3tNgBxe$-mx%Fd zpLuyiC)Kn4Z36jd^0{(u=|P#je4!lu;uo{8Upe{&s>&nKDszIzkC(BJJ`R7{K+x`z&p7#|M+@_z z9HDO&YGf}hNk=~Y_cQNJdHD`=i-*AZFPyefJ&gdkJiIOMgrg)hEgjBmE1YIfUVag) zLSZm(q7X2DwCUs(MrK;j1KO9G74;^smUknd^yruuuU*RyIhv4&B2|h)k{w*2D~-R* zUp^*%jM6(R0Btgw?_m@p4RuL#6BXiS=II&X5zbMYWf(zFHm;-eE!u;-cC2vEo;_Qh z{x|=&jKA~}bx5r-Lf(G3RPJ55j`ogo4hauMmZ^RFA{3DtVAuMzRG+=nxaJbrmS)-! zicq=PXLpl*9Gt?+@Y7ndhOcxD+^JSUI`yTTe%L_Eb`Ip!W z?wK;lWc}osePx7AEIR-^j&!tiI`zQ_rTaGfaZ6pB-xC4r* z;Vu)f9no%FBJuE-zh!%;Ta4)FP)OG~5j#EGgl$!|;xJ4C=ouA}2Kft~BQYo8od=Wg zc=CarlzT5~$>&_8uxAt&Tth!VK+516@PI$-kpwVY6=O?R34b88@jDiA4Q4`DIr zyLH%>>+z=;s#l)=G-T2^^QbVi0ps1)7jW)e6tW8~DTuA$E=^ZeWvvedzF?U=hP5y> z4gPiWQd}CWuax!M;DZiofZBS7#n96T9B%K_VTr*syl<2`8)HL&CDf}u1S2;UW{eOu znY3xmTXWJ(wMw-nxFiwsY}=A~=azQ~O1{Mhf1w}g4?q0#q;gcjE7W-Y*AR0_3+%iz zeVk)gSjLd$F_KE?pwb_)xhie?7FvgvVw9m!i!kF38H==y4Msj{&or%fPCl?3MwpXC z3$XAR4#1!xmt#1Z&6+U2x9G$id^iV|25aG@r-}gD4%-rfnW4`Vc{~BfBzmk;?p=~(vA`)PMxM;nC82% z5@Ojxx?0gf1q3_!*rn0be1u7mY6a;Q35YzM&m8@E(!5-<^N ziBD2Am{G8Omu#?PY4td-PcN{1EAFk%sMj?GQMdWcY3)nV_>6!! V28j2dJ&F zVno90(D_CGPa-L95^T#X_Q;D{a7B?GCBQ_Jr;4&InjCSJRg76=X0;LQG5adzy6ur&eeRl%egA* z1xieXN)Vdff=0)PptZCkdpCf$ZwQ|g z$9|Cpg{2d7lVVRcA1%k8d#)UO<4a}q?9;&wQUt2a1rF-{qzu6QklH5lb(bgCie_VS zq0^D8dDM^Q7mRyVuNu$>2(+OCeX9(;@_H#J*ph_K?Bv-q<<75v zQ|@z`?IMVthT(TrDX9(s&bj~)@JKUTq*&inqTgC$R%FLWGFKOM!$GrI7hcKJ-WgVlH z8HBkB@X;Ypw_OXa$X5&*wJs$98bFG16m7^`;|kaAHJIw5+*RO_jwu&q)2O9(VrXnoCl0%=hn*J0$YbpY7cnNh zpMU*+pWg|eLi0oYX-Lv#TEgwQb_5J^lD@rETe}(aq9X?Q(lGpqnn^qB5W$g%`;vBv z-=VOBYnRLITQ}fM@0TavdYfZ(-Y%o48O!s}l>;YO_j>u6a_^mAm3tq-bP=ScP~kf# zV`q>8f)h(AGq?P$5S@+`IB?=841fwVjFPOh5hiYyF;uo6Y>tSpg)f*av$=O%7+YutkyIOw?k1{O zx9!^8L=}WYCRv&%QG6p!8Y_88Xh4??%)@X2!;m3n>WOAub<^Yvezsu%!_Id$)?L8~ zaZS6ucE88%cN}U+ol~|p;%A=1U-~( zHPTC4=AAVyk|n89IPFj{Ln!jHZ*DE%cFFJVg~4YQCA>#e^`)F`cRr0P;yWmmo! z=k#yhDR&X#=5Ju2f$-2l`_RSuS6sM+rH|TEX;e$Zq5BJE7+RR7bL&#*4$LUhG3nQl zn7}{-keqX#sb^?N`u1}K1CUKd3%$h^=CW#B4X_;5Z^3wpnKB8t^&_5jNasu;&C4{! zw}s{{g>ytkmnJpUIs-TE2|2=Ic{Mh}jP9i~qc>5Kml>GX=U>0qV<-6T5IgVWqtThW z1#LUB2UpUHnWv+t?mVVs4LaXuBY?9nzg*^?IKif}EVySxu?n8&uVa9A?FvR{x5_j_ zjR_L(f~Nt-W|w~W!*Ubjk3Gzo>s8J9s|c& zI|am9Izb&s+wxI6PA}mOT>+OwUq@W^-FmD1sM4El+o_Ul2o1htu1=g8_Bh@4pkjoa zKF>W*J(-Pxhi6?+MW<$lgtzbVEH68W{=K_pa(yIMw>&+0IG%G{MeDTUD$ zE9g39QQr4g547+hBxmhp9T-0*e2XljvS{M%F=(4)gR| zZ*rpZOJ$gitnD8p-i^Dr%gU!8m0JvGrWt8E+Vk}4EjC6_*i~CpQ#3W(ztoyne=RET zHE*!libM-91=fF%NMbM^ZS`IKz2zJijYXEKD!~kwA>bnbckF9_P>y`*OKkAS-hBW# zz`T1I1WtbXNm;~lY=zEho(cIehMvQy%|_Vueuaj+#(J8K+vu8^Y&`I#H%iyzwwW`V z;Jln|B-UlrDjS%)_E0enX(9~FX%J$I{A&kPiNTSL`rNu1Z1vkA9K*|y630eGDM+Xi zkDk@Pp|+YyoD-36|84$;j8K)76J{%0=#DpCgf6|wEH(gHf3^bXyPz|&W zk+>#GYdsBS*6G0dFlhN@q@pI<5GZLY4JQxt;y*VI^_8bDeEX+l>gqD3B9@%d=pjuE zEOPdfjY@gO!BEK)gYSALQm?+#fi+nlBU0H z8sN*uf^sCgWQoW101!qAY7x1vJo zCok`|V<7#Vxgg#(EZIbb*oRrgy4BGXxN;sWJ9E%ROw%@OC+!-fnjqySZsyxelRG%T z)4Gt{Yfb6lWjTpY94!)EIA7<(a2H{snFbO&SqD+>iK=^nxEatvhSb259WolR=Fy@0EY{?$9w&-ffRA zIl{V0grZS)S@9%fV{D-6w8PnCbh9q+gx;k2E;QC94e8xn5SKlgAPoAbRFj7ZQ zKnEFvnS1ZP8#U*s%lQ;f#R&`M-7I5>zC}K*v4^>M`FunV!l(nTm7qk^&PRgViFNG} zVLomfw7o`jkYGbqtuml7Z_sJ&{pwfBk^kz?%l4VGbd5+JB;$S@dtefKm@HlR;Dd6L zjcBia=O3A*X7xNOvI#oG3H)U^^SADnrH?TWM^c!6`|UD`6g`F&;~@&~@gj?#oGU%_ z!P_k6tp{+T{7_l}O0C4gAb`e z56&_g+Kc*$`Lg9tE|mdN_7sF+gzNmkJ=Dg*@$~>)M+8o26fcZh%j14 zA+-~T3JETudv0JIRm!JZ!>V95SxY&f%&xuc(q@!G-Fspbg3vHzn2si!36M(N z{eY5cVIrDD88BLQ&;L@*7_#;WPFI;z?NK(RX4U%6iFp!$ZPy7e1wE4yZp&#Wi4(UT z_>gvm9jxP|agc&;B9T#BD^{7E*bvhVlgt^lqYjcHjA@vQ@4}nc{E&R(Q~h>)%sYv< zIqdlCdeIM{ct}U%s4x|ZHW2_RU5#%&Nb{KCPoF+rUi{0yEae5P;oN`F!qX-uVYZVj zKRJl{@ZoRXDW87l|H@RynnpAvK8XO?V}7iM!N>Uvm&!8tK{~RzZ+w&WWNhN_!n1Uc z2k`I1_ToY>*| z3Sd=@ZRg_7{ar?#Bh1;k4sqrFz0$wJ+!5z69s?*MG)A~)zB6;jz^pp8 z738eGN7U1d#6+_<;5@p5aNOv`CT383*pbo853SUOWJjSMdVqvEdxE)#(`QO?YaoWZ zIn6oJE2+{lhfxjA?%Q9cpMI{Kef7)bm;dYkQWk#o^Rj^oXcmmmkj^AM^D2__Z~o8! zql{3n6K{XDJoU$aTqa(4vCJ~co59*_lgZTuI=UWefGyM_V%=jTvN(@-JB3k2a}hz- zR+eNTk|l%`P@-wSb!fkN&844ZZ`{R8!dKts-E#J9p2YnsB3&usOkcb)qUJmREF&(u)>@s&wqogh7qMh6N-&AL6KznlM5Kgi#o_ zElB!ZI`xfJMh`GvE$>`=>3*jJ7>?&|xh_xDvRB2sotHAV4z;X993n}wfz7;Q(B(Iw z+R?vR#+(|M?F1bW&9d8lm>?+%r+6|Jzyo-4h)d1PvOKzW`Bsm{!A{V>oy&A~ecFkQ z(TTbHjO|34icm;dgl`l&o50woJokLvBa{(a6+nQAc2`ERfP?w(KYFO_IeWI;{JVcB zm;U;1%H4|>%Ovr~$!kKUy|G#zyz|R)la6eJIr~@s_>ao|FTY;Km_j+?S!;U{w9j2A z3m9FjFpc64I?lDJNYvWc_8WD&j)69`3$F`m=?~&TT!Uy?AJJRx%$Ld9$=Zq4AHq}asCdw+E9DHkkkv)bs1dgqwr3PaX*RH$ z$yy-NaULi079`XXx0M??TFNmmZZoX)<35Shgbd1tO}X6#V3MKwxO**Xgd=cX#&2G$ zLv`ADHwbqP;#-

-{^=ouo+L&}2_mNVw!ZiBOc-){|ud#u25$v}(iE^uxd`D}P$Q zwkFLsc56DL5fjE=$#NSNg{@pIz&;x67*gmO>g;PstV?uSCtrW9?8ic?!=9ew%#rNd z&k4EA7cAYpiRwjliHEwv+{_DxuLNk)#~%-~-qQK*--uCwLoxe0@oh_2u{dictP@^H3ctZyM78An*uZ^|y1iv&bA` z;*p6scWCLi4BQT!@1epd@+s!KFc9ltVD{;M_>X1nqcS({?vA436Sf9!nY5z`>8DyM zS`c|^?fhM8Vpy%OhcW8dv=f7BDplhK+=4HSDobgJs)MCzryb;PcAU{u&?%8rSe~^y z%-TTxQY+>~`>{TA04ojAeLkzk2O|pv>vc5-sKCu9TT9Ua)e|)6JB*uhfL7_pib;D# zl?dK8nI|24>ZvmK>T5anB@LZ6*}rzBeDwGKP*yHnE#nZ?FzU~!%`Fq~jWVJfYWS1I zBjI{UC|0nA<iEWK-qR3{?sL>j~0pc1QqTUi^Z!d!y@hXN@Lqa~`H zgB9r6K3g15T@Fr^JPqB%W{m7V-JObw~xDqFDa-2Sf!CBI#bnQTUZEXREBC&=|Q;KA+CgB-qxO@km}ylCUA-T>Mx*t^GGES z7SFix6Ku3Um2p+%W%auryYQA#8F5Itp&FhI;!Qt8V!mb4N{m{HtuZ&a0q(|WD5`!W z9QS+!BH)8~E6)lf!W$+6SQ5Hfd;42!rG7hK8Ea7(xf9=76KPhx0iHB@btE(vNe9Mk zc|Y&^JhTbfX@A!qD1Q1w4gFdbMxHQ1~ zu6hrzwtO1iSay?04*dhG9Z~plEX>(G!7a;TG?VAtj9@1M@*+X&SX;gJE&}GVYi!%1#!>W}zdqu7p+K?v?uk`PiC6{KVod`a}=WGiHE5e|iA!7?@u-BYLeAP3s| zI+~Ar9OrZUUACEmR>$qpEAdzOsh2MJ^Q^Nh*B~9U5$5E_uch-{6x6XNul|{NMFFq8 z<+h@coQGLiJ!E5tNH-iFr^JL{sJ+O<;Tnu#lTBEMQTYv6kCVNUs1}jxRqC|x#F?)8F#szDb&B|;ucfnkV3kj># zEDYQlhrooAMA9`cfiz9S)V%z(^y$E;wrA$L7~MFklO^kk#lOhpWe)`6;#AlF zrDBL{YL70{)J5cZiL*8geiefFR8o2rTj<&g$c-77R>~hGZ;$#=-7pctMmh#pp<|!K zF;~%-JOw3xO*%=Bx`Rd>Aw=3H`z=OcLXqvejHud_)H>i|27+~C(L1OwuAe_wrZJ)Z z!q>iDW?%YZ89i{Q?8CZtYlcO$w(6Ybw>6t zzQBmXnHeFiK6sdomEG`n zTY(5o#Xvr5p1@@sd6o53^Q+}?6ud?mvH|?@lUS@X7v{(et-w4Qk@J7|cV+$BwQMFm zg8Et>XDUfa;nTT#Z)nTf_YONUV=iebrR6#DKmGgv`QKaJwa9`IFKAA72(kds%y0ba zH&_W?DFsPZJ#qScQZkfBYRuB(&axTnIJ*(|VVItSBQrOvtT`a89ZCmfzhtC((S?dn z95_(suU^9pl-;qRK=rOl(JsW)N^hJ-)TQ$KAk*W}7tUWO6IgFeT0n@UiwZ+S0eksX z;`U)=s@s${+z(6>)rQ9;{|wP(L{f?6CZ2owZPDRwI}w3jn2<~dc$JWpe22DOUsCnj zQBQ~`(~!UjV{h&DSZVk;xfDSHGK}R86SUGvLy{RIj&pmfEI#a`qL>0m*I)FRXpW(Q zaD+G@D$3vi6K;v*pmMua=oFFxjo;9C1<}(Xw+%JUTRv!I_@Ax2|o3_NjaIHyTj$XSw;+ znT}`s?wvA!;e5IJ$;YM3CbZ5UWc?T3l~4(29s1|1alK)%`6iIx04x~f=ASuH44DIO z)kjF`yNpM=^313)M!$VV_jj>W>|MLTBIsV3;MCk9jEK5yHRLV<8;okQxEJy_J?9eK zafA=>3{cPu6+_i~Lub}8@C1HnM`mf*bZk6>U&0tJ9Uq=ToTd-$#0UvL0T2BpAtFjM zmWeyt{%lJ<)_pA(RDzm^vO)Vj+UCO5>rCQf1Vo!r^`mv2@8$$S@yj2{%4BRO(oJh= zsekq!v>d>qI@;0vI_+o$v-F{pr^?I!&3|1^|HZ#8Qy5*XUcX#!KDb|&F`jVOl(S!Z zyD&jShsLOec(pjzKvPw?<%93~Z2W2nU3Xo;yUX3u))Ln^HK1Xb<3+W%$l5J8Nzg)( zTFOFZpM7{pUzIrv->2YBZl0TUlHgTkuKX+Y23D;XQxtYjc9^9@^E8EPpL|p%VBB5O z@=)5aTb{Id3_v!qB<+`nS1yxBARl%x5UfXMfvdl%E#aPUJmK?Kuz%iX35*N#~x%k_+=eIq4ULhDW{hFzh&w5yYKKSIaEsu7}P(32Y2KVc1|DVN#gjjo%Q9 zY4Mh3B@Iz-Lp$=yT%ChazDX&P{T9|^D_B~phSfxT8_9Mfr!`|>05N-oWQLv*?`J&V`Xz77~(9XL^=3 zVo0Wx!-g!Z0%#e4#;;tpjJsW0_a=amK63%qF4x8%1}T#?Ki8)Xq0Zdq%&N`hnxjdG zS(`zHpq9-tCj}F2;PN#%uO8Liq<6x$A(LJ5m63b&xm!=UucssZm33$it-(6=aPz{2 za^z*ULt~WDMQWVuPL?ei@F1fyj3nszG+vfz!~zyP$B=+Lg}9x2kzrVl;J^-!I&q{N zW)pbZVhF7?(_kFfV)#QC(@^-T1VDJw3+`x(8GYdrIEdqV9rrZ!)Ci^K4faQL%~Ezz zfT0gL`7V{nJ(CA{QU+nFa~L=aU(!@qvVBql!a6F@aBBf3Jonr)<0 zSD8I3Mb%FXDagTg4gBeFXzx4+tVuohxRDw+MDbs4}RT@fmBN$jnO>&0REEYLNhP0 zGsSbyani!^GQ?@?!_4pW?{fGkwAP1zIS=I~1dgoi53KKu#)N?~?Fberx^*EP5ss%k zAT+{z5XUzT6-$N@S&|G7-^I0f3+_a8bIamlIOaD2N94&e6b2!#30pwz=aD>?(QT!& zVKl%h*tj-WqmBtw;iC*3G)Nm2?v{3V%2Q?#a3(3^7E?yO_ung@G6FmI^IxEy9F+Z7 zou7F6d5l!L<<3VRv!vk)+BZhK7zs`7JAjIp`jMDSNJiSwQc5Z^EFhNxa0=Qwh#ar_ z>kDrXv3uS*m$A-gB@(@AWzLd`QqUcG**h;iU-n^$F*=7ep^b?Q>Iu6LmkmcO5zl-z ze;vkR73a)2C}Nfco;AQbHDK)RI?$&CEWS_H~hJ28nymTJY| zDKdi_nAAp z<}kx|;7tB@U&7#J)H)61qF{ZHhTQXEl7&)48DfWe+4t^ZPY`(=btOH zj5uZv9$`y_1Iz)@b$(GMf$1mXcadSsac>AhbXVcMG-H7C!;HH zFa9e`ypv7~UsQ!Md7?{y4(Z{)CWV7(f*Ty%(3KC!fb`A7jeb|@h#xEh<1+1q6lpV> z)600ACzd)@VdZM-!AGreGx42tl6kUFkVKEb5g+DUn$4`^pDEWlTWc$lR0qa zdDOsYjL@BeH!#vEQP(MUw3l^cd7HeOx3(ioKmak+@4NJAV;jbI!Q64=-CZUooR33b z&4PXc#URDHCh#!z`|!gL%k7`g5g|NHQpb)sH|(`o%v;+icuIZY2Co3QF~^^I`ss3< zh0Y(o{{cdDFKYi0;?+~Nfn5O-CO?Y3zzFTjsg3(AxL>>P+A@S7I%GVt9rWBlu7dlvsK zuGH)(@S2bGW(Vd#C5B7{G7IC#i&p9QdsrlDF{rVWbNB106xS)|nz-J7s2n(Rrg#ie zk8QYmjK~#$D!oxAQbVjLBk<_~n^!L_u9RCp{$aWD&d|LH%JmkB$0mdcoBFGRwMc#-31VN)wA8oTSHoE&si zG>a-?f}>gnKmTP}xi_DN=@~Retrf+%16b4{&v19C{5}%0M~Yv$dbR93bGqz*@%b|I z(hH@_ngrL}43MOk3XDf9E%I`ow2qP&SM<&#?wS_2%Tmgz9bC;rCSup4$|ZQ>DJq0N z4ZT5NeK&}IHE2d{jNHQPbc4XN0k0AxfpV@Blg5j8JVS8gsDveTzA=O@{58 z78Y8qjGs{xs)w981rx3F72wVsCHTNb8kDCGQ|-Y}x=%e*j(z*vEF6Cwg9R##x>>rz zL8K6xXOC^t*vC=Bjh`lrd z7-6(N21BV6Cb1ChJ?NLaKjENO)U5}eJX=OyMi4uDmie*+*fn8wM#EZz-kh&guu==rLGqU) zY*Mkp*D%9{AtGq?^r`7w<0u3hf`JHpx6U`nOuf)JTQDZ6iYc z`1PoU9(T8}j1km0b$9VQ-(}8z zuAF(|aOup!o6x;)IsfRm%3X2P+Q@!oJn#l*O7Z|N6$hsfm7CgX#cjn39 zwbFU&A4jJ;+PacRsI^*tGqw)7W7Q}uq!DMmxa)_G_~Fscbvnn&2fP@q59x~|J1TGE zxkHjCrjO#U6|JXdtjTkkJ6vE8FpQSx@Y{b-UihPP1eDO6-8-_94C`m6!mdF6e&MT5D(o11|$=EUWC41rs za}^K54AlF}sAUQsA;N3z$e>V>E+MHSU1L7!K9b>mCU0lYpDV{-e6dWQI?cI2`^&zG zSsFJwdn#pxoeW z0!O?`V5CK4rEG`S+d~>`kkBw|bW9iKvI2oDuw(Ni3|0O37OFl?R-HQ(*Uo{-;OhD} zONl!;u({d5{Ek^Rgg6j4L~B9WB&_lNkbkF+Ecr!txC#j@0qJu09r1sXD^gaM&q z^3i*nj_%$DGAS>=Kkq%B%}=^}1CqBiSLZWDGr7XFoy*UNhW81CoK;jlx7b+t>bVQ$ z*cV?eM_zb=b&w~@G>vT%`d^3MJZozWx^{xQ%lyySBpL;@6`qi+_Q4}9x~NPolcQ-5 z9JKFj1qDHC_dB$S>I2`aLN;*+E|vvW=i!WF9oHhr#0U*Tq5I6jX*f)Ia2*vo#vCIs zSl1m2n^Jbx{Q#GOl=~do_+^wa4j@GZQJOG#sZglq&$=)==N|C}wE0<7VaHjoxgYIH zMwPUoK88q(sQ>TZVb>GpG!7sTP1}jlA=KgsEs#p@I}8S=xZ<8l^T%-iFR!FwTsjU$ z%TsK);IUELax{D4Fm5RewIHE@t}I-;R<3^cyL3<^<*9%9UzF)7w$fuG&W#}_Nnqw( z+7I>BLKcCvegQ<$l<89jZA1JId*o32zEzJ14lR}xXpP)h*HPLe9kH}zow$hH!J+^uXiK$$kN5mhmtoLN zn4R}9uSzqqPBgx_CQUm%7uOqhgpMT|0D4S2UsZw%x=ZW^(!*kUj~cC|hZ!-h!(&#U z_3qK*<=CJ8X*uy<{&^`!kChJXWD6XvLp#$7Sk^gowT*D&zLcxiIECT%Jq8u*s6uBr zabRyb#yr_;fA!y&ajX{IOV<(K9op3z`MYR-oKgK8%N$&)6`}?H2<@pE%kubTsK)DY zkGKX&x^uEA2=|upL+VK=lZnK3@uVGEx3^uUx7exvr|+=*2+OzLX4%JDoGtcYu@P-; z(kM5mAPOWBZMY#B(j9SQSQ^bbJ(TN#R0l+7PZ(agED0pZyS+TsSt|xkF=WGHQhO08 z`38-7j=kw-j-M#AN0}$XblN@9Mpip)UWv*DrtUG{T{^N3lhv+o(E=+>21X~5*pamA z7r@N7jj@6uW@LdaTwzt<8h0Gsxn3Q+?*l4DVjQK@k9>te$_mzF5{aArj**u~&bXM+ z5o+6j+}K#$X8jIfvNno>3yQG$vOz-$tqMC0hVzV>W5mjir3iEA@rPMYCyr%u14e!K zu3jk*A<#009{Vt7Z?R6#c?^f>)`C0DjFFJ%hC`q^$qUvfrT32=wiUlA#F0xvP*Ld^zuMpdLV=-{!_h2^jyx#}`P!ik^Sz0| z$AX94-kk@Zx62+DV5^38Wav&vJq)@u#93l4N`o|oqY>^7sz*CA^Hm^nS|oZcaF`s) zSG0>#X~+Isq=-g;bk|9jxZ<|+gbuV;%~BMe+bjLDc;!~vUgAUuMqLU@E6~ysJad6T z$~tqQXTS9?I7S773slS|u1a*k=*lT3QUg|KPP|jEV$$;v&2baqVr_h+oOrDDfrmPK{m(+FHxsjF49OzQm_<~?|dNK@4ED=gltJ4 zAxSKy6T@)AA-fwtD$(00jiX9VskVc}$e!qB2|~HO^~0=v+GexSIZkmNWmvu?p+P8) zq=1T>mtenr$B_gpGt;kWSP~RWA%+-+H<14Xai21^Z=*024&h_s?>)Q3 zzIlgHo3US?st$(619Y>R;`dh>&j9b39U>i?7G^eT*O5>JE)o@We5M1#U2rR24B)K; zEuOM#IVe1|2A=p4*lLCDvL%vhc$|1&MvWi?oI^e3y1E{?T<5mZhg45dB{n?EF0m#j z-vfv~_~Dqz_hiSmUsU!I@%F)Nj#$OW?*VH74!xh+jdAT6<`DQOtg zr{!;-ZI0~|uRu{%s?B?1>f=>AK~u|wvnkoYOn@J$H@{?NKGq?WkQx|Qg@P2l=tMjx z;BGQtgkBU%VzFxK(AmyhhoHgb z#79L5^-QCX0eLHl%em?yri4LA$*55}pd)chD(4Z_*yd;fIv+w%=|aDba(i@aO4@YA zBw@J`Qee=sfl50Fl+eF(%&J7CS@~{oMTh6;V-*#rpGiwU%;=Kf*siEEk;AP9)PDUWL-w%EL&Qq&fP_$k9KYDl`odV-~2|I zW$GrI4Wq`MzlT~>3s`ua9ItM~U~ckj;i+`LNhdgd>WOmf>u;4KZ@kVaxA0@yjTYJ~ ztOZ`AeR)>d0p_9iB3KkUcRMi>2yc{jDXpc-6hNiU5Qc>%1wm@SUVR-I3U|fQrb}!Vi-A~mW;-8jhUmYH4t)}w60#d zSWdj~d^z|O$8s?8*bC!i49#9>oao9f8Ey~LLz13kZfKINwKPCc7mZ>sY854}s2Y(X z(vgv;SgVqlxl2g=1COiziKcI!KDu2P1q3kSx;gT@cljEy-7V9=xsSQKJF2B1S|u$P zk*alcYp-!ek8YmaVT7rrklP_uMh&)MRASv0BYkc_gzKa?VBTi#3tuQlnJg`I4oZVq zBBay4{@w=}{cS)b?v`=tCARXS@u*g@A$SV#2nI1WLeun;9=v?UsdduXz^*!MgGAOXkxrQV(wCHZ}(dpB8M`_4fjIP~SD<59R=;+#|a`^0%9A9BlUTfR6;jyxA^}+}ypsh_d z5Ky%|q0UR%5I3ZqDFLwn4N2?thGiM6yHO0Tj(+9KW%!FPmF+2oPomISZljXEhb6Kj zdlzL-Au-RMK2;`}h-ZF4U~4&ryD3{n2O^%!hxo3a^(}PQxEQ9^d=o*3#AxHRU-76P zcKX!CHX|3cD$(Gi-oAc1rjrYpWRO0&(1 z<5r{5psOi^Ad2V8JESoPFjNm&h1RxNw7q;2gOu}EvA{&ORTyB`pnEL*UkCO+{AA|I zv*ndP|MN2b;!9aex6Qmh!^d*#`sK2Sx>WJo`p&?H^feY!6Sa+nq5NruIy&>^uavph z-zeM15Q^{ENm*fp=<)LV7||{u!K|Wh z-ehNpEeMstbUF0=v(XpNKKW$1`JL~T<@eraM}RwNFkyUDx)QbNs-Be?HLHJsLCD;* zPnQ{w!9n$fD4!i03UfRCOV`S!U;K(PG79U!VD}w@2|rsVoDWMUMh6Cw+1?&q^`m0* zv#yW6KmQHlw4S_pn1(nBEdhI6$j=R1-K-Q20NqsevA8uvrJ}^-E6Jp8E&ZeK`WB`i z*U$fftq@Bg2zx;8c%cf^zOp?ops@W;cQ~vx_@epQT=$i`;fT@=pAi6UFt@8$YS!@ zr=KdX{^2(wFJAcZkILO&{|XDbUYVjiqgInl2Dl=;k#vtvd}SS`g#p)*XP+-mz5O+I z!=Q5jALzYfytVx9Z#g=H{Yz0zcTvY5$CzsRB$6|ocIq}*Y$_g?Ah@F4uX;T~I^VY1 zwpFzO+NTj83*34%?)Xc%@+3O35!#hPMHsz8t__h(zOA-M_OFvmEEp_f(tWGk`|kJ4 zJLk@ogD<~SPGTiJd-f?d^rb^KEjs=6^XJRG@Bg68zx#d}hgVHecO7_C6|XD)q$@kG z)F+j!FyMT46uM^4H)M{R>-V>et}l{HTIm|V@8sjgc9qRD85zfA8`_7_xT;9*g@QhM_b9>g&;1%0S$R$Z>KTUkb3 zc!l}$i#OOnxmOOe-gmQyAsBlxGFHuL%o9w_9D3u;GLC>e%>1Y6Z6PqNUp|j!=~~%> z&$FN^$NvN`NcjRL$K^Kn2yJb1nz_{{ z*(lgLfc~|m2=4%LQ>?XF%eMQMuDl_HRC4QOa9K%1U=-GEr`#~M1M`s}98%Yvvqg@T z268}*qY5*0&SwN2?+8Wm=4O=-VLm;i*Qx#cI6-Ty0~6sYo^b{PRdI2@X zdYQx0?#Oc-C2{6VMhXFxGzgkYvm*L2;1M zOd$-fDST9q(2nI5JK14@dKyCgNVCPVI(kESYiE5 z7vqF!=2_XzoK1h%pr<~xvPeFMzVfAV^y^p+V_!_S40m{fy-_*A)v`Ml)AVL3cAu!aH{) zO?st9D2uq@qoO)5@#aU5M^_W=k;Cq{mLQG4bD6ejG?YQ!1>WR5t6Sq)$?>j`B%Dz* zQt}CpaYNB*nu)u@52!0OHwzzsTDojjK5~GgP0-qSTDa$m^*;HejMA3I5H8#r5AlXn z6n4m;+q|UlEdStLOX9XZ@d<;n9plPK8alWA%A4p6?Wk7S1jB;7+wNx2!jHW_|Irxcz{sB(UDOAj2ojyzwOE3cOL4w zc;Px{joqL#<7_g@?7G?q4_C_k5*CVdx@%~K4t@bOB6KveAMK4z)HcA#>E1`2&xh8_ z#n2wc8pAWoPVTBSJ>ldb@6yw$uYJADJo6lQWgedLJCD3_>0-I_F~{IsyB4_SF!YcQ zcIY%im$Z%W4$_cTEfdAaulNnl`3k>}dmBOq0-$yo0z=3|E~rU{ncVF1%*aHBK*Xrl z?0HGl3}i-nXeH&Y8(I;%1&$2W{l;!XD8o~95KI(12j%ezQ!9&Q8p(v^r68UmJSwsf zgrExo>6&&3MnAvt@UE-?7hW=yCA3Va>Z56#c2JubbHIQWSxeKuOXmUenMMsV!9=AU z#t6({K=13^R1dX_Fu5<>=z)4hPdjI3et}1TfWl5&?BvhbtB8l{|^6atCq!a8}a89O9z*=q< zb6MO>$JfVQtDgx}TL&@dm^pr&FaRfmgh&^!UN6_#X=NSU+X>IHAp9hw;nBlKSZIue zm8BrK&lHL0&V{38)$emJJs*pe)E*1k#tnXwL6Zw{RZEYfCdt|!I#Q}Bsnu?*=1VEk zW+W*asSMrng~a%7(@&;+q<(foAT9Gmd;4WN?+1XFb2)kutpEMS+^Sitz;@l@%061E0K#Im|Keth&F)y3^IG zS7W`n>GBWK>1cdJJ08KW!#v;|^x&GQdZMwykJKp)B)l7D>k@bRmE`G1IF^ z0&S)|q$koR(@N9iUwJg&G$PmFy0oW{W@h=y4R#s1REFrlW>}ImgYdovFJ3}Jv@A>{ z)xj!r4$IWp7t!+2W&r}G#S#vTdv5*aH#vW;i$LJw1j`~i6hhTvX{6Vqvps~$^yJsx zE*&h!9g+^w32vf(zwxVIl?Uf9LR*~c2i{N9S?+!2nR=))eM8%US(k0?2ic@=-3PDW zn@-F^ThKh3A0Iec8S&s9>23tV)hv3Qxq`Y+p<$Xzqe5gfo{wbphG6gxV<(Mq3N?n` zwCWlPP>>{z>uT@`+Lb#b)0$`q$b=BrCW$F9RibO)qvmb&)u_R|D-+l!8dP;Ny^Wvyv3aQiGU@{p`;I>0Ch?1Nd zzpNjV7R`Pq0qZ)+=-ga*`e7aUY5;DXguxEb=yq1-6E+SGYcRuBKf~=TkSBt)YzLcU z8^O%Ab~D6XQzAvJHjk!Z9h2l~M!Hkno^U+QTma;Up#@t%L367lu!$C62DNqv;Ynf8 zIVI~g3uc9xcLlX<6GiyIhB|5E-aQ)oB|5L$&@C!0%5Z>r+%ZOVs}Jv?mWHOC3;w^E zd+#pIj^j=<%lm5YyU`Y|8rBBJldkYx7Fp%KF=@jt*UM`2#|v2%&mIg_ujl|A|oRsBO@atnUPG9_apz|du8^9G84?at{gpqvDfja^j0xwkF3CGudkz=IeZ)|?n~jrGnBdgfd|-s%ets* zo^}H32mhYJ=Hbj6zbYfBBL_5QLp`TOZfFUbnxW!j7}5=F+gwIiSM9r(wKSGZY%sSO zO+ilwUU-qyNX{TkAkebRapxnCp{Cyn-NBDUVEwOcEFSsT;&oQb%NoQC@aC(&Ya;Vf z&S6WyY@Cs}mJunE7IdJp1e1hljSfA@;8P${UkHuP&!|L@1{gN9X;BnHC>|PDok(J? z3(L^bNVJRmWWv4Xt6?V&kPwj_y_QP0NK|4ji?Yt_kX*eaLZvO$k(Nionh()6YxkhI zYs7VWJ_Mr~W;WB06H%q;Uh*4v_dPSmv&_!A(OY}U^Z?RyFB|dfC|b@)RN2(ZbblUZ zGsUL9>uzFX%|f$w)e-E-VvP-{73s=zo~|=6PSQ#2Xp=Cq_4n>AxBuR^IH-}SdMp<4 zjLpLC1XerqNL=ErUerP4^3fn+8e*CN&z-2TlwedbFd7k+_)OK0{rcDC*jsN=hf7(! z-*x|eWy>RvupWtI4(#S?JH@L+a4n8+yq1U5`=lb$@;5i8$&>BR<+m;6B^~6+wgkV< zz`7WKJ0RGo4tQ^y*H$-fGpLc5v{myl&QhM-Qjf|gd{YIk+U8X~xEun~flCKPYY{g; z(q)q_{^xiX(&ASMO2Z5T{FC8JwKAz3`%cOMMyae#fbR(gGu779wAmKYK_4|_*QsIDMi>*(X1YsqFv~eybbe=E&gAE>vK<38;B^dv#?RsX0d@QW zdusGrvj$Cqo+rkkr!)AWoPwTVyBu}2meYqHF8!RH)(Jh!to@90$YWvstdHz-ejNx% z&20+nLt0L*!^a@%tMzQZ*s}|jKk3Df$bzOXvEASZv#=RdT0Lk|)-qe$^Z1uo^J6WH zbQ&3Wlt*o6(r`J8%`Bik-tcY9{4Up0x=JrpkV?U4pe1KwIcWn1Uip!+E6s$OXiMqE zN-e_K;6(MPGbB1iCNd3&ii#|%Q*Z%CA+7kTSM{P(Lz|$yZ{t*0+wc0@#tWS_L2|rk zu6T9}g&uu80bFB|aWq3C2+@NGsC{e)>Oshug5OLqL%aeX(R#Lrb=SewD;UICe}y-> z*QyjtV9gR?I9-3aM4LYv_L&~avBlbXz96VL^XZh&Wu zY~PU?6jpFb)MXOyOk;1q%jx8}r7{ntJm7XvM~tsRsX`uD-nM&pS+jc=QXfWjdYhp? zds6l}yx5;Vbf{dX9;@JucRh}}@t*ri7fU_j&v=U%YZ2ZeZ`rSL7{q9lTSfA%u<;Y- zKxK6oq?MwQ{sNnKO((y~VmJ>`114D=IBY1h@z()Qale*SvD8r4+EId1j z_=4fp*kpqBpA1B`oMTdJi6h;4C9EM*OLBlzU1>T=R!z1YdO`0Z{!vf|1DIYIW@!k` zUx!wXb0!e$WvFUA9(!&YHN$nL)gXEX3(83b@IHv78&#hw4Api{^XKWo>@ z%i4weBeaZjf5|9nfj+!$T;-id8^|2Sf!T%kby)0-e&JyxN!EuHW1OL~MZx3idw?%S zD%3GXGvLvBN;B-GFVm_LSFgjb-QBFY&@R-A5wa8nHss=mVG>qP6^kaNKLSv_puk)Xe@4afAO1Hji;|p-;1v>E8e`ogQ+z58y zkz6EN1}M`Bq(Y8$btZ43x<}AXX&w0Z$9w%03YYXH6%ouGG|9IcjTc}PQ>t;H8Sh?~?z|)ZFI6Slcg03# ztrqO3DI@qLWcg)`;D34G^84nc@x08cUfiUy+Vo91Fzy`O>&%|ArM1u?iBe@U5W=SN zDce)B)1G7*zC?X3MtEy+{BmO(Tc7%C@rgxPI8F0zDW3FV1{DHcw^xGAyTVdc+Q#FO zN%9{Up;6837072;Z}Jr7iB;FiFoMxAG}Sr4Acdea4u6=s1aD#{t_PzYgyLQWLvWEA zz~ek;Ztfa;(4Z&1nA5QAB8eCee<~F}q#`Jq_bYsfRVf z822!^F%2wN_a7)1-g+0|A5SRYEHfbxmCf>0MVpB^v|kul^J&F<0j&FRc^l#mYWXN$j>8z$W4WFo$h6*86c;U*aUR^j4J%n9I9n%)&K-xS!4`J)v_csiC%E) zqCS!>oilqgVRVs}ldS_14eX2y1WSnK>qjZ69XzvP)aRy}T7WGeAIty0 zAO}%qQtt8TK!tdneG+3VXwIxdKa51%jdU{16upb}gh^&u?$n=Pz?uR*GJW^;2)veL z9{nz}a2=xq!qe%fdpl;8!jZK5X{b4L*_nkgAS$)aAiZvV_z_$~J&HH}Eg*rZHY%Z+ zvn;5-{eI~{Y9AnPH1tuAT3JycUvaF%&WUvZ))v>}o@LvP%#^jJn#Pdi(ocR=&c4P1 zJog$L?0o0}_GUcD21C}&n5|X!NOnNl33zjaI`v8k7Qz)$NR0YyZ6O*r+qJCQknSvQ~f*&PkJDzJXs-o=2UN!GJV90>H3|oHR##xFD6%lA11SN54 zBRAqJv_MXot%m_MOiER7A{v=b>K6db3*pCnEJ(T$1~T@po#i<@lMM8I=lY6PUo%sl zs?13QW6%;zV{i>BMrLLMsBpU&u-ua~!MoY(>=&9l?-)vcwJo$5TVT+LItyvrO|q&~ zp^U($<7C&Oy3ht(J9V5jX8eb$(xmKe)IF>5FtQ%c--R}p#yE$in#3R2kJ|G*>(j33 zkRf%b^#NZZ3pA()amip4>lb=Va8^GLJxv`yQI5RuQaSzRTli>%X{}s~8>+|H%7I#X zEo))SMrCkqpG$r;WcW}@scq7>6NT4HFf8+??;4Nr_C0{syldQ+Mrs7=VK8yrO5h-- zw#XpcQhsC8)|BuL?_^rETO-1d9^4yTv#IUd3{tjz&8z;_d}_=}o#L_L(ipx;A0k8J z*7dj=zlA&WWByHKhPP+| zJx*Kp(yx-EYG4dZD0YUwC_N20hP`u;X z>)Mh1<-{AWltaIMGi%H1@4lT)=a0moE!!kWAGLampCB?wsb3X!%K{vOBx0`mT^qAL z%M9wrMu*O`IaTYvDJXOXfc2IwvFbCdy&QNXAk)eSI?1Svo!klCF8SvNZt zh%;OS>%J#aFf%D#@MtlkPdH~jx=_-5-r1jyH)}p-WSQpct$P$eByqZ7l9NaU7b%Ey zd-1T(LMTQN^W>uoA| zVL#XTatvdP9whdD@GD8y!I>5yAM2;;OClT?9>pw|bu=WUm>E-_OTYX@`N9AFf5qKa zFAI$$TQ-(QzxR8rne8m|z~Vj{)nwvL^@;nBoVAkeZ@emfd~&QC-ZaG2(p1gdCu8yP zpEh+bm1m2^oR%6n7#Is|<^sYxi11qn5ZaBumLZs%q?fu-pOgnJIWx&3GZ|$IhBOI! z_5CKtmgW>d`c!}Mz}v(#KLsMm(RQ3upi)`~-@Qtb(4B4W+N$KZX!*rpBTcx5VjZ;5 zoyE%a5-Mx=A`Q_l8(2dcq*M1}(T7}=bq%*k%t7Bds1$*vqoJq%z*pB*Vypx`O+lai zFzA(fct9;9!?}uum=f+K^4QCI=hlar(PLeg&PrWa+$al&4q!rkxOB2u-$Q?(62X%= z4E_i))Q`qCo3?GC90e-q6z#*QAN;5sd*ziJm*ifhtr!rkdHljdIjw3YI*WGX*!!=CgO#{85eTb90t<*tmOF>30Cb!GgRE6ZP`J%P*C;UU;F5 zsTshe{*Fh#Snho4sR%@N<~rtx-3GTd(5tveh3}wEb zH5F54prX<^tpz9WBAB5A1Zorak7=nW+o`{mnAIOTXvvr*EEk!{C=KgqU3KWX`e)Wl zJk5SprFf2yn>+{j9fUde$nfaAGB>SmLUs^>UN7d5u4E(vbzz=`Onfu;@7`1PqQmdr zyq@Vcaaf}m!=K=VgNMq+16UAZx;#ju4^dWpdFja+9r0RJaRZ~QZ?Jz%bNdMwHJO>^ z0LH*&y{ISRhz&UlEOrQ`^bs1b4}8q9c5&%E-kxD}*Xi`LFrvNBK8vS-U6FFa5y3%$ zF^wPEU(W9Tko|I4rBVM@7>FN5Dw)}XL}=Y*dUhxnZh?@Gz4$`;;2-~vtpq24gHy71 z?Jhf>=I~KAa%%LE!77YfVgWypb~f31OPh;B>Gf8Z!EL9zbrdqB&Y_iCWgt;5(i!(k zj4&P5tsb_BXb?s!Ewt2^a>!POBe-^G!(=L6S?lCpn0;?>jUheBiWpRw*3Ur9!7-Jy;^UPmA^hm($F&6~?O2L>3~jBC#nMD9KwI zkYlM?(082YQH`HIU5=yD8CiFstYEEbh?&lc4ou@wEsuLd4m1s!AfQ3#FeCl$Sy#0h z4la(so@LgJWB+EVml3@dgBNdVcwV)wE;W4o{Zd5U1rCfbpeKb^XORjr z)RdIgjoQi^h??f-t$3{(jfxA0$f`MFR%=|+IDln+zsacugH}rJ=I5OPlelfG)s|Hw zRlNA^UmXxbZRAQh4P2HTKZk^7u!YyeeG{1q+ko^$In%6fjU7A1k_Bt}%!F5A*x_1z z7uF%yQBhyRsc;`cg=xfK*aN?s)(f}3F`aeyKubd_S&wCQbQwCi!XW1Q_^kB7nrGI| z@4kcCxxyO*5L=<T$_RyO#8}U}}+=|66 z?SX$v)tRTi|ATV;$1k$k`#4%eG(ir(9&Q za)O!AJl0(5jTg?KjzOv!Uc;Uo)}DIl$U3jp^MNMK5^xB`UvQD?Q74JTjjFvY!a8Fd z2X4()Cm4ihRR?Xy>;98ZmR_VC7o`E3&m5i*-Y;k0V)2|=TXfB2Xr408urphcXHBJ5 zhs+>3O&mX3#$J38N%?3w{Q7I<42$m`@6y9SxqjbX2C=7d8n4b##jkrb!iY)lzgL)z zzqUz2mcEvrm+pM)Q>B%qxJ!Y)sd))VTG;N=l#wJ4O!+WDs ze{N{XTqZX@QIgkUe8c$U;zl2OP!}o=RJ+W;SKh|a@zAd)`F6Ugml@I|op2mIeGdYL zrtQiDs@$9*slGNx|8&7a#qH^EyBZ zyj(qakhS62vW5X{=NCCy9f7EK18XGEw{4pNA~_3bZQ6=4T8a99%&^0zwcKS_MQIai zlK=XU(h%?X`>Ee2#U@7@EHnd`(~xb3a5guu!>*vvrpAO!cD+a zjcLnrUpr&Hw{V4){537r!0s!8liWcw*%)LN`3?1^j5^5H7qv{I^S;ST2&tOqe0o%)o_xNwfT(0r~~Bp|f9I z2@0!wX8W*Y9^SmQp2jRe;;xv+l$`@E%|M63n!`X{a#Aw9hp|@0tfYt%%%qw&^*##oaUlkkyt#QT$4)I zoH{Yf>>-}263u?Q(CZD-iK`b5NP$Lh7L^$UWz5Pvc$Nr7?iBAAnC%VReP>zoD4k~K zPAo3*_6%db26Ml7?-E`E|`kdRh!BRB<4OX zahM(DLP{=k$sQUr#g!c1!4FuYbvc=M1L6$FJ7)9V>Q`jBB<#qeetwQ|Rnt(lSO;%5Px zbdf&73`x`M8Fb82)iDM_2qCKNCu#HR>?53kS-IxAK!4oEn!+%H4CauvVEY~(*T;VS z7K`xv%X;#5TYxZDMrs>?P5QN1bhfD#?<__|AHDoq=|z~kin{0Qkt1x+K;_JO-a4f6 zo%Ep|1OX4hw7nEoYrSi+=4~taKecAVeV^_x%>Aq?QuK^%xFj^ zSS!<;{{?1ilM@O;K<3f|d`=icztE7{moC-g+)rS!s7o?60JT^KAG|58gxAH?opSWv zf8>qV$}fNMdf5e?-TBOuW&8ci`cZA3d-b(4jS*T-M1aO~L>HxX3Ew$1OYgpmmzyi) z5a#s9UU>~z@h-&P#jW=~P_}&ei8AO$dFhxzOx|6qD>ed+P%mEAL6laEr#e0~>O@~I zM!oT&#kslL`FmN1VJ^x&j1l$QI0MxLNSQ{m?uOV`W27+5zN;}h>=mTkDI~%H1_36h zWfWkY7Hb)pjl$e_VYTPP?C-kz z%QwpLpFUR(J&$e`w@jWrDRq))mo)nzcEN%X+ik@Trr252{iZrFPdGeY2jF@-s@=vodPEZ3QZ%`&4}NBSNm zE%H@ng$$E0Vr=O9ZK&Nduq zm72_1DNp9VbcvsvpMASLY$^6-O#|cmB_RS~?%Q7a;;lMCj@R32v>}eEdYY$QtAaKm2hy z&8%erb<8T-a+TJ&3k)oZY2ezUQ)p~xSEdin$lC!%cIcn~85F>CT?Zm4aiB{CHIG#h z=2>P~6VUJ}grc<=<>vxwfjIKqP%Km8$%X`jfm(qB^S}!C(00+ici| zb{XUbffdt&GIHA{j+uX;toXwHn6fkI@<;4iZ+^W%QNotq5l4diH(daB^L2}$6ik2b zNAhp?-$^%yXIX)|#Nw2;Q6=2XI%i(eehSZ4-Cp2os&o^4XON-Kh&TQmz@*3g1z)7F z&SX_VszaXlOSL9~nTwpotHxe@Bz4+>M7A{rgtihZLIzpzLfVRr0d$~HWWTj8Y7E@c zvw-$!Vf{o|kK4H+W@XaT6oXl4GUZpgoncbZ3-9(UJhf(HZVh1&bE!u6YO2C|G{f%WdKzZu)mE5%2 zbLO<}YhS_G03Uso8Tk(;|6dDOUmyC(&{Lvr%uuOiqzYJo%*au zI`duz;al;5@J9YJ7~=6P!%-M&-@C5bwU+fz)^NHXypP4>)i|?tR;qLgQ(_j_f#kjt zI=dUa{B1woS5Cd~Lb>|E2W)k?Tt*n|x?K;T1eu1iif}s|RW>d@DbI$fn9Of$z34z8 zFv96TW*mhLH{{P@Htq56u5GSd%LZwgDR`Kgl8x4U&0K*c10bE;139l_Qa?l6yYA41 z8fFdZm~I$XhXyjj!FqJT&De!E-iRBeRRs0fZ-{TxRCt^FwtoPlc$J-mF}mf1lf~yS zrR)GlcRc<@j?nl5$A+*DqDtNVON!d2){P8!sAHC))}iSW{H9EPy%s6M2&rie^}b%A z$mV|O$2{ugO;d7;;)|fnjA6VT_;Yjy;pqX=z2#|%?D%eUDaZjy@uM}+sA@d1&if4V zwx_rt1(k|t_NbQa<O4IzW%krGXk$INa?;Tmib zQg+e{yRaA!zF_{Qv<|9EqyAQal`$+~by&fplj_lk~wmki0+4aqDm+mdQ z77N$pThAB+m{G2J=k0R-m%l8RkPx#-h$rYl2M2*Cf62y;qf^wQ2NUq zQ6yPeECsuJG2LX71(<7_P)mMK}u5e_=Xg89^JcbwinP!GlZf9Ufvq;$8 zJ1B?7Q}T3h;B^Mkwvid7Ik0XE4gDDEPU136pM3W{;Js9EgUVD2DVlW@ccK|EB9;w*I#3$P%R#+_j!wd--mUwoy^<6Clg8ipw{ z%*!v};5!m!EH=4s8Me~1?zL1EGEBn+`>{scTK0YY8#n~Mvvgt!mjMh|Y`?Un>G?!< zFyr1A=ae&QPU?9&TygWKXEyENCyL#+}FQ$Nhbd|m^_hJsMNj&v}&O8a?G+K&l z&}}F8L#hKMcrNiJZqhE+zbODJ1~%SWChed=$(iHv2D5SBzOw0yk7iF}1~AeEYbOvJRF!tVPY$wn?7;^3Hyii(kv|GDzAoMJ=E227eZwoSI~b@7Kq!r80eG ze#?LJU>V6LSg!Azd>3IP!qQus9^f=cn${YY0jbQuKM@Xl6tYvuQfvnsg)BWTjk6Ed z6TsCZ)gsXFP-Bm>y71cTSX7@Y9~{`9vmSRo_)yvT_~TeB!c*XT)2QRm9zMn|=bwRN zx9J2o!3q73elr8VWRWhknL}ggXB)oo0NXPj!59hc7&HFxbhT)yDcGhiW?^2!J1*<<0;0cjYSUP80av>S8g`y-}9$R8oEM3^j=9F%QnZ z(y>5Nq#+xG3M&XYBkLI6ST?NsCMv0wjB4+3e#o~@X_Kl{}Zn4Cb{`E$gK^7!v0wXn#eR!~({?X51ItR;&i>Q85 zZ}DMc){dft<}5^Oum#@78p;_Zb#xIGITI;|H9_>)n=ygj{?wD0T5o`9izo@B0%j`< zW7{zUHqUwQZ;hC{`jv!>&kY^%>|Oh5Zj-C=n``m5GVi3d^HGO(FQGG%0T{5}$LHv9 z8r#(Uf=!1o59%dc!dwR~bK(X6=4_PuouDuV<25h98;l)+NmXEa3L{%`V*qt_Ss4zBI@TcC^iaS7B4*AuqP0>F2TN5o$R^OV^_ze>MNz|H`@A8JP8iQ8J zd%jpZ?;09qGcZ~bU~t>BbxZx|H&T+SLcx-4YPgdbsu?A}wp8MhX>i6XaisiQwF;Ht zT4dk^w^EcaRMjId%#5o+PwsF1CH~E+mQmvX96 zN<~TlRmU0i3+rB;n>LpFX-+ga+_doyVa^gon!nFM$YY(WDXczUJl~UE?X*=U>(3_C~pS+_83#g-FtCi^_8bfVGyor9}-Hn zxoqyw>uP{XcHZBV_u`{4yI{=U9WHcVz#e>R{UYLSo9GbqQ3sW|8HfSO_^O7-PpyY5gA%7Kq!3pq-zlgi`X%CR7L#iqDccM%U3mg zjlpu3-+madbX9BDGExRREWz}k?_j6?qLV?li+w_66Kzd=XJOazq;TSI|E64d`|Ywy zH&dvVoTh+h%~5F6md*Rhtz0LXIKnuH1BOIp9x z6&&#*ujv%sILmcCre;$Rjq_# z!8QHSi8A&6LHzvTzmk|U2rfC{mIeOsZpu{k*oDCoeXn$`K>%V6X!q&wl_N0xORv71 z#cDP{qDFR5Zs@}TQ>wqqt`-S_tTKm~=MzO5b|9OljU5EcLU~5UGu4T=Ir>Wu{% z2{04t?wB*p0OomR@++&}&wi-B75Jk=h*O(!?Y;NQ$se*Y`K6ziQQ{5S1`0&Pl{VW3 zQD#defz5(#j~VdUIs9&NX4mOPRykobh&D;~v%c?Bqbmo7uS+TZ%bc-Y>2re8+Z z4%7_Y3}g#1d%JT7)-Gp1!t*h+C(oo|x`JgO5+g-rVN_VsahRy%>@37A$d38GI$jDhq>{_>` zj6RGv`2A0pqfC=^P&vr@l8e>)o|`^&xO{{W$Tqxx_wHseo^&IqM{FW)DUqaQA4nsZ#f;&O&4cbi8D>%y9K^%GwzS5I=@((z-^s|CUIj*yPXINeA z-Q7YH63mug}IXUhtc= zhIl1X@~kwF-0Q36b(??ln0GhDs+sda(>sZ_8Pza+ z%68M-e*rpLK!vTJPF3aE0^mCkpz;eYUS<#m*5K1{4RkPo89Ztc1~F9AEYDm%e1H=& zeqH)Fu0^*~;@G|^&efPGI4Klr-!O&s;o94Gqak{#jNHB_>uaq6NA0e*LPUjHH*r^A zkjuxfTh0C#2Qgo^48){ugga;BK^xY=%i#+_r2*z8gfdb_U@u&~l!sq-O_@Z;@?Q^$Su8Zd26d4l_7R<6)r-9kNCrJ;ZZw#T*0K z3M-%cdYn6T$C+@+PZmu)HJvp*|DSS#D&!wh(sx;N@+D-P4xMETdr4yqTr62m6Vh`BC*Ip^Bzw~Gs!~(So73Q>(A9-jrVOddafX@mmGz-0U zabDJH)_N!2d#@a05Ys=RoA;|U)f8x1i?H}`tIK>HSnFUcv+&u@Z$Dd9wL&Y-$mUq% z^0e>T2aN~LFnZA>S_%_WdTy9M#$L&nUM|-zo-fCL{&Kl;=ulZl-|OMi2@<3oYnNU} zd9He;{{>@}nY-5NBC~6-6V&4x1J+&i&5c+acipyw{tj;JUvhXp=2xX|nf<3$oU(y~ zyg%y&G`R%J>sBdm472T}5#XV!9!b*WJ~jtlITSd{dLQ|j&QIurU!SZ+YQhWonb@ND zhwi)=3}d9ZxN8SPg4>tGtym5}BtZln!n{%@U#X9HSXQy7iiy|8ZNn_nt9?#Jiw}9l z7w|yiadijn_242Prk;PWB=dK%)kH~`9>FDjcp9_#We05r!-ApI>U;NbDCXnw z8l(W}RcWH)Ui^#sMlQ+wr8IEPz)z#gqLVdN8x z_$yhUU&(%~!EKv4c7jpf8UvW>MiCek0BaY6hHiG8LG>{hZej8G+(+z@BClSgQ-?-X z0b@*uuOVq}#t@=!1?mBqk4FT+T0j8oKneq`GNCkq>I0BkSYMeqk4FRcPRz2NHNe7t zAB?Pr+0Zoma9ks?K~^z1^`MTK#U;udA9$KP1y~tIWv;+)-%-IhPl{3G1yA)=wL)5X4L9q)p zl_sz0Mr4|C!E(6~jdl*#LE3PCXJPtRA&7a_L>~I1KVZG_tECISd9GFJ;Uw)wywA#L zEbe!?Duf^}h{{*8sgFW$>x4}Zr4q1}3OkfYVA{u_rSk_5qHAYA9WzpiM@H!}5$TL( z&hsJy$kqB;hGY;J(gX64FW-tc_dCt7?cy4)zdYt=2pa8&Rz0K58MHGnw|cm5MhOsp z&c_@bU=Ti_sfBB(elat)tvp0A{zV{|%DUPz`Mt$u9synAYVPw(T*n3eMG^m$NEA_` zN>4wA>S-L5&A{~w-MKk~3zNdMS?@CE&^Vlb_x;kz`FAV9-LU-t!BTVSwy(&fl#tCU z#z7P;&#C9|snK8^nli=_h&p!cD0lq{rqqvf6uq1A5sKRVJ8(Int@Qx%+5$}->YLB` zyDdX31yeWtl zfy-0Wq>3T_)qHIKmOmPMDffzoJoANRj#EOR~vGRU+am4xB**#4`j>Q3o4L)5Osoe zsNqfPnGNhJgSb4>I%p0Gaq)bXX{f5jieNf|QxgDp<}`Hwy*ZV5>I5nqh|g})4ddy& zj;p2*-Yswa-QScw3*Ra$@4E;6E`A%ej!C5}BJ7AFL@6v>0oByX+qRdf-Mh;1H{V1g zppk*k^`@1St9OQzKmAEeOLu+~oj*rn_w=sJ047oBVWb0JbrN@QNej7FHaNl_6w+6s zr%mY`S(xW{fmxJh(RJ_$H9;T@jCLS6lldsYCk_^7s>k#T-NoS9owX6zi=BwDbTkX` zo*)?yG{SfLOFrCRg$s4Skk@|U3uV(Y&z4>+9~Wf$##O?CQANeV^R2F1wfC)vu0Fc)n3MfBHBmZ*76K# zKjy9H6VrO-x%pjeZeRF1S>-FYHAOAoC|-$Hqtt*VFhwkda3|D2OWZ7jKnLkRN=O8% z+0eoC+#EAh+BoL*rl4INylhK_6Z2J2#wk9B^KL1t?zyLQ@7NI|xG+~HDs$}nI{fPE zr>gWHIVJW|Xu zfa{*BF809?xR0ivywYbG5S_Me;!wvcs1=VKKFp?1e0NdBK04zZ`xK7<{Ke8U!h$=E zvwGjX_`pMY1{n)-CmMw|qSI=O0b3)E%x4J3Gs;ZMsd3#~MO+3G8Du{usN)B);=<^{ zncHgizzp4SN9kooxWFJOFEDP^%R1!-4)nmD?bOM@R6QS%FLCNI6yOEMA`{GJY-ffr z8`s3tHAe~rM%%>cJo0|!M-r0n8L)ln?9FC`Rp-~O02#mpoe-NTYZuf>`DvWB$#pEg z?|kB^GKlV4wVWL_gyJukdGMY4&+_%LHvhCl%d*Zb#aUuoWcym!?e;$B-gt=!L9xEN zn$5cFcI+spUVj5xL4Yxm7dXzW!<2+4G}20CJTe-qXh)LCn5Ex}4aW7^JyOnsJ=R7a zZmu0ETx_G`^=#RObt|V5qxznOlY2~$?VtSYn09bfDV+?k0}NsvXHN#FE<&4s;Ndqk z!*4DNz2RzOk$);}TMD_CgC;*snwk%+K&AuzXuuR+L>&}{AQ;lhc%WsHWxELP%%rN! zG+U|Ccne*{6f-e0mp)7{o%wOluIpd`z@W8i-@dXF3$niL+dvq-kYHn12~l{hOY;eB z)u#r0BYfsdIBp)uK9<;`xbo8?IS&mCB2HT2-$7femtHos526Mhx@}7t+dqL-r@|&w zA^wa=5-Ew;ZO*|)p3JKWtu0h*R*P}=#dH70O|MS0WpMN7!*?8s)d|h~( z7-wVgHFWZqSorq*EX|Y086Zw$j=qtFVJ#T7YMQ0BZFGILC2dqSb|!(V5~EgsmyRAS zhnUT2rKqz~8IOhz`YpV24)-Ql`>k5NF0QQ{yfT|}oh|t{EQ}eEmG8s=V+wy?$5<~I z4kJugWWdvWl!23}@i<csaI0hvpT1IGgreBI>xH_!(&ROp2w_B#Hi)0PGNre*g+^TJ#lhwg?=l&guLHDt zWd~o0EqEf1*Bp%1<3z5@Y&UHwyJ0wYe&@R}vySgEdx7mEegrJv^*0ay4qt64sZd)K zVB{8ftY5tdf%#h}>mHWi1I(uve9y2M{iC8}L0GSF{hIv(K(fu-Lvdcx*$1dX!Q>&~IRg28rvlc*GcClTglQzm)s|6^0kbauA z-V49@Whtjlm0o5)O7~SjAdUbvA0f$Yt?;sM!iC1D-r1;J^|^fqtf>ow4Y27oUN8DN zc^kT&K}D|$DC@1%->l3h=G8o?F0_2(D}9Sv*AY`U-Z_9NIGV=d8R}xpF;3W++6#=W zc6|M7W#hNMg|Q9B9MF)Gz3J7Uw73;!f>VACOI3cSuiwaTnj9r*FPmfeRUfIb6{T*q z&1iLSHVvMxV?cH3)LE7gFaf8+RWKqx32Ta42gMQJB@Q{6uQcUfE!vP;n!gJ23d^k# z5ib)rF_Nz4pCn7kg7cJ{uqNlG9D~}Z=9kNgw=eij{g*x01j&);HNQ$w+}prS8sDg% z)+L^29GcGz=Hkxwr_e;yyLwblh4gzba#$*;Wz*4|1B4f z9mR+2nzC*WMjFg^ud|h74%&=?6@3W*A7u)Q$l<;F%47e_|5^s`x~nWO7Gw|;rWRTN z@h>p*<7J;UMx8)3feHJ~UtNFk7k}}WZItCiwfw$)Zvk0A1^LWb$`tEM2iPl+K>$Q~ z66pmx{6z+lQ8x5$V7;b?+19LUSyZqGOS-D!qEo>1qm}?ko>F@Dz`=6rt+z@a(^iih z=p--oumh}xX{vsS0ptt=-AE6f&(YQQqK49mrJF`&NUkZ#aGd7Muzq#z*Kd{6uf7VL zO5&i428wJ=hxXT5nd>hXU`!_u9xCS!9>#L;Tn#b&vYo!$fC|n^M{^8duA!MWGgabb zQPjAErLiON+nA;$9`VQcT*d@@?>E0$wtnsFWsuFyArJ<1jb~)~P7RhACB5$7@v5X| znSPpr06w>NL@pVu{mMg1y^NY)V=;hvI)byKar~>DXHS>TZDq#BbB2)_EqO^pZ5fq~ z`^*R2_(E3er2xSAlc#hQI}G^G26zPwJgJ;U$Z_BtKp-1s=H7!(&>lLuRM~+VF%1R% zdAz#<+u?uy=hDOA*N^(HkGj@+>T7gbOIZ5^ajX+D^D%++l#zwDH$P{y?$J?t)OkSGw4@6@V#(o7TGMUXbtLZ@ zv?1FurM~mK-(g)9#>HUXYA}S;wzHhTo!{n}`+v)IYaX*K$K~j}si^ib_!Oo9NhlEZ3+tb`yW`sg2dVZD^ql^*8C41^C>4YJv5ogI0@M(c*H8w5?!daney7 z2&-A*oo(%md=grlTfeq!`1-SDH7CKxteylH-+iyV_pd)Ful(dkW#7Jg%Kd-%`(^hx z5O`QSJIUU}NyY(%M7zy3@*768wdb4PD(eukbycPjph9+p{$P{);8yr6*2PuTOnnkw zmR0#G_s-(+Y(ixj3j%1ATl@#+48XiQlSiLqz@ya(>k&{;OTv1fLYuW)7k4R zV!y?v;B|N<*n|(Sb$9P6oowv&Tq-3nu)vcZ294wb7oW9?&qM5pKIuorCn%*ir&;za3T|N!+l^&FE zokpv^49wIcjY1gFiCO<-PEPeB5yLszLnC(hDRUgi8n4B<@Fm0O*Ncrz@nZMcJe2MH_)?3hl-!^VS>nm7@ zJc5C`6O-tbJ9m})zxUm8fp$Jer*X69Fzv;XA>#=%?8WL-oXC_i3nP=-y5?1@TqU_W z4pj(z2eX2%hKSR{CRmU3x%|?Lj zdH84017j7)^>AqZKlIs{O3(&a@rTt9r1iP-Q~al_9m( z)qWxI)Wm#OI*U*xYuHBD)v25nk>mHu; zO<_vrwFvTTYtYm-;s2Je8+ps}oSJ&2#3r1=EkAE^%BaMALyY6$$!oL_m_S2 zkr}rAocYyT2-*lsMo`!_Hh8ej6fRw5cebgerY&nWEw05w`V?{Nnyl}6fR=Q#CQNm` zjfgzh@69-6c+1D{7+r8@FECE%C2iQy2?ZsoZOh9*V&;qexXsJ_cu_Oj+gyEdafMAk?-y= zJyLctQ(p&eyP>P=9IENo4EYZtIo62uF=lD&A7HD~(@$~4ijEz~M}p1;bRlk^+pu~o zxH0zNH~0L0)(cKeVq1#KjCnI0a zU;;k?06+jqL_t)ASQyn+)nQcOF(id)>n4s=S+#X5z60@xIKY5IaoL+7xFBkZ*_%=^ zdVn-;YQZasM@t$V&38Hdy@WdyoKw!?ePQ~Bh*UQz?T1sh}b}iyHAN z62gF>+IS%r!B%SJnX8L(`?>F-j9IJ*JjC;e?OmVkxt0h|9Yh$ZiReVh)59_ zF7YK37BTgw;v#eq!2+L^tUGOCeew=w(KF1<&mpK>XAtS9Azc5_qBZHsG98sLbGK=e zC!q=l!F9?}AaWK$L-NkG%q}7zIz%1Zk1MKigp*5`u9gW78JzwI=hS;Yf{|}$vol`h zG1Zpthp%chLai*)Ol;fwlHX6h7U`vdb$QHN@tM@9p&8>^ir?b1 z);0loA(rw!urwgq5dge{Z8-fHsqB9I%jL>hPA$H4rCi7Doay*7|&mCpcgI_2kcibM! z*2S$Efy+Xzfn_)KX`XAi4>dgKNX$?F${^Mv;x|RFaVk2{nWgeNv%UM<-)3EDvb_Gc ze_xKUFh9ULP(RFALx_)Fd#!x*!TV(&Ce-&n&aCaBM@p9_n>dAZL{{4Le3=Uzg>eOw zO}G|yfLT$a5C=r(rM03~e5x(=UpRUESUJR6+%JFjT=s8iDcOr!r~{Mrg|nwiC(?W$ zgHj)oQmi7)M8Z{i@}5?VTO%G^f5VQcHmL6`lNnfDd?(yaEv$5o?9(BQG!#MrPVX}# zfJlYhO@0Qdt}&gCFr~`KJp|cU%(VzI6Qp8@%4z%s?g!VcMtus)Mx8kh)9erY=$IMQ zs9Bk2#<~8^JIjOL)zR|ivXG-(r~}fpt82oXZY5BDa;3(#;3njE{b}iBF~|1i<_z2L z+M~cv?U@sVW=MNkxD^ZILgCh`1I5TMKB{o%o z*alg|W@t+1wDz`N@XZfpRk^vLCs>NcJPJ_pONv?Fbp)^L*FG%ov0;Di`4>tbsaa49E4mBP!pr3B)AEqk`7I3teS)GNEZGh!*=KDe7ZaYUP*30k(X?bysnz+5I#^ z`YhTGYcYg+xf>on!=Bb__(uHEU;mdR-22Saoa+5;rE~~wHivPZKnR?Gt}K6nrJYH< zIPH4k$#NT;g+tngjB8d7UEl9~Qd)Pkv$rcJLVlWk8ICGk{ zth1=vkUdF1L|naJXfcTeJE5xhAQv)oFNu%`Nl;x&B-YP?C=4)cg0vyXpdZHPT*8(j zB_Ejz<4b)c++etBekEofWi}GL_vTXX_%SUx=o+R2r^VysGse_?)k6=KUC(@_j4=H^ z|Kbbf*X+fZo0yHi##spK3h=GF`_8ic=_g9}y-LmMx2ccy1P|?+TU~duy#Fz-U_0RO zbyJV4SfPFF;9}TcEaM*h)BhB2{4f01zu~0ocd(4QTvlLNHPYRWAfooZ;?M(Cs}x2n z)8^{bW7`R?Y%$v`S%dGGtcxjVNUCrzqE{EQ+d*h!0J@rETgUvwwX$#$IN)yj-5f+a zFyKs_j;$VF+H~e44G1+qi+sr590p5p?R=HhEVX?NHQC26a|^cWD>IUq__V@Fr97U& zqcW1Yi^Hg(5gg+~6DB^!g8RO&KT~eQV|XWv?C<>_|7RIPkeq>uyEfrkm>wBMS-W`P zkNyyk3|q3*U>-bFCMiuVzko}_tc0f4%U}L?yO(@u+SJ*4%Y>K1Y5&byBRI&ugZas_ zcHdp)0o2u_tj)agPyZZ0s^bW|BQV_RU_guGT3_4LnYuKTZ3?u3OCSoI@@}b$hxBXJ z+~VIB$Vb3(30cjr{We(bO7c`_Gp@8mxOI>()s5-q!M<7y#M<0K1C$^BW3uoi@-ty# z0|U2`%VL@^q~?hq=|$^j{lrc|$I`DI!yI%>feg%mPOYK$GpG$G$ZTTtC*|z}hss4} zV~^lN_TFc|3QplU0>u8^X$<&I9X!A+AA=+E^Tdpu904_gK-7UYBkS~*(UfmlVynF> z<<_TKCF;m)`Sovm{nmq+4G@NzUPOVId<`;yZ9}I%z*^D<2C_r1zRqUo57~5lo&g8u zqRIwS%+vS?yoPs=W5nxGR|-OBk%U#_bul&Vcd)WS{LpNbQBYl;LnGcusJ!iCH)lUS zQ|2d}2%Cnqlr;b*x(SHqairx)Prm1qg+nm~)@1%lJ-I4JNL-N{^+|(Ev$a@RVlD?l z)0?9}*-Fb0ABiGiLaF4;H}O5>&`xHZY%SNoJceVQ>HEsN?kqe1^gp6&#yKXQMS2dr z&pr!EgkL*|<590HFhf}T@Iz%Is@XC+R9#D172lChpr9Th%@BA4pD*$@(0?vp$?_K2 zE)N%H^{SzPb1}^J2nNMQI#mV;dlU5?;`G?vsD#|3b^7P8mE*5*;`N6I%0&-Y#R)Jg zJ}??;1^$&-y~M3;8ubt1mTw7K>e)`l&7?T#RN-<%996m+1$84{_tDmYman-n!|Ik0 zt#7j#oj6iV%JH6dZn9azuoa@LT6)cIiR~wM-rf4jjGjErLMbVX&3aH7DX0BQYG}$C zSn3UJ&F~pxK%QWBb@wx0DcioqaXfeIiBs$jye7;t$f+ez{d^4^uh_Y>?0({jGOR;Z zW^36a$Gch)A*d|avQlTt6EJJ=n`>c;-{q=hrr}aR1B=02%gglM;Go&NJn$S^kUtrL zwt=3yF#z*q_d8i`=*Q6P@GGxnspH}ioPtks>O6fWj=dFX+Rh$2lETb~`X{^&Wb&m5 zyu6|$K12XFfv*8ls;I440ki$vG}2^+pS0l8Io`+%<&}KK=Tw2Qdq^6q!OK6B+=WTp8NDu?#^lTi86jddH6PA?s2nun-(O zb&5kDuj1x}Y3G&6as{spm&^o8bB(E=n$*R1tBABvc@8lk78)#rLMlah4fd^|szuj~ z9J~a5N<3*;LFApFx)GJ1)Y;#_ zWd>Yg!N0uEGht@N#~-EJ#3NI8@i;qk7@oyiNK^S0cd@VTTVE@izw#s-aaZD5Vk`z6 zPVV*XXyqo5%r@Tt0Behnmf_oXOK~xZsQP-!N&5o@@g)qO0m=V_@#9_n`GoIuj!$@Z zt6}S>1yLSsi7D54=W6TnntDn<&Sw*1}VdXW%4my zlPHa9#(emRH@a_cx#K^4uMFWXYXOzw!r{Zv6GlPgsp@(T#y-zL zw+^e;?N2_z@fsdOPg&Aw1_6PqeJPB^$L6y1-&ln<;_vW#%X}9Dy|MIV<>y`7m&G0L zq)F&PR7W6iI}H!rFxgeC`K{s>$!dosC)&RbVce5t z+Ba?D17+E_gQL7oE15hX`D-)-lGyK>M%pvneyaeIJj_?To2aG;53|g~wPwcgCAW@1 zMokEj+8LP<0;lnKuuIj;8{w_V#gTl?e&a_f3qON7%2Pdk;~HL1uJsR;;SHP0-Oz}K z_%5J1OAavTF|2jZqdA+zON@ixiY;5p7CdrndhAiog4F2(3`!uOskBK0i!kKkxuvir zm@E8Y1w^`;zceX7_9N^cvrhb2tTv#<0t6D>anq1#K~yy9Ve*KlwadoP!pkga%ur5rOl`hgv0ius^y=o{yNrM@<_;o;0+Fdkx<=!+s zbXtki6PxGpNDws=2 z^N+sA=0IHh5I%K%vRuA+IkUuR@^Noi2da<J!QGE~ybC_08PmA?O; z@&Gio>&Y*dcfS8G<#kNmFCEy=OzE0qIXZbfaYH-Z;6T%At*x@pio9yg`Sw18nC_S$ zdfs5X4vthDsb&H3q<5w>qa~!FBr~rJbUsLNNb8yjn@*xxRz*@+k6LGIm74LGy61tf zCTP@!lMqOFNiJD|Jw-@BIdzCXZ}AAblqS&N%Q~g}#UIq;vQ0f2Z_5#%z5A zFEmKZp8Is=>R1_rNy%KMiNE&FyUKdjEk^Oofy?|#BBU2g;q}`#vU&V%FK5enn;`Cd z_}s5rUPBs-rPrb=-Lyp}ti^}G(9c3k)WtT^$VJgH9&C)P@z7VFVgv5I<-TX1DzE+H zKb7~Nf1zA*DFf?jG2fxTE`GHX4!)ra)qu8DrAtBuk@q>J!(vk^=-}RBd@rUdw3RAi z`N#_gF!v&6ZHyR6OFy+V6PmuyL4fXRX#f!{p4;pOZ0VFit;{UEcjxRZk4>HzrMp+n{P+wb9{ zll`5XjJ}Rd@;dnKRxQn*Ly*r$d^O-S^%5S1iv~+R@u^n@z2dkH`z*hX=pIOBK;mzW$T%W9)JEP<-?a>EJxmWlO?PR%)D^>Lx+g;qw633 z+{>jKr%uwU0pb&%wfJipRAmWkfBA+Q$viel)Vx z;KD&zD@u=japW{lH+7~_Wn7e<3Ic#ttrDpO)_$7mn}^Vax*{9%Kw9$fGmW}*E^dFU z2%QRD{X7IZMOl}~`+i)q>||46L3%;=!D>4O9cRy%GanrbOdO_AhEWCG&Jim^58RK{ z+*-=2%&kE`#Wk?%qA?;vzA$s)4?Q9o(3`I5F4JJQ7*9Z-UIM&@CN zPS8VVv|Yw1%6Gq>Y)?ib4bRO~l}-jN-h~$URSg{r&<1MD$YmWVJI~$|C~b$qG*Q}W zwvX-aVjcuYQ{upnYcVPy%qRWJ{P@dk0GgVGAzlWi9;D$7SgmgQ#@9Gyg0mY4o5Z;3 z^wAUS+q{V93J&#T_CLpL|2_nwO<(vzHunb}I}v~jgD@{$_9~&N*NyMm(Et9wEgb#| zvjc*Ij($&VV*{yvQyJBz6` z7v?buPm)KmDx3VGO`;iWjkZi#jG0rdT$UsRK87dN*Ng8G9YUJL4PU4_1C1VAfCOX- zgTnuHEQ7}pY=$u$dzgJ*gX=g9)ukVC$e?uQ_hT;y*V3f3)bhBuU4<22ukX>JJp%@4obAVvvky8H%*Kq}ZY3JoKoIvL4>O!S2P zAft~%Ap82*00&am?z*EKd;M29!QIcfYFA>(H~?~#0Hiu4=+>oFkU@TSt-8oc$wqb9JPA?9&kI5a-ni@7)QWEj9 z-exgSOkLm>IuleJSa0v*I;z1(NF|w8=3sowzfR2SSRk&x>yEPa(Jz%DaDqe1aI7hI zzmMU#_}aM(?5Cr{q4pWZRCVVwUyVLLn-5`H)?H@nf94iD zV7ZjZQoa=rOK+MxBZwG3d>JckYI}JRU|8BK_Z3fz@u_2aZQ`m9>@UOp>&h@j3!TG* zxU$(;HvRIKdoI^`y$ln? z9L?fAvE48%tS!(Ekmgsz46kXutK6tQ`)!2EQr=wsc+3wS|3Qdyr$tW(}1ds+com$&>u4O%O3%eOZNT5yxM4OmGdAb}u_cV#w^6G5%h&<;Av3e*=X zuvpo$@BXrG_Z#Ki=YEPClXvkne*zETcrKUOA|+`p6cL#+s_{f64EJ)emmDIgB|4pk z26#zBSeA{_U`feDVh)&mc_e_&h-X>Y^=u^9qO9{2o!o;wyJ;NF?9IO&%tW-=XP~I4 z4m>eF;JN;#nHHbKqL`2%DrTzWq4$S2zH1U=d?t{F?|$ZMWyO6DGP}ZOqYGus3a{cO z=OVMP>!^XC?6Q*e#Z9PXH$3q;C+(shQq90Xn2pTjO3nGy<~EC3X>lh`e8X40@!@m4 zs8RA=q6a&0gY}e?;<-yZ@Vi83ydkg+7dv9IKGVJ+F=6Qp<_Sh~-^5xuQr13rUs<(h zSJ?wI{?+r(Gs}OuoW-ijqkue*tAowVt-7Y>TW3_lBn=6=rFv3y?M#LdN51_KNbp~e`_AN)8Y zQwJST}Y1ODZsdF%=$XPJHkl=H%=XV>`y^jveLhZ+)}$ z-@d0TuzprG2xe>@%$KCXkvrf_SxueAm@o2W9O5spR?>X(*HZg`ava~(GHTvIk6;N? zTb6CHn1yiA&j`q}K%NMpE=ITix}74i2*}!#v+(3a?##;jSohhuW?k8cN^CtYl0JOl z`S^exJ8~qaVa%~tQPlLp9Gpi~6(1R7K!iHE6(V7hXLxyUSkUUPVV2JeKW;$xs2}0X znSjLUV*OHgei^igtB3h%JdLOd)lki~T2(t8KyEuc7!4Cw~$%Q3bApcgFs|wrv5||)hF;+s-=-!*a(Dt2SpMEL8e5T8+ zMNTc4VgOjlKo=(6G)UE#Q+R{HoErnQ4sNs<{@9#VtSArcxU)R)!^}YvL#(r z1Mq?}Bx=dY``R$+Jiw?Kvnnd#l2DB6yJ_;DVUf9i_wKTbJr{kOw~`}_l)<|b)#I7N zN6Lu<2g{`1Pax`D4?kS)aPeJNKpmbFMy3`R9CIU43rzb>866_Z5MR{WJb%7lHRD?Q z3V|W@ZdtK6m0#oE2#INu&bWMHX-PF}C~fcH!jtWw|F2+9cBoZ(16;!+F6S?Duss?rYO-pjoE zNFN`Bb}-sBv+w{2jN~VXrU+`+_} zhjxhRebnJiDm4m|sFtU2pu7Xi;L&^TsYV)_m)qxiPCTZal4S6G=30(d*K>gdklD`@AY46+Hlx$#2?`=^=sNqS* zZD@?(2&BB@mUiGfyo0wgDC(^0OoOeo8T_GO3A_E-XUcXggvUR8w!HA){kCm2XNDZWhsZAoNE)rNn+k|_GnOseq#SbR+ zaDt(cnfo1$Uf8JK7)J>ylC&?)z|C9i6WfUe)#yEY%NY(U-2dW>&9U z7g(Kr5G-)aA)U^#1>hpbx}U)AJd9rMy*q#q9SW}SuE8?!Y#L-GT3iBINNNw;X&YUV|-hHc_I{Fba z#*wleo&BaSeYuR>wKrudH8zNCekhOsTx3sC^;x7F9(=VC66CGd7e;9|7V!bJ0eviX+{*qLq55siuH{G0E;kAqKNE(czEwVY)0 z{3L3$5fC%LK-Qt4K-I2;RUq181Ke*;t+QdHDcGs^<_63 zQCDDb7b1WW>AB|2{sZOsJ8zXKypGJHHoNWN$IIPMKbsBCAR>a6+dNo61(Tw*VKM;Z z;2d)1w}r1(qC(x)hu5Fq)n+RE%{_OE*Am7SgX&G3K&Cgo!9|1$&(B$8t zd2~%moZ8+UxLoSHZ(n&B_e-GPcx1*IO^*X#^qr%E5!> zAeOmflt0TBlNF?MW(Kz-FLI+k_LcMx3e0+bs%Ryh03iCnJE~BmSYB1tL5qY8oqL=W zUS4w;X3yGnn91K>Mt1Fn5Tpd+T)B+@L|h5}el?`8eru5$F`jhKo=EZD}foyR1&N9RdZN=?(l}j)Eyj(wU zpj^FhE_A6gU!~PJjulTZM21KzUWd~PMj#Uz{5yzY4@Le;{5kG`usMijn&gvgpxv-@ zd)dL-MHh?95{YWmS-nKR{p)fTU9$&iu4KLE_Gi9Q)?yaigJq(#+EzVFcFkqId60S+ z!`gTL8c2-av3-~4^qKB&2}7H*wo&`k{zk=Qy4s9DYhA=AflYo9SPV|QCfquwZt!bk zV@WkKu)U1X0sGf(C@XjDE~npotDL~~*|j4F@E&t9LWw-fIfpYd$D^=3Zd`MAk_>azLZ%TFf;OmK6d%q=Qb@rxA=+u^#P~AD^As$x3N5Q*O#9teetyk zkA!AgRlN95*^78453a>_A>8-EQsepC-X-d9{q>n=V&;5fQ9fDA+5z)kY_?Yr**@F7 z>*X4mh!EjjdJSOIA7y5?g^qTT&)ZlEondw~$^NoATo36fL2EN7yq(O>(8y(Qh;`8a z&)%Ch>2)1XTyMuMz6r zFMd9aXz?9-skHG=xU4%+@);5oUr7N#DyW$C?rOz`QX||+HqwKB-KnpVt7-wNINQ~w z5f&qLcC~hCG{y_#JGDsv@KaBvUq81m9eeSGbouSyrg2TL&1znsBZo9eqH_@QNX|-> z9E8(&C|SWed*wnNiCjNPTl&hh3PoEZL-`7EweOF~?;#){PZ`6>Pfno`wAX`sge{JE zrQ3J_6#5Yk=YB84J|VCAZrOc*+NYP_dwJJOYrf=}(F1 zbc(|LnjY%W=whDN33!O83uTz@I9=qoABAS}iOOCjQNz-;hRT#x`!mYrW0nL;Ugv_L z+g2 zh|C5t88!XLNdw_>Gz$TL70)04#!Z3Kh_M}gWba<>?9&G*CBxZ%O;}3d*f=uZuck`x zW{rr3!v_zhQNf*-{Wzi$#&qP~jFvzKWt;k}A@hb4Hc%H^!?ntLo#=R*w126A2^T>{mv)Tes;Ht zUXdgIqff!r_VO@tic3HjQLFZ@s1a+HVhx5O+Y+QmWX40zyEQP5={W0+FtSkC=1Amc z7v9Dv9#4-PI*=au%2(3M8n(XjkN=e3`}r^I^YDCfeWQlpLway;=<_Bhg?}GP!jZu3 zoh-FrOb5+rT9J<%GIAN$Xl}C(aQSnD2cir~5F8ml`rwT>(uS!S>zr&-Cr01Ov3#KA+ivJHI!Z@@^;L;Ze)V*P zo>C-OE0ht8CV=IfQbu^Bn{FHJP7a+Z4`SH7K@42LQ;tm;$`ARJXHI?`H=nYC7lgP9 zm(X%fUB8a#+NTC8Y08}Q>~K@sBL0RxBzs&l8k19V>3}vXJpPq0rR|3vWOsmmqEh)| z-J(zRgbs80h9569a*v<9a-ySxt2~~xj;_(LS?2?~L~2aq<_AiVnc+n>Y#m1r9G^>EEGkai5H&P@!oB`bvu6bVF5pwH%0AoO$zsn#|h7ADB77Iolnkl^- zHzB&mwd!}j-d)|G&Y%{AbsEy7K1220bWES3djE*Nx;`+Rp7{J1rE^-A;X{{#v9CRV zlk)D6yQxNODVk9r=43f6(<&*!vREE#Ogxrs+VF)Z!Em0L-kCb|^{=OG8q%KAG~heG z&@`i_M$TP0pN6$YHmF9WpBEB^n@1bt!x2+)F4>eU0aJx+Kc=TXIyRan)KKt}p5EY- zfCVf8T5p97C&K5`L=v?|W&@8umiA5lzKs^&{myqa9el+$eb_r9Di2XnF8{)0KkLmZ zfkw-=LkmLUweYNHm{Q|=UCOj||NgXP?;g=1wxgulfpq5R5%ut%O&2blOPf^peZTVw zz4@-*^{{%@Y7{BZ)@s673$I1m-N?v3Zcbkjao2b;;^E9I{;2A(xvCXBCC;7~bc^@6 z>;aNuWj-;|2LNN=t)Au3p#$mg&>!dsriXP#r`F5VtGs;lm~>(^ji@8TfzrTotdumy zHseUCv>S~n7R94yBEoc5ehe1anT~-L!sZbSO`O^KbbDc0I+pa>%GBF$r#Dp3%Q^&mr=Fot zf8!ha%JE*E-a)5L7-T@vTM*Oe&g+>%|M_b=Viv|Wq3)6}%*AmJf1`o~krzMv)*pU& zgAlY%l{Bi|^yp*h6Y6w-M4i$1G&(u?^Ow^H?;O=TuR4EI9fBcsjyR9dPkzztkn{?K ztm&g)e68C?+rl}m_4gavFfp(9`Lq?$b{{hmv-hoZ2bSd*o2pYMy+gNZXk9W4e*P7<$T&;>b%K*_hGKbD$~c zF^%F+YIf+AZ~tSuaO_>Z+A@;19X^!q(^3e>!r8R6>S`S|P;_vVQMy~v*sZJ)Yo%vV z4Yvn6Yl}VDViFbLQRa_y!p>m7(@UJ!J5!tXA55FJ?a;K)e(h*{MCYC9$e~~VI$eGD zSen)%Bg5z+J^6@kMhxd+w2xy-Kzy$ZrBR>91awu6-_=v6)1*c@14A36V0vg#5S34_ ziSkhr`(T?8_3EwuEx+^ebWk*2KYt-z)~1gc;n<{xhmUCb_I8uJm5)I{PSgn_%p--Q}^gtW$x@ z7Oy2wlZgQMj#;#*$ywD$L)w)E;aAP}f?h@QXw{PXGbk+;&ohK=bXde7%UoutsW zbGyDfr`ZW+3ZO&yF=jji{%TAnUSV3)2-P0whM4RMZ$#b6ds81v-K*+CU4zI>zlk^E zbdPG8R7ljn;Wj`8WCQxO8S6g1SGIkp*2ClL5KvU&= zbhz`iF`Zwi-z9B`;|t)u?5LIwxK5%=s;|nU5o5ZW6h?oh0qBc<@WZ|*X0}v%$S06A z;u;%zA&qME`1X%~l0JCtH~J{?4UOavrH_B@t7*G-!S-njz93D#tY@sS8v)Tk+1jkq$GaZg z8sH1*q+T1C(t6ho&6Q7R?z=}l=7;pr$E}*)p{J!6n$r6^mh1KJe?J|OLEXA%Px{Os z{ZTsnZ$7JqJZ<`*0b?pahM3I-JP7e{(X8P@1{l9^E+0>ixaHp4DONiVbD4?Ws0JfuxTdvw_H{Ra-(*QBrOp`B2N zXiEBIuXd;`$0vF6@aGu>_--eSOHbgrO^ZuUeM3ZR`H<@>ToUYlGb|zplJMK89e5SW z`(Sp|m1Id{)sN2fsaeHPh!|cj9oLlhxb*Xi=-B^-&!@e51!Kd$2bHeVIdoLnyXrar z?63ddbmiRn^w1}tPLF-{D`}Uep}K~&zM&4{ECy1zt<$DL(O-U{J|*4e7c7o+YEZ|8 zq%67PCG@G24n=xL1j|V1gu6AX^WWlltO(lAE9OCmF@1Bdfg^hxZAce9qYz+U7?o*T z{4RB}cWIGZk( z^q=&}9*z8UwyAZpX<%{KZueE!<;u1Rw>)`P#h7Q+jaVz195U^2e;8PV*sLHBQEhwg zD{B=!5bGgGNi^wb4>|7!4XP2kUmHLU>+8E)^=XOg+8uOW(sQ0eR)2JO5(UwE+YKq!tac*auMfpN_*tFM@qpg> zVl77B;(7M}`7h};O>ePA_t|g$VLJGgXVQpvFY=J+d*WtD(L^(3Dp=gHpN|j}u&`o{ z!KC7Wvlc<}id<8nR+RZBfuSDfl(*Kv;)*I6tin7(^mI)amfK~@+JKm<7|BH)0pDS$ zDDkjMYY+p{r`_7o_qf(!hx7vcWxbbkN^-W>IP}0HLl})Ap)B&*YaV&z&ZpiPE>#bl z(#>ErXf!&NA7dsg_HS_}%N*8?IDU3Y2im1N4M>;zXv9<(rju#J7_E=X5MGsG`{-A` zoc4U;snn~FKcc+HwR`QAZ+|kJjJEEDBj{0?(ki|36wtMIDScWhy~cENzIY;x+Dx*^L1-h*OCS+h*X4yD zBX3NgQIUI^8&bSuN<4 zb}S-f-%Q4aGPGAg^@TN3ql2xE9C6bsk52aZv>IHhs(idF*rylgCuLhF^exC~9g5tq ze01^-=;*-5|KOWx+wXlrn^A;A_4ipKXQp!vM73M4Y?ljHV_xW6+eQrh_CR<+l_?^Q zheOfTNeT+vw}0%OnV}oQXqr76nSstws@E;U(W@g+M%1v}f9P=9wnr}tYiNH?^TYJ0 zF%*5hS|pXw8M4z!keXQh#3a3rnY3L!ox$x}Z0(D0Fd;#sQ3B^UDc+)2CONRlAj;r% zOPEu7pX{P`B=JcOv_jAT8J%FTo|@=Gfl&q)Z&8wonMrHJ=Jhh*4voNeX^n4KFFRj5 z{%(5lzx}uL#*07GZnC+w@6pH8r~cjln6^E1SjXXLdPvFx1#W!Rz{(%x1z(`S|3s1{ zQxk~it_Ua58ECnezBCo8GSW+DT_cE0yRezu^Bv@-LU_yt|2<^&rPhkJP7Hn-5Y`7s z^HDw+1%Q5G5G1Q!eLj6eBbgoAy}Cmu=8tJ=dQ_WvZm>R~KQ?#JNV1N~OQpzzlKHr5 zY{)gn|(0ZBPJCY$~ zGYSqK*;Jxv;?Ic0FPzZHlow=&!NsrWR#$~9PiuM(MIGBFDsrjxPWe_6PkmLA)!Tdu z2h~x26*k0V(ArYw4{7{hkICE^0^58&)@_*DH8m20`Z({l0|(On#~)99n$8{9n%7kw zB{wa-LN7q%Wr`kji|17~XjC?)XQR&l+_oug)_Z@pdEGkSt%5HNnzy!m!OFhz(zNM|Y5;F=are;juOWlw=cpmWKHXF!7DxiE z5tKFF{Ys&B@iRaL?4L-OEJqln;fH{TG8ocb`1TO0XWFlZXtR2s8+Px}*7)7lla^IV z6D*QS8QkEw;Zj#qcr?YRG5e%;+T0k^%dfk3rU9)Z^m3dE8w1b^m8B86gp+AdgwY^@ zae~K$&NDotb(B5{onvf_YQ0dqA^O|NGWU*ZOv_-Pvv+I4DDq%`;RHHLLafO!9>xpI}Z!VI!>84L# zO2&%7Z^oapfGZq9OSfFD2~3}&=Z0E&F+PKXBR&#S;{zQuV$3Q`i55PqvPU0#?AHn6 zS2f-J=HGosn>l_a{l1Ytq7mk&|MXAOwvRrh4;AV>J32(xK*19|7yR@Gry$c@P7nI4 z1OW6iIPN)|b9rJNsC>cqDx!l2xZB}keKP7%*U2O*5*or%45USM>wAV%qNVE+GE3@A z^hkF`q(j?vkinqVxHyw>P@NGPi*ZIj)|h2olFcx>)Y%%>(!#iAXSxP@(++K^@6&E+ zO82Qib+}}QtYi^ljhWK;<7*5f(vxGay_UwbZr?3Dyow}k^sC^lev5SS-r1l~J&LL(t5nil#u>-`V=#5{OK6FUL9 zGu;vm8-|fn(#Q0IpsCG&Y2U5#WTE{HTHM__$cF zPBd7&BElpAVbDslY(Vg^M1cH@xRt;y7q(MzRv+pVKLL78y;hd5im*r60b1b13mJHv zt*uhe099wgAGVyqfw-!n5uAR;L1fI7kQ%Z*8ZB?rH>dhF8XncQWkxv_(;CgkWN;4ZHy~r`8>P@^(IFb3hV>a` z&tcuAuS8I0O*dSUQ@*%)9t-A+Vsd&J>+qg0;wu?LNAZjF)!d^)wfwx$q#9a9JeR-x ztXQjfU3+NEkr_VnN_rZO*`tZgaE!Dp_OpB#dFj(;?F`*};BdPCfxWh|i}f<54JUPH zni?AgIiP{_m#NBf2vr6Illx7%h5(CI$C|A)R(U-TJ!B&Db}Aa$wXJg!}eqo+^k zd_x_ou4I}p^vv{=VuYtxvr2v1p-NdaVD_U?6+>zrR;p&BCRLqjt+@?o{p(Zz{y*r% zqo-4k-nV7hre#Fwj5C?Si*TikjVC!FWLCzNe!!aHz}fB&EI(_++5xO4&ImvOmg_PR zW@s&s1Vwhu1Nq}F3DBih2yL>3bOCtpTNO~xqI=VZv_*%(KA;8r9omd>@ygY7RlR5) zda`x1xUbwyW6o=h>VoF0=QW(ZPm8HTnnJS1i$c}dF``qS#U6ATvpE}i=^Zca`nsUT zXHtfuOFbsGbYc`}z}WROhr!glI(8@1}Fd*kP%! zS!;Cokk-f^`o`DOP91M!?~6#;Osl1=^z|`2{QM6NxMIde4&vP;DZx^S38z|9FJoxL zEq-6F0)_G{j%^jG2+CZpMO_)iQlFe$+%N(>+@T|ulOaf_vdv45bFqhuME^o*X>M;g>J1bW2&0B~Z<>~k{^p@z_Ag|zN}{H331 z=l0PwdqpSHC=Fe73#z;DG9B5gOOftgV~BSZ9=A5+b?$xW4+77_M^a5aRz+5~m@ zi(gC!|L|LBSPe3#nAo}=brjwFq0=oomD#zJ{LA#x-$@!v#oKh^Y7vpI{85;NbE#fc zzb+u8$QxW}1zVEJ_J_KrtTkdKr<2eQ49hv{BorcOE>PwrJtLx3@1{ zQe!cx_h9I6u&bw64b`NK(%9uI>5AUCXI^5|rW&sI_z< zYjEOU%tfzjIj|KTP})xyLmxGuf(~WL0haHc;#V^!0@2 z_4L5!Kd)`~8)SuKiO?mvxY|ABrU0~9A~*RL{ME^h!}11Hk%zp+&k8Lrr7jpfhNl3y zm0qhSb*0nc%*#(zRVwThv-A@%TtIoUAKf6`VBiNoh27zk&g5s6M1L-%ON!%pW?h|; z{h&5tY~H&!-FNUn+N?0P;X0#z&Dfw9HbPd%cH;VtbWZ0JPRmXVsFS{F(-uty%C^XM z*`^%X8f4$aR3PhDvNgw^e?DD3P85Tz002M$Nkl5I!|#j5@Tdr>r}YGTh(Df!x=Mb<)~quS$0)f$i*IFJ=i{i z5*{fgI@B$J56IYTSC41279dAYdsykuijkasCp+6`#7EMzmo)0(?1rxmkh zkO2`#+*{Q@3>SEv9Alyf6k%(wC=!mwOb`5sM)upZMzMAGeL71{>r0X^J=HNa9`t5; zoaxBePA&PXj)YKC2n~~swiGm)1mk%qggAxy$%F~xZCjt0KHX4b#K}SuK8OC8J-T@Q zTpHK=urpf2pO>E5r&!d%w%w}ere=d^z~;xUr}>j7)0^M>Ub^D?=b#kT1 zW)(z1TuF#xyRlVHQQi|!K6=H1Wm88NqcV+h?o;FNu%?9OHOd;BnAVpmG%CBHsX%37 zi~5|VXU<6QmrtHZQ`)Z21`gH`_>Rx4dPmcmqM6j^S}thI@_Wxdo6hJ1i~|~l(eGx) z8RJCPWL`T$y7gVEK5chp^arUk>K(EB=Y|?i`$DzKq$>W-m|o_7_~G>B|NNiRmXAMS z4H_d#Ys3V^pVyWGoCQ2i?np&Hv+@vKCz0R}Dup?q-E!syHl+=A5Q5Wbeym!_+wgU5kxunjmzrI(tvi44B8gz2X*Aojy-$yg@KWD zNk==~P)BH58-vKt1{^j^zgsfU}zc-FG`;;_FXRM)7gozW_Kb&m!N1;SLY=GCpn zh@Fp<>J*J>dfMM*0}s2$=5=z1rl6$X`#=A=^ijQoc)vbP!+J5gWY36TysBOX?1<-& zyVF5zW(RyKf5bcE3??qY@4yxD>+|llbXuvLDr7%yRIYy7f?K2`6N3{3etY7`o;ixo zf6mk3XA$ki7<$WSa_QMHls0Ou=_8Lls?9{Zty6n#Y}^_a)*aN9wX<5Usv$df{J54M zj@qZ97^xvw-tU^56ucU+38i2E(TnMg?|nZ_oH=VB@Wi&UdzO|Hx>>fM@uLy5S4TwP z1Usi?=O(phfMfb*1UDlcp3w`=<9Ze8v9Et4J*jp2p+kpNCd(|UJvK}lBh9M%m2dza zz~QA_voTu=ekJJ|aHtD#iyTT)5^n{0&D)fyRQxZi*bzBN8@ieJ*gR?rD@I}2x^Zt=H(u@{SwOpzrV)R~w?$hdZcWvFAHfcNQeFqQP zrv_+{Mzt&PgV%L(wWbpXE}Yl*#zYZAb?fPP&NJ z$OVrE0bo;?b;%$0;!g&_5|&bi>pFh#6E z7{(ox59i8faYUHr)Z8PL&$b}MIeN##eQ8i1oEvylQ+?X*+I#pwI`z^|bQ1M1(ywc9B+J}|>2zH^>~Rgx&uD`N=RIn7NSe|5S+AxMHK4YaLv11v^7O}gn3+30 z{XIHkrkkIHD?4Mm$Vg*qVMe$nWSF`%#rc5V6?^2%U)G8C{=S-hW<|JYtaylMeyrNM zqlu_UuDr!?31i}2y@-Ynz`N3sr{+w+wBFmwrxoPRg$m{0~+!3Jv`3PV^*LWnS&Uq3b*S6v{?}BL{q3i8O;hZwaAZk3e#oCV~Zq;fw7TM z8Wl|=+Qs(Bmvp%ACqAj8fV3M?x@QP6l1c~G>THEjkX-5am@3+mAh+ov5BGNIP55;c z7LQrXQ4ht;E_Kk)Iq!TArc~9#Q#p_2nx$2xl&nw*CLb)7HJaR&i9R+<6kdkPvxi$@ zP0{sj(ED4u4{LMUllR}3w(GdN6FOq=?U#O@M$ev3T{@PEuP$_JquTf}y$hzLjcaeb zt{36e1=noRtQxX;Es6AMIucz&+pN13WhhMN2wj-bY}FK_DW!3u4UH4}NC#V!lW9sg zhxYE(wDj-mAOL;Ud06YJHln9q!kjB>Q|8JWyeN4f$UEY0su63ps7o0|MA^r zP~ovK$`Hy1B#|zR3LkF~bYY1{r?`W(uEwDG|Q(z#!~ zmac0UKCPZf7cGzOQ`)9KDTQD(H=q|L2ISYFJ?e!>LD0xt4hxznfp1dP3yIp<)78z6 zBjPxy)%x;kz}T|dlddZKphjW)^g+xWIw>OFe2-qPp|wk{V^m3T#+N9%2DFC+c32Ma zfGij-^X2>n8pm!5ULYyFE0t%F^`^W|ca0*~ppNM1D{7aKSWK|6;F)=qh;H};X^?V=Dc(lcm~BB4i&4mtUOpS{i@eHup>wXV9AuUdcg zt2zqk!PGr8V)|fH>gs=?GvJDcDjtz2Uxih)lyStjxJcw~2C+_!qzX};)Z(k2=a$&D z4K#JP!d|g9(@=Q0GEl=^3Atqjjd7%EJSqycQ& zv3IXD8*`sJxSMnq=8nVr^^LK;>BLLFNSBYilcvvKv>BytMoroXGNGl92`PoTN$P-W zEni3(;X?!XX`pCmj32sBF$VT0(XE#E#5&-!=;b2yDn?aZafmY)JWv39 z@sp>87ltFla)X!Lxd3VS0%_cdrT2-myB082LF=8;vM7nqDh%GQBdiYYPx}uaPQ%&) zdr@c3UDmdIPS{}jg^$e*>oY3 zcC3{aO{cY+Onsy@q2AV*dODxfy2Zm^{)#@SaKO%5M49aYhjjgc)#|6PIeS8g1c1n# zP%E4{$rPX2 zgtvAmfD(%A#v1WBx=2~eEQ@c}@Qw=nwRZ{`om(bB3QxC=tQyfLDfT@4NP768!)6#R zT)mvmYkG%m&Wy_G)z~CANc6LZpAL}l&}8xFji#55PVllRqdj&QqDxFkv&Ejl*sP`s zFKMJT@{o>U(?*V`zV$z7@qM%DlZ_%}w7NAtt%B_bo#wbJziLpjpz=GArx9uSKp}sw zvcWoBMi!Y?abJ#3EC#dkBB9y!if1&}RCfg9&h&t!%Gpz8oGhZuORji4D-_D>vqzR{ zI?P%r9p37-Akknl)}75n?1;6^U%Io4akHj`4?X!r+N`7MI9cP|2bylwv?Fi3+7~=j zt`;EV*9k?~9*x3i3(a~+XigV*HBgG5(t2u-mP^?9MtRo3*3{#)*2<;@Jg%HKwDx+R zUS|HxpZ}RggP%yD-4BR*g&c;^zM6@Sp_nex_zm*X$GN=Xy}Ls1U%tfkZ%dmGJ(doB^l^P%nj?p1(+3yNtKrf6WwV@WF10W`yr)5K@T(A}CUm!6u?V#l z3cWwnr$(wvcj(|{Ms}}F%IaJf^sG)&->r`qenLk}?fUq~q)@!TDD@V9ppjm=DZ63T z#hhwGak@Z;89yTIUzc#fV}*$=QXIBOk1U<;9c9uf!!qMngSVv~iLsX6N2Q5P7uaO@B=B^@_TmZWb;S#O*&06ZdFI=fU&)W-My#b^jDWxj8zc~Nz@Wg{PuL*x-4g)IFcGne z`)YJz6~)w9AXz`Byz+RurNIyW#UphbT)M_VMZyJm;V=c3NUHIG#MZa{sjj!*OF$BW z$pd|$F)-P1*G3@ytN~S@i|Y)F^1hILV+uxYK2YL-uwur{x8 zlyoItoOZoc$49AFj&P!@_E{O(ChQ(MHls3_Z5q?el8%Q+n+_gGkAD4Y>B&F&ga%GfKpsx#GYW)m}fd!=_B8N&W;_J)8x1;@TSz)>4Hp7p?`5JuDuBp13M_7<^4d z&bpFOz$9{bPOdncUxsPulkSp{35=o)8or003<}soCs-OB7QN|?c5Bo$)W2EZ!`zs9 zcifjYXeZ9WU+DWluj;GL?;J^&^@8hw@bHNa%o_MnY^}3<<0eI?JQ`ROiEY_oJnR&8 zl{2P~X--NZw;$M_KKn<1knY!x$?lP1Z}<#rO)I1-j>{;m|AiW8AT5L71*0VVuIk z6MLRa&oW-Sp?6wywHJ?h*d_ZeeW`myFO=@l?z55mcciTk9Y`mB{!%*mt5>xEf6S&9 z`_=pHmyL2A5*1l#!HG=G7)gKmv<7rAdyO%gRbw_OeY)PQ)5o=5yZ@8FllFb~(`nly z4^<<2k!&=38>Eap7}P`87UvbT`0Q0#zzd29DxO`P?h%$OZ`=cJHTTu%#A?bRkMl&l z5aCsw%%h7{*R?IC+nVLL9V%jlkZkCTvkm)EIrvnI+8mqhW?GS- zS}iY4e(J;w6i4b&w#^d5FgVH*M3cD&SJ;(Gx~%D+lQm3biAnp z&x4O*7f>u2{z_UK(RP0eUKDla46&}eE(8pY}6zCa3r z{L~LpBWCMaQV`B1v&Gij!(zLtK696@slW|-Z;f}te)mtmrKu;KIL@$MbhDu94*~T8 zs~a6f2MO0<}sH{d$kK}!+kr`1BbL$CcWy_mSx_>VH$9p_Z6j6 z7!orILKg;-E|DGSBV#i#q|;xtEgC(wX&p6c*ECZwsnOX+os|BWKmC)m@85h*XNT@m zkKU)S=}19}8x;H~JwIsno7IqTxCMUlW#D`>&o!Xtn<55oB31F8dZgHm7jDA zC|AD26TJC?$M|5NT!O*bALUuR#UW=0vzy_<=Q`-`rh?PUWR?f{b#VYRQ;d@H{jyEl zbU5(5K9#;99Pf$}@%WJjsCyTV%&-X<;J z7rR##Uks?3mMN*|$ei(LH})`(zY0b;stRO$-s6JV^gNv1E)oEUQ4VX-)QCw5?7=rS z$ger(E84nxMDK?E`0w>q(|3-hIqgs!lmTL$tXET$T})3httqAGSMQtctAkp@pt0jr z@o6oJUe=n}xEjNcefi5e3h2+$4oxSrZiW)kkYdPu_ZkGc5?Vb>VWLLVAu|Eevs)Mw zDQkBx`3qL$S;nnOzH3L`sxdidqY24qED{-Hml<5v*HW@rd

jiqJpcreElgIydIn z>MTRkr7ihm(xD&y!#|~0p8a7u|JK`SQ0rSmOj%3!`k1;hL!_x8HDLYHk&QAY{d#R< zPVXSv`#aL3543}}PsZ$_FMT0>|^{u@fX-*w5^hqy!NGI*7a9tKb)@$Z&v_T&M zLalB&a-pMqi4$iQaE(WDXy|PR5ntEp9uUFHD z!<+RXO|6ObXe+(mztG5i(59r>Xg059j^F=_zeoqa@{DzkI6iMijU7)1jweFRnRm8> z9ui8M)XoU`$m=F%*(;A-}k^)<*W7H`Bn0BE(2L{w#sWQn9pUFyut z>Li8h+B|gewb#?JAN@GJ^4xRj{L!O&ziiAtw#s+vIAUmEpjY}NozltYv+5B|t6|dF z=INU7?$Ab#kAC%;^u#y6kv8d75zfJz)8fdiM*X~MZH-vywutgkVmwAhrO}gXT-}x< zN2_Vzu5vE!Sq|RCG2HspkZ(<^%XIOQvvL3w;APYzdOlrBi61k3TPL<47}?EB)E<`WEIkl2CddLg;10nM;Z+s=N#(W7U|-N z6H=Bp(|I?pJ zTMr&g{ad#xkzO^}cdpF`B@*qF|t=<#-d2KHu!XDhvB$7+82+XNT>B>_~Wm< znohm-TYcH!oaP#}`9mXpjlI;EF+C_f(Fm(c9qA4FVCsXKLVWP!A5S0AJF6pm_Sz{& zjOgd2Q_Ln|p3oRdW_8U8$&`^O=QdL|ETS#;&RiC4#BLW!@xYV{v=(J&ehU?x&fLc6 zXRnumA#kA}HdM!UC&~C2pcH2I+SN36;$(VPr+1ur(*d@o(XEdvj_AzBZCa~6psxn+(GhARI>(W7?9fbh zE;0=bMsK1pD5YWxs!}GSZdp~oTjjj0$}IzEJ=7m5VpmL>l@U`&ar|glOx9}XI7w#q z{P}e9jo+qs)R=wn_B-jug-dCMcVE@eX^*SzHca{i)v)www~o7dR9~6jzW;zWwCM$T zb*?p3Q%4+q(hRtYp-9&l%Aw(Gb*$;L?pAfZ$BycO!6S7&N!c_rt9B12QRvKK!FM=g*~UYSgalkWRkK)2At* zZ93d@M8CcVw0VQWV%4M8E6~19CTyIoXaos;^o!ZLk1Du2pa|IjT72hA@G1D#8FKAX z*2BZSn%V@9f@iD2u`rM82v08BB~3FB8nOCNW=k;X&S{Ih?Tpo0DqSY^iKS@trnPo) zWi-u6pDvu#XXe$j=45(4cDX^{HyhCl`Tf$Vq#m^E6U%HWM23eAPBsJ76k5AIWMTlDkJWA{oQD}Uda|&C)t)CWE+%b19hd&YrU1}B-=emhZ~jDSIHBj zvv=Q1W9RhwART*0$7oQ;M{RoGKE0H`HzhWgX>`WU+j;Gl<#iu6523^0r+6np2x&Ac z?GA>@P72^&BNqI~_giIXTo?!fhm^U+Js#}579}BKAFTfqf&><0gR(HJm!D~&IW=ap zS~r{JFiz&FmDZ;oGUt+YGu0zMMuWHBZOR8Fk<{rtLx$NQ%81s?pmizk9%_F@*>J(P z_E2jZd&eK{RaPf>6g*ocnnt#)LyBcug}$oA=t4IH>BKpN#G_L@^tSs@exMn})1&TY z{$_m2zBe~ZCrQe|29F+fjC!;ajc-udIt4vt$7~ylTm$?{8UEANqpBWs4VM!HyO_IM z<-Ay(R+6?J>d&WCpd)LN>4ZzT60dtCZuHwEtA>n*jZH$+I@x1ZTkz+lV{9(s<@X+K z7($=41|qu@n>SQ~O;-v-s1C?%O2HdRc-N{qroGmX*)D4oZvl+Q-L9)00KAysNGn|! zg);7D{eiPt*3IF~!i~q<1S5>mh#?xA`k^Jsfksy!4c9l&3^;V(iROEFQ|>Ru$x7gIVGddg0cy1<#b&Sys=4`Uz2=gU{cGRXLN~Y5zFa~41 zXUO3RD4b0<0_*>nqN>yEoi5W*JM9C6s126N9SG`1EJqrIL!qCpXnw6B?u3u?Y3{fy z6=&^;L6`_d_snS%QE(kO1qg)##t)!S6rx!aMM1PUkKdBBu>Gxg3D z+@8Zu3kikPIeZoitb92;fqQP19BAs$VvScP*p(KI3?+5bnUJB!xe8b#m64KeGS|f# zp*$?N>7v|V@nR}4(C1pAl~VaDJceACxSQf-{jrR->WV7;8DOR$>t_|JJ;5ttN`DP; zYkez~hw-O)M%RkECLL>qH}I7BJM&o$QB2VwKI(}+m;z-j%d$rIEKPFe#1=ZwcH9|y zk#&QSy=j59S*{VLF&3!{HVCwo0ijl&>r^&Z#L5ZCA`DnMPZ^$~gz&7{J$TibPjyji z-iSrvbrCD~bt1gP-3f-$49@skaapm>XkHC8mt_#LZh-_;KTDI>j&9M`Rdb5x2%$O6 zC-Ws|EDUPGlo5a6spwP|>rHu1>kT1$N3VXl(oMGt<;#9gE>1 ztzDkLcQg0SxLt}ym%O2CsDSyyDCNTGE3?W$M~5Fr@v(8t@hguyMz(fJnjv9n#E+vg zy@~>gvK+M{vUUZCZ2}=t5p^nHx0X*7iR&bb6*Xd=ka!X6_lgksdGiJPT`X}WrbS?i zsC6Yn=|=tO-x{nnUh*o=jgKpfDW64?&wqZ+`6@~@odh=U>aT9>oEl~B=+;sWfh*|l zSm<4zuvYb~rRod`sS-k#CUZr)6uBZ`*AWvvDK2z?Etw9G`F{=_9YR=TkkSNWR&7$#T2x}~>fakiS*A+ElO-e(_*GjaDFA6MPfHD-ozOMKv{s<{E*dhRCuK=fr~WvXJ`T$J!xoGq@#{r zcEklOWGFFO&O3HNrlmYe{~aT0y%b!DNgf#kQ}K8w&L>fYo@q~FTBzGfX1uD%!uUkf}-Q4kDTs;uBW_xMpu`{hKhwFR<_ zvR?_F$HPd}!yu?ti8*279gh#?v(y&|*;y>*2;-G=neh<gx#xm>Dw1?`Ax})| znTj@zJgtwZI$YL}RoE(Bq~QXSe}TbJ`o)VcB5H5&rl}thUqh}xUz6r0h3(RBMZMM< zr=5N2Dv`|!of5gMG?tX@iE9CgiVda8@}>zRj^%lhOpj=V6v7`3m*)n;;mi}r0J5^I zR0mL84h58FxdYdm8j0NjdY4@!431x9auH>D5E&5xVD}IWfzsas)Dmc-3F8w$V5vnO zu~`@D;62}6!U5zRGLO4On7VY*nF_MV-K;PTSjL`>Ms1+V{FG6b70pZkGUmgBb23KVh_o*1ia+H=OG6SaN=t7ksD4W8XC`FS9-|g ziJwgZ(IWzo$moHqd(??n!Jjfc;;fK+mt}FF;75}FD{Un;619oI$VLll8CjR<)wEmty2V}dDnB#7jWIN_K^`=HV3JTx=Ve?Z!sCI zv|63?VKrrR!Uavs!dK}=n_5VIk<8tu3>Sd;dTLDiAo40t&hL#~D1+baDuv=sUXP8O z6hdSp?9k)@;Fh{he1)fX^+>F#6s;Al8E%3Ri;dNFv`cpZ|D(BSFOvm046Hy>cuNcv z>nb8o4CiggrWCtFj%SW~MSUV%;=^CYm;MqiaFlVY^_OL=CEk_Nvm81WgDKONQ+8W; zIvbW5`2`kv6lvmBR27{eL(Y+{dib->)bKP;Ia0tj!B{2Yp%Bv1m<$&;C1VOHXA2{$Ay#Uo$DdYcpB3WHP!h=77M@|SvJ zL5Fu7;8i#)wl|)n=c#W{wBWOdRbQGsK_8lNCGxwv5i2Xw^uv6%oZ5pfzl)Lxn4g`? zE@Wtt4Tyl$-H>HLMsq{5BQdNQB#N-0DNKQ;0wk3{WGZ0pd6&h3rHtLOklX}NXi_af zmnphdkE9frJ1JIF_D3GWQ6Ms}qsf$!-!+A6t;b5vnbC9X3)$>v@t(c#W_%y++foK^ zCAD8mTq`NJBP_zr4*OQh)@3j4D0Hm=7jO>gwji$}Jbz%X?_{eRFfWmfOO7rm$hhll zx7GLIZN$VzXDy5_m>loV6j4magwdhRAqhd_5EkANi)Srk4Ag<}296x<@Hx=wwk)7d znd|sFZP;r{ZmsW**0b3$L3XAuc=Yps(<8WGNreZfaG_^}Enb&^kLhqrXsTNVqERbx z1m5*}Uv~||I%8C+8;g+!T)>+ALutxP0T6M50amA)Rdy|snxGNC^nLX?JKkNwtfWnZv|2Tr{9WFUGIs@+5F97rsHxT^WozL;O3+>AG?O(fYp+D|`Ls3oZm6a=-yQ3KvSU+{c6 zyj=}dfj{ytr<`V<$Xni*gQtWq{U!bt;VFfdWm!g1hT9)JC|MB>0ty|7C^Je5R5}(B zAhQBIlckd>7s^Pi9*t#eMgXy~87ap{awuvJuc-dYQ}V7Av&d>ZRC*RXrkM~K16il^ zfLqQzZ~?p4_}bzONmoMlIb4^QHyzg7mF%oX>qxLY_OqZaWkctmCJ+Wk;*h1lD&>(! ztgV7&77$ks2t!uItfi;q`C@oG$)jEVPOyvNUujyi+_fsRi8tt4DgLI!2%D_4!0ncS zS{gPhu$eok(4EIonGGWDk!(p`K*R1V#0r=c*Nji(U*z720BAs$zb~D#tdw7!@T{kJ zcyPPw)rsGfUuuU-J9DW_P?V+RMr;8emDm7piExvZA;L~NMpHqQ@u;rmCE3zMq*{bH{)+d^l~cOsmw}v!COVRoFc-WZxb@G(VqaH38xfT zR)z{^z*uge^)s~fA}3{8l-*ljMRnMk4u^E?Wh}JZb2ra{(5;)%rv+3L%3vKF367|U z4*4U`@K-o8tU1*+qY<9-CBrhirA~t=93>oioP`Zs#Mgf=PWJ9HB=>!Re3{R_# ziXvm>kd!)ES|RIdM8CIExUd215t2=~=tU|K>^h$Ylz z*0`F!GD9=%UijuY&?22xp<5s!wN5d@AuW2QQ4;skzpzltW%*hskARGvIagJJWuPfgz8;Mm7l(p(h)H!%3Hd{lM!B>YPXRaim zu<&Cnh@vPSYwq?_B=^#ly_gJD8LASv%2$>pL{)s@3;cCj#N4~zN)EU_HM!mpSV2JO z98qNo${I{Y zw3UdIMqdLED@zhb=w<)In>Yh-w3eBReu52LP2Gxk&vfs)J~>cHw<52W8(I+#Ba*`b zV6rb^0#^5cDWXbmoy#??4mY7nO>905C2VIuq>!__zi=RY-dKd z%H8wWVNa2@rJ%4|O0nAqs7;li*p`k~l~8A_e2$?B5o0e*1ZE4U z_*Gf&dDb-tkZJr%btp$g?JD3J;n#&tL}*IfOAL|6K$uQFz@e4?gF?pF#0ONIB9%3@!av}RQrz_COC@rTKjunZ%bzNdME|yjp8X%iWTxMFtA370t zKyQ`)Ekee>uB2$WbVqEaHGK#mOTZS9Zsu zymnOG?Qxnajro&XQb7yMN&q%FeWG5 z)?2gw&BAY%zu@as#?9dFg!5L=@A8dneWxs!Vt%|$=vl6Xc>U?f5!Iv8fGgmebyyIt zl`Ax_0s)Op|EvUGmAk#C$?KbuTl*63uGl6&O6r%(n@WW8;IG2+Bf4nYO5Byd30x(F z$1$1;l(3duD@MD1cxbeNF37tCT~YiUx;N#rTvcwV7DD?`k7X47T)+bM?#A(4g zmAtK)wW8HXHkd^&Yr&&M(632SQ`UEq<|Zv=1(!`%Q{W|%${#?B3pC`t5V|}9x@?y~V|f@_M6d9n;gQChM5cd!*eW4y;ZCmYHjr zV7I7h_t35x2UaFXp!wx4*P2lQqQJeTNY@dv6_3Q$1MSgcTC~R?$wiMDA+~fyn*9|4 z)G+3&dc+HQEj3_ARxFFYj=4o@)pd8EMeDf;p0!R2I-2xFIi2E3kGuhU`|kDF3(-Z- zH*_P`pyFQA6|mmR%_*)P7NEX9!&pQrWkG+~lt?gvuqecGwqzIZ0;MZ5EYlmZX!1Sc zn`oMF&GcIx?nGC!+$NpN%~#@CDUK$5jjKg)b+q{yNlB2U%uDe6j1vWjoyeL+kN91O z>I`g=$CcD(ii#%4lD*9+=FVPU$6WonY=%e8|ljD~Y&%pcl#;8Z9Bq@VKM!H-CZ?CZl&xHbXK0~Ez}$rV4(|EQ3WEtR3yXdS{li&rx{l+1v_QwVS@~}A@w>{rWHewxXdIuAlOt$cxOVA#OYNe0fQ2e1@#fJlssb!JJER=udo&I#F zN`O=btkO8gbthPG_df7$Msj4Kh|8jIx8K2$u-k#g*yd4;&F* z5BI`6w2)Iz21@qU_(=Yh$k7V4!L*|ol}QtbQhbTmvRi@>gkGXurklXmt}Mbo`(CHr ztgqz%Vls=g622_E86WT^%+2_l_-_W+a`G-le@V+?a8{1VzLtD+hAJ8)T-T2rgN-qP z$83 zFxkk=3IWrRy#mB=0Ux?980>rYrSGf5L?>(086S-N6KPC$y`pwL|SXgCg>ii)4b7StOBM zxeVUIZxWkyR~c@Tr{rO?$eX2Yt#B`fr%7{!S4w+X26-cFdKAI~c@Ys_yGOwaM4QJb z-}*fOl!~I(Y6^R!#2#skePv$hRt%S1p6R9hWREgPa?K5diYQ!b<5?u!<=(quB-Z3{ zC{atiX@rC*15_&M+^nD^S+zZ`K!O9*nx$E7Y-LIj$>;pmKuIes&I%AP+F=P=_b`od zRk7rIm-Wv9$t)i9Xp{&eRub$kZ%>a;FVCw(V{%qY#Yz{jRet&A=G9RWqFHr*=mw#4 z=oorw`-ZZPRhg6)Wl*GJtFbz6AX=de^xkFNa)6F)=!Hv;tH;&htUIlM)^0Jn0?up= z>7FU|=nfY93th@waQj2L0abP?(0lU*B9Fnx@5Ag?)QGihJUVcvY)CqQEE*j`X#ole z7Lm~8<0%)L_muE^17*wY){_xNkgEHPA;Zn-uiF|gMTDdc1~6Af;2cEfPRm01h>X}f z@0KHvo0Y>_)$(TPSZRKA!kp=hYtx*fc*s5E>DC=lg!On`K};8r`K;s}jTm~u;yXHE zjg^hX&=EAkkY|iM-{#iKkszCHzYLo$(>NO8SNt>G7dbm!7VLcq_e&Xx(iyhjN+@f=l{kfAqXT zVvDkx`N?^#u4cT55OV2H*SzO88)Z~*Au|s8KKyP)jo5l(2Li1XOrl3&LXs#0;cg5L zRO=#xf|8gSt0b#1U1u2?><#K?jTB%w;=<672fVsh*$wF4WjP!`R!xJmoP4W+sr15R zT4O-0{4glEEYhqOia4xIwh_Cb@>tP@d%oYZp{&Qo7A0y@S zkhH&`vFh(C@JhjXad%y2C7!egty4_|PF#*P=be0&co2ca^4uTjG|> z?~u=8L@b7@nIG7@wh;>^FqK1(*9?myt;dYaQIg5&)Z4@Ah5Xqd;kB?NY|}t<)5_#) zXl%f@WYh#4D2G`*DT4g0v)L!%L2=KmZw|O17o|}mwa%{fWr0VRG*vi1Kcj$FBqVfO z`@%xZFfXl;dNDn7v~Ys4jEXkvfx<)tN+URQkEzCG&;phZt6R({-Mw{2dqS}C2o=Qt1N3WF!BfuiyGc;)C<) z`uU4#?CO;?uXV8g!ND}VZA%*2bzkbyuWRFm)YaFQx@2^uTS*|MB&?B82;@15G;UsM z+>IU-E<2+u!$jP@`yJo_VluI0>7f@{W8(3*1}c*lBAb;gnM9<)!tivl?xhVMiFR#l zJk4FYoTlD?KaF1eAWck;Ypch6>KPhL8@KOB!#j4Q{%u=Rl0K#0UbS;5k{U+*=us4+ z*3U+DpN^U;9?C#siTWy5^aSJH(^(Trl%Hb|ESckN8wJGZ4Y z*q^#h8HGw&4K2Ovm|D!tB8@5YfQd1iB}Zh2{V?5nZ^r1Bihr|;z8t2O0b(W3A;9a=MH?rK-9bnd!cwD`3cCDBp7+2Q`72LkB+8`@4c5UynQrX zK5{gTojIFkE?-G=6H@}0Zj6kif$iJUh6nei%?}+&4?KD}4Lz_sb#L03+%(anLZ9?w z&d~p}tx~icv|+o9HaB7xUtfR-XHXHSD;ehO|SpUKc!Qzy>1QI z{KT~Ns96XF{fxHLPYm>?ol=sAKl|zQ*cZQ$Ha_}T8dQ(EZ)BqzA9_0s+p`d>o|ejK zP;5rf>LuKe8p1S6OJGY}$N^WohzF?YKoW@JPFe1^Y0jH4GR@LHoMB9a{v>4SHUrqOdBsIzoKQ_V9nD$1`B z{FJ7I`ebBwKlD&~{Bxg6`@i@_HDvoz|Mu;vYr}|CNWFGOWyLg*+ZJeWZrgijm3}C) zQiEFGT=N%~PAg1C-ppdrRRPUZBdK%h0`R*kqU1=kj`7@5p{4CwU@EX=+hC8PC9_Du zs7Yh?smU~bNh2@Wq<5ZwA-(hSm(tm{-cB>4*VBM>tyl1ZG+mnP?MXvBx2N3?A50(r zy)UNwKlOCl@X(<&utg*N9+~ale$5=ITq}?AT}MopAzsd@a|;1IEp@Y0AZQF7(y!!n z*BWjO6*U%cYbf&HuKSAK6Dygp6oE@CK!JhAqH-`qj5nrxq_L0aEFqRZaXhT^Gm{!Q zX-Wq@nVd}Nm%mKE{F}c?uRr&LH2Us4X+Tpty;{TQNqw3g>akH4_28YKDa{d0^mV1F zk-;>$=YjOZGha%N{N6KZ=f|H)Y3F?^peN1AK+UTc9U?^JCNf3LGCd&U#g7?GoV=D! z8PI2Zh|CU>5kvqL0-yx45^4bRkxn7P8_AZ%1HM)#f0fwCzKmc~W~IDIYlfFXS;7O` z#NW){gm0!VmA{0qaUqA`F#HjeWJ5X|H`qA{%UDyLm8{XFZW)xWDa|WuM1THAKTdD| z&EKV0|M{O&_t<3W(MZ2fa_H7th4-8&waaE3rrUb>QcHC^2&dis=(p3Z8U?2L@a zjN;HIb(7NkrcG(zCqJ1U``TC1p|5@|r9Hb-8dk?hvqnsNBOgX+bi!tM{X=$(dV!Bs zUAIF@N9Xmkc<=Qa6p#iTMi>6*-|#BM`Bm>2uqZC(Ja2?b{zY7QFZox-m;QD*I_0za z=n^_w;%qL@?ZaJI{DL|q%jTGd&Wjn zKSHxHIKtFA2U!uOj0Atv>L5?_cBiS~fz+c>*rr1dr9Gc~Ivx7l=hKdleJu5C-fW{X zav)eY_4W?f3%if6iAK99?svI3Bsc&Hz$ zWq8$~(1>-RD`!uqV74mT1n4oi ztp5;59F9G3WWiQhok^e)a$s^-KP$vWUdK|00{V8|d;Uu9b{5#KEN6+aP|3~^yXq1O zLD=HNRpb?6TPVFTk;adoNN0ceTzcbs-&X^6BK2vJbVyKrk`4_QW2tTlkRGs1hK1FB z+2XzRXSDll;>u_m(?aXS`Aca=>u1xGQ|c+rNvE_cKV8jX^sMs}mC5m?isUG}!J&!RM7nDGg~&wo9XXH$@gfgy!`7 zh!I#Ijp|4O$X!F9$eAGnqPo|*l%u?uBE5lLhyZB;YY9|Y?J-LaV}vr*D`>O%{qGUU~d zvZ%EMWPdX4mMAFQEtLzP21%U5dyKB2lwU>eZCe07{}Ey^XGz5|Y8g2+@792Gt5c zd4vxopl2n#-r1$B_zA*^0Z^u}b!J%XY_ah(iHAWJUQ!5o_R9 z)=Pyws`m=qa&^miOkJ1r%M5T1iY7hW{0JMLO*Ha}`4%IiGpmL6tKa!+j42Fcs9S!{jr;d%T%qZIUUYUJcG#w23CrCW1S9^(hNL%#NKs2QU(7W7&zpdaedo$SaTe&WsQ z5EGmz5*uEJYK=5p6>{*krY{w;x-0^;Qe6pDOW_T;@*eeTSB2Hmfehg+B4lLakGyPx z8n7A3|H$9}eLD5rbMl``+6!%smvz9E5wh!)sVZZ+~+3@7qh7mXM^G6#?4sd$n-){{V3{Ll~_HzuFQC(^Z- zf0@qw%lFgCpZq-asR0{On)7Ps6v^9TV!^YG#IApYRQ9hU|qFuOdBCA?tVy#4h5|7_igu5x4 zr39ifuRsmji}6r>b*vt4n|mRuI`d8V)>;`MPNqI>tMAn)%nbqS4H|g~0V6OPvL1T8a-blsN4jOOjNqkH!-CnU zrfy(*E?w6)>eI)LrenW(Ep=;q{*a8%;N~rYhcGCiS=A3?22wdx-u$}rz}je$g5-ep zk}Y5%k5?^)v%-O~$~s@iX1rur$^{KgxG10*-zI#kWV;%?D38D@6z#i(}4B^Y}L|7mv+h038GU)Hy3(Z>q{s% zU^xLT!g&fBqC62v&Z^=OD?d6)tc zf?kXcBRjY*6=jW!I;cqN_?i)te)TD>UoY@1 z)ZMS`_`+emX_aTPER_j3#k!nz#jDa8BjP9MjhB2`pMdbHTTLB?I1*Oi7QiovSRC1! z%C;zKHF#G@x;;%rku6?$KdZGbmpz>f*(JT7+D+W~^J!H2^!nfaZ5sXUTPdj%gMFgm z>Om+{6y8g;yfjvd>p`#B>>&x+G@}%Y5gVOwM*VKTqz8(lk?hh)e@;`?S5KTs7iA0Q z^e!yZ)qVZy#;Y7UM2zaq`qAM+U!{++=7u7m8Q4I>t=d&8N6i&Loq=S(ha9PY*kY<*oOd6F5&-7LGs5B4#{>c++%uc0i?;TIOPP~_P zKK^(b)?#blmMv+Xm!+W?O;EwUl^XoH4C1hEq6Kmwh=$X8;RMaq^fZH(5_Je@h24-v zZl^mZH*O8wjnrEaycG(&aysET|6YGYV7d^zBtj20FDB2bQ91vMm(u(CB^iSrHEO+j z;^A>*qkMblbw|{uUjm3VD~e&wRhGv(CXCovFPm2we)LXFryEzM^y2-sbXvXi@ptv! z*^#%>)=z&r?a=#W8~5zh^pHmTwq|C9*%p4v$AsBQ4G?72@y5%mg6!SM3AA!i?})H$ z1S*gGjvzo5-b>h=YEf3g3M$=!FLP>yW@O*`rF?XZ zm`5aen zTPevaY5v0bG{h)OQc%lmy&4(~z-`n8X3aJ8BD4Jzw$T|d%7bis?Y#^2xRt+8JA&u| zafAn(LpI2$ur6{%D?j=IjIjmmIFrLQAvf!S4j%^B(a`Z@%W_V#$e|_58?7LhsM2@&e zaW;jMd4vx6v=GydObGdAB1ZcC`i)4RlFGPr=5%`d)mQC>*FH6x8#GnTdu4`8v|-5T zP19qi68OC`5HGKkh!mV_M^sw(HeQEZ+12nHu3Tou>*cKsS10JuEAF@31^=vE$}fK< zF-Dq0bG1&X?zW{J)<{;!9D6c%?p!+i!i(wncfXg$^lsshcDxQqSGv{k*z}|F^=PDo zF4-uE(UxRP1J+Lm2DuX!EfqP^LG%h81`b{7Q^PnYmFUx~(cHxKbV)Ntr!-?UaqfKT z)ktk%(`J=}Zu9nSOrr$rS9N!e$DSuZEmUsTgRJSHC5v!+Mml zB%{Xf=8QVIvpYB~CSr5qzlxhbpu9@K_GM%XFZkp6wN8q-)^%ev&Axjy{Z<{KOX?6M z?I!G-)O55dqI6Dr!TN=bw!k80TQ3^pAXyWSvuQx-CwkSV0^AT$q;x^$AtR(fUukY` z%62jiEB^-Nn7VK|ojdZj=~SOafx|krp-Ibn#cOrjaq$!6YZWuS#R0Ovfg(y2ke zW~Erl9lR(_ zM&U=EQW^A^qG)Vr)U30lH1x*hD^EC6CIOS#emS843DCGlBNk!q?c&PxmHO93BZe@{ zi5WbAZifBpd{Y9Pwx1x>Xk5{5#N+?;y)=I8SnAUIV7+>S@fiRPzj3^k)Mq%O# zzxmndO9cZ_R^vd-H{+xCTjcPN%``UGM{qiL>q_b&Q z8$h~-229B?GL8e`McGb;DT%yRQ@hKrvZ^wbLaP6C!;#f5b|bZRp4XH_NNnmUV5@r# z{jb62M%TFnzn$}9oeWPGGSujO{OlR^nqNq#pMN1uYf73QU6@ks=g)*TkPz2>1-iLLugTXWVYuL@m} zK3%?eE=`VKPn!nR0J8R~cNwcrmeoU;Q~-KoG>ArI4g>hZ4^1BD*9a}vD78y#7iUGS z@^WVzvET))GA?-|#w@V-mDwkcr72F02V3e#Uwti|{lRnT%!@xsy_YXbU^+=b#>R%@ zk^lnr{JKY&2vZc40;A+%zT#^=>0G{xOljaS3xU_nf|O0lAsX0q#_q>{6*Q}|M=xGX z?`w_h#@VyBu*!V+|IglgHfeTTd45?{Px-3$z8j{yVF-{Q=skxdI74zct68JaN}*rqAPGal+eWqbzPfxpPnCYZf8JYF-S7lBPRgqL z+lP6C)1)OQSleyc&$QV`%(+@+NJ+3XO%;P?Mtxr?vgsDG#6Q=y-v58xs zEzbH?pA1_$()SPMHg^Aw`B5|82ZQGK5AFG1I)w)aTjR5!nx6YAlPs>i@IrZmMa{D> zzfuNRi!(&Srf|^WCl5qWB))WnetN)5=@*4$@)P0(noH+2dW28IM(j|%>8<(M==vHz z1Nms_Sr0^`y2^fxGnlNeur^JTQ199_8aNFd`E)uoWGsYDk1+X?n(3-i3m;b+ZM}VM zT>V`(wlHzdh!!1f#2a1XFfXFKKufIufR`N&Yvw;&z@%K(D~9?TwwecYk@o^ zKRIjyqbq+>GSV|$StGfw`8RO!vEoQr8vqPnU-W3;7Ixw^u;)Ybt$lu{`v;Bl58H^f zrLdqa2BDFI<>E(eILP$H?~YwycA5ISAC=QIVyjg25oUXJG~pOWCLmZUEziyriXf69 z?0=`HR+&beyKR)_p!8S}1nu~S-)!hAUDS{uIDTqcNt-+(93#zW)CfC9{&Sc$&odqW z(rd4kQKsh)u{F%V7?Z5ge6p@gP6rJ2F&_ggKba{MuUg;;Tt3UJiD03OC=7Y_$I3&c z;A#CzRq;#y5;)b5Tv2{Tn5<& zXov|zEt%ulZdCIklZay8j;c;<_&2OU9KBQkTi%VJ zZ1QZe9swjW_}4WYR$urHo&DB)U;Ds=VOv*&)Ie_&v<>!8?@l3uBOsSnt*hnrV}k|p z&39j;%+P?XvL02 zZ!)fQ5EAJ}UMeoFT#(0vM^hrvD<468r{!ng&!le;&jzlJnXNLz`YLN4k2A@nOV6ys z`0FUkI|{R6J;6gjltUiuYCh&?HCUyE?U9MRCDhf41K~1vo%N#qR(;;-_x*<382`QE z{NrfELOH;OC_$Ej0-QLAnFk3;C0=3o=j&_*bnX|wEVGP74KTHIL^C1?4Kc-|Q5p=S zx25FbyF#f`RqHTHW+pdlDV=TgR~WT zL%=sqT22P&O;4AzM~{}%46rW2$fM*tv_+E;>8C7o^>s12R&sjFPI*4VE-xn^ez+{NO<5-D zFuhr!R2u*u2&<%01C})MR7c@~U-(Lz!ZT8I1v;y+3^2VJZq>p>1V&=jczuSFns5df zlQ0c=Aq^R6%Ud>s4p}(Eb_j;RD9zf%m9oJ2>q&&;*{LZukiA;Av(a$>2xG5ZhQ@rPi@2L@ir~0n{TJPTW!&|sbc*CDH)%7I)nLJsxG-i@tx`7rk zBYrmGC^VFpv<9;d>>_Kzj{oGx?8MW+{J}96kI)I%>s#W211#G7nb<8 z4Da+*NcbMS%3u7OZ*~mQx8cLu6s0oXgfI#mW=#yXQS{`JWNZ7OtdB)2=SBSsz1L1`aazI4Yx6=_lon6 zqY(q*+IWFGh?;>-{UjnkF(cBmS$^|qIq_e9P_8jp+GEUM2u<28fYe|`X$q@wAg=G} zw#z_x_$`eEjIvCaMcx-N&CDY}=6!~FmbklezNSVZ3OitsL7YHOkR%qnF^@K~h^O=z z2VL7i2IP|A>C+qqLsx!;^oHHO$|E`i61Y=QginUS34Ltr;Sl}WOCcHn z8b7{}|Jvs^*v5NJ(BBX3-iwhwbOwKr1S-v?XEa&Qf1-Xm_`c$7#HXL8NB?lS>J(@c zBF8%IVOi;ItkPQo$C`yLzYS1&{Lsy|EqmNyj#&&3F`iGPMKoVe8CyiVX73OFY|Mnf zh6|pNgv=y^sqv!`BcGTe@%EDf!u4hHhNP5-o#x*I-X#R%9OErlj~$PqG{AbrVR>nY z(KRCzA$%@Z5hryAxCOO-Bv}*X(yzVZVGusFbe8X1XB1t%*D(AxfA!lxm*3P#aWB17 zs7j+e>nl{sWBtLmF`2k0sg#o|zTE`V$ zx43*Ge0#s;^LxG;@4cL3%l}|570TQj0Um)4>e^}-+bBI87Dkjs8iA|q%yH@Y7fY9I zfre-#=sSgIR(J`Su6M*xEmDi-6&fxZr$va^9Yl~Zjd=iK4YQThC=8`tSlad=t~-GA z*!5#+=0+Jn!y3i}=~$RTEejcwCm^eVho~}BNXu+|8#2br0A_@E3v5a}3v-;oEOh0S zSIZ*%J8u8N=gas5pD0`Q?PGzfrbe`B$5U3CCE064Yl+w1&0l7qY>ijNS1s%MuWbMS zyB0|b1(BA%4m5Vjgfw0~jp>(t5vLgkTXhjC1L0{z94GN8tG`QPKP7Y1^I+Zy_BsS_r%T`gYe7%@@Sd(UG{BV!JI8Gc9|XP zq_IJ0UPnO~QzH$P<~k@R!nzNhTE^Y${qc~2vZT^ad08*^S`HqnJC_9lDd zNGS-65xUzG43Lf?luDP~JA{-xZ1`3jKT&I9=Z_)I_vtbrV0pFb-=^1(X0wFqJp)`< zh<6QPH-67O<rV~2?(tr`(r$Qp@3^5D41yFk&hO-0R0?1zYBCXUcw4GLSMHp?m?Y6S#p2KB3 zr-X0Wv8{}bjj$sc+o5rq_{CGF$~l&UTzqq?^fO6gVhLV?YEBTUlaUZind>Z!a6a_2 z_twtUkbX|7*Yxbk^E82t3C;qqpy`1^^BW0Q~)-l$E4X{tE<4N-bzlvNK-o2;nec*v|@bh0N zJMOuU(+rsIP7f?ybJLujDYGcKXIL{h^_yRn1=f2FA@^K@^Rs84o|s{vu@8y+fGk#AR!Q;VERet>h!?&kQQ{a^WV z8MyN>-!W>#`_atcKapbtmf;xE;lIhh!t+tch# z+eo@^qXJJ&Nv*6aLvwd6S{6RTOv{9|w>HA_PVyM%U9IQz4}Mst8PmJtOJ6E`zxai+ znd3SNy~4h!oX+2)PxMB9H0N zlw7Gu{-G6uXU#{UW1p=0xTTScSho>yX@&*=jJv*!_I{3u1h;YI%N<|-QYm-emGh<| zcq~Z}K?-fF#NG7P8Dk@Zm=9lCi_8llIV-xhuXuzPW zG+3oK*V%$HjdkY0{rAwj{#1E`aoP({{WH6Z#L zwFMbaPpPkUAaYCo=DU-BGP~L>^oXa~bAEQZOh5Hxc^=Er8FoUt>yN%swtnslWsoC< zoB$GBsJOx7S`WZL!$<3!gxBA@`@nlAe$)`Aa)Ly8Lzk9a2C;IZ{S@}EJO9X|g@(wn}K-sPi;B(kqum)~1i#!zcc)QBJ4JK}yV@Osz{UT^#Oe$v_)v4vry->uK@ zlxE6vYaxT93U5=qlrJ>V1N^NbpVF(Rr!@Qek#dsR(pP@_J7!KZnS=UmJ)O5Vv}1eO z!uC&h|LcEMc7N{kSY8g7d3s>;!=q)1A&o9)fpysustcVwNOfg`VUDev%EaE?Wzd;} zrgH&a!Tjz1oz6Cl)u{n2W%t=Kmi+@>!4Zr2jV6d0G9bO>qD$8n`S_Yh)){o_@ z$1uqJMYgg!bB;A;lexe1ppk9BE?pAtB+kenTtS!Fy4;323I+flH zejR+DXDsR1kA7M%!z4o>cZ42~2VF)tC46XD6A005P;A6Jk$KTsKnRsIVBh^tx&4p7 zT?TgTE{lvs%_B7yU^Kh?4#+Q~VPLpKSkc>pxrW&hdK0$c@o|`qhVu&Rz+@zaj>NYY z=m5MrbLFF2nmQl~qc_AAG#M`|^PBZRPND9{6nTS2%=JK5j~?aJ;Mr_MYwu2m(R3ui z6ghS3KMC=?{%hfVYwz`o4OrE_8l+U<{P>>kRtC8>!h3zcHT*w{cePQJfB}2;%<{YR z*kk4VqrWUSI3j*TVUI$jy5UCA_QIUDY&kQHSxuSvs!J=-WY(D(j1_GA%!B3Q|K{J6 z&7b~M=|dTsXM)fSp_WmYJiu@XzOu*WIIMiwhkzQU;oH1tFQ)6UGEL(-d+kc;M@g%l zZnVE=MsrL zRW`v#t(gkG$l~GSfAhEH(r=zBE0})V&#pb_GI%7YaR4<$@HvVC%;Ai&OEele3H87E zv$F4xzg3n;hnUt{XCkgJy}o~#IY2fTAwEM1_zg04Ch=EjENKJF=)T>U`4C_yPn3Bk zX{<7)F^p+(oN(Hw<>+=cW%jj$DHRwo5uq&yCc=kFfDVxYpE7kCIMBTqi(w)O1NJ9= z_d>b$YF#$4V+*HAqmeo5%(VIuo|>{OXQpN&c6h884;9zs1Otiz`-cf^xf-GTzUX22 zce!q*-+R5kTUsCH+k54^@w*jXg`?b>3JA7f>0eK89 zJ7<`|PyL%QY46@%c0t?Yuf1HB;inOJeOw+y3pVqNQ;}u{@evgE&g`Y}ACl^yGATp= zaur*=`|%BMjY0bfwl=zfIp`EKcrU;DY8j^}HA}NiFnL?o(lRga@MD|@BRIxS0IH-QFBS08u1NvICK@9>h?9 zBUC`{0#n)NFy-85SDtaF)m=L>5Z^@$vUTzpl??iuEllSmj4-e1NF106`i4-$2$@lc zckbx1((_nxgn(yE38(p2!h|Cd$8z-Snu}l|1HRl1ZJ7gmEsIRau4e4VNTs2XzQl&G zZ!*(qo^d#LaTq~(!r8TKmQ&Ov*XAakxnx!Sg~xpJ;EOm76LWi8*L>$&9W(J=XXLkc zt#aEe^le+Q_-}JV~DW|ul@F_a@>SNoVF1?g9G+W8BjuAl5Oetc?bsvKof$)Z*aU>Lz(6d_!C!Y*}lE~{e$x0#`IhG zYG(Z2Cei=U;UteSd18cfn!P>fRfaj{&z>nu@QRzBvpNvP zg;~_5Axsr{fwEniBPQ!5k9aAkRDzWf60u(7z#n|6T;WndvV58?HLu%|aEvdD?~!-Y zl=CEGu;-5+rH6REY{SZxwTi%*{PF`#4P7hhs!XcSe7c3WE$WRL*Ld6oQ{j@+=kNb`x%1DyUqr=K7^B`#{cJy?`wolM{k>f$@{*RXx%21B$~5Oq`5h&#FO!-Ol*CUxZLms0aq?+q`tt7g=udpf!~pIscbGlwyXFE; z64A4MsK0(`8ZgqXahfnq0@5&aTubevdRT`*T*bw!`upzF#!w>0khP%~&)}He&D|Fpj+I?!Tx=0WDs1#S4jh#UDh^sqSge4>kL6U@Ki5DL*Md&R=mherbT{=9R-fdJMhK%ot|86wFyRDLE%&Qs6{&ibB-SV^ zCTxWgy@Mfo`Vof+PvNW+2Z(6G)K|A=vwkN3;9VhCd3udh0m9l-quuBQ(zW7Q z9>7S(^Nli2UP?MxiEzLKXvE~b(!_Z3tb7>0OPOl8rnoh>^yV*0 z9EEg_fwOZ{pR7m0fjm~zcMO*Kl-c;agH>#SwYukk$=R7b_}AqGqN%?b0!e!B7ck@CA^ zC(Gn3ua|qi@r`olH@{vcFl)i7&1SF+3d7g~%+EKOuml>BO__gYn7_4h#w+0P1S(jU zWLbbKW=K5~uf4Yv%!hxZKL8KRp0JzUFDQ1#DP;!CFmCL77JeE)0C`fgy%Z+r>uwq%Woa5%#eF)?lP-5 z!dN6BYMs$4jMXRn>|+yTJ>Dzl~M zsE>WDD;=gs&wSM^r&)%tdMsYvbNg+j!$gi%dfY4EbpUg7WB~bkIBLWII8JXrGN$rU z+wcfqJ(ZcvLGBIT8msG7{V z6DA!BX(_FN+xo&=kP@p7M6Ps!4V1ln@^VL_RWk5wy>a|cJ@$Ax{^pxy+wXo`KK4zP z5wHe!nB_|ydu1r&t2CA>;F0rdC^u~#cMIWv7&l&Pe3KyW`a?wA2WrF;MGEM6X`bp! z^Xq5B37bvF8gOld)Bw~^ z!x+azIfC{o-0l{lmLf-bGw<|_WDuX5?}5=$nu$c?&va{uB!G`!h-hVjp|V2=yB`k` zdAPsJcp0{KCITG0biQ1A?&-4k3!g1_eD%v^1W9KfF%g;Pl4zPA|=jT6H#_2(DDklPsG&IM;7n;*E!GU;|E5iW+OJQu<6^O7~ z!1ldyl)08b81-wuakI)xvetVek8DVxN$8`vRY-11`z@>urU)Qg>C(uAHK29%MevpVVi2MNq z_&x-4MR5;y0R|=7r8gd-vNBWQ^K3G4Z=+_N*Y)IifR7m)Khql^&vppMzE{EkuN$J< zfUTr1XdMF%;FX6fO?`uxLnwV}Z_QvfmlDthoc%}2?Af!d8oE(lI5JgsJ^NzW|HaRj z-JfFSE{dP#Q0ZP9O;VI6Kyn&b(y(_b--{|8kdYHH%pyL1^fNHvQTYfD9{et3AE*(N zt&@SN-s+N<-)k6PONJE?kV~cpNygQacmBdi{J;=uIahx9t8#;GdSQLS@Uo^g3Eq^k zDTRz?Tzg^unr?(PcL&Brlt)$!O`_#Ocx}t>i0^b~1Dk!~DT(q#O2*+W_G$9TEHK_% zY)a(JJoAos+kH1knBK^7%>%c9n^%7z19A1!>9bA-vk?(BoB+}pW2Pi)fhf=@`|!;% zJ^Y4eOL*K-}P}d7}(^)GI;qOj#2F+=^TqXe&0FbMM&EY*jYH zbox>EMs!DU@GP!vxD+~7fzkj=jwTIH1Xna_Xgv`i?(#k0VW();g&hv8*L_Uk3f7DR z{?s__d4sR(W{1O z6(xBz4QlE{&Bq2V;b2lLySwC%p%^YMT`LRMXUo-7XQ+2)%a!9(Wg82(_k8mHGRW={ z{nni}UtmpY6uhlxEew7Tmo+z{v~c1P)C6X~>YBTe>py-?Ih*fo$h`i6f7bJ=Knqq2 ze$5&W`N`?!td+V>kN(n=PnX%LV`Vd2(<#JlBy7a6)kG%P>llVlob2P+)<8cEj||Yz zvs!R4_d=@(bok9i$caJnKyxEaAd%5*n3kEy0Y66CNejG`R`$EaUV8C7*-%6QNq&{? z*6Z}9*V03B$&|*GZpsPnrsNg6y32=u4Ki9-TH1>n!+D0|B)u}%?anh%YVp#wa{2PL zGJpJJOy%2X%(k;8*Y&n+V*}6_!82Q~!k-M9Vx~~yB7f$PTzv>Elp@c!Qbqdk9T>34#C-%$lAMss-Cv;o~bv z&D3Y7&I0E$gj!*ij-T?Kd;1W-l+4l*KIO+Z0Z9*UA+P_2(Rqh;jLe4tZQ=ewXiWrR zA~;rII|#Fl0naS!$*y6Ge&ry*~oiip zA)h+%o~Vh}nqH!HD?Ee+!a2D@9#>Gw#6FvodEyC-Xeq!ce;K4s=jIck@>dzNmW+sj zGJbv~RLv&glPpho@l6=KaO7nzaa~#J4rR73xtX;mO1nMrH1+P{Q%{w1Q%B0?7oIDt z4?R>ieU4t)p~GdEY1Hg6oMi%m8(tOmjJJ|zEE$0ecmz-Y$T~RnS!a21!d#!458MK! zOo*%4F%c7}KK_0*&U72M;ZdKpSLhXX7tZio4WD5LhBQ`a>@Pg^Ou0mz8@@49dtvlq z0yprgz$jzXeU_oEa>ykXp2F<8%bC9uE%X+jj(0cKM=oM4a6suRnW zyekeuW06E+aZ<6uC0~iX0UC1mW1K{Gnco%W44g&LKE@`<`(A&o9Qva_Dm&O{!tp^D zaQ7jb=$d9&rHS zw8^vPt#?{nkj>|4!ZcR19EEY=myfe8&&y?kjW9TTpLU@Un z#PJmI@&fM?t6-v0NYEODVVngdG!CZ50dlJ~x9@ega{Wm|4)QV*nXW7WBWIZ{F;T$0 zdI@7;aD)kC%0My%Fw{TZYX~s3PL_=@hiD1yK79x_%mfP0FnQtv1I#@@-= zVuf8^7O=r!pHGE_>0(|1HJS^n*J(0Q27Z+(lA-I zj4AaS3I{9|5@7-y9;~d&fygGMy#fTyet`yLk=dwQ7;_tdUu%PEX<9s+W_1b`a|;jS z<+z7w=AC>bPFOZnLLl*CR(^2|)MP^p=_&6;M_2|jetyl1F$H`wOrm(RS+_DBzu zyT1KUIrJxgT>9_3j{szp#4R)_ny~p%Hvdf5I+MD`_qTN${R3AU$`5+9o~EYX#t6KA zXxFB1LSh5gWMN&k&bD3=n7-1($aoPGVP+qHyv(ry`3h_B#_1V3^V7*eD$e#>R6t#P zK2Id-_gP8d~k-NES||W0D43i)CsB<*ts0;R!5* zGqghJOrW~>qo0=ZY+tqSGoLAr z=kI#x+oi)s)!D*|yt<^ToHdWkEVuk7&i}i+n*%WEqy_KYqpf|l=I}4!BY=s&QFCdE zw;nv&N@aE$ox;7LTi4uoO|YXIZRSp^DtO+c2|#O>_HTHrt&p~6zY0a z7PLz*b4JltP%$Ix8v7JZ+<7RCplM|10`fNh8jBcIM0;QQfJ;*kVhxrW?*kf8k4k>& z&7)zc>>`G@8ic`&A9NVExl&E4H$M0`=&CRIji+!#vyCVKekG_lZBp`k-~b5K$6wo z$aqBP`dOs%v&Od4d(E}a1`1?rU*7E@3c=e1cq{MK^!@cpF8=87sNpxjhIiP}AHt<6 zVPeqC6dO4I;!(y`+1!^Y!Je$!ufS1PZU|x1W5bv7Qht>Wm8CXQ6#&N%`oOijVO%?N zrtH7Lnl8rF`dEYL?h0zWN*_2Vmpy2_>t({qe8R+36jpX?Uljzj_sh_P0&r7 zr+f>q9x1O(&z3h?e7~2y7!R^3?4~h-3kZ4k(p4T3Iz5_F z7|{3Jc@&JmMuEhD0nq>eKmbWZK~!|&E8*J!)%(N!l41i>!zydZ37vm73Fc@|+^X2G zawJ^SH%j;QH_E9eo?zDWv8-1eSjI{u3ZQp|l?YU#A#m7%|1M4)EeC0M%I)w9JrCC* zrbiw=apqygQ^Oz%kjg;;Qdk>cX$V)C+;t8!<~&0!Ln`#hxj+lOHB&lk+U?NTH@_@k zaq2P`U~JFMvW?BC$J{C3*{AflRK91Kh;jv4yNGFhm`;M{i)o|M#O};Q>wp^_qqRT* zn4tlq1*c+3PvHeUJbHIOSydUIN5GpCr`!^443p}0)|OrS^^@fp@*QV<`XJ-4dp`S_ z%;5B-a*>|$f&-G_RgAWZAqj49m3CxW|3e?4(Yo;domAf7+Sdm6YhO&b`mKe~C%{=b zGqJ#mq^1LMuRixex%%|)$`XyvR(2B~VlkhMj$u2R1PO<3Nzp2?O-q(xx!jU>Hg%-u8<<~C@9 z{p_7*R0PjurvG2Rag`+ir&tU1X4%S?NIO3H$+G3pp;FjF%dx@O-YKh7cvEFbN5-wD zG*aey4aPi?a|)J>*CEmyul6^O@9-log?A07O}JYdu$$7WFUe05wAyOLnF%xi@U2bP z-nXW?Wfn4DgP+d-=E>4wUrLYcagB?OgeKuS7C|MYT$ZzS*e+6nPUp6d)= zFP}P5$|1}m6Z^^6t)(bipDmTuh$?KFflj~zoB;CZH*g?((I~DmMfvgzFO)8(moc<@ z1)@X`o=nF?a6(cqX;xGAqe(kXY}(Q>$s3kDlmsn-8;)DJO6Z;KxA?bh0HRpK1xq=VQQ+(vF_}$NSrzm_qAIo{Ja*l;Bz z;l(JzB&Ua>0d`q{d5-DN4w{aj_1J)^ZCDvsFmnvinrlY1=VqE}l_pV>;_xr? zxeLY$J8PVO;l;8G;WN5#FSBHrz^=SmD?ZQ04K{c%x(#c?m<_lH9gbFUQ`Kjmg#f3s z(Ah~M{MWMNp+&F)q<&Ob$Y|ymrodm=bZV|O9Pdh`HD^VGRQiE4V;jKy zq2TMVvvGyT>P_A)%t>zNtzi@t>MY{ij|<#isb_hnCFDe z(R=XF)alobl&y@b4pNDvmu8x-&rZ^y;ZadoWnj8(#MG7@8^GJdYs0{M1QU2#zDh-W z?Ugcd_#nHDvtvCUR0?t$FX^T7C9>f8P+wXr#cEe23;be6T!x=cKld!h#Gfx1e$&Xt zwr&*pkvkyp6RMDp0L5qRTLcN= ze01XRC(0^v%FV|+oFZT^z4A?k)l@R86r2ts)B2dXxb)I1W%=H_%D}#z2`|0+QFfv* zCUJ{Z&NrcSs9;0Ws3+3bnu$^Yl$E!bkr1YIS%RZYbdX$T_ z9WxUzfg_lrtWDhukDI^f;gVV9p{iiXXZnFjV9VGt%HIUMG)kH-U%7@-d5P=tYp<5w zue?|WzVi_0mwmPjv2XCSf=mFX8NC zU&D(`(SG%>{<;)QN~16-laM1A6`n$p3P?H?4#5>BzHsyIE!)UgBwk#Q9T#rUF9B=0 zY+#&#f~Jcdg0M0QFq#M@kV)_BO+GWg@1w> zQ^RP`eKurjJaC+}aMqkSuJ|KzTuKG}jW1cZpysnE7UcJEEpr=e2qt8;*DxQ>75AC@noK5NmVr5F=Lteq=utFJ`rl$6Dtr9944Ey5uI`If(aJ z_MiOuBjx)YMPA~cu$X=HI0{9od4?o^B>Cckt1b{11vq$aDXsf^3Z&E9ok-I+p~{- z_j~2gpZ|H;_Vur2d%ZdKgq>%-n&-~V63&Lslk0oPln%25hYsv7TkbqqcCn}C-5)x&mKuLTA~*&XtnVBcnD?vY-?CVjP5sul2fg)|aTMq-9hAA6OZ ze)y4c>PJ5=Gc3R!r;#0z*f43BvZ7!;@8n;J7|4W||1^{kIqQFTcS)B!CdkkcHs%b` z$uTpT*wqgvWxR_Ey$+ipT%V41LOuUP(7`<=zSqd9PtwJ*c_nTF1E`v@g@oVY1x@**|(Nb^jD0>USz zbH-GzJ@ROI&UYv{dL>=>rh)1z4W#g2F|xin;yVVI=^_C6Fs9e4Vmo?gc! zbp>;j{IrR>)$wpg1ZFsfbdv)35GPSuD}X}JU*kf93UM-QiB4|xy2m}rx< z{1BeNqjCdxV2Waj8L^KZ!x?sYx%k*GOCP(PjIzdX5GACp-=a=~FaK&9U=D#$O<=V* zGf$(_b%8Vr<7SU^Qi*Vy_VeU$Uh6Ooibqj(nH|X@GxFt~ z%P~4tDC^nA2tQ4adzP`|L1iF$2wm_*Iu+nb4C_XSDiOt%v=RY?&!droLvflU za!;I4p2iG?%boD$rvb`3f9XoOcJySqc;pzSSWN3Ehl89PVvDM!Br?kK$e$+KxIDsO z-Ut32E(8XOTkmZI@A*cQ7C3>gX|_Jiwwr9Ay#z&mS%4fATQq&S%RwV|AnO zpWFG!Gc_aPCJ|oaDlb)&WP_jdx_p)a4NnPzG)jk%TIQM~y#-+F((^8!9KIDRgeM7e z2+qi;3x&!b+ms5>hbja^9~Eh=h+422HOtJaNg7+ z<9pJrgZXNZu?-vb#0RuItQ84gKQyWPXl}lSJ^Wd_{P0mbc}Jic2;?2F08ksFJ}nd| zz8*tjoj?1tpOrZj?NMaNU=(Z>UE>LRYC5q^!@4altsj^a>6N(^(;{oh7U)q~X=D7O zcjUHlW|<0Wc$HZ%6q+vebdJ3k&ttwk`NJP&iOA5E%Vh$AKZHOxZ`YyC(=aV=+FC|G z`H6DyU;oQ8`iTchZ}V1^UXOXfgow!@Jc%i<2VMKQrxy-yxOc4ex{opPAxwDV$eHVm zeabd|5bu38m;{nWtm3M7>ax9M2>oEgV{-z+P}xvF)QOABfFw8nHaR$B%#o@lCij znDJJ))b|>yO)BICfM~K5CbL**ZF_XhFa7FQZ1DS&Xw72)KFle%+GSh70yA%>mJS*PRFX2SHLHLb#QT{O+* zBU5GO@n4k}|HEHq$A>|Xy9HtmQ=zL2Y2mO;3L(L=wCjI13U%^GXp(pYwTVu{Wa8V~WLNDX@=`37fst~9hlCu46`;Kb3Igr&I-^k3jOMjvhjx%PuQ(M_wxI8pDzA8f_aaE(D+HA1=grV~&AQbZ+JA=`g_E2ry!m7IGM0C! zj2^tRjN-S9fbh`9S$HB_ZBa*6?6M?-)Po0Lkhev&Jw-4<`Q;^)Bd&t^_6p<8uRs4R zLjOk2NsHMY7@RUK!Zh7yy`yQ8pFBfq!DUMn@#?kiZhl+$|NWlCmd<=3Z}O@;fA!FU+#kVu^_g;EAxx?JC$Q3*fp`KEj*~e2==rQbw*@R{|qeeH~b%(;V%VKCkZ7l8k&$*&Xb>i zL4=+g_*J$Lc}~e6hVxxkGRYpK9wF4Dw|V@H*ULp<=%E;GN9J`<=-s76`CpfmgmR=_ z`B50nO5Xf{PLOYPZ86sUt%_}R^sd>bAB{qHu(PXGh)y|QngV? zP=4@8^1(>s8J0|8%*8JT(O0+r&ao5_w~J;q`@$>bxs&J0bWVxwA^a{PgjeWwZNBHOa_?8aRwnMcs|>MKR-d~iz>K<81kEZHpv!q` z7cgm_d-ADr0TaV!((<^CLGWgeV^ARh5H5C9TZ?dR7|6pBCt+yMOWR6$E-~@pd6o>! z(mVU~|McINzC(wYxkrzTNREp{DW?cVM~@3VERu{{sVc$(-beBirYAw~HQ8il=9L%7 zMPb+jUyegrw}N5;WKGyL2EI={_5|aX=Sv4VTIqA98*x$z8;-~Zxygs5laYd&#BknB zTS?~xk07DV$ahS$Luj}Y_OuW#*B<+Ic?mPf=DU7Tb}?)3fc&%tx@p%pJe6|h_*6N^ zc44PqW%Je(r^?v%nX_^NBgra%f0HF-sU9g7F=Dxrf(Kt$2#@_@HezCDthB&O?LB7}F)7>b! z`yXHrRkkg2QjX@zLF%_-=&rxAA(Op2S_$MA)^Vu_RwcahkY>dJdgVJm@v*Y_(!J%% z&H}bd>MXMg zfjPcwBX*OvEREt!CD4*+_8c%6)I3S}H zDiW>**yPt!_07DzYMlB8;jAnz7~GXNjtxza_aKYhzl(b&ZB0Aay9 zy)aJxr2)H2A`|!DTef}vb7ebgyC&~AmwSqy)ysuE9J)1&y;!0Fyl2yKO0Mxr zrIsbDPu$WAQ%H$H8*hb}Jrad{P8`6rxO^IO8Z+2VPQ6*q{rU-{I_6+CN8 z4jv4Q?IKo781Vg(ry3WU@G773q4DM3J~lod8Wx9Wk-6*Qz}SZ&ncvrKL!tv_82QgUO2%-&_sr^ASWvD?Bt@sJ8v%? zl!erLXsZI22|kQ-J#LjICuE4{&aUlc@=(Q2A4U5%%gP8gcciJfD&_&x}J+)HwhGTSh9 zuFaHbHdub)FaLA7n@-N2uYR%gGpE7cZqfz+8Eb9weAh;-X1(!O5CpbyCelLK`Zae8 zY3rNN6w=)RTw}HH?DJ*%#g|KuF8dH>mwv{_+Jc*yf9qM)ysBS*^DR&)&=Sx*>eCts zwWNeKUpIOcK`<7AWZ^n{d~v4I%*hiRCC~JI8HtFRrUpRRFwE!qPBvacA}iWRL>b8; zIOJc_5;BE)165#v)5sH8nj(a-G9lh--C0pjesfOu$K10Ejd|zSzFNlaxwrI2$Fo?` zmG(4u$-^Fzi?MrX+I@^=j9~g3h0(T5qOr_Qvpf5XIU`C~GyWoI0gw0KfcOCFx)RNg z4h%a^IMQJgV=BvKCKnu|A=}N`lARodKD>{0{4{b|#3@lMWOEB8_>r+q8WenFE{&OK zlcIeO>FHavJ8>EY!3*!0q-AC_Tzg^D^iCDP1p#aWmc8sEZE7?dzM66iu<+XeBsqSo zi_#=N3kBbWDJD(cQ;~&%bcN1doO7?1fnk2hMWl==Ou=6WlkCq)I+_(#kHB;p1Mg#K znmM5Wel%|FomUvs;6|XxSHfT}jcX8{clj=tAyifv`+}dQQHmz-K2&yp?Mr3xHdtDG85x(Z`^C9h^Ic$T!&Q06M!_d#u_b^FGiE2u22XsHuYTmpAQRt~uUrHl zBm>NbN#5{A@F$Xd;+yYTl47>{ayNYaC9a-vJmk54^~KlvCU5X8APCbAyOfO4qof41 z6?5exYlkQH?=7S7=oZTCX(U=$j06a4^nCw~n7OS1V+sJUmJlC=Iv%2mLQq+2LF(Y} zD&69F#$?X??GIT)!NNhh&_f6vg;Ion3z>Hcm7+HJiBA8jBi#T3K^shoz;)*fFeEOd z0}l7gOAyRzW7MZn5aA+KyR>aLSRzL|5ruSbEk%z8)`rVUsF_VTWg?O!Z?q2+O_{mH z5DjF6sbEur(40F=F@Sl+LoMfEwiz0sdms8n+57$Pl@6LPbKc4#GnbY~%O0KUc2Z|7 z1{c#($Pie09%2z=XYWJhFiqmozwT#=!evYkG`cMCaj~z1#G1nFs#lx=FSh42WK z+^u3F8AtFfQ%SF#JXPNK@lQ*KnM%8{kM|?o?6&tIsm0ogg#>2b_yAsbPXT#-2UoS# zVEi3Iyq!1Dl5SuoDy4{%+U93!3RI^8XFp4XOb@O3;!{tTnb+T7I{hpSGrb?7CUCae zK|8IsbYO4O2yckzBuJj-7;cOC#JIMb_NHPE=6eJ#Y0B!<{b<_musSLB7(H2`twlTT>{Hx{qZNDu$ z*hF~f^PdJ^F7!3J^`|KhaZOGzTF)wCea9#M_4%EC<*|2j8ym7VT%D*uzQ%>V(%ByU zDhi$BVHcl%s$6>J$tH`BK zeeAx{zlG+?fjph`OTNg<>ht^jl9w>4jygD_wGh#UMSkn6PX;AZ)-4WFl}K24SoaHjLcBV`F3_QKa=~4h~%1zO`(A z;1gxfpMICdXiqfed9;rnLL`_pT?*pKyPl7w0CgnM?PI)K0UZOI{K6N?4#puCnL2-! zp6yl`brfmYPlb{N4JU-b31w4|xc!XcOa|8!w3XSAJFw3?>+#x=BM7veWyb>#nhSxs z)neB)_)S`CxcBW3;cB{4y+cDRb=qD4)y+4|FYFsh<9p&KKV}@}O~%1ICyZV_WvW0@ zaiM*6>vT#9B0Qv%`P6TR_2? zykeGK)!h$$yKG^5sHNNXml?t=I%5)kQkhY}pqe)op7fx-Wy)MP6710k4Q=06_OZ3p z!1;^i+1K7=TSpd&lch7l*?b^iQ=M6(v{_cRb3o>eva8ti2j7Zv-l^=O-8UJ>#z$eFh7CNdU{+RPju19T;wwYU1`lb? zn|!Yl;JB9GVi7=AxTL|cEPMUS#D$B}`!WT2L>{X20&bGCx2Gk@o_NNTfk#)zfC)fh zvK|%xnzOO}<6Xw*KjA4ulo;{=w2aZUn5j8de~Ta>{+V`7fD%#W_4*}h#1knbNNuD$ zOmq{@Rfd1|Z{N!dTTJv!d^!HuV{C!;RgOerJ(*ge>6#H~t~FvNeyeLUZT)Kns&9!; zoDj;F{3{$P8j>Ceu#%Rm)8*>(FPF0{8t$?FVn8j&E_@0BFsYqwLty&r1^3xEU3>RA z=*B~G=pSv@XVcOL*m|pq4GUV!mPMVs*AV(ie&2AwvIc>lY~1*i?lkujiUcv)g__a!DaOdwo`mkFzOWPZutxB)9D?ni)mR#7x5 zzPk&5R*KAIl3pq$E#tMgt6ALi`*!?vQ-HU; ztOJ_3;(<$(MeWr$_(wo=*=1msy*AH3`P(u??|#g+fWTJ!o^nQY(m;AiD=-ln)iqJo z$FF%JoVm;IKD4mstR?)VyFx&J1&fZSpdq_~v^)oD)Oj-iP1RZeSBs>#44!+m2${+s z;sOseRBdtQ==dr#%6QkMQs>E^3VVCE4Dq3-+@<%^H!@i!Z#!6aeEBP7;J|^h;8G09 zV%g9}=~MTWO$QH@9+N&6Zm1Lx4t&>oA#T*_ zO_xGgU+{9W3nOFrfqnRMJBr!45!NwXzF00C;jly|Q4KN!Bvrhkj&uYJn3{L*K6*)l zR32{c*R}N87+$}~FFeg#+~p8dG6;>#46UCXd&|<>%3Nb@Q*j!HKfZm1~$0#~1`2V9kYQp*4awUFMWLskEv2Vqtalw^2poegg|QFl=~J5+bjG zG+eMs3x97Psm0h3uBwhCj1di)C5JqTm{TQOFkP#N*khy|0 z@R|lfBAPYjk@%)Re&9Byh~_YL-RU3MPADtMH7*NsqSJdN2DK-hEG5WE-d@ zloYz4C_YtlUn`q*Ctlqx9J&g-JR*%zepcbV)y?d{amW6$``$zBbaS~Z&Rxe$NV%~> zR1qUwq+vYZX-Jjn+s=qZn&u$d(Vg3{OfgP}RpaDqC|8)v2VMWD1SMuuoTQO*wh38C z9RW6aC9nEr?Kkn7lv+B6XA-}Dt$|4_2}o0XsT^QF(a{$wQr*+ z*qts*BA z6RD7nbVDI+_|SOH7QX(R zq$;HVTR^10cBRf(r_7*L3Qa?`|TtCScg8j%* zd$*w@I9cn7nb&(da*`Zv*(&&EA5as$epAds3K(I9v5Rx=D9$kk9T;W|jnlO~ninFZ zDhl3`br92}*aF)!tl#Py1_O|znfg&8>xDCnhYp(0nx6!f!wB1zF>t0WY7-a4MDX(- z<{_d;HqHP@?FzT$3IMfg*RorFJ^hv0O}DueY{Z|_Y_nx24bT2Ew0}R7I3P3QQjjW4 zospbb8FYFOn{5`=~*dRoj2XJ4!U0@Wci~%L zj`%_(KsRtUPeXEpLM$;+XY0YkW!K$@%MP|48fOMr|D=bOqCX-iFP=C?PlW~0ZyaUE zf)iy6_Bgko8s>7VECH$IX<+81))yNcw-V|rn;6*Nb+;zFEi7Ojqw+Vnv-C|l0H0@; zYY^VDCN+4u3QxJ2ivjcg{$U#1&1LuDgUrx-8R2eYr3nlnL4H~r#Djh|sG?8!#Hk8e zA7gV92%LTz!%dtHeT^-@P8~m1?s7epOl#&ig5KgxrF!~X6(oK1k4JNB!{Fb1YKWch z8)6W*hLt|y2Y%#TP0V>m_!q{5-3IK&v7_beFMm-MjvXr#S82H2H9{G+0cJC_yiTPT zvF+6QCS!1?VkAGDv7R6HD!aMjS&nQhQ;^eDbk^ml0 zHFNO_^kJ8LdrvHKRu?||P?(sJKK zC#+;VPNt-;Qu@#%%P;sQ?u0vgni9l@tjiLk35GW`buW#LuuiXAW?8d0dHn#hYbTHu z;983j?gKSqm9c;gQMwSEuVk*DTbGE)RW?ms{Oxn)5>ud85I&ooiOAr$rXOGp zBE!`nHEHQ-WswMJQWU*+MvAfr2Wm(}qt zXzc937{;@_tYjY}zmHfwdM-~bpUvu25) zm$WOEYFTTU&DAIW05os8-SSgo8g`=#y-n3hX%I3_NMP@Sciida*b|Ron&!wJrmhcD zSuB@=)rugTir(ZelPh$553MojQGkpKfCH(Yt-q|$iDNuU4gV+rGOl5YNrJM6{=h49 zAp|wA2DT=B7q7dU_#6s>i;N%m_P5KX`|oGQ=ibs`adArOEHWahux$I>=gTG*L+_b7 zS}rp=LKlUPB(A`tnM9_7HC(5P+cXA^7Hq4*r>Uf=ty@*%GQ!B1aS3XsE zFH(0(;#w?<|JKJR1>ahrwQuV_ zh9z7W#b@Hf`+ybi>a*bm53vJk)rle}%8A!du76d|Kg;?p7N-vZXUE$f$l5bHXck0IRNt;vsajAy5t&&oOPvM%sejLKxUc%Um-%nD6H9 zpOcJ4#UN=gm7`3v(0=9U(NfNyDdqP4p`*KWC@ex3Sl^w98q`@AQ^6 zC7ylh#d3~AEIahfge%1(toaM_0+Fs$-fQfLzv=Lytcl!q@7-l&2b0W{K{O`z5LeyJ zh4rjg=z(8+=_MwOolp#yNy;lfsP5H?a+I^FlW5jJgR+GDaj#Npd0816Eu*`TP5W5_ zGK!+ll7o>^_KCcBwv1u!b*-InRtMi&FkJ*`^ISjP{F_j1yfy*CQy)OOU%7Zr!TIe& z1Dj!wwNsC>p6S%7GKAS@fB|F8h(S`qHhDCOhZz7*twfeb@{<226uX0B6Fsu!gu1#4O%~$4> zeBL|Qc011ggBki92ZQk-ePw3KY(6OUFto&1xYRJQj6luO2M!2K~>9>_tz@qhn17kFS0KHeS2$+|7dxF3qJs-EV8e|&!W;E#`)@=1LfPM9s zkCi!&{20X~Q+K_u+$4T#r3Z2wQ(B20>8vvLG{8((w=dId6a@pR5wQ7joYp^~Z8dWR zyBBVW+A^AXaD~~)H08mXQUsIbSEFB~90TmEFwP9g2~9l+ z&k?@4K578%ybtZ%^Z2qewVAaf_AX#vtsjrp2l**ga_zH$suLF*sF|=PlJH53XYR7( zx~u6ar|c1AT$lBt7ujv(3a1IUL%nOlI-0_)EQHIX2@;UDU2tuUiYb`9v~<`Ih+m&H z;j8pHGg#r8nSq3>Q6E_MmG>f?u`jn|DaPVBYe)JfOO{T^eMPBMrlPot`_%UxZ@P__|N@;mdc?}ESWk1C{gBJjF2Zd#DG*2Ti!}!W4DrwDM0MX^^|h(1F49*5!pBbr1)KcmxN!AqHm23}Q=6>#aH~0!a6KiR%U=mb4+oI%InDry= z8lr~sSK%v5)Oum8_G+GL(DC>mXC7_hhR+IG(|4?Yg;|Y#jAssjvk|245WQTD{;>v;SB01x zY3hvEJP8dx0n9IcZk*+p7xne0HlX#RJsP%>qY%??PL)%@Kk?uLW%%yHSXMT#H)I5k zrA8WACSXoZyl1x&ceDWqJ;%WxeY{L_`f`u@rQ$)QOZ~9dxCEa}yCE-@g8?4Wz!u8Q05q?rI$GMqn}|pd9f_gd*oEZdT1uS z-4K&^(Q1h^ zM10K|x>Qu4>Y{Brqh^raic?J0Y$9Mp7%+4pvK1ngihI%nD^7FfKWP)B@($tkTXPot z7U$=-99E!QhOyS*#7nKxyik6_`&-Q&d{HN|BHxK(uqby(o>7xSX%q+j_%{2htbkXD}M3)L@ zI?H_2zP**1Xv4d=XKjf4yIo|foimsLmKcEFvtt)9K*y$x!q}EQzI+gc!6}8TI%y4W zp1K;NjYU}ee6#teu?@u&iRfd1kcIM@F7lMJpxKE)X^tSAN27b~2R|tjY+^j(WC+Sm z$cBL{{`={Xbj7nYv_UsEWl{TcX9*``w2O=lYuXBUXKUps4dO+30E}mk1rJshLgrYO zXb|LuhYjHZfX)H%0t3whx9u;teeb(v@3;PlO1`OFCtZ(+S6Q)!IIba2o7NJ1Fq&!b z^x}9&5|p8jKUnrK^?GG?u{`$ae_@<=P84NCp|IzEqhJNP}TV^+35ia@HX$z-=@?vn=BaXmG05Bh z=l_?o_k7aqIP!C=`*rQc8_WzazzhbCBn-K$rQao~bmCsF}%X-4)nSTt*tW7`O05? zznuGb|E}zueSxukOxdInw>j2;_H6yMiyeyMKsCZW2x?=%$(GS^mk*;s0NyiJ%0CITBn=0;QzlH9GTUEtL*V~ELO$g);b z>#P>d%Hpm%u9ogr_wYB$K^{cTKsxz(n3e^KZ}mVx*&@s}U1l~3^Y`;6@$=AM3rbpXFYY|BL&FgEc~ zAu&bYHcxzR*oLojwBN*f^QsB$Q+u{yzxYP1nl>=o7A-j1vCj`!k>dtim~?Oqnnx3J z9m|M6f>+$vdLGM!!J8%yajPJkP=+z5jZUGm4UT2Snas>p7jZoUb*89GO3@I-8!!kD z{E8cYp!jfG>(yEYM<@$Jl`)kQz;sgdNuP8SxMslrHjx7t9F2c&^+e;)+pm9cC8)_;^0Xls;wE$0uKeuhrN_Lu`4LQ4Is;5y)z?ADs_l>- z^7EL44}JBG(tG}F91OZRG^iwKYTZxo>*yNGim|b&`+Z&e>07MY@>$tnj@$t}Qx%F% zFOrNWC>@r)Ex#~U25dPzD~z@}Pl0KbT@?~COc-%xE$EHAfS_4ny3$1!QP*SenIC*V z%hwh52vf0)5@+R-+!R7J+{n%X4i{?(@4IikQ?CE$CuJ8pTcDSN5xMeF){=ExZ;U{6 z6^~c{ufHuvzx(H9gdkt>J+!SNEKKs*(73cnn^U>a3_IisWoFldK67G^f|E7QE!OIs zMMw^yPi29nlBRN6MuuDFS;=Vskt11=XSgvb*ICHm(&a1V3Y+~t%NUvbEr(^Jo;*J1 zVxKqvhaZXBBfY4KSCCzqwM#a+o%ardxwqbYn=a%BW%vHwY>CmeHw6N$QIm*EIyaRk zkPr>e!C`c^vJR5^3>fwgA1wo&7U&)HU=&C{RuI?wWuBGFQJFfrOrcZ zGHe*6f8xYL=Lfo6G$b@=aEWqU#t7>!Om+^9a_$iOC}Z}^6a%767>M3pTxM$#_Q=A0 zcL6$e3wZa?>OpV9EVD5Og-_<-nGuKYU14R+a$p^LA_xD?*UI$C<7ERAp?$;-b)NdS zn4u->*_y14Kll{UFuY7mw*BC2GyB4e<>VW0lt+x^nPxHo06+jqL_t&|j2Qz+9Lkvm zXcbPRHO+i5HyE5oh%Mc`Sq?x~-CZUXlb+@s>!>PrVuv>$>>CQRocTJt7C zZwj-JUanJwP4BQ0hdJ|KS+c(#kC{__4otjnpYlC%e8ZU!L9Vg$&kaZA18qFtD8ynR z!Zfvd{(O1x%eUA);|k6}PLfxESi1XgPG%tTHWBGDWc}6(6#r{QGH_vpa!Y+ zVR-Lk@M&wj2+jD8whz_e1<082?R)H__p>s^g5JZ+*Dz_nk~yRum!!h!A_sNjl7GVo z_sgT}Ed1;k7-O#^lnoa+-;Z$ar)-o8UONJ&ZN^&XUpQBeeB;}td*&Q-5a;7%Z4XUC z$Z!K#(3G#Gz*}j|UcMTj&PBG*>4QhgA?A1OeB*Apa``IeKom_p&lJ*{IvvYXv2>b% ztB}|O>p@T3DE#;Fn7l)r(9@Hakszn?IAQsmIkA@bkN;NT;J3;o!{x-f1j5w@zJvBP z1Tmle{LO5!;%dy(*fVL*H5Ncu6IXq<+IAuEF@S7&#VxrVteP7X zVloaAGmo@9%0fDO(2GC5r9ncJ>ommGk3TK@&?X0@zo)I+Fi6MZ$k2#YcERBQci4Rp zicD;TndcGfS4t!k>dkUGz&{IP(gf0!vf_fTp;1ub7hVP}rl0#j=u>_3`3vEJCpb&^ zCYY}u$H}Gi0?{rv#%3llMT$Rr zOyXTe<6wRi1m10l3QULd&z~t%=g!oz0^pKXgs1mrk%~@QlqY@P2|ozjuX&kLg|X^@{AefU`A4c+4%D z5+RMMC6kBd?`}Nm$j&USOYp4ObmaCjpMIKU$POSJofID`pv)do&WI5qNn}^XpGD}- zVJ@PmWeuhBHe-1Y5UN9Z_|vpy>%HJ~pdj<`(JU=)Zn=8+zTR@<2afdi@)BCkJAW!$ zPXK~7r?JKs7l|MF`x%1L-*c&ugv34-$!wCnIi?0+n8)J_SJjw z#d7p}-zlg6`mf3~3ZH9Gx&@N-5`}^~(-bR~JH+YCBlJ*6kDtPm?j#HH($20wyvrt< z%;R#54B$0C2EwL1KvbdSQsp`sSV&@Y18?w;y;hM5cbN z+b#Ilh)%`s(WB+?SH4pE&%aQ{Y__SwX1lSjV;M^kd;k;jC=p`i@vqsu4{l=f;CcS! z(`EW=f5LV|Kgv8$m#fm8Xi*?fgc$tMUKsdxO;5dsw;rvQ+wk}m=yDeiO52Y^EDlFm z-;UeIk&Q(D)j}*FN(^KjyS#Qu5a^nGl$nBH{Xx<%{piPK?E^NFWANQwkh78kL?R=w ziZV7KO%dG!j48k(02MTcqipi_Wd;v>OyHfuE?V|srZ8NrR*U&p9j4tJ5|xar?V05@??Ma-*Myb1D1d-p2BVx3 zFPd#4@Ibm+isMk4_XdQWM(bNbXk35y{qn+>zg#+KebWq(D&T@ZNf_LSC$o|tr3Cz_ zx#&?u0W)S%7;9X{$-zZe*+#QYPL!TVYifryIpV5ILR-WeK+u{J2M8%wP=5sDyLa_E zo8jF@VPnn*gd>6MBb;N6mfvxf2vwl4_iY0b4}W-sf|~|O81vpcEsZr{l!0eF8uVTWgV??KaAByW}Sp-Bi07r1?fAQpM6CN)0o*5V9N;OO(v7S z__{+X}*b{PD--o&Wyd$|L4Tt*?yADSB`&0ITCm z%8sB+FBP2BNzd$*47`09*s)h$DpT}GwlNtiWTf#FH@FgymQI{nHca6#Mum*8b(*Q9 zV#(q6)X$N#&y~4jM_A2!F&2gy8<*USgQCJvP_n73Wd!a$gzq!pr-$(C;2aWRW7;wa z^6LQ;R1>^ray|)|Pe4O>6--TRe~w%9`Eu)RCj5fq0k1VzPSY+c=;Y5~IUIm@hv1pH zg>n!^Hx2WdV2*o)S^MfIpTKbN@*{8ORZim`t=DCGV@aW*=Rb1ayn5myl$2RONw1b% zN@>&ZPPn{^*NUGi#6oSn7h9YvMbOLg2ft;l&G*XMrAy@`Ww(3^rfu5hGAVRVG4_S& z?AibLf0q&7aBg{`5ZeWZZc!p5_0$CHyuqw|fuPz2e}`f8M_Br+OV51c@`bX+_B+!! z>GYVo;4}vztymOJ;jJZ!qYAL^>etVw;G24@3yC= zh;>npMp`eFUi>?p19brwz|xi|ePEO?2-^T$X=aqPbQntg!P`5}ohb)SpDttgjTW^Y zVeCw@Cwt8Q19<&@IxGVO)d(d>W#}Gbjk^q!>;u+ElvM@WjeMg_1RWKN|DWc>$4m>r zB_@a=jS>cJaY83lWV!c%jodye7k>7$GEYNrQnP}^k`ECqsTT@80%0n^v{Zzm7Aoe+cK1X}?LAdhlO?%&7%^Nt>sAcRT&uf@`-l3Ur}LP;V}}q{Jto00Be@qX-hAqbyMrNKdnm zdy8HC`+q1)m<3$@WNwZ|hU1J*Fxs>2(Ww_0A5sSfOq%ve=!K{SIZ1Nm<~>%x$IB1q z=nlWG)975D8Ny8~9K->q*?Y-&f{3yrJi=J&?H7NeEfTB=x%b)V9*NpMn7;P}j^-@0 zhGDEj#JB#DwGq)AJD6YHMAAkphJt^tG6zIN>IJEQ9luvrXn?aXzfjJ?P>z1*JEen0 zx{hhY%>-4PrtA&bdZ0V42R6DsVRTjh(!sfM=^y^S+<%KTK5yJ9^xH5ks&zw!v`TR+ zpu!1n3Jp(Vvgs|b-71XT`qPXuphvZhWL2O@yX3?@zhqm{h9DFc(on0Vp_oJJ%Y~P_ z)PeQjHbL7knIS=3hf`symKsMQ+6JtwbXZK_GHvcOOy`j1BNUZz2h#_qwg&E?4=$7; zy%#x5Xbu5JIwQ75TK>gb^u#Wd{lM>LomCh}|CUQy*15pu&Uf){?Ojl@7A$z9>3k|frUUHr;-rjGxcN) z;J2&@*21QbSKoQNtX{jyyd~c0EloLXryIbs%Cwi4|Lp7K`0H;lk8^>sF;HZ0g7Hdg z5F2)2*i~qeN7h)C7fd-$#$wvQV%WJ;&y<&O@cG^HB2AUu>h%R^>OJuBW6?crO3DI> z!i#N=RJgaUeJ|bEQK+h&VO8Fo*1>Pm(D^AA6qN>)`~xUot`_6ily#^lrlvyIw(RoV zRbeO%oeO?ARJtMT@G5M0G3)JOI-EX=;5l=;t};V|cC0lDZ3P&*(2@`W1|A?L{hqYK zcX@C92ApAB&^{i~PF`L_v4QGv=eJ#1E_zt(ps^n%z;@#1n5zuA+`fD{4r?M}2(4;% zoJBF!bZyN>2@Q_yk^cWUfHREE#+0LC6{a)JCX%;VK+^?TkE0>>$yg>~%T;r=F~D;``q#^9%xxnC-to7)^`{5D8Jqt_Hw=kh6n1rN_9AJIS7a z@s4nHy|=niR<7URJ7J(Vdt(ih_0Gr~?Ys8AeU>q_CZGteWL7IGf(oJ#04qIk5nfH+ zUCmlSjeA7eT|BYurS%t>!zN+#FORTf(Yi=k$Rv2b#X!L1@oDuA@*G0R~$5Xi&N=P{M+-@+`$aDGW+}) z=4pMaoczmwTMCQOj_sY%V8+y6Cc|=X1C&q{AnFb~G_2l%xpMgMJW7^cfYasf|NKYB zFkwI_PT8^@WJrtkY(NK=4(az`dZ@gKr-y7rt@K1XapO-}wOBw0WF0J!w`GYoFO#tT zEDzj8{JZ194no--2wb<*B+}C-T{UNUgC?Z`=K7_NK8j)|9Ul1VYh?;I=U6Ssk5^G@ z;$Q)472*o6!uo)dl?P>wl`0nh>4#+nLDpv+j#+K#?P`J}i{MHYmvT!Nu#Em30!+7a z;M!t(#u8?_wfhe;CT@Ac)S#yY#y6^4x+(oj2QXHQB!Kz&9~}9{0`MfOsj2vDxq!t_ zl+mMxufIux2vNKcRKrJ$<^C_;EDzXbWg16}8G4^?0c8`mjc&n11}q16;A?M`!SiQv zUg*PrNK*l3Z{5717xA0=vYlDKsbhO*gxQwkAS^J~A3-6Xc^5~I`}bHX=@GkTP(l?h zVd8HOR-WZ>^)Ib9-^0WR)P^%w%&X+*F3t9At$*R~=N*CorPqyC3%t=yF+CL0+w{UT zNy|;lSsFCmD7eBS{t$qArz+A_R9u^|vmZV{S$3&MGpl@$kJLF|L)Roo*@ey;u}Kk* z#Lde#lq$09zG19b#mvoq9Rt&1k+kS3_Sna87D1-G*jRf6J+Z+mmOM%m$}>@|Uh`Oq z1}IR`UEl@56X}4FfBlid6WqqBEXquB8u|9UhvnA$zb-f5d%w(~;dE(OQ@YzGkjPWU zHU;Iz<&m~XV~hrS=qs<5)8GF=S$O?*wv`x^4Ju-2L$GpWIQ&KPC487GS3O@e(z#F1 z+-t9u6A;RTMs!UA#a&j9E~gh&Cd@TOtiJ)oXOYM$Tu>wb2uc`Thx}tEc!-a<^?@C2lL zhp+NFFTEonpm`jqh7ecY*@!)|3=Z_P#aQ1m&KxV4$(~{$coywG%S(lxYBHiGaa0UQ ze-nHyqlLcq&99e}-}{Twefj0GO1VZ5{{$wZx2xOX1Qu`;r3I!uf+5)pb&z?M@}FQn z%q-#7Ke||km~1;^JoU&+HlQXdYd7!oRAlthDRt}Gf%brPF0p+%ZelwzrlpK_O8iU% zAiBENo)~y&s>`J6DQ23N zp#gt#kdJ|EG>>B?j&JIiqKIlDB#ky9u1U{;0QQ!E$T(ESX{VRbN7Ylf4d zTc1130ekB8uaudWp2yR)j{n$$6!%HS_5{A&Vnweyg}QZ-VFS{zeA5U*6;*{uIm`Gf z6MnZYoX4GiF?7??zhx6zlH|xwEepvAOBA1II;P8aPMN-Ar>;)a!?b2E#P*Hs!Q4y` znz=n5>&P@@>QO?}t39Yw+cAkyW~?lh+1I?X40U=D58_L@#1b=QIm7|w$}=#w%lQFoi%3GFRU(?c?gpc z7zkDzK$Nj>Rk0w6S$4}cO%H5_-jyqJY%#91iWk!g=AUhZh4nK*E8m4syD+>yP6{3N z?y*tI#4Lj}*p?zi@rCCe4r+rC3l&>_<9LiBKKMn2L;|RFYLMVqbP=`{3Yvbd;?!{c z=Wmun^cwqkV0D4jZF?+}a;$2>VzM?$$6LoVhK1L@R2KgHTcvaEc}&Rp;L0O1SE)l97BF|?b+g0JHZ(E8s-cs_aD9t)6xFnK zzqhW8NA566HS5gDqzv=Wtdn$C9VZ57=NWT-8imm9enL--trb@G5Zgw$59yPoM!~wVaNbryLNHr(|`JUnWOD(vuu{FNE4mR-gKSPWBmwY zRYrUVHBsJ_L81&{5`=n&)3Q+Qsj`OS3)8Q_Jt8#dn)`P76|q*{Q2=5exkKXLn77)-_yrrw}%TiBp>IpzE|O-q}vXp@%JDOxt#j zV|`Mj zycNfo7iUycK#YPZS`@^g&A4hbTqR6S)2-zvBbgIY6HCux$1j4B$oRY_iMYp)4rhb5EtfftpYF_S_!VALO9zs7FQcn%&$gGPwSGay8F%8B zi_OVHQ-&*#Y(wO?QHUP?>Nl(lcem_!3=D>&XR2YXcaMyBT6XG7Q|L(Z3ge{Ded}9g z{@Lfs4n6!44Q*R35+RW?0E3!;8kqH*leDNe0+7CqBC~?&#jt$TpRsJzo4)|}cX1yd zV(%woXh^4xI4w}03k)>qB{f=Nf-qsGFvF;6%6!y9GhHI|A=H#nP2PI49Moa9U!ks| zaatY(fOGfU!eokGjywLQodthlfD^c7Ua5KFh&L?~fCHRNL1DVYEfkeI^kSzGV4Wie zsZ*=~gq!F_&&HPpfwzm($js^zbA%9HOvrSeTwNBZ;#Y`+BhpqslBxCvvl$0-PTE8# zCDPbJDDF^46ov@U5rBwV_hOqxDM~Lj)kb-9P0Au%wC9L|+~CP~sUrh$S5IL|P;Pve zimX>Y_(ohCBn!h*mLLda?KTUKU;gPVE^qFNXtuz0jx$eL{#9;pwsZYVJAIr#!e7%nDPCk6u?c_B)ybA+or4(0%!RGh6l z94X)jQwYwAJo12lxd?(LS@;%VgAB5cV(p{IX)8dQ zOF6(9--u{Ipf$Y@p*gB@%9SxzS6R@x)?tQp5{vJ`)}&?lG$GP(fr6wHIBHSE)f9ru zg@KpwG@Q`eax%4@h8fJ#y++Y=g7^w%-wo!_W@Q|b3S9u6II(9xg{5kW&X0BGyGn75 z5HnnRd`@Wb(gs)GS#V3tJ8kNm>$h*QN7yg2rT6@Udu1Lw^Ax5pJ;=0KlU20F3`R-@37;z-lG%%ntBCv#+kd{X(nRm5G@SJ>`@){;5UlWk>34_{Ga6)Lx zWvu#4cp0|DLO7#v2QEw>?UqL3?$MAiy(1RQyw4W*n0Iz=A@E^1YGTHjR@h)pbI+qb zTbuVt&$%aEO&St01TCCxKJ~#z$_o>*ch#eT+E9iFLrsVyv}UzJPI;#ZgDiTphq!-N4JJ)ZOn>gtV zKfPGy=!x`j8nEYKKK@oAR!KXJQ(7X;Awp~l@4RELzRqIEM=&8WEz~2!!98hBWuRYLLW_i+=3p|Lm~uCCYCv$X z9W7HCNJHi$^#ym_iw8mAPuf$-sADU<4_sVjNUMxf-MmvC;b7r9qk8_T^Z;Js2jA8? zH!XIRFa z$xDG3H1Q(?Ra@_(mCs_z8NfuOpH0kkOPCQSdW~9t))0Up;)%r-L05&CIJE#IWLg%Y zA|n@{e3Ud&J|4N<`_1j=ej1wJ3vDbTd&+lcfe5i3>SgJ}kJ+vH*Jb0vrE&sB+Nb;- zU0Deq+V>6`$|jSHYffRZ(tMWs$`AF_z#b)0z&JxI)*JVsUrJmRk){L)rw(I1u0fdz z?Xn!hNEh-6Dm02UG*nG*PzyAhH5d72FG#^8jXO<35I}iKOft|FWr#)=5y1!23v8B4 zTyq#M<>V$r!n+p1zURIv4p;ALJpnnB=t-YN5T;PD%c-Z48SoOqbj^pWg3Ch%JwlJ@ z;fLYhq-}cEN5F*N!E>_26=SE<@H-t$>R2+f-DocgtxbAg>(J~rye_6-3S>>2meY_N zuUFY{JWzV{)J|ZL{*T^?Ve$c2hy~0Ceqf+GxN|Ok^80e($3H4vZ1OYo%6c>)wfxN2 zGV=tNXaFS-{BYxfsB^4ReDKU!=8??CU3FrmI7rC%2p|xq$uL5|iUDY~0WO@R?Tszh zaSq0V1`7-2_}R1N9*!a%7=PW%M#k45xZVURi_sRR5;K8(VVLHyL8`+yfCmm4x@2Qj ziiS!shN(nVk=`V3Ie9Jo!i|bp;pX0@W3*Yjj+uPUF^B|{+~wPv&yg%~X(+UYv(zFP<}mPiR4DZj;~%xW}!2&AVF zGY1G#JOGFkMU z_si_9d-THihBj#NtRo3FRY(k(WCn-%HUywCW2w3X51u_!w&_W_@{79$I2KfM0?*cg z_2vl}x-^TwT0c!4rJKoj#(N6mIr~pPU8XJ_W(R_)R>AA7Rp)FmZM3 z0x`G|MiNYZYTjzX15M5_pdn>mXDnrG>C|R z2}{)0zk*(&mPz{1o@Q;~AVBKf;RkC#x>q6hknauY1caWsSGdI@#5ZDd*fuH@q17ie zAj1irxX&HejEm>V*pwYOdQO0Rz~tyF*Gun}FX3iS`GK?3(22QtNEdr$w+`XQ)JE8$ z?*p8@FzRB1DI7z_yXNS@s}Q|C(ud$@F|T&$(aYQwut|fT%1VHRdY7SVM|Y4| z2L|`TnwrPe9g~-g!p=vqW?c|QsAI~jQ1H%Y9>gE%$-wOYXAMC=K%?`}=Y%oB4kl^^ zky^F!EP?L!nid_e+q%a}2=Bhf7|@YypWeZbxfMPEKG77t3RUwH2uc>F3N9F5DlC?} za{f|z_O)RkVNJ(z;o*@H6IG-zOx=}J=`Sr3ys7DwuIj_5f5sY3;1t`~w=nz9|5 zj#x}gX^VI|FGQeH*I8eY5D|`C(LKPSsDPfB-0T>#G~t-V8sitb)9dV@>03C(ueyi5 zwgJk7UW{=n5uX--!;7%)9nE{6y=^Fa?{jY22zz0DAvdX4V;N8E3f}}X;@Yp-`I}zY zF1_T#wjq>k+mp2%dZ5lVQtSCShSoA(NOXmh^XbBKD34sn_H0h!JHC@aOE@v+xOpn2N78 z-8GIpz~YJ%u3l6W{S%D9pSOGv*3`P8d?XZUg*QqJ#;42?;^c%1SGHM9;Wj4eli&KY zEbQE&{*w+#WT=Cyye$M`612xm(*d96r5sQ>wP24vyHT#a{T`MERu&?xb7lv$uk6u? zlg-8oz7YDcFQa0j@1d_nLP`#HjR+Xt@ciHMZujElF0 zl}gc?Z!mW80Im55jjxNXeHzn`UR*Y87gepz$_V^()|;R>QZ^P#Htd0bl6Jy6@5Bkfzk;&|{lw zwD%$FH?FB#Zp%V>)qpuQyQWU58^6h1^vK&KO~*6Hop^)~jw~TPAClRnao&FK*JbMH zv2q0Ep?B^~Wtg;ujJX+y(?xTIIeLP4_dx+gnV0B=K78|+W#iJtauE1tLifVR89We{ z>}@0FYwy+<)6{n#nowC`p?dfefq>ON<4PNG4d=B&E{PD&_Lo6@U!}qbFFf2kMpGwr z1FH;&?OE(u3CiZy8Xk#{P>dKaN!rFIH}bTS^jNbl=GjI=MOBkp8lZU#QvLClti(SD zS20u%VF>iiV?rdH;MqXr3-Tquo15V4RgfY&+7 z*@v!-w@EK~6EmVpgyu?N5fZWrf6RCw0)3uk>n2sfZ<2~2Y) zg}mb%7K1IApNqFfF|%P3E_7`^(4h5fgLmNi5nizm=#9C^@F9Aavrn_PRx>ZgrY&Hh z3p1gNSvrdacim!U?b5aKfYoQ#neWv@1KyAD^SeED3p$NgiMR}kfx+k|=%4*6*^{j# zzvQFGqk*FUfxzHU4&zY^$;Hr|BwW)r9Bq-)kVzZ-^%>jg!&Duw(W7+*6XM4DGL9W? zt7K-ztEt&LjRK7lHNc^$i(`l58MRkn`AyjTxFM=A*Bj%vhj1CN2_GmMu=AyUGhUKQ zOzzbBp@YrqH{uv{8~*eZ=JS}ZsLR$ul(Lb3-JS;AQC{b6>P*vPzpU9KM+vJ!QT$xfm%><_YX%ND z3sXF%@Yd6T#+{PgLl1npHhsA~McGd+0$kDWeh+6*{ z=XFIP>S6~I;gAIb?*IJfWtCp>fHg`Nh_c|=Dm+TO4Y9yvn1gcK0U~RG%h5t?3vlgC zt#+=+BQ5RGQ_6(GQKQt~5Z9A0Odyp80&F=n&LQ4f7k|vYP7IdLFwt=UVN3WK?4v+7 zdIv2Y7k$^0RJ=5$J?TeDhD%4p_<6}nmsBJ)2-W13@Jv1V9tE=<;2Wjee|RPyn&-(E(cfMT)&pchGVdfbZ0(RYx#pNzcbsH^v z8%DSKyAR7vT);OjT`sfad4N1-Xajm(s^*F0EHh+vQTG*(dI2JmrEkK4&XlQ|MT1~| z>^B0euvspX3i5sAg-25#_7FV$EN)b`R1Ujcgb^!Q^qBOkfEZ%tU0He*FUXoc6mJ@d zujQc9ydGq3{yN2Jw^RI@rTD7Xnt$N%ee+!y0L2EI2@qz--a+pO1my6hrI?4_Ez z0I4j=DQoV&=%jo6}R@YgV5^JxP@S47LV%uT@@sJ+cG#<6) z_Y@9kS?`b)Ep|~R>p>pS-Y%Z6OAOg8e)=ivd|t)7bg?YZE;PM4o)sV^3TdHoTi)5e z>R)9te9L#+E)W@<(DqG@@4YRvi4h^@8y9uH#WG#;DaYmKnM3J@m9=*b!Q0EGt+uJ@ z*4QD=HkO4gCM+-h_^0K@KmVeX&u*6^q^?FvIjeN zh{Kp2V@_;@pWj7)Ri08cJpGZQWj=eKK-xAgl50%Tz5dHzmP2#__mk+Z=0wQEy~6BX z%6x$(zy!Bsn908;1Qj?T(0M2$Tq#!<@0A5cXhe#QM;By?HsT7T=W5+>R+{C8!rGm$ zFZjkd92kjf^6ItgtWU@)=X;fDL^Jk>Qw%kUCB5c8mwYnMddO^A9JE)z2wlqr9N#ic z%{8_8sukBpol>-dOAg1GU3H-dS+Vma(j$YY9BbG`gHcfsL>r5mzVm_9s<-Wt>GVQ+ zQ}(YhsN1XXFsxf6n7EtYL%AyK_B*+MANv_=0g`v^V^C&rrI)Epq1F>+#M5-Zlbc{{vfkr^ zfBYxb>HDZ0Wy0&BGtXw%<1){9qxFe~J!0YEN31yh=<=1ab@L`Gu{iNb6v~bf@hNfZeq-QX zwU#t2r|T|unWv_wfbRS2z&%3A&}0@9nHdI#mR`UTndosgZFv=90&D)9<|PNs)q4)_ zh4G8WlVK{A*FaL8f2NW*`5`p0j4!DWy~CQKpOohu8+BJ{ED$P9GEJ*ZaO5?%wCq&~ zv+A)7+avZr9RKRKcuSuwA<*BcKy&Qh^HRh?&?wIH3sxm+ej0#Q#EIX93 ztlojMXUYOAu`D8>Fa6}7v#^8H1z0l$MJCi8IIW9{D=vFTHDlYpwa*EEb{HcIS>wcE z=b?#Qqm!QG<-)@9J$JiaXVK(~c%q)Ta-$r5l~qm7Jzt9c3?d>0<3c#J9D1QQ%G!s& zEw|r&JM&uSmbc10-+JJ=uOkP%ZUX&mIu4G7Xhi+Q#7YuTBmpL5Mfp?5(mUhzuGW#M zLcpb=L9?g1O9hf_4qtfitsZHp1XL@7;W!C(@$%(z{wF^!a|}GslDXbK+M1(Xay7Er zZ^W7LX|$o<5P-~@F$5}c4ukfj)Kdmo;>QK^;BaDcg9r7cl5wb{eE3;Gx$Ewss;y$?5g!ywWCQd#TTI_MBJgP zz;JaO$WtZ4GAq}&Fmr8Qyj12+AWB?0-MqrEt2wJJi;9Erie;%o+~yCwOslCQM5WDT zV4GrL=>haqy+f@Z<5;s?{RgqC2Qo=Vc00uH6MjUa9bdnO_ueDcemswMjd_Skv>Bx4 z+Y}6_EMh{zlCeO$>QXMZ6RIW^#XK-d2euo*MKVYW8KdKUKFfO|grp3Pd>58_U#X0s zmP?pv6ZKmSBO4cbQp=H|nKl_pgU<7+<6y>PYy*Ly=|^VeYW|jA#bONoq*r4C#B+03 z9f~^A65~5@h9QUKLy($Tq9^~o=Z1KMNjF5j%}Ch2 z7ti7yZ&K+eW?$;uHBFZp|GD$eKgB$J5%1E?C^k-o$-aRAvO)YIJ+0HPy;cr?lclNX zfsL3N;)1&_ab^7q7rr*ZmkNtxb6v-f@W4HYci!_T2KNwTqZ_wN2Zya0Ve{k&iqgoy zpYU>~&b`Sqa9b3ILD~R`=#TO1chghRq4cTmY3hCp=ZxE{qw?s&l``|}=`z5y=vu5< z2}p&MUgrb{jm;a^%JAA1tPD5G{>TZ_!C3@cXUYh0I7xnE6-P6Ant_MhTocqDZ^dfm zh>m|vp_uE?F@u5~rVr~%mZ;TS>dwrS;bamdI2@wYt)IVA#+Z{jFTBJgwmFIlVN#Ho zeo`4BebNQNW%aSeNu2i?Q^7nb&s6wf@k40jtvE(U%h_4 zTziwr#4MjRKr5RiootYrShY+^hw{o)AtIu}lrTkvo@n6W#4*4D--j@Hh2hyYW>u8CYys1wp~)l^V&+@Z0Tz!otp+Fd zZ*;7{CXwFZkRI0%;XI@#JffAUVP_)0X~Ed$$92x%3_#gC+H(RjdCDfuNq_!%*sg3F zsdCa10MXJEC~u-{cqMg3JCM9&prwF~oJKYy_-GOoMAX21icA7~WpLpx@; zL;KoPaYvcyvrWpW@BVq|z5G%cvsm*6IC5=Ifs2PM?b5L&>t3dAoyUTL64aZ;^vFWh z?xnbhGO>B%W+rc|SfmLGA?2`EYdMA6=jP%|9u*GKa`*|aYD?fF->UM@8$JqymI24^ zr?I##uVemZ@4b!7S6FM5MHHOI!%9%y1 z8A2E;6sa@e&e%M8#ic&=BVBpI$0*b^)&N(C=~EBR)2xT^87eKmgM4H>Et5!(rXc_+A_yW4drUzCm5})y#13=eS&c5MSqDy1f-A&P zgDf&QY)s;ZA(3L$;(#R}02Jx-PZ(e{obNev6%U>~XTV*^g$LN22jZuM2q&sStVaXb z!L4@_4S$4YxT6akiPOB}da^<472f1E)!}2`vr;Fq3n=2R|966Sd30O>^cpW67{1~1()&ihqM8szK zF0Q)Pt2tZefkAkZlXdaM!*}(oUlKw%o1o_9ZG>*~QB?Sn5)cj(Cg#`;oCmfpUS=)Q z&9WcWARaIVm!LgMZUYc6iUnAc%? zVRK)7qioXFTtC*$AZ64RFzpVgoA+5S^8q_kL-z_A z3me)Xepb!^_wo^GOZ?W3Mn!Bq{8Enuusp^$0m}z%#4mx{!~-*y1MYxlB<4;O&Y=Pe zv-uDl)YNIGq@xP7-})!N9%g9wd8BlZtvDt=xY#1D7NRk|$XGZfLi3ik_wE6UbTm6U zDSBpMUv`S1vFCl;nW=Pu$x~2M$$~6#c-TF*wfO?z3gZoT*dktY-Eq3u$i!?2I0Cq= z?**WC6^)|w1lnr8pn-+R<(MLpKP9dWVIP&}9yq`M;SbA;`wo;N06TT=EO3%Y%4Pnf zqtug$nSx9ikF98x^a2%Nw}1HKviR;hWe10o1LQXiqe(A^xal?nmzb{aNLU~nX#609 zQSeySE`;jDP%G8&h)IMW+9mmqyz*?bRNy(w-1#szVLf_;&~Yj!>*=YfGk{yfOBk{u z8>8Exhyw@uO{rE|%_|IrbSgpdP9!Lx5O4}d(Q3Yaspb$HFsR{qKqFCuax7&`4`7|; zgvNM})wyYe1_xsru0qQs*!hEN#cziOG{@XJ2W;`BHhDgZAz#|qYLb79$RT-j@jYpo@LC4Xsxx=mf# z$S8;PrD@bt2ag4whYWh({o#*7FUS7!d#v8!I*`IgDO9MSC40k`&w=qkDMF-o@K!Ee zDmQ=jvy7|E@T})y8VFYp;amA@F^o5%pO4(_T3e{ z6Dkj}$?zr)6KJx+SB10SvPBH-p)cY|*E){*nX6$mh?zlZh>Xq3GSwfRNHg@FFFZ>| zewSc)XZXa8fUk6BNle3U7Bq|kCbGqPgE|Q9xV&5PFtV`|9JpHUAw2=7JOK^8nx?IP zVKLR3D>u!(&mt{3?tQIK?c4UVZTj(-dMEu8AKbYo-X)x44k7ptn!m6TNae{ncwS|q zF)tgrVbo@7)2EW?b<#TqR#!9GWSHZ3|MkC?`HwzeW5_R+V=ul?28;nsq3Dqay*$j9 zcnm(ed9B>Pc)mRR_@gq1C*B+a^Z@y2R+f3I>}+!mq2Cd1>houxW6wl(8DI*+1T99s zB5zZ*R)OEEgQlL+{!`!Jo9_zVROWMM*a7^7GDA;n^U4)^IT3X!bJ~$Ynm-+XRHju> zqz407U-C8HB>WWJn3%Cs7xbegR==m6)HF;>K_;ZkJVl_v7aC%)4oEp^$*N@*QSymH zPsU~oZh1!>7q#BP>^Ov`cHon#Bf}ZZH1q47@KsrocENaIVXGDzx}ep}5~|+9O=}_{ zl2Cdj&um-aEd%MhH*S=r3#{sm$ImI(PviXr?Q;k3C52SFpr%8exTU$*c%SnwsrxOb z0C0k+9(fJuHEbc#@BH&mvTojCCf4;{e!lT)0$nn2{|Fm`rBNxwSS6CKKP$SU`P_FS zKj52#n0sjxG6Rvu32bI)F}MH%fHn7Fh{7j44G~l%65a|oE@i}Fmi>k>HK+wJz}Ug7 zNE@v^1Q$EiD{cof%QQCl83e-&6u~Y~wR;>!L#pNtM9vY5KqCF%EDWGwLK2Nt9bm1< z8pgNr3^fsmQDPA2nCFsejU(~KEfzD%mKvg3QV16!CMteTl*PmuVCAg#X^5IPv)I|Y zbk}#CYek%@sfQlPfyn+_2W{gb&fWnmLfhilYvLq8eKLL+AC21{f*X0R{Qgqe2Q!$* zOyaoK82nD#(*mz5Io2Nq-cyEBd~)$itvfyw&n74NJ0WzQwWc=dLEXWzV>DVXC%*A@ zbNrk?002M$Nkl?f4?RGbrW~mQcuut5!R$9ifZf3|9R&p!{*9;*i6H85@e75 zY8+{)GM+>i!x8M#(*yndO9)2yrLbP2}zR8^-&#KT;_g=4}N z(?U9!(E51g^?_TXv%FLRM)uipW7QQ?j-Mzq&z~(_%!w0}Ww+U}muy(gwv{hf4}b?; zsSoQ(o&~&7nD}OYU>d8{!s)YRc?Gj1M6O3ls!aqVPd{+fa-Y zZJTt3Tkp^zy{}ET*+3JG`8G_xTUZC5t;!b|r$9)7ZxeXdmAA} zgEV|4NfNT*Szk%Sgu`M3kPN`2W7Yznb2P{u$0t7gkO`EFY|_X)p)b8$W=@?beJ0+z zs*85@&?}}6cbFZan2j!9EknjsA3#&PFs3<_6SZ4m*fVcZ5=esDqzvRLy$DNt4YD-O z1HW}AWQO#;J0ar+m3cwiXqCI*x_@wi9Rr{xPIuk5*X{&w7XTi!4&&4V>4_zyFuM%s z_0{PYwja`Ogr;>BWXUaq2(L|jr4An7Td`0#;e|@L#VFr-Z!+~XZ5b#y1_wj%qvo6i zSqbA|*+L`U=QI`Qnfoj+Kz%uBK64J6FkJQyacaDpYx@vL5~it9^3g~sjkmDXB&<6V zh+;>%H{HwZ(v{TX9C&r?#Z^MGWeJNLOHP@lVLdbjjlyoayi5A^hf<(`LPIkIbhZ1@ zUFJGHB>fBYr0_Dd9_262Yn5Sp+B2DfR-j($NZ>eS;s7;;{z z$M{8I?PpU;-;Mjdof&{V_~1(paV4^wIKH!;B>`VIpYk27s7!ezjRdQ-lyZ@dR;W!J zZZt;CQKlRWd2v`i*zEUFMO?E&H^gFrwOV^%7nSt_{=UK15M$5Fr*r^~0T zmCtbIn5IF^qZOdvP+1TOnvU~HT;V$|;-pg>Z;cu#k_pWmqEf1gY~6-=tUVRXIGRmn z=w_}lFnbvn{@qW1UygkFm2%{{v*p0ygMDLb99(c!K zyt-LCh^skJZ@ZM#!nOp#cmKt6ip|w$e|%?**!3Y42`d5&AXj)+lRtFsY&r7E%Xls^ zfi-3~3{B)!$5H5lgPZa78|BvT&zF^pm+7%SD2M2!PET;G(1ay^`QID!Q~9A1Z4iMW zB-X%_pp__$moU^xy!I?l=#;pGt40K1hd{OwT$+7`x`$IQt~B9*@j7*7IZl7&E9JOb zy&yz>|D&Ja=8fP5C>I-^p%Y&%UYb~=Q;ZNZgI*np)aC%3NA zOBj;I%u^@Ii7&mv;@9U&*9oppFh?O0M=BVO%S|E3mNB>9`}pIsjA?6@ZHDJGzW|rc zC)tXH@lvV3Bs5?5#P`aj}3y9O=nyJ$%=~wfE9@e)LGB0BXP*zPaYXAAt}U z@UeIUhcniioCS7Vc_PGiT8k1q)!B1k&A3MrK>ch|#Rss}q z`HUuJVUyl7^+7mnD@tAuvj>*yjT>s?6))i_J?N&-ZVRp}s7G!11D~WkVHQO$10@d$ zjHF{_XQdaunM3N&%Hi~q@nh@RWIPhLUTa-@-#nWE4+>!MY#FRim(eqU2wTb)bqQol zpeKcxOO=rYWomlvw6DaC2^3IBr9I?+S;Sl+hIghyOgQ%7%ac8^=CDF4ST&*a&gceD z@X&g2{z4hxQG%0WZPb{3+_qt?V~6g-0%h*JOHn`~P&O|?CV+~hYThH96`TlsBmRIv zz%Hh{!RDkaeR8Edx^cHG&%cN1j=3H%0GAQkMbO#n>0-89AYT_RwKv$s>{4yMq!p^N zW6ht0Z=L{`iVpz1fH1wy8EAo7Sf~t06vlKmBxh8kgBQHF~xZxpVn)IS3Aze~*_Ecw@XOI0iw{h{!|Y0%|JJ zN(U)Eieqk4CZ({%!D){vb3$xsM9APWV*t}=b-v$VP+CFXq0yS|7DTZ`xz_1HzWjsl zm6QMB-_wweF!=mI*?9YHZ2t&5!a6R~70;Bby7*Ea;)^!{BDWSxTzz^1r}-|l74(45 zy+l?+`i495NiiVgM<^>>C?Gusr02<3m-{#ZVNx57=riKFoZbvDR4vZ55#`X7riDzz zB~`0Tr6?1A&4moqI2||LPyNinP=?UTkmYV3vLeO`9!|5fI3%F~L$M4RPZ(gv%^fq) zEOFSw7Wa4<5qM5-O-&0L(-YD$16O(vL$OF!B#o6E39Bjree#Z`O5Fkjz(sN6%NUcm zE)iMp6nFn! zdS$biOr7@^niekp#P_y>%s&y&PqgMdSPZ{Zd`8#_Kj9>$oIZpI?fYPsMln?(nt&Uy z5c=YhG%R2387GOfBh&W1emgn`Ws3v1EsV3eomSdmt|!<;61cRH136DfVf&J$+VR47> z;{7%RhR;lyVkP{;FPtm;zwvL%^fM>R7{`Y#dY%e7HEWr@#9`xbwfu}z5PyK9#{s=E zG21!tKfZYz!NOb)Gm&t>tMOXAgiyeSU6YB1~b~pZ+xSi`cMC{EWGj}^~qQnFpsPra}pQ8Jc~K2OZmizz_buF znVMxjc@d+5H!wc=L0Elm4wDMdL>2GU-!?*JnZf979C}(4HF<a`De${Nqz%+CW~P!Za1pdzg)PtEU$ERjnO0G@5K@>F%CWD0 ztsFuj>N3Y>&4rdz@0QPYP#d)pGz&&kN3K`b$0hsVp}PLyeLOEWnH$tYz-;55pWVyF z5xJ(rz)gJ;4oVS*E!`;O0-PVf8}}-5gt2t>3r~bo*>K*c%WaJ~?dgb@YGx;_xF?t_ zV9&JFv;}EI)0w@nPBdqyYY^Gn zjbWP<9}zBAyyp%ykb4uSE>Tugc!kST-DPZke6tP4^A!ckf@O6W@=wmBVNWr<)38D) z56~Q=Zvcweo?`{+7{WAiv1Alvhdmwhj`vvylyu+{wVZ+n?OEqGa+NjS_|@1%OCj6n z&AW<|z(jbtpKo@X9l+Iuvc@=- z0Gg3wUdhmeJ$>!tJ33-riX zA_h2jV17Hm1|+or<^r=(6*9hBPDjB`+(T|c_~>C-7JuUhI9%YZL^x?h=)_NYUV>PHAS^v5`?rG5YvdA zErB+dWuvwz;12U?7S5e1N51-M=|1;t*`Up=0*tGas|<-RT=aj=M0&M9Xu9CJ^x>Vyv^KT;!twFq*(yw^0oFE-i&FMQ`q5 zIy#roYYu~?EITNVL;*GmCvd@+dF0kq&5@)v|F97Z0wi1dBuBpZvF4uJz~QSWkA!Jo z7(#x)uhGpXZ`$uXQ~tuF^a(=@+e{~MGHt>WQbEySp4$Ll411`f4M*V-5JZ<=gwtY} zaLSdsB!|4Wo}2f=+%RW@+h%LOx28j=J%AJjna%)94dn2*N(*EIV4BygkD3S3p5T+U zrzLa>v6^alBM_T!-jjax5(NbCZc{(o^pvIB%0i$ubD%(y5rO=nZtG$IX+4xr+Lu$< z6EY_iC^~dmQA3ktcz^`Kx0*zQ3&KaK=A~^wz9l@_rG%_P$9y_N8T-*6PyFL zHPaJLr~Koe~>{TJAQqQ8P6U_*A`8~PsIgx;ww-&?CM$?mr1g>rx1(4 zAzZC^w0>x30)oaQu*$W2>UbHv{z~b8?bWglgWn*HG0r7j;I<%PI1P?E<_)Y8Mi*RU zhh)+l96wT?{)_LH@vXZ|!UczzWW$s!07oz$K#UH)Af9lNAlG+<02YbHS5~JeX^Ge# zjhc>2$B5^l%e@d(O_<@6vIu_rFwEnB@$GWzum3F*HW_!pL1&Y3utgS}-GQ*E1rbC& zu%4Mt4-sONgEUBjQ&_1-?&@y=T8xI4xccMSRN*0qn4})GF@Kn*4g0 zRP^$5qP0xLUiS<;T5A%PA*evPERdgK8a6o&>p98@8H_Qf&fqcTn9VlAFZOnDX2Ud` zB`|@iQJW655t^fpsJq=ADOctL9tr2SXv)x>?ZAd9-8yZg1H9%elaNl+s7#-C{@Y+> zMk+RA@*WazgiH4RvuDb)-~CpZKKpE0fu0m#JD6_A)Nj?otzG2V|LN<{(o%WAx{L$rY8Pjw4vLG)o$y!_IZQ0~-UNC4QjZEKV2UCHoN=orADNBX zausHdapPR#(q4{TP!3{nl9se6GJrdn^|?(KT*W#;SXXhV%P3WIqIpX}hW=L_q$QvU zPj=pTk-bLvkgsh)*ZQ3YI4IGppK^FXGe3t@AgVIZ$yPe@si1@&Z0LzHWX#EYXiz4V za+rgPHH>wy7iFG)0!6f-wGf=*u)>xzETK&a{x?-*$uuAD6HDjuLy zQ?`@zvnD2qTi+@*qBcDg6=L$DD7CEQSutomctTt7l`WTA0~s!@rYScQhAj^9tI{v3uHL0YXVnhwyhssTZw5)b+q|uY6 z=||(Rkt^URd@9kB@Gl&K#B1{58^}`hw1fGk6Cy_9Sz#j6MlZ8btI*^j=G?v`y)%(W zI;IlSs8Wlt!r^VjdSyDgKW{^HBN*wibLYz87hfpbXv~{b@I>JSqu-%6ttbzYp=U+9 zq$9k(PUo2XEX5AYYQQSyM@VP!9vi|j{-hGyvGO3o$_Qm#yrfGhkx0NviLwZujitg% z2>>`+lEg>g%$*}+wVRP$b?3}MRYTz2pfPVA+*e-wo4+bgf9G4(aX{QKFui*F9`jnR zuvb^@>TB{EQ%?go5(Q>K5M$DSf5KCHhrZ_|Pd+sdT-(EUUpP_*-c#D7BvHGc)jD(g zW`NtY)0m|NO|;a(4!E8_bd1j79CXLxpfK&$lPNuRpfD@(M{ooY%SXcywke1-=@@As zw+K{HP9jJ{(%J~2AaWHRGKf8I)X)XmyY*+~rnDA_@*5Dm+VgJ}7;yyJ0*mw|A;jEB zeCus&-9StI!|X5i?6alV0|URVo2OEi$+f0yL!&IxQM7#ONyV$uH7Svv4m82{D>zVAT<9>A;{2DlDGIV=pP=w1%UQw1MR(PUyx-R z=85pO15H$#>lMIRIRd&8k5LZn>C(Ptaei=@%Fw1;wV)*#%b?Kp_bIeAAp-AQ^#4!Vu|w+0vBgCorI{@YOXeu znwK?Il^F$E!}|h9#eh(%WZ`APSRj4_I=4mPl9DRzg&$H66L6w3HK7x+qoRiw>>(B$ z9_(k7US|{VGzK4ADA-$AXV&S}Zc_Ji6un2>4gyc%WZCl@B;+A-G^@|>uA&0Sh=T-< z;G$u{v*`U&A1c@rlvY5hcrqM^b33($MCh3|hovOT+<0%9rcv1JjU@pgF+l3bz?}SO z(@0>k9Ts68VxIupFgthM)cmxAxJwU-52<{ihxttDT!Hyu-Z>O_?zumV%a7>Yr1ocL zC7F`3!oxJoJCy|CkZOSTo9`odEOCm&ODZ^w#rVFZu?U_-WV#VZO&(TY2uI4{sM;a% z6R1h6ViN#}?>%Q0(51IEckob|KlM!M9XnpO5YQnq1f^pyai66;W>qz4VHJi7M}?)r zmTIDBHp>8h=c!A~Zof$>(Y7dyjtHp;0x7Nns!W3KR+|#dcZM@JQjg%$jH+43I#G*u zBD3A}k*lF=fTcd1&*u2u$#48wIm{fX*)wO9l&EbmZyNCy%PB3x1l@VS^%X~a+J(7x zTxq@0WXX<~)R7>iv^E{@0E(CX)dL_bdh?V^^H7_$-)h_hgkX0ayF)YUL*T(Z;iZOz zr_eDmGe+kepD;qq2w5E7@eCx4rio_v)e1h?jsJSrT*V0f>oavq#KE910fQ=}TLNlk@W!Q)s| z7bmT094j`Naez=oPpi4N)KvBeyfRdlhjCx0Q}1zc5mM) zdiai*im_miE`kC45LSl~#q&J1Y0=C6btRZSQc1VmU-0 zZeF`lmT%rE100C-hE*j@@70o!zY1lFE`CG@XYg$Pes@TN`cR;$5IL@zJq$@lY~)B8 ziEmjvQY@*gIjGzeQwYI-96MOCLp(G!5IhA*NtK?M4<=a0rfQ<82@~f8XF<4b zw#?&JzN=Rcg3oh!?RvJ)na}|CL2PkrweCnbA5%X6O6CT5eN^8?WoH9^<< zhS<4R7??seV`z17J`cFF9-_sf@#dNQ32S*YD+*0$#zIyIat$=XMD&_Zy|?Us3l99~ zKT#{~lA3vVQl6ohKPZO*{%yeOX30v<|8*GU( zbMP=eB1g*NwOinew<=NMgLDidz;zoR>x~n9NA2R?UL+TU7t}7#i2y@j!K|ziowGD0 z8poJ{N3b|r@5YK0^E7dp2OIrSfodZ*NfY?RoILUhT<4?+v<d ziEUn+eaxH zKvPY|yiM*kAi4X;5D1q5wD*|+W(&hL5esf5HVohHtQp2#lR{)HfP^%GboDU9G!yic0ddj<3WvGJJ3ocvOzfB|Y?0_agGl$y5$+BPq;6B{8e zY1#Xhz=S+x%)1ar4NN-GFM|QYricWt43F+R1Jd({jxzsZA9Fd-LCDV~YcjV>KryAn zL~6dCLS}>E%woC_Dp+XpZr}s??oG7g#Apc+d0wLd8-mMTf()XXLQSiQPts|hTrG>^ zR6|Tiu0LG!ASCy(vtIcYgnAS-Nyst@+}-0B?T5#o+i$?_A)Vw^OFK3=V6|x|L|v)F zdQEmV2pWy_Bp#fY+(QGK!@P*JMq6Ai_ix`Si}&xKd=E3mI0MX4c8KTUZq^E_R5HKO zo_UN%YWrG%_R1&gYR?A^O6s>hu=0}!t%~BPkWH|%KFgg95`7N)+jqthiOvBCQIf( z&5dc;UdTfephp-EI1*-+7--4U*gA1IcH!#c3F;3CCQWWrrlwB)0-5OIIP`gUg{>3$~L=pa2F;(z%t!HGkrT`vKP>3jOd3s|@|>SLMWu%sFL_q~oWy|H?;*$}L&dqd`D* zkkGWp2j}fwzh17s_kJlXJ^`nSgOt21y)cG+5F0FUHP2kcFPBqaeZ3Uceq5toR>6tF z&2W8qPb^EMiMT2IP&%AObc_kq$DTP;uK)b4viO_dWmC@q{24AqcuvbF93mjVqNqdL zj_GY9z_Jt{-?#1IA;5SMxT_%>`OvfFIBsbpY7E>_ zqGek;Blw?&Ok-}##8n|h%78w6GWpDmu$8qF&M%AnP zKpg-G5*Klh0B?#EDXB$Clv+~vShr2D&CZOCwXLn${wh=aHaS6%Pbdv(m`^Nq|xfl~MOW>vn-jEs!K!^7Rf!^2|;Wp;rZMOeu7MC+38v>C>@vnK1Z8AoeZk6S`cS@J}g;fae zBz+2ncG^oRvkC;1jJ8t%iLjzX&0)WD@DhSc13D@S9&#U?uu+?{KKou=t2h_+^lls_ z^CU~U)D2`XUGdQl7w;f+z8#G)AfOSJh%Q8{fL0k;@I|X%faECAxlJkP7UH$}`CfmZ z0kGvDtu5MId{Yo0XJh2O_@bdl6&G8__++1wC^-V_D-cO^YE_e+ z>D#VNLdl~(`%8U&-xN*hUO{&Xk2VUvEgbXtZaR6YX*S>0L`jQRrn-x91Vr^tnC<5K zrZ9Q1ePx(R>7&ef38_B2H>~$j7s8}B>0iQc6!n=)NM_N9xZrq%5lUx%UztI`7-#BW z1#8cT7_Y5j<=A0Ff-7u;WuET^Le)4JA{7?V69Q@w*$^;{%VfVfxZJDw3DMB&rUA0vTbbL&G3guh<9G7Z8 zd#{Wz&prX;o}lfvF-~$9cMs9TIs7AUyn!(LQrTiJvNh5iKzlT=ui}m-93)CP>vE*g zxIwcWC#Io$C&$Zv_E#H1_+9$VN36qD_(tH-2#WkNf}_M5rw~?<>RltTbK#ZRGaj`r$5XteMro`{$16KAV)<#^Asp_z^3t)AZtNuxZP4@5^)8-<;x!}EHY(I!uLTeqU3F& z5fwn^JBbe8Hk~v;%`*tZgUn2ZJVbqTIBPCSaCT&)#q?File8f%ywgvlWs)dKK#Z>? zr1K6bKQL1jP)B|sS|(vlS>mAxK$)Q|wQa0(t#u}+30Li-`f#(6Y8?HxQjXSR!o~Xa z#0X)G>R<*3qwxSCK|;cGGWj~&LpTcCK`l3F{Xs@q*%0kIL5Chf;*mH$K9X`Ctw|1x zZFW9zeH?D*tA}vR(OhaQW7gOjDTq%Ss4m@etBZPcg%PHzQGF8%YZ?DA+w`nsN$EL* zYn>T9cTXI2QhKh;EzFiNyn(OZy%&7iVojkw*__CBve>#g2C)dP->ZzlQc0L>*ILTQ z3{0GAaKn#iY}?EB%>jIcagd;SmwOQ@Q7E$n!F#?B4w{|;;1q?bUKQX{qOQ@*+cL^f zQzl0IX00V#8l7siOp(HnCiq4DLg*wU;D(^eC{%p&Yp%I-jS^|`x|Z21k&`cZsz!9w zHH6AXFESeL7OlAs)3Yurs(;VgL;^c@DiInClHD>?g)%hNCNkKnsO184}VX1 zEjO>ZsdTG}#Iyax_l5|A4#JoFmg%*^O)oV}a1OQ4T$$=cYdyRQ^8oLc@7*mkXoqH* zADZHH+Caf*7!~aZ_Zz%lML6mcS1%>nI_kp8(TCar34i)Ib@i|;VPt`_QBwfCV>LLk+D|Aj2PE0T`DW* z&Sy$s3ip4L2)ALfFkG5EYeV&Yx_J0lnS1_p=}^ZWu<6Q##6yKh{vd5Bqs&%>%v25a zQAy#`c4xSwDKr#F`YF{PI@y%(#>OGBG&r zIuoK@=en?l6C^QZhWJQiHTTpjeHWtSuEM(HpTxLfg#B;kkiKVOXx+sFIA{H$tS>FG zpi-xz6cpssk_D#DV8BjcAuX^4t)10QtkqVnh()tGh+`?}NO=-Coc`61Nd`=F^1d>$ z=6(CxxEbly?+uRRSt$!oARa9q$(?&uJ%W%#`3`2~=&@m9mcc)XX5gGU(4}G4LlO*` z8gU|STMR^|G^t^hgRo4DQ*Y~E$t*PlDOCAvG5Q@L4b^SB!;$Ey@(>9{zE$q0jvXme ztPAU~nAWm808~J$zm(sxQ(wPcuDD|0p#^~JIAUfia>bkCN0&Arqy(=`*oK*}6 zYYFoxY6zbv4x6b7^!<}ZQ$GR|h5S-0I;rOT8!)O3q|0^6(_2$IEF=|Q%`5!b%K%R40BB@H*c4f8>oa>Lp9I>lon##3#>3)A)N-BB4AWF zQyTvTII!b~4(`2pR6AK3BW+?t>*)LDohZkV`ubYj3pJx{TE=3!#uvu6nQ6($_|DON z9nqUKAtXdEB96G7Vgz4Bx*E?|era4sOp zJn>7!3dP;fHl$vgdKpXjl8=mJ_b`(6gvbpy0+^e24ykT~7OCD6?vBo!pXoujR_}vv z&@TN!EJJ;B4`^y_Fp01XR!a`;y9$8oMGmJ|R^Rl5l zysa?;I|0s_cITTw$qU7IS&Pi4%QBM(s06n#s2E;8TgGsx&|$PV3=@(@R26yczgy7C zM;9)Z2N!U_P9L7omnQ2_RQ_8QwMGMA)aQPfzI^cP^JSE|us)+0z2|Q#0D+sCgQpx> z-XvYLK$KH!%FLGn-_SQ}gU6ULJnl~&JU`6XW*07bgCi(5q;Tx<~D(~ zhFjv7@5RqudBSBD?9^_(E;F!bUPU8r()kRk zNK~&CP{_Lymk<`&43+mkXT4G7pvxFLp{|=oWza~(s-~=C616cTj;aO8#Bb7xNKB$( z*=k8Fg-u{%b7EFIiY3`NL3RMYvkFlWH4M92Yg$?fqN51nP&9TYVX+ZX6jB#M7QP`> zh`UIGXk;~_g6optD$L<|)CY6Von{UODOjRpotTsCz4v~(_rb5q#DhoicoJd;;;2ec zNEt(gI)rzKh-kvex|w(mZ(1nlmU`7U|J3j9=R^w3({9`|%AG`=^9VThu(EWEa#dK) z(Ip;<4_7@ZFi^L?1&)9x5AT%eTUX1GmtKnJ5&cywDYRN9CSx0iYI84o5#KY1;oK`zMf6UGv!t|_=>`u{ z$)wQ=7SR}hxAqMxL1Pl1Hq-09qjedanh5bB0-9wLuH-k&B#wqd23QL7N*WLn-HNFR ziMR9=ou9Oqv6}kvtUpKRP*nG23k~vQXo4XFqb?+SC*Pqo5r%p=jCO63cx!$Zqdn9v z>>j=#J%bXbxyFe!uc8e>(=g67LY)&Mg77kl7M|Xk3}<^#()PAS&D&b{eD`GJlp%f0 z_7ZoI)VCRlt@j_4jzS|a2es4R(w7hiVE71&jt&)H_$|EKtsAPRUH#A^1Xuo z82F-!xowB7QG{7ksv|I;37FXSzG+~>dzjb+0)?8b)|g4>?Bcq(EAbx_FJ)xZ$9^(| zcM~f+esHcFdgV;H3S(C=P?b6i{%XZz&Gj$32}9K#pqt$8a2l`fcmPuaX3;{W_O;zB zB!otLROmboq0D@zTGaKT!a`ex0zb&%hkg|!&9rK%GV znVD*#>fC3MWTGpU=;s=CqctTunWTTD`Z-w-()CXAZV09>x6bQZ2AmerzSoNeJoJl3F zjkfeU!DxBm%$YKc1QzCMIoaiU=~urlm;d%}%NXlGW+=nB^`MM(kv2uAeMeznUWK1^ z32@BM!{FV9Pup@JU

E}zwIWxS2&uV$b2=wV|U*HV(68LmGBeUra9e{*n zJN~!AjDknhDF$0_(E^yI?F^$W{7P8(O?%dg?RjTi^PZceL+g>YZ5s>!M15U`w?tLXf^$G^x+>1x9w!NDw*g+I(C2&*OAVu05jRAPv5dJXVWQ`mGC7 z-GNslmcSzgtY4*uO>%oexNR6#lX#==NEH%fHB+!!g5ZVU$f;B}$;iN`F7;sM1dWb4 zQ7RaLrmXj4eet3sN{%e zAMo3HOM$o%uVh{$dgKpg0yW`GnT^+(#oGKhs!n#la6idyEu+ahGi#O)dgKnxx(bvZ zWX%~g9Kf3db@fV}D^mHyAK|qbx%}@8I*GbVWR6zZQgR<6JWw9@2q3nRVuyQ5{ zGwOU9R*Vw>-8ET{E?+KdH*PTGe~3qW76X!u!&9xpbVF4+dRs1lK^}pWzz?DT^@LF% zS|E~h^IQpqjn-gWKDAN(1ONzV-dUd&7W_#lwjmf=mpK>`NhA`&DWfUt%we!KPO+4CrlL( zG{DJbdsfqeSPc*B*F5?vFAU&CjS>JDEvI2MoEz?HtUaN8YsZ_6B_z&%iKG9*Q9CDB z%j8k#9cr2qeLHX5*sQS^k!H~_@-5Y*%$rTa$fmKX8bcj4hL@Cbi25IxFOM!=F1_p5 z8RV}(1jHxmO8PAd0D^Qdk)SfHTEoi7D1WevZH>tEht zS8UWtw3{P4shH(-F+5-*Y0_+&9srg2Tc({2t;d*vcVtg`ex+J6YH4AgQdQI;f!$}@ z#8U#~VR`-aD)TbSs1XgJK3bAFhvD3E?U#I)detvY+q?QCj_f%ot8XGmw9$=``}!`i z{m4hJnSA>$k3>PUVVPZ|>1UXww-M zryt9js;sLzc(9B>pB`Si6#ubqOXV6%M`pHJRCGuQ;!|i&gHLJ8+>;qN6B?qk2wKC) z(hk>PjfmS2ed+3e_ShL_{U2Hi+fDlCNJ))CtOEH)ToXt6P+mbD9epDV1N)I_3~HFJ zDGWGtJ*NiBHu1fJl_j<;&Kn0N7Mc=mE5H&b=@OK8Y7T&DhY{Tf@OAE7^ZpK#Z!nAu zW;WNE$HoJX3!|O#&|{ODqG%C7nrZ}6^B^M=_P^ewO`2!h$!K{aZbbwMeUnybBoth# z5fW?nHn;^i+SFSHW->|CP5=;w;p#ICbM;;^pui4?Gf7EGqI>3w2$SoFAShu1VH;Al z9F&KxQ$A;Cjs+0vE$3+_P<@SqETe2oG0%u>{OPC5y>sWv5*yoX+^wtHN727#?YkY` zGLc90<2Hy`kP7g|PMc@K1%?eL#p1E;NFh#kXTAy1A)4hgiRgp5;S1D>8xX%QOYblX z1VIR0G1*CFjJ0c%g+NbikV1q?#}sOUAA*1cy`|ai=jZX(ehXFLI{y1AaZCKvhK2`$ zF%0Hv8l-79fUBd~AdGw)HKMMCvMmU(=!qmO&_lI9~;oTPBedVvwIQ#lgydK+#HyQGg)&-aqMKOEOe-B8~Kq;*O7~(d`~-cA64}u zR4pramdY$Dp#xw4dYO6gOc}#NN{6|H{V=mJMx^&yQt;sO&w(RSBm`m%m05!p!2{D4 z0fMu(F-M3@Tccf^vR=gI3@#X#fANPBhj_IXvVLDB++j9nw5;rH20o3$$VOQ(`!+5nRjbW2{Is!@g5z;1Q zVAIV)XFn8%&Cy^&`}p{}i)hB64|$OY3XR>5ET6e02KC~F<;J?!$^Rh)gf9JVmi}j( z03Ew5X;hptnRuD^d&@+bN6o|Six{=v#mV_Yw&mGGeYlS~vr*PqP8>PR?#XzvVeVB% zw#3>j1*2_7CBtZ%)ECvYewK}PBHgqHP z3@Z%9vYLvxAtU57g&68PHjM0cn=&VSr<0L?#I|6sHai8lHDPQCymxLMRB|?(v)}qw zIrQe6r5rt0CXj%hVV-00_=$4s=f5t?*RN%(5PdZ|uc1VuE;tPcp{tYE6p)H!PKv_X zVQo(lG!?P@me25<22kuKj2aLQapaw+4r!-3m#<#KX)7kUSoai|s|%jNc1{wnlQ-P+ ztr#HeyywTdLM>U#foE-y{o*fvQKn#K(_}k_)k^gfNtQH@aJ8}gRD{)N#nEe|Yhb$r z(b-zXpT5M5nEGDxbd)EO`(21C2xQrxp_8fecLcTp(fsoN_&>{y|Mu5qi_z^j@4`W8^cY zbO)Z;7M4lq)wv-%zo0dcGf3!fl}uF!sg@goDXlZoy@9&!OO|gO{NiQs=^JI=*T0sH zOJ`o5LtTBe?8n6T#z(&`%QtV}>I!udooNfe3TkC(tdzClwC!X~D^W2% zIKcai7J!#TD{3v`S&PhO4Bax-r%9R?UisI8-UPVuQ@u zr1+t{;@CDLul0{VDQg!lmBJj!6p}ioofVJFpFYxIdlri=A9La4W*k~Li zekcg6XaE5WsYvQpeN=jHA{M}_Xa22O^VhsKM)R%tyGY;p&T;BEj7fXyC@e|hA3Gku zdVKdd?(Yk0-wJ2%jpJG(7J*|Cxdyy7=Gny9K$@m!7we}WyG^_43QFO~ed5A+^=wZ% zV-S0Bs)qr^`G5FX8NGI`%wN1%&VK*hGJXal3B07t)4%499xr!)^V{;^Ji_*uSK01| zHLuVGg#ux0Ue!Pc93kDx$m}b;tBsTLdau!fea<;>kwHe_-eM`Mu=Jivk|f#^v7bM_ ztL;mgywhgDIaa+9Z8B1Kt~IJR?Fpb0y5DnIk@HwOoCuwxXc`A)dm+ki+i4I|X@ay6 zoDru&3#b)&2vVxuRHO^9KPy2(+1 zBr)57xM3~?b?Je4UL!7*HACWRRi{qZs|4f#6W863e_Jjq{an0Uj=ueN8D}zb1nGI4 z#m0vYV1f48XUvsdz&PZ38D~CZvPBfKL&V^uVVl#uWt6q#6+8ioMdY1_ z$*5Pi4V<(erqgzqCmCV_c8&8k=JXf-@4q7dyJZT58>X{b>a4Y+;u7R`1n45dXpi|N%HFM$~k-h237IMla3w{P03F#tAs=AiA>wY$Yg2fV6th<189vam75 zTuqCzwkg}7zA}B@JF0YkLRIhv#Ao?~Uzg9ZR9uA6KmGQbcq?JP>?k|wF3yxAICOqM zo7}sIN{Hnhla0FC)MRGnAzZyW=W2a4wo#G|9@QAYh}ubv{5L*ziiAse7#S}drJItq zRbHMX9eqVU_~>Kk0m2-3uH~3>ITa@2C-o#F=|*MT^gD$nMi%{>w@Q~fxr2GQ?SiBF4usA%hnwtb1H#{#BB|*ZR`@1=svA$K15hj$Aer4B+04wh7Id|!i)Q9jezy_y4EDK*j zgf6Y*HxL|4LkS4uu3}Q)q~x{@GU(8B z6RCMbi3UQ}8grb=NyoaqsOhk{%@Hxy7%G7W$TN}1yX|L5r_z~C7%?+ zMwg{g0@_lmQ+?gVsi@_&aP8rvd8Mo=dOBtsDen@$Dc2Jp=fmXH)-$6Qxi@>Qxd3%U zSn`-oPjtb#n}jd&_&6{rCX&sF000tZ6GULu1DAR%?O4Lnb-+B>K1RS(ufAAjnJ1ii z;RWz%9*54D_9J0$V-=?3SWU0RWf`Kyax|PSL7NB)M`5)XGE>eF0$!wO`M`n%pKM0M zz1U2)vTf|>-gPui+OM4dJZiT|q}B!izX`cr^n9D9z3HRU@P-x%{TnGXvQPH1B6Nxo_5T1LP1Fozr#ob)T+ z)u2>n_htK?5jiRA7(NllP+?}2LXgZOIBs$IbIGk+EDd0EbH|S1)do*Cs2?4*ZL?j{ zfD!!wA#j}yd4;Vzc5E-PWe~<6ddTQv6gA8J{Hw2&(F2QR7BhB@9YztfdsnWOZRXH7 zFu>C5ib9c;S|;Od?RQ?Or&Z-_X^)Ic>QfmC_(i!rBm4tDZu7mD-L!(3B-31tWYSTU zvKZO(Dj>%=DBsosw{32nJjAoqk23i0u*16RKqJ#cL=&~-I-68#06vY-N7Mv* zBo%SPI}t?wIhg#E>Cq8PlgAZoNKv z;$%7fCqF8SufJMG@eigrw9V+`?q}!A?N2}D%698tUXP0x&CdJG8GQx;p1gFa9KUw0 zjJ^AA8TtBKq;sN7gD@M1_Lp0~{SE558(AdS0kC6WfdCaJYUiTkT1i_Ipj2ewp0Y*S zF(&U4F5-v)yC<(qhXf)ea5KpeT0*o&1K#?@FUu_R8S|%D{CE7>IHgtpo^?NbsETF> zPb35M>Z>rYN7t`qao{KoKSiF7)XczPbn+)JyL{jaTs@-lA&&HH9VF4Go0e3nDKzGA z!qoYoD&-T&vQpUSsHulLV=p1C-(nOtPsaxlOv}tD}xG zDN7w?5MGO%e2BVxWVFB&*#~A#)pFm21djQDG;-9cTKl9MxT7A>EA=SI>9!ED#7aEk zB(?f$n(bYir6i5}C?upbG>9*aSm1{c*6KE4YI&;ojF!Jmi&ASzZ`vKw3i#aOm@=hlOVM5?T%40)vm{acf&KC8h zG)t@4&?MSUT-s(+W#?2iGBZBl`R!undqEPM#`9{^-YL|Ns0y)ty~C>M|)9FxmgjcgpN`@8gflu|IgHJpJzX$`q=XvDd#= z4&$2TA(nQJKKs0MQ5luEL~)*sVJ?-kq10{bE6uuP-U8r+_=o}m4}f_ljBASw6*d6d z8xHr`5ehPt8E!_EqEUI?#!uPE+=uw`+lTsswH%aLb5s5KZJ~PD#`JsJ#kL?4-6<9| z+Yrcz_>@JrM8RF4PjSi5l7gDRE#;>GL)2@V(Zsf9tF)x9rZyqWT9m0m(n7B?LQp~} zOT;8hV~}x%62q9}XTFI1L^_F`7Fi)W*2;PV4+##e4n%h$Aq)&evD5IAzHiBd!B-E% zlrS3{{p#y~^0|Iv%H}(YM+dCfAU=IN7(^$kVd^8fGN0Xg5@uJZe|~Km!~;IUFdjOn zjH+)9j^=T+I|A|PeU4i7?nBgg=gS%9HV(b>?J~p&f9B9TW$gG7=9ey%`=}WEctY4g zRXfax*Y#;iuMviTg(9Jhdq+z!;4fLX&4g7(u5i*?P9fKnk$BwtA*vDaO=2+wE-@)i za8K)3)G;@%F;9j;%^3a4k%T@vU7+jSl~$MQst#dju6c{EQE+Kv$axO(VifC6#dh}E z7-~UK)msXSN7wXzKw3SFs5a3Q2&W#S{EYz`1NyI9C0RvbX~`q8Q$0||A_opKbXAU3 z#fq>5E-5_usdW_pG$61To~{j>#v4ma#8Y>|2yc%N9$`}f#5Dz|X%SwrqgE+#+Yg_( zCV?7aN8+O~@^uN2b3`dulalq2BJA*f=DAbljsNw3DPynVOK?AH!kF8kgFs(iFHisA z2W9@|m*wHlepb%^&EJ7DpJ9mepd0{C_tTdK;K$&j56dUlm|sS%dx)LV5AscU<|y;Y zST7zsQ98_(tzWrPHen(im}B;NYm3Tth>jUAKo*LF-dgKWO9=d08s)sJG^@ThHeV8( z{?4yLxwu$~2rq&2kg8E|XA3p?CfjC}TX#!2@-%=!)Q2uOrypZ9+LNThNW|B`rfKh# ziewB6>{%MMfhOSI#f#B)z(&B$_0nU+8s`)|_hFW6&_~0oMaFLF{cLtzTFMXwofx{uZL(@&MflPB;zj)e@8_RbLUZ7iiIlye{q!RJ_qaRRHK zxf7?#ZLH^(KmL^M*87F!ig5hZvT@~d`2tRV=gVtl{~KQ`Prd$HnPESseK@lmpFdFg zFqE}RSIRc#u$zoh+|vjK9;G>08l)0o4Ys%S(O-BSr@C9gSoy3ow7aElBiu4I-fQ)s1biI$8!UO&jgIk+s~ z=3SM-D1?=?T%0PChG4|8Btv?ZFdHsO6KZJPs#fg5(gUYw#Jd^3luz;b$ zS|-ZLJGeubWtN~w5d5>-CX5@BN&9DXoASbBj7ufPXw%It)&_yUTe@PSe}yrcAJrLQ zBrqF|1L{(MuBv1Q4G0KEO0>H$5KnoR(J{CvvyriDcjQtIrD#>+1Epwj04BY`T$tPT zIJZZVav{>Jr-Dvx`#?5u=1rJZM)Q_|^4kvPBUw!yxwEgiFP*+3XYqdF)+dQexR#|J zd|C4}O`h`Lg~NPuG|!I%_P(%m_1Jr7L0!5KC$Z$ejoQ!j#hc*0{Q$Z(dlXAUETRiE zYMb2vz`|tgeDMf$X==e86WDj`7{(ia_tSF!CqF9>uU#uMXp)?dA4l*Qz$8|28nDXF zTX6<~GVa5ql3O!ON zk~kPH4dOycjpu7eV$!DcmAq`eC($w59OW2vakVVt-F^x`k;7PuN`F-K#mIzvVco(z z={7J;``A|E7`U=Y9S6|aO)P-tDE~J7$UVolVbB_H=qS3U7OG8+GEkcInY}r*EoQ6d zAaijibdUgraYZ48q0PQpVd!BCYFi>Nc52;Tv6CURl-3e zkUxJA@)4Z-#zz_V;=ZYA(6G%gK&IyIz#SINjxwpcBTKbYq=2$m^4lg1i9t(~MNGl> zA^nd{&6Mj9(ucqKby+~oF#%EUFq*ml1%ze!K9kzag|XOh0qJSs%nM~764Vy^0$C2- zuSAy(GebuLjA|ugXc1A7GFm^f_iDYW-jy1G0AX&_A)SrqibzDY&OGx8M5n^SVYhP| zn@T&8c#u9AS;<_eRRCyH1i8{cHNPwhH<**8I4pyRQr{cqe9RE#R|4;$mULmWYCuiG zH}H-E^`Sg9ev+uEgpgS$%Q|Y$AX!S3j;q96O`b&->c)p@vwX|Fbs?_veR_%4EMFp; zp29m1^D^Ju7|N8@g=)wn_e#13AWGwDg(GLj^|3!7JA zU>h*+9R$QNfY$|=BtZI0)QU}{5EX@I?a!t|IB8`uKKTguNdDf7AJ&oYl*Pm^>mcw^ zCP4$hCr3Q^A#69gZR_qgwqJYXUf6NNXaCbeU{ZgrbeNyiKxY)( z>fXQ0My+ht3N8)b!KpdRI~HGgrOdNjsGK@cx(MrQFhyOw^@0BognpPda4l8s?=74g zSPOI7BZ6~~_;I)@v}&+Jk%LzWpzOxs8|n~n0G~11$K@$~)W?t9qJ`xg6VTcY^LH}Q z4B`1k*vC*O-;1}vQ3MD+5Dz+B@U^;enJr^3eGwN|BhVzh#CVR-?yfT&=(!0Y%oNiv z`4u0XQ?qe|uPn)}a8pJo| zCmqgFAGtN3MD~Y!BjQC2<=k#1=Tz1*yrNM7aWo%)3xe zM;h&909943uTdK;?-!R)C<)NO& z^Bp)MfmNm-r_+wX#CEj)X^B))t&#mDr~1=;?_-YLmpqxMN3g5j?mjo)1w?HeVCQ-w zB`qz*983w5Dv{MT0{SMnC$W6ogh{H%HWCUM(2hn`)#cu5s*{~!AE!?0`E@cagL3PQ z&wlfpavT-)Aw2!hptc@k4ba>I3-0$HEw?nhK;^x?iX|v`EZk$4Je92pX)cwrK%WS!H+v>>315NKX}W(09c{M%s^;9+nK1-ujQxDX}f zunXGIjuai`=?Ow34(D^dc6g^j)TZ;S;FIcREn9_^Fs|d*dM{4d7c$Z^50VzfbuOmK zmpq(58PI61bF3SH0(bEdCNjB?9SUF+GBsgf%Jm>M(`?c;tbMb4^<^9CZLNMA;wMiY z4ZaOC%`pP8)2PI9I5Kp!V-whCbPS!H=^^lJoJIMF0YGgt`;~bLi7+_kOy~aKn>fHd zfp&?x=D++eW%a^ET+vYz(!tD(d*;mU_sX6B_pi!>Pd_S$aJW7C-S3o(4TZ9)C?mF5Jyt3cCZ@5Ow6D5Uvu?tjDgzPp6J6}MKTJIY+Z1Zj+eJX-+mHVCnV&Upu5&Y%t&jkLrz zFS9I0Boil|2b6hdjB?mORZOMbc@WvXTE^xI^l3;CNqw?m5&@Wsi+@9i06=In;l9f~ zoi@@qK(iS}K$0+UJG01UM;6c`rKm@|%)<#x|MMPz(5MnBRRBu;J*+lWQFNI1=r|9C zbyOFk6Dv?*Onkq$jjMFeeeHIMBhiTzO{k3;1R?!lM$H04MrKRdUK#-mD4#Y=v(KI= zPrdPGSwzLgq=^L#sLaaxd3gWCZ+)52M6P#xp6eI2B+X0VZ^uoVARL6Yuy$%0mCWt) z=P|6nESmBH%{}>6gss1|1l|kT$7z!yFs|xSVF0|-4#uPWq^m%n!(%(I zzPx<7+~Q;$%32iGt+7UN7VixD@H7ul7yB5jXeqZN3yl_Z25t6f-{6F}L#ep0b7bO* zcqYF1&TD-ZwqbZAU=EHJ`PAg74rR6M=EYg9IBg5yk^E{r@u$UGk%1DWtb{@wQBy() z^yaY!;aq1vV}uT>ydXC_{=@`d^z#$cUbp%wCrR%dDG`3DgoW9M{_mZ_RklI zw&$A2yK$Qs)SP-?5luZ-KK-oR`qgg=6Ut?Vx=o=W zT452m1BFrggI+sg%mEB6`Zn{cwlTLMxi#fH1-`Y)_I&y&ab(<%v2 z%)|HqE2i}bL9EjqKYgMc`##&%&@bI3-2P+zY*YTZ;Yw`@X0=>Kq5xK%w3qd zaPj0n)}g^A@RX>!pW50+A_t$gF*5ps$?AufFO`L}FOB(Jtx5;t+V1QgJUc67C@^-t#6nWE38%(_EPp-r97`C`^%scbcNM*ql z(-E%-7ta+vpJ((8;mhCA(%G`EXLs~Er8fsK_ju1R7a;=ls z8kTV1<~$zbhsS)&UZ_X1@)Iq+JT|Xu*^WA4Y)dz39eAt zc4QVq4cl38Q3qk~V~BWgK;Yyh7y7=@2)9l)omSsN(98iU@&_24brEQ$a7#CiAyGD$ zgzhFmMwBjf+Qg8oM}JsnAkpKS5v*aS&>-$gE~lQg3dU= z-OxIdi+8SHE4ckAJ?1vXL6+GA`^yx*7>B1Ab=)CMCd-Fdw-Kv1kkb5gbQviNzzci< zk}JRs!wI+vmslAlB15QPD-}*4lNcfh>u>GYyK@D;fw_m!c^|9;0fmvojdV4?0=$(3lc|8p~R9Do^30XKOesQsEqCuE?4tGP~?X>3aluh4j3IqXc*F&nPL+}=0r~7QG1B+G zG9CI3WlrsFr{+HGXMy-G#FJOz8YGvvl3@buciid%NEMzzQ7J>!%vWVYgrUHU&JTg< zflCTT5r`n(F5IuGznY%#3SNU75}vdR<$x4tT@IeP%Pfm|nUF18cMu$JEyeSN!dj2= z4_M>3kCE0ePN#d1*tz`%%R0m#38RznOc5}lVJ?BU73b4hf9md$--Pqi9=WaWYlJqU zb*_<`w@qTrhX%^TpidK8**cX$KH`z5VyE*o?x}b2r#~%ISg7tJuA9JaK~Z zUJDsqgH|Y{3}FB=|Jv8e8U+5!*j6yTrb!3Azldi+vVszfeaAkxxiojt+n33z?2B;8Sli1f` z0!(%WmE<(%4#sRNckhOlc3@!JoEwbv9hGm8m!tI#gBpeLAtjuY!i#NR+uycJdyt=4 z?RZo#A_MB|IRvBHcl2p+Zx}TwdzZm52bK$G8IzP(4?oi5G!9qqQb`jgzq}%pe%%xx zFKRTSWbJ@JbJ&dJtkK3OZe@C8xY>g-5nrNYXHs1=U<9=K#ntj5rt)uM7C(Iq20|q< ztunieSR_$yVcqcW+VL4GPGIUfeU*vCPkvka7tW&!(Zv!-2#1yg41;hJAQw(;vQgrV zU;Lt6zi^?O0UJAulcP40YA0!v(z9wCp&Y$28EQ!08tBH(u(E5ezl5rv7LBvgR{CN>Nc z)fm7I8~h-S#ZJ;GxOYC+oQ)$Rvjwb23c$6F?0qJrz95dw!2rG|^U5d!y?pFkq-Fr) zB(}zyvD+}S>#SpZ_Kmmj(t!Ia1gqI&N3(5v_s$sGX1G}*(kS>50z=YOcp!huFYGH5 zv$SL^o)~8T0az(YfF`Udo0TBYYRJ&ikBm#XZND&VaHck+@gdI6`6B&WMO`Hk3BkuN zOp0xUu$*0I)S!B8lyAFC0q8_}K$+Jdj4tqXv&xCl2}T!e5yYq;5|L5is;OYiu*m$* zOaJbFWCw&><@(?JJtL66v4m`GkIInI&djM(V}7|0CK z_i(ZrdO^)oIh!#zsk`@-*EXrQ{3b&4L}>kN_wD1G_KQ97n;-?^xW@N+d?&V`R6|`r?7UO#gM0i)94|L(lTEL)km|HHW;#fo5tx36S%m)EHHn6=6mm! zi&t)7IDzwJ3q|_K5%o$PbaCa6X7Ax<9OT^;}RpI0%_rl+44F?Qf#YgE2w#U#i z=7Uu+Lzf?+A#-HoI4Y`Y>L4TALC_h4yTE2yzl%d~!x7rnHSmD3xy(bgyjx_!+t@{( zZDc4$4@NVGA>Ez}@cXg8 zJ^z<~QEoG3wTZ>(B+E!t%XSc!!o=+({+Xz$K7j^L7=qRi`2bfeQ0a2rYE?tA}GZl63>4*&3nWeh#J`^>nDsS|k4$vBs!gj9)B zQ<}NyGJEDECiSnB>zB_ltmHktb<6c=HWK-J$Q;Hg)P5LDe;o;eiPev8-zbYnSWkg$ zi%8NV`;U};lk5VFwcj#}kll3AZ7n7-`5%X2(gtA?GBF8yh>&R06lFN-hMFf;0*Den z&_+OVhOh*fG!zdcL&xQZQ)c3kbzw?)l-F;dKIE&p0V)I$f=+c8q#A%=BAim)D#)Oj zep6K-#KE_<<|NObhvjUtuVtxO5*5s;A6e+csqqN+yZj<`TZi#cHkI5TL@~oEwYI4e zu}QPd$Q1Sl?TMLG|LGrM3j+@?CI->#Ahl0G__k3)`?@mHnsVG~Q3q?><|P8xR6^pp zuSo6n@v-;bP!V4FkB(@(z=hT%F;gF-EJ~51ebi!)*2)qtyVkJo+JE9C1dlnCBRZ$X zy9Rhajzr!=Qj{pTpnOt;0$YU+DdBMpW%(iyiDU{v1SHhL^B-pFjraUeoP6U|8l{+G zi^tmnh8=F6YFzO&?}#Iv-J#4o`jwKPVa>P=^BUY|vs%5&kir(ikn0OUtFi_j-rF}- zo_pt;?d(^6h}v6Rm~D}zsP`-YI# zL-=}#;lwi-JiPX2|FTSc4S%Od`8%wg9CToV;P@EJ6(%rfa3q%wCg?qEYwB*jg^iED z_n?mdyyMA;)ioXrg%OpKyF^+Qmt{(xTstuS35fL+^*r}i|FvwQeK>}p+9c;1@Eib3 z;p9#Z5enE2O8B>gVuJSH|K``q7yr*+;FSlOLm$<0*bqq$iB^${O(b za`kV^^2Lkgz?m~;KT{wRs57UJ90l*^5VRS!;aO%Kp;d!1>7w)GBQVb_E*EE@DcgiO z7j8d|P(<1t+FT8pc?F3aZbFl@GdN`lBLU*hl_DyVF3XPiUhUKdS|7=kEfU%UEr6q9 zj{wX_MsxKQG+sJuAEs==qR)Fbu;r=TSF40i(gWXky`25yAD4n~@Z~@JyxjTh^SbXE zdAQU=cW4o?xz}bQo=CtaFsJknE|!IFy;Yw5^FJ>$Cr;off_0NvsrRMpz;zZ&_x)H{ zW=kLINFD4;O*i6MY#hlaCk9mLw9DJ9PR2bf<*o$fp)qvs9Obz7Sd9tf!3 zM|9vS+@t;o0TQREOR_XKb24{-y{Qtn?=5StN=+Q;u-*p846%&}PzC5qaSGg)=(>LK zA#*+(ER@%^ltwacOVVZJwobq5%}$q7fA}s!<@d|X^QS|Iw-8`fne$u6;De3x%JCok zpd9|AKPr>2u^5<5HkF-t$3Zu8Tk8hfozIY;XjT^iL&f1b7;FJwkhP_3!^4Ex>en=37`H&hrhCT(;?aNlW;0ZR+UNY6R?E;M$Px~=j&f;xHe55HHQ z{^K8%=@*}8Eg2TQAAN#>52HWQQGf{j5jMmZN{W!1FynP_e%lfM+i#as|Mp*(*;ijq zzv*AQUhX4!A$pZ@XQU2yB8xMjNx@oSn(FW*{EcK3$~wwVPOCt`Fjp$SuCtV6rYM<)hR) zh-p6UxmyMTI8^nf199(F==hCYK%$c8yyM4k0xX&D;~g4P;trchMslWtm5C*R_A3)h zMZNt0KAMj#zegV1gn+4rLK26LR&2oE4hugIvI8}X9GJJ?+9cM`@CsoA_<-+fvi>%? zaq&qQ`CS?-4c5jCl=8i4X`B$@h%5X(djBp$#VtCrn;~wTxK$QUovIQv>TyRMZiTW6 zK5fD@bT{M(+o`QM#2v zW$hTZ3O-#l4v!FsMj(P?5(zBR+?M1K?b?SJ%)azuIrS%hQl{U4L8+c$#IGx+HHj7s z?$GJy%JConsLX$jktgw)n8og8sobG{>oBE7=A4iJ0Iw&1@GbUh!zU_rU11Jo`R@IU z2%YJjqkqr)4%J=iV5iAZ+r_%nyC!(g+uTx@fAZkH&F!%_YG@S!j>L4xFbosZ(8{R0 zFr>Wh{-BlW1|y6IOhIV5D6HmRW^{Cza(9>;rX6?20g6LiQb-!+2ZJ2OU}XluxKA6? zOF^kx3fmOyF?#OYDZ;kW<4#6a(83-9PnY?nHSo#xV_TcSCvXADP>h9&zvJJ2c61*ydh#jen@G&y>?nGlZZKyrEp;`3M6G zcLtH{CJI+!F=_{78N%|-+c7qCuFHk;U6~6^Orx1qrj(9<^Bd&|0?ooV-=fms7`oU2 z`DFTuTr(dg%mYEoAQN*=b+|krjf0FxkH7o`~W>YrkNnef$#mWOgzg72qf!bHs8T=u~w6gNylQGo5nZo&M+2`NVo!dRH_0% zoK%cOPY?zMMtMXs=b2oaFpC7`Wc~We&2pE{)xCV7%%3>URxhu!^Y1|>>#-0bpYAf- zm{X>W6(k>+>)4{E({=I?ISAdX(lhmySqY3>8UXTOje|_Q7jcv_L_issQoVgwNjdAm zc<-oF#1{B2V%=P2@*VYAAD2iA9Y#YS#~KoCAEvE(!Vzaix#Uw1JBUryq@BR}Y~k!` z#!tEOY%6#+lD%J2R$;9wGYk$wy#Evv&PX~1&l!R=U-_XKwO1d6MHAd!6Fs4OqBhS@ zUi`NGUKsEwE*U1lN0q2xv<`BMoR_c@C-jsdvANM&*RV z)eyQh=AGB>EWuAHA^Glq#%*s7N26kaBM4e}3)-{`clE*d^`U8>8YR(;(Yy?*H1Tq2 zA_P_jBwmf|NNj?gHil>uP347LZR3h75i~)tX>|8}_GG*Nlb@E2Yd6b_|K?wn1K<62 z%;Ed`@I$cJhG`6|t#Cva257&eY7uyuU!!2o4^8-%vs$ z!INkstQap|ELX2yD|4TJUXH!`D!bjEW`w`L%pxp|F~VQR2xFZ#)qp}=nxtO3BpXoa zU;|}SbChzCc2tToIYwCNFZLNaOtfW`CHOX=oB%az3Hipj@v6@UGO6tDOj(D~QuQ&; zTe)@%Emxn>CUjXR44#yKlTmBu%&Br1mGZ*ZVPNAhen#@E%UyPO#!0Yrojh5FS7{*) zk9!DkR$8<}Kgajt!oKnvxODtG-$Rf^V1oW_KfsgBmv_n|EF*QTw-0#C96MHaaFVTQ zz1Wd@*yiFuZStl++rH%IJC7EL>QnP;>)9~8by9c?E1Ou10Jy080ItM8YB*7n{~_Fm zjM0JA3$HNz{^@`E&*kZRtL0f1m>z!PjWUVRhyMQPl@x#v9OuG}3Z}sY>mDs(beY6t zS{5lvyd*PWE@E)9ApzoOc}O*YFnVfY%|RGIE8O`km8Ff$By55XK8{oxZzCY1+@EYJ@Icl`Kjaf4L#S|cF|-}cxhNNps&Cea zB%}3)vFXs&jp>vE3yxUtU%SD=TebtCqs=fHd3c*81FU|J8o<^d+V4Be&$Axh{cc3d zQp;?a>b*=B$PzB{VjfMscBt>6vuClu14$b7k0V=04HeSn^1JC9^1GqN_4vo%?7lY& za7u3jCVC9fG+M76713)<)3P2_NU+`#?^^$$BKIcMBDP>Nz{`_|A?C+RKWL6NUd_c6 zfevxRFDKX?3pEYslUA|31ih5;iG{TZZ27ghHmJY6QYSDoLW zUB#yI6a2i_Fqexqs>D@7s3xYMedM{~5QY!YRQ;P~AduR}hl)=1VHcj39-b(~+?K(%;<_L||kaN^mrfB-NCeRZCA5}}~WXxWk3 z22&s-%wf94jd&#k%R+K!R0vIQh{VA`u!HyD8>6E^<4MU9I1o^!Xp!RKM$H&D3Oat4 zE?LhZM(^uO56k_FSC|LGzJYl%Jqazb#!%bgRVp!d>~MJvfoS&Z^QfF*V8kmAR>}hw zMfcGzX-MLteC;Hxdljysi+ro9u?MYr@%!(VMZBC8=3pbWlEfNLhL`aUGFZlT0r4l9*Xt+mO@5+drSA|Bsm%ovR*x+8l;S+z1kgs{C9CsDXz1a9?L~HSsD@ zm+NNx1HRj!;no>0uD$<$xqs(wx%v6Uau_}6Q|Ol`nU8Ume-h{2@-Kf`ZZknR26NF9 z^caPYO28rj@Gz?sjq;FRJIUEfC7Dc=qG1fOjTF6&2a#@fr3|6l-C};D&+v4b4yQ^~ zCfQNnNz|%JnQG7==ksgRmR;v0Fug-vEKk!scippSl`k0Lj<+BD1LhmH63| zGFIM`zj=Ea!_#t9W{l-1@N#3oKGNhE63(HQUMf@0VMP6t4EQ2h)n9`WVtwmDP!6x{ zyL!{S5eI(fs4??u_ah?N>A)i`UhAS+zopj1F~6EeRYSB%TH74FOinxoY(82MtSX|0ky!%kL4Lsm3Q`##rGa3MKpiBA zZiv~(kVE%E8wftRlP>(V8x z7B|Y%sC7=g^PMt!;zVUozfc-y|U)dC`RUv?pHs zLE;x28e=YK~XQYKjlypKLco@8UYit}-XKsjP`#d}B5 zQD1`}eQ6#{aT9}~J_5lE>eva~`;DVU9HKq@cyb;vx_AC{3x+X{)?^IzqrM<@CLB)} z0Jp^<;b&cCVlm>NEYU_#kgVIYAsjU_cu;88P|UJm*}~F*yRlyEF&f-YpB%wXq08L; z8fx`Nlz$l7x%kHGWk2{-&}?bLpb7pqqj6ofZMj)14X-xJb_?C)ev^1zI_ZEuFp2PY z{0Bc|UiM7Z6c()63yj)*{+1Y_4m&C%-rUJkWf65NlG~oTRoYNnKbhG0!3&=pQY9ci z0>15LRz4U=&!Ms|l#}SVjYi$PERiF@CZ3%X385#=N4Kt3k7n=Ns36yv|5?AgRIV)j zv@BovysR)Xnq_mqQ4n9%U%U34)R$NE(k48^((; zG~0;pR84A?6Jm(8vk8Jc#8k8g$KS`IzbTMq3@LO3hP)3+avk7xVVr&Er65A8KSvpr zxsGXs_cAjPMF7@$GBOR6%$HE#fjC|=Dg&H$W~KQK%yg5y*RI?s4=#Lx%Nm>=OT1BA z-oC@SH=MFMqE&0^R~~JD%L6|NC8OO|YHlj2GbiKtzTVq$Enz)Ha@3f7-=iKwNZj+! zJy+(>oCWp^;B-?j>){^=xSJ1Q9y0CUe;A>O^pyy0X#LWXkah)D{lrcLkr-#LLFcwH zh9I(eS)vvkEpu*R(_U*?+oxJ~i)j`ffrj_NZEtG5EKiJb2y(%2%GbuR?gS)`*M!%y zXjbjnhe>R3_U_^p1AKBGXd0<yyBrJ{pS$2!m^^s~kg+T!fKsD-f~J`4L2CgU&yB z_z0VWexn>@kG>rUiBhj_s8$$dT|9R_YpRZ*&N`}848hEVB%`q2(%o|D7w@xn@evDl zUntLi@B5{*xF7H#>(VbaAy&6P`Vea}Tq>bT8d*3{j-iU2r9baLT*bQDN87fkOgrt# z+X`^5Hibvj@9bswJ*vv{aND$gOGIR7=%?3F_!zT|*(-rOO=kjPwbk8-3M|(~b%) zL*%J5XFd67oHmJX#t!TC=s;D-p*-SH&4rwtk^rx2ottn96>XAq6Q(82abXqVGcTSg2eD2qFnI{J2+7pQ8m|8?GtYO6fx=oG z2?%EE8`$$OKwGs!c{&KrPoafd#6!>+bAjpa2xbH3!R{a&-2LJTqd1%`He~)!hJ$!o&7wm(|Btyx4bh3FW zHUXjyBQa^IClMRPj5q2^TEz)jjqWr03b?EWl`(D*3xE->166gv%)(JFCUlW}mLWWM z=%nMU)7S@dT|D$OK0y~48RH%XX4Rz=uc9_uVWNB#scsg)JDID*tOV`U77qbj>~C5K zS^~hNg^v=MKKC-DrX@G-Vs+yJa27yrF&aCGqtF?M-5To7d-w5iMt#MJtReF|8eDMO zKpu8r$*9CJhZ&hKX?yYTRbCTddn7#3_yGZAz)EIX7A<1zavZ`n!p;C&2qS0EVoB;H_qYj4kp&6&Kn44ud?se z{A;h4f=PFX7U?N1-^Z-}+~*g{cTnpb{rcN1Avi7=tRMut%i`s0<-MQ$q%5E+J^AL> z%l=oHD|3_s6J!@#_Vv47&cFBb@(7h=hjl{3Shya1>&-HWK$;Qt9(q$-rzQ&k7QH=Mx(PO&b!xG_P|ns1r`9$K9{^+qX_LMEaB~IB@4*N)iaLgdXyJvkr9htr zVzd=$alUDf+N?F5ChQ+)Vm3CX7qMZ8k(dq{RUs&C#2lP(C&865^sCaS=C}X=KmbWZ zK~%N_lN&#Iq8#}*|F-OVll3GP#>qK2z}N}GUwyg!=#PI`mVW&~x%{(#C^vumTU<(^ z5|NoP9B~1rZg2vKAP4xy;y1P2k``SlwL~h&De^Q(6pI}jkW)v%0}83yQ$Ti!+yz;6 z5b9)j7ZqQZbwN+DQQ{l~#-aK+^LUQ%R0Zh=%}M*Mdk?D$5(~#6;$-a)h;LcaF(7VW zYlRPKdq0G!v)&H6EVzDvgwsRqGD-cXpTVSdhP~7927UMTP38rumxPk?rE}R0fVF*Z z_n;5tl)=x06LlSB1Tf8HaW=i9ZK8@HysFch6r~J& z)YeDlQcKF!viqLH6kX#Y@vy*-YIdtYi1&VJX9isoCxP4rms1_`rae0BxS+b(wR-`e z+VxNCT7EHArnw0&N+bz5bhDl{;Us9TH~Y)6A2dc<1dh`rHXrc^U|j7PO$k znR|}3JU@Bz!5h!K;JSMl&;+*cY7)CKzItP^^9?r|#W)I^a@30ev1z4)H_``gL6%`H z9?Sz_WVej;O9k*z=+6|w#Rl!a#hkvzEyHWfZ}Oe%r$(e-3Yg+2X-o5*G*OHXfWeoF zinW5-<%0YjU638?_VCCf)!?<~sO?T^q*LOs1|ZX%uBqL@f^vmX?iTC*w)V5N%sdXN z(F*MYm-JS@js@Y`wHu6_z$Mh4a|hfdoVkA0jNn6zI?R+DTxY0vB?tYEo`#@pEJ%%t zbQN53PIbUsy&9=GgfTrT-Trb3%^92VQot43{U{7<{&jHS0Q06E_6r2F{>4k>4*n`9 z7|o8S^Ho7lD@8L@Fk2P2;Nb*oE{C*!b<}TvLQ~Pd{zdupCx2TW+`1W!*W`hPa+cBF z0SxjSO^ZwRP3s}^4Z!TYz+V^&KOXo4ez||*CtoHch$52s6_T_1eVLeP=4&o?LJub# zhZxm39G`jN#T0&r(VPD9%u!-JiS#guTbq3c<{0VhXMef_<<{T*gvn$iR)+2q08!5b zImp9o@8DZu$dO8k`h!FgAI>|nNwT@EP|ICMe&gJ;i_L#TcxPoJO{p(bq_QQDIR71$j4C4s#5S~Jg! zy;*&=$a~-IrbDEPW=XpK$Y>xA&Pk5VV(lvNrVw>L!4i|BiIbq;h9T`{*49n_qDqcv zO&QH!RHQ|Ak=(F67)nHwsVO9R-zG2X=)0O8os@R5V;CNM;u;l^?ajR;$g5>_Ze(W- zOGYGiHx5+gs1!Yp1>+>vxUdm6q(rDfC|U=nT!%B}Tv{VM=|^(dP75JTexw(5&5F`4 z%R*4|AoWDuBR;u!cOG1v2Cwz{vV>+~fL3FJe$!bzR2IMXTA4ta9Y$Rot`7bcnB2|J zJ}Y;bzc_LhzoS}NDqu=^ZFi*Zo1c7AF8%hyG6fS}eEDS-p`NVYE2yFNx_9o=@;Rfh z6%0u_tTTM-g)`;(cbQYe-{dxDB8 z(g2#2VHxeAX~SP3wMxkz4-H>3X$VrYrx@A@ZnKfE2R{ZK&#G8bl`K-gr@4L!aEdxbC{qq^~Mj)unWgxzs)a`T&ErJ|_R0 zw7bKD8I~eVzy$jUVh?%0fsxWCbbEMlt~~ShThR0qjoKObP{uwCaQ&kXOCP~#797kd z3_Jr|yZtG45zzAk;M@L}UM@pu1)_EW#v5v)7|2}v?Qg&*MuGbm%Jbj+Mmg~MYh@gj zsw!}&K~%@ue*T7RaPJYikkI-}>$haarcE0qnybj&=<`kA0C8-B~ z#C9${2+s;b;{$_kIl$0)ia7en(;vec)?Dk&MVFY$j^Weu1caOx_ecHYGy}>oG zebr*r?l;Yi{WkapTx4D&2t7lLfU_kFuRM@VjyK=eQ{rKbT3H9o~ z_~SBh^cW`2jGkbK9$l=%Zhr9VvP7Ra_0lV4-mPrFDz#sZ zoOwQKX*U@ys57@hbO2rh%OuKAV9rmjPXx9Pd#?G`XJhaEV)ws=bhI+U zvJG8ONw-vPWv<>Tl7wsPDkhl>G$QTC3y>t1hhhyKhyR21X6g7-$ zcnA%F_%w-zX^L+hGRDJ^YH8kWqZ*$-bsClO>kK|vjw6Q>Ul^sWUc8unAjcRrIy#JZ zB}S`OPI~MJ)oCAb?9j`4QhL7PBjMZhf#u7WSaklAY{6x+^CwS~7npw1F~*K_k)#;` zjPlo`fqfo@pfJoYS?;k;ObPP(@s95kucYn^pyl)~2RMn=Qrw?MndYqy3L!1?V`qzJ5 zu7C1Txqa!&avIB2DX9C?p8b{04Ilf8RH)d?c>NUw*4dJtXnK|B;pKX*D3zrB@D03t}qf7;o$ z$=9{zQl#eDvel!#?!IVlDjw9_t;g>kzOyrvP0H(BSTxyDJ}M9F*z&yNpD@BzXZDlYofahTWfZ@kUgG8kP$Fk7LvLdV|#tzNvf5&p@eiT^us+7G{y zh@HV#o(demS2cND6;bqUw#g28vtekXDz=4EH95e@cws-Vmt~#jf2Zy}yZkziJk2bR zLcx3Q0g@sqN~A=I5~U{Ps8)BY&78AidUkeqzR1iM*cba9=Iq&dF>Te-v|3)2CuJ#m z0w4hrAmLpV%AxjoesOPA0R$e~K zoRumV{Y(5lhoT{S8;lEDs#vv(Bv-FUY~E)0f(L zM)y-}QMG2<=C+=B?J@Yt2(||+;FXsV{I4k(p*uF=$$K@E~)hJ4lfH_@76saPH?nZ!i7ehiwF&xpM!$7$B|x_#??P zi`B#T;N`@z7>n0Ce2}x%_8TrEgB2J2tptG%_mpIuR96+0lV0g`JZj)P`(VwZ=VX>J zsyz2z8yhJVq~T&}jOv7Tj~*LzvSauzq(c`BzKXTp#S^c!^;GVJDguz^rl%Q|2}3wk z2e01{z*4!=t?38>;*M0djZSj>p1ax*CjFjqG*1N&LfnI>_XZhyZ=kW>4`V<3;~%!S zp8R%u8I{XL)IM7=Mc#tCWi`w~Lk#ysyS{+M8O%uwMs?jb3RQ@MjKo}I>M*-@6afOh zXCd4{<|u|)FQlqSBY@ej z-j==%{q~E91`+UOSI-=JVjiRuQ`hhA<2QIWyS`(R)%2Gjb?v-p20-naV#cf=nU$bb zF=VFw6^ejn{0rm3L)-{oHuE*pTqXR3J_*}7<;_mi{3N|al_W{XoT82bX&Ig2ukc_s z&PIL6D2Yz!Dk_@s^BnUIJ&mCTv?FoD=WDYFd#d_iGHgs&^uxF6=TYW?M|e8I(jXAqyAeJ}N6W<`l4jzp~h9^){-Ll3=Q&p&KGp`?&!;uACRNk5|+fRKg)JDl2-bGRrO z*^VMyk*|3vJXMjvvF`<9;t-99m9J?eJ&DV3hDcoed1l>JXi9Y;#vdm!zPWs%t+B45 zC)`9Mih7u+VRYZ4yS$uuS5+vk6IbdmN`XLu6Bra^lm9Q3(Za=#BV<6 zrV88PJFF{nq;~C6d-?m{Z!d69Ye0uUbmT)1wSyo37^+Lu-|zt~rUT`&c3ij-S5iV< zOK+FR%IL>Nwj<9e&g>y)7 ze&&iL0Eq$OaQwc4g}><6x3kCL9MZsRf6v)H*BIK9HsnZ!QzXK|Mu-=7f}@pP^&f&U zJ^jNtmFmfh2EPiaWe61^OW$d5#LfO<_zlyEQHC)re>S6sIl_jiWhl%WfQvS%$Z6 zYFi%uVB5lu4I_+1Z`c_^Y-vKEEbXR}AVxJTBkSaqXaC`s3E%cI&^vl2MnV|GGLx|f z^|{PpCBlX(&y0NVvnH2c#fZwKFyMRP*yIXBqzOKi2kp?z%P>A^uZ!R6d2V|;XU{izV5Pq{4$@q_%dAonI~W5S;&OGi6e#;%A_GBVHegR=aTYWfo>nus(Aeb7hRu5UQF6POrSwj(z1H+J)zzZ6gSfn@~Hi z*$LAjkA{WX_2*w`&;P@h+1&LxRHRd!;kT>Z{mIALrhDJd{2Ox@@PO23ho_s+a_h$u zT5t7v*Kbj4B`l8~r#SfI7Z-Frz7lmB^N^YUl8}H)p{96;v|@c$`-pc&5YkdOQu46= z{L8{%M|k?u-mGJDE3Ho_{Aui=Be&_*Xf3U^;t|)>)ehPJ@yfRm>b=q=ebV-?ry-xo zji7i@MB{XYi1PzV2MCvZofC%xHZUG@^4mvnZC#Grr81$_{O0F=H)Cy_4 zoCg7jX_Ui?cWP9`Z7b){#+j{6g+xg*#+6FeA&JqpP(%`C) zT1h8|KA&>B=~tY;trJVfbyKkZgT~27Y>Y|i1qdaRsnm?44)ah|G6K@BpW)=(AOE;b z9N68~Z^5b$qM2jDY=Aj3x7N=hHrzCyV83%>jyh|KfY=JcjD?1l#K;^jtb62exRr$y~=8#O>&{ylGqzzc^ zr6-q^Xq{78NqEl=Q?+!(V=}M~ij+hgrJ<<(C{L*%z!7O!90@)h9BJ6RX2mnB?9Isz zY@ShB%0MHuVQPix7B7xqw7_&8a+bQR-@7Z~GBSHs@wTV7o%T^JtSRiTSXn9TCnF614g5!s1drgNRfKRcdKqA;B_Y$5F~ z{A-Ii%u&wb7XW8Z<5a3DnxhjJQETjp+dFsON$(Inv~cJF9w>7*b~h=4f>)HdgT{mb_J zH@?>9pyLgwH8(lWMMv)F@A_-6wzt0bWPA31{zDsLl7BVxb8Dd2!8I&EXR`h}%R=7z z#y8swU;jGB1sBpbw%vVqJMssgZYy{1ryVobN;wOO;^eoy-j;;8Eo?7OIWtc|KlHTYu|rgYb?=_(QB3;#PBPx7UpHB;H$1` z-~Cs0&`V$M_67#rW@d=FqIsB(Yma1_R#t|+3Qy?UV^2Pr;qn`=z1A);ak^#aJ|x*)Q3p-Yk;#;#UkO+8R}$K;M@17$s=3)$`v&WQn|NptKD(j$u)6Aiqw}~ zL71N!B)tHO--RE3zrFd7U&*c%Lv)nu5j@w^cGVy>_C9>=YhPRY{)U+WC47X*^Cz+6nidvJ?c=Qh>~K1itp5o0e@t+OmW5+xOu?_yzSSGfh|` z$^7MetR8D%pXEDF8&CtJ?`U}pe&Tv7=hsGPgU%-|AXKa)+a)#__ln{n~v33R$w+j@;YXe0wjtnL}+oL#|08sH?@ zfEY&5?>dzCq}?f0GfK#Iw6f~VofuMv0uk2|0U0&7s05E1!OT#utAx8ir#pP`VB3X( z#v1az@Ux$_%gi0R4Uo-mfjJbAmH7G#NUB`R+dFFnm`~#Jol$*aCo^)=$4hJo zwIg_iAoC^_;tGu45n!Z4m|E!3xYVzUmYsj|gmZ;FnUAOYo;r54tw(TL4Z~QwZdJRC zU^LH?4$tWeu1v~&$;ggu7@>&B?BB-`@n|U`X(uF`%rg3LBLcM@^UUX7`N>o5@Go(RSCN`q%-3Bt?E5YG($+ErK;m}^ z%pj^T)#i$~u>v$a^&-#4)A(Pd{Iibw zn66mEQXwqBm}X$f&Rb_$4Z&_M2)L{1`CS|>Pjqh6@`$peZeAoR^Y_jrn7;5N3LiaR z!3iNYB9>u@7egXT2&uW(;Z>|y?KI{wKy&@z8gMWPkM*?gbbttNW@&p85_!`Iot@J` zSLno~r{T~l^v!bxBmR}7A>JD1_$R*kP0myM3h$@dYVw29!k42ppil}3v?y-y3>>bZ z9JHS+g2PnfFO&F1p-4fB=iNTBk>?2 z?%ced} zYSCjzG)&ZGBK-!#?aQR;MyqQv_*j9&l|^|l0j01&7=q*tBKMpr=g#J?US)2Cc{J5L z`jeIL3ql%C9PIpx2$Bw@HUmD~cykhiltCs(w}0XDY@qyLTOkuee|-U!k`uA8W&R*i zMwv6@JHKjz;|}g+o0yNbRYwkUJ`bk?h+F=mD6tbGlYlB#3ypz4_!B<9QZM)i;5^^{ zBdoW*OutL6NMjYDyf){9SWckuAVh_Q4r`N?HMmI zWJZC(cyvETL>g7qI>(`h!lsk;;E2pd5Za<1jh}pY*5wx$kLt*(WU`gc2T$|sJFiMB z>5+upuAPtdolS*#N-v(AYX{*7eLbV7u~BxTp>4$2Bb5Urgq3Nz*|e%VO{J%d$K<`` z4INRL!!V8k=ymS7=i4Y##B8O}NVmOo7El7Jp60aD&QPf8Cw!@+hrClGGV(;=SK5(ocod!Z!tLR)p)0RE^oHUqsQC8D@WTT>e|`M=h_&mIC-KY zAv+Rb7);~0ZgJ=e=%b2Qw3OCL1*d&d$8-FYY1MqHrIJZo{3L53$< z4{$Fq5U6~LV$-&yC+KxXb9#jJ1xD(_fyJc-Bu(cx$B663^Dnfw*vaILZ-2X8{nf8o z6E@RUlIJM&N z2-q&&qL&6Sl#ODM0swIHVNKk6E$^RtzqfT_w{~28z&z=Mv~U|m>YK7BPp+!IL^2%* znY-|9C5+)RYo<;k33}Gj!|T{S1xqIEVcLupf?85_5))!DRDf0LAg)ZUu?W<{*-#cv0H% zGHk%CfU9di!0?GL$V*FUhHV$>Pyj#MR;AU+oUbM@s@|re3>RM`RT#| zhqNg@ST}ZHHkNB7I8Plrd7QP25CGjLTb)6UjFfB)(ytu^2_$`-7E2{Sefx++OfX^a z>Qz2E*wA{_sp=LN@H+}t5;omo1SietC!I{EBU6-HNoPKS#64@FO*i#MepH8B^2o4e zFs`@;Es79>i3b-y4`6IG2eY|`X5ieVYwcCcmsg`kUkmdXhCWrLPtnP_3HKbdPw^Ww zUmQhGdo@0YvgTPui{SukHKA+OW^*vZRUFxKfNiX{aTHA$4!Eqw2MkpaDgV3u^f-IB zFiU9x2Uq=83~}6l_xLU!esPGO2w|GSojWK1lvJ^#AJEE|p^7r~NxK35o@OmdYMhsh z{-FWm^{v4<-0Qf_I7(sX`9pv9XKmF(?`N3-R&~u8wf5sb2&iF6!ot{{*LqA&mI8Ae=#?bUC8 zw_Tz`9>uUjt8qI?)C!aVngkBlRfcvtOr}#6en*Bgli-m3Lmeo9%!`1%3uBS(EYBD@ zd?8{?!~f~ev;&+aGYnH^Y79KkVAvB(i>n|wJqmga)B=bRZ2<;u0kfx^ zjD^n1D(*L}6AEc4XRI)pkZ$PzZoG?UGRl^XS zR*AC^-3^Q{vI8|k=|L(~Nh%ZJ5)0)iHIq$=6l7F%{Eloht|G7NG@2Py6&pBC<9+}6 ze{UmBri19~EO32;hA}zMC`{uJ{uUU8vBz?b)YyFA{cS%>7KV2@DT~^ZGO9qWKk_0& z+nhpxd3*KG{=NSuNa|Jh-}*8!n-huKs3ckElAISB#?(FrDN1aMzJ2ahv$7wkFYp*j zf){(zf&6RfswSm;pbE(jOcl@-&e*!jn!S~b%3Wt;1H8mYWr2~+C~BCMq+uO1&LE$X zNc%JcI&Q*dlD@ij&ot6mk$yp>CvRa0z|AvELz>o|PD2$A9I36OZf2kr*YG&+x)tri zI44KjM=0;a!mcZqsum4VuA@Ho)B}1Q(yb#$VjYVb@~t1TmTUMIw2z^-g|MUK<MLdMTg6CIB0~ujhZxD&pBX#%&dca|cY^Iv@2@hsd zXKDtreHFNmK!MK;ZFH2SL%Tov;Wl~~OjxtYHD0 zC%*QN?KJC9*TRb?$WOzrIf$0fjDShIt7DR{j!as@(N0TiLE*B!dYC1E2x`$$c%p3r zoA`E~SxD`!^>#K6J|eh*lnKh{X256J zfa1*`Jx%9~`jE)3FB`+(LpB9j!#O#B(Ldk7<6OUMXcZuwqffs8$n&(lN%-pkc-i#W zqiy3uAA~o7GX^ux``7Xy%SC*PZ-L*#MM_K8yGu-@ZiQjRG>Xc~N^`Mb`e6`g!w|*k zQE4;-^dv6)ouz>tf9Bct7N*3{V}5_|6CZ6mjvQ*^j1shV%-RK!NQLE4J|xB&CX;6w z!8k%A;Uxgmkx6|b(!$$~nX8P>KZ%is%bRO!2H7KV^ajU+(~;hoSl8|zU(-fmV#b}3 zNF)k}+z?e5j-xW-IbSx&XmjIz_q8{Ws-{oAhAM~oIV#Z&ex3ZhhGe1z;wYmCE6xgZ z)T#JphvZp6o(bf2DB43;*n22)<%&OJ!U>VmH4onfRIMOD@9zqY}R_F zG4Ufby+BYZoJ5R!{Zv$4f8*5!GEK9QsYoAw=Lz1%u?`&q*RJ8a!G>+1MRZhzM5;t| zlGgefH;fXqWl3YArYjwKlWs}F9i{2)-*P%FC>DQv|8!^tH~`iT9AaZu zdSb#GQ%&SI$NUzqN@{a<+n`w_=2=E!^H>(9&O|05qxmp@gc_#$xurAwtWaPIT$CpU zOwgOscHqHHkQF4&PkhZQ5in9UC06`n`g~v80GdE$zy29^QrNj8qcC^jPtumm?0<*X z&G;jKuHeC<_|fIpRe>(KA~?%?BplkZ$CbEV%z=?~FLOA|_MYXneB zGy=Tx>6F7r+-|(!^oBdjXrExmYPr2Um3kZjeT2?UkxhJCGI>ouUz?Bt9-1Mpe9RO| zdmtEmOMkTQ8T=KoAKaCmFt;U|2f$vlT4ZyOM+8R&U(U z){@>Rh0K{v%=4W8$awbu}^(rBEfwb@yQCX~E|GS+Z zdz2##9z?=Kj)v*FK=3Mpz-88)tqt+Pr~z1l_1vgU7;7hqLLvnEs_K;$uZ9W z5kG0IATBpU^>KXapAdc&u!}D}?2B<0{c!=NMfc=@r}c+>(%0Y7D+V`ODc(RTTfjKZ zB?-bKKJ5GzNu+l^<0i8$W|KCX#+*(Jf72~0AS@rV(BD;YgNk(rxY_r|f80i0ONHt# zLlW2fAvC$}W$;(OYUh9P3)Tr9#XS8irf2M44*d*K=fV=Wr8)Ab{Cz9T>0ct;67B@J zE6Ebth#`#N*0S+0CyTS~@m}Gzv@PZ$NMRJG7 zR(`ZS{$V1j`Ju@m#Iy=F+l7o@7rm5z9d+npc+Z}5-JUA-{f~aUP2BrFMmH=-FG3*( zmjH8H?%Q4IL~rMDCvJ;Lf|uk`kz!E8Yq<$Pfl+uOlCVJYV+cfJ@RT`-Cc>j7#n0NZ zj3ytHm_WXCAuVukd5UhSO)`=}8za`Oe9wU^x2T$Abm9qXUixRmhDo9|8O;DWyP3jD z*1wK;(g2H!Pkd#fU3mKGb{QVG9$czk%t(fGMQv(F8+8j<#p`k?`Y2pm?*ePip`wHd zzPq{ztPBXWVwDgE8Ii?{bo;0S@QwxMV%;uJ_#IXC9e76PK<4T&JDNFYPY6^wE9nHz zjur&Nt}a-z9MF*#)Ud|%1D>+&+O-?-|8*|+;q(Mgv(8#ZE2L6O`hLmJyQ2Gf$Jb4r z*mB}~JAncjBLo+}4Z6O7xg&&+RIGYYn}Klo#s=KkbaoErG|sNXyReiSL0#fe^lvc% z`8;dERzCYu+k`~Ci{ZH&TaKYtxefz)?yKKu^Q;qF#V!V8AS=DIXp(?PH-*%lH&tm~ zL9?EOs~W3t`pOO_luTaXB-j7`|Frw)xHez`Ida#Ls7>aWP`CMldNEJvE)zK?gm{DU z&NGyEYa}^Bt%+b_lLj-3p~no2(se1rjFdboCQAt*5-W0!4ovgt5K}5ySj7=eU4xOp zBqVk2Gh}fYX?K!c&fm`nZ2boxLXE>3is%_{aCqIRb{>Z7P759y>iQ?`6Q{^~?}Hy~ z>(~W)KwUGPv8*<_pWua0FVdH}FJ2O;0GNLqAyUHkq?85|oK%dP;w~og_7_vU>FOQ2 zyz?nO7=78{E- zox6|%AEVCMWde1NohKqSVTj9|&%`~4+u=taX&0aTK|A`@ueUQl`Dwd);`N#&Cydf9 zY{{H~i9EnbmrF8_R2g6B)Oz9F02y@)n>|dNQi{9>dcs;fJ2JaLJ1MscTRDL=FE=zl zZtG(jAxc3?NjafK0#}7oeZ5qN*1Pkd<;w>o6Gu}9e)kU5~n{yQDE*9gC z>}9BQI53VSA&BshdC4EB%}Npu}#<#KEeys^9mX|TWNu+NHKL2 zvYP*@cfszhWTib7cfkW??owfz#Ay=*Bihvn0=X8l#*05AEsf6R>Bx*9AqGEl&dxxV zM;Pb~LoXc<=<6lvG z%(b~bM5d-&;Nv}51UBIdqw&eDG&BQ#u;Fj3kbc)Z_Bf-fJ!uF|q_TfeJNwd0?aYfW zv6#|~0TG1?MYRworhAU%tWHExlpQs zWQ0i^1~$U=?As>j=w=Q}*Ae$`;~BLq`J|%{qe3bjA#H?}wV!^x-M4LLJ9pr4`{jT8 zzgcf{x~&C(wJPda6e2B6L3pgUzPd2v8Tf zk8o_pc2wDehYnF>3Six+O5{(KdFGd@fP(kCy~LZv=`KH)U%i*^2?}jUBpxlq+ysVM z%u8`AOglGkC~3$08raDV2PZ3{RZb@HBgmRHh@6z}w+05T7H)-|j}7-7@W8(`2v4mnCmp=m6RBuH`$%uTf zpqAGNufSMR3WPudyhb|LAizm<)H4_mT)lp+y#f)PWe#H3uUSWiA%r_yjI!nh7;^O>wzSZWA9c`n`YuO#zmsmj|I0(UJ;{4bQ^Av+OFr=m8GI9hKC*o}gfe$zW zBXPYXBw_c?JMQY+uj0LugEJ3)mNgW+ca^0T6~4g4=#5v8wJYe=Jymy%GCFFz20qb@sF-PYZIZyQEE8_PQ(B#f{Yi4~sAJF2L9Ar!gyL43(aJbCA7G@o9)FEMP>U+(RP zftT`0oIXAL`eY1azDZbma4$eq9-fJG<1ECDmyOXod4j{lCM_l2bZ)%c$SMz;oEPEw zw+V{v8ZlK`>hkB=UEa-M=2eN}WgxE0!e|T_LiovncaUdpjuK`W zISxY>Z7%RxS@w(G>?smhCk`Co44;QHa&=^)RHgp<0{fO- zIr=i^2c1Vn3e%y*%rl>~2KC{dKllTV*I@FUQDsIX_?bs9?U<`=v95aQn{V7KNFXy( zy;azy--@-ENE&>_O5|nf<62H6v=lyJG%SDYHgNH zr4^_scRDc`j?Ze~2IM`7nt-)gw}PeW9MxRKCJbso%ZR(Kr0J7BojPFji~DtH4PkQ+ zs`gDEc%ZG=!KT^ZCmsGG+~g5@CLY;Vnd)g${k6z5dIz4j<1@Dlw;07Dasf4e^du_39Pp@MYCCtE zJGa&w!2<9!LiegYJKIL)%sq`kX70bL*V#e%1^iBxq=HD)Yb#I_Gqs}j=LBZ!b8KCA z{SqAvkf_F6yaX}dxW&2PDyYj(PKO`YnRvkrwB8;0y(i)(da&=2L4 zA}TF;260pA1oEPT>ry5q;*nWlQ&-ESchyeZ1(|#`rn-*sqfosK72<~b5QrGGc;Z39 zW!l_c0iN3Ez5{#t-1hf&G=l}Isl4;GNPIFJ5zdHa>w$f3H6tyzpqfLKMh!<2GOT+E z#^8e<*>xr9ywn#{D3L`_H4`9%7lzzJBjat4W|yqDcmpQ<)PMW$9Kn5o28;Q%^A@x; z8*dS*L;>0hdjZ<2@?Jy=Fv#$xf%g*5YxW;(JD>PW+sfK0=RXh|*n#t$gmp{QPg2$-bR zfWx&JsSAO1C~bqG&|t+_lFMSJWyi%Qj1-$P3ZMbP%3W-0^}c)C;NiP!AGM3ekF{Z>bQ{Gajbz>4eQo#0KGr7KNx}I$*Y=cjR5+=ct>56uR{)IURnDms zLCF>1JG$zeQtjP)I4$qeOwR;*FP~kK%boI`Yzr~v$Gh=E2<+Flfzjt?j?Fpe?$~rD znvEy1G{j&kpTZ&*-Iox4kt@lX7MG-)##O09qw(8`_do`#Ww-f?SKE3) zQ2F~&xTxQh)o{Ydz5Mc9a+Yx>1W##6Mx%m58q+6jAb63IDyT1(*BX`Ns_d!V;6j)D z1=cPd!pmsv$UVZvj@ct#W?}jhoOtl?7ypb62M)6dES-San0&4(ZTJO_Ri;4F2l$;l z`xFDDnwW$)RdH9X zqSEr$dM%7nQo`k;?on1kGdJ3ar=D(Wq1g@FceT}6TVG@8!~7^Md~BgzN8lJ{y2T?- z1`&#bM`&ySp>q`2_CEL^CuqNk1vU$f;S*X4s`686ke`@cm*e7#Am$D%`kHDzY9zH|41c*-^aHAyjiNM@^aACv2ur#Dh1u5s$WkA|UhegI^pg^*(2KAK^&~ciIAZ zO0ybvu(d;*=Jbx;XyLYfj7=9Pvm?O><-%_sRRc-8e!A3?x%ql~_0Rgc-S5zU`7i(F zzuwN{?QRs<3}{)No_g^F4g2J2wwPi^i#Risha*@R_wQ3>xQfxwUV36TS9LU{<~G2m z!2+J)!0YHnIX^bh z?)vxtu5J3e`!cv@_5Cy3HIr-UhJ% zoM0vUN;-@&@^>$^m{kkCu&3sDrsAw%;6r`kCY&}TJ1`A8Jb72Wvy~>SmS2YD{Fib0 z!T11t(ZQdiLq9-AyZ12|?cM`q$grCrp6q*$Exca%hre&Ls3AsZAlN&yMr9-G?jB=X zuRo?Nd(-LFSvJJDoGpp36{inTG2(?& z?^oY4fpS`kTOs^r?G5zd0?VU6|3$XH(LhEz(z>+olq0v$5W1$Dh9(SRF-)oR2pk%cs2>H#h zFW^-)HZ#n9Z{4|@v&`J?is=QSD6qTPx!XlasIG_1{)yD1%Z?_1?-X0wUFWon6?QJT z*GQ1m13`|_-I>!i2)FoZr z6Bim1Nv1(cz7`dcQT*-16eV>h4gn|<-vp#xX(>I$R&pz7YY+eBzh_sI``aK|IR`B6 zj#TLtKgx&k%#PI3J?7nSFF$T_i0iFCcif5D6BqDkPN}3(j4-CoUu>_va*WndMiDk6 zv&H1U1i`NF80Ua*jE;fH-Ro@Uv;R-O*jC?vUt8d~70(p&1lR>`)eWP}#jIq9 zkO@=*t6ijc1<45Y;vkE(S5q@%5SUhg(r>CXFz_zm++i@hR*PUiF*k(FdEP*h~kPB0EQnaQ?nAOy#jcv~#KG8Nis&WyvMKQ{da%cF8uNtPGn{6 z9O+LY;T`zsBW=&8KHWAVB(Qxqjfb)WnDZQc{@1Gli(yTI00Iu_mwj?Nd@{Ihso zeDc*_U7>Z?i3;#9fqFOHy^NSp^-RbfY4NGJ(N<6%k6fRJNnd*7WR6FlrGeQjgX5%Q zqLvLev&`QTd3^2zt&N{&rsx}gdvRXgk>#zYLS3K#6)M)q~ zKQxCV`|2~#pjO7nh>20xAnIR`P*r?b()ta6`C4)*Utfbnq(4f)!dgh-sKC>-cAe;4t)Oe zZT!GNgj8&LsgqoyT)4P{6LQbIFJA$HK>f2KRQS*rar$TP_fF5kXNOm_>(ez2BZYqQ z(lLDBD||{znG%Gjea8yw{B`E8uH=XjF;FQ^DC1p+$ z#HarKwzKpcFHa&^jh%p}-g{EHTZgHgwe!m6(56XT;|;O?YM7le-uUUy*ctwfSU5^g zf)~gFRtIATp^v@;E6mhy=#GR-pfD5Mfy=r|2w(lY9~OqdY3U|kd8xhr{U_TqU;c6%LdEIM3pZ9^P02Cz z5B!@yr^EY5_IgwTnx}=h1(zc*PYdoZ>&mMj&P(Cm*OW!SaH@n%xs1TozgIY*<)u>V z(<4>N*1J_KBla=NB`8X1D}G}1$iUNiRvY~Yb^ID@2|acltDZ=_p{bs(2y3+BR!guf z0)U^Yl;vSSM-Z-><`P1Ib8o9y$m@>h(oZyWQZ%EELAaltTGXZFWz=CU-N4g@mtST> z-19J?>oCYFSGo-=)B<`X|9Z`5=e*=nVQ%{FJ__cd4U->YBs2`u83Hajpq-eb`+`j; z6PGHv(}@8)U%lBgZ~4mzj3BP(EbByrBT(5!xi3RIn?CeF+xNt0GXd{zHQ7xeWdafr zXt{z7KgA1Q(oTmXvi+T1Y0pWm^0k!a-esS!rJwTEQ}{BP!D$p;vkHOu0!9=U(PUg^ zmv$``9mhMe?D^DUqQoiQ29Cg$d#RQt!y3k~E35g6RRsZ0Pn~862DgV+wu@KVsUQBhO~c>D;1Ra=qBcV2zp!oIi!dgY3e}IkOgAO( z=r8%0(&D%8)gFeRr4cq}kmuQfWh4fV5-3WPoEAr57Pv~z(@sqP!m)2@H)Q6!kjAv0 z@_LTgG=qW7tjRo#hG@c5#t|HqD(n+-bWKMymZ87;_L@=$cDa_cT_x(nz0-5(zjB2b zP5d@@A2A5yCul^<8DKtam}Ai0(fw6+JD6dUTNlwuC~m6i8mT#~_NH;$iYm|JBGkdp zp`)JXDSS?T4nYi>uG+cufUicM?XeYa{QB1%CU}MUc1A=nxvY_~#M~BG>4bL!mOT)oVDd_DEYzBc6qco;-St%~8qM z;lAOC5H(XOH<3Gd3nxm&G5$2mkH=(kAvF04X)!Xup-6 zM*z*yDkbCD6GGvtP}dW=HOU{2hOKAb;vQyYqth=p80W>3bTP_D$K_W(D~1uvyKjy? z<>JxRVHzAnKDvsdLUwF!rx=Z0Vl?d0Bupj?(E&UR%s_;{Fu;V8ZI#jD|LYZ?s=!p}UU^wi5o z+rkx&MZr*M1$cD7z@b4qvl7s=n-3DxAoFxLUVEMOVw`Twc4I5x6DW?UQki_=SooH% zg0XL(j$r%~e#425MWL&!j|yR0#ua7+TLj}_PPcFyx;YK#HPrAe;TsaOdXq@nOs z+?Z3=C-jDY-+`4@$-GGc`tl^_i^TDO#HZ~h5b=F$5%sV{ zgz0Nlmpi%AiQP%S6oia?hMCjpjG!i5#r)DLD)$-^$vM_xrDrFcOwbN?>TT!7YVr~0rQUq)cpE?p^#Dp&%Tvli96%S1(ZYif zE7WQrUD9Amw_QZa*>mKsOjtKmo3nICPU>gp4PcD54q=U@n$LaahFv~@s&NSG#miW< z4O8JVQKjJEncpG~G7ulBeBP_`9Oe`phT-PHzFk4m^> zbZ{z-y7G(Bo{$UXfK)#?=oWY17m2C!=z}Ie7f!eCyIu_2-MxqYy7BGr(lZ~OOaERt zOxBd&hNJW`xN@xR*uDd^;OX`jCkULUGm|FlP!tk0Mo1PWQ<>yxI_X3f-3t!!9AdG? zcy)ZL(U3+O!w4L!w`@i5pkec8J;oxIdURf_PhQ654%~y#@muT+zi{>f=WoG`9KxBt zzX0V|P_h(r*;|6W>rbU*isVOGRsGo6x}}-(DKn@tZ95+65{B0m*mz+q{HhL8OzLXEE}2|F%oFDd+a-{LE2%$u$S89$E9q41yk30axqxfB zRZ)eX&JkB}M=nIQc)r_VXbtUO>PL5S6_+L>=TNX#Tf-!44l8~A=&^SB)TuT>XF2A) zqPzY(8Y9dQ>c^QAC)*o;`=xgF>8INO9jtbZg9u9|VcOnVhgYTJmyB}rD^R@m)Y+G1 zc_(K4K8|Tpf$&2+F-`@C)*UoB7dG2xrQ3`+Uk|hKLjy=EN(M^5 zO4_+(8eFl$V;B2ZpM91EQInbcuL;n2lYJ4L+$rRkr+(FmX+&YCwTgziV&|?lin`D_ zIjh7*E)S4dg?N%B%!|qxL>1tqy6S?9M~}C8Mr8v`gnD$0b!LTDT~xk)${3XDN9bhK zJv;iErrd5l6@!7mD!i5(2rNH&Ds{|2;5TS&2cP&{cE=uoxTcx({ng+6Z97c|Hpl2; z1!+%0Q|k^KY2Hsr4u6h%<;$B9OrI7eEVEi?;|jFMfOL*wIfM7Q@7| z3$z&62>nO@)a~|HpTs-+0%bBcL;a?RxsNQ~mHcBklICyvDy z=3av!-b>xp<*q+>opj)siv~yo_Mp-$to<4yffdm03Qsgft*iziGyz=cl%VIlOiYv`Z9$1SJ*;mmoM&lvwQ#;ye4%0EQRU=_MXL9OHAJ zQ1xXe*281^;?Eqs^yuho@jEZSlOI#>ipQJz+;buU+EtC#sqvUT!FhT+Z&+h!DCG%Efh-Vq zMZnd|U&?BE`%j;Da4DSL(N!5$P;utSMTBUMywP=Cw##mgLh+}>mn@$6e?+5!y7 z%}ZbW(T^dh5w_ErXnUB)8Dd^%02R)lXL{jpdj002c5V`s2V{<8bvMM>UGs09r30E_ zXL@BSx+f`&Fg7kxZ>L})R$4dsjS6rrSU&sg3vHZZDzugvVgh@H^Q4sMjZjho`DNH| zqbCvI9NoF2ZFux!Z8IkLXHXwqV+$+|JTU7aggH><%MgN3M=<1%yWcT7Ax^E`(7!s+ zQZMQb0r&%fc=D{?dfJBx5jsHOO&dtdUl@iGYs3+jn`~sOvh5gjv<;i^Lm+}Xg()Ugv1V!gB`uR9tK{ep4$Iqs zF29Q_wU_iOFSD&HKK)1U#Ip;`TZIK)oxqcGF{O{9u%Ohw;gd7)#d$inm2@Pd)Qgz~!y;3-xr#fPzGapopk&?)`8>K;9*Jv3$OHWY ztdzyJRB7RAc*F3FM#zxT1Z6kN@*}78czyojKz`QUyvHg!X;qr?xET`F{$O;+u6CFa z*lILI?mA>Dw$0EEVSHxJKCVJmEhYYbdI3y9o!4^f9qQ}0zwc=zW(wlQ%FGVzJe}84 zl5pt0h4m8mU@bSoXygJ`L1$n*vk;1s?^!mjJ%8qG+l9JlEu*6eq-}@TsvK*b4uxW8 z4R`cbesqXEjq2wVXOhh#)woh#CL~%?8C1RvIWW~D6&=FD(TX3Zb2^X2J-~|jRWQUg z`}b#!kH-XPYOI<@OG{0ORV9khs1qPkRal!)m%erM7^gbF&Pb5O%n}`;#5CrtBZ`BW?lIN4?=5mppIl*oBSXzsOGy z!P^rL4rM$t5v0ZmteW<++W+98Ls@h4ChEM?&`^wV95GvpMcogt#EWDtljmKF#A?{& zC7lvpiOtT>r>Ab8addT@`ejqrHRL(YDYH=}qk2&@FyQG{ok@mu0{~fz`ywFC_ z3aqpkbc!9>CH=yzk+`|^>uV$Py})Ia#LfEh?gPhNIx4lcjA)dtxJIDcj0|zm63#i+ zKF=8PKxZ-J=-PrTshEO5$RwZ-BB)N((((p$#+lG;Ej8SBb7<=QjKao0z%eT@p{TrQ z%UzQquIMeg6--mCRE4@2kmdPZUwuCPvroVOzN0LIXhK3Kj+!(u8{fLE9cD?*mYqA( z?oYmX8sU^v0icu2V-viD;c$UuD>iM*GJLf(_737-m97S6E(HlCLJLlH*z%nMnxGy> z8SO2wiTM;e*I#5W*efjExegy0!t#0pVMd*vz+lZB1XtP>!LyysfbC&OO&2OjM|{?! zH$f17?fiK0<}wZ6h0Qx1IPv9H3O1_zG!pXI9j&JwiMh*=xA98gUZThF4$2xHNdOI- zB31=eLNO|WFhNgh8VNt&MBOhuH{HK4PWm2Ih=*@Hr9@3_KHRwo|;H@tJPZ7{v zi*Nl)|LgY_SK8#UW9_AHeuH_4vsenE(gP(b0mn2F_ z0Cn9tB&zGD*bJ6Yz&L5<>>Xkl3zieAiA5Y0s?J$8WEcmk3oU>$@}iQmHq3kqQ-R%1 z%mst$r{6kpqMdl=*>-^?3&W~U2{}t+nIg&!=JP)KAO3CI#o?GESb8#1QcRF^GtmnU zEWdRS$-5^Wb2H0-1(#rEODSQsELIRSF~Ty44F?alJ@?+*wxANe!072R`0=nm7m8-S z%s4Q5&6yP%`qKthXpN=56$w*g7t@zktrM>?=yiy6rr$i<-ekmnj(h6mSK9p1W9qMm%rLxXLH~c?9{MQ!w~Wf!y}EPw20$MH;FGpe9sn_`6kHX5Ag$6>J6$Q zpvyIe>2wql-7VreotP8y@ibp(Q6`%-p&^S@qpm8W9a=wcAtQ%fwQB^rMrXbC0nVIz z;xla403lxa5uRv|O?FedAMxi6{ zp3Cfg-IwK-i3k;pSW9q|JeMU1L<_8{h7=Dt{OyEtd%8 zEJD0iQop{tR!p20lg9&hjomP}h~NOBrt`H<9R$QEg!H_GO+$&Qo78gL{O+>nSu_xu zN01829?Rm97^j~6ZhP%VKWYOE(H#jX?bv~()96dgv;V_`cd0Fy11UfUL0m`Tm?W<` zr0NOw$I}dU5UIo~u#={emeNp<$D~1LaTUXo>zIAdu!Hq*uyXd#m*-Gg!fLz5jGB6s&+{CQh- z_z)(mS{Q-v#d7!Wrb_u!0C3<-!s!0{e+6v8?BEV@L->QJp2r#GYlN{5T9U5DHIE0! zS0YIlLL(^?y}rbQH}pscCQW4R9N1oD{bcBfY((b8a*8>YFsSO8Jjq%$IKTkVe%>yjj&7*5C+xtW!7}Oyu>OelTwT@Xvwx3=W$Lb_`o{rgP|T?4A#{X5Vkb62 zC#G?SBTqZADLOHCUXXxHtwv&y8ty zhW68m(TR(%SybdR7@cW&W<2Y(VoN(EC)t5TyGZzYN^5p(c3=oa@XAa0O&mGW_J8iv zZTI7!Y=f-DRg1EKK<~8B^12ZY^AWY7q2!qlaw-)Zxxkw&7HbJq_bu(6pPkl5_JsL#M7 zboHhim5j7H3_vUBysn|Dd-f||VX}OrZAbc^V5I2Av-3j$>`hqzjGyLA2jhb&cZTVt*As?MJpy%so^qh*fygO$(kNn?0*UiX zO0V6wzuo<*&#)EHk=jquiT>2IWhA{W9iM)B^-g*3!p7tG`9~@jK{jFv7FAYCLc^!b zBaB8jV#T>>9}6j|yO;Mq*^d6`sdnl3v7AIZ!$NQuB9BpC6iJ>emVM3Z9 z?aZnA&WH-xG^ZZl;6&r=sD7@TJ=4yC;#u;Pq#bo>$g!G_5k|&vGNe=(5%iICfYBP4 z9&-^V^~{I$V_o=My2!WtDEB2#-@MZaK@WKnS|cSHh_|^_j`eNMx)`=lSoGG9#8d@& zO~Z5+SZ1;Y6X>0vc%-eP16yEilit;F0Tlps!FA=czETDg!L2Ub^V)xR&i~9uKdSAc z2cG`pckr|n=?elh9RnluwqZ1LuiFnEYUl2`r~T|3-)JX)fxx2bkEsw%-^UOd6k3!j zG|YD`#v_&# zr(uN%|E2|Jg8yXs1n+7Zh6xiGjGO9^BaT_WrR|2TK4`D z6^31M@qPJMAM))_)BcSc053-CGAc4B3%-?Z{ad_v_2lE4n8wv%F_wO-9{fPN|K9ht zy^lZEp8LmtYCrg&|JYu~0`L5jKWfK+^mN;}1)VB$AnRG2yb8ozWF`A0MnAJ`Kee7A zs~g^0VK=B%k?dth<91M9eSw9k2I^LrCh-i#k)GZ2ZU}wKC3dF&05% z{m?^c__KtWr6U_up{juK$6>rGX3j39p0j>I4@ zFqTFsRb4t%CHpHg%ns$?PbqK~0%f^x8%Ec>iF2Lyf9~^`CT_$5`??S{@kuv#_o#Gn zD%X1XJ^k&ORL{KXn}SID77ZMvGvifUr(R(ws#iVzVB04?9+lWf|Kvn_@~{57{p_p% z)LuswyN(3bkj6L>(vcx)raoOLPs1OLibIUsV67Q3Xg8o@mky20$J7Wg0(TzCIa5_a zW86b@h@PS=fYCZwZ~mDGFv}2p?SFk+R!e>^UVxZOI4Vy6Z92FHu%a*NsMP1>S5#x# z6|UNYk}v+mGezetq_pbDc#+{i?_&sx_kQ7XZN>d}vEI;KVZg3Zzkm``*p1^;5Tf#m zA0Ibez2kD|Zwl~x^C}wuNMuBQq-ppWtaUJvJYpl(hLUlKQ>T#tN2qRIA zSjaccDx$e1KYT!M_vORts=U!Aq2Bb6PPS?y*dz#^1gKNYZM^u}35-5CToRSdI4Z_b zRG!Y6q`x|REk|4L_0N3vozI;{?>nvK;omI{>1KI7Yf%-M0vx1d(3EO6_wZcJrnNf` z9Bf-)M3ocL0eol*oHQV`cJ!EsJjgO7+sWLC$b6cQa} zMa4^9%HS2TXLx#w_B4EP?Ey}&c>e=!r^i?A-pfI;t1(?i@SdCIG!BGud71SpomP@O zOjEik8h1cZh zXScs@t@Gcwi~Y^Xbbur`5n35n=Ar<9g9I>RR>QQiWg5eD6dPDbyn$UO*3+mq?%&t8 z9X!xZzW72r&oKTBo!DxSK91DO=~773Ty$U}Hlret;bm2Y(U5=rRRz?LJ-7)BnVdwT z@pRwo9v+El`noOK*jI5ZCyt&zdMwiYI_BxtVphLp<7W1Jk z+2ibVTS;E#l8WL@Ncy}bE=hOsn>X2G-2_ZnE39WWhV0_=(ubXeXeOzSbI%?BO8*2Al88E z5@jTgw9HbL?sc+W7TZ>}BvZjkp#}hJV}L;aPXDK4c$GZ{Pc;Ve0BiP1&s9 z+=lED5{y~{h9~8zj!ULfw=|R#@C(zyT|3`tI`3;EE82ccpAS6B(uD*2+X5Y!qdQwt zZsLUZn80F|0?}pOrH$`R*B#gEO|gEvkAF^{#!)*Yf3SQO)2Gxx&qHU;6TgYg+uOwI z4baj-_`&YBZr_1+;-^1tZ@%z+JBKx+LhQ;)f&@zWZ~fLNDC1VYB5+nNFAx1yr%jME!cqr`H`h*xrY!?@zz= zt@hk^I2iMn&#*S?0t)=vvD@Kt^r$Ao?T|XmWf4idaHYFQ7;;>OETXsTj=tC)%N69i z|KPET2JS?n+|RRi)|;Qz%!@Y=^uW-O|rB72ulUV zaC5>|DLI5=#U$^_)9UNLC5{SLgwpeZFdX2NNDK>N5=%H8nYkJ86nfFpdxXW7ufPBO?S*fDuf6nxpK$)#(KdDQEbF{5+;AR&sLmxwvo;#*siZ_2 zHvVR-n~g%N$2lc%Tpgk7NtE~tM#115NRo>~-aFt;tFEPb@vVwhEhFVKtz4C;Y1_8S zxo<<}YsbY?z{$ut6=AK;44UlVlh&jq-96W73LK3vU$OI%kF;G6KTHS45i7RMsC|Hk zveBGLoj>vg)y0$xs71&Gyr<(T#j*gu_pi2F#81mf0d1RA;wrx#3w;t8ppf8an0q${ zL_63)=fnr!-=6;3KebogCW@s#3#|3J0q+=vX*-?atYQo`Y|CA`8a_y4)|WLHymk4< zLY954a^@Dye+=RI2umH-eDcvYuxkg%XTd-4ti_^wfg^-wPQ2QFjW+1?_kPr-pMQyM z&#q(-RgDik2vi#Ivi@VlW6^l$KY3d!L(S3CI>IW~;v>>j{KJn77b>VHUXH5Vg3Eb7 z^O0tzF^Jp9vX{M&KGMeTznAr@D@fN4fG*5_L1q@9z)Rqe)(SU^eS%U$Fc8b`@ ze9DGN_Q@m6DhN~yBgERu$Ecf`mf43Z#v5+cr5wpcE zRo__J1dvhai7L#K4dlg2e=e5Snr}Pj7i~FmPkZRoPqd%^{ol7|zx$1L=H(aJxc6FH zM}r%e*)Rh0c%YJWOD@LgQ?S_j%2eVG5Pe7HcTZFGZd3d%SH!8*=%vr`l6r{)hI$4}aKRWn{DtdRs#(YG_=}BVVYxDhx^^rW94U^n~y( z?bv}z&+dadyapQp3`<5>Y(L;3q^SIEI3gguL5`6c;Eclofjxf0vF)4N11v8&`~eQr z{QIx8UwrAy?Cm<)R*}XSWy*=xsWbTknUaV3q`gpS)|*1$EYCSS%v9F%p=3bd5Q0yz2|<(t(LW-Tmb+egbHLf_bZioNyb8Y;t!?jL~eZB@!*$rWxHSEdH%+Gl+;{iGicT%5WcZPZH zHN1~gk;4#SR0hiEbdFV35(;HX9RU|h3$hO%^ERq6HP`jbsxTLc$POR0%#)CJNrMs@ zaKl7A#Pcfftfd3{z@L1PO@2SdK91}lp#>R4lRpyK;U=BlUbn1>TYxnPKI}Yw^Yc_9elhot+ z3ztzLk|_9cW8knGlOv-6-0jrN%Y0=7{3fj7HJ0$1QH;)JT!9E)e;t5EPa1hvF6CAM ziY5%BE6I?1J$YDqH|rfkGvESMji;1kr=};f{gz6sQWq98N^1fRnN`{Xab3f6je8E& z)WqS#?ScRGKSupC%+iF+B|^it)wD~>0qOBw_^q~D@Ca65?BEQLI&sCTUVra@`*I5P z@;b2)sYc6Vfl{chWH^ML7`_iP_d3Su2kZCmZCef=z(k)@$eE+OHpSY#8H|G5KpNg) zU08pv?QwzI-bSJ)EuBVUB}5U#a8o@FoDajdu15RKBIG4Yl~>2^B#gO&%_ka-Xz zis7~F{;_pChX-$JXISnrg*9$QmkJ;uT5^u0OMgio7F1Yf@v~zbA`Q32vrMjE?H4;M z6h$-C;X+z8Ug!$`oK6l}n!;@U3i0oH{Be%#VV_s{bc{K0ug%*jU6wyx(xWZ6vllQVox9PN6dFvjhX_lzJfgrxn)4qXG7>l29>k z`~qANm78`BVeY<)Mz(44Dn)?q z;sxXb!Erkbwh}Z~y#bP)uwBX4FDys{F7h<*YPmW8C;R8IBw*{#t*j%PXvf)6{mpNG ztIeJ`ksURhv{jvz&MQx|v{bS`GEd8>bdxU*5{B?f5FreL`(ADmPDL~7Ebv?dm19VL z+nCth^YKq)FFSWwDE8=RS9Z>21mWkI@9v%Gi&wzO*V5af=Wp@S)5h)S;?`shdne(H zS49Yx_@cy?tpnXMN^^^4HA0ZE6d?Y6QLR@tL>@w_-ME&8_gmSiW$&&wao}KkgS`*W zvFpZltW@U^kjB923WAGen=A9@A&U|Ms4D=m29rBL_UfVFns~w}Tm_u~ba49AW6_`Y z?&_QqPnDlk<)yoq^Ip<)(M{1$=63ZXteu!w;g(qZN0p?I6vUOPY6=P3EtlT+_@~;Y zd+%wZFkz+YszdWN$I3O)OcbEw!jC0iUJ<(YEjdpdmeZWk-^+EUv|*Y(-MyFe-yT*> zR|z@{_N9j(;1VKC>2c?;3QWhq3wRse%;^y5P)pD5^fq8fvfc$;dLU`%L5xHe?N8EXq;SfLq$1HwxtWRCFmrX4G;FE1V$3=PaxBJCf%BmkC8Jyda=FYp{{k7y^ z2*1R2g6D_#r67Hz-}rn_BQaAG$fbOEvxZV#R@suL&MAuC-rZGmRyx&R#UTK_e&&8g z7@{*0+ls`qi=p-?(&RNpHCL4$NYTZJHs)kyg-ax4*6a9(kzRz!3X%w}LKqwGyQgh? z@PRhGeG3g9cjEa>8b~q`zx`xgmJ4dvuwNsqOWOs^Y!{|k6+w1&I;>2kD&GcSiFGk8 zPr`Lqe=P`|40VBZtP@pFk+!$Y$j+@gFdRrB!*qz@3QTv$Ll3ospM9cj{lq6xdop(c zjU+5V?MQQ_=*9(J-wPEMrOM+Ix9%rye*G@4_rgrxTUY^x!GIqx%VPXgk)5|M%dQ@u zr55VKr!o`M$cy(NbvnULA3N^4yX|7Kex8x-6e)OGM#i{&=LOr`JYQ5`j5^nr3-P{ zl9u`N{$4w=_tIf?5Z&~+wf=ANypxYqh5@S_RmAGhZjEj$lYD~R1W(N+n9FTO;79Aw z811`@wXH0ao(JC-nJ1fKKXc*Rr>-h4ln}SN2f66 z{*{b$W}vGW9KjPbx1XnSdsVkPj(AG4%aJCpTyEzO#-_3A_RPiVPKpz&#tWY!f2S&( zXB)-1Cz>MM+?d>v*ff0Aqi4cnQetSSgV$QO19aZmQT;I61s=wnejf+-uHLsd9s2@8 zc2SaF1x(iB&cQLSHIXigO0ZKHrXjB9$dRr453p;)+IE(CjngcWopb&cjOmhL5J-o3nMJItXv7=tI?^Wg?MoO{N-_;|3yBFtMmoU5P=9m{Cq3`j zi>d$lcA1SrucL!@+hC|G@l4yxahU0-CP*jd0dVQWU^?3bPnwvAm)o-9=g@F<>@s*|qha_qFY) z*v7EXdyDx`x3ID?+gW5EP#ZOjNScJCXyCGQkxhay9`g-~;Z8mmzkSbLol3oTuofhQ z4MY{c58tJ?*ol#!LeLl%sj3qd?)00)IK|!kWlqTx+OcQ~M#83GCLL-teF3Mf4?frq zeEL&u>!%)P?gD`b8Vj8gR`TiVhgYKaj^$?_wu^#Re@l~4d5VA2=xWBm|Dsn9>u;5b zMc}IPRyh~Tgr8+e2PQr(uWJGg3|{R7tcSvY-w4XAXI+U=##W{%b|2i=u3`#*@fv5& zUA{Xrq;D%(0ed5`Lml#P*%LNNX1d_pWB=5VwNr)Yd{2x-2*p z2HcRk!3*80Z=OvdUPV)-(U}{FtG;wCTjuA9syTfvs%9@o3^K+&c8H2|H=*jp=ynOW zd^9Fag_g*7ji|nb_nTbGYDLdK3Yq&tLTKMSj!bS3{N7VzoY@7fJ|v`QppHo ziDA@ejg7=oDyb@Ck+1AQ?Ex^*7}PaSL%er?_OtEa=bmV5>9iNHTFN{a zL?mq0eEbE%ptr*!-bvYK+{J1zQVx1sw%c4c)$2QixlJ^ZyM21MhP~5p#tSUM-<4r` zT77mY6aF$Mho-}cV*%dX=%>^%!+!$yDr z31J}t0;E7vASs%p7E3Z^NmL|R@rf2kIdS3~pX6`I$+!GN$;a67C;P~XWmytQEf#Hy zq)3AMf^C4=FoXPlRk!cE@8P{SGaw0qIq8{qZ!gu=)m3$SUjn{)D;eRMw`8X~!vjC0 zTIkudn&*IQE3xQ_5z9)<##{8Z#1U!R45Q^vx^B-{#(#;*dYaLM`~T=$<-{L;xy;gl z^E>j6J@evcmMQwy1tIa`tt($m3Yky6n$X5pxi1wT4-yOf*nruMwmbJTa}noc<0g65=kt{3^FGEU~niI~SWC znO9DwURo~Zx&te*8Ro?_Yc#OEWYxW5R$?(aWWM+*ano0yye5j{)7i}YV7c$9r^*pd zsh?yXFQz#fT0)8C6#0rCU3`0~|E48}{S&vY{MBcM>+QGDzOin{Y_lgeOleIW6R#R> zrqZu@B}fa3r4dX71Vi%Eiq?i7oV7eiRIVv1vITl&`;Q*s%(FYnEKATQXbCx|aD|G( z+oKh@tBX{W4R0g05+j*ae#=P4y$pBX%SDn@HXGD#S&7+FX&7FW#2yc=BX2_8$vF7R z;zjNTdYub0x&KFmh{J+33Lpe#y6(T2h)T?rkKjg$97?pcQ_ovdIpmH*k1B~56E4|% zWQ=>)$&=;xe(-~G;E_+$`}8CQ@(vzbM8QaSA-lv73L$SINIr{IV@T3PD$r+Gf<K>Ya9!J zJefnCWLnQkj3d%iVuuQ^u#g}su|{75o-|zXdzE~xqAyp-+X@G8pJFxQsc(LR(_YTd z3!6ue)E9Lq`9~C}Zs@A?Bn!<=^Q*;9&!?&FBCfeGW zHFrY5Lk)b)o(lY<*X|U^G>zoFhq>CusR+*a^f)^k4h{{vz{`_n#H*U-3c^OWSbRns zo8H?+^znAiapdkpbkQM6d*AAcaVoEspUc>#ZJOSZD*|U1Il!2?`!#xHJDeLsKccKL zqCe75=e?V5W|om6ykb#@6&Wk9ExYQL4AZl0vW)U<#4F@sos(ToQhD7=B{p~Ro@fYG zeG(Z_0;h2`$-nT5u!N9z4M0HQ%8v-&DjaiZ`~kQIe%x!Dl~@-QiB(3KZu^521*VrE zH3&!0$D?f}gq@ax1&!GuYHmtISXLyi&LPBZc@#jjeC9cA;PCyQEO(qZ9;a-aV>sxF zy&fvE?52Bey~p*#Lft9b`QR90dhA+<`H%lxdwG?6#*q=H-}ziadi zF5=#K{6x8zi!R*);B^t#>@k2(f`koDk{c(vD}) z7#Mu0ISJ?6ILc9+{A`^&1mt2P8(aT-euznBH%-~;)jn#PCw15hTXwpGU@NgY0$_Qj zKCPnrml(2CkM8^9Z%*`bN;m$2KdmN=SW+w0Z$VB~1Z@$K4JvVgGsI_;$cGG+lQD`o z)hv}GG$;H`yYiSkV;5daT74!zv5Ykzc_jv^K{aplo60Qxk)8M;YItNagL>Huw-2kr ztPTUNasqh<_hb?*u{G&1ii+laQ*-q2k1*VP*NGG5HWv20`Sv@^aZsUIaiB|1>PIC* z2^aHaV9N?fdX)oibs{N_Fq76lWRHL3i+8#cHgH57U2m!Z2|hmVxI?mLY>okZ6r%DXPaV59Pi6%F#5Vp|baB+6jp zYNA|Nyg;M(O4+?@zU*U!z_d2#DM{518Z&Ob53QCCqD4iZ%5XOAi_bh;u5jM$#Nr}X zy+8*r>WO8~8Z^0w(q6q=1tif*%pT%0y6whnD>423xu0x>_|XevMe85@*?%a<*n7Ey zQ7MPxE$h@hO&mS}yvFiFt0d)5w|vy4Nx=G){`AJjJn{2e5YAUvJ8wfqnJrghQOGrk z)kHHjh-nG~-3cNg{eKb=VPVlukr42i%}RLn6U+v1w6O8C^&>yLQa%nI=Hr}ZqH>M` zXXnwQY-m1S_AxZXiHGI#@)}pKFkr`kudv3k`E!LLz1T922d}w z^k*Ckq^K|v^0iBg+{XH9dH3bB~vd5T_sz~e@j0$q)d{AcKy&GX^zx$CZS$Ni_{F0(5%NX{ewHT1@|g~K^sbzhe; zXO)s^kW?Co(Q3L;u@R6TXa*;oGH%>{KLA8-P;^HgW>_RN#oPzVNY9>yLadgx5;Lwk zb(P_A3mh*;U1soeol|L!Job2b{7=4LcGI(*qA+xRR^2q8$shAvGv0VYf+>?~^HWd4 z6aS9>;Ogmxc)IRe+ivEe&{yV-yjo^i2DN1uVamvS2^9GYHl!OXvE-C+sdoXYpJ)V- zUsg6$BrZ0a;bb7Md%2Ax!L1SEa%^Sn{_xY zrQcoVC=-+bt!yAEm*@peQAR{!^xR@%f^9=*pLx1m;{Ln!ce(El7#qQE+IOfqr#cuy zkDeHM3+>C$;Q6Bd9Kz0gWtrpj%ObyNj&eKA1-$qE>u;Bx?2lt;AS%OL9F*Kl+8{@M zkyiVIkre`O0fM&zB&-Z;egw;R!)jTtLoZEzr)&80x=PHCu9^^N;|M!J?WY&mh3&z2 ztwBZ`q{39JNtjMmqN4E~;Ng*(&JPy2lynFnH>rvXKomyi&M=nj*@w4Nnawa{IPC-` zf?uIBbC^-grnSzn9Jda}L&p?7yIJPlEaajRqq}aGJyr^V*b3~b1rB*xa%B%=%@3g< z$DjOCnM1+RdWI5FC=;v#CZ2y;fu&$m;7UPm$*hPFaJuwP$Z!QzfEk7fB@*wzFGFvQ zXXepd^#06cW+p9ujMY?LnB)9qMW8^VBEjDlGhL{LKMAN;jS&?mmD3~*n>mggy5pXc zybqLFhHGq~c$@DsJ!>b;#j9>gfxnuD*b-k2gEHY7Sc$7~giO27w1@D?y!fodCeafM z4Oi1fPYhj-6CeopgqN$d;GGNew&nv|XY@&yK%ZhGs*~?-lD9W+79*R!NlK1}$;?Lq z5#6ve#qs}o90{V%PtPN(9Y57!mq-}x(LTo`5E)H z$SNuv0b~`upQ*jO%PzKf?5BL%#p>8;=D=;}dZ@7F!&Qd#MCRRxt8An2K=c(>VLLiB zN7=RueWW!*Q3oy?*pwfXOwi^E?HK$kzx&aT7%BQ~* zifk02EB3%#1!-@rori@F>fI9fud-kFz?lcjW8eQ?+4smJWr~9X+%WCpAiop;M5}3D z>1f>fX&S;0cv;c%&X2*6<{kck1x#Q|jQPACe?%U5Tvv&8!@HGO*MFS7CN9-gz`_UV zZJ_MZv>vTJ;d*hKEC;BqUr*}@yeNXFa9fcHGs$?Z`+<&r>P$Jro`wbX*}VDAd$Eeq z9+4DS0WMM@UF0U$B~}m}K6)ftJDwJ9xCKNEX(BKWEVeuE^ipA?_411^mFIu)OU_PP zq!NP$D=`J6P;H&FG=G+11joi**x>?!B~}1g=tYkb822b$27Z~LqQhJZ|M2&|Q|>(D z_3(~0Qz28KS~xpgWo2j)B!}|Jo46`P!_5c@#spN$DHMbtOuQpO#P$!9}$($-|t z*KpFa>S}oreCdbH{HJ{UlwwjmDl$UUALK1>Z9Th+EEoLPBBb}u!l6A!j+VPmokCBJ z#z+4ydT@#P4d)V?CUo#vEZKX6(pK-2YN?ctcsDf0hn=9AR{+#%D=}d$US~WWjY?G= zQ-7{70uViW^gsM4FRw!PGA-{#D%ppbcz@tuG5LP)DSGtiQPc2~BmQZ+Pu;Zu$pR&* zwD;9B8KZSK&MfYl@30NLbuH#BP31(-NB`t@?F7}$r;CsuJSldIZA7YEiWO~0$K9lYz1;2<}Va=q! z#-CR(U%Y}e#&0nU?^>v*Ce^rr0~EjD4rksm*R<~>=OsSzIKz#%v4U~6yu+#Vml629 ztr04h^PEckGCSU9Ju#na${j|UWb*f$V#}|+S>F8VGv&o!azHVapSQGH z09x=lT&1?mO>%Vxd)u6AapC_J6m5xg9Z-xtBIKQgu;mIZq6NC=U;nfJSPp*r(Oiv4 zON$bgP%;TzR$sUqegz*5N=}4-+I<=t5D}U_4PYA~z#7k6{}p66wD;wwkMtVSyn|OA z9yPEH3&TZY7b9Qgb#g9Z2*giJ(THj6?hBl-18&hL1A-Ehe zT#SVsXp{Pe+rcDH6!&bzJ2@!&LFQEtJ^mPrmgb_>9QqXbG*_9|%wf74&&+-&JS#C_ z>MtPk(TQ3yc0xZE*33f9NX=t?r(R^<$&Rw<2GwY7PBYMFHVClgf5vOzQb*)If9TUZ z=Oi9Eb0!XSm|~IHTbv$qWr_JI+eT5AAY1k@zReKf%iNP!2%kglb1WRA07H=gqyk%g z^=vu!*MD7p^}qh2EWP}4SpdN_J+!OtO|>jUH`O~EX*;L{chJbT!R1jNz?cSZlaL))|s8 zIt;5Nd;0cV1Z~0Czw9%W&_2(Oqmq+e{jLsJSTl>`VN5UJ{5S_dBY$AhyRypysI}Jw z0WkY9zUwFo!zl|?NDD0f;9{V1;M9ro8h3*I_Q!u$E+Y6PS}cXzTbFL+SrgcU$hgAsqbFoRU@LYH z^BXpDcCvcxjt5VdH~#jAZCn&by@?i+%%nNZ5c-x z!B$@uGI`1ZdPN-b?i{LASvaoHU|Qu@b;%@L0=)uVUYz>ruYI)~df+reRl5Q{_08CP zTjB|w2`7(!lYFj4O2+Ajz@>M`ROpV^hi+~2(4^Ehs<)7GKl!?pORca5v)4e!tC8Q( zG~fcf6(XR3kBSUG1z4j8uPC!DF=Deb70HeRGi5Ig=N*(&ahl8n50;mI^7HcguYO(5 zpM9CDpcnySPX7wm37viKQdxZCo$}jfe^K_(_+4Oi_WaJ-a+Oo=7r8k2yeku5dZo-z zF{w+=pT>eEWgq1e^Q+98*^62Y+H#?g`_Q5sqtWH!jwJ|Qqk=vB(1Ya|S3vFOPylK@ z*u*yg{pQ0{YJA6BV&vPL>*iGrOb9+ycf6AyJuqN`YbgW$6LXCe9IcK`-`7=Qqhbsy z(I~jqzejQF)wA>ht1^xwJJN0h(8JMhlW~Gr=tL_-&eE$oz&%O_88$q6-+g5_XP&+A z_dhOgKmUBW_{N)Mi3!%{fBEb3#;aV%@-Hux_kQyn*9@FMu@12-eIY8b)#ra#Ui#6G zxrv%9Sy*~K$vCu%VtTQPkaQfUUPB&^9+USsK2 z^x%lFKm%uid9pk2IbPml9`iZQ_k8K;XUjXkeW6@>^X)Rtkl#GT)lPK6YdYfUn80ek z9{ia!nn0k5nI^D)(y_`l$kQ*+2z8!BuvJ>#ZgUpKCU9JIiB3&(aP`qoKf(&vFLJ^R z*LcJzLM<4KnHtpQ)%dl9K7PB+ftkO!>{<{IL9#EA8L> z^*@#=7I{q2irH||9GKlKxY&uJxG|6$L(3vdt=E|gnPXlp_F+&tsUiwCmz%n>ak}he zSjTw`C*wWe@gl>Hm#OsJjc=i|$i&9J)1NGl{oqf^=l;{5vasWJ7IJX)g01kTAd~J9 zRa2iFYJ;N9b6@COuy1G?7bb@qL5K9LO0+t@2)Z20>~9z(tx-^iEL?S z1%SM1xBw8k6or+a4a=rqqc`^KU;I`1hrj&GvdYOWbL=zoijG7LVR+rd3Pv8nCo4-kka*W}_r~dPwm%G0H zHBNBYMJ47i1oLR-16-m@V_|CA)jj%c{o;R;9Tc{bxbjTQ!-%jEKEnP&AYV@E*R>yP>@-Y)W(VSaaJCwmB8 z@k*SlEKa*Z`LxJ!dJ~+$e-T<%5AH7qo_MtU;J^LXvX^a0>*!P5r^kF;42zRdb+sBb z*1XHJE|16Yx5n+hyK$@kc5zJocTA1^QNP=7thH>PBFl(S3M|eWILzmqLaeNT>oXi- zb>QSZ<;0m!l|$U*dAGtM5^6< zv>-_i(l^iiFu`x1Q`g7%u<+KDHp9PJc*V2rcf(R&$>{+MEz7a^pMXtaj?(ZSAW;h@ zfQ7>Z4V`&I*>K_DDVV6$4ao2He6qPCGcXu5C_)&UYc z7&;J1#Yj|yVwqs`vd8c&(3PKK>GV!EJ@2{aMETv%eqLVW8uHiw`8n2@GVevtYyri} zg&mGH8`&X2)dLzuW{S3;5wIsgyJ65p94eDgcICaYdj3i#sTs-b#{5O8J|ZXt2m6m9UL{@D7^X);v002i@RA^H~q1A<6~>Eg>qr{ zJ;cN}N|^EpoHcI5%K&xM|4CY~(lE1^RbLzdw3nXsB=Z&fn45a#CqF4KFo$~SwKrk| z>MVuN9F>%(DNOQ1_;Esmt!Dq+Q{)_(6;>2>6jI?vx8g(=!a~3BU*!~=ReJmnGp~C8 z=YGF%2wHX5=jut$Gc8kLBe+jIIm@f^MpFJ9G#;n8$AXu6-~Q zgYgWvC_p^d@!POyM#y+fKJ%^2>#ZC5gskYHP0mm`?c)le-FwR%XMDOk_6SSdU;Kxk zmb1V3MY(kL)mWiAA7v9UNjDaj;dTWpN<*3(tdx%97}O>jNZxnm%0faQG)f!FGS?3* z;qu^xot*i2H*@qSKL0t+f}}x&K3R#Om`&cKG1R_hmY8O$=1NDJQT*%jZWPRBIBIzJ zE#AILtQ+`2*}DX9mJx-UMu}|Q)L1n}#Ktp~B`ZcNG#6lOFd*y|2UE0O_i_coZ79m^ zCysNR)g9&9&N&q2<#Lt18q3aqfzSqwEfMFqa>xLDB;aY$aS0tTRz^;UIa%uDs#TeD zVXOSs=$$!v`@oZbz}|~997N0^pJGM<Ki__)zAd+G5gD^MS zUFqEpZ8gqFT9Jvvg{^KSi-&->5RIG#iBCSB4)H~^8GLwz><}HedAMq9mbtS1`{EwF zLnls@DSG*58EQQL!i(h!`n1ln{2Agh$Id}86etWgTFAI($ff`53{|3LB90*+8%;X( zi4Fb$HbUOmH}@Ew^)s8re1MkNKpKXiCJ!ZqltX`H$>kKM&HT z5?SEXjs+I&9C`3T4stlgp2geCOF#Wtxx^xl%ZwCxQST0Qg}Ca6quo|i6O>canONZW z&a%l#50VBD8l%jjcXgFv=cUPYR=4gbCqDH+Il;jTdyXHEv_1FH)rgTj;-Fg4XZ$9U zq-XvDAwQzZS@?1Mp@++3ZtP=N=52<9UVZJ=Xt`LpI9Cz{4Ds^~F1y(jL~csl z!LZWI!dy(4#wtam?wwWdv5fT^dqVF1%oFA7|K-n7lDpzc3>SpN(O3;lk}GXe*v$`K z@5@wv412#X#6ET4xOKX3w~!UHyjPI#+7{(-=MeiT1px6;5P zDvzvi2<3)yF57j%^qh}f zpm*n-tD9ms(AP^08=a%My@5V`@w?yQ-np-pU2(4yg$=ss$qW*hblV$CUCMkD)@az! zyc^nq->Q8SuC4e7U0VU%1ZEhXVSeM#Y!|-8rTl}h`ZSH@t`Fg%BluZvq<-0O4N>{E zw|~)SvEdSN8hv8uaEcM5+fSY>r)jVpqhecRDDZXW&Mq-x(Ial1q=TH4| zI8hkOCg;Vb>G4~Zt)R|}yw3}J=fUzN=II}L>ML=@ixsF%are5ll?ia-jURd%{EE!* zX#C02hhieFO)&RWVlB~~NTZN!2Uc|3h3}Biv%;{h>38LanBl?U5TzpZ7n`IhA!4Ex z0mh^~_@Z(X9Mzg&GW|9b<}fP=4<1HgsH843nZCrtsR#egOtG2S77EaI-|foBPI!iQ zrfDHtpwaGO-hvD7D6CdkLVNnjFP6`8mfh_v%f7Ziiyg(Bf;$NOw2-SL=)hi-;{>v=&?_LeYNkQu zE=)?tXwiE{Y>F$z)-*&S0dT|+0D&y9m^pN)9OA6lWA~maQ=B+-f%(_>*ec|FYMf(; zfcqbTSb2Srnvd06xmBSc@I0=xGsPtx-{+Uzg17uFDi zUPcd2IzykZU@TAl52E8Kyl%XQDA_Q+4ueY!!=J-&RLHgx8-=tRc@#`V=DQ28dt97B zSm8CJ;s`IVf?q?J6_JgP5EZ6?F~N;B&(kBm1&x3Tp|&a%nmsEv`pr_2?V%fg8^^@# z{lt+nziYRE3@>{6Mspq+%HcwhDO$@jo^M7a=9!3bE+W{MX=zWefaKH{K3_id^{>(s zdyKtj6iifJo}^%JFzAy+X-tZwD$FRp)bPRgR^UhRbP(58-CId>tGI^2jl;i{yeQr@ za5@C8E0}#9zZ+Faa6!~Fe&SFz;cjE$ZV-yrN-KT}G7{xYrD6dxjb1FU+5R>Pi{1P@ z=4^qUnhP}CfWJy3DJJ59^=PXd=+h3bV4;9nLr0d;Db|n0VXO;G^q*u-^`UQlvm9aL zwby^Bv!TP$w6~a{2L?^C+1d(>U#u*{mb7U}Q+YU!&lUDY-dn-D6_`rrc4^oO?m?Wx z;tWf_>Q=32>-Ijnj& z6vjCp@gopJ8p{a)+n$_j~GhS*hB9`3#8o^n4^9B01u zjX2wJigL`Je>8d;+SH@y*+Yryor<3HB?vla0KX{DD(wUBVSF6`+0;1>$Ji4)#5^wY zu#~q0za7}E(9)-HDuF-qKx?M41;b^!0g-+)3}egKp&f^HrWs<~#Q~T{SVg#>13c%L z>{JP?q^>f@ZFXUY@odUqN0Ec=V>_IvGt zX`8%tu(U~8SmI02r=crsTYGGmk6Xh!9%@{geR3F&W@P9%{39cE0+N$>G?rdLqgNXm zF?z22D5G~CLdy829i1@MqZjXNZ0OJ1ABXZs7?i^gmQT;V18sE3dmA@Vsp~ z7#6dl4L~RicCRO=rU~(Q$J8rl%P)TT!}7w@KQC{*@LP_pdeb`%0!AUaynZ*Wq+|D= zE}wkjiSjUagcUEiq&4IaqDtcNF6xCiY2&a`tyZoLM-A9SAsWbA`ZcQ1xS9IZNE1F~ zb)q{85ud%l;d~6ChuRDc?+ya=iK_-Q_ydhYeCij&d?9!~w+#<^{S~Lc{N3M|=a{U2 z?fK`+Iy&ZlMJG?37n|S|`u#_bmb=(n_{bN2pJT5cF7vd$uhFV@{=@xXInJ|;RS_nlZLbrxyXQbySIo1d_Q=T==QSU)oyR?l98-;J2e^np(UG03~qxA~j zSGX=-%OL&zDaGp2=FflS7@8Z2;UBGE=R7kOid7g>WYhiAn&_JSH3qO`Rdkj#_ z@bkXvWv-mYaOG`IEob4!(%bAU<803j4;Q9)wv*Lp^R%+P=WG{^AvZHmaXW*HI9v&v zRaX{vrs2=Z&$Ag>uN4*8b}O;%@U?Q{!+38d|6ys~DD5|tRzpCy5{p6|F^BBC1U7mV zt5`!9x`9=4s09&IWn8-~W=wcAO)m-u>#ab?d{>lBG_+T*uCU3ORjZUmm*07pQ#{U> zm9wvvWeyPbm^}HigL$!84sn?G#2L0^>|(CgYpA?{*E#$=mBX*2CTd1%V)`*kMS@9V zLr?f7m=HJ149d&=-PB5~t7u(fy8fe>A^cY0y76VVCJM6V9qNI%GD^h*s#ao@53cHo zwtGZHaJHZcpZ1n%8OB`32D{zYIjv!h*7G_idALx+xiQC;C+x!0TAuL4Xc8kC63PUl zl2SkLilLrcyb>G7@2>pJ;xN;V--Yk`4~wT?7k&_CEAeZbti;mQ`}|V=6(-(MI;2m? zEacw@(K>2SRE;>SLYiVHVAL&*Z$pH$xQY_UbPP8FdKJAd&R$$`^&;CkHYk|vVa;(4 zqGy0kPyogGb%0yE#hits1ribX6K}1=+$%;cMNb#*0aLc{YUpj~%Sx;_dK8rPXQ^i4roOjTiM=1nhAG{RDA1N^=rC8Iy9%uSiNhWc zpL*z3Y+6=e3M=+lWWf`nbaN_&&6LA4Hh-*4BR)cQiK3dNG$}mvPr0KM9w}wZTZJ$h zN+DR!;M&OTu1N$T0th_D4DxZiJRFQ)lNyF+6s&RH5Bxa1I zo0ApV>2tibe0nL`6bN#>+TUcbWhrsXM+YOs=`HG+I3BNK@EF8I#zp zlvE4TQ75a8n5P(CYUp$1sckJ2Ar~_>X|@?|+(TZ2av3J$A<@EXFzz7Sc5n^G9p)ZP zZxH`r_%IxUafZQ+^HVy*Ol5V@&;q4gvy^CJMHoVh2nt-;>X~~8jp3$b{ihIYoW*Hy zgHw51gn4xnkBA!A3R&(X(g03yH3wTP1~S-0@d>3hU7SrE&+N>CEE6+c=$#-Y7;wHd z4KeB1^tlzDZ$)<9gg*4m&fUa5O1mF?R}_7PT2pbXyYCB`*b2J#n87 z!d7g?pQ4lsytIrR#&M;YEgXAUp^Fh3eXg)&%#P4ioJ3aj=c8oN|C4FQxA{TlEaX*X z*n6uj3bFUGH;JMblMD}riOL3wESUK68~})d%9!dP4(Xkag&~G#Vd6P^QFs7jculpn z7*|hz)r#x?n_Gbct-u-q4WlUp+6XVg(IcGUZTvwK0eCj=sOZp{T!54fD>X%(vhnWz zMBUy;CgLdLTAU3MUn&o#>Tv3GH?f+T3<+Q!!$_=QH{*R>B{r_6+)fQS4$rWRy&v48 z;34K;eRSb>l1FhH67pdh^Li`QcftJ>RL-%q?fu7#Rp0eGN<%V);4oA887v~lN938 zPU6N*gBXVDw8#%Wrw>4|_+kQY^{$kV;s?H>H6) zU1IB+jFUi(zpw&FkaD*PjbGr1DP?wli-yY;1eKG<6RXjJ>K85 z%hMahGz`Z``E(L7-d5l`QCjPE(;S5FOSiJR#hxF2b=Kg}DLh+ov=%+PjvBN2fgzCS zZZ#@_^dhYJ>|5mONKfuGiyBlxH(@rWqJWC%#8z(tqY0r`%{+d4^Eo7J&dWzA)R?Tdr ztuFE(c*RAU>_m*%cvmc$cJ*k=s3@G!t?1?T2n*PJH06=;Dkd88rWQJEoCq^r?f6Rr g)|+jrekt4k3w`9bS6=>}lmGw#07*qoM6N<$f&fH`Gynhq literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/media.png" "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/media.png" new file mode 100755 index 0000000000000000000000000000000000000000..5029d6b67da7b025db8611bcc958020afda758e4 GIT binary patch literal 21552 zcma%i1yG#9vnLRO26uPY;7)LdKyY_=UED1Mhu{$0-Q9z`Yj6neF87iDyLYeZ>Z)$5 zpmt}cr)T=>Y58?;_*Z!e1UOtcFfcF#DM?W!FfedJ;13Z73K-EN0?C1aVe?sthHdzv!VN^da4y`SzhuIQ)~L;)jXIz+4}iX!%r0*;mx zA}1M4NK}ZKl$1IEMGO+7J&cs}FT$_&r$2A$cjHG+rnf7Hz^ml+utWz8G*>h=waLs1 zh7#-GY$k(7qQGQFvdZNLhKUURNwf&Odg^ynlq;A;r{G(yH<5T#EC+cfD zY;-&@u$?gdx2{D$7)U(`uyPb+x#$mItdWyqXxlj`Kg8-Ft(`@MAS22*HxSC|LtZ$m z)_9^zYiR;rz`9t!7GLXwVJ}>xO2fd2?=YW=JyOT|*GUH5UJI~RhdVY4-OpL<*#NGeqEj1;v#6dkoVkZ`e4&(EATX8H@6?%^E?n?Q@Tyi60R zU=x^aJx6p>@~mE936_viuR2CD25h`8LMHt>Vw7YpB*`3yX4cUYkT1!<4RfSe*oC z_;Bn;!~8**n9%)M2p#5Q-Rs|Zi=7qm=#Rf3cwnG}zPw`X-oZrQWJ>OwKqz%lL4NdK z6x^1b_YC|3A*}Z*vIZInv^i>rJtFJr;)Rp|(?X8&iq<2-crfE|JIBnPe6_j-6J4<1 z(KvcyN=2Tr!=1;s3aRhW)X$&dGyhP>xQytIM-mOE319xARoVIQ`HUIqvmJBvXQO0A zJxz`my;OK`Pv(#V^9w7N*EekfO^Dc%C=Q_`vP+aDb3`_z7>QC6R-9af*ycHuLqV6w zx7w{vn+F+8p>QxXE?9BMVqdE+>fWMPiQ&}zSBnUQ_UAYCk!yvC&IN--oKQjJjI zDZkdW_^U<~1~2_xiXz9EyW-=|@+efshQPri!sRv>jO8pVq1$Lj-raUFz!>v0k+WQ$I@lV|?{ zoZMB4giZ+@_X`#_xRd?|4sf-Nj}4@*h(fnC1mpoH#PB--UiM)4P`ew{T;PXYIQHOm z0f>_yZ38^@!T6viV%k~21p;u+3Fw89g8~PU>G}|0g|}kp^B^pQpkla(Q+GYz^Pq zBVf;r|Dmvp+a6pSPOUf69)9)XpFpBsqjL!m;>WM#=+M&G6w%YdDLEY3ZHg;jot1ek zkxH;tB6%V#CHVM*a7E;DF(=j8=rmy%qL0<+>hO5L2m<9L&cu>(k0u!o2(OVJ**&1z z14xYSnQO2Kez5;WL;E4sw`2JIbA7U@ER&-vCG($Zb$V!3)Y9;DekN;b4vbbTt#F$j z-2s8VD5HIQE__aT%);oEpxmu3`{pJVZL(8bTVziECx5EVj~BEc_%==f)T~IR-<%t~ z7lHRu&!qk-#PX9Q)})ZAaj;LY>_M(QA9^4SVh4p2$PdwU!n6D64QVdutCQ~2?-NBy z!(-~C_Dx>Y9^!)zB38r@bc!PSY0}J(w{ZiCL;xF%i z7f==e6~NXl60iU%2vZG@10M{Z2zLWB26F|g1v>ywgmsFgiyn*afHs6_f$B~ojXsCE zM(H70r{ydz`*l>;x^>Z_x^N59f#CxA0`)>`>k2gvl@PU+T$7@JyqUb5;v2bwj6f2p z432caq>2oG+;3?ssZc33X{5m}mO~a277P|7V*?EYja2LWV-fBj=?&U>+V!hw?ojSV z50DQtmz5Y?=*Q?a7@8OYbl+(_=m?eD@|$w|d@wEWhHyh}Aq^+}ar%QCOF;I=%O zYblSM;+PtrJe|~?oSF=uY5sMURMBReY#Vr*keR0&qZ_&2)Db42^49d4>>uNw)%`i} zvxtF6i9!7)9+_h9mt4(UDI<&RuiN6=6O_`F&he)4?%xPz*k+DQsaa)e`AuK;(49E1 z9IuivNin-I3mHu5=NP^*RB9QNS(hVf@>lOQB34y2W>!ztN!9+XHmP!{W@z*_qB4?b zv}z1Ju{n-7&f*Q@73Hb3g-9#o#IW($r2dP&4eEzI+Bs0(ydKwBa&Nt2z*5E1OM*%| ztDvlS(#dL;YVL1!X=QD;bEtI7x?{egzQ(>%zLvde+wb2NyJ|U(ymGy(xXE0x?sz!g z3uidga%}wcB>71Gu(~u{%kFigqDQG$awaDDBP&!d@DHjBT74?dzTJs$pD$$>+b{AB zqhE>}*n^;qrQsJK>j>A#Iq`!M$GvH<5@nhzqIdPeW*veE!1{-=CG7VIdNV)2@DL;?j zFTg^65#i8V{72WtyYmdg`mJ1wzPS6iYNgic5feib=;5EkBEv*#$;xa5o4j#u#vLqG zj#a}&hsTPqxepS)gt-KG+_vs*`IhQbr|gaLmKkN0yTxObIszE(mSyA3 z6@|LB9UcCa25%Pk&d-1EBDHX#$CERfy;NV1FDRo5o}D(dpPP~PU&fL2s@f;L6_2)- zWVVu`*lIb>Ec`X&v`jTcGzS19n9;@BCq4GNMs8!}` zr?nD#d$-UvS+%V+J}n_k;6;0+dpvsDc-sA`YjWTIc~NfFcw^_bI@LVms&-_1#2@L& z;C<*lb~ks%d1rOq$T#U_@BYQ}*Gu+#@3>HJcLhmpc3N~9(VFM+`Tb_q%K2bCgTild z2#EsmUWraVIZ(?z{T27#LnhWJ(|5hg_A(!eml6wEqvJ!X+68Yr?R7ppB<#0)j@y%I z(Q)3()-9>-p+}m;;;1{!GiU+pSLTb)kK0?$r&K=`Bm`uXz_@DI_c@8La7-SPg8Gl(Lk+^aC_Zi;#;i+>G|w%`c#eE7;3@ zSTB@Iln$yAGFPPlIhJphO235~q%svrzFg!?=X|fQEL&E*A&gu|g0bkSy-D$u{^Uw(MK*KB(IfYPG*P1s*!xcf8;qP(ti>W6fV6sDZ6ynEboowr-6UW+LdnPWqRF@|aA@#KWTSjzHJidG$+ zaicDw#JZz^M`d>h>r*|VHdm82IY{!hO1N4n+_Bg)MYGu>_z@*iI)gSMS7<;wIyzmy z^0UC-Z+Pys`HYRP`Xc>*<0IwFmdDr4ary542AuaF$b4X!F5gU&SK%ou{k-RCbK${NylDVYV`ye1I83b!9!NBKn8-A5>}jaNyZuv zF;ko>B05;ZHjriFKrHlo`hG^Kj5;If|0&ZLOI(4{cMtT_OPb&aYy}BXN}i~K^c1?y zSb+Dn9pXjU*nlcFFz3S-IjqwVWU=PoP?kSC$-DXJv*`7Sb%`n}c`6@gljlfo>~PTr zZCtck18FyXxopbl8sM1a+jj^z~D+)pgEd7uO9)_SwE?sPCTq%D7?YA_2ZQWrbk+ zep(=}(d>BS)0pEphlp#)xO}8`zD`YR{}tq&{roeXBXfaNnDWvKw%mz&3)*jW2KkEjKOUB13cU9< zCwx1Kd@RhadQ~q?UN|&8ml8b*N;3`@dMX#3`8&I(jb>$9Q+!J|Z%=s7&SIaG&phwU z1kLe5EMWvno;y!mW=(ri6N9aVeP-V$bo9tO%RF4HtY0H9xn55C!TeI(U@dAowo#EsQN!*|(+ z>81R70znaA7Tgj{6fPU)gPMksB~(*@Qf&J-o`u)AeHVR~L zuLxT^b%*jKzZ`mS^2|DGRh+DPoAfUW3=h7}IS`T5{EGh#^&74ZriOg!Iq#N|#WxeT z*?slPi{Zm{v@C_11w<7w69*D{fN zOVIw@QJGHm8m9-ybKCaz&(EfK*E_|m(U;@b3-G(pUJ>xtmgQY->;bEgUd@ggh z9wR3m97`_tN8`((O_GSD^Y);ukKg*a-YDoMY#hchw zluuSzFOKvBa=HN7OQq#)rE%%b~ z0STIlXglj5`qcCGB>ztRipwH^XXzDOkl_L6S>-`Yzu_A1kM@XHU%=x;e*RC4KR5Rz zP}V}9sG$fp5Q0L{iPfk-mWb27FfnslLxgsRZXTUWHK%xWEpVlqQ#B0kN!7rN!}L z*JEoXvn4MlBc#}ovL8}Ygt3gIj{W|vI$%2}FpM%W^n0micMQRa^AdD{3gW#tMA1`# zO-IdxrGfFrIz?S#I;1P0l}Gobn_|!)OQa&8+on1qH)E_U{8e03k(XVTYnWqM*`UF% zM5b1&dgOomy&_dN;Z-A0gUn_dKc0kD>grR3nQF^?BFBhp)U6nz8z%!d4HtBaa-fCLrjrQvjvr zC8Vc1vfr4c%6q7a`~H-4y^PAvkZ%6iDzMLeY%!>}YNlM}?R(|lEL@v&*c)W%F(jEH z^bk&VKU`F@Y4kW?rBF4uGiRuPF$>S8ZCNMCx}M;i>AZPBQNPz(?vu2??B;f^W7DxW z_0f&uSccJYNX(9MT5D!z3-l`m5_pX!8{v*yW!cYDflDHQ> zl(R6AUFzxxx1mTqI+B{Ltu?UhXz)AL9cUyL|A=4v*jV;Vj6k;TzP(Ct55X}lPRf}Z#x0m>Wn4h7p+2g+mTRWnK0ylH2bEN`ty7_vx!V@EJ`UyYoV>SnH!Kd=8z0(`*3^3K<~vEhavaE3$x7N3iK=@C85(QVnT$$Wi}G<~^9*r4 zs8}lDaX z?eZ1jbSHE9%q8BZC=8GM)7hx2lJD&&3@#D^T(eO-<8Ic}#8$IY|tNuCd`obS}%1tW% z?oWh|T z_(|2}z7mVrIhqi&GqN!})ZE$Go`;Fa&CQL`jg`^P z(TwRcH#avEGYb<73j;8N!O7j$*#N{~>qPdSMgI3Xq9#s8ju!UL7IwD8@9P>E+POIM zlajtO`tR3&_GtpL_&=O%o&M`szyX=wzhU~!$jtQLYXhWw@1s0lEkGvL>Y^4lCbmuh z4*?b~4!(c$|F3WU56AyOsqsH3Ihp?_<^TBRzbN^b-Vg9U4)h;s{Tl_uB>>0A^xvWv zfODkj{s9KY10^LYqznQ-$@u7{Jb*Uf3yaFvWEEf)&}!wdu%%fi7EuR^-FjZxV(hnY zpt0>I&|K9)WqZuh09Cqel0us`kM3PLD%_TP{b_ApTUydc(ua#7h79sUt|9?f!`q|K zfCVQZhC~NP;kzV-0VmOSf*=K1M`^R5LkNF?jBfiN`~_w)-4BK^jV$R?upcsVH`y8R zAA*C5IACCJkU|6?&e6i{F4t;g_S}=5t@sB05f1a2{9!DO(`ceXCo7$Z)pnI?e0@PvedBF#!llIo6Ul|Up9Bho8$Kir|A*JzUz{7C?;nx5q+_Hp89 zp|aZjiDR}@g;&`Ths6}q4*&V(WvbK@=@UMmI>CtGJAWwf2)N9j<(l5V_E0~Ak{ES+ zuJ$Js+e95)dg=7^KH>3vI{VYPfOdX49NKWQax_pw1{w5ahe}_u+lVo$xz;RKX?IvM zmLmM}hD;Vod-IUA7r+HS-ER$YqP|qE+G1NgUBLGgO*Fnx zF1WC8pK5>i-|2+9YvbUfKu}2<_ES5|D@{B=BL&7k*!UT%wEQ<3vp&U7qKj*IDYUB+LOMeobk9lDsRR zRQA$<`lMf0OXmmq8KEI}Z!bhpZQKR~pgEwx|$M z3h%oZ<*x1bo4oi#K$DGpZw-OCH1~MCJQxY6tSB6?57K_4IAJ*OeNuo+b7tYJ`2XMV zMofU&Vcrlni#f8Fmsfg313(A^F80oFDp#V~?T#>)eRkI!xHlVokoePn_Ui!;=f5a^ zEWH#%zCX%nKM|kW+<`EE>^doA2;nYnST19=5pG49azH?nFku^0l7ofsSBMPQmuV3N z89>AaY?lr7k_Nb#W5A4R9Lpg|fN7+k2wY}L=W9sTKopso{zSdw@H?fvXctN7Orz~m zz{ZAto%!5!_*WT~e~WYFZD_RnWPpfgGh@8qz^TYLVssd&cIZ`5fsOb958(rL4IRM5 z=A8+G*^n5(f$)*p$x{0YR{;L| zk!K<4X+iUqTA?lVmPXql2-%FkvCz?jY;{_<)><3yZRTZXOLX8fc%A!lC8E=D>y+gI zjeUbrS3cKn^+4ctJriC9IlPUK^sTqLot@upl9?;?P-@nh7pb=MFupz^#Zf5`k`~~@ z0j$a(>3Py$ZO+bmcKb?$pdcajulD2?YbIvtkz*vN-$z#Zfw0*^QZ zkp@sn+~V82xTt(1t-J58L!(o*KKUvDSV?=w_dEak`f9#h^x1Z;Equ|zkSsnF`gbHw z1m1$3{$jLXPsTO3`_-X}rKO>pur{c`#{d6}|d_jLDIA1Ao#9?#oMDs1b2ifwk zq`f@E8HDcU&k6VY4&U$hwnH(DKCXS=36U5X8OJpYiW8S0%Sb`OKMgMvXu>eGoViGv zxwbF1IUCQ9h8WM0JPOq&7&Nt=FJ2L(3=8KchU8}{^%E<8k|@0aN~2w{rr-PAGnFhfT-Ky8}w9J!6hz~kM2r^Y^xR#`SR(*ku}%3 zGqhFkpCksgzY8VbpdE_q$w?fMLECRi7;NHo$zi951-C|uoFi)t9|_x=5j(p$V{=KB zq)X9YzMacHKbVzi)nXEfj)m4#ZCK1SAS}Ba=-2l!XtzM7u$Ty2Pr++MRuns&Y7Mu3jlnppfxh;N`V; z&Y?+D%KupU*VhuSpMTdcFl{dnj9b-Muk$)!BGNITmtL;4OO354BHkLN>hcGK-;-gn>cuV)?Y*m~~HVjVje z8Ozfvc^d|BE=LOzsdW}8WTvvSxi3NCs3lSv?w5Ot3+OZtW>^rGxNtP~8V7k1S!l&u zCgAWncmjn(Un`M3(32yQr}~su8IcBl$a3nvh{0yue~u@Xh(k3#y2ef_zG->P`aF1$ z2@PwM&qh{1h%qO59#pqPqh1uFn?@9ZICsaL$<7elXuTRFEEYkmR-tVgZF?eUk9;wB zJ1|0*rMnJ~#f01sdq)Fpf)k1JpMWDk;Hf`?ql({LM7<4_4a{HvbQ-_oH;=(hshpA$N2&r zr%U7Y95FbnB>R^~gw?j2?74ob_RHPemZs99W1Gv>2Y8Rw(acQAwA;>kY(ctP@gWlK zzo<@oquB%ePJ8s3IP?ZOHKGpe-N|G@qqX|}&%=#qdY(_W3{lVC32rLq1#TdQe(!e`;Sjh6ycvpXM!EDh>8B9sQEFczpB(H=vL{87H*NW?>#z zSLoB`Iic(Qhu@#KtzED!Z9y-yAXbpmOU*odT};=>9lz4=_Dfwyt}Y| zp(DP!J@$O9>eyk+#wIvgFW-`N@7HtdKhzqSEKEx)vLFgRV{|*-%H}l*+3*2Y>ZVj?~zQ1tk?iB=u zEDR?xS&@TYbIfk{#_&Qh_!wuc7fwFVsTF~_E)wb~>t_hD12cvokQX-N)VFP`D&LxZGg*nAW2lJiQSuA5faLhctNrb5`meoLm4G^AazFy*d zhDbrf>O-R7*zoSco4#u*#^N+|6E9Z}Ju6o!?-pMQ{dz}1b$YMecPZ0beRk_eQRJ>X zq)TGLr|^loMbjlMx494O=rBi^Sz`qIvmr5Exl=z~zC4!viISNa+a(TxH&QQN zZ`8lR)ACsL_YsuxXJ!M$A2+jGGdx|l?P|`F*^MX}da%L}^Sl^Up9NQtJ<-)K(INIw zCD8=&A_;Z65{$~HsGsz$J6_>a2%ZCzE2@XozOp#Q$KPWT>nk-|`#THL!OAsjcN%

^RdGF=|z>68)kKjV}3; zt}i0xzIG-7uk(jr?1qDbLw+oZS|X{IwWVqrN$sR~vv6kP>_w{JJZ}Ox$%;Rpw#-bEsNz!ODr|7F?s#fNQj^Bs zTb|`rl5gA^P60*5&&TekS!TXQE0HNBFcd@630i{CXB9nBX--|zBctJPi?yJ*M&z&r z$RCgjk(P7EJZd8-u)4%%yZDEuem-tV2-A)e6l(Mjg|(u7+rmbwT6ykkowG@D+}8$IkPQodfM^Gy@UcGOuPkf z0gfkwd_N^P+#i88m21UGuUC(HOdCLsq*|#NyepH0QyxfoQATPuitfOFK5<2+?&t%v zyq_T|^8#svQT|iP5S!+2>U;h-N~KQ@ilchlFb*S-ueX@Pwc)LkI9+YNQEt6C5SpRp zFr4ZMzAwbfu&g#$SETxo z&SnrW&2X}OCsb{fC_5^dfH1kdm!bcg096G@<}) zekqcz*K4Y`S<|q@_!<$eClLb~<`oKz%6T7UR;{&YliiuXYO}XYc~&Ng2vh>K#`Gcj z>d-~AlDQT?)zB9p1@%N`F5aGk>nVkVguEvM(z&9q)ueHghabwWV&4}-zDI?~ZUBL5 z%$t?+Z&bicC(%oL1h2Y3AE0Qm*@UdMx(2u9MRAYa+AQZd1cp3vcA~Sehlk=)wZ*YI$3*dKjbkr@I^T#_Z zK0c7slszF}`$5)WVua@Hd{_Dh$%Fy{ckfz}dEHuzyUdy8$Jhyzh7)&DhSVk^wZ2c` z;V!~fZ_gjfvp+?yhyt@<)@!>)uzHB*uyCMt*CDWDJ?bdoUjaQ)@tl473)bhnk-8&A==lVRm zLz)b!*ow|RbyQg%NU)Lr!X(dLRGnk<`rup6mSs1Bnx6V)R_w7#RMO@t>2Oi9dl@pp z-oTpTt!CWev3{W}L9*M-s%QBP!}_k3aSta@7dLdezBckz49WfzT5OabAp8YVC=Dis zOb!GQi632?fuS2)hr(7;Si**x%#R;Q5X;rt{qUozP1vCA?Cj{ZtH9bqnlX)GjUs~p zz+#^qxnyJWu!ioFu1$_o;;_ewJ0Vu1^`|wn1FYV~&7X*W_7%uX+kU}Br&lwE&un{V z7LW+NLt;W*#%d9z;{iD;5tWKvBTw-*dv={EVxcp%O23F1(|Id{WLxKLszT;X_ABs^ zO0QzPm+LIXq`#5ABV+FG!d;#IJ6(;2NXX@<#>PhIXtYpd5PZ5LK$hgs8;OwjYj0cI z-I2_8wMpNoZ;nnao9(Z|;cRI{@mm@pNxrkX`!G9j_eqh!<8>G?>CNP`#1GjlCL6qY z&+!?0V`3@oLok*b>?-w4Ng72H(5%5D8K{+LKSZ=6 z)ci`37&d|hpsaTkXs7}c@5aH+9HCyhskOg>H$)4h!@%J1@D9?#B$Mjb^!K8?H9tpR z)~?pLM<|@u-b&|;4Bk0y^+^q$DTtV#steKtr2}9T@iZzk4X8H`B-n1f!zS&}w)_{)A&E#%U%2RbP!Q?BJ9?M=r6_<(qh<$&bX)Kni7t#u zZ84W403-p=3imz#E~&Q?Zj~4Zo*gk{N0^_~?j=?}HRr#NJtP2rw|`%4#8u@hsN3#= zA%C%316=4>pdD3*!Bf>#{|%h>>4O9!-9phVeZ&p}U|x1%-*GcZLb!NJIq?}vRIQHR zaXA1DfIbv#Y}QwQ(uuRozae$YKdzb8BoP}sGE z7>!q$RAF9i_}Fm_@CN)9g}&0cJ?RV7r!S{`?z4}3bc3It)Kp4JTxOhh$0>LSooHm< z@$VlnK|rN1Tf0`3f&a3*Gy33Ze!W;JJ7?JNPj;YWB5h)QZTvNG?yAp#$FH?HQoWz% z(cBD{O<^JN^@rFLdpbU<3A!-LjmHcAl1B{qNcCu^lf!y@_;FXhd33%_%rEct2jpT{ zY}m|}o5Rh&Gld?(s;?aoQt=f1jqRS>t4p=&%yt4S?#86SPVD?q|Gj;3P>b_P$)7(j zX?9(V@`dtQ72|V78fYgx&RsI^j<*dJ818Cl820!%6<8^R!boBCaqeVmn7UN)|GQs^$Hia5OH*`zp=fi;8e`yZ?ad_k(NK>#lkJa*r=)@_p;j zVBf8;q6JVYIXsRK&p!`W`-+nzcxDsn2%Ht7?&Y z4X+C12GdxvSj0gkJX0Q%y42P~+sa3`SLFbFt zytT&Wp{0`e;eQG$gCg(N_bEk?!xrXdj*cWf5f>=Q!A+P zi+~3N!;sea>p@TG@O4x0IjmBvae8Jrl^^((SJ_Mq0m+6Jq%5ucVwBn7FCpmzdw43B zR5r;B9(Ke2s9@Obf$gl3q%qR&SMRo~y?)rsiz~TCTlG5U@a4Vntjg&JgL~%LQoTQA zY!v_O(VL@% z-m=B6?!d^3w+?F@hTzo;G!w@k*q@obW+ii*{yB#$w094s(%Zl#gUOJiu|;@3nvQd3 z!FI^}*VJ~J8T7$&N|epM(dIPZVPj5;;-3vmet#6byZjv|`Ky_(M}}pRQDPi?y%JGj z%>1@A)x`0{fRzVoFF?3+-p}K5w6%cKiBqpU9TVq1_UIzMUl+9V@2(;%LQrb)d9gMs z)2fyPv0{w}M!w#2sg|i%1v@d?z;4rV_RLd=)y1JI02gV16fj~yydZhYd)C8XAg7Q02+gK3nHetI*Fy5IH8M$l%jFiO- zR@9fSqW;>m4Iv5Y_yiz40H=D-DTL>5pm5*>+%FU4-x?th zS9bGq{-RmT6d>T}M7>vLAy7zx;ECJik{oxw6bX}!B(UCvkK_u79s!dO;U`6)ps!E- zczc@rGx_57R@JFwQHz)tY$TNduVkU@uQqxf$NP2@08wt=ts^lFVO>tdQ*J$V2PS~w zvijg761?Cs>2>sNOGKAx4(3WkZNS*r{Ruf~Tq+5U>3cW)xPYM>U{5V&LFaS5PCm4J zh}C+xm?aOIpDhgc-wNa!HT}6ZyFWl@yKhqtqqM28#{Hv%2ao3=%$!W&)DxiBtnzD7 z)j$btQ72fb|1d#m25pc(^0V5~AgNN@zwYle31A{s$0Sg(0OKP7`9qVB*X{Ug{>EPv zpcX4OFrKk_dKxvyCP?QKa4&t3HxZ-jPEu#;ur%Z~oIqp4!rz;E6H^E5m01puFzan$ z)~v9PTq?U*c2BTWmsg=Cx7Sg2=bI`ImTSu^#rV1$mdN;fpqvPUT@OP2CKK3>G!EFO zKhB3gARgMP%r}MkNKIJa@oZnhCc~vGLuXZB)PWzqY-ltY!@3?n!jlcs5g$2$K290z zgtf~K#l53BK<&&dLrJpa-3ZXUr>u#?f2Rx8MkdZRRZHh9y4}1Vi4}W9n>=>mJZ9p0 zgWIl*W`3V9h(#-*=hpy4$zlMEh`l}}JQ(oUrH$g8=Wvf{riXj9nh+@->Sm`@v{_OLO~bXnP9MjDIj*xkPGK#^Ljfj&-isUrmIX}juf1H8T_I0HxO7TAz_ zGH~KzwN{Stbb(y6ZjpTiJWlcOIEt@rqOfV)HfJlHov2)=u&4(nvHwa|?*iJyL{xxe z_*zAL$Zqa8tU^mCIMPsI+YGmB0&AotlJp$phwvT;7?6oiTV}1hqHu7O)f!U(mpJ2n z*swohshKOT9ng72|1U+oe-*PYl_UT)KNbOc7QCBeDujupf$B3_K2fK#F3e&mQ22bZ zPtp$ll0XSWhoMQ#$d)GN+FwwHv!#Na!Y5A?p7ExW~Nuw62&=@AkV zTCDcwrA?%Zo~Dq_5nA&A-JfR4KVIhX6K zBGNc*i}Ia>+oc$R`5VeW?X*OtR<#_-UR&5KAs}Rsn-D&&RIS2r?+1?gT0?nkWtOMg z*{jeVS0=l8U~ zpCq})WB%e&s9tq$zBogr094Dac2JOlco2YS2IwrH3<$-7DpRT^H66={*cpm1O_XMx z)-J32J7chW)=6eop*=|ab9nsDRVp&*3-x>L5|_i$cvft=#+|ihe=z)bskU@}EGJ)P zveJzR2%I6FDreFHm!i&vj zoQugZNn`Jj!vsi@bhsWyHx%h&evQ9x$ ziX6raUg}m)s*M^LM!@T)bX2S58R;5GZ=we12Og@uWcRm>0!iQ(7R$(i|5TshUmw9w zFmfh9)2$T%?K?@4i4rCre%JI}J#g^mcUoY@4ZvF05Q-z1$0vEk7tOC>@ie%E-=O?!XhI6_J4W0aH-uZQY^>qI9h^7 zBIINKess2P=4^cys8*?KupdQmesNLlrugG>f9Z+0!EPXp)9%Ok%G1WuOd*%+H8s%i zbfSZv`~1Ma?FjTN<7PD8bpvfd%FV|*Q85pCtsWSK3K?+j%cKK<6{>fs1Xb zDuXLZm(m7D^TJz#QMqBt3$6NlVrHAT6r2>cq9?_TG>2%09021T!(2+vkN~o{(T)L3 zPILzKL0}+JVy{eN^gGeipeqVrnZ9nLDFV=j5u)RH7gMcosIuO0vb=ejF9VYCAbyYH z7L&d>D@A-F5Ll%R26{;hvRStm{#4m_L(prth+^?*w;tqOr7&B>snF7fzh^&Okn|aHVg~&nGQx zmfCPq_*h7ce*b6^)hULG#4QHe2Xq#;&k+^iGMH`o81*_JnV9UH&*o-|#Ej9GLZAVM zM9$2lKmX&;WNJ&``uaM@=$fSTJ~8PlF&n!Y@}r8ko6U_DNlztw8@l!VPlV9SJ2^8djUg;14a1kJP%? zn=A4Mf^1Fh{qy*@r$LnG+mTAp(=7rV24et#ZIJpr-*5iGp2D8JsrE2m{bg_t_=cXb zLdEvSZV@QNPlzxuFobLyPa7f5vSfOj>t-h~M&glhx1%wixnwA#H*B;THF;ZM@;mKc zpErO!6EYq_f!TX0(8+iR*Xwn)8D`CDOfqp;4d!&JzSJY+XrTfg2-=d^Ygy?|7Ap0i zv98A}hebK~P1md<2cH?|iZ$r&*V{cG#mQRc2Zzhpq$Y6F1?@WYYkJ`*$tE{E>W?7r zj%F6h*m@$YZz?b`z`nh467+w^Li&dJ>h!>3yWSQKel642AYijx-w#A!!5j$$dt<5{ z_owYdt|u#{n%1i0v^_(G(ur^{oo|Fv@swgvmQt8ZiV$fWwm;5a=EDYm4!3taVQy2& zD^Gm2^4Dpy@5Wt9$=ExHC7X)ZoJy%xH_Q9I3Q@fT6TNd;JKF#Wi<+GFqko%8w+NTjZ>}1%o`t<43C{wm`fC>sA3ChM`SeOUM0ii5x4ynU81}=DU>{Ute;Pwwo40l^ z+tn*q)OWFGx9(~t0<~O~s>G57v%27kXkpomokz7agEKcbH#Mh*^(zuWC*Vi(+WPnD zgOa66QeV7q=n-vrg$ENx3>%L1WT(}xV+Xjp+V?f%sT)60Yv+Hz{fbzzV%d;H*jf1! zr`xw~qbki=96xaaP98t5xP^U}^{=uaBkN_`lU`@&h~d~sdc=5lnATVuEFMQTk*r7!OAwv zo@E<9b{q;9DS~X-ve~m3pXA-SOBWnDehfv56-D|C8I%I|)QJW5DVF*0JW3h;>5w>^65+4Gz|&&-)==JhfCoIQ3@rc6O2rI*pTVMDe3`_I2*(lHrx zX3erkar8XdOT$j`E}(@Mr1ObEQ;O^zQl(CfS0AUBa9Q5Gd94}&F{npksbIO3zOY1D zNV4Y5mk&b*4nozhs$u!kr6^ObtgN3N3fJK@$L;#{YiQDJ5cciet75SUL(W{eLb=2G zr;{d2h9fi#J8Jj{RH#%D7cX7}>!0{}+B0PTA%2(Zfd= zJ7x?5XwG8XxN)&y-h9>VvP)qMGOa~s8KXyzLZL#1z^aZFzpp@dn#^rUq3AGzhxGtF z`Zeswp_usd1e7Nmi@pQ;8{n}2ZjqwJXcQ@#{R=`R;O{MNg!i!Ix)2Zok(+?SD3>EQMk&1z5CY~9a2OqrIfa(E z5hK6`m>~l<=h;TeQq6kqQfWqS+6bgJGRaQgtkFylStqSq$6W(13zx%^`DzZaY*n9- z^^52+O*K-sZ)}3XHgW8`JcyWR$05^UUTg=(f#ciKbVXV`A)kg59hWUx3L&>LB}<}7 zgNAtc@S#O&${q)_JRVV+Jk5pk;EkP_TRSXSycp$5l?L1DoFD_d8dh*V#&w}NXkd?u zjvS^;o~*bpm_J_?vo9Hza@kj{Txqh{ETrqzuC3zi-?z_X9BZ8v!DB754v_A1a*4_t z+hr6eR8VbxH1F&L8L6=|cJ0^hONz?wYqfm1<-tS4PaZ!}o3&SSVCVbGmMle&UcG3Z z-wli&F%n~crV%0w&xug=dGc7b9=?Q?weNjRme5>Q&Bd#7Axy_wi!@~Z+~VOy8TcMc zybB@I59?UET4B*~l54Hnv_|~~4ODH;oH>JfwQA$e?c3lLKe+p#1-2IVqq%VjX{g>* z;FpuTXxuChE#%CZ6IX5+yE_RjuHktWQoI?K$MCwT{q*V6>uz(a*Q^odbO`?Pu_b(1 zWjB>aSm(G)$RBbwJda<=!mfu9A}&stMVq{Z{O zPbQMymo9BuRdW7*R2B^?1kJm(9%X6_!pO#P|1}oyV|%VX4pl0M*@TW`xGlw z7)8i#Y5KHjx)XB#0<)o;R<0@)D&idUwN~{SR#{ss^q(%RcJdkN39#2kc5x6C z7^J?qTp@OX#lNB)cu_@OfRX3tB%pY+XU;_ZI(4vq!v!*a*)vR= zJO$+Y2RnA}QuiDF3kVFr!;cFz@;-l&v@Z+4d)bw1?3@B8%!3kY^sQN31863E|& zjDof_cZr4L;2(cb0(c@B+SMT|?akY_ebPeU7S^eg9~Q;CduJ3%mM%rk+cv5N{OXf1 zXQN9tmSvYFeZK3h9N(27y$nx3;e|2ze)fC3hJ2L&GHp7Z6aQf(P)?sZO^aeSQ(Yu} zZd|7`bj~pNkbvc9!NPdad(EXdP zXhZcqaOAMrEiNrxQ=cMuOi^*Nb8L#wn-+4@!y69CzD3C~34mJqKX z$>+|}7ni*U_U_wP#pOwZno{~Ub=4xWU>|$a(>&^NYl8(3kDe4QT2vK>t#@nJt%F=N z)gvGvP<;`(HO2ay`}C#Z#UVM2{^=+61?tv`S8=YvEc3+gHxFKZTwRtIRb-)@n)GR*1@|>{DrOJBim9O#AQ!H?JLTw=ZP_c#l-Me>HtEXtO zVxd*d?DHac%tjXZZm2`+ot33|Zye^$nX6u+9^JZO#i~{GvY%1s`HPb?tMTmZvuDnt zWT{dBwZ>U-%L2jB{iW8WQ3-_ckK^$)7;bGOa8Cf9Mv>#Aut@too7v+IEh*mClQY(6tiIA5EK-s^eEc$yIHekRp;Gk)^)n{ z>D1b2JaILo;Nf-3xXY9|OJ*f>_@;a`e~{Dm^ZU?^(ey+=Q5TN|ujaTbm>`A6BSAuU zRSqr#hm@&O>OA=i&VeUna=1y|IS#`~@bIPueg@ov)K;}+!OdM}-b#>A3r+AaUu_*W zo^j5BTa-LUOzSpt8mUvKQvQK>o*lRPv@YcPkHhX-IllB$1kaZej0E@R%AHG}5b5R? z3ti}!?!mqL>ILR6DTj<1Gor`0y^LzZzj{0Y_51$))eE|3|31W~?pc9+UPkf4I^ZuO zPx$@qmtWM%vFyGhe}Mw(7H&1Q{R8T!kM74^c5E zQ4`Tg$zHFvgOJtrT3autJQf;7%f_`PzeuinXFs;LFk$)3jeThi;simiuO9` zkqo=b{0^{S=ax<}>Q=EJHoR^s-OoKIEuPOM7fJ79;la&ow)NnCf3DoQQMzmy?Ax;! z9on{2*Z$hMQ+)~DscTTEa3Nh6#LCVG5AG`kDC;ut@Z>FD-vTSg82>2dI@wTC{A5C5slJ+c)2kp!8RI9(Hk&fgES?OnlZE zbs`0{E42g?kkDXdDvyM5_C4t*EtjpM)jr$M_2x5gvwVg|**YsugaKU=C}zoppEpY2^AYvo`?H@DF^=N$A)Mo}QlimM3ps^(87-p}f)~xVpG1r7bTCkSuvJ z6re9Xw<=0en#rkUapdq}<-fU8m(FS-03PkBL~cM{`n;rH{9t9L)VggOl|Kt4w(;Q= zYI*dAyAaQwJth03gy{L*x9Hlvd#FZ+6)ROD-AgJZ4Eg@C%rSq# z0`Ph1qq;n-==Gp_aejr#^(=pRLk8B{Fb`H5bBl_*H{6D5f)3@l7yeT#IP0t>1tVvtfXsE0^HqV sr7G(lBt(7!B6uSIGn5(#fk;Q-|HpsiCUG;j9smFU07*qoM6N<$f+_JYZ2$lO literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/mediana.png" "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/mediana.png" new file mode 100755 index 0000000000000000000000000000000000000000..2f75ecabca33b54f2f3f3aa4394b48eb1cf7a808 GIT binary patch literal 98724 zcmZU419YU%()YyL*tRy@SR31RGO=xAlWc6;wvCN#Y;4<3zWncf-}~NkzNgNd^GtVF zS65B7>Q@sgFDnKQivtS)0N^FWg%tq+kh!mqHZ6mH0B#ETjDhiKL7?2$T#5*vxS3KkkJ0I(OL z_u2E;4;mZ@3aCUzl8FWbFh@>{pzh`&M~F0lTR8~}fQMIZZ^2hI{(fh#S?7u_uc!X? z4(MT)FTK+PU@hIDNJ2x4?lE47yimpZH;4z`WBq~$6)f=wTtyJ`I3Ob{Kpz{uaCN0PguIZh1coy zg8lz4i>7#xr^p3e*u#N+*3hgD3P}JSwa;oeAAt`@NNpO zwQEeiGE%BFhe-NgTOWVHlQ#`bcVZ@*YIRvcq8y#pr{O0sBpdD5ra|by&itqu!32p2 z+}{MypdlJQju*}MRz;&BazMGDAqDt9F!vv!qwllC_s&5Tdnmyn{QvUpN-uf_@Pi5h zKZMrZ#saKQJ7G>qdwaOS#Q<7JQC`tNLiA@-HrFeR-02U?2Y~RB-JZtjD?=L6oGs2G zp5^bxUQNBi86GpR2Kp5QcUPDyW&m(37Z5M#v3iJ7tU;bU7DkWcuWBR}hRx~-q3Fa$yY zs2nh&;HAEnJyd-qA7Z0vg&*eO@SSg;>SK3uQ{7AYFNm)YB-u@$2g2u~I>PIM&bb#k zT=JFt(9ZDA*bBjJZNERyBAZV=cOR`LPhSFw9n3yi3GbIOELFo*xGL{-&5zXxL*OLC zw76-D6lO-8H0{JQVt$}h1_V}+f}!mNDkmf~f~beTeB*zGBU?lMERr}Aj$+2~utB5PE3g9tA#;%+rcngJ;m5=R zanu8215w+8Xd-bz5O|=*C;N3y1h@Cg%MO4CxxYol0dmrVZ3oiu3t<|<=9i})fCq9a zrjrST_ZRjRKCK{9V8AdEO+P%0;7$x}0jRkEWDKVf6sM4G3?bS#5y9(e7c-~?M0COZ zY5NiaF2qIwooW0dViwrW-y1^p({fl4%sp0&e6%1my_z*Ytl-*vdF>eSz>0e~?Lf3) z)%qgs;MO2E0|@&Juf*ICAmqu=pd_)#qh|$E^Vo7b6jtS(l({Sr%dk`;xxy{Pczy=r z2+8DQOslidXhPFPpQ+I_;Bo=*17yW6MUwMRr|FIe?vP$sJs>-O5gR@+)?wjCunwZ4 zMo9GU8HD|4OfivWaB!hu+^king;GT+56$?=U`54--j1miYTc_l#M>WbcxcCg$1aOe z9K9Ntzq4c4+QOtwdVynu#P0viS&~bv zO~yk;Q!j^cm@$RPNk~YnD46#<>3cHjX!{H-R%A zGv)4EoMP*f)mJlgHI*}{*6SYS9rWLc*{V5!KKwgn?{Ap0OG(LB{KFKj0szR#b4gV=5R9f`fto#Xw~1LNI=efX{QK2QHg zYQk~KzQgh4QP*G9(Y8@Qzs)$lwC;#c$j=5quwN{HNe{8VtpDS$ieHewSpEq8S_0>T zu7$&f3xZ38y@#HFzJ<|(8G<9kyuj2&i$$|X9lT-@DOj%auSu6AJ?^N z|7%`byaR4eca3z7a;>#)j(L?$Q2n@l2wEjb{rBK0$FP|{K& zSVBz_akz)+go&65oe9xMUjtqv&8qNBh%+LiNxMM1aShcS(%tYG{CV!C8l3~}46P1b z6P=ePjM{^SK)Iu^C9j|gtx7rnPC7NuDnFxgt%|3dBp)S5G51D1vBDxZE!RWiK0K{L zGe$FUC4{TIt@DNc-savIUIxBxP$Tj&%^=MuO^hYmtk#^<;(Vd4GIEA(W^(#sT6cP8 zI&`iz=Qg>j!zRTh;36TbKsQD=a-*dygjeOW4?glQBpz{$Lc-nb0oK zDbZDH=~q})B53}sJ!nR#scO!uooSG$Kdv>dajvCn_BNz66l=C@4nDU&3qQ-|4&fH& zYOn!KuV6>F_SmL6#@clofH~beQr^Cs)L3?Jzoo-e#RMipCSO)jRK4nCw@S1Qv^%#m zx7ylQyJkN!-csFR-74Qn-*y}h?26pBokiZdJXYOjty*q2JNIR%O3AZt4FeF01g`b6@ zgh+;YVA0`b;{L?QM|I>d`E4Ur9T{ZcZNM;8ODy36>`;E2d|HBmgh7YlLs>^BReFQD^f4WkQOP1EO4>K+{kKtcTTfkxptyj=j-GaVj-n8B$;EXrw>m-Pjcqd zqHbq=T}6n-Kj(boOy%6=rgP1jG#)QJqz|R?|E@RvyXYm za1Q_1(>431Yu39QVioq~(ekXC%kL+WyWUgI_MbMvq~3(yYm(QzBq71z2fP=TzmHd$ z28}!Uz6AOB zxSTfb9fg{CZBO72!o8uctQV}!vKE;Y)%&Fr)jGWB?iLl3tyRUk^<7>5)%u_2Pfl;g zkC9q9P?IT{tzN1hXV(-_MQ@H<+Hb9hhwqb!z?#l!Z-vvHWvQLyD3*G*OLKqCI4u)R zA-2-{I%AX+8Cmt6r*&i+Mnt7(Z z?A-Z1bKY||`X&YX{!|gy=cY$j5UzWkT|I5rtX>Vr)5#5rf{GQ1_K9`#$hfsV(cW?% zJZE8!GlT(eIxBq0-^zBN3wKsTh5wSj>*dESjg(tah+IJ-WjJ!}MmPS2d zTte|$eK21Cc-h@?x}Z#w6XTWg?z&5!0eUlMF{1*HfU2gCKKmaYC+REA7o0<_$(y8I z43n47f8O(L1T41~<)X9W!$YN73TKUv_aD$#6A#Og%gbk!xtxEZ^AjU>SmOffivdKQ zAU#|Ffc>qg^+S1X%pRETAvq~_Bte`dy1!2dsJoyu<2SLM-4ddCS}wx;Ki8 za2OI&7!&?j4J_l-iqvD;A!>%d;D6sa>Fsh`-`%QiVQvm#ypV5@yC};@T@-)GFezCm z4hl3$WGN8yU+2x{g;iNptSH!&3(d=%AwWH(Zbc<+Un`%=HcP)?&)d!u(5N#+qp2ev_6$; zacPUJhg3p9RxiVt!U~RAC;p1}!gZ$bM7O7$6;&3off+AdJcu)7Kja;CDM=*}Az3GZ zA)_nn9=Foq?V1K`Gl3*^XsR+oHwiwQp3B?+3FGWf*dKC`8_;eU`R4LIzzAe2k)^GuKV{w`sNQkp@HN0 zNEy?W$qh3cp2y=~R|7{z(B_o@GO2%{vEQ2UOds zwSf)P%lZz&zl5(uUOnfz2RS`R_Ga5NPrI*uOIZ!kP7%7EEB6(*?sMS*41K`V2>a-X zE&{hXHr>Z2gPorC%=i%{*REH5S_eUq_yP%OiWo$qm*bW(t z;|O@E=5a97=3dHvA=*4zV`4+1ib{bB#C*yE@x3h$>aex5R=Z5GZnHK6kZ*x#-mX42 zpf)tLsPtEA3THG#J^7-;jK!cwuStK?RMp%^hR}Tx$q-(#x@lQ>ez|{o1$Q#k;BNS# zWA*9=COhGJ+#zcF!qC#1T-2!K`}QYE4owY(*<(|U-Yb#_4&1rr(QZxB)ojR~_!L#7 zndIGTisfD2-yV*8H|aOK-jV(%vRk93z3T+H($rP_*{50Ff@agRv2PO&lWamRzb9oQ zwF`CX+6QjIAMFm69^xKyAL%f?Hb3`!&i(|EtPxlBDGsEOn-oSFr;i2D9Er_-cU3_r z_~~#qe?7JkK#3tMxn#qc2wc+sY|t-Mc#3#ljw$j!)SU9|D)BKlz3o%IF@9&$^juE# z#4pc0S?aA`a{Af*XV!3Dsy)@WeEZ>?`|>jORr%8M(Ui{&&y6VrU(s{#mBX~8 zOR1@vb-&4hXYeDa6W`0iw7}^TOC1rhAe{CMDHzSmvLNV$#P(wVLYtjF>qqGQ1je$V0bBioP(18G7V}AA`F!d@j*#P z&ladFLN2vAj%VUF>fA@$Cw>+P!Wj@I$2BJ2cTe}KTI(KGw9U17TB zbK1WmAT;PM??^~oQyxzVMF~d-LqoRwihD=VT*=sV{!snqdh}!iHCwK3$s((++_B2l z;;$E1FadNTA*V4)`5uD-jG`A&_&Jbw zBr{;){fL%S-&UYli5oZAQ&1O!ytnb~@YfK1MXqxq6o^Z}#NXc`WdtpAN{_sc*zU-F z;~PeWij`F%(}FExrHA|s&+HA|^0HTHNp?f_g8snsN!1hM5Pgz$BFiF-5!8tYJ< zU!Aej#akn?mXH&a2+pf@y#61Xtwy*hIwT#T97RekdVe!-1s~q zN(d9MxM4AZE*o=LG9LD4(QeU!gZ*+N8Pt-c6sw)HOtY&@FdD?mkB%%Zs+R^UnOW?q zwjJ!IK*v9SK?Va5f({W%@h|A?sXBo+D)#lWr6)tRs|%T|m=;neia2JG=~Fn_hJ2qd zJE;c|i}CxSQHzUj4sbrV0y_&^Pa&h#{>6zEMHqZ@~u!qYw6K}Es|8Prh%)0r=5BRybYfX zIK%Jgfk%`l=+Hp@Jhp4BP;p5z874QTHOlljZmdQutrV7&l@$0?TN2h2D)JDfv9yW7 zLDeCfVct>Xsgc3u-u(%9NA?@HYZN!`Cj(@l983mE0Sq;?H|7P(GQ$Z?(RW!iUz!;@ z4bntPe41U#Q!-Qf>f)TzlB$B-ihP4Si|QtgpNgbv^{S`-4`Eelx(Oc|0UD&%yLj=$ z%o4ZX!cA4%78BXVT%sOC5M0^mIH@_H+LT*)MZ7u&Zd;auCr-3np1wVYy$&dHzo~)V z2h27(2O*hVke-pq3DXU@%`ki&I&9_K(h3qX(i~XtP19sOR7HK0#9eNpax*1c zA=-HlInT_8forD9HQv6r{;h)bc_)2=1|B2gsRGZTq)($IW!r`?LzZ$i3wsL&a_IAL zEZPshbykGS31^R2Qv_^?2pqnH|rEOrpsIRxMQ(ZzADeJJLkBYV`<;U9t#dv(Myh{GJj_H(Q9 zy7CHVe2$pzkbc7$29FG_^~Kdr{$)DD&ETPje*`f2PxW?FsH4y$4TPYRASKS$|C%hz*|j*vakRH6wy?Hz-!@#ETxr}ol5}-_ zcT*3EG9t3b<1sMXyTDGyO2kX>@KZjBHU^G*Cjb=-s79z)i74B|E0x~ki(-<3U2-RL z2->@%1p>D7YV#!mu>bJ%?t~^r-pgolwTa1Iu{J+?u*GP+7mk6tS2O1b@H5iYJTM6^9<#LU1JgZnJ;;?lR#nY8r1&dFnYOm`&-h$rb zb{4}m;q?$yP@!-*wP2~msdH&u==@MV*0?`c_jZj>Y#PI-)VeHzq|H_nQ@hff7}fB5r1;?_Smn#0kSdc0y|9byH31O zGy5hwpEr23pM^e$#swGUMyCwJ0|!zDX2|0U>k3PaC-yVPqE&^}%xFwiO;i_D<5jCG zp7~tT%SK=BL4KqF{M=jHUQ|E<+Qfh{C^a?Aay7MNIU0O!WZ5>P*esFSfGB7eRFfq}6wV-o!w{g;U zqqA`&{dXt-+mEoZqoISjos+q(4beaS>KoWPJN+af`A5)yo_~+i*v} zGW=7+@PnR_;Xi$UvGV*=$|Y~^W^AP{Y;J9A@FcfjHm`0Fp<|_>a8{BN0ui&}$?4Iq z`+1xCnBG2QZ|4d+v|bB#x#9WhV(NO>Y};*X;%XW%nMfud!~Y-ZF-_vXF_mr2Momgc zP)7*IWJpTZ^(dun_Io$ZgT@p9{Wm!agF0hKhlhvD2s3nC{nBVWFlT5uPtmAT?jEGfr*c>7XUj28a1y!qbD9*I;yR%?WKAS?cTM6es#0 z%AuFYnG7)3K~bfW`p?+-jZwraX&D0{zWC?0K@%ennP~;wu(C>8d4$4<{9nlY0Y&%6 zOR&b3N+>1Yc%+U7CU-zf>$0hXCB*h2chz#l@vK~pYJe?U?|rGw+) zfegl>4BktTv$AT$DWdViOOBB%mepu#D}NsetH8T%*stwX`DYm3N&JAhm$%cPIzl8E z!0#fRlh&3JVMR1ye6r;6WfH=!M$Mw`Y-%t>TT04|WuX^%>vDeF30X=X2g$fX#2gQP zpRO45m>!>4{>Gkp;LCcVUsPd5z_Jb*e02n(eioa}M;Yw}fqJl*0O+d@=mte+XEItc zP7HlotwdIvZ!yChrKN3{zwu1OAo)5aRMnNJyw-ICImE#^m!9 z6UOQg@3vZIqNbvXc{pE{N@ugC^*B=BQG{D^7Wh(|lRM_)Jve^~8>|Y)NggL9w zRaHdPb%=U<^TOtKsqi}F-i#%U=27%`IHP`lxo2i1Th8JF%K|Cj0B&u)L~&olT&%ZC zW%GI)_4t9zHd$+N9v8%aQ!n39llUPd|BoI0nt_wNq8^7+dRu6 zpv&56RW%y4!NV5Zw)7GUS3I7wJPnJ!o6IscZ4SSpGDVM5I?z6+*KE;YA_Bm_TreGc zRApk_2;}K{zr$n#=QegVR|typAjQyVe>AbqtZQHwXG zsT5mLF|btC$WkH-&)Evts<*4o=`~Y6OXnV5L2phMAN^9slg*`Bjb%bhI@cD%-e-p3nxRG?<@`oBNa6U*iU18noq|~FALZbf#ZXp2LAW{QA zM=u35@u`vhxcn_K%haj>UckldYH44k?edKD{OoN=_I{Qwf>EioYLj+HuTI$+y-tR? z;ga-r|MJcKYC|I_%9tr7h_J&q?GF2|B>n5QK4b~?3)>BWc~X)ooic;bKkHFVG?{#1 zD!WIkRH6Ou;B2`X16W&L9trd7?2Izzlb80oHb(cQk=S7_AbZXwlPrkSJkO)3Nlm8s zu(twDLW(*udy`qS>$M)au98e{qJ559gA-riVvuV zOeSBBQi3AgDYT83?X*|87B6~Yzoy(_vGD!*X*YVmWjBgh=CN@}H@^Gx{qm+CRW1cP zRYGD9M9wAr583$g*w)+E>Y2kvwnZ4{HC1@@bb!z9L&c0)6<@@aE3OuX!x%-du4VHw zWkyXukI3gOHV<1NN5Z(5QM5vlW}=|$@AVozG|b-RSztv!spJDYNFFx*a;Byx9b=t- zi=t_c#a9`*$+m|~R#Q#>Wyz&KarKtT+MaICu;5q@w3-dWd9G)F6(+xO4>H-_ZDtEX z-_C7)<1MQ@RhgKXt$8r4vF4a^Z~%>5aR~MgiQs0oG3l;{J{w9^uz z_^T}OoA0g-sYapMd6z-Ob5a4y7xAqMQ(__~HQQp%_zY49Hi_&&paI1ug@k#X(*(xz z>LbP2B>_RDJzx%6{!v8-G@Hnu$p4+e|2ylPw*oj9T94~k65Zg%adCE&Mvqx(U~X=m z>9O;Y4kfecWWtv-jD#SQo;}TFe~{5>HvGjLfaduHUPcG9Qoc={Q-az2aRfH9v@CS+ zUB2%|DtuqfH99V8Jzb;Jn!J@f2y(n~evSJf zR)cA~wUCW|Oqep~um3Vi5Z^!3$5|7!5wwUNghe`Jxozs_V+LKV`9?=;hQ~?i&6MxQ zT-Lhd)K9j2%sD$**(hhKDrBv|D@t)aJ}CgwuHFdj!8&`ECdp+-yR>GBJ0|JHL!1}q z`?%2Fd^q9{Yt(pa6mu6PdPX!KYSbc`x2!09|c33ZFYd3_nqyN);^L&$7@go>r^%(^ZLF#aYp>K^!xI zZ7KTC<@>!ln79%fI+B#ixinQ)q7+yo8o$a`&|#?QW6Y1_#$?(BS&6@7c{#lK5QO)4(P- z;B|UFHi=c`dT^M!(zSTMx`0@5=2TSBx>mDsOw-Vq-4A=_*;m9Jc3yQpeuh#i7Rwy9CjmTaxsKS z8^1$_k;#*%3_^$ufz$|?#o<*Md$f28w_SFTh&EYSdD0DQ`Yy&M8xPwC7&eIb|h5JrT1rOR^w~JJM1M zXY_Fw3B%7oNKvYbK&%?m!<)p9C;jWV}cCoj{r8miIh8K>f~r*D~V?0B_nU4VZL_xMDUKt@|yyDFQ+3# zQBvQg>YK75uQEL5$R+r#zLB2{oXie0M7KBdp{@oz|p$_j` z0f?jK#hDb*KOa(_pCAfAX2R*)hNU~MoU^Xq`kZ5WJ`w=d>?@Wm5*Q~0h4GuZ#_gRk zrb%eSB0y}~Ob-?sT$=l)4~;S9GQ;Ayd>?PbbQnM5|nsHB|&t2tSqr+)2tN(Qx1 z^tqX(&az*ItAXw9TZJ+F@h@;`P_8?ZgrnO4TR($h_DccO~nZ9I7XDF@~1fB;e zbg07H$NB@!gqj9dY5vQ7sj@Z*XOVU~pee^gS?tSb8M4&IZRL0vk5%`^e(slG5lpr3 z)Q>(Pb(e7sxG&b9e*ZJijjiiN0sic5eD8D~Z<^wi>J-@8#3X~Nd$mVIuvfG`ZJ)x? zo2{AP*DRD&Wwo9{Q_Wi|o~9SD&_z?;An(d?LjE4yST7+VEo;z=Wd0C#1lJfXIVqKx z;Xh{FSA$s4cNcr2MXi-~I=<1Yt7&0a{MDTG94)(RTK5pQ7RL862)qN{E-C<{XYi-V z%xDPj6iArmjw-n9?4Mw}ry-EBYMAQp42MDl1-l`)yJ<{zQA@QLiE!l!c`L*ozK1eJYRi)nPETnPb!E0{(R^|RmvyFW)&e?faiab0gealB#}+4fr2jgXudc?&ZWbxwU?+S%=;#9 z^zJbe^pFR4BGPpgWEL740NW#^xigtnS>)UJe#(Qwc}hE@k+Hu8mJ&<2*K@#MR!*`v z!JgkS57ic1l~r@64!tnsj(v2)I635w^f8D_f=Us>C55RF%+>ZLxEH}J%$^-Ji&{+L z-pUbx%ynn#yvWI{%5Vb4u>Pqj8i|6qp&6YY$%9{TtB@ob&K`{Jixkf*~Mb$fwoNR z&6p9dyK27Ii;5-FEBwvi%;OFZnS6?vjltl(3ShH|*vU^6>bZ zmknpShOt;;41|6LA>ISKwD*eA^E}wCam;gyvk4L}Lr8^93q4NAV(VTUG%ZNC93OfrlZaC?;tXpL$rK-9swhY)-y1O~fg9K_Kg4Y~ zOwpBsW-+|)J!wckvYyg zk~JiMRs{&o@A*EFL3)a1BO9D_9!flI!@O=nhl4OhOG~S54Duq|-biyvHa%Rb+jef}I|rJXib$ z&maaNJ*Q(>geo2;z+M8aEEW8p~n;%WXpYK2x zRVg356w}WqvDix=c2MpHpkHbO57aQgb6swwciIT#W4n(Oes&k&7tO1gRh4&C3de(u zI*{6jt`>54gglT(4*`M9H$GuF6qeznhz5MGPB+JbPv@F<{EACW`S!@ab;bkuF=Uuf zbe39WF=*GQBI8r=iZ8nbS5ko&rb~WU4b_danUc|P0);Z29ul%1S`yUMv+fdw77sEC zN|)MTuSRpSu9E0BUojE@(RfvgGYA6?iry|xip`Zis@+;cXeeg=cY6@B9nQZXB?Up# zOxq${J;CR+GX}&I-0v5z$o!y#1>0L`H&+oqw4v$j=ZZq0-lnsNt9{?wBw=*}{agfgSXP*EOZ%N6-#5bqeQP!OON&bLMf*#oB}EODvCx3&`eEZs6d zMw+v9zCXhPX``u?QEkQW330r289Xu0#meyie2^I8r^bXc%^LOPf;sOgZ)*=(FY|jn zyxlYHM=mU0GIm*FzLwKEhcaYVxHbU5GTp85v#PVpX)v9|l^`kng5#G48re)*m}Dhe z0^sfOzoq8vX8mTf3h{B|hfQOp0Trndi;gmZ?Sn#c+DT(vr&$@agMkV(9S^z5u_E+B z8i34shPJDDa8Saig5mr0I_$Vj<>5gv9Tb%){#cCUtB(Ns>g+A3<=4xNlHl)FWN@Bv zmV$o;aPTrv0Q}a!E7IKHZo-Xc!)Xd?)7*%qJ1Dc)#@?>l)X1RL-zn%i*r~`dlO#8C zgC#%Sj^nhE%wfz1r%Jz)W6;y{z0SQtI)SXlG!q~nLWgH)P_T&Qk&YeT7Df<}$RY`| z20_4N;0^Fla!9lIcDbq++%t7Z$q0t(j0bx^N~D&U_({AoczEp@4+UxaIG^{#adkUa zeibND&SZ*{Ad&gbe(gq%-|(;oB0ullbWM`}Fe-%Fs{#*Dqc4}{!=p(}0G_-b6#a{S%G~CAd~+{Eu{wgMqbmyGtxyCZapN4$c4|kT`4Mza|rZ zfi=aL))bu*s%JnY9!2#52_s70d8yn<7`TutiqeJ8*N0NQEMkNWfnrEEo~AmCdB*z9)uZ}s>! zd>(P3pAW+JTdSxwPt1GUfnGUoK0daHchN)JSq)j)x4BU&3(S*!&x2!qWK@1=8anRA zES~Dk^9|$zX1iIG@ul;G?XktKKKD;}Jq-k(Zn;Oy@+d3X>D z3i%ex{kY|@=^>{FrFHp^Vj~ty8fmuLm4DOdvD>5%_Jc7-68X5bXK{Bb#)&lH&<4U(c+b8~1ggL1eHCMWn@H-B+`OJG#keL8Fw_Akxt zAVKUvOe)~+ufn`|)+ll8t1%G65ux)qnVLqxDHkhuGGVf=5i$G{oGQ>O#St3DNAFon zXki4yA$Udt8VI6KTd-S5x;?x$d-yC*uNhFox`5<+ z6=Tq$P%?YRCWzgb3l&eLskfp{9#MdbGzn`>MrdV2;2#G0Gxd5!`7vHW1qT>Xr{9eO zpaVS48)pJZdO@@ifZZokAyPOLY9LWD7sS>FRy&)%zI%HF1jA{JMv=5OZPcJv7rVml z94RnodpX**wEgWLFT-TovC+kqL#BzUUl*?cDNsK|qW+Z`mGGvqwd1ctbhQgxn|)4( zorx=$eEL9n9w(7rp>ghIY@VXIb8l{3RaVS&!CXW9YD_w5HDBxB(Sg}4O{mv^@>b>U zCIkbO!mVKPs`nlh;VN2sekiP+W$1W1qUVct16g#t(H<-+DczPqu`BLN;Z!}GkB`T( zi59aMx1TQy)p?9=J5)QDzR_!NOrl}tk8P)UBf#+kh#cy6)TIK$V|ZhKyP&6ihH&XD z+PGBgN^=(YgHd+5g18v-WBo{s|QXFqrh7Vm@g7|8g@1cu%0 zji=4*h;cGU3Cg+H#D(}Iuj-QVJgSy=T2V2Kin3a8tZ9lX^uE+h0`+os*IS1%y1Scy zbwEIuaOg)CsN~(0-iIfn0Wilq-Ytv4H`9h}k5}n0)P0ZK==V_BlmAQP-D={?liUPI>e2J|frdt~M--``Y!X!`#GM<9R!L@59h zXjj<|N2KqE!k0*UHB3Fuj@KIq<;8r0PE_T8lH!ZU)R8llWgeI$kEVpbimwv-8twPa zr87brQ3N39ZFB_-niTk{ef7Uacm_$P_vmn}%5fp%)5|_Va>gZoJ2xmP(6yYKCq=c8pCEiwx9a{L8c9-Z@KmBB2fYN7m zkNwGOdWdx#XafCsRT>cff1nFsE>d zRLl<|y9)-sf4k72x(IgV@TrQ5$e=VevvpIU>_(y#?;+<;zkLYaeG+8N+}SSS$4qgt zS=EM&KGM5<1xXz^4Z35-k0$7#NO&HvzFRm}kbDWwv`(s6`9d>WR}947GY1is+fl^t z^g{_t@%E^K_-;|2e;z(5{IGG}Az%4@ZSR+d3{dwYfm#X#(e3xIE+&=hes~K}i-mf; zc1ui5KSY`WSWhM<2AK9o-fpeTiK^W{*e2@1ihCT!mjNjNz$OGi2K5?#){kc{8m(eu z8suWGy$+7odqExAZ`F8Kr;-c%Dw%JB8AKq-e$AY#gVL0jUOf6T%W)|@N&R@M0%^?_ z1@C@M`)xbl1U6A$h>rRlJ;a;Y=*WOey*D5|JM2#_;>R5LB~I* zQ+3`K=n<=OQlqXvy2i0GB6xckYsoVc%+?gNlx3pv* z(d**JI_nG$~f+FRf_?6y*(kk7JL0I33;@{a^;x6G7pIl1{ z!xt0zTS)mm97-7!b)}n287Ma5V;o~yFzcW=&X4GPi|{J4ZN$D@3V|&!PO4Gle4p)N zYZ}9{^>7HQ*k}{lP@_bM`ChT$f%s@?4|e;t2Pyx94eCiy&dU@_SI-XgFm%7w(Mz=n zP@0G+<-be)oobIa#1nsik!l;5;cUY=dFwB#2hb{`SFi6Q_XdDJkb$uN64fiEpm0Xv`(YG*%|2SDAVP>yoeB@1-(ZTDfRWequ28v_9MCO8{W*A!e5V7@z^GU!Y z8<-kD9W8C_pp2sNJf;V%VFyytMzqtJ>w6ikx7dB((m}ZJ)~Pe%;s4@Mf93@un4xlD zvA9&k!pZQj0irDH=rpP&logkwbj@pd^{rZ`IEFe#6?+}CPIM}U_kGEOvPv(L;^ z>|e;d#di?f;4c7dfvrWSc{OTK%6`S}E~P3Iv9B#ZHfagbE`ryhw9h>GuD0-pbb{pE zqq()L zdQN$JSM!KRXZm$7UTzeQp(E!4pR&BTOf)pAimNq~%$cci%J|#mrzNynv_LZi(OXSN2_z1oh9{Vj7_)3jjDqW5G5ays9FHj? z+4Zx%(J*ZKlbWwAh3VhC?w;@-Ss)5olivv$OFEq{me+bz15VAf!1kPSlk;+I^zhDfyRS z^v}hfuUpODoaj4?L-rqpD@ko`2qI^RKt~yJK+H`iWY69{TG}D07D|4+v)u~gTYpqh zY@G(jc|}!Iqayxoq1C+U_;aUq2b!JCLhY=~Gbhva!2SbmiihQjpx|2>8Gm{}o-1|T zmGZaMIY+6rp3gJK2{e#bxXYyqY6xlD?su1UTsAe$CM#;!4fkU6qQEJWV%Ngph2@*q zlZNMt`pLLhQn9k=eW!J=tsm}pGh(<;Q%GgaeB}I|{Xu$lFDp7Mj^P)wjeUbs8oIwi z@5FUb4Dp5VAr<%fgvp>@K*Sp2g`gVammL?S>W%Q<=~R`f+b}!!xP{L8{GL8O?D46@ z^?(vN;F#KBl?@^vDg|X(Y7v|A7v2y2PT|Z_rp%QqNi$})Kf`DJ=)F~2>6&z20iqjv~JDQFj(-f>i zuwh|^GKTmJteC&Jbj$Qa*4kDVr=_Ltz3r52)aFl3Y~KlCiLs*Zn38N47^lYZR@77zs?6s%`A7A=Rn7V`{GjN{NQ z=ZsD~3ncY7-~G+%!pB^7E>R$xgi8Y@)PlD;N&gx=waGp$u}c_}{ngR$c4EPHG_VlW=!If^R3`Kg3T$C` zoLjQ_K%hPXRbN)ANSc~?%4R`EUxP2~H;%K}O!&DVCH#SwA8L2EADw2!)D`^Ju_F9o zXDr}6gl#}E=7$YMh@Gx5)uaD`2aAd1b~F6$rKQ$$QeM z;QoOxt^5z_>HN6vihD&&gcu!Q$hR)M*jL@M1DjqOZs^rJ&BXcY=+*-H5)OP5r0;%n zz|Q0Te*hanw-T@qIo6jZm&(i!)=Rd|-))nk z_Li*Ai5qX9dz<(EO7HIxDKH#|EzH`i^bN&z1LHULhA)ny(5sx2_>*0IiLHw%tI8QW9fKuNW4=Q_a(o)jo$A|q` zwqBSwr64yVcr>d(SCNT9|N(Dq21!dZh}X~WYs%?hRi4s9nLdo(NS z*y>BWvv&+LuJ&bz9?q=ZwmPeKgEUW81GdiUouH=Pi@!C**3lA){=B}_t;WCY0Z!ok z9RTCzOuz$q8{nw$?Oxj*;6ogpabjWCaf6Zi`(QqWQj#M7(G3}(is>ky zkEgnfh=+`bOIW_|-pfXq%g)AdmABt}KD*;rv0R=%{Q0dczr=61Cs|errk;@% zTst7Yw;U?`aqW{}pWzE&a*!@A4B~hgS}50^eouLjE>Ms_btFJL(*N47)URzpvCR2s zy^WXBQ55L<(jn?eh_S_@!f1a`1KR2^t^;xOJuf%)e!izno0DnpPzI)6b>NV>B1<~y zhk`8$3Jx6h+b`yQns?Nm5godL2w<6@iU37t?|q#EmB)?Gm?aMR018f)PI<%A^GekX zW3M7ROH0$4>peovmphsIZ4lz5g^UVHw0EKq;sR*@V83HQ2j z?Q-B6K9I$Y$(Zsvcv}ShQ&A2E&`2{OSK`I%AJ2bxJSvmr&eHdkv9lMNAi%D=S(J6I*gEOhg>VYoA)+N(n0jaWiQHeOP`bZ+vZDd zajtaD=qjJ@^?A8^;MKMi#q;6!hO77}6 zQM5xEr!2Knvd6G^18_~cjH|1NpMl0iv-R1ja6^R z*hOPy_SV@Z%Z`mY%E-E=&mbp7~&KE$e~ z1OTCA^*}X!<8--t{MCwXBI7O|CsWo>k;`AZT#9nkd`qXzq5b#U%ios!=iDz(o$-{6 z={iQX=5Lj2-o8ejnfr{|dNmHesm7g_GEK%U9B07v%xTXU$k3^~Cdcm&kOIapuXtI$ zKk@sraPz{5M@(ycJNa$-=Zt^Kmj`@V?iqEDWa#>8pO9y5NP)?Lbn&*ua`9^y%ha_~ zwGc{7TTxz9N~Xx8Gai-420kYDj=I+Xm2g1O$$8}$<;&IYTrJt_v*o-a&NDD|83BM$ zzP^Xwne-ibe8J4s0Wkd{sKyCp7PPkCK#oqnra)bAp>|K$6nS(;jY5+CbC31FHKR5&$M z3Fs@YFU*X|>v;dotjl<5|3lhJw>~Y(Og-Ki)F&xWFZ0!#o+2ll-CbthroMW$l9+m@ zy}MR6ugj4(9iv^B=oP&qs!w&S>t%JB(y^yBRbj}2Id8MA#hiK3O!?-!-;@_;yeR#8^fPenl+j66Wv`Owmp!i*hK=&- z!dK;&t$!)E9)GKK`VL?Yq-cQ`j=wOnuqap$?=oDD?|8hlYurvUb28=iRjDYryUspD zrmvqaYqHkJc`u(Q6VIC{$8|hTigXWO%-`^Hp3T#mOG-wHbZy#IzW(ml<=Gj}O7~9P z<&^HHNcX1QWmDcJd1d7*vUuxaS-y3-T=K>xGWCL~_HjaaAY{Qu2}^oDUHqxE?$TO@ z_Zlt(TMe|jplvVMx!>#&wT$Y^kWlmLi6Fc);Y?jmI=7en=eB7& zMp~+xLyD~1ku6i+TrFpOsjr1m*FgJE0(7d({YXknk|$?BDT6x>mM2fsbL+unnWCY6 z(e<;5{>i5zlEm~?qf*Xh5D4%=rbF#X4wP{~B47))( zH|ZRiSoJv?>eB5?Kw+_8=dSki$#M|ZS0aur4ukhKHzfG>6c)dKf;4yi5;mdMw zk9+01!Pl8N7GOr(WlZ#EAO1`hZHR#Mgia^OZ0wDwlV_fIVwK)whDM%d)T#d=^>X2dAX_EdGQ=m^S38{TXOSq<%TIY$i#CeYL>gU zVPwj`wYh8M*}2ckRYzSVe>?7P(yCD_XD8bWw#$XDT_~@wcwOeNpKsd!SNeU$z?r%u zOWvUYtp>==r`;@<54_yKxr{;LV)>5ca_zg<$}7uXF{{Cg174Ib^!h@XX1i^ zo4VdiOgMVyf6L3h;^{1+4~+U)(|S^7wLqfjwP@Nxo1Jc6cLIWBAvBnmVCb7=dJU{{AzJEKAKysNBqntkmcwY_@vB9_FDo_v|s?>mg%=h zR!)`)=kLe=UA{i>>-HO?NpTbu7ucH6hsHc4!#WJJJa3_{CB~B?L(k# zMq7FM^rsC-N$-3*HtA>p+oNrd&%A8W!4ROkd*t16QkRp=yozk7Guk@``Cc{PD*5s7 zA6wm~teYZpw#>1Ktdu!UrMl)Cj4doEl##tg%D+$kw*hIH+|}&dBE5y&apE1)D6Nr= zX``w7yTIAO{Hy)HDnCE!=LV#hekqriDYr0JdN%JVkDcfoc>Yi%QQk!yMNt@@OkgH6I4XQaw; zr+16IA!+}D1BZ{^S}i-aXeXW;X|MIIe)X=rfN4RAoPWsqHUSAxprc0nVd4&2RGY?a zWO)1GQd+2hn4T;@9`<7cH9BwBXxgEZegKV;okmJ(Bh>~j9r`PP=L^H+XooS1^O z2}}RB{S8RTkLLg-2YCZhw2^NP`lbLp3$`qf*_&q@7-Kdi{`i&SB|k4;O0^vUVx5|F zGC*VU5oPBL@0RH;<=Vm5TG;_GZGAQRi46EO1s?*`7oL=jNkffO8{2p;9~E3f*A2Q( zQW~X5aelE(-8j|CS`kbEF(YmBKRoP*7H229tLd0D{af~z0j&qv9Ev5|6MO$^C8$3K z#2El3KC+`+l*f*=XeYDQjathWdw1Ub7Xis1@r`ne6-=CsEj%aa$2|3EDr!LUUxTzp3?Oc`9=CKq%^-~ z^0&OS++GLQ1~=wzlutK(Dob`Ok*x(=4P?C@+X}XsHqY)Uu~ z{HNk2kLoFMxGweS)}e)D>P*UvlvM4QO61)amfLtLy@+*an%Fy!IG?(D9WN_pQvTI8 z#mlhAyulZ3PnazAm z{!MC>B;!_$lUZA4MZYgBD2JUAK%!;AK|K?qigiu(=KRg}9Nru(>w(hJ)1*hU9#Pr# zub0`{SOQ$THSH!X8nuvZdD|?WC9K9DtB01$07)%G8*(?uuRr>=EeBe+V;vJ23>3ZW z#!|K4l;$cctrJUq;Nfl9vovj2`SQ`g>{_c+yzEF!onOF%_QRR+T!^^H8lqf0XL-_} zr~X+!+W3(a=W0BnMo}!D{Xua~kIIA@+~lMha?ni6MHH?YkOXXZ6&*Xw$tsXVGd646 zk9ICXx4~HhF90tYvoGs2SqGzaD%Os*X^V6@YD`yo`iVJ`q2@VEy;ELWC3(3;(nx2T zYL&GEsb96_ck+(z-}C-0pJaZb6US05Y=6~+Je#FAliwWi8`BI802EBBBxFm+YjWPX zh`8WXz05D{6^=xf45vMFn({gRvmFC5I{-qn2%F?wZgqQQqC=8GArp$Pr#^ve(F%7skl^ zb@Oe!vt{#^GN9W4>Dr{L!d!H6VC#enpnf1 zh9m)A5?f!Y?+niEGuLG)m?mq7K!Z<~p*mT|DDjfj_qy{!(;-mrlhpD3GYY1Re>GA- zUAA(o%$~AdjyS1vz5IBfPS)9}M#_Ybw`aV~+Mk^|&wc*;p^Y>XVFoQTY$=0^xOx=X+gaq=-j#xk`jOG#mgTru8l`c)Y?81fR zI^&j)i+<~!#ZVr%l5j6;d87(g3E(9jb-{!^Z|gky(fdC#nGWhO$Yw^f#E6fFiuBVd zKb6_5XG=vL>&MsLXyn;WMi}$c*41Tt457&>oVfh{msCu_fuG1 zR14>P^q4Nvv3WDuz9UZ>>5feKx&ivTFD{oOPwt`}dIY${t1m=Z%`B<~zU}ziBy(7% zX=8NE`-=b|G!Z7;Kyp~~cIVX;meeuR14ilFJwD`2UCI^|=T3>I&|ku{bVA98U` zifEdq=gCZ6^2saAlg!*q>D9cKfxnxbDI=OGGRHj2QWJo@Ccgn?<^uqLWWp1?&*^oJ z{O;)AS-JgV5T1ZKGGDlTp-rH&yfpouC@#z0#dBH5WlCOrRIpyRBwr^U>4YyFGO(_d zGWkLIiHqrddDimichIuNDS&BQ8sWM@NPvc~y_9uSvp&>G8cMvp=BzW4*^5*(ieDe9Y@KAH z_rr4yM{QGGY9oLQDbG8Ufi4*U(U^tVS7g@;*hv_Tx! z<}i68=?NQy#XX+^3E&wu785sV;fsm0Fu%~iq$a-uW^4`|Qf$fJqNPwbm|ae`2}ghw zCT5p2c~M5ZNHOc#-qSb&)+FO9;+h<^o(s3B_bC1T?$ES@3~fEs%7san=YXvZ32FT) z8|A{L%XOS;_Q@4b8Loo_>Zk)` zEU$-mj+lDUBd9;)rVHn7mW4AnM;)lj#^YBzg98|m-_kpEI$f4j)Yjqo`uPBgp)6}U zcubSMTl6;217l{bpCwN%eX49p36aq{UGwA~AjHEE8n-=BkRXhfK1N_G{JZ;JRhQB)ER|YZw-?i^tE4cgvh>#Cq94;$>ljRW|Gn>m|Q#&ARD6 z!mSM?ADaJ=%_L@A(#uPp0NUjfF1K-2-vnhR(A$Ti z=OY9M`rn)My|Ryqip2#2Y8GgtU3xc{K}WWi4<@gYbRDN+($#w}t&ppKafCW$*ZL+tEE-DP>%#Ac zwr69zDqgPlL}-`9^|9bR#r1fkfjl3;5J&mHIOZ2}^ZPf;w$g2K&iHfWyx!-@nLW<5 zaZl22$lD7gS>9guwhZkwRKC>rOKO?Xu|j?BAcgPW5o<cT_j&2rzNf`8t@R?wS+0R()CWLE&X{UWD=PFy_q10%g2q>MerP z|MUBtZ);Pj>#M6?l?UfMXr}6+9fk@Y9X@f(c?B?aNrZEQkN_`+0gHA!_~XU2o2=t8 zdHRyHZ{yAyv`f;ysUd-h)kRfr#!VR;J@M=wGHLP(lLe0NXMeImRxjBuUDdh2?QyD_ zd!W6SK-AWBnWTbHabC185idHBKl5Dto@FhpVPw6hhjI4yXkq&E0GLeJVL1!SM4Ts9 z7eIuL{|`t1L7JpAk>7pvJIT+_muKcYBhSp!9cX-_DZ_fYY|2Ql@orR>r$Q-ULOzT| zKYrTd^5xgQEO`Za^4j9p+%@Vh`T84Qw?|{= zj+L?V$MW?Otu>`wI_dd=(;u*plbMTV%J!t~JLMU`)I=BlG!zN&@+9jE!b<{}+Db6J zW;5_!>h-8a>&Es%YmidnjcXv4r_OX*oKHBbhcx|Fx;gSs)h)s{7v#zZy5{u!Zw@r= zHA%OnBVM4rlK@}@;S~PT!Ix?;FV-;==Fhl>{2nhttfr_K002M$Nkl|79%-?8b?$WA@c}Duhk-xBdUeNmj z$?A|Lqq~eY9@NXrj7jwJewWMUj+w8l*HzyI`Z<5iH6r)jr`myj-s^LU=Tq#jpLD(4J?(Bu&q$YoyaGA4 z+wn5_i|@%Px0cA8(~=~;xqbxbDul0%5&7?x%0j=`6&JPKm6w+KQxu*v!RkvxpO!iE zHmGNqblIxQ9?m?wpWHU?4AWj2U$w4eH@qs(A%xZy33xxq8Gv$djXiDnoFB%VWn0H#>tqK!Gl`2ZZ2pW+^4n;cG8}eep5i^tH1b+u?&xrMLI$&zOlHz5P=krPCDoUHyDhq&!B+S%dH zTrMsnPZ!TK(tkb0Zq6`=Oc2^p0ibA&9RAGDyJ4|YJWrpd8UqJ>08>EL`FLS>$1j8j z2~?B-ZO4~~;6iYRj$L8mWE`=Xj+^!$*4EmWn?ft5ZwUAH{vZeKBu+f1hs|VWkJCol zQD$z-lBv3BIQ<8Tw7+W&q233o4lYAFdOBzht|5QsW%GMFV2|rzevYRj%;Pz@RE+2M zm@Ll>jyq1yJo8Lx(LyIj z=v(f772`a@b&x<+5}<84&D9Ave2Zhw%vHy=J-W7(ZaVqK+p?cMenUA^Fa0hx-DBu6 z9i@Bcma=B;4t0x`s@h4ZOw?JuV=m~U)s3_S-pxSuTLKk-L%`s(P@K;zLW7DQhGIHcdAq~{Ib7$GHV~70XAODb^J$uR{k31qLo_L~a5|OIy>BBilpgIyT zfJ{ulnWxSgQuJ$*SCz>}eFnFdM!M%GS}OQapLdGclPtVbV9Ye5S(-Y&?;>L#oo&m4 zY>(47R!hD*zE3yD_tD3Pr`Z$V@GM9mNMO$ri0l!2j$>LW0NSZjC;829ej^hnPLyMg zQTJqO?!`1TeWDrtjlEbk&Yp$ zhK7bZ@TkP(BhyMhn;ERWNSOBq=M2aM2lpMCHI*H@69B$HlVA%~CBU1SpD zVF6I<%P$+sS(hbHrDn>D$;-x>7>XE4zZ%Ay4&c_Dhrt@cQlI8Qann|2* z;qY!X{MHa^xc?3`J6HZ@3dYWM~^nOV>4Yy8cpU zw^urQu%Stbcg2?g;rPCVI_fUc$yeqLNq5DVtlp4%4QLf<^T8WZL;LwdeGY&Gssz)0 zStbWkUUba30O`jce=JvBb(OSl-(K#&|9;b20a7M9ISm>#D1fO8Bb+OhK&kFZ!Q`W? zZ3VJ?E|ZURyi_$Yn|!3s?P+@)zFw_TCJiVssw?YBOQq+bt>n-l?Q|x7rZi7hLvL}C zIljN_dqWLySti3LMxcfvfymmx5M1I&{JPrhmQnn=EHGT`l>};J=G~i|;y{W6w~pzapR<4zkb%?b?DGR+O=yZOju$aYFH|>HI|+A+baV8DZ+3IeDFIT9;$v%FOEZ_p{-*mWEx!oq$xU z%1{R`C^>u6_j64o0bhu7{D_CeuRV^3ac=0e&%xARO2#?k6O9lgFF0Xd z%F2@Q zlaJCGOYcFtf1<|G|7G!Z!>U0AM|F;5bHZ8Ob@CDGY)d6wJ;AKY%9c;wUSsm$ql37C z>bC>{u&9k|JJ+heXd4`c})NmsUpd(D%;Y=L1&Qknui|0DuZ;^0QBvFEZp8 z`rH3l?Wr0 zr&0;%Sg7_Mw37wX6O)e=Ic@ThdOk``Q(vR1k$F3=ltqIKjI?pI(Z)?u%^Olan_Fs! zh^hDEx7J8r4q80#*TJQ=H?*Id-%p#r`jk~5)n0wW4v{PWqg#RMcBq$rPUKG)=yR>K z9sK!>l%*i5+mTA2?}_~Mxrj*|paI(B{}es{(NnuV|BTtzi)2+!KynbHBYNYFH)Pwk zZ3cJ_l21SVw0TAX_y9(hvH*zp>9$k1+;WRN@W2Cd<&{^OFfi8wr1j%a_PJ`Oqwzn3b+uYpqzlO=jz!uSej(L3`n3-Igv;{gZ$LDQ6DGNWbx@ z$nu3EBaan%@bYM518RoG>hWt*Q%?g}uh}ZHML~K?cErK+rM+>zUPtBDYn-jRsX0X0 z!9XMI2If(g9Iv-06-ZXNwRYBc3HnZXQ#2AN_!vFnq|VZz zc~jZG!@VID%KPJ2%8@5^v0XBfHE#H5jZ3e7Tsw%NA*z!rx&1AX|Gg>FZ-B^C-_)&j zwU<|2M=cNvY+9wy@<|zen9+_zJ!$D#5AuTiS#&3&&bCCogh*b(4D8_z{ahuO#$PUc z^173IG*MnuOt(%rt|yE%-}=_K@W-N2Z%!~u+*xF-%{q!54`C`h0x z30S+Kr_i;MKKZCsih9}7@%a{MjimSBR#98ib*SDptK!+vo+Be1{I~7cM24z2q&Ht% zB8_zGDkdaNer1(>>yJn4dmIg~P=)SG&q5vm zDH`ePb40#(pYBJh-R?80=XBIPt=Uu_;PZ0r4o%CRCkhrX3(vgVg!?nEgO{zbx@v#q zDm5?Xi1h3jJ*8X~X?J-MuO@Y`$oD|rSBY5h7mGLF-Dl&P2{8jg+!GGq z#ieiQHNZ`?o|p5g2uS4LwwcIlKN0EML!@`x2uO+VX*v6KMLt#*%BK&o`0rE}+^}na z1FEO>vx6yhICq$bMrW`8F69L(^r%>GQc-vE_vTo!%*3f{R3(^tXT?j&3%MsEj=#L5 zq9F>uQV**6Cs+N|OFVaLuyxKI4q5yn=F7W^xPs?~?p#m52 zGNKW(vN(o4`iDFnTsQ;901|XW4|Sp0Rb;!4S8mivNbQt7>?p`1AL$>icdz!j- zt`bZg94UC*EL&AY97N;sDhrE0k6*|0jfaQpAOV*E9RjZ>ZUl35peCAp6qzgWeANH& zwq+l12aD$;mrcbpOJrD2+UwBP(tmJUnK5IXc|%H8Z%C7L-1O2iZ%A}@VeGV`{C0Qm z05p4z$Q`e1EbaWi`8kop71SR8P$&OP6q&VFWSfF%a|Or2okf0lhR9h%6f^-3?SZ!_ z*xs&bUzjekY>R@S@@U^gKAKP|Kdl-E4 z9y(0zT#&wn2lL07)m?i#(?<2v|G3k;$wxERNHYz~P>JCUY4iGAY11J?JMCy2yGU^1 zZ&ea7Fw;m&Hi+CaPA?Q_P8}vP_7jo+dqnTiz7*6rXDgUwYP>gRh}?O#$n__wLj?ue z^Z%(s6mv8Vny8LBf;d?Ui1)1!c|*hBxlsYNbvY<$3__T_v4z&Mb;rg>d*rvjmB$A)@5*K%*w)s3@e z>ZB$G`zNneP}cfv)VxhY)hLjIDO&X%6BHPi>5N_lN5GU10n@@Y9^%N=@KbLUd0&B4 z^dmz(e@6AzGUsUAEh>|_i}gcflF08b6#3=ZI|Hi5u9FnNv`+pkp-|P403cCnpX^Dp zc=i_UtO}&1O+G4-W+~}54yZ7yW+HlpgPV|*$xC~^{-nt%_PBLhw)om>fD9mt8)$z*Y43WRQrrMSQ#h}3=UpZdSog%a8E3-u&R!~F6 z-+f$UcsE_b@~{HwLIu>*Mb6Opom2~4tw8#K0?9{9b-n&7jr*j?bJr=LXfrkd)WSKC z-aKBxMtSJMVad?67ac8fQh(KKwJd8D6#q9(WW1K;Qw689Z`X4DTs33`L)UcSgBf+c z0w$o2GX?R&w;eE@uEL^S>j zD7(xf?seyH0MokjTZEF-Py+FBb(}R|+T~>})S0|p)HY_@t^uU__8sh|ORGPow6h zsk6C6fo^~T>rWL(OBArq`iGi-6+9mNfym{@d93Js#qqjE^v@!nD6qV!V7OqNNdJxz zhyqH0%9JGvq)+KjrU2eqO~KE6OXOJn3FGt)Eypb{i~Rf<1xy80wAfqDi^}TXn1Ivw zl}~n-rc}OHovd2%?|Vlz;;S8W&({P8sx?$w$2g zwvzP5spk1eUqO8V^$kAA2@&88DWhqc967p+Z5XbGagfT^4Z&JsE8uqe$#s$K3- z?GrGjJe(PCeN{gIFc0_ZCUW;zqCDbdN0a^g#X7-hkd^_>)C!^J8c^a}PFgn6G2BrR zkdg;wMq8!4oU_&Rdvq_6-+qxdS3e}yh)i1%fqO-Ou0i(uJ*tW_P>?|VlYjv!CR}|( z3-XF(*}TZ}5j~E2j+Xv9UP>H1`vhR1Bc=CKLMD2gsE+S3ftM<{vgUO8imftN{Tf>o zl^JpB0#OVvieJ~}+2m1OQD|>ksz89LwYi!&0SdG!X2f!aFb5CorWYD7wW$bNn44OO z!x$(|7N{ff($!?D--b3OOM1dt+Ml^yCkd&k6tp=;O|qvCj-CO+@Zm7ivz{UHDb?#W z`V-^yp5_3^!w>T_d^eE&@~3uA8}HhfcJ}(xIM|XtIO8 z>4y&2L6`)U0f`43q-W&d8>k<7au=O3+ElXDnQFTB;CV&)<_&4s@g23pqSs4+Zyl1A z^~Lt5777Je)HIuf*cb~%groD5{=LJFXgC7o*KJWDN&_b%`;>cB(T>K02oTu^8g+H65R}ZM^S+;^+>lFt4)*A zq>nndhgcFqoB*hFl93$PdCD} zvp;~ST_(;ff6)zUC0Rl8!O1$y_T%We#qmpxn}}X!(gm#WnQP_Kc$_o0MF|>dxjXB4 zXvMNy9TIUnG*^(Mn0iSYoDdc9EGsW20`azFm6sYpG++bz_N)b-)S$m^N>EFNa9V^&qOoQfHFQB zz%{$GkdIxf88k<=x;>JnNujsbGyp1uHVk2MB^<9u06YX=&y#Z^iD{JPP=UPls4h`Y z@&!nzE*BZ|XDzd8n`q0&91%I2=-wuhw`;|$zx|y~K4KPgqNvr)?tsJ#V0u8r9x~lq z3AmO8K=|Y%t_$=Nx5uF^rAaepsp{KnodVzZfsg<)a*t8Rp4Ls8-I%VEUhsyLB3lY` z<-<2tN%y`jRCW>I68}IFov>*$T8ODD)GYX^USP8H-hF=*PQja5a=gbeViD~4FS z*k#0M4}W(OvnSN^PT`uKN0f(gMrPD9IqAkP=z7lMqcKniy4_`k8_5o;eZs>%5SgbX zWn8GwFs<^;4)W7*t_?W#n#n>1$c1n{s!Phkc){;RT@wqCHdh({=Sq&q_{%DIySm^`ENX3VU+Z0;5_Q`%Rz_OksBYoi^2Zo8(Rv?*a*v7O}RA0eDE zh4&lKMrP01Q05Kky_Z+Yh1U%>^Y~5)56}&ruK|SSfA3e-B6y*8%KQ7K+3CNQg5YmY@PP z|E}5`t?MKlIonw?MXLl**?w)if*e5ZJS=fle>5#x=~_)cWmy#YOUFh)$_!?G9DOM0 znY@tstkr7XWnz?G^SrK80Moku3x)DkDgj<(G^~wlvt{kFX!4QG+|}6q-1CuMA85_0 z(!w9Wz(^iy>eZ>7sXATr7}ZXv&B?Tnj|}adr%%e%B^!CtvTdV;DfPgPo5sPWQwtRw zM=evl47Hr~F4+O{l!r-9x^=Yd(6P&LGe!QUpz7vPX5dx?AMVXiqtE>N(!mg?2@h&G zvw7c`Co+0~UTOk=&Kc_fnk+MjOBB4z2XuESVx^1mcQBvr5s(ru(9RM7P&tsz z3F-}r&D7E2)70Dg+O1gzsEEx>y$2XcD2M-qbg}?KZ5^JkpLdqxfw|-7K$GjB9~Job z#oWDOZRB+c00Jl(V>DUCWJfs9S?&VC$AS4w<&&l}jCJ0gJTOrw7pdk+T+F#>iI}^& zXPox#2^ue58EAM-%)Fo>dD?OvP)D!lWk%&ezU0AD9nQpIg4I25X&IS;tl{;60+`l^ zUn!JvCkZ$Z5V&aO7G1JeY)d|vgw#eoad*=(KLd=K+UIu4rQzNHqReuJh91{Jy6UEv z`8w-{Wi!Pp!$~i%F!}NPK!1$T0dqhU833rQ!}IlXREh)p7vP~hoPTqUf}EP7*{J)b z|EYJQ@zJbT0MidlIgw6aY1~LAWwi9f4!HEP@Za1%~TM(^d9xSo0R}Q zO%ITg{%ijhS-ed7FMYNWog*2gskUMGM{lf_Lfv*GHJu%JNO53Iz4bxDfQ6e+x!w~2 zV#EdHsv_bLH}UObK*}{>IIy!$;JI4l%XjH7q+vgMQavxdFLJV)X?wR*{u;JHK@kmb z+Dg@67wK*`!xV%+pBR_a%z2IA_2=`|ggZyaOmz+F>$60T`h&XrJ6wJ9D)=!@%8oV* z=juAtV>ONf?kb%?rk=GJSQKtT(+URc2wj~I9oyV^xL9**gB4;#+q01%2_9J zrp9CD?398EsbSVgK=9ik>)fR!1lxW)@q zxdfQNRgzezd*a#M6-?)v7TQ=%zDt&DmHE>*%HU(vfrH91*-@f$RtI%x^sy0XghdK4 z`i)}yav~Ie<^uA2w7en(2=?&wFwV4R$inm*klUcf{_s%+ zJJslLnmXPFjE{PrE}es2_W(LjH_0lNW9h*)8YM32I8#u(5CHq3MvF9lGB2 z8(&a=!e@%~`iX|ATyZf7dD)}8y7f1JY2ErgLTRcc0fhqX1-5O@lhup2E10I}ONNU9 zoqRMrn#s#s7qrsd3zH8HUm|n#=&sT(BSUi4H!t3ha`A?w4jcxL=n%=(WSQvcchB;m zeB#>WP@NET>(^BT+6a&C6^X*1xnTVMx|0-`dg}@wHFsjxgd9k@2H+q-^3E?S;N<9p zqrOoXJOC8p^Nqte<2gfB8~v@wv!AF|Ia__%s(Eya0vUW-D}eTDqnc*VNMk*`dpRGj zl$B}7fZUKSA|L)*$0{c%u&Q>tT0t>Q^XSu7UHhptly$FQp+rFfl}W%rQ)gFT)>@@Nx=DKty!SAHhKV%&hU%NI1XvK4 zbD&)%V6xGUlC`)UyEl`;M|F@%6IYaZLwbMwD*5`ak4$(&iau0=EO(Wo179y~cHcj3 z=jUi*aq@d6{BXo6-c0=(PfFLH9FG+N7a@QX+9xw?0m5b)_iL&-azJRU@Noc-LU;WO zA6O9&O&Ax3Yy!>!56bLyBsKBz&l@MN7h!C6{`HaZrx6cANK2V4PrbhAsOaFHI>gP! zl!ZEdXUxvLs;bYZR6)+bplybRAdL?ke_$uP##i|M`2;1aKMX~ zI{v&oRk#WgD3^ePBq5l1bJe(u`@14FS+-DrXg$?o193vfUoNxCt|IxUsaHQjc<)X) zv%7hb;u>#AbEj>P)w>q| zbc6wD#3fDqnE|doCk|leaou^nPdu`4O$#4*a34R6k1{3a>Jn86rWDp+BwjSGQ`B2ZYHF$-{>;z2 ztDL9hIoI$=OG~o@Udj4P#^dacPY6G_B|sZ-TKMT^{isu`9kIf^ zsy69-4%RdB!CcPy*fY9IGhOpgq&=B=L(&!ectb+oERl)J{a}?>W%Z`hhX5U)k;*mX z&!W5Xd$cR!0w5m8&+&AG5r??0kyVTrzbB4Q6W}%RSA{U1#mhxHPwUrZ@ii`0a2}-d z{3%~$Ws38v?77#=<8e>9;O+TXnC2ZHqIa2k{_*t0uS-;=nU@#ML5}M@UDG#z{(M=y zc(J{Nr=EJMG;7wZEKX&W^YolK0M4mXr^>i-<7C~sb#l~EN6C5TohPkYwK5IWfweMT zA?)CmK-7LB09d4&X$mtV6gUfY=0fiQt@Hy=*PALJu*@USo+S`}FZ&K{BZnN?TIS8$ zC{1<4fTZFiVZ-qAzcI)FmyZ^e`konvrw2p=`wC$86`!hvP@R0L6Q`b;f@qtSkpnWki1XXu{#I_f=_ZTXwryLv z>#n=x4}bWByzs&cGI;P{U3_0`c~-_NgdOY>K%3IplR8;u#e!|oOkN#8)jUaDT8A0MUa4Jp~YA$>Y;oitUg22(HIkhbe2uNG|@N7^ZXS|5A4JxU=w z3=-Hk5~x;>!wZzJP7={TZ@A$GdF!pWWW;~YPJyaDOx(W50Z zGt)r&#TQ@H>G(_J(n~M3eBeczKtTd=3D71YpiKII_O1i4s$ywRLV5@_w9tF+(wm@C z6i~5XM|@W7g=c*}pWUba>a$@l6cq$S0VyI0;K~2xe`+=a;;gjrp%f(%S{La0_ZyuyTf@5oQS+$ zef3o(s$<5Ck!sbdsRGjA!Gq=Ad+(KX>(oz3?POd;i$qg{@eQtqqDBg{XjFcrymPqsF&810`CT?QPe1{Gl zs>GK2s8&;$cS}_BQciC5aK4}45YRE;8gARxL@BaYAErS1;Z;MVW9$c8$xH3y}5~)=&*;a`%A{^)8!htRakAs#PoZ#I$*K=+HsmZQ8U+%b-Y^W%17Rc_}Arxz6vB z1p!6mE(yohHOG{j;o8x<*%Xj5}IH*MjP+dWRpJR!g_h#`TofrZ(|7?<)9&b@&%ZP+T)hbhmUBB~Se z2m#J%w>6}Gw1yM{Ye=bT4JpB84XITZ#~M-|!RbURr4Y!Km=*+FI9Z7ZDYj)G0p)MY zaZ*!w%9JVk?fCKIGGW35eYSsEv}mC#XG_rSd*@zyAYeEroJ+%AUew_PIRJwKw0vY2 zcTL*DW|}KFgw#SJ?{{iQpM zN0&67h3$F`{I^8B3=1l@Ep8c}Jsjh;$&Kqqi6X%#HX=bjk$^j9q+dCkex)XphN>%U zc~I%%*Bsj+J8`Ymxl2SuDT>-bSkeeDzUK?8+pyeMXha|mPK%{dBMjnB(ne{6TT^J` zS$Kvc=Xf|W*%Zmo?A2l@a43KRQ|b4=3-t6lhnmIkgvVqzGKdgEt$Ozyb`S%dfZ+UMiT0=5HAyUkK(l*QTqaqE@SgxWE@g-T64AOW8wnqt5%2>^X zW%8=3YsS4p`qaThkL{ES^zlpi5^@AN@&btk05BU~Rq>;GREes!I zfM|e-mVs8aQdNN8!6UUHPvr?;GWUxnZZtVicGwZZ?o{k|RJw5*SJ4SYM0#Z`(q#}> zbCSGlFlaH!gOh*7a2T~o8#Ou2h7tK(Ap!TO*5L6yufo*S!-@(bUoU2-3#D z#hhW&I|EBo`sUoeAZX@X)}uemBGw$IN7EFbqOiTF76GUM0!z?j781ldwTW6?me!cBHB>-5zmVFt*3gVAGV(K?vz z^H7^_q(^T25>Z51FL z;Lfh5*leX{QQnI=DR9paID!-zXc-a7JqA0W_*h}peCklVQOeJ`eMxrNeS3Vr{8P|* zL$49g?*N9!43LDT-rZ07bY(5BnarU{sd1j$Dxj?+Hsq4{OxF!jVjhQsLICUEad_#L z*C^L&=%lnNIv2qA(0@5_#OY&Nb>qfuTkZ81EzztDA zZ|CiYld=tuo}kAOBw!+?OcVrRqn6YH7R`m~wJ=DE)`kI344!&Ub4yv}gHm0&zPOl! z9J2S`6&5#9F%;Hh`~-0z&=>gK=Jzjg1$ny}AFqyx&QsJZSpGMe0>aHdL(#_P<5$?c zGMh+|-~q-WyANn@qPtAgV&wF{`)>T&T?@;#7a7x=CnP0^4v?UbeQ5^n;X!}6P)&Q~ zgL*3DdsRr zU*poL5`O4|3mIsKo-VB*tQ#SOjin<@QN@Wrjg8k{&Q3;;n;7Ka z8kWXSLI`sPz{6`jTsg< zti37SIzeEpcq~)BLO3rdZ&Hhd2rT$7Pgz9gmX|p#9+*MFR-H(mi<-gCU-MZ$<3RC0 zu%HH>dYMm+q-KJ6R32kt-`=;M{#`MRP%#TZ2`j`I^VB460@?ZLK3q|sM2$qTCQKRz3jKzHFCU;@cv7f{-f#s?S8ZU z&*jjyGurO{c5=XrSqOC(w^lEI!{jww3V#&KrH8XqE?i;}VZmkC6Tju*SIMewMQx~h zFYefAJOWEi>1PmKb-{LwUF>))(%fIDSPC}U=2%yFW^UL+Ifb@68Zs)HcJndx)5Y>6 z^jT056A=-i((ip*oF*qG7UT-Ih9;H?19u9lCX-Qn9_Hl})6;3u(9r6w=g8ZDse0zK zd7|hfBsIOp!T{QARAtAc5cGd1sQS4#nHil;_^C;=uB;TW%;Elu*~&jrm4hNBk**(H zbo*Fj=6lQEL>CEs*mbZ)7bm)ZNOVcA&;Vq&Ap!{_$^nRJ;i;R)Ai{Ko{s~CGF@^T8 zew*so=XJnDP0ts-Q}=5Lx<0z0WGJ!2p%eOiax!Myzpr;HW@do@+bNAsv;CjRbT;v) zt1X8A_|B6czo_nyJNcM%R5g@usrAyaIBu6vPd{;{(^X%?0|{;Y?4(d-vLu$_Bw@ff z;*dOaOJ%)m*7D&cy2?raN-cKmh8gJM(Z{kevw*S&S|-%dgmhOZxdJIMUJ!zVHM8x$ z;V@rkCM_!`HxDu_x($h!_q*A;;rr!dtl9J3oMSz?H z-4j(l5LJk@fUqi`S#l((Cee`^WNR|3FmHVOuz}hG46$t6ymV(d z<>jzF!ti(tGRZc13%%cb*!)pbg8@H=1|>e_0Ad9~dSaKv#d0-innX!U-<2X+jOrnf z)!e3ju~idpT1dU`>m9rIgSAN~j-jXMv-IcZXA11SAIM`C2y*e9{dmne9mQ%u6c)%o z6#qVwBL5x^&xA>#D$W^W30db{xz*a~^AY$=_xkO&9{Wrmk`0*S7L1KmY|%k)3k7GH z^ep}e8u1BcWnM!_Q6CpVW7u8)e zeS3|~VjOCxEcg#&InMC`3=L>hYNmjuY8c22nru_hk3epNvd7ceAmSwP9cZk8UOJOY zDYNAViw^3nzx$ri8*6a_w5!;IiEbA_M|+pe60+P^qUbWD;PA|EIGN4&W(<}10b(EDeZ61XEqAzI&U-Erm$;(0se>+Kv93emhTLkG zUzg_v$s1&Qhjr=giW8Mbw36NK`lnC1$neZsPS~PtRbk$*C_X(Dkem)?y8TSctXF$F*}RbrC&71Q6}X9CIbyqHdL=h$W{tf z#8@}}=)4NAFNw018EGdG8Oh0>%*OBLGo@UG<;lI(d@8H7f3aS-vXEvnyO z$jn3$GR5^@tTjl_Bqzq-wIZ<`J%U_08II+y9{wAr0RgZTWH7d`iLe|>G|Bd`t1glq zoe4e%z)`Raw4wrn*m2{4MbND$bK^3dj=f>Lt8Y#+dm~f~>!)71LKsn4z0DOs98|`m z*;99&)uv}}0L0V}`S0Xd_jYFgc{(o{@b&q;!_Ox}%OnbP!3JS(Ai!ovhPO>x?zZYG zyEVLqDst1qLU*Dr@#fAGaVMemPUw2mte6cpb;b!myN1g8Imx~6dzy;NmypV6G5ajB zPR2^1{ST8Ph>8Gvdz=3$1?$n!(?W>u9Q!df;bf6=_c-Z&Y!DNhKba7oi za+i;f``-~3AZsc>xr9o*rWqp%FNGsVHJhq$#Mcoyqect8ucejrQ3xfbsK)RM7 z>8j5@FCG>LB@$&)5z`uOey1v9t~SK){&yoX5mRlLg;1h-9Yo?WrWn`AhCpi6pm^|* ziQ`eG*7PIjdu$fn4{Fl`$l85FdiYBaI*G(|1B>vi?DKq89g-N5ED?Vz9fM!IZ{+&- zLotE%y789;#k0D^dbeMPYdZ+YP236iXYlrXeLWopg?xwESHDst)3XTj3j|0x< zTEdtCIg75oU5+`}1&FlAdx<411J{13`~kObWFcKvfxe|Z8#U{K)qoN&4*S0%y~NODoi+ljZFo`&I>w~Z2$Hx6Lo zAKm~tD#+%l2=E^eF3jY*5j8i6aQiK=dmzA8{rh5}xLK2x@ zNM?sttp1L1n^?ZCcx(SgzE=bm=2l4_6YLQgEGpyRdu{t$jR162BmY;F3Ls_^PNRX# zk=E(R0XX>*EFt60{pofVX1lm3Mt6|eg{6&g#9W`?-eaE;YRYJUpFxyZ1%@IbMtm;p zI{w+6;yru?+hX6klZscq|5uSLU=??gGmCjyJ7sM|lP0imqpPc_=R;f#la*}q09r@u z3bxx78Du*CE|H!oE=58I34CG|Y;)4mxsWWOJz^{TLpypZ2p1x{p^Cm7+Ii~e%5@my z?%LMD#+GZ&YE-|UywgURY1NrH;DO#Q*G^xV;4oMg>^f}`SLiC|k+U(7A!S2xOS}Xn zN`Ru$a1!3^p9-zYH)W5RTFRrWIoaC9nCgaW_8q+{4)&zu@_!x5tb#Qb&ktxaxd~H{ z0*F-VgwX!RT&Kj`-pRRq+}E>G3bw`5LC}4p0(;tb%4V5G<8rwd@erIa5?om8?7Yo6pTl*kYE&x)wIKv-A{<((g?2bF z%>Q2tpd?&7B@WOZX0xOmQ3e7PbO)8|*NxD13t{J}&Mt)-|AzeIfFv%Nr|hkXrtBTQ zW5H;V&vYFAh47x)M?RJ~`&D2Mv1fUNs3i3=J{JskH?rAP@8{P@IZ`a!MjtqT7eqgQ znYg}BA`>jYT>k9{X90+H#ZA0WrVbVp&6h!$sYx^>{K6KoNyKufFhCEp|DpzUy2>C{ zv5csptWEB8W;5PsK|@tE)+clW85+&nO2vL9 zMTh<4Q)w1UN=u5KSv;&>D(ehMMQ|n=An$VvdKUeTMs=t!0n%m&9fR^CH@~{LME|D2 zPEY>%G~n3woC4w-9sd19QuL=eL;+95O;C102-)1#s;Nm-GSVYU7}?i|!iT}uh~kF~ zAmFK?RO()mZ$~aGHZ^t)dL@%$MERE>Wj;3JV?LgiY5v$R?s_u|7cp>AWWhf8{rc^! zZT|+IjQyvCTHC*&X>|Q%qvNV$7wK3e5yrpVUw#sfXF`%AP{$niGt8_`t{rOJMl?;v zfW>91j@Ip)X}r1ZS%l(Fx{#8_7ahV-|`|^+D+#cD7ItlwQ zNSV0iCW{kEMUZKoZTsP7JDc29=L5~-u6X|hpZUUZvH2y%1IC1(&x0zSh)c|cp!uY4 zbA^Eh^n*36_&Zk$K+#SPRmN69p}_ZH+O@6Y-_HnvoM=EOG!Or~!hLF#<@9Yx^dg7R z>CXe3;mDRayfBWbi89xHOnOLA>SY#&ao7vUK;zs*Kya8}2Gt>hLBH4GpyK%wO7{FE zybU#_ZIc-oM$D3^P&Z|4b=xO%Y8BfJ#d1gfjNU4QbF(bfjiz|59(NX*5oR9gkI&fY zKw-r>6cK|xGuS+PPG$!5k@>`{m!px-1T1T{>+8$!<)Wt1s|jzDItg{FtA2Y9*m|q< z?YYt|S4XmH5>0=YbRuQ|Id0{^SHGR599CrN!CtcRII78t4S;i|B_ICOc{=y^0(MKf zI|0fCUqbG5xczyrd6?a$EjYrdpkf zMwBG~cmzUUoUXD}m3hcv0nQ*`sNu0yVuVUI59Qg5JtQOVPyz3vs2QUk^Vd2*#_jugqQ6%BIZC zOiSMVAQXq~e5{uxpYP}VNlaYltwDgzMqzt@;5{|(A__9}x}2|lMdy942=KdlRle_3Mh~Cv9H-s4k)x%L2GOOVqFx#`R;66qMj8OecGuwqDz&IVB zCNa&!^qqB`psD)s!}2mIH0n04?R(cX?{y#lb7jI?9W5aJ+%}gy^4MFGG$j#h_sbo$ zoQ#?pNNPLXol4(R9hf@jPz;dpLNy@y^Eu^CHX^rg2g~6@cihYFu9n!mWPv0Eo#u7K~^k|6K_db1LOD;?P>a7qi z&^KJE3s-0=1?YOPB<`v73gwVd4X9zx+ zYCVccgg7**&p@hk2=hH7-U_RAesmsNACvbs)3Dg!rC}HOx-h+Z)lizv$qwayZDva8 z@ogay#>~g=DSsA^eDilvQU}o5j#aqM;7R>7MAI<|jHqROw-?05D25FR z!LWrn8%VCr)1LTYqN45Qawp^gt6e0m;spD&_@-~DB}~$w+9X7G_IaP?=jv&cr9LFA z4Lw2wV^0h*LVr&)PmPuZr?O8F$C3~XbFj$f#jeZ?)x8;qu$=8d>iIzpQxrRKtH88K zaBWjPm<)-N@B=aDo}$C+kJ-Myu=i26yt)I=gjEL8M4auzov7%1m3ZrPz;uvETTP`(@SuIUzd@8uXdeMx67|=}stnW!M=+61rA-^r6@Q@Y7BP zz7`O4aUA+}b7QWkuw~v7I-gT@<*-n}@yJbVsVSsh$YMv=$5t>@aE{dErb!Xef-tnX zc!D(X-LwxP`U#PPxiSe|&Rv$takIjliNXpT=jk3rdM6t0@Vpd|7cXoF=mm!1Fe7m~ zl?9>!(QTt4o_|E#N)dZ%Qt<9~l^rrTEF)3eeO>2d4&Nt=i0)>Y8ftMS26%*3OHI9O zmWt_*q~i(KNLcJriBn&S)Zu=U0M)INmwUJMzboU(LR#T#vMEQ6E44-YSSw{wmKL=o z_yHb;7I-`VR=oiP4e6~y!ioaJE5>DI#;%(np74Ct0Mbo;mowk&Oyee;z*>+qZ>;lH3S28t`c?E*mgSL0S)so%Mq0Xy^ z7rQ$|BuG`$+a#}C{WB<;S}S5Ww{!@Ve}zx6pquuLX+4#GT{#f4Sd7B?UPmhFcrBnt zuMVI5Y>6DtUMqGtkfsNG{_SJ2n3P>)*Z^;v=+rm4HQ%Y&+IXVAq}X~1zkn=vrS_eo zZwhJSxw-qdmzB=Zod(l(VZtqGiDg{Ov(zlEIVm{pxHpz%ro8y}y4LqR!pG_kEf6f! zZ*fpUfqr&S6Yl=>aw(_4q?M7@4aD7LLy%*m74`*gOQP>%{OWrAc^Y6r@p`-=ROFpq z?|9=nv1>$eJn@E=Fka(+VIZFKUQvTy$gXW(ufTxhN;3{Ld8p;9_g*4{dwSHeQDvS} zdY^PHTtK%t+`0tbK6_Ubq~`XJiIqxD-vxOFBV2o0OOKeiO!fYDH?GaKbBt#N*`aJm z9mTR%;u2GeqSn#$qdeA$!(}k{kXtGy1LINy#gbWrR_Agrm5l6Dmnu;h@{7WAOQ=#% zEy+p_<;vp^)2=8G{;e{J{Hs&MkuZn$gi>Ik$n9!Y^+u{-nDJkgu2^9@r!Lc}*wYZn z2KtkEgyF5~Ynbk;WJLuIMVSEigV~E7A@SVi5UJv$7qHGQ$+VZ2X!SJ5H9>f#LP$sw ztL`tM#M$u3Hvu|U32rm0mH?-M7f6_sjvcGZG^OD$rUdO2j@+rr*f9qWg(RmPgRq?} zZSY{&kwX%Q(y=V37Q5GWD+x3NUg(m&A!F)DtOj#t$Okj9FB7j4#w?aCT&7!Ir{VUZ zKr@zeoV+OTY|j#1DDCc!))T=g#Q}}kZ8oG8 zDqyYlOrU{1Jm-6_p&k`PO%9q#9sy< z`PSGM$1Kl1>pJHX-W$dn6aJC1N{Oym!H0?dNWeW617JkJQ?k!h=l3`FKqdW~dCH1= z|826Cr&m$rtI#IO#<7gb##gV6tvv;VeCdn4F~Y^oW43}-p<1DdPbJ+4S{N6#!&pd- z$km%?mD5EQG3HiUv7mW0uwWWq*d*h#7IYp8Z1Kv1kk2M%_F?9P!Qe7Z&HOz)Hr1o3 z87c}&<@vZUnI?8%5x8b0|0(O<_<#z>l+Pcq%izz7&%4VDxA|rVH`+kXK}tb7HIWTi zHDjz|x0MQFxo>~=F^`6#9O|Bf!2gVG95!1#vKh>|x@5zT+@sBkRe=F0&heUp=r_hn zZ%B>N_;6w_4!#BmMn_n_s(p4aAEkZgv5JAMW z_1$^2mj<$yPsxedfIrFPQ;qwr?RhjM|Ldwp#4oWq(`(vR+fDuHGi3alHEwR0vtxw2 zqO@O2Bq{`H(P2;wd>l3}FZ&Ub5gJ_5%3l*`ql2>)(_0YKhjTiHm)K}w@`ZUNlTYr_ z;aPer0-de);?5oTnFlt{cxJ8~m9e25hnUG!HNR~dlT&N1V zEH1aAivKMkDe>8wv17l!w?N$O3n5q>A6c)}3FzkZI0SZzJhQ*I_1?w{9Q^PdUZTJZqm;aLvd`TL4SOShQ?Hm=MEy*ksg7gwaz?OF>SL% znX5H-{SosRIg|OnT5f*aArWSS(Mr=i=uPS^6`WF%XFOw2vk?d(f3u`hJ=3Bu{h@CSv8- z=Sl({CeC_V*?R_*5^7Z{Wc%HYQ-gfK`h@SNt^{AK%ri`9XW&@ZH*tyF@yylcm zVT#v3zoLVFy2$)-O+j%-tyTBKEV?2w?|=?9dDwyB6qgnDfYGwMdHq#QA9a_PY*^Dg zLYU~M8pT$}V4nJYke&x|67U|y`jPkY2Z6lA!6e6?1pO1@)GGC{>?tw?Rt_VXg(2ZY zl^D`ROA3Nn7UBsSr8TkpO#JC|THY?CU<664v1MLs8mr1j!6i@i+*6VXkg9ZC=3Y{jSr}Fu$1OxlOn`)Ir zpNhu3U4qVOrp!(AUQj4{0Zwvs@R z?<=Wz$Xw`SfaEwFtT%RYux28+=S1WphKt_lR85)-A=yPB20@ei#q-2&x)h~*u^5_{9p{# zM}Y%x`oTBHUKah!7^nJefU8-?^P|pc^hM$eG4uvMtAxe%rSL#~;RUvZ9DSecXsD+F zo;I=Iv|>rTSQ7%*k%q00a9rM)aao`-tB2nom2gZL?A8_@y8uiZHtF+FL;y#ztGp_u z3V-xN3dt1Ozd^sCdlVQ)g9vKZyrt|P&1uaf7#&~CFG84L-$;h{O+9bA1Y`YUcbeh9 z{{x>g$abhaA-2YFWgdAEnn(@N<5M!1W_U-VWopad1h)(7UxL(o3=>iqwB)R<%MghL zwQ~Z#yliIk0?{`v_{X?&JThlMZ6zQ`ajoX#^*9&Q<7ecuU5p1w`;5bo_~uEZxXh#( zpWCimX&Qh9`m;Yha^0OYGyv-?wtz;t&vRhBXFve^^YP`~mh?F=<6YM@jzh-Lv$1JX zzfzL|?O^{L~F&6ISXO8zIf2*t5S(o$fF*u$Z^(3DOt+7Raf#CmbB+FmS zv8Mwfyj4IT+jENPQsdct-joG=l&Updr zh#;?0H%Hojb>2csnJ;?texh3N*k?}s*Fo^7!k}KATF9;+IN4C=N1(N=grBL&FHt1Utk`HpZw}_MuDNk!)yh9Y{)IA_0bC+q z({$-vr#l#nXdB zhEt8d8}Ly!E&Vsxc%uT=`5xYdlh1KW)r|WjE8P?T`dfK6q@PTP9p5nUopH?@Tcv7- zkGXD@)$ovTEFqSF2M~%x0Bwg4a|lv4Od)V=6&;QvVflP}T=1}mJ6K1qWuicRnMR-I z+4dBNI|enBfjK@`32BDjvh5z%%m_HlAt-~CP`b;4_J-S@JlXcp$dUzwH<)Jn?($}* zTV;QJ?}p(2uv-@XotLGR-rfK#6ALq%8R=C+#8=)QX;hAGMhG-|xn(4$q15gX3odqX4_>D~lG+BFK$=>GA%(YiDpHC#D)yl#6{cNy~!$ zjTo<%({WIg&E{UIJ`J17y|t$T{wZov1VNhRS5tvfmr#B^S<@mmMJL1DFK|?cfbSiJ zbCD2>L|)`ILZ5NfV$*T>I}CeQf%dsNJbiNVFy{4$i#1!Z1B<~wGNM)PSO`R2SquqE z{aqQ8w$hpHxeW#;K+G$)8W!wi1CFjM6;Ua2GnS9xa(AAb{gOe4EUY$F&N(0`*83-c zHHlZkbS8HbFPJDGdcf6fGH+Mh2bG2ys%{83ve$#caPnPy3H)Y6WL9g&e%_sP#_{M~ zEb|Ywn#%Z5)_b;tY1i6c>dQ%gic9SUNSX+WYUta*ou^;dvvS&k3*!M(dcr$pLN@9dWv4}VS#5nDW?}+$|bjm&43&) zA7KvW0FG=gluI*vjpCw=A6S|+D^%hWj1XL} zkNr*I;+i{oH6I-MzWb^wIV2u_!+f2egFXs@I&gk)=n*=Qk{&M7*pq+Ar$nxlMxanU5`dJxTACNIJ_vdvLXcT8%R6!RlAC3SE@N z-_Oi9o%c&Vl^QBeVAw5N(2J>vjOivJT0NOwW>4H{ldF{yHSoSM=rbps5C|3A5^DOM}Gn)^U3fZl22yP@cTYob?u1iIGk<>9EI}=dggo9=6#_L{hgzk@W z7<}H;;c$8~er_HV-|gLb!I17-?7Yed(NeBocdOIh_QzAOSq#V$w(;=WEi=AUMyUkJ ziDksc=UvxyT=9FIm6s-q`+YvH)a__)|Ath$COvx2{r4da_6E9;t}(^Nkh<{IV#m`L@3)XlA;XV64h5$1r%Nl3e7& zWT`-d555Hu>EjxNYW&|a-9{HNIWLb<`+F)_TjP@zx~J0NCH@fBJh3)j>GfBo4^w+8 zlNjoE-PfC75oTjNNERZrPVy>O%Xqr-w&ZL>0YIYdE~?+yjX5!aBo|<;VC9I zVegH8c?7-oyv$rZ9LxOo!B&D-Kd{YjCIwo2;iQ@6Jhd`Mn&?OWezLLqePH9=dI}h{ z>X|)DD29yuypVO;^o3l2*PRMJmx01{uGMXJ_n)s=$Qs*ddZE`4H=m7(X+rEa{zP;+ z)Q7tI8gXKG=|o%Lanh0${==g_-sg-M+|&$xlY^ZehX+F~f^I>udi*iW-{9n#5U(1x zf4`Cs6VxpqXoBpB#!BL|_OShP#$JQF$&>=mlSX=Mwon@7Tlyw!oIdXCEm6ez+v7RN z-_HlSgvP@Mw_xh^{#YKw8LC}cQEvgY597~A0c$FzU%F28*1t;4TGRD2w_4~bOaK;6Cy#LXUquIpO;pEeNX zTV8Jbf7?sj$SXNXYa;&XvGn}2(YIqG+HfbQUz3#K^N-e6JRkIKW8u(g zvyuYjNbSAEm?V7wR*bFBOs84`bSE*!7fdBf}0_ed&|ndc|c(o z{3lf+{zuVqv0IURT86h}5;SQ}yGhPqFMXm2=dssSLP!Wa0}A4&4w2P}MbT)=KWob( z&U6^d1gl})W!L(z=7W@L9q!{&5<1&rNj zv{55#S?>u5h=__>U|>acw=px@a&wkuK7#2FmI#sykwC8_C0?vQASL+(pwNQ9j{p1I zA-UVF)wu%(G5q}J^w6e8p+#K)Lnqp>b^FKFj z$16_B_C3sR4v$xZf?sCLf)hohdxG8>g8zL6?V1g6O)GLq%g<5SC&B>oVZ=%h~$&oQOZ7y&D_eIDwtigLFB-?F$}^ z<*^xzX1OjYtRnyWNU_|K#dcw|qyo+LWu`cFIIJzUW_w-9uSZFe#i4z^{g5gu?~!Z5 z2)aPIU+kdCT>b0C-KIYBQCDE}%K_xmli-5q@WK6Dq4XmbS5R=Tn~GOCh;dnO+z0OU zvKOYo;rae_Io>7wv}#5V9UB>$n89V26B_NXE$P>CvwIfPB{y^DVS=?pXu6)3hd+(A zEbipKAe5(N^v{5JkgsaSpMW070A*tIpt_`tP>EV56BrzXv3PXq7!^zCt1vWv)p1>m zfikcheQ}21A^6^VAdA|9pnytlCLUt2b5T_HX*$8arXzM$c(h_26f+tL(XE@U+{XI1 zn;+70-6)T+iGx`;$Ga*`-ZzVEr>nv6nYYHLHARz&j!c8Pt4Fi|g{FK6`tiT{ck9;JD^)5Rq zIvmWZZB%)B8V~uJFTjC}@dlFTxdTf5#oRc4yyg}@oQr~xYs0T6a=5k)qmq~nN`biH z(IdE##!o?A>~Kk&;&@W8kKZ}20~8LMA&dQU#58h>!gSI}7>(fyX*STu9mn*}V(^&q zHo^(p#-;$uatP;szK-wJ7KG%g&z>KSXE6t|ATIg~Ki2qILOP^Q+hzPm(^M9hrQp#> z`wvkA+>>V#}?1mNYL+D-c=osL2#k)v*siJ6tG}zHcxw)NHdL zH8kuYzIHT#BBH+Ubr@c!+5e)sXa@tngC%`qPea4072&fBwAi`Q)@k}gZJbF2F2Ui* z^I6Xd-|YP5cgYR71(g)^Umy(B)8Rd(d~E%TttS~QU9LkNlOmI?ww;` zYx-k}A!5f@73P3}mbr{jDR-sQ`7t$=2)i#MzW#IbeWck1JPayMdsFP~gyaG@Gk``>k~+Y|Ix|^wsRia1EtKe9;u8e7A<0orTa;FbS3pWOJ)^&BvzI9`M9&yP!Uuk5njy~H16~2hT_hN$%cMTwQhwh=5#&9N&Q_g?m z6L*swGq6LQ@~MmoF$6q0+;yCVZ z9yuM7b`AD|jjoM2vj8etUAMmlF3~7zz37U?)fnD0CSB2MtSg9%p?m?;R>RJ;Qy!)%`xYyF?RM`*@AeO>#aa__N!R!1YpuDe zY(o3q>1=@}B9OL#TT7V4Ji6S`z=S^v9Ne7eWExJ7%7r{KCp)_;zsFS-4u#(|1 z6yqx3pRUB|{|}?;w-AV#!+||*{IMOY!jXm;s4OY)YdEHn?PqIDZ@$A$+ep)hrwB>@ z>6-s??i5)crOKmy<)_0o9=QGcuT#Vi1taD0;oi>h4aTZT0SxIB94^i6FIMT)sR<5| z63eaV#3Z@}boWo_j{+MNy!Y*r=PHo{Z@p2KP)mjxftjRwl_+c`@L#@xJ7hr;y8^av zsYCt-phw9kI^?oy!KvEp#1S^2j4b)(ZWL)}?hOrMs9i8>{8I&e&oi7`tBk33$q(Z8Y!2|sIy+RQt|+{#?K?7^TAbQt&K%D)aa(m-iV}lFip2+ zGT6D%3%H6sxbThF3@bRecxq`Lt(wTfN7M_UBAPlzG1Cmp>T8sLJ*v(=drW0jd@ElW z^VR-V*$d+M>cskwK3yEGG3V%1T#F?BkKMP-f7MB6UlzdjuxJWveA<6D`<6D^<%#%l zdGf6%FA}&SJTR|bdD&Uz0DT8(;yt&cBVHpA&6V&yQlIQ`_sf?iy{u@#me?y_!i+oC z$|cbDGsgA80tYlP^9o>6j`YVfU{N6WqBb$Ey`4!ma<}lj@2I*o5fIu?!oBCYM&$0c z%4B5pEQRK*;pmHU!5ofG8i{(fVA@#@_A|c|B@%i^x_-^Hxx4~c;xAy&aC>h20CDGo zcdoQlC%6R(?;e$e6U4)i;o9WUCu+Li(BP(sU3)?feJ`pe=YJJEFZzl zVz$@&?~8o&kx^1&BAeFaa87?c>&!vU3BU=$_R#AC508^mJ&v~ThuN|ot?EeE{Rr?Rh71uUXjXkED2;#ao>A2i@Uu#v!TD$Zxl#gg#3+I_3S1u1uylIEZW}>+# zStdax{G4$9LcorFE|%Gsm*3tDy$?itN)qmlcSiIiP#`=jNI>}auA6fHE>6c94QA6 z9#oCoCQX{Cc|lGRn}$U6n{U36-o1NE&z?OsAAY~@zWZeQ^yx}eX$Ycq>(=tyZ@=l@ zXup2_X?&!(h@IVw~r}L83uSLGFLlsJtm44H}fG&Ffl#Xa&ykkF7KBp2&?=rB!PhaiH|6!4sb5jq~?>f&lxP3o{0uX|7kTyc{|l4@D%{)B#bQ z`q8Fb6_L)T_BwSfJrKx|Gv&bNMedLU_3EpyR!d0Kz8y1Wj4BJ=b=O_;>#x7UWdP876$bAus z?}LS-S07oVVqVtm0(dp}YVnowz+GKr^@c-oZO=*a_3Nv34})j0EaK<=tO8*Gu{Xp3 z0vjZ)J>jP9wzO;)*TfimQZrqZ-sxW=6_ z2I~9q(Q^H$RuWzvZ9vnutULzQ6YSC8A32n|I6m{yGs|Vfu&H`vhE1_zCC{=gJnj9g zVCy6*76`D<*q7Wg;FuW*_kU{c4^xDSNPjNgFPo|1jq$~?#JEmyAaFiFAXoO!4t^3t za+U)I4A6_u6vf(Lf7^G%hYuHCHdtcH{3s%R;e{9UvNn5dJbq^$d|%vwbz$Hh9+CRQ zch|{_Z!eU&-|UbFUhE=6Z)>W1hEI>_E!`mUeD=Zlungqdd!RZjg3UvJSSg&2p2=s$jSxiko^ zC|ASs6OrV`zmLeeRgo~(;IFoWiAZTYfBDh_GO&B2Of!eyZc}SH7hTyvtu=Xas+N#D z2)D3$xZv}(ePtDqDC!;e?pn7ZQY;jae)x2gJpO)99Xoc6*>nY8BPT}(0tEwsT#2bg zSS*guByzl4qDe&}KJ)S%_$02L1lIE#pDhu!oUHwA%j3N`gVvXIKwZg&rNf}WO^>#P zywOKK`@a=(-|aJHE^Jyp_*z%klC2C|wGCk4pr(YmY*m_#^|Ne)Z95k$_3P&k3^r~4 zQk_-oQ~HQa#oEJw%y1N8;5;x4lz6tku!gknSOe~(U|0fS9Ng3K5O_u3V7Ov~X*p;d zY+Qa+Qjp-br`zk|g<8Y^ePD^~IT9mtH{GJga(uC~pVbh*KE{0v-^^m6$TFC&IEs zREZ6~kr;Y@w|VoOSEwO!zF+rer2I5#3y^1!q=R^3GeMghlaeIey3|si ztITC4+{Udx5-GRe*g@*Lyhcp;zqJw=Rz@znsfpSL=2{46F#)!iC3anzad+&1;TI z5WGV0OdvT^hFhO%r~73*BEkJswlt1T2Z}zN;6T88 zA#etE$9pSW6gA^SS3&?$6p{L;FRYOFK3OK$wx1~D-&rF`32C~2H)3=py@wQ#geB9Q2turho)rqXIQ zVFs@INP2=?&@no1-PZa0bqY}0qyL<~ z^v;fSYNZg!GiO>_;HAi)vmAjO6|MigIcrL|5Lvv*6XPacye>y?jTOW>! z!}Vf(Mc$nDnDl%;=RgIdIdd`#}V8YH(o(N?*Ax@!9tz9}1&HA+nEn=LT<@c!G&q)w&s zGW6D_D)u#2Q(XP$LcX>??A^1D&U5iVz>W>>ow8pB-`Yeze|4oK#HUIC?DeKWygTW= z4KUYP8xzY}5EV}^Ii==v23b%zWY+C*Vbg!}ym8)R$j zF&TbmE2&nitcrrizP3hSCrj?dncvWIP#bg(fRtV3%saxx!e+~=C_P&k>=!I4bh{QDBsJkJhHz)- z)UT#I{yfvb3@CRCIyd4{&<%jP#N&8yW^{gWEUOIQ5d_85g z^x9NMZhWM*_5%CGnn~00Q3PsYD&_j?An8-UQDi?n7dPyiYwm3!KaAU`=d}GX|DsY8 z<$LU%KK4#`9Xn?H7zt33RnjTQfj}N1;1E*}KykA2A}2)OeiPt6Y<+B`{4!yO48OmX z48Nx(G!?d+!fA3Xx$C)(%FWs%8N4%C1g$@uKSd4! zjsa@QbFaHq*Q(OFXD#`C@g6CMp5)o%8RNF7gX!{>16^~|5vCP+CpiV?2?EZ@bb(2c zDkiqBmVuaqLjB|;_#l1wu5K{KpDr)Hyil%cGf_Ty@o$L+5hZ`)CZtSvuH2|+cOgFw zyw|E_EFPVw3P_pFqV^_-TL!Ef(ee>6C_*ZTDg9ECxT*IFG?^SK-PMt+WEgZ)V|nGN zi{)x?F6<|ArPC&ElD0Lf!<$VLeYYISD!(k=A$>a3l`bHj40Cb3V&-34aDMfO5>lo; z5tXcE@mVh*ard+9ohEkv6bS?fdj^$CV2fn<{g6CRc7WFbW&C7cRIJP#w^iq*-Ab`( zill;0Ar1uc2myzfx&TEY>f@T&MEZenkj=f)XU6oF@7G)_k3ZHEnui(k%)fq>p-sM# z9qXeN0T2mTWSmEs=RFz~kbe0^WZgQEwQJ3t&z=`dGRg{gZ1F+`B->B}AESH}b2KT_ z?HY*}A~o;ma=V7#T$GToQZ#FbuQ{js;7eWIzEmfV!TxE|F}eBSHWF4LP!a7{udD`_ zds0T=Xbsa+iRo)_uhq(g%Kfi(QLgv!-gvpZ^|$hW4=+(<&F;3xGqnHhBF0wSxfePF zEZofzm<;JXw5~L7P(>0?rlIT%3B=C&_aCg66f9`juk16Xae@N@Z-am%=5_T55k6PG z-2eO*n!B4e9+TT1X$J&eK@A2x@_IM9@xj(I@x%49?vF^RUN=k;G?N$jx9an8yo9FX8HUBGWXZ*(z8`<={=;b_RGA@kUv7 z;GkTR)Ij6Vb=>Z4u~NT9Ma_qiI0h(o^b7^wzn+;p&kB1ETiWa8B6ir_&E@%jE|8E6 ze+h;+ne|(b$bxCR)ORrB*dgxpi!*q<2?7o=MQ>QnlE*5NlhS1Dn``9vJ$q!v=UZe5 zj$B-OcS~so2jJ8=y#J*x?*3!CLYdHJ`E3-C;2d2oAXyCJF5UIOxKu#;$3MJQ0m;Ib zgmBY}V{p5cCZT2gC7H@cVId%96%>waqJ^o2D}R$yzTa7)p0J-U(ZB<;%<2XE8)3|J9-Gd|aHm^D+*Y=tyH;-&9Pkd-> z!E!N`U0^*JY`wCJ^G+Lm+4<`k?A<1@xjN-7C;50hab+H0uns*6t@MWGr>V&jP?*->;H-bYBaE;@=+Zq8&#?bB`$ED zG#f{aXwQ%d(W!?cbi4)=^|kU#d&i@0H6hZYFKJSJQH*eY#mTMIV#V z_jXrhC#L)E?R9c2B~cZg_&YH^O;#;DB<*|Gkl?a@$jj{Ik(l#hJM0)?d?yqf1T0*+ zZ(b2feM3exl`(HGmmr9F%lZV!vZecF#lnNq0e! zNLZM_^SZh7IqOvgVp4La3{2x?f$*heD2hUAl#k9_ciTsVISCv6rdp1b z#CYh)W~$Z8rZ4<)k1Da;@h4QL9Sua1tulKhPS;wuSsYbC3Lj zeYiH=45#A@1Kph1g%WJO)&f#)?&uibOBIlG!NL7bD32W8e?sCeo&Rb&WC!1|L=*IxM3`bb`;+3i@v1yX)mp zTAV!gKsRuq{wgva4~3;*=o$CIzAHo2;UxL#>&-IY+J;i2UKrwF-xp=E*R4oWiLAzU z{+ufW2um)II3H^_DlZqqh{N~aZIBA!PsyFmpScU7`J=iAu5%U(9fiN0FXvhTC%prK zbAUjp=1e&e^#TBiq{m^e^u>1;$Th7e$|G0IlEomPw4_6BwJ%HuzBKM46+sc+ob-hj zEOM|4NVI~K(?#ypOF2`*6|_|0ynS7?#3aM=5k$G^;5g`Ri(+#I#$#XPH88&WLSJyN zlN=1+g@y%44;W9UZ&`*-a5i1ZCs?k3xRsU>xj$Z}e7#YcR}6<4I~ayQ1y?RQDD!^b zDZM+^l^zfmGoN3+-y!!sF;m84zm9>`Gg`){)|Kz|(pb))vxNX*ZUe`{jgPj5zgsv$ zz#@kBn-fl^xVck}hd7>TY+C2;K%h7vQ0h5TPDawKR4A?7`gl93*)UAqKTVvrUM5f5 zC|%ptl54=3_8weUD#5tA5iPQ-h`0->%ZQnoIV~W4{(0UMkZ!--h<|~2v_XYbwftsl z7c7L=2Aucg@s%)$e3PJjR5d(Q>NG8{2rhz@gw zZXVS}_wLv>ZVgaVnQJR91$Y(KuwWfZdeHd@ZE9+7x9n6^dS6l(=Bc+!dF4(6W%l>m z_m73W9$N;NUHlaO@F7v~{bK;+2lwkO-mlG%Gz0cpXE-E!+a zKgg3SddX8C_0qGZW&DUP3lVKvVoC+1M;;MLNXUIOU3HZqrcCQ)fy9Zhrtt)*Zs{|X zkLp2-H>`Z15+f4RyohvghoC$_rS7N%fs9Z&fBnjg7bx|^F z<~Hfnpr%}Sd0kW_Ll*qFTbAuOAU9mz8b&3|(V8DW+bo|<{9Bqg3zv?4B2;SO1ElXC zTt+g|a4wRtcfp_eIz-j>M&9p)8-oF5hTQUa8~Jt4PL&?`fpSJCC(3yEw0+_OqkV1S zIvlD3&G}QT5HNDEVy!~)70!vvi=y1I@SVACS)^8mh5!Z(ZzS(dzf^wMaGkvHWIq{l zTT}gJkiH=ZgACdq7KmbWZK~&2#V?N)XHV!=$#<)is4qL#=sX{7F z@$W_3>dS!Z8|rxE5sXF4cT1nn^`w2T8oC!dbL>{xd>lt>?(6Or4Nrc5gRI$hSd9%} z;L3@_lahWoQ7BBN!*k9Ioi;@HtUrI)zU6NxWD5a{6S!mHhlSXPC)&x9EB0yM1mH|e zWJ0{!&3@$ny6HO`|Fk~OHh1Tx1A)SUK%R&x2dgD=stjNcdAaJ84rE^j?=14nZBTpW z$LF&p$Y%=@mdQYc6W_2hUHiY4ek&kmBl?0Y=OKA=|X#sKh~mq+jvW#b5+Y5THr00=^p+^vG}*z@^BbR;CINebd=3I9W{GlkX$$I| zovb?Xfat2%36q;2YAe@`Y6Y#%Lo#DL{Ao_wA+NvpyG(`0lGz7umY`rB;y17;sCt|+ zAC#k5feJ{UewwL(#P`_+YVzKBr`IVU5ngDB)_C2Yk$U!%3S22zd^M_DQED~_bHS9& zHSw}*UO~J&J%2l{4Z`*hD5FG@WetT$pJ!Kl41!~7gx`MHB`bFylIt#SB@J6v(svve zhanmseOC|F_C5)Ps_)^<`hJ&>R(tek*ZN~}a(kRKs27a(n?Oxwmo(V*#<^vMfSGGX zD8sY9)Fn``_}$8*fNrVxs2JtXVU8`|Y=7z<>deMy4xqJRNb_;>?{Bg>n5r1SU_OEce`V zkEWYCb*gmh)=gKVr=}>_Uo4-T1NZXCF(o9VNc$c&)D&Iki)sq5dtc}*Gr!#`sR<{g zLggTrl1vfpm68aNxKIJ<(MMsL$G|#AC|q-m*C`+o&V(@om5=;gght)2f!ikmqh!Fw z$+3L}{xNflfdt+nZ;su|Z)>I(IZzTl9*v=Qo8b?dz0#N?Niy}zP12}rB^h{ABjt=% zLNxsM-v=es$6v=*I`)PAz*)^*utSb~x>KHfr8SU#y7>E-kwD)7ZB1_Tq`;ee9%X1@ z!}Hwi2Odpp*Rr~-TOSEilmQZkbEgwO+920I)LO!!WzWS67v`oP9fEoub#;lUDz|mc z7?kL^2p>7d=bn2`UU=aJ>DR9xoSFP0W53fSWJLELV3T*X?A{Wi zS<+y`t&g^oJO0%{+hdNz6!9b_L2cB?C?8dZMrkE*MOiN@Ce^6nbqYwP4_%&OKzw#? zj4}JA7#sZ8s&iF^s~r<((~swphM*b;Mn>qG;IgpJ)I>R|_2ABjb^T6e!7vCw;4Z_C zcO92@?&v-Hd88F91%K?=pl*YozpspZx;J=|8zIZK}wHF2_ z0%RD>5OO>n*m*)`Pv0gj8daBuW_A*do9DxkHBT zg|{30OD6@$5(pm^5o0qKS(oZy;qP0yGP7fVAl;fT!5f6zo2`NRo zB+BE*kC%Xe0L{}*0+z{my!gz(v;`4ZhF)0BQq0KX5MM7DCR3ITm#3fXEwynNeEN(n za^20}%d}57DPkq3Ql!BWL@FRfL>T+LwXuJ9ri*UcAUV)r(-vukPcMx9W&3OcjvOU} zO(T&?%}AHZ_dB8J@QZO^pVV^xHYzYq3KPsGbtudZ@)r>vhH zcST)Sr@Yb)fgCwg3mOj2Wy_Z7&-U%x>zxFV?|F6U(gnV&*UE+s8^9oO1)r&m#K?@p z2|?n>du(j1j2JOOMvWRJ4H`6%sHiB-)Ba)JHc%oM=a;ayIU8rBQAK?j{M;quLmP%d$5bct@aL=oyYrmAl=uG}Y3$=oI%-nOl zu}d%tOiJAJ94WX@hNnL2E%)GPO@*rd;*$gp9Pct*W3>#psdPL~{b-X^hJE16MmE+( z<(|J&Iq0bKujaI#>+cz{PF+nT?b%QMbSieh)|qGDZL*X~*tSFxgkARVMg@14*>5(tpqNJxeM`_8<1dBij%gak8ibMKow zGk4}pIdjgOB4I<}1*mm3Ih_F-_l!H{AijhDgll%TaX-d5J6~MusTI1!{+PK>$zDU9 z{`L8;a?drt=y)P^8V4@ff2VF$V;pAy9|ITDH*d(tu8oovJHjMjN@eNXrH%~6&X>rP)RUKw zhvGD@WRA7*d_G_Ny!KOKQ*XQNHo5ucn`P|Sv6_N; zEL+zXemeP^XR*vfM9RPk!QbaIF>HRGOEJ*0%~xx#g^9a36)0KqQ>biSe_R%CIV6pq z@|XD$H%qMs&@Ck^Qh9tPpJpztKSYwWfK(g-q%vdyiLfTzXsluP#uzmP7XV`o^i5ga z!&}cMg1WIQg+5|C8HnFbgPrR}4hzSs%eO(G%P;>sD6x_%w@>aRD-svWYfImh z^sjCfzu}c74%3PGna(}KM@}|6AW04Pi5%`BXM9i+zEQa<8O1OjaWYG0eY{tC4y`ZE zJ3!D01g%Q4D)K-92)0gkyldno@W-?V>kmLet4M!)zMHHc6{+oY#{^BxN|z6x-Y9R( z8bK&%i_d4hxCB5}(S%ZlK%vN#1K3W^8dS|d;CZKww}aK5c?Lpl!wmXd78LUk*%D#C z{r1}u9UU#>#*LE|D^>tUWGlPZvWM5NU$6SB)LCuPq=~Y5=ggTSix)4}#g}FM(ZIUe zwq$@6cLuYPek@ybsG-+{M>@&@7(8DxGgOj}rvs51YFhN0Ja@=Ke$FE^4x;1|HL_Dx1 z*u3tZ20?EJEbo70zKkEyUfx@91?JUh$vTxSK0vm1Z0q?e4E0}XY+y5gjhr3Z-Fsw1 z88|3dmMuFB%G5`x(*-{tl3P|Cmri}_I`o$nyyv}km{KbKRzRR|2o#D;Edt_1rTWV3 z*|Q})JX|_X&7nPvG}+aGpYm!2iCqMZW!Fw_JTgYv~I$n0BxcTN!7iErD2hnZP=q&lk@lFF(xo zQUK}055eby?kf>%K@}oJG-;BEpC5VHChd8A{(Q5tuaqSR>XekJIWINBM{T;+R4Gb-hse?Pw*1UbnuF+<0GS-BdJ7ZYjfS-Xm^)UQ)S1rX-Lu<@sj@D6WR7 z(!X!8Yz}E6iRf$NMF-=M6ewW&%jf&mzvorAwbc1U_V4X|ewIEsmUtApunc+6pzYjq zZD;v~xnn}&#&+HFN_Sa(`4OC7(*+&`9C3f|@s0AyZ&w0frp4vAt*$**@mwAtP$V+t zVB|Gq$Pjt$wbz6yGFM-HwX$Lgv-GI7^a5>2H4q#HHjC=CQCsnu93N?{3 z;=JVFZ#-HyP0l8CfU?qt7C`>Y7zyP`Ivda|V5qT1kGCcqM^GZEF z@W2BqFhnaxtkee|e4y#crsZ!UPD=fD?b=nSUPGkWty?#}Q=NuLl@u@IY4exgWt=^S zJ)ed$uU;wvDe@HjlFr|Cv;6Dr5i)8-3po~^B5%IARz~)pF0V~mtqTw*t6g{shR_9i zgZgUVodQT?vDbv)3XJdPdr_LYj0hkR&REkGcKf!*!vADCtkpoG6|6aET&g55+jddd z=LV{!@|Qixi+dX)H0qRUw;~e1aEwq*{Hj&~Rv^wpB+_}fnZ2$4)>YY$kpIK3dki&ku+%wkkK=dzq%D@rWlTEs-g=E>{Kxi%m{QH)9_^IG%~vDHUrM z7<<VBp4b5A?%7JMGEFW#%RvJxs(9WIV4t6T znavl~)O20v>51by?~l0@P$Xr_v_z()E@`ER=b3%`_LW|}dP!VdoE$iCKt_)qE%)Dl zzn+b9;PN7?mU^c=548OX$Y%;D@qCqON^%0&Z<@MsadTIL zJe;fs?q|=~2TM0b^~carj)l%vxU}z-oL;nuht7q6nX4v|Ed!q~Vo+FXAG@i)Px>t- z;>o|saYMl ztQ#p)H(53-Oj0Uk$mm;J=y3*F>Guws4~p1L-o+Vf703us2h%kWxte~+jV;N!ms@Jd zJZasqgjnjdaZ7)>>7MrT!CM<85Y%avN}jSiG)BIAcbDAyk4{)uxR#hTr!2RtWS~<~ z3L#+o*{&}-2eAef7Hpov(iHWsP-M!?{0ON-A~{l(n>KBdPd@oXR;^m4Y+bTwCrp^2 zX^1RIO|lUbG717E)u&G%XBnh6T?5Nz+{B3!)shlT3-VhmhgV4kUEi^HeGa>J53tRK zUE55lBtJL;uMdG3USlSJ3UmazR*r|d9FvbmXO2{S-5AR>Xj0a0zf)nR0ZY~_NKG-dp@NhHkw$|Dg><8Dte7sykS?ecmbXg~Qis5G9 z_9r{bFVpwKPI#JlLGQF03^{!A@@5%@jfeGHTVcq-wMQ@QXFGm5MyLWAee|S6Kt=E1 zt^{215``l^n)398+S*HB55_!z1wQ;%A;R+jO_9jdR?H%~;NW0+>7|!`_erL6MV9^g z^%Gt;xW3C9N5sp^2Bs}3WXgK+B487u)772U-jo>m?BlJ{qIRI_l=g$chOSVR@rN^T zB-6n3HlM9msolAlu_6>edhfl$Eg-Q{*ucnr_vN0M+D4RGh0TX7tl58YC(?A_dV}O* zJehEv`_(be7`S;C@lvj8seg{+35}N))mzBG)&t?T%}aL2@0Q4ukvfSfUG7)eUwSm@ zBAa9CNSmi{hQOT+D{*xQ!`7Z`3b$Zd}va{9|52XbG zyL=`?kNd8{zes3Ef+XYkF%2eT$SJFeT`V_b0UkIW0PB}Q$H#dRPemeAJ8=0ii{yyt zY&0WUu=_FFg)?fXG2tQffE$f*1D9y=g++eI~wSM4Gsi~<$~=mf60~RW#unI zF#T@WYI`@wNZiRZxFqw^a|$0I)sB6Pnhzx}wNEZW9WT}=Jt~>0c4eb0<;up8HbuC1 z)xGlmmiNUIlH{2gnQ~dcWwLk_1du`?fE0l}5`5@po;(A~T!HfOtJg#C+8lxG-ySFH z_C(5nE{$QNAW&gRN;Mf4kVo9yOp$PUT9z#SHdN|+`pM-GSmIpU22MdJJT#5JuAR^; z62n^$t(8SfLgo9F*Q@?7&y=i0u+C@98}8yUh0mIs7rX!L_sO*;r-M!hWrZ6bF#4M+_wD$cw(m|$fv5bZWJWJI2PCi z>vvIcsY0%#9Y^+lK2RzWnX+(xh!wPz%==;c-Zh>`)FN41M&63r^uWX+mq>yy;x+pSb@l&fp-cZ!L*{TW<;|2 zg)(9R$t=FCqnm8S!cEhGq^{C&9$u$rHR$u2g`Ya7OzZ5M{MvLW#< zu-jTx9=Dfo*mMJkks%35((c&RzDa!r87##mRV)({QuSI#d68$~yz4VTNy4KObu5=;Rf~m8`9aso;`(eWlV6;DcQNneg>y|xP0o@pUf(9|p)%0E zS8a9pO{c;`uWP0krT@Gu!+xwzIJ2l-%zEp$DS)(eY4I!|(a$NvMIH25tn|FpO}4L& z0xfFKOS7d_mmqKky#JKvrR)|8AaT<;H+-(Vwe>A5{+_ZcVV9nnS^=cp3A<&){NZ5p zzJhq1nIaF&NGZbP29HRL$c?I7eMdBAv3k~%aVkgJUS3oDs(9;0kpq6=w}&LlEk}lp zhw*((fs{lZaU7Or)dHmZ5J-O`Z2a|@9ES1zdvEHY#``(;7kqV4maGny2U2=znu9yz zu+fZ=;a4}4dcoXmqI4{>u7UY@xrWkM5BLp!m-@=2JbMmnAY-m>C9`Jk75_?9mGPE! zn~%y5AMTO=yRRMCz2vBwdX`50T;WmL&$d6ReQ0!4wgO1|lJ?2cz1Sep#5Ju1x(Fa8ol1~J`xiq13FqIHx&n5@o`z*_7PMTX z#RZZJ0*Tuo`11T{!IfYY1Jb}1Wbv-}Ib3R;sirJm=G_KQNC#j5}+T``Sx? z2-OYGz;VIaPm!U?vT5CM>DRKco^LbXVofgq7|dA6MXsjq`s%{{!Kb-#p8Q5nS-B`&GGG~so4Km+q5Iym8a#Px4tQEu|=l4q>(9s$;F)msyQqh{dd|`vTpuS_15wIPkUtg zPdlYHj-%W6s4Xu~AENHq&fxro0554k7ugf82{<6x(L6JK_gy1^R8Yq=Ep<$xnshNO zAQ4{H890SuVv>1YYMg=l0I7BYGG+KPo|m%SYRw3J)v|g^8Ps}^>SU8LJ(_Y<#~THZ zs#gw>o)AFV7;OZQj0Gg-Hi0naFyLjmm5k#!=P)1(i_hLZ?()In(Q*{RMK!>EVchrc z?^XefA=fw6-wDyDWc8vW(z<4l^DLW2Adcsx$n9f0fu#%ye(d0XgKR+y_dw|j_A$fG z_0ceA_@mr&Z+Ch0o!-i6AkHV7mEU1dL3}*tWfSs!NzW@=9^t`-vq4iox$CK}^3s#P zNexh^UJyu%N<1lVJ-Ak0`F`l1LKw-w#86@66h**r%KI;Dlnsj`B{3#l#{o{?l}d#~ zi=HWJ$2tBG#Sj_K+k3M#X$_eN-GDH*c!B9lB5>{gBf*Xd-aVj|!C=QG0EDm==%-Z!=)sWYe-^I4`AMrI((U)(*sZDcsxXK*pkH`=%I>xMY%e zP%#oP8q;`;UToOCt0922IadIwZ9rRDIBJPQ011m7jvc`0%{LI17UpKW8u%-WK_Swe zATJ{o?JMoJ~}=E0<#imZOU+?nJKq&0y-R zkLUe|WwJavPM|Q-&G2nH@5=+SXK##C7-`mw5E(VQh4jCwv9f!uj9y9BvG^Sq~R3ZA5yJ|)<9-1faaWPW8uiV zbtZC71r(ClmR(4aGV$t?MW*Zk4k+AI&?018ER@@8sTjRFcOKSIF2{B6OFeW!@DDOB zw8~V+vGTBqT-IH%nF-9r(y;xutT?U{m$2l-Y||a*c>(6Ulx)eo6jzy;2^XOf-2LYl zOuS=t%P)Z=&ULKvnf+iFQ&Nk3Hq@cW?N4;pi_|8={%vvEM+2`8)^yQFQ)T0tW74j1 zEeIYNBM@sB9+5aKw*#&T*1n~0T1vq;fP`>wI7essJJ&|bs(lgCx&wrj@DHd{-k7{b zYJjDB^Ftk!6`Y@;2qJk`%EPrSj^-8nX4}s4Xn&g&`eX0+k=q9wVI&shfr0nh`InWLbk}J9BA1A|^mjpph+HB%`G`J} zDs#TrCttm{L%bnvo(AI~cRkh(XV3K&j#QV@F;ol+k((IyGugEkg!0l{$^8Y1zO15)QxS?kKA{dio6PF{jFB?{1X_wfy83AXApT zZ02D#6w!ZlV=dbt(cFy$$A;bby0+D|J+ATjJ!@LDlMDa~8g(C3Uv9j!o&4{!?Ggxf zZ)G5pec^HP-ec?K@sIlHnIVlnFkhLP`}sBQ9O4v~n2VJBCUw5+K(q>Cku&$-6=R*= zuvjDoFxz6IOD%?1A6=!?C=IP}Y?#2!S@F0C{4N7I72hw|t@GcMaqfRPGN==J=cAp0 zOwFe7+)F9_9G5IIB`7&*xl5zvo!hVLEIU_3$;{ay^7ZVU5`ZP3RjVNBKeDk*dZmY+ zGuZ)gE|d6zbeTnnyjv;V;(o~HEpGY}NT(AR1P>Rdo$I0`4$cq!AW6y1Ol4pT3V9Kx z_9}r-mb)U1Fp-<=PuefbLzd?&fRqdYq{aJx#Y%DvgV!N|bPmWgFHkI^V7x`5c5HJK z*%lNi5g_}o+u(XK^@+hUY>YWmJ-9PomaPes&MoUm^Y%uiY3;(J&}Ge({$m^Kr_$hF zZVlMQjjB|4+FT}ABC%4s{QcH$;)!pN5`Gs5Y{$VUS$5zyl{OB85`79-jIBBaDdlR$ zMQ-iwJhXTF#@5~b&ULvD@Ff*GKxI+H+pc=492gUi|YrPbalDok3Z6Yi+R|%m(x}RM1%^}&g z<%FzTb5xIMI`_wM0PrJqj#*|=u(#hN(!TG`p2ms2!LR4sHueW8Q*PK8Y}w~rP$_4) zB$27@e9OD(!;5pp{Hj6Cp0FWrH0^ppubH16_rL_q)v zK42v&$^2$~et{N{9(w4a3Lp`7WZ&|X&MtU~^;pCckD}%5kbw zivDX=y_F1ZGgv9po$)*6Xfgzlc$Vl8K|H7brB@&dD%c#Fxl=5 zP1*#=!!P&NXQm;dX$yCGLq|8&#Wy=EM}GbBu+(&`BE7)bVc5GRM)pO;$=Fe?RM3fW ztL8!r^XjdWh7CS{q$ z6AP(9Zh#4oX>`o6go0O=S2DY6cOj{%dnZs$Yf&OIe;mE^z5_Hbx1F|>+iVZq6i= z610Fs0i*?^7R&Guk;M@hmxTx*{Sn~&4p}%1FEF0tpO@W$w&_w+=4`qNLQ7P)F>VV( z_s2`yRyCc@3f4n_FT*`sC4HHOb8S5&f}2(kfDK{ec!88^^yyUTHN3tq;#A++viyY9 z_4HNiO>D=?*%9)<-{;Exl71EvTIS0Z6nRG|0jJ zfR%IIC~*#wS~r`M+>HaJ>ls=@58MY_Bnp>t1Eg@oyW+ycrsJLG)+G_tKKeP-p(MU} zK4n~z$kcQwjPB#Slb zL9VQ5e!<(@sK@Y~V{+t|>_WtG(y1^Bkm(Uj!qAX-qhHF!8Pr5KoL#X$c)|QYX;<$; zH2M6>WEYzCi?mk0Wfc^kZ{qWaw1`Lh2GoijI*d0Io8b7vsN2wG+)sOMgz=M1-Fy;J z&HwtK_~dw?kLzhILO`h=hPlG)#lcn?sM*}A}?JrO4RMHSfDPIPq&$9 zG|S4UUc*~z)u<|S=N^!6=I(+(g}1Z}4w7y|>dJsI!8)N#TGJtAqT}oUwl3IIaj%d8 z!}R`UV}Q|INWzkTMR;?;;(6)j6~`noD_#8ED@!(Z!M<+Z!m}5`^rGwTmVDFCsl;r! zp!0C|mN^k~i~tf`u&DqNv{GCxAPt*0ST?HwQdgX5W#bzceu~;L&pZ25=a6F<@tN_Y z^r*whp#6>eKi=yD;~eo$Q-t&3wI&X<4OzF$mzw5Vb{87*?BBVuE=Vk-_Fd;mPy0rNv(!eh*0_OfuU57k{^5Rr zUB{yXg#+43ij;xWcivz&ZpMO?wjF6aA-tsF_sR2ScmB50yrH`jP zcYrReY>G{*ZTpk`VcXfC2a*oRijWlr2p}cOk^{>ifOH&#(IB?c29tCCI6lmJYu)ji zP2d8l!c3^2l|>+Df@x?_{`w5|+xmWdL+SSuWX*%T^zjE^X_obUw$|zaCm6;o(X0%zFbgpF#L$ z-q`vQxiau5hwR?}yQQ6cJsrY_VE5AT!jY&Xd2!-O`S&j)kp^i&iYWrZH}k?l3n~YH zIL}yjs-ls#o1Bs%vBytooMDmY&O@f7U>xBUdz>1lMyolnwlVa9Xnj{4SXh{+U<0*m z>tPl6`lH}tFH)K}DLzAsux0+qKo>o+w|Kp zY0%iuF<8t1Eaj>e{5g(d&I(#Udh0EL*L3r{pd92;J^Zjp_3GT7b5~GM$`Xw?ur^c+ z-Ft0c6{U+5<9S}%73@EX=x4)!CeKuhGbu~7f@P>MD}dD6zqJf$J4C!enNk4hNb-@h z1duLo+D$f;pa9bOg21)UI3(G(c8-ynW3UpR<0iHiUOXRXnoOAVYuY#fW;=~eYCNni ztp`iDMXf+JD8am2;bVe& zUmcRj=oESS-TsZ^Wyvy?;#~W#3!pW7)tWfbAXDZorNBwZh3X6zxV@WVP5~skV4FX3(FGGgDhZ(2eq_H|B+6&Tlhwz&Rl~XBFD>D3 zwW;Jd#^kZXDUz6z4nN0@g&SN3a*F)UcuQBPPce{EJ$NEch7D;38^TpIjufufX?N8P z=eNRO9xn`DKZXoxA~ow7S8~f|g~_)+?vn8n+N;VBE&sedb-mp1m&@QRJy^L<{*dl{ z=jTy!ZP)MVKR^)+Rk&V%Y?TVi(E$d}Ps!4@!M4}_F6(#g2c7{#UZgwJopyypNlZ$b z%$c@NZhgFyTEX(bl(hZD%`P`5bN;taS>Kf*^-Q%P?MEQU;4hF83MO0j zxfE*0BsWpUQ;t~|*&e=Q;GG*k-TaY@q3t!BFq@{h?PqzH6fz|Mco6^uP{`(3S-L({ z7A`xatfgjk0#)RjgRBz-ks8A_kDd4g#<>8F=`UD7{WXxn?9d@s04cu@a$sB}7i@&J z3N-*(l6?pB*;3WrQ!+q_*7B{YY(K)3X5MVSs!gOYoMwSS>`kWdd1il(g^D!*H5mE zgl}=$Yt!*w7NmJ?o!JIb+pazXFNIM?_2JzrADlnt~%;4=00ypeL4 z_C+y4H)BF_f_?MtPI>#=b@JG4ePs%S8M46Ip;sB3FFzn%v^XNkg$oVqwy;WYkuGHc zBu*Nx{g#!sVM(M>i9ub`F)e%dXrSInNUd;@EtBvq45lUg&bnZu0MZ+q-^jIqIWOv9pkIuOz-0r zSHbxDDK&4$G^8*|9d_<#DAh37%?^tJ6*{4wQZWI4E$lexCbXiM!&azf2Nzf`oby+NcE9PSImvVB;WBtk6P*lYa-p{an0IR?usFTRG&XN>)BnMAgtb+P zq3f=_uzgIS4#FOqiPF=-;?2cD(i!X=bVlHTW5OaHJZj*)ZNn3|u{RKxP z{B)uk>Sq~Bh2ngVlq#LgGwj+BElJqI(bASllLMEF(NfpD8gwj;l>45IF*utR7%vD` zMEK-?`pN%w{y}meoWyTeck_`&KOd5bLw}Zk{Hrf?U;~uG;)2X6#d2-ic#Oe+{B57L zB91>cooifaJ==Oxt(geruIIaf1CSw~zP(jaLFK>m#(MeWjV%~e-1KIH7B#*-gB$wG zTi=gRpS4CZmyO0%P6PXtGl!m#KKN>*1W6UN)eJrg!0{OBJ+D8)7q{ixJIiHNIZ;1( zezW9MIxW42HG+M|0O46F&tQ6w;MLG((cLoh&MgjWGf&N$LQXdk6FD4=Cq>H3rlGZ^=i&#d z5ECW^tS-gM`lFFDrdLble6Z{tphCHkvy`gpJ4eP#-@c7h?M2f70ej?BQezS5=lnBP-;NyF0636{UhHq(mKc29`rsp=%&= zdVJ6=+4(d0CV)gZGZ1dPew!1n=Mp*~F&5gu<}nu|+aLB`R1+@c_bPyd299bpN-wrGuK*G) zApJc27a6{X7Lb5oO4tHYS%I(Xe6t4m?HJ)=&f#T+0^9YhCA=7zhQ`_Ny1ScnY*!mG zZgL7z5gVb}rnxWv=xa#?Uq zITDtv(x*J@tL;%u-hOVq^dA=tHYhj+Q1ciY)k?>CLQI<6(f4Q73V89$L0S&ET~tA# zX+j1fSJ%~#btZ+V@h&e21HRKdcrM9c%eHW)kYGQUQ{|Nyn=WxD(sa{HA+Wlze@p6{ zfk?(|YWT~nrF<%n!M17a9j%4exdwZDbuRgeM5Zi^okApN5#YLY>tyTJt>WwJ3(35G z(ztPBeb01xJJRO2lZA*hCMHI?K)s-MnUre(btYNY_pZ;`!O1e(}Y6t8N!+R9EBo@9uAH8~!S`Mlw zzACiCx{>1Da`?E@avIBd5@&7)_a(?z>#k8l@+Xd*RJLm47XC0UVYqgA*BByK){9gT z%dq{O_nB?{qrsM?s2$4)Hz|zs5AxB=wOotrt-ulAF>QGcgeluVE&;g(#SP5!N8wN; zGBp)4dSi*ucbqU`g3OsS$5}Tb*w-L6KKtx5Y1$N`^q_9?mSNKsbhqgVM6zMJ!Uiv|J09<>3qIX~ZC@QF%NK^Jw+g1G zxiOospmHy2JOz*zEHDB{sBgXj?L{LDRmubfrOP+-AB!Z6DH}uh(e~C6vbxCdYOqF?Pb?MOQ z1ewsQlTwI0irBLuMyXKhR6g-hU)j4IM*DZgscM%W#G7_(jsmJZEsX=JtD8E0U_Y!q zWy7qYJ;I=cC!WQ+L%qb;-)v@QyuVvseQlL|{@pm$i;V>pxM@YCwCz&MS&pTeSSH(u zDr=j_mUV4A-@69BJC|U~Vjj!()H7ZOJPAJ*Nfryr%9JS*9UU!u_Uw^fy?V(bk30h9=ee4Oh|qS5Et$XBK_^a}(EO7o zO_H^1*GgPmoE$!USRQ};aaq26xmOV5RQdy)*Suu_Pd#98xtsqelDZk6UBNc1&n5PT!*V(rmq^KwT zSz@cD12zNFa1HBL7wYS2Rj}YW(_fINoD@y9q)Rz##0Vcha?2l-^_RZ1!Heci^@ zMwpkf<(x@1~-rlw`@a|;G^C=io$pOYx}4!D~eHS*6WPB zQ}F31B!rKhJSiQZ!(PSLOY2LYuROn{k5JBIQo!SH{89e<@>XpN?d5(pb&Je~-Y1Qj zX#3bE6?8Ivp118xqi4%#Bimyyjd%R!bAG{=<-FrtM4o!#*%|MEF@IkQ!L}p6_7xS! z_S-b)0*gW^Qx<5?LwD}nDc^qkEfl4P$a6F#fKan$P5J7pucT$mmKt}(6<0V}!LF6C z=b*J~*Oo(v4k=sMz7GU4c;%H>}a}yJG3i7d|(KnHQd?doOY8qIM06LnKja|c6D{A z&iYWkW9RNDd1PuIMf^PD<#_S%&h;hAvt`%d$|`2Og$3*G`s|vg;`zctpipGWPT|5y zWH^8Re67h%H{GOhSrCq4d~k5E^ytw;R?1JvWdIyUYk!~#3dHd)2Yb_v+Y&cSQG5lTtsg2BpYQ}Kr*)I;qhUF3! zKq{$T&pWm_?s!=WmCsB=s@24kdviwWH}R8qz8|I4U_8Uf@y(@od_zT)FFd?L{NR*; z=cm+X{othyilC#8o|ML*W@&YaHq8ck@%N#!YFoJ6`$P{dm%6r7o>(qVz0e;Bw}sGf zML6_rYc;G2E*p-15L{Ws{LOZ7P2>8<_Vc%%6`K7AlW52bGaFxVKYs`miA*i| zUu)gEwRSk!zS?2vGzt$9nTCXfNHCDA9iX;){LOM~dgir(&qStV`x0?C0Wv0%u2zli znMCi5xAn03TRSTM(NnavqZy<}pI@^AaWm23y5Z)(zt9uJ= zagxQ$OP&#B0sF$60@HJ`FRV<~@uCM;3rJ{NzQN2mfoQdPT~NAwGoM=|;YIUn+zXM# zyJr3o!{S9Tr?8Cl99CZ)u#*K(SDtD1GHDl#IKx@E%&sZqU()ZzIk!XB6}1!q>4oeYwBvk?)SCY_HbNow^P z^2thAX7X~AnycfaHmKRgZOl4)EG$KiC8x;nUdbt)6;95Bvl`PAS-YPYLOy_>FU*`U@U+()yPj&Q7C+z8|IpP~&1fy7PUUd&{ zD0o4|*SSGpy1XGjIOa`L@w*tdc`YE*)6*4RUJeS#4np3E>=-hNFv!k!KmsFZ%|IEESQ z-L5NEl9tGYV|>cz10_E8lq_0!NCIJuBnt@45B_;Se`lNOy$*mL>Z@N3RXfApK88!T zAI9}ho~|Sf>2|OQ`Y$yBXfsv38nu$(Ctya~l%GPCFLtzq?lEtk%nX_5yi6$gKNA|K>PzM6_j6jD0(`W3E8*Xj~ zuQ@ekAI@%XAM>+}|4Tc0=wFvB(pg+fb5 zj~tZJEst=6#g|5yPedWN~O{gpblH^*+4!-YRKRQ z{bXfKLy4&nKq{3^avi4}<3t*YK!9xC_;I-0Gh!}|up-pD7b(vpx1_I;~^Lvu!EeVi%}&2WJWQXVr{v11(Gpb4S6a8i zF%~j~?vB@QHg9iCBSuH2%F$yf(gCV8egVb^`@x-YdUhKOqJZ^19+4t3nW-|MRb%Jb z=@C$`O)CXRGgy0LJB}Pomaw=4oZ6aoE*of{JWoLp4hp~T_!8YYRn`K*d^9=Z~E=*_J@7iJZohy7@-(QN)g(6b|iWh@r zE3%Ur~ne-Y^8X4&hy(Z5o)M`@H&OFB+KHpQoOeB z%LF{jKqagI(ujs5gcpMfAjRamU~3c5Mt&GNvqAvrBJ>x>H^(e5`uikxN~!d>XOEJ< z4V?ocHOJxq6vz#(;7Fz3d-Xi|=k#GR{Kn>*mbSnfV*TM|!Wp^oo)$7_A?Jb|y#-*p{u|)K}{l z0R#1Po=rpctZynj;zZzhD=4t4!@;_M;!RMOYF5%X2F|}zvNEN6xB7}m+1{lyLS_2A z9dh-Jt@XTi)AHjo`L_9T&*W|@b3!V4)w~E5xUyELltRUZgTc;m6y*$ztxS>tzAPI3iN!ISJh? zBGL^THpu6ne=g(4k5>wmNR|tBty;D8V%}!Wnw=&6Ys<5D+gU6>DJCgAZb0VKY1EIj7UF`&5|87giU8UorsggW|xM;Sc( z_Y3rv4;PGaXhm)s>SjZK?h`(DU z51fq$=$<%RH}KUZ;L)4p;K^(Wk2@ocL5$Lk90iD|m&)%`1L1g1ic|e23FiMubvA&v zof>rwOE(mVl9KbZInF#3n2JhBm7aYXIKA)CTUO;W9?}2^m}!pVY&P*sI;=NU*WaAC z6l`kYT|*kc2{+puu|G);ML`V@!;X0p<1%FOwF@M;k-z*LdZQxuX|HaT?K`97v8lbK zZm_SUBxc~sRO?e-pn93l!=b;=GWpvE``fb82`^rZw}I*HZ`Zu`eObO2iA>obUL!}2 zlxLoKMiJ^Qx7?y}M2r+VqIto#ZQCm1BQj(>DNj;HOrTd_II2Wj;EDzeBWF0BP}J0_1nE&WhlGg;_=od@kYO9NZZA?1TB!4`4DQ;18vEn>7eft1uen zm>l`_RS8$CTospd8b=$D+?p9aQ(oKf8a92Nav=G@SprBq<9AB$*}Y|V%v)gH_i(si zD|CvMD;Sig%Br9pkOC1ZWi9@*;7Yk`1Q6;DgHSzyP%#_ivD+6*3XH>ypWGho&(reJ zN(e!QU=I2KK@dl9>T*izyd;*wq&edycMbtEg(=~O-n?AFLi@R#XXNlampV|oVGUzY zb(_>gtY|r+R`4Hb{_2F{M(bB3I^Nop}~ZY2-Svy~}csz`#T%4rYQO zdCcEQ&~!KoD!3+W9n+^LL-_tgsp{q_%|I11O)RL{Oc=7Dl_)E`v;t~7i{T^s?nk;w zJ+z5-x$l`cPo95apiFqIqok%}%D4aCC5>8DR|`-qheVDS>TcI@i$wWNzPIsQ%c)Px z-$eE_ugSCpg|fEB6gpGcP^zvF5t14mHENX1o;_PW`sgFM{r1}xS^o8}f0a|GPAQ^g zS|UFp#`oTPPhNcSMVU5jnz-tw-gx7UvUKTEwVFizR8qC1NQr>?JtE(rpdkIt@)*yM zAK;kYT#zINGL4B(l^rvq=+lH(MEP7Ws@mi33$|6TwIAUm0!ENc(11>YRUCXP+XB@B`>+cb`Mv#uD+L_|*1 z5cp*Am2&r}xw3i7F+D>CZjvfMK2z>rF0qjQz3=57(lr?FAAuM>Dpyk3jNC>Nvm$WK z0@CpHL5CwM3uTiECTp4B>22UR5OVDb|#Qw%&|0S;a5YAOE50-aEhctw!;rv63i1HbxNi_yHdKfsi(-4 zaWCEVn{3>0Og@@DM#~~%-?=$jI`^vMMD|Q)4O6gO!#&JhM;K?$W^<`ovf?#gZZd@% zR!Rf+JJ&|ZH!yHN z?T4+hxbp<5gTcp%k@ryDlu(BLav*RJPymT%rl9ckcYal5S_&XN{j_lqPAb;10m(1< zxyIQ+$${*F3BTyOLlU21+^yx{Ta|GbG!lXsOlQU|sn>J;%B7#)3Lv!$Y$szojMWY2 z#+Z$H1dxJcNW=cJBBp`FBw|5<%~ujO6`}MYU>9UgFRm9{H~dMV0-;X6YQ733QOcJ# zW&Cj5@%Ah0fM`z2S04?4n<;vl zsRD~_eTFtNr7#|d_roP)Bq=^!O(AmLk@_6btGTr5Y}9Qc!4}?^7ANhYyXxs>7RW=p z6F^{iLC`3dnoR>W8{E3O&RuSVkHV0Dkatyw`9!GXfO4e|P&yZ2NQg<7C}>PHZ4;elwB7JxtY zH}54C3Pq;;2rEtsk;t@e-MaGIZ@;NEr1k69Lu~}NW>Ep)B2-Lz3`(*qy1}?TuZd4~fiv(^vJXzH z5A8_MfyO$R9ZyjuU*z|wr?!g%NR;L+Lgh$nJ9)A}rp#M{f&Ie1BAbUh;<=yiSII&u zjMFoH$BuP$;%JpIXmz`N*1}POl_|$XSplTs4TcLZhTjVywU!w}ev}bAMHayVQYE`n zEXVCG&sDc;lCFVd`GOMCGt`BnzIw@DW!;A%jZ48^;L3Jx@{i2Vig0lCKhK{pZ z%Csz56RH$DzsqmEde16ZxABN93YnnP^lx*+<+Jy;$i(})N}o{;p}7Imjj)3pgmdJ& z!3Gw}64o`yfpGCmC+NAsAXq?25wWgq=sW()kDYA$pZDT~B9SQz(M|@n!$p-W*(R5`!tB}=2Pel3a&=6u-?fE$z8A;>68j$Ai@_(dVQHl7-WQ{~r2-Z&&tT~O ziWAGaTl-zzDk9E;fWi~>raO3A*=m#__w{M={}AZ7xgwMe2-pSH7%MRdm1-sL%o!z9 z?pQA0e7O@Aj({YvDAxc&UAa6$ZtL}vG{0|{q<}JXCxwb>Y!+l9M_iEJ{l^s|!8kMJ z+~PDh?@gOspBY06jN^uv4SeJ>!L(cl8MqcQ4dp{7J_5l-1pX!q`TfPC)t70t>V{p+ zO+ok8^_|w6C`G(KJx)5;tK;O{g+W4?$7ST`u^h6F(_spctYZGofbi9^(34Wbw~9Iz zXB^96ZAbyLZlq@85@EceWnDe0ZGHdA4RSa?lkfVVOpU*~?RGnla@L3Jqj4+9{^=x9zU)GJ~@LnV`wTW#8-pS78oqKmvRv(fCNe&4K2L7Y!A~ilwjLz9}rrE*-!u33p8K`WCjd^*Y&HWHcgq1 z6S>^LRRLAHe~bkrZI|Fw-+chHfTrqwI?NO*XX?0RIDM0D#fr`xxI zxiDnpf^6BoK)knH?q-lFUIC938Gb*v%=*i@XQ#Y*Hj6ubHFHi9dGLKbNZ#^dV7l@5 zx0mtvwO2MMe^WB|g_j0Ni)Kdni22E~_4o2obsK)4lwcC5S*qypHzkeZ$uz$%oH^`H<_GMoVrx!P|Z!#Qhp7{Ca07@Rl`#Fzn}jA#j<|XzonCb#t>}cZz9`t2uIZfWorB9*Pjl{wtXk${^xsX+|nNp%e|B5%Dex* zLfcDY7th_gT-nK!aK6pJ^XBxdY-!uMrk))WR`eF+iYu&{My7Y|2i8O59EpoWrg;nC zZ&Ig41&b72)3GAO$;&*hm3A$|_1WwcV7|6rUHN6j&3Z<<@z+QdFaPex-SRn%HUxsB zKX>O%()6+bMZO$hWj?So8F+UXurLwD_-pePBWY1d*au{7aYAy(xoSZKjGSTBN5F}= zjJvv(?f@%vON)Y}S-{wzhf@yAmP1?e6+lYONRjnnn;;@xA%IjgL`ydX=K>c`UZnK6 zktfA6`PE)fKk<|2?_Qy2bd@2HwZXNiw`qw)o{ARlv3=m8%>$CIPz@wP1!d|- zX$;CmS}NIc_1r-WF->ha0h#oqK`{JH1oF{RoXtX* zi5d}%tJ}y|hIMa>wbUS7Qiq4L5~WA2`ii)jhDIo=KqZIH02qiAv)oVXnJRzN3~5wE zD$LSWfgN>&D5-Z}10#7?R+6P^gT3E+3>vF9XI zbeh!+1d=xFWKz7IVDuW6J8a)TNNo0^eUh34Sri1q>Gk_o%c^w|vIOkpMxeNV{V7b| zeq){7`#=vFc0)5sgRzU1kYJ|C$WBmW;M-+&blCs$PemvI0?^R z&OjHH)YtCq($phbrhE$dk#0efk$DT)iDTC{d$-Wya*{iz4K-_j zYrD8P;ISDJ8dj*NU=xL#7?}3zzqQfJ=4%Y;;s5;aN~v4Nuz|U`@PNQm<2wFM?>76l z$4OkyDJM&p2#s179lF+0qZs@)k#glqo}fg{x8fiX3{>encO~MFI+Ch7zWzam14l}g z!cok_GDywFMyE-0AbJXIF;E(r>lCS1h6GTvY+Lj8;IAW)2%rI)nm$#f8vNR_9O~yT zSsM!52kkXY94PBax6G3s9qP+B+pp8O7bmV%%TXWyG6v_z)xoI%HH%}gqDf56UiSVN z7O%h{b($=IglPxZ;H46?Ju9U%a9(GHk{h#U6LU+4P@)1z z99U%2^Sp+l_Ot#QqPlIYMjFKByTOu5dz??RsvMv^#8-q`R6YNs@ADHtx_{06@=nY< zYNI+cBU4%jw3hFO{9pu-!YTxi%HmMrykH;f{Vk$^9?)l$#&yXqtr;7^q9ju*k`lZ4#9H-@?i#mF0npb+Pr~+(sqO zqGnku%iSYlyJiB|*a*x+SbV(vN?2sd1adM$Og)Cwm&a22s6Ak&NdodpbIXF7VlI1@ z$8?oIt=EA15d&plvfNHPS;J{5Swf^1M4i|`!WGCB2$-rqEQcW>=9DC#$xzm?X{R~k zr9N&zErWo`w$8vYBZZb2Sgx|N(GFk7SuzoMAkM(+!@MFxGNh)tzL9EWVDBHm2H{Xh zyz>l|Yaic~Ut|jQBV8x0o_9pz=kI+9#PN&BUz1ZkAI+@!qu{P%M9$w zXhn3hfqo@yDR|_Gow%NrqP_}m%u*wO1PTFZ%(S)lGTNv=akaRXu-~|WboYQT8CZYy zaF$r}!Lbq>vs&tcB0Y_T9NST;3e}lR2qHcI&nl&)?JxDbpfiemo|t3o zaxKr!{fh)!*ENz=(XolTn7Wxt**N~9-m5D$OPy7(ng%KIJvSM=7?`hBry8<&&jhsD zI0qme>NlpbG&vL?{tjQQq*SRXKCM z;dDKt63$)0isoTegZ&AOvziiFn{3Yi8I?d1=E->Vl0PWGJ_yQoWdo z6hP|va}Nk0y$b=Po)s353WR3ac)@wXwTO!_sWQ%)|E;ei5ncOBd|+*905w7{nDFxg zyVnzG{XwO!Uw&9(m!FX4$=&7tC)+C`C3}>Vp|Xxy7y`>K3!$ibP*2vtz|@;{W)oO_ zT}OayDIH4=7k^XlwF$iHm~>c=(e4KwR-jl81KG)!^{yq&>3s)rG*dWWXk+Qrv96Yl zFQ`Q)+BBv*B+ESl9ocvouBhptcu(S7lm;Ydg3;GOB@-$8fFDcsAeNg58}2D!Co>O! zv(7}olnb#|p_nHJC^*P*27C%J-{wb1Hk|VYIC$(7i+1DbdwB?^ab`r8vH%hX2LlC&IZ=LrpTrP2D)xtzBH^6@ zy7Y$oE>kggs}7@7R|PgzxE1tA;fj6@O9_)Lp#=*dZBPNESc(+tL@lViiuket0j@<{ z+<8&xvU{U5;t8tgOv_f{)upxsEnF_gLL#skH3+pb=20-_(8tfNkS+5M$-}Q-4#AeX z+8E2_VVQOwn)1s=TMMd1-Z~N_&iZ4?wYr`*P6->Nv6}~Sz*vSot0g;^7X$Ouha~Xl zi?4S6=EJj}4p0eSo`*6Gg^mXIYU(upPify{sVUL`#w4tTr-N{9mxYCmY56@O#Z0#x zCAL^*X2xm7A%VW|hmA8-mP=&H-nFb@QnM*ArqiYl+}L4`^0<+G&+^J8GPUQWl=?ad z>9IDjlEK{vdHB7CHqh(t7rHC&-jMI6u>@GT2t;Tck+gvH{PQ>vD24?jrt^n6F=9co zg#TdRpfD;;Zjg}6l4-AO)kA#Z$_!AYje@Gnm|I&qERC4m<{$jjpDLRbKx!Y@UaszR zH3U$6WJAmbIh1h7DS%X?N=+HsXn-uM5I`ztV*`^z!x@==CnVsZgYAZSnB(Cu8B@o~ zcW-Q#52tRDlQ|jc6ZJHNlYDVxvU%-snb2>RTn_=Jzdha6DS$&tm57D^ECS-ZEKkAK z*WO+0?rJuW?#O00CJ;pOfhPtl(w$$2YA=-4 zKNgu%0Es3SiByXU4?ld~0!Vfs+OyJGpN7c3@Hod=Db-=JD$3GWCWZrEefj;K)L|ka6yX1I_wB;;zcuo z8n~f7Ema|)diRuWa@BQ>1}TOaKxH%@9N zReizxM~X`UsTx@1|JSY?_HI)Vfs&e4WW}`*!7>%?8b##FXWeu-5HM3(`54N|^crG} z_1HZ3zursBvcHF3-&7W~y+s-}GP77G-(ij9!GHBqcBBPf z-cC~pl*K=Gc9O!p99|`k7sCP)tspVjyyjQ2|0-OO*PfLoC!`DAEm3cd6FVI`T@>)T zVbW!~0C3Qj8+aBQ3KuS+D}1xgWQi9R(hN{43_3nBA8FX(3?^qbSw~zwbRluB)EBOD z6(ye+1RU$VPQ9sf-Q>^-ph{03ewaQy4GGe!zO^K6!Z=CHfnk|7n;{@`3dRk*b@30x zSt{9wuRgI#W?}<-JM7h72@`?jsxc^1b{wg@)>f>ON(<|15jHedN>sHU~$Jn>OK`RkOf(irxM8Ao-XhyUJN`iwOBT-U*J zhfE1z3ygtRHxXXR@To^{^jlV*fXTa~vU=GOafgef$E?H{z{B&5au+CoG=F~Xs41)g zC13%GgT#2ni*f@(RZl_{>=)9 z1*G*;u~2$RXmaRT0!X{!cS+CLJtQOs7LYt3fP_5daKHO!>ssfc&VB4>t3<-~;DG|I zcC`nc1!*#@>WFXISt`{Gmh0ozOUSZ=k^z>mpSu?}SMETrl_mU8qC9ce68ZX_opQ^A z9b_b&k5kZvfoG~_@y{vry z{BSU{YOoY6>r(EJDf#K#@KN_MB_UH9!Lz*|7Wgjx>gh#i;B*s~1?6ZXVaEmEHoctO zZH0L+1py>G*l6vDQg?@N4n6(-9cmhl`|DGnm|8aul56g2Yp7DJ4Mh#)asug6t0rO0 zfk*+Qt%tW3XaQ+s*yaigNTt>*CG#OWU0GVsCg@tMPabMrkP8p`T`xpp43Nq^T`xdh zxPPR?uL+ZXKD7Z($4{u|mCBIzrtt!DgZAx?lYdNHBGX>mCO6#OR>u6LmCA(h8=R*M zT<~>V=`ZuAVqUrc1COroaDBF^xZW|?HPH3^*2MEA%0c%rKanpHF4@Z#{2aMXCH5op@W-Bui*{UAvi5t@T`>5Uj`6pGzMI`3yy_Xy~RwKVk{uJ&REw5 zF)b}1!FQ|#K;--!1(56@;+;j241Htr8cD@@tshvC3^Zsz`L&*ES;R^l+I*Uz;!lwf zumVUOYIKnQ>->M}9DH5WIysnd5EIkbd!+!<$i~BDNo-?@s<41mBuvXrFyQlgVJ$xWR^;7@% z#&)^t)>bkG>|d)|!qSMGdF*AE2hK|dyTI#@ia$j{z{1PkZ3YWh{w8dRPh8_{I^N3_ zGS$XlN5I`dT^L1f)uM(h|20fz{u-iZrEOXSN$)EfO8-%frN_`*dy#BtULY~9%mz*f z_80|_-h9*Ci>mBnj~Qg@m`p__&wX!pw=`@`0}bCpr*z4$p%6MURzv8fY0$tXGW`FV z>5kayi{<98cq$GAtN_x``a^{mgB3vXfW)D-fHZy3S2A+D$ifN%q~d_JOr&vLTye5g zKp;{jqT^){ED@mx%nH)r{1xyC{LOni<=gjnOJq#4S{w5LrK(63@}zX;{mv`v<;%Br z$bc&w%QX|*fPkp4bCw_Enn`oz--GE?3Bu6|dwlym0%I zo#p0-+RJ|E4sBc(sSam%td5cw-(Df(x3rhbM>NcphI1Y5WwfKts+O%U{hsyhd%*;d zIN|syQu{=t5&IM6&BxamDMQTpGuS;>_VAPk-|FRLC$SGqKC>X4Rqu))1wz2Wi~?Sn zr!&P1=Va+Q>AJ4!!Uu3t0O>T&NpU2Ncw>NE6BJl##f!240lR+?66tg5Y$VWGu!6jRgGtx$bh^U)#!eAMBQ&KHV!3QAx`FB~sN3v`-c+ zDb1d-Pv*@yAgwP8lHpJX8G$R9h7cTFII+jQ!~UDUN5-Ajl*L9*wejX0xU>{A4rwje7~0Ze7IW<9F7MXt)!NDJdu_f z3rx#%)g8}8$!AlyO6UG{Waza`;W)dI!_`_Y;^t!WK!%D{6uL#9NI zBKMD3AjhIoWb_R!qz70XEn)AGx>@v@cio+rIl)?P7k@UAfp?1}O-#{$ZQepsT7+mP zFl`*aeAjQXZqref-sP4$8EP9nyEKqHp6=oh%{Lnp=BWth4grN5`X>BjxNHvtAD4?Q zg*26d0Zh@=X&EPFb2x;PDqOIgJAf}@4%aCMBRpWuIs}jknkv}8R!9F6kuk5GQxup~ zg9V^gskU+3qn+f2zqge|GeTwNXM1JKn&U!0!Zdg11+G<92rBWJ_I+0_4VPt0!z8F` z73n<|HZ*!{Ge8Re)MDv*4ld5~ncj=~Af1e%rpUK&}=N=YB62$kcW?2Ohn!*M|?g zjjJPN%5%%5@^hZj29l<|M!@nB3@X!m3{5|kOTi=Ce;n;>YzFiY=~^w8=H)Q*^9xK% zBlj=8R4f4`!jcn)cdEG1R_6a8G5F)nvjRw+YIKtEUB-)#w~wqku}Tgk9B>LC1y!vjqk~7t!q{LrQ6Yd-G*HW6is=wQ z;*@k8ixyZzFnKhPGi&FRu5ND z?AVH5c_HA24){Iv@}{~7zq7Nm)sgu7@4qiEPJK~M9LGTftIA$Spv}ZJi;l>`Zx70v z1xF+r9`H`VLeFc@50i<{7;1_;y>dAatVHg~lOlnE#S=gZ4;N|FhzFq5QqH%>*wusw z@07}==Z2Xd?^V6FYVd3UgDsfIB1xc1-<&pF#@yD*$=WRa$K^{2=@U4 zL{_de8ys4$nmAG9lTWB5Xf{MHn<5oJ+Vr+~Rq>L{Q<>7IQ9oHVcBPE`Hw2J2pB68_ zN|Ko@GGVaD|87SS>{{%p98;hK8&FYHS%N_BlFYR(R~5s~y(oA#`E}M|ng8`c*|9cC zeSgw#rw`F9^uO&~&B7c{haKQ7NaOQey?VZCDXuFJYx|zH)MaJmDrAqG9k_WWQm_a% zzwu`4a(2!?_pf46rn#MKfW>n*8%JXZu7GuY&I?+bhw*&Y^Ex~;PhmzCFg#3ANJmTm z{y~+M`lP5huW$&?to$Wh=6<(d-TkmUBh}`}XL6UHzjpL;aqfr16zBFsfQzd-9p zg;+qca3@?&JJ>u#q%$DsFlEwmxQJ4vIGuMX^=*FDs));l z08Ymge)Jwg*K219AaUu!P|YiVWcs_Dj^W&nNyemk^u!x;Z3 zlYiKyI|M|!Bu0aDj1mEXQGy~3l9PrJqkAGPNT5`Nb=^RSu=x#>8`@bLFukXI? zx_;NTYtQ{Wcbxm2(+b+q8e0BIdi|@_0EuQi{ZuAolt1$rQ@&mgp|5oh$YWtOLpu8z z;(Q#kW6X12sr#xu-yxvwvZtWwNAAqs(`o{~ZmF*G~9mVW>VFghb7m*+ zSTx~zQ?fXObz?yM1EtST(9~k-Z?#DL5i=T((brCcgQ#1{8$H0CFR%1q-Bi9ie2a!u z-Y5P-Melp`^4xTY_fjZQHamu3XLwZb<`a4!)Sk^Sn;D7Ij*fZDv4%wNEz$V*k6!52 zI=xFT$L%{@iN{eN)b6YPfu1!1-fO1}SH)uXoqi|s5qqxklAY4_aQ{A&t8-e->paVc zAVor$Xqo6=5Pf$nbB;G+GND0f&)94ze)IFetNMU2u8?Rqtr6S(N$L;$lo^yyD=}8i zHb=5-=YKk*iDP_$H|I$=7khkP2Yf2Q0<^PGiQFk}3Re&)w%oXZs4uj}W7alJ{b=cz zIO+11%J;$D&H`ZI2=o@(PhNM~-&p6ZK9o-{fUA*sJ|$Dsihcm#4CyjUJ2ef|(CJ$NiV;yQ%SqpmZrE1vFd3t|4)R0dTsZ(=z<^Il=EW zcxF;3$3fDS<-5-f4r#fW%3@aY*-B$b=MClc8AAk&A&DP*+CdFT92VM3m)Vy8%J}^( z>g@3#2fxish58T%`7+-7YW+iCt=*5e-(t`Dd|!u)v&U@SvSgiZi!9(1lQ@4 znZeViIIl2O6kl>+ay-FOXDy-`y?t=ZJ6dSY3e@p&XiQQ!kT(j{KK3`xrfA zMUDpW2GKIr2-`HXR0;GZQNFd(H#FswN3JlCY)Rz)=1>_iB4g-xk#MLreYf9!-f-rs zO_Lq0Ip+@>nUs9I+imh7#!a$+$Nt6sb1}D9FJ6(pwmSG(+#ce#>ZzuHUkSY=Yv5&_ zoJCwTkk5|dyG=k^idUkAxrlVmZFC15pCva-!m=(2?o$4mT*@-wW>UwzG7E~=w+WlU zp@{5&szBkNJhfItmqQ@ihcF2VR;^sQ=4relL)ZJy=UGN3UXrX8gc(06fz_C$RBja? z3t+qh>&}kc@5G58x;0|ozqKztlijXM0Uq6;Ty`d4TP4AZVxorvk9`*jMfh9_xtsix zAAdaM&ZA+dwEr|WW2J1vV!)F48go*9*rJ+4tJz+!WiM9^acc3*;ZU>AfnJ!G={_m_%sD7m#+#Bg{Y*B~E+(5R^ z&y&M@KIh5A2kxqLS5ev|h&RfOWaKh7I3-C`X9vc^q2i=7c>iQhicL)^=1|MZ2z-Qx8h3w(XI{kvp9+ zjgwxe*V(&D{P2}vDXyz$NBA+sesYb9H#fXZ6fcxA-HN6armh$nY?NjrMsXB)1@)LW zJ&i~GEieSlYI5&u6m{2x8aF1=2z=!sFkfyv813_pvKb>haAGFux zVM(3-+(_9NEvZqvm9dyV=w_RtN<(z&xMM>=wwN8F)D!RTRIc^95Q2H`eZuei#_)*8 z%0>)s03MHL0W=*uG{HQnI`F;-kOE~PAO2x`g&9ZIEqzZ}Le>6bNPNwel^}tDby*`j z^HJP4W{tp1mvOPNqxN9e%x|t=Cb7*LgH-Zs*+wh`p@iB%B%Woh zNg;cR8+aVXJkc#E9Fr@&qV^=;M?JP%j2}aQ;M_@rOX6pBC6Q`7X&H5*7V`nvZwP-K zI5y|18kHryC)^i*w?F*KojK3`QPL?+KU3UVsYR#oFHhr`28d9nIndkhc&QmYN=1w` z<@@YWZNRCK>TOd^DFbpIF}@+o%p$N+Z2R3{s_B)W(9S&)6kyeI)hVWX=cvives$k>p`0-S%c{p zWK5N6YInXL>QYaY9=*0}W^KLFi+&Z02t+88LlXtpuDy=k(7Snm>W|(mGQ`}XPLK$5 z|AVhCZ6|*q9r5(Sco=5ior@=Q{OD{$NKwrFUq6>z@~^C@wx%!VJ`JLfH3ubNH%lij5k=<4?} z@C$vrKkWa5jVMwT%x%AK^jibfEZFj(MFw8D7C_J&DcjNxcyx7?oGe6_FU zYiH7Ot(n5tRE5S)LZ1cta~lielIueg>W-B41x`IS<^Ts5<8nPY2C{$CDV0{y@U^W0 z`@RDSZ9q<)j^Bxr37(Dtk+)*9Vbp?4W2F%rrcJ7xfrX7dRfp|d?+{?7GTmE61_>9P zdP1UkHP)f<4-|+!c~Iw~)B0dD4LKS<+j#iaWUMP!l>arU$})dXERmAcl_bppd-C4d zRZ(N-7uAT}Ks_6&20bDvS9Q zYulq=phF0%vu7n6L=1nNx=mX3>&A(>>z9NsjzC`0O3%x`J}Q^BK6R&FnCI2M z@|$tP*>6I|@5U*&$WQ;rhm zl$LtR?d!AP4x`lP{=?+Wl|c{>6Y5l-9BFoDLIwU&eAI_Q~YeB ztR+Jce>dD?Sa4O!u%R0ajWet>aUD9L(s|PcB0byxIX0tuUZ0TwemW#Q4Liz8dyw5A zZ0Oa2!{G86%o*}RBSF4a=*>s4alS{)k76?%-H>`sZWGYjC*N->DIGY%2IMXTJzP~@ zPtSv9!VRS-U4+b_Z{u8;KnAr zQFdQ@xE>3ZzjNuhzl3aN*hf{<{v2a!P$V6Ew^N?{_|)iyF%{06jyXlqS3c*0ItnfO zqfcybDpAp~NwP07@62cXTfe%`{W6?jwWhD>pZiqhLYPVFAH{2Ah^F&m)kcR(?}%k`DX`T)z6sCD`s^hmQG`mL^>tMen0=c8Xz zcUOPj`Aw-~$4m%E%3@xFe`ftwk=TcsPmsm^y~z%iN1rLcscW)c7JNEZj{E**z-+Qd z^RMhXSCa$7HF;9Sx6V&G;RYFR**Yo z{8FJVk3r~1HI{!P9qv4nDVQ|QG7+((e;h`VVOg6VmdB^Rtz#e=qupZun=fOUrn_9a`t1M_czavng29Gb6C|x2bLdcoFK07ObF@I+2LKP(H$R3E5 zllq$97|b~w!zoMuT~Fz&<#QxjNwmJX{Q=y>a(ZRn_#V}!8cKa?Y{dC7l}<_D%CB2i zb~gjY@(TA7{9tZ*arew>YX4)*ZGU1<^3c}aZDBd=c}1U>?BG4vyM?pjY$jH0qqYH& zLBp>VLsPS7{P9;64!$yHes(OQw20}}XwJOuC1-t5pqUAaamjuX&GA$+pllSc^+(62=aWjNVQ#2HG5+nA0aD|63AU%qoJu3cn_}__)misA#`O@6^$u7}D ze{M6Mp^KfaI3dL1ulbMfl-TvX=!M#M;OFz?!G^yAxmrGdZrx>+ED`oQ-%fw=fd|HP z=ZIC_de~AhL$mi;t5F4efac(z-(Cd`e7jpmZxegZK)24piTl%T6P3+lGQ7Q>`EVPDw*K@i$=-~ zHg~zwI6k^)jlFKJ5b%;UC2yJ|;56aJnDy{Kg8WJ3%+~!Y=6N^A$SZSK@Le3OV{}w7 zPEdhCp$cVkxwvwRfKT?5Y~*(_@#;%Ty-OcuUEtA8fA{5Gy_^%Z1QL4lj2`Ms-)ygN zJ6rIY=Lus1rsa8!k?2L~4-K)-~g?{{2U{OL4rI#s=vPl`nb2(J4mfI z%KLL9!!N+>7i|1y9wgWD3sK7%KKX{) zVU0uK9nJUzEBWJji9&Cb$eQ&1IRcUX!kQl1-m>PRIt{!>^(klvqk33g76jcO^2ltD zJZAX!KetR5m9rFkmG*eg(YUGp`%b}PkyyYk?XletS(Ow5NiKO<&v_&ZAi(z7shccK ztZ_wF^rpjWigwrf^F^FPW5NS}KXlV5&Z36x<&)okv9e}^ZfPIw@=Lyr_E@TJ45Pwf zEVfp_Ey3(ZP}2pzov@&jJUjnQrBjp;e1}w86R(15`StRdQvgYS^OIbM^Uu_s8pZb$ z#!Ibzni*QFWr;64DdCov`z*2c*X7*AwN>2AceU~PCR$?dMb6p`*BsAW4VIs(ze=k~ zeQLSlGpe4RBKg19DKANFjg$SI9jX9w;$rO_KXvtoiMNC_W1jJA5{t+l_0}0!^!f41 zU2bQO^C?f$C#hEcA`4%6&-`lH@+v)DEYj?m=j<`nS>~!1v6zi}ZX;vH8#mJdUGL6p zY0vJF!zSp>rO}w*yTUHWOdFOy^D>KjUXi>J&`juTon6V|)f}fl zz?vRUg$g*g(rO-Z?=_h&pgPp}e$SDc!%yXqslZ{ahT$mkS50C$?qVoW+mi!(avQ7vLo(o=6T2s0DPG)~#__=qhA()>TtzX0O-lQEt!fkzxHpC+L*wLPM?P07eb5M&+`GA>33a=zG%{7!VWt!944YtDk9Kz z>(Y7vZ(SrVj=4=#axB@|IX&O6>6tV)X@3!TuGv~*W)A#WP+zc|cbo@~LBvwIe&X&s z@`B76TKqZ^>X#M%-JG(AS=_cYW|s1CmlM--YgylGhhPn z^tEyD{RM+9yaO7BZ>Kd(#U<%V`c!9~UCu{hS-|)^E(dQ-eAo*tPiB3Z8!FSW(z534 zm1tOt)Ds{D;B$<~dM%DZis<_EG7$QdKp}+<1DXLCYrn8xqL8euj{U@Nt9WYQg1-XZ z999!^qh|@|a@`s)7Zmdp;)YcPakI}LzYrZvnY9^+er}QRN{xR2IwGvV$s@Gc74*8n z#&GWR5DK|$whewBqOZso7}T-i+VQ>n)jeb{x*=B9^bzI^pOYFy>B-@)SF`pkfd z+zpR7uwDGoOo)^+im-5IY~py@drj>f1~8MQ1E!{M-EkN{*Rwja&nBJ#$VCGz z9!}E=D*{)EEt*u1e}mWyZBG+p{IY$@G_|49KNq20oZL-JsL8ZaAXvqFeGZ&6!SFrV zVz^WFdKB^!E+|Xy8b9trrwp1LtNa)D zy0r{(@aP2o;2#><=e$K2JD}hHX}1BorL!gDRO zh@|f1FG_WAb5w|FVBn>9e>s>PAO(D(4_`1g;%>0NThnit=>Ir5JY^JG%&Wv{q4fRp zI{%=5%I`go28|g+@5|{FfPOhg9@RyzT1DbhiDgqixSh<5Z|s-b-a8;D$-G2I_r2it zoBrq#7ANkRfU^;*)^pk}4<@!W31O}7a~#w-7fEOH^N@zu%IA1@wM2FR$Oh~K6+ zo$*pXy^uNq7%1-PZ*OQc<_<&06BLfunuhkCU+$@S)3;eF$pfV!(A}gcTcu`?+1jf6 zyCoJlpSXJ$IaEytXkuM^hQEXk|$VNHA1qrF#+Geg%6kw^I7T zU$a)}n?`jDT3=G5hX*d5DLbMn-e&Txl<)O9$KPdiH}Q2)t@6+;Wr3kj3%{~U+0tLa z@IF&94x1Wz|Hv-TgXbZ-ShiEl`HVMfsDF9*x|N~8D%c&2gJNadUYYXSG65Nth-tzK zkN1d(_MMsdS&~6W=MZ>fb?)RX{H;ofkVB`wtjy*-aJ|ioUZTWG77qRZO9lIAOs_JL z$%KF#3iZj<-XngyIH>jcrjuE~7kPASjoW0)(SH%4#b%Ech`pq>7LxrhJM{nxwDq?* zwxO3k$j)2%Wp*P|{Ff)k^xs>cmj*y59Lf(9=rD}rX_Y3i%WzQ}6a&npU1rlg6(jj( zfSFPe8EsVT)HMXQglWrju3s1embzJ;sMpk~Lj1dorXfP3#frEoVX}FX4odECF+eIsWO*i);#0KhQuLu-|pZ@b;)V~i`A->Or zLiqLt=^f#i{%9TbNN_UDI|Hy5+HPyP;0-?+5|b@Zp;eX!9_IA(kSF9o5)Cn~?K>-| z{G@gI`;SITv>l!RRtds)ng|`Y#g0xjnxQ z3ijFG1i1FNi#oeu_|gm85{W(|!m6vDsm5{RqfETruwLpj#4{0dT`8VJ~_6vyLr>WR((|l|1Gb9qH``DgwqV;?X;Nk~!hgcIhMI zW~@jvqT2E78aiRLXVy8)Llls7&VScyAvFzQ(N$pwo+l#)PgcOTL!n@y_xZO4 zxb4go{&lG1J@dwWs6H z+`-_!re@`S!Mic=2sqk5OKnFG$WpTw;J;s^HvZvP>ez30FfK47 zl`nipnwjV+i_F%pD9X~4dS^|hUQ@8Ss0$xuOD|oK4cOnx_SDV>gfp{{NF6pI*AU*Q zj1s$@p`C7)9ZP)i<%A8HdNc-uO9aUbz4nqR=sFO~7L5W_lCJ+_B&%;+EBzcFZ`dpS zQsU>y@v5)IES}EDq^U5pSsB*6v1At_^@V#lD9R?H3QQGu2--eUPe0L9LypzB_3ukosb@A`JXLkO| zf;^B-HlLdG44Vw997L7cieaj=bk%-UjLwhwh75+iRCiK>E^rxivtwPyvk_9;eDTku z1ntlKVkB3tl}4cZYu7cd&g0#dg0(0wP;blp^h;V%S!D~a!+Y`&3*1e@v&}5m_@5`z zV^HlP(%jPK_*>V&n1By8qEnlb@RE ziT5o1kuA=A@w%H-fwRS3P{{t75A*i1gPO23HJn#_Wb4E7^{9`kaGzSbNP6nnqglX7 zuae`CKx6q1w~khvcAMslKiBVVoqij^H>BWNSwdN8`^4tQVVPt#_-2!3ScdvYi*P`$ouzpJ{!%b{{+}o<<|}nY zEY;2{vpL`)gNzk@&cDT>jx177UNe(4`U_bv<x*d_(aRUOjNXoL?bKacg!oGvnOEYfF+a${HM z@(PfSTNup%uSxHIFMQ4j%|l?MHD!iE>&yRw31vRAer!=_ghvT2dDXqwYCNvrAj~bm zUHlKS=zi0VJ|SyM6mn!|Nsm%MhiIG|dOajqD-JwG<@KybD`z~Deo}R*;Tw!(MV&~j z`v;W)yVm+_X-O`ULtsZndf}4@`COuXu)1pZogB zyo*;W|FA}+ z;sKlab9|Pd6xteGbJVBi0RC>$Tn7fzKc4bVV?&{Wlb_tsH-zhy*&?}V4_U$+OYxi; z2aO?*s9gC~qhygv^{&72Hxmi}`enUeGggwNtbR6Z@akE?2vxxeYc>W){n-pc)y1sp^u+J+ety-*CW&GnFPI>x^9 zSfY6Ms|QcPmLA2B&Be=9-$cTOZxNqpIJm&l3f>mE%U23d#I7wyUWWEwzi&MYG z^W+>^Z-m#M6Gc~yE3lZy@cqCcgRFKMpW!1~C?n1d5>ilT6y@vs)rVE;NNlnUOw<6^ z^Ve!^WOsT%YNsJb?wuN0n5G;no8j<1tezMd5}nK!F+OS1upzCx{6ccPDcvV2fVei# zl(|0n%bNaH#8d%p<^YilTn+YjLl*0AFoZ^F+ynOg2cu%2b6*!e3nOYu0sG*)YQ)6O zIK)}g%#sdlRQab^DPjaO$SXy3P0<45Ez}`M3|m*(Dpl5_pPq9}G5W5a9}kp~X~jqA z_XLBTpSe?xlNWbI_~ct2kR5o_^dE${lDSNltjg|cYBm8vhqs&Huk%TQ!ab^tsUU;W8iOjDFV@H|UhU=F;J@j~` zgiZ&p<}2BafNK%k5*=u#l!7fi_^4OKNbv^nbRet?zVDZ8bB6(7HMl{#M<4r`>zX4T zs`*XR*{cmMvNY_aRqEi*fDN&nzU8}3$wE&hWioOxdEhuZi$hyI&bY`CsByT_6=O)& z=1+x)nFKfAvFpam3=Yy`wUPv8IUuEl(LdW3X`LA`NkNWJ|De_2ku<4q2+gj*;S_jK zve19&#DpUE(_R>{AVKZ|TOH$I0BZ5>3Hb>o#P~l9T&)jwUa%hOUEldaZXe?)m(bxa z8(%eXKp&Eh)5VWZS+;o{^%e-_Qq->qo%@`-N2P%W9Vf)=m)s@PKt?gRe5%#iN=ESy zDVC!Kpo2r00m73-jQPi1Jsrb&&~H7Mf`z6S<_qS`f#(xlLSFa|y;LU#CpO0Gm=`oE z5-9u zTo6vA!LH>rc=Csldg0g}J85TA%n24HBJVbwEYxLLNFG$K=ds1fLT>3y)+mw=7@`4c z$^9`KLPCD(Y4C@IOp}3#+p9VrZWIlRW6wLO4$HlOkJn=fW4<-1*3k9(Rb2BVq*xB; zrnX)8i971Q>saHxRv%)b(sRBN?UApM`fxMd@h6j1@*~9`;K^tU;lq!oUpFuUm!c*7ghB);D%U!IEiWdNnrr?(kogat)M|*jkfKLR+yL<7h`P{4bN&K{?*ox;{FNGast|eIuM&uf5T3g$L`(gi>}gLW-M5uU z*_F8E*k{1API9Z&Xc;Vl?saEZ;kPH)xrq2|s3hq&h9FX#0j1*#<@;162%ybp!xhtE zA?zF>cfpYICWh_9B5G$NM?_bWrHHY`=ye5+^W+2lo|^pw z`#8HG_R$L3Kh~w>xpQU^p()LiOvd<1buF@KrLYw@Nh9y67Z993v~@K|4()k<*-Q z9F^KI#Buo6(ioNW4)H=rqO5zOhr#J>h4~<%Ti$@w?rCawa>}o6~vTNEF!|y@Z$!DLNyi@9uSnd9pjG0|O1dmFRS%iwpYDGI? z`j`2_P-0(PH}(RnHGo9QKpO+Co-VbEFWDKC{#1}T{>8Dg&Qn=g74U*y%4jvg`x`cM z)hEA8b~aRn#?F=0yfNbN4uQ6AN|yK~@Y2bKn^D#i8MBovogu*0(2f#I`)c&(jH}Un zOsS*oE_6(i9g0bWNW6MwkLJQWr>QJ2Qks&{n5?(jhkIJnVb-#s*4cu)+}ksPvzmHX zHhQf@M1I*^hZoJcM062{Y=FSTmWWd((Zx!CNw++2U(X_d}n;!wbJdl<284g(H<_3u-M!*<4$# zM67JBtHQ|lEOwwTS7;K(&~TxKtc&W1_iE!=9%!}&~Kig+o3N6U=Fk2JHA6=zLHFCHTvyj z3U|kl3cTlYvJ~Kmc7(X)V9Kjb)~zoXeq46BKKq9iA=V0@aNN}fx`eRPm+D+=WMn#` zn46FhDt5WnEQ_<>1PydL&9dEaJ*$?)T#7xe>>N?;(K5u>tlyf}iUA;7(I0Dzt6dkF zPvoRpt?3uWg}cL;S?CpO*0hyE)It)-R*ohb!5Q&d3xsM%U%_wbiTqNegE9c!o51TF z*BGo=8!7TZda@AH#IF(yzpp&B=IvPj2Crnm?ut8;moZ$Ve*5S>y z?1SL)zWR7n*ZZC=Q&z;~0lhB5l%no4AkEq?AYD42{gv`)io93kPH>2a2GckB%i{7M zz8*`$3@@)&al6(3GudIZ|13^sp+ z`!=YHfR&ApiI21sz*d3AF|>x8lvze)vA;Kdk2rxxnyVfSTr+;WNVN zbS`~n*V{vSig9M=yS``r{9!5)-G@%V{jo4$(OKvlyFcMP{@d(2XA=QkeJO@@(bbs$ zmid8MO_+abWW(In)CppC%I9Ak9r9S*ijH)*FzLf86_x7Gt-C1VQNAS}GTOw$d!@*! zTZs_;O+ra~E`3>U5x;;miy&yi@t&L>f+q{Esal&F;-N;E2@s(S0k}CRt{}hz(B~wM z>`&iK!iHzses=}Cnp&B`25ll$(M>a8ZKkFDT@2+Yv^znZHspeA3Cf*vj59L=-NTBP zB}#ztXl=KMNQ0hm--q;tezZaRAbpiS#5iJ9?PCG9_K*i)Hk~+3TN+TpOOCH7F})WO zTfI-jkJ;UN6Oh7YSy0pFEOm4>M8Y^Uu(#G^#4MQ1E!>*%ZkB^_#n)NFli21y9ne9Q zFeFLJou-!vE9cRVI%X$7Loxnz+LYQX`O2_*0s|m>$S?AYu>bWsWDhtFN@`%`v#sY$ z@P%MG;8m>oWJ_p;`Tb6ChHwxVN!-A`Za6K3Nd}R|XU)K;s zsQNEXW&wkLU&xRde7B81gBcf`);L0AI0$ zq$!j*9pK%+7N32>&N5>*T=9CGixge{uM(Q_GRBb*G38>elahgZir8_amV5_-I@v5% zvl!sI?VvNve!>+dpFvFDl^$&GK4PZMHj00wnC{m0kZ`7KYRojp5=>Da&xQ0&9-q4M zD)er`r+JZX8-q_@EMYGoOqJBZ8>lXU)(q`YD&IDCg+a-S7;!}#W$fW|&W%o~6(6Dv z6rrKFsLrS?XbV^4uA3O`^6o70Qm@@83ulIBPv@3VkaTi9E zH-X9^M)$=ZptSEOmCN{QsLrL!xJ0cxRU{GVt#zgaBR)<_x|C-G4_nfZ_(+4KFS_pt zTH(gDLbDGS+>mu~gVk<^6_IJcq%)q$$bXRtcAPvJdT2)FsW2fN@EBtUMgJ2FrdE z)?xe(FpqoEV-_ht{DTEO{ImKv?i{JDBZ@vOXHXNgq$FdarxP;Ae8*^6Ox}t z@)Xr6Z}nG`%)Hr**i9}vjVxH~3vq6}>H;6mHHmH%x8{Ny?i2hwkG*(1&_|QK>|?PU z!$Zw+67A!46Fbm6&^-eS*dP;dBrGpm>PU1@|As3~BGKn}PWVuWYI_%z^V5}<{_EF+ zR9l>$E6+F*Z%^Eo$l6P(CS^CmYsY^HRK z_*~94cyi*TwSEm+(DZE8C5cdE+e)@5FvqQ%5IU}L8^WXCz`^01db-iQm%foSsVkkH6R#Z^o3`Hv?2=s3 zq!h!79>NYVdrtGNDb%xzgKQ1X=H8O8YzkaCv7GJ~a+8)CX+^S|(hXDjcFx-8Fjwpvmb@}-}^7hhYQ*sg=O7W5>jhV3oa6Su;}7u^u&@0GPzB(eLHtu+9j z99hN97{uyRpB*(74huLAJ_CX)s#fh}+Ci@h$LT*S`9$GW{@n6`c(DXzKBE!SW#$2x zdcMx){)+OVd!gkkC$)xUO2BAZEC_zM;a6&xd+Fp>OE2B=Ihu@mL3DB0;g9|{g zD*GBo#b$J^U2anaVQwP!IT&BKU;`HLTN_Ctcz}Jhxhzs;$#d*BP49I4YH31B88(W2 zw9b^{d-lrjWb2a4LBGS4E0FK$DtGeXdLhSlwQ^6>+dIXvI}uA(mo&$^ARjL z&mE4RMD;m0?W{Lik;G=hssB`&d61$d^Z!I-iuVno`x0qg1fzk$K_@bgyhNMqijQ$fT z4?X4|V|MhM%Fz$RQd+`%$Xid5%7Z7N#9j9RNsN$p3hC0q?J&F%@$UY3lYT5_)gAF( z*188P=9c%p`(~0g=QuWFROvejT2?A}5(f2PqO{0yI0M*5=AGRAA47T&0LxCnTT%y9 zCbBVNfOQCerW;gt?|D(UkNIzHX#b z#N@f;Za#6>I4Fy-zWE~7MRlk9n3%w__F<0YcnNdx%k)%qxai@!P}cPO(Jvo}mx_OX z$P93-u=GS(@+C4n zD6Zjo-@FEBcgY=J2}WTW9{=z)x!yoY%PpMw04Ojw4xuQIbl{Rl`a%_`5L7Z4tg^r; z$(2ByyQo!m=W_MeN=6Wr>kXvqpcAr%ZlY#Fwa*0m0H&hGDDiM0NH$yBEo-8GF>7LA z(NlWkaJ+`)5aZPNEq7ndkMo=7ccMup9=R!q@nxvm9k8--U6U{Ori|Z+?Cl1}72jDV zvhj52q`I-&dBYHnyu!TAEu{)qx0~3**fztumLqKa%aLM_bAv#N=YB(lVX- zgo4~MciW4?UV2GHC&GPUCQC`XjM`#+5RnYyD@kkW?9Fj&=0BCn9@R$U`xX?rjIPu= zo6{oapT>@)AOAT2Nw{CF;7>c11=5kro~(=1v%3VjCvZtMu2+0c)UeRk*`01H318HVmOB#)|Kw-EVz*h&TE&KNOpEtw}R zaJJ_iQjfK==_@VtGfSQe66^Z7;M7Oe6yb9Romn`%OK7^#Uw;!nk>IVSv*zS;Zrf;g zWa|SH%3ATlvXws--e~%<)a9yD_}N@`Nv0V8fH#*Qug}UaXJzwl(;Lyh=rpz?v&5)y z1pr+yLYy+Ama{UTj3aJtLVboouGA7&j=eN(5RGYw$3xk|X_NC9(v9}^>qz?wSOqMl zHR5Zc=T|f!RwH|Fd-E2OwfYhO`%&E-?Bdfl;ybu_<~B2ua9|tUk);~%+QC~#t@9Su zY{CrNS$~)@jAH3tuP;CxGG#Mno?vTJ-vgay51X9lmffY|yj|^N?n2^0Sudu&jx_T5 zLjT*r+16Oe;0WDp1>~xiZlBJ5RW!shBZP2{f9=H3$S(uo>!KFFx1vw|@9_soj`6qf kM~3SeEtUW0-0>qO=Aj55qvH)R2KuG0qW!A!rDfRv0F2=JO#lD@ literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/moda.png" "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/moda.png" new file mode 100755 index 0000000000000000000000000000000000000000..6fbae7ed88f6a0aaccd973b20ac1ae09a1c9882b GIT binary patch literal 27979 zcmdRV^; z)bAN6U<%Tp#3aPnC@AOx(Z9fAcZX9@9HHcGJa4{bJxrYdEbdp2Ay>uuafLpV$9&n$ z%r+Y*6neaqi=`YUxe}`b`5NDMD4dVbA0*14>t}{zW8I*vdPUzFeMu$T;(4fgX-;~d z-xh~4@URG>p!ULz-ujllBf=WOKvkoERET>A#ToPa3+8SCdi0kjSX&nfG1#c;?Jbn5 z=Fk`3x^;oL%0~LY7pOi?r2D7?j63|T}($vw97FHdyw0Zr1ucX)v)FrUi;pf01y zg`CmRRS<#ZpX!p{ME79d!sOpXIm-WRiF%kapP)EMM#Z3((!7aIUir6%Up{UE!YRQpGo_NDIk`RJ)$!^X8WV`B1g13KM%c8k}Y7><8MJhSs)f= zEK{VR^;5)eqq_AT!mobASwNJuMeCg1snX{i9tgOlJ21T7F3Qsaq;96k8s^%>SStCX zWnQtSejHb?l< z@iI&L6_40*2OQN)Bd~UbD_TKGx8@wf61erc1e>~PYPs`cvZdaDD?Aq9vi=)o5=XY# zY3(;O^SjgU^la}wlaY9W#jp_JnqH3=$fk><(;k z?51fdhB`bih8f7v-fW?V->z(2U*GhIbztHvVtK?)D6i3%zoBxW{gA38=fp2WiEp1r zKNfY3d28J1wFAlFh($nQ@*zpWmiycE(G8ZpN{wX{zgk71bc5ft#&4CTdl!wL(4OHa za$DYj5@(Y766>E`^Uw1Hl&e1>x}vz^&xdt%gub1|w4QkHKG;s3JOz_Ge|zI5y<5z( z(TMsgP3iSpn{o+DGz@$4nfq51*cqsn*cnN@PwYVmS%E3;ID{-3Fr&c%6la*<;b{ z6*<0xrgD=ZXHhwwNFe?tG1KRd!9l-1GX6wC`n>alsR+hO4E_hd83Mn! z!4Fcb4_`iC{dW6?kc5W)dH=Ul8HoT|vzY#G;zM$-_uZiz;*GzR@ZdQ6Y}rJapcw~r z>ey|OI|oD@*@)hi_VGJH>%G?;jB!L>gWC)u9W=d^@<4@Crouvy#iNd!{hVIFli#JX zs_ddJV2xIR_ccZ!%34ZDIG8|Op%CY{78j!qB6HlSCSwz!02FbMqSVEg)WVbB%!eem zAD_6r;JX9KO&{4B@Q9P-d8}J-JyA5~6;DOx5D}s?5 z!#d2nC3qF|CRp8i;;lzjKm%6Ht=o$);Rvx=On6QO#O)bpG+q7S4{P( zk6Dk&5)=_Xnq(BI2waI17W|LDV1wO2$H%LT*zsQ+QK2Q{-K;T}v96M7~7!IgJvm5|ffBd9<{WbfgK4 ziINF*pbPLlkOxRR0br_P8e_`TqR_f;;Hq0QPA}M^!@vT_l2L~_2Ra9FOhuYtn{%6^ z7_Il~46cj|^oN=!nl)M=n~z%x4lYdd3@RFHnz~ymnbaEfj)@Eh?EKiO10o(QO*;jc zrtQ+wik7llezYVx(4G>T@?x13_5A>uHw1Wo|sblVewQ&xyhTk_6L^FD$-{9Yxpu)b#e=6%E z4^Rwv2&@W(59I0>4_t&5MXX20M-D+wet(BJiFkvgi!_2vihGW0fEADBggJ_1h2cpq zi#3n2PU9urr0XInuRLL3+qq;_U%CV9#C-Mf3gb$5=LRDIg9M|KN{70Hs-3EuT8&Cc zP9&8=4qtXi`m3C9!mzB3Oqh(OEZVO=j$;mT4r~rIGh=NO?F`%EQ*r+2tQNf@z2-Gc zPk2vL5G-i!x)z%c>lCX2TL)W&F_PYkkwm?#xUHb52CGKB@K!#(z_u`}daXvNlA;hJ zPc{EqI=RX^KO^5u`z|V@O6P}8@=CZsWk>fD%boq5If?>G$FO$HLxxF)UxpM{?zeg? ze(SUOj_Q~ho|&oN=f4ep&-{*myXA*D*;r$U`V8B?oWuDKHnI!?JpVT%_a z7J&E0`6d;I0;eCRl-Yu5o>`5#R@b=7wi;DOxE|PwT36GWQ$N!r(|A;GUguiR-0Eve zYbw=h(;9YWcN%q?D;O>)A<$$GlUc=!ZRfR3cZ9d=F@$uocc{L7JEgts*?Gf^tAT5n z3ZHsWLsRptpW80eKGf;j$=UAURO_Dmz;;7-i+7`bD}U2TN5wedhZGG?w>%q$YT(L>vm7#mRF$!8#!%DA{PMSZ)lq z+-sCw^f08`xHC915g(#XBQU~cBfapL39|`>aSAa3d={bhaz-NPO1RbcPY*VywF2LTKYAKH=56RR$HH!QKkvwyt2HWyzRUlHk;Z!cT=vaZCdXf+}CE>=iD?;>`#Pa zyqSHEeJ3C0FL)npZd-+Z`#5@j^3Hq7-x!<{8|<$kZ_Lk(t0Giw5M)T_OMP}fcjqw?Zs@i7nI_16Qd&J+KOk*kM{4eSCbDa(JL!w z)CF9Hu|JWcb=eU@HI_n=c|-RJKtVa(NZQ?3=Kt7xXK+AGi629fV1pgt7Y^h3*_G{s zRNrnH*&ikW(!yZ;L5-cyR~E2H6qHC7pW?Og%+ssVkC;a2S(jj!UieuY^V?rMYHpCO z50HG&uhDyGD=6Jm0~I*btW}4_T4Zum$Uj{b%oaq}SXZs6+>yjAW+1P85D@C%@X~p* zfJY78kR%^QqG>M~vTy~S;kYyB>L_SWuNIu8oq>p`c6Fmu>sys69sprI2L~r0G z%9jokj5v+>#$L$M$wbRG$lxd#D0(KWH2Jz`7 zG;1{=k=k$;@v80b;e2jJ)#Gc^qwz(DDZOVQ0^V`Z1r}k+^WtBsb2c2*3n*D ziO+g>Wu14$NJZ-o5CTvgrq_lxFfSUrNS8>T$$a|G@_~7MADzB!&phrv4=(03#koWq zc(2@5-FVJL1+fkqrbj!)P4g0UE2%`|5A;a!ktIHXT17*ZQ6#OQI7jF* z6A^svhI#pHW=tC&RPb(x3JEX@Tds2y#<97VwqK0(2dg=`Df#QyqOWj&(&owU90)Lf z*}3X=DwGaiM%&XfIdY>W@8kBBHK4@^(vkArKZUT~hV9`+ir_}MaDGxwS$epf;< zLR6|{SrJuO8IV~en2IpG8+8DvUERRtC0$QA!0enKSzJ?!9g}_8ext}^tfTq%&{Ajg z{P7C`@|n%yZe7adZ1|q^G+oR$+1uwdo7;k=KE68-d9dTa=+8&08?%15Sn*NdNO!u$czCRPZxQKsNzwmyr z6#Yiz!4XcZ>b>{OXW0gnnf}#T`qMIUTHlbWx5~@a#`ZPln(yUoC}LTry?pC|R-`Kf z__7BA{W9b<#ON8DRslvJUrxu#X=;4y1uMa3eL~eDzf(kNLpCOtJ0#;mJsBKPG5e#) zg{mJO-={YMzeCq1__z*>P(bDsa2vkO0irU+S0lgiOZhCzeq1216Za8PX9#8X+I3E_;`tVs#H=AgB;wGT z^DueYSnRAi@-huy1gisE4=cQ?K}dvIASXWeBrZ1q9w;8{mC%cwh;9g{k$4z7EnfY( zW9q%zu#2*Ti>ZTYnuwLKLAzM=SaMw?vSRSVA{n*R-J-}+$Nb8Y*&^<&EgRrx`Ne*! zCVc(e6W*KZdK3ik&b{bV`Ca$+JD@5kBILH*!E*5}b2nD#=L z+KR9-*(=Jm{ygOB=Q8<5*gI3rT?G$C%M9fx3i};dwLFIj>QfhLyXY;HBh|aD3KXMr z4k-N?_}@6?q7PwEY?9}(#Cht<>@iOs6V(`qNyJi^t0YX!UKbMAz2Gj>9CVjq#^fe^Hs5NM_S9#h_ z*qWd2oZ|9N@JaF&wq5FRua&Ghc)DGU-G~6kw^DcgS(M4X(X=uBVacK}A&W%!C3BMy zlK*U&Kmih~km}H((dChzQZ&#N6H`$c{j{t=t>=n>ah=H>%GGOgbE0)jb2xv}%dy9E z&Bns%X-;EK;@~tFIU=wGth0;I5A2SAsSsZ*>5k1;V-Jy%u(h$(U1U(#t8ghVIPJGVnMAvO-|JA8+w)}Xc zesw;Z8`oOySe4*gOy)E}uBqtT(@r`tdZF5GL$k%uuDj)T^*W{#VEU|~liOF}CHoy3 z0xjuo?qS@y_x)M%gVqh7RiMD~E3_yx2p{|v^u?&gUR#*3{;=(nOQ|9Y-Y@ovvg)MP=*&?Yfh?cg^AFfK z@EA(4Za&Hl=$N>hcspukq1cPs!?K3P4Lx8yB1Qxo7w}x+MM%q1DR6jjtkGsB2;w#4 z>85d|t)!u(J5X>R(@}?WjAu*^4{MCr{}LHPpB^1v9@w8m0q|aXTw!*IR~4ERSl6~_3#(FU zHfo#%+(*`A7$m)F2WeBcZ;SoKBR62c2@hP9;~>#U+UZS0B7Lb zc^`h;U#}ncCVDDWUx>d&1WX1oi7%2M2tiX~D>dhKd(@vKk1bX5dT$;p$}4GfyFaq= zc0bPz7%p%M_Gaaty$Rge-3cys9iuIVoQV?Rh%(t!6B#`8ayi1`=aGB}z?LSs@}v2K z7}KYvg>oN;HlQz!LmufYwVz*8&{I%6<9En$`!N*BG;DNaZ7`vJYKh~NFiVI9VELkioIko{3 z_&VEE+qm0$Z_jBT+$rb^cA_I>P&!sP z&H#LO4YsTfxm!V9XzQAT4hy{$$~=eib@I}7WfEGx!6s(9P39BQwh}@-`2wSSps&`d z1U%hjiOiL@VbW9Sdh7ZRH!#=v-KEGaM13SxbQpXtZFrgqS_0bV`t0gQ+IMGKzOKqB z=X*IT7p^&Xlcmc9yHg){t#T_nzPICfS~U$dG*>H>cjt?rS`Tp#pIGUW+I!sIuBo@X zf>HPFr@BGU+b<3XJ|wZIoM=ul>erLmo~8!!8Tro?~Ck?7_)y(1u7ZNc?SN;`4&i*tBU>@KD;&40U30LvgwJ zW`#n{swG`(jdgM^!2%4I>m71EV zN@QP#0Z=tz4&aMMzeTopjz#V$>++u6w-;}QuL$cXzjpHmT<;+p3)xocS}s}&@&cv~ zb}Ytb4kqR-9(In9eFi8fArAq_t)01xF`0**tvx`%Lzv>976Op_ztyZ1WdAgAu@R=w zQcxxncW^c*<7VMvVWSXvPew*2t930G$7R&%odlzF5W_tkTzli*Yj)XbD)Y;0>#md2+>@Qto69-opVG4@B zjQ;2P*LRwGSpAoiJ>cKNf((%L?;BQj7B<%Zp$+LO^tV<(*~-J*R!hRl&fFdV;UU7s z$0PJl`~T<7e>wiIp4$KI$-&P4zkB|#H~;P_#QJvt|7$@1nyr6oA=4%DUWoO7re5Uz z2(bV+6x1gu83{3U59qUOQ9UBw)(6^)1Nye)qlxOSR*q~LY}NEq4kdHdkW!9v`HCM5 zMI7ayE4Gez7>YWIIBEhbqbiraI)+suXri4j$E0;HG+?GT+1qs|N9*F!WPA8k4sXna6udx4VlP8Io zW>TYKtflc!hrj*QCNvQK^AJElZWP%r8Dgx>{x6Dbu=4D>#Q!GG25TMsogPSl9cn)G zAC_!Gwyyu>j}B9kW}}Xmg8d(U5a#oLzw93h|DQ2`wfKk!vrBdfoXp&NeB^8I>N=G$ z)Yn%?Nli`EZMApJSw{QU$O23deXeIz>gjO2QqVmf&h;Cbo0GGMa;c)^qDFHS@o7i( z5E7=9ViUW&yZ0KWMNWhoNg?w2ffmsF`ozdDEUaLV+oj0D!m2l(A%~-bJUVtQ>wMAZ z4NB808>TcWIUUB`p7eo&**%&o9o^Y6arSgdCn6$wLA&LWWx18p#AJ@VpjRX7t@qZ_i1^@MfOJ8&`*(2#9ClZ9v+^A_3m}5<#l(~j%OwkdS1qwoTCChe65QEpgpst_+{hTRjO_B^pwvD6~8COb5 z3Pw`X-FYEa7<>9>*vsX-cX9`*Jb-5$4LX62A4vc&sZKBOqf`tL_e_8sR3K=(eAs+@CCB_ z_n86`L`FCXMG#3bNd~MNG?V&Q-5nAiE;f~TC{sGzbBbb&d(Iimp~Y!iTZNBMGzG@w zF|SBD+q8>6yJWnr{w2xwguCTCDV-jFz7_ABRuwGm{)>He5SRLhv%Z=APV!{g&K_nt2elF#6)~9WzA3O50A-x{P`)^geS8kmv=kd z12~8!4QSL&Q@KM_PKoxTmjXV#J@>wKcAF^>(m<%*fVCQW;EdUY$Xk)1muTNs>3KJ4O#&7kK z_*o6btYnQ&dfhJ8M}UIc<&rok%_RHj)>+DTi>{A*jQ1q7LPA2!YyjiH?9Sg3Z_T}} zxv?o1w}i}$?e+&UN}>8zjZOM3qxy!ryq0ywM%-K3^gwtl)p>27tLra;b$x%~XWdg9VsIgsv<{NFjai6pdx0+MP5nlG$6GjRQw*YyyObt>^dPR_?@;!#_`eWIUFMwk2K*{B`>P(aqEjnR8KgtY zv*oXkNxsL#-EP^1*=iMNq#{IpEKId0Vrg!Du(8^!tN;L|W1$D)?1zan3XmpaBt?D{5MORV_ z5#Y5jbdWq~8~oWIP}FDhnQ+=c0CpkqVyJk6_~yP!ZDV!OV0^GGWS^T!Z|4Nz0IKoB zNbs{`)pb|#yJ*#63ihl&{ltd+o9$;BpZNgy`KxNHV1dv={gKv^v=c3cufU^c(uBR| zi^R^Fem@sLeAcs0?B{Lvj8x!4lUb483eNM{YU}7m4d$c$>+8n4P^kxm6_KcrZ>xJt zV$@9(I_1^2&#B$cVwl>&(T6x1SH~Oof~TvZK?TrEJx8UKXz=m#1Qx(|yksCthEEPE zNr6FB)ax3NR&BzZT?tHw6E*VLhJ1N>W3*oxq7aLRbf;^>zfKM>e=YFFh1wW}-!uZ= zVtrw*RrrgmxN`V-NcGnrqfsn;O4nQ`VyxpJ2x0|S1sh+z@PHsF@`@AS_F)2Zvz_15 zcZWFgx>{IMN`60?m6Y$y$`{ashr2sqA;XFo)`O09WildZ)@+8gYrfWr}O0*>tdU~t~K#XAJ&c8RqxCn^qTImwzeNV zIorw}dp5Uxy>$}fDGK^hoEMm53GJKU0fVf;>)FN`P5BiU7(SQ&h5Wc-#t%-OPDc-s z4$V5-yX3v}lx30k{Fbpk^ligPVrXPiEE7!nf+v6Q7}od5HGLg_lwRO7rZ_z#bu#bb&y{SW z@~e3)Knyai#)8)IfW0!^VA7vM>ay_?^(<0Ki(iVI46(u%DnOrRV>v(6aw8IVs?g$h zXog*VoBkfTqRaSbN9+K(;%g8zA``vZdTRT9i&Bc+a?YLkWtB(`J@A-4$K!pp{Iue9 zm+~3*7&}2Pfp9K;zvxq<;LU`c!~6_86D(q#P~;2;aWyzrg51s6Gi3VaW!Nc>Qs@ev zmmmh}8Sc|@cx{D3BuiQ)s(N91XN}ndf_JxU@8m zbi|dZ?FZtBQ|*_VcY_`eOZ_}EYBCqMpKLD7;DIt;X{3&u(E7Ur4VVWzGGu~&&?o3X?5OcWj`EKpy)E!JixyQ3q=ck z5RLrIbfu=Qh`Se^MRO3nr1z6IuwSB(h@%h+Sqiri>o)nqeq!CgeYgBjT-8dEe8GNrD8kW-d6guq*t#$0M(x$(XqFvi?MxY9ieo=q#s$o*uGX)o zamcATCbCjmt7KQ>EHQINdit!tED3vZqchetT{#d})2bwJ?6P!ZwtU|f0$nW>NDmw% z&yk0@4MyKfi}cP`{3AW889ki4pZeylEy8i|I%>o1Ke3D)5%-Dc##GB-cQ>4$_@+wX z%ZK5Q{!quQ0(n8=7MseF%GhUWU6}p_M1t|;w6;C`U%FWQ71$SxsVIO!=ybx{Cp5Mg zNQB-W$g?4o#nWnkGF7U%Uyo!}|G2J@3UA11BZ8O?5n2K72^Ee-+h?|ik$8|f(f)O< zAr9$3!i;o3W+jVrTBYFqFX{b3iS*kDo90?AYDES{Q($>C^%wGxR z4PGY9%cij=umTx>jgHg^ z9!UX_=!CDwLk8PnK~?*H^Idb`h=7}?-Wzp))pZAn$r^2jP0Nf%M_H`_L=?yn&dN`W#K3!1od=Yl9EX;R*5cK>g3zZhqo@Gs?BjpuQCH+AB4QaI}tX2 zWt=j8GWlkoeiYG$m7*y$6`hf8v$44vH`0`!b!fz4LgL_;9#;~b$FNfBQA%(2)<6`8 zDuPffT zs}aSbbf;6Sd`3<=b<)Js&-Q{YK!b-@AvVrk_#`D=x5vHpl*Le+iYo1^!SciY1@|I& zXFuwCf?zBFm1ZH+W0na{1V?%of=yA z@`hUBwV6~*Qr%xyYnUUXhc?Kf%J+TJ>jJ#@_%ri!D^I0!57PLF7k`p(K|65pWw4=& zfRHq5#Kfjv;S~A+r zle1wP$K%?S!^)i?B_FyBF;DjVM+5VNRF4Y4y33}OLP ze$rs&@RPvu7BWau?Ise?6Pa+mGWA{octk}-8&Qo$q(=Pg`CmKsZ9Rh_U;+0cN1&qt z==N?kyL!EE=_VW1fGg*7$y;ywgkoGc51sqAs?jd*6L2BNNE`?yE|PtDVxELz7N#SpKF{8hEOf|k6vMc z#*fjo&-}ce)Z)uP2L)GqJrhR@IKuy<*j&=W|l+7u~W z_3iHoUDW0NdVmUr7!}UDl=VIfD7RF7S!!u@x} z!!Oe5sf<0WU#G{du8y)ISMQ|&9%Xyp$YC7*aRW@dmxIvJ#ECU5ru&tr?q5lB3kBF8 z3i`&Tp{u5jiO^FNJsk#i*Nk#ImhQNyJ*twb>5RkB!6VG))sChhT ze5dnD0Ff=!`-%NBec>Z0K66gq#{|Huz8@e9avPMs4cKrkNi2n3e(z zSCtf-`Q@GL^dX;s=bqs)`PnBWeG8Er`6o10G?mKOE~_tNq`KDYm)%%g63mzR`Q*2S zD?Tnt9O5zOlhnKHBy{z^pp`4+>NQd-qxY=(Eck9!@(L1<5TT9JWeLbGdy0|}5jT0t zrd5a~DOB`;9ihB^pS);N%(f;*{Kg(Xu6-bvCQtVF(!4WFxvxLZX}36jXu=R&oXL+B zXHRNyF1U`R7TsE%B%M>@dr|-_zaP!)$S~=lha@0_%Hw9>D9zoz&z2CbOOo|x1TFt2 zvsS;`ZLO=@0*IW^D%AJjjzjJ1+bcZ%4xH*rGSUE98fbcSHgxQ?Uz}ZhO&io!urWQMD(3~H20Q=e=?*y0o`Cd zi2hI6Fa1{b=-kB$$eQIeIqod=%)v)9C+fM}m~;-zk26J!KTt?^h~#va-T62 z;!;dn-5(964W;;3e`)u{`Em~l@wn_$n#`JJ(*nj2!Vri#&t0diVKJ%}#j(6q9sE|H zZ3%db`?8R~x+@RWWqki0s{VSkuJCGJ5$G_Y!=^A^%BR3MHB7;P@=r8S(PcV{c0DT! z8OIt4ztV2gm-K{Rgo{`JgCdGB(=*cdW%Jh5VNzl5B*&;KB!@0uV*+?V<<@>600&(W z@TkdnFwarJ`}KZZS9B!O*<#9-11sgt%=!Bu;gqjOvC_MlfSA1jIJq%jqUNlQ54t%-g$Pmnv{UPPUkoKTFKLipJuL^<)vPH+z z)GjY^#TL3ft^&g)`O(>ivM|f=`W>%L?BmDAw40;xuI-q}jVs_)czExC2sCLA+JWrM z!5Aha39(u|9JM>+A*ExzkzChTKDUSQye|cLnIh&h+AFjkH;}(;s6zq=A zgE+6)Xz`70sX-)9Nf1Ocv(QRs^OrEwUHv>9D6)FJul1p!t0g~H?k{E=CfM5BDaKgx zp!#K5b~Xzmh1J#_Ll7)@(4F@!)6=4gqH5WJLx$a^+%U@_o+GATVSkbvXMdb@43ui< zclAC)Y*f?G*PJkZj}As{g8vf(VX)~1pBWJVSI!)dd5@Nx!DP?o!=R_;q=Uz?=Vn8d z1p$x@ABDrj=r#UikDlpm6bN7IlEk?WzTO`nwJ4D|t~Kmc+{r0qhSM3jM^zrW8R^HB z8ad(+lbm+g>|zdhyp`e}(lf^2b(KX!pSF?wKGFUmSLr-8z0PU)W5w5-lLwTcT&tY+ zBkxNS;&whI;%pkr0n{tBaZw+U^i4#oSKj3!g%OG#DV}|mk$c6SGI8a4u&~eN?^+S# zjQ3p=P1yxY7mzT~uS~*Y7!it=6qb_~@dbP{4JW_2{6QLG)XX+pI-%s>6;piKXl=?|BM`2InO=Ixj(0Dun^dg?RyPwQR zgQKS>{%(*%7J>*|Gz|Nw>2M`NxoPQjtyInVdiOzVzWK#vNlXD(??efolgtp&R4CAfA>IUtg>u)@<#*AVl*H3gKT^S}M?-Z~& zEN}^^GL5$EUcjK6iE?FAHWIuqF`oimjry`!k0HE2WZN+UjHlu1ECb`DIgPQ*Pw9Os;11 z!lo_b$abg%0`kHizVco3_}Oj|{lm`P^YTcRW^6OBVg(il$3D0piT)GQHM8 zuDuTCp49xlzAL`UjfT-l4{qx^=De&L7x5f@Uj=6)^tp0<@6$KmK>^q)EvxZkv!~j? z$`e<_y-Ar6oZa=;qYY2wUN65z)(+?TzaH(gQhu9QMZQ5UPfQc^HzF9t0(7d2g75k> zW&Iwv!-BaZnC6X9&Ng0iHo;pXx&Bp4X2Mlo<>=CNsK}WI`hPztzj^7Jrn)00t&G*s z|Hai(5!89nb7Ila()*`g4YbHpm>o@?wEP1`4m-O^Ae~d&omn(oF|_dI2gJrI?-R@U z{U}WXjX%Wvfs_30@<;3Cvn8Gl+&em=p<{vl_=^)S@yR9=3mJHn?7(7#&~jK#?wo*I zNEt^eTGKb)(fToTvs?w8LDIA=WAn0>{z)S+&W`!yb5>>aB3)p5^YI-ieb}#%eNvIy z3x|o7Q{+CL*i+uAKeI(hl`AK66-2%NpcOF@i`U3hsuV1ZUN*-913d%1lEQDii*GNj zo8IXgE)M7EsuQ^oX;+ewx3|Wj$Dr)?7 zw$`%}rXvLnEe${^$LKwKKb=CR_Yi}!?+UomzL2Fw9EuKFKgjhLnVF>9`+?{0hc6FF zWyYRm`wUHxf`=(n7V8av-fZSR6XW13XXj*lrN_=E663``C=kiK*$GK!phxl3CovZq zN)CW=>>TW#g}qX7QmxyNf}P7NgUbnmbK<@g$ z8D^d*=htL@SAr{LiWzFQCZ!{axjg!I9|8u~SDsd4ben(BD|1KUPcbn1rBeT6Tm4Lc zwWkl%eqlqMn`?JL3@wAjl>ROrdnbr%S8#n4k#Mp5c1)8MoZJTNoQoq3A(i8d7wutN zKEBs0-Y)MwV)gX&b?*QeShB*XSjy+udh>`blbDuTcvmy7T1!F~Kf`Q%3fS3me+s=R zV5$+{{yh3K)8@|W#;8|oaJMJ}$ud*m5c+WeKJd^lVRRxX?)pJaVfH>U!%O1eyv3TfVSd`ny-$te zHdG)+N$Xe^rRGA1SQV|=5zMEX-1e|`5WhdFvuljhklsGGt-SRI^V!M_!}PAZI62A! zpChDAiPHCTxG4AzHUeH%YG07Jrft{JrvKU*hha|1X?gw`Z4-jXcj9bLoPicB8J@ow zBBlu5D#?>oAlS%|h|_Y>cZ~gRd$KlucStdWm1aU;Ku{izNdz^$wl0+A4BLYS6VT)BAmjyOt zA8_m^UCWLOYP63`7-B!JQz?xO7%%8w4<;>TufioYR)+H`vgH1GjjLHau61+pz^X>` zWT-w)uF=@6>Mm#bP~lK`oJ=U@YNq-1?r8V^UaAzl^42QI(NJ+49C1}!;~QO}x%`lO z*@rz5qnb{#6=UHt5Md0{FBB*P$7v%U$osZU9At7sm|Q9}zi_-vhjr$Q6QFVz$uA=* zl^^Di61GkVqYW!LUupXoVaxWJ=Irg;hb3*qkTA0F7~DW}KYI}Z!!DEUku3SsuKV58 z>R*HB`nW|0&Fh3D#v#8J!Y=jic>xK_*&7X4;~R6ahd-jmt}7Wt8p@l0U!NIx?(2N@ zk}W&}-w_YiG^d%8r1We1g}swIjc>U8vlf0nZotaIDugV#^@W&ttVEbj+t&l3hs_xJK)pbPS(mE-Z`WJ5z%QkmJTiAPt8j;nvt|t zwgrp$YWz{8-QWJ6kUEZWA*@3fW+aI!HD|U-gn`V{3T)E=|8V{Fr1;ECftIBj4!@Pw%BSCB`(>a zTzf-58s5{wLlQftd3f;%G2!CdN9?9!3rDi(iI-K%PwX;*R4J+M6J7YM;(1nxb?jf5 zOq!yF@;Rq^b|$z-3YufMd-LI~*bZ#55Fj~MCr75qkm2jwBee^8XikEU2tk@(GB9I@ zNW}shEK`a8P68ep^d8h%c=mzGM`GWW4E2%p`%zz}oh<}2Y;gU#u=f)a&Ph7ZG_oCj zNNIQ5j0jcXQ$H~Y@l&Eo#RNeN={`}E)&>Oh%HczfYV<)ioBh5?HBIA59K1r#K)72@ zJsG||Y2FTMElnj*XMbGH+xhzXI_T~1;6E%5+4b{iOO73aCZXH&_q$T+Mc@)%j+sR1 zCAFES-TeVdlg0Pr=uQu#`G$uNv;R>`Pm5`U3{#g9II;V!)dfn?AosB`R%MoPoDm7N zihU9|!?6k_S&~MHJDbVt0Pmc{@p@F63y$EOpjJ!g=L@=a@zaqzZT)rCnfXhe4r{RuDHh$0DZs&J>dW-lT4_U<9C&XgaO>ICM9KDKYMa&_}rpij6e5mI~ z8fkNupveBw?&;1|Am|&BOh-#gI|>8>nt**z5Jl16!@u=jctOgH#rtxzlQ(FAxAnkgcl54i32XVyJ!IoXSTVwFqg{6M zhGja25c=s+kKDZmC{_AhMBrjj(FIa=$llJxgo+AqPDq`fDC(~2lCHzw&NL!zT<#xF zXwHD9Da04kPyZMnw`UG^!i#H7BkckiYD4gEzdu#o@7@bN^wV_~_`qMa9u%T~s%c~9 z><0g+!Y5|*N8D4zJ`?sw^%7T|E-U<{a7=J5eVypT(EG>6a^pfm^1PzP*%h#o?GA<- zxfFKoL=3SLb6z`31A2yn=mr2;b!yw-q3}Q0d5m#CGgV&D9u6QU3WT5KpJ%EJfL#o+ z|EG=bjB2Xeq6I_&k*4&HLFpZY&;<#-2?!{NAXTJ>9*PJEN)x0C0hA`acL=?Q-g`{~ zp@iPci}!xt9pk<6{$`xD$3EHn?6ucibI#%;oZGXt==EMtZAr!?GIP-Z+tjy&m!8K2JxKWa?g{ieBB^t&lKMLTC-a0(zUCxy__A0##NwVjCEmJE%1s{&BUe)U zhBBO_VlhetQuhVYW6_2@r!n)5Nrk4LZ*a#A$=%L3U!n_2uE1x@R+?Utgyt95qecB9 z+zbj5IW_Ekc-brQu){w5TTjf=1mZ^ul+0%JJt>PtP?+-%LTBtv{0Q?W$Vx?FV}Gst zZEL7P*#on1DO%jVhfW{k?yJ?^hsT(q-AD#|*OvtEf^yUB+MfG!|Dzo z+SJd#3B7`OUumukI?@KDF6m_^O{o8l4Smy2k{{6^)c_L`Bh9BF6jV+{pCT2Vy%e~9C8cDfhV)NlgDIk4i2CD)Ye56~7B|lDhFwMiB&Chp zXyh?>{@KY)I)KSSs9Pvu$jI``emlfol4XM8A90(kukLkHKwgCa<+WH&{6 zXeWh8w!|PRVS5Z07h5HMZ+c#zw@JkENb9Bi=5uCA$pH!JC3zh@*LQPT1gH65hj|`V zI`_0ah%{tXqZ(Ct0dSy#f#7J}O=b~5j-q(Y$k#c6fqI#Kf8~fP-Fp(=?_?FG8@vH# z)JcUcDu_FiC5vth_v}KSvcs#rnU3O|e5O}RY{uLSyhru}HzXeGY#c3*aKCI?XC}V) z^f?*`)h4As+v#+Y<%FtAW=4$bPkBF=d?!F0H=3n`OFy^0Zk z*Dq;rDZQh@#L5UCCUE=qy7-Xcp#vL_p-ObQLe4LiW%cu}tUO)#r_Xfw3bw2pEb{@& zn2G>>RU&0YMHO8mQQ2U!bw=_l1DS!riAYY?g~OB)=01>Gs*O7b2t>HBCuM<5Ug%Gf zxG zvtPac+wKP?r|U@>CKg^5Bl%^ZgZ}aS6N%IINRO7N05{7Rwo1CTuBYe_N#ina?QiKh z9xXcybDoQ2cUUs~JB0bdo+p7OlHi;3zvJwPHQ4?*gh-dyj*t%1{be3<7)|d=lBr)M zad$F){`Qr=?{l9>U|4L%ROT%ux3y82E(80M#X8BT74ZE~=6K1wH&%CUO2d|TY^L;@ zRr^j{Rp(Ci!Do1aYDBqQVLXTEnx%k#2Qtkc=LW~L#L<%CoQ9>Di|8gam;4_R@-)&v zlyx~a?9&Rv<-TswWcQ5PMLyb?&*$70yY9M@Ka1#@-Y0wH7@zV%M_{~{J}&X8Ozzv! zbHg{&a`Tvv#Pb*__MyB(bkBi?>;g=)4PC; z?|%whX{i=}?Q!_pG8-k<85j1`F?6r`HoMN_h@dI`BJ?(Sukg@|7!`5I`%Oi&IqLMg*nk z6~@f_`2kx8e)Ij5HdYzrHfvjpx|75y0x#B=)%~qVmN|xnKNm_1kQh#mKAdk8C^Z?4Xw_o&()$lPR6Bya!w5G zrBFpx%h!>U`URfX=knDG(}F4m_LXHf#brUdy#}gTgZvJ_NPdKyT76YA4m zQ?R(-RQzM78LEAUI88VGg%1+Hy8H9#@_nEj4a-}16W>-o_E}c*FrLQtQz8Eb+%HZT zAur9?P-i@z6~e{J(9*>N*>Dc?qtw#Jd!E$#xBL$tO&))zIS7Mzamtyze<%a|`+mTb zGw7$ke40HN5n&cBxy1)opDt2apQq*+kljr(eFlCCePHnKIP#U{=MpNXdm~ZL&4U`h zI#rAQ48l1ENvYh$Eb>Y%$Y0g)#ye7;hY`#DDZZ~vq;_loA z?NrU47XYg)gnEse#N}`%Uq&+=jt<|O9&x0s z${3ZF*98P#=w;|i!qwQ#NECuB5-hxahA%H~jg$r_YLrMQp#$}#9lgHLG$Ie$H}5Xm z`{3wtZ|bB|C7c@QYy*e64{W6yupQ)G3!z8N39^*Xq_C+VlG~uQG$- z{S);&&g)O9*pT)#H#*l{#ZOlhHDq}Yoq*1waBgcK0t(ewSQ5e|@qY5S#Ww8CThSVh z@wSPiu92Y*grdRAcscfPWblu3lN|7Vm?V4eaKyEC((S_S^B|({>i~mpp|K zKziE=&ZAl*;;Z+u(u}|qrDeI>L%F8p8?)P+sez{-^CCmA?5MJLDN!oCTP+Vv5MB4i z0^|Hb*oHsi8}WC~pJW8F{k(P`OT>~Q#td^#l>QNjkbqiJo9Ruw5{@_JKaE6q1gz3u z9`QYEqX^j12%(XZdRb;4|Fn;kTITdlu5keY?`9W)_-*m-ZDXK(kdbN*B=W%kWP-Od^(J*5I9^c~$!yBM)TRW{+ zR2@T`s!opc^;6hj#lV*p)00Mrp&o1n`$e7~%gjT4&YP7t7!vw|XP7(H=yTjh{Dujw zyF){N+DKT)TXL51QIsMLCdMh7>r@8#ImbMDi;|}abM0DNEGjrgajFa1cfh~!e&3y; z8*qq5duq4GX?4p(gOsD0-92h8^oJk^-Cca-$B85+URsikYn1~3l&yO3wH0cyR}$eNGu0m0~Ypo>(y8QVzd#3cB&9_5{X= zg$(*vXkM`~ zr6+~z`2tGi83&W`^;TLzO5}_JgalJpkzrp>eT5BSAwyInq3che zwXzzTXpV7ho%=KLezJhIq#{7awGzuN3`w4pI4rChRueT;K@lV10l|+~*!mv%H!8RA zSB`qG93Q)5G>ab95(cqO_L^|&Pf%$oDufCDOt4s*nNclwp^M*V$&SF`5YVv&9g}Tq zTM_=5=gLhidFwH%3&BX+-e#;Rdz;7nQdE)ow3m~6^+$XtT@K?`$ftA`klrY} z=|Uf@EtmToeV0k)AlK)4Q?BemYU7@kdq0P8d%(@J_NBLT+BQ+T3RKS{4--HN<~b7* zwlA(|*fjFChpT{H)kV58?@WpM839{1V%@zJydf)!B0S&-QIE#YVzd2SRhKt}w#9;% z)MKK-o6h7bULiO;%GfrF)|r6M!NQ~K?S8#Y3eGD{dM|6TOu^_g0ony#JU7^8Bb&HZ zly>Z-FVAtUwhh0JaL`uaKpL_1k zfuo*vCn-(sk_1|_Wsr(NkJ{H1G0QU;;_(xrM0ff)SEyOisV-GD*nN@c`|kPm_KZkL z;}ft~LbjkZz>Pv3PpF*-<0HHEcj5DKg;2CsS{*Ms9ugGmRCn_r`0qM`BgFE_u_C$* z96Vv0M+kKJkWSrzx`XW8FB^JI0HQx!-<$g*>StN4kTP7w^uSujgG$bKD30VlUG8(< zAdo5c2=pvVnl9l+(i$rS=6$M1}vW8MLLv)1p`n9zMs!%_^ge5E$s_D|Q$$>iS2)Xib4lQx!(&lYxKoTNRed4|WLe z61FBhdYoaJXtdgP>rC)Oq5S9trnVfQM==_u-O)KW`8Op!4f;zkUUtl*#|xo&_lPXY zKCZh++NP89=u2lx0tw(7c|%B9GXD5b_+)db++Xkvh&|(YLZ=@J;;*u`XgR)~MK&5j zXzjU($+}Hx@{e=sPuSmyV;^(|U~eBViX=V?MOIS02+Jz zcO--hVkd4>ySFoz5{d&bjzgkn^M|C>Vxh5Dgr3EhGAm)m90XPK=67djRCA+M%eLx} zC1MtndGAxV3QHICw-d2b(htP`TiiNgX|sm;=~%M2sdV zJSk2Sxj;axb=NsnRRC6|-d${WgA+%Q$$zgD`k~kX(4}I7U*z5JMTL<)(i+3x=LQAM zZ`X8^KXmwRO%^eSh z5#wuT|C5oT&=bsjo{~%`rNk4yNe?mXovep&nvHt@QnG90UvVrg1FncwGznBm^j|gY zDpqv~l+F3S9?^rpSG1uZ`9~%jc!u37QPFuW|BLAYVR7l{VdEG7Rh!}}vdUstZ|(gD z#{b2XVfjl~-q%8y+|?fcIl4f+HEou%Fkvv?ifI3&GAgx!YnorG9{<{LxtrMCs4 zc zdg0%xwf?s|4eJv;hRL%pnpVB(5UR@iXB*rzi*`>uKi8{1+$yly4eM@=|IzpzHsXw* zChLcC`7IqjT+$4SW`$fN3aEL5*QD!e39AG8EsOgOvKJ{k0Y91oYq%UYb#w3B(QFNG z7Q1FxY&>7)eivJNxVB(@o!ASNGDS$B=a}VSQrtZ~r!`I-z3Bn|9(<`M^jam?hm?S8 zd!ibaQVv(=>EVob?`2Aam)=|bF^_p$Pdc`^sD%AlZFj+)s)qs!Eh++gW?8JBG{JTx zy|1_8$x;u=m^$Sy#x;LO=d)m?n;yrK18)Y`t@)Fr?sUXYDUH5PQjdxjh$SF9SUcVr zfsT5SaGO=@9YcPTQQ#OPmaLm?M#BYFTzH~Qzc}nTGBh71f*Ok^O@4L>wMhJrP zwWKYngaqV#UHxJ2_2o4W7ocpSs&4&CdVe!;X!4b~G@$I-&ogf6t5X})ms{qb-FA7{ zPim>Ges$HUrqO`4Bhq=EWjlA}Y|*OCu}=4Opw>fQ>kvV{l0vvA`WK9$f9S&JwH%#L zNiodD-Df2Fqi2mkth?bNHyL`raVz4$1kv7;6vV~a=jk~W`AxfI3Nk7OcK_~WZ-00r z2jK0CylBB{J6k;|$2ZyK8XBCWjzj8C2gL2V6MP^Wl;dUL>gVmAQxgjWJM~+Rxv`}x zx){6Dxc1f&3s>Ok#m` z9eqw?(D36$C#Q68D|nB2KrH?eLdIva7S7L-qQ91Ad6s39H;&m|DLylkUrMJCw|;a|^rHhj-*8-Tf)$0uQpUoty+NE=ubq zF$fY@4sAbGtD%sRnsE$R0J7*)*cRg@Y2>ogGU0?~T7qn&&qaIEKq=*B>2DU587=+TrO3|d%ZcAj>4abX4poV|R4tc5(;2K|T<2>OXN4&dN0#F)S< zU4%aan^j_E#9s!&t`4GZF;4U8f=iq?@l?ST;ewye96?4&O24wRy-!a^-;nM~8mCtA zwnSqzi$|{*C4aU53B!DD+hcR|Z5Cu@+~nf}5-a5cye#9Mf70FW1ZIX2FVR`NkUtmv z_DXwc!j>i6C+K^&v^QB5HR}3$ww`z?P3oyEK!mUYozJ5kX|z%YTRiAED$U-4(uu??PMk`cbhrSo$F z0T$2%jWat8twk%_$#*yLqDYbynWZe%@^HrOL#4&5Xal5_k99)>3Ko;msPnMEK5sA6 zFxop_?XeXVwQ!ZEH;_sLrh}RdNkMa+K4WSw+~qt0h$;?-03cHkknbIlaU@bHDxdBr}m z=1rH!@LqvPTz@R;gdDga=KE}#DY(>VX&EfM3g#Dq0%zs<#6jF|7P^sw>~I{=k@!Naj@mrI5G#4 z@C6?6$JRbyQRR%oxO4NVo_hGjne!)HDs$!+=PmfKmoKdP4H28+3;UDTnh8!x)W?HU zxf!w#@&%0OTU^Y41x%>8Yzeoup>o$uq*^V$nmAV7d$BuIo}kTO-}fpy9>|OoP10L% z&oT9}j>uAiue?LcbB!e>*|+NB9aFo`N>h@_>e#H0GPmxr`|Tp*7QzmOf-2J&egp zR=!w~ww=ZzcU0oI%t&8Q>lT&*0M`mSTQRkb1+RbJ@YE2LWQw6$q0`O%NgR#xI z`+Lz_nk8S~h=;XkuL&oIv`ezg3Vw^9%Nw@6JXUdCT|R~4+R zz-A8Mi$BzEkLowKrfL!48bqqc=9F?15ZCEw_H?gq#+$C$Iu?^XM(@PF8e9 zB~84yg7LCX9<$9WU{!vxNy~9@}o=bahv#>FrR;AIjZDL?YX%wKiqiDQ=V=t3U;Ap=6X3$%W^dYOXx3#L>Dp?Md%~lvmlOJ3y@x|(Ct|6rpJwrD%Ps4v4s7Lg zKV&`hB0d*ZC^gfLzSGOR&V5XxcK+FD*8D|UCfT1v2n6HXq)l=Boc=O52CJ84ml14a zs|Z&2@1O7kjl(BaG$X}@!L0?3M0y1wnO_e5T`8$us|8oc+(GA665@N%&4&phw@kir z>Y}XPy19%E0e)mvkgfgI1mDuEpffM?AmaO8elk?0HV#&rC228xv$J_aWLGDrG&0?S zO9l4pce=9-cW)Wwln3X3N(cMlUycRgjPWe_-2zAY2;^PyF2Tw&4 z_KFv-Ta)I#!vB4Nu@Y^;;h1wNGY=Y33UVZ(y@H3Rrk3cjpmVy&2*6e zB^_o8t8`lLL|T84On-6yWhvBG=URb3Dqo<78Pui`lPxRV1L7E$s?DZ~AEY==yU=XP z@-MGnAJ=3Mh0-@i)otE=cP{>KU8sOh540eaYw>6J*STrzuho(rx8^1Ff6Kl=tP{|; zx_u>EmjC)Xu?cEo3&pgY(MqR(yqavKv1K8HS?~$&KiJ3rXNX~=PWYhVto$!quF?&& zt+j7meDrAmitYhaMx_x=9<=^mNEzxcvO$8Edh+G!on8_xWs2E|G+R1ohutVHH$)&* z{(a55<;X>?{xRE%Ijrq4r5$AzU@!8u+?N-It?DUXwCtGuf)-xvIGBBBfLL}Q#I^3J z^^CRk8VAP^ih6Wx+k^MKBQ)q#M}HvtqCm5we1yn=F92&$nz?jmC`*SO$KL()M`_?# zwzLZ6;;iRAx4+U}o#<2I$w*(kclD*Rg7iGIyWrG>s6B1sFP({; zC2(8obwsKj-AKG#JMZg{cJyCRSrR)D+4EmqH;FkOxkZU!>@eoO)yz3fSWEs>z%J^7LgFX%zv#<+zpxFHaW7 z8WARQ4mC2I5MQ43Z8?n_Hi?REp}Fgr#aOBF7EHKbDzk*kDrsJ`1PA+O?o^OpjrcLJ zTRtcE&CV|W1>duF#ksNXCsSB(!GcvjcefPpT`OZ^FmwHs`4sv%e#0hgfx@P81~~^wDfhV|$vQ=!RMP4i$mS6J^0CB$f$xqaGakt+ z_@6R;DVNxBmR%L8ldup8CvTUp73S9tOL8+!pNKkCeu640##|Z3Yli4NAdcWt9Oa{P znVbdY;_slsJ-e-*qdLQqR>)MCQnxaVKiM0ouafLc#o0Sd8$lqp{b8lD84~&h9JSk( zFsfbWTFJ=qk%IZPi5mD3dkUbL%cv*5-MNRQR+_Yj}Jw1(bk8xIJu-|*s`q`?}unLmA=|2!Q% z%T&3(ngzYlkHXsBPLExlA3}&A)#1w=b(M{A*o5#d0$|oTRlLR~CR#aJ?yq|#Uz@Akcb}~}o!=kg0sTI*Y=7TDO`{uOCmForH+@rkIy9#^>$dK@ znLZ+d6s6Qq2!5PajIV-0`L3-n>y2gGn-CX|gh@bq5QQQZC?L|sr^SuBlo7j;E*UQ0 zWBuIr$(>0iY9LFOnvjlE^(bJHa)d?&CjP9``=VgtgT0Pt|5x?z>Vu3!n8%`^H=mqRXILSD`Ouv#yyFccztP9O8|v1qcHX|}Hv=DG)1bfi8A zhsU@Ck(O#V&@cGLJVhbDbfbEI-Ki$LJIH6HrDDy=x3brpV_fy0jYxqj+4R=G_8!FF z1Az*QP7NTowh99pHw`^ihjguatXTFjO~HPNh>yPVN;79uL_WwZPHp+!EjMUr$lO+Y zy{>X5d%b|@mbr=xa#`PUzd6Yw#M2Y%*63Vkd`~I7_?0m!(%4Quabhi#nSC)jLc-I8 z%%IN@M>rRLo_0CddLLt>p%5C1vh$UDsC6|@Mn&^v2IGgd+%iQ(%=fQPnT>g~w5=`t zaUT>VL8yB#YglT$cD?%k^XwzxJ+y@IM2@L~+gGjv|=c*W@D*6lF zxCR03*Hae(o_i;|FS!-nFo$C>I%U|mXwz=RjMi^;bM0^3pMH$n>+4Ig9ANq>gOSWm zs=`VQ8T#FA>%nkkWxJ$-NU+@LWu2MpaZV<0P4(`19opSfLYkl>S7vcH%-g;IG2IX} zW?Ij{kkmewFzeLed%DXvWoP8pcm0@+=`4HkhaKb3domN>1#Qf8Ufqn(kOv?;?40-3 z-nmHEA0F4X>u=X!^VK@2MND7rw_B5$udHplm-(91=eza`#u%?5m0FfxUNouSe_sO( z_d+P-+T@%E-&WddtXFPD9)q2pqP*4evTT>mh+V%KFf!QZF&+ky*r@)vGm~hx=yH&E znRaw?LPKzHcy8Cs$8Xl2I)iZ`KU>etba_1Zfzc;}LF;Qp-1B(0w8iAolzCPr8?X`?syFl+UCE?y9GbaBTe_^!tl2i3`FheKPtl=v-@z z|FOfj!t2e4e}h|eu)$;@-EXm&`G3a~|7)d^(mD51$&LjXW6FhLzk8BMzGJY~F%Mt7L=Al-gK!A>!N3@B|hOsF7&EDAve^OYDhHyI!( zBFI2YOzDR#3Xa|pOiX+PpS}LF@sa*8abj;X&3oP*UQJk016fw4gjzl z{PUxG(FX{w0}7}>Mv{#J129KSiK6c0B8Q9CgIhR=2!e-IY;D4qH~e~IuU_MdDyyUN zdjoVce=E8D3BX#oMUesm#daCaMV~2SeCs6w?y&seL4}Ha0hi%KJa)*)3c!6sf$I1V z{$22oAej$-rjkFK{4V;mC-Bx{VG#&Lp zxnhDb4-~UNY@69G*J2;&^}VG$(7E2q&sMWf+DMkt$uf^HmiI_byP{9|P9!+rW!P90 z(ClV$2#rWOwTg!{7QA^-qf6J=<-(UAkj(YEpEJl^brk-H3(+`Do6hd?O%J)IYawt3 zI!B%Rwb#j(s8R(-UqKVB_@vdAh=YZ4e)ha6(^t@FALm5K5K6T5ZHC}G7M}6;YgiXK z*Xk7}e<=y&s$B$~-{$)wc+!Tx@pklhV~sXTaHPG%+7$dahE#*?>J$hq*r^W{1DFsY zzU!+X8W5uX{b=5FcSS4;A{&$o2q`G=j=A>$jJnH|*gXSP?4|&R@LlBJk(qb*7XTH~ zc^6)D8TGe3>3}{V>FwqQ7YAq}MS4W(5THL9vpHX4CucR75)L`Bw%Q}0m||54IpY^Z#X%7WjAgzK^*w6vaqrc0!m0k z>yK#|EN}uZu%xTVABB>qB9YA4KHOd)SGNK1*luTmf>vncyZJU?Af!%`MAV8P*aDbX zAof4O*g#Y_AsUID5Cre3@JRj62w`{qJZu2Ckb9ey93aQtUu;0?{Sc-gto+=60(c-N zqdS;D`24S%V)!Y3s%(4X#?^D zMzt@(26h!los~cp8ACdkeLoF6wIO_l^ zYPjU@UA<7ohGZiddOIg_hK(9E8YmT%vXFFMdJ9T6^fpY*5X)ZeLB8LS`Uf@~xa@Km zMNumOdE47IEzL|nNY1gXkl1}+d?~gduD-g!wzKo0WJS;quy1l-`9Dg&68okQ%1sej z5QC${Lcc(>1~~PC^@8ih3<<@P9;0f7XTe zpHLrCA3`5?hj7Q395jw2j&W9{5Uo(JFiZw9xiAHK3}vivOnKj7A7-CzpJL3OrkrMk zCQXf4?Y@?!dQ~?icastY&0dO-EXdB!&Yx)_R1e*d)e!#YT8~EG@+eo&FT*&4IwM%a zQDg4D`AN1uIbBtKXJdK2s-ImWd;`AQ(VNx#z=Op}TVMU;9SREmB1U5*WBdd43Bd_h zI&C_VO2SIsAF@B9TDLD_TV?y`rLgV zs0hX=`VPjDMx6bsqO2ozd^TeFQ@g@HAV2B>K|V18#oa`{a=s6K<$jQUEIq=03*h{~ z8rUzefv^cMcffJr4YVfoAS?mqIi@yR44N(KFor3LE0Gl19LgHGn?${)gP6>>F>Q;s zMbnz1ZE#!KE2JxwE6wd2lvoselr~ZgvO>}p(h4#qQh8~E zKh^q&O^yo%(<3GC^ySV&2dw|3rj86 zh}KA04(2Lr?RciUv$`{cmxXT~P>*;>)l2nC6=%sZsWIg=JDY2*h?r)Zo|rnH(w>^0 z3Yl%mzDcTVw@SA1KabDM*N)bXSa0qO=KKE9{GRL^?VHuZ=+7vuD_pAEu!TdSkSCC* zkteBdy7O&EY-f^OirgX2D9%+0Zx?ZyGsK&6`v4*zEQ=dX#yve*N=*;po>@9WoE_cLZHw{B>7tUn@k0&}R-+0FosKz#TN#1%BBuNJJUB<)n71Y4NX7?L4yVW%M| z!BU}aShP49IJ_8nsP-I2zpSLIA_Db1_2>s{h$NkK+Ld1?9v7e?q0yoFQPxoD$!kbO z$?wQUNe{^63)S+|Wkic0^PQ|Q*E1X598+zVuN)}X_&d0TSx6}KiD#MW=)#iG6CL?A zsoEG`RuH1_&NyE=Q#g0HX`M4C495x%_?8OVP7bYZt(MQQ%tx;^788y^1gc?a45gs8>O;%>X+v1LOHt1xkwyPc~K0Z}=&wCR0#?QmU z;k0sXFVM(seFVQ3=?!saJ!fr_Gs`Hi+AA5a(&9sRH7lQJsVvg2>+JNc()}=fba*{_ zh|t7_nn=!Q@lbg`y&{h+e6`>F@!EoT@HT;{Q{6G;sc^ErB)y#!$x_F5Vd|?9t7)Vm ztT9OEuI068G&{dmxw7sdx;0XQuoW3vcB=Z|jKXctrCL?+BdrbJ)3cSj*}Q$F>17Fi z5+}+n-R;@k(%pKazS(sr@v6eS>CW1Db-HENN%h3)gg3&S*7MkN{9*2b{lWaUiD$~g z##O*Q`z>d^Z$hxIr;?~HCoQU+V9ovX@^Pzr<#H&FR(?PXRJ>5EPrQpq)}{54=7w|s zDHC&yK2+zrquh(^t<+RT|Mb|rZo$*~$2t!VBG$(v+x^*$$OQLw+qPuS@H16HN#p~@ z1r(pfJHr*@^Uk)zIYpwpIG?m<=WWuojwf>_Gpf#^j*9Vv*WSC^aoTdzIp<(Y(gsN< z{lvvn&s(0Ap!wFkd{kCkScr6U!HnV2-aYzC!a*5wS=qEQmm@E_01;xlB@Upj2teo# z(#-_`*xra)-k0S>?}BL`kdb_ez>hUY_w@<}bro`CfD`ZDDJJ|w!$pu6@TE^>Tj46S>X;pVj&fF8IFsmmB~%x*$5Kh*SZ+d05o|^VZV{%{uzcd zZI*_t`s7OPS@PKvE-5<|_c2Ebhh`f`Ggn(ni@S@9o13evySw%M`u5pQ$K33~+GL8^ zg*Ea|q+)#1I$4HfR&dN(i5J{wu2Y3a+Fj+$$kOn2%s82%0qjBBLC?qwDN4z3sai=4 zS#3Gj*yVap=Tx0mBS;dv#!3TpqoC8NN!{_3<)swOdTN6vZG7={J3hCno=)bM2816R z%|A$8B<`z)Y7|54O3YF;THFGkkt3uszJ}!q4oXEurT?sAT1Q#6d+A_l)As(SgK9mw z+P{u^QP)neNbo}F(S4S)pWTgQYqB-{xbxDtkXaw)5U%aMd{=(sIveIs-=~ujZW}e; ziSIJYrv1>Ux82>A5jU)aeDTJ&=&hVlDC7O=aAQBN)54sigKIR`8R`+2dGoaXBy74h zHK{7SI+{t%T2^NM0v-*Zk0s+GX^5X@DsvPwu_%lIS6YcLG>JM39sts3bmzYB%8He(wN%6Ee`Hi1E(_+a`s! z9|kYcI0|Cg*iGImK>LH%kWioS{d@j*h(F15M0eKMs6&>Hnr*U0+D$*`b@=B9|Jc;U z_}7Gl6qfjqQZp_M%PaFuE9Xvv8rTUt zu&-KK$7Cm1i#wh8k@Uu(arY`7wj^Z*Z{~4^FTct7bQEsfZh}qN>DPo@ z#E$~4+P3~1@CTa%rTf_XoCjJ=kByJL?$e$?;#H!`KE?i2GNXb>!?aO<>O=9Fug>4m z@pY361Bi)wbUAA?9#(i-S^P+s={$R{+g6qN*jHl?n`@&(|ye~O9 z)K>J{ICN4=hqSBQ&C%TAJ>r_6YUUM1^4vy^boU&^6A}8Tajgf7Y z;pesMKJU=}BEmQ%f_a=fd~tDwM@HxSFc?^22Z>4L_i8UoCX2BagQuxyH@F_r627*$ zj%E%M4z{-F&Tr>VD;=vOV@eBQyLV$RxBKz5Dtx$n)=ilY>c8Y^x|3cHKiRuyU9>4o zRewzRmivbU-sT<(OK5z1?*>!PRgzlhRKr@NDo_5xqsPvcnaKioqn_-XLX#%(F`lJrCJ# zNq^z#M}~-(RwC1Y&10nn^M+;ghHQG+es4~4LG}Q?<9en16z33olye}>B#M!Y$rpsA z{k3C&!s*L1ark?&KfhPGZ*1JdC$PIV4pgaDow3~2V$8zubo&&ObBsfbBd_`L2kUC# zsHx z;}KOt7>B_LjTUlRpT&}OvptP+i3%9_EkB%2B~?Pc(lNs{v%&fHVQtl&ZIhQrj4 zYv~-Q(opN+RT8$U)pe)~O778E3+Z`?f+L0SmHQ9|Nv!UqJQ5vo!`l!|?Q zqi0~Z01fI1+B&%u&o^QhwThEcCNM*$4O{o46L8KsU|_=fT8MUoB;Bi_=d9;$qm~YD z#cu^p|0}Bh0p$@G5}=#Qc7+upAw??7nV(ahr@<_tkOE4z&7d>c`u6K%udTm#R1i-+`=d7(cXX4ybv^gtm*U!_Z0flugLwX z3VP>1)94t8WOANE(YH@>N-Qrz+wU?>|LJsC%e$oJ$ET;-vECV{%DJhCc_&IZT}S3* zNVPz;@f~oUnhxo#8Y@?Odf)iA2-W2t_XX&=4NIg5K827xjue+}=|2ye%U93s&gsdc z|AA%sVOG!2ydLk6>9BQ3*0A4J;gxi-?CgB0W!bqu4dKlGFlBYUcH9-`DqnFS{1M_i z?oT7UfDgq3LV_;ekk#Q*bCNK!SjO(YaV#ezuhQZC$iUw5GTW;&&&=JGo^|%Yb!U0U zz0iJ)xDa^8kAuNaV_t!){m{i?1MwvrAI=wD0{hB~{0}gqTTKoAJ_xZ_O9F!^)J}Xa zr!u!Qw_w`qkm(lb7qouR@Zf4+Y|X?X(?#B?&75H{Q)hc|XcfXT&pJM=_srm}-TPqE(_o=`F4>Ix)y8 zXCfQFtuso{e=D~pPtyNO4^QuQNJ7M&tR{CGGE^#wO{vYaz2}bhrs*MT(^EU*nrff* zd>8RIwnLd}841f`5jD>MJp;{p!!Zd95gxW2u3?U+?`DeFY#oGgv}G1S5)&yu*0dgO zK(BK;ieMXYyYb5@Q8*l$u~cK#xYWV}d z9($r@^o@5st@C9)34aWZ3C+uoOzMXP^e6XElf@O(7L*u{?`4cesfehWP#dclsm!Uw zsZ^Ce@jIoJjy&IiFeU?hTw7Y7zk>pP5CKM^R8=v{R8^DY2}K9&0hK}4uNQS*3k+a3 z`OffbGOiuB7auzBP;2l*JK4RC_W%G$hN-fegPN=im%g&)U&}mzel3qyN7CC8wc_>3=v`+5dZ4 zp9`e_+e6Pt$3XwzbAOWZ{B7m>X6j;Sp(bK#X=r8t$%BubiJ9l0@&BjiKOFxDrTTv; znOOc8<^SmUHzg1K-v#`S1^r7~|FnLpiw}l}{=Zev2eVfjaR&eh03<~Om0dtiwIF_e zSDnG%K0k*>8uW_;cP^r(RW^ZjbYAgxrf#!rk}ElFED$o44ixg;#$F{-LlHvTKA+&< zkkpY70;Q*)M42${bH7;6+elzGo?vI@rL!kaAq7PN3GopTASOhP21Of3MQv^TBc-wI=V!OCU%%$2r{kKLm}J-1GEE<(rlztD zk|Ij|)yaQz{9HcNAHQznEDxbD{?}l_=*9#>6aI%==G&K%1fgKBGlGx&rjIxBqquAh z6%8pJ?>qF4>uqUeO-*S{cI!gpEVooTQu0PtQdgP(XdEO2@Wl}g%mjsq;ma4tW)tzW z*r&N*Kz(-s4UL<-d)eEvpuf4Eo>0~6+sDxKbj`T7uzrX2g*FTjNT^Suf4o#j@x}fN z7}%TosVU z@-TvyqlM!vhR4cwj`rvWOwF&6mMgarX%ijPTqxdN=r+J*4F$Zars0BRtEw?P*W0PNCKRk5uLG_jo{QZ)I*$Z zTp4RjcgVjEO%~)Wc>U(Ow7!vJJPbU z1sU8&G&A(>y#pA+*5v*en+b z>o0qVa>8{;)!*i-oah5m<>QkQX6Gw3f8Q~(vVONetL6H;r<8!{oSqu(N@C$yIVI!< z9iN|(00r`4Gz0uNc|a{m5CXJskQafAAfpmx(v1VOGKx7qYQAb>-81Z^I@EwhU590n+Dg}a!cI% z`=obtOA9CO^`@|&H|`X(55(|tp?g7XtskGqg{R*)cGnR!Av}W4k4_{z*lSpmetG`s zg$=L1UQ2;Ct+(ABGKce1_2ZQ)0(9odCl+}Q?@BFkmHGMj*jVD?FNi$1guHL3b>O=9 zPsW)AFc|5U78WM`q3E}ZJ5jUgY1X-h8=m4iuMgh47X$)O>LeA}4gxq1!GWjV?;HG- zl$2`m?w^|^8y92V-`_t4p*BA7WA?UJn%?fi+em5%1DnTyAt50#1Y#&ti}7}&sxzN> zeu#hcHW6h%H0To4pkJQ)@Z9~pFbLl@f32qE1$@Bn^^wu-BExxjVj@!PhFF;Vuj)UL zyXh{wHXbosnw!5dbOqt!;@x)5)&`;Y;vj((JS^%8G=@G^ayMF{4(KBZWV^i~0~J#$_cjH8e@>R}BI zyk_AVbO<{k`@?8EL+a*zB`&lmD=C|kQfEBCx_lVaDCk#L%mEAw+x3%BWG?kuam8(ngD@+t}`HzYp zA-w)1{l`P#qN&SnPf))-ESU5^HsVbLFiCsLw(kAF%T?{oZ@HUMF`mXAqW`?4zeF9< z9TDN9m}*)c>1?qfr*jzq=S33`ZmHQ6>+jFo@!HhIYFV(c`0e=NFo$X&tCotAA-bXA zJwDz=5Ev`0&U`jn4?#enWBX<+|ED$yb_(ZOJq<2YtZxre(A)(zwWir(#y#P#iU zZc3fe^bCEMS>4n2ww^}UxxB*qSbdD5g0}Xw(fU3VQLzxx#dtiLQlXxjy1J5@8kYH7 zM~aG`6#VLEic(Te3Z*{oqVp{gE+sF*9cx`&F;=PhBk7QC9?ic|w=W((oHLMh#j?QO zc!FtMAIjCmP0`i016fX!*VBUOzdyhQW2GVc`fsZ-StccPELd|QnES*x^*lyG1;=yNn^jWr=XVPCQO z$1<5Uful%2q+L*edR%>}b7ks76PRdl!1Zhqfn@UxDQPLwenfsnHv5JqixsIhr?Y%^ zZBH$OzI;DE|0K)t+wd|tn`S=I3{^h(cNAT}=tufxjqFOsX(fJ=xdB(ho79$EgO29(Uoq%QZx~Q=UJ~BK@?4wp#mb zFD#A8K?7xJ3Bi-=Q+@go2i6J8{D?k?$AOl!0t!8yji-QXkDP!~7wa6ddex`Tkj(<> zf@!%_A9BW_cT@=hYqFA9VPI@M345o#t)*vfEk0W)iwXl?K%MY~40J&tyS+Aif-H+n z9@E;+-XYGum$lmLB3`k#J|%^-<7&Sv5bD>5`<}I4*vHX9CVFa1eY|pMX?bj~gFEnK z_{uubOBQGTLz16CXE9S}?2HUpoekJjB7H}S_bJ?nIIu-f4k8i`n)!ke4+W3CdI;^` zM4IJ(1<`7F{=+Sdm1+}1{|X{Bx;W{GMB-6<(!0U2!B0$K((m!z^W|vDS6C?R$KYVj z+uM7ap^*FQ%!amUPK2PVNhbQ+Z*bD%qJiiBi)XQ~!f3Pfjn-=e>4*L_JdiV`8>-N< zw>LD4zaEZ+PdUA_?#XAB@Ugv?_e3sn-5Sy4Mo`(~NvD8S>Hv0N6i-*JN* ztmWBb2x>rdhzDII9ZNz3p-oB9?(sQ!^Wb8RkI_v?QC2QG|2rjzClW`IT$WglOoLAo z9M(>Mt<&CNOdd&;Y@+cAQsmVgIZ@Bv~4T^#L%|68Gs;*aJo`j#__ExEVxH~+Ix=+u~&=GXchx_{jen)E#jBmt-Mn+S; zqG16TE5H8)5JMuMy#+lW<_`@?2=eyOb?=raHOp`r8XAU*!aaj(z=1nPz|MwK*@!Z+ zS^Y-jMu?QNY@D8xYp$ywF?N`|tJKp76F zrtbd&ad3=toHAfSIYG6L(QoU~=o)#lsVN;#OG%ggRppV8YDADR;2GVpU-C&l4S4%= z3j4dOWoGB|=BzxAIyU&&#=zyGvlK+ zbU}WcM<;QdsZx@x+>giKwz$IHo2>}?ep|H1-D(hf0fPY^o7xMuU+SZ5h3XI@Ii7P5 z(>SyIA)&hzilD(YylknCt@-f7CF7t6k|%kdNZ+F1#h_|0>EoP`eRu`+G(c0*)MJyv zlA0&$SHPAuR7HPIjH&k~?ywe?Nb0thY4=Y&wB^>O>qTCm*e8b6P-Vz)$l*`mqb+^b zHe_Wt@7kkbBZ=ifMv|LLw)bcX zenHy&A~0EJ^jyN7S9U~b&!Gf1y7c3o^9cjF`#FkFZ!zO3AX*t8kjPE!(N3e#Qcs1EmTa*O7FijK1p@m zEpV<{7$ksYMeFjFr82aA{G^YudB{9dMn)FeyFy9)88HXjJ2bzz;)yZce2pD=&a}1& z{0S0h`G@ZlZ#qHzco~2cj@15)OAZ-8(dQECtroDk`a!R|rv#PN6eT`utWp{YmZk35 z5F8k}Gv)_g1ywLqSlp)6xO#f;)1-AMpm4n`$YLz&#(!n{NI z0v>~=JLB9__thv%*5A%)N4^f_*7y(1re>6xY=rRME>Y_Mi8}i5x&&eBb-z3LhrdGN z7;SWVnnL2_q@+@b2)sc7{OH~_U}v5;?3aW?1f;>ML0s65;0lcL>v@R0CI1Q2$dI~u zg83J}@G@SQ=7=`dRu{hJ@?7D07@JhZ(P<+!yj>nJ=@#7#RYXlw!+yvKt5J8j9Y{${ zNEBMnd&s&5wm1yNL)>oj($7BT#DO;mqwTKE2G$W|yBn{I=kWFg7;*VJ&%sE;CLHcX zq=}jpTCbYZi_?8Z&hE@qJIK(4U(Uu^{^D~#yKXnn-4KbX^5Q5oH4wxgV`wa^K}aRMK?##yL-od z_+0G)0=O7Ra%IltpDwh?1#gYCNnM}YuQ2=B+@jgfiqE1NszSpHzQ#DO^;gsuj%FBm zj?qh*E{k1rcB9yjMlk`H*$U*N!Y*B4u!IjPh0Lkq@{yGr=Wg{an(u5#(P4l8SGdN zWzpr3)!&z_1rCB}EI&d!hTL0C4clM6Wb=~?`1l8@_Uc7(LiEZ@v&&d(wisn*+jObb z+H`Ew_I4ztz)!YYEMb5E8})) zik2kKjsjxgFivg^C0nI&WbwIJK}XG_p5Le-8b8-drNPeQYmU{Mk@xI^^m0P_RP2CO2_k zX<%R?vNR^oGb+>|^AEs~EeoFfbsh@~-nVzt1)a`l3nkI}1~Cu{Ay7U9V)k4YLIAp> z@AV)lsa+uL-a6Y^T7Q_8b0h+?6>s_9l>t2F5P19i?sXgH|6? zQidt(_jj{8Z}vyQl9WzCE5IZ7FQP2ESu=#6cFK=3cc=<5j!T$JjUw5+;Fsmeb=ICd z^b_}VJT=MDDIqC~Dh+kDc{GJa-EpIpdE6tX^$7Y9%EqT3`2~BBD zlm`kMfB+?+-B?L4cb@tQtJsTlh_v4R|w!;*ndz`mc>6m-!uK$iV4D1Rvx1tlgWsQ z?KaR*Rd{M!#2TNtUpCF^Z=&c>+Mu-oSJBdg=w(sSK!dSN?#-t>SDZ^dAFkiF_plTb zj2|%2Wox*R9>4`Ve0+RMw_B4js*eQVApt1Kb7VHW`@Eu;Ej|v!+&4Fs)F~$6OUQAs zRuXXGVnZVARAc5iF?ojSeEv~XRWAiT%cl#vXPc+C_-O1ZZ?JgY*iV1z782w#=jHZ% z;SYgHR1g!MY)p4SWF%I>BUSyVpjS^oSEHhQm39EXs2>!PsNX%dHxpGK~^3Vf$L-HG$Ld9&S2#1#>YK7%+BUlaRfXJzv`?m{s?U5RIisO%q?cup(&zU z>-)FxZd!`Stn8)@52bJHgd9PEL1DmPB3wnD2+rk6-Wxcrc9#&XkskRwbaq#y#fuhm z5JO{QXpsC^&uT^AILxi^5(Q&5eU9p%&w25iMs0WK+=(3;fR(mFRIqXc?D%%`Ss<> zj91@lPpJP3k<30JA`CpLbROsWqc3wkMagc1W&P+;xjS`Xbc$can`95%$;e6){|w=a zqWHAOh>D$OlXN_Y{Bql0dS2?S&NQCyPpl882MI8Hd&CJmx`}F;56_%8bk7`+J3c`Z zT;wYXx0F8buGikM_)M>uOhdu-usm44=cztoVj@U@AWrI0OVhfTa1eYRg!8Ik82@9m zm>t$yqlcWc$rMwah=3@#5XWK9=&4v~l5=*k?rFB|Zr@7gJO2Cj!y5B>L1-zAZnwUb znb?QdD}OJPxsf&`6nAq{ulrpNNKb^I?fcuJck;QdhzNRH0_UQC@2}{zytc(e&&xz{ z&gNb$LChA*89WwWEhXJFm46_OzjoOTD52YWqQzX`4wpJ$ia_KQ>^gF}tI+RPA612T zcd`-$iTGt~nX%641e?{3MYQIprk0lQ2F+XQ{&*He!20$!ibm(DyC4L}-p*8yzr%rF zo5|&7&*@HWY+qo|?7iiR+M-uD0s)`Q^pC-SPb_R=T^l$8g@B7>*=pOoDj7#%A8dWk z6dOB(Wf|QtJ7p!U+qyPNEN=n;(QO6;!zrY0;cT8B-#K8?S^icZU^#cG?U`0AtsfMQ zIlu?=Rf+H>Kgai188_;_ihfL~1krnrUs~`pa-=iXtPm0iswo5PJTi@g@J)pMP#(uZ zvhX|gKQ`|c3Zy-cfq$Vcj0emg-|x7@oSWuNFh~Ms_Su2;&m!jPqo#TrE^1v63@j`a zFKdb&Q(f^zx1da0vqVd|XC|vXIX{vr`N#e^yC~i7-AV7nu{0}c-4&cyQy?ZWwYSjD z*o^Pv@4jEr%M#m;aA2jFktAoKNU$9YR^2DQvF)@virxl4vajI?g>~k=mwj#j1Ey;i*q4`MN=w0ZJ z+s-HUp*+`0|3JScIKI>u!(VH5Jfb&Zg5GmIg|Y|QU@wM|yyV5i#bbin(jFsr*pJ)F z&%Ow(sLC}KIe|CUI=Q?(%L)kq;o$PW-p9CKFEX~W>j5%&F~!@QFVI2zUtOEN?(GTp ze6d_tU`Ck4Lqii;X|l@ugiRC}VMz}rG7G-Y~7qLcW)CmgEp^)*arSQu*CvWt!%o!J2Q z(tUd$Tm=gc_S`&9i1VSXm;Cdi%WQOyf3f$6S8w96n1{TSt_J^wVS;;L8op5PL_)5iN&Bv_Z8>qR9(R9dCBXLEG2vMr$+m(evd6A%Nx{fQNf0X zY^RqOXi2ay*wM;G5;O>w5M%S44xQFW`++hO6I(6-qfpl(IKlK2BnM#ftpe8#~6xWgB(NOZyuwx>@j$4 zuD^McRO6+|8bl3@#?On?nh_A73l-Xj0y=sk@wh2DIa4~{_qkJfOhIR3bIGc7)-WaJ zDL!>}hz3Hrje;^UYfY^RU4VI*=C8iO$C z(#Otr zznLNU6BY6y8_;L4%jk?N$F@hvZh!1Z z2+4|0LciK*EFlw#GxPbj6$K4sFel{d;h~88JXwBPA!d6Cbi?gznSW_K{}vWL{1Z2l z0B@xOWuRPb`T)SrloiK=mFp%wS8`uuZ}kOflS$~u7m^pUP}vc`%ph7~v!FQ;wWE5i zR5V35HDN+Imt}u1TlnT7M6%IJrO*CO{J9zIYz0r$T5oX}Q=w4@6nRb>3=DN{*L%0lt23pG9GkT_0(|7mY9b|c<^R2E>5hF_f6Lxlp0kDrc+#f<73?wC~M63P%(yUX* z?`1)RVy3hYmc$pn7h$6#dg+O;j*d!y6U}xQ(x2327iz_h!O{J*W)Xfj=IF-|euhCo zK@o~Ib@A1AYnDvfztCu2ON1g@wwYqC=~ep-_kpDn4fs3th< zRH3Y`B}hQ0DZ?FgZo;1C?@t1|Uk7a4$d0MpsE&a+UUs^14nkE-KHpYFu8#okRF{^L z4y;DP>sOdxmPn#!2hu}U$ZxeAjb`$tC(B2)%B6=VXf9L;#&)&AfvN$CDW|heCn{T8 zHB9mbBfqTeZoImInKsN@Fmr<+OPK^NIB!hXkK}{Lw6Q$IXSF0Gj6YiHDicJ;vUVnxhN)EU059w55~pD zLL5L}L4DkhgsDz*qxChPoVOiOJJ}Xpp675x%3~pR2jcT75Ht=HIJI&LUAwCa0#*{Z z7YDf-F}Gaz3srtKpGEZjPNu>I%cGj2Z|jr6}}bf1UI$(a}*&ztiu-;>A_rM(^^ z_}4+Qf#egbyHrcS;WFn6^K<7jt!(5Z5zV%rj7;*RwKUsyz#8<+*~F@TD(`nv#`P_P1LygDsEvSEsXYIu&CThadQE zf#h&$9&2{d>;eQJYb0U*J>4r4>uTyZ`u9ikJEPYWrl?SXC(QvE>a?6JWA(+JHW9%5HD+a8TF^jvp9q70>+}9LG&uM&62jJLx!xSJ?)qYR|Dm=%urwgt zhzoCZx;ULX!M`X@3fJ;^WI8~AGbohnMzLkPy12U4Dx5KFt%)slF3c?`n2BMF3!Nt8 zP{`0+qJSc>*7HG!ggBfo+CH69!nTk7HK8UDzNe?S%YCbRF!xdX$q+}TN)%yh4Uue- z&X#6kU(szyMGWJ*x(MKL=CNMSoDtycX*orfxbA4P&XEn6R@OD&SPyDvp$>czA;JeW1FWM9ltGu@BG>s^&_w!|7x8CdTVWnOu z2X80%qx1Ee;8e0bvfJf@s=r_$7aTbFG4dEZE}I1_BFdvSs|rzDa}id+vB3D*@2Fe1UiJK4q-?{y|1Np)y9H<_Rh&QKZ`_; zRs_A7dQS#05O5H-7W`W#roy%8b$g)(Z`_8{v~~jme}%SsznnQAU7xu54Bv2x1L{N9 z-0y<}iT%oCu=wRl+&f$cPt=(+?5F}+XIsV*so&Ouv-($-f)_@5g#vJb1ZY1E{HI$# z1qF_P$0t;@q(y1qb2M8R1JPBaEPDrk_geW09_k!@CG>uLdQwnR%d@C4p7a_S|9+-b z=8&f`;o^BDHHsHIu0`M*5O5P86GPM(n@24ELzOxLyQ8C{r^+;&l&MDwK@U;R{PVTehvVf8wQm0cX0j` z@YY?ONqJ|riJzJvr%}mB$5qdcM1!4rd;|y8QTP{j@QE#E16SHE08la|Il;m2r-=L# zREDWco)$h1m3p8F4g=w0T?}1k=Nw&oaMzcdSF1`&BYp2@QCJ5kk3;Pz)hCTO-4=*?d9Fo=^0;(XHxZ% z@R>@m+>i_9^{(xp!Q(Cvals$8OP_x$a(bw3KSOe1s#_=erlcgD{SE8O7saYfknR4}6uHF2 zq#1tx4~mK~_1P4&)Dge0ju#!UBD+-_>r0$&w=T1sPon=45d~yw!|8OD%;QWxg-IPt zw5+V-dIaYApr~p(5e(;hC5qUxO#+nL`uUo>n)!$^_-8{mr2ZE@6NMCJlma0fKN>bu|NWOC2+wo)e_| zH3NBbvy!S1aE&UC!p!u7L3#nSic!+aBh)q_R zS^whGdH)F4XSpT9rXmseaivufS)l3n3rO0;KH0=xqW?$JIfuvfz0p2qqsDG*HMY^% zY3#= zt#zVwssM0A1M^ZQ-EoZRW#0LcNjkJyD2O!rr^Zy=RZvh(2Tik*)dm*_C!sK#Ofy~E ztt11>wB8*F1*H@SG@zxUD|Op>SG33s!NMH-e}e@))DOBJFwhuCbsm9FD-p+bE|ieI zwcM+`amDGTr4=qtF2!*`q1~EiV7{nz-0#`qQzF8|Q6A`Q`YKuoccG_?HL6a?)wQ*H z65$bzj0LmlJiqRz3Sg>h5wV_L4v0D%tW;clYMZ)2o4+VW=MJ#YW#58K48KK2u zTD&DoMSV+i>Gk$UDAtsR&{_?3^33$Kdhk`qj_Yi(d`{HmJbI{dP|E+VX*HR@o3Xk& zM>dy(2!Id|PefQa!16jQx|qS|-%*S62mm^}rb7@vMq67Oej{Oj(=IB%k`lBl2GGIo z_jGm+n~OrO*0ODGy08h$z{ojCmJ-lQ}VJD*op zn)Q(I_0~G$;S=9=ZW=NXMeLe1@OC+w&A4*$aRmo}4vqH%r$4wBHk$2H*DavS?o`g< zRMphx0)oPVVT_lna4j?GZ?bR`(02CEo;?sYg8rKr;2|Ty_+}i#B+px7tQARTtIJcDY4PRs46bF*$~4gTyY;e_)4GX7 zcmz=Nr~^xS!O-%#qNAcz&*n;HQf42@7s^1Nfy2Hw5jf=s@O2BZ%tVkJX9IQfeFTw{ ziYhD!g{$#4B6GbxPCHFB=m;gBGxbZx#)YF6?x8A-*i(oe!u2X*cT~T8O5wjF$bSzM zQ>Yu;593EXkveVQd>#hg$FbV}2#jKfqx*{s?S+Wl zdQ3rhdMYCUAfB<$IT37((hm&G8p+{~6IP|9Udo0HyvDhXWG z&XtO7G$lyEpz6}z_hXxkgy9G9#2!>N0z(HAS{Tv#6jk7zQJ6|f3<3!7y|h%OMm<5q zPXPY604`+Y5Pw?^j%AV4lDXacj`{ITX^M6WuTMOF&!TX2u-uPV-9@<^jFOFxc27q> z4i0rVG&D5G-|oyBZ5lWJ{%VyK@S&>U;9nQpl@UK#8^v-}t7TFW;mQKRqL6p32+?6a zsw&%M7SuO>8yR`U?~_=t$z}ii_2Bg$lihFDDS@Au{NK5Dizwji%<}EWL^V0EZ zeayqM`Q2TvOstpR=gIUb@BuD}nO>_@T*mtUw}J)}%QmXLXzIE;Sv0h?4Jz>l$-)ck z{TWz2A0$(_UX4H3lE)#ZorzN%fI5cHIsB@+D%GmoKI7ye7C!BGQ*RJ>(EaXY^Z1<> ztqlqi*5Z{J{i{2dASi?9F)tqlSblVTyf74*s(Kkg55hH>A%=#A`dz_h{99Vg!aj=W z7SjIK!#^TkDRf`?j+rmE1pr7FlkyL@qOga&=@S6R9SPZ7FH~F|dW-`2_X0 z&WL?et=cx3sBW?h8_vKG7vC#_%rrT22nZC0T-s&=IK2K`;CpFXa2AQf75gWWsoi3W zy+7}q8S#eCxT0d?!@i)2C-x5Flpw(0K%x~;LOAd7bNh|c9>^K!&S+mVb??W|n(Sh# zs*^~U$I1>Mr$QwD$=13@Eu_?4%_GLUQl_t@uDX4e+uqK@<9GmvZ(14;@Aa+y^=J(b zy9o1h$g8327I0QFFNn6ZHZ!9!%Ev-rM6iD@{p-J*tEm@-fq@PkkKVjN=!rw>peDCMdkx{HEl{m)*alBZ*CxAj`yh+OV5;mfFOyf%4E7> z{O6ndD;3}oh(#e&mV>nJ(mD>gw7*v@W0aqF^|!ohyBK3+p2@*Z(N~-&c?D~s_V!;% z;TpbXYmHrPI3FY02^QRehR(tJ*Y{-g63uwa z^9t&=7jnXxZ848z>=65CCm`bS{dFR@Y;9RT@?~;JS!4)P^i5~_57qtj8Y5xeZXnoY z*8^SgU89DIK1IxNN~z;ky{b;O%-_w_-!+v5&46D*;%!bIUMB{_mhGxoGd6k*ze$aN z|IKAy2S?nEOGKxN0ix$K;}r;6o!;=5JnfB-D^9!y4iPuz_H2^q2-Ef6FCyVg3}+) zyE5J_Va))sJR~S)5>pcsC1uA5E?(m|0EeT?m!g^rMfFx&3?$m`*}>fkuPLQws+`VZ zZV;Mz1bc;vPFj%B?~_xa0Dkl2@WbOHri`c55_rVOPT+3MoBx@DU*=Mr=v)DRaB4y8|R z8X21GqOTe+h??WQ(WGv}l-p?jNTo!7xdsYJ{oMGH>(O7q@{oO`%YB z^@vCV{5A0EyQ+@5Jh{60H_IH$Z3GeaMA!2(XkL1HzBs|1wwC6*OCD2MW8O~{dtnlH zA(b$Wctyri(&+h!8D)vJS1de^c;PQHv{^`~inEEbGM>!0_Nd}g7^eN~bcow1Xzp*N zl5c+U6d&HENfdCG5BX8-Nkh*ciqD!4?t?2PeIl0;tt%mv+}$_KsSE|Fp|wSAeYJ6a zcQLWE^JLW)G11Y7gX?ss`(NC9Lf8Z!*hvP>Zdt>R+e(P=ZbclM9!ihHK1EU}n?HDC z8|ai@nL;k6HfaWFBCgnUl^AnU2=@Y0^PzEVqTH2VE(BCwFr3!;}u)?ugjYjsBm7(FCx5Sg!vA_h! zWj2NlubWry!S9bahTld591m#&UA1;ta)zyIU}6cl7w-!&kVl=Bl~Zhh??pqp6j$u3hqC22Wk z$bOr&&^xI-u-k|=a%x%7TJANR4+CD=5K1>f<{FcTcIB^a^eYf0!Z|~MvzF)!;YTZo zLK-))yX?KQ|2B^~FAF{UZBT70{LHo>5Z5q~Xznzg8dwwXlScMkiivvw?zu7Ygx^hScxgPv{W`$n)2N2=>%|S<9CrVl0b&jU6c(f!Y{S<*p8yTy!~HbU;@* zd*m`Hp;k^m&>ux>wAR7yt}$m=>#Tti0WQhIvRVN{b>-rVxKXt-k&5{r$9=p-lzQ;GZD`*1-mUj6OC$o^UGO#Xc8Ywy-{*q4)cR zKrVXmTXa!ZOju(oA?#tF;V}2aXpLK%k%y)^apZ+Q&!US69j}%yBWEIz4hft9 z{$tK}+So#CW`uhFUY$f|k@oMPY>MeIkS+NZ4Hh~0v8j{nen0FVyRX?F=umad&(>#$W|dkmWbJLMSW=U( zb(2?1I|F;86L@53WKKD*eJ8K@ej4$_&f$h{BlQ+#Et_poG;`S*4ugaU&nrzHSdz`} zC2w8`EA~L;^=`F97g6>|jEHReIA3sVu{rzKvRXqay|57S_4WO))C6g3rM6Ge#^|x!)1PNIF_3G`uQT=j< z22(?m+Lq+oBa9u0j_M}rJ}@cOt>wO=mmJ$3`$B0~fD@S~1+y}Nf+nms$ z23A}T^YPAFJ6i)d?5x(A(O#yI%WMOt!0;fGF=ZQMV%Qh;;pG~_)KIghw`k1Oe+^Ns z!Wimj1`Q%Bfz%72h;b?`8?xyi> zZ$mlMG2b^VEIRd+XL!N>?fTzB>GTcnt>wN968mPkWs?^s&(acpAv4rMe?O_ClM|U2 zuU8XNdltW4uOOgZ-6I@e^2b&hH$6QmC8eg>cRYd|0s-pB@2gETvNDv_X;rfqdvW{- zg&RM*HMsiFXe&UvkbVFODS&15RP*)y3=45VLKg#I5*^hk!JrjO8G!RvC4mB!>M{RR zXb@%?h|aU>!{f0QicpQ)T!^W~0M~x$K&UbNFYGSu-CG41>5S+k%uPxDPj@aYKW6wJ z#**&Q8=d*mtJ`X&Fy%e3z8P8hM#kIle;W1)5=6>ybJeBGn@oqS$pC-?Uj?>A6S#KP zmxQ7b__XSe-8`pvKbFqke^YWh-M5iOrYofaNwk|y$f>s~kGRG=-T~q=9}d&1RAInkWoF6^PWQ7S%q#B9l7* zCb+T?D_9G($)83%W&RTt5rsj-&qz+81ZBtB=Pm?N>3C3k8||O03Dndy988$71D_H3 zurs6&F-;#%6>=Bq>ZmgaxYbmq0GdqS=z`u}=DG<-PWnU0LDc{EHcvMB=_zqd4BJoq zk*uYfR#kI>jNNmyT+ zZRe-E-I+4_!cFYl${AzVpoeF**Sp{UnbFC!%?DO4CP3+K( znSAEE&sSR$9S<$$51+L$!ctQJ9z|6Z!f@B{@Q+8#AWfiE*Iv!HI?M;MF8x)%7$T z-PYgA=7X^FQua8_6;N}gUOBH^h6)J#nW^!Bas%SJ_rVReDd2kooE&UuF1vhD_lhXv z5j)<~bDJt~7tHQr+<;g!l%41oobSQcbUvc|l>K?wBN!ektNbUo`yakP|4g|Kik}(g zWkOrI*sy<&U5_{ZDiz;hzeTYgf`Ifwgx>1@gdMW&qFh%p%T{KsmS^Kt!e-;f=di`l zUhnJcBlx*iiQc5Ei=ky}9)rmgQR(FT5l$niD>6uGzM!nEJOm+>{pi*y*&ya73>F#| z5)#5k^N5Odj=+SChrgqLpI}=;WgdP$YJH$tvAG({&hl>lQkU-o zZWXOPPyVshzltJ4uNSY>B08cAnE)I4oiJg0wb3dOAqDGlc#hiui|hb^qZy*vgysrh$-76AQp8; z?l-mnzby$-hB@}v*#9gG7${%kSV86|PWZ7r7}lq&+m-GFyoxJ(%nVz6$6!u6B?5vA zk5a}UH<}rX#Y~kjaPvY?#(4uw96Jn@b2XpI@#*(t1=z11DVhcL<+Zf5XmP6p>yYtq zgv;rrYTun8d1J134%TI|eNtVve#5cVO_ZvX%13S?i){qgy2w${JssVCbj>KmDGajHzy^@x&o169ETx4tj)n_C5?Yx8TLa|{@p8m2?mP-@hj_0 zbgmYqQV2FUzM{M(QnT_w$K_Jdi}AzyQ}@DocH5~$lPET|zT&$7W7!l50|qXVelRh` zW)TpcPT$5RFu}62?1j`YCKRVrboFlY^?$&a13XrvJ-j^rnumvRTffcb2Q5kasJR_e zOo?uVS11w#=1bS=z$)e4=}!jGP?oB93DGb?@PRhDNI>Q65J#l{UI6}f3R%mpaM*2; z?Dv3aQZP}z;I*3a@_hdsa02R+h~Aa8_6<5aTT6MB0xFfA?a%dzg1PDYO8I4Ik#CEyr;P#0*|N1ynh=mP_Pqga~Sz>-yoz|fS0DzoHFS?vp z_-1IJ>-s}x_@z{dwSp;x>Vqyft0erq% z!LPc#P`nO;D$uXTo*jaP#j6Yy*tNE?HXjA{84>mHkakX{{{Jojjc2~^(-Gn?O%g?i zgM)~k4Ei9CbL2Ts#9hc;u_*sSUkRNio!^#VwMXCleNj`;eZjWIb`QKKE@@H;ZDL8Y ztLhv^45%ytV|Qs9G5h%S<*OwO1{2PUd|l);X4W*XcP@eIV}CmrlBDewAR;ONvo%K5v)iPQXd;@R*O zq+o1VKfH}QvsFbfL@3Z~UhxC00$pcd7YhPbe~Xvq^06Gy8NB`Sp$~9fIeTg_e{g4j zb*DDbpK7uu;4&Iyc64yX;#Ff|Vd?(|kibvjfM2Ua!LLb~Uw!E>L@4 zc@wiZ#iy;ODPQaN1!J?`BfOus`zdIt3c#^acg4al#y0PiQ^N=hmlHs!n3(=S z6lSAmQ?=P0&~~dW=oE36RMePFIeP5qaPr4RwxI2g9GSS;o2rlB;SB}*=Ae)hg&9hT zT4J}zW-$+CC<@*_0Se2za5!w2y-YZO6Kr4zUZlyofy@z3Ej9!YW{#}IIx{3<%uK{G@$z5=0|*5`p7 zE)T0LzjEidqkm|F<}qjpvze^I#YHw(lw+Yn2?@^2d1%L^h4}53M#=1yZEwJmMeuZB zrLribXf+%BD=8melG~YOa0*dJ>RTFUUH2;!^c96(8jWLdZVvLxov-`7PCKr9sPH+A zX2tNh?7;#Ak#gf!Q|4Ee3Mq#f&sB*b-k*q3wbO;IgG+6n<5td!3#-Yh|5+pPb6o$m zGF@2Z7E{JQZxn)ZS7d82pW_cabJ!E3KWtDc`7c$_8y(bp1~P{0cG0O~taj%)Ha*DY z9y+dRSJKu+hL_i4mVKUJ88SZon=^{?MML4hzZOpyERpz1r@=wDOt!ge9V1*82%SAN zfaOo4;?^k?z!>Nsu((^K5dmHra3+t(B%k$$!?C=U-dN(z5txFg3#fqcacLgs6S(xW zv^ZFmu$%H~s7qM3g+G*k)-4;vdHGk_iM)U9tHjfUw6ypkwURPESo$usA(k zCkA|H(DQJji`V?4#00^-$~(6FMp;66FcF|-;J=!T{tfy^5`my^7U-*W+$oyuxcGww zChK%>{%B_B=i>uxL&|<{m&RbMV>uxAND6DA> zFmH2e`=r<&xy4Ebn1@9n`~$x3ANWGqhoG8xI`Pj(xMk~SYD8oN+wwQ{SY`=&8k#~- z&qj0;8QqmH9MD4u$A+GIOGkImr)WwED+OzIz>ZI3V%fKF>QCnSIBkzmU#zIt`+bLzN{8M9Ng@^@cHf)>8-~BI;Cw$sA4Ukz+a+25=HF? zZf2LJ)Xa0)=4bVjDQP}r8%YXE5{iqVk%-u&=utUr*GXUWGAw15H@Z;$b04cN2yXd) zR8RsM)@5B>T$~wcVjAvPo7SvVw9{}RE1cW|t1NgznbP=3C8JO|FqtJb2WOK1`|S!n zivc&=xSr^I^i~P_PEd!#s#U~oSUTn==hJnS3Gu;(DTY+!1D;5UMCAhukUO07ASo%D zRCxfyQrJDk%+-jCZE`R3&{LwjNjj2SidK!YIc;_7Xac2Z)nx!xPWi(n9%{{WbyWX3 z+8kK8IgmpHnE!JwfrrOke7046)%kYf{%wmu2gFi^+n_OZl_Psx#uK4q&Fm|5!d^zIMNG|G^ z63ClrGKb{+xZ?L(YjJ7XOZrHH1N;?Yfu$Oq9RD6E(<(GC-oVy!0KaD&0gCQK9*y;F z21&SYPx_W<`$VhUAOw=%x(`rqE@Yg_7D*4iULuoUQ5!6SXdyTXfE}R(EKAT z|H90Z2p2!&%;e_i&k^9J#LMD$?yi`y zRYxh8QFcgV-raU{!<;WZ(ClNWm9g9s#3m@R7TAv3dmlHYV_}Y0R~Gz?pj!;XUn<{= ziYCHNxe2n-PY@{AYW|y6|3J;Zex?rglep%h!mrIr_3(RHWbWnr<6jGY2$R5D<_TQR zg4Wg{8Snsa!$w3P8xDdPFWP$5=omoA>H*yednC!iirW9=aqSdTN`pIaGxff(i$?#4XaxGs?c&UH&9f%&p%?(sU$)RvEf} ziredHQeuXvYDlDx>OW6Dpe7m&YM{19mlB4>-T;ck+f}<6Jwl0SYF(&jq(_GRF*!n1 z>$9r5vN-X!-kIgNKz&2pxYu+x53as4cc|l?S!X2`K_M`u1>2)_m#Y=+q|n*|ysR(`qe61C^)g?`P5KhgTw6?d+h5 z#(%r4@~|*WoOIUG&WgEWvM`qwt*X4`TO=w=E^tAMlE`qQ)pqCBgtx1@qCWQ*afF(J z_ZJRM6Opm551}cRiJ~i-isLF6O%Hi2<54l%_!vk`l7};h@3{ifu6t3IY-KNr-oBrj z_mj|;Q|B+x)B~<3ZO2D@77cNbSrza^NOX3^#U6TUbX6SZ;CZr|)XjWLWay+%|8nM* zsBQS2-~3)u0z*VriJ6L@TI>ZW6t1 z;MuY~%eG(5@z1t$pEgMI9XxY$nr_ zXls%X3pu?(beAGSw*ia8(=dsp0N!-7#7wMLHMwWyZPwkB*wLp7AZB+wskn7;9MJ#S07Vs@%AWw~I%J;ny~m3#cbHTV(p zEJ+m{#Or6J3u8`2k7qwsh)V2tx+6+FrYj3G+VPYG?^@)!u&`5qBw5){z(X2OF09C? zQ$8J-AFUPWuh11v-~TqpufH%_rA>?C*=SYQb%%X24uSYiIOo`Ce~d$^Swnmm}7F(TpsR*OWXQi!Zao(nZe5DF2(<7+(e?S3!X9k~&`d zHcxXD{otrsIQ-l-KbN8t{0OU^@VrqFl zC1M=$^!J`2i5Lzpo{Fsl@=$4R;ax>T4^%uI_Her69a0wDG$t0d;)QQf zn9uZ3`-4$X($k$n+Oal8`F&(%v3`Dz%`RviEFJPT=+CVkU0w?inAyzCC&J0>$*LoV z@iF8C7?*!;8&?(zIgya?gs+ep3JHQ7aT~o_%FNyXW0&py=$IVuu(r39FI%;X9R->! zO+HOc4aGZxU(pu~fa`u$mT(YI5zmcpm7^d@Y)FVW4`#|DJEdmq8!9RW$};_L zO|1k(ZSxl7%*yVR8h!Nj=4JpTD3!`^{wPz%DH%%yw_f0#EiBvxzu8wv&}r~505VW= z%RB#Ly4Fq+9C3>5w*liH`Q!9O6%1S~21?sm?u4J{r*pUp3t6LW&OdCKx}G;OF;2z| zCy=5}HiuXrMjuMerGU&OKHgIzLogYj9zoOkyey5Z2?$SP)n=O!PL`#8PS5LZ3VL(S zS;3SpsqPwZj6Fh$p06*gE&eY7EoR^NX~5@rA&rx(22@`BwyP2AC*D0I5Xf_uVKl0gdRLjC>vf?L<7y?9z$WYTGuduoYVQ8zX%6wEgFzp` zQpLoa4Ko$HUcEhSQVu^^Mf(MJ4YwniDC?~?FSPUV-pa@~m;K|9R@bveU#YLxTo?ls zkl*X6{??^rwU3a)I&J>W|F^vxP&fa|YU8B_V7VTz?DjdnXl7v{enpT7gz%D(`Sr_C z&PC8P!h$Wf$ip0Cn=aWnq|8qEe_9tXdSD6i4r!fZ7eTL3f) zP@_tjRMUPJISTw<#DI`c@VT4|!&Bg%N1XO>&Xv?^#M|z&qxBC)y%DqwX6ydB)lNpr zwmGoJ)st1H@>qZLJ0Gu2><)!W6Xb79{^9WReZsTs{%d%boFfW`H_syx+TpzgcQhi| z>+$oI)wDKm{T!ssVELeIx4Ro~UU>;Iu{7FVl)XPU?GqXD!}1kVnDPyf2$paVf;V3G zvt?RZROdWQ)hCB&7xE{DHYz~pcUg$^_7kKA43?@GpIUtRth9!R+;=|B(#BJzyV(le z;;fmm$>Fgj2X={CEbO}My}tNvtbFhW=cIjhx)Wun^eYN}jR>xmdmMKUJ-k$zr8k?B zpGE)O+765XLm|>`v4Opg2>pgTxm}Cr=9bh4I(EcZzUt;rykcZo=u%RjLVSD>Q_`&hS>dv127VNN4Kp3q#G$@6&)m*Wbm0r+?bX}H?s@_^M3I7 zevn^Atce;A$DoC(tea~$=kLJz?>XG`8rHW${aXq7=bVlpeRulBc~wj^P&((s$zS$Z zLymD#N<94)bcJAy!~$!oND0d6&6zx@^!N@?zCA3=oNl>o+X@o~!Hg|UC;vFXtDn`? z@YA%`Xrv<%elOdzv1o;&ucgIa-}e$o8%gASi3?TrYs;afohYwrNb1b?4u+W?T2AJk z@3xWOOVjyxf8I0b+Fo7{Z&h(Vn2Y)|2{&pI0lkMtEu_x=tu+W&C*78Y#cP4k}GCU3S|Ljb#kH8cq`5IEh6sLmme`wu#`(1#@X813dw`2C9)4#4ufn5S!!TI zWK2CQ_VJ}*VavH;%Nk(l7M_3bgv*x2zq6r0qGLHF=c!@|Hspbo-8G&vnJ;tBd% zht*lLksIx%Lx*4MzsSMi0#nr+C2&Pxql#qGDIpkstJxIWN5bZ}ySy0bd-Z?&@;T>r;i}pe+ z1VdXZmTnUA*WxY2ZuAr?Pv4`e2vCa2mb7Se%4ep-6i6NK?TOEFa6$D>+ep54hi(#! zZokeY+u~eDJWNKa{?;nPNmv#n(Qa+)_-j4^H;|K*Bx|Vk5VO4OU(CFPMQbSlBeMl6 zh+|RePH3B-?kwJ#M-`r$YSJX6wCbb>WN*HPJ{uU)u(C!r-!^0Q7g>U8+b&rqo@!#j zNQsPEVDLh3>@VBGJAG%I6CwL8`I~Lajce#WKR?R^@ma4|>m!>%4EC%u=v@so{BWJ< zo~#;p0*-!W&w8uv+itd;(cg$CHgB2}FcQ;cW_(h( zblu>;B?`A_kqI2w5k9-OUwo1lo6)=?}BtH&Ir zL&62ANu<@T@)Q3sjqdt}mz&!WYRj4j*DFFqRFo&Gn5RCWAHXwbUC1b#;BG(8mBQBz zN->{_m4%Ezp`$N*8=^=@!uKb@A}&(7pL0dpz5PViT9`|2#p=ktk>lFhxi)reK1r*!fg3O$i7Furi&18Qm0WLh zW7^_*#)?27Cev{g4uYA|Qe8E#sIJ9Kz zUhKBSu{#Ooww+RNY`?`L4__9R2bm#cz(JYaOn7-f&8PXI2V)1n7G4)vmPBXCbBnX4 z8-v5Lqpgyky7-@*##Dbk{KpnI$fOP+hm5Dg+pM#Al|PV; zQP^v@Ua@TW8e;f&$Ppmdl|Ddi9@V|ZthxDp)`RW=T|N&;;ixkhIoO;}7c4Hb-|$eG z7456?x0?TWg?t`A*>{6uOdTRh-v{54xR%w6Mw(qe@!G1a2T9%wgHGX@p`MeZDx#Mj zN0!?H+cf)2UZR9AztU*ltAOEWR!dKS>&IE6+5 ze}}SJ-&2>vRHt+3QmS8bo^nLHN5fQm;+$Qf4k{B?i&tsTf%jtYXO51HQA?_s zpP^HqO^g+kKZ#}h4=(PHl#-BuDK04<`>ThIEv&E}94T>ALbghg)Xe>HDXgfZCOon7 zCG@UvWy2IH5sQ7_e0qB!r>dM?s>};ydWOG{Aq$N~J#@Q@%I8ByrT8zrm8T7rr?}B- zk?4L5{qnB#5N_UAt-e(2BdtVFI0kyz#)L*eyromHefjHW2Jy+wn&`T9^Hy^~K`5dJ zX%Hk3gSl8$0|c?+i4koKn`y>{#-naFr)8c~w&R7m2ezcC|Lc}^SDXdLZB*llsDM~9 zBYa8<3N^D&^Om5yV0F~8%F5D4v;E*)mzN(axz3vIh34i*DC!+P#wwJ^o1{7hWwZ9e z7Ts{r0w$wEF)+&-vW&UDPx`{|iupX6Vj$*N5fTCl)i`zx|4DI z=efe(!F@oQ zKhHT>@hhqoI#~ayVmwh`N1F!+7=iHwCIKX(Fz|TG8IYAH`4rE}YSEUiNVX~bG~tlE zxKFdutQ;UlW_rDQAkDl048z4fQUg@6Y~O}Z#5_+PyT`JgN~be1njTB}A8~%j473 zJd361NDg7|YQ5pUbG|4}56~}FN151mcAA|qG0I!NQd7c(ReX_AT8icO$Wq{%vAuhm z+Z~V$3F#nxxN>PHQTPv|w-fmH9AYYi@(C55rmaKx2OP<= z-(1jdQTnpF3I=C=d~y@NTdbu)ryut7$ZlxzlBI;e?#*LFLT11@|}h zE2r{u=PbDRxGKME?eCo1cnUPnJ2PHv%nihjB-AfpwVHkj+0XoQJo^^Q&uS)5C4-1) zc+$rEhso=?Y+0S97PQlL-*uyRuc*28+8UWl91%$9XgpEg zED>(=W^HBzh`nnF%ht5hSh=}Y(XAVthcZ(@wVE2Gi6e&2dG2wj<&rB7`@Gx)O&BBO z*VEuU^qOSpNl68bnR*OC@yX6O0R&G#@UwuXCd_N;))VWW=C%9mP3$}yq*ePTVa4pP z1Z!0#U01sIF9l;L3!p#t!@l>UcuAt~&aq^YvC7`wfzz$Qa@h%>BMc`TM2M{E`)jKH zka;Pq!urHSU?=n^KQp8=|zu~2C3H0>zxW-KR zc`EJ-3$8n$2^V}YKUrQ{x+LQaPq^}Afl3y#+PP|c@V@hM!ccZsL?U%;VL>HW1vZvI zd$w1)#1;$3n9%wcEMD!k96* zR?J|rMixx1fM4KMPMz~p;FDf@YUZIH>4Ke1bgv??^t9uirEg7 z17+wO*cV^m`$$rZhcp^o@wBT21iCG&bek$td|INev|AO;YHl&Qnwy$-e{HLE>d0sD zl{@X~%`v@}YeEU#`eUP5%e6aT$kWk%?#dV+09k5QZx9Lje1sZ>04iQKqL`R!rb;$J zZznjz!xH^LF+DxGH#zt3*OhCwBAne88@SDU^k^sQaQ^MBUNd@VGT_LtC9>({)cE_e@029K+_mF zKG9wug4w_E(9rfU-2QKr%DPs8x61G+h-9oPth)yM{GSEW??p%2Lh36p5Fo9jKL{}g z9*4NX$iGv9Wp%}bkyuF{w7 zR>^HJGxiyKWS|zqd&^ZyX(&tPf~Jdp?bFn`)mCo1{KbU_9D>k4>Qd>2Xgj#2ZS)Gj zO8d8`gxj3CWUKDw&px}(b5y9w7 zE{h+_s$kkCfs3)~{`5AV?b#t)h3} zfr37C5+5kFLJpx=(1%Hpqz;r)z!B_*?h;k{tWnuGoyyhUhYPJxVhnSi%mdL`^265Q zWsxR>wqijLfulox;@DFy8zo)Ygc~O8SDv{bT=ZNOWl45qgD{268~R!`|zHGIdM(IPmgmX zi8f!~ZcmFSE3?mk7e4Spiz`jfOh5bKsNo<;8xW|eue|oKn&yVdDN9(`wXHHAn&jFk zboIKgy=rTHn3!x9$mNt1&5bgK#G)zj*ey3TFfcJuGkl+9mFagnhyRj7(|pN#{c;d|Am4Vk z{^>|;hjm&_{pk)=;E&B6#c1hi&^BtGanOiMu%IHF@|>sKnr+h~O+KQG!R5t5VbD5I z5?nY^+;Le^B`Kz-VIUcxo;mePU-{+hh6I5ZjfGul6>O69zJ(9TWIyE$nIAy&IE=Sm zlc;aU{^9wq89j(N1&OjrWzF?6PriJfBn%oA?2#eXxVc~cjL18@@!G6s19>s4pg}o@ zkr`Hjg6gHQ_+weJS3o@-K7{1B6S?j8@};^=6+I_L9sAn8CX*7vQyShqJ&G0mR{-x} z=GWfd-i6d|4zwo z1B*eG{QTRW@+%iujI~LNyO(Afd)dbVb?HgPbN8SEY=`bIPkddp&lgF}^%w-z)1{ z7`2UHwmSMI?ELd*47?qrEv-7%{vRkty(+BXFeRlRDACKKy-V7fk{TE{0Rcj$+7G*q zJzm~KDX{CW?rLCk*6kdKQHBiQ*03>+Q+mV{nEA(=k&&z`X-jA4wY{WU zJ+L@Zx*I*C*GSc_z0dr)AG!ORYvepe{aoNVAR*n=NTbniAe+|>9)^X&v}~nJ)gFDN zRzG&9>n3oup1XcbcRb<~7@APShT^%LodQ}HMInJ{Xfnwa9WSdNc=SgMD+^=+<30Px zjN0jpruWroo$V#}lq8Aoy{?1rGT&)MK);bV$HW zbFV~0$(`2^w2S12ozzZg>J@7Z0uTH03Np3$CFpo9p3~+Ep%{)gP;2$N)_++acRkIH z?{>nttH?h-A~`#2QF#;IIRv#JbJ+Do`N%gGMLDcXGj=3>$F{SGt&)_4T18EDaek$J z4SsovLF+t#XHxW8^pV<`W-a~Y<0H!A-RlhXM$3BUaT(bITzX{MU=Lf(94`pNLZEyb zjsFI^>o=08W!k0HMM;5}aBLhLMgyVIW!04fn{7_^Gj2!gYPDOX-F?J@uWmOCfztiJ zZW<}XO!4y)vkyt;YLk`bs?3XM5;iuBdKQ*I><*y{qALW@CI3F}T~+5Xv0@~Np@3Cv zt#&5YXRkRfq$Frpj(t80>TyGqIG44psq1}AX&>_h`8uwD-9F!3#3UpN{Qemno16ve z1in9x!20>32zL6FBRXF5O$31d{hju}M+%WN7rh@M>Cnkscppd&(=nFCY{*ABPb_1* zT%}9Jb|9Y>b`;olpIEd!uhkY|6zQA%=7i%C91?=R1`ur)q$X3Qx%~ z8zCqk+{EE-;$Ot@k)$5?_J$xW<;2n{Rfm2Y3F-?8LBiHM2>B_U?Ipr5y7qJ(}R6H1Td51bNN^^iTLI8Z?3i1}xK zv)*`$M*S|E!KS1WZZdJx;-f1`5!Gkh=qr?3L#?tau#Mv9wXtg^VC%e&N@hb8p<+kSVyc;CTpLE=f8MT!U2<_8BjBT=6( zV`0<<>!%xr;#bf{)}e!M8|3hLNKZm{qeUr5baHQ6TMqV322sugzPJ{RO%a70z(b$lMTX8ylNa~=bPx8>0AVinKq;$ra5 z#~U^rrEoxDfDaoh+2x52d$QBz9|p^sRJ5L5+_4+EPdNe}2RI7s2syR8c7<&qvwmM` zfrrPd?XDL&>t(Q^{gqC-J?gY)&qB%8VK6~sZ5|COH=_gAkm2A$*M6G|?( z1xYd7esHbqBNM4sN(%V0dj1KCiJgu?Yec9u=L{&nOf_Q@Tym0mI>&kaU_1`ZFs3s7 zLA``uFBbJT%#Crr2W5-7wt`#-*BeCOddEGRH_3_`?_bZv;9k*+-x>AF{|{Z?93DyZ zZ9AD{V%xSgNhY>!+s?%7*tU&{t%+^hw(aEg{O*1Cd-sp`XMa^)eX9D@+3W1R_F96f zCsYF%;WaQ5x~^{5v#6XchG+h~W-DBLtM!m`Du280 zGC03_&+@Jx9{Mt=>f?}ePUHSQsv-1dDQpSVa4IUiR9CzayhnW|1``P(Gg>W5$9XMP z@$~u#Sm-im3Fnp&b@KuZla7H6I3>W2_wiJw@QjwTeV6wx1VBiJhe@!5kPx|%$2~H$ zp_6onutU%q+5N>u#7e@I=v*(I=Yvm#SAxTyi07Jdn~;+&=Hlut^aeW^c|3$TYZjZI-^fY#Tuoyz z7-?bL#VGN|y@Jfu9Y|)?8Idhcg1mBuy z%8Hah1zl0_s{dS_S^pl9<)Zp=s5{fz=yy1m8(96qodAkNaqvd=j$j9eCxG?jt%Y6_$*WBdGO8nL_%)|FX%OFm>_#hS*) z)8-YLim&W9ii6;NpU*Zk@pANo)n~ z-Wn?FJVvsrde-BMsLArLDOW>QA?T?`#Q3zSDrnvbpOXO4b@+RNxhkF}kuBk{NIlwo z3f*z`UBi4?5Y5R&)8T%{#KM8Fn9g1PMJX-SQ3LffoQ$bCm}<*=RB3YP`a>rmu)*~E z;6$_WhZW{&#seiSjj)VPVyb=vY2fNs z>%i0xMtz5~5=6b6)zHv@3aq4ypuF@xF6I)eAeeS8-+`7xo-enql|Qt1poz&XMHF$+ z&R{Va1`ZWcL>tzS zR`2VB9<(VD6BCle{n5nE9s*zQ9G`Z0`BIgK<4+`!OY3K9m*ht?Gn0aJSY(r9UdU@3 zB??(%=&f=RF^{bSk;Pc!vwIq~>S^*SE03YY+pGH*JmE`;g@CY5_P{oA=;rOstMIix zmy1mjZGU&64r4sh@0a|(&enWd9jbpIYTDM`j(?NbL7l%0VP%*WT_82o<>4>kRMSlK zR-Wwc?G3l~d;?O9qJVpYwhHSJX&T?;7;c7GSxPyM#i6hw7^-LW`3z7Th3hD%&GVUn z8zXX$&vwu5Ar@z~D*dfaP(kMHiRID1jl|s;jjXX42%W?}-QP^A3N#%Z_t-fHO=z46 zZWqqe_|;(N01cAV)Sp3UQ@bw*Q=Bq*0Y^Ix7OsY;^HkGuOxHlD1te_O&fTibi>HYb zZySQS*&Ib^Y`UAZsxuf3cdWV|O*xiT&R~Qr?uu2@`&B8Vje^+y^}dvcO0lC4?lXKG zAFod#U);Ea_shb$4i4>bzuthTQq)KoZ}6Y#o^1xINJ8;sg6vzxJD0ZeT+1#dv}uT4 zLqVTX*e34^=!9vmF$uz}!~rbJrdfOHP)pDo(>Pm@znsAs(FfR(~H0V(9Ns^u~f;;zt@rJ z-{k(hF4!{s$5xpbwK-8z42I5V@=_EqPN}Sd1foeqm27)680em?-Yo)kx11%ZqSmk& zz8A3MuCGo)M0mCpl9`gZ19o6SbKmt9`SEg%p=b{OBsXebg?(H zIG6|Wck9f@m!mVFMK9pi`fm6MJ+3G32}}O%uiKI z`|UU~U<2m!96-TjIWL}~Y~nRb%FXg+b}XY7P6PFNnBlML_FL$TN>mq0H#1lcD;Qo1 z{T;#6+##rh5r_e%xxCubvVFiP1&q|OMn7#{GfO_sq~&D+Bpv;3qj+?B&0 zJmz|6>KrK?#=y>qOommX)dTClWN8*}uY%w76cxj(fs!Vccr0NfFwoF-ER9D6-t{(I zpRZjEFu|*LjkVR_ot>SSV!@yl^@Gi)Kn+zD?KN9HORO;+$ZPV1jh%(1B^Z*i;gOqwoXXcx|#W7rm-l0M_i^*;IuF_z=pfxj#TU=L>+@j^l!xD5Y^H z=jLu+)=NSJ^lawYgP<&|6FW3)GQ81^7$LJqE}d1w&6r3y265U}Bfz!waQ(xXjXs`m zXSXDH7{9B4@6j3+r@^P!hDS{-Ewv>gzRo*O-s+Aew!ETBAaLglqUV!O$_iMsE=0>V zC~lqPEv&w<%uLibqJhIvh{0iBwC`|R5Gg5-mNZ>Oe;stCbzc$MZ_v&a@%{nBb9l{XWNb0L$yxk zBjB3Vlca&!x@MAY3JcGtONwe><0eLRt<1M_#@Z!pSH{qgJNWGfIDiO>gj-VJ%#LHN z{xHLITZ-BG&1;z#llMC-EY|sktCf0hvK(G-Z*SlvD_6Weg7V})lmI4?+>$xW9R}2O zj!1Pp8b|jCxJ-4*Ql7|L;`T)rHw*nRbZzc_m2Gze>ajq9{>f^4bmD^YbnRQ;e7!9` zl(y}ZC%_g3$6puQU;_IAzB4uTi3DTDvmbXFav#<^--A%l^$%@(`T4ieE9kEdf%9y6 zJ`?SrCtB>~x zuQwKNk&LBPRf1)eZ%QGkl-#oSBe0ti2a8-9OgZ92w9b@11mQr_81*F%S< z9k$VCqLH%LfJ$V0c|i@R&L)^L;G-O;Z)nt;E{pGURA;~TD5<~fbp4I8YJU{JC8I}} zyz=a(U~-n);9WhFtYVX)IErcwZ9P@Hoq^iA*Z(5p44pK>AHl7jtc+jXr|9M z|1{gUXH7bOm#|RtDZ*ZP`<@8oY48w@ox*~cW-s%3rHZlN)vgM-!sZ!AO#wE3)ue=4%w6^aRmg!loxEV+V1}>vZO4n8 zQ?0CLlWv>^mu;m4>aNK#;spf-nQ=v8x8}3#c`fajNFNWFn4HrW&Mo~vr#lutn{rx?qD#hTv`v-oU z?469i$bkqZ>Tj4GqUbqlG8-3DY!?J>lTl*>P}kJ_kDq!Rn!O1g$V2iz6LplcmP*iNvIOYh5cu@BY65BilY;&#N1F zz!YQYedtc<#$VvwGVH%iWOeo6n2KFPChsuvHuk)TA_SH_TvoS%-*8 zvp4A1mlwnS&>f&GH`RFV#6=ViyZ!SuQVrLb_ib;{qy5O1t#EE(A=uca55`&(fCTeo zIaU2O?US`wHftA2G(7_!iCdm=PV!^bOm8*7hV07sU+^}!)$Y3keBiNNe$1i_a1}{+ z5|9#e;}#Vi*@w%{W+DOiQ}7~evcn_4gd*=PiQ-JVQ$DY$^0XGR$Y{TA0G|l)$idsd z=EDokb#EW$PY_Zl&)cw}*hE(0N z5iK=BwrL#(g3Cau6MfB6PDZm+_HCpX>#3GDT0{Klv<&FlW8w5gvUD?>cVk+6gYyQW zLYaFi9Qa~6=WkZft=Rths>^Wu+Yd&pm1~v18$7H?eytLVkCGHM?2S2O^L(E(ieC3O z)S15$q+lK~jPLL1W@m$4t%4^r7%wa6+xgSjn8wBLDh)Pxu1&Y$5p-tCAEEklyGfr* z6LnnfRyJe$cVFk%2|OEc+#J%G-H{cCEqzd0ktZlJ65ijv-lwD(0=)0;Du18z_#M^2 zB7*=c0#;hUL_=Mj+t5=n|r$$ZfEF`!!`WhHFy zdD)%=PpcmE$q#g+ny<8h#jeDu;%smeEH!L$Y^*Q6F()DcY_T+%bG`}>s)EIplSa#$ z<0TZpX|Rb#yuZ4-n&PSV<@5YR@C6bUpm;8|y{`@m8oce-zeTt#mxi>nXq3?}x-vK3 z0ENzm>a*_|A+N3u*4dfD-f^zWnjss9jDiw)_1vSNu;H_wx=O>x6Y`B^hW3568PIi& z<^B2oBVP7wz(fxiB#4^JMs!Wwaf`29&VNxPqhn%(w5@5ev8$koEUB561Oz@%k7&~@{G;Jem)*IfR-d2K?VdfH zZb)>#t2)HAQ0_#gu^2JJ;R}T`K`lH zFL0TbsqNs0B<1ydSaXR#?_)Wh=EeTqi^r&N4EY37CDRZSE(7a85pCedn)q-qFKwc@ zcxcIsd$#h?BJ>E+*{a!$DJ>ft_!FHvVHB#3KBeA@D1Z4vJfbz%Nk=xiC170mZ4P?~ z111WKCA@w7zGzPJDjlOCpzte6Dk`Vqf;q!jV(DaUw^!h#VLc@UAS+asZ=lgx^D4*km`%I9*bC8h<+#i;)gLCLRBpbMY~+#|Q@^E}oz4@w0qDN- zz~jkM6!e3V!ddduzfkZwk|T^rNVskL{b0=&q_ib)sM`omp0X7x)wi#Ye1Em&q?}MVi<;-8tI3LeezJ zPg-1E%F3?acDf&Cbub*H=TVX{VdCHrS3t3qGEH|b7#lt^J`79Pg^Y)QcuQ}0JXO9; zCIzkhm$TM8{n>Uw>HS0mdBar+_d zW99B-Po$s{+;h#4igk`)u_q=b0>zd88hmT5FTV}{#}^eGMR{{U0}%`YIS+zf(wkhm zU3}i%(p$5E+dC#K0kfb5OFQ|75CR?P&h)Rmc$dd>jep5^g$<8E$z%RGcd<63Bis1! zeW)pPZUvxtf53{Psb83z9GpmlzD}W44uxzwsdm~!gA23c5OP@HGe^9vT|txTUIYW% zHYwhYbdF03hix*9DY$JyGLWU0xL z^j!pf^91a`srhVbC?^;Y#USuH8*}#K)Q9a8aJZW@2ghO~m8Wme-*=p&`?tXSUoC)B ztjw~N=rWIjhWFln}Ts+DRB3?OPCL_@Vf>VR# zt}jBDs}+)VDAYJ4<*(RJC!sCUNPHee+F72~YMli&FWA9mJn-pS9=+iil#i;d9qQ}z z5jFLAnsNbKjc7_DGE=waJR>huK4!WoZUAiGc-owVOt~cFueuQ&A^eTv;lYTZm>gft zix9+kj=|VkdE65X3UYF4-tfi}9An%kl5Rmdws!`4da|vqB1#&Xp(3di`+)3P$8Vhq z2`6vMwMP94UfS9fH5P^)OP8W!<)_pNjt9h|{ZXVzZjN0Z57^u<`zY{slekwBTO@WV*+9LNK{+-XH5w*F2oY$<%zWGxaEuOqog8~ih_|0($2i%%mLkrd| z&XG+e^{=ETPmg#~@q;;>5eFe8q|?pvAej%OMGEw-us0^~dn{{@{plkB;PETas$B)} z+?(f=9X-C6T@-1()eWdf{+V-VtKa~|G#Av+jRw=lY})WbnG7mb3Lye7jJW}Vh=Lc@ z1AHxo>Nh)71V2LWSSF0(_&@g?z@*>5RSTTYr7V$TT?TUq?E6%fwg#4!N$zO)Eje5Y z>1MpdY|z3>VTo2*q68B5??s&${%9iDid6CB?H%Ov0R{XRzaPGCLqbAiIH&omjwUjq z(xHrrof3HcIm(SdMLj#kM?svB?BUe z7>%b;9!%$C)?0i6=%HJ{FP!PBW{yniu+6OWHamim^YC%;$ZSs~L)md*+*v^Pthe3r z!ih>JFZS8!$;s2{}LV9?8bt_jXGLjnV5YwP%ypA*SUd`N#732tU! zS}%pzjT8vb0`rXPgY7gHC=9-0(f9)|Fc^VxQ|Bx7{h5mKDb2-D(6GIFfV(cpM}p%x z>fn2)Rc*o4n(YTBtP~Rqmw`j)Ka7yxQ6yP8Vc`~-*t{VTheZ_-!aL4mZXh8&*8=Q&)pIoD!<^phRM>eZxx0kS32gg%cM8@lnK zhSb)XL~hS1c8bJqMV@oo1w)n29Aqhrolgq^iA4hHJOiXc;b8(I0nIUs-q!?cYYA9- zseXV_5z#MW)vfcFkCWbla5B@gLouG({AjiIp<-3A3sJ7zI{5KRP$2Z+I=UD<;XU@VMf)p zyPfbx-9^m1B8rdql~XbW>*n19n86P0iD_)vc=+|?+12fH{iNbz5ni&kp>-g&$?XBj zZUdHZWTdX1`fQZMjUIVT@D@~AR+c}3cQ(BUD|nfLxA zgnyNT<-$nHJK6f}>81pZ$R<4uOYKPkW}%38&@2<;%Q@)8)DL+I1AX7=Nk5+2(NkS7 zO@+QHVLRLc1;7?Z7*T6Bs8NvjNkpE8Wdg@Ex-_D4QhBIFdTxnqiJO^RYv7gU9!<77 zBpNW@AUsDU^!3?u&&_Wg=}~q{rblwQ*7jx#58J>D>Fv?B^*od07-pxI&Em>7iH>N-D!Gp2v$ z_SvQb8Uu=tu#2t0$;R5MURL&(Qu|bA>9*HihZdT1c4jZAZ@~|vl#$uz*re~s97F>{ z4ROx?${R*o2QT8~E`M09i3M0Q4>`XHK2nr}0S`;}12KF(xU{dVg~woZ553F?=hqwJ zL4H4q|3doy!*yv*=fEL{QRj%SQ#>Ng3dONx?q`0yGT3B_9zWg-e|518Gr^KBk!VI5 z_v6W!rFQX8-z6B7fZ?3+h8JXS`5A(0qW2+1+vMO|*Tt1X?sqRw9QH=n(4*oe$Bku} z#Fv&GcgILs$3eNw<0PMDtTtfA1ZJeB6i?=r+|Vmy07@*ufn|F64+(5W;N~q{evCAZ zMssUeHdDa(I1_}6z$j*#y~(TPtC3fl!=aWU2?@yn71NxdZo%8*1;y;9tkwPd&6APg zE$ZJ3qA~-uXGD^&y@CiD{SmnF9S|~3xnu! zt}$||-sJ86wTRId73Wa&J1%Lp-rGJ?w4aZxuP%{&!ZBeu42az3woBbMX1kMqwcC3; z2K_)14P*()nVHW!>+|bko7oh4hN$a&5)`@A2e6YsDgIq&ke}1%13t@|QE3)M=%bP5 zd1Y*Bmn)$wf?%_2{z9f=K6@a&oo}aho{xm8-(g8QOku>fy1oQ@|JOL6SO$-!-OCXR zhxxa@XdD)ACwWU%lk6YVn#9DRJG5Kyyah|~a7k%mrr^p`rY-2f*r<)=rsA^j1yk52 zzDx>$*{cQg`x>eT3SJsp<;6sKJGkkzg{jDrA{k%|lUjuyM!kE$b7Tn=0t-@AI4;i`NA1gc`X^l-Ya9~>T z>4`bABU)cuc4{;!yPJ%&A|dmZF@DPRIADmBDZwrx65FFz zVv(dg3Ns5S_uWLKg`;qm#Kzi|I86Tzuh;i)iQ)OA?O_yi8|P0~*H=2GJ`d9d2|Pb% zx3oM{v>)Cml_m|@wWt{kx4UM7ucK2@vrAg66zRtu`gtdwdlQ4nhczH9EG35mBD1F) zigfQoR@HGgj(9#bPE@T4(&j7QQimFkxL7_WwH?#o83Vc_{i*KB7eIT2=Rnap?(^Ad z6iUJ)_dODnvz@1cG+|4JYUnwKcDCL}*eJ%u>uoukb*!CMXDBy)hih#FwO)?scx-M% zRj(!dp@S1Z4qAU@$IDTKhpMVBsXh&V?$_cVuOlp^FhJR>dcR_2dz?b;G<2hD!n4eA zyQ|w>Ghta3av-zLIEU+^D;>X7^MGj;lLCenvDa(J|>q$gh%3HiFBAT8#;ZNWN zwC;0ktGNi)(3kXtb%18Mw;TJ9w#ZT9Gio= z%HS^LawDXRC@*_4h& z{rmow-3|Cy6f78y*F$4@eyc~j%-zWM^H~mGxZLQtJ1jU~Z*`G7_-8@W zjRwgmWX0k0i7rt{^XeM!5=Hpc9u1ak*>QjLHTdd$1{Sccq1oh$navhXKTqlVxY{_G z{}lQ}`$6I&fG8)&8oJCz-CyJ~*o_ARWOKikKw54VT5e8K?TJ2z70MH4Ra!RV7fjdJhusKSg^dcQ$aq6J z4)NVT^C?)!YybBQy$@`zCOeAKMZ@>^)}!{>T#3gNU}wv8__wLGYG4ld>ow+!UvC!A z=U_pNDVQEN?jITS+6U}&@9R^~`gvE1`|)}2`Qi#7M=h5H^9xt??%D^_7!Jtwg8*Sm z=d1zn`8=La-RvXy@V|~#az^u%B-N22`(+1xlWMG!%^3`oK)D&>`zRIDW}B_|5N{GC z*2e-#mdqiPWAFNU0u1F}@mOP!O#G5CU1iR`EfwyjLF52@a(`Zwd<75Xc+J{mbGPU3 z)FC7L*+zbATQUB6jEM*0+a$Vxe|N!y_=j8z!bRk5J3jwI7pTa@49&Ypc2pYkeQ6cp|wO^{MYVPffG z^xrt#*uSe7YuG|}I&C`ad-Ub zyxmd1CO1v$xFv;TI<3E7BrkeFhZ<7?H&4QiEZKWxi zmz=)qWQ|XI?BrEYCNVAiM|;X|C>G`}z52N19+A)Z7MFtzfm&oCpaq1p-*U>)5iga!QreRKM0TP0P zIsf@Wm6)$e-RbG+Uu{H&Q%SNl9eQn3LZp@n#O>Ba714B}z1AsK{@}|P;M`~f5QLK$ znlW_;k9apg-=+C&S?#e+YaGv7m;pKr{Ah?Y2eG{b{7@Q zCcKkkz{fN>G++7amei?9xU8lI^ITT$KfG~gNDeLHflG#$V~zj&*^t!Qj&9jhF!=J{ zoNRObio>ZCOljb!AEozGF{MUA1Xe4T*PlFb)WK!@`(pU~DDcxl0@)Zizk0wG{_D1c zy3rgXE&LK?+p4D4-!-P#V`9DN)-tXMa6}J9u>X|a>(*x}$zn4e|8EhPQ2I*=1C|r&><3X7WPUXQ~ zK-sI8h>q;p&NVEv3{Vg1g2y6(q-|W_MAtl{YuS9IW~G9QGXV0;m_T31DyM9`jT#x; zmGbEV_qoD+nZeFgN~N)XA;k%Fwm6hR4&7ed@!2GhQD(#J=e?HKKk_SJk=3HE;0Txcc*BDrzj?S zLa&UBJi7{^!E9~qz2xU0gVciX)C~*}4aYEFHR9LYW0yi)}^t2)|$&{eK=zb9= zE%F#ag~N!_nP|JKb;g(f7MKml`^ya+85x1fg(DYHtS~0ou zgvKWAGo z>+jPK@i5rHaMzJH3Fb=I3V6kVKBjhK>oDIA$mOEB3On)@)}UmrM6cswR!^zen}6?T zGl~BE<#qz8J|U3F9$uJ=xlA$&4GZh!>1^URDfDkj_sw4Xy73=JrnkzAsdg|;C=0Pu z#(d?lhetx5-O_BjZT+`;1MSjDXcv|GaeS!NdxC-Byiw$mg!4f z*G`A^{{0{xMI3WHCxjKH03)NX$^xKA3AWwTGJ2C5nf=|7|c9rh}lfZ*?w z94xQ1aGpLT8Q4WWxLjMnHKNp+3|vPOiDT2;q0=bjR%Ce@@g??Wg!R%pDcf$aeS!ay+Y$Lq+w(2FkfOY&Mio;WV$)O$;f!TF@?c@BVHxxc8okqum29y zS6JIsKYg#w3tXacA7yFMD4u{6L02GJHWJ+=8vC(gp+mwF54kMti(z7h`6ipqij;*V zwo(!5^-p7PIqKWg&um8>IPRyckyO`4UgnP9KsDxu-{3cS+y6+q>}aG~N$-QVKF^Ng9;@G{qrN5~@UhydhAJ60(tF zvzUtSBoSY?GsXcCK#kI0MKaygxfonB?@GhA`W+*3cVTOGZRUL8ZZgOk10|P9tTy&O zPzcdbcN+F?`V;sxATXf^Qx6@mx*UjDa2Ys4*>*4*5`P14n?B`@1J)D0Uq|!OZ^4dq z95po3L}Ea!`H^sNXviDxS9cH_nCpbQO(3sLTXJ(l4{eD~Pph0LLof_oLPn}+idg@G za^Lz1cN;;5K0In;QIGT`7p=*>+_V3pf*KhKQ%ssQ>e&D5PsVb=Y286?rkk7A%Jw7K zSfaxm1^Zv{?|`g1lLD$U<4|^-r*_8zqacH*?~<0TtBe3PW_s*#YYvct(CSU2MgHF? z=)chlkf&D2j(`D5TmKI%{y(7SxD`^|^zYGQrFGi>0Hpsq907zR4G|#8EB|^}|NAok zFwMO-a6#U1d{b?b{@)m>djNQ;)q!tg=Rg~){}*t1(0~8`jtaQ88~U0&{;%^%zXRd# zi1gEXXA)h){|py{FjvUi2Gq%8O=X64KEJbGys19cj_fHu@h@n|(tA{w3lDA@4OiLc6=WuQR#aS-Z za#SOi6cP)uE)yI_n+e(C{zFf{f$rkcV(!dL`^WspU6YAyzqT!l97E1}AUofB;2fMm zYAUW}<>KZ?yUFBos+vnvt~2*T&tg(e0hI;mc{a1IFer^nRj+3T0zaQIaqzuWy55$mTB`dv^^fyk_qvYLSJCex*6++72->m86Y`PsrVO)xU|`v=8p8d>17JYhvHvVLk-62*(k$L-f!j=qmq9a8R<3(7n8Ai zqtppr4ZiPxt1k(zuH2J|Sxx8UXy~}c#{MIux=Cg!k4rARLOzT_F1EX0<;bC$H?;2J zfFn62l*Nq!BL*Q*QYo?+2ddt+3#)kPjg3$omn+Q!Ia1)w$+%-9z!Sr;glc%X+lI9K z_@l^9hlLu)GW5tHkQb!Vdx3Xvam$2j$q0{$)DoMdEYKbESMfuZR_BSOygY{gK$i!s zP{r&_)869Zvy)Vo2oc-sgm+SnM*KybjijZfkvH;9#umLbi~3mrI*|%Qe}hvbx(V4& zetC}k@Av(}-|`e#r%#@X|K=g(1%MO9N-q3V&ez-v3H>9Ftqw<7-YR)ToL9|_;LUNt zw!oQ)hN^(g^PQ@Ce_sI4)jr+Jno#sF*>mY?KhiH+Z+bZ=x;~)wLhZLql{(cH@~EQ-Axv(3?T%> zCr~2zRE3BN*~l*tv9v*-PIDBJBTCFGBl{7BnVS=fl4Ft{az>$-@e`n$

0H5-1Ll zHp;r`(EX;e%hE%PSK5o3a!zD7&`=6Qw)r+#JRqc}6~2B8{wE+G?w~=r6{K~gh}fID z=!m-9uz0U@;O0-B4^*gxb^XjA1_ohwA(nT4VkXu>e__4-@`06vAoKfz&oCn5LnCa; zNE_awC6drvJY-9-Q1r`Pe?eA6TO^6F&|SZ2`sIG#ntdjL6=F(iq*{UEdykovd~R$m zp?o(5MG_)1sIp{AytOHjlFc?qA6DH5RKD=RRQG8_@YV%2B+R%_WfoZ0KnK6>)YU9~ z1MT1B`2efjaPeNkE>&$eG0jY??ryL1>nz$eeY#r{<&(ctA1I(9k>IjngL#Sz@d#+^f7AD zTJ__nFzBDF1s|XHVayi2y8-POaeRZt>f$G921$py8c3#tM)BO2g5qLLTarCtCw?tS z4jqx{+#O786U&q+PS)~R#`Ho{g?TV2TZJa&1{i& z&3cTjd$^-G6?v(Kyo=06j!!4eV`ZP|>33?2Z~3#L{H$_v$PD>7WCso{6aUg>Jl$5=Cw;2qc_7NmuUePcczrr8P4whpollS*(C zewO)WygTb5!Yri;l?MDX@;d5}HvH{zKAP3#nnh%*uF;{Qq@vhIEgySfLmFm|30h|E zlMQKV=*KzPi=7opW(wJ?u<4lTPnLsAk;NscgG!*v!g?yX&P*AH;k>!d-nmQ;tuqjy zk$cg1^F*PymIKLF!&Y%c&SNI5)AE!*4{@Q*DPQ|DDwzx`_iG0#1d%5c`b3Et6NBJY zC^=Ll$DQ6}^1=@tx$}kB&0!_*qb!D04Sqoh4;Isj&{h^H&EAV@npwz97i1qx>spX0 zN*oxAQ!*V~9EMs<{3+B{W{oYv zsu`xl1b*HiLRDJnpN|K*u^w_au0b&MlQe)^S!HOzo|<*Mth1M+44rya36qEd!oXsv zj~k<==ic+}&@HMh)?ILOq`_z_4JOrdDrPRDKL#6XmUY2M#Ripi7BDi`LE&t^fAf^f%6Che@A z9U5I_!#)>93JEKrZ~7SF$u62ZG@f&~T#X3GWAmt~Z5OEVbvKc$v`8YqD}^9zJGqn1 zy5bHN4O)>x@%h&CI$+{#z~Fq|uyu0A`o(L;qhcuHza0;|--?6j{R&S>w&{PdVwZO$ z2lb4ZHylsQyCxfXrMar;3uEawKJzr{j)HA(yM(M_+u(;!a*Qm@OE_uK*s_PVQ{4Dn zz0R+r3+_TtAv~H@I{b31;^orC3MR%0#Z z7RruG_~GcLy6Y1L3!_TF@dmYXMJ=>g7nJc}(tzV(hUWQw_=mP#* zw?H_cgA)Pb3D2Lt^CK>2krTWlvc*g%@KO^C{&%N9UmS9t=wZoMcY5EE!v}bh>oCwd zro!hzN4w+(&AspUn>Q53Wj#ug+Kjvh7?*3>E9~$_9WKG;DA27j0tEtru$(9`Itya^ zw)Us`Am$cfWK5wEzz?A~5^G(wF?1pS^YfFPqr|3nAfc^>uNl7+G@i*h5P{d-{Rcb_ z({kGp7+#|cf9fOHXVbYFtB~RAHxWMQ@xpguJRw zsNLg!LgFDeP!eho;DH?V#)a*m(>x?5-zo~jaX-AT+f%Ttz3t?sz5 zsQjDw@N35`v&2Z@c7TFI)e&WNw4QPn-WRZgp?bJ&rru;qFsZCd{+AcBbO%lK)Z>Sh zo=$XiOr{{u%qDGmHAO1Xs#fg zrA9ikgmK@jaL?QWoXJ&q$ijQsN}E90jCZJRW6N+AGk|e>zQit~m7A@sHV9nwO%uC1 z!F=O49GrELcE3~#V%B)M$a_}3MJEc3q|q5cb@jkWFLEMk3L(Q8$M2tUm^sS?WxP?t zxpM}1Hu0C(GcFUQlau@+>e!-U*vsnleSFmDCJ+b$I4npKyxdO+vEjqw`jc~Os_`tB>`P6TQ8OoE4wp5LG)_;V#O#0@m@U*t0KK zsYW*ey6o|RteGyZJ!-M#k7E4%toXXj-?=t5V@Ch7P)@H$#T}Zll$ozTeZzw|{cR2~ z!MCjSxB&4$3>KM^?wxFAPf!kXeZUKlTnL@8tK<*6Nz#MH>yXDXAyt4Q8U z1f#f}T=1k`-@~MinYkQj-OQGRaI7G6018AyP3Bzwue_^#R^NO>M@E`YJqcI6D5QGT~A)TyVJjvC5-0(hT;ge!s4SDOpQB>zW(+nsH!gweG7{(o!d?=tFQFy2!}r&x9@qhaoGni zA71mMp3G-CaU(Q{q1{(mp+oR}@4#j_od?!~6YrXY7C>9W9V4SfEdd?4hywPS-Nue` zIumg{=6-W86@zEj6>W46=hT3a$Ogl($rTOQxxQ74ja%}?MD)AEiq2ukVwfIYt^?(q zY;c|+lo025aE3(xG@uHeF87EZrd=xf#L85Ag{KNoc+G zu=cocww}z2c8^+ojr8c@VA7eZhU2KIhPIIM33_vb&qclJY}Xyv(7A*+whG>L1++{t zB1^LE6g6@&(kx6*p{Ci3_agXw&_=DHiGMygVoJpiIx}e5?iE1!fM@CwX8!r}YD8d& zMK_61Ozxr^vgJ|%Dm5J-%FsO}qQ^FUvLK0ys3T6-EDfPZBK=#J=8kYdJ4rGkODjC~ zcDmk;F^yBpHT-bZBJrdmrVH%nj6%J8O6@FTun+eY(>uK>-lvZxW;R9o$Q@%U7*ws4 zj|?)esd=@Mc%+I}SHFH=h@1WBi8wMLn0MybtuekZM#Pe1L=@!&ynuFowkd|>X*ke=M$6KUA3~OJnQF8AnFV`Pf4?ko#aV2&8LP28!W!2}U#_ddr0((h zks{&8kI}*J-O`Gve&1Wolo+D($k{GnFR8nf=atRM7cDM~phEp=d+ClQ^AY z1JmDs-kDBG$!|a8#J&@+b7#QglFf}Bpu4eT|&jlOcog3 zB$b!V2zzRDb~8)QiHF!TCC@A8MgV%VGbBV#x{HZ)nB{a%`n~kvPpCesJOx<-X9yA4 z_RLl%VdvtU!dyC#7UYc9hm+&RsY=Hqh2r9NRvhGnEe38QN}oj~hdVbalac@}U_MGK zV9w!eEs1NN>0E4~UFbB9;dhgY=!1Et=Mxkx4k>|9Y+&oZV?HI%`6abC3Jp&7M_@X2 zfUf^1qcg5xm!=p_1)(%1Uf6?`o)|t6RstK^-Q`Xb@(_uCn& zG2iSQpjAaKXX&~7*#T4d?-zg!d?qF}kc#EVY2FOQdjkP!FkZRcHy8mWl9dlS3fd1L zC6D5P>UE>W;n$}`porYdTo`_DBWEIp<{67o@%>J`&q5+{7Gxi7kGP}8jQ#{UCy0p1 zkEoNw^5>&9mGzH%u_i25zGtg7eaynb34RVuy8?AEZ%B$gC#4yMW_{MgML$Rt`9O)S zEOgt==ecl;H2CXYi?YTfcYTkEoWF{RGcSF8ChnP`-K?4-IHr9JKTCi7AGXdZNRyz=!ZVF&+qP|E+O}|I4C=cpGD46Ok8#1j8S{Z4C4FV+1J;(ZG`H-jY$3iMtT zot|)LU?7{wx4X)Nh@6RS%WmW#rw3<#483f-b4Ok@VDGI+3O#MG;Rc;6H8gdYf6HL7 z)Y8jSej^L&%sTH!O7c#feOSV-m=`H%9IAV&?040+^4L7XglW)%@>h#I(Y_NR#^Z}N z4CJbfNSR{&ixMigCvCaLumjj@c<+4y1x3fuxSd){bN(=%ymaV~|P2{@Hi zLDx7`$r(?q>1tZzT^f5n7TuZ~!&v6FZ|FfvEEOklugzOe%~WjF2xCPQB*eFHp_c

0n9YOujUX6XebzS@n6OSwRN$Z{zo4 zWQNxpX00$*j?AgOZCFvY9R8%cq#7{q9VGD-C@!|Gm$SE~6E|oOPj|pYPyg;B9%8Jn zgqjLYK=U6^8bImBfEn{8 zb*q#kWO59TLdWOhW3gYZ7^n@>cfBZ<6w6kU9H!2OG{B#0P7t4KYi7$M0N{FyATI0- z&A*JV3+HJ~b;g3_BmBiVtv(m0yWFH>6gPEc$dU*RqV+)8nk-`9;9H1US`o562~KmI zn)DCzwrr^UthQnHRGqE5%}%-_aRa`#KStCU3?vgHY(}_dODVW1%BVEV$>Tf;Bwj~e z<_8Zg9*~P0>tvS=hMe=AUTK9HS7nY7>c#&&TtQuzZLtrheoW2Yk?E_k9R&ihsD_ea zb}E>c6(o#-*7N=jRxhc}8QginW&HPw939(`BKrs0Hwl_jj%X<4H`7q4tQj*ggqqI> zB`WtVv%+W;{(1g#%pgA)Y(Jbgm(&UZ@_~uoJsKXrq{2ok%|tPS<(XyF7UD#K{DfWz zf0(z{Sqd1cfxxeNBHjc#gvpR!%t@N3^-0j?0WEpDKOOc9v8Vs+z~izAu5C;6fX-rS zU9E2E&CI{^?+D)hE&>V}OcI&A8fQfi3VCEcYM`9V20I?pjXCvLtIcuMGIWbrLu7{r z>AQuBXP@2UYA^}}l7_RzmNX(+Th-t6!z|*19L2;Q^SU5#x_^ZagXH+K!=V6NEgto0 z7^Gh@{}iaV4?<OU<4Uy$( z5V|)wAZlafx|UR_SLrd9u`E*`>X+56nie`nI+yt|-OlPy zH!&F{a!mZ3U)%WoHn<+E9=!K2XKj38RnRj@`jSx~pTAWs_G65zA z1z+OcI|30;+0fi#Cz1nJxpTpx2ml+}A8bZD^_?7|&9nN4NDE;uHObezKc|J=fPW%5 z0R-kQh8ob~vX*KTC4icszd(zMl4T@=L%-EJ9NrcUXC~+OGQ^gXi z1p(;{0{8!JrntmDr+ptNqGxX-Rs`=%@Iw|-LSj{7-zy#@3~C|j>Ky~Vo>@4IdKkfp ziYM|}V+WdiLtKLOSgon6eQ4}<0TrFR*y5d__1os43T=)r3l94!)>!P1)#LR@jac9{)!G;Q(;B0)1U zl)(%OspowqE0vr4R4qZ?ilR_ku-Tn;xR;Wzd+JauT)6l$7W0V%qP_xF2Z^pjDlD7{!nK9tm zNA>J_Qd&}!G2?tZ5-`nD-<4H>OJYc=_ZAuBAx>k=bED4cwdS#h^?xmb4a*AxQ~>$| ztEG4q^H`uYKt)sO_C+yF(No*;yeISud2BHd=$x|Ua(B?NL0L?|%@!GhX!jp5$g_~& zuzAH!G)N>)Q%czQY>qH2rnSi#Ug&-dy7RJz0HF92v&my@N~|e^epJqqeY45Sy|g*C zHzgz_qXt+~(FA5_##ym?qOi(LD(Lu}*n;KS_+mr3CzHD!I|#B>*Ib+SCT}GE}1HN!i=8@nQ-zPC^*50mbkjc@Wg*SdAbE z^E8Aq)-4=%IKy>vnSZSQQSWf`f|OjI)IXiJZak;+*6(M)9gcGWz7$L{mT{1v2!_~x zFjP8!izw2fd;bwR&GwJDJ4B8opBG^=qt+wFiw|36n*~#Fn(M-op!?!&Dh3={ZX>?N z&qbX4$3KegLS+u-Q8)N3vy=%p-^mq(-t}U(4c)3DrM;Z_y9gkQUkO)*rp) zCnWi!Krg6;xVeqj9yw7)Lt6cqg+FiH`u2P@=B(#Dd_Xk^9TXBt8s9iA}RF%qAu82&#%+Rd?#s1!sU0GCY?{N<* z%2Ji@gpMerKujdiDYM(2<9IoSr2J;bvzYJ0WP;%%R0cw+ct~Y{lDSIrhUxJmF}#hI zHHW?~6i5??O9g`gb-DwZkj(S;Iz-_N%w1zGqjwlZgmMg;17R`1dh}WS(h zBy&AWwN=mnL#oo!oQqPzqO^{Ljj4*wjjosgo+@Mk(c49uzln}s-YN8dNH|)14l1g%E;PPV1#_grBt&@?Ph-6F5O zZZvS3MqHxZkNx?C0>2eJd}_Y6J_LRlg_ba4_2z(*p#!p;{|$q)4A$t4iTLC#@z9xA zHIR~mLDY1#uRJ4*D72#0Tp~AaIKv6Ekg*Z{NEW<1SXf!?m$yaCzZ2gchsl^l%5!o6 z(Z8#h7W!w4UGe)Sg0Zq8`F<+wnrL_+wBYFbrcJ#y+-!t)UeTvuvmX69GL)4k=T(MT zArrjZ66p3%FT3dZjC~!HhScd=!-+JUU^sKH30CC| zG8rqQmTV#2S_82R{eKN}|kJomtedZD&sno&Je?lx@uu+V8y{$8f&NYS|@oHZrE`X48rY>8Wjp z-6$Ih_VO34x%mx#N<@ZzyrF#;^IKYssztQxoh2sT4h++~kmoICqtEZ(pkIZghH8KM2F~UKd>Erpg&=|VV^j-T{ z#f}B}Z1^?WRZ2QMnb&200)VGPG1)nrcui8p*rmHg1YXSY7e~L}#@1$dt+d406Tva3 ztu&t0joIgxjngZK$fau~>xO!Lr2lHn!O}}Vl@#sv(a2?N)7gWL%V5nW**1P z1KfiB>}I0j6GZF}n`;?0v7x}|>^iDd(LDR3U9INi-9$9ZHkmAM!{%;PbzD7DK;@_A zW+-OuL+G`Q^xKp7NJF-oW%S3z(~S(|E`K{*VDNABjKuYLBHh zyAH2c$4D5WW2o>g8o!FfG@r)9jafP^Jr&EO5*EGdyeCVF4fi13_hk{;T>RSGnei9vX81XLF0O zGx^quocjms4llrwPU@m^S}U9i<0)!}%0;(W9g0{T*T^JU~- zdchR01u!Y%j>MBaakVI=7EK*X1!qr8MMcTa)KWK&r0;@`z|WLcsf_8R1v#^P-3y9R z;A%&7!3-t&gxOPoUn+fC+Tnz56MgS&)HUk-L8^RzfZ|=^!Rmf-gJ+x6=SF_nxOw+B z;aYzXb$#VmA%WxNuL4DV6UNke1Y2IF%LmFa=>G#&{Xp)a{B+k9Nfn7gIi>_Xh`H{O zy)TO@<7#Y`IxP$hDCPGqo{+t&jG8bNY+_4~tOjb*l)C?m|C$NoPfj_l*Hqcd#=6&Z za5zcFO~qQ)2YYpEB0HgSo(Bce4D2oDxz)xJ4aUi?LTH9>Yr=Lp+FB#k{M6`hfMJc* z{Ob}__0U<_aAhe;!s})Uy7?fiqj8cKwdm;e#K*S=u%pI%IRU2j@B-F`oeAW3IE-vo z)m!YPEKfb5f{W+7LQ#`uvvP*!#3tQ7^6|Npe$x!{>F7i(Z^j-xM4i%ni*o94Pl*xK(h-Xhc=VJQm{&zHyz~3=m)G4JaY@hpd;h+?eb5 z8Cqn+l|^{f0rTdznDsDO%s6=*xathR9%j*#fPa`?-=3ILs+Tku!WL`qmL z!XGv}R7Ut{$~iWDOW(st)pPXu{HCI*+SY=i@qCjg;qgId70Q@)gmZGK0 z^1u(ecR`_4T`K&Q3Z$gn>ih5O#}sSTGR6jeyTVmTU>9`uP!6rWojLq1-yuZ!Sm}_iw zsQ6|up*Ug~Fd7KH3tU<lc!gdj=1$Z>J z?=a27_4abb_T;aciguQVU%%Lv#fAPV&G{tVTp!{^fRBkj@L)KdkPpA*X&ofMhht(! zd7C^XJRZJ|P_}?)uFZS{=GH8r^mSBX!u{eTPJqE;xVQv|xq|A|-zU0IueW_W#+&Jl zzodl9ENm~t5YjvaV^Y?lS&frNNmP6=uY*83F{xs_j}RNSMbsM1j>8e`WzY}=WwP4( z{iyZI`*SbBW<=CjW6i01-QOE!TdGjYs~dr!$&?o-rERt-#EjH@D{>; zF`0P)Z0Bg91nT?ynO$ubyjBb^LcNZ(<_ItBm<2$r&4z3|UfCvX+ z4#nAeIYNDj_^VIdw`CpILVEeX%{k~AzL#Fx*Oz!bGMj?+uwNo1rSR{QVuw=XGuR#M zB;AgRS&l*3mF-|-rUAp7m=FV|R~osuDP+Uw8S>Eb47BQhkLKhRW7f&PqEr1B23rVTE71l>Zdn-^)YxlSF z$=&9%Zc#-Op#Amur6>`oAruI-4A&r+r}z7B-e12zui(T4Ac)`uF$2V;#4)}Qsj(3E zUsLxC_Y)Hir1AKWm)NMO$NL#xPg|zfUQZ5P&e!fr&rWEFt3#+3_8!4tz)rhl;Il)f ztBKG>*r#6M|2CGN7@Nyghm%6#HFQj=G*?qNG|Wb_TsjRPe3H478jL z5lk$$oyvcO(C3}zk7P@>Q^`Z?Lk${l3L$@o*{o(wNL+^RQhpTF^802|siT$T9F+65?V*zXMzD4?hZwm4byLdGIMu7HNG(Lf}kZBeHH=Ir< z^#Jr%xgYv5OwrVVe^<7QwZi>N6POXm% zmqwLxY)d3_wH}y{vuVaY@SeuL!Ep=L(mQB7Uv0%7?}ScGL-O)aPb8LMOEq;pHVj5+ zE8zkawcu>HQR!Uaa|pPgE+68+T;64K*{|$ICW?O4$Oyh!tAi=YBl1d`1$Vi!7Mbck z+yjq}dez%jZE-C{c@N_i_2_dwAcpDL?e2;Kx~6HN*~FK-LV7trn>5>hozqoS?Psx~ z7J)74gY2WRIq!RY^IuVS1c~ahJ?YAuse83D-2HRlyxz+fxO#>#bi#7)3vS)ToLTtSK6O#x@t<{AQnGniKfb`Bu ze>=s%?t_mv4$9Xy8tvtA8@P4#XRI^s39IM0=;JxbaP-__y?vaor>>DpZY&z}IW>Pp zdmtKfE}rq0&VM8CCR0D5OdC?z{T zzK$uV4v8fj<^fdKIk&}@ZjCN_;5#!5CcPQvJ&a$Zi$pJbaZV5WpS zt79jso4Q8?9qjnyHd+Jg-hOb}^V682VBaU(h|o$q9;g+Jy}w-kR58$BAz`^2-( zh3)O-i*@d+Fjx4%1SUJY$}a{!(p3*#RnzVmSh6_#e35JrS@)hwU*{#%w5LbsH(8=v zOI8fWbzAY5+M;)|5mpw1jH9f_1{jif)cV*!SeQ{wWwD27XJ-ox;Vj(ekIP)rK0*C3*iNeRFGgZ=ny?A9}NBBOQ2?yt&2RC5rUCQ(k3NT2R^v%qtn znJQ_67P;39WXZ-k;<(i&-_)L%eFFI*!UR2#>!|KhPTMOk2o$+&SEIjgm~?j%m9c7@ zBRp>#9+^Qa&>LV*PF8Zgkq)Q7EwEwx88w!(4`1>A8|z-GP&i zeWLOwKji8Q_R_t47T3lMs)(A#ywB@svCgU$%S4UOlXp8WExvCa<(ur(!S05J^&jt? z&_|rHt46ZXvOAiv+dK1PJa!Fzw&#|gILT|vRr`}D?ry$tU2z0wb(+9*=e}eMKjCB$ zUJNLIp#3*2St@65g@8`5akJwhgBiP2nH9p3$8EoZ-mN#gY%BK|bA0`}C;GVy>y=Qx z&Q}T<7wx{~!|dJgG8t&}q`*?cO7B(KZaGXNq&n-XzBAQ{H_9PAxd$(9i=}QP167%{ zF>CUv-y3PSRkPJCBv`sWb7&s)$eKFZzBGd*B|qO%LFZcOYB>Sh$a-t1JyKF7RZ;$W zWSQ3>xpj?!tE64XbbJIHXeP%fbeBmL+Dhl#z%WPtj8aWC;xR_%E&OK;j1HUg&!wT@+%Fiphx^ zJG(%E>_ZVpMagJNr0xV}@10CXKT|wU^W<=~Nl4TU@|IddC_%POaHO$z{_&0rT%^hw z$Ee&GR!h>E%RTB&GX~a8vEb^<F+EdcGxx8}F&{!@!1`|+SbcI+ zwmK%=4#-1knIRX9=;3dNBKsAO_bnDRryCIO1g_uvM|^==l49^k>t-JZt;OojEOl9i zav1h`7n?W(08|}!v4v@O*1Me7$U^jI@S5_~C^tIZ&{)r_!dzE3?ZCL6WrxO#s z-{gS#kmx2BhmTNS1ek&J=4`ak?9mszV;hg~NJc%p=xtsm#l*qpq@04aP&>EcnnbDq zT=y>yl7>xq&X#MMdHtEL- zyhuCuV8xUgw||;gfTfoU4C)SKqEd+hn)JGb7;JLHRU40nrt??%(5f|j1T9a18%X{B z4Rd`gaN|un5!Fgb0S9sFdOGTXJcXlE+=#N?BPF^4eY2pey_6>MY9~5FghiCcL5lt! z+$^{620yRZoEI`RQUJDM!%ii4g%RTBGGC-*$r{4`T-kZx{AjVln92>!Krb?te0p@Z z%ZX`}-uq>eyR=Q-v?@hLcta5%8xDMjKXrGVE}d<_yoGRvVQQOG=A78ex=ZjOaSPT# zu2qW+#+-Fh2iMLsLaM}2l5zvn_g3cC&*D{UXcD4rw|vQ#xQU+u1NbY6bfFrP#rHIe z8v-9`@^m)rtj@=X#MQJ&D9X3K?gj3nq49hCV_47=w^*W>MKcc#w!xa|-cBT*^bO=b zYw$BK`)KF54@EfTWB!;yF<=F-BJ;WmyqpP_|M$MT&y`!$RkcBIdL9-*=-8JfcM}%Wa{+ zM#L?TVU-{%9!RRlhfJ609x=+OasF&oaJ8@yQ5r-+mU)CJ1#B9-?1%w&nZVh~vST@0 z*<}@L(uO-7sc3B>*}ArzSsDXXk4J5pK8l)uzQF%q<9Ex=$&RY6j2^e;e@J+deW<@|G))eEr$@YZzrDHFc1h zTiV>`ZA;bmlTeZ*9$jlIk+ls4$n%XHU5`-N;=(X~fMHydOlv2%AB~tHH=>|62fAL| zQDdrOhyy&G7u%3&L$6K%H9?=9_cHmab?Ng@;6eweq2!9UBl3FN-{D#rrMO~(O<_y- zO9Ai#`Xs7HDBzE9^0|UanQCw6RHQO8s+3K7*}Z=yX6MX>KAn>++8O5Zn1&I05T3WV zMbr#MzdnXfIJGvq(UXWx2vrCWoHyOHh0AUTF*U2M8lSi*dKL39(pbi?{Pqq#6W<-z zD=>RTz5N}VaT)!Ul#=wXg;itf2$f>1rnEA5jp26)Ct~%wL1!K~r-1jPY%*}opt7RB zR&roR=^O*+~lzjGCS zHrc<@R-Khtvoj{}vFNfQ^xcW{z-$L2%aCFqA1(Rv11u)X-#TfBB8u8H63)ms2OwnL?+ZNMWO5M;qc@k0 z6+wFcI8o}mZr1m#6J`n&r*#<+#Z>*r*MuAxLmSo4oKR#v*mov|{ECnENk!2_xt2q`;9U{Upnipx=L7o;OZ&PE$PE6zBnn7)D`%>UWq5L2rh?Kz77Qmz_4 zXxr0wluAVQMKx|<(nmy{7#BhN#Foqe!)XY2--a)d3B;W;<-;UJ(;+9C*HW12ZT^aO z1{f*aCe|aSPzu&>-=8KyEEO(Xic#~yVApcj1?;iK&OLIkB*mA5#o@} z>Kqd-OIM6|-<84kr9cwR$;vNXAT^2t_azuhEhyR~$;g%XxwvW_`rgWoK%G2L8XQF` z#P(f{V9R_Xujh+**Pp5E!2-(9z0z~ll5wJl-u&RNQNT?o;8mat#0?^5(70r=3PG{7 z)-F&+W{M{%pIZ@6;qqbKYp0EywX@CSfrFhQ>{4A#Jb#B5S9j1p5>YZF)NL?P%>Dxs z@k}`nlDQLHiLoUj_jQi{?@Tc@s^RjaoA&*DUwHdLte?V=vaSZGy`{Kc`?7ancnI?^ zVo`?m{FA#gbO)&ptuURkk+$|;{NlfstW_H%wV>+vJuGneI&U#Bx_6iwL7C`M z&mUmOqWa+Sg5c26Rk#omN{HP$s1^>7;vwIXVLlw3*Ppy(zCgz|Mm)Hv1KtlYbT~4s z^tOLyJm^bg9S&n${Ps$4TR*@hQpe%Z`}&kU+2DiX8{8^NDWcs0l~KK5v^0wJS!XS! z-!DRmit`MULaelff+kUtwaLKa6@x{wn&!ve6vcpHSF);|I~I{F38&H#*=gEVS^<%g zkPMqX7}@#G9!G>tO<;%YM7{P`L1$=rO2Ayu@JKz zm_pt*8%vwjf0LTBNlzdJ#$N~L>_w|>)@t!R5bMWX0QU~HtXg+6lF20k__tR3LE* z804pLvDze>NOBHN4vh98hs0ROi7*rv7b8Uv^Ux4n$WUjd0hjFc;|NRRA9~q6BR3s( z1C655ueqx_R)T##-zhbyX^!_}>i zQAo!XCT*yC2Lx?8Fwy;0FEcK}o|WREaG)`W^;S^ce&vRCnbRMf6-_S$3iVTo>zR4G zq3@0hWG)gSc9ob^CT!fO0~U%zJI>VM&&pL7c}ht^h56T4+dnYc&IQIX(d-m6NtuurzfNOu zTpU2^gFg9zpV_5kp{(`76RgEO?1E+%szheKdFQW>OQdi=FcP3BbcvgA(*U%y3niiN z5JEQPwn0*C^AH@_es-ZoV3V)#TD)!UE6H`yRa=u^io`)nyghIv-py&m+E0gGiQ)vj z3Wq{r^+F@Q0}Nsg%P+kAiW$a(*t?UcpiCkGEJ>t;Fon9hQ{T!GEHgY zvH!A;aI~)H{d9R*7Ij73M)^>wWH)wft_0!sZ!BN6oE0iM!Xz^T%=7DZq+hTt**7cB zsZBEzmFg|)iHmraZ#lTh)!INFzrT>ZnQd^(kT)p7{m11m@^4-Q2O<-B-8Dg%s?_`l zfv#(zO@gU|xN#h}kXqFBAjTdf_D@n)MfBHBGFRT-5UtQ&J=h~ZuVq1^nTMkL1_JVI zfBweG;|d{~TTa2c3zur3FI2Lw2o$dG0^|geug`))-_4~_C z^k8ux0e1h^I;Tb%4>5l<^E#bOrQtA2TB&2JH*`iCr)}LvAWV2^WcD?X zsm*?jLRMI1`DcI1DFM)Fb}O@gPI6~ch{x3V55Knq@fWA8OvSMIm{v=i>~hI65K4@; z*yA_AErQ;7W+XfjDA^xCjiI=dh1%(2hZ;ffJ_i zLKtHZ{`&Go^Mg<{=DLguxb@L2O~NradyK0D?9y1>koDQ#i~@WI%-6squA*mLjt$kt z+q?lt#|t3&WuZ>df_ssq)jkJdVm8)kQ~FUm6ee`hwGOooAw{si`?36@fs&_#gd_7= z5BF?eL{Ees*x8h~p_^si@C4a;_Sv9`b$2$z!K_kJs91>~IbiVb$Jt5y+0yEQ%G^66 z25gwp{C?e0b!S@I?;*J<<=h6|ZD7gZWxFtT4`zjkP3kRq19e1v50w=zkIl-HvY&z) zHQaQv3&eU0tG%BIzkiM+l2y5cXTp57^qz%>C+5nJM z$^A>VHV%VVu`UQ*mJB>7Sq)I-tq?}#gU4H9Lye=$%y4dm;4pP&;3Q<7C3T3u`6f>f z@YjEMoRZG8OFfA&GxW9WuzFdSi&d*Sgsg`U;4^n2oT1_;$C7Do)EiQq)(g|uZ&FG^ z=Ew!LmlKJ!iV$!%exr?YV~l^dQBF2?ou^VQih^;T=vmv5WWteu=o7M$GUM#9hJeI@ z+hsGD&k=8xsz?BS2EW=q#yXIDoFAAgx|Xi$vBWSYq(#-wl4Ehc6R8r)Co^ zkDE2}?D9rbWIC`OCZKyWz-qN)m(XoTt5|Xt9oS=t2RMH8c(b=MI7%dSc@PVjoKlg& zI*i7uxg=Yni?fX7|@2_q4=*hNY?wa#P8hH(WJo>&lg&KP- zBCs>LCYX&tPdJHBIQcfXbE+hbRxCUDem(y?Sd5pq!yL1i#~8WxolyG`Tfhva9#|I8 z8I%mLL+o;Vu;oPjTcFKT2!2U^;}1#1|);D}3 zCk%%~4EUxn;e>M4x-h^Fu*2{3M*#n?2caE)rD8WBay$=||FiO+cYF9~z`7hv-(H%U zZ-$NxI~hCbuRx+4EXuRa@6!g<^|#&a^KG@e5F4*G!76`0Fy8&tKXSFU_HehJJMZC$ z_<*pLRBC;omQ_J!9yy76o*9=sx?q&XktumL?6G`wN?=bsz$JY!>u_jaM!>tr)w$Q* z%_NSN;T7w3H7EN7@ZB|pu{ALa7*c;K+T&}qui_nLY{W)Ke<3(=TbMZNziV2)Z=!ix zzTvTS$(uOh_P%{&n!$~Fvlvqpl$}2Di85{gJHi+WuB&A zrG$;<#}mej95ebD{+^!oLbK${tzQk!?1}x2we3DLw%>0QRmEWXUBy-N)k)~eH2hQP zX8P;saCN>?!s;lU;qppcj5Ui=Z{#^sw{1GV^p$!VtY&`-Pi8PBp@%_bn}b%hT!1f9 zRmB&araK5v3KXv^{9`k+MmMzL%?|R&!@-FrD8zOhE~1Ok$b;rmcyvg5c}i5f`sM51 zC}hm~DIRC)$V4P^aT@!AEQX5w2(b5O&hPqOa5g-uss8f}s!RE^8wfWD?XVQ79CAkj zJ5ry3uDXaiP{|2q<7v9+_5G;)uP+UXI+BPsPVj%AqlnOyW9w4~p+Kh0y% z;Ys2NJW6hm$J}g$<|q6pMaJlLHZme}a3Z%Io8m2_a%h4AJM8(!i!3gEKe-F6KE~SY zZWWNl-Dd-be+B8)luY8%ETVFndPDz;J7>^V2JA1b$BHOy;1t`wxbjRnVcpOt9nW%D zkNpcY^J2ST~>e^T!ob_5V>nq3xmj z_}700x^(Ut41|jowr-#{O+qwD6KymRh~XPl6(O-ZYHh&nd;Mal4hJa9kLPf4Bd}A< zsO)7N>>nzd@w%j%`Z?$4H6S5<(V+Q*k>K0aNCOmIz{)5sXGWf|69%4;UBSC<0Hy$x zs2DggsUf{@(ckL@5`cIt7H`nps?8C*IfrnfgRb6x;{bB1>f8!7Wp#O1b$^v;911~T zoeC*jW9G0p1IN>q(`q}r9=$*x_eoz}y8DF^H`?{soY4cAC`Y40GA4s_@D2Cn%NNyd zexOWfRHb>_Akn!^bbUiDqb^-!P9+WBdqJky#Iv4Xlu;brZqb zz?eqkh{sL(nm7v_wij4;Ej+@8LZHt${np7s0?0=-w@L9RfXWF8cAPZEno=?=YQ2># zQxZSgv`mb+Q9TSCb_NWcQF{LLg@<(njhC`ZTwqfJgO$AvSuE@Wf#G}a=uKKbNuwDx z39SSZk!jvc=JehyD(6wyVUt1^la4rcz%|K^nKE(pb{!6MWv6JtOJsYqdD3=HgjmQ-!WvE9@GBI_oPWu-ttTSasV2)Hdxgl zE`lw_ZtmeS_~XrHLk(-A6IdDHmz2hk;ndiZ#RS!z#+20O4Pw)w)05vH7c)j~GC9=? z4S!2)zs~{LaROLaecf=!oiyc1`B!9bQCkL0;#v;r{Y|B4L?`h(EZ7p5-D=O1zA zSz$2q&*&#Q-76_$wStbTME(pz-lh`Vo#3n{!+6u#sAvxUjxDyO!Kw72uvTfYNqJ>} z{2vBU+^lUGXjI24wz3hsbCf|>TNQNDf#bkEQJ%jkrl#mbpUqL>d-VEf7!Vqffx+0x z;q%x_2q50#ufx5Yk?leEt`M36247L@WnMN~rt*5N=eYdJstW3?N|Yu#_ObT>lfWXE zvV@O@T~EMt`Z?wP^L8{WIG?5bs{x7b z6eIbsbtCNcgKDezKR)RL`d9Vb=}bHKltyB9jEJEkAJ=)FGs>!KCH?^9Y&)iDi6b#v z3!t^MY5dns*pY z?f!CR8ng1?Tb?5>a)O=jAD#zd8Tzz^UrAtT}TKac_h(fzM8D;W`Wn-RuAp z4p+_L1pLuSo9C>GPqv}QxfUk(I5a<25g)~NXG7__+-iZ|uGQRGgusM^Qz zYVz9kyh>Psc)w~KG36(St$=9WF_o1Oo()?pDFC4LieZ^e-<3qe1)UhS2e5+1JQec< z9K&tTlEj+YIp4I89B@pfBEFwH;qEPbz_$FT17c|JOxKgHcY(q3E+lW$(VNl44X9On zZufcZxt)!U4LumyQA##U@2Z%OO{k6}vi&yMEjZR|!N%({@q05}9KK$AlyeW*MXvsU z{!eupSH&eTQ>o$WqiyWK%cK<->`)Cb6S*y^_k7-U5EwN3zYn{4J~3;|XPN4JCb3VG z{qNII>1e@hbIBaLxs~?hO_cjv-+j>zGKRb7!wET}V0l)i;U?RH@7pV<32Ak@P<&nF zbAkDIFF%euHm~Bwj^s1G!%z2Z4&CDGPCn`i1ncUgXmDjphS5Dz9NqIK(GL-9gaD+UoYS zX|(qzmp4z*(2g)`u4fz zkQcl~i08$ZBuIC$BJz4ik4%-Lxa;}DfZDFO=gh9|&W?#@J_)Ul#4xC(<^Vwcyi-+x z=XXCBZ)V2)y6T&Ex5~oqofrPvSxeLk$##+|>igGF6BpUq82|cd9~;CzFy8E~a)tJh zM|;KmvX_0fjih*dNo?t6b6N+|iw?WgDt*G{chTBc*A?e>QYF~p#mD>M*dQeKH}IiA zl%g8%*y8Xb=2ck4&ve(S4$HpP`c-M8?J>2x=-9l@j+aw;u3x;XM~V@EQLci?8sEA( zPuA;18}bV(2rZ8otpX^ADSBLDzfazb6KHbD5MByLdbzxD63@bBxbE!3WyS-&{Ix<>xvJ%o*x&)f| zXS|(xR$Den&LVYp#*CL<$JL-M%-2Z_HbH(OQ}AOM<5OzKtgA?vdd@pSvW#Sc8MF=$4tQ2Zq%|s_-CU&mCnkOf#VWQ9;I573d zyAqi+O<1kK(sN&!8W7772e~MF`@b60GZ;1KWdT6yDhglb^9bz)rBidIBL5)`8#O5G z4UhY%6cC&JLZ@5|+f6AMX4yT7L>X@V_)8lNgNhO9d~h^C@I5V=kP0NPxe+2Kgp7+&2FLNe}&#f!i2uDcb=TLf~7QkZGya_UkU+ zWp+!CWY9oTZy_VVXoRF*%?@c1DqZfaAz>8MZjhrTGd;QMC*ik>N#i85r&)-90YQ-h z;V8`6MT_3>OWvl_yLeD{9ktPPg3en2HDPNck=PVZvF>4rXKzwiE#$-{i6*>DWt}nO z`*ikmZG+H_)zx7O#putvZ@9&-MEx`3k>wLamE3VdrnvTD^9ThzO>`EJrQ64(ag#=h zZ<&RAI~ygc>#9Ssa0=6mGkfMktPwcHrNHc#tF(#^%V}AMdqaT{YIpGs@+S{4@n+&9 zI?gSDm%IK46z~{b0EbGq*|}<+>J_a5M!53zlF_vaqAZtJYtD#qe21gHO`SjABciT* z%=x$72rn`=jU!~*1D)=$HYYr{y%8C}CF!IHhW!4y#gU`=sRJJ>7_I13l>l@B*u3xq zjI9ajZvc;;+c6Drd5phUeH?(&0&H3Hi^@PW`8=_-@3RLpzbYc|rsD*rmFa%+mDh<3 zM%q1)Qz-2%aMP8Y<`8Z6m7ayT&?_-fF*jkWS0+w+CdjgSrK)1N-SUvRngB!TGS(}5 zjL1Cddldoa5IrcClL^V%D?O(G(=F`q_XT(f!pWS~20t@~04NVrs zlT5tu z6jZtT%vH4k8xNkx?8kn}D0~ha7RyCK^F_c(2W|ZI7gsJQ5Bf{xo-`}GHzLlT_7H&c8zsg_>Rl#g_tmj^``1|Uv%7zM}6h9s68|( ztVx)J1@p4eMMhfUJm{dAGJJorh=jIKVB+4-sNQuV5?oIxCW-*46fZ^RNO)4o}0TfqP=`E7&#K>P|>FzJI^3wyQQQv1$&qtgL-e}wo% z6W>8@6LgA6f1rO!*c{B4QjKumzU9;B_qQzf+M}>v17+6wFJL(3o9?;ro40< z-@F`u%0B{|BNgNBoP|v0XmSP|HrUcR(tQ!d2lz?IZ-Zx zzCd|b9CA5)l96gfM_nVM52fO!v{bHx+=}hxXW*{+2n!c)g3IQ>$h>UWiBBc|-|c%OL(J1siLCmDvB-}-7lqvY({A4_UFKQqptq05dm zuA5B5F>Ksch&C@rvohjPz5A#Nkn3d+RMVyP8%Xh3j*HlkQQu_XUl3XbOBvA2pd3IF zl37j#?kiZ_-;faQX8uIbe?cu zfJ9e<;pumJIo|V9Z6`U5X!K342YQ|AueqJ@NbwgVG;ux0u|csLUX*Pvq%G2CZ=!<#_kFck z_5SN9Qy(Mi-uW0OjKiFVkoDR+yt1eaoau+hl8y!3C}^`JAQY4NB-6R>AWf3FgL3uO>+>(vQ z?>k1Nc^wCs2UN6-AI?)Z-f>j8WGQ*I=nIylbLucS?OZluv&eC&+443vdATu(8#hCf z#mL&m%PKFW+y|l5cxRv0W|!$FC<6In8Rr zn@f&kB4_Z@2r2EUIjC8(85^pyF-wr4*B_NG$ZQEW2+yCyjnLHPT?EJw>@-74lIysk zZswHoC?cPY^asPRI1<$=g$urnU>L}(h>L@ zTxah(A%~m$(8D;<29is#xU!$1MUmAaW@ z(R#5d(U2~2W1MMS+>Aq*XF5YR7_w-0XQ%0N161Fo3(V8r8Q9>Wy;Prv!!(xd({;Bi zGOr@ABperQv*yVNg`!5TThdlKUnA7PHW9pwkRt>ORW2enzfwYuQwYE)Z)Nf*r%{oq zUJ%t~CzO6^*$6UhBt(_xP^iWnq1Vy#OQtKK5CivucWh&Wj>}*~qi;T`9t3LS7Bs1y z2&57*^B>$nMW{ou2})7VdROYF3*{w_-WkA_wqWaw}2eRF6DvwPK^7)4pvqu^(uWmWkN%F|~ZklC_6*o08D z!tMp02Ad|8aZMk?OtA@_rghLa3Mk8vPc4lr8X ziWMm50K47JQQ)o~W#;F{ccw=R;OgabmHLmoij5LoJvM(|kn8tuLJ^nAwVra~!Do3S zYuHkX?;bPPRqLDkNlQ!z`pLLhvFn`!Q90AxZGmfb2q?M=nICy6JkZZuHQMt_xMjhN>lo-4={vW#~{+X!bW=*FP zUaLddUvo`Rel`2%ei0bcfqtsZGM2z#ckfcuEz5fTy-u9BjxCK3`#FcK2-E+#rcqJe8Y zg@i;VYAGZ0Oi4xt{LInL%+lHv2}wIBQ3pedNTqT=b*SN~VV}@Oy3_D;N6kP+Ock>} z@N-#^92(=JCv+$|DM(VXQk-;jEdC%l0C7_&9o-i0r}^uJ`}B+99VfH%nQg@9%l`J4 zw@A>RpU1|QIC+pju@27WDufUX4m-%KpdS(m5E)1IGjjP@cT|)sl4Xm;eWf?8d~Ga0 zLkrVR%k}+aHvt(DB@)tV=)3#YDL+hr0SeMr5Kt`|6^SQuRE}^Z2NWS!1+aFOl>&r+ zU0TE~sSdssD4P?GF0Op+e~Z-0^Q`Ff9TM5(DSFF|bf8NRqJ*kLt}*IoDY;9o@L5X8)R8U znrnEad_3YveF>5J)nfX+FtFCcdJ_wuVRV)nI2gLPQEtfoy#*?s7nmY^v!2}}@@*^P zk_zqn7+bmk^qCQ;yk#iYcgR{X6uwY z(xw=4^|#}+FUhFQmv6#bn1pAKNF~0|v&=e1vimRIO#zY@jLny0hQ62U^M*z_InRya z4v{EVJIszEv!U+#J?2D}2Gh9TND*P8Ro!jc7YjvmZ`Y9 zhoafa3_ycTNvx>;@(hqfkv6!KnS%}l*z7c6?a;TkiU1Ul-T}vXl0!Iy=`KX}}+L6u+pff~(tg-{p^qTA)_3|HgBtghW5m#r}Hx=35J#>wpuV z%Z@Xe%Q)q^fiC~8K^iu)Cui`c#gUcE-Mt>QE=uf|D1NCO`eV?v1s*Scj6yMlhddWI zw(cirTf!yszH+(62ChOP6^2A8h$Rmw^0jJZ>G*u7(4UrnXBm#$baSsgaH=uVGHG~) ze~m_$_5FTbc2EAT?3}bq_Wmc~XI~{TU2t8f82jA~T*6et$Tv!k9Tm?cLE$;bf z&nDBYUWLCD{(7o!x%HYh6kGYj8 zQf99epLnQ-2-4iBVXL7@z5qhzFF%s-;z(X&Gt7eS3zT+cqj)I%M0}8sP6Kf%JobX5 zY>Ajw^XyTP8C;bhteVIalB8tFPVZ3pkzX&OeW!E9lRAG)&EUTW#$NUJvPYsqUt44m zMBZ*Cw@0q>#~Ven_4j;-B#J%~)5MJ|?oWP5{Ztwl7|;u3?Zm~BUXFR1hhiy(9wTIe zAta+8Lra7sCw(;PYJrh}Pb|GQ>hPIH7{6NT?I`sog!fTX@Vrdrs0JAtPpdVj#8YI} zcHJ^AYwU)0aeGcG)WTLFdt|*wuR9{`v1id10%$vo4;7$zXwMjkFqFv{qsOIFbNI6x zpU*sV))Ib?|Ap*jq;U9q1yQj;3K_Lrl2L75R$WZC=-t<>Rg}U=)B)-W2Xe`|JELry zG^fBTJ`eOJe~9rVX9XE`1Yb8HVT4lWs?i6o>J&3o4o6oe&V_RArx>pYio?>yIILOt zi5p1YgxR#~_lS2!8E@DNQVFP&6h_Yk<}NSW*VS_C(eG2(0tH~#FyztI#?=LeH3C%2Ox;Uy2j!QbZtj%2N=foN+&RE6TS`0?tE(W_~>bQ z@@4vEqAXolOqG&41I6QbEoEVadNmI<-FKfjdpT3MtqnuXS>6eD*=HCgEU~7lCV?qq zoBAA9Q5?nK=x|0j20d#oN-m!<*cjay%@}(HykgFT5-%9f_2X3mQGroGxGH{1K`PcD z!C=9l*1Gfhqjmmu=0T^YB~SaGe$=MZKCj>{n>9?$S!5v~a#98}hB*2=25=95Fd{bP zGsS&3*QVR?dqB7?*fidx(hS>lz+9x`*9d=yy5VbMH**c6Z|_?A#k*n4F^gsEm>W|g z4lv`C6=r6MLN0TlIn9R7u+*?SyFNR8DY#TjPfahn&c_kk;iFTC1MRBqnonE6dhC+J zveIhN^441Fy6MW#HQdFy4o}#{W7v zFleZVC)25rD|acrR1u5oR<=?KQF^V6-`mQ)%?;ru=EgTM)WOwBv(Dd@5sFCvu9v4* zJxl10?rsbRz<(TnBNimuC8{9SB^GD>@YsWuMyoNuHYcx?s8lQWR5dlnIye36Y^i85 zT`s{V&Fo{v#FF>fY1tk+XW?ljx-q(mze9zK>zl6F&uq_3an*3^yLBQj(u~r4(iC{J zEXpl~-tYaa{~9^QKQ=tNKdL`EHX8P$?$b$fX`^k5ZNPp)W}beGe&l>@bEx>s``Wt{ zSPU$yjVpjl#!%*qVf7Lv{qtPOT-{tHW6PCiEAlHNOv+5o@n-SvFQ|X;{@5{N;Zdm+ zGrL_UauPUkJV_>@BWWWkWHWpElkElDw>O3*)?e{-#md)f@XAVSGRw!Rlq$E%P0L)$ z*=oFvnT-`{tZG8`Y<9zUvqVBgWQD72Q9hOk5Zibxv22m8K)bMZRyVblPKR}--5XBW zNMDf}B%>!ElroiGzs;&ss_SZSY2c}|bNJ?#b-{VUa!Pihb*g&OxY4yDcT&F_dE$Ce zdX_n3-3&im4`bVY<5+`pt$4)%pPlZnm%A}hooV1dAeusTh6!*0*F z)0e50_Y=dS@u%mD*{v5+S5iSz@iV72#I_$F{laH|5Qi8bFWedA*k+9lF45~VPl@ZB(iP~{IEWNefflwu^ggieBH!L};jB7=;)jW~MB zAxf?WjaoOumy=lNSj1Qo1apKOOyvx6OlOP(3>%CZ1=@M(s&a+sd9HS(^O@DRE@=+G zkDOWNB$`BIc3(omvWKS-C%H(xdECHxJ%blby(e@dlq$3$!seDaY&w{~AwHeo zu(N4}e<)!n@)sf298fR**r*TIpqdn3+t~_l#?G~zP-B*&1zFO6s*}2V* z)%|dNy<@v07U{|6z3n}8@$*37!s@g}bkxh;htH+5&Q5Pf!7~Lhu`HD3K})k-(nFt-?r14kz+9=f&AEtEl=LjP&G@G;vnM zFrQEqcWD<+9EH}E&)|ut!nC=8HPw;CXpSHx^S}L6@1!`W}fJTb8bx&d5y8UdkSvib3G9$hKgr;F|`) zTH%JeI!`Fn!^7R()6?#JetB=D>F1BhxslZO2X>%$z|S-cm1>+Rd;ro4#cQf7;oaw# zY^z$CQC}kFN#j)uyD54cdc30!lv$J_lq-}-)b!Qe<9=6pyQLY_o1xP?elIm4HVfGu z9WfkA{XL!fri#_1MxRDu-cj7+TU#^Fbv2%zV67elRPnq_x?D5NvFLrOZkex3(&!>_>`|! zMuDpDjq{1qkUQw3~BehN>L=c!hq~9}bwb2!1HSa57Cua?YF`xuQT;v#oVD7VrkhRm@6IjGAFSWbO_BHgVJ?uFHqwS1xpqUyw|#FsDg zUZPE;{Dhp@Q4sdpxV&jlE7Y&i<1mo;37)X8j14Fc3o9t{PfZbuMyq7}%3$* zG5NlFlz?57Izv5vIWC@8W4=3pGvqkTFXI|KtRAVC|F)u`>jZFNzwzQc?mYW~jnr%5 zeyw%4Er@OwQre-}mBwh6A7%P+Ab@pKVf=~POJW)^$K8pefu8})BPIFBfia_eJssSI$j-{-ty~uPA7U&7iVlwwtt&+7Her6H=a;wNcAmV zI^PpHIEcO0I`F(Om$0CMa)(lDdahmzn%Ax?jr2AYcA9?}d27JXQsUuaWqlWUEO@)u z6*jF@SG0J+EZ&&5e!B{X_ZsjR5H$CXJYNsPJ{*ZwdHu?wLNmUepifp&yxkXHx)`-?1aH$}Q zE?GuOQ^=ZoqR&s=YG)S#Tp=}WC)u3{*Y8mcr4joT^L}?&0kSfb^isJ(E8_9-1zTqO z>yJpt!Z(tVOU|{gr!A)9tb2CT_D-n0ViaKxR4(tGhn*c9h}~}YU1yqR=?7m-hOeFt zUZ1Wfu)Pwe61S_#ycjyH%y-o6xg9~z1Ly+E0b(<+D5(f@RAhc!$*8p7wC8uU$m&H6 zMpT3{$zF8r=FfC48+)!)tl%z_66z8f#}mcPGf(DS798h^|JIK&OT;U5Gs`pAH9azC zGmGA<&2aKDm$Mx%4V~L}NB3kn?t?pdW*sy$|&kSqk2K`g5oWS zj(YK-$g-y83sbj=4ejHj{_T0fERBlE_n8&NPNi<|r@Vx#kH%BGm&5e|!Q0)tBjk&a4jJU=^=8TXZ#Pt4~Fn-kbcV48hdKQDF*SNq5 z_t_j+nhb1TI#iAqZTFPV{LJ7ZeXp{uNnsKBafBkvSmOR_Idwha*H@eQ*WV3nn!b;I zog;K`8riF8;PY0y%|OM+V5VKk+Kk@!Jm1T|&^{5g^cSAKLzZBJli$3A%f0)4O1Ypn z;MM7WHIkp7M7(fz2|>4(!eK$DUc?OyAp*ZA`4L92~ee7*T~Jt(_T9r*H*$7z!4nXbwO~685U@m!+%5; zrl`!I#tr43W&Ri^LRL-oCWSZUcM5K*9Ub2`3u7qvK-y4u_p2V;Uh#g=NMHAK``Qq$ zlfW_bhyW^bX#_IRz)B~`!+MPAO}bAo&9Ti|@I;-+mvxLyhdz;+nstSFhryivTj8go z&!u_UCAmg9@4tQ55!0l9UHNJUcK)F>O+VpICqReZW`!yq!lQJ86K?*h{#PRZfNRvb z9G;s1o6uuHjC!p)aXGKXu9MoykfH52u9rCQ57%9qA~&y5&H~22y95C(_OqEg*6DZY zG-TPjpko{e(qX3oP0LG2PjlouGfz|ZcqQ+fr09Aam7Sqnht?pzA+&4RYcOlBRp#w` z0;`j*%-QY;H1gp|{<36z)nlbm_H*^8kp}SuHm~0MDhZzX1m{fWrA@}_ z^@guL$s51j+z#K`G_Q}Lxd~j1+8)nsx5T?^d_9o44}%Q_Je8TG!4O5JC)TLWYJ!&U zB=%1g3wSPUtE+0fYI3{e6ll8s(QfdIN2Db^Ywuq8%;rpFvT+-KGH6eNl0@RE)mJM0 zixyscH1bb0I51*GiX$JU3Cze=ZEf815d8MHiX@N^jtXnpr8&(x`C~qt+^4``EaQ;A zp4pDL^5H4&UCMM(cH9dj4%kS03zIehJFqL1m;rCx5W)T&E5LP0&%??C`l7aow4 zOx{$P4k}v9it=X*_X)yZzSpGSZvw}&6#QsjzN>jo@An066 z_Bu{mSZDt&m)4ff*`Bty%QM{l)y&@qE}3UTh0_!(!#Dz#S;h5!b!6_ARb3U;U)745 zvSoJPcky-aSiYsTg`S?yYSp>i;H}vXH^Hx$ZtXCGa^<;0|LB zw|C`JyURHusgPl*rR}V(rYdY~XTxr2VrOK^4z;mI>N$OeC)jJoOI%kz+kYbqluZYrmXzG%@M!E z=q#L_?S(lw+}zyQ-FVpT9L+hngoK1RIJr5vx!Dj;usONgIvYaSY@O);>EwUM9v1M| zg8td9KT^bYi9ZtM_|MjhKbqkK-XbAMA}PsAX+e>9n=I}1CS491{A@pQjqqTiP_^nT z=jkMwP9Fn>T$i<7)3y7&l@b>k>NtuRvW^+yr(cdCMatWZE=~rH@w0EjRzAc}twCc< zRlcvM(siW*um~8|-DxPq7QZeO@c#@%Qb(egi>&SoaJo7by57BAXu98M`IT8g!W)Vv z(+cDS;2{5Vf#F6=o(C(mBK@!E;f_6K3TG9qKja-I8A`C?wHz2k)5-fWA(yHiqN7G`GMV$96UJ!0{!iUwd{?a}hgjjT^WVd2~@91drf zsBzzkOJ+2ZqX;`uM{&mq>0sAb#QFZtx(zs`i1`eEF@1VkXNk<`=qz4XKI2SJOIsV7 zf!&Ikx!l~?DB3qP^fr#NHu-X6VQq=a{ zB9}_gDYFRfVyoF~s`cuNYj-A`*X3RX1qFG<#VYge8`P;ODYfi_;O*mM$LSiotci&U z#pln*o`|32K8HLq@YrHhn4S4<6R-A>zb+YdW1zp^7AoX*x*wehvsO@0SYwuehiSch z+2?&R$DE&^??$CzG)PmNs}S9v#P()&Oo3MI<|?Ttv^}0#qkn2Dh5lY91W(Dq;fU>^ z5*r7mDvcETYi5Skt{GlHXy@YMa$FwmJ^0gUd&+4`G2fmAmszZ+z}fvP8J*jC=6h@Y`95 zQAFiDW`6%(9Zcn6S2|p{yS>iO%UeZX!nPF?6LVbc1zB2J#wyUbGZ0tAOz`@Vwv$0{ z-R8gk02hUQ4`D<@CJZjd~NGzi>I`i5d4*umE#{-cUoXweaz4|Pxl&d z8>`q2ns+;y^1KS$f%x6imFD>k4Kq!7(DGEy#+mW5>v3XaQJ>e}^b^gqyk7-}gkGH7b&93K0Ru;7i<;Rek?1oEC04eWYS=71z;PnCRu^>@4WDm=(!{^VoO(1ysvj z<9X@8ExM@L_XR=B+1roaEAO0Vgye3{E-pk^i3X@u5}mXQ3N^BlCJlV&K<9{Kpu|iD z$1@6P{rm|^Qr--YID|D?bVKYjnP~aepR$3bO`Vwf6sHjabUyv$=&t7t2lLn@tJXPvNQR1JUw zKQFJ|2Ht|X}fs3-*6!8prQ*Ew_FiN3Ff#2`zwV@9Q^1OyYnn%#O>UH zgYJ-DANO9&YTW2`xTR~XI&(7Eb>dGt;BW*WUpNe&cDi}^%jbsJ!U?3ro?Yd(DM@U;P<=k$IUKGw^`>nrE^Yr>e@B=Vd35DGZwA_SyO3nJ--yUZi zc=hP~$O}sD2*4NLY)p+o<46>khss1zi@0VqLSuo7_?>GfUE!$5tsgHZUTD;jhB9+x z;gxQzN%IhKP@(`f`)DdUbCrar!BT0Z7IX!cILnZch5Ne;>TDTTZ*T9Y5@2v(TbmSf zE2wQ1i(plsvy1NgJ4}-&C=;aHRFr1`hrq&!dZ`N#Esz=d%jYzgR;YQAhpyif6&{h| zwG>3EM>WB-%|zK2jw*}mLgACGf}z*NvxL0OMpHlZQ9z_)P~u}PkRkH|NM0pAs*BWO zxVe{Dxa2BNoLSV7oBnS%{kZeWwE!HTpR*G}gQHhC8;wMx%^eOL zm(kdRM&^C4ZF)TO$RUX690Y&zklG!b86ue z+@T2@6om{BRYwUV`AUT^b{f;Vb@NnTTT@=Q#(Tz}~@0Ms(Om)INz|K_DZ~J)jEI5JqA{JvA;3=3~HTH9H-t)i(9a;N$ z2CUvsVYl)_Lt?LtE`x*{6#;ZsT2a)ryf2=Smk*cgmH)Q%fjt8wKVkkQARVEs{sUh& ziZQ%)iK-LRL53u~Cv8R4+XC#6mR~d#%F~O=mB4}nk$%GY3)~Zf?fFFfNb+;%h)SRp zG)%J5uIVg^&=ANCkP@y-YIWNB0Z3gs3Xp`n3Z#{-thGef4CaKeE;D*JYC&NRVz6t= zbJ!qQOJ5R5nj(1&Btc2GY7K2pgGz%v(<&8djm{=$nUan&v!QD*D?Z=xHiM!krBF(L`4-i32RBXx|SSwf~^y3Fy zkQ9=ZB!CRiDHbXuPXDAR0?28C_S|^rMQTy4S27uxEEEGGXWD}zo9;+$(#G`*+}SaJ zQjW0{t3Td4fNXTMDm9yjOwi#GxLEGd_mQ+Q#?uJw-KpRM;Z-CkSIG1Nv#o|Pku-Wj zsljTQ9htl^{H?$QC{w5G>@2oWEKM)L0O@*|#emwJ_oK;FM2jsHo8%!K9#lm@yC?0HC8oFU{81%v$2PM9u`O1Bgd9 z(mMTmSEoCpk;9pR0s9ydm#~HqUWaJXucBE8OEM9P&<`7}jH2|hJBuh05~5!AOepx` zems`cQr3*eYDV>f=QkZ(UW46D_87C$!l8sT(z0z5qS2?vROg43HvxhhsqcE44tZxg zxQwv(1ETvl+ClrwKKWyIgx32S`6xU|7gyD=tmo zi^nn}Z8z$`kXZ#`q4V~n3qYn4I=MejrslC?9c28m!XYfzy(Pw{tRhATGv(SOvOn&_ z&Gd-RFA&==k;K~pgS!fPfli{;e)PKMa0m%zQh!93N>?77ycl0Im(GKAh>(hS&JOsI z`JnTuREj92^ch`jEf{}TM*Lgz)t8wSIK7y5zLvB86W&C78aqn0C4fF&qipC$GhEC- z(b$oe>xLF54yGuOI{-5>nRx45Z4RNyXxwz~>ZIR=D)*)wwE9EAFU4hCwL5ri4y9!x z;$DrT!W?knd0QCAjM0suP;uE0q^KxW2tcMonRvd9whX&MVqR=gP&|}oe%1og#pD5C z>&Y}p=e5d&atGqK1KK3LrS*Ut%Sc(RxR_`-%Jl{IZ2q7&lq|TUE+^Fza&43+FuF?5 zp871M3dAg`Feg6<_E^N-7Bvdrxy12(YPxwu6*ySae8!ecQXl7ayJO&%DUg+ve}0Is z){uuCi(^K%b%?*Uu9Jt02P<489p4BdfTPF=f^rj1oenl6?%hN9E*xo>AE~2wrscII z^AZ9h59!_4MAcCPDNTFbsC5hMskdM=i?&hj(Ljkc#rnFa)8#Ii&+#NtmWIf7rD(60 zS3MiMJ7qi;l^aV}VaAsW_dbfGYmb_J&tChkEdx;NQDW?{Qv>|4I{2Qblyoy^Lff&P z%$~%61670a#_5-DCOBen^H6jocY(CT#2{I@z!LD|PTZWRM>}C8$1rWk%V7?@PBdgm zbSh(9&9QPShyy07Gy`5Uz5WxStq!YJ6%^P;-$2iZkm3hiloj2~5uVE^ZzC`b$FU;* zWaSanGSe-l)-g8hD)|GmIW5Nsz2xd0+-oDOuMl={%O@JW!J+=b=xTQgsOSb*B)mk1 z1-oH);4gJM82Moz{(61@r#X_!FviDNM9#6*wEO%z6lZ&XS&~|A^O-_XICN~0FzpLg z*u~|QigySq$Q}9>C}<7M`rKfT5zI*`pT5Bkz-d&v3dJ4tP2~y-?SAl{}c^N=8>hpff!un+ZC?Ih_1VRW!@{RgxPBD1~B%Kf1qM ziEj9yYMSQ`KshP(eIk@ZNsO1n_-@TG)_BO+=7mzxZ0O_W75(pPfsjNhf<;e#0&CtL zu-5IV5EZ>77Vz;_pvBQ|skE4un$fW6WXxCG%W+nXA^79w^xoo!*29KNaXuwJjgPeJ z8~wmE$NnJ+X5gnLWylzr0~bIphZt9Tzr0pVqczb^Od(L&avNssR!c~gpm`gxR|^0% z4P`q}lL3yJgs~jKoKEXj(4r+_zChgB9`|#5WS0rM2_d@}ICQE5Bb2fH4 z8MKO;gPQGc0ef>O+ZKIDBI>t+6+k?HNEhx2A8blL$s(-l%9xN44ZkKAT>2QZq$!v! zBW7`^WYl;k-V(C1NP7rxCv9E~e3CA!-%ELPT?LBPAho1Fq&f^S2IeoK-8bgl3bCMA*qrxMX7j{m3F5)4LzE)Z=1b9o~LP zynWBy$$6#YyA1Bn3`7hA4zrJ!k_s#6ayB_o`d+|5&tmvxquxp1jPf4#_}=tHF@Tfv z10j}@yiydvv8=nTEMds+oJ=K5n9md5*D^>k%yihSM6rtTZCUs5tOn8$Qr*l13p&_l zEv@6qbROY&E}V%=@+q&7apZ~`cqj(%0-UBqKl$#6j{Cv8n$Jg-4vA3`a4)pX9G>G9 zh-dDl@@KFC(vwMP`d-)g?nDVi_vUNRXQFccOIQtj4kqYPIIM=xcfapF;#GPkvmaAQ1p)!Io=tS!pR>z4cLsDvUfYc0V7hwS6$P5 zVLJ|T0CRLdo`a;QmPd)2V$_LhtfW`xNRyTpfKj${5&6(}^vgN1nYMmRi7PPk;N5J1H!gaX+_k`?g1D z0*$F$A)$@2v8;$Ny>R$Na*@acrT%W?Wl=}tY!Us0T_^R%B8Gv+63I4bBsY@)f7V|h zvi<|+8Vxi6mmL9wl5;^JH*T2RnPFoJw+g$hZ$tx}JM3Dnid(h?qb}=c=@0Pl5Aib` zR7AzWyPPGyD*`?p?vPvebI|~+C1qMc4BM6yk(QP5KAx7VpWo_9fV$+p@uYQm*fex_ z<2Z#ezBoRYADs?`Ze*x1nIl{;!<#+csr>dqoWmLN#XQ&z9VV9-Jj&~K{@^xqfRqZ~ zJdVFV<^an_m+BD3xD=8RY7|wMWPZdhY4JjTvEBT5_?E2q@bT36Mut@{CG@1h;&}*i z3!$!aErvd$dZyCdCH3LQMFF|Rxi(LjTXN8#6j%lOvO9_*HNGZc1S?Nj?u0J5e;c(6 z#i8uEL(yyuGJ~vNRb8^+=Nqlxok&FvY@Hft8$1pmFw*|gTALG?c$n=wH-rt-e?uB6 z9Q7iOUo>SFzm6&HKyxzQHZ*xdhBFMd0YlqjXvt&cf~wX=HO6k_k4M-8NcT6$1yo)b z-MCs~S`z_2hcuVEOKqH}-!6Lw;+_$K639ero_+i5JMp?SU)-ZD4tl$6Jo5G~Gr!jK zNUZploc##SKx>b-(HiIsq3RpR04xV^fP#4|jkNCjvTni%GY{$E=&XnIcZtUYTW5{? z3!reJ6SJ)l`ljT`ldnB~P$B(v_2XW*yQWr=aPzB+@u5ufg?#)68&g;E*}@vQt4SBq z--jOdwA5?1$8EOeQe>F$#$DV=tj*v+;@W9{K+YG8zpS0k?@N9p4fXOBk=^)Fu9uz{ zW+UXk;=|wWXh}CDKC7N~Q~g~4!2bxPnWnNf9kzoH?O4v6P z-+1GX!%8qPERTqc@k02y7-A0t`DkpbXj=*3L%$d~v6cJt^0M8-?Di5MF+P|kX#U(h zB|BC-^G^C#YevR-Q|MXN5su&WDE>Fv4zX83nB{o_x`zLX*GIw-FD3H%aFWX3ugW$I zA$=olLi%@ry^QN2NX6AZ?P&Q|7{8SbaW0@Lp}Q!5cfkL^)db{)-mv5Tn;Cex)H0&% za7Ql<4o0YM14_%a2WZ8BW%wrl#M$hS|c$*bx~7n3mK#edeXC zj~|^H`S|!45#d=)P0i)Fp4GLkt}fv|yNS0iw6!;rByobIi{iXgLJ&y+YkNT46C9Ao zlD)RPynNobZzI$^0}}qg3X^EFYl@#Zf1kW*%w{`0TJBLq)Ps(WuBU5B4#N)r z@F86=;&WR#@}O>CK)@}*)334P3B8Go?Fc>PCqPjm4u&Ehkw`~WD*F%<6RTfFMn={Z ztaVv+jyF=_pl3)1+G7zuVLCaknr57-SFp{a{j&BGsOSO!xwi_FJQmJ+*Hxml1T}6@M?`&POLqnT2%KI-<{{Tmk|b6(l7gOXyb_y036y2?|K_Irm^T zYQ(FHs@de|l_Y{jm-1F6v|2(jgbM8VC~0JBqk%8>2l}v-d3WSxgw~MD00_O2ln2LX z8HSDq04#-%ZY@R0uY7{M&gnpbAjAdoDN|b9yi1MDL)F?2v9cl<(rpgN2U85iC5y651GXXp->q(m5Q9*0oTYpe zl(B#EV@1KOA*HoiDyjMZ9{?_TfZ8Xs=l=z&nxqJ*EqcSB#QnGW#eG2NZ(h3%{(nKO z%L9Vfn;Jjb?j}#EfUsLnCzM;Vm z=ruh(9mNY#SB$fQ3|=3!7$_?%^IIHge@B25cn-L^wH14Q?pjn_9Dj7=(Bt;==T8E> z5K|)~=`UZt%pR?-<{{$uiiq4*RaI5q8-BJXL<%z|`(YR(xti)~p`1W4VH0d#CG=&a zqDi!5pvm>s6@Y;8^!!ZawMG`;i+~b~0EbL?SA{8J63m{hdxAR%z)-(wGqr!? z>wAAj5{rnHn_n6Mj9Hu(CMFVO=|JXGBZI@+XH9W$^%%_v3TM8xj$2{oN&KVeAorMT zQvY4T=q8rajh^mqs%bnN9Kos(1$k2o)vx>Gx>)%VcS)!ZiV6e(J$QI{hC{nzx-QvR zS>q9jL}n5$XUki^AB%PV{wU1oh&#!KOo*TVEP|#@}UUXNa!cs*uKaDHr>D0oh?jW+QCMju`(^m# zE@AJFeNv=&*wswI^0?`ze@tGC5+)cO8ykC0z8M(wFU~UqtZ6!&pRlPEBk=k^hS4e% zp=x}9$sGQ_X;B8kRHmrsn_BYyC4GmBP{7*YMcs-2Ts1?qk#+;G%H6qUvuFP!^1k>dDx% zz5g37#<36}vZbY)^y+WvFCZ+hG*MMNXKeFqw{yioM_b!IOUF2&IsrbI+3LVa)_6Ca zQ6=$b)_I&L2y=d)#?T0)LNpZQnvi?J^V#Hfor*ki6a@N7BhU}{d}?xXLy?d> zJvBAfUhpZ3s`sx%-r(*$8Bh=Vbk5V?7Ba`M=)FsxJr zdC2+p`LiM-qn_>($=O+N77bk`D^9z{d^;z`UD8R(Rur2)i}M6);KRe)5JQ1tE`1pr zd(I31g*7!b#U&?i=!!3jb<#~j2=|KY=d9$F{lPu#!$y_cymc3Nd&=4tCBqfg$!tWU)KsiWEN)o1b_wkvZ6DdaL33fz; zI6*w8g+|ld08I*5-Xob%&;hN!WSTk!1x5N#)f4VtJe~b~KvvieFc`Dv%aZbeytM8-!DcI1&LaxPbZeQHn+_cYZU0*k2MuM}KYe1Gk%^k+I?k8qFp7x8Y6IFWK z+lf#Xj>HNxOD=>`;`&RD2SIKzwq8FFud839J-`t#pl`h?2*^Ofm#4&oGfBwwGj3fl zjd%(yXEM!;XyYu2bmzYS^xdtoo?ea{a<9dS1{(o$$z)PS?8&|Hwv2H%K#mFcCtQAf zG}wPm69XkI4_gMa0-^fus1St`i%^i%W)K7{8J8X)dqi~w)MOPV8;mWvtd1SHYy3xr zwe0|2Sr!pK?a3hp1k7DBE=YXi2i4j#?g?kaF(%Tsm6ax6=SsH)02&WdqSm3Wsr=J-u$U> z0lx$)e&J;J5tiie#qZtLAKANVpyX~j2MnZD33c^Wv zw9y}DhCpFTEX4Wm(0h47|4kVpbqx&_OUt6ck&yv}cao5pShrGC^w@27e0;g| zOrAT~iGiB~yG`=ZYH!>_Q%c+itqYtlQ2R(Fq~GN6^7!N=!wonJ3d|&fyzrexfR$c2 zu{zl^l}5LB+K&WklzsGJBIdsTI1Ffj#oC-4I`h$GKE(18)6yumc6OY4$m$XPO(|dC z&Z6+8jkB}XArsxx4d;cqIYxNmnP%Ff)QX35(;6)O?qwhZFf~2>n2?b0{g!-s&jBL$ zk8q3}QBz{(5hXm8NtU`WSxa_x98Brq@(YFm8qk*XtM7w>)#SQj!T(q@Z7aYcT_Y4x zA3~xle2K7&PjPW^hey@C#NV0#q1N^!lgo^<0LMXh(J-?1W*2~+k&8>U)%*1{%ceU` z^BR-l&;L^T3XnFjOAx21<7#N-hjKqi{ns}&!pC{!Qy8H@!``~9t1HUJz%XwdkbkJ+ zx%Ny<89rK&95>}pAJHQ!-~NAD0y%;u$R8k>8AsK-R<*D;a^n49nyO`ANq+A1-z0Y^WY9#1wv1=kCvlg z4C141_7Coqwh)FpJ2B#K(R*k{a{kfnU)ac3nBx;Oh#C|01n~J{wQO#3)e(7=%<9iy zzw|dGFJqZZ0gOF}GQ_9_VEQ4$g3kXayf(2RCPdmchAxS-b1Uerk-XX_V~%0Z!wm2+ z!K)S|@|_@{a~QfEq8_CdQ497_2?8P#LC^zOmGojao{w9Kb0;nRURfY07|7ynLB`VV z7JiLCZ+Pljhp+@>C_5jJW`i+h$;L-w#DjOSLM8tJMH31X)?>2q=CeZS!wC8OR}LB z7Z2B{OSk`@m8Ax^ez+p@;M{atVg6JAPeEom6*B>3{tLF`$htDY!NF8nOJXK);exM* z#LR!M+=H{Mk$)P zG{Y?Uz-cl;lPMht$&`L2Dn*pW*+_nRp7AhIRFqR56Y-bmIg5`wfwnd_E<=M`F+M7} zf9C1t-}(hpCUiVphNgLz%D^p-v*FhthfPZoDK|NCu_CIKtjvK919mL13`x+FY62FtkB9%W4G-PN`vj@J?x=u5aX=yeQcO3%CQU~P zwmk)XoZH^-HNhw*v;S;CF&)kk3HSR0#DC;yrdNHsQ<&+|AImZ{_;1tK0HB|>YKP12 z6qk_4>E{y?I^f0LOmgXTh4UX;SjK?DN)mk9lx@uK;+rD`Sli2aKd_<%*)b)LWtPXDF+{L7)jNUVGE&nRw7HYR(} zw9F+D3BhQng(*Z`LL;YT;a`tY=ZBA`^R!(T)0qK`x-SNeg2rw>; zV`Xaf8Klzzit&*rfpBAjn#f_SiAuaJ-YHjX)Q2a5{Jt0_XDu;Qw!i6h!02#xVkisS5uO?QX!-O4|2vnHtZ zLrO@PfdO<0Z8Bo;$03mixASU2XXvw2WaQAZ$jO+q#PU3dTxeXiBE$e?QmPCJDz6F) z5ElnvxzlbZWHh{{H=YXTH~R?I%|TK7aA&8;{vPRw!7q0;nC! zDT_(B3$*Fz=uijKEt6G;Na~43LpChdmcxF4{jk4+%>qn z2A5#L-GX~?2=4Cg7GQ99x8Uy1;O=^d=kxvj*SarYdQEqq-luj|?K;NrQ&;@PhwULJ zUVJeOBtQ?JjBha~+~A^9b&2+;^OuPDY_-H>bq^-2wWw%s4PO9S-=96gB&7bPJpot5 zv)-H_5L4V1Cp6`TSJPCXc;L=}|Ej}BS55P$D=dJ7usxI4g$E*p>E!&}Wu3p=1acQ_ zD-r%F?rXXNIC&J?5x<7k{pqrZYSruS^z5{c!q-@9=|N(B-ea(AFNy zt%i~Jq`y7)&VPAFTKV5e zUtv>3>MKy1np_9uW*t#4Y62R?>z~I-qNyRme znsOZ-*t$v6VRXds5Lsk0zUFb>4zy*@i}eo70Hts>6B;dt_rLgAj?LB%*b{1g{2w6< zbnq)8&x|1(qqtvl$;LAYE|jfh>JI0<7k(#3@?vG(9oZMnV-iDik1OzZ*>-MjCV~IO zr*Vnb9xFije|MAy=&}d&ess~H+-d&ixZkJ;X%*ypa61{^0@K7M+}O@}s`l9+!yR?9~J-mEf;N zsD=2G?G$N`5T+Q(i@1+y6gC_*A!&@Yy%05J*1e9+7d^A=|7y9q!pB~z+u|hk;V=f# z7!$*b9l=GGo9&-0f!7rHp?!wn^8$2#xZaR!$ONE?y-?}@!>2Lk0OLyWAT(d~3ARXL z1aky~zd>bcl`WL<{aL+pu0{PHoIwy+p9e2Wh)aA>ddyd@h4uB00ua;J!y2>yu2J;` zT$%@CqpN#+Q7Az3Hs+Tx5aqx~`&(_;lV#%+a>`x^2AAKoOKc(z_&}$rDAnQUNhVRjR z?eIWMLEO3)FbR=?F?%1CoCW^l*CJ`MN6X+KqkS6VJ_3JPoCL%59@(d6b=?p0;SZ-( zYErlnBgR+09#tfQzqCk-PG}upRGYOwrQ~lT6rg~~9_0F;S1&l&bA(|otW+P-x{de3w zJOWFb|Bt*d|L^g3aGFhIIm-w^pplPY{D|1T9{ZOHo3Z!7DuU_xe>Iy_^`>&J0<}Gu zI;Ou*m+P5@sy+mRt{~x$9W6_E|H1GGRzyc9v$ovaq56O8i-%0;9_IZ$ zGyK0B6#MuIl-z-Buk>6feon(xC>M}bkmKjqT)b^K{E^5<=DDe7#Xt)2ps#hEN3@&@G z`uLg}md9Nx!NVa|W}}cERKRmunxRC5*#wDbJHx$mD8x$?b) zizx?;t&AlHf`W~;M`L%Im%gSh03l+*`&%7;O&z|g{a(-&ITa^434L~4jROr$WlT*N zElov9g5j&Sijsxy_8dKBI6Vwn*Q9Ujy8AIb)k8|4ZzxbpOUq<1ieN!Goq>Ub8;kf+nZKlHhezUNw<46 zS3q;&PpCio*VoqsiZ$cZA{S}F7Tx_@-$}pJHP*nv!mfTskD<JB$5gRy85m)yYAvpS6?g14Sq-n zMMp%Gd@4=CcNusiC;b#;RsE}P>x<$<-^stah{N!r&SK@K79NwPPK5!9;KHhsMYq?H zGRuOtznb3-3ZLjD8=4iE+* z2BWZ@)y2HBE-sChSh?xQ;>-*7gu)?z0(LG)ul{kbDI7RnJ0c`|L}YUQS0=|k;6uOz zPH4uWV9*=qD7Ik!K zE|l>UkzK|D<>q=B!L)O;4p5t`SfonrN+n~C%_=TvpS}h(`3ijGq@q$AMXCOh@X6!$ zg%m7^jE~HF2P_x=z{(KVN?X(pN!Gr0`n5F6SY|JxiQ=Amnd_4sMwodLp_x*`Zds8$48W!Ni4z?GA zA4K2CcW_;Iy##e0Bq4i9q3$d+>uE?eAQxZGgsf(>F3bX~udO`a!QO4tax2qUfttQ@8wbiWIN+dl%qPW2?ZJ`u4Q zi_y5f-xT=on3;EI(6#<+BX^0bNDU-0NO;pk+9Xi71CY|w((v6VO`%XXJG`DT6qYV^ zNV{ahWBUxS_K?1$;t<5jfaGN)R=BMhI=0gsIBi!*R(_u=GwRd^Tp`ZaJ$~_(Vr3Rd zkZWjY$(TxxEjs?4+)z86pY`vl$kcqjVdYZ}ey2svSvG=eW;93QV6yVlep(b=QXJg@z zHNp>fKGUI`KkfAx=j2j1dg-F;vM$?q415h<>%#6U1RDmh&~gHyeBqL(zC~P)az8{O zGv@q%8x6R1O_NJm2;bM|Qx}+wfb`W=*MaUzg&_9IR9h2@6Sn3kQs$c(nDnV?$*SlM zrHB5qSG5iyN`f}DKx5R5$9Dl-oe%8=g{DVP^Ze=EH}DFG2wSH`g`z> z4W<+#boOccs`6yQQ8S8dDDEomHkQ`^gUC)2A63e)&!M5J0l);(7lU*8XOS&il+o;Z zSD@X#xGxTM&h6S+cecW)_4~|TWW>W}f#bUiHZP-cS_Ga}LrY{cMrA|e@X~#BQ%5jA zEq=O$OUn?Qld+?)L2Oi1kxyx)VFz#DDKL>#$g5|FUDTyea{2XxlVJEj(nT_qGyIt$ zB2Oq;f^M?Q6It_=J7YDX{rWQvKRH4A9qyacQ>{U2@v$SawvH2CsKawI*iN5s-MGDO z2$mWwE9=%ByY^U1@{5%QE&Ae5$&@`ImV1&}6nOHVOhY?-)*s)iE?mV8P2kF*IEvcIqF<8QSqa zakNI~nRxm{_PX|e@9lqk81ILlkf6Z@zxKR%*mzp@3x7^t)#hsRWzuH`m(|caR5_!Q8(uW8fL3hQLm(5L34Q|2j@p|&d} zzhC4^5V=5BS3du}6ZTYKZr+BSTYb0J@z+Yv(n#(9Uzh(s7|j5dan!IUTB9Q2|E7jt z_=O4Yzvh2+8y#O$svH~8`h7Cp5rAcr)z#`Pl(rgjA2X+pW1d+V4CAL|NS_WD0WrE!?P&ur*AJvL6RKX@2*5{zs+ zwv+N!$}xomFD?~I2dhkb<-=p+@f^zPs|;mqL0Fs)k6!&|lF1KR>LIN~CeY+wnDB?o z3l5n+es`|_@7kL@;D28!S}gz zlPr38|Fpu!`0lb%&qc&NI7)ln<3SkSPdN>xrx_FfMDzb$Q~$#+(v)<-fXVp^$mfBP z(^D(fw&Bgkp1p!+ZuiBAxz3SMQ0%-YywOPVs0+2xFSWuJBCIEJ-f zu-ll5d~5IFxvu^t%PrrCy8fMw%h<%+4Z23B(-ij6jiKSHnJndWn@xiFuqQ^EE1%A_ zium>BrtaVPc#Fvz*ruXGvFpJn3ZSNC4xg*Kn z90_&Vh(WOq+bC6jI#G(%DNue=2iH3&hzDdFI!4A1k*gW(m;sNOHn$*m+VcqtGAb)8 z+myD0X>KiH+EAE&X{C50qh+;b1ucRg=dnlo)cJ02ut*2&&n;+EqOH5lt;?H6ev&bq zK2Z!3lK#(nv51F@8>eUui4PX?m@6_uguaxXgBwLdwCz5bA;QtL^GBpu4A{h9RQ05T zS9Ij50wmLz@Cw7~8_Zs33A><;B|i75U)nPQbUK;6v`DQKRNmh$%0^6-iJ zq`qHGcZLQA{`uGM6!YDn{c|!SV^UJb^V!7Tjh{7N_6wM7rH^O_&js>$+Z?qoL;m&O z?755A_z89#t_3bRD(Nwk?%d`-dEmxe4+a@KG|Ay|s7iWy<&r(GoVtg^yZ`2(?0%7p z(`)FJ3*F&|<&+EXG6#?oPcAG_VKZpQfZ6ViOC1l7R#qG4Cp3S%Y)kIRX6`M~c>`cc zNz=L?3paa3=PONUP`Q>EWVwqMPU^z#US&qy<(4jIZTGI2I^4^cG#}5-gEfgj<>IyX zaNN=q{?|hkDTxN$!}7~4y*xyCwqwm3IUD{b{7l<9t}S4AkBuzmfA%Ofu+%UfMu?A} z0G3G2RI!ih$Yada)739A+$%LCpA!vql+j64dN$GSBV~S9sn>`sq~*u^I?JZ}_tfsN z%-`mHhW02ZdAc(>TwV2xh!EfFX=Xk=BviX(ra~3eW=!XRakA-ACPi=9b3_l_J3=h@ z9#(c9+tahU$Edw$yB!N}ZJ`J`XPRsrr0yx~LuCLjF(G5#y(vdD=DORK2UFT4$Z(21 zxVsz5(VR1O&H74#v8q$ZxcVpHGfNvpBf`{ypDfaW*z)(_+aSo{pZ*jYI$s~wB zgr2jW_JLZ33mpn_&_Th$g%uTYzt7j{9UXa)6R+^;$u4kTBrM@Gf~N2k?IkTkS@~{L zYO;S54$`y_>>stQV89Mq4tT0BB%dcE4mxxApD8b!J%uH8m%IOhQqqVmKF^K;HYDU{ z+lz-Zn0}w_LK+>q$Ut}qksaF~-p?e8uV_VWxynCx(G~Ws*z#_KF}g2=`H-aBjKLsH zI~xz+0Pf=Ckw_6pe$cY)9^MlJ+@=#w^pap&uD(ZcbdMh*vY{+d!ta-$^o2-J78V*v zHgMbw0p|~_`86^N9Cp=JdD-PXepL)4pz@B9jqc)(Z6_&IrkU~ioxx*Ia&L`MI__@a(vxoJ zkrgcSsdCC5lEjg|cI33WY$O{y#tI{7Xeu6NS|Einc|7xX88f@JZ6blk{V}ZyTwR0} z^1TX;t<2yN>4%l;V06aYNqxu_?(#D!05gziX@>_8cTGV-;Riz7CPzX>mUJ!B^K(!U z(O@1Pm5ze5_SS`q{1+*sYbPX)U{=_&y{}vM_z3frKr3cpJ!B+tJVhmeVaT_Asm4~} z$JttXA!B4n+|+64=pXl1+At%FCHdj*(>0V}0fTXT&b z-j}uKceNeSV#Ov24R>-5g~jrE@{RYcO)H=!FU#;xUWkp>EBg;)-{w*E$X!{|Y-$X-KZs(zWriD^C9g8Tx^27F~oH5%Gi8BsVqL%w-70U<=#4U#}3-a^dUofnB zsWbm=-Kmiede1@;=cPjCVX}VrdZsAw^L+1cTk3E=XFAlKT^db_MZ z=qA%1Gq~pmG?*wcowq}^cnqqe2nR<@aw38WU9uP_1Au-EanEG9;N7SyHBbv*WVzAK z#Zvv~uUSDAF*laIyQy$c5cce|%XLR!NY6O1sqMm0EX#+P_MQM~XbVc1yGbvdQ93Su zzTeflZvtyi!(k)$&+n6o_=Sy#k}D)1rF{?x-r-JKvDAf^(A=jG{2B$WjU=99i}zU3Ud4A~C*kyL>> zc-s&W$mhPDK2Ui86z0y-&|t{v#Yu#A^CBfkfiS-6x13?r45beL-$LhP%#h22`fdTb z9w|N61Tt_G?$vc+PSqm(Yxla%*MqYJ7rnPsHn4PfyuzB86#9ylYt3273VElg9SE7z zdo_FG=cFAux+0Nxwa=?~ix%=Sg6+5)puPhaUceC0dmR1WgGXzg~>Q+yGdq<+@a6)ds;Jr&ou5)8J zn%ttke@=?#$4Jn7^90_J8F$U#QuXA4StwuC?|-C9TNxWiWhUN=X-6ex;2*ahf zXvlHjW%WUZJiPNY&45jll;9*MH||t@0@+TB{Bu=bO_I%9_e*6tl9cza@H?$9ZfAmT zs-~2%&N?ocaH`Lrv62%l7f3OK!!PS6N_127U z1f9`rgfkGaEX9r#1KfBK|?r^*u~HupPk5){1SFiY0S zf3k3UF%)^t?VIS^38!(Gw4wtey!&^I^O%NB9I&H}>Qif`zb#c~nwn&GXcY(bJwFp| z%y3g(`&%56Az61#>Ihjj;y_yZeY%EWsq!yc&IKx8^@$o}+7pv&HI7*#js>{iBysMi z1nN5w|8<-UI;XZqcmC9uXJEeOAYA-qx*0*VaUUACX6!s_G<`3Sq%W%5E1Q3HFssVVLV`8M7n`~4m_B>tBi2C}82v~}>Q zilhBUm#>%C=#SmC=mbmw*v!PWj^DSsp1^J-`5_aXBw*!r&F9^* z5w*_GKMZiDy1g2+s@zqmjs(5Li(}wdH3ZRH5~2N>m+GyRaF3l0UtU%~{;t34wZE>@ z7AxExsPKTCnS(>*?eoLARTjLf#vNd>Q%vYj(V4zGrhmto7YN|@Vt$-*bhNk)^}M>w z;d}cP#m2F^9M(1_v1oGq=M$774*y$t_GqlT4(&0~ySeVVD=&~v>Dxh^E4R&IxwB*v z|1_9{5D?OrO%}FZFgb|od<|0hd^@zGkRT&B7U7O?UOu7E0)c$spjyb2`WWAN6H=FL z>q1v;e2BZqdv}^_-Fi>KN^|#3bTbOf3b-N;;TW@U*AoxQ_w5!7h98IxYt)pnYdyz8 z7ihrrXR60Gx+ZwFqX3vBsr8=mZ7hs8rIOkz#)Mv>>@%k+|H?odUAgm|PTpB_>YbVr z#92qPL9-A-q(ukAJr(Hi2PUiFa9FP~M5;E^B19j5gL35QQjiEPu$UD1UjAEorb-Hu zyWa+=GOtDn?Pn3dVLi`4H(#Fdx4&^}#^el`{sNgti%@JPw(Lw(e;@UIul?SLmRNnA zK_Z>mj}pPwPp8GJA9u9Ah2zQ#F7cmb&0d)N&$qB~xyQHRl&U;Awh^(#!z4PHN|Kl? zz=LzN#`!~-P5h3L!#NbH%<;O1id~_Uo()#8FhS%$+Hd##cT(0#<5NW!bkjw2byZe+ zyUUV|H{Xb5oW;rXdoC#Zc{z%*L^884Y~Re(-Q9Ptj(O~F-#i?gEFiCm*Pt8fUc-Dv zn`zO`1wSX4b$r3l(UH-0rzd@XA_9-8822z)BhF)F{RTutqa0gMQth^@={YI4d!Erv zl-yU)(1W0jNl!2`YxYAKU&7dqJj2bL6BCpr)~9cic&CBd-@5UjdEzRB(@KjMITG zZI%*3PjIzse1Qu;H{=ZSP82Pp{~(CMawa94G!IwZf{JAh`gczro1!EmhPpkVTJq$6 z_+)cXOf6%JKMCX(7fXP>{U4fGOUG0B&HcTMlvL;ruK+eScIyszJs$!hV!fbc;L0@T zU|F&Qr(69UO`FqQoi?ANNU_@zrPlA$*r5F{RA^+ihoDh?7OQ>M@~OQiO=k?7w4qi; zy*O$@(Y^F#@wCMF=P0dqjM@|ybg(J4H#QdiD*-_w*c_OenmTo;2XrPDM`g`*& zFMfox6r$y97?_t1fwKPDlU@q?;KVMhM;zb>BicBejDXL0=;JGt{#K7M1CHU6h$c)t zI;dWr*=db9juj+H;_&EwaHds3o z@1QDiscXYamM`jm6~e$6OpO#ct;OYLzgSnViV!ZdyJY)b>vZJc4MFglRGFVRN?Vq3 zAy=VSQ)rt1U-vX=X<^|2&Bev#>OY7kGX=*N=86PQKtK>BcFBeT)NUsBYS%f_bumnQ z*FKCGJ+>9!3rr@fDdg6AyKuQS0o_^M>K@_$r9@EsdO8~wMS+4!1dw(%Y2dr>X}iYP zJxYn+aHrh$#xvb5{{2{?b`%Dlc0v=|G`N^wSg=Iw`*X*P$TP9|@X%z5-0c{WyRyE{ z08ZG70x?B_65bigBubkaq(*QT=&*-<&iWQhw5E2)vfowy9^>vh>OHo&&-@b5b?=Ye zEw|Fr#Y1zOPT#+^6U^X(}LpWlxtl8 zWY{}WY0}?g*h&&PhJfZ~_|z=g-}lX!WfySBJggoSf?J2R%$$q6UHlNI3OET~tx$Q# zwRFDMIrW!HK#?!s!c@hDv|Lw>_bB=`z{|M7QzV&}udp+c!&>w0t@hfc?#llj&Kdrj zHRZHa4cKNu2+`8vIxYfDipC8$NCJI{G7ZU6DHr;-?2x$(Eg*(7e!%Y4OBR^Ef8 z>uqByk{ofItbgJMU2CSppPuz|y`763B(D=Y(j#vUjFfWTvL8<4VT?^hO^+s1HlyGj zxe_ZK>%XogW8roc*@wL);B-7)+hg8z`H_T~Sac-AqMDx%RCv?w!L-K6wn;kC5B;oa zl~|KT@a6zEvq(vRjr=jIBu~Vm(0Yb?B7iBlKGMWs%Dtc<*afOVA1W3`%$;+~?8ro_ zOfwTOFe*`9+p^E#v6cQAW4Lmrs&z(y_Y9M z?5?oouu#6sr=$?+#MuSLgi+MO^g~Ig`bfahGZ(m3);zmx+L~;gZC%!2hunY3vIrQLw+Qi=zv2NjyY9QxcUte zD3w{8*oBR#kDW#nZIh zTMM5b&o?!)6n<{z(fYy=^G_{p4L1L}=mn;7RMo49_X-uUf<_xT`c(;%l8p}~_pJKK zC?yn-M+*_xl;$TX_Eg!;x%nsPbE+$6KKag88k8ZCjtyFr@G81C$kES%$dn2!_XOU4 z{YY+};YO%;n*?`=_>ebLAY&^}VPt|S1`J_Ni`3zduQRA?8Ze2( z$B7*uo?JI^wp5a#O!)S?F+5Y619=p=q5cx?D|PP{G1k)q;|5v;x0bW?Shr>rYOUH> z$qCJ|qcUXXX2`zv!um#YBK?!$Js`b^q4#@KMG{SPO}ka z*X4bJZzdxlIKxl*ez&H96+-%c+jwnUiE>4^ z)b%o2lW}{?eKnLH8ApVlq?Y~ct1aLnPU#f*8C>aV&=-FY_6`rj9G--ZPB_!1b-Xp5 zSRoG$5)H=^v~VgI)cCj`zVbZ@VwDC?*oKT>YgicSoP`{=ESJ}}<;WcCTzgNhf|D?r zpvAT=5*5I3bxtOE^)IE?QLn>+kPymgG4Noy2hY_>&@(POoBkI0dyVs7d55RJyZ@?P zOu){FyS4k6^yiqj60i-zn7E3>+x%unza>?kz|HgKwFIHJ1W)csCVL`rjTh?45Bz^v zysc92kkWje?kKo(=<;UgOoumKE325+6m2*BHoevxzB|pDCqb*=vmA_o@wgOVk{my> zWYku;*m$bChZB)`Z}Vcc?MC}FZWN?2Dzw1;_=KHz6(j$sqGLUexhRaDtF3ctDU+YT zX_K7o30lE`S2$`5#;Pf8mbyZ`N{|s4Awx3MP@n9MYYw!?fsM4Zxf88Bw?XtpCP6|E ztUMaQvhB#1^Rl*o+|&CP`}z!Nlgg|80KU0I;;w^RT(4%Yoz8&Wq3V>jCvma2!HtP# z2pYXNL!kUv!FtRsfn|N%$x?ezR~&c>{h6V&f;Gfh+I##WZs8#w6O$I9m2&qWRvs&! zwZ=m&cN`UWAt|j8F7@G=V_M)#IGBL0lF$Av9u^k7>-+4mH(mJK?M};wKH9VVyF_F1 zuk7B{XdxE<3NH>2Vxj##HhE{$PYFlckcB4+yDH4GV4;CGKQQdBRG!kdias9Y`KwIY zce|HCk^QJL*7^$VDOI*K zx!3MS;$0bQ^H(}f|Cl3tzC#*40fr#-(s0{5D7iC4N-7fTovqL3&pB5<2L26`pPM7vFv+vYa;V z%Tkc|A5-Fn{V|Brim46}9@KpWA42<1es9|;>gzf4nc8t}5lprPFo8LZ>s#Ig)MlZN zWEZ`f^gW9P=d2BhUG%;xhK?V;L@wDsUSVH5bx9@F)lZ~RYX{(Dpp8UIDZdtsTf2@y zdFVIZ1#Zw@ZM+vVkd)DNseHD$r_#x*S69=%y5?)pL68=Eq`?2707xo@5!DX_7#A>Q z%qPk+9IghuKTJ5bTy^OnlN#&g?1voM-_&{STi88vQvhREzx|2^fRS}eTWz^;|` z8mjrm!?d>p#m%!wL%p|r4z64=hk%>A{=Kz)=EwEu{laFch0J$bw;D%@hOi#liN~Y8 z=nin9HyO2k(*(9v#2>v!ju%|&`S2EiAP30G;A;Ep0KO3zL0gY7%}(5Bu%9yc2$aLw zWPTrX{pp4Cx7lTu8>B?QeuX^Q`AhakqDm4(xnq)2>4>-8es(gQyc=7BRDz8s8aStP zuyIuJrm7I|{THAd3X-eb)Oqa@vp7F0nDLidRy(aBPELOU8`3;N3zpo!T4&z=-nP>6 zJO@dtci5E_;P`Ei4Ek3bZ95$m7W**vpKwQqhxVAgwbHnB&~kEe%_iiJ|N0KTv1=$Q zZv8|t#L5NBR|^qmRLN%0oHA$YHYqc1@h?}2TqXcm$%afc2l6b-2x@?IPpd#rUD?9)>i1a!zlJz`z z)YNy99{0fod03oSP;j&&=<0@XuccdI<2@Ewb1khRWz>CZYhBXWFz#S;cIt*k*5YlX zu1eWA92e)AH5J$q?qqMPz&8sAnDV*17fOiP&y1l67=7i77RrbrC;(_&SwYIQp>vx1 z>ubPedT^Ug+^-Jad){3>u(e2@C}@&xx~0sg*_Zk@t!N5dp=+UogMJ6~oA-&zyHX<%-WZ^ZEk zW@S58B1ku+gq_3&A#LM9Q!=?>^!H3q`NYIZmIc6*2`11TmgIIU9dfzui!+q+Tee_2 z7Uj>*_a8s_X&Qk+fI2!g;Lzbrabaz(a>rF-<*&gTnJaLL?~t+r|DGhE8kR;l3hfJo z2(Q~!0XVKf#>gmNK2OVMrQa_RY3quQ=)Bt>E^`tOEOTP(x^~0&Sg$ll$;gDutW4!g z?4_Dz*?$ojRNtzosHm~s5a9NHX?jLlBI0ox3SC)|kI+e(26Xje@+h3hRMMgf5=|YZ z*X&^ujoM$k&Hu_?X^X7Kze!8La^xp$qS{Q0(_6S-+c@|KS3Z}eW@q`P9uHliSO5@i zf-(r~hDRl-TkIup-PtTGDx##q*y{d>Cobmy`{e2-ZQpdVY%v}9ZP@-yU9 ztp!tDI*?j(EC8rn*-`56F49tNd6)oQq##XfyJ-LKRDhPZSk^CBdYF-Rq42&A${PXt z2(SvpNK#WmbpgAQZrgFl1v~a97ykW6XNlP?8COgTO!gE$GRPo-6sZ|57Y+`iB=~{? z!T`?JP^?#hFW#xkF(aQQ{dtSCEwOLRtdE*dxasm_sdnKOX<`qT%VRW&9+=e%S2&#Q zj2ZNqFh@D(GYTVm00{^JcanPoF@h+RQ3!#uJUnv7icf$r9=zFaOm%3jsGtele!cDb zHDgbC*D4vm5l?YV379mNZ445(7BMxveScVQ%iziH+_*QC7DHsge#}WVa`QSk0t5u& z1b7mQ-^Kg_I}0#P00Kvt5Pku(C6*_xt*r#yA^|ZJ#sG8&Mlo@n-sS$CA$ByPB*wnM z*ICgc;)z{uG-^;g`e41Tlg&nl&brsVjtl?&WhT{WdRKy?-sNuMa4ng!02sl z{v$Aqq|591W0rU{?)}ZBVcSt0701ybT5yGb#0p_cjxW8;6gS0Q5cn)b2dmE$=xjuYP%Ya2^)nJ9^EW76 zfj00$i@`=pcR7Uo7U;CKozwOQ{HovJ`V;hNdE>4A-(^U4PH@whdpi%bSY=<+pxC__9LHZ+4=K+P(wXeZxg}fvW z^IEpte8hZ5*v?T#A)}ZpN`FY+&^YLqWs!zOrdLs=M7-JdwA);#*v&=PV~EU&y+gis zyKQzsBvT&I>;7{h8!EJGUUO`->q=?!h^B?i+^6k;q7nhqKhIeXJ1=#H{6+UBrPx%e zPfd zbVY9hD~&p`aw(YlIBeHXHgnhAI`X2nBX8WH{Fkq3#`*zDeMB2O5PiJxf<4)Ma8n1_ zsMwgChxeBoHf{wY&c~EU)mb#;y2LS5#2$t>Fz{7xgAfk_yMZ;%^PYU*F(Mg>wk^#; znUJzIFw!{!RF$g=^&1$qb0C+_=_!s=?|VR zp7e8RZ3v-&WA;6cq2e{aU)*yW90ns9EO9~BAw+pM^vf1k6{G@_?@rer%U@x^8v?69 zIf-Oh4m_eZYGpF)f+opU-qpUXzUklb@yi+WycBAcNJIJ{lci}Us%U|jouo!1A=S{g zBKmTA$cPgLhL-v4H>Kbv#Z6_*c!#$P4w_>@z6RGXw(Q5k!jkEdWCpLNI+jX0D=Hhh zCw3D+omOpra7ZevE0Vl0s(y-+S&0_T$VvM>!CS6;w~lu747|(*IHg(uOtG&4`#ZjEP1rr! z_)S@6`f|0wT$irsXa%!6+Z5g#pL^YadtVFS(8c&ACPiA%zBy-rOx^zsQq%Dv)rGk7 z@efwt`(5+$W+C!)kpl_d z%?fs|N}O~F;%lz>2+&Bb{#6FuxX@`fyrHaAvP0fvOW@nsAdFE8*sn*(V}Jy;6T|1wNdfx0IWQrgr;LvyS4kZ3A+G z3?l{4#_LtBLd*6Jy~b?B97WfXqrRR`>X0C=A|YyRqEGxK)&$KhZHr@Rd@r})96lBZ zh$ARMuBVAfE7{B(ZYaxCBT4IOiZ*pml4&&B5DdvL{#N!~9?`)uPw>^GLL?&FRCdvo z`RlIN~&)4^zSPsh-fAiC1vzJy94XD7fNb{zp(8gS_w8-E^*}B zYYybu04E#7oi`7Gzz5-t_a@GIAx-r|B9H5DB5WvAZNawr;k4^|Vg!Q}fW^GX&WXNm ze9=IX8{1v?BUb!fsN1Y-PDDQJEQ-tvEWYt;NyM2GeW9L(5P802R|>ZdkO**xm*XL6 z;sQ5gxc!3bP_pmT^ibnvtp!2!(|?wRM)6N10qTaEkonr^x@ccLI3)jAzWLmpT}##O zbf9`Eta7Da8)75sqf3EhNJ*xU&r&l=QVCwFHQF6_h^;T%E!vIRe{1v}B1hk#UV3sz z78r`-MujP463T_ZM@s$3!x4gnmfHQk*uRf&YDyKnl1+HC4Gw|gnqYnY_ph>eJmWfJ zW@}+X;FW&^r5M$rT7nNS<>p}=wAts277K{mic!a+3<_(PiU_tf~tWzw7KNw|8j&1<^Z59gD)Vu~Dl@J9AK<8JY6 z+Y}}1?!F9BRsX7Bc_UZ>STuCWrBygx>8Fpf3&`%bcsGte4qQsUX)5@9@v9_AIrMcu zlfX1r@ZNbq%s!US9y`XgS)Wa1K&A%kT_yz{$dDQt=fjNksUY+5*TySsr8jb)N-ws` zQ%l^gu=O)f#(kDih1cJ@19CdIJ@~=_{ulE*(So{tcmmx-uDw6Gkvdf&)VTxflso5~ z-|%-(4F9=T^~E<`22fZR%uyrJasK+@{s>)cesJkeb%~79EjYeK6Gbq+yQpOSMGvcG zJhhVE=7so-773pJ5_2ekK+r0&fo+rQ+*Q^;B_s*;PHPYyF5RD@4VkWPjUlKu&8wTIn4U@#xK;MEVgZ5{u zfEv*Fv#jNfPbzBVOtNt9ecu|Gf<~9ed@sSHxjHnRA!1H6Vhc+uL0+t;&;kgH5w+TW zSsWDjsksm`=2r(K-lMTO$`CB(TBPN~V{-&e*Mn~u{n2Ka-r zJQ%zlNA(zXE9WY|SHPj7dq@Vfe({ZW^IF9A;YfYs^4ak)Hs(29XTQEHOCuJgNdUyVaJ7)Y;|6WGr^Ov=gJxfq-5s0F;37K)z zhpA9-?se`F*m@Dk6K(r<=&vCXW63=}N;f)?yJ66ByN~?^!}NuBKBgbffUu{ z;Tr#=*B-hM+sF}n5O zm*sM`Ov~i@`4V+W&1?5HHq2#-N^j$7zES#xVteHUyXS%f0`c6pYfa=+GrAJsPZ!Cj zSP_D0A*a6R4KXExEFq4N2+_YiB=~rcvv|QT0TLxcNboI1-;XjPiR?*O&1W9~Dj;rB zlwowQ=^852eo^u;Ot#XT&*)8iB*N&<6R(R0S!I9`EPs8x9vd1{^8y( z=54XQ?fvWvPjDNHkVJ98@~TE83FVJ@xScz7qg5>7_^4Uz;BNYhh4JU>#T)R(RX1n= z5xKoR7qIgBlZLTySN;gg?H0v0L;)04-iRVk;rCAG!<0q1$eEfor1ztlk@5B}i_pC6 zTWKX16!rnkb!*35v?YLML8n&+I?g?6;-MBKA&T*iCWY(Ig$(y_+A#=&`)_;;kB^KY z!!TOGu7ptdG9;P4X`B+7uMhU}YbrP<5Jloj+4@RLox?tWek+u$Q1v+X+8vUvxCZNd zIQeGr1plnpd72nHaA$)1vf4$@2EX=IUK`NMD@@-54e0_8u^UKiH3U6{=D$Bp44D`8 zOB6{n$$1FJmqf`p;2}UFsE3R(pa*=tuUovwnY7^AlHqgg zQpDF+<-({v+L@nG)=g1dy%4Tqnf>UlGOzQCP7}vEy>wh~YFlWYelr2R$l@9(CTCY# zt4&b0Xc0eEyXd%-R`I({$#8GAEq*z2AqLlo;%@i)+y#)>{EghVu(Uqd#szU1EGhI2 zCtu8Q@KNZzEk%yrnvOUUTy_~e;3Q)-GR65^nv2!;@-#Hv{Qo`o0DT;6MG_j((g2(q z(YU@CBjZxDF}w0Fdqi(rL|?l5I_*OI?RH}F9fuG|E_Wi0dRrwY&`{#O7XSbnWOU}g z6v?OpjrD`G!RJd=dv9x;Arj1~?gG9u((2M3k z0M!cLkAk&>MFh@6Nz~?WBbw&w*irL~?O`^Dx5skCYc>0I55U;CQPTLMuB03K>FD9Z z6yjk8)FTP26REW>XM#6-r}@ibFTdME6B**+_!VjI$;G9|C5iso7NeQ(!!G99qhp4f z@axOio!L9-LT92|f&NM%8@K)I_gie9#wP!i=>z3#c=EjPO%L#iM~I!Joe$Ck0~#EI z4?;#?Y`3IAcF_jvkRw5i_IMCMt$m^@TNDc!gEY`&49p3U&lzTjD~o}_7xGwU9p~Q| zJdbg+(BYzH)v+3@@S_I4pHNCiz8qjBFm#7RFAY)3w>byoU(v>vY+2s;zizK4<6TcX zYd^{dcb&GN{r}i|udt@tZ+lb$CDM|B6zN4kX+flS>576%l`1N|_YNW*B!Cb=s&s*m z-fO7RLFpY5N~HG^2yhnP-oJhJxj4^rF8>$jDi6ux&B|J{t#^z$W=L(M?irY12M;go zHkA2JXXXJLSRoe^X(1;FqR3?C4*Hw4cLB@}GgQeZ&pgyiq!)Ph3G~k3X5>yEV>k;3 zMJ2SP3Ic@xuRYZ7v`u6AmPbe_foEAcr8 z^sJ}u{&rwJH3t$=R^k50_vlZ*B@fbJB*j?mY%fm3^4iyv(S+x1bG%&?&)(r_sI&Rh zx$7GB&;W&$i-$n-!9>^5xoT{CJHw)M3`Sz@yU)r`y!!G*bB%|`f0Z?ry=e)i9Mk02?m*M{tRGh`+=*2KS5YlRv} zpZ|$Af;w(N)Xr#!(&d##TwgT^`)zXAxC+@^&etjb7A9Nof10vF3Y{f}86mCpI{7fk z&IY!;vzxB6gSwd`;P;0+AB9(WdSBJ-(l#F?1a&a!(4`g`UM0AvpU289j?H@)|E-@n z-M(fGItnW2fRDfH-YAX@NfEoc_t*VeV>?kh(vxK4#qvchCQ>B=&zh;fO-S9!BM`&V#8G-<=wWL4=TnV5% z`~c5-j`o#uOgpImy0~H5uL}mRr$Fz8X+Z3*ssTTRv zi)QWpEnh$C+oV_z#p=(MHpe0*+uN zbjz(wJaE9&6(YU*G zB!kQ|%1pjhRTcIeJ$5n0DMsY(A8}FG2FoQe$pH}@{hOM>$65Xs7Lv_=?^&DA4?G$i z9K{pMbK!aYwRIU-UH6&vMFBr%m>aJ3@~QRwc?jntWPUva7Z zDG#rs%&UQWAF+47{&6{(b7`1bOe16Z`&@ZpV+dXLbiNj5kL5MX*h@{?dOnP-;B_s5XWBR05>t9*TEb-hY&*D6w*T2cG_Qg^wNJ)txHl>8T%gj>Q+P%Sr>UoLQKIS z!G2`f*|33(<9DkpXgJ$oxp112Pq9-md78VGJx~rP^0nW=BMy_L44K$G{1U3o^W{ii zHEBxT!}Tx0G}ITAPb9Apb_Ag>H*c@l3^A|z7F$SFBQ-)vc>9qNflXYE2c%d`Ld$}W z`F^aXk}P(LgOhVaf$D16voXoIMa=oYhgK{d8RP843Z_&;2oW-Q=Wt6My1097$a{Xc z^lEOtZNkhS*xFD%`fl%4&akflfWg=pIhcDb5B46-Gksm5);ypVR9l0FtixS)ha>@t z2~~J~s2EHXp32P{=zWL%xM%NI-Hvdt`O|l-$NSC+gsC`Q_(Nx_p9c0oNuP_A# z&Eeq%rC~XH)U9j8i$8oR;mfn4$>Yn55Ix?hw|joK*tUJ7@a$%E#ybVpZwfK(zQFiM z7^Zq6{28nSk|}dBJ^aFH?PA^3B~8}m;kK3fmVV^tP?{$mCoB6$JNkqpZTO{mPrIXY z{XE`?Ecc7=aSaX0oa|xZU!rey>V$aG z)vJA^%3o)}Oxm}{pB+|w&#l?Z`BfUi-O~BdZ!_wj(YFqX)}aRi!tLaN?a(CJj`o@4 z$6lqxJ}HJ4MwT`2ezm8{zJJUrTL(4M`?WU2tit+ibK1UxMS&4RpN|3WTZ&OXi`8El zVo@b)6OSfIE9L#T&-|8vi-FgZ><#NDzeF}mDhSnChCnh6lPdL4dhhJI%ZcXINPB(d zYHEdkGe>D}&FR9}Y&nxI82!CCgb31?PU;Wqhd&Zb9&+ilt514iKlv zoT+#%{poi0Tq#vNVpPxYz!g`ycROG=y2c%UmC7znK$*#(rmbLquH_63$cTE|aUloB zVi%-hCwnDa1S0d>BuiOfft8ldGmgUxP4g)=HjA;scGJlX-d_C`BDv7%H0q+^(^KatK+xER-zwb`B%o6BsDj|SM349xZv8OTiSl{(qxDF*@+f{PFc^k zFSgn#QUKEWClo_}hm(_SqCS{DPB}Jj-`}33>-D%(13O!(Gs|nm%!beZ@EE`Ud8eF3 zR^exf1tpt|!Wz9!aOU|+(k(%S!)&I@pOAm{I1K6RCMd9R8MqusMXq^Om9g*fc*UoI zo9#q_Zb*4V_otniP0_?b#~nQaKs+WU6fVH;-n)XG7WMKwF&?-YN>vRdYtkk_VMjSf zLk2y2vltpjl%QeUGdIq1#t0yvn*h`zpoaK#zJdz zFJz8-t3DhK=f=)mtQkr9uW5>(59zNXsMA#gFB1x%3&-hSee zzB5&8Z~R;XN5E-^AZz(2`w@Gr>0W7ZP$pqIAvAawmA!O7tNkcN!fnfgudLu`q{w$& zCEcKz6*f1`)y=5y?yf`IYaL+NAc%l7WW2z@*7!Cu%?6i*gYq%mq|)xG9rgIfQ{j?O zk=@3_nYZrfk`;EH7=uW=#}S#Rcr^?=4-fnz4P*CMW#5Ip`0H$%WDXxVSD==i+FQ-t zP5njn@>-o%Mr{MrgEX~JINbd0b4!l_{S+@JvjmUz7ScI8p=Kq2tgtGl8YVM|H05x{ zWYRBIp5gaf4j$2*ciwwPGc3|M7Ae~?9M^g+J>QsC%!{lY3#_Y6zmg2rLY0QK+20-# z85Z$6d{AmY*)iPqAP?r(^yBE>tk>cwfga=I2d@8?u*Z1sdx$T}#Bdx!4mK9j#}XH- z=HA!wo&K^}XnJg`YyD?lGF3(_frAfY)D;kEc{bvZ4z3YSlPnkO_FVSjD=sjompHuK zpJ3E$cF=8J`uCkkpk3M?#O@5#)ziX&T^Ea@% z^A~&k;ZgG!V>)Lw(ArJM^%Q&coJvo=rAU}-zI$}?n&YxlMw;^K)g@+-p~L< zn=N}D>zPFDJS5-a>p8xKU>Geh_hNO$T=1X%$!*cX+Ac^(jo2t(DJ)|pPmj^-xXUHn z#Nl~$(db`le?DN~DP2)mQI`FQ_?ICalPQbDY2^3;m$~F zG1rkN*ZqUlY5Ye^8g)cbG=l#q@@z1m&S9i$n{=bG6yQ7xb0=y?;tW+iX!bj3$+oPVjS5R~3TBXDgHkPC;>bGsXjUpDWGMj!{QZ03S zq@vqa%f?!hJLtzTwNJ8T&%QF}yRNfdExf3B-3S|=?(K6)&@igp1-HYK8Y#Qo=;T(8 zcxKEbKIu|NluX80yK1RSES4js2x3lTkef?3A*eX&<-|J zd7sQDy6w!Q)vU5K6t$>4`Hpx;l{9|*@)P{8ZW=seCWFo;(OIfgXKf)mYIV1Atyts~ zPGU49WM{+0AnLK*;OZQj{_d{%2d5(`zq%(dA*c4=zg=ikXw^g2R}`y<^&erq9vgW3 zy=V4+>i$V`wq8J{tkh1>D4N2|V{2l|=4Clj27IcH5&0B-oEL`?BsVXCM@3P^R%VI7 z_U7WK^-q<4@pKRMXHO5wPY@JGpj#RbA z;RktyiF{G{0sYzQ!HK_|OQ#0R=j^B~tQxpw;tnTeytMP+C`m#X;a|h?IN_az*l>3H zX~c!73=+12Ir%=CKe8UjIU>8GxJAFNI*NT@+@-TG*^T_wB+NLBI!@Mza$F3nq+52K zJJZkU_e_4Ne^367d~*>=DpfU0j7i}7sryx%Te46fz(aYK^~eQ|GWnXr4x z6`}(oE`DA`O%XT(Y5&Zqso!d1Rw+pFF?)4m!ey31jg^Ur<&IioM1 zy0eK+1mWo0VeVeUEh4gVDEZ@0mFXtFVops~*il5uJ7)nInwnL1Sw<^Ga`vIjOx$!4 zv4-X7+C>D&mOW4PUTs?&5XJgEW|~&7MkFSuXl>t_D0Zq+-HtMrD%;42#p@0!GdopF zLQY$WJSpdh?sGAfo_g20zU2uYeChw#vHkDRw2blpXaV%O6d>6?3U}PA^gf_wvm*qj z4-MDN^ZMQuqDTxYss>dd_~W&LEP1os97U`$MLK?cPx$*P`Q(+#&%DtMoTi3;n%bcH zt5U>8@XI0uHmq(}8jqHW7U){urroqyb}ZVma-}7Hr>>ut_)EaTRgbb(JAX7OU)0W? zz|QtS-W!u?I>F*7FH>B??>uO4;g+}ZOuTrAxG|C3P6#&07aazJ)Xjo4)f}R0XU4t8 ztghaH_z;PGxy3`na_Ab!>9ZnW2L&kxsxpi=ajqCo)!jH?tPJ%`rnq>?v!>~_S%~O> zz7;S&1SC7SVNA@`+6}ouDTxw1_}M;smk*hr%D-=VWY?yw#l6{6?MQvW zE6iF&$t$92l61=^dSGDH2Jw5Js(!HJu3d2tcy5DS>42?RdnF&e)^*D>K)((s-+j7oEC>)!|O)42tyRXJwf8TCz z)be+qd56!F@IB%{*-2!Noyj*ng97GCK!&sYpN5@5i{cG!5PjBOJtm!-Y2$=<77*L6 z3Hs4|XI;Nm=4wAW5+bzTOcpBG_{pc}01yiHV=)KcBAB;PzVElGzxX2bK!2H0RByl7 zW9kt_UGx4gy5JwYN?VzuM9>+VudFSyOG+SJs&1=08_<>%Yit%>FcM*nu9l4UItNI1 z@vd~^Y5Im{>)Inf{lZe1a7%=y&)gRAyB&)mjRf)RA$}NlzkHrAHVT>3@JCgev(}}} z+EiKHb;XeRs|3Qut5PCb4a`!wK@`b4s|uw8MP z1e%1vE<~1+u3BW*>}q#K+=y-HNKTAHNhm}gwL;k48=YIP*L4pwoS{xgM*m1EM6{HW z4A^MhKvbca$U{uF=ErSa_yS*nD3qsN32X? z@hAu5l9;>YX4W;Wz&MLPD&6)3lSG_;V7e9cu$mX2Suq;q??dhJ(@%$R4>+hw)Yxl1 zw<3n`+r-7V4f+ToJEV|&=1WX9EjZgY7{VXx%pLxcHY9qJTKKDZh;aT+*&xXg08za)aZ5UOa$X= z&o*08vc!!)w(J=-S(27;j|BYSn}VcG-itg@&T-c50m#X?4~6ol#Wud-@vPh@B^q1C@WB+{{VM9=epIc+IG}!`7RuE2vYySENqSG)yVO4Z&Yqw6ds zn-=_RTfC%c@Y?%mHCHS3wWF<&-AJ26NY`e+>mb#Skz2X>3kzN;^=+5kt-F%XPx|1y%$KAZ2k=RAJxRr1G}+sUE%tkk`QQdl81 zK(>+XcSEo9cKV^>C#Der_g_8~-p;ZEidFNydva-q&fLxpIfKY;v#X-C5Z6)>mJ}xE zDA6muCzBRXO4}q_5YJ3y*#A^ClqZJvz`=;7Gt%OoP_fAeQf$lNki>eZ49?_T zV_)~uF7o_Rm@4fAZ=O+iU^rAvcmxx>S3A3TH^|mr3@ipWopJfjYoj24;h2BeV1Ti5_q>}I0G$*>e}^jJ=WC|Rrf*|r^N}Etf)6cv9Y2Z=7su?K>el8HkGJP z7)Rz5-(TL(U;%& zZSF~nK8J(Aj+gJF8`baC*`Ho?&{gV|z2K2iEbeePu?~>T*Fo>uYII^uT3ft#>hsw* zT@f!kk${U?JjSCfyg1#3p(B^ryp9G?bgqkEetUuTNp@N-gOcy&x*7!6PF1{tVtjA4 zibn>ex?aK=B(y#5n1if~zT6YBIA>QFLAYb_W)?X?MyZyi-n8MeOO^#PdAutK@K(4Up zS|a)@gyP^Cmr7nl_Y0q6$qM2^!>}gu0{$Qt z)^R;fJ!^Ye+sBn@zZK4L)<9zg%j6xtLKQxUZUSg2m&+*ZVXFL`=!8e7ghJ9Qwr`+^ zA$#~c1=;sK2;7&L=U&%`GP5o1fsEQcMLTt}Nwg@m&O%#P5@pc8#pJZa6<8NorwT_k z!l<_$S>UGJZ!Q47#C@{yR^gcdOc3YYX?7zNJ#oL(UMs%h-(EIU*yM(Ta9gAI=}vow z2ZYL@W7}qr&ddW**VPtOiK}?mLccsdBk}GKdLjGc0Z4(#<>_mK&!RE+$rY^#-cg2! zy&i7e*Wli`;RjJ zde^8vFb+goG+4&_YHRjFx8vfu1l|-;BzJNx2y@KhstDDyqP$LW+gB zwzE8FSGOMbgwrVeM9cB${ZYvy=f!jRTDR#CQWcx9(0xN#QOsc#+?T}db>y;N&hPrw z9-UkAS~nj?KkUj^jHaos16&XL)ctLLQu9qo*pHue2ci^zb5U-Ae(oxe8nr(4AO7>j9NJGR~IY>r5%{IlOJb5-8WfNnP(LO~BH_aSZOEr&um6YuX4IL=HO3}`%(7ypK*~|wuLQ&`G6E)#s+CGn+~gCmVTHy9sz-XDxUF# z$wkvW36q7yk)oK(UX+BD*YKnjVY&hhs$a&&ef-46;5gxc{)8__tU*v9{36LZr0;p+E|TG@p$W6mFX`Je7M8C`aR zJF~HUb+_%8?svC4!o#`fStLy?$OK!QN}OWOg!s1ibM6*3Z?-=m|MleT)f|F2*Yb+V zAKmHOnNsISpV=FY^|4_QIMzc8veJm4MNx$g%f{)`YzuwU?Uk7`L4?z7W{zUJ^wPE6 z_0`W{WOT@pZzapX8C62VU>SmRe}KoXf2)S~y{zx=clCQ2pN}L)v_5p|xPzy94=8(8 z3k2C<|6N<~D$3fYV`r2^j)*q)iK#(6>;!T&e8BwXrvIut{;T}p2NQf)+mLLH{PExa z_V3I8>#=e)L-i?89!25@?z`Otdvj3-Egdg4opUhlb z1W8Fqa)6m9IYUE3W0RAK!nQNmhWjz#_iVV;{=|Mp>4Qf4`LQw0 z$BS;<%d5In{ZhjoAoGF_54C1(*#2CuYGU8S=%_}C?NnK&L)?Xq=wxVU=xFolf&}Mq z8&zn!l((?$LQ{QET52lKvH$VLxaH;fvF$w>x>aJ%WdVb(wjR&nyK~WtCQlm~iD8Ql zU)T+#Bog8}PKAeu9s214O8jHz-+sP@YQETMTnECOqqrkl0U7|JxXoOD6I0iLiCwt| zyVI5VF&`+UhpvID=`mjPUwuH5~)EWK|m|7Do2Mofhu&gDz6W0+6 z&QCP0?|CyR z${IZOKO8JMz$|YC5fkii;B5%*wCQ&;@8@5U3)?sCE1gdd`)Skqp8a%+Q`(oMY>&Kj3uo$vYKzJy8+=@@NVSObSAfwO`|NkMy8>-#>QGPGu7jw?@sFu6 z<4U@NJx`z}E(PsyG0#5q<`t0_^EPVjX&yVHx9~*A%FeQseM)!gTm<{=1s=&3&Dq zObEs{V_cWr14u$J=Zgb00KChDx;L zfr`FdhxA-26gLSht*$O}>9Wp_o0)7$xa#-E!gPXuq<8wCt6y7souNWYtyaj$$ns>) zvt_ul*-C8Z8;%>=>v?Y{g}zCrREE<(_dn0~*X!K3$NjR8H^)e3ef<$hAHdE=5>8XB zRIJbX#`+zx9t_Mn{(^&~Iz*E|O4h6INPt{fZ`iAc1ZnkZ=CG8q5K+LsQ%m)T91sVW zteUtdw-1fRRVw;~d^l1gkBTZe(cGB6ujDmbYY%&9M}rUD{4Qt{_SH%B;<+Ec6JN#eJt4&zF`GYF`s_XQM<4!9nPAg!Z(}B}DVx-)&N7rU08DIJsAaD{ z5P@Ig`pCFtwM+B%DCj+he>Ht>Zg+?4{sGK>D-PE2YAg7$%vLBMpW_C}i8A&tXVjoM7QE`KI(P8u0#3)+SIGCQgNd*Cnl`WwU#AW^ z?|;@OcFMl+R%YCG$kp{OHA*ct_sQP{ZKk}O6yo`0_(H&y6A$9obKbH@N-3&sMr}Xl<$_G6?@0ae0wz{4z zLx!1FzbH$oo&e7BV5hk9TTTiFBh-nUt_Y2X( zfrOT`Q>VY>!H7==%Cem_JW`Kh3etyOe0G3l5JEqMq#eAiVboO77-kG8B8h>0mExa% zNc!-X*<=p8v}HMB&`a@5F)!ptPPW0+Et#M}H>ttYBPM_l_^pI6+aaiy@QVlJA0w-* zF<<6phk#Zeh=Z}`EuDZboDTQNoEMiFjv1)yndVD9+M6+qn8cs^`i2_z*x5v;t+Qvk zDd)U=r!pwkW8rEl+@XDahLTR`84;msT-j@paedqX-?2u+Muxa$mGaD1 zIZCXi=&)U@8|)|I8+Pj-+*X4)pWR$|==IPdRwB4Rt;5*H?tX~SP(vsk{hpXnEVV~R zB!eh!_!>7HX(-xNML+36;B&*5@!^&6P+nN2bYH%m`U_^)Mgg==o*7O*)*rrA)0Zu| zY>oY$@|Zr=3ag?)BfP|QdP^Vm53aLdAl>(5I;VE3SuUmmv&?kufl@HYlSDvy5VaQ_ zz9>oWDZ~0VVinIs*SQGSmz0Ht7YHdwr(lc(3p(79-D{hAg-#F= zG7#REXTh4`IjbTS7c$qF>-aw9DP{^aQ>B6HoyE(>x8<5@Zp6_RSNlLlVJDMs<)Ri~ z=J7jq_pgNze7mo-DsmJMkF&EWxVWsnnposQd`F50Y3jFy-G0&*wxn7&N}H_UFB9MxLI2OK2p#?ReI!?pHCj-X`xu2M=CEp6gr}<|y;4QoLb% zFHhsD684*1#Oa{{X{7H-WyULiT(`eL4>6eo3&AUV=DUb&LO>BC^wyuNHTx^GHi}rb zr>pq2{#V1-o-BS}Xij<%vO?73_N%1&NspfbIBjfZg?xOELB}l)yan&n>Be!dXSV-PuuNP!c6AYIGbYQ1IOQ)+n|4V5A5T27}N3C-a57(7(;yx#P`ELD|u zczyzzfShl2*x1}Yc}a^dM=qj~ zr}qmFn01P|FfouPKZLZrJ2hVva}~2=v>pW&kh9!tZ?#{C8W6-b3sxV*6fTZKCAjGK zf4pV8gLtE;Koj=njxG3;SZJJexIel3i2{h;4%MI#NDBYgUS-x z5Z90SJ4kN>1!pO!9fW`0s-~Te(uL$sJi*hvdteSD1>gM=J|(YG-Sw3K1vEjM?-O%= zH6ri^%dCW3bloPj1j30ikB4U&3k*yGzO~w;O+y4WKK(rCi9*2)2_oyJAL6>DPs-&+ z_*rR5SI6$+(F?MMsh`GP-21~#=t!Qpm6)d#T6Pj9Wx&jDOfUvESd!Mhp2KY1eU@wT z)2`@Zr{mXoIJXr8H1uLrs&weG9fp%bfliV9siJ#{4d|wZA6Lu#$lUN{2e{YV-!UPn zgN-t!@4)zv7!CC?m`^~*kwWqzaV4I_M)zTDZu) zrq30DPq$pujYILK-P+p&59|w3;(Nsm-q4HdrgVDSF{H^IAYe%WCouvbv>moLw=O~jbdXSjG(Ris}wF9Sw zAd$lZgO%<>+3DxQPa((`>TLLnmm8&5R=vmy%=>7HuG?`Ak#qsNoGi|4QIv{8pP^0Lorq| z-@~Fp@O~<+jsm&2^|>I5>1?-ODo}3*q`mt<#=(^C+c(Z;ub~cQU9h0%L#tTY?wVA%`LYE?4~+3+8HiQFsRLu}3w+nmm|1?+Wsp6O-> zfX4WRE4u8GmeI)}=I=P>McqU%oP#QR^TFx=;&As)MrO2 zD{4MCQ{>^wN-W+%ld)vl?h7t8f1>yN2% z__NhzPgkM5Jo4(g9JyZGVb=H6cwg?Xu zTYaB1*G&qJ&5bJH2fQ^b4%}$k-1x%Cg9%<8Q=XH*Ul%$*9Chj+)qknRgX{Ol!iYmH zaw70KEk6&tZBb-w+Gu9nyN4OGuG#CL^2uau(B7=E-l*IZ^{8PB3DcN7Gp+P86DJ~T zD{VjQj+R7=uNT%%I(rz&s|Qk@;-ZlIA`xewW^FkAupPw5;u2OZor*r536KasXD`Kl z@O}uz$^)j3&lD{m(6x2BZA_9jh|M$Cd3&^4G;>K@iBl+kcLs1wnW{SB* z$;Qg-nBE^An>7JTiKRlb55*IrDP%-an2VZAv<`%L9!j5dsAH2WvxB!-(3#mffA9%W zY<`%jBF+ve*P_*j^FWO{2yw_ji{tXl$!a0~9$!1SOA0i++Q%QCif87OczaM-Y-Ed@ ztEKP%fq}ip%UP&o!#BWyn9h53-bm$BxoM%x-q=_cXN0m&>|7zH3 zSghRsi4ttRYLhu545k}AMgOXTxSn~bNxu&o74kxHWOyi~ zA|iv#>1K;Ah18mU@R02LOAPmR-0{d#1C!T!?9)l20*R+NuW0Q*F3^oyN~))FtF8{) z;g%VH|33X%)TFU|U%k3{XEjpB^I^z5bsdF0t@JO%*7)yZ8<*j~-^Vq0rRO#n9n_>Z zoD0#=i>~0-Z_tpi0l;%|(lQZQhGx*;WXc8$X{jeZq!SA5u z()8^qvT0WZ*N0PopNZ`F4UZ`JQkF{;>7~Ed!8d=%#UMw8B>g_6DzA%WA=eVHEcnMS zGLET}dt2|1HLdF~lYUnhvd(%TmP=xqTMZV?9IMnVBlkJ`~DTpUjcn|9O!f;uTWLy;v8u2z|WPVmKlmZXr3?n;60NL_miXiu?RttHpm)0_G zEXIG0VOCTw62$gp|Gf12yfo2=LZA*a`!2OyWA30RzvxfF#YlPLaI(G6;|vFl;b~%g z{Z&>s9sN~BUDGzO$;N}M{NvYDC3&qDvVHk=V(pMML`RTD9=cSr4|b7rhj7x70$F#* zpFH#!%eL4T!+_YF${PrFC!<1KPi^T+3zC4Wr@TU*!Teov;^mn(p7{FQpo&y}^3pYP#N!~_RTOwKD0 z$^eUp3v)+Y@QBE>&d?)GTEt{(%FKuHLUN-!@+w^9*EJiEkG4-HP zj3iRM71&SW9k0=QJ}o?3-rFJDr9>OzB>IVuv>AaIGt`*Y`nxf8j}5gw=o%2oLgm<@ zdDRsh1mgU}vRJ|*do`u!_>quR@YB||{AAaK`}NKu?|LNhlgD7ksg>I(W|vWX$V1jo zMRf=k`k0?h4;m0~LIQ!na>^xO~ zm7?R*MG=jJ<&qW-J<7}YNrNN6PX63uyd6{d?hSfA=H$IQ@HViPPk{vOhYg$J4uZ6c zH*9x9#Y&_+MKz_CLLr6dR~}OO=2F^B_c}+7@xhh^&|4ovwj14&*1M(9WBB(tHz!x z#2L%No+dD4ol2@WuR~1PUOZ>YBL9;5beYD3zG#6MYS_^u_nnkQoLPNH?bL3A`4@rC zdH&DH3TnMM1y?VLd-&5cxxe!U=h-cJbqeoaLV@+wAaRXD_D zp46Z>a?i1YSiVjaX2UN0P!{6ARro?b)Q5ph0;46VW(s6*ZIfKv=$Ovgzd4+Kh)9O8 z7pBX|nhh;&leDK}t$bHFrJx=~nwkNvd$D0n;p*q(YB?-STZuJ$lyORQ*ucc9t$WID zs?@#2-HgcCyWS=|^!kANqv|69%NY3*?Du33-70de-uG(Lyoeq|e=aH;d27@+B5yBD zHq`(0WiY#**ohdY+G+6NNTH{O8oGAB-wdD+J$ z@$QwonjTKPRC;U^-c?|vtuty?I_N4q!zHrxXpXg5spYM4j{Hw2o4CdLRIfZ~os!o~ zVkYBS!m9dd3DMI&_o(SvcI#eBqez~5elB*{3h?%A35zp4;PD?x6t??Bk!evZ*FOSz zCC=`*p6FK)kDnfwCu-9d$#C#UdR>*8489udiw+gj7xlB*`xMwj1YVAi&$iu4X4h4Po}}T_pQlEfqzEF|^gE$;`>bW3f>3DQFRP|v0?!_LQE^*tY#(BI zS5{Dv8}1ZGV*o`r-J}*sbW=1-DE@J7ZKC#NTC2 zN7>u~kSzg)A7t6f5<{=6P!j+M*LZ_H&Z|D!A_mUjKm48d0g$lMUTV-^6^{Q9dTvh8 zO_>>JkxG0$MSb(ve;?e6#{y}02>1;D^gnOikQ3YiT&~9ZUa;?fj=MRW2ZHBZO4T46 zzW7{#N>1ESyc92E@g%wV^?F+80~6p&WZw@K;tDF8;=4|^cm1WZ7`BM$sHkq+ zZ!+~6&(qKhMAAkNH~ncSqf)R6kUfMZ0Zm1Qp1j>)$#WIG(*^YUpgQ{po4a_CYBXeP zLVIKw^_`NjZmOPc&%{oOr(o}HkoSG~v?>fK ziysZBT~O;*&v@1Gk%hz_zhQ6Y7l_1=@uea5;?C*T0%GFVh?K3t+sC}(T0#P;GTwp? zV#QN+yvJ_Gc?j&GGyv#!eU*iVc%pXKQCBV}?bwQzpORFdx!;p}r zhTS6o`$!W&Y~cp~q#^=fSmI!p9E$&S z<7HEBOy~devhKF^$pr-k+`n~8mc5Mm*Z=l#e+c>agx*70UMDhF)CwKwN|j(XcNOEC z`GtUQP2k6KSEM;#8SUv&VHxOc;$Vrbb6V|_OYf;DDk@5KZsLNy_m%on7u3&QK?R&x zhI|Nhh^4p1rp{xFC+J=~ruX9Gkl`O-ukS)~BJ zOzPgbVQz-nc*+KZxfizd{IrHge~9o*%7`aMxLm=2dwfuDRgO z_D3Qg&3b{V8)DZ0P>(!7MboLHqlN5Aa$ZA&#>*IScLkuEruMpBJ}EC^LUd!c0If+?7@LJ!hFF|hs&wMSmM?#C#4w6?Yo5H|CPKJE znfHd$rS!e-5fT#i`*nnnuJ>|g@Q@nM8gVj(JVx+^heX+efvEG9kCi(X)J zNw>VrKa&2Or!@a%3_lDZKP64$JAM*ERsOEuc6lj!K0i6B19xOHI-Jd;ev^H6@cXqF zrl)-DJ66EpUvQo{s`X1Dcl+LcHk6ekU|#XaYbqaL9->O4+cp=5&!|cF zY>>a=u7m4kz4Cr*TgSQ+5xgj=Q~Jg&$O7(Ah6w2c`lEdEj}=gZsbZpl_XGDqmj^_% z{=07Vh|#OQQ>-}{pat=Ed)+;Th})C7*8S^RGj{?S+g0=?yubj@;l^ynApAK7!I{nV zqyMu;XJm6^Zch8q|Mo?_o9Ir3Pygp%WBc#$T&8>D%(^eQwn+Z($SnJ#>n3|VX@&a! zd!7C@5Wr3D0M7h>=CV9zwcmV2TaZW@!v>cEAN8^B72B4_Rx)B@o~wa}2Rryj`-ZDj zi+BG0L4u?KZEbCWfI(^(>mfoyLcT3-P86%w*?V}178^F!&_@GdV7y2tzon(6LTK=F z*xv-mUeovF zngPa^p1_YE0cOvp48I@yh{XMT;JXX@sJ_ZhwiR`&+y59W9|VQHDrI?N(f9Qa1%0jK z@~>TyFNT2SgtvPKBXr#nz z0FRnttYtqoUMK?G1=IC=56SPz%lAYz2NSjV$WLMcf`|13yMo|KufZ8X$tQ>*_2V%O zfaeT&;16C1^Oi&MV}1puH$SPN(c_sbfR2X(7!82Gqk&*)kFKjLNtyqIfJVF*#AG)u z@AVp-5umxo>&&A{CO;WN#=q*z@8(WR3}S;#NLFiaorF0-nah5($Navb%8lOeSoH=7 zP*HlOB`HY^|5f<8Dc>?KHbzSO0_fpOfYFH@xiul7i-8Qeex>fPU_rO`n9W!vp{M#=8F9w@$c7w#=epLTb{MPRcN&cHImh@J5hRX zWhHQIESWJ;G8-doJDWaXKl4`M!*v(2<>jxz0#2oa*~VKP4GAm`#{|d(b_(eKgqH1q z&n(vky#)d;l4*C)4U)som%m<_>WwbtMtUk(n`wPLDHHw&2!vEO^+BY2&P^J=afZ8~ zm!|t7NsFM2U4^6`UD5*%0z6`P>lZS1n8*Lc(^tnu)j#1X zB2r4r(p{2E*8k%X@0k9JNw2s-cT5R(Zeb_Yl1L_3Q@$BbppFvN9tR%cr7 z%}zZG-lDQ-KM}y@eno}aNeF7 z=W?Zgjd`^}_>ng*_gexMXY`oZvK8=8^de;L(f=1cHNK)MD89)j&@~@T%n*p9ml@8@ zytfftAE$kTU}^O3%QEzbvf4|hx#4$Ys+K9dOlJ*r~?0L5&zfm|BKAq zI6d-zUEJ2YiupEQ_S^+K+pkE@R(c8^Op8Rj*^ntUx+&yMFvG@{zjy}6hKV#r2Z${z z;e;eAAL7GN|1Z!kXT$*!B`YP~=8rYBGzHG4MBb0eL4B=-KDtkN5clcloOC+@FFu?a zK;rNOpLL=CE^hk0?N}E2@M268Gmp95;lR7y!DQR%9K<$uM_mc|2BeXCy#KNl0JR8^ zva`o54IBhZG#8@PN}!%0aGDamiR4xluFoQ&d|(lB`AL={A!^RK5a92mxmWrB_x%id zX*dKEMmMtJqzq-W;FUD~DLlE0_qnl$_XJG^!i0aXVvKuJ==@0}QOcgKxc3Y%|NrU) z66le|JH1Gbro=?#O2*mQ@?2-pMPdK|W4YGu#e3cVjQ^6# zxs;D@%13@C|GQ84;^OAo*--HRAS9Ub%ajeXTCwb!r>qk-S?lx0JvU2Z=|L;sZY>kx1<3uA&Ga>{sb51 zVgET}+)Okfn3-%%gqm}{or*({H@%-8qvHw|W8J3US{_x~crmt`U6O$8u$*L|NBa^3w@ z2?509x$k`dWJ!(eXh;CV5k?i9lfAj?g4l%Nq_e7C(v@-_&d*lXrO0 zT?VwBz6U~e*4wJZ_Yl~N7cUCR*!^QU@phh)*2sv8z@)rJa12hqwbs1W;(Wy#!)O5u z%UGUn0mJZ1v?*fbJSTW~IA%T`;7dTJt82Lci?Dpi8}yWA86NpB{7g}*1PAN3878vn zzRM=}!cfi-_B6e|ZV$qsV-e{L>NHX>HSYYy&t}dh?0u=QyFcfmNbLAa05z^I=G6du znkO^7+p4ECYbZ|nL)k~DT59cy(Pn(9HAcq4F62F46+Au}NT$TB7{MwVyiTi7W&;C+t zYlv9H;zFZ)VgYw5ukE`uhVB5L$M%hR1Z6S5YD-uEMkwRrSRU(E|C=kRB>-1 zNW@jwiXBrKvg0(rr$%~$jnmY;(bMaQ-WQb8ASyVohLrQRlgpC0twrOze!_$BJi(aO zpcJApz%CQP(Hh_6^qDDNqcl(Rw~TPu>wuSpFkt{cV zmfYj~MFBHb*?GxQQpVjS-&o)MGwDtgP-2Q zS|aA-r3`5zT;l~`%%cYXy6)ASFzM>_(O^;-0b(wVtjK*~jITQwUgv<^G|MOx)yB(ZpCCQb~}9@)Tr$cpg9uldhydL%VV5$;L@j zU~U8lEM_fIGYE|%@}Lts@wSpqQ6L5jw**GZhU#;gvq+2^oLY4Qr7%)33~I4Lle0amICjpmii z_4mK$d9~0C(FBRaOh}v=cRZd;qeYVn$chlrg zQFA!#hzt7OTkNpTm*4ExAy_*qtOjQ}8d?YclyUdj1Re z_>h|-?jKd0%n!j$v*I)~Eq+G3n0nkf!mKI)I3S|pDAHodPLok9qx^EshV>?H@+76n zE=z!SaVWLFWUznIW~QQw<%{h$keQy6J5VPkXPM~FaK_neUt9GL7F@D=bo8c~TIacN z0kwJp&Xex%gP}fq(c4my*x(-rbw`WNLHJvzt!4|i_mihXE>u?_z3=25aLVt_zzvS% zp~hvcH|azuiLqx69D+@F9qXz6X%_uVJbs^()>^u?7mNL*dpb|F;xOjX(0ku?E{3SB zvSfuETOs#E9*nZY7ZgeQv8@+^F-uT#q6VFoFGgR1+0xV9&XNUG>L~i%_bn`pUDi*MBNr7KAVE5*MkbQDs4Te1^iIQf9)6x#LdpmZWn0eHwvpJa5`kLJ zGlJm><5t@ht*9?AOPy1BjrEtHExd!H#z`b?To4#I&WBap(X4>xscK;KxjU#EbMX5c zV2vL_|Dd)i`KxCf9!%lKU!vFSRgl=BJGj)j?y&=&Pa~{dtYy9enPnkxg7V)yGAc%p zDL3mTmQM4Jh{mb8Wh&Do>d7579jD&B-sHLYbM^Smwvf3j03ce-Hk}0s>x26a(H$Ji z*Kyjkfvt{;M=f`DK$l1TEtSO1{mt1EVLs@JO{e}xt^HC4VF-mH02+X{mg0ZBd22m1 zN}WBN5mgTXEWnd|peB+E!z^%RK;_f|2%aq})Iqfp2JasoMUwxY7eJ6aNCmDghcU3CCkl&do+B=arURo4SU2|meOipP{iYSIbN?FD4*kCWoI-uV=)g84^N_i+{EaA zS@RAeuDg-|Mv0kZWf*x&S>}cAi#yz6e^A4o$?>Pk!jud;)XuR8)%)@_ly(+9AP=IYLs6*2;_U{ldo9>LZr4+0jURh8kN&YwwnZ(a9qXR6HQi|)>M#x_pjXN03OVGox5 zw+EJ8`_E49YH>z743mjX^I6nNGMFfEh(rz#o8m5Qgpx%r#Ej9t&zT78_gj2_22rhPu{VFVo9)cW-N+zFiB>u zb@v5xKe*W*EjGjX3d>Llqk%>$ck|=r9~Zd$#AioDl#ql0f2)|&&izcaT?ee%Z2_kJ zJ%?e5$NS19w`$8-xhJcDo0FJ5a~{`W#quw;7=Fv+?Vj9=3#Z5F!`q9!Cxt}nAs|0x z_N1nDAk8wD4D5)AbWGwur?%^HeSJlw#v2#DM(%U`r`>ZEMB0=_|9CHC*>v?FJsU5% z3M~0OR!HtSD?ren{{Cc#D1~Qn=;$UC{)vhh&J$7+Mgpb?sKDct=%9QuGZ^a%Bg6og z_S={6UXrT`D|GX=b|07T!9IqFl86_VK2Cm@PV=HDBI(J2dkyYzb6z}-m^Qz?o0BnM zEYsg+rr+bWQ}VqDaAh9C4fa0Vkrnl(1FHEgDFcKZ-KT3bWWbli>y+CJi%jqn%;(}1 z$K9j!?+Pnva22`Nc2>J}=TF5lLo&f`z#V9l@Ozn{_4Z2BeF_vpa7RzcL4(N<1GBZa zmpRP6*oX73M&45|^o6%}m6RBRBzmWe@XZr=krZ)YTc_oSCkJqt#Q7zaj0AO6`kB_u z%IvG>?Z@piESP8chqrbWh!OnG675qJt;I}{)Yg<3(WF(|)|n+T+e{r8T|iqpjf(eG zh(xnb&ELJQn3*>S&*aXxrOnt$1N}o9MXp`ncZ5Y3blTwud)xbrVfSlQAZP|jHh*I^ zPQB7ZeY1i!)80Z6tHpXj{QNYAhc_5@6eQk8sC*789bS^YBwN>ZB%aaJncN*3{v)jE zCy2$c1noJ-LuC;`9(c)(uW-KON{#=TVXfXF?A7yh0=zY2OIJU0$FA=J4d_e#-?ub1 z5gb>fT17lwn1sqi!MTI)4fG%|+0)Tnc~k1z3^C`Id!wB6`b7pSvo8WpDuh`$=QE{W zDR1(ip1n9|{w3ggo$Io@J!iS}pnY1C;j-CtmkCcz0V#C6FgKgzwCRC4eXjQP447t3 z6&$<4xG{~BAG5qDWIRGiT6Kt~QQ5-8{VMs=vEH;lVbplrRlWNrxGo>lvgqO0PnrlDa6t{u9WAnc9{G!O)Jb1p}ZHhGEJvxQEfBXlRurx*FjSEFfEq7gQ@hF--7vOcFj@=n(h^=xS zo0^KQwck_N8dA>1AQT!cB~#q_l98@({|5OG9Vw7XgbOi});4S11N!A~wmInDRVsTv zgv}8r3}2xarHtIbU3{jJ(Q6;)Q{Et?^MNmL%0|X`4ICt((^LQ^%QjrSxw{Vo{(<#M~pfT z>?9&+2BSnT-#&O?qd`2%@R2J{IKE#PD5TS{lL)J*q)RMHEbZy7rAWkUrLz*;T>jJz zmvG0oeiMf9#POCk#?{(4{HV2S`r#!soL^JKmQOZEKQ>hI0&uK!v-9+yt3CO+doU!A z&g1i@3@o!Zi33Z&i5M*4Oq=&$jePMmpEZSP2Lph_{qk{F zIL_xx0Hz7@x}j|i5FvoT!t#G~jOI~tup5T(U*M($+JeBx4Ih023Y?or4xdzT*5^z!@=?1?}2$W)ipVyzg`e=5o#FrM1JP z683bd#z_|suIXFT-#H21wfe-!wC0_C$M`Qew>80Hm{of497O;Xx~Zf3dI29!7R*{1 znNu`xjp0n&OB1wMHKz_D?*3u_ciq*K(KA15T^MnE-<9;!H>^CUP73x#PXZDY`19rM z63}NDMWx5?U?oTHQ#ti^##CQ)h@=up^YnCbnMRrd$2ECC1z2oRkj{3&#V8tSu1hVx zK`eVJ7@QNQ=u;V}3JOYFM@q_Dme0nx+K=COVb(M>e=&kuk~{V~ZU}_^t+yLS!YVoh zJ%6o3Lj$bR3SBI~Fin=L|z*fZlctV%Phsn!YL+7(=hcOK+7qy3<4 z{V4=fBng6vOsrgI_Hq2Jfp=zKALx<4N;~Ng{#zL$& z<{mzhJ*W3`Iz8T$mlpRrm8jggh>Ncfqph;kZ2`;=(=Au8soYm{Hb^k( zwl;`Px3Ug9Z_xWLg=N5^d}E<3+-EFb0sdQzc$?8AgHjsf($_?AW@95@_z!e2D?ie2 zD>^sKkV?#qP9F?Ke96dI1n#n8)VaQ=l4KJF$vs?5)eEz^#GJF%K2U3_{F0IvSjZ5` z8vcd#J*BhBW7>ktV>Ov!qNu(5D~Vpry&*{CBs(o;6j|mw_U!7;%f~T=0 z4VBkxpv|Q36=xK^*Qmi*m+S(RA?*&XdWd6~Gp2kKaU;YN(m|k!A8GbpAVDpcr!LvZ z18@Ujc*-F#O&dfM1-k_6CaK6tCmx?vj^m=V%h(crX`bhC%z{UTHn5dj_bq&}yoKxP za8dIdIjaWqm6Hy_8EgF&MVK7S9cB_}rH+jHo;^k5Ykz8Q{g98u>ap373$d{Ic~0cd z@rS|o?u$)o1O9pz2j5r$7|%qh&QLS+DRF`(=r&I8sntn2f^T@e{0%DsSbW($z*;>t zmBQm(S6ba95Gatgq*0FY%lHg8RD#y(DD5@ct7zUUH*P`)1A|RGx5@Jc)ek-I&M@5% z_7&_~x#GP)<(+a$4c71&0a8R>Bz{|9jI?u>`OinQje_A|vAOYhUZ-}2pX7b$8p^9z zVdeOxcJ;5Pk`ZqsR^ci(kMLyn%=MS0_LY%_iZd#w=)O~JJ28->-fG$*O{Nn10kUH)|j_k&f5}2&-l9HtIJEexY ze&)c1*|*%7SuP9GqbQc)Ol3&~LnYLOi4nwI$iMd5ojpdRgY4;+ zNQ;gus-@64{;+1baDwjWozWN%m>h-(P))rzu-@5o2BAY*MTmC%B_yj7hl{;6|``As@dX zr`dGC_oH4#?EvO)x|)qOX886iyv+gkQ?LqOV}R;BzSmPmKzd(FUEyFt-r~0<`!?p? z=Xy_?XJb1o^$cg`8T4m-YwG5P{8QS!f;QH0kCo0;&x{W=H+u{n8*rYK1}FJ?nnZKf zIZqNo9Dt4y($+K{4|V?caFwVhhMdo*LdSiCk~QR3I*|pM3Vm<*!^qaO$l=~`Ri-b( zu|%(m_qFo6a=GHd%I&+V2rXFaE4D45^Hq?NFUrYH#c`=K06+my+2t0LwYrG zt#C8Qu!u^6I&X^%bdpxl{MH;u41Y5?l;&C;lRS<(hxDUL+5t7nMq}e9Q;NUs;jcxR zd$S6g_KJqb`D~BnDuA>v8sh7D~TNT!gAWY7!VeRMxcnU76cGI%=Q4^QZcnZ71INRn04nQ=JV6Ch|* zs%UtBE~BdS0gP_Y9jO&NwRIt--s^o)94jedVmn}AV@3hxj3tg%0oX*Pt1s6cRfbUJ zlE;wz$`gMG7wH;x*zuCR_1+1`7um?QKI{wkck%m`4&tE-LnA|yC?3B(3~!!{X+FZ| z%|Y2T9UEhA5I9%6&-T3qyiajcIWVI)Vq+zYJ+~!P)$(DxuiDUyvSd#rv-^}m)SIm} zMorg`jZE+^y4q@O&GIe-QHo9>iWHFhR0XccK5CSDa>GLRgh@MSWh>AjKXJUgUUe)$ zkn_%}e@92NETZI}c3ugWRmqKU-#OW@MBcxQtMbfP*-+>N&`R#tXYcbFu+K5Bv zj(RznJ0TdB&$)APzUk^%#nF_ZJ;fJ)xWuQ{LJ>t9MVg_I$flITdh@dJ?lL@&plqFR zzt8-6DWOCfkUB-5Qm5DRCqo~tQD6#SPX&$tfc48ThH~h#{zJ(7cEw(v4fYop%HalPwWht)nyO|mN3hyJR$}e<#jvRK zyn)$MpKJ)>X0h`21|9^qNdV($!ujfcr9}j-l|J;A=p`ddP^^cKbVL=YyW<-snPWY@ zr>~#B|0LD@jO*5&c zf#Ns~D~Th)1|fW-3wE;aKTws3&u<)l7ZwgS-@HEY%WHPGc=p;}Z~KOTKHrgJ+b-!U zXmFqHQ}bs{%Zx%mwBE~b*1MHi=7XE!)1GEyDI8H57(o?q-SYWGvAMY6WaHH2r9*6= zlYEo2x#|X?qXVN_kVSTM;#P|eQNlHeDiW;IVR^W>CPQ2Va|zJ@Tjf<~cJ&ydk*Fh8 zRq)?;c6wk-^y6z8#S=av)>H>D3eyZpVr_~3;(kZ24MW})$BY)+#8)b^oD#nB2Nd_e z2l~wx;uqT^P6QPZ1C1ngRs~#M=PbtR!z-Bqb$8zILyT_N_^&A zNiME|P%a{u$RNxB{GT}gnp~{fTA=gftzXj*ny5NCPs0+ilVaR=!I&RG68Q3rxYNA2 zzcIi$JgvZD;t3PH$NFasd~XuG-{m;0HOU*w$vwQsR3?R<_?&|#%WTYUcLL@o=Hg&^ zMx3M5k{h3D{RHCTz9Ub{AjN5aXU{CT$NK11zrdM6+#O$DL8p=&b5^__nG{cI7nFd@ zIHbE$Is)n#HLk}Gjpx^vLUK)3LhKavG9-8zS*;-Y>r=(i`6jJDCdYL68=6AjOmSXt z(-m0?-zJUY7LD(7(1*eF6l_TLUNh!uh9ZYkaI4LZfM{`ssDc#w=xlt@C}FX}W}W+u zm!=x!%f{yBs>SQvbt$S~di#5GU8n{H+ITMFc(p5RCtviz@@10P_&T21#tn1Acz!)y z{Df@VdTc6vX6GZLsuP(vW_&*jFu&6p9qIhkAnGA{%GBw=Gh8&^2&QdgC_-~PYQECr z!652>a-rPGP1J)f-EZ>oNmI!)k-rNlBh?`>uBUm@gbOCUw z^?X%TY)Sehuhi&`1zdZ)L>}GrG0XKwSt&`1&v{NIvIbSM&muJkk%u&2cD2<1o*`8( zULq$bX_ZM>@fl%Yv&>@$_;>fQ5lkG!My)MjFry z{2bO!h?r#dV{>hFbTZDLFny7S;@|D!B>z;aYYvnIIqeGBHi?`(& z;7ObQ-^H1luv;)J#|L^Zef(K56*z%OZ6UWEalK-8&2#;$*>nEy0I^>uVM3d+cjI4% z7^ci&{==Qww`z7WP+~0J!R>N@2CD(Wg_sQj>&MXzZ497$7K@n};CP8|h^Iozj#)ln z#R!{p2rO~`AY7GlRuTVenP!ap*A8D$LtwWoWfZvjG?ebdLq)@iT%={$(TrE3MlD(mR)+wZ`u<= zSEr{fQZV_>Ys$4JO`#X<;&y+RRNrGFWMoErDPaj^){@Way}!B~ZYQC&8sbfGz35Z4 z;iSVyvk^yYqt^)R{9v_$P5lai-5K;eloSM#1(;!F^vhI1vN=S9cmdkwqn*OW_<)@Z zb3gh9;oClWhvD&Ylaz^<`t5~uVx_SwrDnVty4v1bl`y`~!1#fSD3P>4p%;v4K0)^m z4Y&+2kNFNlk~6q@+8Eb*-``r?L&gK>-iGEYAf=9PmTBzm$QD$Y4-R6 zZ*6Ub9!?(2?cA0$T5k1@t-PgsTghT5hkN{?&PAB2nU4ZZRajS)9XOFQ#BXVOtn|4`13Aw`FR1uZ)bq3}S*$au_91WC!gE2?-e?^%(#(KDJJW zUgZMGd0E__*PLjoCeaejzFt>KY5WxyU}hxT1I*rU&Ttu=#fqQP2J{0}p;4rpQqR{{ z=4F5UbxthHGgCE^*Qh}@EAhdFzy??JYaj}}@~-MM#(^C5_w%3*4mv_CogzO{x&TGW zfX@}ol)!3s`1c+G>0^Fh9zB>eB=a~rh(FW!QZrX-&(!22N=q^-k`z^HlI14gH~afb zRRgwvgPU7^#g5i)S^S#^me}0=))b%0e8*U2CxLg=t0zTXOhcG{)iFgygVdwprC|_iT`NwtZ|2Q_|91*%;!Y zR}o(0kPWTqHnYUG!Vs#GscRyG-|oskFQ|je_BWh0WxenKH;I2uR!OCycfX&xEU32c z(k*9mi}3O>!`-L8Ma}H0K6;@a2+e+LbI;52b{{()S)QVa;{v{eEE4KGKn^Z)47%*b z`luD%d?R7DOptr+y>zFyaX-5rtMK;h7?hM86)mm7RDw&)5TI3G@E+6Ly_Pi`NleD=i@s0FZLU~_oP$4Z^&EKY_|Q8d*hav)r$FRoe1HT(Q$|ym4dM6)DV@*WFM~inGb)^4w?fFZTZ4 zxsRSpDtt;KDy20-9hChy=m3R8rqoVVm5;*i^~P z57%cjT!V_0b&LHw;K)S=&rgu#u|Yf{=wK7|1;B=EgvCK<(%jW?i zvf@4e`1p`i&o`!F-B16+iD{Mh2k?@w@ctOiD>Irfp7yV!h6%k`xhAx6u?Q8`n$s$h z+A~j@H}Wx--zdHc(EcTzn3bbX3k1qRTI}P|Q6t5@&Az`avxxbgz6k|ozNJD%0s#fZ zkd;x?3@~f~+>H%3fwCQ1)y@djC>G6mB$O+@Z2VAYE4?U&-C+YYLjraaeQ~=wEL4LK z5!Vy0JM64^P5$zsi=qyo4k%#{0KL(IC-0yqatXPy=!2zD8>9QmBX_`<{H$5B2L19s zf!^?A2(#+xf)JKMuXXi+n!NMCH0Hmc!S|9!3vjYEmDU!?)whJc1$xn90KkzqFpB9o zp4pbd^bce{M*oD>CeB+d2xp zbDI-0lLV}t4q>8xcHdwn9C(k7Zf@>fptKs#b=C@#mBWXXD^@SYJNqScBS0%$cU`1b zs7_nHLfaNcx(F+rkXKuk0phKdkC7Cn^Y^Nw_5~ zxEwpioMtqs1U7DTm1+X(h4#E*dEJ3c=K9z`n{L0=w<;-yF#e-}Ch+J+WYJ7iIY0iM za)7^A&bphOOKDd&x^_lI%y8w-IlzrrPWY06Qnq|7!NiD}Veh1v?8M4lFiYM#PrQF`vFuM- zO0|OIq>}jo0D0o7IwfS~O5Sj#WhCFuetjdLG((7HLjW)}C_3O5-dmdw=39uF2q>@j z?A+;13H5PJF=D&t;XCN^a1pQ67-?pb!@+EUTy~zgpMH}^Az$3rKHKXl-3QS>rXXGjvxFFX+-ZXnJ#2 ziO0kTpc7oQVkR&$Y!XzXX^(G!B&ChgkNNvj+`eo=aMFzafZo$go{gUCbh)|luXa7N z87++ovt$?D7QZNUe)%8)&OYi_ev!9DKRc1GfBjYuVpXdwxz*a%I?4q$TVI!8BkfeZy-7i<(;hR` zP@ORd(m%ub$9z&?`0M2@yBZKW4(=YFM{59?J#8CCS;MD z_1JSjSxWz~llf@b;P>G5#0(vEZ@pXKCOtR-=$7%77#K3fy|UkrRFxs|Lumq4D|aDL&Gr1c@?7`-8L)#bC)S9L(HRl_Whq`mz`1dYiV%abvu9G zNj$UqyUG9-K~Z8zB%i&W@*w0+^=OvRUw#8bR{Iz2&mY$x?XM>9O{YFYQK_B=l6NE} z>xf6UsU@_f;C4(VO}ei4L>HPLA1-h>!q8#I0z>ri3g~DH@IS|Y5G>zF(cSNka)n+< zSpF-OC;$P>d7pzQEF~Y;cVh=V4_U|h)2h$c#+Rpl@ve8;u$mnzM&u;-dKYBdzVnir zRsEMvV)?t3Z^$>DsJo71!Ynzx(HO0Hl5?|=N;#LdK@IokeTJYbV4Ys8_BQ&7Awj}t z_lbVJ+51Y(1bYa~L=$yJ z*b#+;=Vu7k2!cxmtbLM;Ju(sjyf9fC#`ZSS-a0BHjK9ufzaf*10v>&+`><8* zz7<6ImCF*L;NRf9&p6Ofub}w`Xs|;HAqxh7ZR+hN~C(rLllpfDucxF znkeU*+P7O(^x=GL!b2h<8c^8mCVlj|K3=J|Uuv=9S3Hy=B`22~6TR8uo*>u#L|3eV z^rzyRNj^7uGfbhk$WeX)2LdyrTLLi}W2)ba^+f>S(pm{q4#faT=|xr1V#&+ZzGm3W zdGQuU@ZIwiT_CfbXeIxMF|Bksdcno*P_`RkAkE8FUtn2cVfe)Xp&{7t&&+G5H(+F3 zwZY4P)Ax9?d3?@~-S;f{F{n#Xy_7E(V+t!bfxCA5?zo1eFO)jqHA_G`Se`2N$JPFf zDpOsf5fbRDh0%B8@1@4Hxa1!rojKkYaorbnHf{P8?k6$@XfYz_(-oA5Va|Y&mC=S$FKrXWC|08$4%hHr27Rrv$y#Z;I_iL$ zSis?ItyGsvUa3E}ZD7D<;}h}wdG~FH3FG=E{9QsJ={KL4QTBIV*GZn#USJKt-s-oW z%R{A*o<10K1``cgckeNcTfGV0Etrp3<7!P$+>R<~_0B;`rRg!v<$4?LK)R6yvVYBw zQ{t_x{PKU7B@W$!>6c{lpw8p%mCbQtNRSs6{0CzekVt^f2V9OUTZi9ojVHLkI=V`* z&i(I9tMe21s;9dqnum+mxQv|+Yoghvi7Luj7oj+v&39Ns$uWuP&9mX0=jBL)R2n{1|h?5P+nr{D-1qZ_# z-3OU+i+YQ=V4doD>pMnJy$I6&W&p7Vf$So;s@FfJYzz)3d{!ns+Fu|b|EFHS#x8Kx zMU!&pwCa%*^Nmuk=@SMaZZ5*XQ7*pf>1=@{%<6^yD)?IFVKk0(x+=v$&Dmc0S{#$2 zWDI=MxyumdIj*5dzOhIh5J4Rvj>*>-`&(5YDJtIxdr9HnhMtd%F8^H!Q@%f04@ri8Jss!4qk zn7dI*-NLDk&{+o+E2hPhM5+G*B|`;srvr1V#2nmiZx!JngwdquO3~oW`+DK_X9`oW z!^VieGvk7=H{`&kHQFuk+x$uDzpMsspEEV$!++EXg&1XJ)};I_Td!=)uhJ%c*>xrz z=>7yL0(bh~c_n6ie6*jsXm&T^&@LvID;Hw{D*uCRAqbF0svIw3r01KIf6 zC05#vBH33%c|u!{N7Y4T3A2I})20afh}_5i4oiQF-aEH>Ia?ZY=J(?$-D4L29O}z8 zv5feySi=7bc>H9V>@LmqzDoHDDm|J;lsv%VW(m-2^wB9Va?-zLx7lS9uX zmmEHK)Gekf+PCuIZO&hC`R^}`rQIsk<`nT+?JWP{7paj8(*LgegzU5EzJNICj>6+n zw#?|t76r2q8Pz~0&JinJ{)Q+1>Yzna_!z6&;KRrbPx_POo~xFX9nOtGt^)()R0xHc<|G|CY)kB zuRrh`#6iVRpGRFOM*p|*&*0A`xK0iiQWd@3_=3?)jR#pPxhGDt2Y1XxGnL#A@r~-Y zzp*gzH6!yUZ4Dv232b7+d77GrYyN5t{II=AH*TGpb8gEcyuC;7>`6&Zo^cT!hDK7c z6s5=O&`~V?zKrCcdj%#XBYHE8^|E6#teMoF>V0ER^pzJ%^P6hYnL9uC+o$FS+aU4#5OS~-sQ`jw_%(_~%N=6Pf&78F$#yxU4o3jAnBZ=ZxvMgPcvM(GcX{X+n^ zC}vJsG!Z};6Xaa}hH5~=T@)2|4X|7FnL22)v;SuM3GrO*m#Bu;s&h^nnG0lrwEIe% zA@^95hNy}>H=V`nGY;xppMXMYuVhxQMpxD7x8ckW2{Bn~Y2=q%0eP>fs;9y{fZ1su z{x@0lx}*7m!-E~jkMG%EptKX2JCuQm*d3H1%4z6EAcOk9NCyxW@QzCOouki&7OU5{ z{(<#~%QUE`8pCtQHx?R+_vFYLZU?h9(3OMGm+rdX9LchpseNi#|8;A zfbMGuh&o7s-+tir7yL{#GoX_g&&xWL3&?R1nVIq(wz+j2{R4hhR=m3PpuFp8VE+i+ zGsnk?2xl9l0j_-Q!k34lw;p-K&h?H^b?8UhaxXL&SJ&JZuinto9s~ZiJALuY1WY-o zOZAS~#KdbF_Ecd#08wG|Y*hpl?^ z*P~BULqpeY5&3@t9yPqUtB;??M?aA#<3Ls#1D$|4w^-~)=*#CivY1;}AmVQ?ES$HA zK;g-T>6X=M3_KhRO}$rM=o%hHh7lDf*uS~pYK1XP7%}~OQd^uu8?oH?)wqNBg zxzj*0KPF7bw}HeZqj1yW=K&IkS^`${*T{&hJP-}+7&~+ziwS>~j7(@$f&VwV;SDZ` zD8iI)t&vj(b1(Q?i+uY1(m*88Q8T=aaugEe-1Kiv(4TdZiEitDI_nM{Ut@clwhtra z+~q)LxJ|1)n@-HF`>kH9ru^MyZH}>w_PZ(Ws1|GAQZ2?W1$S$dL0dz?GdAOERuXvr!t*NW9>2Lz*yc=znlS{0Z>;2)f39I1HnXIm^ z?ymFzv$@!CySj>QAC#!;(WO%dT*Qf0AWHMk_u}}l{!Ntz@6g^OYY|r0xZ1@ir^l38 zbGF4N&siaRUvcM>)R`HFHjSEUs8c0&^2Q-Ioe2o<^Xs$UJw1+&$K#DY`$ALxJ)#t& zlZ{JI+XB(-6;M6{4j)^r*%_X3)xbnf8!5Nnt~pbT?DW;wZbEXwk+e7aOVc`{{xl_D zjXax})vYbf-T4h!?2X7417jqChQKrC&Nc(qdwA`54T3|ymZsbPaDV5u5r0f~M~%u8 z6i`GWNtLqUvE=(LQfD`uH{9~OYqn!>r?X=4L{^}|Zv~!k-UUx~5iwH*O7;IfSZGN; zA1^>^RWW;W#=m{Yz&927?(W19nj30jOhAe#k~45F4=JI)5S&6lsrA#+359l5E4c43c)Z(Sf(GCWDS!+^=Pch@*CUqX-G=(ARUA%;bSA7yttOt z0kB@L$WI^0LJ&Z$e)4?(x6k^C=HS}($=bws>Av1jNbs=FO}eOmix!INjZ%iN=0eqY zWt@i;QdF#12``D+dck;H-dKi8oWPj9Wq~L;C*ANsEure^8o4aI#qtSy;)D7hkX4<2PtN3Hv<=IA!SSU$s5 z6b56<#nEF=Xfr`}Ms}k=X>tGhZqk4v9A5;$e=n$kSzZFltL~37d!Gbx$cZ&*cZuF@ zu*mj(Iy14d57jHS2m|y9JKY=dmg>b}gRO@0*5~cPPI(b=<$`FG=5cb<$gu|KqbTZ_ z@;5+_un=<@H%QH47!X0dyXg?C--7?4{LayoBizA~v?)BmNs3acwUlj)k_UM(F*5Dl@t2qp5p#5 zpnr)MS3P8X8ca77Aq$#ER5C`5S0P(EMt*!F8N~-a*SLZo2BF9p~wxiEIzKq%LJk$LWjKAsR11y2~teL~)zwsmE z`V^Zz@%2xdpl))gdt=~NN9(hk3(z9P_bcbAPga4ygoQ}*{)DPnrPxWPCPjejPHxhO zpmn89nQqnOQ9%{%`FWGNmgYw-9{)(jb>Y0ffOTCKq7E+vBo>#^+c(^KdBR?}S0)p> z{UM@_7)4Jth}m;^Qz3btV;aue#09(UiKdzGErlcKZ7oBL8DEo13Z{z!qev+c_Q0A= zp`{z8coAx5|5VDTL74j<6tk)gbvl^Ne|$f^YNv*AWe*nwN{dWxTH6_@8r%tOF;GwC z-=CXH$>5)e^Lu!dDX_lkJ#V*On(3^uRQOwiM$EO06#1l=t1+K^X2Go{hI($%%sm4v zO({a+o?0k^Jm*=qkQlFK&od^jx@4r7!j?+mGI#)fsfBkxnu?!Wmx=zn8D{=sQtBvr ze18(c2_KyaieL96fzoG%}$y%B^v(;1U4xBNypkl2o`kNQ(XF8-??4K5cO<0k{H-_4uK zMB-;R3oQ7`F>5)PJ1DPB_#R-m{`aCiCBd*`3I$xJ4* zlgVs0yL-;}o%em-|D-dByl#tV358W1{jD}bnOBc|+a!C<>*2ajo1L%t7iNcw)Ol0x z@ae9*?_YjNi6d`9U;pK5`2IXb63Dlm6n<|LRs}e-*DU~)6|yGl!P%qUK){2RjLHj@ zN(Ca%YA#-n!{aaUCu@tDn55PbVk@RI#Kf{MjShuttKK6zz0ER4F9>nSWYO>AXD#D6 z_Tz-f6X{$5tP32xEj$U>C!^IaUa+f-B+EVI7<=*06A@^^Fm$T$sTIR2L1ybrM?YuH(T}`q<*=EO{sE5xi?Z&QZC-iyZAHBO;Tiz z`%5c(?Xx>~Sm)fTP_NB;_NMFOA4M<7n0bpUjZam~fZ{Wp>0aCV4;BLv0{9yA1RX`c zQ6VIaRFh5QBgC1atS(ZW0&QSSH&xSK<}CtMJ!2*;TQEJu^C=?|z|* zhUJeBK0fstCph?UvNrVkm^1TQSu&w}`!L`XoRyqq{|=GjBSAsOwY|pYEZjbgi70}@ z{I;z<&b>inXo*KC<41ek2F;C}lTmPB_<10)MXDlb?|Z#@Nli|~ zz99B`?8OEC+kz3ARKlWTi90KE_Cj0Zpx1T1D`jX@mS+(|xXist`}=Ibw}ly30|%QM zBNpa%oTF(RQGhO09LshAL*+a9COH2(T>KEhC92o~-CibpBcjn>3&+SZ$<|PO7WA#r zpd<(JJ}tIs=oGt z{9TbJL{&^q0{DP^Coe_sJ@84Z92vKaI^B3q1U>nQsU14A`yeF{*Q>+bRP2SE+c1=G z+GR+DXU|2z6E?@E#S~*D?aJ{Ypx@P~>;3)kpL&-ImNzBi#rK+kVF14({Sq8=`V72l zGU0EdBvzD&h7c&0I2=7h$y<^;pv=Q>ncgWaZaTXVu7Cqu;#-^y0PXKdzp*V~LKt@D zTrKxuzoi#t0U!uUw&Ko#GrCC4^Z{8Pj1&tW=JLQq1oMp4e-Ls#{8?r-ky+vx_57?Q zeV;s>8yiOu?L{q^fAQD2-HXQURNzPQshe{N&RY6KQ#3)7HzRFuD*l{abi2`jUE`O$ zIz$L(_wI>%#!Sd}G5KCM9h93SFn3v2FBX1*l_60e-z_xMs8ieY`#LC;QW1MB6%P2^ z;7-E#?#`6L1xIH~_;0?FJl<(HmHG5TR6rvCgWOZ>>p^UXx_rNwPPB1i@lggt84(+` z4scnfKZwepo2?5ejzF*-9^NpdXpfU0+wf-Etcj#ovq}1XtM_i^?^KfOZwHyfo8YO4j?yOeT$M><`JoCr+5uc#Y*n$k&;<#&lCg|?xsZc6Ywxp9&+2P~WIvn?uq z-J;ReIo$`al3S&j3rz@?mUp9jY-B6qyF6C(a`M7`uamk*VdNlfQSlCusgg=Fn5|f? z9PiQG*VS@fbS6FZ)r|8Wpoa9Y!)W#L*!0S{%~6nd)Wij`cg08Tj!0b4(A}r3rZ;0A zZH#S?B#gFvJw~&=_XU>P?CJQ1*q`!E!-v(c`Jzc~l@S|a6)yt2vn5gR>P2Tz zy9;{fcK=V@^n*~lA#*`%F}B}@q{&-gt=jRLtPk{I(9U|U>{pF@tULd^x&vln!pOA} z9qZiSM>)|aFb8r>LuI?|Ah!oBQk_%A?M~(`Een$q2@4<6`bP3qvr-Et?o|P=J$5p= z+BsD*kgCow)nYc=G)>Tyn)pYIcOp!~5+fcHPA0DL(0&rl0ya#r{khtsBPzCeb}~y; zaM-z~Dl~)1;#@sz2kPUJ7XGl#Mix0zvl&6LSv88=fg~5#^K91nsU?^XC2C;Q`EKt< zC(?%gL38sD^}RgRuimpMZ>rEezqI2C#|f+CG=$5q#r@QU zVjU+12B6o`j>6-dA{u6+X)#69!H$Emk)v zK)kM*FP5B}wDLH0Vi@lXIo#ms`<&U+w@c$!g%AeW&jXnVloiV=5UPMQ@Q?aOm}{S7 zPwpR?^X2SBf_a-yL3xTs5$@c?FYX-6T*>%2GMvS!;WLRbB=+(tmC~#}gL~RjJTqp} zUUjDOwgW7u)$k{XpL@!LHALEZitsAi_oT{ty6&wzJCAogpVDlb+TY6WXyfGeIu?2Y7Ii?)Op_u$JgXf} z%$D@)Q3NB?Pq-M>!F)&+0Bit-1pwAmA~+6%5sHj}!yEr&$QFw?raepJ; zii!lnk1Z+?7(o?Af?BcTREEXA>%HzL7D7%e93)W~6~KNAC%B-2H3wbu5Mbis$SNwM zvs&7A880$6lwMa?027=f^Wux1nNs-#(`IHf)sZA&_+s=0;Kd@*etT%in8$`Qbapb; z{_46t65_Z%M{p)U30fdpO*PPH>vdts*l~UwPL1|q^Q!ET^S@dNkCL`%EuRTt1W9Df zf8B(&z#r&>vnLY{cc(y3Sg%4L?Sa2*#zbPz8~p$mtU$bAT5^RB{|BEB?xodrFgO0`Ug4-a4bP!y4dqlOVd7sS8KWNw}L!qcV@*Lhbiti1baCC z&|?n8_PFRZyIX^+j`?b(-IR?VbrG6VOqb&;tQ#typF{TiHBx$g zha}N6=NJ?8Awx1R07gKuDI;DQ8(uSF+gyI|IBNjJBQ~see6D?&NByiZM`=~a&dP!x zi}(3jgBj8e>@k#gV9tt4%9Q_=17GKDPa@roks7o^Veg1R$_vEpD-vu6VZ0%2>X=w-bgcvdlz-{bg@@w-?t>_docI>_eHENI z0LH|E9ApEZ24_3}!7azEZ&;`c{TKV7>}2&*e?kR7wd1b+>=QW1brFowRSP4&aYXt+ z`FrG7o9A)w||ag*%gYGhh7`WTV&9J=+ZaY zt6YO4?=>S@M_;SO65##;amXy)6zy1aB#KoMz7SZM81!CzZAMKvb;l?ehqn9E{eWf} zQ{Z)?K4Bm~`%90E7Wy4kFtHaSBU((hgaww2XCVxcOI)MN2NG45yMx8xyDE+LWL#7> zgP6K`ii+4>$u?fH_M6h*NGI25l?AI$pVh@s%RRnByP_BPNO%|zL&N@20oy{;XsI&^ ztpl?aOG(%BT{oQ0`7|Ubmv@ruK?`oqEnJ4pZuCm?M(CgKm-q$K>c`d1kl53v07M&~ z^CMvKs2S|aL@9%k%)nF_qT4>)Y2;3#{ai4*m->QY!m z>^h{GPS8U~>U03v6%;Kog%BPvT*Hhb6M5uBgal^bkzZ+kyV7Ky7d;07fAK5L7h#mB zf8?J$0UOJY@3t2Ynq$()_C?+(y`VoSd(8vMvUuirYzZcRS2mW+Ub*}tnhb6Co3%A3 zN#t-mO_>pFqMq3v7P&p%d>0$OY;zFWQUk`Rs_SO-QI%LMLEw(?K0^oyhugdd5vfdb z%g+gcdcwm(2SLSt=CfZii-Gvm#@Z-rr-5muU;%^gj;h}lZ%&fu1wyAitkjZ@=uMCv z^2eGI%*xK!M{SSdFQ>z)2SyLg#zv=C800}wzK*=xG|&3VI!4F41qNI5Qn0g|2j8r7 zMSL%&k&+^A`W@OyzZ&#(uFD$!SjUP`RQ&TX`fd2dp$P8j^Y~~(v-B)UZIv0S7w_e( zoGqDy(j>7p257^Qrf_rm)^&SE!=^=Qa(Pl(&eE*%(PvqUGBiXDbk@BpDnVnWQ ziNKyE-P!s=<|(>Tk+*wLpQ1yKTNe?7wIl;$0NT}X0{=z`hM1ll7~AX59#Zf`L*n^~ zgTFV!^l#p)YWDR4?dj0IZe5+|jgrZp7FH%)CjD?LK9Z)6bZE=lwxAL5ZVmnFg6`~@ zo4B!|IA}1Yn2Juhu;Dg_vppo7g3T+o*`L=HRP^A_H(B6q6_q70mH4{2};QJ zZQ*Nwrev;QaKq#&u9!&XTzl+lYeS4RTdkSeXtr;{D#F>DhNhFQS8|$c>scqK$uet+ zw%Z~~&zi#^o+KcC$;3Q2CCm#D7hW$N{MwPxKrk62;PmJ_{}*2Ro)vef|B_`t z68?}OK8AWD*@ zFzRYnSN=JypP}#E^oMT#6~`=_$=mG%r_eOn(rHjN8?9MXv{DhPFkg=F%lYh7sF{K8 zax|yM$@p(`=7dcH-g)?&Er$>+d!C_CHnLk6p-}tkwm%6foQ3`m-u93yR?8Xx7pJmT zqM-I1-nkz=WZ$Cr{%kagpO6_Nk(annec`JBDq^vPVm8lyml>5jj^o`JHi$fjbi1(P z1|1<6Ik9_@z^G=Id}pFe^Fqy%5ik5sOc^}G8PVG=sxX;lw((4_{&=6Bgf9iFkRs}V zp=du22kFXw)xq@?G$e>Ny4tM%p{F*;)>IaHv!G}1H!63I#`+UyWV*QRRcUlHISL33HZ zryq~;&*s;6&}10!CSkQ>M$C&T8pZosJlySFa#lZUUEX2@oPyT_z!)^?t`VW`mplJ~eE?KFm0RT=YI-IPpP1 z)R~A-aCo*8T{uP6R4*Ms0W;={aP5?ofRWsl)mndTLm#D4y@Tu@=u4L|%erRkSoEEmtVP3O`2J=&&vlhl zQQ{79wnM^fZba$3Bx`XpJxpI54+6dwBIt79vb!J>zlRUClo?mx9v+B2#Ix>GOR4ME zEB#k)T8h2)Ga9R@F=nFG2-}YXVO)hir^@PZTE9QveRc(TwmPtS-TXc(DT%r2oeq5W zXKR0*dHBuQYf3AOS2Ww`$CjMUZ=~>c@-~&3?YpNQMK`r7sJ+2DF&TPRR_;)P%oL7r zm@xzFbU4pvDQdS;Prr&~B2qtpx*pn>*dn@2+c2A(dM zL(|`2=-H9ZomH-$Jr=J&S88M7Q~m(YwokP3tOKL$p$kxDVet2u&;6Cfj2x%6lc_X> za8C<)==M*lEaUp#> z?*h~_7r3NPO;Yn%nV6D~eV}f|j~0X-7r|XPy%Ahrf~wz{N3s)h;u6ZuCD0i^l`CVS zv6UI+-#p>=DrvaPY95{vsvzA(7j*0BL7#^rM;gGy%E^u3C7h~5@ z7WkZ=`!wb}9PNvPljHy>vl2t^#(WjHYt_|t<*=laF($!3nal-)lbZK|v^}DC8Xl`q z5=baP@^%~OPH_LZoPT0+QkYB|yYW0n9DU(olaK;m!dwD3P3h&%a(3~m{(5vO(4WXM z0=gSZv;P+DoZJv}ygv5~Yp8G*zwH5+X4c>QH6S9d3s3~~j%+%FSWzepskb;U^!Ywk z!sWha^PPTBqkS?U4xoRUC$VMSiA-`X0nfo_phI^fiQmkUivp)u^uY`@`jaaL=wDZf z)>bm^mRZDvfpkU=ZXb=wZe!pPDw$GU+I7#T0TCp3UQO%&8U)>oOQEV{TPsggTK%nW zWhCKi5NN-ctu47*iPwqS@LIy1cwAn(21yNXO%gZ%eMI#Y%7!Zo60;;f+Rd*byhA!O zA^c%Qk7iICW(G^pD$Vv`p?W-yK)&ie4PG6LJ*G&U<$g?zkgmJvq|CE#nDw{EA3BFS z3nLnHY~U__F?#l4f7ywKxE{;8Jd(XV#atgUZZ-=kzM~nF6K(Z>98SJoe{s@K94IM# zyIEgX#H)Cv6vlFT4M~B55GpFeXM4@(u^E3KA48%^tMR=XBgS$?Xa3@M(E>!;{ShTZ zVlrXW$ZgakE&^t1_5sVDHYngvl|L^8!J2~UTqYBu-!);C^P-r``cz-b^5FNp(5z6K6nzYeN z;lH7R5}N`jgP>Ww?_k^SA@YDnGM&RU<+iLB-NWLhW`ir(+%ARGZUohOv0ZD2JS0ULO zQz4OiMd9#kPJz4st>;pGD+h_t3?Yj{`fSD8f$7ns7Zqtb?}r56Y=x&-;e;i9?i7{Q zGHj~{=I5+Q)`m$v&OkbVTKZKF`FMz=%j=oXThG(TS)l^B*{G5+tW}s-*g#mFM$iD3 zfP>ZWSS6>;ji<`xqwf)s62$l|FNxxQ``Jt1-@`V#d4_nx!dt+h!2iO~?k=WCMMNM) z_;pU!YioGz0J0P>U36Q#m*zOMelI z^8U<4P!L4ZW9m)Ye~NU6*2|+OzLxZu)w{a$b}cQJom)5~G<1Jp!XTc1Fh(684*L_K;jm(P$_F6^6|o{u)(HEazJJBgoH* zpc8EKAXn-i)%WDc)Bf}-V*{EvNey2EEqUJa9G|8hq2%v;iZnWYLQ*a+<)PDXv2#bq z$`Rpb8xv&KLQEslXBT-(YJ##G4jf zW;;7Gs=loEWTfve9G+H&A=9Y6%nmyro6&ICQ%bk@3#2xdr8ri&EhYOfpS&Rifg;&D z3iG%-uZ!E`JufT=UTob5%X8TdmN8=O;(=9}ukBmy}?ggaZ+p{@cBsEJ0 z6rY|J%r^3d>LeSLijGofXXhp>3n$Xf2V3$PS4jj(bv`MK3n*)@bDe(C(<6ODF{)VE zTd*q`>`-BAvMia_e&@hG0MJ|T;?^qD9pQ1KxbVhDF(?DQ`}-izwEJOtw0kO*_?mJL z96SLWqE5JkCS&_EE~rwz$AXv0eUGncJ6rg@JL5g|3Wn0tQnbE}2kk&a2%Y)rRW#}> z2iuw`k6T&&%zST_6kD9_KO(M311Bf=V6T7G7`DCBJ1#7lidp(h ziI$@jiv-hml`vT}8=b+RMW)-5S!u8x<;kC&wN^Zsaw491@*LtwGqpyjmzGwcK(7xt z?*Cp*t?%t}-O^VhCGbLo&6izYV7{h z!|Yw}<_D6YI~J>0oa3{I-Q^e(JsfKmx)U7t zZCUV^9f_t8h2pKHo-+ab6=@SGp$e3=XOnJgD@U@h=ktr}Ct_9P4|xi9;l}trlV+Wd zuP=Gs*WLP^CCHnu=;Xw}A1j%s#qF(2Gs7AJ;@$SjZwu=}U6Iw+S2;fX1ZEByK}|x| z%evq2KC7>Xe1{HdFB0f!2M>k@HIFm#9mCu!G19 zJ2p(?beqj|*Ky+W^o#RugEeI=A0N+vZ;cn7eu}6jS;C40>pHN}PN~{pGtmf)!(9i@ z{f@0bYAS}E;m?WPEJkM9a~{6n`of)LdZaW#Is5C|SGdaJx@aCybk^C=LR&^Jc{iG%M_7;#!LO%#8M5`L)D5-o&VwE`2%?X_F5Ql!P_R!L1I>j9 zCLJy+ULWqr_|z0wJJi1?sh|_aOwMlWIIRc@3nxhzPe{E)i)=<(U^XEkHJhhJ990io z2jBS6nSCc1tA^=H(^DWuny!@H3~~<>Wa9GR58s^d?3)rWIf4qC)&dF>?fq7hT?H4^ z-f_&j7r=R&%{y6_(0nmO>Ehi^jT0LIMVZxH68Z5q@_6ysPGjmVkw#_wZj?kcdroB2 zY;X0VdduqMkS<;GWX4m_HNfi4=1i0RS*rYW9C5oiTT8X%W5@5=#-|umwIwEJ+B4MG z+!b#0lrCx;n7h&q`Y!(}L#fL*L7HitJYhFB;W zlhkj@g^RVZ5;KLdvGS|I0F1@%^MlKU;a@`~W&MHj(MW!RJv#okj&^Ut$5kV(Joz0d znsbkDRR{Lbe9(Do0%DApBbK;f$L$fe^(|uA>%mi{c92$zI%2NM6;cyo6Y7{G*f^!G z0`jmOF_!qaIO(VLVCZ!-r=9YnKXU8*!4-r!-2si*`oy>AURz1uEwdu|wY^nDY5i?8 zHkqkWhPv^f&^A=pt8PUQ?P9E{-m{YQgCOo?D6sS)DD`IV*W^*9zW|^Uu++PwJ;AC3 z`%brr(bAmEw}Ll{gHzS7JZMcmX2!J4Q~=pFzsI>+Q{RGt|H^z_duLG+j`tC?`-LG@ zHTE%{KyYpw4L1?u1Or(ZHu+NG#b)>8!G~k-vkjB>*YAZFO)hgh^y8Xmd1n$($tF<@ zzO6a28mbq>S!L7GQ&SYJd+OXJ-+clJX3^dpxNjLht(TOr(ykJ|wmlFLZf8erYEVgBtcqc# zv#@xn^w(h0t~KRbFSZ2GyraZThz#ooY9EoDYGL_c?sT7&;ZE&`npJscs1H=S1McV{ zCZ%mb26nCZ#;@3!HPbhLv}O(jQ%%PaTp4f5I9wj@{LyAX8%_vc! zLayYT+lKlA=lW!E!w*S@Ff5TTzFWoWkT$lBeL9xCa#~#vZkjNQbok0 z#n|0f(@zm?a5kPil(KKzu_6^~2%b~Wu@>hqDvl_!Nq}$u5|B>~lR?ulCNOE$V@^Lb z9QUWC|L#aqs40V@C@RBJRWUZq*Fy%$U#2lZCYfWT!;GFXEiC;P@aQ0 zI$nJF8aW|hc|_>E?5rswAUb}2jb2Gfn41N62PX5S!V2(_^IO-jHlAw!4L2ny;GYie zNSiV@n)1s-P)S&?H&}<~W2N*^Nr5i)IS6Hk^p`Y7!tg^6cQ4!h#Vn)Eib1}3g#y(w zJ*6A7RzqOkIbhx*^OsdSd!8RuE&1_bxOA<%_M)BRcDA~O>nF<%i@RK9HPruhPH~9< z8UlZH11$X#MJp(uMo#k}l0v^hJ%B+NJ465+Vq^no;Lya&zeYp1m}EzgBEN268SE2c z1EBq*G4(YR_OiwmLbcN$mhoNN)Bw9nk4|ZHHxm*7D3wZXlwh$$7nzr zItcNZQWcD=$^%naU}7{ux3B+d^!V+eUT+xr1%=0y76-* ze4nwhP2KnJPJj;2*25otX_|J*fI``>*37UPCYo30ZE{8A=rvaRxpN?@R{jtLEP@Mq zmQCUh41w_j%ftGVl*c&^*~v!H$pQ*#L2b^T#dEdizN6c9rr+{+v{W7v>j)X4|0x-T zF=1k8ejYjH4d#p_cPc6%-G^{afPt(F))8Pu6`uGAAh-df`Xv}s1-jZa57j>tO3e=) zLJ{wue0~1zeER1fjt2-%#Sn%FfB-S+xd8{(5<@an;uYV0heSm{}F}L5}xVB^LGe=tgUraOp%Z=lQ?VXiT zj6m`jyMe4f96Oi8>j2wsYJ859M3oND<9L@tQ$ZzR?a3M@I_6#OhN+^=X#DNk%*(_k zsN7x`mNsB9Dqxh?0s&`m;GJ#dd9S4pDX|NSH`7pOy;-Wp8M$%7=0-Bx)Rhn#y~_ZQ z7g>dni`$9sX5>;W`(|KyH?g&El@Q1JA&2ry^zScidVuu*tX4xIr*c-4+2sa6$F|3W zoacgc5_GKie&g56l=nIWCYf;R_bPAKD#pz?{#mcDXKx+ONxgGp z(Da%(;pg*S+X0ddX?&%q%^*dRxL!eWuX+m|$ji=%%ujZTFms)M-p{T_SwQIX$@;6k z6ugpc5Rw1Og1@0DaV6$bXe>{+BJ|b7}zfGyb%ItCr2#<#m z=cjZI_5&TN#u)&3tUY{4>DCMx&?kdx(}edKW44TW2~K$j!^A1$Gi_RzePEL)=xL?a zAoJPTA>U)h}9pC=cpOny`l6$ryP7x(67Og&<@$A(A%HlrGr@q{1xq(=G{xU*&( zOvMLqPTrF`+vS({;$FB2$ed>eF*;%|{&_-THNoQ1fbEf+9=Gf3)xt+)G{yMxA(5~0 zx!dWcP$A{x4`jPIeNToAfcFEQCem(vu4j~s#vkTjUGC*{1PTROVoI*8mLPY9}QWS;|d>hTP_6vZ*3&(Ott_()x zeZV+QoOFONW?Vi)MX9DOSOpm842@5HF6e?VO=cU&ST^e;FmVAzj}-Q>;5}%lTM00* zE)nVcqZw`B2!qmvy(o6>qv()C`sHojMK>1GUo>Iy9hwT)KVk&Ksb6-r!%b;^Ulz;e zp5lPjmhf zT0(Jb_|NnD4xehgFZ%IHul#yd?@-U>JpYI-JwxIBry<7gJTK#oUO&)Nja_GaDJbml z(>O)AXJECUv${*5h;n^%@3_i}Y-_3fr&j-Ww7q06*leti0i)@ygo5IQPE<04Z)mJ- zssRyZ09gs&*N1(^1dc#Bbejp}7(mry;4=)r=pLyh6wLZ7PGN(NtPAY`jC+|F^c;W( zcIv#81Dd`AN4cPN5BP=`G+m0z@Al(uLzgHs{a&wfvwT|9Qv&5eNj zqeb|iA6)40!06Y1KKZ4ADDz}pZ-?ob*0{;Y9-~ofY5?cs{SFC!76)jJTtW z4WjY}{Z$jK7wSXXoJ}^JgE~93>y2a1v1zD*EZt3ID{?@sE;j117vz+u{^_-N&^q>V=%1?j_ZSm2=T2Xv@9EUNQ$GnW<_AU@F8!b^MVTgR z6SDiR#DpW!S`ySD1w?uGSqI1IzcCKtVY^S1$xQSejkOYd*@4r&5>J4Wc6sJ5y^8 zLY|k7%CBBn;HLGi_rDZa;o6*Gx!p!Aso(cQH-26A!v-xB4BPt+v-MDi`~u0V84K_V||24$+J}pI^5d+ zvk=+R+=oAL8RPl{LXs_CI<-wUGncSyYVN=FDFQSzYg z>tk#)@v(wnB2`$HE-ZRjE-=4HQ#J~DoHG#TV}%j_1`Sy!$2mant_cy|P(#ILRDp29 zA1c!NwA$|y%UfY(Z_qqUyIxu`<4nq@#qH*9M0_{Autz8g-?8&^Y$T2DTvnzdyrdj@ zxljfS$cpL*3wiyC6F5=w9yfb22(qb?Bes7p%vWr0x8MjfU^7cVRcD_Ht8$&H#<{!8 zALWQ4+$Hc}bGFsPu&~4G%Nr`%EqjkbxAFb_@u*V!0_&sA5Jv(Nqz8Mq7G-Aq@AqGj zX0wV3ouU{%y|kdT$Sj6!v#!O9sA#Am7%_2Pp5)HgAqz#pAtY;m%|NxqoDHZ2s|JFze>}JkR?IR zI8`@Qb%!dOJ@QDWy&&O;);E`VTyZav%3%xQTj!p$Ch9hF$EYH#Wu?!O;tMTLp@4%F zaKmrI9zuIUVe3JVl6SDuQVDlPHE@C#iNgdvFo8|p+r86!^M_d~HA&NEi+ASa!|*cS z2l$6B7BSMTE}H#Kz?Z<*bJ%#7N^lwK76b4ZEHzV;k}OD4nr|eFzjJ3-*{-!)iFrD@ z8z1Jv?dC-0qZyk?%J*Qek1w-y864ewI+CwEA*a%gt?2nbS7Zex#)b(TfV&?Y_`h(wtxryRKzY4}bA`|HBOBr8d z#mT>^nb5^RZS~~Y+oO}oBJAHS)s;U$5eb|IuxQJ|&)`qu198vG&0(9V+}Rgq!mrI% zd}5wEdBj&2-F%QGXCnfY4@E%lsGCvwy6PC@!n(~{^^ug(i>iBFWdesJv6g1Vk&MyI zNoFRi2Wa_<1HG3t;glqKlQO{MqVgi-^5mEZUk*4|{|EG7f-4K4m{o|3gWMRPVz0o@ zeUxIt`SqU(B{m@?Ocw)S3^pAD+exkt`f(EysJjc;V4*O{|Dn(v3K`Hwd48J(jcayf SjeZ6|A97O4k`>}6f&T}1vu17p literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/tipos_de_variaveis.png" "b/1-analise-explorat\303\263ria-basica/01-lendo-dados-e-medidas-centralidade/img/tipos_de_variaveis.png" new file mode 100755 index 0000000000000000000000000000000000000000..3aefaba55d3c01f509bc5191dcecc72ca5ba5a1b GIT binary patch literal 361612 zcmZU)1yEeUvp2dBG`PEKfCYlPI{|{bv%uo+8iKoPaCcc;gC@8HcXxMx{O|qVckin= zRi|oBPs`~(GgH5ro(cc1D2?)&@G}4aK#`S^Pyqm-gFYT<1h@~%F`gb10Dvz578n06 zD=tp{-O1h@Yy$!Sw1Shh;nlF^8_v?l+L?_1^6qCjk1IQ={G>sUH~&knEP){jOY@n5 z5;{K(ASxlsN=Zro149x9r!$O_@(?9=?Rot@>wf&$+5B$#=%bXM9hK_?JZ4L$rZ!pG z0T}U)E*A1w6iO`i6e~Od09M^8#(ZRcY|NkU+3TqHzcBC9qxP%0ZkUb$;m z`C=;?zWjIv^ss*~yDfuWPaY_|3HBjD-8r(L{SJhVPGgD z?14mTlir1QVBSN&y$iFI{o4@sFa;i?*h@u5qn6OV3y)p;H-}w3tUHHMqKPA{4tv^; zS-T-c*6a6$olTy~_=hSW6q7$-03Ck$qjV#MH#9C008C)g&B*KX=uMG z<2O;=x)0!%Epg`%q-@aIr?)Egxd(d#Z|L_8uQm&FwVYGe)8q_utfMWIe9|&6S<=-h zMCZCeO(j2Dylf5-(Woa^NYF>aHumd`nVY&jgbIJA@xAQj4e{3;Mm-S2HcbJuxIMm` zVAOTb2TvpBY4gAIx;au*YY>?#>wYRdZgZsI;h>+JIcv@i6gA%?Iu--LOSZjEld0pA zSZuvScGL2$T;d6rQ_-(DMKk}{cw2x;T{pGZiW_UHGvEk|adugqL>a@CYjj+hgaUp# z3HZYLNsOG-^F8A0xf3vCcf%15@dVaiFi!a+rtkd4bVl8@rgAg!+Esea=*aMn|!mr14zs}>}Vf9 zvt*#p*b~kXTZc6E>KGMG30QuDFfXBc5>do{)_N!@{vY`&w zt6>Hbls9Y0f#s#O>)X2?i4Jspc?_56G1V2uq9rN^TAXwR1v^0jN_^`q#*wgV^n1fr zx9y`mu4p&_iw98(rp({EhrX}$O?o(^=nWi+()sePHFBdg(LHbcg!T+enbY*XCvhsJ zFR?1-ns=7V_q|F4!4<`oU^cX^E#&BNy!nYj=ye(_YKKj`Q|RysirP(< zf>8yEPy`Pj%Gu}>7nJ4(Y!js$s_5Mp66znPjD8aJw7yJWxkH1P)M;AE=YC zc0at000M9mah+^XLO%#DNSMUXe+K>>}q2Y+_PCAy7@}V_~>Q9m!P;h+i3|SLzm{h`tW$&?J6=s5B?A59LYJ=3?E9AgR z{Hdge*8xiJvu0nk1JVlYdJtKk>4mfhD(rV^YV+|m|09+}eT1bSp4ZQ0^5v4LF7+YnAz6YlJPsnO zNKN=9QB96dx=q1LLB}YU^$%+rn~iap1-%i^fWt52q)o>3Zz<$N@tuDicc7gFAK@Np z9^t7N3!n=)P03B+Okqutw#m0GXrU8%62H!96k`{g6i0qTODj%C9K{?h9#z|O+55c5 zwMRGV%v8xV%#^7`sdZP+QM+QCp1(nliR~;$P7~_%!zqYuJi-JA#0f$%TK%olw=}}{ zI|P(y)?khV8nNK-o15V3Q#95zb+=G5sWIvv78(rPirc8&L)c%Ka11m}+oq!vF8OMK zZb7=QJuW)#$!x$(RZU(ksHdP8+v?|pPWU@x9j&iXfJ-#aZ7fmZ0m40eGjxf zyNj~1+UFg3|AlOnu5W)db=dt!O{{&4VZeHVa7K63JKQ@25E>9KQrbfis2F(vqw)vb z502mBKjvYC5$cc#kb;qtKi?vZAzUNsA`T&u;ho_bV8>%SV*SMhV|r4^Vb5Z&(t622 zbX}yreIGTjXm2AN{0x!`oF)wwut}zoZNio~0b!dvITdAvPRH>EZg;FWy3FHQ3 z)a3;e2IZ_}LuEDP(EjwW9kEfc;jp2Z8Ed0xXV?^-i1S8eHR%=VHLhTJ!g-oL!aUAg z)!^`8pJ3PH=->!3Mtt#NBvtDuYRNCG#;#T?xcQczZ&Q#}wNfomL0N#AtCDvmlU!+) zmyzeCeH)oksS~G@ycEV)(boCId~0_LLQz0z8`O@z&oIgG%aG>Cv8)60TAj|eRYgy6 zO^r{UO&Uy2O@`03=3b{(ci5%b1)U{j7aGJFM6b1Ug$b#@x4fkV#s%j5{u=aE+*rKa zxN(z+O1VI!K&L>~6ukX?TWWiPR*u#s(LB*pm1Krv=GdH`UA{rk{B;l8nfu!5Iu(}^ z_cv|{(41)&s0ysnHLkR&Le&wh+iOOxt!~b)n}WzT9M*wqUF(3&zNU1h(#_V*p{KSd zktaF)Vf+$&5IgA1N^TrmuTAUlM7^|O9X zt8D8)yK6gptG#25d(J)UHT@0#wc5?M>yG__ZOQAlljv)=`|8{5Wt*53!T4i4HdLHDMX5qmXqo>`;3df0##vL&QN8 z#$3f>p{=8qq`jpXq28xaD%L8@`X*TdSLkMsx0c=b>YCxWbm>CBD%{C0&Ot?IN;$*U zz#N%|lj16@`=y=rc^Ng9r^{jdUT@v zR`4k8Pg+1i#B1l-QKXaK_5gDy(Hrj0dB)kSX!WbIX18ptMqdcW)2ed3wYtQhp{pyf z#`qol;PP^KAFWFWKc4oh)kov)+%Lr&&{^m)TD0>)XcI zV%@Ra{Je-VK@{ti<@Mxk>utXdY4O}nxva8ozO{E>nQEPJ(>%627L4`=`X2d?-OrwL z-&@}_3rzYrc#3%EzUHm}R2r0mmM)g+lkOH! z@MwEry5`+`%*GpKi7>qCtn{OKEeC%yJvp*&nD@2UTN5Bc!+(F^x;veg80Wug-;(|P z_vuS=S(IBqSl*pO0hYKk>Tp zTOvS134q)is)r8%aJ-hXy{pKJ+xcX$PeVlzO`2eh6X+KP?J4HUiY(o;T}u9siI1${ zCqbXame{2^3?d~JqPa-CHa;l5GX0Qg=nKmN%)%=#vqN6%t4H-U;?+K)55^Tn7hO4( zo5~LbHdQN?LD44JY-I|O%lzs5h-$0KCFNVv==lt!C1gHWvD zIeOVBxq4Y#1p`ITge8ctdxl|~IUJQ!Q?(h6dFaXHgz;GV(qg(Ugwd?ofK+uz#7(hLkHOc*)zFM&uQLXZV$Sn<>u7G_H*BSHYC<1%D{W+w({C@CNhYn z&oDj8F?Otr)MJLr;J(RZtEc@};$Kya^H-q-f3;u5-~3-(uARpWTiNpriOpxbB773F zuOHVQ#lf4C6PofXBiW3c6&2RcFmV8u1R6f7MkOi_cv&&!N!K*I@em8;sZz3oRea-b zEL^B10nZWVv}%|$GJ(k1W_VIcwElY@DL!%}$AD!tR9Qu`YRWVC4l^PCw@&C+F*9Sj z_@MkxThxfoe__gW4nx`2chYu?u>WBK&a)`J@%c4B8pdv7{ zl0OxGa659}xn_9{kDF{YVIQk~c4&S@DP~yib@QDvm$8=C^1i9o=owv-5b4zVV7oTu zVmfR`W`aK2QtswC&H5&Pp@-+zT9#6oy#Povh-z=>4#~d!e)z;5#%wa zaV~MUka5Lmy(0bk_JM1ddxw41yM(*Edmx_A`ulFr$?ssw6^iOUm4OTz^P(6~=136Z zf%G(kyE+c3pwr2}%aPe2I$TA$c{|=@!+E`Th;fnfL)7D9T(R%I&V+wgsUO(lx=-T@ z^vb2w#wCO+j_H_S>&AU_n^Yi#;wR7)#3t>xQ54JE874MyA z9*dSe*@-{xCH)o=6Z(eK-IZRh);4d^S3Iw$1L2FZtz{ecbV3~&d#^i>kADo=4Kcfh zCzSWXkuD};P>=hDl+FGra-iym#rNn9!EMpE z@IS1=z~_@Y2Hu2ivOQ9p5~xyK`=yA<@gB=I;odD1v+&}zd=a?n!1YmkJB6nCVG-OG zOcwqv%nvgYCr7lt7^BSYFp-VltaBH8m*P=0m~cRXh6qHl>zV8~tJCP>%8kOSpye!a z9Oc#&(_S5QR=*bTh8QFvPDCYIz`HG!m{@#hezx}+7e8`8CAIQS>v_>~A;D(oB;)j& z*e6aV(2>~H%4OWe(Gkb}^~`O#bA@VDbv|hs zWtxbcutqmu_)vURD70h{XP%5&;%;7Op#!?K0Gh|1w)}GTvyikKuMS&1^Mv!JzWV#< z?45Jot~^=$J{edU6drt&e;_WS^PN}~Q`g-zq33VUZCk_?67vdg!5tZ#}e&h21+Dm&SN^OQ;8|xP4SbZLF z^>Z0}C+eQ6;;e)N&;bDs!Y~0yDrMPB0Fe&VR^c0f1NEnkaulO8Hh_LK+$3(9@O>zN zRq8B;Bp2?6a_UoLKbkc?@)A5JMdKQG8rEE}?GEm}rcZPDnPGyFzk0(rd>qwVQavzy5Z;LW(v75fq#hJqsIw{J zW#bD);ea9AW|+Kz0^9{YJH<)J^{f!^@-4`_1a%6J#9v9Kqp%#c)X)LQalAM z7kZp4#VhunZkNN?LVF_{soVa{-^nd$TbTYaXHlAvM_~ApyGaOq6EjSpd=xF0ZquRF z<&qg!G|&|lRaX8hvZz3#=L(N`mB|^x(QSQwtaU_tFniq1w!?MB%FONwq6LxKJI+K5 z@h$At+J@`@=!}0Y7oRWgjLB2v*e6bPuC`zG6wnhu>UiQxZ032ywkNqX%`bn_g=>L@ zg9F*{lL$zvqKx*0&?Q-Wd+w?LUqBh0iy)%cK z#<|JTuWasg`wngkL+9TMP=i6J!TYFXBxgWJ`c6YTb;pM3vZJB8<=J1HcvkX9DukBN znG=LLro!(}Tj_gIb5*u$noWkbolTQft5}ZC6Q}jY@qxM#U|IJ zhb@<4cx7Sbwt)`)9lCjZAzf(BEoql1r$%Ol0gPPx!7SpQx6jIk&rpngjV|A-W8!Y& z?Vy!~Vkc||!x9oZaF6+b5dPCRpX(AoTt<#sfz5+$g)TFJAHNY_H;p50DGepvo|5y3 zo+gZKBx7uFP-DpMkI*p2#NWZi-rX@2XYMPHOH2>`2NMiKCB!VuLc}i!zIbPti!4Ws z#SDtr{)|&VZK`BC62@)1V`>ZLnv&eI((1yz$^w&otC}WlK@}>^294vuyNK!xgQPd@ zAZ;q!ZQ?`NDGa&xn!;px0pLgRCjJ5?-w5UHnmnENuQ2^>z4V@u_Il#2js_y z=K&S|7ftBfpy?*pV06o~Ji5L;suM~j3E+Uo6w3$buvhZPC``)AaN@kR$WZjskn&HF zal4Ai`z6;3+b*=vdjkGrxMHDJ>+63V*eceLf7JKW#Otq2y69s#)x&UU`KIa9khN0n z?9Qx-63#y)4m~S~F#B4POSa4A0ZrpxdzD}6{*t@?g1=;6TRKETA0k}17SGS zsME$D=+CL1yfsBRye{Z(%pp#KJ!>6@%E=c)t&xS%1@lEEhZg4qp7s`%7S5LLYsjVf zh4!^GWmgx2hgMjO8M#%yfQjYK89^$3GI5eufZARx$Z*&<$xx+`{_mG%a=JE|D%ID- z;<%Jhx4iLO()O-c(V)%zx&qlCg5LtYTj9ykw+g!a?HKSGR1W11Q_jBI1{>f5&gRDs zv{lVM`?+q)?_3ApYQM?YmP%;({xmVug@8t7Y$OD@^7#JpJgQr%5OQ^rCju*MLS@F& z^;Y%ouc5E26}48^7t~$5@y^HR%~yMP zAJQ09PXRBslc$~W(&3q23o=9e4knM=t;Uzko6A7NDRWj)iW4pgbVl^Z*Eg3B| z%r#~;5;bZnABEjA%ZHzCp}wX80z6yWp46cMdK7>Wcuh^b3Qf&aC349@XFzqR{mXfS z-#qIlheCIh)o-4iH|Ot$Z}6)qf3|abUGD$@s9#_;Ef+0?Z+xcqw#>$6_9h@^4_k+i zJOcnA;KBD%wFS8tlY7|O*g5lg2vYtR2j55iKV%k4^8aFSu@X86Bn>v9VT)_5r$NC^_yBf*#b#WeD}8#T4MQQTZDPzM-ZBKo*q>nd zv#-O?zR#h3DMIwrBh(~GUm^-+P%VCs0@xR(0EF`H1?^Mb^Go{ADc(=_-7JRc8XuiZ zLsQ)y>d&%%`uXbait|M0`Ko`m_e5);9pnS8+!k0aTflJP`V3($7EVu4<+U{R1DWZ*3jvXH1G1#5zd`{koKPvLH zr*BWbZDVZ!%B|}0lo6h*?SA@(fSwjFVsXUTUMO@qD<2EcOFwM7x{~twVn)$)HQN6I zR!*|g+FzjJ{T~jj&BgO;zmr{}%{VW#mdU~+b9IxvE=n{Qn!8uTb%dIo37tCz*%KMKc zQx!D&_kQ#-W`cNcrEdE9y245K%HWKg&~p)?9L5#2o=Zbap{gT}e%ak6VSNst@aol+ zqxy@Y#;0~Q+wV#vhS z_^SX0$QK3lJxJq%%x!nepLqqHlh=F$BdS4aDgrj-Hc9!Dt=TOrOU7^iX*Opak8Ay!Q6N{o-PNy}ldCVq)~xbre7K!1 zP3l(BYkb0Hc|4q%*YY4lA7D~)&^GTTZsm}K3-UxVhl-Ar9r-q~@UoKx939uD&2;R~ zk{Z}eP8ldTAJP^&UxRuyniT8UxQ)S^!>*OE-kNq|j^@F{!P*dto4?Tm{8Ulo(APFe z8f<)XnnZ|*nf_D5r`O4h@?G~E7Fz4~uoQ%Ygjit|z-mQy7OmS9CdsQ~)lKg37c&2? zyf|^V>4Y|pgD`;Tt=3ls5M!fiu8zOmB6^$WENWHm!`^f<*4Na*&ZW}_iin%IBXWhx zeQ`Oe*y%4@A`#Oq%*mhB2DuQVLoA z%KJo=(0Cq7!xufMl09BI-6sW+OeZ0uRhYHbD^c@LspoiHIgPfzO?#*dQhe1)3Lgw! zI)nyi|BK79hCMYZY0hNg(5%cyK^n8|2wXG#dmkTiwxBFFOH6UhP*#D)7s+)R}U zH-}1&)zvDiiIG+OXE&}}vVKqKnRTUII9OKhh*nnS#3plCCC^(LqK6lpeER;E~h z|Lz`F71oh>e3w7o?2G2|{{xI1YA;_P8}6u2ouiZQuAhL8b_(>oKTaH)n=Bm^7c>;<;cUKleFhDM+G&Fvx-`&j1{S*q_u1TEE&GO|;NPN(2f&pRR^h6}d? z+d3}J2u}j_lYE!0oGOYm(K;yfn{(Df|~fjuQYl z?D!iDc^=1(nwE@C3`dY1PokqOXOZaq9v+bB6YFF(eUG*)!X#`T1(LF2$DRpBhgbvMWcseC)63dmoCb7s8+HX2M zO%fy4Y|A6ABe$Rfd=x2Tke?}acO#3yXIaBU(+!Du*@RGg z@F9>~ds@*FCyBOoCIwPmCjPRUcp-0?(ZdMVh7#X716)F1{m2o6$v&7Ter0wb%(pQT zlFcw9aH}7UG=%y-9I^o%am}{&LeXaHiUUFE82?RR$YPQV?YQ{?ikAftLXRQio5}ex zzoPHc!k{JCGLtr?1o|EGIQB2a5Z7B;H_!lr>#FUL*t%{Cpbun-EQR&a#i%n-uTj&T zlyNn{aMqn#>KbTMP8Y3uF-$Bq&&ihoISyuwo?g?CC*^1ts=+ zcOrQ=bz8n>cvm^2`1qsWs{4IRJOe>TT9L7#q6O0nI)6ij<2oIc%TR8oN`(-B~IVLo&6+$Kv`<c5y-<(F{1Y!-NZw~TQOdwOee%lCP5zS<&Upwwp=`SCzIEKe1i$S#?(BwNmw^oJ1vBfNps zvsK95w$QfPuUm<{yoo-pnxU}s))E)=dUJ46~kT;s-eLM*vh+( z1p6OJm|8&_J=Tv6XME#S~l+qAQ~tjh?U-Nk80=4kqaW@Req^DjXhL`ax(dk+SYen6CV0jh+_ zqwn&?$-8xr9Oai6xks9j<(IjTs!h||meK)nkkA}AS2I%d?H^U8nv@XESDds-0rG<} z3sHr*$I7Bm>65!;Mz`lzG~mM&&B!`I9XVkpIU#eTCsxa{F8$5E!mUBc(^dhduq2y` zLx6NnAusy(sM+Jfo3+4V1~Bu|JAKMb)u#j>Z&!y{5jn7zs|TO1Ub=J%`4`IKRB_DY9X^*erL{t?FJ2#Nv5j=y$>`}tIrT46kL*{bCDtr5~E#(k%ZGsN9pml}`mUv135{j1dJ%ffApE6~RVXM#ML z{BD0B_xP&O4SQ+Wx*fB#ok+Pk4Y>kg+$Z9a1vm;@7Z0Nnni$fi{x{#I`_b(=S4-ig zL6{6hNNUow6K^bxW)ich1r9#75_q-EHLoKVPj`C5MCiTZr@ye3`fj788bi&?>?6H3 zfhU;&N{!@h&hd6Zhs&)Sy#>hgpV9|ZB%?+vxAv`f5%)`GC1r}f6{PYSWQ^J|Az~%+8y2yE@2~_>L$j@`SjhA z$7DKXbYgjBlBE6qx3t@~v~b;}@KgM)K;1-!iE_%O`Q@Qfj!VLHxi*HqM#8T3vRL*zoo~ zjcu9VKs%8>Izy4?7e--8`CV+envt{Aqc3|n7djN%SM@PQmjxUO^Ph1JlIAzBRY%*z z&Pd}ECKC9{r!JlO*Ic*Ryw=}9Wj3!b^6Q|E)T`!v7RiJTm6WHOmwX}MY^rNe@~#`3 z6-)86qXZNFQiO=04d&GlUSabehNKeYHNflvYkNO}M#2 zl7J(||Ch!*{|cN}^(sp6vwk6EP+;l4yG|W?zL(RaFH*0F%IWTiqEgwH{_;9~%oiz~ zWaHN^zYD>T;>uj}^3;|;vo6xCsOiau11B`D9E01TehARBg-k`%H*=#aP?-8#`3&oH zU3UC>nq$%B4`40a|1^1kTl9s6R8Cx-RV$pEq^W$8T>Me0D5?)#OW7ly^DIYM+rNat@-vf4_f5Ik`_0*nU7Tn+u^SJHzo$j2r%X6)h}|tN zC}H|rP?U1+UoMVLZ*}*SY%$3l;K+8IoK)rGGgIde)l-)X1WY1@@ltm7q;0mE4gabT z3B2_e%!J{9&YRVJzB~+c@Sis%?N3{$wk6xrgG`XB85n>tV5{b9D`hsb6k<6LYA?wuj}<1UF^nzq8vXZJtMo0)X8{E)2}`scN=EDChV7g zUi?o8PnoRbaFz^imIUb6%_mF$N>N<~${VpixfF0%rKZZvk>*&>cx>d`s%fc06P?a9 zj#NA?ZJV@DmVPPa#MCFUEY5@m9sXV`g_bw&!((3BkQZ*;s8Wt>s=a`fNlGqB3Hqg{ zkqg73QLUX4CL9STj_%LKq#vvww_X=0^1X?883 za`XrFW~}altbP1GQ`eFVCig=Ke0)ClzqXnB-m*<+--HF*56)Cw)%q|d1{-plrUJIU)4jf@G)$rD-^gpapU#+w<8Aj>+ z(9?fzf&H9Mc?d9);=fnfz|RScn5x50StEzOrAZaxA-zAYk?2JBeHd^py#DqW(+{+J z2}G)pAv{0?QL|*S>H@4T9w>tA%cXz6-_^W2F<<%#MX+g|1td$T<-GN`uNyQ<`$M;V zW{%z2n_(Di?XQn@dQUR5T)k^cv!u}pug>*ITL zw)3-vULlhULMrwSl!%p_O>=~r%fW*>r|3Di5Xr|mGPU+By5p5#n5Tvvy`Sl3f8xwiEA?T?9%^{+2d3BY?L&$CD(E!^*iTNz?qX()$p2)1kYTVg+AY z!B!YtwhRV@V=W}iO+LcAkpB)f5Q=~5-t}0vH}(87-*xrp^L;|Fbg&;fqhikmv**-= zTn&r|L!6a_dR%~1H6Xh(VeKVhKWz{ZyQ#rHUZ#4szv{3|^EF^)qI-NsmCG9#y z3AX$=qMS?Oh^Bt(s@&pZBsGsk`=CidFN5@K@PtUC{t-3)qYBh96`L`sa>?nsQXA0) zuCW~Z&#T7fG%wwM4AO79Rp=rJ8$JsQ*uwsY8L&geb@VAU{KNuC608O4+alh`rbeao zXPi3{tpTcrV`objnj6Zc(d0s~!z(*SGCUsp z9?sQ{Nd|%Pjlf9h4Py3s0eqbC4q5gDOV&;(=gCD_WDShgC8;ZFa)9(ZKSfrGEZb;@?u|Cx*i%mqJSveeMSoJ_0et>1r0 z#Sd%DK5D6X5TdUEy)bl9QNNyhNR)BoXi-+P`TbM59+b3c7+_O+69Dn8dc#X-Ck=D2 z&%l+%z@t%Jw=vTs%*_W#nQpUfyf8tTOr}=mk&}WKL*vpHCb|teg{YJaUtpe7LJdawge@{e=E+JpGdm&+u=HFRr z%H9;W<S~6VfSyu2-(*hq>YP#da~Bcf>I%m(!Z* zB6Nk*i@U|5mg3>RJJZJ|X$VY{B6Kggj?}j?mW7i^R!b=Iut?+y*IZ=b@;)vFXH+)F zuaR7i=ZUe4YeQrWM$Qci3NgA+3P#TP13CbD_U5yNjbr=8i&z5_G@>{;3*?fiY1za- z36OEJ@j91Cu_3op8KXScA7Jz#2~Y-|(ZFiSWq-VH;+G_Hwv0WNLanbgG&gTS~H zoz?&XBO)O_a;c5%=W;4`t# zq6}vxQ&m$vLf{X=*3riYczf{i#r0$ChYz=$NnoHF4Zkm$d?aH?Z-ZoYVNJ5avvQTL zqOPHJ_7Q|JZ@gtpweq0g1bI1xh(3n>fB&fhmI0G(saF8Vsle~)W6=4@{7N+ zv2)B^Dunmc48sSn+2I^D07VB6@ZBz^2n0}fnMbuII%qJGCi2E?NFgR@kVMwgF+uDx z8@vK4%(-l}3}|JHK%1LSozZ+DGBHtPH68JQPBXpE!b(|NwC3-AsT^oqvOT#YA!@q{ z=LZ*A7&Ql@h1w2bl>kwoJ6tZ=$UnzAuIl3+uY;=u^>G1}pb#mWqo-UNC<}dluPWR7 z02)B@W#=cZ?h3TG>6CPB$YeIjoRe4T03RRF*S;4QE)>Yl3q}O!GqhT^O04ja3fjgO z{{((h;;#Y^)dd9@2kc+q(+72i1uQ+(iO#2T(0(6`+hsqiVrv zOXlLibgaVmGm{^0oFEgHYsc9PLiPBlu4Lr!fQ-#bclS<41vXxq7I!%0vk)`k5eDy3 zwCKpCj9mO&{^3eVt#%F5?v#)r5uy=I8E6m+=Zy29Ay^#;B!-(6?281DSe$}IJhB}( zc$u!^a(6VakQ2_p=oNB>2wy6S+x_%|q@sHV3L76ETqYM#Pd_lz%lG#4TK%QEc&^e* zv|MkxaYxlV&j&d~v%-33Qsb6sP&2gVy(EJa0&Zd{8a({a@(&Zwhf4zFB z3Nx$TxaMTP8uDGo<{Eyh?c?jeX0_76*P@GMCjH5$m{K`0S=uu%Ik}59Y%F`c z{u0S*I)O7ueCMXMY|L{0a8cX&Jmhb6I5N+4_g7!{rT1&*>ofuXTUAa23}BMd5^#S~ zw`Uq!<*L~|0A)^*(!76dp@ul9lYQ8|_;ARcQ%PZG$+VTG@8g`;m(-CC z9Rm{P>d;1&3rnUFTYEx;vAVWVdvK=Qu5u?y5lu>s{K!+Cu4DnB{;Vzw8Crr=V_W$^ zjZNsh=Im9qAeW?V`y@Jx?(4^4vm`$aLagK60t3R?C)r!ukF}bsM#MEpWn8+k!#cKV z_x?`^Si~wlW1=ikhvdA{vI=%!bVziDvB5ZmxH?I#*H+ zu2}-czDfdireucof6*L8a*s=RkPmtGp)!?D(~=#`7;*VNX4DD^5M0 zqE18Bh_>G|c2~nB!I{XgOBuQ+2C5ATF769c_P#SqfDR-}&e^87nW4(#8;r<%*Tu(f zuc;W}dkD!k%cquKEnmZEtRhbruOW?j;EuaFeq5hR^<~GC($m)>d!4Y|yE^wZ(Y^&M zK^~5AA?Lxh_tf`6+>N^P9ogmE-c;ZK>Cnz-;h2(w4)UU#u+y}cb{jMDdShh3ObS-$ z>BW3@GqL=zyR_6K1Dx%~jqLGS^N?L5WMOxH4N~H_YY}feS`0shpmK&Uzvn9*vosJ} zW9lhr3hq(BtUXMZXc297%Jp44i$F^OtHt6^?ryNLwPtD)^>T5T9LB29H_8)i{Rt*7#h%}4k^3S6{^IDyuR{n zI4eJpvU@NhD2n2=a6bZpH!mjdOL&7%RtL9rAaeR7u~n>Y%&U3`e`=gw+hnbX+%uH8 z1QhoIx28x%vK-42wfB>hR)&6BTD>`!5qMqy#xjxp1tGB{y=W`t4prWn#3*NZawyd{ z1GEE8P8+6-fJ?$PR&Spo+s2E^BbkXenJoq}b@Yh1b*ZI9eUL1`Z*R6V^?ywOQ35tU z@lT1YHKaFK*k%{a1&1SAOS8{M(z351qAam;I!+W9pNrzf3IsLV?!9nY^S92oX}6Jp z(w|=1&$Ta>P~_|Sm;HCbZi$6Khx6k)9_MyQF0RYc!k&wJ4%=Aqv>dM3C_AJnA-YU% zM$M!JZF)|^dE{`jhf(d++5-ibvk~Ut=xOZ|TAo@20ewOrp(b$$pVHjM3KzJ& zE+c+cDqO<~g_!vkLC4@h%(^*jo zF-Yzs=rG$sFS(+5Bvzy_c`uob6B+Yz{Y$9*!g~h_=LP&hYS`f&BORI|YPLbGotv66 z?rhiY9aztUs&#TADCmrhOI;T+2d}KKDi<7L;Uf=g1^a{F912a9$J0-rCj6!_h2OJi z7O#_Gk^ctpgb-yY0xU3XSD=^1exw*XOr-PtJ=E7Gps8Ue$mZ*`(5F7ee!H`UNB~vN~v$lWO3e{{s?Zr zoYAy-YrMC)@qZQmdPX2BOH|8z$Ia!wi3v}D8#lF6G{W^H{AS4YPUdGB?5w%SC~Ixz zlmGeyV&MI`@trLqrLMIEe(f_ChvPEXWxE9c9lmripkzb1I9TRC^g9UG&bBVe3p@1- zZ%P)8cQaPYkQc)IQ)AT+FD@=jwV`2nKdOJE28&~seHt^R zB}&$}7J|F;M}enera&Pwi6@;2O+kTw;-(ct>ViHDNy7y;8i0t8NdXGF>4i*c9h+-q(HpGraD z-M)t%MRsd-92+#zzvU>V%;x=G+EDWImi>=@o(i~*-U)>|BIMeAT;e>PQ!=RgdoNVa zoZ`xENiw5~Z?)2C-42i~r|NEBp4Or*(SjbU=U9zsPcQJ_*R(yD1GZm}OV9l#ZC{-b zw#P^bEfMOn+;?nm2urSg!IZnkh5jxz=?~|qi)GGYdf-uE9pr<4=i;`6b@FH}Ry>UW zoLn;=hOb>fE&Jv2oyF4x-hJvVZmb|4$H$FQwAhm)`C3b-7scm$*#JCIY+hK1p`-(LV{$-F)1MMSu>T@uI+9E$(iZ&A_e{g{9F zsr@N)Pa$JYXrFPLacX_J%#LCEgo$SuYME5?7TU`8dn{Ku{c6yZTO4)y2i$96wE<&` zfcle*E+h!f29C`7?{6hdeIk-|p{nU~ujTJL#V>6JgpEs+xpgY#M9D*5!xei~__~a` zJL^^Ua+S>_Lbr13x6|LdZ%l`Zwt!*whC zks%CC?d#buPpMTk&FcwTD6z=U2LKQS-w)dKwi~Dl?`h$A=WoN3*Rn)$xbDwvFq|{QOSn&l3mwhn?mPr10j(`p{0sM9o&W!(QnY7weL^?XHFLhUiTRw ze_RyerEW*2(24Gc`rSo;JdyS}|D!@zV;{Enxn)bb8Qg(9cRDzZW;;}!!h*l30+(Tu zAe$dj|5~#MG9miE_-!^Xhfa^=&&3jP&a0Ut>xa(I$U{h&UTINJ;XU_l46rfAz;EdEncw8cPA(?4SRV>jR;<;Ac>m_iEolH&uY zTr}(-FP3rHdhYTWza!A{M!E!r=Wf}`rhi&-l$+JycdB#DEt4fbT(q@QF5^&*fNegb z9fR_rEk3X(ba>luv!Z&x6|V>S)FP#AQ9pY)v}DUlX;iCoi||2>n{}@pZP}ErsN>x# z!f3CN=iB6<)>}y5Y>|84(}h+1z%5QvaGB5I-=UlosUj5c5Zgole3$uOcBSp4bYI`j zQ!e-8{|Bo;RKK>}yL^KaPVS=7N?8iGGZ~h5_dNBuHSg}jcVL8VYG@46-074L!vG^W zJ7>|RnC+I!mwo%3=1`W-;iB(8EK6{W615{=`I2?u(j(E_gwZkkzi zVKj=tYq#yzn{Qdq;e9sng~zNJi{U&Dv71=BjbRKjbm5|nz5AghSZbCAGmgfvpFMu< z)Txt8V#Ej0$TeXslIL`fG@7``u~s|CsS|NIpT;QV78*bqV;p|!X}8xg#HPXoz&M9? zt%J6WzjMyU(B|#Nu%i`2mE^pZaPj$v#d8qV>cZ%RU489s>j5n8J$=er{>ksVeT6N6 zv}ufLrZGxM0R{ssdAlP7wIodYB(xaNBgS%b7;Rsgx}tzo$yz=b+X16N{40i~jh(~F zILc|%@Eiop2iZ5+gVD*cU;Kv6uwbu-uKpK6^$yw!8f!?RVsbej6*H~z)+(iOKk`(aK8=l*7p)D`SUp-q zwyyB7+u_&mGh1C2pOvxcx3uzixjZW8svYaos4mOe<(2wbpy9W{Z*6sX)IYX-TC2b7 zqj5hxsIJnsYzB?h{8x|hUoT57T)L=GhRn__$+c@X{^E}T0xe`>hnOqlIoU<$L0lCg zL+2Dc}2!rYFQukXNq+^w{6O3FPB*1#to0C4>L$F=}43In8e zpE_kd_%ZBc=`{p!yZP#yHud)VoR_Soc+v==A&jsNJ9_RT%XT;8Be0(`{npvti-Ik0 z<2SC`)xZ9pO}_ZLB`~HiKw1axVRjA-SOwk!ZZYXd~Jc6G21 z5!Wu~FWc~2@8O7gw_9%2p205C4J+llKYi5#;(vG&fXd!K+{Uzb_W%GxHZw79-N<3? z-d(%>7eBO_4?eai_Z|5C>)yQ!aNTQ*fasx@eqxL7Utr&5%35$`)5adfiH|N?=GGnO z^f(R>>_App#$LpM_`Hr61T;oDo=!dly8-Fy*xNU6Vmz|L(sOfm_mwyBW0-_E{H}e%;v*DfJs_?gb>uOG;K|{CGb($!rUFV zC~-O|B{PS`GwxSVsfh~Oun=d=0xogNEU>h|*~&q{YZM30nNa|p{O`3kS!@S>30Ydt z%+FeeJ$bUD7D&_?&GK>R_KmSu&?cvBhJA~Nf9JQYofA*q`oZ^Y5u*)RME7wt-l^aC z7FNHP?4$qopV&^ck>WAKGOy~#!=f_+$zV_ug%@0HTc903hgbxsIR>u)s8b&X@%0#B zkE47t7SNhzs5g(sHHhXj4BrLzN2ZZW5-{10Rx*G_aA9bOy^gf2y`5!fPJ^MYH1Pt8 z1+0nH25*dGP3(rcKW2$84b^|~c)2zKu{lE}s+UocfR_02$C=KKcE(6m*ehkV+O@{9 z+N!aiV>~+$M~qI)@y@nZ-O91L5*h3S7^`h)oCkjWTh@hZ9v&SGO8A)sZ%fO>)hchq zHzd%IKtloz2{a^d-x6S6^7bnU5PFkUp5;dA>e$uhfSg;(SUrDLu2T8j#9m(kO`PtG zR*W(Xz?5fsHp|ju0PU1>Q^N!+-@W^-3> z;?EEu?RdOvnXzF&Ha6CPdS{dXzlI#;z&Jn7UcQkDmV0${AM5ml0?Wl&mZPPm3JDw{ zPq~Q60V3Ur8Onn^qA-*i8+WH>MBpn2Xw2buW|8zDdpUCeVrh%Ra>FAb3dlK7s9LIp zN)Tx|uV9vw({j|hucT#DaG$V5x49tJbnSz;V)T7{X&idNflMFZ66wb))ia|hW-NXw z4mP|;XJwMRYk3Zvh0A4AN)GxD=|R(0)S$rORp;02{emS z`1_N;!#0lI({ij_-J}6;V;`Qk8J4i)Xy@|ma||Y;>`?^NBHS3J+1i_#EwUh43+y6H zcqvB0gsTOfI2g^fQ+$P_X;of$5e@zGz#TGBQ`CMmgLDY@k{M+p7}7WjqDY+bxqFvf z^FuPI7Ch?JQtOFFiV%^+1^zVd1Q2!Y)my9fwdw0ejoPX&x?riz{umbp)ljJx#kuxz zQK_8`FevFYLPG)#2{a_okih0kK(mg(RtBGV$!RMvhX(^JQ5IU6C;>B4dC5-;OQe-1 zu!;=%Gg`&O)sX@@0vQ5KS~3n(T?kYv5TT_u`4d#U_|&SktSiaRHvkSG6Vfs*WM!4? zz@T4+_*#3=FZ%THW!qh#`kciLDANJ}9>2=%F!8GBilo;drSoyCYGCMVcv1l5K) z`~XH$i`If;?j`{P4}8aXuL$E7a$wK8SDip_X#Rr&|^l#)T&VM1eOK7-#nzBy-Ug01ryL%5?#H87lC` z8tF^&s$7c$&lQpyV6cKv8c_`iG$hcFKtlqXAOR*q>78a4#%%J|cR8chtYhETu#P=} zrjUtDlO@&EKRqg^pi})px!D%wCdmjDhM71EEOSbIqh(nK5K(Ex1O|!AqG8J_4_wK& zo?H5ZNpC;e>UxFOoMw@v5EF42VC!^kfCA0`dFbWQ!ez8KP=HLDF4t(ag+I#ZR+lb@ z8>JUxmEr(}2fp0x`aiTOlX?VnT_vLF)e1=UG>}<=3-Yyth?}%-o?paAAj#qVCp-W!c%PiDXw7z@u^Bw9 zXjJ3op-W&h`gFU{c<91xFtF_;usz1608yd90&Mysr*jOl&kKW#FqXP;96dXDBDf|K zgbJao3GUXRg?cAcfjv(%BfZ`td(E-{8wd8#NM_v(7_jI<&Q0E7_T+`wFDL6=fh7S! zFslP+9)R;ehtH{4@q#W?0)UG)5jzN6vS4JwzC0O@WTF6rY#QU^u(jZfI#SdgNo(l+ zQ+rC)cz!=GMA89&QByrL4A=0@aC~R&cmDGn=mJX51kf5dNY4b@S6b4 zr0JGC@iK~t0%!$#Mc$K)CljAPEe|VQ_ZtbK?-Oy?#oN+mc_7qJ6;B=);(sGynd17X zsI26YO5%11vC0ZvKZDYo>XK%QL>PmmkTk=NbZKkWS62|Qu6iVIZCl7Mrkv4@_L4ei z&bV@&R6!JLwQqx9(64c=YHBrDG&WLRw6_b5TJ3D4J$MOhmvOOO_;~O=u>EV)yGQ-w zhthXZX}^``@$>rMewotzew?4DR(U^9c^UuSFROe1+ApK;(s=*6yliRy((6*5OXJsb zU5f_GSMVHV`LVt8ppDPnv-#ogv9t&@+x+-?Ef(|D7r;20A*nw6NeV6%&syElb}s<*T&ZJa=k`zE9E`a!Msy2FbV zq}Beo3DR{t?93GJsSp<}%y%bhRp%sno>BkBzZ=-)gW{Tq;T5@3{X0$vh`G_wkgB3Ne;|2l(>^}RVr%-g1^yep;?sW))dP^4Qci^{G=W3BQvX~2Vr2FkdUR!md$GI435+_-j8TqBpI z)TIlTgJML8Z~c|fcUHK?W_uMD(~Eh$I?yIjPEi7bfwq2|4dU8m;ik=wzQ%E8bGCEe z^Z5A#m^s<3Ah<+!#UrRJE-&@f5!_xh+Ls4-En+3x`^9Iiha=767)QXA*GM#Ea(fcO zHO%CtPwdj4;JXet9I`5Q?I>>c(pb}<2hfU@tJz%YOx_@#tySLwWz)E$+4qeXtoQg) zmc%>U8NFJ{8@hDGuKvG&hR%p3S-_N*m1Py1p^F68+!jjhq2yYB+J`6KgKD!@8PyI6 zRAsnuOOm=O2$&UP#E>+u4j3p-w1~_C>a=W`yghD*fAjBH%g!D4#vlHP^*wURdT}Mg zTBD7;{8KB8-LepFUZSjv3m~ejSa4ucodHkMemPAkw>g|iOH-vdX<-WpNDG+a-x)lJ zXUCpkh-9i;+Ta)$d1C!*ZgrzPUahX_4g@(S{Bn+xSBJ|-6{4+udfxbO1d4R1%YXLy zcC5gmTIO-0vI4Tjb{2DZ{Y{#axyO64h)37e1r;~G)Mp_(#>ps3yz-}iWAk_K*`aTK z-P&=5^!mT}Hn7$e+YLx81n3S z{yBG!_4z;g6KgAAn1e%ebkWdKX2;6Xx7zJ`lO!i^m*RhT%i0d8`cd_MmlN}4U2l2i zTR}s8xSqnryrnd%^WX`l8u|KYR4eVpZzhfE?WoOzQXL=nDN9$r__1LgpmV=8HdB^r zPHjFkHY$(2jq>3}UCGd^&4)Ox95&2H2@k5_e)#ZtxSz6qt2UE{x{O^++OqFnd-_$Y zZT{}KF(yh)T;kQeIE(%3)$jMU*YEDG$XH2Ck!4SC?ltWtdX*_v1^qZ(Xku83(92s{ zmgC&ZeknhR3Z?gs2gi+<=8~0RIXHTLnM&Uf6tAvYiYdP{Sa3q{X_2nF9Ki8(DsIvv zzssRym38eAKbk(Yu}?D9z4Uz0EozGt?<_psJ;~Y^r_E8SlX?QwlS|#T#mS2{KXw(c zgCD*?#tI9!Er}*$l;z^~{w8b1_n-Erc}(zK8XW5IBDBY_G>9cNN1Rm+WYAbhB{`X+ zZvZFJ1I`L}^ww?5;8!mS@7l)|!Y|+AtveW)BrP{KWjTD|<#GO8&>q6+1y0jIqt?~p z#$9GU?M?=XbtIg-7RkfO5nqIf!+Wjg$;Yhg%oJzmT>T#2IJVQKyw;p`VduHkQ0$ zX&m7xKgSY$5wjh$POkG4|B>rJlDec>?&Z3F;J)2>iC->IOfG zI?FhN55&|Yh9>wQ%pvP6e*yNfB{=)p9fvocqJ03CmZ*g|>sc1o`k|77uLbxBLc0K; z1=<#3`MLv{W*0LyHJ4)Y-n%X|}-)0~XM=;GjL&bnr6!vgdp$UUpEl0<$uH;-}> zOB5rY$f5lf9GZYXc=T0#dNBMz9U7l{#8jXE!06Hselh?4;eCtmQqJy!6SdtnbX8dq zE)mSC^m-yT$Xq>DY*wC)$g(J=jgZ)^W^6s3>V3M=(c*aD1R|x+^VZAb(^P{$LcPgO z&$s`QQ;hz!4CuPRfg#=vfC>+$`R&wQv6G6g2&eJ#llASY5vVC%`)S2uesP!44X0uP zU(2*~O_WfGm?2lZ)2T+i9H#_E;0Aaty!szJ2t+|0`?Z zoZaN_{krW05O&}wdJYcfM9e^0M=F`WmY40w}<1QwJKfcA0F-u>+X%UXzi{MH}Zf=C9 z^MIKkZQc9avzEF$ZX++fW?@b-2~kc<+13=YmPb!o?BpSfuy1nl_Naw!jsT3uEfWVU z@84^!`}bKBTGf1j3iO?cgquxT7=U<=HRP&V2?$*IvqevUjD=#`PYe~ zYMq6vGn`YGuev>&1%OX<-+;vr?Xw8LOI@6vn6i0JPzelATWoKqweRnx?K)&6VsZGF z1MlpOJ7(0|+TCvLoYW$R;F%kPmL49lSW-Voq_O134r5bGtI}91E-U|tXrd#WZj!($ zw$f$b6Wg&9U^itc&Y9M(ysiWLEQjl!IebXwFMa}A%URQby%wjRvY%YDh1<6++tX=X zUp!+0j{KXxcGHs7R{)giv2pHvaF>&1tmWA+*s_0*wVgg`Ex7E-vJ{`8{TVce8Z+`y z+4j_97U#s40_Q|W*-9|OIn2|@DV{D^^N|AAweCrT|pAS*43%l01AphE>3L9P%_+A zUP0PDHoWPI_l-1QOti?|om^1V6zb%NFh(HgiZtV*<-kGl#5o(keU|fkhX8;Dj%e#f zGnipgNEAP`nlr9BTE1PKmbWZ zK~%hi%e3-?ywbj;Ll}#&LYJ4rWdNV&B${@xw3h|gIE`8!N5)EP-)RHC{BxY>F=LbL z^@@&;+o5lK#bVuE_96E+F>SlQ^hN7`>=Anlz?DIZ7-2tP3a#iO?F>^_nt>MtWHfOW zamOP^EQ%)a>i1r@(RV(yzV;4xvd3(9tHloPvE4uOCF?nQ)cN+y;uL%2jkoRA)Qsi3 zn(XM$y})wgwB3oFvl;yS9ee(ab@%q$;@GTxG(2oAyE#^l^1Y87cOW6fi5wGGuG?j_ zjk!;*I-iR2k*MBJq5TY^aqHc^-);e52H*eC+Tk(CuZ28@Eg_E6+yBf{*0Q71onkU` z{+iu-=~WxOe%r!5J8Z|9Gn~`>1?$|m7iZW}o4mPo<|?E9?oi>UzoLzU;MGPceL1{C!cT{*&A=3wcDfj&{U!g!_QCu0(-+Unfei)%ujO^>NPWrCn$Uz4XHDLOVp0u&SJ2rgj0;is2 z?a;GdL^~U^v5&9VrO{D~p|#xo)DyPj@ki~--+s?VfAqSw96eyCe(~pQnp0Y4l8k3S zo>nF_lJjUiQ)p;YdMlyPJAhnv9y?)eJzX5zH)7Yn^P-IddUYyJ08qJ4eR%R1pc@VF z41M$A1x_1G0?3DKCm_2CAl-y42aX=+M3}fu-??pX4vlgm%oR%jWDnCfmvJP1?~V5@ z)(RM06^cI)84229Q0cwDF3q5OIQ0x}deB3?C4@Jf)AbOnB=Gf=SKh6ru^D~3VHz5o zv{mo;tqz+Z&#mV1LDAm~S!|R>t@28%IVOZk1Zwzl%fjFUfd)=J<#UdSAMMl(T9Wx` zR)aE3&RXJBc6~C~_{y=*O8_Sv1O()?y&E_a(isi{4wyNhQ3!`vHY(;5jUeDc<#KtJ zZNh2CqmB`iwoK`H;#C^I)u71xtOb8 zN0up{tD}h0(z!T%t6f=-KT^e;z*{EAQX5)0a1N6aOMOgiu_ml|V;w+2mSh7s4%T*d z#1Pa*H3#b8oqu}i2rz2BNwV=I#y8ha1Lz6Sv@{LVi_MhJn^-=@!9u))82$?h@Hra1kh zl_kGpzxxj@%Ne@Oy?t&BO-yj=21}tMm#;WS%u{HR5@-|!I>OpFh!!Yw<(A!zw^~;w36`#R+WT+3W!JA=w+=LX&wlO8 z*1xO6F8}dg+TeQ^Z10(8?8q=tJ)Pn~_oT3g!z`)EB`_73YfH-T?JVCMEcvqSwXy<+Ve#)=w^ z+48MjyepFeV1%txO*WBq5I;z+r) z4ZVBL(f}E0_j(WPw-4WZ!oHus0Z!DV9hFVgt7CbeCQG=%StD?Bo4kc!DDd z(b7el?b81W=m((Y6~+Ni3C|Fh+PBxzf<|$d z-5VXTOK-hn_t?)jaPqY6fA%@MarSjP`=cM*t|z`=eP~MKfb#(0Jcuz+gr(>J#}pPu z7)NLh!!qFDl$LB;v)RZPbN22?rEV;+s#U{N$`GR= z()=!<&765^-uCS5#xSbMl5BB^IUZ>9iU3c%Uz~Fx@uoawVO?ObtZd_U4GHLlrE#&L zP#nk`qVXvx>|XAl0zMloZmtA2@{9<=opAU5c);KE{&=pMVU>_Gt zlTEwWo7M}0X@W;BC8|0ZDR?g|K|qvT1ns_(tOQauu>zEtaB}?RGq_Gkq8UrhAWoKq z=dRnr_&J-NzU+)In%YlU)4=oWu^O;M_Yvx5c`w9ywiCm)P@rtE1@N?&rOr+_NvpPE z_3m=%Lwxw}Q5dZ-k1b`bbfIO!2;z)lz~NvyT1cJKIyb`}u4EF88Wki9HV+`ku!k(h zQth4B&f4y;|BUT8e#GYY4A?kFx{ZJMA$#^%dPTdr`2Kmjd-D!pX~d$?la|?8*ka+C z9GSGq*$?bGAgtrjV=OIpvloq3-yJ)w`B}7q-JN#jufA(t`*&OKk;8zrgtg+xxdomg z&}rSd(~M=$I2e2Ar)RBW|558Wu-gW{$x(5yW%d$y$9{Q^n?cSfi zVy*x5cWp;^kJB=Zqpcf$`Bm#|#(EmfR)lkD<83UBN(+lSneZq_^Bvj=#%J6BF7hlf zk6*fKpZqWX+zS8f5A4(nU*qiIRx7ZS-F|Q%VVZcCzdD-_s&hX9jk|3<$1lC`q0a@Viyv&H7PU4Q#M_B4j9 zfB#|Yrc4k3%+W0FxH~X9{q6l&6bN!opaEqXOWKC^1VV;cc7&H*B`EUD*_m-b%B*|SbX(eiu&?O#;D(+xm@Eh*FG zbCU6jtY@G(_<#SY6@K%Zc7WyP2o~)@G@Zd<$Z|ct#P4eLVMxR=K)$+4$c7llI+_V`_RURKVsszYHZDCGGL#SG+(>~i#jDrY9x7} zP;~SscqMS?T?+~=2Q85LfvIFUz+iUi;r3p^0;mcCh8|?|?)B-@k+ML%mxfZh;?Ad| zSw*fpJT5(+{c^I9^ejBR7}e>ufc&nU*HX!cd5KN)XexkRUR^gRPOIc33CtZIXO zOmI443}EWu5>b*VOQxtj+~iTfmqj4}Co(VmK^`Yl6S9?585IA!U>Bc zj#x+ce(TuzD8T0=0J591fKF!TaFqRKF(&y)2L=G`Or&U50ts~w%&MJgy<>mXdy^)i zY4o#|3DA{V{h=}vW&nY+ddpY=_+m9Y%QEF#|L)Ih;%|O}6Kntx1`H7<_a-LP)@a;@ zUVPP>PaU%pk~jb5A6gs0u9^LF;o&jM-yF4$7{CB6Tbh|vV0u9aWEaP{ zv0v^c`w1`p_@_+nVe17cKt_h+35G)WS?WJwX?@8i_yUXd*@m(qUbzx!U98g z?dFY}_V`!#TdcRs8D)f6wl83a5!!`sM>LmMBUm`anZp1PX{-up40AF(7+SPu(XkdZ z&KPe1dKM61mi>bf>Kg~pqycpYPd)9HJG0jT|7gY%{XG~m;73oO7`k`PU$oe@yVmyt zmgD?bn7Veu?D9?9A8ocUh7yGoT5dp3k};N(u?V291AyG~^ci>qq~i8R`w+u`oru5< z;Cp(U^Pe%mXk{P=XVLg)*&CTgGxqTfYwKkDftH-JXy`PMWI03I7NK7VVUVF`n{l9L zF3*^j4@oJ5wSN#KWorzVsaGhf_fYF$^~@-5`~rh)#7efcVVESFO7cwXQ&vy|XipFVywOjIo0uPAAX7 zWBtc1v6Iq_7oF;oW0|-c7F)Paa{|oVC_ix72G9a8;c1q_c_#Te3Jr!JeJn@k0e)B% zXm^0^532(|oQZc&j(af3;cmQ~tH9t=o{~(;>c@MN}Co;NbaH;YC&4|)^1mrA^RwFmng(0vpTG6nZW-qU7@=;w_B`8R*`BZF|3=SIVsH<+p-izpNtt z>(bJG+43|$zEZi;v=x=D^Tw~USVvKX7SPf*N!r5}VM#X+aGt&MCVTpBa{laqweEU> z$$TFZWx@eMjVV_qh}JX52Kw~0(*Vv--Lb{lL6+`D0fSSdA$#`zfnRW+veTmNhp{9* z2;k^PlY<5ljbs50rQD!MznDd18HoW#a5^1m+KEyUg8^w-=nM6Yz--0f#6uc`O0*#3 z;YQbo6-z8dswlX_`DM#65f(H_Dgvv_RwmHwa1!2A)&w5`EK@VYFLcJNj%J9q+vVkY%hmKkPnJF9olmF{3s@~R7id=s&>Uh( zILy*@j&We=Me^&ZL@~!_9MBEM;o0L49>Zup873CdNhZ)$e3L*A@pH2?cKPgEwg`|- z0n{S^){eGzn|=LV>-*wq5FFO$oDuDQ_^AKci*ZQ zPh)u|ch4J#7~Vv2=OV2jhb=;z{QObO?L+0|NUHDg?SrBL~}U$jmY+PwFYyIl==2#cJ8A8llh$Hs4+M&w4?7?NNi7Ypr0>G>&Z|YQ0ZdBgIsjPwkhQ3A63zE?iPsO~BUTM6a*`w+vI2N6m zJhWuRgobKOMjZJZOQaZfEab3?#MHLAZ_b)K_8_k)+9oVBlPs;L(Ecsl#V_DEoBgLP zxp0Shd7OzPhSA4Pmf3KV(z4$YE&XWx(E0$3LQ$4}LpU);+ovV*oHS2>cHuA2-(j0O ziY`QYB-%>3Zg>sl;52hjk^A#fkdsa-66X4vzW zKP~j39c8gN*1U90ytMF(k|uTEw4Ru(zs0m z1EtMEMgnJi(QnEv4HBAE25ADMKZU`}BunCZ4j;B%7`o(s``4UStozYN+;ZowcLB(w z6BYv)1#z7c6yQQbs{RTBT(p#$Wtme>tmTYbU@l6%Z2+zmR>6sVyR854LA%Cv2*Z~i zd>-y%`FskCXt{3*kXKg7I^He9KnegNH3ma09Sd}#UjwuQZ~%uvY5UN~bw78;_M_Py z!dNAL>6+_zjRTEC3Nj2RqdgS-IM90{BblJ3v=~;>@SYPorp}PY8u?Q!QK#7(C|54M zhY#7Y|M|ah*2S{cmVt@@mH@ZPNOszeAR{G>H}NkmXj;Zguc@WbQ(DxlmyluTeZiP<8#d{Yi4jS+1g`#Z5j_sX4|VCy{?cAU`x(xB_+LV1f&81 ztR)wREP3x;o4NV6x)cNyeQj>L*iBD(za*VEPpYr(mR+iQsDbSY7m?RtS7qB)h;47{Pr^_*1l?c2@W1>@t?4$&tI({JXz{MQkUoO*+}6pSKuRtlftW+1(45Eq!Oi$yK{X zgY2Q12CTWO3rpWqPMg?`TNdq!yLawGOR!9xLDMtY$^O2!4(nklI&tc_ zwPO_031FOL888WG?cTH7G60b~S3a>TfBx6Di~Wlo7z1?xMDM)v2G-g)EqY+Tb>e;` z%s#YM_L>P4+`-Ub{@i)?oUtu{9|A#^v$GgMEKW|+696pjK|9FaME0i@W@lM~odiR% zY^(ieSUF28nVJ~K_ac_xqjznhaKUcdl8iOq?ceC`K;)IhVdou;3vH+q5T>31iF51*g|4qF0o;wq|qp!>Quu^92*Say> z>A-SZ#wY@?>B(t;Jo-kopAkS@26r^6@oCGmWST%08a64cu#;Hl7H|i|W?E}y34P$y z30nX}&)vbWgC$_8NM-a{8t6>4b9SNQ%w3YDc zw4>|`Eews>@VoC@0>hy`0N^y1#4Wfil2$qcjU?c7ksk?Z#%-4G0{z1pzWZUrL3Cz& z`B8@9PG)Y-3TUvy^JpJ=9N~sk_fR=>0eief!(r{sUsS zFjRj;>#uY>(AW$f>Thu)=Yx>IX7uTHq46N(^!`Z+I`G16LSe~z=Q$c@o*OLQH<;`MRs+WQns%1>Lo2T;&@1aPfn@K)b> zdz64l(&)I_kv&U(fiUZL_!|VGxpz^fM&_ZB25_YTCut_x41X#1qAg6bB#xiACYBjz0AOQ)DmfaK z#b_EZPykfS0ur@hU-eI3xoW`)jsgP!r}>ZuY@P{!3V<+k{T3RgtR-;g!g&!kjdpGD z^*3$k2S31l$ei2wKM5a6=r#i)+jrqB5SrKCeA{mS^mVrfubX{@cRo08W4LeWg@)=A zXbGbYTDWz`ra!y{Aj5eyps%eLpp0LI; z5e$9CZ4$R7VbDMb9`gXg6g;PH53*f=rO5UsG<`9fynNYG*KRp?C!<%dqD98XBK{L2 zEJcrfeAxzHdew4QZ_@3uR>pt44?`kyUEM!E5%(*7!arXBv!O@SZk-$ z4_9wHK$XL4xOMj~eE+rKHV5tOPu{XQ{QJd`YZ!nyJH+#jCNxW%(l~ey1NhQ6DGTrh zW^u-HGk|HvrY>B|(CY(O!0a!PY!94pV4e*(T781osZNUa<*8+P-r>{T*S>^$EaVXqk}_mfGQ+=XMUwYRj2NtsCGQ2Hf7o9ZilOCJC1EwYSmx z0ZohbV~)Dhfb&detL=F5No(Urg)GaZ6_p+{q~|l|^r3oMwkqgR^j^aEU&D5wAs!Sq z+7^#W<8wPmU^|Q}$ze12*begCTpnaqE7>@UTP@cxRXW247D^@tU*i}5_bo7a9-t=x z!Za!{sK*m=x~EhVox9PUG*n)iqe;A+Lc3qj#r(SSg6b?@s=NzJ5q?6+x1VP@N-=&3 zUnA+KD!#nLa($$gBs!2)%&qw4eDF`Zz59{^OSSs7dEYB(`e_~w=TOFFK=XzniL`yO z_5&<2?qd%UR>>H91Tp#uVhJ21JrLC1LY8YKcNlOW%n8?Taj{OmR>myX>tDHVzfq;l zSdl@XGH7F$Ken4c`jJh2|0mXpdzUDadzx7;)`Uwv9u&ZjRv+yn{0DQHg}S}nI! zNV_Ftr%5JH00V{~Cuzj-<(A_+4Ok0lQzQly`i@{}oCFZ%&|2v@FuOZxG418TFkz8Z zM*RShrI7Y>xg}F9MhiGMmS09`iwbDlf`FYE^s~q;#gbu&6FkDWhY10u3RpL1aPlkw z6JktP7QdVz64417XwM7_=PX(}Jrml% zrZKJ`MJYf;uD{pz|NPgm@NNZQjoP&z{Dc!&*rSG#h@O=oh7$$AR}N5<->tf5EHXZ8 z%{+>8Yyu2WPnhL%^?eFZ7f}0=2g2vHmJV!zI5lHr-0_ue!8%`>S3pPr!xU6*IDCe# zmNC(qg>;@ShAlbrWdNy#?l$%r!ULy&RKAmTe0f2N=y{0KX{!eFDv@9EBHkf`Voq&gjAhU~#yGMr)Y*>JF!duRf$H4Y zqyv31##sSP-aP#mPA#xUl0B64)fD}7;`jc6wE@nrz4``Q7_M1pfj{7XpSlzlt z%)^vGV{AQ4>91KgDnPwC*m~{0^#ToYvPC|9$A&I{pAF~VVdFo)_8kyp;wuU6jl*Os z?UXki5>xDMy-0P#{Nl7Gnk>B}?{lSw%_r(8`ZpE6i^Pj5x>E_&?J8O-QJT-E>2i4m zRHh`$5*Q@T(e#Ume;VNNT2jE(>Sglj2y6M*N_MFNZ$+AUW-k^9-DY{Y*=gPRJX)$} zaH(+=jVycFf^4(r1P$p81a<_ua!$L*0yI20Feo*I3#;ocCX{@Mch{OCFG}*tm1J_4 ziq)U$(a~{ZAAV#P{>8tt)|I=z486p92OqJEaIxh%_}1vcb|!7$F+ zlPoEK7O^a!;o5_xxjd7<_Ik-cLPiBCG*JcqnrLUPnG;OpUM96@Z7uE2=%OGn2-uLX zL0K(JyCcTaTGEt84jMsdg;}a*zIWqNTEIN=lmvB@TMp0^My^rz56a=O$}gf33INo? zGT0zuo>@B!7>Htl+=Sz2X?c@q_7*TsDWF}85tpF63`Arsp)-TES5lL`tW4zw1(lZ_ z_{LY=F=l7~>@O{jL5Q3xNq#Zy#RGV!vBsT3TNR@27K}U+XrUJAgOmUmN94%>M|&?L zv?++Dj-ssa0<1{y;m1ONdgcL4Gk}*k`J&Q5V<@40bQ$_gqeZgB#WH&d*{fM#8F?0< zqvQB!tM)Q#DO0DXWC2H#X9TUQ3?Fo~om>KG-<#aSsI3{muYhp`uo+0_t>u{~to4x- zb_302@PkiK942rC&c0AIs#$oQm8CrW(uBou3|Z?)5p^(d>kU{HVmb*T+FfmR*t8eahK!vl+qR*ho^T|fw3lQ zXSu|d#xgGuj&@VyB-jM>#FdYJ;%MAyygDcO>=6{&bVnp|y2-I${}wWc+nfLT4{=SD zcW!p1rPbp|HU|b}0K|}VPOO8^JZfit{~xhOcn8k`bO5v3hpF+w$bk5khs~(tvqWRd z1>UG&T@q-Ft#yg(0cG}2yWl;=OvY5Dmt2ZHUw7YSvc95egvmjv75YzLhj_QNtn#b! z@FFCO0D`{t;uIxUm&?79=2E=MINDI;WiO!R(^d)5bAg-X^BOx+lCbm3p^ zAf9kIo@^YA72rl^0xPKW>Y7}Vlc6-2+DoSMa5VulcmNv!H<^FJOdMdL2~!$m_oD-C zojA*D%rR+3F@li6g3g8|i*pyFWwx*k76g#dltuuVDyudL#7N5( zy34Ws!2ts33uuM`N>RW{0T7@uBMqJ8Bi6z=5_aVPd}<&pyZj;c018}*=@{(^Q{K?9 zxjqt0{8JE67wAM)>F5Rl6*D(k)?}GjU`or#O@NLBU`vYWFbD`JHzt_jHL!ZGyq9^`T`gvsa^p75oLO+VZg(O!o4 z@3QV=hZ&E6Z9q3v#EKiQVhS)QcD6F8x{cQH|FidIKbB|5onPd=x$k>s?fcRjn`||k zq)19?ikcB5K-AbCjQudyK)_(eunofxelcLc5B>}MU;_pW+v9=Z8INU2BSE8eC{m=j z^}=4Os%z_7v$AsEGjHBZf4&jFbMNoox|x+(Roz{r>Qv?Zoh430oH*xqPW<9*PXi7Y z+Y>0uCn@V^xc4W4r=eYm<0rw#{!0F{0Uht0cbRmUI_{*jy=ZfsZMR)w?To&x={PkT zMxU3-QBMWv=;#?WUJ46fIQgowR=U(2b)eoYX0U=02DyOFh1?rq(NzAF8g!KdSAol= zx;N5;cBDBMc!iH*;xZia;#`s8sWd4Y$|b+_U?~g~KO$5R_w$qdcq_`Q{EQHeT|Xf4 z98zXLqN946*iF2`+QCBiZ5!x41BfhC+Q}(pgwpE#4u~Ro;zb8U;E~ducb?=CP9dKZ z<)j?SDwm$Yr{Jr31fo9;&a&z?wH0ji>^ZwXHScTidb;C2TR<8*VbWl)v)FV3x8x=} zs0MS6Y4fmRG*~B*$&x0eLrSP~Lnf71`AW=0dc2q-R#qmrC<3T6;~cj{1a3_|tA6B4 zQU;Kt@Hu`4Xm2}2=!!hYDTQ1B{3xucQPq~B^s9|F;$IQMp=nQF?}^{}P?{P#e^LbE z52Xwy;sZdIU9%oGtW3WBj!%~wYXyZ+N~)}5Qp9KoPG<{+Op1zVt)cX2Ly+2^e}ADw zm1z?}H+H7V!ld%AwMcfsBifJSqzY(8@fIpgtZrt?oVQ5mi?*&Ml#(Kgrevq`NkMIf z@e<0C&igCEfaD>iNxUhvDW-r?9+gpwXb(r{$V!I3N#CJ1Dx7*s@+1K#{@uzAZ<4kw z@ddOul{?jeYG40VpBv&+_2Pe`t+GfNmR5e(oV1+bZ`GufO-6Gto|YAq6eb#Unq;q#rWP@`kBv zcerBln|9*sUu8J~%NuZrAJF(mfu#(7(oW)fT=z8KcoIB3t{k4_f3gyI5_S5t;CQl< zc^a^(Lsq9x*GR7=dkMEzY%ba|XWg}F_bUT~`T%o4jK98c>H+Dt0as`0J!B++fe3Ys zEE=b~28?fLb<%`97ai?3H)=2n(0N9eNZ;s*dIXev=wS0faTgI4lI{su|INaQ2Szq% zl27K5N~Vn4N?vfv@5D7Ig&bTK4x=#1&LsFK8>1-vt86i-1u937ks*fv8dw}p%CEu6 zS&0L3Wgl4OFzMyRTO4}KqI)cZI(aQd8f1uo-5RHS8mR(%_6&LiocCPFqw0SoOGi|ZJj(p>*wz9&#!5>|BOOFodmGh<$1+QRGFa~uz&Tit00K~ms_|>4D zcY!8LCm>#>cxcd;f}%fJ$6`1qo&2)GhzH3<3Ww5SLR4W5%+Ws6RC}TqN?+EJL`w;& zZed!ig>r)53mGtFVj* zTKJW&9m(zo`?eG>0y@7_%7%__(wa_L!bHgxGnIjWR1{ZO3F=57#Yr-9t|;*Y!g08g z1#a=df2Sum-B) zedGh7sAthqKs*S8xbcjN@;^%AQ4xx|_dW;!)teMVm%z_c+jXQ?CmsRPAjYC6{&O=1w;K3C z${-?rcpxOrpzapG5ktO+HUhF|%Lv_*g4|mmWvx8BH5@_(N z45=)l1vL-i6K$s}NcFr*mtxCQ9AE$2;$K&EWZ6Yiemw-85}cl*aI#QtxkV6c6o(72 zSRXfooF@>~Bu8xw1H%+15&_bAk@X>z6J#fsl`#VQ`}OM0_-&XI+^R#}Evz+8P3;^= zeCC9Wzw)y0oZMi?six9}B9vqK^9UtDDGKCuTn^|T4JwoBSqY)6g@gnrp;h1sdWzRo z#7imDpzD?<#Govp)P-LPlH-7aT!zy9&DzCISyG%756Quy{E64gl<}ZA!cuBnK_lo^ zG_P2dmXe@p=yNF?xaG})t^fwLh^HRgSqIq6$B&xu8U>Lul^NHfsL(7blK-OR_2dX; z86!GV$Rs08PpZ7~(=sZA0deJ3aV{rMfmgxemvZby1G(fW zpd;ughn}HSfkS`*exkzmd|;CwwI4x(MNynS8Vj$87p(7k~WMu4YDQ0QLH?cWl$Z7^AQjC zKlq~p?+hRu@ca<>G~f^qat~!Tz@Ghn<`Q^#+uFTdsQ{0Q!&}Wm+xYH$>5{>j;F?3&a7p&nD#4|V<`q<%^(f3)adLr*hGk*+t> zl%fU}4cO|yHOzabPY+I?4Xl(W(mOcUjoUX0SRo4>-Jq2&GfqW`kqJp35x`! zKLD~{$xefi5AG%It(~9by0o)Q&BC8>$zqbhC&_z$4Ss>faqahKxBefI`oQI;To9KS z^vW=L=moCQ%|%JT6A1da(*)yDJ7yKmp$;2$baQh zoIv#_E3B&82hj{#;n?T{K;~S+-cFPY`H39-1wIc%Zj!MXW_(qtJ24;gDdr=mx5B0T<-cCeUjKGP*i6vrL9CQLmJACHS8$s);SzcPK?{G$74IP@Z^ zD^<71m+u;9!Y$qKMf+~kQAZo2hDg-8=%BRegq8N}xI1j!L$9+-Z`~GV-m%FK{}qe+ zQOcT8raF&scG|00966tB_FeBCxxthvNKMS>$~6|uOGV-<+^rXc3RvK_*#U``$$Bsr zd%J?hq^dRwP}nu%wCG)%2%3EaKyhs69^MW%WvsGJ3ng@uX`V6*nsl|4@^i?Bmq!*G z&3L)>jq=MPwzeh=E6xz)NtaSQNK}=>6$fMi;qi9RyxMX&s;7#hZ%k<*G8S zY!xRosSJ8%XtVU-s{)+!BuPbnt#hp}Lx#=ku@AUXP&gdt%Jeqt(I{OeOOJ|N{$ z-MJzuUg%R+IF_fxm5IZ@`ZYWKt>0kxFdw4y7_G_#>V&o0RvyzbD7sI|sZJhukosB1 zQ7^|wDN8+$PdmKBd$lh%>Tx`Z9G+Gj`w~P3Twj()!SOhG8qwcxojfuQdTjLxnjV!U zs-%N|SEv1;T>4V)(7XfnA0pJz)jJSuH=z`9MqW$j7;DZt*o|1Uw&5FG|MfNlAr?NS zZ(Fb&>O4K|($nJZRWye}`(f+o8Y0B>4i?4I#$9Njwy`^)shKI~BDVx^#Kl%KFfANu zu|03ASTDDAvMlPW6h1EiG(ZJ1MMcyPj4bd8Cx0%LXTjAO?j?R!W=!0vLvtTMY zJn)J9B%XZWf=Si6TP@KXnwaM793HiUue?GTiZ*%Zuq|_SR|y5Xh4oX#R=5U%`1S!W z@_~c8^`ux@SsxQGLY$;rQ)~DpcNe~(EgIF`}>fjpUCUeRkia<3Y z#W&2CB6C1hFKt`2iAXF|(^AGp&ni^#5-`=+Dz7PbMJjr)iOj?11NnHhZ@C2T!Nh1j zQ-D=|6OQz(BxJbq;YR+%Yi<5&sOpQ{&QcPj(?}SSTv0A%(xdE}8IW}_v~ZsCqXe#T z7-jiWtX$aO`ZXQZF>C{ezibQFIUIN8W50PoMzkhA zucZubVhJpBr&D|XS?e7*;M1%ti(EN1&(78L+iYUtEU}KGSf`G0dj-?YSo=CUQPkMr zGB-Ubj<~XFkd2gWSl1@G>4J4_n_BCLBE~`{Su@u-$E|1J42S0)vFXVh*3~m^U7h`O z=o>aa*KKP|hnG2wwwW6~T6?*^ZSa_NbVxDXwuO0aW7ul7@-nwYu%3@eBc_DdT!S@m zQ-?yg9pjp{SKx_bE|?f9u+FkP#k4e*zHP4YlS1fY2Ykq);8Sz?z8{%sO0&c?lXhZ$ zmd?jUDX=Kh+I1PzV=${}Ne*mo8638g-*}z6>bDO$I%bs{DoUKy*2--VMe01QdsFf9 zQ)8cHnSSnR=iAcHePKU|0_OX%TKutZTh{z6UduQ1b}(z9a|yS`IpCZt>PB9E!4CcE zFL9&EQSL=v;|LwSJ1jHNhp46<$W`xL8BCG;?ch_NoCdf0aKf8^CYTggPcx+_oCz-f zOfV^~5suyRE8i!9Bk{AJXFVVL$(vwz!ci}m1mEcSBycpstGNB}@i;i@%TQ0ZKHP}b zlg5$o<=f-K_(*y3{N?kc^gPZyto#Y4K7K#pPZ~$QOuO-=H9eZ*(3B@C0E!TYxYCy? z-n%qUr%OyG03anB*^)F-vt?NEd}?*mZZJhGrR-Gy^S0D+!PYi(6_rqHCo$)yp%rdp zMI3+r*Re45a^LBst+1h@fAD4QjD5}KC;o=JMt{itp3htV;jgnskGof~80zf0uC6mI z(cw_rwFwl@+g9j#$-2u6Tt+{@jVa%@!9lLb>OY93ZjLLeK4y0JIM=(qV(lYe;M})c zC|)R$gNIP$j@#tzpW4#&hcYzz{jrif)J z)Rr6>BemFFH*_Gt%vC%of~QMA7Y=W=UX`aYOb+n_`4!<+nx#k~RDHTtlPA?r0Nz;a zriJ&Lm^}Jk{k*+~1!Rp~vN!(yckI^x{cmmU;%)0(=MLh-UDQ{bTVykoRq~0whq0RA zgdh*={(MA*LM>b_`iXe+B=i18$n)uWe@#KiSd-QuoCl~@@`DuX@#G;qZ3lq*Xs4mf zN%#Qh9Z$hLUis_u=hO3PdH)0X>S*i=n(GFm`22JB{I`D7`mqK!u~@Ot+sSMJYia5Gv_o3GrGAqDqYA6x8f9>|!KJR) z9&7~PC@!B@=`}BUgNl6;IPx?b`S-#{qkQ?edK~$*Xa3JX0%}WY+nK9xNA=+Zx7)Km zPknf|yh>{X-zYARN9p-@q!FG+!I7u27k?u@_L46Tvm1_wl|h|Wwlb-LQh9WKmaqS! zu4B?8RlFzqSmF5qmV&tL_bUKdU`ltH%_H1LyVcQU{bMiiMcr;|t5SNjF@#5RKYKh* zaae4>-#{>{O&O&-+%9p{3jIf{W8?*!U%XB}_VRIf>+0%?EzRA=df3X9UMJa%!qF_; zy0AL^F}DzKr5kj%x{siecA>v?al1kv{G+0(oi=Hw?x?MoZ*t|;gca!2o4Hb~gX_Lp zI)|)$Z^@QdW;sxzT!OMrOjVa?M=xw!jv)P3mz{OFf&X1!MT|_@x;sy=Y zK|-gywU2vpCv0kA8mr(m8s3uYP~Irvf#vO33M4@$nBhlK)So-af;h2R>naen(Ya8y zUU!3SlvbrC9MyM#VT}4wz58u5B)G+wr>~Ww9BrJP*34g5H&=?WvwHBw=a3n@tJkS> zuJ+P(Zhq=<;xjRsh|~~Fyk-1&TFRK7jnWjSyt}0-e}a==E`zU1KcXE~eOey(9@Fx8 z>dW~+T8^JQY()l%K3@_pJB5WrE~ODpa&4Fv&;joZL_~!~!j;FH{Ci0gOdeigxlc-7 zf!#@_a#zZ-SDEa_TZW&9U&pESCeSH!b4pYHAb*@vKws3)HFteSj$0eIi}-3qI<#%? zD79IKk0vJ(Q_S*;#k`y<%3vfY@zLF0ak!jP+3U!CnmFo6*97;&p zdOBaz#|7}MLrn3a_;Iz<+T5fqPydjU_GWFV$oX6?9BVRg2wWq~QgRmnYXleOKCsz4 zf5X*ON33V$l$ALYd2a2pE#LitwRewmG5t9dw{AG$JU5+0%t^=E`?|rVmhv_$2{{R7 z?*3IH%?yL=-J%t6BWdWSAwmLm; z8z_Uiaii)|S)2gT88HPbjWeG{d`++>KpNqMvO**uk>ImL1$UxT$)C@YaHY76Ux$5! zwB6`e%CZ{`Nju4Nzx2tv8;zPY6%b}C{HF3NKDm1OiqGOapThZkDUCSy>Ic8WW@#1p zEKMj9&YHByT1k2!t&YZyctl*T5q+YaHwWN-$AXWH3VaE+^5NLp#|Z`8NK?jAu8nVN zn9j9PL>t4j)7jIk-HtpVTfM1&2^* z4A2hytnim)BU3^_PGi_Wf%wT<6;;OA9=t^8$g=^BGuN#YO4k=k@D;rZ} zy+YyACI&9GSMZX&#@bZCL_thAYmd*oC|dU94LuECn`(Y;pIk z6$h=a{|q~wPk6S~shhUE#5HVvCF|(vVof265d%P>nFWvSb4(#`*uvsno4i}LcGfa> zbe-Z#u~T+(tlL&+2W^4))v0&5`U^fZEv!KS#VRS#Qk=t8W_ncJoLhlpj;W%E;`-b>u|&a1?4+QRG=TbTL? z9TU2oJt&2;iA8@pf01K@S+l4OBx_hB4_f!YQEm~Lv$?4^ZE=3V`j%g^POc#9AZ`8L z2f&8K&j%DgKTtB3tdStRN>SZroe>w;vY`g_E@S^mf_>so4OWfYST_8TD3Jv-Y7NPy zT1Woy?>K~vGU$jLEiJ_3e_me4k@7x!K9j)DmIR`;)12|d>&p9~Mz75wL`c!oKfTY{ zYv2V8_-Oq8o;N7ATLv4%KZ|-MfoBqUCV{6y0#f{>NENZZwX>FPW9cT=xvV!No}Tal zJ{1#xnnp!6Ls8;<7?~fJ{63e+A7qM`DONUs=xn~twR>36u3LNG8R)fO zReG7P?oE`bgD|mCV85&Y06+jqL_t)+CXFj7Y^?8VIt~xu%nsY#+FnHwT)>J(m#S&j zLWyH%)~(#J?D?9oTgmcR)-5U}ER0O(Fn0^+D$fn?zGe5?E)!S6N(ry7==qc_N(~mv zmdTxjo;C@1V^%A#ybgX;6wQ~Ou9n$cQ1H26EnF6Q zrVKU|%d^O55_l$o&t3xRzWAg6lclY_qsNMUhivx#2gIUeWofm1R=YfX0c*YBwzi+5 zJeAk(qd0NypXP13m7|QZwm$bR8xKm>+BIe^o0C@9oaQEyYqr$#mbJ4(cX0SHGsf*$ z3zu2fchMH_{e<;|_c*p>hF!t8P#(GCRZ5{v+1mOgrfs?Qt~iAi|ZVnf^t__U$AzjKsUIsevO+rT9}fS5?WfHx0R)N>pgJR`bJKm074x_aAo?c zt;}3u#6Yb^Ba%^7SFpKKiW$;v37N7brMS7+YrQ>3vBY-xLB2AueG=~BilC^9vC#j* z8*L&YRmb7<)TtSv@I{_1$sZ5Kyi!-eg)n4)Dtw62tM`DO2CdOZm$Mr#X&rCj9p zkJh8MvN4O!G{L$#&hRT?Cu{1lE!GHba-JXCce%FWK9;{84w2TbR1S|WvTK*!$eSo{ zTWsiPVagb-ju~JMsBZ7^1EATei-nQR9qdHj)KoSHMmKE%%i+&W;NL_$+1Q#QogKwY zbL)cnO>h;O2bjiW?ce$|<{=EGEVQ!6}{ISUcoP1eUD+Wq7KAGEiX4|+{yc;e_BCZS0~CTLE6C#^3uml&lS zZrMg@#hQoyo{hfnA96I!DdJhnNSa(ITJFvLG;Y6A^curQ)_O&7H`pAp8gD(0l(>If zDuY~VKoR=+{CyH-ZCvMjm)DcvLDU|XkG*sJG(e{I9__of>?uur?!W!Vn!=}{jL&#@ zCV{`>63DDGNTK!>|GO&|tzL7x5970@01M3=?A$(TC8k1)8{E9Xw5T97g!QQROdC=%W6xCVC!95y?myk0dBHXbY?9R?8qem^t9O zja`abcCG|)$myZr!(4t~Y6SbR^hSB=<95TLwEYi=dns8x7eA}v&$_I+M)k8Q!l#(; zM`{1hriu4lq0buco<;Qx@X;i|8=Q@~k1~=y8qKFTm#Zkec9MzggH3G6D6|f9>%#qJ0gcXCl3}fh zHGU|0;?7s|u$f+I@&)cw|rFIC%9$LN!0=wa=mUNDX5e_A*+K1N?0G>)B7m+5`8lqyQ%cM+(_C+D&tD$VQKT&1RV*U0=D(F$(PF&EZUnjmY|6 zhD6iFs8Nn1&LdPhQ>Enf4H77blD`zfPVOI0D3vWNX~4TK#ri+2XF9BTlPlq3x3fCu zP)DVlg<2QeG@J`h1HWr0Qr@CW=w1#hMNM?dr0c0G*R&Q${%su!Ee}6s3ZcBkvZjBr z2o^c35Ki?^bQKrtBq?WBfOrJn5LA{RlsM5=R;jE~cGnR||G;_cA2~x@Ct09{t8JSq z?}Kp;xW}I~sO=HFA=pkh>UnLH`2iSxBoHY{=_ACSE_dXT%1YR0-d(W=t3>G=nZmDo zqm@@K@W>bKLT%3Bg;RLETJb21U)O}mD>H835pvZm@mXa$9~o`WpZHL|Bn-7R{J}?t zUwG7>oB)2&R$jtU9#06`+7Kl|{5_Np@tu)&4}Pajd=L}f9b_q38lUqKMa^U>+QK6~ z#Avln$U;)cqgp4V3rvM^a`3%ZSqfgX_^a?CB0I=3>U4+lfa^h7!j;RCG?mAN1b^bT zzD^}GIWL2rc-$}Maxx&FlEPIyDWdYM!c?Lj>Um6MaA#(!lqrmtsv1-4`?PS>QhhMA z7d{@$_0+`FiiI6qs;i< z(nYuVvZxH6EkzQLH$xR|RsoG%?DWNwR%RVvYu5p5<3Q)FIjyaeDJzauP(JT`ec%lw zS_PN=CsCF#b*8NABf8`YAPOd+zK%}$0ai}+&6T%C_+*kJCN_frMP3zc%V}xgV)&Jx z-Na5=>m3QYBf>XpU}aOJFZz~sQj8H6MJalokLh3?k)oGZVNDO~KpJUnq9vtPyprM@ zI~+>o5H{g*k0H_YGFx=EI<1rYk~{iOa`*BW>m0FuYA3dH zDCny5!Nw6(jCKiWW^QjI?a z(vz(2O=0jPue6GaUvRmA6prMi1XWxPMwu(Yil+`wE^iGUy-Nw{UiqkGAR~Sc=HnEd z3)lE_d^D70mM@pRf~y9Pcuqijm1Tlg);u4%_)2+%AD5D9Xs1Y}=ke^7k6fKr3FL{1 zaz;BxD`L|xJ%JiOE;qYCYp~Mzr7!(0TVmJb#`=bBa{R=$)&yw;z$GkXs)Q7`7b(S%nP97!^0-9flW>W) zaHo<7ooYE6(|uTa<6NIatRz-j4r&kWqR2F18yAjuwzXOthvvrpyP+5e-Um4HK3yeI zS*mRyaa%&cSZCec{4!Uhb#!oDQZKh)Xgdcgm6RPCX^}N)uD}qxElYufO}rGFybC3b zR9Q}%xw38aMcVV6t=;=;T0Lw0`0`di9B@cV`CXwRkNX3g(#5S@NYme%3O(`UJkV=K zzaC*(0tLSXPFJYJv@3MU8YkYXxV?rH^l}J?W6dagYJ~%VC{?ui@2ZCt5 zCzVhb5*C#R90bKqV5?%^t51VdD%P%fAR@{!m?a+KsW=xiT)2YH5kO_Fqhw9#<|ezw zd2aKUxNO90!kAzZFICv&t3nE9=TN|>TnS%16=xY$IM2SItq&O?@cAR^<^`^E8wvTw|;WHehN)ic2)|I1;7= zT}!o!DZ%CQhQBtZilD#rqT!WpOUSJHHfx7+O zoS-!vhGNfYG5913QG>!P`uZ<2ddMSg!mnq9BPH@htcJBz z;sh#Ri9qdQaGwnp}a6EFRyOc^@+Ro?|$$DJ9qxPz5eQ})>G1MSEe`l8s1`k zod$1BRcfcKkmxjhl`>S1R7YxA+Cae+Ef&Hi^0kdT&y{Y*F)G(>dzB+$%8STHxM=_I z6ZH&Ue=#I8yx`W9aEfEU2rg*21<})-4Wg@UNPHEzK2GgQ;NJ2{S59wDj>3@<;S`*f zXgW&e#~LXG&uJ^3{E@~xOxUM+Jtni_k*+$`5jcT{_9BnU;7|8f@CcuJ1EHQ=Di&pu2d447KF)6e`46=l}= z;Ok!{N7b>XW%cLu1p$OVqt zw8l7UVT7xeel8tvF63l`kNVigIO^#qz8{XGihpMu30v*6wk(nMs5s(vhz3%*v>KGM zDsW^OgK5!L>9DS#_`UzpCH_9LspVC>gHkv{r>_BYnZ}q6ZO)9Ejs7&`R!bRjRyc+e z2j#U0SlJ8$Hkxp1YU*xM(^rnj{~(UQ7Pu09gka_MzcN}kKWt$cENRl}YU z3M#9*99sGHnk7C}R<9RO)$>>l3uEw@o{7H-uSBRWQyxK!hQe~`ner(v{9wQ%SPjZj zV!HVof~j{derSVj9d?Wh$6q{i+Fm?y+zxec=x~XSkpW^;>*pwpwmb+|aw^YG?JB|4 zKV1g7$o=5(tKguibwZjVl}xwqK%9qlrIFe6gm0vAnH@pcx z@i09D_I%Esl>g;&1}+X;;z$8_?0B3M7C)D z%h%NjZ}um%B7S{?29KHW6np|sXlq4Az0>f6isTb-n%^?QN5b01oJ~&MvWcmyHnYGP zkmVIN#BjbNXE++lymm@ELLsJ2RggQvXl+Eg>{2MnKWHjVZCgXFb0UmFfQK_ibx z{%TsF)NkOFFYzvaK!@yH zN%4B_A%DuQ#^HZNh!5Rq%T&It^C$nr9s8ZdMZ0-_(q21$(#{_`!p#||fP4*0fr=Nr zmY&c(P^3J2Ilo{Vx&7c!Q5;PwlfwAbMm6od-P&rau=)qrILMg}X=8cOP7ROR!J%Or z92&GXZuw}#q$efb>3aPotU{DSEK1UX<-pn8GGfJn4jZ%%TfIMSrP*(D?%$*+hNZl1!str&jrKB?!QP zuCm}^=sQ|Z7cvi3^2*~7L`#v@6tXgedLj?!9&YLiyDp~h584)oUT?7>r)m4HE#G>> z%BxK44|4-c?@_XGz9AMta^d)OS_mHsF_j+$tsfp8{BeIkokS}7q9=tqc+o(py3k$F zD>glQ$0jCG0+(*v^xRcjTE7hdpOdsf9jPO0vg?kt3gL_@#0Nfo%xoo#E@`2@2ujW= z^9)X;B;=KyYPx)C#Ys_AIP#{Pp-2SYP&R}$Qbj3fC|@RDPm7fJRoT;LajkM8o@#Ll zR(OOpU=yziR{Yhc2|oBvX%VAem93Jd_sT0mF-a!Ddz8uNZ^$ElMPIH~mi`iZT9QFZ z4?I;_ibm8*U`g~uNu!|TzMCwQ3?jD!ds&1>F8HgIElX2MlqJcsUM9+|KfPH>Q{Uu5 z$)3umaBaRQWl*k`OJRjl*$7r#z`871yDXjr8SRa}lc|C-w+l6Gx3VN`!j|X*hdG>o zZ0Lmba%+)~6PYrYxT~Pfc^)`)S})0Nu6CeFz_lcH!%>@Gl%5ohS{@v8LfxQ1jrrII z4nQA-t|hda90d6w54HIfs>dOkY6fb6vL^Asx>B%Z0H;>h>@VMV)BgGI{T>(BvlFnL zbp)(ElU0D;kRSe{e+aQF-V5PB_!|i$I1@JsID?`;8Qk?SOdh#a=XZs z7mMzU(arwzU;K*w<6rxxon+lzKS!iAYarBDwbyGs58&R7#SFZ@ZPjCW7>*!8*MuBX zNj;8?jJ-C^RcJq*oVI`Y$A4n~+r`UfJsj*jantO~8T)TP|9Sfc&m)6FHqzN{-SneA zoCy&fS4^u`Ir3_veELUtG7hsg z9=j_YYb1&B1R}qJS=cM6;>Y6(5dgv^zr*MKS(1=sxEyzlzX2YHk9dCFxivAPr?RIh zN+k*=q0EO;oTu}nUCJ`*$?2o9X}iNVnz^#B^N{uR9kh-4yH;Af#)rr~&N!U5=B^Xg zdEgt?ee72_%I6R?yP*Xl8m@Lvi>hQ_#3bnP@RzrPdEF!?oa$bGswGOY4>Sy>vV^!* z&=*(0lXzIOHO_LJUAko#F27-yuKj>(13BLjB~aG^Mxnvr1EKmq;ny$!sJmGINf;1U zm|dEQhn)(L(j8UZ&u(dTppP7Ud>SrWiDgF~L_=;D2tca+LnEFNj-Bzu@`9acJUqWJ zKfJ9q;!Qc9wA+o&ZfQI5kuQIOQM--yD^HwcAVpL0x*vU;8Z>W#dW_bVsfbG|pdOZAF!eZ8 zck#tX=SaV-bytf#Z(%|DgFpQ<`xifb*KRTmx2CxhGAqB2f7u|Y-1ROFomHdK4ogi6 zZL=U>o$Z58Fd7b|fXWG0b_1>4NMXS=qT|tf{;6USAEKG;6QU)*AR;Zkb){CNy^p~S zFGp4$o#U3i1C_6eoxrE;^ljG(Kl+YTxmNhwfOoCUQjFpy*|N3{YEhjOL@b4`qfGtI zH-F8(eC()=QpawgQo0vLKh+w0Slg;(aaxUk9)?2}CRtU|m%pg%Rtp*L)a}f}&xbQ} z_J91|@7w?K!G~s}BLHk#E0uGCd}o;I{iRpFVBdV{1$*(pI8&HxaLP&{oLbkU!o|QJ zJbEb=51?RU5Z6~Rw{dV4+xEhWEzG`e^HV>v)%lAk-CX@9>jdpU@ai)v4bwW*@nC%0wIBwo{xq^oTSPgt(Nr4CmZ!K-|3#d18N zjV*((c;VFFrhghx_v+w*k>yuB3Kw^ckYD`!%01#@cd=lESF-`4tzFXU5TulaorFZ3 z)}~4M`(_xPcYq zp52(ZXjg8&ZL`bQF<`E_Y*Q}Do(2Lg{Uv0XC&TYVoKRkBmDupq!=~iDlyRrLPYTCg zco41K_;`jR)kZu&YkBNKe=GH4ym4~sXTpf!Jtpm)%)WP^jXtEyj*h)zpF8_CW&j4T zkaIvjhtdP!dF$WP2d0Vj5~ml@bL4*Z`hxFaJ`FH=w*>V%dJ_`kTcVi#G*`kQQ!=_ap~8FU#hhbtR&SZ)O)-g%*rQMamNloIcx zqWyVmEJb)n~BkchPIC6-K^*(toOJCjiai|qr<7Vy`7fCH}wX?x8axIJcF zz{&qZHU z$yQ{fI{o zcv9n^y}&fiSsz=*;9tD+o^^HiSaV;W zy>|E@)5X#lq~v(k)GuV@>dWI$SsJA!Idu%x$XY2R$)wo8z%T#RF_n0(u5a4n%8Jdg zQ~37cg8i5&;XioyJ$v)cZ9CA{Z7&Xv*jIY{>~Gmj;vJPL3(Mx$m?D1u&_NsR;VxjE zL8yX<2%McNZPl|>evX+>d1ncL#P>=IkLW$oK!J5Nj3 z5gTNa(n>q`DYqZBwYe+o(!Oa66MtlDt5;E~zhbTZr#Rp73^)$L4(%~3l(Xpm@C8HZ z*SSf7{XNN=#yq{XZXs4ZqTEl;d~Db5ylwXv-s4yeb_25(I;^rHk@X9bF#}_8C2sK} zx~i1&?0AC1;;XonyMnWlA`ht`cUk8%Im`nQH91ot_(`Fxy1}d5;=B6X1>Y`7Rm>0Z z?Ey!~vC328)_LTo+8YPVLnuC&ybm5yW~c3ej5{hLd&6qvCy>Nn%A0?xo`bv>B%f5l zqsVG|2#}x#ZLh3E0VqdS4ObBcm4v54vkKt8`gT!m4Z%aT9}5mr_H92KQtt}$4Qv8i zD^J*^Tk~wT8{~E*mgBTBJ5%Xoo#~X7&%zyCYUJMk>;Uty=*Pj4r>mDOAAT6!l%CJ? zxH$ZU2XP)}qVuq4%JW2Uh*(ybHN0K42z2nU8dagRiH851c`{?Fv``fqPK@Xvol-BKZSC_qboL$nx!yKuD<%(Uc zYS&^%9A#wvsc^(a7wSa-Kvfo9q4MdhJS>%NPE#6FqpXu@Y8}Ipo=?D^-nuAtaFO_QIS}P- zJEN(3Q+z6y`rL%S4z)4@9JNvplMibqM^4oB=N}+y1pN2hO7{do#rPG8a35JcXUGmv z;&Pv~&R+scPhqOMs0H=oehsFG>A%_{$b5G;3gI@(LbRAmAA&k^>;22$<%7G$UO3YO z4J{iHMt;0M5yP5^+Qq4ikL!M3a6B#L@cN+AS4$i07@oIx7-TQ7bGVcBWZF5G`1Hmh zVCuQP8ugNRJ0MZ(1+$<(V|A3)9YwD61>#U@IPORzpO&P`tr4x2O|2QO4d6UCKfgoxxbBx#HqmO) z6Aapbp%rMMQ0A?d&=CLV>)t?UHT(J79c_>46?nNyzRgw!2?;!jQw z{@ikpS11x4S*g~5+foGo^@@8sPr2k*yex<6XjT}obqF0E@u@kwTqYD{4-()K2?@?Dyo zvXU0dZ8;i}n))vYtI5*1|1WLrpqJ15U z;D7Y;%Qn=}1t(B<`Kgrf!T;bo@r8V(nR?Au`S-Ol07o&9jprjzWpt7%E#&&ixm-Bt zD6Q(NW)MGB7k*`~##Vg^DKROMdXtM_icDdpRP$6*vkWPzl3(z+6rW|N)L}+TAbDK! zOB{N7JU=cmo<4BPqSnOy$V#X3weX;+W!TyVUf`U|BQ`zpQ(LPdsnvd~h(gi`fw{N{?S^}YR2$!57LS0Z# zs*wKWT|fry2k8leT0l6J!e48iLAjbzg-aN#rBEMUy+ud;j9?^7KEgOYr;;}ixt@#$j-<%oKS5~#g;vj<>{y4RSezC56VO3JUN$56lC z*8uCr1{jJ{n{(ciHoS;c`-&p{!~`$;{$S%)!7ZvfxZ5)-o*}R4*Lb=%IEK zPogRgjvOBmYK(%-{)vv9c+R}x7aWB3u6PzNhq4P&F2+Q?$uX5IoMl^CpR}2k>o&VO zZoTctQ4ld4!Bb?DIU${V=}4aa{7gtdbxuQD@!~D6 z(pdGGJE4Yqz+PQUdQX)4%f@Oam|Sx3FOM z=jS-WXwJUNhsYn^xWU)Jy8Z6+=j|VU>5Fz8OW#4Je~)o!_CSXY^4&I$LAAquz0@WA zsXn@T?D@lo?M0@!yEs}##S3~WXPrQZ3D-D2BqNAOuR!6EKiWuO@ZV~NTx8}=nRkPE zFc&ek8Jw=*YNH$EtUxwMtLASArAQ4#4{-uhtEgc`ksgDG_ejm(qxhA)nhG7PQ{}^~ zjh*WUiq_85@z&gVo4@~oZOpvEfzBV(cyC*K-+gW?IcKe04Yw<7?Tumqg;K2%7PF-5CTayLk7kPkv}B}AxYedL{R-4Q6=03n!A6ou3&_%q6kH>&|BNhsqm zgCPgZxMGsh&@8I-tI#BqSt-?uPXoTwpuD0{vC?`d@<}C;#q)=Z93qNLT=1;E*W-yvF3MeB`aG2U8Sg2RKNAkN`E1oXDgNc5XUPK08Vnr#cV`+{WwOm^9vUvT)%P5#otb8dK*##Gl zd|s~^=8QMhRe}f~AvzrqGcJA;P zOFiIIjad9YM}nZt#}X{s!oV<%ebEWz1^oSyIQv{kgOi@FAlxK3b>apcY*%HhqmHM;?B z!RjY&fuJnpQ=E74qNNTeK;r4Y0D(`Lh3^VPP9+w@=UL>IslRP>^$Y< z54n2K-&yA+f~<>cwiym|{?iXH+CTZym)vsN={I;_pA|Bku&VQlzle(jVk9rG56L9! zzP*fCNa0iUUqUf2p#&~*w9TF6WqTj1-w!_i*#6hcSIs8xVc~1B*E>7ypKx2sv9U4x z%I9CUmku4Wai)jedV+Fa#)2s;aR&4VXl8%G0?R#a-u}prk9~nt=i13C^-t|A zh(1#W5yjK*)M&ibxMHEBNTxSRwy?x;8e1jXYGDlkP7Nv=o2oaOmnY^IJzw%>a3MJzo7w#pfXS5Q3v{Oxz_`cL08J2=YA!=W9{mR`~V zT?FgfcrmskGTK-+g_{NZQJsDz+s2lSa|PQghYr{mjvleMxHaYbOgsMl(`Qg3TI~ks z)Lq5`b#5GM6PpmW*e!kK_Fa@dy||K#{`1sJ=bgF=Lz{j(WBL~CI#yKe zygt~|XRjYQV&|}2{n6WR+6{JMTN@TE?<9gt?RXV#b*K8Py3DVa-Dwi`7oVUy;&hms znDTr=BnEjg#U638m9^s6dQY}Bcpbwpr7)ffA|BE(PS@N~b8&V?#ss z4>(5V&)Hn^t#c>sD`!qx5v6lmmKDh7`F3XbQT3|0{QtzA)7pWG(j=}=!|le$Cq-Y1 zhs!^cwOWysI^AaEg9-{1+mCJJ^pI`zAF!nxJ+?OaL)%=Lw%OZ%Z8I|yHg@Xk*4=*& ze*IZ#-w7kE1+mfZrEhcK82*ed^-l4hqNxM6Fi9Uw6 zCmUq_{baDy8x)oom84P-&nx^s0p7$1W^s^qs$J1~=amq*ljsUB9bUb@ImHabeQ^>r z#DZQMFsNVKqQ4p$Jzzau{Z`uCu-g+Kk#EgfX#axo_e#9+C#5aC;z@6#T>Pq!@mTMK ziKg$^_Nxbp-O@*$N(6Ke$45wgjK}iu_gL~&Kd*n#qOXlyN*8_c5%0XRhLXb3MXV#! zK%!ilDsTY!l4r4_DBgkm8Mhq8ipZMSuy~(WCK8vU<3JlsukgWUB+mn^b@5zr={c3y0{6 z7dA-I|H*MjS$xE1F_l0*M9C zn5NzWz#DLUxuwQXTOd`rnsf&qDIQWtqTxhi&`YtwG~j>n%FFhZmtM33T!*%RB5>`_ zgkA&t+=&zR+<^o3%~L1rfB4>aZNfWiFfJ`K_18&%k5!0&1*~veC96wVV^n5J&uwl(fgUIT}|u2z^1KM0dw<7~at2M*dY{QbXJ zM2&lV{f~oe(}PdurO&u3txaS~V#0abK`SUcM6G zoIe6Aw1khrPp`h{S|-~j%EY_m%B3Fwttn=dRDwQ2BK@^g4Vo+NP$zC~r z)P9?fg8xcW(ro+~?dY(6Hih&L4q6Y^JzwXEr81OWCQ6{AJ8w0JOV`u1+93IUg{kB} z`)9vvXAd%%GWFj?N16tI@20&SyA-?}>a?E<_q6cw#D$SHwg%->J4-E97V{>Q!zSvr zb?_`l8gX73XAdsl{jROg{*e_{?%HBu&DQ(wSZmK&>mEGGAm7W7*uqDfuDhe%30+3V z2jh%%6o~{4S_wc;{ztbaKitrc)>*1Bk9C6;(-|`LHc4R!gi^-5-6*KG2NJE_DsHt| z2h-ih51zL{&RN_p$MHC7qp{X-n{`#QHaUIGKE8{xqxFX<99kx$n{3oKbZ|6JZ{L{p zcd;|GnfIS{S4R$Nk0VGRAzsR)_*-|p z+Oe+d(V8$&5bL~?0G!GyCe^hH9vYOpK>r+Kq3)$P2g7V~q7JDuDUYs<3dh!(4fZ@| zLw(2ST3hVSVE$>OrcuXdoXa5=S6jy3W&NAb$CNK$u$eMhXnXT)X~x&3D0W82(Vbot3} zA%1+lHF9rO9e^t~cd$+uSxXk;PwmD(fHFBbV?kBLBahkl#iPU$p3Z?L)O8n3=#lXHwTSXryuXmE=t4PQZl`Vs^8Jc{7kH*eaXy!XBxVoLBI zGN3%nqxS`@j zrXbJqH;cD^<(y=GgQ#Pqi3i>kp|1yg33d-vbv6A-l)%O~T z>KJ?!xF1+|JYR>#yZos`8)EwU43>i9J%`EPWV1|lUm@)l3h|2S$Y1Ap$Y`prP)_fz zoWkb$l2}C zv=dR1k}3Y_is?__09sma=KUwUh)uQIPU`mrYY9*Cr)g^6JuK!Ni+i5hAC>d7c3!QY zC==d#DijnFO{pr`Siv+c_1ZGTRdqeq(tDVCZnHI%gzeQ!wlwjFws`-?);avk7)5@G zwS>p$P=@&M(h)QuQrpNm;a1y_qqXucYuyQqbSEqT`QfBQpRmM0#wpp})*05t9chut zo1Y7+f;iG->Cq<`00p&8{xn6_*FU5#1O;b_E@~bn0p*7exOUE8+~oKgwc}=e@S#L( zU{%p{Y%Aq0Vo^aYb|s>lWi%_Ri{2L(HC>HWueG_4n?GZ{>?ZGrT0;#k;0}g zG8AS_J9jVzuYSIam2r(jz_(DSq_h-K!VAsF5JpSoMHH1LzBPN9_G{zaE5RpoBv`AY z3!aHb$~LoO<%OWK>xvE;e@v}1&{T%mGeS%ouuYLN+_Lc@UaDKZ|4C!FnkvNTUjcw z#`tsxmNjsl`dUO@%hX}^F^@&DlXEnS$VPJ5U?WmTORuEh^`kZE zIxDq}qnBDZvs4>m);H!kt8bEcO~Xrhrq1c_rQEp{nkKcz7}3()i7lbaip!kk>Fo>| zZMQQO+lK;3Tj2%L{n#6&WoXM_fc2F6Z*A`9kDJ1f(I&E!f-PmOx|S$w$5e)VsuOSH zJd=y|uaLiG0IDC3)M^@SjrYR&M!8*CpM&0pwJ~!eq+xx2rVJ*TKGjdJNH|o3(BCF6 z+zb}7&@+fhEhQ_3x|pcsETZnAwxSMLaAg{a2JUuVh9P>x#RFq@gvI`?SReoQ-~YGv zr?+p~C6tCyra`{{e_po#=|BEQcJ|C!`-K-?v`e$|b{^PYdhLt$-K$saV=PHc+>AcAFX95?^U_A}Cp! zw&=r3H>@)g;co$jr-=^v07vJHp-^^m9ouU!f8OrD!*n$k!LJ@WVP89UnlHv)I*m=c zIyq(AZ@-11uEoB1f_N0X&h9SzI)^mRL1%Mq)%tj$M|knKut0v}{CPWf>XhC8>%X?i z1$M(SZSfrEt^F!HU8hjAet7eH_QjK<_G_Pe$xg5XR+fj!`2~B6oxJb9{VwY%i}vE^ zsD0_wNqgzUF?#u;O`x2OUb|-ByLrPdGrjH#yE*{MqpngfYt#V&g|j~o?BPdw9RpvQ zf5S$O-{ovSU#Ue;;a}?@EQtnRx8Cspz09C;oi_6(d|kME*Dj&R-+<3$IvoYfSx~N4Y;mnGUngZ-{}TgETSR4E`qS)YU+~Wc4i{imZlK23mDE{85Scf%Sqh z(0GCAtQbf%Uh<#81DvF55EIyE?Zme8TgQmvKTX$&k57&V6;2gUtpOjnvjR)GS3jY_ zOqGUx%?HU%2FfDsy!Y^zt)rjWgS&re+Y?yhSGePt1FNSNFInHQ*R6Z}%M9En$?Bg9 zc`{BR${M(xlCvS6aPSnq;7^KQi4VgSrl!@bQRyLv7Mg^Q1%42PnH6A*@cTU?#C zcQ5=9rR1kf?G4*kzW7ay`CE43!Us0H_Ms~fT^;@OQHN0Q)-e8eS~nlSt82?FHMwPr z9KOA|K4r~ggVu{>T$cCwxqG&}jIxAmGz-wQg~hz{m<uS?fIF?z?_-a9s9KeDZum zCiqB1g+u{q#!A%HGG;@AV<$T@Lwgr-WtKus+x^*FC~TY`%2I`9lqXqaJKG1T!x1)8u2BuN#jfKvJa7cOZH{+# z;ik=R-h!7_)-JOtvZ=?$hfbqNciJMibxp6`A$*t*<3*MpT&C{06$)i>u=f!Bjk@e+ zD9_{^9|6=`b5j?}BS$ZF_9HKSG)O6wOm5o}#u+K{b2F>(sVyWO*2Z#)u|bwPp+IX2 zzf_*Jds83NhSpIov9g!jklj%m9H4F)59b+E<`ySyrObM46i06>YP&d^i+<@_)u*ba z{dM%P`$%`|tKL&j6?{0oCzTAe6y=^>U$PPU@ovdHqao;8vr>lO+2iSwfEu5wSx#M_ zx{o+2b1^h5(*TD+1VudCb>1@&cdP{pi@50n!Dpn0UyRn__?D;?dA-}+ce+dg>SNx zSP{=2J;to?s&!$7`{%E|X0Mz+?HdWc_Z}S@oyBt~R{z;Ie#QF#{IBdH);C$$TKH2r z&UJzF&|x~dvdyE2-kF->O9s^grKO1tEVEd%-o!%q-@p2*{pv4%g+q=n*;`BlA7I+~ zi>J<59}COh!J;{ja@R~5Ws0B25_oTA*WMU;!GGP}(d>#}WS>EXH<8%{isBT1GstTd#rY1(-y0lB^8=JZO{Kri^>ANc z>i6?ZzaPgx)YoG@DBkTT%B@)PTIldvQ2MlT%m-^HOnZYgeID)5zk`D)4Uh2+p437$ z`~wCbic$tW1+RF)Ir|R!s8SH#-5uoj<@O8T2)S^mY>(seIGzMg5939Bf?Rsmu+M<( z8y1MvdM&LlkcC0VIh9cetcz*m!z0$xcf(dD->~(`Z}Y)5Y4bOkjzo#-8fC}vz;jr) z`u)RGEyAarMG~CRLg=k%%S}y-w!VyVgLSQ==P2pWlRW*cVcTPBhfZr-|FnN=#Kr`0Qu{uY_PjDvs016QH z94tt~1Dc}N)L)Bz?#wTv2()7nS|@JRP9OgqO3;X1zx4sDWoGT=^It__=(U-7to6w0 z)RFVHedLtAb>X|LwVQ++t*l0V^simq1~Wc#%8o*BX}O4k#;nRvj~yNvw;Ok_+Vwlv ztfz0pj&h8TER(k z<%FrwuC4*z?NcZnSP?mn2d#@WW4(58{Jgz?@q2s_-nYYJ&ojgG0!qmY%Gn0I_1clK z6L!7%vVDB#Jzo!e^w2R|TAi_l)f>!^wA-1ZUt%5MFbd<0wV@=PJ~C)WM~~V&AN?(| zTtrUPAC|gJW`YK(&%@)-+vpJE!a5c*EMbR6kK5Sr5xa5cf=y1{g8qv(f`V4WI=i&A zfaR*k`j~AQ9X@4OZ@!6gjsn`Qsn#O*D_~7sM0uX=wHHo&m1){Bs=dHY_c`z~i$Ons zi_K2A?p#NvFWU)lYkGNoZP9u<2kpeM=a{AHA^n<7-Jh_-qX%tl{4|PiAId!j1C;&Y zA(r1P9kKT>ecw8OJ$C3N8{sA%t+``S0qt}HC41TqjGVNQVQ%!<`UoS(eH-mPU}uiJ zjH2Dn?swWN!&)!p@9G$_TX!#_WY5}jXTOMi+VC%7rQEV}CtgMYUt`VupR=xSns-I{ zXxQGy)rzIKrG{N?>q>D~Nvmo8DKUcqA8@5j8{Jtuj^>PbX-&X0!2C&lgqBLj=;wwP2$sL&tUnxO8uG^+RiZm>oB5N%&3|E+;mTfvPrbF*d*hhT9 zePN6vPryCKaV!H^y)-3VqCBr2K4RBy-Lyj}zOSOVZV-PTrAc=i&+@#B5_Re08(ekP zW_>8l{a7fUM~VFI2k*0f4tz|1j)C_sd`zN<_0R*XAw!B2^24M1k)@m}j#ts^f`>a- z>{H+&Poea>Mb>ij)YC2Gvy6rCK2!U5kbyb!B4B_5qN?L|+0c!&kX1DYf=Pj^QqE_(FZ3Dz?T6yfND)Ud5L4-E_U}? zcY8l;khsBwB^4_(@7v1!hqiue3X4CVkqm5Y184pEJ7cQQQFFHA+QOrcQC zTx3tv0S=QMgDm!L0qdhj9Ti_bS`)2aBDN(-&JN)GIb!`t_)bK5a_N+#$#?CNo1-@L zDI@Dup@k3LX4*O%Q?!;&i|f0)2e6z?+5M@zJ}s%~R4G^oMo;m6b7tG@9iK`b9H1{7 zz|zKt;l;~uqd1OPM@Kh#=dn;N@Bz%y65gvVrg!~a;HA;#hD{Ft9>l740A)~9m&?od zvE0ouPb8k<(PGMVi7GbA!n2}#4t-=tZDB- z%GAv+^8VgsJ}B>^NY2xzV-=$g#IKJ08e}t3M_WIA<9+r4O374xQCAW_^&&fz>Z-uh z@5sP0WOs~y70c8-n{+rLNS#NA#tN3$+@HQp`{96dwB2Ps!si!ftgoxtMzJFH_m0`e zx8HNce1m001vY~$vs_>eD{2Qz5e|*NOcU9%JNG`~CZuVU$Wbh(qpT0@x9NN9^v~n2 z*iGKQjXdsA$4w~6{m>mG|BTD*;MfcB((B6E)XZ(-u_U6{O3}M<;~HTUP?YLEl{G}B3J-T`v&U)~_M-1^!=YjXjgYrJW$3A&@8gZx^mwDMrvZP_6 z=|B}qloc!|83Ul-DOI71jX(sQ^-dL zhndP?`jkOshoC!x5LtpfNc>QcMPr#VVw>ky0Ht1w2tdw1GtDfwT(HuAY?Nv3-U(Xd;hY zmPcgY<&&4g!)37>C2BfLcFTk+I&)e!puR-AM~keJ>m1iq`oCx^YOiWD;-cz&*v#6dxOI+&N1ct@BRI6M!I=8fZem|r;SF4Pw3$PeDJHc7I;O^LXy`c8q(dl+C=4j5 zCHmq`ZCt}??O7RKH<@;oa_DCs66@z3%JPTOxw*kROWO3zq-}0#y5~^>uQRPW&s1dztDe^FtuYg$wTT_n=>pcQEvBJ$gN>%6 zwXtRct7B{PCS`4A3Vwkp&{gMCicpbdMXF=h%wpQTZwLqc;6pcH$_rKz&2hJEwMNx*TOxJIFt}^&KDQT>dDc48HK(!f;vS z2$u!BIXPiV%%W+%==L_#+1$!hlT~}Grt?cEvR7y?DAib-);;|*GE$vxG0d_G-Fsp3h5@~Si79a5j9Kesk|{QuA1dj{E+C3k*V@0Iu7 zSHU;XXg}>{XqMwRoFRwHC6~L54MlA1N*nt@R0O3E^_l$0*bn+3w-KT!DMao{ z&J&d&28$OFlKZ7_2NVPLxR-*VvQ_4hU^tLtfT2d&1OLLPl65&mJ-pfp-oIz0+n9*w2&}%MVJUJX+(%i#pe<>{?_f!-+9MA2gj=u z@u@gP&q4sbju^NLBJS$KoV8+Ku9eCE7TmIHu(+SWw1~Kp(wUIQkX7hN>8trc3B@cZ-k-m_;R@P6j&KWERJK5O?OJS!<@erC!>(Fggb;QgQf+|QzKn6Wn@4)5F_ zu_3sTEljR5zF@m(i(miNx9pd(!S`H$pPl27%g>)b$M`CVY;IEfUZ9Wu^!6S5-bdH$T{wf@P||0@_T)du{LAa$KZyRHY&llb z4ieo|L7-PK2*TI9TA7QR`cNC=5A#y->MH#m6cwfYSgu1h#cnw77XGo|4A4^TadaF? zH-?&CV^Q3$EjU1B)hDf?w;f-{owoR(!WKrpY4a2B!0qc~6K}ROoM`E?x}88@#NaY* z&ZED3jSUhmHlorrgodH~Z)p*ZaKw;UsGJ;U()-&(2n~2?tmsJ~ligDpJYNV3A0lB) ziHL$2)G7$x+YmS)LHZ!V6_gb=?+gn66}6O|-h`7>4}ru%3=V|!_H|lU#|w~?h(f8; zBzl3vleeg229e_1aKO%4cULcWbmO#^5P$jR0z}#p>mq~{@T0NnK-lRJ2*g4~20~KA zH|+^Akmj(8M8B$+b40<T}jld(>2QvJa$@04><%>kF9ZnTNU%=CmK{P6eFA3b?Kkt(I5N&Twc~(T}?^43R8d zM|AzlF?QbFa}v=oUWp(`AB(z3}WS zv@3d;lqK_4_s8$?aZevI#PlJN-By1g?ILU$!mA9m2OX$UTUS;vF1Mr;iO3sKTLxV! znXbW4l<%9{a6Lu9XF1rTgDsocmG;|d(jAH4gwwB7TF>Q7^}qX(ij%Lm3i`~HXDa*2|xMd*aFI#(Y%frSH3 zQqxeYGPczs8tZz0_)g|h=P7eNNe~+Ns7t`?ars-Tw03ckL#k$1{i(|Lm84$v$)H zlx-olee>;iIE*lCzk+_9oWyq_W*lTvZL#=${rTtZ1jOVWzT!HV7%!hWg>r7CUB7eJ z-h&tvu~x^XAe)Bbu*rp-s7Fmo|I<6j$-K-8Urj8DUIw617T&NS%%D^coU{uNU;UK( zjiGz?Z!cfAUp;fi546lM_~DQF#-N2r?Y4lZSnklaA%Y|z5+`z-ld;GJ?Ed7G%_DYx z`KhyZin`v0({~4*M7dUb4zcQal!pH9>NWel_uuuC&;JP`?gq*o<^=L0i_dTU)Mu?5 zg7Wu%|M%^q(`W1-eg5~77zgu}R{GfSa`a<~e zImSg;dRJUwcwwBL;}z3}_q~Rb;=-^ih8y1_J`r~DJ*G>-6JpC1+X>1t=CUa0m#5*( zG(O|wR3~ERM*kMV@H>pV3Tx?w$iX~F8QdbxgbF||&mnfb{Vl6lz0YPZ5ia8s0!*8k z?_dx|GV>DqMxsY;bGpJ-$g^+}`nhJ~K}q7Gr^LFvfq>_t6K%381MZOiL8Jz-tP!k7 zZllgm#Fn8)hy6IMMNj|}V>c@KgF?oJK*&V1xn!Qm0-rwgkCDK`9TH!i~w!)X7& zQ>f>{0j$9~K^8HvPPp<3>*elY7r1<*K76iPg}EqMo=RuMa_UoEWz z*4EMq{%IQ-Mb{YHqP2)aPxh)k;NJp+&uPjQ-Xh%6Hi*5}O8i1E;aYNGUgB)Co}Saz zjOe+t0%P({V5|8tSB5laopnb&SXBwp#X*q_E(9AJTI{)#ufP#owR;l}Y@qK9xK`W! z`}63IPJ*8}b}%bM%p`=bIA$7C(w$s{L%UQBkyQbw4dVUo&?sdr(T^g?I0Q*Mu4QBb zhyLNDaaDOMW>t`2!O+kl9JNCh`(h%jL^xML?5iKA7icNC!;pwhT)MgpM3|&q8<^q| z_fg!vAQFeOEMiS#jkZ#q8flxV%4YNf$I&O9VT@GUi4#4{3(OHgs7eIgk4YjCme)`% zsHXAG4V;6^+F{+T7craj5yUKnE5vhV6Dbc|ajNZ?Xdfe|m-;ao7F^u@0?BV$~-J_hCXOAQYiV7SXk|u>~TvXAQ zS`u|>!pVTKx?JB4S`zdPS$xIr*HVy-Ex%U)S6?C$k+SO84Rr8&Iy!BDQ>CB5L`n-p z&q?&nUOamSeZX2+;3$Pdgy@rNngweNE@3Ap*1o`L;TZ@u>CjapCJ;AFU!UR}t|F?{ z*Y;_|mRWS`%9$W88kQIWLP-Zi3of#JaRSa5&0}Hb^ zZGQ9*@j^7f2FUuQLC!=GSnqxjJsR;j6q1L6p^>k9l8GBAapf}c6rTl494FbKLzE#s zLRL*T$D(?OLkJF<($yjPXlkmVUWmIvu)9;bU@03y z{bT{|R(sok6D7{oqEZ0^t&6D8tc-JTq}kVs-u9rORh4BAOCdh}NcN2s2TI z#0R~%kbZq*4Y*U*yxhuZWjKi07a*?BS!*jqQP&{4jpJ@zqLzb)NKY{vld*+`b*pb; zp#o3Urvlwn7w5w@7V*?gyDl%y(iiAT!{u9D-Ne?T%+L%mel%YCSob^N#h7%Nn7#)ASIr@p3+!9sV%9;VH_<;Ulrc{mKzx%|2Rp*p z2}HICZ6~}Kb*P9wL=yb>JF@=6G4+EVS^+sgq-@SUC+qo3E< z*Z5#S_f{OrnyMD?Lmw0I{P6fk`IG2A0T|S3*5ry)AdG+B^pT?^j4$u?n1}QsTlkIn zA{^ZhMGWQ_i9!%NpOq#c7Q&136u6e< zZ+z3<|KLM=?bTQ8xpQai<(FOn*p^*I2QQ8OOcli3SHAicTjwkJw{PCIO+*a8fVlR@ zKl?hm6eIR~-@9Z#gSiL=|Nzw%{75R3LrMA0{KX?7NIbcV0q zawg$ClVuS?&h6jvRX!mC3}R1)IY*&h{^;_D_Iz)jy?Fj9`xo8a_P_i;e`Mc$>m4UT zzxL%X+iP(2uHCt3|I>Fa*~`y8gWgiLeE=c(t?M`Jr(Sx=e&LIsx4!;9yN+j#am2i} z39*LOuU+N~?f1a37x+3sdx<<#=*!G<>Pq$$CHg)6)YJBxPe1DiVEzCuq(s8!`Rirj z`!xY$ z`dciL%ZRUJ2Ie&m<5coq#=^^9M7%aKL?DzH>_`F8#S|>^4m?4?$8f2ETq-PLwO3qB zQ|f-$e5KNt3M*BX!f2-hC*Lh$sqj)^g*cRoFBPUfP2EJqNLy?E|A24e7=$#X##7aI8j@O`6kinyEa^5gZ)q0sndNNcEGMG zoBr^Fn|5P}de|HU-W){78T-l4eFYRD4j>rk=I>*Wc-Xl-E|#R!G=#zZnX90`!Aa7W z?c#+O5qrJ}@-uvFkJ#M@*E!sFi;sK`m#lK&i#h)C^FIMmHOdET3SH<)4iI90Pr8)g zC$69lMu=e1p$6Fol-?ae0_w5Ko{YH?Ox=iZsjNXv44vh~Rd&@)-&AvOuB&6fUViae z2&h$vPQq0dAI}X9)evktc`bc5h($h(=dcfWvFnWW_H?3qh^{om+B)my1I*&cfAl(Q zsya>tq&U43(;tENmYp7a4zcJd@Iyokp?PQY8XP?c9yoZTV>da;ea2pS@jNh2phtO& zzL;m(f+RiZm+ZsqmpC2#g8kTMKZ~`8^AP6fnR6=o z+Py2Z^RkUjzD-}O*!i>P?DVOA4sop8+%$V9<)_&!msiK_&G-MzUcC5aJ2`mHPWBD3 z57coYeAaFPV{-Nmr<{99AI6NU6NpZQs5Cg4>SyEdhfbW!Tu%ie_x4G3X$;29Hrou};t?i`olRw{gIW|(vzqLR?W-uNu$a+>{6(KJkyZThrK z`kLCP#jU0%;vbKU8;DaM+l+4pvlD{6OUy6Zlwm4_v8?3Et4mqO8S~?Gmmt+bW1t439=b| ziLdka<`!Q7-M2D$ix6~TkR<8@^}LTaAB5t*DiC6k6++lOPS>O0qq=$3j=LgB*BunB zw{eNYyM>oXdMrVu+T&xxfsIMy$#tC2s|vo!MFdEE#^!~AW@~=gDiOyuFqhV_mA88T zdu(iL94I+qi{n>pb^ar0F1S_F71XC`PFzdJs&BQELFD-4(a`l#tFc?yK^{Tg5UW(a zIqD%vnGAbgvAnRkU>|<;76%#NLO~2{LcF9a)2Jdpu-ijAK(Ow9kW__m zF-39%FGx#>6suXEAbeRn=9kd1+nAypTxH(<$i^pT;a))`z}4D9$8dQCvo#o!cH&6r zkVm52EX3LL!jOG<6VWhs^F%~!Wfve6mb`4l9Ik72XZU@a<^;2r_~rFU)*<;vuA=R1 zk!#s$%*LF9z-pzx-)CQd8!Cg)Rd`e4UmE>ID_^00#sQP}+*V=*dQ01zh`^T@ZFYGS zX)=dnGAX+|46~(t$mUi?kT8Xh>U32()-67y&&N2RIBcsB>Em-8^7#l(ARIxdJ7nM{ z&p}u&tfCXELq6zl-W$CN*Kh_dAcnlzv9l21OUvW5()7!g~CKXFJk z-WkMUq^o)J>vwLfYmf0{xl}$&^b>Lt?$4wPF?#T;ESrT5Q{pOITz6kcfa+IC5IYv= zj~_;99E9G%>vB{Wp*2eV9t?+4IfZ}dJ$=bZ@py_8v_HVS%5VM2pW3%)7dXKuYwcQ; z8P`-nf6K~3zSu)K$cpDh1501f8as7K=d6-`gGucEVj+lRzQtY0NkM}zX8+98B%hc#Ga z9WQZeb*bL^Bu58DVrJ=5QK;Kjs{$O_J+{K6mT*d_>~<+ie_-T)A)Vgf_8}TaX~ur* zr+?bM`r-?A5rR0a-Hr@OA$_9Y15<=y!2&`&DEJjPE}l9Gc|2~hO?F>1O5+*xDfX~= z3n4~0M}Z-Dg0nje^{lR=w7+2NoJ^!AHgUvHu;#lmCPTGP*_FZSFHQu*Wh{$ z(0+KUVD6^j(p|grUAuJk|KdzZXgenoReuOYM!AsWcPEMHfl{2&+*K0vWXbI?;aMpozmCK(rz-DlZN<_vho&n1%WaM%F2ZJF%7hMxdt0RV2$2*_9~KfLmu=N?xa1ks4_fS_+i&8M75kLZqtzJpOYOo{ ziWpQ3{V0xL{!(i21b!7KnEN`OwhMz_;*jW5J~o0K(ZCSO=P7vF0jnVVFpq+<_ky@T zw8sTT#Pm_yK zu=RDABnzxEh`Mb~h@nNT(eG)Lv{J@*M5tk1 zAmGMfmojvBvxGVX>xU2&PWl)KDOf`FqIcoLrF^=Cn&3XpmvDTP>rwL+ zmvtO)j=Js%r=!A9J&p>axNRPKS6@*Gd%us#F#e>EDgsJzgmAj867LR`oi8!|AOau; zGV@m~Gj*9%a9iLCYR%C&Unkxz2qYujxsE{6p$kn?eHd%aa;5%c-aApn8s)`>SbwJQ zaQC%QlYzOajWXdprr=my!k+T3fZw(m|?1CEO*!R#7^c&5zfQAL6Cw%sYgqPL-lm zDM4x~4ijabkBTVfX09rt$znKQCybdWv z`I3No{RLcg;ZKl5zp4#cMd4(sj>1!y(|Ck$sce0(`~yTC~5qPlB!m8jK?QhVOe zFREM6ccdNwbJZutL(qs94&Vh0aYkhj-1Q|PkOf?A>>^P)36~WTXbL zj0pIQoB0vi(oYV&ZgsgHrq>NlAz>-)A#iv#HXEAodIJ%=IQGCf z*wl_V{RyTwxYyYOyk#9EKSExAx`n%9go}5f;v7$f>e9Q1@Vf^w=&6q3CmAP4g7i4R zI1U^hy%Cs9p&xxPFl2D4mckAd+_4$Vi69bPWiVBNqM2Aa>5}w%B`|>< zK|54cRF~Eo7T6HS;_nkUL0L((xM^W`AiR4vATR?}w(8@XhoT6^ih@@uflg@YOE?HZ z0x*BqK=93oApAc!z{RX*ag@(wndH^R=DJd(6HYn2Nd737k2{dv3tvxD1l+r$C~U9S z2;;E%_JesCc*li9gtHfJd&L#z*YjcOPz?7dd5d8czx(I}K_`S1sd=wJjazMA{*N~Z z1Q94!!J(3#*DM9av^vW1hl$IC>kx-#A$c_C&~+2jdmFK*d;x3RY0K56VXq&N6PnM8 z3?gL3IyT(%Yk(&JA*B}%4&T!WH*kdj@G$C-7H5YQPeph>J&{-NWlK&TSNu}BTF|&0 zXU{+yq3@@7iO`FeN~F@Oe15~OtRRJvTW!ZbpQY4G*+gJEp{BLZJKw1YpovIUTLc`v z&3u>l+~g5V@;koDD$cCR)jy#W>#rBJ2$#y!E1XXew9X+)!ed-Wp+HX#u_Js#M(-Eu z?05k)BvN1N56E62@K?J~XZ?xL)D?O$f$4e4bKONEi&`Gj|XvqbJS@UlEzE7mB!cnXpwv%Q52PVX) zxQ@EOORX7hsYRl7RtfEufQu`cwNP(Fx4E`m&@T{cf zNJDLrK56I${a4jcA1@9f2i4zVpkDImhlH9>`XEWhu(EsqcnM*A2qUp`9)ruf{V~Af z@kBvuLgA&UA#*NY!(Z+iI(5H`q2X*>n|meE;-#^mWAMJ16lP4G3tL;y{znVF@BHiWAYw$wI2VWt)@P=h4OdxffqTU$EIHaf(Gm8;MBo9De&3aj+D*N*ye@QfbVF z@pSM!pN5phbM-jt^w_o~eH?~HsR5#}AQYzg{W}ny)kj z25jRB6L8AG*TUx=tMy3b>4zMC3(v|Q*BYe=mnTl1BSr-=zRoEP<*5u^K6zQWn9DJ@ z-#u+eqF*P16FdUeq$i=Ll}J%fLJ@eXzrtN=u>%cO7LQk;F3%kvcl`~7o?12J;@1hy z!qrxAB1}C|Insnyzd?btZ?#vG?1gJx5E|0sOJZA`1Kj$MuT+#bu zLJaP#2ADp=^|-)z1k?|iMF%LvDu4CVNgE#>wcovc8>)c;Bz+GC7+i9O0fV$)JnZQA zqVnR92}4`oY$683q|g{uykH52nD$B+CL&=;JVD`^M9Ql?u}r^vI)#R*Ff>o?P=tX0-Fsny~FoE^X z3;mHxSI}n8@f8Qp!>E_apa7RJg(n5%t_akliPA_DmxJUeM1aAsi&*_lDe_n0vqCk73-jhv=AWdSC@gooG@Ul{E8cF&4ivt7 zDF@0P68S>$aQeMq3w^ok+AU4|t`x_z_);4x|BfhM0clx0q`VF{@Z}Q&_EIM&i8&Bc zCS_+1%;;;?^YQ9yNikr57gQ4Dp7jvl^_-92xmHAM@@aR*EAMXC!+B%M(lA1L-y}&W z?nb!sWf!$h1Xpxd`k1#U>Y>-&V6z|tB9DVI7N(7WVmTqMIFEnP=d#7L%B$y4MuZga z0Y-cyrQ?x*-}zJsb7#!MZ#hIBj@r>)rPB$Ihp$kN5WX`3`+PW5&neUOc@*O3-r_vi zwAGd4@+`{%6Z8qI+Rj?<>6fj%_6!?fH{(~z_u4eInq=U9OP@@{1-f0%WlS(AEVc+K zMQMI%J#qC39tvlq=89@4QX%Ox>w*A=9YFIh)e^!kT&jEM>ky_j%cr8hLJXp&DC68|m=Gxr z^@KG&w58x|(fB%3sIkxa7#J8z0}RknNuqQ@nUu$?2uF#b^(>u0)z#}unB0?kgeOEz zDcNMo)ewmoOQS_;V&5sLE^z=|Ozu0OLVyb{NSi|v$`N!YmZ+f0)Q5}rf!dqPJ;tE6 zur8)6sa01OC(}kMRitdtYYp)UWWD4sfl^y1ZSSxAs2sJc6M{rK2iH4GczJ<4!6o?x zSTN#ii)b{G@j#-R~LrpoB5dKAQt9j(2!%@3UJWcB8;)Eu|~ca z6Wd3reB*P(c2-!^KrJ0M#w5-gnpM>G^c*PYYda5V1y2NvPH&2+^GhFET1mYyCY-{3 zz6r9@fEU4{Swj10m5!HI?ZP*eO&o-Q;0LZA0bW#69?1h70Zm>UN+8%oj0l8I{?^yD zTPKF^)j;zrm^e}U>Jt9a)zqN|=@3SufEIM@Nbeqq0PpPtKJgN^;wUO*t_i#j5LVzL z|MeFJf6Ptj3{8As%MkZjC^SE~NV|xbtF3OqZs19r0F+_EX57Z-Z?kVD+(V5C9UAmX zsx)v=oG!vtW_SljZ!F=a12VYMtZuf8gD)UT-LMbtz7gtHFj}GxAq!$?F_pokI_8K_ zwY|qHEX1q*Ao2W9ID~8vtQ0LTDlPSW_Uy@vm>*iekMw;^``jlD5J}*Kx4t}h7L)`c zPx(vm{Er}|chNZk+sdbeNn$|=g)5*CQvQP@LQS%S$|+FERZb2@lF}0rk;@R_Ch^=J z6EX3_h~-f{=+ol@wmenN%;q5-_gVTM*t`+nv`zx|h=d)59J7jb_uG;9m9 zZ-*ggUucqIa$|t^0O8=}A9qUOt^u#9&oZU4tEu64P1r!laDU9N!ZzK3Ds@nO!jceD zCCi*A^S^d3Yu~hjwM#?nn>Rs1>Eif4C|;kAbUQm@uXZ?STRx8M!k!Cdfj;2+h|SF2 zVh^mcy7sSGZTm$|7(b0$GhB7yVlB(*Q~9aYc+zQD%^w|3ae~HyXq+U2t+447q%jn3 z-UK_MnHRpnl0qDxZOlTcJ;im?rYV?i%7tgm8xeF_Oiu}(2oe#cWil}$)I{jWtQ2|0 zc9ba?aqUFc=s2xT?8?qv;OL?6MSfogbaK}*3%@!n;eD!C;J7&+V5G!C6JCPBpReH# zFFecFvF5yVEVpPYnLw$+FK>6pAnOD|Q3#}|xf{-5lPMR$mOtMBpE~$SYRGAslMyB9 zi z6-X@PRYnGy#iaxRClpn8X@BbUu;9wvjMtS2l}#m`*bCfA_6v0Vg7IY3pfE$E6Tp)B zZlE4jA@db1d`jztHRT9ZncpG=xO%6~w4>;1F9$qaXOMg%<~+UX%%5C3i0hZ-IZJ!e z0{*N4;Pu(0eA-cdf<X`Mm*1I@^j5jUR8Z^FO^X#NO zH!cryjQq{R!cPLx`yn43Uqc=8;o(V0#S}cMs9mndgc$T{?1JKxV6}iIkFSFaByIYd zwwo-FDQq=$)>PS7U*IqaUuKioetHiBn6j8B3rwN+)xODqAc!I8F{~3mq$?~rl~f8z zgX1EcbU8{w`-g^`qp|Og&`b8Gl4%w1lbQ!TyJ?#wrK%@i(z-u%DY5#9)g`TkiLd)Q z=JOf2y`LTIw}1K%ejH!Pcy_=;fEFjVA=Y~qI&EmIbb%lYi_k-`Kc;}(*i7K-{jgUt zjKk(HmHsez>{k9^V3fjP@35q^3lf#W-7I5vX|v9n8c$kt z-)mOWdC`{BxNT(jba5f$Si7}0qP+4)?PXf5aj_wBbvnErQPVeSPsxHfH8@TEqf>B9e5PRkrB1^e5toJn6C;#IGE7 zfY6X>u0SY(hucZS?jl558XwRpa4N?ibOj>!EeIpoz7s)Rjt^k;hA6ud@v(%B7(!;X z4e(_UxsI}B50CO7N+bpquTk7KksOsysEF7VaV+8)*di*u9;y<=7$#H7uwPM*N0~|v z{*+OcM66ltysG}2819~#ANMv~!=N>e+PsVk%<-t+5-&S}27GTTQB?Ge3{49kb-NSB z4guV$L3yecTY2?%8(sM|939~09<+}ru#-Mc|(%2grP8v(N?H7~Ti~pZ3h8*tpfsqczS`IKy7FS)kSZ>GBU0`e}l3pbGDjD72%xQUff_M9_1XG<6K#UwZKwJJa55 z|Nin-`)xdUxDjR9BE(3tivu*!$P$OBh?zh(Xp-|BK$k9Eak}Eb3U7z|1%}EImrOV; zB@2s?ieOcY-Xd{WvVc-}#;|xV&R85C-{W2B^{gu*6W;tcCX4N*wh}3(q%oWB`mPMw z`Ld;cs;kni^Q?H~2u5{_Ci7To@h)jHA@_ILa4{+^~K`WC~#%6(`|xR2aKe z<3Mm3pCX#FS-cpPU$DM`cB{oEXLVx-gPe_>ks5}mW(wn@U0}=-ChaP;0o5^>u4_9Ru&VC6y`8BqgsTxjX_u~@nthKduIuRm+%3~A5z{e8_UQSN;z5?8nHidVn=9X5g!|t98A&-pR z!;XFxZazC9rfO_#Y|`#eUbm&}bqK>iFvNnUl{`w>Hl=zc_(qt}Z--OyRNR9n>)w?5V-ms6(|~z5QKV+8DRK zrc*Z1cFxw}Lf(CF4Q_GP26~@C6puOX2%p?mg+ckbASGc#_B&{t3vMkzsS zfz;qD-Mg{JLkTLSc;JMv_!|e6((5_C$M~Ih8M!W9Zp^Rv;%9~F+8cIA6Mv7A_Aq&4 zd4+dvOl(3PBv=t%Y*W35V1222JfZ~Wf?zgimHvVEC#uleI@+wix5xU~IMNbH(ARuV zhPh5w7c@!vj2U$yy}lZg&%dTD@6S`U_35smXB#%b5+)$7l^I53T(fn;Gl`P zkPtPFUa!9o-6V{g&l2Co!e$rr$ixBLk&AZ`kRlcxK&~m3AAT3f1*{q!w&x)-x**=B zFmhu{q5uFu07*naROq`3@z-cA4Y>BKYGL!9wdVRkJK6uTiSa%?g$p_S7%RTFBLh)4 zZ}aohybnMq)-${D4ZgYnymp9$4tK1yhJoYE+Lkrd_u%zn1y0*KMC48I5(l4;H)>o} z(PF0uUc?1mHNK1&{DZF^KeRoarywlLA#T10QBr5E&3)Jr?Q)~ZA_~PB>uBqHEjo17RdwKx%~`OjDsQ#ZCte1AEw0;EZDn=Yni@JF@J_<u%O?|eBd$;N7Y4C0)f191f zXYq%(z7L19)><07t-b*lqqz0Vtj@6BNzA$q!3A;Ka?<7&W^8F;lQwR}lgJ>hPgmj8 zE&F=d)Ch-?PmBy+r*WP2b{r~g_!NKrsgxWX_ZY*%-J$F2^(og*-e~Zyl-n24R-G2tJVk}(vh5=nx(&* z_|WL1AIt3e@FnYL>9>Kd6X1{MYTTtt9Nyf(c zoQsL$osdA)DFyKw*Wu$R>79H(k=FtE4Ve7*G+vbdC`IlnNesq5kEsOUu#3|}FapjI z!Ihs(W^u>Qp49_wf^wv z(!i;3`C7g;zhHkgJ#O=Bt2T+9tZ}}O+cDV72RFpOxPk%^xQn6md>OIy5T5^i)H#rc z@bNx*3nk5Tm^l*XXp+^DJWT$=T18k2dsG<88{r%UhTuHP70Xs$J^wIp$m7kH3z3sX z+_}ZZ>O5;7yy`7+n?kRJF&m%R==@Pzo~}5yl{=*I;9Ojc&xeL5rPVs3c&ryf7*xS! zn};K`urzNQ&0B2djc~6jAq@N2$j`y)I&B|KUa_J3SFNVD%Gw|hJ6ih@58`8XdKF@! z#`V@jOx_-T%PyR1g!2QjRo-oHz5fxMp?Q1yTqnd_KRy8_@yUC|i7<&otIAv83ietT z9JAT^3A=jhP4JktbAvD2K%Y2BFW@Km1{^c6MNh7(tk#A`KeExux2y$D*+9=l2oi`I zeD8jA=X-F-%E*K7=c)lquR&BG))cYX+jZ8Kaicjre9tDP@7tLZ)z;VBi|L*!{3pK! ze7s9>Sf{FX+HMS8N7Rb}`*U3oNL@BFH(|H$Ua@m0s%&uZB%HcV+r9(m7HYvyq~dN( z;!}ya)utPWgYOJobq?gIfoI{~;a3-*y9-PBQHCR00cQ;o81819o$7xE?pex4Mu+U) z*i8uAK07lAk=HYT==W`3BFoEb$lqYsZ@q8h(;vB8w$+UZ;6DTLo5n}*6+DElQ}5TT zySoJfzMsCk%ORF2=dx9nSHba{uqP$r`uq&yZA85i z!{cT!4JR~>_`HmdhV+(P$za}yHmabm>21W(+juw8M-8eCuLACEy|;_FlT))})==Bd8s7xRv=6TDv~7=43?D_(=?n*DG*)S6 z4cA>RR})JJLJjLMACh^Z;a)i81%vmnS0n&;f&CCMSh$EJS^ajH1?A&{5#jFDP{lYG zzU%q8U>p>O!ZHhSIZS&N<|}*-Fv8#odMXeIu!yB^R*P@o7us9wLf2>cE>1adF}1jC z6AKII?O<^U!f;*sD1`u@Jb&UXAYYX=h3RD{&pl^-b?DSU)Vro~+)SC^K`~liiLwU97Rw<0QR`o=Q-{Sl&goQ}-OAZ*PVW}J8=Rwtmue5kL4Xfgr$@!b`!Ls$e6UdNw#1omri4NmnIZ#YqJtn- zkOqKy3w2GxBd8rnD^Pl3@YNt%#-=_(O!>6E^1^En51aO2e9VT}s23p&yF1TWTf<4t z1k_q9zRxRaPqOjjD;Zat6>!-a>Ut><^&3En+x7r=X5z-JBT8OcUT`lL%jVLC)mU(*I5*bm-mV33c~zva~%HaT-0H=}*l*K-m=qsi+fCaY8sdH%Pa)hC zv$l@NJ-ao5^i_@x<(s$yj^Yx;;Fzs$KCqR=O+?~fbOQPA@Z0qHIN`H4{NRS2>3^Q` zXiUaZ3IZ@3{!tyJrztNdR1(I?I)eMnG7e>OiCdSIF?5JSecF^kL{CpYpbg%znufGZ z%wP7?+z5AQ>UA4^Fk<5m&_Toxvg%yZ~Tk0yT@#Jai{l#Cj-}%e`Xn*+T8@9r1U0YhTpMUOI zi2SZ_T8>RFoR(t*XvgL9U)QsWFCP5&@@N0~^Y^D&v_^bV)7{G{D9njI2%s=T6%p2| z(E0@llkQNz?RjaP+cQCo6xk_ZG~6sU_sN-2^aQuz>auMelZtIy0;#5SX%=gW*R=7i)R>ki;g+NI_a6n9LWae3`=OGpr zA&&4i#D^n}ikbVBl#Oq7bPXjc79pck!}9klqPr3}a}(1xa(~1s>ee{1He(NH2OV5k zTVJ*s_JwlxfOW*FB0AL{!c*c*iN;eE96vb*a@wP6k$!(gIt$ko;xo z6B&8-bo8}O+(z9`J(t6=E2kY7mmq$@Et4GsPL++1jX?k+dc_!dbvpz%M4jNPPMfMb zgjyvWx>Nnh{;CZ_||p%OBO*bU2=5ZgYoGK78J1xwB3m))a74-;mLoW z{5)xaA8rdUz!~0o@=Xg*ynMBaFMHgTM{^|b6n7>JB+AaP_@>FF)5**Y#CDB!9Zon5 zyRKHbJ$wEoM2P)}R3{J}&)XuRyC(GVL=-LZ;kC)!YDBMXjnkuxtH|`yoG6A^(%~)X z-}&5S-a2+D|H~(^aiUaz?xu_ct}{sr5fIX)o0*%mj^;HuL{-+;ejd)#GVfUG`@xyg$=0$oTrqhDkW7hZc^GjKrV}6` zZ5iZzn1RlX{7ZTFvR`&W>*M2|EzGUxuh3gNSaoez>e#uwv7!hk?1FUk;{- zgGryKXt&G;g!JZ$>j-8t%bu^LsT=%jArLny8y?>_r>!~NTh2-6j@C1*r-;pI=L$}A zi{KBVj=KA{s&>wxkBAX<>ZAiVC;LA`yDwTtV;_2geQtm8!T3G&BirmmZ#Uy-%ch2I z+BS!g8fx2|Bblasq;siL%q{3E3YWR%5n%6}6Y2?F8e_WRyB@-GE+iyS8U=X<9+Hec zoFb51%KSqCWsnct?a2$+E%NVM_`~i0Pz%KNIto!3VLSx9Frc7=#Tu4ghm@5yZJj*O zB-V%kXP+t(7vx7$0VJh6K*b7j9PY6I(S0)>2Oj&>C!(`!QTrwc6KzNSm}l<_1``3w z$e(9%)nUu>bWG5U1I9%%l2I;;NJ)JnvGF31OdeDU!&5f~v(W7JnFCG$)D zwsYMSr%35`Og2xebuNS}u6VrbosTKa5k!@Pz2`W5(QH-K*AWp9L7c3@9piK?CtW9| zuGtzm_4aZ=qoEE?&I!zyEZO;|&cRKaM-;dSw`Uw;jl&B12bVAf=gf(MttE&aP6|uR z31N}hn6pak(PhyyQ$=JVs+@_vx;AcO8|dO8GHh!*foW?tzW4z;Nt6ynlOaBQNSULl<{-*x=~B|>?_M1zEkv=e z;bAQ6cju_*jX>8ORE(-l8YdxRLZ43T1H8))tpiZp!@vj(SNb=8<2QaYzQp^^Nf<&) zFRFrE`uaFvl*U2j9~_U57e?u}a14u3+#QeIVHCpIEx(GF)O85(XCBcI@d};bf#C(>obnycau2>5?ORsZM zd=(v^%OiX}A|6_qnzpXCHfwKea8opaG3ZNzdYk{kOshg172z?yDfV%@;<~Zh_}&lS zn18=?d&TEq9I<&KoYHkUB5<$3?l5B6v7V)IQ0(q7Lf-x2_lF@)wZ>x@Z-SS=WQ_Yb z^$_2^@^L)nF7k`hG(9(LqtjQMQx)*xp zI8Dur+XyFqmpJ{pzL7!aY>m*A)uY2(kN)lor%%TxN6_CJb^@gl6DBLGi{Nt`LU0Lv zvCnQ$>Nsl(HUJTAuB@T&w>S!Mw*dakY;g{K!owk4hSb4qln9bq-0`hKl-?h^ zi!R$W2#ra&hRt5L={XUsvk;Zo!-GR7J;QCdYFaBKrd;K8>>MYYm*8S9ERMUbpE!og z3y6c^f=Lk6(%6I~p$3lR9EUG%;6Y=8`lD+HaWy@6*A_ElUSHW)l>Xz~0(NRwIr)lw zq8t-CODl^uyKvVD6sIoe4;@^ot8V4w^eXLw=pC+@2vVKoO(A-nnj4|sb8i1|bp;(n z%(1K>W?xwjqIHRO+c?}<%euC}N#o%McWhzh0r-kPwM~1>+04?AfjDKlpHFWm>#A+x4gbGiVf{a``4o{ik=`g3dbfUs0ZXHCz5BWqdpci zrZzF;J;@l~c2RYt+|(QzrHpM2@7xgA18H*aNi?uRvheF4BDpOA!8m=RkB5%tQ$cr8 zur&`!UXn8y7Y;9npZHGc2fmcY^DDf9VZNS611^%b&4l`muAR9uEKg3s`vtCtgGm9!m2v6p@dP z$$qH!gN*OJ5LA9uNp*eH>!>)ya*qp6gm;*GEc0~->9j!t4`1#>5BaJ%$1H@kF?G&2woxZH#AkfG?Y znOiO6@3>c%!L46_Mn2+0-JDHmM2qJG1ks$|F5Ld3k&5|oQxpjkCCt6n^kVYo16AvMZ2sjXeYGeMf zG>zd+Mki*Mv8N{yCsZl~-Fxs}uUT5}vh_9e3*pGB zZ*;mjgZNgQXlc=8I50A~u*QAP>M$Xs)65&_0S*paq^)F7Tcaaw(+jt}%(|K;@S;u7 zr`&`?Dej_d2GaaCJboEm79k$zeGE)5+#t<@HLSFPYbD_eJ{DHiXhX)^%o0Q~aGDyr ziRa)ZV{MK@HY;lnIQ$~cth}hK()M@3S4;qL(HX@)H#Bba7DjU%(;>8Au!n$Lu=3`z zd!{76gN^y(Ovz_1%Vr_9ANh&^j{rgy_v@%Ij*?#p2#=$}@QOSZKamFT8u`fh^wjO( z4SXDZ`bofub0F4?zETjK=y>fKJ4j0w5Hj7|P)w`DuIxphTqNn!%g*uO~MO>|Q3I zfGA4hSY0U&bBI3|+>uEwM_xe!KGHdK(KM8x>nkb)2zZIfoRh~8=_GDRoQZhZJyeii z(h4shJVfNVE;uQ|~EPGEwVNM6;&-Om9-^>DXyv>*RTr$Zcp|Knao zXbX8^k-naY>`k=|Wk`oka8!Tj0}!WXA~qdwYQW%BJ%U?4ac#j-sniYLeiGYCOC7N) z95AI9Jhg-1%L@uZXb#Pw+9Gc$a81j--O$~Ww-XVcAY6`EKX?oQu1v2Gr!w7L9k7I_ zaNooRpmcHPiJh}>V+}7j^_7G6+1Gy>&S1tqx`BBgM9CWv z_ugLKPxP(0xqKkVZJ%@xsSbpsJe{b0sB_Y8s-xOkOc&7bF(BO396`LSIMqpQAP+0x zEDj_vUGEf#B4o89i#zLsOu1DL-r^;A8XLMoU*zKzM_~9X%qTE4x}wx>Rp|!oUp{S5 z4}1v|O6Ntt(?-&-)Nz_8*JIxT8qo35WID*TGu;6*9R%=?RGR(jt%lt%&3^I60Yi;i zRE~FG*kF7`)6%L*&A;>g{r0cE_EoF+?)Plwz4z^Zee*58(r4{g|KZo|nI4pvSeJT^j!<}_!NLz}#8>v zxG5(#Tu}`=h~WB>@?YyIJ+*T1M;cy53{<*l6J8+{M9u|Ub2=Rh$-!SzYRE?eIS$O_ za_Q2+rSxenU|t#Bc@X`E4xJ1`r$j9CKYC{oktL$7T*OL3u#lPrDvvOsPrL|J3UI>3 z!HbYVj4JM_xS?tf5qLr%5GaB0k~rVFc@9+P6=6dbTtwp<$vC0s)OD|m%9=qEek;TG%m-$^A=@fF%`3lZe<3S zcB`3L5^|7)!yMFDSpzUHgdf@|7FdC?^!ydZWT+#x5fTN6=`j$jLImH+1<{q9s?Mk7 z^fyFcsDt{{dzsW+-oeBaz*Rb31wpxYPp&xHz@L?fKfU`OZCISoGxPI=7>q6PDZcN$ z$bO0|{%NRMPHezrW!_E;R;lYSV{SJXrQm*CVY^hri#tqRj*8#o&=yCn z!$I;NzMdkC7|Mtvck~s33imB8Aslk$vm1uZQ6pa;R!XQ}ZMF_glYl=_4|?Y!+Mg8c z^CZj_5pV@tbbtl$fQxb@`5j1j7U8Avn98FZO2Eb80U*H8J;|puF)%krlal<#5C45W z2cV&NWmi0P@?<$U9!Qud1mZ+^ir^r9Aml>o0EA~pgCG4@^^?wWDTAWQYOT1vTp8Lw#wP#+7Z3ur6`j(a437PWTD-6HiptG zdmyIu!k-5w&)jyqo)Ck(wak<7CoS+;w18%_HV>8}9(8h9to=H^Rxh-7SoWE1`yV(h z_8w+t{<}Bc;uJC;vcwH`cUm*%XsWa@03n4K!^L39mv^k%UJGlo2gIZg-47D44QH=w zFBmayKNx$#KX9BD%qQ0;(gLwx4_6rDp0OldJ>QfIH@M_kb3|Kc>`EVc`Vrxid=$w{ ziGsv|^LS^Y5g@M`%BTsE3^>n9P}ogFA-S-SnT8|tgcCeO)EfM{Gi+Th(2*OHM1RW2DH0}IlH9st*Z zuv}y22S&{K(ESN9_)wEP33$>1k3$P23s9Wdy!xpxP?K(w?_m&lPdDKU^Tp@vEaG7_ zSM0z2?sx4rK0p7npZ__#hzWys4xY$QW~CINSp;RTOsj>9x5Co*I8^ot4o_NOpB7+; z(0mZ-L-1rPCzt zp+a>4uOy99`;|iicp~&7C?dn*F_j_05|Od%J?g|PHV9qZ8;IuwP`GJ%5Z>V}{{W1X z>lCtvKv<+Xd{ZV7IJil?yooNI2yX0Tv)(`|ir7}Ug$PBM2fC9J!d-vil8&UL9AG9K zOI*U)^)z$HCyBiNJd@9xM?d^kRdGN_<4Lk{aCRNQq~>n1*O zof3SGcoX`?RTN07LZ8s)B6{iH$kp{;kVt=@>j^QqPXm1#qBVb>Tt9j(;2WC=KQ48l zmhRl*%4FYSBajri316$vVo&U!eDMod!LPO7egoG?fAtOf`PW~!&zyhCdg|+KTSi%( ztD?gtz|+c6a!FBX;nKL->q9t>tCDF{Mg+9SeXlYi{5`TCThxyN9>-SMA2OiWuO-LL zuDCJQHQs$g7p0V3MT5*abw0KkeDh?^PZ54XnFbJykFSjRD6Xlgr@ba=xfSpbV#3OiO+dwVphgN7 z-J|{>I1t1!nc~SGE2ZFs>#BTyBAOr_eyK<`QkNR<&kP4kHn%Aoy~4s$6R020je=BG ztf}ttITje-b8$R`K2-{Gs|`YBX$Qubk29q%eLW!tOSj7>5*innodZmrm=wP=!UyIj zg4mNn9)lLpIM8ApQPF70y)f6ct?p{Yy>L8^xQOF%;&m`s3^EdGycDMo-CZyUHM%_=KM)t&m=tO47{oT` zDeT)dL5y)aRmL=w5w4qzMbBZYZ+U#m34>sNO~eP6bHPLrg<0rgQRQ=v3v)>uEt6G# zb!#zS(%y8!Iw_}|0}nD!k|#=n0p=n3-o@sjzUE}|SX@9M>)?blT(An<v`EUIe#J!-LLS32X~0DUm0;@dL}zQCwKaEOM{y1lI&0vjVg*O} z9IUca2Jn1+2+%!{h)vwwHPxTOM%`&^Z|i|z)S(I50~0DMohNK^_71*zZ&J31Vzo!W zXA4Ws>Mw;msw%{M>uT+_8yWmKW7{z>xCBf95;&so9DWG$ zoC(pFlYlr#HFD@bu`q>R5SYuhAazll9q%&hY(I$|zBbIuV6JB3Ds~hxG%jwNKzKVl z0=yjO71}Gnk8lawwWtuMXysHoZ}KGTPBatPNnEMh6JoGbt9Uulo##uo`U|BhhQ?tNNbuO@52bzG9s%kwKioKe4={ zY|AqTgoO++OE=CrL@d}&Jh-l$2tAqRaDy+zXPuMPg~yLR{Likh$++;WpKNtAQ4pOe zJY`5+%|ryIOr(fl6JZ6O5QZ|lA}&=`MIGKS&VmQ2W-4rIafo4+1*NzB89Rx6zRIdJ?)&DPplz&gu&&N7tE;QSmS4t}@UpUr$rjbE98V=W zJ*>VC1hd*pTvtTR_zU(mjA#9mZ*~_oyO|Z*6dYtDv8lER!WCoD08zW+oQ{uK`i1&R zWhPzL063YP!QZg2Z)7E%n}31xCxTCAa#D1(n~s5^Q@f;Ox<;F?`cJ-#Y4=UMr(`Lo zt+|)6((MMZA57kKQ$HFfY8_oX`jhUDatTUt-u#-Ihp2ujyh6T!g8)Q0O6H;JGsaQi zhKImtUd*eiF_vU6gsbOWiNS}E*abi_!1#XD{DSkTgh4xo&IsLC*w;QKG?+;sPa*zD zJLo7q>xC1Ie&S!RY3m43d1JdjDx8>KFpmo3QS-;Lh09T4#I`x? zy|5i3K8J;I9O)0*2K%QAgF|-lf(W+|yD&ce*9j`csqyv87OT00KA>F3r6B4yA^27^ zb9Uv%C7W5iW!2Sn=o69>_h6Vh_B^#!oe)eLw!Ah0A-Cb)Hp($!vbcI5h*_(`Ye*$t zC6-sG5c^68PXvcxAO?mY+}MEpfRi>lHe&DJ_#1acCULZH(kTcI`3}~~zKzX04tmwq zv_f#;8DrrA`QSn^Kg%IlQ>jiT7OPW>R-J0bQ1Lhf4LZO)w>GsihYe37E4V*ffO{pP z6fYYPfm?7RYpVG8!!WgM-N_g5)@CDlTN#r)Z$S8A>{>>qo9bGfXj@xfv?Yu)XCcPQ zAlM`pb(1J83G$QNiPws*whQ3XVOOsGIfk?E;$34MPH3||bN8BcM3?LqR#-FmLxf2ekfp2He^P=?LPZ3s?uYpAy>uancoCmGyF2*NZ@S;9!aasNVe?Wl0&X@=nci$G`dlDR$ zb>>0x?j=P?A*?(u8pVrN@p}Xj?;)Rn<*&j#`DY=uGhNIP7J$&WUR$LsNSc2x4I__x z>>wJ9r1^Y1pJTa&_Xs26SeQ4aD-{;wbdNBUuDJY|&S50|<5g5zdM$AHVx^UUKjeP? zwaS~+R`cok4$_!Rl113Zb&vIk@OG<9j4yRRDvYD%-wmhz`mj{K!mz`(MR7d}VI9je zV?g7;X+{du7|{YJS9VRfJvvd|Za??g*YQtUXTSL;|DVlWx`dDVHCw)L!Jfu1XoKvi zAwrgmD=ljpQW9mcEOQAkOOcOJ#e8yCoI@19V;&y_1LZl+>rrqhF8?@S6vN!_y;M6q zE_m#R`$O>sed?n;St^rTGX8zUCRsI>!+g-BaPce~x;At9)YbQsj5KRk6z5Oeq|FU& z{8diaY~dY5#Lb0MFF??3+wGy7PB@+)c-1|Uym$R?fV5?UUFWO=PTPlf-p9+teFz%) zAf{|4rCiaKTLbXxAT-3mgQF!ohH%KTI*5R;U%57Gt-pxj-*a%(8f-nY&Z*WiJ3H`# z-5b5-9!MJSl2TpSfh|JFvZht*+c;qlrZd*naf?L2KE+j$s?c2{j_8yUZ9Llb|E zcO&gj+Hm0RZP!42o`%4yglL+valDnx<6T3pNH*}xJoMm0bO@UetIk9Ct>J3!1jdce zSzBu>+*jP<(GKF)P2#F;Wa66R(cg0c7j1ZgaSkUqawtWV%eRTT=5S^QFGEZ1f z$4NZE%wQRz&br#qS#w>V-M;^(&Eq1lvAWxyKJ_{tLgwxE7~Yl_r)Zm3tOxOWjfnO2 zSw!Lxw;Xh-sHn2rqi@>^?)OghJdgijJeLr+il>(|T|Kz4o3W9}>u`)mz@nNy6PK8N zqtCQ1$!N6p>!7mr1qOcsbFCB@v`-z-a9A74x#UcfIKcR4uSHXNn`(OQP9Zoeq!C$y@D@^Mi%>v zeO=a2mBO{ws{PMD_<{ZUcfM=?^;*V$`NbFQ>9%%j;;Vg2B9dg*%8sEHJhrX~k^8=D zh^P5s|9mWCPmO#G*Kv%!V?blq57pyfhU$_m|4$_G=SH#VBw$6PFOJrCE zapFdiNiBjB8iqE7K+t>vuAk;2E)CHmL&$>L4EOG-(=Ve}C)Nyv6Ng5YR>xcqtqEeU zuk#f6RM|Lg+_IcvuBxboII1N~V&j0ba-y*(8_<+jVfD4GxHoIH#mNV@wz>h4)@r?7 zrw~Uk;B$AuD$DCJEp-v@7_Q>*D=cnV4IHpa=DSY)%Bx6AbHDZVoP}WQwOQQ1t*mW9 z?ADrAY*>HyIsCPs zu*Lah>O19}-=_L5xTN)P8u2lVi@=tq9(n`6%fLXQZOwcj*NK?TuG`EkuJN3UOWz{H z*Vu{#8A#-=@X;AHFxv&`5(ON! z9RzYW7#bpSrIdmYl>b9!9*Yc%5not*GTH`{clzBAZ1nvPY`d}6E`IroR?*YNhieVv zlWjVR1otSTM3wdo+Ot1sHnm)70yz(MFBrSEMLu_U`nX{fm$%#dUU=-5=OEz`?tX1~ zAXqU`vgin=bc=M!9i7A*m56&Twl&zful)?J?9%q@-@RnNfBA|HEv?wE{rG1&a56|* zHW~dBA*qiO>DBO;)e7j>L1%T6{D*Lh?OLj6kE05oL@iX-arAAedi*Gb?bRO#t;fSK z#35mv^5=aSJ2Vbc#<0hWljWBZs6+VEhU>!+}*Sf@6Om&c>`zS$emXTZkybz zWf6I1xyz@qLEJSoAl9tAz@D zHiPdid-ua{fbWJ4_B~@~PCkz~x&h*6%ZatNmQ(g%YQ}EB-5eXg1966nwwJy{8tE!N zV?$$az`;aTtM-GtS&cnDwd(4|f)*LPc}O1+j;n}P{%zv#cRLFqTv-p1&DsK?`2N+u zMx1=h#ngQrFW5`ZeF0rOd6VR6jM?R@-*O`N)fZbih22QIae^44abpAD z>)9H%NeEIVSC%~4O}VYp2P@Pu96!$Dz}>~8$#y-W=5FwBhNxe#Z(aH`G%Rn~K>u@g zrk@XhhGue9SRc$SHY zaqDT?u=4%}h?+KZ>4xnA;?q<$B10+fNI#D`BllFMmZ&Wrz1Bjz`*Z(uhbP*}_&0<<*Wpmb= z;o3D;Hyc$%rw@}ie)vQOF8UF>_R~jIHiDR2he1Rj&n-gKrl!CzO}%IN*i@UL*Qj>$ z3xbGt+DgrXuQ;ca<$XrI%Q+xIJw!64(8ZKkUnYR0LZvYv|IeEc&Qgz&T|;SvR#r&& za+`i!u$8Ubmac{HTpzcEg(+*VKj8%4`sNA^yKXN&_cZ05u|*g#H8na+q7{#d`Km_= z5V<;G&cGo=%64Jr4JVXCDpf)FIi04Lf=g>>pcjR(dMKYq?;*s4^FIXyUq0{15}O}Jm{jS3aG47SINqiNLV=0W4VVSs(@JvhKec;r!;1TFiN0V6tq8# zLU^%Wg+M|dG04zGsKm!%+1!fF{vUs0E0eQU&qPQwk+YolukK=U^Yv1OAH}7+!`5{1 z0volsHQ>OXFex?o3d=g|b0O}B&8zfB&A%56!9M7<8y<&&v0GV>3k>0>wZ-SR)|n!N zeVi#)#%fu}G$}fo8|^2by=cG9Cieg0%lLo4d>MVCO{=e{w5Q+@wjmai(z&l$UeQ1h z7J+^&Uw7;CBO@Cc^2lJ0W854W2>^VOczkSqQoI)EJvRXgJ1lvQaS%Yhp^K9Rzi549 z(e6)OvGIlPJ4bB`&XQH=P!)cOu|+8HWmR=82Ocm51NW^OPGV=~;g|fM^3Bh$5eY|dPuC4M|J0 za^}tQmU&yh-uHd)&gXmTSNHzz?c3eAmzjAYUv=MmYdv*p`Bi;?r>aiXBZchic$_8i zcBGuk_TYh*;;BbKw(cq3T9d;2D(aB@8H)tSx8O50ob)LI*9H8_(Yxr&(qfVoH1sO! z@Qc_`or`bn{glM4jQS{NA7cfFV9Gh@5kw?NXTj*op$e&G9TLvfty$L@SX(aN-#CYbL&^7t?O3wax zawms>h?Ac#?aGFG9$A+sjPNlbALuGE(NZx(#`1`sF+n<`BKC^C28cpXm5!IQ$6R8r zxg2uoLs%|Nh?8>%8d29#jsj(h&L-b@$7&{LxFteM4D@|6EN3r>Ci_*E1h#k$6L(%6^i#K} zWA4E(F+LHavKQ9XVHqi;u~&T_hVEf$6!M_FJ_#E8mytJQy%DIt`Hy->=zRXo*ER## z7L%0JfmP7Ax?7s$8H@jf}_^*A_o*wAuiaTCJ=wFf)>d*Vz z{!BbHp~c$lxXc};%?tB9ERDkSM{yUci-(1eqm(D6Q5izNq-W;3dlDQb>fFl=-ijt5 z6FhyXQ&K(oR|9%F0R&Yw><>gS^!6G6sC=0v$9eXmmD&0JOV-$2Yg4ns>?Itvj=1W) zc8C|WGwA+1Yj^J7L4tVKChF&`|MU~q+R@0KK9)LBw7kuPkg3YRZw;r8d;COiGk{FX zm>=GG&n0i?&wkF!$oU8)WlOd+10dY00SvYC%yZBLU3sl_XE_+t1Z#l13e?>!-nO>I zMnG@7wag756)Tg!eZqXsbD-EqNorZzatQ3u%V0feJEdToh%UW6CzN7P64MzfUb z6tg6N!7Vj0(ha$zC1NHPNdY$j=W4%t^h9>IJYmhylvV{lB!Q%M3CXFHde_#}upjdY z_WyC}8r_J^@Vt#$AJNyrkIv91f3orvrS# zU{<=OKIJTjuk1L?n3?#8mR4}^&}xli9Go$!ezWmpkq3P>`irdW+02qKd1XyxBo!8) zb#nA*QZ3_t+03%3^DJ4(V4g1yC04;A;ll8P+%es8X?SHElaFiz9Z(s2l_}PR!ehDi zio2J8Os77j&pMs5;lh9o)cs`+iL}__4_>vE_ix%}6I$o>cEZ4-w@z({m8t^05lLT^ zI+fQ6K1VFhUMyzYJVuB-M|UZ|v96AiHqt*XjhOeb`(CK%W3~Bl`(CV*-M^tHs1L;Q zhLH##?-(#I{^>L7J32L7#@jw;9POK*d5&eBCfoe}zqfDQylKDuTfb$$@RhIFPd)pr zbu)124N)g1!IIFTFEZdbsWcN#SK(>T4@FGf16XR?Esn?d;j(|_UA3K^!g0>pQp)+o5tfM2KFEH(v9Sj>F?P$^+w1KMFZ?v%jy;G7-H@9xvuLlM+33{U4wxfZi5+ zBb84Wb6A#TkETw3SFq<$5>FkTEJF|A5(iNhm!|=*!aSoZ{_}`20!fW;8il z^f{T|R2D}j_@hGOVJXL64WUOo^n;`~=SBd%h&|rOTJ?R70KBYD57IDhKsF9}p8pVy=aJX&^gpoqf{jRi@+ea1!+( zKH|i1RDO<{PI-UaW-ngzy0rIp&2+hm(YDg89nJLRABU!@QjoIv8m@XHM(t$2mF z-nRwdI7}i?vAnX#{=nNvndUiFd&B$x5c>snFkx+D5p^WXD03g_Mi zo)kEj0lemI7)hTFDpW~aMV*lKNE2MrfylG3)7bu7Y@0-w^oEh>1 zCE|W){04wz1$}+BEWs`y37jA;dlJ!YxFZQ1d(77*E!(*ZkSynOffGn-%T zVlP}RV0HuP<_f&9B2a^bjs1TcEDMiLQ#LwTZ54V3+2gl`TAjs}CBWK!z}O0G3jq1k z@8C=TZF2590B+IR7rR`d8kUrG!g!XjyBvI(p$=+Yf8+MhDj@L`OSxKlEpr9mle2@a zyHN_DhbM1X1JcUH&2xp|$_#V`6s32O13we&gWMh`&N9o;x*D(pFwg!%$}qbyVjtdn2T3b?ADNFA zsn_Mj70OUgZY*B|ibtnz0U8?|L`qyDi!1;DKmbWZK~y5CW$y$JLPIU15+z3ch_>Y? zsk2lle%=8*vg$I7%Q3aQ!w9S2r0*(CmN?d=pSm|+KE4F1I6MPfDH9lR8crMLJWZsT z@RCa5)_uWXVdO{dUE;&uYL`^a41Fn;k&jyIAP_y zrL0cPvX?9L4t=X5dh^RttRozs#YYtWLexMqaO}gY`kK0k4?&Xf$;gwJi|(3Qd*R|m zEt*+heVzSd0O3o&_xtwG*>v;yi|4JswHZJtE&WPVIDkpE5=bSz(FYsF^g+ivs9c9L z$4Ps*oQlU*{xTZak7^=~S3mNLDyji0EV6ju^?3>Yn$_^Sy@8Lc!#u75rbl7Bw)To&B2AB z#F*T8)|NP^GB#bqem?ezgHo3_rl7(hLg+}n%)|_!WMRk;pXge<4S--7im#{UJ|K=x z<8JZ^%b!vpEk*L>727sE^SVvUg*|m!EH!TcoCpF8a*K+saA>BAlhI=~cXyQigq?mU zWt#&TE95Wb+*P$4c2Sv<2GMAv^edaAwtyn&p$T3XtD51F)4YJy4JpcI`MUz}t2CQC zQuQKzgzs`_rPb?6%g*N*est<43ZyyMqdcfQ{SJ*@<3LP3X_`@1eTrXB5(8X! z)E3msET^ky?%c({4Vq;xEv!UIwCYrVtrn246Vo&tZ6Jl!Q>f4BN8e%vK!1wm={eNU zj3L2X0?gK{YdByOXdIuffPeN`<2eFv+N)U(kljSxj03^!e5;!%2w}qW679)E5S&@EF?H~M1O`Jr zd`#agzcJ!%@KjatcC#=vY!fg2z&3{`tmUVE!unr$&T3j4?QNun(}R;*EDqq$*XwYo z?ewzdCflOX$$sJ2f7AY# zZ~lyZ{j;C3fyNqcJz#S5WiRc^VIZRa>a=D!u^B+3Ch@dMyYmLcbff}%I!!^)k)5J> z-24wi z@>bnv08ttAk#5>7@s_9;4l#0~SnrLl9w*t$M*=VFHn)@Gz*K5U0ue2=hvfocYvqkr?H}+V2M;H7pyUH4c z-9ah$B8Ohes>q95W!3Q41XS*SCLNIe7Ip{b%G?Hk_t27hxb0(D80qK(1&X->?DrD#5JYKYCI{98akR%3jC2b9_Hw7oS{NtCbL?xoVx*&F z1LYa%7DkBviX7tYZugj8ab?fZ2sS2CpA-Z5QY@!Rpr`N&I!P-af`6poFEJWH`B%Qc zhcGDvN;G3S9e`TUQ>fmp7=ad3IR3Pqq<{K|Gl+;AO|~v!#3i@xF4lLT2?f8#Ea8Kh zmgqQQIn*DBOM^;RpMx)cMNiAwZU|Gp0!yABw3Uw@Q@ht!r2_}5Y zNwRI_31gJRdGgW#V8dY%^3#5JdFsl$xMCroBmfNW3jn=4_pjS@eYmo3VR_Q#QTxMM zHfdC50Y`yJl~xcYwBr^^a+bLP<>uYDxuR|qX`s~c=!Eh;z$DAVi-Rn&&mje+99q`* zVri#hQdV>qdYh$mK|Yj4qgx9!q@@-xiMvB^Wzmi4iFmB^vi;&q-?jgq6N}4F zK4F)8d#xQkT;=`-uHL5)f9g^qkQhxiKES5jF>J5j!Zdru+wHG>ANFx0@|dfm-Q{@L zd>&Sw#TTFOA1X~=GD$a3pOo?O(K}WM^1do)qTpoaWC~Re#t%>L$O#c>$|fKakWoS} zPU0S}lo7BI4I^p+7|O*H;$*|bFG`**JSi*1bV(t$xR+OPRJK4hMcW@%0XcCjIwI^8 zad|5L^>QeJ`@y~ELpZ?8i|1hq7t|Fn5vn0rAdzUU9>))mM4C|YG~y-j!|a70eBdu2 zDhaJvalLz;0j_gDLJN-9M&$54$9-8@KR_T#Mg0YD80-9GoUcBgQS>rs;afPqSCuik?h9&%y7g z-}}=NUuix=F6lIBdm#@YY&VUVCcj>yuX>$kSzV1Lzc^WEi=B&@RE4J8;He2ZP?eu% zW%0z9t{f9slB6m(gL`m*9EyiciIs04m(U7fE-~^rzJTlTl|aBr;;%6A!wHGy8~#Ku zq<0X9Z+Q@v$rA%V_<7zOEb)wec4z5XQb2_y%z(YJCZ-4yN99dfwd9$lr>G&8(oLxze`!C@Tn0>2_lrTQ2t2`JJuzdeQkwMyJqiiJGY7J-)Mo%Erw zdKbbxo_JvSTJ~7p!1+GkMBM$1CGjH>)n|c`Ps~3lWyn|E5jJvWciJdy%EftPJJ}jY zTGR&(9^}=TS)01{jxBw7+uBd{S@)%jw$;tTh4zY%&% z>!CPV79Uaj@v4C^F=@~UqrD+?Z5u^ckEZ+=hlTaHq0+9 z*f&1?1X4t9CD7@1PZ|buALI+FFixBW-Vd!){1zL0KkjlABtwjTCLG=o!WkheG5Nmbta(P6k?9 zE>&HV&km|~HW*7(3*N5K36ewYsT7DMmFG{=O*ZzagmNdaOcXssD0pccC;}MKC#a?5 za6pK<@Z7~13&KpSUW3k?%ByxIjP}{spum8_Dh}5O5QhDY?6X{FTNnEq%eXqw*b5rc zt2BYKxR8-lROJedf(KSu4)IiXGW@ty6)fQOiGOxmK!}liD{+#>bCg{l`R{F1wH}Rp zvvE~t_=nHl=^uf?z3cTzA?jFq?0q?(de`2KfYf~`vbEVcd+^dLw)E~zJO8tP#rmFo z#>%)LTzA5j`@9DjtvXtL@H0jHzpT&;m zuH=h;2N4ICk%0edMrNXC58u`nhYm7r)?DAgk|C#K*Jn{nqMJUTm+iEXcFbM*N%f47 z887NAr~2qD@WDPhfdCIv-pUVum(B?Q@{HiXlN284Uz9@>^e1qlD4M--16rL|Tmo8^ zcz3pc8V3uXliXL&0hW+Jz({BH_iHnwo^HyESIKU~~*~R;=s;9b=tL`xK%VX?wmx>ngCm-dnd~m2b z#3#N?d3L(jjeCOX}qoaE-?8w3mAUh&_qY!gj9U1-y}3b9QJN!GmDfxD-m)E z?kmRR#5k?Q9^8St2YP5O@K|8bD_9w(>4#iO{{B&-5i3~Lp~m)hROQgA)Uh^KI2wQF zzKwr}LnHmCtPM#^eg9co*9kZOBd#8BT2g=d4INK!DY-`TpkvfIgn#r6)ukHyQRtf| z-&kQVjy=kUP6lNC=?z~8mHN03y9s5uic=2a`}KQw?GAnJ@A3Bh`NuAy;I@(*7{pni zqJiEgKz!6S!$8Tv_+!{l)#uWWt7_@6<|JrD9**-29G35sj<4R8?Luw|z#`{akfV3U zFnTJcOOjY#3>}gk+F*nFx-L7@bHzcR-&3o2>c^t*{aEd%mmPU%qSh2l9MD5K*ZJr= zHGw8QFIo=vr9&lFTE*6qqaFa#`;wzl<967`ufP|tQP2kPC=VJcfE}2V1e4`V(UK~g zN`TjCcrD{J?AXMI9NPe7DG6oT5`70dcx;n~=Tv{VFeO@CEF&HzxeMTnG>)9$o0HKMfWWTyb6iQ+gW4MuI4|6{rh4YHras0GR7o#Q z0|u88DX!xqD0&U!0JH(V0#Mwxw$>iF;dJl@x00a4QCF_|iDc?Wl1K6A2Xj<^@UD4O zb)|2W)DNAAVIm4#dh;hYrf8)@b>L+epoE6_@L0a=FF>s;>bSnHf?Hp>f>2<0a{dm# zq@~yuT-Vpp)@PgOF4W!5l5EBUCt-^K^(H3$1AUQK4myw|3-NdKQN8mC`z+C^D88Iu z;yKt=(vUu+Q(8XKhOTy_KGf#wsUfE52bW5vPY4NicivFNw_xl-)S1MAGQn+6OGso zC;LlZQoSTZ)yI5fl80AVkZ9L4x_*@dBn{~Ldh1)ucJtOP`xodnn?>)|H@M`zjw_}# zz^eZ$y?#~KzFgvd`f^`cN;a|m4%==qUCijP>0`Pq9hD_|9`aXtdsQBl0Qnu2f3cb^ zLt;M;EzvuwDYXuY#dE)G#`GfxGwQ8cs>>OlR8`+z*G!VZlJq>rWBmODEr6yBpdhJW zZ|7ONc0*UqO^U21)^eSI9OQ#kN;gp;-O|#c@2lJ59^CDE+zLnK2s#AWjYd9U>Cl1U zR?sP^Oa&IhWS&U-#2=uooSQAAzfK?$Rmwg;#P-_p@OlRbnngI(h2FdlmR>87$WJx)8+0QAsFNhi=%c^dV~xM@bq$Lb3LcH%|fQY6lXMQ`&hR#Nt80z6V>GE zje_^C@1l1Td#BhH6`~1o1*PqUQS;NM5*4I73XQ@v!5yn5pOd}#I2w)p%Mm%)#G;to zdCmjH=o2?;A+IsjFJCHEkDl~8h=&3 z!m`A$PvSSfz7NmAUg-~0&SEqUlU`guEHn;ZgNIL%t(ziUO+#r7Z~C9=?Xmy;uYS}1 z*FX5S{q`*>ie>C$5dFy~=*RVq=;D%kj4&aJ1ErI+Aq-dY`RGltHam8%@i8osP_`~p z@r(JTf#vATFz_&B)0>WHfN-6ku6A;`Nc(G*kQAh_vqZplxpEjSuu!7}KsJ7tYc zEw0~gZDW-^YpYfXK&js51-5B`|W&h zCl?dc*xbsRjZaLXi26gMS5xqk2pIGv3bd$>1jh7C`eBh;JKcSW<>x*QXH?kAGD@;1 zAJ_=xEoZ;n#&WsUSG3v1^B1k9wZ-dhdV0==MsC>rD)$v@{~WY6Yh?g@jofG4(TalT z#y-H^nmu;zS$i=4Hd4cJ6jOI{HQZy?-iBgp>R@(m8pYCgY;yKK$}_3}mVjC`Y*bcN zaubQ!xzo?^^4V^8Za=UKm-_)^TlQe+j!jTco$aTsujed^rK|mBkWsGPyEpv4Ww=$P zjCf&73T5^OfbvReigdBDt``N?-L7h8YW}`Wv#ec79rbjaW2w82s{qkCxU$JoccV)L zw>LA^-Z}u-ZKv!Ro0^)m+4*tqqwcZ(Q;*y5#CzVs+M3SV;^Lgmt#Yf%`iKMHOJ_dg zZL6DO1TH(9x$>^-f;Bd_x_X=Oi3fIf_#NT^n7NBtFBN(z@D~XHU5(V{mSuC(8zL+rJM&)pB)}<2ZUTTH~!k2HuBw9ton%o z>;IXrTm8Tpbb4^x2n`pu+lIns=@cpZN9na!eVs&IdB^>v3YJt_$>rFml1rv>r2eZ! zA8#e)wfU~>nK&3h%6OygsI9l>`y1^SzWNpGsH?I6>%I4El&iL?nGjy!`nv9BZciY6 zIRH^F>cI#S%Is4aA;Pi0^U85-YAFKQvZVZuVBNdloJ0os4Yyxi?B?U6Yn$DCl$zIG z@u({g(ifi?En9^F^hEy{9AfikPP{GN)Z3cRvP|4;bBi-9OLDI-BXC{KDI4f|0cFLV zfCMd1u2@&wdA}7TQ&wj)0GENjOV-_afoU7Cw6=~izwoI<{Y)M;ylbSrl8)HBx6atgq~EhStLS5wgrIBa&%H$MHL@4FiSkTx}S z0@@H0Y%f@M#{i(I!GWXp5Y|?804^T0Q(XgW=U8!Ve~mn!4QIP8^T4?EgBwY>7g>TO zfi?Z9@OqZD#9EbUvVoo_T(Vb&v=6}?Knb-{T_~SM(l|5!z*?KnTX*|KYi?#QyMPM7 zrK_!peRWkfIFyckNV$GFj0(`V;TKL?26j$!6Pt$wvP z_XA9jt|6VAou5FW*yKQPZoZYX!^{P`!#@decdc6cLUHGe4k=1 zD{8&nv{7X^&43Fd#~6w z*S`)8j{wxyq1{Sb@W!xJjr6z+@YzHDTQ&@MU0s{Ep3X~l3J|@pILXVz3fIQ=SW6@G z_&B-|mxrykyp29_nfB#6yYV6G1+e$^3|LD`8}aEg0N?J;GxVz(UI19lpD9^lnlLjcvTWwpZgCKM|MJZca zvE>i%*bo2NzqHZc_^x$+zhB%?k6;kMq ze)*~PcO^8GarQ$BBr4@dJhZQ<9u-GlyZo5_%`bk@zIpDPT^|{?U;O<)v_F0et^OP9 zwn~@PE-Ggyd=<$u&FfzFbg~#H`bD>XOEIA?ON+f1?dYG*FZ#vby~0ZISDZ-au)mSM z(uJmrKJmA(F9mnZCmTzt{gWR*&<(L-nqt3^j(&^v-!z>NC*~J^WBOdYJU-kzjE?G` z+0ilaimCOR4U3*mC@j%!b9khowi{_s0~0z|lL59WI3e1?a_9N;Pa%b>wp+Jv*gNmO z11La>*wzC8=to+Y;h@85>uza9N_ER#f8$MiFgU|a9BqJu$E~$~z-qbDO%kyAnJs($ z)f@KSwYwbt$N)fEthuQT5LacV0F!mx1AOz=9ee%tAKK&?w`0_HSzm8I(yk`!Y&mOB zTzVGZRBQJh4B7n$cS+l76*V>7_Mw`}Ab~q$=gtV2cH7ONA$#q;*KKNM5&+dh{ucmp zr-&#e)|8n#h!Q*pgFK-%Rn>O(G!ilHI=(+RV(+|t(-vk|kV`ZIetLQ2Ypwsx<96xd zr)(KX-8=7Hvkz{*2dFYT*AEEozKA4E0ymZi^t@x%kZ?}VE!fHuAarHH9t__GRE}CF zfLc<*jMduh+xP6f_iiDbtzi%3Im&PuB9#sX8@XDpx}w#Asv#MxscE*;XU@8`^Tw_B z0arVIBT0Kpw@pq@+naB{K|2g0scW@QUHy!;)b~2jbn%z^pGqE=%oxMg*13sggLZE2 z0R(r^E=^X8bhR64W>t9u_aV=^WLJ{G8eLHb;IFKxr;Zu`{Q%iYMmCoEstK#BYW0IN zn{<$kwM{^BKluatx4HGC{tUdglYgC;?cC|7kno+c<+Wvd^V)aq=ItNyvQTMPAA8!G z8oF4%X6A=a?c>}4V7E2&*_Cro(-!oz2UGUeTi0!2VU7NA-YyR4LJH6UD>drU-mU$) z(3d<2<0pLdBA+}b>IB;Q5IO^nw2^1d?2-)Tf_B?t{q7FQ`6!Mvns^naDRk#j23rh& z7-;OrLm}VMEoi4bf*XjaEBTDR|E_)Tum6p0t*+bC|KcCo+2@``Jj}ic{n2u2GW~l0 zg$Szwv}@9#aTnHS%qRDo-=I1F(rv}+Jf@Ce(S4NPkBdfOT@~hA=q@aa*W?NGUs}_j zPyH0jvzT9aT9u-Bnh@flIjh@>wSO_cf@CtsnM+ex{@_mMx0^;PHCBbo zq|*eS+;@x<;_c=`Y4hXc(xz>>czHB(-nq#5IYr?Sh3{clpkZQ^l!)C|{8X_lSc!yY z9qHZzfOPDz>)gNz47VYb&<8vSgPpK4$%W=WG&yHZ(e7lM7*)n9S_ew_ZmI*9*Ywu&%Ba z?#%54STtK^r2%PCEkLZn)>a$r-u*XiXzV?!tlqKP+{AIUvd{Hqy&beID_pVSh&pOX%yUi5g=`xTo!kJ^NHYdnRXD zx*cRucDr+tGNM$2@QEB644$FB0P_*C{)#R;H1r4Y}-&(#j>-EfUEWjN|npd z@Lk&DuFWrwI&iH)f%N3`D0TBL;q!pO1#4wlx)U%az*fP&I_b)`m+cq$W=UF`Mwaozc~=UDTKM6oPcMbc^(IXPv#9>nyO-akS@O zlFdr;(bD+h@-zT=*d9Ck1i(^#s@qyQ4715H`SQ{{d{iP??WTRE0fBFDKxV=g$7TSI zeE|B?NT_?*UNB~h>mO2XfpoxU6+m)_&(<_j&_=5VmsYTZUWY`MP6;4qKclb#A3=Tn z%BcJAdIazgiqOB;JG@JhOF>g6q>moE4v-WM9x-C!Z{8$A#%X5qX(+>VXpWL-gw3nF zqa2n-pp~O7TRx5au(T^(mUNo5y)eGF!>(e{NGdLOzUpZD+|3VcW=3qN?ndOrWG zbwB-#HTInbsB5|m+f;q7Wi)a4$3q)QdP62I@ez2;aj_R~xfqAH73Oo8JYwAA@L8CD zEJ36l-TVDM3^cqAi?o^eK1^BmE9Xgt?Z=N+U33@cwlBZ1kr{Ubefv^(xBXXN{s|kX zt+Rh}?OmJw^Vc|8SZ`n8p5xQ?4gMw{Mj}vmRH$dzHtXBRK3kEGy%Al{mx*4r8=Io3_5Y< z(fhf&F^zO{*j89lU09m2ZX{$iRgIL5wcm{`%0=1A#XoOx7^!ekxyQ#x9q2UFad-pC zS#v`hV1{xa0h>X|d^wUa0gd^^aogCQpaWNh2B~tu8ifrb4hV>&A<&uz zG*2LbWZAX*Q{>2=&&37Q;*7FX3wZM}PI-fuuxl9`jf0S(?sUSNC3z?ljvsld{pOcP zxc-j&jmfXOl_liPQ-H)NKvK3f}G>BwBmZD2>UzX(+u+?7HOZ&d?ZgcmwdO zw}{oLDZBUb%Qp4$pIY;09=CH}`=T|RKFyANok$CGl*Yjz2?Z|WgozcC-*PHftgF4t z=m}5eD?j^^X&#r)bb4ial(L=#jlu#Sg^!PdMj_3Q((Qed4AeKbG(gHOX$ngnpSyUG zw`vADP8a|FyYJaQ{oX59$6={P6js-XH z_lKpuPJ)m8QXcF|*F%i`u<#N2+55Mkv*bEP7+)z!jG=z1J{pY1VZz*vO%@`A(V2)! zhp0%>!EOAdE=iqplauiqOvo8PPHjyK%ZO)@CRO?}UOmf(+Gn@IL4bk2D@dXGxHI=1 zo0tHAacH5IWyE^+a!FsI?%CZ~UqEto9Z6HYb+mV~6xxsEkzIp;r0v;CyU>3DkWgvw za|mmK0|}Y!POE3{VL8G9KY^$k+#tfKg2@J#O zU%=r8bE*Jnb5l29bCc!V7OPU3*}JFxb`_Zhz*n`;7uxf=MLJ&^r@htIo9st?FgC~m zpeL=byBCl($Dx!V8=VIH1Kj)&2mM1}l8Pr!P#pcEvbvi3M0#9bDeh*Q)V1{YBPjzDq0m+@?awctByFE8+RXO70+=@s!|pdlV)^c`#}JMRdg z5Z(#39HCP}s}r0ed-;1d_~&nP?7Y%Wzxa&xe3@&$P|CTZ8I+_B>_iAV{R^65kPGwz z?U)m>+$32==ST8;5_ue##&OfDVnkzaV1IDcd3r@t`-BERI8i~2$b-C(N~3_}$LiGB zqMqp67ELGN*F_#c#%%N_rk5n;r*HvDzjX)qVa!R?^GVP+PTz~=Jq`_(LFr{qqCA1p z;lE4GyQFxONqt4V$c-E-qYJ)d@qskVhblilQnP`)iMn7VrjmmX-14-AijGS5&hbve z((V*e7wsLaV((zDbv8W5%lszGe;4S(Wi}09m`0*hjzoM5V&fA4uGM<$>SzbFvAoQx z&L#&_I+`!r6Hk8C2Jes9Ek5@~XW1{v=~O_-CV5wu*TLorhX$6=W4FjN)M*X%EmqT5 zVVet5U$YKCnFe6YaOmK?ODY$arZ|*x3F%`4Czoe@N%O(zJ(h!8IPKcQ9>ymCSMbci zmu~hn4vpTl@##C1`ku4O+FCm|@R)5dzrkpH*2Y5p{^>x zRIRl&UIb_j+6qhTtC^V)Z%Rr6Zqp<2VlwwsB3>B!v(ZZ zIRi>sM%nZ7${4`9o+bD%+Qj%6hc}u4U#$S9DI{;x)>z%m{=8l!bIUBvqa=SFkO$v7 zBqKF4I>a+Id(TgdHv-x!K=8NkzC+tSuv)EVAQ@%_7%d4%Pd6(_KZi7V#h39L%CB&s zrj|NB%X}_Lp`?$fr2z;JKDc3*2EIgpI77WGQ!d&Vpqa@uv;2OKlhGaU{Df@}vR}2i zl|Io$JuD-69-=OhN+#ky0ob*z30v73p&h8(tp@gBE&}wcX|H~O<1%>S1Ju%}mrKT~ z&X1vmV&;Eme(9Hf=^y5M9mcf}<&w#W#&PK!H@%oG zfd)|&tDIW(iA(K)#|8tAHtg#CBg68-llEL9`JnlhGr5uz|%;Te0&2n!nLq!E9Mmt%h##nTk}9z^4yaM3FzPVsoVQ||UrztHt0NVOKj5knFi_dN(qD$Cj2CkN`>&#ogTv73>XTFBy`jc@Ck}pfgT;_h#7}R>4|p1u9ay z+5tRm?7Kq;;MCj*d*1*?sDEi}Y_K{cOwE9pD&no9PDZCx!I=P+VfX9UJwp9Vm1 zuw(HyylStR#FxB?QCE@@*0V3Ny|vjIn~{b#)&PFyZD{;9r($Q2N-Y7H*I5=v@qAOW zHIPpRbT&S9&qk+i0t#2j6R9Efxda%K(&-G#?{%EgZlH`!bpSt>+@~pzB$W+y6-ZTE z*elmgcpdc?)XS`_&2liO-z8#WNGb)&Ti{2!9Y-hb0FD4;+6M^WTwCVOVI+gC%^Y-T zMe^BHPu}x(ckl!DKn}7evBP@0dK@?}u1o{89stMygVO2f;0a1d;~Hx_DT@(4 zh=ao)0>H1c4Pc%;YF(n7p-(hZj~&e&^cz$f0qP!%-a@s`AaVBF?)7}PnY_0>~qSj~P9{V>@Gemp`_pyJgTkB8$^b7sz9}oX^psfLwe?2i7Kx}hE zC;XfTTuXJ1(uTM2hXf32pg4|E>5pqlq(L;7j3kYq10NfzXgYAE_6c75!0!Fg%QpJ< zd)D_K{*+z#@|Ue~V1PG|a$A>Vgt$^S@W?z2H9%t=+k6}}P9l%J3%Wnx*gKuH^w%(x zb@P_qj{1n5`8oTQ>mP8kc*icHPN7Z9Obp;!-q4_=_gM`|dIsdyxBR?xr13#cG4Rj< zI1On2gY_upu;udc)0sI+ZXr$SdG4K2A&o+Jj=Q~S^&|C znS?h1C}VV0-Ak)O1=_R59>B@lHifDc9sbxrS|~t}spMoThYn^J#%zoO4hCqL=P z%bt>&Nm^E=KEJ&V7#af{+yg8Q0nEr-d(YrpWnNyL0VqB|dNjh^z`U_E%49zZfLJ6y z_N8%%VI3*qgYmn5AY&2Gs%zi0=WlgghcuQQ9F;*+`vvbK6`WbT=hC-2PPCq3=~qj$ z6EmFPg?||VLDk#>y74pz2~ci$*%m490|3W$BC*2`kfuFqHLPlF621nA(oG}76Ce12 zl5*xc?E@5$U0j{y8o4RzhGkjmSarEgooFwfbmM6cU3E1enSGVwePwNdrPRBqgSi86 zroI7e;$J{`V~eswdl`^7!=aW9_8tb{vqK$D!7;)X=tva21aKUizR%L{d*r=}q_Bkp z7o51DJIvCS3(G9SBYe^E6|Zp8h&Px+{~!4+KA_GAMTxq`TYC%HXSoP33#+4Ek7Y@G zfwV~^h!ZpS$ZOrf?;18TGcEY3oAlV#*Ewyko*$^n_c}?Oya=fpFyV)K$C7yQ zE1NzruKq8(((zZp7J;Vv2nJD&M0f;)Wr)l@x{@5;#O#kj!kJdi$E9(c^vXY}JX!ZK zs&ox5^jSBkTSDSTqjH+6f=#{Ge)Tu(-aq&iYx=uiwKDs{JS5% zWq;*2|1}rBuGruI(wFS(&pmICvro1j_N$mwbdggqI%uU+_hFlb&c-paCL@7{e7!ia zG2FxT@>L>31x%}4r6x_+K|0N0Xej%==oGM~n2A?@+0y9?)1>(dVWN?rzA(+f?t^F? z%xBm`wKpHJOoj1s{z+-bD#VdHM^D>tGJu}ZhQ%xc$q5l zhsXM=Q})c0Ut{_Ap540l3ahu;kfy##eGzZl4|Qy@%&F72;!$8E01%I(XA_p!xs^kJ zM@zO2P{bp40dT2B(Y`uK$5ehDz}emq|In)7eqpBzEFnMftL5}?6Go6~3W(~^#s(*c zm6x_xN#ZL3t^_A#+@Gh4J*6?)~wtH7A|<84kPlb22bYu}?fKsjPbzu5%4_@R(+Mmvfr z>{@=`B43qLJgO_JAC^;B+GDBip58tq8Vb=zc7N#!l)b;XFJ;jRj7~*Yqi6C|*A=^R z=BKQy^|IHaUMN&<$&MeH5^F#eu3=(>ij&x!XOD?$%WCNX3mol#_qV@ggWvuWYx%h^ z+NH04$?DH=*I@&vgJ@UXNK(be5j>6aaT*P}8i*d5M>TMgHK0jEgN-Jm8V39quUxfn z|DC^MzxXfzmHi_QPiYL-2J8zgN3|ejC}U8SVrl`wEuNoE1~^wntC&1f%zEBYwYQ(` zTH#qaNrsO|>(TRb#ERP|ndE>PfC`ugBFM6dpgV1WQT}ExK(>Wj zSEK0wgihN^4lcj|67?xvuQ;MB07MASj3)a42*UnYK!YTQy84ahN&r&veII(F$z5BK zbYfQl88+*B*@&ZAi3bZev;jlwsL8p0^K~S4lC%l@aTvm56GI>bI$%*Ie<&yurRUeB z@z|An%tL|?@BdVw%B@g{a;u(@lVS>;2yIXsoJKAKFsjTh(SyEd>IyW0AQ3Hd0K3IL zO6@1cO})nb!2#F`?}$felU8-%U`Yo}Bw>S&szbn1z=^~Hv&_7<`lO%Qu`CpH~V19k<>r#bN$2{;fBo5|3#I9^M9YfdCtLTRM zo$sJdpxXL=>I>HK+^4OKjj8kq8Zb0~I)qw=F8Rnjs)4`oHNZQrKL^_knwrBp*i-d< z-)Z~hpZ%u&)0bYdU;eXK*$-7^E1$Y*S9^P{OL_=dD$<+rGQjWd6gti(C;g4IixZS* zn^5}7o*WH$jDp6R59@T)?fP*`YrRo#`4(4|c!rUW_xBi`cX)=`_IRUz*wNY-; z*m3nQ>qzzlJfs_z?i?oIK*T#BS%!}2lXA#6nIr%|1vUf} zykNKmj1qeQABqFtVnFrbdExN1r1MkBR3cJKMJPjYbeSY|03Yr3Q$%r}lU~6gc{pt$ zBT3?jA;7eS6w%)U89ze#1-yu_yj2hSaWo|+R4?v9TtKgA3M9#&;8hN%Y;ZVe1ywHs zs6a;d_p&J+Mljs@a(CcC1DJSYTcR5UB`}=)1j>|;b4&<%slt_^_@bR8p$=+k#JR)R zz^9@S-=mX0%>AP7wd0{4hAsNKMIp-51Ctmy^e3Zl@sl{?PeLOJ_im?5lk`ehf_X^5 z;Nh4qp%S zhTf;W$xXTZ@q}3sG>Xs=TgyMijUNYWSL=Zdu(2a*Nsd``tD+dfR zAhS|4WmDXnyEBjUh<>T%*)2(toQ`+8U>8sjljP}tK0}kg#&c!n?hs$!0xo{Ag*=>A z!jR7!ga>dK;)_R5P8>lR0XrE7H|`_&AaJDYp(mP2g?Z7E*q#P{#1jz|n?HaWQZB8z z3J7X>)9YJdN=#Nx!^@?7iHC>tpygZ~VZM@`V2`a7@F0Vy6eS0{SQGFHHLVc+3wVWe zA|Maksuq`WLW`x~9hR%Lk2BOJG~`DlEiwDO!p?*w!J?rsN#~sN5YHL#9Q|O1^6=$m zrSoW{Q@wdAk4D=(#2mi#&x6)m|HMBM~_AJXwg zg_eRtKrTMflZKEb#Nk&Z@KTVsYg`~mQc{njG)WG!iH(#qxaEiOu$09CHlCqn2vC+@ zmx{F891{#CrQJ<89#Wik4hi^@xC z3XA|&wXsVRyGtG&Bm{baR?G|OCbacDXsOzlI=wEmw~v_qQCX9xL=P`XRa7mxdYP4_ zmr4HONp$cd5;6EFhal~W&z+XgwN&ch#T!9$97NS9o&go@SwYCH{5mb|=VKqB((+Lp zG&56PauP68G>q>>bYLkkD5LrfU`-%7sH;*4`SPc}5hS6&RTW_x*IZL9+8Bkz#R zx$)&$)wT933Y2;~5XqxMKzzBF6uZBSh^WdaBG?)C0(<0F zS(!E$ODgC+QFPSUNwfKb@^IIY*Tr5vrUcfHn_gL{wvNF<30#&IFNz0ww{L zkvXntqs!<4V^q{7RdxLO@>RA<_UZ}BU6DhcdOp1@u;DjO5T-31`U{_zw&hhwIoR{C25>S{89V>b`?1!C2ti|4kx8Ar3)s+34R_Y z@nU&&*i_WDHZhvg&ovn;boeFSNhqz*Cw2Kn>lZjVEa?5+ln{V;rq zwd`an=JRH^gmJYwf4hp|9_kMe@qQ#=B7&OTnfeIW;Q)g4t(`yp8Jn0wC*brg^!GJe zFG{4Bxoh~r)HRkKHTjE(QU}l>U=;GhkG|$c!67p&geH7>I(YZK>STzhxcZV?>?obQ zldK$=0b(n-rtWn6C8u|1>>Z*&1^yj)l2}04VWijshcJXnEnR>28dM@EWCxpd&hJE#c6s0nS)Q}L3xs!x&edR1fyD~K=E zkxMGEyO)C9qPkO5PbgnLNrhu`cak7TckxmJ&pQ+Is#TAMD%M{x0eajfZqq2(9sbqdvF4doyYTaW z-FlyU$~HLqFCIb{++EpeK1=0MX=1rz`sjBU8tJrq*$eZL`>=VWX+-;BXv8$JjFH#B zXf)F0h-EoU8DhCV>R<7BQheolJU0IIQnZ7r3*B4%0+PZ%n_IN@hI(7!`C3jUQ0eH@ zuKrn6OuT>Ru3hD2suQKXWo*SzP>yD?n&5f!5sz3tK=W)e>F74nFbVP`>RHYvP201c zd6rz=mh}NFb@2I4uT=7R5<4Yh$+uwme{jTcsOeR^1hknL&P*m zMlNwXyR<2NKvqd+6f4Qr{ZwwB2#FA;SfvB}@CnOwn<%30wkzj8&wahuxN2_1I+}X8 zO71+m_r~r1^y^5Mxi{GJ0+`Tmw>dDOCBZ;j96?i=@={YS+5$L=Cvf9kQir18Lf%wH z1RCPYftRZ{0hl>mN%$~|$Fj1nygS=_&dCo>zUzys3Kk9J6{Jy=j9WAOWG<3JElK*4 zrI4jd?T~zO4P0Nx1?z4*jsC=2wzN407}OCkm_oRrLm=#BB5$Nq6{y-_vMWc@+2427 z)u~KPj}ffX$w3O}5>RoeD-KmYNvxStB8^6O8@^zjKb#PgXpwquAI>MH~% zK3Rw7651r>=ONiVRI{N^C{*71c>Cj_(40x7Pdrtgv@f;j1e|xb=2J+LsbsnLs{5e&LOCX-En1{@+<#ZRW zr1(nD1wP5DZus*dS9PkH*dtLn*cshOE$Pt78P%%icM>F>SQw8(dDLo}qLl-mR40k8 z8S@U!EUAdi<8xH^8E(K2bs0d$+z+$&D#YS5h3kE``rrowwP*Gg3p|)C1sg2lXpj60hTa z<#MjeTU*sW_-U>@W5z?d^WqY!QP96vQ&q#wA7^cLMK^PBYlh~*tWm#8o;!I{q;zPs z$97S_lil5kr{aX9!Nb$gaJqFyK5FRzC1H}m_H-yUR^yQt{9pK{#AY0{4jM9rR zChLbin@%-Wth8uPBP`LtvI}1xT zcZVxyUVgI=o<=KOd*e2t6gjyL}4#d*7S>$?4;mtIC{!JZ?{OiU_s(nF@b zNB}???pm;Qly^__2= zB*$@~oX0Lpjsw|_)`#+G6m|J5O93dRrqf(LDpXS5f`krMDCpJ(SA*4@<~p;p*4orY zPhgKAil(b8JL!%nOlHYAgOskmuAMmNxjkc+TOl^=!kOo|p=1($gzuxnZ=R*wTI+2e z;5xS!yY=9GuvaDb1E2S6$=0}=mJaVgacJ^}-!f7G&^p!q7+|l(mtHH-XIM#}A08d# zTCx$lJn;GCiahr8Nmbd}I=7>+$9DDu6d6}@MOzoT^(t*@X57}f3Qo($z3mrV^60<} z3E{@tw%r?llN(cRSzTqH4V?W9SDMwLEE!#Vl)HSViEHq>0D^i>CB3Y(wz^Aprso2n zQ+3BPvr)l)!gDq@_koSiT%#Dea*sQfTRW_`tJjtujQX{B(hLx4Uy@Qx5@4e9PCHv1k&-NpR2ZaBq1>{O4+8<{yY0o_($$Kx82L?--sC@89 zXSx^Vef&>?#y;ea6%^|*RGOrOJSNOvWef@ngM)VW*M7?uet6AlKKr<}eg0W%`Sew* zsMdw$Y`7(^pZMZ84pjb}9D}3WV0R262P8cxk5c-@0a-i>PHNz|{o&)N$Rj_W8qt)P z2Vr4;)|R-l^>3hGPzMyZnJ`zG=oXNCjI(rnn+b1~$p%>m6JVLmXoy>wXR_IJX?#Xt z#YaeJ?m6BF4Cr+&nlR}|DKR1rq#A2JVM-;1BrwvA7WNWp8I3)Q;fdvUcLs4Bh?LX6 zVQk2yO2PiK4?5Ch2(A;0(t@-YGc`8IFIL0_B<~#azG(Z(rvGCbzpydeduWk_A^F=v zy-8Jhi`8*kNTzHB@Ks@5ZD;NBxo43O4%^(~gq`lah(hCb)Xyxl#Cn4}YrE`p_XX?h zXtSZQA?`HpWm)-2uDEOWYu&h77U0#!O%_!EJFc&zFZOkv2h{btRB(fPd+T^PT3aQI z<=My1KZ`^XV9JSRmo8S<0OGiUZRtY}wlv$h)0g3`((kn0+RSjzZy)(xvU%>xm8zYZ zDx`{44d_ptw3*qvR$JL>m(D*$S`M9TF1RGHqP)@X-(BT8ICYN3x*i9p7tcIy3tV}& z$#YkmsYCMEZ)Jnr13h&cCDJ>9%R#PrtKweaPOecys)$rF`yQqC(92b-u?p*7kFbNX zq|sxzTFaXy@z4JFGp|5mr0pIdN$riAq`)iE3iSB)aC(T^+(ScL&E;8>rjhl`@f2vK z0*YAm0vc8VLtr*d))MID_tShrimF)NxATMcbcHl~1}6c;(!*U4xxkr6Bo7QKZ7Ig{ zC_+_UC6Wky7NJo}{vUN5mBBkPHCe&2wG5v{fZ)hmZ`$zfyS8+1(k}koH|#QpMs$6Q z9%OZj*rcHjG;r3(79RD0F6;*?4wO|O_e(n&qj*=R8=>#>LBB>4QOY3#xJF7N&L z*cJH@9;MdhAxIu8>VD-sG_R=yn_N!c+tFiRf1%Z$dh98l5AI@RWSB%1)4io-d*|Mu zZKGc1gQ;;_(y~QuEpJ?aGo*>zoL&q@qCLG{?QfK=PETs!DF+yqbHjvXxZr+k(l)qh zVtHZ2R=FQ_a~+AJ@1X)9`9Q@IAtEx_CH2?RnEP!&=&UX!1LrtT-`o>F0`tAdsP@vv>$@+-5w6tb}BOlPO;SWA1rpN8w_rHfU zj$IQ-AiFvS{2I3p@4tz9r601lug4z0@&v_OwYG*903LvDy^1AW0r)MeuBx;7rCGaq z@4DT+f8W;GYdg?)#V%iX%9_~w*xh!;YOC6jG}hbb_#L}`=VhLSjP;*-8t`|XrsfJg zq=@~eFW9NRKBR!-_Tjy2Ha#=E?g-u-$jLAHh(?E|QMz<&k&VBz2vok)o;ODzCysE9_TQ4l-69=fBL^uzi|&`9SQ z2cEQFewlU`T;b{Xk%l_5cY(x19bX4VCT`xen}7I6HjlF0fxq<)JN2ngTU|5zLs*hh z6d#x%7}{s@F-$Ch14HwNwUuh1Tho@J<*w^>32F2WEj?04xrfD3u z43VMZ(un!S`i$;K|6%z(F}`SXjXBzvQpPF83P4C>eFgV&vk;8Gz{(mA$`dG<{>h#$ z`_IusI6gOT?{U)jPew-VcZWs*gDaeJWUp3upcsgurM~2YnYtCvmmV-a@@II1E*s|= zLNl3lCM_~X1*_|X7Wfi{Q7qI1d zgp53%ta{W1#sV9jBKw@UA7P@AJ=hU4W3MEBiCytze|#LzPh z`FSCtRT&@Bh}3b7)9~{0$JA!Zfhd0p2Y^@)Uj>j{?I*}Uw%N|x2$Xd zy}27Gey?k^p3Vz)7ZAKAsUg`_lsCZ#+dH%mihkw?Uv!c=>2tJz|7Sa7>^o|ls)90k zqQG(T^kx%8Dv_>YMSC_fC6f@`p`LRw<&!5F%p+QYW(;A2!}q;Z_ucvxs0rwku=T7LwXs8n~F zC+fIfPM}0{h=-|RIazF7-8RRKC1+=*?XkWd`^K45Hgn}7OLR=uB-U`|fQkoF!zqx4 zqG)(aq=nu%>L7f$uXTMDDaPDQTNr=KR%fr<1{2&4m%Z1bJXVswjKGnfG-go5?lkql ziUdZyCDyE49%(-hh;fSrBoQ=*q=O4-r|HNZ^twgg+^;_aDs~a$GzrtMKKgc@y5uak zlDSj_hYksBBMsVExXGS37Una}wt?!D&CaVR)RXo6^SDrW#Af@J&kH3_u6_Sb$`vwVCBL4l8gn1m#Q{f^P0u)Uqi546M z-+E5>3onSCbH+red~<>MHu0h8k)Qm~5?rwolBh9jIb&I6FQgwvxqRQ~O4AT`;i=wT zSD|)7s#pfO#8RXcZLX4tw)3m}Xl?Z?wP&EsDk!dFn3!EY>-hxt3scPF(+C~&pnUcZ z7Y*lxFWGh0tCELjV}8co{_WqfiI;w0Jzx8ho%`bFT)}jvwawqs^k$@oYj-orFW-cC zqMz@77}s&qmXgm&(0@cDzot*3KJqDkG%lYcj?p)>50Hizo(YF-8gG0s)3-ld?v`%@ z6065M+U;?j9)A3BTT%=p8gUslP9j=P$_VLb<2y7Y^U|H5#zbAd&7Gv2+?*YL%@*%} z$12wskpZo9I+LZfDkfM>vdYY}t^^b&d?kMJf2hqN_)ACix=#wG!v__halPDX*=UOs zvuiWgSwaWQOd>HF_-U(ayGon2GkH;4d?Yaom8ROmo+f_C3M*yY+wU0(S&J`?wdy1I zkbt5%k7{G*kMO+7R}qM><<;$-Ra;wMW?vpBge&W;rLohNbc&ZH^oH6_>O}BR01*r0 zKD+ryqoQ*Ho}M|sJZ!a%?RMqy7m-4*apHG^!xoc(CzjfgCe~CpB6&N*9=lBrq%>PA z%gSYCODr=ZtzKAxB$FS}bbzDnnw4q_FBV z>31k^H+u+cTyeF+77%hQv2~)UvBRoo+5rM{NEJJL34M8G!6v5%*+7DNwIYq}iUD}=4ogd{}Bur$&i&=nfa(kY9$tNsb zle-g1$`J|>=mp{gU`f-DgjCv8n3_VhEE0jFzC#?1ofYVEW$49=!Pz75MfzicL2>h= zV`5Y3O;eMGMu-(Q`QH8Tmeu#Q+v%V9f}Q@{^OmVc1%dWXBvpM-4aC9lpm>kMAJxDo zRRgh)>UY11xfp*j?ZN3ZJmriYF`%CdG<55z4mE1(69Ycx=}UIv0SEaGU{K?p5Z(?a zA2$}>x3R%%wm$tHw*t-Z)~h8n(h$ezCzoar9~1cuuD|%-h4rm!k;zUlc!U~PWeJtz zp?aZ?Dka4NWNdLy^vH+5Z!M@1>FoOqYDG9~qUb;%mn3-YD;-qxo6qw)&R1-YNLTKh zgeg+aqZ1@Ae{jmgzT;KgmhqGWH-g+4Sr%O04fu-`dN%1%TRS&mSZKg_+74TR?5h^z0O;bqDN1 z{}a~3-b2mEU2V-aK6T%QMs8CdNOF-LB5ZfFwzdK=+vWgB1N#7ppXmp9b^}URthNr& zkMwhXVTL8*1@+q>+!ayxc%J z%GuXAMm>=?^;lQa0;tqMlo>u8u;HM}z^Ti24+{k0r?S#WuwhnNLX0bS_=%Gr|@jOAoqgQ|e6L(VXn7`ABad4=n za``Fu@QKe%rLm0wJq{se2vve(fl zj8(UHYN+smQEzxY?5GI2+Rv+yIN;@ZK5{&&frqFDj?+hvm6kftVrPZ7#iR3rKr**jv`t4Lq;WQavCPUutbbiQKErw)onQm3cUA}C?Q*YBhmaQEr zp7z3RARSv>d0@*++w9vLVZZ9S%`T4lKEZkR@u4pauv2a`^TVzSu&%bkM#gX27OCG6uDK*`eT)Xa!In79SadmK`!=5~`|t6r+MxrK2*E2R#$y0!%H z8s^|ilOI5lPCzXekB^UWxJ8FImS}@2(%yIJ-1^P}s%nO;YOK;)*V+5WzQS#`LI`xu zEleT1SY#P`(U#Yy?atkI+2_~-sHKcNFOyTFHZ!L!5=-nMU9g4aIS#f|`;wunnxT%C zmsf2bFgrS}?F3Uu08vNN&UEd+Q1JIN$Ff%Sz88J0sz&W)GxAqIW|JNv#2F- zs|}K1xw4MLujo%qP&6>m3_(tDSFEgWWFap`;u!`64~Y~#TfSoYY;r9ASQLaQag3Xn zMam%>2N};N=0Rkq>7JpwLLLe3P5-FXO@k>HoSJ~u!(tW+`B7$p6 z$JRblBQ}nk#c^pUz0ARU_#8rXmntw5_<)!|X4Ts!`#YGDd?`yc98VGk`o+Hs2R_mH zIL%28;vXm9AAMfO?N{RPJY9Z$?AQ17{_2An#nN-fQ029$=S#DU zgC*_TCDJCUHB{H-Ohn~KJ+`-*07w4ZCa?dR)iL8$Y6+B&AEFRF;;Oa+Mb#atovgm1 zJ5Ejlpx70}N8uT{vHJeP#7`a$KE$;Di+?N%S6Zy1Q?C^LT-e*tk{B`GjyS1Q9^Y|B9U?tI6jsEb$c^g zCji7nwv3taMI9RAUF&;@^>7-D$5t&YxT$FoM}3x#GY4qIvd0SS@!?~DMfTgP0hZW+ znn5>h$7l62b7NVFJj%R6?N>OzaufL$eMmdYX4d(>Q8c8wyc_@-_1L%esTHllX3rzT z!!|UiMH*Nk+4Q<@D=c^c9D+9o3e2$ulrCV|tN|#CSQSfyMSxy`)yj*^UtDGGVn3Eg z=xvSdY?f_pu?W90w-)M5V6%`RKMX;yVO6eHmjSoH4CYFDsm8MKvX)nS znRs~wO7gFoMR>D5s8*!tH{b!0$Ms62G8PMGqcX;k#B07I&QgiA!kTiW!<=#W3H3&z z1)feukcNBXD(Ljkufp{l(iab6lAipVVM$&?Xz=e0OFt_co(A#cR+#XJYbnW#Yp@vx zeezFMz@S@V5v~uqGTR)LvPbQ;r~iFBbnqNoAC1A3cSpRSNnnn|+rOj{DOZ2`FCFR5 z2m^&dB~Y8A!FFn&D_S(M9TKTZ%p-976kXjL*iVsw`=Wd%H4y7n?CiT`BGPmX<6Ut8 zz&oV(DZWZ_>rHAQ1Ap@OjY&n`E6Ui{yiGEg3pBumI>ZpT5+8W?r$;Cn(s60 z>an9rUhII0LgOwAV5`Lim^L#7CwO{e>|(%O&rXh{N<$4a9&*=XgCGLY=*Q!6R}Z60 z3_Tuh=Pf=7k!WzcJW0ep^>!k4xe4Y`pi}Kpk`<@-&Imfmp#)-QD3GkSN#3#zx*UmM z@>5<5(rcOF&l`Vd2QyPP!Vn{)rpT`a5$J&VYUwMAE5FUkI31_yCT%63=Ftr6>IkJc z$W|*8Y#4p({zpt7MJCN1Bu7Dal2WCPPf&oTp_(AyP`dy`to+qy$4ZUW>nO0Et5|NR z!f7}+h`55KjKwx=gtP{YtbSB3tcA=aaY|677AdczO0V1a{gQTOdJXeFIfMJM$JvN3t)2 z2vrAEg1Hhait%02LKO8&RAQz*LcPWwoeZD%VXb3jeSULl`_+U7eFBM36*L#$J|N@ zf?H5Tmser#DhqMaC3n2!r#~%p=~G3g0wqP(q}z-~IxO;RPod=-XhYqPvM5yYr1^A) ziN<9Vt-m`wDG~}(E)}LWCx&@lPM)2Y6r03TSfurLMPXddF5%;}c>6mmK1q0trzkN@ zi7Q=&`FkD1#I(z$c0n@&b=QXJrNME4AeDw^y@cLA5U>3W@4{&JUP!v@Yqvali7)jB zCHtp_E1L>~!d2BZ{G|6clk80ELa=|fOSTvlTCfa$4mEt6<(r=`HsVCtI4gfGT=uWQ|S8@H9 zwjg;D*l7B>J3e_^N>~6KiWw|}37CVd88eY5uvX*jf&Qpum41t>TuB7?hn|L}*#Y3E zj!c)w;aTmB+@U?dmtcu}-l|T~3#|;DW(|o*KW69R0-?j3{lU4_K_2pQ6 z0BVqI!Uvv~bB^gG4|{%-{OQzyZ&(0_nD;g{b`nb+`v5{Ay?JL0$oI{}z5IyFy&2mJ zmS@i|+Yot}+VmxH;5q233INOk{sflmSmCN#oCIHWqHbSA0orz^Q7;oGqHswmA)+vf z$6^n7h=y}UJZ?jvP79z!Ch_P=LRk{u<7%-Ad;~rzlkhzu7)v^y?rIWOkp(cB>lq>j z`FSt2C`jqL-kc|ZQ)#M_EAPI_S$Po5qua;Nd2z4Smx(8kC@V0BMb=p~!X(84AouRW zi!2ghJDUd9LN~!_j;446WTgiFQAuDIpoIEMILo(r=~5M}5kjaCW?HRYp)OGUu_#Ml%IiFEv+jx}s?m0Y_7gJPj;yV(n|!tYMh zla4RgSBN@AJ!i1I)GD*KaOYj?Te@NeStPvS4?xG22}iF6nd&a5kf=~c!gj2#xy+) zzLF(|N`fF8e3GybD7j;r3Ik*iNl+(($Y5n)SRH>KW(5pN=3IG({RrQ%6|4sX2N>GS zGL)pxU|BOmVoLTAUuXeAHIzAA8s`|eBlcinj`?v5GTiyq)B|}8xsU!3NOl*VsRphJ zetf$X>4?11pleZ0pAY@0o(XX2BCY_T5QT%eSYLGKQu(@~Riog6p6jkB;y6H3+Nz`a z3%o?X=?;cMY-prs+5MzzrJz63(oI+57s^f^u_hw~6+m@Baf0niuvX>^0X1=v z4AO&_GJ4Ro3Z*5lU@Z)rNsA|-nS3`GCcpLIO~4`mmlf1~Y`+sA0~SQZgmJJqONRo9 zs$p7~Bq_obbCEoHSagepXQ@doY4lF$SGvK$kKa5}(0l7yIt*zAJ*H_rg0M6!L_{pH z*Of46h2f{f6fRmWgM3=4#-}E~Zeb$wE5y@pywYy@wLfq56!emaNn95?vi7^Q zUFHE+ev;WahyM|et7%Uh__xU z`O)Nsh8TYtB-D*%vF6m*nC$=HCyc_~X3m$k^&l+1oY1ttV+5*G)v-{|2qidzF99flQ^j%E?Ue^w%094Bph|(eJoxW( z!X%v2a(Ct`Xpun4v&$gKoQCJfS0ei*eq34&jiTIg>GAOsOAnMB(G?^JvIOo(lF&&J zvivn{S*P&$Kk>vHIRgjDCpnaeD3lCgo)%&0tC?onv*lKt=9Q+!oem4`D1R$YF>Whw zn}<1lD$R7f5Vk%IeHzHu0dh=G&-`r|CjIcwFY1M8<8wDYflx%P^qYRs0XzTL5MLDH zU^WTU2c2Z`c7XSwPCMXL3DO$%w#qbs@uA}!qj(m}dN`ia%T!6abijOhc$vlod%Qn_MF`jDqk?-L=Ni#P?1M7}LP@(E9Z z(2^wRCdTQE5px?kM7o%E$bUDgAcN?1iB9S1t}Dj(2Y+@o_+v~%RJ!yl`pC&Wlcx|K zLd2m()p7^=z@z1kF3A()%TLb%JnE_QQax_vAmJ%LXTuMy)DA@&S=99!96x-9t%gqU zv4^D}3vUP)cU;8RrFO?(ijMjx?+vfC=#fZ%tpuX)#`o|dZXDiANGA_HZzms0qmxHx zx-qX!y6tAPli?1Zo9QPqZ#SRYO?D@`>`Y@PJkt3TzfX!s+xxjgIrc&yojiU~p8dU} z(^Z?IKX1s{P`b8qm&OecCxZBLwkd@;1jc$4fS@+577r%n)1j6172O!J;;8mm8)X$} z&I&Y|)zt@ppqqXIgusW=bP%D=-xCatbVwR{2L(Yw%_wfLYII=iG@UWa50)=88Gi!6 zRs!(RJhMr0AH&=k;)sjnif(1bW#*-JAb^Yl8o|b*)D%ZRQ1T$xz!5BBgH~C(3H_4u zajT{G<4_VMP70UU-a)CsAWaX9`qEnhS@q4nE5U%N16+{)p27_%KL7Op`;BwZo<;S9L6u ziSEHS_y-#K$Uo>clu4iqw1I=enh+>&=jp?_{v?l(X5gv#E$%9xy7H%VP+Btthy3Dm zu-=Mc^l61TW%O=R5Ig19N>vp_F~VPTi?8aX;D*BD72R%GZKfR9pk#ydF*BOuRMdd zhKPgIF%KS{9|wba=(W@J^xK3;Sm7rbLUt0r4Q?AX61~bGwjU>tD0a-N125Np4B7pC zw|R~EciDC?j&q1SBfH(oC_ei_2hECStZ?KUE9*v>=1=2T zD_D7X#+K)<*vkC-ex7ljMFbj-)!aWH0`yKQfH*nTr3O_gVJMkjH*)xM7}OSRe(r|l zhYwqhqsthh;k;yqG-;eOtR5B6l$FnizlrJ=KpD3j(6CxlLp)?aKvZis1p?K!=I97? zgjjBPiWRU^$jhYu>XL66B4xOZ)0GQz$xK{Hs4hqG{gNl{_$WUI%-r4TfR5Y(R-0!- z?>koLKMA1a?Avq%McU$uWxNGhm*60^5{x`Tmnm%v#4~S=Ve3P5Y})vLes;#@E4O?L zn4rH_SL$>9P_%0R1;mh;Ld;ZnR(QP9Zutcrx*j8m--Be44=QiFI#s4J2qYbZQm(v` z40p!Ub1SZr2oz~9PNNV!JL4-xycD*b@HDMHh+1j3LRx-GCHS}eT69r{*1cWN={PNS zpiV#c;%=o8b)NQ-yHn22@YZuWJ^6M%N6NH+%iW&G&iHA%$VV;0MwgCL43hKfk)c)H zrtaub(_8$HdY`GYy)++=Ck{VrM<<`M;r>HxA4Gc+C)yIjKO&PNYJx!}uDZBY2cUSZ z3@BFXN_e(BKI5*<^4d$*deP@re3JHIE3#dMZrMw|?<*?*xu@{ZoyFU3&}!CWf-N)LI5W+L)$9W|H2$m&jXiBEOB43s>JM#g=|ijMnS9NVY>s(fnwO)7 zHlNp=96%yx{#IyRi=etJ*2OB@mSl&I(%LQnAelSJxNAd)oYOGpG<3@xtTOQ(>=Cz0 z_=@KBfg=a_F3+Qo8ep+nXU-P;%o!^-tL#IUWjlxhtN*n3q2pGDpV^0mwpvyIL1h6*$&DD&f$(Oqmg*V#+8XW9IcOzmtu|+KbC+y%^f^wYh@b}s zJzRTHuObf@Pe{mz%asXqFO}9yc3|v`eg64=`{7&v)^5!`;Pe!oV#8ca4d()CRSz=S zTrW7$sWi~br3l?=rQOa;l=`FSnpc{G+!7*)(aAT23TU~=O%7>CfT0`7ue$CssE`A@ zW@J5frq~SZaBM}Z?6sgxM?%e1(*B((ZHXtbW?g z9Dl*i9)F2#g2s8*X%F-+c^=lM)dmLJ8-{iv;#15{d`{mL7PFc5|E#(<%WE%r>P4Sh z@ez;MFm6S=)9|g**o%DZRJQ$iKffC2sa^@pp#puu)&M~@R=eit*3)xmLZd^M2%+8; z@%2uNyH9xoxm5|&iL;}J0DMzVv7qCyJ-q*(Epm*VEzL0GJ4_tTVx2r@#R(Qp+-G04 z)q6Ce9LLpv48BFn12Xa)&9yLh&C2B!%MDBcmW~5Jn8OD+TdEWQVUt+?0AM+WE@@pe z(1Y#R1rE?Sa)y1`h5?am{yNZ)d)%##YYZvd@*U33T|~~3<+1veMxU^JKWFB01Xz`@ z>cTavun%3eZw(oSEjw@!o&#(iJZ(ibIv$=lWre}R4t&exXL;@eteX#IOG7EHkS=XA zT1xa4YMFp@Ag>FovY~K@9zbxfHF2xw9ZQr4Yd@b+oEadX_^!-LFtX+rwOL_fky^ za4k$V0NBAR_`+5+()lL*Bj?CdaV1UEhKFw;V~i7dgv`Vzg?dEySWg@2bPu_d-b2~Q zUfsHazVJa`F)PZY=v{}R_WvQib4>K$Zhn+6G3Ph9xy!9f?{?GI%QKdbX7IMcBwMJ& zK}U)fc5dbd#x9n<@?jXV=rXb;2qj5>+8byM2>Y_cjh5ky1j=R`R^>1-NaI(8Ja(F>0^?8 zA4hI!1+M&?EfM+9yXw!O<@YB&%i5xbol#hTR^7&@&SL?5%xWCXHG6|IjTipNN|`Ya zpQ*fSmE1qHL&INUbKm1uWqzXO{gn>Ch$V`~y}rsht-v}?UTEZsHZbudpluw+^UM*P zvqEhcAUKYdjw9Zfq?j83NCMO|dS)3%ahiA!wJHRS+xOCDQ3hOJ`G0Jq16FhW|?qK$sEv)G1v{`gaSykBZ*$>$w zhZ+JGt5klHthUlrdR$4j?X)2;A--g2W8k!kvB3qsqBvWA9B61>7xhfTIW^#szUKGHOiUy?5c z1>h)|1XcpE9~;IGmQ|DxO(7N_Y0u{6N=0$VSQ(Z-xTc^=E)F-8kM{G^5VLr!>924UYu_;2(#+T}=d_ktL7dGDdGo6CRynQA z`c_#80?4WjFyxybvcZYdR#{oI70!iS)F}~w($NFwZS?Rt<_2?DBFR*4Clf2y$P@!w_(22Yi!r@!Tq1d5|`6=$5mt>5sR-2E9} zMfUWA%uVlrO#CtUCByM8pTxx+w>AMnN)ka9^LRy27@iZF7}$0v%!5OE0q95iB&;c$ zKvN>ONRo}QdrCv(At84)-JTRb%9E#~G~6>$YpdQQf`;V$H=*lrNA)<6S3ST(JcECd zR>H-ne0Vq%1Zf&XKEqLlSpN=9p0vXU&-xZJ+ICB;hARNUoZex571Q$g%wpF=QU^mK z&OO&&P)UkC+|n=l&l8WWvcA*2rulA{$9Cz{X>G^77wPPl$8O^*zvAI-T;kr24kGQR zg-4X<=jq;S8M{5tJAHEREhMck+p4J1)G)DkQfglnMuDfxEb7aHX;w8f$9e-SNxmEd z0Krx=%mvgb5j86T2^SeUW=j>0@>b~c$>o>Nb5*zDaO04U}e@MT_F zZiM-GC0l*)_g0>M3xEj?JNy^(k1;gOs$u33`YwXnQbtFd(ew57^&=z0Im~@5&Rk(g z=bFuzU$y?@Cs@=nWNZb-YUbNkz4Z=5v@9J#mfG-X=E5DZ9H&5J3xL*D<^%RkBHI!2 z%+OC|g>*PAV(_4y9M9VF(j8kU-?gRrhgM&_i5vpD8X_h0s41Ln3^YbD(oHA}JxE7b zPF&v#sUpKFmd2#FaOFm=_I~fRtlQ~avQ{E0JD!5Cer2(Y012=qy(ydyP-m|`HaWsc zC1*LFZHcpoIa+RQ(NC^X9SQKN#X7olLW5thcg{)%g*m{Y%w)p~cC3UhP$$0v1kz>D zv*OF0!6FtUR|)9cV4)vLs+Hne2q2#Ne34B?Rx5>txRS!bfrkrVh^ruzV1nwFCIE!< zfR!gn5DrHWsic8d0{q0MRnFoR%GqUPTONVUaE1KJU#V#GZ5j0(jKWUuPFl_&x6;;o z6hM&V5RLL1QewIUp^{g3ZGN4OhbPZ^CqsS$AEhr{NeYE&Zg9-2_yk>ruy7u8;1kmj z=+QrgDPGjM_yiqF|G}*=rLHp8@qZyrr5(ycrKPP{6ehmue1>uj16-I)7+$X;q-FUm?hBBhQ^Iq^NPz<$a%={K?IK?*~0JdMKE_qR#5ux}VQFOgB-) zVpn#nUQNId3t^Tyehs!$sn$fd!hV56-j|eDW^H-)y9~hs?)o2N!3e8bvw15oUSr#s zpV0Uow$=Fo8#(X=#8Bf;>Ox#XD!4N;gCKx5rmivEoLjkP<@vv|a^VF2NDMC%aLX0} za0~+j1TFKxR+%SRC9e))wF*#~(w%vU(#_h+eOs8hX%&V``|-&$Tw0+Ms?l+mS7)rj z;q>aHbV)DiD?Cfa;2Xe)_=aSpVOONW<@rdijS})M4G9#k4lPywiLdgRV|$+h=dPBp z!V1u?jcSpPK&{F*;Z1!?XGzto1}2F0N#!BRpbs2MkFiaG1I;;8aq05TRkV7Bi6D?p z^^k0mC4>uX2sA|S7gFYPBJlHAa)*CHZC>9=N2Ml!9$b=Hyp?YFpb?k}IpP<#E`}2% zF4aAp+QKOCROFC12Y7_F@)$WKKv6G?_y=$2lSl;1z~6z7lJ@-^L%k89{yA`Toe2Cv zBt}G&4g+A4JIN1eiAL|Xrva@NM~T9Rn9+o%AvV&Amxb~neWN=p^^(Zb;WwnAXX#ad zJA?|HYY#qMg5zGE3PaA27v-I2mq-2~rt;#8wOn@TMUsi9bgMK%-EcmxH$ssy@C*LUOUP%!hjbL?r?8Rk002M$Nkl=Id}vA~(Pkx?FtM=CO;2%uLIH{m)z;g>v4x)I=mNmt6I)fmuJ^I= zc4O6#3Y(w%$QC&@BtOW!p@Yxc@aP%KjUTs%0MNzxA2OkQiZ(6i%6~(zgGB0dC7YP) zzua`6-WcYwG?bbEYBz0QtY6*UB@au=YI|vf{HXYqooEN~#yfVPtiaAOUowa8! zB?phKv;v{ZA#UR$m=X0CLdCcJY89s#BU8fPyZ+>5P{|7TxmD1$r3~pzWLcO(1h*6l zgrO*bUQSwe-Fk}6WO0OKJgtyTB!<2zhlfO>B%*GVL6a`=PDBm7l6YSIyfWa?8Ba9$ zwQ*0FG19o8dX9Ms-c1rO$C!^8kGo1CiPH4- zvLU`t7f6LS!dHsWYm?RmmMmU*C|CdBl!v$m&MlDd(c0^fNc|FR^TBIH60m>kRRdnW zEgfzdP4xTMz6L%E8rW{#R-T&mdmHaWZ@Net&4h236}_3v0RYe)nmoWDmYx7|c)=2| zQ%eb>##nRWYV__I7J%eIXiK-4hnG2MqbCp8WcFExek-=X9J4&byAy|govmfyzjDzU z3vB3InIR44n*q9v(@OI6vi)oa*^&NnJC!fr&+ARr1Djr zu!3%+mR2*wGwJ)E$}i~<0*1oQA)J7vqQ8I@R7NqWSExGGaYQw%pWNxyh zCFga(Jp}u;`B3L2t0Vc~C#yXj_pe8%0dy|CYbuBC{<_8Ll&bI1sS@t$QkH$4(cI*qv#KVN9t_;pJ^ zO{e(rinQJRf31JLR^X|qYou9NjO}iP7K-ZErrYrw6zvzzl&hYrG zdzy!yw{u1Q@vgYh9q-%Wm!?(xctshbpPr*zH0kF^EB{_)=%kDM(s%JoU+FlVvZU#v zJMxOpx_A0@KBsA;TQuFSjpXS@yRo0@*7~a@SF7%IQgud*@mr6D` ze#91*KBB=~4HgY=HCweZ##U-dp+b08e>^b*&~mJ(H&jS|o zfS)46u6ON$<^e8Ua;sf~d2{v3G$)kI*&ru~_@EGIX?Yd^i9F*YhirsJAhnf6tan>S+AJ2zIcQmovdoIu zp?RB_8nJVwuULuU>I`!L>+Cm}?;i|tI4;iC?$Nf?eQsbD&^N?Fl1%?gfW!iEDDOb=^qB;jnqLBGP18MTeWJj=49>F5He()$==B@H=l{t)(E0%F* zsR+PDn$Eju71)g+%_kKPQpbUGoXTA_Aq%huKc2(3F2srKWAyZMw9orbRi38U+8ues zyJDo>TXR@X(HTGe9NqEWExmNudhWgXL>}>;PABcx8@G0H8X?Hr^G?z}AbXeNm zjV}7ddzxPEw13*&NtdSGn6A|cr{jx0*42&Uh8UZL$FRsNokq*OafjZbX{D9s75S&> zqF=ldMx&-!zAqc@LJ5E}cGTu?^kco!*RvpuC=@615AmB^H0Gzq(GdZQgIUdaPaV+v}<_iLqV3lEP zcWv>4&E2lr#0eIFFjTzC>W`WGS7}(W@G&27fMepyOP7&~#S7K44X~9=b@`SpHaJR; zv@(FkJd0Es3`wudTw?tC7GUw3EzYui&FDb@A*+fxX=G*QL(+eTL<<0(GC&jl3m@4^ zb{PQ6-iCA6LASe=Sv&59g00w<_R*P?ErS*=G zT10s(mr?RWBh8u>{l%!)uvVhMm5!I@lcwuTC#{ukVd=Qhoz6$}i}!TcM)JgT(zG#t zym!X!^w)EmPYjRu&am`z+MVVT7OW8C;GzG-(iKJtrKC$0SD*Nsm)tkb>K zb2A+r8a>blO-oY6Ze5!8Dtc|j)1nI;e1ZZ_S$oAnm)b{BZp6=tlApd>Seu>p+hccc zf^44Xqu~+TiO^^U1xqgZ$M!Nl>z?-0bJvTwl0JR)6fYfN-~BOZ;L+5pt%cu8j#z_Q zb#iN-y;H<`A7gB{e#ZDA-d1^usce1E(7P+g!gHFNmF=6cmFaiv+K>NND^;&s5m2US z+M4SWuBe}uzFLrgVM10;ijNjo)HDRfIky^e)sU!8_sFsNOrI@7!zMJKiws*cXsE0K z5X%DQGCH$YbFBFMF0(zus;qFVBF>Yn&L7svBCD)S&I9-cYi#_iO`+KeN7lrCHgI0W z61c`tx1L8>m8=G&j9)d|j}&1zdJVqi%qY(TRwO*5W8uh7m0lpr@Nz$LG?)jccnw(> z0f_1p>MVxIleTbgg+(#!K|@@up~?sOMuV=R&@spvbmUe650b92s%6Ty#yq9|$$wzS zp8GxKLu$SuGDp=qm(V6APQt~jgCGWSZ`F@>x|V++)^h}`8}aLmqkO1-R7hXLz*@hl z37aYpS%fu@uMZHfd`d!}JLh?i^2U3RtzE((SI|{UbM2jLE1sw$H@Um>Qb;;%Jypx6 zjsDCrO;V&IVG)1v6c#~CC)X`Vrb zR@~08_UFJrskXEnWQ%+P{rc2eDa5dD@uFX(>87u!2hnV#ug$_@8lB}8p2bmD_dI%# ze$>$Fo%KKcpb;iSSE=g?(z_bd5xE}Xd*jdiq~Eg`*2OXy$@lLYX+R3^`GQvDQQ+ZB6aYIMCLF-@$I}%ns0X^UyVQLzIntjWb1;}Z`VxL&={#vig_A#tt ztX6an!_b1H4Zxc$QhMJDoNa8#D0%d?o+mxQ#gHce8WH;N%gahAPv#wJC32?0DH;MY zpd5izhrGyGQ#cd+wRlC~kpt|+01yPo)s{Q(B7+R^!W)3AaA2-T+-imh?v57K01K2a zg)3#H$q5F<0~|qj0NN3T*|n{P@}~>h)hRV-3B8O2{ z&-~Pu=56{u`wTu{sD5t28Vt>Aj-?khu{GaHiy1<)f)|lv!uVspDYag+{4tBNGxm=n z1CJt&o#p;xjivWBT+~W*5T7+4S|5h0!}`!EGH*CvEVAMJ0UJMd#PZ{;pl9Smm+E>W zOag|76dCH9SgW1tcI|_~4y|-+l)CwKMCSWShY(n+ugM4_H zcFfyG3D{u8Zg$ef4!vTFw^!KKtl9uK+7T^^d@2mq$A`(aZ zaxNHDdf;*h0*#K$(@Iu6INA<5Nlvgua{{vhgwXck3G8&>BP*BhG)F#EcG}(|BkPx* z$&*g&kSvl~VAvrKi9+g^fREDFKZz2`UW@?FSk;C`USd(odH87+u7Is#CPD`mflp+Z z^6Tc5j2m8r#o!I;Ts6p==t%N{>0OVmQUJ27v-QlWL{P4f+ibA<(d`O5Qt$S|}7MaChJ;!)4O!pYxB}{pX!JTnM zzD{3h9?giU#FFqfzMeulVx$jsBe3Zn9w#u?f9<1RnkL4J zVceVf>J~=$M*0%@x-jvLe46P-oe+?OHPdwR_(mym`xV|e`9-Gb@MZ!YuC^tr$xqFp z;gNhb-tjVxK~19sxf~yDMRpBfgLxKPXhb$pWIC^#xc7=j*TUQ+-OeDdbS?dK1}6>X&hxrk`PK=v@3Ex@ zwkp%D82C%W&u+?YFY5PJa_&X=Zt}RBxSPo?Yn4Ea_FBtnc$Q(?4BMm(b3EL_;w=_P zyw_~N^y+H3P?uJGhIw*Wh`azaTndE*rDY6_qJWhe_vEFgoQ3_=R0<$yV-2wrloEaG zVj&1|_)=Aa2LPeM#QO;N?%2EB?xL)O}wBE$Z8f}MSwWY9nMJaaS8GLH_+ zq6GEcBuE33J-uAU%{U@<6XZh|^cF0=8vND@?<{As)>l?pDSpQ;fA@QK@5gW0>iZWt z9*{7sgtoQO&&_B3> zqDAWTNiI6{73y-EzPjlWF4C7&5v5c59xn-N)1{L1a0wdSf!^f_FL@VT2K|IoBA$`a4j@hH;k;LV472&!V95JI!mF?@oBc{H6KqB(LfCo$kFzW3PGaG>=gZ-FLzx#+QyhNgkbL^z-oS4P8&= z5*oz-vS_W;DAK9-6*<3m^f9X}p0pKK%oaJ4NxSxC84s4_FRUEZ+(5Ob#8Ff=sww69 zlZOX??|74NHJl!aUv-?CXBg{)Lc}d_cJ2w^5Ta0}qp$b$6@XjI$Dbvd{^Xq^Pr3r{ z&tt+N{g7VBjpDZC5EFGW@e;_?rHyQyETrPU0stWm^6v3Cr-5PSmA(fiI-R1;6`4*UYJZ{;$C1>zV*_vj9KjinX*n_*(ZLkx}g7Wc$O zB4G%=#W(U0Fz~t&Sb2ojGhs1eWR={VQ!^~2tayPh&xE!3s7^)cTC`#%`c{~pqdXxb z&_rn?fB8mQeQd<1R{e}I0=Fd1=$Xi($LQs<@(`Y*tj^daigamxg;1J{#No2XhlF=C zp15>`Mg4fH9u_pHIO(wNx{Q*FHo)x=uT%CYL6kP=t@-4^p>DdL>V2qm{!yckLpDXQ zI>QMyrmtjaa~9tHna%MI+<50bd-B(Q#SWi4OZ{gb1t0aGuJIzoI^Rquakynrf!paY z1G9EkpB5hNQf>XzEiYTg+C9Z~^tF+Up@QvRmc8Pzk(}G%-^pV;dWz}n1&_!p-ghEL zj2rKJ!6WkeOyAeHfnBpB?5F0@t!E5j*40SS`u1`7`rx6LG3-=q{?h-&DIH}_-vAuA zg2P*(&R>Rrc(oev;FErCdykrxr{x>uh@F7^xni)(6#PUNKue%i8qK(nM7PIH^N>4U z;(}=?`L0#|`tPm( z5FZKv*}P12468|D8s?7rXiK;0DgLgY?sTb0%_#V#-6Bapr`-x^e@-#%;!M+~-J7S; zg;6TijrpvXElrzthxDUQymzMC^6%u_3JG!2;q77RkaoQW8QRlK$4$H2sW#`+8L#s> z9lJBE_1rFZXSuiNy5(XczxG_HChI-WZ~WksOIAJA;rd-RtH1HU<}Q3_?=uH_Wo5}8 zJA2l0B~DV})Ff@(ztPnkCf19q_hGB6Jwxr(3hRNzrVUy<$BmyhYG``Rhd6J-Vknu_z%D$EqTbtPbJ;BwaSoTb2Ww#TiFarO zBuKN_uElmB0Z8H!y;>ZT_yoi-cQhX&|D+9aIt9kO%333L^y9&uq!0o`>Q_iJQl`6# zNT4uTOttWYaPlKth2~AF!53hzbCg|ip9(h!hH>V+BBd#txGq5>#5*sAN`q%o@GizKd3Il!nS+=+aKE+!^k7Q^V>ECAnY5P z@P%{&eF+=KK(U=yyU@IPd4cs}ZFFrGwo#lfq2!3&L@=Dm26hn1_ruyCWAV^#49n>_ao8#wwoEBBAt zA}eFeLESP)4D=ht*=UQh=ERFSJPoC;x{xSCI? z`Acf}YXH6lhKF+_CvD`&t2TV-^Xx0g2HJ!QI))x5$h?_Monc#*YbSlT=QbWHOIB{z zkr(kjWJ4^`S%zdm<2dZRJ;F0Yg9Y8AH{N@KVA*o!)`TN!qsmi;Invj(;< zQ+45jfNJOhHVG|^I(_-E|6S&YO&F(d!{OtQov|hlUIW&3g6By&QXGUMu zzS54DT<>{ENk9uX9uW{afKvtb#vp|2vBecXo|=|Lf0^VV9)V00{uS@uxQXCAxI0@t zxktP??1h?eXD-l}P==d>$ly$P6F*K$Z^l!6Jpk{-SxE>`m037ZVTe69{J0%B{1S5n zpR*#z-t}dNpvn279L=>;=OTSXspRVAaupx#n1QCPV*n@N31VVOOao^NB>^$-flsxI_+ujg6bXhMJ6Psc2Vt@KK!&dLUy@q zl}k76{XhLnJNlbnwZqRm-TFrENVEwC_44&{ZI+21Svct2`VhH-B=uII8*8okyFubCU^DC%&1vX9KC=X`7;(WiySCL(StXxC-Ft<+k?z3Nd7 zoT`+|$vrfBLI$kpr2(mH6|4)7t+95~YSkIyvKJvM?R06| z74ZwrD8GOmU-1iLadq&3G2%q?DZ6UM4IQ(TZPL>w@&6s{wT24)5?Mv!b{Oz=Dq4U%J!&ivFvK(JVUuT%BPVA&lc4XzD4qEqLuM4J{$wrDK9lXaXq8^{ceUv!dL)v# zzr69+f*h5BrX#36idf;g^cdal(dEaZbofgW`AfnWKi-?93G*0V;c2(%($CQ?f6+=- z6=(E!Km7f)7AW-W^);dKaEMWz$MLEV-P{$f%OzJ};*sXB@c1luw@cB|G*(1fL*Nlvj7>OI`4b3L=+y$MobM z={?K|yMz-M=@ODnZfWk60D=dZc~883kcAN2zCNB9GtRTh8hUQ+eU_uMp~P@79L%t+)M4Wuk+a(i`yPvA+% znABf+Xp`%%mlJn{bfpzx*MMdP_f7+{FtnSZP0|RUCUn=T#C_x;3s@6n)hz%;;>sG9 zw8sR5+zB26gtQcz@Jb)sOF*A54BEiZl$FL#+91}z{LpE@z>se&tvwiXAg4^dg4oiK zx`x<2;@rWdy4Cp}ZHrA*35pVE&tV;0U0JhB-~NtOKe%K=#|}_vY_=`niwTtSTqF*UMB~(&r%GHl^5rl=tzH3Mhd&28MiG@)eM;%{o*X);=vzvanTy#f&R6QwXn^F^N2c5y z=jLgPmy0BN(ZNen$X_xzheRybDL$f8Sq4hc^l&A56ie~ZrTFB=pUa7Y>(tl$>2a&x zykpB3FI$0aXZRXKF5W36s?@pVk~})2?fmRCUOJ7>5|6!*H7UDTuhOdM$-NgcY?aVn zq_Ha=)NFrWwi0xc@Li>!@cp##*d&{K9;EuY7x~^Z!Subn4Q>KR9rOUuWje>7UKQ(sXi1 z+D?DfXoZEE9qV^Hb^0mN2R?P|QMHu^R%ZyjzBY@cbJg5`Z7c7ib?lse_F=ou;N0GyvKHIXT?kYkTI!4MsZNj?fYxAQd*RZqxwHtXS^L z=fTbatm@@a6wT=rxYj>`lL&sqTmQWOg{#8#DydTU@PAx@~chC zi#*qmyX-)Q{pX0+06aOk;79L^g9~W22uS%CkkK4UVT6K!9t4#jMI zJkSfI9KVQM=&S*-(4RK#b4!whMQ)dxbo`P0kc3~bK_-DW)TIYlR(O`Pp9jezp(Se# zB7szCLSPRKJ22xG;!|!qRij+YcwD6~U5ic^thrz)S-Hu2t1Ku9r61BlTGCP)c^ukz zZ#)s_ouJl2t*yUQR2~{8C9Ec%lP&^-*_6#z$=Vz4z@B8&W@U z>M@$i5_-$n5OkU$tms~z&SU>)UjzFZ_=VK~?WSM4dz<&E)`Wyr)2~*OKROOIpX%P_ zpJB+jz;I}TCc3Y5*cz;?tI=TB=)l$CH&|pq3kfZk0A~tx22XJdmpbLvQ`!~76T;># zO`mo*2@>AzDYQc6QoL{livv=u0ccCl+RDAxIeFy=bWT_aSx7NZIt}nWiQ!M%(aNqR z8EM>ESxr}kwU1L<*oUky!>(k2LlB|oS3~T9*1K`y1Rch7_xir`dPTWU5^7xGVSWBMV3Pv5k#GB7b>Q7hNpHb|4~vAV06F z&XuB|3hH=4)nUo58ZDrwbe&$nf=2-bT@H4kl@(AH9k*b4LIHrt=|B{RfJ{is*?asb zi-3?`8>J)G0em0>LU=jh$C@K6BaHr)@ho%3_Rs*si@Zk_wky$_CO*1+V|VJ4cnNSx z4+6kSfTU5L9i{f+}6gm(Jpr4l;?K_>}>!vf{0B^iKw>UIB2J zdCsBS5aW0+Lh_w?wLm zP}z7M6bMhRU&xRh9N_zu50f?O1D5p$E7=_{i>K(gtFQ$ORhJWtos@ZC2AS)_?;fH^ zyV5UUH`*5+G zR@M)J0yTVEXb>*wh!Z(P-}G~nG;mJhge? z9e160{g29cugkZy-gHkxTA(vSDGLCvyPUR=1GHrTaO%Qk)9j}2bPfae5YIU$g@s3||`PtGa&QFnXK~a)uS&j zCiI?H^r^BExiY33Zlx{DukxdLqdxSDzvK%uiAjTJ$lOo5@2~1SbJeWGkH88%1Y&iz zxzfuFNS*Sgth6tytu8ZIGHp4Itt(KMLrOu)eJ~g`w~c!&E3bH4#1l=V z--2{McwYni8rY5oyrm1BS~HqjS?`s-E2n{9qd^oLplR2J)jWwJEXq(PppGjviA^3I z4&O$m&9Bwq#^yc-2k!An_r!-J(y4^zH#F88^AHGHqa%{(gQMXxhivTBSLm1rZTiw5 zS!4OWJ-qmb7_+X}f%EuhPt)m*c*CEuWjbd%S%!oKnH&?6Pp}I9{HUi;Z@G<2YU-uU z+Xl-mNd-n+ag^QKYQ>hXUc=tWi8Fv&S=FRd!P++ErnpMaWs1Kt+HZrWj@i+#zGf3A zPxug76+Z!p{1SBpi&x+5qTPM>1H1aO_pAgU(6FC?VvUZpLR!VchivMp^R@=4ERW@E zEXNUGSj(0(7j2OtxCX15Gg#0Bo>nVm026YeH_D8t-Ahm@~1|TFzENi#tU;gCXHyOtZR$jL&a>P0= zP=G~Kr&Z)+5hbEm2V@d(%TzQB8Z28n|JH%wGW&NP=(pov{gTb!zGI8;eh6bA4HnTp z^pmT=6BJq19A3&LfDpv+DZqMJW&zglp(9otX3-e=)f=Qlvw!dhfAHTX(LSb| z3UjyDqu~+Xm(J2?`GZ@b~2bo$$s_tDWmntHW$ezuZhtMIK;*oIq7Q@Fxq4EMI+0m=XvI`*8_KD5UkL&T6B7`es*H zntmg9Hy(-~IBb_kh$pb>mK*>@COg19z=M__I7yx!+Un|iw!FGP2aiRgaKMWB5kSHK z9V}3!q0J@8e}P!W8K8GObdgH4Vr$yKDYsCwGEgFTm z{QPDJe0b@S-TRAg*#Q0my6VuQB~2Zmvf6nGiWdL_MgGdzWY*T!>>ozD>s;Ck?5P*Dv`JdAqou;AOeyn}>8Gc>?aP^-$Y~wGVh35gA zsnqNN`dwp~a}XdndgheR37)xr!&WX{Wsl4OyNkXW%o6~8K!U#>Idj5>PMx#`>dMUg zyww5t1*S%<%`MvE^0F04Gs}6sONexjydOM$+DaT-Se==->Pp3y0ICi4s~mgbDXU@m zokrgeFJ5P{6?<<|cFW8UUBv=eMV8#e7#8M(R$s&-JY2G6PQ#hGe1+o>=WS_m+2$zQ z(&^(i`ot+4I6UbKpJuRVuL9i3qAda%^G6Ta=riYR;Mub_kF2vdZu3Er=&f62R>j%k zYJUZILKlLDZiNPL=cqe_j~%ztiN~xsHtIOAd8*GAy!V4Q(17}%p04)N=_$%S(Y^-u zHLy($I3UzZ85%%0PvGWz*E_pl(o)9+Npe#P{(5ftj&4aHR-0U{_?^v0E2J}e$P0E0 zM5nV?kIi4b&Q=k{NgJNj^m`V?~rQ zWEgku`hwm2!Ov{%omngYqo?etmp_NaX~Ay%yVtG$tv9fE-L&EVQlf z0iX&eAG4w7p0U{<|HK-A1c6g<#j#~vq*r)(MP&C=Cd zHhlDmO}y|7a~0WJ@z4IkmXY_+7hbl>$IsaG+wWQV@^x#l!diyMG8VeVane3>+zuQ$ z#ynH(VaV7IXz5>JcyM9Khh4`2G{fM<;{E$J_x+z*d1k?iq%r)|lU70oo%NmJ@6gj{ z?Ivg3F8%Z!_UsIE;xLK%kZ~O}IQHA0vjTv(fqM|Z(|_WatvvhC=H6x~e`$py0do%Y zRsfpSV^cQF@cJZRZEzHe6lGEXDBZt$-PSH%u{HA5czaf34P+U z^*wXOmfpGG;JkQXf^s2khKtwEpRy%3Qy%)-FWUqFXB>Sh&xg)GVS{tCw(|D-w!qPB zxu+ku$tO?S*pVYF#9Fc9!UCHzH|!|Zyj6yqr?1`wC?3V?_#D7(iVp|gA=RyOkK62X zw`}2qi&mhF2cLeza%WFj-`tW7@)1=)S63<1Dj++eCDi;46%@n zS69~HsTZHKm1|dR=KT-+7{$>qzGMRc(=2f^LjyL>M@QkgbGH25A6NqmxXR5x+BT@u z8+!9T=$+6qHNK`JlmW(7EQS77L9F**v{Z@xYr7iQR)Z*wZ`|TwkGz%VM>9=DFwW-o;Dyv*jh5V+i%--}*Woe9=Dm z{`aiFu-wUKo&j8C>`iE@Sg2$k)V#taz|zQ>({}WizhG0Je~GfY2{4_vqmNJ7Y0ieE*`I`7i%-JM#HgY!z!%IUbaVLpFWD2XebGh$ZTIirp`MoQ+?ki`IQhPemGasT zeq^U#e9?|S{Ss z8rw=8ww1XByMOsZJB8&@9{|@Ww>R(om7RX&MSJ#FUh`GZOSkXZ1lHQYqmuyG!*=OM zKeg$9^KCl^&FQawnYp(myYbk0Reth@o&3@l?Jyq&AF(*;I@`A#JpZ_z`?aswEY?4P-8|OG^RK;T`HL6q1Mah39~@NuEGLG6I(^tTTNrI6&>sIl9~KgQeY9^-G;X>P@1KYU*UAD0GHKV#jD zb#*&w?Ig~2_-}_+4V)UjaAmPf2n6YhOHswJqIQpr@e<>L*>yj=#!$f8HTJ> zoZg}G-y+)|M;UkW?0l9;?x(zC)liq#2iTyebZKQd(LWV&DBW(kzygQ2_SaKqmt(G% zI?DzCO~Z)(ry*zNnq>=Ed+310ca1q}w=Z3?%YXA-8)4P*(t{a0@TFI+|KNmu`1afO z;kUj6FqvRwG7Bpv57^_s`4xNP5C0Y0x0SH;4BBcx0R7r^o5lL3&3cvqdL_(vS_D#~ zzOBqH+wm8lw~4c7?cSx!cKs)B+Jg%ht@QXw`{M8Zu8kZ$YD2iotbDE(vy>^rwB)02 zgiXT*D9LlRnDa$2I#nhNms6rxerlwX8y~bAS1#MdZ++J$v96u}`mZtPa@pSd=3m)e zz~0OM@$cCbfGRKR)Y!B=0FFxTjFu(AWVh9h_n=VV^y~TH4PX!C{7m zuYP#JuKn;0D?Ni1@bP0d`*6nI{pPnAdVXNCM4mi<-VOt_-@SaviVS&Y0Fpm?o$z-) zu%Y6B9mW!R3cj^0@*O{9$A0x!Yypee%^&^9?!Wo2TSCu&#e=^gh=5n&5UXrNcaulEQ7y&wD6Bho;(#_ka%y`Rj!1~%2eXTNT$X`_jY zjb0PrMGs|PH0i7JIUV+KyJOmE`8G;3SifTC1Y!kPvUE<`Mkh1OT&dg_0Ek7Kz5RV# zeDGuXriKlzE!)7@IjlRAo^?&iS0@qpaOZ!NV#Abs5pSc&iT`fuR*;Wh{;Npq09g%d zX>O)+qeUb>%L_q@3-AWNA~y|_Y1LEhN{61i)wg@)x<=jMHN==A^i zZ>)NR6~te8#YzC9jOJzzk74P03Q*DS*0u^mkBwD^YO!3(sx)%^s2!a=WEHGQHRj5# z-n(auMQ!V|LVU`Sva8Z#7qGVFv8>(y;g4+j-S=(z&%bLkzx<4?ed8Zmo;iP|sY$G% zHTv!lM|114^VP7xf%uyLs#&302%&jjI<3Z6FOx6dLvVV|7XRqmHu#Sz_1_}jScC4p z{yn?@mv7qIfAH@yP7K-ts8x_B4}i*}faA=gEF<^u5L+{`xIl|B3gok1oeSH0vh+BM zRj`V+?*a2H2N@{`i&j~upPtcAsa5d7tZjtCVS|=Q+wm)mI;KZdLZ2ge1HDhMFEi{G-R;lHeObqQ8%n3*vIY z7aFS2?!X}Y{MyyazE?cROj;2^vfh7{m(B9A7kTYnnvE$xZaE@>R$KsC1uow z^dQjVmxCI)`GzO2^oalk=Kio4p)bdrC;`J_d;!!pNz&GLs|V-DCb z7A08$6<-~Uw&cJq5#*)6Pw;B#JPOn)43LOLFxn|yqd93)@roXI1WBW<*;`CbxGt7gL~DYB9REC6d-?X27}%M2O- zE$%#kwXs}7zJ?u`U}%**W&yaesLHxEcxuvD66=V+3OwsrH%E>gwc}VRYqN7$*Jc^w z9b#8zR{MeyGAyPUKt`EV1;Gmd9f7h3-~OJheC}x*dg=)q8)wd7u3$^Y?%LdkA2O86 z_9aj&j~a^i>P7n0Ivd8)T0F?g;ekAsY!=^WaR=acoFU|i$4^-f;Jkt*c5Zo*lI0?v z22A?_rk)p8a}=q|11#(i7;aDwC5FO}KJf%ajXscdjiJ|R4dpK^Q|{CfhDS%STh>N3 z=dcJc24tg)8uJ?05Kc4b^lt!ti~~L!PeVs}*H;CSNgef8#FruJI%QUx8nz*9 z%*&H^ta9OsEl@|wq>exVqq}?jc7~#jbTQs`c|?xs_{v#R(sofLVT{stZ;Rg+(t1eC zE8ouN7G>|Q?egd*=XQDYB3)-XJ4qw*hBc;5 zCw;|v6qn@uG|2UF=xZl=i*m%f%3!ES!@8nR)Io+^z!K_`f%iKPv|1s`IjPw0*~SX3r((fz#~hWz%sDI!z4U^ z>_o^$bOl@c;Hs^>O2^JZkIS#WZ9n_J|AZC2BR0l4ugA|lX?a#=X6U@n{q}GAwld%R zpa0Mn0YP8>=f7_!0XbvGC+#7_v#SqTtij4+&F?F-kfFgGvI!Pa+`M|lZhUyljIJNVED2O5PJQa-?Gbp@|X6^Kl`V4ggJZ}tbDE` z<|JkqBGryE^~n(%WN3AWMIp1u`Mv+;|FA)T)fayMKeQu{pRw8`b23@&TgTd{;r;Bb z`^>Rh^i93{0mrx5f~Ur?`LT1S?SdP)^!>kh-A;Y=%Y4M#v^W3XKl4?~BMg%d zqq|@gV=)Tl0Y}QI&t}Q}%$qlD{8#2|U^Q!ZZ{4z={6BwWYqOk8gRIA2cpi)8<8}!! zrV~Ok3|HqF&c6o;ADUu5Z)DKc zw1S+~(OxB#J`Pz-HTP4NUV%Y#ls$O|?i`(h9Q99d6UGjH2{-Y6g2<>e$8P1=DE@ZzvArfn9T65Q0T?At$DOf*RvLcJj+`sm!z)8rdH%{lLw#zF zPVhxGs6OSLyFgJL;E=T9@NoOUc0}Ejb}w|%N`SmcR$n(0>On--me~-Vt?NiI|wMKu`%5|v~{eC{mjc#r#^9T z*ydSvdykV$wEA`U_x}kioPUSaz7!0Wvgu2gZ3b&%mLbLCt7TtE^0oi|zh)1+B^$?z zr?a*jfQTi)UYRAU1wUa1z{3KY5_`#I0AjLWX)|hp;VeKmpVhoKs!5p>D4^HE23Z!@ z9?tq4%JJie?YXai#h&`&t2Q<^Zfi3SY>=VdG3NVS|NajFpwu<2(92le7Fnz@#e#~1 zZs={?Dv>=N{Ho76f4lT)OxXtH{@E<|11LG35T#Z+^v|_;nU;P%fZ9 zbcBVE{EuSgy!Fl3?Z~rF+0*~{ckMCe3L0}h`vJ1k3~Mjmyln?qY%+izi>fcwr#d607*naRKs-1yRO%O zn(TOH7cUrD5D?N!(RQ)a^F~5dDyYj0 zWxR(Bbd5^-N`2>-t4B9S$*`B8pG&MoCG=8$ws2v}Mh-Lgh|X)eKET!?e`^aB<~9L%2HCti&m6)A z`xVj;(#8QC#6#%NTfE)pVmG>sao3e4c~NUj4!13($An=;!^|Y0J}1kZvIiW`r7cY= z%n#HC#f1^hYR3KWIxBktHDy3j0ZWb`b`i@^?ZQVk{WssYv0r-Grm)xn{j9*EfMxcV zTLW+mFq}G#g(}Ao>nK~GjFhn2vYL1LA#=g5GQW+z0}EISHE(eQtIyJp-m=@sGI(Ir z2AEqmH~~0f1MGY6ePH+Ac+=;|X@%@Vc=rt!ZCG2fQ~-bY&ELQ4E1hfQRmze+Q9Ts^ zqspq=r5m^GJ}aM>0IAw?P!`CCSQ*!_#ue$mN3hJTGPiFQaL9&yws!R^E+w#fI#X=W=<*oNWvgPSIEY7nU z{kF|txMU-M#t}gF2>TFT(>{oN!RUiVuYk{w<-XHPQIp!TjzwRkQXvgqG6dD?7=a`m z+KmVM7I7dtladAC1OPKyfkkB!2-8=UgE4g&9m2&IT5qjhYE=kbUSX9XJR^{6f->h5 z89}dS#SsYA+sh?h>k^Ys`1DhtUx7|eDkJhL4gG0uhCr==XXhmz>3C59lk!(Gn@CcwJ;| z(d^8nymppP%zvkUZz*)w$5wG;nrXUT)9;oC@!7~foknzbOFxEfM~)b$^S+)(_cHC2 zV|~0dXWBJ@MYMbg4C)9mX0mZg#|oWzj!yd~7N$SM>T(&A7aPtVdf5(~`8sFx9+k0y z8pS5b4OWzzwsLM+2csODrypfmU*?{>B#SK`>*<;t2#R#;$_+Wy_gwtuH|@fI^#@pK z4gu=ulN3i58FDNO9;SuJuI(Pqx8+n27C#g?ibcn`tK9%?4{rNU7Njh+1~gs{u|4&B3TA1&CkrDYj*HNf6SE> zxa9bkRqD$!me_i}-^Q@q7TBIfGUQq1y~N7uCE{cOw0+F+tTAt}0yw5Xtw7z#B1;8b z^DTnaR&zQ3fA-!3OtR~`?>v<|=Quqx-90%EFvuX0NRS}G05Jz?Wy)GvOUYWxA|+~N znWQXhz5YH+vSjPq-Ov8GqHIbGA_+(&B@h6S;~>mna?Y`Hu3Y>3-`B6Zx~Dq#3HtWPg?8hRkr&(KeXua z^H$7{h$Q1I8S&q}cq?$|dElwhCg04^Mt~TOl{;>*WuJV=s@JZ?4i>rNl%?%wx`=#f z=;oV8u&rCS4v(OyGh#f2!2b4!-zVvN%pQ2p`)u?24GtVSmJo=3 zujz@Tf%guvtFMm!q2;5DKv-8-r~S`weG5v#wuOlc!UZHzSM9`(^{YSdluuj(W1(xy`WjIiha{PWM-$+PF|6QB6F zRiggZ#C0H)DxwSP?x0FuAI979?k?`%aaqlu?qblGf9n%#x?va}f{8b0`RScRqfnQx zr|~MppMUM`!slZ0`*xjsdd_*_W>_f|TpFMN>f;$-#xoA^QC?@YYd>v0rwFUj@ifoa zoh+6~Y_aae&TTDW`)YVzMw}?UCwbw8#FzD~-xu&Km}>qx%?Q9kz{P)N&&-e30zKdb z>9jH+Bi>^yf-&sGgsP%acCaGL16Sa!1mGj~i@B(UdW3CQu#8KY7GOb*;BgQFnJDmb zjIGQF;41`(jI$ja#s;t!vVuYi9g<^r&80kJos+{xk`*`0xG2Z1Myd!PsuW=amje(H zAc*S`?n_@$1aC!n90UOwMI+jh#CZWQ79rX;fnB^%FMv+B6-@Uu59ClGhl3!2vWYwd z@PZEjhz((%h#WG?IKq1njinrFB51rEXro^WY#joz1Y{V9uuBL#B+p$s;3StO*s@d3 z0ASE@vAxcAD19vggi2BYz?4f7s5%m$d!wJsNo_|9Eah?u=fERm5Tkq;;6$UY58(v1 zaRRusrx^(pv=QnBP)bz*iou?M=(q)N+E8BU5b}>W@JB<0voW@(8`%2J0pgH~8xw)u z5`bA#Yn$Eog@1-)5C9Y#%u?(<`_7-Wt~d8s8L8s}+B()00Z3+t0HVl1;3x|HENzt` zk|Ov|kn=mn1eJ5I@5qTRbSz}iQI2J+V@z{ z)-+8pdDVvO2Ke5&{wQ9Q)AUgwhd?#i!%R+!Irr=!U&70HNbNju&^|$Ba2KgE*+iXQoKnTeo|D`n_ipTpm&9(Gfa$S<${>&U<6U3u&OiYK2x$Bks= z%WanI6{0a$kzYZBw&yCZh0<{K)#vMYykV@a2 zdu9t7YWnIytH++V7Pt?y_%o+I%z~aPLPy1=o-wnRDN;c;qeC&)l0u(I+oEMfiZZP! ztWvJ`0%7{6wO8wb>MMV+TU)>`f^iNea!+=20(AnD@+^)jLyTHs0T)nDq4|^dvLL7q z@u4L^;|O&~Q!((1>V_$67nJg{z#&0zdAMrj@iCTC2T>mIqvvD_L42y2I8f{Z?_x zMAUcIP6tHQH_bObYkag5$S2Cu2Co1B*Ihs`0>qA2=tx$Qz2=_t<^^;`XiG1J$PpwL z-;$%ivl`dhT!e(BdF6s@m!kABWMv>Rg3!=M`oe9o8YDGd|M?3RJbseQG1V63BHN*0 z@3@_R{S6y>jjeD1nDZ0|v&hRkh}Ks96o?n&8h;s5$c7ZVI$o~0lcnTE6)=Sd!ad!d zcw~HdNlUA_6T_BMd5$#(!w{D?RLU+lu#8g*1(jx?MpIhR#A(w03Akc5AQL`D($$r` zV8g4QQp7yV*`mf0a5vizwda+^n*e8C@e)#=|F%ZSR1Yo5v!e!9*8KSW3 z_~e71vPw|)FouqUM6u5C>q4Z1cs~`PLN3B(Ty=Wcj~8msq0&vzzd$-}m1Px#H7c@O zZ@$%5Z`o{B?4`?wPg@nkp!W?JQ@-oYcj2<#WP_-G74s-Ty<~cb35OcKxQ0mX*uU`0 zt7j1UxO^)~cnt7346086W)rCFljQa*kCj_V6qUAqJ-}~0X=k?b3oM4WkO1Ehd=Jux z6gCKQ-w$*r`Xrgoz6aN)Y}#lOf=b&)V5Svb<}>XHgdZaP-ukM{`s!;eDo@1CT%*fhcwuc|pqo z3AHKe0$Sd<2{vg#mqt$`M=jTmOrz8`o3rkkFq`-m4AoF897@IkSZJzc?rGe_o$85c zeS#Ushrk3^UHjVdcBWU<@w{?G+ZA?YJb>Z>K*3m1)cqWR1Nr?x!vdIsbeNWLU34WI z2VT`50Z1z3=&Qzynohv%&^v09r$CJ^d$7^#dy0DMwdA8}VYI3Ok{PZiguqls{gjf( zl~6hE^H0|$o3y|z=Q)8}{spm}?09~soq6#!9H@xvNKk0m3}(>W4e=7$2)INY6tGoa zLy|pY1mc}s^nnw{w_`%Un`XEsxr#9XH1V&{G4e?lh;}l8SB;NC0=XR0LiJqnYYH4H zWRSGQl7jpw2H470EKI2krL~u4Qgcb|c;8JoBFshaT}2&DAz*#*F1V|6`7@>&jI!^& zY1>u@29F+k)7GzTC0cg7o!Ga>UV0Q)^Q~KL1LYjc?d#3@|_Qna|p-x7}jjdF1={=s*0#PVYZTH2x~vvE@el`A>e*ZoB< zX)c1DTvjyP0cj2Ed=K{wnQ!G;)LRVtOEe}5dNJfNk>cWh8k?JtoiDG8@g13O+xgO1 zjJ_-eAB#m}Cb??)@(z|N*C-3BTM%@e#e_vMfGQ}PiDG%vW>qU5KvP(1ofpH_)qNPJ zh#wHz%ZC5TDh248^JdjKYZsFzTBA3fytx z*~LLO!J_UKey@OAydz*0X_s6L*Pv>8G@N+31FmxbQJm;pTh^j0J_NFa!E{N3qdGeG zppYx%Kv^0F)sC)sT?AICUH%JJH~_{yX|V*>XvP6Nai+!`SA6g&Y96U=72=A{si4y& zQ!NQc0>+}NZE4x*=@9tMaYJ=IFbwZp6KGW51im~#Lt$O#O?`1PMXmx^YE##OFia6Q zH)eoIGYX9*+{h57e`xg5oxf-AECx|8JT2ZwR z;c0W}{8}82I;@um)x&@HBWrD1X+L}RSu4fc=;81G!2au>{)rV~P}{O%8D3O1_LqPD zP5Xsk`W351o0!0>==zxDfdxuHb5+l|xf~Pb_gpG2a@p&Jk45g*)FA1KhP(%j z7GgJsZb6Yjy*9Z73d_)pv{_jb_G{rP>%I7#^>n@j@Cy*Gglr`>n^;%t00;tvT6VNL zuq2LZ1t-sqIn9#-&pm&<<~H3RGRGrZ4m)oC0H9P}&5DMc zL>wJDDP9yn+?%K#Lmt55n&Uz5I=s(bgb{sqoz%(L;jU230WC*rw2T_1ym-+V$u3jc zLy-`;bJxTWW3GJ2-dMxC#*Om2CU7c%E5PUatadopJkX*0>W2EJ!~GD@NOPV4t_?|4 zT3t`mtb*Rln{kY*<{yQ`AR%LC(XCq}W-5^Twb2$A7f}YZi9H%wBV`pSKt4x{W@;bQirG6|JHH$gCDVveeN^1?LF_a##O7FYPt@$?O{OK zAOI~0I$yhL1z@nnRxMwSdwMZWC9Ssi;9>j8KmOGI&A<75+kQjVE}#E>J8)pXm15J- zgG>DzZ{rvy(zglbCN*h3>TFJKcSO4G-tb#4z5C7ap zt&AX_vI~?7xeqt{Q)f@0^=!44mgQEN7_wuyr1y3WgYw4|rH=op{z&FJG=?)Be%YDI zE!|&|z>);!FM+u~`sUx(TT#&YQwJ?O_N#HyNky5Axr;^oHi7i{06|4(T zG}Q3~!Gtm8p?pc%I!tS7S@0B^hH4H*uuQoX26~j4BOCcFE&SX)P-j2dTHCZ(>yx zA*Wq*oar-%h(Jp%xwT4v1Uei_q5Nna5fn{N<22en7wDSD2Y+3iQ7x6Wn8!Y&aIv~d zE4`)3(l|RL4xPY-fc2lY#H(x##Jd2mWGY_8k$6%WIhUv(?h2P2MAI$)>Cj(KbLP%G zh8$P!_V^$5)lrtlliH#&dQEpEM*)8UD2=Hy&^R$rR_#Y{HgzDEf?#>av#&|kcC&mF zMBi!ZpyOn&viwjIZS_xd^rJyw(fhs#D5?&;(4P7$DzaPjer!1@I9WoHa-OW*JqqTa zon}szeehjWBBtc)2P}v(%%vPuTa;Hl0ZqM&IG5*rjAkGaB?bbw?}l~j4b*2zRH`Z5 z#P$00r$1#k-F7?PJOSIbVZFtE<5%s+&%b2<&sV-=Pe1baE(Vk8$M{95Ulzb)ePm0b z)f%^Kw`x3-gBY}S04%lNuT(H)0KfK@X8ZUjK4kmQ3jV*p^hNv8(fzjP>}gv84`r2A z)=2Qk6d+Z{6aV9z7C(6pjyfP?$baIaAG1Mh|33H2zwGXR?f3sJfikO{SI(g$N3EWe zFbB?@w)-_P7)U>^;g+>)?eh0UX7Ansv=EB6d9?uL0?JY%>nb?` zpus62mRU0~)=DGfi#2`>ze=WtVQXr?*GfY-5ioeUw=lEP`3svQvKWt%+02_MrSBG1 zR#&%VPg!d0#@M`|UIH)E=8YT3VcTqj#N0beEWZSRFhiDB=0)Hs8Hp}t^O$lPEHOzluyx@(duJB zP;Cl;39vcAcqGRDI;kKt^*=?2a3ytpKphSZ0W~?jXzT!~4%7-4XqEQ>o8;?$1kgTJ zTz^GVZRO~zoK6+qNcM)3g|_ka-IAtJ-O<>1a|U_Qpaa6(k1$Re&NPZI^qTVcJnvYA*n^%MyS=>`?r7kpJ5BH8wBhh5n?fk*9ftB#Gl7D`{SfbQp%Ox zdv@9rPdsiVk#c+ASHEJPW{dWz#~-)<>tFwCi`{=Wo^TN>Z>+P={Hve0z0dBp%l*Sv zU0-Xz{Mpapj1sY4oLv0lcYp8q>=qJF%az=e_!_Vot;6YrDCqq}e%F9V!1AuzaMMlp z05p(xqsV*1B|ap4aV(%6X%iC!FIH%l7}+x9Nvez!BPcYKhqk(+8oNY5kb*kb zRuGkgHraa3VAEdKRE?%3YJE6%4)zX`TCj{Xbtp*?po_65Gbpl!1n|}j@>0Z%;)V*w zk63reD#JRd_!@o^Cm6R2Gpv^bGLpmz)E&e#I)d^mL>%Q5p1%F(E@LJEj|w~v zSR8?;c;B!KKCby5VN6OYOL0sEEP}$Mozvh7><`kH1X*G z5o0X{nIcxknQ!q+0{}q61QnqbWfxNptj<4%KGFs2CV2O-f{C-UnI(sKmU$LLF3zr! zu}uI-2M32O&iqmCWU1hkx~{yY7-tyDGiFnWiJqu8g%1Y?b<3&KX=npZ99!8g{)_*@ zHtfr<*&|GihkoaaR$p6>7jCcZ-@DKL_>cdy{ni(M)oQWFQ~tpYoHTR{jSSfU@r<$x zZpo41-Y9(K6GMpr(_E9c&H#ZG&mBEuU;DlP)4u%muUT1h9fOZMJohhAx=S{GbXr@v zzw)VHwm&-X@9p8A{-fRh!S~xQe(IBSnshOQr}^ikp!vo(z6l5oktdRYBun>&o^BiA zmq4xTU%aX322L3M9Eq_{6Y0BcBhk=nYHfIBn?1Sbb^9i-_uqSu1vhRI>(d^Z2eUm? zc76}N*|xA$Zb<@55}5ko_s)>bT%I}OJ?5D!!LVRSZxN72kSC&hd_hpr&$7{GE2_QO zDg$ht247>#c$f8~Aq-}Rh*Y@M!lkRwh_FaI2By*}jJJ4A&eW$_K7*zCQK*wFTbIS8 z6f0>a)5l5z3E^lYeN?N>wXc_E6)xGNuD*~uV1Emyg@e^lki>vb@f4BuUX#!odM)4VCq0Gu>y-WuP4v$3JbA?tZnej`Ae3>^ehYb4Wi{LYilRBa}`=b zbk&ta1tHQ$lC*RqN@WLVYiwCYHkbkWK!}wSCme{@JoblOJnPVBou`O0l9K{x^$M$M zrCp5=&LShHFQO4d>xT?FPMo&bYEu8vJ|RzRq_dOMbYz7=&dm?pYjL%;YoFVajcri56P>d3BQ0P_CRXP6g+ z;o}EQ3~-plydeb6DciKx>ej4rO0O(*;>?*Oa>|e$B_<_YfkSd~Fwqy{q%sZ+y6-u~ z6jr60tx`V?(4SQFTc#BPTK2d&bVu`$Lj=$ zm4k-e;g6X2$)Tbm>@`Yo?=B(OWqGv9KJuRXQHA!~zJqVt-j{dV!9Dxgs%W#z-Tm&D zQz_-{xbY4&c3bSppZ?4?qq*FE^G!^iVwc4Gv!DH}4KZoncC@JPNB>+Z8l+j^Xvs<%5Xk5?l z-eVnX2d565L?fg*$y(wRu|?MQo_h$hmbH#o-mo|tzKWIGtciTMLG14K#GkbgTFVvh ze~+aO9|VL)tYO7+D<)*ysUyd17;Vw=R#Kdyof`n)ohvT4-q+t`Yd2)I8`fFNowr&P ze#3yltU%C;^LFaxoi=>tA~+X~AAlwWUrHPiZf~&WTW+%DY?+4vdIAW8q-*Ph-`>6Z z0gtrJ)^F1dTM3d4^MKR{??(xQtS!*Go3~h1dlU9+Wd7(vTRGH^rVPy-05=Ed4G_<- z<)#~~4nP%%a8RxlErF1I-4E8gB zs@Akw3*%SLe2B^Zm6(Zxmsi?xz7oSbiJK@niMdG!m))T)=|V^7t6%-v*S#D14JEBG z4++qEE6DiqlRNGI{?dQ2TX$eX!X%S}hb-zE8f)yu*PgR~IDEqHyW>v#m;d|=mID>9 zT-j#rgoeoxziI`xh3hwOwT%ooRbUR=27cW~}V+70|t&Dsl3K4z~U zIc$x^6?Vs6ciCNc-a&%y9=q$V`>cYAHOMcGlL%J7aPGbRPP^-#`&>*zX$O^1dj*rV zmkcA1z4VM7x^&9cw6C^b_|#|YzPs?oaf|J`bk=t6 z-(`DWc;4>5X@`C3|M-%vhMySVvyiAHzbRx`NUlrQt^*0oJYI!HdLrZ32aTEeoXGWC z`RVP%>(!IfV$GY$z-}VPGs$}NzI)@3{_9+Scxh`*i>#ah6s|WEX5pzScQ#c+-PqF& zD-PR;MR_KMi_nl{sms2YRtmSEh?XP3yT8(KI`yFn^E(tsx%>EW>w5f2whqbB3lAPP z1r4Yu5Y99xJ|WyKVWx=iF}88{hvs zm-(TVwX7U~g60BS_sh2I-FI4Jdn?)-(uEy7goY-|=haq=mZuv4({c2;H3HsBn;I+w z@a%+knKtm?O)=-9Wo5Sf!w*;*Fm~d}=Pb<5SJjPMt#UPq7SL36A3esFW`(r@>dIQ0 z@bd1qb8jB7>gCN=yKWUAqXe3-qv0fu?y_Zov6Xga*DkBa27cM*jm~Cp|Fh58p{JfD zYDUUh-}Nq3Iczz;_$s#iY>A?gOrZs}<;!gI=Ra+AtJlH#pl$2P0K^#<#q%*8`TT+ZF(uwl>tuDHZI$?jjh}g>pnv+ z--Cy3)qC!?#v8ZW2mt1_@BY9ppE`~Iz;bKezS%CHJmIpA)!cxF?1qhi)pIs@1dSGs zpLI8Evy$o>i(l@vi~IIl?JXNDicEU<9z#n;mJj-+?N)gq%gI9aoH0-PW1BZv+buWS zpmGZzI%>5yZ@1<5+-1Eej$Zof@7Q@1RCTv(qu=YTN18f*CSS3ZRnx!F!V_o^L#{zb+zXtnKa*1#Bc z1N?F*;?{lmLu{Rg?cAY**tG7l8XRh?maoKoA#Ue>hQbRuulUgWt$xcUJMz@icI+P> zBd~eEmJwnPZJwpsK2FOV0kG-Wx$1i|`T{TqQN$JVqo$l60!4(;LyS(A`Yt)mAajPp z`!?%~zPxz_Az?mdcinKOtzV614J5C9ei_!bwXL$x|NIy1!3RHP30%rsP$jQyUS?nX z^6&5iqL_4c)ppxm0Fgj$zwfb)J8rjfRPWlqb{R>4eI@(~`OPo>npN}btd?!(5Zb!? zKl~BfcI#~flTM?)EhA1LTN3c{?%Qv(idtN$`7$X2`$yh;zr7cmz)C!tixG(Yzx6N^ z7`)-GyRCV{M!N@OuE|mXon=jQ7?duru{+*=*4-uD_KJ91_{IG)vb9R{ z(98h{G6N(rVByswE)b+G;W8XbidY-MfZi;&c^S4Che<0@U0TLMyv*6_$$nk*`p#ak zv#;&8zzuAPu3v|ZdcuaGGjRC04YH$F3h*c*Vnz^6T!8gW8X+%MArd2RafqnIB^ZW9 zvF(d$1%|gEZH3WBvcc=twKTj9oV{or2aZ}Bz)N;-nMB4e0A_|MQ@Ub>(>^K9+MvKk zMX6;flzTX3jev)S_I3;51e(R(E(P#awvH@L5F;pg0&K}vqs8j(>at^K4l}RpvR-WG zYF0KAfV|ymSGJN_4In{(wXHeO*KZeIc-g8V?B=n}9>c~>HiX@~_FMAFS1kIzJ8c*Z zRVi|kA}Po=Y5i706jc`6@MZD|GpB|Cg(>73VQnv#rj0R(pzVs5RpH1pWEWp~&8mp` z*TS0L%XaU%0|#y73|hQTe1P^U0fbeSCW}}IyUrlM$1_6negJ4}lZ2p@r-eRenZ?qigZ-b1fz>*Z?vL%dCuN;{qkt?T+RglaeZ0EN&TI-f|XeW_d zKR^>(y)X^R|DlXXDpk;uwl&+0jVK=ZhytI82;0VF7Gd1_0K|Pyy=du;tE`tF9s&AQ zefy1o?2~Bm%3TV-zL#IOkz>cLlfK5lRx7q`1Ee<*@(7#L<_0_W>Z{ht*cdYCL`z$< zaU(O2eAn<-%hr2ILk)bzY`8dV!(}nFw>ahEpi1l(C^rMWR~B)Uw^KAOr|lPai2`X z=VdPM`84!2)3bT}nE1)52gve7o-T^8U{`En-Nf*o&JUh@*?Q0ajBU6swou>8mfkvm zf;0*Q#uXV}j{X#n%-QyTw&m1^N!;tw*pbhMf9|o#C)S%>3I`grdVy5VhEYIds!E;l zeTMBmDFR~H5(WV+JtRhuEmnY65P+f7ZL+7k`0_3rcxD$sa6JwsgQWJmXeq!)0Ik`` zh09iiazt=do7nOwRXjR5RS2}W?P}IRg)xz%2k6Q5MWIlfa{%Blm%<5x?a~ChZh^i5 z>=K78**$0@Byi|GaT3s1W-W4hsl$&IusJ-`>w+mq0EFdedP-4jNYg0KVWoJ>06^7< z0!7D(_!8!`fKkuM<97O|PugmB;|8DIZ}EqS1^&C5f!x4a00!L9((ok=M*@O)Z^;sDJMId#kyT>}X zoy6$@*CiK5McGA$FfHraxyvG(*5kO7w*Ib8yYTEwD27l9F-GoJ3R}MNfDR@-MNJU! z&y!fRLY6D#|uK+*W@00~SG%mPH07D9AJyN2Do5YhALU1+VX%oj-KgO4Sw4 zQS(oI&`(MrSNC^9xrtyKq7uK?Q^Nq$kNPZ7R6Y0@zX&4-zi+~&|9ccLlk`k5~%k#yx$MC2Fg7^6E2 zdahfO%K6v4K1{kf&yPM$zxqOX6rCj+zBEUtCm$Dc%*LtD@2t@H`19ae^69tf_o5JA z{=LcXQpnb3KCtc8=}cdH~%p>rN+(ga8CN7H~N|x;(Vl z$QQ8?%H~U3amo`cEmIJ$)F?Yk3T91Hv=w$*M;BrQS^>wvCZ8G^(ug%FrS0V2=7(99u>% z^;q|T!&XAv71_pJgl5;7Gq${a74ro_fFCr2icma785?=&Mwv(DL?4MFE4W1qO)=pK zWRjo{Szd~Ig0hqG(Ch<4Feh@16JP=-67p;VNYnMz0AZX=F)5HEPaNQ$qJ4o&DWT$w zcNf5`x3b9Ul$#jYMv!%s?cW^!1Od|7W^u-dzm9VUV|fUWr<}r(%iUJpJ46;A04D86 z_@N+;U5dF7Lz`&4Mpl(tDO%YQ*>G}w5Su@-qsQ14HOe6n=biX>yelph6JA2(FdpM5L8Kvj$PC(A8p!yTbdyP*1>r03#1h>etQx?4Rcq zpL9CjSHHerz^^;`x_^JR?|%Ks^!(4>cVsGRvl*|kx@w9C-T2|PF((@1l_#9dhsNYO zlRr;rVDy8^TzM3{m{)B4{`kDnwZi=`#D}*qDApc7+<8U{*98Jm3x^u9E&G6liyN_t z`xZ_NyU~IOAmKsTd@G=;+5s#*=(Nb_pAIinnLEw;TvUcfHqHWkX9WmY{Q-$=ptJaA08K%FL>PDC z)F9!_;>6d*Nnph%K4`t`TCHyTcB=!l^_)3n3FPNRJ49oJJOx@4^fLnh2om-ufLFi( z*P>hlBLWfuN<1VKJ}t!J--~CgZ1d{2ZL-bS&4F#`6W9bByfij$89-b#7qKYYvdJUI zZ8=`dq0fKP-uT-`tn!W>R@Jt`fy};+P8*T^8huHyW;$&jph>a&296!G`ouj}*Vbq& zKK&uP(As2CoEchgxe%ID6i0^(*#Y zMHo5bppsobMEIK)Te*F!1%B-zyl&YN-?0N(gsdMM%^35xh%qQHud>+oT6^`_5o@~b zX1n>lXuN~i($U!>vVHU)KV^06)?2v%IhxF_&R*O2FaDWTvrT^S@uw`i?~pS!&=znK z5UY$fAsj{;R$*Fka}V<(U}b1&8@6s^yZ^lPytcwN z-TSQu2bO#9#~T_)sBY*EJcex{<^ev=^1l~|7VYBbC;#2QiJTdR0tb`vin1!^u8)5U z<*uzmS5%(cEMi_wckbWRyAE#UQyyn_oTgV!G(7O-QFd3S{4-7`uSi}W1OnajgJu-x z$sK%=wBQ!3s{($fywa2YPJ44w*`<$561d(a@Yc;|?>l(C%jccWpB~&G2M4s!o;XdP zv?wLmc40EqjO|+ngZqx1Y+LTOetC@oa$@xxuuZB*JELV}^tn1)ls1(}z2#%7yYss4 z1@UFE!#1z~+#-}_UyF?-kodl((GqzxSW``+7U~${TEEuZVoMw!q+JDO#&^I)~*2Y?2>G`#&IYK zqj4HwOSBJw8DN*K1+W!D+o_Nw@?^~rJ|&E4*058JdbVv*yqM3DFrxmp8}J1vx0Scu z>f+p`sdIMkUc%{|MirNGHhKyAqI|xD2eAYit2o=&o%A7wEq*=rkwIwz(YE!$Pb^5Z z4m62Tz|?uPtI?VU;vAOS3Y;j|o3mJ*VkatyH=fpnpc_JV<@8IQx!NVnU~iYW)ImSl zo(BjD52gvBqv@1|t{gt1IOkNZYC}GK)+zbpVI9V{k#qT@K7H0jyRsXNLh(gDp7vu;sl1TRcS>8D_k~@;JxAh#-I1Y96r)JjMkY*4%Zc z8|!lHKm{1IO|1C<_J=k83Fz<=_#eTER!+7J)GfkeT@Fj#$a4T^8)YWB1h^}2X~F4d zjYZuLk46`humcC0+$l^AuvtB~YoFDvTn=zz* z_jK@s_t4)mD+3TG0i`+Y5T!|;?$Fb|&=LCD*S`AoLN}(nHroHOB7W0)uwQxjcdxwT zUD5s7lqpDjl&I=Yci)Yd1FNo_26eRN_*-Eb>Z^{KIP^-*?ypaCcBMVuXIpk5?>U=+^dOo3xAql%|d+4Y2FkN zpJ>jBM&S-!B^rh0R7eg}u*GH3D9~};DL}rkEGVdzO>g=~p&;2x0%WW}Re@o;0`p>z zR^35%1$Zg6n#ej8AD8Twzle3>=Y*AqLh#|}L4G|ggHcILdr z=|__29-1dHKx_ygf8xL)f>igoSa~h2Z9t`fUE%hA9X-V5Ly~~D7~o7?V_88nw^TZwIDWixrO z`F!w^$1HjLm?fnNqo3MW>_2#rcznd+bIwaqN5B8b5j@xIRr58Ja~vQQES_<-Wutvw66P}_?Zo`?OlZI z6^2h+`&oV*)Zcv@VSOs>9AR+c*cO)Hz*xe9I}fq5mJaB4vhkY zj8y^2X*+%n-OfTaYLhwWzJbcvp zE?%^nwJWV@H8C#%g6E!n*-kzEoDCg3!q)SZT0!?!z(gQOpJMzFD#u2%7~c*(K3w`c z&0TB&`8fAu@)x%7gGO}qRh+H~-PbWwnT6bki_vE0%co!8aXK9Z`4V(wIwqwO5Fb!ZfCyn^(|a%nJ|u>}eF{!Er1p>12vy zbn;GHW{RrU{PNWDn2wbzI*j_Y1EnoYS&fCzP)!X6y&wK` z0bnZ|bhd4YND)ArrgUHlV$(_k6(x>t6p!36Tdvyb&9LC7(d=Ydpo3_?BG?h;qWScpQJtbSpDR|EThJw@$ z_Y44h*^<{bCC)D8vfsngD2+Tb#B0o@2#BpdSKx7tO%wZHls%MjSQsJ@1neiatN4l;v@K!%vcQOpCJW)Q%iX8cER010ZW7}JQf znedeWv}gG7P$35-rtt{M^g;Tx>9>E)>WTGu_T&lcc$t9W1e#V5>MX!K&HPbVBmJ1k zF%QDXE+S8Fl*`KUl42gjdI6XET0m6k_%e7!=K%b2a*19bg>QAKB>;$nm%6N&ITK^< zhxn0@W2-+0s3qbya_qMR8dupSY75@`K8$|lM&B~Dr+Hs}({^kA_(N8`b}axvouJ=#Un1oOHAmtu6Q<4jDR9+AW}p>-YL5#!qLguNdm3PoW=k~9 zI|$aZF9ggc&Jfs``cd@-x~U#)A<_~KM>K3Xz*rb(j11f5a*_$qzJ@CV5EalG zB%F_O8%rYcSx{LX$MoAgR)@z7u;S^(yUohL~ z&}OWX#21XPr5;B1f|m;YlLk1B2n5pmFgAfItI#$M;7d@*BP+W>w5$nY8>ZOu&*=SC zw%ZBeqaO?bXiBTb`~I=rJo_ThC`CS?s0^ehbh{XQ>;K;5%p6&@DEsv z0j|UJ(>V|U(36*YF|B0$=u<@VRYs!Jnd-YCfGEws_r1Qd)V#r<$NJLWB?(-g642tJ zMS0pqW(L+5lg129E!}?HYdtAe>E=-t~RteZhx#aZBrLDQN-Jy3IQ; zx9GCH86mR=)^(04-476DLYgAI;8u)}GR!%gD{KjCzk8;*@Ew4d5I_JQSWy932=cOc zv%u?6E@Umty6c`p0-~HN+ej9zn?RY{K9)u+j7KqGQOk2l80{fvt_{uJ*>5ML37SDZs~;f% znCgpf**q2l($s{uwk3`<*X21K10V<4Rvl(PIiXI`o^0~;uC`MGd>nGzG=XP*>$`PAiHQKCKd3ZZn%RJZzk{wz!r)C>PF?D`&l zmeS67KMg#77)%T?IGkK4PZ@n>L(Jh&&YLfeN0o8hyOSyZjPW(8gkmLXoaS}Rx1QhF zLfZCe%=GTJu@GK;8Z)&u-F?yUkA?8!(^z_+Spth8=j(;W%)Om|iTt@KDs%0#Uw^Lk z=Ff5Anm!-?-M5mT#b{eJ)ThOu<;&#C_n994{(Uh+Xcj_#028bf=Ml?{Sa+%q$BE;X zJN~#;XGj`AcB&xG1ZlKoS~OYu09yXT&!;ucMSlPC&&NwlI`h;(lP*sGQLRfOqQmDz z=kAKS#kpd*jUQYYE653T1*P0po~z{D)L#KCT@rv8Lpu7b&P+H&g9BPYP=~;&;{dSc zwm7-wiOGXUV^tyU(f8iH>*B@(7ac_bwdG(4Irq8#xA0M{CM9ZkRUm`#G^0S{ZG^zdrHv z#G8Jf{IdT0SRGe@UF4Nh!h zF(`U8<|?nN#mD0HXo=F21ePRl?Ikd~=iYptH;ei_XBBkYOMnRhLbFnqK?2~`?LgZ@ zyt(wlHZpk5f@hv_+lb}MZbZ{nj{^aDaA8D?sE#pA=zY9mQ5?NI{hRBU2<9(i(^paZ zJ`edNed#;CW+12f4h-fK;9N9RUqEQ)V{~aB9URHjr#TgmqB+(E08C&mzbOaqD4;pw zc}*9Vj00-<6(=(*8vbkYy-^-q$RG+i8$cR#yofneeqba|V?`SROOBT4@R?h#>}1|` zd-CCdb`kaZt#{E<1L~h*1`4c<(N_U|Rzv)kX4`2@y^lD|U<1jPt2EgmG=iS=Jo>6S z+rzQo7(vc_1#%9IN@K|foL2&Di|5doYRmS@9|E&&OJl6-# zL^4x-@|)B9_yDM_iO0nI6YtIM)0J(^kIq!JW-G6&&Bs*yEnT0j1QuiNEe4I*^1D>- zog;zS&zspkZ?1-H#N}A~?t#YkALt@PVBV6tu+?F=)pPa*?74Q@(7AqWq0o@j-hu{a z83yWFe$nTMh+BTf*Ma%+I(w;kEw~mJ{2&(inS$d9$fR%?0U-~qj4r|~$~tDpo8*Tk z4lp>1N5&R%zrIV*psW1%C_D0Fe`W)C9i*C~zCeV4tL)|Ua&2%;b&_l;djXxf3ZJ7r z9WA5s9&i*hx;NEP=$?1Y%^>P(D;pZT)V{Wcy~C5KxX~d^sTz_-T3SmN(3-f3(km90 zj;l89AGIV461}=J32>a zU{<2J^3afJ5d2t!SC;VFD0JObq`p7C9*qJVYf3QK<8547#-}l{okBccS$DinetDIf z{CT|O#IyWzlErwR#>@F-rfT26KVD<%v#Dr|*YL)5E;PsM{?j;H4B0FO4PV+*(b9Eq zyvN5hfBgM=y5^tzG^cydr=fCw-O1M{(kT2r^Xq$c$NAKCpPo;DBE5xu@@eN&xf<={ z(_f79nRp!UmnX~V+Vp9uj(@K5`R5bsJ8ch(=6Eal_x-D?KaqxlE~9X9HiXqH?#8Sw zYeQ!Talklc{YQUbjUiH_H7GV4c3@(Bth)F7&Tqv#SAqQY@=N&Fx#lL_7_t09Q=aGC zmgd~*Odv*^(`)`_rtN`2@z0CyjJ`QLKlN#P3f}nmQkY!UU5AFet0&)^(2wapP+x#i zV5ZO^d?g!4wIxs_8#tG3MB#bx49>|(0&ms;AyAa;!AGsKP}G*P>Vcu$<>`3z`XaO` zfTvI5OEo+hIU7wr>W<^p5z`;as}465Mo9OiNp$f8Id|y*J>x|_&F>Hg0)yg5&PV~g zqzP)n)$zjxZXf@6ot=5|bl%3J-}!vrCxAg@H_M}NL3efh&nPW#pnSq=!;P(fVeH+b zInIOkdF=MsiGZL!Om&|-qqiouGj;hf(i2W5m!JH3LgBm*6U$BH!7nzkjDL0feWv^4 zC1-Osle}g_jPo(^`t|V1=Xmx!`p>ngxzDGi^O@TaO<$u@kggDdUXGgH zsh~?j1gcA@5^WooHIZMH1u}kW#FG6T)_3M-q%F%}Teyv~I4Y3+!UqU`KgQ;bBP)LW zBmdmL=D+KnULH^W)#={VKY=+1C#b4yA`0lN!)3veCn_(Ws@oEmmnwE}?m(*~2L!)K z<*XGgc@1X??V`GhJ11K#(eMw)p=|7+rL8#~E)^^Eq$JQw_IEi{ZrWP)P!@Ed<+d8( zGb_X`fk{}@bB-_~q-&5AZP9Sa6ogRJk5R$8ez?A>AZ>6@DfGtfLq;4cJ)P^T>OsTN z8U=7J$TCfdZ%puLk`EXP1}LX+E2Zsi)~`sxUF)yU2{+EYb>b6edDZ!rpLrKM)*WP@zfh;KJCsf9-mCM@afAD|5}X+r;YNwK_au z=C^hY8_#ccp67Fs)s=mnXQNBiu95`aUUTm%31LBGuZKCVQM_&+!V8kFS9z|_oJDAI zl!U)!MC{T20Ui*9QE*! ztM8~n&eauJ{&|>F^z_;L%c-c39|%Hs=5nYFITZ*oWC1WrDOa?t$$_2(aq{A1osgHT zLa?N907w$!ueh>YSA~tawH4DPj-CRx}YevCQ!>eDM+~?-CY+w!C^3;5dM{YguE1 zvzJQ}e{h8GCkox7kTYq3SCSAVCCeJfDpCd@B*O)vPqKty2@%po!KZ@+;#OvhA>>p} z@Z~6WaY?e04D^sGWSAVr#LbHlqpysNBtvKhv*h;`-;#}hT&%8^3@7D|za()1g|8#@ zIm}A~tMrBl%>k5QViCp&$x^KNgM^bACI(>&I`ZV!_Hd{OuWQ+^Mc=po{Ne+n?_ zG=nO0tq--SvGfinQvbuEy-#do(a6r3P(B}Tg{6{xAS z;w|K*1wa*(=|q~Q2sv;2Po1>*(UT~pLRNFrRx2V-V1Sr{HT6woWa)L8GZc$ZDcYO| zHJ~v~3bT^6E3Le_k$O?*c{)Oz!5&h&WiEEPyuzg`n#~Aw9U}urR36v>!ApDg5yZLN zO34>oR$u4prHPvtA%JoJ;iHy3f0+QymGosbz^MZ7RpLJ4SsPljiuifNuscDFK_ndB zu-Zz=c2QYIwiL8!O6eBrCbiwcqm~8$=c>ysvZ0OCd@Eh1lMHF-6q2R?>{-ejA&_>? zDtBzRw7})X3)qL&St&9}653_(&|$L^=ZK|81{yMXga|bg<9_k>O_m`uh}BhFG5l8& zBs#~oaT@*-$hn{FDj9+&hu|fs_;{%7(Dzx2P&m8J#m;U~&%(dY8NzTzE>&G}i?F zynkZQQBoB#tAlpOF^zZWy7>!lKBH6hQqErUKKzc)m&SbS&4ppV4e{!q&!xV~s^0a| z*M;Gyj!btact3?APpG~5?&0dsG%Y_G=W`F=0*d07k^i!t{Wi;soUxnAaP z{umWHpM5{kukaikUuL1E$t_R_APi``6E#>MNG{`+TUq>5)_eMAWGp#MzSy5yW$q3u zsw6OVt`sdDpa)>4#Wd*hAfrKJVGoeOBnu5`@gh!uD1Ih0oj*w?-z)SPp0&v32rbf+ z8nLzSxtlB&E3F$aq3zMe))qi))OG^wdR{(gEx&N1ZT!#!mMJSG8yudfXq?(e-*uYI z5{LGkvSc)4b?>^>D#?za^k*(s9zlo8$N+Mfv}(!}qMc0gp;^_swbuUryRE8qg>{gJ zw?f)MKv2h;gLdqZN3D28i?!T)2V1SpWbZ)pMRQrUuTPSutg5-z*3(Xkm~)vvG-kvi zEN1)lm4|<5=SiE^yk@(t`}D^wPVnX-@)=j7L9A$OvW|m?Z2y1wV@sg@+;rbP*0Obr zCD0IRn_4N@0sy|ffAa&o{P5#ewSAqfedq&#-dZ%GfVEWIR=2j>soi^QFF}}7$gKUI zcO$PB8w4Pd=ff&UVHQR^8Cl+J9ppF`Pt`3e$cRy5m1qtd$VGhQM~_+Swk_6r$4zK1 zmsuy^un28mDcZ-Ak3VU>FTP69>a&1cyv^BqPLUbI+FNYhhd*eg0B6E~lUKMGxwl#u z0ho7Q`b$#$bz1u!H(N6@4Uoa5^QBkFXB@XmKDR#b9=iZQy!7OY1Vtz8Ox~o{_OK53 zrg72X9?IV7T>pCXd_rFBF>({a6U~+KVwKmAG+qVB`CPlNZGrm}Yz7P5pYl@vchY@t z{g$Sz@z&p13_cfw#(X4kE##fwhIpJ$Uws<>yXfS7H}!GG!>>D^_I={l3l0BUxsbm2 zeR?Oq`{U*JaWUjI9~wR%^QoK9yUrJbhEMZqyf1{maeicLN5r)NNQRKT+O`WC+Ng&6 zSd^+*%)bX%d4Z5KXo51s7OmPwk!qHEwwVKQ>X4D4{~Vz4l0}NpE>*Q!w4{N$((rg% z9RIJ{bQ;Aut~E+&76NpH;~BO@(X^3Dt>?md>qN^|b@_tJOPlK*wE9~&TNAl-OIw!N z{$0E6%-;QIsmg5ayKb@CRjs!6mp)~0{_sbDks=3P`%j;-!3&q1mMy`SW*ESw3=v5H zVXmsw*57-Z1pzMS4ji;|fU7V;m>b(yIv^P&JB4iDA_P_rkVtuXKp1yeam?e%KvxZfxYzWO@ zrlr|d-g%ofw6(GooUy&nzhFaTJz2iG&6?48(ts7+vc)PlYyhaX+3CH9?8F=7y(K{O zR(PyO+qV5vAGZU4gZ&@DlQj+l^z%IZtsxcQvbHvBS+&}_kDj!PfW(?}MR!B`Ypwz>(}D*E*_=c(R%(&r5;RrV z!FoO#mvFa4D3DJu_=@3yR!#h$Ih;mbBMbe7Bw`z+CYh!`N%Ru{aVv}gb&fTVPX z?i=Im6!Ue21s;gg2ua!;m;aaSB7@`>CdZc*k?o=a@DWLoceZbsbZ99nUcJIfTAD1V ztxwvH5lb$H4V>)tBIRr!*8*a3YCz2f2ph1=Z|t%DpT1zpGnXyYR%1nM_eRhTB@tGJ z{IfM{S6LrgyAw}6V?$5vwA3rdEdAxrSo)S7mUcFEXhG4wsr~bB?z2;0`5mjj=fhV2 zk@s3v1ALT_se(8z%GMFYXfBf+u_`i#^aGI2ojPq@XU|y*uvfNvB>*vwb}wloc=Kk< zD{R@OjV}1{r88&j%s0PdiI?|U zK`gbB+A>Qk?=OR%z!t9q;C$i7KePDObykl2R&3j50f2JP!NWF03bt^h$okKb?c;AB zx0?6fW?{fzmR!TxM9#{J0B~r2(`*wV8-fjaUQqjHt+u51#6&SM!_^W(#Fh+)KB3``&C%x#WLGkxAs zwiRgJ3$J5kHOCflevQ#xfJhdD#sZq3P*uDv^q7jq zT>5!k(?CWNQ{hE*q0*aQ{X(+!Wq3XDIbH8uA5>rgNZar8&sSceK-*WZTRw= z)^T<}pzstaxNvA_Dwl~u zEl^??e)xpdvVGZn+s)R#eiPZoa8$T>neEjhHd0w?BPB8Cq_Af5W?Qwg%{hc*V<8*F zcCF(uc613c+QL*CCyPYy0O516jVob$TlvNK!i2DmlMP>hT))~nMImXa{z0o--e@_% zQ+(eMJ9P4lWiRzuVEa}yci77*pDyo_wjEXkh%B%0>;R(x*3Iv}1E-R>^WN1K{m{iT zmc&*sO$xLFk3L~5&;Yi-`*w?zvgJyi;bUmb`i~<|Z2Jar`sgJOZc|OQMee=XVy7?L zz&Uaq(CkpUvUCY*VOM|5@cHrQG14$E(C<3e+Of}9nb(-_E(&eEo z)TXGORW3QrTqei#Q|BFf*9(fRL7aHZ84O-YVj{t%Pva7p%R(|`|LNr zWl8b`ues|ETe-5;R_(aKdeOFJ@z@QoTVuOle9jL`q84XmEDIkL=8?Fseyib@&^xF77btwu#^T&uCAy?t65~Vt*utK zdX=5o^`^c2cYn|Jccb0&*@vur?J_)}8*E^(&uZJ+t*O1;j*>IC@6~5)^Y4DuHr{@V z^`1Coy#oW*&#Qs{9eDW_JN6Hcqrvk4Y!kq>Do|_ngLo?^u{9)=OeOY{07Fht zLtD71tqmguHkHvZ%F~!4g&zbnO_Zhk{PddRp$D$}f)%Lub{U7+0+XrwS)l6$FU_`{ zf|W-viiRGDSM!)|OkKMwFvGDJd|od!9ICiVGGB~2F~d+S`1ZBrak0jHp`BhVJ{J02 zT?{_vD~tJ!JKz9Kpa;&hTq~ZSpcjC_Jy>FFu{K#nx(h8&xg|P}V)%c?0iaM0dpSU$ zi`NH*C~-T|i4H=C^kO?G8l#6h;g3LvQ%jBA@k>nmPHbSdW62s8NU{@M4Zvuy6+05v zPl%MVsw(WwNU29yl!4=?olRP@tJirG=djU>0zj)<8ZFe{Z-Xb#1NhMXp&gS$inM@1 zfRVzUNE4a?AfoJIQ3V)w^;^f@1J09p-A5m^i#Sv$yiVQnCbVe8`h!jo8d`t@^jm4x zawTDlBe!0*UMum+ji6m@*tE_v*y9xi@zy5nO7_e-^6hq75O3o8_I3*@L=7}Tcppdb zMiyAjc6DI`xXX&`8?9#fa@+Wo->{+huh_B`cqbF;<Deyu6r=fnq$6k25FLSsrsMsG|x zrgIq7#h@`2pNrYosoLx&kv zdw{&G0cio{^r6r(#XPUDAr!y?-sCcaIB*PDSuP3iL6a0J0x~KhoNNt8mnOgz5efl= z-DrXa(73U%>z@B*0vm_=aPzPdocnbX|ehMQl$-zw(iCoEl%vfC?QQU z*zaB3z1#X;d>v3#YF&qpSOXrw4Nc8t)ksD`0-(&W zkP@#XTcKJeWP2Cv9<+0hJ!>mJ`aY{)vl_rzW+jBPiTC%~$(MFo`YfKu#l+tuu3rFq zza&l-!wn_ufM#uE&k^g~yodOFrM8Z+DY-VZYH92jV-Y)c`mFU~zZcuO9veEmp<7z4 z4u=of-{m@oZ1~7o%kDd5=U;x)s#{lC>yA=u-Lx4D4d6s*eT25Tc=Ckxyzn~C7eTu~ zXq)=>HP&?NEr4~#sAaibI&{b`pe0QLQsaYzZ11LRkZtjRKt39}B-`F`!ox%dMl90N zZ{4TPTJ`pAcr@2r2+(_+t?7$TJ#87l^vdm9a1J5{BdsewV%MGn*bbsOW}2kXI4ams z0-oYWk69;nleHVx*c!C73PV$ZGtH%=C+ygFAF-mYZX3p9xSMVH>W!6oc%E*& zw2KI1lO7%fIF1JBcB628eM_zvZv3y!m4FbCpULo3Vjjn2a5D8nS6`3mn$Ue6GnHA$ zeee0%1^$tl8ez=1(d0|Ik$Dq*{`V>hwu zUO+?iDz;y7fEjjo05qlU%Ay_0a_&@5#8!z1ODxv(Q9_7(1b~AB0%d~G3IjHeJpQ;H z`pQ?Wju0x+M0zpg@JnWkQr3imJB1G2(Z93+8?p65Y%i8bBPiQ50AYgAFkyi+wj*LR(+1HXX4q;CqTveSjZ(e^%@l18q0K5DVfzv-Uxp~iX#p;_eYKM< zJ%gpf25G=*~NNCBD@3_3)}n=CefSwK#t zmf+V#C2o6m2+$-xjO}CD$|Z@pSB^bk5h>v^)Jb9^Xn><2;bzhdY699pfMO*v0F^-` z8IJ?ZuvHX|#E4~}ks@GqX?497W4EUqy8|Nxw??y=W2-s_;4Rs*k-mkj|HKI^QXp)$ zXeFBpJegC-Y~&)^y4p%BYj1T^E zJr12biMCR3-Jkb`X2U!E8la9Zav=$12xuOtuCxkbM=ty1LpV6Cb6?*qKVtM_VP2X+ ziL>y7tx?Uh@X~*)GAXNb9Wim5_$Uk*)Nf|r~j z)b|ix!vd}W*}jn(B-=9p;JS>WwHS>kUdL?53M|S|1GT0F4j;D!z$uIEV-~OI3>rIa zSqJEgD1~sq$nY9L!{*Y*(RLa~kO&&aptgSFfbu?UG%u1(gf?(n22`P8bNp#c0MBe$ zD=4(K$6e|^YzK2>WEnbp$&G_^8bLnsUHdGqKB2u8s1B&F$TfQoIl`m(&yZn6fuda> z0GJv?bzS2bku4&@w6zsH1pf(W#R0bhkrDbAV9o@fmpM)rmGhU}d{DNQC|kwDodlrf ze$>q=jl|M1l>{_j^S?Uz<>n0r^NB2-&rSk*@Gc!o61W~EurxQX$5FZ7dD60?hnjRT z4#s#4Yk}8iR{ETfQKX8D8MmSB0W7ek4B7&`^zdRkm@U#U+nvf|EO21NBFq5@Gl@l%&*Oq@}=6BTzLR%abp{-M@ww!VM zngY+pohPee0(#rt;?WCwfn7DK&tbH| zIpmeW)=>PZ9r5opRM1Wf)akl_tXNY;s_SQfe~3;IaSn5m2aYuyL8N30{XEuc4&OB<)OB(W}ANB7TU%_`Skg?ma<)HYe@pL zl|cUdoX=eM>o4?sHd}tDD(CazzrWS|OvUG1uKRsao!RzBb!J<3F1%b>)?YkE0gzUB zhlB(YSeV&14hM<}Qhck~%8e}Ac-dk%m>BA?p*{jl4_+kCt$-gM#W}QIZo4@~_L4yx ziFa6OtW63Z?&Y@(NC7YaW%4ghe+~_H!5lal16}}AnDpv#PgyHOHOnlK4?SrZ`+P z0!RW)d1dm?-DP-S7a3ll2XNKoaR5*RT(%f@3Av2cbnWI*(J7ifPbxI0`izlRLf{gx z=sx7t$>S&g)M+2{Wu=?&;nma$XHKg)N{dU0RYcH?(3`n*Kr+DKrg@A1;yyEfx+En2y9EWO1d=N9AqCB{2<E?h zHn{CTHsVGO4hN{?0%nY_G=Y+~WLW6XJsr{pYD*bOyU(iO0m0Fa3wRTt*Z6r%OyWd5 zLt9{e>6l&up3e8mG84eymA9|Xm3P8;xd+{(`FM4twM2DE0@tSm-U;91>r=AVFINSh zd;V(go`>E;(SZqpL;(r9<7~+QT(S+67E15LGZuQ_W{o9_YpkMptHm0zUz4|SMJvt< zaxl^UpDf^1761TuK#0Gn;yQQ7_?dsD(7V_ZxN~4)w4Ue*v&fq{#kOy!oLm|DZp8Bmi@7zPO)Jwhe`k!WyGT8p5xs*c#sm<+)Iz}$!9jYl==@3-+XsPnp zMR#w(f7DQcV{8k(z`dnQz63_c!vC1}{+58jv3Zim$kOSO1ePT5_L6}AxPN>6KJ^g#b2TSfA-!xIFjtn@BE=WyayU+@4Kg`d;D-_xSSbsxHKZAHC(QwliQ2a zN%z;q*@%lcMXYWw;^H>WgAn5jYcj3I*Lmm!AA$gQCOq0W6-SCJ|{@<}w&ZR!_oS~5>z z$P#G7w;}tK3}2Ae)=6JdAiu=s18*mRb@x#p1YRHdb(APtQL^ZZL($6LdveQ)Nc@~< zDt#B$fWe{<`aS46H{AH6udR>bR!u+cgf>>g??>@|?DBk{dVpuxO~@NO$J;gbHelgC zb+=l>2 zwDe2>G7bThLMBqJQ&E;JMOlZHZpsT8S4eGect=De`I=j@hLgwa)Zh53U4Q3&yYc&9 zw~j_6lQ1M!6=lS^HY`$^&xiKf3VHIc>ze28V>Ji8LVoXDaQSX`DYHxWsk#K0TPS#K zs(M-}g2r^xiWGJQExT)~LER_$>dVh(^~0*0Be+I0g3OCs47XXKoA< zM((!r$tY~@S%GWsZKCL?lAtvGbbp=eAomjVa(aKcP-IgdiAt$Fx{_T1qFxL9mJ}hj zn^dv~yfL%>vNO(EpS(ROr6-r#)L$$5Yv{Nq${&g)hOPfp(2V@DI{_Hhre}Ale4Khf zW7Hp;`Qx?HHg2X&rL-%}r$_GYOP=GMz*D8XZ z8w91hdoQDM2y_Wtc!LmQgOv)s(){&N3=Q)@RbDk^m=oZVL5OI`7(~ER;muMD^Mpeq zgxNyEnm*HDO-J@x^X(yPm|C((JrPNeNG9>Qm&ECG76XuIB;qWQ!z^9PU?BxajBA~F z3U@iUMUhd1EQRaw4_FrqSpq1uh^vY|0Y&>C3f6ErO)4k5D4o0^+k zxVXg3tTi1wX!R|`E9N*(^phBMHsFQ^Coi@@|77?@xi0}+^@Qq)l7bX5j5t-%MI?C* z!LZH+s{yVm-M=GPr5#KW_y!x6qs3Hw-6i z>RcW9d!_AeyFKtx=>Y)<9}s?2crN7g?(^q8l7*Ld&$qn?R_=(KE2&(Qqy9Lwx+a>8dTP#6NB3DH4w)MX(Ut%9rYuQc=J3%NBN9ytWRazg zIuM{+a;N{b1YPc~mDKwySJ2(1-9KCDflY(K!WV~ozPG~3Jud6>yIDS6c}-5p(%q!Q zp-l0ejs@wfla<#HU-u%vS$^H3wX9S`+T#!Y_^=*kzc=SmtJ61Hn5P!X86gcv6=FfuiNLV; zp|eQ(0yaE&!=~}2r{(EP7DvbRo)V!D3Y=+JN?|VmI3G`0Cydyj$0j3J%->~cHqPbYi(@@fF*4F;$@qA<88B{VVlQqU+=@`Y(KvS{On10ZxV1e^5T!JZe$dL z7o>^@d#v}9Pg>it!(N1siCG(Yn~-{My<=$rYmzp!oIGVcEc3P=+-D&``p!SAhDb~E!Nv-eGei10}ziA z4P+Moi;bs_*ny`Xx6b~4Ot3RHJ}_Xni6K1y*1Ldg;J3yLH&hZx0aHapk)+V`6S?;O z?4E6J5BQH&VXd16gN20dKFEa^KH}#awM!vfH0YH_dM$it@&tJ2ZvLua+f|3Z`N!)g zRzJt)_C8&|w9c!oqZTy$`u+W8`0&eWzt!@ap;6cm`TXpp<687hE!tDqU$x+C%QW;{ z)3|D%f&Bj1G7tI0YII!K*EJ$rHE^!D-n_X_pst!e_2iFOC1dz7Kf7p0{l!ms|4C6U0Lf9WMRfgF716Lx(6XYIz!yxk$% zM$f07wu7I1nhMxbOey$JW}_ zZ9PcnPJHECA2rHwNtb)vI>;iBH(R zM;^8KS08p8I`V%|y7aJtPR^ zN$*5)DBV9$ptonhlkSveYuw0cc;0N)rRpe^UaX!{c}t}iqfshtt2DM+UVLqp##YOh z>YL4`?-YJY@lh(hn)cR$Mm6;n%exbJD8^T<)7H(Go2Z~%Ur9d5)LYf2`B|}pGc7S| zJGdX+yB52RBx~%g_iXXX003v+(Mv-&*VkdK=Z;y^zCH`JwOWe!ycxpEh0&91W?8ih zkXC<+>wEjHwX@S^k*ZDo_*GkY{cW4PHeid>v(5tAki>}D$ZsgKsyZQck+MBkf)@Ez%>9*P1BbHLQK0vI1;4I73x%L)orTzw% z+C%hba&Fm{Sh~jQ1_@-p^`0h{F*=bs3~(aSg+v@E;~}X6tjKmf7qjz}>|P_6PA&F5oVk2T>`^0lw_6gE}*DyZVRfgR!@3KDKdxfD=6i}tTXiH2DSVXTv68+lRd&15{XVSZ z8QCgNeqCFkrcm>Km=&i6@X?$(2f@HSg`U zI3O^`MBWP+ix8_fv$$Y07-R&|Eo|D~Z&CF0G8kM;ym!G`E(|!}_u-o#ScGdb+z53L zS2nfAAs8yLW8r)r;2t$T@37iZ>faat2V`gLE#4(MDo%%2G*y7dn8$0M)>$ zlh%9Wh@E=s6E;6MWFzmLw`*^|O|0NccJ!}*8Hrzm4gc_EOTK@}Ld5DFo|v@wjoT)p zkFM@^Yetetlx2)OW?AZ{4h&8r=mRd_zHMzXU;!9r;8S)x)5F7d=WE}#rsp5CCHPg$ z#XF{Z}+Z?p|&_pT+9&uWhCNokC+PZTL8r z-Hx$UuHXEzu{-w4_0-St^_BV0&A*C+>*m)A`$J_JWLm%B4*(3;$$+pBI&%>$cI8tL zGhilJF7m6xk4%Wzb2+ShX8~9@&wpSYfW@VuA)80)W;aKyrN7rA04l{RPGdY#H%)xy zuoqXi5ug;t!gd}*5XG?zAvKF(FcMab-$hVSlvi#&fD|j<>G3g}9k^vi9N#-5!$>IS zY#Cq~0f4>xhks=0S6{LI1ADD+?*Tjc3s2k8rysE&{;S`!MJ<(wqt-y(((zjc)WuPZ zZ0X-)3EaR;PfuEaCGY9Xyxm?LwICA97kiDe%LKVDZD9agTaxnh zlj{$4H2oEpdmki)S(eLF#7GXNvlgXo^>ayUo-(^LJZY1cFIx+JF?{o;&7ez|xixNW z0***i7uolqi|G1aJnQEuQ?07l-F8$DR1F3-PDgp^NKU$zkrHgT}@qiCR~Eb zc$Q8)Bz!?GPfgnB)oV66GGaY_eeUZkglJzrsq`Ru+se@QJ50$d$CdK1La6Aj7Bq?y z-bA8!DfU9IhEypU)wJ{DM5CI%+ic!qeOoMTv-G#4TrK$B>EouB{aA~(mg1+}y(o8G zbl2tar&C?j{JAo%>a^@e*$@*`79cav5^fx6UJKHzQ_nnO3$gPSltu8P5AZRc#l;O4 zxVVa$#VWVs^eL;4))Sdz+QyfLt>xTF>pQg1t^Ukn2(pOLM-MJo`W`)JcjRIPiQ@66 zAG4NljHTPFws`S^=TZjiWkvF6VA(X&g&)PqDVx8Iz8*`}Gf3x_(60*<`DD*CPn)4* zIC6E!_ChnjQtdS0YWnT>ao@6J;U^wrd6#A5jty!}*dRwgN)Lu(XFWUUvyzOc2urwCU6Qg4mC*)w~BM(}0bGt2L zV3`KY_C5KKyHE44zG2~%ge5X2fxa+z*_*bT;a>KD)FxIj%4$tjgFzK7Hkqt@fLH6- zQAeBSlOe1=Tp7t3d_+xOy<%_tt3R+KC=-Xi@Hs^0gfl{XuZPUDGWM2}?-r!2SA2y? zg*{WOzbh=dt=Ve9XCaNv+^<^D$iLU>#Le(g*!i`fQAl(5ymmcMi*a)=XwC*u|2|72v25AbZ*AxdrrTR>8o!6jfXx&US2D{iPXkDktZ-@RJ5B#4 z@q?HH7$&A?EYs0!^}U_eb>_H@zVo4tV6@VWn;K*3z3Jp(bOLkM0smnnm9w~@nQB?E zJ?K{AWYNZ6`uwZDSyw)*HWHF`F_gpkK#3! zqfzd9ajI)mE1|Jb9>CVho zEezhYI7^uI_}**Af1V6JMlW2lCV<`q%c)c6-^UsCvL%q-)kQ+q`M?S5I&mD`IkTBd z=okLvHOm2@>aezrBOwf7h|#dW&jGmPtued#<5z6x2QLE-BUk}*e@%P)Z1Kh|n|kF9ORv_0aw-1}bCkeqdv7zJoP&qjjQN zsMp-+dl&ITD2LzlKd(bC%E=~YGzO492DJF5JDvYy#_)!%KiIsp9rzdiT|3tD?~UBr zw88I}!p7&2*jjzeqJ4X;*lT)+ZWQARmW0F7F+^fEjXvQtpeoba#2ily4-771 z=oGfmsVQ{%ZvFIir*D^IsX46o0ZYbV7|)@5I78V*z+?a^U>2c4oVw-I8bPJSSkj&a zpiLru3j=%=8qcsIPT>;O?)>fXI%Q%FpwJ6qlIdT0u#)X>fWq!;f@+LfQY;^0{*4fxSY zne^*j%F0AjI1np1SINznuAqW#$g&go*WfDTPEI)38Ao`Rp;tfjJ4IPJK{+E z!e$*0kwUGfq;JvIVS7LM6h4&_cH?*cz(%IOY2Akp5t1i}qs|_eKg%Sf?-`X62|xbg zM}AcAh?}y@L@jz??Xy@5iua$!{g~74RjWTvZP{ucd9Mw7PIo(o90} zWsnjs4-C^Gte$nXBYOnA;%hL+x$ax#cg}U$?w@Vyfx9|`+d1K=uC<#IY7Yq4*R!_P zs?HpH{NW2QSBLK@;yc!b>aFeMN%TngN__shg$4(0;E(xnJP}S_IaiPhVa&nsz0=U$%9GXK~Cm^HG^c*^IX>|LtETw8iCkUu&Mk?3Z zASonsz2;Q17vZP{G}hKr ztm5@$SIgw*S3b`9FN-KW-Z3T!hCB~U&i3HJKJeFq_QpT_ZHx0oGR(;i-_2BzUhK3Kjn%xx@5$=*pYNk;`npt4)q+Mo?NaoV?%nUz zdzyd$SFgK4mrruT<9r&*=+|GEzLrSw=gco($fweMdOrQN^tN)wjBuChRXVk=XO(uX zj>_@q_ZfGEtQ*hIqUGn$r<;GgmhZK5>Dp_nw3NO|yEq?(b@+VvWeaKh=auBk%cIJX zSlw-=PiBL?fQTeh+I-hw!iH*+Bxs_Q!NrOqW#pW%Skl$e{2ahxpP^uyYBPW~E;?F{ z6#%9C(kI1*TjRALjUW}*b@|s5{Qz`bqAmc9lsBa$_QHrk(j!Rpe7!mswF8}`6hs8> zpyo2`y(bBq^v)>mXnLzns^1Iyrd2ENDt~!D5q^a(b8yTBOpq67^@E<7OjhWXW9kqu z3LB@G!Z`q(j+N$g+*q2H^fOJ_6m1Mha~>Y>EGRDMJDJURZI$(mj8D`70^F)eb!g}I z>~^>N*8{rm#kMtIkbAqyZS^jDG<-rD0c$s1XN(ltyfUji_%sT$>VZ{Ssq0+fQt>)` zTBXbSIaWumpV!}O@Cy*?pZD<8HAL|gf6&hSH-Fzg{14x-q3`|BIVU~!e7!aF@%4v; zQg0H<)0^F`5k6)l@=jD}Mf4JIT`DOF#P?`Mt^6M&=Px<|H9s8S~=I{M< z?Ukl&qk8=7+WR!}%lYZrZ?yS!_<0J?^V4no(=pXbxiaXy{GYpdtwpED>qQib&V^L*Y!H~-w{ zO?my})wb~T<3kFyEs6r-+bz`Zt^>X67_#Xpb|c%J zmH6Y=?eG0;h39^HCHum%`RD$zzZX6K*x%=;6&~wco1fR;d#S5`{d9kyU#8OIRcghL z@@W^+EG$u&H$Q)|YlY?W^ZVEQa{k^=FO|2-Niv^Y+2ed3@{f!0QkK}d4C|k>YUpmn zPyV(1<8>@-kdR-_KlbxlXxHxF746+Ky6 z;@Q7?2SBa$rhjg^XO94}hSqlj{vnNjz7RqH)`kU&sOByW z$v?iE;5_&Z7SWWDSF8^tn`R*Fw33uKBj7wZ?PW`J|mE7^FWYj3-CFd2E{ZwhbgRvl@fUL7=L_``p(4>kRKu1N5=l>z1eFm86-hJ$dI!@C8m zAk{CEzgPK{HmZ!*T93W}vJX7eBVOC{>h|fVo+8Qlmv!t*WF1ZAS2_K(aqh^d4>V4Y zmMV(_*e=7`KO0oHHe(IWyw8gDgd7-L>Hqat?_o;beW4b=Cu>{b+B#}O+j|%p5mg(Wcd6|5z-|xh#2%<@-m7+gt~P(AJ#(+BG2Q+yZII zSiPYHXJM>o1*DXg(rw^n9Rv`D@V}Qs2VBdxdM|mBFqQXSpt4 zL49s19XfS@We>>17lqw2y_kir1FUK-C^XH#It*Z3|1B*T5tJzh(AIVLSKwOoy#5sl z#Z}hk!&c=}-JpDQIr$0bp<^kDuB^PBgc*AJ7)U@UjO(8Ox~1{)QS?Ct2u0N~C$e|9 zm1^#u-;V?Ni@a~!cGT_H;XSmQYpQ6dJmbJU1lsFV1JJv*8f+W`2<5}4^T7w~z|&9K zAc4sTzVkgNA?|7|S6&%kZMtsmYSNjhNqvfu16oSC{a)*E?l&!AHQlH zXCJVRN6%uJyKJ-H__j4H6Uq+iDF9IdbRz6g2iTN!DT?BrboT@XGqfo}7`YIDCPSDz z^-BU5Id=4r9r-VQ1Am2AY~=U<7|=;xjAO)aSild|nnWisnM(oCh@U(*Y0b|+X}zC# z+~(iI<;}b2ZE0W@LmS+u@lI0omLxz*mdXw-@t_GB3N)#A=?Y5{5hVk_Z8>+wjy(UI zg=KIecQ)iyl$7a9S8epqzen_xDGX$Y-Hc^(LJh+pCj|WfJY{(=1{{A_d=sJN*x&xE zmI6#){;hv%kq9+Xp;nz!^o4+=VoA%eC#Xcnizlr$fUFk7vs$j^UdiYt0&lH-`>pFU zpR^@H@?HGbzfV*c?jHs+L?3iuK1;|wf$b>ZJPz;rhzNpk1r<}&BM>PAnKZ~$_q>q= zZn@1N{f!6G*36fK;!HbcC@TQJ_p6_`roLXg@XvnNa)YB5;67<7-y1#b?!#89b~lbU z%Z~=1Hro92v8lak>q@&dmc7mI00tu=dKwQNuzkPy86NJWP5=2zb_;QLBMwBvZQTS) zuXhiR2DV2=57jDBhX;LfKKb2!)ji;k&8iFL71${>@>tqE{0Q{G?zp*kH%U`t)zc#r zt(FMmxIt;$v&TC2??;cj-lhhJEWWUSqzg-n02jaqs4GJo)DHbiz$WrY+C%%$XP-rS*nstK3(l)E z!=tv?P;X0gM-Z?X#np`>wA9sy@zIF0ZG14wby`@<*seF=2Od+@+wtkgZ66`>TIu8Y z67$Z%I>`Q1B(ofc>oraEq}d|>}3JsOT=-O1TaWD16X3W9X@0U zBATcs=}{)BJ0)o)?UNMMc)x}gmWZeaCxE^b_c%!x#0V3p+nFRb@-mTBvVgV*oQ%hC z0^V}uhy|%%$C4G^sHy87;azjI9 z`3lsj1}5W=O~Xcc-EQ5VTK9RedaA8st2DM+zOcVUui7^3BpT~(`o}b(7WcidYpT8X zwcsJ2Mz!_({O8l~(`vo<>(H~2e_X1ba&6g&hJQ`8H+mLJ){#H|F+oZySIyhhffi__ z0XKTtr*R-XM`Vz9|M*XA;`^^!10U*I!VCh)vb+(~fQ{CJyuf*}FWneH8ke=$sY4b9 zIAuP#hI<(#O)OzX0eZ{VZ&-#{!NP5BNmij7c7e z6+an^Nb(fHhu{)RmNW0XZ_7A(&JrOa{JotI#1H_fzO9v&?WoPMe4dh{Y~mctb&m215TylFaX-`d z_@mZ;_Ke+l{Y|^_{U6%c@BO*8oY-&2|JGNzcFuYpK4YVVr%Qb}Y%#*))$i>^(NRM9YYY%6MY@(L zBBB`gQrE)()GWG+DVFFL;5Q41Yo>gLC0h-`=-~sFqrc+hOVGFKOS#q2vhV`_88bwf z$q-sFCpScd`jeDV7SbWY`_=P~k0a%sgxC6mdn`h9mIwg4j`5NpJ;{4Nz`a-Ci46BQ zyNuKny+?03T!T4(Ky$i{+eWo-3Jm5y+M&ua5)W_4eV=xyx7pk#@G zb>V;c=eCSbsJ>IjteLow0YuhvVW2M__v0b;$A`WM6-%>{t!myXA-c&t;$^E_DH_$Z zvltCOZKD@aKJR}1b!ki#9z4&#QvA3SjY@eaPPO)_;#jl zZ0V?_SkBAJxiT;K9Lsy5BPR&=T&MU;j10$(+6SyI-@38x!{AU;mP| zcX!#v-~N{tMAEna%b&9zfX{nh`}dZ7`KJ~}!Ut3U>>FKb(M;}9C*<+IppP;AQ-dM(mX3$ z?KbrGyEgDo{y&^3HUlsLU?B4ZAi4eM5o-cC3IJbt^G!>CaLM)^@5gy{)NcRyWrQS4 z*52D?xw#pe8Jn@azy5-K;;Uaqr*auoi3E;(iP1^B^n;h|<{y98y70~spj}{BC-GC{ znB#x*D|P@OOO|kgfgr6z(i=yT`TjS*V@n@gxBgE*Wk>$X=PkJ~>l|n|Hg^yvZ`Q5@ zPA33qr=I-y=rh;vcQe<5ES?m*VkoN(nW9cs)Su zzuu=mVN3sY+y?%|AK2wTeUV8hV7+`P%6iSYH&D?PlImN&KR7Mk_dW;f_xU^(UiE3^ z_i9sTe`QNgs6uN#$$I?ikmY0#(aeZcJ$kHtREhBmI+^n$7D82w*P7$ADt^SM+-LfRh z!AHpyNv zPeXt0*kAsFb@uMDWtM$!UA^XX*xHUAwKnwK<4C~L0OI-+N38#eC+*JYh>alC0*{8_*wcs zjC57103%ng+YE*+J-_(8?Roq$yGi`$nXxfe>vGn`(rz~~p^Y-5KYk4d<*nA#-C>I? zyAOVNnTRfFOD-+j@n3kxn)z^;!8qjhwM!OhYqR}_4igLdxJ?qrdVF|C^DfD=_fK`D*5_W|TJg6&b$!X5ky5N5ym8|9v-r$E&ga`p_i2tBD#NhiAihAEa#2hM+JqwjoR2QfZrZEUg5u5Oz- ze#9mQ2E2X(galY>bw(rbl?G_a!gt@fbF5g++eMagFa3u8qW#%P+t@M z9758EGM@{T7j12(EXUK!mLdG!p2r@x4(N{)?r-3azip%c@}FAASAN4f|G|G{?X+Pp zU}_9-hLwl|gDLbCdmp6lSh^kq{9gXqyEc2}hBf@BzitN}I%)MR(+03smQLRM#2uSK zIyZE4*v67KEJ?`NG_j$R#7n;U{U2F9(%mJDgI@iue`c+>5_aP6{%xn5__Lq9WVg>> zuzIAe@#!h+{o?1W8BjP#h&~ydM39=!-X66#{)gYT`FDS05C5J6`r**RA+)o>(aWj`grGO#lfIk9a##-KBUNcI!@x<}5zCNA+ZeSH# zep3o39bMBGN$IWFHJ>wGE4=QXdz4q{`sqs1apCpVoGwRx_LWN>@A((j($ICKcz^Qq zY2ISM7}DZIz!XcfD@T{H^&s<7U|^HRL#_jh5L z!t+8Jg?(8pf3dXuv0wbUUsJLBU6@vQ?w4J=S3O=^OXV+>zLw6~v;4tYSibPw8{aCQ z-{(HPjr+mRmA@}dKR;Ks$JO((+AhDYay0zw`TgLft#6Z0lV0O+^}0_ZKW#OycceV| zbrj}ZrJ?+yz0v*jXs*rUr)ghUKL473yvo0yvTmQ3Ma#r)?JzHGUH&x*9yIeTLot3J zE^ls$7`zjMcH!IK1>}8T4ed>Qh2!1@J-zVkf;I30A11v8%hPU_b+yzve(R21{*xE2 zqqhx14aNB7)mh(!?jJys`Cb@R_PSbi;{z%u~L(?@Lv zpdy_@=?ywb9Qtp1U({3P@KV|)UVGbmAAZpG;gw=;2=Iw91!{CQfo1Z8`wwxB!9{D( zKKpCGV!1DU2_S|WmT1`K2Zn5!n8pn(N7l*efqe=kxJ3+PGVqv9BK-mM<}m7*oS(O` zt5`ZK=bMLotYh0LeH#5nEm&UU7(PA?hb?@+Tj+P7HVMeEm;YZbns#W$96XRD}0s z->GLYh9Mt-Ey^->13LGXxXN8rzw$1H_hs7H*22`HBcuV(xZUjRY=_az&8)s~!(Esn-*K3`#Pg++;2Nuy$8@PVnGPj5A=u?l{ zA^=_bs0sKC_oED;rFUNDT2|I3&9Ie~Vt0PO{y4vyYaevSN)gH6#w@yLkUwiD6dGFb z!?`j2?YLSguYOz0^W-&NbR`{>8!GuV(h%Trv0y`swH`Ta`yYGA;zKuWiidrS2cwTA z{~jepFb$ zpX=w9hTr~sxi8kY#nSF2529Uo@2laVRNhkQ#oAI>zn^EP(D3=G#l9A8EyYK<{wjA} zbl2r^^C9W(qE2+QlBl#YoAl=bfGI5nfe9Mx{e&-TGpDFvt`|y z+0$)%o`2ff(C14d{Yp(OSr2{yvw!DT?Z#jH$dUkyC`*k&q+GdXbnwt^lclag&cy*` zVSuGrl*8vBU?+R+wvE2>n)RJNW=-hA)gS1w;GKD=PLu*r2_VQ)SqW)?>d22?vu2h+ z`*~*^f9_LG?{F65lh`6Ua5|=g z^KIuJFat2^h&EURAeI3%hUiac$%_DE;>tDa`t&EQr>(^fKJl21&CJ{IH(s;c**@Fz z74$7JAPFIroNI~M60}*X1@yJqE!sT!;d$$M;;^v@t_H^gQDkc`Nrrn83Z@D<8VzZkskF+1pgp zj;UtdL{lMWm6zjAbK|8iBHcmvUCNhO2#c+~C<>=|(60Rczq6t5{?J0`7<4saCg0c$ z7Yr0_lqKnlrFeS5nd`Sho3FH4@-%?cv|@URjc zpR_x-N9-sdECyH^xqKPDz)F%Rj*i+WI)={O6h$zqTZjNm+)_PBXe z^C_LGTIA-X4!yU@t5+Dhq?&tM4CVl$KD zxZ+9M^g=z|ayg^*C_0pG;&@HhW?^i)&d|tC6yfKJpvC zZd2q*0NNI~-_j{uq`k|yvWa$MwcHH&V>#JLdf`P&;g~l&0Z#y{yTGYMOHq?TLokFAB zs1cu)_E)(!ZS}f%ElDG9D)fw-{Q0(A3se)sEGh)!GkfBRn|DeSgxj4b9^{@wS`S#_+vJE;GlD( z(hC?IedBGLlw=U8SQgM%hoMUt@a5Ex0E024e~Nf=jpgyxMsb&O>eJ8L34mkv!3U94V#SQL z^~B{XHuL&<3!K>JBx?acT;qJ)CcgWU^AFi|=CnQW+;g@(I}4y}vUZka=P=Y*Wa+wv z_v;?6OD`~v{$~RMm^elvY6}p|mN39c;&P`Ii{gi9IQVO}_t;Tr_5#YA7-9h%yEbT( z=yHY`TLA!QnmXn5+>H@BjFD2|z`Zxw@*bx(72wz$KiQ?OuF1OD6E(be1>QvDcTDj- zUah5Rl)GN(WLFA+iGDtf{9~_fmt*Bnx7lltTB9#SJt%r&^wp?=l0lbZZfL+>|J~oW zN(n6+t-%T zxc0Yd=L5g2SFRTQ;d4^m-seN5s%=AcHPs@w-{Bk0du!*O^|hAk>+*FJpU?7ZDoarnElB>-3yZeEGHMj?7k%O!)_~2HymB2q zwFPTDydQTk-8S*=`&P$NE#B+g&C20yFoVT!jwRS8q;E?|?vm)OwFT;JhNbAt>4VmS zkGsIcyu}A@L2C{n0e}t(U7F+Ni>tAkumzv z@55m=I(LeN+#Catq5qafS1v_Y#_8t6;Ks;7t#oMe>J)aT&+m+~)=KB;Eg?mUMwrJV-7QP}GcM0CnX_ly40ie>Q%&HCOMm#pLX30bzFrl4hP$_Wgr zz`dJ1#n$=>&!4zg#s2H_tTv=LjY_VUpX_`prR&J2vC6k!PJ6%WSHYkIf?N?8RLf8! zb-tgN)3B&own4tGhQ9ty%Um9`{eSJt*7=t|hySR(I6g%U*~$1-n4dPEymz+yw`M(1 z`kq%_#dgr}2Y^2yD(9|}oc@^h^Hw_-_~pHFwdfC@lgjt5hx~3@DOPPeDzB{;Ielg~ zzNc&Zwy@rEeOr}X@6-WoWVq)()_G~m=b%7enCpsmp(qn_QmqIiF<$bCEDouuuaO8+n&qAI7CNpD zKq*JXf};BT59BZgVRa_~_>vDpOiG-QL^OjFW%8tW0Vo`tpqcp6N>G@e?tu$;2Vj(r znm}bb&07PVLY%TVI>hBbw-DM3an$}WPGPw@gm;QGOPEXe+mk+91HKZY0b=1QiV8Fp zmsmU|#UxbJo@MDfLMzmO?>yYvEZ|}$7e`u(uUG%P?&-XM`na!6g%<5Ngo;TKEoAQDA6s&)>U>FW@> ze$wU30?uXugSgSQChA%sPZGB~VcJv=h^dny3X-`5_n-mm;T$@TdXHwuCx|A48#nq? zpj;211b|g!lLS)QG=2>u zj044x2G251_`^@CUot4+%q^K`pdo;jYt??Eh_ZuSVs{_Ahm;c{CvU8^oSu;M6vSA#FlG_C!-;Pe&tz)+bJ_bGDz3M&& z4Jpxta`R1ov1;<>mn(Pd&1KAAZZa#E`yO3)?~W>7Al}5wJghkt@WHv_{9*yYlB{&O z&>@7JtW1M|6Ilk!^^2}yd~2DofFIWZaRI<#NXyCq2F>VMP=bso+-eZCorVuELH_ep z5AYG%0(?l3s9!O3LwxM#>Qa_~uEMzGK$szxia|T>Tz>gPTl|F4my<*j<7EI>&K5`q zHWA9M9^eK)`0^8=(MnR(Nv1Gf0dNG7;t2o=t^s?UuRnEzdQD)Y39uM|9~qKlCX&`d zSs7di%!*f`AHkh&fT94mVPPH2EKv_&25VtKS@orp#L{{C=Zev$0Dae*idke1hugEu zNDZ;326&|!qOLy~JzA|Nf(cf=v^fmu3eg9uCQ|P?(N_4qF#IK)@rd^>)b)C-e4_$7 zyf>56=v&f1^%$iHglgqYgd_EI2H-YBjAqDNt0IUXRSdyz0GBtybOGW=2aqW09ov9T zBaH<};^GG&rw;@Kr+`5ENdEwMT56Z_r(!Kj^-E(!0ABams9&*?Q#dFm3&uPli}8Ms zQBL4cmN#|ui$J!3B&BJ|{oHh?if?zppf2C5Nu+qyAKz5(@t}PSTy?#t=fWvtr;Z6H zz%RvDNGsy!ysE|s-Cpm9}h+Z}u5 zdT950bv>XNRdN|#`W0?o3D0$xUUC8>0yElN^byV_9n#BQ0723`fuctD0@ol%N=TtB zs4UAqAP`8ZUhH*%5P?9|0aeGD5Qj>659ecD$!xME&aY9bKKOnN9Sd9s<~fk)F!JTd|?VUo4Hw80u2Jy5IhL z-JwkyB`4!*tHy|G)OF!NH`YiIOM3aM=>6POy*MqktpS6yVOuuU;|Aik)OHUl(fuw# z)-5}%Ty&2^envetG(4xTNd{Zv-ahMm>Jgi{hBx%@y`F#R%zYd&`W-LXQ}>4M_!>gRx-m>~^V!-1rEo^(;bL@#+k1OXTC#m^Ebi4yb) zm?@86lca*m=GP}lk@7ff!G$!^E9FrfWLfkk0TxMk);|aA6yp>|l%LgOSLX_Za(oDk z34|ml7l+k)Xem^k14;sPT+{2vWh0Mx6!+rEYp>`FfO_-=9Fe0z5+KZ#i~yyo&`;^? zMN{#K)s8wzI!MgX4gp^e4vRza0XU<*szLX_+vquHhykx1>MxJ3OXq_6NQHDRpa>xc zjzvfHYg79q?esPeuw`IK{Ht9qTpu~K%qy^_P1p3#tH&#;D|hRqf+RnI<17-|dUQ#X z)UA6W$*Y$C-B@zuJg`TqyMJnX%AqRn%`Mi%Lsl<*-2m$LxbW)T&cEt6ZKdkJ3kKnF zTQ}9`Kd0MTaSbXf*Hzx&_8w%{@p%O_h!v8K;epjxqctBqXoo)gS-VOw>nS{|52KX4 z|I^P~eJ61o$?WpOvuJw#+10i*0f4BdpxX3-aXmvftvTgPI->?h`DF2<}KVA z1h;#B-Wjdl3>SHmtt+mX*1dy~;4nh?uP7TymQq9fB(2IJNeT(GH~{OY>faYK50a{pjbBo$5;ga2@NK_O72D0q>ru?>woeS67`Rqbqf( z1_x$2r}z%oiZkKBAouKJxv5>--uZX?(i^~cPu0UKCr*^j*HW5M6>ey?zE3=56ZlQK z^pF2J&vwQ-PMtt!0q<8h`1HO4nWFS*rBThWm6nQoxHa1R5$7fmJp|s3b`r{uAWx7~#`5Bd|SU$>iA1q*a-{U-321@*-w zy<&+p2}sMJOBP}N74S(juQs5}t>s@CjYtZV;^zPat2pU8OgAVW2IPeSUNRmL7}HEE zkmlH-(^XGKQZRJJK$i|!i6z|+>5A)Jq-ALVK8XWV-UAro8C1o(tRzd4T%|!5X%r8g z#Vl9FdJ?jY5?N7U+JQ3?X^Sj{7Xui82!B$RxK@s?q@Ze(dreT84`5RCL6rAQglpnu z!7algO#~bZ%*xtTZ<$<9YpPyH|kpJC3;pcQ*$TUAlK)9c`~F zm&aF2xLaTc9=Mp=o8`*~S{m$|**06Qn!5Zt#H)W?O?l;2xk}o)zK&uYBVtOIJ=e+? z2wzhBaAlDF>%VNnFaF4G;;lYZ-)wD1k7|UIPtPBNjGxXm!1d+oW(e0PJqBEJmpu^5 z)lF@cw6h%H_5Dz;#QN*IG}iaYy-L~abCJ(aEojtY?A3~otk<2U~v6+7N)JB!gQ zOxto_Ft7PrPN+x|UEZd%wJCWQnJ~lrG<6EtOyRRGckF=m;3KdHcOrEdW6a^RZsE1_ zHhXP=uxiUhBEbLxAh19LiQL{jb^-^~aU3ttz5jukoE_6?uHR^wmXakA5@bps4O&jb ziMH{Gb>n+(=&iRcjvqVe0YkC&xR7lFG=aB1FERP#ZLZ04ObQ%F!YNAE8@L0GjWo4_Yv5W|T8Mj>E1$6p9K!fmQl(!-#Dw7@2yE)2+V zOVuPbC>^>2$Kp#C*L59j)`Bx=!(vylniG>V07!vN+DYAUteN|t{giXpGDC!t1bx`` z_(OQa=p_d553Pxic5*zOn8LRoPNL;YQM!bZplMT0?yq;?&fF!=T@ruXJ#$y`@~@n) z+v#2?F|Ux$-Eg^^S?^mVt|Yhu-m#M0DSv#)qUZCMD=W19>nf2~boH2g8lAt zQ`;#te13jj_OfR|dHrogHqTH7HB!4=qXntMW0=?uUZA&28YkvBy?fvX8 zSP$XRjEEOGfKN+j2kyN-Z>^ty3WOAMOPe{|gM@LZ(zvGwky*qRaFH^DFFQ$zLLiJ# z3eZG2x)i`FwT$@*?q1}cB}KUa5iaUc_o>7BH2{i}1Wv{rx#grKiE$fWTCjMU2)@ki zKo5NJv1AQ!Lnvv>&{)PoI0tBr;J`VINKq0p{UThK#8NJ52L9^LNdh* z@4!@jkZfwpf4J`+^U&r$x0@n-4-1J;o`;GzHw>yQQ=Yh^N;XfLr%6f+4|UBA*067{ zwLJ5<&3@|#HhJ+Pp>FnB!{LK0JB0bD6(fAv@MY)3=S(uvDbznV{M9&p;Z@PTLSFCQ z$CV3J_m|(ayz)A%s?TdoBfm|X8ox2`9|$jo^sd4W4SzAxi0#?X9gWtvS~V$qh&%X5F8_6M<0IB zdd{A4#u+!yziyd<5!>_dN!$12vzEp^NTTT-_OpN_02L0D8;Dl1OeBw)_@Yhg6CC}* zFrX+%fB?fC%QACrJ$~zAG72Q(NMLf-)um-=>C4pvHs#DX&9Zb3dIE@AdsHNpGyo|~ z)RP$3rH7a19Z?K4P0ru|8UQPIDapO~)5E`@V*4%)k6D=TZ!to!nVc>siO!*O-eCrap8DE% ztpllLA1hwBZVcGsI~P3(#-YknZ zyl*rq`IW0Zr8>^fcg0swLf9+T79sC`Qy!ayv z@MZPzp?;X)0o3O$1^F;_O9TNu)J!(g?NBHs0YtZqtW0A1ZY67LFLqX(PcNr`t*~u{ zbo_jU={nc7a^?Me#mf8Fwo0QE?ZWhp+ESRensc9SCGDt&?q>7){1hu+={+k}wwknB z@URiD8(quivsQfM)7;GQMtp3BUNvPZ?W>JwmZMS0b4v=WU4aZP_2bhd;a-Yv}+S-MVAJ)<#=eoVQ8l*Jypn8oOF; z-~L0^%ChGGj;e=$^ivBW8S6YoBoQKF%q`9my6&*`G`G4Kx3eq_Cjo_7Bxn&pV-g9X z96&GPv#_oH{Nvmfs$>ekUF}RDhVqjkKq19TH7s0q?U!z5$gmn22LKg z^!Y0YHdr*zyPvw(yW95mfG0v)e-o+(gZFc?+TJePTy6RNvt~kroVx$6RnyA318qD& zJSFG}Hd&-IU|nY(ut~xmjlTV!O%gV!jirD{V=GTtnh-iSZ0PEBn`If{$kAigvi|_# zZg9K_3H{M>vJTu%X**;q_Y&A4Z2sJ^v3@F8ZF>F~UQN9}N0pA7jq+`D_+Y0a002M$ zNklI!s*wFWWXiG%?IQ-B9 z*4^LE((ke@OwL>Q$N|d?4_Opl#P$bH*%fRy3whzK4+v9tlV$5Df&iAA zadnab_%$6pV2hV7*#hqh=jeF<9&3B(3}riQ`od*feCx8+f3C;6SrV6vl(~^RlxwuJ zU;Slkz;)RYx`2u(a{3FO1?;w48jv}3<%-3-8>|CEkRtre&JbbIepaT zk($n<|M%Em`LcEOc3Yfi9g@6;kuW+PJKkf+C9Dx39hjK0*`ZNu*|W#e#5Ep%^E@$# z<*;U>*{8Dmx|^%^Js^2gRa+szsjBb}$z1z3xM|8sz&2{4CMNfD&jLp}0SG$%U35UQ zEC*+z_1699W7hNRCoOUDs@?v|>6=1@B31Bb*(Ke)OvoHV5#)<#S=dyM5_ShagH?#wwLPrm}l^8;e zSem8Kedo?v-{C{7=;mzTy$@`1eBA0WsyO=G6BatQ-x5Tcs0Xn10umL)pUDkq5U*GX#xLe8C(1i;&dijcTK;6{XWc97BmLZ&3F98TTi8nky zI%Y#ZdDW%}FBe9lcHoJ}Eq3a-%|TZo?t%cy5Fzn`0NV%=tJIFn;5dOUf(QkgiM!k3 zmW~6oA$1L%bK>X5h%p@LY-hQ+#Ucm#Y~N!KT7>w?lK|u7O@Jq%+uG1^j1o&(?P@-L z$l4oQY>s%o@mnL-{@`&uUOeK$$<1L%GdXnIVgSI1qO#~#@F&7@xHGKbT;b`WO+@gR znzI?ClQHU!5sNsEv{my?6?bpv49cGaPO6p+s!#N=>KXeeZW~TCHEd9+dem)N+?A%F z{(2V03Lbb1|!8MCr9J7O;K4(#h z@)cy7f6Nhl{jPj-ZSTyGGMm4uv;a#%d*{@{J`_&5ulyQ=_9c^dJA+F2DXW>pyYS+K(Kx<^%iefiq`p z0iUloSW><@FklT$Nc>pl9lbeVJs45k83S;Q-?ozvJ_FbSzzt8c%96a5xKx)%HFa{xqi`%wMqVd=H6rQH_C?${v9(u4o@kF6U?+a=27Fw9uSVz@;< zWm!F)m>IJx|K{t~0xfxqPjT({UxUK=3(+R{@`SW8!r zb05=p{HS$zb=#eRo3=bMVVy`oqv$dYy!Znf`N?axcyriZd-*MU_W$@Ti#0Vt9m5pB zq4x4KxD23<#-i|+u%!jUv^7Qmwk&faaTOGl4&+A`K+uAZ^5&i)?vwr%ZkqywB9ebU z%RS(QmEN!O&G1=S8Lwl@<@JG*EX)Mkw3Mr#(&Z3UbDoYBjJs)npB?$-zhr|ie$NKJ z`E5_Bm@ise#A+?Vt;D}nuBjEbS-3#}Qp(kULIEjUlDHAAYB%xk^Qf}r+Ea{vK8?+m z7hUnOner;TRUT?V!{^=aPybxBcha^~_{zU$>YrNhRV@ua|4tfv_hPL0?eu9Ep8M(f z`*L~8T^Fr#c}iZ-e{X^6_clme8_>)IAABVyku>}y^UZDk^-D5rg2UVs^K7naY-;rRF3QtZeNzHWeVMJ@-1Dt zW($o`%l33wCziOH@UloD1EX_Rk73FpMjOjm`YIN1l-RzF$P#6U;;b+Lc|m}p;=^U| z>6c9>ES7D=H4HI&0cFz512ZC|oW?)|L4o{`K|9L3Ar^w4bkuS<0?drwvhc|s%Z<-i zj`vEio2Vzyt7rMS;ox4o_Tq=Qg_-8v1F$2WaYlKF`77(^kvo%?N+&T|K`$~K!mXkQ z^yE4w%93#y*E4vf#=1G}KxqgeM_^?MIf0Z@U^z)`owf?P^SG#LL<9_vDVZCZgt=c2N;K8ibS|FddtR{jlFCb3u$vmTgYf$$-WBmNskr z@>3RXYp~Wc$E_6?I_gJ7TZv*7T+c5)h5hsxzxgFg;=`~BgT~0AK9~DUS7ui3XS!*gvZBCN&&vC61W~% zoZ*X&2PoXrj(!Fc3=f&y$w=-W1_Z`%1>hzik~9TMGUy%URk(>m@wmJF{Pcjvw7+fk z-n-{QM7B6~He0{Xe=XYL)7r{@tL;$TqOsNard%8DHT`n+SACti&n+`nSWrXT11f@W zQQV}=Tl4Hi}taYAR38))kH3Z`^2EdSlaIF=*IfD8;P7ZkQT5UUdFmt zOScVJH}AnHWDcw4=95RzbL?>b4FgCIgBX{{y-i52Z)W2bAG&4J*RKOCp@+)S5_;|Z z#|~SJJSqAmLOZg&vvMq(XZUFuKaPj(SPN}#Z$rgt-j>Fv@sWs>vZKX%&zy2bCfCQu zaPEy15qJ%(MOv6Q5mk79ce8D-2Z~M8ZkhNaHz8Em{*Tnya?dMYR7@~SLpN>ky2QE0sK})d1&QU#yKGcAt){HBS0zm5w#nX?#cnqMDGr-T2P;@yR!5 zM;?9D&VBy#R)>CDZW*6{SP>7r@iQC3bxb>DZv5GIZ0{!?wZkV**x|DeGxGv)#>ed@ z%gc+nNNGNM)Z)0LsYB`|J;8eP;uOO-3U~^zf|JCUB#RU-Nd%6`4=>vw#wuOMkJ$dd z`=DDsHPO0w!3JJ`)A{zh{3qYFJ&!+T$3OKfl0If~0O=A|#y4Mi)s`<`xBBijw*)K~ zf>}W90#?bA+(~c{#i}=np~uwatJXAd&bs;!+PTkt-o~&pjst$@uo_MQHls*F6ITcA z`tNUox~hC|B^;jq8wPF2H{yme$>edo49JX-k8*EP!7_ zxu)rU;Dme6UH{(q9f-`L`>xHGF786Y`|~t9FsQ1lop83wu3z6)>D-U>W30v~R9&d4g%5G0TH|+Y{_XP? zW!W?ZotyR+ALmE`hXGCiO)b?%32!&`{&}Qq^A;Z*!Z;b-Jb;=EFJ>nuEQ|}6EC4El zAlPwZTRoa{!M88lTpY_~oK|PG{ECa243@qLbQ*(zvJfBt&On6L1m(CI@HKVe zqDAn1*nRR8*35&}yp*w-x6a$UOL1$6HP`|^43`0ov$uyWG%#fKfVT!LmiIpWNqkbz z*}LEQ4pzYcSeAeHba!KAlBAtx*I#+frjbU5a2pe9j#*}U4gh@7ZbS%-K)5-S1#R}y zWt*ozq>GstpRgE`&M7M(U%s@cP>}_9x%L8TCP;+eKXDj|@Kc#=rfFElKp`grAV>ntWHU882TC23WlOTGl`VU0 z?*!XBd(Q6ajP2P!<`2)DvuFO;ot^PU&y081_F37Iy_PL2Sn5{iZZ$hFhh_#y5CBQ! zT&TRC@B7scD1ZeJ0Kq23?nf5tS1;Tbe!q8r-*@kQ_q9}8fV|_wlU7wygpE12f;%=_ z&AN4fw#zmQAg$sZ(umqN0@xh8eA&X2G3$Ntpp8_8Z3A=z*dD6l;J~;I{Q37R+l4>H z3RKe@8!%(So)BZdQly?iYy-!BdJt#XsJq+hIU;YZ72^U2-7ju=`fch`mo;#Pa{4l3 ze+V@@{i$lfq`)jCiJsRxHJgx{mkFITrPD}Z^7K65X@QX14RUfw1IO!?1G1t>;eyw({{vjMUXI3aCqr8U zsAtu_@l3)-`mS5UJMY*!Tyi zLzH3jN)+2eM%j&Ji1tz3Qeq;@yREJrAOBgs5pZDe!)Dm3&)xSseDhsBcc6~d7_Wjf za^q5j>OxB;_<>U$r(s6gu@z<_)$Du#UWH#NY+d541|CdesS&_kbm0;&lN0p++_lFOiu7Nr>5F&M10#<6snB2EEuJtC9%2yGJ}bRd#KWjHfTBPHy3>m9oWKr6>$VI6{#GJ5ExC-H+>X0$(hO_`otC)2YONRI)R1WLGJu#-5bVH z4yoPw&KECQyaVux1h#~Cm&R_ImTCOdHrF&YkGKGdlHhtPOFGSe@oxQd1L1h0`{l+$ z?Q?;`-chWgsd9WMBT^zFQ0)i3LucswksqONe zK~&GsYKDUJ^c?Hqr6PSh1i%+_g-e&{>?@>pU};K1iU(bmETp+91F&$}yos#IB2eLt za*nEgD!6#>a`vyEnBUo4oS!tCIqypOHJ#@NpH2Z9t~v9|xyT%m{IV*a%UiG=^Xd5Q z@MyTPbYrA=;%@4@PgME+>s;R4@7dVg)og@EQ`u+6AfJxc2BmuK@UHxNJkXbS&tY6T zNZ#FhiaO~4CB1u`W16DnlbzEJ(Oy}Y;gKsVeovIjA9XdT;2gUrTDts3+)sU3e(&d% zaL>L!0p_I@`pFy#X-YAVw9zgL@N)kcRD@s5tt{Y#YyH+hg9x?w76=o_(Oe7iBP}rJ z;=FhP5P>CaEC~Yaluuw%n_HZz4!@oI8SxxyOe0-$t$;~OV#wZL$1yy&H(s3RE0>c{ zs*Ecu(1=u0^r%nmRZt&F0J90~90g{BWdJ?ESjH3YIMX5V4ZR~&wutwEd=Ms4caNVs zXOl-xP(L-$uPkm~iclw)01hRg^KJM9&Q!OStmKA(?tr*}f`}Y+0AjW;sxJKx=+T}q( zBB(7)#Ttz`bOf-A`5mTl0msY3UgOq6u>E3ccJu6>lt4YWv$LpVl8np0Nf z(pY3M z^2$wCN|BeohsomF?BZxQG%{j}{8k^_v%t3-LPgHBh|Aju9zBola>=Ody%27v5BEa* z3$@{18QVf_yE}237<%rP7BthOj@2S-3Y4Lv(u(ArfypF5BETa_RY-A24s~puSg(MI zCaK(=$d7}^5WM-Q7$u7@XnslnD3cxmO$WdNa}?8qbz0srNvfR6Zeg0cyzVfkGQ zVA07aAps^=A(7fLET*EHpPO5rl#jB|5zkN?<@~u6b*-{wAu6AUDR_nIi%?+#huKN! zXcuu2AGK9>N0mAaB#XVdqXg%v_O2iU2m>NQ+W}9ce8ujaK|J+_u`ASp2}NozXEv)3 z0$PqN;#0LmKvHVuEcrMafm5=urDVtRG+R!2eTzfU{>c99aWyugHPccAH0Fk}T0AlW!B(JEciFCB|qLG?kK#=Sj z>5pt!sP8M5400dlgnON7`R!e4J3rj=dRz%JW1Rc#A_W^fhT#8oE4P`B@w96d#th9A zY3;`(gX#6L6L}clRMYr{nu3XlVH66AovD`V{NMT4Dx3d1|JqN}w`eI%!Kb^}@5RzY zqfkAI(e=|*Hb2~oPJX%kyoK7gSl;<*YJ=jqOOE-Asks0%jba{9gR}8ke4CYHq^`-S z-Q|)zgv4~Yug-pyB5H@gtQhfXg_%cawFoYgjz1JCw$iq&w4C46)o8=*(zxC7eqV0& zt$H+GetnCLou79hnv13T^i}qD>Tq@E7DkKF$#0{ZCo~|81T4t>8Al2>$qrz->5`qb zKt_VO7huP(b^@27d11?k1BK{boYYVdk7`lv@&Q!H>w~lLrtAa`s!ekh$y_i3sF}p) z9>>E8coando^FEThY$h+S&~qRMhUbc!F$go;@9-ywYUNo^Vws8YT9qkE`-Xy#~L3_(7D1M@J_r7q0BpXOw2n>pr0G3yW z=+k=l9^t$Y4ijOMOSlwZ##nLUNxF#BR%ol7V9SPGAk?*tf&$y(Z+tPnsFyP_`cB^h zIGonKpbqzr;^2fKd>>8&euHc_(az))w99BsQBg#-J0Pe=1!ZSRKV{N637{Mr$Hy8j zX);yCHpwpOFkm_Y-^}Wrhdt*cn=a$YIQNlw##{dcI5mc<{-Ycg>i>$sVE*Lx2UT%P zouGc1yYYQD+L=FIt5LryP(WwR$0cOx)%m zGC06TgC)6$Vh37{v3E^rnbon2uo>4E>+th=8+^5=;9v>Nkd zxnr{$ZCDK&%Wd~c^3QMQN@&b4vy^*wt2_nM^B!}jk?<$@{00>GEuJC3ClzrlmbBVu z4_Gz3XNwzZoit9G1=-DIrV`fu?qM5#@eQjik04E>QUFw30K(M=R3dK(U?r(mT27X6 zs$9wW#to0}x5~9^I7wvEdX9hKKuKf!db|9i7cH$F$GD2o;=Ba$n(PFfbc&8TwKb=C zWa`Up{V#pmo&Is@KYrUPK`aq8KaTG>@J25v9|sT#^ohZNZyc`|xKRN9IiM)*g0w%0 z$qB1{?tnG5tg#qA4PzHBTC(T56-iPjPO5VJ(E?MYMN^Ybztmx8GYB}7dRuDWBF;~4 ze&zt~YOdRj@4sl}l@+)*)8Z6b-7NJDbn2%27T6V3qVWH)M|P z$A4x=VA)`Bv4M2Y*DUR2T)Ek{K>o#Q%rCNV?P4(bp&-L?8RpXP%kiwQIQTS{OTaHT zw{F@8Q*Z{m5Y&oQvsihwqGLAMI83U4YTQQgFZFKc75mod5A2=u=h2U_l7hkLtWEd* z@swEFEt&gBEUnB^a=}Dh(9QF2G7?*kHXs@X2&4ONc5Jmz@7QjeI5fVgqSC4Wg<_3j z_$r;F;K;1>PocR`_}N=Z4J&JrU*A${D3r%9?+>G&r%>PgwE5pYjY9GB>CVsN|Gtwn z{5o#_)|fAkL9IqRZ*GSdvz#$s2@Tla@&fq<2IHBejpKN^jgviEAKYW1no64-i@_GB zkt$`aoHKhtV5l9Fmi*aCE78$zj4SSxAs~?;Ac6-W4j(PWjf#$#OB7YuTIOie_N`V7 zm>KKt_#t9`{%Y?0G70Ir3f&l-PBTL%brg|orq6cVBLDF-nG+8I3jN>j&=#j zYK^3IXe}gFohEaT_E(ZGO#kC&**MZaVrksg6mMv@mZu-L#%9!?^^ZJ+in#B&oH}yKQav|tu@iRBfk;X9tiF8|gB!{PI<7}&fuzFG zl1ca_e5T?v%h{BLhT1P#nD*SZh(>;XUHf$BU;Fg(^ZRl7re!4g?Np5SyHI{FPOHG# zpg5mKp)&b-^GX%U>XH{sm@TZv7Rct=q$r!}^zsN2#$gT;#h=6T{SS^Ew>Oz|7w`;U zR2H?0`Z}9(wje+Wn9#@JE{}k2oo<@$uYWsW$dWje!DJ-`jPQW|@Po7V5+@Wqwqu8V z^|43nneE$9dBDsNEjZ@SpWIVG2?hO95Mlq?MHKww&)=ILG{0{%=2@|E=`-!7EcBVSdIOqwsl_ z+i$(Vu%iX8Gj&y66ACsUdk0OU;{~Z?+wIgl3xOa!SwX24+rXP@CzjxAQYw#rT(>ts#FnZnd1EsCUhR$7Ap zKO}C`!$|KV^3QBp?DZ;In{9&ghp!($Z9RYUBYeSfOkH)Y&ZJOfP(gf1I1ZCsIkHcfMK_d$) zl1mtgDkFfwGR8H9+PjoCMgY7*mQy&7uG-XQjgRcJYv)ec_?c5yTV2bhj-bV;ZvbP( z0i<>9yLZ^er=G?)VwD~I%kOZ&N}pA>uC)!1K4i^LJ%LoP+y**2JP?YCw_(|@PPad#=&MrIh z`de;S^fSNub*n9}woUk4yfn~nXWn?*Hh%Hbw)Kmjvcm&IHg)uZRc@$rG-jXeMIV{_ zI#G)SedY$48sss8xrv2;<&&5{uv+OXFr9P63Z>4WIImLW_tW#s&c7~{XD+GvZS{WV z)0s;{>9gbI<-57e+&bp}noA=;HNW2c_`GYsIeAgKSHcb+AoMb%Swbdp+&Kjhd>haA zubw$;?_RrR2U*d%4zSXMTTqIRj5ubhp1B}R*P>UjQewTlg>ooG%uT`N(xsQ(#rc00 zqTy#PNMjByFQ*r!aq#Mt?W35bPiLV%s2wVyoZ{_jq^~m2Z+#s8=cdonQogxCBdM}J z4KFpPUg3uquUM~rUV84Y*LYWt9EF!qk-tiHOdXB~|93!df`{jt8UmA^>g_Q*n6h5J zKlkv%)`ALITy@s=XMT(4|DMx|nIE&y=R)}xik~4d?;^j?h05L>H`|7Jr1+_{r3TGa zw>fHFf#uMcS9Ip*N@&b4GynGt@!W;dXZej6>6KY*5d87>^32w;aG9IynVWZ(hT5Ps zzYhPmzUPPhJbv2zvVQ#h@45BQPj$a@wy+eQ6{H08E9We5UE@F z$b>bY>0u{rsU1NQxWB#5Dp)+%aBST5L&q(I6l&uWk6O#_-4?-pOB!`@49VCTj;aff zPT8hsp0?_ZTP*D~9Oq^;FjcRgSo`0X3{-rH93g-7h^FMr0W>Kd&W z2h}Mgd@)WJ88~#rM&3PYYs$*4`AeU7hYMWzKmN>mPjuVb-}_bD`PAc1wJNDyLPxw^ zy=oT$K+~7HZO#5|)^gx6o|&K(V|!Q8(CE%bzIx)gb^q-TZS$9Z!CJO#v8whqE9VHf zXmN>kQP05X)3zB^c^zjnM~Khj6Hox~1}BPi{^j4`P@7F6aIq8;KdGhzsAMb9Qqaq*@NHqMyJd3Ch2AHl^q_Xa@Xb!8EYZ_vsZwAH z_dQe+wPL_#ab-1<&r>%2-U(}FY~mL?t>U45IJ<7M48V8#+-1vt9y+MDgSFL`DM#w7 zd(Q+D|6alqSNK7?Ut%=?Hw}VJ5SAH4W1(qy6a6LA7R7~1FIHoI1q+pjGD-Q2b}qwP zn8w2S^2;oKJ-_b7bI+zOR=4LbN&N!2u!0+oP1{M1Q~Li7zGL6|;GCO)oUop|QG!ZL zBqoClay8Nk#)F~+Z_EVY1+Kg`C|VIx^idW~9?!^_T&@fe1P7eFEB@x_Zb=-F?j&eG78)EGWFee2`E4~bG6=vr}lfVCxFZBy?wHd;w4s6R6sWhkd;(ROYS z_@REQ9|B>706Un*cHSOf5!Qsf5uTye~#+u2^_|@a;%lx5$TnNf`Ug& zb=*!^?AcqKu6nZk+Eriv{9L?_n^RZb-aJ|hG<`K_FO|m1#z75VURbD}rM7di+UC+& zU{Dt$K-ydyb2B@)Epwx8`AeP+#51x;x-{n%&3w;boj2)zG@m znl`rEC7f0V_pP(Ky*sRBV;koHr)(VC?I0T;>amm4*~MdLIymkwiaNK=Vp0=h%2V}~ zr>tq`4yyu$4P)*DO0+1do9N|SWzLZwMA6%b)| z2uQ?{_H}aH&;R(tAKBr)0lCd*g(cSkKHC%c@LVQDDD8n9n4@clV2TI)IH41RU`fk7 z$Dp1qia-mXL^qrKOkoFj^uw2`sV$o-Bw_@DgWx>j)I=Fsrkt$4qjs+S)r zwOxQqX#z}ocuR>_o0VB5l`iJ5JW3NFQ=EbWYkWI3EcwT^@+G5ACcwG}_Xi#b6Jv+< z@z0~@msfj4TYZ;A&l}6xb}FClwGZ@S@ll@;maIcE;1zc_iSs(PdU#b$)n}hSLi!eU7@6p zRGdc2-GaOuwA`^#e%-G8uo^V->8;we>+q^kbA*=C*IVT&n4b3-J5{&_IWKO}UXWGu zLUS$7;)+8x02j<_KC&g$X(AD5)z@((9lTVI;B_`|6iMHj?OUw8waMQ4_Fr4a%Wv8` z?9}#u>RD@Cx6Zmo#_aHSzi&?=r7z;dkv`7y?f&Z@Z~_O%)jfheUo7S}Rn$Jb%j!3` zS)8LpPrUH5o&I0HWtE?M+@AaAzYQP)ECNO+*!?P%w7^>uDc06cJZZHpEjBPPXm9+* zU*SvelI{P^U$#A;dCqDY>umyiyCn8?#Q>vT96KNSi@&fK;Oh(j;+wGla%%)=p8VcV zEVX;RWh=0iyL8>Iy!eVu13a65;dv|Dyvfd;IBBo`yFaoZ_KlDK`Y%~)!x~$+XSa2- zK_mgVD#9L55>%N`IGi9mM0uxU1@ zL{OKP1Kw)kN5e0?YB#1iMit<;2HU-gwszd@c<+*UF`N~NUa2IW_&p3THqNCF^#uUL zX=o%-=gZ}cT=Qrbv34a-N5eMFSjkI9kWUz!L zMOjQIxQ9ARI>162iXZ8qX`}a~{>=|70)rx=N$WGdf)jXtP4~d>yV=gwsoT4OVqnhb zm+klGnY=He8a|2l_z^_>0f2*i5xO^9?gnL;Op=xf74^LCZlbW#uaWadJ_LzC{o%uco;f=a%aFh}SlrKNHHtHvFR|dBTrkt!~0!W_%xLOGD5g!$}EMjGxMndK|VHQpU=!pQ5yTW2 z`M>`ID@N*AvY`P9C%}!daASh28}TL`trxE6oDYUq7;Wrl7x3`$Qx-dY&ZclsKUUfj{2j_A3}c*zmu0axO!MA~ z1LT~$8BQt*!PD?!gL@g;!+nxuGyzg6rT=9hd+p>#k8L5qrqs$|Hl65|mn5HBt_5<2 z-Oc0EF^F&<0HpFIsdk9J&VN3X@=*#Jqe5ZDU{J&soVa@iQR~w*VDgo~lw^;_G;p9u55C7fJ*k)GgfAh~Lm`0TrAvAx@Iwxf z(zQz=RsR_PNe?BhQjpY32`Zb5a@R@|OIC`~6#OaZ<()03-yTr%+Ms+2s#hPS>j71r zdI#tpsQq5syn0n$tA1aF?Dt0$b?pbQZm+%sOwZNL9|2#LmozWQx8A~z7wVee(a@{L zYn|%XIH`|bPt-Oquk!2Ce^zE=mEzO#+N}mC-MNC$HN@O+#kssV(%0!rYsfW6MEU1sc#El1;$(Qei0xJ~r*;)EICn5$4cNg9VVaaurX63NAv zY<_XI%%%{c0FcR3{g%cKuabp)qyipATtX5s%BXp6&Qm7MZsm!|aT~tW$(i&M7C`%B z-90wZ!EZnm%2FzW69K9M<8cc#z+a%DkLZYRh5$}kJ~135PGFlC7XTwY1YjJ+PVdSG zA6PZ&-$Z}6+ZCL-J_v|nqY9Eh@esWWvTQDKrYu~`DRih3XJ%K$VfHpIXI=iYA;5uQE3DoTIlry!N5Lm?fLLI<40yq>sbk-6k z(ssS?fS$YyH69Y4=z?bC{^;VP8Qgdj=(-MpSP}CtKx^4ivvn`jyk(QTslaRc~@Kz^xOaFx6-^CJoa9U$i1z&$LNu03}Iv^Qwc&(t@5xh1{3- zV;O(_^2;c)>RJ7^=eLF7`uPuZOntjA`m!2#L#w7`KB<~d(u`={X8Ag07R5fTl3l7{;-`iOZGz1m0l;7y^`%^^+`tBI?AS@G06>;DH(3QVlGvaX^X=`- zgg4SGEm}q21teD52^>RJnFOR%);8Ku+a?SB`qR)@W1BwtH11ah?Ap7BaAyN_gAquY zFBdc;%k2lqlsxsI1zF$*(Rd``ZZorMA;lt{?*UfB)gV3Z`9ER3z-Bp@^ktupLC-;EPz?0LWHx#z+>YdtZGjDC0m41jS?J153Z<@m}S%!_|iuQnBb9NN@84 ziR4#a4^DZLU3Dp_ED1@nIemLl0;Ta$^N5nvL6da?Mu&*P zE}_=>+xOqM2UwYJ;w|!M0x0E zhpmR4xLbC8)|!~-QS9yHW~E{CX6rhgv3`6XmLZW0uo5l8DRl_R+&OFucjJ4nb^CV9 zK09s+09-Y8igg<|+1bpGY~b~S9NC6MkUAVoL0u}TPL{F(m}W7OMVAI>)FQGT7caGs z2J9-fbiG%u+7#;Pmgcqg$>02Sn;IIlb?ht-La+C=H?8;DAkMi_Z{r6?W+(A${YWM! zQ9T#20fWUck~&7qO3HE7Q(eaCAt5%7oU?vD5&9|Le@Ud673?ln-V_o=se}bUU3uCQ zM#38F?X#$zkdh0!T!q%{%Zt!ZiU4H+Nm7ppfFXbJ8YQDB^jSa-lSbA_2 z>lvw`xkvXilUUkxSTL6ZgG$vzSGehYX8QY6W(M&^`Ievgy+^~_10xkIyg zJQ{_#AFpEGybGs$ly9!5P@4bxakQh8aEV>&xBKQo_f^*dL2gy4INcKxWL6uWp0YH%$PBf` zB&$VZm29{(aEPa(+yYhQPHjLgCw-K3(g#TDkpowJd!SP_=jgj{U3(wJi*YKSALo_# z+NX4v6Wf~vCk7aPyBw^ot+H~iCRpWVQ5(cD)UM|Ep%|bjgM`$nf6A*Y!pc&I%ByeM zW$ad{B1!P;E7Jupg{eNuv5Kv&t+!E_R$6Kam@{ihGj_UF@{))tFTt}$(J+evE7I$u z#!nzxeNrCTA-Vu?c4MapQU598t4Um2l}~g;DtGOXMM_DOAg6*~lkQytT9Sgw9H19_ zo?ceP{~ccc1(tQ(RsbVwcTY98Do$bVso;9ipjzgK9D(`K^M0#2H;37>N-sQD3l_YY z)RJQs>cf%=+@*}S8i(0_d1JX)GiS$r=J|Bl7p}wOrOGrv&uqP3jUH|Pe!FMYOUV6Q zto;16{DS%QER=6<9(OEbepEiWdDqGoVM6Idk!n=4Q%8>5Wk6CMU85cF}r^3gpI)qVh~x z6`vG*xbv;IZ2(nt3A<*C*>Ev&y_@`(ZScZ*d>l?$jPlptdEds*U2v*f?VRn$t;+!R zcVit_@K>6(;nU|)K?kj#1!Hz#)YUuP*<;84?gv)M0@9ru%tnoiXU`y|9J1uOOT0Wd z!VNb%S|e+bI?-{Ju@M*y<94UqGPrd~pgs?<;U&!{i2Au~9EmCY)o$Y;yPnGcrBaPM zO%DATL%kiu&RM6H6f@32>;r>^}By-e|2%uu9Iy)j{i%Ok5pdcfNnn{+bc5e-8%QZyt%BKMDgog5=()Hgi0fFN?HcPdS`IJ&SOLK*~SKY`tc|27^}qZ!o0Ub<8zNZWFvs0gMCBR2QwJf8w-FX zIxJ2J?hk~$Mohtowqbksi#RVGgxUY;<*SI@LiXvV25YToqfHq*N}msFl@IVzIS;z# zD9r#pdIISTz%m0(2WM3W%u?kfF>oM~`=v96`Qx=Aw@RInCaPI#qSriX_bwenc1fPf zUh%mU7b|Ang$k>WXQ3U&>3367(mZmm)cyV^H+1)VH$U#5ZnQsNmN**9Ud)6DBQcwP z|AgH*&(Umk)i{9;yZI@1FCzek@>s^HO~X-q<}sf}&tI~UlV>g6w!y+1*E!Re;S*;p zgBz6+_)94OWBlj|_yr4NBvR5?6amU&$Ir5%q6^n2Lsp7JEs4vOE`VhXKKZKPuK_lV z^q)L!S=6CrwKZ1UH)6wYy@y#_+R9ke3A9YT@)kRB-^Y#3PRrDAs>cXrUOx)(<9uJ* zodo=J{q$8!0Vd^kMz)8ehmJY-G;!?hnou22p6|4NoGxeD*5k4zX(`;$L`fU`cmJe13l3Y3}FTxY=g#fG(Pzqe!0IyFXWSA$qfv=Ux@cKO5(@A-}|I zT7K;9T^FDU6B@w={k*^;VRs$6;84@v6A?*t!7tdvh>kY`d}`N-p>W9$GXM!>3yo41{n;G>&1TP>@+ zzE@tc^GL#W?rpWtKlh9U-g(Eqd+~xb16+Uc6Q8hNY*2dNdDq6fuN!;)7#Giiu7tWp zU%sni)bGF{4630jYG3};^VY=*|4+}HcVKV_{=;@`YIEawQS%*9&s9=oxG54mA9w4oP!Pnxh0<&c-E+=;B{ zd*t2V=u$v(1}GCD38zAcd#!Pm{gZLH`}?RzHen{vwq=u}qt&>3CT8e)<&=GSVQJ-D z)BU<;Dwr+nhR)sbnZ(@1Y@YckEBP&IH#MVRy(^)9C(8J(UHUk9W4Tyc@@eIdNPhg> z^0PD-&f}Hv(r5F}rQ6(S7XSc207*naRO24p`B5{!Z$;bBxRiY2|C%`wY&LzrQMOAP*;hG9n6R68wB5$#U0_#N!&wsJOjR3HpU!PAp~ zJ!uD=$sZEAGIlqISU``QKI2So1c++cZ4P z*=p0yQZz#GvmJJgI;uCeSuvn(`sgvMsO0!Oc%T-$Ntl%YY#8aQ*mw$mFH+0X6z86% zlpWkj+@7Jsa;7dJ#!)~s&HJQ*-OU1gL!6o=H!%`8L|ST`IzN({v?hyMbEe8}boAIX zYWYgk(3PM}hTg_6cGBJir=@U$N)1v=DxE~K*|cK|yQeeO^TI1u+S_m8CYjOb3DrL> z>_6IJp%HLkaN!AlX9mqpdH&1=YpY+E`gJGjSdH;o4h`?-=|T3w)Fk5c9&A4(jdD^Z z00NU(0E~TBuG9HDTwN(<0Q`bn$563OCS&&7yLQ@>yLZ`Id|ti!-utMZZ#d8t zMx6f~{_M81GX9NEe!{-@`Wqbg)90L8$C%&|n4)&F#sG~m@j_G@64RGOO0i2BbM9Gm z0QnjiTnAD{w#ONXFewbRH6u|ca5fYifH>4LQRZe$||pfzSX0~UBl`%sBkMPB@=9cQ(v9e>3YS*wDPO~AlQC|`upHO_TBRXM{`S6fGVk##~h%?>*G_L4L; zh8u?UFgv&Nj}^IA+ebP&>@t8;#^&c_Xe~o%7*{Df)TC}n=nlY`H=&|Vvdi!+D&;9& zN?+OcfbC>;tK@E^wTGbdL)`r&QL6~(J=(g~zOa8Ez%pz-(Et9KGj@vcnWWwT?RL*X zjzj4ldp1a31YPj%yApCiKw2j$$Y}f&hTucvNQmi+xSU>;g5{28UKzjat-f8kTVB(gTN~m zbZOe5Hn{v0RJT=s8r~)8mKNXDfIg3Tq2DE9 zaI_&2@yt$S+ow@VK{%wkDK6ujxFmnr-z7QXZ5;c?GJsf!%_Ajn*evMJ6Fz9`8rAVf zAH7#Z&5fX|#`~?;gX|hzZsJuYNL@khhchD)NY_1}wAAIYS1)d=vEgGUZ0c&SWxG+! z1D*w#r*rp5?tFB1u}Wz$)$QU4;2P;;JaOHwpEzN`@o8Mk0N~-*r3^rtMkW~>jVFWc zExKupTWssbeT0L|s_t5tt=rw1JJOEXI#y0TpGN-mN+~XzhI>Z&BQ!^dGg$_)MZsOC zIExc|3kbSNm;(ix-1CE;bvf`<&Y7LUtoROWEV%%PW!vA9@_=r`wh;897L7ztz*ZmkCpfD?tZ|w zw6s`>FS}56-~ovi7wHAGF#aZXno|_J^PSl>PYJd0UT7%Lag+7}>ee zVf$B<-@T#D{uqPq*M|pe17LX{s*+CuoO@u9FJo)-FF*S^2N zjO(9tU9taR|3kJ5{ zcxg)E%KZr1QRXSLXHFyLuhGH zrg@cy6*`wKjwS^8mhG@qq#od7t^!b8^~8ZO0E%Q1O&7=uZNW~#p`bD-hUTE)&r!=ZH((PL_?Cus;_*A z#P(92V%M-P!~w8133bl)k;7mdyV0WADfBLcMg7!IgGa z_gTSvki6@A^{;y-b+1<#?rL8dXFcd@zCL0qDS(l_731GnO%U&wVzj258{GUSw^p-S z`H2}cgd(;X1LLglgpI?wOl zZznEyS`RjFO{i&hv#YEEzj@bqpk6usfi6C`3CLpQRD2}w9)o#XtNgp$?pSTAAsH_#;;mq>>f%6W#$IX zUhD2j_2MV_-$ZlYd1>iMATo)hGQ;9P?9GK-#{B$V!s35(r5Dfiaq5yrU^RG!Ps6{h zORD&zkV!zGKtKJdG$+XoB7hBWp#`PRZxl!pFO>?@;WwD3(mlx#GmA0;B1#l5O~E7G zNhP^jRaOgXff#KZ6Oa?|b0A1Om$D@BoyV7nk+e+{R%RaV%4O0O{c(sW7a=C@X1(`Y z^-+c6Ndlg-!_&zeG81uXS(nBS+Mqrte~>z4&Z4T6>;=IuwOb%-7WBF|NUogPrrIT~ z)A*F~BZ(e8&0<>Gl*wb*Il}Woyc={E9BtQ30cQ1=SP|gL{nJ>GuHjTa{g2%5=%g0~ zSD)Ifd{A`lC(Qv^q_UwPGEjUQI*=|+imQWC%BUbZR3d(I*soznGg}~? zIgflMN`0*{QQI^QBBA{Q0D}o98qV$p(RmH4uZSdPOuQ>d_NHZ6BYg≀%F5 zFpSm|44~qSq9%yIDCBQYPEW%CNVd8;o101|_yix>(+NzL@EPduvw#1sZ`*q}dhO4C zib7*3`yHR`t0+zwsoC7hvf0cZy&T*0Gg5- zRPmqO7ySN&I%NUuPEqz3Sh`PNeOOT)`S*mkxjP?gn3aRNwuG+qJ{{NpE!F-jv^400TrK$OepW!GO9X39g;FE22nylGI7fTE+R z;si;*Tq=L0@|8(S0G>+~N~QfA)#ii&^aQ>w02G2}XE;9&Oa|AcjMA}1OaY(-=mLD$ zw&A3SQcMdtdb|WaPP>XUuGA+7{5qjT8)C|!Ar*Ow-ON+PnBi2h0fhQw4kWiZ8a<7r z52V#Lsd`Cp?RS0E4?fDRZ~axh0@+&7N?I4;qc*6|T2M=!t+uOQ0>5b_x|}iMh{~+T z0Y}CLe?8n2ZOlsBd3mR6i5r6z|r=?dJST)I-U(se=ei^;9i zL?TS68q~Df7-9e+P>}U;z<50XFiV~!7P|@5kvdCPDp!F?w>D$~%3iUAn_mp$3FB&j z6Ws0e$>X*Q>D=#q{p(JOwizE(W!P?L2cH<1T%@F!=-08admYf2!tQM!62rQt7NmT| z*h9jAkb1>2rk3aXL3Wy9RqRb>p8nEp~?$)Eg1_LbV`iVgdrXVi@&YAA(K|XLdfceuMqv4Oguk zVA|f$h~45P`_6?6_B>L`Uq;d=ulZ+?cwV~NZIgrjR_4Yg0GQ6&w_j!B%QX&CNBY=^ z{o*%JUrS~Fw>X>q6P;|p^>Vq7W1G5%nsC%5DS*#txmZ@X8}ngV4g8QY7n-BX9h*Bv z7z0Q1>B@-BAqKbj^2T;h-d07W%*R*VLr4AYhn zHqSa8BgICBaTda37dkA^d&84Om{)$ga#hcdL1qca%DqWz&Nw=s}z)XBChC7>z*7X*FKP4v6#GvU2 zX=gBmN3g-JL)%fz!h5Las+G!NH05OT*n73lnjYV4Yc_4*Jm0Vlp1Ww1xRue-mc>XG zW$)-q5~ZF^!n-FZm#(g~`iD1LIU8O^PvdX#axX{GacrKPV5|Mmcea1D(ScvS1;#u( zNVT6vGY;-seV`ua4vTn=sp6CDR?gyUu^cUsd#8y1qCt|nesqML!}ZlxzjwDaaxU^D z8(lho_P$l1r7FU7DX85sjK9WEs^KJ{aEgU|HjL{Tb{983(2kHHVX=$dHt;rXe>hIB zxUJdh=vSON;<&EK;6WnFJ0J^qmdaVTnwIm|yI1bwKK-L!dLOU9`Q2PL7`&OpEIFm= zS-96jL55SH(XOxj;h9@;P+hkh9F1HXGzm1J^Z?I<{Ir?Kn=jN98U4DA5PBp4ToZty z8%U{|QI~GUjZ6B-G26*ReR4hae$-N5gFin2VGJ-friluu5=SUzQU+lj?D=<0LMjXy z2jk?xK8;FPJCcJ)$Rauy()k#`K9BkZB$Hwmj)71=jOG$Fw&EUP7!WG8r@|zXHLaM{ zPo1soZUVqh3_#r#9mkmfj`Az0MY)_vPoN_HB9g&27``N##Zqgi<46~09!{=HQTfVW zmW+vA0^@)iSBAt}Im-FzA7i^%QBi5X_S~~>gUuiSavGr9f9<;2jegtSjtY3oX6t4A z-n(+euAv6b!oVb@)8>vW{<`F!YXqs`2^@rP2N1TS;%;xjQ8e~~4{%oLX>C-&c5yku zYcYRyL0zgZ_XsS9j4NKK0OVY_o#(y~-G$=(`W8yRRlHyRPPA9FZYunjN?epWJCRn0ka!b!IS$(YfCEA+ahXUlV(_+1RB{iyt`+ zFF}$B5gl8XW+99$P0A9qD4v%BNw>lPrg}~>NwNqWJm0}46c6lq(nLwk_zh2zMA6x{ zF*pK|aTeF|)S$5vO-aC<{T^R#>cQYOpSAE#(6;J_I4%z}m#(+oae&G2hnfY*R^ke* z<@u*^G#$47e;Bhs|A1xX+J$q98$Nr$ni`w2u`b~hjwC+%T5J?|G$Sv)?KC>tG!sHv zrWPj|gEVe(f*YD`%|m-}ij8U(H&}Iz>nz;aZR2MyxZT%MXFIns@MEc>C56l~P8mQb zqvHUYRP5S_qeZHEp`Fu8a3jMwB=H?P#k#v}bGx--Ce(lRs*Rrcz*3!~fby)B9eC7g zwr#R<&TtN}PA_S$w+%a5Z0g+;mbic~L2SvjaYXoD=f|fJmxi$WuEBP^l6O`j6Gz}s z$}xHCExdD+4ZeRI5Itcv>i~og?zL;@FWAI;M=grrgGK=e1&Vnua_z>RalijV;hrw< zEyO4>W(y9Q((b3QSYMaYPfhmQ4L%KjY(-K`N;V@dE|;*Js$@Hok>M??%Pu5n9jI-q z0dVWEb=z1GwU(9^dy)+n^#H#Tm|qk%@+4~A;i(B52S8~DS5-NyVs;HDLJC=^50 zgfAiQI=tsU`Q%gX49!3Mzy5DKdcDv74*IS^L+%=Dh0b0oIXJCD4(il5Np&eHa=5)qyy!v$%FJYzw=)yB*Ws zwq>hb1?;`w(P8KK25DLy3_3x(&tAM}fB5~sx5s6BSy9DNSCyPYny_n(-#>Zw8QX+3 z@qhl$|H=OCy9ce5@h+uY0I=Bvjnkq9vs_Ma_nHn1BWoOjl9YH)!*a+hJdu}2<+gJB z&vzjrO4EH^N?0i0a%e16&uY+Ei1x?vOBez7zWAVkiG$k`r6y<(D5@CkdzG`;f`bru%KnpC^d5k^=Sqv zl@_DLETBsp>MX#&|lCUNZ&uZY0EZ(;|DFy$qmPXs~*nV64#KWAPM7!R_Pa&QK z68O{$)4zRR{vw_gQaGjVv@DDGP0u}PBb)<#{M0!M=tL1t84&=AgQ{YTL2=t!Yudlp zwmkiWbzQtRbW(Rj;LrhV z##d5KZ-=$U0#!VKI|1KIHrHA?ZoFEbd;)hnQ5)~OW>bK)6sNH4eELai+_T+=hOgVX zHxC20H`?weAGa&?``S1@9M50EAvh9Un4c2}a9z7|yR{#9+#*Q-4uAhA*0gDpwd~uD zfMcH>Li5!1ufJu1Z#LUDv^a4l^Y~f(Oyc)Ya9u4E81$u<{Pg&$EUkf0qf=wU4{@nBSJNWC`&Ss1#t5iws+SnL^ zR|IfO$ch0>b^I1%nFjC$`9xB9(qlOv$L_Bg3EqS2*IMSQU$J#;(r9FNayf$`wKm)U zrT}whmEDFk@V7qooLz_UMblGO!xou#BmmR2`7_um?qz4Pn0FKq`v5z7i|}n##tUNm zx;FcZZ+yc#0cCPwBco}px=Pr5>o@=DKeK;^>RnQS9yYO@hN-hM7UjhN^zO}oGy96KdbS4E=YWd35&HsX-f@meiX>R92yJN zwHh=QqWy9F5=J0*U-eXbYGOc0fqPw;k`_(8_L05^ib~x}KaCo3gp(<{4xO~|XSK+Za4kz;WGE4_g`h=E_gsu<^IfS@|zLX6v4Q%qrOUHciueCCr@w|A#qeC;hO;k}@vItja`$WdN zk8q012bb*9nGQ>nXY1n+J1{$OfMfk|@IBan9f>0w44-(^hF*LPKak$DA&rpy#pK(my|K|5|*%5dbDf$I_3A zeaPlS&_DwFh3=5w6}N)pagexOfb1|{>fbqan#~^}?AmH=0#UpsS`vq)_?2fOV=ssl z>*+mvtc=YVCof!NS8uhAQ+|rPU2MXT1MCZ3-FAcT3`|pb>HvOeR@dXGe$QX+u`7XI z8-|vgT%Vg5w>OZook6vMYb_h2ap!5rnl4lUFaxcpuX9AwIlSW+v+^9mE<|d9PVyhb z*Wd;68VqlgCI4aU_Zk460;5A}Pxn>Fpx5COLPxmiOy$e8aU5WHj`o)V$i`zad+Y33 zD`od_jPwcUBmi?msC>11?mFp)#NaAG^L19qMbw>w_Uq8TN*{1&WyfLoFXDi83zAex z5qc?q7Ikrjq<%2_G1S99p{-#U^&ImnP<^i1`7{f( zD?d5^dZG3%6rW$#zb@DY67Llnemhs=do}vHP&<}0UdyH7Jra7pb*1mT;402NG=364 z-7MlaFv;2Gx!ns{HbzA7V~YJ?vURP6b*Aoy4K~SX9trH0VMi7M+%-J&l&#sZ9UC+J zj7pjYKUn|OU$m=l{LDsPJ7^`CkW{dtEDD$!ViB9-6pqFx9<$KEfZh0qA6xq~Pg?!j zR!fggvJoz5&AwqQx@f<4tl8Jeehtkr}KtuMB*T46cm7Y3i>Ft{=H5RuhC%}|o%b8(8&A_<( zDtk+r2t}~nl&iF1oP8&*-msBZj@T5E&|olPC3vlfZsHz{P1p$Uo0bQ5SqNTy?ZuZI zPY-6bMTW8C;~Jyyk7!sn7}PiwVkWD>1U`&=a5vhSKVB=Te?Azj003;k|K8gluu6gf z$lp_pm5sLJJHdB;h4TkhjL|j10~S)rHkMb~pRywSQ=RSD++xqOx@@W-eo{`1=hjq{Q?qY|J8bNK77Ui)iSn*uTw^yes`vWK0< z&DgrE0RRt3P0P8W{}V?l6|)+zg&B9j7=QnrL$(cLgQ{OiJ640nhtc&r(axoe*RAptO!w!M?g`KNe17QW6KM|kY4GOFDS@XjrXL|Z zCFrFefG0%(9*x_#qP?iIa6>H{79Oxkj-|YD^te`3fS(Gh1}K)}Vc?RadMsueQAKXv z{~(gV>lSX7Kwj||%S#~-l(c8WLfm1ju(HUcio zNxO3Cy!CM$UDKwm*1UbYmEbRR8eThc=nR`zYH)@vLmv18YUeVJ$Q*`uO?F;oVNQU5 zjiMnL>$+?mXcyM~D{Q-IhwQhr@ZT`fzcP4UkoE*wbhAw4?Br55W{g<{{H>aI$CP*o zXTR%6Jt=ZSp%MpDgt4)X`M6s!P%E7EB&y#Hd1dkD8= z+CVb7vkj1mYQ2(iWJj_*TZC#c+c`U6u?v?iy#FB!04fvg+9`qg$^!>n+VM?2W_gdA zM*AZbRs;q$LIo%7Jv?-`+uplfer9NScx9uvV{NnB-70%KJ;6?PL?Z>H#0&LVC^!eC zB#IU20hk2DRKOsGWlGr9dls;Ekx3tdnPg$0Z(h7)M*u^zO&MZ$TQw`-X(U{S0c3LE ztg=I+BiLim3Z!@uB#aRxYnOYbts8(cO&hCe7(C9dLqCCPw+e<^dV^iWOy&f3G?I9g z10usi2^Q~wG3Z7jMK*?4$@DQtaN$RKzOB{=0pK^m8$^9@b`S+76 znttfMhb^RR8K=3fzz?Aerbm(LiJ{2je;pfEbav+eV<6A|a<3!hyWAUiY(a*~c&x`kjsQYA>rCnm|cQQlqFfwlSF*9n#-Sshe_54> zm&DGVw`+%vTFstaw)+=(o2e`Qj^VZdix(t&WB8q@DWC-&qA`{@&>6bG&Ht zflpXv(;6E?BBqTg&QU&U=?Z6l!_lC`#YeFP1TY2QkyEItrKYXK#3T$;bqhY)6_jIT z7R@@B7pMf#31LSK=s|@l;G zcQv*}yf?}i_kq{nv6e4=-r5mZ6!X3+E3L9B>?7kLq?qi^5wF)Kmn7OKojMa_d;&;@ zv+0-vm16hq5o1vF?Q>c#@5|u&TA*i=CcD5mf9PSUjA*3|yAyr8(`~+0Uj+i9Ow49h zN+sCh8LLulevrEq!2$h~R7fy_dFVal^N1>5LAP9zB$+R3f@=~a07W|P$E8wN5MU>t zPllbK13wrHhq0*{6_em2uA-wk#W4IZ4WpWbj&_u}h6pt2qrha98-g$u#{qiU2`3vA z^-Gek7&OJ8WC$5&;!leXOwh4=;@r2GBLB3JMb1Q>A+a7{K%Xjji)~lSndasp&s3E~6JOcBS3d+Q>oy2evbmS9euJW0>Q{t`xD}w-Q`p zE?Qqo(#MUJ5_5UE$`4*K{!$;9*EtAxI~3I?iYU$%WqewZY}R4hgg*(FAD#($?qp%o z`PIz1_Pefc4drrzUv|0WmQ%-4^7`#qNgtL%|8C^*`?Q>~y`TDj)0p34?#$1xv5+?c zEim1tIrv!`Dcm?(h90DIiLM@Y&qnPkrY4)7c*54~++pL`@l9XpvGQ#jZ7mxeB;^{t zhL!<7Sju8pr;Q}warjH{<{URiN4f>DsheO?T1%a^n5~R=b=y?mfF(E|x0sD9A#CK* zaU@_Tanv7?-883qz*j?n%TSa>B@4^6+NYb%+ztU+$Cwd@X=BLM~l`n6hNh zEWkM(o5^AmsdJ4}0;TX(N$|8_oo1tm&Loat=HoyjJhE8y=u1Kx8II^nO>z=5cF<|; z`Z56IX@OmMY?$;S@@aRlc2`GX&_yt3EtaRDUB|BF+RdA-0o(BuzE|b8W|}dmMD3mh zli+W zzS4f3rYG=N%zZ7UO?_u^n^SktDtp(v(^7`J`)v~7-qOUm$J7_Zj#J~5V55$9L+g~P z0AN+uu8C?4W5nN&L|BNu&qxN{cr29b4h+%H)4;Fx*xW8X!J2YJ<_~Xd=gi${Y}Zi1 zvcpVvgPI_Mg#vgpb8(UThk$M-Xv#|Z<@|UlR=kcc-)2pdP_tN|O=&@xn+J%P)G$Zw zwv)qDK{ai@n3-Mfxl&;+WVB0R`8w1l5YbYy2Vx*fQ2QN=lLP=pBtk9)63XjbslY&- zWQ`QExjgPK^{b6q0h5K2Ibbw{+`M*VS%pj8At{48Bc-{@xw4e={3xnCt5)(x1VmxN z4xFl@+)GK+T%hcX`bv!~6bi-r1m>kVB|aU1ZMl9rTR;J7^$(`n#!F)x62U4Y2w3G1 za!UcVown${s>?q4Le25x)a{@5Fux1xlkWfh67IMDe3G06lRwZ}j8* zedq+-#9K&YONSmuz;BCk+uAE zr78q8EIym`xCSz?p$Q*D`GKS1i#h!y>5onKkqzZBzv?oftE(|KU;#o)-Ck_ zybzuunsHBqn;Gm6Ge{SU*5Y7aHj{wIcnM}k^fAH4zw)|j8(vdqgQb_PdTSdX5OxE& zOp;!fK+1-+QH$dg{I6!q7OQJ-w_!HSjLQ!!AghE$xB4Iet3|!s`pDD;w(lf#dS?Vt zK}$O8Bmzk8G*897)UPlbJQ6Hyuf2B2M(Ib{j!h0+j$<;UdlqIKg4kpSqLuUmvmQ3b zl(e$x2fNMDbC)cRZRbdLw*}YK+q&#-RLH{?@4XJNrd@Oc=v8NEYL}b)5Fg>U4s91;6Oaw7J#Z$~ueN)Yd2R9NP*(IvlQ(?P zVO>r})eI1HUC~*lNFo_`BKhyNlT0%~Aa$Y7OeX)rF(C+vn8rY#+(V&QaY*@XjFK(` zaWC+#YGLMWFt+D7@=vxr0@T`Fr=gR}1uxXkMI?Xi&!YpjUPA+>BGne4{{LEn(2vDK3!WHHlAU%^lcvEmX&4!@Jl3bQflpSz5gsBZ&BHjsmWC(H@u88&_t->x3y!Os>36`n zjG1DiMd`N9R>dyiFk_HeTg`dy*KG=0>sroMkF>9~m~8JJ-iu%Vl#L-3jj{1A1~8ol z%*pdZ5EXT$HVC3IIr5_)+R+zYvJw2nMzHs@fPfZKM*1QkD_*HPAnlcW$7VTVB%nMJ z>(M8==hW>Pd?app{#o1kr7u{lrkowreHN{)x2Cps8^aI{U}`N6C%l zZ9k#+ECIi(3n7CU$)I|md8YCBI4ofVG_rSLtUSRNAOLDWmA?UJn>*Jw*?G3;+xhbr z13K*&=ctca$eex?3C{eufI5UwP zuv45Dyo&W(n9ND`W)o*fscu*bZUsD$C>6G7D_)>b7BP~1s(fB?etAK(Wsg!$bvoKe z`2>&!4E0aHwMv)mpD-i*$$dm$Wxamr_2KnJG`x~T5Y#P=!E%BR^zzGiqmdtze=QaY z)6`#>sKlSDvYbAQ!;CksskL8za3|+Cqh4ZlEH#l+)hm-2ZjK4(Q@j(`?%liy;g5OB zB7^hun55@x@dx(~_ez!Pv-An5d0)hYm1ZM3j!PIoQ_I$^R@cfdQ~rfm;Dzu!Fv>=c zfnz7ErmN4!0YSC(jn=lClQ6!y*~YQc%QDXX*nEHg$JX@V1NNDJ{!fv#p_+x(bv#D&zWY8qZhNfmOJB5>oja`zpeLDR?AR&0 z!6_aU<)5^jPd;p0o_(BmO2{sspv+qbt*WTl*&l{sjzs{#(eyN9a@Cr#(|h)Je;a_8 zutB7u!z4iXZ&(Tdu6hPfoV54{7pzRXgHgG+9C*q`Q1y3{zw_WbR?H@xragP@*?;+a z@cy)o_1&;zKllerUGBDU6B1BpN7xZ9AedlBa*;NVAhs+5Aj^h+IhvGQr|!G2Ibe`E z^PvRQbE}ughtiPSsN};MtDBn0gDZ%nBaG^pypLkD@o(5R|A%k?j09F*3~U0%=RgGG zEYKn#qZlq7kjba1TRtDyxH#(2w{uw|=A?Z32YmsinINKhLHWEWU3u5aKQEh069^Nq z%1_j|Dqd_v48+w(gjSFGt>Eknxm2D)bk!fx^;On>{Q`d~p}&d~15lXxox2uY0YL?& z2^{Lm8$qv5(f7vIC9dipwMzh4DjBKVbq`#v49+-eoo}F?`8*C{*WzPL&bs0C%qLps zH%M*M$1Am}ZM#>A z7x5Z*raI2%oLiF2blL`wp0rVH){0Phrjgc7vO9LD2s=KUPNy-&N%UQ}30!6cA}qEC zQCZ%Qw}ZnrcCo`s09#2m#Eo`#*$BSyiX@@K-(Eke;|e5MfFRgXEkhh2-?v|R@z z6=5@6gtSlg*deqnfx!_Q`Qgj>E~K5%8^^2|TS%0wHZ?wOqu84lp>mC| zi+H+g$fiopSr=;B@^rfubGk~rZ`%3}AF~Ng@u*}^>TLU~v?q381XWu{Nb})S0yeV%yXo^+tnc(0%d(NN7yzGO z90o65uz?@{)M_zsOaSzg(Q<3X9yEsi;ONzE%zkw4GDGdZEcBevMm;TVc)2PRZsw`8 zG5&i-<$N0Mam^9(;|kIJFyivtQm8)6rqGKK?%YK82Do75B+YI-SgffF)9~mPPIvcq z$$cwKL-a+*AD{edukPjly)7EF1&as%pmyaUm+JBaqVPZZ>5KL@ey6UoYf4fifklm| z9#AnufdzpqnQACr*Lq|n(DyNfiz3m3OZrw`@0b31zrFGoZxd1L2|t$^G7@;;r#zC}yrH1;B_I(G4) zKW|@r{88Iph7mhVO)^aPk&zB%bRMYG{<_zmWEX;q1phYrS=`w9KbG+Am-ou4LsWbh zg5M5R?OJemnz6*5Yn&7oZ{(al-ITTPSgXwJy;!`C*}SeX1^z6horT-s5nC*+Ky`(p z=(jdcTzKgvJO2lNX!W?&61?*sciFLtQ>Y%lt#gTJ@#vj~fsZ>p4@_cf7DPQzkziiK zMy8MsC7CS6(J;V><0}C#+TfO*OtK+@{3S)4=ZjY7+Z9I|FYPM;3wu9QVMw{i|G=O)4rjl|bRKQhu8qkft!6R{L zmBDpamLt_RJ@L2&+5B+k|NL_#oH~(-I@A_ctYa(=wNs-8zo*(M>qY_cdaF;x61dA^ zIZ1m$Ax=I*#ajX(*70+RjT@}Et<7rjD?4)Rq$Q7EKw?*BH)12yowgG6xjH5< zlrLp99!K4y`b(%!?~@U1`zGm&Hkm}IE5w+j89!}csQ}oP0ZiSgE3R*%rv)x%J+v*( z3ibw)%p!IrSA~jkB?e%GZ^apbDK^PWF>YZxsB@G<#oP~hZGcHm0g^|M4nFnu|ANgS zF+2S4{}&EMsKV(qz7GNM?$|%qXS6~1EUZoz*%%vEQcv%(J-_l*8|di79`S8UqZTh? zm$kp6S_=f7)hw>=Ol{^qLhhHBs&}XNZu26ERonUKdDQsJOvismsEj`DzPJK+`j7Xl ztG@Xm&2w)&Qxy^}rz0!fZ9U793IX_E! z+L%~Ur*6f^(trKA&soWfFWR4@qA+|-1ptXY$a6rDACh*dm}ff6g?mih9CHt=VicrO zQCFHV}770|KcI0s1 z|IglgKuLOCcYe3Jx~p^dOo!>|$q_S1g8>E^1OXBx!61&kc2~Cc*xqw=*50FC z`}mwS<#o_T9m^}(yT{s<%vCsAi6SKikPrzX5kwq>8DN0PId)IyP~BbK{{8Q(uj;Gn zs;=rVm?1siOxO2)FWh(E`(C*3-uv$Lveb5hk*ge!g3DO+OE^V1Xr~wO3wMP_ZJ@-O z?1Y~gfjIA?F?=2* zN`|BAu&LJ$@#bTN`BS7<129`0NEn6U7HJNvX+|^(LBUyl-ho57;^d>(#~FF+uwf^Z zM4Y7{_>@n7egKUznS?W_vScv64wq^vsdJ#~q7%7t8sLNj6M=|8m7%;Ep%q}jO_c)*{eT={SB z>0E=ktwy_o*mw@({m{$O+`Oj@NQcqul6vx4o7HBj`KJ+ac zf|(uCbwhM&BbuSD((Fd1zg;T?RRV;zwA&Nl*4>B>pSLMfo6lIPJg!Qy7h6xgYA9Rn zqZwZ{k{+ZywQPaQH~8%HmWI38o!$1Y z-g+C|m@!5v{&$I+JQ0+Mv$3e!;Z7Tu%rv!J8kP$rG7vNQpyp)~PH zgrh+zvk;>h$W(M(WIE`z_q!PjlUXHfX*}K>k#LPnp zD~?>KSI`;u0O31^USlI+HO#3xP$)uB@Kp!* zPptBkU4ZxrYe~RF>FcSRaLw=`rv1?pa|94L_O(R80{_NQ)5{V?g`V8Fw>U3l~oF zhNwN2Cn8b=pc8?-&k(3GJWjQ6pn@&0F2W#iQN{7on+VUGejp)9GAobJ6%756g_Oc4 z{3%Qua)o()vJEF(^ruVZV21(`Hr}Jg`Z4qk5QxJpTg1~iK%S(d=s74{1vA%6sx;vK;;!aDnDQy>X&~Z zslO=Cjdv}X81%Nt)+c&ik->fq+sOM^^p&bCXDNA#K}YRV9A52vL4NSpWTQ*&g2G-F zJrYC*t?ZiafpFN_-EFVqBCg}@w{4gcWGVD1#u!v$#mlqf6cj_yObJ~x*I9W8UE9HD zf3hLmLaFf-8Vupmm<`Y6V35vXC{=(Ia%LgK@`v!^U(f7;VPeka^N>6qfsl&F#o)vm zGLAt20Sp48oM{#eP0E;k<>Yb=_Qk@4EfM?OM?|vRO_VK7>)%kKVG|ejah~CKS7ean-bL6;AH)$^7;+n7Tk;=b!Vo?( zu_eN<9^JhJW>SPhEqa79&6NUx9_{pE^%t?09?X%Fb;ZtZ~%KylUSH% z_-27e@O&uIk^NfEHx|I<2+yDNeK(v0r%XF>A$; ztrX^`5HY)`2^}RZHM&B-SDE3xRNwN1{3!0j7$+-%!$P<&6c^Q1_m#pU4s$8b3*oU8 zc#FwXZCfn_vl5IY#m5Gjd=oFaV=|{X5dh-e`x$Q>&#+O<%#4j;JCIYTt1+~!&6s;E zVu04LiaSxZP-U}mBIGn}iog_SNG}>;GJiFO8#&nuZ0^KG8;$`c#;0xcLZ7wavaJQK zoQ{6U6Ve=qD5jWOhK4z%%$RNDv~fKgJP|;3%tOLoUQR@I=~w0XooCfaSLDelY9HaR zG@?dEIj}LsiRQ#89zxbpSDCAl6oR&J4k^UqG;4?4iZ(OPt!C~K;2{okjE>-|_{xae zPfTEYv2itio27#X{0t0;X%6KK^bOcF>xwvU3H&g(VB@e6-|PvAp!JWm!c*8!A@T4- zA{Q=O%{ZHECem8Gk2GyqjUFOmUx-Z^@~)F>D|HyYmDhtu&~>6p=U&wYx>QSlBu>ed zCIoN?RvK92m<5_Xk8UJ&Zv=M{n=+m~!b#@Qi+!wxDGsZ!nO@b5ZNpX&0$(S3MY;yS zI_<2(j3aEmr>?SEjPTt!tkSR++lS0Jl1=&uCUNTd#!alrwf^0}8^lD9M`B|D zUzf|jN3MbLC@h*7^ly{TU+|<4qVI5{U#dej3!QhcWmHCGEYx0$0UhD%!&~_4V=@}T zAft!zN?-L4Ad>^#48$6gaHp|P)x&`9fm?X*MmjMku4b7S=CtL~rF+Nml*$-^+K~j>h&}jKdDLeTt(1I$*^XLnD zUfDm>PC8>vEK2PVdEF3#U5JEm3=q=tJ!hFzYend@d^Dq|-m+z@{rX2H?T+^j*>4|s z&t8U8*vkU)@ZEcDJ?@}tnampKeBwTY@2X!fT^KBQtyG^~u#jxzN{tcW9F37`%DtK9 z#%+OxzGdJHR@aZC8j48EpOj?0K?J2a_1g8=leUgcvre`S{Pi=gi%FH~#-xLHv*QY;f&2ad~-+adgPoJ~oojYvPmv-1BF6lC- zE<#MOX=4JJhG4AQy3sc8c+ka~ljkp48Z$L=2P)mV=yFm})i2Qm+GKi^BMk1`^(e#C z4cMbywQY+VqVC5oUj_oG0e|gIctPQ$MbzQmbo~>bas9f9SKf9JapUdSW8AULI#@sE zWHfqw+{W=meD#$#y?zaCE!MbhqpkXdy_j`bO?~j4%t_sWgCE$)`=_j}wb9!|>y(Ho ziQUJ?k+p1JZ`(fqNo&BwPZBQWG@e2R@#{Q|sU3NSN{W*S^6?o}b#c+Hz6+6h_X;Z= z?>?Urpl_#1St;bDWe#K0t=sRkReNs5OUY3ied#R@@r3np4fYf_@7(4GNerXkZ z-`H=4`Joi^x(M%xORQ!3M!XhH4EhHu(GgWSHQGeCZq1GT);2PIy5FLsvbwdkMF?f7d&?_^aMyFo0*Ge_OLs%Qc2>Q`gS>O03z*ulwh zYhaPsv3`R+iVHZ2HpE4!*DA0AmnQMt1R)|_97z@lS?gDfzH?%Zp-Pl?rXu895R-iT zw%vF_Xs{8|9C+_N`>($C7xop1{m(!CQR`unmO<58(kf3Fobld65U-`GP%d29T#Kt* zc?z%gDwnogc(rhqZY5wWro5YJi&`Mt4}7#~#m`e;MF~s4ia2n+exgN;$O^y|ZsIn5 z z9HOpWJFR=mW;=cUvYmPN16#XutKIs>;uTktw(;Mbg`cXVQs-CXUo{ zDd#_U-zGmeX$?J`bPmY7uJRn^?|kGz8^E^Vp=VyUL|40Q+;^w-?%88axUPew#>F07 zz;mbV3?4~F29Mghb!%+hgZEk21NT}A3kR9>xJ`3d;}GRuc>lDu`TPYg**5ax*tB-w zJ?XZ`9<{`(4wx9V5QBqu3hBrd4uwnuyB?w{0fFj`ORd!QG?^;R=NDg3Eg}LC;!k(p zG|h>JD1A&9A(L)`r}mxOZR4X4f#*GTtg+Dso_)hI*emS4>vrqKL{~fCXpZ%=mebq) zCr;W`d2l&(%4&zl;L=JQ9nhGOi5`5xZ^RdK2VPH%=NfRIL?!DA5}Z>5&w|gK^-|vI zTX)&zOBZoFc-8aklQ>gbhzj)^@LDu6s5)p&6fYtQ`$@PKi|1m~muiDj?NusWJj|Oj z+otihR!|%#pBotp8XVGn&+IF;D0_8lS*&J(Cm;Trjei z!;4;u!<4vGf}-?#%_WTQ3iY@8*~x$#3Pz)}fyEKI1RfGZ_1`DIYBkq78GcCY&|jN5@h*l#g0 z4ZgPD{^wU;w{h%mJ^9E(c31B@L^VvROmr$;A_@_PnlwFtvbC6%y2=EXN_ySHRsz>} z_ls9(F|bR*pm|HTaJ-cKb4eKa=oNV?SH@!MS`Lv)FqRab9YbnI>AlHp3nQf*3Wed` z{+bpT3AlnFBJD)7a{puyKqx z3xx!B^<==g6@$zTj4Rn3OtbkCS5Nam5~+biu_-uRO{7V-x7ev4Ja1><;*mtY+mmeeC5n_QItgWKft?|)4jgMmR5fD%k2;8$RIAN`U(mTj_YZF0 z45H5ZE(~L{(VgQU+6Z&d1mRn7ce-xxtu~p=;9l=PAyOZ=yFT%#t;hfJ)(7_4DG0da zj;+@7@Pl^p_z^qxz4xsSdx!Ub{A1R8%PyO}@1jk;cg*LTgzKrZ_8_HN`^dex>D$SA zRb#Jx=P4V%I&3>2$kyL=r~7F>@zz1BU)SS=m~(=u{|r>**f_?(Y5ykLa~x|K>PxM( zxm>dX%86bPx8k&l3pqvGq|aTk)qn49Cs=1W@iN7FlWA|l2Xeb@{`}``99xIa{r-P+ zH+FY?H~p~Qd<@ZB^{@C^ z5-}(s`Vi5&S80G37ka(kuP2`I_F8QH<9K_U)2nh}^esK>#Gw|(3CDuG0gYH$vAn*!B`UgSK?%29wnFeRIPr)W%m_xV z1r#tpK371lpja9v-Y)cC?(SVM^9x(SDk$k@$kBqR{OKp z-mri9`WrS$(PMk=w7qa8)`N2r8HYHUS}a5w3W660*c;(ee^K3{tDyfxfs4E^7DfRM z;1m0LRhJxxvDosXLgFx@u$8{Yaf?5fE2mPLO7VhQDNWh<_=lj6xX3XcRt{;Eskt)y zC3UD_c5uuZc5bm|M0w-b>>E9f&s%f{*X-NP9g`(Le#dIJHbVG}S@ZU-wh``8YS#`Y zsxs&oj^Ghv;I+4G?CtmQ($QooM2zb&;@gHH>}fVKM3K*p}&a>SM1_* zFTvI8wNCViGZ1`32j9VK2OPs~+ib%ZK4+5y12%&9jm*^%+x#n^g~07{q9_ITZ5UT< zSKfFVAHV0VmHD+s8%?GSE&6l7(tIG1>B&rTRn!UN6(z2&fmAzUE6IKo#s}oAoSd` z*G{~Dlro@ynQdw*Ym$?_ZQD1aL%G`e$uoUGT*?zR1mU`swr<(H9>TQK2`9P9bHbl? zs$bI$A$GSluU}_#5Z?*#8$+}_@G7F^GZztGk9pl1vK#qvzSU4ii{0`Y{~a95)piDt zB)xnqEFe1mwQX$>dhIrFe#}mN|5)5u{E@QD_0O?E`#!5yaVz`9O z=t_3d7qC@sL$X)+%u6-}A-WBp$Sr*TRd56YA%D(BH*K_@yY67~ov=%9e_*NZRn%WZ zsygrj9ri!&=F zoSbvO=I4z<90utMk`}x~DY?hPv(KJiKfK4IW4S6mMled&A(z`zl`KdElMJ@@B8L6s z-n}Rw&)9FH({k{omu)M`(J6MoT^K(Vf)Wh`T1~&gI9h&ypCfX!H7QY{fQ3kRrC0U< zPrLXixr514OMy>;P7PcJDO$InU$cA78lU8nQVZbk-#`?eLDBikGt>4kyYRIv4)v@A z+Bs{d>z#mdLfI5_16>P$vulf}%2xA4?Y@-KA{a}_8|7IE7!j-+;l5JeRGcDhV;1v$ zSc82SLW|h+Fy1ln=`POH@CD3`AQr6Q@WT3^L4OTGV_J6I5&dQ0?6vN@!+Q7KV;MM6 z{yjQpZPk|bHp95Oa^j55vB0l|Q`Qa#UgE;JiE(RLyT(#*>L)Q}GWhmETMhBhy<@vw zI(ODqLx{A<;5Fm65fzjcM3rgu^d{g|N?hGe-bskDL|Y?=7`iO8aWf*_qgDffvKm68 z0Rn5X|FWh3=&!8>k?%UVbA3mT*%${gns@HBo;z+szq!GN5ji)tiAY-orw_5{cfRWc zS(u|B%Gl`UPvNpb98Fu}Msx}x($2p0ip{)#%vvD8(uhkhKKnXi>oIG=-f8XLovtpE zfk>LXiVHb7lud9}{QwL^Y4cl`tc5nbdIs_EU3;y4^Cs6jOfpC5^scy<8AQR2_z|w7 z{sa5pwsw3f*Y=HC8qu;2o}}=Q(Lg)YQ1%Rm;HD`{9M@IYQ|;IeAq@dHLRoF3X@j#{ z&!LYC6E9f$7zb~_N1jBc(r^;Han*VI4!-jaJCDfs)T=+XwHr4%LFQ&)An=^fq*3Z{ z>)C)Om|4o3g@akY8p4e-!(2&E<9`j@(^}HXP2h|OY5rQ9-~@}~NuR9Ya9_tdJmd6q z+0^mVHneer?O>BIJTPc!JfNtrILDH~sQ!2(UOEuu9epXtEq8z~r|fF+jmlUKt`Q8C z8Go)8hbUcy!%D!2U>4pNGes8WjNT#~qxYrUmkYydvCOJe52JKJT5_~_G_Z?*kX`sC zI0C=Tj=UTF!T%HErT+-=%M-WV?t{n4I4Z60s#!OXf*M$wek))3_R8Xtoh;^K77NLa zTZu>JbijmC*RilXjQ`Dc4xpp}`p56T&uK*bpMuzvEJz#S9Lmm^D8N}}MCq7nl6Jha zXy$RLjCVZ6a{6=xXQ^dJ`E_53x~v2qD+OaE+BM!j#n0CozRFvPw#ea4e_fQAn2cUW z?lUahlenDgfXmbYC+E`PBXDgFaJXPA8#*>iO{=Va*E+5E*1mm{b=7;} ztz$!43x_PJLiv7mn8vC@RIh`KNjQZyX^1d&5(v2jT*m|^U=rwYrYKjg@#H+A4RQ1! zbMT4p{k2^@amu#bd$;X==poz8MtvBfdusm(VsQ?1AOgRN39h!=_Slw(?z0g%zZc(q zk3&PqMBuhMfk&ActS^W#ZAL8Ki+K7x9L)6)!!2-N<@#`1#3Eb#Ch0A5)zC&$h<^u< z9k&it3fdt2GCdvEx@ob{K)=~H*ow8ZsS8k_9=+h+gV(a=sqP78~fQK z$5CiWtBUCl7>k_?g!7GX-6(ie-xm6cl`qw6G2djd=__LpQd}#z)s~;df=(Y6*6Q+U z3?m|?sb@Gn(zNe3YesBaBa=}OGWBrXT3X~%uEy4)QZf0tkK5VrK5Jcg`(ZV={>$fW z90Semr}`|h|2;bhAu)j-S`CCuXD?z$Op>ha?zIPh_A|b~Hty=hOiGJ26EEFFIf>E+ ztbw^<4*kFx2oSkS6A{z|5i|(_dHTe08{s7GYV;WI|D`Wk!mOJz z@E-cvFWAIqCS5gP1krQD+FrNwDh_TP1gtjqNpv+QFXP4J)%{jWd#<63kN*0v*#HE8 zJrbfBBu8E!@JOI*I*V>(LNa;kD%BjS9Y2}wY;uPdtFP6Z^AC!0)>4umnIu5eHR_vSdVDeKzE7{qNC`+arAQHvAj1H0HVCEX3@`G2ka0^?LXwiPFq(8B1&uu zz-^j@2%8ulwid*O7Z6E`SZ(fyAQ&0N9F!~x%EvEiClD8!BV>C|bBYdbWFSt&nQX@# zR1+#GbBxn5Hf~LrrD;Ygk;Jkkn^9M_h2|vTlA(Ox{%QVbfItH`Dc$*80A4e^ z4q^Xr)t5eM>(J$Ef&(^yjoS0CzhnLX?wg#@MFgFkc8+EZMDr9I;!#BK&2ZIps6zG; zC&2>{*j7aLF3un#UFS&3RVq4tjS%9)nD`loIF_zt0x@ld!*5d@C`oBpco+wMn8P}E z?!cFFJ#|al42L-eA=+xF)2ilH--9RF*~%r{6vSXNI)`nTeQ5#yI*7oIwl&rTM{}kL zs~Wd#w#}dUxSfZfoqYGOT?MDft%#4=@z20foThyw7SHfJ1sOL6Zqoz!gKmdVMkjO} zlRte&4(s@yC6KgSMb)5vJ-VKaH8y&=&ob0a?cvJ+oKBhJQ4`AsumaV-;XC-pxK2N% z=bRidD6Fa;81lDV z%Z~KEEn8gC`{dwN`#L+=fArEzcJ%TU`$tcH%GR?0Vj|Ud<}yhUcI48diQ`uA5|8lb z(&J1~!Ykxen)zcji?>5rnIG-m=R=(zvNENuB$P@x=D$H`%Z190U@1@Ztn~5c!u)<( zlm3%0B_1CS6^!s+9*=lA#d+g!Kk4{_1R}IG6>Vl^PW<^v^Pw5!qpl5OQM| z&Ra8Kjae?*!0BVw1(&EEJ+vA`xziALFto7g*=bGa!Of!EmcT~f`aQSX90r!{V!zD{ zVu%@I#^=wSvA6#CYqp`Y%Pz3N%5dxCS^d{#gz~^lUOFG zfqS_9uDh)J_FXoFzTp1f`aL^w>4H7{TmRH<m5LNB0 zgDEL?wJEBj14B&3}LPIPv{BIU%7CIRn5QD?9Idqn-W9KyMH2OYuXMY~Xy>eXhdM-Qn7 zqp$zNm;a`1MbGh{y!@&?_s%=)z9;RMm|XWU8OzO{PC*NbudxL%%V7}0BRmSnnc^ax zqOq8N&*lubYyMkY?lmuP5e0ZdlfHT!qxLReNF0`)E0-adBBU!{`81{R$j8rzwNP9< zbrtEaYHa5vW~S`u4}WAcr_W;+hQkXGYh&o9J@^lMY!w`( z?Yno|z>(wDx_gIhynVOTfAI@8aL);=TaQgW^w7?J_lI`orTuWf#5Qi(Vu`=^ z%XXdv5syCkq_v@kHh|>d5S+wW$x&e-&WNDXScB-Q>PYKI-1W(bPEx#wTQ#p_w2F_9O&8cz`eHi_S+!FQV^~6 zHi{dQBw}<~)EGH?+6JB;vO}-EiZ>}Zb{r^afQWwN%U`fF@4RP6{`Bi`TZiEiLfoV3 zv-!aX>^ypfo9@|XO&lCK`K@nT;`9aU0;lf#_t}~U_t{wv51#+pcdg^rcH8-xPrF#S zXWKir<`#@{b5Lje^jVulr*RIQ@_N(`>JVLLq^Af+TBhA}=ti4#$#CcqH{_N4%2&Sf z8^Wyg0AC55qY0@HR(=6de5FaCG>kmN^6~j{@~KNdRR<%2x19D8jOFAnjsMNi`7KcX zo6b*L7=reR6IC*_8WvUAp!2;633A8T62GUKE_*D~` z_Z5EPy?bdGmC6;u#J~(|KJO~a3)P5X`egTCi}+_1IxQQ(?=E()Zw`;zca9#lCPW@> zh^0CZwbWB5_Tc=(GmRgBQCkGQqu>Pm1z+L0Tfvh@T*n_rEsNiEL}L*}SBGr&bC#Je zD#54}?_H(>&Xr-rd&GQT)#RU_t2iXV;JbSKxb@>HqzQxSD$_ST^iGYi&|6EFCHt$h zaAs17WM#i@4DQXP?>%S9!)GjU=8|RLmQSC$Y)v~6A7e{z^yn#w5;#_pF7p9qM4V8@ zEQHkrBG>-6-?g##kD!A%X%pi3OyI2o)}v0dHX*K^;6bZ(pkWL+_Z|9xLoDd-L7>Ps z;Sjjg!i7umu9;#A?wd^HG$P@U2N8)&r@*xVqE;t-$JHhmFXMgo9@99Dh-sTJ2Q$d&=*dH;Y!=mRTxXjwsy(hY|K3Y(PACaSR~%1}LnK^l{j~8#HraES$dS#-+AW)G z6~ul6Mz{x0orDYdhSyzv+WTxYs1p3et4s z%IX?gdeqd!?9s_CzK#=aX?EbF=pOwU6UD8ZBHMxDalMkd2!>su>x>W}G-7|@QNPt* zrPJm^d5T_iXVDN*C>vKg5F#h@orruoa81~V-c1LD;D31U5T_r9Q8w>%TZJiBkOanM zH8F(gG3X&i6NUGC8bOP0;ldjgTy0&hUAp+VTJ9LVc34J`t7|uJcYTtQS0xyg;^`_C zlT=IqW(%cRD6V9sN(SbM!5^})iWtmtzyrBZ)F1Z! z%hN>)4qOAoMjFCw5EpRcXD@P^bziDCRQ?V0tZi=z%3};HAIoa zh)H!CHiLMy2HilpoV@(@+jjYtH*DfKj9%S1`1M==!FQ+=TTnQQ{kVYZhfp(c zY=B7A_wsoLA~u5+J^|M?jWOx!l=vek3f*$MdgZQPs za8Vm^{ipO9=HxJc#{1~XK8LoO4^w8y0x`JO+93u-{HqH@b9~-q5?JF$v9ckmlE*i zwQKEH5p&3J>e0g=*Z~x}Z{NDb?nVi{1BGnAqD~WD0x*Xcrs0q%^sVLf2?q+G2%_#x zIf#w5Wf#v+6VO^XgkRWmhwC%dFj;;T1@j9iJpan$kJ&@$1#Mu$*6!Yy31DUSMtGcpQ0!DQu-QcOB?&fH!V-^HdL_SH!knWvij#I}^ zdV1;eyV)0Di8CYv%+r{8Nkiq$v1&K6a5h53%#2Lf*eh_k*x-q95id=CziY^+QPqja za<>19^$#E-)W{Jb0<2m%Fp8hLg1=g!EF8$A10i#8CI^T5-6md=^|_rgXU||D`s_Kk z|0g}aM$#MHzA1=9xu2|o!>^OK=~JhjsF2Gwe2?%$UXViaZ1r#;GZ1E1Ip8)oiw-j& z+9777M?3}bG7ZN~CR0Q>snU^Neu|CaBqH2P5Q7`giL617au7nb70y-yU%^uxk{E{r zDi0{CwTK6`X}wPSLQL0Tw`Stx2^)h8rZOAhR5sLd!WY757(6#`-Qv2EeQ^F{FuJA{ z)f*C~I1DoW##?abXgAuXfp$p1-ShcM?VFuHWfmuiM~?{(Zj4|&TJ6xJHW|;@(1EvI z6srRonxQm%sa|ApxEba@JsXCz$B!NJykS~Ie-P32EQGNRqsYuwEh6O>BJ03|&xFmx zRo2M+BxYws%-6JGW5E?saiWrVsB1@;>7 z{p!mvTg~^U5idPtkKDD#wjl!7&N@wcAt-%9EtVn>b%lGFU_*!pFZ(B6hX`0ym*{=5 z_ocLH9FL`zAHi5k`B5Ds7}5K+xaaWGhb%n+a>eG-=0XY|s)<*Qh1#?%j5uzLsj}$` zQOdoEc!+xLEDO26!Nm*2hI%wa9^E|y1t8A9P5{dsjfg+2rNEgAhb0i4p)yIvr3@@5AfjaWw-$m! zwiM-8SY(aF#^QR3V3LlYh%t@PIVee)e{n1^du&p37zA62gC%veiQ3JHE2<)1tIsQh zAy9B)O>>OAY}CLZlbVdIG)rGjT+(53r!QaO6wi!{(~-Zs*j;Te!qUGF6fI5UfBMLJ z&Rw)^4Rue7AXQt?CQ{K>JBGRng5ZRF{*(pa;7L1+7nqP%*aJ_n_;xi@B0qT+MNK_5 zK~n^rUx+?L{qJ#jBy;5|T*hFCTHcChX;YP<4xJ>A_XnQ4HmtQ2oX@LAF&Bgi5pHhy z3?gtzUr-@szCKquG?q*ZUY}|#zf}5|zTby>#T$PqY?^6*(ZETnO~wN0H)m4$b|3TxgC=WgZ3?U(7*G}0o$>Dy)~jovI|T4J~64YWnrrr zi3)sDAgmaV#eNSVwlIur!G2@XM7O7bX=^vYqq>q8mnx2@zN%Ko<<5(O zSqetHtV&pxgAwIZcUx?ib1|55fu9Tt`vsytGzk;IG>5-$kqEpZLKVT0@9}jas$@P& zmk5w725uvdAQ5u{D}T81SM1Rg=X*h*$|pFqkB5tZf}B*L5GDlaQ3RCk{E5i(ghW77 zDy3gezIYyp6$YwnpA#WTx>*s6N~tv5>u^XfF`(+40f%WGG#7K@Wg=$k z-J=kx(np4IMkHdpa?meak&Y$cg){5XK zecfqo`AwnNThjA8_0GSga*6SXXsrz-kyzS>>kUKy!KdN+y8dhyqe0e(- z2l{)7#0BXp#Vc{8G?n5DaV~{_sWJpLN*mn^P_N>}^HoM~K}hAwE*D-3*kaONi~NFF z3I~Oi3NMR8iMA}Ce}3X}X-kKP{PW_3GrRgatjV_4Hrg~3SuKmeNpxtwft|4j5gBaX zxX~w@Fi~kjW`c1*Obk>`#FU_i5=zxJ9#%TlJiM}56z-EA4=U5k35b9bF-)ATh>6!= z4x)G6I$KYguO52eo;!ZrrXT{lag)`JUZlL3Xwud$Sb4(I1T?|d%$Kc!;ODQxw|w}* zPr`Yrm**{!e=#u2r7ag;3fFRJONW<07@(!omMTqQrD5b#myRzkBYKbS`TY4ZO2~SWoKI7jcU~G`s~`ITlBb{b6Q81-avPG++W}IdzUspS`zDMO5+-6| z8ND%5^OqFSMc6Da8X^)&YK(|$s60*>h-Bbhe;NxSD0yTM1cJng5)B8vI~Pwx3!?=9 z8tq;_1cZi+|52{n`Ga#N0>wF8z!S_+r$D3#FTgo0g*!nhxPrr7d^CxfRgQR5GZ04N z{3(G5K8NMRTd1S-ht)=!i=0#CZ1kp%Y04q&?B8ena61@r88JMTOL61 zlRjotP}J^>0l&gcvDtv)%(pMe~-g0epdQ;TD|8lXQLAx;i(wmp0|G% zrOm@|`&&`4!=~OP^C(e-e=dVRMD0@;s<(VO^W&nB0JA)dC|&#>hnvS~AsC@faTtq# z{?K3)cZnFPQ61yoI2P@XQJN^c81E>4e!s}&$UcCGCSeAD6T9Jk+jcPH)!MhEkA%6I zmrtCqPF!9+h;PnzbZ6#dYm0B5{~{4Q-I-pPRq}YpzhOLGNLv_E8e%Rb(b}bJqV_IF z1*M1{`u2>;4DD_V<#s;$C`Ps0>{tK%FYNz%`Nx(V!`#N*_t@i{h!Zx`n5apzvroZw z2yg-yC67xvoTKmv&*FE$ML~IBxu@dqlZz<(Pz)>@vt=_>6|s0cLcQ|ebpCsB!KK<5^sG@p}w#$;WEa$J6BTC;*oYR>}k%Jc(fA zZCjAG_=O6KBQ*>4Afib`p2!f5i42a2r?5TfEVvfDO{f4T)Zmh_53bbPL3nWAy&=>Tjyu18(bQZX=uZp(s2$Zpg3A?}%I~2TYNIGHBq{#Q=Jeo@G7x~m z(IG1V5#nfid(u8B+AXxV`jE1!e&L?~VuX4=dWgOa|GdjMIJIwtZur9CS1>;OOQ;71 zfmb4ifH>CPxbcW=i_8lT`3h3TTUUkfr)FLH6)#&*qW5Yc#?!~2=jZovP!fK~r}%u| zQW)5TTMXE|fLL5epNA2TisuWh7PVfu=hGJAkqnESEKYH#3``v@@StFC>HpHz- zl$51VUeCgzzMzGv_{x_VkBO%%Rq=RyJYW7LxIO z!+{8yd}(5Hn#REM?3&fqzV8m)uq827bI}IhIAra(yK`|aWh&nc6M;N~NaQ)eiROAt zWi{;V;S_GC4WmCej@WYwZz>x5tMIE_hc~8+uf2)K4?Kq;_EqIoJrS=;qjnbQtO%h! zEnAD4f5Hdgx%3tF^3t&(RPe$@Y8A$%un-;yZx1Z-Qw(2SNtlUPa|i$tiV7F@>NoOi z;>0c`xOkknD0x(>hY;xbwAluRh{5o^6|P9ZRvUP36?ok)edj#xc{Csfbty7_Meor) zAE%IV)tR3N+D?ai{hetlvnTZc!kH)6vr3Gkvblv+y(E^OT3H_rgZbaU6fvU zRK7~Xi06yo72oq|D#OU9Eo_?*zEFO}E$3QpewAG*1> z9|U1r9j>wPek}=5X<^NhLf=M z_ugr%aM30XY-;m*8(Q0KBiJTP1Gk=2va8UGzB+W(GMv87j7DI$M_64 z10}0}Y6&N5y(Q-V#6I)<$Skg20C3_1g=X=qQvQN?4K(l!^$#%-Axp4#Y26%a9>m<# zw^SOBRu(KfojrRp9%M;Sf$HTj83h|r8mjtYz7qjyy%>T~(9DxSQt ziqe$|D@t-hye<~c#ilP+$!h^aFc$;2IDPSZDZJxhx%9DKw3zY*D+eP6cquSq+5Pdu zhB3#?AQ5q$6s8f($gV>zoQ75CmE3#VZT85wf96p%J(PF6Gsn2X$3OGQb6MuDx-f9t7HB*l-Jp3>w zb3SUH>Fq)Xa=`x1H@{=g;NnV%&XOiG$3g@ts56-eh^T|~h`8teR6P>wKY!I;5zbNi z;`b=L)V*BVa^W8)4B@a6c$C6;&^jeGm z*uk)fi>sq9i70HE9xE;!9JRHNJYX9hd)U_RyUSWOZGtPO5hl3;{<^zDhMKP za$?4YIKZ{}6OUON=A5p=t($}3oLv zLUIJ+HG`;l+Y=wLCfXrAf)QxAt`dWb2=r_@>Uw+hgGW@BFMZ{7_p+r3CPmkHZAdLx(0@)Odx~@;V znt*d5%5^O+%A}2=zuD|_M5wDo;SwrXSbml>SQuE%8{a)@heb_x)xf@1X@v9jx>lm> z8v%wl;WFECx%F6Xe)R#t$d2QR{dazOVdv*#iUA(((z!_3&b4do@mqJ>1zZz-_2?1% z##`^8bJJ+|GFeMg#}_Ro2~8}TDx76609^CS3E>OdqWGl|^v@IX z+yvpecjr#~`2>k z7DX<6FJG61^Q~0uN|Y}c)%L4$c*kLsOS9bYsII~_dR_=-r8Eo0FBBIqvurwb&*;ka zt9+oI@^4YX{9TK=HeOB8YEy`Uv9xZhZ`p#5M7@p7U=(_G0+(d>*#O3yho5@h605px zR^BW)QJX|GJVQrsyz5qLh0~uz$F>!>YvX%%Tjtyqq{p~$Tff$twrsRE#HuqGs~$ad z9%I9&t-ig{@e=W=O;`pUy9PX;0(x-m62W@~P{)z*IGeoJ8P<}#*TuEKTf zdk>p>D~@Ca^C~qPFtGgbM{N#R zCozP5_U(6E9KL4TcH8)o2Qkom!7lB8*Xp)ywma{B!Ul)aHu$ZVY_16)B6Ro&VJ@Mu zqd}m@>|ZRFkd?axUo*`@eW0q+VgPcFJoqfeJr`C6ScuQIK#9cOb<5x*B-fV#zwFQ>be|^saj<* z1Mdv~djFgD&8NO=|ANKrV=P>^baoro2m{_?UGP7Gs|P_GZPT3o@9(>Sm^f{_cHd$ns6`C_ z$3bh^y2i(WzJWx8ItI~&IJu>>3$2PdYe7GF=$36Z0r#zG#};e9Z?84>u5nj(EfA3n z#3i<$c7MXD%L5z`VXOdb3gWN%zCE@EF54(>)P@nWCb8ouH*`AH+JHJq*X_4j-S*8k z47YOf=xLifb=H!ooIDv)u!hdnR*POAujE5-5By~0dIW#E(J3u>}`RnIx>Vso; z=_(#gx_WHwU3XYLy2Ya}yk#R#K4uMAOlU>5q`tS)rtw(fb_F%wOMIBpp(PS7BdAol z%K%rHbrHZ9k+iUk595vRqp{#PmKaCjwE2gDNQpAQ?V4Xv85-D2y#zz~^%ucgDlFw& z2^h;M|7PBmXaVsWU^Qq*tRY6{s6h-Y+kD-KWbWUw-5%J!o$!nuJa)uh#)VUV8qtin zXpGn#>_mk0G3xLcoVfqPk33?n7});DPd#Pd zc>N7K)OW>(ISHvV(jl)1LUBJhT}Yc~SZf#TirF8+7>{bNaTWiI!mr1DCBErO%{SMh z{wrFhcd`hgUKZD>qLZ^a`8$Qb-Xz?)j%{0P`t(J+`dw^nzIWPcb&zCDhmCc}a|p!M z#a0+rhkW_3Bj{m+#`qX&c0)-MjzKAKI}WJddy2I@^ry@t#k7 z+-}97eH(U66ZjnF*s~LiGjIlLy4tOQvNif79=_)bKV$cP_DQ?rbDy+T_wTg{Z1*+c zMZ^%`)Gp8f06+jqL_t*NPLIM}gmc%4q4^XrrXf7*x*#U;Ou{i^JcCd@rm-0gm`p>+ z*5GAnmNu$^!`M^bVhIS?3B=}eilhE@&8soeJVjjwtQqS9?YC^TDViuZ7et@w=KTh2 z0mcp!q{QNypbLhT`n)jqxZ;>=Tosjht*>iU#!9r;O2D|*?ROJ?z6HFyY7Aw^N#Sr2 zFAUC_bZLI&pf-GYA>pu-ncIB(j?x9iQP$}OnzSIe2jq(dpSg{A;WKTOYMqIBv~&-)X)3c0|1pZHQz=M9#9o z(E@qt)&177ag%N2@6wUucKO*KTj%y|*3ChXA$%I2#2@hlrln53zTdV(m~FfLcI$wf zICA`)jR6lD3sW+XOxW*CplUI}n8_d_ZbZ*m2hrxvU$zTRJ!8l5d%Nzzy|&|lhpgk4 z9r!Ztx0Bj@ojzmj`0SlVq)^wW+N5m=S9j;%KWgW3^VYJl*Y|P zGd-SmePt1ub-X9R0j)zn87ogI;_vH}uQ;I6mz%3&{=yN5JgtZ)T7!)ALW)L00dUW+CNzlTM44wgX+vZx(xtE_ojgLQxLi}r`lKWG2^ z#TRXq!zY92M(*9b*)}2G(t@GmB>cb11ythuq- zCgJK$p)MkkZW&VqSNd(} z+&P=X?q@=TpzvsbgEu&2&D|t}fYx zej$s$pTg$jiNuphm^$G?^Ns7U42M%R3HTU>6Ds4?W3ov|dgaxnS#1ufhwSbpaVa;9 zshMWDqw?P?1KN@(xapLeL*Lu$hWycV@82;ykc6a$P<9v<=nP)hfqp}_-U3L4F|t5{ zn^8aQEub;PKAN$_WU3J*)`Jf$KVxeREJC-TgY#vKI-f%i=YM(ab?ZX!rnjrpTHy#Z zu+UuBD?14|4*sl8t!Y0?4DvJ!C!vvvejEBn?RVbJ8dqZjV340lKR68#N7Z~zU_DHwsuYm zkD#*AfSth&*bl5rwz3^i zB~Xo!~U<-cXW@r`fVb0fv zL)*yP9JkN{KrKXFh+mT{`U2Mk_)Vbs7FgMCmxo)$lZ-OgNFJFT82PTX@Yk0JG!6Ib zD)s|+qhklTWGA0`$u56z6eG?37?y6damMJrpZhEpSQ>2gI!+4%G6N^9hRu)&oirVJ zn!{4b+Ki3OrtR{vQ&x|7c=FN}Yi2yR-oM9=9s0Vp@7`z~h@n$(^3oIN2=@(Gz4Ak( z&EfMmgU1t@plNPs!jy~%$_(P*t=5V<#t6opkNwHlECXSh92m0pp>bQq$qtM^K|q2K z6&}JqVDBd$vkmv|1Lm9^ef}kT|Aqf#$vf8DTqpAhdWqw&zHO6p5OoiI)aq6@SUm?r zu5iLQ!$vg8!H>QlzheFGA2a+;TH7s~Z5rZmdgy}93=P`Y>9f|xytHNSo%Y%r2d#JK zR%>Z%w>0?7LMYCTGp|AHc5%pT3?0ca^3W)Zd&xT38oR8xijR3S$u(*L&AI%QU^KWZ zML55W^oKe)*BU?hkt42g_WCdhLB}+pk%Wbda=3nu~x(RT>7RY}ubzJSQ z!sHy*C5d4|_7Kj3C9w%N@dP?sn(P-Je#qv=$LzOWeGSFz2HVMka|eIz?An!9gqTkB zNtaM2WW~)0gF3*?{btL_y)Wm%VW~d(OEwf$KV2f|^iRA`k%_fbsGSA%ww|^2o1gov z{pB0`?Vle!Xv649)l-4bVux*Kcef?rWF%aNP*u~UQ&>hIpDCk6`Cjl6ejF4(c>;O~ zKyKhHQU9t2#l@tp240lrTEUIrm%VFnaLu8|HiNF;Bt(_CZlPbQ8)f@fiI4C70`8pj z-C8iy(h4yoTX0uiKVVZwPFijMkfjmZ4xlGDjeX5p4qmj-hsXOd(ZVTN9ST!FojiTX z(nBNk?K!*Sbg#CVcl&JO%sD$hJ>{p3Co$cUV4m=kortd88w%CKiJYH? zu7g+|Jb4--ufuvddA$9}PgoD;VC45V(>G-OhYs5S`i0t(UBx_1J*TGc{N-P;TOfvI zo~HlUF&j8?%!VNbSAXI`+w!STQ`Z5z@a8+#hv%WAKYY$MKXkus`iwgWZi7pYF85qsMLhIJhuncsuJ$&`H9xzF3K?#5XFD>SoYVTEH7# zKRV3EH=(V0a(z(sNjF-~s7Ye#43;%pd~Ncj9>5$=A9G^xdJJ-v`IFi&u19+TWj&FrGli=*-}tee3jT>v{KG?1k02{-6e_NHF(N z%sscb391hiJ%meTuIS|pZ60bUTln+D01d>T>M5V5)Czp$ZKZw3c3f&vN5sQ_ibsb3 z_W2i_E0DbB9zRXp2sJC6$T>faB52Vii21kpW0Ybg?mtaq^rxvVi~Y9VQ^FuaMImLi zn>X6jl`Gc3xDqiaH4XLIe7~Jvf^^xS^{ff;*y!1FHi{TDee|R?jis#)n|;&3YQ8#V zgNIMp+`x!ULX6D}kJu1qU1Zmc-zFd^8#D({wl;UoZJ2sNU8L{uQOwk=wn@BvTz=^-o8Umo$ZK!; zAW4aPhf0R#f(&>^CZHsL)f|z;gv=<1MkYBJQp={&?Hhv2EVx{Tkh}z(*-RQ!__cQR zrB~o=PGdNGuQdR3?7~IsfB7}b96M`?G-l(Oe-gl`!);~?qu0hkmn+|S#!?W>2@b$D zQ=cg~|AWU)TK`keStDg6J6kOSL0SuUDUDv^_`#!?&Y^yyCa7b<*e?1M;TshN-h90V zEfD5dNtv{_*SxK7qeD`&YzS&Nz?5L4AyQB_G;5Fmsef`1&@~a3giu7xEj(FeF)3R@ zcBBj2vR5@Q7Rs-MmiAaM$--q+SJ$!?@Q51$#&U63ZhkeyhX*jGRQv-Zh-`|wc=IffQ6ZLWh48pnu_=(~;nP=;9^&qZfZH%bW2OQGK|m;YT0sEbuh~3 zkJ@^nGRl>m53h`8D5o4Ad}FaGxR&xwMGUFWiR8QZ&H+1xy}XfEU$-Viuqnio>OK+! z2eDX$s~6`#Dp{v!)dr)OPnks|EOcr{Cfo?MHas}{;F`5bh#YzQNaEvHd$|O}V=aqi zJ^p&d@fxp(z-mfa1Dm0GT*4(0$!fu!U?rVxO!>i&If$%jh@=^G?3y9AY9&5J)a<^1 z;SQ!TVr{#3*aN@tCA)I$gdO~?e}}!k<{$}h@^*e5gu6Ve$fRe6I?q6O$xrSS1Y!z8 zum*y541GaA1r71q%qC4-p7bPoiEu;>Gc>boNaw~OYOjvCr=(FhmQ!1Lt!K|2mTYOY zNlsRe{P1}{&@#@^=P7gxo7>x*E0}~BZlukU5(^{#Zh7JnyYEXsV~2kDqMi6xe_(6Y zck+$VMUqCC+( zmZ9p$%4JsuRSaXX_>{`OXc$5>+e{I>(ydm$KJhXm80Ax!j;S6-dF&z>5f0J&{1Ua8 z#Y4kOlrJ7r{2VD(>olV{22#XUn2g_EJa@s4a{!|qy`k+J*1J-+6w7_-lYUXQ(1M~1 z3J7?`@hHTzAn_7koSgLuUI63?A$Kvu)UZIcvoPMab}b7}+MdO=mfY~AFg>vuaa$LY zjcD5-tk8lMp2Gqk>KK{0DaO6{Jy-4`9+mJ=X>~ASZCRp#2u6vhSkS^S z)Y_%4s9uXHW8t*LV)N2BV$L6^^$uSvP5<>d9+SFT>UqI2QP#i1-7i^Q!I9*Y4{Du1q$^Bzh= zUM!5l^!deYUU9hqEj%m$Y~{sKsA1=&;l>(ZDcJKe;5>l2iN8Sir6OV>aJmBynG*BnAC@DMLA`wXrPa8Fj@S*3$I?QU+yf&H-k`3FaABV5B4 z-eo4kae{D^L2fM;&gap>#!6$Co*G(mwHqZ5^%#V9(b2itz%BqAfGfDhNcw$ z&A%K55#o;M&u!)bP(+Ui!6^vAY3{WW!_uF%jH**=9BL7*%`U3a|h+&X~-#05zyffRh&Du-T!{lT27jbs_=bG=n|B;VXTXzB*t@yrPKn=N}=e zbWv3VN4kzapAe_TTSLfo8f6|v_^M3s(dJ9cP?^Q41zxRAHZ%5W!BHonbrwa(J!;`n z*2BF_A30%})90`oNc-}S^UW@)NI}%9Jpc>-5?kZ#MB-%9oO}H(n?835dyIjoR`d8( z27l#Qpp#`Y-@GlS1?U2_F?|5tZV`igHTn$wk%(~!dfU`%-FU|8z3(1NF<4dVw@UF!Tq#YZcp$`*#Gmu1#1iBKbNNc=i6t!axYT@c zaOGf>3yr} z`hwu0ECnnCntWT@TWty;6X@t1zSzgfuB7#%$I%Y)q{S*s_1wr`zNqqeREJ*-)pCy| z3upSE0C5RXH9?h$MTm85?do>xz^-BwVyv3JKKr)^-?e5Iy>)9axq-rRod{hKgIZa% zifK6$9P)cHCCe&@SYf#8TdK~b!U}Wd-xiZLpR4d`aWG0(cqL%uv8t|&sLbe|&#$Kd zqjX%9GT#^Hr_0AVw9+U=fC}z$Sdcq#)*;2nKY0E;Ctrtc7A{;8(e1)qbWZTnS4B)} zJZa$*5tpI+%|IAU!MYZ=UPPQPilm#CY6J1&YHR!|%?#9|`n>GvVO_>Keu5GHL=*x6 zIJ43bB%MaF2sm*h^{0?o%?F5U>kt~CXDN_(0B5?h{3wg6B3X7sETfd^vo3AU^0^aBN_}X;H zuy`N_)g3rV&%veEhwruRk3MWI>({$#f%;rX9dKAQXVAN2=#y2}qEg~Y@hYZLno99N zsFpfY$;XePHE(Jzm9tO~S zu!Y5D-?RXP=~+(N7@QD7(PX&}F>2l9r2U6i@mzpn_pRHv+G_k4H$WJQBY{yD{=)Ds z30woYN<2#EuN*2e%@-9`n5d{QfrP~l>JA_*5}+xUR&6M^uf?s`9Nf>M`wI8{8rA(Amn!!)!v69(6reyF}# z>JpLWeN8abUwIdSsJ^X#zIf8d-EcDRQxJaQoQWWk=Zz`JnMvz}7LUp=f=|Sxh^24| zo|BJ`r*CmYKsjC#Rg3VH4`7XL4znavmXbana1zu>cz8{tif5tfrWnlyniCwN(m=2Y zf3F)b^zOk*Pg!a!|3}mu#GG&3c%BtiC}NL{5;fPsZJlMKHbbxu7ZAxmjZVFbVCE0_ zPH-cBOhU-kAxhVw5$QqtmA!ec>~n~S{}K_Uj|bm;Ua=Mk-(Nihf?u82*AV&zE@du0 zd(=Ar&Sz}rV~=ongt=H-6gsaq3%-e=k1U!P6z2ZDOMLVaK~ZXDD|403RhYO^no9A7 z{ZNb7{A)f856K2EwI44vUmU-3FiO`Wo-_aa(*mPhJ@Pe;Kh6K9id`&>!t|PG<7Je7 z)*#ayt;AY9G?_}&5{aMW*Hhj|cEGOx{R3~~Ms&v3qR73DlYRACFa*FaP0*#T@^~z! zUzCCzg$ZxrAO3~V{2Na!!kT)tu)_0m5mh6^Y>zmE5Qgs~3jfB@qt*pSa8+BIbz`qA z1#()bqDJ&0sH&HhEjUzNF;PHB9%YN?kCK$SEB#`wa_JY-p5vSGtU1 z_|bdmdIlI#n)&rm2z?=2)O;BEIHjB)uh7z$!_+vUbFfxnSC4~O5H787)@ShsBDZVl z;ZeMY1S7iA&-1^b$P34ahlOn8=oRnfY4INeOL4Ku+2+lgVXA^J@ry0(AZiM>MdM!fMH(bg= zg(JKR?pZj2pbP0#FO?$PlSHU}bg8XWSN%DzKor+dlf5mN}cG8t=^6*;pORns< z&P8~J(04Ru{3JRXb$#D(peb$Zf9*@Q`H_d<3U1)@%MXqEvJ#U<{ez54A_j$o3N5~h zaSZV#5*B2v6tBdU(o~Ai<6C|*Dh(s5XLK(>y~>y6_fJ!=(gCljPjMb`&eb2Nn2D=b?f-q_P3uLsu%`phE10a1y)#!hrws(rxeor6 z?+YqVC4@zW2d;oago)ycLqfXfH{0aVYgP9w$g0woOH>S_^f$@ZqZFKC7^TugEmAs8 zp{2`+V3)?L7+SWCOM}WL=Gzlr8eWJihFaA-FjcIN0XoApJwoP;WWuE$bp+`O4q&RK zMrLN{dj%+FU(|<0+697=H^QAT0b#-QI0D5T5wWNQ;`l{eL4S8bDR2qNMUeVzNUH@` zM54nNO#jEIP{G->3X|T}G-E{h{E$WfK)E8*fa3Ug4&^HN^B2N2*1Vy4R=L7m1e_Cb zUY_y=Tp~Oa90<}tC<;%dQhsjE5zIhIDmV~>Awu~AVI3eTROF+|6a*$GZ!?YifRl%Y zIK>xSAx=RNG=<#!D{KRAG8!e{S{_pH<2s{!oT%*-sWw%g&d#QMqtF?|U@(lEH{zaf z`{zH4ar0X&gVZMat`3-d0tSSo6N8RK7VFZJfEVScMo*>hSs!eC1EUFm-3iKI9#v%!fd%XR1ag}k0v}Sw?i?E;`cIb?aA~LCQp^+Z~nk=Wdg2a zho;^3Y-5xABK<>*&#vYK<8F*P%f^>-XoA)h?1P;dJU_8}D`ba#Xw%AdDT8Y^IQlM8 zD#w@db&p?KzI?hNgC-W~L}`JOvbuBv=inZ6VZx&uuBSxCNpvIsJ!U~_#>Q;-&K=gs zf}X^8sw>UINt_dLm@7P#rb$l)OF>_C*TSuq(62bG&XI7W6tc3HP+5t#To^`WtaD9L zwtAIdREjSPI2KV2jD^zheX`LDw@0kVd5_^6tD8v8K(5{zF}hsCW@=;*{WUgI3E2!} zJVhRTRHU1%`btP3q!h0_fwd1jxvR3^v{b8BUsG>F&kj#K2#QdC?(1TWa_1VBAhc4k$ZXBcrPR1EF4Px z&8rvbZiW@Mfm(B+E7Gy{_VrI3zJtDr{`e&HGxa|>+UPpeVa90lM<20Od+)MDM+X}! zbYm6k0K$jT_|WT;IfDx!To|Wf7P>0MD{rMVmEspFKZ;uk7!jl*4LeD&9WPSj@nz1Bkz4q+1H+qk+ibP2lWdgw4$cfkp#v<<7d`{R=w?HID_^ZVKkG(gKu{^u(`_5bHz1r8V z>V2P{nVz17e~0WJ~AIK4(vynw&G}ZYcSQXz3CW08zziatXY;m z);wwY^cePk`p(<7%9Ph*e8p+)U7pTC#{;Ni$+-GL9ZoV?(;0nxa`x!!dF_Zp`SEVa zA+&x=JBSB4zG8&+g2M=eZ*n8U@3X07jPn*pxZ8A?HH6Y8x<)1GL_MF5L0x6&w3>zA zMjEZzkL3{Gj^Lqvv{JttLbt-PRrqFgH`22;j`l;#PU1({HgA&m4G>5x8Z=|=S6$0; zja)Z_T!BqX*<**SJk)Dz_ol7F{k_KhzmjnL=ohMza-mk^0t@y~&%j4@Qhf>9W`xaT zDwi=6zu@1nN59rL>3}3?XJl`L%TI1i6N`GR;fKZTN?+OL;WUuG;skdCPsG^>3mUrU zAJ%;}=&1WU-i>%dxcH+mB`Ep=kK~Mekzdm<;g^S}!Xmv|*C^b<9q4Je({yY`Ya?DG zAM$I&k9-Y&&Af!4_0td2psV z7wL4HL-dte)0#l&KFzT?l_#IHd)#2~hX{qg`K@nrmDQ4U|NPI}X$0N@rj0Wd?tzui z>w|IQ+go`J+@lj!5;&Zro}4Se$><; z1hj2jz!M%#Yh4TeX^4hhF_o%lcg;|&unmwT{p9$TdP?n6i8M6cDMaoW-SOQHPji_1 z9q(iC7PN$qCRB;D{)*v=hn)IVcxnyg=0@R>rWjK(o-^{`v<9AKX=) z56QBe;u)?9gKvd^~K=l?G*8d^*>F8mipAqgX%;gLG^?` zVwU~j(|+Lih_USvxsd~E)eKNB+_BE7<~O}p?a=VB{U=}f8O#5xui00*=w55<4*l$3 z;SzeTmjYf>W8SE}V~8D1M7s0$Ug}`mxG9n}1Ztg>zQhY0M{#C&)c)3|p7%A9vukVi zKm6#&wz^)jzx!+drkzDt)c&@juI(bvs0-=Z5e$9cWPp)SNvG!>7`$VdrT6_l?ueJ9 zk-T=!ghw&9&4IRMzU|n%2XtXYrzpq4OsJB&rR%hosVi9yH$U>pXYKH_&)EtGC{J-P z^^KQbwiymoUb#1iFvt$rk~A;E6Kac|`f2bju7@zMa_+B?U>r_$EUDi*QAyVLi?;B2 z7jP=358yRaK~mue5aCYuchj-RrLXP>gupZ=uv zojzlgpqnd)^OALdg9<{h)AuSRLbo z%HN}O?jr}N|6$VvX&}+$8I2_G40iX}C-|~^>D)Q{|G1stYp=g%hmRbxFF*E}9c4pF z1t3jjNb9!c2lzI~Pj>{{0N)vi^5{Jpi{%+T^PItUxNpGz+A~kvFrDf@`ObIkw_knL z#?TD@^58k1{{w+BVaAD(a9A;>t+M zNFyVkcD1RUUvumfqBd3ug;5TuC(wdGPStg9*bbc7g)bq%2l6ng2e?$26R(HE@(@C| z3y%OXF-*-#c5sO{X9aHL*WdL75-=eQZPIOYP)@JUfP^&MKV%|c!6U#X zZ+FxaaQZyNlj4zddTR1cmLB>+cf{kdlYA*mQ9_si6GsdXu;}rZ>XU3qB)#3uqt34o zEU4J+MBd4-&Pd{FnT(^7e-qx|b~boeNMBzh4wmpsK~2U39i@*QIsiPQ1O8cZqob9& zxY4FCF~NPqL-d#E_$W*rRxYEb+KLOA?h_s{57DbhGZ;PZ_uKiD@Zf%@b-(bpGV*?< z^9b+9lLOj~CnFu0&K*<3?Ly@>&f38*KJ}#i`qF~^!x*tFDp!+=)ZxGYatZBg1 z&j&^ZZ-!3^gSsNFiohsEkgiPAlvyu3jr;v0f`}5IsBM`1+rlaU6T{%4+oSLo zlMw@DPn)_sT7)Fp(|{_E#9tuc`z@811XgJ(Oh#}r5nZdhg}x@(7^bom-O&hFbf)bJ zPrGH8X$RXHmKFvTC*o1u7$$$27`HW_5mqp=M>yG2VU6}B&%~sx9ucjdPHo6&iX_2P zu9i5uh#O*vlB2KHG9-oR)CIj=IK|?9CNPb3Vj|(lqlW7N+C+@k^#_>dekIk8kvqk` zA2@cJ<|FtA%>i0ry|-zkt+pL+BFHm{WjSX;ZP%wpX%wG1ebQD~U-zd|_iX;+W&4W{ zE?FO{{|g63t(#89*Nh07jxct?VR}dD#T1)*5cl8D$5!=Ml=ze!-H)yUt8#~z{%S1j zKXqWteu1M7s@#5{>AwHwPrqriEd2iue)U&;Gk^qM9fcuz_XfMGzwy@F_Jgo+A>aF%zel(>a$u`6-xy=>KB~p~Y1T{iL5G`b0FHy20yXeS zzLBt`vj?R;*7~(P+L0X7ahj%8U8_;u0yYO$1bMj8tv{Yn^hm!OU}@jZ@Xb)3jA)m9 z(B4SHsg{h1q{;3BWZEM|V+<2whiw-Yf*i5X$kgLummrh473|ZLJ7xkA-OwIE60~c0 zI9}dS@Dz+lRhqKI%+~3We>4gtz+tgQnmxEpSUnBlC0-q80$X_I4s2Cs?Zef$(j7oZ zTRwinl{*n=v>rxA4V*x!>z_Jy%>Ij?`keh|*RR>%|Fdt}0j2>?e(tkYq=hR!?cFaAQwYNEUA|2mPQ0Icc;SLJg>prmBw4idQYEk$Stb*~nDn|@+ z@9+VYfP}#4P=uYB9l#4T($y{r>1<@Y{x$)m6TzN#%29VW?4b=b+yQYKDU?L!C4mu* z`VhsJY1_`_sc;D)4i}-493+v$i*l>O2_q)K9UQH61mExkU&63ZpVJXz+Ja2{>%r+T zLLo#X)H73uOX9Y=;xM^)A7ewu5g+BJR3|#Y>X-6ZjRJ&Jp&PZ-Bgmk zx?@Kbk=GN5sqXFVdEEtyNRD#s)7(t!EnR2Eq9uBl=jqkZFBd=A>o7}mf-JS35Z@DoBdJ{5Blqu@>ZR>j>M$L67% zq@4w<5W z{Dbq0^zN3<{fe&~@0EuA!0|B9u-kmZvH*lYd%sY8ncd`NCpZM#nufQlHvWO49X?YX zP3U5!_^P2j>#?7E;RRb>U9;a{cX8=YzF|YZ`pb5q=a3EX$*228{Y$%Uh89OXcO=rqw2XD@g&8hUz%|Ytvbh1Pos-vA~ zaV=se1fBfTl|I6>^NV2*(_3`%ziqQ0`MMuCJRdvANGp7+dn<;tgLl8JBBsJS;YfjO zX%&uE)6TCIChcwq-_9=`CvA7wHgu$6c5C;k5facDeVj7D8GXZc{`4vP%!!ls7E`DH z^6j_n($q8?Ex2Pcsmb2B)!Ne?Myq?51SzkrylHiB7j?wtZ;`8GC^*uii#d&6G=6!s zp}I>m-#fqtfMF}3C0rMuiQs1zqDj2Gv}~`u^R87`Q(4Th4ve^+=;`F&j^0kNo&2|r zqYeMs#f^SDNiW9P>AO=Jo&0x#e=8i@3Ev84C-k(!3inp{w+c_=jQCpPw7S!AKF;>P ztoi;pl>0-<8QCjt$s>EkvEBIFh1;w^ z_5;Ue`1d1B#pRp9kPHVnCg2N9i~grCe9AspTD0GM`DOd@<;!-H>)qCn{x`^! zrj>PQFlQ*(yNfIKy*J*p^%d<$mcbv>sa!kxd!%hX_5;T@lX?X9kZ@o>%6va?JS6OR zM8;nN4(wPM3|((~&TJOeKE}iCyVv~eOJ}f&Aop-{Z)enPi&uLske!kAp+Se`^3wY; z4a|p-$k*U=G{G}Jnm`eSVH{Y}$UcF|E97J8Be)!pYynScwKGv6QmB|jc6pPOV zLe>mcIbP@0$-DNy{_th{pTG7;_6CBX7RIcz?{bZwcEaTlYIV=7HVpPMRXoo$@i(tt zwWZ}%KSsfmC#)`H?tq?0ppQ84hy#x}@Q4F}1G`=`_=tg9bHE2E2DH75&%&|SL3uMA z`!R?dnWZ7$0R~2OQXy zFxYO8*pJ4u1G@JFx)WM=0^61-#wZO_dll%~;odWC?T~ixQ(Ak?LpvNh$wP!~r6c-x zAic@E9Ss854;)Pi?a|>v9Ri`If3paCy$C`R#k{@r?6dYaSU2|vteZQ;W{Y2a=|wxs zLC)p%Rmo1AErn3XaVy~f8qe7tDY;M4VYsOL;uBBU`9p`5U!N* zxOm;qda-%kYN2Px?JUNR?^Nbw6+W>?R)I*M&gk$x_e$EdCWy2yGx+W0xfPDB!j<-R zVA|5?EKnxGj~rpwytUu*rB`t#|NA~KaG^mN7_FIwPznYYg0>0_AhSVvA@p_l zm_q&@eumH}^XE*HpFeWM&W(+E{}{5Hbim?+*NcRK?no*MUiHpb3?@u}olNJDPBEJO zA4Gf~%6$~wn6_s($)AqrkigG}YUINyE$TgC7}<*{X-fvQ|Dl zuRv}9s$-}}YghvJ8t#p@w&*s3rF@!kDt_>3_Ky*^gMTv|8{?;Z>Viw)oge!Y6IPfP zoWde)$vZk77DwIPB!)EPBH%pL6kLoNlB)**mnqeDl zz1hEkC)l*)CJ~X7pay(%UQ#jZY059~q8W#KhX@UH!L4UY{01Pvb@*t33c)*nf}hGM zr0NtV(Xso&^59H`1dr5n*TSIJlZ3AJ4J?()Lt_0f>D+7DdyTIm*moS8)vOL>z8^H~ zM_xpSx20|5p%cwJ!O?*o?%j@#Fm|zOQ1mGw{&mXy(Sf2pbNaOXM^9g{KYHzT`+r}1 z&3EE{84X(wMByfbZDeXQf?C2_^WW-j0pEd>4g?_(osAW->g>Vpfqpy4Px+A8cMmP- zWe%M_dHIT+yL!dmyL;D`xSH-wG=>YDy{IlI!(4ieJB@2P&022a>hNy2!ILlm#4ljo!BZ| zNVfyiF7Y7bDyJ$}z;cde?h$B(```)K>&J5VuzV95=Z4JO}iAld-c!DF|LH=^51+7ZWA@0iA3XpK0O zR@%N*+MUAp14k#^kNmgKfxXm;bSir(PsNpK#o+@q{%W(j<5!l9&fa6z>+Hn1{q4`a zWY-al{*Tw+v~z=lcI@aedqQ^@>%K}drdt`>ws?GZYg%dCEuMP3&~v#{)*RXMa|5AW zSMznVSnvqP$4pEdv`=#D$emAp(tdL1uKmTE+*X39IML6}<5V^^)fcoF(vE@*Jhhti zsuB<+5YKG4rEmyd8Vl zCI#x*2z8-e#2y|6;&ep_`IS$zuaKmDTHQP0Q)}F`J8c)vv^#CzN!V7jrSYciJ4r+F zWFn8+;fdj`VIDDgw8InQ>AlmqX?ixplg692x2D;SzWq+4HO*FciUxh<&k} zSo^`R{lL+Vwnu&+4hOuh#df((5?bqLx=yIsYPAy^Zr!LM%dYeGhB;_h(I{;!e?xNjTp5uH?s;Dgh}*(fKYVVg*Y%qIMZSBkEO-_cW{JSte63J#Hx5&$s5Wm zjn~i6^tMVG&?`I+i=S}F#56ol9x8ph1bO8{@dT?6ApIw4iYe6n;1-@}7p(Xrclc29 zbi5q~JaUJ2q{QV4aUIUXV!j$-o@dewvxzhgEy@kigeQE@RzG_yG+eC1Dbcf$yPjW7T!03q@Z6fBHzFRv!qAU&AL@ z)q%uFDAe*HrPykO4`qY)>IIXE7rpl39kQ85^m_L$8O{AB(1;Pu${|v`+NyF8fDguGx|q-8_QJiGR^h7HC}*G zoeKEX>?;6CV9C)5Wc@3TaDCO`zeYk+OtJm}>jwYs@BcpM%V7Wa{vCV%vBzwf>*^%` zWF_$M>!dY`X>Ru|nq&Ub_O0RzRwl*`E}n_MyUBNY(~Dp$8nDQS{Ii-K5ep^c!W8F^ zB9?vWSR!pgLK?JhONz85s|cc;p!a^iBpaPXs_`sv=>qdx!4yCUL}oXvN}x ziN-Ia8v~&w#^apIOs2;&Xjrq{@?s1e88+bPC(UTBRz@SsCHIN&6X*>jgr{c!tMV3n zL~gTDzy{9*WV5hlEIV;2zah_zf8@2Qb|WD!!;wSfd0Q*ZTdA}{`BzwvieGh&tc3wM z4*Y>;3K7!tnV>NZgEvAQe3Jr!~#ewT;AKntwHaMHp(@^aWv^#x3 zNMNXuo^lgtB~4%zH){od%P!$XG$~AR^Tr|YgnAlcFJUpwT#5&RP?~~Mdy4rAF-ydP zU&L<+W56$L7%z!PzkJbRhMIiMl9X#U({Ek*J`U*THl|!R7ZvpSj|Q()C=cM( z1U-&&L^&uUxMgCSc6(YFl*h(~F5gz;*jqiFNTt>g@X{a~6IW<6Y`Viy8X-=|Lc<>J zJ&ZKSKMmWQ!H|ZY5nlFaB2KxRairnX>BaeYk=BUa4tGpr<2&Nmn%6tSo2DpD|3(TP z`E1UCM#)A#Hp;BIOtQ>VwkyZr*9@CZGvbq<8f3%~+k*rfjc-cd8^5fWtgHCLaJEjw zH*Vdsuf6h${g2=HGkg5_ar-ZS{%7pV=g%YetkNmuQK)gJucntIxOA6*I?I*U2$k{k2Gs=%M-gGzhjQ%Fa%CaJyH0g>Nr#v5HG>*p zRxPtWZKauOHaqpUEiBwXI9Mglx|P<|;WPMmNfJ`Ws62&y<=BLS?Cfq)5&Rh%7!N9Z zGwY`~T?KWr3;`u*f}R}O%Pba!JN?+}`G)l&4d4)D6|YP@UQUDjO6w9FLb&j#xD;PM z!Nqq4;a}ebiX*sn;z_F%U>V?`JqSqP09HbhuJP+CcH6+!oRt^UT#LqeuPCzAZCNvZP*4x zTX^g?oz{41ciOJxTit1r_A6|^@T6&LXTKlmwBl@ar|DpJNb6`MHmdGwET|PYZL81v zioF=gjsbGim6`^X0gbw^8f#vfg+@GWlVYA4v}zt?w5nmap+4G zh%kX?kfEwpWa{e)ri+)@Jo0~Y)XcZoXz}OV<}p4pV$U5o5ClQtiH(7TM3GD*&FB;S zxA)wB9Hpb=_0z!HWZbD-27l#^F0KKBN1mSqKYeA_5WIB|br}#{VduI4;nkOSmZPdm z(>6c#uB|NG;>^N3R#@d&nw49YEzclKqP5{jl^mU@($LK&;-iFXpE?1b3sVhhB3aNL zgg>9oBRo@~gN3H51TncwP(lV{xH22M-oWpe?`*`A(2xa>rm>5OM5c5cPr?J?5C)|o zt~eg?Ld*oVh_Dxg8HHlx?jZFPr`&D z@Gum3`6ReJ)dXFFGrAlsI_mEjukMkuY!;RROY)ue+0;&%$>h+~%r4!s>$l&tg~jVO zw{nAB>33|kG)GyNec%*o3HrgnS;{?@i^5PKx?3n6YeI4;gBY*PJ2b{RUX_%hrg0>$ zHj!hrkXVvrGw0nil#M2e|$^T8CzeSvhvLZo0+?2qy2|%V*IF$4ji*WeuQNbngvmB*=$>DO-CS4Vd=fjWimNoo(%L2wr$1e|CnmeQNuGqdn$F zzReuyT&B%%o4HzXG`nM2Mhvl@M0cY{*jUF~<0?+NJt!r`M;SyP7F_NnUkM^rv|zcS zO)f0i*MIW1{nKxM+y0oNSN`z}&)eU6@kKk>-_P^}S}g`ai7mn)@gj7Hfu3fp5qtZ$ zNQn7Uyp1{P98V!JZZlM*0O5)R!cZ!RFbr#hh-*XXJZm{7j?w;=uxq+4&w!po>r<`X zqcgl^D>Lue((Uir>g-!+2CrL@sZh%fAU82BN;3LMsP=&qye_bVegM8O2NN%5e1du;@^U%E+x>IxYF*j)R3qiQx)Mn}|<-5k?%8JqXJlLS3mL zaF&_QTGtc7FW+~<`o}(D1LMzH*T6Z;6%P@k$Lm?pw21~`(bSx*5<+>$WQ4eG0z}=} zWZ5jN32+mKI38<;%0g0|e9EkjSho4)TXyyKTlW6-mu+tTI>%6!t&4T0LAWNK=EeAT zVK7aO>=@4z{I069$dDy z&q3$BguWulktY&h>zQ}F3h#`=V@GDo(a})1T1d>Wq(e1Q_%$~Y-aM(q6~==q_r3QP z#_j0AC+ygPCv0N)wDtBKB)jy5d{BqDinYp-F{(w!v4cw{w4eTv7N?rUyhZe9(>$Y7ZT6X|mM;r6FdECZup9~!caauE@ejAZi{T`aVDt;1-wGt`I zI?1jT)`qRWZPPcuZSyz&#CieKY8;LH-jO!-rj5?E-e)_Nv5e{@H(6o_8a>1CA6<%@ z@GzYg3B)OQ$L%&4hyUa<~hZ8CMLr74V>Lm}7l z508ZCDPdaW7g*O6|KsY|hf>>;HT#-Iy&x&X#9nWXvFN-$K$gN)zNrEYMVmzQw%Ue# z;Q^_)A=y<=1WW%a6Z$u>-p{%s5}`qVp-!fAL6|;#`1-GwyR5%=!pSaHda-rg716CYn%xmc=X%i$-;NE!(TKkhUOry`5^CxYG-fSHmj*=Br}^PQ z8}BOE|NhQ9R-2o*Ck`F5gG?7o;M4S|_FhCp>P(~vd6T|;b`u0C?}Kp% zk*FSsPlzDeeDI0!Q|>S*rQ-;3DxRE)X~iRV0@~rN@b)kgW)$BwuGEo0hsG}WsGt52 zbQYH85w!}|-HRqU*9U+$9E5Nj0e|FUB(&+RymT^~g>{P4?4MAY9_NkG6EIMp*Dwsu8*Y7kvVBD`be%j6Gn9kReQ18aOwm)Cg;ZjJP8m+rd*$ z8;jdxr2|=O{7}a_QyDNs`r>;do(Shk85Xbk$hPebJx3x6kAb{j99MjA)j zo`(4-+4ou|`%#`-;fM`4UFH&r{OAG(F;`?z7*8IYu=&T&+3Q!Y+W&d!l3jS~C)U&7 zXU}m)UxxLCT6A13XrQlmk=WB%?{CS)`V!xprRFe+;OEz;;o%xWb@tNKRHkfg?k$_U z`Ay#MSiXGEx;T_u+AMYOKH$f^3E6Ip6OnFffmaPdNn!Gf38b|Ro&5uJOL-4EPQQZVW&wwF> z>lyr$bds0qaoTtu@Mw4kEW#)g@C19^Bguuk9bHTcPNh$Ja$ha(EZdYV}w&l$rABIf4yT)yj%mAyfKZChCPJDr{k`J0`Hko zLLsitMnG7WLt86sq?=#4W|yv4tiOBQa^nSd9Sac(UVO3cqyswGBaT@75o{;r)(*#R>DW#BF;1i-x_6R?7$=QG_RVm# z3y<+Pix<<{%R8nc9L;ouFWL&7fYv%myc-4J{KSO)+NVBc3(L#)8*jYM7h#_r9~`n_ z>B*S>3wv_C)P!+M($eY2yf)LZC5i?B$;A|%f(`XI85R;CE%NtH(cRkiibd0eXoXf6 zF5BYm@7T)SZ_&ZAqmH9fwAnPqKWqAB%&`+jy%MPFln3-PdggxSVW&t)q#UuO9W)n{>_dMA;uM4+8#oiVH$q* z)bUEE5bTZzYrvTf4;TV>n?<3Rc6^7pjTASvC43Z2NG<6{aKv(sAW?R5z(`sm#Kkny zxvSe9HoB6Cjw~b^Q3;2dcF0F)XE9d9?=bF2$4ZBG@=stq7_3Pj67eZDUl<~~=q7Ur zgw^tr%`9BAi#LAE2?9md5(!Ja$!m~ozp{qX&Z_GeeF+6+?$Y`H}kWN@cvROjgHsP#>lA4tS(FkzP5M(}oKcmsb~U;mW_ZmAR|% zdBrIYSR&@&+U(h`&ZgnF3QxnjU9>Vv=~N$m_^fbl{*xLF%&Q4@4p~{&s zUr?VS)p?|~5c&y^_{CcSg6t80(9ltD7$aSHARuU!fJwjtFwQy;Lz>ZFZ`VrmZi%9# zJ)YkB$;35?9wvA4Q&`k)OSo(@G3}Uw>X7oyPujLb&TT}&FKCmMk4Ea=E`%%MNn*$+ zYV91nfvKJc#i{23dxXQ5f)04v(d2P?q~T@vJb<~CDv>FEwE8>k3RK=jQ3B&cxRW@v z?+oo(u`{Y8S|=k!bRqJSI|_?U#J4)Y9sZOaf%>KJICx}466Ah*2u|@8p8P_Ygdl;$ zaueu=GEd^h_=1Th+G9M=sgm)Jex`?Yq>|SD7Akh><|}sR?)&g$9zXoWJ4IAG@VC}l zd(I;It>0o|Clh!SIn@qIVeL%BnGSFDOXF>|3uiiRa~j_15ggmUL%X{*PQ&f_tUG0C zr6-+63`_e3d;89>j(B5)x=+B_K7Jjj#gfL`plLH43QO~)1>v@wd&RNc_A2CZekBSBp+h7s2K_v}+bEkx{`O}-Yq`}m z`zL??JsaR0yiW$)@I*BDRj^B`2*gs>H0lk)7NdVX{WJApt1>g5;sv*W&kCTJeE6!GDvwL$UQ}g zKoDv}8A;R$LlVBhI0)%F;*fU*c-_$39l`Cwhum&L+72NrfV!8Iqs*;5f7#Ype_0$D zuw2hs((eI4T$PFOf@|yNcHq-6a1duK|M>Ql3D8(xtso5E;s}}5n=EbQ;AEBtSe4!4 zP7J(Y}?ks4<@EkTl>zCxl*hL~>Me$k!c>v>XOl4-F275zc5l?Fi!;hFFZA zo;GjaJq?pX>PfiL)*tzIAKV^CIIx8zLfQcj^^%}KA{Ow;opn5ll3;f{#B+LE@hBR6 zRN3$!g+Cz;;4vQf9A$8eGEd7X^Z*`8&nb67PlCSOqF%JQO=N~j0XU(6OK5cC{@4>| z@N7K2|4@7_OAyVxyiTQ~;HUU{`J)4_2G)%>MK~3I%(DLEf+G^65V@9d*bqZeX|@Q%&gc-f3~Zrunf$@mcjGdjh* z1~KAj&_Q;T62RkzCmxY`^$t`#;1~WAP6!B(o9cpt$7Fd2KBYW@wZ&UbCE?T132+)jSxdVUkh*6Gmv&FJ zJ;6nU7)RmljMtkD^%uw(v0WsEwGgD*8R~h65Nd1MCq&tRF5)77U}NB^R~aQ!r-KAT zfk0cZ>m@q9XzFk={Z!g9YD`Pdqsoq-&ncVQY#PDfVKolLth5v`xX+J(z6hGTV; zhHDod;S%UHcoGx~xB=OmM$B7aRvJOt-iY1K){G+!u`?WjhIIT+_V##1M<*PS#!eWw z69z_$sYSF z|0)Jn0+Bo`XaJ>UDDahAB*L?&PTIfqrJuGprYG&!|M@?+VWy2we*UMd=p6_hhIf`a zk4;!(>jPPmzS4|gX^4&X;Is2*l8{GC+Y?L@ST!{I{2i~%vaOdUZE@~B8{k0UB5U0$ z8h!o8;6Xkrnp32bc$V-`7B#?zAyyj3G?mgUDBX~@G>M8U9Cd22#9^{N_9TJzsYIbv z$Li6QKrBOfgr7QIt?N{%Xh;opM5RNIbU2*yBHDyU9d;xdTn?ucz!67WPeYo3#E=iA zDyVwYBq+R+P+qD#75M81x3KFlQ^?rr(jDXK78^LSLL%G&qcuiiYl5{2l{+GRtszRM zQ&@xzv_x0?w{ljoxrJ%FJ$(y}hSmuZPud)`eXbnD>VhF(0AY9(ud$Iqzo`MHXIMiO z225yDS@ZAw;Vt8vP*_XlH0vdVb#Ee zCdi!(9-d?hk8tSEt01^T(+W`P2Rxq8rs7~Fxe&+g!9!0^F5nXliZ2YRz%t4ar%kX? zY;ASkW^0_uy1v9lLayg@m=H&hvBt>0ZR34r3v@fb7LbR+=>-tEy$y=?BVT*P(T?VJ zew$^dm4@BKzh5{uqdOg@Vr!*A;qCm=@mlTe;M@7N#*6Nqz{WV+e>WDIrqU$ z-0=gsAyRx&K4e?hS&X?MTgeaG8oza>%$GQGYY}bJa(U6uZ1f1+$6C$~vk$KuK82fH zb9%!giHJ2_c_*ambm{zkeGa3cgi2{5wK!Y%D0c-AW+@4yU)FK28hkw}x$^T8p-+OA zzTW*{a0xE>sZ&aMVJ0U=@N!< z0n_uOgNgWY|7|wQNtEPGw_Rn$-?eED@|y)%>x)9X?L4=t8=HkIEdJ7Ic^tC3!Uw=C z8sUm9d2o#~twJzIPm@oyf|5!!==)FQ6Wrp3vjskQUcumP1uUV}7#imVu5irrAvI$C zT?ecuJHpK}eO6lK1A@Dawd-2E)^29F>O7QN1FgzTOcFPghR0uS9jfVWu%u2dhF{kNy-BT;wHq?VNuIdslp*6oXMjHW$%v7NJ zl4iEbd2)Wpa2Vdb^qp4fiFhPaCLU+exhNtcMH9)WE{3?e-(0xmr+NelG2HLj)qTUz zFF&XZw2*hw@jua_{PQO&01IWSIMK)Pv5J{ardk5B+-sG!E-S47vtDGMSU2%R10N(h zJB#H2;(_?5jYHZ<=DZUgKYvs`1z<@#%8tntvx|&>?gDWs~Uq*+FmA#Pio{Rn<=tpx!Y=Mv@+Vhc<6lg{3#XHMTf?w{#kkA zCxp&-@(0b;x<4>-dp=aUilcfXKJ!x=(4(}x;}GqHiP!$8Jb_$-X-3N=bWNuEEq>)H zJB$~nY`whVnsp-ZuX;w?hn!s*HBjY6Mg{PZFnb`>JET2i()pzdu}2zw?A|4gNW&ho z;q>o?2BjV8*ex%18!w&jo#1E(+s-eIe}C<%Lx!Om z4AsGk_KXWv5^nv1G{Q7UDz2tx)%gb;8gX^4y&&_HU#)A{1`b>RvSy37zQ?*b4Gj_= zG#ImHj*eV~r!`N0exRowSfOcC4Ua*a0lg|pQVj62XrK{$^-k=LYYkzLtK62RnJ#9H zX`W+dJfh;XH=BhkY)^d#bc8<-~~3(tqOyQ`B89iQzBwDMuJ=* zM*Ltv#+lFc+Q`TW8y`AvgMB0Lk$MKQ_4S&~EiTxd={Ib7ZHBm^Y>9~-T>fyhJc2MK zS4cMDDG4}dUD$}Qp*{tT6D8z$GBz=I*p44KX}4x>*%Y@5RXJ2$cPK*)NQDJlBG^+` zy-oxY`3Ofn=RweM!9{$LKjEH?;)_5D2jF#d32!85h^88XC9goYk^?^U4T`JC;OFga z(h-Ne3XRG^F=JV{UGzhH6oOTMLxF^ZbF2sM?HOhI@-+FS{#Vgj5oe0ygBI3qTBa+c z>$FLDB29h#hIXbfr9zwWq}6gNR?K(XQ13w-9XjS$6W*Nt5fFtyI}n~%kBD7vwLgd+ z?LT3MM$X!eyBE3E@QUX}Z8DU(5|98YSgc@_kl0%svZ4M%*4y1r*}ZQw%U8*V!UPYX zc!kZa;sp-pyDFswzJzBk+zQU~C-4~GJ@sht)p-i2)8RpmHzXoYPcgv}oZ=VvH`x-q z@k{h?J>0SG{eLLz-3xHHAtZ28osUnI z(Zi^dsppMgfygaOOeVzI{&VN`CJZV{R-JWujcH=OYJKWX^r;h1x;tsRB4zas5=)h7 zz8VK97Y0w+fg_*B%>m1+OoQ^ZobMX(fn|k@-KW?|Tj8MY8V4>H`i9XcF!ZAlsxIl) z6YwB7RI}ZrsLcupqfDtvTd1#e4Hb+{Rzgdqca1bFs2K7vDl3hKC}nVvmad#Z8^Zvf zEpt~gy!T-gq0!Jp`gAY@M1}bJTJIvgeD?txI{2*9Id|txd^Np88qkyV-H_61a91eb6W^A`jlR?w(cS)Sf!5C%%hE zOlucW#XbxiDV1$`Wiia+;SMD($~T(2pDHVk;1-W0R?83%OBO+7py#liKJuK64j<=; zBBsns_t;@A{`T1za%Z092sfwRwE5M`lvx*X;4L2*KK(4=fP1f{#j8rd!mVH zgVs;=qe}VYr~|&f5#fSKJK#Z%Fd%IrtGb}0-wq59*&X;^K{J)Dai5O2PtsEcB>Y!G z`dQ*t(2lF2a_ML-u9%QuBo;s(SC!~R^s6OVPmmTCXxpILdL?ihHM}?&r zH9xLLc|hak8peTmLEj;Q6K(wYz!ZAC#I1ot8PfMYqK~w0xqh?@VI#!t z+n4R$tv|MII>$U3uhBz4W&H>NBjqP;u{?*cF=bsdw;8JG_*a*?(L@)akxHJ!TDkL6 zS~6R@%XAAD!)Mp5NC&^pU|O<4mV}gT!GSADbtPvdkC9 z5Lyr-8LZ0SuCCuDY@Wd<$21T^Ez^x%T>}UJ3;^YM1kicbl1c#4*g(xl)j5@`4^sGR z(5!F-#T**b{P+_2P%ZkfjcCx|8wRmZI|EIs1!)sqo;@BKaQWmR+o~~S9+&F&I>O~} z|F|7Kc-D>`ddluj-mnj@yvB_z_kgR~@uN@M@gwK$+{qW5cQxyIOlV&^U-4xsMkp&$GY2L>JA?^2)qUIvs}Kx2a7%`NQWu&o&p;U zh_SLh&7Ia9H-t7)T&xhM3+-E>OZT4_Y`wM&o)vOWTvclB5tmWjtX23`brvXRSW;(8 zS$P>k)wP{9HlimIm!Chs;yLK$R9^gflK_VG2NW4_FH$JcEiWvDzLtE!usIz zFy)1IxJH@4JKxL&y!yXvrr&yU2cV^F>nx=xRcC#@>f*{ByK-~UZr;AiQif?Zwhbd9 z_aHE;uBi<4;B$dCD!$RBSa)}*7phkkW+!TeCHO`d!oGytBJH+FpH(Wa+sf(!xRx!~ zogmUnjW_9=m4*u3+q1%S4imvtDz67#<>l{dKx($Svg))nA_-Ot7D61)tn3fU_yBRA z6T4q&2yYx5cbkR%z_Hu3AH};r9N1}@?zMhynjSra*1D;YGw!ekDrb+KIALG?xu3QF z`a6GNzx(pbOluVEXP$nFJ_5mtfkNVy@6c2y6D5WHVwE~4bx1ogNgQ>^S-zU9>~t+7 zuyu)E;Zh^im$xI3~a>Lu{n@EE+m)aX~|vsWGtRKEaOLYc_Z5YY2EH>pAdg8ybHG zJjbAbfrTNlw7zE3*ZL{nD$ zq@7ureb;6tU!&XxZ0yL3XfO{lcvWot%!@X4MH%4-Ard^gp2$cgWcNP`?hfJ zRThdb+R)+Wt#|M!gB1f~Y1W1qVAp1E*%DLDdEj&KQ-Z#PB>x&vdFv-s{8+%npeL;h z_PPKi`vW#ki_%2ELAudG_^ec}PFN7`B&(<>6Oj>VA0Om>n2B z;X=&x>}|U>$&DsmYY5O4E8Od`p6&rVbNo5r4%l$-QQFL)ojv|E)0(V1WneFMWo>S0 z(r!&%v}vX_4NVo8;TQrOD*(?P{j`k?AGW(w(@aAbtRJoOYN=?Kuf1hAXI@8O&jIry zLW0@U+;zJ>!>vKtLw5T3Gd9rQZ?C`m4R&=;K;v-)2!xTssK=?Y)M0uSp_TgI+cRiA z#X(!u8H~5zu@A0(n|7SH!{g`d*ugV4%FggIWscmz$Igm??Nu)ThZwk#>WKOP#yU)al)OSE$>oHZm}7r;a`jjUxzC2yI9b zGjn(B=AHL!nd6^a+va7~g@D&@#}8kyLkCYIkfJe1SX^6QK)AkQckW%sZw-yyQM9w4 zfNlw1oQP29wplg|-I#pWZd0dG(AkN@pXSiybA_#YE1pj5bboECF|IgToBahL( zdhGEtYR@Hm@7i~uf509;_M{ygKg5Th1hpPM7^dyo-FNKH)HUnt9fj8?DW@@e@6zjh zWK_uSc`NpGbMr?x!Yi6v%IVE_-bR35wKHeVpam}QkyxNisX&c)1YTT5SRS!+ zr=Pce_^P^$g4$NlhTomO>i2K^$56V01LGB5?^dJlk~(ao&s4jvxpW>AaBuRi;%-M)3({+Bo2utVKNJ2`g1PK}J%0ICK}8Oyk!wFN;Br2ZqEgh5=yAlUKc zoI{(UPSPKAbh4|zYnb4pr*g0J&ZHsn4FDCUV))YTLW9!Ng_flSaInstNcdPbVSp)R=(>5@67VS?3 z%?;YZVz2e|jdDv0>y^-WR2aZ}M;?dJ0b57gSXyOAEMjV&sp~wOS!x5vt-L(V^flAZ z9HQNG@DtWm%G&bO`=pBy<7>m1CPL_up0b;@P!jZNXi?_TZfWh~aQ6}Gg{F5vnElIc}I2xGY|VK_M&6stZgKP&GvsOsuo} z)dnKo&E8(tP(}^r$dwOS^ObfJy}ANNi@+*e?-s3E}l5KXz~nl9Fe4)h+d<<(hV zTee=iYkdd_SsKj3>Q&aQjUbpkYdyU^c3|Wf!q0?FAUtZ?_1@g9Yt*!6tgn02rfZYn z*K{9gz)NY@Mp(0Uc;b|;ud$&dv*6md0X_~^IRkW_HK|oL!%U13UP4dCCYIbB8f&z@ z<0D7d^EGPkT zvWfBIHa2q5Chwu?L=Y+Ddsx$Vz^3obAY5^$`tS)CwAX2)CGwzYU-3 z*p~fG=)t@r%k!CBEO2$2)1m+k?hzEG6)I8n<(xonuscblct8WQ?SC+Ubbt9 zp?Zke!XcxsAMt=eQ+GIL+0B_@T8TMf1kfH^nqRfMx2_>vy=B9Flh(D0zl~ac>@*s> zQwV`syZYAev8M3@8$R$!8$Wb`!L7&E2FKxjk=>C!wz7ye=k^;mKlOjnxtkq5|8Ls> z1MJnwJGOq~`?fs)fvpc-uup&Tm#laAtlhi*O`E#>bvt}P(_2-$@%F#4p4xTm?*DlN z$~C)t=bQHa{4JK7owsKW_SyJR%CPT*EzaJx90T+1>C(F%Xbv*TG{SR z-L{L@F1gS!I0R39T2$gR(3*m0u$A(qT*=h;Lrz+cK7z$k6!;e+PkavINGBNr=CaSc*owl_%cF6 z(O!7|%dQbSFnk0dV+`Tv81h}g{_IcxwXGJW?AWmjc7o~fgA=E1VPz6+8u^31W$NVz zS6}B0x*xKO`JjFFlfQ_-a?pP8>epS#94dx!WR&TSJ8^i*!cJXkALmjO}ljM z2Gi|%G~i?%VX6RiK#IS@!S)sE7_t`Bn+*?-y8Z6tZM$^&5*j}~sJioLJI6@BjJ9-y z52!)Ac=>%ak2jbeUPb^uVn6-)uOL7jq0WvljsGNqW-o%_4g1j>e`2%qckS6H|B5|x z;RQQ*U>TtpP2=n&AB;U-UcS4TJWAwZAXPd)uN zIfVHP+Py(|@Cy9zwr8Fku{VD5n!SJRyEbuX%+8)Z&u(Xf&zG6Xeue4#9=mYv^L7lO z?Z)6G$_NeLN|&v(Ax~>Pqo!TUb1q(a$A0{if5n=@VLNyBGYHTJY<_OeUjNDWD7$Om zIBzd}>hr8u)e?{rWsSz3x;BN-{PJsWFxy_W6DOD!FR+%Ax+wmt)2!EVx9FjtYHG@; zEu_7%YonUi>Ey#-&`|8ANf=cB@E}Y~r`{Jmh(z}>jY$7qQ0@ngy`=vr?#Gt{UbpB7 z!n!|}m*Y`lfMRnZyX?B`7eDn0ZmL_izxSu#v~RutzJ2=KIUDQmv!mTQYC;=I)DiI0 zOPxs@v)%eDIJI;ATI003+a!~uFWpa;&QfP(v5wC>GS~Zg6bg%1ss>Javbi`$}GF=Q3I?GOos;jqc`pS2#XXv;c zJ9QZD4Aa-wZ28UyR$jV}b_O?Eigl)PimVqZcCij>>3y5JG>;Iv%3!xZ+;KYLRkT6Z zt+L9raefI64x1F#`w+k~kD;W(J}1*X62vJPSLSKn>pQx%4^m?I3yQvqcqtvSmJH1&O zSVnl&)bP^Uq~Af_O;ba7HiU|yJ)h+U)8sH&YP^{rrf=>#)lL98t5B9fHr&M?N<;G&okwD${ss?3R+jt zqF%QfQZN%^{d8 zZ55r$nHHo?KU8#hs2$>Ktk+zyO!or9p*B;@bL$?RY5wYT4;e_*y@eC)9O?B~A#Ej3$Oy~|YhBzTk`HB_}j z@|f^A3Gh(2>p>V0(8y2CR38~~@UIUC=aB~r$RXjffU(ybxxyZlQQ98?)5M#7pt%X( zMzzGJ3&pr91{a5qz_7Bkv z{>vY}ViTN6c=+sDU|1^#A?hAn$dUk1?=(WUv7KbodDwBjVq^`*N?q&M{Ev>e#+skn zZHG`FCt3mz)%oEH{aWbka4IM2Hv=97T^6#}N@KRdlwFMl{PC?p+lP| zwBD*L)g9^Q7}P7Q?^~H?ik4}%JX(Ri;yG4;vlefFU7u)wT#G}zT8TjiT17*S#r68a z*G@nkM`H}!rScTQ!!7GU@X*e|JldozgGX+i0Ub?aiA^Uxq`Sm=q|)LI^ob0E>eM-J zO&xTZpE%Oj^90(#r(K}8Ro0Es(Pz5Z70IB7xJ&W~dJK3KaIB*ls?zxvhfXk_Ar!Mg zrnbQJv!=|!UElfXJR&VIR18zOlb)a7hcoz#j}8d$91y1lC&lp^CV+i4j@lE@bTw%x zJ?IJ=KrdiVPtlN_eL zF=fy0(#6HQtmzuGdox!N%GM}{VV~|CWcv0X^<-w@8bTaYh_6l%bYk%Xe-Y??3fVO? zLGvd;Oq6Knc-U!-7I6*XrdJzE7@8f4h!?l1hX^S;8blu|6@*Z&wJW2A({5(95sCL| zyMlE;gi!5Fm%v!kMwd0#r}2TZZc|K4&XLy%(&og@^%Xu&*ziPsHLn+{m%<~V6rPbE zZM+brDg!OKC|6eO-Yo0=_^9k>{av0-Ez)!zMEG00F^yJK>yP0Bw5WbAEzdGVd;>ve zm=7idJ*G!b9X<_Dr=TtC8q++xx7Rojd3BBHUh+|8N?IE#lxLNoYw_hzqmz&%0WTcy zB&I`Wx(aIJiUc(`1W<+&)S(6*(dKBc-k2ni`-T~uYWtF8L8LZaF7pwMz{nOKpT^g8 zxP&`al(Gp!JrXBguFhF6Q^0-?u+s8&qbe#M1>sOy<_h)6XD_I88Lh*FcCBp$5N&3t zFDL<>-}h$jI`0R1M-Uzd5Ihf1&SzN<`aboJ4P;4~fC^lmsMG7b@N!e-6WuY~o$_*i zsosYfkq}$FQ=l)!^;kF`v=OoQ)4=C_H}?VMzSH;!;e+KstY^Ea8;VO`t3F}JX6qo@FofAB+lZfwLJKgv2KI_^9jA|KK8l?+x&L}|;+|wz z;&n8AQ+99isx2;DWZhqZxJRwV8nzrehpPy`HKr{y91qfk;F?3d+dImciK9>1;^kMt zk4A^%I3~KzS&czMJEwIV%^>UB7Uyr;?DbdBdJNjZryk?ToC)g&W^LiBMkg0m#kj~b zuZOr)7a5}9HKQ0>L=7v>S@Agm)+_Kl#!vgC%3!b7Bt0?#CJAs!ddWM|6KV0}R3T&( zs9$ue4oR3KZ~95Rm}STG)Xbm_qvg|?bcaWuN7Kf-FzVN#(Q`~?vc3y(p8u2mK^c}NzFELHXATP#9Z1=;C5%eT{xS%4&YVMd&KR}t? zsxIVJSxcDjWmCa~4Hc<79Cf4V%#0r-tq&os@j_G06s8OC2wD~Df$FFPe+e-le}f-63ufA#8*?!1~0MIfTvw&BMF z0j)Fa?d`V7sjK$h?CS{0XYEtZy=Y^6%;i|O+{1Z{l4DCcv4GP7eD^jyYRu-S{5`k+ zz?HNawF#9+cvI-O^^*}4{gT^v`B1}@Q5}ESjdvn@pmRU+x?ecu*i&u_gGZ-OoY03{j4PZi^7|$j?N!KLtfq_keAk#NY z1N9s~YF*=Bv3~Gm(eh}TZ+-RyTb%r%RhBPWSNC}eRcq>`(PN_pJSp}cura2hdPWiO z(46ECFwMKbZeWC}CDuF*%$~Epv0*#>)K4*O^&A2vM}M$6XX)xq7wWV?o<)NkA%aE& zN~AT&vjJfF-pf`(J2*6P!44PM@UeObA(ItIgw3);a&F-R7eLBrBYJco@#&wnwZ*p) z{=k!+x31#{S+xGFjI3NrjsXG)%x#{B)y7hJm%ee~9c$U?D{3po!BiScNk2vkawuaXjf#h@}zUdu{6h zODIzf+FCy-Qeqi5r-m!ZR}9xX41?4duY}5nrt@+P&{KAcU9ux=au`Ku869Rlrlz79 z)Vo+?TV}ES#p^#pKzRqA&@PxVeEiJgXz()Z@LYud90|nE^hFLs*TC!wC+ex6Zwb$` zOoQh6MWIcad1-|+2y7Deq_LZxo3fMaWIcPFv+DYFd&rn;+jIww&h}G%k{^rsmZ&n8JuAQMV~!!<_Uz^L4*wOBT!ww@rG5| z$01f^X$NXkT8mkgRuG!5-@WX+&@Y^OicK350=4uH@XVJ;sGMcZ4RCrRmeM1JZ{FIsrla=%W2yyYW6# zwEcGK#92F^eVn#^nh#Nqq~b$wlC__=*^xdra)^3x5-si#b}G-Zaf#`9%4cC=9v-dQ zv*$lU`hA4muuIq9#E;VrQ0e&@g`RiM474Qlh$?yU3(X?kPGyhq^sQh0>Q{dQpB)=- zQ%Nk@)9z+ujl`P$qid^h!EFVzRd}GUGmTrPv3cB>m-g??`O`j5tFPmbCt2MsE$Mh^ zduv*oxnn$WJlZ#dZxj!g}XK*;gHQ8oKIL| z@L1K96Zb`Hy;zkv8K%f;Xah^joWZuh;kE1c5P&re$htDti&YqyRu^xA8?6sVfRwX zS&rA3eA5R<)r(Nh8uVo3m37XWW2wLzQ^ae$ zSK;?8Wq5n~J-c;JH;~-%yz4MzeI=FnfGVR!E3v-w9_6azOLSeHu7yLa;Ly3=FaQ8R z07*naRHu)wDne5qxK@0#Kv`>4Dfb#@JuNbAI?GzQ<#pB)QaL%H$k&+ZoVrOicPV^< zvncOOzfXPS!;C4#rR90MH-DA$_2xZ~n);lY=9Z3?+y0@`#cuN1g*!Gmdl>-^L6ap1 ztGb6)M>26VjLxiEU}=bsQdy)fNu#Lg(kZmp^UJpoo7kX$26l}NGAnF8l5nWC#brKt zmRMJKbLu_Pzk*vl;$sQzq^HBwHNV7hFw-0kKCh1eggupyb}diMT_qnnKan+; zY#N&7qj6Pjkm{%Pie-+SDZ|%waOs$xrKMH7bN9C0;pUPR?p>FuP#IR)Q4J&l<2nL1 z$Nk*B0zJ2Uql?OQeqok6!gRboa(#j%)M~HNp<*ZX8-()IkA5wWc6gw7oMVnov&`WD zerli6nDb920v2F*V${Gl7%*)_=2UC|ZFodP8)G)Z>?NFx#$-U+UYoO#PLIMv@G*Y- zxD85MZ82Wje?M>t-%jwfqvPX*qdhM+mZ_Hm-d?uuXgoUM&{~g1m>N%`E;jrdc$#f7 zrAD0Q@a?!dam?B9LqCHut5 zlgy~Gt_>I;bip5Upmes*_eKgLeKBM!9O{^TV3j6CCANN>v-w`OTW|j}?kCpHShQ9y zkO*U-j^V%s0J$Ve%CH=q0aODY6GLpm$f7|j(Hvx?Az&?3 zHamegnhFHYE*7gxK-Iy+B^?UPTEqg=QGQbd!bX|9k~3P!59JkLk<2J3)=F}aZ3(

! zD@KXG(w0@I(-L8H-Q604R(|x0cI25~vP|&;U_;JF4RF#P>c@ll0Y?zZ0wyXG(_jbkO+Q7r$fQefxJ=yGiY(PDuM94W1wbqc;@s3=h>A|B!%AuNS~5%mqoe zi8kHPLY@)K3#`xTW%E!0&6O(nDniXtiRo4B;g%2T8`H4`4sq^7qvJc<8Pw+y%vTX6 zdzkLi;Ow+Wz(>gLEu2ZgS)I}8ioD;|<3+n6&Ywol*RyVff z`M4QGt5+zp+jVW7oveJU=%WXrwa8h1Iu=Lk^xRLkl4xi1x~4kOh;v5XAm`m>LB7Jr z#3Joa)9gA#dxe9GmAjD?T^Ze`#!V1&C(6m;*2fxq)B7BMugMHdz+(n(9VMECWXvTD=qjp<^ z1udg)>oC^YX3GPFL4x0?qT_7P=4px@0jr`z-APkg`vSaPM!1uZChcMu8sLK8ghJY^ z=Uvs2Pqdfb9@g&-41*)wgtLs$+Et(=se{_2l4mM>9j&a_7HQN;%hz}E0jbhf+BNvl zMOz=}r$1q1&>C9(S*@2I|7Ax zuMt7oyd%-dOeeD)9Gk_5ikM82#70`%r{NtEsAK$%@jB7mh|>zOA2=e;?cj>E$2hI; zj|vVi!j^K3d1;@Ajb*wSFFN6PkiuZBZ!urt9W%YLj>r6n_O!h@{zjJ$qSj%u8NPT6 zbb#M~>ur1KcYcSRunYEEf938_iCWcJ3#S8T`=PCeGmk2 zMQOPdpaq4MS&DAB!*QIM?w)C1-Cf>gR#tlN^!uOl#dp7Z^WMyxrcC!#ROS7`oH%jf zM0^qFI}vfB1iYLyhRP?WsdrPSU_mS^Co(L(hRR@riMECB{dF-A=CqOlFqVqdt`d>N zFUkR@P?ZoywXE05JhO2B><;jSwnVxc0 zK2?sKa)vOtX&+quuKf^U(6AAyy`&<-g+cHag+US{FY&Qdsa6YI`juaQx*jknQ!Ugs z;lxAla9OHiHQ_oA`Vw3U-ckM*LRH{YS;8F{<5!Z1wAVbe6pK)zHkHU4R0yZqGPtNT zg@YFI0;iS@fj8*W$A#(|FvNM8@WO>J!9-o7hbX_O=GO@-hqW0%9XyuZ1uY^4DI9_$ zNP0LW2sV~ggMNfK1TOEd=@15eOgXn$!p%wrrT&Qz^j+~H5;DB03@_O0>Fwz4COU|x zziW#})K@&Feq56$Vb^)3{8am>ZN+|g!h5*I z@;aBG6Qc}q!aEQMDmmfV;Qfpgr)u z1AFW4eLK_L$$)W&eQqi{8(35q{a4fh+}`;#P~tNDG8qzr1j8A^kl*pivfT2_C$7zF zMgu2pUkrqiF_{@jI5YvdpMe;i9wt>7;x&L$Z`s^Z-IRYzJN#8QLb_H=LZxdgh}ICR z12`@i^7KJl!V_NQjemlZyd^;}{L)8h+6gFWRD3rRT1uTC6+XW4DaV&=CG2HdE;3|} z2?kA#%9ke41rkjx`bS<(xhm7A0OB>-sD7;y^!VrHGC_NtNY_-TbS+D32jGU|inbM2 z9Tkx#*sq^s;*i1WHI`6IT!YoxDgG!I6PZp!^G}nU$_S_OYB?b5CDj5i#Fg_=f9f{H ztuME^BbZ766?~9TA1>&KqOt;ch)#uy@kM{+6=2{|Z*T!$dBjKBMVdLKr?yrrN*MJ& zZ(&W!N|h6yRI0+7y+b$>MBYCk*M$pkd%WWj1_?odNdkvc?|jBDfgV1jlK7hQaI}M3 zSx$LHgF+Hk)T;U?p2c5TlPkKEPA&;M2vi{eMmZr?;76d+o-}$Yut6IEWy*L!zfj*G zi5|vJ^uK`2_)nh?I+Q09M7@DkdZI08bwtYSWhy;*qW4AbpbN;*9q&V`H*oOAoj)m8 z!j=xlNMQFvGC=`={8K+x-Y8oiYSA{pOPG{!sjK1i5$F32g_%B}$xd|ny8sQmPyQBq zW#Nv~t#SmTKcy4t>B2#Isy`7e)!%1f#N2yQH{h&ngZy z*d9m0%cHTgaNvRTS5lMzrxKMEO*Vm#nMWbk4G^L z1Wo#NIvtyYz@S_8m4K!ROVeQF(csFM4}MLdy24KalWUEXAmWrU1Y5JTXgar-J z5-gEPDHFf`l!rLs_hoENj(o*Oj8ZjO1`5aR_(f$@T*642@@3P|sqhRDTb_VKyQXt= zC*%<=K4E!HymY5cf}=sY$OUd79{ z-hG;l|17C-;1&MuZ~6 zIZT#UQhQsZ%sUfa+7DnvGj z$5wK)87BrsO>76?#vXaZ2L};y4RS~_($X}u=SBAbFR@vDnUl3)j9DNd+&L{iT52-I z5z*|+SMgn~dZ-GU5`f6#@XieltC~oKCveH0T4*N4EzzMbeduER_W?SCb3qS8B_v8O z+6xx-38(OCz}BRTmQAqugi;#9$P^Q-CjM;+j=~|H2bgOvoeF_#ya!ygd2=|Pm;yz+ z>m7iTL21VzWWb204*3N0_ z9&T6Z>VJtnPAA|)CuJZIawsC3lF{4*ZO&Mj;aWBc1}e-S@f0P3aZ#2u=e-L(YLobL znnfRQ$z?SPT!A7bm7f%moN_7{wGN*;ad1vh2n8-cftmejAzF)`(AY_!lCUf-oTF7m z2}>YXAJ9opZ!^_J@q(hzpjf})75(}XXvT-o#HkG7S2|@-W(d&|vT$AwFhV0uG-dme zv2X-30Xa_fEiYSjQ9tDSE&3byMN{;+@QOOe0c`TC4Eb{>KlG?joP-o_2Ju4giMN&B z2jN%$mT(*GsnWzh*RFZl;(_*gDqZ{m2l-U@5_=N`EgOJNT=woN-B$yAYXt8jOQ|6g zMfqCBcMX|qiODJ){L@ncrm7bjNN5yK(6GD8-rHM=87%aKP^mX3+Q6w)dpK@2nj>@E zLQIHK#5?@u7e4q?WOwQhz^g~8MD-CbkAUz9o3@Im56bCaS)_O{YvxGv82{>2P8|Fc z4}@39R0EOY;}LXvc>(6t^(qUtjysSrC|pA9e8~KD@IO`2doiOHu?NXhjVIwq{Hjjh zE1dERF5xJ~?Ui5Y3I3q@6OO~=|GeTzyc7L$)!~SJGQUMyivD`k?eO z|AdhtmWSx{5FY*0M53~r*$`hUaS!j{a~%G~uHWg>Liq%O;W=v` zxWE$fI7M=GAN%RHGy&31PL%UUlROi#h$gJ1chRl-r-{)gVd5kn$Vs4dEvE7)F7FIk zSdS{_pjB}S?uZAS%8_sqS9`%XRK2>kY>T~;`lm8OQx|PolIaee6atxR!@Q1YTZz;D zIG=`HNFcWaYv4k|DEJ^kRoLK!x6rq=(Q7DE=26^q40+t73E>v(OeUhmMy(9Xa?Ca# zVpzg)+Vm?I0-5MlAo{X8r0NyIl@j!Zir0dPKi?kV5rpMvm%!qLM_l^#zCtSeav_En zt!a~`bL{&`*z)DjV2tBW8Y*e-+^Ih+yFTWC=IjOz9HLYEBh=XyBOyn8bxMF`X?k1Q zM(4YF3pBD^o8EKXY@)XE6U5GB`D00+L(~2)G`DM6l(A|9O}7kKr{!KJNHx|U@#>Gf z8_rMF7kpkX?}VZbb3bZFy+fo!z2{Skw>`hYB%m$POMZX%h>ZFuUHvD6Qk7NRERTN} zsM9CBl#?Z855oHIG>R{xA)vkL^5aoUM{Jg+(gi5T)4dt$h^+k877>5fDx(_j0E8=(U0Gr3VhhJd6;e_KVCm1pH(t??fR!;M2pp-D@%a_omT~0b7E9ZFe z#$f8-(ctA@9!C-KYuNPqdBF2}gyM*jOVy81{ML%gzyT=x0=gJ3ATAbCkRz8S|e*e0tD4M{5e9xLKDb6%_B%uRMaqpGf@y_ zDuup;laXbe;O^=k#?IhL_v-|(mUBxwsg6mOWz73basA(#ZhmmbOfKOmkmJ>aO8~n3 zUltz}1f5!>*9qE_$6oO=?_;h;g47l#yQRfx=M?ks&^bQ|e1H0V7yQ&OMO!DQb-TH> zL-r0Qxj9A^)3omzMbV@3R3){oGerTp5IhS29xJ+pJ1P*NK%hD$WCE36brY|^DYWuK zuTrAEN*9#M5}YtA1djx#wo)`s$t|rNHZ**e{>C{qP6Bh=H`m8;+MfEjP{yy?)(fL9 z+9yiyBqriiy%tW!ceah#;K(UXCwE|$M&^KYDtp6C#K=U>2yH1_j0>2LS;mCUP|tb# z^@!b{e~%O5Gtd{y@{%mQPl$JvESeL+ii!G&Hqu0j>f=0CTBQ?DoK8@ksbw(gO>d)-_deFZ7Fw(KIaB?7jE7C-^D?A$N|V-SqjK`aoqqDCQ$4BcdpAYQW{= zKO?YB0?Ayh}=l`sCXN)XZ#I~HhI%^S7ufnTuxv9Dw3_jxonn9o3XX~G6uYwI{h zx6h!~;xG}nAgs>4gb;{rIE+_sVDE8$=AWZQ#2m}OMXtPi-dg(3+BSB~S{2va3vx{L zz~pGRsEgC1a$S40W~+(~Mo^(XBvT-5+-Py)_-pW_n{5JJHi5mzrA_Xi#_UX2>#*PRyN+$S zyA$tv)wP8|=4HkQ5U|_2p#jr0T-z3nnbi=LuSypu{hu^fl3J8Z-JCX(rFB!hcUAEP z(&a*k6{`gV25IReh-+UWIlTYtUH1_D5?=mfSFedJ6iBP&mAaA-D`{G_q^v*R|0m## zHVT$~M%nZ`aqN<J%S_E>KZc)SLL+L5E1eiNbKf6|bZ7C;(yvD1c;M?=#Mi6j6X7Yq@KxvIUr; zpJ;WxGCzQfeAUU~K6E6d6T0v|0H;!qK3K+>fKgX~*5)8A*` z`s!Eh?$VZM-$54oLWh+8|>Shs3rGSE&jO(YtBcIQjHDZ9Z`(iWkNLVwYO z!M|$Rqt=8CFxh5n={RG(XMcr@=CPx9hxaHurRX&pEWo3^ zbtMUA-bbiA!mkUHzTAtJm%M)C33Y0Art3pWCy6OvxK$<;_+Ua^FjPr>D2HYE5@hog=8{cK&D-SUeKdn} zj02SDf;uWkmX^D@>TRHJ2tjcH1KxMgtPWX!&vC|vVazPaPABz~lU+sZcs8}@>PgW6 zBApmL{$0r&zn!pG$$)2H}P!)vnkfu=xaXu!u^NkEgDv^IgM zeW$)*-5UJw4cfxZf61Ue!!i*@df8v7dTpS=Q0@@GG}(A|A2cP?v%zLhf>;2kK+R*v0BM6Oo z-YxJ+sf2l6@Nr|qtsmR$t-rMPZEjduyl%#=2qg?UyL~uK(EP=6p@cKey|W!a&6)V4 zI=jmwvalZBZkf0)zv@9-D2tYN9RyKX^=fZxvKzPV*!x$%ZSB~cmS!$W;noY5u}_Yp z_2g>8&u;#RNge~lEQ|LJ3?fkK9^ffA*`fP+C%MsPcJa1)hVxzBOF}^jZCjU?q!Io$ zvEMm@_G*FKV^&u&Al}KaI;;I9kG?_7KWR+e~fTP;)!WxW`7$VkCORmUQ(T2A0h=fb7}jgHsyPrKNSQdOTs{ zqZheuuGbbw6J7QJ1l(+8A#SoSDOY2r>e z?;A>2wWvnGL%R!t3aQ2!4kbG>J=K{aq^$ar<1HmJ^>d{QIgYmQVl>do@$m5~LOXsd zguxxD&mx|2;28(Lpd8RZp+9!e_@v38$#Rn0(j&f&3I7xm*RQZ#JTpCQ|M2_Yw=+L^ z%lZ%mM^272!7=zS3WWwF4NH}*sucEoSgHirBc!D_$x;3_tHRtVLZX(!8t7TN=H`bc zuHtIpe%_{bgc`2-+Fat=u9X{TBo={V5(JUPTFC%$s?noBh42HG*gWn9_>U$Lxe%n} zOXW)h)MvK_U-3@@mg=v+RL9KkkKnUw6%b||2FB=gv78UwIitwn`y!Q5`2;|@4C>Wo zMH+N~C(>xiV3uQ*CPRXtq9g^=TnNXV2xsi=>ph2ENtS&FPP5d00znV~fLlg3vt>w4 zsE$AVk~c_~wj@3tjAhSOZa^s+C(YTn)!GG~?pLgfYy7sksbcowN49wD|KN6tQ8Zs% z9eC`rwR8d7a+1@>Xde;kN~`y5W#Xp@kbh~N{a-_BM>7UnVyCAFk9Jl)oD}hazX)Ux z1^09kD!mtF`Gfbu6Rkrl!Xw=a-PJk3tr!RwXnV9wyv7X_x{J4$8zCf&=^oh!+{HVB zFg4C8dtHaNFh7gtua6rYPWd%<^Ghs$qS;a#%6S{pe_Jq!yuQX2WpfYgUI=5#m zaQg}S3;Rax82ddJR_<|s?Fe-lw6#8j6xcV#m2JAAW@PZR9iz>+5z5$RXJaGWS==_j zvh8*D*iEoxejMTLEP^5uacLGsB=3}N|G+5n>G6vQj2y;*FRhFXJtu~20FB#?yB{DF z&mq@PA@ywpu>o+54xZ=E;xpXr!Cl7ei!AkZB8c_CBld?PL~pOR*tz4ZHo#Zi=A!G_ z26|7jCvXUby=mD#OtW zl}~>)UF}Y;*pwxQAR^J=I1@h6p}%S^WlHCn3xocS6%rn)w^)luTF|3I{#g0-=&JDy z^UpH}TvCwOfI!1!C9z2V(?;?(_78sP^hsNO{WbfCKl`cu4}bi}_O-5Vd#;~lEe4fR zD_Rxj-@#t!J>Q{>zF3x#P^7~2gK)!B=9t?gJaIC!$&Rti*>9c0m#{y0%jPFPwiUko zo46vY2_b_;L2~d<0;Z3O!W7hN^o%7ws-LQ&5mmh4pPWPDje%BakrIMR*}I++Gm)h?khDw188YQJ|g)*5iajsZLjMb+Ff#ssXrae^lwxME3>B~LV2z7*;yq{&=|mesUO31%ILFf>SP5G0Ok z@6eQW_gu1`?J4$g-ZHyAW~Dnres}WphriFM?=M^5*T2r%!MV9JdgCe0|2RK|48qi5hg-r`Nvk z{jv?s-kF|uJ3aP1TD!Y;{mv&`9XDvtpMMDr<1xR3_u(8TeYqx2OX3@AO*Ve&lARg5 zj1bsoS8sDD1}erzN5C)b-!y%WYvb4hceT=QGZqX)d2x$nV2%OyrzgyE<;#dDr`_erT>U0nChE5*y zB{(!Rgze1xHb+|y4UXFxXk2HEn|Zi^p#2pa9cHPX`;c#4|HOsDlVj%)%AZ3^xoTZp z4LCM(8bP(&KK}FrN@ybgS?ljFxj_10_A_EsJSEeH*${(2`kb5P%KQ<-uQKRC9%acR zQXYSnGsU<{06&pMa{fAh<)a_=XDuD#B31krU%Bo!cWCB88?cFSQb+W(h#GA|rlT1$By~>^?Uz2f- zjn-x~ob&4{FG}%!N<^qc1`V06&{Io@ii>4S;L(gqtCiBWfs^J!nnc(3$uBgxq{Y%0 zr2GLBxSE(WMT4utpdmKm2b_Ptd)Z8(PKTCmg+J(4KH&^Hz(bnEV{$8nr^I^kOL6d| zG=PxP$vwrG2V&{2#HrmT>qdw{y8q+N&HH;UB4oZ`AAIyv?iya_@Jx$MPcPW{v&U_4h=VG3cz3q@Y=b+D zmse)&+U=jZmhsfFuW*3uD+rtq(1dGnQJf_%ieoTG4)lQ@v9yr4AQPySd+ZgLarfuxrM4&f?;nt#J6`)Ui`` zZ{icXGtGU@?R=;r5YBT_cxLXDojYOBg@5Hex;m$kOWMjH?IG{1x4pEi&Fm4Rf9w6^ z8p;jsbiQ`|L$rJ!qM_}!UiKB9VOhVkmHnyQb38V3(iXUi^Xkoyd?|i%nmedF(Eg5{ zM_A=-^ zWzyp)`zXpN;wbtL%A2FWanQ1#<$E+7I7pl7#V)>|2f>kQv;Vx5>?4b&_cXP}P~!s_ zh_w~H3E}BDhe>|p#mh`E*X)1c4&#d-ePkDz5HF4lSugvjLZAXi8D$#D982T0i5o$K z*ULvs_rWOQmE<7&=$XTk;3Fs_vNQusqRm`N-`u8AvEN!bY1rlhtMU*RYn~bJg|sX* z_+acYKB5BS1py&A6)Rp9{8Y}1&f){QoF{xLL6{}5;ye#@%BvU;XL)>`G?l6(=s++k zmn&Zp*3mfLa#=u#>Ean0ylu2R()>uc2t&lwLBbdO4JrW3GbfMmDnDUG37>mX=}J`` zf6P8kmG4?dtH(rKLbKC>&^d_h!Y*zsS(^BfEl>X`d&DNV?TdYKOzul_SGXyR{fSya z#B|Ey++8aT&RK__M%4k5Ot5w#IEsogMNqUu@Sadkw)$ae#SF&jRD0$?Q8gELMLGN2 zut7IFdlwDWPg&ZgTt7|BN#}Jmmo3W(3RAYUu!Io9{=&{~mK)p9(9Lj2K^ifRmWcjk z?Nz1kA=HQ-m8MdiW<1;0!5?>6vrq8Tn?JMX&b+}sxD&QH*6hot%fyS#+HH)(mb_Hsn3ZG1lW1@2$sN&t_)#x(-t`NwXk-Ry=*N1Z;g}I<{GrNHg?Z} zx~-j0fj-(EL(UtU3+ywzjgU1#c@&PV$aUVAWi+-+oc5ht!T9{vOJ1*e_Wfy3-|E^! zU`q&$t7u5kWVW$g0Et;Qr|5$~f_*0fehU)P?EIuHt!d=ReH@TM5TBXjAkS)vd?8+WInwhcH>w zOkeEn*$4A_bUv(bUCCixy6{$eMrL;U+<7W0^2R{H-Vh)fpJF`;2`%@m+uP42L zQMvu*e!TFa^)PgPp6dE|Is5r7?Wo%HF#Sq-58F2n-U8*(q3jbjAB9|Nq-D$=v?MQ% z4BBtJ`l?OM&D-}syK1LD_}DtX^s+rSJnYN0zC=M~ye=97@s#(+BoDYBhW2z(qQ;3_fiq7^SE91go%IN=tr~p|}*E;FVtO68`FV zg^T%$ex;?d<(ErgJwx2^=$z&(8llLAKlVlXv?NfKavOFnR zeu`G%!3mEG@Mvk6pqrX{F<9Qs65ALDNCs^l?c~bzEn9r>Q~K5n=?G4n(o%A$#FjB^ zeaqUl2P}5g3t>i5&=n^!x}3WG*2*v?K7Xafssn z)JN9S$6*dmx=Qoe+$sTw163@6cX#z6C~>%o}Pcwa6HQnY;U6rc5Etmz+(xl&f!~Quf)9U2y2J|D#+7kQeR@o1! z*J64GE!+Hk1T3^@2xA-IU8Nq)T(aHP#>WKaU)B*CWh`5VTUwhrSc1m6gT0>;P<0?l zCyG-)lJKKtV67T-cJ^>$8-8wb*roz@iJ-^F!ZJee?RzXuBkzt5u_sc0qkRaE5A5E< zR`yzQa-RK^QFlq2IFZXk?II_?T=d`U{qvYeN$G_s_onOpRpHGs`BEJsGtAyjA`PC+01RSXjsgE6mA4MGU?}npZ zdcF8WSEJ9}%H9h{s)ukC{q^$Ira4|_2?s@5bl9R9ZBL1lce;u8*I)k%d%f1}xBuXO zv)S+cz%Fxl@yOt?4N+KHg%GAR%%o?cWpDbbb5w@+&Yw!sQ*{wFnTADC1Qk=;sRo}% zm#F}DkPh!ue;PEn$c$OD@=PLGe6j6!psO2EK$@Bhgwh;s>%LX`&pLYwTLxdVAx;V} zPyGbDkUy~1*@p-Ko3sv^A|~VwOpwF}gzBS-KEq3&R9m_uDrijwm6LK1_2Gc#S)L#x zHiab|i9Pz25Ca`7HTJSMZk($QJ2~yE6Q~j{*0&beGj`8ToqWxXA3JW-^Ed6@{Riyd z8^*-RWt%}`xPk_$y}gZ7x@TE7=J3n{S~j*4NJ;Is6cJvmnQ~OBN22>fYdtmpfptxG z+u4&}BPF&3Xi9eTHV8Blp1L>~(TbK^2V2&pd6TIZ1R>e&+vM)uEv|7>8Cx8_kiaJ! ze~5WBwU$mL?23*}U(Q^>1kmydTPD`fzCB#Ehcol+{cEvH=T9Q!HDm7O7Qzz3EGA$! z*h{B!N|+j2U7JPQc#r*oXUKoT9!}pyNaeN~gx_|gE1fo8m++W0qOIEq$&(1jec1QA zU<(TiZclM!;1qlNdeERgL}*$@3r9XqD@)tDz@d_f2lwG)r=2`;+KzKNdT|Af<-GO< zYV=7?8zQI^Z5CTAXiJugx7B~>z;0qk{7|2QW9rl17kNr(5+d12^t+G|b|qJDK>I_k zUF>1m{`B~Zws;loVK1v5^oJ(!-sdFsC`PW2kDf()yll5_f6M`?Pi%3t#h$x#9-O__ z!L3MV$6m1qvp2zYD`=rG-y&0>UhN#qx$55{N(4G(QNcq0O*IB0cghv694nl9U!p&& zo}f(01pHM}IK^ccsvodo|1J$4#hi-E2`DB!W&ZurxnKBN)vd*^T5!9?6>${(`{8*p zpZo{So9KLoBXQ#Bp8MtLK}z0PMvM~0{*aFy{soSvfe+n2MvDt4PT1f3<~QwseD{6( zf8Kh_deI!bdH%e0kgh3K1Ce&HX#rCHTI0{o^7pQVaP8k^r57^Sq9=yW{bPT+bEHbw zYlXv6U(ts2kr+%e?(!(9->_`vlb?hZmOES8j$0R}XjeILyfOPj(lrrdG+6sMJ72b; zQyk7fi`ayz5EN~sOXVX0M_QJc@RE?|a$HsgO?IlK&#Q_{jqFudqNq^3`e#hMx_4U3 zeH*rjEkXABVM^rqv6I%<$6*%s=m}~YjneW8C!E(muyM3^-5s6w&d1-ehf|nyvFEL; zkF(UHg9ut^pQ-Qjr!Lx6kS?#V?~UcqC=@&h9~;|?2w5C(Kv1z(PWU#j*v#@RYnd8A z=s4zf@eDp`3H9OZ9ronivEJS;d*%685H1&}LkmLGl%HUcic@YgGw`riUlWHqPX72lvyG*sLb8zOf+kayxN6&B=?3YdSEY*<{ZShPAz-LGi_FwX zdoSrvw6FGgZXxJPv%1DjMxS1Phdq{G;*iO(z1jDxz_-G~ZM%N`BZT1<_GWSoV{^Zq zWDj9KW~^i=Tc&X)Cns!zzn+dkjA5Sy{~G%lu_3uS2X62EPCXTw6=%i8$B9v_LH60(O^|lp^-OOuQ3Cjw>Uy9B$l~ zQ&=O*ZY37MD{5LypiwG<9xhIN<easF==qkCDh0;r* z!GNgv6o@q4X)Wnacg?PIaqOm+6`5!`24Ni|uVHBVIV*Ktu)e_y?DHIDObRWni*Q;J zWNI!u;mpb`N0xow)G0mMUB50^I$qKg!Cwi%V{K!>9z48>riyWG{h&Jyv&tR~%M_Cu;32qTsxkkvz5cMp1B5>Tk z`yRp?nyuz}*A%WJusvM7X4mg^q5&J_bg!1q5l}gmdw1#+{2MGy_p;Az$^WKiwrzev zx1k`ctuL{^@gq*#V&~5f)HK^2mY!9$g=O|-a)I{z62__@=-y?_Ja5n2;`)r;xUa() z9Ny?dJBhL7O*H)z)7QXr!?lc)EaT5Fb|TEoQg7M z4-o9`Ornwf-1!(mHmd&+i@y4AG5twgN7KeN2R}UUyTM?mA zHWiziw`>|gdIb&W3@50Y(41-?U=trB5~f9`YbEDyak!aVff-);{V?j!KdIlbA+w75~> zDte}vl|@K^6Z2AfdYzOx#mOH|F$p+CM(4W{6TZyr0%9ts0#Tkrx!g6;Id{gU)S6EQ z`wVG%CSf3!Wt6FiG9%n^RZvsFp5Tk=iYtZ%UW6<93#e*%^Gbow!@MW!R`+Jsb(HvQ9;QCH}z0Vsy$_cvj*lBow?)0}ijo zzUm_2`g~BGYSq2Eebn~Fxaz)9U{jS>Wha6w=_ukWW=gm#>8g*T3?F?|xa#3nS{dF$ z`oWcHi*Us0PFX)a%7$=l^46rbi8-0ubF=o3|Gz)CKm6g3&=ii_zx7MMXuomkqK#p0 zL&m7JT;b+T^yON>oytyS1f8ku%C<@{dRF(nV*P}(Hm{UXxI?QXJU^dKom|3I>O(uZ zklICjtZ%{QR)l^mVFL3wZo?2**#T@q7?l0GO*B@z+cs+98G(}ks~Ap|avE2H+jbLLvrgUx zG+ZO_T@bp$(UzNB4i(P?M| zRN2_`lg(%&n~_kOFeS9SKwVog1JlN-_|0yo)wOyom2aV$+*${Ye{5rp|Zn*J>g zb!@G|Z^na?FR@a8maR+tg;RaWFTs$5D4T1o*hob9WMiVVqY~blvE?X%Tl~@C5S^;u zSjVt8Cz$2;8$aMxD=Q8`{-3&l!BwTYcMa zCm~*G+B7K+Y8>+_d!!QTIN2)pFr4l6SR2jG5&||}q znz&n>*Ls+b_RKw zjp5&xHgRiYW)fhOv;l5R_`AROEzEJO+kgGt?_<8A-G2SdX^atFfT>TyS5|UqQ>SY+d9ozSiQNq}DcwWgw1Er%8dh&E*fRUint*BH-fKU3sk{gb zLAeAWa1$5(RsAa_Pn9R9I(l1sDErAsQz$jB=kj=j83ZHQpi`<2q?Xz#lNmFFSo#cb z(o{J(2P>LM*X=BtRsE_rK$<07cyYWdnwT}otDZc4@`vugr&16sq~-E@iO)I(i(rQU zxy{|WT49yoss6aZ0Tjva&7G>Nc!^L5CA#}p0_m2*lv84VUD&7-6$oz#fi5I#sZ@kZ zXmu5pa7Y+HctmJy@4&XC4wtY*TGC!SK%F-#i+V^1lt7{O(-Nce0a)ZAme3)LabQaV zAX+yGA<_xzIyrqfx&{_(TCU|7KTE5`NjMQNUFc9@stsm##4~ACTM$IR>$WmMyA56~ z-%^18(OL+?Y72OaVA;b+%MT@V9rtZ?vTnR@FwT zix(k2aH?ATl1-bN4@;2LxWAqOI)WtY9df%vF8N0>f(sxL;W_& zi^CMsSQ*q?1D*ykv4B7IV+~YY*yXw~(rw>*=_UKEiAnq8D<9hHZ~xT()i1qj=h#yu zdtbiZAWa0Bvg|>!^I0)+HJKhsNA;Uada2AR#6D10#XSq|$$=exh^EXr3{UfBRy-5A zUOeedHrmfw=c(Vefsu>W)qeq@L|3{o4QZ0g21@TQj!!-b63psyLaM*a$(zrO0?moa zDRIbv%W(O6oHB~W5R!Bf7=tSmrE(;6K`S)H0R^UYgqV_Ob73$hSD$Jr+)3l!xUiB83_le+`glQ@TeAGj5e&@0mAmGUB8C}55c)G2$}i@B>X=&YlLsPgzx=4hizC6YPwH#Yu}>67241Xx(SNuC zG@9@=jf=@825k+Dd}uRuHrcCa1OJ^jzHEOvHDUkpxBtriu)EvFUhikV&{wg>36_X_ z;C3|N5l#(O@svLe(DFYrw@V-O2`;1Sk(K|%5%0o)jJCt}o9H7#R%qK)tR{FRVeGe? zCE;GQG~HbDWf;C@wUK2tdI9sTzf;*{D1k?~5(;IPQ&{~cZ?YT!92DZ^aVA4?bzrTxeC093t5@tsYXGoMPiQFNZkSppk@*kaodC!BG|3)pG=I z1()-aC1Q7IX}!jz<$RKG3W9C+J<6#@scdOL!=G?^A`PemDk_b9UgsV|Ps!68`U%l; z*s`B=ezEPaG(2rM8tuRJ>aBQxDG%BI4}+sfThU*yn>PYe%v&BiR9SU`h}mQ_(kZTg zd;R=5`@5H3uz&pV6?^N(4X&&@Zm*7EQ;fAY4MNJ~!#dfWUj^im(irphOLw7|2E2{Y z&;X(wWbZajoULDWV>s&Pj|R(0s_EIgjGEc@h)i`0ux;%HLp#{aGTZUvXS_dX(hk8! z0v7O8!~02&IdCX0O{8AaTv*EiGf$yRpO8~@;!jFfSlT{mpqR`v0dI@tSM_Zd+O!YR z1v4iKAx$4ezDOCrPD7Eq!cAURhr1WJR31;zY)eomI?9SNph1F*mLXM+gGZb)hN%?M zEF=hAl0V4XOv44=vT}H2J^%z1A^(+tDDA7_sGDpH28`fvgq_D;U6oaI4jd86E*~Je zsxam8sKj&C%b_EmmP4fxlv7_zeveRG^0-gh$P@uTci_x0^HALt^8A!3r(ciD1fhr~ zHe;uj)CHq)r`jn_&FAI2ASh(jkko|+sK$|csJ}~I96usNDB|IHivE=1lsI^#s>Iaa zJ*xu*65mJb>5*GWiVH``VaX36-nBiQXi49a$P1uZriw?4S0DjZB<&q2H{9N^wIB{t zb}f9h;!+uhq1Bn5@hIV|RaT>MM}ec!vYx@!=fGk5L=o#@+EaPu4uj(;@;ecAeiDsJ z_SYaEFShLD(4hUjH@|M{ckkLi`0n@I)Xec;{bf7JQnGdS)NM))+4Z^RJv)k;g6rPfnYeh=7v@IM-bn$(LN+iaGCTS8m?BH01TZb`p zKqf#`Nck^gxXP{&GzdEw4^K;Z2m~6HmEi$L^sR`=M}Q2sP}Or@2S-R=J#mpgFFxY3 zGzrqqFAs~dGF)iGA`X`A?L@ST>Q9ZP&`PCFQh$EZ*-PaM5gxG*{}Y>SM8ttHIkx@4=RtCbxWW(csj`sGOIwtLLcsRbAJE;D1_h?8-P2tLfYezE*m| zkvDG@P)he`0uuftLC*b7LB{PO9Qa_Px2SML{)(2`7)1Bz7ibtCt*l= z5s8qA+MD~Zb@vK(1dl;a2j*s$?ZNb?*w@2si*5x0&ht6Nsch&#P+LQ=J3f5Tx;uNh zyZ4SQZembbCQnp1FEgms9>h&fqxN;2u+ihEFzeFF;R@a%l{NbS+jLxk#_b@wHN=Ti znc&~v;AWFH?*HxO{@~tY5Z%EQd0dZ&5$I`*8*gATM*H~E{otyXXmy&Uy#t2~XrCOr zOiBrJFkDl&HBG(PJLvRDxI~Odjga#()stlBcW^i7vG}N@YFEf#kzNs~&Xk3n_&RBY zX!W;5M~I^83IQ zeU>rjKqGCwpEgbS@&XRvsaIaT_yZJCI}5L?HehQtrJ1#r4m1{Ty#BiVeFVSX`LjQ@ z|Nh(Gwlh6lHi$4N+l1-u*0>brB5I?3lCkyLV?Vrn+HoZQ9tE8VSG{MkjPQG>VM0@H z2v=S*EXJnPoln=mNE3&+4imbEc-hw3iXBtZ!&%=Bs^f|5p^Ks?Wjn_C|!R3R8!X?=4p=2^Cy8= zxiUoVt@q<7GEkMBTrocN7RBkW_<1QB)4ZJTZ%jz`c&cmohpTt408Zt4M~iCjiY13n zl_kP^0mxlbOl}v}_0&J%OM!q%>4BrV%7UeW)T~^_PMCxvVUDM>sWNH@ zON+@x_{3_ZXXWiEwg_LuQ_H_2b1fj^_JdO>ig@>%w+;!P`{;x4p~y!uKsbtVWt`C$ z%S@_#hstm}+p>(Wex5Sk@D=eXMmSPjwLfy~{4K(#)D)M(@vQ$PoCYsUFdzVyIBj`> zOXk0f&A}IskJ%@;@7P~_{3-X+_S%<6hka7g;3jJiX`n8bC|}}5Iku9L>QI7Le082; zS}|WWTuQ44pVBFTtcmV&?C!qmJk{aq+)A%@)p@GJwcsn`R5u~kU(~a@oWPk1Pw38CK;q*q? z7sQ_4@W4qMAG?5UzCQcpvnyORcf&?TkK6e8IX+z4>}MZNW3G;yIw&y?k+AG7r5ek% z{oTjy#TUPB$45@H%)G``YD3n{ts=6V?1v0=9iL`l#I0>qke4pJ%ncsLxWVL}UAyrq z@6DE-7(2(`i)i|$x!UfE6zMEc$8vNFHtgEl2kq>MODrR|+h709Utlw@%g&s>V1pxL z*3&(Jk>e@K-gMi7Vn!?$s84EtcQvcyty{d^JGGyIAMn|dKiPWHt7$P7I6!P%&K;lo9AuBdz z_S4R)2mg1t1gm|3j<5`&7&-NC^*t2BQLfI)XdO9s2{MnU5UTe*;FZyoeR~a>_0yx) zO0N&2auRp+O#X8D4pBS05@^p*LQ;GtKbd#(lE^~3`-|aJV6C{6R{bo(%3lmu!&ZkA zYhpbe9BXuu5kJ*!X|%8OZlq9MY!bO z>#2{D-C&A|_5Ahn*P}1NCwvJ`@kM`vYvh@56=C>DQr$?T+R5|JyuOrAiT7vQOtKegghTzXdK z_&kJa^`q*z>Tq?v_DZjYFNejq#Jl1%`2|_@mvh$g?W9BP922t7)1XT8wSRCZP=!C? zD3+?}-%raHBWn>*BTn;gWQ#th?Fw{91iF*luYJl^SC(yZ_PSl0_&(RReT?wcV|`uY z*48>inc6p~rC8O10~iR2r;cB?7cRbmcCU~A-D9g;{eFiqmgp!5*t|aK+mwvym`-l( z*j$^oTlYWWzS|G&_S6R~^-ggIF}D9&dyuPop{fIEQ~MZsQ?T>7$rWppEI(hrbH%RT zf7|X%e9RK>iuH7MKvx*i#_}E$y$t7xKPnFM&g_AdpnH7u6gat3ZnYi3vE8pw3+Whv z(;1Szd-4Z^{2{MWLgXr^;d7UPdY;_xt(+iul2A^o^cSFNdzCR|PEV((9Gx;IQ0IA8 zou~vU>PUJ1lw+5tS2{9?mo9kj0$x8Ul`E=}ALv9MUX_yix$u-p^^`(bsp0bMRVWkL zo-;Z@UTu#<;73^Zs>3NhJ?o{X_?>+(a;EgX@D$ROrT8YMq^jr6eo+LdE;rID^VEjPAdAQj z=&y&rcD!h-e2-MDhBr+U=pjhlMCI3p$^TP*z4ook&)dKK>Z|tO{P2hNgP*=@7r3hK z)v;sjEo9Hs23kbTS^U$-y$b|d<8i+7Lxc~U*{?%t7O&%iZ;9^otOE?rgSyK0X$(ts zp6YNdEP~m|>ws(|zaT4dB;J+lUYQ>7J83DySEkjA_mV3>tIH8#iJAoHVQ+KAC{%@C zL82ozZmrNQ6&&~A52pm-t;(9PR6X zt~G3C|Ddj3+dvB#OKx;l`nqnv=&8&JlDq!a(C`M>$BtF)v~dUbwLo@ zJ3`PC^Qs*0oR&+q{F_|z<-AqRypa=xnj@tWm-9T*BPAeW2U!++ksN}SOXTo~NJ^E}I=^LRhXsgtKj z-qDm>S;o=e6qcjl*HPd&x*9#hv=;}wcka%V0~t?aMjV)zY~r#5{* zm2M`$X$1yPlKJG9Ud2~ANOoB_6+(iL0~uPM5OxfM-iS^;zTG|{FoPZ$35 zaIKwa(P?1}Nn-2*}|M@)Etp4I$U= z{={xieqxI=8}>$TpY^cs@GcrV<&!4SY4iS$B&)0moNP-ZZR3aG+>*}Omh$N%39E@dX%_M zjoX2=Ox)Je%Rb0U*57rEW%V_?J@GRe9zMn0%N_Pmb%XK2Tk#RW6V7;8LXW?Iyw_r= zj5a%~Ls$^sg7dH;E!B!m@VtmI9bgesPs`dwdCS+P5vbwPs~$_K0U+9xS5Gg;frLEb zv@cO<;er-{sHIa}@~K*K!j}&^@)w-w_dSqVT=c&PXl2&(Ciq0K!p;YtPKq}pQ!`f5N$V*e|AarKMOnm>r$vaLlzSXyA4M6$ zA?C^*7N77O7DrHWu-~Johgk6hyUoEW{)loNwk;2vKUM3f@FaZI&sz93A80JppPUAw z9!^O<&pyGgTsUtp+`MJ~{F6`Y^>^R5Uwi2VJ3pX_3{j6xsHJ5IeG&=1Pl8KRu3iow zm>i*_6=wdT$34pTr&b*k1&uyGFE}0-o#k@MZCK=GIlUNL@T+rq2SF;*HE1lKhQ=y7 zUHsBF@TiAGxR76Q;3z_;RM}tKK!94`M2M4}L4+1p7HSTQczU`b4WV>( zW0pf0OSZ}KY*UH5YRSL3xlEr%AQLT2+OlKl!V9H0ae!o<`;4{J+}$x~FTeB+1hyfY zK}&e!_7$66y6N}!x}Yjz^>u~hqC+5D2yQd8Q})TV_odLY(f)IOC}jNDIop0PZ?j9+ zT~OUBNxQgiJ&&huqyDT_);{1s@96Te;+jmx#1qoyo3UnJ8)>R{kftLRCOJGfK9 z{+=Ej#be9)G|+hzG#rNK#qx{({WOB-tLm`($uHQ$)FGAiwBShe{5(F@4YILL`?f(JaMNjgOMYOQB1>3rpnW#wfA;)5a)3VJeL!~dw2s2 zqmTV`{YZx$oapUhM%DeY?Adb@Ec!^%Qmme35~M+F(S5-5UG0U<4{wMH30L%A-)9)z znm*lP!#!v1{E08Ke0$uMmKN>m&36&leqt-@50L+`J;;7RR(^fLZpQXtcgK*8kG#Yl z#y)%h%6ILZ5C5s%pSq@NhdIGK3f)}ihaEzhz;VGEUNv*rq_=0lI@)?LOEX}n$1nSG zcPrZYzMf(BLLLWSKjlEN>gSbG-Jsi5XAqpd*sk2n=ofdBH@%lB9NbPk7rz5t#Kdoc zjnr~nir?9KqO1&^e0h@>#)bk|8F7j%!ckblQ>3jrQX-Pz(w}%!GoO%DC3uh@Jrkb< zCYL}xEuso>ky=d4K!7RcEORWSruR8ws8`np|aub{p?e{}t({lNzx*iSzB%+4Gix7Ydy zuB*}}Ft1}K-Nd&?ldY^y+uG`!4RoDAt9{Sfo9?5r8}Z3IVigNiT)p?P2=}D@`=xWg@U`k!i(j?i z_8WH;v^84hQPiOpj{Vl*X~xkgFL#66FF$s}RWI$ZWoR&rC6_dGX<$`pnxGNoC_rXB z#(R71-~ZM(t!Z}F{>#7mHoKv=?Cfv-mK|#=aVIVNv6RV$z?j%Kq}^aT6;@wj^Tt*< zl~b=q&*C392M*hZ8mCunug=BC16G1xa z7dmP`OEB)amw(JzIu>QmYxnel^Q~ne#!Ya=WJOWg#(^Bxu>uK`Ta_aw#y`^5V za*#;%5WM&Vx_t|S%2dxKqU)tUE%B;DBZBKLRc*K`yYZ`GBwujAhTG!^8ssS2<0x=^ zo|`nrn;6vPk3kWkO)nMyH<&1->Fem~vXf^|+bgfUY&JD%fAqn7_TqCF?787#>m+?$ z`@djjlTJhO*TM$ zKLKnF;f{NiTY9Xut(%FogYYu(975S2vF*`Tq8%mUQR0a z_Z%nviY+f=@R`FRq@XqDKoxrwoB7*d`B^uiXi0jLrQ7z-LF-(VkXf>2w3fH;e`bUI zqkaISqq)PD5Kw1t-pAz3Rcr~)V`k zy`odLlpZ5wq2OJ}l1*4`cj#g3L3>L#e3f<(Cv7DGOKqU0V8={F-ngT7E ztsxA~W4G-g%TN=m-1&;hncuu{!T#@CH|;<9i*MVnkB{3JTEh*D2y}b&n@1z@4fv;Xzk8f4~EibXXb5s?iM=+A6i>mt1qWcFRa*d zM@*M~wgX{sOQ)OJGkBLn8V{#$+syK9guF#R`@xP_o8X$cZG=b7!CGRze(OWvCVhY6 z+PY3H^DzXnElvl|uie2`;XKBt=g{oQyv-_0)tk1qxo96>{|*A*m>nBNpzA>RoOp_n`@46ybGZ_ET%R zwrx{$2#2{~0CRGgnfF@^6Tf(5qM7qfjMV$DKtMQH<}ajqBa}5z4()?*0UnqfcUGRC zIu>ri!mk~f#d0Edq$^E{wbBz@{pZ1Q)yG$zBK*#Tss!Q{EuprC+a;GW)yR=W)kf!u z((abf2uc`iYh_=o#@Ae^)=JF*T)hdkUIh+N#3Rch+8cGdu)HA@_4w3K<_u^z9F5lH z=LJWjeBF&7jpBGzaE-R}U3e-~S;-r`PQs z1>WHlajB&ft;>dehkbL-TrJAe`!-;2kpLz~t(!R_V_3{BR#uDzQx86lN$2Dy94|bd)k8wpEf{xq9%Y+Hl zD~;c&i};dq7U^?vnus|p(%!wolJO_p0>Xa1bu=c;Yu3U(MG9egx|O|k7^XouTjeUa zt!9~^k(m`HP(EfB*CsLOtOF)!+JMo)6I~lOJTQu;Z0wDO+ zgPRb-nmCaxA+m+{qqBqkgPclUK_j?~22}P5TPb^udy8do+S(SWC-nA!gBNX`rRm=8 zR=Y6TYd0sap%uK2Ey8Xze;D*c^Dco?Z_&ca1W)}7^E@q_`d{Z><6Bejqtt{B8P+D1 zA61!0CVUn7MN*lo@{yRB>uKd5*Txpo98K0X$|u(AsdD6s=?d$^vWVNmO29d6c>Px& zqD9#1^aL6j;w+R2nJH~I{0TYMhQ&KtkaGG=pHT>Ar}Ava>OGS+mZKM2auP ziL8-4)i91jk=_F$b-(CW4|<1^G4yvjiVMXYti-d5EosNPR?Yk10!o_IyU&b zJ3DXx1d}q1JZ6J~W}Qq>OgM8)P;+QS*exIIN$;1`Cv1xU@u%1A6|MvO#;Yr63b~m9 zTrn+WlT*f2pNR0M$s~(@_IOMjIEr_!F;X>v>JK@nG=PTej1Bahu<6BRy32x(t()1^ zTM{i|kW{ZsqDJ(aJk9%?(ut4G8)R_hSRA5Ydx9TUaX59K@6wkM;`|mA z9TGtUr*gKoS0GU$i3Gb=WGO8X^AYs$GlannziLjWlXZG?lci-X%}S8;5?m-*bwL)< z4xw_A{d@1QJWSmXcD0zz4^GR;2%CH`X?a}N%Bc=5ydMjzGxpi!#|X0zIh8ycba7fV z$-2tD$pI0)E3uz9P->ZblfyWO)5OPt0@bMO;w?*TO7C1b{jk2hFs72DEe>1S7d^j( zJMZo4*!_Dy?Vhj*ANE|BLEch9&`{@ zv*oYG0pE=yp@Xv1AbQ}s6mT@e{HGA8$jc{5UNs#DZIgr7LA_E#kTf&Mcp8KlSk9k1 zY5(cJ@-6%8J9q5IOUukN)yT|A{mYWIqvuAeVuwFDu|?VaO*z>dxeQpxDMFOJ|^B zpP%*yZfUY5pW~ni*Yq*DZlS%q|L`L(K|-RIZgYBEh%6WG{hCzmO;Oc{_XZMKs)9K310p zQ`(yM;=sb-Q$2XpXw;*i_b@mPlQ&i88IIt@v2B_=bOirH!{*&8psfE~0U>-o`-t^dQ1?Yj@BIZa%$H3UIjVHXpWFlebb zrXHO@-fnNR8%s;}L+lb>8W^-;_7cXl-rv=Aev>yeXdzEq6^yp^@ zOL*E^I_&iE=Q-(n4};COU3(_MC-sqlCCtZ$K1w74X+qSrSgG}@q^hz{DHOtSiL`L3kj>un5gl+dj4W7Pt?i_ z6|jU=oHUcJ{ehS^OzybW&j}Mm2BWY$FD3JrACaoxh2h~f$kI5)jG&WPV}4Vnl%6J@BYs3suMmsS08zlTR*)_(_S#O)BWYD zom57h`|1N0`BU`gS@-EV3LN_^^5+!1ew#MVkTQ;Fw{loG6j%J)iMJ9yr7Je&Q(WLq zsnyRqI116b=dZ@Mzi^Sx$e9)Fg@*2;817Jr7l z!3|Cgqt5Z?I{BsS&~&Zw%S~GV*MvaXw!CCtJ9plOIDFEqC1g!aS+Sbp^FR=EWWQb| zVOMe4-+qx--Mc2lm#Bxg6SH#sQ9g$}z4#hZ* zyuBqbu?WklV%bbvU0p^f)Xg24<}H)Al5R`=#3w@)z{I$-geWpx79*$s3}dPwY;T@B}Uo5{gf$2YH9kF4?Im}vob3=aOC|p#`20np2mK)XT6#DG;nPD zo+*YS1{&RQ+00)%8}A3%FF4fOZ+)$8Hs0TB|NDFI+js6ynyoNMb$9zD8Ky0?bA@F% z_84B}UgMUVH|!xdG_0`4uoohHY>JsLW;Qrio+c~Uc;LXEb!`B1EgXt-`WwhEkfXrS zU{Qwyqh4x~T6L>chhkyMmt0-`Bp^O6VgXY**kZr|iSgm**w44h!HQ*@Te^*zlx3Dx zwWkk3$d|_in+Z|i37_Kj<1&FT3=P0xC{E?>SM$6U|u8cx1J!a7fmt6c7 zQxxaCRwEP|BEi?nQJMc)=!?Yx`m8z+_gb&9<)*viI7`E?*vVrT*>5|@R&74UWkYCZ z=dD~OuKQ9RF}L;_D2}+eM}qFKygF?DM^dS0NWTyqII6z2*L#|l<}^o17>ucm!AN5b zoNVHhq9VEE%f5oin6cxdwv8!{WAA-n@7?FFRg4Ggu!%D045lXhG~Zp>SmO}NoXumK zt*^V&H9?-JvdUn}aU^cHx+<+O&( zE=|Ia1U*`xWv=ed5hl3H>@{7tYd7Dq2b`kaSm%}x34|QB2!Tq1l6t9n%t2k`Reuht zE9-wmdw(T5VRx8ROcp81Q(aQh?$3m+2&K3R?8QX-W)dVrcum}@0LrPXjC~gR;&8zG zIekG_e%e;Mb+wGziQ$(pEdGXHTWFhT(CJ5fTh(;Uzw{;}A>{PtjkQzwyvf;Ap(GpJ&MWZQ3|j0!O*cDsh(M>tU>fPf&a3 zOOSf*jiZRK=r3Z~ufIN?GEd~waeLKg{%K|D>u@ra}>iV zcPb%;(=%X$suWlKl%SAsR;QK2f_UaWzZ}qErxibl)Y>#;uRQ;^?S+ePSZCW1hmWu; zDDy!yaoJdVWli&CVnx^bLaPKnnvlvVzwAeY^KoN2EUylm|8dv%S$Ury4jfhAs{Njp zCyXek92SQnq~FlTxYZB*x{Fvhw+^*+*q0CpyBGjYvyA*lXbHbJ^}q(ZI&6mJ3;$|m zskwxP=k1C6_G?_nC8vE*O>R3uFigH)kTfRxJG`r1*T5U~+`Ek3aO|DCT-K8s8yl_X zUUk`v52>6~Pd!sy!kuuWo|KC+zTXKbpF`T%iZEa!eP`{J=Sn{C@c(V}dj(SWJPCT6*0D{^Gu zlARd6%w5}O?Knotdpbr)=cK%U#6)jPztsfg!eHHgT%F^H!s%r{B6N=x&Ew|PW3Ak? z!fJBh$op%JIpAsRS3B!ngK%+-=*nq^Q2cj(`b{O0^sw7D+{)dpCjfCkj=#p)&(h(y zk958JuKn2*lXs`=T?PJj_J;k*^o;!noGe};ww060u5gqVCY#V5@e%&)tn2=f*TS*i zc0CFl`=|T>IcO@iRxMYn4z=JEw>y8LKZGzt+sD^}_bp!@Wuj{Z#ca-7BE*k+E;Vdwv;NjnI(r3O3Oqe-T%)45ig_^-x03v|D~u-x!tt2i-9%e?+$$Cw{+)vi-=ZXG0WBYb z021^z0-+4XoEsdlU;BlxS{vqLe(?YPiQk?zm(7G5vX{27Xb-v0Zk8qF0sdNDE0nZ? zj`+xbR9DqA)%hR=JZT(z(Oyh1x9R?C8ZBQxU$LB8Pz|T&YCAPd>S<~yVO3l!W@k#) z&ct|bY{*WIK4*(d6E@48!E@^i2!_+Pv^a-`M0wDTkwsZuu_6o#>{S^+p1Efnc+wn* zcLpmA+%eeM-R@U3_Hr;}plif>`$ny!b%ZY7L;ptn%lfpscmCdZpmr^C&0y{1`mxo6 zNGiB~jwhRv=sgUb!g0|2M^(PKcu*RY_lrPBs)OnycMyK;2Zvy5l~FG~sA~MT7VgG# zN1F;qBlI)^Q?Km9(pk(eQyU!!d?$Om?N?uW#eTo9$A0fm{?y){oU)egE?Y-?Xe*00 zIX7<;^NU;u##b;l3S~Yc&D%b%)oGi0b!a5MNM|GPwP2nW9JOdG#);0u^ob&_C*wzF zs4LyH4CV%u+t^Fk$`x%r?3FrcqZ}sL;x>>iNq%))>Q5=z`&9}w_$=Z$NPZRbxN)ew zTC^rQ>ZKLq>%rEGPxY+EQ49-4t{#qB@rtX)k>G@@I!$p!S1Z5Lcf(OHPZ4iD9DC(0 zrWa|D#Y>rt@sAqaP{SVUQi*kx652ufJ!kDH(vOKid*n=->uS2H!v_`ys}YIWl|)xV ze7?gPFc0dAc@H}9eo=88l&4QRU$H%&BrVl+9JGHu);jPm`MDAb?LoL}@9(#+=byLV zW5WJtfAeGepRZgoLpYQKeq(0Fu05Ev(Gz3VjqsSxEFa=^e5_UdycG7i=r_AEQ#xn~ zhV(7^NlSAFLLq)8%y7?o%&zQvmiRg0K&-U{v8iuk?p(qbn_}Gvxt3&H7;C)G>-|46 zVNjyC2KfJ~Q7bQPC`O0q`tT)TES$H!VTkX8> zRT`16oyvG8=_T{6$TRZXtge0&{I(*i=JE)gMT$yGm)TeX!TlYb_B+o!<8}wnava?i zj85NVgUJQJ;DuW^?HSe>@(FCUGCf{8t}P6MfAc)<``$?j?7R)^CU+WjG%%tAQGZ?6 z1NoITg&LH+FW)H3O(SfS_dFW5B9|;p0xj?uiyUbKl)?4St{Etjxax+GE@IsBYs+D)Epo97)$mWc69^QgmAegUQ5^NW6-!Ub=hU zwaI8gPTML{y&u|E+L-80(`W}wMqXN7?-q@X+FmQ(8vS>JMkCGp&#fiUtZn#v#gB(k zAwE>|kg1fci=)QQ96fCR<{y2_{_NMU+rN6_Eqmk2Ww)kZ>j|r2qyq{j7U*qOHWakx z;eN=+SptH8YEkvxT8+wY)k^sDd;P4gHI34cZyc`zjTmzOdS3$frUXKpjUPAOxYsZm z)(6&Otq)!kxA9@iV9?*S7Ma8st1**%?b!#RHkeX*S`@X7)FH}7@@kvN$2?-&^`U-# zhZV9L^|2c?KIT>0Uh!0y{P}tphUGLnhKrm$(v#2I=N^09N^A(oW0ZQ3H85EjqxKG_ z-T-#v!{@6o=ls$zm9d|P7i2PB5VvEA!^hl-Uov&u=_vv zxCC_4lbpBL_yUB+9{g$NvgxWAnlXvvWr(WZ02e)S!w+Y|>&&RFyO>E#*?K@1ryFGv zOR`yjS{8@1mUx7D@Yc$>UOu^i$fdEb&!TRgW)9sJuXcWWA}e8zGqZWxYL z4wn>>mdaIISSnblRJ1*8GRb3z+Nb>#Jx-N~#7;yjS|5swW#0+&n-#vjJXY(YnIPJs zu^W7}rr}4*)n7CXWvj!PWXGTvldjVeufjjIm#TJO#v+n5rgOh&%sPhOzuuR?JtzV1 zEd=uXFYyV(2XjU5g4PexpwnvH4jh9Pv8waB>wRX1(|cCl1IifR|80Xo$te=qctBLP z8+CY*tBs}oC6F%E3tEAG}eb_W&{*l9t18y+#__NgFBMJsKOgz4rKMq|x{s zOV#SyPWx_^Hu~=djY#WWz0$$aS$VtCt4@*C)yX7?{<7I@y#w2*AGlY`){L*+s8i9{ zNFKYDhxp$tpUuK|LL;8#K5v?sx6DQKQp%qES{&4Si0$z5DbMX)X$aZP&q#Viow@b%qY?t|Zy6xtj%=TWP zk>u(A{VqvBJrhpn8E1H5vKe)6a^cr+@BjS9NkGj)EudO&A3*@&!CMBm>R$yN-M7k? zB-Wu;IjXD7k;W;GJ9M-Nl?VpCKPGXN4n-PBPv`lFVt7`5aqv~10-SR4iyKr{($zaA z*JjGo855;dzGeACu72^bz)#FEh6&;Z%}z)W=tRJ~h7K7xKcWi{vg0Wi@~G3nOV6#+ z`GB5~K~g4OW)cUgp)64*u^bANUoxHZAeq$ZHqvP(OQlghq9doW#B?fw%cRbT@{{vR zJ^$bp;)O7zi>K4^*x^ScL|5@!$z+`@A>?(dwET&N{^Zn7R_G+k>|ynEiW|$4OsD%; ze~K^XahuRl&I;29P6~?)={$ejYn7~0so#tzJ~>_adO@9HJ)TEi`B7Q2YBS33!*F*a z@7>5FNh5i`9hueZ_Cu5TZq)UM)LgbB?mM1F?IF7D$Tpc?bhbl7>2}&KMPnlu`P?pl zqP-an(Ow%T2saLt8}YXrVKMI{t*w@~k;YcjEAQQ+u~FX1JT{7#lttrxq_I(Y#n~)e zbT^K};D@F|?LZno4Ro;&QVY?&!sMIQswYmksc~{m1*7FvuEqI+Efrmw-g-M0u4%7Y|@{u-L;6Z8pd~MQ2gGS-J?J)4WF>B&P@Kqt5coHoie@Q13N}^Ln zA)~O2Ms4wcpF9L0oK8I*mjHx_BRUR#6Lj<}+M>g_?=pb_*8|lke^nn*nM{xfG!)5= zwUfVi&wBoNDHDt)9PR8Pi43 zl$2#Gi?3^wY@s6%v?2ril#VQ*6J#kKT$beTvgBFmQ~>d?UY7ENE}IXVN6-3`Ok7lA27mEWBflt1(NnlT1H7bo(;jx!fp`^vlI;pV30X?EYF{dc+MMKN z)KdhxNm;5LSEDQyP3=;kk3Vt=Wr2cnRom$3@3%ZlXwn$!7vKKDlM#55A7noj^&xkxsY|@TblLku(h$QU}7KrDvsA+(0LWg>>Snu`B^T ztfo^6rvv>U-at!S=udQ4>4bD4=MbKhN#H@LLRkbuL;iuL!Xw=P0^_p)>}nmvvII&1 zt9m-ol1qk1nM8Sb1QH4a#X5=Ul!wxCx;g(M^>7zuAYiUI`V&WrB_Gj>@M$$1Phto+ z#t)N7XLDJumLpJE+rE^CXop|&ClfWBPy$`WjluzyfLo?btZR74hK?PvL#I#K@Uf$o z9v&7^D*`GjluNTKKEpyPFQqdXN~(OKTbU*%{uTgXU^x<5y@o=pEv`b>W~{u{y0zgU zteIaugdhoMBiB5S#uS?nY2Z7VdcC|Nzq&>z`pIYcZ$(+ISzYTcMYXtMt(&d5rgs;W58>jcJqdq8~K$=C8PB zG(+I}cCnI(o95}(ripQsE}5sEHwsgDJ1)}Lh_>j2@ECh7<)p9TC7)x=NMB*`K8A(s z+H%V;8MoE_S{kcqlJOhkMB2^#oAZ{8xt`BtX!HBVG>y;AQYlU=w^`|8y0tW7-K?fw z8;ArdRDvf603iTLdD-Dc5q5z>~bGAG^W#d<` z*=+z|;lc-2dGDfCE?>9m=%l654r19nG(!l7e>|c=RMT{A3P4iRYeHY14+E(;TZAKR zmwO5sc)ncac$UUSnjZ<#(`E2f9BH-Wulz(ybR#+u%8|d2UOf(@zLRu61@kN!=y^3A z9?Azg>W-u=a@yS2QDb;kLQh9r-HVo|Ue)&|OwBow8aeo>Qc^WajB96e@-&z!Q( zJtJ1>?8JU6T4~ZM4HL?NNvGx%>vvdeSn=aVl~T_$>Aj`<&1fjRxl@1y9zt955#qsZ zolFo?l4hil^xOJ=N7Cemxu5xhEcXOD6Y1VLt4# zY$bm{q~0O@^N$VQ18F>$uaDW-8}Hg;Vaf8(J#E?VeA9*=e$YA&9I#yffGv9}30nw0 zI?;-b{=QmWH7(N`fW-vcxvnp1va?t{Jz%4^ay^Z;oHP%Q`LtKA<}{R#=tLTkru?Iy z?ziG1jqRr2N?yO&aa-4E`*I01R_kmn&FCNLt*=wXms{Ju8`Fh2t=d#;8Zkf7Yjz*$ zZui>AXUt`rO!Q)x#6?bKI0abjMIyVJJWD!*3#G4J1)tH2Ha*1E=LLaB%* zzH5_h_T+hO7AYCtB*!h&5WNOENg50eZja1Y?K5z!#7;^@zM4C01_a%ETR-iz?-)n# z!G>*?a%iB_z^4r&)f&1G2EY01*X`2Z|J154zG6LBZd)#&Va7P;(}E0@_31Po87;H? zX(d|)I$G#2r@>D)*Q70}FyAamD#)jvxdsmbNgU}KBrV_I>hv@P8Pkfa%zZ?9%3b&V z3n8sFTXia5sGl5DhOB(F66s5%7oOGT25Et`(csQGIICAelCxxfzTw3^TE$4l{&4Pn zI$Tml#*JKR{hWZ)`j8KY*KOshw!=U5S!$QQuY{}oRA#lFTB&ATa|J8E`lgLD|J_}{ zPV4i}S!S@`mZ;-ALRjCF>eIvx1)xh#fMlrnxxx}(6UoSX6I%?NndBtx0;U8Ns zHYht-8&%Cx9uoP0A4f^2u5$9{7nNN(>VfF;Uc*2=-fEPUxFMYi=yu)FMpV;`E#?{`8l2Wpvzf zd-q!ZBM+H%=3NrWPeYNDe6k5T^4pS&U~aoKwwrD%OvZ*RUU!n;PRqI#p6|!KI}+Hf zI^9XTQrexiO-XAfJZvWI-Jrc2G&bY2S$NdctcKNl(N&L+^__-6H#Q5JP+zFh*M|%r z6#NnWlMnK-vkacQ^1E5RZGA*{ES%@!n zoqG*>GDD*2Wv_V<*vguJ;+99~q9&&- zDG;b|Nh4^f6jMVyv3+~zMkNrn56_8HZ5XMc`CDdz{M`8qHv8^5OMP(7y81dPMTLJV zt(UGTqiO@HeK#}Wf|L)yk75V z>K0wue3QL8KP4qp3cycmz=*`aEI=x6uRnPS%*yk=Yb^ofq?!zEK156L;ShFv6M}3d zL662&E#>3r)T;eYZ3&m7y>$WzFaFivT4wJa8$No}s@+|*McR5@CfWq4cVk;%P#sI7 zlV3gm#-MxZ`NQBdDX;D1pG=<=X0mZ7{qO4i7MN(#Y__ZwYbJ}W%CspBgcduBcI4NL zMmy>5M4V*#llONbuU(aBPNNerWkK6{-PPH5-P0=~(>HeLRi^X!j+=|9cFl z;B5Mj62;+T#Y3KT7bw&T)afaxo`xhbbx07NVotH;g=c8_O$;S&oe^E+8)?PoK(iiS z7ybk~{OeyGzBEnV-DkLWVjd}Q?eHj&xJQ3O$vmSC8 zq!`Q6tO!BtCOJq7z=gU9bdjP_0@u1cQK?7;hnX4q1@P!d%z>Na8Ku`OANfhV0(q{D zL}Qte2bo9%>6n{1zOIb{I!Q~ERnKMAmR?0ZKzl{EwzXCkbJRBT_63`J^KF|scHFujeb`c6-86B1kf`+h zkYvkXa3diqEU=*rw&FHQwNZ}AJX+`8NI@@M=x~$i*WW9iTsv_?%=N#K#`=(5@M&G- zT_C=e#IBU1u_EeOY_&etau%N26-CQ(G$qiS;g&R-F}6j&c4e_evTLI6MjpFCW0k4q za$XJJ_%7B*q_T3=O?-KM4VeaDV1q^loCXQ$4)q)U$ya@m{`~t|-DJY8)hsF?fRNCC zC8? zsQ?}@OPj%zHF3-JO(&sUG|NR2l@k!u#u07) zD6`o`C#MKo7N`duucj&L9CWq3(Vdf|j69d9hav;CP@(veO*l2xl4=OQxE?Viy#L!M z0m(|BUcg%#UxC6>aoJD)$ZKN}LRM=EZ);=fkJGdC{pw|SXDDo*_C9>-fGzU@b!}+G zPMtVmogG~Wh?ql^;)8{8)8uJW`I zjZmfyNVXAl*J!9n$s#6s!(TzMEhdBFeWM&2`HtbMrZ8ekT{p-$8Ewt|Y8@oKL%yx( zt#7NzwDEqGM$E%YUk`3YTfs5D?qj^9pZueX;qh75R&kSYbRW_NJB*EVB8^7>NJIXL z6T_4DF;2WjTH#qoNCl^~47yqXCLpMhLe3Xv2?F8tj%(Yeqr;dk1g-q8@s9kggw}5q zDe~MH#op9N~Rc0mvTV8bGkGiZk zwwp;JTzpSLnSxi@nH`rMX&cOUSSFjdVlHj-m7*;!%yA5wS?}P0b+fig zhN;zboK6egW6t74+C%-7I2U<#X4a}59aih^v^fq(URqwZPC(}n194qP?X0TGDxkzg z;>;{9!B>a%W^$I3Z5*LQHBn`k?{)jINdo4J0=u3flj#}=0?)u-74eGt)V`S?-& z0tUBM&B`je#TZ_T8j6v0{i^seJejufzFC~Lq#Ah*&q+FKX()WP(+ly|r&*gv zuDtUNZvQ5Og?WGZ?o_ut;YM1c0HfTc#(diT0CGDU;P9Deo}ORDJxiYdD@DzV^&z0wIU!u-^&cU;Yw0pvxWL#b?P)`*6vk& zH1gg~+Lgj=GrjUi($I6Ak0>)~m~gK7%v7wad&IhW_FA@ch*Jy(iQR!TSi8oZ{so|+ zPkp5mt=8pIorb=#S@|3J5*Lx4!ditZUUV@||%u!XblTE`OlJq9tEU(r~X z1JEmlG(n9{;?TgTb8hFCi?;6z&)GwdJZPEzUYmXMJuAG9q2AlKZ2<&v`1Zor5~=rL_wiMFJSq9s436Gu+q2J7o%<};xz{os!vI63T5ENk zfJSZxMwg91h^q}ZW1>~vZOULG!Ui;`Glgn;wJilN~ABNz0H(3ER4araB;%+{NqD*;%Rt;%*5D~E!~>1LPyq0XfXwR zvgDtpFqtgV*W{fBz-mggL|BR`X~{`%3PZo8a$z}ugDOHYni3@LGICpFI=r?FA^tCk z4!mSEU8w)qv=O}$_nKbRl)4COBSMvPa7zMhlu@8A-;pP6mJ{ssUMY9|v3r})r3&&Y zF-1!rX=zwRALcqySBXE#VV-*Iguz@1sHi&aL2C`j_cB1LL_G+^D_@l^%{4=QS$NUE zWzsD2k(Yy_){kmAz@il2#H*lLO$`p&!Ka?&1ddB~d4Z3?o*pYNmskow9jH9YiTn^h zrVE(YFi+ow(%I zATMtVp7p)`^I`C*JR9Y;RVgKDY_|+Mp^?lpmL=)ePI;2?cS0kkjd>>NM!$`&ihn0) zY?NoaVOuRryL6NBcACdd(6E&_yF`{sUBrUq$adaroP7ROmA zJ@&GdW?p5D*)jtM0}?5_`6cFxOD+TP^2EFpN%!%(lA`&IYZHhYX*-!Uv^0>{X(mZD z^HX@8P;8%(t|x6w)A*dEU%#)_mgw*2ZF%WBnl-dQsUAz^hpcz+v(~r&DeD|M!C(#` zOfj%CD!R6Xv;y8izDmcR3)@dLV zU{ihP_zuVo3|hLkpCyzXmOpyPGRF@&kn7w#Y?UF-I3DZ(Ec3_IZXR-yM+xv%=xK#mt+8vrDpJkP`Sh5_`fElK#wL@82uq0Txt zQ`l8$&yj7JvM&Kb)A$t}h_NG;IBJ`v9AGaCFa`YP$UhB`la^BLMbZ~YU*@ie)~N#6 z$RjV;W&+%FMs$j!0y7k()Y)Z=y&a*=L8}5tQKL!&jq(sga@3{ndf#LVZaxGm*yvm?E_&P5y4YZP zs=7Tes66gYXAq0C^XpFe{jk&Tmdtlrj(dTRyIqD>`N>~{cB}AqTkTG0#Jt<35#zVZ zTQXj|c_h;$@0DJz6%T9u5iT8kNCPlQmFeQt!{Ntf2!;l(6289gnLeC&%Vux>(w63K zG9cb!x{D!+(J4%R2#^uCo`3z~yy!C@oGja4#}omTYnKC0km!VFN=)tY`ldmhU~qNIpyqK#J33 zz}J+!)>PsG*b>pZ?8wqNfG169Rc7WaH8M!01-L3+1F&x;h*0gC{`Bci2E?VsMaqBE z`bYLy&&WPNOSc_(?g=9F8neRI1@O^ey39`z@RQ%S$4-3n1sgei5+Js0OSh-&_8Vty z>~DW$-2jd*z|#m*!23S;8J_btdh@1T8yiJX04u&-s?hH}a?tia^@Np~rn~aiS*t88 z*#6&s-VQzegk^{NZ06!MOCRX9=}vet%yI!_(7BkVTKV}_)l^@}I=Gi_eBskbizM2j}^ zz-b%Ux7P|cZrJsgUa^^9ykcJ`sg%-KS*U^jmDiWSbDw=%$a8PIz0_r75x51&DU)rndd zdwJ}J9sS`ySaEK_mN6VO-2f9!S6sDAwoD_p%{eO_?d33XYP z7LmSU-xoe-Bac03og@9$nE~|Pp0L}{y-isv$Swy+3@t{9Kgw?XyIK?QQ@bkg;UO(E z#fv?cVsA?`_)!+oecta&V7DdU1ONJWudQqX*x{vQEL#hP+DiVBi4@DZ8N)uL*JS~W z@c~?#KwyAFK|zBWT0vj8h1RPI@SB}@+X}aTVWp{`paEGzm~`kVG&5Q&qp3~_wvH9T zMU^EmvEseTRz2RT$HsSo#zu*n@YyDf);J&_PA@Mjy?1+>oYqw3x~EXZQcF- zHhk-Ms*#ZlCh4GNqk6x*yulJ1;k{-C%mw z?8M14cIe>;0Yo!427o#CjW65asgri&`VCu{owLEden9JKn|+J8d>sK$c6d_0Z z+G|Jt(eK*Z-}_I9l02V!-1_$&uv?d|SrMSt%e4InW>3b(W^9py9{BVp?T}>JnX|F$ z*Q`I&<-o9W-+;aQC*S2njUgL4anc5d_Sopum@P|wJ$-iY^PffA$wr|YV*q+SfK-oa z&1flmpMKPa9yo=zw##l@xyDY~ob5e))DFJzC7VKiB><)-9e6=LmQF`F3JfmuF;wL% zMKdPR>3#C`rqSbWU#X`%?sg-OB#q?#cA4J|8r#kLe!4p&f$h|3WAon*jXP7CRjT4C z{;m3M?QSdO@O@PiMquzuXe-hSJ`Tp1a0#+?luJ7z~d^$FGo=Is3+ z{K($;@y~1yEp^|C!?usj9<#&!*7L-pHgM{M-Fo+&z5Rdx2b+BBZ5!zBVT~IfE@&5Z z3P}#&k(aSwrkdxO_B{0bCv5=GxiC3p@BP{LI8o(SRxY6FtMytJTZ{7mtSm=|<%W7~ z?AC32*!G%dGayKj-bT@H02KLv+SN> zn?%ES?I$nU^4yZ`J9&y-xm|Yk*RR>R*Is3F#)x$vK4>}ODG!;`DKd4fY3^gvRGvJ+ z^m^7_`_;?#<}Y5fWkB7?Q;%8Z*kS89dI+$&k41?+cKybvU10ir63wV~wrWF5_UHjS z{+Ul%2b+Ax0ibXG>wjnGzyG(k%v!~sqem=@_O5Gqh<2Q@>G4TB|MOql+dufJjZaKl z@0pXzV}1><&S=3)6`L~03u~)F(&Oq!uxnS zy)gp2Ri@kZWwH8(tGx9MB$65L*$S%6p<8#_)u21waIVxue)ER4_E zlMt`KRF?Byd;5C%?5HsvyU(8Z=I;O=v(|Zd#HT)UfR!Pw3j{dMp(VTcvlp#*Y?3vE z7wz2Oi#B+KO*#VBXsD~K8?2%M)AU>wV3K8Ob8d0YZomGP?U`A$iPvx1{AZuF+;V}1 z{+zW82%LEJb^Fo3{r9&2Ah@!L;ab&yaof+yBIt zUYNBT@1L``e*O!a0~`*q9&Rw5LxTy3o-bJ++Q|VxPpMqA0|2@HfA&wUMj2&#r8rZx z0oK-)(QcMmx0gdRSpbAqmI_R5&w(ZvZR*|gHV^O`{Q7UPZcpu7YYKmG0B_01szfJbfK*oXFW{O$K_oay6-0n=ap&UaYLI&Kr!uG;%Q z{IQMy^kqB#``@FT3rPTS{x@0*rk6Gi`_ zgMi&x(y-Q(sdTMD{g^5SsU^KJG;V$9)L%aJ1@S#vnI>-c#ccMnZrKlBKI%^L+N=}% zsF(3R|G(K1h<(DHl0tj$kU9&&82)MPn~*_{!QtjPv{^r8ec(l3)Gsp~=_@bzL22!vdQgSQ}W=^fWTBvXM!rV?@5S`ZdjFj`Bj)icC$G zCT4Bn*YEjJdn$ztPcNY%>-)qL_VCxg!u0iwO)*7%V{*(+Fz?*Wx<6?cJ6Nwc{!7-n zvH2teSj}N~u@|uSIKc5rU!PT8J!^J#%sN?rmtCk>zO&nMfZy?(SM3&4#B(>t{Cyg` zc-e}q(_0vyVoG?w16Z~jTb?O#t&d~}OfVP2bLt}N5LFgHqjpwngGy%!o)NOjSVOxf zjp_oMIBws(W~1lNYr&q4pSuVUX6fI1EKfk2ckAWX>?VMGKkE%gnA(=vmxsRdb*r+D zQD80us1$gv0IqAur!ZOskh8`UZRj%j9(d{*>w5elOYa%9#kbGf^`F0JozoB5)1Upc zZ{jJliAJEd#%^gXd+iz?wg-e42JkKK~K*1ANX6SRDs*5D}^{OSGZZoCsz_vamAJuAg^%0v)o^zM-#O-XAI z7tIKtJe_`UvJ2<5oU-V9N)OYW=jS}>A^6D8Q}gJt11W!S;Nz+F2t7QU27dJ{os9cB zPxwP5l2B5oN#qdUpFD!@Vi^J}@{vwQ4hqs-F{A$ zP1Z6~=S-WU(W)?|JoU~w{HPx^bU95!0>UcT0<5uvRhqC9U;DhJFI=`Rrg3{8dlYjr zfI;_b=H} zZPW+28pW=CBMz`8UOQ`A|JZZ%AUoIlZHW_P23RMV z#>~$33zuwiY|IXyK4oW^ia*3!!`s(x+UVQwVpeC|23gZtL0h^6?ScL-JN&ulv6b0v z@1P|-^3Z8Jz^0jHG?TCW{3W~c<~w$D&k*Ktsu=dBJ@Y5iJyf=@Ea_nV;)#bIu)gDm zZ5&|z-XFhi6EJ@C%U|-H+8s>Y*H{WrV+p~EGF;8&W9U?C&EA(aVDN4NoR2af+zmPH z291wlJH20|U68d-*ZJ&k~sKLBPl1*9&JXZ!@Xe99TR8u%S35G*qbkn;iD2X1woN5}Yd;O+WiE|LmQt8WIu&FoRwPT-q&W46ZtZ?(Ty>=OsJvVOJ zf&KgJu`hkjCYg5ZKzp_CQM6WQ>SSxL3dmSSLse#jMH($z7vOR3jkm4$*=Mk8__%AN z_F-masMmK%seJvasa4D*no2I&>`yq*chOWg@|_S^PjO{re)J; z3vZ%*)4IJfW>SjmR$cS1}t?gICpO8PHs$ZkNz{)(-8lXFmO$9Y)(&Tb@Vb*o8?QK7Pz6ik7Olfq^V}>>>+p>_q*eO5YmY|z^wv^O zKJ5mLB)$9htt8O8PFtl|@83vc?Q^m&o4-eE<0t7S(BWmvkWItz;2Q#JI_KBJgVuxzX=rQlJCIb!PRuf8 zt@TG5gfwVX0IDjB==xYA(5Yz3!!?az-BpQv1R4cV^`~&}wxQvf^5c-M&W}9x9G!BI z-cNk%E`*5Istdls$7vI!9ol91s0iRP;HESC*y;KpYsh59x4yW1m4x4kh2U0hqQ}ZL z#MwA}vp6Cqt<=N^7j5Eieq=qY;|nrSh~L4X@@SF|UNX3>Im#ka#Jvahvwp5%b01u> zX@H)a5@GuD@*AvAd;P3+A@E*|6OWxcZ;O~Gsm(0d)Z_%lkIUB06mkE){XR`PdF85W z)@tky*7R}#ty&e3lVY9R%*>2kIs1-f$Y}OEaMQ+F zpI7+c8t3-VJ}F0Ka>gcJdz<}4MK+cUcpIL2ol{vjttC4$WP|WCbM69Vxd@nAvJN#= z0Ia6C7br^wty~o?t4_M;MSEFAV>ph+@76o-*(7%EmY4$0AdfCIgxU}zquBzhGnjcP z-=4HNpJu1v0O$+=HiIU1;>tC<`m0xLiRt(PV7Mr7%{oW52kj6aBfKyMrVXjyQ{B6IKM&&%b|}>G)|hgW)V=qBV8lq>|X?wss8! zkrV&#q!amOS?Fj*LqnWDwBPzLAJjE6!s|o-QSYO&%?GeM$?7WYyOH;9#-n)rq-K>mj!X;Z3#edX|V?en& z%>a0v0g|;{3_jkO)eA3Jq*zjqshieA3XoGpBT&I6oA0De^%DYE(ym!fFZC&Aw0Oc= zf`HQ43CyJcYoa1=@A4feDvq>hTA8Ta1hTZ|&J%lnid$Bv%Ye%$>{D(6cZ_uoxRg$5 z1PbF6wyt`1o;^H38@vKARQUyZ1C#Q0=V?^dI*4^Hh^uH(o2sPFSme>4RYt{8sPdLJ zG?Z0Fl}n2Zs@QAn$B=g_#q=5AH*n&KSAN#i)r#-ho6X{E7QU7m+=|b@c4N>6&#DKr z9yD|_oM2KwgH_>#k1jTD6yA8pt^$VU0BQN#)0SQ++2x=7!WIBM`6Y~&FP3cT`#-Yc zb5AnW$$B&7RspCiUPDFz%5J6?%Wu4AW2EhP>Jc~oJU0g5BcJRk%$J~X>xEA3@(mkf zBLurQtVe5GFJ89^YzEG=7SZ+rOxVeso}Ob(BgUH97?EdZY?-xkqs5ild6EZ@t^(N7TKlT!?AqTT-KK1af#j5SvI6B1HNaaeMB}L zd)SO4z5%{VZ@p_Z`0u7eEdtI)(duGDPDPatpsUb}eNvH-svAocoB*@4aUdJo393%_E+*$gjn5m``Ra?mar@ku zit?1(35`JE-u(ptIk1TwqS*pP38d&x2q#sY;DnLa?Z%sb$Y}yMINgA$A_i7oHG*^LL1TGWx$tR2G=mB)aB@b0vT+ug^|1Rqht^Xz?h1gW4mN#s zFh5v9+cZ<0#|%ujbzu%B$M8rBcJ8u%(7}SVY@F=OS~VT-#jOO#T0(aBG6kwrLsHo8 z%W}#^3M0=Q03?}}(e7=fmxeRX<`1=X+3Z^aj8&-QJgPfCW(_f?0Z-DJ$t^8G6V0E> z3EHz7C!N#)jzDq0m}<@yu+7JsM44h)Kx;V<@abauTT`TI;%QThTur++#3R=zokFpU z{b)Xr;8n-a<=At3oXTM1bQMYBxn02G zaS=_Oj;bSPK%ZpJA9j)iTo-wlX3Fe#rtx;Meo|mqn?||_&ms3^rs-$V4r&unFCPF| zjOR>Y>`n)+y-ZD38hya&~RKzkU+lI>-A({Mee;1#jXJKE8+)2cAvhZ!fqt zk3O}J>7Ra%Ts-_wzhlD>Jm_t=${C01W4Ap!o-9wiM^5*&6Q5h0-ikb88u6XH-zkl)q;JeS@^L3=D32uln5TG2`s?{_yU2_9NZz;Nqp>Wl z;%(%=QyT5?sr;j96=|iEro6z^&*UXE5ISxPI7F|lf802`f<`MhN^;${I51KBR*t%Lw3zzut7tcN(g{J9vS)|fU> z1}su*)GdI6=~b=m4F8ZPb^^)P0htySWb*(aD#w=%0M2rNluo8B)uzOWNo8hv+77DWU2z+k^m93>$w+ArW$IRDS73Y5$L5J^=8N<5TvPe(T1Q{ z`3-Q0x~bb17;HsMdAM+!W_53Pig(&ZTdsx7+DaQEwUSi~-^sPzvTVe|y+ET~9we)c z%F?bZcY{W|d2Kb`R%EeN+A;oa3f;#HcH6~~JxtAWc)TAPJ7kNuV!9s{_c z8&_1l*IZ;=S%Z%>B4ugf_B_s1)hDc@>wrz)m}F<-1cOl7`n!j1aNw&}sGPF-%KyV) zS)gB-XK+Ugg64>!-^Yejy2Rk9b9z6z*8+y%#d-HT$7e`VU1=dU5RCqMiJ^@*n7mF>Xyg?bplzw zZc(Accd$tQ%2#by^(g43yvs_XjVI7agY@zu#-0qkTh-)E`2>vc z_m7%-3h}M<$|nto)3f4;A7=te3itAmXP~Pqclu8P{{&GY@dzUz4@smp*XNml;2{aCuyGU{%v+cFqjPhyo|q8+Sy-h+2) zoO;JLbBeN2c{fY%FTrM!HVNMi8k=NsPXxD9C%Ykw-Jo$#2<$h72|9nR-_uY~W+&is zaf-1^6PnUCXn?}$C9S`#x@bVGFtSy0z1FvnBfka?TX}v7QzEb0;?gUY>qmpL?>XDE zpYvS12W>XTxu)zm%wsIQJWmVq{s=^xCt<2a(T2h zOaT`sSRj9uJlXX*@}y<^PB9=IWRdy<9Q$+$&VdOXgDh&lge|$7Oqcape&mzT6u<)z zb`JV9Y^FE^9Zry_u(P#e4;l=nmX~JWW1KQEJ>AJPclT)k;S9S)-)5Q|Z4mtCJN5z^ zIblIkg3l5*14~PjmhC@=`4XnAIe)gA<3tRM4W}1xvs)HGYKzECz(K<&QqzBzBhP52 zDpkyo%wA&`D{|=y1FJ;+VLI=NX%DL7t+=3JX5Tqw1%tWMrKmYx=t-NF1_f!#UK&JA zCklj@c$R4xX`#zR65#Q;q96k5Oo%5y(EBO#50!AexDjv#^y5d3kIS|qY zCfyM~)Pu)%fL0RXQ94}EzDbi8z@Pj`5)#3Wr-in%aBr?+lS(B;0DOECH~w&}(FM5=W1>AKnfTxJ^D{~Dp)Rc4Js4AHdRY`*jcSQHN$~%4- zt;UIQJqyw*L@Am(g~YVU`($iST@Q?Lli_#gzIo1D27|2%d3OqNKbPNV3EXddzcJMx zHbtno0)qOZher!mt77^A-&HLHPk_ZZ7-cl_@~0G_G8-5;&U7cHJZ`+iRN7e^$t|GG z<1~fQUs)&SI4Y%i*7UR9tCDl@HgxclmLGZ;a6n$mnBSNiwOdzZX5^gp^`5dlC%%YQ z4^14?wdrmESmz#gFkZ%h?=Nj}{x-Jap242lVL)rv4jemWqow1vz}m6F!<=$~d68Lm zE~c_Qw&&rmTBghnUKX^cITtode#NQloSFNkEl$5}Lwg?Pw1|_Ob$bQ>x0nLMF5SQ} z>mvV|Nj4vx!$w@!hz%Wj#=7@Bh&HfS_`*Tp!psLYe*F!MDSrk!M;w5rda(Pp#D<9* zXKnTt;IOjbYu{?Dhh%v5@<`f}tL*SeLpnP`-wkPS0B54Aocp?PJ@4&PJ_7H z!2?-DTor&=01>X`Me8acBpf6#SOsxVJ!Atotb@Uo^_`#!fevxtnm9)u@^cOy^f(x- z^C(T2V4|FWQwB}4fJqq*v;R{bBo(kx+txb8;PgZuge$(B%A$XwDNrV-bUAns*zzm| zGzk}5&Kdz)m#Wk%f5kPRN{Lgx{NQfcLb6!FGAvX+^b?(^llO5e;_ivt|=q!UX;H8Us&hI zoidWYr(?JPS}8 zw5hW{LBlqKG2%nkHL%Zy4?boXp56`jLV1T#}*zEK* zn*z+$Y(Kk9kK5F>bGAJ7zIAs$!tQ5GI^;N>EPn{ip0sk>)yxKhne(h&Ja2=82UrB( z#U7W_Ha&ypF1yDv-3OTZ8%4_lfT;B|2=0US0mQ+Y$^3xz02a%YMH{<@#*>|urQ87a z?~Yqv-vd_bpCKN{%uV&!?JKv@f}OL@o-|Y58h{uS0l!)mnbveP^NP~g1etONSjcK& zowSMgx7}fen%ezefAQ;N1wsHjYuc5EdkKh?j2zO`m{+f|?oE(E8zU44kj>ifP|Po7p?SDIW(c!-kY9rcE;ZX>FZOJXuEM^Q@EWVcnjlNwpSF=f8A{H{}7p zGLIyl^;QUUd2I@C!J~ks+P{y(ibK|l=Rc&yOGLc?loW^>-X&595NQ*ZqG;uwv~L;O zh5Sp%yG$P4lvPV5mb6X}Q#QSrXGyaeW9j@A_#-89QSNS{g#5gnK_Gy&Aa~!$0xf;H zV7(Atr~}0W;e~a;p&sS0Zr0XKhqr|8J;ALZg;DkGO-Zq$Tvv zLhlEZCTJDO1No}XB_oxYApi05BL|&LEv=^5$nim>d=Z_?S=wCnL0S0Fdfa9FH8tN` zVi&Zgut}7Mc8a#<>nw>QFfKo3q~jsA3lAsA!&E(W1+J;_EgBW5Z%G_V<4O6WRY{thn$OnKtCP{7r@m4H1?`1S zm9dj|fgg4D5DXz6%{y%+NomkQuT`ruDAV~%E1`~79WHRt*W@`i$n;rP-ywE+4zY8y zjNP>#(s^H^-4rj)|mbTHHkmJ}c2BHj8%i0-{BW)@*$PQTs?ZP;q zlyh!-_l8lhIuGv)(9|?L(IquTLjer!j&_xcHni}p^K>&=&UaNr7drXh15R9o!EAN# z(VeqM$T}yn0b;anQvgp*MiktLhCTvFnWn5|z@q+1L#DypjgM2$B^pQ>u;xd25$0JS zAEneTU`?r4Wkv|vSvF<}FfIY~3YdQx{^IA^P8vhFGPo)*~ zWeh426{wxe-fm!DcqFW!)VrXx(4Y(z_~6UJH;2TjXc?bIO-!?+?dlzaewm%k9mfyZ z;V*uH%~#`YLPs_jvjR@=2u0^lhOYI#3Ru&Syn^7|!!k0+&OcxGTdzD-i;P*j4N%f4 zOg2RG@Fy%SyM>|OfG!(nGSpWJkQF{-5F_oqf()y?19`m<&;!ke4L0PVO*+2b7Mj|b zu5nbr*@3Eu^TU7tQ(fpaa7pSaIm3hE^FC-wIt!}IaPD!5lY7eSO0H2xR#Uiqm9@l4 zF@$G{1Bg`{q|B-p)sM<4IqSPZA2&V$PrjbWnc(&gIOQN0ui+{DZW|0HiG)f@`rMoM z9~Pf6RKVY_002M$Nklc4en7J0q(y5;CoatpMlE>JbczM$GssX=RMIlk7&L1Yne`=@%^pi^2AN+P z#r(*;IP$?ZRg-ZI;xS;Niy}3~UIYk01ZhUOOlF?&c>u(spBB>Da~dE!WPRPejJa$= z!Nf+1!Lm3z&dC*1Y?OJ_1~?U?YJ1tlf2vAJPT0B3Qq$9Xf+Jz$QF>3>!LkSJlTbmv1F~0 z%S-!3U6plW2x~$sverytQ_BDz{si`_0G$%RuZ-qTurSq~r;U*jz)v3&W$fBjFp@ls z36C!Fo&=zb-nef0B3eJr4({O`;W3Ot>(q}lJC32u$t2VwOC1g?M9qJn#vi--8*;Nc@FJM0~-_LRjY$*zK zt38z{gX&1MefK{8Ro*Q(?2dUFnUl%FTZf86JT*P-OfDgdDtW3>YS{nl2E}#|sJwOR zh(MG!n55xDJBQP3kV>(IrezSP@0*!lt2gyct8Qpex zN~RZ`?a)xVowO;X-^@imx67aCZ$?A3SL4v-x(70$vy{`IB{1gp*ywauT#TS@T5+ip z?a-~TW4E+?jj+Q>;658<(N_iAb2mrdW(V`jmfwR$YUDxNbKrR!=V-AC19`Q~AHXP> ztARCXKKN5veJDrP4C8^nCcmq7)g-X)r8ug_R&KL!PnSsV9{~c^3BOjfqrdYB9~$^) z0P;%!i>{GD8##5{irD%ayQ&i_rfm=4Ly&%fL42OUyywUfOcL#}BBxr+T)E1$?z9aL z^pQ6*>+7==W=m!;c06+GsP*>tavH}a)|1X!LFS79gESJfMu2|6(jx0qYXGLn_s-eu z%(NA+kD@)s?1|Q`vVm!8cHX-84%^1E9>=-u>+2zjf1QC+D%x!&+Hnx{S@jB@9#R)RAm1WlQkC zz&qTHf$IK)`!S%fIT<)10Pt@0bKJ*20)wB z`+j(@^#R)Rw1ZL3LauPkUJvhn4`z49_{f~cw9X($*$tjN$p_Z7&7Hr9Hj$$Sp_5`Q zafOpr=HQ{y0kEWwySq3JkP~4R;k&07qv3l;SdTn!v(!^BHZSvFQO# zE(^i%J3f%C%k?gK#Lnt2Wp_WD-*5@EHLxXQwA1#v)%+4!Z|QcYd@8ecX=spF+z_7; z&~K#C0p+n{ww4=a=kK`hzSUHdrZ)w)^g-?U(4oo+G*-}_X>DKMUJj_o#7w4ogsIc( z>rrDM-TecHFueO2fF8zYy3a6@V={)EYk$otoy_g=b;gO>@(9>(vH(zJRGt#oQd$l)k*HiWl^12_>&^54 zSP&r^pZ*S5i(5Hs9~^LCtKxfvPCHOoW(i3jZHr=GTb4?SQN z2Idqt=MDk7#xI_=!b@*i>78+o>N;g7zWo&pMI7%#F8MTXC-rskD_^o3XWzCf-~GPzoH=28f9vynoRnjFU`M!>VUN#1bc&jC}dCcI304=B(yP%37u!^>B>b9=m;!lR$p{vdzD9 z!A8U@U`?9OYk&IJwsi5f9s1|ru@j&FjJ^NEA6wy_^Vatm9~@tJ4h^C-bQQGf@I)?4 z9EB%?&)tB^EWmRCKzZ%Y{?ew;U$Wk39zs-Fh#lZ#ZuZ=Hj@x_Ps#k7WHz$y2ynFbs0It3nr*Dtik?hWbSfTK>xk4S6*?(0eAt_WU*HI` zYfK$ZbKDmuW!N;*H?-HP9c)199PpjP3zKXX;fS_8b_=U>SNOZZ06*=0cDaORvB+7m zgfYj4=1^zFPN0>X;yl@dOdFm7AaVp(;TD4|+7brItc+eS-GV(pEm{b{*(#@AlozL* zW`^~E%d_kvo*cG;4$i{u0RW@5TGkpa;#8pnV>UNE#q}!An1Xkq?q#8#;B;>)wq(zjed%M-SNWBM;cL&NqJd9GjfbG#xu?vzT6*Ul>&d z+R1y+Fdx+#A})l00hFVmLQZDIYXGG1bYFny|-@IBpR$T8nNz! zd+o3^g3}9j;p{m(a`=#qoIFa~oUv=eyc_S`ux`#n9%c<>$J_5(0btd2O%_;J7XFUY9t(x^rlc4WN0sG>JQM8*^PQV5r1o137i4<${X0H6mCdMvU&)`X>*Vq)ny1=FD zzheoyMp*3WkAwK{>rkSq&nCV;2 zvjx;K^M{t|k}Y6AFwJ~bo+Io^W4CR5ah~;lPq0RD(h7@X>}bw2tJq^1P6o+x9N*P< z|Gf?Ed*1r`_cKAfY`3q!Z?kBCx;xS806wQLoV7~-VRjgwhL4+o-%$qWOK{2=ye@pS zgjy6OdAaP69J1CLsSFxMnYPJv3=pC??P~`&Yd4#Pixp?DSqJNh1GkE|nG=Z&?V}U+ zyQ%jB51p|r?dZ+_@E3OL>^q$QJ7b4G`Gh_3JJK$3WZCJ%wg)ZMIOh(3@Y2h6?ME+q z-G1d?{?E3D0e|nQQ&tiP131@MNA~VN{M3H^r{A;V|HZfL&;v(pnDc&bqg6Zm;xDb| z*=JbySFs7!2VVc>uWgAlc4;8Uyb#LA6m1z$v&>ZJdCnOA)xY>x*71$c*?)HUI5s3x zHq2C_)*Pl-Kj#L-S)*7!#F{(lYXK`I?F45kc4>N+GmGE1w_bY1#?W9Le&z`q=Iml= zpK@sOn5?uO-V-fNSaq&XcR^Q~+SPj48bEF4y-RlShd;C_rb17C^BZ>Np+{_lQP&&O=E^i29gU|oefpSq|MfTQ<$w9Ft?P5o*f;AwS59%h-wURz*#cZl_edCn+)^*?^s&i(yQ(MayMX|#Bs`ob6O%=6FL zi+}PbR%FfWVYk+GD@{b$jcFe`h!U;U~5P2wxl;w6FZZ ze{21x4%nUtPgw_3y)`t6Ma)Fab2Qxt-~Aij-6b2)`NmVcZ%p+sBI^q4d$aJ8J#oxx zOogBQ^S`j0fAs&^Fd+HrCmu)3K4NJ!feTCX*7x|s7{6b%U;OWXXno_;c7gM$_x|2* z+q2*L9qWGoJ)6CL-PafvsQYthAK(7V@7hD(e8Hai>eo06dC|W2Z~sr*$5j8b|NQrD z2tb?f>tPB#X#6!z9M*TX-^N$#w7om^kImc~FnBkBU^6B@l76bI<}&?A7Uw?G_a)FM z0rdy%4BUC#XJBppTYFV@>QE12P|UzI$c`eBn$@J0=tC? z@1k&dO;OLDwYlOI->uk*LGCo#$rOwH2Z0Pa9VG*AGE&X(4e(&&3A>4<3Djz-404oa z$hAb=Yra_AXlG zMoX7QJDg)Wm-PWQk2bG!X3^5KtY3Tm9eb0h&*?YM+5T^T%{myU7Xer~rXf#F6wp>p z1Hh?s)_@KHHl_g+C23&U4W4Hm;r?IUw!wc4Fyp*nb_H3gs5;Z83EHLBkpcFG*jO?P z+uk12!i#pv`kBHD zY-U0`*RA$FIY&8J$A+fPcL!@J1SC+WvB3%u3wW$iPNMSuupvk9V~r_swK2d~_seMN zo?4_m(iY*p%6h)xYiu|{OX(Z2Af*j89f0#JYa<`~!sqRgC!R!mM|lBQrCHvaOP6gw z?{+7&=L=}n&~)yfMdLqqon;Z6os5QWimBxaTFJplHdQUKCX~ACWLmbLcKrSuZ`t*w zSv!ix@9|H6#!}z-UDo)`*z`|-X3`9orxs}E^e3F_Jct&yhkOfY?~3HzbA8qZFi~~= zrPpnmo!kS^Jc!0s%RLqg^R{$j%nlV;aPh`vE21q#rOE6C9~5ZQH3N_a#CKA^eN$-R z=O}-v$VX+-_Kr_lzJSmWzUsOY8K;@v&!CN^r%{dYxBE_1sjZf71q`-&`C6vjL4fj# z9l;LBe5gt9ro2AXg5J;EC9vD|eJ9_6-RAYfZ2}Bf^}aEk9bn1aadu4dwa+F9t$p)d zx2(ORKV^W?;1)a5`W=Z`B9C@x8ZF@j1DOCLBOe<>+&l$oG{E_05RIw;CLJ56-GegA z(SbHbT1Ej&trM&s z!c9pyhd>&pi6H`Qw3_(UI1W#PtWI>0RXJuAajdgiJVzc{T+Rwf7_G>N9i~2Ho`Z3O z=|k2t0vc=VLe6P3h`2%+Iju5;ew7nRiWtKdaAv-oor`t*f?la%XkaLUf0?%+e~^K| z1OIV?xX2h_EM5h~l)^zUSAhtX$@zD&2YLar1;_zIiW&YqIL48`95h8cQFo&2A(3YE zz%$%7(x}G|nT3ayUjQy5E7C?v?6B2tPVM^6vz}`adFKFWeE>X}e3=IXRRH?T8G;vC zP9Q)9U`ur&GvqJ-64RY!K$SFPHP#V2FdE2PpQtLFe5-&bP5I@hFG;LG(mC3b;%mpP z%ZsL_hOLs6nEsbpnI0RUPNBoPIN8V3(T0d6?4E^2P4%v}th~@FDsd;;zk$O{H!>Bw z$XdC%$tiY6mzm-{(_8sysSIQS|di1^`FU5e2j z{4~WYdyh-JgGJ(cUr4MPYYJ=gXvLvXL=IX%Cr~D$;x1Gxe*4_~p>{ zmj}A7a2=bCXdClY@{~b$Hhd`m!mSCr%~xaX&|&L>e;J!U`0OWqI=uMa70V3)tf^m_ z(($7qDQg$+S9yZx1GEpciycf+cj=|%q$0^hrhf8h6^o--17KRXAI+X@BI+1PwG(c9 zt*C%+5AyPQr;b(6qOG0VdM9-@v^E84xki?B!R!?RxC0K3HgpaKCDXg@yaCX@?xed@ zdF+O~c7w*9l-+&WTbICA>vX5>bF2Any+j{!3XM=W2Pg~-X@*=GZSEXAV^wxCR!cV+ zLeS9>O@?0;Th{z^r(YkONawy`w*-S3k2rOCE`M$mLpI|C6Ex`LNt3E;V?0z5l|Y@i za!>+10^E@wgEM{_R_X2uW33nv;d@OQ3=S8-Z!LtrHhRDrIvnKGY}k_`)tTVg>fZ)hG?6R;Yl7S1l&~_6c_yjT}RH0nu1=C($MmCiVfAJ{3-Ct$$ z9Pvvy?O1l2PRa{Ty1Ijg{>cSDem#$RIG6CKoK{k;1S+NM!fB8$p)o3qO<;ICXL}wv zZIhhHQa!rhCSXp#@MVBejSUS~I8EmNXYW0OB+IheGT-7~$@-gj4* zw^`{+zyEppsWCatnS zByyD2ZxNaig;Ie=@M9xSIlvg&BiCNjck)n;3bc~9^{GcK(GS>3<7hy81iF%d!46D~ zt$TN3+WelK{+Iv8x}SK=`VSp(?Vv)W6p?>%7iMGDttkXf;mS4FR4F8jOIQ63@2+j9 zU1jnMAgYmyX{mMz-;@AqQTHb=fbor|=o!1}#uf^KIBu~UHd@aZ#l=dE{WI_@(A)un-5pu zVSpmf3{E|{(J{*tvS*NX&0`v$ZR@}r8(FYUR^gS#XVC~AK197S8^`PWz1RK&J4*K1 zu`j)72Twj=Wjw=6cq7LEb0vORO%C69JQw6Tvhi`j2JYB|fsclz$9W`8V>E|+Q|fo* z;_(rwPiq;Myu4Qr)!bk5|PDSKenTeY8ut&TV;MbXl%9ad*!xY z0?qWN%JMGOd*O3=RP!Z1w{nDSY@}>hhnJy1P$jP~Zm^P#U)1f^z2^ZNXDwiE^qQq{ zD$xs87%zYWKnpL#i&itXQy`&2cv;Mv==`1SU_pS>j|#F1^9Aj%Z~^KFz>QC#PC1B& zD4-e~Ax>c$_o|r+ymPfXf@%|8fiMr^>nZ#pRT?(sP&@rZ$sC%D9bi`Y7n|Z$T0DUq z=Tm>Yu$KtZKxzTN71of3Pjv)sR%Xde-}+l-J(f6AO+`%DU>rivoU>bJW?6`T+FDs_ z+0M3p$qqcQ*%<}n9^;k%006Rb4StBPCbrQ|3ic|7VlbecJ8n>)GtM>Tg1W`44qdbI zOs079NmClt8c@8@+JV7H*8#EI{eQSAS|JUwY0?y!3({c>D>#U>a@lf(^g_p)IiZzm;$^ z(yt;eK4`%*#I=*w41f~{0LIa9NfVaEdvpNL;ghV7JGl3tU142Y8O>5m8YZ=ad@*Uu zpg}}CnkbDE8b$86K))qJVDZsARv06+3l1aC{a3$b(c6<~!qV(!GE3!nNTbb+^z(WErZq>o&`ZoQA6u%Uwo>>K~(Z`(W?w=_Vv#LA02 zn#@HUC6cTy)Y?RCkJox@-cp#zeS1G-mBNHBU*U*k2H;Ce!v+`|KlL$Q?``(L%g@`v zCmu%mmc#qM+r~b+U?XQQqH$v+Fm_Y$*O4ir(PcR79k4s^eqb}m?D%uf+0bw7W8ZP& zgSMmb#SDA{^YG01tJcc+Irx>A>>%ww^vqKh2Rv)v=`lR9i-5@%!sTfDKcY9ev(5B5 zb_BxncprQWJ@qhF|AKX+6&yeH3%rxxv_-tjuP}xNpLx(u{`NPiYr)!x+sR@;yZ$FX zu^HBeb{sm&cz{Rhaf<_elR_>^lLk=BJ>rA}ifL^wifGALaTtquwj(xgE1m1ljel?R zA3YQL)E=>KfBW0NUz^zIwcbzqtbc5jVWaz^zEPfy?gxCX&+EoC)^F#=ch|3fnt<%_!n(Ed5>7=dZz5rqliWn# z4S~o=080?dp(-~3RU*NCf!-44?|9oji?auF1P|=|{5iZoFYp=V9C^>;$($olGV8)n zDiOF@!~t)pKm`CD5<3g3osaWMOI3$!4*90;Ai*p4a|d;vSB3Qn%6q@Tpyy;_ow$6- z#$Wk~wX$|gWr8u`XIzE!RLAlmN(uz7Mfn0@IZUYwXzjGyMV9q`1;vQFdD}+bIc?<& z*DXGY_7D)4M{|?Sum%k?<^05i-TCA!p-4_yl=ygx*{AU}ueE1qe!(OU7{qBL1Medj zF51FX=rGx{0@X6CEzF|%TDW=3CNEvKxjD`OEps1yWJV|xHXpG$>d2hC2ry&~BF+S5 zG*uH(lf25!o;k-3J$N>^ffVu5 zoxOV1GQT(nct*q5(e9yTrgROR5*pi#mSzBmvS{XV09>u>8;3^j>}CD*@Zj7TLgeHw zUULnl0)OYxCNAK;TgDVT$C}SM)^^Ur%gC8CHupY1Vuo3&!CFOWY8U8-c|dgm`ZGAE z41e^o6>r?O7C;)K*TcL>{aIFfaoox=Ml#T!q09_x9j87#W4ZUwVh$&AC@~82IPhpa z=PV8+^J4_3Cj`&r&wg$tXhty$Ybn739?n^Io>}BuyV&HAjq1+Q*V4i*Vy>RYtUvwU zX^XMGkY545Rh^zr|53O+j5l>w|4HD91kkhRrM0jfV#oa_h_%`0kE!05{+__KTF=X- z4}W&6O6g@%{}5|y-sGO{>)0qyGxvjcjMuUznf3V$+q-rYQI5Kn9O$=ZFo85+{WEY}gx49hR4i<5dsBjdYXx$3mFX;kx3eO_I<`doQ7 z=DE7Wr**CuV6~j}W(eA?N46|Y3McL$QJ!IK6pj-&-{9B$>nvVJ+fvy^O#nd(8^u!- z1mXw((i=wQ!^dBgYtOy5pvol~RW8XJo>6e=3VuT_t8Xhy<*48qu9P9DQSA~WQfcw( zFXIY*??Yt^>CsuC97tVpgcL3*_@i7tODHfK}n?vy0l1Gn#4it z+Vd1U?hW`vmz`tFJv^!N^VeB-coS_AapKw!TYLXQ*3x^N;JO3EP(w==C$^z%;zAWL z<*jm*8Pq4R863K)3d1AhT-R!iK$c4c`Oq5jdfRD81ntoIS6;Dm|LA`taQ0662i<6; zE@??6QRz!-57nTxSOSAuGdE9$1+5DN1hftG;q1YrK0-(zf`hlAHHu?a6|kBjIJI?a zD?(xnvLvC9nZd(1YTfK%okydS2aL$H7y%f!Vj9)Y5ydf-rWCgZR#`@E1W-``WF=Ww zm(*G_G+TKG{k!edzyF>YF#)BG z(^^rs)OE)N?ZT17(L~xbIjBriPM|jlze&LJ0$R@n23G`Ul`b4UW&v$k66V>6rD2?P%2ms%GS1f&)dehyBE%RiIDe z)TuRoDP)q((~}GxmgV9ML>(|DAS-Y-D>HKsLBNqooKP;&nGAA?vW^c=VYG~M(8(c( zL^n=RXeUc^go(kCtAqG|YOA!NdHt}Vo+9I70bm&gs6|+tD9`9TA%|KpZ?_PxMp{LA zMwf`8SVFB_>~EtC4qiBlwBk6TWhe!}dlq}PG}5imj`4iW(8fF(+BkiemL?cs$?&b+ zShSunMY?S1TH6};@dQ6xI`rIxZ-SKsN*aSWQFT7{uMpkBT z?8;v@HCdGg51;!Z`RM#M*> za;WCJRvwMg2-{s$+m@}=+iV?S`x}*4Esu?s55@$41!#C_Yqn7+ln5HE&cO$L zecjmfM@$rWe)3Bl$4T-A*|q*gP8}+{M5l75Y???k(dl0J>eNeA2{ONihweMkFhSqq zL*Jf{H$E4dR7I~kZ)kcB!JO(*xd0l4sapNFTuLm+oU22?*3G2ksA9?QE#D7H2PG=E zD6jUxlGE1C3a)MN`XvtmLDqpG9_N|KYLQravF_v6wu}9ATXx9$$qo(#)-IsQ0C>;b zdf#Sd?hxVz2Zd{|+2YN2S;*hTt{EqZ^>&glCPSAPFB%#IOYDX-Z%Jkd#%P6?QI+765AsFcSmJ zL}jLBB91c27bC2Rgp?d6+HtZ;wvp;y5Fu zMIUd9Ht3`%*9wS<6E>(o=gON|EB<75lv76!lYA7DYf_%d@ZZ}OY|oZcKQkV76U#3; zpC@SctJX2jmWHhzYOKpe{S?z0Rsf95!DX!zpgs8b!m!2;tztlQAP4Qpqb^9ICG1Aq zSY{^O49RXb0N9u%0kaNTW7AykC>ttNxxdJH(Mv|bL4A4$FpD|Bf{Fu-%KhL=6PLfbDH8CfbczKN zh_}a~MNqav+1p7*(F^G;-C8;kJ!UTs)ewRs0Vbvf|693Pp&>p!B_tYLEH}un<(28! zsFF7=2%@XS4I$*u!{iw-7a_y9yu z6}-S*AXYAPB9lJ45i}tgLgLJ_Z*qV8PI^}pInxpot@pLORD#w7<;XAavC;EE=A}a( zn_v?^9G=jrGS3!izW`l~8Cat#2WXM(S^;TtywUvCasA}LqMI7)nCSsqdE}MX9@g}GfkN`w)xN%V@v`%?h)FYow#>a&#WeZ# z<40cX3EC?57ojPTE^VH76?7EZNj(An@*fgfBdC5=Gn7Xj)H)X^PRSiu`GhX`P5__< zkaTFwt1badT}e(F>;C+ZM`Bg1LXWjad3hCQpxq*EE_q8l-|}3RmXTs;3#pg>NOD_s z323UYz~MC4ZIo$+ag~uyQasY-LH**JJZh6VutL$>ClBx(C{_PDs9XD0OYVAh7WiEP zPURepqmNI3E|r5XMabLdJHC)#kwse zqkk)pVBPh~v<txv|N%GMEy?1OZf!eXO zaf#-0d=_;sbG;1%Y?;{S@T~dviGp6zf;L+B7R;J5{PNc24H`=fSZn{2)}1A+#Kb;+ z`Jch#^RkZoGLG5=yK}stPP*hpiGc0m@-xhJh;Cyt@bJ`7fgiW z3~0b7cr80vs}xxRg1T4XQ@2#c|A+jl0iGVT!!PtFWXHb+7?A?<3qR5nMbIo6p?X?- z*;lv!DQh3RkNA4KkThV-8K4r`FGbfR_es6%bfrk4ZE_Y)9#NW@auDQ1}B#7ubho)dE^BfvW0t9NK0Es4d-4j@l`BlK61r3kD zi$G*iX+jJdOMFSQ6>5-Oy8|r`v@B4jd@w3-rBe?V;uCxTK9#1rbu3_(6kh^|uA!y8 z?yC;f9XK3OKLvu;2Iq3xQMZR$Ej3FcNZLsKlL=L2q5wHPGWuyGV41yig?7+~a#G-4 z3~&=XAHfLJc5KpY6%f0k7wK6`0;1F`wNE^%UfmKydE}ygQJOxI71cPnku#K*9|+{= z;M5P%Aq%2Zok1_=0d8uyJ_64!JMM|Pc+j!|wa5FT0?L(7{iP#^99@&nrRYkR>{bDo zDuenwWRmVd%VU-DEx82UMILCY&($u;-a{Ob-(^Xg)bD}ocfhasl8hbiQb0~2&MW!y zpkx1`062Ai$y<{_uqW_=uU$;GpZ_W)p{UJJWT_1eDgJ zSMQ#v>7#q~?kg?44P`Rd&d^Hp+JXRq91OmI}+SXoDSTVr8mzUnf%xBj7e0vgr% z8mCded^N4=^ZInxqY=oVn#ShOo2Aic`DWV@*0Z`lf;NZuSN69LfQnEg-|A~6*Oz&v zK;5tU^(<#yzQ3GSdluxWu6wQX+LG1R)n%&F!}E>qhxyj}<^}2`)}m9LUM<%kUB93u z?%)n-XdU#@^!O5dFBaRF&|0j2Z7t(?nem8_L^2KTD}YSPi6nnU`o9jT-WkVxZF+vm=A zHNTZS;#+yeqb5-C>1j?cY^x`G+k*_qg1kYQ1d}u-QDm2HKVZH4A0UR>mspFn3%YPZ zCM^JaK!m@j4|$ak6d+iD62Ds}!owEt-(x$6SmVXcDB0<&mL1z`v9TL$Yj)dahhMS6 z@b}O#?y=4tU$Nf3&jZ?f(dM=LWGx+B(65qi7L6btyrZ93`6?khS~0m2>^h#7Nw(6U zny*FFFNziDjjpt?Cd;bJikKuSpJxRm1dx>OlQ3NQJK37$`ANZipE=td?_tTV;x)$)3!j2w81ikdkbiXYo?(s zU@MKC&xMc2xSKW^&24gq7W;nX-OgVv?d&51X7_f@RiS6+eA zR_N<|0j6_kFtzkhH3k1vpZKQhl!=eN{Ko_QknEpuJPD-g2<`;upWff#=hvp|)5}Qm zt3H(WML0Ig=VtTQlR-Us)yucpwC&)n(K@%I4fSYjwhf;L8ufT+RE`_v+pIh`qF3+! zcGR&QH0trToEHA#*NaAhH~8JEQ(p4H89Ov2LO&^dKovQa$)v4bPZ!2BrONUpjmp^yHLScsRdMR_|r22mKc~w3o z*DYSjU$>YFR0@Xot4J=L3dl&0QDR~%#aIi~GGyt_eP{#G!gU|T`Gak?qJS@N6O+4h z5^&>_k|u911MfyA43{Hd5>sv@-iE1uh&_x?vW3_<-kqP|q5BS=qL=Z+ov`VvKefWd zRlp{pX$Bsk-a`Nf_C|4M1147%@n^1`VrPn<;c$uxkKJ4pJ1>|F0rGC%mPS)kF^mWm z$&FbJ7fM;L;S~v}U9P<$zqCkN_oY~l(l7fWe$E9(A_6{)C$&6qs^MEuL;zXvO85Le z-<7IWz0&n9@F<3)xzl$X&?Aq|<} znrM>Fm(B!)6yq?D`Em}gS8cb}iGza(x_O!VdFTindcSckz66#8bR|pGQzWfOok|B6 z1=>F<7Tql4CXF+V;#2B~OFrU@HhBG{si$0H$hpdkj${;Q^3+c85CAT}FYZN-X5wLoJ=BjIQUDYS)pal zW!@LRl7E;N>MjditGCq_|AEQ5>K2_W%=($gk)C0TNaYns6*ockN+B$~>T;e1zWryN z*XKVZ0xAx)wf0w9R~?An%LKLQT>q)eZ|LUTJp#_f{mP@l-pa&AuITe6K&bOC!tq)1 z8Om!bJZz;*ZGYUOu~H&oe<*b$+0?sVFKuNFpUzb^AJyk;)!s;+waSL+&C*z_{95UH z1qUC!bi{>TIC@j-J2;QT+R(D>vNqxnme`>rmOf_5ZZ@=M+qqJKPYFL#Wexu5BsiE9 zRvw;-q%ghqI?Nr^8(sz9VczQ0YC4s3vT4E#uBzzND=tzYi6yet8CTt0$_3QmToLiw zSs0HeWC~3x>jRT5-2k{9?9n>_BX|+Z6IfYS9hG{Pcoi$EPqP*u0Ry(Hi^S39CD`gM z)lCrO19)BDz$5d5WhOtgxv}r#*?J6<@~D;iCoJ7@ADX`*z$x(z7e=f+eV%Q*-UrMd za_5u;Kt!6!r2|2gSq~?e8XRbcIR)F&lU4ba3ama6AdvY`P1NKs^_0MtPQ678JOPHd zCUgEvBPQ^owrXu!3)(ebGe^A@Y~+AKKuE($d4t25@jLEub$ z>At|B0}L*dSL6gxWy03*6mQ~2nSEU!Yw(JAyW0M});ZKqkmIc7-#rEBz+nR6NOP8Q z1QakPKHXdi6~Pt75ftztyyQ|ma59fID3&NnH>ep22ejd}wq4BUNW`tCCk2f!y^ST#0gUE?UxF z1~mngL-|+8c$uK~VB9D{_d?L_@^D!M>AFWNyiY?K%X|lQd|H3iuJBV^=a#`>EunkY z8%uy^8Dbf>7Vst&-)bjxr8x`qc$%R}t(g8p{x<#&*4haaXboJ9kIbv? zWlLdsNUaq`z%6Wzb97HfBqZJdNEK*2YHaf_HzBH5KD*+v?S0rR7G4@y&$+yg$ zEqL*E?cHOoY|%G^<4F-(Wwfyrfd_|j@T5_waRYa9GU2lc_K;u!(mPDnI6H4}O(KAfi%47L@ z{j-&&s;`#IiTd)@@>zB6%DMWhPIA2@vT`(wRpB5LB-qBmAYpdnLs+y@gq_NR= zSVuFwhBQ=H_4!71uXTSrXskv1UV7saXl6{**0R+;RXH8u_f~n@YW+d&YyS=T3Uh3Q zzs=GJ^EXnLCXKTHl-IO@#)tD@VLxFnqHRp(I6oxz`UD-QLYP%_$T@hIy2K>Cm~C z=UepoD4zq1O2#0&-w29{G5!aP1?K{LxB@V~ytIdmS!Ci49aaPcHTafj1(f`+vs}5> z`Re{qWdJ3`DFaBzY$&5<6i1U-Ya6CZwg&5Cx0q{h+3d*MczhFhc>X)q)qlcTTG|O> zJveAeCwrE8o zM^rl6LEG^xQ2$C3S1b|A1bTutoMFyIC&$`7g`LST05X6pc`T>k!FSofDMJBtwAL?h zJ|SIwrH}d?({Kq8w=j>q@%HW_oJ=d*rD;E90a%&UU3!EHY9YTurl`D3;#%A0ThRfq z7VtXOp1_ic!gIdntEQ0vfXGjnvKdX|v;Vt@<|N^KQ!M)1}Qs>pNf2ViyKqK5;UM zlBC7#3ZWr+1Z&;`K<9atil#zS^>VKUU?FG&>CjZ!rE5;AQ#_rCP9#>Pd)}aAKwp$p zmy=ZiodsVy<=%2#e#=w+kNBt{vFZ{|u2M*p!*E!ECaO|bNQHbJcadZ_m8x)%g>Oz) zR4!U!!R2okaahKal_`)fUrtVNu;iY?GEd`Coa(Z^!9HtA9JZOMH!vH&Y15-WC;SN} ze)VZPp}m6BtrjE3-t5&|cJar5#Uio{ya5_%^Wm?&WSzTr)0Bi|*+Jyi zoA27>&p#xlUYcOY1>5=Zv$pI0x|k#xy!{_HK9qu7jSGHIh^lAq05nLTw| z?>}by9z6;0j@#7qtVP(PSfIHGV9IL8l(RRi?>AqzgHJzZUA=g5)9%S@H|**U{?cOO zv$jYe>TEah@Sb_Vc0ciu_3ap9o4u@Ed-p>dee-<+a1%V4^>Mw2596iZZy)^CTh@mu zx{K}E767r`fVlR-0W^zcyYSZA^l8e54jsf%XvoGcU$HT^mCKwt4~UCf`%@=v-^u%J zaQ7bKASUR0c5%6I&L)w;0`hC$*>8Oh9k)9pw{7aR_bh#ApY4DCY3n$!&ytwH%kVP% z_6If&Z?k~vR%rT=^gkQ+_`M8Ukie3ec=dz61!}8`ggvM4<+sS{7tPB1tH^92VRao_ zAhJ%8yCbi4D!g}VlM)EW-X@E!k$q`AEf3>0ayFK{M6a>zo6EKRkJIMr-=^FfKVtv_ z0AIKOJR%T6|G3r*b&!JvX$=GPu*_A6C_DvWRS%V=^QDtYx!UWH9O-M_3bQO_sASX_ zT2-bdp*Byw0pmraEmWHYjw&?#E2JkvS{x>30LL=aDamEP2^W5;+YKD6`$U8Tn!div ziOYP7HVa)_1W>2RJw~A3XlIM1y7$?_*eP3_`2?VYV+-Bm-j!gwEDb@&<@7XP1e}R= zaaeVz%9^CAyQ@xR{>}3l$6+P?8&6r^gAZEI?)|>ogLv*ee8>*|?M}P%8rzB89J8V4 zp0M8IhcI2Xxr0U$byx3$4_KtD+kWw#?_2*jp0~k=?z5Jj9-CqPTRX8CI}Yr%p%_`&hUK@4n{noGgR%uzbb8BZm<{e*o&SLaQhP8)j=_a_4l$Z9K2k* zZZS;Ed!BvDI;lIuc6y7L{#%9yY)@~8Z!O(CApihC07*naRF$`IoBfo@-+_rc0cedP zuU7V6?q=^~ZQC}(t|l#PF*higL-X2CUnSTz8r6Ewz^dN9m$0z}>OVYsQ!X8i%UVz4 z>W`=B&(ggm(n}|6*Wm^I7io|uxLzu_bi!}rE!CkywVx%Tbxx}D>UMZt$+|+G;k`z` z>r_`asZn}izG@<2+F#f2P!?Nhe^@sB7LDp-nP%;H*7b5)b-Cp-!B|?Rx13*TwfQ!p z5$3NhyG(oaS#|#KZkV?6dnI3CUVX33SN}T9ue`NKP<}Q2dUf10%N^KZd#HC0`_hg8I{)N<`X_eoFJ48nM>;?? z4&W>Hb`eXm1t+YeZ_yU%1cp8^!Q`ewsXj?UbtXqPJL*p zJv*%LzGK$Xj|OwsPV3&k5AWHSz50iLWPkEM|F3pyeAK$3(YJ4(wc+#<)%sPmssyBD z&*YufesG^H_IKHt%jfMo|MZ{PTL8d#e~%3!)3^d8qUDsv_1@9E1lE$`l4ejx1RA zK!Vc9y0GQM{DB?>*U`H0Q=JK{1^7UB$hc+nzg5~l%#U1%q}S&P_#vqu7Om~U?bm=^4Tr=GGhTcEX3XM{9j_gMR({noW} zr;VOIYsHVx+wQrn6;6F(pDccd{hA5$Gmn-NFx$cc$_S=t8D`_G7c9=^Y@s}1xofwr zaO;*84ji(@2TGP9G|c#4{oGpaKVqdKdwzi53oO$ZM;_<@-FK{YXwV)4h_>zAWqrqw zvtE*I{oqC6Y_v0tw)JCyDQzFI8JuADvE|=0zw#?~1kLU2rOS5ut)JV%WkM6N?VWaG z(OOac#Pi|gJ?w)c7z@z6cQht};3w7Uyh~tk`2k;@X}eQY*UG*NJ9WEjx_k6KO?lnD zR@|f9s0146??&>3^{sve!aI$BuT|e#>5Wrf&beKDu6*8?>DQix`5I}1E5<5NNEpFA zCWRBKj%Ap`J4Ts;j1Dq_w~o@Q3T(%z=B4eTxdE*u({K&nDyBp7bU-M6oTmz7o~|^R za~nVE_lsZ}hbr}o`QzV?2hqjC0i6{o7uY3c)N*rUmIXY-)4kT&|0_6|JY?yf{TA=& zr9fvzDFMxJFoeV^bp-ML92zQR{R76FHyj{hXsQyJt5Gu9^yO=on3^Nj-4ubd=d2U( z8oe`ViNU~2H_?kny4D(E1|GeB-CB0BF>7T{ z+Yzn#OSM?{F-)Fm;4E6l{LBo&&~ID1jon;YTP?+YyptcFV|`-Ex_9p)kTd%sW2TLw z`AfH?ZT|fatqkyrrdSh5eG$yiav~{a7pyQnV++6d(2`Hw$IdUfu|QLkyY?rJVp=WW z95OpLZoQa*Gjl~7xpdj`XhEj{RlD}@XAkLC8^3B0$S-4Mm%XcH?Yx!)XOl_VO8ddc;bu@Xw0UepQs}5ZP9eCHX`fYK}W~Z;P zpYa{S|6o!aJV~gTmo3qC6vbhexD2KNG(gfUE>jAa*0nH%o7k6cR@JupRP_s_6d5Q2 zF9m>68W5HyEXynboAaz=Y(2csc0cxz4VMa-F5B$ri_hZ;T(S|gch^7sz_KlI>wl0n zg6Xt}PD!!eZ63#r;ZM%uKmzc2`Wf2^_}O*hsNDiMrdV5e_{%Ta^_$o2_NmjB!$GBE zZjLZ8?B0TT6d!kM1(Z#H__2-tQN&e~z{$Umu@Y4!}7=Sbe;PfET z#3WoKJq|eQ!0T7LlStX8`uq0p!R-FD<?)YEfgMj;@4=T? z&v$_7mC!OA()6evO}7E>6`EC~!*znX?;zJpuJZ>W%2ZuMy;WeBiv`TFy=|R%u0Cg{ z3BjV>NcKGbu{?%I$2k@7bglF9RNECG;R6GNt?rz+6I6-{`jNTNi4m&JEK-;OWC2X zyx{Q(Z=F8FI>7T512`rDR|$pK0eKY((<0CK7C=_^%mvGzd=N0T!*(7yYLTx2ppPA~ z9@gc75{Wp2;|Wd|u?Xev>2N#yKeh*Ns-D8wqKvk+8 zrsb}!J&#LxIJZKxK;5&@EX~c@?gt*QL7Y<3-K~~pO=6j~k~t4@NQfT*xipBoS*O`^ z{HR?$cit}j{2h00*?Hmw8d1X3bhOyRUwM%Lw`uP5q6&{@URoiIPviTugl*Z`yJj?=ip!6?sS;IxU!5!nd2Q zbY4kyQ@=RV5u^p@_5Z4*b`Me3ervIjH{P-G>;j&=d+gXtF92$a7N5@$(&b&tp^b}X zigxRr_pF1pb%&1MXLH^CHhTNEwMx4M*y%(QcjJ>^fJKVd4In)E8^4N{ib|k)?I*8U z@xo=xu?F$ZsgJC8aM0Rcde#<3NA1SPXDmS|mdMPkd&OS*;544Pd#vx|F-sFJCV@t7 z_S$tD1F#iF#__;rogeLv1BMpHCT#elk8u{kIR)p8-FW=YPEXnOQ>Uyo#zMWR8P*vV z?AmK@q9x2(A7NVd;V}%P^fi&gXMSOJYsBo*O}o|hK3dr{+RF~R@0-77QOv^Am}u`@ zzHIZXb&RFjt#Eskb(X{k#C%(VmxUX*2}+H*Sf*NlU~zoLa<|5*cNWkKAj5>51N3I` zE}o~YqaU7Ty<~@_wPx_^U$xomw{7m+Wn09vIFZStXvE|V&n4QGK=!%e+k~dMYze%O z`*EP@+O-D5kDe*6;XxscTALEs4dx{q1l6 z{+gxMxuF+rW5-4rH@dG{Hp;WneJE72gx{-qU!TU>L#>y>pfIjtZQT&zr6Sz_hYioz>z zHGH);4e=53QhmM_=`inF_ZvxXmPUO(YvtSsC+p{Fme2L6H+y&OK5d-x7lZ}?PFlPu zpe&svG)d~3=k$W*f$UL65ae^+#0Ix;N zySLtd-^u`)5^M1a0ydwVcd(Mi)Y}4$XtrQ;7q8ik@4jM-BbdMiZ~#gvoI6-0X9WP# ztykalZY@9~4=|cI3%JD8n#RGSg>{0(u`!z@PT%;C-msP|L8DnW=j-qQJ_UeT4)B*B z8?h*6;0J7Z#< zN1M5@Fbg1TA((cGb%(RW^LyXMh$(0@3#^kwR;>HWjE-CO7iaP0E%|!ES*~-}uDQHo zID(YnX$CWT={D;DF&!^rE}yx1(`GT9=Pz7$Z{#Sk0h55pInt*-I){v|<2{tO9A%94 zj|tWz&V78=3ZDRgS(}*^_|=+9cq_BT-tBkZwTYj;VXdsyY#rzWY>r#z#!a^0BNin; z9`qwaON2E_mW;P|`JrEHlzHcF@aMDUagjcYAluZ=9oC6Qd73qu5}uaV=r>lRR8lz3 z%^hpWyZ*08iEq6s!UuSxJk8wK%V1?2SMyq*PnA>Nu>9(BE9ur=h2^T#w}VDVuTfg{ z_z;a|%YT|Q)@sArJgn~1tn&#Rx!uF_4 z^?69I_PdchwPk9ro25~|d?44=ZLh7p@oUwyo%9;7xsjY}_h}=ggFK?q*tlAo=BGhJ zbqHm^YsK5x6@2Vm618cXAn#$kUY$v`M}t`xf^j;S^a-wf;gwhH>_7U)*1uyn`3Vw4 z9zi`1A;e$7gL(%~FUbH6f*J}wxrSpmx%>Y%}=<08i1< zfHK9rE9B9#QDJLKt9#ilvZk;^FzQlXUbJ}0;xv+{9I(z=&ylyZfP)GACAIDjXOMZy zq;L_&RmA2{=oK~f0wk@#_HqEYI5gU{O9^04{K_m_z^OyA_auWw7Uj+1eXYqm0nbrn zsW3|D8?7zM7K4z(XiQ8+%(v7nZJy#grT|k4u3f@3TSARlW+#(8jxA-@A;yUVnZOjD zg!dTWQPP}eN0TBZ^sbcR9G37Th8GrVc3?+Lpox@OI-AR2;@7S#zHbX&&#bqE%_Mc@ z_~bJM_M9#lJ~Zyt?0X|)VopLkg}mehl$oEk4xDcU3Rw+kGiX6efW-*j)DX57!p?L6 zC{xIC5*d|{S)4V8s?oQ?ql|`0uw@}996oG<)4TAO`rv!3bpXWzp28R4UEomTW-T7I z)-uAbHC=eI@A_NcvYw+yQL*ZgWJepu)RxV}ccmS_WJI^4&+j%3(QkIb{M2aZoxas4 z@t16DeNmdT9b@B*($;%?)|Y^Xp5eh&xEQSg6XeieX|C{J_4JjGb>*exiJE-%;43^d zhkK!J?nNLnswwZ7ia3*)dpiI`9RhK@{PF;wDC_kU{8~HK#0Zho9>aq-R$zien~CyL zVQ}&|_ZHZ14%q0Pw(`DB3It;I)MN^Np**}nKMtK%09yjhn)Y2T0?={*COO7vuV1aH z6D}5bl7}*iN|y~Vj;03fljbvmjN*VupWp#yi;Y26i+jH2mgz#fYTL7Sx&=^ab6)Uoq5cheNmp?B5yE8=uKTGse0!D+X z{JZ*(?x+veK33-lsBKhknc`{+%lCAKI5$4TWF1B~4F>DbSgKt28sTNBz~}sAy|y;O zy50*sTTLC?L8B=KKBdBH=Y~gGB#@p8)LwP$*&o@!WIA4YiNB zhGhV)*71RRDZ{m2Q5OI%0k2Wk_sNS}pkE*v@mUejU8FHkBD4@eZ2ZM9c@Xx8`w7~k zeVS$J7RZ(1QhHJYjH>;TL#PRKT`=V}O!VQu-&c0g7u#xOutSmfucUKRzYCN{ZSrqb@&emzJ=SBKhzScul>G%hi6Xi3SO**N#TpupKlSt?OPs z#zwuqRoYrFk$Xb>C6s{AbhJxQDfnmrIM~v(yJ9?45163bB4})BxPT~v_vuo~y7JPL z9#Yf;c3-_B2gn+5b*KnNwyvyu^Y1VBVU4e(&~|;4uToxn8+%>=UqYsG zwNd{7oH7@q2n^&%p+(w~=i9Z(svb%Li+&*Q81*>lQ3V_>Rp{wo0O+`n+|)`3<~oCp zoS7YLQBHlR9FnytJMe~A-B&wBRb>SBBx|)P9FeNW4{nJMZ->)VDLxPg0biIgkb~+I zO*Nl>(-^4mpmd2)@)r*R(!q!PBnrHe#mkAN@~g6dU)9PuqYN$9Z87C}Jq~2>@C46X zaJTYzi)Lc=X@%wzIi-COj?MD9+5GinP)}a<@~xLvOJlQqh55sN3$NF!v-)0`KP<0% zVOn**_0Gfm&C;kYzg0e(p`mu@kqh4g>$Q2a_d*$Mw%lg&H(N*3<;Co$@V;o4&&|m6 zUf#7O;1ebfj8B5z@6ti&gb7eHnLkWxmv?)rt3;SU(bW0mqnWbNqcU5@%7Io*AWE7p z2Xde=*XW@=3wR1Z3CjhYwz6B8S%=!We3VEW*SlTu$st$bO z+>?f@%%m?YBO0y+A}!ciL$auV91#wWN}WEf3&B8FP1l~z0fZqVY03u1@_mp6p5nB} zIYi^8Fg00t5}=T2T5A#o03}jy1AhYGA=;J7p%J#tQ}`41qky6SUGNSiqcW(y#n9Q03kt;1A`XfkzRB7lg2&p4ueJ0yP3Nd=R*RlxW8=8|x6n380Yjsjo;A z;^NR>ZQ&PX9V77A!K=Wc4uMLg0X4-5DM+9qH`Ni;qc#SzbYP{X@d^1;DVh7F4HjUh z>dK+M3jmz*NCT}7_Wr4)s~O@@GE|@?pB

Jv z{QL}BNkIj10$0?dJOXIm9?l(jh;Gdha97Ev%=&P6e#-edbft+?jKHFtOW6ClT*wky zCTH`Y&paN=n(SjK9AdDGi*Er654!_Fkr8*{LDST{uqy6VD)MjV82$rBD(nD$D*%%O z@f`A}fYb#vnneIvnjJ=>IKh;NK^T+Pk-ULMak&p%CN3B1^#8QotJgQuQztpMssmXn zuQY@>=|nqwEl-#qJX~-<0r0V%o_>Tl|IqL)8DT7FcK`yVDHa%19jZor3(V?U*8*R1 zsF9;kq`MCw3zEh8sEl{EIFT%M6a>aNcew>go*vRsdQgubDYVy1QRt`yj(De3!vz586)tj<}Niuyh#frjbO?12LR6NR4&r< z%Q-Z&0V-?lkcCl#NM6ObNGOVk(qkqU7R~`5aFLdj_A2(u6XB=DOmid zt*TQ;pe+>0;Unhw2!yE(Vp``)#HGZ|m@nb; zdzS2Mce#gPkgQ%_pj)kT{+xCoYqeEiFp!rtUVK150x^n<7-c-n^TFun{y~y>LWv}02i@dA! z19hX-lUZCP^DKH)-UR#y%K!p^uJ(B|xTpK#zXVwAeC|jtxqF|oAj7ri!*r}IC;W$J$w=%6R|VI;G22( z6N~I2h8Ja`a z0a8nHq|rpLdi@V3N49HgWA~H+0L$JlKVuis0*=4^kqsR>2k*Bm+R7r@yC}Q5xK}l_rBN+OrVfGtY69+qF43q13Jv?BLq$tdpqxb@BwzwnX##fX+2vNp*+(**)?$M|7_$b+`(%MmMM3C(T>`iCEV*gDXz zPOu%~}N1C(+wo8k!gU2F)leKHcXr4gI;+Gk{1R^N{&T`Z9HZz;CwqxwX zLVUl%T*mS@?pPX)UIH^`SzEmUIwJxV;Q&Ha6%;@y036FQmnMmTNGKP@@@q$fg@F>y7C;xU(M?^_nB{;~0)++rVPRha zt=EF~MMhR}_79E|S5cbTg5*VD?v6tTEk)qs0w5=I^%ejKN0rVt$^nMh*+gJf&N1`s zTr%+3N!#)8gLawSP^K?mw(?-7&0xl!M`j83N^b4%u?6yFrsgb}%_EN%kIOgf^qeiSn@YT$Sdv}sR-}&?#wM+^ubcXEc9XrEZ?Z+< z;*DVs+8u?b8PemRN114+7xE6w+IUR3|kADIQ}B5yBS{*_ql zI-{WJ0MJ&<+G&0?D1M~IkFU&R3~5bksEsCh>G({*pk69p^h0gXz`S?dlfXR*+#LyQ z<{8^e-pz7*H)(H{m(MzXqq0!G?LI`(KTLqZtGBTiuoOFPid1PPa5(^IuVOc6!f5M5 z$L-)t&*SY2a9RMMFxhtQ-od`Q^X#3=L<%4o`mJBJ9yD&rbejW%2%%Ioc~7!C$^5yC ztkFwY_cM=K4`%2Xnwkutq94%KH8ezBi#E%gpP3l9t|uR~qfb6&X@XZvlOsSTfI9is z+m`w1>+I9p={#y~33P6OHcVc&B|v8@yGQgsig|J0UYnntvN%Dd7Xbj%!g% zpRm^A0qYh4p{+*`*zU(4vm`s0^aA=G`Q88AuKw`H*2n(JJ?tTT^__QYk=;`kak^+b za=->3dC+cMy=r&ZKJUomkJ~^mT13E+KxPZ3(%YCON4S6d@BNMkOg9EnztIt_SPagn~VA;^f zjEvgUnX@*=_ItaYea80e-f0DaJ51Ygc59I*v37`wrP9_S8ieo30V1aXYE!SgVMTyZ z27uYQW5^CZ`?QV!>`lv$U$P|oMeA^FCBuL&aSdDuQo(Dr`y1%6m$ z?9%stWc$DNJUe|Hu_*g7mjIfP))uzjW6$e9dlhh(bypT&$I5sV_(!M5e}QQ-T~|B8L%5T z7F=NcR)Gn7_m^I@&cpj0jAbWhZ3t~o2M!1G(42>hc|1`MK629T|LV&&2cXDF3zcrQ zZgy0;Ag$P2?_i2%N~U>>fK`1!2@YKHG^7Z<9lLhf;C*Z*c5uJh^{Z%^+N=%mxpU!& zeR6Bma%`6;SfRLmF+f2(d;0e6-i0PBWnIuceDtVY{EHu1_ahJ3{u9S-_RcU`J<6a( z>O6SB_5q+~0cBTNZ`g-Pedx$xi%~WMz-dLZIE&-N6yWp7Gf!Jd>+;Z|MgUR$0Hu+E ze#^Y~5!><2SrnN`cN+n`wIA3^J6qUj1>GY+EqY_r(l0!2gD*U7yPkW-QUJUB$fU)3 zI&Be0AAxf`%H3b4%0XRWmZhai6oNIJoxu~DRN5}laUA9>i4$g;@Z&Slx8G5@x( zGfw`{LA!kREPGWC*?vs^ZD`*uS>@}RGxu!RIMChpdH;I}~XQ!TO`a@r0WpK7D;RrZCEz;=x- z(Yc$?=tg{QbU*Bn_42KEFD$Qb<72&YpT@nag;4OoWsz(_X=a+`Av!#r{`p_cva)h0!rP`%nMS3U7RD(cc3UKwDu>S{3sKJF!gX zMSw^W6KwZv*29&QVnrJVTz&LMf9#smd4OPv_Fj7RuWa<l(=7{b6)fa90>{a^&jpoS33zh~< z-uEJanmwIc&~RpG?*ewyJSNxozW+T~jM+gz=&t)7unRx?nO*$RkF5(({LJ6|yJ%xO z&>W^Q*J851eATi?j#&4;eU?KbxJX~5aP`e$`d090g~ygDyvRb&0_JuFAz!4;#n^(4 zT)t?Re(;JVFgrzG1z21JfG z*(iN7`tc{W0|4H^8p(_2&)Hx8vwv=#?OkY}pRxUi581A-zGTX9R z5!R)$`;E-tJHGs)?FIBNWM=5^ckKFie{3xWciDr#^`BUhy{x6(mKk_AG!r`q?Cn4P zj!m8Z#AXIMtmE;A?aTK)Y~AByc84{h+IdIMKp3dpO~iVbY7VU}{LGHKUH5j;uclLd zzE#0(2aT=PeXrcsB(PDRZFIl3*6REr2&qo1&0p_&v-#`M*eI>Kj*!od%GBN$jYi9c zKUk~lt)+LjuB-XnYW<%F8X@nY%){%=$So|hRT^RW>N@MCRo|~Y_xub9EO-0~?kXmq zpKpSgib|s>)0&iRt`@;0EYopo{|?r<_1Wc*-p2d%l-YOx%I02p(DE$i*A5yA`JwI9 zW=F=X9T4;|6Zz}}U}j**sg}{28SCV<&P>|3*|7=B{_#((cd*xHSs#{r;!#YL18xp( zKXJ%nLxZ+}hV9scCv88Vr?tDscPq)txxm$3fC1VlKqs$MSq}w!wf-;9#TZ)2_G5=_ z|DpYM2mr&5y_QlK95hUMJ~BHB06SoYP8sv0JWtDLFtdQF@mEjV;#kJlCCcMB54g@! zPTD=~H&@0atC)PCIq0x9jdgJI6En8()AuX|?Zu&PD`QrdW63_u=7YO&jsfJwF_RWq zKN-aox(HAy1Dpgf1>jPccVn2C3(!g^9d{igEs0rm{I&ON4AXLSa@6L#yX`zS{W#v- zX;h&tIPyeuv;=eg;>D}94H^$V=#D0{6B9P}2Y+m_-}^gsC;X!+ldOCVAZ;!JTBA5) zEYc?T5Jw`A!s8kF&@g%HD(qxYyrM;oFdnjKXJ>B>TmH3=EPoL5^w(ZS6UhjGhKOqz z>Jz1|iBlij4b1FEo_)aGZ8PVuSoh(BRz}0x3n+Z{H-D48qhr>( zd(hX3&Y(%m0R%J&Mjd2pQbPSE&)ChSm->}mE`{y?Cl}9WOtr*%r z#f~gvCbu3!7xj194uJ1Y#?m5VFsg5sI}|eumf$*Ao2X&0v7ug-oK_zzG=r;e-%GhC zfqN3zNCKOfm)0b;9W>S?{yDgz_UR?O(V>^Ezi~Ipc$e-s%IA93|FY3oudR3e9s@#S zA{;ud<*Qr=pl5v!d^~9iWbhT4^uYj5PtFY`X=Bh3Mp#g#ZO;~22N*lD(-xV8JtH2W zGTW5_ILW~s);_e;$~j`>foD>fGGk2eg{S~WuyviBRTb_y+1-I@6&DR@k^poiM=9`t z=}sX^1U}kuLTN`6hB4PNXzXTLE0>v>#Uu)kI26PLn$SjxZ)w-CFyqmhur>f#CqSbO z^Kt~x6GMBJU@f7>oD_WWu$8y6_!dZ#W;23`77q#sjD=kt7GZrJTP(vL5`_0DfL**5 zGci0x02vCqB9JJ}YmtyT!jr)@gaKE&%w3Do`;OxyzWzLj9EWHVQ;TlV${z*^MFM;`U3%cUYN zCsg&PDKHrJfd=B|{SdFs@VOmr{XEcUmWO7`Yn*(ZXf!h>)Rtz;f1YTFm-UWj+qzMC zjf;))tjFJW-P;Zxewk=AE7$FK-j{h`kO)-xgyw&iZ`C<-Py+DN#3{3-YX_MU11$`b z^Vm3Eq_ehzwRBT=Mr`!L1?xuRlj!VX(LQEYKtKd7&928Db#2yne*fDxjXCZy94H>f z{Fwp_#sOAE)};wlwxit|e)Nb9v&O5Bn0isx^9lIKeW7sihD8rfS}P#tXMcsM_fLLc zLpyg_FW@c#C{w`UESjj~uAO)*XRUyju{?@BtW2h0iJpX=eEDU|Ab?Xpdd03{KI|OA zwE8Pwx553a?E^e5Fr(+e3vzHN1JH7+7Y(7)5yV1^nd}8@%@r+{DO*=thuuW8m>B4> z9@eQv0aWrlHq+iUj7E>T30VtLBQU-f@_!`>RUe>qGvNmpt&^wEG?cV=uU$Yiu z_WH$tj;A*Oinf#ib9n$*9A2WNl|kL;yR37%Y$*bV2Sb560ZQ`5m7|7(AH0$ylqun< zozr?mJ~=|d80$6D(34gU+~mVa<3pHGG~`GU)ix<~+#*WM5@1YWc(g_@d_lzkbMcuO z=uO&A#UF(BEau`oV<1kB$crsBJQ@PArAVre&kRG(z5 zEdvE6HBid{*8)67@T~4-?c*K#X5uj3(S7}d$C#I$>F13riBzN5#i46vq=^oM#RIP_gfs-!G`Z5a%P54cE$=iBiDTxMHTnOJgg1Rnyo?`D%VcTAS_ju$*Xx=bt5wkO%Rz79Yw}doL_kn=U$^)lrYn zT3#B-Q(LC?dOK*;(!3kjUlcy?M%#bsXlhR5VOwkgNHAw=UT*jxuY*DWmtq12JAq&_ z(f5YP6`j4%B zaF9j(F~XvB<80DlGpEnk_(!K~-*MK2{e%D37MRQxz_}AsUWxT@=(ud`!!y2)u>H_J zyZ^Z-?clM4mS#O#AAsUHo7EFT8XKB?8Ejqrp7%=BLK3 z4YTBZFTG>~IFqE&EcOrWuq1=Mw~g>GXxIeGq!B}rg(fr0ZXfgDo0RQ6dcs=&@jtL@ zZ@gs%Ktr*Rw}US{Zv)4VSuvZz`J#>8Qc@mLM(gOL8Pj%hz9%ngt9HO<>dvG^r)DkL z-eLzHIA*Q?-G2>W>9@2rkl7O8uFr76aj)h$+BIp?=4E<)@Px(DD&_!0$rFQCI)B-2 zy!x8;9lOuE{^sAX`RAWTBR4>M7wyiCD>$*>0ZRv~tD^wS9488qqOdhd=ql_@)NA5C z{V4E>of>c#u^zxyM?7gI`XG+CaNqI6w(rGft>@wU>?&s5(SP+lYwbh(D;WXCk^ue~ z8qpN(O%^b%Yi!ZpI9}fJ))o(OfiKduONhpyufGHE4ZriQ?RohH>!dF({P0H>XU%3S z2y@~VUdZRq(l>+l<^SRLY~;!n>)&&LwTopu&_6^zz+~!;!*|31E}BO?(qkaCww^AV z#zXxEX7uB`U$T?WJ#Pn(pMW_$mie)f&k~#(Hf9)C*FHF92cCGsp7`cBt>?^X`Z;Pl z0qW(^F}un5mFXTgDf%+_Q6aGD&jNqdOvo%9TLOdC1ePdqqI6a8c|IzA*$|6swX>nZ zl}xIy+2d}}*o-XHhI)K#mPS2UY=%ZX9_rCtFRfV`&6Zz}x6R%QdEx!!hpxl(&C>d` z^4IeGY1MnLo-eQj!uKfSTtnT>T@5xznvf`3moyF`vjpqC1$fYeAI0Ohbn&{~e)m1R zH+!uMAS8{=?CiMZFxf7kHC()Y(^BIzHgWni+mFq-iBaHa;nrKeoVO?%sswc<@b;ZLb=t1Cr7-6KYS3_MCyFWRnP&}L7SC2< zxv++@(~5Y`MlgYD+cX7cjuEF&yj=x+^h_PG7R?3HVF ztE0^_mj(I#;hw-ZIC6r4P0HH0+M$dlYvFiGE??cO!we0kiP29#20&P?A+AT}r zH9UI$qUAa|ECXHbtsF_mEytS3aezvC7waIYt6gniP2z1r!Nkynm5@n{I!aorr!uUA zn>l;I`d)a_Ixy2lx;ibrd%zYi!Q%qp4Vavg0}g;FhRi2#jM&ZdA6pmTYo4IW!|;(q zhDn8hLGDx9`2%fcUOXMzjaFB6e`IqvSXYO9z*uN6_hP0`+8Aw)vA(kan9mT9dmm0d zY2*@twgN!otAXPQrsugin;>LPZf1`7iFYvD0=|*$G;(#njv3Z|qRAYSJn*0{VbX8i z(?gKPc^iJ?=PV%@@HUL#VAR1HzZRTUW=6*W-EZ11f>gKDmvMniOwjVmo?+~;=Z(!@ zW9%^&C$HV~aT4Ljg#d68&*%(V;o(ysc^t=1G`G056G%I2GsKiE&dpkevMIcUC*J;m zKE}%&&+9e;O#bEZww}aGd>+}vFjH$nkY-rmUJ%gVzv1&#^$Y<@`5Cc^!)eqZBog%} zA!S~#ijdewd78Pu8py2XwLYKWF(3;{)SC)y460B2Iu@Muh`jt z_-z{?%!dN*2C)ORE=-f4>%vwym;vQF5GpP*@#X|lU?iH8lZL>G00eRR@N(_PgcrxW zI`WJ2){b_jmFGOpLVT_3%aON$W-y8=wa7$W03fnp4d8}04q##AE29z0kyh+%bu;Vy zO}u^a`0NBQDh8ak`;t~?o=@V?L7XiJPR;owK&BHDs&*Bb2MoUOyMM$(+Tv}`E;BAJrc}5WB z7Whcej_kw;8b&}3prdssrbmE67GN_^NSHyib4fzL}#)E@%>X4 zXB)r;XpFJuF|udKx-f^PuHLqBO!f)^vmd$TSnrmRT8{n!E_(3mEE>N=Yde4rCy|AD z(lDF$_u~z$T}@^&u_o>KfB*N<`Vv~@U;JB(joh(uKxPC_->1IyYc}%khc@zW{=|cP zYkM~jz>Hjr@STyzIhwRC+MLm^1^P#U!6lo#WQk_9mHI8udOyIW)@07mFKx&yMZHtE z?pP=CO<-om@7rdOr`DB9E((7$$90}h0#kf~J&7ZVS;;bk96vHzXp(IdwM+vq@e8W}{LWA!ua83XQnVh8!YC#($42X;|F$;vv zrWEQK2L;yqVKlW~CVQ<@)Sk#0FhncmT9}-Zn1-ckl2%YaYd0|pqX5YWUZDfK_gaRX zDl){fD-)Bi1r3+Np_K5xkf-Smg^!`W?9_y>4QxTPpZckVFgRsA zrOT`hOyShgf;<=4EoBl%jRCZm2cBX--@`|2^3rviL@QT-H|@Z}hzOiBkf&gnz?lC) z;Mao8?lPkn;i-i_);$_SKjA2XmQO!K6q=@$e65U|1Y@d=`(@;h-Vs@ptq*xp4QmeJ zcMdZ%qoM_EZvp@v&&y#16Migb-5NCj-aLGi*kMGA`lONUgi3py^^a&QwalQesIdrT zvgjAK9C6~vMjvTnGk|zIW}~x)y{?rS2C?9ug%b@m$%V&)GNE$G}XmeYU*f~MziI`{C3c2N(dVi7Jqm9 z*p523gT~!%=RNwLBMDR{hi1l&KN>=JPNdP7k@SLsW?%;h2m}h`G2c3X6FDiL63nn= zLVC!vRFkW`RaKA5X%AxkQ+ybiSwTZyHVG|(1x?Nh$D&ni9>)$a6oas|F(vY7?Vy|m zBL9DTU(y^$mYnIiVj+l)07-CPi%YYLwKcn{dXr>o$<)$8CexT~%;uoE%-rVE7yS_( zb(CffYIT`Ot(L~rJu;bkscyBZSW8#27Oqt!iv&Rc#GVW0`}~DxMn*@%7L#a7@v=tv8X!>!&?cNZ?dGU0w)HJEWY{(W}@4ul`v#V zw}=K&cMf{hXcRbMgU~yVeEJU5lfS4jZAd3$6LOeGM-gU#5s-&6_8{_OLH~)_B`oMz zzi~@uK|gQ~4i<*A>*MSdLoXN@OK`e!aKLJCTFY>-;8&ps7pr)&ggVc;djt|^C_n%J zDP~DTK~#Yts>NYv4k@d?v?)q9;RwRBhrAN#tMU-`TV+oy+@%^;V6Vez-MDcR`}@La zWbYdE;fiB7!h?IHxNIeqf@|1}&QcBz8tX|qmQk*@3oV4TXdmRWcNG31<`*KZtghW~ zg))KY5VHrG^8ty&#-k3M*AD9lnZqG#wHXnCOA&g41BuwRUZK0l9bXw!}(&H7&6|tc~dq%MlTXP zivjc?GL#Mn`S7WS1_-NyGabSr90=_(gdnbv=IYrxodW<;H)>+5r}OYUxbT6!My%8Z zdiL_DAa_)zBUj-HVzAOmP()?W*0_AjcHen;J8yys8 z!71Wg#ud!ryN99F3WivV=;4HGrF9@r6+L3yE{%KyTEi|NtUDd?Je(=okyxZr!y`?H z8`+*C1x^f?S02pC%J=^f+X|w$5es|j&|wLSIX1C?gHCJ#y^}@s&hi$pMHoNt2GwUp z)R{$6n*z>sP8$c(v@Yprf8G=J=D|fnuC|f}X%+Qy|5)Y@)`5;7Ww;gq$Co%t%LxfM zKt#)_V~KoHvhQ-8c~sm()h+B;3_BD@7>3y^SRUs(h+)@pcu8aQrh{F_+@@{zpFA2Y5WYBJ? zdzyOq^@wAKFq*Kuq_)VKK8{XtXu9c@1x7a+S(NV-J+r9m(~p7A8=MwyZ`OGDV^-RI zSoskIulMfYN0S%)Nb`H^96T*%`dMyZGRM6{l~OPHi`q~>I)!C8D+ zM6gykRmtOV839D}NHmCD-CRC@TdGNEwRd36d=j^oslV4iXn-kWlaDFfr)CBW z>%UNPRfH`rq(u2y#y_U`FL>||gH#{(AYhW~G_vE$F&X;o$7Kr883wcc=>S>ROVc3> zjIP2W2uz2F;;z|g`6=LO!eD*U+)wh_k;X1*bTIjy&ZcKt9VsIUBPzd>URjq}Jv-^y zP3CsM&}NmgZTaibt38Ne_tl^7W0~j*{JnCd=8Xs4j)#-!Rfze%A!GeVf7Iq9H*e~ZCayXa0RwUOCE+IU* zPJlupm*vFreu0KPP;|s97!KS(Ji#*NFS2Kk@|;}uEIG%O4k&-9F3Y)734ds0*SiPD z3(g%E1n}T*`(d4k!{KdAS(7C!mZ)Gp+O82SSr|aiBncZzlRLYEJ*=t{ol%8_0u9Zm zFRl~F4!S$MR$Q$Fpn%RFtrY4-+1hi;JXfNrXYm(rbJ(HoGVg(B!!VjH$xCqGw?uv# z&?jN9H2U^=x6T6Aj(cen#%tR3f?>Q{c@FB?i>$a9M)$biN34^{w)*ipsUF(}Blx}R zr7mWNUe7^W^n#-w^adlY;7oY#TO+qy!p-f1qlTMF=TF@R&p{wB9R)4|;jkN>MC~^L zo%?9&6}%|88gyvrXrY&D=-46IjeUuiKe;M31P3m2-XD4dsHWgR*lL=In4 z7wW(|a9A8-v?GZliA|VNcuXuf2%X(YK_Ig%!FbopQ8V9T2GxwK|k>jv#aa zB7In1P{A6Z7;$gVV2h!-1k`OY^9vE z*lGD=8K6&;nFV;iy4|yG<$h(7(E9oO=_rh-d_Qm8bQV}iFwFT%!b935^kH?6;*ZLI z7BSS$VHFR_OJcVWcFj@@e!E+~-*9lyNa*IYWJiG@pH2cDCeEwktSs)AOHj^PtHNuj z)5%jBZ2bmzg{yPbsel4i6mXtijm{wF_2FDVaOb@j&dc%FUz6O#I9BOmQ3=1U!~zc; zFP+qKOfQy;p8{Mmrs>&Rl?DCZEeXK@(8ub=zvZ^`JX zlZdN_*^J~-88~gpL4BYsA9DP6hZ@2zdOj;IxZNC2*57i}44%DvhJPj)TjmV%;p2Vk zA2BS@w^Ixw^+|TJ1^7PL%A?!+rdzpRx2X445)40{Kb-}JA8#k8Q12gh0nDt1BA( zc?9tUhq+%Zoxzz&8997dMh_j590Ejht{WZ3#TxM7R8=wDOIKtBvE>HnM53Hq!>u5u z9#^^6u(+X!Ic$U2<%IG2@>prQxo?k*zWjphJ$F_<`}B$|{p-)9@Z3qQ=PF{&ts)E! zgH9K*0Ajd2D8meQg9&8JU&GKjm$I%iFf+oS3=E>@5+Pe^sLKY1v+GzzyNo!2Wz@4U zh>$W^ky;%Yl3j-n=#D5wth8mw5vc5b;+ZwkEv8NB0Mp^5ONa#Q=JiEEPllCgTqiMs&B8j*6P#kKnw7F5c*Nh zs4iK)Z>VP&URYj6>OYe(ab9~_w3`+TzGoqrvgy*<5NzWG3$d_2YwYX^Ir5d$QrFGV=O_aD4wSGc0-;SX&u{4HahZlgH;7#})*$CDb~ai4{4Simf^1+h z!{iI+09~vuhr4jRn4HyV+*=E0$wwujyg{vcC^o2NKur@+wzH_Ki&(4r!;tN z0+<0n-cOU|r)jhg6lN~hFKFAR!>r?!Za9OF^QGDHpl^HQg)8_t?G>&;Klia(fX~pg z{T6ww=BBVD&sY-Lq!rmp?6|sQp+hDZF%_n)tp1ST=bgPt?uR{Cd=R}AA4su8hd4Vt zpNtc@&Ut}nj>yCdUy&I&P9^l}Y46(9goa^Rf|IrJ2tkHsK#yM)`^whP6LEH=B{MHwlyL+_-oS8kxq>a(up`Pcdh%*t+>zml2^k(j?*dF}iZK)!NGehfO034R#k8`4EV;<~aqh0x*hs$kTy37Q> z?bawxuwk&!1SG%=BXzBUfF{vVwO)mBJ}Y_bL*?_*T3=qOGnmCoq7}OPRhBP{C}~?I zBMW2Vhm-j8 zk3YlKWehlsIDL$Dj6lD;P9Bv5uV0cQmtK{R{@=gJy$?Q=y>K{>fBln)A){@`MuwfeXm~By@B7wKDxExvW!6f1Qws%eCM)M?qUnPkzqOV z)eEx!?DH7bF3Sf${xJeb=j8CEm*m97@5&;#e1lWVnS(j(B*GxvjOVwB$%{GEOJgF^ zWca5;>==%2cdsJs-61;~gFU+$xobA`?9)T#qCWk@xyS|BhzpGD&{g`la0`(v_c5Q7 zz9@T9&t$NzSvn~W`K+z>is6@;1%@B5pMLTd==Gjv)wX(--_3Ga;3maLO5d#xam%xi zON_Mdil+_3?4Q)WO?te%^@|So1&b7?&^&jGWGI{GCH{j zL&xXk;X39KQWWCX6)^vB8hLw<9+fI~FyX4>DtqU!pKSq)LdNz^%fx>45-zVu0bAHj zqL=REx8IPp2lI0K#$~DAe;{>iO}8|^Aj^*s=4A@Kf_Lu8`mI^ne-S;6$7f{z-mI*{ zfg9evTOK`}m$8EfW%{{uQbcbf_BX>k$hxe|-j{nHU6J{>el1fN-ahf&?_fuY4Y_mW zBbk5iH&R<%#yrRUGIn5}OdUTetINw+oeaBFFmDfM8mY1P0=3fxG;jv#7^=NdVFu#v zA3NIu^og|>SR1gbi|)jN>r}UwFFkwl?Q9eEwSN{ZkX8F_ezbbGVip*^OYd`LX@M;6 zWo8(B`=>alM;5xIP{Ct$3r6U?F}SnqN$TEX#p<(TvA`WWhK6Nmd>q5G1-bp}%OW@K zNcC4A%9sE2Z*u3Yw`Jwi8#02S)LnGC?%a__mp_pF?O9p;mtV-*>NCRI?0m5@3ug~b+2ZwEa_5uJcixxswJ&7j&39z^{(Y%p0m}p&(ow8} z&cVyuWI$%f)HGyNv5Q9)`5Kdt-*?#00&53{7SrF;KEji*09U&69}oAN_ZcCIdR4~n z1TwunUKpKg^Cb23+bgN9{Jj1eCc)XR7)k12br04hEe7#AVMLWj<(r;y&z)p^8jCX~-~^7!Fc*=mRipriuQ)L# zg5JI1Lo@0KVo()}bt`a|Far^*gEz4Pw}5jEt9-da*@8X~kr%Qay!*Z^pto`1i+k9T ztsqx__#+v>oWkA5k6_sNB^f<`P8N=2e0Cg1YH=)>}i zKI|MuAC?!!Yk5iOjj!8zt8o2tvyhPmhF_T!q|bKqP&Ji3RjXRz@# z3o#+L@8Xtj>)5JnY3_k6W6mDu5FUE*1zFfVB+C;cGV{&Xf zefpRTW8U2z%%dAVcSd&_sbFs1&5u7pIWQobL&6+ko%`%FS-L+fqf`6k_UxSe{QrDk zZlG6j3JW;)A3rYRSV27V`@bdU|KK|^jYS^U-u!2I`^_K9!`Uxobnk@h1=b#H2{H&L zEQgRbbath|%%xXk_|yqmVE7%_djpOl&ozt}TW?Z`nfqBg!2(=Bg|<@W!YTZL!FZSY z$Cm2Oy{p-%TMia8&(1A{C~2~{mNdD7`OWK~EGzM2nrtgG9)Er?OBzJ+4xyz^89&z9)EtY4t_dI8y>HXH!RQS{pTQlT)rp_Kc1!SOddZzuT5X3dHBo2 z%7S^k_Twvv4<|@(<^Ho_gyk83n2aF3U0WS|yq0AoUC)kJ_xr{ByMUQa>}?y|Gl2lm znBNBH$Mt1+Q{jQHi;P2Xbq5a2t3zL)-2cUYNDd1~4jwro1e-yug{jN+8`ouh z1G|)9s5l2*is-S-VL#&mEQra?&darb{dcLoc1b3n*DL??&oMW!CPPCdgtNJVxrLv| z`pvsCg*lF;@NE^j0^AWcmbgqxnhMiqVNT8mBWx6lRpZLHca2oh{R0#lq;)B)VY)Z5c|R*mQR9 z!p`B(fsxy$GkT9h8oB?$_XSk`58C`UYkrHJj}xX{%5H_T$Z8l{FdxF zID;zIF_e2luKn%zCI9IcGK_%C*M9I%QpEZ2OE1Y3oW>3G*4=`Gc;^TID7)Y|RS{Qk z^%jPI0iK5=R{Qw2%#Ho0+=nAJ4QKG+i9@oEVc%OneOn&<<|A3T{JyLqrr-kR2<}JR z!h`!yOMPQSzWn7o^7&u?2tlYF<@&G-USAY5wS-J6r6c<-TuHTiF4{yo_hOxOin*p`!Wdy24l;;qa$_Y%L$$xM%a@Pq~taAYsZYnu=N3Sh}4%@-Fx%u~b8s+U{N<=FEPJkS7iR|?<^)v(wCNGpS7 zc?8F;h=9@T8O*^MD`Gz0Ae<)-K{F0u3G?=fh!A!mG8So!VAXFK^9h&Bph2MK z9CrOEBV0`$y=r;xO^i8+3ZSV9nLexg?> zcLk0uhUoAat{~v`qw!(cgzVwvb=fudNb9veGJu$ckcHvyO-z`qGsrc1B?mDqTtR4= z4ah__q+VH-5&~ooVEnI+Zk`I}|JAT)CO?41GZ41{J=QnYW%n9%+rVxqWe{PJ%I4}a z<~`yXL&e;oq`>)tSZKmpFysuKK^}E_-~D4-TYygh|2X3Q(|qD8crY*n0ee_umHWK~ zDSYLGT=-xALq?xFjez6$;{yNce7(|ny(596E-Yz~uT8 zdcy>(b}I<~g3b~t1EWNT3yxtG&L`*RmF5=_AR4>~ES(1ryeX;8t)a&cZXS9SiIqp# z7ajLy8ctR1!9%IR(V`L93zsir0SX*4I+9c}2Zywb9zGt0QVC&nu!w{ObI=uzT!s45 z7U;dBzS!7A>TpH{e0kWSgt>jh-NX{-JRHX&%jO?pxSESwPzF9OZXpfl8RpC971Ei8CF}0_3SO z5QN$yP7ZoEiN-p4Eb0&{a{t$Mw*YUMwkLNN*(_xM4T;kh%I8nWUc}2B7#%~eHrpY? zG?AW92pz^A5B~%1PxlD-SlFJVo|K(dejmd%6SISzducp&FYMe2BZ`Lk`i||y9HT4? zj2L2+B&sfP`L~j8JL{IT-dWt!v>4>y4j4&o7o_K2#OjbRj(+6jMcq# z201KRWS59~FG23+b;BMY)gBb|m^cFwKX^Di^6-PnAD83kNY5YUH4B0$=7y3+DIGEE z!yodJ8EN}RuabKNH{vLILW8mh=Xe|h%juXlFjXmct+HBVf{>K-ED7Z4;B?}(m#wM( zubpIpB6|Bum@dIZR&@*!^LhyTTdyPN_%7_UbL=&Q9vU9jTdwU6&jA0iIWUw^&j(-L zXS}m#<%iK_ff0t=&r4>3G;P8!Db4*fUOW47lcdw~N68|t|0jyB zQ@)=+j-E!}33IE;Om-YSqjWG{J4exV$~Rs+ccKj|^Yi)BVYE?sem;LXiaspg&*x8v z(FXHK&kq$HLB>Yo2djjbd56F8hUBnI$o#@0ddKur#?Kjx`$yjb&$I>j9B^?J|JcDK z2KZWWw+lwF z4tAZSE>SnZ`+gW?ht8cvY`z7#iq*QS^D7uC z#tK->1!Vi#Zbw|3ZKdAZL5HoZUmx39fIWijMdzN<>sTSaF+M8gQ>WzU?|f6nFy9sv zD>Mi@eL*{1nsZKlM`jPO5A&%_`i%M1*0Eo)XW9Z={XXc1->uw#bD|tUV(>$l=18JP z8aX?GH_mG>3ws#`?<*HsF#Lt~X5hMx1tX(}kIM0{eNE1M`|Glb)v(K0-D`86ICqXe z&)Si;oj+^#div^%d4hOw>f9y~p=FjnLLl|yN9Ak(d z;$bxH>Zgw*&*P(=Z*F*RDs?W`3UJdbGApVnt$rG=!Sk`BiA) zH@%5z=@#OM3#CVy3mn6_P#FBekTClRxvf?m0iRdy+>^QY-jy5w@)Mc+%fFXB-#jM+ zj33A?)ZjoetcF_{K@H935du49L-C%uS?}JtJ89J{Q}ahlp$+=S_O}4*qH|LI1$JQ&LU~?!|4@` z!#7Nv?DE&YDsQ-%rfc?4D7jh#A%h7e2|Azf;d*mL#H16k*e8jDMa zmj_~ohvAAzDAVkCh*^mY$@uYolE;&l|0L_alVr1bYZH%B8jhSggLuGnXBaqiRrHis zF*lHb#f#Xwa1_0PrDKQW=r>+hM{omM7;0Qglw*-GeucM1?HSDCMH8jFt6GF`)VleA zhSNA)ny0sNzL4V8FIt8l!=H|>bLWyQFgi=Yg!T#0zUwv8jTsSW! zY&%y)j7sc}BPBSEbQYDB&Y-=1eCUa{qx11L{_^YmfV-ExpRYA-T50WDiyBvPFgo$a z`B-+AVK3Ltb!{jdn#c-cr|UrDw7uX%EtWR3`#tS$%OFPZx|@!q=h3-+I-028SzttA zZhkP$YSIW|FqV4ll&e`mhdw14)D)EWklMSbq}JezYa?m~P0%HGxbR`8;;a zDbOtsB!GIr)u`7`SZI0cC1SPe!9{Xg+1T`jAceyfd5frWdt5hiMTy zPnOOb^vc!PeklY;8ENc(lN%Y4UB?c~Mp^cCf(Iidch}4tDF!`olFLg1DUU*IJH)hujeDP!Z8Pmj>Lm;fi$*~60!4AsLE)vU8+P>7c%izZD7FPNqyMpw*_ ziEJe{8t0bX%~$0Zy;)25{H<2|U#sbflsPE}5qFkg^=V9-&`W7nGU$S&D6F@}Kb zqu54p2=sgixZf~n_yhh;j1LoszZyOX5>DObXA|01`GFKST!%s|WS)r(4*47o_Q~vyUMpnHD2lPiNP( zy7|>jtEV3;`*c?AB2Bwut)ici_;v1#5q`hpqpOyY?G_(I^rqP7gOlUy{MzA%y&=@B zfAlTzv{=BN_F%ilCOm@45;~8tCusDfb)X!RnUuF1J#pjIqZ>|~@+|5QiIJe;L}J9Lgh!JFMgnn( zNU7Ua-_tB)WPy>$Fn!{kZ2|8Y&%WJk>Wbl}aa{0e4!7ywZ0t&*(6le|rhtB`Z-Fhb z03VTVpF(aihp}RnU#O$4dkjUiaUEUO-azywdIj3A=vIw@7CnY|5ZHGcb|iKN`CRpn z_!dZOueAKsv=au)(mEfhG1#WU+h>cRJJq9wu){?b7#-mIMF9(>ZW{r-{$<|+oh-m_ zp!M7{05A7wg!Cd($zw)9uu;av2xWR^9GP7HuyJjEt+^hwEG5>9+tsPJxe4)|I9R z{lP=dk0YHy4jc2(Pi@-^CXPbgXjo3E!Nd51<^Ft2lh=>o=P??dE#LBjGNZ0L(Hkat zjn1!25Yy;`v|;)FJYw3lAJd=5G>=a5S#CW3bCA!EWpt#8I-+PS-_FL*YaUU$#wqvn zf?ofUai~$hjl-J>h$#`Y1|3577n+mkuI+x3*3BPu+UjEfAYz%8l=uGum#k&dRz=i( P00000NkvXXu0mjf*vTXz literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula.ipynb" "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula.ipynb" new file mode 100755 index 0000000..ebfd007 --- /dev/null +++ "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula.ipynb" @@ -0,0 +1,5344 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "toc": true + }, + "source": [ + "

Estatistica Descritiva para EDA

\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "\n", + "
\n", + "\n", + "\n", + "*fonte: Wikipedia*\n", + "\n", + "A estatística descritiva é um ramo da estatística que aplica várias técnicas para descrever e sumarizar um conjunto de dados. Diferencia-se da estatística inferencial, ou estatística indutiva, pelo objectivo: organizar, sumarizar dados ao invés de usar os dados em aprendizado sobre a população. Esse princípio torna a estatística descritiva uma disciplina independente.\n", + "\n", + "Algumas medidas que são normalmente usadas para descrever um conjunto de dados são medidas de tendência central e medidas de variabilidade ou dispersão. Medidas de tendência central incluem média,mediana e moda. Medidas de variabilidade incluem desvio padrão,variância, o valor máximo e mínimo, obliquidade e curtose. \n", + "\n", + "A estatística descritiva fornece resumos simples sobre a amostra e sobre as observações que foram feitas. Tal resumo pode ser quantitativo ou visual. Esses resumos tanto podem formar a base da descrição inicial dos dados, como parte de uma análise estatística mais extensa, ou eles podem ser suficientes por si mesmos.\n", + "\n", + "Por exemplo, a porcentagem de arremessos no basquetebol é uma descrição estatística que resume a performance de um jogador ou time. Esse número é a quantidade de arremessos bem sucedidos dividido pelo o número de arremessos. Por exemplo, um jogador que consegue porcentagem de 33% faz aproximadamente um arremesso bem sucedido em cada três arremessos. A porcentagem descreve ou resume múltiplos eventos discretos. Considere também a média da. Esse número descreve a performance geral de um estudante em um curso.\n", + "\n", + "O uso de descrição e resumo estatísticos tem uma história intensiva e, de fato, a simples tabulação de populações e dados económicos foram a primeira forma em que a estatística apareceu. Mais recentemente, uma colecção de técnicas de resumos apareceram com o título de análise exploratória de dados, um exemplo dessas técnicas é o diagrama de caixa.\n", + "\n", + "No mundo dos negócios, estatística descritiva fornece um resumo útil de muitos tipos de dados. \n", + "\n", + "Já vimos as principais medidas de centralidade:\n", + "\n", + "- Média\n", + "- Mediana\n", + "- Moda\n", + "\n", + "Agora vamos estudar as principais medidas de dispersão:\n", + "\n", + "- Desvio Padrão\n", + "- Variância\n", + "\n", + "Em seguida veremos as principais medidas de associação:\n", + "\n", + "- Covariãncia\n", + "- Correlação" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Medidas de Dispersão\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "*fonte: Wikipedia*\n", + "\n", + "Em Estatística, dispersão (também chamada de variabilidade ou espalhamento) mostra o quão esticada ou espremida uma distribuição (teórica ou que define uma amostra) é, e sua representação gráfica de distribuição apresenta estas características. Exemplos comuns de medidas de dispersão estatística são a variância, o desvio padrão e a amplitude interquartil.\n", + "\n", + "Dispersão é contrastada com posição ou tendência central, e juntas elas são as propriedades de distribuições mais usadas. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Desvio Padrão\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "*fonte: Wikipedia*\n", + "\n", + "Em probabilidade, o desvio padrão ou desvio padrão populacional (comumente representado pela letra grega σ) é uma medida de dispersão em torno da média populacional de uma variável aleatória. O termo possui também uma acepção específica no campo da estatística, na qual também é chamado de desvio padrão amostral (comumente representado pela letra latina s) e indica uma medida de dispersão dos dados em torno de média amostral. Um baixo desvio padrão indica que os pontos dos dados tendem a estar próximos da média ou do valor esperado. Um alto desvio padrão indica que os pontos dos dados estão espalhados por uma ampla gama de valores. O desvio padrão populacional ou amostral é a raiz quadrada da variância populacional ou amostral correspondente, de modo a ser uma medida de dispersão que seja um número não negativo e que use a mesma unidade de medida dos dados fornecidos.\n", + "\n", + "Além de expressar a variabilidade da população, o desvio padrão comumente é usado para medir a confiança em cálculos estatísticos e geralmente permite sintetizar os resultados de uma experiência repetida várias vezes. Por exemplo, a margem de erro de um conjunto de dados é determinada pelo cálculo do desvio padrão da média ou do desvio padrão populacional inverso da raiz quadrada do tamanho da amostra, se a mesma pesquisa for repetida várias vezes.\n", + "\n", + "Esta derivação do desvio padrão geralmente é chamada de erro padrão da estimativa ou erro padrão da média (em referência à média). O erro padrão da média é calculado a partir do desvio padrão das médias, as quais poderiam ser computadas a partir de uma população se um número infinito de amostras e uma média para cada amostra fossem considerados. A margem de erro de uma pesquisa é calculada a partir do erro padrão da média (produto do desvio padrão populacional e do inverso da raiz quadrada do tamanho da amostra), e cerca do dobro do erro padrão da média é a metade da largura de 95% do intervalo de confiança para a média (populacional).\n", + "\n", + "O desvio padrão é calculado em todas as áreas que usam probabilidade e estatística, em particular biologia, finanças, física e pesquisas em geral. Em ciência, os pesquisadores comumente reportam o desvio padrão dos dados experimentais. Em geral, apenas os efeitos mais de dois desvios padrões distantes do esperado são considerados estatisticamente significativos – por meio de erro aleatório normal ou variação nas medições podem-se distinguir os efeitos prováveis dos efeitos genuínos. Quando apenas uma amostra dos dados da população está disponível, o termo desvio padrão amostral pode referir-se tanto à quantidade mencionada acima quanto a uma quantidade modificada que seja uma estimativa não enviesada do desvio padrão populacional. Quando o desvio padrão populacional não é conhecido, o seu valor é aproximado por meio do desvio padrão amostral.\n", + "\n", + "O **Desvio Padrão** é a raiz quadrada da variância, para \"retornar\" a variável para sua escala original.\n", + "\n", + "$$ \\sigma = \\sqrt {\\frac{1}{N}\\sum\\limits_{i = 1}^N {\\left( {x_i - \\bar x} \\right)^2 }} $$\n", + "\n", + "Uma vantagem do desvio padrão é que ele é expresso nas mesmas unidades que a distribuição. \n", + "(Por outro lado, a variância tem outras unidades, já que está elevada ao quadrado.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Variância\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "*fonte: Wikipedia*\n", + "\n", + "Na teoria da probabilidade e na estatística, a variância de uma variável aleatória ou processo estocástico é uma medida da sua dispersão estatística, indicando \"o quão longe\" em geral os seus valores se encontram do valor esperado.\n", + "\n", + "A variância de uma variável aleatória real é o seu segundo momento central e também o seu segundo cumulante (os cumulantes só diferem dos momentos centrais a partir do 4º grau, inclusive). Sendo o seu valor o quadrado do Desvio Padrão. \n", + "\n", + "A variância (ou segundo momento) tambem é definida como um valor numérico utilizado para descrever quanto variam os números de uma distribuição com relação à média deles. \n", + "\n", + "Por definição, a variância é o quadrado do Desvio Padrão:\n", + " \n", + "$$ \\sigma{_x}^{2} = \\frac{1}{N}\\sum\\limits_{i = 1}^N {\\left( {x_i - \\bar x} \\right)^2 } $$\n", + "\n", + "É a média da diferença elevada ao quadrado entre cada valor e a média. Em outras palavras ela mede o quanto os dados estão distantes de x_barra (média), quanto maior esse número, mais distante da média os valores estão, em média (dividido por n).\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Aplicando os conceitos em um exemplo real\n", + "\n", + "Vamos utilizar o mesmos dados já conhecidos para calcular e comparar as métricas aprendidas" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analisando Dispersão dos dados do IBGE\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Medidas dispersão para a variável salário\n", + "\n", + "Evidentemente o desvio pacrão e a variância fazem sentido para as variáveis quatitativas ou qualitativas ordinais numéricas com várias categorias. Para nosso exemplo temos idade, anos de estudo e salário." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Média da coluna salario: 19706.79\n" + ] + } + ], + "source": [ + "import csv \n", + "lista_com_salarios = []\n", + "lista_com_idades = list()\n", + "\n", + "with open(r'data/data.csv', 'r') as data_csv:\n", + " data = csv.reader(data_csv)\n", + " \n", + " lista_exemplo = []\n", + " somatorio = 0\n", + " contador = 0\n", + " for i, line in enumerate(data):\n", + " if i>0:\n", + " try: # para evitar os campos nulos\n", + " lista_com_idades.append(float(line[2]))\n", + " lista_com_salarios.append(float(line[6]))\n", + " \n", + " somatorio += float(line[6]) # coluna 6 é a coluna de salario\n", + " contador += 1\n", + " except:\n", + " pass\n", + "\n", + "\n", + "media = round(somatorio/contador,2)\n", + "\n", + "print(f'Média da coluna salario: {media}')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['66469',\n", + " '53117018102.0',\n", + " '37',\n", + " 'homem',\n", + " '5.0',\n", + " 'Preta',\n", + " '460.3500061035156',\n", + " '1.0',\n", + " 'centro-oeste']" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "line" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fazer a formula com base no código acima e na função abaixo:\n", + "\n", + "$$ \\sigma{_x}^{2} = \\frac{1}{N}\\sum\\limits_{i = 1}^N {\\left( {x_i - \\bar x} \\right)^2 } $$\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def calcula_variancia(lista_valores):\n", + " '''\n", + " Escrever o código para calcular a variância\n", + " '''\n", + " \n", + " return variancia" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plotando o histograma com matplotlib" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\r\n", + "\r\n", + "\r\n", + "\r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + "\r\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.hist(lista_com_salario)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Escolhendo a quantidade de bins (o que é bins?)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\r\n", + "\r\n", + "\r\n", + "\r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + "\r\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(lista_com_salario, bins=50)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Escolhendo o range de valores" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\r\n", + "\r\n", + "\r\n", + "\r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + "\r\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(lista_com_salario, bins=50, range=(-100, 75000))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Medidas dispersão para a variável idade" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Medidas dispersão para a variável anos_estudo" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Exemplo de três curvas com a mesma média e diferentes dispersões" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy\n", + "import scipy.stats as ss\n", + "from scipy.stats import norm\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline\n", + "%config InlineBackend.figure_formats=['svg']\n", + "\n", + "x_axis = np.arange(-4, 4, 0.001)\n", + "mean, std, std1, std2 = 0, 0.5, 1, 2\n", + "\n", + "plt.plot(x_axis, norm.pdf(x_axis,mean,std), label='std=0.5')\n", + "plt.plot(x_axis, norm.pdf(x_axis,mean,std1), label='std=1')\n", + "plt.plot(x_axis, norm.pdf(x_axis,mean,std2), label='std=2')\n", + "plt.legend(loc='upper left')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Medidas de Associação" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Correlação\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "*fonte: Wikipedia*\n", + "\n", + "Em probabilidade e estatística, correlação, dependência ou associação é qualquer relação estatística (causal ou não causal) entre duas variáveis e correlação é qualquer relação dentro de uma ampla classe de relações estatísticas que envolva dependência entre duas variáveis. Por exemplo, a correlação entre a estatura dos pais e a estatura dos pais e dos filhos. Embora seja comumente denotada como a medida de relação entre duas variáveis aleatórias, correlação não implica causalidade. Em alguns casos, correlação não identifica dependência entre as variáveis. Em geral, há pares de variáveis que apresentam forte dependência estatística, mas que possuem correlação nula. Para este casos, são utilizadas outras medidas de dependência.\n", + "\n", + "Informalmente correlação é sinônimo de dependência. Formalmente variáveis são dependentes se não satisfizerem a propriedade matemática da independência probabilística. Em termos técnicos, correlação refere–se a qualquer um dos vários tipos específicos de relação entre os valores médios. Existem diferentes coeficientes de correlação (ρ ou r) para medir o grau de correlação. Um dos coeficientes de correlação mais conhecidos é o coeficiente de correlação de Pearson, obtido pela divisão da covariância de duas variáveis pelo produto dos seus desvios padrão e sensível a uma relação linear entre duas variáveis. Entretanto, há outros coeficientes de correlação mais robustos que o coeficiente de correlação de Pearson. Isto é, mais sensíveis às relações não lineares.\n", + "\n", + "#### Tipos de correlação\n", + "\n", + "Linear:\n", + "- Pearson\n", + "\n", + "Não-lineares:\n", + "- Spearman\n", + "- Kendall (tau)\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "##### Correlação Linear de Pearson\n", + "\n", + "A correlação amostral trata da medida da direção e do grau com que as variáveis X {\\displaystyle X} {\\displaystyle X} e Y {\\displaystyle Y} {\\displaystyle Y} se associam linearmente em uma amostra. Karl Pearson desenvolveu o coeficiente amostral a partir de uma ideia semelhante, porém ligeiramente diferente da de Francis Galton. Então, o coeficiente amostral pode ser chamado de coeficiente produto–momento de Pearson, coeficiente de correlação de Pearson ou simplesmente coeficiente de correlação, que é a medida mais conhecida de dependência entre duas variáveis quantitativa.\n", + "\n", + "A correlação lineaar de Pearson é uma versão padronizada (dividida pelos desvios padrão) da covariância e sempre está entre 1 e -1, portanto pode ser comparada com variaveis que não tem necessáriamente a mesma escala.\n", + "\n", + "$$ \\rho = \\frac{{}\\sum_{i=1}^{n} (x_i - \\overline{x})(y_i - \\overline{y})}\n", + "{\\sqrt{\\sum_{i=1}^{n} (x_i - \\overline{x})^2(y_i - \\overline{y})^2}}$$\n", + "\n", + "##### Correlação de Spearman\n", + "\n", + "A correlação de postos de Spearman é utilizada para a relação entre dados não–lineares. Quando os dados de uma amostra são ordenados de forma crescente, obtém–se uma condição de ordem para que cada elemento ordenado seja um posto.\n", + "\n", + "##### Correlação de Kendall\n", + "\n", + "A correlação de postos de Kendall, também conhecido como τ de Kendall, é uma medida a partir de uma amostra de dados ordenados como a correlação de postos de Spearman. A vantagem de τ de Kendall é a generalização para um coeficiente de correlação parcial. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Covariância\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "*fonte: Wikipedia*\n", + "\n", + "Em teoria da probabilidade e na estatística, a covariância, ou variância conjunta, é uma medida do grau de interdependência (ou inter-relação) numérica entre duas variáveis aleatórias. Assim, variáveis independentes têm covariância zero.\n", + "\n", + "A covariância ou variância conjunta é um momento conjunto de primeira ordem das variáveis aleatórias X e Y, centrados nas respectivas médias. É a média do grau de interdependência ou inter-relação numérica linear entre elas. \n", + "\n", + "A covariância é por vezes chamada de medida de dependência linear entre as duas variáveis aleatórias. \n", + "\n", + "Dessa forma, a covariância é definida como uma variância entre duas variáveis distintas.\n", + "\n", + "$$ cov_{x,y} = \\sum_{i=1}^{n} (x_i - \\bar{x})(y_i - \\bar{y})\\quad \\text{(covariance)} $$\n", + "\n", + "$$\\sigma{_x}^{2} = \\sum_{i=1}^{n} (x_i - \\bar{x})^2\\quad \\text{(variance)}\t$$\n", + "\n", + "Vale a pena reforçar o que já foi mencionado acima, que a correlação é uma versão padronizada (dividida pelos desvios padrão) da covariância e sempre está entre 1 e -1, portanto pode ser comparada com variaveis que não tem necessáriamente a mesma escala." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Exemplo com números gerados\n", + "\n", + "Vamos criar duas variáveis aleatórias para utilização nesta parte de cálculo das medidas de associação através no numpy.random, e a partir do gráfico de dispersão (scatter plot) iremos trazer os códigos das funções de cálculo seguidas nos comandos da bilbioteca Scipy.Stats. " + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\r\n", + "\r\n", + "\r\n", + "\r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + "\r\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x1 = [1.3, 2.1, 3.4, 3.7, 5.4, 6.3, 7.2, 8.1, 9.9]\n", + "x2 = [8.7, 8.5, 7.6, 6.1, 5.1, 5.7, 3.3, 3.8, 1.7]\n", + "\n", + "plt.scatter(x=x1,\n", + " y=x2)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[(1.3, 8.7), (2.1, 8.5), (3.4, 7.6), (3.7, 6.1), (5.4, 5.1)]\n" + ] + } + ], + "source": [ + "xy = list(zip(list(x1),list(x2)))\n", + "print(xy[:5])" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.9693785258717729\n" + ] + } + ], + "source": [ + "metodo_nutella = scipy.stats.pearsonr(x1, x2)\n", + "print(metodo_nutella[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$ \\rho = \\frac{{}\\sum_{i=1}^{n} (x_i - \\overline{x})(y_i - \\overline{y})}\n", + "{\\sqrt{\\sum_{i=1}^{n} (x_i - \\overline{x})^2(y_i - \\overline{y})^2}}$$" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "def corr_metodo_raiz(data):\n", + " n = len(data)\n", + " sumx = sum(i[0] for i in data)\n", + " sumy = sum(i[1] for i in data)\n", + " \n", + " sumxSq=sum([i[0]**2.0 for i in data])\n", + " sumySq=sum([i[1]**2.0 for i in data])\n", + " \n", + " pSum=sum([i[0]*i[1] for i in data])\n", + " \n", + " numerador=pSum-(sumx*sumy/n)\n", + " denominador=((sumxSq-pow(sumx,2)/n)*(sumySq-pow(sumy,2)/n))**.5\n", + " \n", + " if denominador==0:\n", + " r=0\n", + " else:\n", + " r=numerador/denominador\n", + " \n", + " return r" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.9693785258717726" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "corr_metodo_raiz(xy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Analisando correlação nos dados do IBGE\n" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "66470 47878\n", + "\n", + "\n", + "[53.0, 49.0, 22.0, 55.0, 56.0]\n", + "[63600.0, 4352.400390625, 96600.0, 157800.0, 88550.0]\n" + ] + } + ], + "source": [ + "import numpy\n", + "\n", + "print(len(lista_com_idades), len(lista_com_salarios))\n", + "print('\\n')\n", + "print(lista_com_idades[:5])\n", + "print(lista_com_salarios[:5])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "47538" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "idade_estudo = []\n", + "\n", + "with open(r'data/data.csv', 'r') as data_csv:\n", + " data = csv.reader(data_csv)\n", + " for i, line in enumerate(data):\n", + " observação = [] # cria uma lista em branco a cada iteração\n", + " if i>0:\n", + " try: # para evitar os campos nulos\n", + " observação.append(float(line[2]))\n", + " observação.append(float(line[4]))\n", + " idade_estudo.append(observação)\n", + " except:\n", + " pass\n", + " \n", + "len(estudo_idade)" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[53.0, 5.0],\n", + " [49.0, 8.0],\n", + " [22.0, 11.0],\n", + " [55.0, 15.0],\n", + " [56.0, 15.0],\n", + " [30.0, 15.0],\n", + " [52.0, 5.0],\n", + " [29.0, 5.0],\n", + " [29.0, 11.0],\n", + " [46.0, 15.0]]" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "idade_estudo[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-0.22316633803425154" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "corr_metodo_raiz(idade_estudo)" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [], + "source": [ + "lista_com_idades = []\n", + "lista_com_estudo = []\n", + "\n", + "for row in idade_estudo:\n", + " lista_com_idades.append(row[0])\n", + " lista_com_estudo.append(row[1]) " + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 104, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\r\n", + "\r\n", + "\r\n", + "\r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + "\r\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(x=lista_com_idades[:1000], y=lista_com_estudo[:1000])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Calculando a correlação de todas as variáveis" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def funcao_calcula_correlacoes(dados):\n", + " \n", + " \n", + " \n", + " \n", + " print(var1, var2, corr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculando a correlação de Spearman" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.2420298536078769\n" + ] + } + ], + "source": [ + "from scipy.stats import spearmanr\n", + "\n", + "corr, _ = spearmanr(lista_com_idades, lista_com_estudo)\n", + "print(corr)" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [], + "source": [ + "from math import sqrt\n", + "\n", + "def spearmanRaiz(X, Y):\n", + " n = len(X)\n", + " sigma_x = sigma_y = sigma_xy = 0.0\n", + " sigma_xsq = sigma_ysq = 0.0\n", + " for i in range(0, n-1):\n", + " sigma_x = sigma_x + X[i]\n", + " sigma_y = sigma_y + Y[i]\n", + " sigma_xy = sigma_xy + X[i] * Y[i]\n", + " sigma_xsq = sigma_xsq + X[i] * X[i]\n", + " sigma_ysq = sigma_ysq + Y[i] * Y[i] \n", + " \n", + " num =( n * sigma_xy - sigma_x * sigma_y)\n", + " den = sqrt( [float(n)*sigma_xsq - (sigma_x)^ 2]*[ n*sigma_ysq - (sigma_y) ^ 2] )\n", + " return num/den" + ] + } + ], + "metadata": { + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Estatistica Descritiva para EDA", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": { + "height": "914.933px", + "left": "41px", + "top": "110.263px", + "width": "248.117px" + }, + "toc_section_display": true, + "toc_window_display": true + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula1.ipynb" "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula1.ipynb" deleted file mode 100644 index f816767..0000000 --- "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/aula1.ipynb" +++ /dev/null @@ -1,1538 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Medidas de Dispersão\n", - "\n", - "A **Variância** (ou segundo momento) é um valor numérico utilizado para descrever quanto variam os números de uma distribuição com relação à média deles. E pode ser definida da seguinte maneira:\n", - " \n", - "$$ \\sigma{_x}^{2} = \\frac{1}{N}\\sum\\limits_{i = 1}^N {\\left( {x_i - \\bar x} \\right)^2 } $$\n", - "\n", - "É a média da diferença elevada ao quadrado entre cada valor e a média.\n", - "Em outras palavras ela mede o quanto os dados estão distantes de x_barra (média), quanto maior esse número, mais distante da média os valores estão, em média (dividido por n).\n", - "\n", - "O **Desvio Padrão** é a raiz quadrada da variância, para \"retornar\" a variável para sua escala original.\n", - "\n", - "$$ \\sigma = \\sqrt {\\frac{1}{N}\\sum\\limits_{i = 1}^N {\\left( {x_i - \\bar x} \\right)^2 }} $$\n", - "\n", - "Uma vantagem do desvio padrão é que ele é expresso nas mesmas unidades que a distribuição. \n", - "(Por outro lado, a variância tem outras unidades, já que está elevada ao quadrado.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import scipy\n", - "import scipy.stats as ss\n", - "from scipy.stats import norm\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "%matplotlib inline\n", - "%config InlineBackend.figure_formats=['svg']\n", - "\n", - "x_axis = np.arange(-4, 4, 0.001)\n", - "mean, std, std2 = 0, 1, 1.35\n", - "\n", - "plt.plot(x_axis, norm.pdf(x_axis,mean,std), label='normal 0,1')\n", - "plt.plot(x_axis, norm.pdf(x_axis,mean,std2), label='normal 0,3')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "fazer com exemplos reais" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Medidas de Associação\n", - "\n", - "**Correlação** e **Covariância**\n", - "\n", - "Wikipedia:\n", - "\n", - "Em probabilidade e estatística, correlação, dependência ou associação é qualquer relação estatística (causal ou não causal) entre duas variáveis e correlação é qualquer relação dentro de uma ampla classe de relações estatísticas que envolva dependência entre duas variáveis.Por exemplo, a correlação entre a estatura dos pais e a estatura dos pais e dos filhos. Embora seja comumente denotada como a medida de relação entre duas variáveis aleatórias, correlação não implica causalidade. Em alguns casos, correlação não identifica dependência entre as variáveis. Em geral, há pares de variáveis que apresentam forte dependência estatística, mas que possuem correlação nula. Para este casos, são utilizadas outras medidas de dependência.\n", - "\n", - "\n", - "**Covariância pode ser definida da seguinte forma:**\n", - "\n", - "$$ cov_{x,y} = \\sum_{i=1}^{n} (x_i - \\bar{x})(y_i - \\bar{y})\\quad \\text{(covariance)} $$\n", - "\n", - "$$\\sigma{_x}^{2} = \\sum_{i=1}^{n} (x_i - \\bar{x})^2\\quad \\text{(variance)}\t$$\n", - "\n", - "** Correlação **\n", - "\n", - "A correlação é uma versão padronizada (dividida pelos desvios padrão) da covariância e sempre está entre 1 e -1, portanto pode ser comparada com variaveis que não tem necessáriamente a mesma escala.\n", - "\n", - "\n", - "$$ \\rho = \\frac{{}\\sum_{i=1}^{n} (x_i - \\overline{x})(y_i - \\overline{y})}\n", - "{\\sqrt{\\sum_{i=1}^{n} (x_i - \\overline{x})^2(y_i - \\overline{y})^2}}$$" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "100 100\n", - "[11.50638015 8.91796137 8.5287626 11.14152409 10.66816049 6.88176928\n", - " 10.48076567 10.24756271 10.28450948 10.40363591]\n", - "[-19.70677437 -5.7385174 -7.27760569 -13.20295844 -8.1920152\n", - " -5.02467154 -9.9714921 -11.76001434 -16.06845711 -5.73377351]\n" - ] - } - ], - "source": [ - "import numpy\n", - "X = np.random.normal(10, 1, 100)\n", - "Y = -X + numpy.random.normal(0, 4, 100)\n", - "\n", - "print(len(X), len(Y))\n", - "print(X[:10])\n", - "print(Y[:10])" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.scatter(X, Y)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(-0.2660505977096023, 0.007462719677197317)\n" - ] - } - ], - "source": [ - "# calculando correlação.\n", - "metodo_nutella = scipy.stats.pearsonr(X, Y)\n", - "print(metodo_nutella)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[(11.506380149363725, -19.70677437336482), (8.917961369077013, -5.738517403609567), (8.528762599273342, -7.277605689387169), (11.14152409078903, -13.202958442165897), (10.668160493323981, -8.192015199233175)]\n" - ] - } - ], - "source": [ - "xy = list(zip(list(X),list(Y)))\n", - "print(xy[:5])" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "def corr_metodo_raiz(data):\n", - " n = len(data)\n", - " sumx = sum(i[0] for i in data)\n", - " sumy = sum(i[1] for i in data)\n", - " \n", - " sumxSq=sum([i[0]**2.0 for i in data])\n", - " sumySq=sum([i[1]**2.0 for i in data])\n", - " \n", - " pSum=sum([i[0]*i[1] for i in data])\n", - " \n", - " numerador=pSum-(sumx*sumy/n)\n", - " denominador=((sumxSq-pow(sumx,2)/n)*(sumySq-pow(sumy,2)/n))**.5\n", - " \n", - " if denominador==0:\n", - " r=0\n", - " else:\n", - " r=numerador/denominador\n", - " \n", - " return r" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "-0.2660505977095853" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "corr_metodo_raiz(xy)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/correla\303\247\303\265es_deepdive.ipynb" "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/correla\303\247\303\265es_deepdive.ipynb" old mode 100644 new mode 100755 index 266c553..2afc30f --- "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/correla\303\247\303\265es_deepdive.ipynb" +++ "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/correla\303\247\303\265es_deepdive.ipynb" @@ -9,1112 +9,1382 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/eduardo/anaconda3/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", - " return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n" - ] - }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 1, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" + "\r\n", + "\r\n", + "\r\n", + "\r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + "\r\n" ], "text/plain": [ - "
" + "" ] }, "metadata": {}, @@ -1170,1095 +1440,1347 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 2, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" + "\r\n", + "\r\n", + "\r\n", + "\r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + " \r\n", + "\r\n" ], "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2309,7 +2831,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.6.5" } }, "nbformat": 4, diff --git "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/.DS_Store" "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/.DS_Store" new file mode 100755 index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6 GIT binary patch literal 6148 zcmeH~Jr2S!425mzP>H1@V-^m;4Wg<&0T*E43hX&L&p$$qDprKhvt+--jT7}7np#A3 zem<@ulZcFPQ@L2!n>{z**++&mCkOWA81W14cNZlEfg7;MkzE(HCqgga^y>{tEnwC%0;vJ&^%eQ zLs35+`xjp>T0Gr;C--w&mK6Zo3CJCxO^6(qKZ=c(hZ^ajJ+2N_Ni-yMGhQNhZX4wHTtLlcLlg8xbmk(UA{ zEGEoMPEH$uCJu$w9!5@ngp{-Xvhk7eFmd8!dcSh~`IMX=m*{|j=6_F5Z!xohp~X2k zo5^61DKOcQtpfePuu;Jg#eRcVPY*;#yMkGC3VzgjlSnkhaZ+|tpLD)_EDoUKViJIX z?S|=pbp7>%h0=onD@Q|>i-81Vi<%P0*vUhS6t9D_b`}$ciYVXOL@KKfdE=^DMqWu=^%L zRS6%0yHFpYvLAx1f95s?K}HNGNOlqtQOL#AAA;jozKvm*j~h;5X+= zT{{l}E9Te>uoBiNtuxzYI$Q%i{V8IqFWy8!6Iy*;Y|z3SKGcS4^oYWWo!b zCJn_wO&->Va43{ht3;?{VVeil28<1zAc2CQ6rR`p+(F*TqsT`>=!R*A3@(tOAzF3k zV(<)Ht_JUGkE;V&g(`v3cP+@@CoK+SKz7=N+4IIMe__*of)f!F81a_384?v-BD3w+ zh)!yr)hisq5(?T?$0){t&G)}h$s0yy+p*&f)w=9q(N4~5Q%K|3()A9jQ{W7cr+#0U zAw@`u-Cu<IC~GUF?U(tcF!PwbkRUT`~MZ(kzMc% z6oL@Zdly{;jRxABw8NcH^mOq;NrGviMtjBRkzhTUak^b%=T5y_-GhlO+V5(dyfCGq z&f4KG5L$)Q_h{-DPV<>V)-f(4yAzPbz-uCuziCx=KCxUdqp;X9$FLZseAm`gDiTbGB?zDN5 z!4?h&!vMlbK>hKx>Z0xa{Vq9@R`_lafzx$|H>aq=8Q=4k%GL2|d4VWk?O!c%^$YjLDT z5{4lCQ;V0r===1rv!?yGj93=*^1z@n3P{Y|AmxOFdT{lKH-g-~(i;!iP$2QE9D*FQ zkP<4{`eQmaJEG7F0_7^&N0HR2STq~HAFmJi)olCOM;0gE^;;HY7Uct zf+eyym&N&y#|t;?EOkRF__N3)8>8lkmEz@C{9vbc-e z9$XtQWAs=tw@OpBaKTHGb56k$C=yqeMQk(na2{P1Xm@BC&E&a zk3R@sR4yNTN}Zif6P6+7RE@5VfCr2yP+syvJURblis6v>7WJ9K1JE8oX7tEhgG&_2 zF@S*)Db=@Y_>-kR#Z;Eb(UqEcqgtIFMisp@JcFOfnwAr*6-O)Frbl;BpfB3!z#d4* zC68Skvl5iQy=~vz#Hvkkj&F;~<^SSOvju(i6@<{nC4inC#WcXR$$J&}DD_J2pGqn} zMP^M7h5iff1&$-gwFj~X${=n?B!Ti6Lnl19kKXXh6@7K`W5#2m7K!{+D=V zX&%WIIS)Ba{T${Y<`hNX^@%MaOiKCZ!5>3~&r&o%m^pWx`>Cq`%g!*}FW-(;Z?GZ(M7N zU@~gP+q*Ey*(-0LX5?n3U|6Z&IU+FNza6_-wGVsnchbS%C}oF+MzEO04AqSIKx0C9 z!ktl*M_cq+;rnbDwKpk2R;;SO*&dV+eIy{^OpVxD5w zU}<6r(Ea@4K}W3IR@jtRP=Q&YoPR5unrEG#QNCKiS4y6bp7SI3`dea|Wo}xohsIq* zTA607X5w-fPiag0Gvl4@oe7d0Qp{az&eMif!O|LRNuptZvkLQ%9J9%16_Cihrzsb~j5Pi>QHUi9!7q0mb)x zp?uAJDI<#=#T|*ANor|o=Xle2cO{}(_Sq9tS~i(le$%&oOed}z$D3qqa_nyGVg^(C zc?KnhN-cvj>vCjG{_6cke5Iphu4XU9<^S{g}7j3cBo$92D%GIeHzb!-I;HnFLf7t4&|m%&iBpSt_R^~;b7tT zmD@%v+jRH^6h?R-5<}b{gsgIGg^9BrL7KtDNSP=rn66)~IaVp!zCe&{;Y?#og(F6s zhNFi`|Mb9RAjl-($Ii!a0-A={%2Y-L8+scu4OWv$x$3nkzfL?Z!U5p0-~`dvFqo*T zDaEPps75Ids1%CS3o>NIivb0$b~x)<^=~d|4$D{0v}=OxyrS$BG)CmJthJ00DOgD^ zf?8i%nO|0rV~EbUU%6AccX%1xvL;N%3J(O93R_POZEtOt&)@mx+iKbp`Taf5_v!X< z4w%l6{(8D)Uw6!SmqM?=KR;NVR`U4qqq^%q=4^Ghh$QtS^jwj@0?=Lsw4%RBis*&Hvr{CZ6pCo;W z^N9$!ZQa`nHS<~?q3*?c!reH|IU40HGs`OX{)|`Z2w=HemQ6HQ6zkS@bof^qd{{g> zzaBkAY2m|6q+~XGslK0HQAZcOI&EsdHlrN8O`zyiwNH6}KiOWA*-nmTujRb3@YnpM zWvVHvImqa#ac44hzW!+1BYvd2|R`k!(Q?&;-bY3SOwaP;6^j2bT?-sfytG1QK zmnEc0f*6ksk7rLCPrHq}Cik7Bt8%NxJ3F`4>E>BiwG-PD{wPld?_=-rhxrSx2dmpg zz9}zzcOlQ5x7_vK3E|%E3bNYV^q4Y|HP6$_$E~WB%b|D%g#if&$s&nf$xc2wP|G9z z4fp<27S0&cPrd8*G9Rk95(`b}j`?DFb3Eu10ZK>|z=P!wW zq93p?U<9n+nXg!$ceb6+X_6Eq1!TNCZj-0=yxFqYF!T=fRLvfI_TD{?)0Z31xd)q* zHz+!oCN7@3-|}sRt+o~vVzT2S!eyEYXH1Uv?y*)94@%KWOQ)52T==ns$WYpB2*7HK z!AL#9yLiCB9Bw3R?n`rHcOi8Ts3`EFh<{mO`TK-HxQnhBvjqkV4k8>r$2?)m`E3+)=MgQkSS^+$jl ztCHo90pSLztnXw(S9vpeKPxQDmcQQ-M=hoyEF<#pwXk|chi~3Dn z_Rp~07_v3xG$vQ_&Qi{v2r0R~@E!wGfm*G=CZ5*jW={~v!^7R()6?#Lefw;ueSUUv zZ8FvJ!VXOz^*1qPtsHX-2NX`tw->@^p40D-47(zH^M z(lt`pa=P;Fzn1H~-O}`0OaT;*4Hd>%rlF@(lLq6d%S)+Rb#%s!y2O&}jshN)-5qQ% z^~l=5CT&X4xBDuQ>L1~be=Jiqn>~V`(W0a?zeeN>4@$?xWawA22plO9xPL8VY<$-j z?LUf-k~3SLSU1P#dpHWX>_3!&WSA-6N|ssCTqe;@Jyk#2Z7T9wYcH+xEEz0m+}{5T zQ0*pH``0lpYTHQulDv?5b)Dtz=X9Yum~Tx#?!5FaX4Sd~35QAnpbsriGx4T+1?x_MfE z61CWxnpBfn9nGTSC@r;mfrC=cS;jaL3e>*)pd>G8q7$$c6l5uRk_z&3m^Nbp-uHHhHxXk4nz+C` z$ZbkEr(vi+nn$6m8@nlcg_v`g^@(+fDk=pk&~qvCWOsJ>7(+HLTCH-$x{caQdV=$$ zbN01yfz{#RMSlWPQ@CTGYpE6-r!5COdQAHoCM#y&Geqx-$Oj3F)y+yG@=N{G%XpJv z26iG2oGMq=akxmA#?g<0G6|9qv>mUCxB< zew(C?GMB!6NwK=k``ZP)1IfPH_YC(vQr;Lh>|P}x{7GFQnt7ZNC}=c09Yq{>oZu97 z4VjRS(k|4gY3;v(dayrGy8m^b`@n$Xwehjnb=n^r9_yqTZtRN1Z|8_s7VmrPw0x1I=V zeW}Tz*5W?1pOZRzl$~WBE>_m>QP;q?v;OcUspdbM4>SU8Y5Q-xPftU7YtHiGCkji$Ht8~NJ=idSASVD|NF~&@HFl0hR`ea zo4*60i>32~vx5Vc+uOP8O8Y9sn9^dz?%mkS?S2A-ssN#YU1Qe6_+@ROvO5e7T=T6NI(l!o;CWcWw z=C5^{#e&D8>jHsg-B{B^DYun6su#Cm%C$+lh*>wR3lXC*}3mPO6W@XI@lWWrI)<+QLVHEQWA;PbVlE@I+)Z!29!>UB-UyN#Vb;ex1=-hL`dxgS z$3F-VD^Ggeh5GQWYL2OwIMeP-h$avLT;8I>7TQL=|lmhu>S}?gn}_k zoJSMo0B*^rAtU-wtY{IJVK~U@*SS(K7J|LEi0p}0QGCU(aw5Nz{f7MZ_6Cp>vC8># z=zYj}OBq6B6df*EQh`PfxqzD<#vhT{6Ta!?pwg5KLi2)sC-h0xmjp^Y$~#kLk;O^H z6$k?uLUxSNx&8Sj4*UN07xXCij*WZy1$WiNLnzf~u#~x5k6D|XZlB_Cj{zls`AwJF z9IHjEcJ8iMBR2y3qnpV)zKn{b=G0B}bBr0}hNM5yyh&Zf_+&-&evv;3mq@l~QfqO3 zn~>Ml5*GgceOPEoj!N4F2K_pnBZR%v>gGiKnEG)3q?2`*^O~8F&E16BgxJnu_U9na z-~B3^aGikmxVI9~#iI7;TzU2b!eplkyES({Z9asyXU_OW;1i}D(UnnN$+H%q2^s(} zvF0V>6IVhWhbQrg%wVNZ0W&?-BtC% za5*!JE7h)z%S_Ly`!D!FAad{l@*kpe1_#=9JzEur+L=GcgVihZnH)HlGRHsg&7;yM z@w1HtKc2T!_ahg|ZPwKq^laK2rpnha9GoW4YFatG<=!$OQDA6DcCrs+&OPtX3Ln&O zfEEEfOYh)<3{QBkDo^724Yvdv+M`~50nd|#g-KW&caLNMYhgrM0MRB=P$(v;8ZC5* z#Md__W-e=p(C*N!lS|10Q!a7acxh!4OEiXv^#Dd8x7-6}R@|>em^Y|0J(`AYhMxB7 z8A!H*woptVG5rtdkFeoE26>!UxZ&TVDdku}tgAHXzj$%$akWy|QfQ>E}!T z58hWbh`Yd<2A5z|^YdJq-hGNwas@Gle$X`2XV77%07@%J$VhYKxHC(W_fVDaP5S0~ z9i5vg-3;9-aKL?PF{HO@rd;Lid*k0MQk!?&8)WD){4G`ZDV*YQ24 zyrBZt90I$xWt||~dV+J7^VT6%{eEk?Px8UCo7<(1O~?K;v>VsMl(ao8*gVu_Spx| zoy{HZV%sswV(^(D0k$B$RXL&VLnpgEG+qudqCeI*{3{>oIoPN!b#Z`fo% z9VPd2EAl$>3a5PzS#ME8;EY0t2UmN4RZsk7JtfHCV?=rYWAdNu>7-UiXGHA}!=gl< zG5C!B9BW9MlfH*n2M$LcVg0gWu4eyn`bAHD^zYbT(S58wq?UPnhUUBHc*(elgb5yg%KI@UdL!NmdOr$ihrg_l(zJXlS9*&t zicJc2&7H_0ZtaK>4&2JC&X)?r>*nj(4o{4_lhfjDMT1GBurINncJkiQ-LyF5Xnblz zSySt^Tj(TLA$8pTk(^t%PEqI+Buq#axk(p zGLs9ylaiA1IU1Yt{1B7)5An}GesXhXXL}wdCO0=XMmIJ_J4Z7n7H)2CCT3P9R#t}3 z84OPDw$27123seJe=GSt|C;~*jr{kD z|3gyaza`l@SpTQw{}}lXNj|234)8w?^lxkZtM}7f0`PoH|7Cgs_#xKZJ1{UIFex!% zWf1sjCbS=s_{`vk-G=6Bm{6>cJ-0Tp8?syDCN`m?J)te!c||DHV(%GnRdClH2@XmG zVtV}8>+WPp^D`@GtrbQT;p2|Nk~W z|KC9pB4N1yyQS>mhDjgNOS;oD8X&XbWWb8_D9-?t`a|9?^GTlBd#&GxFe>nNQH+{nUrk z+BBO00kR2cKK#<6+4>o8YvO9t-ET>84K|{}#4yK)#N(q`q5REV;tg0^g`Y>jM5lE= zCa@SP?87v=vgtxqL6#g$MaEf{gep8 zpQz~2JhFaL40O?zmk#?5l#J@(>Nz8O$zLb{wJVMXq9?1TY`fFF@0G&@)d7f6aI**uiM)bS{CGsdO>J2}9s zovfEH5jCTvz+V`QqYK=eABDlTa9CG;fIE=X;gkD@`!S}92=d+Z)N8)*-ggdFz`Ygm zAiNl|yB1=L5qSQMtzjI8dT=YQ%}H``XW*_bdIyecvhBCy;_~@I?e?n9&Fg_Gr#7F9O~&DnH0>9O53kJ_>=8-Y0*EgknT+rgQmer%f|&3 zQDv6pPOV{6KQE%8z;`89b2GskdTW;HqFS@z^D^H}W`iwppDLChm4cK(Hkl(F_^W77Kn){?*AMD|+G@cYF^(1Cr_Rv?R$J0b%UI zDDdreHlA$)NMXETnr`!Jl(Ch*fFt*TAU5lr%m02x@$IBI{Nf7$zX!`e@cq%K<`bDz z7}T32ip$jb8^73{9LZ6L8j>9FtOAAh7GrK>($%-806fYiO!+tRmaSpvV~w(@7b z=nmYk*k!l9UXL2^g_w=~o+I6u552H2!aBb?>$a;-QZ$8L0C&0Z*RpLEU(|Mr>i9fW zc~uX*$KzJ0%XT9+U6%Y9XIIG z6>%IL%;RA3cpk&8w#@(pAEk*VhaKl(s^r6l729|uWlihq{($;myqQ;1GVV=3$bdcL z=Dnm@uv)(#FlG4()nlxqL5>%nhSWE}1KQ`}PQ zP4f3fj^PS(b^%VHu+yH;3gk7^>--&=+Ae$i1dom3%g>u%h`q0#a6B$^VeS??-|KA` zq*6cLA38-}hGgDgtzc1#tYJ#0ydTzZj$b=J-k8+ALs3X7sFJl==h6izGX$VF)O1`_ zQuytfwnD&tH?L|Z1!ljNmgOl3zA1AGh14A0eAZ+rA<$R(?WfyyOx>SUb_(2*ZK+Fs zVybuJ)~(TY?YNBBnf@;3`~lam<8iuj^Zm4TazPY@zo5hW#j>J#{}&Rg|72B%5m^`f z5X!rz$5G+kvQ;H?mfvKK*((3TD#c@12Thi9nZEw8z^C1BCwMQ05|*dT)D>ihLa*h9 zr)jdi(63{YfsaWYqchj5PLo7E)<5t^2J(j4oV(a=y?3Ix0Cc?9n{!GENKdWKN95+j z%Yj_grc;a~pu2fB$hRqgF$AdVSlA~6iIj|l4sX+JD3&aD{q5yp5p2imSkeQ8nkpn< zzl>TIMvU0}eG@A+^pOl|xWdM|RIp7OgC=^CHM`FF?1yXR6D$u2e>)SWw6DfQmf z%kxPkhv`^~{*hRRpYNsXeyUl>Gez+xnlYVs{i3d?MPC@2%iZx(tyvW|3O@TcruN$( zhg!R&_M4K&{gz``YT9U7;i8;t4ueGC7niK|M82EM*QDy^c*q__g1EdV4@=t-Oz*th zF^FdKQC?FV=b!fsveCh({fK%N)s3R`iGn3JJwdpo+|GcDPozH?U_q!~5*l2NB5|#v znulCIZ1@UJF|h)GkrzWS$I?rO(2;AG3^m!8i+aBNU9NaRe1ZGZB-S&uAjHx$8WP_; z7-BCWtBPvVScA))8{qZf^(Yh0Epj&V1chjrp5>oHi1KW&>tTaP$t*G%*g;45jV4{N za~_vt%mL#8=E1;GR+7mT1}0nx%>uUVlG=NNCsqiVDt!F!p{e0$PKF{(8oqCL7#J1d za8rF@z$K59^7wz?8jeIuHUUWK!yI8&;xa)f=N!AO4oLZtf;&xvqvz#d2o?JYDuM7X zD&c6dh7j$@Ohv09Uex9orUG4EX%>(|hLG|#-2ehgU1ZfnhK9f78a_{ZqTa(s0fH<5 z*r&)ZzYs9!d#Bhex5P=$DW|n<+9CAre1Rgi1B>RX! zoBsZKhZyPXK?1t2OD6GFmF=8U#0!vRbGvsw_1%z^(MuPo%_aZpgi{T8S0o8XLE zx^;~d?4U?^V8@o6(xr&cBZ=FxMKM)T0(6JHW=N4=^_uGn6=yiyBxkpj^$Zs1JP1P` z*5GoGWsneKli2mI!LXX1H&)LUKmC;?k&7~IAkVBS2tE}IMWmLqDF{?a(WaxVP1s}I z1&^Kc87~1+rUVS;P7>90rF4Cc_DJ3Qg3GFfftwzKL~gR`OG}?l3?m&D=A`T(P%xJ3 z7ETa^y%bC@a&FUl)*wt=H3OjlMCoGU{DNXKE6C{wpkr{!)%|ck7bIf>imOiDUteGM zQ4bra1lOon=Mo+VkJZ2lLsVWxA~wL8`o(zVD8#{Sk}M(Gq+Gx8^6@?G#^(~*N+E|u z_?q$pyf}_Nz2B2gcJ=nq-$bH|9R5SX)XnRJ>ZGf*+bKL`;%z))P73L&3{foto4W6y zko(w|$o@#T$kd5aQ+8?DZp0@%rEr?cN~rVC3qlxqlZ|nyfG(2b&IHwclS|15a(o5* z7nsvK_zleQMaWN_3_ zRq8>a56%?@>m-tZG0S8^=P6;~VPmkq zYC?H#*f)x3AUR?gt-YxMl8dU1sIDpo9I)5?pF| zpbdhB3UrwTdyxCF28B+37Hen*bk(Lh`iXnnCrGUv+66&XDJC4*VcKONtX`sjyaFI^ zIqF390z99gvP95&Sit>A>;>?|mb$tLXvu)o#J8myBt5%OWRXU{LVk^i{REjqht||D znWhJu9SB|nky869F0mj{M{+c@AQ|y~`!fW$43HHrRGYKZ z8RRNX-qt5rO9aWdlS^a1VX-)YN7;a%Ts05HGeAawE0YS^&cNA3I_xb=@;~2%GwztB zyUuU`d#CuQ9wgS1^u*Qii>QXx?N8Cio@TBVk2W&zZay__^9#kJv6qd_`I7MWnRSRh z*56J?ax=5d^bW<{ZOvt|Kp|VepDEWHk$MQ)9H*a^PBaC~u&D>Um%gOi9J-T&%Q}&2 z=*zY@UmaGG{-#3*xLv}54Y%YYHpwV7Q1(fJ z54;FTmn_mTl2p_uDTSrGHp48bqpGZH1``=5kz(+a>2^F2bJ-mTGnyi1$^s{2(5FN) zlEYWK9%N!Q^8*`sBTSGF5=N45lyY6(mlJ>_W7fr5C{pwqVuF$+I$ndBq)C)rS8SKv z0ge+*pdU!!M!)ixlz7B|01`RdBR2Z_2xE}Op-4N_Z8^BspM!p~$|b<{hufu9V4XE5 zeY#30Umtkrt*+$p-Ww$Sg~H4a&LcQTY8Pk};CihMy#Ljt9Wz+;Ayd+xY%0#^HZ{mZ z+N-O42Zhin2WItpY|;W8zXuJFStAR5CR}+N$6KsrKKv33JQmVLUWtn#8PyCjv%u?M zhUTQNbzidnQti(&1%G8tS2b*)4hZrIE0&)NY*3^z4$!de<;?nYziRYU_vy8I>e9u! zUA5f|^sOcqLpM7&PCi9%^waL`;ekG1Fw{-E5$oieyG-biwDim=Tqv_|P(b#{-hc@; zS7tPlgGWe|OEAHt>Dsp)zHiOvzi+;{N+e$UK@%ns{h@FS@IaH`*-aiLv179D3cta% zd3euf)ZmNdiV&<6z10E$a+sc5e6odOCT1URDQ**8F44B+aUPMbn7#aNoFfJ471FoJ z=~H`4BOxbXH1O}Q{YFu6fel4fdr@x5OuBkAX#1gOu_TwNcyS^GAh(VnoH&aiijh#C zB}=29wbtl($KtrmxklIS>0b!=&|>nvKmfit?54gOr!2}2{#NW24;+2xub$zGr`FhL zuwB@NJvqV$OO7_EJ+Kl%)CQ*}hD^U0#;t5t(hb>|mRPf`O)>5>rnXQ~A<-^vq!>?I zS1n7+dvYRbQcW0VE{&Lt?6>=`S;9iXA++6{TJIkfm z11G41K?kP)mm4+x+;CYeKEFquwTX}^9ug$@-F6?3`w|MAw`N&WM>yRp$F`cSGSCOE9u$Kehl)$lwR-P3% z?&Z55buNFg&NJb2uo~Qh16DAy2Q^7uI0b_>^=eyZe(0eyX@~I9|KuC9rQ`_?(7~7LMe8Qo}6dO5r zWxY)QN`E0pUmKJg%wcg|pf8-0PiCnF0iPbvwdOo)9~*4XDI;3dC3ICobp%F0E*eK3 z#c%;lM*)wN{zzur$Sji4po~rb1y zfi;EQih9qHJaHinE9>?4UH-yI(Alg~Mx$S9Y`_heCH%f4!^Em;JM=T7fhVgcaVtWs zgCx2o^hs$`>ZTZ>G9^8^4fTIWJ>yud%OyBvfi3q5QUfU&~2F zsqnyL5HHFPCi<^);Lxc&v00qGF|=*65L?hQU8RJl;Mg|7jNyTU76jLUuH;Iz>9@d3 zSY22c#-FrjoAxj!U67kGoCftFdYj<-xdj0vmvD@KDDEVpb1_L5t+nL*OKfgBOpqb`kFM{qEs-Yl0hiiMzPZ@?*54Ib{7=oK=mwULZ*#wwI|t zjufcTZ`pP*y+)dnh%PeJ{xH2El(R_0;^0mZ-U8NywT2wc;h>WOMW%?8B#a?n{mCGn zAT~toB9jvi*faVOBuJ=5BBu$z=JA;)v&@;GzJj0i#!M0OK(s+^bO$Dguhj5GS3^q@ zujo>Y2!~TLum-Up=Hu4HID}sR7TiJZI3c+k6y2o|1fg(4#`xQ1ylfQ`y;*Q1&o5qJ z!1`)t0=|nFYjCySHiS}T;7TrS?Gi##(#)W3q9P=HgW_I*CqeZ~HW6U5G9A75dR*eU zjx606um}$AV|$DbR+xFdU>hQyi7)cWG;J84wd@^R7(7`~>%J!faGkg8CeT9;lDKsB z&sV~1-Sy%tNr*age|-U6I~lY(F(M*Se-4v@mc9e^h&Hose?@xDV5OvF^6hb$iHE7@gyd&eEFt|E3;M=LGYNPLY z<4(`23*rib8R`Fya=dHf>J=NBy%^juP4oErO(BDK)A$C6?02vg3ana}Lu`DXkbJBZz z&-+SGf4qB1MEoSx8*}gBF|*CbKe_JO!?)Tylx!oDL_-w4YHrkN{vSv+rc%f#+~BjB=3S@}>oE1pDC!zT;0&(O`d zhjn^P04EF;_sOc=yEWpM zGCnkk<m`p=KHSai(zbH233qTP+_w!Nufx{9yJK!AaZd^HJ^AyLKnBZq`BO zdg~yEa-&5zjIHQVdt1n>MfdeJQBkoKV&t58+VuY9o%0v4U+Vwxd0(>%k95WXONNxgEK?uJw6) zUApF*=mpuqb`(=oygP{+ATw#9_};S~_g+2H^M$gt^Uca!Fz0W0urQZ*6mOU<$f2lu zdt_k0hUhECg!J&2<$5eI#jwxj?OAJc%H4CPQ@`+)yT%rM23D0poN5PiG8~=JX$L1~RmP2HNYENCl`Tz*gp|48EC+Dl?o8!)7!{xp4pe z-MIarwFF>T6*<5Z2Y^3H;X8sp(m%O+ByKP*jwps$fUEB~pp&rbd)zjyjKLXd#wO%# z*9P<9pqfZD5{EzmErD3z8J?d0v3US|7q^VSedGt2y1u4c$k5983FJ5y!s`iKO&+^H zUX)^qk^`0n0E(#1j)4*J&8Mp!$wc^ap!=@z?Czi&66u3w*Cjzc+9R{%Dm9bG>&dPd zcM51>tu`36u4F+#i4WZ_q6eMny1x&W8jv z34>E5RBpZAWPc#4*dB+c-fSrEbW)wx#x4@OwE@nn+DoEv5Khne=?exj%E5K2qd!gY z(_drQ*WuM_rXr$i84U1F`!QaJ4qu@!DQgjBjcP8^khT*;y2Rd3OHAew zWFB46uE-2?5{*bleIw<@|Fx=*p>WVVJE>WE=dOAWNp}~?UZ-F|&<|W>31jyuZ_hVcG5*_5rRilt zdIG;>HK+ZtPm;DaM|Cua3vGW6yI~yXwPRgQqY;+QP~X*{tFh!U1uFY85GHNr33#xR z^+LR!U{bH9jx@YPeLisibJ^7D;osZwpvxGp?HCjnG|aIvAXVW+kPUy?OU7S&H!p-A zPiq=23O-&N}xWdPg>S zpGK(vDUhAcyxGUSHg8NLbbLwamjZ6A#)hw6Id68E>SP7?S)GM$f4`jX-rA{!$qIeF zfFOHAqOUZZjWrpIPM?s~AlQQZSh!$1M9cJ+(%pa-)VD@KopN72<&tQs`H^ZGC+XCr z_Dc~P3$q0p4X?)7lA{mIlmM;o-z%;piNDyiX8wY_S2<7c{rconfK1D;v?!pI=XGan zQ*Byp%ipS8*gtbllW-C}I3{6r)^xp|k=0SAd@~UUky(Gr>8(T2_iuiGK;O?sjD8^! zU#0vGIkQATpcd@qV+z3?iA1xc&4Ql#InPQIcj(mIO0@i^TsW?|A>wC}{>t<9>1+Fy zZJxY0!d$h2f0l2n=7;wmZRiHB7SlPmqNB5t?XAYrd<{`0j{0!A9|(-qEnRI-S38B{ zoGRxHya|Zf-V)uqH_6i) zAL%-+UtZqF4%`1@6NLZi%RarC5#pS3@k7kUyRwR+P-|KSLu$UzL#KB6gFp##DNi>k zvymc;I9<1pvWS+HWWQwtBBJw24?Ev?@x(E73nk~3k0q1yA4h=?3D&Jqw|{%_>krAF z?S3gq7Tt~Ssz0MpgLD3NB(*rJSGIrfmR42Qu}b9sP2=-dgHHBY=y+PkOq)w(g+#5Q z$M867c20WK>Z8?#wGta~KJuqIn~N#|1VWUt?HrvwM^#8gr$_Gn--4+Mu@coE8u@__=S3=#e0ga$4XWqmiv|1-^J)h= zISR5Y^vJv{W-Y%5O!VbOIKE*{U&HUoK9x7`*hcA@S~0LcLG!=&MlU;F&w3o^GkUy5 zeC16DN+kQPl3H&x-sZYdH)NRte_NG3t}k-(>4#+zAUiH1K<2?Kq>tQdAg}vOvmU9? znA83%zINaYs$e;5SWJbDLD$}Cv@hLU(aD~QMNP?+`6dZ3j%79UjWD2AkG-WK(EszE zG7ZM-DeYk1Av)+8+mJfxp(B{QsoNgn&1W4V(c$g$i^D5WwO;5;pQK+nS#+KvXmp$2 z)2UGLnIaxpk|c1H{8;1E()|;#-mYR@Jcp6cyYH+#1m*lYCG%GaYpt+PMMsNWwwAMK zO|}P>-fc3*Q1j7S6`r(saH^e;NNwNLBVSW7i zcPNemk}&kh1Y9l61tRLTHpJ zbGD{2GbgP#MiD|I)2ZWEuBcMs6k{|BJnfI#=1jV%1QYgbHhhvQp+EN;mySBiS0rEO z#B^?F^^pji{J;FktUHHyFK_hlKL@o*m!AG8;($p!+B*0uy7HG_NGsop0M|Y>M0;ns zN@!4?X+f;#ap>Dy_N?Dabd=DC1W8c*fgdFD6m`0F-Y1u)I7sLuJ3>-_D~i7vfAC3S z&r8#l7ks{TKB<(3PnI(+NAXvY&+5FI9?|x1Hu#fI7PD-eb4B)(F!iC0actM^vSngi zF|`+6sZBB&ggydIbhNTiBLtfH5W^7jGfnP3-0DV$e%e{anjk(olP%)l>nM)pu=p5+ zrHlBJ>fOoujiGyf+Uq>I|_=84is}PXSvUZ>20n8 z-4o|db8~-h$}#9}C*+_tLHZu^$_#Y#_34~IX6TJ5wx>Uus4KOvUX7m>dmkCyqpD+ zyWcOFoqSexEJ_gA6nt{_%2pN4MGZ@)1U8>+{54P@xcRfh$Ko?3jl}BpNz{651>>*} zcOW->((~r?Dr)mtp67T8`Xm%>J`Ce-+B=JG6AE_@+Jc##o;)N7ECc#v#LW6aUG>T0 z9!xQOuT`ozI5?$t8y#fGxbg&>$+tJDgcRky-3O990!U-U&F=T0O10USgqPAbVecx- z;Ou((z9p?Q&)H;RvI!4F_6YPes=4O?Mgo{=im9T53^Z!_3|!NGFJy)g}@S;N)aP!IQ z!7WUB-!Dmi($VFd8(vPC4g+{(8=e>KILE2wFSo~pJDP$35j`z7U~u&AD4q?~)UjFi z7p_Ory=-@ha1A%-evT1_+B)>wsgwlyLX)rmkEgecild9Rb^`=R@B|GSLU0LgjT0ca zTjSoiyITlOg1fuByL;o%xVyVF+o?d(^01Yp=EEGiQmJ@qDiOmXySKnj_>m z`S&1jk{YCO?tLTMky%0N8H7>PrlOa@2E?@SELNFT)(N97mJ*|*FP%!Hu#owz#W?`uMe9QW_dg{PRoz2EY7wwg;0f5hA~^i6?41gz~za5a3AS zpir&o`9hszl5c1Qdm5K*TC=K}YDBmvwl9anwNKaDJ^v8#xmDS~#K5c|B~J4T!KVWX z=*#saFN{f2RZ_~KOwbTXwP`W`1+d%bLfZb1xyYV{{ZF9B8}$B^bZuhuelvs&sn>6T z0%s-QjhjqS%r4n^$^LKC(`6oI=k`C>=?ei0BeaKZVdM~Ehd%_!hYRSOi$ePuo;C+W zY9H@mqP!4UTwwNZdq)^zg0}lEu=+7U%Vui*?bX#AMphkxvqgtet<`CYKE4?n6rS3O zYJM)%|z|E*NbvHjCqfv7Z|hzU!gT+NcXO^qjhT+UFx4H0`Swg8|TZ z%1q~7_d-3K9?fsw$Izp#netcs)-PTDnXB~g&uW$It`djoSIQ?V;yZRjvrR$UOY-wanb}R)0x<~clG!6!24WHftcQTIg8xb8gvP&# z%Vyu8=f0xV8l_80EM5;6Ednnv5~k;8?-GnrdB$&n@qm5eUEZa1a`_aoyusw8%H+&NXe1Tq1VA6kaAl}7B{KFbEBXb9<=02x&GjiQ1_pmK9 z=u%%t%SM7_;GNKl`+hq0mPUCG7PHL?xA)Z{b@w0plj_0Wfs(M=>1Y%-5yJf=4WLDCIDf__IGR^-y(@=dvVm6~76g6>Jaq5Z8 zPh0-7Qn>BcADzrL@)cu|nNVi9EZGe|=E2I(tN=Ne{GDdNSH=Lx##I;8dD)<^_WMb! z{#B;GCHY2Q^2`p89=4+~dji_!*Qm@c4pn%>>%XE2VHVf`-}38_HETB0^Y?B>a#WJP zr4Q?<$e}jgglf*qHuue;0VIa2*ciri<#<=)6ak2~Oyq%6xP>F3D8U<(REgG>^*T>0 z{b%eXb=K7_&ZCESAymap3-55P9a=4HxW(ITTO~2~UFOK=_77WZmXD8Fuy4nQEXJow zhup${_)$T2hKip~uEDJQH|uomATIcuBgD$_yMhTSw8jcUMV~6KY=sL^p8|G~w_T@s zO*2GGnwr0MK0}Q&@`C&{Ar;@fZMg(bnzo~ahuS>W;Tth57NpOm4RqD> zh8RWj_mto!Xv(!>%M+KXEpczu5dOC6Jje-W*YEQ4b5mgd0Z4pCE&8x$hVJh-%0+pGgAV!E*HD57YyuD-W!zJfogeKYC`xF1u;Z)xH%(GAy-y=# zhmW5IsX(R!dHupS-cL6lCtvJM#j0xb{@ze6b)l?GAlhT!zPQ$C9szKvIIjB@X=S#2?gp>WP4 z49~oO$ID20_{!W*==1o}p1TJ9{PHn*CZ%vtsHGTgg*V3r421MKEPU9oV(<|B7g9Z{ z208LC*BdCU6-S?rn}mxI3a!Mp6>y_Cn|fe0=4c3`@k|Ln^c{l_8|y#}(jrabh9_{| zqLRp2-;&5vpnCfAgh8#D)#NjMW!vWoNdYc7DjLjDXhU%D>cQbZhYW1T_+vXC15~GYbo?19usd*4;9sanK@#PA*u4IKJUnMG|CrvneLEolgdUq zH%@R?E{O1w(O)NTzpK!QD|I#(rj2Ej8MdeY$w5 zW1+HYI=I22yvbNMeLR5Iy`(!kIl*kLS!q0W*9}3AWvX5XEvTc>gS=M(KAoz_;x0Kb zea4X~@UK6EzZpsFqx6qy#8(>BI zUN+?3+66eQN^#g2jU>A{j)-9CGS(LJA503IKDvpiS9|{MZ~w0&NAK5U*w<|et?z4Y z+mTgf1SSdX%`2Y~7~f4ELzL`EkLNsK!=Mz+&!eDdEGOZEO}Q?tx*w=As3y$cADbo+ zkeUw*QhQ`luuqr?)LpQm6^xJ~=Wbz*QX>zI?nEUx(lwO>99N2* zSsfa!dLN?`u44e56(f(- zy;bCMy6H#C$G0UcZK*8z{m5EUP@nleCGV&$V_T=KVeNSz#iKAR0*xnjFKSt3SD8~5 zmrT^oTaa*`qmY-K;^TK9v_?));E7(!{Z-14=u`bZ31bVV!qG}Ce(h9$t7th_)Ye_U287js@(RulFgk0^vM^Q36QjoO9lF*MbCBE@F> z<2Qm@4zqv|z{*o(>WVvIJrQV8oRy^mJ8jWqF!bYq0=2Ss;TL3P{UlZP>SKn_*k!~2F`^1c&KJDFeh-DJ z`d#l$i}v#*=Oou}sVVy{<)m6F06ernbETSL^4N0u*qxal^sz5=*q_VezaumF+Oqmo zz)4P1XYw^}$PKTQMl{%I`RZ=%@7#rqAi(%{98>T2-03~o7r$r1pKoX0{bcg$;sSnIe!s7+LtJ6DO~$#LgE=^5|9f^u-bbRv6K*P)GY3dip4H zQZdzsGY5|5^UP$%xVGYA`0hB)p-$p82pyXjEU_ZE90Y-8l|osbr4M!5TzA}3A!GI>bXSOU>AaGuZ{;dl73u`~k3Q3CfkBWk-gV(g zKI#kH(RzBO%7E6h1PlR%{7Sx@zITGoL)+nbJQj_-D12N5TByQq%lo;FxA#l@0lzppVo z++mXMbpP#Lc+w05cSU;-T`D$4fTc@#{d7{$lR66l%BjSj~QZ{=j@& zx7B9TWjq`}hB0vO)#k~Yk!!g`kX32#b`sd;_A3-)a%sU|pmb^vfMYR4Dvl|R4fTKw zpXZPR4+cl`CPqq?X2Xn7q_M3QICKVylnKL(!jHxKb2JPM~5@bC$^u)sIu=?-x>s!cKweygI^pv;PI|lP#3mE z^iRnWGj)IXQbRIp?Sq~HlQVR=v=I20Jr{<*j=0%B;%7|L7BXEiEsK~kCUBJ+sM!Yy zMBP_nGkc;)dT zwagaGFrH1mG{-I&sd{$NTL+GHEopgsM>5+j7lCiXD4Pt*&8&kCkkrj?1((zSM2|s{ zCybqsGnLt!y@WW^vx}#9?lT0wOb6L>p1PISgZDGKyXuGY)t<*CXQCV}US!UbbD(?d zk(UmRONyvIdNx!;6_v*cQFMY$j z1*+Wav?KmOif>$y^tv^`&cn56N{j%_BEAuC^U*O4NV{Xlc068xE;XmzG&+~t5(vvsouod`*8eP+&0qhG@vvAyo7k0Ql#+e%{CiIk|Ka_3GULg}_(EMZ3-mQAb->9pot~|B&{c@qm`imgor@;f$p=Q>zZrME1xmqeBa;Z#7)x;6! zz}5emeSxGf6E5WH>HB=qCxTyze||k2U&Ydg72A$bR2N*2Eol*gD}N~$;v7$t$uBeu zk`&mak2u*^#@0u!!nNGe@<7+0U2H+jb5In_{xMu|gB6@zn?D22d3H!Vs2(?Lw$`+* zgcGRVa!P8R&rv_!7jm-`4X{kkTvu;IY&D-T!RCK+$oD>*xeH2RB^*n;TbK}i53|j) z=CAQ~_!ax6`%)xtdb55p49e9EH&({G_S?L-a_d|KAS% z4y}(r`!5EN1W73$E1VK}sK_U$hE^#gsyHB!;|Ez>x)i|Ac;SOLo06rjLlygz0i`rl z%(cR~n90jscA1p7`_5-iRl&mb4^t9d`r$$_kVNX$DOjf(IWfM$xnanKQrpQhpQ&Yu z{W<5Oi?gbHJIjWt&i(d!y{tpvowtLlH`qH#;IuKsCyiUOP+PSkQtcdsrzmX!8{6;2 zTwtWF>XCkvjyq3laM$Zn8aZs|{J)DA?WZ(|glt|@iTF!iq&Ni0p--zXww@O4Jn3(|GUbRQ9(VpxU}c*5OQ3$%t<%lHm;=5W1yC{7HWFGhd2xs`R`)?fs{j8 z=YC0)&4qvjHfMH9P+#O)m#+j9oiAtnd?tN)Tu?LLbaw>W_QRKZ7>B;z&8~&U1o)G+Cc{1b3XAqWM~Izv6!4c==Ge zARlyf@U-7%>zq!jmLw@;)hAR=l}M|a7k9oYH%}sit~PR=oo+*qST?odNj##$06VJI zA+5|IH4M?coTu{^Pw0tsZHJC8ME@ggW3hmJSg;tgPaDs*Oh#u+ww>1Z-C9l8c%uF< z3qbxAYAb7Sl&p*l$ku@Xrrcc@K#!s*&NoBh&b|(QPcFo{sh(uH=m6cq=e3i9=2jKU za+5GsSnAEkZ8SN>9P|WfK~$nf`T~@1o|fU^dGsMT%Z0M1HVV0MjPo_hXZtQ-lyKaG za`nOke?%8$mitndOnJ{Yhh_|SuOF=szG+ttEbMv;BysLI9ynl?!-xd1+OS>q^#Afh zfBZoot;Ki5!Ls3SIAHy9wki$C)6K}C?I`|%|6qygT4-cMJ|VRI)QH%-?yjO~B*71G z6nD0NFe?y3bAN5@%~7%x9;GVj81Q9r=1I$Q>lyyHS9x#H$&&`E_Ip12dkYnh6qc>8$zU3;b4i z69UZ_%@d*9sLq4dv31As(nS|*t@(kc8w=Z*<|As$M<*4DNw^-2<@Gy1SNY3wJ#JaW z;$9;POsSg>B>s2t6CiClczq9Cih^sjL!!jaVK>Py0y8)m_)^iCJyDRLP@qf)bE$$9 z0TFd)8?;B@%2?91YiyF+n<(JXa_gvZr_Ox|!pQ$t6?=(c&t8w87PtQ-zN^4v4lsII-6a9WZr@rL6H|Wp z60|`}#{dSrmCm!Ms{sv_jZs>TA{|N9HRlvZeDD5VEnAgmx;ATQMWjm%I%gU_0!q8e z3LLNMzsJdzWfbVljnrkWdps7y&uf=k@!K75!)fC#kxrpT)6MG^svc-94^-`qAoBWD z8qV#EjhF+?E2PaLxsU1iua#_11#iFU2)qi#$3@TY^z_Pf7hd<=mx{biXKH8n&%%q% zdgQL!27>r!KUos8Fk7+Jo4vx9~)%n{+ndQ+!E%lC2HzzXRd~u*!t!vpf9!laBk6NV~n3Zmw_H z)XOzal7qajMkg-r;yCYH(%o&J|au~+Z(z!ri zO6YMdmnfy2&l(HO7n3Ng%-u@z#J9@(!!5+ImjU>yLbHf9#av_m;-LWk}A$FO60jwC9psefqVZQMpn9pbN<# z_p|@#y#@!**CH6<{}d=x5?7G0<3u|aKLDg;Op3O6|(u@Ktv!zwdi(nX2$U}Sx?fFv?*nw)$`eUuo>;H!DM|oz$+p_;e6>}(iAOE zZ6w!)Zn~!+PGym6P?qFl;XGi`>?`1=WS*X)^&ot|L-Do(P`uq)Iky-UZgFDbTHJ-B zz~%{2s?FKhp{k;r{z9GFbBgG&_yyuCZ|JFKDJ?CtYJnesVw824O<}aD9}$@G!_Y_RP%-P|K^1CQ7O97y z@i6L=f@@_~>&*K{Q{Mhq$NRp1@?P=ODQ6kff!r;rs_LqlqtK)VD;2yaMI&A<>wfou z!Ci=qcIw4hUr?nGJhy%8a|jRYTsZY`?$C*Qd$4Boxw?b+z68?kv&pP18w);pO9eZP zLRDKPd~N^%4K}PSmMNd4Lt!yGAOnIAIebM)Jmpm}r~HjSR%Gkica*J0=T}xwUk#s2 zh#Ydti?eA~>uBr7W4Z*Ms;q}I{zjX-@gCY5=y1-=g-RXBhyl7 zWFZjxw7c`H&B=_m{Q~Q$i*|Aclqpg_wWrd^ETw_tHBt&>c~Z}* zw$DqSLi?S{(Wxsz>}aM|Jhl*0cL4V-R;?ZsEub4Fa)Fa z$6GQfL=8e54>tXp`Ju+1z%IB4Y9|6ovTV-J156y3x$}O1T5y#(dfyuGu@u-Z_(LiB zcoMuvzc?pALO0uJsf$kn%yWO*U*555ve&TUDen3F51rtU@#d1gZ>3C%qViqFjaT4&Yyb}mX46Y}m|3JpToCN+L z(pdgsEn&v8n(7k*BR&G{WMNx0ntpzM;41iUZLcKXc2e0B!L)-Gt0M>M)kGbeWsUA* z7EsI-bZ9{@M%jRW*NAI~X885x>KWeP z8Iz7^O6!kAb@4x*cdb}E_NIe99zs!;68}*?tK1f(E*>eFx7cCKSz{1lSoJvxdr z)SU8AY)*#LN8JJKzX&i;DePWFo(cb*qX*Z!XoIP!u3_Se3oS~*vK?>0HvQiFw9c z4JF?2vEg$wDl}tn(ELHZLJp`Pj}9oq-&6prR6Kz^`># z@O!NsOhOtjGrdJkhfsLvT!N>f$r8~Fo>?zrGiISW*AxEcp9tg9_aih>u1_Pp(><~* zdf z?z1&dh4ph(`DEB>^+>5zCgTZvOUU8xW$pu~OXBu`TF*7Nu!@LBblE)25<~a>V!ASQ za7xiarh16TjQ={Dmcn$U#q^36QuzY^OzI`K@5(DScqgDX?79oIIAcwBbSoBk<(x9S z#s}4%hHe^fY@DLZ^)fO3=0SIIV*G%xws7N^^z{Nu8=|;5&RgEqpf;<Y)FkNQKQ z<4wDS=a}943Y^`NHF?k5vd-kOJ)Z;UQH@m12?-C043o=ajx#0&Q z+d1p;Y-JeDpU@Fd>-T6X^Bdc{9zq?K1lADOM~K=1J*-<6Vfyq-l;9VxLRs90li6eGuzS&D^_m(=5UT~Pq& z%xra!)lr0;8| zJ}%pX^`%Et!>>;UpOspf-e#Hz(RmF@@YV`sw1|NPmEs!V*7!cE&9X8sOJWq0EwbAs z`!g7^m9w$i$cGi1f=BcFD5u5@dg>*s9{!v}I(=PMJ%03A>AX8P^T?dGEkz<+>v{&U z#c@p8u0H?c(2*fSnEK4?{nEE6=nseAN0W<9O~nf>ae(eeqA<32si$||5T$I_1*+a2 zrH)wF{0)<9*S5{%QFwA_8vzI>n6lKjg2SxH#saSMpHau{!YV!!GwTdB=4)d2=n;PFdvT^)TNFkmqMQV>$Gn_|&^Zyq^8 zru5BestVdXUeCu#W0+;mq5#O_Vg!F+H0)yW+w%X%eezVyd*33}&QelZQqieQ>1kUE zOXE_h+Si@#JX5ILMLz28OtjqX4`VMpMLo67G)?Vnbb_vj*9`?UkYQ!pD3NGXIGJX) zw;eRfpk>kE+2NPnZa-%(1dS$2TL&o4(igf4mMR9rz>}Ili-La^^@wz;^;H!@oMzJ_e%3JM5+XhN_pUPnUN(mHM_QL1# zMMw{&`M4R;18T`xVzsu7OYVRrV`unI!h1MPH)H<*v#1tI$K#d=JY~{x@9t!2Q#I7S zRnjLO>}p}RVlxK&@74zD$isQ9$E?1Thf=a5BPB80wJT-Q=J;ymE65A#k+)(CKk-bh zb26xe-a0DKlve^=XlH#xRFB%8_h;VbR!ZvE`Q-Xt*RzZhN#fI7|DrUk&z~if@_+34 z=FR9WWDi?%V<>3)Q$K3sQ&>3NNAOd**+fC{?UM#!pki-*@}ZwWg94%aKhD`)t# z`f?m;c(&+Y&cHhPm+9v0eEzRYblIobiK*3*n!oME9j;prGe+#uqs?Q97}P6t$N(b9 zc)F!5Mu5ZXRi;^o!qducQH`|?CYdfjKW>gnrURfrgC1?T@q}B;u!mVfW7i4nk8JHd=vc1Wy7P*7cuCgtg5p=XrO$yXha^c%O3LJ6_oZ!SC(%&iP188dhO6&(h;pq#&Al?mAMm z{*(qPG$BKcx`(oF^qk6rQl2L&MT`qSSW9U}FEwhtc-K;Zc*l@90z1v1$)7xBkj1RK z;r%(t^Q?n6`?skp)O{!DaDIxd4FK67HS`O{^2|?O2T5fmZ9q^wt9l7{$D3lk+ET5| za=LbQ{C!FuDjCCUDwkJQCfAzo3iy;5P_~Ym9WI=tvZJ?l~}-K&VqcKUOta zPZG>IFl<+-&15$XkZUbmJSZArIP8>DTcLyC*?(DPe`fK6Cp?(PnLuG%q&EGSzRm!o zA-uyg)+q5Cduk_(+7ylRFIi_ZTrBK$Si$xv+Y ziD%75@n8zweoQEXuIPF)bwLkl=k^SF+gZ7g@y1}kqs4cN9Co;I>d|2rap%4x)!x1= z#K`p{3?z)Tw^Rc}urVaj!bghn1=|cxaGE!ioVS={yDZ0T;-tt?PcxQ_4cYCZR;I$N zstY#+@AkncSEr8)bj}=&0XWO`x|tBH#on@m258wd#-ps4pfx};tAYV)XnF6itH;+30Mo-1wtVyT>SIZ8rZB+}> zL*fpppIPxfS>c}w0kftpq`?5>UGo(yWdy&)JIa#j4*^^oy3c-WV<`WSozG)uX^KpGo0)2-aItxCKv2jm*b z>LrldALQ~eo)5mGGj)QKN)+&&0kRS<{3B&)xOB1wC1pLoY*&v5Ta00)+41wDO?r%5RH`G7$st+Q>BDQd+S7K15MR zL%gjK6Rm1xVl#3Wm*Z(DAva7GjYiqO)+P^<^bzOHV>O4&i{HNqofAtttd4 zMn0|koYh=lkw0S^Oq*#yR`gdXTXsk}@rhBaIG6OSdF9QP|j)Y8~!%;scuI4$NP>@xT& zDk6p983Z4Z^ifQ2Da6%|W3K5rs>dFRfAOAISnQrLs4LCNqN@8;;K~E~%F^YJ2AQNS zCv_8#E~6|#8PlOp%Qe9*uae8x=I*3!)#9!hie>o;zv2V!2q6#Hlv(X8dU;F<%cswm zcZa>!>Z8XHK&jQ0p#}^6^PXiAD1eF~!$vV{+LT9cW@%# zS581RQAR-Rt@Q|5wbD6^Hf#FNC)}s?eN*eIVWm!iL!T+25N-RM1@_-NV)`jtG^7aj zKvAX|l8=PmNBMNC*D9(_4*THr@Y&HbwAMe~rnX@wj(XcwJ!ZZs zgng;hN~6XzNJml=btenIprbkS%2zEloel+cbV;W(Mpe3M+%DfUy|UK=KeffYcTbYG z%AiameH9V2r~-(p1zFOJJ#XQZAZ3b`jPgphP;+102nI*Wzw?4fs*Wt*NPZb_saN^T z1gk7rfKI_AfYEC7Y&(9Dnp@9fy$q2Pm7)H}mY1>KC=awiYSmp%fI+&dSx|kns8&m% zv2?C) zSu~w1uU=YL8Cf{|Gkx*c&bye0!)kg8xK+)j>NpGHZ`x!&wHKCcM4I(*pa)m6*bm(C^ zznF>M^pVBB5DFHHa|vjcivar9hvUE>UCL)k3fOI{Z4@;O?A!&3N+Ek;a)WiVgdSZO z{Se3SZ^x*$L6FVw7m;GKgY9==Z?K~io*LT}Bp%TXws6j{X)%j@g!;OBm{a%0w{*Km>!;GXb{3beJ^^QJ z&VFTSQ$Ow>^xomV%cw|L9W+TdzWYo(>2~^(Iy1228td2&^o(6x7v$~X-KXf)(o7i#cDYUm)!`pCI7N`fI)48$v0TT@#d-lfkImA{}KW=xoE}*SIV~*T}vyla$}lCe)RcyPNNOuT!D-G^#%#5s_|$6_TXGm zVft5+w)XPTRHI^C%Di?~Js}amD?+-7d8Bvd2MaG8={w2l6&?$xNZrTT4jH5M{WB2z z;uPn#dO~XUDn^qkQG`P+IFr3dWqnn%Sa`p(BD1ndy_2CPO0C%K=i8UoT($IvC=02U zrL`G4=L7u^gr^#rl$ldgS&pO9+P=o^ia)Y%u>=}ijD|s; z{BsqSmsqheW`GHz2WN&sshn+Iz3pi_403s3dUrW zpXsldc^<^E+D@~~)a*q~q-kn|2hL24(_Cvlvu#t&V4%M6)Mp4hz{Ev;I2j>%K)28{ zqhxk9THSojhXdkVDhDiC|49Np+l16!@zz?oC@x9jgF@Ty=G)rGEyC~&3b&qb3vj(| zsir!X@hlG!QE$#9?sik-uYe#pxxQLtT2k?pRd0U4sQe)V?ikp@L2|7OS!HZzhX;1{0D7xy)BX$|bY?UnMHAx+6!fqfEyFdU9*zp35&dFVNF z>FVx!E@cvD8a0{$LkffyQv0Vs2_p8F?US|^6?VNGr#;(W;sa0U9O~`F1^jc3PEPP% zqqQp4x(=;~e|mhB11+{7@mUF@fZ2Hj;AbOZhEwvE58fbpu*vpvuOp1=5&bb~Or)G0 zgAy>PS2TMkI(8Cgbghif|JFyd%IZ*+P~rA#+Y!MTR2g0eZAk@Pug#Sh4!7S0fp}XR z5GY+<|7bpjN#jF)lz*`Q@I_k-i`BezYh5tF->FQ-Ji9|^FTMP0x;0k&?T#Udqi}FX zb+=<935xT;X1~GP>RYWV?mIO+o#*CeM22)Jg2gby1v8`LkPj}ehVMS3EYf_F3j6k_ zsHljBX3>AOJTo#l;KRRvT3m1Y$<4K%n)oi7E(ZRt8)rmp=gG-z_7iD5juRtZHvP)1 zbcPL9?(pg>xPxtv^pA@C#Oo*ID~(lOCbXReNj1I5b#1xc>(ovRj!>3X-IEL40035a zA|KQ3x1c-QXgcU>m_14noAU=!+0)9X&qk5J7YfG*gk2p!Og@w z?_O32pxsPY*0d_!YlNPJhRy2KKc*+u@n=rOP74-HATR4fGuU%K~1@-ZcCK zc%csaBDoP%G<1GI+<7-)!HUv*yoQE@vvGj$xiOj^vUyhO5TnKQr=k&O0u9`UUuWN zr1^TowO}yxMd*Q?gO_M+M7L~2>lI~3CAeL5X4jTGvK?$bym7EY{e<)7}w!q(&;$Gk!|b!F`~4d{_XI2 z=w?6Hw)ZuO$Ra8`{5kv8o9mnF5t$pE8}h$ynYJ4-xV;}TTR5Z&5O1?P9pt#?0_Sy< zxOwRsO2e+(PXIHZxJqrtVQg_noB*a8b=0gYRJ&es;k6Z(I+;k7!`jRiZ}rZrcc0)^ zNc4+OuU|_#O+0nG7mNp?B(!yqstMD2iX74oe^enYsVzx()iF8R&8srxl|N7p!o4B> zPLy))g*!-%U84|f!)Wb8>6FL%=(b+=1;M3bM%!#(qrUj50#CIjw`~8&1|gbJ!|~b5 zouyb(xi(^j%z>^aIi2;=_!#-(A#*?XZiMGg#tdq=WORj){)TJ>_1|yCs^aS}Gh5Hj7DvKi;^shugPXQr|J2YW?5Rsq@_p4pLt=ny zRQkEvy8c_l?~2WaOmZ%INzji*XT9Pp!k67|r3jgU?5N-OL=L5pBkAwM|7phKT*bTQ zfEFmpmR)j!uJ%NB_BBbYsoNRQjdU`dxfM*@q1YbSK!f&=yWoWLN?+>B{>Fd5r7WJ$ zYbq=Sbe}kkgt+k#=%y>hLNf39PR(cIr0_@*KIyQ<-G*N#fp2@)sov^&GgH0#qzCG~ zadsV462jdx`7iLC9?S4CL;J8=FEQSWM|Hg-n{Fqkf_#DoT&{~lkmZ2TNi>K0GRfQ% zNt;-SICcNX0Dr>(bE?tlpmt-xIVWq3I@+I&OIPfN%gOI|Hphd33qha0eHx{|pB ziVH=lO@<#WE)=e~@{d85;uC5Q!8BJ8_VTkG_V^C^ku6z}05t80|wPv^;yWx6wy*!Hpz(I!UWPH%fAoaWUU4bU(%r9MhOM zEU{+ElYOU_{n=)Z`Y;$Na#8p8O^%Ig^vW9~xe%JkN8FWq^LhH;a@O;?No2UR6s4Q) z1+&5`0eFXCp0Yk`H z9y}K*iut-1=)cvRw*Bp=(G8SoVqbg+R}{!=fyM@WI7;Bwe=D- z+_L4YGo32XeWxcWfn>Hq&>f-2bA745`m84bj<`Pj7!tgQ;Upt!zx&j1pE9z`l5N>D zX8N@DNtWwSc$zo_2|6P7)SUmm?0XC@xOv?b@_(!8Ol zedXCSLq?qdoikB@GwvlFrY(8nu|3qG{39= ztMA%Hl%1d5yk9a`Tjta(tjK^q^h^{N-AWx6!pfin33hudrsKw_N@z+j3sR@c5$w+fJ zX-Q!{5J;f^gdn~g^)ALQ>Ir|rH$aDDkr+b;v~_E&Tuwvacf>K1Tb&_JPIpa=VS5t# zOFMI=L>-c_R6|ppv-D)MMIhI!Cu?H@@Te6Sw_FQ@2+6K0fD zv|e4m`LT!M@B?IMG>)@w%D`C-=}oDq1uk7V91pJQMv>=IB>mm3eNs|zl3wG^a1K4+ zoOyjAzW$ZAMY(f7mfQTt9x4fe2<6%d@SppfbGQhz9{rIx>h(M+G=`0>zANSqzAs|4W!)ZS(4##z^|2 z&V6gfZmL{LD^qL=W?ZEfcrJ~J@cvXe2HZls%~pPFPiG)MbD^D2NvIU#58aLPAKNFJ z-s#L_%D=8XY+F}NaXcopYVcTNps16i2R+%Ltq$ZSD9eEA6lGyS99cPj%w7>h!RSeN zZb^USWG%oG$@8(K<0y1%T^GJY42xIzG3OtyQt1UGgA>*&cFgbS=UXdR2iLFJ&I=v} zHV_6hK^oO%cJj7u0(h4vY8UY^hK$>D_B0b_h*DDNagr7r0-B%!d_OkHqXa}c=wHu!>c=NX}SGNv6mu?Qc1mOxe$KmMSd(sKt!@Xe!s zG;2zUC}9Vfmlr$?)D#RjCeK}6xk^8~_o5IQBI?GuT%#q)e98n`YU;d-&=ZR55zdyC25-^v6PV#j5oF%4y)rT{E`ho z?b?1kacdYij*VjRGR|=)1#t=&A9*~C_QXpu;kvsDFnd`D7kA7+|AnJ)_xziIa2yZRx(1hI zUXMQc0WzR*L=ypQ)dVNC zjZ?m`-LoOC>itY3X^$NON%S};6AP9W;<@)$V#X<#VCl|VW9xf*0OLj=GG{LGZo3<~ z+tx=i9>XF|%6=LjSD(-3F2Lf2)IohSP8gI7QFQIvb-DWEvuDvJ(+P9~Q3U|P`pi3$-$3a>1y=Va=4I0EkPI)w^K|KR`*f=F&ZP4dTVI)Wy}#D5c?f)CoTI>LR>B{a}R& zFUK%_bOsvKv#L&2C3Eta(DiA-8uqO^lv_<|t9|*31bB`JjktPIn7<&7-)1M!lzJZ* z-`m>~5$;$iVVW8SE;QG55O>Ot7?~BZ-zq)4?qNHz%cp4gNwi`!X zn}yqXAR;SMoaC|i)c+J3_WwU@`{v{L^YaB*G;TcF9^D4V?;XXI*9DuCFNv|A6LeiN zqh_pmbW$kx!X}IXjgJ6z{xpsb+&hRbCi(HxZwc(Qy&v_(a4K=*g zck^)|w_H}K1*xSKTzU_@WNv!q^=mf|#_tbKAaV7xyb2C5tb>BLO;>C<9*oHDkO z8rPpK!OWr_S|Z75kgK)pzHW!#n@qtAMcuIL(pT}%Wv3ze^mxom?oF??%gu7Eh(ZB+ z1jV84?ZVEJf>wExdH^>N2Hc!o!id-%g$5K_9JH_P-|0IFn)geOsnv^029x5ky!-_2 zr8%bnRkvz$2Voi2xF%AHcGBU&Vqf)ZhqF4=^?9;&E1^*qmY6Qh2j$ggeRAG3zEwL2 z51Jb_mzjGqqd{_=wWL1JcgAjPis8(quCPM-JZoO8#~<6%)&qd|Y0bcZI*(SY>Qq0^ zjHBBqN-Sw*X(bOj-poTpXWd+cdGtsT3MMeGFc$~r{SVU@bVmE7&*8hm1Mt_#sql9= z68Q@XFzJINIuDBBsLKklggSNvYkr!Lw33y+kgjf0@&J=QtFg?ZoyVdjyU32xf6xRh6&${lpS#!9J(si#=`71-w!2rOu^XvlLgAjH9<5Z@R#y{l^X@4Ja{(ejM|kAP#L8#d}|ox>9P> zrZw$)cBDbz7cAyTNpG^9V`K2T!q8Z5u;{E{sugUG0A8wB8 zSKN$S^7^6Ps=1hc;>~zqV2G12?TPZQ2(}1`Hx8<>Q9Mx9iUG&?D3b`8#0O{_bQWD@ zo^oga2blvzT3VI#X-Vb85J~W$AV$1CxqAn%ysO8AmWQDl81EW6z2mBLYJmU5!8U;=6&i9oT9%izM8#kSPv}ysI#fj+QX)%x=MZ<=`xjcZR z{5JHeu?C{uE7E3&fs(NVELloF+xgUoY7n5i&jg|cD{(`p2fhh5#i)O-La+D`T(WpR z!qHJkX4IyqPuf(ZDJMf2EOponG2~TgLt?=7N98G#Na|L0*Qulwj!7tav+j4MyYjQk zZ!5xtr+F}s9+u=~?A5z6aM*r4AKgi93+{BDgAb(1>r|sJTAaj*eF`yiCSPz;*=xHvo)}dJ*@1NMsHfTt9drzfN* zXnrS5Bjs6i&AFU5aG!W1hQs$KTfpvYq;zDGrc9?7CAz-Nh%Y&QIgUb~i#vu4uEoeNrrKPuyCY@?GBewcXI_otpms4_b$*!STBZ;!!&e<; zbTC)PDciRc*-wvm_o|VyXX?T`{KN*eUt68~tZtQR9@?LkI@|}*vK0M_+W*mI`v@b2#fRAAGy-X2z1X@im5g93vu?-Z4AuJ$=4o4dD1oRx5+!F(&14LV;?CdIDOfa>xF#M4y@}fNH&cj7Z zmL@QY+uBFbdy*JXF&+ySCoqtv`y%9Ab0`7*`dglk=Wg2I9vMc$Ny?!bX?U1A2)4eP z_Iea|JQ$%KDbV}8FwQ&KGGj{b#*d>px{9e(5VX=;*e<3sR zglkA!679CPw9|T(a&$EP>#DzJ?&R!&D{e2sQ!i3vNa^O(H{xW{eK?OQ0xHEy8i!wA zKp7GlxlHQT7Lp$S$;E+!zIXUAFKWOal}Dvh*^8*!@!)g78?Q&q!b0s`k)RpY3pES_ zreW2%Y+c>ElZ)=Xwk{OrFN~x2kV16qQH04{t;%1vtZ}be8N({%;-us|IOeX?fET7C zaKiEMJ@vFF5j{SdJRLJR~!!m>x==JClOIp zKNr(^NtZA#K0R#iH5OuVG5{Pi{_VB}COrw?8E3=y`KR!8=GdD4y4jNVaUaSupmydJ zECn}q*11sL2U{El)K~1BOP>joBRJ%;LUbDu#Q_%<;;oOg5VEJ(UEiuKf;5kdp{q?M z=U4FWg%Gv%~ULNZ0GG-s)Prk*C$ug3mLNc!#teF_DP}y%U9$18z-{k1$>hqa*ity~n5XN5>K>vxgaL&9*82L|M1eY&F;@nH% zA29+{EHPW~#Q@cNG>B8+ZAVvrb`nrI+`Ezzcy}HKHa85|1)uBhnm`pa?u=Vn^F-Zf zMbxJkr3nuK&6@-F-VNUc=O8&`7;xTs;t-gUhCrTV~jE&aHnO9)x?+~=6uvg&K<$uTDy*72B-F_tf>YYtTk422W^cw-q+ zi~q9Vq!qvNx2!jhKcW`%-i7%2jMCynU6SKfN$kFj#ev*tOD$mnox&WjM+|>a0@~^D z08J%Hch#1&+R9hSnhB4>-_qq&?Rbwaz?*VGLX`}jkv9D@y-%(w3y%q16J|Ezd&_*P z02;8sCtt--K$~la?ib{0Q?ri`3l_)m=C?_N8_}0LJ8nMxT)*%+jnrS4h0}f-iTY!2 z(FjHS>H+ZIc!M2uB$CAkDGYeQDhaNGyQ^Z-?@Lm8cOC{d9}J}Taoy{z(P}|dkipmz zvGc6Fih;tLNWjLjWrl8ShwgZ`` zx7af%@&2%@k)|WeIb8~ivdOG1Tv;nIf$=`=Uz$EyT0mj-@{~@|YhnP>` z;F#aNcMG5~C4mchjzMP;vdEkr#P3x$w?(dddqB#Er(cWV^nNt;BIM-9@YAdW?&pCW zmAM4E%f((@Jq;Y2$XyNQzs(ptcaht1>)reFnM@DZ&h@&YgBv z06oqOTV|LG5aBzUx}ZJJaSg8T)F#TmWS($!Tfb6O!PhLC+8~P(U76(i@lQT*abnt~ zg6J$g-Bv-VJP=iZ0d+=xwQ0x|JfYMP%I3!(l z!Mrnry@bHHIPbb;VL<&%OktRZN^ia-giCIVVCAX=TDS0_4;d9Zb&J4TX`<-EtM5=^ zMx9PEe$AR%CQev$OiNi9R6go=E}fVhaSi%r^*GB#D1Mi=0rS&0Dx=g_N`l4)>C=Cx z#Fz@{X#ZP_np2m-!UJ3GmZ6>0Hzit!v&;&lRt=K z7^SZDa;;m@^wPL8xVq@d(Ps}KQC)2kecC@l``6kIzy6{y_SjiF7vgVA7;p!ps;(-7 z_0jIbZaW3=?n7DB|D;L;CCdu7uDY{rV-~7v6Ef&Zp>?ZJE{Uj^^z^#vtF;A(e_dU0 z-|JcTl@0n<%ylNMJdW!d#%05SnX4pex2#4*KzmGRWwBq4-)SI<0F-!0002M$Nkl2Jx~HlAHBF1CcRntJJ$Lfs7y5ADm)o(88rnsS)m=8M3a%bjMBA4XP%v!s z80iBK)on|OrDas?F4~$9n%>t83zEi%xH!kOC`vTR!WGkEnWhrhN+GGGWjs`e^fV5h z((7Kjje>n(`yhXAMP`{V)txC!yteWk-?S~AL&WpqD5OqjgeI5TZs#}BH&aF>Qif#& z<)>(=$H=AVJDWu0v>NGyCHeUaNW*T@eW4A&6S>?~g zL3v-{HF`kWZ7~_pcK<Lhyb z=idp8;R)*iC26(Ep#J_x68FJ}-5H5;xHH(2;1K4j(BmNhejGp43C_c$^$b&~zFZ?fd$Njr7ehtt?M@ zL3*ZQ-(LTUDrqqv>QbVbL%jXU#o$lB%k+^gM|p568!z}`FjaTe%i=-IpJPA`YiY`1 z^B_~tdMnIZKsVfj3vuEV1-S1i*&wj*U4OCZ%l>QHCk03CBYbKea%EWG!%nU}l}{u} zuZ$FiH*d-X6YG`Aw(NqXy=8NIp{8L#;&x3s?Ws3&1dRj7NWj$Z{Ib!;ZHZZPINA6U zh}F%&d8?ks^hI>R8T}M5#7@J<*G_?N#~qM}aD~jR!{ScJPGSc_O{=X}9uEUG8v~kX zHG#{f;rsuyb`@)L%QQ@LHt&B+X+|W9(C$0n&i_uv(@Rc4t5qLh`afN8z|U`DhfBgZ z;NpCA=w65yXp-jHPZJ1Hk2{y&MtLw}3U@cmxa9a$K3>>zF`#~6iMnM@L<0Po+k0|a}iv4eE~+&j;2ihnDiVM z4eR?cbz~-feku!JJduS1_twEDE2Ob7*Isd>i^@C?-bEYpJbBIoL3uPc)gl+zmIs}L zcQI&d3$AUH#@*}cp3Ti#{-~U4M+JLdLX+LIjWx|l+}H!iU2iSI*vDdc>B}T8qeX#7 zU!Zh~fGVpn%bfz8g3vVhg2g6hr^&M9Sm-o6{E$+o!bB-iHp+n55`lG9B zdGI_Yv^)%Llz5*p*B~Y8Bj|l1$pK@G`LZk-WIk8q`>`ZHfCJvUACJtt2w8L|_;9Ev zrgfc&-HvQbVo4@7rFdpKSVeooMyacpsfU4@jR8%x=CnJdJo|BB7~!eaJWjL`9;(o@ zFBC+OW3Jn^&GBL1iTG-p%g{9PJ8t;w9Gvp=V~Awe!TaAQaN2-Eo+jqZ&k4GSQXnaM zwc^QQ6U?NYy06*j@Jd&W7;wypu98+6=@qZ(@5P)-+I0QdJRrw@l*jGqz1q>V*eUK{ zkNQ!~?MtdlNsz9lIzMpVlqea{2p*oEz*XEWxPEkzsfDD6vI?VX)5d;EK<#)G9K9=# ziBfj<1U$`9(KOSTYr|;A6Y7T(XHN{wK*I*sAPrpmx;0^%{xYRx;eF3y-5XYT2)j?k0v54KdHNqnXW88}F*d{q2{Tuc{G*O7G zBnb!yca&0|U3d23($lCDY6y;qg(nl(guBQFD!ScLmBi_qOES>mfFKquWM8B{UacG} z(bIOeSfrZFh&p760rIER#h&3VUoeN;D;Ya2JrU189W6U z#lpf&+;jgz44d5>C&j1mKvHu&bF(eEHEG)K1VIIc-eDT9qiFh{m)9z z)K3*^IvsHRUG-2|w`t+W^tWOtA_E$w1aNyE%+i5e#Y@Rh%wJ{dWXG-@Tgp=>&*d3V zXfil6V_RdnWc<0Z>FRrEd8zv>SSI5SMkLomQ61N*wJRw5EKlih+-eD+|uPvz#aL>DmhQco3`2 z)+sdvs{gq@wI(>#`FUnR982iC1EjoZKP6h9()KTVpw|71-NAEhp@u86*{lD2QSRO5GU-gjK;llaMcAq zT>M|>wZ)Egj{&XuePLsl&}~1Pe#gS74?5jID^L_eVVSy(UDmbbZ|PHNOtB6mb!M00 zlw$)NJHY;X_%Z704EQM~v$XKv(CoOhV^BEIV$O|87w5jRbk#D65@eeE30U`b+?6np zigW43T#9LxHzOuR0UZgPaYGUA<-x)!?@+~twoB#BO67O$;PR}@)#h#6Pz%$AixND% zn81a{1@YsQObqLrLCLU%TwIT}WF&PC!94D;AV$zTR_l5`v}@zT#2drds=3rRT>aMq zq?)5VNoX}AxHNdzx%J-Ye9+{JI5%VbI{Djn5>lXUE?C2s>Rvzt#Tl z@W0@(IJ?0Z%&4;seRnRyjK8uCEDaO^(_ry}hXD@*Rf7RHW;Hg=f-$wwa|BG|Rv~ra zhJ+TD0X+9&0Uk=8fZtm*#l-nnVCT70@M6Oy$RBk-vUhGnsufG^Tv$S3iDA{0*@Loq zVnDP)^uYz~n573BpZ=zL?=910`>)GMMbd~URWuiEt|pF>IgObRPgwo4G>*A{^Pt}C z8KAER?j}&`$oGO@Tt_#+O2JoNVz#V2n0cp|T4iL)ryB;7Ct>`nT<#sOuH0@+8?(Un zbMtrR>^MHBYFt($8lETjv~nR$5^<~hhyyG`=kgOA7nGlS@7}HHs8^f_Z zi|{=qpmN8385gaiugf40pm~TeMeEaWQWi{;HzQP@J{Qm}YbU?)0vDoh`eZC_;Fw5# zYzm!Ta=l!Kkh0O`)0q^0CP=!L7d$4kJPcKFygH-$jaIG0A1uNhPtYedTk5)Vg6MUA z7*X!3hv+ubvY|{!1~fT&G6H@3AhC22rq#a)SGE|2g`qmg$X^bB-4ISbI5k)|vRJ)} zQRRX2Fi>MKkj@~c->ZP>&z5*`{E|`xLmcD<%kXaf_BgunWIXhDH|+nx%g8?eG{i@b zgMa^hjTyCM%8G@V7%adVQ*W;zWn-Y2RBJLfKZ?t!f44rt!4wqjfGLQn)N^{AiKxsU zm9r{B8XQ++cePwc`GOFYL{dgEdGCK7$AvugJ#QJe;J5PQnW1#Z(uzBKwD1z*VL-<= z7U#ilSHlSj=$ju!@#TyJj@dtecDs-vBy1%z-xPmXe6vO@D22+VA4e~yy&1=AAH}hK zD<3YWLH!oZgJ@Pah`;F9Jwp9ex#HZjEtN~f5K?u(<>0OaVM6*G;og;XRlad%EQb2Q zxBU42C*I3ODlKV@dkyG*A)N-aVj9M)eB}kfb9K@;S=2Fg!6zv*A4-?i#jopC!ZL+O zz4|C%AE`+Bl-^@Pg@p|mG`YwS{l{O%(03e7Ey%0}dqVFqF&spr#QW?KMBb_>Rz^ZR z4M$G|qemb)Xdve~cJ~`@#v=>+VLm-RAe4tlIDp4*mB)u5S5FDEdfI?h@v`zT;9=lj z7_i&&Vn(~38pMn5hw=5#%kfLN1wOj=aU3wCA7b}Sfd9tFToUaSoRBHU8VFoc(Fl{BYZ*7imDap}x}>k96x^f>pfCR`m8qpJ%lt9$R> zmA)!oOo~kHUpX#_nG0wHn+I>cosmTU2Yr|_i19r0m*OS=#VF}}#R0JL z=y#W8nlCv!fHM!Kd(~BzaTGuU(tsCyve4=$p{@!El9I-ew=#8vB`W?(ONU}`RaK6T0s z9urzFimEn&4D)K0^ZTFbBy>YYvAEhk|DOa;IVSPZXGJ*UmH_;b6?nyeEq3_)K_oNl z!Z&0%0_UECDfw}X-`$6KJmAoQtG*)-6a#9-_Z3}jRc(ztXdVVU3^)vkFlhTwG^IJ+ zD84g36CZpQMl+tA-(&Z>d_NxkhArS5ITXpR7Xk}zhwsu$Eg{e(@3;>E@EB2t)*5$Z z>mbbb2`*m_tXc(MAxW;<&Jb$G>MC}`5cbq_8lzFnbm$$^8VP!e2}p82pZRkPi)o~M z#~o>!rvbZyA@oek^uF{w3{2*wc(GlAVSc<91CfGnnF)QbwC;WCc{O;77YwCI{Y>7x zH{~Ovkt(kk9Kn}>#N?w^a{l!^V#gn?PpsMc~NHBtBbV9Z=*$>Rg#K$pVc0m~$%tV;Ki67{xrAN{}>kSDs$mxm5ytUX_8|KWAfdUU%%Y>?KmNosb+o z7QVy(VB@8LLB9O&2La<%%#=FDBhP|#} zcAY{2?0x>(p!*&8quiY`fs?xkwrRME-y3O}nZMaTD4p7tKI6A0gOI81Q+9_WnJfX8 z@XKT%_^xx5b-%WBt9>VMCb0o4=xbs!OkC=Z>w@l@9;f>?y?5ypuUutt|8(y7nf+z$ z7i(v5K55xkwphl^q~X3SMAP5XpUG(*#4UTS2q+!Yk1%HQI*V79!fcT9(F{oQiVto8 zIXG$0y4A=N2S;bTC@AtFgRtej(0Ghm$^(h=1H*FWFim{1)*con{~A3_>1vv+^z3Kj zQ8mYuTZ7zgKIlugh_xU@)V4?g!o+Pw<992mQ#~`w6m=k)2t>}SPzEAO`?-2Za;dq>R_>R;Gq3$RrJrOxcJ{8mt)IW6N;F}2VkB0#d z0~-Yc8j~7}qU#!)x|guU&^5j=QXMMpCoky=U(@D5uO9UOIT*gVe<3+?6nwdL%wjW6 zg{=T}yhXeOix4f5ASf}ndhhZw1a70$cFWGx%)(+a0$gCoG@cq<&*sW|5$RG)h7nJt z7!!N1Z!E*1@1s#ae*TT^TSv@>m>)mt)}syDw#h2w* z;I4{y_b!bX4ZU;ErQ?g=r{MG1F+qmm5=;f9Hiu@+cWF#iaoH>rrSgkuqD&Jj zmjWyD=uVS$tyN#&aK})L6yxLEF_a3M;M;t8&v@ZO%;&E^CNbo}I2Nx2wxRyywcRt( zXlpI{SSIOPtA2I>8W_d6GUc;nwz#zL)vif$$17N-!S}}S_BV76(8!NFdSzfos>}Jv z>?R0P^%Ub~m_mXPvuAK%aIEsBg34`5puF@>S97!4)ud5cMe&dMUg=EI)HVItfl~6+ zk0rp2KY(A@hxXfx#{DTp7hf)usQ-Hd=-4{~KfO=Uc!!Z9e|dWd&2}&{T)tSpplMF| z|NiZF_`K(pNFCxY7pTXCmW!gQNnnYI=~l)j;4d>{c#Ceh7IPc^$2kccKR5@I+P;7{ zm-T`#G8-S%?uAn| z&Cqx?i$soH5m6B!oght~bRy7<@|G*O9skHfz`_Mcj=2xMmRnJ7Dk_mOWN+vX{e^Sa zB!kqX2??TObkp-%-*S83R~!R%m~<*nk?t|^aqPeU{@m^)2{sdRidis>hTv7~Sqlv@ zLIu<svJs_o{o>@hV=AxTLFXa1Ln*J8nA%$ zl5OCM4wnw;-<6Kjb9wO&Z@Nlzz^q+(FL{%A=+fV(Kf8sly5Hk3Msexj2tB$1E$jO* zZCD2OqE|QRlpc35aQ?}0OnSQrIx~6oSwZZzy=6$1M=@ipTB;yx4gXGKbV6B((DG%- z;vDCg(zSwNq{oDohoSY1R|j!HHq1zV@YQ#5oYPV{qtuH*qVb z02Ax>M7PGbVpTkd36odi>?3nfhg%kgkdcU`cR+J5O6LU+10DuyECw92XbvZ&I8!mA z*t;x}~-q1UJ=R^=zL8}B*ZM)}Qo>f=mBdLHyKPeojn)!P{z|K$w=U?N#<+{qd;8Vu>0J8KR|iYwQ8{8{ zB8#Z2nZt#MfR=`v{=MlNL`)IAunl}5iabs$wb+mT{5y$Zk4N$7ZDy9B;d|iW+cI(0 z4C=Y^(AN&zTC-9T;I38~hn)0G%D7jVip$M=Q$}&ZMvgKFyLWe6UBh2pqrsNVJF3iwrLGadJ+Yfa0~18NjT!CE_gU&Bs%_j3SPcF zju+pGV>C^<1!-uyfUfth8XLn=)G6P2dutU#^S%pizH!gqwR$ih8f!e(NQam0>7+oF z%}vByOs2Xgn8!#GlppsfK=e|9_m2)F?D*BYHHl^s~a#|;+Kw0;Gp(Cw4_I+ zbU}=RqtC^-3Y6IqC!WNHsuh&-U+rVZRv65 za&T7%vGlWhU;3(ij0BWrpZ;DH*Nl#0!OA2qKP8A8y7ELk^A@bq`5HK;;wqb5a`Fx9 ztA9GZRF^u%vcsxadw|)G-FC8UpB6nPrJ~m{sJtqXT3mg>=tVpdz^04=QO8t}jnIUQ1J|pEe)~LtF|~VP>)gNb zcHsZ8=gaq_kh+F{FX3!X3Kix7j4-$3bygvd+qMEDBi$lihDd7iH^jj~_pa52f#Mca zBUHi9&};2-kqJ?Iw%s;}BM%9YOmMq2#RQ3lC|yucrcq$9-+G=NUVH?cionGX4SW8k|13QJkwZU+4 zo+Q*^q8hGhC^fEDQd(_wyR``SJy*mnoLsbv|A;dr+xP){s;?l`^WUSc1Q?+Sip;r4SvO`dSpvy&Xf#W`6Xh&T0ed zA3Ek^ZDq7^VtiCL+gBspMh=tVR9#iiQw|AW=tR;%x~$Zxn)Z|m@3tcsYm7^MQjCu^ z;ZbD~{2#fCcxvB5%%omtZEiu2yEcq7=D)c4#X|G?; zGX5&hh6**ovy;A_c z{2Iql?w&j}oppN-xc?a%^uH$)EsekU65N-DRncd|*QDC;{m)|Eg zFspx844TJ;Rt!&-N~MOx0pHj&zsjfnC287o zZ${CnZxIO;OO+SL_kScXby%j^t}d@J1;;Unb9m6M|6N7+=9eUnp?b-{Zee6o@UlCZ zs8>g2VB*U$)TT~k&n`i8NK5KyqJsv888;-fE3%@X@acd`ESTFwHe(@=(=Gw$T%B z#Bt3u_9&75 zrLz$w(mgxh*VJkoMu#0$8}iS67&n5IT6KLWq`KI2GH(m0GNS$`dPSMbT7&Q*X?`yr zwwp$#&)TsKt!4qquyC$)+MP6Gk7Y5hl(f9U3urY2Qx4`|iw5MM8k~V)k43R;DUH>i z7{tN*&`O5zY8Xdbc83RD72NXz8vH-(vO>%v;~j2jds>7B?{!qY5t(fhQWyJBxxWdS z%_8Ie!IyC?rS58N*&e08QCW5P=qnzen11zWNsiT*pvD$u8i#|MMX~ zFB5kyy&WU}=|Ka%t1vv{2At9IUes$=n*%bANX(vq)Bv+gr`6Tay_>}B^d@i@~1Va*4FVrjys9i;n#c0g>GmbtZig5XDh4`G3IL+^hvu$tZe3jnO zkeX5xLwm&VuoAn_uX~&epaL>CMa$`4vLWqzI_oWDQrA{?#YqZR#KqI6KO_)tM6ZEl zBttxO_Zd%ZD+}!$#<*WDhBoH(7uC1xAW5NR_%{nEs!IOlpPfL{btvX2RJvBLb zsx63pwlBbxWqojZsq2*PB#QHbhXD@* zn->N&tVL8bp_@U^8?$(o@pHLmX}djqlcykdMK`p5?PS6`tkjl*nV3Ysi*YM9ULif zQlL&@>B7dwfas5y3NdJxo)*N<+}@q?UK~4b=f~*2VPtUYSak@IAt{fJiMh<=PT%3} z{dkOLA0qWxJ4*cy-;;-Gh$p-4pQ3lXICzp^23d#)sMa>%Zt5UX5B2MxDTQ5Dgtx|L zQ9VUt$?7{w%BgVJ{y}^=!H3sBieoq0#60348nI_0F?C{w$K05SE=R|Ve)SOt1z0Y( zn_$1+P=8e>*3{HrI5tm2hL~x?oC+~aJLfUAPwT7YZ4gx2zPG?`?g+m+gT@o#~${W&`O}S@}Jla zlxkddB-25-Jn>1XlP>x88GHry$$tS$vUb81jYr|z9gfBq{Ug|OSLt!t#&Vs@T`ON2 z?@JE@9tJig46HWhMInqv8~+A5f5?PW<38hhg+vFz8^>L?E=Q?fi1CZ zJI7?ylv=1fh8be_lF6v?H)mo9rH8esTd7mg3X))|_mz~r?7nDHv7e8ii|V?yBKYo? z1Wk?w(feFU{nUpAZ*@V8VCtQ&AN~+WkkU;ZfGHwx_2nN)EagGHCft6ecXtEBjVUo^ zJGZ4dGyW6=Msdo*!90|Vstc~{Hl2H0a<$*sXQd&JXkdw{b;0HBo-1L<8WO*^b+ispVmu343u)61@8YzMRr>tK3U4+9%Ql?^I`7$kKoT?MnA(J|zy>yM&%>x(4XwWS~UW64M|lajKmo}=J6 z7>%h%IQlv%5Aur?7pL#UC=mjGC7hkX0n^D<=3(t9X`33ya^aB7=aC2bQJ-Zo+w}&% zrKieS5cJ+I(3nk%IWloftNbJgQc#?&r}9=P$zMSULVdLDJ zHC;^|Q<3TSdX@gntPIp{gXzFx3KywVXSi!}3@_ga9C1JpJyG48&AUmAe$zSNJ3RFeTyI!Lhh>_^TLfj|r_9o=mEA#1rpEQCJab1dSPOqp+3n z>*637TnNgKHuQ8SU=pK8N^BzvMAZMO+vZ0`_mx}V;Vs595?q7aThEQsMel+$;p4zBv} z*t2mgp^e8|dt?~8BF3m9!7vx8J|jjzBuS4|yR~1!+!}_DtkASKqUdsM5q*&}GwN9m z{xgYdyQa!shE(2^li#Uql2Y=&p`+HagUZYZ_F$_gT~c$sm-JZQUqn661R)%m*ks%S5h{m^I`E4p7;1PhE^=Y z-n-jve!-ALSV4S&b|&0luF|eug2AByF#A4 z)1oa*BeCqlShU=SE;j~n7Pz4cRF!4fqZBuH=x?(QDk z-Q7L7ySozzdJgXH76|U{9Gu|p?hYTxz4yI(f5NN!emYgVPEGAS(=)w#^_uSPRmZiq zUpeg@WbW9}g1up8&-zdo-x_}y#=l%-5&b}=Y)1*KrpaqcHEhu?-`w-ue94>XIhZ9D z)u@1Fs~G$Y(VVou_G_)iguNu-_l_0|8UzE7O;wrBTF}?_Go77G4<(XG3Q_B$O(#u^ z0dAbr7Nkh`4Q*0Hq0!#RvU9NBS=j;+>VrmCn1)2Cp(2#W&@>nXOfCVv7o2b$s&rZ+$@^H|aNWJn_aq((0!%~jHju~Pc#*BuR-5GbEWrW zZ!CXx^lU9BD>f1gB@L%+Y|=jMWg);-SKfSEZXeEffdAWJb_!((Sr@{2i!8F$9WTDeb8f!$Xk3#8^bW90dI2gOj=DZ#@gzNhl6D)9AXNc9wMEN5JAk>}#%Pw3OEpbz>DVh%S+rde$0FAiknYWp?gm zZ{MwD!kC`egZ|L!ZGic~A4&;*PS=8qi2NPD(Tuih?}JqsQUxRCvH&AJ)bUCksI=hZ zoe>q87^#LxUNvSE6#3;a(A+AdWvGj|b-L!MNpoKSrIdHn>S252uTGnbXANsQCmi&FKAmpBYiBWe6p|} zyE)QYnorHl*4b%df&P4k+7-j=K@rigT*L^cFSee_U6%v!v|iTZsr`P0jX6E0s<|2l zqQQx;6W7($jo>oX?w$GLo!HF>mxMca{~W>H_|kjrkbVgjRK;NeSx2!J zjJAPrCY?0iL6CFx9|aGqJ#0>Hc5G)K@67@Vg{`Tvm;)~d0u4GaufPlASUpd2h%)hp z;NdEL+O)>xiN6a(j|35OVHK1Nc|EK_(zG=%yuuNxlP5;z!CMkCNFec&QFZZt2eD=D zHgFQJqSO~0A51xk#i@si;n3oBy$xBlB`+t2olcK5GpA!*Z~UYHpO%6e|4^C!ctN5^ z^Y&(gu~tw@OplH(+r}B{6qI{U{Se!UQ5-E!=+w-|;M)ytP#i;T>xmk4UB}3Gi zP9Yhzd3d$tG&lTt?KE~qk4n#!yZ51Rv$Vg@L{GkbR$XU?e@}onTA{uTcLLE!jNn)X zD0y{71_uss88v91B%-!egPc>*IjwJ+^FO@QReS@ou`4!<1=*R0Pzg0g74)iTd1~uw zQRo9Unnt8R5|0Tc8g7k!T_$E$-rbXRXSApvDk!m<0=B*qJ>SPm!m5{}IcY;nA^aDP zC#W-nSu_Mx)(g`I$c)tof)_li=muAH!#{KNQOj~t1hZ(BfLc9jn4Kl=$gTE`zl3R0 zG#Cmm3O>Gg)B7Pz%UTaUR%##hk13D~Orskm%J4|{A;REBmzSJ_s}mW{%8h@5`uL#2 z&lbnRjMyP8^s)(lpidVn6=3X6 z!!mOvZ9PwhG_VTI@SzZ(M=EpA2QBZW@_tnMRmr0GHEfpoCh0^~^Z;shl+7I^!%hY5 zm7b8pp{5M%w^mIUN|DDW_Qm2+)j372ahv`QMAKPG-Ac>2wV8UfN0h!VmG?4r`lc?H1?&G%N%x1mqA?F5k z*=M}^Y(jj*cysbm!RqKnMFR)lvseK%&iesj9}%p|CI?RsL8!Y$k*sR6VTR80<|UXS zzn*m(ZU4Bevj1m6x~ICL2vnd&YAKDDUYw_hxX@;58HB>kVmFgdDg#VM z52J}gxMyP>(IVB=kFX9qBTY^V|EVfR`vWN4NEX+J(GNWK z$9|>V@;C&N+}M6Y=Ga9Pv2A&;a8?k|eU$Py2|ZxtiLFB3A9Q4~g&iqrYOq@nFKE!U zv2RM#dEv1{zc%Grp4lRwruv2R)t0glt@2RH^3Qi@K!pm)LJ<5^32pCCu8I7Zl-T#g z(9hO)5vZJZoh`pVV-pAKNP1sxRAXN&tr_uVkX073<`ndWSswXm!`Ny+)mUkP3(ap9 zT}w6|z78{47B*3hnrPuvJ($V8auyr^Vaj3IZ^d`@HXuk1gp)_iv)(7l%76$zsk|rjG`5q{;hSrO z8fG^&;lL4>CYoZ`YOKVsAmusb106ocB_JiNoQSwqW6?IVFy$vMZ_a1xw!HFG=*#WC4}B{DsS1Og5H7-`&`S!o{$R-7LH>khiH z2l_yY1ae*z}S8TTn9AL3wXsuty{wS(WY zBFlI;3op|ZK4D~gjq8WkK3Q6;V&3C$uhziqGNgHCuol#PN}zmF^6BZ8xR2 zZ~4_m>(-aPr&Y+v#BNNnU%l!=ZF~$6Ja(h%yW#TH=Eg`9_7sHc1ltyk|!Be04crYxcf2!hhF% zAV=jENEKq%FcQoZWy}oJmbjp3?l9LdP7P#LfZ0qR)_Pd)P4&1ulVvHIS7?4nyDgP4 z9og;p#aRO|URBXI$>?r+YV{~wXg|u&-ooX$+P*>SC5N}5k^iX4=bLXxFME*CBA>59 z|J@QC#cG6Vh_PMOLi(y9swP^mv$JZY3US&e&UPY_C1+%HKE0(PAv8!h!jTS~A=z3Jt|Zx#$_fpIYioLA_vbjb8T$QbN6IR{|4jboCp{87Y?^~M zuRE8#uP0-h6G)}R|J9U@_mSpe!SW&&7wKL9G;YT)y^g%)X~mqJW=<)V9=B+f!Zj)w z1A(E*-SmQoL8@6pq7gFRgGZMaG8ilHhP}al;kBB!xPvVU*HU*Is_2*+qW2Hgdn60N zv3^j!KQSIvlT*>Q=I&R0U5AJ1I)0Tl4~A78@nsTFx668S`PwmVsM<>W0oQLBl~T;* zNGlfOCueUz0|G3TBP6w8?_~R@xx{fjJ>5g|d;ZrlHg#K$h-(GdX;+#HhQ=ND;^%d^ zsABT1(VTKf^TYM(Lwy>;9`ExHy#m`1Fa(FURHP-FJG#l6kGAQ)MI-;9*uBNdG+#Wf zo!)>YhL?cr`ErU;$pe-0ieor{zzxzzrFb)Rqnq=pZ8znGxSg_M!&0L)@vIt`XZHv4`OxKj9Sq1UmM&mVOKGr@H`q23{FZ%53I05_?Ypd`^xe5US zkXBkLij*|7{?x7@%5*jiqh3`Lc3_)PC}SO5*TC7`a5FHCe+&D%;*HtJj%EFG=03(O zvZ8eC>9TNG#4*nmmzK)^rvy><9rqw=C&VD;W~`QKE~%b+27M>}cW(U<%Bh#>efD`( z%;e+_T#j#%;Y9_}Oi+R@n)KA{i_T>-XNhMP3o+yzz}+w4w{cx_C;qH0Ruj z1XrFPH5lF2>Z&FNnVC34I7|t2q(4es=cAxPrPq^GtKzurGffNl@Ei58nHv zoIo3}c@pK+T!cuULjGuz#d&A7`vGkPZ;iT8nRt?a95gpeFQB(GeIA-eI{+*uzz6S#!O-A#;Q*)1}Vltvsk2wKQ=v%>}j>%E&+06gvpfa zGGzCEwSRH^JdUf!PZhN7g=zG8Re@%rpmbC6S5(+3?a|Mt=8ml`cDJv;$r(8ER-we1 z3|-K}4U{CsRmVE|e^njhvdO~>fe<M9_QPm3}#r%6Q zjdHr_D83QKGx|>&5|!3@{{bu=bTEEw}84(9qR`rzow z*C8@LXHPF*_S8PgwS-D}>6d7>-&dYZjN_VYvf8M{1QnI;ELkquT5JLl+xJCj;ElVt z48HLP9hKA?9P_T^YRz2DsDAmw8|fsO{8NdtG9(+iQb%m_{MyWd-+mJH^swzs}!ZoG|p^ zN-P1JDhm&4Z6QhYb2~3TZdsHTp5y9=VaOQ{JRXqv1)zO3EJCvPkL!8`Io(R_&D!WO zXL48i{My?gt2xecoiv$4ZF{&6Sy!d7n_UAz&ej%SHZNH+=f60-6_^)*1$BfINp2GYW`_PAevNi zi&kKln83&@lmH0W@e9i2Cb{TCZ#i6q9c1uDHW-}fMReWUokn4oSp#~9Uf=j=L5k6&HDQit59 zU7(-X^mHQv2w9fPY&J63VrZX97}|0VXd2P zm4-U*jq%**E7|Z@V|xc#luT~}{Lf2t_(^&e3i^=u?8;q$Nsdq^bsXYUI{l{_Wk2_M77<}(LV>kmRYzUtg{Hm2ZwOBA2GROt#Z#y)KDw7k-PnWm%E}MUT-1Rl9HC;1j z99asGOKW831|xQ*w`U2PfvPyEw#8%_HKSy7qIZM573>zScYKuD!G~9@FzQqaIg%^Q zXCfY9mFzFNbyywy50`?V?+WCkLjml%AlZgE5Pk&m|hFU#0rM?XV4m@9|Oo$7H( zHzV}@bydMC0Zht1gWizB_DL*(&EpKTU#lwHO678_Rl3dosPM!*^{z%Ka;^ue`)&xv z4+?xtHdf_C3&d^Ze?4(JB9t_U)v2B`$Prra=_@+=X7D-i0d(oN;>D%V!Sb+U6HJk| zgw@wQLrlFI0X>u42>#wD*sl$;SjVD|< zP)~i>c`DlI2L%b!ay9oT&^Ga^j$344zXAcwo8 z^G0lq`U84Xmn53lbTUZMNbOKT?P%}r6L1He%Gy-=5#P}tQR6RR=Ef;-h~|OnWm%Vwy*wRl&=}#Ien;w@0Ay) zK^=_U`7)BXh{5ts{I@_I# z_q{=5ADsxy%qH=_DOVDGGcQT2zfz_jtasG$ENVif zlh^7R2H)tRZHtd6T;UUwiY|qljt!7Ea04)=B>rsLo@e~jp}`P7_~DM&E8gM zJ`|7%K0I`kmhDFHjt5TdiEOT(eD}QyB;oip_y)ep11@^ZFh~jR^N1w@Zjf+{`dk_;2{PDmfh>%czqy{t@O7SrGdm+J>a+lem1S@z6*TY*i z#`^Gre4Lg;@^^-AT(1U6^LJ-Vs{obNCkz5UtU}T*#xolbbxt<^H!|B`Stf>blFL~~ zheeVoHP$7i1nV#3?$#!==kYf>Jo(D*?d1eeic%0Q4`}Ukn<%Z!D3Roezv>2*VxT$l ziM{8=o@avD{%}ipSUAqqvv_@xm!H@ERxUv{;4+kjEGOsBocTr_nCg*>XI3K?I8|h~ zx8%WB{D=`2Z6B64^m1Le^TXeC2Rt#%DPH(IRK;mS{gNPUp4+XKDpir6rw=%fcsIR0 zqAE}z{r0RT->|HVlrK;gEPCESIYk^U`Lx}*10=v5lGh6#GIyq@PaWPaeAd;{QoJo* zdlW|cs_p`HZa{K)5=I38n6K8;OX?h2Q94p*&u4yz-mkf}X8k~x zm)K0x>>IT!)qVe?10Es77D?!RD-toMekm?4Cs1t-Y(YI#sZU=;WfHZS_zgu~w$<(y zv}(OvY^K#ZHTii*I`CP)Bysz0Lee$5ikHTdZKQ_kkmXe%naZhXXX<ZN zsVd|kZ@broaECLA72o_9GT-i^>rcp7uIUsV2a-bt;2Qcn|+^U z8q5+*pb!&Q;?hkEUH9V+2quOv%6UeX8p_X zL`Ns%$YG1IckS%#Dv(lZv`;X!fKlY9M`d}+R4>d<;pExS*`XSzP&~&I++eaQ&#VA9 z(~XPaH{lhd$Ku6&?=xs{2~?=d&-m5!J=CxrY#9%_-}JQ7f%hjdBKSRwE-;SmQ?FrQ z{lhQEsdE@~hDuDiP{>V&vC%}WCa6NEJHk4V`R=zqYy|AYxHVYxA)o#b6l@ljQ*T@$HP@G1v|IZ z_4Ig{7l;D%ED9-Jc7TxX>U)*@c_y*$5E^N)k`(N3Os?vMxN*w){>c`EiGFJ?zhuv5 zWu6#4>Q4BskehEOO0RZmtQIdWXt<0e6K|HQg{zv{mF?9caU<}bR+b2JzVVk8AAY#D zn67nVL4RzQRo9%yd*g3T??9TlS;sJhOzPE;gsSg4Hi>xr>sl-|$Ng5Ik*BXmqh@(PTih@9=%@7SuEcz*X4KaW@Jp;zs^jnkRMSJ#3jBqic!v1E!g0P6@T|MyFq+a z)*lO@ev()YB`C|cB_&5Irt&R^Apg_pSx+@JZ5Q$^VS!KfRz_xAe2$bG zJSKoNZXagSeTnMnl&b!CV@dz^YI3k#^-z_EkGMdUa#xvIX(IjJaMAcIeP_S)dUy?u zF?rB`%>aWcljy!vk-}X6+h?wTt9+PGMp9p*pezT04;O%a3y;gRAi)>D?dX=MOzWzG z@^E94(pe;ZR(3#Q@A!EvA%DlE)s zNp>LP)oo;it6A|JY}vF>bh(GqmNK5;mD8{om6}?G`oiUi>sdypi3@`l4F^W76jHb} z1pq{2NTF#@5VZUA$`#?Zu3u(=N0F-6keq(!A*f%atL738n3Wwm_=UKr*{o^K=B1jo zlTfp#yo!F763a8$^ID?s^x>@>Am0$dp5%21R<+!_k5F=1^r06^JNHb|=Vq>k@lCIe z>UV2bguS9>LN1-|b(e=^!q*v9Zeku0DA!0q(JOjMG_UdmuQkCtG_J4)ses|7Z26KI zxB`u^)ReX9ll4T<>opRXF`{t`3YSiG@Tzxs)Xn@aXF^{@97T6NI$*MR)D*;Jd{3`q zgN789+Y7jyaPm|7Oc+bfdgS8wZB)<4Fehvm%?NmWWrpxG?XunITb=9N3TK>ht>MlZ z_raNN%Tq4YAgz%(B-PRW#)f2L7LL*GbHv%*0!L-Hn|Ni%wa3~=iBl61Y)Yh1B%^4tT{x{VArZC_FJyc*2h zeM_v0cX>>6+9y@nWt*$c&MSWyJkOXTpPy#R4c`=`IV!q9VG4sIKxs*}U;Dk{CeKr< zm^tAzm)zGSJFvZP(8+ZPK?)bF!68MA*lXLK-J!$(FiveO%lw#6QL{Iq_1a%3^+bN^ zTvid9VXx1edrPPyz`2@~YS{;?G+0O8WAuPMNHqcO*mI+_Jw| zyX8kY905@@GH4*55V|)$6t`VBZJ!BnnES&bQ?M(yit?VCMcg8J?xL7Pp_i23HUkO4 z@v(svD_}JJ;ebO#tuY^Idk{RX;=%V;H@VRy+&TQkJe^zty9J$z6W3&3UC*eG-gMO& zEIt~K>t8iS^c7xY#7fb~^Z-e~s?wx67fZKb*V?6py_<=rP8PDHSOGY=K#vnKZERNa z1Og~@oF0cPH=E2ifDcT`CXTWgKT~$D&67FKI*Kzy3DzW;VG0lza8){{ekbg;H}2Gi z!mdD;uEsr`3| zOsYcK#6=&afIW$vfi<>vZD;;s&POqrlUhiLAL|=tA)Zlso4XcoE}i*B0+bjQ-an%? zk7`kO&p1Gl-*u^q_jwZdifAE_W{jqy=WhinN}B53B?M=lQET+6>JN_JX$>pRVt~MB zR^JZxCiZtevJ!BM%6Bpv6iRJXpB<+oisO*Aco8CAd1wetK($XivdjYp8W3Ie0aINm z^ePAGKALnt6N=ug$Z-p}0cYttDtLeQu3lYic}EgxQ}nt*C`YiQT$Ez-p}Ws|*rG2{ zv*^sc6YJe5rSvcIIB8zFZ2$Eag3P4IPh6+ZhFDm-i)=lNi~G|WTZ2UkUi}aa#%NOY zs)zVt&>;Un_#-#JCWW`LDaxVS{C9;S*>UM)Pid3wZ)yt)lsDMX;gdv*;h3yNwz+nb z61?I|tVOAUBGRjs3M=}oX-tGJphnq^B@7@Oo#V*m`nxc8{tN!X zKD}nXAyG68G7kG8^SqLw-Oag5+@wAyOOIpm#q8flIC&M5?(VkRC6vjp?&KJNl8Xlk zNMbYf>17!7Nfuq?3=Mmo+KPk(6tsC)(fPr3oebB1t0QsvTZ-1Vy~Sj4LkP|J?qmB} z{~TqNRdq@0Ju-hSGs$GDzlguWkwpr${3195$DF=GER59+i{@M#uD{>kU6a?kC*Rzr zjd7NkwAw%yUv?xpB2B_|y+p%xyyR9ZGxu71fW;S}FD`8ddINO4u*5gFjF3W54$Z1o zXd2`?dby%5`X*OYRcl;xZMXO)Rb1hb|5BiPWzZ%kHQW+k3? z-EVPvqt(mfq8HYMb~ZlW((DAATr1e2G+RbR+4$GP`?-QW?v_V*AsD9OwbZS#R+q-9 z1G?!&dE3UA!FAmNQhB*3c`|jWK^@&y`te{o=DTHqUSUdOKL-MFUcPZNEp6#z7shn8 zLFwe6+3?E;3;#-c`7V68kpTND6$}077FC8Z{_){7-5GROd;46b!miay+{IBA+Gl=R zprZ12*@+($^8s^LBdC;8>*-L`!DX}63s`iVoitPainQNG`qYo3;ma$NK0=NKs9XxV z)??N)$nBVK9uI{7oE=`EIEv(5vX^xO3xImj^e5`8WwOrK;ZP3w_^HD=(`r^iz-~3K zrq!9Ru9bKcKw~s)XfRVFaWE_zldbq}U5LDd=Bk$bU7XcmSP5nbq@lXgLEb!|@a^Mfg=y#0A*)+G-$zA>Tm0EI) zmA7N5+P$V@7a4sCE+Y3T*+ch|3KalQd$k~8N(V4O5C5jH?4SAJzr>7!g7@z3VzV+DQI%<1|=xF#92km@lPpHfO$PSiw=ws+_G+jn=n z?}wFFW8*>zTNU1T?yH;}TtZjY{NOy#Zij2v@4SBM;a{Wd=r~~6eZc_h<4pO|zVkWI zl=FxF9J`fEMdhrTWYkBGmDm3qXv^l4)!?Yh|Bg1`?9gpOIa0Z%%=fy;& zIZkYrKjr4Mp-_oM)izK8vcMz_LbFnz|rs0Id)_xBG zvKiheTwZH3yTOSKNznJ@NviTZjZDjtCYNj2o{#INJNxTS({RI7w64jJ||DixUtUVjZa%w*6N`7>2PdN-hI7VK)?v>uwu8*Yk z_z#NKpv~6dQn!>CN#7=g#ACbk>lX=QM zF@m5lH{_p)v4P|MhbkXD$0p81{(S88V*GIk=RK9fimaT2!gW&QoL2RL?WR2=O3lng zU%qk*!C@k755!@A2pChMU^{a+3S)BNm2T73XnP<@b@;^4SGrPoK;VIWKV3Y1I|inF zb>Lq{LuxB%rQ#4~6B^<6V0dp`NI*JpCzQ&`+sbz$Jm%?GUcASc`) zZNNcS)YFrX-bJQwXVi~k)i&@?fnFgq!kNfF6J?$TMos!6+D%S5CgQD~C8WmPJFWfw zNLF3POv^s1rjaZ$;|9ZuK+G78nR`?NleE|RV;qU+V$b{B_kZ-}Y9x*ti&z%~XJNOD z4`2@`^`Rvl&QbbY*Q{hEC1R?4YYn$D{m>@Nc?FG^jTRNwmCf|uXO!5 zh7qwB_WT&w?lw1=8yU5q8<8IQQIX3X%9Iy{Jy0?s>d0q7OBxUv7G15!U3~im^sppf z8!B&hGkyUlTM>p^<6QcZBXfZSKRT@ZvtTC@C|xKEG#YFJq^6UI8#XZK&O1&`^}!br zJfi%dYiAlp%8&cNK|TFjrw?N9#Pe%t<2Z*bFH`_*H~N? zn3PLuWl{{JF>PBDidEcdQIR%%Ka~kOBZ8L^5fONIACvFpd|Ly+$fDgrE-CVTH-m4u ztk`VI7{l&N2~_*Wo9Ly_Riit>LjyoO`3$?B=z^?44t4c$dz0}CB#z~LrAl=QbrcBQ z7>dtST7GT*TF@VNTz)tq!%?m9#6!3c9*0GZos%D+r%)2#(U{4wAH}Wi-mWpyuLlBT zwiu8r6{9}hjg~sCPo@Z_l8Y2LKFL>9Uf=Sn{oDM4hT8t#%XRfEZW&nx#VtOm(~?s%n%DR1Lh?fgUXN^bbp@gC&>ObUiNsG@o>CY?F&&DTr-{EprRexj_3(Y$9X zCUx(9p|*dW9uc>r(r*%RB+9CQX(|Fl^lkXrV7pbuk%&o$JeLCObt_$aQ3-_pd{ivC zcTD57I92F0dhONeAi?+2=r9H<1 zivfcV{TH$SCAKSL1DHQkr?%$r74hWUuAuUzihj*s5^Ld#K%J!QB_5EK)GP}^(X*nC z_a=<92#^-d_STdZSQ1*Z^ABxPZiwe)@yTm*wDz8(oGqcjLwG9m%99coGaZ>f5_o!g z=z1v|X#z3Q{~R@nDuHrPae!g6EX_yja7L!-2h2XCgFK`MG5;te*J%$QrrE(AjkP zE9Bf8dTJi)`R%;?=tTMe&v^=Q>%U;F3nc{~rmrQZLJ+^jIHIDiNSdx#d|C{<2M&=w zzWLT?Kc^S_$?G)zIOU76Xg&cSneSjGi(@+2blnxLCs$)Eo{C?i&x;%-_M2IBMuUCC zn1H=B#bF`&s@lTM^tKvD4PB+gN$zqsK!>0d@YO8~)o!MB+mY|9*flYnvA!8Jc$UN{ zaa=+|S|%l0%mv3E9R>jf>UZRnO2DM*mn;szukBl;m>!SqVOw1`AQYMSA9iD55 z3*mFtY*lBeET`cQy8BzBtLhk_>AEfVP$LZ&esMU+zR6DfoFT?tojZDuP{}jmZ(PcW zVir7k(bR9X|A9 zlW(Vh8gsNT5u!k1(4fG#aoZ%7Tx_jLZwJU2A5c0e#KHf|sbMD%+w-{>XYu{T3SY=* z=6!`m%klCzU1!1`u4r+8MDxN33Y8h887|t$Ns&5FWCBC=Nj?WP@3VNKs`_q0{?V`V zc5})_p8Jv$z9*{qUjj0xcdz8Wi@UW~x_UcBIZbQCKEYYna?j`ukjAgeY=n&;wB}y} z{S5_v8F<0WGB`!FA&axMOwya$*04np+jq3l>&HH;MJSxXfMv- z|LC4*d16W89t$`sgc=3++FnHxI3@^GvD!^`tZ~6z$_&}-N3~;VY(+c4veLO%pjSCKK3*g3MI9o8e$Zu1@u!2ap9dd%O)TKk zOF?Z)E>gqx?E&yG+gRUO`~9W(XaHqS3T^T$v;0=;)sVK<{XE2O)vbMElB@d2(2CwIjX58p)ijn~mBzDn`N06?t|Zq4 z=x^Ezo#5ZDVvYJ#aNn#@8DE|?A-$VW>U1F^A#+H|A?aF`|Kc^Pv10p7F(d5){<8-(3FEG#_{d4>C?`IvL5c zM!W+%6%gYr7q_|VYdR=)o{afHLyUy;k&Aep&~5J#kcjY9k>azUnd}_=K5% z2Y*0%<-3?x>v{jY6Mv>NjF}ysd@epMM2%Kfw~X8w17;h2<(c;133WyWQ{R`V1(e}2 zuDfX}I=QcqP7yrI+%pr7Zs)rtzYg+|0SoIA+<)vWHd>o((iaaQcqNq#e6i9lfijHM z7~V7F$|*8Nm@%A z@xrf0gXPdKo*v+=WhCn%jpOyL%80DH3SbylBA zV#6NA;zLVlD#-jjrVQS~LnLBiK`@&}&NZO+>%S%r+()08K{nNDdhJ zbg41-N>V^fEbc#Vj2E~i^r>68&4;0ODH7ZBy5Y(};YImpp=sjo4Gg8)V&1U=62DAG z@<)OEv_L1bBhf=OKINDLzpyO&%y_3#0Fbc~(LLJ0S6ge9UiyPRS?EKtkb(J4g=WR7 z{71rtTMbsVnqRTfRZlxvC|H!CT~Il-q5#Bauv3yR78?Q-8eJGkeLkd@+ANCp&Jl`>#nw z6Mv*R)(KeibwSwFGo=#eQ}^L8PqRwY(*n4+rEwDbi&FEntulT9QjJ;l|EeenCzAckrpUpPmGm=q`gMR3+~p!Mdvm3 zT$XT?4k~AAVkp~=byGUX8upto`Ium#v9;pN?JapfyE%=ysq98j{~Uqh zJCFaq+d2gP?R==$*e#KM03k8M&SHe`P?eqY9Nr1dwoj3Zs1dGf_YjAjkF+1lOB;e*3?K%Rnu1Uzk@VfkZv+cV^9;j zymVq%4XM<@_~_%N$tjJ__`Q8|{xu4Te^kPV-d&skLx-A`OLic`NnHaW<`{Wi<$WNp zsYFgFiUmKKvArg7<8YJDzr5^5AuR@W!j191uG zb?+a3$%ql4*?@_%7#qgmN7jds$Uz{Qw4q2qB%$-KX{+MFQBg}I86=>+*7c2)jg;Ok za7!K{UIirqY@&VcZ0k?F#G_ws>dw62%Xo<0a03>~|1RRkJTTS4bV)#U7a?L5pXrcX zgGiON(lPk@q@-^jo`CyY`Z1~ZIHjkPS}gn7)Xlw!n5oJr19>@Dg|L0z2xjc&Nar8J z)S(5MvF0-6;0Y7D9+I%QRSfBSOP?ktOZ}F#_dMNL-USdqOG%xI@`Z2$?lM_f8c055 z%#{c-m(3Z+XJZqwC!YUMhN2`45rQdKhx$Es#S8~+GM*O6H}0^4x|US6&snE=uuh(K z?p!YM%jESTYs~(=bKFp;D6wLhJcEtb-NP*(C^N84JZEt~q$fZM&9*@e!0rEc zYRr)hGhlENl$(iA^xWqv#+D1U#bc*_i6kG$+}sts>Bs_J?^YG_Zh8US7evE+PbD<* z>QcW~CzOZ(giw8r`6pS~p$8u~6D~fYtE*PGKAe$HntgBtEICq2>A5Brc;Ccj*a1oTa6|3%@?lltc(vy31|MQ?jXpn}2!CfT0VteO_NfHcHK$-Ij z#QjKu3JpKIU;G>yvj+nY6pNykKCGcoVyMxJTXo2Y5d1XWs#C^-Qig^N~BxkCcMnYeXp17m^k=^Na zA)|^;7ni;f6OPha+MoLH`AQhN5hKfp7;_t#*H={3rAe`GkIJdeQe!j3pReid-0_IX z^J}%}xffPs>FXmW{H8!lvvHPsKIs{_c7(iw4cyUWW8GyzbTr!v35@+ApimjdERju= zIU!&WYfuJoDYTQHmXj7@)_pB6+ty&8a*n~(x5EoG63bDqE-fU!VlzgVS<~6Fv}6$k zYPh<(dZc;F>}*n%3S1fK4MjNK3zi8#N)mF;<;@060o; za&qQ=5XZU?_og&-*lZTPmhqB-{4${>5c5%cjXpKDcozm89^BP7_9}+|Nz>Ep{dGt3 zM*4W^yUcv=vVlzAq2*UNaCWHilLw9&SqmqOhi5|nA;)k$5?>5GHc4ZPjE@g&i2P(5 z9QJV9xIWV4SVmcS3dZ3_KgSL@Jx8+jA3XYH;rn!RdAFb*F>$OHE9m?DyodX^x@^G5 zVCM+=5#ijP+EWa6CWxE-Y8xI1VlCmn*$BQGDX*SK`Yk8l2f+<47WwHkXuajQik9cB z$=Cu{wf#NA}I^x<}8bt1(BV<~1Kz(N__PbdcZ2fe1 zRKskSmF3e63Ka#Uc3t#uv!(tUgf<3S%)ogY(#lk~#N?z>d zzuQuPvie?K{z$QL5O$XyvPzW?{(2c{%~%z&lOiQN@*{r~>?!)t1G6fFEx8~k^WKycx% z)JgCsO?}n>jrw=+$j@Nr!ax7-!2fqD{(of^6n+&{kw+r)^YhXS$#Ca;6W8Y_x3ItC z`mgfo5@3P9DMx38wb;2*!%XXHQ+O0cGJNcvwg_tEh~o<42P~l8O;QTlzXeF|nV%vw z4vfs>JaSNuo1~6sotxUp^YO*}jaMwG6*` zf;mgZG8|#xp|7=-8QYyZn=KWYWi>O$DD9!S=f-@Bua{lYz!)$6y9pQWQe_oFulAz{ zJI3G&-O9}tM?HczKfRX!^nbISsDT2`(o)$ZzjXG;>WYdeTsHocmzN)(Qi$zHVF4{B z!P0Rz54)HdJ09|UUT+tO{nXUd94O`d=7$xsc$?Q&rzMMIG+CQ;u(q!A@px^KC7;r9 zO}FlQkpzaEL424!9j|xGSK03`lnLZoW-_rp<948dt9+XfTTS+rq4h0I9E8;&T#-cr zuY+7gd93Tm$jG?8Sb;YxB>sn-076SFf~2h7aURpI4YSRl;P+u2NWl7t#g86}&i$y4 z`cQKC-=bbX3ORszmZ$jJ!*;A7+FsTe95)%B-K0hBYMdEM#Uo{}rWR~+f#nL&PQ3BF z{XXmEzVjWy<)sS(X~@3w72~RZ{VE@E_-c$wpoe^0i)Y*N3?sX^nY=eXyP2{Vz;27| zKf>X9G&>1J&1#pF)t{>WDm6HQ&2sf027wJNFwb20Q1Xz;)2wdsqEBC0S=pZBUX}uF z#d8oDv;w059kUDujYo99;;it)KwDe;d_qt#r8^jUbT`?6;N<_%bXHMuHPN6<97Q$=iC>@;AMC1l2vop{MIUuyNsv< z^8*TWrp(Bl>{bKaUD^pT!>z{ze0GUn+d@fZ(``!9Qw!< z=#TS8vb|<>v_vn-oM{b$5FE$zPWTkqE#k?{vs%MFFaRJQN7Z&vVZqDW1P5jN zpLa+;sERyN1FBGD0-x{FBXRZVOZ~xRnd5&_s4Rcud_~!bPm%l_TIzDT(&PsH|4;YL zG}HU@_B+hpQj4`}wsY?zT-6CprXgjL@Ld)ZhH(RRxF03MAJDRT`n<0QqJ#SrFesg=93^tr9I( z#q&jGX96Z z;Rn#cPEXg-m&Y~om{Ut?Zf;I~|IAd20WWegRQUZp&wGnu+1TH)-(uhs9?C)3IX>Lx zJ}=B{?9ZNxd_RTW=W{_lho;|yZ88E*UTedYam?45&QrWmcUk=aGd<5mZAroQ!yoqh z?R$yHlUpR-8x*q%>>f!XPnEerPvFo)n*u=CvPp1YR@$75Kjip|j?nK3Tye1O+=r7t zdw`|LjCuVGU7oNBgYoL;Ez<&uBCillJnRga@h@X*(1j*=1B=U297^%ZWq5Mc_e@LXpEia+l#lEU}=kgdz=ZD z8DEg;%*DC({a4pUc{WLPwnCMzCIg*@7NsQKrND7HgeW;0Zi-wE+np*{J$mG~9Oqu& z(s0RASpC-X&VMrF5m6k_F~Xhm`&Wlo^@UwSh7V-fDo4;ShY)H5eU~H;jHEOqH1Ju^ z{Z^B!OfT@^VjsN{Q=AChmpY(sSRZfzIdZ$Wb62mKj zd+EE^nr(&YvgNxR!Kxg>t<7EnZ=%O#d|FDvNCFXFRT?8Glu-a0#;A7VNreS8$~lJT z2e|&qzV@3SfaS_qQmWD6g46%XbZU{Ej(?G5EQ;}%McsxaPFqD?2`9RBP2EPkOemzv zZ^f~R@b2wXfh!pwAD`VSlwbRy!ZFyUBf}0t(k?_^qj4=dOH~!&2O$}hDrpp&*}(FG zS_7Oq!R50{JZm;3as-<;;ix=_zH{|9&(N3jqeu5O{{@{oas(^K&_#uIP;5lzF)JPl z-_ZMXBA0n9*>SgOU68yqEqFn^n?ia}x=CL`bk;OVnxaA}+3mgMOE=5&itO2TS2t;A zvkdu!dQ(CY{xRxTLX$`=kE$@e=S&`tsR=G z!rbk1cqG9uS4G==*MF!=pt}lBdySv^@%-@-V1lhLp!K5nSq75**WtFUH%?@6-85wU z{XayNnKGocxDqw5j6DDa7vKnsfQAD57ur;49k5NWl+WQ*>Gcre+;O-8z*{X=bLqiUFD_<1*uEsQK! z1R5Lw$pe>FaDa!JR%#7-xrKV8E;$;kf%gb(mG4@`m@nGRU&h;y^8KScOy!UijkMSB z;VI!A((T|6QQ-;Tbv>70sK!I0LO)t#j8wMrYA{&K4dHvkGrW-b?x$eD%e>4=qN6I& z!jeaYekMMLh7v&gZqSNZv@~N`teh-OZP81_Yv22GpBznx?vPj=@P{da0empLah3rJ z_Q!OqNEgNd)NNF6bH2u|F=sf3Z{@((S+8^GB<^3hbkrUvsrtgEVe6lTvf36k7J+M{ zTK!I7X(><=6SKkurU(29b|O|ledRT;}r&3M-xS^$sVC>6E zI{!9kJk92(@qc!VD|22D*OeI+>)Zbnm{KrD8?s#b41sNdZatNB`@>^ziEti3kfB&)3Z@tVZ0`0 z)*?9uiW(Y4;F)bFOr^WT0|yqqy9^aP=>?^wK)^%{WKZYg5eUrC4aGZF!z9?!O7ay+ zR&VnQ8%%&X%1mhwdmA;2n86ZS<+zn8D1+M172Pgq>&kmc(jyZ}Af zyZ%$0<&V5S4NK>Bl;=2$Fv8hcJ8N;g8j5q1f{GOwB&-w8i&>jK<;g%6XOpPW;tN^r z5d={fo(xgsB0?E7#!6?|`yLN-LUkPhxlmCoRVE@{p_qvhj+UWd3TysrQO6)sJX9QR zD0Lu}4leGE1{OnfJZ8FF!Fb3D88U2IIG1TLJ9{8ISJqQ_fiy2;M4(2`i9&@^so=3c zjID~ILl^wusbH*+bQ+^@l^3?bWwrTs!&NtW}&lxG(8bg9mu z*~V$c9WLIhR=M9LsOBlNdJxkC)m9Qvg1-g~v|mGg$~iWb$Z6$;)E4O-q5Y^3p8e$-y;GVmWOhC4{ab~=^C!(h=v{oGr}^WKj7fNtc-%v)C5r1+G=uif ztXcFq)>%Qzu*w?jqNy4}3Dfg|(6@+G4x3;lr-3AaIks6+1|o1cgTVFi_q%_~s#=y5 zkc6~wi0Q8?Q6kb+j1j@002AKdks))Ws>j)69>ep!{H@=KL{Dcw2H|?IG@6Bq5GeAo z3=VP!=nG9yWoLBg^_D6JY#~{fn-M>%c40buW+5*(68*9?0`vL#uF|74faO z7?^pHPvyW!EXYd?HQ->WA(|0A*hCB}U0qVjSlldO`ycFJ^uwB3{90g6h2}@sNQ~WmF7;aQvKt5Tx#V+Dg_xl`N<$H z49M(nQEoL8?#bkbZCRSCVOb7|4l}obC^t?Qa~nA>5gzw}V<0b4ffsb+NM;Lv&NK-k z;4ubs6g0*tEMiCmIZ)5h_<|dh7?j{9=|DL6b^wVdI9gLhVy4kG`v#+#to}msGBen8 z)|sf#0*+O-FQE5*ZkW3|pXRD4c}xiGt3+2dDK@qJnDf*=hJGj-bUv9V{mt^3JG3El zcqmEOMStahPVDGA-{_7ob!wJlTtW+XbTCKO>>)k&jxC+Ton*0U=daxX8R?f~uI5KH z1_llNlMiR}JcZ`h zi@yx8;U8kL^|Er+P2l+AgNa%G>?fqs(nljj^?&cI7V$Q1w~bcPhYD{J9Yy{;_}r{Y z4)vv}8Sz*MX#P+p6K!S>pp?hLnlr%fd& z_-1J8n8lVZaEo33$1kq$;avxoW-La#+^q&ais-@P%7i*WaYHR;zAh~RzWRDDs)yEB ze-O+qTZDYt0Ef!}6L@=gL)t{SZ=Rgyredj+jm*MrnIrTJMFgb%#K0Jv*W z>ClilJSF;gBA}8Mzi!N)uBeuPF1Ms5Y*b?UCmq6C;9{l)Mwntx(*SQ3a>?v@vM?ko$#;LnB{nj+xnZJ5 zVTq0ikHeWGxud3{-F%+6<7--z-CPO(##ac0CNd(MuS945x|3zvK1{%Zn0R#&&>vc> zZZy#;n_rAw;*Jika%PV}PH}m%w;&t9^D!Z!&YXgSY$ZXk)m_xilrRBXwyfm+$W}$B z6)0+I$msvq0tocGVh#?*6@ftoTghy1+u6GUFAg(G2^8)9f^hqqtU2Q(0qine$boCqw!Rtr5LjEcZ#Hcs+wGN!0&B6L2Z_K1{9)p;SB}!U+6rp<$0LI_Q z6?(_nD?1P38(Nv7#J6QiR1LRuvo6&rbagH-MJll{n{N7_M}y2D8(S_C@D*J2u(+-# z6Lo%1Fah`#3dyW=sxHOh)fLj6;_Srkm6OJN^5I-I==g~rsL@sC`dv=qtB)i0K59>~ zwyz@LRSV#%tg3;{U5@hFRfVpke2(^s6PflGkSxiE=HkaIWyaHF*!o_s3sipmjX)FB zNZ?9SPxJ_uHwcWLX_m2O)V{7)) z6%Hw`hZkiXU@TX8o>XS-lu_SfpnvD2>fT0oF5eY-W4%LVy1kgc@aObSsgt{PU9dI1 zw5>D`Fy`HILyaDED5D$SL9;pKq&k?rnJ?c49gi*77C(JLA(r5LfmuxEeM_@5VV`5N zH3m_X9hM-MS><3{@>l8%m)DpXM9hz(nID@NzIj%FW-E2qe_Kr zXZLuYBoz>Ql1V4#hT9;s^CN#%`FJjyc*7G~E7Ka|leYLe$A-;T3xu&{_J)5?&)5JH z;^kO;tqF+D4`_&;yue6L`wPfpw4Q%Sf=hEwvBk*tMX^mt!-g7#24p@%XfWGa*gpv4exD(P^CFT1 zI$80G+Lzv`2tB9ZdBy+UBN3z}sA%$5qlVkppjQ~lXcg)!he>i~I;sAJfmt)%t7o#(_=<5LbE1NOv@1Gz;95iieb(fe4G zw8}nt@Y<(6GS8yiG?K*+8H;Bg#N%k#Dn{RjMQ_Q`4$d1GVdQgH zNL=&RrxrS2-)dhCr_e-KoTbXs^hBW-odF_>qGutbNic z0h>2yl9h#IP%L>eid=#aR`rF#4<4Iy9~oQDc(M_36kXDn8Fd%P+M=E)x=RvvG$z<0 zF)l@%!wx#0t1>H>eWXV?7*sLzFyRXVLyxRc1kG&?PYJDfSq{S3%W5NN9CuSi^Wadk zJY0Cq4}N(=4^WlGKM>yCEz_VlL5)WVc2X-V%tqHpx;;rz%ai0M_Ffl1*qne_Td8gA zk#QC2CfCH5Q`gzq$~7SC6%K>ww+Q05B0IQ z&Q&m9`>OBau=vrB08>h&30g7gYKOtFY^z)<(earoQlYWTd2__k#erNnNrDx=-%0Gi zdHTO34oa=o%|VWX^>F*;NQm^BI1)u{C8#VLe+H+Rt8+;p;%NXXM=tRKDerD+L&=yq zRM;H_A(|J&JVF!!=C$@g&z!aPA!WdZLTLi?aq)_y;<#GW<#9oB`S}7eZzeq_q0=`C zXNYI(oYY!Yco5Q8Ogl-GWm`9@wDbMAR#?QV)*Hk&VOLbzHkOoL1wDzt#((F%Pi|ml z?$W9Rw&U|-C04`8$^^a*!jhJCIqReyT3Se8I~vXqD(ilXN+L&f%6SmVd77SJoaw!2 zV*e!N-?N$Z?MYC4w6h*uEh?=hcU$(^IuY`AmH|ftG>{DLSy?JXIWyNj?(tFuBQGx; zO&)G9c*JoNYcTREi}fQ;r2XpXP3p?>EXT@H!xzTqeeu-6sYleh3T($kmp(JA?pD&R zzun9C`%>S5^@X>-J>cbPG(4~7ws+pYd@L!dsOvRMaQOifUFNHGqWIVk!2|V(rB&Vb z>QuYqNhU+}KevH~zH(1O9V4m!=brHT!Q5o`=9;W|>5=v?5c=3cYNrEG2_KAm6=!R| z$G>Yixg;jcjwQ8Q0~pTQ35p#j`}DA==TlT*` zSq{#4xXu?rns*xix8!1SHxVnA}dv41ZCgb;0{ttLGj!ybJ_=phwH1Z)J zOe~1mzr`?w$kwHvaDsx_$VDW3tARA5d#*(MKC%oUG0IfW2uYw4uCQeYgmAE1XgAG3 zMV5h}n{mV_3UO6KI~oPS!5=tJ3zQhrJDBs8{_x;4%_;jbUX02>Y}%7_vi>)*ndby% zA)zssX;cGN5%7yk)d;06x$zx}20(*iN}H&2@Dw#g(h?%fQoRpodA&VZtF1V=V)JUq z#J7C5!N3qXjtm-m2b|7_hn#FNN1(Efcu<#kBAiZiVtw$Y6@a@9?KR61;)uOX&_G?2 z2R&I7M^@h=iTA|l$v1FzS0qiadkcg)c&lz>W&MXMZEK7PG3DT8MAJUfJc6W^7rwxT zn(0U)DdNTPybFLufCUhpD=Q;})+b#71iX+dK*XDf)CXsaRjYv@mn>ER>e3`*RO{*@ z(GuW7GOMdxCY`ORtm-1DROm%T09;zw6;>aYo-I(g?|86#%A*+mRNMt?uC#UhpqBJ} z-o-|5<4(`!1nAtCCLE?=_8LkM+Teqk67RQ(uK1t6D56N>v`1XY8s@ZhR;eC)kQcP& z=6TGk#`95+we?yg*jk*nR4*m+iEp9^yBlCUIXC-Z@7QP%)Fi4I# z1#35nM3g#5j--PF156E6e|h?M&R-9+Z>Q*WMj>u7VgUxii{kUAmCXp5cx)fN2!QAx7j2BEXrYxloc!1dWR z=Rb>>5{5I-u|l32|BESbEw*S&$2ue54B#rMFqX)l(P7qa+U+v5q9NQhm4Y!S6h;8c zAb1vUHk{-mhvv8}aD{4*FO}#nhJ_?)V_VrPZ))l|MjSjo@D~L(RuqNmfQkiF>eC;flaYvxWxNN|Ls9ps|Rl>_h)#s=Y zsVTd~RIu;!&E3(N^ApSX`ZlD=l}xtqC#H?vbB-lE~;jDhWPPI~}(TH&jIQ&|* z5}%o?-{-jJM-4l=K%7K^GeuMz`}@~|m1DL=Q8hVLB#k7LKRo0*W8h_z7#V(U z4aPB?2SixTaMq9^9RA~VJH3N@{K!@S#vLX!z%JOm_$|MJ3ebgtXkN_v-5Luy0NSvr zZxUlDL#BVO3x%fwy*}u)H_R=2la zIzJ^i(*AnbisLq7>C{boe)1n&|2X^h8J(N0>A&rq@R@Q;>(Kdd*ZFges?F*j|js^K{O`>ol;>QCAX{^e@uXzkMPJv<&5)OAVw<#Mwi zmA$%z_6pG>j4U47#Ci5BClc(I>cEcY3;|lN_|eR$v!W`?JQ~{8s%#%V*}`NDu{ES% zerTZ@9>GqDtpGt0^!xfE?(2nvvrQYg#HzHNhEV~yHj%GX zGe+w5cvvp=&J!5~@SG^!PZ5u~wCsuMRrfP^$=$^N2e)!2ge1fS)5CUx)p4%3y?5EK z&hhLH#wI4p0tIzOtOZsvD4L45yWxZ~sMH(~;p8jaJZAbdsGNHn5H9ZJ6ray+eGhta zQT$6}$_fD%Hoa+x$(wTm zaj?6DOB?p_GZIaaBz2 zHe8D~bZ9&BRq$O(!^trm(c`=@H~p=lI-h6a-$oG{qUQ{g=GS}`lAl_hmQm~$dEJT? zOAO3s6~8i2V;OwSq!JulJ<7Dc+8d9D^uGJ5)Qk2o%gODz?c?YhXX!|o`n@*a{#2g& zRR*%P3nHC{LQij`p+3wp9!gRligtc>p_`+r=kQN{iKk9e857|6V#<%!A5`?_sX=gx ziz{fxClXu0Fs+ZDkH7I~7N0^B0Obx}lRN-pt>NMC3<7W*p1^6;tuT$e6Sm+MQHvDT;j%EJ+QpvVO{w`+Ad4JNZq^zva zIhg|loilXU>(<4;!EWlM_ji(W708t>j$<7cv3mZ?@zw9kITd7Kp0N;(+Z;^&^4eHt zc|PW$U&qms<lBpS!=aEf0^?AD=RuSKIA+>1SdO3B1VHV?-Ibf*0zT4||dt?73Ao<8w$9bBq-q+Cu#hmeS#@S&Egu!(FT1LDGbmDhF( z$jw&}2VkhnS`nnqgrl8O3&h9PY$9%87<*$-+RI%k2;+MH&DhUrTd{`(o7K7Q?$?ne zs`~Fwd&(h{N=S#=Uw^#T9qEXi+RZMhP?1%G06ES*w;3C*qa*{t{UINlPn##;yUGy4 zpROm^CXNb%SrJG))ac<`E)1MHq=O!IqWk;Z=->ZCE1`C}cA(+zQAyDj{?NydtgKf~ z2Y+$i_U#`l(p{!kQF8Dn7EJK@ZwlOLUhJpMK4|@Dz397k8wtRIQVgdJ?AE_&aE@a` z?;7(I_v@0}udikK^=$IfQ20Bw1gZsKA<Cex3BLg z?}o}Q3Nn1^s<$Bw8ff zgSGRRlK;GY4+i#m(|h}q+0Y8R`M-JjL($PQePh3f??;vD8U{w#v5@uST&Ja)^%?h<|gp?%MX22+gRSf~J7rkE{Q20vnLGYrR6YgTM zCNmcb8#V7G3Pw$*HF^Y0R(1$ng(0&h|3_#=oUQ$|Ki=1Yaxls8U{qp0wHftO#?o+# zHw3Z(^7n^P(ft%zQY5D_(X<%Aqg}1TU;Q$H(0ie>PTxJMRmar$$!#V*FZiN>y5G4h zU)@~#je~Up1Dmd~+ieft?6WH#7r%bXU{U|F_krY~RXKTdH*War{aO?anTs{SA+B=B zTj)i^ep72J7a$;&PBlX$@F^lFb@I|0=%i%X`~eaSX~<9k&1_8b9}%xQv`ksd7K#r% zw`~U@2XfUYE{U$*{Kp)8L5%&tWf<_h0^_JWD`HTliS7})6eN$n3+7RCT3=h*M$_bVUGy4E3*9KKLTM1m z?&fBWj+5#di}5rDH;_CXlH!Zb)_*JsGnJA16t~-gy6h(~!(%Fs8NI&<(Q#3y08kiS zN8$awCJmc)j$pC~Csuv(7}h%fD@DQ1ZSx|<2ULpH0T;M00+LoM>@ysJ8yd-^IZ2{N z)G&~2e0+(8tOtsp5tzSqO(sD1g!Z)*|7u%Qj-8kF?dwcs9T^CwpUf2T%szsYv@%`x zqFvzo;=xSPDRnr;jyproYRPXP-=?5bf(}xPRtlemNh;}2f!gKvUXSmk~zG3 z21fAPgmzb@NeOs=>A&6B>W_PrkRCy-Jfu&mc{Hm1KpROt$1> z!pxS>(OFdICZ*M!cxe@#{VLWt|KZkr`nZG%e7bs`y`Q14>$|bnmak;D2LzY|TuGZs z`RdDBdk?v}x1R5R&X6bQopI6kE;3nN;Cn~_-s(y=7DL;XF1xHvHdkRr~!NOo5y83?Rp*>CG)Ke}}tGU2d}p?Lzv2 zZ{&Oe6+jVj7&MzT6j8qQUaAvBl%DFTGgGNjDL=`KOvfkrO-0zzw1~~J`SmczIVvbM zXyHk3e1wB9ki`jq*X*J$kU2_ZHs9(fFGe(wmQf8dga70TxyKYp%gl^!y$lz(1e2y$ zDD!S=i9GJ77Lq-^+{{GNJTTR_OXwK;TKYoUESdEmC8zs)d_qL`3K5@SFW;!EVSnpc zj{U{dgQc2Ansrw5yP6{#GFHnl7h}*V@yb?F$zl#Zo?3-g6V7LxgM{G}gGn zQak4l3ib<1h*Tb7vgz8jUWjohs%2*Rnx{+Ig*H8|(APtYtn_GTmtkN8>hW7LU*357 z#fWVeSv+t02xVZr(epHil0I|B249z8!I#}dMbVU6@V)r*@+#&KFyyU4Nh*Ur;=VPz znoq(dP|ig3IH1{(>!SN6ihu_U%Eo&C4~7KI;ppg6Sj+%LChm?C31J-{xtX_fgQF?r z&t!y`YIV|=GUdkh z@G|8a9z8A>V=#drvFMiMRM|XFxZ3S7J&Ri;TdJs_q=H8xO}mRj>-e&s_lw|nhVpKU^L~bXKVhg z`dDdFPYXOUt_7v4x;3xMq&Nh=&}S)} zzL*}Gs!$X|BeLLWA(zD8u|$t7k+k{8zrzDP=A(&W3-cStO4;f&!uK1u5uaR)x;#*^ z)I6lKLsQWwB$(+a4lG7#1X;+S@7(wi45c?wyV%Cit#F1kgni%snY;s$*}4I8@L7wg z-o1pS>dfJ+b97YiZPq&Q+eJzPS}9Y!fBu~3P<%?5dC~X|J-BI!|KJ$PbA98?PY_U% zUsnTJHunDASHr8kc`28W%U!6H6bt%A6!A^PqXoqWnMN#lJkkAM(qoj>vFKby@Im@l zEtukM)uC^QP;mSnPG+_=rBb-4B8lu(5QUOSSxyouyy^7=B9YwslPYM_rX)cEpC^}+ zhUV=*&KwSLKZy|s+}uT~&8#AAR)QVnA;(6Bf>9)RKfaz~__p(OZCJtDe6U~SHpnYG zCVk|ccDt;kSm81!Z5W)WIZ<)lMjfTY_B@^8b-m7e-=#-bI+cZ%CoTx>0~cXOy|oO{ zix;)kaCEbcQS>Ly&Le8#4dy(8N6hK##!j4dY%pE91RLqgwcW+~H&+lW1qU>+3LQUs?L znRtAPn@LX9l~Xty+zQnKk)qVdol^6m#`PZWi>>BKjtNAf98(Soh4C=(a)XJSJM1Fo zX7Ky#kP`8|*-#X?BU(7Tb!l)nzaR=8p_j6PM1ywSIXOKhl~ONII*;9sPW};RNLo*U^DnJC4hxc1EOnekX5SX2A6=+x{;?%(nqc56pS-k1pg>b(XBWXFt>sBsXhX3_V+HLyB zsYnAWg)cmSvfw4zIigvIMi`uaT7}~4pD4b#s!?@ZjSvm_%*60H*zt(M8SQ^$Gxf-2 zHfctSbduFCSUjjRYxp{`$M%nV)`+r7E^{mjdpnu5<9+O&L?`3q({j4>&*F|WC!O3+ z-<-5*x#Up-)V@rxACekF(DNu1`Q|wTYz8lP?pLkJI-p=8%uZwOFcxa31fbwJ(9L2V zsyvABr=WNq4Iq`SAi!;<8v<45@G-OzBWQ}8X{ZwGLCK(X=EZyFcc@J{ z5L}7ruh`CCVg&gSZL?{@5E;KLyErqEnDz#hd}GA3b0nT?GM#B9?$wrI?X8iaRf;cF zy+|W&)b2*I)DfusHpobJB0&}+zKso^)VqiuYSCvkc?cQLB@SRwhWCH6eKJTKF>j1Y z2{@^$*dL=SK#^~X@o4C|`y9yE`3l{RzUdYTK+`Jz1MD%Ljwe{Vl%V@vugflyhAL0A zn-Xb7dZU}=qjH0T`(Pf$N3ePyw_CHr_O#p3Jkf-y5m3~24$pEm7=mmmBmBA7UH>sI z6`6aj(N*wKxU%a}(pmn8V$_h+&SajqO+4Q*M~f=~n9pMv-ogg4N{Gw)1;(6*jv3Gq z+N*0Oo&0mR6MF$|`S%*cRB_8gKZPx>8%7}3_&hMKt_ZZNWH(NMtal^vkL&Y; z$xuewuN)BXz*D9g>1rW~8API`m)Et)wKg|i5ZQ>gZYGyrcO$_mcM*jo~zWVvSl!?o?A8c?K>*cXB{IWLgug?!^$3~o|L=7 zQdCe#ER{ssvLy!nbtdcr$w1_scc^E1*5*zLj|P0tz1{O)>!Eb{j8`;|FxYIG-P zPFCm{ln>_H-+PDxL=z3Ab{%h91%^r~i@18sN4{pM!HLP!e#vEKog}+BrgS&VoWq&8 zlH;Fy-rsOW0c-2%M8#Pp2LRbbPjmB!#!r#xaxn(K$?A^8(zPm*=3<1hi>l1C_fe-3 z!QiYGkn7G0q-R#_4KQ_-?Y-p5E%{=jOu0yp2&2;g@|qopf=OS12WWLt?_4OHRDKOJ;c`Ea_LzNbHIczt@9`kHjDfSdII*F( zsV5<~ymV)&jr}&K+V@t#n8**l2=2b9KrXY?AghAK>t9^s?2n^+M)mrmxgI(k)l2Cb z;5woE_|hd4Hixakz{b!RPS2Eh4*8Ov6>nRx+f)qXK?c8cc@|GYk+pI_O?AC3R3E+% zOtAYczTSs0JdVVQGaGM`Ill5Y1quqaliXjV3G^}A$*MWr9R_SAx_I`9v;A;U$Vyhh z0TBn&plGeb6;6@nu_tm*xn>l4`f(BiaMcdE%-KkN&R{^JQ%^qmk`B&<6Ir%~qv)>4 zhj2$-%)KCcP@fnPd9cx25&hmmq}$v8Cf7jyllmik3zQ|9L0SIx;ujM_D#;$vMjewdikUB$Ayp#JIg#3zTTICGezILd&iN zz3IiM@TdRu+iaEn2P!~2&BBLu@I=M5Pr)z!;XoLr7eUbKJXQ(|k8Oqi6E#cQoE2%= z-Hd)nk%nhgzanBs5t{2+qULd>Jr7U?!l{d7>CX?QRm$=e`W@c z=2LHQ^xzSJ(=>Qrk&Xqhgs9B5_8 zBhA2M&*6BL3{>s`hvQ*sRTrQ_XyxFvHV{sW1Iwr&zYXaS@7@if2DhvO41F@s90P zI6IhyZOo;q;oTEXpDc7%4@*rVHo55m1mol=fArA%(DjtDLEb1uh;2$>y zw2A|lcr2g-k8qQBM1orG&D5EJ;c5a|PWI}fN+L=`CsI64lwVNej1kJGXA>Au1?IJ?4dLPW|-V7>c=-3?wkzefvDALaV)(JjI^hjkINb0Co z2qLK9P4-lnsBzxke_!oF>#vMEc-=HQ2hM7L!BKAt*Zsf{27>#@P)rUp6V_80cCdQ; z*p^9m$IAGm6-(K}5Qg}D4DHvzN2GEHwoZ9^w@)Yu_(VFE1-EFR#0z zuS4zk*Gds%^angLVUK0#hkF&)!gK_%Ag@e|L~bW(wkrt1Tk($D%yA z>KE>6s)^{#6r)G2e6GJId{>}*0B@D43*8%C{NQo4gOjsmr1_#yQgslhc>gl;yLf}! zP7(r@R`IH$uM3FXASVUg^h*ZRif&H&KC7u8*-w=yj>SMS*A80^xi{J*tZNWCs{Kx9 z&Y$%Cq|mOpFkm?-lW{8myVuXt_S;~Y&)`Hw3|vDMqAdj%j#}-pFQTokEW7_u_t|H7 zgcKYttw7$tn?3cP6^3lAsyGRbB1#1%)HXR+ww{guj5f}--mFeVGhB=yMhhtgPK2-D3+FMg48Y;@&0^wX72E%@Lqp+Q@gF4B1F&Hll3d=fF} zeSQe(jHA-BFo%mWBBLh~ud4s!PF~nGmdJ=NYIgE(Wj$J&%(91TMaCW9m8^i=U~7@2 z^gXNaT7Yp6RYbl}uK2cRyba@tHDl&mYLplfMd1}@;fJ3VwkR`+GvYz%uj~zWM6G&n z0)))@k-9D)cpN4rxki&D(IMs)Kb&^UTpP`27g$0ESyFhNHt^jKCmCFVOFhQSH3rM) zy_{H8@xFfj?JlJ76)EJaN#IYt^2`EflB4RsyOTe-YfR;hX+N$Jmnq9CRBYbIR#-m$ zj>99`nJ?2M#R8OFEr4UO(o*|qmRA>5Z5a&!jJsXh3BNj8?&S(lPCron-jA+VR zJ-qQT{5Ok7^$?f3?2wP-s-M{&h}$Fqu~^Qt3E1WdF-tA^uJMqXx0Y?h>2fwJw85FH z2#^Yqp`y%sBA*GX(Dch6l$XgNi~?WQe^@4NZhC_sMY*HxFZ5;<1fmPQFp|*R_>}+n z8K8S(jiTC1IuP?kq7K(m6IGEi8e&8UbAbL)eKF+JD2$?8y$*TpO@#34`6DeZ*#f$| z=#}|Q-iyxzBdKLx*_8!Y>v7p`J?-yED;&?`xz|9C_e@z2V<5+NN=PND!V`mBzX##M zzFWGCD9cor&-lb@+>gwhM=FY+?TtUr7+5dPo)Q{0E>E#2j1sO2k$O(nl%)tnkSZ7! zB4|?rG@YJQX~I8@61FB&bdQ(Z$0EP6;YCAc28sgR0jIYCQ~^NvAL7;JU7=3g#v%bt z)UoWT9k~i10>W58m#jA^o*)kzf4+4*A;`USd9;B04f4>no^y zIeWO!hTiWxjp4*6`aN3}RP-_jV*G=v6-Mohe|1G9VdI~L-VqE#r%Aqsb6p`O^5I+(^AjdtDH^gTqm z^b@>UhXDaW>7NiG<<#i-AG`UoW{zs%w}P9oG#NzCw=b-#j*eg38F%{rcO+B97|q6F@d zd)NcR&+}UNFk2z=*etwOZL)cqdgb=fU7g*?qFwi8J+w!u0Sy5gEnT!nJssX-+lu}L zCoc*HLB7MhFJT1!pk3q?+xL^#7i5BC@>%cn)nw{#4!dCg&oFu(0$N^(DxSYuA^w+7@O7WuWz9Fp7aA(oHa=@ zgEo2rAuj0BW!iOvy#Ik{X?V7_iVW5lw;N7(N4DDZkZaC)`u_oiKzhH4U@^P$xijdm$NX5CweS+DH|;slcO_K);@JGNM9>11caYv zY{bW0`_>s~-70|L=*->3LHsL!GEWG~#mTqD&}(ommT^@^6Q@+JE>v9Tq-$2uA>eRV z8;^`ObkYR)GI>TkT{D?y;MRwDXg|(Wh+&cA`Dx8ZNEp z@YjY~P5F&b`f~06O!i(A`)!Jtw!j zEcH|VYMQRX6C=1YU;Ex(%aU(8%|8PI4o^fhH5n2OZBidt+2~k&v!MYRN9Lnx&KC#= zvoLOY1b1?x&uA1xHL}tn4T0?o0pYI*pzzWA@=JK{&4tHJUta5D>?S2?K^@UfQB^IK zPf=#+Y$_fEgi}Uy#A~BN{9G2w#E>(BxNUF{uiceJyU0!JYy=ZB-z?hOUB`F<-ml}P zk6pR>V^E)W4_Reu8+ER3h~%G3VDQ=%`bJDP-#^qJhr7-$hD_uAjH0@ z!e#$k&I}sOroIV(U2yGDpNbahyM#q6fQo)vK~eEa8*H9xn;@hexjgBO8g$jsykVZM z{L{dTJr#d8nv6rK)U=^u18dgo5(SFSQt_pszg*)!S|2uG*> z8IVf1vcf??h^U~e5O>OC_*VXIHzd)ywofxEy?60!?5+Nrwh7&85LWCAgfqk(;*RY9 zI4eIa!~9&WMfeIcc?oF}OwR8c!jT7YQ_2$hVWg0--#*q&hM03%n7k`?Y2!>uCLVgL(%W5k4y31&NUG0(j6X6xg-=wk>k>+o({)#U)GQoLdy!d9VneeI5Jk& z+1ei2%8TY%EvXeA9CGQZxJoDH+x$oyKUpiKZ>c~)n{&zjx-xBhY#LW*4hKWb3+H6( zC?V5o8`Lljr~oxw3NB9?yzt4sGao9^9|tchjM?KkLm?lk(k|GvpKW!0TXzp@SLvQf za|jlTA4Wb?Ts`u^3Gs>|Evdd22>2vvu5XGH@Er~*t@7A=Pg7!Cv+4R&1(vjLY#QYy z`&Q9Y1^2A`f)3<2| zYytt{lYV|8R6b8DyZ`&fIHpU$RroSz~vgXI(qQ2bSP4xD2jQMy-=w(o zLmC1lhJd4A!cQ?yM<;cRp68JO@&qX!7X`2R(Fn9`9M4y@InFc0Oi~mq#ZOUY>1-+{ z1T4adk=xm}n5=$I0M&Pgl)5_Nsn$qn)zOV&&cZwQ&Bfo^7Mnq!n#BpWyDDFIuW_P# zS2t=-(9u8wDNPvFku_2`!~1sC=5!%x4(*4EzPxW-gPX+gRkl@$Vx<`^6$oqd}dL&x)Y z=iH54iIR33c9G8_d%FT&cIC}n76{* z2tnVUa_&wST^H~?`PN4SP>-9EOkY#LN^ZXcMFJ-T4j(@IlCx!Y*pZF2L~TK&;|Fhf zJRhGej-h??0IsL|Bpx~vpS%@5ebc-bCc+Kk2u)7I95q z6O$X;@1nWoLwC0?G}5J46bKkRBOSls|MKwcL~1CAhR3$Z#JC&&K+Wk>;5%Rs%&pl8 z$6p-AM$%KA5c2-QD2Csj#mz|;KU2|`v?eqaP^=_*IHAxmb7H8FRQI}S=3|+mo<%gb zJ}5t@B{R#o)VS&#bKTo=omMDOWk8|D z-o+`Z-Rg2_QU_6!-1OWW9CcnU&b>L8T5?N_{!Ib@iI*do_q~TZ9t-2YJSJ64RCr^k zTTvOO@V)xlOkh~>vtz@UH$R3SiT_VJ=9hS5tyko=%ZjTqit7{r*XrosR768JiFz{p<@pa7bSn)F^0B<~zGCq|wT zGc+pMb>7z0DlLR=4fHBmT1zl3W7OUm56RjboQ7iYB_xdEx^{(czDst9`F@(5uU4sH{aAzN8e=6G|%Djx5 zT&JSSaCLQ8mFbpz+`FREy7#smTizPl;OS6e^{?!m1Qkt0On1kHa+l6sg)5qnh`4s8 zJF|~o&Bn}!GBN+fEHtDmGlf)b%2QcvqJdFv4sh9>G?O?v2S@bXh{-eKW)iH2ZIi2E z`nsb*z~Qc;QIVLjDfad3rP&#pE}nq38zOjWWDF1ekA2R6Iwa(WU!qv_HOCpT)}-S= za%LtwTKm)Wt=JH7G)Q!jMoYxAd>s7oc=AXOD;o8{#E?}OVvn6TnR0sx zIC)M*NDHBwTVMG3-MN>;oK8nJqmSf{=hHA0S-OEoi_ zJdfv{hdDDVR@kuu?a(VT(V8xYa(Ti|6$)dozZ1hf&(KdFD-jn@Oj*UjsFY3IrqOM^ ztq^A5CXtIURNDwb9MLcXQy<90xxF%Q`B@nlb5AC!(e6>-tTwoa>c(l!+V%E(h<0ot zY74a{^V^@6QA)ti=cz~QIe7^40ECu}=plOP zz9~8v8&CM8_~+5F{+@eq5*6kIhT8L9bU#&p@5E_eo6AS_P+H-G@O%&YDQ(?612w8A ze2{9Qk_!A#9!|Iyu0QgUJuG0!uO805J0HIjhH6VH%Gz98)9=b30|FG|G8gODTNh567};@9{`F3m zQ28O?Xk1g$>46Z){#q2@Qpk9AWCXW7 znQx+|Qd_9JgvcwnVd&Stcw}S^?%1Yw($D4cPnTNBNA*!0wL@IF0kwBw#?9l>y@Z`c zeD-svyS{I3Q0Se68D@jJb$r;jjszncH%jH!lRU06LFio`sSz{^!?wJi)mCRxAfeps zxFrrqyCM*%&yQ)AfoE>X!qBU-u=if}40#El#r3NpSWMgYXrBIZq~B;!H*iU&*%3Y* zf2=+1-~pabe`fCh4kL`OI6H`I&a%tb5~K|9i)p;8x9X>|)~$=-gHIy(gZ^pttoLfy z=K41|Tbqxt9;jZ`I_DSj7CwFat%v12oyNi;IaT6b=~b33&rZ19B*?)}xo@c+i5!c* zQyC5}U;fNISx22@mQ~${)ig<2{fAstsXhjPMQ4=$Qh_00X_vZM;~>b%TL$fumshEc zx2hbEKx7$uZJ3T&B#8Fhfcyvh{FigcIKC{c-65DLB*yh+^XTYwUYG>ac{^GT>SnIe%iho>xk z#Ai@=3vh!=jGR3cjMyxFvdn!c47H>`(mC(*BqwfW0ha=Lv~$8z#C2(=~vsZ(Ws3F^vC+$?DR@DgvS^^fsaL>Bi zQG(j4Hmc9x`#6HTX$L7A!}CuGqIajD(e4>dw?z-rPAlZ8g$~YtZ>{MkB9pYwlZR&E zrAZN?0?s%g1GQ>dEul_4dg1nLL|9%1g(;JxU})xwt^&<)8|I<6OWqB=JBj5{j2X{m`ihlKHWn`yKd`c zs=3LZ0oJcj3##|0DBi^@FHrn)>={51+fS{kllb}ZZWO7rIg zM>h!FK$BpidS|d*H*weYLM}0U{iBCNxI88p5wCsplF zWj<=Rw7x4=#n9)vJhKr8Z1bC+a#th!|ER;`1cY&f01j7F2M4Ro)kh3aL`?bDpinnx zK&T*^DUFq04lAGP{ihMqpHYa10yKP?X>y*dT9(*=rI3#YFlr5A|EpvXA}2q z`Nh>!-~2ue_!oDR=xCY^A)nVBMp`<&n9+lNgYn8uEtiC zRcXT||49#c7&R@5UFo^uauWMYjtL9X&DYb_D}AlF5U_NFo*KB)bNnT__-qjg5&QM< z{eT~{s#yg(+q+3Ett%QQ@dy4&kF>Z_PC=gl-M=%9z$6fJ<%}qkFQ~vUalamJpzs%6w|WI$oNG4YK8R-;@vBVK@-Jr>qVJnHokzn=UN?+f$PrUk(~zlHm&E@JQ+r;@;E5!?HRx$*HUU= z8A5&s6UDLcvVwtO%zP&SRB`kzS(~T$4t6FTpXJg?OVSDl)(>Fbb6Hrt)Wfbj0|Rc( z$86e_N?>`7y9DPv&1Gty9;9-tU~7^U|3?*ZLHE)W^J-h-K9v78#$DhNv_I#jhGpD< zRc&XQDzIH^X{-6}M_N9YV4r}6YUE&5eC=!>xxTP|4GA*lEnzd!2a1<0fLge0sSKsD z4A#RRYk5yWHpIMhN%a1t*4ty91Ef^!k}U>{3!XXh^P$T^xQiP;RL7eJ2GN-IPmU08 zE+d04#66?IVwtA@gntsMDFpC?Y2TLGv$?zrzq4&-Su92OosS8cpNpq=cCwciLLE$Y zw5uk*L2lrCZCV(geGx-7PN4Hhhksa=kK@|b#H_b^;-DpS@JQ1s*uCv>LNAPaFcVL{ z7QsrI9G!7|1`edTk;bgU>r~+0jt0kceM=4jN25i%gfmNNYy9KSF&sr#e6nq~bVvCa z!fi5E8nc0P{2TD+t;bjOdt&4ZK^#>#7u`E%QcKVM7o<~C=Ga3OQbz|>fwT~6x?$V> zam+_0I$=@7M+{c%M)%}DWe&<;nkymJD>I@-0F}e-9GY~#HZO+T>HAR2-$vs}MxPv% z#+6@#_L+BIA$1HZBQDO6V2sJB%6_l>)M}L};lMoc!7_cpB7y9-T?u0BVC0CiYN7ZF zHsAO&BaWFC!O~?OPHGpx0s95aPWdAn`7vu=*zDr2!XqLnyWyAR9wy9=;*!%OtXLt- zWLVT6SBdy{PyUKRA%y85GlzBY>wCOTMP-r7_Y#y;WWxgj*o8}azmt)XdT^9eC_BPx z0gW(aFshHGMSJQuelr6^rgf;;i-tP_KH`@=l^wMr?eojxgq3@Tnr zs)09kAP@wH%T5pBENcJt&Thbxu$#b>!gaItw`r{aXzL&~yl~36XL5}#oVb+FD$C%h z@?+j=pW_P}ZWga?`L#3_D|BE{%)lqzMLPYzc!cj-!ue@hJa{_Q=t5Bd>Di7%f|-t{zK~dF!sJo zvl_ICX_I4gzx@v1^vQ_qvIkCI&=DWaB`=HR`bQhqVDd@4F)w2)$UMmtERRED7Z$=*!Ly=c=Z4QMXyIpk`oW|lT=IKl4k`KwM& zfYrT(WK~QIQqReCFHO~KzBUit8-bHo!*y9#y%WVwS&W$b>6pnHvK)kkZnyw+Q|2u(P+b9rB0!PG9f9xO;O(W||9^yRC!h0yMBADZvy z!wWZs(7LHT`&>9z(Squ2ZH$0_b<4nv$Fp$L1wl-td!#{JnwAe!;fLaFDL6bOGz|V$ zuST0+;=I9SzOyhg(ED3f7B?*%vPcS(j1JPA(u(crPAip{w=c-yfE!yhv_Pu zSJ%jX+X|p6$9^k8R_Q1e5CXz!(Ylj6WuQBk)$?^i8#h!AIXQ>}_w*1tzBk zS1lbYz$D=m`IMo1Q>VfA(-O?i>VQwH9Kuz!T==R5@Ze}}+%53kZF#k5Ybrw_okl9N z-f{DC1HLfBa?gf&l(BiH!{b`E31n_V9>~XPo?g?NyNn;bmZ!`ZA6%9Zm8A&B&_w*s zqZVk+CsE9xllI-I*&I4Jgk5$LLl(pPJ0iLE2{%nX1p=adwr~+6FL}+B#=$FD^J{6U z6KrjME}qN1@UwfrrK@CTF@RgCo?$gkO1zx zAOp7zr+XaAk(Un0F#aLkOmdTQSYZubHCPTomvOcsTG&s*)DkxaM8;O)ADJA%{3WERL}M;Gx&4g z1apTc30x|wK5C!EQ{lM4VtUKmtLH2nHjlur9&#Dh=lXmsrpqvJk}`gNKIS~>!_iH+ zf7c^)i@CvPdoN`A4QQx zg3$DEv0ZAKh}p58Cn00f2n5EA!4LKNaOpFEv0S-nNtb8WPy-dAZ&A_Pbl+~DKHT9- zjpK@xEIE0kfuvvNgh8TQ4maewVCf*Agrp2n;-5b=fVb+Oi0C@51ZGk=jr!?L#*gY| zi0jn5#~aw%D>|d zUg8Q~cs+vWcs{i{S&YsxoYI!#@)zOSi946aKb(b6hG*gPk=f|qjg}p3kMO7{qNexm zo4eoixpXyBTGdHE35M(Fqw|;L@`;y#r4yV=mvhmvCA6qK`Le9SUxYhO!%~1!@T{TT z_Y8_7+3oT(Gw~H+vzU&_hhCFqY!3xH1?9m%=IVx>jJWmLCxb`{px=ED?}4G(UI=eM zUtsbCtl4E(EM$UAr7x!-xN3u0tOmFF6QNX+%mHM|pkSAGsbQl4YVH}s^@WL0f&RF9 zS?#l3nhvwC3fEilN)i;WxL;9uNaLz>U-GQ^B^;MkxjCvPCvD(z*7Oe~3`nz8vN{x1 zMp@q*TqNe%I>hOcsgK1|y|;17T0%Nqsv(fPs-y!RD?Y+9cXgc7|f>raId^SX&&l ze}KDg?PeR>zOv_E2wYoy6uczt3D+m_B$y*l-G~OK=As{$$k$Ng#Lw~XsY7hFQ36_R zF1O##4OLYsh~;xhp~X>tT-003yLS2C#G}wwhi;ncaS2=RUH_;y`mP{bKp$0#9-n;~ zb|8E2%mxNu2Cri~_^!B;K7hW0cYIgieu&B?CX}hxXHV{A85O4Iac>~su8M-*7&3kL(3l4vyORTG*O9pmZN0+v?e(Cg^ zgFs?zNu#Mr)dKpzZGL(VItcT!ItWA+>R(OpyiYBGPCgq}kCbu%v6 z$Bqtdu7vcvGz1(3EFCA^B-09@6LCnBn)u*3Kl;#ZT$E;fi+Fg(MYrVR4j$?vJQOdtDRoUvNDHBb;HZvtLet`< zQFCfg&p|mDIn^Ge$Ipg1l$9_@AdnESPhCHbZ|p}dXS{3ZmMB2Nqa}Hj?{=USs#+-? zE%7sTH0@EFM9gg6RYqCsUy4eYsHQz^^I8hs7sWNdVOC`1#0Z|D_E&;NvQSjo{5Kb0 zZIihHn~V$lh49HsS(y27CT4Nx`<~pPssSk5J27>^MCBX!*czKYFauP!o`jVrO{2DF zuUQN4)mMQNdjP$q8F%5`<5s7WSo=;4P=4VF{wr)Ea6;szHQSn*|R88@=Zn3EdVCNI*$rLWr)0_qF>)IHjCCz^BD3t=qf;RG3U zmG=`hRJT0N$zr#Y;MLlNK0_zs%9H-Yv`4C<{n2(Kp%EC=>FJP$Krs*yeXwI+yv*{y zD6d`G25|)s4ry?pbGVVr+qR6gJXU@4f^`tkcZFdS_8BvobX;AYEz}%fv3hqX;dj5 zZ#%tg5TfjY7wL%mv4(V~LqBqTj>|yX7ILAJ(9)GH=S}Nnk*=&cZGAeTvJnW^Y=~hM zT}5T`M3^itk>?YpOA9SIZ4Eq=Yw8B1NVfznxn(-AzK!AFtA19HerppNuMe7qNVrrd zD}41eFy=M*`12NV$&B2@YuX&XzWw0!JQ3JuZxhX@!*ylD72l|2xlj2pkgBZb+pK0w z3ZM0V{2t!8*IB>OK>hv9W(SZ3Nmf7N*9Yu<|TQY;cqkE20mX1uSZY#8Xac%rTi@K#gp%1 z^J9q6d`%}59zAY+}wT=lV=(KaAc%IG6W2J;lTg)`xqAe#52aZR9mYi1*xbH z(>}DejItdoYY)e6onBD~M*I$5>`cNB6fp7W@c$Z!Z9|ce&bQ-NG^HEy%vGP+r$}4amKE7m`KV5w- zFmpCytP{>Umu3Sj_vxpAQ+op)+QGZ&Mnvb#BP9vrt%U(JJe}qleR9xe@OrFXO%nq) zUdY#xbg;WD=7IZ;1$Kk?Uv6OaF* z7S!X;Z#D_v@v{xT`#EByE+-QSeMrsg>v0uxRj{H;lpfa~}6M9SBdho?Ov^zV; ztm6Lgv!z+0okS*!OTsDfIT14|E_`ADC-)Kgw#1Fs+XrQ$b6da8RzSzrJelwkd45qA zsi%A7nCXxV0V9|Y&U^E;in_IcpXpa~BQ*^=r?ADr>^Sy>PGzw@lAN++_m1cbal{bR z{|f3~;e~88Diz^jbEN!|)AVO=&P3A&5&X=Pa87C;FoL%RM|mtcB@=Fev><2z7Cf+S z^6jaqBY|(;(>BJNI01O|W#GNJ@Nr9_chEt=wP(V2$|>-gG%=~oP}D{sb(%{nLDYp! z3Ux12ca1UsEVd=MQHI6b%)q4-@aO&VEAZBI_$JUafc3}icfj{3m+YG#g%x>Sk-4%X za&|iuufG+-Ui-%I;9$>c(0ClHAxgw0iAvJl!`uA0z0!U@!Wyz4MX~8XdwDxi}t--K9w@T`lACpM+EeV?w~Uo2i=l zzBPYb{WK=!^#8tB^6=2}5oEA_zrIJGrFZ1v?Ps#h<~4z-JnB$%{jK1?GbgT%==1NR zg)!uDPnt)!KP?*&cTHvN<|&tl?Me$P-P=C1Uo|mwT4>QEo8F~NUsDMI!B(0mg#mOy zrqkU62uNXkix38RbmS2IpJF}j zdRQe(25I|Jd%%< zJbmWevvvNq-IS6nG$jj_1{vZ)WnuNVBOtnprYNq|+CH7c!r;E^y}K_|wH@+NZQ*~@ z-s(KD;cB`aaY1k}vW0<3IksB`B?mrB>uEL_Npq?2+2_Ehkvy{G4aC0uiY_WLxkT0q zfdK>H<5C6c>}Ce1vA>hBDZ$mOd)VZrk!t8R3WkuVJPTafH*lSuHln`0>H-7L0?y>` zi!Z3LrT@1Hjj4wf6Q!xJ}nxZqTs%}#R_5xb;xHoF9|d~s43*W7Q3*}cNgH(AE_Os zzuj6jwCzg+J@sV^PJ)~2k$f*u3Klxzb~q<<|9&tZ-*bZ8w_gzFP`jr1hMpwB+?qbv zZq#dzMEvnrjHiuJgGwRWwAC~rwe2t!PyZ=^fQ7S#vAXqGZV)-Pnf)wp7Cs#bw#&}& zx|7b_c^7>|2c zn6__Hp;A7ih0sC(6L6hfn9g*5cX)tDtVSxResa>es>#K)vF zNnPg^yfNw3sV=0lb6uW=uLf!PQf290IH|zLf{?0u6fR4eE(H}OS*KhzzsU{Ly%~Wl zIIj8h^5`5(OYS3I1>WY2aK&nH=Mn;g&O)HyDM0H^jLeCL>dOIY;3XhYa5X}p-X{Z% z&)Y1xa&^^DZPHb3)KAZi4uz-RpiAI;e?Go@Y!bqgC!<+lJeql95Sy?ch1X8-cjYFl zc5Tgus)G7ULu{ta%+tYTz#U0r_o6s}nz$#f3!&MO@_Q;F-_a$- zOovoM!1asESG?W`m+U$--y>q1{_D*p(dV8-Wc2I!yv;>u)T}yfM=dUBXbUF_k13aD z`ufj>fWZkf?)_-hkeez;N3oVPHALx-BO8}K6h`e~5xmY5la6i1F;CtQSihc=9hz|I z>}uhikc&Zog^Siaib?=Ji^8~P-liM}(?Y1AniLYufLa?;3N2Y>(!sFqc^mHlb(OkC z&yGltndZeXd1llQmJ`}%AR`zTRvFKvASF@$BK+!e<(KL+sZFJ}_$MJavjL_aN@A8e z`K*>1qA1F@mBA5Bm!CGTDA=sy@JT^Au9~JCKG;&?Z{3nR2cK!t&%aphAT^)91@mc_ z7)Ic5ZVsTZhEw`r#@dFM_6eE&?_r$TRm=6%z8P*2?{#%v98Rv>?S6GI)Kvl~gKT|_ zoogni#BJK3R?9Yc$n$c6l9=jQ^;t8JYamz6Jrlat8++luw!)Nt)~<)yEw zhk&Dl%2~tHj!;{U@n*qs5jpZmY-o5as((5KL(iUyZ`$?6v^yfGQA;auRuD*i&C)sU z=nxQYNtVz!K94kO)$cs2nsUfuPU=0%Csk|u@f#=gkBtta4K?sSANOLsN!tG@SO2g6`TNSpDi=cdnuh1v`lw0eP6yg zm)w#)*P~4YBk$qzqKG`dyP1UYPu7;28L`SpD%WIKPJe9Mgs>`7DCS||S5cno;iDGH zZWK~|?YGob!sX|#F6Y9}?tQ7R@qRM-@!kke>KrY%^JhN4zW|;DPr0P{_B;4$RD;){ z69NMVAkwxQa(AtTsk11DUcSyawg)$(efxa~w_V2BBY`3uP(M}JkX$!5*!X~x;H`VY zVrSywIp^0#6ekfyPXdhn=$mveHJU z+ZZJ=Ip4mOo9dSSl85iO*{tFIe%!`qIw&>vp2GLSL46|zEFA22LI!@Pnae1i4pWz> za@=x0PYa_~@5?0-41P3h4i}Ie@u=A`gtWZGnZ4xT^%QoOueO6uV<(xJ7cQ^xvl+Xr zgRVjiYu}_*D9!xMfH2=wPsI`ZE~bmGi@D^@jyKuqy=~jy+gG@}(mb2;gkx;uC)5%@ z%X6PIX$Ejh_-L!jxp$@khQ%NP2bYST(RZ;A6Z=W%Hv zbTcSsJ5+t~cSckAozpZ-pB**=Xco0WqUsagjpCj8)Y`P8>lCU!IUzA2$|c6(%n{G_Pmdn+QYviUQu(qK}*iJR-UZatzCr@%Mr6$Iwb0#^P- zmrC{EU33v*eNI83eOoN}&W}s4$ft0#j=~RTmDzq&p+KbbC4nlA_&V?R0&7&s8#7hlqTbSizuaZ}dEAHetaOn7_l z24Cwov{mD5x#RKh?YRe&`HkSG)0vKF=)?Q;!TLP~90^KQs}O5gMp4G=j#%nS?82b_ zAq+Z|0-h0A#f*JilIQ7GJe{Ko;jIphl0x|@ByL>GMsO#6LzdaGwI&sIl|pSRX)yg} z%8m=5npqG?s;{XVzX^Ae>uJUU>t{Da38nO1C2l%CN?M1a;;CPh_tGC?=)$wZR}l_k z9B;lK#kna8mGGtTQeTHNesNGjWjrbNsNbiQylrQ+eRsHf?LVuyTQb9s43m zmUiWH!jes;(hcW?aKW81dk^q;q5n#sg|!x7m->1>_k_jn7I_x zb8~d1;A4tz(n4se07;&y{uQCH#DdJNfKP~t+2%fOY1BA9 zIuixm+jd%Jtb6_9Nm2yWBC@ds7ko5emdz$r%muzZzg>#h8)M;neH1dj{?No-vwLII zxS}6-lG8c#0sBj7hmF)=54>V6zWScRCj}qXKghn3Z?zbI`%p_KEwK?y7+?LP`?x%6 z(OPDf~_5Y>F_Xe^k`pkAf&| zWV@a~`_XpPBG)kXLREP@T%!iU4`pQqDce1N7t$P@+*Jae1VG~@B98w@9T7m|1N`{p zGk#6y5kz$ zgsEQ`_eW=DCcl6)%dr4A&@S8YayTsJUOtzk07Nw(Z|!e2hoHceZE=} zMaw1u)ZN3xfM5QkSNsOwg_nT-C(Uuse)3LYn5jlG9d~?VYwK5B`m_*Q9CS+XO%7bu zX&sNvKzA;|Pb3pjU-qF3qBbq#&gc0oLi0O!rat#(6v5hBUi9gtHoQDNVl+ESBL-O< zZxcc!2R&J|NxUryak2<2r66-){pCDfA)lJ2wY1MOc^ag)?`@uzfy-Vkj~c?ixY0ol z&s779s5b83YvkUi;Og2hAn88-li+D~x=X5g_Z==ZjHX6!JOayqp)*zvyrkuGe8qoGoKKW!8@#h*~>F?A+)F3D%X)s&)h}3-s;qo(&QhjT#?IWE)AwQhz zOUZ2t>H{}WUG>a|3iik0g}WNq368EIae>qqVxx~e*8Z-c57Jq);7yujX3oB6Xg~VG zFbb=O!RykMZapZF(tgxq8iNV4kB)C>GUX%#B#zj6@8D$wV#ZNg?bcQmYI5ml91Z9n z8yzv4=(D;7(YR3n?T-N3L=i}4iejHF=+5k-k zHQ}=PyQ?d!@UwfLe0Ag0wbgw~es=j3#MR`0V{U(L%+ic?T@I^8QX;tQMR#!mrCp9M zdAl8)l~{TA>l!paS08;Z3mjeg^fh%55I*Slzgv7*xIdRjuX`5#qvP?&tCwMqgLgrn zji>c4a8N6fm;kpSU@ z+eFF~-KkB?HGAVP_OQYKK3}gnps%feF(bLoru=EkHXVC z4Zu$us^Rxx;CZOiJD;J(4GS5UKB_p1Zt4N$Z`tm*E~WSMQ%`W zEBrCWd3#P6@4QEc_N<3sDj034`%(mr)MTU1bU)^3yc7_YYKJHI>PKxSdiDgKdWyp6 z9AMZBK(`+7E&CO|JMN_GDhZ;;!~eho@M$@p`MLA!P5%ffl(&BBFXgRk{Mq8N#a-c! z;H%H|>IQH(cfdbFKBY5ajdKIbKhNEN&v!ilyZQ8`oZ=E&4B#Wh7LRe(e|AXUHSz+ zxNjm(xsn^phLdhFp1~;%l5|Kzpa=+PJex61G|8uFlgyi9JaW@)8l`s>nO=D`uZlHn zNbM(0Kwgic*}xo}cw-(~^7_TsB(@BOA8rF&OADbzbYw|io6R324(jv(XB3^etf!?j zZQRg1M_|N{t8y3dLqkHSE5VaYupLh#xU7GC8PG6_qDwV-#gR)I5ecBb@${4&GEgxv zTb5%u#pfetCfquZn@MKU)ysb_3F7gaLwMzmOfE(LJ+1O)668`)JMZp%Ec%X)vYCF= zgeV>v5jM^JeA_oT%2}Yo*Cq-UXt=SWnkDQ8L?ezn}YtD z(=;d%x}EXbjO5d7<;*jwWu|Yrw`KxEhr(;z6tRy#LhOnw;B{&bkDdj*;lp{d)G{Nn zOG9n?OX>OJf7_QV#oP;MELZ)YFA_u@qm`g!g(j<+6pm}YVR2XS6Lsc8iGtI-w&2eE zEZY38;{;aOwY;H|dX_S^ZCgyG|; zjre9n7M6_3rr%Zh05xDTX_Dh7-xpP5m7{pNYH42e(bc^#3ml6oEB(G~5ODpdoy;D6 zhOQ;d zDyYxhJ6$aUq+;o~AX+sJVC8BL4QTtO<$NKJggh~XqJr{}dR>L((l&0$eR&u$D{8bQ z4_y&Lm$o|7Ua7@!RCXdKrFFsG>y-q@1NRHymJ6h=x53oKR>r+DnJL|doEUzj`-c!W zNobdCg!X{na`&AH{O$%pB4O$8Odd>TgnQFowntYhfxyQzmA$v#qOB*F+^0^0@7I;^ zcCXFTjChWFzX246xZ9l`y?|6~C$X)>Y{CL=JBobnC& zo~vJpd=Ot)$Wrj(*ZN)>tjX%Y*G{DLn?!9Qk&t;L{imJBWP#fDmGH z=fO8;HlmH`r>XsMc7rKb1H+^-vJV%X5owl1l|tF5tW8^*ziA<~G|<{i+yVl^Z@L$c zP7ZpP%p}C2KaD0-gmTb>>fL5K`(33u5`JNen+ z0dvZe@(}vCd|le)dKMrm>!x^Sshts3cUNDfb7_Q(Vw^iu`0UM1R4=|Bp>IgO#0n7IG~%0gQ@xKOaYSvQ}%fhU=^fIa*WrQR>bRFX)eSKM}!Il#W-?nx!#=g#VPjE zeOqJan_FY2>#v13eHI1MiN^82@7brR6@8BOqm2;j)D`|--LSyl6gQ2^qCKvMEBl1e znSEOZmNCwMwM)cw{3<-^fvaG)DkE4p#wW`iB0L^TH2>iDNJU2GoL zKbnWplcQ#wj+_|d1SlWR@)Wk@GBp0={9mrA?im?DjI7HjK}pnI0K*l*jU8kM9F3pYbWIl+kHf=g=Q$Ax{- zPU2H4|PVJ=%=ITy__qdUrtteXq^K3a;YS z40(9=Zl3r!{uRX5u0zK8{efzn;F57wt49CF12S;=!(puD;TLtd>GQ&qt@n|*8lns} zEL{>ug-e$z9lKNz*i^8S@M2l5h`7~exaXpoi6ibR`0Jmk1>rJrHcy=K({5}z-Pg!} zVpT3FfADDp^?0=5KD4V7f-1+tOx!&yPnB;sJlJ^22%g+XQ#1Z~?7B=e*w;`0kTGtae8C6{kGelAxNU0MW*0!(z)mx;tb2xiBj@Dkvv{<$N)6a(+NmA=_Hr+(dHxp z#F;5frW?4ICq=lS)rWtd7Ni#omP6(A_BioKG(+8_HbiNvGW-1qvT4@Pk}l^21AS9S zZlisZ{<}E{SU6cc)L{-y>eD>vir$D_@F==RxiPTrPo$0YD4=So%}xAmPH7l#4x*L! zo%-91F*Z>vE{ngTM-8spH9OL8c$a9}0Chl$zx`b0SwT~y>O1kYw2fJK?)Js#{rv>Q z>ea`Ke{@4#9>8(@F{DF`JNS$cj%pCV*GoNgXyr$JddIPJtPDK83}82N|1zXYCn+Ta zggEXe!OseRhUFH#FD^@^6|)g?oOBG;BJ}IIhD+nQ+`Zkcne6v~R%hj)!{B^08IX%t zC+3rAS;l6Wf=!!ThVoQ!^>X*-Wzrv0c6_!acSYBp7s50Dmqh_o_G)UE%|qpsC@7wO z@$$)$B?(9(m%0(iA@?22rQQDh=n|+CaM#^DHj$F{S!Yuq<<7pzQ-HI1F9B4l0jH8= zS{Yx9G1uZL5k082^=LCIEm9<(?k_16Sb^JWZX|r1z>Oehb|>Q`BMlOW*Z0pb_JPuP z%BWj*iIP-QHC49;*UF|mn2A?!%f#qAGw}vDqRGj+g+Ym0zXL~-)?Bdg;W63`O@5mj zd}z1!oCsF_EOxJDv zCYLL7xgoH}Rrz@3%@`i%sZpm~pGRl&7AH+Jl-V{68geRk?YbDc4$eh~%k$Cd!dwi# zlhU;9vTazK9lt2yx9~#Yo9{gw)o%lu-Lp3)*64=VvY(Lu(rbpc`APTfSa1S@rQth1 z1kx=iDFoF28h>KRkG(>Ee?|`456(k-j=yC*ghJzzhX67He-Z-d{-(oEc$R0k$?ILzVQ@3b*j+^@7rD4haC=F zIs`bGOYRN0{LWx%uCyv#KL%TlCD0jU^x6&h7PXar35fCUFN}-uSTmk&&hJL!%1Y@} zniuZK!j)gqyn!0igZGcm0#z+rQhYEvhVN11<43=qwp>#-VPXfYo+@upzuG?b@C$`2 zA7M*b3n4BaFQbEk(QkU_dxC^8ZXgpOlL5R=T;gw4&xI}NSZ(+BC3 z#Kj{9f@9`PfjpjCa zG+oFH`7x2W>~UjYExn`7=*Qp1j0U7hBie#HxRkVlDTrre#u0L48+bUGgsL}#9Y5*Nwvn|yv!pwi4nOL{A)IDGh}usM+?NG4|3 zVw_l&mS;Hv=j!0jf0wkNZ|=Q7l6)^lrDb}><1H^_z%1Nox}>#~_DhwSKcBnyMgX$; zT>3qHwW@Q2Q5R}L2XMXn1S6OzZ!`T1w$gt0 zJ1&6X6Czko#g}$qO2d3AU3{#fFWgH8@YF5#i?GgT1kxDxsUO10L)+u-r`lsu_)0v| zay}0JiS9zCz6JlVXMh)zRooajt87-om~j!CWx1 zRkV|p8!wU#sPM-khj2;SPxsEiR8M>#4Eix3X>ubx7JexlS)UUpYRa@kALYix-RNPX zF3*8C<1HzF8++UR&EX1znx=Y2Y2FZ_&}_6Y+pY?gq9oIgT!t53tp1ZA%?_YiMh<3F zX^z>!wmA03Nw~WY{f1`!3jqfXxEc)v;y%pyKz#&VDw4H&Z@OJ6LV*t zXinqh7`rsyOJG!4=E_lJY+?EC&OsqGI*8?QupZ9k&D$>GXeGuw`08rwPUab33X?!3 z!|nvEY&#XtwNuv&=C5D!JGH+u2enl&7V37SH-NVu$-=(0b@XVuV1#x~f*z-n`Fs*W z=k-DT<>zEWus*$g6kqVPunDj3h6exU+4PS*3IFVO;d}l?`glDNz7@13mFY!~6X<`G zW*GPX*B&va&d`KKxT8KJJ}4OMQ)S$*0s!COKF6nErF)H23GMb8f6woFr(oi%P4W1` zLvvae1yC^s!BzNt3N@oQUl7F3**u|&N2ES~Lx_h($nM*YxuTlx@^@t==kLDhTH2uT zrgVK+ucmZqwtjUC`E(g~3hl(3@NfYM(A$ftm9{MvA-?)wcEZAo)4OrJ5D(U^;8@Df z!oueL;p5oq{mZKq@^kR)>mFX9##!*yM87QkR}tEru0z=%z-~9=YcH;Po=20N2yH** z$z_k-fwOfo8poyFDKXo|4Et4*w_Dgi_QHhlGFI zD_Hf<_A31!TCOD;>~tcFWFHX|p@0Yq^&JHasW4(VMy0DZ%7_hXCZqh0Z63hvr!z5x zyWD1f!n5G1{mbIXOw&J%Vfwpy=s8HcTpZC>Q@J*WrZ{h@aI=_DA zJMiwm7dZMD3Z~rj)aiJg<7tIa<6v=9b+E9q<5U8ft%%^k z{{}x*S&d(Z&x)amjSCj{L>riZ6QlpTG!y?mJH+LAyL_+jO7C#lrAxj#I4G{}h376v zxOFb6RHxGLA+<;2Z&x1n@YbVQ82eTP)wwb0L<*&v#M!#LlG4{LK|p=uXn8*h61BOJ za>n~H9CdgME%)w*Uph5Gv)H@n8J>sNLhZ41SuSBrL=bkU^LQ;y|81#0>F*UA0;aF| z=OJzsZp$M%zvJGJlX*(xe*22|(F`;*ilr+u@clD$(e{to_;u%|7*~UC^YU^qNp5f9 z_PJ+WT|DJ3)%+2MX5f?#G0d7r%^|g-+U=c1#sJ!jygfgP8FP3xym2=aBU4N;JEh;6 zVCumPq@~qTyX52L%jiFID9`)eSOcNJ2CNx54S#(+2DQH66714n$i292uV*iK{r_c` zV5?RUPbO!hmPrVzr2vj7RD?|u-)3Cw5xdKSQUAJZo5q3bi_nkK&chXuh{!Qq)} ze!+Y70lVr7F1^oRl#A~<6W^1b25!ADWR5%4H#50P!c*rf*W|^%GbIpTq~(@J12mxh zsD9FhFZh5<_1u7_^XsQf;6}AK;H$qcybc{{qCxx7cJ0l%#|9smp|c+~IA}7q^*3ed zdmMk`q(y(!ee-e*{A&az?a~fCTW6Tn8)I6ei3`nPG-QjygTI%U zezPM&Ab}@#>}lYh+{KzL@r|L$n#^4PKp6iWOBaO8U*cg08!#-ZAAXDNj9_dH?Le!c zKK&xg4pc556_WGa)^MrtLZ}0duCl|^Ak)3<65YLkwj&Kb)n79Z37{W+9>EQd=F^sr zE-z`&KbWppM0#Aii$e(4e$9M>)IKbstA>Z^KQus%pw2m$RHtu-PcfsA;}d+Jk|3(b z;Ih*)shL?(-Le{7F3kTGr{qk*z?@NNkTVaMwgKKg2g3jFs{m;}o6~8o3k91{I4E3( z%HMKF7pveZ4NjPvw`;k>FOSQ?)#T@sZT;lC7#8u^v6f9WFh!Uhai&njeD$ngVP_D^ z-2ZPn?He~zuA!aX1}~SJWWWZgKbBEW9M3xG`DyS^z}Xzs$^Zxsa7VpN{xw-OBvDtFPvfq3=)- zodj?m028q*2w}QJp9TSX_IG%kiK5&B4rFHHi}~rTr3W z1U)pri}dod$I;=pNtk)t5}HhNvc~hki3yBHjkbt9|8Gw`|0nm~wrIPf%PLE>SomSy z2~R`{NDCxXzW-r9?s_$d#?eLSlsg$4f(PP+z)fZV06+jqL_t*L8YiMgC=WNEor!(8 zQYh~)&ZI^ug?HO4RA?d84JZfv#8Q$4nESrHfLGRXRc|qMxi{&5b3R>ikeErn_g`FJ@;*K#G%%F0Pb>yRjK)1?;+2S1(|6T#wdsQu#x9BE33S;mK7lv={R9Rq0J z%KEbmYz@M(?hfa5HIj&g2ifdVm|&IREnI|#BVWTOKfi{W>%OFO@*uw3r8#!LV*s-I z^+b$Is*0zy#=cKNh@=`9wopG6C++3JZzGuXIhTS7JK52RaMz{)UUv^^*#u)dxRSHm zbf`Jz@58Qi#4m^T+Ibw-#t$wpYuVG{o@=qIVCBAAf@Fn^gvQ)zjM-%dCW<4tiWt`7 zac{@8Fg+Ri3bMe5=I5)>fFlNqr3err_Cq@QH-a(@Z5Ld-F*-6 z#G~f;P>*NYqe~b3QTI?R4`<-e-9(qEVbyUUBpfC$Ro;cAdqRW=z+BOMq#Q#L$ zR{c)Ii3M?K&PZC6t-!OfGw`qT_r*m$!!)0f&8T73jJc^CvAv*Eh;(ePYHYq-Hz@U0 z+JxaeDQGsAO%LPp>cwl*k z#LZb0!%3a2);CkVBMQ$T#7Xc?p;}UVQ1VZLzu2Q8k6yTaNru`^RJKg-eufB$F z`ZViN;iC`Xe`hwG=G}``)sDspe^>0(qcbk}zxt@6fu*31WGFa>G+vIuL*-qLLGUok z=LG2UQzH20TiVWYQ$Y?VJQQaOVlQBeA>NC>zwWyepl{jQzF;9sW!FAc-GCr9G?+Gk^VY z@F(<|JqBxX>)?Z<2jIRw9(JuRz9_ox@WN2PQq`e6B3Ec3G(o(5czQICu=_ts8x%G$ zI*MP(6z}6%%vz$4^Q-cJPr2kNmZ!GWr&_#WT^|T(IEIfT!6nuOh)b-lhEL| zDYzZu@yFwP14}!?e`kVfP`(S)GfQc+_xPZcLR9 zLc8iEh>AukFQN87j(%;2zS|Z>8nX-b>oRUa>O!wKKm5qfB^{Z_y&kil&c;r(&5n_% z)UKI<(apJ9G-e4_bv+MvK6V85sIDVlxiQqRUW*sRi~_o}E$UxX85Ld#l~Y!Yq%kui z$RH!EN-fm}&fs68uyxxd9(|=rSYS^Su$ZEnT5;YJkBp|N8aEG(;K@7py_An%e&uEX z+K2V*pe~_NQjwn}h&@%-9qhghsRpFzL=v00bmqy3JTe5^l39&J) z+v3@bK6ty%323-iU0gv~G@GM@Z!&GZisxTa;^^Y5&0?s6fdX^FWv7ME zi@O5Xk+B|nutu28-?i11p*(c2tC}KBpW-+{O8Ew8S9>I#e=8V4R+21(OKTqf0e=Ku znQSau6~(;8^mj=I=^^6JdYThX<4VNI#8WLXmpfco2ZyCbBWgM~IRJvLEeg{g1Yk|50Z@N@7f+UEcmjg?GX; zF_D3Er8aJM1oIY3Sl|g=|Kcen9IL`NhpVYYF-_Vm)4A@vO!S}&rQdnv>d{Rz5TZbA z`p}Tr@+v>It*OkpsW04y%Lj+&;qv=9v*x(FcR0`fzA*!5_0B}*`2#r!N8~_Q1^e7@aC;ld0Rxt$6WT1&_SJ>c$23-%}dFTThN||JJi@OAH!t|8eY$UCgf^rSnn+-*UdWWL`Y1pB#K^Sc^=!IdkN~Q0B23or zrEQmsyV0WK#yKcb1k&rNXDt|lJEMB-gYu6UjC+W>7=o=hj99_3rP+9KBLS;WHh4+M;9(sCU#=QiLQj)^720_SZXdU zXzfaS?HP|}ux)O2tTRkQtNdFBTwL+31iAwB^q00s)lolgCPG zOHb!k8VCqaM3W-){rtj2ZZM^tx=zT_sc$b$kw+5`A60LO?{{yHJ##-s-*uC4WXo(^ zb(){vJt7!%M;>nHNqK+%$%#KvNpwtkrbFd`fX1@IzI%$8c-TOCykR59H*sb!?t`Ej z+?d>90uO!pfJ&l{o!~WTZp?f{D>cp;$>dRy{#dn7MXJ%?>S8rl*Pj!@k5ogy`*{pU z9OlP^T#A=5yc8l5=u#8xEI|WTggdbjid`3fmx^+fmwpnWv^lBwjrsVNOYfj>&o7>c zpeg-Z>O>T9BCPfix6J7VRw+y*`hWJW1i;Gai~qj&=FLnyZIYB$*+q#$C6QKJdr3$r z{zzFv_O0wGvV|5|+oeT&6tXL_i>S1znR(0i|NZWLcix-!Wu~UgtvBC(mvhfK_uO;O zJx6#HZ?o#Dyp$Z{(KkA`@9RbTf$nXZOuOQ5=$Uz&OYUZ)kR({$`{`%kUHW@?V-);_ z3s@;u=-A_dYj2>l`STGxyoM=Z!pj>G!Wza>Pr=5rDVX^=F!ucjZsZPjnNciT33R(R z3$>33pdu#~8Wgv;Ny@cPEl_*DUJ}KqX;D-@2EKUm27qv{_2NZNzBLO#4?O&2I;79QKIPm9-bMs0V}8#Z`Z6ciXT^* zcu60m-!3-xqrM_?eY^nP3~p)~z)el3)MucCR@VRMp%n~*Dc{`oKWg#M!a{J7{c_{e z5@s?2l7)<=)18G;0@lg6@9ucQEB^Ayfb%JrZC*d8(er z(xu2>^l?{;J3OV979g$AkUNabxl&QNnHjXlWK87rbfC#;+jgU}gRstiP5B#y;qh0FEEQfDtosJnb`2(|G{|h9Ix);Qhd=O6u5|l8hDdaGUDiwgteS0 z=lkZFfXZaP<+nZm%troc1L@{0#rV;#}5j2ETnrM7g}_@tX23 zeKbbtOWVhhm4O*^xkH}j5@Bl3PCO@wr8F}DcbpfeHdo8&>ljA!$6p!7k@lPtu5)bh zQ-wB3>SMF1g9P{~H*GcPmBHmizCCrgFCvc5_tqLd_owVZl$(a zF07cxPpsd~m&>+TaJ3t9k~i77JT}eK-QQo1f|1&&BOz&48Pv8q$E9G}3qfR137*bL zl9GML9vxiVcRIRBkUB=2ZLGP7&D*_iGTPlg>U1WehN)B8vO(N&HO)dy;zW--<4yef znui1WU3nG2NtE$FN|#S~ZvrLPci|mY34Wt9X~Rtaqm9nU_CKm@a?gHL6Hkky4n~qZ zRd+oQ)CKo=lgyR=I9Mn8#y-k9 zXOTxw#cSU*Mdtb_N*o-L42r3XV))^g7;08aY*zXYgLOY@x@g<-in|!N;!4U0l7Gr_ zwNz$BX4Wxyg=Jc33r<^ar441{2^KxL9_ye z>r<$aoAqG~8D{+S(TGgvP;Mlc^I{qnkfA67(2?{AAi==b{KJlX-P?1 zAA_K3oPKN8!k@^&dH8Ge{5})@KMX=&n%$ZVqj@}iOR8^G-1d^*bIXOVP^&5d zRK7g5BmT7+QS@6z_*B?7v$bW35PiHhfm&V)`z1J$Sw{~7&(rMTx-O|kz=~2z4vMNZ zX=HK}1)VF89fq+!*vFE=0RwA`2Giz;@jh|#m?|DRwhR$I+DM~GpBP~h;>Fu(?^!`h zT2h;cYdp8G6W+P|@yEGvP~M5;WA;Z;tXl2kjCzc{UDTSS7-#q-ZfOT_$|>gO_vy)EFhMGGrFv$AJ^Lg_IeBrBj1Q*0 zDq8px$Bn&Jue@k$Zslp=Wc&HVV}n@mYC3-6guPnjpz&_7k#lEKA=ajqz>|eKW8j~& z;5|1K)mu{7hz7BdCNo)FqAf$-R+2vpV}qf&RmFmQ_7VgvFA%MBtflOum8yg3lUYfj zyMy%S7?hSrev~DUcIyUTE-~DyW}FXLeqnivLU|XVVoP}@=yA{S2nWi1ErdGY2yj;5 zq?Uy>7nmf#BzKH!(C!@7xhd3dkC__gj$ry`qx}~95U_U;(M0VZCp>KA`! z8wcS4Tg5jx0V&P{iBG;fvod^?q(_0mT-vm4x9@BzD?_+yGs`QhSm$Kanfx|Ndz!LU z117?cV5tFe6*bfIKZ&ABB}Q7JCcz5+7M5Gedw;nn7|N_cFnEJ@yKQgIBr_wx2=Ar8 z`M8adkZiJpq|OCbm-M|rEc~4JaRg6{qRTE`Url@G`rHH~_)1tx{>FW~yGK(lt8&x8 zOguD#OHV}Yx-{7t%P_U2XxA!n(Z#P9-kVw%C4x4mpsC-Vf5M+Sm9`_)_|N9VOSaB~ zpN3cK1o+Kc0Mz>9n4>Mdu(A?r4gHXIOkS#hOGz+sw|4btVHJm~^5uWK``MHl$9rpz zq9xoP=!3NPfGm9ey^m(~0=V~@G!$bqRbAzki&fihlPo^i{uWK$&57v8-$Zd*tsrjU zM)l1JcIoxh`|A`j_Gj+1yA=nft62MV4tXhyrG;hi@a;< z`|#@2hTp2SUES1+L?}a#h7SP$td61Yqgj|RpC)Nl8TzwNDyq{1kNCfRea{kPz7|4- zP!9O+JQ+NB#k`Wo6g$dD$Wsk+FR5KYsn(fqC2H~p_mi-xLWD3H%=OI9delzyBl2zB zsE9x@V^b+tLdims5KWVzcsA6USmZTT=QC+f4MI!s6t;23 zDeb%q8BVh!2j8=4r%Dx=5;>Zd(o$$BJ8(G71sGbk@zz12q$GcMdIvsp4<^Jf99Qx zi`yz{Uwmf!#A=IQrM6fIr%e&-xD2mNa=kC6;K1d0d7_ZuuxWBysOe}cOGunK;v#AZR!AHKQqmp23&v#5{GI#PH(1tFZwyYm6h~ee& z5!}!<6=4zuv$dpb5ii^P#Pn&oazLj}=I3)V=1raqp8{#N{pi4lfs^aeVLt6g&pZpL zc&MQtVO(z8j~XDv{|F8aK5{^P=O7B0#L>od$8!_$SlVePVAA^;dOetli66v}LVLoe zhDD6o(w#l6M-B0sI0TZ5$kTIj90T)Pp3K6K*H}TWV$Gt4UFdVq)vOo!+uo>Go;G?n zGIzKyQV_n{{KH#O}A$mDw=bXQ>_B2;o6 z=!7%%iM!|WcGv1)2|KN*i9C(bL}o3t%kiDg3Nk8%)#m7(+(@>5iCM21A~XO?;E6L2 z$4FEs)$#kEqiAzuCcggJM`>yjp1my%&FP-V&Uh{7+H^CO@~}~fm?<+hwO_#W81YYcsdy9{nFG7Pky=(7JWruXw-0N zSG;-7%mtsVB|USrSnaSN=Dtt}-~SY&Cjr{3(&d*ir=ce4vDd>`vXmh}xy-Si+T4Ca zsS!Lo6c@g>U)Qabzc1VujD%-OWf%iq+Ttw2#%PP_LP#swg0=c#OQ3e{L*{)P#R___ zD9Tj?^@t`YbE#QYtYYnFleL4A@={W{Iv0KFmL^|jLJ^;!ZL42R2Jt`cd(Y6fy{So2 zj^rxNf>e68<9gz3cKmwLfqqwB2`pF$|GkN3$sUs@*+@;5D#qj2Q$u=2qdfONO01*6 zOrO64GVv;fY*4_Q^HJFJhqTkeU3q%=my^?lbf=X{K`))x8|k*^XnD(RIZ*c*h*Wkl1YuGZlX`#4l_ior$lC?mqvXG2=OY z7a~1^^!ORayi5kpC|uZ%-<#uL-U2&5B;;)&dnI=QT)=chDAyO(RZ-#|dno%IGl;RG zIw}m|Y?9%~-L6iW>%*=)i9j(-E>STmrmQtNd)e+j=QG0LPW>u?bVe5ot z)!(&GM@I{4qZL5;A?s@2*)~M=jUuxO$gkw{T0GeE$o^37Znae}p$UV)Gbd4pA zftDa#l5=*cJWYKm%w$p7OWL*d%*DQU<>kMl6*6zSIE31CknNK(Ri^!|w8aYNE*W)e zedc^o9!X72KpX663oLtJ+20;XJ79H>`a$s4QTf=uwdbNw2~!$8`342A#Pe;zNsLu} zdU%xpx-(cogk`R${qZqJ1<dU9z2pjEZ z5jv(f6VP<}-zFN|ffo_X{0DwV;zP*;t>Q_vMZ8hcx8g6l)%4^P!yjZe7bd?rr*4oQ zZ7jX+4Sd;eHKAtdIS%{`?sR|qy@=^Fg&r)zB?~cojTh=80p4j4rK!<9Il(`-DKFy5 zFah;oE~exTPd-->?poy<%;CM&99TdBDwVw^*Bz^bL>$yZtd|DkM_$N8A8JhKCkX>y zO~b&uQgCgvFrt$tBlre)xxYV|5sv+}W|ut6 zW{I{gss|InhC6zsa`P4g2+U%LFm9q6d^3F=N_fz0OF)e$*9Ldo^uD{^{!s(6t%u;D zI;bbq9R@z;eCvIq^7Wqbuzl|GvqG^LyPowpHwELU)%}|TrqoY;FAW)+Iz2bqx$ReU zpM66xa@yjm)LPD_ws;AbxaEINkvIfDcCjFB&K*q69e(R37snkL#EZA2;=vavl=0z> zbR|;jC>xn4)rHXHeb;aLK1#dOVGPOp{qM8{X%IkdZpsjS+CJWTzv^2h;eqP&bU*8i zeFXzNG;0_{$pfvqN^+l@Nd-~Vw#9uPFGD!Od^U?;FSiuhsHESY^f@|hYTSNw2K7*C3iLHbGmww){v9vHV95)h^*)8fjfN zuA|3C5#fLnqvwf}2~+c&no!x=>f*6JY21{Og>RP9iv%OA^`bql@Om>LJYIfYABZU| zf@U-SlLw1TEd0txgR@g`Yj^7w&D7iUa$eVD-_BpS?Goo|L|)3K0-|S^$lZ_;E{uj*3vkBju?Uwx0zu+~k$u?z$#|o4 zC)@Pou6nW+Oqn0SQB_mWmpoczsPD{)D_{>D_X{C3c|a2!#q%XZ2=JL)Ry_BHOuWzV zmrBo0h%(kL4feT|EUl*oqX=i{gSe66ldq#V<@g|aT)JFNWnTLJf!puxLgEFO8+@?tr3nkrY6+f0m-y;}dAu z_$C6g=dqF0j2?9~{L8O|f5C-R+w(kLZ)rV^LwX^uvgXeqB+JyblIlTG#0+W`%6X_o zdz7~b(?2-i&!Cp3Lvxx1@EyS@x8akVpUw>RCm82DL6N_w|<@ctA!ePB6!e=tHKxSadDt8dI zptP6fPm#im{pgr?;eSH^qcdm2m;GqnQ@EKg?tipmMU#(#j_hWXAM-Ud#_}xO^@@iT z)Znh;#IkZl0>{8oZ}UyQ_h|1lE@x+A5trPXFx+Mz+UN?t>JmEvpt(xP03N+DzEm5h zT-P>tRE~Qh30C}X>R67p>o4A22w`p}3{m5vr244dY@E3+__GrbP{#|t#3$e2V;6Y0 z-3tG?XW>2ZWFjMVKtalv5ODOUV{#JRxMw-;^F6)V>%tJ;pU<%6D`F_lUio#*5k5wvNM%6Q{3`sNHU%0wpmKScqKHgGS$9W}l>dv{|Da@s$N zQM!T79aYwzN-EQ7sG4(t{a}cP35?}^d^N@JrpCw`g&{zDj;e>zHOG?qxN6O4v|c+F zg%&TRMzaXKMvZ_Dov5j4PMb2SQj{cN6G@HTh||*OKFiw@>k^!$l}Vw*HtB;fZl(kJ zRJsBAiMW69eOYv{A22)YG`MfN`9#^~*OUW)Sof;58NHG}C0=ItJ+F9YOOP?I?z4Z? zekI|V=tt;eTj}oGXGUJ&y9%0Bh+Ynq+_w@Ym7FjyJPC0bRxp!YrY2Dr_shUY1{n|- z&ub9DYxkye&zpxo$xL6GN}EA4)582__1`{Tr7Nz}P9keE#cUhyt`4fd&Q%vRDZnnY z!kKM{1kNwMwRYaMsZ~6Q{!h*F6l=K|UGv@S#LP?$;)0{-Cfk0rMh!r}E3TmbQQD7A zqTT4kaa1w9$AHdb;mLlqQDbUQWj}fbs8Y_xAT#k3%y~z)k*`t{+=m-@)@E@36P-~% zcY7*#M~fD1T@Im_iDCCqkmJ&Ph!X@QwO72(nwnU_+O(aWW&N|-w&}gi+L+zIyg9M` zBHn5FvS26y)UGPHda3L^U$?wz@gB@oKowrbkLcPJ{;(H;x89&_=v53;TQjFNRPPm} zd;i^0v=ai#<<|cB-$k_tE5lE5K^d`R>Ok4fwP0$(NiB z5WuAmv<=hXs-IGNoQa3n`4I}DZ-2mzHr(h^g2uWj6s+FiwU(CUGgA5P&EybAgQy10 zlc}w{>#7u-&&^V@^OWyHj~?y=Z@r0Ezio#Ze>6w?UmruEU?!rSdXO=V;nLxFcwM>} z0aUYRvqZ@JjJ>C8oDf#Ott10ysfU@qRdgo~j%hS(*5;%vE~ozTyVVr=@psIN`@o-M z{88(SAjbAsTT#tE-EZr#*$0}r)hep}`Wek2>BodK!hV$b1ju8S{~5ux4A=W7?YyI`|0srRe0gld^nnxbg_r6h381dds*40r z4IFBN+Dy<3a7hEpo*z^;2VxvBx;Cm^?zidZ|K)1~H%bp?)9E3H zP&0oKyk&oKsc&#LObvX969p-MK|p^WE-$Mv$jK+fN4E5x`#!IZ`@9e;pt^zP zeGY7OFUmldd&8)IWhPGTyb;Uj-295xG{oiZ(JV&mx$sPeIAa7Pb*7RcFID62U&W(0 zap`GyS(O`Y)ERnbZ*+?4rFQX;PVKo6gaV|5qc9i7IYa?J{0ML0KswiMOxvJ#C^mz3 zK{cu(-1kAmCQd_O$Y4kVV{F_sSTaAU>CFt<<;!-mk*1vO{jqMNd^F{9>VXvQ*HMeL z;jb8uqBDKj@u|*k#zz;kd#?ZHkg@l!skKY&{#+diQ+%RG3#o#Wh z=&;J|QkQ^a@PkLAaV6Xjq`*0#S1JzT(vnXBw9%;n^kjHY(VkuYce(6*n=L+apysDf zkB;D9ZnP@S-Q{7H`#4<&MY#Ck1m+#eU3B7p{J_u=1xe9qlnoMn28tDd-|QUtPdo*D zFbn?6uQ7f-&0kinr2Xh4z`4!o=BY8F_mM_F`HXe*u{tG$)v+|B&~%|tKxPTRPYjdl zl5Gd^QDut8Of~F)!aLb`s`ry|)?Mqkr<1KmTsUThwQ((z%khG@o~a#byN>z^TkL(| z9O*CnJ=-Qdx9?dP2-oyWzPG2_xHrqoZnyAJ@axtMe)TGJw>KL8*WXz4s`zS`dA>I* zTTpfm2&nHQehA;+ni9roT{q(Ni#Ot3`X|>tJ#+o54;{Vep1M0m#aV@;E#;B8-0&1%MkVw6l5c zV#d3^GYg--kdCg+Q_L>Y2DI~2FBwFTkjZZ!{9h_otBnEVOR@yKb6U{1XD4obYl=|u zVkQsc{)FEf`w)I>kl1E!o^JzJ&2# zW4>$F#2Ac0b!O2Am4)Z*N5A`y_M`8?A2SAl&ptw6(QIJQBM8?z8CA}0jke_*V8oAA zD2y`FQ>hHJYd{{QRSW%#^DC8Spb@XQ;Sr{!{P)N3SHXo78LdwBp>ynSfA-P(^dS0Q znToVRwl9PuHd#38TF&j4aET9RS(p~|;|eYn zI>LK138x~&rEFRklC#UDB#F{JS8)Au3^||&M&5e}Uc4!cN|kJ&8%_4Jzj2x5(_<1T z=hGVQLbcR&+U=f3S0-}TGXJwEE^d>`yM~1u!AczzS7JcEBc~57gq3tVREpnd)Dodv z^>_jicA+Xe{>dgBG)Fj1VcnWF@W<1kJbin5b7yj^{5qgo75LX(OW&Sc?xQ;yjjF1x ze0vhh?cf!^Cl0+UNa?;&^#nb~{ACuPpG$(5(Q=s@xVr_%{0;%x4hFev{hjGie8)*x zG1?wVb2;tf7~O$I870ia!L-*r?FbK3XUDLyC|g90<%JD`c%K`%=FmvKFgKns8@x>+ zb2gnQpB~@PrKNb`jNAvkJ0J~Xr$&ts*pjOe>9h|t!ULa+;g+LsR{fN$W;P*IXbjCU z@FvlU@H6?D$sqnm-)WUZ@ATm&zJ*`M@CQTkmZVMVEsQ?Hd7W8VNC-m7UvK|h+P9zK?hXf2FOwO zrs3$C)|Hy_Q(vv6mj3lgG@)WW+cryy`!`fSZ@Dh}(_PzVnwVI+5xbQl#n=E}atZv` zUNON({O&ZxI*K7^HS4mB*>=eO1dM&OEin_Mfj&RUU$eM6Q;bS8G0JtEz%JtE=p(4) zF?=PteU9g`Kedk|_W2hGj(Hvb7O#fKi(iCqW@X~0B2kQZh{~#cj1Ur1L~?`op>qM; z3^XLf>pO+;A^m8sq~Hl{jNo9Z%?~FXXLs7_J&gwm2Ad#eF*gaIVxHDvyc+~}O?cZO z5E8KrvsRhNam8B+AGXP#@h*3dokak%I5R6a_| z-`YNbyX{jLi#uSPJs)*=!0bSGbiS)JB79f9Bxv=xKMV7};6_Jki-*5M=lq9+85Jmv zEQodBdseIIW97O4&Uw2oJ}*)iCDX1&+t7SGbmV&|GG{Ux{`v|Ut{zUmR!6`;{cNso zG>2Eep7Bj;+QUCCc!b-OVj*PPs&{rYCBw?u13Otoa87={qj~0d&-6Y=HS3qQvAQdJ1>c^;1KT_*nnC`W{p;PU9p3h<^;B@xA<<+Y> zP@i*c2Iemm)-mKUZH>nanE(v27>gh6fn=ra}dH7hMdm-)-=p zVc6NH2PMEDL@h}90s_vbvgDE?oQ$vgM+}1dqUn6T_Azm@HZAQM{ui&ZVStuaMEkL) zpGL~szwk=MtMF~%st5(vG76vqf>@=3g2wDBU)$3_+AoAqH_$Y$7sP^L=@>(ejCRD! zC5YS*$bq&7LJf|tV{{Y)6yvgkSVACl*Xj)Ser|S*VZhAL*l(x;{F!BUsR96UK#jjR z5*SDE)27owHkaHdO@RN~9|%?~4gdW1SlgmKO0++lqp%n=>!%S~Nh64aSLLUai%dsZ ziiO=YFawWsfK>@sw+iCH>*@cG#ajBX<>m#v)SQBpHxN+Y=~tKw1-@iNUT75|V*~Bo zxjZgSl?2lY<%1Y>D<7ENw;IOgjkwHydK8o9Ssd(67h=k50DXj>a$Eq%9YH3`O-Di= z2|8veoR?eDwCTI#Wbw$-r!&}3elFFkyKm^pe4jHDd*9v@{gUS+uYoV#6m)599L%85FWStO*vy;Aji9 z>ed2HANU)YW2e9yKL)`$GZ1)W05_RD0~}Y&?yjeq4URo7dnv+bxCBs5I&C8owcZq% zi6_}-+5C@pB=j%-E{eBjMp5GsdflKePj#f~ue2*Pt#1Tlxx#BqU&3Q1N0GrOPN2C| z;}cnD<Do2v$QwUw#|G-9y7PU+~enWe{D@rG~8AC5(jk3h*Xv1uwgt{%eUd z8Y48eC=rI6CfCpIzF@uSTf2e-F290fP6$|>XJEE!LA-HaD(%xbi)Ffwt2NcDSXssK zCi5Uphpr#}k3T_h>>F5rKuz2g=n8*LCc^7!Zr(nHt2-_R{H8r|!~_IV-HGI|Se zF+GI`{GWcEE%OpN=^ZoPY(jv^gr)Q3ZcBcaYdzMC|aI2;O-y7FE9xJ*OOtZ$_u!!tb;2$TeXUEzVh!>Mco-Y}yF2o3wFv>n?4R z+%nDL4(A7lM-ZfDS?Q6H5wtip1+uY?a2-$Y6r_C*0;CSohunLy|M)+Hn~+?pLi;4` zzShiLw52B!1groD6yESE^#mC=DyQcuD=Y+Qo_IHB|oEQ6GbIv~iOZ|p}WGk!f?uPmhh(OGlgKgvx_b!l?b z>Rk8=Fj1+J$w$;EEvr&CA7R1fzV4~9TS$VrXj>ZP1)oLG?0=c`Q_2^4zYjIK58WUa zbu41bpKl?@&2I@~)PK+1l7@pzW#Ri@VrWiV;LGWUS>?OUNBUA5F17Rj^7B)0^@Cxo z{+D%6@zJd{{h{)?G(2)DTQtspB(Q1~Mhz`O`%;s3qptBB^8G<@6AfxZV7uG0@bzK> zfiRi!Nf_lQU_>vv48dFaa5vr)@Q1!2B#5`mj&aJv;YISf!w0>sNu%D*{xsi1 zX5XoxV6O?RVBhrg5Pwb#i_0ozD0O{CJlFetS4VY-_cVRM{rufX9Z5%=k~7z3rlPIPTnP&Q42*1Lj$^S%HXceqFj2-!;TP?MDe`Pl)^&}$rj#F!!q`G~xB#IWjGr3!zHz|b3*XYI! z7RNeBIQ@sa^@lU8t{pNrhkPzSOmbw4+XmnL(eo{w&5mxhy1q`*hm1Spg$Qkm>W&9BE53;_Qz>5=S2qaSV3)C ziGu?8m#`f)A%YudGh3Fvl~w0mft&JWcbUE{&wK~p9$znyXQsO79d}f9Wh>XKQyO_& z03Uu$PYEXm(1<=$#V)mqrMk$oNr$r|7)2XqzK+YOeXmDT3q6ZB*|d9q{bMGDq>H6L zNAc|+G+UrXIF+zl`!}P@a&mTd1CD7R(W{$w6IIgwtv;H+PtE~r$S@%ju@#(uCOL3arYs5UW9hp+Q{@NZTk#P z#Oct6cC`bXaL2Mwo3GvzuEgkXR?F>EX;!n2d+>^D^ApRK2COi(jVdopxkk~tHd1?A zm|EFAZ3iXTsjjNCY+?IdNyA!0T}AR5{vhG^v4vlqL{E z9jxL$`I^LQ>$ z5=?@x>l=HN@NWgsQ4_}j>J9oB zr2y2UbqL2FC1H}U^OSC5$67AWnj3tUC1HcY9O%uWE(c5Pv=^@J2^wdq*-7nC zQn@N$Z3xjObm-_T+(BQeYq@W$8|ydVhQwelAwcQqnii0oEqe+!%r8g$dX*#N+NQJx z*Nd~I$fbz1nKFCS0ku% zR1lpxDUC!FxW(f6eh%I});#s2k~=0BoPEzCx3%e&7IXqvL^uicPO1yPQ)i>tl4ldq zLy)s_edp*TIlugVZYenzYw4JZ1BlF(#3v;2YfvM^HUpG<*S_cBNAAG>p37P%a;I2H z?vk{CwcqM*zDsdrG03BH^CRPz4;T&v=5pSLTyp0|qp@RX^R*NK8qED#r7@n2w!!ei zO>vrE9)k`8N{B;f6y|7e)bIRQ_&S(&Rn@uU_J`lNJCt^I9qIQ}aFMpil)Do^afoXB z%5FqS{@guR&uP$9zv^Q3;ym62qgMT{jB~L6|(P=XjQi)Jgla6ZxHPsm;J4v4=HHKiIIda&A|1}X^i*Y zyj}p$GUCrh(*4O*sa>TH*)E*0C|`%GR$v5Htn|^UcLtU$6#{XUX+{+DhNhz;wLB_b z-!xzuPh9WgVcH`XqLT0Ci&F62FTQapbsQbrKX9$x9Je=wPzyU-PeRTt8UOTa6xT5X zu$Hw$tnX7JBB;k*upL??26MqzB(5adW)22^_L}r;ZjtVFj7x3C-doyH-7H%MXy4xa z{O`Y~|54eGlCLZzkC{D}@#|?ndg>|os$_HAxTF!%kFSA;Zwcb)avaaNEGxQ{{iy4= z3I_)<mBW^0x^*OYjJ>I@6vweyP8OM;dRJ{1C-s zBg51t1D7$_NIh<5a(JTwMc)cQ$#`mE=}O-}kAkBF4#BD}UF1!EE=cV)VaCY=!D8U4 z&8j|qMF)CagTS@jaKPY4F{IpS7!nI`Vwi=?+Y&L&+w5Zs`{MD-NsDW#xi3V&tcqf` znr!}?-;|>!DlF5S75v$w5D-F(=EVatGvPhK$);R!^t=XMF)lH2wq`xyu%F_{pGL^h}I=c@2&{kTY8@=|%jYA$q}2xW!_OFn%uwT+2LEo=V!a$4d(m z002M$Nkl0~}DEa&e541F^T0~m=YjZulTteZ})>c!O1*d;(|?Cpe7 z_#sW#oP}X5;jZ$c^be{k{K2^KQ@PXrlC~5$xC|?;tG>Oub1E+5W)|^cEypU|(Sy6u zsj*QK4vKd;95grg&>ssrmMwvb^zhdT+SIY_g=ik29o}nL=kIB|r(_3nOVimP-&#GB zUts%`L-xia4NUxLbp_R`**Kh-g^^`KjFaiDX5F_m{ha^-u$WozWApFjvROv zyfR$FWit6`5F=1Y*3>2kP@n!ymE;XU+A&qZ(RTtz%qzR}$K|0sb)HkJZp%`ctGU7L zyuO+E`dc9i$AAy)nS4WtLQ6y}<}<(}9MKxMF&~5l#(5Oy(1Nz0$i@ zfg}-e*D~1jD}=LDA@{9CbjBd3;Ms35qaJYy zuLxsIOB?zKLkPZfSGr-~8ki*fB*Wb?HkVhPA02YU3o@)v%$yw63<|pc{Zd3;e+xxk zcpasdeL@cJ;qL=#q4+)R5NvZE0@bUUrMfTs|BLjLHAthzbbYZDff^>@b&i>;Pn-XYwoflRqIKoRfej|FDzk z8Yi8aGPxmI%YGeAmp<~pDU49R&;5#mCf`lv&!@fS>~DSiNX>m^YBsGPYVpbQWFzX~ zFow&OCPuiTiH{6Dt5vdskS440`e1R@`ui1xjEx}CMgpj4LWSGOke(*+Rabj5xuxx6 zxXfPvi1=Vm?s^~v^7FZJp>{Y^mz}N`8G@sfY!4We!puE&5Pw=V@lUE_ez9wBzyn>T zqw1FvaDHqmIu#qv8Q}oaUTG7M>r+SndT)1= zV4yD3*r3Q#PcXvW&zyv`Y!pOmZf?^YUXzoBpGWXDZ5@knaw1`K4RLMKTsrZtA#JFg z;O=f+_SNszAA+Nfqz)0D=_?Kk=AMBupULzkQY0M{j=lyRCeFikg$CiVP*apFTN2kk zl!1|B2}p*@eSJzM(rNd3!Py~B(-~6S@*cxcH7t zTurU!14AQdbX6vodk8qfRsxWSB}X#%feo~G^vH+|KO__1NF!;zDnofOM>pVz2pvJ@ z$S1EZREgvc*Ex~I?7G(gKmi#uX2PSE6K6I;YX80{mGM0m9@-LDRD1=;m7joLuDAgy z6hNuhMVZtn&O14PjK70e^ABM{ZBlFQ{ABC-vrI$9QPgsH2A1LWFuIz2q%`@@xGCoKE-*j#$E3w z@wxi+j9L^D_-q}8$}BGLom9<3`M5tvz31@8(y))?jtt_-t3xPPoSJ^hLl0aL!s&JG zva5SX-)Mk!I3e73*DBq;CpvNYn>yw4A2!j{LD{;x=;*EuBjsgbx(j-fp-XS?6{3$~ zE|)%$206#qtB!Y>k9PGB;lYO5AM-H$hmxA93yo5vSz)9UD~$Cmo1=ZoQ>ajUGA{C7 z#CJ!vg_pS+(E(i2JFg|(Je>jDe;@o$J|!EYqjU1Gg^L5Y_qj~GJ1K)y%mGmOv*IT2 zcw5cQ-S{JjN!aXuPbO}EER5&5GyhzAKNvfWe8`NczS(q>&WX;y#5H4A%)ULUih7&P z=EV5Fo*bU*=zfBU!$*RP6MYXw=xyPI+nV9Gsx44<c zMK|i*AqCeA2xAR}PdPg7PFE*l-rxN|!+D0eI)Qeg)hoxDEYCF@WiPeZXn8}ZS!jkxDi zX*6wgr)T@6m=*q63dtrni|Ok$Si+p^rW)PWkH=SMSdS`nl$>Q1}Hmaz$@f}c&c zy*d|Os9YUwxd!6qwOwtiEu-M?u0lX?7fovu+B3aVaXq!$e{-`-d-`+iMxUMPuT;{v z2CU9p){}GbH#w0xlz7#jK0G;TC$3q+(bd8BrS0ddI;Nr%ZAMkbf!u7Nd~Dw*aBq8k zzrE+K++96de6;kS`l+tc_}ZP`R`}IZ;l7@ir3SD6RWhBiNieeLZsBCPiF=wj>RTnX z$Cab&gdmW3uKNO%Ay0m%qgGjK5|Wba}x8+c5$b2Owp!fp6z%N zOA&ATlQzZUKH}Iwt-6HGb*t!2Xl4X0xmqSqLelhjs^rHjhCrhQYYnc^^qFpXZj-6avIKG{v0C3+cP|FIehzd24bYQC^rut zTSewDT#4igmBlEFPj*sZFe^L%{{}?&UMofS2I7{GNCTfCCOe+AYMH`Rh@tNG95miS~Kc#~&2N zmGg|xs2Lts2)CQT%HA_L#gYXNgN#WqGJwj(KP-W|4!V`;o{ArTk5LQaqZS3w0d&j3 zy;K}v?cld7MY?J~&COJ`XlL{Tm)u%42%^DBR%mfrR{NfZ&loRP1GUUGlJUY0-WF%_ z8XmjS&i}$UmNu=xcy5yrePE^-N7**=P-4O$+?AkmO{Y}4A0jOnO}c2>YVIvHS%|s5 z)Hj+8m7wX3lKNZaS-h|`VZYe=-$Y(|Kam^_sa%_1;@Qrgxur-~mIi0GEWTP`+i1&B zSrksyF0G8PY^~r(C{R14#nnBRkFIhgek*Ku&uuyO4Rf*LUO3 zXf#R8TD&dJRhX-;q#J_EjRw@4JP9f9jis&G6qK1d9#cykg1N;SVr0rW82@$y+}x`I zO0g>`b0a{LBLhe>>g)kf<;Tm`>GqQ9r#>%EjryS+3zjgd6zFa%M!sI-Q01!j%T$A# zyIZB=eBztTFN)Kg$F$!RVEMuJ%K9%ocVn*FtQE80mqqao6+Y$ZulL->#Jjq+5$o6m zVY>GTJ^MI@-TerzzAY2quLL@Aqn`oWiP*5$b?N5|+) z2dg6dNdPsro|2NeGc9Ax6r_xK9if?%fIt6)e*nX2w(W=jBb`W99t%+NW;%$o&?#K` z`s9l=<16s}SrI(>PT2T6)FAaM9lg)}ID+P9G8VivD_myMAhjn5US-%>F3i%`v}X(9 zw?AXtbj!^Yajlje026(*qwsY7Dp)GQO;2jNToOn%kyFp=T_0;FL+o5F3s{q)xzcL@+vs)83-iPrUWU)H`Y%$EH)@IR$tnq%qpx6spwqE z(x}c7bn0;2JU8Ey#&}^_f)!Lu?&|n$B-Kst>8RqQWm8f;DYnFM#=c`7?Bbt>g8KX1Au6~$>zkQlI4BWpUOHvdhtgyMvkHdI+ysuEjnnBg^gN3vWy0re9J^_5^vG+9*HhS;`Zv)#s>bbU)vL_ z|Cxg}(Mf3f?-Vp#I|2=3BgkiKpwRW_z;CVi^|T*VaCRoud`t1`^-Pdfa{aq0&FWhH zRG5B9pSvj)Js-@%FZ7(zmO{{#7t&$B`b~Yv_tb~hU07Tj%X_xjyWgL-miy0N^}B@~ zu=K|$&blUpHr#|0|6g%l0E6z}tm)cokurhN_?~|mb?8}P-tgL3zb=AeC9DXb?;ZVo z`+bxi!8{zwpaH@ok=dqwx&J^ff3(E%hB%M#=>wOu*YLarNO^4-yqeYEU-LgJi?F() z!ED>`{89bgszsg%p&9^$xEIs@q$wSmuco21b~XxpjuAVctM-m*xt7Rg$Y~C=K|zd5 z$uJ@IfP|M^O{y%DI#+44aGJ}P!y8Ki9x)t+KAFciGVoVwP5joR8&2S6BahJweqO`d z+yz_d5c<)iD-3SY;J^W#z_`iExiUi_X8Sv2{bk=;gBo8mZnBMz0SGRMn(#Cak}E^- zbc|oI!Ij*#1&JHTcf1ldZ?=G$>)h?87i^8ToA(tRM$3k?J`Ce&Zd`MrK%eK%>q!eU z@F#c2G9oF4+>(k5o93a$d&isgpMBHyqW~aWRi6qs3@!4W#S?qfyP8bt9X(I}R_DoS zv+LxCJ9uvMu=NrBM7i3+7!W8zGae<2i#p$VJT@6*{}B(e<|~i9oP}El(oG7@6DEB? zvmx5QK7A`U3XsNClH*P5=x_1r2Q%@`oG1?EyH9a>xgoX4MldA3Z`ytpW!M^FyJ2Gt zZEnoOM1HH(rcng1+?P%tqzSm22b=t{Aa*=fHss`vlh6n}ev=nX{9iD|D z<7hT;Pz#KTv_O>ue!fBlls2XR(c`sy$dqgb zLNRL!wQ866wCdnCU^)1^u2&tbdm+&Fmo}&)f>=xCLK)hk^UG|!(RU8lRFL73ti8oG zCybgZ6#O9s1TUk>WJkX=F@hg{B>$v+r);-hnCheVMPXE{S_#oBdLeM*^@!f}0D|;W zU5qxN;>8AW`DeqwFEbSQQovM7Mw{$vJ@XtowdbodvyK1Qvc zrD|hWtW_+zu#qd9r>+k%%7ur+%Kf($S%Afd^KYzY4-iuVbt!h5mnFMfIFXJG%^aL z7R`1IkCUsTax`fY-cI=_iV%g$;?xwS(x!0=H+6(5)Y(ZSg#pr$;4_#G_=mk2QCtap z#bxJ9@6R$`03=W;zbz$eW9nfty$(#A6-7F2_EL)nFq$rkW-&ym^3~*gTSM7EGX?~eUT@cPytj)#382a&K+|!H{ybtJ>UGV-j(nof@;AqZu4Ja zJmE!A6XW{m!|lc-5r^K}spL9P-|0NAx^PSGz5-Lf_a4A-n*Ox+>DzN9qU8@p@XAXu z@Sh9O`-}QOX&N&9lZjIT>+#W?5bkDt>;Rnt5`S>tD-oPcjfZCXiZqd8w)xu{_UxF3 zOU~0EmGF1Cnj1M(g_1NiuuNL-s$DzPs-1p08E!gHE^k+hPV~FYA#p8G>z*AT)qdec z14hz0wN{w^wFv-jj0$q)UXu&?C=AoEejOR16EX}U>~t#&KG>fjApDXI+lrMjbfpI8 z54wU25RdxP&0EdN0km(Pa1fu2?>h?Y~km(IQ-y-(WpP6s4Bdu^{uo7XBm;_>LB}l5UbMW(!~0a#dGLcP!g3 zZe)KbP1nl|B(R(jtuA4(i%v9udG?J6{#nh2(Jr$^WBO=4OOt4=4q=11Is>CKqNBYlxpJOuvfjTpbaCA=n$@!rx>n6QxkfU8Gw{+SduqpXKj!IGQV zO1rwL{RE4tr=Hk0x_Ya+uGKm(NZW&e;40h{-gIjj!r0mLtNH~e1)Lb%);YxB57bmM zCTpNrG5CF`RO!goy8#cfDNKA8kCvB|HC&Z4y*Cx7Cutj7>6nu7a^U5^ppmc)~5BPdl`=8T+7IAL^`3d?^V<+>26 zCWKZ63Q+N0-B4-ey>m%}Dz z^9>B0cXJQfMG1Zh)@(A}#vj*y9bHPmF{g0pp6A8U7N6)7U2Bq{T3PLo`pOP8RtUA5 z*TxS_$1u*mr4=d8mBH?GZoiI$JE!Q}SP?=I&g`W%k+4ya3LuaS0S%94BL?YhIq9$v zwT5XV={5X)yflXPd|6sHtxE4M`k2ihEbmrsfuPJ$x zaQ`%hAARmEx=i9j;k`7oe-p3EmgIGEBa+UI#)9`c!%U{P0lO5R*<$20W;PR#Ok-Qr308cs1W9Hzdrap&cF95281dWy{#_e6=b4w<^4> zUC3jsHN8_d^C(+i@{+CeB0UW7Sm9r0R`);PBGzbH|>5c|l=NIP3bet$nt zgwUOBv;(e=(tH^%&0ev*D?Srbrex5v`BEenCB4sH+j{4i=i+yKUmd7x$5>_8q|fKl z#&h&2_~XXNs+&Q1spV`!+ouj4X$RHJ%oHX1`mER~)qN~{B@G{c8AA0c0os2C>BlsN zqicBhl8(B?VUIe(Lu1;(DrM0or`;`?m?=#kg{+q+MltPahBG{YyZ`BK>Kbm^GA&>M zw+soRKEwN+PVJ!L`Pv=iCY!DP*%WSW5KFenQj?u9ztxO#;elIrbL9!-|I%Kr2zSD| zO%-K(E{dab7TH`K;~!4 z5SQoATeptBJ-MVL-=4E)z*|K_#LAWEXuc=>HtiU9`BW=7sYdj=uVp0(QqmF}cp!bz zpT?1aWlWkLHcq@JKVArf$@F;(-RV2Av~fk{nO)vi}Gbe^4Dgux9O~Vn@w0S`c(e#KZ%ax(ANlD#v>=8lp z)3vRd-WLaTM?EP>1rRW3t9hw$5dS)(y*&5|qpfkpp<^?e!z8%_6Q1o(GBiRQR5m&n zUTTN8U6GLoj0i67pM{@D-?gfFc=cX}8m0zGG{2D>Z-l-94kopZwk9{)yk&7ZXRSm- zt_<1nwLUu`sqP3p>m3E55G}tc=kJ`X7b!;nkK|j5b|teiF_sKYjlL_#;&Onkz}opMYQIWO%Jw zQE)vQewE5rtEzmG3Et(aqtb5nmCfY8_}Aj41Wxszx=Ena&-ABG)Q^Jwkw*Ym^@4ZX zP4Mrz8{UYKc6{S_bU69+J^Z<3af;s-q+Ex98kul*d_nnR3D?u#c?+@8qY?Om zahA1qcif4LS=J7*7Uu$0E1UAfY~6CbFC#@J^F5EE;WcYxxbUV-O#fJ1-N$upLKt`> zr;H|1n@eIAy~|D20UWGW(yk^#B?7oX>8Og9pikoVY~EJHGu26qp`3wkZgx|kCH`rd+z>Pgyz7<_gH1tndf|HghjT? zexsJhGjSho@u(e|9A}uv#jJReuwmx(Du3Q?OQhG@%iS*Q$cYH&$q zi-9s5149kW7W#I8cJCD&_Z$Qq<5N!vsk-)RNAk6ZX5G%ffSaq+=xg z84q|VY*u%!(X~_X({+xd#w(GrnMWj2pAniu z)ZVo2c{rN>d^kq0x(qEtpX2dbQ&4Q)czE-s)0T81VigWSpkX5lri|3oxG`<&OW8b> zUy}b(T^bYZkFuSbqUa$-U`0r)ofM&(SnwKj)Io8E7$J3rxY6kCsTBCQyj6%h{}tim(YM0r zK!#rHXe&f&V~y%ku51v4`=ruWY8F;7%FLAvJI z8o)CdsVZ#~a|hku9s^Q+^p1{;C|IXZ15=2zyFf|qYxvQ}1}<01DLH$aHON_?nx)%v?#+|XNjk%Vi)C6TA+aKJub5-wQ$a9?h}n1VNU3<5G=bIPhYUj}jG zmEU2)PY+Y>NXH}PZob9-Y=Z+PdFW<@+LZ~&Gj^R~0 zEms_KIm2E@q3yK^5%lViVvOeNaG7iFLfU*$!zTf?$%$m5hOopA`Hwv$JIXBX?BqTn z6kfTCGre)Z2r|BTbKo<>Shea1+;Rh!oX{5S-#HH7&PYXx85t-_m3Q;{A>2boU4-^n zQYM%@w?cai&uo(TrPXS103?D)AQWN=QJlZT3(pSW97ao$5LTw7h+9IR85@nC(8v2| zFtEuCQilGwQm}iGNAs>>62N$d-3$u&m2%Y(%hln<*9U-tJijH5LcVEgV>{xem3KOze#(uwQ38sz^z*aQH&ZH zyBxp$wwcNm{K*#(u!9hVJmQIPeHFE8lV(Jz<%h9-c4io=?4D+jDo^zjJ*jRwH~31t zbIlL*2X!L>)#5WsDEz2$xXpnFi%cut0r**!y(*g zH1U~2SjJuYrRfGq^$`6j09ZG_;Cd$hg;G*Ll4CBhkJ4g@W8%}^P zJC_>^Q+;&0!^02%HbLX#n_%$h6)64jbi~GwL15-|+UGnDZ|D&C#~cSVYeCmf=fJO3 z%P0*@1=Ij351cwr*DkT#g0yQ8u(V7%k&;ELgtG1Jd=b1s+^BHhJ-{H^h&osc&OFaM z`q{NM>=$1Vu7s?aIBV>k{E>&gKRtko#TVn9&=u(OOH+JaGz&xTlCUG(x4cdAhR*l5 zwAY1DA-U18@OUtnucO>tpg87HZfYsVoql5AoN(in{%Kt13S${}!d^hZt__`-Yxib= z(FJ_QI+hdWk(0RMKJrs^3BQFJi{FL+*%x#|$pPUc8d|pNz@34u;8iG(yGd`Ke!326 z2V`J*EQmj;HGOr|0Il03{z_Lx1q4$N{<^BQ%%!i{Y2QYzdV>teq{I&7n*|)=J z#LXGo8f4sHvVq#qF0^U;Y6;;5)`Gc*{>3FP;N&=g!kGVn4v7Q#gM5W|Pu%c*9?TPwlkV zlDp>xbHO`_w)VBQ=Iiq4k$jF=~<@ONLCilxgK)0VNuk3Bqq`+BCDr9UlK zSD`TT;yp&nA#sqcO9GSB!(Q;XCcbLKWE^U|f*fSOQo`A5tfvG#Y=cjAF^3N#+i;U;T*ox0kY_dM6ncNuTF9b?@lt zvt3uUPvuXl)Of3T-)fDMC?-b^1sC}d0_sm`@q(cMcT-33CCy-p#iOx2O`nrjwM#+O z!?@#{^r$80|4MQ+YVe-z)`ZO^f=pDCP1EjOJx@M&@8{N0c^mp;`A##efl7QpKZzdp zJkd|PQXjj@0~~XB5S3^m_499HqMU?s73(B!zItX{6e+x)#?4h(#ba3VW0v6pA)nEj zs#Hd>M-Sk#?(i2aqEF^Y@DxsR)&~H6k$Q)gPxv3D{it82bew~*`UUo*>crhk77@&# zV1l!72_CoH4*#;Qz}4^^ZpYi{T0+S003W@**ePA?^lN=aa8 z+VG=&tiSfU5Guf04H`G?)d=FlVTBA+t9VEN>5S|lpc)%X4un2;L@3gSLSmZzLd*U{ zU>r4`BSzq$kLROB@l0$y;3&LU=u$kNc0LB&RvUGXjL#Uzz@ik`Wb4_vWg6aJkcqYO zN2#6^6llcXq)uFONDQ(9lSLrg`Bvbwc3L(bbk_?dWGU&HkZ$YDJ@LeT;r?#x8~4tZ zj_x~YHp$x-iunHcorx0lB#JaI&Tgrk^vb7oI){$pJ#99MF9uQ{>dj#JS@O`b6iVz1&X9SN*SL z{x|MV!~HLYjmxS_E=a+dbWhj3P835%&^$q_iG)l0CLyd?MSjj@`l3b2E5qa|blv2i zcmkl`b=L!P1t(g@EDq$qkC~Z+d z)CVLWpTb16|2;_g=2J{9*9F5$bin97VfqA4&-T3G=-KpF9M3hD&Y>UJd0aIB zzCB+D#=MKzk|kgaJ^Xw8>A3x`3oyKJGc5NGMe#C>`B9qgl_JWUKYkx%C#oMWq8p`B z)L_n`(f(@2c>eL{D4Nz!!4(uLRY$45lRH!Q%%Dr2_wnZu+)1CFD^~mH(lUrE+fvvw z?NQz$TT9@oXI>@;Q}JQVx;k*f(}^_$_--jZ3)Bjt3{4qKTO=u1cCvYO;`}=;4HzbK zhoNEoK|8PWY3^_#?Lyu6$*|Zwlf)g@r#iX~VgzN5zTVNi61f(f?M(>SzO=&AB`s6% z*7PVop}$F?RBt*ruUs);X6$YzzBlW-C(Cwt?C8+qyRCtqx%1})^H~%2M0JE)N{*g2 z&MMitkEL;46FesAbuVnM_O~O{EzHoGs9m?=+(?zng_ixe+-^*(St^-K%$}p$$z0_1sN>ZH@Mgzj-c% zI%ce+QBkv#%spP)B_jdK3Ww@UJ>!3~93TP4h12vlY=EzDnxjU*n?4o(U#kFyj`Osv z)2o-Knw}Lp}jVv5lbUp6k(teq;A$ANABc881)0X9-Id^h4Z{#{j$fjqueAnsr zeS1%XtXwm-rvvEkf8zVJTb+M@7>AV$8fVhR!MvH6+k8xBdH5%}j%t|Btj`U%LZ zO~MX7D2NXRr(+r;`IIT;pTpvni8L(rM1q_fl($^W*wdvA-XGGWMfVHh2r>bA-N~o0@1pT8H+dEnCxm^elMQ zs&XZZ3JQIz<$BpO#?#L5E%(iT<)}Ur_yvC>6jiEZ;Olq41i0fi_==KsP+6nl$PN>k z&+#(1`_9p!!y`9gR5|XRU?@B`v`ZxXV|f(k^~uD-Z)p<8pcxNbk!n2r7&%1aFohtG z8To(w0soGE#McOJFLpCNPp^T(+#o&U^8l{ACzAm&s2NIvx5|@pjIU$RD6Z;Kxm1FF ze%H{&`QX>XXhS=6D^G2Ctj}%O!BkJlME>92 zbpS|JB<*j)&hC;WgNT5rcq#^d4>4j+Cn_qSpn?HW&z!S}%ITR7_3%^-XO5UXOhnI| z19~V13@8SY?CzxZe_!|X&VWnU-I--~>4w>P^FoKOtE=l(S67AA+jiX>Au*yS9tR$I z5TUo;w9IPrEx3epCc}>nL};V+w-bnYmN%^oi>mVR=Nc~pmc~dI zq$e@j=5({=oT%s0Pvb=(e=U>N$xT+@{lFOOXI0=GZe}VaySnDYB8(iYmuB)I7FkoC zkiXh4KPSg`)E?1=k^sX%Jil?cP5z$Yv?#0KB+S`GcJ{Krm%FwQSD(J4-MRvExQ&|f zDx!z1lYPsxv~%02h`V=V?D~y!P=H$K&>a&HTy!CVTW+y02%4ibIj&)t zE;WC$?NeV%nK`yULvL3`0TjLQqxnJ{hI@q&{XA+y`pwyQd+nS zhUp6~06zTypZ@ts+!#3&vBYAeX=7MKbGUmMDedep)96JlsDWp$56+w$uG|OVNpTj9U_1^)Z zlTHLCPo{l8{VR$uvOYeo0D%mx33D^|3iV6JAn4s2xbNSbYwtE%X44N2OZUBkY#Y-h zHCN%chn`c8{wJ1W=aVaN&>7_@qsv8Ivtowm%+9lmD0u2EvWT(;74)d!Tp#E7)>UU# zh`a7GK64`sYx}23SKzV{5yXEbt#j^{GGB5@2^FCx8M(pAPZ|!|3vDre~6 zb+{ko+!0c`*}AYR8(b>5Ce+#~gz?nN2^@MZV;S>}7b%a0*c9jd!OLRCCiGYOzdT}p`T#Xr&_CLdx-3;6lcxxlgFJUvo9?N+ z?jES)@7(t09;+J5{;uPy`Qqvc0=aac;g?yYs3)~+NY%*lBCVom`Nm9E&-K1xq6JNiN{fF_<1m^kJxgto=;Pueig5NZj7#4?if66|o}zYVU2Zl#f!-A4 zu1)+o#Wuh4b^!`6c5I zIy8kEyc=%>?zsz_wr-1^*6WGinUnTe`m}rmL~nvzg1%NEL!CMSm;H_YLkClhcOf^9 zaamqrKAm=Y`B^o(E0SI0xPSWV3EcN0-NrZLhG^35V=t%h;`Ai;<%T=!!cYnvOS?xg zWblLkNg7v@0`{+m78yV1X=@b-ib*rG!jcHc3Im*1f_ zmCCFOhZUjQItpB4UrGh6`bl=@8XvpRruwb>!uaH~6gFij&ko#Jtg)k&*j!%SP&%aG zLZ~%-4)E+7DPz;njK=A4`oWqulOY|;qUb@@a_ZC15T5uLLXSO6-=6Oon+Xv=1`VO_ zxcz}{>sma;r1WMip_Lyc(uC;%fv@9bQ$9My5P%^v#)jS`iYIPh*?hy%n~R7-+5p{C zl|bpv>pscMufCJS(~PO!t1HL(zV;19&ne}jt|lY@$0OhosD}tx;Y!1O1ShM9I9dJl zBY*IO!g_Y3Rznk?Cc1`@)DG2G%a9NJCxIuPr*BZUp`5ygi|$Hd;I0w$>=vcDl0M{h zCfU6K3#eZ>h}tEEKGrJIx!mM->523?OQF_iSIJM6oM0*wt=nktKj!w|jYjE$5mAgB z(i&;nkB0aOzWNHG7hW)7C|gXOj1AXY5AjSMCL{l6xd^yrc{8tSe%+hF1O9pnFm?=Z z=IOvgk66{5+hD<*+`QJP=PWxdQ?4P0CT=a(4I!=1IbW^90KgIM`cJiVjFD#}@767h$$m%55ONpr^b(hvJz z9s!R)qd~w;R^o_TGKA&~O;*$p_FOxJ12kEYt4X8Mkdh`#rFmQ#(lTUm5qTlokl=FV zqQ!P1)r74HT(@e%jM3-pz0bw*(lmxXZXZTP9QfMjHNlcn9 z%@fd{L11>@fdMIaP50!^{j&M))-{4tj<8CyKt|7`XUQ$;%P&V{$|S^h*b}2;XCu6z z3@zw$dBK7ZCQeD>n1f~PsTWbbm{Ha-rD@bi_ORvXl)6i0tIKq(kCjn$Y@afZHjqF0 z7eX_{?4XFS6VgE#!v~k(fAdQ)>Fzn$fAO;z_1VK{cG#;(&tJmLMH>QVpKaf0`}8r; z>3O5|l$58BOAdMWyAHk`0Z6NBm?`U^YN%T7+VVQzR5wFJ_tLq2MIwY&v@2a)4&1`< zn&%!HU@b25n+*$f&=y~WN5CVndJu4vm3W)R`}#d1IFlbGO*LXF%i|-uT;G!BI~&P` zp?-Ib;?{{teDyUaUC!0}?H<72KDOlQVxWqW$crv*{v=J`xonF2adBNKj=(e{*v;>V=QVoQn@!ubhD-iU2`2m2ke9NjkKrOYzr(La3D%(Ls8tsx-xY1tlXRs zq~n#%iMppDB+8ct6M1rY@|t2i!GJI%GYr@*!l*`e30$-&LU!%fPtm*tbzKu(8lSii zKTQ8*;}ERd1L5nhL))90BRzdFDzrquB#kcgJfdgxtj3ghf$0w;J6N=Gd4nz2o^R-X z^CyIAz&qe{tlpyZuMSX(eeeOUp8E*K%zYH4^FCqk6eGQPKZFlC1OdZoqEknUCAm~c zy}{)dEe}+t)r|Vm1YjsHr)o?8uDrklRhx8WQrlMi;;zvO`u9qb3Aa&H5or!G*qNK{ zt$F=h6|-=RLIY?uLz~yO`pi56^%a5anA50RX0pn8p;i5J`AvOokJy%8#KqpatxNY^ zj3TGVZEd*={&4z~RlIr$+e)rIV(H>X!>IYai;O-YGeHv>zaHp?!e$8t`1^iX1?HwD5cpFey4dZM}6V4^xw-tz`{=9heo?$X+3ER zI{%EZXm##UNS%8Ij-SvS(~7phnBip@eqgB)m~8L!C4$}P=v%gn?%4JFa*C|ir|o7f zORq6*cs}?qS!!}~s_0Mir)#IqOFL>zN+bhG$o%j_gw8$7v^9O%m56TK3)hdV!0>rd ze91_KJM|0Wd~P;UK3WM;UM|0S4N#scS34n8J&>Cu_3Jk|jdA7_GYjp231Ret+3+H}yz*LAdklDh@je2Z`kkxbn(cxgU4#=nF}-X&J&nd(yQYHKw_|RJmJk0YI0|Av}F`32u0pOY(gFuM8~Gl@9U6 z(@YtvjQg+Y4VJ}Ub=7n#*4`I}$i!tNtK^WihZ4CY8YMlS^srXNahcM#r zt+2%garE9qHoV#}7S7qMXy-BIC0cght5$=0b{E?~Qmbr-1Z^d)hPt-dGq%k-t{lIT zg+zzH(I?r-+*tk1*Iezr0FgllnHAnGHm59b5Af5xG`e3ZCAPha5E+8sXl0G{5 z=EV+k*;N`!SKedaM$|dFM*~IuB<5r7GFKnL=MFMAfL*oSHRlk%OQ$fV+)|29W~I=H zwooprkr;C&@w$ie@a@W1AE{rgpVn-~mDjVU{ExoO0=O&LbDyb!(0W};90X*{s_EbP(r7JT$Y zfXz11yuvw{<`6gY<>2j)Q`nj=3r7y*CN%a-RsC7J%2oZerAbF$c1-9_M}PXRNy>dr z$IE&J$-Qp!Cq1fkBfscaf+#m41=FU|KIH&}&O6uI+mdMY@>D`MW?dO1M#;$zqH`i= z>aL?TA=Ow2&2SXEOP!iagZ>*dWL7v$381q+N4jZKgm>Q=pKLN12Tj`zGec|B>3jl#)B-4{%rH*ri=m_6^7rGNwFIzUp z9p7fYW7x}IehsiGLughyw9@3>n*abg*GWV{RAqB?p9n3=<@eryvambCQymLYUspHb zqqrxNK8?`CXK-`Z;h4Fw4Vs4*F{E1={`p)Q zLoes1oa++Uaa1|uozp)VE1|aoy(w3f3^DM!ikwMJ;@~sNu;Yj_hOCP7oO)8%tosk! znb}UQD!+W4Q(1beSH13WcN|Z@lrX$kOW^K)l_>tUY*HRZz~r~`(59s*6$$2? zc_w?TXYF}g4{g}sfAcXLqKxLFFuZfwdN=mp>NjC+f>03TVT|&lxG#$m5rpHvV`kI! zaAdn{u^`a~NB;14Y&3;I0{GUGDo^6kmnn==v7s=MQGOnydm;(4TBcXNg-oim#(|0v zP3Rchz-CwdEIsO;>Q%$ipu;4ZL!<5-3#x3EX`?BF7*b+29(?Y*ANczf2-Ex!|F{W3 z=guZ7m6qrwJDCrk(HO8aZfV^eS7yEj9OS$^SFg22!{G0ye#vG^JVN_qUZ>#DE z5s?_s5^m@@giev)|Ckx^&1>4*ade?ZZy&l$NKmjVqR%Z$C?ftWp;T5T&j%_?Z(l!C z`*|jpFn(bagA(qXdtquCw=#s+d34w;hqkU=YMYMhA_+6Q{1w6@Gq^Lq3}{J%{tDWh zPo-_@=U=6;@rGn1X3*9}jeHp%0gphw5YWr5c*##cr?J<`<#>l##JgJR_$0-|%U3GEaYU=Y!=P z=c%YQHXGq;=Q2D0_SrCuF0Hv`gY$GnI?5t|f zNCLKMv1)ZOFL#EH8AO6X7$$P{P-E$UJ)$UKh)k7fv*TYKD|3A-fKCxT2fREP!C9x$ zA|ZrNkGLAW`t>z-pe7&>&k^bB56nV>xSI2>u_m;Fz;8-0Tm3W_*nKaA?tPHqG+(B3 zTgG&!02*TNhZD5-Bq5F(RDx~$QUIlZ)|>)pf_~%liOcO6Ro!j4n^H-AX^F-D&i%`7 zGo3x>`v4z(%XrHaJex5lajZoM7u}x3&c~Etha<}I^klu2YnfSep{EL)M2;#?VZ0Vn z4v&?DP$Iv~+!;DozVn!LPhHf-6qfVHVrlEpi@pfun^ZBK%eh?Aif$*`wayjTa~|}E z9s!R)y+=TTp?J>&bb9~J`)M?58%B(psQc)9^gY_=Ny{SsTb-o*j5di6Nt>hz)3`v& zm_5m55;-w$dnSn==xDzM?K-36!8bn5-}9_{nQ9hUo$C2}3xt5?C*uQ~62ZgNrtf%s zIliGE_3x=%8M;dZ6D}yl(__kUz`er|I`v{i7yX9d_)%Pz{1{`;ZiXHD1ayfN!fxAz zap`fz60?k8R-o!uW~+KjIW>Pl8iT2vdWyb0XZ$a~(U-=JUr*7q+O@nD*2;`>4vgT+ z1}t2}m%CFcFzn(u4!tmred*)-cgiplD-4ZidX!*=IhkU;BLY zo-_nk{)=uXX;4a46iea5c4E#cam_xgu@Fkf{+L#gz!%rwL_5#NOymkQZ*Eo2>_sij zMCb%gcy}bDdg-g2G)74RbOk#%W>@JK# zuwh3EeT+rCnBhO^UJmchPGia^0bV2V9ZG_k&1E8$>)eCQ>iS z`0_jgjShhfODW0h?coY2CtPVF`Esro;Tk0IE9D`cARF>sk1E5~hm~Q%V{xMmQkG(6 zj5=r(2#iLEB+UU!xuzzcpN8LA5oCp>>pp#yOqmp@B~<60bH^*p$Y0D00>avC4(9i* zk0rRONcVwMr2NV`_LPCFf;QGZ2b_Gb+JbtKjg&%xBYnq$^O zMR=a`d^dV6P%-_@gxT1m54`{f!h$IB1fyVOyCyIF6nr!JO(VJx;xI870V6$XpB z6KvZ*i!;h-IfB1XV4F{e!&`ATos8Ml`MTGBi)fZkA_~2IG^O_QzDr{`cU%I$v&bUG z6P`AcQ8>6XujdynPMh85J?OVCAZ=LxPfO>O?_Vlc>E;WI(QorGeSZN5?-XJ9ExQYD zMZ&dxvM_&zrG#X$dYK4}zo-P49G^y0YC)S3FLRyzLfHD`5%35!ECk#O<{&N;KEQa^ zli!jA$`GIfqudyo@wq7mP>p1H23K)@N@EB$OLO^B4f5_cFN>oGy?ZEHjD*GG4vJ#Z z>(sb@&Q+;sfYC?B(3W@Kt(eGmnv-g zvQSmmW;oGFPi}7R#(;~nze!^W>6J#8=-*pylHDciYqXFnsRi36%4Lq`#+DRjL6JqP zwuWB$v)DOv(2cyGwszJAbnaZFh7U*N)3-2n?O`~y#TArI;z-bQK%Cxxv{D~PfMK#U zug8^%Pc;@otpk_ox7gTfAm!*dQ(|sbc|CT7q&7tP z=6KYBj!LbD)Y!zZ(XNeoEqo=JscsGdm9OIte5+H^5``u)rPWb4Q?UQz5%37q7y;R- ziNCgD6roAuN{p69FPB^Qp@VE*u%o+r*{7*B(ngH`eVN3Mivl!Vi_7gSXW=|x#)oM- z*0y0a*XbO=^jk~t+B+$9<||DLMW*gId>e3OYM&ll2#B=YpEF zVnrqUYgHj2tR*CA1@qhyMR<=PrRPvd)S3G>E*TZ$J`M(0p;E{AzLXFuRr^ghA-!l3 z(vLrm;E3S}{ret-+EEgu8D27AKjt{CSDCJ_t17>y=ai@9idL<{cyLUyu?hW^vcQM~ zim+!UwC1WPf!ufzRoVz&*0y!$&BAzf7R}ho(m0GSdpq>auG%^cXz=sT2pz@tPn`k` z8Hmau9MZ~JQ* zq7(R*@#wNt-r_^{@yuJ8c`lPzCJ*;znU=Jj+2taJu|=;9qL}!%0OKD_a8ptUXC7XJ zwL58(leB)v=bcT)T|$tv2(2AqLv(Vr+(cBN+X>u)7+kXaN3*m(R)%#j4PPn}=NER0m5+n!ovjX?gTy>diS;c_@VIQ#aWa&``#P z*_pzvtRBk8nD4Q;a&CS;mYV;^|C>TH4yi-74dWOFN7#Bx0%Yb*Rw%OsAN>3aLPrh< zCQU+kpS^)`w_?+_E%D#+3B2|}DcUhg;!nR)UcWbvfwZmd)X^%))F!3nwaZ>zGyc|C z2(3OmSz@vTAqHcGPfK(nxaB8xmYx&i)nL#wB2b;%r$6mg`n#ss`*e??7=0BmIU;gI zuD3rWS6@o%nE_S6N~|DjS3i5p>aEKPs_8Fz1Uv%OMnL>8%WI^dQqqgP<&FBT-b5#U zL3smhX#@B06~(w>Lc-YIAH_*{+pVk?$Z9*qgY{CY{Ow1-SG7C|v2x+_>bnWt`W#*S zP@v`B4g6-49QI_z*<+y7QD3=qy7NMm7zty}?Jh zuY8{OI>i&6@MO$FEbZGmTRO_Ei;g8rifSb<==mb5{qK7&fx911qKK=ii?})K>37rk z``Hx4c^{*S(;UItfCfMQgwW9=fajh?u>0-^O}G<5+tx@WQs~gJ2mvtkx{I;zrSDfTl(Dr5tg?+(}7J(@l=f)C5^-n}6>RUlt`nq{Q zoG?Rh%7^*$&6@smd0u(hf|h=61qIaNk}Jb~E34e&T4e1X^$2(bJOY0}AeX=BIM=T7 z4>vF8#IlpJ6Dp+@l16OeI5JbQQRZ)Xbe6A)UDu>cRmE~dPGrjpycFDcR z{_=kdiGb)wwBY(!^RzowKf5_xb&!puj6Hsx4-7bU5#Ic?4c1@lPCS`7620Dh7TdgW z81`>@D`w5XB1Ngtyi2$Ya~fi4*p{VbbK_-(W*{BfNdUHWvgK##F6Z%#kjm$I z6P2HpZ4fQFHrX=lQ|?&p(Q(F#kQeE(N6L7f|3-Gul#F7`FvJabzi{XMC;vyg)*F?a6YHa6Lk!Y!o6o9O#Sl}5klY)E z@{&E1mcfl`-IQy~SoNI!ogM*?fJb0WK|s9O@=JY-mx?coBTF-+-N%~Xwc$t;weAt0 zt!+{n5_I}*9>u`zBdGX|8%pT!bn8A54A_MlSC-*y)@xgqe}2^vP~WCm1cmlY0` z2m960kG}PhHd2=+|2Kg?4ED0Y!DS5XT~4=4RyegUMk+s>_?Sud+tRC!Z9VP1t{kKI zGD5X2Pv>=Cyn+E9=n3E-6c~S`zgu|&(0S2gQ`*8-a8r?1Hd7TLJWdTgeU(`ObS9mm z9y-Jdp!@8L&|P;U;HE4!q_`w%1l#K$lFJBgq}Jvp)=Or3(uOwUIVH8%CyPLxX+lLH zlKelWoyqN7erd_hIF`<2JJ4N_h(y;!;MGYY7)NM&R6FdCuM$ixA9WLW zZILmYo`1CA<-sdU%o2PVO$!I?8bLFLi_FdmwJpg%Ut0tmeQGY%>g8iEB=PoVX?!>< zjiTlux}T;K_h1QT$J=3>W_RI<1;?ZRlE?7ymqSoA)flq^o@4|4wu&!d zAewSX+T6isSK#p%B>@AsJdwmpHx{EKZ8kUi6YZhfgfR1a$`VFJpTfJJP=bsw0L1j^ z#y@KKvzZ76A3|f#@d#SAGy*8m!JQN1`0%R$zn62&P`XlZp1Ax-(vSF#w4XkLt`b#` zRoN`%>e|@9>qH2(3?+mwzDi@alNe>=2X+cO=Q;Y_df}g?G;kMzWS3*A3%ZC+PVXSWOk}s!n2IOy7~J1JpvwqhL1pY;v%0B>mjd^5R`rK6$7yon>i@Z zAFT$dWH$jz(+%dEjlRa+yB{U-IOUIGo-3vl^a+LP`?yqo+VBXTpOM5I`uf&pKkMf)f?aoOg3x34 zB6;GOh|K>5pr6#xRaYS>DWQTi#U=PK&iZ=={?5QTa%mQ$pK#;aio$1)_P~{+igCd1 z)C!Z#9bLON*+#Cpe~tdJ(9M_I4-w20Qxs)`p(E+8ph<@?Ui&nScRr-^S6(Ci)F?T> zbk8vFD@XuKXom4UiTMP^rJwbsoYpJv8fIRj8rAJXB4mA(mOi$>>$Wz&G><@iM8NVN z^P;PXi<6KhA~TV4vJ#Kbr;y2x&Fo~V@&mKnXP3Wq-RN)A1_duHz(ygCy~=IM{RKV7b-x$Eyhe^@(w0PtDQ& z+_V#>kkyibP9#uuX&&H-(M6att{DFs(-f1g3*nXfo1ynhk|Qeg2SPR7Rqqc1TA zzySr&6pemGS2Ny7Vz*<;(QjB89_MDXLEF+SV{U*2jMAhzdmvpbscinK9H08FYoeQS zYVL1&IF7Ls;tc65)o|DeJV3I)fEQ0W%}c)5l~-< zcBw5wXGPgtl17~VXj2rtI&TohzI#~T*eR|(D@x*eT{#zPsq^e}fNtFpoO2eP+mAu$ zqYsfDdle!**JE&@1O}bYRncEWaKM|FC-CT{Mc8zM7-oKv#(oU;vQK|$Os%lE6g{vi zaW1D1Ii~_oWR}x!dpv}fZ{p5##;w;2jdr;!y3wU~P~fGzFIE4Xe9_2h$Iz%8ALjJxu@>gLH$7w! z!qVvSUST4dE~YlWJ+-*==`24%;WoW6z{cxE=)#PWC&z+J3S@S`+s*wJ>FgM&8u>Nj ztPxcT-Bi7Ch=}*yIf@exiGuxwHdMD?O((9sdOG``nstcvYsb8|kD_&JI#s6X{r4Z! z*nGV(w(MH6u(I zo|UbKKWYdFaGbE37aSc!U;2v;QwZFsM;KS0RBUMEANN#XhY{r%cuE;Qn5jD{q;k7? zFnBQV=;OdP+adMnV+ai%fKNt0fW9Y0@k3b&H#McuLK;XeTYtMCgfoW6Fo90z2kb22 z%_>+#Gj5EEjx^VOz`Z3;F{EY*eVDf73*79l0^Co5RQD#6R+jksJ41X%F;&8)b^Dwl zMB_o{vQuJs%oXmrw(t5wYxUQ@ju^#Y4i3+pYNVTWQXlh^gO>Q zfNG z`|KJJ0vdbH|KFW-i2gpK{xqXGP&p@xo1RYLxItVkVf3~%XSbU2pjCmx@c?~KeJ^D; zbjY5rf_!l5M}b-X(`L#-*CV&CdP#LJ=smhI0@5udcycl$AW_@3FL$VmX^Y2HCpipV zd%60`R01ii<(6Ae5S@td=u7C#egf9N<|zEL?Mt}0{n_{^+7l>Sg3@Lw zeDp~Q=iHRW=d;u3O(oJ9N5oKS_KRo^Q{(kV^vH6XNn_9P!zf#ZL@8Ug)lPIK?P%Az z-MG@xqe}v_saXv(@>fww2!FjXfjgc};iPlKZ{~gC2T#P?c5V!NIgkp=$Ui4M|E+Z`cz@7HJSpNuD zdfhniv~Iel%0I3Ls=Qc}lLB4I319A5-@2stsdYNrS8LmedMnVinh8rPN6#xS`L)x> zCFLn0wb047Ia?34GbG`db&{smVWIDQCi9-hEEg}K{S0^dz4Z>yP|&|`QVOr!0&Kcb zjsbW+3-)<=1R5X$()uZhLurhfIjtI6K0RC0q_J=K9cQdK!KcOwL?1?w($@zy) zyR~#3aG5gnk8vpLvmMILxfBCaw_*36X5g}tlki-xVfZ@P0=GQ-JA>3y7%buV;0xk! z)W~0ZHtjB1j-wUL=c1nt_~Ll+VNr~^J3$vp!2Y{OFofEBU6Y$eJ=3XU2+v+uf(cYi zJw%(+Z+~NTDIQFHJ&p7K8OMFpxc=k*GQ9c`uyLOzIDL;eN+;fh)V0^4#jKe~_1YAn zOD@7syB~xBhnC};FX*|R<_6EaUV+zdFF`lPt5?a2YYMxq*D^oNZ>J;^PSqVt zHkZc#H?J(%5UZgU5+hY~GMlhrEDg01O?CwTsG+u`96G5NN!}y(cp(!r^ow8pP>#yrH8igGvs)t+p zK7Mc!E;ykGn|BUj@ZJ%OKd+ct6UlszPu5Luu}Y>)m8)a%6KxLC@*yu6{;6x#t(R-Y z#s93p4N|l|099RZ;NO0RQu|-t#yNF<19tAtNs!lNb4s$(S{zq#oazJ!CmD^ z#JHr+P2wixZy3%u0qiO?BiZ=v@55hHrpTa*Ej70d?@9?+pPsEIQ2jY;Q zC!(mBnYV9&5^7Xq?NWG>en{gSr`hn8anbC2`8tP4M7L!21_JhWWefjo>71KKkK1 z1S3yC`l)9T9(WL5ol=2szDsZgC5q-;Zl6bCcFOB+)3dFcX{*K%>nMCIR+)NB?lBlP zPWq^AtFmgt+U6vZ6wvAf9$Nt{o2l(2UT4Z@f5=8eX~9Ce7&)r~Q{Uo9U@^z-8^w(m z@U=`u+G5Rph4`bkiTE_x{qSQ7SN}VK@2QeMkS-Yx+Ko{bOdV@Zh{|6{`07}Ky_wKN z?9{Y&?m*vqd=r)CA<8Cejeeu9w$T!X3l4xP=aWaE9wMOeVkab^Bge_)n@jNGD=D<4 zGwSX8YGabdl^tJ&tiI~uCi7x03ywLl7#APQ@yc)jA@MX`qRn26OSZDdqsJcedkmSEG)JpqcA&h(yX*^ownWDVb*8%Y%jV*b zs)NANIHze^XQWZw{WK#Yv5$&KJW0++Yta<$-xtKtlwnw92BUdO6dq7A6n!<}-KSsC z9XIy=7vA{xKy3f|wP-f^MT{?*j-y)dikq4Z$K%a*#r%qv*k~h~t#Gx#L@6R+Drf>{ zKy|tqx0-V|;KpMmGlDZ?Ok`szM;n;96wmwrvW<4*QxK+>H5n>Fc@ysFpS}Qx1yAC% z-|xic@t1*l)T(a3JHlt40qnAi*~={9xhFNckre*$Bl^M07V@k6DVlA z^MReu!y`~Y1T}e;BLhz&IHN}o$G73$jtOtjt5kOTZ&6tg4*-q^= zJ|($iyIHR=-se($(2m}DehIKSmrE%Tm{l^hcSXtejTJ!k67TM}cv(JZpd)rH(x*B? zK$xqKHMdB(Yuk$SyeN${Z8sB)aMYLa=CvW%UbpwEFKzz?_;Fqc9onRD(Fk?g?o^-d zg5bdik-B+2{_lflamR1ZFTneL_jLqs`Yu(9N z0g6+jsf+4i?8h^Mwa|5_PJL^BujN)_sqIZ9D)8!u0e09vjM2wgS3Xwrtd=i7Ssa9s zb~W=p;DwlKT^I(LGwL5){Goejv3s9x8d3p>ZmR4y&+%5WHUPSP%e8Pz}@rQMSu5Q=<)6h zoIQU!Ln>a4pzjWd>`XzmUq7IG4}?l6N7#XD#;_XY1XLZndD2aNqKu%d0>M|aaqKs* zpx^f|VB5qi2q(YegH7>8tNysP*-*^dYyd`I)`~t*rFrFMDr$Pv27M$@j~E!kkiG4y zW>YGdZ2Rn3R=Gaa9D%$Fp`to5j|XT3oZx0TIkYXKAbLLymoMj=a7WrJnz!UU@(eA3 zOW-`1OW$`;`}xNE5($A}dr=F@4FKkitiW$8BuPV*?YP9Z4&6k}{)Q7BZDi84XX)Kt zLqrX(-R@frY-v(2ys-jTPoT{!ol4)!%?%Ya%07v2W);-_Hly#hW=*p;ZdoQRM11lH zteFVp3U(S3ZY3d$MjjbbHq$>G+3{%0%B_=bT=w@L9&R8f)DA5=X_D?t8}<9HEam3s zfV-S+yR%xc6=SaZq~+31=MU+Q=Y+9wd_=k70J^@p=8R&rU__cgFB2@!;@Us}YT(s$ zFH+KMN+A9G>j3?GhjA=zoA=){$`wy5ph->?4QTGuy_Zkms^H6Mqo8^7qcl#xE{;j# zshwmVfrP%&QiO*c0vs|3sVUQte&Pv)UwR(lM;}6P?|rnTp*=^p9>A7ca*KXXV4ZbI zV4W#skPt)w&A44&Zjb7Z!Ezx zbTQJ5O9T7RCuy#Rp<0<%^JXzZG0f(COTX*GgM3Z7=Zr?ynz zv%jSsDP1TPb7xSJq1I6aQRyuuAR(`!x`CSCxrP4{qhTf=`(;=Ujbg> z_g7yac<)`x772tn_XW+HSmi|-bR_|FE`5&AoRz{Ry&?>5;gma; zh6S{3AA#_xRtV%(2vx_4@f?3}5nkup&Xo7kW>?xcI)#;hCK}6qyQo#oGY`Av8WDu- zy@m`RF;-q%F{5+$)%IJ=RLoFy+3wF#ym4;?ztc8zsih+pQd6Q;{=&70c2*m93*qxA zv@d1Emn3a)HlW`&Ue0KkYcA;476bphN5CWC5fHBupOZ`>UT=@dhY5|lCX{r%q9kEJ z8$K5C#rvag8IgtpsG`znh3TU&xfIL-ltoQ>>Wa$t*H(mp1WbCEpmzHjz7T}DBG-(Y zk$z&3gPR{qV8_06}CNz>z4AjdUSObw!Eief5KT-a^%DnS8M z{b__r-WIgsB)9*52=NnCa7lH}90VWFM0n2U3^e~8Qs4iG$WK24bLS#x+7uy$(QLvP z?`>Km=-82((zSseJ%K-Mgm9O2cs+)_nQzPK0b=PmcHNGWEO+i(;gj{HI4otVR!Sz* zjP9@tEAZoDVC`01&Ap-+TW{f3RvrDWn1)w`qQ90!AkRXmm;#-~@~z<+Y9&7>vuML5 z>a|+gw;{c(tc>|&tG22~mf<;uBqCCBn}7^a^LPHsHN}`ewhRe?mWbt~R?c)KII3PM z+YGYoBh@}q8Di?!o>oi-P=WWp46x@O5k|0(rj=#Xx`b+1$v@x`@CbMW{(wL(ugyKy zjm!T2!^4#)B)|k{K@+0^eZ#nSB2AAdfP%u$K6FAZ#u|{>hqdM8`n^Jc9dTttH8UFK$&86@m-Kl*pQG zDuhZCsLnA$84r49+$TsFa~e=xTXjZMou-K@R1OJ*N0s$3$AzUBOPE#@Dwjy6{h2zb zHtu&#DOdSxY>D{gq<8X!Qsc;Xt(LZ3I&bkUY&+Q`pF9E{0gphPAYfjs$@^}g!}4w& z6ZqfPY3xA(V)*`6V^$jzr#fjsBP>L7k>>Lf+DDEZ6*Hz1i}+%&(fW*VM6)o>MVg1* zyq7yS9zGz3!v|zR`GYK=N!ul5q~8)QC5TekOmg4DdDoZYw&zmlMB(rn`v2Uke+(&V zKPAgnKCNf<48L{GY-D0yTC!Ko6e71$R^a){`I%>Rzmz&!$y9uCV?WOC#oQ3AWZNT6 zS7mADy#G^k1oA3`s$(tf*p5|as;@*#uA|k7`ARlVEBHD=SGijn%)H^S4u%->SZ-DI z&$g?o_EmMRs$8l*S5-SDfU2FkCIM8({AC77)w%ey9s!SlN1$OKAbx7+4Vaa*%TAW& z%1$V`ysj>Id&5AiZfdE1k)lU)`@wq_VXIBT`0AUq*#z98gb*e zbfqhmx{*oGX>~Ii4dd>o;`G7I{Sj>=m`M|jqsAui-o_Eq2j@TDs})F>Y+QH#Vm`*+ zG?Sn1kU}RnW#?{d)~1L{#|?_&?J+bT_=#o50(zmL-jxqqSBu$la`W-WHA5h;LTGMh zIwn%HYOUH+wmd8N8ciSx_BYx|iYP6yODI!b4V!4xP7Ox>&j_46&a_GlLDx(xGXu^1 z@P9l49s!R)14Y2{v@9Q|VvCwAtA)!IU~=c22HMmHRc-Z)ncG=wDSoDbL_E9*by#hlDzAAZdvY9*U;`9DrUa_%DQwyQn8?&vNF#@hI% zWadj9@T5*jOwCM_rfgkWHrYDrSzyHeG4xzJj90iJu795}?Ljlzchca>>bz{e{`ZOz zQ13O^Btny6v(l_DQ`qU~GIZa+4Evo_j_>ALK}~i=mZ3G+W}1qN@E!5%TZ7I1w%_hr z!)~Roy+^J|Zqy~W=Oo|=Q@{eaz)nQL`yg+bNM z9qZeDa?h`*1kOB7VN1IG4Bp1*Qwd}_LyKWZ2A_}78?}_7`kLc2#H>)118~>Z% zQckH%^Ae-Xl$$PAksM9wejRVWRTSqO9Ww%`ZJ*6+dCymor9ZU_2;@~0x(emx{T307 z;)I@YT?MARK|f@zLwNFq6gsqx{RjQOW=>|CeFA zFQbbkZl&LJJqFOZyck`((AOumwnnSI9C;vDz?Sg4jQMCSTjL+E3V{Z_94~^=+e$1J z!hQ^mnfRGDA|%G-!TL=QfnnWR0a)FTyw9L+rOI{vuNYw3jgBC&^(MYpdOhP-IMCg)P zikAS&6KVPvi%>AnwPS9YsB)}QCmfYh&4qbRP$DDd4H)pGR<3OtrCVr z&0St5Rv4*~(dOoDT9{@Q^O9tWkQ^7Ao4e|sbNdhO^W$@#bDr;WzR&ade$V-QKF{qK zT;<&>kH(!szIxTAtmoyY`wWd~NTXnX8g*zwms}In-y}YG2eY~$EBh`6`hIwtL$hgi zB>=M!FJc->XwFmh8D}>8e)VCUp4$4dBLMg|15zJ18|>q3l+r!XErmuK*Vrm?BK|^< z-j{w3Z1n)IvlUtcRL+889ZC(4ufPT3%%R;!yKJSBjjQ9CI~-;l;>W2(c%62SnWWy= zqR+aYZU0N&!)~T{?*DX&7E|)BbL}GgN}5rpQY~D!E;{bQDVPVCK6f&lH42?rCdts} zeFr(8UTbCA)^Le8{d!3cVcsIUx{V;@#|#W3(M^jv>a7fO*Omr^*#~LZ7YO!S_uKxK zR37ry+~N^Pi1=kwm@0rWIgH*|zH{<-^-7ZTczIUNUKj0qYJ=R|X9af_Uq45yElXqy zUD!7js&o2X_r4s{D)H>OdOvWHZ|{HIU35!slc0yro-Hmgakw*f`6h9o`U-F!ueh~C zsWo|H4J!FYC_jR+VEeNm%VjE|K%MIDiLr*sJhpi4E2wWX5cx3t+qSAHY&KIvHcWyr zW09A}QH#?p)4RtOq;#P;8IR4}m(aFJksEt$Ivz|oXL)B*4P9KIvoRFw0oq1R>vd}l zvzN_6|9przz1YOSnwsNW3EzH}zp?G_jAIgg+B!P9W{4G%z%)RB0xNdHTxP|5q!9pI zfY8xsTc|Gk($W)pWAr4GMgpUy2R}O-n#QbQDRK|E!?dzJD;Kj1JC-!T4hqV;;*KL~WCEKb{p#4e-A3eYQ&`xgdzK z9jeC&zmFLi`mh!coU#U#gbrLajbxtDs2+yCEJz2B-ZD-QM>u(zXnGISJdo^ND_4bZ z#h06wb2br$W8@cE_MCGUJ|4hz=f7NBZH0arcXXzy>kALr${7_k04d5O`6!!E@XSKx z%YX|1if@{CoMD4c#Mwtu$s@ANgP-Ua)2BE%KhKwoYkJ!Bt!TNc+E)7S}6IqMPhm z63{L=r*{rYz7q1?;1TTX@)@D<r~ zL5u&KrcnPTI0S>y3f9$gl*OH!t{D-;QJ2E1i0;sN8%O^{^z+{1qvA--33Ow3?q}oe zjR(4-LACdmIT?`Dp(pO!W<2o?7g*!0o#Oo7{g4{Tu{=iHKpD4nvd*GvjWE>9ky+w4 zKhp8>p1oAeTU-%sQgjsGKV+a3XZbRPN?i^L#U?pXn>?PX^?xqE+~E+L74yQK8f?1Z zfeq@e3p_ike~%a5Up0^kIm(-F7x|8upQ!M1O@4|la)ZPK*^gQ_q<%`892ZYCG|lIe zcN6sV6k9sl8XrN0?VblPq5$93-B>p0|tBx+<4N zx}B#A5CK6gWDe>si_qvpO3_a?bL0jrfizT8DVcWbt>14tlkp)+R4U~fk^|e*p%-&v zCo8h=a)gHbk6ZZ9`N54dbuEWC=$;BK@c_a5$Q)<1E&DL@NHdvp7VuGj3DgHjrKEGh zl#3ZjYBmd~C#-{i*Q1N9;O<;24{npTr~YzXWdlg#a=OOuIaGZIfv2qwsIYMkW9k$h zH#S2Z$^ai6-AcBPgz%NmB4JfJ`YQ?N1kK(aNlB~1y8P9J3{6G5Z?NzlX&ed&e7xsd zSS2_TWWQ|l-3a_^Pjv#=v`{J?*v0n#WmaysLjn9jk$uC{+LQk^94Y9cB!hR?`TxW6 ZwawG%90d!s^n`+ZV4U2JFdPD}{R0Bm#gza6 literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/correlacao_tipos.png" "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/correlacao_tipos.png" new file mode 100755 index 0000000000000000000000000000000000000000..d8f06413de0379dd45e446425dc65e42e3d4b7bc GIT binary patch literal 57496 zcmZU)19W9gvp<|Oa~GW z7N932Bo9Os0Y&WzCnP+D&EI<4{>pxuK6f>tEB1Dlg9}b%5NL%ID^G>6w5K6C9k) zq>u^Z=@ z1bzVZGs#!n>jPmd-y=yvLW&;HUy8hvCj>N$2R~p0!h#5v2LN416L32sA}T;0nef*q zfAJlFeuYVY@iA5`?(n%A(VWBDiAKf1m63k&P2KplgI{Wn&R&T7g~>pc;y)wO*ys4c_CZIqIlc{l5#j$uY527R1Y``GZDcUup8QzvcDFcR-6?H5T~aU4D#lFCJ3Z@$E<=St;BTKv zYgur+r}YUGJn`%X4#H&k&T)eQZEK%9Z*g!s=lfB?C|BKS^fNYC>l{rso4dRrVng3@ z$UIbm2G{$bs{=u;DwdIg){pY@P6q;ZX7axamuBAp-ecq$k;W_#~Z zeWaWlH|TtoMC2QeF|>g@pDUng+eT)4@l&l0y3FCRPR^UNuv2J~Ee;#Az%)Mq{uJ~- z1o3e_-UUz~!J0o$|5_ZZi^hTFgK$EE3-EuUA3j0GJ>-fXT!1L{lYxQ-tnlqi|Md#u z2NBf!6xwv32(mfvfjTD|?B@a%1JXi>^^ViSLwzx0b-P9@nEkYR1QK4hKhQXTqsv5C zu*3X|Z57%wsHtBv$8G+jnRX4%1B)Q;rzUjGhgMzR3&RyXJcAv59D`B1f}SSphh8Q$ zuor#kiTRC{%jcIijwVP#Wh|?}IngcRsyQ4pe7sl{0n@J{*o2NH#4|pZn6IY2KARUQ zG=T^pWOgV~&wU2L8Inp%z344*G*Y^&1vSa4(*^7{o#VJf6cCfLXeL3l$(*JAE)VDiK$5Rw=qar1&1g{%eL3hVOD%AA()l^7~9oKcoy z+&saULNY~Yv+B%LnvgVc05z&+EKVStAX%|1k+h=oS(+2vdxTdOPw<{V0;6a8Mhu*2 zmJwv+Xo=qkhLH>{>88?jj;^Hi+YRc}5UNO35!pO+*5s_HUFcd7HiNpOyuV|Oj_uj8 z*<{hm;?{$U_V(;M+8MQpE-`Hp*aF@H$acYQDBYpE*?5uiV(3QLcDQbWo+aK112XVs zX9=tcL6H)n-k?~5T?c;*f*K_J5lkjNL)M8X_)Tp{aYNmZ_MH8kB1{+&-z*_Zj7gEC zEXgU>DdQ=lsh>~(hd!Or+92GFT%Uc|KF1(=mnuU#6(1|1XUyRM#F6I({DtHNf{3aJ zq=>}`-w50Y%m{iPf8UH0B#AwVVL`PNrPQ!AN*X@BGy`f9X|i-u`N;X`=Mn1>*`yP7 zHT5`kmO7#OVDA*ueu4nmfTzIfK=4530inQU zP(H{8=wHww&?!G3Ag3VjptPVyq4Cf!(REQ0P#loQ&@7NV2qaOKkTyv@#hbO9MWy8@ zb*;NrEE>x8Kpkjq5N?oewD#_h5|MC`x`;JNN{Ks&YeA>1RA+Bw$2kgf}+OfYr#fE&&K}L}#~Z7i+g{AbWs&7`=eLEZo+ivZDY{ z8c{V-d8r~PJgIP%yGz;&i)&G8m5c7BGYYMXvTHVKxvL0^kn$A^ZpBloEekRWJT)Go zGOIP?HB;8YIjcH*UTGg}A536nU^_=NVxBS$Gkr6~nDfjVEI2GLmO5)<=2+*ZXD?@U zXXj=k7CQ3p(rUYH(`|z;lXHu8<8@=U+Iz!!RleFk(*xoI@&*`!7=#RjDh*n8v4|9k z_=_})B#bQf<@ZJRXGkSUos&$HJd|)2m>14X$(f{@cuYTzP@LHA9PiT52+;=6%4kff zmuQq|>a+~1t!v;kc^Zz|;OcAJavSEFC7MnfOzK@4Xxe;?$c)6=tlGjZYyeS!Jg#sq zVa{e-kgRGpR2$D-@>7g`_hG2>gA?W5`)Q3;kFGl!bX9b{H1M>mTGHA#oxBc-j^Qqs zE~XAUhdQ^sC;B_`dyG5fd+EFG09Kp}?U~q4a;HruOOAP0OS;ZaZ0~K?ENx#*5Ipps^LGb21ycu;2X6@93R8sy!yd6;U00s2 za|~Pdib#GZJ|{LPcFj+i7@9zgr;ZDartXCERnu%Jb znnIeRv|c*CE2ay7H*43oyhV1$E8uoxBdY*vPi{zDPMm6WCE8hCxIR9eRP9#X>uqnV zurpY3p4pzSUN&BK+s*AB`>8iIR&5V z-u52+UilvdTSL{OqBp;O)(nf$YtEOciJMArQEO?BsXV%AydEsfU+pax{fw5PLl#19V zv?~Z+>reU{hS&W)=S#9wIWb--pWgelIXxeyTqb0_6FpV4C*Q+Q&$Fzxwo8uDjnX=oh*ec{%A77dsQd)*-8NW2O=Up% zUcmjFKtK+6qBf6J1@Q+zbdO1he#PJ>TA>E`hJ$zry3oUj_3xMCFH&>j6$SqqQr#20 zF$IMpB!V*KPtd?H$*9gar5>fATLE49;GnfH==gB2y@R?vhVn+dMeHT3Byv>@lwnk| zR2&g#mB>{f;J+!HFO00UtX@-iz>QhXgkFQ;ge!tclY%4@bL1od)(T)*zZ|dSl*n; zu)MNE)JG`CC2o?TPiFx|ZxnySe&qxxJkuN~=f+k>Z=okimyKYKI*j_nUP+QmL`ybG zpvmaUdL*tj`?zK5b((?`Ikwgsqnd^RW@ikhGS*fzw3?}m+jMcowj6mq>jrw6-df#<=o~t=V)E8wTJ3EkAvdjfq?;mZ~bNH_&(>xrQ#Y%ODyj;|s^&_A7}<|H zcB)(7LTAI%%`d+HGgWY*MCD0!GylBI@zyJy`B$05T7BB zF_*l5OSif&T3!9~}GrOnhhDdT^5rU6HYlGygo#Tij*_n1GpboMshr4V{*a z(Js+x>>9oUeX>7RdQ5yQc%nh~-u^o52MmM|ZV=QCDGq0nn3lwvWK9H7oruj-x~ZVz z@;Cw(Zzh(4$k1dZmu)#x^p>^1nhi=6o}*t@<4b*xHD~;K%Y7}(?uJxvO+HvPy;f7a zaH?|7mIv#Woq75O=8YDmx-$H#b{{XeuC5Z^l&`#=%=pZ)-5JAi6ul1K*v;CHBxe3} zmHjr0oYB!E?yL56v9kV*xn=*j7>-z#=&0CvBIE7OJo-3zdHJKqq=(cyKBI6H0ew9a zC#9xp-uEsCn#~WVPVgWL)edbyAa#Pz40k>>s$je*%M7Ozp3tv73cg3)&h@+r3Q>sf z5O5#9%lJZU^h=50&No$1lH**W742~yn~np$or3$e8_iq!^8$n<&@7}g1TR85+!rYe zHBX?i6tTkgG>MVRxaSb%kl;li1anxJ1j~fr&?CinNwdY-g$bjo3+O)UaeEG$>!)^WwvM2trQwgho$q1wq13rsZ!S@sfL@#<7i<1w2 zPdN7@>NmU2FK|QEJp+sP?d)v^D|k0nj-n*+tol+OM@)HcB__ zJX~+a?|6?UcGC9!Xyx(EN!zIxX|o9p@gos^@Lh$ur3Lj8310*%#X2=fwOGZcWp%X# z1QZm;_*Z2}v|S*OZnIcInft8n&ehLIPnOR67!O!)>1mlfOh`>|?Hm>&M>$uH>TM!) z0(%lZDutFydtwV@nUAs4oNDbhJ-D^Gp}SvMliJu{Q0#DSj0!7XwZPlKz`;$dxp25e zl;Ea*VnxOax^69C$ap#c;@sncM}EtVWm8C2kgoU4GtRFwLTM1JJ~=VFs$Lnc<>azu z*mbj+={XIo0FMO0g&f0G;9Sx;koV}>syH;wSDcMDtS{xTpj%3vDPo$(WX)ja8S#C+ z?qwWB|E;mvQft+->1my<*+h15nz?A~V)2pr$oT;eL58=VcM^B$^>|V8q<+V45y-jv z3Cu_H^6OpYMMS^#9&1~B!uxmN>r6>WD(d#bGXc1@01P=e&JJvF7z(}`IasAA9$-K-lj2wOFw!n}}_aq%xi*B2Cm*AT7UJ!7)7}24yMA9fH)LrlFgmm%Vy6tSz4{ zC|zjW@DtKAWJIt*A?poBgt#QJ45K^a23b}j7e)()RyuR~S~_fo9U;pZIY~I9IAb?b7C{vy0ZL=^4j8p>LSBJ%eqz#9z`OxCe`zR$H>}D-Q-V=APpj$ee5Ix zCW$+kC^Oa0zbUK}uCb3IaBgfg92D#joyr}&BHrD@ckRnzQ)gPP&oD2MZ^MdQ?`j|q zLG!IHAqeJ|1!O}YL*ONX=y|-na@Xi})Jm>?>0rrF4s{Wl zS=+Lik7+B}IoEmjgrw!DtHw9&c+Ji2TF0jMXb#Mc?P=EbcJr(+$wRK@O6V&hU@C}O zXc-rR8<+@Ht|hO>z2Q7%e5H!bYx_)AT28gc?U|mf=WSt7?=KTqUv}Qb7w3b`1J`o* z8T@j{1s@g~AGK8tw(e6Ovpv|ad|a3SRB_B3U(!X$n0|G2*vByVK^<{4f=EZP!-Cqv z-olbO-xJ1rgit7>u(8pNp~Qyi6-EG7Ha9Ko6A)d%%wQj>Iub3ya5yS4+`PfJ_vhG% z-;t^i(GWBidy1N9N8iA#2%ykYpIDh(FiD z+tnK<5VTv^P$UubYk+%jFCr!8K}L(K3lSod$iC8k&dFzAcgNy{rR}8~ep7A8?r$HV zJnM;cy|lPZxv;uVu%WS5v&p2mwJ1tLnD}&t_NLC$9ms7# zPZ@M8c0X=4ITE{bJBC`KI;X~^4ukTk#>0iWkBdC) ze+Pz#Me}fDON~rLPk|7?a+qc0+(HM>*8To|L%GA{9q!O}y65F>_rngt8#fltgWHo4 z@Om&^KE5z$hNp+oP3``$*Yciqe-i*T=O&T#v>oLu{_O7KdDwKT$I7Iu*KLZ^d**|j zGc?unvc;SCBJ?#nDfm}ze8wm$csPA{jwGq1v82Le>M&;_PE}aVoXSkqRCP%;Nwu!} zh0issa{ToHm?0g=-=m}RRRsh{n*eA6LQM_5N=+?I4qs%%38*&A?)|FCcbWc&eX$$t zrnE=T{neM=C&VV~pZ)wnm&fm-LXL&9y0f~BG^dfB4XuH(ouLV>yN&&KodF1l+nw|K z*2cuy0N>rl+SZBFormz>9-QCz|B&ej@&E1OY{f&UE+daGWanst&qB*gOHauA6CWR+ z+tJvRQ&Cv-zwF=tcnHm%o$Wd4=-k}gXx*4-?HtYM7&tgM=;#^g7#V54d(b#}*g6}y z)7Ux@{YS|ElOt^6WaMaJ?`&abi~o;Y14BC(XC6Yre-!=C^`CK?xLf?MCR?ZfPV0Mu zbpN!_G0@V}{g3Q#R_=eOobnd#Cf4f07B(ifPTx9snb?@Q|Ly<(Yx!S||A$lKe>s^M znf@>5|7rOzCpX=J`noY z!>f-@ZfB|vNnIurJpo-Y4Mx@rS*J7z_`wH6#C{+I#PNdSwoERle}-2TufK)XCMJU+S5VxQflGP zUfRo-3$1WTj+j+qN(Psl9W(2lzKL#9ch1WbK3j`EET~7*Lq1#cufv2nUAmWdrI%F| z^lrG9cj}8hB_5sUhrD)Yy_r9qj(2(OEIteqrgi9^Jd~c6)YYla(4)9FpH6x00KLSr zMh0_#<>uKgxE~^VPC;203H1@{A=N?mumXaMocz4E{cCbW`u`;c6YaqEHLIZkNBMtK zW>*pGe{Zd7&Hml~w^bNlKY|AY!OP-bc1|vk)D(+B@&ii#RdfP?R5!c=(3qdw{VR$P!5pnYOdT)$&$zDU zKf=BRaO20%W=krosTmE0!cIvT?*G3AXv9BbV*)d|JXtwwLKNE6Gs1_rx3~6t5oCrV z(Z3Xi+Yhdw=pGC(Rl}%8(8?Kes6Y84ay*YdLTDT}+)U5)PZE~`mjoGcKrUx;YO4O9 zatCo~S<$OWm_<~y#H$LY)kh68#1qSZ491dX&E!f9Tnc%% z>kCL3JuPYR<62P?9X-EtScy#2nQnYyJSA^iFDNt9(#7^uSyk2WYOCjYKCQR7+wM^&Mp5RFyYiF)>SUn|uhqL1`;bIr#ityy1#0Zt zvxhQQ7K~Ua6OY@y{J7fDYY#p9#WbZ5^_;pDgs_@q1OzMv809B&%g|EBt{Kyj z+BIcJq*g;3?Zc*Up%b3})By+fB0>u&N2vdeiz>~k_)dVIY-6qkt`M?VlB(HdE-2_g zJjof=-|){~G%CvJ+S0Lvjr!XJ0hQbK%kaL|ZRRnS8bpEcdy`A%TQ{@w=M&7M1+q~| zskG;USP(z4m$%deisWzpW2l$$>mXV&{zNrw)H&-Bx-}!qrn9Gr^>PAbc7k3%{>2Y` z>~9+g+c&7=`~d=6VazGiV}nBjauMvGva$|kt`+?+5}4C{FJ&A0d@J^UwvX)hbG9SP zw_*5KM1IfrT()$@*B$?Z30wr<7M|nZI;{RL;yem|V~iJp%|rw=Xsg|JEZ+MLgnGBT zgZAR6>L4KkG$_D%R6XDFE?NsT6c#H~%eI5W_S}rh6ww?SwEFiJ8u=Rcf8=6+%jJp1 z98w+r7w4M6zL9MmL?kQh-!X<0eUEWe!DyxOKWba~ztw8xo8SEdqSPP`!QZjJw)r^gYe6> zN)zU1Ba#;ke~X4D=pG_4n+eOf4MXj--`AU-%HS}%-Uh#fqR@-Pg`w6^Xvu9Y(XpnX zUA~tFT@=5XP(O?{INPV~6_&HR=Qr?*(R9#|_q=$B|9q;tDqo5|htxSnMO~&}AJ+g~ zg9aubYm*E(4&Zb@`N+w#8@Zd|kYr%qn<)^ug8 z^oy^annCsa`gqzOfcP4w2Oswn8`!ERzLH##kgfT>C4o7vx#nJD^ zjNHKqO&=YBNqffn0Jc(X2Xd5~x5`^ln zI|D(Llc-dx_#`A?KCkz~%@zysn`LZF`^zBP?r@`3lj}c|$Sv1O6~1ksBAd0zU2JEz zK*;@O7@fiQ-8~#?yY^Jj`tfE|>ShG1jwmnq@g-NMyrNb)u~U2+UDuspBnAte2{ITZ z&*xF2#FfKs*Mq#Kd>{dd@9f!8Lh?MeX_^E5s{4f$*W=m1`+R*nR)a@*#Q0pLigy^= z`tAMQ+j_O}7Zg;4`(a8N>YSeaE*Se|`@WG@nCs-`*~&ViwU+WIQG9&7ziy8wg+`^Qcy+z6l#x+U>$os#v4j=d zALm^OnVFGEvYb%JWHKX@8D#pjGf9bw*M5G_e1O#+tzG@I?bP)4%6Zx{RYN=UbQ^-3 zKz>zKw1|t}?iI3tGXY0*)X{s3g#<1`6gX6sJ^Bu((O$>stn82orBZ{1SC`1=tM0pL z)|ydhx^922%XT4HaohD)SS(iS9eZ0w&wH#GiZX4GJ~ps*-tE}3&kvx=3HSp1FMms9 zkJC?p8Q)L`GxNc%}nS{#`zZW}5Eb=x|a{RV`iQ+5Y-`Qcyn{y>;o5S2;Gr z0TD08Jm_lMinJYbaX-<6-&uCs4k8c=CI9d{w?fDja&ckV@_EvEe?R6^)1$Qb)nk7F z%VxCHIi=p^f+u=-UwY|>pzHa9T2eYTJqyw6AoxDmn zJS@__7nPPYsYvfRK9=ryD{@T)3;|a?l#-@5rjekM?WhixP%m6#_*BZg^UDt{@fR@wn*l=W-5qNu{LxVR`p?U+DFM zHDU2(_!eDqyUoc@>lYji1;r4mn)ZO#wfm#F{y zdiUDB=XoLTvl!f~sP~jT$~=N+8uPd6DB&z7sBPB;>z}&nZjd3zusyx6_proNzSVYk zu*1b+cceMCE-qZ(Jq8qX?EbE+?g+1|9(2Nzaci`f7S%R@?AJctm%0tE@0>^)ewiMt z>Jqjnl35X)^9n#S0$BFFIE{VdU^}H=htO|zR2;Ples)$NN+RGi9c?o zeyI1*z#pcxEZ!~eEQTEK?=|)M`+eQjJ%5`=?B@qWCN<~99FkX=4X2hv6#qV?vy{~E zX<1&Z%VJR+rW3X(++|446^)3SELAq+DZBj8q(!_}d{$PKc+X9?COV_RAgH$UoQQhY zBNLn=snON3$F--odgJqt#YN=`4?vUIjA}@`9%KzwN`;PLpR`pr+ZA!OZcnBjIC8?t zu3^OwE_SIC`c4y5!an_f zY9e`(FfuI=JQ~*aeZK0yG;qKCZR;%w_gN^F`6Dd@G7cSoN;Q0c6O;g`8A**fw_lLi zHbm973szSpAMwzN;28m02Yfpa5&o)X;he)!h(w}0BX-_Nrl7e+@}XLWD`8J&Yp^)ET0?}OC-_j_XB0Su30>< zZ-0gwSDGJ0nXsc*KAbMRm<_huZ6I}F!Ft&uo*Y18AhERV-o3D6tl;^)Jr4VQzEPVx zz+$ZijD{d!Nd>vuXK6hGZLl;q;LpsNe~jqNz)kPf1R$qf$f)M zN|qW%=5AA&(xp^EXd1I{Ewzw5$}VZQHlhWj64{U9@Ex^VE)&*|%+fp4?80u|xafT{ z{@7^1oTzYm)iS)wzA&}2K`amB_mS8XMznM~sUb*Zn&UiKxzvOE`2(F4$9cPf`Y)0f z^<0a`KM^BNAb-*o9Z@+`;(4>s*{>==nugJz8d-HB_?HL>m`Qresj8@e(1yc8iBz?Q zt_{2{{)!2f?@UoC!b*oz86$X$^XYtPq04T)QT$=2y%npg)%TGA^Xq(@1Q7u`ux-Op zDy_S%XnT=C_)KQAl4{b$)A^ZG0fwr*%aEc&T*KH}jJzTBGY#B2|a{`b;uDX4ov-7$>S&1HSpVvn*4HKNy z+RcdH_X6ro7eJDgXZ9l+X1jA@c!y}NURvsjGOpEx`Vew)OQ~&7n+A}7Vntm7IKR(T zuE=KOq=kB~FGP3G=-(T6bpww*BJBK(Gvd|#y*_W(iwklF_vLec#>W-Cf;(Ze|40qO z)w-%Hjo1u)ACIjT*2A5YAXhz4xrC2XS!@OE?HIkmC;&d?h?~2zg1_rAsV-IxZhE+u zu>gJxi(jdQtvsstC&ap_{q;a!HJCIO7sBeMQoX^4XSV&IGz=zlJR9{- zbg@$;hqafvdbioX|AaGE!ZyARVg4CxxbUb+br4E z_VAr$Z}mRwqSkBeh-tc>74tQtLYp=?obVv3s0$uz@$rjowFL!1YCF#;@6VUv zw?8gvPI6Ns0^dK{&(-+EY%l5Guf9G(z7r-)a~E@j2rS=ExhQm86aat>=hZq2{tkz= zY)rEg66OfnjEh~Bp2y0v1Lf3eMlxr3he*=21HnZw9X9%Fud5K0`98?W$$g{2K&;0s3{Q>RYUM*KMV*-+!ILD8TZ!ClTOT#D=lu%tJ z(l5}D)OGPw=VyR82)Fk$y{`AE37oud@c6i7_xr6B2AeJQ(R5Cf?dE*YQ|){Q38mAe z>83tlC5KrQ&_FeJw1Ea0?1J8Ly~uII(W9M)Kq-(DDgqbMa+pE#*ebkmgsKFpJtL-k z`0f9K!Q0omf4e54vDmDjhCp{xi9Vk)CG?{ znB8%AGYCyb__ZU@0vJ6g#bx7lF3gNjK2J|vzr&z=FrV?dj5cYQNIx{%U5uZH{#KqJyjYMiF>4La`&!R(ZSQZ*`XVW+3X3nVsRaAe zd_Zz0Qha>!w`FrRn4Nk zFvY)i<)jV>Gaz=1!Wi}Z3qujf3?-{y(@0#w8a@_O5T2L&m>c*$pOMw?2MDu$rUfOX zBFL+L>fg2MlvC3E4u&#fczM3N+3?HlpYeS~md@ao;4_SzGI}U?K@Gm}!NvjpFrhf8 zRiOo_&$o$RYvMcfavQBI5%$@{>6&2;5zY!g{xP%ZH!6)AOCtPH5gDVyg0$I=jvSX4 zj;q0AZ~w(hEdMJhSNQFijyKk}S8_6)8%`wb)?(iqG!*XFU^9dFpf*cWnGO~(3ofCL z1i0h}qq=69ry0we5eLNO2X|y&+=8vo(gx}TR2&%P_W>VJIn|Vd5RPv=e3N-17Ka-` zp;Tsg7@0y&!zt)kH&Ba%6@PSBRIiW6TCEima-550t1s2))aabky3n&?*!dF#g+`fe z-tPy%3z+!r<2u#J=~joU;WVJHiswc?#kHvbR z)BbM5boquq_j~6-bPQ0?bnJMi85++w@OElJMJ-E9?n&!&s0k;2&qH{W6OoKCaL)fFag@+e(Lg>%WAqDP5>KVOc4+y*rtw$19BN->v8O46@$u1?@K z)J-2e01ik1O44wV;ab=^O zgGZ4c)Ge-nuhD(ikwq}ObOwycwrmxgNuro!SVG`!XFfwFMvO9 z`(lCFb%zj{l!)iQ9Bx6+4DEzK@9ul}>m}y~zv@LzRf+63&@`~c#=u$-fHWwY{Q1lu zvcSY=pvWi%YHTnYg?p~(LNS!v2~ruj{tz2as5iknYrW9dK3gr57Sv?KBix$!PX7Qp ziEbF;%JylZ615os7U;tL%p6#2+2cB$$GKv7*W!qZFGvV(Gdxe_+evb~6}5*m-yhlt z8R>6o!`ssT$yEmpglyLX*{DyQls(lZzR$#benHi^9x%k#ZH8Q;O0CkM>mbVw|D7Z& z_;_z|?Rcc(554m|R({+_wPZklo}R647zb57>RQ@>={#BJ>$sXYoX*pS31P0*69}IU z<10z_=#C_>s}ZwkOqYn}YLvi>ikIc1ty2Q^(%MkU=dgnbJGHmGOsLWoF++XnL_>cQ#Z}_{uDT$Fn+i zHN7Rf)1~-2yfIaMs$-|i&94^iG5r2K<_2FL()n1#Fc%~t9|PlYQas(;Zb37bUq35P4{8Q zu|ks{U#E$Q!R;_Q;lnr`F!m&bN^nc|;ozzu_cpP zM9)+{K=4<`Yu2Q&Mz42AqYZ5r!o^C%4>cVZ)M@s8m~5ZNRY|=Z>O{#dc8}ZUtpyKD zcbd3*Wp$p+Zt2;?3~tW*zXlhI99rTV1Usg#zqHGer#U6*6h%8$QV!PT)Z1b~sioEr z7!^!AP!5W$*IgIwl~R8wU!=_U`bo;dfouD6fZKD{xGjo5cUV9}cqA{0COjXC6@681 zFDdLKzyncGWiPrAydp064VTsAd^=I1%}ht5aOFA9lL)_5=SqjA=z44WJ2ZzVAY0IWaC;U$WKFHsUNhDKghjQc4iW=KNgGS`|S(kix z%yPt`e2B$%x(N7FqKeaa%OVq^Hw;1PT*_~4^Q|P!0omW^Y_NXnq&u~g`JE*FHMKe| zObTn6lA5aYvp^UiHS#+mDY@rv6xS>IFA`b#D(QvW5HsizrL>Q0)~GnhA`|jD#HdO) zPmB~Ob4_Iiz3j(gd30i>#K3ekI*UyLk|+Nnja^@qccKTF8s)M=`Pk89YViy7tlujP zsJT};X#|rtc|Wmyd3>61V)y|yDSzM-m4FcQt)}EtCzm;ow{UD+P1A2&EpINh%cHD> z996VmP!(#bs`x}iN*TR1k0!etRJOtzI-H3-hZwwu#82=(G|fs0=e9;HhjS{y=ZlH$ z&@f(=2>4Bn@KmU6+D&#gu@_nd1T7U|D^+)Qr}EDQHsd6b(YUw`v2?zjPa=FS7gkva zR01JcCnu++hV%t2s}7+38?xM^GAqv7*O55+q%}OMzZWB+CUyG5VpoOj?FdfC(<)e^ z6SBf|eeaH4{JYAl6%AG5Q1tUiGdg9p;*ZT$MEMbmr!W9eMr{h?_rz zroUviJj4>gy_MYeUgDXHy=#=#o1B=~5A4Kz--Y+wonE&V;ilyhgP;Ea z28phwl^ivqT1D2_4~;4c_iUC5&jY5*Jo&so;79pE<$l9)ZjgX>9xz;NXeqU0oHkJb zQxBo#a*OU)^*}W7O*n1^QAI3R^ZJAR;pvXwaKZPax&tsO_ZzVt@XL0PVzc~M&U;K!lvh-W4XgX>SSX-` z*0M&$q{mm2Lx^kyy;I#=@ZICqCT4 zwq7qLPZMIp(?ocOO&7gV9U@FtOE z27Zuhb-}S*^@V-Z^@dhf{w$8gmSOAz+%# z=+IQdI#`q7o)XmDq~R<{j(zBm2zy6a$IpY~H5xa_mu!-sPT`kgSS*T-iNaA9)#yP% zVqt}!)^LPO#dmeE(x=m$*HDe*pP0{NyW1qHdX#^92ROYy%;@%D?9b$6^fp)A6ccja z(|UxZX?fQTDI>$dNxa>`N5Z6up2C_fX@!#qqFTsh5$yess~-5P*N1CWl>)x9v(i~p z`M3&gD+X;qe$x*nPBluQv&kS1DG}ua*%)`oDy@}}TJdzX6%paJKb}=q5(o+91MW0; z&A+!8H)1Q43$6N23Zv?+mT9>kPm09Ne{_hIQeUnHG1kIuzD;wHAB~>~RvL_C zdoz0G`eG`M#D=x``K<|*t!it2C{qcM(CK8?hB(#IDYtNb;7I{;dZE^@z=b){nK}&n zHaMgBtq{t;7$ILym|m!&v2N3rfu9J~Or3_|ILlggW}RjX)~o6YW0^XTDk&W{D#{8j zBPSAsKRW8<>=qRd6-9j7yZPG#(Dcw`eJ`!GoQNDUzcY#1tkT@7Ro@jn^%lz%&2Hl} zbhRdZ>5@!#+wb%m+om%z?M`kI*$wh$XDY!gwr(}sABjOYIMzgGk)P;fekQ}EVW#$n z+N#cH6j7RC>?p&W?? zq##C+yWoESNNT>8yK%&-v6X0M{7T@$$Y%GUYlXoa4~w#wf{J5|0fYH#BEOP@FV zrvs&UpRJevo6&`F!%)q~nH5RFWh_F;)lU03CYw2maw)v;a^~q#%+!<%D+LcL`HFUt z2>w@VHm9+@oTm+0Y$YI6DUCO;+f{iT3b+d`)T96Nc90Z;c_R8|0I?DY57h%C-Lu~Ph37iQ_?h;p_VuOL zpW{NpYOS!yMn;$&-a-j%__1tGFo~hiqR?R4vrN#VD%J4uWU*W-rEW>ZWu(sWHWIc4 zu=(%oD@csF-2mb27G!(JnoeucG@6XKyky#Gq-TAyRDyARGPSmpVQL1YM0U{SJ_w&#tqk6j!ge1F(!+jtahWDDq39BnL_s82QMU*zlnbA>WR{5fU^TXw70xzY< zbFTe3v=2o(XXp}_`v7{7qo{$AVcX?Oe6g*gHRa@Qi>dEIkkxFH1r5k3CCFgz2pH77 zdoZ3$y+l4+m$-fEM^KaYIGzuTRo)BT*`sePu`L7J+5JL->!Hdu>`X`+Q^R}2*m!8v z0g)R5l$Hfs4?DVr99<#!^CnCKNhfTifH+c-_J-|TpBLNpUewCI4vkmv;IE-P(iQ0hc%^cF{Iz-g*q8pVviNFHeZWCmqtK{ zQj?`2T1~m)M<1$7WcxXfp97)?^HKWQ8WeFrv~m@&wvnF^VQ9^ed@x+Jl( zC{q?ickTfyrT987UO!cc9z&PJ{Mg_@j=!vt?|LSWvWpS#S zvM6)VLH)Th%Eh;Y%#bn881D_fJWPN&s+Wj)v$$STCfxN}3dITr#^l7Ub`dha`|i7y z^;0ohQN?-r51iicUH`Wl`m%=8}6kAnM}+B5>QeiWgtP z?l<2+(av3{Vjd&sd;uAkU4pdSVL&!j5RM%eHOeZPxyqNzPVb1*@9w`JQ>IMA*s)`% zkrI`Zj|0fuYA-bd6ONlm%Lf_w)h~a6KmO^@F}qz$>@kDZW^56NM+6)ub*d&;Lg3mt zVdCM4%VDvVp9G2x7m~cFTsYqx+-k1!#TT%gCY?Q;kDf+7c`kR~>VDZ3@W~u>ZVX+U z%x&kGQeHEOWOGOJ!mA*+tMktOr-p;XA1wL+-~HaLGR%N(={<1m*KfvW8@6H1rac%r zq#tsIm6bT-j5F}PTfd9ifER~K z{aC#%4;7UjR94kt!MPXUnu|}t-~M;qQ7hc5(8(6JqDoKEaMk}VlIwZLgP|1 zX3RKdh~2b?P|S_b$@%wlCRfn+Xw zhGNeylKB!GS-K4Sxj}SENilM`*X=Nw;WBMHyd#EFLQkX7mjtHLC8=_x0EfJFS^84N z;Gc#ib*2e(I=?WlPH=JKjW^=EwE6E%NWj?fR7q77pc{%Xi?|gR7GTwijri%EKZ@y{ zSYnSUyf$--Ks+I!Wp+cC9_nG#Oc+*C)ah#ZJxBb!vh5tFES9|e7WTaH25Q%DKpjH!B-1zDiD63t804Ei4B*aV>I`r@t4$L&K;>< zU|7t!y^t5AxJi>HK?wddTBrQm-~J9itytc8(!#Tc_tzM)$W^DdiVvh~3Hdl*4 zd>~*5QW@wX>zIk_JWZl1CP}6(%9KSCdeO7bVdKLO!!K4Alai4$_Y3HA{q^AFYtGx_ zfGBn7@-h%rxy*9$@u%M!j+I5HEVXZ`yg(Gm(Nm;SQ;+ySrP;MGI`5-N(ry7<2I%Ft zlxi$-Cve5Baqf7=uPu+3*xM3Ko0mnPgAs59Mu$g*cqy98ASnOIPDQdgv@H8is;fnS z`-ax!<-t!I=zBP2@dyV*t2w~e_o7QM>Z&Ud;DBgAtq>)Zi^_$0q$w^Jm5%7^>F+R9 zXjddXC@Z@r88R16*D4>w?&in|H|nZbJrzd3W;a+Bd9 zZFAd}*xLq2n~OytE)b|s5<(%OETImZ>VQPipHn)o-nAR0OBQ3tOD~~f?|x)*PqPc;j%@^lI*gOSQE>jbS^_DnMEC7QA!oM8bj1oz`7A0tj111y=y~?J z7;y5*NalcO9VK)>_2(j?>dm1|ZlonOC@KW6OA(ceI#X{GQO9Wda!jv>64GBJcoi+= ztIrzrjEvNN*W0#jQ--@v;J&IYa&oW4M~^$m&B;$tlAr5lC64p8!+zHeFU+YaK{u(CpfZFLVKqFR_l!U?OBlc!{< zoGV<{t$v+N)XsGbV9lD(u!*Q9^?;f+sFN6G@IP=Zfm` zjmOi-*J|_YSfAwU-+lc!%`c~^6qeYVLZ`#SL=qFHAG(OgM+fn55qG9px@;+*ZFWlj zZ>ZC_yKDV!7R<_?v>5_|cqHl?dHJhC_(z?~A04FIk+t!N78S{W zsGg~k$N^DL1toME;=-%1VAT^(pqAub#SJWS7MzT}+Dufs2Y`AfX_-g_u3E92%E%W=ys-@)9u^WY4Mvg^8rGs6^aRnP%aldhaVh44qR$@q z2lo`+#hEXDOy+X`lq;_UCQqTdB@;C=Wzm^$t~Q2Nnd(2LJmVF4ZT!31@jw6h5AM15 z9$e3~^sgg%kiwPJE*nF8*zVQbsi^wZ*Km+4 z9S?o}IlNijk#q4y$hr1f1V(V%xnyo?k>F#0@X~$@Rq1MlsFbC9h5Bm>lzM1yIqULn zEuW!>A9)x*``@3_;$jtcaJEo+MGaEZyW@r%Z^8qA`#%gFGDI2n(v3o(6h87tgBFhh zl_mB#?z-k#i+s++g4`pIJc7lG7vt=+&%*q9^YAEbVc&Gq%~+#8CpQz>enEmzVa~j7NkHP2p;5J|g(RdCZ!ymmAj9)7y#89GI8zoYH*Z1t z;t!Gc&buh3+1%`$91N#)-t(-p0PZQu9Uauh(6soXq<(qWm9S31K)ZT1bNsvFK>@7r zGr7Pfi>H=$D1B*taJcewyuW-ChSPTX)mMK7Kls6In8#-%2%#O~?ENr{Kd6-p616 z`d8d}=biNuH=b*~sMe#!2$(UEhBFAYfgu~Qt)g38k-8ACL%uSosdwQay_3)b`JCbM z=_e@ua50MC{{R(KzhqHwo=q!@{pZbxZyc>Gicv1FSXrdG0IFj+JgPF+(-ozl@X2_p zmZ3^DTHRQZ^mGiJ*d6-{_F}`!Z((TP zRP5WgA9vq#FETUIIa_8XPMGDIG1J6z+L4f1V(&=wTTr%aiu?NOuXDe|fn4@YEvY97 z!^cj++|z;G`4z}YPsGewvvJ3dZl~0K6HU{0H(!jJIYeereA4Bgo^Xb6|Vh&@25U0#6t zg(_{pwoos{1k}j>t#rvUE+K6|Vh`tW$xD9m=Pa?uUz-GL-~8q`n8#1+soYpOmab8hRe)&=QN3vOi_}HhR}?ZHzQ8@AayfhmC2zcm zZCoMh*|M2~q*chCPO0+DGmt)c8hk?r(}oKd70HW$KV@=P?7xU(5q_n!*ENwBg}gxG zm5ijyv37!l>|AuyP2c7;{{TMybS37^pNBqu`*UNABqbbG7wv<$x)`UQwgBUY_r>Bx zZ{Y_&`~hc%rV>*9O4jw%xW>B9Ey>>!drMGj=QPrla;QIj@WBT;`Jozj+;Im+jU0}l zxg)q?a4J@<*@DAG)hH~lLvoM)xa#bAc;a7wQSru(8O^mP-CWOd{C39nfK}|VU&F22 zy3wdrhdG&RP6Ahs#4CoiWVaz{nX~}6z9kK;P4vCx3 zt0o&f^w5L2{PHWfbzcqgcdzHJP&;uRO)I1&`S9lJFXJYD`KF~Pg_cRIj|Rxdtixk< z$dx7b4uQS-g(f8>Vd&7IDq(JJE)5H1s*P}~{7G21Z5{URFGDpYydFJi#3{Qk4$>aT znP*ZzqdK4Ifs$MvZk5e3`6n?k5xr#|cMRRp;8heJj6{Q6tV738C0=Pvl)eFq0$co7AAxxlDz zU-Y}=669QR8ImWALmkxs;ARaT61rBmFcYV3>!>3ZCzqltmc5LW6X{%3F;1BHDLuYA zarY_lICh*FbC5fhsfxe&#n187Q%_Mvcb}R@TvAek0)8=_$LHy5U;COwl9=@YYQU?0 zq>k~i#NIKuH(jdpT&hT>^O#R}dX5}90;h8p#D|=}zJLE-t~@P4W;YK8XQ$)v{yeH_ za&gYN=Qdb|$=YPwU?l6=Is_U7IfQtENar$gM$~oj;5<%s974VO6I?ca_%N4^SC*l)=n!Vj zn94!Zv&aPv=mewA-$raL0>MY0CrYa=FJ?|X^iWqG;1tF3RiC18(IQlQ_#ui53Xnc} z6uR+cJ$(KGB#s-00H-Y0aVfjZ*btW(e6ce(l6)wC*%iq+k9SKx)2kr1`4P9M281vvQ!s}mtjO4-r6 z=ERLQ&rTK31%Nq~uVDEFT?D?`-^32ain|j_?9FPD#u~IS|7K<0;>gEw#~U#zVBOIW z5Oy>SspFcKQ@*?~p~{~ZTJ9FRnH+?4!X?ZsXpsb5^sDBJ%kZeoK~LbO7Rt(^*l?ll zJdXo&g*$hmjI&n;o_QwvQbP9)%Y{c?#6c^IlBp_HRV;L-E~O&YSp=d+z!G~DP?;}b z{oHl@6XsUSNcF|6Xot?rjsnAYjbeyg)sGDwYF&M1^wkos77_(-MD*EYbVd{ZL|GIh z(-kYq;peQ1s+V5I+9#ewd0rkexgvDTg89h$(pA9mTqR0%Sse#N#fFQN!l~%c8$bs$ zwgt?h53&fso|v7H+~Q>RIce(OYdUCMVz*>$P=fn#YVcH;=0&z zNfI6UkwR4F?L_T+?_$q?pGL{PgGlV(A4ASL2ZJuZ6bYPz?&pB0CqcHIqYW3POA&Ej z^5>^O*b7Dqw9X>X3Ir^%M**Jup>v*dS1R$T@9T7K+$#@rey|&Sm0M!*t#i=hMdAK1?wSKh~EmtUrGvGm>wFxw%i z(u+4xj%qg&y^uDwI9FUqUKR$)?36@G=n0j2 zV`%@fW!U!Sn<(3`0R@K(k;9Flhg^LP(x=lX*RWwU_>!iqEQ-p-sOXeRM`i6Ib6y8Y zJ$Ryuw|^`GtwO*Odlc|B`phwaLRaYFj3O@^r2`R=hLi>~&UGqYN6#A^TmKmbWZK~w<}wn)sP9T7)+Es{Ki2Z-KYk5ja3bt?GPV*lDPD{?j z6<_=!UVZIVwNU7*l;*69PXtDAbLU%bxkb?^t+vntH_4S`o-9)qxv53f=FO<$Ua|$W zvRJrxA5ytfRq7>|V)!{{!#8EBwz9}|10IsM$lWOpGY4eKqLR>s)P=~!%A(_VZZ@eF z9|>0#kfU;pAPIDc<7W>RftDi>?0YTG;@C*3q;=|7g&1V3tU7*l_Z>JAVM7kG-Rw8+)xqDmDV*mk5>_=(j zBed&r|NZwvi2d!i-%%?(S8>nD0QVZb?pxf+XsQ>VZvGsFpRY$<*+Fi6yN|}WevIx} zS(r#WAm^Wd{!vP>!EKI!2*2V;z~o<3#_ z22>sqcQRGOpN<|~-rq{-c1o1#jK-O;kdH(*p>k9) z+#dGaBG4)XEU_O2KH0fQtSHuSX2j~%tI?}hFAU)37P9yIC!cM^j?a&9)0;}{-**J# zbNi!vk6su$bSQ=l8KSncJ4*I8*g?Qez~bfRJ$IP$kMNL7GmX(bEGg;{nPzCBOWI^v zRK$HxD@o@2-+CKGn>Ny>{XvZ6favgRu0}V`KTlxW$xcN`a|_se%kydWR{Ca-6FAX+_+Kc*2jz)%c*OrcyHNe8tyAWMP)Vm^&fyq zQ;)-|FFvhyU6GA%t&0r;hQ#%-r7lCBec=H!iBS8}beC*uA^LN+pRb|<2{f1c0l%mc z)~-Qv;Smg*H4C}lxkXu76cYe}v~Eg5S9v>x(ipGQ8<$ZLb?ka+>UroI+P@ZoSRi1D zJxWx?Jg#h&B{O0MQ~#Qlo`8N?b$I%bCvd_^r(n{!(OA2Bg<%q#h-xu4tn34$0OM zpk;62Lp7ts$lZ>LLt=|GE;d(mxJ1-*#cLfB6&o&Ik~vCB!3`|&(SQGoK8Ff$fU86& zOgtXLIN+T)Wg0x)xl0jkxF{RwlE3^MY0=4wnM?lqVEIypmwBmm)?_uN9Phmgz6s^eajou?iVfGz&(kRyi zpj#?xQ@f#p^Vd1{tp-E`%virpCd{me`xwa9{b#SGecsNZfPJJ^aG=BmcnX zc;lsKF#E(4aSe5}R$6Z+piXo}&_dWk=n+}Sq!SaaR&2^@PVJ#c-7ixOIfp!fvs}RW z=T%!aqvGQwILxW3MI>}zuinU=KOa3$KMk*J*n~M87!^|iQVu6BB17^MrzCZ!^vFu+ z81`>_B4FE~#b{e%j{-X9u@A;PiNqkk7hil4zx&<&_{*RF550S5GhBM2iEVpj5U?gr z6k>!-q~tKfNU}oc0;i~2l=QA5csahIJhjwL9lBSR{2x97KL}GZwCfXor+#x{xW({U6wq40%|kTQAIMZ zrNJ)Q?I>9!dn$4iX|NsZ)M6v2M0XXUs=bY55r{tox;(K*V=5q;W(m=ZjxG7-=H}w| z+i#CZ9*WskWk(dyCYPVPre&XM-i}t=7P95@XZa&S8A1bN-Su|}@KUGKg1R!>q(7TPcCG zAK-X~hpH5ml%bZU8$NyfanxfsOShj`Q#I)I-x!i7xjzdO0-Ka-pvIe z4?g%{hrl2Y^3f#5mQ+mVDTLrAh47r(vTVWdPk;JTcmb`rYHi)3O|NmPUr{50N{Fah z#16X5Xi1b=EmW0=6ffJ)c|_$>S_Uug-}BJJ_>5Cdmw)dzR8dOLnm!$q|MqwE`}^OK zdd|5>$jzlK^lq|9RBbz#B~sVB&ng!7MvUl>HPmmgzkx|f>O zchTN={gmN8&CRE|@xx0CzmmLK>coIrtR26r*ap%HQcs~MX&3oP>$SY@v8Z=TuoPQU z?*1Q(dUc4zZf>eMpa`j5dg-OqXZLOq4zj?ggf_HA%5I6PkonMbDbB(p-MussnEb>~ zlR}6Z+|vHx!`x-3XHOHo-H*k^#me$zg3Q@&fopC3D=RBihZX~B#u=pa5_}oTlt-6j zUQ-2cSsDD?%%qG)xi(Wm&)>a=vyRd*V*W`O#6eM=mj)3lXEAuIk@M!6hGTr~#$ z>b-hRp$s#prany_%gf7YxRFyMUG;A&enVje+)A&deYlom3W8xeH^XkJlRh9DpUVd5 z9pT=7`)yV1$tRy2EZ*>e;cR)%Q`3oOasjYHUl| zp(Rf6f9k2HaN~_Pwj?>E56JT)E7Duzn!|l9DW_%Vw4|gCP9qP*0}njV;#z$4(MMR! zU!)^9sQxI&a3_=zP8&b_+0VkGwDZ*?k36Dm*|fCS*4AG>sRhR{M~DQa8vYeq=#@P8 zmzJYo&06IB>p^V!fBz5b@41`OvvtdF(0q4lDkwr^6;bh^Pm5Mv(7maKlPsIGE3fhHS|++R^R7g~=+UDGjcDn&wIr9fbaUQX`JDYAq#)8pOI$T=gh+>W z*CFbBNEn+rH`?v$6S)pm+@h#T&h*E=NhcCli^^vPQg^|irRk*(l71=o=iE%wv@LP1 zslSvb17Tuw$2f%$`#~ag;Au3>)s10E#Hfa=LpM`m+eeFw8Em(74utmLKB9YRwCjT- zhmlMxjH0FyNnGu6q$G5Wy!vcsm}v(^)aoLDGA>#wEIb^BVPoxR>gYa7{SO{I2=n#k z4r|VNOWRNk(h0e@G`-ZZwa-zj`T*M@*!QGO1bp34`ka^Bwr<7q&p(G*C(g$1&ktbl zK3OSTj+aN?msU?|z4~&pIoZl*v?9a?~y&Q{&BJ8NUKs^BhSZkZ17_`(m`t ze32NwGuP3kZ%I5(5jNkgM^B!Ym!~!2WZRQLqbn1E<#}WaulsvjasS-s!|fsW7>2Kn0W%~ zX#TjCI`V2t+0|4Z$kaqp)@U89?n81dPW^SamE&o=%F9ZyY}s=$?I)SaPd?c?-WiHDd?(kZoN~%hD|Y9dcVZ}Uxc1s>j~X{JLbD}y zQ@O~D^tAz0V0NHZ4HuwA#Qw@EqDiN`;P z0yHSvS8!4jxS8j9F`lWET>l-^qzyqyVF5NQeGBV9`He(r)}aBhl}tXZtNY^VkjX2Lc9F^Q`Ww?*xm zP3)mYj-vQr?Hh_4-XToXhJa`&b-Vg?Sfw0{l(JYlgRV%ZItD{QLnPUd3&jcfwfwB% z-0GF*^3YPcNypWpl+KlvMN!3+(jw*ui?QsX2jShZ4QXYS=y&{a7|X%&1Wq4K=+_q> zTGfOv_){Yv*aH-e!sK~BPz%)z^F zlAGLFxRIiNPEHQ~#qpGCPF=m@jyo}G9pgM#FsUP(^<&yF{3ee%31jL zKmUxM{NyJXP22ey>D|KHU*+9cVeW!seNLRz^FUFC)iIBTu9+J{sfXaGU0c<>dBo1r zn=Dv8Y>c5IN#!Y-sY*u{!&whBm?bWNWNsp?Z(PRdMWR#5RWFg-m0$BDPA2Gd&i%&L zG$tK`^S0&wJ&DvOJF~5MNri-dh|~@~g0YagEVb8qXF*$Lmgt$=4xZ5Fu0jRRZ@l8KW&PDJe#`T1w1}*@~LWkc{VlV z40HO4>WONaXy^%TNwXv+Ct+yrP<0o%xkHeVnT5W6vsKxLimOn4Bo6_q(Pm5@hn&HE za3KF6&N$-?72o~GRI4R*aOcya^N2z{>e*yY(se1A$%gc~xROrkkH9mEyt}Mgu9eeP?8z15;|MOLD2<+oJ z5#C0?&oA*xJo)Hj$m0M>_JCZRb?(_1(5JV`Q6Au+)se3ha9Bc@&b+ zGdTdBd&6wWaN09dfF-I)4PXWz00;OJhTr_KmIiK7SJ4WQa3)k=VH=?QAkqb zAG&HSX(rJITzB1dxQ{cRWJ+l7>}-@A+Jjx|m*AVSLZ4oFcD<>b4mxr&V3J%tS}-7SeiSf6i)p1 zbMMXkfUBO|N3T6tPlbO0Ma`xu2>2Qq3zF3vr7VS|~Pr^nn*gOOt9 zDW#i|-R{iq|c3xSpw6=C0z3Zx$_#D0FBmU01B z@}!CAo|+;^tGwh8MAV!_0BLHef_Y&`U8`EeSJzhBS~j*&j`i~k`7&7I%YbMirzUcQ z5>;!~pm6yL?B(`z`J5g$Xw+y7yz(ma`@$FCnKBt%B}PdvndzlJ==3^QQxj8XxmLB( zW!k?nK){W!;9ZAeZcLIhax@q5c0+bnh7zs^Q^Pg zX7UY6MOyzjwvs=YY)Cc9{aw8jS6YVl`2BrKv>BtTIc*z4@KuL z&HdG3_x7!Lcag?WXs-W&L6}a7R`hRv^+4$d#G|YdI*lN0keGr~DZNadNDGFg`>=BD zZX7sVjI4pOvQu6bAw`K`rxA{5QweaKyQXrkf6`fXdx!LY3{%yRPj{Yh?s@B$1SJ`%fj?!eY< z+tu_$&}@V0BNA6PTj(shS~ET?G=&yACrzG=_t~c^X!Pxe+|IByD{iAJyY;d3JxhO1 zCO#vOw|P6CXyHGNo-RQ@Q}VJ@j$h}B1EVTFIy@U7_Gq6X=?xzA%I<>`X3gfQRNcod z<1#n~mdq+jI4hxuNzZPOZshR@xqHy3dpCTx;vJNqa2yU47Q>sA&M`BgetFm<>fl^P z_(lao$45F^tvP^5v%e?II+3tw&2lOwr8G+2-Mgh=@#YQiFE|tX4i=z{aC)e^kVX?* zhoz+z+{LL3$q8Om)bYj2Hb~;Rc9G>q*CAv8R`o$1MLPG%7lkBc+sLcAnq^2WW!pKQ z42Txw18=>J&9AcQ8|%ltTvQM!q$ zG0O;betJqh^dC8~uH6vuqC0iHE7z_^`2;?j#ii(*kqIB$Uz`jCmX&bb0bk1ES6xlJ zJIQHEO4dD3;_0|5L9_n|=}Cu^F6Tv$?mhS{B-bPLaH(A4%a7%L}{rmM351qVtfy(cDcacAT7r0j3bEUokJzGrMCHe~Q|IFEu~<4;p|0{rln0JARC` z?tO6a<(D9VWVrafMHs;j(T8EX-+doHdgTRV_2`Y$&O8VGImi`yz+9yT^QB*SwbZ2> zUipxcC}Gh^@{(^dMLAC`RW97vqMSC+H$CwL>Nu9-=M=`ioZ&M1sw4p_6KgF+p z`3sCZZaPjJK8zn$emwT@)42SS3z5z}VxM{XKls~ihAjy^UlFAa^Q;9 z|HZHG{x!eOPsD(JeRya5$F475OtM8|YaBHoB38ScxeC@y!Zbr-?o16Rk7+1qc!AA8BN7$C|x}Gx$Evams52+%FhJI zk)LQ15a4u29#uU45z5m}+C@H-Mc=L8(b9n=iIRKBp7kXgNvTSclb|!*K*>8KZ;>=a zhfWGt<%%5^4|Vu;2lk{z%GH-MTgK21dVqG&DT+{B;FLuYx;Ul8 zk-9T4slPZ?y5#5dEA`5Vs8YnGPT0!7VgTx)haOTJj<+(ac1s>?7a@okI#Z4?iOnZs%xvB2dR{dH4;I2TKVmx&g6-ay#d6@;io^nlLOO3am}^YGFJ0k0}^}lGGL9g zYp`UI0NnY>h2xm%3gN}0@D8MBTi#!1%c^zrb5y;bw857 zp&liz8M-pDV{vr%t61dU`aA_A;z2kB5nW#g8+CBP879w~5y%ww%1mEEe4~_9~j_MG? zT^iqX6b+QdJwQoa!i@DoCH*p{BsWlp2tJfwI7-Zm2?7)oME;joMFI)kccc&%ocdP2 z2|7qUrEc?=Sju$vsI5b#6gfQFIEDjvLY<>IhnW z7ph6{>(fae3ORPq!oRp;hl9Hu-ESyxNuN+fO6zIaT(!4^=02F%u<;?h+j0N9FKNHr}u|Bak6}zFZmXsQq zk7)<-ck)vJsPnccAhN(taBVONyZx|>R^5aLiqPj-x&FoE07aZG?VsTFy%TKXY0xi-IQZFgtQFWaVQ906$;Q5Xat zO!I&?o}^tuw2Dt^X8N42X}c62Wg(_!620O6t$kI^Rb>7Ny-lMmrQv9;C-z3F+;DMH z?}l&D#Mgvw;_zrrO@uCYblspil|~LqzQ)rzn%?5zsC`Wwfh!n6^$~R$@>1x@rBdKX z8MLUUezdYEDwi5c=iA?U3;s_(K^0fWWsDtz(Kmb@y*VJ7%qfcj&TtV6i_(trQ(p>_ zA%9}y+&DQCvJd(&uA@FwQA~L7LQaB_mG3e6=Z-t>Kx^&Zw-&g_XVl%NR1Z@Uy0n*S z#n`pm(fWh*FC|f!h|&?oxxO5OBMw#?8EgHX!z9mKbGp13;9~ zyI!9SyXVf zXg=qp_u*8x5!YUW6q+eWl#QV|2OV4}#pQ>pOjWKb$SJL%ib!SR%*hsmVi|DWym^?) zxzh3A1VNEJWwhyq7hY(P*tL#U*EaZUIM6rP3EK3=;<<6%b#tG$DF89gEZC-PR8o8p zyQ@9wYnh_IQ`v~%T*mDyZ(E+#jfJ+FjdcrgAF zSGfp}h|2~Nn1r!A4j3>1U;p~o`HtdC%DN~K2yeNzCZQ-R5gtudDZE}C(xJj@6?PR_ zyRg7|7p~Z@(|XaO^oS2)kFv7SM3a3@jdUX&(0v|F`nZT=Br&BhVJq`K%ydWj$TWjW zru{_Kx=uJykk#_rXhp^j4&2Tq)X;n!b} zgxRwYkSU8KzJN?q<)Du#PcoPM>$wI!>&1!-583N8jq0R$ak3-P)~(xd@4ffp+2^0Z z5w^{6uIT*Q*S?Bt`Nfn?V_33KM;7nZa}9Xai(@^GNd&qCvCDp@vb)pv?c2E;vlL5~ zEKxR|`}OPBVVm~0syFe0)oM(wE7ZE`(CB#ROiIxt9?~kxyjWhTDT|y;N-|HXktvJC zsFr!>pRB~T=U>2K?jPAJyDtWxc?S9~TnNuJswG51=Vslq|ERndlyNTijfkfu6E`BQ zI+tw%-+c2;Jo)64m^N)1F249eeDj;%Aj#i@WlNXg*T4QXuII~k%;+&Lt+8!@R)Kzu zB<}RYe&E0XyhnAyM@v4!hIQ-Jo|O0Aa}OqR73BN{3ow(jIFgeofp#|Mett=)N>}a> zt6A(Lm$I5ug^6(w`9cxto^J(tF?hMs*GKhK1=TD?OFu>lcPlF4%P)f~R?|r4Ij5Y4 zb-s#i1sEB5BxygadCl@N0^upir zau6qf^_jZlA2+*)hnN`l7##wlB3wo@%vEeF+320t>rw7c#>|t>LnXS=oL)7Blgaq= zpZ|zUF1dsTF~_KkbqknpHroc#p?&Pd>XgK8^yczl9o&Y`QZoHN~2sJ zO6ryTqUkkq1jchu$qX+2PZ~7}wHac=g|&$v=!Xf)|F| zgC3n0){d(9`RAXniVmp`mvRgx6$>u@8v2i&g*Dp?uy@NRSiAClY^U{98SEAE&&|!n zZ@CGDbryl6AL7AR?fm;Jzy^72LJ0wzmEMs;yews#$PTja zO9FwAg)C%G=Kr00-1ijCa7I436uy?ggQ z92S0)ucT(us{9IliaZ@cNnAO~qI50(J8DVFk{887A$)QPEi6FY_unJ?qZ!nnuS3!P zVze8`eMIlN6Or`cBKwGfgbu1)LP_3Y6QWvRBjPUC?n~NqJLFPtO(jJ>c5ue+H1m5n z1O#6Rg5H!VQ|Rfq7Vpv;DK|G4!$*$6{G}VPr{DlxF~@Opl_DgxO~J%#ufvQFr{S7w zuEB^ABl!9wMzvwS3<8HkARvi7DJhxr5|^P>B=|Z!|NQejj=}Grc@y#NyV5a#73O|B z9dEz%XH-{};uK2sqKX+s6TXi>{`hd1w0wR8-03j`75j6NyeupdlSR78t>%UnTi$#V zh4h0ST3LY%s-^n#gn$dc6S!|?Znsjv6l5bOy)UrbZ z1GBTtZ<7%iOjisdkgQp~O8sVZ&7^zWIxJnk4UsWzsZOip#?76Onb|?9YQ~QrucUQP z2j)C@urRTP5b#@Kx795T+05>z4->H{5H(9)-aec@@-)=AB9U9h7f-w>YHJQ)C^!4K z`}QmF!FzAvNxB~$#*HfiB9KqzvQ-}Tgj;zaUKVTk5nt)DF?4uIF=}%6ppJxI@ZP(~ z-n0dv-|8g#bkCYN5i#;Ylw>Zx+r?y2?IFsWfofRff0DT@hfz9t_TfeCBE9ot6;_bR zkxlawH{r+;Xb88n&mPBjLfeqNeKQ92%|sdhuK)e|E4btCyU?RcG8W96i=X`DCumO> z$R-#BjsyX}CH960-8nH?V3L)Ug*|)rKwhFoM$?KO#rgW$qrQFYBb*NMLEy3#4im4>?bzBjUzwgeSyC{p8 zPd@!bnd$b(NJVsH4N}`iV$F)Bbj1^i3%EyY9Bj| zGGA>vDLEcxk5a8mrX*Xz5w(-d@3A64P{*D*7AdJIc$2EM-P}X8s_Fo?Y~FyLJ$hi` z#B0!@1K*99U=TP$1OkHC8&k`qa#h|HS6qQFXrKMT2h$KkNwuuB2(v!guZ7wynLEAf7F@MY)(NTIn8*8zAtICQR0%Z=c!)K?y$uC`X6H**5k)D8mhL zdv|Lxi1g@KBB{k*)X>`L^8+B&sg#t45Gk^+L5b9i{}7h7So(eZoAAmoD0Dv zVgd6CO{Xv9@>MU_|JEDvua`2Z^+OyA#ola?|DZL6u$&Vzt)qj&>}9SpWhi&>q**EQ zMGQ1u%75xBVDj`RPz-C; z$Piq-+bCn<+X+v6FA0yD5ld>wryHEGA5o&u#cd zpStX&yX5=BE%LU zT^UAgxbibxb^6Nd_iE8YNgw|jr7;et_LR6F(lblVmCY^k`;#8+`NX{FaZ`Rz7jkR4 z02O4rqAhQmaQmxN$AUg(hoZ2og)v{uWPBHo80B>MxpuzUo?JrdR@k-Cne?9mIi-Z z08xy5m}2NeFI-vmlH2#*8b&Du8?2jq?jB5|!L^BNy%?$$|I*NsdM zkm4s?zyJV!>%;MrlsZQ3Obl$JJ5SN7G8hIwc8f_6!e@wK#Wm_sdShC9Qzrg5? zlS-IEC0Wkbs>*WPeDnCkAc#ml8f-=QBM)PqeOZ|q1$Q}3|8D%6%SxU&w2 zi#h5QP~BL^)%Kgmz1lRBpyIxqvXtbMZ&=6s(PDa~5YbMVJ7bGvgKJOqTO{{3sdk+H zASc@M&q&a+$cIt=9+ODmGc(ntObbDVk9mvj4`i*Yxo6y})uFlt)I9=UALTK|HCp3T zY7Ukgh*~WzO&Ad03OZ>^CGABKBGObDC3D;{+Q$4ryTj7oO@Y!EC}3{l9dmJ!TkVSv10s8lE#-sR+$*w5w_ z9MFDobfuf*5U8H{{zJ!7FloWTCAAXtIYv~7_%4?r?Ak)jh4(M_&HVZF>x= zTF0C@(w(5EP}bg`98k@=EMozM&*!xUTR8U<_={KRI*cfZvs#U4Qh|_^EY}a3RnJfp zioTi^`pGNhh;RWS(mC#!ZNBqgP$DW<6yn7C@?cWlOM-G;;U9iDb`BH~kmb6Z>Nd+< zh#h3otOqSph@;Oi%O6hKCJyDv>?iL=g4~9;-MW+^4Doou zV3Ki;n3xuJ;8OAqBxLXVcvy_j4`Dhg8;Q+YhDuTVh{D)n{L}cHRN%3vF8U7j!ZEO#Y`b@gGY$*a zSgVNM(i_cx#dj4z)3#8jP;$<++2utOa8^Q5`Vq#3544~@QSkIJ znRO5@U{8|VDf9(lpE)JNXO)Fc@;wL=_`KPwOzj-Z!5pO6Qr2iMc{@!_mnKBwz3@|# z$~UWNcVx0tOCNC|m8}F=EbYcgC~cU7eXWu#VAWn1!~3)58}P5p9JDcy2y!QC9(n>n zFV4!&N1NZ@aVG?>BbOoLG;81CcRz-pWJ$@+5-15hP{CdMjufUCE<35w%#k}mV_c}2 zdgv?T;u{`e=W4VeTnC%aU3m{AVLQkg-8Im8ZjI0Yx`9kMHU08_m2J;7!hurfGX$X?nA+_HlzUhv>fmEw5uQ^_HvlaZV_%x zVyn&PTJ5oZaWU9hYngT?pi74v%O&?QzGdOBy2;DWjZBAVT|y`d$mLLHQp8ZJ`|%#> z_*87wv%)`~UZX4DQDQz%td#EB4YNhvpgQWWb>J0=*uO{+(D!7ta7n@DY4E{|m zi=bJtj@=NRq$-`w=sv29+4vVyS}Cec-<0`e0(E6wrC)7I9q!_hPr`EY)96n`VuF&S z^}3Lane}f5m5Am-!MQTGo|tE1?h?lBDRf5DgRAgQqFd>S8>*w22&X1l4y zmrb|QQCAmzY5TbQA*J=^4TSn`mO1dS3~lh^4PATKAH|ve_L!e#dxL1`GC5xMRKDvx z%pb?|aT?xmU25ytk`(*E%^PBs+6sj`Sru9D;Lu15aK$_RZbhWBTYO+=Xa6yuL~ns^ zEd~3Wu(*4)8EkGO!EVHyYl{>5R|G97C08@dtL#&m?6B!&o=>y-G=-KZMW)NxujB$?$?8-<8^YkzRw6a#rm_^BS;!L)PxmaeYu0kh3}z~t^1anh3aw0-o|C9 zF$&i12+v1aU7%8!yR(%mef zYhwwD(^T9Jf6Sq5?Mp(`nUU}Ulnbu$4Q0T~IS~?uie%swLvNJeaxJ#C;5$KYsZ3g|Gr<>wEja4zcM8|Q^egGI3> zEP8tSRWq(iQMKP9J-v}!PUsg%rosr|2x5CR&bXPma0U9`0?wn}>3vhU~I9dh`4a>WvZ-F`Ky<8q0Kqi)UdSmoEMw#wq8M zbIu}#!i@1Dg?W(F!6B{Z1MPN`QlPfASaoZ*N@zH zBUIsNJDXFq*&_X~`hc90TB&JYOX|4-$jQ<{iZB%6@B5k+3G0M>-=APO8oAcT(AJLB_;F3wN}OvRXD(^ z%`Sr@5J@qQGrh73;}Z;-&WX>r<`3qnz4PC`YR~HbqWu+&}kRFBwCOGlxAc+Bkh=*Q#~Kip#4NoqIyi?Y(h))Y?|3Pn=*T+Ef#N=iWj@W z&s?wXKsB~n1#0nfxg)Er&P~gW6?e5VzQs<}dnVje_Dcm!JP5qlm-<2sYSg7HnIJ+4 zqG6Sy`}AgKg>$(nBs-+s>XK-+mIQCG*gP~SkKXcuWmwaccy+b8=7Kf#$ApCK`9 zJe)0|y>w%AYeZPxPg$TKU?XYJ+nCtezm!uyA>d)0by2|_Wh>Y^p5#Ul`KS@>_PE)p@z9II z{tyuHbpr8hwiJsriyaU~xTG=6c(mHV!_J`-CSpwSi3wZKk7_$>P9mkAf$`|H+<}Vf zMx=!-SJHLQBB|i)*ZdXV4;ClX3Mzx^e@{k7Uxe}qz0>}}eK(Ev2&GHacXt@|%WV&v z4}vV#60YosJVxjP1(0Q%Sfp2LNTc{HF=WBj63Yr{)lv=uPR4)YgJ)fDLJbXB9|@0# zi={8$z?!UEKBKUKBJvbYt6>H+&FGEj&C)d#Rp2#T+PwYB1hkarnSxQtB>A}?T#FaW z!ZjXKruC&2(#51}Y=3EmMHhoEIduwJgC9RFCwgucS-4=jz-0I+$5Z~om^&>E3RLZQ zmSMl(}|jt(Vyb1HUmg+Xf!8u~W{pJAip(l zMj4wNrTedTOI|O;?esdKoljSCk4sbzd|uy&61npoC8#Moo~!nKNAX`i__3ZWA%Y;p z!GTp;TFT6eJkuoF9o6kj0nw97F|@l%;;i|IvEmx{Q{1{1Uqu|T<0m%P%}?!G?Z&Jp z)Rx5Am6<2QnT_9g=nqePAhe9r)AN`D1NBYp`Ny{kD^3qgYMb~kq1RbrAJk0&Q6!Vp*db09dN9lTyIh&R?weJLLg z_~W=zA|0WQn{26PDA1hZI+2;Hg(Yr>s_N$}ArOOB zWvN^@#B1oY2$YOH1@J!URdlt#GY!6A4SLBVy@n8XI(0KnoTb znlQkU8X~!4w}88BOV=+wJzZ!s#$e}j5<^$a?1eMOcBvojJ1mX{I*FWG)@M`Y4n|c& zZK}_VK<6DJYxynnt)4d9$$5mDC|a(Xe@c39g?y3n>L@#C6kWGA6Yb zTvOJzI>f*qX}|q&4D600p9I=S8%l5EX4x!IpaZ^(Tw{2{VAjVs(T5FsoPV#G5Qr#& zoR&C*Ndx3(r@g`8so)Ok>Q2Z_VX!lW=TfpF{91E~*{A<~I9z}@<)lyFxSvmp0h10D z7pD-Eif>DaOo7u>5{H8QhYFd@oiP_V@3XOOn;l3zAFB}@RNz-&nw_*^e;LZyZA6G%W41XSyPSyMdDX-jD62I4ZWzoK0}8Hj=KL$q za2U|F`dzv2Mef-B_$Pds{6+WBs6t<%N7bWoq0B5@>VK0gcwOn6`nyTj2Dlg+W+nOQ z^E)OF1l!s7*q4a%JMtUIMw0N)8}#W+&^VysK6)xlud%G8?Fd;iLVSa>ypdb8+OV+L z5MX(szc0Sr!Fnf5EjQTy(>o;N)J-Qx8@Aqrm2CVIV`WGg?;{8~_w>TK;`{iCH*VIq z(A}Mh2fyn3Xn-jB0mjGIvecZAi@yrWSn*AKVn4%t9*+M;ZTxM}*Vm6c-}8ysT@4ig zYGYMhcZ7<(7WiJbXMqULV|EFbq6taJG^B}@gJoybOnKG(eNnrA$42Yz(5*dTk!zZs zd996MdvvdybHD0Uj-|4}xbBVqDw`|6_(v+*j)=t?>p%dS6RVQKuME(9p_Wa)^_R(h zdLJCTC{F8ygM*{pY05iaVH7fzKWMz#>>L`tBgJrLJQ3$@2k6us2TuBe_Q~p%&}rBDj4^OzA%W0h#zkg6I4`Pz7}+TFq8!KVM2pqU%M%1@I= zZo*L+`Q75|O=O=J=P&fu8kzIK^Je}L?CtHH%9loykQ~e%zzN8U*JaXgNka|XV)Hs# z`f@Whcmor`T%w1vb3Q&W-H*h2xojI3Hy3qn6hwH{qTD*tuP|X-UhO-g`Dx=Wj7PB* zw>XnK(mN&`4}^sbU4aAyS$nL-+4(NSZ|Sn;b~+Kq2Jc%98mc@`YMq2G;-jFE$s$x#Cvr>E|cj zPDIv4# zOh<^=9R`Mp^-58cawk`Z^3Lua1rr0Qzt_=Q?$3gE$K3YfhN2YH+JjPs;pv4|R#xSF zd4E1|YG}%5$j?}9P#A}<#f&fcVcr5YU}YntDg+^RcIXk!pQ3)w2m^+m{5Il;1XxL_ zPcKb$jH3fWn9piTg29ceIp%*a)c&y%JWbgNh#vwjlIBnC07AJ1pn;WqIW`s^Wp6$t zRKmfTM9fxB*+?fcF8}*>WP)SgdX^Xdg38)7O_m;I{3srieq@bRq!@OE1>|(`*BZ{T zvcA_lNdUNj+42RWP>;7>_Ux-|Wd|YK6h;YnK`7Lw1tnkMg*^|@mHy{3qnrV4>f)N3 z$>HfNfU)`C*H{9I5)^y~%gefw7gMX<-Wxe4i-~GM8tL~}bH?r6r1#ms%Bd9IHsesJxz+lCm-p zORo>DRKXyRHGSlhsptaIFn3!mGb(0jKDPtoF_D8~WA@wp!_wRg&%LzaBa6dnYN})1 z=CX*mHg{gQ`@^8&c!8sS|31O{XR)|ebwGKwLi=cnh62%SP(j(1bh3-(@t(Hknnn9( za8C~)z#Si+D-KVQR+gf;iVq+Vm~{Ij>N){$WIp(7+~UiPPqye>Z`qvi)>DfsfP>v9 zZ?K0Qj&O(s75`W%5>2`xD2e*6bXM^Iu~Yo)!} z(LEq2E-UhZ8-Z95ure{EZI)GsRN0Ho+N-|zYXI;I&1r$8NmWikjggZq_i?v=Mrtbn zo>W9iN~$hqQ-YI@?;aqz-7G7wRE5pXtRn(|2Oqs|kHQYD$L^7#k;(RUEGUw*p)v=K{E{PJoMXUQKSIt5ga$DyGxe1R|MrekE; zXe~0#rq!Dhe+H$3FN_M&r{op|$uAR%JYB$W2ZQ292xX~O> z6NfVgJ7b@TtTp|M>wn6pWyysx#Js9W*CE2FQ^o553&SgGq9sY-i^TNLs2>BsiA@}! zDRtt~7`!U3EHm+K>k}gz8)EU49V>GM$LU~z^Zuu908N&9ue2P}l>Z|~E8;l}zsDA1 zQK1+vAV(y}z0`D;UTv$@r8+5gQj_^RVwhb7iFde)_6O{w8S_dlqYRfL1hDyor*eil z2O{7q<+xK!4u={rE?J~KZ1qPR`Um+*Taz|fZgZ;#QJZX}%2(Tsp<-hvO>wt!^f~^m zG-%UZFbYbm0DL&W$Es)07`{{J+SO10ynX~fSY4c&7yzGCI|ay|qd0W# zT7p-K{o`+#m<-#nc;ELs1zJK~`x9E#A@>Yjhn;9o$*JdzcKqu=p_%F5bvGM4^nf#5E`L>qjH15Si7L(8Y z>0v>dNHX1@w5j}x3_T^(F~tkmF5KVVSkoYp<8Que|Wkb*Wt83 zcB8N7PO^Cd?jsN}P9B9Cd`;FW$>f9d8F;*4JL?a;_P9=LwJl{+dOy*$-%WIx5si^J zw(R19UCCBe_xo8MlhTc=(+q}3F7R5M2ZxgwU!cu65CXd|MRGI_7k!}sedwku3n9x< z{DucH4M1V@VZ}RP62PK*_htYOQ zIY49KOq8CQT4Gq{0EnjMPvBQ@J6695_>8O^{<>l0XBmpvMFKaIrxwj^==as=rhp9y zM>)da0*wEAfWpBz7TsrOXJcXXluew|psk z*dWcYC&{o?MTUk8NS4Ua(CsHi+z>P74kM8j^arP>q=b~J73U=%rHp_(U<2V%y8H1A zN>-sGMz;2|yra|Q_FX@armbb~n+;e3VcQoqdVv8JDicNNra8 z2eO2VpFMuy#LS+B@_6<7u^?BT3G|)SVi;TC`J(qkF5(ZKkqhE>Zu8C25I*lKgWaDNvWGUvMu5?pJTA+2 zF|K3BZ8YIBPo0(7$zlzI1ArU@-bT7x=H%5sI{I@^V?A>p`22&M{K#a3t=8z{j@f7` zFBTTK6M3oSq2y=o;K;I*zE7|H-vuH^lj(w?RUMm{GFO0dUiCNejP@rBU?XkxksF7; z^lhB*bO7A`5o~5sj7HaD^Cp!xJEz()844p9hFZ~CYptf|S%L?%^e80LeE2w#>wu0q zdZ5S*25a9Rx1Z3p1)A+&&|dDl-bir4hT$0}B-RVum=@mL?Mq{;lPycKx? zNYNHVBL3Tc#vo(EEVw;S{ymiu5Y-Zi&FON(jeHlpjzQbT)d-8lvaAEVwN#bgC~G<# zGBoqIuM~H<0WYu+nwwgQtPs+%y?Zw=g%S3KQl$FiIYV+xt=FSK&i%Vrs#|ET9L+evFg>?1^~fr5Jnk_>?fZ*LBJ2|SOOvr zLLip_EN)3)5Jt8fy?FjhE{sJ3FKihy%W3^zwm}ycaOs&Nx(?TXQ6Si|MzH9M~I9<;D2Fmj>W&Jsr{S&=f7}Tqz>2w|9}7SYov&? zGaC@~Oc>-to~~KP7LlO`gMd#m`!=DD$_Z;@YpbHH{B?MEScIsRpbF^VMM#a}{(+oC zkB^K{P*AV|9B&`Km!|UK!xBmYYdlKKjQ!t&|8L$y1z9K32^#+Q>Da)){9kkRRs|HB znHkmfdJ8ltyB(@D8kZ5kK9fOhH!i$Q#1WWqfMS!AzXRSD1sGgOpvR>ET>Tf!y}ApH zT1Rt0V_;y&C@2Vycckv2Kr=^tRq3z)KQ!wD(f=(OQUYkO^d@0y3yq8V*)K?cPSYs=3yP`kHh5E@1h7mjBGS^?k)%~LW}NMs@~2~d&K2F*4dcT? zLqk#4!1sOrFfO|6Lp+_Me>OD7mZBjSO&1ekeU?0XTFbOuw#^JezNOH$jB_-g{K&>x z#}1?&0cV;>tiK>r1U4x1G=_Fhwk8C0qhBmEhlBI?vD{Hv#Xt!fhz8HvgRl2CqIe7k z@r))!hXUl1D47>$S^gd3zy574W8q#XR$&T*lsv;HJvfB{+|pHQpl~FtT88V{R(rWs zr&eQk_#t+IB*-8}kay{?$rK2gm=hgdPOir5)@$}lQXE8q6#-Tl*oT2{#80Qlk_`8# zVt+usPqj6PJH?fx0DH-=opeXhV#Pybu0}xHUDjFJv+{=^n-D@7}QGF7h7l4c< zkP-3%S!vD)K2oxG``;EE`r9Hj%bEt!O~KB>tCT9 z2F|APi(3U_cc=U(hp2p$0gyneQMIJTSQ~YlA<|TnTlv8P{cT|`) z$i$#Ne0oO?dk)@CutG(F77Ybf9l1cMpD;B`{4F2(+Yw%#F4VRlR!X5Z+7zf+t7t7e z`R}gYa-2HoT ze+J?kazH)+^o#rWyP9?8(iQeck#?N$Vg6&?-StxXCIRe^=x#OxD6xz0JL#y6^#A*f zA}qA@Pcx%tCkk-eNi7x|_e{wD&eR5kpGIAz_rRp8jAbA5GpPmAs8>~14(NjK?@*>C z#FIaC?vB>{cQ0UzNCF}wk*R2Dc{;vnT!n_Nq5s9$wq^L2A%_dVitffZT+CE$iG9XE zc%t<&E&AuN113rr)I3eJh3KNUbtp8^fVex^RVNQb5HveZ*dx3PuixWbc&wmd? zH%1_CXfgXbHiO(Wgg|^;iLGiRhUK%zty~{KwWe>j4hg1#ENOF$rJoTe)>$l3$c514 zm?hbXMbTh8NB8svk^u+tFaPKmr|&(O3dNa}cI`>nO=w=l$YUhy4?pH#Q2w3#5GlojFF}I3v0Q|Qt#Lcw<7$xF!m2k-X}RY} zXMc5YXSq7*WKIVWD$q@9AJYha1Z+KN#{O-N&QkmS<~yZP@X4y?SHvSI@E!{5eJ zjgI%IKQEi%N2jj3o+b$!MnwxR<@?2nKgxXLU*rm~D9@gRF3 zWm-p(tDvKAoxABIYv(wo--kc~O%4htiPy#SQl*(uHge-OIfvhEMGDB%?N6XaEP9pW z61^g|{8$$VMvmc}n#3;&jp_Kl)8#S?rT6!6j9Jd5mTSJUeS136T(&-taAx=68pWCX z#Ku*QDHOeRh=Rr+A!BKXd@I4ceRHdp-r#OGX#(dN2V9HQBb5%~w_1+Dnb03;txL5f z?@MU41_ihT*#vp4WHa~mwwjHN3GLZnBm4fCPLlZ!0;*Nr;W&(h4kDG>6Yi@{1hV$k z8RGk=m7jSm)dJ3I+HxpC76m>qnIGeWg4}H(D-f -7aj*JE`fU;OAZCkY3x>!-f7 zW%1F1_EK$N*0>UFw=MCSYLd-pQ6Z~oj)SKHZ75F*P4@g9o9jT{^`FiJiq#MGu79zH zpMN+i=?0L1qQEl*L|swG-HM2>bSuqdDWEX(B7(-P1-DhHKQ&OW>3wsP=>d8wL73WF z?zn_yTgp=gY#UxrJ{wmvuzFJgKOi_6sb7;Fio|!7- z%LnjtWfe7;p)4UL73T%FMQH26)DM<6IvWKe#DZ`ZvjFj;_sx4_QmNulAW;nlAsrP9zt`W9*O%k&aw3uDPWMp9d zVaXnV9vrXguPg!Ovo# zKXY|Xz4ic`h(SN^dt;b1!u9^ zl9}NM6FmVt=4T`--KxerEql7VWSkt^rg6H}%qSZzs`%;YIAXl$vT5JNPFJ#(7zrCM zK0X>MleaU0*$^!=BNYlyA=FHMkDeSg=^Swzrs3HgroN z#!8A%M?J$T+Nxg%v;Cli-dQIKQ4+#_<_ z4k?s(T64$JdG&dI*wK}a!+bz7&5-4S)Zw3}J@?|86!5)K6qEm1mTf7|L__?xrYcauZ3>)56)WR*>@ zkI*%cIAH=*yzbGZGP&^^cHb{{xblaO98b1r`M3XluCpe>3agdFQ{=zJ&X^TMX)9sS z>8eAY_>>t=OX`cz##7aE73`{_3VFAAN#A@vC7kE$LmUp-jn65WVW|@RmF0Wzr;bO_ zlBhIsgNtO2qY8T$UT(5w|DC|yLh0|(JU1d;z%|JZA*yUg$LMdXaqE}*Il??x{^o_) z)%wJ3XV?ap&TX$2L{GKI{tK~@4<@5@R8#12Euim&eA-uAov5$rJm`9yEM}bEUb&tJ ztu4&LPz90Q`!;vyoZ=K+$RoFtFe3Sc?$jr?l;vuLclWbfBYT16c z2JEeuyHEJ+jzlz^W5iRO5?{P^SPp) zcU+J9MR|X*H%~(A9wsWI@V@b!QF;ZnH1U3S47P348{P9Ex6u6_;e>S5kx``k<$m_V z-tutKL3>U`vy3;cb5LoBt0ym^q+SBPs(@@9La@p$#<+})3#Ql2S=ez^w#1q{o8|Mq z@6GuP37&xu0p?0!+-k!o^0Ifi2^j{waxd%;$>}8wp<OB0yN4Oa@&U`Ygxqa z4LjzL=2^?AgWUA%tyNfLWL+(&`(?r+1`L}11YPbcbT6!fXQvy{^KKC}@^{FWnq*qV z%&$OAG@QsVibrA8NS(c{?&-?9no(uCcql;mylh4H) z-JSYnk=!OPkM=S&$t0?(58z)6#d0ARh^6=zobh2wpSt_Pw6^bKo=Kb5{E!ABd0~oC z$-do{h9%D1KA6{jNNeAm3&BFmLh>X;|D>Ms9FP53$G_bCdX5l%L!JT)8aV(+T(wvN zWv}j%<222|nCJO&N2QFx+eb=^qhm$`BF$0vOs@K3Mxn-v<6*rs_uVs=DT^aHea4hA z_bB1}Pg-pd5(6^7i<;vQ-t0C^Gc$usev4McqlF3g#{)I}4lgtplmq`F+xtJz(feu( zhvG^u)P-(NFOO*cE;vbN9=;c6jFoq#rIn)&zWN+O*}J-(PMyamCcXMrktD}nN9S)& zk`jHb;ErcLEt7_k2CD_l1+usG)5=Ii68%dO4ufM?IsGJd#RaH^EnYkCZrRGtKqdE= zX0w>%S8xBLqtuM8$GNw*b@!ztECZm#3t={@>A4+d^!K1{{Jc%bZr5x(ze-(s)yfA? zh|)dRSFk&h(gtqXiKj`P5B1)xyudxNwI){Ec-$O0tgIyAYja3-OR;qwC)F|>2QM_w zNVO(2>FjttW%B3`AtF}#1%|W;J=-)Mix^b!(N?y?RDSd2H&81UI(@XeYpQgKE~+dV zz3tgXYvw*@c1gO@&NlKMe&zC}euQMU=G2*ktr3~J(UN!?EHhS5 zq4l^%SEOdE@L8|GC$2*hf~Mi#rzrT1y-T}JUG+DcX!JdPZ+T+EY(%#RKoz+rUt&fKSDtU!LJ_QXzKA8SXoD#*!OZ* zO>-qH;YHl$!wvY*R~}|!ljP(nj+80YO0^N@?q2hFg-wagj zX1HWO;{*F~8mc0r*i#eV>aZ)*#r2~#nKXfrc5wHD zy%`q`F0(}B$7X8^fN6;6b6WJ`&hgwk8yDQpM;DFbciICuU}~9z*3dcdz8zVeXq$pZ zQCR(dnZ1|KjiJ9<`+~*X!rh0w-?UqPM8XngGIJFaB~()_EF~vm6DHMu(lX7jBmqTy z|4E#5%4=E%+h*_HeUwp%_BtIw zjoX%uHOPxYdg6Cj6&J6DOy^D7?CHVuqn^h7rlvSEFk6ZZEa@<^ zZ!FSRg|F|v8$tA4NiK)R-~x`;kQ+0sI52h8Z)q(5KrVZ+%Xm=7aVbp!+BqCmKgrEZz)ca-P!o-J zTc}(O8tPJV@nlVZfxoxDg8k6x8)?Aq!q)XS;d(V7#J9kFfcO4 zNl05rJX=*&|z^Y!9m`pJf(=!o@vjNTA~lAswnD2mrM(3Bo>M7iT9KjFBuv7vBj${JMWe@ zj$UeSRjXMU+~cE?)zkUrNQz3!c}HZfG%hp6&mQF|GNKVuWfX~9lS>7OKq zTmLz6*L&PEQ8Ku%8r+WL3HoM#wy2yXi-Zh&qUT{8IUjk2fKe^0rdWqA&4rqHHkb%c z+E>v8kSrNK;-y@$!L5h4BeRvRe;pQdJGJ$*RMZd6s9XQY=dD_F)@EIe3t6l&9Whqh-@54gO*Jeg8pu64Qok*u zxE=`Irnypy{(ku#xKTl4=_`-)4J%;pF`&v)aZn+FW_wClC`uvS_2x{v3~Rik2s5JV z3C?5Hh2NoN8&A8@g?UW!Frdy$SSXzrhG*^0Rp9=4WU?LupsghJCyTRl0R72q>Pu6Rt7jGfEF!)v8uRcS(Zx)`_jRzqYhnt%W&% zyT|gmyR|!ESsax1y2Mc=SMP9=EP;-gtkuQuUFWM&v+87`Qf<2nZQzY@Z~O6k7D=d) za!kgR&qx>3L!)*llLxP1@;kF$TA6&rfyJc?J^(p|$VjgX397HN!>P!I9?5vcnZ1aq zn42C3I|SZO6*_9*fLeqz=p4*HCoL`<*9?8U$rAgdX@8&>MO^xaI!`y=$SO;^pPE+z zjh&%_a0|q6yocLE8;5S%WP2|(`h3LSe*K5vO}~*4$v-s)oVk)~ug^57AMz6HUE}ot z@)~JJ-8b~aQN`M_o-zD>-ua9O=eMo&Uj% zq0ceh&aHx0pe@R3R`~|#x*;ZAh((Rv>E9;*xL>9twVdVGHNseaxm29J-HtRaDeKIJ zSVKtmat>2qVZLe58XmQi|AwPw5Nsk2XEs)b1K__7MeNx9oX=TQ8a?0*Juk`ZD6#Pj z{RqBi^5MT_JmxL?-@>2SaoR1iswXCzN<+9&)wMR`uUUF*9XrDUijjM{QVb$nj7EES z*2h(N0D0L>irFcP)5y2i5XJ8J8k=j)Po0}mk$kq$)6;6o8QFmzfBy0uQEszAp5Gs& z%@H`q6?n*XJV8!>4QBg>5kATvPM2b}y4i)aR}fvSj*yxBE~VZ6KEm>=Q;_$|`OAGZ zhZWjDBtQJV(U*XEd87x#H^i3GHy8fcm4RQsjt4xQ?o3o~X1)n99uk>y?J?^CY00%X zDR?6iNYk%Y6h>urb&-YybpDac=*dO};x!Bwah)#$`)s5pbMODI)UlA~pBww!pL&Ek z&cOACAgjB^X|xnddSl>`d|#wfIYh8HrX?2qn3n!2h0t?c2Sa$y?E5?y->=8D3nSO+ z@y4W4d9begCc{f(vfEracO|SsVevqSpEpa^zS(mE+8ai0+|=K@@~Vp_+Sj0z*Gp8X zNP@uVp_;!>v%)hekL*A7A1GVhN4k?qsD{uijnBS4%+k%0$4}quwhs6{H1J&RB>4XV zlxIMc`B+)mkH|xR?Wrd9wu|d5ozF+L*h=0+m@w&-iaSG-w zS)*JH*oqy+?MlXX{9#C<&Tu3iZPe~b+7x|P9SZlCAc0#DN+&VVT%B8AhZ?>k5c(At z4Q-P<;p&@j$L%-YfZVk|V%N6KSh#E@_H!-m(BY?%IhSlY3C0Kc(q2V~| z+;j29TYsnEdjO9<_7rzN>V<**PQrDQZo>taUV_OtU4ub=GVue+`27!N;=TtS#`O2! z#n)5^j30j?&Yv(2i{^fbwd>YmX1`$#T8f4t?oda zH~wr)7&iuW6(y*tuEZ^O{tVTX2e4$(LTucy5m#M(15WC9GH$$a5=M>~rbb+=^xE9v zlrIsdQQ|&u-~h&q9f6owaTLJC_moaAzU(p#8gv@2xbj*)E%ZioObl+h`DR>t;d$u7 zouGDX*^J!$BAjv7Ik;i+bvXT$0r+9@az%zp4Ixsig2n-uVmk|{V>%HHRhCOlZnE^Q z!>0@hO17q|#uGTE@K{8)Nksnv{gIiL#GR9h=;?7kMvOflS6y{AE*d|EE@Ntuvv(g` z;~RzA3M`>7`riG9>Qk@g;N7ODeTf~f`FZzZj#?H0=U+g}j>Pod3<$_o?JXsW)>&x8 zMRg16%1Hw2@%FUO(W_r~+Aw!5mIQ$5);)HZRoN$I;@I@d*TR8<`IX{ z6E4IDGyjVp7cRj4zxyNh6cjTj6ro}4hyL1QqT=YUJWSOQPcn(gX$TADT)6dKJ-5u; zvo{|l2g(r|9*t8@8BVQ5rKNBYRfPN#nv-wmWx&3*f}H8c8XT>wcNF31*CP{K*Zs(b zLs3vrN{__RXcJ34x=NA$EIFH4CUoqA1mf8zt1Gr`*p6uWZBHfUX&uw#gmUDpUsDF| zFM^1+kwkzy*(&!9+MrUuS&+HOF{fp7I)5cy6j2 zdD9kb*}4tIqGOLBB~ZQcRF<)F(QWDQC*vn0ssqf`x%q0hkQCO5uNxKXMg@sHjLm3Hn^QO%h zIB)<)oIaNCU!zf!zYm3l1t_cHUZ%x`s(c|m3)XP6W|3x>%$tuq>gsR5_ZR3tm^(M| z1*s5{2=pbi?kPF2AEn$`sf@caRaBRAAJu(KE5-h@a^7$fk=Q00bH16)y;?Wpo4JcH z;oP&`7T<^blkfm`$YPCUD$2Xq=qMc4(>TRP!@Wm&yuzck@Ze-G( zFG!QHFJ~93IKR@eQf%M86H8XEMm{&bj!sO%(1C+cu#Ppiul|!nT7{QhehI6V{lKm8UO+PKud7`V__Se`~P=cKs zaxvke3y>1ax$yt%|DJ}Og_XGBwx6MMS_iUJEp^g0Sh{>6+ue`F%a$NME)0nslkoA^ z(=lksFcfo#icQt{ILh%*_}LjGUPLM>{v>#lx=;kR_hw}5IpCo?Xg*w#3)y}i(9gZ zTr7|Dp;aZg|L(gn@n;XC$KdW%$A}Gum^z9oL6@)RgT6?CVv?uT1$=I(uDD}mwyO6lV>Z!(%nAFlHlU$U;IlJhe zUCJt7=2lFPT(!>eOW$Jc&QY_xj6mAZW|EAk6!~p9*w`NN0wp~tt5G=+g_!iuf36B1 z%1FewybwO;L^Dlgn#rA@?DJI1@k$+WRV;Sw@|YrKn__k61S294fw}9|3MiURFk?8xRj#2FVZGiLd%0fDT;2G&Q^t(m?9rtUK#DNru>r>en?89 zj?gy>{>h0BTj{ao&re(J=<+o8Q#}eHlfY=xE`19@M^G=Xw|?UssK${zX+qi+b%)fH zkF2`XCV#@8GT(5Hk(-CeT&+CmQ-An#1VNK-6DmmaRuFns?*;fP$@Q{X2=RAu;Gw*+ z$+$RR9%}>@pd7b6WkoViYKu>LsUuiOdHG1XtT>f=Lg@C^dU8JW?3gHJ?4T3vBl8>N z2*}@$2?30Nue9FaR2I zA*wu2ihk)Sg{-!vxQeTYCvK02#Z%MD4=XuRRBwkZppt2B1ngyVK=mAfCC|b@cE&rS19I_c>3F zJ&1!->>TqO+z1$A532Jkm%e=Dg0?7yQLoF}NrrYgD^1rDK%6z4amn(Oq8`BAoi63b zlV+@-2}vKQa>^u6m(}&`lHR|f!jN!K8Lv55b*w^OWgQ3ZsEW9ctjgYP$WbFDyvsLs z$AJUMU{^2)RtY2?SdsP~boVkhyr!M=IeNggRyI=5wDdnle#jdblu zma_6W9JzX`h+ci;#*NA>^n|`lw5KIQaboT`TT;ZG<#pg0|Ix%sX{BRAU?X6xVgm5| ziA9VMdupmIP3Of;DZ0ro_PpjRY+y5jCQLU`Fh^ctYAW@rbch3K%MQNnHJ)eZIQzC+ z@%^<&>zjV)V`PQn#Kx}aY|ZY$b5^CzgF{VC4R-C?g%f%sJ9ro-q*I8YyolTICh5p*^c z6(SZgVqqe$Fm0-^iOSKqm?!eHdBYY|uzpsrUWkbZSJo(8#>(aI^|ZiQiZCv2>fX06 zK78xnID6dL*t{nfS>3YGk*g}TZHT5X`Ig?4*&_Aob$rn)n^TCvpOwR0dpr`eUy*v! z95StAphp%xVsl6Lm^>J%8F3CFE-s|ny%+zR@dY|}?~T((k3@WIw4OJIt<6hoQCP4a z+qUmQw_ZJw&?W|-fA~JOWEUW#-w=#Da};7isxWi<4D8I_qkPPyc1*`P=Z!~lTk&D9 zdShcg{d3w4-4J}yu+1HP)6H?nEqp6{k_sDk=(=Euij!9oN*tvBhratv2eDc{>DC5Qus=C}r z_%DZfFVXqfce7{XgHJxe{rCO~J2q~?S99khpB^DSG$d{5pe${81KPH64c2bhgmOB} zQXO)vs&9J$ou3Ntai|O=? z=I9DrjW2Jabp0@I&ewSDjW_8hrihEMmZNmvPQI(IqK}^s@WnUtke9cYzT2zlY%Lyf zv9VaPWEIN9YlIrEZb?Jp8G()H(ay-!3mgQD#2z^3>IgOznsPL;E2upNr?qIdMdF@hEwCRe}tV|?GHoYR!V-_Qxxk}8X7CnV}7Bnf!^ps(d6A;*+VpZOJ z)Qes|NsyFfqmxzZwqf4xC-cc#&WLM;36CGrz6UDJi% zAz&nSzdI$(F(6?GTP@+;o~^_X0+5xAt`IuxBDuy;ntYLd)&$p`-BB-=0-I zV(RII@KX9`>D!|RuKCGbsO2J?4xQ2v5g9?}W1W$l+77YY9`1tiW04daiRtgWhEs-~ zjK`mP9_u#cXl~?pN$xIuK;pXdrrYq&v`2_jm(w9FMf5EFH*Gg*>fDkd?GGSoGsYr1u_xXsTB_ zw2!9;%R;(q5a(t()Y9==Fh`jH&3Q22l(pCSr~uzaC|mv2Br0O*u8H*hoT)8$e3j9YbZ%7HYN(i zdv>Fmd!4@a=IcOA97-sKDtaPGMMlSxxclQT&pnG9uDk%BeN2+S?M6KF^ixzNh0tT< zJ?N3umwTUv;5Wbi1-fT;MK#qxHd#tvEgmR|OQ@zQDS|grwGx-BM&&7}o_TUE!d+F! z+ns|YtJa}szk#Z}s8*DEg$!R^?Ls0q6*=R~;b$uf+0&KOmisxPEv41Gwh;n=oSdspy^6i7!`cv2@uooO{_sZoZs` zekb)ndP*Y3(O3KE3FGnTAAXPJ3+5p|Z=cn#yn^*6pLlNZmY-jMd++@XPU_tanVIP% zH1Prxis-i7bep>hNevnGh4dMpme~bQKl@iKU$LBCCd)kBRZj&G=O`uZsmgCl1|e;= zn2M1&x*4wJQ;%3O)sV5}sVS5MFJl&xUb%D$UG*km>(=e`thon!_YgBa4GH=0%H4x% z`h^)Z>|~ag8*c?2ft6#;=3Jy__Ea<0XVqRiERD*On|-cjAQG1mwKOU+788ya0!GJv zypZ+VcAXcwT-^02t>PxvB$?apxapotG*ooqjs~Jv=z&Aw2i5_b8u> zu3oDN1Ril7CdkwwkN^M%N=ZaPRK%@x_hI4m;CM4eoWCDWKJzNw1LsmIpQtEEY4iD1 zAtgnv@d>x_oAd2F+;GdySW7pyA<||jrB|wxT(#lYv2`a+_0}Sz3)MdS3s=M{9iH$& z%Om!#DOCLH)Z?_F12FH~*|d5o!j7G}d^kx&GJUSAw+fWB*U~-mh7DVhPj$@p+(N2k zdSdv1e)Lwk7V{S@#IUg!qJXZA+i+sZ@zp5I%SCu%2hatLde5OLTfKx3EfmiUQ}`=! z38LDOphwkm$mmg+@8gAlA@<{itiQBtUCGO*<;J}vn$CO~xEV$D-{8s{ zCgJV3U%_Kj9>JCk>*-g#5((UfuMMTo=`%h<<&DFZtj#V#d~!Q<>C#CJS-mNsL>nC+gD+=&jAU*yQC3xhDtbhm_x(cT z(A;n9_AT6&FBLDo{4C8YBd{mGmlFTIR&FTE7My#FDp#;UM-Ezis6-{H!O&%vt2^YH9n|IGbe zL$E350NQuT#KjZNLK5}#b7#+^YG$mudFY6V&O8Tw2c1sB=%^&(YkzVr25;UAS8OWMyJVotH4|x;w}nP1+$iGg5r|4| zkE}s8NTJ{MD}OQ>HDPh+)iVnZ{PvgFvLy%I`}E@;oV}3MwF|!aCR0g`r=BtrQMBL) zrF36XQH%7{6#VM{eyyGmBFHh3+)$$XfFY=e&P7LhZajDFX|z|j6h@&D7%}c#geGr9 z2d=j5ckva7j7{MddGtw6v&@XF4BUFhB&=M%k~N|*=E95B#vK2@y))Qx8V15}b_)^` zCk`uZS)`RfTviAUJOkpwX%X+Yk5M6>fTuv^1vpiE0Ez$m|4f=ft7eOYXo#!0_IPIO zv6J79oj4CrEcf>zjQfh*8MPBmx>I57u2K8xZFBwMee?0t=jQzKvU&CLMRQM6E%W)~ zW~MJBeV5fUJ=t?{@uYe8_DyrHDXrUY4|UgcE%3hY1?Z=$+q1Jr0`I1Ie)YPUUp?z` z1KdU4Y4y4;)*-V`-l%F|dh_%Mo0B(BIoOYVugg{5L$?s{*-kf0bDED9@C59IJz6wn zj+#dtS!`trgoREJ1K8m9p6L_5--!-3#KoOzF%P*shFJPZ0YngXu7q^7BiW=V35}Xd zmM+SIM4(5Uy!fOPwhJb2az_byp^L{}kj#7sd9A*Q%;rWL{G-V zvW(y<>xuVcS4-#%8Pq3MdBRHdz?7Hmm6TK5PSF4_x$x2!j_P$NQPVmv#b_Bi>efKL zpftUCy0v4G2C|k{ z*pLdyh`+{&j3{vdB2f!)Bo(MlYHk|RH2`4Dkps@`{q7*ou3InsNVcb`Y4Y58kWkjZ zMfZc6u9U?5BlS>s*vm~SBPQdzI-qnStFt8J`o?yMwp|^irp73<%Wb*TVOeQjN#|d+ zEFQuvq&h<<&>1L-3*+zMP$qxGH827DkvA^DGju!I0x9n;BfEXwcObw>JC(sJ=>`*h zlp`Z$m;@p{peQVfM5RTUN9`n-3DFWHT?bM12my5>Cg`7F#SxEf2L7bRcQ)h+Z#j4? z%hEv(!|SIs)qmw*@jLzZizdOU6RghtO_foJ3KFZ7em*r?hh`nAV%t7z!|6Z+@|KM< z1ftkPymT%h!Zf+D*1!bpV{O^iuJ+pBX=OmOcad8_o=JEd72m0*m$25g3A{xogM>HJ zdnyPz%aUmct=tyGiU4dKk0bw}hyA#|ZJ`YEH#)OH56qI&Yst%kwmR#d`#$*S*$tcfJw%e47tLg_zcsa{a5*2ZD2^dO5 zIx2;-OD+=S0d{rZD$TL(gn{vf3W2iSvzc6Is;U)K(&m|sd5`&whKis?tK?aGI2SfdgA?0^P zM^}MAv=IKB@*=bkehHU<5n`?Qwk_ms#&Ck{BpDrxQbzS6GPFXSYPSoLqWp`a|`i!)cq z(oy@!5_eEMdyZk(tZ^3MCGAl==60(MxQ6?Kf6*KnUF{U-YrCawrOO)S*~MBZ`KM=H zGG%CxiY)e6d@1|T>T7?DfJ!m5PKY)Uv3*o;!uX}fTd?>;I`8kpf)T#D?=klTFkfaF zvbnsKP0{Onmcr%`3Uv5>_j|gK)@tILsp!2bKWTR%OT8g`M4X%Z#tiZ#j%>5b z`V2I~tJ5G_=2xO5L_WVou;5{u{(N7w*j zFFEh)oIEjQqRl(uEfUy$Z0^@JE}7-Ge$~XdisFM$8jq-pRP(G?*Ym(~!Hmk{#2n9J zmabx?%lT}Si3IJ({PEcO($3@0i$0+)D6uk*Q{;sF3Vp>Ig&j3Ps*05DZ4q)}+XDIz zA&=OX#@!x=2RR&(NGMEh1W9nkd%Iqmf$~36W0@s?Y@(67e!pms|5BRnSu%MlY5E|53FE$jb~Ap(39Ypa^M%Y4MdX&2kRs%a1Zh9S-x-Pk_F$Wa8~R7@ zTW9E|5R@4h#}GebD1O-Kgf3QS!H~B<3F$@AK7@WndpC%TAiA4CUktJlflc5shvN}5 zOd!U3Eg^b2<7o|-f{HDAFym5A#EaT2VlYE^Ov;Yf^>I_IaYpG43|p@~vk*P>yMEoz zEcQqp{esTS1h2|^d7Pp35w!+losrgIwnB*q%zjFFqrfOrV8O}0p^Tps%_!t7=u}x# zc30=MMXh|J5z8BGE5$GH0Z&Y!2xmr{{hcm6L;R`MyC!^ID8f)hsSAm;qLUehW1?SZ zj~u?RT_L1q_sk7%2xB;gF)?Fg2KP;)Senx<<(XVPshGFwwdvtBF{&c71(@tXV=2Iihg|KLu0oz+BRKBXx2KV&ug# z4RdYtU54Jv{3Z*|AW@tlwI>5(Bq2N@aD4FWf7K5*N&G6BLh%FBAhKYP-jw!|zCP_f z`#x2iEHa@7D=JVjcQVVoW+_&wX=$`PYI4f^B`yt{X=OOik8+|qX7=4yDnf7f1`{#9&jKXai3@kTU63TGb5Z6%FsVGxy3l0lp z9QG$!ke!1@sm49S;KgLJt#nTy|yl zD|WvhWE@)TEgT?kZw&Ya-_a6JP!AkUq>Xun)Wti+83k=631#-gyuiLRL4^k;3YYhi z1}g^Ng;a;YhOqaEg)D)E;OmjzB84HPBHqAH!e1lkA&ejqA6eFD^D2OcP!h~m+gXG7%tH+F)sCXuQ8G^h%h=RbSXC|f5g3JP6otx;)YTX3g)YS;ys`jo&#v8{Q3uFc4_Ft~x}8o$?DeDhM5MKGL6)e%6J-e zs{fw4UqXOIz(x?l*uZ3>s;7{kx}hAWIHFW4)h^DKmnefR_H@GC%x!-5$aGn~bf?)6 z>f#e)C#N}z##`pO^C@p&A5I!km5+wZ}*;{B0c9OoP@inck`bq5ubbq0di zKDO0UZM9{FjosbBbtW%1_wK*H-^J?T!A+&-wE1iPIlZKcEB)=Zt^d0X_2_vD)#!8A zOn}PC?uy)QS{!>L=Y>tMZjzp*u9)r!qn|l-wU(z9<~ z>Pm)Q(>wDPLn5h7S3%#pzHYXsW)ywyR(%R@>D$ku^{SDs6}B0=ZN6cT=&`anbkRj3 zBeL=F*~WD&g5TBfedtOUTmBe}4Si3JRj^u}+O)>wzxy8YbLd#^6~kQ3PMX}B?kcf< z#;NxA{nk?djjpQCew8DYExU&RL3Ns5AKJvcXzV0jCVnFE?>#Fx%Z^#0^8OLzjchKeGi zNL)*H4%cZe$oHoU^ek#_LY){|_-dB|!EF>=q5D0Yb!$KUpakn1Ros)k0f2F$ng z1=1TQJj|~S9(o-LWri*KOh!TrB;TAH6GQ7GBTFknGSYeCVHznHU1x2Fefup3zf9N8 z|H&4+DJ2^rDATs8j4rAQ&Z_21gB#w9K60yD+r;G}-bgya>{u9CT33o2lYQQKAq*xsPBG7qQ;MaSaJ7wGAmGy5jjk@3E2=k|>6 z;v(@${lf3gO30ePn>B(^)o=fa+p6_YX8LPK*`QU_w1E*tPqnXyo&BHKEAHpBp~w}P zwuslwDP+N-LznOUY zb(q4SDM%pb)RKEQ`LnUaRdwWf8nzg$3$6zXtZCvCU>3@W%|D9C_5bcK8R!w$kDG{T zh@cX`8#*mn8{9SX+iTcE-o?e##WYLCO4_7eD!wnhDi&NdOt4HvDf6-{w$in@v|_M~ zKWoi#3$&7OoT`o3IQN0|qqrJL=f>s*Re3*S90>tIM$;o0xe@4NJDU4OMQnUbf5ryv>($8ADX#ZW2dE1}R-BGwTbo z?Wc2^tADD+?rpt~7EY=S3O2ZWz5VtaZ?`_RCVSqgpj}ZID(~w7?`{WCL&uk4xH7pc01C+B6I0#9#B9|UYxD%yK z=ogeT#jEW~WaD#ID1%to8Jr5CyKpFG$@4hEeAr)Pv#+8DQSE46uflPVHg9sJV=jgT z><~H=uA{z}xXh1HAuWF;{rn88AZnLiaU5{W`HSKsp;=s{RAntX{j0?{SrG!!IsK8_ z{w^A=Y2N7m@P7ybGmNFUCGQp8DRM~@WfF@;U>QE{nPcz-^G_WQE)Ny=s}D>}`Ui#e zHY9`88gy8yee5UfElzh&ad{@VCAo`Qf9i9rm##bccwUZO3m%Sdr|rFGR3@>eYNh|i zm`!F%5``W>;wjEAFKU!T_8?Lz)vimW$0ptfdGb5Xi1(gMnlgoV62=DUYXNO3Gkgmk%O0lKVuDAk4_9KEcw_2wS zAAWs)q|Qgqu`GZT7w+|4+QS*&r`)cRuN(Dh}eW&_j3 zZThUCgCjuUIp-BB95wM?-f{f7-|bn+o%S`iO$hJGA7~+lhqu2q9wdyv{KDVTANL;& zd7LgO`Gmc7b59CuFY=lOmT(*SLpT zEjmN=W(cFOSHTf8>l?aKtZOv6eqB>9Q$J_zY-C3vM=;aJ_@O(Dd-%u?CWV}rZz82- zDHK?}S=XtvlK9>1M37Cr#?9Aky)$GcKGMXdMlW*KzIQ>h8x?NOglSTWX>xZbPAyvNLTA-WIxi21JXx8Ti)B}g)r({av z3`5?tOaSR{Qu59$PRY)6<+!oRRP@!9eE&(>^D3?&N45>7L-2^_)aI+vx|RCpfcMwI zZK92ZKL$RS`i@Fxh&)7+-;b47?wCD}*eQKp*k3SJ!v2QDu5a5U#I~8@p6kAIOxb+c zQ4^SUwCd&c)4-woa2Cdk>u$#JYU4*wvX4^Dh1g4E@MI{x*b)&OKQuYEQgdFHcl}A~ z*m4z@-_{RBc_qy*uX|>$uBZ8aqeV8pp6tA{7v39(8@{E^AE--VXF~WmLiBbu1crA# z?9MQ6^NC&uV@u;*22y>4kL}ggM!pS4?KhCdA&qjCIw+_u>@F;s4LoN3h4vA_EPQli zeITiRYMJ#EKbxNs`3{OHc)GubN*jX_Z72ep0%gtwV1KR+ByFEmBI`p( ztDe#tX^$^YEL*N9Ik&ncad)(;wsN%gTsK`>{?xg4BkS&_^VW`tGbgbvgx<>6exisNZxM#ssK2b+^yh!LyVSSNI=-WR2 z{@uvb*c$~sz7BM_OmgQ+=UKOaJ;QCAV~&=GPSg#p0jI?tGG)$V`Oosw4&~z70Uu1w z^_naur0vD|ISY74xgRuaRq;5xNRk<b{E7#e`o!=3`Ussl1aYXiVl>%_YUwqXuLAwWHU7Cv?T2Q5rCO9FxmC6DVX;l_A)Xd zx~McZZ5I7uD1B&_GP$Ioq{3qIAZI*YQ(VjXot37g=7MIjW?l7zkY`rq*y9Z}OFC4L zPh0z=1_(-@6lxq!OAEJ3ODj!@L}J(tsy5u|_eEpi67wtPVlU(kd7rLd7cWMC;5LxI z?&bG;+yYI792<3QcWniEUNa{LMiX-$|Pb=t`;O5jO>ieWP*q!BqaQ<=9avw;*$SO2fhiA zS-ZPC^D;4cd3iBm_hDKXlHpep!JrBI+|GVUJilO~3_D)UeKMg~HLAaFdoRI?lOm=zR+D1^Z!O{ONJXjDDUNhww zYO#;RkY1rfhtfo@o{QiC7 zq+?07P4YiSa`-#!>yp$}uz$GAm2mffJ@>1B`m)9h7M2)Qu9YOqd#^YmePXF-tD9o#vp?-uuC)vdqaUE98~ zgv`1%*OkBZVJy-6_tst?C|nNE>1BGi83572ya+Ltv#8%TbTZvCy5-H815L@qbE@C1 zBI>88R|iBl@F5?N30_u7IPM@qhR0zz3)vp2xy-X2+=x8D`fNx9f%Pb?XkpGEi|r| zle`riyWy{&DT|)#lvg*eMz18v===&)mKm37Pk*(hrH!Jt={}_ycrGgx8n4iyIZqmq zdXb$V@VUIEOw4V8*p4h(`Bjd^mRR>4Wo6sw?)me(mbt?*1z%~0>(rA@oeIQ=mitD% z6gRF7{~xBy^BUQ*^D&xyGB}N?dIhGw+R zA-0*VXFD_}WA!rNXH<1HRby#PSdk7JUHnsea;SWc5)~(=(YzOdL5{vm1c(TQh(Lo1 zp7rF9d`j}zK+V#^Qg$&D`{Rk^>Npb6dP&x1=Rt~kq36eYY4x67c5L}7-oF&Zw9iNGP=d-SzIi_EBBbi6Me{`zx(UH!H zUSjt=_o2rz^XJ~ym3!73aL4Gy<~sklZEdJ&vL}ZVSwPCLL>JeWAq70wS1w#dw#l#^ zPl5Srp6z;Fhjyh!t$M-AVifHqnb*BL+zjtYp@KKjttY)SFTRHBm~1T}B_=V~B?r_g z#FQh}-!Z0kNo1dr@BKsFrf8_bVuLf44SWsKQsHl_x~U|Jl|@4!h+)CA%LN73PF@Mb zduWi9imDPV(=IT`oF&N)|HV*3vd>SQ>E4%3uaGi4$`?sBVN@_os}62-u)jjzBw|tf zOeUfLP$}#TF3ezRA6xN^MI(gc&if&1S@D*oPovfkg>9zUH0zNFtiEc1O=<6_0NIbh~<965`?Y9e8Olx-XS|YAmdAN&6 zx^4*;LY4O+ph0(Wg?b$hC|Vd{FgmI2X5Av;gz+>tfXyex?&ODyUEc+xHC18Apg^co z2SJzLZLFX1R2=h)xYc@Er6)E6D~<(bOXkVmNouPVMhE*Blqg1l7qMELHGkbd#`lz4 zUiJ&!-o5QQqjmfND4B_65}zvjs;kli41m>j5Q^gXsdSR?ae=yHJ{D_F%N*mnv09X*LLrXzWc6ld0oLLVn}5(WCdX!x}TUA?a+W9WqP}@{4c8J zy1f(bJc>=4ubVcXgKL-4aQR9M^bI@mhpT=Ywhx??>|8i{&3~P`x_%Vj9+a)&ommXi z6!fefCI-s>vz;TRNR;EYm-FH1lrH19Cv|}Z$J^)u2g|2VWx}5bG-V*fW19f{Md>6* z$pClEc@29P$209-hkfMt9RFH9*(`T_%JK4Bw?fSK`nd7Y-`E=-=&KSDi(|-SRfT=8 zRZ=DU7-$s{Eh%{*Cj0{C43%n(?tVDrHQQJFV~s^|ha+?`d?O~lCz14IJyHGc`eFpt z#en?edJVvw=&xBbRysZbmFXxds_4cuD;gI2F`p<-Y*r$&DJp&vfzYf8gQNA@+(@I+ zjGUzOJ3cwYPlk6&KC`dwJN2v=-AQ_3+$^vAV{-k{0D{}K-vy2lTkx7U}!WEKiodDfpn#2~SvjT+Fmz zbcCR}Jx|2)ZtV~Z@Y2Lfw}>f-BwWc~%qNN?%l2zW%1&dLRI(hS>hN6Ftm+fwQ;v>_ z^DGEGio25|k{-1`+Q}?Pgdw}ALKEo#_G*c+&fh_-?3NM8KQ{9m($Fjjn>=l;d+{`I zp1<(@RMF63A_5b071>NKqr3GB_>8 zr3NbzHs9)K68<^-JUfYP&`dmw%sY1<1*Kew~GOgbQjPp$v3gP zh+~9)#==^;nL1o;yW(*nI;-~uUj~l%HiNt^e(ygG@U**9>8oHg2i0005s3uUyh@K^ z_twgs786j{_%?%TW@*cOP%wuD4Gr&}+v|I)fTiLj9_gNIOpg6pKV?wfG501|>eBkS zx{QNUv{p$nIjaBB4CO4|S%pnTO)AM15dxZSU@{Sm>28sD_VBit1H}l8npVa6xq6Dn zrs2M=It%TDqc_lMSY@|7qNJAn?vwSVJaB;H#CzMZ2QoXD=^ z*e3=;UDhJw4!tDP7(a6wt_@O|y{2$56Os~&bC*mJpTxdFU^G8moFDhSSJBII|M|Y6 zqSe8p$+9PDx7cz%JrszIpOr|$NnDb-if-fzM=?)`+dKLPYtZ;2mxyNB&uRP5uRZUB zqGEUUn)O=DyC#1B)+Hj|8=9XWRbT@sSCZuF$C8u1KXvCCyn)MeVs~^nlCkPG1ks<4 zAHIE>NOIv#&5Q>!uQvGX6S!|bdTx8T5ZScjNoT{)Eu5UL>ijHYr;gXF%SwgZkBl4- zmfjznnLNGDnms+DnjAXIi6J6hlA9J9MJ*F5y>`&eNny$B7JoM|e9%2whZ_($_Q$&bG*-=ws(xlx?#hA1~;a{26OKRaFUagIzV0v-liR1^Up99n!5o*hr zGG0^Frl=0z8ou~jASU;=np2T%P6;~nKZ0L)j;8KNqh$LB`B>m`O+{(#Lx84TVTjV#f95P1!Z@)L7oH2|Y zo~M5|(|O?5%nd@sz^0P=CFirZ{{af@D=Q2W8Am!R-LB`lIT|l>ND>#HbFf!*@pNOF z?bFNflKzuB*Vk%dRNTDVQ18UMHZc3Flcr)Wh7YNst;1sRi0;-eZ3$~6GRlrsE{dB6 zI(i<^u?^@pWsBy(_i{2##ulwASN$^S*&xsA)6~!bm8I)4bxZd1R&7?qkU%3kscb`= zbCV2+Csk54oBcb=7XU$W(Vh4B-JQQry}EMjZi62i@wJzhA@Wl?i#!|Q!zladihc7!b;Yy(=S0?`K^sP~U^PtVEOD5u=jEa{8knAZm8=8b0vxLjS!0-CDweV$lvCr%XZy}Hqr|P#)_Kt?X%IZk{Wu@}rJCQB zZBtrz3BfcTT!*Wp9die_cQ^9JMgFKkxbHRu#ir2jk4p@AmRbD84d znF+2vBmLorrrds*LqMXZqNDAFvP%)r{PQh{*S{*a@8R<)95lc=3yXI>4m$c8))geR zdC_?)Xk=ql6f7qQ{NUX~gz*7gKsQjQ{tW0Mk)<=#?#4e&>5vI7vbG z{Kz>qXaw(`5EN)tFOm-*%=@Y9tDfO!GubQ6&raWy$S4?;LrfEIhI9&rh8w<>yM^>e zG@?mk{`3izNt-gB>dZRQ+F*@I{99B}v>nzuU{3Z=&#e?Uh5&!1v5(sFtw6gT6n=MiD*ha@@ zR)tj9wF78{W93ny};CGVMKGnpM8ev_h`oRGWawA~b;8TjQzqgJDELZ_Q-x5`Qd~WC& zoqimd9~MOyh4*M`%i1`S@d~niQHt#+BB^4E!Kz}(JdFr2gJg^ZtE=gV?5Q2ATA_Kv z-+C5QVp7ynkQ27f>_*W_vI?fcn`&*D+X3~6Tr>_I-!^9qz#O2Vx9+&bWrm{1yh1hH zTa-O9X+@%w5evmlGP*0QOVPYAAf+s8B*?IKr`5SDhF|2`ET;5!$I&X7mctVb;eYpR z2~Q%MxwHDVicX&16vMnEsZw-+XjCg0kyIYBmy8y2{v_~mH!Z?c!vl(gPFwe#PneAI zY$`^m3a=ml)maqZnHU}s@) zq^jR$K?MmQnFUrz5*=&|f8RawjQ#p80dkVC>W5+&*#zt{XI>uoPvtVOBq)$N(^r`w zX&FW3@T3RL#PHwn2dxOn#o9JC7nGtTlnqT^9=TxwI{~Z-ppKWB*Bi#z8x9Jd*wi(+ zRFv3~qxLm6_ymyRjxpGOYY&Z5vU`8iD>T);F?EIBHp#P=!?Yx%eWtp7HV4yfn+Zro zsUWHzPWj-IP>W@7*@XgMlfmu=iS{qbx1J`6R3O@driuQ z*^wKY#8n4G3ckgpqHI{yq$6z?Ivm!g?61bZDdhMj zh(HSH%wZ}s-QV#)$cQ*o0Jg)cL^89&h4k=<*7m1ch2rF6dqVhKs{SUbIX8|@r;vL$ zbcb$VHDh-53a?dN4+7=}?mC@0gEj`RLumL9A^;g=O{q%!dP0ng+9rd9>2>Tw>4r^p zm)6jVSVa2MRc<@sUb(>ac%Ad^?WTq@?k9~d#sa%3Wt}J>%#zFy1RLWjMUSKa-NYMu zt_=Up{Xpi#wBz+(((MxyZK#ii+EguOgbLQ^DT|SqXVDeqbhga1vzlePe<=%KIWTy% z=xyHKX<@B>wdYy>yhfwfxvY^R>H0vy^tj!3xm~1pFd{P9yyjH@D!t_n=c=4U-j;c% zrX33mp=}7DK1tckAeG@#z)Ocm1ov$umJ}5VP&kV8U;;4lA@%?j9QDs|f;j+a;mZ+t zE5IZ7t(Z#1G*-Qlhix3lO@f30TbGc@R||2w#==n=pQihjLMMJ&0-~fQq{0@tNEd|g+OjWmt0Y)*#Mo&XCZ9PBJH(aR4Yh?q8r3lvCJy{kao=c{LU z@sEnBHTNbXEF+zvfmTCB#xiX$>m$SaiTC#iw~);+?%z&%jPs)${Bh_}%_4WYV|7RE ze!HIh4^APtCrPGZ3O=OpbX2eApqS~hsUw^mQM&mG87 zkwf8-7KZB}%Hq|pum*}HWO&QpnjDcc;$yFY0{1aL02Zyi5~B}wa9hZpfAH?cLnS35 z3)ye-FYuMokbe-}q$2~vxFMK=qjYi)BXLuS$<5Bu`UyS?A+ead;{0kjBvUHg-uWji z;J-Z3WR%$WUm>A~am9|p*t7)4r7(~(EHW}R^S4C$H!ubp+VNY6Fd$?gO+Z3M+9@(x zxj}Y$JTg2Mn@;1VO%M$gfF57afRKpfeygCDi6lg_{V}9p(XZg(5P-z3=7~OJwVW?SibER)5G4N^cw)nr+>o} zkcm#pB%`tXLgj{>Jj4$K4ipH~i_1>Uj-{;VfSRMwi;64z3_Ytqc4e@;sD{eO|BW5u zP%5ej#2KX989{WBnHu7+s073cxPe990c{-v8<`)oc%ax=CYePvlceH4NVZB2{6J_U zT{$ZV;_NQ=oMvyD?X^Tt&b(24m1_!#o^;T#?V9#FTcJU8?Q)*e;H3WI#Y?J60z3@r zsB)9*T)p63z=0e7Ik1JEZO-&Rm03~bgJ4Wthhg)rfn}KgDRhTwb#l9-&r|M5%^GYQ zn@#bggBO*ljgFjwTJ!J|7t}=##QboY3h&4VNbpPQk^sx+f5Q-9xiP+}(vg_SF*9Bf z%QyPB7jOKwZ=cl!7P-srsMQMV2+yyy7xh8aXo9QU5l& z&=zTT$by8U5z3WmDdp8!ma7gQGjuSiIkH9w0Pi;giOc$~->VA{fMiUPuvK_;F*VSU ze|4~%-&$*MBLLZQ7L=JR-IuzHKVKlndIcN{3xgUt0z+&i-{xJ20C2-p|HxBzMFA}i z$N~WigIqHrjN{ZT){jlWOEFfN1tvHbgN9UgbAL17soZz9b6Bb2lvcPBIoJ*Db3GLv zNBvhBMj>?`3ZpjG9K~WtWc>cE7{Csa1cm%`8lMiYEi0jY+j>_c;kBjRbB&Lo_520$ z4YY1pAY?RU6H_Kk>MzsuQz@ZmY?vB+5zH0C@#|>Ee8C_yNTNeDwse=uzjbQn*FpSs z-;FBz4z6ukXk&%E`)Q3ADJg0}mV{7X^z>>rBC;|9_6w{6*ER#hNyH!;MiiIDxw>IV zsxtXrJ z1@XLBV8nli0u8_Aw_8aBCk>g=^6R+g z>3xiFnRx?U)cKVKJIE$;%*GR9`C?$i7}{AKE=-?Mg9k{9Gl}IlMN8NK!rmnVo%AMg zT)c54c>ct|%*??5u7%LD|1CTLb^dHp=mrlCgN<^rH9B&pkfG0%C={p!!o;w(XKy5P zH@L>!Dr^^WWJX#d^xq3HN;iFr9zU7XPMfbdxyAHDv&Ic}=bDl%_J+5jh!)OnI%)64 zhi?iK4nEKF{w>MZF6!- zU%rGk%L08OKH$k@5VaEKwAzbx?ua^GNM2oXuj6ku%u72OU=yCOws)K@upbb@`Umww zgXommT^le3SQchJyIL>*4#snP17PQ0W6;-dzif(R=hiHysm0vWmz=E2+U@A6p&^|U zBSD46q{=!c7*B~wFHb7>G0XlNj)F6R#Bc-~jglHH3@#k)tKmql9nA(P>!`zouyH(a zdjcw^6?p2XrG9ub{D%S%T%v%WKB%zRJeD_i(ks-1fO>(C4LUl#9N!N#^i9mYA){PI ztaO1MV7SU50Atn6r@61JrENH7{UZ!n+bp$>HT;`n@9M4uG~mL=+~`2EAMhz3ffifeHs7 zzO@I}ZgLaSfAz9H$tTYa5*`5G4riBJJ2AVO_8{QV7n+!+hYR2THTDP$*mg?;!)|=~ zakw~e=FCTPXBIbw4yTcM;c=5l2U%NYKAzcc0dp5&u{)!JmiP*r0ulmvVXkaVe54DVE zVu}c2pigtZm(*V|SUHPTMId8U-|x9XF-P1}~lV4}g~-VsQf2DG0%8KsSqOR$Blq?vM+O zSzliA`feuN?-jb>RbhevvZ6>JRYdVo6K^7sM^V}529Kcwbm1MN?ASt8V;jIYtwdDo z12Mi9kkJ>K1}R3SeAuj~KLrpo>2FM;`%b+Au|sdt1T0dU;G}~fkDdJ)KAjaF03v~= zcyMrSeVWsqBlCA|mK&{+jMkSw^;-+`QxP$RfQ(i6Wf~0)wC`F&q7&{CY~}!u<;S3* zkX28R7qkMXSHh$}PK#~jR7hJO!Pxen$)Xc17$8W61XYGtr$we9ri!Pl2T5tdX9o)d zes!r9axn8c%i1!ob$;5_?PFASmGsuL!%-#mf#|k9SUtO%%OHkfCC6+;>1^^t6huQL zLVx`?5x~}z{W@w|2+79u>LdkFIiKMPFJ+Zsty)89Fe;E9 zoFJq#&k6u&FvAFf8BS>$zx?982fz};%`hr_c39BKds@C)inBV80}{nK^ZVDq41YJc z!KFv-11T?W(}Qi*(QIXns1&DEi4lP^g(r~jdpiGw29OgU`h(1tZuaAs44|VpSrh7n z78HaFg2!Y^rv-zk5lCbe$;hCArKvy`WiWY_p$M4mZiy0PIhh8jzjCUJn!e8;n?^mb69xS6A$EB+rA}tmD(f*UYr? zzy2PKA6i`II))b5Py>gAAgRoy)puE{>-bq%NYdfQiD+DQXoT?FaO*JtaWS#{ z4lrUR3?_}nAVPm}M;azaGz8}WafUts6D#a64;OAhNI6|pp|Kd0iQH|U%v<${g8=x< z2>@Kf=O()66$K|t&uf2f(8}7qKBpdc)UTZwg=TEs~w`Ku%m)9>Ib4y6oE z8W-w!0DlI+A=s33oFC)K8pEDMUAA6BkYKl4y&+|E=g|$|{l|FF8i=>5E=g`|E~@JJ zDKvCtQWT-WFOc%%r>mzMG0DcfD`%5fPx9%iun9qG);B_&d%L7uHYU3$0(>T}LJ2$1CG@qTPGrAi7Rw?&szol(tX{-Dyz29>XWQ>RH`eCoGc=lv<#j*kuCCMH$F*Gcwytb zpjeiQax8b@Qx=sZdhO_HZT&fd3)1aWh<5W6F%qN0y>ue*Pk;Q`E4xnRzo1R_ju~C> zrirhu3I{T%pk7Hrb#=t>LTX8FT5WpU5M~zMQ&Q)2;m?Ul0~%L;!!1$2^!Q{$g~Jil zv8cko5=0eRyR?%knxgzh4*k2tD}w=R`A(qfpex@i`i7&!n5V2ZAO4;RYusa}H=&2_X%X z+!7vE;zv08orXswOu`JR#FA%V-*16HDxC?5;%km?O1qe z4|QMeOYhZm+1F#mkE5ZTfUS`ze+a4sZzS~(#tm87zSte^m5-X3h+>s^{(8et9xO~w ziRBxeq16yaD>-R2lZH678p)aoYdq-d@P(iW%xZw!Yu`>! zg!!O&mR%qLQ|5z4Ht~ixqbQLVd@EB%MJOmzR@E#!^InSAD1TO!uHxZF1wg*1{O zT@b1vmh$Ey$qyJcr_caYE*&VGr8&MGpVXJjw5K;|ixd|l+*~yNEj90Q9R3#wg!3K1 z@*L?#IsuHHwf)^Oe`KPtz_Kv+&{jA9s{h*mUo&6+5A_%Q&ln*@BSdyHV~awPY-2a} zCF`5)yOe#e7dGRCf~A=ybnvS$w^va}$THIy~_+}F_i`*?pp|G?)*?(22$eVu#m z^PKZM=ga|B2FfC99$<{}-<~$;p=N4JIw2Tv`ng68(#`Md3ozvZ(eLYc4jSyAl{%FX z8=aUw|EQq9ggJ5ar}&V!R>iF7Ek9rauhB!Kg)2Wk|E9s8=;BBUe+fyGTr`yq2sQu# z9ApUyU?_eaWF$9XEZ}n&Q|>Q53!+@+b#^sgOQQ&$;8<`%niY^X51PUXc-%K$pVQ}T z&37I>J8BG0hvnKX-1t9O7$5;^kPWJr87+IBt%58~E$ z^Q_`ofz1n*LY-ICDm<(pkZ_69Y*OS9TA)4#8Uf52X`^c7Gia1H) z(<^y#P(q~}h}16$!_>pu(sOGAOPs5Z-@nR3oyduF**@Sz#`+HJCmFn6r}>tTtNHF? zO`MuBqkyb=pn`0vYoEPrrHRn9r|MJ2cftn6})_WNrk>q`Xu5!$@kf1c$X zK9^!o08wnjF=6BlgjrGf!n-e@^Gf0SVSU+BIO?{X` z-gMm=ZIU{+n|`nBTw$x~GnLl%0T<`FPw%Pyl!<~bAUix&Zy~KR`e6NHbSE)0Ru}>g zMru6962)=UE&okYQAYaNb*a?eC8gx83&=}8r%-kd@QeIfe9Ej0Yfbe@g{uZ!Q}~6> z3Of*&hhwN{93N8}Bcv{k_U*={=UYEpe(=+KHxuQ!$g%581HXu>vk+7(*?lNx(k?v= zfR(W*0z)C(S_86$mcL87Bh`%<(c(G~&q`JQunCr;@4zb2$okGuwmUA%$(#idXxt za;^hXJVN8NR^#TBEy@Z>3rWiv_z|c%E5T{UnX3%-!6aM@@ON5#D!%4fp9@9yWcbTW zMc7oqHg;X956JJ|qL{~$1f#DSBDPWqk22h5c79JXXYLiBPjU^(@t9?doA;Dttjo50Pb$>v5T!V(2`$~ zgV(aO+vZ-}@137_yDl9Md0qDkMQ0bU*BYIk^%#Uwu|4tHHQ8J1|Qfdv`OX#izv3{f)$MGWoO@E`yuZi$AgF<&b z;LNS=doe$GaRT+h$ILGTj{!y_Uj+%_EF+BEn8nS8Rxnn~?|c4}tY0#srlHX%fLcJ6 z)Yq>1D5iF4n~Ka=4wY0^B2DvGj#T@Q*wJrDawZX(4s6Tp157fD&?{jRlV-?Fi)qD4 zMP&Ilo$Avs6{Lh*%ru%4bhmyQW@ftcGM~wbBG?wfxxHe7mJkKx+~{^TNRFifz*jY4 zFF3Dvp`=^1H!45VOB|1(s;^BIECY57h)f<{LR*M=ixk!AQE;gbjQMhqft~mXoeT#{8jB(TYaf=S=nC> zo1j$bpJLO=m77l|wFX(G@aAA@q=`B?gO;<10Svpq)4Z4weIgB5aUN2JiO6eUn~5C{ z&8qh+9%x?0#q%2xnk={JNZPj~U~4UdlG9b!)yXEFRY^WV4W+wB4ss30l9s}>gOCxz z+VJpV8e{BhLjCzNXUP||kxS=BneB~VZr8~|1HfOl(|x{MeKPHSy>&Gp^JiP=S; zW&`O3HiHXLCXfuqiO$w)y%b?mon2os>)ff3A+zxXY`e#spOv(|+d4dt`E)FZMe%9k zOdHQ{3sqf!MIyu~4n9hn+yqe|OjM15|Dochh=7LQiQ$mAs!($G<+A|;Erwz(A(yv`Wn?J@VQgG1h@$xn(1v3=ze;?NzH z=}4hMbo2$aq>!93JQ?9awDKPF${z*d7rydmpq?&nY-=W8&QvD;%uRa?84F;(lzASb zb?jV~x@RYZAyuY$^Nl-)l}mRUpsb;lMOLg}e|UK)y)UZLWE;si2$8KXgj zU61l6<#{FnW}Op)r8q3r@{#3l5w%c%0$)~jM5CgW>VO8H+FVsg9I~fCxwo*A&Su4N zb)Uz(r~k3#2iHqz&D&4ka`8ig)x}%}wda(OdIuJ{ai-aqYwB!Oe`9g{z!zJ$%lfur57U^KS&AE>K5(us{ z?`;cr9dxRgk`?D0T6(T)>5*P=mBQz@YF`p{+gaY@6wMkGWa`-jPNBX%! zQzBp|fO41eX1nKw4;L9{0_3X4;>c*AWUtkx$9-HVpr>lgrFVP|mrY^4 z&Oaj5B1>EH<+YX;X{~UKEOk*;g_&ObQS@uKr|%s>C_K9$TVnz-Igp+LciQ~q>?LdA zJ6K>XzctB>WM@LA3&^G>7Q{x)*hKXaAXo;E4a$+n7Qi=VE|QYdv8>v%f?RWaOrtywT+EZdJM?J|CIgvz z7&A(HdvAv~ubpCBLI#xb+s`Fuh3$#<_Q5$wFaX4nEebsbN***7?ysEHTNLthln!LGr`*GV{_VAg*J^zNA4@oIL=``B8EM8t2?bmm9X?WnsBWu@`0EBCy zS~R|DclLutHbR0ek_Q09l$hF`A(K6~b9ajUy2Z z_l01GqQ<`ga97Bd@b_ zcrfQ@=7Vp_4g~MN@bD2nKo~|>0di1~^j<6okh3IU=LE^?|BkC-WhW@h4>$Y*(2d`% z6OHZusuQ3l|NFWsb|pRYC`p+BJ&y&2Gy?%GB8QK!05A?2oxKFPl#oj3fv*jyrM*nD zx*!PF0FO7I3tJDx8i2qMYpSh(Kt;XKgA+4jmK zt>OGofJJ}#7w^cktKkY^$3cNYaCcTFkse{bpP>K#M!eb|$(^wE&^NX@sS4QUy?DBP zmTk9>4o{xz*q~b`Z9ul_pSn4C@5i+rUWo@Ud)w4Jcc(wgBhYJW+FP-Pk}H#QA7($k zVqojvPv|$B?^l#Kh3lGmS)=6@6N~nH*=LB1MTj|uuA;boL{k=4DwTt=lZ@n>d7H29 z#VmU{O`Miqi{Jfxs%MYVaCq>M_uyj3twveOjD2x$@8G4X&>n94VX7gi>(lBFts5FM zj67@4mZb1hgzoU3$xG`iKuIJ%3V`)0W-X77JS&YXe*vdsK{M`s|e$ct|%!WO2&P+qnuh+s_VUIJgdapX_0Z~%5Y#wgKz5NlerdbR=7E|mj z?mQJ+J_#MKxue9*DeOG0=xv{*j;WRhyxP6}RxFYr%!;uN9^IRjwWjia->K&f8y8qO z5=Ec4oSBv3RXcsB%aDPbl@P~FbH$KhkiDcaYCmr0zO033r&!7C?kJ<35yey$I`>;r zW0&I(?WQZ^PP~ETpJOakiNq^=^=seh4R*T=ed~|S+gpwd^!v&U`aj)waW2p>$xT|* zI4+XbtzZ96*thz5cx_{E}_KnDwoF0AlKV!;9IDzWd`$_|Hih@#}mq zPo7$)2{ILDYa@fXv#MfEGeRz~l-~W!hZNR4Y4x2v=sjO<*c`*QB~c2~Bn(e}X=BZb z&mfnYEc?!++q@k_%vrE^V8Joh>we+v9;pzT7?W4$d3e@aQ0?T>O+lHrH|V+IN87fp z$)E4raAourf3whWXT!^9sJZfSs6&Z|_(Q2jaW3>Fqp=p739tP(VlyK09N31d$J~Wk zBnzoI_QJZi9^L5S`nte-ZC$s(BB8jSY%C<&ZTM(zKDOSXHt$+Z+1<)dv{Lt8KaYF< zc--*WLj0^&&VtOJ?x)%VU%0<0XY0Zj|DZg>@NUllsbMyzq5b?yUWK;QH3y349A0&(W5vdBvj7+W;zNX_j_s%9BbOhX;`?$4H2|RaP*$Y6P6(@NZUSsz?hj`= zzy@*vJatD7L5$Ir68MxN>Er@`|M8b8BB9JtfHJ1%DD+4G3}6RzFSA1fkbm&Mx|hie zTcw}@lJOJ)t5^=vUHFUMWVyFJ4!l3$7MTJ*swS81+P~1PN;7&mE3hPY2F7 zm@N`fb~q~_yPt5J}%Mb z41e05Z?%k{_jQ4R;!x4^cY{E;a!o4G#E#fo9*o~4@C(|;NN>?IV&zjA`rCPXXRp4r z8tv0uhI+n!^l;)5Y|Ky#iFVN{5Gn+0psAx0FL|m zI1Ch}iom$z!>+n?)U9%>#QKEBy9`C%^ZuPE?u&l7+#s9b%N5Hj)3G*-n@i z{{vj0Ru4(JI~W0K9hbm0cL(*!o|5q;!eTNg5DhdA@h|uhVAVbAB)r~l`|i~C+#Ect z?s5CjMbrYD+)zDgXk0*Xw#WZZ9gVD*t}>bbO|GPHj5H0MmEuxyhDo03Uog0>3aXJc zOC!n;{((Qn1k$B--jCT2ZaEJUXwrR4S{qVK0ELyn>$x^#Bz1VtHR1b;&Pmo0C1ccL Q&`(@o)$~-$lx=VR4+1Ri+5i9m literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/covariancia.png" "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/covariancia.png" new file mode 100755 index 0000000000000000000000000000000000000000..e935cf0628b6989b0ae27aafb3a51038058e8754 GIT binary patch literal 36358 zcmcG!WmFwew=IZEaCdiiCwOpocXxLuxI=j(S64G zarUX&yK2i?Ypyw0q@uh8!WY~xARr(JQj%iIARwTQARu7SFi^lhVe`-{ARyTMR-&Sc zQlg^7ip~z^R<>p!Aex~+wV+keWg5=Y$J^u@$fK+ItZGnPox zka|fIw-DXC5202pG3Q~#ZIRk%wk!3x2K$0;sSgaUw+er0x}sF8SW#ZF>ldL_W1jfIJqlc~ED>_`BOvpzwPd@9Tcv5MRwv%p*SJ?`eiC zE>A^cl)CPP&>7e~Exy-2cPEl+bvzR#9q`hVHYXBpcIx@r^X8l&Ve@^w6A?4$Z*6Zg zL~7Us7Td4U-ITnmS6G7OWYnw9v5di+?~4$r8zvUp3FE)(^w}fgTwK?t5XLd3o19js zKpDVK18JDSMTiN#UWL(NARFJ0=B;*D#N#1`T&hS;5S!k&=z_3%MRfaoB{`NkU%VLVxIdR$`WO}*RPgNQ9S z?rNR9Fl8XmI^fRZ+k`dsX&V+z^IL*9GA<)};gQ6D(T1yf)2ZoxV!2>OVsT)OXE8}r zGSKFHGsu7g^w7jx$d;icS&<0B^kK+_RA-hIdvP5J@N|2}^VZ$jvNNk-$ITmz_ z{b<|QW>MtXrH&Heqc zFLoxbC$=WymUsS(SFuV6#tp#@XD+<0E$rhow)w^v*iZ|(cMCpje4{i zZ`G~7)sY5K1e|n~4j+B7()6&awxeWL0t;$Y$oEPzaP-~psy}`-foev-;pOdB+<41| za}&PG!O1}isUVZAKW1XG!wbE@k*}hB6ic0o#j)WA^7(^a-F`>F^*##~wnwMjEp!A2 zC3lx1p;HFM6~e*>buk3z1l8Dt{7vePD11*tKpuQX47VHX>j;7mwYN#l4SL*z;|SUq zj5q~pAM9fY!Vfi>(8&ra5R7w4Kre#)J>)Mk-5&&4k?jQfLNF^~s01EUXdY4h1R`|! zZz5My?v~I$kT68{rkqL%d6Alg^`;08N!Y)1hOLV>OetVPvh~<93(|wq^=a3#*uu5< z2{xs>okgj6I)hnB{sh@TNj&*#kRP+C!RRpqrt zD#uof<&CzM;Q#s^S5&S5b4rt)P8)_H{#1jm5sw#yAVgl`;#+FL$rQsO;Vtqrhc{Gb zFp0?{b3Hae496fET8z}6UE?U0rZjU|CTDj_=8ZZ{dT4djipZ?5Ot#dV80}a(k#>Fh zLjr%|Ob#5m@wwzNOX63)7i@1kwzjb9lAYt)BXb441W|24UeS8Ob#Muw=EgD&a&7Wm zg*-~Vk_M#{%TJNml0u*+!M?z9e0T2y?}IQ({44T<{1{CyGVc$)G0hcyUFu`j<4-Zt z$b?2Id2(EuWL0Tii8eWJIc>vV%zv5FSZ$3WET|2+2OP7Fer(aD%ccK(N-Iu>9YY-}9#h?S z-T$)Bxlc9bLSIQgLZ7Kgs(D|}Ub||Pp1(>R>65oL^F#$kqFxYn!P zzdXv@8)lYl+F%Z6Hfq7wKR?OYFK?t_;$fj+Tw~ZhA}|=Vov>NE4|A|M=@ev=wnIfF zSi)j~Y(aRSH6c9V#i-9nR!v;}RaZ_ozSZ9u&MDI++=*z{e$T%*WIu7sX1L~s@Bs?%tsI-S9NIvKx zxH1?jn7vmtcmYBXrVb7VE)?$Pmphnom>XCf*daI~taB`V^h9(gv|&suR4)=~^f}Zu zN^i+V9anK##W8)`_C>3@l5GelhAZSN)GM9s8`LCJLezG0ZHi*@R`Mze6>N@+^hWbsGUn7x=K4CeH63@QvYI!2YYRfyVO>-L)wYpa`c>ZTi|8jkABYTfD>n*B_uOeC6Z zn#0fRPNPqA`6BqlcpL4(GAp?-?7X+AkFa+<2VhTj4^_8rC$yHl+HV-J)Ugawp;9lZ zDXU-fa$BWZ2io1**;*Z(YCLium~W_Wv2RpwWp6qT26n#Pw4KJ@xIa|i<*e9tJzefc zG92qTH^aY3K9fJKE{!yB_@1a4P#Tn9d=rex4L1ncKy^cF%HTb4I1Bg_K-t6oi+t1M zm(pfl&x7!@aHw$d%55`-edd>WB*riPM8??4_^fhlML%b|zH5gPB4i`2pu5xBa;%bd z(0~zbVNGL7MZ!m)MxsVYM|op2;AP`|#VkN`;WiJmm#K*jHTE-R8mc3aayRHueVuq* zfQ5p^fE7etLt~<>BmYKuM=?r%K%r2qS(qjJtpuvj-2rPor|Hct!)f`-m3mFElTVbL zjLL*`mbHN~It?SmO;CrXo%v-2F`nRz=ana&XNQl$BWJ>Ftmr^ssi^(r(Eiqb`TU)K zuA{!==hq;g^L@HKtOKSqghd~Z-0Q9xzY55eFV7D)r!~BRUy;2GAAfE2wuz+l{phYG!N(J(4maIzpt8rpivR#h2t^+QnMy zTsu;Fe5&+b@FWpHSU`ZsWAD{bq@CaP2yrjg7wN%q&e1Gyon2Y8S2kXwCxGE)T{+QO zU83L6)fH4@^kMbr`g-&btAh(Yk(S-+tNwm^MHyH8>awZ(+KP1WHi2YN+d1W@bh5o9 zvz;2p-oSZb6{MY{W3DZ#J;dmv=f7w^JHJ-FvhMqBYorWuD=w-JM&cS1Kx^>oFE65afAo^6lxH$3}KIap&%Q3ltYmHrfO-=~~*dLFa_h&O= z6MWb0+fu#5&on>F;vO(BpapE-nXg!$ceY*6sZtaq1Z4cWZd0cX{Md5X&$=yRXPg*ag==pdiDEB}}rx2=b2r^Ad4mhL`Bs zDJA|#&r4MB9j9M?Tja_d0+y5v)?6r23)?KcGX02th=yqqV)2cK(J`;}&9nLj_WA(U z7v&nIi>jQ=T{&2eRmEC)Q24i0juMH`RsKwVRJC>GveF%4>_P_IGCVJT8>_eWvpE!E z*t$5$AS`8T@qoG8{u!nRL$0=**5pe5S=!kXJ~(#hTzSkoRFWMr;=66HUfurPDIg90qbxU0Shoj)jfkPQ^hMB6ZRGAg+Wg^}5Q_Z8@mSW$v z&Wc)}@}ctP?R@~CI!vw(tfO5tbPz2Py%78MoaOER>Opq0+?syedFfxsX^eM`(f3)t ztGw}=jSgYzH%O0hiXZPH^ql3?fB0>@-P4|(JgkCp@g}espqgDQ8}RCS<1%j0%9dw< zZ$8%*<(r&y^R)gXYPB^rsUfpEnnTA?QDO4}kpRM!M8Qkeq(J5gEhVBf<(7su5oVz@ zT}pJghHWIv#EDoE_!4zNsfs!)83dnWiY2Z<8L;n};ww#X0Yk{tvzBXX8&bwL&$>e`#|hcMiB{f9>3K z+T}|0n{}BC1m}qVIW{DQ)I~-Xmj$P%@x((mP|Q0|TMv5ong97cSv~unC3;s(I)q=M zX;B_sP!W__$(IT}xD$QgQnRv-#YME1bb!`AH?**-5H}+Iw)H{!i>{W^^5J)_;S2IN zT(~ov!=2ic%bAE>$w}&1OX=H}G@IM}#UAcEPuW+;zTrQQ3;SPjHI5hfT=G>K5tMw-4MvJUAYx+$Y`VJuqPTZhY+Zoc4y2u98&uD-UE) zm>0#FWsZi>9ZJm5dZ=L#esw0pqFRB+l4;F%! z_@1m01j;_UFWeR_`%;sC+e`jfL`~`$kat&lyV=;j$6j;4oee}TNwt=3K2QmCWbD7~ zK0W<4U^77N8ktnukA%CNjF-_+x9omZfXEU;)Fio+hi!o~B9S>HW=A~fA5t>?C(n+k z7m?VbI|Q{&-NN^{1_7N<>=bkxvBmmCZi1sia^s&OBF%Fm^&9hk1)qrrtA&RDx&zZ! z_5BQtBG@9dEtDuyHo_k@6C+o+z8Iy<{wSH1&$M$7eUIcxI23n4i~`S$WY6oT|D1M{ zs~Z;rkDR89*h!50@3{8rnDhGez<1aXF;P4+;R2o=f#l@kBlGk9FPPZT2PvtQ_nI$D zmWxTYL#G*MH~78@l0i=RZq}|7u1-!E9&hLFE1j!kV=4>LyLV$RxBEXB)CKSb9GY_; z#xEO+oRx>(CZP%;v?1yszOJa_;iKith|WHX%JjYV74>(E>Bf!4)JIT?Jq(-{t^CXf zV(r`u%7^@V_{qg5_o7{Cs`g_ls4^rn^fv!cR8m_JUjHT9Vx#lyb-3PT#LUAHw@ZLF4zsJmN27a=grMeIL#C)86n> zo1xdoy9L?TUIyI!UB^H0x~Ho+DxpBA7(g5aAp+r)%W~*JggOvg1#dwd$-y_v5e&~+ zLG)swrZCF{AHqSH#n0mienH)mPJ>7PL9(HSUxwx&XLz@rv+ahozSVao>cJ(Vp ziKG-<^6d>uPQ>O{*`ePd=Ph{{fk|AXM0qs|J@`C!X2jR%?7qlNUnjMeR8JINn0I{t zbVCVl@ke=A@*I*xsl-BID2A{dQ&gTH{)xjsivxvys{Lc*zJZ}V^~qo=^;#^IUbbVl zW~bYySUh9g;@kx-m%1FQ#j6fp?pGr>0{f$zsXGCTio}+bE%g5wvq+7Jqfq>a-NpE2 zMGTTipM=XL+O#QkI3*|K^>u`Wm6V2smgFdO-JnsgGdaT8yKQbxG><6{=T5p=cR8<_ z8QHwdD9s2RoMxkjco+9;?IQJpI}_i^MHh-Y8FLAdY{*i%Jl2U!TR6^L9Fo_l*BO_(x$li$=PPa;0;I zb!LSXR*Pim!G+yj{la)TJBKUXp@Yl9z@>K)bT9-l^Z>Dp;GDsUy3@d3&8cCg?0Bed zWiFco%Ub4G8P_s4a}qb#MDXKzJAFT9zRGT0>xhAbDSePd$gvIPt84c|JslqfXk`evUjtx9B#!VtY4%qZlMcfibw zOK@v3eh67+rdvJVUxOnkG4>6oBzo<>K=Fh4bg*(fro}0x=poJ;G1v9 zz)j0S`1rAo`y>2Q)XRV}->U}LUC7LDw@_ru^E|5leX>(h1u=#J&uJzAbT}w@W)%L& z%5dhmv&fM5Ru>OQk#xU~%gdH-g=`l%;5oJWYp`meTI&~Z6Vxiwkbm6&-Pn6rGF|v7 zlI(G$w0z6tdB{egc5ZjhSOMc79J{V{qafS*57!*mtwV~Y{q`#V)PrRYk4rtfuKj69 z53YwP`|Gvi?qn~8steJN$e{5MdeH?!Xns&K427oLPS3iNpCgMETs|Ae^0Er*ogRAVg&Xm|XpWoPW_Z%k``zQVn??Bc4cr$|$zaIw5 zh1A0|E5uZ7l2s~i$;AmN;qG}8zX;pA;)O%D^6LtuLU4Nd`?e#0#@@;4@U^2rXOKCT zJ5Ia!?dWe>9da~3bs(*2^gGOVlPYo^%GSzC+LelF`h7Px)oC;vle87%=gi|B=6+JM zR>tM*Bu-|iunm`-NY`D{d$<9+&g(3J`;Fg2SV@h_?b?E^k)+A1b*{&vdZcxCrs?OV zh;Y7}vwY!}b2nbHgu62V&t;Wc(H7W>?Pb+CP~TJ~SJs&)dTKquF?eF7M`Z7Ld%LRI z>h_AbXFt*T^s@El0PRZ{hv>!c&3gL0J5f3^+h;*!fZajwdAHs4nt6K_1Uu~^mHe;~ z?JxQ0>F2%IaBaZJrf<+;PSADihnC$x-ubjHkozS1F*GJJuP`!c68(K3ZD5)rxv0LV z%xruwdo*5MOv94SLfu?_PCZ$@rt(S9J+pk|`3{sN4J6R3we49A3`Ca%WE5IM1FJ$q zBUOR;+n@_bb-2UpMT7qWGq_`+2f~`HSLf};hrv7a8p7Y5Uwv-(fUuBlrK;(wDJRQo z;$X*UWa?mS#^`AWs13k}-;)>kX=mnYMC@s2YwyDA`IYoPcklwgKmTSTCH~JXt~Osu zHRTkEMID^Yh&dS98JS51z7P`=^E;cG^D2vp|5taQ^_A4p)zy)giOIvmgVBSH(ZSh* ziG_!Uhl!b$iItTBxP!sP%ih(+eVU{Cxxu92~Wo9kCn z($5F|pU?k(Pcu)e|9+Ca%YRJ^m>|>V6($x&W~To$Hqe#-^Iu*?D^D|9O))DwGkX`{ z83Jsa-2DH!|Nn92zn}O&dTRZ5PYxEI|Jn0@T=}n_{7jz{_#YGc->dbXe}Ux^_`=Wh zf0kb0%P`)8EC`4Yh?JPHswe1aHf)ES+RG4;imCiQOXS$JnB;YsxwI;K!mToGQF{Il zsEpFWLUOqeC|U}+bySgbR#Qq*vEs41k4c9*_m`~p$Ut zWt+cyr7)ool7SGC#78i@@@=RMJ>)`Qz&8v8fm;yf^LIiagk?|i?O@&Ff3AQ}OoG5B zfWVT|fZ|?~cRJB?ezv9pZ`l6RPf9uvieJhBKU(f{6!y(mc;IS+P!j4dP=y)1A>-uF z&cM*%|Njr&$GS-&lk!8i)pt3kZI zSp`9iA53&hO*W~%R|8ni3wj={d+i_ZFJ?1^QuP*-gd2x>$Dj`)pd%Ds*i4b1@J;`IkZvi2^O$FGOZCMZ> zV{?sl{};Q{+@ss$Il5VD>p*;t)i_*miCCMkS~Bq%=A$1pDueiJ5SQG<-KVc|Y0SN7 zqfX1e?QFLFUay8g&s!F|{Mu;@%#ZwU#<_5|wZh9(O3by3ulGjzqA?ljd)G|NpS<2C z1V4Pa;x?pugCVoOV9;WBF?BuW8zAqvkIMLEEmK-5<}CYndsMv49EjWJdiKjp;UD zW8g5+)RaS#G0b0^QhQDfl?vI_7!>mdX&k-|K*J9WRG5}{?E}=UdR=bMs-$$ z$A$g^5>@)#UQZA>BB2O{^bh7OOeTGNowMu)gao!FDTl&o2>3VnA1isr1NkHInGo+Xw92yb+aztLwd@{#w zJItEp<3R9(<^AR1f(r@1@W?O1ldTczwf&;Y#ra_3?C~r5r4WN!`HvmDP@mb_1JQ6q zjweQ)-($Vt&uJ!cPK_^ry>BGJ$dRGJjPM-Kb~p@n2V?PGFtNfQ#UY_YUy{K4@OfST zdL8D4%fc;qZwd!qGN1Y<5fm(Rc)27GK5PVBP;OcD7*$TOGAjNGEbv>j*X&N_J8$VP zI#(Y{l1LFeGNp?#XrqZu4FF(jqxRobdhLP#Y}8|vBw_qlg<6o5O_pdp-6N>v-MGX~g0Y;`VNHY(5A7`wn+LFWl`uTP!E{ zPjRndjq~mK&ZS{0HJ`Gxrt5jcZ3hhPVwS>tSsPHC4ZmtjP5<+0)0XbQtgX7C*nXP>9m>#ED7S;P*WAJSX3zA<2ax}mFETeRc$c!l{nn^{jecjKvcp>2Tnlt_ zEegzFr^~^_AQ2N$XT9r@^3MBN^M-f!cq<33zr^jglS@A60+Zl@$v}gEU9vIZ|kE%g8#2C-G$0yhnw}vfTlW%_RPyL&CaE9q58e4|h|a)vLPI}vs_$5=Cd#Yl4^BZ$R}*uU3e=9Z{_fFhF5s!V z>rraY8pC!xgF^LV9yy#Y@JntyZCsJO?ZxOpf+u#_AG?aRA#hVoSan~q3nN*z@4QnV zPG!nft=3(F8g|U$w96tb9EZ=kwNsD30GGXkWMU*7)|} z(LC!>u~j6qdEHijJ#Wuv+2q!qm@9OM;~Xqu*kNRbBU8>=dW5kY`a9h%gygyeu5>=E zpWq&V#FJq;bXqk@IPwZt_1byK97sAC&UjtYhsiaWs zxKbp+Ni2!wA>k8XT6I^aO%D-Wu8$jz{Rp5= z$b&U-kmuO_aol<0oy72kI?eW!tEEZ>hbB0^%{z$&%DL5GMyPOhlLbBDeyA(J!q>w*>^Kuz}yCX!~3KP-ftQv z5@V9^DFQ<#(Iwtt3Kv5$=gM{GF%){;}(y~!tz&EMf zzq~^e`EDMZwe=ENd0Lo5;bCxHCZh3WqHT3BEddcktYK#m1=_6P$`GQ{U-13W#L?Xx zJ)8mU_>6&WdnG*$CWPirzwWBTe%+<9!w$P+F?7-C&T&#YSmNdp$B_>m<;bWnQNwn9 zUT#Aw?fTFM@nqNM4>+{b6YDG%5`h%4HAMaIFX^VS^JQ-{JDLsV;&!)3G5Fjy>}sY#@+HtWp_+QylNL4 zL)JPMEK$ht#TSH57w-tadV7XE2(J~~UsKlVClB{47U%yZc9}jOQeFDr86aZkh>Wq9z z1c5Dt1E8sE>ue>}|H})1Go3k%Ls3%#86)X<^oCiC=!Sw5g^)q@+9glFlnU#kv=@TL zV@p&1zyQsDqR~WLU>wae%hmmVo-Qhlm5thl+FJV^COT%f7oW8isHJGf(bUkJGR1>haw~WJmw0u6i zJ?^S3%3pN+BThpE7V|$Rt+aV!yX{sud%Z6si627?`4|Q|soMk+tvZc6pFN}Pg~%5B ziFKz3-o>~S6Z5}Chv9LoY%M|O*r~#&NkhZ|XXQKdx?u+OAfA~N#7?a9p|((ZwMsm5 zUD8<01L9KNiRq972P*ERrr(z|q|fz3USw!5%Clyf^Dg&M-63J$y!ti44_I4LhLFV( zy^AUdoa%-~tb|M!6n~kZI6XhmhaX1vMhKkBsoSf^291fR#7J%u<5v(U^ zi@}4q_TD4L+EG(uc|51tM`n>0hT8&1He*TN!v)6PigmPG*JtN~I1+JYD9RKq7bbpW_EPYSm zDUp%{AzHK^*^Q^01BuQk_Dv;;tQ?$04q^aem=~KDsO7+@G|t}G*Upzo2dW&Y+)Yp# zcA{F*`hjg5B`U{&l+2VYBAB`TC#gz;ctmAOVo%5XOp^WpnU5#D5gXm-0gfOC4yojf zsWy-Z(R>3r$vjn-Q_TZa_{Z1p44mOVKS3yubbm!HrC^o47i3t9fah3xeBT2Oe*_>S587E=Ek7`j6II|{7gdG#o^|W8Pdf4e`zEXto+b=nJz}Ja zl3&u#(HznTM?EjhM6zZBss7j*k^pas8r#E-Lsg&}U18k1c%z0U$Nf`a`W$9d6v+LM zA+DwMkG#du@`VIK4dGUyzhwVsUN|sQfmHo^(%YyevLHHn zU#p@JaGAHs)4%Ic54$!e)mHY0Atb*(-DKL$NvAS009afSs4MzgCT$pgnxI{NqDHb< z`N%M5it@WBc~73gif5rphf4D&Li_dW-GYIXHXJ6O8Z3OWQT3HLfuOQpX$C#8AoL!z zQlnZ$(imRvPX}i6m0HT>sx&w(#@{Oq0$Q4q3)PJ4R3e0EXfPBr`ID$fGto?t7I|Fu zAqoj%;czc470ogjg8=yO*Y9DC3IM4oKu$9p@bO|mW6;%cGKq#7ff3|a&m>C3)g~*i zK3+b)zNtlO9B2sk@p=;vU}x%{Cm`DZUAWH&kSMER z4@f!?{eLj%%<}@cn}y6#646RxnAs$)CiTQDvK&KpQL8e_|DvdTvXnCUlER#ItqOt$ zKvD0sJ45lQfSZ&YPNIN((arg#Q``g?y(nzE$HjTufN`=07h6t34+>a=+3(fjFTLNh zh}2Tc^4tGNQyrNqBp*wH=cqQ*v3!Zn4SU4nbuIN`@j9t$9=RGK%Eb;fp^+qx=s9!t z2^_W7VwhFSET?R*g`-%yFvK5;uUo6>ywCVSry)PJz-9f9`srp;a7Pi&mmj1$ESl_IS<%21!BwCfVaB^=XI|GGd=_;@*qu=QmVUM z$hi{L%nE`03|e5*XgyfN?znHp*w}W(cd|iY2~ZBPn8K2wWMH zql&0KBPK;Z6%GQxl#U!z3sfa4&%T0+bIU^o@FoZq z!tm3Eb0{BCi1M;;4m+lzHpbv_+5g~L_w4_{s8OxkRfNxK8o>{2K`;hJs!bJPM;m0Ff-C$}5JLR{CkkWWeMEut)w@v(Z?)zxkUacMRuEXaO$5?y10dzH z*Xr_ZHBf9z6e@;bo`2y}i@6)zR@G5MQ>zt!=i2Z^yW5@)lpt_AHU|-1ZFR9|D5P(b zdMz~S4+~D=(q20>?;RUIo~w9)EW(2|l{Uqf;fA6GNAEj2-}UI2Dol z)1FIi<_%=Brt2ME#f^FQtsVEvHnBm1dp}eP0Ukn1nGKT-1(u&22@)Ny>guWdPHk4r zvS;>gLgLptnM53W)zMnJ$0(4xoMe*DfB86Vn2aH6R=xQqHe`$HDNC5_Uamfod^5A` z83Nv}cv=!PR11sFsH+);1)%9D^hC4Klu&|P6iH%yFuS6vTSbQAs8}5F(&F}7$ei=s zK>UB*Kz6QNB>fY=u&0z9nGn=A9;yhRQV4uPp-%}7o8Pn6_1M*u%fYrr9bgU$$0}n#G*`6U5mjjiaF4~XP=l+xi@M|ODvQSc# zV9e#wY6}(Ht8|)uO<~8dFTBDMu@J%SIeWY;uj4`_`*DY!8cBiUlDjoV3sMr0^H(@OP&oUj3JRMJlY?k z`+nU9^VomYdVF{+IONkXzkYUz+%c)ub!I!4Uyc`PE4h`FYe4aYWF?mODi6}2 zCG1~JTu}a{v`ALbp3B^EweWVlE$r@ke?G|u@<)j#LfasVYsUhOeTYxGEG2S4xh`!= zR7w}@u-U%cJIUHft+BF-pFv?o<$+tqy!F7-Yf0gbOwH8`UH$Hh_V$`;$exkcVq^XE z3}Lah5(cXhh8~Chld8a-{xyFlg!9%_!gwvbI9QlaX}oMHM=t}XY!Q=E{`V~RWvltf zA#4<(4^H)~2IoqAx=b~=auLVIw_n7Umo~Tx#o<2}ki}&@t{`dpY>{caJ+1EPEKQcgdT6wVb zC-k1Mk9C}nS&ghlQ@xJ+=v}!b>_-`{+)gaNQSBAorv6-Zd6{_!!-6FdPa@UwcNJzo zz8BOAI7Dn_;!)i5r3MKgnI>$#osnsP9|hqd3tU^Q6C{UVA~*Uwy&P62h6Mx9RTxE^ zVtzM*cOCY?dVIh&600;xHpgZN$3J)BhnN|%BX&fU#({ITRy=u^h2{M%`{c5 z*Uf&~n6x<@|MLT@nM+UDz@n4?>0(_lLfjif)di>BGIl|1lk&(q_B(DfJ$VXRn04h!B;1WTjm}6_;B5sRV6J&4~8$Eruh(3 z#3KTN<|**;>N1^f&T@1hV|JM)^4?soamk9RGG1kQ-}4) z!xT&UdF>|RA9njy4B^*|Fn(zEx*2`{Inr{h^88VV>w@y^UE|~j#%ooH;^93UG|F?GMzqtknOO5ZC{W#pq6 zq@<27lW7J(FyWnPFMBSv$j;Ge+N^xh-r6YbOLI`ME0rb*G6eID#F72JpoJ2%R%Q{yJd3hZOQd`!{k5!y&br1a+kf7jQ#?Yb_GZkX{?FZu5;VlT zT2UcX5F^(Hy=XYnfi`uS6Q4>6<`BM%?Bd|cyZ}bKcCF61o^!LiGe6ltV^OCzM(|nh z{IRNg4L{XnYbv(Xbyo)!!S0u(>MC1Y2P_1IdMRQD&VCkb*xfV`{b>UFN|{7Vx|E&9 z?L?44Qxo00@N%kBV{{npbs4vv;Qq`Q0>(LJuUXruDJ}aHiCr%{6C!&v6Kq3=hMlqQ zJBNZB@+%1`VX$W#w&gy7OG`BKXBy#6C$H68v&lprbFKMa*2RA((yhwUW!`(*t@E9K z5KoxOjc*KG>lV+^xIh#niJ<{_;sO${q>|i&xP(%RPG=pNnz-JH2R%&OaB8hYL)%D(2EL==C|#g4m8U&KP@ zPn8c!2V&>iK{8zJsM3%l%K%5Ju5i2qHKPamT3G05>LQk95xH@sF6v zHa6omcwI??X#p^JG79<4MQpRIBqvF&Er2p5Q?Gt^LyC?^njJ6EsPLrBUhNL|NMJ@{ z$Qo<5jzmz#YA#-_3Vymbpu4<}AX*|X^ScOGq%44z6EEby{5T7OCQJY#v{adLk?F;H z{|k$Fxi<4y?}-`NSx)(3au|y^+_Q`t-QvTv%@j-UpL4WGW^Cc$)YL_dBqlNj4nnk_ zKvtW-o{mn7)u!YRz{xVDf-u*!Wi>!+$=X@oq98M8%;$)uIdZ2EB**WtTaK3D$?K9KuYP6K(?BZrfsYb+H8^kMvFa3#POT`UAMobp z5inLDhfOBRTgIsR&BnX<7($J1-D%OW|NJ101J+A_E)KI-yc-+Q@=X@xoh%3j`EaGV zM%QyI6h)HehTO7;?Lc$`AGHO*fsmO*%?=y->eVr0@`ssb4O(m~I*s--&Ejpv|JVy8YnO>APYpY`LLrhqXIj7BN>1|t2!~{Xua_aRS=>tH>Q%VzWp#0! zZ9KJ3HD{E)GK2Hw`d$iHq4mL--0rPU!WiOhmDaWFiIku_Eg^4Sa$v(k!1CjqD`%uQ zWmhIUm)DdUuhgcLs{^^Yo{~=zeofT;ZGdV>Q98Se&U&wZ2W5~danBr#$`)g>B>~|N zXgRoLb%!?DR0CB7wShLWD%I(15t1NRiXKeQw)H3SQjg1LGS8#G0w?4xPV~lOK(amr z&%yR3wdcvX%gSyCl3e|zpD;;xnn^bbK6eCSF*Iq!gKPLC43o=T*7)EKx14=l%3oCL zH3ALDy111ov8}+cSwsNx;jd(%9yLz-6vZG!Eux3u+*7&x!aX)t&{Cq1@~6Z*vXa6Z zs$b40t*$)ay>h3E zWv@`a6;CUG=Vzr70?*+gdKORbnR9N^>ci0aX;ixTwH)6L)$CAKzzoI_U3z47WVaF~ zhGYKhT@gcNW3*HmASUW1fOYlB!ak;keSJQuVFmKnGWDvAEY}$+5)~_^GtuYi5D3Yh zT#$CfR{#TxKp1x9dhO#hq=UzJ<^O$udl_)b`c92Fl0+SRw}K|D7zbc<3K6BxhzzTQ z*ey~Ec`gxZuS6DTHwSPYXic{bnU`{0Yvh1H+=1_NTDKI7+T@7z^)`Y3`Y)N1j9}LH zp?D%DyOrMvRMM(_fZo*Z{Crem@m#?`i}OP6z4udN#OLCzUAImF*`Oo@8tJ)BVumI4 zw+Lzh4(hNrOVxK0M}RWUzDvi{sf(D>duK^!zu) zYJ~hZo3D9k47(~32==4ju=Gs*apQqqg#)MK`ynqRctQIq%i30 z_9F@Y08+5gISm6l0gV*B#`u7bx8@~G~MWW7dTET4T0Am35l4d0vbY9D%qMuXYu+=03=R#SaIdUgJ1$P1_{P5?kQ zjf25Q;xtrlw%3ygVBonjExeGy=U5I~0yvw4O{8mp(BOl^q-Q>;doDpj&-I)Qd4I21f{H}baDZ-CJo!O+k}nIvuT z@;F_bUUS8*y7XizS1F16L9HY*g&J=Ir!lPS|Fjo|)CO`DU2i#^AFOv^F_}Z~fVFih z;w0F{AITZCH<~&MXupN}o!(&mgbJS$bff*6HlVLlc^bLTsc8%}aKol^!E?8DY!AQ; z`aE84&9r+scmZc&X9Q?pZuSPR?N7&s7}Y((A2G@FQ|X7A!13$v&N3VL9!_spDdq*^ zb369HPey5+&^oMl>=)67MdYddqz9EieT zdmE>QUY&lxm-#GGI6CP%scx5jzket1I|wUKG=7pY)Mo_k_yr__*{jZ@49a!J-xj{6 zPIaFD0CrF95xhqXN(6RjjtkHf>F}X05r`aP$fy_Sq!ekfPrcAY zY47@lPr!ktymh^noa4ip1!&X3_CeMX1kf>Epwz+zl17%YpzN8Y~J*|5XYW~JgOYezK+9h6@n=9wN7v&Xrh5TJx{{KLFD9t z-+F7=LBmYvtMznnIjl`F{rh%P0l$%cw2ob}3go&w@vuCff*nBRO#H)~?N1y8;y*1m z=uUH1Z$Z2OEx=VwPDv|>=+fwz{_at^pRYGA6X|hxGo;o@XAS4-=%I~D>-5@=q#9|o znw5QkX_K2;4%@m%?9x|u>;9dbJKwKU#8tu z-e@`9C(A~}=U(Xx(5*9#Rw`Cgzk-fLdTo0FG8A@@uK#Z;lfgPZ%RJ#$qC7xs6gqD8 znVU)K7Em}qzO8AN!b-@hK1~L^lQF--gpg6x!2k@t@fuP}7{styH*1pi0yAqK#=5Mc-D=ea5TJU8skQIHg$ ztN;x<3E*6 z2*A*Vt!nhtpRNDfE3j`$xm0K>elqw#brd+^-w+L8VDbcZVCdw1^}1i5Eo4a`3?)F< z{D&&H`lQOotBi#K%|w#;Qvx7H(gzs+1fdyZ;H>?BJ0W=cxs8AihF0f2)&Rijbl{y$ zF@ZNa5+ZisRb|a_TW$BKL8nm`vz{xb0P2;p|5a+K00lWrdm}%iE$Y&^fVcVryjA?R z+-i3~ccbkRK&h9J!eKG8^Dr26tzuvOq|=a&M5V}2<4dLlR5&-VR{Wo;HRLA}pX*yD zNn9y#`C0ei3cWj-yK#H4Kb$P_1&fj10no&YZ4n80$$==xX=JC1KizcM2ghU@5nX%8 z<`0m@Y>$w9vgxb?-_Pc&G9d(`-7nS|sL5t{_tQ)u7`7FSUrOKNBnu3CgPj3Q6{bzB z<9ZO!A?zWfk^5sinn@PB&~FgO0^-q&$#z}Kt!B}2z2zR??-YYpm3gme3n*zK z_j|ej8Swrz1mzM>&DHl=-sJ`-a5PgCt@BPI8V2EWlL2gzKExE*r1U>ap7BgB37N0E z8-S%9XO7*Utq^edlkAYlaWErZ*XD-}4rg-JJgqc4B%F%5OXH)lRHbJ@<5%87V5BW$1HsI`y#= z49D|v38EBG|8+RLiIcFKoUcB-)-iHkw%8XaSsv%BILHWl;%R^n=I&YZ$$Ps;JP!2H z?e_Pp!I}il*0v-_)ja(kKw)tiTz^uopFZE^a#I)$dI*?FJJb$Px`8NZGnw;MJ_rml zCLo^hE55GJjy2p851?Meetc4$pHU{ZrpjgK9q`?4_Ptch;`4?iRff~^)w8umqR>bX z_^_RK`WX{Zx~y z>)}rdsKndA=G_1Gk2nJiafgE7)1OPA`MgVqs z*!;D>JV^}&?Yp0DA&a}Lx8rSQ)>HNIS)IWax3}=KVxHyHHem9?m%=g>1uUNT*=M{#-VUTyt+{6!NuTr`$K8cNjhJs%L z@LcD_KEB}7REl5XklZjnY*Nv;8$tJ8JH9pNd_K=yJOZCU z>QGOKWl*YbEe;H&#~~rRyS?f0WzgIbP%`GoT(x8amSda#EAqC(dvw=HHm&Ea2j5t> zdHhR|hP33JKf9|Z%h4Y58ZsBI&!R|!GtnEN+{v@-3u4m?>>u@p(vV0C z^H3T^zbEpIQ3f^lR?zgYm~ z*+pHlWFmL6b>8%QNCM@7fL-A1W1dzXy^*+w@)R*Qxa}`RyLs?ux3%)r$wfbX$GxW1 zKlCd(oRY0W#fobeId%D;PL#j{t54$VaK&B++~kq?SeQQ zTIsp!S7r4Z?9FuKbGz4bfXLIVceO155j?9NEZ+%!w+-zw zkFUcuJVubKNZ8KRRTKn^v~!f!-L95UgcW(MOaR$x%+z5W`aziY=GMAReEF-;QX)*h zAZw-K*2xDPD6JWu-?5%uKrGa-0|9 zNX5lzE5TL+D)k2G7O_*4`?f)WUPacN*Uxt-JAS0o1swbB!3mHRpZRmrbGYFL1^{4Ml4nlMnNA&&t7NRJqm&@CKba0Ho^+1N>cB>#qpugS~`Kb2v%jcMC^$N5)}Y3qFbM=m)$ z)#ubc9d}4VY$4+gNX|f++@T>l0_p7r=4R8ChdE(kL5Tx>0oO>+_m=jqTX)ZG3VJIw zJhhM8*&9)!6>9&BPim{bC$O{>;UqrVakby6!&ixHXkZ{9^adlo0IEKPQ^K7;rh|G` zKBj!7zU%y)kuA9Ly`94)gW`yE#PXEZttUH9kKcu_3%ft&n z>PTAVISb~G>dD651(X9x?QWRjt!Uq1t_iQVrx?P^!cJU@^;2YGwyWK_Ed-01D(_sr zlD+-eu++~`xhazox4V!02i{;<`vz`Y2FX!HkRQLwK!N<}jfyouiVN?_he|U4LP{%e zG7<HpwaxC80<)v;KOgxXj<+g&6N1eG zeYbp6zINiUoO9jLQcNFX^O<=_IEAm4ALYY8FN5Q8>(XWXKil+c^Rg-W`=->JjN+5g zaW$rN;7fc}qZLGP4(4fD0Wc$jjiWE^9skrptnP=(CzFY5@?*Yog(c1cRAY{}iThp& za$S2){i>q&#u>hlJeC_ZWotMsHoR+ltdOTI=7y3#6p)20AB-M2&RSAWON*)uXRD|F|S(?kRNU z8Gx#uw%H~~yQ@AK&3WkqWfdzH=B*VX&M7JbQo`%*QKv$}*)7bIdfiM5`~H8A{YRlL z;7Qtk?y~WaHHa5m+D zD{-*KOlQ@~v&9^OQSF*|XQXCfP;AbG@jKU4elSo@4;VRea9Ve@fS&l(N zG_W3vI7Y=-J`mRVIC{1hzi9Fvli9h5`!B4K;ZS0_;`)r z8+K6-;M%2Pu=vkPqeWK9x1mS>Qr~V!k)K7x{MVvGYSLj6&;DiXR76W^1IUxU;fr3B zHQ!N;!ePN~kCWXe_~L6~4#;7}`!r@RlbQ3@;A?|*juC%92JJ1S1im!duuf#9-*#*q z@dj{qm_dEAw%T%m~(vv2{VAG9WRY+;pD*5a>cO6}5 zuBk3#%o+OBwe+)NQ7a+PO|wBiG(c25wIoiyQ?rYBHSSLx#hP_+tfnNsAdi(5N0Roi z2C8=P8x(@dV4q+Sdh&I5&<*&veW*#DosGnzYX-I`(fTr8Gy8f?11%jpBL%$x?W~#B zdyO8>wWf0zv(LF;h)97_OxI*|6k`lFI(PHA3qa$K)eB)|6Acu^V?|Uy-2G0-!%C0X za1fmVO0QODts{||jh@c>HBS>rSJf!wi_fGeQ~UJ|I2gQVBa=^z06JO???XVW#r2_g-f+HPvDTLjp9-p;%4R__05{+k4a z%v>Qn-E{QtDp2p=%gG4wGM5ki^z3J!zV$oHE+6x5>e&}@A>*d8Ds%-{K(u_Vqq>Xqb%iXtUDtK_7F$M}ECH)_?0Zv7WkdXwiLhgN|?gy+x*)3!y zM7gQ1u24q?m5i1@r2s=3-A5P{8p8#)SjxQa$Ik|Zf<{Pm|55E6p^j^$|3 z_&P$08>uYVe*F;3hHbDE1932gxp9s%L4jdy=`4E&94lLMpR}L?Vc&Lo@vI|OzR(MF zI$6|d29QdQMEMfJu2^Xut&PZ22;19Sn!KlXY`*v?Xgk`$`RE1p20dBk{!YU$isQ4x zP0HFOe*`tSUs71FN8FW$$QnW*=vP^F;M1TYfR(_IXgitRX2f6wy}Rox54~>?9;b30P`>(~^MY)+d=Qe5Npw?he^F%XWgSw(54yoJ2uCRt$z;n3jqEjYGf6tT0 zO9NF!!DOb|R`bLC%#?)GtCGwqT0BH#7Jsbm!bsn)U2}v=-#M62_{EeD;pC&6o=8!Mq0OU>E4+ph=mlHu5}^rg-RmHhX{LaTFg<=@|I2eLM%4^y-+@y~ z$3}vf4%_^9R;7=nhoYceP0l%#IwSfIP{{SkHys zcXUx#mktXH@W%g|Fn_m_Y(1BwDi#p=X$sM|q<-fN6a2Z@p04Vy{(QVW%i^`~boP97 zQCpXe4S6D)qoL1r-}T(&dJLP%(s$4Q9pO{R9Q@d*b*mQOfwwxCBiEvu!337-O$`;4 z>OQ{AZjL&|$71KmWQ%2hBS&!Sd{>P=A~7<(l8LWwOd@pE!onU&IWyu>b;QwQ0+%IN4js zmK4$uV__*vE2@}jLau)fWs%_$lzJ7v^F5_1pW@9mG5to*3J@h`mfN%lmAO!-Xpdl_ zN2%n35FI2|!{6%a=^8J2d9objK-ADg5g}5FRJ(iMPX4{{9DE~$LCK({Os9hd#yQ@x zLA6`@jtIQ0o?UJ7zT!K@#MN3#ag$WNV#V;o){$c=iyr(|Z&s)S7Op>OJ+ec-=^lbz zM`i_X-@Jq%^e-?>{%PV)&#UY#)QGsp=N8aacIz5DANS7oj)&^>;bnqVHB#g0FE$*LLJd zpviFe#97C=A**Du5T)88hcBjO@pNflcm4cC3Sy2k3o#RdQr==jivi^D0WX6NuY3s7{?%b7A3JG`U#3?mOlnkceKx78tcIRK_rW*wIg$~gjOYtZSXV2JzCc%$0B;` z+sUqStA#iLeZaB&lshj89C6qC*iw{E_g8c8ydwFbJ;^Cw-@-(Qkife8>8Hh5Q6nr5jlC>; z2w0~ao`M%8sMEJxoKmsaWJbzhLyTB`e?7ncf!il`<}<4MaGgf1G`9(TzFDi7tC9;I z621G6D=l8?=WN8OaT9FaiEiR+3R*uTOGQ0hj+Q|$!Xx3(RfkW?fY1mcHc>;@dIADY z;5bNipk3;@PN?jRO7$Y{yNKxMcyQq5;@?YagNdmDlzDnM=90wSHd2aBijkq{Oq(b% zoD^5sIth`aFDtst#%9Z#xeEikeg`JIYyB)iA;-rDMNlpfwD}^dn#7rEOY0d@IS`|c z#YX>HTjIk)*{f$|?-ec+HduAIgI1Z^e{0`@Et7qIkZe2`^r9b~j0WFR28be6B&Q4d zR9rNBl9PpU^NMv}w8U&K$cb~YK6a0@BqIbd#Xb;J3Dt-ovqvJK1i*=D^AhGded~BT z6LqLnymz%`QJXJ2{x)iXA_TDGJ2nZM0SY?Xikm>3bW_1JIWU_SlYWR{Gz?3~o71>?AF>YgIhPHwty#d$~W| zKD?(B!2)iJN;onQutGGk0W4xJU{daf@98d9z3V#RmupenBse@BDUKXuPr_f~f+?d` zTlIBMazcF9uikGqA}bY!%B<%!LE*cf9X5G`h}6!c_ITQRc^%tbB?g>8ZNP}-%KWt zjoW?)UBBTddk)3qPo{7h_#LOQz;Pvp9Ku5F`#|*f?-~rMDK+Y=w4k-P-q+JNwSTTok8BytRd~& zSHo#yW5u^m1_XwCK*jHLrkZZ{_qXSdcH;hHkwKnV`9Rnu%`;>=PtyhB{@40$aEgYC zO9`}nwDUbX;L}YUVH3zrV?XQaFO1U3jR~L)ggpO|nPrD<%f-%> z`KVV{CS+T$O*(7@m;SZLs7oQ_xbaYr)lNvhXZmUPyWQ=42sY=7LGEoW*l3IB#ym|`5QgX5?rWjv1k(I!~#Cw5p8 zW^@G|%m1nDSzuOjljFK&rmNP|!n0g+X{#G~9$wrfcKOV1?3rE)l%ow11Wkz3N|mT(NP5C^_LVf-y%{YU6}m!LHrcO| zU*?MkYK*FEd@vZf2+zrYHE1RW+Yd=Xs*)-Z89jsgUk{-IW_g`^4{CxgcZCWUKU`+R zb(N9*gVC11q?$1xIay2l!s0zn0!m@bSt0KVlMZlsSg_kE1>G9sMF;eS4yO8Nq+${z zbe~StOj2}ivg}@2P0h$YP3{xR^nrN5<=(qR5pcz82OIvZyVP~7d9wR~|6YEvf0-+8EL69!`^WI`ulB|H?Y-M# z_pQH5)h!rb)CqM;Xxxo5|R(IF^C@~18>ji8_8J}IYpy7!g&wD(+v)^ZX zOI+>iNSK;Ne6Qdoj&-Qkqj9|^hQGhucifjHe@gy58+Uyo4n`~g!ifhpdsoHL=0#`U zZ4a#%PLyRlOA$le(tKL{~|k{bq0$mn(}(RkhQKHlN_2aYG<<^+<{ zMkUoHmX3};-F})hI4XBIdD^Tx@9kz8%wGSHSO3Eifr6y^w_2`_?MkCUng=IOwQBq% zEc3O+vv%b-N6)xoFqnDjc12wEXy0CigSvaMj$(4Veh%<~!rq1{e8- zxAzNgr4z3>vhZgnZXC*gs!*UtFYzg(HRw^$o-Dkz?Lyht%hyfC@HT33C5e{H#Z^v@ z-cbALd`r<8!HbM!QomNu-)%MXIcPYIenl3E+PW|FjH|4Nlc1Q?$FI}49B@;sW^Y&R zN|o!=rn>=Tm;EogZ{z$n*JV>*0{kTbP~|?Lvj*!~K-W#q@HLPtg;xrVFes^|Y zzqm=LY>5iUSdHt>oY;nr#dXPz@G+KPgvokQ{N>j>mU}c}p1be$d$1?n1B>8nqND>& znrPcNw(Z4rHSiV94bqyas5Q8&(@IV7zzOBeSv3?hi6{X@Q19)7#MWYSqGS}BmsFiR z3~hPf+9GAx6>SBlOTr;bE=bc7SHGGd9_-j;awscu}_rW<*7BBabum} zldnBaE@(=p=xVgf?{4I{ZBB&tLfK{Bj`Iu2!*vDrUqXkp z0#*@XPx@!;{z4|oO*%^|?XmOdXE2_$)4aJ`khGIgwxsT~<(pxMiQj?JGuOzm`&pno zfW08{qgjBTpS>Tz>GqnBJbAjRqH6AJi9xkbJ+=8nI^fe32?dFIV)0GSfhRNR?2EBdw0-Jc?6v>N`$_vz6 zg$mob<|Ckc>k6P%O%|oQqlDRFyZWta^Ll>`yuq-cE<(89t)b}|c=|1jRuv!yvyYn^ zytKcB!U(((cob5{xNszJTeGV80O1Vd5|b?2PHyWnLSar~+YYQoEO;=` z69{+KG9p9hsEhThKwcLSbETxiQ~i!`V2#h)2x9}(mP%?D_=%97I2I)69MJd#*uXY2 zZ8AeLT{69hn}IEZ6wjVJM3yxvirO8N(9Y38qm*V7Jq8k5dCwDsG_cYf{Dyy?p$vx{ z(Yix9CnJ8)l~AdnQ~@QZ=`qv#9>nTrUEw+GilVmbdb(^$si=OiHLdkV_$fQsDU-d( zy#b8qg(+<)4M>IqJEe!wh=<13T92IP)+SW*;^iTxysYH8^mc;uYI&L&jF2) z2-Q`Tt{Ynuzc~>nnh;q8H(>Zsnh*oG584+#dgQVlh;z6lBVc=@#YxFETkq3O{bml- z`u0Jhr(_9{Z$5+o3tgU29%~{8>P2?rbbgJY?4j(m^X*72goY=SIWUD#_TkmM%E#{0 zmRWW|DZNTy>J;R9QfKbNAF=l(Q$826LjI>Sf*!Hu%TW?T3B*bravn&d3-#+h;F@PP z;#^xLR!?bdZ{erZF1Qc=(=&%2&1K$WuNLA}P$kLH%Ll^=%ZqOVi2{6J?i-KuG!_61^PZmN)2s1j7 zpibbv=mMQU?+H_j`1Y@?Er)y|J&`7S@Em2jM^N$pMriJdXbQ^s@C%j;gC5R5Ttr62B70G$gqCEvUL<0i4nQeENg(6f${a9VdcC z@$r+%Qfht&*eLi9gZ)7TLCn1<-=MV00(b#`{-9;dAH&w{4;fR9XFzK z5x9*mEHC*jl8r4+c-Z4EaS_SH?hB`uCwihFPJrKvkq? zKjJ@s=e-MCftw%iV{$S}jbXq7N&^PlI$4!4X3ZKA+^7L9`hF-!CAZD zZRdo)*FQ%20pzNM{_-KHc5*|MkO*Mao1`O{d0bB-R$-e!ov@jQF|5tPQ`eeU>R{1G zV}&jbnQK2EltM=(TPWC0?IVs<8c<)>7n_@@pkKk)m}^QRlYWN~^t@g23w$j-X8~2M z&s@&D!S7cW>zvIYajTQu>mcgl`YKah7=}Y`Ce6`m3cI7-&NYKet$YpKBlogBJG6ax zA1Ywa&4GW)!oyqc@@I@mLa+2@T~F>uj(gkFMxY$YgR&DR0U}+?Qi6(OXf^fwb7~MC#9J<9$!P6w723?sJ;51-{Ry8H4K^BSD zvP%r4J=gYvHh+=oMixGUN@2<_IJ>i}Ac@6k{TlP8IwsG3%wiX0z2=wEBqbCVIG3A~ zWgZ7|Puc)sphdaVAIDQ4miQ$}^su23_4~~AbHb{*gUqe>ov>7-H>sVfPjM*(d(O=; zcO_jAfHC#FnzDyVzNSUOV`s~zy|u#|5)SHfO$0A|9OudqSWSmNBTiFr8G=PLkh}qX zr*N_E7$z`B99_Q_(n@;cvB}eIjJj)&Z8#P}#x57H@cdcDbHb@F@A~pq$sI>DZclA- zn2WU^C;1zhldBLto-4H_Gp{;kelt62kgZIGGp(3QPTAhaz(r_*M+7089?P=`i}@dN5zoVS{jO3OY3w$@Ieb_6 z=nV9nqy8iZ#uyR=3_`N?$7!^FC-ho$C%3&YxYT^ULD_BH?S@w=&!D=eV@CDGe%PyO z^X?n@;8SHzcUP)wtu$|`+3f0Q07YcpQ?!?TIG{y|yNz$@ta5ZElPBmR4%_KDgphaj zwl$pRpPugavkIUnHBU4}(z0{!WV`=L@iBD`UVUR%%I61Bw16?vJ0g3YAbykW|sEzvLSty&EtnQx{QI9LlnsQr)8uW zx78+ifYI}7$Y&@1)+&lYld+BuSREr7yX1=Z-$#q+eHBfOWe(52I=hW_6#5*d0rVYM z*cDIp`v!YZ|F&JzdLGoWwqHC>pTO&OUheYZsq!twyG=yGpj$~8p(y7sdX{@gdS7<; zezv+j-HA0xSDBy5OKI1G7n^F@1;$PFcZaCH{e=PqmSRx?FyM8o;2nuzzD+B-Aparu zMz}f8{iG;ri9XOC9o`K*@Q)35|J}n?J7>0!3zIDH^EuM#;#=E`!3H$ZpM8mHPX33< zp|dPIq{%Q&qp+R~Y*+90vmlt>nWgX^XlaC7tIv%fq$Dza98rHM{A(a;&0k4vj^iUn zx_%>UEfQ<>SV;rlJue#f+H3=71snI|-vui;oh;coK63Rvx$tVAI!UD-IV3)pMzx*N zEx)02z-+5XM=wRKNwE}l{Vm?m9>tmSsUBo5-_pMB16@p*({C6`QLXp* zA51bd!KRK;_d5uE6yQiMr--DM9!y^qrn7zZW}Xq^>a`$+KZZsu5mH@b-@th>RNZ2) z_62uItaXhrA}a9x;RhqaES>?xP9vBtihYxH35(iuV^H7=i~B=X0dxk@AO)HCdBhuT zwdSo&4x)IM#Hb>U7u7`_5vz(tR1pW?Lg~mmqNG#Bp5?9e_h0dkkZ$97(M|JQ{kC(> zVar8(_)X0Hv11ezTa3qRXrrRkfZLMqcRoU&(~5{`n}W_5ImCg*>DouR(~#5g;}&*x z?R`u?yl!cr1XZzq!Sutg8Qsi{9)iIOn9Ek}Q_Dy=J~tv0Ej?vY!R1sP(GP3!X=vIUQJ8_eDGD?v6faFd1Mv8~Jt&d~T{;Gl{4)o@HNx z^VnWLk;C!A^RmGpB|>FN)W3dJx3#@Mv;WZ_T>5HYrI#f`@LO?3tCQF}%k`DPx06^j zeI#j7Q6j?fZM>3$5}ZSR`oZnX27m6{_48yS+8I zZwXQ^{?*UW6VTpuk>O-r{ehBytSFhT4F(=vf;05ToM2lSDdYBY5C+`Bvn3}|MW{8a ziYsyv@e=LEl;h$2aUqe%Zz4>~80v6?c4c@W53&_gljn|J6lb7x?`q`)hLsNXKfgn< ztMmqvbrFP2Bg6BN<89zc7zqeeB&+_?crkLOHCwmYU#|YiOql7rxq98hrBE4}*5rjK z*;dbIWfoQ~1Vc9}s?1ZHoCV;Z9C}U@g`)JDP=NI?H$9ldofYZ$qCQ_^NJochu*18t zhIe#nfQ6YuT8HQ7w)d>cIhKZo0+UGcDwTlzx1HlJReK}eN+}2~oR4E!p25=S|3yW4 zNGx4H88*<1ZDk_A%sY>(-}355CSVh1>@da@qo0?U-+x-|IOZc~(n0IBLNMli8=nm8 z+#-~(HF*no6}<458K-1<*JQ|?$v9ojfvc0SXTe$zzkaPmql}K`@-~*AcRQ`tX;T*` z2U^sDYvc{0hkwG*;)efcOAR+O{C46tTJ(_TTC*(O2bsJAyT6~=D9@XC&eiEItZ|u) z@s~;Cj$bg0w)NkU;3QgJX^PXi;FY2_-QDcHAzw{YiSWXXn&d-np&wp8hbXSj&+oL= zX*TTRu>yaDV4GpKLwDP3uY^OE9E-cUs9);?Wx98mAs?e?uz5Sg59fS7ZISYyd}wcx zNO;S^bL5D&%Yg!-KqDjZ*LK3`cs zUahsPP#QoTAHibgJgcRj=3BxH%SDL^i~7)#OYqj(JxX|Jgv_Z!VcPBRc0TY%c~mL4 z{K3d3w&plAbQ5j~`M%jeDLRFlJb~O6myEZig6OF|`S!>}zwsaHk*v<=s38h8N2E!s zo21?K-gAD{U3H((x1P57L1y2w{S!xPyNd9SY$NQAmDsBOgv#WopY9V~ z#63VVDahg@u86oQS5kKU>+lu;>6nAcE-)+L>OnNAUI((*YRGR%S8(f?S{V?oh>;vo zpc+g$xsl)WApJ^0k49<$F&2m}vlUuVhx}#&`I{jjl+r;GjYAUs|FyQM3qnXV)JFZ0e8V86@StbSek$kxY|LwdxmE%FZ} z=2Dqn;6#eif_Emy)N{fe2wJt4D;nO2(RXMV!_{RZGJ`*lc}D~65FX5Ne(|%zx?ZNjawde7(+-uOH~^|9)7zOv-xuya$xgoxBRg31zME znnK-~$J55?I+1yBTB<|v!d@S3Cs@_1JA+tb*A&^Nu_*^->pz9BY23?dkW&zN%Qe6G)CR9`Ko zP&9;%Q}^(dnzPX4#mWtx>b83in^X{C9atWU-C}aSI|*3Ti62Kb-6}Vj;Bs_ zl2*iKUAgb{!wU{5h3$DQ+lv2*^D9tDP>Qmg$rpsg6{*hx&ZCB)XaIAFjIF^;d4^zL zH@OT1x5){BUyOq)*DV!+!7+md_mVlV(z<~Csjg%P>NR8{WWT||BRz;!amI+R57RAn zwfCzJX7Qs>qs3(p3N)Ffp<;v>1XymqQ>GKbM6#Wr(sn&eM25`wq5)>92JBy>_hnx< zg5A|tBV_!ZB`QSz866wGc(|VI{&6527o%P7w&Q`)sWou6h=@;YD8}|#hj$Tlg%jm- zM+E0^wMGdfM<|D7AZmZ|10)Y^4xxnb$q`8=ltBv~N*9=da5!QvR{vIaEYwE!8#OK(Qr8`MKXAj0v4y?M|G&AaR7%Y zJoW?nPd#?p1(%e%BP-hI%02hYkfzBiHIv2y zul1Y2fo$4gb)Qg~8#P)A?D18qrG`n;xrikKjs3NsV|BSe{NMARGNmFURrSyac+M_8 zMz)Xux)t!iV{6{NVLxO8wr_nnbc6=7AN9AwciFW+m=t=n~pyFRapT)|!WwCh!FT3hLxX*mlb# zvNkdSG>6uZcQ!q~E*X3a!rON%RTi}W!@snU05PMaaHWdl>0~c_gLcfDR64g)?@+L! zt#avbboV-s{#&B|%hnu>-NR_uegs|DnH~O-H4G92>}r-?3U1|3h{rzzU4vj(VOYDf zE%$(|fwBq@?{^Rr1e}pB%WQ@p?Wfi)i0Nxrl6DGh+}fRf{@)Z4b07kJ&Rfzvu)mIQ z1F;}5seJZ19Y}GMkZx3pra??JV^4;yNKjg_RWbwYjQ^M8(L+bNl1JtB!PAz1xCBOcFmI*eq!D5&yi)3CzV zEi>kVhMn2=Q{{5V-V0>{VYMN55Ou0-4j2M+n0OH$PsE&)QGB`C?19UV*qi7G$VgHV z)T(r>T4C0S2rDWN+)3ilqe5H26>e2e5Y6mR=RAdqmrT}9iAw8#UICV?-n3=3*U}CL zUP!|LxIP+V~Z}m9V@=JPkDwKgMgrZCH%lEY>x=jay+9jBTJisI1dX0RS*Vfms8<@GlUw6I3Y%bt z#5f>qLahW%;F;N^mp!FrEzzV{QA<`FV0KO;x+~gg%FB?8={A?RSl)`bh7?P z{bZSogLoC<=a0;uCg}BP>Qlr}C#4w`siM&YydY)M0DOVXFF5-_6Yzjo?z63AjuDc9 za?v%evD}(QhvtnT1j0vOhR%X{JWQ6-b2);Hjy>(x3 z)%sLSe*d+l^HmXOl_-e0l2PD zj7}0ZRy8B}fh#g+64gV|HS@~Dl!I(v4|_tnb+_#nbdUQD=quegEdTr&>PR_XP+6Jb z7Vc3d)x7}On$~MNr7LSbVDCdK%(MtnkC`YG+{(lpks`+|$3t4k1SJww@tSt{YMHp+A?|o1^8STU&%ZLyQonxYHIhu-Xrx^ns;-c=L1wm=Xv=^1sAx3cdBLuv zJ|=KK`a9Y|2}EN*`Ec;#JwBiBt5tO~DJC<%p5r)HrGZ|2IT<&R@#9Cpnyv&6U9?0t(>ak>!P6;Zx|qSz&yVc2ZWqS~aZN2ryR7txCY>!74<`t$ z5{;7-Zi$~JUmuQ(297iSS9)htM~XDKz<>5rd(08sC$TRHRgs9&6xLjCiuF$T7}L5 z9U|D9RgJa?3sl3uvC!1u8AcddI1i<-ft%jNiYKrgzOB)+X_Ozydd`mTxfFP91$f^m z73ez&5bh!Wo?T!qSnjXlkkRS!P#Ko^LR}ka7}F0;=P|CEw1)cw8dq>FSm@S&_d~T9 z`UsJL6<-mQstlp^W} ztO%B{O-si+@Ovon_h-hBSQa2A%HFxfVQ{g2)V+TNO~ZoPr0-jWq+ zl=C2Mohm2rR+&(2 zbbBt7MG&M|eUubIPsETON#D^hX(uTWQLI$!5X7t(J@Z>8zFzCtVNpWF*->Zy`QJs- z^?J9$4T+x~eGl_L|7I0;tku;(U)h8}*ZUMxqEhvm!?jhiT9o`I-#_khdKg?ToN{Ww zYB4!ooVm>^T8{)OZ5pk}ej+3y!Vqz^wJl&|WK>pBdFkM6ZEdaQ;!^n@?WPvo0CQ(s zcE=_TeT)7JMAR>%qiZ|KsOz{=%-egw>*=~hsUa>Tq~qU%k_mjtn;vKbQT;3$mynYQ zYf3)gUCNPD6cz`f??5jRufCZ=9gZeIF>h!f)UplYwxWn?grBcqO=$$&m~&qdBr8DQ z>6JQ79`)y_8Jddty3e~9doSRI;YsTh?=QmX z%9Tlaujl5Oyh~70Wn)}oL=kslSs!!nz_($=ZQ3`ux6$jEpsC!Vg6g`YF&fQ3OZL-9 zTRUeG>zKb_N6PIVt zRzc)SA2oFu4kuucY-VuIPOOfzQ=R1C(mo?ap7I8sGA4wtaP(`wfrXr$JY7Z7Y6R$Y zW;QmqAH(67Z@Jes<=I}K&&k4D$F0F%^+L=C`5~R1opJF*z6_$qy&PVJ;3NM1bGY_t zq>s4Mg5yWR7W+Y{G)_MenCsfT82GF@%WhPVVBXPwcW!<%L)1BIQt4h>s-gI<(`aOc zU9HW?ZL5J4dgxI#NgoeAZ#^-WHV;QwPj>fMbHfrAG|%vIPk8xXpl{K&)ZE{CPsJcy zY?uDN2bc1aAMR*fZTmpwo5ZPx#}k9=wdzSK&*5WXihw1i{cg%+^b=GxivWs@{oh$e ztTv6BKCb|}cgKH^RvXO!^o~$qNu|zZUUijbbx+9+slw|+ZDJY$^f$YU0?5N%QS}&@ z?!iaj0-&&NzQdO12WDgPabeN#X1<3GB%I^S6#kja&UB(fi_MZBvxB7ra8r_6-VTt3Ce7h$-{dqG~s(=-xsr+hoQS6jgA$bopv zfk0lsBy7aZH~T*Zo;>@w%&?aGmFk~Og;UMX=gkCcT9$=BJ2F;S$V(57RYh29`k1E~ zGuRZaU*>5R`7kW@&?a8$u#rqv_Cc$D>kvP#$Nd<&c`e^8*e^;(KdJg!<_#pE=jyBa zQWMdL>;1*>sugb|a=Gozc2PCzt6HK-hcSAOt*d=m&Wc#_EARRKJ=F&!MRWsS@2o55 z9w!=LTz@H~^-3glR<)$^?#IOb&6kp~6{`OEH|^>SS3gN6tEkF6sJ~yJgSvNH|AAEk zH4YVV@NHE3TfBfb`7#Nijfr|6d{~fn+em=e52Z;8+M~+f6}S;w6WtJTR#%z1fGxdq zOD^pqdoP>szAaHMWun3Av*l-k`;y)*C#hp>%L&%Bnt$JaO?caNx2!r(QA?orBzp95 zDRUQ#>Rocvh+WlwK9>PT^9apNuip_~>D8PJ{Ty6lJqI~VT-9Gvem& zSO$|PHO&iH2H$wtH|uV2OixdLZfM(YKrP)^BMRxt4!vS!2+F?N?&>L|;Lyk3Xyssi zZ2$c9+4@L!7zCmUG}1n-y}i9r$>d|_67E|zvu}t4v3=IQ(658N?!COd3Zl9rY!ADR z%SSsLH3Ak!M$f^O8Vp%6MTEV9)*I|BOuO8?+PFzA*Iv+#Prt#IL-Bmsb89JySJlcY z&#vVY6OTi0m>s*KWyiMqTFbm^?Hx~J3K0iRC|=xb{EAC0uKlI&DcpPHJ@K>s6_v82 zW7vo=XuSiF6to;aX?`^S9Nv_P|$ zqGySJAeJBUbh5&{dj)PVfH-$Acxhz(8mF4#7b1;B&Hu zWT38cb93Lk9yX1-SYf@{{Y5FmRMfhIdoYP2O$0rP^3UC$+o5sUxi9@~6k1ay*gT)v zg1s(Ye|Ji;`2|}cnn5&8&~KmLdFQ5{KPocMU;jam41mvZeM*$=hg8IK3`aYg$mR4_ zr?OlBi9NPD;w? zu{#V>CG?KC$aoLP%Qs%)-8VLFZ!7Lr7th@ae-8JayN`{Hjoh{%%E}I;)_SH0^(C%8 z?!ezjg=r@lQ2MYNT;Gi4UXxxhxnoluA=y5}P;n_KAO1Z1!mgy(i|d#W5jg85@+ApO zlTWjBth@T9u!J2<+*!pR?PU;fIkRAth+(Foo)PTM&RCmRFD$W+RNgtCoP*mIxUZmD zUPHt5Oi@p(d#HZ3=Q`Pv9}1DZ#Qd3J`dW)zAQZ1;Q3;eG5FpUA9pFa}`hY9uOO1HS zEuHB6{QQh;Y${;{Km%umk&}>;Zti`z`uMoflV0!HRr5R<-2nnIvIVT!7@%R0SovvW zu)n>S*{aXS7W3RZ{h@Hi``L=PQagGj0t}x%eVU175WYNE*V3dp_O_59kbwVQ+ zo1C1_!e!LpeisS%p%_FgiSKj?G*r`o*)0O`pGzlWqoW7ySL^~!n7KNA;mn(V$TC2H zbC?SHp8dU4}18?rAkw;N1 zC;DQPJW)qO@F9ni_KNnG4~ujMkMCbb(IJ&qxx~)mE}B4SIKSp8NX2U~9B%a1yox}h zK&L2)CLTx07~H1Rl-*>O5q90qKW5lZUXz#W{mliEcxHr@n0VcFfL{<}6B>65@HlfH zHT#@uy12NY6O}vBbQ&QaRfl!}7fV$2it_=Wq-!;!gArSc&5wD`Uc3~%=|S)w&Eugj zugJf`uON!FX0T!>8p7hW{O@yN0-;0DCuyTC8H0#Pa|#ef86CFH!GFZaeu3Bc|Nco! Z{wX~?)0A}{q*vgNih{@`2z31Ox<%tc=7L2neWP2na|e1UT>rDI+rYH=cl%xVVa} zxHy@LvxB*ntr-M_W=OIY{8udby0f&2Hb$cnUQnjXq^k3mU}^+;^AR#t2@FYC>JOhN zpz>28L?uL7DJbXyF(hHIJHja_4pDN~pEuq!?Jomh^CgvPj_0E4qB-t*eg_U> z;$aa&K@OU-;Sdsf>S^B0@3Q0|t|0mOn}tQbd#U^T0bL*#cG#{w4&3IYMFj5=AOn z4@LYIs(aS~+=?a60)mt+THEY)xgPgmZ@>*5$lz+LFjvzhWg}J2Ajc-!LfI!Zc=#r$#)!GG%TuT@IF;{ZKW~V?>M-ho2)1#CDU;h% z#TcWe3m7tsn5V`6((CR-Ua3xKqN)S^>$ug4oQH#MVeYIcJ3!QYpYT}B3|_MJb(ZuS z9NF%1 z^vQR6R%kIY62OZn76NSj+u?%M?ut|_Y%UZZ0-UJG8}8mcLhNm}%z>zpyRIA z@iR+0`kVv70+CH4NRQdJGK zxn2#@ks!TULk}!3ZQS18b&0j1;!9(=M2{)2FqSM)Ind&y%gEXB3sB-)<}r?h-J;*? zw!7>e<#9wKAU^USO2Pd0x9O(q`}HP0nqKr~6^YXE@~$~{qde6GG@c=On!aX4=7^u$zwr({UGfj*89L~whXbUctp-T01>^?|6< zu=au8h7ba9Q*j+^kV1j@7sQNW=)pn5=nVZRh+^AujD=8EqHuA%rtrMt`f;RK$dY20 z)9#k=Nod$&d(%$8NchkiMD?bL56C$_bcC*p*G((q!LoPTvI;XoGW2R!f3`(x>lJcj zC4w&L=5>VB{h-ko?TEAryAed%XL2F!i3+Pig#|B%M;$vWmX^FoC#Y0nW502ZJ^OQ|yTbLp>oM1aXj(^toh8!SOWH0m%*e6Q>tkMO|P}>JJI^ z$C!W|d5E}`a7toVf(y2{9b1~&bScjW?9sUco&#vNU@t#;BDHf1Vdg}$403PsUj{wM zzEA|Dktt1++fu+_CLlf|at6EiLifTL#Se=mQ5}8Mi^%I|G^W2~tVwyud`Om{h={9~ zRiYxGPy8y!C*7*(rKoL~%R0=O%4Ta6Zb4_rGvJtIl(fZ=rtp)DFur5NX&1^_@Dc8j z`VpRzp#Z9Y(}c_f&IHy3X@_jbf(9y)C-L)~dNEe9adD&qT553`;yC7b@%Yz$*ZmLs zT>G@+E{x@jql_7v6q$plOsEq5|wk=xKlx)K|FHPS-SO1CXK5$BD{Y}75(ZCL#XfCHF3!aUAh zRblgBonX~sYhw#B{Gj(@AofiB4=^R4}@8HyrG>!4QjeY$bFU%E6$j%AG%ul4DCYen=7 z*UaSf*|h%j%yh(DOYU__WxIWbM3ea4F}NG?mYK zIW4j+18r_?>@5yXRUSF_tk-lmc-LQV6t3Gr13Qw}ttZjf?)R0q*(RP3K_!aDSAtj{Z`vBammFT82IJN!%@*^_4DMIfQ2qPF7$`y2b^vp0eH_S*Jj z!2s{GeTF?;5X&jbqPIuRRp+d48SKi3r+b@|D!%W6=m5iq+^wEgv7fz3y_Xcv`9Hk9 z8Bk^PZuQ{$a(ExDLjXUSn$_Z?{&sRn6I1-+vZ?#hf(Ck>L^G)FnD$jY-d>X5PKn{D z<2ttr&`!`X*A~|vV)oYaTQr|rSgTxF_mSKh{f)X6^P}uU!lvog!DDr%WzJpW*#1~B+MCJu$ams? z{+#>X=B7zt+Q$(f;+^}Nx864?+SgM_UYC~eRA=zRlRaCoXDg+C!71O8jV&1RLxCzi=pkm>Vmybob6LvOkP` zqy@qFed^m{m*y~t6qJbOBJo;yW@+VVhm1q?EQ>IUue{8Tc`dJ=mDh+@AVeRGD~wLs zQcCwPfr@Nu)?Wri8)dUq$we;nXY+qlT9+@Y-jYNE(~*{u`2n zXxas+ic+z-u+IX7z+FDw?Jw3g=003`qhr9Ld z)18j_IpEqKXy+*+Auq9?u+)d!~Cuh}uBQR}#g3MGRCLrz1! zG3Ro0vQcuivN($RN`QprdS8!pgI04mO6SH(Q*86Flj$j=iL~XVG@W_|(2+rz zud1F-_U8svU7luLDo>faYO$Ix5zfD@)3jT>LY^?9<+46S7KjeX#l~hDR(%#aR3ij@ zDq?PWGZY^z2(AJ6OBNf$|<$$Yv`^Y(MQ(VZ-}W*&B)`+(W?v93}2-pjY;*MPam zAeKIZv?!<8iB1yFIWGPCM&s@7wyeYvHH`CDp+*0%S;Y$eFRs@v69z5pc?Lx0^PN9@ z60@%#*B`~Lwx*{vp<{v*v?I-O|eA3 zNteYyc%JN!V_keuO+-ZT@4&QF-dNZ=>ILT+>p`zx^Zv%E%DJ~p@!MjGA)*pZi_*w~ zvVe?o{uKDZok);N)yg_9H|bge=wsXb5O7sFW>oHV>zyK(p_<0>zOmZy8C{Y9>D1<6 zr~2o`Z1}Fs6kW8X+|6^U%}xGdH_xr7!i!_?NdE)XwQ1w-WfIcwv=!pnhgqS*CX16X z1y6Ryw3`(F1+PYA^-d1c?1fplu~q8PJ` zu^@&6>Df;n->^vpolpK;j?D+r;wZ@h?Rk?8fV%JXMn$R*QIAV;#l9fzDgVx2epVLO zed3l4f8Bk295!G# z!0a5IQr(Y0x|oWU*HE|YdQpbS6hYM_zg0qPMlvFoKOo~kJ?o|Y zw@uf~|F8xFpHJo#a1*}8_DE%duSS0D_ft%c_gJL^giYjyQ)?fUmO#2^WALQ2sB-W{RD#NtEqv;7Y^c#)u=Ddl&X&r6nz3ARHg z>8IC3K5;SuPDF0ju9L1#PS_r=XYMNV!le^X0|op2X#QUwVuBx+HXC#-nP(X(a9kPKs9gw@tivYIjh! zaX)H*G)crtSf>RRJ``US3N7o$nJ1%`c$gPjXq#PHFqy}mHfOo`SxDMXR)(*g0pPr; zu0|eRymQXmRHv)orvu7^B0_HR55#4(RfyCu)d=)(w3Ny&__x1UshN5F0cl=cjvlRl z%u%idT4&dmxm0>sFZ%E`T+XHq(2TiAf(-PMI+CVW=jB>YX4RM9%Ece7Jwfxw<$8H* z++LpEJN9=QKbsTX?^ScgUr*jHA@9Tb#35t%Lp@?IqOt+zH$D$$`>C&lDNXR}6J5d_ zYtI92ey$Vmgk3WgoaJy3v`i3=!Z6>FzWmN+gb-;*Z4thKaHN9XEJZOqV}sC(hMUIu zEqosa!76nYL!1kDLoov#*^g#JhrA5WN#3x|o%(Sh#CMC>k$4r&U-B|HN|pQxz zu2k9N@v`xSqHs*1JEoYt0Roc;{fh&Iy<1xKGr;bx<;dcT}R_|#o9+Fm#Nd*Hcnr~*DPo>cv{k(oP*di z@4M5Yd(CSet3bY`H%MWoNBoy>kCKLsH-sCyV?OT~0+w zbD-cnqN5IH8%v)U98@2&9~K(Lm>L;e>fM__apAu5yu|e6e=x={P)5weEJUP7@WnmD zTw*z5DE_2`<H0};T0vTrb~{9g z?hnY1Kb{A^@V{t4-3HAzx`m)yp5@W@?NgpmC`&L6c+RkZgANB}&-B8i%yehYTZ?oh zFLf#ZpEB-OF?m^XEwF7uAl?(JVS`nRuhqW(*8weJb@@kq!Ny)AGHIfZ5tI+3ze=}E zo`!6ctLJy;jg_(gAaUqg*9)_+C%I<3ZXHlJ?6+0;rGS<_JTCO?I`?N_J-F|u?XT93 zx)K4(73bpb5djlHjN(8NcmYUCY~_ZW4$qq7m4vz;`?vCfVUV{a8 z{;tfN(|5jGyIX!>`w<#2Ak$l{LcKM8NUOz8}v{_ldzGY)xLz9$wjsk!b|~XlzRx4fT`Xt8cj@Q z^nq|}D%4pcaP;R~OV;vJHKHbHB<2u1!GX1gmuAl9 zuIu_s^9!wO7mCi#PoA3LF{WhJ`2xn4yJz?*c*#UbUf;j&$C??8`X(8CDWn^rUm>Gy zm8npBO)QT48RnihnM=~v87msJm0wdJ8-(8@(7PRx9DS>(!{3GhpHAsm>Nw-#yQ9Bp zb->y5*p9ZQ(dV$xMWMoVpir$KWA{r!(>K`IRHxo-T*g*HfGdx0gy->_^%nxJ4zfh1 zGTShj$u!+Hz58pZtGtd9q(-7{l5#ps9@l0(jRZ|TtuwvPUk|lzPc?nrR8Y=#vzO1^ zvTr9!mI!txk-4pM%38m--~p`a2WlHC6n}T*iJw>xa1I_@>5!9v|!eO^6Ly{i0C*gd0k^ywDzb1KAlKuhb>Hz){Qa)>c_4Gr8f4UH6KGRZ*~ zh{`aBm-9M5AS<+Ep$E#E0-)pO{N3OUehp=KC%4z_4h$+}S$)-X)l^jAGjXtEHZpZE zHe>d*a|9y{5D)^MeBetvGgl)rPdi(C7d}rxihrKq17H6gW}zVa=Mh&MK?+Sp6*6%L zXEQQRW)5an3ZV~VWMl%)rsjNKB&7a}9Q>Ccg{7;jBOeQkhldBV2RpNavjxj%US3`n zRyGzkHYV^BOfCR>S0hg*dl$<8O!9x{kuY;Hakg@FwQ{g0`#Z0Zv4fkdAO*!=M*sc! zkDO+nR{z7v-sQj40xQV!_YTWvW>%K}o*PUm@OP9?#mdvnR#U>t&dlBg%tMHagG1n- z=l{Pu|HJWLlv@8o$h!FrO{an^7F~eVKF`jVth87ta{}1*(YK(^qYXh zfc}vm_~Fxse5n2JKQORGd%h!_Xms&e6EE;L@7$faJCx;EG+OZ8`@37esjcbhF%&8F z!a@azkf9^M{O1dc5vl>H5j1o8uQ3=XNO3X*qZf>SKS}2Z6NrxUKuXq1`hRKvPJ!P0 zfc9Tg{qv==i2y^+cp)s}D*WF(z&FT(FaH-=ZZ`&knC7Pc_XEHGkp%`y6k+Fok%P%+@E*P*>aMf;~2R=8;5-@RbY9n}KkPP8fZd0;;G3`8UPm)t$?I zqT&VXiZZkzjQ z$X!|OaznMVON$+njYmH$R7q8dz*bqJZ6kFpTA92PFx?%1#H{E+XeHeGuElMj7Mcr7Bo{lKD`(E`G=b} zvJh~P7q&YiO_~gcLLhU!KT%gMz&Y?hOu< zd7g1$%rjht*;bOHZQiH0{a-GJ z?sDwbS{oSa#@P-#F+k1h?kjdzS7R(=;2)L@`_|tLX>Td;LALe$qX;n8P+$wR>D7x8 z!a{~>N9J|h8H&XnMmZ~p6-t0czL9D zQ+Jr+{!F>)Z&R)rx&Bg0&&i|p-g`8`*nQm+dxvBU7txJz=9C6#xohowz0;v|p)QgQ z&6DK6nHJxxpHoVtPSKq`ldkpYb*!g6Y|l2;lm%tSu#r2wz-RkCSsku-w2A0;cz2xbRZg#EIStvj5CMri=*fq?nTLq>w z&VFY6Jyq23IW6aUc3D^Z&GcPIJJ^5tG|SHniWmw(jo?nt%Cp$9IOs1R zKkB*8NILICa}&^C;4&K$)8jo2s$onOYGP5#cQPwD~8 zVw~+wqfYg;0Mo|BwTUiyfJXo?q(7t%K|px{qvr7ej6aF4x`~6wa)ZgPXM4;If4(eK z7As~ft5BzYfrBS#ykGZLhC?NytLl1d&Gfxny4sFp8Qts&idLbn5oK6xwA0Z7t5nYS zq)fa{yFA!pvdI&_IQIp#;s2g>R%Z~z64M@2c0YgZeCi3uFKa7fW}Ps?=dMJ!IE zu1FE(s|xeUOpJ9Ly|=kS50x*bjj9#s07~okzVM|1KSbn+ki~)>Y3dL+OS=9d!o!$# zBvT_R6Gorc5UGEAdCPwK-K>0mUu0AtF#rI$?P+usxD#^7{MdWr8QVv@-oTc0%rb0B zFo}52GkclfmQo&c=jf@eymL5`VM}_sJEfr949XKAI(%7$`gF15YpBUncXryiGC4eg z!o6zPcaPp{62m(fdYF}@!YMI5LIzxCS(ef1cq)S2h)ogK#FRfnbOQ(rcGlnY^T)&>0$wv890NpzC@*4NCqeoWE6@Q@ z65R%!mYHM$9&2tX6N+u`Z_jfq3n4wdkx?l$EG_4q&q`+<_xf|zPLuM@VBhV$834cB z3-1qjLh>F>qIVv^)=1rt2e^^?Tm-DT&M6iXX9#*X-kfh3kjaRLBFBSr{Po>eourrC zfO;W~Yc5lQS77%glSrdzIwg3IwJ)}9Idm{nP?71e4v;*u%XG&BM>$4}rs zj~Ic6&7cKg1gd6{_Q4op24%t9B-{4O!3Cw!J}2SBk4QXtQ0C28tN6?2mt&25pm@K} zu1HFZzaGF=%*cWyM&f<)*#>EuLkKgKG@=cBFq{VEIc#*!=840%Jnm;OG2I*1O>otD za%8RwFMFQU41Iu^TiHvUbDtb}AEu05^oO%EjwKP?4X2E$eun}G2!dXuAF5tJ!te3( z8U}*CEC;yv&tR9GqGR78nMxa89NW%voGG%;lz`?jLY=Z0h_QW;vD1CqhbC-mcCoQ+ zny84(;#g=un)BHt^c6Ji7l^H`H+$N4-WeKyAMZtn#`IK_qHlel0x16Dv6rl|{Gz(A zGOHAN=zI1X)Q5(Puqz1lssEp7CYvmmr8=oop`wBRq#F8D^`CDVddaf`u=KupMPJ2} z(pinfez-n4H@O=4J(|glBo}?lH#6d+O4;r{9Ahim9p9#(nscsP&P}pzp9S2&T7f>& zD%Ib}seh59ngb+rEVfkUH@M2(ojm<2h>?42>8w`Ej^Vpo_jZu?e!T^jjL9~Nj@ZlL z4r+E;vA^c~(`I`b^ZA;$wJh*j(o^#-D6_fe!!k25FGa^a3@xDLHI*Y+{kuOvG@CE#8>5v&j;xI81KY003=i?Ob{_&x1#wqFB zq^A~lpL|sl%bYAg;`<^uJa>;EaFD{>Si@1(ahIOFr}@+|P3{&6BzKJjNh79(T>9T} zQNM!sN+3(UA^m5l1%!0gTi3$;?r-Hj(`~UuV-r;6iHD^RN*eg6BLncY z3r>W5pTZOP0N_)CktLF7dV6zvI1V)$ZCRAVyxdC)36NsVkp|CeIZZ~WUDSC!$*(K~ zUQ8oM_;d>2ycN0SNS4mU<>T9ei9Fk7F6UhthFCT$e(eIz1x@j6pDS73_m}IrQyS$) zVl%Inhs{8f0f(U&;!~niYSd_K)CpQpVb2Wh)o0R}$FTCBMdya!anRZ|)5bqJ*N4Qk zV7}fs(rfzN&TFt)%~H(;e@;pAjuI~z7HobxDwB*zv$E_`vBQVIhmrQ4{;=($5_Uf} zCdxicB+Jnrb6YnhWV38lpAApy?adb z6yG7CQ9XWiUK65#B}-~+fh{$#c8s}g@g2{O{vG22hMnVkq3CrOO-7?Ci|@WrwQ;8V zWtSBD*z1mvLbia`8@MA(TYofn>W`vMyYPDG1$02Wga~OM*rAfe(IOl~9vcvdQLEw< zM-nI$l(3W}VTQZL-cYA5Jhg9(Nt{=)+WGo4Y7$0VK07c%2~x!B)q7J|BH z!Gbd(ec}BK&pES2`v~s^{TtXll8uarP9q+8h*TbfjUge3ODzoqz0@37qOthIB>tv5q2FIX)%Dn!}!= z0A`eG$U<4KTpTOKe>H|fo{lREznZ>M3BKOeRs=?o?t_dB@pq;yQ)JFhCuGtag{UvAG*`2+m&zCl=8R8*v&*+dx4>3iRPRsiU~RM>2vaK{i1 z5Fr6)eyp($`W%Aj5Rm#ZMD29=>ZWv3Rx-_TRM zm_eg^*2mf1z45pzv{L{HLO2j4WZHXum2le^rl|AlRLGVNQ_1fhzg0fnBM*7Bu&OYC zt~M7c!!1reoD9A{Y|D|TFJt%miK#llFTt%^1P1=GSb3z`^mbDw2k#0*l3&6!a{t0Ocp*e}oTm`ZAM=h7x&(-iMI()zM`ZSiE-?@ti4mNfAPb{X_8d(QH{63w+dTzl-Z2)hh#)o;|D z#r9yJR+Un-{ewYU0LjU+j1&j&|6LjX-}$0O)Fr5W1gzuK!914~*Bmi;Kuc*y^v@iw zBe;a1!Y$abpN2fZX(uHC)Y?I7ovGukGw+V1pljD)mopYi_3CYe`yd;ZFc%`=IxT|Q z^WCW(EJImZn()w({{GkP=Sbp-7@&@>+}?{yrjZqPA?6tQ->(%Dgy$G(RCboXpbAO#NQHgjZ z64T0xam3hzTDCx8NVvVZ)7R7r(MnD#0 ztfPa)ehX;ep5u&m?7~I=4l+mw^Uogefh zPd$DE^*v7GwvqSA9E@;IYK*De^q)Rqa%eKf7}X$x3Rw>Q%ztJ8PVH`<*miK;vdZVi zt_0rRFFU=PpY>^l08S%p0^@y5qJzq8ic(*n60Tm!;slEJuHQ@>msZl5zbYq~(e&}M zRJ@G4IuRr6@`1BImseEDXQ%)+itfm0Ty_SowD({WNg5YeJ#i2Vi@sx=6j7Px%v(Hg z=TbJPF~mqK)8+#&%dvc2y=zi{{NQuT^8h`L!VUlr)54zQ8nfm;EYAV~+jn!*OgYDK zown^)cWg>f4nT$RmMsh|nv|h}S7zv~i)YFKm-;1+baq&U+WmFWBi+bBorqmHDS0z) zgGy+G?UiU_>NibV_OU4uFw!}j1XD>%KN}cyzO1sZ=&WdvVAVpZkGhqO+vd;1GPkmA zl?WX1A;~^WjNLLsC2B$fnv~6e?aw5&Cx1O6uAZJnC&jt87 zzyZ_#MnJg9#q|#fy@w@eiefN_NK!%MYB#XRWG1BkFEyM254QXWN>{n4M`o3zcF_LI zbw{OT#nE^{MzS$))5_bt2hif#>$nXK7Bp5eeZ3?{AukDNq|!uNtK3ISzo%k~o~av( z3Rzi@>coUzl!*U;-divzr8L#|ownPf-@5v2k*qp=`-5=d8WSgLa--LkW|>MI^x^jE z!h>NYcP-+P9y>bvcUX;MBB+l{Car3PSjLX;kHM#GdJH)8P4^2c@P`e7U=h~eT(mH` zWwG!64#}nb!$to)kA9S;>Ywj5dSyli-m;}un3UA$g!=i`9|o^PK)UF_He=NL^)n`DJN)nQmp$^!o8 z{F&9i$j#*YeB>^M?pu;8CyX&r53?3oJz`tQ-|B-}eykVU-mZ*^s*P82`~kU53#s39 z-ptD5Ojh#V%sr10DHF9-P1~QvZqS}QuX!C;;7kej#{)+w%D(@OY{|| zi@}ki-IL_G;AHtmAN#9mN1Br^OKIk~r~WGcX?Y7WhYAD7@b&jM%&|oVD6~7%MsvO^v<1@(#{Uhg*iDKh%|Hbdz9%7?c_! zx-;^_N}(n9&{*@ujF_$SozNXKRE}-s{C1iIdaTA~UQ4!2gA0Il_4{O=LVe%c`J{BB z8Xjr|^~On!x|hy*l9gs&^*>q(@{Qjj`n!&<_%4&XwX$p(hSVK-F7l(OXl(1GyylCw z2%f~-9VAm3=cc}0r_AcHl?!xv?Dn9u>$LpFaSmvFZ1nk>D>1k2gCtfJ%hQ#^2V~C5 zu|s$2bR!<@vw|PYbZbg<<#QnH#58SdTIYH?F{{JQ!ff#0n-fe_^Luv-2ObrI1D)3# z%+aJuQvYEAGUO`tI#epWCDt;fU6GN)&=bdw;0|L=)u5O%wkb`LxE!KbAJyX~D?}jmGo+43 z3_egl#-!Jg-m}?GQ@)pE=Nwtp5cn`lpmQJVWumt z9S$z<*!7k8`sGY#=a2N$P-z~X(a*NHSm<0x_#^JTdA}#@O}jTz!H_P8;Uv3H`*DOJ zo4ITtUU#a-yjP`_3{z0mH^2D*3VY`yFsr_DO#;1hAI<6+&T_HJiZ4C9z2}{ee{+?7 z``@tw9b^ENDjhi=@$TV^WJ=61kCXAvA$xw=>Fmn4FVHwR8eg7lLjsC+5CIVEx?ID7 ziMXRz-T}(KvVrLpok?GnteR)xmiJz7?o_3$0CGt8UJT3J%fT+apuN_vUr&O14*?>1 zWMGs+<;?Y_P6~XIVGc#6;1U4aFJ2^1oZiIlQcBHcNtKWHJb8rn%=p6L%xLGH-L688 zjn33i!Qt737yB3}-Agv(ar>@Tu5@T@oz{r<^J`J_MF#gV2E-Fe%9ir zwC3N81s#mhOt$R>#)WN!sPaaJ@BSM(V&sBKBNbhGAVU;uUTmUdgZmd+q{5DlP{+R4 z9xLPn$xq7fUVcg?f>FuKXyFtu@NZa%jr==J+#xpOu617IZECNGCKpGrD8iU4(wi*I zb3*|ADlwC^nZx+~u7?bBoqDaW#p|e5ZZ&nRAC!m)dv;BWz?2x``>2_|h#T20!@{ z-11BJ$fBHH|6f@>;e4PgdpJ0C6Jo#CcV_-U=hG@EU^V8;p$drO-sX|f!6X}DlgW`? zNC3$Fxc7o=uIKyo!Eg89$XaeY0u`^qReSp$)f|Y5{AQAu-eje)B*#zNbwg<--x3@* zaYd65liSG#PmFy(5v37+xe#CJjj)TyFaxafwio#0v-{yaovB7x4Pfr+p1vnM*8&#m+{ zW2w!<0iVM%ZjJv>g%X_Goad6y^~By;+xgGq%C^a)zm-?TvI932^S_?)zhOgb3MgJ_ z1ihUwbu@~m4Zml6L{pb*#E&$?L1;pB&~V6c;2O{(hd=rdm6klF#3Vhax(~HZac$=9 zak?&1luIzoR^R)yp|R!#*T9DyTqLQ!Ib8vAeWew&5|`Kf`2IFi@;}@l0x~Is<9K99 zU~Gru$k|K=kz2s&l!6Yo_nqyM$A+(2$L#{UB8gR|2#rHYO3&_C7>U=g?cJ*PdB@fL zhCho4$%xDRH;s`|hAKvIVK0APe(`Tv5)`L2>cK?rlsVU_Kq065ANANUL`afB!{emD ze~j)c>|Zqx>k|c{Sd5PyCOCl#A9)e9z(pjp?f!@>a21)kS`#Mk7zXtne9fh}k>#;& zbqzu2SPRf&XrnnTon^5c~Jsn7u)4bb}jhiL)=6{4Zl z)(A&tn|!FZCfFN+R~igw@;3c~F+zacG5jn$SFC8qjUJv7#%;5pU_Oyf4IcP7sh5g* z-iy@>tTGU`+UV@KIhvQJQA{`0^b+VtJ>5YQej&3duaP3K*d~uIt7uI30oStBOV9`t zEnXfjd#l+@9j|sr_Dk4@WWoHfIH1yM5m@8&8se=!X~d}_xm>406(Gj(GEWJ-=3jZW zf7`x1gMq1J{)ETOX9HE&=!!wW@5! znwP6DB~B(w$KRm~BeexZQVyIa%+zX`%Q(RGRj|Orn15{z!^iRw{g>TxeZ14oVA^Ys z*C$qT9|Q?5H+}OoGt&@k^=cd3PQzZ_zSeS;PH-V|4_qs(V;$|+bL@d_%=bK5tl|3F zKKiL_7@QLSqzU|^EQkzm@?#LT78uY%Fd9gfpGPI2`**u(poZa1;ZR$8@Yw=lCsnO` zHubZ*bPGYW9tUKKu0pPIbIf@QsGUHxHC&?@w#-Kd0eT}|OcejowZSae%?N8@TS($S>gHo}t8{hAp!afD`#Y~l?o+pT8@ zdC-r%$PF-$Up!E}zt_b!MR)%e$h5$*@E!tolqD?wS;s{$(jFMiOaWs;Yr(AjCk;UT z#Qc1Uo^Vd6+K3NR&}ahFCuk&<21{UP^eZ`Fdfj=9siRgCU%u!-zJCv_hg%i~71_kKj)prAe7k zzUr?PtI4+>3>^|Bvs@>k7f-_+1qe&Wwxq{in?C5SMO$T$w)EW=+#0`n`hrGi_jI$~ zu8RF&p7XI7#E);EIs_ksjp{kUJe<)2GUw1Kb{!G4LPKgKn?c#$ax0B?MFD<_?EV+& zHkI+GO&jZ>X49DYh!O>1_yk1#pS4hX(_6x$2{_pxW7Ok4j}|Qpq7{$;V7w`P#^#F6 zBi;)?!F{42#R9uu`LCr>LB+A8z-CgCrpCTh5KMMmZb$BcL;8ew*V9jg#|tTZJ(~Lm zs?x&RPT46hBjPNxn#_5%KV0L67p#r8XgEvXa}#>Tl!dff&$_yZ3Y~w%Bb%nieu)$M zYsN58*pg%*gghk0VB%oAAQY}@-*D+z61((vR6g7=fPX(Zp6o`EJg$ynd%M!;AbD=0 zScVHnbk0#G@i56HvjoOL7?E@M&B2WLU=+Ryk}O^}4YAuaYG%_I^ENGb`VXj(Dfkb5 zWb*o|ORjSO&>AY?D0-ME|-xa#gO~y*fo4>B~8=juMbB4 z*e3r$N;qsW@6sg&xkMmJmAz}4*l5=Y^6XGh=;gnx9@>YF0yhqgd(9~3^q0g5u>3iwn(A`Dzp%w@VZldLfQSNhcWn%v|`ojCp_t5M*SJ25$8yUi}Vp z#2wsq6Sac{XQ$wuC4w4;p$!_w7~aGN>d_{ibs3!f$y>c^&A_BFa}+u`t}SUdRE-@I z^a0|qbyeTHuZ&Q)s_gyPiAjvF>as5&W(Eo<1CAqa{_)q}MU*hbaKmLuA;&L}C7AG) zXq)dGy9S3aKz`=wro8>CLbp_Xf?e2{f8D!^BLWY8KS)GrmESQ}VU~Q=#&t`EIGNZb zsocyORxgH;*>LxsFJ76*|NSbm-fHPf<%XNap+C4IpoY0x+#Hr(S2u~$0IUP}4VOje zaN2_Z>w{IY5U56SZQu;N_OS8YccPt7g`S6X^@0aW4Tp361zK~W-T8mtxT{QU@CnCP za4G{~oj{qc2`}YHr(_{YBv~@%1#fhef6WFS+%6U3QdI!1j*zLK!ej<-@#DXMTPk+F z=EwDF=ad>R6chEX_1RnRn>mleS(@0@mnQPRKX zjn>~@EA>JOy}!$j3?=(zfR~{8urz}I{g2un-kM`pdF=Uz~uW6Y%1 zsz&sERe9SdJ*UH>0RlNY2D{%s?!KBE6rB9^ZC>DJFm=IwRTJ=(yF5@zon-1fQKAN} zXDzd;AT;}`NIqL-W9o?JQYwRWW}n7-le`gL?{lUc6hfLDZ;2yN`sb`!DRIvJTB8HH58$Q=;l&%I_ zKoTz*=A-#BoH#O$8og?fWjV_+ipZ~G2#*#T28S`ZhUkvb=~i&bw!Q`4m>a*IOL9t9W@?hnt=}jxXTQZv(aZn+v;23&spXG`e+cFDn}BK#GwSFAfC@!7?d=kDEA@{-&R z+(E%9FwxmBJE7xNuv3V>p-ys4ktpu5uJ!Zn!KCH!ZeX#`p6!zu1SW!2uhXQ;$vn`2rJ_VBnWWXu+)Q zw+ld1w8#bX^MJ7YGZ8X>aLSh|eE&(C04!#5@b`}lP24=X_sDMtmqU9|YaS`Qt-_zv zMU{hc>%{77$UhGU=#Tnsu2A5#$6u~&p<=Jwd}3E1OZlL0wSH*? z{9hD=m$AUY%twMNrbh$9)_;>CYY8&hE1oa`J+}euS&Q3wGwd}I`?GQ_^K&$cf%vk? z|HIN%hDG^&ZSu#`ONk)0G}7JOjR+DFB3;r*homB~G)Si)DGh>@NH>CXcZY-$?=1iK ztJfvF`^=e{bMAWHQ%OXraT&Ho*kL|j>luL7J?n)w;!|$fQRg8FM5`4%u`-jJ{0l@a zTcOdsgBOa}x&KW9GPs6@rQ`*ov;S;5v7fm=3wOl+yx>j-*A(|8v%xkyH*WyVOJ8ugVPCo6LSk~-dC$bg z^QF9U#4310*6Cq#TGCfWs?%+Ofd*ixv-F_6+n)Fw3&u#nd)hFm&|`&(2;Y}m$dvA* z($$B}dn&xfj?)#!qQbZ56OJ#L`tM)9rD$&jP;B)GIBqMN6>Z-d>;BGH#Gf&U{$>J1 zWQ<(Kr8e)^5cjbi8cHt`1y4w9XS!39d^7(Ww&-+$x`Um_OFC0gwSNY$c=YPBj0NY^ ztTZ#2Ib*3PvDHrhge!bQ4OUS=^a+7=Yx#wu7r)Ineh_IUzFBDQQ)bGf-)EgQxZJ!Iq~3ybLe`NWA$Z+o}H(PLxb<8^%#^D>xn;lUz0eExsk zufeFZf2EGTZ7OpAb56VOlI8=Vyr0UoXWLt#TO5aIO2mzr`aSb;{N9B7mGHkbTI27{ zgBPD`H6!YsIN#zwens6ybrkUZf_Ih@?2#GS9F2<){Tj-UVquY{^p&|2J07zjtSbA8 zrk}ku{QGV9clB|g(2N=NOuP#V8Dgo|yD0t7$6SFBX|CyhABb;?kp0fb6w%`&>2Bjy zIc()>z|YK@^fQ6{_=o)??6c|C8Mb+F%ujh5EgH!2;3>tw2>LCYLaLT2!|H-V-H!t0 z$?;5@DI-;*f)u8=Zhy=hZhiLp$d6i?@Nucw{M~iv6(n)8t`PXjHDtXu{8%{?60H@| zD@}Mm*(AjXu zhRCW+>N^F{&bL9A4eG6pv&}7fj^pSohyNW7Og(W-Tr3s3ZrRd1x?3;r4V)K9xUd$uTK{QmkN&+zN)sCSe`ZwWN-U&q8r*Q z8v62-Cc|ub$)j*#y)QxCyb;hy{fhu2Kw2@ESOLmePDghl-%b3*!28=5DJk;8i;S~X zliI3jo6x0*Vr3!(4DU*c9GG?TCpfunQe&xAaEYzQbDx<-f^kbQ(<^Y%twGSzKJ5~f znwL-g*Kg0Q!jxpuqoy8<&*rN;{V(haun>DZvR%^QsiIHBtJ5_A{KWqh8B4b(9nTQ7 z9sf}gI96#yYQwj5#?S=_1yQ;rd3pKMykR1r-IC81K$oM8&(Hap^|;x6hn7;ry(*01 zd68Nim^8Fvgf}0v;&&=~S8%u7Ud(L-q2j>dZ#|hRbl=)HOWgX56IDlvx2%HUqWBpPqum{4$kAsZLu_u3z zg>d1;jvOo|R(kXW3_UlPdKE@ual}6bpL_F7onuTqeIbtHVS?pA5&jI5qxl!?3IEl` zQE=h{;Ifcw+$REjuwnFq@`9DQOwU}sKwj0+0MW0RbRbGd| z{@23>Lm!*)<@7K&d!EugziQJnt9H&-^gVG7&gehv2LjeE;|TUqL%wYAtH8q_tD!QD$3-@aRYUQw-_`_i(_l|c8PUxe!uG6Jw7j> z!;fjk+#-+P8J?399mQ%sx)wv=)im&zkmLQo9cO>b`xD=~CoV%5IznJNOK}B7k^>xF z#5g5|k4W&QW9Q~P!s@WTo#Ud0xHr4oWPtA^1*3r{ghF$Fd<9RGYz4@sdp;ijsx)14 zfaLAa;jM-rcQUR3MI;jrwi~X2tlJj06wrz@t#@zIbhWUliUxUZY!yuU%`&*S^bPp1#_@x||nxic_rk1-!o5aP*AF33|rO zhG*93g`TMtoolyA_}V92AdkdiK*WLE#P6iLh?`Bj(+ep7XYg2*JGM7`B)brWHLuvd zfyuscBS1-ekgrg@w_V(kaUBXjmT_6svpF_OigMJk5_o=Q61xZW;iU91oBT1+Xv+Ls zP7*a(MlmOuFtaQ=$?KW2^t+&7eTFV1@iP%`x(vUjBbU3R5s%aPwG&l4)OCEv9MO?< zwrsbUc%@fXBB#%(d}*?Qu(?|JrHSR_iboj25b`SoX@q?^`|@k^*;wo6Oh&<-H;Qh5 z)(E3hzlHVDX(r$pv{^@^Jy1r7gSGI(K5r55py5{=f)u zn;TJ3VX_wQI*Rfzdw-!sz9Rm>=4l(^mf`Y~?1Dg1U%+T;6H4n&U;{*4NnLoNgW)Ea z`MD6%Vc~h$sm@Rqu4Q8BzBUDAs!85Sm*ijTJzHBRHR zxGKA_9>7L`J9z~xxZFunl8b9KIGLN8z71uX@b*%_*x_`=l^Mj^v$A_vl-b{+NEIl? zj`|*dMlazWeXK!hc?ohuM|MxCcL+s;pg99zdc6Flpe^9WjeK?rPov4D!V+C*KGN7J znrw)AiFqv@Vo!}~1_^IQ&-LDm4<5z-;iq1x= z+qS2zm1B3H5!dHKF#wQmC_ydc_2!C;L(!uX?#s^W1-qpq;Pj|_4=+2Hx4-%@+pdC@ zO%oRN-8POE+}bLNG%T`0ZJHayi}n>Pb(6!z?2Dsi((ZR;mccYNy+wr@C$@S2y4tv0 zEoRYhnK51z-cQpqLW`9V4;2NglXL|cW36;JIeSoHSzN^7EDDR_g5amxU_x_~ zUkZouN1FKQ2o^iS_OTSiI3j{}(?y((KQz*IXZU^W*@ucJjuvhhDO$oIWh)RpwF?UT zeZs?UcYk@d7kwF$+L^091gg+zJw|*UE#HkQA#E>zS2qGUEXytZ{rArv6I6B|Gv+xF z#&5zKU>tFf=aKDw91|`lgZ00sS|tP#@|J$&atHsUy;E{({r*4P@#^l4$<;*DiPOgU zdXgTy6ld`|)!$k}qb(Pk>EYRd1sGQR2g8biD8YeraDJJ{_T}STvrVkm+4x=KHmEb| zXyZKWW`T#G&J8{kxZyO8IY z6`z?Zs?QUykawLkZKHO2uHCf|GFdFS^62x*VTzGVD1u~Em!h!`h0;bqvjiMJIa2qG z9s@^`(?9GQbBO3iA+u1v_+&9v&emFXDYFy;ij{|31@48>kr)N6_$#}ba zv<==*-5|36g|Q+dcZaRGtDU+VSyNuG-Ck}`inp`XhB7RZNC!*d%F&2!mXkb=r09I~ zPS9ml&Or0PzbOQXR$poD3`_hCFbnVz@dq3TAl-@}KsE?k|2w49i2QmD@oV{p!gMab zMx(Zk7m7O5DQ((i1y;o zzM+ey3Grl9;Sg7;(+n=!su9s6v7M#1HslX+b{F&)xvy9Me@{@M8NH!Vgv*9xd&vlB z5jJLMXr_HWMJIn8TI4R*5guapC(#bG;a4|<2xO(snfDNoVi!W3d|L>o{E(TRl8 zQW!}|?b8GX?iyv5Ry3<1SfEtsp$k-U7z5a0H217_h0ugTxkKwZ5W-BFs>cu-Nw~b9 z*Ih|?vf@+Nej#hr*UBw74C5E<3Mc4s=zcWAj0qkDcu_7?0msq_Lovp^JMXSo<(ROE zgRux?LPM}2;qQchXNJnt;h?*tY6IFuuj;8ErGzhC^y1=>cD?kc_^<4}rBdeW`T_EGIf{xU{IC8QaJvPjpf7S0v%ouux11rv#b1&^O*X`(EQd@b5Ca{DM`Ukac5^MpTMqnTuf zhM&N*b4+nS%%Uk~^MAAWd#NzYTGy6NfJvQ#Ot7BVpd%=_9xXZ`Z`--e%(&AM&+naRN;)%eE1^4H| zch_5%KczAHs+(Vpx^VcukK+O5c8dP+P$Md_zV8&JJCMe=xkna(E6x=Vj=chN4(8Yj zO6I0npR!g~1srD!>Oznwrto`RT_%@vLq23265nd zUq1WrR^m!3`RY`4XY^ac!O&im@|OyE{!+#X!riDq3c-sQ}z z-($(cMa$am4g5I^6K)ID);BT*+}3m@S+{X&hL^(*2R(j8U#%czQ1L?558tL=Ft3?x^7n)RUg+lkFc9hb69{yUj^u9pC^&VxcS4yA?CXvK=1MzRx|Ev-&H zg@XqC^|h>CiExuEl9)JoXY?ff4?tQcG1_Q+SK8ZxP;rKIGbi@NF#Z;CCsZ`-_dr$% zXj5?OlSv`twfe2aZ>XkZT5U9pnXgVAaFtsg{${!&Gbu$)vFYJ76ND;Bto25Y{1Ltn z7<@cqSQkr@CgI}nP3M( zNZ*ml2yI~o(Xq# zxIy|8r8TG%^_M(q!!K?55>W58d%wxsZ zfw_`L<_Zk*%D~!GpjTjSzCZVV)(QC5lO&fs7Li0^5kXYw}blh zwC^xZjQ?s`++=T2tOi=Yn)iHStOiaTD~X8e7I70r#DoPP#$z?tW9iF;!|c275?kV; z?#zotZ@%O7CbIsTTfHe2XSsw|`R?}i$-Z4`4Qj#rcy{z%Aqq8k9IEetYo-n5)ArS+ z5DM*mT3V)U=pTji*+_{>&ZY5C{=<;W;0(yw+f2TU5k2H`?WsCP5awnajlHT86|evb zJH9c3yvXk6ZC`M5rg1XhY{lW_r$y%;o1cJ;e}-zc+5Sb9wSMm^G+w ziG+}K9F(YXn7g)|CUlS@6eef21MT9wwPPC8BL-l|r7HmP1{@m}7@z;rNZnFRmQ6KX zlLU39ttV(0fg?l6l5z|Tg&GPm6tvR=7jUD;P%G@xUFkt_lV(c;VLyI}ks`FrKgmj^37Z}qMm3=RrT7QLGl5rf) zH`U;hO^mTtG=AsWX=3i=hEjsm*Ejr)9Fi&*KyK(#r46YS|JCN=%j(Sd0~Y zntz`){~1@yeE#FuK#!yj#RnQ|{+*VGo_7iFvQ@5ql9Uzt2qBkp4dlp#QI*;MjEt_gk)imq^$DZ8Da&WwveHuik0gpQd0y^hLUKRlmtQ2g7Cdp;XW^!9}mGeW>eD2Q73HU*hJt z>$JtNb?c@Rn^TR5o%A$O+2<`(7{_2usY_byAN^Y7$e^kp&jA9^{C3z}O5yT@0EGMk ztWuzy?s`lpufrl&g@^ij#-6MbH~{Zf-ZX7IO7HT58y!5i(a=D@y z*>OIR5NV|=MB^sYD~V>V>cq7_I5SF0!hNAHEif4-D(h~q-5D3f;e?Hoy#0noYYo~< z4s*|K-+hfH|LobbPwnDge9hiezEuA6A^~c%cJVywa^FLZYWjOpC|i`&C>lMwxHp$% zh`A7%qW*Xq(uBaWiPoHf4KpY#-ryhH^EfQs-c2|p&lPy6XC-Tcgq)bRdZ>KM#7bWL zOS5k5e)KZ+C;S+JY-wFXj@e{n;7^W9S-v!hWIM`cJ`vNb)8jTW62AK8SJxE!l+<_c z_$IQ4Dna;Zx^ciaw(^WeawUlWN`mOPeas1{G;)s9RD1hhzo3yl9PKUt(j^)=vg9S9 z+{xT^ww7=R#7s(`{|If;$xNkgZM}*`C4 zK05_|dQsb{va~R!0b{$8!cdsQCdK%FBi3mT5cX4CGAe&nYAJjeN;4}X&w#xslr-r(VmmGw&w!Z zkP5$%hNPXLzJIr#d)w7S(|~>Jf*cZSEXx-IRT-BaWIh9mB~I$rLd$v4@6449yEq7)~k{7+ZoKbnz6Qd>ez=ZSE$mtmP50XJ1SuI1F{7FEpQj zE6@HS=HY#CSzHzOVG-EbquO6r@(k}+W8yMAytpZ@!%0IWYdI6|!HMc&7H=E#)-@yOyGsw}r z?%?cVQErpe`P4~Ubxv(TC1em~vCm0wCEH1R{EPD^tme{i0P6Z4m}q(P~CWg zkjM0zqE#zE2p-)P_ELz}I#3*r&ce!G7E3?p^HJSX;ip(Mtyp)y zhfO^f^xuKAdQhLwn?S7~0z%mK>%~g~hnU=5>q)WBtCKZHe(p2KOk8Lf4aaXKC9-u( z2A*$eT#8T>RRd+7?SrQr;sFSD^$YZPi-el&?33NS-ed`V>7G%&@JAFIeX;DMKtUso z^bC;hz2NTBhiNypCrFuTn=@xeWDl*O# z=6(8!hsFU%(2btby9KY8>XYQ##9%A9*}9sd_Yb$m{4(*&`3XFHy3CYphwPpR1T>`^ zi!^coI^W`kL!r>`{n_T1rQhYlbo2XU4o;0IGYvEx+v{Hl3+vR?wfbHpHl10rM*g^E zF1wdMueYK>OvOl2`p!}Xzmd_-*!D^GSwD#5Il`=LeoGA3Ij1?tKT>QeII-{Kc~9Pn%u+h=(@GTGvVd;&_{Scj>S&d&h|CNufGTS-F$VQWT9gDrA^R7 zP+8&MC% zhG;j}VbIf$61h=r^}m|zRkv#se>XJR9feJY`>ofI&&Ar87J1ql4+<)jM`4<08T$J3Sq zzrL&S;RMSbZ^ThRi6WK&$Fb;D<5!Y2`vDQQ7+_ZyjcietsL`GN(pk}`EMhLi(#mNZ z^W zfV&xsZ%YmRPRf&@;!tMf5NHIfqvLz~Ax$_AKCdL_*{fk{j?jpF5=6EQJ%Lmf4fWtf zW|rjVaQNk%4V`j{5e#Q*oj#3on3Wni;nEOy(<)gft?fNk?2falTy40(e*Q_p3dM77hbJjGoYr%6h?SXiM$7Qx zQgm#XDre}H;RfEr*wPi~y2T}YE#}^+m3rvcpx)SC-QGi6 zz4EW*x#QAmP4in$6SchGp)JLCl90=GM`_yow~li!s3tR2J+<=hTmrw`-^pR41fSA^ zZD`Xe9fl(NWB;b(k+TD9gw|FN+v@QcZSzbTO~^*8Wt;@Gcm^WH;oOT`l!h}#87iRF zq+R)pF70fu@++@0$3g%xGE`O<$szCG1in`ON_N0?VeOQ$g^@B`btt+X0W$1BEHa@o zC?G!MXxx4<(j_mIfFcEP|K&igdJ6r;p0fCzU2kppE#y;-BVR)fo*&+FZ?bTgWd;`F8K!9nN3VhL$2IJGU9NEf-XI)6+3SUS6sMQw+9 z^l-0&l~eMMj!y?BJ3e9dw@XgLM?jiozz_;K0n>CZqNfGTdz&pXkO(+T;P`~85gt{P zqMJ_V(q!PX{{K0f3N&HoE31kg9EMvYdWj6=d{sM4IWnJ|n<9`xW6jpQMI7c|@HgjS ztNv8au!(}ms;2s0vKkUY5<{h4V8Ud~fE>EM^9m>f_+WP+IH4dS&<3d!`AKNt_V)sz z(;w6M(g^fSnr^u|DE5b>d&P-jWee@MYRSW!Zh9QDh_c?Hwn!q6ZIORZ-a7qK$@9&mK^iHf6qZdW z_*Fifw|qT%i9^OFrhi)0qcJ%~_=Ui5CgAqZ#uH;TA$7%%e#E^K>*}BLa)YIUVPKPN zqg8sJZ89QJO;^f>N2D0qvC#SdpnI%ud6PKIxigw8`-wT3p7{nnctrIbNq?EiPtBh$ zha9|OywuZueCr{_+E$w@oQ#@B9uLQ9QUp?U(Ath7RUFm9tg=eBK?;7Kb?d1il!222 z#q)@dx4OopE4(^}gTq_KQhcR%23{By<*<&8_T|6-l?Pe}7Hb&|4ymcvO4!2y2^iu; z#&<_8XE6x1WszDMt#zhHGA4xdqVJGaNUhN(Ekl+bmIA)m+my8Fv&QT+&g;TmZ`hZ_ zG;jE$Elcmr2aVna4U+A$_svxlCw<{_O#z1q1#JimW zvzi;%br+Vr4sZS$j-ApW!p3wsQ0}Wr*(O7{B8U;x8Y1$g7sOj-a(IBqo;ZW2^DYew zp6O|MFm`Vqbn$5jsRBYz{#{|f zTcX?cebBO(`{biuSy8WX8l-Vvfb0vMbh!uBimUn0-aV&QhD>+4-i@ZEt$qj9M1)9W zLy?9xll9k$L5_P*HM5j0;tCE2Z2nu>gE>3RwpX07l_9p zkFziCf~J-th);wgB$*>E1xbmK-W3?XQ^3Wp@IrUsdVsU7r4F@xJz8*)xrf5-Bd#%T zhPdCAv+!vzou$0-P-MP34s{J7xy<$fri{%o5ctA9&^}5H-e0AcL=7$aURw$qU3S%V z)1O(&i3J)&v}$A5b~E@KdD@N1gg@;#Dyz4ND@;3W)_y_|hESC?L5sOy?w#v(GQEEK z4ffL&opC!EwU*&-(aUd#U>8{U;^$fq4ogHv**dh5((|`8LL0F&U6~yx2+3*VGBQ_c zMYJXEhx0S1w-w1}GulT8L<@*sl(9*4gl1LlPS$#!u(;Ez2>H8>+x<^RRQ(}n06*|B zyzM-`R*P)BN|`8)*Ujq0`NU5<_1A~|DivuO_J}%nh*0Vk~`bOAO1=oUCvGD zs?g<)f`&?;4Xv6d0v<6(?H)e`&fXpu3AqM^?ai@gJQXgjx6p$iG%7YoGU9F??}?bck7HHvt7W0HnU^<)wAQ+` zL1kryB*V|in%046OJRVGPILQP&_B?OZrJM9v+g29C}DJ3Fc};CyPJsl5fIMe^MugK zw>eAPw;v$gEOQPu(YA;rImzqo{8%+QjNDVPG<7*=s36E!G0;F)i5uSPYLc4K7i_jR zfz{)T9mYM1II`3Zu%a~OGBBQ~BAm^%M}kEmrgbAA2RltVgi8r^4h$5%q4*^B)p)&d zJmXg`?*}G~?B3QgK$+dqp7L1?%0^3VE#DyGjL_*2bP+BIuO4*#M_vrT44+f^Y{R?( z+#bD6&=b|pj~YPN!qy*>`t_EQTr|)Y8Y6&TzBD3v??5hoN>4d$!chP{{rT=uI9zbn zhHl28W{6F4gK&gGwl>a20FmG$y!MfI9puE-=Gv{Y3=CLAkX)FD69<5lxlN|Mm@`lj z%ui76=2y>*@W-sH(gSV^&u2b;9$6(M-*mBL<<{OnLwWyCK=b`AxqTT-ebGyHaWpQC zeUp>J2p}D0MYZU4XrHN@F+i0;ZqDL(?lxz|m+_ghS zUEiB&5Tt^30VgwOgjeq}XxgmgNKxk`Oye6LhJ8=88?ud%gXyJ!1kLj%k$^eJp{lR; z7y~AT1%nJ|jSao8O^wFOEmge@NmJa%cO=No)IGejR1ac64;A)NDhvW^KUsD&avS2W z&wIPv9$ds9GDvV3<8~o<2f)A$Ab(Cq2yg^On`A12&)ga1HnBfix*uX1N@YyTwnPwU z3WY{HzYTrH5tD+;8k4Q-tG_ns8t|mfQ6Ynq+=W(&EHvN0Wi3Y3qP%V@-mELU@0lW{ z<%X=9OPSYZyL!5Sx_%i5$OY_OM37{q*jusuk?me-R{!u616zhPq9Ut)46B$T1-!Wo zdSj#N4UxTGV-d-7(K^*{9}L}>@6ODq9yDGU!C2yPVv`WJN4`?^G=4aRuDC0-!}!fO zE4!ti1bcr0WsJ2qE3942trJYLc$m-HVPMb zz@kYLVy+~l`QOdUef_WG2 zMi|JDG*I~)mw$u*fb|~IXywAp19M;@LO6oBXdVN(=1b8TeXP6o^<-oZs(BouvP zADrU~{dmIbQ18<|CP$&mci0@zeImT66^wE1#o}lAgZlgmrD+#>3^v; z+h+u#p8GbkojCU9rnO;i{P9D%NR=*39e2(hz#zn6V z`_p(V+h+(>O45fsxScFbH%8smFl}y;-GUh|rGdBf5d0vo-XgBtPrs+NqJEBu1Oo+| z25i<;<;~OyjI=fVRMh}VS{xqA4O+I*P3|8-O`mZ8>=DXfq_qG?4Vv~=l!lV1>=vc8 zT;G86;g9!3mLLu-xyOT+cL(M%IRNL1GMTNjx1JufYymo0QX7=HwFT!cTmd%qv~^sB zI%x*r%T8H6WPi=Ba$}G(zKEjkI7^*Ct6#`|a^^=0zCNWC#uwh#(V_2})bhZ;{rwZ2 ztPJ^5s9DP#S`3A$6J7kQRhc9Y?_{Jz9`IN@TW_M950sV18 z_&GN|{5qtsQZ+n;tp4YG^p^igH)-_EGmUEY^$;DO1zC?nLhqT0$ESJ)DA>H1LgVq0 z2rZrk2675&_s9!M%8MgLrnaSc+s6X(+*5krbSG ztA0u;Vv|Yqc5pSN*W+K;Ac_VQtWm=A&zNHVw#KF%oYg+Gh%*Gs!l%~XUX**Eo{y#! zC{K9kmfoi*8Q*H93-*LZuX(eI7BywX|0^dnu`3xV9+_`ax7Z%F-T+9s#(?Yi5Al&d zqGSi9I|yREc@uYn{r2CbAWB_v#3!#uAGnO_!-9pztqA#vgwD{hPK?%$ zc?USy2hZS(XY^fV?GO4`ELb~lHwNj*F~(6F-BO^Q-V~=Dd*INEGi}`D2J4aRHY{D@ zG`Ihd6G~Wadn-W};t9A02O<_U()~#(d)+6zoL$kdR)auF83T!il>@ylS}p=yV?m%j(wBLsUlbo8>t!YSpaPWoB2<^zL9XwJpzH7 z_}*@B8m%*eV|>YMA~A>Gyv=Y6bAA+4O-cHhUl5$TvD0ZkIjpJ(p9K4zs*~)%;ZYXZ zCw)EC_qqS(11pZAx%PB}?!&iT@o2%e+djBzzSKK^=SN})5&5Yl6h!Q*`A59t-t1zjZgNtOh#`E)<85&Y zf7$Ot`xaKL>k$I~$~Oq;_f~q-%sPhV3=@;}{bRz1s|^bkIR&>jG&?Yh*8Hbhvd8qo zi$1BZKe-Y^!cHWQO-=)Ykcu`7-Fu3uc$}As6bNs-Iwl?f3f(Bge2jlS3Ba4cWnlCE z?FZ|Htw3c3uhd9y8J^WGM9+d|KIbXHajc}N8jt(-#CYS$BRi$<6~heA^UwS!I`KM5 z@KAi(yiaa~?Xzkf=cECh>niE_ln>fhFe|@n1MR~pKzk6`g{4G2Z3*A~|EYk4V}vcB z_BPU+o4zi*4@1)11hTA1jmY{z8aWp;*8Sk;b^GU;$h)eHG9X52PAw2(a}VLarPgx2 z*TR_=AmU@WmHKTEj!#|bJAa>?Ww(Bm5bvgFgP1-4Lor|q73(d3*^mr;qoyDxnb#X= z_6tFHX?-2#KT;9^p8;71*(P;evG>nnhQzO+nsgd1` zuf}z-ZnsFs#>U-r68=pj6lRdO8F(+Q_leK8m>QRTVspcs3W3>By~oFx$M1^8#A&is1O|&kSLfnO7ku&2D|X z7kC{U3>=H-=>Mi8WAum+L{RNg+xCt0C5F!w2!clV!N5pd&KV*ZW@cF%369qkV4t0f z%(KU8{b<)o_XQU;!)!F|Zi6dPXdrsJVC1&Q4&E3OmiDn%M*NxF9c}wRpW2Q8_G>iDQs*IviG<(ZUA6%|FumwuW4;D6 zH6y8sS1y4pUljz;&U|M`{=w0;WnfIN2f9x90M-F7yOutihGqZlXa@gm67S=?k{V zi0SX8h3mzP^2j*IC9N;$ae?lvjzZ}D(DiV3=thx6+g0p{w&D?CK zbssSzy&3~cuTw@z?7dUCl?17HT3RuyqenVos+JeZZA7zdDC5at;M97sQ8z7-U>cZd zH4!Nl@jvd4A2QkZf*%sd=Lf<95p>g1# zpV!A@|XNys1tk5dtiO(XK21BnS@)cu~%j;)V06zB`CFE4;=$aY-Eief5 zgRkoFtKX6I?Zs{>;^(mb2zJB5S5Rp&<)H5e7 zIl1?1v1vT6>;FUq%Swk~aud(zvJ4PQuOjp6J%hFi)?1w!@!xl>9KH*jESjMR62ud# z?|f6AVabU84Znut+kSN?*YO9|3Y)Gjsw_4iK*b79@QSUQD2zv}pU8Bm4N<59m3YW?%V_*Y{7AB87712}9tWkv}kcQ~qr?A+!I^>y()7};TZvVWDM%oI7z z7{+`#je|du(Ko*oSQLV06dXhsG|v%0I$3Xv4&cCOu|JbEzlZ}qR|k+pxse@tKZvdO z5y;E-kH`oQpqKuObZ@hc$-aV^!?!ekD`6XS5#x3>0YX;xFE&WxUZBgg#|7U^nafGnzF%w&{_-$CY z3TUipT+p?R9&6QjrX^hm#eFR^3_!m$g zZ~e0~=prb8LbOg415d@j9*@%sAT}BXLIin-B6Z~!0E9}j7w$G_X-5&#y8s=Y4|mU$ zii?qF!kOj(uK=)>*|r=*rt*<2(#W(6jkVY8@&<|FWtC7FPjT4r*{a)t$2e8w6VXC0 z3qO!8@<{;B2i_qNQT3UpYt95?g#!AF?|tZmqKP}S8`R%SBq#X~@C;^JK`*&tp zYUu_VAcsG=eHCbjLg7!nxrAv{(;cdnn@Lhk1Df`Ms?ILb^Ow8+DVifiS0j|ogmA{) zgi7K-hPO9{86a%yyrbJ#TL&|bq=@0OVI9-SdtYGGdGktwzH3Y< zb}eINm&3SOKMjCEbv_UPl@dQixoi1*b_s61otl|vu|ACWUPbXETDhylw=g8`Dw1mtRrgWrWfpn%!kok1*UpqM z2IV{@**;mHaF?;_uWeu3iv1$sNjOr3zEU$FD%Yrpa)ENf$HwxnKgsJesT68T(mmtC?FYv`QcFrKaO_&UU`CnZ2`vY?dsn~;a48a{ z4HgeqXV(M~X(u;n8)RvsZ)5sHrai*$oBmRea5A1;b;>gOv@}9!vQv!fWB44K>o_!g zw1KFw;JgRjGJM|H$O6P1Xo;YZ(1t?kOi&(wvWmkn6zZJ@fSgmomvg)B!DcB)rV#_R zbN_m?^+=ZMN*HNBU98w^E9=pxdE9=WY0;IUu=Yrxc3cE@fYO8wcUsizSZkrdOHduY(A2>& z{WzDOAb2(Qqv2n?v{G!y6BbN|a_sA@l*5I~(YVatOO1?+XWP$#Rt{VN#zF2bIhzp{ zO+`a%q?`Xpb3d~@`mb9S12t_pIal0OeieqG-;}w z(H^BklXciEKIGF5Q@i^?p4hAnyS* z?Y-$v%Uz(n9B9QLziUu&#G-8eV&M77z0fzqHZHCUwVO4!j=zdxlR)V{3Z50I=G8Q; zGgSQMqw4=y@!Yt!o75j9?T0#$IdPDcX$=>*ETw1n(uW4^WS!}iQ`h(B!o~E6* z!!2ZG*`OvMh18USGgHLa-mOh0;S68HsL2wuhP9k#!l8UzHb33q0w@h6?NEDw;FLoHIYP|Dx6E?ajq|+n*oB^9bY=@^Z z!6n0Y<_aXRLbtZEe$L50q>No{U9Viri-Nx*n@CX~w>hMzW{w_ik%{cu!7 zl>LC{(Z^>)L)Fy_o(F@IIJ4I@A-~=R+NliPy?OPwBRjCD0Cd)N?>2RW&qv$bi9dVY zUFIpgv%`8c77Ks^(BWn9WAmTJLlEdDKQ%Iw|KBUf5Lj0epx#v{=wQc9yU#U4>z7G1J=5)}kk*4smx}@82pd z&X3#J;34jKXzo#|i_`aOtCu=5kMTD{F^R_IV(kOpLyz1f#L83Rx*p3j6tRX1 z$_(K%(##2dlZFz}`Ax6u8cNQst8W%W$bo@cRtK~9BZ~$|cDj82e%lJrCj?vs=+Xov z*xd?WwFpSQe#L%i`c?FV*MwwL5ByX28yvPo9Vlkhp{oD=QkLk5xR?>VvEA)xA#5wl zO~A@}YjALQ_@@C){xQ_|?~cT$=vf1Q)sC3UyfWU-55&yT#QKN)q3$?05ThL&vEjLL1MO!bbwq%9X9sxxxVkWGsWxNn*lm9`TUfJtz#`=p{{y%@Rz3o);h?JsW z+BwC{%l>G4|5*>}zfw=Hucr>oumCTbiGNP}=GD`uB8ozBC<6zu^Jh;wcP}+GNWsg0 zFy@%D{a&lFnBxf8j>}<8A5ut&_NKyb z;C|xi7egFL+>47f%6;a$nWndKBFWQRF#`4docSbGflY-R-LJjlG!#HFT~GDiRB*1h z5MB{jhh9oElrMZ0k3%W_fFf@NrG=M~0lR$SpZ%E$j@I*WXV5ts*Fn6n&Gk+Y8O+)K z7Y1J6LCnWH8gpXWUT!%oIjnUKbgm1y%eu#C&XHp;JS~3bpwo&ln`78`pU#RQ7)4?^ zXzBFyk^b4{!G^wtZwdY^sHaJHP1=;53v(sc~w zQh5PEyXU&yoBsA35@0?Uk3*q2ByY7!{TjOmG)BmB{HqVee@-Ks!pFbvUnJ?M5u{2= zW{GNge=XsTyF}`3b@>MYFF`r!YvPivb04D>3j$3HRd2%GhhHKKU`?gDCG=vu=C`6C zAoxf$q=CuSC?LOM2;X7;PrHH?Tk=Jg*Z#~eP{Bc7lEC_|jA%{RGXer&_Lg?w{I~>M zMT9CN0UW9<8-FVQx;#}2;bvp73&%Tf@7uC=`AmGn0C`#u0{&@{hZGBwj{W1ClAtqk zq$IuC7h#rI^m1$yJP|Z}cd2Z4K_=!=;IYv4#ALhTFh739g$htU7XWb__qcOWp~?Tm z28Q`gAHL+VPj@jiNyG2wH)}_e#@E~I zZ?k*@Ju?llMzd8Du96UogAs?G)kIna&Q$C!%nNsU&Tqy~khOZ@-wdbsPD*Ca4g8UL zHalym*HC@46=_Y@>*je_ufp2`Io;Uv7W^@@rV{*;8~yHl*PIhPbkeC`wZH4@@+#uXE`ZFD`VU1}-vP+*4EJUji;{DF+?dnyFU4?+?Aq|LrPa?&0+`QZVu6IR z$86a|5!i-VC|8{?vJIiKHVk@Nqzpl^5h z0SMzNfV>1Hs{`$z-DK!*`s<%BQCuStSuOB=c)2F7iDjM5ab$3hsi%HY>hJ$T!gn(L{L?}y!7H_>{P=n9fdJH$gCJ?3tHE(`$6l`go)c;#3Ib^vbe1bVPA zL_f1A~Mab9s5xx;_7`RCU(0!7MJ5XRvFx)S?mHr6KgelJkMia@3hW<{ycnzxE(<5|9#AoxL1O8 z`04?qpk38+y>bBfwi)>g&J{rM9u|b+)_^(fT*a@hXM3IsNAn7mpJ|q>J&t^NoT;grLoX)WV)?6>cMtUj4!epi&X? z$KV0L9iX0SOk>pF{63hX%KI=TeierXO4 zR8-sE6pl~`RtT15sb1Q~{}B55tV_M;ITT277I8%nOu;mOwN2m%_>^u^O2B$Q^$=>; z+y3E7!@?G(IXzQ0t|WB;F*?J3#0(CpH)1-c?+-M_@~1AG6Evb% zo4`?P01&Gls|zk6y-)?=Si=#KC7=eHiom6^1x1?ZLPhP_xT4^J0)I}9`{({a&BGZ!xlohar|W*}HbCM@bI??V@jjt7QwYLwKoF;5>#8!b@zc3BH$4@a6vWx0D}pKcqrY zXPVu%tGkict4%rs$coo)#zpqos5*Z$RhTaUhm3S~y1I%om?pJ}oXJ=X8gk<8$gP|@ zA5spR)>jK_WwkLl68g)`2<8dZp0!}y27PZ7UjRz5AK}-0r}oi-4?lusC4*n`q7w)O zD5KG*+GDRa11fNJv7gkXf@R~(qc;){FXF{@3KJFdQiFJAKe2aK$O|b0Y>=HHoPsMO7QAfa?rG8NUT5klg=f*yO*rjn=F ze%So+Nj8&3id^C>30LtZ3!zd0v1)4y>tytk`E*n+P&zRhmnHMC_ty^9-KgPfavh{E zQNZvw$pa>#mE>8c@0O#NE{CRyzP}l&#m;f4N74)mzO8>bOp?z-zZFf}&|Blzq}43I z$0YhD6-5vp>@mvTh)j=d9_JDI59q)T+pm_ftT1c70fy{_C*W_bY?KFc4j4sW4Drj>c=kE)1NcGL+tWqfcqf5jNH@zh%%^5xigGey7sGZ9WhtWI_>D zn()OAE~Lpxp&oFvNkZl5W6Op8q}7ilApdWQW^lHOng-mJ{aJ`Z6cQGsdflSBU*uTJ zwMttcYbb+k-B)1d+aO0Vq;bpTHV@`^Xesx<`uoZO_g=$aW4>z^mLovv_8o^HUm^Gp zm@-5?QKkBxM|S-f&4g)HSNyhPPk@1xa)J(`99M|M*N56$c&|k>RRp)?lBRdL-6IBFGiertX&^j$nmZ4~e!INgUzs!Z z{o6XR&`mhAF_%Lq7u+{z-W6j0xuPwMsxG~{^euNW3xi=yYTyX6|=A`-6Ld@>?paWv5?&l7Gh zx4J(!{2EQ4>vxYny>8i-vbN_@Iu*sr27>W7uZ8U+GgLV%{9->6F|!Z_ZDR}}EO#%r z=TG0xZ!M_TH?)O9XH#(W7>e6}P!)$Fo6HSthB7PMduv_rj z-m<7`Qj6B*2fP1c|JHeYxSdt*=Adw>J%^b;O@1YXM1bGi{cm7zuP#{+Mx#cj7K#<% z-0vdz5P;k%AGKROiE1K}P+Dw;uQP{7I$s@}V3krnn>DuXyw0y#@Ja*0SpG3F8pLYY z+6-8Uc){oVj!kPk1q{TMH1Es}-n>A;bQi3BhgEl8*oNKhDPsE9i;_t-XlROIzkP6q z2nQwRCv9JE5cdUuDx-rL;;Ga^74t2f2v^3inn&@$r8Ap zyyE+tuak;hDM^_pL1Ib88e`5z!&1$|9JF*Id`EX2N-#)*E^LH$Ml zGfnLolw52~?-LZGapjTr?*8nzh~=7Ke;U@k>h0QXZd!s_1)V0XAeb3Y3%wZmMvt3a z9cg<8yn=-{vS?1+MF5b8O(CdzJlGh8u@MLUsix^4tu9g7D_rr5>Fhm7LQ-k9=^?Ca z@V^;Smg@IJ&K=svgtvKne^{*(Ydhm5d|#19FPrptSoQBvDrG>PR)owKj3itofxInXCv#7I+K)jrYAgAVaPxdM?z!sYyG_467Oa z(++YfZz2w>dtFX(8IkxXuZjloS=1?6Bv;;+VBcp8QQ1y^wE)v>=WU5`;Yv)K5#@?) zpSPu!X}BlZIziuD>uLnW0Z^vl=3=>2kZhFG0-+0Tq>S4mt=1qIm}(zDuPogWVDUyM ziP~!@$X4Y6F2JVzOyqUjE9^Bm?$)M5nVYoWbaFydE!6Byf9cwrU=%Da%#@V>bd{QV zaU((3XWj>pQn4^&-0DaQHx+t`b+p7>=@176pb-j+_7Ls4#tRC?+pA-mk|=KUUF#Xp zP+-bdqn)Vsi_Y1PsR=M`X0s{&b(|IM!-@XOC~1`;^0zz|=GdoS!W;C`VD<@qTCmor zUO|98pRgt}Br?$|ED;xNJ#j3O#wFUB@fVMA{Qu7apcjBVhlpa2^y9POvsAmXz<4q* zaX&c}Pa*7$h>~``sd4>AQ&?q-IdO$QlDazK;Yryz<#^k1N*JG%!KHURR)ew8b5?0f zY3`qd*eo5qX)Lo7L5(9-zy)tQ?Hw{#q03hI43QVo2!aH^No47rFy z&Sp!!T%o^yT?qB8xs=uhe7I zIDWVZyD}<&(W+|zUIul5`G9b-Pit51d|`lbnrA7^A;c}jCHN+>VOe@YW|i|JQ6qDN z(1{-9B}z;t;_^J*mm%6^sWB=rBpNVO_1!E;Z8S%*CcwZn#fy^Mt=_HQgNlPY(;W8i zPwCsLDgB=2XQIc0+Pq~yZo$1T7rdFrGd4gP{H50HzdaC}iZK8KrZWrRS5lob`ZP9xuBWZjal4?jd;t!wQqE3mV!|BBX3t`bPzA@+EHxz31Kt!~C;|xK zu?0yq3fJ$4pBCI-pZIH^mO#IC=#+|JJ-7@7rk=^t85&hd%ova}!%q9tq~`jf14l)# z^FR@|fM;bx-Zk_5aQO{6p5+Z8?B8SOQcjs}(zuJo# z(V-c=QqQgI{v#tF zk}B#dE0#zdbaOsnMHwDwKj9EX1UClx@GZmj%0{ zl%4fwri3P~4l~Rzmo#+Ke)_A)!NZmOTxF|gwapY}d{%T@9;*}E+K(D$$(58XwM%fd7l)YnB(6&~bRQxb%>SAx+C#(ruVMfSj>Z~zqe!V`hICp)rKR?PTL6SqX z+zB-~ae}}10f+YIF4tq8F-An`2(EYE_4zC4AYi1h2X)8-m6U?LW9z^*_cnjnhrzG^ zNiT+hnvG>`29H8wTz-AU>?4kxUNaw}L>UZ)B!{DLZtI-3SWTVzwnMCDSG}Kx^b8h+ zm7aC%BG@qi9exJf+EfCmjJUpTJ|%fRj7IEb^F1}aqpZ@i+3g`YV^E+n+PbrjNiwSV zqci8lJ0AbYQMKPQ)P=H7_-)KIZJ%{-qAg%0FMtt+>-IWEQH0WGr_d8j|2w1T7d!*T z4Y20Ih)BFlaPZc9%8D1N+P8#x>6rV!q{~7zxK6#Pt5(Yuc}E3P6EN)xLfF1uPrySn z_w_ftF%uHMT5>bn<~3H1odbZB7;JlLX;+}{4!k|3lAi{jdw+8BT6u^9JDxWWA=O=< z!J66$_+81FgTPWrTVc|f=YRGqUZmnyBR9y!kyJ8?DR=yA@M*g(kzD1d+qCCK+{kMK zZG^Ax}9Kg=&&PDmU;YdY3I&bErqw%jL*P%)qLiS3AnMu6W>$i-x`!i$UGVQ990H%`v* zV+H zmq4omfnMm>+Y*<=3~xtdVi_(JtS?VJRbf1_UR;R6gNeL2+#Dz3u0=S@qJncd6C4`= z6Ty^Ue9GwtBtvOrn>f2N^)d4aHjtt5<|JJMkRXz?98}zFdIA%`BCwG1dK9^ww>&*r zBrHLO1Wi4SydRY7L4DH=!~Bcz zlOtg@;@NOoe(x)q>fms*D{!+KfW0P^PJ#U9tJ{}20n7_g@gf52=lj^r+LeaFS{#aT zf#CY&M9DGXMqNGOHV>HU+GC}X_HToP?`{%D=X^J|H$MbNaRMTWKjK5&?yFc=k!-ky zHwMjHiLO+a;0&tf7(k#EX+0hMVOYK8U_)Ki&B}Ic8Gh<{l$4mnyi1BIC=O@OJqG^8 z*=H^Ldi^oPGSq5|rlB|?f=}>Zcsd$KZXrccD*g2zQI)o=^}&RU?IK47`sMb3zBn>o z#=cfMOze_0paOX0vJ|tPC@>`=q>(9-rO}dKzZj@ssGrkyh z39f;8NQ4FEk7#ErT+w1Pm21B-RHlD=Zo4A^q~s4%dwu*fR4mms|9keM*1nrF!9fH& zskoUJaJ!NXP~?}Hv(sfOUdK`yzb>)F2*=35V$o`{!7HF}eOLAt!!j$L5&8(PP7Mr_ z{fmsP8oAn&K!T6=vU{p&+g?^+5H9Nj zA;?iPvrWrwhyEQJ#H*r;Fa|FikHZRmUpRm$D~9`s)* z4D3LC*D)pl9*biD=Db89#H8g#ZVLn6jz(0RJv-X^+KatEy)Ev-tU{>H%CDOhcZmO` z8)8;eOQGA~6NO=Zi4FbcA9*sFh!gq~WzuZ5xffv(oGZQhudxMSi1}P#_^-AJH@9To zmorqDrh(H{`Cd0M9`0P<9zTxLshGkT-V!{BCljYa;~q~MkZQHfJATh~ z5Y+!{8nAiAauKz?+ZRKF5yUf04R*5}8_xt!2^G9Zf0JUriVg%bB+M&hbh6GSrM|YQ zN~FG)|L|RP(kn%iUqb_X^eC>0h(i&h2`#J+Y!xNNDpUu+N{i)>@qis15ab8or&Pc? zCQ3y)Hzh>|_h%^TG7Uvw&tRPP6ADC_zHYA87zk9Iuz%J&f#?X}<_a+Iu2M?J*N_Q1 z=H$9hDt5!#PDfaglurYI56(=-8H6q%*^ls~EtczWKE-z*fUO!mf+1TTW!2N$zw`@a1d;i~Kp zvV`NUkc&Q^B*dphXs~B28fB*Jj~?jvnYFuZ3jdT(`F+bh>U1MDYBpIqm{ zL4YX2Mx2)0nlJPJEq(4? z*^QFXhr`&v#xD0NBLk6@&+X&`__fNLN$aWUb#|0pi;M@c-lt$Mk%ES2d$uqQ^ zZ+b=f_OLFe&>Zjljhl2_+n>ZNiFZW0W}*0nT?nr#+AkNnd56TZmGGGb++p**J3TTx z5_uS@<1g5bccQL*!xDM=igD`sup?#3I!%`NjmB1=t(>@$Zn#l4Jzd`!IdfE7qd z%xS4zWHjC_RV(qR5^why#0U||V-_4g&sCG?5w0h;-_GU4UiNB(_t6FJihmYr;9a9+ zNmL0Y=0P`dCS2wA$0_^(@B7h8QkCO-D5QpuhiZ2dwN0Hs*==S)zjYGOZ~Y}!;*KB3 zT+tohKTQ}|Mzv&06Zr) znAn8NW(i91Y)-@ETZ`I*PEAfU1i3RJ@(I`_1>ngHzE7(W?X~nUaB4qq3p(=X^_{CS z=`i@EQPsm$sd&^kju>-xkuFK})ogby(>bAE4FB0OGI%BF`E5rJDUTkTobBj<7mScOSR&Wxu5xDioD~{G04axB>HC+!Ip5 zBl6O@=wtq220IZHDO$!FeW^A+@gf2l5&@2;*O>RBC`&`Vq#FTaIrI9n?%DAJP0Y%~ z<2lh@Tzdar`(P&_f=v`~_rmcxQXPQTwUvoD_-r(Ir9WFq64}AlI&ScT+S!rQfwo;J_^uGlplKS8Eq!(5BCC+TnUN>$DWufL$0&!Hs)=ce zULu-J##^%RM`z`m6S2vES-rdjUc?!iGf}^cQHT^qsaxZ%etjxct8*-@ay>K$ig%fv zE9Wqa(cS+f*|iD48cd{17h0{r9o_Zxn7k;IY)R?H>Mqy^TzW(OjEL?E)(W4y>IuT0 zEQn?Xuu3W-Y4}l-=^k`%+PmRuIroD2JBEntdcAXw{sJ@GA5C=sPus zMPo~#vhQV7z81C5d6n?*{~Z;gL{X?_M{OUY6pOlE5}AsSj+@TcY#vl~4%o)*nNiKU z=gu6|ppu-ZKuC_-b&(}wpCl~IgqYXUE^F*;##T7+^}DXwh%>Nw>Om}#!F+&oVa35R5>t9Ty89f`8w2@4C6(u{FAn*Nc4G0 z%+1m|*tIRp2WMsl-(8L7|EJnqE|hVRz4Suwropc=$sNqapemq;_-hvn_WIj@}Ym6T8wE*$HZ*n9%4)e z)46_YOnx#qv>f}jKtgqaSS1A;aV$PXRxOb;C!G$eb?t{=^>G3Va}9qlUy9xxd~~=x z$a>}#D?OfF8y6h~AOS5}D;#N&{)2qZITSB7)&rH2sr%)sc}ua5YCF&6p1l~CBt%)M zXWJ4Yc-NHXaPZU3hm$OS?Jaex$r zXG8T-lkskQH+7u^NaRL<-ii5QWAj%H@AyI4_+)PJ87jqmEEy$tN)&4wxworjXB@f& z0BKl)D1Gun{ZzAfbdZ{!JM2v8dtUu*v=cMCf!l~?=#AeUCz{8D=UgqA_%{7yM0!?K zl;mX_1CYNYQ3N!+16$wQkA;m*xRc@2Q&wZjOIQC}IH)-AHZE?Z-|r=CpV|FqQ@<1< zFH#iu*S)QgNi@(iuV*rPeY;L6V|95HO4a9*&!MABeaf!ptZO_2v)gJ8j_;2LsGJ#y;GH1vq(y9cr*FM!b{B)+g_9Ut6SE#!0xzZ2-0)ERfV)D5S(|1T z`S2Z*F;Bf=VtOCL@x;DTukwno&oleT(GTf-KR3j?(a=#snIfggBX30FQ^Uh+NvtaZdpU%$Db8OnqS6l32!eUy(DDrNPmseok0Dsr3 zykO~O#4;aSR}TmTd~OfR-itOvu|N@yDaR_oKLQJ6@c)Yb(y5#xC`V=w&>P9$2I!qU z7qqyRVlU7aW5RD2HxI5Rk!wpjK)h;2$LiPYv3@(j#xpfXcWEl#;a|kfFLp8UZiO|uG_qKm5<^cIC)f+`9LB)q0RV$=+G z@CS)H_K8yC^2UwUEQ>DjaTo`R#QUC>gbp?fW?2E2?zVkfMdHr?(@b7MIrutk3|U(1 zx<_4d%m3`UlLK?lM+mmv(3G?E2ltuMk#-BZ z8jRh)j;~Qt>v-0>)deJ$SE0F(6enZpOzAV_xvIf1oqE^dubliJ?~7E5N*A$ghVp-{pj1z7 zUSp~wHW~`=#Hg}&J!^uy^o*joZe9?m8QsG!P_RZu@Z0_zHE$E&-R_5bQJ0=<1Sodz zq8n}t&k9q^-xMu}kx=FhK4jzm@kL~4 zu~(2Dn0}*8X^%iXGw_afS{g&VG1`cXUz&lQ+1t8_WuSsPUXZ~Pvv`X3X}{UZZUDfD ztq2F_#_IUa?=Od=oSl58Pi9iO2cUeLSc5t6{!AKfBX_c<2)^v@LdISP=`LdQuT*RK z#2{nxrKD8%=tVbp*AoW-oWyoM8SoLa>AnRbr_e$b@{{|Z;8k&FSQj>AO`9($WnJDM zl0YFi2JjzZ$>-as%E0?g~f-B*clt%IW+^?a&(; zNCAx;n_GO-?*0?ts1u(CS7dS($?JNDa@qAB^bXlz^?~#_7mPw>!N6k=n#fJ?C_a4o zH#1B7pEfqCB3D=H_#(0MpVmC2K;9@V;mGw1Z)5DdQ+``rvJ2vC0pV#Qaj z^Xp#Vsz0QZsx`X4EB~`F6zicAm0Ytbs5-@#`G4cF~vA`D;UQJgklT5pXUDh)tE|H z(0dx@Vo?z^n9`8>a5kRVwI2Au|Hk;dW_4SR&Kn)JVW}68wB>ZPJ)WPf$V79>@3D7{ zkl_@5#^#Vcq2L7*u$`uTKt(g3-d9%%(Ha2x?99gb&yRuyt;Qhr#U&jUuC<=jE1%C- zrASa7)lo-~Z;`Aqy3dkkFHVx(3qns_mA)W}0Y4z8GTNG?UNSDFu&c$_PnYZ}t+S%^qI8Yl9I`^(HD9&-;#9QVI$^!!lz4r>L_Dtr^6+j@Jk1;c<^qg+ri9?Wug&Z`*P z1)yCmQ1U=X`Ex})YJhM-d?KbnI&_qy^`{S@%}q_Q5w`(9_yhRqBm7AH%&ADT#Q|qd;sh$bj5o7NqC8hkBy5CpyL^Ze^CtM;x@ms1@SDqih0lxAV;eq#XUdwh{1zse8974j%p0VQHs z)2nH}uQX|9e2>ilYWsH4Zt-UOs#e5fFXqwBGAxZG?}2|um~W~?*zJSf7dhW3HENAV z{Scill4+w3$iRV<=XS2|e>hIwnj{yw0k@;Kw>_Sp&mbN}ya&N(s)@hv!rSQIz5X}< z`Q~rKlxk$;*(|f~ia(XRgdWwNNy8wu(Z)Q);L2OO)l;_ELjz5JN)>XFCtccsMgQEG zEw+Jxr{St;9d|U86tlKyE_;zFv2(edw&5;-89r zX7D>bX6<_)+k98g%0H0ff?P)f-#C8zpJ5m?wQg2+%{N;DCa36+zAGLX9-=$6i@Mii zNR_aAgD$RqQ(wS59(<y7vm_e8U5(0MxsBld+}uU7z?cP3MUCh;tDTR}4#- zGp%l&-KZDe-<7i-oO5L8AD8|s|7BK>)Y_@9|F$Ynaq$%7fOY69`Gknm*c%PYz7s!q6W7T;#Zo{Q$WaVGQQe^C0D*z_&dY zH-l#abDJQ(01%e%j_ckyWB(!HOrcpY?*fBE-lS8ljK-~?J<@HLPqLmV1l)9m|K>m{ z7ZNq60;8S6cw)r*2Jm6bG*(Ewz?;TwA~ac&8LLM?g|7gkEMZh2;HgmQV8wLE(3>ZE z1x~m#G^_^OL+l=1wEhwo!i|n}vIs&3DuDhp_(vP|CNxQlzszHc7I)wj=G}bDnR|4j zJ(DJ&!Knj>C{U@edf-DhKy(4sm+${>#sj5A4WlSYMwEe^Hr4_dew%3VkA5ST@Safn z9uOeIfHMPc1PLkm+bzI}I7yY5gQZR*U@q-4x##^PCTu8TEToAW-3sknpX_)-R*$<+ zbo0vB<+I_Kd4Z2NQhH`{@2h`M!ocKWRPp_ zs24oQJuu04znyPV-&_=)Iz!jvk~qRZjVm&6b2h4=@tr~D(3tGkkXu9E^!`hkrwLDdT4^EQ^%7h z!yTyW?>q#x2Nz{R8=mPHS%&^um0(`Kq#pj;n_OEn83?!E=?WiI;t4UC=-T$GUw7I? zU06LPyUy}$ceZYf6Y0PF^gvqai!DLNjyoyKRX)tzc2nKUa~@!DDxuEfzObHPpyyFG zWjSYD;Q3y%)9tTEuqWPV7c$fGY*uoiQc*THWx?uX-MmZR)cv?b=PoM*r_S+mhYLPD znoVttU{`efMnPS=H1|Vd-|l7U$XDnX zFvPK(Tx0R<>7&Th>erw0NFOKWwdx@CEGO^g_YdMJmKwht|6Sg&^@-SiD3SBaeeS!H3_D#XLlGgp zo8(Z%+ka9--i~HvL)F{3A^|u-U2m zQ)Tv5< zEk`nMI*AlSz2Zj2xPdt1Aw5G{M~Mjf7PUR-kHpPsOcTOOMb9xqz(ZJoz07MxOTrWR z%umF*GCpCpv!)UjUES>tMj&_fpHO7(_>+L1y4ZW?IN!VO@cYzo8*a}hj{r-L3a_4+jxh78Zy`5uxOeI1X5#kD=T|%gMv+$fRum-@?WI; z8gs9cY{>fH#WRnASVFy(`D!znyUu@iowU=?bA?E8j6SsSj;4t2{7&y`h3MbvBI!~--cPL*~HrRf1&eQnzw)bM7OPLY}2Oq~9 zR16#((^#ctuv5aSPErd-JNC)D<_oWHftUKTCEnpC|B^a&|6Yp| zyV}+&IbGn3y;G5H2Ae?F?{B}gpuRcWV4wfpuvnSq$$v~M!&Uevm4$bjMZEm#k>f65rKpDe zyedc{Vv?@R376XEPqbO|Hr&gjU<{G29eZG%kkxQfRXBv{{HN6ttT`wEKJemdr@ZU5tKu9Wo{Qolb2t%7hzfEIHm$|-Hm=XF%A7MzK6!IIJV|~2l9ZvR*%#SakJnLsy@;G z5|U;q5(uD_6&D-6cKFb2i(s4n<5wne(h^~jPJcZFb#hmtt43o6$A8lvI`94&m>l)) zY3-81;2>?`Egf%EX`EYPe3xyJp+J(Ba`0Kk@E^Ra=0vqqV%Fd(4SdJVQ4Z~W!35AK z6o4NGCW60?K{aHLCzsg!Qo=(77ds^DqMLVzLNHjC+MUXI!Ywi;5}YsoUufR!OTv7b zoojOfzs}zAU`u}}gTI*^Tw>r9Se?I@%G?jwE5R(E2g`~4p z8HT20lexF2wA*;2Ax2x>L58FVXLPfF7(*)?ykv+ThDs9~T#CU-xJ--9h|N|apZojk z=&{Q@JyC_jQ>G9iZ&C+OXk#v`@_d055=+^e!d&$8%GM)tIX-&6{xnBUp%Z25w){G> zg`&{j690QpRAzXTYW4~h8#z*gB_<+?=nJoPc(t_5j;we|Lh!JdL}Y%Yo6T`MLriluTV1cXke}vW{G?lgPutm1(hH}=K8cjhT0p(K*OK90hvVoYW#hcr}(@N{?3W2ORv z6SOt5&PA|u<8a*ek#p?;^XOfv$)K3ze~JY zmt{GrvaDO8rMC|us-OC`o7<5bu_~Y=V%iX3_CTx9^?WsX;zg)iUaZ(!309=Jk?s58o=Q@fUCc zl0{3ZPHKMl2Qp^SuyhptwTwz(OPxa4R`xzxu>TQWuO%<6SQE6G@lRhS*SN}L8$qWA zA+GJa^nb(UK8Wr7*|2l!@3@^+AFy%fY|CLuMoM)9NLqhZY@Ndd-5Q)*jq{4p zik{EE)#P3oy7a-avlAIRqgza28h>YXr-m75tkR`@Xp9eqWRVZtU4Woyb8@0%R`XKB z#1p&9mHvg^4Vg z!#&n2+%|3rm^Q3hVIiyJXOBn$7u8TKfmY#sx6Pgi{GSEX z$&FAg@VCtdG^y=1;%+#~nz!N@@-Cz=X-sKr#GS_O8HDRi*HE{4pLMr9y7;N2DV*^o z0x90E&4);hX&v}EO;3!*{$W8b&<&xFZIRdewu<4|z>XcZ=8>EWnVjK6@8`^{SINwA z`Y-iUUi(;mXE)PN`=*aA-R4MYSwSVGtFBBl!W%N^3Q&VF7{dJ~PJE|HHvwJ5C6qzq z?cri0-u3T}p1o7gQWx5M3X9l04cAzozof5z5%&Z9k9yDa`SU}NF+um>=;aMYpzPUqj`#iTQHR6Ht+4LI=afKp9Cwdf|OkN!lf`#C?f}ycNdr%_or# zY2#?MKh3ooyZ$)j0#ge)zZf_%Ds73sBjidWIWVDRleP@qT{T!k-hgzU6qN%OoaL=y z1vVzjpIyhV$m9~DCANo2&DyEx%y+^|W&fE%!WVKSJT}Q%K*M3ZpPF6QpuS8=;e6VX zNt-&_e2O2J!-DGaYA6Gm$w#z2B2^k|mfnO@{0_FiC)sPLBkJ}Hz10n<1X$BaQacQd z`fm$mh@F(vA@xbrd+DH(ISs{B;)E?lTNAIbz(AN2V$$!GQrfO z>m)cEr}%f4Jj=gJcOk+|J59juA?xEn^DCr|una3i9*l?CHX}Y1WT9TRL2uvfspg&d9;?J zo@fnuq~|%$yWrw6_q)}vsG>Mz$JdukedaU3XQRa>%%K&coYM`#wIENka;Mdq*)R1l zZF$^m#=B?Mhe2U^T5{H{Q>aYHyrPi11V7|bx@b;N9BZ6*(W2{(Ne0MO!bO*bM&O!YhQ3(M) zbK8eShejiKI?nI97pVLc+yyw&+wdt5j$dM%){!O}nz2Kqg@t`{5B&=9(B;y``7^go zc{uA;n-vt<95FOu*S$n5GoF?vf(pt@UX%;9Ji)E;B&@PVIzga*`@+O6l>jqz*FK(W zL7JLkaByF_@!2Q!tGVCihecCrH7Zw&)1Gs7XxThwF%S&W&^i(}k^wSZTuw#y>;04J z-GDoz|3U*kV>ccb?;OqCwaBdKwyVpn8g_FOpxC$0=;IV`i0fD>8l8rz z0bAu4G>`&*Kc*3UADR6a+ac=(?V8hi=r%ojQ>V(5P4=kLl!C~*+4qOL*8}@W3(k|e z`?%u-`5hHfTiPvyXD>`S-x_p>uD?R9-z!_^7@knB-<2V=`rB`}h>of?ye=Dg#%FX{ zAyUo{$F+gWeJv)5-o{^NuS*+By~oe^7FzdqsIR<(x9Du)V@c-_ZJQp%{|AJrF&Y=j z-a10NWHc%e@CSA#iSuH<;4E2Hw2P}9SZNO|{|`-P8PrDGHqZjaio09!;!<2o3&o)n zcZZ_EgG+IDcPsAhZpCSEcMl=BeR;l_clgCHLzX33x%WEfoWobqrgy4`^vfrp3huyT zmX#B>-L$`9h?kh&d}{P3XlV&0)&zS0mheB~S4O)9=+#0x=xQhC7OJnT zyNK4Ya_+uH3B_@o6$F=FGyRrZi9eEn5-rk^xzWl%|8E;le;ExefPJVgy9`mlWzb!^6UrnPv`-)mI_TW>VB`@y$68@}sfJc3P0 z@f+8e<{jB3AxKm~N*m%tj|JeY+nfiK2BlsJ^;xQSdY7W!n0jy1Lp}QtX;b|JPJq@y zXhpl{)~{#h{?d(z^u0P?;B(YUq?Xes+Hp%Vj6Fo0-b<^K!})KAX%Zk_wYyP?6(|MV zP)0G$QvjG6qx^d30Z8H-$ifHr+g;`>y_@_G&!Y48Io7#vb9QcGU*fKQo16jYa6&jA ztT|}KqeLMl?;0}GdnMpDOnAqZlRf0PkYtf5Pv!k3Ut&7=S64Z0M>&Ph*XC_kX`7oY zI(X5Bjgm>ZrL7&nYQS*#Z!mtthn7ywcuk5Hi62}8^Oe#RT{f@!LWU=QlmdeJ0<)M6 z{@{bIL zYp?!cF1aMAm;Z%+?8Ml(>mLlh{`2krQv2?raBr+lA*iOkU_$uBF=y7IdgA?CS})NS zO*nch;q8d^NTang5b@u4wHkYyaO7CrSl7f-*ik6S0HWm*KiB;Ou%CQLbR1EaLD`{k zx&5;WK~GaeR8t7f!(?CG{Bg2gPZ!~XsID%1OW%Co+oRcxMDucOOe7_pn?u$a& zPeO+^iMq-N6SPCfTQ^iBC7E(EO{&?^jY^jy`)yh|O}j%Ci?G#29kPP74@kE=I_J+Z z?hOSV9iPtS!VjZ>*O9&sREQR?(3bv0|lvY3)%%tyCAN$0qCy z^wB%>cYs1PscX}9bCt+aDiRj&eD@dmp5G(!7-r@tKV6>n>}vn~nItCqHF8m%fkRw~ z>0>%+Wm^+4(K3e+JHGo?C?dvKF-=k!&9H6`4fks-AtHwrybW)NN)$i&y;pwxr->Cu z>1hy@-3R#_tFgSDk+NaXAZIC0w3uxF1?xR`Fl3t|?9x&p+n9pm%*u!I43E!C#IdJ@ zir%KWp)AsHG`Bq=rf=8+g%8XX-9blz(iDKV0etnk^;!(D{UCcPVG;T#^(GwJaU^k~ zcq##+tp`z3Ed3OTIE*48%X+spY?SV~#caf;46YXl_J@m^s^~@FHxxRsbLqNtxo%F_ zyc{F*5Y1(unMR0t=Z-XcH`@|-0sIf+?@-DtLxEvQ%1bk&8E%kzgq0_>EuzIZ=d^3? zY!dHJsY-+c(KzVU`cXIrSv?+U!N&@$9vohkAiQmR3wNfF_u}Y;pby|3CbUAHNjZ`^ z?Nk|&NO$8bP?c_|W$1D1)fu1yGNdM+BhXob!pjSXCF0KXA-BAkttdXXH(3Dkk=G!G zyD?FMJisz`0LAi(b-LHzfH>rtGcXVD%66{LL&iUiueWwbVSu0*r?!mD7|D;XIA{p72Wz2lof=_yaqFG*qs6rV4h1_|eu zx(XadmMm86ehYu2LvW4tR~`sqL$s+DI8~)m zv>p+Ykf@4rxl3ve0%6-8kY_gs{TuPu#N?Kqjc;jUgq0A_P4Xi0BUHViI#3n-bKaBO zX#54s2`Pk{R)<4oi$&h1`{``yXmeusfSC8?ASm1?IU%n?M z7-PNaC@{IGv?O3WqY4iXix@NVZTaJ%XSt zw8^Z*v{0b?fRBWqQw$j}f08lOP5C(dQdd}_BRm&RwFL9w#0l39O%FT7oZ*Qlf}gBPxG@bY2$1)=vQiY!P_qi-cmDv5CUIk0pxcb)mL- z?OnV=MPVPI;)tCciOR`k*tYwosaAu$V@>3GeJvJ~PG$5ELV8IxIw2a+jKg_`LOk>y zGP4MW#Rz9-wk{wuHM0l_LV^OJBnIwGdJ1oJ8WNZ^SgJrA>D;atb*n56npL4n8^ zYr#$xdwgSRqj&YY;oqt|zpnNA&hP>QCX%RZ-pL|}DGWS|pCT@qf9-7zd?3Es`ox&a zLmJg21b@@t$%N=8y}dJ%9j)?(NW?;6-2^pVd1qT{eA)S8I)(wsSEfe+lpi1enFruw!J4hYFypP4}+M9tEQ*2C1L>uLaIw8+* zgn%GI63>NuUVXi-CEj0cX%#qoBL7Y$sgt85iCLzDSi&f4jse}eq){*=z^y(#%uq;$ z=zL%x9NtkXy?yC>AkAMZlC?jnwC-A#V@YVI{Mky@8GWTpm9ZOdqwGBoPOGI8VxT-# zgiJo54j7#-w3(h)X?LggXpKSnRi0w$?=hI)%bDP z==1LC<<8Jr=k(*)%qyfw6YW0XFp`53?T{SwCtndRU%@=tnx>P;N`EHPGxko_z8Zz% z>TLPCsrtxr);L9kIWs)QPq)Uv^3Rkj9e?RD3D)=i)FvCvxs`&BB9Fy58Hfjo@0qmRrzsd67b~|qz>v15xX$r2ppv@G{8BRV+T`(-h|Vwz25H z-vbGAE<($c!%V3b(n8=|DM_8u>q(B^I4!yH4xLEkHw;>ng`vD-Z?gS19270V?oORZ zoNuF67hoN)q_h8K1+El(YBB-WwXRG0)h0ct1jAAuBKW0fR>7mM=@3 zW407mJ30wXO>`YE^vHfzfUO9Bf6NTt3n7jgFOirfau<^n}N zm5)*DLEZPat8fq_*Z3(RiFPSV&haOHAcXjMBwoloP>tDQyu!EZgt9U{HgzCl@hj$G zq&v&6#TT#sV-^x5QFZ%nmsvs`zq`C~fFne?+$O3sDD%4oX9OYTeXEGDXxtlu5S7uT z*b|It-T~Z#U$Atun@)fGV)*PnY^&wyBXbuY3t{^V{lyl)nDsegbphxgbJxlso3!R3 z9AD3vLNlL5R6^Q`z32VfG2aty6(CF}A+Jpz?7oKs;W!nM%?~N$3vFyDg?3eHt|(^z zl>iJ9jg-vZIiq8?XWv}BM;8D+=1%}V&LWlccjX54q^X-_3%i&ypa*5RM9Ce6s0E4P z-(!&SqHy{vzMwx}jn*H(*Mj;$JA4yR@6HGFt!RgOv)Z> zeY(o)hm!AMU~uh?DrbA_VspdvI936v=u&u6qsL(Z5v9@2b=deN>G^E?t?Uk9H#PqL zFgPSzbUt)7@P9a3P&|wor#Y80RzcDeY)J6O34@E~-hcNiO6KTW=Cf!69u@+g`L5l; z2OrL~e6q~wKS6GiRQPn#oCd!f5wH$PE|_DvmJT1p++<>fE7u>+ZDAVH(|v@7h5N7+G=u< zAYxVJ5s>AwiYm#@DFjnw;_?N%Ts(*E5%0|D8C)lv=IZTNEz8&2o8A z(`l@nzmh$59vp&>la$=vvhQ?XqE9Vd1cA&_TY3gA)FCu#snrOAnQ?vGz}bl-GU&&B zt&hP52RYqAaGyOtP>e#^rxMYXJe7%m5GxRC!>(c&;ZE^LX`*S3zdUWV zd3Pc}ChkM)t23?1FfsT%>QgAlk5{>@P`6~MVpQeCziNXt=UR{rG`)nZ?KmEe@VGV{ zF}HrwWIq%8B$YZ0)O|5nkraCQILwtPn@@DJ!(^O}%{vso6Y}Tu)!f#8%51T|m_GdE zqz^C2LpFx=Zn;nR>deE>jrcXI+cU#(-rBdPwLQGlo*2;-wZvov8|kCHIpRntivqG~ zeHlDr-!K-uha?L+eH1B(Oo&3;GK^*y9j%)Q|M%u`B!4uOG>vqt7kR+>4flS`_HUdE z0aePS%AtWgi#rFQXvhQ}Ig&Y!R?^SMF6Y>Mw3X6Tq9V$V;O<{Rf-Q_b8*RR{c(g1+9l0xrqOe#O^XncQiy#IY zJK4t);%w0xVFt+IX(H4Y$i&c>qfVEQ~~`W zR!e(-hpwXUsGX{ua5FSVQu zyv7`DbOJ|}S?neA=Tx((n>d9-dm5mQl+$=5!1r&XHa+o%QxZCvYFa;{`^s<2L_XsM z+%%`0kHn4XRIT7$R%wU|Y|oC99kInm5PzD{#lW%)eM`?7(HgwpQn7(Qr(~ifuCZqU z>U8e6Uh3rN$Qk{u$~I6pv= z5n>A$wHiWME88qYuWS)AGN)sYXktJa3o7EA->YOgXpf2Gg=W2?Pyf3;?h5919|i2lA!FlPPuPNqLuk?0?_= zoF~j{S0y>4DK27idVZDp4^RAWI-4>}R07q3&AVWO`|Sp*v(v-w<_`PTiDv8WXh+tx zeCpF37wX3ds+;)GULF_aQwbMwpdNC8Fz{BwcQK%-O-z18mErHWQJndyM2bE@L|z9O zi3Igr`SSvcPDI7xv1SBk@5qtaa?-TKEQ8}PSAQd?fEs_p7lF8$o(*SA$HfU{@M5~!j{%Qxs4NGc; zDGa>OgMS#qTiWl0(_(RmQ(T&d)5cAc{N^41q7ZmUlVd1Eb-YI(ci^beBzYv@p^Nb4 z5kag7*gnE>p3H|+KcR-@a^(Se5Oo!roV)9l-A!eeS}FhVP1}J~<58?*{S{qV@NLa; z9piSY*S&I=Ugx?z#!|^(C;4|w?+3}$e)RtO2ejQWB(%eZy78;(gaXfR+uDBWjPpXW zq_*ca$ca;*nUw{*+KY7H`k9K*X}Bm8m1Z`11UxCnjn8mKI^1V{n|nZlgmJtqcGF!9 zZbS^+om_A)KL#j!?vF#I;@&^>q0lJe^aBA%`90!}gG?|#07VbR!=yparEAAQzm09~ z3vAJ;?a)dk4r;T|&>9ECDnkz*Do#i}=EGp|xfGfXc;Eq|Y)C5`rc^8rBs{4jwt`d_+P1@@k{Y+nvrSX6yZ&-bjEN{4W!OBic`B^2(Wb+4|V>V*a7Q7?Pzyh&jItESVJH z`8Z<3?R9X**~IOA>v-zzdI%O#HV{ALACKEKHs2j+C}q|?venY+u>!}S(vQ{QBaV-C zk;&?#q6;xKX}B`RrSX||;lX*=PhcCyF>Zerk{)3TnC$&PDIX=NERU{wUXE^qk;qJ~ zjBv5@MM!xGBa53IeubF4fQm+O!0|HW9R?lN;!pB@<_U(_Gi;;7R5T!`$Dg3worZ^u zR>!c0xq0h8ygx#Mw+zGpX77em1@TZm)gJhc3NCKc{EO%NGq=!NCan3<81asOeZmyT z(h{$uFl1=1@2Zl>rr_6zM4Et z6A`nc5|oQ{E~7%(uE~>S98GfLb^BAoPUCE)Bm9VaYMvL$x!O7K+|{1p3O6P#kgCi* zGj@0GM4|@EgN1aiw$twmNN=MaP}1$9=k{Wq<$rGXabvzyi9??9#JP3wI%_yofaB0H zjK$vAnB~(*t$Y8YE8xhy)KZ+IS`QGxQK@LJhYyNz@x7Rz4&G<9x4yy_ z?FSttw`54o2MK!}({c>7(&;eQ=F1Q{MF~abT}!W&MiQyC{Y(H}+xKi-+2$&nZP7f5Rt z2v9!vAfLl>dG&TNE5o0-BA@r@MfL3o3dkxVV6gKj;6tmJ@l0Cj^iOWZwc~Lm zK0sAC=ymD#b}Tgaw>Bq)OaFKnWg5oU;u9b`tw?G8jE-`IG2IdH)&8oZ3M63Dw*Dj4 z!t?Qpn#P{-H*<>W6C?Es^`@WHIFlO?@o%*# zhr;~^0D6mkb%O$ALg|^02qE0mu3bCknnDG2fw=MkM>MQ;HGF)POica>^sRFk29kC; z5;Sjux6|N&M@c*+?Nzju6`j*6f|9VYNNz^6RIGTIas!567fI0IJBkKvY;|YFR2m17 zGUAiFJsRKc5{ZYV%@ zi9PpkfR#kKUb8}3Ykdd2X{ICkfUJL&`aHIjSMj3bYsu{_4|CrKmJa@Nm7ACPpJKU$ zIY{qfpANH;uFh&w*g0VNuEv~rB)vTEPN%1%pi2dwk}Voe7M&!A{w}_m9C71F zfv^6qT1gyOdDurAR(E#_Hax!-wr|N-3t0)!$7*!t(_*Z=p{co)mQOXbrRRd#G5)hQ zpyE3g#<8xYvKfLblotC=b)=SFVeb7G%gxm?qTF9H7tTf5-s58$P3@Qxi#@in`Kg9q z)VY{{Q2$4s$K!lN{0hgvLmk3mf?q)v=oj@e0Amq-pIo*|o6R%Xs^$%{p~bV(;f2xVXf0rnVfuI`^Iy#(~p-?U3a1Bru7Wn!BQVsGlPkiD(QcsF}vS|KPE z8eKZ~gj^%p-)fA?j1red|1&qjwo^~@Dk?RO2d%AHxHvod)wS^kSRC60y_E-b+j$9> z52$K%f2qG3>?xOQu7NtfA8bqwcgav3;APQ zSn0mG0Xn=9bJJQKh?=h8uBE^K$$eMd((2y2Hlotb408|6y}Zh+pU%t8ki{fGqp9^| zqKVDlymtIP-%9Oj9*-VIF8vybo;t0le4gU}tyUXwzPG8;o)A!u ztBKANnV%m}1qgkHNe^LfD|NNro7hwSoLOb(!%@zKm4kMSQ=On|(xuA*zZOdaui+fv zK8a0>rm*mzb;;(7$5V@$p|~PjUQ8Z3=70RN)U5w%dd&DXlFiy(i30{r-?ba_+y52t zD%}*m9qw>g8hpUBE41U61EGK_2|VHI#^K)_ z(+0~)Ov(Y;Y2mryS3b~&&!xWCZKY+^Y)JIkRx|QyjPSXYH|=uJbP6lH8i~l%^{~xY z5zK@jf8fQYUNz1%@UtR(0Of1E@w;{$0qcIcr@dX}%1z`K+nGO-8eY3Aprbfx4ZrJ0 zV|Pllrc&h`O3XkEa~Jlefmk`NZ(AN@uzyD!55D92@9G^YWNrCVdP*rDvbL!e*UEEL zy8+t~@MY+#D94(qyNFBZ`I@)oYRBXTsK7k(uPth{(=-jN7KRB$^745lub~fu7qr2) z;K}pyaI`B;=kmF%q0>+C;zu9V)$$!LzHWP3+h(hdDjhj3FO+y(FR{6~8<{f1j5)}D z@EV-ITQ1FACUfX9?sB**G33BvB{#CQ#*$~iiH=n#ujSmGa`0&IlI^n800J^3)xfT zF?me)PI4aTohUIb-u*Cv+{vo|8L9on^llvu?N#Zy3oNz`3sEVgqCW!TFo-#OkuWK( z28PiaxSPhcUP^B4YG`lkS8V<@1Dy{MX=l0umb|0NKesBOOR8rbRP=+x0B@TcK>rC< zb-;5;HxxS|j?zHor;zGwSa28yD>d~!Gogw~FT4gTwW>Irm*!6)4Oag;qW14N1x$1j z)O2(-ang_<2H#1hFFT)8GmUT0&$@lax+k+>6N`Vl4s+Zl*2IDlKcL|gT75C+RV1pKwpihfUTe{tUWiH0Pd|s?qA*%6h>D<3Vpd<<2Y-%^EEzkE)5y0 zN^G&C*4bmr6i(UdmCF}RUzA_bEr$2|&>v|92HdU41~&)bWGxV-gj!8c>@R-f^| za`kN(-iuY5>+4x&TpATD?>*G@cv3L{^YZSc4CNy2zyuh?FyaFxR{ouDs)1+Oyp6T> z)#blAtInMWmVW5*yu3&+0o4VXM>}GYn_OtAsmnbI$2o4fG}WET;bDDTb7oLB#TlfK_Zz|0ox&)Z6Qeyp5IB`$r~f0s`6qT{x2Z zd!|lDG}t?XiFF2@P(`%VlPLR-1JGh}YgnDEE5@vAyH$4gOU)t_qDGj)u0u*FR?Dde z*d^HBNhb=W=?eKhX37})awfo@Ju=#e9gRt({p5}^IB%e)OMVcj5Q zmY|RE4$>!zLuaJ6TX$p796Scd`eD<%7bGX=4t`z&|0N36+MEYq5cYb(e>h=(IAad6 zlHh(4INHH`07&Troeens&lulv(OxlfW1xOlB&lCkUR#0vFWDm^&0|~t!ay|+nQX_& z6)DqJs9=)xb%N56kP;T?sojc4G#=ZP?++Y8>xX=v7&y88mv8PNPy8A9lUUr&d&%^f zGJw|P@#ggKA;6S~uW}WeuX25+k3|&M>MzUKOuF|sE#rWG_+UiOa>SkXSkKj8W|{9V zmcjy+HUw-NhG}>hKtM`zYBjq20S7A2Wj2Y1e#a-e(?m{_nJ`Yz z!6Q!Vvm#F8=ii*bxxHE#TOGQs!GT2~G2PcSd zZF)ki=yWg^sR!@TMX#OS2B==QXeC?LoaBkceLETd!hEm07%=Qfn4@!tpvF-bS0=o8 zwhw0h?i#RgkBP>ks;X*xoTUaGW@SC$ z6RzGWMq;`1Ov&Xb-=%`GNK$6W@s0?s)(RU)0^A+&N}JgxxhQhyp2|chSzj^Y3^)gxJh}hGmbZr z3%*%txX2~|t+g`P8Z-#9<}@&&+maB6TnLFpAX1NRO>79f#Uw4?V%BIv;)($|komJ*4(L4=qCe zQ$yPSh8grcrLO2XfU>P8}mcBYoVFEKEi+JJT%A5XGeEFlJ=;jEvf8 z@38l=YKa$gI9qO?ERN;CsL-rwW`1SthnctsBFyE_ZKznJyjJUL%Y4j<*W7)GjpjRF zJexwV2Kau>Yt`rzyS!`*#3dTaz%FRm^{( zvO$CLrRr}7>DXSUR;`|Q%_cQ-gBtyJG#t?DJqvTQ!^5XQ2p1|X;Wrm{=6vW@s0a#o z-9D2|BKD@z%^@w;YAfTPqZ7pPd(>fs>Mhy}G87A;@@jsSyL*F1RMLwyYN4z+r0{qj zBM~E|L?cA^vE_Fi-bhHe8be6;{Mpl(i-RY<@xSq#?Q&%UY_YcjzYsU6>?bRf$V=31 z@wX$gYW-DQz8g|vklim-GFv?PiMV)Ue|@QtXmnbcXiV4#>m#g4x3;F=|7W(aU**a7 zc}o(34eh3-*fhwyN*qD7(+`N{+|7C!c(1>XXRBKk#To?f$ZzXW9&f5=+lt^VAdFno22Eu9s%Qb^;Zsb$Am z`)mVx4`TT52p5Blab<01cT;9QJDB?f6RxcBx5QCL5^=a?#nZ}oN)_h>lN<21r?6`8 zIF)Ns69HXfCxSQ7@0^b*`Md9q-xbQ6W}tsF#ng-zd2Yjxb{NMt#hDY~og+(x@K zIc-1=s5X3!!Cv-nxmCu;X}3d^dj5KTN85fyv^SQ9HrQ+prqnB`;#MCpG0E64ymSj| zwet%_mQgNK42<{7&9^UrcE*dv6>OXN?lMCBg%?Nbt3ufml?~9P@#JmFirvaN8Z=(@ zZlzKRo6*PHQ?dh{>^7HyKu*gkTf@!Oig2<%gJw4KV{oNbH=Qle%GkG)1@NlxTvcbxqgpGY5 z>Y`EhmlxAi>SOl@H7}Z%Jyg}#Hr*O%*?FAW5_+8{f`X3LcQ7PK13N?a>qjJ}Z9nYi zxN}E;BaQihkn70)jH+3f07sJpaILXy`;}|fw&d>t^Mib7L_5LgOq~t-45gJ`LWu~l zHHf`48TgE1S`3@ZI~0Xuj*@Rhmu!7D^T@F-Vq$;gQska|yh)ir?;Ys9huax=foY%y zOk5C>6%l^yb?FXN#TD2{}x6rZzb%t9x zFB%csuEFRDJ6V4MPbBnK6>A&)ox7Lwjx2dfU6bY>{=fEhJn&V?Ogaf=%X+rT!7g`x zZ)71D2H2p=>>Xf3+s(!I8w1eM%VOnf|M;z_-HKINYJ&xctm;W?IiE*pgfyt3k`<`^ z`R%|C$$ddPDvVvLm9tXo#o-jJ*MhePI9}&i11?e+{~ai_l`v^?U&<7W^?I>QPcQ5` zSi7?l@asLT^gVS5B20N|v2Y@1K@yYi6)ud8&LEXLGDSdMD(TV3!x$UJ64@xJxK6%Jz`>ia^`BN-~Ol^fKIF%ONg05e)#dxEEh}lyJ4$!k!hun8Xmxp2vUd z382m(LBPJssua$|7MA|AO)FBqW=tb4?8wA({ylJuBel@%ozA`g&eq)bJ|kX}BpQ4o zJ?ViwG=F5y4@gYgZKbnJB0GsQyY*HrC2=XMTgJul}D9qDSO@rPmg6C52P zdLFaE(ezsU^4ICp-VEf9y|3G8rW*^BS)`HAS0g>2v)o^a>}Vc~hH)#&inUF6FmhiP zO8dXLo%Bt;?`d(}Zn$XY$#MlP3n#906TXbn#-N8%_%10G^JfbAy__1RZWId#L0|@( zxBk>_D82Zsnb(oLa0s8AXx=s{?BR{oe&JRUvl{%cIxVI+d&w_r^m+uXXaSPnt;Atv z+o5(VTHC~tUL{7T2)SieQ@m#P>hCa((Fj>lrhRW4UMMqoc?lQ{TJQgneNDybPv)x{ zw1TH~fz~xN)wG^926mBk+O*c5 zcMZ(V7Kq6-EXgI#x>`0s@5thw)TXNJ8jA%AiZXeSPHFSxoURa$>k5UdY~hk)!@lMC zE$O_M<=8HamYj41ixt?mR9RmOMaQ$9G+H2bm3sIA6!dgge;MM1`LRt%p3E;C``RQ{ z?*XJQXENIrcp}%;o6F?QEES5X=8uSD+y0t(ZzZ&0rtmx za@ZTKq4k&v$Ag}X-lFDJL~O%Gvx%;S~jAiaDT4s;>@8d}(}kIFdsdiO;ncnqAhL}(LBxqThRQ^dPKcz2N2k82l(zD(- zP6$I7yhgBoJ)US^xEFoLD?+>AXjDiW-c+4fET77t0br={T0h0LS!&CIZ41W{Cml!y zY6-r8UC|GAvnMP~nZ$-}_PpM3j66Y0#r5YdVPSF?abd68-*+uNFOx54=>51kifD`} zY2nf2LX;3&Wr0J zyoaTcOt9KzEgj0BSnQrPa)p4uQE9Gg9i7u|;-!*`P(FaN`$FG=J?x_lcg)aLtf_iWPp|?w*t!H((IHclQi&kABs6|lvH6|@cu?xB;=5MW|^&;_y) zNqBGjX(tZ4`Euc2&3`&=@b6 zYQa6PbhH9UX5#VOeOg!CxVdx#OlatW;MfBW=D0^^Y)JCP zYX?DN?Dhw3o-2HcEu+z|zpCw+NRYx2ha0=Hb0;Nf2JYZ8NL~L$q`W_F{V;-958h%C zxjI#Fn~eaJhf|GAICG@OC)&MGJz$1K%{PVMXiBbMO~>Q||&{b7Nv zal@-}*L-9Qmx6a(2~SyvA|pMVrZ(SRi~yvAOMy^AF?+!-`XI*}y{X_HD76wPSpEr3 zJUa7`L}wHeL#%1E9`%zdVQGWQ&MwtktAjwjYqJvOY8Vw?90gtKT3QR(wCC65ybz1n zYXOI*aZ_u8VPmbLAVn~33!(2i31f5g{otc{Fq(r*`@Y$rcu3hPWr zsO}~5Os6l*s1Gn+DxtA}`aQf&Cwp>30oc)`x_@s6D{iW&MdH;{spEGc@@09A?@h&j z4##cSiQHGq>d+Z}4oAP2t(3pDzwDdCj%6U1od+jvTU6_n4`rX}^Szkz+LYth3Lf&{ z09}mk9rLyVb3~51zX?k;Y2n#nIo|gJR7$p@<|ffnu@yrcgSV}3ZkVFNieU27N zXnycibGD(Ge6`{gquXy46U6y*bV^P7I6Wuf0iqb#uO`sIsNNZ+XBXO9aSGX+62ANy z*U|htkd(O&sa|{)^D*IKmD)n&J9`@m6UHIEHo$c=Jr3w76lpkJ>r`*{uv=P@!@VF^ zkr1`tZ|b{e`cDRSH{%TfwRHarx|;Y@$~9RDPUE}lPtC-vfmV7rv25ez3`g&03Az4) zbY1#PkA1&PV*vDx6x*(*HtcK-lFA!2PYYj)+&TQN&jxA2Ut_{sOlBl6;nyif z*=!e4*g6bs%b@~W{?jz8hOi?^*P?ZDa%|-+g6L6R5d3DaL7hqP1iUZ3goP(t>wn5V z331Qw;CNA6%NAuzIV3&szD5OqW4KgJ#I9_sj0S~>z3|^I&G7X;dh|8m^})k;(%bFt zM0%i5lb}Q;p|annf&2G~zDtj=(^}q0FX6k;OlNM<5jr@?p;%4#7AlqK3|y*<$vLZM z{P2wLzY2qW!=-JWs0hX`ZJvpM1MfmI{ZieHy`4WLFk$GL^)N(m{?qFg0_R*1xj1ZD z??wB#uU#MXzsqJCot>WOOW^G&FL(J_BN$v#QvhGfbJPs6K!6% zsdn$h5ip2Y;bO9l_x`u8C?f`mcLet#dkL0I{SXXs7o8(Dn5m0t;^>ehJpMw;<@9YC zZl^x67+Eb(0g*+49nco4tk*o&09bBT``nq+pp>_Zr)&;$x7J{R{!Fp1!YtnD^D+Ch z_Jq`-<6M`FXJZO@ub)PeXiqdwRNr}FV{Q!-0cOZH>inXVMO+T&7W?8PAtt8pg#7n{ zI10lTY8HZ$faAin<#op}keYAd@PuI)SzM$Bd-IpO%+fIjN&Peb2rk#HS z=lWP5g=sNxlLryCrricG`0rcLO#MQJst)(k4O{D~k^n-^rrsBQ^t(KRzW>xUVSa*7 zzdn3^=O>Yl<@aH_^sEA##aF5V&n0;wRLFZ zVH;>mDOl_)gNWBV)?H^ee1cQ|^3!A~sAe_H-d62F-N}@>7jcG2Y$w+D=iG`}u(-fI zPnSYako2SQ=7W;5Glb!IVP%Ch=PJsw)w|A?Yg+Cufl9<}cePHj7%GF*e^sbD-cCJ6 zK2H!mwMI-u+D{)FA8MC0)??}md$7@NuxDvoKSJqsZ+yMASZ?~agYs^aW>wF9-PJx5 zwxDK9n>(euzwmw=6y&aHJ$fetTcz2WTCMqfscGhyd1fb; z{>~oUa(1k^k+K-{-4+%Fh;PGXUNLUd4BOR) zgKV4W8YV0)%Hs;_j2y4*=sDRzDhyx7LyPTx&S-PdMfZe2uFO{caRW@cutwr-xu~#4 z?-7tm-a#8wF?vP_{na(XDgI+Rq2sDVjQx;mQK*(ypWhzq6f%d&bA7(1!h_oX!3_dQXK9HO=t2? zk1a8kO~CcQazL%QE?fCJzWpP~8z3eCg`IQ!{Ng4o#FMTir4?HY{RBMgCEL@~zlw41 zq+N!|GWAL4B(05+`54`@Ql5fX-YA&dnBQbmEXA(V!zoTKUyD8)ku8g0say^o|5UOk z!;w8hG-O}09%WxB1&zwu(piytd#J{oo1xxmZY&`&A0lwei<2D#^lb-M_f?jgG4rk) zlycRoel}MDQnW@YE8m0n;P*ZTLDOLOgUXC6R=>(@VTt1PoXhj;l+_vY4;wQ2wW9E~T%J?rYd(kz%Rt4;gEOQE(g`bGh6Ap7{kBpMHwxg8FNIG2ZL~^j-q|D1n zEpq>8-3mnOWMpdJ(k=lv5U1llAIXTHs2;N+fH+-Ww>U+mVpEy*JYy9o1~T=_q4h^T zQkwNRrMUj`(_`F)%3gJCaN=e|=7TZEY9ZG^jhbl3qgAxo^MVb{zsjP_(vM4umDY&c zOlzcMzQc694sH8{BciY>pSK5vp7hBQV3LWzn^?9`vshn`Ty>C_6*9yfp}Z1YqfS>H zss6W`rHfyJn+BN{Wt1UfF5Q_sePdx%DnraIKunFn8-Yj3=E|RtsO!trc9Bf1uZFdN zKGZaxyKA4MS%t(COshQCaGqsaLMw3sOJUBv z%SN#rOlcgK^RpT!w59B~7#xU2^Yp$2{5jAPyz6ytl z1GlWVhbauoyc$pFc+As3SLmv5$x`e#Ds|GmVN-Rs^#zFh2e>yr)1pEcahc(AvzNhi zuP})ZRh|=q0przs5*^oNHs5hpeDyy_$C|)vSghLMdxHvADM4g$!Zmjbe{xcL>>&?? zq}r^tR@jyKh@}I|(arewj9fGdZFFp3e$QPo-E838&@Jx}y?|w)A;htU0v7OS>*rPN zRRp}TXryMUoDqyaPAfTN{LbY!sg_Z6ek+KQ=43n%_B@G``f~~Hd6D~%wOMx9YUo~} z*3!`6>8jD{qV@x?bh{DZVz&#h6U=jpQtbJtX8K}K(UOaVN}n2N@v*VGEG(t|OEdlH z_+dnh$V~;OSj31DHJ10Us%6~>PAyVVo`zAo8rQ|<$A{UHGGdo|u$XrQXY~YTYvO#i{Aop8hT@5SOj$N4+Bmd1%zP8_CXS#XC+OsclT>lzp3)BE z?P`uXvZ|51f0l~x8XYzZf0hRRI496WP5*Xje~#l2r`;JjN8(fX%vvGDBlj>C3sg+o z#@#ASczFXAg1!vF?gv*kD~fF~s0@&xnl=)T1E=#47>iLF{y4vQqpAcLd)N~ExF`yM z#y9&|uZUh~1&&|)lCdEvbuwnu@xH!ccnutx_5C7!QP%BH$q+knorIbXAv7ts7icOZ z7R$QFbv3;-R>j&*k~cR)$RnuGXe!eG7Niu*`gql{=$yp5SXnS5y%4{tf5lRA^wm+t zG`~Cb?}5UC9hC+G6T+Y%04b3ei=Nho(5d?kEQ0!4Jct?u=?xD4v*v2O?~+Zgv))r> z+ioTOW_EHMg0MBc%Ji;IrG%^-2Jk*#)g>i>=8)Gy`fM}{km#FX;*CZD3svtMSAnq| zPqO7`aHIRE=mQ9W&lss7z$Q4l15lK2Rtbezk*O;JnU3$jFN!LhcDLt|a*VpWwx6A& zwe|%Xp^5BGp2qibhhV>>aOGF5@PM&^=zYG!c2ciZ`+$X5LG9EMy-!ME>5wtrUi_gT z6(yJSEY-a#L6deMq?zkrh&OPjanlozFfC~62FSL$|CySAEtSxyF<_>Yq0}Z_Tdl5i zx`QUrjLMx$k0S<2fxk>;UK-z3;?po}n5I}{vGxGNR^24Ryg=ce7tEIJs`KmyCuYj) zxyX}O`-d{q15a@U1xku)Ad2L7JNK!xI53Nr90EvU-@oQiw=M4~vYNs`X?ut2x!eT49Ms$tQ<7i(Rqt0NRc?l< z@oR5u6L0(ZvQoc!+y3Jq@q)1Iy!5Wf7rW8feG`7zT@O}WR8{aY8`r6a!WQcS#8_9# ztg;1T5>ocmTPwVSAD%yM2N{OmbU05R6T;m`P&Ftkcv`-#_A}LAFi1T=St~afBpU%~ z4?T5Ma(J_ae(J2#UcwwergVLM^^lkJJm|AzIsorqH+vbiZJjA@1hU()IKOD%G~nqA z_DtzYJ9zJjRDCP)J#Li9;nAl=M+tHVls^jEjCW;Y z7X%^hjZte-rO@ac2U)D`xxnXF9`|nuLTlFHZhfM`VW&U}ZES)@hcbZ)-U-m0$5GBh zSQdv{1)irtR|n~)Twc7pI$_z%1NA`b;Zs0I=sdrQqp3QYq4a&RAdGzIX@(Yd#az7z zmLv{I#=*K_z|BlYRmjtNv@)`Z-0C|MrO2X@GWfdcRyZv@OW^m*Xo#8oReS~j@75=R z%B2@m+qGG+3H!G8%~$8x3QQvu(UF#Jbm}D@AGsEQkdGfaZ{op$wD(WUK+~#AN@M^; zn0fjPm`HZi=}tSP*riHPw*8+RE*du)i_osOH985e*gzPra!Bi|65;WK4n z_YQRpcG)06DKA#+L008lgU?41R?!{SM+dNbNX5d=E6oI`umpF6DFmgWBU? zA%w3%3poqpgeM|wn=Dio2DTy(g*?WEHxea*@$D5zCM>{S_;RQT5LnJeA7aIc-m#m$O88V(DE^4XjE8O}!D z$d9#oy}kro-0D@hj&a>m_ebVe^%IyP-M|{nFyDA+j~RYD+N&J%Hb@!c*Gm{5UA z!C8OdbNCe29v=ME&M53cMCjt3+s+Xqst@JL4(?#$&zyb7y|c)oa_9R=40gr6L_(9p^-&mZQ>12ANA7*uKd1u%xTJN`x9L|0TX$dayQ_9 zio~6MRkI`Dht->?sfifMOAZzoq6rl`^vP*1%i`LJU3b9Okr(5|pQXEMx!QP@mNWnW z##sZMTh@B?;{w4s1(%juH{}{_sVzJmD0`R4B}g%m59$Y~Pzz;`EvM$mQ6;|YzpD|W zD16mY@zTMmK4c8Vz^-zYBR-r{Pho2U#|Qh#`8GQHkqxvzPvW5R<_nihK+ZvK(aq&I z?x@Qy5!FT#8&CYnsG0UPaWkp;j~y^a2L}q`z1mZM*g@9U428)+;)nG}av_#k0LI&V z(_0vOg$1fq={v;vXIU{v^F`I%!7Y9VqD79La%rD#{%RLPCC6P`n5v>rNH{dhPZC*{Q&(1|7uQbEk zjrNVQ0Gr!^1#7fQA5N;2;l@*JupjB}rlQhWazL}BoXez0YQ1V%o~wV*i?=%2tl^S? zpyyl@{+IH?V_zYx^vT!94p2WXYqWg)*fvDkRS{wWo3r%{7tn#NOuH{$ifDIw=yv~@ z(*fbgn_pW2FeXnipmT2BxoUbf1P~Dpd|VC6qe0%f3Ji1H!!~7?4n^dRJz>1S`L$E5 zt*^tQs#_gPb?e>ssKR1Hb<1Xb=Jw9@SG$3xiVM(~&-*-l5i@ox)#vo-DZwAkjoS{@ zUQfI08gd z=XUj~{$dUudJ74^8^%TU)x0za%;O@mN;SH<*Ze z#1t{NE~#g+kh;4>uPJN9J{1>H!rZ(4>qCg-34qrS4H6OrY@GE*xgtQ6v!7adL4&*8 z=>yo`ahp|Fs+O%PtF~elqT>LNub4QT8P^@0Ei9ua&3Bjs?D{mbyV!&LgCIo~KVsU{ zhC>7>NB8J&B78NMzu2_3YcP4E_s`uJlf8_{#=)3GBZRFIocC;kNdlpI`K{RMsEI`Wk?t3flJ?X#A^;*V( z%Hg{FTv97uW}2A@vpCmTHKT&&~A=Wil>d7o_1_E7y(Q3d|fY4|oG z-7_Y$8M%$}k#yhHRFG+go@N@}w##p{1Kzz0$=nK7E#hs~C3Fa;AEVbK_0&)?(va^= zM}~r9Ja0bLdZzC(Hqub7Py3VF8irAR5JA0;dMA*XQl0LGUAv*YXX0q^+4o5KGuRTc z*!!}(B0DM5AYAGjt+h9BeTV#D@)`H}sJ172H+YU5ynckTlJ+b5@BR%x)wiA=ea&KN zZ`-GEpCyaA;07mvfWz_92Lj5ZfXa&xgFb=!cAyA*)Oh)HaVS?qOtv%)y967XM9yyQ zQ3sBVjU>(F5wHs|!)DO|2y=1ifm%nW=IdtNjJ*q)2~8XZ&X8p2eZRnIn>_~S2Vg8$ zk7q#VloUOMMxUF+7X)nf*MXoG1XX_MMeVWr_Dv2w`nc5bsilnt{Ivb)_f#jT#==nP zn{9L+0cB!5r=MmMBwD+ea3aTZtoP)gUyd_NiJnP&WPNPan^o5hF_)_49SQPu!jDQo z#0$UbZ-f?~D}Pi6L*swyl{5r5{D40J`9|*)t(eJklnacgl0an1c|)}ir2_?gEh(PD zf&|C4z%>-!=6n_{fWGVLja#k`Uttz5pk zau{rbWzZuGU{;xgj#Zqq8_lPbm%%;H`FJc(R+RH7woE*j!sKQ2H)IU295VN&z@k(! zIV7pPUiVXnytw0Dzgq7`C%67g-Q`B=40b5Ow$j4D6roj)lzJMs*>?2I+YcDXrq6ve zd?;u)SWeM0QXLB6asq8WK*nd}JS>yRs1+F&S0HD!8f;iCK?*~@-4VgF>z&{AhH#Za z$GbyBSu`#Oc>4;MNSC^4a*B?d?H$6HoAK#_MD$1_r+xr+NI}M^gtTabPf!l8C}1@2 zjm$|NFiok_sU0Pd!>pfX*pIyhn^gK~!#rl?6B&Bqyk;E|38X*-z3|S5s}0~8bxiJF ztO>`jV;BDSc+*ZV)4#2(FT(SCa1f;*EA;4j`)W%FI(y$#TJ4Kv(QMhw)~UzmXcRk{&6b?|Z9OmCMjmFL2KFGfN7249}BK(&$`E zt)jfg9o5obsil|Qy~31;e9`V?)&e)ny=j)FSY;Z1Ae-ExK!%WR^vZb`m-fGP_d|G3 zwPvd3gaaHgMpF+J4x5M(Z#ddM-a4FEAK}tf#dxB;W;#nWi99#`)4e7R*Zi_ah17mn z7Y}1|Nsj2C?ebANWJZE4@k(iV-UFm`3gnj1p4NUuXa!kvXjKF@^FoUa; z5f|dW(HQ^1BQ$Bb#)-eyx~@HkW^|~tv8(te_*XRk53hl{A6I#+aMqI6>3?Pa*<~PO zuEqRsXJ< zsy*Gkx@UED?dqDIiB?gPMnxh*f`EWPm6efDgMfhi{C6oJ!2Od9)%`YyfFKaC78h5M z6&I&aadEV;w)-d22~W|5*T9i)y2_a9WHcG$JY5LsN;&J`#->SSit2Bi0S}LEL+Xb*g zU?w`dS;}KmDzi9JZtw&_;9)?bNR&f1%nirKdq7zC3V$~FlS{QFa?$kCp7*|fE)Qc7 z;1EMV97Gv^_N@dVzyP5jYA`Vr6QCj3<7OqX_X{y&C7WUF+$2O{Vrq7GP^*7OymQxY z@+DL?(TBW4^s%c{+#5p>EZ<|vAs|Q{0Inoo=n{jQWx^f^LQtW^%7YB=skg3x5E32AZ3T%IlotJ$UQs|d{1`_yxT3#*KtkTPL~7b*~VEa`=w{yvSesd zivI02Zz&6F^RYWYM5meEAjO!B+Bt48VQ%U55-JW$=X*OU7~!uwjeRD8ZJA@r=JrxC z#cb$Z4xdLX(B*#{@NlNA)gm@i)rT%W?{KE%;h_7waMhX{ENXE?d@g1VFWK=vPp(No zYPt6o(@V>@af>fpNlmxm62}~}^RWVxwrys)_j9VH!H6R&-qme$7Ig|w?zi*CEF=^3 zMG!pzT8x6s`%M%F0k-+$^sn{7x>N#eJ`^7UoT$hL{^1is!b7gi!6lSh-&Yve;1%J0 zg}=U`B2Z$$5AjW}iBS9VZp3ryfj)j1X$XCcc)tW7IWE|e%ku`WVD`iI5kg|w=|K1V zl_e8n!I9`MiEYI10X^fAIRPu^X67|CZ(_;>Bt7Jscm29vFzYn{oz)SLz-pGR3e@9z z2WBEe`T`)KRBrc^4 zB{s#}3$F6{RBA*J+)>>Lmm)hlB0ewTTF-s=pX{d3U&1I|tUfu(AC|LiwPG~+YVM7! zPqoRTkmY{p^D~yJ&W*Y0Imu-IWW}lp4XdVx#yJSn`1R{Iq)yB`alv5~$VVZPhwM!e zSrJx59fNY~ISY>iMdTHkW&`uHRQ5t5o}DO&KLGOfJ`9z}=Q3Q>0f+XW*a;ev#zU5p zK@E~f1fKxX)fk!!QhNusg~|g>^pT#FCghR=`5?s434#RfaEFcu@~n^039>l^Z5Gxc z#Mc-?0B+`IHyfl-2;mJWqZme5=qLumA5=uKy`PN5P}ZVwKY72y^NJh&B*#IK6uX`E zu!8@Ejw^OJ>s(I8hyGjCaF+Chk^`wbVoSVfR+#{nz0VFH%m~RapjXdohuk?JB_A}qk@iA^RiVLwmm~O+FfW!-$W_p#x~}4;!DoYBNuU|W z7h@wWAQ(m@u2_UOtHZ&dhrpC@q0P`t%m+alsw90anO1Z@%XC6^kMY9k1J@lwY4!|g zBp{9D9LC0umHl&I`h)d%x`hIZiw7-WyFrH$UJI)#I$My%j*bhr6JI~te!yr%=uf=a zu@esow-R1i!g^TI-kwu?8=C?36_Eo5ckpZQ*In4#Z(hh<+(KA+aV*2!JN&ny&$4e+ z!5I`vvy^sJFjz^5uZWys9s|$=FeZtkV!vq4unnUN{xF)--!e9&J!e0sNKi%pY?f7` zA)-&#kmHl?Q1nsMGtLK$0@B&+Ork95jCqEfa!h{hGGr*EQV=J0k2xPexd?*cz+b@d z)C@&XMVw|7W^iV(X2|;#`XE;*Be}$;Ombt zPyXIyfowiu$v^mahHFsCMBB{MQrWc5xOZG=IC$^pPW=(W@yd*Iuvz;4*RR55tdxQyD7-yzij9aW*{XGy?5*8U&Cym~hQkr&}nlI`!%JM>KRPuy!Lo%B3 zf=R=2wz843+H&ZleQalJlx(ZPnj@l|znzc4>IJeZ>@qIL}H#yw@4W(H(RbL3eySo7LkE_Kwz&2i05 z&tA1HUu9ove}-0$)-Bm0*;}1-fn(v^f{tCjNzmf`2*;HhfH%q!q>tFrop9M*V5L$8s@dj zwhwi>ce1xTI@fvTJpn*;_XHq~dj(L}@zA~`sN*6Iaq%8D=>4lS_=Af_RczmTk+2(m*Ne0qoLvn|@wKghRwd6vo=b zW}$7Mk)(b2GC_0vMY&X`I9oxo46fM25q~T9_q%(h^V+Q&-KKCizc>f=S2L;wwkGD7 zblg;TVSV~e!0S3%0_i318*c{hK0lLZ?zH)2$+6ICN$2^A!@a}W)rY`RS7TR-V6gAi z5yK(=G0P?DimzwhUC+FK73@0F%aiRz9bb?jhPUx^{%(JVSn9y9fm^EA!c=jw$VZYF zkCmsJ9Mj)>MPL3TJtsA&bn0*ZcRxB3&Zq}}E`AP1MSD@|2|ERjqe)7cPcjeQrD>2CGB=h(0U}&@L zT5o+_MV%o|@X7Xh@wNAL+-`33-cP-)v2A^D^xT+hU+~aAcQ_Y}^JVfs^PhTJy5@ee zy>Atm^>gwT@y&lP*czM`9qg~AY%0h~s3za^y|{VatzW+xO=eOamV%Nll^T@p6;Sl* zcxD9g9)WZ5Cs}>~@4Bl4zPwjjE0|rJ*)}cvI~r^W5Tg@(K65=@&Pz=5-*xWE_K&^L zr&Pp0;a$TE*?jn({bJ?+hCqOOBr+~u`pR=sB)+^qT z_Oxy49+v5AaQ}OegQ)H9U*&|nK8>!OsI|qvJ2sgmGj^wz$CoQBdAu?f?|&zWs8FMMggIqAL|p>&jOvV2#u0j!6_}NGUS_9)_IIyZ5aQi2q95iRX3y73Y7ey# zMK*OCwPDc~*<4jhk=w%g!XLFZ)oZE`WO2)x$ZIHk0v&8VdM_4mXc1ddl*5R$?WIE& z?njq+o=kaqin=rFg_r43?BVXo;JSD_I6({FCQOoZ(m=>$F04~{qCiO z<;|H4n`=i*V~lb#nkGd+IwuT%qs%MG3*Uw6Gt+@aZhU3z7Jjlq*)Y+F^N4@^wH%#n ztX!iko}!VGchXw3zh@?}!vc=lrKR>eu0`agf ziw~V9$0=H_O>bEd2|S&K+zg$_Lo?0S?54@D>#dO+WL)T+9<-JEZFX1H`&N!rw(cGM zYfv3$HiovaubaBaSIA!}{Q52nj`I63oUL}}p7&n|mvfsF++vM<*B+`t-U~6IEQ7#| zSm%VP9x|^5E~BRw)4jgVoa8Ze%%cab*`NJWRt)|frSgL zEa>&eHLV8Lf=n<;4Z_^$6l{2$#=?_%Fgz9xni zLhsQax{kqA=$%HgZ6Bl`mf$Sn{7z|3(bO!~gk4NuqI_^9!XCAE*Y8v;Gio(p0SYfs zEIKtMhBib;msW&ir1K`gHhuZ)GG{aFGhp$jWu|uFBU}8Tlxl>eOvkb^rl=}7tC~Lz zet19T*tKqb3!j^OGwB$+b7^FGLpgq2?tS-@DxaaA*6OLH-uM+mk_h?I_GG_4^=3Zm zKxT$6&Pwk7HQn~UaHWsu!As%IX<+QnGY#l_%fan0 zkBDidID->z`mY_kcJM(ug zJ>S(7U(%|av*m%hWjDdz{&}-S`Ob{Ms@=y+{_E?+SB-1mCre=~5-+wWQZ?U$S02l@ zBiWhJ&ayw2KV}SpG`-b6?zVOxad$lLmqXF3vh5W+PhW+)GLPO5z~E6JI}od9d`9&s z8u?}>L0((Ss`pJ9CR+qehw?!Qu?^XTQvQU31MPfpMD_ck5(k=LRAQgO2;3fB8~^hr z416JlbMSrCE*qG}j8L5t6p$(=$9pc@g7>&i!orK+MlW#Jh3BX7aS8P$#4@}ioIF|~ zDgY}BH&3*&6tlwNG?|V6d-oyEAthKeoM=em3$Z!np?6BalHPAOcWzW(MIBd(^H`6T z_|DqctH!OM55!OjabjxGBHn$Wo6fJc5|x)U@hHo!3>Xl_a~7i_A+9iQi9| zU}q9{8@FjUXJ=f`_bZR}?hWcm_2rm@hsoFbqhCx~LL@?tt+`KAH%%ojY9sG6aK$is zFbyz*>srJl*oE@q3oqjG18)N*gS`?4@sqKQQM3|ILl-6MfA-9L_Z#<7_wcdxu+5Tj zlD57s7eANY6$`By{j^9yEAzA{w$wAfwPdnLxNOUD4X~7Sn68c5yz++grMVjeyZYu` zcdE|Tf6fM1hen6r7oLdA=&6vXW2qAv;^`_?-SF?JS*x3SE*|UL-HxAaVdp6~F5Bcb zR=L)C+N}8T{l1;g7^0nUl{^L-{_6fUyRjtKaWSv8_E9bVY~yvjbY5*(u*vP?<-70j zxSiUT?D3?UH~D_?aSQnrIVcX9a1`O0a1)#BZE^4SY<`sfPMp>Xzctk>%(3}8R$RdZ!ZA_=*j}Fb-}OuR{1K5&|G~ z6;GNEcTY739rFj>mJVeNo|E$T7I!-K-*Eq3QYX?4^gzkm{8&}Wa%h?NcQ{2c+x&_X z{}Zlzng~*}_-N_MT1-ahzXVxPf-yM*(K~+5nr&%bn0^Q!Bmo)5(mYbnN^Uf{l!>y5 z#iDRb5&Pe1X>|NmVPVz|c6t&$L zaBh@tIC^{Bj)R1bCU(;H1DRDQtZ3U97n!rEOeua~`crsF2q=gFlc>O=mC_x0wEA2! z(@IAAqN1v*Vp6h9TXF@0H@qrQPubN*u=|X|A=7o8AHj0?1u2T*<9GU>rx%TeHH-7k#)kSU5Oy zJAP6DNp-X-B;p@G#XPna2o!ysFA}^G!iN7Sk7d)#RnV??&$G?1vmxqIu0FYPcxYXl zuI1!%XE=6oTLNACS0IN&(ZY|>DoC%GoawrO4w}wQ^A%?!4eLueocK2KXKF-Naal7& zd1k_&FMAnBv43mqx3pV;_T4SBHJjMZt}~a7ot*xP?>W%u@L$RI^G*`3d>=1Mo^(Jw z)**bWACSUKV8S;|u%vOzJ@K}|gx{Z#mzk21RNU={XG%CbQ4~5j(jC;WNE`}nI@n67 zZ|^JsZab*R{>a_)8|h*TZb^q^ISq0fOs1Hv5M~k2f@1(1!M9Qz5QhAKo~fs)uaizT zs)Mit3`<19&=b}(LUfo(A=fQIw2T~$BAXZ6#@DPQeuCcw`sp0$Yw4&Nj#QjybYG&_ zCNignhqXo=Muo;PXU2wC2M(uDUAgbPZn3=hpG`4=%81!m#fbC>{`gl|t1M>>rQeir z0vYC*bg5Imk}~XnJ*Tl`t}Dy0D6cIps4g-sw5e;+6;z|vZqhmre*96JY4qzuH&mC} zexD?nl3f;r5@V^=@i&EQ!Xy4s63vsFiI<)SzC)v3NYbxs2-LP5Id!J*@r(lg@j9f& z|E3M~5IW!D9*$vkRq%E2i28y`S%PWEYmVh#)8VM>m0A2NJJW^p!7@|HM@uR&RmS5k zz92`g9kx^GnD@eZ6u4ojQSToJ3T_u`Dm)tuGxZsh$q)rcQ$LTFSMHjkNH4{8E@0PnglRhQ#Qpm%|B`FrN%17*~eqHh^{!A+AqH2lX)$eZWu#kMf6$ z^kG45VNYSnT)+w2Jw^ngS>)Kr#$Zyz^a|Srakc<6>JtP@@XSCjtqvA5#!wV44cffP zzwXbak)l0SHM${mEdCTX$q~@Np>{zJ)R|bBT(MYHc4~7?;^}NtYvXL|1vTGV+~|T_ zsd{?8dFe#Of2Xi16fm_qxFSp=NFn*<6QpsJU=AGj{{>VlrW>PQr})|-Q=|T#T>3LL z(xYHHpRBVdK{Rx?u%Spcl(1i5U@tl)?mo0pdPX!(h|! z2?TXl&|QYyLefW8O^3zf)<&S6q{F9sWyq>=s{3%MKT_I{C9pA2-0+s>L zPQ{+6n+o3D_t&4m5BN>g(f#}Z_s4%jg&b=Q9XB0C1wJ!JduEgGj;7|!UiMD^<_r)J z0$zOow)W<3CKO)wb`Gw5UV>ErWx@Av{~s|66~%vJ3%TdH#a9f78XxWPi9YcW=9uG7FJ$fUKRiw3mY5LKMN*T zZwEIMFD3_9>i_HH|MMeZ?rP>@?c`?d=s@uwzb2-R?rwrqRR0O|-|PQAr@5E)|3q?d z{eQIn5oGy~hJ}?G!1CX||3L-*Bjr=E_A85IZ!5eQicQ4KH1 zi|*r8lChM0>jFs|NTy1ap~4H^O_149c0lcWx8>93(d5;m-AwMOLy}~w2(AQ_3=_4u z^u?2*t1^rV1!7}Nd8P>;#_81&ZLJ}D=Xh;~W)BbH^s#knDM+?bt8y&RT5C5=Z4Xb_ zL3=s->tOfz@!dz+0F~;kC95LgM`*-U5g(}aTx(#s8_Ms{GW6f+Sb38p!j=J=>x$j0 zQ_$X`-rS31EAk9a+3tE3WOn%mS)cF4^+YvbO2Fioa)fGy7ZNkl){Pv|n^NDHduSNO zD3s>af%ZCaqqbMm^_hN)92;L=S>NN%yFp@_G)8bNkT$0PdKoXk)RHLA44UXQCu1M2 zCDcjXJz^nz{I(6!zfD8n?Htz>Fw3l!k@`b2=y#|7VL@n~Q+pncDwQ zN8c6lGMqdlVdXs2;NorWHh7n^aO@ZJlPbskmhEcqNjCf^RVY$8xW+5)CGFJCcu?MI ziedkdGcc-7(r5o=Q;o??i%AWi!_T2zGFvYUGx8~0I1t%OkwwC^SPJHrGQfU6W|!mr zBdbUQc*d~@tx9EMZd5`Qqe$BRwktf4B=19dY-m!~`(c$Qp<-a}@70U+?I*B@xb8%b z7twm$u_ZxwQtl59s#df7pC@I)UKBu_bM1~!?16Oc9^Q;(3kj+A7?ps3`#=;Y3@l8=~2^-vt<#it(@_Q~8FfABMp^lhvuV&GeDxxo*BOGX`((>HeHJ5s>mfgV8hVH8-JA z2g?Beu-0z77HkaRLhfnFFmhvQUCI&%?TI1NQ7SQ})m>*Kk&fxVTfp$a)KaxwQ zYY@ix@}m~9`*VMIgbsh@R9xyY?^6AX{XL;kX{n>a!r6;YB`8jAhN>_lEe(}8g%0`y z?#le3!iR#>>6F}g*AWsPF7nq<==LAKoe9sa!hZjq92Ti42G1|#q$HAG_ogCRr>2%q z5*M2#)z;bX*gg>^$nBcEzENqs5o8=B-C-~?M0l3Ru2Mj&%J796yz)7h!f>Up_QW=~HRLTJaBSM-!DrVfSZ^4bZkmfo%b@gL8Gx3FOqILL%=^U51jXb-TWuEC|lF`P!ZGIlN8)(wg-qF3MR?7CE3iMR{jSae!!c zg*SHm<-2+tiqQUOQcV^LW+91IT)o}T)U%%~uzK1b!Meu54#{NzZCr{r6Eo8R>RjFHz8 z340nt*$ZNg9FM~MSx2JSh~KnR(Z9=^<|xOl&w{&P5R?*w-2DcOv2&50%DeOYNNsD{ z_gc+Y4Zy_MT%M*AN!6Fz{O<5!B=vA?i-~g`zyNyUZPaP|tN`?;X=gZsuij@687iMF z`){TLWZNB=PjhbRZuoDvxG(%Cyrc!rb@wtxs*XLw!QEXSBnGM0pZ^T?ak2^KyN>Fl8EhqG0`V!1D zpbGmKu|zBAhdYH;dYseveU>eqFPgZoP!O{6MqVvnKqHQ;Y^a4_4jUpiEl zA3T0@h{G7kSVFTq@(xkxC2R0+AI{$>KLny_Ou^(q>R;FY8pD!Jy=Z>pKh(BX zqXj?_Ia_y*(Q!63A!jN0(ug0$Y!?bvB$v9>Ae5%zTPbPJRYAn?(E9F$B7>-viu&B| zDd*|!Vr49qquHc)q9ok6#4&b-f-BZBC=sk+sf2f@@t`R3uLij3jin7B9e+*v8h-4N z`uzZ55R5XPDR)MNMqJAIt;hcu0)~LKIdVn8#M_`_h=G%#sswVHYR0-QeFw0?7XF|g zbKTH&#Omx{)?Co#RF??SXZs(FXF4nioi|MRN7%i&HZiQYQFVIOmu{p1d#4W714^Mw z#h2!V$W6==sMF(8aTh9d6Np@rdJXhA+w=ks33d4vNI?u8R`T{=y`A1m6S}j(R-uy3@`=ZcQoWi48VNA9ruN5N+6H3dAs%NcB?9z?d6h@mCT*O4lEHk=*!1B z@c-_2t$p&&G0abC>Or zw=kX6>QK6-7ReRC8~RFV?<%T~VqHc*pqS#4+y5}<6Xr!TSOV}*8B-lOwl@a# z->|u-rp=G@nRBjNOS~nAcGt&N+ifdc;;u9JA;lok!2P6fkgQ@2vga5FXG?uA(E>hlM@nraL z@rFBzUTLxJJUIjprO2~vf4o11SJ$!mZr4}AETacvKwrm9cn-aWW*7yw4fIiMncDry zzjb9*^YV=1&)qXBbu+-7iRhh%S45-rLtEGgyrm))T$ja;@+Y?Fa&cvFZ~aTyPyZ0F zH2>^^u?7UBEZErO)eU4v0=kU&B5n;InN3F3=UW!ODO4@lm5LJpub=5Q+x@?8zMqH! z;?2^p6khqAXU3jxmI45h8CPB_%4LAUcR>Ok1$lNK?4w>GqWrni#oFp(5I)O7^0t4j zPj^7a=UAC_(<-9<+x;`oWv^exG}_~s&#yDU{b5Z_Go)-K-DqWE_z?a7rkj!L$Z-5%17dl0H5cs%P(X!0) zba*PO0yI|S79!#XQTwu^61L15mzS4a{I90MgJz{=R{eXDBmBtev&Tj;yKthUc6R;9 z->%6MpT2OkC;fHU+19d>4d?I!oWqz1o{K#b(Z~XmbA`OI++L19 zZ?6{~2jO>RydnLhSvNUBF&VjxKU(%F zNUwS%0P9NR{*MdI&0VR}p1=~vK+w5{IGx{f7198um>6*YRM#COIBZgwkzohVHl$k% zk@IPzZEUO!3XHtT6WQ~yOa?6Oez~iyuSyWU8CYj~dKXnawZ%m@8acTt zT1;3TVP6_v46I{+igc4_QO3QJ>(DHI1E4$CQLsw!ugxC8Zw#q#;9d;`N%s7m6CN4uuP8B?(3F{2#Z>`;)B z=7}hmS`*thA}!p_ZwM2|&ymcS1hJ??!?kZn<%?vI=3fT1BA&&6gA8g5ekAsIouflFP8tCmsi!Zn$^AK)?&c_Llt#cE@vT!MZUQMb zgLthgdA?NUPo~>Yd_zw!n(K-Lbn}Kxz$y57yN5bHEJ~{jdf#zyg8xbr5K%R24Ex`S zQJgS0-J`^j`ElqGfmLlpC?qLIV;7>@B7uR)Mgg~yYdpg8+}z8vlbzN-wESP*bP>#| z01fm!*#nH|VdP!zK_v-~fhc6sdkBi{^16EJXu!)-qBXzPOQCfx{>^pt8eimHlUQS? z7LdTDKiFJ>bz{vyQJ>h>S|p34%P$4Z!>H7uEQ^a<%Nkj0YYuqtUEa?v)x7Y_hXs1@ zeVuy&XKh=rzcKjmXy*V!^iH=D{l&VuAty7`y2I;Efb`>IqMlFTT3F_EIx4raVA~o$ zGffENsc`=&mnH;ENV|WFZ(-xRx^%dFayYb!9ykR60U2i+yFR*2Ts&5{vcQsx1SD(+ z-z>Oa8$b`P0WN`-ZiQA`mMGN~p)gIWhhX#cmo?9&OceRLHn%poT!FX zTx!T;Dq{H>UPDgi!>~k5zH()Yb|t#@a@5H79;5wX#SkJs|A@*2G01$%V<0K2e@ym@ z!Y>v}Xz}dMCf*Me)M6FVJ4FfFniZHpeVe<%6EfP*fJv-`xKkeX#Shs2Pw)Bcy005K z#9`WhUPoy0k=mp){Dk?~)8?n$bxoYgCVZ|bl=js7@3WEM2`sH^^MLCC{n{L8+R_E9 zzcT%XCG;-Ne!Pto^{mp&ppc(y(0rRE&2FtZ4t*<1CLA-fG_9>%^P72oncuP)P7x;y z(5BkD-5EGk73Xl%?^y2-aEVOJ1*ktfUdCpGknNS^Lx?UAQ7&P8>P6q$OZ~Q3nP@LI z>5!M28#fgH9W*Lo0BY`F`>0hCS*lGb*Z1cIWgX4g(f9y>{V_-yP=z`9n}IK1-Db|_ z7IBTOOF+7vu=HW+^8WVywO}eCgPUB`wUmxpkNd%M-m(C-NKdk@9eJU{`&uZfvP>Ir z>KOQx&lr*^J|c+obBdJqD6;HSss9GoCb8dBH6M^5J{?dc(E0bLTA zHBHN z>f#ocrM?XxEmbG6bk?KvU!Bd!GqHAf2Xy-wAt0kA?c*iN7zMCg$87&A9u`?pk9Ti; zTDL?6J*iv-u<66*-0DvK$X05S6ZMqDe^SbS(p>yV6V44w&;_33h9G)_mv0Id?STmU zGbd%kiWHPR8$rsJ{1lMn7+F39MRzO%&OO&!0nE-<;%cOadVfFy%3_C5 ze)L>GRBIE95DNv#%gg*E4X`Kb4cDlKn+xA*{^?JrsdU5=fn2--PsbR;P`8dhQ7>(SmcGtG#s<4U>H= ze`i&0(pu9aL>SgJt98TQMuKYxc&aeG(hweRn9_~eJdAX&y-%}jJ1rsdTZBh+>osjn zqIHmu1SNb_*B5uI`O=Ho(@UoVJa5p0Xi6c^xj{fI5&Aun7`85PHO8!h#5{HE`bc9*j}mq=TnhSShQ&z z79oD4;}b%jmPTK98Be-iDRPPm$b;C!$tD`Jmmbxg@$PR~twcSqW0coiA%KJw#)>#C zR(0tE!BW147_}^6JVr}c;=VZxA77W9F6&fEFXdM2zk_u_35BxykKeb%;i7KB|MiyWE@rdu^fIOfAJH6}lAQaxds^!os^c!q#WOn`0=NnX6! z-Mtt=_Sa2SM zEk)PGFu$DB_)Q)`#g)KfN1+!|e;^h-)t4idQBPkzTHSiRVJzg&l#P)Ss2z1CDxag( z-M%P?4M7}Qi5Vh|OxgdM&Q~65*jH~kyF)Lg9dcB=Z`C^K5A(^hvN;HZh?E$&8R&Wt z)ES<`tVK_T@4@IACH7%X7G5dIE$$p#4DE_E6$^5G2$O%pnXhhouo-o|f#wn98ByC% zme&bPOCNXcpyGn3%FT|~$AdeGLTZ}h@$(J^uWQD9?%mdTsE!Zd4u0R=96wrCvwcMU zSqCSILJJ*jIphby&8zmuj}(tIx?Uj2CDKzwdnw(#*y~ z^~nKx&U)QuA-#9a#KL=98SNczEID|OE!B>&-eKCpT*rNU zK_ivL7-!TfdtSzDVNMGH(&ilvAyDb7!T?)-IK%`Dsj_X@Untm6%=yL#LN*a81UB~L zzbA}*k8YGWwqCu=>!O%Y9r6q^homrg#gbDtCkZz->B*HCLA9xjJ?c*!tnRh(Hz5_ zTWvIn$*@Nboj)pPA<97CMTosR9a$~6P4txQN$x_u3DjBLY=ZD#ZV*@kP9_L^b_hIe zR9dvcD;W9l8Q)EFUt#LpkEf4|QITma4(Opob9hgPEY2X;-oK1bVb}*mXhNpYa^Vx5 zCWx#dTaCwhDJebD>tlD^I}t{7pk$*?&L;nUxQAi_BXqEb8ZkSk$;l+JD@tV)z9Bj( zdR=ZWwjjy|*cddFXDIz81>{Eih87H?M^_d5ZSF?Gi6vuBlT9>Hp~Ht<&U z;v7fg#d%7`v!r3ch~#{WK)%Uhp-=6BDj>Q~nMpH2c217*izQzu?+aI$eUQpRsDmln zlmgD$v>I$!Ih@v(d{|t!TbTI(@4NdA(}q&qdb}23Et4ygI39zIY6g)+8`T#oj%-Xh z`*XP!GIK+U(#?Ad7E0?`O=HspT^9($l~iHI*-O~7nvck9nqWQ0Izav6NYV1Q87o0NCdQ zSGUm^4l$%o9^Qf2-!Y|uKNh2S$*rr6B4wG|ze69DA6H=E#Tu5@@pktMrgtS(m-_#- zxhqs6HiS?qQ%fNjcqpx8>OeETWf3CRGRG2X@sO`)sk<@={2o;!$ zgoHRu{loHtwvBWGoqI+i8p(kE%d1OHyUTD>0e`6tX$*b!ThsGpWmv1JQSZOnt&4$t zJ>J8W5biMh*n93e8-e4^t?OVwpCyC-KF>-E2%gC&OouhOapzFpn%lZRtSD;N#F#x! z|5c@TN%Z_=Y@bcWCfya7gof1vnO+@<@r2ks$$5r^Xp?2nF+>aH2il=C9EjRHuw0D1 z9k9zjzQ(o$ZRG%vfksAvgx)kdM6n=35`?dl@(D}E(Y^7lFW*p_3erC4C-#kh;ae5C zPhMo!o8<^YNn=OET>?_yILEdtXVRDBE57GG$Xrv#hQWp;SXx~%AL|dI=g)MxdU zRMR-x=GG{*?Vq{M^|Wu53gvO?|6$g{Nj!!B0Jr$h^Lcrt715)R!fv}W<~8c;jh zHG1|s4tfo~;7jXeLXp^JuIyT2=#7Du_927Rqbz}*t~s-1s!@SV^e7joW~$Fd4fI$0s9>qSI)SUW1;qYdNmk`|d*B z!>(C=T-Of^e3@;zAhT@W7dn`-*mp#z5jeMk7+oFpC)WLs^O1y5XD&>LH9Bt8;WpcC zZpXn%KyasOEZP)HZj;+jzOcVP*ml=kpCHOb$y2$bXR>?OS~^mW-Z2b8h;OMHRJ}(Bu{34 zx6-HQ^Xnnex(^Wpl7V*|th4+#V(oa;-<6(~J{tV30veRlsDd zP%h=@ZHj+(m$Ffe?D z_G5TcEZm->brZ%lt_#sD9gm?jOhM?U02|{!KKUC-W*lVIWp|n%%@=9}@8?Y_9sjC+ z$A?JnYc9o}E=PD;aT^p_a9QS4|5nX1jEn(ye`yz}%0oPOl zO(hyMllck7%SUYTV?NBYfFeltEOv^gnZSyWV9sPyQo%C+l|1lQ3*q84rRJ%E*%$c< z1OphHzt7{<6%Z-nO%Sf;t5G_H_(S_kHDTLrLcXo`n?sWx@%5ve$9^d{FS|t0*18PC$RuRcia*7H{^cVzq@O1pFi5(mhz_46=C4D-5i7-MXI;71&Zo zL<_2{{5WAk-8tk&3SF0vtv<^DhO`g``WOLBNwdtbs7&Du0_Q9{0&hYnzxU^P(>=+j zbS*A@9+uWyP0!}r-;vXg3I8ft8_e=^c-Q#rv2HS!#XVLD2g#!-2XlLTD@k&QC^E|w zlHvoL+m(+5K%0oy7>55j9my^AIqD3T#yK%t)Z~}eIq55hqcbdnpNzz2$*#qWwK+JB z5Uo;RSgg@cpYdf(yav(G4r{sv6{^VJ0^`rWDz!`;rI0K5$7&0}5S?c>!~ ze+Lsc0{!OU27qB zmmOdgc;wk{{)4V$)BXO>WE7+HI_}PIcIw)&ScZ!a+m&WHqe?;5B1J5Sw%8^BMp*>J ze)8=0e9{Z%+_R@4xq6{C_T&C++v$h#DF)-Jj zX$eUTZL8`J;GT_J#juWhFzs^37=K6}FbcdE#NxYl1oRB|0r8>dz7#RM6dPX>Onffh zU+#P(&#=HKIca%0wKA;{>ojO$PFzN8L!x%|>e%0aDJ}R(##`kEnE%bkw`s+zq}eer zDuzQ~PBFk)jXV7XOe$OmLe)&|{vq^8`| zQPq0kU5k<4lhE4_e5)Y5$sdl)Fi7rpPfKW16Db%n#58m+p)O%4KC69VvC0uLPQ)V_ zE5?m#RQYwgZA>&muk(aG%R-%MwH^=H`F6t#DLuV+;jnQ1dW3m1UkOP?kA3+(# z+<_(H7|)CPd|y}8libBY5CRUdl(@5$b5pBG_FK1Zr#0rKR<~}TaVX`p9=9kzvX6GlzR9j^|L|?l`7L;->)(70Wc8V_&ep~{uy-0zUdghikQcL&@qC8j?kao zPhF)2iVgvjxf9RM&ON;Dqo>=?{g%hH4uZz>zp9Ai!i~RVfRcEBGHX*szAK^!Oa|iD{nQN@h_Y*mSC>tPhFL7 zf@w=PMKERC20?4dB47dzx8n6+Ak=+oMF15RM{4CR3H7qh@*4MKV2%dZtfSM_yc3Vd zsE_x6k#L;`a}TpUOfO#fP8|DD!)ox0zEdc$3Nry0k)*Xf_Ko=6Gp#8f;L25v8c><2 zN>oaaee)718{Eq%B0-$Rcm9;g{2uGn`DU1=E(gXOiEip%$js^NV&2!p@1DwP^Q$l| z_qE={k!78^6usMZ+Mq>3Y7CD^kxHI{Ov|w0qbCVN76w3fbSS~}SA5R50F?BGFI*9C z;r-w9C>$9sbII^!n0UP^C_hA80v&XD&=Q}{pz|c{D^^KHK3fM<^F@ zQi55cSDcp-ZO`~cfO%eD*BJN_V4&=@f>QL+qN{%gI0>&8JUWP&{ajie{Tg0T?kkcz zy>X;Dgy#f&=iM@7fP4<^mqN`JY6V>^n62@O5h5eCkWdax>$ez~p;>KNu=b=D`$%KT#&;AM8Lq0)k!~>ZJ z-LeeHE`&ZOm39|G0f>tt%#0kQ|Kid&8JAxBA&^8VJXujN+Twx|?2IAb%C{EuatyYi;(>$S=SxFhVRuF{;zFSXA2qg|UVzpRN zX9Xk=2^tM)JJJZ2^|2jnYZ3;IbARLYLzw+VyjOH#VE`Bzc6nJHnXY%Q@?=5Zs7qYY z*#4n0T*DYKL9T}rRFP`k3}ff<*XcRGv%>?NGVrq0fejDPb#_ncxRoXIFJV$DI}p4+g`bxI5`YJe7gdJXN&e%hS`=5dL!C#y?njCt}*aqz(Dlo#STfp zoAis14ycF-#Ei+fAS`P3dZbHZ+=fQ2EVAMc3L*5y(ISgC3j(1_D5fzW)ZQ~QlxmtM zgk1*DcePnF(hNLd;6+mNAUtcx3{$x=8lL_Ir>-4mjBm2{zw_b>{gg!hGBt7*z@iQ^ z-2r|;J?6gMtjB|e+;TX|rVQZ#0lA%cMwD6FYIHaPFvnLW<^G447fa$iV_2e41*Af zmn@6(2Cf}Ir!Y`%JP^jfszD6mh*$=Wrw8^~ z-h2M+SsF0!zkO$$=?CWMnJ~_{G^4N ztrc7pN-|w^O!EPlV|kfy@T~!0ZhYgWI+-&ITLC|Dhd2XX;AGcl^^qs8s}9(%cWV_P#Ci&r5GvSMh~@Yv z{)e-6m+9ESn7v&t!Nd~N*`B?CB0Lh8QKz_(I8O=1!w3Bnm=W##c=n#bj|b~=^~)b~ z!$eFFs;2Ke_318qIb)iB1)@Bzah0VaTQ_f@?Xz~B3Q) zo#TpcViX8@R?vwDUqFJdZbMvOW^F5e5gnG=EU}EHix=*J2YehHq@8abqamCk0GzTc z=|P|M+d~7C*-2kq+Sl&F5MUS+n86UoIA}kD0c@RtpySzqwc0Jb`j^qX zq}@}ixc)-hNdH!TaCk^;&31Z@6b!3k8bmO!m>5@kUx6%JRLm!7Uw}6{RTa} z)mahXT6DB~cOmUECE8$Idyr5bgFp`Rn{jHN&S=wd6~8H*4RH>3{}4?R?eL&y6#`8C z5?FgI2OQ!v{F@@wV^NE>1tJu#zBm2^w9E9-pcs${2$$`$3a)3YJ(> z-eKG08TfGJRUe#;4q1-={3#nBv0Sge#fCmuZ}7i5XVqGVZG)FtJz#mP@5{8CLOc`3 z{TxnF$Xv>98`Llpb#xxY^FKOd^xLdL3)csk^S29i zvNUdmxD`D0U9Z2)@wYV?=?Err4DEBXpj$ur6hT5}rI)>XnXue%=NSjSu$+(a**n^U zKC-@_UG4^~XFu|IU^m}k|9}mc_8RNZo2=_kXs3=@w~DRG-;+fN_3Mz;EYAo^IV!C(<94nOV zv#qd0lce+aV+zzS;}?bSZDf-Y5-VJYnCI{k?tm4B+en81pTroSU?dd_>K^ z4kJFHFPy#Hk7axw#&&~^mzwu(#~CswOwXLKv*75A_4>#AX{EM_u!e>8#VoyI8sL%@ z0bPW@34UuH8|>Z&wt<9G0Y*A}Lb~4B5&eUm4e5tn%3PKg(wEfyg9j7@wf4XL@BhdD zX?L~*2Vq`#GW`3#vPP)cg3|aoxGdMf@)`!-2@622877zL*es!N9plkcHmLaZZ&}a! zf)3S54?caAKKbP@(iR=E4P&Y>h}?Ej^O};e_BYGR=H*=T#j?U=Wkm@r2XP1lWu$l9 z12)6ox~`(eH(B#LBE6O7{a?xJs^F`VUMF7+ddIT^>vg?e+X2|B|>eo9(&+T0!) z{0R4v2cNIr^XKco*BJQ0Fc7q;DBa;F1u1`JUp2%qjo}U=&F5;+XZ!nTanISWy~nPc zn03+6dIx*lSq`QWqlS(`vx&vhHRo-Zgval88EX?(DoxNlCos%04CoxD=@LBmjUTck zcmLaO<9v?|ES+_jmUGmefVYo>?hrb;MBFA}Q%>V^H#s-*aqC!5nrkEAyXVIxOMSz7 z03EHvw4MIEU@RY_Jq{2MYAhW)VDq6f7-t8Dxr)Z@$$u{6>tk8y!7yD)xQbsu7v-St zR0BfJIU4e>a_ zbIS2t6;~H5F@G%|7_dX3y9auN?oI06;#(V`3GT>|!+U^+Km$DOCAK)Gp0&KK67B3Kn{2}^aS*f$sk=Wp|$8L!eU|j(()?HXUiBF-c37#NvD5I>B z0taK_ozm6;7h3lUR%e$>UsC5jLXLvqDjI&1IyEu#n7_F2$6~!$V(pxLo3ho`#fb+S zIZe@zZGTVFCKiw}`FUo5J_}3RGJmHops}=bm1Tsr83K^gGzgt;5~S6m%LYVRc90Mw z?wGJ6wg>+3nm@(=q08~Ic!eh;gULBFH^?|*(}?F^eVtx@^-Y+@?tXMX-Q}3ZO(d_S zjjh;GYAU05v=%@6L|j*y`*3A%FlXKirj%m_gOmw+mC5s4{(F_xV&ISL`E9sgzx$-c zMM9O)q(D%b;TP*B3XNmjh);)O+9|e~>^7NJ!Sv)7$UBeM((|t$r?0;FD(z#k`o%x| z$F%kFeNO388zBc8#C+rDfL0*mGEXnV%jXDK`16Ot7ouE0USr^cV4xfui+$4PGCV&x zWroHNfp_lKDY8qJ9^Zr+ZJ|AmFULRIygK@ubwo?)bE}aH%prPMlbGAXvGg+{f zAYdIZ%`qhH!%u++#wn?Z6#z5L`AlPqDW@tf_BrnaUQuU>op}wgfHV+B+6Xso8x^|M zld%VLP8^iP$|i8$(`tc$Bm7!!&M?#OK7F2cumtE#xpreKtP!p-6VI={!559ZYv5^# zGaNcgFzV(-I-w2&@HgYzKGaXg=S`UTE&S9Vnh0fVVNCm8D)1o;tRpP_l#SP3eEU4@ zBQT!OH`e<&Tq9uUgAr4|)Ncs^%*}*)SV9Kp95w{)UH|A2f)blHvDP$rV=-DjDD#gp z7e>p~pecYU-=ibbOyMa?MU-gIF!$_y@imqIHs;AZm-)`4kMQKjNd!~04t;sv8r(%j zS<{ba$~36dY>VOuEQJ7FSG=;R+ULxkBJd5)lwnh3$SH~#am(KpLq7DgtoqIC4JZRI z*45fk0~s-OR?yK@sT0cU%g9+MiZBNepB*TAw;JDVM!R&_JAUIV?iWv<(J7D9SD$~5 zm-9H?LOAn~5-kp~H8L6HAG=_SV<$z&-1w54wdjPpu!6CU!N)7E==*UMAquf!KbRyOvYWysx40 zdJs*`_-Nct7kcvC210?^)nQC(;uZ3!d*m?1IBnq;$F(Y&sSa=m8}6Xzk-VDJ^?;Z8 zd!X8gdY$9VUIWezgo;hJVIOkf(GgP{W0-#pM()8prSFzhW}?;DsT3IIxu*JKcJRa7 zy#W^#mKFRRoQ@da2hc-6iX)U^+V1Y>REZ{>Ip+YltD$rKJ?Hb?VG+SZll~=bq6Nhb zm=qqITK4q5E_qHVw+*iQ6)Y8)?2iyQ2KX_I(B5e@HvfVBQeTgapU`h6v`_e1QGeDK zMtgW5l8oJHA1xioX$Y2X+=PGzZbYF1ktY!zBlI0V`!+SP095D)Zdl}|cJ{|ut{HTe z_Oc^$eNg7Vz)EuI<==wnm()L&rNM~wmUOo{=gM}z_zLsc3pPNgqwS;dfBH#U!Bp13 zlV2wd+C7+Aj3_Fn`7PvOo-G&LM)tYhGQF}io+3^LM*deKrv&f2_nhXt;gQw5fnC2bCw1C-Lv=jI1>ly<;77W-=y{_)jQC|lb z9>M@)%1N&1+=RIqjGE+-yBlU5!$>^2%`@OV4YbZKY;ZoPFwBzQfF)YT(7H=Z>@AqO zv@BN8z{q2*H-q(px%4AU&wVt)KEgsv)45|ge){X^ov&jZ({V7F3j53VU;tB?iQ2P= z;3zD(eQ=AV2sI9e>7cQCz>c&a1Q!OnTCuAD{K<$s-((Jq9!fKlF+p=1%)?J$UIVrV z-^KabGYR@ILihh@yX`C*vW#9|p*i`Penc5F6t!vWKu6wu_f)(y917<+3oA6Van{q? z+u*L#qtg*Xyx@=ba9(8E!t)HO8^EVyBe*)+JqRm<*smi<+4U6e12B!VOvEh{ z@>!@M-W1`=18~g0g$>`+6Z=e6NR!+fe+dhPr?p<{?0AW_!5%IXP5V#G0h{q6~b(@5QadyX9mn*=$C{aP=1rP=^^w9 zze1H3l|IuxyG%`-A$(YV2VtNN{5E?CH%xgP;^T4f>Q%Z)d+NIty8zlZDMJAQ86hjk z+`T?1^H)mo61hS2xdVIrxD|KhHK7C5N?OdjJcaS^J$)YAPCk6}ak>ZNZ?pcfiX>`B z49S-?VfqjoT*0uE!pSvcQ>OhO_t&7lySTT$ ze;0P@Q-GiGTqei@k(rhuWyP(k4uExtS4g482s}G)50059TiR$aE?Q|B4d$CKzF>zy zrf9zWI(E~#_cON1#B;TRi7!M~Z)Fyg=iGlV{o-!dk<0#=H!|8Lz%n63CtH&HGHHT)7GVm@K8r{mHEtpp^9a-%Kr8< z;4RCnqaC-pIK{z~256YiIsC^p`isF%wL^%ZLH3p~N>Ccy5lstx>y z>X`F2gIC*ZgADyxW{%ophbN@-z#3fpql`nQ1bP=tmq2IEnXC6y#B=cBak>gobLvq? zFleI9!;z_rf>>@Rn@a^zUJ*{r2tsadHbJ-`r?5;+%!778TA`kGP6eDrxvu@s=fJQz z9M+8i3h4os1i7hnYZ-j6V<|XsJ9$m@;Qowd=u6JgBLE>~QP(UujWqWFQyhLo-Ri)w z!W2QBJ~701Vh))0Vrh$6d4#1sHEp*u$6G1>pqg}-q%mk z4opOZ+<){aJ^bmX42JdC0@4G3f{D<UGa}+|2BrWB=ZP`} z_qWpcg(lA*eEEP^3Ev+oa`F4(bB@0NGe{5*B{_?>;ExjXB7UNp)|RBf_?3(>%{jed zr^B$vw`?u3fJW9$Q=~%GuJ6gQn?x(T&4WaIvQHL3=!N@!e=8U=UK6C#b;VM&Y zVs>9fFsO65Oa%fzhLG1`vRX5>cusL@a~o|<(jJ^6!S7&(KSsOrdjsaR0i#d9<&Touee4XX2e>v_~yR&9T>H9<;N_0yTocSL9OqsFR?GkCaV(G(-|ibYUb9o zU!x4SR9{kHfw}6G?P;VP@UwA`=?=8o8FjV1CUtc#eS-OVEFMYUf$45+qky#7w1!6L zV+p83hg@Bxbz$c82+VWC)AD4d;6?{!+es@%8v$ea#y0)|FnH$tS6JQ93YcJy;9bUG@jl&KbO-x;Am>6A$XKJ%TWoHFt@0)-BpeZFZ4S-Zut%9OhdjGhHCqumu6 zo7C4M*jMqt&?4iMs=EfZY4;7zVVMt^Vj`?g|5~D7ENy`cV02?A`+_7qQ|u4O{2eGk z)Ezj5KvoW%V9LD6dIYRW=e__DFFC^U**D*EphGi#{K+Tj9&`LQ*n~>dkeZyw3dx7G zYLB!bm&__}qT%qgjItcR{;4Yu>F>rek21gSe*JNTEY|bg^>{Nhzkx3jE~fo%ZE^(X z_?!=PFc}}gSU!G*7)@Dj2fBeD#wX*?Fnd)wu5veh`P-=FCp>etl(51^=(z?Fez4a}_T>$G?4K&%urNVCPLk0lB+RNkF?R*+E>?*O;{44#nZ zRD{lfU8cibdC-PocCk#jwXL4#TKL=~$m7IUI#>oUQ_t1#W$a87$a2&~)qE=`2_0a$ z{gC5^H(^qkv0DlX&=F7e8^O>8xS)v& z!Fka=9=tT$JEh~wDV41@`MQ6A76^}E7xvgEf^V`t@q6R`y|j*?=IRSC4}Yp-WoeLq zZ1D@cdHdo_??0I4FEDeQFJv_S)UNXqGT41NaHxo0kyD))p1y?nKf??*!*lcFbmQTD zBruk4P$A77n#b&jk+00ez87yudPNzziV;Ym1uH3T4nqD1LoZ@PI-f(qgxh!CWTr=lGUdmSw*uJla5)n6#^$XLj6 zxGQvtF{fEvl8MI%LzGaJD9HhhG z)cLv1-T+GHj;1WC12fD}=e#O{hC+l)&8dcb0vuYu5N4&bUPdBHOT0}pmf4)PN~Q5Ig6n%QGlMC%8jGRihub{hsBj?IL{ z34naJt@4CKwmOR!ajUFSXIg@oJW!Z`(;lsc!WbL)SSatYhMxN9v*^@@%B%dwJQO%G zaKs~S4gNJpxXYl@R^&-8@I3?}3T%P&sqH2nBaA7-< zuPXy8MSBsMd^iOV*tL=yU%@HPi?B+(f6%KW_?~bDifC|guNj#DT2*gPJv#TF?!+b# zn|E%7SN{_G8`qGMvg3>9DJ$+J>cmk-QoKeGO_n1>#2o7?dQMEB;Uc%ZA|C0?|0+%K zl;8Q7IaQe?-=hWI3^JJ@I3@As6`>LI=2IE#?fB+H%p$*{;$`FoIL*!LZCxc&=TGsK zKT)taE7Ro9QSuwbN5qgm8MefhocQCP^)fE^dCZkCFhx3=jm!Mj@7}_?#TnKoZ03O{ zY8y$|9lMrqVp5C_8Dl%N5y!n(;GHZ=bY2yaKVSd7#=r-~!0Vxq$BF&Xr~H6V;kmWrYhSo2G_!`+}_4?zL}~p`YGCVt^Faz_SLu`dC&JCDn(%&!+Kh6Dlzy2H#&+4d) z3{)y1jWliSV<1zBXa35>@#T>w7?!V~4&fA7WkpaZ2r@xAyZis{^S z0Q74=TEk=4P&J^=1HG~_Bj84Ee$_dzw zXB>V}50e@8p)MOI8XPDBHx_K|10`h=|L(Kr>~M7w%Tew0G7jS$XvV`ME?Bos|_0I zi$Zf=#<3@mh+odd42qJ7YxVr><=x~tE_XXL5&UV!(xEBCX^Z8EMR9?L=va}QG8q7E zEHyWPeR$eW-+c82rvvUFd9&7)69g+wb`;|hKepTzYy#wa;3FQd|6F6>hs8j2NqcA> zA2CLF&OJ3h_?6+|?zcf;r2}g09viC(dkL+s!iG7X$F5+kH~EAC<1()?OrweBrkA%~ z^m%{$81}_Di=oIf%pXQ66pqOmg0+XtSgvCzw8Dap2%C)5;iMB-J|;F&Mm=1r=MHw} z;kefM&Yzlo&=T{Bie?%Yk8mSbUyX2TlMZ@1s#6-$1oMkM2Ld`{10O^}F~L0xJmF4F zuZFXpbNJ#XE^a|nfU~55Ql}`}Z&W}Z2lsjDpW(X5bcRzAReS)fxT^>xBH~6SXRbk~ zBEO77abR)s2qrMd)0uLU8=E}*8Ht}$m4+(_DR}waasnsjLx`c4XY!z3;t-|v0tLq@ z1*a*hC^5l`{5j0P zC5g3|(`PxQ`3WnxyoA~ka#}NzrfT^q%Z3+_>dULea}uRYspv9En^%Q;#dsh zt#=|BGx~0jDKtUm+B?j>mgn1hUcKYQo%=kP?1W8lR+iTo7apX={A}c5DUQk4<5J_A zigwT&=%o&B&JpV%-NO7{L!*?y*U5j(m<+l{d{-t&WkS!5Y#CcHE4SA@!$GYHvx?K> zaDvm4kOyV?mv{1yfeuY_r^4eMcJE{N!i~EeoW^{=&SXJfg$#J}zntE1o$1b4!ZyZX zad{1AK+|ac=AU@dnjR#CXK@+72$SMKe~Kk|2Vd{RilX)V_tO&AL(dkVdeHt*%fNjg z{EA+he|ed|%AL5AGf3=$1`-nZB%;-n)aPTAjZ&lsf9}wi`2u&X`s7mMd(<0TOqtf% z`RD)6sd{^{r~f9?n~ymObq;^{_@|$xJD+_*o!j};K!GL)!OJ`VVFX(1d;CC(PScC< z+pj9%VcI)SFTeaEJ;xW$RSW;{pZ-%?s@!DysEfWO(h&Bb*9v07?-YV?2X3f`-!01W zKd9y(b+&#KUX(8i0E}wVk3jk2w$-Pa#7Ky>;#xRB{a`6LimSwfAX zxoY*24#A8fQ3ivMuS(PFlY6AUm@} zS+qgmheD#42gGDh++U-v2)MpoW8gz$pkxu2TXxLXFgOk(*uLrj^2a4JkpL?kcp4mh zk~wt7En|O#_x70m>wAa$ocf0sKA!ST=G$w2mj*Dd9n&!w8IXoEvck1yhT<_{*`B-h zNk?wqzMX0?Rh0&5M29~?iyT)x>yG1Te{p)9S)xqMurxR}n=oSi3~H_fFtN0QyW=-3 zmQ*gbkA+CNq0N-7gNFzm6&%!>D_Ap#FKwB@+$Yj%>PikwT;Syc+#@#0nPJh@fv=(i z8nD-<8J~g4Lb-4{B8ZK6BM$se%9tvYH9H1RI1jft*k%I{_9h8k-;ODQNYXnU3Bh&1 z9N>d{;l__b91=H9GIYM#c;H(%in$U&T)+daX4vbcw;1k;CXF<%if4#UMO5pja^<2r zi>IyNU#CyMNyj*;v%WK}g44Y(e@|m~(rrBSn-Ab+9_EA+%X0PDYU(uifBT!o8Z4koA)^b;NY9bLw;4YF1;`>n@vHt}C#v`CwCxBjPu#C8rzO8#OYV#zXQksN8ILsec96Be@>@+opF+0UkVUEy# z5|S+qDx4WCIx6K^Ps{X&9uQ$NeH&kbVK(;JfWdt5%sph!?u+N&#@^z~2v!YneaM>G zDn!7!_&5oX^yVGrC-So{GX7k)jM_476v|LS;vNHrxOQV8H3)bB!^oKWx9;Cz?tee+ zJBgc-#%lbACFI8XRF^Xp7!nwa)j^J8QajFA0BX!%^B^7 zX*X`)4}4U}_iS&6ZG%q{Sk~C>?-m+8QaK%45hh$SGEz(^vZtR}Mu2E|+bt;Rsr1 zt7mCqoj(d>(~C3OcsHHF^e^onUw@VQz~H7$las@=%U%v=2uN;5)U0xl4;Gx2yEjsY zvRt8HyH4?q&_`>W}aNuX4axWDFGV27E4xjE=5%k3kTu|neGi)DBP!{WOVXc_3Iaz3myy_E4wK%*2o!w56n;p4B; zIj3(m@YdaU^hxS4_+;jp@q-QWj{;<>1rdtkc@FqQ4g*iTx}{^TK>z^}>ZP5pzf8~m z`#+@`^HIxq8dsQ$?6V=pt)KlYmZ3N`5NC*!Bnq|eQ6{Jfeoy_#U+YH*2bLRg{UdDg zmLCH!9&sLOGeEc4x4KW=&Z*}A4~IQ>l-8#So$jKgLw+zWtx00uBw zO}rO`wMn-EeX7Ig8_>on^Szgt-m7dF*}IrAsz>o3gF12MJXWlxhe`4RE7UQO93m%1M9c2p@BO z3Mg|^^EcmA^hUsZ2%~)U<(I&~u6hVVXV9>V9RwGctiB67PoHxh&?U} zRR~Tqjp(}_vzpNJ>_vsF}Rqp63Tu05xv4e`VLC)4d}8P*trU7>NLyK zXKClRzeeyn#9=gBXyTA4@^&lV+2u5if$fCT0*CBNP{lv)_OE`H?$>{rR=an@w?t;| z*3x#_tgwDy&A%k<_BR=dJVj%Qdl0*|*MSVCc>tS>ly|BRJI2cuw0GG3p-eLz!IW zC9ah2o&R@piVGzFV@!DaXc(Jpa^gBy_Z}DDR~Ok?<4AlJc>QpVfgb<^4zlvHGjm0E zFYX5U9(SIDHqn*s`*}>bSA8|D!dx1xHSa*&_h3rBgMH$#j-KUbbBOqmO??Jzi#>vg zx&e$kyB#whe?iV3G~?R;JJ6~#H1sp90DYKgi?B6zaPuU%d-v{z5_5vKsk8K&OXV1w z6PUdx)=d#QE?}q)l$@2-Z8oe~=YW{Quqa&U#0Om(21Dl9U}&#v%4PWeRE|`0*Vt^R zzA{fI^F78h>*Vnj=pZ!IN#Db?9~KKtgp(c`C@UGH>)TizMoVmwi(sO2;ssjvDO=;p z%tJLn@IQIk59ZruBO;d|Dxh3oHRz$~H=)(5SR_Yi#&ejcix4^pFK#7V9j>NJ4h4FJ zwRl2ZTWIFea-Axxz|qHo^76O8Nl$vVgQsRE`p&Jcw5pFf8WV08fQU5;9Im&48W zgLDHWXbJlLlxfN5zxy1%ah!hfAN~UtN)9}tK@SPv{rWM!5+~`izxz2Blp$N{?xz!& z^VZKYlgHcw{VjNeRE>V%5y!$jrhN~dew%KxPeSM3eXIo>UIb3u%2&;Ph|tz#DrN1_ zr(vm)g(;7?A?DH|_6VR`YpzU+^T3BbL zoO?;c(m>$1ONOP}KF#lgX#SSvMLVjL#?N;TB#?0oF;`sBq22vz-JO)!6-jf&3}%$) zWq?(tDib8Vm5x056Am%FW#Ab{ zck`o%>F59Wk7?@{zfASp_bAu3wEiPs{<*xxoPF17U?M3N8FI-v}2&ggaL$7Q~0uSMxDWo2i8^0zie% ze8ix+L}Fjw!dsQiEJE`)l?mdq)bhFtECa6Z*BJO<7?9rBqa6tLPkUzBBZD3hpqNkB zXL^j$8QtGl{+z+f9{ipue|~b5j?f(4w$_7iI?Mx0Puxu|&U!~%POJ)8g9)6V5IIJd znf~+G+B2AkX%8`*yLbLArVUmQ2)bC+Za#b%ME-OKpD7smHmA;YNq2#{eE-P~CUf?+ zmtmt-u5o(bCT8LD5eyzpcHC$4oKu)0Ol*LV;7OgHXg5MrUS+&)pcrl3zn3;uknk0_ z;M)Kb_Xtz6M-=z54xF&{>@FwRtzgZFsnsp;fdC@|8uU@*4zM1;_y?M;DQAKeBOKJg zO&^3UZ{ln?co>$03H82&`43SBHD7Pu;s76nhf^3^T}J?D{D=0NrX)4}}kROw>})Kv-ztvoOO-aRP%r zLpfPO;JE+MM``K7$LSQO#rz|okg2H|Kx)7QY~F2Yrhx(`ke9fwSAvqGXKO!P~67~LT5 zAB6b_7Wl)sP#C6Qe*DqItk#>oPLE+4({#%@BbY>m^`Uxm%15%1l{Ls-lz&1hQHgr-w*5pgmu^!YT!KBlLu> zOB&Bzs@m)fRco(=6HLE{1Wf!kgdjwMxhAbqYBAuObO7h9l&Z&Q>{DQwV5U-tPynf6 zuCHn0f&k31mPBVm`gU4l!oVB@x64|pIM}qsaJCi zGZYfD$WyYMQ?JtAlf3zzqYlP zdC#US(*b7ptUh9J4Imm5q+a(YH)5nUf$4oIF8j*$b&Y`^5(7oI{No@LeKr&lXhdCW zALQo<+H?GLCyii!?qH{uK4Oe}LY_W4j@=2$LW3=Dx7oIJ8CtW6b~r+CZ$Lw&i!Yw< zu&@1jgvYLLXz*?><2e8xuH(FX3x%f1*wpFE0qM$_Oz;uB$!7%9bjLZ({;oJsxl-s> zk#SR*WtZk+nY#@Q_DJGOrvn({W4@V>`AxA_s1B%*?C!mav*o1~>&!D>o^L_-u;h`S zJNsETX@aW(AQnL*R4kl==wRJl#iF3O-7S1K!HFju%Ft9KJjcK}>>*PHE>(=VYOp_o z9`5b3+5mtq!N)ejhV%7v=p2=SoKY56Y;Vlny1Bo|CjJW#9(|mChR3~o_hGn3=X9qmMP^0_ux9J3a8;#?;tTj)orZ)L zWsSu(I4tR_Q#+^lUz{-gX}jD<`J7D=3=3i5GRBp3Bu^Olq7RP${M{E&FWwJ!2%;sf)cdOzfY0NVR5llEpiq^v6Vh$6NS>9pk z#e={92M%ArY=gb)@?Sqsy=S{=^pZI$PKX-r9jCo79%F8Kg3}2O8DMblCIY{6BkAJ5A%<&+l-}(4s8ddzLMc8O)`OF{9duQp@?|z@2VTRKA zWv;|br`WoCFWr3fN!t7riPpI?I$@8)H4d@vM^a<~U!m@o%dCDYPguBA12cf^j ztnLnOGF%VsnL+RL?nbk~%OAlSX5_LsH^w@L`DN!fPQrsmo;oecax%|28Os!4;%=|2 zm-iV?YcHQXg?ZxuhSH!{`|jf>pg~8rKVc#G~>GhX$Z{AjL9Vx02t92 z->Wl}40ob)C4l4A!)lzP-{BA+o$=1F7C1-me)?w!G*f6&3$yyXOI_H6sMbZ9A^#IJ z)-SNQ0tj`G{xW@mvt0#km}C0#vN!QTS%C|fvNT`1vVw*3l)3jqras~rU8hC{OrN%# zRsbHRH_n;9>{4zGkNR2NlLNEAmi_>qbI>A>E$HwCrymXxsLr4>3SU*~G^VbYLekuW zmGpPu&4YZZSVp?EO&{9ZLy7w0_n6z+y10s9Rztv8yLUIN98aK+LzE}aG+1@o_`$<; zOxulcz8iw0OK^Na-P|p4L|cuh(-`4k%zX$)_b{Tt1R)7OibHtGDMF4@uqtRuOtBG@ z?TbLvrtLf_aR}-Tw5mSe?uA12i7*-pcf1v7CZm;uj%=}{wrR^FTs}sh1013<$QHBt-C!WokWk( z5hk_y86AiL)MrqhyximDFU*i^Te*Vte~i%c)qneM=>)hrOA=TnSWO1$6w)J4;G%47`j(5%U46GZz&{G5b* ztljl>je#E*2JGv()8;;JpDn0O^x2>|5}^?0VM6wKwB0F$zREbQK+t8b9ZdEzR~^|p zFdU~2E>VQ~F!>P-#I1p=j1>igE==8pWpmQH{8=T&O|+a+7(zeY27L@|YVlpGfmX>8 zgTDsDS!I4-t-c16agX{s&SWzzfz2gW_@I!iG#U3W#}0Gmr~8MP)NxD%z9yP^7Y)4z z(~pC83g+L&>bSJbMqT8u6Wy?hP=PhEUBg!k*jCBMV}%ENA3&=-cmQ-ji@zu=rz>p^ z$N>)M<&bHH8TpNa!NGtFPk#j?8QqF24RCgIY4BK2e6-gN3daig(sD8H!AMmapx<2> zUX^d26X4u@tT2M%wmIPE*3W+tT6mSIlsSsd2y2V`;Jd}H)tpk72EGid@LX(~>DFgI zf%mX)0?RJX4w;9CfnQ*O=tA%G($|m5lk#F)Wa#NCeoM>LY2(2IP9_|r3X07#_;0ZS zU=zPBX>gl&+i49)_FE{Mn@rJY&8V%NAkbi4p-nm{a82@F!bif5lS0FXkT!vH3#-We z&pyLp6bmrIgXaz0y8j?7#y9TWW?SDSd;`wI5?ciq+n+p2|37>0*__vrENB+I_aF&+ zCz6s{>f3$$nu(45un`+E5&L`Q^TzHE+t{7`FmdP3cK1~~wJ1`w038T`o`m1$$*Owa z1CVmv5+#DCfb*VHzA7s#vrJaj2&*?ktgs3Tsu1)!XlxMMOqbsZ^N;*W|E=GZF?bxs z(W#0FMqO5>6NJuX3T!8mNytH5`obEWOFoi~sqqBUERON5yTbq;2N`%N1K?iNHpsZf z40`zL)%2JS^^Cow5d{6b26GgkKW9nl+8;hkH~;j9boS)2bc|WKsv2*joo?wbe~OXW z5RKFaGu=Sw;>o>56cHUu^OMI?KQsPy_M&buTD%LwA6Yn==1|GFOJ{zGbo;u?LUcfv z+qabfg%OK^o1B4HN>-+s*OVX-jza0sJ-83?o&#wW?(zKZy;Y9PE!}220f~L~1}7Ly ztUY?1uKez|%>1vUF_7s5w;zrjUPv$cxDbR9yv@BsUPGiiLOQ(+4%SKgAuABeFn=(X z%QX&zkQ3?7XP>33|KD#(XFQ!beTJK|#t@9TkuEdX*`hv!!(I%6V2v=av(j;7_QKn? z;WL`0B3sOkz(7Z!YB3w3qr1Joma4 zulChK;0J&}LAk)oNUk_!5?V6=|G`O*;Q9{yC7d|z{`}lY1o9x{Tb?#@)()+44_bAv zn@ERy6wjIb$TU*(EIqsRCd2gjoGW%-1T+q<>Vt{&G20(N;7z$G2MqlKYz>gE+XzE2 zwuwU=ljBI9Gk$0DV@z~hAsC^*nePA^2DhOL<1-wM8{`rk7|Jk0Jv%O4vjX7JMC;&^ zeB97SE?(d3g)|P}l~ou{8mIi;LO6;fdq0e^M<&k<)d7fQb5+q> z@P?rG$`-6E)4(dnu*?5mpu-H@SuC@ZxUzj7dOZT|+GdiV;GZ*@3CiS!K;zK9N%qW# z2oDqyoJ5#%j^lf_0S}q7l{uRZoxg~pu~|+naJm9`Y>|8)eLyOIkEMM`z#a0=giheDbEyjb2Vp31xVQA0v=Gy zf!^VB=R(R~c>o8JQph9J#R0_(gN>P2q~lfva2;UvWBemlje*Am$0FTQk^a)4z{PK; zm##?xvx>TJ<6VXJVrFQeX!so};lA;(4Fcnd{Ve=sB_64>+?q=4wZ_QXcli$H9x-&u zOi0OekI;lp2Qae-4sHi|&OX(j|LgygzJS5KVsyF=!XEwjVmk9r|A3aOnY4(o$6b!w z?Qr%|)xsbBr+xmtF&_cN_u=8xdhJD?(A^f8hWIip<7OvqtdxDef9zv=MtW}4APi` zbWFNZdcrEeqq~bR>qUeZA4fyKMBCQO`zuJDK0x8eO%NibGoOB#KKx()=QMPLGqLFK z?qf9A&x~V>6@*b_DIU{to-y!v#!UVxWqe85Hh6C$HTx1Fyw%H>Ir4KiE&QkdDV?MK z3+zLVv8r(G*8Q|{>t0$ud@Z&TR9i|dqMdAm%9x|ss)cep(32QOXOTd#Qqc#pzu**x zia#7&Z8NBG6+y#+OVVVp0!*Ua?aUaHj1?p7d6lG_X9Q?}S_u5m5GW)_49t@Va4veU zMAWbFiC<}rMm!Cah2Xn$?2L2x2xsk)8jo#EM$2(Y4t>FJBP49v(ylRPuY;@tsy{>h zBx>t(|8^9zFe!sDapgcv<1o}PUWJY?$YJp{Q zncw*83D{tGJwaCm+HPo(O3SVJ%N% zL4;ZPBy9#NGR3Jwa|jWhWgtL-VA^iU^qDvGdFarQSn;4hAuB;6rFE)3&ZJ7|ed$~u zWjancM@8~C%QV9(%Otd3T4!8Oam)grYTV{gek*T*2t$Ga(*bU2oStNeBXFdNw6*lq z1`y7yDS;ngqrAoP!Y`D|@^QOCcxj}|!Tfn^tmj)Zu^$%Y&&Xag7r7nLs`EMPB&Je? z)0A??SM7A+!A}ViR#2L^<1D`b97rXMgV_oYYVO(7L9PdO32wq;W<0}4qt1PBA)Wr< zJbOt`)8@@4-|i zDsifoDmxB+Axb5)#|MN3fjqAY(%G5y7db+s7Y${d9Tcs@>>qLzymlAb$gky5e7{ae@5U;pqQ zX@}#E-c_Xnkx>Yd0wO&O06fEMC*F3cAG=qK4l;^&`Dl`72zb0=zwIR>_H_mj!rKlZ zc!gI*Ef26jpKul$Ix%1%!R#2&>z>mxv;%%^nMgaE7op>= zvq;VoLMQ>lYPvfzSU7g{6Sm(n{zqU#5I#x~nZzuTG-PDv6AYawmQ4Y_ z=%40U^EN#u5%xr>Q!FKijUcQjNYh}8Q~^K38V|QPG7Qah5R>V$+kf~-><~GZQTfEI zzLZP;s@Y%z+<}M3k2Tg)mA4AI1w3%;V>Q7tIS{dA`~)0KBdTv&q=D3A_(4>mSI{|} zq%ONV4!*3X~WtTyG>(wWh5-kE_5;S;@g#-a5N0GOrukjMvpi7~G?gbJ@eG z@e_kU?3MpEyneh-szc%yGUuU$srAcvPo- zg4eOg4zJ3OiQdZXh^q zKvism+@>O)orTUB9m=NDmo_3?AU#_?4ge%89zXHOlbt*QP`4ls*v%s(s7=p4UhpTH zpP&8q>fXLv2>iVeXrdYz9e<`-=~jJ9mO$Zb;yXG+wu|q<)$pi(gf_K6-b?@k@9p;v zf$dAuI)w=XzrlU!BQbJDb|O4vTOox`8v0c_8A`Zv=;BU4lqVP;7pbKd*@tOFpUh6N zJtt9)+Nv3jFd;o|AVOQ*73I*!4$MC; zJR*ejQ)X{{qH504jT*l>zp(Nn40MnD2`mHEEp8&rk;vKOcM&kc<(=7^ZTtbe=DSk zQI7@Z2?XP_Hd6TG8uijrOtt3}vZLS>5H1mC&{`=%3LyeIDs!~94dAw5R2xclPV}XT za~IN~U;R1_p5RD}%no6dO*o7UX#zot`Lk!4DX*kOj!|r~_w8}LB^Y);v+hG@&!YnJ z7^6ZMyQ5~7)7KD^x$*fIX%_*xD_pp+4iYXLKb|H@e~5GJLys6Nu#B{d0Lzz`|C-jA zVLwvA277x7IGX-8m~I1aSWe5!6AdmVQ?7Le7*7xwdWdk(Izl7PyA=@Gb{S1(j@-cl zXHp;DxSDQXy&kju5oZ6-7{R*dH$r-*i zIbGGX9?AklT3R%O@d%o60}6zbszf*@TU{-pgn<^u8Ulj}2NW*l?{Z}MxpGv{;z5M> zh7n@iAhDQu2pG#x*kF4Q82N>>XA9*3DJCRXH9{w%_={Ty3_50~a1*|9NmF(MH>AOG~1>F$@P)*o z?7lOx?)rsS1jtdMNAQzLbq$vTh|kd}A`(AgFY)LsF<~lE>MJN6=}A9>o<_lPdgi6c z??z(TIlJQ=bKMd+m=kVcwK5jM5jihOwfTfI4%R{Sv##pN_!Xv(z7Cy;nWoH{C3+_B zOl~PDVPYEq`GClWcnU|#B;EBMV0m9=r697j*df9ON8x&)Px&quzS-U!fWQRvW=qw} z;9jmh;8^2V6prK1OvjvI1YCH#A z)-6^x%3A>7959wHS(gk490gG{o&k7#@wPp}=!ZkjJ%WdGwHsC=>>>~CkskGpKYcL~ zE+;BK(pc8Wj8_c4B5n>^l8t&sFe6}ekB17p)tSF|Bqfi=r(zyYv4J#7{Cnv{4@<$8 zPT3Vj@q^YWXS*N?EHV<8 z5%x1EIQdV%LF?TDifHa~;})uLNqhon+hZ`#L#V=4V*T01B5^@&&X~Al1p9*c5_=pZ@3nEiGL91)8zek-Q}i>MvjY@=-{JPI2_3e`*c{ z;20r{disNN2p=9w<0nod89$mX{jdKSw~H{#M^R5TLhUf12yI;qMEa3FRZ-8`-~4l$ zrJT!u`7?S7E~jgYiyYmXNr#W0Oh=Gw5Wzl0-eH+~^)ZSbSJD+Vkn40LXYyW^*^3;& zB(wXEf!V^%+vzde9x53c0$%g1ip-rpmxdA6iB%Lam*xxgy?`*cr2;P)8Zd}~ZyQd3 zO79WG4fG+{IagG3`lrtsxxY-OE`E^CT)M!Zf-|@-Zvxvm_Y98Yo@653R*nva)qc?F zeCFGl76LyI1iIKpf`NYiNOPoM`1;=nRB2Q=5mdal4@k=bQS~s8j)BWLr7FCtUyh4A zAF+yQPQ;G~-$*Lro20gE98za%rHR=+hasH*QJ4~;MD=Bn%s10a9ddpVr1(W03`N0W z8_!P!nO#kkmh`bQ>8hQl3Y3uwoh2}9>lR9cD4g5(-U`?+orNaKcsHFikWs(e1EjUX zq$3pU*#A97w1XU&^Z**AHbI5n9CQS;W4rRN=*Sn0Y9 z+{uEnUOfuHSyonR6*hLu;T6ok*Had(jw%=7K*UEdxmC@6*r}8K$1wB(oj^m7?2em=58W3mHiSM9LX5@KPh4p$73Y_-L`!SCBDNu*Mrw~H; zk1*@(p>y|MdWE~nB1YIhKlbrQY4+2P(>lz$e|S9P26otoSDMfAPo06GBYkgXz2q@K z2T;3RjPDo-^s>*cAjr`VKMut|y>yN~Rs(uK>KPdK2uQ7Ne$!H?w#Qa%;9laoLa+^T zzk1T2mYzIMU!m-0nZ11lVh%Alm_Eu)QLGZUuYa0lu?1EV+-r9fEs}4rZ`Q*_AA<-r zhE_uI7(b3A?9_ZZj{JfQ8|@fz>4sY$-Zp5PIV<=4zQ;6UG>TnV31iFY69WO>*|5^U z$ln2w(zfTQ*8uQTOWB`M26B^=7N;2a%yVW|Jq$gZMfUiU9WoG}pV$i|QKE#Kom;oo zv=I2QAt1qR(wd5Op!^#Y$R^ z8EM2%beKGFuoD{IJbag|I$?w96nFi?pP%}Uk4}c9N!sq=Z=g9S>GRWx+el~?H7V~)DLU@&mi-K6_XeyU+b*W zKIGKWbGBJs{`UCeD0&WLsvE4*ZmL3;N)63TrlaT2G3nuYakRR6(Ob;ytt&>l1Nn}| z47dmr8Zf*qpmrYvW28y?1w3&qK_Wm0Zz4br(}@_db6h{oA%Yd8i1cx=Jer!H9}%v+ z!;XXg^)b9*vdLd{u=!S*f8GnG7?!~YqU~{#5st#BdC6O&o}fv}bLuLYumVCbiX0Z~ zylntKV%ax`B1}n?@Hwb@C2+@#KlXEe6gRDQ_md(55;ZzPGajS-}SgdUVr46y7yclLBT_Ulj6BxmYJPM=6)Na3qWcNYo!T}G{{bQGC-dL2~2 z%orhupqshCcsV4%>IaWV$0~#+A7ITdk|8TX%8SgIKZk2At_Tn1{g@@a2jN1 zH-p(YFhu?C&Kz3;n`hBKeLNlego`Oyt=NUJDd>7_V zQ0r#h-RJifE_In7K}+E*D-EwW=e&4(F|KrW^~dd&!)VM>KY2gIq=))NPa?g%>~G3G z;s7<^(;~K}g}@IE0nw~sL^GZ2q1o7n0>OFflj)C?r=p}Z$Lm??VPWjIk&4kug1(|Z z2TtQo7`j)a7?Je%g9s5N0uv|_$g{)v_8~LX11(rVY1t!agFL|#Su0n+3Z-k$7zC)FO+`j zd4FzhoGno#@|m@J)_)foBp;c;ZJpCh55D}8?bub0`Hi9vpL z2sa8sC8m_NX@)beuxCsv4S@?`OB#`G`Sw+Dszi&IVLJF{nm&{@Pt3|2x3|jtEm^K~ zhrKZZU{eqT+s3%xnp31MM=~6-L42iR)-IbVV~bu%Q)Rk(lHP z8=f3u-3LSf(WjX;hr*oa2sLtwVdm7C&|tMqeOy^^z_qJrJxTCST6|ka(+)d*LSPZj z!Gg>-{IrYbmJ=82;OJkqz4-zo!U>~DI(`D#NHW3(0y5IsL~h|Z=lflC8ADEC_9Pk) zDVuj`kB{8u+R;^J6ZcSM`T~K&Cutr9NE2*H46=&i*;%(3A`{DDHWuy&G|l8lzBTVV z1Vo5}2!R{ooG{ss90hU8EBp--4~`*I#9RNWz{O;;Ar$}7(~J8Ic72w;qp&RyeO3FxVO+~xA_c( zL@%DEK_u=ch_=H0@-N^rFQ7#u%(%B<<|FjmNhTaSOl0nHo8Bh{{pO(Nv`%&guQ9aG-fl7(oHtpra)i5iaBWy3M-dRr1NM{p8K)t5`=73uo zv=4+uy6vAJ&dgu9IF%$o05c$`4Sz%VQ3$D@T@V(F@iqA^-F5Jg>1B9CTXtbzL*vJ1 zw2#3|ST7v*;6@JK4VR;pu%sH{bD$dUEi?bj%mb`3a|94Dz)>XLCs6RSx`ePA%4(+A za~@Rd5;JIlWPPLZ0xK%TZ~iC%)mj|%_p|ZVnwbO%!NejxdQLEO{5weGEN75g=tZH$03D)_j!~6HI4}3# z@&rPQtQg@Du!uZKi$J;VxRb7N!sOubncJm!Sh(z(>tcesMLs!tthlgMvB@^VI>!;c z_(%aiRfwwMbb;-XIj$Ogh$h6PMV1mDt)*2?8>qSJ$VpZRkfRt=ZK#8o=z_FK$yYe+ zH#%7ia}V6;*!PFbMeSA+JMqM!nrf+KCt`K44*UJ9d;5O3Az-^kTkmghtMvvqo$6!H z&AnDU3n2sgxlvF@r_eGOQc9kH~iw8PpzF`d}}E|wC&3-dPi~0 zv%&~Oj7)t>dW{674(cp%1@FP)?X<#4D3uVMV6w4`w!Z;|@py+OLgEdxsyM;S+bIo7 zfkWZgD6@NyH}~_rdW=>>XwgghyNcH4ndzTEp!suV^sDPnph0XyvYbB+typL4;2r|a zn+yi}kd+!EePswd@ifAzq(PSVN1zd-tO)dz)~T~+*j_wK8Skf?$U1E>n3y2!1cQ&4 zY%gr1Vb3iEf#+XLhB5%+w~$u|Awh&ce?mkW8YZmWw${0Nl@Oh9)h||M_ISQIk~BDs z5zVKXMh5ZO^dpSc;3ZKuze~gtuSS2%%%4J-Gf<2UA=72VIEt#uX=Zo#VF(ZIa}Isw zSX}iwJjS_9!_)XON`YZLf*&!h&PN=wVy_VVkAD4=rdTsOX$N zl%_eAasTd8x^d-;^yP2=J>9-xG+MTPJQOAh0w zM~(v*`L5w2O@e4QWT#*1Q38pF)#Tpab&!5Fjp=KQ8gwjdrk!Jkbx-DoEs5ZsqZ`)V zk|{_he>`PcE?awtd_UWP>)b=|klQ&QudJmbFyiB!8uHSgErkDqHbtFDkGFkKseNg7 zKTGCu#cYo^_L(T#kxWzuhq-izZmrNC!a>M2ZG?W5iQ|XT$Co}#AOG@`Pj*gyqOzT%%FzFtm#@U6 zNswf@3E)v+m?7qG{^ErZR(!bq84e|IfuZT-aDHSHA&N)lUv91HS|~JrHI@4A#NF?p zhiT~^X?9-v>^1tAFnajuAS#?nx^JKPTatzm$&~7Lk7tUJ+8W67ghrj^7}y}1nF7Jx z)1lM~f5r^DGbGBjutHI(M!Ii;o8A$&;TfN%-AJJEnN!^7pj8GL`{OypYxx)F*9+G1 z`1X%I+3vCIi(4?ZQ?BsNm3%!~qw)>U>S|IAXHwGUBf4iFf33eT>vonJj8G1AKs0w- z906>jz{5*Gp0O9Vb{~D&XdFCp{y2ja^mg0ZHM~(bPWyVv2uBZDrt|WUBix03kK=~7 zu6&gqJXlF5Kj212o^fzRNnKZIM2A?_u#B}LxQR2C-I7aKm0RT14HN#22nOG0)u}Zt z1pZzKh-!gujfD2w!|RQXjY!||^R@iGN4oZF`?}kCd6kWR*~!-qf{hM7j2w}==byo- zuQ2<6%r?MXjzAAGIhul4_pycfoN(G-F&kG>f1N$~r)&efU<<%o^j;yT%z?dhiIY+|Um_ZR%`@|WrIEmV&~GbRuo9AG8$Ho|}_=uvrwe83~z-FBUU@vE0*j0weUZV>$9 z>J0=AKSLoJHy~06`AVEhf{%>Nqs^5QR4Xf}Grx5!vHMyX|$`ac?2o) z8TM;#EiG~m{ZZ(ypXU5~&j>1YK|+bTOeJ(JQ*f8W1*E14i|o>EME&X$f%y@+H5tjf zcHQ>3ZB0+VjtNKe|7P>XxZfP*jlSQU&OTqP6)vwQwl6FJL;{UI_0eAImSGf$5+K*P z!YJNGB5=gTA-2DWgWQW@qmPJ_vKBFGi zLE@F`WF}aOiJTku#%F{ut!nhE{`IZD-_39}eEV)8@Qo1Ihcx@F-x&4#c>Z1KmdLd) zIcxP8u9RSS{!lvo%U{N=b-SG68D}6c#0e>dx7A}mgdEp-G^Y-+6hF@ConEB$FQ8J_ zJ^InJCm`mV={)=Qy`1n`IDLjK)$KI(jH{1Xis#H#nqp;jM0p>!g*RDE7-Q35cpmBh z57y(_-NURjOrrb$+|*PWL3as~f}t~IWbSA>jr%UzNJkGJL(dEHM5oWDGvxmm8X_YZ zLe@;TX--j%9Y4nLKnFChLu#+fUR!R1H@SUX>%1QJb(gP;`$Oc`NSln`D)YCZmDzNP z0p)ZFegFbK1u{*{%!dB>$4Fz&BMCmj4N@^cU?drWablqeNMe-$o0bH=8uJOpJDjLg2r%YnKLXADOUceVsel z$sZxh@d#l~b#Kly3ZJB%dsyxdLQ)FiEIyX;>4z>6_V>|gy_|y^s>V45F|u?s-CIIM z@x43fgm{{sAQv#t7QqZ1xF15JlyF`F$mO&zJ7DY>%ciNF9DAd7*-QM|Z%X*;vmb8z zgSYk;0`DdSGKN3gE57g{~Qth*QC z=hL1v;%Kr*r9JU5G(FEsfZL^P^+D0kLgNSMP!pVzva61B3TT}p(4LHPTeXjELAP1A z&;v6zv%oQEjwLh07#!wA0Dir!ARLC4jK`5=E*kP=7e}>+p$pqwel$Qno9JR0fVUjw zc;F0Mk6uuuQX!98tFC>JqtXgiYjXF`m3F)0Ae*4&(z&{!yu*2f(c!U^ zr_*irV%8AQSZ2hyz|!xodqE(K`lTh@vBzT~wvA6C!KPEgIp(6r*B_%EIWPG$ z(wgB#>M{Er}Vk_aervm8g;}8KAD1}OA zw;G)NlT4TY2kF`~Pz;nHvpje#2+~2QT%qb}ku2H%fo67Ze_IF~1PFlb^apX?K5jqs z(fAH`zP4fTD$W^zaSk!d_FfM6^x9AU zzFl~C6OeOWFnLr4(f{M7JJMxGF!ga2p*QpGvXW@umOe047osM*vq$(=zerxA$M~DiefbxJRDYi@_QMsM-zXUstvxCm4cH zB~VSL8>jthA@FWPp!Q*FVV|g``K?<&gK|5PTd_L~1j0CCpwCKc<TY=kf zWd{M3(b_kSubTC`T4Fw?~?_5S15&lTm4Qnpwr*y5Cd ztB;YfGkH3_{TJpEtHyC8S!e$2x9U&{!r-^%e$PzbfBE14kN?v;TlHN1?w9UAl!;Vr z2R|Iq@v4%Z?*E5K77Z}0W;;f1FHyemh<)O9_L8PJ_BVp!pV0B_kP>9^Xj@jYK)ItO zNw!f~or-g~)>`@2R6pC?ry_g}mqWb=zZD>js_u8HuxbR!_|ou*I3=R(&`ams*yZ$5BFrhL9i(rddx3WC0_G?zAsy+pgk>#3N)xGV(xl2GSHW zj#*R}PcZ8D5|Dc+3%PgK%ZNA{#7KV}0n#|@Y<%MRY%oV4jlh~hmN}nuF^s`{CFj2ZJojzvF5syA&-(^OCMDyiu}R1eam?EO9u=2TfcC~g90*e;%J}NxLVN5 zEvhmDw~1X*thz}2wmgRS!}KEG4k5^Cn2x3nP_pe{{95Ntc<9QL&9}Yh-vzGluEa4Sk#lP=~>QcN4IUFoIy{ zz^$8Ug=>rNvAy7NqvwxTW3VyCRzP3xF!@Q4%p}*Z=Iy&0Kh4uR<<+HJOBH{ZdmSJe zN5axHjbxh6?RN`-cL)LvEY97nLoexucAe-4cE#F%vP-EV0dhBmD$|)|w8n9!AMSLT zEU1mUos54Oc|Xk9Ih{m725qDWM^1;<3to<}rBf`xs z3bQg5O(_eB=w|xi*73)d9rZZS=B+OK$LI~9Gcn85wNBY>OxxVi7)$$u(^K3)cQU=) zc$pU2|6javJ#@ey!C&caZ-}tLD;X_~IdBlj zL*9(n;P2%p1K8KSzt5(CWqe{@|ZiehcF#U?;E6 zH!hhF1gUobU?Ay0ObSRNC=zbwZqRtk#7k71BfOqQcbI@zlmTl*innep^A{pNoC(0% z5YbRM-P|@Aabi}6vkl|^&jcEtP9WL2`SeA)ed9Xkysv>Iz3C{UJqdj*Gtq>mTN}+( ztGz?iJDxVRY@};!{vhtv(ID@YvCBmNpij_21xCOk1ERa!o#7U)(Fy%xw9P9znsNA6 z(${M@pL6VHk@mWG`wn6H)7cL%rdiY<4^E;GiMEZ=J6tr+NJlvjJOxhm zB0%Uhp|LL*X_8mv?4%h6#59jQ`_CY;JQ_>kcg3V2V5MyOx2A=_L4ZKFFXq}*{Lge1 zTXaY02YpaCFJ{Z#DfbMo$PG@dpM*Ylnht2B<@R#>Gu!pyomUGQgMR4=af2C?iGvP} zOZ)kwtSV>;r_w7)&w+vEa&X|pp`SR$w_h8|6K3}BT<%O=EaLlQ-rAnOKn>tVV`f`z zOmQO`+1Xq)B1<|D{6Uns3?uFT96inVxux#alc#AIfsY9_!@)#k3bDkKn=|hz@g4U@ zlZ6d#<3{>oN27Jk#wNE6^~rf#w)e*f2kRg3FV*g_T0EoU;T|Jv;29U|MCVd~F2mGY z|GXv8D>t{%)qVN*|B~;Yv2d$SS z@fJr%9u7Xl4|9n+S6m_O(2Qkqc_eljpDet!DdDlUriH*kfIva@z;|(e|5FD5_LJOA z@E-HPkJOl^`9?mH0`Q=MA7`^FzxgX{o$!^| zP@du)FMq(7Twcn@%zhN*ArlDwje02vK2OmJu(Wt9J%8~mbb*iH?sdVcBJJa?P>{x1 zg4<7)(K;8DDs~2zIOs0e+?O<5Ewx{*X(4bBAdveKeSpgNRHmJKt1g(_Wy*(cI`BlN z2#SjxgO~j%V(CZc34R})2zQ)ZC@`w&M;|0`&?emF5YZ2-8{winy!nqO|8(uThiQf> zPC+{w?v|_4lM>{>zN~9y{%>{9zX?&9eKfU=V534&^L2-%vGH|zb_fDK$MuggZIwPe zM5_DBAODgzU#zo_e46cnxzxv<02$#(2;{2E)q#UStYtFhjvx7E1Qt2@DoCJjAb}t6 zg^6xPr^?-0@W}Ks{7UE2%?BVU^v3bp0=sa;!qH8h&8N@V+vjK|O#dFz{Uhw_pE!Lc z9Y1p}O`_0e7o{7V0`3ri==hPZX$LJJ!JJQggoPjT3_R(!O>9j>OXZNY{qkT!W{iRn zwFHh0aB>78QJDPH>~xfG1fYx%+=|zge`${pDb~6 z#7tP|OwRbjNs1Eb+1ZPm9wrjB-1yKa(}ZyN%1@4MIlFFr|&oRfRcga zud`?Qb-2*M6zo%9{|lD+mv7umi!lBbH24j2B=gM057N=oXHmMt9y>FBVeB#=e3|w! zeb-_%0sUB#3v2vzal_oqPdX3;C>N)MisI&I7N5s{?~$lSCgNLz-w7R^K7Qm~yW5?473Z?qFHh4$PUl!K9NygFyJt6HFv_y$AoXp&; zThl_|ph2MU_fEAsc0Ou1?BG6bK|%)E@7f<@54_3zVwv57cbj$i7hW_7kFs5AL3yr?}h2_at-Dy?&iLY zP~G**m(jGhiY&%dI`_%P>G%g9r15Fg_oD8TLx02#+1^;17tVJ6V5D@$X!k-;{0^5! zGuT0mqp6?OyV~`0fM7?r+?JKkPz0h}h{s0%S*cF5AMWV~_}6|YiLgIJ z*b>iIwHwa<*>Q`A^eY^~)lMwU_R%efglR^q;g-LnH-^2g7Uu+VLeVF4HXY|qo_-XQ zC!VH-DdDT%L46CGpM2Rr0~f%985Nnbk{9-pX>5eV15r3K9)#UN!T@@kXSmE^l>Ovk z?gF^U8S-WBe}B66D7|{|lH1?xT3P}(HH&HzGq^O%omxk3}m>Nw`Ek7F^mgMlO%^4+E>$>5Zku4!p> zXM7lSQ7KS9D~zu?Ah(dNJB7#&QTS|TzTB}!`Dl)oEs~eI5LpgWF*PHv8M~cj{B7(R zYc^b;c9vv4N4}1}_($yj-?@1UJ?{_F3*6>e{y&a-;KL`5vE)1jw;BkY(q7s?5}^?) zxC-gRnj(LZ&(cWGv*=+szb8L5Jz&@drqMA0f^Fe)e!R5{2|Az5di&*zw8pvp`!{c= zWsdP}FyNYmQO=({%5yx8A4YSZ@)t1O0fjLUlaIbDaQWY~ReAR*%t?cowohkjQ0$KG z#RIPs4MU(PPx04nZ$~w(xTP`0>}wm>aPh`#XWP5N(ecZ^|K=LH0G3zNo$IIx=6Iq~ z{o`}ftX!N;hZ)QaO^n4>Q|%M|o-iRzmmVDy^)VRom{O^QAFXL2@XkY^_LbUsI!v|p z!_ukBE9%>wz`b65d!%Xkwg<`EW1^=6PuA%n52B|*<7Kb2w--J1FzffY)(mI7`^SgV=-gzwb8CrP;~u8xtO6|G zUP{MLpGqgroZ+^&;k3&jATEM1zG+4N;sCjcT%_#`IAdro7nb+H(2c0~j$F@bcOD=E zQ2OEAF7fZM#Q);alXUy~4dCnrJ&$8hcKGBmWG+snNtpf+$1lBFcPj>NFhvrxLkZt} z^pZ636WB7$elrv91Tma#VDM-gEn&(#5-MSf&+9K^XOpogrV6lgmXt1xK(hHfr|{^fwAf4cN8{CU2|^V zEd&k-1VD6qlwHwo6J1c`rw4QyeeMSlu2kFa++FR35rH&th3=YA(D52pXTB90Hce@f z`30GPZm1L}1_pea?+%0Z(DzTE5L713yp51^ib+FFyYx#-U>+LZ7Dav|eT(8*IeaS3 zFx>lM-V*cA;H)4P+!^4xA+!g=)K;?5BLx07j)=p*vv&z^4{Or9&MYC?lPoz8qyBed zaw^Z@xHJACDuG`;c?QFJ%0)8saUx)lS)4b-DKsbodXu1u#@;_^=Q82+Bbu5=t>$;l z>TiwrZRuN%9(sbKaRCtRBfRO1Jv&=z9ew<-)*h#4%!<8b@jfdp>l}?6N4WA3N_&oQ z+Cs*!pqz@CwqvQEwjqsRlw=Sc8Bm81W>^?}g)Yww1?v`%Ve7Z=@Rk_RMx}L{9W=)# zU>L&?Dmrq`)A+@T4|NN>#Ddz=@wZ)lV3ooxqNx$Ki6*)6Yi1%XdkN9vV!CtfI>L-k z(hGD;96EtO;0&52(No~6hB7EtEQA+p4V}mV5vdGLd^0;nZ@l&z)3>k!XV-xQS1vh3&*!%>eCrj>VUB` z7`MXXKQO|W_C86K7THl;UxDj^m7bzhgFpw zR$~N)Fp(NWolBX8TOOU$i3wn>Jx-Skl*?Fu9gb=8ahxcjws0#IE8lN^nZEJ_5(LK? z(w1thdK8bJEHP}6-9sb}0)Zna20F?S#aRY3hqz<>t1qu05V)My82qe0TuWy!U1Te1 zIs^xMz&Y`6BLym>SVH%hizikSg~e`UuAYhak}7N9WSa$px0FucwFi@1~Xi;pIRR z=>#fXPo6%LrVlTq5gFHDKLngRp~)*mxtzHM^U5e-&UP9NxEst~rsB#$Ek{6MOqpM-HU{1m+U3+lB$s zrK9|@dO(59SJNRpeCM(OTRx)9CCvWvM8p!;dNL# z9c>c=;P=7#}42a^G%a|<%E?Am%{yO;7IPJTIfH+r~wdm!9M!czbq<_J_ zcsEfHufW{>cou1rfZZb|SS4J=?;Jk=RyWfMm+0W-+XVQRHuTH%SvA~w`6|6c;nqV| z*nA$dz2-@wwUylKDcTl9#c~Xx*lo^>!59!IGvv&_GXcuQ z$rZ9NwW6hf)mtx3ICn=Z+3`L5eX9b01tluz1JwH)CBwgtDz!DytDAy8dxbej31o9e zf0sMt*O|FKeYgOsKvlnzo`G18kxYLABXeZA&4%;rp~Fb0pW=M?QHVT9HZ~fo0XbKg z0!zcuc}$P&WhxRL?w*EB3jd;_C53y}BntkLu#L3Bi4v6;ITM+j zn_>2W0wV?i!yFsjWj3$z zB9&?p|0Oa8Cp}4w0>9D6`ObFy{Vx7)<#`&$lQHHiO;9WA?)nDXuaD9y$7+|CZpW6I za#_!C+j{Xlgt#Z5zaz*C^$j2>jBbumkL1ey`R+kBCsujMw1*YjnT4Zi3gujb-0!Su&hAgjYllWZ!1* zh$W?MMw+h>PmGj50SM>^)4|28M^y7%KpiXbGHP#lUmm!`KJVC(!3ffk@kQ zNjb12Gk5LbNlr0)?)0ckw6mXeHKcL;*2K^xT(Xb8)o*&8OiwZ8`g0{fZ2{ZqUN z+yDWB29&Cbn-wQ&?d!lml-Dof5;>0I8XqF%VAU1Cz-QBz?uoC27o~k1F!y;bo2C2> z=*jcd6;5Np@b4f*ySAF1JbBD={`0g6{TV?D-#vAaG!qe=xgJJ-_`E7lN3IC=ycy zNqS&vJMJyP;GQuMc*rPJRj<#`PPetW5lA@3w!j!fT!E5NW^^7E90bX{H(nvZnCUvI z1>r_KfH_*!l1Du3VbjncRmCFT?nBZm7tSNR>a*GF<|S(79{Xb%i`1j5G;D z5e#KQk)ENgvvD1a_-Bqm7!Z`%c5jV+v`uFCFX@Cbvlj?NK6PfxaW|#!2M~UnV&D4^ zt08k7nN-4E0ZEtOqW;YCt*g5O)qGK}~{#TpPUYst7rR%2Lu&+h8Q`5B5x)Xx(Tm z?YTS>X`O;V<7g-Cm{KM~>bI_s0XhwE*s`@wk-{ zt7uqbWzjlD$FUUIw9LOk;+x;L?>jy7ueh2SB*-Tsh>pc05Fx%nQ{FPcnE8rPtO&ex z5WxP@6NvdLm(i@EDex(7FE?HxKhPhV>gHJPoNuo@S=!(S1Lk zX4uOgXFtu86aAyi@_~cpSGi9xD)Y>x!6oO&Fev;)s9b&AbK!CM`I#VQjbcd%gV|GoMKioiasHi zE4u?jvy67;Eu1s~vj(i9h4~Se^lNx!oAGe0IHEP^vTvSj@>j$yj#0lxh#Ine9~21W z0in$;?qq6^aiZdTW%z+t1urV@)Rh69E6!~a(6PR_>I%RP+k<&|zYOp7C$vZOn98S3 zg!G;<)4y~58dtA>i5`$!+@iUXMp?2y#;KrLCKEGEDyEMdj#btH7``)jmKhNS@EEo$ zh-PLfd@B&h;5#IdGsbUG;9cz+`vGB#ExWb9-w6WZz=2@?G4cchM1o-QyaORX4iVXJ z5!e}=cK4-1afC?gk}gbe0*4sHIeVcE`h@ojgq9GDe9UQp zn_qpE9^AhN0qcvC5SKprB#j{>;WmlNr95%a2XTufePL4bB#&6Z!JlNo2-`Q8F3M-v zjsahBw2b;`D(G{J?1p!kc$a`NFzv)D0ovCAfGrJ~v7I{4%>LB557NT% zldOmx;%*J-3==4~Qv>OxdGralUL!9uP&URvchv<_QC30RnE+{4gd<)24aaJB5y2*2O?)8YgnhPo*~^~$troibe$t63}vFrv7cl?Z#qZ<8ZZK9l(+fq_d@u5#1%iDTcZA&Re6boxIf_R zOrN}P3wVmlgxPB>7%rBrdhq>vxKba(;AuzCq23fSJlmfG00CRq2b74XwszAk{2Bq9 z%)f@Kpb&4Qt^PTo;l&mzCxXmHnV~0Z=@A3oTYvdHEnT_7D(Y$)g4P`d-xZ>sJ<2Q} z!MvddEDwa7fM-x&K-^#Y zFr$9Xp07f2FJZO{t+=edErVvzAoJ))@sJGP#{%q-o@3K~Mz~%?6lcnLtC`TS&YDSq zw{v?Qn7{d&r@4fEe6y%6eS=I_$K_t5V|d0mq3jZ0}l(w0s$$g=YY z%g>_->M6(Iu|{Y23d+cw@*X}+M?l41euhy2R|inh`3t-RpuwYZ)Yq`O=q6mT3WnfL zzJ88oPq}hsqL|`9-~l$@*<|7uI{pnS*VT_k^2lPW63|YY&t5_dpRj%OfTN|}Z1^Dc z)27pGp*R3Iem0*9*rwg%lmze&<`1xJFA1MHkyH@23e#MM{HuR8onl+&>d3nrg6~p^ z?DnP<8xh;j0|9|1F68gr`u6Sj{Dg_n6f2fy!L z{W9J7@(WG|-G%;brg2sg7ufPTah5B**(x1|=6I2o%lb@}AZ_A)9=1weW#D<03(U40 z*mrte2_-C6nY{F}ctzKXZBqxxWx%XoYra1O#D&WIv$*#6PvfVJQCePf5?`B$AOZ&x z`>uXsm;v)oAe_jZM~@Ik!#cv{HlY|G48hFDQ27cHj}|8Htb0?TIR*urbb?K0-x~}B zUa-vWdmDe%Pi`YOpi+ug3>tPeI8^|`Mn|eeFg=#cHjyIVW%MyJGM4%WIX=e#fS?)S zL2wx}YZ4)48~a;yAcgXV5i(Q7lC1*J*!~VT15XvU>;}%P7Nawpc5kh+m zJgi(E6lG9QGJzr>$hUll9VZGc*z9bL<(5S`(1ch)hMr($XHRG zy4xLkWyUFV;zWaWBYYkZuvvp}QtwnhH%bn(tT~22(|B55u9=MU0h6eVfuG2f5F!1{Wu}DaPdM~ zIDa0!DyP#JvO~(ea8xSPd-U7R0>a(0=ZLz`J?W54;cw#2w$FNgysC!H;x=v37_nR!v1fV>v4i zL?VJ6M#feXGz}$V#hrLeiB165CJ0E#DA;3QJuvbRuyZBA6#$2|JiGX-s?yo{Hs@U3 zS}?xfPZ7LZrW4(RNw_S3?Bq#qm^;k!*l^_8%N9Z35D$!7CNJ|H=pTl$m!&giknS({ zG8pivT`wyO?kTIFriV_a?)o@#=CT?5zAF8wFtTrT42}Uq+`?avQfJ=|M#4ikKAoLv z{Pw9P2o7N*c=2fZ*Kj}e+w$!((dgZ}fa?dJewq%QJ(C8}{JAat>QjI(YhIOhfa00v zl2>3liAVP2nERAvARx5LcSn`GvH%oc+7xt}!nxX}v3w??)p9pY%lwqq-y*X4nnvxUe7j&>t;Vd&yap=uH`+dqh% z<*9}9+rnUk_cxnw5An_MTisy?yXZHV) z^YwR-6lWbFtspUbn74NhY%^;1!kOquQLkJ#xq?UgELI+Bl+s2X7D&5w(HKgT?b_Tn z_%5b~ikSRVd!$hk(9cJ>)MT|s8N#Ck(Cuet_Sd7)kh!GRsZ(Y`=YL#`xz{+<(%k`< zgC;|S5GRBXNj?OiPy|F<4ziLn%l6RF>Eca5^ePhi>V30x@A>jLA{f1t)ch|UWPdr#OOrcUEkU?+OYBIbdewrFsGm80^~}MvbzMyB zbyNL2gv217!n_{-=jKw&U*{s7^5IeaeAoKbs?~7XE7n8|90Hytf^1t=rK8+5Im}Ve znHg3ArVpk2ODI2K+vo1B+i_as@bTl^j);OFmQB45+0z%9>4O8T8f84Fxmuw7tx#wP zOa+B)_?OSX-PfI4m-h$)6=yR_X38PDh(xi9#J9(Wp`f}H#?Koe<}Hpq-@AG>T|=7x z=3lR{9W{{7e0U+9`{<)If97oJMG@K#*I{qFQb}x+4dLkqd?TwUM4^ElKYjK-owDN7 z{5DFq^IJQkj$vvV)!x3pF9hC6=HEpKiEc#~s~#v?S4FX+pGUfq z;^WnaXjOC&a2&0YGl3(nBsk;u$fZZEOf8;RQtA|;^I=)T5U5k`u2Z9}i(~tGzaY@< z?7{fOrL2Pld;zDV2XTZ|nI+VrJLA9hr$45fSFRDhH(mPlAJaMZ_h(O>NWDy2Hjz70 zpNZHe$*Od64^RUaD`wh9@^>A8RHU>l)%YEu`02X)#S?VCy4CYS3IJ)X;5<<%B zs61b~d<8Yuw?X5cbn(+)ri;J+b(%POEcGy1*>bgj1as^zJ*l)Ycyz(KihCIg9b&w0 zx?%8Z2IzR`$WsbmgLJ%KPqKCSju3c4v0S=y(w#r3h28|e2az0Y<)%<>2u z=|-VVBX_Q5{Y<-dwD{KUN0?@*n%`YtyI@VP*0V(JylQ&;Q_$XYGh7YZiTpGFXqLCu z#rOWYR6NnIiy__mchZSOicN{VNQ?CzBb5wPk?Nkl%dEX9f|`W64^PdexuYi-1YD1k zAAkC{|DNvOxSmd4x|9wdKanQc3UH-JeGxrMnKBp%oJ9Y__IBPLh|Job76Nh$RW$$r zKmbWZK~%3npo5)n_7N|6Sv3oZv(v|YfsYR=U38=&%Z**csQN?#RuubfBn}q ziQ=9eaCQTnmS#xPLNK)w5|T4VlimB9-NX4i{1`u{(F~kjzrIGzu z$3VD(6-~s+IH^Y&nU*ktxE<)2%Im16Qv~<@CT~1Vzj}4T)^x)m`$rh;3e~u`rt%&M zcu4cZ2tx5iEbSVS(wL#~BMq04Go!BgIndE7=beACcA0r6Dt=w>lAa;Ev9)QM!LrMn zfA@!rViw0JZi%)(+?!MTdAN4US}TCVo;KePF6_ps!J`&7PH`8X^ot`)ylJj*$!eT& zP|*pq_#PEPu_Z9aan2ExFU_M4_#UcJA0iL%`DcGfcbD#^lV{GPqZ|!X8>5-JZR9L% z!1%oD%0iT({M53SB86*3sb;wL`=CNV>?_FlrYeF*GW@#AC|!aK#WB?l6qqe@H1*HF z`wtYGZKU&@O8MZEPt*8e1p9^=ghHpJVg6-pq??37uJI!+qZE@vb~~!h zhKs!RgejJNejV46WiwvK?;ZQ7b?8E|x>Wc%Alq9ht?|@ISPWCGzT?|KLC>;Fv?HHE zK$*?=4RQ3deFABEcBGoA{VpX2TYt}$iy?}9?s zZ(h>HZdQ9t6d=1~zlOt}fUV`gLEvkeI`9C$ik8(bKB<4?2^uOF5%Tj2-Xo{ZrXy@Y zO(Tcm9Ti@xv!gtVQ+^_PVOSry7<~i8HcJN-nmR#gVr3l^bUQ}wBbgdmlKe>WqFj+u z_ooxT>(qYz01$YmnSZVS9)zh#SUt--oFiZk(227zd=2Nje(y^vGvtP2PNJshTc#dk zWIkp3d8y2`U^NNGK!9M5!fPx$k{wZF_~=9q4*Yh)7$5rPI5nR3oWEb$?6+6<`mP-{ z>@{#R!5WZvBin{+{;W~!`?UZ+bB9iqsX+a9t3?xYkm6YDr!|;(4&ZMrf7YXv(c%OS zNqo}DNtqJ+_rdm!QPetv2dHAK=2M=_wRIaUJU2J9pC6M{8*VMN!Ak zoZ_10BWZ;D8G60P+&szvGE$Uk787Nx7T<+9H=Vx!cL78vVmH5zQ~U9gK%m(&(JIBE z+d|y|f8d55Jkl69siZ3#oabM?cQ4()wTP@qe>!&lEIKNVryf_GWbzRj=I?Q1a4l}! zGq#9`ujxv^YTxi3KG6aE!ZUExkebZS3v~;-Zu-V!l#bbBiF7+&?Z@8*fdj$(_duZH z*B-}juzXASChC1l(9#Vm8WWR$JDIn(*$E-8JqgM>FH(;Uf$JCeu-rryS$@l1b(WvGlw3TtmaabBIb}rXc|2mZaFNm;{%UM;Ui8rrDhWC_uGR& zqp3=!vJjM0YtTv4unNPb2 zs4A@NVAk7ERdHSKD2a=xGPc#M0(CO3WHibcV&0Z32g?jUfA24U$KLtqB;9`e2oN}U z%zqD%GWzXt`WnmEh5SBv_}cOmk?m*#+4M7$$nVg!Rot6JaqW7y!_e?)CR@J7o{I zg+Au`?`4+#*AXT?tlo*~$+(R)?ywLW%s}a6O+^$}G0m?yb)5N#;NhU}ev{p5_?&`n z_J=ox-ygrV|4{7#6pjzboHe`MDt)_;m_V)c# zL7>tK^S7m(Y*gH=gMmB%)EC?`fClRT4BV@!U!rAnlS|0PrY6(e@de~dhC$K1*q=jZ ze68u`1W3ZcM78iXY?L7!OFqRt2kW|Jd;M*?S1hf5?fb`qz=2@?KLl`^==VdU_w8xy z?>5BPSBR$7?`Di|PrnWEV?m(VF5f?oH^;8Zsyq)8G8ydY_aSUGF+ZP1x%Xk1{r-N` zscs___z3mTJD-14KAX8u93Lr;5C~jk(W5Xxeg_8`+AEIP)4N=0DLo-4?qfv9sw1kAserKVu!&{Y|IUUh=ZOZ5w_bwJ>9aIkuKLokW3@m<1nRx0XP;H|)- z&E(r4P*^(SyUf&Wo)9K>%*P1O`MLwOK39Mo6n4Vd&^pTe*Lk>QggYrlra5skF&TPC z#199GtvR?5Xqo@PZQHhH?;r&FQTQa`Rnw{>fzIMX2^7Zy$I$;j4so8FnN6!l7t##` z0&gP^aP8Lhbm^C$rqk$NpFYB}Eh_{A0|;x8l==Z;!Ux0eb14^sudtRz+TN$Yp-cfI zv(H~zii3q|&CeGC``6-YNo}^$m<|A3|8dNhSD5fH9(b?~^WWLr05{M*!2r{{Mm&+! zSpur*weJH5ftL9nxF&5Y^zK3c=FD}bUfkmhd~nd){$SS3;+>uM4M@=kQvb|knjJoq zMh?%UqnFO7>t9?+*RNdX;-ClV=!ui*%*Bgo_SiyP9OY#}GWE?Z&StA!vK-w~a@(6C zJ+HlGCYqS(nMZ5hbqF-a1a2dh7S5Xa7zo(P4hA+}yhtxm@Uy}4zt>XdQzUuK;9ZA7 zTmEl`K+F8U89uFV3xT%+fx3?#DxG1%?%i%8ZY|?hF3Z`u68$k#NAkM255+*kgK;Hr zA2$b1Oirh@<%j9P(%tm*@so7?Jc?S_3K(ZAK%qgIzLei1TS54t{BbIvtODRkJ$X87 z{oQKo)0&?t1fsp1$#=_FKOI0i(^qQWO@J5>l<+PJXkUN+JRY|JhEycQ5z_sFeBG4W zuY&}EmiZr~)@R4KXZg@IW2H*dk)>~qeyc1ax`$$^V*SUp51xxfVufApQ`?9Uq@lmj^km>5js=mr=; zMeyv=!|DFbTj}QIFVfOiSJKn9hw0g)6|Rv!nWnf+vKQgOnB9?bFa`3;#C|X14{i~; z!zE-I&K!+Xp73gaesTyD6rmh^#jHMmX6EnAAG?iKj82n{XlV{JTF|HI& zgxw|+g}b)k5Rt!`YD~{J1<|EDEGYij*AT7wSwWz#;^acvT7gTYjFp%7@}WNeHB|cE zU0h1LF#qw%NsjtW#WGXG69H;-m-y}LU_qc|{s*f)+uFSA5Rm8w=j9FY&4U1!=rK;h z@na33Lzg=fGATQf`#n7aac+NnVIiGk4|kLs1D9^yN-Ostq(9#K@9Ek7m2~#Pr8Li_ zEyL(;U$6N^7Wv$NzCH-XU$}+$23rbFxO3ciBC!Dr><6;|BnoTmihn40B)0SA@IE* z5VLQ{Z%}Y!LfT{PHWTkkn1e*aoHO$;fw6dNWDlnVdbulL6lE>PhlbN6%3D^E1$cmF zz}wfkIq<GXI}PJG7;E?;#Lm8z?xt&fl@8?`Pq&e#Rp)=X<}=FRqD} zl`Aj+^BzGaU<5@$(+mKn=MJT>*a}#A@GxCN9$*z&fQ6GMFZs^pq0;FIO1^oH~uL;L$Y5 zg+eM7Qa!L!Nsk$3jzWH}2H=cqEl&IXsUc9CBHBfvP+A8hQ5IyExAGb?{sFLP_Ze6B z-n^M^{Ppwn@czAYQ>&N4}VI(`}coOhi=?Tmp=V8UHJIpG(0nrHc3Ji!%Bs3k#HSISc*=*T3YkdLcn%n zIX_f1gD~5hUc1{D+8o6b)%^C+euF59SZ3?zt3UoZ-TLZU8e@=m;U7LphuHoZoSaBI ztPnZtccmxp2l#1g)#m;dAkZ@Zw*cfeixvXk4FYm}XX{1iD!9BeIaxV>@$RM+g9F@@ z#*-mu@hIni1eX8}p%`fH$kDV2Gq}IFnEvo@|CSc7 zUQHK1`9(T(>I8#;>D0%HK^o*lKrAC$j@JCFAV7ntwmEb|&_>Ss`)Thj+S<{hj6Xep zk#5q)fBbL%4K0w1q4VM5Z+@K)p$T$;tD$$m1zT49a@;5`y=l<-v#NJnn7stjKQlX%?y)4i#@+6p{q}e1@Pqs5==pPL_5>FOaSUuveps6MPknwGx2n*RLT-=>wtdue8FKAro;C+XBjzevM}4yD9> z5#9tT;~$^`E)ezfIrwZ__@`>mx0P?p{NEO&+k9FGd?yG%bPIEJzc#bkOp3MnRO9Td zYcF5rr6Lyzx)Z-3<1t8Z_>i@}sqei9nE?0rr#SOJ!j-@i3;^!jyq)gdzn@lCA8|wA zy|`6yo{NH*P7=YC%pg*%#c1C@5d=z8=b1W|*srH7yPI2S`}vc!vUDrmM!@qc_V^X@ zJbdIt`rzYVrqjRpMH-u5;0owLj`lUNEH`mY_a~}Wo9$bIK+F8!5}?~`-cJa;iIDDP zoi#*uZTe-Mdcdu$!B%E(j3C*Kz|Q{U%R2d}$R)lT>$f4p$0-0+`qs;X`UklFcZkb^ z`lr(T_&7{qK26=bkBZ<`1_%A9e%(mBTbtbRuFSZmk!je!{wIgu>;K(j?~S)Vt-m#$ zZ%(!8`}H~eIAv+({oTIB0n5TdPTF;Uhc@44Z-3*-)3kQ|YP$T{Z_~}Im($ZHkJE7k zIzRc>e@e&Be?%J}Nn33H?0_4g-Z{37lo?Stlyttn>ffzkZK!tw0xk1@Cz`1(B^u(As4pe$@cqt)_0lOYEJDch6%xv#*RFKZv>hrtaV%WCFM~FqHOq5`d-Qb#MFQ z8rPj(Qbag#V)RHFnV3$;POV3}eGCkGVH8_(7X-=7!90Ar<;U`M#(>p)ON4Jtv!?Ye z>D27L=`AcwCfH|9w?=3Tn5xrj?;2-cS#)lC?el&unQwDwruW9MF84FjxA}H9w$h8o zPt&c-m(%b6@Bb^^zjZB5PL8I3{Fi@D7k~MyG+JoICSkKGHB0Ge( z5?7_Ndz^yv?<~vshUrx(4>yTW zdSttv#2x_O_-{F&81CmfVb&cy=f|^Uf&3<-(&MqJK-!EWA}xz+ zvP6$ThR(W$BQNu}DB7KA`ZvG|geM6MsQf{UEev89AN~|t>vOvSqrI9)D;$M09~7-# zP^2HMjJh(oq0#{r90RTf{r}l}&n8KZBu!I;M`lKHR+X8>DNrboMt9Hj_3Z8J$jW|L zx%)Nyd1dz}t(@GQ+{w<(?DS4ka8wlv#W_pPX^?wfHMfY!LKQgBsDxRjhr1hhbvJv} z)YQ}n=N~$eBbywF?#e>%Kz~K*qIzk&W6@Ii>-`cn2w*~Dk1Oek7%7z@MoRPTzN&&W z^3$|R$eRL`f(-Rd0lWU7%1YtkM;ACx>yPB#qPm>YsV;gxF?*_Oj)y8jxbohPt2eJTd@Lnz&P+_wIhr4|xhY z)XV4T$OD5QV2H7})U^PUI09#_+}l0V`jYOk zCog)b=AxGv0M8FV^=E~!3U3H?RjLB{7q~i8g0BEj{vJemx>fOVekQ>4;z#sRJl#8x z5+jeUg8*C^J5#1B7`P(Ou9Xq)lz$7m2cjliiOP(BVjRfQ^9zwPn#z+9)ip3{N*Bs@ z+NutE2kuKA*}L>xk0+*4IdFIZoc$SK;FOlS)uG?^ChPXG(eUi{4K{JQWpnK6xP#69 z8BFyaWeTlK(CST$<}!mS;^~2{C=Kr)&+tDUUXHj%`{) z*#V4IA4e4df%u{JR(y?o9`L9G$YKoyRO)y&ru5Dow7?fIY+`nG!&X+7tkhSvK6d4kNnXk79Y6(A z{0X?2uni(@@=!-E5ps@^;4%t&YY*6-bz{paY};EM9|BbStZ!u0%6&9*fsU6;p+3?C zxX7R(9RLCpCXv2?wXwU0<-cXyh5_j5>+!8#C4QHbK|t=H3E;A#oK!gK(b#R+*4l<` zY^+$Vua~*z8Vo>{=$ige5^74C)(#@-g#~+xXnF^l^|RdU@Yyr0ET{s2Jg@4a=Y_U9 zd_<0?!o*k=5T!Sro>T>VCMwUsoVQC3^i0%;_%cl7(5dIfvp`zalYdMps1VXoFCx3= z-ujNMKAE%Sdyf$PH?6`uED!c^u34Eq67nzv%32Z(fxhaNWq_~BRULH%Sl2UXjzu&L zj+BJ!n-L?SZ^0|WNk)1gjn~PU122fL1pgLNkvenw&8;n~uddn}pufln{~4hFgbkZ! z=jN@4T^gs4AGf3D&iZ~08ts>4u@8k!?bzrUQ!g)9<#9B*iDG{FOQIm~Z!-r|-gq4mJ81>foC}gBWI&~kU*M;C?*b!qiQ+ZF zls>`^BITVG>a(_Lw$pC~wt6iSF3=R{NlQV)+7=*LKy)sEYXHhMmJ3#jEvq6e=mm_+ zq7i?)Fel)OZzH?8xMXv8?pPkC>FD@`4Y8wKkvxh5I^vV9gM64Rmwh2dt)$oJUWl1v zj@y|Y0hJ>raVSHhWVt;u*n>GJQXjoP`ODBvf#;Ibvx;qLh_M0~#Rm}6>WIr5tLs+W z+OfrjSwjY3BS$9f81v=6W}bW+ObJj6e<1~ceUI|RoM|&9FP^;oL5ZY$(OmbM8WJ7k zDf$ZR6($`F{i%K}UWVSY>LX5|+1T?Jw6n2c%X4$~;P!31`pGBu=q%&N!<--J^4^(rX_-cEo{9Ft@Y4ZOf0aq{e8u7Yk||E9wPJS6Q>QI^e{$EbQ&>Yykw!MFThj zj-|N;+u7X4UVjC^?YCluC3)0icWZ;eX3Iv{#59gJ)8`_89fDfI9nVpR>P2opBit5N^`% zfu%qK{{#DK(}Vrs6rdx|1IkrEv>#FZQ5b-2=DcM}b$eySHW;xrclKZLPx*B8tm=W4M1uY@iL<}0FRi~T3fRoK&B6HTwhvbK6=APkS#`pbF9Oc z9$XFSKpxPj0#JG6_w3}0s8?F@yUqw~03f^DTRuO$zP3(JU$CvQH5+9Ep8>Y=^?7!I z0YJP-+?B^qVMZ1i;qH2QW#;W00Ql;YC$+b@zB_sk8o0m9R0AU?Jje_@>`(Nkz*XN$u8~`WKDltdBxwZ_z4%^DI zq#=v0PoZg$Jh}vP(5$|NvLNVHP+pqmfCR%{!P%aOhg&HJE9i;?^uQw%#WMH_^* zU}7r$eYT3!VPRnjaE6hPZUf9v2@yH!7MkYwQFtA?Z8ML)wNhm|X5F4VVoGHP2@Xn?EtS*t8WMoT`;r3C*#n$wbn3eRdCyS4?GjI;)4lQf&_dl=UteO1b4 z05;azwh)(#(P#m(0;U?uT)jhpKcjvmzzJZXW7>(quuSNv$nt}TO($THU|L^ ziQfe-MHKidjD&kMQUn4tIu~%S!*G-Uw|++5ns070ikEWPoJR40a0R6?%|Wk9xsbY7 z#zp``$`|;vq0H9u8bG&z!XnCsNHtagJpumU=#Z^3de(ClscfG{z94OxdG+n)o-HjQ z_1N8p4kHYL>z-~Gd-Q8C5Nk*qMgThL5eVdFpCI8NY`CwV`V?JyvPa(IgD@h<*H@v< zDvU%wj6#hvBt2P$fswRi0VYSA7Hz>fNl##ak#m_5vuIc(uOdu}LDThR7#Wz1g-3hP zdfT6O7pX+87kUHs>(nWSsoY9$KlG}=Q!yo?k3!(DGqmAFxpZS0rM#OTeQY;B_|TSM zu6hCN>HGJrAnkkVvB~$a0`Tu?WUnb0J}^y96nMTN7@)DqNgF{gVvs448d9VRv~$4c zJ!zERq&{)(UX>67BE|$#aiMx4nNXdmnMV7npV!eV9IEQ~_-9^~;6HHWn2W8qU=a40qt|G( zM4VAZ;3J6QmjQ!Cz|!riw=mDj$iCIuA%Dcd^&QN#Gg?LwPYi;@)RV`i(GOr#7J;;Y zV-K-4^SmYIdyCYexwKC<5y7i9}j3J#6gS)>xX)B&r6V#1(_^c5Ow zTY$cv3RGkzL?4ouv7^vX^W;bn8f%+A?_Yr-+Fl1xkxr~3DX25OQiSmsA0M;nsTtej z8E<0(c?HSAA*LkC{YZbH3WIzXt82tBsYsI%f0HSMCoIFe@|Qo@y^lV%Z5X&-7>Ko% zMW%hk0KrUw(s_V<5MUqYImZt1TznHXq!DGliL#_RFjGE115?oA9qACmB?W;1_LRvp zs%T9$Xm(1AO+;%k2F|dGA#tZz!O5%Z4kjVo#h5W(Iv-35B=A3&?=?Nuk46F3siTd( z2pBHVxz`ze9=UMds&w3-sVy;LmY80~bTr?udE#Dm=#npMKA0}Is5R|c8i(9oqrnDJ z1OZBkx$Oe;!BPlg3`=$>nE{CE%?pUuHUGWK-1idVcdlGd6^vY{pdQj&$RPpn;V5+}psS$KYeV2gI!Onr#OtAsZe&N=?K>E+ z0Ti3iMS1`Q$`l>6G*2S)JogQ*cL7-$)5&R+UlEW(QKSg-PafL}jKn5P%Pta-HFPV+ zi{mg);kk<{6Xrx)9@hbJO?S-Ry=Uvs=3PHylj(>ev`~F|U{tD)Pb&#@OgK|YT zDL@J`c@$@)98d+$dQRwb?9>U{U3%Aw%=a%bbubPCb@ttNeI(z9mcFKJij^L#qPwAG zc`Y#n964wvsfAW}@WugrloP%D0N4)D4)ENoT3ieC#e6856dF}Cl7;&$Ziesv&d4_2 z>ay(;__s-Mpf3{mAL!Sc9`3tRpj*kWlb1$UbdfGcEi(5yWRu5hHa>IM7Ma6k+zvCq zlDBe?^&eu?%DSqV>1i9(h??Gb7vNpeTtA}ab@T!Rp(|_X2p|!tuZ8Hx_M`dE(hS_lUpl%4?Oe3FgsJ8j}uzzzYD{-9cgP z=@Z+Q7C)o*O3#oL0bq?FB{}E;(4~C01=Fy?2))YG!S?F1&;3_fc`(M(u_3@|hLL#{ zsly)Vl1FOMl#v|3MPzW4K?EJZ3UDOv2BXs^aWy#t1QAinfm+-Mz%|8W@T~bgSIV1T z-$Ze;?9&WlPzr#e4AL|}Q&^So2hAmYappy6t1<|YW1Q{G5j!Hg0i12V+Zh7*=@hTPOOOdk=((iKmz}R{eIKaea{r2U-l7}I?xtiPynp8QA&}K=je%} zHb~F>?9n5Z%OQ3~#d-iyaifgV7>Z>pjG(Ik_z}qVNTj10}N8{Bw`Q zy{wtv-L7N61>-H;w*a7?fqoYa7Z|b5&&}G6&#r-Zj5K`(R~$^!>>`W11b0GkdkC(< zA$V{N65QPv3+}<)9fG?PB)Ge~FK!Fm&HJ7E3uewtPj_`yPxl;*rUKjHulM8e_ruw&U_8MO+hXkD3Hd?}T4af0VN3Iku~zBwOyp zToB$dmx$pWU&=I9s=1Xo@s-&xtk4MYC`A}vfPsl6j0Ui%17Q}Ec;t|F91tG?vW$%P z3c2=DNgWO1EFwRc$P*{RZjo9DqSJ*MFBj=ILf2)oCZ27c~(FRlTHJp;{f~YflO7X&Y^vszBmIuY0&Ln@io4@%vteJ^Fs7}Zs83OGjZwK4%zw9) zN-*PpLvd~sPq+Tz(%vKZjv?o#{_6}u+2fRg@LI(brYu0}QBtDU7Zl&LdVa`k>rB+H z?a4pH2>SS|58<3p$|(Z0&q<@n0-U?=@C_?Rtj+uc>?FOJU5#@1{C6%LEG9Ae@nD9d z9JP*`3=8f*{-5gIZRaX<_4xF~ckGvImlcHN>}+9VHZNDWJ*f0RJb6$n*J6^vRLPU| zGB5o@5>_k?Ob?F!CAVBSJDmkq-33K)u%{hMK!s}d!FuEzhtgx}-{7AaG6G(J%kKxB zNtzhNGEtJ4fX#f2R=p9aA2E;r$-z=ZMu?XvauAwVj{lI5Jb={7iSh-p8wiq3w*1lS z(!jo@S&n<_MY=?-h4Y)Vxnq!vk&*GznpvC_I1Z_HEmqcH{}5!cpqT}Og^plbFc)OJ zfnt`|LoXEFuSS0^MvyH(n6L*w4eO}SmmAokkjliNpAI|xVAg~tfvOaW7qm3NeAJ(x zjnV2io@AZ@BSMuX9oOK&2YamO0dJip9_^yhCAYTUGFiTMA9b~#XaDj9b{lYUG@_65 z?hq&FA4>Lhd*cAYOb2)lcCQ2l|CFxZF+`9wMQIA~aKFD`@qUl(ZgwhK-0*qORunK3M-H<}`c9F%E^{nVSC%n1@$Q zHj$`kb&GT@8p=hb#kR|7Xntt^EEu;iSU=xpqNr2mPusy~@kxT2+&@Qqj>Cf$l`m2u zy-o}?C3|l2z!;y`EX&+j#!$tm>eDhU65Gtdu&ZYqo!eI!PqzD`m=)CZY8aa=8S#}I@5@alU z*m_hModFd+QhqK&?SPvPOsLg9kXoU3PXaiu&jNoSjt0~|QX4uy>FCtZKwRBihO9uo z{n47k)r&24(olXleVMPA~x`-Fx5J+v~h(oK&Rm7ot?G7C!@m zUIH@Dyu2cmpmK34hbs>^5Ygvjl8j5H!#R0jXdyD6*1<;^!7D`T>}tb1|E52^P(LT| zK>Fny>-wL)E5G+;wI2q5Lzm>H_FwC6^;HC4BX>H7?fsvQFDR8M1K!0vB9Dpu@KAWe z)Donw{i^;GDhlE!fOSL{^^G+AQ&2L#TO!sNCk?2nHWaPE(6~P|LmCuApl}`AxI#gP z*8-&Bgq9&1!CkqPY5blg*lbEODbXu1yqRV>7$~wR!LB>}nr(-XGF@%c!enT9Sy8*Y zfA`Ccw}k{i=+F0EWA6Il++3E%RP`0;*R>p%O1h(pFV(lFl$tL~pm^-5w}TrBKSyd1 zz+Xlw87LK49+zUCHLo-lFhk`@8B>UETx=@bOqvt!6VlJ9gpakpsyLZXa#9M(vSBCV z6k?X-0N(1wFd^{PnvAa`8g) z_h@`nQeg+VY|6-Ev7!popLgh@XVeg3Vl-tf2Y^R8r~H`O!HVU&g#lwk*0dMl_$t6F ziV1e)wj`cVZ)a>{m}|VF_6tv9Stao9zD!OYsBW9`8AbAz)MuHT>z7-n)fpO|V;o(SgfHe-7N4&bR=I0KdeDpY~s_gj59`6N?`Hh7dzP12+)M+{=IkqXR6Xx%dAr zB)*9xc3y$Cc3hbh7NeC_JFv7N9vZcha#9i?cUij2-3yEG)V>F5b(zsH9b~k19 zC+`TX#WFbXPpx3>*gQ$=LvR^s!ir;eW;FOsVYiN?(SLnYg zdODe=WJ`JS-H1y>H+}qrWnV0Q4|`kcWv|niYxAvKKnT~bZu2rq=Vkd9NPG+rxvx}& z?j+MBNwB&@(&7QHA`hoM^Tk|PZ-~F8SsGQ-(QmUejND1pj?KYi@YZiZ=>x~Nk81m;~9nKI@+hwW>D-|IOCauwN0Fn!;bsNU)6pVQn&SO8fN zRnL&@H?|*QH+$FENM3P02ox~Ylh%puFd45X)*P2LuGxI6 z@9gh;=RZu!vQ0jS@XL49sM!59f}zJcJT=Ir#&QMIm;~s#WG82!-K^{4V4P#ne-u)% z1am?9CFs4WqW_L@f|)oqiLPA&S_^3-042Gv2yR+BEzw1toaxW%8fbe}&IG7LjUxc_`u>12KG9~BAvM5Jo9;UbPyAqDDCphHB z3>fadt}FUoM>J@p4&4C!kmk%>jQJA<9`R(h{K1=!UVRjCu&P@TStZu5a56Z^0=d== zazRbjATtmxdS�s>=SJc!K1F);15rJ>9eS#i_J8u2 zpOB~axZ)Oy;Gz$)PKYJXVL4>6_XNqizy1krb%qT8B_lkU#J+Ju2DrvQ8rTH=oj|$b z=WR)(3#`1pIy|W4EJD6yLjI;{(GqF7zN#tGOtL8K9@3#!Q>*zpvTH|T=!zedmk?2j zhE;x^zgBW>`h-=7`{m8cZGM3wxCPz<)ij`s8Jizn0&}LKZKovDkG7Y|c@MCw{N=lf zrz|YiN!cyYJhC#jlYv2t&q$5&z>;3s7~y|6_mHetHKME*jujrEOE!+enAWDz!Sp2;Wy7Pcaph$p!o2KD2sGdXZe@#qnJ^dvUgNx6_ImA*jJa@}Re3$ah!;xo@68 zDsl496$2b2t`p{=2ibq8#poMtiIAv0MCe7@hLzD~F{N4}BQ2!O23iok9->keU_*ALVm3KPZR za0F9A?UD?nll2V9Qh<*o$xnmVUl!I}lcr@;t1Vm=tiF!5F=hZ>2PdUk+@_yKiTAk5bni_K4%plrd$qzH$qHYw6`_!K#)> zi@a*WQ$okuXxCf0Cp4NOzO7^AMTGJ#T-_rZeM@AG9-Kq85r5kRs9DNeCv-} z4J=Uv7Y%Qi4R5F6x|SX?gq~COuT({!5~#ami9`7rbEn(SKH`bJf9O>0{XIOC++OpZ z9~i!_((d=7& z^BeC>Eh0tvz~Ea3KF>p7WjS%^jov`Y?k*J^*T* zIl@5_0TKb-tU$sy6N#xiU<2OdXMj&Qjq^=Gs7;$WNaYP)_l>+!-v6y$sLO4gdl_V5 z?zb=j9T~qM@?XD{=qn*TqprSAVxOV{73lsue&7YsYfzl0BN40{9&GxN+)*_HN0-#~ z+Q6RJ0L6}+U7TKik66J!&fs2Z_J$Uv!x+yYEJ-y_Y7^i_1{7${Es3`GNX8M^il(@% zMdqgE_uL6ye>*a1cRR*?>F{3E$K%6tGOvd;b;6Z0PH2LRVA_2#cOiC0XBGSfI&&0()m<+>vX~e<7WA5TNDflh= zw5h4X;?qI)a(E;`6}RxjM9?ce+z0)XoK2a3~MdH%^cUWWQJyYwfBJ_K8;0MU&6H+~}PhotuK1L*` zrY^||TOUMDLSo{*F24H}&c~`=DQD>!@p6?BT6!ShJwd0K*?@xfB>*3$SRd&-CD%*} zxu_OdZXevykaO_+g;}CD3qD_~L;&1BRR-}uy%B1tEcG1yBKj zfw^Q4nkv8sHm(K}`iWktwQlG#_tIS7Dl9ezV5Xev2hr4wNc(48`TvaTmV37Tf5wHh zaMnPRjdx>uD~$%g?4?5WO}|{U(3^$5p4eKUv7j|%wr1K&Kvz^+wT=QyBTAngNarj? zS1g_#_lc|=FPpnvrF1u$92(TC+Sk}W=xSo~uW0z)<5mehZ(e3y-~ci3{&}&|#WZp{ zm961YjVNrC!A5 zSY98~6raZyo)HMm^ceqz7&TAaGV*X(5pfim=t*@5{BKfNy?~A$9^SkfM9J75c={M0 zBVyXWDa*S)A?g4cd=hj1Ty9Qd@v(=^*R%h;o!$fVpGR|S%p5mj3eb2RcY^Pf6t(hJ zc1b>kpe-?v+{`LDOxS=R6S2b;k;o46f!cy>o7UN$g=)~(BnrLjnjU#M^{;rmVR&(> zSs=r1C*ih3o##i#Uzb$mYy|-FYiH60%;D3;OtKDb94-2L9sBQniu2DlrZ!_22Hih2 zh5vB(R8??y$8c_~;R-yhoN_zf!n?tEX_;vCZ7EH?JoqB~Dmj#&*nVe{dKVP)2(C;x z{zVU-ErH&3&YOVTXXx6wcmNIL#5Odx4#@7M3X z9Us65pC~e|cY^*dS9KId*LWo0HNbHlX2blRTnyTC#X}P6hJeWUy%*l#Dqt@R+Dv(B z^lGgah3gS9$(L8VA-V$h&m`&4UCQOZO(Yz;Bg>btG%ndf;_wg4)WoPakOVzJZM`i!-tPdsm*CRquhz%J1c zWK@nmuD~y}ZHs;|o>d6ovcUX1g|FX9ODDa&R8T5!mxCs2Oo$)D_18CQ8yoR6yl&7> zbG{J8nFRog(M=s>=mPht-$L<`FZQG4TI9N+3xD{xu+AmZJh#f0k&0+oI{HdpHX1@ zY@*=XoQp-}d@Y_*7}W)YIe&;(zEZTiEVKH9^L)Wd?>3lI$dB{({w9Z;o~u@&7`ib< zL7bRpeQ?*RMFUYDz*o|1jn5|0|K(7e;pGT@*peK|a8bm2B>wmIKZo7w7j%?ug5Osxx3m!4-}JSK$N!}))Z_JJpXF|I@;{0TE<7ofW4JT=tabx58p zUf3;eYWuLt^V#gs+uO#+crC_+0nC^H5_!G3Jev+0x_@T#xBRr}7itNJLa~ko1wzph zvDSXCmJE3wr2oiJY37wH;`V&~hEH@5uS5U_^pe~yt~w1pcZ>eG@%-26t^NOd z0T_Qas-k*h{B&#^!Km8 zjW1}Mf7rP!gWBu~nP3@Hkq0TKcwd0Gm>8=)1BL6YezQMv##heXUpCK=3qIKpK#I{P zziQV~oPvseM}WwXIs)r3=zoeP{LFNt4=l3?hs(u?Y-1IQ4>C?EsUfATPt~;X4peTY4&yXhV)<<> z+2h}`VBcwjyC%YKxhULe^I*SOH@WfN!=1u`arx}&vR-3tzr???lENng;sdHoYmk}h{uME?^CG@Pfx zVt}l8&k^n=Wo`rb9r5z511uu9TThX<()!0P$@Bj7rYqc%H^-OBW(YbC2t)cW&kss+ zRv`VM-2Ru@`j4yKwNQp$*UV!qN(k6dl^~2sqilaRy_X?_gQC$l0ZI`|C5+-v53S}c z6(B?izwfV;yrk13&Xcw<#R0O0&vKrdNhliF3uW(cnZ3mMxMo4|2G74zBYU}8du$Qz z2@j1A4a-|?g09Q1BqoK<`J(wf?uDZ6?W(J|AS-2ZTA1tj0dz6|#`yNjQRhGxTw^&p zMMmxB?OPC;d4vDyU-fq1o8oo<>jBoc=S8=ZzKk<$hq1rDol6KmWGOwHj3~MK>|s~< zxi&8k0!P|KwH{`AmT((hf~pT)alW!fZ-7@hHc48lN|4|9p?dRo#S!e7h>xkcLAO!KMvIZ}8QzjH zz8FkM59ug+L&xuGW~>*)EI|487>KcI<|AZtv#!&yXY?a%L@{AuJnnx}F|jGCj9q%| zHOS4!&^W@x0NpK<>@68hX~++BF75?xa0N_v?tEKH-!D;Cc?!E3`+o;IN{^NC6-{$i z#XI5+oB8u(^|UWs@csS4&9yM@r5eD>heaE~W$54w{UiRT!6nv~NiS(_B6eXr_gci? zoIKW=o4SqBNuC+Kg5a%f%P1st6RDOj^&dM?3IQp!^la-+Gk74YBJ1wkNCzTNju$qb zpEz+%$xdRAHX^m@$QsWpEs78BKYOK{d&Y1SSHq0fWoa4*cx2aFqX0|A1i&T9uVnPu z32!zGag7;EKJe*R{7vG)mm7n6OgYn@-^Q2#kKR#_AJbE8L74|&qAmi|u-kyOKGEJm zuL|w}cq6Nm-|HPdBX;^PYr=l-Lf)J&V~Vx1Q@10t3zKg!9|?ghsB5zphGxnw2T$Vq z{7Ki|>dXtOS1wu6kLuHLbeuF)R$%Lr=jE=8+pWzQC_d;WTkmpYq;MQqc-FJBf0%p{ z@+aBtpp85%D0zVb7O1GE(UIklS0CiR0LnZbRBI_;fBCBux;drj2jI$1Pc$EEpnvhLM279H%IuRXw^+;jo)O|Lqoi z9-0<6-c>)gVLVuE)P}oD4)?XE0ss7;p{}a+z;MyUqT@_=Kj6^OJ>dFd zW}dMnddobOy%I&K#aeL{JTh2M1ez>^fYDSvbNf9MrT;ytBD^Dw2y32P=BA)hVjOfi zYJc?rgw;RqQ%z?aBh&$?#C zFoesCO9+p60tol9(JNc~O6RO?03MM}Qxa5Ew*-^tF(Q)m>^dBNIE7^3!pLfxZ!vxc z5?kWNmwi*SV``)~xT#3b?;6yRN~tr$lh)_+aw6fdhLQhF;6qxMSz#s2>E2i;&rIbk z7ERnblVIctaQmE`Kh$opb5`k}BjCvuwUL&ij=NQPkDRF>`+@G@FK|n0k@2FNm+JK= zQd*o+@z;k_IMl{;g)BZ>xS&_=!4r_u`)#(64|r;Uo7)D68eqQZH9Huis9RezSl9Dg z{Wk(4F%nlJcU*lTMtSVvrK_5!F|HAyP92%g4qw^}m8A(+X6ZejAOq4B^>3q5{F@xi zZ2MH{wn4IAKHF(RdL6=eAF`gwN&P-nGDs!zqC9W#9AR>B6M(wxMJ>oTwkzean zB#db`@OB8p`gw+^JuBcnuKa_Hjk0&+G;-SXQP^{-vfV>clnxIHseyv0AT#Vr#ZVP{ zZi_MP(83?g$>b@-4T)6$Tpklj!>W>nVs_}uRYCp1i$L}^r`I3n5B+Jt6jD96BK-EV4ZII8{j5XdVb@xnM(p%n$KGn*?>Enmmh0UPvYKsA zAfBg0L~z5)tf?JI70)Oz-psvl@Q?AXSALQjNZ$zuNL{E0PyV45&3|l~X2MasBo=}F z@=q$Ofl5XvVAe&w8$K#)_QU3%X}J#!Svda)7CNADWQ4gAf);n#(q@YVGKDtPkt8)VJ-C~mzCs?Dsm+gn$B1&*<E%g)lDN4sqt<%s5(rbA395Z?Sb4C}VPi?%GtN_Mq$W{X<*M>AtUcR*ki`Cuq32 zuHvlKCjFRc*zOBp0Q8dgD`+$vnk6%Q^KvsN#=^BIPqyRbMIp^PhYCOMz&% z;4@Tv8sYN={ozrd2bbG9PU&M;IwF>Pm0$EhMJG4AdZW7*j>pb`W&3^aklTJi>^WQa zdk**0QB0Qii-LgDTPC`~Uw$LD-N1xZTxG9j^tf;U@cHC}i_8v|-hzs$`@dvf9dB4@ zV;Wvnndc@pT*=D6{;`}{^>LJb3;h=bGJM*Fy9t#i-s=g8byHJ|XkEu${e814i72LM zdN+Q8-|rp3|pv2 zFdeU}n=50-^$Vr9+6BYpFzi?-Bt9IVnG;cD<jAE~l>n5yKi1C)DNOq_u!Z3oXqU5|#n zOA%eYC>jEp{kIp%zcx7AK2W8_x>L-38vEoX*{}2&=`J#`mvBP^r>{V*n?Oi;fIing%3*q2-ysbtjMZDDt!HdS`WjRL?_{<3#w@ zG}CI)mvtjOf0_6O-WBKG^lK^bD>bfT^l+U~`UlOx5s|M2QD1U=9*+#+gRRhDH8)w9 ztcj+T-l#sC3)XKb>cI+l4ni9wjkUBYoe2$Bj;7FWD~<+`LXuh=+&GY^3n;syLfM5R znVXp^whogQ%Q=jDLi^?OW|2Rmody}Fk*hQ+>j{Z} z$n}fVRod+PFUOPjCH~J9I8IE{_rF*dIlM;(Wuy1djWU({t1jjiGL@^~mOPGz&fSm_ zP2P7aYAdAmbLznxBox|gB_Ji;F#7GP=u@gXB4X+#1uUdyx!~pDe7762tdXpFHn4od z?RguF{#!*kZ%i~G`sZBw2<#A_8tkq011b(uY%V{vRBnIe^uVzNa~_F7@V`5!H`+&r zcjYf1gt9Owfd-!7#n6?vA9sN}nk;c+I=RW)5(Fa0k7@1xZnz|s=J8LGS|1)I7Y$Y; zrNQ&|W7@TWH9m97uDT92zcIA9y9CfVxEfM@WpJG=7E73#z6egbg|C@Uo>6hAXngFx z8xzmEUsQ9Aj&YD>gs?q_)T=(nt4~C#-GVJ%XiD0la1RN1+uF6}>uK>xKa60dqdG_a zVXbOq#YB;*DQrZ6hVeUnc)M_2`JzMYj2}o4n zr8V`ymRD6Pq?rbLs;29nh&())i0VzL~Q9b410W4$Cx_NKj z0y%$$F3KL84I=`{W=@qiLg+?4>q5g^2Qoagv+CdIlujqgn=Vhkt$`K-TIr1hDKCv< zD0gso6W327O6BtE1js<{gd0G5w=-&fvaChPvU(JmTZ%74t$U4evWmi_Yc8r@qR+C> z2sKQf+cYC=q15M3urn$J9r^-`BWAmhC|zIE*lyll!Q^)Q+P(A<50+x1ev)_hcYf9i&43gsBMd2DAfJ-rv|L%#66`1oloUtq3E?p*yxu=8Va zrHpAT?o=N04Q2~IYB@E_2M)}n4w6Omr#}$hT-9$m(dv@sAx0TM#1V`~j^u`(PNxbYGYg z0ceo*czlvn1j;qSJaGE%dI_?4xsf1BHlwk=@RT9&yuueqcDnRP&w{JZRnjZCR`e2F z`&=YCq&^&4oYbiG#31?x{lZP<8%A=0FO5EP3eqIJid@ePHwQ9yG3}Wle>Nx34@+GC z6S})Fx=-qY)Dq^ptvUmD2_J^HjI!eUAvB#`6;m(-q(df7FS1uwH~(~`Efm%gPeysf zM_|c#8D|i}7~3S>q6lSO!(nYvO4lt0YNU2;RV->2B63#Z?HW~-vXPhRdJI^im-7rN z;V{s(-XDY4Ay7Tx_A#8Lre=Ah)!glVCu1R29|X$}_f(gRN~7@2K$Tge%k)I|-HD~d z&$jz!xR*&{nIiK7gBfTr!uNj9Q@#** zEJKc$Yra1a7#0*~tE9_o) zYR)O}VesAZ^ zM6agV>NpKP*R6n-T$_kKSDeq^G=IqIr}Cdu-luTxw@=T*(?PCI$Ocd{hEgS09Hx=s zeCkmC)`EM(U~Zu$`MxXEnd*mV!7oAd){nJ*jS*qprsjyDHW5#6?K%3jlfsam4gYtz z_V=Uktagv-nC|;@bc*b{FaA0Ee-i+~;R>#78=;;B<0lDsM7C_Pze1j5sYb|5Q92S( z{IdvfwiG}oMqg29cy$Vv0i`@}v8_ssFw~o;jr<8DF2})oGz76LV=ZBbia^*9} zK<1bs!`ItQ=Zgq>kZ+;v)O49>*WZ{I)Q{CCDSxU-@zW38MA;~SW|V7~{W4CEyxbN~ z;$g6Gn0A>lt2tBVX}S*|_%yj_X{P0`9KQ>*(?*Vy8rTT%Du* z4Ew+1Pzac^`ZB6wa_2{dijR5T#NDD9^`mop)qg-C=r1$sublHdw3e>#H?ia^NtheW z6%;-o|8+%bn3l&1L#T3VuZ1ga%uBq-(qb`+cx8mlA4-cL%1E*HPIg4{3JfgV8R8FlboyWOIM zMj1^kOuSmV1<&31id@qX>@YPsksU>mHIF4O+?HEA+XT!BT<2A%tQLwYgCk_}OJ!C* zUXKAx#^#*K&bOA*vXu}SxR14q2P=#G`6j16Ho0sM#@YX3(56ZLd_G50sH_FWw9v%7 zP}GL1c5^r#%Qg%vT@zq75UIl{Ni_t-4|+a*OBWI{fl;lE43;gJaXl{dLl98jfIR@Y&qtAa3M4r~qAWBZdH zyG%5^Y&uU|k2Y%RBNT6>+Sww++()6D6Qlg2Ng5P}Qp zEl-IA57R`T$riOi`z>N@YxfB?Plz?7v*SYe{tMQGe{I825whjN`}JI>0y38n6lyq; z^y2fh4!!QMi88N~RVl7Q+~&iTJ;wW|c}oO9fj_aF1!I@7)VcIIwn$?ImR!cSLWf;j zRo`H{$5RI3Yny(PN1g5ZLvyAy3XjlBR+-5N-benXO=C9!i3zNeCZhi zo8JDBB$LnP4~=w{Rz(`sHLkKeK>$36BUjO&ygbGs4!N~vJiqFE&k`^lYCJ-G@Hf&8hn9i#BHQ#)V$Md zyAclLK8hyFp)4yf!zI_UXYB|Wl@Es>rlQb1MTE%PU~tdsHu`;qkIlt(zz64aI!~Td zoHn&KSV_Cx+dK|O?OS)sz#LT-N{eb(bx$ZeockhsR@f_Zpd_lLY#C$huN1cPt|d!PhMaQy7b{RBV4(o*p$Nj{;;Ia*4*4b6q97j zWreyTo*^<`HZQAdx>w~{w?_WoF<15vvaR`KedZz+6PtWNWrldz!CYBk;lLl!F~rTF zxf^FVQZAc=-RrYLTH^{algQ94q2bk05J?GZMr0&+C{=9qi;|7EYqXiLsPG)yl*&;nNf9~E234H>MNej_*eo`e>;2(+BlY1z6Cuf8>gXoiiT>ASkFMfA z875w~Tp3f~J@M>~(`LT#(_r?j%xO^Lu2F?*A9*YPM-DPU(AytEF#QSX-j_qX>e>HM z>jVsO+bxI^pu0hd8mf}Fej-?V?Lbq{lgvK|jRKB!Z^2t~O7nxt@TBC#O~=QU?bnA7 zP?mD?d;~&qe$|($54nT#zDFud^(mq-45Fwb0jYo#yC2#Wcz62GH{4n3$yb2_ZIS;f z)(vDsx|b~2wf+prsr3}lA1rf(Qyetw*rY9M88*!i#j+qGX2Q)mSB9|EX*A^&{dbon zxvG;X?fwI*j?z_fbIJT*(KXbqSC3&_sF%WS=izC#jgEgDL;*$RXP!Co04}Vm5F>Si zG$>!!W`~;E(cu8>O@L#4P?NdC62jK7yq-NX%kspm=fRDo4m&-<(g#GV1!s%7a$j|G zWo~oxveW;V&K5e;?6IrFg2+iJ>iq`1+DUYq+MC2Y(N9k)>aO<+&#$TMDl3;*r70Zu z76WT7&uz7>eSz&;^-ax+ouE@y`;9x@Cl^D_A1Ktgn7YWQYS0Z7?I;Tglgo{ zW_hrFsF>fZz>13H7z1)8eR-w=8tn;HMN)ZzEg2G*lgJbg9DHXP;u@gX}w5z8URRswwAsiK) zcio-3pYM?n*z7%W6sXk-rM^<1FBhTjv6TdTQ=Bb*9);X5Q-mjhmtO4FKD|O37%1P) zd*~t4Tx-Vy^P+|~OK6r=7>{h@6E8YTLpcVVt1C_YpOjXPyI**Itm@u_cVo{65ighP zKgFJnv28SLzP-Nx?P<1XUQ)f8nXhm=T4Hz^ukkx}HcxqjWUqI7Z_>q*nlp@lXEL&_ z;1;wH@@{YPxTJ&DI4-+!4Dq3vaJV4FF>9(cEsM=<*0D4=)#OIMJYJh~f9AC66!L8f z*_mJ*x^ib-x|$uTlIZVzI5v9$WBLyyEas90iq}L%YgKm--gm2ysy&e8_*n6XJmV>6 zH>28j+S|G})TdkLVIPaZjYU1Rv_w{A}{FR6>A=f7n2t|0DD&T~sLhiYC%A=C=Oq+h4~$=13LM z6*l1qejYY`AR455X>b1S8xxlzyT?kW@K<`XuSCn329V85S_ zqDQ&o*&uPOA*hBGEtf28>eg?MAd~R9ja{b?iBnJO=``6&oklj>ufjTeelF(3P>R;J z#0u{@qoGA`x2gC!?C&{|Opvqei|0?i-uHnw+B?CwPj}v6HL%wq^M|R3M7EF&lH1}U z_9ai%pz|%&g1H7jwzsW{ip3M!*PB$64Dyn9(K+Ns3w^*bcSl; zz8#!~{^b_=J+WV5(!<&qu0}EHrWd-TOm*Vt$n8Qe#!OJ7=9^sLKUtc)(MPRypgXZx zmNK!?z|hZ53~3Qf!ND2+pmdDn?rdwYSQLI6XwuM7K^kD~nZr|qfs>(0yT8E}@hs(R zfi^~GIn#i7qMKT(PWZ>L*c+SS`{jH@pUqe1yy*70Vv`S=mQp?E zq!Tt$6;p8~Xqo>PpA?E&CAm)LiQ#x}ESP*L@>~3q(i0~Q5!p2H_i)tta8E<3ozXuj zxEKGY3p?W}?5Y9oJn~Ma(Il?>&Vv_$% zukO#@e64M&+m9+bJ}NIp_|l@P9+_bH__~f)7TdTO&lGPL&qthwL7LrC z&Np7Yn*xX?Y(f4$Rx21ZvQtN?y>+&6LmPuA&v4F7+|6N}`s+V_#4I7nyOeWjohLUV zVoh>RR+oi7o$K>HP-PfRbca44@x5S;reMUbDl65DZ-jViX@jXG;u&HX$AUOwyJPl@ zab?A#+Z4W%-`jq<@m&I%8~FbYkAYFcXW>S=;uFfQnU|=ImHS}CNK3V>qw_n&+r2Vp z!S5czryFFMYMyR-F+nEqv-EeML{T{F7jfrEwEukeVUuue)yyf0X;bLIPAF4RS&kZL zjmJpEebY!q*9+Je1@>W^M6als^O4voO(!<{URafz_M@zUjQ5lfa3jUwXT zf{uw^&R!qR>qj-uxK&5~TY~3(ImqA+=mg=sN_1%jBToH-KmLzHG(cER(YMO#a3(}K zSTMmG$N-iL>ZTEvc)-lYG(-dG1Q7@OMZ!8j8YGlJmpUiG?4`~6;p12pu@nM-k)D6U zUDUTT$A0(g>@6h^5RO*s3HzduhES;Bcr<{@W>4ErU6DCTQeEc=dL%QzuWvSVf%>h=Y!L?saVq z^BaifvKPk>cwY#PT(o$FCxt{SvGxK4Zc$wAf7C8rD7d< z3kP`T`pSbTygE}`1NU~}Xzg!Yqu}$NgK(~|+&8|Tzeh!9b=XjJK4j~AUBc=5KF@9V z9kK}gv;~nmIvvr4BTpSsSKn#AXyhC;2@eZ3x)0x=w0Gk?o{Gm(vcx&t>nbjarI(PA5$w_BR<^Qo^UD|B1fLP|czCNX0c z^8Dego(zyP7WHG@_=$R9Hs`xH;Fuw%T`cH_gpfN_9@Ubho%gF5M(SlK)llU10BC)O z!O1ce`NMCW8{o)*6B84)tWu26HN?~1@N;52`EzQ!y$aiWZ6Vyx@1$32W%cH^XSYP7 z6=)g=XJ>W=4MQ>dUt#dHN4?MbfU9D}4tE8ywsv+K0ebi>cudLeiP<3jgphTXWWJf5 z8+PDC;of~JNpQH>va%Ouo%2>DK>o!^2EJ)w!S?MKHzP;ap=bc1;8mgTKvS~{pvL9? zUag+iMi2W|<%5s#X-4Og=KoU10)WC=R?fT;XDmk8AmNLy8vJ#Pz08?h6Ris4exAq1 zgJo`i^h5crC(2@$)J-L!t~+?Ewfz`NlIM z49X3}QyWdBkRbH9e-wEZVjImVy_qdD8M-vnu>h25#7Vz>x}iEG7MKlsE*SXK)SNi@uxW+ zAsa&NvB___2YaQ~*vbeSRfA2L{b5Igg~7X-JgPvcBb=I1#Q@&x?Sdg&FYih6f{vSC zCW&TIC`@tH6#4-MQpeV+7VyKEWa&+G#xLl}?^Qh9wyD?8fNN??IZ|K@=O`j-MliJX zCH2hBgy?J?7vJA_#>Benu%<4M$RR}4j4%megE4fgNvmpl3q|lY{WjT zl%rxIIxXGp`mliB?)O^EGK)zr;Ji?*lvTHVZ21*5wQwA%GlR6yEv58}uzWntYgn03 z%&$sWUz(t%z5H~0+K>n3^mgA^o%1lKH=C0M-P&0}i{sh7b@-%6VON%>cVg zW#}m5yPb6i$(` z{sdE-fBqj$-{4kh*Y=%_$#zY4O}0JRwr$&*Y)+VLThq>%?AjSSyT0z{J-+KtSnFCR zf1q1pu|1;BL=22u@db`!tS?9t1Ua&0JDB_|*FI^|FNNgGCYAba$z##cFysLl-l^LL_0husPG~_FRBlFR zj5galAsd7x|BgLUGz8V$3T_nK7x$E8iJ0IAb-i%__$45L=M>5FL6m;OY28l|rhxH@ zCL5@o@cP=< zR^r%WZcBrbF62k@3j1jlJL^gmQI1n0^(Tl7+gj%O?uWA>R>le?VG? zE-{N^>OUg!k75Hswh=WB$o{5SfyR}PS*?j&>Rp3I1~F6fghFKqB7;i+|SZs@0hIj z_cL_^U`C4(%AY6`>v2G5svxh}` zY%m@VI{{CyLvZm{0kI#(i-iTj!%?o5rs3XQ;$0_^J?8__5p;(Nk%M z-@FqF_)n_7rK2^?)G_M7qxl5a3*g3^i{HlveNfa4NkLp^0>f8!O$7_B=;OA|7OPNU zOd_m;?b}OdiVeCpocPrdvHSJgHhFsZu#@ zcRo!3ie61-`4Y{Y%%ANL7tJIZ^TsN}D`ES0p-a`deXL>5+OCSh+8d`;ZjJGY8hkBb z(a)$xaPC`N-(b*2Xio_irHbOea3znw*Hm^wQ{1~O#AH2;-8RKj89{cP5QNt~ggt(> zcc?D_rruuu>k_!$j>DMetL_^}BTr+9o1pASFoUUl1oUU}U%?8^>*l)&K$h&1a`1z! zNJo4772@n$Uocx};mH9Gj=4e4SO|tJ+lH`uS}|OHDci1u?}8;ROBZt1wd1m2+Wje% z!s&N0i$sWo8s)_9W$4XYt>kF%dQSC3xq^ zuLKk%`lAj&R|9l~ltcxzD1%++1FW}ANT%;9?kP5x5C#uG+eD5@JS$wy=> zm7{0%D>`d>-0$cZhL-rk>0=zrV=CaMqW)3K!-^pun17X9C*j%(HG?aWdnvdgkvNUI zizUPRD(+Ig7B(PA)u2Nh!cFq2rB~<2DDYFuYq&_AO178qdVg3Pmy)iX56S zU*<0OJP5>$xtRR--p5xF>sFuJwp+hY!sMHTMm94|cE%YXf&-?r@o9z*)56sG<|I(ypq@b~=RUgw^hq6znHR(cAxJ5S|Aq$F}_tn*D|DG$Yj(J^R_dd)Rh7lgyy4{HTw^&R`#535*f-A{Ekv#G|*x_-vg{AOn> zB~!9q)qtbuge+tBrKn~SKloa9F`(G|kSBLhUnwvQ##|}((}~R}n(`b5wvs=^f|Gg} zISe+PvM#a_KJ{F(2$)GQMpw4W(NmSmKn|GOfzXSQ8Z1+mLqp`x-wo6i48wnZ( zRy5s^61m;eLcZnB4KOR|Y2nQ*7f8sxs}ZBpNy^6?5KvNO{C5-kKZ7&~bJzT==63~Q zDo*xG6b+|g<+p6a`bs~<{FCBf!tH$dLMp81fyAC`w2F6jMkODfM2L zAse4?B&z+?faYwe6a<^1yV3|T3;Ixj;?@*g@%C`_X_V0*_>Yg(fqKht zV*2Bc(Yw|75dektf_W$nbcg8&1)*U6n~Krp3uYX$^h*#tckgUoB-snOUz>07gkWzu z1L{Xb(yMYMH&+>g>+4Gq5`b*d9krVYLRNO_O)pE?edk+0LZbwH z{Ao_yseNPal#7susVkkao8>Zu_(9kMzR88IPBOvPdry$=gs|4 z_yy%Ds>@;i#XS#lrNxbT5dn3@OIhGxNZWj`X2s@kjxFovK}-BjvJUEt>`005)=cw_ z7yR@~{NOZ@Q!*LDsj8?-NV)xGntXIrQdX)4Cof0@DPwa8{j^Cc@%->N{keLh&Dbmk zu8_}$&#dOWq{u0CORm;C+IUZa({G3SrVB;YXIN?rF^TbKqZr+L*M>w4)jf-0c+~Oh z9ifh^L{Ga$ z-%rsWDBz0uzEg&r&G)sTDYD;$;b$=wN>um2d?3tfW|)5|ik`OL+b1*2lVlYtcz`3E zKP(Hsk(7dyWAOZ$E>#TxaK%O4&(Wpc{lRcnqy7-sXdCE)HUBdO|8BWbF3j47Cql!}J%QBxw^%h?H_1B5SV?N@76 zCkfu7)iTA*4PiB)A8gZu4}xL_uS?wN*)JAgN0`Mlbi8UNlG3ySTPKIqg7tH{$QBS5 z?TRD6pL2En;eHs0Y$DM@ide(~b{Y%hfOEADnm&Den-SyR7%1okz>;o(hxf{`0v9c# z(SCAM*OeZfbKOXPiK*>KfqzcFLRf*(1YT$NS>WZz$?3iCP;`xyVc1#~D3S0vly7;j zGj+cso*$4j@w?uwzp#LlL_gizrvbn)Ld`!d#KD7q^+$_E_;dJ7u`e4K$%>Fx@pw%s zw|%>kTNMG&tCP#@#aHJxGrXH__2}aNB<;CFg=(F~#b{H^)1_JA1h=@jq%ORFW=kuN z*`+33Tny^fv+vVApsA1_lY$?8Dy(Ft<=?(nXE@&MojBy@^6v{mkb9=1Im5!|pyVVp zDGn1B+_<&-(^%iiP$Jgf)XKJ`A{iVQ+<75VLbNPoL@ne7b0gnbneZp)4!pD{=pLm! zEnivwXYz~9dtbg(+Ajl<(E576NMB$bMWoOV>TQjg*H_PNJv4V&FR~1Ph})2?rNGaYJAj+%6ysm+zz4DG1=m*FRmJ& zdOdFAhg$DV&7F3Z9^1oOYpj~38nq}Z2X%tVDjFSH0Tnp!Wv>zVaK}`@(*2_ExhG1Z ze;9r(tG1{SzBQ^MDI7UU1(TRh3-wCF4?YiqS%P7W{Q6qvUflG(O%oR)Fv0RX!N5AkJA@0MuOt5TeFB(WYW#SSTj^p3*MPW( z*)fokF^8q%j4zOLPXz=2(xVWRV1@0?&%dKO)!JAUhes1u6Tz%@e^=#M!Zq8zZRGDC z%F{x;w4UCQ9rT4;9$dpHl-T+u3Kx}gPVw`I=Z5AINWkYXCVX~pK3qP|ezck^<$cw_ zYov6)&qJr;@#V%+cvU>SEG({B-jdv-3&mj9cqsBESs(i#G#e9wEgP+Zj(KYWzzH8i zXa&)r+DXZM@)Y7aUnRCO84Iz%lR2(fkSAo&0qEwSYRwXrmM#$r=q?n2ilhQr$ja zFn<~n9lZtWfh_ZRXW$mVh8Z#6m_ARGXj1jsjGK=+BRSq*Y|mY{QAg|F6l4Q}wDNX& zl1_|%UrCx82X_Ri-cG;BzYUF)3omuqW#57TSgn2L_Pl&s_ozl?=%LvEij)b2Ts9JN zd5`3WAimob2((8s2AP*4TJ1LF_ZAR6`rx_Cg$8^)Fp6K_wz3MHRYCk=2(OGMX^l=P zzhHr3iC}qH5QhACfDLSxyZXdCEHa}0V&ph}ttw`{wcPH8B__Sv&nxV{Zk;61t|{sz zA)nuN>@y?K7BcKipz<@Q+*u}!Yt4h=1IExaCi}m7qK4+%4htpLJ|m8ZP(Bc6pB7~Z ztS=)W71x7mVRs?vRK3YBq;AhOyu920a$i%^o-$WhhBeHeJyA#W`sV@C#`w2#1^Q`$YDfNqUZ}bOqgTC~1GQ-S^P`5RjJ^HB8U4jfE z8E{N(dE#6;TgI(C!n3cdF^UXA_Lr1|ZFpA-6;WaNjB0r*@H3NhodMe~(b~m#DG|@f zvE`t|LlZ}fynpCw1VkzqOH95I6Zs*=>uJcw#Y29XwGE$F*R7K0c-|$PuiQOzRiloN zF~$9*z)c|d5@k`a!ypXNP70a%Zm+nGjAO(wIwn~Ie#Bp(s(f?S|`SW zePF2m@pFs7@}YL$ioEMztjzyXZDeT>@9@#a?L{3?IM|ikwH3k3IIqp~*}NlGt?B7yMztF9CBK(Cn}cOISt>x&(0l79ofE*I9Zx*9iM71mva_JL3#gVc(` zqPhn=P`}kJeZSb#y;@m${w(O>3T!+ZMQ2Zbo%SyuR_~Hk2VT~;u0P28!hcrYE{Mxd zI(n=m)DK-;KCpSTsIB3s?DeLMQ@R=+zD|R0b!Ew`q>8Kjxs05A4f1vR`hsFZiLO$~ z(x|8MYa(NT4?sEK;Yi&+@oQ6`Pe#PpE0A~S5|zg`5Mm@SmodVZ+G0XbaeKYnvx{F; zq(H#8)enU8*)Gq{Ftgffp3K3&=Tsn3#`N$-q>dPAlo1=qe@f=s+I`u6Hy1+wf)pRt zIg?JmCkoQ~9-s70Oz9kbDFiZvhemwI?KBj>-tGZ;dk!n@+ac0o#7gCV*0fOM~Vb+?{wg-RYjbnIT& zXJ|%EHBJ5>a#OC0$Ws?%4q`r1SY9IUXP7{s60!jVC5X@2#0Z!Q( zLal$;i>_HcdfpVp29`ESx@+?zd?5--uUGfw9ktpH| z8XeA-e#-&(q)1#vNz4B*)uchz<(Yxs5_V-)uWKI-7Yh$X?$vdViP)zVjOsabOdpDf zNB0TztYj7X8U-{$85G`><0i|cr)jhwFd?d0kXK!-2myesnsw~C{>f>j3qVYO4c+i?B?Jtn zU*yDD^iH7dQqL3sC)0<_2{RL5<-jC;lXq(Vsla7ppZC|Z6O#jOtm_fGz93btKRWdjLCcPSGZEQO zh|mrEHC6AkS2HLLH=o)5R~bSmYcfiLf7cgm-w1RJ&wty@;j*$ukIBD;YSYT&_igQd ze9#5bP#`}t`RmsP+&Dky1b&hL3_rU*wNO~@{L}SeuHI7mXv*6;9pl^~8nBX}Isk$3 zV+6O|hx4jnI9FRnQ~l6oU}b==@@>YPIDD`1=^nX^iJDlP3HXR@Y92-IhwIz$_&F0fwBA%~d_0J1cl+m{C9S$#Zag=-T(38_gMwhd z&Y&(`<*z5tHe`0Z5lX>7C}s*-SRmn%C_xj+V20kfHU;*hj}LaYJ0mQDwS!88eEKp2 zK60iC*u9JPL-GVZA;&p^*Eqo0EOsD-``J<7r~mVM;O7;V3-yE(3(QNIv%GBK$iQTd|-I&rWF zy>_i&l<3kgF`wG$sF8$4t+(H#3D2jl9510@t*gNQh=v3+U7HwLbZ~?a70+>IRb}rR zX5SmMPBR3NBwHLZxIj1Wvc~Ul^Xv&b3!cairO$&Iz~nO*fW`F!qgk;h`*AX7Lqoz1 zb*6y+7D;szSp7Ott0MQYvF!|6Z&s2{O9o`f!h~g}_VV5Wa%owmGAQz2Ojkk^^Ev zLv$8GI$@l0y_3Bekvt0ZXiHV?~Ys_E$T_7RqnRlm0=VG0MLYn4h$X3jh5h zeD(wuKAKj>ex4;X`u0AcTIX6cBlxnWs|Om&dc-W%#-89Q7Yf^cPuWg4M>rBYW?&_% zCw_&C=iB#eu|ZPR{+owriQ*UR{lJ-eu$4j$DB{{S(g|*QWHw~FecBXzX5RMy*=pr9 zyvy&RpoLXWn606&Yscl*z74$T$k?*?Rg`gxMs*^Pjtmsg)WFOByhOzQ=hQ!nELbRk zuWSoCP8Wy%?&u8D=R6#GM_3s&3Kxy5LmiO4B-WkCrX;irlq3XPXWm05uEN)QIOelM ztd>cyrEA@_PyZNOXZY(U4rvjh3xVn~xct#{H1QsN;u6X8DWUk3eWbJJ@8|>psY=<( zmHKai4)fN=2nHQjdS^r~Xod;NFkrFZIlT}341)I(yB6}4N4@4+Gg<9!sdY&o|75Ko z>SdWX3a9EVH_tYKFvMp4y|fbtH=RjXaz^m;HM$oWps()Sy!772Ijbu3uNIr@F0t;>;nm2u zrvU6Y9?zbUEnf~T%u+2q6V!i2&Nmy>sR2L7MbV&(dvz}x7lVJVlLhWIKlUj?8U+hn zw*5@ErP)Vg>RdI$4Tz5z(^o8C6Cap%9+(k)SW3*}*0E4*NJ?C|EYmJMVrlo(?6M39 zHU4n-X(h1YR)XIUA7`##ar~Hu#5_^+J}US~xuNcRWoM$&p*4KF>Z9lSeCW%_8GcOq z_jrk0F}2cOI`;l7=Fzn|79(nKfWJefv0TSi*9TK)kkKW*Z=4nTWw4mqmWj^;xErXD zvT9s6ib-qsUBTuNOI)uBM7ix6ahmY|tY!vfPI4ROa5#uMMnk8`C3bKHhjZ!1b}!UB z2lwZvi~&A$%K;^^+i6`i*ExoP6H&0LcsKoSo+k zchm(LiJudOBRQ^X*ECobHb3+_n zbe~}o)W3b86#D4`6c(?#SDsz|EKL^#7%22|4qDONUsx~E5E(%|bj|eA7&aU~le_;N z(tVtTzSX08lU$uh-`nlUMWGQm%~=YLN+=~Fpu>uMj+gWQM$}VYCR_`1=uHJ0Ozp!8 z%xzqjl?Dp84}Ij&l)~yUo_*XnV+X9<8frQR8xb%^#KY}liXPPbE;8KAu~f_qr15Rt-?Hbq!&(O{ta?a5}f*8N79hK6C5n3&?{Bq6RT;S}K!9 z?hpzEc6Lw4Jkz$;F^Fyqxgf-clBKcNtZ;h&w)_YRb;fR!oIqONLg~J?z$+qSSFAF< z8r)}_Fd6N7Tm`^gm`BV?{hTL2ij1GFz%|JX2=zQ_Thdqp=;Om_;)!_mcfjVyzY}Rb zC9rl24*ckc#>eyIrr*(h<61fD8+Pg%vY{4yLiV%^?8lbykP;5Gck8Zh`V;sD=Sf;0 z#D))*&{%lP+`xUsX5BZYHhfSr$2PGz`oUh8(IbzSYic?2y@V-a_3TqI_C=jzz2{or)je;kbgWQhbPZ1-!~Fv8#ap$m0noy*NRhhk(yVn@9W zGyT8I9!IZ7sQza}^XP!J;T~%yKwmweniYT=iq%2;9$}vwk?~y}&7DgKj1WBP{oO5H zZ-HZiO8Bb2;^lY_1E`ze^chk)@%h{qsG6YPr?>U8qX~5P@au5*N`0}%^^@{lu2913 zj+;)IirrcDiX$XQ4StUPs<$HFGV$haC`@z5qBV@^O^~=8CxvK8KF0!Q2H3WTpYKWD zVgt1;XfX5fagHuizB#5f28|{O8JCQ}_KV_3L4@xAQDwfJtEXV{$z#%62uv*kkzwA> z6QT5XILGGS4O#iGp}Tuo$AtPlctK$8rjszIQTc3D(TtOMKu`@%mS-`L*Yf~ef5dw^3h*s1@V$W3MJUJPu>38suIr%RrA*w=;_&&! zMrE(&4u8Jc84PC&FW&MzFw5e1Dy=3@q4Gf5umrxb(Vs@{ZYBrwn6dfqd~3$T z(+U!b*v%l>O+@0ivO=|lJ74vTLc@^yRyZIHcqh;#C(4iE78^2;qD?f%$3#sU7_~1W zIiBmXbh7%yL?)d+-f|7{{)lhvulP$b%~D@fc-*tJOoW@STo1~;h58G*%s9y^x}Ol0 z77n~gG7iL1MQLC%K5W4-&#c5adfP-MOUXav{J$dWlyV1WxtCXPzrwu*I-;h_ROhM_ z62Y=WB!0pdQO5EQ`K8)N2~HTO=&lALDyISgfEw{; zdV5Rfa3s(H{BT)$RyR(?i&$um9lb$iNt5I@*?AN^;0I}lC$9RX*o2=b!mleU)40+( zIDEV!=b`QI)`phI!x7G;ugW@`C1IX(`SBQaIIUCIzdhgo1u|M8v%8xJ zpkW1b4Bh)dI|p(8S5*n=Lo7im6mdc4xls0b5gmf_Q{$g8#bxXskrfWF00LxgbVpE$*O6 zR8b^n%;ML&Ak=F1qQi4VEf#i+6qOK<#whN~(RU*;@W}7RrZHp?tZE9(8wxP^A!c4q zdxQ8+cEd=)?AQW!-Vm_B3cP$#G&UfUXWR#@KRVA!Apz*S`aDl7 zTF$ukQCUG+zX>>Y(S3(Tz@cza@JOqqgK3ds=6;dvo8E?y1Btf@xAGSR*bqd>XD#*F z_WBc%UjZR;NRz@4knr6I@K38Aaq6Wc#oLx&9KEZ?$P~wyhmap(V7OplX-W4{2HI_E z5D?+l90+uN(GopnB<`Y5h=mDG%bEsIlGM?>mg&h;J$6@HGa^>Lc-HaCU^p_a{VVpZ z7+03EUJ)3QkM&j7*%AFTC9!UO6_y9kA*1&G4tkx?9FU|Yj`FXyIn)HAC({vPR^=de zHTJozdkMAb(mF|%KV{{ka8uX{koTFveW@W~+2h=u93gF|n~7EPjsx`trT?zqlBX@{ z0<)}<1jZG&nRR?i4RWmtcQvY=k5L}5duFLLUVM$FC|Nuf8UQeh@~G81Na6Dxv!+*2pXg}Db6TGeZVye<35Sk|O= z*87ntS(5r^7{P6u-aKj~*D}tz2$djg{Fj}YP_A4ZkiUCm<3pLi+Y%-HINv^X+O9#Z zPUD~6l%=kf9NRKuO!mF+IkpU;1uSp-GnXm!nKj(q&-BqP3%xhWvz_-Pa>`q71tzjX zw(sS3Nw<^7qrgxkOX9n$CfUPRoeUvAY%t@+BcpW$@18>O<$RYb{F z*I9_ECM{L4r-><9l+l|1`jtXutRU(Wu>@ZVSEq?+IMn(m?6U`3%G9wnfe|Hy50VFd zcB@_7(}pc3vndSH!aMA^5(nn(o{bR_ong1g_`E#;hybjF&!sjIK_hVj$H{Hl2dT=8 zmdS2dJvSFm8p&>y^p*XrEJ~Rd9|Aw`?Y)%^J+%VB1Vne2OZp(2_nwf5PAKX7LD~XH} z^C~b{=;P%Z}`kl5FbU4gK;{i!TBQ*8efmlgMx4S`ScZrBV}D#EXh zt3FB!2>a)029z6)Qtm&Lj9H z($QahFeCUnJoVFAvmYFrCXr-qCceZ2I~4uy_!v!Umio_u9CQMz>~__p|934tfq}n& zY%|Mn1!e^z)+MH163<2-oX8=HW9>LtF0>bF@*4t{hOx#p0v1O`jq&r=5+p94eEk~+ z(21n_yUsUrR5%0$w9DE_)_Bg78g_k#t02i>dx*P7RGd9c3qx<@oPP}`jc1dnVkJyiYR%v? z=s4}I7@@BtXzy=ID$(fJ;qajRFPwZ0M#7*fXl`a+$oc4&h&-@$IIZnXu}rARPccE& z**-DUe<+Mv^0S<(^3mpe(Wv>{XGimh@XstytB?O-;8aXs_(Jm{rX622eMk7+J0fb* z#>U(z;e94~1USUBCc>vQ*8(TT~Glnu#rx zALdHN+Rg7M7i!&bqsQ7yl0~jq%W!vWiQcfVd6->(jGJO-yb`|+E&Q?V+i}k2)ZeG` z#S#Gc{2CqLutcA97CT`;%(2w6J07vZVDKR}cU!wyD3O14m?Mp{hP7G&TQ#{O|KkzG z29BhLN}Ss}a?Hu^ZNpd%!+;_LiOtJ=@VBxW27KU9Ij-!cb|P9gb3szU(usZ~Zz%r-4xyj$YAuEY zVA`fy8Cne%RL1V;sC5balD~`jiWX&}aTdy3F0IG>VyjG4LZh*inkj`3gs{<7Gk9vw zn&KJ_Oz7JHp84$h#2dZpms=e}YsZ|Y{kv=lH~B`%sb>`rMNR_aZmE{J;X_P+h|5`7 zhd1eS>_S^L`$VC62Rgw#S*M%>!KPx2$S+-@pC!|rY6wmQI-I=IVESQV8wB_naX4Ia zI}qDWf=1mSoo3XvP3RxyZ_ssTa8~Z!3XYdM5J!nL?V=Bb+aasDxchf4n$F#_-Qw|W zJNUN*l-Q}JzscRCFh@}yNa2H39r$)C1TpKptvbOyTZ7A0cy#YzMO~;TW|-vHzEO}3 z?5k!;YtSp2&TwRFDacZ6g(EMV;(JI4+%o^toa0<4Wi2oThl}Po6`>7)_>^%X*~K~h zGhPQh;FheTQ^XYDma_}Bjz~?TWXF#b14K z!_t6^89*b9{iINGT+VainDF9&S{}Bx|4^NwjCqQC`)YbAOwQyxr-*F#EBcpoR(|dVR{Z z`kg8$bHxIH)pymnFdBTpCTZ!9hlNF}W|!GVy!QXia!4AXsxgWaN`KW)$H8U-%CZjC zls(RpDjXq)XK9*F!pjD8XMYv=5NjHsh?M&)HO+5feXC)ZhW%N)W4hh%o7(~ z)<27Aoc9I1$m>b|Xdww7SF3CLlh7DXd+IMqeM3qrU4j}xh@6JwCKZ>&#@jz?G3|2A z#s&jpmP{S737=E-VH-~?@^M{e8cpKtwTnkTEn2X`!NTa#o4Lun|1Eo;r!=Urpad%J z8w=KTX7lF$k3j;O&m7HK7nV(Ze5&8_?8q!*@pZmD4AYgtJ#pfb_1~OxBZA{I(L6L* z8IpJv%^h{u*gbjeM*qmN zEp%KU>lhiR5-`d{{{HL4{&%$;n*jk2b8XE%9hieiBgOP6x|{gZ z`)a+djnKm2W4W$?;k83zSq*d$Mea`Y{;i!1dsX^UYr8& z5h8XNe#DCP1zh4p2XgdXJ4uQgM2_b{$yr3RgJn=`NE>w$$6GS6bl7hpEyR~WfJ9c2 z!eJ^e;rfDroB+?{-^6q%h{bDu)%_?az$po*73s9V4qvOcxAH&$teO#wH=T{d>){sl zG30aY%;le=vV%n(eE};+*5f#SrlDh&qBj{JaRyG)drxqz(7+03Vx9H?t1*ia5X z;@Afi-efdbp#pwf(g-ShnK2C0{)MtlmZS5%9u?@0=tD+G*8L!iajpzBGy4VKwwgue z^p;F;RAc9=<7I!WwHVnT5NDOj^W9;^oJ*WKC0Q&AB9je-wkM@x2*LJ*CvEiKiK{>? z4l66qPQ-UE;SY6wSDU!}C#k`Jw()0#7XVlWJ@iX0Dsq7Rs4QRB&V5WW9jkLzf5vhU z_V4%mfU}G}|1uFE=zA_a7jmnZ^m#cU^einr?*VtuH0Y8laV@f<;kDr=^mtG^sst71 zQ#fGd&cTwr*|C-?sZwaXu1nno{dmN%?QkHyOOO@a0C;-sIsTCmd6O6_o+q+UBr~I= zO^RELiKJL)2uf1bCIXO{3~a-d;70Of`(F_p0kmgiq#sZR+X zc>S;Yd7G#DnU<{{=5AF(n8W7SV(vz4gTrWpaXow_p+|t2KR&qC)&A@nKIDPzz@9rJ zK;e0OFL;3KbZwy=Ms3jKIU`|3*vmd11*Bn#?AD)2L!kd!)%d4bv7wN&32t3fSMi#W zrPlL55wjHa!-oM1dkV4PP>*ptdt(}k+wSdF+#G+Xg=dNQyu?+*@lz^f4Bo}9!E=VQ1<%J;N z$&o)o1JS_dV8G$!!Rd|-DJbaVa?VNtF&TvH72y_KAn&!g`2m7f{ia2*`Dm=yxZauc@lIcAG)y%_X>?I%;Yq%?$2b- z=XGJhGum?hy28ma@b~X56#mR8lz3>b&<%=s{`n)q&F0;6iXNev$S@4nm|nx2M4x8^a)xUa(K$T^aBT3-3WL&=a$Satv-%6 z{_N~Y(GFKD`!J0MmNSy#7W?tZdAv!kNejfq_pzik>HZzd|Kfl_9#jQiH9_{Js<)P| zcn##N54(WA)e$-O(a7AIhoG7#(p6mtNrC!H;_!nGD|Fez!lp?E+@5=?(gsol= z-;e;qzS~a3@opWfepN9bTc%6hc+}=Xo>09qoaFid53=PuBJu8+5GX{g-^rRFUHwxZ zXvRB?dZ9J9hvY_aoTaC>36!hbKu!*Rs`=iP-;2a2g!Tr5kp_G1&4#P>1KDI%MBehC zhx%L`ciS+5bu#d7!y6l6i>XbE((8S1#N`o?=JL6B-{|zL!Q*^r$MeMNiS48{N7Jqt z``0?oZ365&zLL0ODhGQ=WG22+aFDV$;yKRkLfRE-aRn)dQlt1N^p$$_K5eUN zsRy?dmii=? z=XT2FZTPIA+&>oD5s{|wrzDDRmq`JfUU}N`ee2rEc(qkF8J5S0ZJJiAWbwlpZLh4T z{Jqo_x9b-2lD{}|%txl8-8*F2(GQB|m#9)}4`g7KlG6R+BcbXp71D_#T7RD$M2Hl` zpTZ2Hap-}6A47KV8$%C$+fG6Q$)4K`8CF`GCc!&WpZ9&Kx;VW|M_Ykygn}atBRe&| zwq%K;ZwMLJPEi*=`NP9KPSd?;?dL3kMQF3BlsS*BYDTZw;C0g$K)ALSxyydLPiU+bqd@2KD*- zGS6*bkiP#bxOQcO=mvGjQyJ1C5dbhj*$mT3nrsk1Uks|w5I&^NXZix4eL4bm`3|cb z8zTLSyC2rHndW%ZADRjsbDvKXP>!_2)9Gh*NjA`6&Y0RBfgLX|xUVVS(*nX_RXbl- z6dGcd@e!iIHIO&dN7Gbv7-d&ZMkzd}C}qX$W>f#wI`Tao8+%9(7kfaA(S$Z8G*c8< zVJ4%@)1v0Ybt0jwT)38DW zkyHB3Cyjl)AXR$c&fP+19;tkcE?}Kcd)X5XvnWm-3|~aT;m8JF?gS(}<}oC4?_N%~ zoB^LIRhxa<*V^d3393_PIC`1|!B_C!nIC$bnL@v_{#pgsaq0@^dV}n+aEE=w$@vRz z`oED)lME?l(mfnuvzSRWuWlrx8a(sRWKrG1N%kXHj^k=mz=^DO*<;|&@vh6wWR?q* z1c$_Xw~S+8Ugz2Z=yyr6=f%=@F+@c&@vHP09SL0L%UPrdnFUWOS=BWEE2J4;v5Q5| zrP$MuJ6Y7tngqLw!R#*MW!(Jr)5vWqxO~QG(7k@J(O9NEo3tFg@qEmfXSU+QWui-9 zzo3T{p+)e{@47zPHf_=;qK9{1RKRspA`kP9S{B%hL~2exHVtxs&VCIiFZl<~(`^sn z^Lg*r=J)Ubixuo|#IgxRu^mIO0L&`ND+8aOmwFuk^ zHRQEAEyGw1A`JU|N_-3&nzCyAhDj+!F!F`c?zdT|O(`k|`4RlzT;MARN*8K`7cq+N zhKj(lrLhZqkUjoo_v;=QFZN_MV9MxwF556tUW18wnx;bNC0zr?}WO zjaMZ4DAwBA$Dyi+cWba@>ud#&=B%><7COj^g=A_8)UEgQ5SOb%)EYu4I45q?LCKpYoU-nG$ZQQ1zLeuR<`MaR% z^Jh}jBnC+bqV^LxI59^3c7G?qLmG!P66+fa1R+NU50S_tK?zXQ&w{TT`@c)(I2eU{L-S=jk(=*>XAE^qkldfCT{Sm{Mni zp1a?s0zYPenj4HxFL`a;KQhH4wYgY~ds(K?BM-<*SHMC0DUG&&E$Ke>#m*5*e}-+O z@k59Fnpb>KWm0YqLQXCWrEbrkE27pB*bewm$2+9?D?nJx!oiBw69D}^tvqX!?ZCRd zkE6Z2?Zz5^eSv-?-q`$5b$jHjha>m@P>!EFRNvgg+{01QI9p=IZacpglg<<5zV~(d zZ>@g!Czj3)Q!+l86meb#sYKrTp%%U$2GzCA4RVccVu@w^H4rA?OS^hDd^#Q^CBhF3raN6wme>RDKU2XRJ=vsEbvuVz@iwI^+AlUNfVQtCiK=d~5tb!QIVQ7cR=$G%3AF zMrrV+$y5yL9v*;1c_0-0yD`?_a&^<XjH=W6l&WM2D zjKrDJB1N%@Zx_E((~66!Q<*L~6`;7)rB#+bTfdFndoF3~8#S>0zt*Hd&ZzCmPb#g= z7QLyrrlk~I%Ue($a%W&Fr|5}UzdZ_FhuLz=uY}O@b?d`)48X!y_rs2%&`gv_Y?ug~ z&Y!G;&Xx>QiD4Cm%IZLQ%(Mz*LPjb*@W>SRFdtg5J1l>X%X(u$D!}e!gJApj&rf#g zJ@Mo0(bLO09Ok$r1chH%Th)h#`!z;^nC3eC5^F;i7!3Dj$OBJwP@88@KR#M1&QO`a!^P>AclbE2BOi8piwB`(+`P z9`s~EE%gQzM$y9%ed~qV=u7vZ)b)NQUYL(J`ti|hinH78v&=R%*-Y_0<-@H=01fJl z)O|+uJ=?+Kp32%0)9vtfbxpmeS&DoAgAe($^zUerPi-NX0BJM*#4u z*A&bMYvfad=XI;gJiT&RRG`a3Z*dF_+Kq5&X8)h^0~#aT+l20h9D3bH#a;bKUE<|& z-YFafIElhu88p(~pZ>e47p4V@S~VT+9FlB&;tauecJP;~+e0Es#;4#e zsC~0Fy5__i-Bz^P(iuKIo?RG}*3Tsm@3Is=&?1S*`VQDAq5v-HI%ZU9)}{FpMmU8^ z&@>^5T=0wzrqF7Bb`3y7i`92dvGl5{alg8?LO;o&oU}lCPcrrdfP+)xe z7N}X0^lvvsEr6j^mB^0bnqO~Rb$_CN2E#&^QfOT+!S6E_HiF%EwEt*QHejiUnsbRSjQdZiQ{%8IU{+v^PHt`a=2Gsi~i@#4aj zzl%zTwfMe~w`_{*uE#*NLp+uF`?Zrt0CsCeU@GD;iJ-#Pv_ja3lT6i;7S3pi?DmsYS*Sil#tC`+op(K#jk; zmoVM~21=@zz_cL{de30M4by@+WUrB*7FLLlJedz$EVLZkH&$M!VK&0l_qU&YQLb|) zz!)q4PjPtA95hDIiCf$hXy;jZv=kbzvpYf1m*6jbjk88XN{z9ig-5)0B#`ef`4=YW zjgNELfm=)7{D5l{DV!HS|2+0SF3;bO;i@5qtt`kLKAm=o)=N)AOUg2A9^y91?mhKL z#8#{}XaVOI#D20seZ{7x!rbqqsGGJ(KxBp7J;`AfUP3?V^@`Inh;F9@TCS#@B`@^ZP#7(+f<}4fb}#|0FCSe@wqE-OZNw=GN}Io8PN~ zwRl=7Y25VTJs&>!P#S*tJa(#jy;s@p80&uPO%?yG%U4)P_Gt{^pMU$U^1+|{Ntv9R z&C}#SR9}3b>6Q<18+Xl)@FHQVl}Ogf#Nnhs-&BkmxL2Qb!tNGdQX&9<}LuwICQn7!%p71 zY@)pK(Lb|!v$hT!i#7np7&VB(N4PZ}7p~?PltUj)FoIhfDTk7pPowtJ?BLa?gN&Ki z+yYu$wxF%R^XX!2)AUIsOJT(hvM=E0DP{LZQ*NyOXaY|S*eJ`f?q(aHxtslcF#Vh9 zhWQ~d^Q>k`@YBL3pXO;Z;%S=Qb$4Nb^hDbFbo%8cG5h#k9HGANgeCTFzbzexX#DK7 zyMBq)Fm|K(bHOs*nKLc@&6cO#+&f|2_ZH@PVGUnf)57hv@j`t4Iw4i15{>H0kZ6zS z*N9hxTj#Z&uyve7Yz%C&ozIKHHXkjO$JcI`Z~pGnm_9wlHMGayJXgl{%&_K)!_)}V zRI>4OO~eh!IFsKv!&BN>O9rnMt~-<)ND&TP`EVD2;bW^CNF&tGhK}x-xV*z@(3XCC zSQ8gU?x@~@=U+m3HEj7!sYE2klqRb|HG?D|;|WNkZz;u-eABE$a&&g896WWhoLS`{rVp3P zHAVm?Ca1~-$Kp?O%-b1PI?}P1(qEAjrJAI!ImP)Uy`sAw?^nL`p!ZHOr<86Vu@a9h2 z-~1fJeO_47-5&Ob!4ey}L;=htXB~ zQTlehn!DKuwP%ENUYnSE{!euzbKAY27q&gr4|vA5Dvv>UVy>jfWv*pOyQz(stvC!Ik zqT2N7<2m+@UprD$mW=)5(? zz-@lLVEB>T)R{Xx+jnF54vC=QyN^NSDe7b(8JC_35lg&mCh!JshD+*l7)D?<0pUGl zQD53(ZC`7Mp520`Z16=+vDS@Y{gK(}a`4P+<@EAmx%?%^0&^bD40`Ys3j{}48(>Fx zQ^6BB8-Pi@E3;rLB55%-PPf~yxaXe&R7la%VZp=EGv~|#u1sdWgL$ei{_sg$hv@Z@ z2M-_NP5_3hSnx2;Zh$ctMoj1G$PHk&ghHZNx!;luq*Y+Uz*Ux!%UU9}l8+y6V#IIH z78to#!7s`R7K1niEn_z7>Uts;GqEKr3NeUs8jT%n-4VFa@*NXv1Uj&cQS5$9J7Ga9 zLvO5zyZE$-&m-oKAO2{qgxwByI} z+=^V5RV1<#rj&jx45CkjtuPr2{`s-&ix=Eh_zqTok*{)W8lEs+xl?Zi4jNDVOm~Lz z-M;k*?XME~Ac@;0dLy?#EZW)Rv{A;=!ZbfntWa4CVzeS<4 zPGy<_L{Hvu@RGY1l87S^QMd4Fm|VbE{R~$bkMt6OeM-}8y(7%{rP+8*P6AZbOw#hV zJv~_f3!t{?jrXMBCHF&I89cFXuDr&G&C2{E&ceA_ZZeJI>A3q(9*<6QTtZm$!B*F%IMan;;^CPv@rqCQt+T`Ga;psW9LwvK$%dP=)pr}&%V87WPGela5%y&Lm#t84s#OHepX6yHURe_#Jq_#>u|rhq%h1d zbKFLfLt@66S&n}dKysyIbOC(fMw*STb}nXV5DS?y$-*X&+47G<21~ixw`CRuBm(k- zqtAO~dIv21x8v;w%g~LZN-M0N0#nk>G#;LWk>ZAgos~)l@Dvz%x*aLro)^~Vt54*o zz@*Ym#m@KU*X*u;!dk9$F~myKpgV1ScY`%}*Uz%wOmrIB3w9T;fg7y7Z?l7z7*RDw z;q2j42Ez@`^TMQ^VKS_|8pZd)S^?|gNh{dXq3JP^ufM2Y)478`d2eaA4$B^{kZQp1 z;uze8f$NKlp(O6HQrt^s-sKRP!<^B-HH+e>H|d^n7yd;D32hgn3x?&%z5A6uR#S2< zp5_zEABHVIF~C|q%&#n8)a_9RQJZN4mxkIk8fKB!Y~brtOG;2_;rpqJfZ^v)bmZz+ z?;5V;A6|$+emq3SxO|MJ(M#KOM&#gUU1aR0+j=+f`Aru(i9k**XL_NV2*jRYm07QT zuJJ`Wr2w)r&UZYkX?(SJ?cfLx<)8wOgOdzPe$fIbvnczM+yuDJ5zG%ctKs^0m&y!N z7JdED##R;wCJ*jVtJD5+n5$YHI5&5%L``0ip&dR7gR+2PwsvilUq^-l?2-p4Y zId;6fGdW$3A3t6$auU_0&p#_4ee_XT)(HXfo&k@XH~0$RUumgt7KL0p^$4N@~^XRw!iHTuYvIlT9ty- zHL0|X&qH&zahDhYf+uX1Ysjuf8=cP@#IVX%6Ci%-D-hFUY7$3UX~alQl!IX9P$~3W zjZR_*c=sO|@Z`ib7HdYHqr*nn0bsmGxMgwq!9sb=mB5!SUgREzBjqUT0!G*c;M~8D z4ZCK7MiH)d4n?%#hz(cbwbhFxcxaMc00;J#LtKI|O#wd5@sp1i z9+u_hrLxLRR1faoD>trRD_?&4ak=*O*X1{V^4oHfEi7|fmN3qI$f^qgk)D5%WUOo@ z(i%%hCL12iG)?rZpCz3{`_aEG6O1n!9}U2}1vq;B^3BKN8PJ=<6h|{JGS*b^BAg8N z#wbh22w%gCX4wzSc$<;_HdyuF4Q7Gum9~nv8!VV^aa6qBVBN5~&AS#%{&asIOqP^+ z7w@Ss2tI-LoUq21d6}FUOM~KkE|d6HV;bM2@+`BP|8B6|XfzIgD3?jg(9avwZn3{A zn5pB5!epFHs?B~D%+g?9)O2<~41>KW(=q~ja;4eEZoGpe9z68?z_u!ots&~qP0sAU zckNnvc=t{m7IW~_@iMw^mTsL3{8S;}(N)f&ZC;*bM6Rasl&{uAsqp%IAf+l!``wH! z(0lckd-tR>Z_njGF}w~=qm|_IH(~xZ-*j2WKp=#X^<%Azgc5n>BGP3(Q6omc9u;L3 z`9~f`oyj6YdYN{h?3KroF&OtRw%R!#fXT&k=}s*oBe)>kMoQ9GFmjgz=!w;2t2>zK zq)8efyYvi<_9Mu3Y+jl)<}@|{N5nTg=!gFa_W18ZzwNnyw_N$|+j8qV!~aJP#J2d{ z=7!|qFUo>MarflF>#qDLlWJa(@~;v0m{T0U+_#7z*Wo^fq*(25p_$_5zX{Gb-p5wG zOIwt>2&Ee88tinYh>RCvkKRA@m@46V=%GX6W&dJH~z%m<<~E`%jt6k+J(+; zpdF+|3I2Xe9J|okEy|x8)=yfbw6fFO%@*9;%@(HO*K}bCc@e+csP-A%7Mlvz@4%s8 z`G|L5v6dW|D&48f!s6)FMU?-In`NC9;vU(1==I}ebCN~UwUW2Cu(oXxWRyv_r)axn zua`)0L?&`$G=%ut?N|RHM{?IzN?Cmb56hslFq^YnMkc1I%b9inDgF#7Ptw%XwB<_! z`j+nGyT$}a1)DxfK?x)$4KL|5&hSHk%FwOfp`-~Mihms~vAn`)$XeMz*9_Mqj^$e; zg}%WZ`lnH_F*aPL z4(wyZ`*68+<7&B218;F*zD(|&iyHuk)t~%jbnt3Kt&-ajpIfETUc9`hM?cUVyF z|Lhh=-}e{m%G`jxCaWEscEKibchmO?F?0j%9^j`#pEHhz*5}Zu8}z5M@nR`#=kkTn ze!)q7Du;N)_XyMR9b@;S&QS3S(E8o&W$UZ!Wr6wNhb;D+VDa<;c2CVwKW;evDZM5D z9lT4o=?3Ep|A1G7if@^=&Ix6L7fyJ~0Cq|Yn9Tv~b$a{{9+XE{E|$C3ufo_U^VNr0 zoOY^A9X`&%G-HIVM5J$U2z^SW9+*h2=9WEFa>8Syp6)qBrgcQyB_gaEDxs z1`}d1E%8!05WmW&LIT&HmbZZ(fzm62klq?q@EuJXU>h8GG{Q*u9!A3VvHg7k#s3gl z&vG%-BvS(>D;TJDhinq>{5C!XHN01*{96{8Vdix#G=U3G^NXyLBOeui<4!!>qZB9y zl*SkaIdt|cts(B6rgi(}haYi9zy;<&Cb%m2P?=yMU>P0D!UIto$5k!}GTpZR!c;rv z)4}pJ_^945!io%su(WN=X-Gbg#fU}@9zIzzjJ+a72;ORmvGv^LEx z!?)#ncSC9eN3`8=^i(35_faNxC-kGCE&3jT-Pp*4^mzq2(o~r@i0sR0((_knqu$)j z#!LUm!ygF?+B?GbVAAjMAYPj67xLZ{Jn*jU8@vmvVY{(a(6&@Q3)cLeW(S8&TouVr zyn$M3(kpv(`I`_$=?JO4ey9IdmsiUz&Vyf~*MH*Vv9h1l{nmvXZAJhUO2k-W%G#x6 zNA~*l%Gkx+78d~PpG_*@sJnRYg(3c!J4cxgFD;ixm#&m={^NftfA`maRfaj4?hI$O zeDE*-RhgYVfKnYL9K1xqX1JWGis+3)z#(tB8e+@+2=m_7@p9vrFiPATL^uT8>=JXx zn+mbBHxC}2b;gEq)bCFu-|6jpTH!F2{s^{agYNt2=2}^~cemX5=i#WEwWy-(Hz!UB+$9l@O4{%3q;#;K&XrUfqYGC@%Sb5_&zbR`B-&|rb z#MhsFUMBbKFX!HWKXwIdax<0kGXqULB+?+vZPID*muZ_0j7eN4vs`tnaRH9kXGT&< zphHWxJkw|!!iO}FcGKWnT)dIfTqH2@Lq7QGr%7n_3rPN?Z=>4rc*RcHPS*K&U@AWO z%6kBUb$>DqeU5!M70s6M=5F?@gc;ZOo0?6}K+KQU6ud06Q))ZoY2x1r58i9R$-DyN zWiq;xfgkZ+*^M%$TfSTAXsiqWIbc5|IW14*Gx5hU?rfu)6%1sfy(?#ThR)0@hfFDAAcIwsS++wNI-X z;E}eW5pKL=Gv2jCdL4=;E!V6-GQ(xiXjOV3j`f$G9zah(^a24TZwtJwq!? ztc6$smr)6#7hUIDqA z^{HKUCHVyKl_`G{;iFLq&9KHTje_aG1^Q}1v%u$w0H^j@Fze9LdCo(2h3l1zm&)Z& zzbMBJ9Yv`!9Kr~}rUipP6{5ZS?8RgRZH_zmX-pBt%P=Z7TZ$v{W8s7sql}}7S?DoL z^OBjTQ1G_q^^?m;bEE*d0F2ZCjE|dlVVb}VvPcR$z|}8(8&;s#5b5?4Pt$DQn!DLQ z43?pu9o8O6_DYh`$Q$IM37!D!6T^e>6aL}rPov%Jp9t#}x(>bPf+c?D6FkUsBhj(V zH%+88e&V(B(~uLiD@q6ZM>&b2#oyy`Cm}zyWzMa`(o#RXRV97ne~$<7EovKgRX2a^rz$p%5V0)OaLW z5;YrI9oVAjvLVd+DWq3>P`*k-1>=Z-iw%bvaag)@yWG8esXSyD{our8S!GUr^TGXc zpF`W0?%iROc5m5WdgAWo@5<%RKP`*bu9VY9j#8dR%cF&5rr+1gVU+LDqesib#fRnQ z-J4~eM$O!TgXP?N@0TgyBW&wlfBdK{u;BYP_Z4^_%rXld$0ldk_4P(Mdj5PFXB+qy zz2w!$^X1XSZ_4e97s~vt+hv_=iYM7Fet>OrhdA(P9zJe=`*m5mc^$b;mM{PMuge2y zALdxyBd?z-^XQTXTsc2XgJqhb_9f)JMPuac6Ka3 zUJ99x&s3t-s-z^>Gv;D8-*EIYIWb?E@|T;IK;5mMM4tUzNVobQT2t!gPd{G7_3DaY7!}WYsiSyau=*s^L6gKL^SaVV(;B;XZ50YvtYG zE!rN>rZxYAde+TIr^%q%&lUF%M3R{fugSpo!&(}W*Nn5VDY+oo@?UQecZ(~7#&5`@ z5#GsD#oLXcvA@Z6B$A)j!$G-+tg{xSq*eC){p$9q;FLMt<`zgY4c-P2bn4(+{Wozm|_fF6;U{+9nOj__+gM5Ln7M4aLq2xNYfAtTqo>@cl? z4d>5q-7E_nEHuOdx;M|Bjn3EtAs)B`0R?-2=?D+?UA%L%T>kjOa{a^Km!)GT%JkG8 z8ZIkk;o)Mr$q@FvQ?Hekt+jHSmF>59Mp4XT>nr6H7ZQ!pu(^GS#>4;kpD6!t$`Xp# z>4+iL6WsmgQh9vqPC5Smd*IEMJ6A84OMm@e$~^dMj~5(bjpO21Rvwp;wKHXjU1Q5A z`!#lvt*mnGG5n9g|0G+@_tNvf{pIK73Zu!6($1k@wrEgI)61TL&I$_}Z!*e!mAhz$ zmmae!pE&{=JToUwmNyswaXI>@98J#+wL>%jYPN;ALVn@OpC(W9x#dZ-#c238T;q=h z*s!BJtaTef*KN|6+JtuzBd^pc5NP2#QQ_=zvfZbzA-BU{>|5n(8yodSD-W|tMJcK( zv6m1FB`=9y1M%+aOfLvJdg^ppdhn=xdi8&m>leQ*vqulcmce1hXrk3a_)xKxhID-@ zr4)Yk1N_2F(1)&TNR7`l$WJ_a^2Eo^2WI-6n{wDofAN#Qbopy8hlF@B!}S*)82rTC zlqIP8i7hShn$f)zreDygw(sIS3not2zZ*vj-C&8Ayf>KPE!0uqMSz<1j6@@C4H0>` zaHlOY5*$ecuZ8_lFr&m6R(V*b1sgvQ2D+&TI=Z8-gs3$03hJb4qpww@;$_U~dh)l0 z0jrbFz=O81h%nK@{VZ6bo6_A(BU1h1wT4jkfaA~-Bd`F6f0o<85+qLsZ|-I{7`DN; z;dNl5g@3gr26{hCygUa?LK^Vh+GZvgG|CmOmNx>0`@4NaDS$8chloR_$w0WnDKLbX z>F&Lf2Hlo_dyalHCd9K#HcF9)Jsuf!A#kH@ z0gcML$4;mMhC3{3ZQ%#*I^<;GGf=d8$-t~|Spz@@P47QYjCHOo2PV2*BKl zBg`wg%9J9`@Qp$b!Pj`BAXi>wsL89x&I@ozv$f>?xYlT?I#lPP7C#`96!Fr+9O45W z;ZHw-`sJ7DhX(*TC<7IUAHF>@cSc0T3~Inas=^G6k<_-*CRJqDf$3J>DIDc$Fd@X} zVm#swnDH^0)nJl0Oc$2X8i%=*VFNAVqkvX=!Xj){xskU4G_5-1fZt%3Mv-}FT)|2D z%hxkuHS9LLZ7_mYQayP{atF-H(_sEIye=$wWerElEJ8<=avK2!8Njt2=AE>{ByM}# zZuha2K_s<M8H`2>Wh|%41mO{kP-?NwhxjgK0sL*0D~+E5lWZ@1 zrT0T%F1XqxPYkMZ_Zw+OKhGC&`*5VCEy-(-WTV0VHN}t@SE!&o&EKfvOzwN-qQ+P9h zt89G8bF)9av+fdL<6)7N=MS%3DGN7ll}QMUGk3qq9(AW29@2ZieSs^5|Ir;T7TQxr zR#~~uxwNyK`|MuUOiy!^I?3wv(`R!l+AEkgh{-6F+x%VYu zZ`~_vx9^k{8aiH4eE;(G@>|w={mH-iH)a31Gv(%$tL1P1um8I|xO%DF`R*{&1L%(B zM=Y*d=REw`a^khqaTd(z;R9s_x`$tTEw=eB+t$NLfzs8z`6&6~m z{5PGC6HCOPRS8ybqu0t(d)Izt%0D7)3|0QRjI^SzS1qr65R@V-|0*%k8i@=&VhKaQ z!`yl_d*DzxdG>7in7#iuXo>CRV1yZt1Kw~IW>mZxVT;~)&6u9Nc<=h@|00YmM!v{D z88}1+I=&x;!itDOy~zi>#r#$92@~ve{kj}Ul}Hx%6?5@#8+u`%pbC73;v>! zpx^hIO7i>Ap4UHEevW9RC$6ZCSM6rHJ+jq+H@_CD*@kHDX1`ikDieV_%)ELM}^~zBe7_yw9C>`3|Kv~*&F<;_ud$5JJf9BAbbB*5uv-KCoN6u`De_1c>4B# zZ6rm*sTWc|Ws^;mSg1^gcI~nZI?TJZ4CJiYZ!G z@4Ik$oW1{Joa8#hT`ohDt8CStfbs@+x3B=3?TTCU$j3SIeUg!kaS}1a5ckFkL)?@_ zVSBmcW`_G-CQAca_45euA*N6^S!}pIjG`yy_VO=ZyjZR<^{~hq zhmCcVKGO=1A28~$W`m3=0Bk?uCT}IS(`@_vI-Wb>Ev$LvVMIeT?uHp%akL`7OGZE} zsV>MACyaqw(wZKQr7v1}8yG+#eu4nSGjpo}{E^ zi(H;VkD;X7O8@!W40(O=MO@0!?kKSGO;-F>1{%|fa_3{PGPdVph3vZ#qymEXP(X$N z+X$b>yrASpR7Cxpu?G4EAKnHFa-6?h_dus;(BP%qR5ZQ3NGVilCPJ0W&j|}j!>hTJ zvX9INzWpF$v8hO=1uM%PuQ*&49UnX%qQpqGNMV9(@3Mkr9gjE|E(R`biZQ97g@M-rpZ ztP3y>a}U!%@LF5rUSf!U`S#s1!8W}`4mVn12f;AY3M0Ia&+aXA$mZAd)>mwpaPGj> z?=F^$DDB0iwQ}YdN5Zr4&&}myv8~VD1CN=KV3h*LAv2W1W`PxCk_|&oC{&or*9OMr zFFq^Rm}WT20>lsg{CCk9yL{ndx$xD66fRQ_N=l<7!v)h##>(F`X!MUX>%fGcZsp*E zGjR-o%LW-E4I|1!1iwYgu`KFs#sjttXbcQy~oV9!4yGeS&8pKgD9eo7%k z0*gIh!}CK;6D?2pRjI`(R~9;64TOL5rDf;@_ZYYz_c(=cb#=2`XO-;z`G?@C z;HAoMl~a?5pJ2qtj~`F3@-hbHA~1~c@oY2AuL~59_nw!I7OuIQZMf!c_S0cm_>_3k zGfldiogslCkW8=a>w>oAy9N@Lf$xvCpPb!NAxYtlPK)NJ!u+^BKf)fBsdR<#IK8k@ zdJMxc!V?}fS)}8Mype~AjAbl);TP&EJpiIs%Kf5u* zcVt5oV@XWbYN2i)vIRT?rY-VIg+&D0=uVU|g z28wrE9`N2wuVG-m0E`?lYFya`1VTC@e}Ni@^fbbJNgbK6?r+2E!gN2i=WpcAv`Rsa z8lm0?2BhHztiJRTDG>rCSPt`}Yjj#1+KrA1KEi|Bs5b>7p7l@^b%gcKE z%mrF}%d7^Szk9n(y~a_OP;J9qhBcDN&JF_+Z;!`5AA!H)$6(2)A6I&+$mG{oA2Uyr znTG9G6@iA!1ji5`IeWgm3m11$`mxuQ0IhW%Sxq6d<)3NyH>+G*@xv6(5enRxb3hcn zEFbVo$~C5&HUR5)8Dwdcs~^;AB|?SyD-aD%O&Uay@1LgSg)V9 zg)S_z9vP=Z8h29JX_Pf3=2<8^gFMIkw(qdwcjM^!S4UJX@N1*XA;uV`ioBt`n3yn1 zKl3ogIV(XMt>$Y=Ein_;!u?d3-#Zd-36N*v>%;Pki8y;DA>%Y7JXFTHaUUB4^{c4} zPqXBGJO59^d|tTUxW+P-rXNRB0xe$@r#*hg`S`SXVYJLj`|;feVj{Y5I zj+~YL<3~=EO%7?>U~Zj#Z4A@TmJzo2Z88t9VxC~N{mJ*WeD6`-+fmuvF>Y~hQSC&!ZSor4!!YKIsC@k<>0w9Wr```X%c+^ zUavBg{|$5X3saw$*D32KIY@_VWXsTg77220%n+SQPfJufQyjE&h%gUrblkmPKD~a6 zt%76a5goX7(&d_g4bBp9s(Bc}rns_>^(At+2^i7pY!6P{oqW=R0ETIl#OaNWMp^E( z$n=Z=mXD-r*zYsDDu09bOmaXW*#@nQWdg+Q^=fLY7A&1nO+=+pJ+_kpheTJepyLl8 zW>c8b34?7xm1z6+t*8XW0wjizj?y~3&pyr-k3nQh$1!3z<6=mifQBE90F6#o7I|)z zv6ulh5?`Nch&TAiEVH`vqp%fiXpQ{0Mn}#+;>TFq$mA>w5?Srac9+)~UUKMu2*eTm zltU~Dj6`>MVWEr-fIz76x_kg91x-7Eq%`9U-td!*`Ic#t=TxMgswh-==Bv46DjN4v zeqLA$Ly$0rm3rSqFTaUsw*Xhd#=lcCEzaHT#_jIDuNtaMcFLvCL#8ekd{(K8+mwHPl^MP%|0at*UY1H} zK0k~wRrx19rQcWnnHPO7pXRch`21YPPaz~o!kb(gFWoXMO#f8Cq|R>zB|pTJ-!Mvb zh`I4KddiC^+%>1oz!rZ4_Xs`Q96GnrqvC)TcErbzGFPoxCtC6}SzqBp9DaBF6xZBj zBUd~L5C{JDkS9;PR;C!m+=ucXWvkpeL+@Lg4CUkA_x8Kx=;KuyT1){jQsJ=t{`2Qb z!5*WYUPr;(nA~&bY&rR-|D?>Ed9!TM5ZGc4f0EVw2Y>bJGR;n|;X~}NNBN&XxlZrn zVO_zcZ@!6r{toeOKZZcK1#QVM@C(G;S&zF<$yj}L6 zJ;OmhGi8pg;OFVVdqB_~rVdt_OE;avHZ)G0Ds!w$m|-2+=zi{taX}qv-NOxgXaD@q zX`D=y3m<>VnF8ZwnhqzE1!bCbTXVksGsf3j5<)yK9_fAL5eM`d;TGr>*fCT^JXQex9_1^D z_!UO+Gl=ztrOvWAFfT^}O}3VgC?gF}qif$IpKBOvnW&q18@2Lh$bXqp!>bp+E1!Jy zF~_|gEN^*84O`uu|Bf3%spo7M<=P+Ca1fF6{C@kA&3b|L0yGM&o}Iq(#5|34w@zy( zmLw-l6w(%Tto7$KM7(Fdu;?u6C@*B2o`{v_j!xJ(*<=s@*25(h_^}0%3u?CLLAzFI zb9t>yGQYmTcDQxpfCi`gu3+kWaey*(`eT!WhlUtw*kUoYmkv3iI3#V9H7f!WkFe_;lv7B9{0}od;5E9V zEI3?dRKuy}AsPg+7|~HldRm*TfnlDO(*uc{sTPm-&9zqWfCSgw-bcDN84cJZ&Zwl3 zWmCqP(IMXWL5!huA~S?ofn%a>52t!Sh$kts;FiY9$N%5|DmTAHw{e)=`FGwebDW{D zstl;pL;n)a#$4v2#Q3l8lC)!`%pb8Z@taGJpFZs0ryv7e(^Qh=G9n{G7LmSIU}ZYs z702S+8?H0p4kNXsm>%r|=%O`xHKvH%Slrm-+0awW@p}&PgImL8;n4!eFg~WCIYTDd zqf|voLC*Rn;tg*du&v_6Z?=^43SQy;aAt}|Irty+$+)14 zU!F*qvHNQSAZZ3NAps*5k}CQXkN%B;3Fn4Fs2jSisV*_It1#jafPB;vDP9dr6kqcpTMy-zAlx5R3 zW<%2flIt5Jri?27O)nsQP8#kXjD|8tZ+A2&knj7 zN`Y!raK>lrafTEAJPm1){g-aTnBIGUArdkd$txoNdvWTPhEI4@x}rlIKVU&v87quoc6#Dfi=YKcBHS8 z&ca7}0M_WcQEm_TQs4UNG@3RF(4zeNIug**H?Rj1@RO{cbYB<%wtpG*+W?qKJnJw! z1uCL(dc2dYJYQK}5BN1gxd9MHyPqQQ)=A|D0M%`}bNJp5p{5PH(Mdazb*G$~Z^E+y1uPh` z@c^EQYG}NN!6W2V88&oMsQ%Tmuxx|xpku*R01e#5ZLsYW2X6xj3?%R}C9v(g>%4To zP2;!TijNx)>j>XfLf&sO&Vsa=x!JPx=m96|&6gD#0Hf4@(UCw^#;t;>Q2ousHc zBfgBODP`-a7IzGLgBbUb0AEM5#V$4#D5UHSTP3;eFgqXyR+(F25gUGvw6YeiYe1!<2y-^F#rAV+VleN#iw`>pYe z+Xjd0ikkcanRr8K2hZTkT*LuS63d@h`+!d<_mC@Yck;N9!b97-9jV|c7y-#Z)l^Pu zLkosdyQFRaKf=|RERtqjrD(^i(lgntC8WQ zI;%bk^xc)eUa7PaNrI`c@;!KJ5keMG1oeo(SaD>FvKM6lL$TIy6|FL!nP(W`kssZl z5gI^v_AKJbJ~s_LwrON0PjP_6Br7~O*6x)@YzrCU<|t3ZGOJ_l0c0d?;jKC~0l*?7 znO~2ziwBPLB(eAq|1c3aQrwqOu#{_Xuxj%4R2r%B=E;3 z0YByTUG~3%r=@~gB~o|DpD^N3;k~In)miN3?37Vp=2F0H(u*x5POxM zHKO5Zm_XZaJgNa`y0at#L|Sb~sIUR??hw8qQ`w~)n%o?9up(^>-hw_v4Xa5#lyr>C zGgu_O!PF(z!NcmU zz$4vY7H%1p{i#Oz2^|C7czrHsmTm5e|$1)V`PlX z$L5IzIM6ZuW{QgveRQ|>!p>ZjP81yQ!n6pqo2fz+rSF|HZe6s7KClN87)apfmw>fM zt4ZWW1)^f}JB~Vu-luil0nV=9!z%g59DZ|;?Qbje4y{l8*du(8kf9US=q5zu?S@Wm z7%$IZt(g&rB5C2}WsPqA8Vm5O-o{wa=UMk|+f`|bzvY5~4BAVGQxJJDnMya$UC`bD zS9;O7Fl+{mHGRUw@oWZ7@}#oI&EvX1cQQmhNYpNZ4?S$4T_qsuv=Jh(jZW2@UGw^uWfbG z>mOsG$q=hdS2z}OmDbXPEh(9y6K%GBy2VRe>Vo)qdAE|oH;3wRq3PzhuJ#D$ zn_Obg`aDYF?)97H1PkcU6lf4?7VF3$$PbmOPEEINNJs}pJfTc#_c`jWs*z&|9Z&0a z6?`m6gHe^C^>JKV9yOW0+EmU)+GwaSO^-w7CQy2#z&7E{C>meFqzNd}U>HXkDoa5l zV0bs$B1cCQ+gdmNB_L7$r4|zKHE^U2G;k6Y{Fy$y*70zS0b{{57ziXf&p2|8ATc7* zpzteQp72Zbz^~5e#3g?T3B3S@`1ym4mrB)_4M>f4@6*28A{Kg@wi}rAN`=@}u?a_3p z8D%6s6|Hwxy_}XRk8~uh1edJY-z@uNy)!L=VHngqG~;&vR0A=I%9IhqJmk; z8gN+>R0uFeh=zA84@uT@P@-^U^e*d0!X?t(p z=fL|Ms5wwuUwqSXRJHgi_wdZ4P5XrbR{YPh*M68OfNgd+Ek8v)yuFj!4v9lrC@diQ z&(nQ!jn{X-m&+fa;s$>Vf1-23o$nCLWx{-_?v}QQ1_aup57Xaoo`_L9o^;RgmWc-s zAVg-|*}V!im4k{s$B-F3=rwOB;3< zj)w!^GJX4arxk+MS{}eTpfi5|jKj3W#b1O8Si>28dFNPi{CSb29+3j#jKE^Sp7BLc z)DcI!yK!2rN7i$yTbv9#?D+^zn?%gUQ{vaf@YO>k7(b;W9_VQGVfjMcVK=6->QsS+V8JA&vV%2G{uILz8 z1CJFk7M|opNM^xrntk{ahjj2Cl}R#y%Rx#yfx{E`tbxe65ZH*W#OEi0EUOwFR?%h? zmVUZK8BY8(FzEb)F}0rkUHnP1{PFKeZseMOvDdLdpt!4W5QR>{jn2n%3{FOhl=l2qHLt3t;}#Jp zjV-BwIVYneXr{4-CE%i5OI((Od-(OQ6(s-(Vu@xjeyw4=24MJ;oB_RXg_W=F%_Os8 z?th19cHqn(FPQKaGMCZBs#V;hJODJD^alk5i28?r zHR2E^r%l&fPT@`<-|x-)9C)7t|6VzeTjaZ9%Wc_Kn~nWJH1O)+C;itk{lX!AS(iEg zIc~FCf3u!eId=BmmtUq2M!MX~Fi%%GTo$dl`agHe_DG`2Xk}#i!@5(18%mF~M58Eh+F96797Abg zX^CroId2)5aSo$s5wFK0hQfvjyW;RK7&L+a33Xvh#7P)wg8XPSHh>UraPt;A*|{yj zBY7jul7e3t2s0fP%0R4W1=Iouu}nN9U%0z;<%KVZ2_#+?9&jQNx3E0so7y`C0xu;I z=!6KIA2U+pkxuhb!NGhHwI3L7D&I_HH_4k@LMfx6{z%NV?8>C*$*KLxG{)+kM$b*mt_1Ec#h~9E`cx-hMnsx6P! z9UPv8dpkxkWH@bo6L}n;@DcLa{@T!%o0jOFL4V}wg*bSE<1yDYzkK*8-T&qe<#Cj* z-nf=7-nh!aNuy}7g~}%KR5UpF#1_pWz!Z>ozRqX<5F@MHlOx3vN3xihV)QAe#?MT* z(im%;MI7!f(lBIUR%U2Py=Y?OEXDO>>Z5C@Z-8N-UyP!F&=|vtNE2@hs<`o%B7fs9Wf`XQ z;$o5y&7=619;I=@;UwmuDez@nkuKxsiTNcG5Cw*VBl^hMzz-yWvuYm(4qO~$M8yz? zD@@Hx{nca`R)UU;7#NjIH~x)IV?MfIG2*s?~t* zbKQd(>zk?Ued>hCv^GNmSNggPQGO#$!qMOJD@|u+}_=fM+z5iB13>B1vkSN69U@Fo9p?P!Q1#DUz0AdR;~ZWD|PpB|Hz|lnz~SYF?5vk?-b{h3|BP z(=)hlKMa#!WQ4f3x)RswKD~FJKCzP)ykdG3SdOcA>{%J1!SfVlbSNSW zTIe?HqH;v#?aMyfx2AgAPsMj7Dt~4gD{v!R@s9A-ySn`$Z=)-{SOjZEFW!o~2d4$c zZ-c8yYPgy}(_D>yfu^|iU~#YZfWaSD6nSV~YHB{!ZvzMu7#ZCU;BmOKo7P^uN>A_I zO|M@qv!8#4^1PlV*v@%`x?f%pe1^h_cnprke2~Xv>U2D9A{v|uDLrD(W&Q>=K%DSo zAejY2W|>QSkCmj%RcGc5b7c72V(Wt!D0nzQ+GA!MBAp75F~t#z=$VfgnR-2_1RQ&D z1Cpj0D|>Y$8;lz!CR0po(L>kIBLf2miET4~-=Pvaj~^-%rvkW5sdd1-In=f}3)*9S zGk%Vgae1zD7)y?)+afN65EsIDYoG9*L+u&U#;0T+wE#Mfxo6t>9I&!Bf!zp*6T!Tp zrvp80P_v^o7`B&Tba+U!p9Al6;6Ek@>|=eZsco_{3f-%}1B_~-Uo9UIh9CRS0W_ZD^RwxL zpL`kz!z?c^$J(F{CjriK=}(JeVM73*PYOm(KN4KY@b)S6g>*GxB3^&=D{=Wg#SC#U z{-$Zdew$x~ul_Ym{nlT%=64NK-}*K4sYhf9RKvatuENy#19$ldzhalIoq_?dnGc4G zcmhF&b%3U$+(J4HZ+7Rhlh0*0PoG8S&)NO^X>0j)dd7(V!QK05h_m~zeDGnqaQz1A z{_%XfBA`y=QhL$HOP7e{x0Qe_P~>>`AcXRa5^gWuo+K1I9Pp?_E}BZLLG4e zGdrTP42+MY!Krc1)n|Jhmk;c54B;O0PVE*qDOs6@yJ=v0ERD`ia2_$Y9+CPZZdBS^ z-HM9}WL`teWeiNfyvMn)fbV^9?2r+M%zY?S$cTr>xjvD5le^;+!ITd<&-xJc*52A$ zWaubYI(8A<|E+9_O#DE(i8JD zA?)mNLB=i&dYDEu;I08~1Z*9^P`P<(=lRQYKp4-R?s5aw2x)H}AH-3@hn@_<^_p$c zcrrSO6h6)Mk=#qo0>lms_<+@$Td$#)rvsConjt=}s_d{s;fPC!wvqTeySdxtlF055 zmre|mZ=6|R98A#da)`(7>(z9!wv~op>N4~W+k6Jc$0Gj}2KIp2-dLxo5L9UBU9P-5 znPkszYXll72l7GLCC=Y2!b?<|Qrz!f?{naN4*WoKz&^NPdVO?plX=G~as~o3mzUCq zKif^8|LWK2xmVV*80u&A8Piu5W4hEUz3ntR3{G6NZn&5hgd-j9GnDc>xC+QiM3vdq zcO|9L(R^!{+%qJ{_gO!`YuIKOnPc;t&oB|b2B_~-F_{k)x)CU>O^S-97kATCgG8M5 zgLnN7m;%@E&M_AU8GBaAJBTBT;hlzekmy@~Y0K{LRk(K-hS*^+yv7cV$G7jKM`&w= zz46h<>C(+x@Yc!TvzAAm{w94OlHZFrA}aBOCO*fAXHJ*zphb(ua6XuGnSb`mfkMU2 zsP=%lh*$R?r7!;O@6skK5Qn%PQ8m*c%vn{_1x_B?=RExfzxiEy{@_WPy||Q)8L1x+ zwbSIqne^FT{zaOG*=?+ErKgXca9rUFq*H~27WX2Lr`gL3Y4PTjGzepT@XOz&2fzJ- zv-#K37;zkt$Z_s+zR5L)H$M9;jZ96aWtjWd|Ksn|ldr!DA>)Jp@>l8OU;HA@yIy(t zF#Yx){xLoM{L3^yiO|6{k%OFvJbU$Oy7AM$NINj{$G?Wod-u{7*EG(2cq@JKv!8~x z;Q708Uy8h8eajMeJ#xBX%%1xs`tUmw%Z){$KyM z*r&UE=T7?a@BcnMymOCvyK8Zm^aujg1On5gtBY|{;r%77xl#DOKJT2l{7}a4|DLxp<5vl$aql(mV!iQwDZn=pNQ6S`8__wC!x zhikg_Vb8Y-`_348nWH`$ScNj)j?&et1i$8|!$*e^zgG({Q$7#B{yM!vQ1h0?TOWU% zmf%T4?BY0PKxtuzK;}CTWePx@d3pHb2bXu*SHydU{2U_tRj+q4e^uZT84;rP-s7U2 z6;>e*AMK|rS3ZWBUQWOM&9Bqf|L`mwT)C2l7*=jQdX(BbJL%fB%P`4qdj9fRTE6p5 zdg(~@@>Y6G0w1z>(UJIvpM8i>v74Seew4oX?Q=8+Z_=$ROKFeHIDYdcO~K% za&GnVlgBLL8%`G%U}U`4(LlWX@~iaxcfUogf^Y!C{b1=z>cSA!P^j|&TPX^nWd7=f=Wzf8M7{U{xxW=|t0adX!E z!hG7gFrOaZzspFxohD$;^PI8#=>EO50WAX@xp?{V#Wa6uDZPC9BE9(XcG}-yBu@d4 zAOIZVwq`^8)o;)^tTPYSP1ip9By|vEc3-_r>rWo0lb!W+`RYaXb6(-N&b9O!hQIaj zE^r^DEz+}xpkb5!=;II45DP&D5p0}F*+L`m+kf~c@T{bz3m4Nx^6(gq!5gM%_SQGJ z=};|%YCYBoP+esHN}n#EWKyHnh4=6GIq*IQelR&ek6u{(*^XNuM}om#VhHF!4Hw$C zV@)OzQ613o(v2HT56q_{`VOxj7h5do23Kr>W_T*Y zG9KR=8BM6N^Jn-KYrKTjR9fSsI>txeufkOC8b<;9?ypEYSVA2^Zp1u**ofiOoPaUq z$8=^&3Y@ToAbm7B7x^j5wgk35y5XVK#?8$58T2}3YstpCHp-;ZVOjVg&Uy-BjQR_``1WA6YYfux z4!3tQe-q@N0b?N_1SgIe9Angf8D@Bqk@W2^zDO@#K1{nXq*ot^D8Lb&P4(X>a! zd$XL`D{|i%tMSE}v(;L}Saeo4nggHKYmL?GbI?k>048h#y zP=A}@E3c2!s#{_9_tH43@R_;kG&Mbuwh?5eQ29@h+50b-346d=g8g)&8b5X}Af+Lw z4B$V*!i!Ou{_#*JO~Lr5V7|{O_%1@v823CcA`IQQ^&!GhoBg&g((?U>X=-9LU4W*o z2anP*dvGUq_gIQ>lC}{v-aL4ahOWYZnZoFj_VJOyw0P|z>YnTA_2VaL^ZuRm>fX~d z&3c3*1qqHS9zYx{-`(NZ#X==!9x5h%iorPo)Kh{fx3uE_+w*;yXAz-w6otCh(dTUe(fOu6ikgo1yjX2)~p4JzGwJFSi|*Aj;R3`UVIZEz_kWl z(w67?j~E>9GVQzy<9~MVZdze*JC3II5{vtmZrzGQn?g%Vzb(s;Er%Ip;H)A3nRKP=tXX^QlGNsX-JPArkR=P)J1S`9%T>u zUNU0t$OvKjGU#C#X;z((Q|1n8aKzm_4+9f-2Z755+q|Rr@OO>ABj!9mW;oU|C>Sxf zZrq{?L6b%|!ZDksZHxtoD_d_uL$QsT?e#r021t5K({s$VrL?-W%e2GYG{wS>E<)7+ z2=>5p%+mhuC}(z0jim|beSxs!$o_=9Kx#@`o139+Xdmvyx`YuH^R!9RG^c#6aINRl zXOB4VV3#!vb7^$pB2xnkEGvXU)kVZ>#Zd6Ha`q}TpMMUfHj3{vtx-pM2*0hl^#D#; zn)Li(A#*vNLKYvk*7MByuFd$*3w55`d6;TnnnzXVh0^W3khq=^LUVufZ8+ZL-b~H; zalI?_f0SR7>Pkb+&-(4V3773Mg$!Y8BgN(0b4y&;bHvD+6?H9(FlsdQvnOA9D(>Lr)zc!V-1GmZ4|4J2B159S$+yLi%Bh96;bf5}%yV>H3)l3t;2ri}cn1{KvEbGaY8+{)@l{^P@1&KdPtqC%-*RCi+5(yK5tBA2ESx%^ZP&EN=HG&s~_)MKyTyy4j>Vz zL1)F^M3&KHAb;&U!t^ZVyS((yPeq&q)L?>rYrYj6eL5QP2G#=b1A8^oR!OU=_q*?} zEr01RKdGj|hZA|5$A{GywKV-1J!|f}Y3rTQc3QZ36SeYGy3cgvomD(DA^-qD07*na zRNsA>zWSG6GhO*Aee~0xu#cQ|Npq77I)>Q!M7hz|o|IK{byBb=Xf)_BMn9#e(iF7n zp((J{FFW>s&!Flf>4Uu67MYTcE$>`-jduFs*SBL~-yv>SZrw;f{p(+( zNwmtXAr{Fq$A2ipBRQ~>Fp}D9LU_e@p-=$%hBRex0E#I|te0u|BKgdq)-0a|B_yys(!+J_G47wPf$4> zqh4xL!FCyizj^sOn751mHerza%#Dw+uW2Ln_Z_~`h`Sg%| zlV36IaF0cCmzh&PL_jzuoFnR(Ss^{HrtDDhBboRQu}XHpLL-V3zGLnMp~1VW-PUL& zvC73(3+QTj4G>Bxd4!&(P7JIC|-Dg4LD%){} z(77Ga*iH}t1~@OlDTfX6Zk1_{&e#ZQpan+!8|*HaNFPs5roZ_={`WL+^JYq{Gf?n2 zK#epuIhFqUzyEFO?*1aC4DPUC@*(P^HS%d|dpnJWCL@=>^HEWmtzEybhU6gcf8UV< zrKy|?Vf}cg`BU=Wu>H0k(NrhnJ>&IGGQO*4CAZ>l#-U&J|1S8Nu;OWce^*>Je+}QH z<-5fHp9!X>^E{eszMaiObHx5ZJ}%4%gM^!(bvgWJioN9b(le$O|CL3^7oRVtr4Mez zcECaAo!w?kw@+~U2N)oIo#A6d+aSPg#ib*O7oeG8)q=o*uCjns#|DCiHB{~K{cgBM zkki&4cg)Vx>r;(b71Mn;W5_W4hDAy|$R#A8 z$IsXz=#`XY2o+38_JnOIo)xgg$L97X3))80)Ya>09*shq?RMLPXdKW8ykN9HILsD1 zGSiilR@*}uHvh5ZZg^ybg?xuBU2y)NH4HHS1Hv3_uA_NC>p-R}we7F0rtK%snWjKU zAnt@l;*hO$o)2(BjXpqVu~4lD9_8yL(A%igo)6wn&l%BoQKQYyUWh9gUm>*YL(k=F zOHtS@)(~ut4WyUPQTwp_VWbUy9?u`xez}^K2Og)_YzaI<+i-zZpEC$odrzK*#=`~| z*I%;Mp*?_LLiud5Zej&tYGSaR#?csbNaGM|6s8D2fw3P{>93W-RYbvtUgb@tEE znEvn0(cf^g1QNC?p5|MkIE7;izBrFDUqYD^GHJ%bl|R-$row6+Gv?YR7(_-;dgj>^?VN zBhjTS7^WOiSS|MY4$e-c1x`O5oM0O<>$09beo8--cV2D0dYvwCH2Ub=JX!#@7}I~c z)!IdCa_|~YEeo7_g{+%e(YlSza+H54KX{o?zb<4fQBQ(KzX9sijEX%x1TWcR zP`2lN3ustgGQYoq*4qAh@#aki$XC)FOn;m$-^WZ#%b#3l5!28mYU7GWydpkh&T%>e z@$S#g|M`FY-~W#wBFf0JEguMz8>Nl>gpuuz`_Xx(FR>_%t#NaovRYl{f=c}mDQBCJ z>MjW$!fo*{f1XBIncre`et??2#kRj`5(YlGvwwdmtuoi*dIUQkuSuL>M18=he23|RUE*syGH0~! z2z-;d`aRyeET~&&JEMp9j1XoF+(*D}BgwVVHXOsicL?J(!m||YA`AD1z`MrC+g9+w zPk)-O{p=@c^4jIpLiK+L+%U8bvdGcnIhFi8tY{C7138u^=jYOuk3S@Rmm(i_#SM*~ zpYV!Bj~h%ESeZO_SQXMPnwNFy(F9YN%vB~Z?M@q~MnSuU?;C!k-LrX_kH90D*x z2aXEbd}rSh2Ohug+psPSt0PI_tI0wE-E@gpYW)iaV8J^S}Xf78MEuR z))~BPGY~tV4?LnjcT_uIpOjJb%a2kNRmQKt8Wl8(B9KKXOBvcxfaE3ekY0VpC)3j} zzEU&5DdGYUK&tA`np(U1pgo9Y*lO>2_ANE9D!p~RO07e^78!}mh_V}$Mp{Ty)e6`L zL!~F*sv+K^Z(c{E`-*w}CwJ~~)bf+GtM(Pm?NtVIOYGj7h2ObVKEXQ=6c&t!{@H19 z&}D;DX*ngYtH&Szwp0#~G*;FGq9q*XN?aJr`ngLeQQ=vu{7lXM^UE<7u2P}AC#rptE>Ehx- znr55a=mMAVz)YuZ-e9yn7z_Oz>3ay!4dRtPydJCHf4kx<^OffDH)08}MPr&2ZI(wGpm*)pvMR ze;tcQM}!XNp&mT@x=Yra|#kwtjMpMskc#P;Wm?5A05Ji{PrmIcaB?%YjJ?>z>R%>b!V$$1&Cv(Zd*jhLn~N z6QV?N(dkmc>x-k`r;PmPjBBJ>K#>$vtZ1^ z{ZAMfz6anb-0U;x@{qMv_|q%4v#+30Sz}fI5Ch-KSFdnz&xdHYmpF5cxqb4{k6qyOd(YoUB($k0rNqLJyX=NMk zC3QQ(2~z=b5l;b(gK0VLR-<&`s#6q4sUug!?2$u^Tfu><9OQ#CI!3>TtQR;&3^`H# z!S~<+5-0J6v`D77(mo9Fi^(&Nb#WDbn^Cyx>~x&f@dMD~jeEzeA&7Yw(%~f*uA%Vs z{0@Ra%y}cExZl#tZIs(sVHcxq=l7L#JsHqx0FdxR;E-TFLt82B5c*v7fd&o4McpM) zq^V0fP!`+;Wvl5@CQ&7^TL(1C^A@Kdz5FileFr>o)8D5AjgJb7b1`;LxHdg{h${>< zX>G#vy}s2Z_<2EW8!_tFlenbMG->R(S+deIQFV!&8rP#=S|X2tjbLXZ!7-fb8+gAf zm|-GZc?ZKQp5hKz!xo?#4zC}rsrAnUnzuE7%_#FhfBPBpf*1buE7S@v6zeibIA*G` z?I@qY$3CO}`(J&P9({8grp2~r`rZY!sy9CTh=CUaD+U@)&vqG{>=WK;S?9!Kfm=kJ z%R4WEBd&xae9Sa>a@A)axA64@a6P>5X5pZ+n70675>ukw%m^)Umt6Q_aIlrUIaX7&C{gr{d52=|&ZX4J4O-MpD@p&@rV zWq<*zf>Q?s$_&=o6Erctjnv$!QJOvlsO%-jY&5QL{o{VbxCL|i`Z3$)zm55uY#X~q z_8^ao>vc~mLxl0blvF#rCZGr|K=MaIj`op;aCC>Mi{o_bsSH7G#dPkxOXbneIcZf= z2Qcj}4iS#9=DD}knRs^+gdji$svaRK`7VYZYI)$JyFnx%99<)Bs#IbT1&D+-KV#%8 zybkzxA?yf_EPXyiRvHe>Ry%)Ln#G1>5Yig%Z6qGkFVb8*0^^UHWCcE)3~PEq8ul9; zymH4#n&R#R0(k3|5+(9aRD?Jn!roJ9LBq{lZiP^wFo&Y^F9e%b=dQ>E+)X<>55V14 zI0LU?ee+y_;k0?>Z}D&A^D7wHxS#^e<%F}`hjZWZWl5L}>@j$6Sc zUw~%55Dz{v6(J9^%I1v=61SdP?4N>5I>Z@x&p zi|=CfqXkQAs|78g1q3h|Bw>&$gOL%NiF50l4YXGf;wP0c$AY63MKp0?4G6^}p}}-b zypcHSCQ`TM=~pF8amHK;jPNMvG9u`Z@f)KNgTpGOReEHBd7cM1KpgFB#HBf=c1e+8 zVlGFw60bOXq(NN9?fjTbT$*wRo)P+6>BPntrjR6@svjedaFtHLa&7>t1|(+x^$ii+y)3!5cKRdbO!LZ2bu%?QNI!Aw}cG*09cb{EOwBl&oIGw z&mlm+Qw9eI6gBm|x{iy%&p{Evo9@~JZ$Vz^2*5w1pXdimUex+_Hu+{zJ~=mm~qXR2|JHCWGC9Qc}p&?eYrS>^XmYpn!c^NeD`;yBWe@G z*d2!vDS6~)8-{+w2;U>_4_KhS%d^VeGjCXw9Xr(+`5&U)9p~VDo!t7L@mdHw?$ zLVOf1hZ8<3E)Lo~#?le99gVZpXkMjb&SxI3eZsTKBtUC)# zzEcBnTcLsljFqHB0u1f;N2dX-Fy4CTRzUMZkT@q>1RC6R3xxbAkoXtJ?H0PCQG#4` zQXH`fc&wbot!vsd(p+(%U9}O=QK8IG=?V>kV3tIn0#SzjH%Sid?HhW)75q3^PmX_YO* zuQ|JA?bR~(qHHk3x=(-3&H>j_u^wQ8(@rN~dcz0;11?@h2#ECo_KkKp_K9}HL>7Ie z@x~vPrjZ~`Nkjf9eP{lNdJ?_oDVXdTP8COi_jL|v&$p&K_ycuPEwPK+-3IRCEvjC% zyUT92O;q_CJRZI7;`V+0QQ?~hQ>@XNG+;~HWC;{=QJhN#4@+?TxEAPNnEOnY{hIZJLm5F?kIF#&_0 zu^WUoM7r{08_;S}^>f<86ogO_X(haLhTSkg5kSVSQF=U9V4-1&LD%pC#@GUi3KngS z52r!`1wW?ekizNV<~s+_^52khz2-o{o*%c1ITrrGeCOdpoOlU@6?SEvAe z>!-r$k^7prKz@)8HD79VilkRZDK2(}O!GDd69EKscd!(FQ0WgSm*~&vSL}<`@;bHX zO{(Llu@{%F#N}ZdEJ}WjCg2r|raeS$*_%^eyxi$SD(br{NO9PJCxfwzrI%?}FU^Im+G6 zlMdR2=11@X`_?@UQ`==h^&Ttq_jzw2@N9Zs3R}H*bYm^pBrEkVuyuP5?Z_+)f1F)r z9r#CVNhh)co-P7_nQY%}8&G2{Au$yqK^n?HeqjC0R6?S(;pX&p4r>_+{Qa7Dj{J?! zj5RYQP=f5AECkgqajFvU4!Z9)BBjI&qrdOkn}u7r2gblz=L>bI{!vN!R+Vlh>Cv#_ zaK6cLRX-{%4$@ntCDs4&Co=ZIhX#X`xX|U0t$Q!N`Z|5Z^_L#VbK~QW(iIkH>`#oL zuHl{lxM(cyFcQMc(xb4jxpKBjwEExzkd207Ge1hD!!e8~dZWEUqa?}vD`N=UgfpJn zXbq<^UBXA&ct=_ImM)$chB(BqWG8YORs76n3%gY7HAWHL}gL&RJ+(J zOihDxl-1vN*m*Zig{^K)CZ}KZ@6ijOQCFc;8WlWC)d_7_8$r^vE6tjvv5DOZoX9%Fc_tIgaZk@orYQzdqf7}5je7PAN4RtT%P7+WYF9mj zrNi_>+skWQ07rbaA9MU`x^lTl1%0XM!{qYI^ktVunxRRs`UEg;t^(8T*!g-8c8~S6TnYma0btCJGLg5N3QMm*P19Z36fqOjnKuZ*M58Hz)!FOitUd#((wC7 z{*9PQUluV|B6{AWBnnF3;ur~n@+c@%@DB49zH?xEaaBJYB4c>#XT_))8y>jEH#IgY zZ}gbbNx`ckz&}RAhDPe!TwP6%?%au6{Pwms;`rT}Pd;Y5p%Fw3Q8;QeG^)F)<^*v`k@ z0Qk{bDWM)SJDY>iDU__SA^UB)2v_~Go8^_=tQ#TB^PTga-b9gZm-VFf5ahKWzzMHK$ovEnuSSrecIz*mi1xKrPt z%7Q8|qKDDjoI*e-(Mf=5uD?M8U)d$&lPn#~&tm1%7Lbut1{^|wnG*rxC*#qYgZA1& zRfYtPlA$F@IS%4Fovw^e&nlm3uP~K1-6}oWe`v<`ZdsTgy*@x9Oa7dtw>tMzpCNRw z{Yu~z1(w_|VXu8&R9+Y!0oMV+cx&A_j|Z&{@eHtiaL@-0frp}H%>X;HV6;9l)!QRjL6CSU)aX$g2?%;EU&`H` zTt0QgYz4K?_h2`fy<5)rd{~{o#gxV#jDMH2W;`X;(LXDuNGuB=VGvX7Zg7jj`IBc4HmP!KoVWPa+L##t|8R95ie>x z;bEzTCb!BItl=(JCB9qWz5yI*Ej*oM%twbBTDHJ+S(8!m+&b+0o!!w+cSoo z7rIvIU7XbfZG1HIIG2i0`c^D8#EWY4G zANX2+88;5%5U22g+qy?-`$5$TIPDl;JzA7bF}?VsbIUMUaK(>86)K0bMqfrmw76xM5j=zZt zr}E<~w}DEG{sLw?%mbfTKZLvEIKOkOIf|^I$nMe_-UTl5I-?7$IjoF=So4R-!u0Z= zuQOf+;)nCfX@t&_w)i&f)dN!X@-y;4d&7^Pr0JcDX~*3HsK$3Wg>?s&xp%c};kFCIb>zLuwe5#1tcs_kguNuwlr)SmW|l^KjW4@2a29{vYXyz?O90VoZKAgm$<;G^=ubIkw}>m#Bm-Av z-(o&$a^V8^2z-=YFgiQp=DcNAwO-^ho(U^A6*GngXaTHru^=Sp2xXoN3+G;=61y}; zrNk1_b7?TbX)3)z8{fXOYY-aW!icA5dLK1(A5Vo*Q4w+XLBdNk=c4MxR5ASc-@UpK z8Ip75Om;l-JW0+6FW=?g|%}Am`P`$UrpGk&9E(Li94m;f zjj9yx6`wHr^^G;lN5s@k>Y`f)k73MA?lb2-5R2W$oDOxg&DOzVROWj-jUz%Q>$O z2^iKlFwNk3CT@LpMZ*|}ta&y1I1BY;@J>y5%BxJ?lUuv7MuA0(3!=<0A+QgCl`sEqn3K-tsyE&KnzZJ`OjJb~P z1@9%)4^ojUk;&q$3j8@fD}0RMqEdR#_Ac6Q(q&JN5GOiz_)y~VvU`d)n!jb6n+hc09UJpdSyFN|QP z(p>2mNAV|CY_*=2`bBt|ysA+dbzPei`^D*K&CjT1SadTjeTE*GGf{yV7~(T(VWK0| z9edW{B`i+m$MVCW_X*_&C?;F$cZREeKcx5X zqpYT&N%LE7XB_gN?W|)iI?K1l8T|?$xt3soQHE#kaA3L|)^_4C!c){4&KyA~h_KX; zBSzmIdF#b)J0S$1A%OXBBN*(nt#Hq~R~WT>kXjwVJF53P7h-u)hPID7RiGw8hHc~Y zRMrs&Z%#9~2yt|rhxai3`5=q)9Pzi%E-1XH0Y0M7wo*!^jNWNpbHSG18|dLs>ypB# z@`c;~g;Nop;d6b?A}nquS`SR{#cYk=2p5@B9I-d5VFU8}x4x74SDIW%rin!Oj<0wB z)UcJwWE3=PJgVQjF=V)$nWw{)x`kuS-s~@4yV`#BJRO6$4r4xt1$mD8`F7rNczTv= zi8(5lc^pSG_rAWJZvXN(Z1FhYZ2b??^wPz+7yAUsw&kgYl#UXrmBNBDzUa)w2ywdU zmqj^gv?Db(jh?s#jDA3hBRV4Hn#$y`>ChK1AhME4d&Q;Sx0#wh89w9CEgLP_r#e-* z3h`rpTM`yUvyK!V&`Y-EM>WWB{frBLVWWIY=H-quN;^uq7PI_G#&7pvS>{IXmw(32 zu^j;A#ecbk?Nrc*MsFfxijE9|4Iy5)O&w8h>*kS&P%r3>I%MYq+}XOJA5r#=cIg+V zFMdo@6UKZBx8k2iTrhqlTEloMXVz*7P}&?GZs`pn8GH%@qOIz6^VG26R{Z!ZZ70)V zeh4K-{{mV!XXFJ?%6`>f}=%r59v^M%{2{0d-uB zK$H;9!vk>v+rTWBlakpzfe&0x33&3Lg&^L#K+l!<_)`9~BXBD;hM{mn04PF0?1aKC zZfK>xgzyY)aUKiqhO(XPhn;U|v^S5(bmA`Q7Q0nId(9)i!|={lQ$%}4fKYbOMBTwN z`kL(2!=YPS;xUE~%}KFKlWq~8Z$4_gXSyML|8#RM^EYyd&{P7VGvM2bkxAD#n+lsl z)h{zJXS7g}2m<+XdKni{$*m+&HzVVyR-A^|HNtqc{j?_gRv&?$782CJ{( z`1R2qzxAgEJndS2fAnuVlak0_w2cHeM}7L`(Iw>)`AE3Z(d4YH`B;%62CMEje&u^VH+)z8BmFYQ(%Mm;V(l40g+KB+g(e{vIKhf~5j zA$-<&dDn(XR6!d~(Z*^*{T5tOwBT-1B0a(s&#GdNWY(|&2#9qZ<7n-W%cNS+=OJDL zlVe=dO?@X~>t!D0n|B$1^l|uw;9&gXtvHQ09)55$zikE5Xl&76&;X)k6ncVYMt-rj z#$Y9U)f@;Gni9hkZ+nZ;X4I35^#;Ml7MjFNIPYK~VSIgJK$6C}GeF8>zO{uize=X}1w|@z(idVT>yk*;I`KmW8?`IWQnNX zI_73U*uc#@7P&+Zoe3pxjLYATIbfiWX8J!_>6$}{sWKNaUiMj|skw7y%f*b6N5mlf&>Z^*-=wwI%jx#NuBA6m9;Zv! zZ*ZgGr8LTc76V*1EQ}q=jANn6Q(`{Fn2;7i$AB$C(`(&Kb#%`M2a})X#n^j}#ZLoO&{) z*E|bc&p$G(pKCoq3pg2ebcAu>6R4;Uw*N!U06*H=jS)?Ikh8tVhSJXRN?Lu$)z92} zF^yVuW^tYy)z;D~SAQNM062Q_mdahwjByY9%%#ON!38YGZdC=Tol#Ih9pXQK6k0>4 zgn3(u13 z2;NX;M$Qm_E1vq!LR!u%`>N{hJNh-=h7VL>>thMb88trSEPU3?mSiFga*7aZc)=%Bfs9}^nh3&29ps9n`kB|&F5LHRzLojsh={tX)}bWw z19EaUfu)}XSCFhn#si9 zh$rX*1jT*sh;WD_BFS|tLP)4|xE+}K4uawgm_hL2Q-8m0F#Vu8 zO+srb&MJ*&*M45*Z$sA*O`CWlq8jYa<4qx(8*N68C)~ny;yW^syrIl&;5oOlAgRh- z|2n^{x>-iz`QLezN=J&D`+wzRfy;fq<~naJPARou)(2devJTVSXHIjNJ#x#_Z|J1ued^c{`&Pa%^v9?wi)fI5{=H0 z_7`;94q4ztnjj2P=$5RDA%#E&=?vy5lr-7HNjG6lup=r*EHSc*(N)PO1luySAtZ1J z0Q;<#UU~dDtv+~?PPkrs;mRTcFpQsL{X&qX!5uSE8e6iQdxZw`%Kgu(Z0)FB2O#4% zFIDF{Qnvw0k9iy;J>bnl@4Aq#L*|Cxctt8($2?K(^0n(}VrrT-X3$8V5*ibU1cz0)j2aIuPFNB2~Kemz_0DxY=5=OrO#ESrFK$gFEB~7Q?8`xI(vd$XV zII?FzVXM%ew1;NsU_fv_}Tb^bog?_vH#L1ssiNkvXh zjyAKXLaa_fdG-^o5?jhDJbK|z0pu`ee+B8mpXYhXEyq@hCVYaNf*^P6`0^e7CU5$( zTq6Kfjc5lM0)U+d+dRew=Q*W{sQ^^{FXr#3CwK32(Z#d0!fAk0T-i9wNNk=%ALi$| z@{*BA-mA(@d#n)6YN?zwLqMPK;ZFDn6VCCIA^P7| z&Ze98iZ5#%a0tf?)hwSrmhWQA9Z3^1C#xBI(^q?jIP3bZ5E-`CwoH1sRa9>UuBojd zbF6gf%vaNyu&-BUq6*usM`pMTe83|~339?2-PVHvRsbJ3;sj1fY-AJ_H{tz0L}l;d zB`-ATa!0ospkQRIX7)g-)&W9*DnReI0A`;fK_C6**J+hYQf62{IwWIcUvZ0-&xze7 zX@gtR5C*>a<*yJlAE#?v!#u$blooSTFE_yn%>x`p(j{&eNA1hl*oNxf>9}PQn)f-J z1cDj)a$BZbm8iQi(<82w_Ihd;OSyoHjuRGH#Szue*J0Ij zhlNre)v7=neINO849qb?KnwZ@h;M&`mD~sz_~e?$3hzNqb?ee5+U|vh?gP@`s&40q z2Uuy{;X;@eYa6@?ZGRvA26<)vccIHFBE8bmL92FzW@L-g)t=tHlWu?YC3~z{utoU{ zUSlzt`>k!a=80=1NbdkEwL7H$z>_w1xcpE}Z4gcROi1~Tc48~A-Rf998t^rt(GUuV_CP~O-hOJrId}sf zpbB?>#P6SNCc6b>gmHStdZb5=Djp;}_%5G%{i){nF#mo`$OemJ9T) zoiuTSV=FITO4okz^Yo0-|J^UYO3xoXNzWeKPh+ekUF3Mj%bW|~=}%MKeLXlm5nD^z zErkHLiR5X4)0C8GbEXBUL6SdKd^1}T{KU;il77DtLBZVwE@888KhJgkPH3CBPT9{3 zU1K=~SU%2!KM$_yc0RuIU2A%Br(jB>!IF87fLrW2-r;D{HxD1AZ5Z+~3`v!;TY9|H zyiH^EfRYw-@Yg^6H1-6)K;Uzp`;$*T;{>~-^qR{&wm8WkkLG>_rG53C26b zWhAqgFQ@S|+0;R75(b7+c)#Xi?Zl1z8dWBdrhac_%h!mkPinJTeoL((JOh!7_Q zovs}>Ci0fRd0h>;4W!8e@3JAN8bH>_v9`taxaFeKpkxrPeUmD>GQy6WFdHF5Yf2==;38Mj6g!x=R_}gc%^1aW0mnP_h=GZ;*g0RaR z9ewH5a{7QXz=v5KKSU2SL{B|ReOgC|xc|lHF#r9u1k;(Gy}*dZT44vuHX}Nwr}v+x zI|!LqKKg);ZX*s)d3gJqG(E?)s*6kMgc0lE_E8!$fIZX?~&FQX_z!E&<37<{#9B=NZ4I@Nqe}I z9w6{+vPNJ6Mm>%;;|REw-N$L=?l-J^;LdpB@N~Bqtbv%n@-j`*Zq}baOAja~1)14} zrI=bnx=N$ukC&}DMRLTx@khYD`1&?iav#O@vReoM&juc(MQER4(e4NW-`eU5W%>-w zz)_lGP0u)jR*SOQ=REq&=P%Qn)%7&Q8lEc%3)j&|3@xY~Kr=&vtzXfWnw2an-w)>} ztME@Z1ipIhLehKRkq-Ng(ncZ~dGy*Pp{>}vN%HNF2xNDZ*)4Cv+9$aiNzIn1@`-!Q z#S2S-5&AeaU}{?Iebw|BuD4|lxHeakM_4?L54eELDJRO)gM7rJAk(4T-3g;cD7SI& zQXZj!qQ360ZlpJq=?X&MAR4O6*RE#Go$;Fv-VrglG}29jig!%+fkPrj?2nB+XEE93>^S3(JD#2wbiE3IMi{XLp@F#j5hIrnbUhv?gCh__w-P0~@Ld-wY-V)_n| z!Dc)KU_pcsLxqd0g^|E?>5fgMslgF0ub7EZ%EDD{yMpms2{#%2tlhqo9@AM*GP?0< zN1t(E2T_4~?d1S!)E4uUjx1w43YAnTJjacNT3RWx@lkD}4%hw20!F3K3zK2OmcRM6 zGDc8;0$F_VL1oL5Lv-YTRRAqPgiba7aQl{@iZO`GK?Aaeji?Jy5B3xUADMt~Jr@Q? z@!1*ZZzocp8puZ7>-=;yL(CxE!7uZ0#Oke#Cye?x81+B>^2^kstS&L{K8}!f?=JUp zGdeti;d$r7-pVUFK~&L@DAQHu@P|ewxdN4? z$xykE8ovc2^KA3gwQd}0;$7bZ*RQa*c$iTyH=xbUq`6BM(+h4&+X4UnJ_nqj1&9;Q z5H1c;F^)mk_~dwMKYE&WUURlMj2!CH3e!!m5InBkyqPXuTV%1_1c#?^#pts)Fw$3P z4~@ho@ok~TcPeU;LrnHbn>z?bQEOlQOxAC{hmqVEI4t02&wC}uO zA>xbYsK5u){3_dA5fZq!j4VYUf${FL24M@qWsf?}2J9GtdAIr4c_#% ziMyWgi@HHQlJU2hZfU_V6$WBqDlo_1Wlw!_%|#nw_n0z1*$0jW?Q{F`;K&@|)oCA@FEn`l?lH{XKHO=m zHaoabCGgKK8m57ciJJ(KGT7q}ooZ;?&^bUHN36l|EP)f+p&PW0(PRt~uj^DGhG>{d zGOgU)lXozXGpu__#9>_GZIM2w^Y)47gnHR_It%|i@PtSxJ6mp1hIVlL%WGUft1waf z`*Y!&1^-9bzXS9CBe4Fb43ZlLzfd39&l?G>6qMUJT!G&n;HIkS!8FZ*Koi{Ae1Xx` zGE(TvCr{GyQ$~Yc2*Hh4+unXP{Dea#xXgl1dVFp+FA$`IR9YRx-L(Zu&mqx*TN4LI zSnqwL1!pD4@az3bBgV?oFn)zkb>>|ldxC=aGfW1ml}j|b)S!O9%a}uNnG)G4Ji46% zZB~3d^s7WxgcT3(9F*7!j$V@areC0h_%XA>kT&fC$3Ni!a&+t7;XN447L0Uepq*yo zylxh3(kbl%+YKS%7>4LX4S2z$;NghKLq-l@dT(BBrq}ClV$t9n%w&%a^MohSVFWX! zgK)mvThJz8Y(pc<&;w37QMc-KSxh=eylRF9Ir20FK*^;ejWr_(2m>wV%n<^HfgPe_ zWhp647NG=uTWAtob1;e8dv0+q9njfqZ80DI5Vbxd=P}a4)&ZE?>kvGS4t7I0QfoDd zI{enpf09P7ETsf~>21?Nx)|}*gGcE#nk+l+dFts7s(5-&R@c+f*`bpkab7vJSYOmo z*ulrbFbc%&haRS4o=k#!lg|4Dp=5^+eVft!_{0?2in(-wwG7*I-cRq}3kE&t+&)6d zAf50mQy5+HD2v&N(LTZpZR;k}ZK&PSz8xX$EKXz_pGz$;o@0Ps`VM{ZA~QHI8p)ixTcEuIs~Tuo;TP#CPZ$aI2rPbUZn zada;No$y}FL!swmZ>ir3fCr4o+th0sMvRyfZJ|wHH!w4oM$ihm-UAg@+C=NJ%^H_3 z^=1MgZ43?89(3)a#@|KQ-KG9^WYRoVe+7&#TGXM5=@1$==xeul4&55d^wS}loFg;P}an}4h5&`K2}sSf*+&fv4ULt@D>$o1IGW7H31J9-JsfJr1q52rWMblBS&HU zlXQ?%bcC~1s0l`VLyXV{>D*jArmSiO$q(Hib_CWetxJwX@S{kgk=ERZ<1>DgWHr6Y zg`H#-2dk3?n2M~p6xZZ>=PfQ@4MPvb)kOgbO zVF#^I7zjV!k!HT~9$YLi*fwfzM<7b|2QV+Ujycj%&FIm{QKmF#8{Pp-PnD!N)tIa^ zf`0JmK^$&#oiiVl7(q*`BacoN$7~FOULKMB~JA?YB`~N4`6b;;M<{7 zbAI%Qv>4WT=J2PyJ$QsJFVVNe`4irFMgRZrqARh&y!Tt8}i1bjmF{_k<{EyMFc=gIIWro%@^2DoC z-@xSOaGOBYKY;)-#Dy&DZ(gI-`6d<`Ub=QAT}SJndGhEnQy2G9{|~3X{P|x}J_G3` z+8r1Enc}$dlRPGwq}K-_kn~4hh~NimqCBBfl7n{NeB=_#A93O$R@35$+O%5Rx6pb$ z{_2bL_&2{}#Eoponv5=*C$Bc2L4X@4Z)C_X9w8)B-;@T2@lOh?jM|4{M1GRi=<{|S zK8ooa&)1)H-N+@@tk9O6+8HJ0Jv1#3|M{2cG1F;7ELgq4g+R9u&W?#=2WDyi`37Nh z8|J=Fog83c>Llx`rZ02B&K&DTDCc!X{;_Tct=SQ0@{gnWaejTDMXOKmJxrUFCp9+e z(;)PXvNL3q_clW9226S5+0(QMgQg2$Jq_Dvudv?Z;ss=t;k5Sjd3t>Bo3sv-pO~Fa zpHN38N5^AP>>K*><@@)ci}ga({}TkD0oEHh2)sm{A8E6|6#;$a>)Yx6KmO133ivC( z_(l4Nb~sC3Da0H**o$(pOQK%+fr%c>zKwrsT)!MkJ+yqkZ}Xn{_j1(gLWSYm{EjV3 z(Mo6}G^$)E8Q2=8vwZ*nKmbWZK~#og#~1VX6s#+*TXd+y8~}7-p2b|ZuBU5M(WWPDf0NQo(;W6ogZx4`*jVv7+~#jaEE+2ZFbKx=%(y%D?z*~HOv ze1}CG=ixEPaf?wIo|TroPdTUN?JyaW#bp+-1dXy`x)1OZMy6wzxqJJQ57X{*v^0(w z9bK@P&sG0!*&L^{+XQxnQR_10x5h%fBeVpAbaca%&&cXj+Ga)nE+ghm)OtGz1)=hT zk$8T1cYu-7@F=4qrU4K%-1*UF#4tcv4^Pde6YB#b&Zmq#-4Z99OtnpzW8k`@jBXGF z1{m3%(4ih$2k2bdjGD&gnMR_HZ7>C~{Ct_ks1Kd_wX2Xwk@Re+9B7$?=r_!x1i5wTvlP-=|MbB~U6o!;;T+L2Y#cY=`Qp+dqscj?M_ zTZizD=8kzz?9j%U64+tq07A;KOrNx%?n-Uy^)RElakLLRI~<+;@NwEE?(PH{4H){> z&pwS^5L4q*X>RFSxa}iA>@zBBPosHY4t|&XJEX0+3V)D18J(UB0sHlvHS80tzoFCp z_(Rs^4yMWZ3u)RBDl{lyJb(TotuDW2aLNjP()0QSj08sSflA&zuWXWyTJ10 z=U=4DoMUqF<4@8EZKX~9QgeAkop|=^-!f(PHEr=EUHbH+&~7brh3^)l?DkAIrcEZU zb<$&)_OqvtViD-*JcFDI^DM%of3w~oux@` zN2wca7GDk^%ssqwJH7non>0xsx`4Lo0*k4;v?1&HYXroV2lvwk3r=T#`V#~`>Ks~! z7oUHbKL4kGWx92at9L&{Q!t)3nZ$qn`bF$UnV}s{TsTTkSR8wo@Vnc4>1Y4-zo7+0 zi%T2u;+_KrY>w_%o;*&}>NH0im?XzuJbs?;{_{VlXE63D+T*34e438OhSN6fZSCbU z+r!7wT!#g=PhX~|r0whf_wUk6rmEDETtt|fg{BT`fjkroxgpBRx|J)JrDuU)C?ajW zG786ko1gd0zvOF-rj>^MCg+_ma=@htCY!B{g0RGou&9JfgUS;$c+zQf>`>_(M;PVL zAywXD)Z<;z&d07XC9sC{yo%)c;NHD-^v#{PL26v)!c@X2bD*(UknlrDoI|RAX(W!K zI!KzXK80h%Xe4S#p(|*D<5{1=osL!$=?P&V2=BXvtwIP@{C%A@x&hM5n_@4{eP|p4 zrtfmD?Q9f&_uLu?WcYqo#$Ovq76599{H_eYBC1I?Y_u_$;5Z|QTmR*+((+vx7bE#~ zROw7JB8?+t!FcDc-%JCPSDVgZmr=<84fZly$HrRSwD{r2X_$`j=ouH&ICy4LTN6cqaoYSbI zTZCKst?#je4^V*XXq5?m}?y#oeajcjCyhk+GZ{+rl0-oe^0NN zaymkQaHY}=%uO}x7z+ty#$A}^Fj}SoI`X)fie3lSMt$nCGX6sPkkQFY=EHYU*{)EZ zr*7PU+0s$YUyPBl8VzKUnAgAb!3T8OLvaql2~!xZk{>|j={W?0sP5-K{4foJbAmoQLt69RXhJx`IG8&atkSuU<`4sAAVq|E`lC_ZX?Mq(3cOWpN)Gu?3j^5US$2 zrKQwDaB&OZ1xD_!{(pS;ZdzsZ=b|g~ZPax2e8iddb}- zlQgy&@@$IyJw~J1W%{J!dMMUn9MYdHCJOe|$4C5YT?S}o+4g;ZO`n+ArolTl) zfQGpV<9rDtzB)GrZk`3SsRsvXm#_~J%0{VcbJQcR);%7X3PEIoK5>Nj_x3w!hVu5B z;Oz|-yMlj%g}8IHvk8(nOFKBCzU?DKcNqOo0M|xfJpjh=?apypgyy9s*5q7bF)E$L z34OHqH_;$X5`LESwrF=Rp!?aKyG&c`rB82h;_FX-k`Br_Jr6esk`>oJ71-!6@8EO5V%zNfvGSadr zJe{VJJAm+_5VA-RY!x0Kr4nAQ?6eS_CyW9!9AGxA780IU0=F0ixmad`&U*^xGed{A ziL|`N>g+Yp2KzY!XmW7NVM z4>_!ck;uUwOA}eoz7LtafZ=3l_ON8Z59G{nQs`RoK?qPrA&|L ze7)k-k^3~|`~j+XuM>4n-O;*Cafi`_i>o>K5x;zL?7a1kF-EEiK*UZ}ia5&l?Mt$zvPSHb;hRB=6PhhxL zE{9MvKpHO)$1Kw)Bh>W{_Blq46U@bSP}fTL(8bFLH%sI(dI$514s#ra+d@DZMlcwI zX>T(Ev+g?ja&g%x?PT6Xij3T3;%dQ$@tY@nmmLO99E_rk8AmHJ4mayCvf6gr9zCX` zN$-juX8w2b#;s8MTh*M3m|}$I2y})Hdkf9N5n(-xKozccv^y>06pVs@RAuXwfq%fJ z(&xL{gWN)U^l62Dr!QQ6u5mgnuWvB5bRTwHOe5_vr~d|q+(jUE%4O<=T@(1nv-S5&Hc3Mm#OifFbxzS(DL9 zQ`A{6(%Ge)R@f18`6H%%(C#=bcTAW;n06cH-{NUA_wKRk$N04m)ZWm>C{G2zLG1{< zF6wJ@M0Trt0{!e3`7PURU!rxOZj2*Tj!;*JfN6otb1*tE|1K&mryg7rGr)7gRE71g zi{F5cxM?GYYAg^6cF-11(vD`BDsZZIpZeLMqO{N~4bpD+*)F>Vjohu0vw2?gJs4);HmcSu z1GVHVpeUp$MVS+!__rWW*dY){p7P-_l`?1dA&)V#A43|Rr^DP`=bmdc0$Z!Ap%rkN zAoeBGF&)5UoQL)FvK2Zg7di#wM;kEgVnarXqX-s5R9fekyLRrtIfv;fXl)vw9bTL~ z2s5yw4`Zd%Qa-aI^g(!Lu*FlSYAyD<@Gz%2ho~?aShO`@b!ogKVE?;9*0(-EX3s$) z%~!=2-#(dieJYr5pMc@*M-&-vizfUHKqt{<1Tbf#WyIX=GAh6O5LMip)Iuf4a2E9= zj3+VTB=5qY8g*o3S$3I2n5K*;EoTXZX}B9C78w%Da7@WiLvT}IVC+QXtS{i{q_H%E z05KzDfzid`Atr_iq^MJrm#f>|+iT~b4rhdgfkPxD)PqI|&UsYbMlU@%R~WTH%L1Kg zR7P-Xj%94n=d^HYMiF$mt7X`HF+6{0(nEt_)<{PTJQ0jd;Rs=6EU{`Dc!i9}7yP0g z6gtJ#LXc1(Uc5MuoRHIC&bc4lgSH|;#F4j7wGuPZX`VzHuYxeBqMWb>p&Z$ilR%yD zs#gWQ6Ux_%lbZF+{4llusf=kZ1UG4y`CB`zH`Xya1(Ju0X(aER28h-EFs#IAwgXeM zJO)3 z8ntDZznY^9z;6-91}gTK_aA_JC5_BcjtJ6+R6vhhcZ$Kj^AP&t<~{7O6N~TICr>(T z6MQnQHpbZ&m(tRU>uLSr)AaZorVZ{gZ9tn_`1F%>31N7UryDq-5&Ckvt>5OCb)9-E z?R+VWI?%HYAF|_RA0g$4>7*7@d-fx-P6q+OH9g+l(PF`)gSR)VCvaELEZV+HOj&Gy z{Y~0HBjtL58KzI#Y#Gif7ZL@hE8=F>lnN6vyB~^)Ji4cT^ zAb?Edo*9|3{eP$WgD3Y>xik?wx|?#tQkIp_NGSwQMrT!to$FPVgd@|bu` zd?#WO7{*K1SibVkWXfkFL4D3$#Dy@*E*FQ_suoIIEkthv#AOl#yGjQ5ZDUrogNL&% zv{VnDA#!G~c#Z{Hlg*$yc@=40In|OaO0DoVKQ_GcYv)veHZ--h^UAFN#x$| zDcj})2mmuNpR|p_w9}20MJa$LqJgM>4@e?%A*kS82*m9(@tqGUfSO(0OA~Ir9g{Iy z=ZfPU8pmafR3M)7Bpe0QrX?%qU^qC+F|T7Yljt)q|52_%S{a}cP|C3#ld&OQoloC7 zQUR3%TX1ZaA+eFZv^{*6>mR77XERJlEc1#frRCXPgKeYv`dC9R_nBuTMhO!6hX9}v z5)?pU@+o=gY$h&-X^(A`ND%PG!HS8gkXA7cfOWHc37At6jA@&>OGTP?S||IXREXNu z>8x9jQ__%$06duzm5z;Rt!eEHF3a(%U(3rI`Ir6@1~qlF-n_VWeL&5DzV$nEmqsO2 zf`_k~_`6-Xj;rbSknSwpzEh2mKDF3(nqjPN{OJ8^8KUjU6?|Acc)+$L{uAy$1c8J2 z6sf;+JCdmMC3DRQF>=CaFNc@LK9ZT|=wUno`QK2Y#QuJD1Ov2*6z1VW6zv`%MYsv< zVhvhnh*!s70yH{Rj4|W@HFXUU&iHc+=PfCzx5w-6-N9^hrrNytd$uVcH10iMo9JHk z6%5wk3hvm|L1DhoMVZT|!U*PoYu&9x{SsuRnzi{`nsJptus^5w$041l#f^F-PK*)a zeN80YwsLD^hpmSr^oUL&Qq_HNekbxi%5KsnP1b6c87`j%9ppnFc)}yrcInR)Yau*{5Y0E+K0ZK%^*~<20P{<`xQDQ+ z%dk|_+PH9Amd`t|kUpmldOslwC8jg97|`6zLu}NRu4WY9V@D0Z4nQO`vlFm3{bi#i z45UB2%wJ^X_!oM`6e(en#t?HNY1-7G9nMP_wA9zUCv76g_YlQCOum8C3#d$;L>}pP z=8ki*L6}_;JWX*;h=c^7$%70_twNZAPD9W1e5u> zJ=TGMNo7j3QXjshUWC~^>4zj}BAzwK4XY|xRX-(U%3s1ZiUtZlB+s<_K976ob@2S@5A|TZbvar(^0qI)D>_MctG0LgZtGM zO0btd-h+e32Za+e{SGRIc+mL}LxOaZI@&N^AZ3_863f6y)=D3}sspx`+!p(r|NX}( z1`ew){^7q@|M-jlQawftKRluB{9IF!Xfff39ee_`*^VMViEfDqf^uxNTS#`5Rwdf$ zFTkW(SG@`LOMO zYn;=e1UT@(W>T*In}M=Se_qqL!a3Z8m#^Rd?_1>mLLW|beLW^Zj>LlAB2Gm6Cn&Zcn!SkmOrO0c{gx{wI7DYa zja$uR^f~Wjlvp@GNvHpW{j@E-s6h=k&Mw?jo0ka4-Y7Z*cpy~Eb(V$hURaM`{GG%7 z#<>SbBsv8&L@qPtaMn{m&A-w&Hj*d9rL1`cqzBLhUGa^GT=|pl0wEWhVI`Cvns6ie zkZ|9R1l| zIUMc%i_Lzii~U*8(gd_){FSmBYh7tuukSqwDg<6+x|4%?um&i ziGt4w>xq=oCuRguLRb+OQwtOM^CGQ4+7n;3J{U0fcQLJUzMe;Cq1(bFPy|F9vo!#4 zc3hRP*au$rMgvrBiQz?olqZX+GS1IYd|ik6ImD_&FOhwoPlo6NoQ$e% z;&fr8E@5%7#&%h6UWHePM&R9;z5mf@HUy8SQfk(Fgd*;yTd?Sx9J1ZI15xuFIJ$~b z;d!=dFJj`W8R9*Z`o?$f#_HvecIsPTW_XOX%|1$_E7etC^pF4UKgK`80%HFDKmKEN z2xYy6N#zMnf>hpig=AW@aGLQUu&kqc5Sw{A{oOdP>w1g)Cq3!HV21tC)eO$rvTB|j zoENV@3gEM`4fkH2r(^jX(3DIm%NaqSoRqZ*>_ajT1(#Fy^-r-YWzh+7wbRxS%Q5>+ zx|faOAa|+LLnH+`goa71XEqP1=}V=e)TNfY06YpmVd*RfWCRe^(S_dT7LX43+>>yC z08sR69aOGSnMdh@#DGAyJc~$G(h&$u6A7RJfO|N%G{y-|JItC;+$(cNPQ=;A^Rn#~6;u*MoiR`mST?emwVhN;5CT0T6T^e50cm55&=& zFh1b{%x$(C7#;v=LArYV6S+G#>`J#wtZPxSB8>dpL)D|4^G`h$=a>Y9j#oSgDB~eA z;oBIkbH_O2VmH&y%yj_mAzNa)NnSz+<`jZfk*vNO6k+IurX`TIuWYAd<2)h{9y9+# zXlJbXLul4v?&aNb(+FSR;H%8{Z>XS+c0igt{op0k>miO&-NQt!1HzvH zF|R{ZtzgM9i#ER^{wKJJ9t`k~2qIs3?+)KDRp)QNn}eW6^m7MA&Lz0p@%aPx@Nvq6 zPRR-4eTjlaEHf5vU9Z-E@{?*+>k72v51Ct<)%H-L)BEGV$;5h@yLh!acL$R~^igIo z@f+~14`I2r528n6(7A90DJFg{jxhb( zQ^fX1=xRM+o1&w>6$F#ps))hRBO>3+>($kF->c4{XW+c-GoLR(7;FG{$0#wnhLu=I z#ySff60Z!4(=ER;6BAlTXyTRFujlVu2(+xf}$Cq`?Lm9zHfvxED0kBsd$m zCZyRKNIp#<`H<_2S6#00{Z{H?6emF)8$hJ6OWrF8mUpYth8UPXhbgy!iV%^GzgQvw zh^4v*NCZ51<_HQ^=M@L&51g>Lhb%s&2geW$As_&(eE|Ov0P}zaC{hmqv`i7Y$bnxm z{bHd*5a{+&?O5+Y{wN+QW$3biVvQi-U_S0Cla>srH2Fy=@SgJy(iZA2H)t8;o4t0T z1`%)?y4{2Kxji_Z0rKBHKdR;#|D3c4u{H+rMcbYG5~BDeOj8e* z&R1I~A@5@iGmlRNZTR)IFpr7nDRX$p8eP10y}HHvK4$){-@u#X0>oi!u3EzyH89g_ia#nhaHFxf| zW^?$>5N^VxwBhJITx(8+T?l}^r(0DY!gp>K1zR}(Rq8l{x$9W{h5@R#S8r7B{|(&! zu%APqn1r!Bh*XsMa^u4fs*A@rG5>WNb`41Z%n2qR8{~Sxi=nxDny8`l`BkwlEP$AZU4%EM4aD-f5j!Osto(fzmKxzt9 zCEn}!)B5sQ780OKZWbW2@%QiVva3t$GXUv;>AqaX@A=gaN$Mmq1$V){$kz)L&l~YAga5{fBMkkikMHE+ykiZLnH!yL~0(hsz@7n1-G@*?%KmZheK(SNBo{b~OKq{_Eiluir@j5d8WfJoXxytnx!u1KNu zaKJF!e{g0qd0hyOIG>v2AmL$${{j4*qocc zr_L>&U#c!)U9b#?aJYkGA(VndYJFUw+Fv(s-^P{ix$5bYXQbUqAI}0jFT$a%-@xu2 zyXYb9mdpL>!Gmf8k>m-4N{8_sBL>yK|2fR&G-KL>u-JL@DAFMT<+{fP1I$!J+CU3i zj%W!trI!G1eTc=Ugr6|x9%a0I?gGwHu4F4|7ytWxkhkhrOGqWoBl10gBYXDjIrE6a zcc{0T(e|%%Ap|Qx_Y!7dtMuKFx%HSm-hqSyW4x$H6`(%@Abs-S9%9|?XnW65$LsHZ zz~1vU%nc!eATUPzh*r_2e*PFwa=2MOImAsX#KukfclF|B&QsWA%>;jS8rlf z!?zW`~3<4P`oww@zQoEP4G;d08psaJsvWfliAQRg!AOO4AGO8tyP zgw{vG<5mZ+b^@>hf)K^EE^}ap#Wu<|7|aIW{JE9KKqjrLOzD;q8~Ay+b=IUvm59)y z98|?Ow_bQwOCNll{?4{f)*pRMSQI`f-uiUVeUZ6P-zMb&2WBYGwWyZAUK}L|m2kDx zwPF3hXeX`Z3l+5xa24k)2fhnC>>IT=Tq8s3XgehAqo_)rk=jv~FqF`2W3`z3TBzu^ zLj~;tX-|-_W#=|+!~HgSw{`DJ4b%x3L@}3o3CpPS&>!E_F`ALnhiFed%#$z~0hJ+x z+ymSwk4iX-8Lud8m_Pr>tH85V@_YZWtp{w0eE#sD-nRSRS^oba14ex6YTlZA85$?r z*){!q7J8QAEbLD|nSyyy_D;#ve3Q2ynqR^wKYP7(+dM3wnsf-$iP&m;=L z;1d^={VAfZ))=wXDV!IP7mW*%ke^6i0zo9AB!O_n<72$__lVB18dt2NDT9D{l4d z^buU}F~Gl%G~rl9CN9=h|~Z5udK371v&N*77Ee*j>G@ET%;um!?9l2CxNS^)9yfT*`e4-hG?VVk}h zjegJ?hxafpaK8);dEnI!Nn{_+=HOtbIyc{|E?p!(N?RK!9c8baZaqa3pm}L0gv~5I z17;%%-N41^9xhDhkqqdPx<~&D*!6_A$e8T&+dwp|qE-i=>MD$#!1-$%y#hh9aUNg?K1Ul@@h71F3b!ykL9W*W zh;x3z0R+r*4)alWV-=?`zP{0ywfyF*>sAbNoaG!wLmiUnwlMcZj$_?k zn~lH-!c636e~r}GM7omI>KepPMcICH#4>7rNah?7cSC7bl0CHAadkkV8;0|>NVKzX&K!+?nBmIrVmts)N|Z?Kf!t4!P-qU;hLD`2Z6etlH?EN%%3jQk73zDN zqkqSkTpcKuM;Xi06?L(D1M%<{1k(n#(E|v@MF=?kyQ^0)LgL^_m|gm>2T)d8rKi3D zTOhhiT{{m#$128p%lY?ci?-H7#zp-MKIDGd$Ds;+ROYQ?RwFy+0<)1{nJEHWXG3&L zimEx!&LdaCD`ykoZ_0I6Kj(7|8p;&+-CsU9y+uH_Tn?G`(L8^C)?9K7hwA}JF1sLO z=LFw18Rdy}Ms5=2U=0mbx?rrB$k~&G2gOQY5KqFwEj{5yw)dAalNb3x$FDF*6Nu)_Fj5*1)E|K?op-g>ia)TLQB9@YyvH-J$SpwlH zx7JGM35>C;89>lQ>1PhTfw?0bj<9cj1oBc*O(jYJ zsesZxmemL#qJFl!E4M`)$II%{uojp*cA6kxIMJA#MTD+AHh|huoZMd`eQh6HaTH&IK~$QEVPyg zbnM!2=5qa7j4U9F2aGhzRR#4+{|We(CoRb<|f6mTLWbWbhFL#_?BA zv-i8m{;B5)jOp-^$Q~l`bcoc7cC)!eJ((pCWP12h(_6Ev4yxhyhu^(xCMMyj8EfO* z#kxo|(p{-k<_j<0t)o}AvZiKC34KHV+K{H=(^a&Md@D=Hm-5kR)69F5*&lRJ^6+%W z5KXRS6Ei-Z@lfV6G2y-)dx@-e)-2B=HRj)lJmQZ5BBJfwg&<4c5?^lH(^(T*q$LIFjomG))}!@Sd0>L$_S zkNitLZ71smCPN8`U1|lad!Bhsclge)hGumgX|M4U!TamGV!V{R&9ko5>&yO!mlJ)T zPM_5L<&HN3*QC$t=jOfsoH#GXn*>tABpwMfffG_sjQXp2Ml45U5s_&WYZ+e3^8+vZ z3c_@fHF<(VZ_r)}!Zgby6>y{@74 z(Kf5T40nwcu^0=h2{&E};E!$OgWo2=*pKHci6ojC>9i zPiWGZr*SM$NFhMsH;=emF7gB-<@pBwx#6~tKs@tstvvvtoTf-h)1xEA*IESt7NT(G z7C?XnK(htMKf>+k5TF+U1Au8v2aEwgE%r_Iy^u}=m~0`|?y#YFwBIKPL=N{m*WtKR zxL!4pbw@j(ZhCrjA3vJ*R9Q|#P^pjcBRKSJ%F;QIM-dCav~wTKIw2 z?imos90kDhljD)b(}#uo_U_ZF&@}+LJmZwOJ*5ZKuZv_sr93Y=#zX46Pk;B8cA`wF zRkRzF9jsp5#oeKQ#{l^*W2S|}7yy057Kz(TLo~}5sn6^zk^_D{9ICX_@%E8(*F2m* z&I9|7UrIikLz&+M8pq2xxtH4y=5J}&S#^aBndSufEY}(o>)NwVxa-Px0i-lr%YZA} zF;W)ic-L_iku!cdf*gX8Nkl&%RLAI{un5wdv3ZwBnAN9+d0~zUMH-* zfm?ET(9`C>199yss%;475rp6XYp50nIH_#ff;#r-XflWR#)5^pJfsanBxG(&dKQL? zuzD3$Q97=laR%m*+!Dq^2+VzL`P&e>Fdtpo!vxE=*5Db(eba}!uOZ*>HhKGZ_%PKM zuWJ3v{p0&|lIHt#Sjoo_zS7y52s|5N-%BNWDM)M5C5Y$^G2r(Sx5N;6na}hjDc=bx zA539{TqQpFm!gu_m3sT5I>whn(|A$>r3Ag#-0LH1Pq#Gb~qnk5$$DSqfCcmCy0z~Op}HX z44PLhp*Nt2KF0!+My@Fen)-kMXq|u%RmxgazkohG+5yzY+9anDDeTRTBx zf2kZT%=cOP#RIC`64~5%TKxfUXd-$Q^A_oc5lWl;yGTK-BhrFp@>*oe#l2@3$h2i% zU<=S!qyGqmGA9Co$nY!$r6BDd9ONAJ1NqObKva;guCIe+$k%!1_*$-Q$$W5fyl~N( zfre9o&Y|f!HTCI@d2H&}+@~vMSk^&lTNr>kUO0Q_J@1O>k5T-6^4VwjqyGxz&yb>9 zqRVj4OISsxVinJI`cv55;H1*uepVf`9p*f2<2+0!K?~H?stxdVr3~bJkxUB6J?I0oOhU~mUr!=kK-o*&DLuF(U;Yu`{=rGir?iM zH*zS~DQj&TW!ope`VCtlryLP{ty=&11Gc>ut0Q-v=v$=?GCi4hybIfe2aTRmAwq?U zFHW@rW2Xo6H9b>@@MJYj{Kn7k*VOFSnhkyUC$F#np4CWN?o*LUs8gU^HE#YoNEL+D z#B~9G?UirlUYE=J*Tw%+*_i*I{66)uE~!+h4j0Kbb&$B3T$6NXse+JQ>0Hfc_v+kl z^xbEvWY%ZXs>IEoL@2L52IzY?djq)g2*A-~F3+q?#eI@pvjRHaPZ9ZR?$-rTIu@E5 z&0_X8gU-S584i>HU<)A9Ik=rA&TUX^KlpMMZh0@9@5<$?h_qE;gM$Ld22f&JG0@kL5GDZD%3>R&CI_?v09-`$z5w9W>CzZrxXD(+3Ea#2D!>Vid=EO&j#(2q+aEG3VmAV+atH82bQf{0?zUDdtsJ2x!Tmrnb_6QxNp>^=ll<%Ry8U z14=K}*}ES>L^zi8Bdk@mgLq!se-X+W{i&POLm=gmN?7#Id5Em@94k8m@iJC|0@uHY z>E5mPKdipeYJsg5xyu!hfUd435W66oEr9qTeYilMFVGeb1UiMVpo>H7IsT5dfY^E9 z&2e?qeJ(RWBEf&W*YS9KclQ^+s5XCpm-)9^ zUH|Ckkx)Iu!eaxD{QCRv5Qc-EyT7YG{lEV&T#j!rPS>i7AAVGwLI}2JAyAP@DK*>r z?Wfgezy5U)t~UQ3B6YGkM$r`$Q8@kqT=`eOzgOM+)vrL*D70eQ>CxNU+ena*b`2r? z9{-PDRri1O>nI%G{N$5x;yceC%eYtXeDqOu>u(?cLCV(W^S}SE(II*7Km9K#$8x#@ z>p+Cx-{IuI|Nj40kAMFK>vp}m{`0?r_C;c_fO#y0!;{ZGtsed6H*9^KR3HDZ{~M;G zq(k}i?mzw#M?_fOKv=FQ?L+71*{^ar$`vi<2zv%52{Kionx6$+uq)*=dvKmUmKZH^6jjeSvXDc#HnNFu1G$g2%PNy ziS+p;H-JvX@w`izu`QypKE$?s6VtbC#GD;Pn%X_X%`bq2!%u^BHUDb?9Iek)9O9_N zXl^+r3=UkPK&s!C#J(M(V$P#b0mK5{1@1V~iIwJC#g`3i9#BCAtRy>?71xJN)+%a9It{!=^7-qU9XqlU#@PN*YpFC?E~k05D)Xe!`OBp2$z_TR}fwQ_@^Ib+vfKm&nJJli^T?3 zAW(iS2*DY|@p8J?v4y{V>z!&0@$2!vGmLp3j{h+dgpGgsyt@3(P0UtrR_8c3;E1g& zPt=>iFU42)A6552x`&)$^5OsVx7DQ&K7d$UuJ)XF)M6hiZ=cx`l9vBw>d%r=OsI!r8*37V|jLO_&wd%@Arm zaE*Dc6s8U%gK87HVI?V3d}Qi{Zp@$EU-kHO2cCj@7HkNbO|d!&}X?=({=z1ij5U#AH%VZ zM6dvaF5HRxnjL^owlqi+8yx#pHMgd=Q9O(t>-o0M?jc zQMn*P3ql`Zg){I_8_16v;(U-loEQ@HvWHKY3QU%(_eYO0HHVRVvbM-XmPI(mnh-(k z*K#jgRJ4nIciU`(Emt28b1D^*#+=k0P&BXGSjENaaY#^@w_8ZIFJs2IM9~wehk>5> zrdU?w?PdR=d&oEbIFMG%ynN+fdY^EmMcIetbAT-OqTFY6{*|aEtuF(90GAd1#;Vd2 zX@5O#Bso*+bt_B_dXBnfelFpZ=iJqG2&jc>=fPU_}Sq|J-BwsCPundGaWGPog*oXAek(Xen{t$J?1Ak28ygS}5alWvVZxM5)vp;NgN@^y z^f#G^4yp^(p!|J3f4Wi|=53~V_SLdd0Y7rR&Js(GZ~wmSf$!7pA&C>a(y0 z5lkjElR4ZCcX`KhNpZ8lk{6TPZy;{xc{F^91nOb|ip;nW8_yu(J|{N{0`i>l=r!;h z#9|gT#!x9wnQ~s;Qg9*h6OpN`nYCnfi4YwIKj)RdU?rcMdg(Msaeny++ALWmMol{8 zn@Ch(r)%CgCxN3mA*_^F*M(Ga%KG+?q8{IsMo8#*S+0Nm7so7CRpiMB!%`>0#>fhX z03sEaLh$hItXZ^^`iiJ+zg%@8Hj;Vi19KzJj4Tk({ufw^$gOYsHDx6e{#Ho?-KR5=Z?Z(IvBs`P3;`N#Gdszl5XadUpR_ zJmlShYi0)vg!vq0yrXLV*0r1yFowH71(72QVrvRVSZq7l|0?S3?H*NMKKNa==f3*^ zJ~fagUBN~00`p#?)E2~~4(=cC5XCVNbK5Q%p-ekq-e8QIpH6>95Dr7a-6Heo;o=C0 zraLbsPLT$zVUDU&;XYD~O>_#hlsVct#MeK^1YgHJF$}-~-u^b(hC1Tp)$7EU!{3Gb z_f)~XM~`s?whGY=lRy~~zIJae?=|7>Jk6_vz{P8Q5vt;aAHCNlO=% zOk7J|-XsP>87JiJpSL~muh;|3y;n~27Xp1LNJ24ikdDYqVAou%Hci`L7Q*oM+G2N(olnLj`d&L}q5K z>3|ta#F&dkMR}CAtGwnwN1Ge2bdSAVk%|5UX0>o&dqTxT$hwSg5}O{NXYrG(e#tF` zOuoEv59!ITspE8;TqmW&Xf<;z<7WVK%wOX{G~Y6iG}SStPu&GkA_YA~kbRE`AMSPm z&bkBF?CFYbZi{9ka^v;hXATc6#lo__H~wv#+<^U^!Fsx>@& zB8RB9(S_K2{1Ba;y;%0N@H;ZZH1+@;n3t-eU-7)*2n$FDt40Hnw(}@Vvh+M?eO=(+X$G>ov0$Iv4 zj{sF_Eovu}a%>@OA$eRh^G(1LDTm3ZyMWAoq3Y=)o2aQ(INZ8|N-Y{-FHkK~4r12G zU6?rpI$1CKElney?bPI{T&1xd13a`101T0I>Iz0kdk7Q3qz)kYEuXryF-0O7h2&+U?FTQp(E*kadrzN7*>Huvyu#ryvnm-{UrRI}ID3f~PfG0Akn|aZ z9>98dfR{wvG;gRmPNj5&q?4%gH#k%XM8#%{C1q@BX^@*pfLsEsgDkDg8-8W3P)BD= zxthCgH7pnLdpSmSw2L7_OE}!6BY%qHuQtCPzZrb%j^VnGIMBz%u!gJWRS;qjGgcN0 z=VsZ{zf;}$`Om5`UKh1SaSp{71l;qx|M5Rm@Bh`$<8|@=r=L~-#4)>@m}<^*LTP6e z{h0$!z2mHaV-)PF{Y#lQ$GD$8I%FFGBwviSyzuoHaT#g=!h&=}0 zd9jGJ?=ssF2cLccBEL&U-D>&P&Fb2nI}kTZIeBvvtB8$fU#VLdb6&`p>X@=5SRW!S zSpDGrY8J&?EmFLkQw=ffNYt}jYr%|~_}9S6-PeqnA2Lwf|NN`W5&yz8xELLB7dkzZ z%FrKmffhoce*3!XtOaK=UKMus_3hJl>48`E<+ly{F6F$*ahZQM*@+m%8Rw_3>4)+~ z#AsL%-J1*FF)F zrf?!mJ>w|?^dKJ<>AbY(?|X0#2u)4%c|?@fp)Y4jK0^SH3Uk>0;TvG1+GfwMM|t|5 zZvjle{oi1%Kbli1W|S)pgd&bM_3kSUbdtl}GwfBAn`Q4(O8|+P zBQ)nd4NpA+egDs)m*7rmPIUwji$_KJJrOpJe#Vp;M2YS~7qMgr1ON=xAs*5IzVBhJ zFr>fYIS|FW8Tz1uC>L=;0bn545h7n*JL~wT1>n?~lO7B;8Pp2F{y5M^n|)OeJn4~7 zi$3TReo8yicIwrJ6IVQH`I~wu4>K|eH39BC)(dlt0TYE< z)CiLr5#U|gt9 z{`sG(XIRGk`k#MWbuM44&U2X0HgjT^GW*QI=X^WQdxvu|dZd-h*FVO9dU%ZYh;`tW z)d}lvZ*RZa_J{p`A0H7r_#8OL^DOg2Q_(fNd+JO~s{~JpTt}B?6@uWDygW|$38s$6 zbl~lu{IvS`Km8qZdA@q^ySvqA|M1J|A&P*P@tLqpJ9M8e(c$IXbh3HNn0V*k^yONZ z1SM{R_+N}So#xv-o4Vu>K&G{BD?6p6f8*o4C#WZJ0gq z9r~s2OZ(63Yx}p3XPl<5oBIzn%zD3g)dWgdB+Prj{u&!=3QLE zJP*LKfKw5D31q(?Bzef8IeXapYf_|3Q`hPmoU4Z$na2k9&AXg%C&#-&z0PCeroO;7 zb?Ot@^U&1?n3>_UwSzs7<9C`v6$oCqsEbh+xMLM|VV9_vy1;{UVUT3JO~5 zC^>palzCgG2xx_N$)S1P!4MAd^hEcmhBS#XZ5Mq1e(_+i! z5QM(+?t2_&b+uZDBlgg)0ow!Z-_2Ls%(D}f>gG6=5oy_ZwCi*D7kSNIzriV#%$@7E zsw>saY7Zji==0AwZuc;7VJ@98_dAUFHpJXE-xeUkJ(8AbsDXp=3b`wuyQ3gY{Oeweq9`2}v#=k|B`-^{A=$@So` zz&F3Wi1eG-O;*j_B+YYk|GF^4z2f1|2dQ2Kb#f!k<)ei)1seYH`=1JHzIpd*@@ekV zVbjmA`u@7Y>`FU#I=^ol)}(3fucOY>c{TZc+ps3ScdsU0bDs{Iety;W*A@0{`|?%s znmRQ1$xJk0@?uN=_)@vdJwEsE%N%C$5>1Y`1*Z;1tHvM`50e>hZ&st7^JtE9UiTyR z>o`$w1&v>|*N;KA3oP<3gupRKXMjlZ6vQFNx&<=Si=LI)K};#~=wjBi4HD7@-mM1@ zJ?eqz+8`W#19)i;bc~}D?f6xuJI7%+bKT`qH;@q21IkixEuCjYD&RgU76t*xaP$YB z>IY|}iQO{x`v;gDoq`DEw&&r-TO%X_C_#B7u!>79l%YK7?-`ue5Kd$sfVkvgIc{el zK^UT()CVZlB3O5x$2INJmF|11 z`U`NAYy&`a**rdTL^7IYAhwfD@&?IlGA2rYBzT*5Jq1n&Z7uIN$R{Og~g0Em+x5dA3}cDPwGl?d}h$#qQa_Bxy$fmt8&H%wzW zW%9j+>JsyR5yHWF@eU@T%Q&st!hCLs0!oXyKg(KN5?M1~mp=ZenkQ~NVWKCnfK=-i zW%W2lSfaZN0Xxua7KD5iz`nv*&ay4hLF$v!2Fb4tLB96>d(~~$$_&KmEDnZ7Apa2x zwqvAJ3lN^yAinL8dH3>JGkpkwE{eXh`02RuAO5zQp)IG(iA#6ht-282BZ%es_4VrV z2Om{q=Gr;*0LE;I42iRVWaPGKu3zUk;%jmGrK~SXvUYZgDx7~aL24Q-42MidgO7O% zbJL7@b9a23=jQ%(VbgQ98SBJ-aLf)PA>sO)T$e-M@bi+_R5}n6tp)g5`8CoyQ{|qEYSB z_wfdJfJj+0qz^y%u=@Q!e_q}H!~NJ6fAH6zgtI**-vQjQoc+_g_Yo6P7XZffpZvJG z@}u{0azZ-+W{-aP8*GgqqGh~P{pe>OSNFeqNZp?2jPYv#y*aqtgUyZV(WjqRyATRp z2q3pMwjo58uVG{T;YZbF9OiUS5o>NdjrQ`>M_*N6;-F=gqk4b(cYnu`y_X^(P(!K( zK{AGz(N=pCj_x4@(ijfv-M{*zx^U-qJok-{ht-$=@SEz{z57Tz7OSghY!5)n_vv2` zd+NZQDN# zCEB&me(`-A&+J09w8(Sm($zQwS_fII;)F&~_5CmIR*P`2SK;IqDQ85vsuPm!8+qA} zUf!+aq@K+OKXQpoyrRg-T`7miKk!|IO_+AyZZY*3M>X49ET%TddqDVb2E{uZ*XYI< zlMkdRZ1Jei!Q59TL?t?XGK?XTbFKtLXp~B&e_eythcY$e)Hj6wD^j-m@DQ49@`!>g zv&L<&AyOds=p{s5mm}u%0PbAHS&trW;l|o><=`D1*ST?HZp!-1DTUURAH}h4q#I)6 zQwQ>}T3zh#^~c|3YeGU@-IZhXQ`n=Tt)6rU${wR+N?){Tt1hecTQOpust4quQZ0za z9`(>)h!Qqs`PS-|G^l z?lX4(a-So}&D2RS$(-lBXJkqxzE^2)6Tj_&*U$ql1~2c;uX*>*GS8l6C}tL-_Q3)j z_u@T&{s3er2fGhKKT(7XFlmjn3r67!)41LWd&VHFxqbbTBl<*nsly)T=_VWk96mfP z(n#XN)w`!IvUj^-9^`XmSVuqs%=JAi`{1m_9}+ zZUYGbN9#g>xS%_5E_1YPPW=YsKrlRc_y|{~=p$febpV3ztzQg~Dy3KyE?&{b)>Z1U z^?HWKJVfsTH%~JwvJA2Z_^G7Vb1$Dhn1QS6j*(b^EcdCyF%l99p&sFLi0~Eddw|g? z2L$EtA1o8prBFLuj#GESBn4rxML|400SY%ASS1Si2QYSPWe*9*2@)I+Q98o$(ji*_ zp7tj3cM6xgdo%xjn>s2T^Ag54cS9V1&!LyQ9fB}hjB7zmB6EhL4Pv!_LF#mN zwpB(_U^9x73eoL19W<4#1dunqXIf40G@DIlqRt-$O3LC><`6FU)qzVLV(meE$q|vd zr|9`5$d)-@hzAIS7UN4SNlgC^^#MRV(kzg)?Q}~{W*~ExHJcK6j|nXKrw>?{BM`bu zj=C1g%9HT0SW94?A2avcNP}Xw8%V8+alw8@tTy~EH z3R!b`=NA(P0(|A>r+oHKSaVH1HbLL{KAlIg^RG){ZI#X=%jrVDa|v$~yzPP4*#pf= zVCGIHZxdFRW4M&N$lt}7g~Xp-_UiP`w}*f49vp-F$>9>fG;$wuGT~U12?O|tiirgX zAkHyA^#Y71e=!94$<2!d!S@ka&!RM^a@(Mb(imL)bHvWaizut%iA2rcL-sNcK~%?- ztyo#bKDQSRa2WC&Zv7BqL`6Pb?JBm;$#d-MySHC_(u?*0u9T?)pE?2u5D7VF9S&m$ z1g0Wf4`iuryBvmaMw2|1lB~abs~-6CC3+7V^hFQiLWJD|LFbSm`;xvBps9Sg`BaXd z{a1({`*fZ*x^EiAK>ESE76D$`(CY~>qH{PQF`TBZe)S9|v7@WwUBtww4wuKR2`vBrr(Kiw6b3dVO>JWG~!YP1WMam9btbJlDUz%z* z`;EEED7>ONuc&m1`-%^B3!P_REs$j}UosVeyQYHl>)r_3CQ7VeM56wy=Y#R>u@HwK zHIcvbegtwc9}#Fy`=f7Nry@fMKJzGZ(e#9YwJk@Yz;TEV2tH{OUwl*e-DO_l!}r%X z%Mj~ioojgD8|}(S*7a;`>&@G=L+-hP^~<=MwM0lx5 z6h2^>{v6y>q<~=S(bJ*Ls7_<>Ds=gV*jnP zvHR`h>Fe8uO{aPL{OTU~wte}kcwdtv!)0u*Nh%go^PZ(n963ctHYRwWA(x+ScGXB% zBVSRc$XXV&1Hx#rpQ#d=huWx(?CEeL!bftcAg&xzgYwP-T)_eeV;_!i%f0>X5u7~= zdhGelh!{bD0wg^E_CadyRm$a8eUJ}a^XAh{kRO~RgohsLME-iF>w|Rq)K3JPQ_A2z zJ&{ZoW}^JI9E|Ierk;Qxw=r*ej0j$Y-vWv0-3%%Krz`zx$!DYz<|QIjF)!|PL1ZFf z#j>7CcnC+U``tF;_F3Y}nS+%Buw3&I;ZoOQ;&sVe_r!AUW9sEO2J&Mvd=XO;e?S{{ zkzlmoxMgtKh)h?BPe!qhI3TYf1c&+Q*=>$~+e0Tn%ZUxP0hChoAzT)52BUYjLk>_n z00|$$)$i=XnJWcgyxJmUVG_S%!c-QtUuGz8mVC8FSkRstg3axLC-+gdWK2VtFm8^2 z{2tIpJ&8FKwU)5sR-3#}-Adxe802a(tGspIqAnbc~VFKNGKRz!m&Y#rC8qm z2C?b){Ncek5*{yJ)C;`TAlc+oN12p2NmEK`a!qFpnF^FOIe`n&|+TB}!G#;Z$t)#q;!X1=Lqa!LX!#5Rvb7M4HG zGOQe7Y9-5gyg2nsHD1U_Y9%e5%KTMfDg5P1yduBv9dEiXrpucSZ|eG8!>03Vo}0UQ zHP6lcHH5vYFTZWr_wLJY+m7je^!fGlZ<+8c9P+a!SwSzg$?)={%z7R=f31THPGz$uC|a%;;=)lr1Gv}y-Q(y6fJLzzR&38HX&_&Zzjeg1{nC2xs&H#& z1zm&H8(1FDUb)s6=CTcb;d(j1nfRx|n(xis%$n!s{@ucwHF8!i`Fst0C`h}hUtJ!3 zk&$d(sgIAjh*}5pK)6WEu&FGj9{(s!gHUs5jpdM8qzlGuGD!g?my~P%d`{PMm-8+& zjX9fW%suWxge-Tns(%I;R&wK>49oXPX!CIrtBy1&@vLeE-uO;!NN4*egh=XE=h|eE zF#E4mqA4nM@@1+%`tq3c0iW!vGCoO7$W-1f{RqNf8{yNKO;3LCa0BI~=UUxZR^FNP`Gv5$vE>jk)ZPj59z5|ClF9C291Psy9 zM?~$S>w!Ew)Ki5utqW{{+Y6TGQKX)8z64@jBaao3w#ax0^4A-g=6je5MDu!%y3WAa zu8^(+;?w#-BIVj`%#2$$sxYtiDDh?v1oRAp0fixJW$)i0TLQlR5yJ zgsD9~3$d{T(V*6Nhx%zNK2Y+&KK?wK+WH5O3)c?4M_u%As2QO4{5>{-&$CrCiw8!x zP7rTYZCno=Y_mPUq*!(gsn_Tfp96Sdlbz`y8JWX}{M?EsHxhSw8)Aa~Bkv^+M4CB= zB?fT{qH5q@rW1dfYceUD0Pf!u)_ia7CT*UZ`)dk&6?`yjuQaJCuep~`dE@(Z@+SIJ zPb9MQv*3sD!@QW*Lu{~009vr3o=JM!Yz2US%_t{UdZ|F%iA9KH|>FX z>Q1elvWQ$0te=GY?7sb{2?0EFJahz4oEJv~ADJm-7B7D3|Cz=+F<8$~U$Ey|Lk>fS$n zT5YhO?qMxg-noHYJt7jzOu5v9dbus2x#b)h(jByn_ck`G&;IGR5GTFro%il=9{R;- zNvn6^2C!w0^*Jon!$4-NDARFQbll3`v4jA9t|Wjy${{bLA5&IeWyMEN@w$f91BBfA zb)3L}{8i#MZ*?k4{RHTcG453`4$c?1J4cL@8sX9Gc2KzNmvYbT2m8l$k*hQ(k4;c> zZz34Q_|3if9)!m?5uMNZWri6abvYJ?>5Lzdz4=Tbl9CVOYsUPM+m)j)XuTkH<1pm8 zQclTjl26Ikw9bffrMyYJI*?l_uYRXYl>$Z37T>J@rXEeI|9sw$Z$CQe@d8j-#W?{uuEnAB4E!QTM*H zm^QBBm2HNtlinIf{j%+$Zh>VPT}j9(N`Cf*3RPo#t+toW;UVreNS*Bi?V{(GYD7}% zp1wqV!EI!AV6wNXzkTy4YzjG>uLRsI$eK7I&%{EE!?25MWuz0`we=iJ+*`w@8|g$;Z6xX!G%!?pwpm*Q=hwlX5cw93a2tuNhBXGG-w} zsEgw|efe7IVcNO?!d#C{xS>sUC7-68`p(C!fjYTqO^~puvH;56^kpgCmJhZ=#L(J&sI_X!^952QpFq;28uhxb+h?_IaOS zA79QseL@-8b|E~;`I9pZ>>38hHk=VorM}5tF^p|=yrAYr=mQ+!#7IfZyjv)6{}LLe zkO*|#0+^{*I8OT4@pMp9j$^=kA$%;i^aX)GtSjw!vC6j0-}L1;`?LMtqwMY6E9IT#T5>Pn>vW`Qs_DH+Yd!1Ob-uj4oKX|yJKoLupg*cU{bHkP{U3jS zk2ZKnhqMfpLIfyOD+gtmb5oPjyi$udIm|jYS5xQa-TUhbYw~IC(|P}U3;WCTuf6yp z@;9I?zNSQHqKihZ1F2)Ct4mQaez^kL!4HVo5fz8PO&Z7p!m72;UldHFv_ZZPvsS$dNxBsfe5m*}5)eT3N;G=B8%9TzeF52`hvP z$WVO(qJ#6P17dFKU{Q*t^$y0qUH|6XVCdsd-Y=^|L(lv@Q}34gR*?elwZ5_?YgnJ^Tu>!JP1c zyqbK>+qflho_KdYFptQ`n&@ScmSycZ*9|Z2vJB>o^&qrdmdCs*S(Un!2JpG`t7WH- zJmeqW4fC?*{(OyeB~O!DCPrOjqu1B;_g96rqk#MQ7Z0od4_sQiuq^~WfB*mh07*qo IM6N<$f?a7)qyPW_ literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/medidas_associacao.png" "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/medidas_associacao.png" new file mode 100755 index 0000000000000000000000000000000000000000..b7b54c8564dd57043f3c35c8fbd88c2ce909eda1 GIT binary patch literal 57197 zcmZU(18`5I3v2ES)h8x?qHnwfswryLxu{Um|{RTioep41WE?LHxOV#eR9>D|>VUW}l+VuYFfxOnBse&mNu!a- zGuV-=bNGW`B7?$`wMe>M3KiM1xMk@ZlV^}Ky84WVMA^Ngz(JT}W<=5U3Q?j(n*r9&B7%UZnw@Qg>ffOs?DZR5aaB#!fgd2f z%nB9v`XJa#_o!0P&|>?Hm!hv!2?5O#!4KGh2w+0x0U+1WBs`8ND2mXBCIa=zU;O)k zuP~V}ex{0l+x+fEbY}>5Vo@=OWfWihlQ(`X;n&YwPT@c#Vd#x951UCVSGcG~oq_Pn znF|TOFj?qQ;%5{(`y4-n9=M1W$G5>RQsPDQ2ApjW5L4*l%oSidQXep32hp|X7;?=V za}iq18mVJ$w_1mNs6XJI>PYW)r#N5TDQzoVN-xhU#!TKjJ?n-c;}?nGVvot6vfx%v z>th%svYB-P&-f63X6dro-4zT`8hVyO=3ojm zxZnF-9Y|_b@r)F;z{}6t9Y{D>s21lhTXF*gO%L(TgiN4B+dt-reqj@s?Y>9#P;jl^ zVDVRyQms42&M3(ILHO}4`GLh%)a2N5d zLVx#b>X*#&n1eUduOfQjk;K7j!qt3e)%CpmykbQ9X~!7%(l;0)ht7*5#=0zG)FaiXP z14ax`;b+xLHBkO3K9*VXX%U6c_5P(kelI`Wvt;m!^acUU`}1`uav`Q8vLWPBaGB4g zP$K~Cg5ZL)5Z2xv`gI=Da^|)7WIc8E8cgD7{>4i4u#|138ug2-=3dw0M2#pMPAXE1 zo3>POcGOwZULrgGCu&Vla5X77`hKuVa`JCb^{5ZLf`h6%Pnj?d!gpCXSqK4TWRlJ2 zEKC-7fj2m^b(F7C$#aodW?X-6U(lQTU<6#xix5Fubc+3AdvH)PS4k2YB~V-eENoCG zeQ-8VwQYz$KvzV;M`{AHzzbry{XlPf5PZmkZ7L4X(_S2V(B?qI83@}zFMSXm$m#el zCQ!aWoNEGFA>`no5oDUb2rxps@wCNY7J`uRoW@X`!n*N9=FzXf$>2#!fuV7o#$g_~yNu_2gytr_`gL23Fm>wj9qb@cPuGvb4n^>W&SYQw4x z#Mr~FLu>^R4H#XEyCXs|E@J0`qGer5H9>YOm>Q<6H)M&){y#!wju2~`#D7f7!ltrDMyA&ounegCEhOU zDXXcU&p5)E&SY&6ZbqfgF=(G-ki0{aA(Kjsm(Vrpun*?Q`vUnw{sKixQv_DTYD8=V zX#`;ew@18ZMgf+@k@Rz3wG_S7urx{rDZMlUW&(AhbVB9O`4IMy?T~W9iME<{j5bRh zsQ%c&AZMUvOmrfzJR(x;VIFq%svAt;uDGKK#(A|-VSR}Vv6b+dWSL7+=DUM6LkJOakk-&$e^|4wlXg;r5$#~jVoFB9N1aEYhD$|y zV$p*eAwhT2Nk#e^987%~hukVv}fb*j8iJuksP!eGGgqi&!vP&ANX`6;P2uVW+A0C0?sov(MP3Yq`L5HQFk!D zts%w{TyVZ~W^nFt)4AnNnM{-%@vW3}oE_WV+pb=I@+@>VcBb$KcwHXS9AF(WTp%oa zx#it<&-qkAtiirMS)JE$`ST)s=s)N0^tB76_9yq>0N)Bzg@wW%@n2n+pRRKZfA1EN z|4n>OY*6Z$8#ggDff`F46CNW{OIKkb*x^oeGwx=pcdQ>PKRs9cEP4_5BP=4o{yN9aK!#>F{BASXNK9)t2ctb$18U8GKnhJHMYi#c1I| zO{M3wd8>Y&-%!MszB_GezqcVBeM}+g)pyPKD4y-ENbjb_vNW+>Sp;Y%YME*ZYYx+U z>G&?2&M$7%u5EgY?u=C+?!-n`ovS^$p>jKMsnwNeXLS(z__WisT6M0qysaQit ze-vyEObHJ3)si$7WW`kzZFrquKkwA9U5_Nu$q$KviI<8Ei1+Zwy0<^m-f`L~HzEY=D#6DqOLGf9C zGT!`r-P?7(q)e3;=acs7zE7Lg^I^_qM$%j%lr5Ep1pi3p zDv}7?6wVb!)>>AtDn1a#EM>y2!gKMoGkI#hnnEImZi%z~ zSDSs@GWFU`AxRzo)EZ-$hMmt$8%$=bu4HI6(-^nt5{hp+@_E+vbu+*HM%3nL)h2V7 zc&ry{P>OJ@u*}eG^9*@KiIK|r5mh8OEEN}*tzY+(??f5T<3|a7%cs8Z;7L-9tl8?+ zra3Op(@Eg<;IT9~-CWI1n)I6HDv@@^x%$a|YpM4}S5>`N<#1)o?%{WWYB#+;xQTYv z)Je2V^hWI6dr@$h-;3;EzBBv0_cpMU+Z^W{t?RY=P<`hy9~HzfpqCNt5I5OP=swS; z`}D_fx3?oFX;c~I>Vt3DPbH^R#_!$v&S_Gwjk!P%-*lln(mN^l?q%~u*kWg9T1|R= zJeP*Gs>WI1#w8tVD%4DIww&mA1KU7`feo?D|1I*0LIrhR zA^<+u7)wl^!tc;M)mw_-3}g)nQBsbm7I+EOY0Ss{*#-6?WNbj05L5`hO9taK3aHRL z31iyYPd_L@|A+oNr8(u-ui{@2|I!yo9_(<@Mr>TPI%LaqTeKPU_!o%(**7HwHAF;| zRs?3GbH+h5kuN&VS`K;koBsVXT|57oE&Nal9L6tGH>->)stU-e=1zke+KW1Js$1K{ zVkg>2JVNVO7+zYJj~$cx*!cqH)6`R#KmDoKe?u0xsD-WLK~C#fA!8q6d&Er~VB8V{m57N7g!_6viM*YW({ z&GJ_ zQh(i&GjC7doY6n&jtsx5oyQCAtE+@Jl`F3&Gk$Y?ccyRxC9nNA4zt!n$?1`fvcG1L z(>i)&J=LBrR@R>}w;UfAgApr|Z57*3lzg3;hadYdFC%))dZ^uF(~5@?aM#mu(rT*a zJ@4{>Yym`dk_S1MRyYF^>0@FR#Iu26MdN>REQmVc3BB6Gkh@f^+|L^Ts6t|gfcx+r zrWZ0J9A%O_-&7$f&NInBn2&4t44hc4)I7JHnBFR%7hvRpW+Ck%L=iIKzNlFkd4i3l zC>6FRNle_vT?gm~Brk#?xPv0(cqSwV9x1*Hn!lZ0*bz8o)tyAnqFw*QcGN~+Hg5WV z!UTy3hDFGcM?OuXG6Cex|%;q%$GiRi{~3X!M5^OCi{yGCAnje7{YSZJDPMoH+2o0Ln%&!xA; ze5<!Jwc#6=9*|ySx1%pkUU^p?iZk_JGXd2> z5h3@5$HEet3i!&X%D6h18gf;-_hW^C&&CnO;5POz$Cd(yBkW45Rgrp1IGe+eM z;F&u9yF6IjuQD((>FpoV+n5BV+^F%h+QWLn+T?uq9E)>;LyV)S^;(;Cy>#8q!}VtD zj_+`MJ8jR8UV+%0qLua^eKydLI1i9>sHiw9 zup&#Y?E-~*o5dQ+(qnaZrhZCsyl~dTw9j_SNYCtHLSaH^=P(~R%(Z-2Zxf*t*p={6 zDZEtL6*;VF=N=b4^jCf~n_8-ZVy$bAX>N@PMuTMK$%(~P^~!KHCzn0Lu9MwN z-2bSMZhUSI#fm|z}p!{?% zIPbq+MD_pN<85h=d;bl5oh~U!#n^gyCV{jTgr|Ze*hUBrLnl_Ff~XYx@xj2zZVeXJ z7q)YDEnaNOE^3=3r9xzhLKn3eNH5@4aKy-j{i7894q3Wi)6mV(%U(Sj!Is|^zz`ZY z_=Nfl9T99$$aaGrAt6O3%jC|qPMMX+jr|*2E1e~MH601*K50i~r3_}g=gLR3z!f;Ac`a=%gk7kxmgEWPb zfM$>KjLeL_t}MTzytcTYy2!B5vhI%tuM(+Rlj>Q(V`OcnZt|x_kOryE9)1!Dv*aCo zl$mP#VhY>1YwV*aq8mFMCp8CDyGk3MsCVb!UF%ZVxwVJGjNS)81m>B#zEmMQ0{D(06e;d&cekR#Ow(ZP4b zd2TVHw{E6V@8fqD&?eMWcsdYl=s7BpA@~wO`aD)%xnuM?Y$ad6u)km^kMR$VMccBO zpLsLcIoEmTnEdx)M~!dV(W;xu z4=5>y{O`Oj_lC2SvE?duudP!#8F|$%w`WH7uDAJqy+vm3p6tAfFRllh2kxcLQ>3Mk z3w}IIep;&>Q2#;Y%{W=nuB$1Bd2L-i--GwEy zzQ;`W$e}PsVWY$A1Bne&%S`8Z**x?JPaq5d)BQaZ>ZtU{gW(uth;s(t*`H%0aa*cl zL_^SM>YgB~BW43VyPuzsg~piQbq`vYt{g)hP8EF=e|%jq*oQX?$v!Yr#}LVMlkI zV9-usLy=?W9oTI_R~g(N z{9eLpDpU^VR&2FIbuNudou4Wv8V?uhJ}wFfm;1S^S1!2^lVvNodsFc27I{_e{%zPE z7R`f=ziVVGx(bBPEeBbL&Mb6@Y~Ang*HzkF-VqOMr@CI=c0TN&ya{6wJ$O8s&R_SZ z%E#vW&4~1{J89h?c7MNT-QNVj%(_V?J#9t#N<6#!cpfy}>aj8F>UEkDbf5a5sVLL|?Vpe(CUP0&NVe4$*PG{>x z`oDzyA2}i>PDYLv_Rbb|w#5IDYhY;S;>-&K{zuXOeg4-zP24U1pC((U|83T{feind zVfabU$nbw<8PvigK)cAj#%p9!$ zlk zQOOlio6?1woGwk>NWYsy1)rNO3Nc`~5a_TeXX^_K<=2}&PZw^}yf4~O1hUQ4V3Gd7 zd}t~#1AhS->}bWX^6&9~N!Wm7ixUwA06M6s017l7U>7s4xwh8!M(tGt<^NEBfGsR6 z9KN#ur1L#{|5;A@FN)^>$P?)Om7$qvfs=gR1e*#(K7>{`wl@@`cZDA#>T&tSXH5{l z`%mQMBk0%d_K*;@lyv`x1-?=`zcGPtF{!@B@u1^$^Is;Y5LB1q=?ICg9u2_IAB33k zo*bK$vo2DmpRA-hMZhiYr5`C8)QOqMG!_x#@dCwQMNcKr!9T&^G}6aomQ8J#xY#I2 zi;U>EPPIgdy^+&%eoGIJ6!UyJl(8VijyKz=z7Cfi{I=R~tZ`EjqcF2)mfNBAzLXZP zgce~2v&~pM9tme*`zP(=)8+pt+SFF)kr}+#r4_w19r`u=)5B~u`+3?h&HcRu(-e+` z6l_?SqN*7))=734UjnesRHLTr@vHkL=1Z;nWzsJ`H`g|!VFiqnzAF`2F9tYA#WG45 zn?Qe=UXw0f&Ln1HrqOU{aNK$YTT#p=X?v$9^VY<~IVOsajYT}UIDv^ksX_7P)j_$& z1G7bVB`qSIsXdREp<{w%HV_k|fJ8ZK2{0dy^shtd{g(m;(DioJia;+W!~Ig_@>YMN zX*AKXtt9)~ma^i_i{A2~xRRBVlfu5`DScY2m-Zg$?QuI=M#f1E(|q*E@*#*4uKAz+ zH#Rci5aFe@wsJ_y$e=^ltfB|h3lk&sVYVb2OF4KZ-WUuH|CR7?l^R*@Ai;`6P>r@y zs~a0trYvb}lqxMPC8MTBS(G7fug|jQ((fVNPPMpL>yW>7yfZd66^n$8VvI+21bHUF z>=F{>SMuIQgzq`)!p zxBl6wsWhgV84q*cD5O+`k=E_)L^+J`rZQ1cJ7Y2(!9;d&)AZ%0sgSlVppG3Ytgc$Wo0p(n;(j= zQ9xvMKziWMfbz9bi>$xE`o2g3iXnCm4Rw9-z1B>o8vXp*rF&S=G4~{iT3qa`QON66mRT*dVwy+9pO zv|C@Jy!VA!&w*y90+Wj$QiLh#mvj}y(j;0`T1_{j%AY-Ey=*HxOJlGs) z7|Mn-Tafj&S|KRHLY{ic)*op3LyhiC4)U8BbNXp>&B*1 z`8m^^c$2#pLpD=UqNysu$4;Pv4Fq|W3Pq{{DVaj;tEWXqmNa~)=jP-yFBJq<9QHA0 z%g=Hecc_?Y9c&^%IKp78@>>$Ih&b1?D1YwNGM&eyVCU2y>(GGt3ii_DIac3RwImlM zM$6Ja#znv0PC&S^uCIMoHQJGo6XyS;{1lk!mXeI*c~ zPcAdHGXj}8AWfqTaz|2IRNt9`|&&ox`6e#0HLtWWQ&@^wvz@v(R?do zsaR5|{f;s%V|`~OC4<+si2XsmHQgW0Wz13vSwQ3*Xj(S*V8nUo$2)~mjB`rl-%BkL zye!pewa#O1Q_a}i2JraZY6)S#xfx_#gFH+qY33tWPf$wO<(yv7`^VS9hDwk;l$trv z%g7}us*w{EjOMZ8er2RGDE#B=6v{_L@u$>$YlACueD;wfi4iuMSN>qD%3f<7D^X(mLR*lQZ z-5~|cDUQ=JKt#j%(gjnJ00-zL8DUa`I9}Ag&9Q-o&zG6oBC<+OV{nzwxq{y9Fxm%4 z5BnS-{e4>@D|-D@Nn9pFvsw-ezI5}^tz7Tv7SL40E%h?gWGb*BpdU{SGT{^oE!9+o z=A|Ww+(Pl62o>41@PPB(9M6wHfpwbceDxG728FN2>cHbjPu&Vbox}Qe+*}-GB9xhU z$+2;pnND}ZP78_0Pb{VV+Fke+ki5l6gR2Dim`yEb(p~}qNs#v_EEk$fg0fV{;pT7N zjeV4V9cH(?T*k{^?B?1O2IJ9?e=Gjs{5vYdLP7+qzD^8S&3qz-wg7x?j*}*#!nvj( z;TFWDMRa$UB7_Yu1KG+wyzOquZqnYFRK5?2f)A4-Gds?Uu}&YEYgV$1mSgfMHu1+iN*^50AK~MN=d~4FOxx<`CHb1 zt9s_7+gy9R`a*>GsH;y^Mals0AOU<80x_7)Us()m4Sm!f+8B&QPIVkj2?2KWMxGhX zlTyRi#XLT>zv!D0488Jjs3#;6rfq3b=|WCQGdqwNj+$z{r`vtlST3mWQS?LLQ2UX= zXwvbsV`>m!l?+nUhR|cEaI|JbuWirV7NlXyBUw5FOLm$1$LnhA<>nrpIAETLVPv9>Kv;=8?-mmzL_*gQ1yx)>wA&{C!h?FcZ?5YlEX!2Y zzlq(h(%An&!Jh=|xtU_c$;*L2P~Ru(cWZN4*9~rTy5q3<&c2Xwp~;Glo#{`#hZtWC z$53?T(a4-AC7TLXlPy9{lVAoMSc~o_VAAn4k-HJs@~Jm+;i0a?^|kSCEl8LCjxc&x zbM42A_Wr`qtRWwWwedwImN6ae8cBJF79=WCW~-2sPZnp##N}W07O^u2&6lBR&J|aW z8-he59-qN(0y}|WNJO0sts<|ehZKUUgMP*VwLM^t?Ty$O#W{B{Nnjz{t8+CH%N_8K zn!cn>`2jG553*PQ9tXjEiI%%zSITCnmh)vW;;WJ44|l*a?~^CzXF&YY(08Tk-RFpUAIDD4Q5jK_1n+#_${%61=>qE!}>0L}dG+vYybzqPj zZn!s88H?F&Sjtq>CSL5f80o)p9`aC8L!Q`gd9hKH2ug%m^_!@CA|=^9=0$_1-?JMi zAUp&(b^hf3bN6x+!q&FR8okj$cRO+jB)Qno%m9y99k4%K&QDUq30HIS-Oh_(s_8W% zY*3SdY^t1)OAv2CCuOpbIzFb8kQO26n{hc6J0FR7}DLN zAq{}(`{`x>@{6EQ#_E^-Nnb7WOs#F$@i3L3 z8R=f-sN~@I3&K|@A4zMh>J|;yCa^anwpW8CeOM5azIewb4Q>kDFYz;i`b3C+pV*OP zXQm&*W-c~S-sU;>9=oyO6z=lx8`4;F=P><`Y3D|wL*1VN?y#k>re~Ca?jxP}BBwk* zevr&%#VP@){^GP_yD`RzsN*UrN;4u(oP}1I$1F3F@j@A#o-lS%=6~Uk-D&lbN8PkR z&-(xTnP3;HR{DEL5}mVb+Dbas%W=T{nl;Mm6Qo4X*R@Nl7AacV#In#E&G>i` zCV`pcUQRW{UvxG8_QusG&Ks}0R8ZvMLL^~rx__w|i8FGP@AgEAv3laqnDUx58KG(n zk`^Qx+zGk7EnRBZ;!zN1V(iAuW#y$=Ns!J`lz_IKFV9%>VMF+?8>X^bH6BGM%JK;H zXv4b_aIjr8rVW3|GxUIxc!E7ab_;5^8l1$0l#3B2*aIMl6+n_H3O*kfDS(WEotK-S zd=YdTN11g%_Q|APNC38hEk&AA0756t^pnM>CMGr7xZE~utcjece;530SQdC~YJD_- z8GI;Yd*~jZ2Jy)y5@+85oXfpVBnMtIQ?zjsD7NPotsX0yPek2 zTk z;J~WZ3QdonR?T|U*nO3({Uc<;$kVDvkQ923Fviz|)y7=FkLhad0F7Z(%v*YvI_dag z%$De4j{U&>F}dZFyPfBQ2A(6`bAe8Rm51+o<5;*iHv2DNB|@i#2$VpbdSr6B1Tu4` zj15!5BNZcxJ8iX>5$kK)E&$8|s~y=Fpyx^ud69TY>7ZAp@6rYWxfrqqhSFA^nd+Bo zzkDw>4kmlyYA)|uDQ#^mVtX957K0v$?PubaaZW44ycS;^=&_*(=LED~vz2EdIP;4X zFb4JlwkGSPye;fXto!8FS+G(E(p-=!?k1Am#T8fUyIsr^vH6$aia2rSVHe@Oe+C|a z@o*8B3JR6W&{R{-X+qhFm%#obqLC06TvNe;+`|PQkO~91z>W1MXIyk)=>`dr$%484 z5?<@~7+6lC z#`y^7M-xwOEG&i|$$ugn(hyfSmV;ceBY%fqVgKFjKbp^&aIk;rS(PhhnTwpVfXC0pa4kww7N%HSN1a5p@*wCk0h*{8n{r zrGESPZ_^w``uJKUti#4Ifxl!**J0h6Kkw!+(dp%5Pxr`X;{f044}o8XS}$ zk3|ur?8*e;_?>rXm-B+)Ud?ZOJIhMT%CFX^=7SgRcJZ)u%#N@!l>x{LxuZ_O&ODiH z2{)mhVo~$K8R~*0hdLUv!3)K}wpz3C(mVnBn)eM-JmZ5xazzKA+!K!ktc4aAjD?W; z4;-c4whLQo$t2UqAZ;#^e}_X~?*zBPqyXxH$WF5=H}qBLXnE2Hz>EC)Ne2uy)yj2< zP2hBTw+Rg`kul~fJ~Y+*T*iL@kVp_@{UIoDv$hQC3;>#$20J5ijgzsEuXmeH_v57t zj?l3?nD-=-5!4Ppmy(t1hi)a8Eb$OVLEqRIC?hj9*r8qJ4~;Xs8mh zqMJ;wRdDg#qajl}uc$JOE#^_Y0@&v#iFm>t6YTQ*tu+>Zl!9F){rirS3RR8_xXUmo zWS3nqvKr<*+7!b--g#G=7Y?Fm2ZTj2C&W)$>LbqOoHtBY;}Y&r%njF?trHKg?qMZR z&Bze3O^d12<@sUW+rx^Gv_p1B=_3@mS&dL_Y|ieXQSFcRgF?zg6GbRLeT~s-o4*;b z%EFU&f@rts8MIbhWH$oiC&Cd;Q5(X`q*49({28e_wt_I_iXw=ANG+ZKQovsU zg6l|mm}f5~_C?|hxHr3U!$DMmvO`J!iPCKn{-p}i>!|~^Xr^O%Iz#RLl@B%QTCvF{ zV`lZFFGg8WF?DgvP*v3Pu$Z@e?U%?ul(KE{;{A9wtSuo9iTkclWbTJs&?Tw={IK6@ zB^Yhawk3+^_j$^^*I$~qkVqv>&-Y{Er1P_qP3)4y(f8HNo#PFCmEK0K&sRTdw*PrC z2-FUOh36b0kItcy>sWNC2jJ-0#q%2kP?}Ac@CvFh$lt>twAS7lcfo0)Vxzf9mWP@y z#KpVOR9S3)Rzr_m#|o3khGniDZIee2ij+^F0y#^%)G$P%!6AHp2&49GDZ@&Xjx90N!!_ zqP0eAaqJCneR%0dM$52aJKJvhZ`q{R+~hzz^Nfe3pq*tC-t@sBDqHT*k6qmDtufFI zd%IR)eKM=jltR{^&mWeKLD(%ACiATaNFjo1rXuqMvUkNRIOZDB+QlV*jkv!GJB)w5 zSalWMb~V-9655|Z={T{6IWWH0lqa-e6x^TahhJ*aEXGr)3>#>$qst|On)_co%Ovf* zde=f(39oOs@V;z*l=E_G#lidlgU>xSNpTe+Xn4J)4L8EhKIbT=x%6lvKx0OmE9{7n z@89;-FsWB_Gf+y5aA0mhU0zVGM~;vGE({9%dmTg`c-^{Xb%p8yq-e2!5OJFbLYf@S zC9GU}=F|ov88akdZhx|Inh^9&LRbtamwm0Ei-Tv8`G{P}zq90`IUH-wS&Q?C8H^T4VN3khS3kS|E7OQ{pKTkH$8O|aIQ z6X{%(&VW)PXz4-Dni*&!JR22=a2wQjo%Qj4q{?rsqBpGTawRN$9$K0RdvOT-^Zqhc zfZOzTJ;#mU)*9V% zgEs>3wVutaPLb9Z=JnyvR1XQbFbKc35tX)Y)CWIHGwwsy;3?XCrv1SfXOCrmLW%o zJzqrSng!VeS<=p8E}ost3Y}-tJmVO1M7fs^t5PBtpb@WSG4CrsbWpS(e?VW?Lk&hl z3NnvAST%rLyb3v_Z`&kEgxzau&Ebh1sEXjN=oI;P%m?Bb`n4FFiYeBM5w99}p6%ep zGB&uw?iZWYtP|;TML4i3z^uww3c0}kAJQGdOfR($bcs&Ke zEK@OJ+!h3fA2P|gskW}>nm30gzE6=S!9&5?ub=m8=HmXSU!+;E2WZzla)P&UVJ7~E z4u15nR)ah+eKM>ws=iMGB|L5o!t|t>b?6lB43|IHXXA=({NnPEO9uYMtsk`g(d5#* zxS2Y8zN%xQ`!YEDHH}uk;)WPE&K=`ZYHxz65FzChYg)zZb{!4R&9B9W2`}0?lH4r zd%=ED70z!V7|bY#!ahAW~H;}(z5 z1p#LY=mE$A{-d4MB`@#a$VnR9#T+9e2_8!D_12?mday2}&2ysXNYJ@!)X%*pz1O(t ztVtyG>&@eX(!wEDVn}>O%``9*P2Y6=P1g(r3&uP`WhPpVtc;|@kmH;#XuW9xIwmnl zOJ%@+AmjQGV_y&QxOlT!VN2yK0_vP>{zm9j|D>vxz*bFz~4S($Vt zenTdF(<8>o6{DtjZN{GZ{00z`;!0?(WI@hGQDQ-=8ju9$ErUGb1(8^WV**3zk@7Ez z(y_*K1?Bs!E@VP5R^oyL`QplZ#TaWif}b}7f1pleXhS&_*FA0-raU69Pb1O)9#;gI z#Q@j&;U;cis$s%V@>7~3ksl>I-p87SjwLAu@LO>-j(Qq8gf=0X422BoiYv7go0-W` zP?SknR0$%1$d=H52T%oj>^KuG&l+Z&Hn1W8mC0=@rI|^Q@<1ykH zi;l;Dofa0xG8?L^{-yput|#^eey@@!;bZ{)3IV#wNeM1rd*Oi2@EVp@0;oxsFO;?W zYVq!W-XyEPx7-LEYw7!zc*1|Mlv7yAywn7t-Kq-Ld0T2l7-u4|EXp;ZF|&EpRj92Z ztM^|hO^A8uCt|HBx}jul=$dQIE`A@peKfr{W2DiwIYDYLUlIQRm=JxX9v7>c^&oVV z*H(4ka8cc+o24||h>F125s~@)*;y!?-LKE)!8=R21T>e1;12=qL}xiG|(nUluYLHzx>dC14??8gKCh4`~fV zI!v_#W5-C<4F0N_CTu@mfNBDqfN3v3kSVU z@rDInQsOok(kJAOCW@u=nQfXF+Zz|*m!@w#)|ZQm?YkX&jS9NO{9`FVp=vMJ$@_!p zEO^e^Y$A|n%x#Hnl@xoaYkBW%bCt(ArrS=%{At5Q`-<-07R@~D7}~Civ&}5$i#E#4 zQ>6bBG$1PX@c2>evzY$`+vkoA!RY?TrPB{KfJ-?;H9tPLV+tgDV99GpW`wq7tu}aU z`oqSXItSu8_1-a3U4CUCmfJ>{ z!UFR$@Eu}bn*}izrsauGJ(mv2mX<|P&Vilm&!E|<*|$CF(ID)>)*u6~H!o~${s6sD ze(S+c#W>RaPCy^_x|N*PKFK#osXzS>n8p=$fP+5p5r%YzZ^@Vb&tl&b-C%ymCmdNy zJT~>ez5#&3{khIaUaE5)|MEPmjP4H~#ByEtkA9))B3)lWd4M2c*tR2z+$R(sdZV&J_>ML}LeOdRK{RYGWJ$Mf zBL!0l?&^WCC8|URe)G#T-DGaf_Ls|7>8Gp9H31!Vg(U~Kyw5LP)*4nr9zI?g-l8N! z;Xj_3OnVw)Lpny65|C)93Hae?GNIgeQn&Vm(lh4Y8gK%3B(v_F#tF(rUS!gBieBh( z4x$_5S**#f+BAc1j+;PWx+9)#9Pq$vn0DL&ZE`G=S_UiEIu>PvYFf{2c<`x*GNJWH zyQ`*1BOzhcFKBO9;unL|jJCR@lNs-whq=O4;7>Hx<}u7<;`1Sq<7xWR{8PJspuINy zJp(2x%7wZF{tQ}&YuPc!71er)K>qBjUdFdY8mnIq>}phZ`%jOj0-B}h?<{93VLwF~ zTd>Vlziqb`?A&2x;g$>y&7OW5*uGRlG>Szz#;*;!cnB+$Kwqz4h=9Hj48~TIQPG*x zlSfdT{Ls_mwb)uge-HHgR?qsfYCbz3YFt;Gm-C3CbkoWv@C%?QI?fRJ5mPh zQel*iup{hJ#^2ROnC>nc_g{ubPG~VbxAp^v&?cJSHLskQ+?^4f&utBw>@7YRjXIV! z(vN08TeAx92mRlFX92DGD<*K^!6EeXioOS66zUK_C?rxr2X>~D-_&3U;UE?vbxXA_ zqhFjWw04Cfv`#UX!ke>o7Zvek$SelY@KK|K;Ea*I&6i^Q4kKEx^=;GE8%%YIzzJSPI@_OO>>IkCXWWl2PzOcxwt@&xv zn!X1WK$f-;J#I%L#V?Qm*UJf6r&?nb!6o#(Mj{7QvRh`YF}57^SMPg%xbco23O+7=Q#kOzotxxe z(=>*+`~qjh^Tzdh+V992(bblbR|NE9gVLw7?D!zU+&j#0<$kp)mo~_K%`E~wus^9@ z-BWe%eZ1zM45|`g#E|;A=KRgKymq8N0p5C9aC0%aZg&f`VsLn3#XFqoA6{*A(B896 zt$8GjjdJHj3vq^^h@~!fEAOEJs%P8WZ$NK#7_8NOR2kO;b-d5{OUIR1;s_4XmD(H& zhrIeQeaP$pHqOwuvoNt2gVJUKx9& zAN2F^z41?-$;WGw|BRp?dZ|QvZPN$T^dp{2Yz9l2xP+&g!2i}uv_P~zez!GbT<%F2 z3wbVI;XHGi2_0YwY9EkAiGLv18^%>6Ka(Y^NwE|XS%J5kVRwg- zf&L&mN#;yIXSB%Ficsa`vkc6GY8nq&bjInfR%fi?g(h5yWAw6&hl5zj8lF6}2bW69 zi^!AJ#eOY;J|8z-1d1p#eZ`ngO6W#?Uq4}XO6ORIQ0{lJzGnkFqAp<$t-vyJ<8z6QM@lWbk;!(7@0XM9W$jf>WZ&zIJF{1tDR(kj7P!dr`g0DLd`8MPIt!oO1!tt> z8JMp11k)U>KfFx`KSzvy5XUZpva@&hyquQ}*Md3PGmOc>GA*491n6A~F zkY%c##>)KYgUe9b(eK-67@q34KBb>tXA^^65d0OkX1gIsLr`)r)M136s0a?Y>4oc! zkxE2KRxu(<%DA27%gjAGtwBkQmA|8#nY;om+%XL{T7DOMuLxRpaUIVZS+K%!tsLel zirwh`0~6da$t%=C&5TBabQ=uMGLT~^tqa6-{6Hp!;RVEL+4U#U*bT+E3%L0*7o@f&%?PxPhk{wlVWAI(rX7@OS(5Z*GtZJO!fJ<^K zaa#r}3x@>f0^#>tox)Grrvf*2dqymvj881d$?x9~9uXmJhOn8blO|UM_`3gm)}GHM z`T>hMsChk=Ot=?$y^jTKE^i~mXZLG5CbUQIV%IZ$GmRQ+&J_c5(lo5uaLw$u3# zNTSV%btMvy$?S;N5!F*9y1*R#VoU-cSt25Kw{a?DX!K_SWNS|e@sYHI(@Uk)lU*QjeoQ-qE4lfnI+f$ zT)CL|Yu(E>ia2){ti{fvT1p_#Cc=*HT_)Mma_&TSQ{Si!NmoU;z~5OJwOL1rp$x-J zOLk4===^AOiuTSiY47dY#AHf-j1bXTMoR`psNL<)Wq(mZ^4bb{qNZFfsQ;lvJm?&D zJUzH+n!rbklTo04F5Owdte^2RM=I)&LG)oa?p(E^ibEG}YlER3!Z{8{4}>}t~F z2sBeF$OI5EEl&HQ9x{`Q~wm;hFqF46VBifKDn0xz;la|NT=@q%rCLr3x-P?IiW0cyZ!r^Px0h|mo!Z( zQk{;lTtuUrpO|<^J$fv}gDx^B+%YFZ4E`)rez_oeaLo9*a=zKrhTv6IL8J$pGxPcW zvjQT_W-2cE`)mZAs z@W7X7r9xsa6Is{=cVTTIZw!^}22%Ny=%!v&o|?1-YKG{_ebwjK&edYRT7(D`C~rqo zAoB}`#6uuXU7;l4k(s*+#a6G}oL;hY{wcu>*opZDzJ#`Mv@1$Z)0xn>ePilm!_E{I375ND)CkXULlEIP@>wZhS8k zEf8iWqMgjG3)BIKVt?ewJ^lV^sz2sWna-fBHo|0g{Q6bqZO%m-4Kj1|hlQB%waWQH z7i3^1MPI+PHnZU9+o*UQZfIxHixBFa31z&Uz;HXRwtE4fM3loTU^^KC8l%4WeADD- zu+g+GPrMLUxTPvYjTuHtV@gvNx z!n~POnpVK+XbsHDn^Hifa~Zat(E?)QyToqM4kRkr1+sWW*%JT(s(m(5-dvu-DG5|= ztd^oF%Z4%SLD#rYK$YzcX4h-gUoH6h`#7A3FQ0g=Tpjh3mLI@E(dT`^G{`rpr0s;9 zB#}-`*G9T5xxf7mar?2a1I^O*pLUMw{|d*di68OS4^pq1XP9+DKc$A^(~>9)b`}L% zZUnA4=(jX_sSTc*W(0omev-`Ve|S~-mx=IWm=0gl?lHWrSJMhWo(#bZ^nk~+o$Z1( zJ2xL^kMzl1pwU99h}sWucMm9>{(G>o6#X)%ZRU_nZEpg;RyK^wedfEJYX^~G)>Zkw z_0MSxbOvyiIO7pGgi7;u%_Kuj8(CBiKbs315F+rQ@Qz6fQpy_TUmuwnv(S?#a3X%< z%_?&M!Rx6D5>81j+0aq7T#9TW9Ar-#3$v}}sL)D74`_3o-585=QE*T_1r-wQbh!lQ zbyL}$p@fxA)hF`jUS6E zOk^u<_F*P7H+ug%Yt4Ke)9)TH^$(!!k2t~Pctu|cKH&%4kWZG}I-r-lZ?Tmi!Asv5SdNibelD> zI9fHM`PmpW*1gGSjS|TE@tq3?z@!do>oHVfML&0n$Z=~WqX<;Wc)ic0dAqx zPs`wu3PVFV9%c?n_U<&&TVNHYiuuRlh;-Mc5T%dS0kE5?W_-=$r!@Y1vf>3;G9(Ix zvUwENaYhIJAcsAr--scJoWML~k2{kk-B1s)l|Iin5(uOnAl8L7Szx0GyJ80}L!_k~ z`!kMM$JF4ee_ET>a{C~DUW+pNWrsC6kc2K&;&*J_&|f6fLntB7!Lqg--K4kP){mG| zewNdM0h$^Z`Gd9q$(OcJ2}W`HrA%S^(Oj1AektJ#?h#8)z~;{TNuR!vGZ;5-(HTVN zD=Y{f8t`v81GTO;l6I1Aws)^fKjkQfnszk^+nk?vgaSOi;*%$lKW$9PNPfbP6Dltea?pK;kU}4d*g*PTiz)ji(PE~Zi*ycG`%0lf>NU10 z2Og5rp}1L}sK@Y_NLi^y^j2WHWOcm;$UE0xv z>0FE+*2Qdq$Lx_PG{r){dz&9f>`g&vXNDFN=lWiVverx4hy{gWJEp3T0g~2Eq~pVr zhli?C+>ZYx(?Kn_S3G~L2>5&9AVp4{v($~Mk7(+Y{CP$P<~0<;K2Wle8H{W@J{ET{ zvHLLStQU(lE{Wn(VdN@1T+!dPfKMs{2P$E{%$lbty8_BuUZfa-G=Z}YA*lU}LtIEO zrn>CDNkH2}1;!=SLKywQ#=?l7)t`lt*ob%S{|eJCp&)zNS*WL!JU+gz{;0ydgKohz z@?@igir=cW8ms-cAn+ftS|1Tiz;vtbLFD?EVC0wGZW9pIpRqRcxpl~Z2XgxmCkAp0?k#&cHv}r6Wp>oPir;JD{4i`v(g{6191Vbpp zarET`oG$(Y$TlgqJPiH-fLfX#?aCzs&7Z0pc|uTgmvTZ8?M8fft!KgOxc?E;sl#-O z_Z=$7`x`e+Dv4sDVH3nawwMwl{UM!H%FMmBOy@rx=D)-F->HiSIFh#JiN|Z48r=vi zqSy9`3XxpeRY)y-vGu_G)!kP#Of3B`W&IDt7J`rP2()wi;TUh(PyN{8G~6t(%s54V zlNRZOjHYd=gjR}>Y2$a5ar?i+hlkAM;Q3p94ol2Ot14IT>6EV++gv(Q@Dv84j`t-n_jdDX8wh8;TKX3BaWchbVQS{|N+fpnkPN zMYbBt{r4`IPJwYdeXfYL(El6dVhk`nM_+y?XciJeYZ=imHBTWc09M{*1+rexl&mT>d&jsNihu|%VT82$V@AoCx*V`F18A0r|J#xiy!gU*j2e#)ADu_koi zt{oa0QDio*$vFcH#1s|daB%h}m<20gkmkL$oF2Xazm!s9#3AqlmsVDQxA*soHa1lW z$;lR*>rjHaoYSePm;|JxSupJN{20yP+?W!x&+y{!-;AsSYkFBJ_mfmA4IO<(9fvr% zA17IMG<0+dR#usoR#tJTCQ*!(zOi6AWqRm}~1u-~;&c{o(1JORraSc3qA4>^O#*S@=0!vxhM-bcXI z-s#t{X>4LjW)~Pf1Q4!vf2`uy5b96|>3_|&+JMrF;wQRggc+od4B0@T(QW-*~) zgU7eY$ppi8*H1e;J1MTYbWcxy!hn+Ty7{#=Mr>^CW`|`~1tlde(9Fk=Ml!h%rNBes z!KXYA;@8cm0(pPA=+?G2D&|fDYbRcX;k%>R+UjZ^86{$ysiKL9)$>AUJ7@c>DFa?5 zyi$prK0(kaXQDq5DPdMmkLdW=7`ra#`1jUYWkn^-xZDD+;Pwe!Vv}i;39tMc{-AAfK5~83EiTjzeW<=z9);l>w=}!MjhUFgx7HzZlKAEnv_wp zAC%Y3qZ?JIZ&y7z#e(eoAy);d_@Tc)zn=t4Sn3N_ev_f?zm27PAt57@>;1fUd%V!> zcZ0_OgB`Ft#b;KjVI%!_i4B_Vj`l{_jkwy_}@hApq#GJD|Vhx&+c{= zWo5!id3+pGzm1)dHZvF?7TY}5VUUeYwxtw=+KfEk$=r^I@LK`};VJNBw5=a002`Ym zR3yE4oMM);h@tH6F|d99^J!6WN7y_FBs-dbKD+b%pY9e|;+Y=unVdZ}w}UHtnYi2S$txO50`)5D*e(q;6A`DWvd!&AA-D zrbx%$1*Rm$Vi%>@;wh54qaJZ?C0(m2vt@TCs z+xLJQvX4)qXrPU<|9Jsi&C-=ap(Mr2A}ivix}~|@fnPJoEzrjsNFqZ)Quu`({@1UG z3Iu&jL@(E3ke0pa08T*$Tei-eF6~Kb|yy&9$;da6Oc!!3) z(lH#{?~|ir{;gyemFm9LzV)=5@DINd2M-;0 zQ3F&(A2ki#P+v|$tc^_%IPI<;n|80u$lk^fQddngTDkdOyl=O|GCL}3VBvZNdUs6@ zpRId#AM^OXQ@J?pK-e+ZqYQ^NtD%yk2 z2;Gx8NluOugGd1Crouk=%u7`iTn~Do`vxD+4N;-^;W@4%oo;G;&ZAxdNkIpr7sNlL z#%SI?01o>rM+lc~VVKsr?=dv6n?>)pRn2CDaD$H)43k0^pxDtwhp1Vi1h+!A$ggVg zFbnaK`Dr8-?Oo^Hn%`<_68CsQU~h4iZAEXHKG%<-2S0Wvm~A`4V^$QS$n)Ucc#)Ul z2VG-R_2b~?-ordc>p@P)|Wq|e1B>Vj1p#~a7Zn~m5@PJa>1Lxssl8b{sI@83!U%BgHUkEPta zJlkD(!pRa^6<;A$A0|o$qhYdV@zi1H8;1!)udHSXBYP+jWb=tGdOt#mg?(p*N7Lz4 zcNEt4x1-6T8hIRmh%ERF7{B;GS4XOtUC{-)k~U*WqAOZ`ipePq8jyeWV{g;E+zlw7 z5R z#UPP=)D4RaDcmrb9)gZA5zS)I$8xQ;be3la2cw$d%9r)%G{zbukP8254aJyPa}05-;GnQKi6XcFmVLkds~3=CN< zHZug)UKfE6f&gl2O|0LDz&`#Qc^sB0mTRc;AM4ItQ;y*hcBu)e^M+{LnD$gI7H;%W z2hy?ynF1!M5h&^Lkb(MiYWXQi_uk{M9u%zHn#LX1O&lO~&Y*{%K32O?iBUiW=EV?M z^1!A~^QF`i7k1~hFm9>a`+IvxZ;E8$c6H$gEAX^Ry`>cIo;6o0m};D#6*Ibd5!0Z@@h_ z(R^@+#UUD%C4~G!?>jyM3~?45>p3riyNXJpwOiT8_qK}RM+%0ouA){JpK7Bad=Xov z>nM0wwC^v($hkp0+}uDvfk+$0^u;LDlPStgc*xjX6uT}oHqN3ymx%bYpx8sl$#DLt zHQpRxOKPgR?*7H%hTLe9RQuVmPq;4nd?IXl=Qn-TLP4wNgB3dh0Vw_56@~=x(@ExY zx?$JKKmDVncp){_i~%Nn!>)&o^E@1L(hEub$A)`+xdfB2_bJt2tHQ-D@P;@z(5S!+ z51b!y9r$u`%p*+YS^gbOCgaM&p5C8t*4T&}2A*~}4~Gg=T5N;^#4f6_!_N07K2P#@ zY^JFGC~IBev2D3M(KM~%iIwDwG^>X{WcRL@D6jdOOStQDsPBRKsNNz1cjkGrR40p2 zF!B=(N~}J!T+`m9n{^pmCw$vY2E$Y8XC(bXTqcXb_pyGd=t=5*N;x=L&^(&3v?^tg z92ab$AU9oO`^C9Y*HrlH`9lvKdKgEY$&YE~&Wx-_aejgJVlmf`H}})BWE857fa7Mw z`>mZWY-H+*qi)zDG%|LAq%r~Jr~tLfZO06ZRXUmij>jlkit#4SN2(NI2DemxHsf}3 zI<-O=sXrEB81yn}60T|K^7Mby*Pe#ig3MwH-_q4}?Oyvr!<)@^We@jJ!Vj8MX5~d6 zx1hsOr>OV$aj!SfgG@(^Q4aLLRXdlSr>x`TTpR+Hi%1wr*><${6g#(5LtqSDpvi0E z8cmyYk_QA98GflyUpXK^@@9a5{hb83MV;_7<-l1aU?t&aP0hMt_)Ltnb}R?`Q5dZT zD{n??wcnLM;LAD)&N|T7`R%}1;m9z7{%I-fve0)2u|=GFhJ!md)fp(|TwLPv8Vh0L z=k1Nh9fdU+%6daQE^ZrZ3%R?~%}xja&iP}c@Qd4xk@=L|VC^jdSXmA!$2 zx=x1-sZi(nypbj&`;||Y8qyQ33wOT(Yw&F47xTXc{<$RCrkj_skfJ*J^3zQJvzd`? z^p-3Lv%#8QaK_YPrkY z6DbmBN2NzbuF{V^_)wqof*!-k!p2o{L4VCkVxwo0q3&T3U@dFMFJIhG1Ms*n#2z+0 zlHTnK!cr8>fVX_SqSp0dNzXy3ru9ESZe4nGCnqNfdheN^jian$!t9gG;&3(;f;|x< z1nVNH7byEN9!JUiQIH=X1t9Bo8oWfvL-%&MD=0Qh8%T z7zW6B?y*=QRIzD(Qc5x;eCJ#e`W!d+xlyTu!3%qb<^I-eb6QAz4+|z&J%UFPZC{&R z8&$_1ar+VGF@=KYTz$jxt4t0B*E!mPx_+eU6r$t037)-?$;{B)MGp_u z$NXVDIz2PVZcNycPx92icHg zk51er5K={|i=xXyb4g}P@Q@7>O2Mi9fLmVm$K1%u&a+s;L?ZRs^rGt-X5)jo&nuE{ z>_t?ll<|NHB))BPE!mCu^6~b7GJE@zT|IOjfs7jDalN3UqFod(NFK2C^%{EWi)9=%ZUdsdCPE7cAcc5n2JynI17TR)VFrdbn z??WUm0fK=7$4@;tl_`lH*e_7r!kZ6^w;5(g*;`tb3en0ZKEV$@7-QEwwtiP|Evo?d z@Y3<9e%zsvSgHoK8%UyyY+A&%b-xBxW;=(fVsSXd@iX-IOZ0@wakoz%`}`=p9_=?z z8o3ouVGq&_8IwS1nO=w&0unC-f+0NvSB$X`>|PA(I=-MQxP!TJy;+7n*M1vD*eN4R z$9#Bh6&o9&(j{J(HAfiA+`rWn?7GpO@x{C}$pAf!P*QYYiwo_rv+O4`0j|j+% zWw%_lq!%)STVuQ*`i|l7FCk8v7)N`Yl_e)pgh0==X?t>I5KzPr{^|lNO-E+@6eW$w@{Zk+ijK; zoDV!9TeC1SGjom(QSrwUVlR`_D=p&K-R}xYnizcg)a1u89Qn=?R0L~6s#0J%PmCST z8}k9P)OQhhVMj$i`!NAF6^j=2s2oh`@l~_z<6aiJNQUBE?wZnNvt@ORtQ_tcD4Cjx z!60OzL!}e<2iJHW{VXJR2NZfSD^Tqfnws2Xe^<3+k80>wMM%+(<}+a7;oGXZE7C2N z^DFQ}KC0WP9Y9;g@D)sI-Pw`xBHs{~xb8H&2`~EQ<{9)k8gs=n(r`y*aJi?vT?!iJ z7yOQU%2_Vs?j*s&CBUTc{9~ar-PkK4emCgzAC<+$7PWJAicpHum9` z6pG1L7wX>n$!GVss*XZGJ_H^8FUo{z|4h^ zbS84-dPle)yvokV5aeF!I5cIg{D4J)6t&5X6lh2&?{!OG{XR_Kn1Y}L56xg3M}@sb zymwOxF(@FOyZZmTHx2y zuH$W+pzZW#qU&fMI-JX_+LWKnjffE{G5m{1J#6=K>n-=~1#ltX9p@VW zqKPCFu$Zel=<>>2n#&OL$(A;7c4!5CWT20xp2X?0;1h&H6t7}`g5)I{414PL{F|c5 zlx3^kH=vKl!?0V<#iP*sT=O7Efvp^qQ+SiiE(bWfH@3wpD_AJ%McDI0%fqN%%FR&C zwUEjBAQz|VuznOHK-ST{E>A8?F47qp99W78bW}AV!kLeHx1r5dm&_j3Yg1-zDYwiO z7Rb)_v|ansO!-quzg$ZAJ?&>tS(;m}6|h%)qFnFp_-%`of8^=T2~i4_o)^zlL6M8~ zWZqkko`-yNf41>`!2DHMYyXL)>;`x_$*#${I5&rxz_ltLO)QpfM}TCaryVQYu$+SN z$NKpXa$Wp4p+M8SS;jBqZO(r>Wf(c|u+Yk$k1jaVs&nREXUxl)o}b6G=u1AelqTjU zG@;B>I~`f}yegSs_a2(J_&>06b=Y;1ZySeYOkBC67-qDGxXx__dZbdMAG&nR9>owz z*;YrMtu!sbIPVSQi-RcnoT(0ku0#R>Lz!s@t1UK@HVOUs1Yp^!8<#PpD)f}XSd z{T3EEgVubY^cY_!PE%2zTs}aZZJVGwNHRNu(#LYLV#i!XCHE!<*va~0JqG2%8SYI@)1c7s$~ey1?5SB=U92r;;HW9MfV}47voGr*_vqLb0_VCYy9y_6(l`p> z!-HklrGTX1z~4CgVcLJ^PF@UE7ymH_B`bA$XtLjy~s|C98En8~_)!DCx>R zKs{~cS-e|FtP9DrK<8!w@}x__ph-vm;>w7Cx7_->S&46 zZnzvgg6UA`m&76YJdr@fWYOms0vkjiAcyp96JFwL^{gs^s9KaNOT6@ugL@d4%W3fI z)dzc}%5yHiwW9r`PuaMa*z|6ohlU45{Bw zm1QF}GZuRC{@we%%lpXdIXmVW%9U6$yHPIl{ccdtWu(c-&h9K_wmLsz>URioal$c3 zZ1Oi()!AT$U={+Lsi9XEvZ9;;iL;Z6Y-7$|k*CGYlRE9|G|vEC0&qTWOqmQ<}krEBkTYKyoC?db#{&*{BHen z8RdtLBglZmKK~f}anV3TDB`}3*;45_IMv^l@SsvD?+7p*5NCrc4}>Vf%^{>>uYPiy z913SEl+xcb5tS;OcsaDG+<9I9@jg}SlPrAQsF!?ziSWk5b{AxV5V&l^lU zPfWLbc^Sh2nq#{q$9o`V&YvC=BAq!A*xq^Q#(U=q%sbfxpnGV6C1t&b@f3%`AbE2j zdwyNU3O}tX<)IsKQS}mskJ{y?{9!9)Pd+&}-^NV8b?T zmq!4N)_Ng%WINBrc}t+9ytI<_h?eXOW7UrK&KwM++*Lw{^vlFi<6P85L1dgb_BO3h>MPVg*{_>Q zdZwiT&KvEBP`STt&2Q}%s)mmYlj8C4r*9lLg0-z^lH7n-3SG=7eMl6Zd?_8XwPPND z4RAFw@-q$0F`NgRwWjgo`LsB;1qb9j{?-1{-D@H&BtSp-Y6n)cEyAMmE^Hk}za_?K#Fn56Ab21&2ScJONpF(k#R2?o{7<^->Y!^OiKq z_Bt8;3sL0;a!}`ZtUONTW@F0A9M5FNi+TD1`NbsQXJnDzw0mIZ{r)M)ult72MNH_$ z1!Q2~QNAfe>7J@oL$^GO3hNOAIAZaP^>2y}z zls7s!JB)w_k+m4@V0TQf^moVra-{0Bz1@6O^%@0)0KfvP)sa(>6P5LVTaL4&01BM| z|4m?ICZ3@`1S%=MeDY!iJ(-TG!Yg!ufJZ0|@22MKc%$JOAk5!4e-P!EKRbwnlYG9@ z!JVaH{6auSAA&zf-vRJVl_gmpzl}_%2;3=0FXNpKj1~Hfp z&+_?{=!Yc^gwBL1H{FCn;5M=e`v81Rz$HP1C9+s0E&|{X&+5ISNp;f~I|lNI2anxl zShSUPh&XVAJZZQ{K>yGu;36QX9(47xpL;`m$WbGbJu38~8^GFY@>*~sINdw#QBd@> zd`EnEQ4i`M?V7)sw)m51Rekd(@bC>l52LPbBTY}RSNCJnUb)lK`{q$#l#ntQpQA42 z)()1Gad~_@fb8*;^aC#L!))Mte9_d-3~@&l$nQ(G(%p}Zj{4Cq@ET;xqR%vF&i`EGsZ0x#J6=lk{BLcUt?3RSY`U;fy?*#t9+fvi2Um!eDy?!%kH z;>&EeKmWrmq((siv;YlW9tw!5_v*Jn|3`IDVuI<1)JLtm!vAcDQ3pFH%N&LOUjHZD z_$M+3vktLp+7}A{V2Drz8SxyQ2vOaiEdK#L{=eB-*is*FL-ZdX`d@%0bc+Jx$9x4H zZIz{~sklZhLs~`#^_3e_VY5c|a~F6#nd2c~rC*xmj=+{}t(1+ml~yfNiWU}S!Y`*S z*Y^f4N^<^ktvlrpbqFvpp#*sB%6l73LA zFgl`WXjrSIt*u~fO{*N+^&3p1?9hma7{$fKS2Pxj*D~k;;K7bN5$a+LP(2bMlID7T9jBmR@ulDO z&^Ny>RYupq&cYH1%oDA?MZEk`bhNbOcPhCLn4TA3nBv6cDN=G$8Hkn|vcapuV@q`g zG-6_8y9@LKDPQCTfyGpflnY4D2wo6z;)~>_*{gbaU>0TK_7-Qe=7Zm!^ylW+Q81fx z4PX>e|1YaUz5@P@bdNoI@_(M*z6l|mEXgJF&|neKKdLG$G31|v6XegH|3i=d|2@Fv z-gD<}CmsDU2bg=pfJGRR=@*Im!?M<2K4N2C5gecxMOP(rDX^YPe;n(UhEwG(yCR}a z;yOgmj;x;#;gqDZK7=Nz5*Lr_Aek_v%Z%xfToObD_I9{LTonf_cSi5~AFk~sju7E;9vz@qWUJ<~9W#KrXAyn+B^K<97X_G9_;qkg%tZP0b_#`IBMy8bd=w8S@em z3L2Zsy(dt;=RK%k@d0ImIi`)9O0TE2R|8FFPu@(wRIR?OfH@g_gZHlx9~)Xy_GJ5u zMWNgbp$Btw3ptce0uEESZxhGa0s1;fG2y)b0njkWVVLKI1ZhU~pZEVflO7XPt!}ca zgzsvgp2*33$5m!RwD{C{`vCo^a^E6Cz-nAAiq^(5;7gWbS~+bWKJ1M|ZM3&bVG&0B z?iChMfbJ1BZUaodT3#nsR5DqvH@+tfe}m0s5o!a>qtkK6U5X)ILcyEzz@apmCb2E; zQZ(xpCPF%ksRoxO@95U-2X|{-XD9~&%ufeo6flJrkjNEdjU;_@aOd0sv+jfS^*~-b z$&qm^WYF8H%ZC`Ct!f_@P%8KtE}C}F^8_M>P1gJK;aJiR3WI7Dca_RNs|#jM#CXY> z%W{rHu%nB-yZLK=icL9pvWqts%D(*J4+^L@QsqUDft}o2igWZc*DOKI()FLMGrI1FxiHM8 zs~g02|K^0DpQXY(!2P)Q9jkg$xnEsp)U?22xwl5j^a_D5*dBHw-P0jFYWucV0o0!purW!W>>tTvq%Ba}Ti-&47{2s52Ug%(=qH zO6zUNRhk5+A_td%F_s!Ce%{vY4FbOQ~#oV)| zCI5&&7-OC#+mo|0y)k|H3w|d6`z{QtXAH{O4wo{ClJjMB{CM#ng7UTk46O|fm30LG z9gj9-5~=IgVehB@OjZWv*z8eWykAwk_zE-uDB!6UEN}^lwM6h4iGr9KmL}Y0%aMXo zK_lfQB~o*Wqvk>uL2lq@zNaMsS>#OI_3hibbby43FG~j<*{e&8(CA>iUmc0aZMWK zx)_7dJr^ZP5b?cSsCGB-Dm0YH9fL0zOoLDos%&zQu1v+x$^|f?Z|T2q9G)e0KA3>fvO`mMaF6jVLDFG=V7sXG{~uiv<@d zNb#(VQOQY7pD6cN=;U{O$)f2;V7kGcbMKNN9r1Pu{LgzMlpSRKipuy36=b8nZo*Xr z^M3?w4Spk-ehJv+ZlwkyZ{xc!!gzvaPy%M0OaW?x%nz@_XvYzmkm<(nH}wilX-S&$ zqvtaZxU4OJ=mO7Zhg^dyGQGfYrGb-3 zKsR<&=ZWYXxF<6N8k9(izW_=+NcaNkk7M8#G`*eEblk|b?u7$6=9e?F<%BlfpIe5!1Q1vmYyO0 zGjfba?ek~MOBBdyu4TRRRlWFRsEM*E^o@x*{0|?ohbJZ`n@fx?E({n6%vQF(l`S)m zpKzd-j^4^$pXHA;jgY?hQC?gHQTupaasff?$#`eD9$gZ-bz$(-a?pe@?vs#T6q??S zPH~d~Zery%=W*(j4iwpicyTo26THXyu?XPuz8#g5b3|qt!js+EW#oe8FI$U> z-aJgt-se97wL#cmL-fa{C^JnE{eT%f>H?#*=T1_oGPZVWMtF{&`SNyO;In5-ez-;U z%i9KQ)%{?~&M!<9bH&;A4s@jagxs}|?6Nvpeb0qzF!~Jx5$YyQQYhiP?6aNs1^ZJB zK_l_T=RBq&nUGO5TP8Q>c04MWoW56bMw>}-ccEnw#uLu8J+tyJDQ+xP9HAyTFbCNU z-oKJry~ge~IT%7_A0i8^z_YD`%CXO*1&`@KOqa^PO^ z9`-~dO|76~&@o3Ri7d`L*t{qNy&zX}^s=2;&X#3DBvZ;^Eh0a|9eCkvjYlrbUY!0F z&-Gh}T2w0AxM7;0tr19;^*0;_<-?M@RcQXX6nQx|JL)}Eig_-t7{(dSBq_nyK- zs+-Z&U#+j9f71f>%S(c_HtSEa$ckLjjinKA2WC7CwCe-l+9q{b?V37Vprl75Mj;%C@0s|=@B1oddrD-VY4V<<`HQV-{zxrl`H!!y>DQ7 zi5c+fiBpvGG0NkUd|yem-+cCiS_JJcidxK#<#>at^6+Vg)Wa;>fw!L*d>J!ZmHYh* zZmL3XGM6Gp6E)sgL_*CwL-B{}Bu{{&uOw+(&itW2C=}U9RSlO%5alJO)l||T<-HP+ z_V5r4w#dKFcbtA{e9{(Yj=koe48fk=``ZK<>Zd43R_KPE-tH#yLcuTiN`@N>K_#9O zk9_umz!HqS{@A#6DoPCn(#`{S=HRX=2&PN5*yvW=*hJ6i(p@Y)_PO06}2SMu@|ZI6Ycl&6#=)pX2-(Ok%FQsmJ1#< zWzBAS8xsV+0Q|T?r{tTK9VF5l5IgVvZO%<04x|tsFO1(GSlwD0bSNB;dpoNJwEiD+ z-`E{W6KoyZIk9cqJhAPZ*tTukwr$(CZQIGsbMJcp!@KJ9%<7)iRXtU;Ywz7x^xrn# z4Vb@^j_>u#!&xCo>loOqf_PJX(e$w*#^*h^Jj z(#`leKmD}4Z1*{7oA{pqGNn4e{hJntiLc~8G8|j0-*9fxylOVtw0L>Gyi}Q4oL*j* zntJ@)ORu&|vS=>G*|r$*PjL??vq0J_{fS7_3ib5hsTH9 z=gB7Wb8WrJw(a@IdN{hl!lvpyubsHJ7@<1iO*z3-?y8_joBsaAX4vEus-aB(m6k9N&!v3uYn1Mc<}YN8 z$LT?B7!dye9??MG;M;9{0`Qxc#HxpyF5;Ht*h&ah!LpeE{zkhP^ZZ_(t_=%lO&9yX z5u-ogctlg=)U$Ou!`I@EZUQ%nhB2Ar!80;A*J}iN8gf*Ee7lskhT>@EFf2~>3!fSM zvn6m^i6Ut3e)j`0j2qVhI$j?4?&Ke=J6vYKHbgP<8*qGIX@{y_?1%i(8|ovb?!m)# zx+6NiIF3^`y72tDFkPM2HY2Qd`QP8~h4?*Unu}B0$ytMCa4@PGdF`q`4fb~g&{TBZJ5g&kJxggT^?I;{#~XvQtDl$8+SMNB-FbL#K;cD8 zK%%QfOOO@}j$|2U-81bw6yC!$t!16nmo-t~_eSIlEQ95;_#@c?T^^`6_jr`(qyFN| z>75ipWD!Ls)YC=_ixpaMmSXi|`=d`SQ`fCKJvyca_bs<`8wkv9qQ526ypM4h)BFU_ zmRj*p^Q1?<#3F>vKBKs?^~HTb^ndh>5_%!olz5AU`AES`*e>_@vc$sSV|B0fkh$TK zNaF}9^*j;*Fyh%wIdOzX+>MK%eOVc9@Qwv%a>Vl+E&om|%*ENFcua4ypSctX`NAMv z`kA>-%jn5s3s_YH4{9|+wZuwHt_s2*MmK$a6c`vZwWxj^SD$cmOzM1sGU&wE52OF7 zLS8ySi-E`M2i>t38QR4c;!5%;HmIrYk9I+g`5Q604a&p`7$u|WhPLtHsD1P;+_>(F zOuASZfS+j-&4UoEh<$3Z6r^q1T1wQHO7RXm=)iU;ohVW}DOgQG95pifdD{^85uq>BU-G8Hj0=pM*0PKFrTo(bOIb%q-bnb7RNV0J$e#NWUe_ z0;|)NyxG2f!JfENBxIEXlGX!8dH;A;NI=nq&w!sj4CJ{>27F*lEXl6k=7Y3Hf{hS* zZ<#PTcpA#Skf?0uBAp)EV_!Vm3E$-Bn`dA10N^Mi9*BtRR3WWxW8F z*iY&{pH|(SOZW?apTDLxAhH;kWjjl_nQJNqY4+ZUb9=h1WQENih=lySBlLL$O@3|2a zK18lm18*{WMX@E(Io;cwB-_(P*A=lCg+;;@uLSCVT$JF>P?+jR%$-f94{~CB%3QE{ zx2Uq@%4F7b($ChYyiZ|I@!aceML|Xtd5&_=O4;sR!+)dlr0%b$wIC9YlQE%u*kc?( z>^f-A4LvA0bX<*k$?%M{7Z#o4Yf7D}JBbE6UGE*n2Z>)=l)UDWaW#gfGoSD|YbVMD zzVTO_rxM8@1zmJ(4qV#TDu=~C=8JyhPBJ78&UweYD;!63Hrc4SeNEd@J7_i&=vg~p zBWk9Tj$IXkxkq{4Z?^3X*{;Z}8+g^*7~L^b$`mJ@=#`?VQP5x~aLmc|fyLoA;KslW z@}=7mzuat&*L|7z2db52+YOBOx|{SIn`7PF5CK@oDg{-icqHBT0cLe4U0ORN`N}}V zTiHm}g3^1&sG-jo^;{mcSX_A%eDo1xly9mup=nFpSB$j#Q0c+>kcJ9lgJKd#Uw% zpw;SRF;Uu`}?74HP zj0!)BIdjIBzRsNfRMlP#?fXKj&;0De>T~GU;pFJEblvvKwM&?(cCZVbe_Ft$v66vt zd2M%ewg>ob=C?2K0Q73gVYw31wzS;6_JYW8Divb0T7+SgkbsHfmg>V+O<^J6hYm#e zozAg6Q{1&@=){owwIwN}GDX|!aP2pWlJpXe?o)x8y;2rT0Fz}yoo$$^c@j9_@07Y) zPa*Rcm!Say#R&rA9b#ruC7&{Fpk&jw_wzU@kb{9i&Qd-vo1gCtdKP|SCKQ8nRE@@$W>e0_?HWzM#>#*G{!0y zs%9qx4D@<>_w(lP?MsCV!kg|0wXz=1le0`6hjlhH^P@nO>gm6eWb_-SSS2=5`J=Pj zlEH%NE{f}lxBiAr3#8--O@c^T$FKcuQaWXQOY@>9i*`P*a$<j9;QAS9MSx7-brtqh6t$J+(uqcMh25Ol~=4#0rQRqr<)S7jy5%_S8 zurVbo`qJ&duB!q{tDBm4k$v-N0p*0H)eIvIlI)dm$K=puBR=KWNQj4>D2d;(#}2ub zI;?$a4_nLHMlqW5FhqP!f)$r7-IXgIBw)Xs{(u{9kQ->|;b8Dv{md{-f*%o6tUa#h z(zju&w!DX}g}OC`8d?}YorWUzY+;9gLAnQDm8!}i#NW6ID>BTG#u_s*IVlfq=?A)^ zwlxHt+|*=$jvO9Ff^2%)m=^E39pWOpTWz%r7wb9IilVoCtt4E&^7Qsr3Fr$rfE3Js z=JgzaC~oguUIKTlxDkL8l8(PE#{$t)l5+BBye{qAm=LR|Zi^dz&Oi;%;`B;kUmD6# z4rmT|P-F4|iI=DkvkH}p9G|pV=Wlj4(3nIkBtKCZ{&|J@vMF|89ggF{ya67(Psf%z zP=)y%T`C0$gC|fT@NkE&klhXvOF11ooxO$=jmm&wbA|Lw7jK?JHdG&-agBn|Cf*TR+^m& zTX^0*s}e~kBV-^@M^NSO6hh}yK8>0SkZfTR{=o-&`;5k7wI*=9k~> z(+idR5Vx7}rfawY(nZ)#d5D}e0sSN3rI`W8X!!=lf&E{!46vR{gjrgPv#5~R*NY}A z3^WMB3=$(m0+azcL>+Nsb2^VRtLMIlOR@-_<=xNPNPHih%=$^jD-Xl4O5yV0N#uJi z9ytum$_*AxWqN^X=fM_dJXr8Yl|!#n$WOvFYwMwJZWqJ5qzvP0as%xChB#)w+We1jh~p*#hdAe|EGbm~hQxd?puR;0OQEcZ264 zP&-g=Jm!en&^5W*4RJJnJOahOR`wphFPLtEv=M3)(SatT_2L)6!)VH`*D%WSmMdkB%yxKdtYSWBF+S9jE# zXt>+0*^Ks3>?-%>!$f`^8l*?0~G;nOeiaNFps z1+{+ZT)T41_7ar^+X_xeV6(PtG->2fXfN<2z}G_$rMx|O7!HD;!N9^B^!1qTQjxCe zBhXLs7A+3dK+hg4J*d26{==e0QN)%GRtZHmOW!HcoF>Y4IaTh=wBwE~;4MYOXvrwS|I9HWa4}A!1*< zJqY-*gjI}CnWIcFy2CZ2Ts-e^-RN4PFz75p zj3{8k=$0rcDO?f7R-_^H)t28TaylI<6qk`DSYAp{st<>Y7fAbI`DpEqhSd+qzJgJT z)kTI!Gnsew;EKZ=jCq8@*pq|LHR4eU!Yj^M^dWEyNFwsl0ulvEKBd|kxI0lL@&TNX zW;^3TfPz_q3ZIaiHNUe$3^FaCwJbkH$~qu@07W5Ebp;+Q!nLOUn8)yjcVmnxgo-?a>X! zfOp==o|}VWYw0ouF$!e*^>p_k6>RBn7_EI(72&F(A+>{wB5=%AK+@JPVg`Z(uqToS zVec}@rpX%COX!|Gla#Wo*lE@Tuk}x#iBUPeTzKmTw{sH|-Q+e<4{!%)Z`9PzK&uJk zzING3oDI`JI$pu|XAM7qB-fdh5HHsbt6_&`ohyKlbMaeyzBMwqT+mdlv2K{(nNavc}mvO2QF2zVWuda zc*^peZznA-K{l0}s1I*jk%4z+g-J8C*$7Npe=gnCyGz5LeaUt(6DD=>5+qtGi~t{V zNR-o)YL|S~Qk70(nhPVHr5)02mXlvxs9J(c#7ZkpXx_hS0mmHZ%QmInSP4i$$VD7A z>W8;AFTXwEXAzPKxHLoI6YUsIQIK(E(Nb-|Ttiq6q!QRkw7w@IQ_6pEVY9r?l&{8jjnH^Ly&AM_->Zqo3V(>WsQAn2{| zz~^XO9R#$CD=Cp8dYzZ;PO%+(2ln@&i~%lY10{pf3u!nZWXUs>wR>KVVrMHM047Vd z;Fe3(njCCzpgV;j9!QxVIHfUE!Kq6M#&yLjx}g3kT4;=Yyjrb7?%Onp0f=G8cmOe5kYtC7qvN7ekL00 z3p<7p<-W8k>tf5%B-{wqN#iurL7=j67;VdruPZIg++};19eY{hx^R|{mZ`p(bq(Mh z+052mC`yc4m9lGeBY&d}s``W(T6XP0prhIHS6i+8|8W7}>!;n5Kq(UPeS0=VRwA}2Pb?rMAArb5fm_pH0A!@G5Z-l*3PjTu+$|2%K=kFr)cxV7| zH&;h_^!GZ-v-IjA!yGb%DzQD+E)h!6Q}2;4KJU@%0bS-4oUI9r#S^3wTMr7o44Ar; z((8CAyCbXjy)0c%$qd5~AQqfbY$Ud4wr&^F;7F83iqRy#J-S6r7a z+`V&=-UZf52`aSvoZk*tq6ew`^B$N4{Q~~v4JTN|pJc%AX!bh}B;9ycE~S+TG}+6kqNHpft%~+Ep+wb%a#RObe5u-gVE&g4~?|@ z_RN@7lH(cB7Ly`+{qm@n6XSODSi$LTuM%^ooSw&feG$`}F=JTc=*QT>iXkIw0A zBdQ$u+wCWPA9B^S=Topb)}z5m0cMQ~pxB;?KMMw;aiEEXLwSDT%`VBqY~n~wXfc-G zU}|LumT~F+w)eohX2W_Rd=!_bjagFLRr;i3;Il35nM4vpTgAc^vCsduVrS-{m9`yb z`l~_y%xNc0!ZSq_K^k0SD^e22n`mzw+dK-e8_m4H)D>~@%R>ev5(06lKQRIiw_-pv zv66TUHc*yk#lMft!4|9BB)9-&pQAyPH8F|Kcw_d}<)A+UM@GT+&50|6B^Q!yt|WRr z{5w2{CEBshA8O2-q~FbQ(xdXLwtFM1iVQ*t47Bdqv@_L<%M$%C@Wq<=Rk&WO=KGs9 za+(je3%3?m7-2*fn{Y;!+GV6HmqQfw6$hsYZM*HuEk&hp9v4-W@^t;?`#?03XumR& zla7~M$(VDg>Z8MohN;6f<^3Il5?}HB6L^XgPY9vxaD%@x6l#nhFK6~qtZ=)+cN3L(*$%Uri5shlp$3O04gg?6Fn2Rjta?Xm6WW1G|+)4L+ zRN9gVrgR{U2e6?-x(+-U&vw@m4?7Ebsj9n}Jq7P%S_cE7LT{y!~;d7a)2XIf-|Wd*WpfTc3u@>gKXlp*|P5Z zX+5+}Abu9`Kvgex-sq>>x;WQEBwOZ)Hg?wN=Jg;|llzjl01nTb<#9jp^Q1o!?xr?- z>eR^Hh9A4PHov8hEau7fxlD%Xp6&_{mMmP7z8-{nGj+6T*VpC5wG zkY{9S7^i;Fa6F}GFq)g9p1_(%6%@$67BSrSg(nXoV2)A8R#(HZ!PLpduKC>cU_Kpo z+^`xKS1`Crxc(>k$J-SlDezh|PX9q;YI>|s7o8ozNYMvQQ zPQ&>uZ9t$m_7;V07ts%=Ad~J-i`vLJA&2)saERPxhDrnH$IbR~TmNECCg(a)4kp%p zP^-^lieVOuX{jSxN z;FkMI&GIL92mVkJ1MuLf(4)Zd5Od*gyVX(DSgW?hdR#jtC0AMc8asm#a;98Uqvxl! z(~c8A*N512i6#LIi=&_R-ECec!_=6sX_JPOOP%^T?6SF1VxpT ze1d7ZJ_fk8MY7EhHf32$ldCw0hncKu9XE)>Z5s>EX||TN!Ip#kFQhd*IR6Zl&2F#p zTJpLK#RfU1K||zds2ZXqn?3$4Fj_j|WjW2+rgg>)=Gz$ek7xcqm*sn}JGPXLy0gmh z+>0(}#_GYZZP?=a50Z`X^@ic-9gitwnyn7$rC->)O;_IGJ!K*;1-NlgK8|H&3Hki1 z0g}J9@Xcllns++GJCQ(>^IemPP^A3Z=p{oQlom(yA`8;MCAfL;$o%FItE2VyagR&h z2`|jbADRwqFw#+$ztK-lgwD-^>&IOUGv!cl4z<|*$IRFi6R(J2%8C|YuhKiOW9!_g z#SNxK*B$+I4rMijcqU$-(>GHP)gftIw#otc3L^3fnVpTf#<|9I}Mw{IhyJo;&G?FcD? zuY=mkjQP~pa;w_taBtSXCc2z3ry`7^G$f4sw-;@b<2m}aw|viartP*@y_JMTt!BPy zLbBYXk!hCxWz-&U|9pSf;t|pVhCoY(O_mHt(q;ZUuqw`@7kz^%42pCDO3OO<59~yq zuUk@Y#Kzd3da;AZ`_Lk#fDBKu$3Jy2Ys&m=3MD7z8iGlt+pot&0mYxWnU*Z&#h znr^5e+qFX(6RoN-Fbf$voirgRQ=h1)as~mas{VpyKhS1RpvJ!*jP<2ht(q(;-dmf$ zP|@J+?E({u2_i`CXS(p#1!%OA&gi}&hG=D@Zf{Nb=TL<2pq<`P-&20o8Ff#9os896 z^dn$7$AHdJWMP2mBGmZU&O)xTVbfh4_yj#3$ql)u;MMKyVl^qjl(gwu05)4Q+xQ07 z0ajCnQ)iuaV}ZxVm|NhtVY{7%k9Pk3?D_f!a9jr+Y!cSyjU8slK9d3FA8m*;EOJ$O zEvnEV{2o-#)40lGmn*pa=}y$$gN4haB@<)`)*Db7BGD_y3<{)1-7;R%hSs9X2^N^y zv0p%=16Gy>oLEZC6fRDjBVNdaH(b!h7=dw^KWSFu!Li1~U4=f<%+K3-^6dZ%*MOVW zT}OiNgY0OTspT?usPi3*a!|@{Vb8<*@~s6B{!GH(ZnpOqpRP($Pp38FP&?gyxp##c z6GQgN^={FwDm`|ORHkbthmlxgiTqW2>9(fg9aTIaGwQ(EWa`J}#EHO>Qo z1507dRv~2-eTVS;p!Mh-g_g@74=YJEa3LO8<5y%;r|w!qh1|(NY;?41s_Dk7Bd#uDMI$I9` zq9C{bdc5c5?!&WSZt5vI`ueC1glc*T2ra7EidPC?fcG1%lGSlzLrMM%(!VvZe) z?GitGF!5!+26E`K(65QPg0Yin>k|YPwcOE2=of}f8`6Ijd+;1|&~XLZkjiE+?}}H# zWC#qWTvOgTE8?<`{~1tOA{+d9?}_X>x7tnVtM*_Ab$P+H)f_=bs=D5i3jr$dY4T*W zn2fhiH*+V%jUL)pyyvrNUsp$nJ>wME+~zZ={6RUt`6cE?PM~QvjaQx6FBOTmuvr7! zbt^Xaq~_beXD#WaFn~g{6N?tvr$vQkM*gf4K)z#r4RKMx))4nXMba2vZOWwi+5!Qz zTo;p$IY4Q}ED1O8v`cR=LZ{p^GmW|S&6^S*y&s+b?T9u6=ZwOSa-Xz`Q@V`Wh!u9mNjo`=&c$ycgh z53WXxu*E&4?QZeH7?&5LB#e0q7|km%sbu)r;tK1r4qm`i)@DbP>&W1{nW@HJtiv%V zFPYqlJ|ss8E5|C%yk4Hrr;nJRCA@WH_jKuWLSl51YChV8`k2&4e6>yCOK9JkILr>k z0vy|wFSgTya1U-G-v~Gk7MNCo*XX-~5@0fN93xrMSg{OJ(m%9ebvN)OdO6E7QrMJU#g`Eb zeD^=arT+etTyHO#_ex}uJ>K=PJ2*4z1E8ayfUy8Dbo`}V0Q#vwg$Hq}!}CWAH}uf) zky`=&#ug!Ghy+rMKwLdoQv8B0c_lDq6>UF14ad4~ZIqqoMfw|zm(c7fZ6iyq+glGA zyedAW>0p>ahd?mJr}Do0e9qAOT4S-Gj-Tjbz2R?JsoE7y&&pUncu&<@5tL5wdTT`` zl91a#(c5{AbUq5fEP}OQ7aEV{YN4@%E`X{FA8XZ{m}F5oF${OM7>Pn#vL#c?v3WYM zC%6nWpH2r8cCba$5e=Zf8w zkJW|%T%x%>n(^@RMrbozgNMy>kMRrx(m7l>gAUTPLVA;HVba&Coc&%o1)hJwa@>Ii zr=f(OGRGE?JZ2>2O+cUxHb6=?zdl>iEKPYg0dK*FDjESV!y_3?kYAh2@hSP>MB|~- z^3dL_FHR#oW+bm3s8mwCn{h}RdQU`*{Pzy!pR+N``puMBm6?BZ-@B7>>=Lm6Sfm}Z z+Zw#T1XVy}{S~QfaQR~x(S_}yF2>4t5)*2ETotJ(k;&@3a^tE> ztlUv#=Fs(oSIJH$wpr5Z8GJ@NZc^w<`ncEOwe`=9tC$!+)`;p>fqU;OOwR=7xiEV@ zmK;X9(n>q8glls2XdxjdiUmx$wvhIlrBb3hVYFb=n$9Xp2BDXW6Fz=;=mJ$J+v39m zK`OGm8L#uSdLi?Kl4sCL@`bJxCHdlp*J2`7!>o3a*B3g-1)eS32dE6a`%AXTLigBB z&897{C&E+NU1Aj^n(`3AGhQ|mskwx69xC=22P-ldqq~mI>Pr$}hef)ncxLbcX1S)R zuwJ*ioI7PzzwiK1B zYZwY!Crq(;(@*WuKQ(C}ivv+7gblyJ4mgiD#t3$i{H6CfX_?${AD|C;@S1NgvC1e^ z5|aVztpd*)tp#B!537IUzsyQBwgxcRv!Z*UQfG}&gG%*nSqh+RgyR?Fb`%kDd6=*x zPaF!2XL5B=a8>Z5p8#493XEftxtcAKZr>ukPK2KtHGJA_3J7vliz#wJl|?C@MZ24x zT0&-%RN-8pAkd)PQdVq0ozgGP3MF-f(o5Ep2~c(88b;j>n+v}aLhtAHg1MN&i`rj5 zB&d~eDgW9k1VFaRW#r$-29uMSlA}G1A7-)c__jHi?5)b3?GHr5N{?pGZb1C<5y%5Q zXq;q%uBkX(-|IO*0L*rDcm}3YshxXmm-S6*{E?o7+|whAg)D$=CH22y5#9tT`hW&FEv*W0Avo9S(i6XMG?>sl^5 zg@+Z4h|mcJPQyYf>Exfr2$bQ$D=j{9LbZ||X4>>Hb+(vWTCG%QUc)1UMN=})$^ra$ zJp~7ZZujqN!P3S699&>r>4Rel9^@S+69C&Mq5Q>p&x>u1IwbX-c0fffZ7l``rIgl} zh^m{@85sMEh{D8sqn6b>mq4#D3h`i2-a9a4hO{1OLLhnXG7x4(l6}h?pvl_uj;S^7R_eMb?V9})=m>+ohd$! zV^9*IUbc#?xqHgs!a0PD{14<`7#ksc3&`0_Fr*!}1tqE~hk&uOYym+J&=)mH-&Acc zq&ro3I&{1&x=2sD#Z%O$L;J}N_Rz!o;Zx@su(}j*g=S~S3=9^`{U*VKqKhP0K)XGN zJE0yz&0#iav_R=)*I`Wk@^9qxQ;+w^NI0w{*dVG8$7_y^z=@pVat?PzC4NaF&*Qwgb!Y6j#vbMRK3qD_DGEuZJ>ZaGlVM+C%=9MZSLDt1n0oSV1b zo`uO+qaF{|2MQGbwy4Tw7V&iym|9fXV;Qg;D-tnvNJdTCs^ix-(cT3JRSj`c1O|^g zV+`$Q4r$6Rc<2pzBWuC2ZeH~CiVprPhM=YIgO!r#R|}hT)EJY;o=@c;XEP2e(jpn&RA^vGqv74=3{?%9TshTWx#t$gFmeZP1o zz|Q(^3Nfi~*yz#{r%xcg=K^bKGDbYSEgtL3_juenG!f)1vR(ViT;eF5C6#2j!HdDLG* zA^Rb-4cN^4U*ML4GN$36GhCN_+$~IAF<7EyZ0VrYVBRo=@Z z1oS%m%zfa2w)Hu*QlxL(6O6 z3Y(RoWy;hA@HgdQ(0zZ=Ec8#X8(a!2)UO_bj{&O%2#M@}AmMV55rI8`Z6B)Ywp?a?U$_4>cTZ2A*%j6oZ4Xdw2J(!RiM}(!) zNG+(ma-VgQ{WhyW)H+H$?q{A1tI@?O1E-<7C)XC=(;_qqHF5oqemiaEX@cfSA7U~e zgdl&t>eT6^7A=PK4@xx%{leU74vb(_DWu)!u{`>L5T*hPjscZ|n5_TZu#U)OIY7_c z>v~L0cY>dljKt#xu9F?#zp<8M{A?GNA*_dKu{8{XELSHk+g}w`vTZpy5#UFapX8*7 z<#xKi%+;c?>=18Puv-NMG{~lJHtVc+3X1FaJ;R#cS6W+cJ z9Z>kMP+{-;(kCCm5wjL-(3OyF$DZRdoLMbM(25KfUr6T=b5{$UAV8L1EOoIQbYk`E zV>9w{`Dmd704nP%DZ62HL%1OV!41!z_Omm7i;VLvvvn8jP zxy2s&j5ps=`SdtG*$ec_r6effsTdTj5gHIj#LzC}!+sO5BVp)REg+G$H1Hj#Xn`4& zul-vaMAl&L7ev=j2yYph{gd-{@0Ag%!lh@{DOdw7PPMV!YJgbAH`eC^94r+OKc&P# zP=3XZ*&B*pY02ZDLFXTmWXmZ7zpf)YF%mU8o*5uclEgAHI$YNrcZ6X5mysJZ9v<9| z2}NK+etzc&2vCSTyGUv3AhFvuLP?-ldB^Xi3{*_CuhUTYVm?O%Mu90>kfXfKA!NTO zCQ}3fXgKm(pr{8_l+po7M#PJ4I}iwgPP3ayc;6Uty(%OogvS+C^00W;hW$-~$Awt` zIf1>b?XIM(>BrLS+{2BJB!7v(wfP1#9Ogi-YqZG_Nn%+y-v|}@prVrzT)E(UP;#t( zE^j0(>z*$GgRv5=*hF4)I}|5}>*yej9C?W~Ky#Pvf{_V)Gy3h#4WH{#T(ksyrM8%^S|BCEiG#`hJmSdv%?IoQhum9bZ}{*7@$NeUdwL z%^~`pXhw+X@qjq=062lTKxKI{y>vzKHfyt|(KcXF1q480ErLUyAh&-XB#p1>ryp|V zU+h^ot`hbto1%{acFp(>9C&nsTRtETYBt^&DYc}>YjT%CYF%`zUiywlLPp{4diwVY zi(#ujNxs?pkV!%`m%JH@oB~tdDK^m@#HrcSi{%Qe)7MmTG2lI2*g%g$C(o~7k{)KH zK*EVwm2A_j_{~cGYUzq7?2(9G3R`YwdgBnPBtT$Iz$zIt7=fN6qpq4>I8T5-*AA!r z1ne3LN9Hjk-g@I#>UGnXZ8Y{FX$6+o1H|@&%sA2sGsn1hVQaevQX8yLIKG?$re`3c z{9q;8)dC#GVc&z0cJw6CsFSn#2Flbf}8xE>60 zf_==iSW)^X@X>Qk(S`BT`oJ&sM^3h(%yuv5pS1nK5aVzQwCUM#1sq@#;FdvI#`3Eh zMFdtT^b-%Zf5xbV8_ZcbTu2P2r72rn%k_TcQ3~Tk(*~P|W}(sm*c%z~pw4)jUU0UV zEAdQzYh}D+p7CyNG}@2%kfWs@nL%g-;T=V1eUuOxVh#Mpuwvd3u(OSd z_T2Nl+4T7*3uvJA$z*$aZ_mCodc>GU4g0mJ{;GEspvx!+>L9oFX8h&45*&XKV}_Fv z&-y(zKZ50FD#6;!zy8MMG)y0vgpht2Yx`M8&oW4J=jhYS&*e}Z;!gJ!upa%S`r0z4 z5Q0@L#v=ro)Nl$Wql;ugtmZ=KU<3?ALo|xic!C}HS-P*W+H_|-<+V6x=PQX(uNi!u zDHyB#;~WKWBh=VbvF9SsxQ zW?25~9}UnWAu)t`Ifu5`{Q_x8s8*-tgNH_@XsN%O2 zjCiIt78PweR`xU*-hZoVnmeh!vhZUA_=9P1BLn8xOV!2D69cA>zG*7C>bbbqZ|rM& zz7Brx0`F9oi#Y_5gD3|+g;9`u1Wf+5oG8wb`vc^V;oR|fgmcEd8GuDUA$cs}6+VTg zUuXy#*)Tf$mekRz<(V5Voant`mMhb9h=7DfDZOYet|xl5+hGtjz8hz;BqWd<{_bA> zFeQ|dIqt6O`_r+xK!Voxq zvQ6GTSD;q~+BAkGvaZkv&8WeG)5UflkdlL@jQ_~}M_JC#SeiR;a@8HI841)d^)eorMYtJoTv zlWlKtM3f?_%xek{h}MHAa@MhWn2Mz`qre(xN#Tq7PQWgg_L0E^`7Z38Uv+{6tcUZe z*R#LKV_(TecF`m<>p>>f9p{3T>cIu7d+MARj!B$ZkZDe}>N}}UL-Fh^fpm!~uf+;^ z@!1tt5V39ptBU?9s@LUFlhJ0`hO-eCmg~503O8cH7YYPoKar%dQ|s_oga|2m_r^l( zP1~9Qp-BXTU2AMtpAa6|3Sv#j#@e^foc9yz93NOzEkW9W^rNh@d$Vqb?O}SX)$;*y zgNl*}qu_vP+scRJo{m@3==}u&%bxYWmDkrv*i`(Zep&Ip-hn*RL${ALKNHnft9{!dPYkcu-Ceh%19GZ6^& zz^l5yt0M>T^V*#>E_}fG1H)6Y4mxIz7CGa<6%%{;p%s#O2|cy6eeqi!LDN6`2JvI` z^EKiZ+3(X>0_YRmLKeGQf_^w8hVpnG0Nbb|^~m}-TZJfFS@Pw-&N}i&(;WcljGFSp zOvAYihUw4)&?ejeTlw{EF0Nk9Sq2`_)A4BK&z~lkOAv`8hr=VfL(-H2sen~$HigH4 zzub(;RqN`U=m~EX=Dd(>Mbc7~hg%H7`0-bP;W$7=wOs|JqL_;3D*w-z-1eHOf;lWR zDw7SMp5=b>Vh+|`| z;rmIl6ikF1vbj`_fWH##*%vgf+FOdEC};7~VUcI>C8ef37A(=~CUyW@0*NO`PKPg< znX`g15IYch}Pz4Esy7=^xJXEo}II$aH^Nm}Ei>XfU&D$h_ zfA3gaNQk9e@TjR`32ClfBUbi-6hcc6qO@Ng=^ek$122=M+^%`kZXugKxV$z2C_shr z^`@p1uM{2q%HT!br~?mt6=y*t&h7|`PYSbJ2!US2h7M!v$1iXj^|;ci(Z*Up<9gYO zaENax;1;Y}lVZJ@HYJGS4~QQvEFgU9afsAJkECX&!m_(o z?i>@S*2q3VGe-5-84Wl?l9As;QB>mfxfDd^aB^F)OG{edwy5l$r$IVfYuZZN^ZRuH z2{lOw-IPzt>=o2@eCRR?h&3jsK&}G*EE;@0?|G=>X{=X?k_R0eUqtG$VT**@vV=RF zt~yIJ@;7fy_3X=ttj+gzmL!b&ICP@1Q(W?5fcD|vLL*`bMX3v+v^*(PB}KTYu@uCw8q|-H-I)qNYWU+;(zW2}ayd$g zcdN`ZgPXp6Ib*yh-3U22eoSAE{V%UT5uGIY6UBm-)i1!uXXMQMKNnpDvoi(mz(N%IPnLpkKEBF)Ns?WZBN9H{SRO?{yJ-MFh==t0p)5l=22TO z&&;F!-&_3o{|ewER)xD~o$38|hLJ!hv4Fx%m7hPPWmA41jm4LfM-UUP$k#D(PX+P& z&&GrK2{n?wycZToAc%iW=?@6fTzTnA8ZM~-{;%cM6a2<>qn@2d$NwTcBoGRypKv4P zxl?h7ID*)(m0CjlR!7!u*#5s<0xdj9CCQDf`F|_dh6Uo0(3Y#w;SqYd-omnx#cEe- zE&3RT20FpQ6!iL1x9t)=RUye%<@dV3cLz0VTEPZcZ<$#q)_}D`&VdGp$AQ}Nc!VL7 z$?iPnPse>-_v;nE^;nt4*;_ng(z{%()0;08&$DsLkpbsdR&J3)2{Zm+bu6J{mQKaD zg+z!Y;r8j~WemmWZsAeG60RV?f>9p(RRS5<6Kc}y^#zPfZ=Got$haowgHQ?r28RnY z$?;;n^tIjc{)3EdB=fb!B)&9cf^<;m% zT%vlsSfNu=RTUlbJY0c_TmYMc(%bC?)cfvq)4OQ4+QY^w%iHtx%bPy}@v{%%2Y%f` zAj#zI@(9tfEVSO@R7KIz_2I?lac8!4ebG)G6v`8w!L^e~7~u=xo+n>>kgS=sd=b=**^aB@*iP=?^C}(Cf=GIUG3COF2~Vy+z8T5RF(s$^uTE z>#(5t2O}{if^ia2{mfL2;*E~oryDIcpJp%V3L(EYPJnOx@*pI#AlohP23uAM>K`Sq z_eaQvlSxP?Cnrlo$FD5vv!t~Pi3u8u-|zYjA;h-h>2SKzqnoP5#KHN2q6qumYK2q< zLz>lLH}TF>IF!NyvPmzkQ=b*{!XpnJjmbgzoydZ}u#XHP;R^uuM(?pqo%z`wa=m50 zeKz!>9VT26xVAv^>lna(`x(dMe8)@KKjVCQ=>!7!;C|Vwwe>2P+hqAk0b1|BKZXBm zvtwD$+sXt?BQmVF0tIrsEZS~q)u>w$X4E|^1GkuAH(WF{MJ zdBNT~=*&Ix$-VO|d#eFl9a{tax+^4)&=OnrMmFc<^X(yz&CC7eda2PD&U2hmEHlR9 z+D~WQ>5!lJavGt~qT*T;XK%%iLLuei?oO@#Pam|>jJ^P;c~S$mX6y| z((P>tE*$c(Y^X3Xo8U7So6N(V!%8R7&eQQqCs~K?%FN5Q2VJG+iwwKh`yU2-;DN@n zh5mY@iTzGvantQ{yO8Y$6SltEnV=wOv|vcruC)?3ruEOsvjsiigLg~!lCIbNh&}W> z#NRUpAAv?^?ah_rU}4iHVq@{Og|S)xUnJPp`EW+(^VUk`a1^|UJGOE2 z>GrtH>7aY@n&@$GaC~&hyR%=xVPpHB;?Dc2sjhqb3Mi-)$$d)=L4<(Pi}WTE2n3`@ ziuB&3_s|5Shy(*lFM`s7RH@R0P^F3V-a84M0HJ*2^UU-93-8%KoS8M}oS8Fc&)R#= zXRYhLh$p*6>_lEtZaiSec9B*^5pIzy!lu+${frpSICq z!(3Auhjbnnn0eXt2m9s*u@MR;Bc#=^?-}|KJJHN8b9uztwi`@n5DaN;bUW%E+FQCO z@I2)tLVCARgpyI1L&aQ^cKUbJ{uU#GSz&(uVoe-F-*T!%a&&u9YDyj^JCFxO4mKk2 zxV_8W5c$3=S?L*%UcUXbecDp-XboITW<$@{Y9L58SR zTgOeJLS41put9&BXbWzA#bC+gDD4PlWxjW~JY&qHY3_=;x zp4$#aYQxnt_Gisb3&!Z!?b())kQ6B!m`Hy48{bMPqI*@e6ML$Y@(6lGxi?sx^>E4c z$GO=9g(?{Xn!Tm5GBeh2Vf_-L2LYeC|G7g*U~0#lnKX-t#&2pX=d~x>StA~%!Ta}7m&HfZ z(U2Ug?87FnFTR9OW1?tiYG;FArAT_d^xLU0iy*dU<+2%oZnMquV0&-;I_mCQF_ICR zwAz<;vtA!CS*%~riX*tMeM@zhk4CUQ)D465(xrmBo>TD;FEa>-EM=roz)u<9pe=XD zJTHOV+jDVbWt*RUG+yOvl)Ym@5?5mWE0B;S#M-5xHFVY!FY6xP+jrK8UN(u9XtC{2 zNA&>3j$%<_y^ zL4Q6iZgnGVfmS-HN1iy5R^X7AsHGcGwGb!jn`xl;QwB0CAs5T6(A@lpq3rOJzm_kQ zo|6WK{7Q30HSBtJfJ|d)U!1c{-E4{rD6irZkG^uuI<|J66WdL-h?K^K?!Bj+Kg0R5 zqnMb$b_Pq(~Q27IM6;@_};7v|?#YrD`eT zVLBNs%$J8-W7NMCKT#od|H#d6GcS3`&xKNaOcp=$&#?0o3&|v%%JEwT>RRxOLAml*Tae}Azh+-NirSoU{btH?npHw#<{prKd5jwcO>z8d%C{6ew$n%9WB>o)`p zk3cgpMqz%dc@cAeyMc`;Ysi@}yAxfU-1B6@69hSHT@ibl>^jdWPW^;=axz{WLz6HPG zntP?ymhiZa5fre|+Resd$$oi-*HpT*dQ>#*7Qq^wu0SH`x%NIba)iCa&9i{#X4H)r7eMwv))D5 z>l0UYTHV$4HP6F$DVS#yWr3?ai!of;6bL*vF5{Q4ciPCwrm~5z~p{ zzi@f^tJCFHf=u5f0R;u!iKXX@RF(aCIuG7-e4X+}Yym0l5`Qww8hA~v!sgl@w3Tx` zIT$3i)VRC@WfpRt_`UZg-Q_MT7n_IkLLQxRtNhZ@EZ1u(nm`x|n-n6IMwd9Wc z#Uc&6^GtGlSYPKQoQ&2l|HO1MjW1 z*jI!Tqq@3C`{jd$j|}f~Mk1aB2*>O^n*r`aUZ0E^d4NDQ+8j{8o_yZFc@p9?8Y6zT zkLiT;dV9{EloW9b$;NoXGE7M=;4M8u@2ZgEEadmVIYqkprtR3rHN{2@&q9bg{Xdqy zwM#g=wm5_DksUPv3pNi{=T^$~*zD(r3dO zELhOz$3tt|Sz5C){vK3Q5mt*8+47NkB9DdNi`c5iZ=X&M27^Q?meL&q@zG>@U1;NB zwehB+mrE7d*D~lkUrR_Zxu<<(At8D-(C=%?~~Zk9(T0 z&bQq`qH?(2yp+3M5}q1^5*B=k&bpP;(Zi#*orlhU{+XIj7js3FCFW&C!B?!9rSFvv|79TUPoP9HORkd4IQ z7<^6y_k+vMz98oi-oQ6pRzC={G}HNLS?<5Y4}Ox1MdFI<`6=yXNC@s8AW$W^w2Qd{n5fdV-|S0&M%6exX1p{#p0i}8E){a zy6HVZlQ7@(T))Zty=WLE0dl|9h`Qm3hx3(6sUM$c?FDcC0i*mA?uKq#l`p@3rl$ad;F<}g zg11RNu_qyyjcxl~=Qt9?vMru0^S{Oz>j&Stq7T=Cftqbwwo}cry5FUe+l7hR!lAq4mrqG)L}_fm zpG<(!0deSe31`eyxZa)UmZhjVw5(E5$i=BU?L1$rWkaZd6#VB(QLvY5z_a33hIp^9 zSh(nSD~I_%t@boJ(S3g?!9f(!5)DCJCy)1|?E=mNJc?sbT48kN4Rx zZI*(kRa9%^L5YbM9Hs+oZ#+uG25-ocfZK`A#=oKkwv)B7y;mN=A?pmb*^810*Ac zQaMfq_U!(?c2V%fbsBWbK1y&oYz_>WQJE{VUR3xdXQoXcmp@fFox@*&aP9_P2`Tr6 z?pJurUJ_kGqqyDmQ-rp(%_Qr`0 zqGJSH6MaNB!+6fe73E>v$;Ov>u zk{o_6Wa)!jo>EDBqR5?!E>P^A*FXFQbq`&lH)cE5_JX@A;^pPyTSk|+>x+W+V)K)O!{&QMEAT>VK*A?3b`R&+LvFm z)omb3N-!MzyaqwU6JTrJ*s0pw)K-5Rm@E_*vhb!51iXFo7=+K~)_UEYC7OLTg3&f{ zP*99{ZY*#~l{%D#Wg3|)ycCRW(Rhio0drU^H+#Nr10zf`ghCSm22^BFM7dZ1)(&T9 zvd;4ALDAlk=ge$e`M*eHacnb^qYDYLFe#Wwmd)juq$IOBtauci6t%*~0A26PdQi`m z7cWov4$YM^->Iw6&MsZ_=^f*vrR~ct8BZq{YXAdK>4LwwQwvQu`tx<}rb{?j9&u+- zR{DLgi}vFNkT+dDEr;D-`3Ok4s5i&EhFzywZSAx^}C`|MeHCe%+l1yH=PpPE=J8RA8aLWFMqGs z@LnA#;>wNq<~o11ct~9EfD0%;Svhiw(%$A&?&kB+vd(a&BM1r z&`Pn0rqN68$FBlACLQiHTN}p6`(@ za0h9q56#wbr=memUw~a2sZ9H)cSkeu7vdIerz(OR=AeNSl$M`gFPRkR+L&w)h}mG8 z#W-4C@G8Xl@Hs0@xsSp&K73t+kSsHS+k|a|dj@6kft1k(tichog7=0;KdkDL zFcNWRATM4NqtEUZuP(AgIGQfE#duVbTFI<3s%cL2QLI3zJUM}{b`D^>o6SPwV^$O8 zJ>aPvbU@7g%Q;S4InGuK&uN6u|9DI6eb)at9=+{%xbWl1%|niM1J|&NG~|SMy(Y>; z-bsW&sMV??<|kK>divH11CmwRa6u*#p%l!eF$cd32>!^!`Nv(tWHX>^f0?Ki>E;*u z<#Gcm&$LVLP_VR+1N{`CJTT;+fv=f%i6v{d)0KUQ5)BIKodD{`U*eT*H}J^LnACQ003>kg;*a}Kww=uK$2 z%VB%7z?}}<4_;&ngN4z;T|_HfMAd_yBbT|xm~|TMN9h#dMk4i`?>TFR5Y_`#uX~KC z?cyDJb--ohl{!gj*&P=Y>C(7HcJgdm;d;L)E zlUi}pqX|A7o?uxbyDV-7?G<`e+PdqBUvK6)s>Rndb~&9H^&YR`o{Y5ozN`;^8%)n6 z5Rq)=FPUF(aR02&PHtG@8Sd(D;kgMTiLe}i1bhp8HwKC30|znkSKqMh_sbSh>g*-; z0@jpx7M^}IsM1%J;oz4=Wyoa2O?w!pf=2CxbCEVD z$ExqW=}@$Z6QDNT3HRJ8vM*~hQz>2ndy>X2hd+EQ*wuX$BaV<6eW}H9MxQ?OpU8cu ztk};KW7G@(RI5}QV!2=rs2bgF^#c$rY^OPsC`G@C$#(5q`^wIrc8XiR&!;4Iw4bS_ zKq($mgJEGW>{K%HovuhtjX$e>D-Vl)IUeC_1iyW=UXDgWwVau^`XDNlH;ViVc>{Sx zLNh&wF>J*)eGh@cDetHt&3=ogW zTrRfRe<-&tx>lu$>q0C`F|c2aPt0$3O0DX7ls-X-mG0#rGDHykqU74K3$lVIC%U@J zuH&omX?Mqy(w8#^VV+Xi9i2q|?_j&^4DP||b$~A-`*7MgaglxKs%swLZ-G0MsGXno zNTVv7_G%Q?4vo+%TO(%;6ohrRRe<}fqDoIS@8yoRJ9>3=7$wmm#e` zk;;99*ek_h-{4>J$x(iXyOl-hIP3sZdYK^v38`|&0&2b;xD0<^U*oHyBjA5*7*WREb5VTcB2(A23k&@Q@4T%JDVA{;Dv|mxNQF@7-LCj0yVK#}gLC|UEQrW+ zZ~Y~#^np(tRR0Hp&i+P%>%JEMFJN+?h;hAJlM|Bu65#&~R$^o|O6^D5|De+U=f}ML zXD#8jJhAfXf1{M_O(Ue28&&jQu>2P;dx=t1p^axo=~BiL|Mwn$3#I2ve2{{tSPFR}mt literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/medidas_dispersao.png" "b/1-analise-explorat\303\263ria-basica/02-dispers\303\243o-e-associa\303\247\303\243o/img/medidas_dispersao.png" new file mode 100755 index 0000000000000000000000000000000000000000..4d8ca5c7a3ce2f64d443ba811a42a328809786d7 GIT binary patch literal 76055 zcmZU*1yo$k(glhP9z00U!3pl}?gR-MJXmmdcefBEXmEFTch}(V?l8z3zAOKI@6B4n zn$vx%rA~F#u3cvl_C-Mw84(W=0s;bAT1reA0s`_3{2hgd1-D>2$XY-^;PRP^ihhw6 z6$O5=w=prdG=_lC2ujq1Q~fAgbCxpJLT50vIv0K60eVmnW$0+~G0+gKQIq1B+kem_#cKhUj$*=qh_cNM$~sh^@x<8=LE zh+fsP5HyXDt;ze`?QBO1lDi z=%pe-dN2ham|a>py}o@T)PjmDj^+?PCc8raYlgyx8Y@{s!ulx(Ij(6A{YcO$>aAw0 z!|G8MTR02?lM6utP~>CLN!?TUDmk2*_i7%2-1hvYF><3g(Xn9ggbIQo&8&ah6FZgA z5nB~;%0A2D`BEkX?}Y61X)dI>Ir!})s^QpU``&W=_$iRY-t3K?_;w-9LM`GePuY#G z`Jp;-D3VOLHZNVi($tWnmaSA;EHg$~Kwv2u^v9h*)t^7>AT=Uh@UwSIuHEHAxQL$R zk>p{7RM1G)9)4r9eGmd6k*}b?24@`oe4RcZN)qbko2)MDJP zQ9KbpB>DIQ@kHfwuqQRxXtm(!V@}j*Yw>v?2m=%(&&88+jwk64h;GoH*xg~<{7H-+ zn5uCJBiZ{gF(ajWcMQXs>yl06810=YnbxZ`=-|{aO2X3k87-+fuv&1m!>qb>2LyVf zjrMK12sjn63u2Z7bGEi@n;KcZk)7dLqjCCy{HQizE@@nmS~&$UGNTy#IX8GO10JNG zN&QlQ3X>$3qyUU~1P}sypmR5LH^3lnP~<215vER9b}yab=S#Y(q=&SJL^0B^*ji}? za=gz8sxmy1&GPQ@TKZW`gG|XRmIk4w)cRa~w&?~xH)&JkegX00+J@|QpzQe{VIL_T z;mBxnpmNxafJU%JFh)q*z-?1Xs06MA<{7p8kNJlA5pt->`6&pa7^C^4s(X%mhu@(^&v<)o z7kOi~$HVXbGw~=@&;DrAu#101j7_wj?|QsoYDeT7>{~5Fh;N)wVJC^7g5SM=sXweg zTbHQ+0zeSH3h5J45KKbEWJ+{mT;vCK&;TPf!&Ahsuio1xD?7$(%kmMaBF>Qj4Y4b+^-pRpK6%uohr$eX;x*<{o{15xh!gm zV`_ZzY*Ke}YBFr5DeF3^ywy6{I^gVQMy_tGZq!<1d#J$Ix5n3GzgWM_F6IDcQ3KIp zgSt(8GNl}$9IYH_BlGPq+Y;Lolrof#2_^|{Dugp^Gsh;>tgXV zc`y7V93-5ueA9qs{Tp!}l>yP4*brBlfJL4)FL9q`wCg>XDH%L zoGEPSun!R@VHlw@;qJKf`04ok*g2RETqeQRvK3K5hF*q@163r_&U&q?&*KjZ2(SoP z2!a@^n2eNFaK6eHyO6pHy8xoL9Z1+cl!HaKe;buUh-c1xFz)T@GRyrOJmR7RvT zEHw-f$ymRf1hqf6FoBj)VhB&UpSe@Gw|VJZGRBQZ^Y#V)=CvFjSl?JLoxSqSwN|$# z^80z5?a}Vy>@%JsFM7CSUbRnqmB1_`KHXcKRPgxnqq*rnWNmgei~Q>T*?mb0`twUv zB;=0Z$$9bqBHgfVD~F;t{vp0fxn+99*w7em_}8%LFtK{FDjVS@Z@kO*c9u%}%HhJJ z6Q$RjM@b)|97237^CBMPn5@0$6T8O2?bZ3v_GR z+x;pG-pn5ypAYY&wDI7^lhd0#)m~37DWmhB9X7r_H=*vojHBvRwoQ5|9dG@W-AamP ztKm2|_tT2kHqjE*8es6y@m@5UnO`kmUh@>+94}cc;^0AS|@8~96x{TddaaCw%D9kjLA%h2$OBhn>Ie&y~A2g+%G{dDVb8`apK1k zB0+7n!iT6SfBa%B8s=b^79Ubauac4`XJf4T?m|| z;~~xo{M4hiC30y3Kp-VUFcFH=#5GPSO*y0+_{_KnSbX7Tu+46IaV@__xY|eXM886B zrz$3MR`!=?QTd_VFI+F3p+q8d`Dgl1c=?agC8b-UsD)Idr4KxO%`EO(PbRP^!D|vE z{Rosz`F$o%d#Bhg^qE@nniI=^PLod`3CKA=^B!@faA~)2HS)AHHF>zYy1To%d3e~| zt!9F>&w4mnS`87P8f`(Ed5Q084*uW2P-BnAOJJ5RIsvO3Z1%r>VUwn04$8MQHvk-8pBx24x^ zGZ6udJ$fmTb}?h^M6NR&y7%>lTb(WG2}3IA=Pv?_KC0>Yaz4+F*A8QPO|02^1SWIs z;hqT@*NpB_$RhKr94fJOvL~og$eloV1A2q*F4^c(AF`R3Y)f zDz1SXBL_->FDU$+QWaxH%I`zQcN_^tN}oN~U!F3A#}Lb?DAEeV<)mkDt=|QBU)!Kw zM7|qP#RdF<-XceE7y=Y&9fq*1?#v`nMzY9V(XBa5#xqaueNT_$x&F4>dD0a`x?KS{{EBJqSzEj~2Qs799CIx~7e0Wm{5wN;dCKdC$+|K&s~+_ojko1g@Ch9~@{Uq>CkxBhs4K3Q)4s63(oIDh_f!I{se3OwkB@_T zta=#j!xKt-VMrGfF|z7vW*yIpfHWZ#4U$_0ghnI-64?VF8_IFdfYSF_1vV6&(74WT z1F&1vjl2)50JuLuJHMOIO_oP;qfaU%*WSNGWVnx|>#^^a2^hI?8b9-0wPJg!zMeu+ z_?reb2N8$Kg?eNB#>y0~&POk@K1^WY{oc0wahK##I0&y#i~`@7WY;axdrqs)(TNk8 zTVBIK>^Rc7KDwnm@~nEz_Z1;POcb9?IEQ;%AR!_D(By0n5gRvR|5sA!od)Qy*{(#mzOi=<+c^FQI&;=o!e2+&E8LXH30$vn}&@0v5T5K zd*y+b3D{hK7N82izpRE&fcZyObmmD^w)?p|uct%oTl8pTbtt9Secwsma_^Rr$9DBL z@)i!J7N$|c$M`j>h1`eyt6YI4-B^=ElmZu%TvILMOH+E2nA65|2X9kx>+$l?)iXC( z5Av&_M+cA0^A@Ga%C||s(txm_n?DDlQd(aKR4`QVbg(rQN-lV}l+9I)U1s++t}cg< z)-W>_s~3J`RF^oEyZl)6D2@CL$`9D1V|S^ta$LMIA# z61zz7J_LeE;w+jl3-*R|3Ob?})q?uN5*#~8-5O^y=6sOXCZR3i3aXFzWmcpTNg=e< z%L}Z$h(%V>f!6`Y4S6u3QFNGOaXC62^gQnGQ2vPY?ywC{yRVH&uIQfduLRyH`jT7{ z4+@Ut86 z!o`x!T9n!xQsWA`+QPz0N<%__+UC3{X&Q@UCCrENAw^?=L`^JaV`oxjY!1egihVatp zPw|sBY$FUTtg$68A)mMk$`~Skc&v!?+6=C|yWL5QYfNB&ui{YJXPF|(<+f>->17rK zO_IO&4s6b9=Y~t^8JsCLt(>NM4qc0o{Q)RJ`zS?(XY_W|ZF<&U?P{irjs~ih=hE46 ze#jmvG|uUxPJW&{`$8O&tCthiM+gDSnIbBB(RpkAE;po zH;@BEJ_6OLVTvVaUKp7;EuliXLN<>tBy&wT#jO)$REd9}(?_iNGYGk4?=!LB(&T@< zMw9KOIwidJoFb2o;-D5n!hXoq^;kd*Nlae8qXK`g&q52)qi(7}Qoy?ZJ zl#HBWL&|Vz1KD1Nxnq-MogtXgK$K<9A6$M#Eh2^=~r8$OwepJ+J@+*_6*Qg!) z-G!H@>i&Gy4A3OA+9pUKVU@oA5Mip;JfFxh;v9V^j^e^e&;6MTu35E7K-{yn@49gz zWb8=W`QgK3IH*sV_gNk4HekBmDG1H%ESsulkL-k0QH;LNb&3%TI&2hOQ*(c&rP{OK znx-nat4a9$l5)O^&Q6zUf@u-h=RPqX)LSuCt@QG__G=QU`E%40Xy`s9l_LBYM)ojV zSiEWUG+?1vIkz)ssE9R-#P;n+tsv{#Psa?$%>#7tZ@h z>#NnHjs!QwvUAb5Fu$k;Zg(5WCkwjiBF8G-J72b(R-r!1lmeppg?m)?}K@KK!_ z8pwAcsNFhJ*d*chlDpaEf7<`#O?e-%+@J*`7=;WCtn|cJjW4pC;HU91Am2kU`b~6q zP-p!J1fk)uo-fYG0QHL&TIQdm{MQ1l^IybV(ooASwLJ&lpY(M6NLinfgo@mwv9 z%8l%e9oMy&CKsC54y5hvG_D$<(cghT{_q)^?VNo|!c8Rj>F%q#7h|k9?DbPmIhT6q z^D>aCS*lFsB_TidSBP`=cotDhdyH_v=AWt@>3~mNeBE1NiBY%m+Pp33aH(Xr#kNxp zUfa4G<_GKzkFBVy>OD5|9i(444&*B3q^t_XG`s>0ziZbTk4jmJ@o{AH3~@bv{h^G< z(FRPQFR=`f8c+GQs&ju0b(P&#fK*S=NmNRW!R6S9s~)exqj{#ota_+<#GWnvmY|)b+eeC_m<~qdIt~WO;s!dMM zD7)6k-~k z53XMByERvO9IU!}ttN!+M_!oeJ!5T;YXX^%qHhDEBJ+yF6Gjn%eaU@O6bX6Nc}2!! zyXhk_YGUeUw5Dn%YIAA{Y89oAg3iB-ho5dCnUf)W-I|)8zCuBKBY_x!Q&-0+QCCk= z1d8`NK$M5rJfGKiFEByd=DHxS%DJ`OoWJS4!mT0?ZfA8n-GPe=>E@~$jvDfEJVrKF z3CFt!%+{1_%f~S03x|KCj34*%X3c!P}ZJ&eo@OpN~>8!XEA-pcdE+|}4pL(JUD*xCU+hX5Nl z8{a?o|NnaaZ^r+T)chYw4yON={GXnGOY$+kZ{UA6^e=7w(+XCX03sjbe^oDlcmu6D z00AKcAuT4X>I!+{1?Q`}J9n2-);Y}^Ug(%xME!&9hgj5<=dYcJurL_y=lEokM|Qj% z38SBkpj|#x4dPDJgG!`{TSHMyh#vdA%~AUCz_B*REEs zTK8M``70O;Nk5Vb0YV|rfly*VGBj$T&-KObAKuKZiDz@&8Dtj4- z8Tv}6Ve=mm^Qg{eMVye4B%HM^*!LlP;n5&TWAET&8)sgzt9<`;Ed+1|3T>_V!8H79 z9$)xeeyB}>v%z?YrD?Kzhu`l)|13g^531}jy-sR{I{sQ$*7GtM`oDv2pqW|Z;>ho! zd@c|BXSKfY-yxvL&ptFt(~R4pNrni?SY(| zLk0h{iXASf7AJ)WP6jtO-X(aT***TUK&Ijf-tzycB+D4!TxmWsuwCzRxz)FI52ELf zy3NiVZm1iwyfp@{cP02qb|9 zy{A$hGx_pY7d@!5^72u>wSrFvWSZ@sO?=m*tXD%+nS(kms}zz%Zn=D~58L*~WevlX z20c5;M$vJ3vPr`in?2Ht+^@dXPybqAB`XvHYhpm7@I2?5YfhTSSrg0mK{N+G?Mi*W z$WN^OPmTA>HiFCdkNcUjR#s(^1l-D3*Vo232U8L&wyL!B^oil&;pwttdSbvR^iGFk zI&t%FqdMX9t)maCtqk<1%M>JMU_$_A!;?ogZhFFAb4oq^R8e3y>=#IGHJ}`TgXlOu zKF-U|7Dhzm+a(57tr7w4~6rZ0cpkyNan z#^e)l6}Y*4^yaLPl?DBg&)i3cBt;_zU`VXY&COl)~XAkvAx zPv5XY%Gmy3Sklz!@H@eHN1SVb(4~i*?7qoil{xKr+G${^#`_>UWM@WEuugW;)_W&T za;F=K@u#|;7kk?1Z=3edI697TPIf^q_5tu{ez~NvOj`_}KUaAlyR5lMp0!>peByB| ze16^+Ov;H7(E3HENovz}`|J6(!Y8ra3pCtlxBY##P>IE;{{tDQx|$`0%kEDc&r@HE z^C?YVU!OEga02J01-gmcUs|HP@kD#g0sE>|F+#T|Q-Y`r8C)+-Q zPV-=l&$H3tTuIVt%USdBjvpLRrBTQ0ZN-@RX*g|ptl-<@gg#bOcV`db1$I>{aUf5jD zzIi0Y?kjpjr4{&)vO~w`T_M2!Tx1P6!_VOfM8r-*WqO`gvh;c#pAr~ zZgUCzx2)b)w7T6WYd@;A-}5e>$Rle7)~rEXee3PDxdo zUu*Li2|yJvTVj$>bUd0Jf^S#M6tJKBsy?(-XR({8t{eBYL@h-Pw0iEXJ{bl0(>pmN zok02N(I~fX{q5D|z4l*(k-`zfK&??d`QUY0x3KfxhfCV(aA4g%h>UioBuPkd zkQ)Be#&aA0YC!OHYIyf9r;ACy69U9-HVLG~r-P(sJwlSj#oPJ%^{X1=Ne&v=lM?_i zitQxTASwAJSIkyv z#`&)0W^@IgFGP>=cn-1xO5>JtBvDg1Z8B224cz-dc3{6XvNMzrg=RXDVTG*QN*rqA z>o5>aNDD_`>sywcZDdA)ZFZz6_)@!ze~9Yuf~ZFK6HX!978Zu&ykm}4M2_W!;6F6B=f(iXuXob@AIn_dRDkl=<-CVUiW!>kykli@95wq(9MC2 z@+4#yt&tFg2APhf8hcYi!=cpn!>@g1ld=_fR;R24i&FkvgA`6y)dCrH_#n^^!5$Z z@n(@5DFIaqKZr?=LdAi`$v6HP93#kyAv3*Q{T&2!sX;NsnB!ir1rfWk(wN;HDs7N6 z>jg-HiAMPZMti)T->Job>1e+DoKMBst2};5Tu-gcY3LJlPnGwpE_ySDcH_^F*JIDf zV+0C%#|sslQ7#p2ch%$@Xt4fiEXLs}GX}-MngmNsq!|9QHqD2WU5`w^dvaa^F%{5m zq$LsYaN?$?K>-e51a1a;=uo>3Vp3R5Q;k+Px&o|-gMW~+F&~AsySyL9OUW#5DzXqM zT}rzFVuySwz>*k**eB_%F`tH?5W$IEA5o$RkYUU=lD^r8nQu>)ri&%~;&pL3-ZS6e zB(EN2imTDKaDlfML=PqOs}KF1f3;Y(n<%DF1<)d`9`uS^1`0hp0}!Ar6{5>K{t}An zaTtP(?1_5WZBx0Wmh*xf$cCH>pz1Gs5@8C&e=)Mirv?THgd^EPV)im2p+`V2xQDQdAb#sQXnIGPKsp|}=F4nT6r)nW`yzkB`QIn^nQh3b%y%uVO%0KwojfCe@L4{I4L@4U&X6)?mYm*otcS8y1UqeIvC> zYNsgldG_wGYJOgM{idDJ=x`cc)2`_UA)w#%dN~}9|7k!*qaiHbL{6-TyacDdgpK}D z)3>ln3~?AsHpN!{`gnzv*djG?Cf*vFv&q=Jr`UkKH*$>0km zkgT{HjU(8+o29P8BPh&LU5>+o8LmgCKxed%0r!?K{*y|{-QXjy^_iA7K`BRK2n=^< z&fD%YVCIwBvE_cV2C+YO~`ZX{OI>Q({-#vqIQ@Cn|;u%F1^&<`%TV($b%qZ_oSwsCYr} z)GFb{xzkL?qC*|eG(~i?6Yji*e|su*9Q*R7A6IIkdbP>EW+BTz-mQ7q zG=W3F?omlaJ-(lX&t-&Opcj)h*e^X^XTH(hgZmdx+8hs+HNi;v1@^N0`9<&TR&TSM z*lgYm!g9S`M4|9FJ zG=Pm$XTo+0$ZXIiQ<(k5y@ZfAHrv~9T^>7YnT@8s09I(f$p+P*7l=QO$u&w)jPmUo z)=W<`2#@2e%`T3@Yj1w9r0T2o_`KcwjDVpnZ3wYibnq9D5I?vZ1 z78dd<{oH1*=6jVYG^jtZuqD0}-sQNijBjp(*)L+4g@%y}b&a~Pz?P4FFdxH^N&$<&|5>Rzt zEbP1mbCjxMLI4yPhX0KANDu%gw0EK9qPx>L&)q|!lNQr2R4&sUhEJd8vhJl$DW6I% z8iK-}wos~Rga>U6v4<7x0Bt=#n!;*)JYQxY8S<^|b15gf88W0N0ABQ%-p=(#netquXV3`&CI)3(7DahB^aB~ zQ-7(ttH8m=)><1R_F88$Z3(8F78hifA`V1GfgtfY)?P<6J(OBYM1>Q&Q-BoH0*AOH z64BsAcB?toG+S&d^1w#I4X}a7Ww8hUMzRq~R%3d-Y3O(<<0f=GUt4{W>W?92MCH5i zMfdFRe%S#7&LqK?Lq%BDX?sqV2wT&yp+ckZ8_*oiCmJmRID%Tt&`D)DN7oQT#DWS( zK94G&X&6}cYwL@T5B{>9^`KPEWY;xN01aJZdM2Q}#ukI2=388BX5#fcFU2i17<5}T zDv=B7q%4lILx^ZJ{-EEVO6qYwY@M~7b0qK%dh~{(b1#4W`DJVEk8bokH0^Zq>5u#* zu?DpMK;m1l=?e+{J%;~|DPe#thR<-E!`7MWs4xe>N!SB%VIYDujv%Otf>7>&0ckZT z0&2V-=XI!lDs@DH4`kc%pCW^i{R1NXC>t+egClyFGMw1UZ0)Nc~ zOS2YK8W<;pLkxoAWf}fbD7uCi9for4T0UHC`u8DxY4DqOvBhn^Zljme9O)!@c;{4V8#bqtbU)c=}8tt1jr$joZMoo zK4-I=7X9w06rXZSs=&roG>99Op3kS?%%JM|Snn;KESgIs1dl^Y5FYk~QLA<^4G%@& zK|i82pzFz2q?4;H43lb!U#J5Cn`+D^cX@&xeUJt~T6cm)oA)|Ykau{^NUpaYq;*T< zel|q4Q#!(kWWlHT)kQ5Bj91jq&6a~I=SH*z4p#0az^Q^T@f{e{TU`FAXxu_PZfHL$ zE*V`$Be~u%h)%9o*LBN_djhA`=0v*(qIMYO?qMs=17Lup8RR=tT?e^*F>IlHU9jBy z_L#J#GCe+Ho%@5Z<7r`lxQ6E1Yp|GiVi?V@5KStypD^VboGg)PknTQg$KcS#`5Wjn zJSpsWTVwjA2?Lc!blXLaGTn4jvAv5gsUvz9q_-6i9zJlycf0jD;gOm+ZVrQe%Le9s&BW1i%iZQQPHIPSJv&gd#nivnaZ7uY7? zI##`x2fG9jsH`RD;}*9hI66`qKgDg=kxlG#pbu&RL;}n7s4gosX^|BLY2}erN9J96 z3yd^`r+MbPi*1Nmtq!)J|CUW&gE~W|yaubW$<*j*08oBe4^Ee^V?pZXr^>Fr9yy5D z*Gv1Vds27?l4Lo5#P{~b!*)M8E!6+i-D&@}s=#HpPgD8sQZXU#=TwnYw|UQHdXV1O z=(R&sT$8pM6bbzeS!U1|fmaI(qu zp9qF(E`sEK%xk;*)8&QWOCpC+W{!BX{gO6=jyO;%rvR7*vWplDehF=Lo7Xh`%a*Mu z@R+L;{8^Bh=CgWGZ+eMK#;pP&_;B6ke4M2Azny3&kGd8>*YlHr7h7kqwRDN@^qHM$ zyhOh~u7c9bAo#OMF|~iHGL|L+@a-IpSs3ylE{}_62zr8dn~*ym^ljvi7&~0Yqwx4} zu=I48os&$9Ki&&8{;=S+8HDq_SVFGHQWy9QFxd@HIx6iqId=fnXK5HWomNN|W1xyo zn$y+Pl$$FCi;VYOxDidjqvPeShNK@1Cz^J#A~=Xs)bp(q8d-10t5#CNe9693Yy@+z z#|0O-MNj9 zzZ0FPK=%<1N*!5#t!+8p5Vd>A<^Mxz{VhaV08RC{vInIGCKp-w8%iX3Dmb%x=@$cr zCcA-wUto*Ky8AJGL~hubvPSHrc)07H^&%r>KGffL^7Y{pIk3SOqKBL zd1K?TJjEw_FcVCPjM4W+*K83-*EO30V!$Y{upiId&+!sptM=NU+cGvewl~9+AI`$% zLs*s)MA@s259s$8Zdh=qFdX4`a@0Qq%z=X950)4WF6$3TVCMoLon*TwD^i(8Q8U|N zP464(t;oNe3~>m_Z?hn|APJmN$oWC0XSqlX65Up_OFDChx!=KnBJ%SXH$Oc*j^({CX&I1I7sw6gzwi?S5K!cta#_PfT3X54msC=`3jRC z@0Gw#tmyaoQq6q7ZFjL{u~GZvF+1d8_$a>A>Uy;pIe}lX5OgUY;77n@SCG&b(ZuK&J zOw*^nYrbNoJBV402U+0u`fzh;e^f;_3l*?W|3tGrYar^r1jA4^Urq$(Kjl){hSFv# zB@TX!Rzv}{E|@yNtRbD&9ykY~H{2t1S*gNgCM#wCwTkf6$NczluQVCV9z9=#2-ZI9 zJ9ljOBSj8^;fRJTK5~@VaBE8|i<4j&ugW>WNIEloV~lKNzM87>1;NA@cQZsKGp;x+ zWRV1=f(%0nTQT8(Eiy~ByQfou6;gk!55FZ3bX-Q+oH)WSaCfgA3Zc9L?e;h1O%oF$e97jsBvKF$m>Be= zaTI5)3-TjlSVnjHiZ7q_XK~GoOXrDXD6C%ONuY#)*idKi_T#A^QzT?Tq%o2$tI9l! zaMI5FIrI+I<0EalFW*TK$&)!c||hpXTh*r zascIEAz8rEbh`%PB6y62=~s>Ei5&~6l@!l=jk{4HpxCUR)pBC3sL82`m*a3a_v%A&Y^MM4mj=(G>;EVWdPsgz?s#6U$}_!vh*hST!?J>x8SB%~r=9;mdfl z7U1eK@kK|08Ia5Yo%%}PDo^MqF#9k%c_~6Vi2~3k9cVmmg<^GSSolrAExZkDZbavT z5d8D&0*zfs4SpbALkRR6h93c#JxGV%*rm|HuI+KeV~Fr|?U9WX=& z;TA6RLqIhP#WDneJyY8I$}k&J66M&Tgem@ZI?pvGIvUx@)m-%yAit~}#aSoN9ngL0 zlCkR~ z+K`GRPXYC6PhpMaKpLTR9DTBVmcJ9_Z8g*QiJv~P;g=hxUoKgv#;$Zo+NV8Is4lDJ zS-EodkV8I+D10TgtE*N4>t4EvnaKi)mDxsz%Q(Yy2VBS>E8L#fnz!VnU$T44@~<>P z{Ihcpwj~1DVqL=G>&;h^w_CD@Xu3%ZV4>g8{7NOkE4gh*#**WPDkg-}rwIuo@LH)t zWV4=I#DDfqX)*{H8;Rm>%FA9;-tn!}@Y{6~1J-~kA=CL6LvvO%zpT{$0Ic1N6uuo} zB3bqws2RktCF;01GvJ z=G#wrm^NRcLRC>g;I+ooqXM>!!B1c^i`$_@b4ry2jm;35+Gb!PIm*C5H>9DQX*N;> z%pQ#cV{NyB-6kr$?8gXAD^bz2NMSmvGDQH@2#~HnK~RJT%P4++E`#CCWrjPcno$)4kE8%F6b6#?p2}_1 zn2g2KmN$yj7ZurpOPE*FvW%La3KY_5z@@STaH&xY?5i1;UBH#6e>j~8Z2I^ShL%yb zkIArcY7VR(bXdFWV!*%fjr-VMlf^hLTp%eGH?SwVrc=%6N1kwcCvBVjghb?b=Xm5` z$i3bxqGb(hG~gPM&-b0dI6U1ZnRfzw5J%6Gq+!KAf&dH@uZC$W2BA^;fB|r*zdozv zgWBEyDC$k9#dJc+y@tx zp(Fq4Qlm0fEGq{doSy6G-Bt|{S?q$|>r7yFEbG0b$^xzzePT6Xiih+-|^45XCm z6bN08VgKc1u`rY$^}8E%dHLskQ$p-Uv6flo3YnnjB-{xBs7h5@B|Ux+^pHA6!@c-5 zn)@#o0{wg;01Ln`5aS+n-obdiKar%Oz%9@Iw zQo>7d&*rb?IbwHa$zK`5*;xWbaG@GV1x~Jt2mq0rx?m0_0bH;9_Rib6fh*BqOoS4b zpui)2)(*11rpW|{@DGGMs_(=H9Fc3*ifs?_Je+Q!ZVe`tLM^_pV$_QE%5|qkO=DLP`{X@yD)( zc}ei03-x<3PeI#dKR%25joIU=jgJKyn9~#mlXCPF6cqM{c}Ytl2gN1j7-)BC+zz90 zWwJ>O292a++i}aAn2o}KX=Fb%X*kQfa#&iO0dws~J?T$-m#N?*q6=V8XOA>coH<3% zcMBEjeorY+Wsu_ePito^?Ld`80-lX=4m<4`{2s$|>UxAt5zAsgBXnDxr7kO;Q%Whd zy6>^pl6V=7*kU?`*o7~k+azDXjXVSu&%zk|DCi`Ye*Xb~Oi0p68Ylz`>*P8Ej*wvA zQzc}ttph3khEFw_&{!}_Z&iLNgb)*UXjIzEJU+pCAg5y6zo(RX|!R=U>mW9V)z7<)tSuID2Z!r}HfH9$jy zG!`C^M)_gO`f4EPi$S8j*9yE>@u(FZm*qCDeemVVY(1tOYYHX06eHM;9y$qXq*@9K zu^UQ#3E_J}RHY5hN3K5g75lN0Y({=?9lBCLbPN`Q|MBh|tBJur`flB5o=F@YkPTz8 zsHfyme=8O;$Tz>m1r9nhM7q@)SA9qx#jp+&kP7^Z@;v&{F?E)$(coCSLjtDniRMQ? z51_%TEl5??&+`pic{;%%VD;)`?dau9!4l67xlS%v@gIh&>#k=RC`zwz--T8+bBBY& zx}*(XNxBd~1VC7-WQCt^Z?=>za2~ybXHGK^%fwZn86d=NLl{poE=<3Jy%1OGN)Ohs zc_dgc$_6FkS2lcLSc@8{@$2^dt67XbuP*U^+TH+~EQR$=`fn=k{_tZlGRo{{-VA&d za9sxoemr&s+d2j*)zFaaiExh0RxJV1<`95eSaA(cv#URX;>KX2n^We<#21C`7Q&kkLo=!D!> ztU9$p`8(JV1wRXOR~3!i50aheRG}XU$Io2gN?^eCh%dZZih8Seq!`^F&Q;2^H{juf zGyg#erQ*IeuJdbJYII;A61rq^GR?dKoOcbyM+rvjzU3hwZ5@u|xEh(UTb;ZRy-40Gczerm6 z_;>K?Ldn2TjLUy0H&h7M@5%ktVP49FNqZnnEWJOf{nVJ}%{ikUz7iD~nwXM#%9pV| z5UC6K-CEGW*21y&b^h}%Jb;-Dm(AMMbD)T=+^0pEioVJ4PELL)BF$t|b?U85X$dNH z7B)=9s7p5TALl{!Zkvvr8oweXA$Aa}xEnXq^1UVqqm<5s?DFlo64VPNh$l<^57zrp z=1!PRR{Ep1{l5sdwEVJopBV1lOjl&*$&t})U;YXphhnHY)QihUI5b_&N}NS)qofQ8 zPvb7=l;qp*Ybr$Xju*0Wlg0|Xzaq7-TS@-cS4e6`Jn{;n-_|Huji62shuf;;&UC*^ zwLCc`y24FgYr^-p8F{puNspBQxbDUQw(RlzmZ9ccWT@9_779zRw$9>8^8sP~U`Ze6 zD)*m0E{nFS^L8sw%cIwml~YoMA8zdu8n=D95`a*LVPGTWKSz>H+=K_v($vBNttn=? z+Kj=VY^N53;_R*AjePYEs#2e?A?2V>kl(kmU@+kwkcn(bu3(cyZB>K>0w5{3tOg013Svvm! ze!i>q(R3?F4WXTRwn;v(#~>0Fw}2$FL9pio@9JHb&Dz6=d3cZ?Mi7rG>F|39C9eQ> zMqC;J3QSl1M_<=$nZR#801y1lth%1i>U|%qX7J8mUF-9}6_5Q{Y8cP(MP}(BOOSJkYeHt5O`F3rkxD~J2 zpYSS8ds%LOzc72{1S}WY4Inw>ivp(6{Q@yLYXKdpw@~Q$q74;~-f00|;9NEizEfC^ z0%GfCU|sd>={*_p*&ml#(d}?C6G~qAGFi0^8ABZ>LB4ZidI`RF9 z)RTg-v~I0g+%x!JRQ$T!9vERBATZ(@|IMjbDbzy5=UPeN^L#0B#@Kq{Z@E+}JuU#U zJj~Ut0WVew?3j2fo&F!D&cd(BKWhIpL%L-HX^@g`X{15AQxq5-(%tw)T9B6RA>AoR zcT3kmTDtMM=kxl-AF%D-C$DqP`#N{IV6_5m6ol#gX66TUndT71frbxlMv9{VZiKfm z_tUHrEWvJU59-JCDw0Nk*nBm{j`ySEux7Zx^JMjGM(gdMs^H3d?-j4Dm>O5O zQfX;v0_6sTIRfI2k$JD<+JcJgUPMg-RZ2uE<8JdJFglz*ivogzP8xL}OYbg$6y zuf?uKQU*&w9fV}n%Q6e3FIW&jD3&l5wc~d=ELyz`M89j1IpqX7nf>fS8H7QwyzLb z8e9T(&7ZHAHNRUnjrzep{AZ~r7zIg~F5`1ublQEe-W`A@%<8GW&I#6kiMYO*QLwm^ zTRZjvfKBZ4B0^EGJ?sdMlHj@BM00k$WYewSI?D#qhZ30az-AR&iFIzCbII)_7SgW)ZW7C`Lh-o=DjCP$v(?IN?0 z7Lgt;F}FoS5I>HOf<=40^T*il^rzKX1Xh~{y;5*5vq~yWx!!ky+8a~fBSxUIQ8g?% zqCe7V-03?p#zxpjNX`6=P(cgr&qr1rqY^EZvyJm${rUuo-7~svD8cbIlPOY47P#j3 z{G1=E(z0l4SYI=Z3PJ~bp^aD95*{EgIvErB2uC1UN!NWb5LnHEAdu$Vn<|VZAt6bP zwD2+0x)=;N@hSV$3WVoY() zscq7KH+2@}hWu8z^+@cwZ5*5{4d=`H#{-t9>^T26{f&f#RwcA|B4^BsQ<>7 zfA27~8cC()3dRS7a3w%6H2?X5{Q-bW5g2CLYwsG4d9%RwEGyl zguou+0X+PdxgyP62N`$7Vgqd1E&DzvAnJ^WIA?DTmVprAD0v;5|FIPS+*!^0L89iP zh9wVIh3IQcE})mk@V5w1n8IQl_cE>sbwm1)MNMq+Akt_cFa=0*}MyOm66ejf>U|6G<9ky|60YUMe2PJrjwYx4`e4*Nc zGmhSSYeg#mIT`He$%kd+oN^}UYeFM`PrJCYn_3U@Hnnw5oFpXGNP=hbLTm4HzBZP?oVgsp|3)JVFe_|lG1v}cz3M!@CjzMCN zGIHEds~;C-r-6zw=P>z#*7CV{mT6D`L8sD->-uxEH?42Qsj=@VCHBZs0+b<*#zTZm zz!Z|LtyiAh)aq7-|w6L~kO2<@{NWhKba3EK`{5IXZto!7DV~ zU`vW{&^7}KElfmTi>-U#5bLGWyHqj-zU+6nR-@$_t>45~YYa>#K8B%7*THG2QwI_< zzFMpEpLJca4$kMuolf6w{og5*RbBpFE*E%#Kw!Uj+?A<59zWu)nOKLcNEuiMwgge> zO<9VR+`T8wyDzY_6VvH<_2}ZWL1=Y>kZp&eGofpzRxo`D_FWU3PW}~OFCemVUcuw1 zBWPEZ?#0y-&YGbNF(wWkk*BfUjOfGNt={N~97dF&wLVI3$$_-c)b{{@awoqVOc1P3 z;QSsd&XxbG@_glLUHSsGJTkJ(mR#mp=-s8B1aa1n+QI3oo*n1n@bbPRCNLItw535R z32-i#$^hT)@nVf$?sGizH$P3tdGbz? z2s}Rt9JB(g5!*dW%e{y2Q! zGHLARLeAzF!e=UU@eZJ{wtmzle%ti(mv4hgmk9+|dmKeZhQBApc=aC591>JnsW}mK z@+Kb~gKWnIE)0M~gBu8#qEyb-@^mD^29jFeBcN<5VqdQ)V81{E@DYvSJfp%F`WAEq zpMvC6QC*C_)zJSL*rHmNYoT$#HYedpvxHPoGFd_9U}4$CmV*`zdcm~-D?<=`CUBDHeQJO7JCBN^EyP@UEOYB zmi;>*lB;gr6Iw*DX6BT#$9m-v%ik9<^OH6Gk(N6nX*~XSAG;|RjT#-3r9v?VPXhn? zM)PNjRaG&`=464)Z%CP*v#9TAI|vb?#6a+J`IQy|&CbFf6s$qD7$MMQ+AN5H4DY;a zSC5J9f$Z+=%7#OBR0y{!puZFULoznVBZ?PDk*D_8MkF2}1U0-v82mtY~?2 zO%Q@>eRM77yxFxvW%2_jnch0JERkQ_1fsx}BSN83^gYga0RNGd`JCqjIgvsESEt}l z>9DR5usoyf7;$NPiY6?_-hcO$J{{^K#~dO48h+$4#=Yp~R4e5ycg|AU4vV@AY+p ze3T>xE${;;K&C7t9MEW8m7trA)QIPB8qL(w>e$*Gi^KVkt+t`JaghNWbV$RM6b8pi ze~=x_|Bd4-G@wjbcLn?Totp9UTI@{a|pP!wg$M%B#= z1)&YI@lAZX@?xH#TuCfl2G5N8wqAjjbRRU()-4 ze`LQa;zCF{;LeySa@E`Nzh2SH4!DDMUu4tRqgmVn>;$W2f2@14vnrY^HZr3Ub_a@s zXmGCsxY2gnM%GD-=UBtoere(?BS|m-a~6dltkgKPC#p~2pN^(NZ16FLfS;s#`bcCp zOCWCqI4!3-9BUn1A4Q7HI2GiR%f}3&#$Zbx!zvay`TAR;F!AuDXvfXv2cJPoZ zn|Rj&9CaT7z~a8iL_F~C{aQ>FLd+iWfCRm`;}gcv!-*(PuPUo_~4mM4(Bg^Db^SCI4`0GKpQ zOgN&+Id#8%r4t57bRKG~xgby-IdU7ZQbYhjqeG*4jiXaKEb~MK{!=9OexX~2?yka! z<~^flrqhlqRoVYWrvGj+H*nN_5Gr0gz~d+Z^du($*~wkybf*&pKPUJ@YnyI1y8XOA zOA?t-kcIYZN#Q|}Ob63a&$&zEgt@xIlAZm559E_*aAUY4qLum9V;l`Z}CNU2Ko3`AA3Jh;Ks7wOj!$CrMN{fD} zW8gp}1_kjYQ$E7MevC-9&2u7A0gg6Zr{ui;k>H6xM4mBF&Q7vb(fGz=Jl(LnrY$oD z0IQCYeD-f3P#3#`QQ=Knu}KN^@`f(V0F?)@|Fsl7hO83euW0=JJ{p6C#=o03jb3lO z&O8}8<0$O+m!)waa0UzV89MU^gt8Me$jwaT@#EVpskSt*yyjm67W>%wUN3WzOTKaL z8B>XuN(yiJ5?a`T1=IsDKKEMj8io8i~2+7prjDcq3Wu8}O0yDNLi>Th}%K->+IB zK=@RW-s$~3oqN8Y{(7byz*j#3e02dfa8NhWF9HXs9-hR5Gq&e{O8=ZGCXpFIGr8U} zl5=WgfNzAe^PvWCP04kfXPqoK5 zfVWJ6%K+;~$-6mjKBS!LzlYWmNto1rT=oI-KEU+rf`l}CpF=N?1vt45mDT??l(%NQ zFKA5sgO~ph8&M-V4m+X@%#Vdve(@t}3=OxVi=PB_B{4AtM=bk6vk89WJ>B$62-Mzr z?`AOr#fHZCQqZF7nDFkvhp#3~$|>v#Z=%Tt5f|M*eCsNO!)P1OD!dLTxDjf1-7dJ8 zjgHymfxt$fGiQMD#pthJ0*OizoPu;4shPSUksq^fMCqx8sAAnN*xz2jEbe4!pdeY8 zONQm=06wmO`w1ERrWz$vyA(pX{CI96v%`JBrb zvlPOVlqF%mz?Jdp<6(g12Y6YsW~mmjz-@b}jEV3MEVocl0TQx$-Cpxjj*DQ~RYq~b zh&k(9N^g1xKD@K~=9Nxm^5OBghdLULD;FaQ8Pj7@N}`mI{xAcg;4m73`aawv@EL%V zE%nkJv5X>oMj28#hMqb)$#0C@sD)H;|9f(qkBoi13V!CDr&sm~A3GdWK#D@6k}Mh3 zWP#;6{xNUp(`(6P6YS{ih{4ETKxd-Zx^`C^!6Z{+ykRh_XWr1jM?{t5HDXcnYFOUP zU(TCxu035fqJuBzJD=P$GFl7s-eq2M2ApC~SDZ9$;T>GdQD6N>$~JOgqN{856_-k6 zhVLXDoJAldAv@8fL` z?xq%MxroRmbUwg2;ea*o3!vIFtZ&<|SJ@E6>!syM<5~a@K(-2>4ba1+kcdv^zkf5o z;$}{Gj|*cuYZQ$HR-85(CGrnT$T-8{EEd^zsN>5vvstCS@aOqd=?N8ZPZYTH?`gTy zZXTrIzN4YzqYX2}W8nms@H<*#EVp^rCUD(VY>?s+MOaa>RK`L4H|CAqViH6ZI_%~v zt(YROa54F0jYC7hXt7X0_!Hoewmx1h9licqG`#e<18h~wV0D@=IfkDm_A+t$`HEe( z9;Mq{arNHgMy#Ayb*w%wDl(>80RN|lxB1V>Gl^KB`N{Y&NP(!=AM@ZOijd0Je;>}z zx-qE-fHc+?^aY_AVVK;{DdW3~JxiG`x@*h-)X|)C34&FmX!MQPP&TjNzOhiOS54DR z+_Cq>4wBRh-#gL#e)s6QuEzXu!hHtcH+N6gYgx%kU9aKw2LA45q~r{^aXK%T&@!S5 zf!N=iZjFw__{Z<;h{TI!jxTRgF8@Jxy{9YRywd22l?`8lMoKE!g*Q-@Xq;hCFi9ox zZ_c&ZUS!?%FjGggFL2X)4(FYcs0+-tgsO_9v{uGiouveCnj+F`z`qOqNJw?mg^K^> zpt5xgrI;q?8A^#CaOpc$Pto|w-y|>xtpoL6DAerS?FKl0u>sD(A-?gu`FwoGr~ zj*(GX2Qy&E%%9y~^FFryoK8SS#5q8+4hZ!4rTFUj?dJ4vre28or1GYT_5t`RI@*sr zj=M$+R!-I$Is5a9pWaRC#hiX zvbmNJ^)An1qM%^KfJ%6rns=_w>2Qe(nvYXiA;stzXrrJ%O!6&?h!+v#5CsFX?3rLo zs)i_vhsk6EG{4eZrHNgv?XeKxEzBVN)2#vv`6Qa-Z>bm&RA2!h15dQppPw`0Ds4L0 z-m10gZeBrWq!GF`4H1?C4orJ*z=`n>SabR2`~yp~yvKqon!IQ$EXRFqCz9cu+Y;B6 z68ZXb{`i7kNi3A6pCKx3sD9GC$aQp_a#q^AmFGwkhmWVK3-!eqG@c=Oe)wN8B}x!D zqXgTAxQ}*#Jf=-pOb**ke5U)H!G@xY$Ng!PXKC6CLIr-5JMo(@Ab*hvQ3Khi>tW&I z?&TOPxjgS($v;Bm=dKyQo&G&*H1MqcfL{QctnP{%2ZwNmARc|p7L*O-SDM3+iq66? zuxq_tFC516(BoX&LNAd!(?|Gy(j9v^9U32(eO~9x>kDrn;|C+eJ)#zi5J$mX@~D$ z&}u$G^?!N+$f7N(E=MJL09oMlJ`-c(3UN+;*QeXvqygU3l{Y)};*7zL5 z{JcH8Sg~3vJsc$w33#g@`F@a!;cy@Tu_6mmMYZbI95R67^<`-~KtX6aBa`JCyBl+T(J_#pS#6!!QyqtJoH=;CarWtoY9)PWim4&;IPOSA*?zL8G6Tv87%4DT>O)% z&~vGr7(71Fggwjhv2CoX*tX+R$8tr4uqRk`9H#O8tR+4a4Bl*sLzDw{5c028QI0_D z2vg!l%Bw}~uoJj%6t~knPYgEkXb4Iciu59*YEk#s4r$vG*Nc3i|m9-0TRHd+G0|`bWXL^WF%vz z3LjdIIwM=aQx1MMy8Qz0K^YBUI3vDBr21Dp*OHG{T9?=@0J`VPZnm$QTnv~r7x_I6 z5jziI6d5w(=(+%-Bo!n}1;~sY(G_3nPW5>mm$d!TP>YiDuC3nv6Ecs1ggEv_WD&>S z7!+X(GIt62^@D2?6eU^~7u6aM+_R;imoAt?Y_DPbpMYBTGP=?N|DxFCMNQ$^ibapZ zOYrMyL-)7S2NPXYzoE&ttWFcT_E|HKY{Ue~AtpORQLX&uw4ZtyP@jwdZHAAPSAwuh zQy6%YrGt9If<$cSZj^ZL8#UB;lkH@Xd;R;ZvA2BzMKIW=x_R}AY)~)a`;6-WmjIEc zif1-CA>gP*JTKT25dA+{PbTvtwGaGy5oU5YWbH=IP&*d>tY`>X~Yn6;Y!o2!kmR`K{F|i_o-QOq}O5QP~(yu0nP-S-$A{OsvZa%{G7tm>|z;znCHT*?lL{2q+#vz5tQ*C*PqjEUrL@f%KFZ{C>de z{sEw_TmeJ+u=9~!XnY;-A1w2Pd^wtm4BOAH3xlEFgY*t0L??Pl9lk67{kIKt@G}$} zSvno-PBKPqq^b0&G8Ws6)DO{^&tgU_e{sa}&k}JbVjup>`IYT^+tlV4iPK(UfkNv$ z?MOyilut59e7I+LUvx@}V6ssqOp1K`p-mVWKiTe?mVprY}L?(Epd| z1J2d|nk@2UO0+)Dcbs(GZv#CsQh=TTY?f@JA;gHREVwaT6xT+g+O`Ue%m_uKebtdt zh9pC`%VDq0Z3V$3l^i)=yi(0^{s9M{-_Wpb$|?Uv;NHew8{q<`_dWO$bp}6F zP$%%`>*r0`0LeC>PoVEiM?i`)_pJi0w0D>H(x@?u38I5SC5m+d8Gs!4*&j&QHx5gw zk~($D`LiABYj`1=g8=&y`10FWk^Pr$vgH*OGbeKbIs(rQ^MmoRif#%JC?XOAEM!pR zb$;`s$|5zr0|)9HDemPItZINakj=X>*U9%oT|}g5+&cF^Elh?uOTqm0`=8s#*}XD> zRPjMwst5@WW%295qB9i6y_!3p+h6xi!}PgA;$F6btj|Yl99O*zT1uDS z^q6o}MdNvfJif#v^`j ztJ-ghp?z8&OzsuH1XB@I>91Yp?(ro(=>Gr;>Fhtl(OqX=g!Ulo=Y3S=y*V_Qx*i;X z?;*V$mIQWoE1^P3pGmGi^e+(Cz6XG@DVUKU8zqRsbdO#>_6wpf2jB@TRBHc-@Kf9Z zK^LP*t4A^dc0=R=fXKQkjh^rZoth)cXbB(a-!drO#s7k^4Goz7%LB<;!B5*U*3?C3 zi6PRrM+KpUQi^RWC#b9Rs;HKeqrB*s&)SU!LlSQZ0Q`#^QRG6PYSXHMzh=IvZ9Sb0 zb2{i&3%l*;lL+(*NdUarAu8HbM3-NzbD8^oP$-M6g}Bq1;4f|)oTDfGU&(-R`<*<} z!{?%WGu4r9CjR7Ica8C?iT701%uAJQr-wayXk$EgRF^z&?RY^9}0^R z)Bs(kA`P%&CI#HdrwPcXBK@`gSHJp0nm@k~Gt5b_EUK=y?2q7g4Z=KeHIB4Hc?!DW z&d?y@&roRzX18-C=;C4}&MJ@*ZE8Pa7(dwKbKLz+A-SN#$IK2^xe%f;wyO%Uc$+W( z*_tT$LYij7fB9y>+(o7x$PX|9M#b>l2_T5fAR}?}-J&EAem|JVSOZ*qN){HmD$9X+ zhk_oRT&Io7wN*1fIjk2Mc~*rxu71p-e2et5KDa1jqS1PuC!-Grm&_-N?l2H(Q@$?` ztwNWjeaXvb?=Ih11#4m`sFru(|A#HA5&%gr}d;3C%%5f7lD z$dLQIiFFvR)-4cH^$={(!^4VPBhls+Wx5DWV-f|(7$wv{)Ci9gde$2jytvzRyS=^n zWQs(_p{$Ju9CJB`Lu=3D@HXz>bN#_59C(SAn8!=$IzWraS3Tzf97gx7oScHLPe4-- z>%|Mkuf}wkR3GCV##6a_q|2;G64~wN=+=FpTwmRDiWZs3gOl`Y&~YtrcFX$1B-m2+ zM)Fc~RX#O|6}hrCrce>CYyU7o8mz=Qrw6vC6{2THt0wMqF3Bp%i67JeG+_*Eo#QIl zsfGvuxOy)3Q_IqD5Fq{9JEzcg5Y;!y(5!Jo)^F(vK__l59oLr+CSlhDuOL!(`xQ863i2pS|ci{=Bx=5vp5h@s=N#hQ#dmOFxEgX@=3sgykk`?k<7p2g~owGob6FzhlMBTFEZ ztz^gb8y=?Hj%&Q|KShcdEQ;$-g(}=A-9ATKm73G8|0yi#ti4fV)7+eGmVQUJ z2`?JW`1yT$H$A?|vL{iGFqj0$K<5-_mT=(|*j(z8=tmKb@A|CI; z+zdsbPtBM8#dtev}ls^Cv%s+k}jAVVktfRGoR^6VC1nsopw zKoR#h(NtKLtKf2r912=%kQEct2Px=b3N<sQc^7@X)*uj8?9w=`eLNJ~V&n4!XIp-OXva2y1Tc6M z&Pn>cGj!`_)k^na?jqwP(a@zb#{59vQnf*>@aFv9BR2I-QvgF2{}je*2Mecg}dTw)+tp^vi{FZ4U6hMBaTPB8x>By%hR);z7O zQelxtTI2xIg;G?zhr`nZxhzcl1fEH@{bK(`!#7y^`y-n)6lYf-+4SB;BfbdG}dp zWIGra(#AL8l?!ab_!N-Mt_jdHkVWvGV7rm)RYRfwCr&Ci8WciMP{C=%-2R`Jmo*Vs zzmnpuz%I5mf+k2QmHQe2w@*nbEPWlI*;dOpA#?4z{V>bVUQMf1%87cwnL-c<2njia zP4^7w)fT4QDQ!*P0vKZujRtE}t%XChb#;djCGx)~e;*}&ts6dWumPTi#4yQ{V2Xv$ z>cz8QZq-O*MwWwy8f3-%xK;&7JM(ev+mdLA*s{w@+PmiDChinb{lfo61q(R-SrJYF zf`cBBJ7~L{Gs2Jtx)45WGfN}@6wcJZ-P^#sqzI*}Vg7kz%LBlRq#f{d{;mA2dR7{; z1(~b}Ao^9%9@z9)xFZx=4Zf=J3=^i2ucBJBa!z0OyfnK0NsANRZb@^TqgL{caE6X| zM*!HX&~QoVPpx@*(xyIpjKU9pdJ287k9ALhj)gK9_%GO*v%T^jE{Y|R-4EslL(sA9 zo3|5{w?)@(WBGnNe+|bbFZ(%#EiehR09ukm$%b;lxZYdT5CnID`IB}J4ua(@({bW{ z)H-d$;Cncn&N!IU{w|YEmoE%an@cqw4F9#1+KWa!0pRUM^r=DAlF`xy-ap=5@&LWk z?iDWfXNT(!lSR6vfEPB191xKEy^g@4peqF54}OKs3zz<4wn5vn$6eK7y#nQA13X}>8cG5h-+>zZND%Zn3kM>g zLdI!oFEL+n%EbR1u(1$6?2KkONM!!XahJhfbLxD253~nK#6OZ}`+moGbhpO0}}5FqhVy zunLr*Y4IfhRV0;1Y9>J6UJ)~$0zGg{e69|m{%eSyjYofHzXvb^ z>_WoRwV!zIm=@jlsVZ^~WcrSK8*8D{AT?`+AbJm*cm-+WIBG9dR` zj9jgIm#lX%(ZLrS^pgffRuU0V9uXWP>RK)#0ms;{nz|lwzHev%Q_LcRwAdh`fiX1n zx*U&hf{*@{&GOI1@Q;V4GJJVP3ey-){cpDBKIU}w^rNky|2tZVf(uHBC!W#uWNZp% zPSL5ZOJe@>7-~jz$sMi1DrcEsrM0#^Yr@)2LqmlW`O%=>l{cU6=ZW#E1kkTG%$Cvi zXuoM@*~>umOkm<^Lo1WvS^ioSYxI<5on0|JM9jhQ*0LEG$qkBAvuK;U_&{S`1_fO(rAZp zQpLU^i*m&_Eb{%!WZamug(1#uW=kf8+^e6yMQ-|+Vzu5K5w`AN!Iy$O91lTn+88yj zU9X<*_+VX3G37|#h&{~SNcT9<#k&Gez|x7%E;&SqR2!V5+^AGlH$u-k-x*`6@eI_! zD9x@;cgePq;#8hgmM#~A6LnjcEGe~|{uXJeMZk2806!*zPQ^s@yd!vWZ%3;kIv(szV2`&o=ZDcW={aRAEW*7#_%I zBkOCHD_9K2Eyq>fpYh%~0Z0T11yy4i6VMDc>s2HZ#Ua98aQSypuNh`tj8>dCS_( z(9B8wNxRStQhbMz?WCrR6@w=Rlu|^KH^YZCUlAH4CY{rR*MHVIGD0ES;f!Ep%Y$Yi zBVnC4SVjgOk14i{2O_1Fb~6b&0gOX_EJM@hKL!^En`nTJ|GR4LcA21apL_v!$tzp) z#!I|Sy|K}2Q@bxExz&o~Uy3!(FEvm3oMyX{2XeFUUo5Elc(65`ZBg2(mo&r%IR5QZ zO_Xq~pjv8vPxxks3AnEm5s#(alxEOEM^K^XK>7lnngm`HNLfjZkO~~@9#&BMBw{u? zfjs*W0!FE6uIM96?Uh=eNR(QP70S|FGG#yX`S2D8c9?Ef0?q$y!+SU}l^}2>O6Pgt zr?awR{|*4yeR@?(v>YCXN#Q&>Z^Mpi>|rSpOa!IH z{-Jg42P>qajCTEbkEldf2iwe9I*_N+co$s^H<|Mq5IodX?hwQn>n}cAROz((j<7l?k;7g~aM+v`_HA|xv9 zCDGAhRxvaVUtq%IdEY2%KRV0>9Mt?L!gwUYXwM&6eoK)VcRtD7&KBNhszv`^mH53_ zft%+ko4dU260EST^}LE&GbbikgnyUQ$b=TYbnrgz$)qqceOzi8)c3BJ>PK09c9a`Ytj%Tm(!uNYuTaTbp9&f20H@1%h) zWW%o}RDTweFvl5z1PsF4wG~RQHRy~GKFS0ZYV>>#@=*)uQ;ri9J?j)58j7u^jgx`6 zqe~#8w>9Uak>(|+ud@qqy+)T|x8^I1-zE3!tP)4f|^68nZZxbYZA-^}VeG>6Vm zYx)o0ei#VDO2^+Jo)GDo%|e{zLx{$RI6hXHY9KVOn8KL$MX5%$)}KPZIST7*Jf=NL zVdv3r$593I|1OSUEQR;p9|ipMjEO)#yEyQ1(MiMM*t4+gNKp106rGX(o?M|}-FlsU zCmHgHAMX_4@3gm8%wT)&=Vv!Q15Bwi$g4r%IvS`O0o)~baxotIw2Qgu>Q1!;VaR)KzRI`mrLWI_NH;&l z{yIDPTk+YBo|X`9l`c!OM7VIPoP1RO;W0`Q8`PCS+0(tQ(-0bEK{S?xn^FEAzW9uh zYs7h%>L=gA@lQpZ4-M)HEAX_TS&|b&+~>GOR|j6UOQP_KNEy6R zo_v7%B#on7&>sKWf3HvxG2x(05YX_^Vl;D#1o>~-EI4SyO$C*Oe*5K*aK{Br#_~B9 zDGFh^kAZA&3uDV>KErT9ZYnaObP4EEcQ#eO%dQ(nHQVN2Xim($tQ9xlH1pG8Dt;kh zJi2?Y^mQ!U!&++H^w6D;$^I*hc&_SC&AJ(a;1>ExyURNEtXL2QtL6!?V5l>7C$ljI z4f1Kvh&ZMTgp@poMph~)c}siOH-wl8s@%Y1+)b5#42WtR!akLg(!EtZM`deNAU-5~ zCcCQ^uBo&1@>=4u^x^3{^? z<^1cNm@!f!(l0=gI3jlE=e~ zdT+8_L8jOvaaBxIncBqXl0BuPy+z^s@lT(C^E1YR-cjBSC%X7#V5iicHCR~{exV1o4?sRBRyK5rMW)NYLhyGlrRQs&w`2j$KckRyg~tD$obo^)B;%T9 zX7)3CMKtw$=_C93=t9xU>mBRV+3 zuJ?MUST}3;TFX;X?3ZXMwBxO6n*E`;`ZH8_o4JK#uE2a8Mw4gmM~r0ZwO;LNj+*(n zRhn7v(Tn_-&20AW)_998TQty{%S{EVoXGdeEp)FbCv@;u0^|EsPHeAVlo~v?y}w0> zECLh;NAYJY@?Fp=H*&`>zE9PX0?E1%!XOd>)`Y(smBOxPExQR&1%H;UNq4ouaciAbo#5bR*9CUKo{|g)sHl1y&uY6!zgS` z#SR)2EkbRVl(wy^L4?=GHFDmxHwVe%_c8uWB>M7rU2K||p)e7R;m?@jiJU3PgA{-H z7w;w&S0#bQA3%OM{fFq4b2Nwn8M!!j7OI}qDgN5*MSx?1?bNA7M)u7l_|#5l;TU&zsy0_M{Yw)pc+2q}grae_#JS&P4SO~WZ~TIM z&6st5t@6czvT}PHU);-DyL>)?^x#1l>37z8K9>iZ?ZPk=E2r0)o~vCf-VYb*-=|J` z;+{DwI;&c{yZ+cFzm}+%bZowsVVN~(j>i-KeMHL{SKwcBm{fQ+IP#N7U302p+VpkJ zjG`Jz!3X{&`$O;*Z0oD1 zoXJJgn`_OifuFuse<;U$3w`>N-f zy7+3;JNHK7=7ye8)wpM0MXF^BsoQPDkPEol<*VJ6&2pHUFpi7yC^I>IC)m?2=*1`c zuOME4NO97_W+5tf)j$=#p{s0{<6f01H|k?H(X?l1#<4PMTuEXpWjpee71VZ0xvutc zs*m#Z+)3cO-1M==A%o(W={-3@wv}=p%<{hBPm+Cfk};x|P9|1ll)ZQ3o+;&hujS{; z`&OFWg0HMG+X7}@mW9O$kX?j2EgN(E_5B-pHZlE8(WE^B6B;U;soUYF)4W_UKMPx- zF*$z_Q7xWIy4ome&3W*)WsUsmVL8A@c)>WQ?U-uQQOVifh=;{yU)C7l*h<($fkjk& zv_+A2dn&@8^;dqv+-^&Nxr7e@qYLm6x#4DV10$k&>!Z42-@nxpbPl-^Oa9kO_cU~) zd2}ab)~053^MBzIXR|{!ToJEK8c}yc7ruV4jNileXI~Q38F=d z`_;K{^1=FtF%H+z{CpUOa^!I7t!>IwiJ_+%(5`vLH#QyUTZPBM5Dz}Qx8htGCZQ@_wsG?UR z4x|jTbnfNQzC-FHE-tV2^t0EA=gplz=r?<``mhJGmka1Bdd}AQ>hAyHOwF9V!PfF+ z0(~AZsT=8Bz7E=u;lMS2l<&OMg~&)OlrX>NmfDy5tp8k-TC-W`k8w~KsR`9r7IfqA``}=w_m@omIly#^Xt&a zhmtNdt}^BSrqT0hL)JXqwAQnGI23&nfBRI1Y@CzjJ?3cIW3f`i+N={v0W<7W1^T8G zst*=>!iX9LX#AdM*teJM#k3c@_ksHLDxFh z%vv)+me(y!LTh~wf7g<*KivKGXRt|aK2hWu?r8%?l0czM&)YKJR@QTw_M87z8g!mH z(>WwF;BN2g{%XnTE5hFOJ@CcJ);$wleoAjomLUdcNzwU7;yJBzZ zTu)$AtCzJu;dByCtjY)VCL>~mGVUYuD=pgy1vSlTrl?3wzi7n9CBx1wqbFI-t~J!H zoF>Fr%b-c>yK3BA7e`HEXk<&oLO&m}K>PE8!8jAk4=@4On0KSxZr}&L-2E2VfhctE z@9%E|J&%%0wTc&`Jsg#SAHLBGvI|=PnRXyZs^!y9s6+9JYLXHImph@1alOb zeE&7+mM~bB4w1hZMn`r*wC-N47pV?ySU`AhfR~r#;ZTbk-az$?Qr=IuP;@@Y87|;ut9hib!LecU+<6%1q#ysgvY3IYI{5XzS7xP&?V3K2g9GUJ*E zm$y8X`xhUuCl60wB-ScCHucnE-*9U7ieJF1H_PJ2%H3t9|GU!eXu$ej_}N?qKiRWd zUWHc0d-2PFqL?s40%U)(`+587Pa<4FqA^O(Nwv9>d(zkE$)X}VO;gx+dLL&ziO8aZ zXN}%Vt?H|s!&i3sn&-PP=*dOc*vsb}=Bpp!XUB*9HP`DeTzi9khX^rGpfO6kmn(*GVbQCeM>Z1+zg4Fo*>Eniu%U#o z<^0O*gz9YEakqG{5ALBOfBkCNrz}3bEwA04$D?GBr{?M1dA#b2@b%vaB3Kav(%{D+ zhU6wpJj$2T#c#g?SW;@zBGA5GO!)41J{+(?B_T{XbC>}@hXuvIPubQbsQ5c>%s2Xs zaC$h;whuWP<U9#l+D`#_h^j{lVU_d~M^SWq%n$mT5tZ(ZZXiP1Y2U$9pqSXyH) zyqGX}2gDHG1mje5i}3aX8eYaD-hsh<8*qPQ4Q~c0{OvUB>;&MvJ@8OFmp=3Kp;b4U ze~B+vtC0T%7WSjiFh-D+Sv)0HrYcMAUCc8M`>%b5xHOuDZ_fJ|i?t}0Sfk~a_oE8Y zy!FSWG{5VH7Ceihh{0TTV?6HQ|DZY7{FP)kcURQ^CqGm0w>wrPsp{)r8DfF$Bk7H% z5%_zwNqzX5s($zs0tLHjq}}zExh>PkPyhHjmfoX%%(t#y@s`0k5=-co-Cm9$Gm=nR z*pqC)4Z*>^IIhp>uSD1sMUji&K>as@L=VFT8SaZy2hHi5uCh_hL#ME49eqppOSj_U z129~c{`rYU%pC1DvC~i0XU#TG@j+*v%z^C}rN3BJALSIP)tZ4<0g#E(i~S8d;myY6 zpkpeNs@BWlG;Z}-&2Bf0ur<5Uh{Q{fVaA(s6g#1iawz#!yel?3tI3$$v?7m5{lZ?f zm_G=gC{p&gmg*r%6YUSoqk!um$$dZUD$Sl9*5ER^LsNJ?MfFyYLlh@7Aj@5Z7&@W9 zl)6%;Q2!?Eq*o6zPA9&ZM$`2RU7F-$bAvaaq9f$w&s1((eDdjsyHJ!tElIz{@2;(qMhgWzGEkuzGJO(XNOWt zeotv0M;G|NiX~hUOq`#*8mW;lPfdl!#M7}O!5U!JXPMgls`M@k4knZlT0R#kup#=p5 zq`SLu=$xTzXeJoq8ISk9-~0LYew;auz4qE`uiV#l{!W-5eJglX1FuZ$0uZqO2Zo0$ z^>q0nZ$0dD$i<)2>&4U=|1`@IDMsiK+&pu^@AqB}NaD+LrfJs6ZO#@gyI&#k8B0t4 zzkyv%UhkF;`dstcXyY{GF358ki`7AeU2KO7ZUrlcp7CoB=%F?5>-yL5C4L^GftaZ} z56uEUQ5+xDSo!Eg9G*2d3M0+p_=KWRpJhSVX>HftiJ;@20Lb+BZ&jNny~6V%EON`w z%U^YDh37r`-)zQ!sBB9n7?7#yc0&gY_N?;rRv~q#^v3R}53jp|o-j8_6CNAi=dJGu zq=M!7*PTrN5Pg?nS-)Hjf{I*S+t-W3EOFVDw-u00w6GZBVgox$W19ihytp`w(T5=3yYX`?6Ja3b+V3r^u4+WDQ9nGYLa?DijCS%QP=1qgA_|ewtJ{eY zIJvLl7OwN@e?wF+v52l;=FKUxL9UjHN3UAin$;q%k zQ^B?4<^KuRnu7xK06$684rT~%-={@FXYz*KC@AD}MW5fwn)z}<)QJ@C1}fl9AI0vA zb{mG08Fz|?7on6O*Hwm_M8Aihpo$OE&D4o}731n3!+nUvEb1Gb?#88PTgZt5Wl@(E zBYw^^*SAd@(?=F^@G6?oB=4NMMA34ZDDUGEOz z>JPb0QpIP=BYhm^hJqv+33(x|e2=A0D6mf5I_U_QJQsyrT~5bhR=KIC_B)O<%?{jG zR9=>;F9!DW?CsBfWp5CUdInTx|0Mg(fKe z!sTqu`>lgQ7RSJTpD#CCXTgkvi;Rw#tMW+%XLxfKu7j%ySpvs38`DNh zX!E1_-nu(D*p__J_$KH*NdoXt=dl`jJJ|n?q*E4`rusfyj!bWAHk$p1bo_;!L>DMG znfW!T*F!^a^WxSbM}ZU_ib1azP=7kYzKJ(W4^qcoj#cAp*^_lBFjh z7}_DYY*tV=p=~8X$AlpK0aNT}H~!vEz8MK6yOn-I@kR3XL>Tc6AHn?Vs?f{vBsA}@ z$Iud<`|giDV8i9LkL7`p_<6gVb0-F2DIU&FhS!CATs#F;4#V_UTEG=91$7p+_;PUP z%>YmZ?h)06I1U(FEcHC?6aabMo4Iadn4V+%FASH{AAu=Iqx~qw#$lqRK8Z`hNx|c~ z^tvsXl-ZCvg=87-7(dPy1HY^Xo(jug0tx)=V$Y9s%<++Sj6X#2dT;pVe|$Al8=p4H zqjXk4-pG7p8kIUfZDU?`McR&7=F72v=CU0;E>4?j*tnnIKh7oUsmL~4& z)WZ!yhd)U6T#+jhmiaUpcZLK!vX_Bn9qy1CuTDSJwmfDp=&74D;kM{+oL#Y}Okx5u z)|#@hdPl}Ilx5!ENg+`&GHb&!JKJg&E_nA;&q5F#R{9}luh17!m~}?;mp6!${F%)A z-@eiEaX6gncN{5IJaN|ab0xX0Coean^NJT+Ciu8o8LZ0$J%92$S9hIP0Vjj>9Nw+h z=7b>Lw6z}}llsmiQ_%dY>^Le(iPW($vC(Ydf;i~ye7d*x0Yx z=yyx=e6W^rE+?~&)jr$scc=5$=F!O5liZeLCFe=&A)cPpYJ`N00Ss;?kSfl z2@i0n&)}hs&n=DuFHMcl4YU_eCp&vPWkn=2<=oftVtwP~fJ_J>3%ka@mIZf&yC~Xq z(fj46&jNlGub3@wydb!*0y0_S9n$yAe0NvxW^0++z811uo-Sl#P$Z!#1qC3<7=ME+ zvqaw3tQ|~Sib1}wA@!Y#UvTax^!An!FAifQPztZI6CAAGZf3->fGYdDqJ_Fr(Z z2Ocp`eAxQwXLA(zTb}C**0;|Zi#imwM|*RHi_isWQ^t~bIbYGY?six$u>ZZ*cnc`y zRF51pA|3p%4SZE@tbF>TqC(g22@P>3Q()Juig%v!E0a zeUD^0tMoN_)PD_eKP*$hEOG5jypxlDB*VThr0)hi2%J#nw}uJxrA9mHB)Lfi5#Lt? z$m(~0-nth2Yq@T`^hXNafg*tPt8e5ClBGKZm481gWj)B3G7tH}%GD<`>^>)xA9v5x za&1y3eNX=HAr&c{;kS`gc-=`dMNp&KFHEBSD%A`qdGM#D00U_uiNNR(AnTHHZ1$z z)=PW2eK~o_2grGE#PK?m!3}2nt+x-E7?$C)ubU;l!K>yC%D!>h`_g5c}9JMH>HHW za2v7xb4upo8%^23D^qEco_5y_EV3?>;fRgU9l1jF;nlI&%sFU`SL94w3D%RK@A98M zrreyQTEV*qO(y{p)pyNsN4j>Zz0|tEm-8!iR7-G*m&cUQW?UbiPfL+!mX~!K$-xFP z%y-+_1~7Gnwdz-&T$*ddfl`E-1e0r0mO-JmI_s;k*-{5YWk>03ry*{m?wbO|4nXC6 zhHq5&oFqFv>~HQ$u=+`|EX(Yr?gEO{ms;dZ-B;y4rgI;DDg3AiNquciTDB2tQ(qOp zDT7M1SKy<2%4kVlAQLYtBI#P4_?n;-aVN(R)@2oPCIhY~S&>|5;nxS~a5)x*RB)N( zy+}oL!5cwd^K>#z){bxRJ8qJMo&YsG)g!mOJKijr?q=TYKb4?gwA(v**Q@uOHZ*4I z3Yc}_^5x+Kv&Cp+l|TQw!hLlnBPYNFe4LyFVz(rRKjRkcW#&91eCH~-Pl&ZqhNbtA za5`=a<(ctP;0;ye{R16EZ_dqt)t2zqs+Z`PWl-z%*i%_gS$^>emBe%Y4625=JJ9a? z{w-)y58-+d!qE^!xjvxB_IzTI;iinLp7kb8A!N?%?viy$!lknQ*HbFc+7&?3;KeXa z>2pVtj<;SNYsG|Hl&=^z>c5GiM zCZ}=xk+m+=9DBO z`d=qH>@zyrj5Y_=La|fH+CU^7*`r8ktg-yCY`KE?k_k`nU4!)x^M$+pUg*J>$>Gac z{1MfFSpe5gc)<<|J}p7#-!);MemnBC03t6`5Bha1R3)7oaRLFCqf@sqJ@4IYVg-kd z^~=e)CDdLG{ey2%GWbAx=~NglAWA6pORHn3EYDBN@~o+{;m%89c^9MsI9K{f|1lxpZ!;EuUVVH0HUr^Qe6(;m)n2 z$Vgrobw|9(x?JXHctyF+6ON-HspoDb`hoUT>T?Lnr){-VtE)I@Qk}=g;_~_vL2AWG zQ}P$pwS!}}h;KpF?Jy>ZN&j56`N{!$iEm<0J4+hvGUSt3LZZ)!k2Zp;=Yns+nXvEt zW82+=b+rjN1OR7GfkVU6193V7j$Sto6PI?c{@}9&IbwUBRs2WK+v#W-Vaf}Eb+xss zIp^l@%Zo2OPhP0+nTnpjUBDfu(f4Ls`Qwo<_baV-Kcluq!G3jdX1UwkIP#6;f$%#Q zLmh$$2xX#D5msW4{Z`6O`+AxOVBf2n-^`(I>Nw!dBst zO@-OmlUq^AE!xDq`Dh;Ee@g+NaEN?70hoU$0T|oRsg1xQkOA^91@hEx&m&*h8%) zplMYGW=Ea(Y%NsqUl-3fUI;i@vf8O%@>RttR#^85Holy~i2ng^LVZt{qCBj}2oHqZ zI~6Bym6?-cx>A-qFJCX!wN2s^vs{ae#ujx1elAwHYdqXwEILM5nj8nj0_J(@7}v_*AXx%F8N^U3 z=bvYf<-!J7A}HdHc(3zuI0oIUidK6GU{7|K{~NcR)J}-Wcuc4)6=osSx;d*t^If=i z{Vwn$;XxEWBZ2_cA#|Oes5_FTjP0vQ$9YiSBLDJBr73(+Q~Yj#=XkS;VsU0h`Xa^g zV+_PPyxq(KK>U@b>WQt+9Az9|t5Dt5-)%|bt5`=!9LEh|Ol8vbyNi(BX5nRNREk{L zi*!9)rX`(I*FT`eUJGi|z`hP<8wz3zPY3LkQuU9p8P>)XTG59)2Ltmjtf=W0av^^3 zpB~*qRy?(otw|?PdolUNAgN2pw zgiDCmUv(JFN_~#gpU-}Y<-jTNjMao#(v+~IUrLW=8Tfa2aYgY9iTPzf!R9t}Mv6}1 zOMQ-Q2+};iX)xb&(Y89*+Whu8`K@gEXm%hfm%j*Au8M zP?;@DIZ1IFrGcrHq0=cWQdO6p%L`Yu4Op-w+T$#>0y+2XvbGUP<&n`7x_~ckwDfSs zn)d79Rkb)8C6Qts6j5d$AO#N8JhHL11>&D!D^arXX!F{RD%Rt{Rm!K)-sSihZnK9)R(_} zirCVmmCT1jmVcxCj{12{O65BwTeJ;ENj_?KJ zXqk~`w*X1J_CB>b*Y`J8QAi|G#{0T6fAM`s&cy1PZc@A7V1=1LBKfCuxmRhJqx%c7 z^Q_%g^%fO9Pe@{L{uhpTz4R#7;m>|as==vi5W~NbD@6^^^A2ZrrpWX1ql?SJ8v4tf z@t#Y$&*KL);EJC1U7A&r+>SQEvXJ|wt<{mZtwFqMQjyU;tzsfup!d$5%%P`u5Dt&I zOMyz59%3ry2$3S=9P2emAJJ5H;>zV2X<*L#n77fR7cc^Xe>w3_G=&8@GAfh+ilkVImjwxz{U0{>Klnkoiuxk)iDx+&(I)lXYHNIYt3$!rWT4 zXYpQ^altN4$@WR$fBd%cuK4{cF`x~KUZ|vr7_kVHc2>CDhtbRak(s;x+YqZ`N2!y# zYtxsOl`@v89SV~&GM}lgN6%W^uc)pYDYqg#N0F(WpuJHqwXaivQgZU_t^j6ykHos$RK_m zJ4ROQqzE@(A$d9xhL-+;A2w+V)5xPk`AsuMn~euJ?M8~d0ch)VY8>v>GQspzMDf&}5F_hWYJCpH8Qzq}$?xveQ4=-8V7TjYgDJcp5 zOFL*({$?h5x$6P(uzr6b`0zKWwIk(nVk6rY=!3sGJR`D-gKPWqM(J@RnSNc0CEEzm zi)OM%v7_WPOkMk**d~bWh`kE@9vFAu6Ir;A(vM(!XKFf z5m0Y-z))1B6|ec@l5J}!6M<=oni9<9 zrzH9cc*6$~j}Nqsdyy2;W>U*o>AR6(v_V>X_-17w^%*u3dwG2P2!GHl8IL5Js09P9 zl_qZ6w)NZVyc4z4_Rk~q)Zrepd{iZGE?{ypXEZVnEP&|k2sE(xrn@+Cfhq9u_soa| za(7z?=R2S3hgehZk#qiCW{47!?#U4B>E%yS9SnSfW7^0Tw4=6EKOzH{*zg5=pRPN} z$+^im9P74iZUTNkJ2tPFVP2?sQYWdxXn#-^RhiiZ%daPe*+rnM&qRTA8%dtFx7s|SS0!BPXi)9C#1C1qNB_EO56z}T`9Y;!hr zD0e*LzHGH!KeW#{B&T0^?sn71-Y=MCEtv29ONa^*%xM_GS{SUaOPH`(DES>I5y@#=oxSI)dzv&X>DBCRt1K8y(_jf*vIX3Zni5bvl-QUc z&^f%0Arzp`c1{{<|ePgG&AOcrh#H zLzF?qZR;tp=GFCwr}%xy(7i$BB?KG2odK@Dxr(*ZGf93?2f;aL^2L2~G=xw8@nP@cx)%<7cm`4E>=Xe|CJ@e{s zMX)zc=(Wj8UAV^|kk7r}s}*azQ0L8%ya2dVj*0vd_uDKTY9`x-M-fV6luH$5`OZ&` zs(HWF2Tdw)0#~NoFplY{FAy;K(zkCkQo>!#d1~VB8i~EA08DZVY}z=+ar0H?Rf}cI z%T9NQmdwRT+q=WpEi4F>*$_WS{~1RxbRZEQop0uk5|i1xO>o?d!tEOZusWm(WIx9{ zRgf9VTXJHqZg)-_)B>) zyC1P!cUBkj0$Zlb^Xrv|#mnZ39V7m>l0Zd&ubZE4jpjFgZc8!5h3iL`eWxsXF>dKs zfflZkDcg5oavx1E71Icx_hSPgs6X9y$@&_Q8OB9p>j z61|wGJC!yG;?K?=JAcyzpsF5paKe={XHU!imE2`FL{A)~#hYEQez%D2nya%)UzFrq zHLUeeLzKeuWAekul5HEM00-(5)yJNhyu{u~n%sMC$m14P{*He<2~*AzU&nAlVvlXi z2Ft7cF!^{Ie~AB8-JAXjktyjqJJh96O1=p7J&&~V_Rp?3T_$GBW4wA64Tj%yV|%$C z@X#x&8%3+*0mUbjIp?0H}VT9FN7J#Ct}pN*&89^ochGmZl_ooQY;N zW@aM_td2Ds2|-dk^e7c)Y9OP&2;WJsJ+NAjEiHtNY405LcuwvxKo{_8VZ+sUxe&%ub}um<_R(5ZV`{;$qOGl zR$WRt;s?bT=R|YKk33z3%x_Sim-~#8(FFO|IdoX1pge`n z=t=1;p7xAvYr(5~inPT|9%K+_^9piA8=@(w$WB5D^1LV~N%Vb5*f#_y(RGdGGt#Wk z!JK=Qyvm+&>gGE>3BbE8eqdm4YEXeTILMxHr}hA1dHo}hF5fY?HUxn`)i*NugO09y zil8h@Je5{b-Y=`=#AfSg%(@REzmpI~8NE}Df;$oQjd}^1M7J+B?-n_QKzwuK2Y3wb z{}mCll3rnE@i}wEOOTc+WD1NWX=yls@q@T%3g%NRxCR88 zZLFIhk+w@-X%gtXsUv7~*Ik`!wh7__3bRDLv^4Qp<9{^NcQl4b0XCDc?-M}-1cTg8 zI(nGw{Laprk^VQhA_nvuVdt*s3pqpA+7-+cjJnwCt?q*Thp#Um_%jFa$y`rfa-h4Q zD$q6FUe9~oM95=}q)Ci1dgw)N*<(`Aud+)uwIR473mwO;p-%xVb}Ous-Qxn8cQPh| z3ro%0WBDXQLY2qvEq33J%;@kJEG3~wuAQHt)_vDC7d?n6kBqSo+zWCP9IRC>`%8?u zfm5MV=8`*OITdoKlbybmg|rHw34*xi{OsmJZkyx8MB`@tO%`Q4KT_dg@4-{1QVt__ zZi&D4pUQlg*tpedQt+?Nu4B0&SJl%?yTfR@yVlUr*3h7n9Ou@NyABL8-ss265Pv$C z_VZ{A?RFgFa_1Csw-5sJpW42i^y%DMhIidBJiO_dicCRO=$&eAc&|8l_mN2~Dm+{& zl(9H3*7WpXmivHrhznES+kVo%IbR9r0bGO}m6l&#vp85pu z`8eL+qR4?8xcL&a&0Vfg<*lH3<%9hDgM6kJna_!CElX0Ff-=EpQGxo_4~u>`~L=tS#Kc( z0G5ABW{eiJaq9aG{-9N|+-|VQD7zb=d*g0xqs2jfapJ7P{H{Fh1zejg%03D3EZ_mw zb=Q=B+}PB#a{6$8y5e#-@3Q36g*G+7M>@<`x=B7ugKk6bFnaTbe~q?KVSU;pcVY7Ww|{6M`o_jbqm^bI%Qouw#OJJQTUzw_i_7%Ow+jz9<}gT4 z#EH148h45o&HiVeLjv-bn!WIU_C!GOeTI52ONoMsrmj0DgbW&2su{zu)e|ih*v7rX z7tCL5c;e>|2_txkgyn;s56{{i92`76k%JPQP|xtdvqSBND{YVydMM;p-C%Yvh81Jr z=rL8$=TP0To2PI+s|RoELbm~e+W{AoHz6p&hk=oojZxdsvnny~DDlg+wKZ7Y8rz*-Rduyx_(^N25MwGyf$F zIoc<;s*Z6VlksU1EMLRJ;@wDE_VW5#`O$0H^R#dMslM8W$s2v_%#yBb=M)cT6h!p# zk)-c8DefT@PoDX1YMS4?Q+{Jc9sfzAYb;@yh(1R3)vH&^(F1e*#k*BDZ&&NSfBzo& zh+AphB+iyoSm7M=ltV+blHj`P?0NEeIaZ^Dj9&sDUqzzXDtKW8NB&mvW zw1C^#izZI%$7^@%7Q^gZCCE4+5Ew~4GZW@s|1@|;yrV3HiTpl#2(NvP^0fx^iMH&y z>ZkQ~Kk{#+Z$4ofo=B=RGBL9lB$#t#jL*j2mz9#HrBV3AXVonxjore-T#bu83bUW^ z3Xr^)xVU!cf;*6h&^xJ<(1RnTP2w_y)M^O7{3zxMcmAh{h zsqgDlDu3pe>>S@yYGV@0s-Q=#cQdS90-eZDnfV0!k+~HPR50JG8Fi{dNokg6n$u>{ zQ$1KsDlz0-`c)>`(-mGsQeS-XZ>+DV{wd`nrnJ0NneU(QlPS#oPp{$>Wr!lI3szXAq`X0SA2?wS@3>AZfONoYl^HwDznrF9}0Bniy!1j{Azm=L=P)!5I;qB>enU4Sk&Er zJjkNQR_Z=ddI8Wmhk7&ohsTb@8?*W`l65X>9Cqtlpm}l0-J1b4g;ceJP0|5Xux_Qs zAZ3~w&3(L=!3(B7Qp<&DmgvNB+?d7!tKrI~sWal7Gll!12iL|&^5OaT&#Opl=J;Ii z!y7*l)VxNl2e>GM@~D|0xCFhqD^TRY4afdpSGtYaCJ4-t%Wme#_098+UCXnG8}t zlkm{IPw)-$W@vV}6klb~x~-`Rd+d(8o#yGWcS!lyJt54I4{BX`on*$#@zq4~Pa)|6 zzd0)Y_1UWPTh{xt7}Ke=1?WB~jL|6_s+m+|Qdmg=L7SDQ&;RqMZK_Ml1(|wGh&iiE z*j-gW+*DUt3j}hqRgres(Ni{!QD<{?pOlDO;6#YO4)ci4k~2|zb5(G3bku%Q@gBSxeTZzK6qW3&HX#cBWA%+RcO?~QdO`Q=kNsnwrLZXsgd*1j3)eq7?O|d# z9DQ7gFnqD`%TTgmu#Fx z2|K5kdBlHg&Kd6S7E>PUL|1k@Y*VyFFkw-(vVmnelo*k{Ro27n_4eRZXERx=1pD>u z(uw2eLo$b|$8^Gf#g9{Bw!Cm#GCeex3PNMT$giclRPr=8do{WV?^I16s14 zV^!)8D>W+;$))2NP3xvK2?GiCm{8~Fa8D+=QsOAnjWne)?*)#E#q`VdIuc6bgK9bV zH^*v)ag;>PP2>x z3)xt&k&mlzv$i4vXRCFKMeOJvB@*WV&PanT>)p@C_{qtm8mWNBZQj3oBodixG$1_< z6lExJUr%2^>&;;Wh^ohJnmdutrhv=_sgg~!6P+fgP4Eae;#~v-zX|Mk<- z-M)EXa%p)-u_O~VpR=UBGiJl-wA#01-2@hHtWpTsJ;a{EgI}58Hae#Z#keQRM*@_+ zWG<))QqvFH@=Cn*q^WW742BS~dq}GfLr7|eNbRU$Zj+e+cCQFl@lkNtMt33EBB3KG z=v4?)ZuTIjKSN`1^}J{f}0&y$@c>eC^9GB^X1{9()MVfc%rN7az}oyhLQzE@fx z{h^Y^tqVeEh`>*%laLO73u9g2>2yV&f3Z%#$9tkykJt$5a!6CIc77C@f(>5KVxAsn zggHuXb5JNJ{P`d`5A7bNFFr)g8Tdz_hZOGJ$|5~A_Sqw-YO%;?3FOW6YtPTSM%0HW zUfHO==}qx%?Uk_}ZAw5d#kH7|w)a{&ua8YdSf;;*D55W*o2MaA5_4CNrE&JnM{Y0a z41IC)ZlO$p_l_n=vOC$6*`(*_ev#2ns@96{Hxb=gpUi*B zv`&LFzJYSGyQ>F;FO%cW5kh_dx$dht2Z)9B3{P+XG9N>-TFaGD1I+-F@l$wm5UaT2 zPS-n7T8`j(T*!O6rRj6kXpQtRL|_{45UXqV$dQEmFz;7Ct$8e=|9-4Z$Eu?HP+>hT zkQCX#!(PfdwTMY#08Z;guEO$mHQ(NOk6*MsshKKetS1DEPbKFkII~Q^e6X(+CNBtL z*vaS$sZEf=re6 z#x0+XM0QgKU+ikuGn=@6g@hFrh~RV-io^*y zyWCz3?qZ<0K7)jkbOLr-vFVhu#cwUFO6p`}T3jQ1tcsYY*MLD&)Ifp^^_m*CASvLIk8$^sb1RQu(a0 zrMjVR$>jKr{XT?0DI}-qO=PE9C_?y-{IEfGB!02`(*TGHiA4&9@f+5lO_Z^tq0eyDIBn%pWv8lQX`t8CN`NpeWd!MaMI{xuVKS>5kg#ETLb?ak?{wf(8(_}lJx zW|n%gvWcIWI^rObV=~#Y7sISh5v7SgUz-#!cm})Pd)ocX2U1@3d!Oaho{b6`T8~C; zc)lrQ)ME_wGSyLX{;VmvSV42`Csu0#;g1sKosdk`L}fc ziW;M;;wzQy4YOb`xw_c5um~h_D~SBaw%c1vDCpSYVWjiN6+T$l&{MAFqxjhAJ>5}4Asw?%tp3&R!-Wl8*=MO!Qf!6tQO z7yU*OJw#zOGV0=+koKdl--H%H)bm$A@u^2T>PgMMDzv}|H&o;Y^FEF)(KepC>hRyo zFg_Aej*+ciQR-VRLD8N?%V{C&VL@g!B%uEheNhJ{pH|)#;Z(RalFRWDN4~OhfO49C z=X-!BJ|O~}de(fV)yxn9K>I~oTBVaXp_0M|N4f)^xkzFyN3FkG@9Uigk940|iiF0n z_XDQ!NyYtyYi6-cvna0P;Dvg_EZ6L`x7-R>VH=g(g9p=;Dl92p$Yhhq0~NVxp!AIT z;iuVTD;t)yGqGZ=D<+d$&upLnI<@EmneaSI`eLbY1TF$wt|Fxir98vThWXsFC|qA#wB#uT)|@CcJrMPUrVb z#Z&*b9@{ncV<09)5|+CHJH>!-79+3hkFO*%$;uJckX|Faeq8VBGFR4zIJ(#$`fxb5**NP zHGwlhNJ6#cci<#}Eaw*$TjuPrm@^QNp#37SBmyF%(aq8rkP%^0s9LOHMyRVpIHr-C zYVpUuV24sImyoRj>GqU~S}hC<6IkVRqJhLnOS_w|bh?V#i8bc4uUbAW zN2c}tf=p`+KNjlgNybXy$rV7}P*#oQ-gc*2p7n~J*T()~XV0Xw4z_Z1=ep=Nwx(@) zRh>e=pGXR+1avXLg&rsIZ?3LeB94tG}w<-6rcQlISn4XDoaWa#M`6T42^ zh*|l=JS=tdm0vhRX-)o3L|O!mq`34W`KOx-z^ED8+h=}KIQaGF7aB-8*6IRbWQ2@U zXw~f?>RA^HzGRUggznpmWPVhQ)FO_y)iFL|`a?3uP57Dx`RZ7BOpgS!DAUu%Q66iu z)n0!^o+Q8{P_8R=4~2gyE@1Y^hFYpr%Rj9X2VOjj-q*sggiTNFx1-q2QIv zu_{^TApAAuL&T5&MW=Sh(5EJT@hyAjMQ@RY$*i79qvkQQ*sZ%I+v4T^vyhRwrLJQ>T zDUa(pY;^F4ppdLU_c^K#de$Zw7nrBU@-2n}7$mm2&1JKYfW4a+1ES!$z``}@MYT*0 z3bK-hga|>fB3fTtuG+NSLAFyFyE+F`?NBiMlVin2 zDFeM!BgYhiNlp>E=$Uk`5X>YaSnWf4Fh^?z2YZCD+4oC2GrW$dqc?iHMeuQb>v2_` zA^!H*2J5PO&ml$bvG+B>pvC4_68)+GOL=Q^aJ0!UIuu6#d=L3rvHl5S-NeJ{+;VvC zIUL<{XM*sLfLcbmVP4}Ni#NOB()HeGK1Hy%DRiUr{;WgUwbl*l6LNOIpKDUnhujUP z3O-pee4cCKIlM6M8nlGmE|;KnOt$s*qmVJcgh?=Ag(*3c&dZ(=9|cxm%kszPx1H0H zi2*JPxE|;ZC1BnwOnB?DE?beJYFI2z1mK@oNcuHL=>J5%9_vE-buofK9$+Ko_WutB`rzlubSa?t-@Rpp4qN!?;m8jsgW`rn(SZUL?T-$(g(T_W2*$<`xber2)$ z=lTBqxowh5lgjnKzg4OCS@9%oj^~Y?|JdgFl^S53=QZC!Sp^#YeY)@19SdHx9b!%% zsvCt~W31Mcm-Ud7xw^XfVSLSk#T`ahGgSEAJC-ih8P0`j)I?(Hq^RY#2 zd91N|K+J$sct)o7^H7y6b?6b!z|A?*dgXVTskwrNdvCmJ;2xr@YYp>N+W+?!Mv`8~ zdJjRrk~!&&8r}LW9`f;rY4)khuK&^D(++lj-gX!2Nw41#F{bT7Y5PKbAN`MpNOe8X zADnIr8cx2jy5BdreCKF&W{{QLgn38!c3D35+Yr1Vw=A5$p7uQRtP5HJc@Lx$w-tH+ znR8kBlHl3Va`#?0vd8Luz}!*s1?Y{$V=!Ab}9v`Tip^}b~J zU!|LW_w9TyR>ANjHq9O|@s0L&^ zA?A#h*74iW^IV_n^q1v!SgncoAO=I?ZTCR#oQCoq{kinL;S|3Lbp`&xN1};Zxz2if z=^(6tA8$VW(AU*<_>n!A-)zp))=9PS)sm=%cSz0)uACzw(Iw>VC0v_i^!oM3?5)-q zqNI#;PQ2Q&Wn&qTL{i2#BO~7GfwoG`LOGicKVKIsnr3EXG8(l?FaO>ufMlkxq`TX& z+3cLoZvCxw=g-NiVjUQMTW$_0*Q4N02hdb17gk!YeNl}&dol4#zoVY7?gEl|=6t$e zb0UBT=Kf~nXN1WV7Jph27PB#D`NAo3Pc>pBL!YGx+h~(Orc%pmFksNoXh3uZl;d`E z{8+HEw^g;h*?I6$p{8#}ED^zq@oyRYVC)V#3ja@B;;%jPvaE5>UK0$|-GM+ftQ;J| zT7e|ad#EdDf2gh0-pAR}dGb=}a9K;;5j@eVTjo(gHKP_L{brA+!3)*{`~Q>{c1XZjHScOuhk5S?J7NQdu0?g{}liG?5k5no|+eF*`L0DuLz)F=Bd}h_g$7)dINTUJEGc9_WZ|X%i$4!6_5@RIzhmtUh!NS z{kHEoV52jr(X!7!X6~Q!S;$RU$d@4?bKQz_+r*?i`dF#2k#}e<;5V~3Vot;{;pJLg z!@!qWs?&GAyWbi0M-K(+co_C_8eAF}tBpT7u`AALN-Qp;KAZrKO8wv&Z7YuD_}AL# zw?F3KbBE68$#37@^KIlft<~$Gz=)ver9)WN@XSh*kLdDkHVMo=KlSv`2EO7w>{}N!aawjfFYq`bT=zl_Lyytf;Y@j++ z29N&WefL%R0URV~+O@X(A;V_%QbC%*APzqpPWCo9bJENv zxw3uo&1TziX~o{hy-lq~D`-9BS1G}+xv3Sp5Akk?q(R%gUQ4uHEG@cDe|Dw(Bdmls zZ*C&r67jhpXJl*LProv;UQ_K$t#!$KXPd(ht<=0Lfy<&UWRQVvRBMS7Ux406Q-`^= zYnqo_e8w5i^e%eAT}8FC%OBfUGnbF0z)oYkH=b~#isN5%3wV=&)*wAW_=~C;VLE^Ja@>v;w!~khL_#0taz(F3j{SU?PfI5etV&% zvMyXV-{||dnVW561q7R_tkzgBP8i!;g5~rPzjvZIY2GNW4d}!^h@RMscL^~jZ|yGy zfW9DBJ(Bwp{7wQ+I~KkPn#-p&#vCHbccrUS1*`Uef=Er?ZTTBigog5&|S> zaQEQu?m>blNaGS*8h4if!GpWId*kjdjW#rHjk`lG=iPVizp7oM{?w>F#@g$fYfdk5 z@_kGGM;TWxNRZotY)V=NSie=n6a=hU9=$9<@eCak?MdV;$57QdE+t8~NjkOB`f0o} z@;6q%rqBt3<2p5Xa;s+T^sdXY5ZYYCPgVTSp~fND2~t>}gq&^WWpcvtkM90dGQAGz zlUs&sA+)J+CJQoev#!^u0<364ogfsZ$B~B7*8M+acuNZ$&u2b(`(M;5iX!*GDm%VZ5ZqKTKUSlFe9 z(CY)f;2|(T0HBjp;pY9P$<9s5>$c2ue*ISrP?s8S-eg^O{s5BjGSloG%{g2@XX)j= z@9Je}=^~B0fWcR+*RjN7yJ8z-2i>^$yn9Y(re`2{fFm5&x6HVCmJ~~obiMf}7p!5WS_fvaXCkjeBtv{oZL!^Pwf_-_ z5|wiHO@Cm~PToMEiK(`&i67>M5&XS0+`@DkGVZm?x+>yvQUI=UalHP$*eIw$0A4yr zDHiscr-4PgxBGf@Z>L(Lj4=1t|1vdsy6m=`($0M>pd|v37vH$rNw!G{!kg&x4|UtM z9M2B8+@_eI=zy1hgQcZG^3njgL(}pF8~LA6&$$T&eme5O&gu_(UV@q6Dt(3&LC}h@ z0+C4TH<0wlxGd(w`A#E0dq^S3*(b=kr03_aZ0w)KPle(pjx{bU(?>hlWbJQ3Qrgz& zw$`8_QhifZPGb8nm7@vy3d>g2274K|flq`VG7%9jJ18vWNnQdU!*_k!5KQ<^4hO8i z?Mr)orMKpVvbi5|OJtDFjcM9M`oQE3>i*+dQ`&WS*iCqIeXV&*mVfbDAR=fx_$gD- z#kGxCd2pRXzJj1fJv>n!mTbiZX@U4EA~)mvuxfS!xdu1M3viRKlri%}&7P;Z+SuAct%Yt1>49$aG2o)2|BQb20+ElF;gz3Kmj zRlLj)MJVeMRe8GN*S|t^BKUYQ-{_*j8C4@6raqx(xsCvJN&m<$I8X_DooFrPsmx;Z z#XDL^+ z<0_iwafTmrNl!CPi2EJxmcAyW(rlN;3>bn1G&b@`t77cpOoMGWj97#;Iec8+=AWxF z34X8QytX;P7~1Sc6z~F>G0qscF?-kqM85n|4R>=X=LvpStY^ON;~pfOW109RU6)kL z-RqBSt29G77el7zPc!iT`q}*#ljxOO?y0_2+Ik5FWpw_!J^5k;v${TM}rFE+)XmL<2IJ}^u^ew*246FEiv@UJwS{kG+ zuC8&qvwY_2n=osv4I=QkVM38_j~qiUEvP-by0LuTVg7{qh)~s8*q33LX|Y4%#M%yJ z=YUko_b=7CmS=W`Q)!XIPQoePl-&LteH^zUF>XxxUfFg;!u)bPiC(aWMnYtRHp!sz zEn(EHdiHfeoogyoOHXcn3~9_;Owa?^CKH>(F|uUSktW#++;$xKQ*=-?zqI(}r6UdE zpzP?k3UX+C``^p0PIxY@RUD?gd*-kgBZI>!8C)2?>JN7gtfXhYq;^=<=SinY$DvK= zsGeOnh(0@38tuW%YM^$JWzTYNt=tWPC0Z z6q99r$GA>Z0=`>})J`|zuZ>}@`z3q+!5PD0&!87jZg8Zv#y>Snj!n|iTmv9lZISB&CX>9<_?U0Z<#pk$!&W>vQA{&J zz(A}!St2{tHbkQVDIPmKIc=H0wP3K3?d0G+j2Iclg1KK;c|3xpq#B_-cAXPd6YPkP zQhq(tRBop<5g$x4Gvv*upmpfegKcfK0{9ONqwv?hni>XO4U!UE@`dmw*!ae`;+kqp zm6ZcV^H30hzRYlwTyC(ZsrM03C2yF7~;hlNkwX$ z3X9!P9=xYf9cgF*wGRNK<^y2Yp8yI*L;)ai6t8&{Mt`B}ZEl>HHGqRrdScKO-hMH@=K02+V1)154Qtp*@|W}I`HM#A{|;3 z6SPgdOM5OzmJI(o%0e4aDO9%FaQjO&-RkhN%69kw1%J27cJtI``O27<_Lkb+GDC(n@4hIfv>(Q@=~oWn<|x zyb9AM>wRv|BjhZi`&B$rOWo*dr_BYP#|_jhL1!BvJqZ>*;I zu>&6YB%tfn+G{fyPxZcLWVGp2GvQGfAI}FZv27F^6DI7k93q8m>b;X)}vTUoH zm9ejYTltgKM|#3VWBav8bF5V$7>$7cjy9Kx8N^FahA07$&qp3nP9zUjWrBsJsZv;G zkv0@Db0nq_WqRv^<)8Nq$i|Ql z-nf}^(7#owe+&d%P8vh6+wzKLf1TWT-nm9MCMwmZwM5teed2{XeRD4vjw{xzH|I>1 zZQof3d*W!PQ+29a7W%oB_d#&%stqdKym+->4KN<_5jii-DN++mU8g&*`nS&PpJBB` zD=Rc2pJ45?Q1tgaSQ)4lHHT@b-}z(PhYc1jk;KG*R}|2NNT@_ULnOGw&}Q)mZ7``a zK?_{0^I=w$d0Vp^pc%>eGMXlag@3kSLJUIw7Mr*=-)U1-CqlB9V=HUtF7se%(1iA8 zrko!0?O%JA`NJzrezq+Pas7XwsN(de{H_I@w8d&5Uw;h#?FstR5dyM@+1<+*<~{x z*i8GFbD%mg-tY<-o?I`a&)c38HD3ui-BSnX63BhM09PLBc7Elfp3jNZhx>zbq{E)>}sW4R*1bt2X*n0kU?6GuD++J+5}4G&tD(?VRfkj5e{2FfsAT z*UwxvCBmI_BDq{KJ4kH)z(Mw9bH^9A4t|M@_O@yAi|7p1g{o&7h{nhp`Kp}GGerDI zU^-dpX>T7-Q_`ut-g=SM(!S-x3_ZDy_P6nZ7-7hUNnuCh%xOvG=j-pc)LhX>hPakw zw#JzWYqu$kdb^FwW*tVoD`;;Dh8-0@z!2i8q*obD*8O++E!lS3e+B^gU-}*%c|vCf zz+dK1x4)%-g%rV+2!VIp!K{K&R``?tpmXPo$79>9q{rl_qM2iLhEL|9Yn8}UCny~&0MMt zd7M4xwo5M~OT)2JrO|7{(gBo2QMmI~L;q@OV|91gnHNLUh*AB!ifdVNe2{F_f4$Aj zf7P20X>2l?`~D(-6wl@3;T0#d8-`Q%Pvs~i^7j2d6)#De^|GX|3)OmYzguV=$UAv! zef8BfNE*XJg~@(iD~xI`uJ!vwM`u-Whb^Di@Ju{GZx~}j7a^H(i3+XZ2rCOFJJqF? z4qc00#I2B@&aT(hdP&W8wf0J*D;uC%!CLm^&axVta9criPvNnFWF1UFNDvQ#x4%fL zvtB!WCGxO-j=_5pbJlWsCJi5M>mVT`ErwO>{Xg9Q^#TxqslL>q5GDbjaqdiEQy3TS z!2i_JK-uG1QcwNs$$CoDuWPYO?oMVaeXZKEdyDeLLL?a|f-Nk{1v?a3J3nOiyai_; z-~_Q&MMb*yV?(uuaf#!i#%uDq8Eq*24*;Qs?m=}8wMhh;dy#jMkVSR&8>@k zHJJ6|HQSh`TQ0dLv|J1LbYuDjvCz$zM=l|WVNeP!$PS2ZP;;3 zAJ%+mnDyMErLgg!1!-d9{7ZExkfXZGI#9UIIy2GoLZ_GqkDeK8Twk2#2$02&CD&Ni za<}RqZk_)@Lmn|*Z|8%)Zo2_54?) z09Ih}$|d;fc8^}EVP(N<*7naT0ucul!3M_$BC&eD(eiH{)V+6%Cpw_nEQne;AgA&E z$C0EEw0GW9i`gOSuMIq4zdk?PZ=a3jx-AEvCXj>kCk1wtK_dqbOJ4e;u z6Q7BmcLDqK`gtThT$#j$=crfDv;hisi7Lo&}alXE#bn{ts3CF#M|e#>}Wv zy)aJyyLcXu|K_hHYR?oyNc>-9MwR*>hBdMpVIT8fhJ{WHkFeAHa->O{VPzY9`nlRv zh4BC#=U zt2}Gkb|w0DFn*GRWxKouGBPXF(`qWeOG3#n_Q{LlIW*AM$%PYRunC)N1Zs*7RaMN# z#?Y3Nl>G~_Oa$d7#v{~Otj=4>7pXxSIn9^2T`Fmj^S6(}$Qm?GtjPqBH}8dL50vDg zHf=wzTO5}`SZaM6fj}wWqDnF@Z5OU;mpYGuYj{wLQTa}8@1eGGnll=UgAzkSbK@B# z(ZOHlV%{1qTYF?JB-Z#U+-^IJ6~k^`nsZIYGA58n_4c%X(I?OPplKWJ3*&@C-NZ(| zZW(7qmw-n>NB*oJ5RGSX+3i=vNl#-r)9nsJ+si3ho9fUK>NQSYr>ZDhZ)Yc4)Hcb) zX}7SbpT@lM7?G{Vzp6!%aj8_)3k&bvjU^cN!z9iC;`bHJ(3MPz-R6Ic0E z(-z2Q#Omp=OrXtNJQb*4*Pm6PUxWo|Z@4CyMr6$w=;wv&d~j?>!|hkwLtbka^%nv)=vZy0j5RKj$IVN;#7em(3@p!I?aZRT;aP`&4_ z5*`?1D574cK)H?C+ntH5OoEEEl*vE+T4Y)`+g>S9 zD4os_BvZ(PH=O*_>&UA5YQgm+lUZmqQ8d0MaIq?iz5)FVf6ZsSR!iKj;lgF9$JP2Q z8uqE3Bb`t0NfU6$#hO{gEraGLzKqRyM}%1X7xmDEMT7P-!Mw}46vMJj>EqEcY(``e zXGm1J=QGQem9b2>7-Mp*G8rxYSdN3a+r}Ji0&=l^=CtgtkyNRY0P+Fij+ZFCYPyPjbB~wTqXpZWlYs3(Ad>{elB#;u%~G0zIjHgvuwVG_z?5&7}7ZZ zlSs~zYIp*&=<#s<%#mOv6A1#9lTcg9cvz8H7{IwVweToThgpxfwuZtw4oB(%Po>H! zC8{+N4d&VAzz@u6#X3ZDKBc(}+$6WkK5K#02=uz4N~;4CCBdt@sNU*t!-u`|O|9 zvSARta3-^Dx&Coo(svJGTN)Ty-?ptQHT3rPCV+U8}QFz44nubjprzi;$YoAL5Z5Ry*9^ zco3iB?2M7imHAQ!L5bQ59Hh!lVE@{cdnK=Ye`Gb}=Prkr&5O6w(0zz)dM_=no?d!D zy_c@Q5b3fjpynm}a`iu`!^Gl8DYV|DZNB;CJ@WM6Vo&M}GkM2!mWAFgXq5E{M5?@R z>A<2N)pfnMOziKRlYwy4;6m`!3%F#zR-jR`u+0eqw!q6hv1bH$b)$28B?0kx`DQx;GS}=D@mo>OWgRS{Gwfxhk7rKGLdn| z=(kmnF2K~yMMKu7fR4VQ?4*a}PRFtjrS0`}vKt0;GAo|7m)Kzn?EL@LAp2 zGknvh%==bqHI1h``3*D-Nwhs(HQr`Er306*Ax!XhyK`tG_j*PNt5hZh;v9iqaglT1 z{rDC*6Kt_waKn8sG%hYf5_4&LsJ*_6)?ErPhMmP_Og1XPy3w5dzdoe+xkR0yuOnw2 z)Q=J3E*>1rbE$i9d8r3gmVBn9BUuT|$5fSaX1A8=s4SZ|lJtpv(1&1!5a@d81ImaN zwysaa35G_a^=(3uOKl7(pf*shsm?s7-{mgtmhlIobR0j$&b%{m%D|bTnf-R9(PWvb z5W__abo<#>saYs|otAvjcekYPZin&wL9FgiDejD=iQiYuu1w*wCx>&lW6f#puyr_a-QWtQy@OMz=xYClr?!-GDSQ2~ z;K|5iTI>9~mkPz_i$k^lg=`?|0)e}Ojm+*_xk;~j#P8$JcyNhrJA$Wju2riqhr74# zP~AS^Awj}{(BRzLBN`qzMYQ!zB=k+h;vgJ>1*dh;MsrtLI`3E4u8Mrxrg`d^fAXYW z$wDIa?cVyoj;cWYoyjYhNAWV3l@@at>8}r4kNurhr~Lu9d;LG(;z@>lTxl2DsJ`qM z#sCHJi4nCME56Gh9C{r5=^Ww<|1tEFrD}1;!4p*MAbBY}mKf$EATmo5Rh<8YY;8W4 zZ*D$yNsEkF)ZcV8z|dOZLE--Euz2HDXXQkg527HZ-~yt% zdZp}a|BTJ|E&7Y?>7I_T(0J$NN5>MMSH1}~AAzDDH)qz0WUTna+jvC|ZsBH(&e!{$ zLA|UVUw=Kca|?93RF6Jw|FFgsOrB&YRdM|q zBWw4H=O|_Dw7)YmJ)VPr*gQQhHsRUpQJw#>@PN^`dc9?FBuI4Dk=-%9VE1^(A@dZ! zufj`7sXWm5hj9BcBjGn**vc65XMUTJ)w+#gJrXb>F>|@GG_@b1^D6UDKwcMd=8}2p z6gX=;MhgXOVfxFOsui2KWhH&$+%w*Q_a(ON3X`abr-e!y?uAwPT3LG5eQ!a~BECX( z2=C11O!gR~8ah*^?xKXi&jKb(k2viXylXd8{Keb)yQ-Cnu^cmoUk{qD$u<9U@pxuYcK5~GlHutP{`ZtueFu#1KqGS#s%ELx5$L2Ujo@9}2c@67??EO?sbbNO zQKIMdS`}~0zt~B(8i=scqvv{EE!Zd@V`R1~GO-TXo+yGJ_dEf16#9tHB@QxTp};vG z9UV->4arOVpV6v&OAvqbI^KhvXxxd0mSs=BOTW;Vn}*)#6=WyF-|c^YPYtZ8o=rKT zW+rEtWI1u^P4sw7IzD@SF^eqxcwGxrblee;_pqL3Z$_uBHunM{Ab58O`tk3m35^$k z$NLL~E@~#xe64_ntBXfMha0+Qr~RjcCyps2oUMH!5M<4tUp}})zZ;V{%iW$-C|BH> z15}foGT9xu>8y+(?i5u>o5zB90b4ZiV$FP#)VgR5h@)g8%1bVW_6w8WU0NqmK6KW?Y`Y@NX}e?9 z!{hVhntt4=JJK5IBJ3|!(klE^P;?>d5iHb5!65X=LY`?b$4TEgt}}}TO?sgNW$48* zeo`Jl%RkSO3D*^gX7|=`D1$4Q1j>@49jhTWGgwHjn~3;%c@u%x^_4XcNDyVRC3vV{ zOI|Y*+cy@59F8S9YlXY00*|-+FXxW*PyVVpM^n*&;^)mqB8mN);uEMgKT5TAL?0T5 zC9+VL*S-v4%)4xbr(K6@4%~&soFL)^W!R50J#j%HG}7pQXb37J(QWrFF104y%NJJy z4X%J;To0mHVt4n}+zX z$6SQ!9O5#enXSo+XYqG}$IVY)7|u{A+w044W)+I-72Kz{BXp`6~os=#`v&U)UoQ6hIWRYk*eX9|i`an3*+ zR7gsy5Pj;S@@QEVSSo%mXIn#$8?eYMF8d9DgVg8^T9>dD$2%N{pf>B1@a<2n;t`Fw%X1#wW^P63TqM@r3<|# z5sB(ydk;U^hDh4wFzQcVcC6nBk$h86vUf=#6juZDoD;dJwnjm%6{~^43=oXQOXp%V z)$zt#b)43eMj=TniK8~~Lrmu9|m}-hXQ>T@q`0`e+ndvn~ zNHm)zHH42wmZr=i75%wR@;A{aVcgM({ek-^Kf3A-n(HYn3$M{lUM{9a*HPoykp5fD znq3=~cnhoZZ1b{h6o$l6G}!7%*8I*@DE2GNO;kv?79^Y@DbzO=IbEQ4SPUJ+3qSgQ3a04SzGX1sDs;pSGcjJlazQGcB}{JAD~Ttg;d};ezqEV zhGg0QyBB^k^?K?)k~1rk8#3c;$f+o8Sq9mx8R}@Tg4aF0?DuiY z8B)!VxwD;)k`S!BsLjy7cNSNbxLl#}AED5rPHktNl-f|MS^@7^I*JxnEhbQJZl{wx zpETk-x&J-Y?D;(P-eE&8nhE2^BfwR<#`@2b~LbU+m# zninXjQ!6u@%?5>e@X2sP>}P{KVahvaG7)(otZetNotlV6_gAmAW8>bpN+?0OJyByr zU(YxzR!jM@;;3%9oXgi-jdjF*vv4)rU0|5ve9H`V?fXl8C*8Z*p;)Xc+(&2{BWTtt zT^mxMlzy~Z?8jfdiQH_5JN&)?f@Qi|%9|p$mRh+hI{&|~kxh%%YhJ1T z8W3Pz4374>7U8;?!NrkI9EfT~x#%XR232kmx09iwdUJI^f2e4@;Z2Fw*=J}i5vrql zed2N0-K_SfNxVwI4ZDW%W7VcA34Y^q;{Rt*}-7dAHhWe z<<=^+QpgtW)vl5{rHa+5){KXsrPEBJ)$WrYQU09ql%JR)GO`UJAdnhlk z|3zWFy70+!=?}T*JidNO&=%T8Pttst#;3jYp*n07EZ*nXe1`< zxG_S1lfz#Y4~S8CSX5`5FX{^SrQPgFo^cq=?%&=&I{M<(5OgZ&Llu(l9s>*#YDaW`JKi9NxP#bX4 zz43NSiBDd0Ue1Ar@Z$!7Ml7wY_7egIzW%%>lFgovX-c)#x4KKfO%{!2LZqyQl6x1} zr`q{!em?OdPgZT)nDm|U`spmHVC0irVy?1r z`4XDipn_|(?ZK1o#UN29wHn$LV2~~pj&rooNAp{#1uBDfOflkRlGm$bD|ZM$bn#pl6sVb(=IvJn-W`(B{7oHHDNQt6uX~^@D zyEDC?*oRieYiUolmwZG2E7L8X@f3!@;qB7F1HNB}q>x4F^vR}WK?JjQ_t9FS!%VEQ z1Z8VGMVgfI+W;7t6r5w-S^EDAk&=*qjpZHF@bE#ZN>B! zbDH@oEEZ8IyfI0f3*zm$!*5#d_pdC87NUYOi_3wlZV}Hlu67OCE;GJzPsGWHpD~co zd72%~X%tGKaOcY+)HLqzkmX@NaF=a+`B2M7@b8VX!@K_pOl|RT^{hu!nhDvBsM_KQ zAu$7JM39i3qIL5DOOM;7S8!JbVc~5@&fBEPyayh3NXWRtb(2fsy$SBms{RoJsb zWga1of^9;;tlDlpou1c!+k`Ffn_{iRcL3_q;^kglmM&~|6|jf(k?W@hbI*X=1LTxj z%7&Am>pzcY%aHO{7v8RyzB&U8J&?F0D2ymdy5ZbBM~dN z5t5K-=nn;&%8d21Y)N@-b6H}a+ekHSm{5Jx6hbQB3+b5^jnK06A4K4W{0pwIwQ+KM zv{A2L;Azk1CiF47_!n%Z3Hob3X5}-pZkR!n)e$&f*ub=S^*OTdK#{l1-)K@%l9W=3 z&-Zb5l0lR6!wh)FuMbRML@{c5KXm)6L*!Y6t;4akOpD5s`^a3zhASV%@?+8BXV{)< z+HP$$o=zem6JJb>65hwbM=wJ(Mk7o6yT|K)hq&`0ts&cNHs#w3!}4>+0BxUzBmCHf z%Oke&FClgaV?Izr>CSlAa|ZWzcZibmAp+m*-(l?`S0STSW^x!X_vYV9JZ?+Lb|9Nd zsReEeszQ70K*$eGA_x&G1JN_}Q87{RYQ#0KjT#dyeYz$ z-FFOtkW9U-J@aZMvd_rAJ6--z3^t8;+!s%e-r|^9`lzJ$MojnCrL|*{(^SM5K79wR z1%6(hDISTn2cQm~MpRV44ir@HC=YcdfE3w0+fVQ||17Sw8E{49FsCU(TC|{%n`a68 zWGZ#x((7uHR+Y>YmhQ)`y=V>G-?PeH+dp*i0(41lH;C43_+Dg-&TM46SI+X!u?6j- z-d>V_YHQ|pu;@FIPacj6lH&sY5T+!0r>0a;i$*44xGZB3vp51j#W8R>U6{4khoUmd zfW~QfLqDYCMmgyPJ3h)~t=twkiD1EJhp0Sgo-%q={StpE&C_lYF3!~2!_6>T_@JL#tq zGS6I7-ATpSVopuu?EcRloJm^2gF1t^hC^4bH?>Lq5BjXdg;NI&K#=TnyU^CssrHVg zH`5zW&9p!_^$Qj_bVlsFJjWMCuov6j5vfl`MXkt%^VAeIVq833u~uc+cb^Uf?aR)b zs+w!B_-tM)FmmSMd#uAEB0SyB4Wu4-rr;>sq9eiAfi0T&N4%gemct-1Tb$72-ifz4J1a3!$N3*;1_>VU;&l=<0Gn&h2#qFUpU%Lg(F+e zmJ|**9R};?s*g=K+jpCtw(9pHYSQzYndIakfu5f_X#XZvK9+yKAc#A7#2U9aGe|Eg ziviFXeKTLWnRd~(gTc-7tYg+NEUycH&?_DFyK8JL^;a)6#gY>K`H7F}UC)@jtj2`@ zmCRn#c<6#w8vkH=m+=h{9u5tUOA(l?wdQ>bR8<4kGk;^~Mf}~Js=j+hC5;Ew>Wsnn zJ$K=#FwMe=aO(+`@LBPk*sM_ZFkbIKR#?;ARF^;sX!;|DxYD!s>y*JV*k3}7BIk?B zC%TWV5@Mgp(^7u=G7uv0p54_UEkE@qoD#aSO|&9h1Poj7Ay!wwL}!@svs( z;rFoZD7cHNX41SE#6=wes@m^4yZJA3U#XWU{!q_t4BAnND9#+vNf|ppz!?>D`SYU* zI@$T92l#ps3R|nIdt8SO>(lVrn=coJk5O|grLv7%0+#{%pa=pgKAge}G$rCH)JMzw zgZ@=+i1G#hzR05v)AyEDfhw7G72(l@50y@ZW-6nID+wuC1r{a=MO#NEris$j8P#Qo z<=rISB7FPy3$0Fscn`OVSKlk!m48g1#=MBj6*SRvq6!od6A$W|nEGvdko5UU!gNWx zT4G+J0C$zxXNp&xcy*jTQIjWwH*~wB6PaT=r7#an<};+^5ULU4%8(AA>Xsy_cUsps z!1@=|$eu8nmFf&CHTe~1H-aki2k#%od~3zZq4^CT?+UMDllA+c2Pcg0M;E+yjI~M8 zW}t;ABscE%Ows{KwxN~`Pq)Fm?amo(YlCHww^;DNDLnBGUwQG_;n+RC3KPo~Y4iov zb1pzZ8)t-lyW`YO{6hsd!>$I5BBK?+1m4{C;Ztc5kz7CR{((+xj<@l2e@F{vCNALH z)z9x8tiz>%E2dO}!!CAaInP}Ba+b7KyCw!Igu*|XGJQ9oHohL)CP-WVJR5}e7{dGa z=1eGz@I*IkdOoAa8cJYga%?u7{P0BnwZ%gJ^ zghmH_(S#O4hEE8qTj7aV^EED zVovr>O<20z6;y7RA%61fsH6L-myQI6n56k;5&V|7aAoEL+lz+c_bj7oXBx_+a6@_( z96LXdE&s`NQ$98P9Z0JM2}BeZ7VcvgS8&Hnoq{Y@{l#ZjnNq*<7qprw>EFKuzGX8i(@k`}eU~H=t zhrjd&2?i8M*L-)PcB_$J2jBL~ueywU>dkM9U*2m+RHDpY(pspw?Jg1J1oMmPWlqhM zYbT5nFiIU$vc>Ou?OV^W3HO& zXBzd)e5yb4;v(H}I*6giBFcM^*d{?vsdgocZ)%p!UYnd9&KH(LJ2GELKDebdVz|e= z_Rd8}E3&xC5%YDPmFqu zn-q_`Y}=TexOCnG*`dR)`$mZeSGOwydH^&^_A&=gP$|p`WCc|$it&sn_@opRZos#1 zj)=X^Lx^d3nAeq`ioPiYh;`NM$G%IPu9_Ale2Dkphu1&#ce{DDB|pf|Mw0z@WIhGKrC!e! z?pD0eb3N5V7k_+QHf~l7>8?F7UM{>qD9jhWraz!__hpv$8~C>`)eyir9az8cq-i2| z7eduL@7N)mhkCX=`aXJlbqIFN*H&SQ_RL1pOmt} zao8PBNk|h~-!+avY;pRRQQ4c*(JK5#-b6_vC<)2q0mhJlvVS`cMMF@%?A0=3IT3%T#)j#AHHS*Cq2r_#bOqefOa_6~i6VlS)>Uy}m_v~+D}3fMKz1_M)v$@eErFLD>P?0)hPD_k!r(%67dl%t5LK_=dE4ld=B zK0HkyBmUkJ{QW_+!Veotxv={@#gCTh7`I13WReL~_fd<;*6ucbT7@0hPrju2U4|N1 z_=uf3(tFdLY8fG816gbQzh`>LX2;%q$^S9mBdr_%g%3ICC;!9y@DgCN61?l+S+SYR z8XPI+)bDP?LcT5+Qbpq`HL3~UduKM0WWhKc#~nr6z3rxD@l*tR!W%{xdNQ0<#$h5E zJ|5+&ZaiY;O%?IF-lb~}e1d;BPoT`VD1!|-ABvW#!}@8l?vWtfHp=VHPw&w}a&~A% zhYN{EK40Kji>b@*V0Ltn$NybBjiywc(=`shBQ#iRE?T~rd(w=t2ogOm`aC_OERT#2 zy3JpoL=wHWW#Sa_!OdSovzV!hVK&{Cuuv8m9eIVTGxc9N5AjJqD~J)SuCN@Us(PjK zX?k;QoM7_l%Ea|;BQUtr?80|<9hiFFB>Dt|=iQ${PULYL)+Z|u&kbCY57U}GjvvDQ zrEZ#?Jcz4GIjOP6*6O4Th8v$0Qt66ZYo!kNGUpVRJoqLQWc1h@BU7DYi(_~EZ*^I> z=*v*3N_*c0)WMT2fNPV4=_AER?gwtqHjep?oL8NG5=ApMr{9lQrlbZVkWZSiU#~&> zY3YiyRIYBH5ccnV$6r4?eI`CTCeG1_>r39VFf&rxxyV!~EJnAFE;eey8D0C;uuURRS@SUjHH2sI&3xBOfUB+E_VG#qx zAMSsX1wHA%=wX|dRur=PS>mvP^}-CL(O5<7M_N-O$$upwF-<_GD}FE2h9bgD&&h=% zJwnMNv9?klluHV_xH9`hbfpc%8~oB1t%O6$Hc#C z{FIM*2hAP_NqJ-|OTl6dDfK*1g7udE9CT!jBK&CHX$z)Yegr(4-@M$)bPNb%>qUfc zrXsS_9e#{vj)?P75X`6q1(j87?b}nPf7v=rl z&z+9FKxV%QYB!u2dwH{`_2u|^rX=fXxvVRT*eZll!zp==)aW{4)D@w|)C_gL_K07i z-^RB&(mgVh%KGlt?98QQ6S)XZsq3h>D74d<$K-*{GDXlk*pb`zLc_Z;Q+}8~_mjr2 z#!IF#RA3Z8JR7C|a20Ni`5+AldS2!FY3FQnGJ3uKUTZJsOQ$vh3u}}=dspfHVzd3t z1B^9`iCHSB!8q;2(+1vVTYjIBQQSK1MQp5^oZPQReh+AE0oXrO=#KO&{Hm5hb)ZZ5 zp5%y*@XGjM=Qn4c`%}I6De=T65m(icrr3D5>)w#1Iq8{?cq^xfcs>UG&WCMw=jn)q zz6usLX9)2JJ`yuiVXq(_PDqh8|^YMM&(iy0Te%eTQ zK+M>YLj5HLIs?@(mZ-M9$A@2r1?$Ml2Aa{9-yCwoeFe0Yrq`?X$yo?DsX8k%|A00* zX~KuHx^bSF|A-fsc0Vf)^`N|4Ng+3lpec6w721M&QD@Jp#OX12@NG65i5{h*s-Y%z zBOoA~g-HGR)R!W~quZ16-DN5?-cj%aGLHU*p;AbISXY2|xBVw)DD2mCZXp~x9X7Ee zn4^Jk(T)61WPk@!kSm(+Qu&iaaVw<3wkBA+-qiSl}= z2+aX*%+N7#v%gJ1lfuB*->VAr=Y8S9MKtEMgP%mg)cyV!gjyTH00b#vq!OnyNgk;?H&LAd~v`b~Z zQA3FDZ{-pcCwrWKThX$85szeL3KaJ}(KVl8G5vOtth(3md)>UxDKjuiMpH?ahD~$2 zJ1}bsK8FRdR^daGJm%q4x(dO+=H&cwZQMa8c+cjFO08RT$qtb0x*0nCf-0`nCF{^k zxlRy5yT0;^OR#yZ-nmT2F&OO;6dusL|%FM|4FDH-&Ui0vbzx%&4=`c==Kn=_Oy{0+9slw*l= z0)2kH1v#yyrT!nzOTIZ>7e*m_RVTCN5JImLZg9i@bamHJP4xjEzyXnlq10#*MLI{b z;fMjED4i104Fb~LQVP=2QWBz!f#g77$UwRzq|?C=M#qc#oacSscmM5o?m73jyK}eS z{eHf8lU^r!z9NA+s>F%x#=roFc5hb|?8IeUYlB#7^(yh;gSYH`c9T@Up!mGf+`17B z6_np+ZycEb#-QG$Ie|iyH8p7-jOsyEuG2#VMKZhYTM&8#g)qVz(~0DUe=G=UjK|lv z;8Fk>f6}lGobk0v@MtSo2o1f05XKo~3DJQZjQO?8(P#0-*_I6rH%G_Ye)s5*mA9A2 z#H@-+vxVOS--RT6%w*fDI(JAY)y;HyR?;n2%gzD3{iG!hFU}Y-ZO6u_g zO25(Zd>SM+_Q^qeEkt@pnx3=^_qkD0N^3DRY9Tc%NF`9!>>?THl zI)Gn1Us$Ph=WMNjFy@+A+(JLj4PeRYM5Hi1vvNAyAy2Pd`+^#FVQ zQ96DtyXf}@s}ZkN42^)}Hj2VwRvN(hgOK1pd6m=k>y)rK72lFE*^Xz!+0@#X@uz{&{rkRC6 zrI%?j?V8X;k@)L3CW@Qio`Zdo3u>t3DfXpm4yqZ>x)-RGSVv;slV_++YWRGITh6+!1`pGs0%FMv({ zK3EM_I>Gr518BP) zOa`+IjJMwPtl~q3B3)ou!$gO(V#-cm{?aS38=f3HG%90h1pB-Q?7DLN?`RD#n%JifA8Sz!cOb0HOta-##mQbF_ zPL;E0Gbv)#3OLYgKQ?E=M58X3GL3uOXX|mh0!ms85bsAYhxOo_>wA0F+w$%|Q zi(Hz4my?OBVU$tk8;sZ+AKJs&cXlaQy=Su4AZ-|}C0`JrCL;Y;hi`!3}FMy+%= zI7d|4eq>=IEKin4Q^j55M($rGFZpb_L&LFYt`&^}tWo-f8 zSBhyp6Jh9MF`#o9ysTYvIEP)_kZ1YjpuYyo1hG`)-(50AaRkUP36CtS{VZGnqY~ai zcyjGL{k<9?Y<59rrF?7J(ogApBOd3mZtY*Y2qR_!o!9A5ONsX`f?GZt2`>zBx50wn z$Rbz9(16C~!C&hUHkXr6?E~UK9j|K|(gUXY>M!5tymb)@5!ye)`g?dSdFnX=l1zo= z+hm^BncoEdkUCe%@n!~sHaYXoje1|g^&cJW%D%HNOgZ$lI823IV^!a=-}62~_;DYf z*^JYpgIDhoEp7SvJHOdk^Gc9U0Q!F^&5rsdlJvaE-u$N2(|$+mkv)kP;%_6Fuul6GysX|Z3Vi_cDrIX+-Fiaa+#{KJ5^t$5vSg+j@Pe$6mnnMKml6Hpyk zmJL4$#a$X{T0|~Qc}e9nVPLD6yXF{|I&zPG4hN%u96WwB{GBaRvT7h#pyyx#S2(a0 zLGOGr8SIpOnugr(-Ec5LTPpX`J2Ja(FJ*05q>|4>Rek!B5iOQ9rm*IwHn4)FwzIg4f_oHfjM-!HHSa(d?$FwBNlob#2RI8pK}=ZyW1P zOi%Zlc{ZU?;WJg1w{3ZTW-Sv2o=0M}!UYptJ^7h-vh2FO6x%aXj`1Qj6ew|3`K@3n zJJq0Jsb+;s(_uPq#LBRx*P(yBU+b!}A{t+1ws_dr3373;82|_ju7R;ZLYBmRdczUU zj|hNid|GYONW#}3T{(eeZq{A%14DbL{(N+Jg2ViWRs@Dx)>%1Qk zX7$?xQ!vM&d>3`{eX_*B%5K^2gX-x!pk2e3TQZcgJ4>5+FFXrMcLrUhN=8`aWx2){ zSK5Q=Hd5pPG4+>4$}H2U7xW8(>+oP>eAZCQOl<4M=h&9C~#>`-Bn&YFe^Iy_4~oN}b=n1*TKxz>ZT> zk7rM&bk+t~=ADm=p5f7qw*c*#Pr&*lCL{#Sb3q)8fjyaTgUzjUt4s;ADya?@FI^?L z=g#|+R}T$p66?dy+4xF(EB~0|l_`cEQsUoj_#yf7{mDPZi1begxjC~V?yI}<#~ecx z<^vVy!E`e}%UU9|vyGaBoT#;!mU{e`yg0j0gS&7x#+Z6`LEgM-huajH?2MdNsmjk0YTwX z?Hok@I3~5#d6V{OL`d`6XsPdKZyeBdOQFeK2;fakgFf*g@K;k+pTZrzDV}VbPc3JbU6eQere_F{P=Lu;2f(vTJ25-Yet4emUSYMO!h#fbhM26^#FWHi#lTr_ETx9sq7YO3BYcJSqYb#K9tob>T_IgA=1{F_n~8o{fVy)^;|4sL#Fu-;~K?Z_qr4k z|K4~r|Cp@lp4@wsJ25A%+}E32R5+~pDfJw6c2mP&^WuZOjq)su(`(31g5u#(wWujU zb&iyxuANptEb-HcK>Lu%5+#0L-7`KLD0EQmN%4Ly=_eHz)dy z+vb;>-z``E;HTTrthZ5XIifbb9l<#q1aNv|#&;`^2f4|esao)jGWM37)>%xR!OEN4 z71)EKIsH&GDof;~em-}hDh8z_lW#>f9}>TgI|k_NcBEv#c4N5~gu*=uV<@N)lbd#o zn8JaX7`91&``7ISXzhiJs#&{AReb}=j-p`$a;9jxCdh#6v^HuSnV!E!EarS@kCqJ&5q=5CUa@N4XdONpP$SD$R3RKE0VL|JZD09FUGJ?P=1DdN- z`Dq{Y@ECMH|NNRO+hxRaFX8~XOa_*hQaa;*bi1i46PI?e1`Z{8gyOQ3`xxWG?85$N ztb?E7@HhUH^8LjheL}xe)!7O7kqMu10mMh-&UbuPijQ5^Y>+TRMcFXuI3ORb??r9( zkgbgLYEC8nv)~g8|8N-A!G4iT#NM$O%mG(vCl?AukM!SJ*UE3Zx3?TR-S=C6Qnt6H zx;ERZv6iRDo+M(P>NYc%hH60#SzTp-4@^JnZ5R)9_SVg!v@c< z3w*gwId_I@>fH!|{zUKM!53nHRn7W0`82lg+8-vnLX*tn*+L(mRWljHM#Y{7cugKSx=4@tURPoO)+o&5F( zUoFW#zW+3!ZW+gO!N>kj)btlzi03J*Mkr7-rf6kI4}qVzvW5a`_@ zZK+CMwMp5xBWf++aFc2^J6ex2nz+her7Pd8V3pO;SWEgY*#dpc1;wh*4!#pNQaq9?5n|NWEM>w}-Emtg-O(%Q0TAB^#CkW^ z^baJiV`J{tR|Zt|CUV!z2>V2~`hS9&DYqC>mY)D=$Dzx7UmBduqNZ{*+cS&gGl2QEko&1Z^h-s5P&65E6Zty^Z}E5y{-mn$GzR5n(Sy zObhjDrm!%nk_gE{f$_^AkWu!Aw9bQP!e68Yo*AxHEQ6wiRDdjzc1y?}X&B5S7RqiB zs(SsZd^P_CmS6SWq(eKUR%OT@Ep8Lk>e>HTUGEG*RVK3(&8N^a`L%!xpwW-wkkE-3 ze>Z5Ym2alawxix$C zO``~+x?4L2^6~SMz8MOJ-M6q*3!hRrJ;KK4_p(RVUD$>Ct-6q?6|WM*<5!OC(A)&2 zr@0|O;Kt(!F%o_hsIcLQvOKH6y>-_Kj|^YQuo{c9e*%8){{;NL1GfTOTA^%jp6Uh1 z5I_Kd6bVCGLOSAn>mlwW7~>(6&0IrOcgDewcz zqtqTN8cdTiGfvNN7-~z-8DG!Y%{l)5`Qc>{oV(EYUiCO*O)i%!kL8x9LfnSD(@~7NiN{)~@;?n7s-(KOaO^e($31t&RZAer6 z^gE5Vr-jtE^*3m-^Q}W({k4ixrH13q31(y{GsJybVHwyGw7{-R53|e+0=70 z=3s|dhj1-L`d0K!{aq5Hm(zJlPXLqp5C3l@ZeOlS8U8K}KPxe$hQY4W4O-Eqep6P( zdcoGHS%eM_`#{DmfA+`>u{@@#{FLYSnv{TmwY+!hzTMWhzcDgxtAfRDTOQSf))T{4 zPTkz`%sSo_W-)Opd9wEWu`)kZ#)lnQ#KgKM?nNQ0Pr6DN>?v^MJ}sVFApUE1YMy6H zzn%b7CX0$Gzc5*+l6AyT)~b>yu@3}@AScE6pRr-AuYP>0{*jorz=VVsBCUTVO`R<= zu;@wo@SNqSI^MGh?@sstqHh>%a2rpU2CQ7Zz{$|C7 zBmC7#FTo4GMS9J=6D_kq7M$;78O`@1lyBfVp(Xy;iouEOI_~k#v6ibsC3cQ;@Z-GA z0s@g-vgn@BykM-*A{A^M|D1U8eI(A(qMSna9m+DJ%H&o6rgu4v%ba#)s*$yD)J5}+ zw7Ye)a_OvkdgKG}W9b`*A)>pQzzX+B;k^y)9j3jI{B#9LU$BIVCM`Vp*r0B# zFbUi2K(PCdNxOY&k0g=6h!dBf)_l$|7!elHYkv9sQ$9*g(af=5s`HO&FluSl8kNHw zh$4*b+8s!%@iK}Y{sOeu;gk5~>Q;>Je7%jc8E$$74K;L$D3EL>3j$>kX99UNkw3hO zJ*iREt=tkTNqrb!GR`<6+Dli;>{xcLTIoV32pPQaIVpbn<%exD93Yc!j+6{{4vn8+ zWg#J~yY6(|O*^B&e?tz@y22yE;fsUDrxPI~g>Ro(wk3&1L34cyE`G0^cEAKV<-HcK zXgX-;7rxyNT-}Ysm{&}zS#$*+HvWtNma93XGSN5=XPpcaK{(js2eR4VzV|S9Z9!eR>Po8ZV>PerIm~LVq<}59;WoTn1A%0J=seE z%kEE1)gm;O&_2H8?s-Oy!HE%+=e4ckyjUpSOX07uN2ZMZVia-9QdDyW@7m1JUu_}4 z2lmsm@%FJ>2rrkDFojrf;~trDdYbD{se(=W5vA9KTHN<(dFYROd>x<8PTU^&Z=%vF zP`~B@B)gx@b63-C;XBe-Z(%GbqRKYLXSgMT6+b0|BP*N=5xv;N>`B1UM(D?H|9bL! zAV=SN9o6<(cp7CTz3%1(eQs2-Kp%+uMmV8|jcfG|uiD8-{}3d*#tqZ6 zwa1{Nd+UnRghOigxy2h}nOK*EQzp^{Eg0yGXAo-h3a0gZG;@lMNNY^p6oa#1VXhva za&m>GCg?s&deaCTwM$o-?*P2(gVCAS?X&tQS*f?A_>7;pFN3^nc4Ot|TPoeYG)6)O z;hHKkDsAbgItVk(_pb87_r0`8zvM&m1Ov3G@ zZ;%{>T>GL<*$8SK`e@heSjad*X{o-tY|5|cdDEfH^*RpI4psb>(v1&2IZUo@s1-)<*WCl_JRr%z4! zQ|#GG7yk}P0SF$rHRs==z0bM- za^6pGuKgj|d#zbBvqpY1dnN4c8)?kvFP{Sd08CjK2^9bUNdy2uAV5Wi-}&AV#0&s{ z1uVqH-^z-ML*6>rnp#+y000_6Uo=rv@#Sj{lZRUv48QYkr#X%&JE#Owqsp6phbT+n zNIs)}{+a?YCkY@bA<9BQLFbPn2_$F>rJ(qYnYDDc{FHVzvgc@eIll}4d_CO#stbTk z7LAXuvakbiV(p#GUBN7^ z3x43PT;z)`sd?r90O(|YTYPQ+08gLe%Aul4ZLl0l-qOYT)yf23fc-HM#ftm@#}QBg z2OJz_)GZT{%J?VY4d7FV!jmvt@vjwOm@(rXrma+XBvv8Klko6~PebVO^|E6q1-3Zq z;-H)Lu%!!nc(ra%=;7Fbj8BLnY60XLhtV$G2eSh`tij=~?}-vJgDWP@Hz%Azm9oNa`MFlA%iZ7YcTTshf4Z8NrQw*koFu28X&GszWOWUB9g3FQSQ@!fA_5Aav~j<_ayRzJ>| z#tnOGgj3Zq9rP0|Ta*93+r=JQu10LEtc_H(*K7~v;h>wEIBdx96E)o;-V-xHk!*hW zN&X&8YPNPC-a*5+a6%;fm6C43A(F{|<#7g>xNK~;7BgI5rN<6HhB-_qS7*O4 zhQNrl@B4}cNen{fb}x#L`mFZx_msuPyj1kFEJQw3WKoevqRlJR=!*=QjRQoLPFmnI zzZv0mg(;5!5kxWlNAX42j{xhvHncs;?oNK7G(Z~^IBW;ISy z*4N^C&`&`}@L&nvF+Z_%etgm))k2K@8pS2LM|p}fYmUW%9V1-=Wq*;28QV08vn%Wz z`BbykVSOV{C>jR9<3W=G7W-Is()AQQN)M*wKU#!iw%tEz{5V${?U**a#lCw+ky-z= zC2=67E3qi%oPC(Z_qI#~)fv1Zk?=PHRpaC95H!Lch_g3K&fFD3 zc*yP*(G{PGyaPd(u2Ts)FhuUqsTOda3S{>sqS#;h@_QqkoCjjQbUz3ZwZW&^$g@L2 zpmLFg(yJi66d?j5I2s^vA*ioBtEX_m61{vyO67k5LErHAv;&YJZ?4esAnbO&utTWz z#~OQP`4EP43@5MwDTZ>`HL$nY@j^X`)!Yi&9LynIj zDRwgEVvZ7zO(3>8W?w|chg~PCJ4U(#<#^r}yd+*TrUZV*-f6`m%z!}OtyRfth2GLF zWXD2+RM^RDhoJLZy(iKRec{=10C|t`u`~?p*;^`n6ge<;^iQ$m9IotE<@vWxs(c@@ zzk=UK@`Znt77z@4DXy4HIHtituZ7AOy{}GROUwr#4R|AcB$=4IH^#U_b`HAbbVqLU zhZOw1{%hG6N{(X#nTPT?qx7~b;3}Uc%63rMS>zM zrdIY1)yr3Ls&ahN&5G`dS_WAx-&m5^tPDfV=nQ!J?9vV6SLu@#5+KB}ZQt!T5FG?> zkZ-7OP$=nh5py|>A;!qY&y3O6A?s!|h;ck|tP^Sl_ytA<;R@JE1<7bbxI+a)s#{K5 z&$qa?XonmbN*M+jQZ*yR>@d ze(-e#o5X#nF-14|VaDGxHOkfV#!%hZ)lA8#!k}YNsNZibW~Fiqb$e#i-p@E`ot9R( zkkt%iMz*avB0A#6q{l>A4k;JZQPhcU@^(PCPjw8jC*QEy^zI7Sie0r|lies@`@NaG zWwJiGiMg`ap+BQnxclon$N=L*K@>4A!#5Y!?s1xe<#_!6% z)F0WOqf6X>8Yqlfh5iCP2>r|R3)ErMGc;|q0d#VrLn1x=SbTfD?}Qe(ZcsV=N!&#m zcbQskCn<%uLwZ&%GZs~aYe0L(6VM6niT2tV?q^&w+!iV=>H?}Jsxs<#R7&zfi4^iL z}Gre zyqP$yAmG8@$FC;PA`qhg^va!{Otm$?F(BfDmSfcpvd$9ATWykT0uJLd^7LZ#B9|K5LxtWyH9jW!#rS1*u?Db; z8;XB5tXn0fRL&L2)ykDMwpf3=F10>NBS+&DXBy}Bj&y=!V$YP0UA{)p^kEC%k^9Wy zERm3cu#2#e(Uf75@f~A@wqdDN8J3n{)m8&mWqCtJ)p)IJ&F?CcO6MxZ1}|e;W9bIV zhL8j6{qX%v{!o4izFHf^)KYE&Yxh;U-{5svAKKo=j_T_9h~}(Y%NZk)8j*e?a^g`r zP5GT}W|M4FUyE}Kdy}nwg=^*&%NgA{_)PU&;jDGLZ(Z`Nc|Y>Z<*NK5W8SL$=6EZN zaaY@+0pm{Qmg;6MppUnbfEwSven)3N9AU0z#pE>O0< zLL^@$8Yh$u!wBCG!wr@DUHB1mu+)_&E(ayO3^O?tq4&zsD<&d=zYF=8^5zb!PI-?F!3b8a(t_$V;h zTHX3Z(9h#=i++=6oB059#=|x9wEd@7$+P+Aw^x??6@0#eAUA{Stkte&v4rmU?h}f; zoCI;PkV}$Vmzk^MbfdbpT*Pp9YT7Ld8F)~3JOc)d&Bv(&TcjM%srgmz0>-#;rA9E2sGycq!2x=E`}<+3@CLdTGUG@oX$;4 zE|BVx?hsIfHD5EF@owE@5DhVZ(m!o0^`?IKYN24fziU}D?PaU8BtVP}e!AwmJoqUw z!hhPbCfoJ>_SKi-s4K!F6d|iemJ`<7^);tM+5{zOA$hO%^Tcs|FZK*}JpCPgHM1-4 z%}4j$)VYR3-hrmXWy*Huk)xZghg=&`%hf5R=*+nAF!{#(pC-RIFA3(qY?t7al#HwL zISUeqK(Sk`i2*f*0Eh=dCm#S{eCnj&Kb zFG)fB(P)|q`b?d-4hUTtGqn^oN9S`6k`8W2sJLJ8@A4$`Xt(e*^0hQIdB9-q?rv@# z9=4ZDYX|FXlM~a6qsbqSY;g=gMPyVpiY!T-K%#1yJCa+zedTM$4b_aOuMtZ`aSDa~ zF9+-gyrPce=wu`0s$~fk_1?IBo~!k8P0?>QMW%G9FaJPb8nQn&YB-!cH=C?oOaGxk zk4$>WLCC$LtDXI>4oiopQHKg9b6F`?r4r^){4rUp$vx;6CsHo`b$G7mfLwHRnn4At z(C>G|Zm;v18XgVA`+mnoDw@rWESbL)xccpX+_xi-#Q3vpHBo+EYmQted0*rAMq`2J zVp~b2$Jc?c4QpF)fNDFs(6@wlRMSd6Lw*PG>^#Wc%IXB!o3D;vuiy1dXVgYJMd*3V zU6h`=O@s$9_vj}_*hdeylffpq^sefS);e3#Z(`5Z zCo!FD|Ku5$adxwGBW|%eHmWYa@FRnsv!ulG4j2Pq{!GnBS*Jt^Ly;9z9&=728VNR2 z9xo!_Sp*v@FmquQ`rdsyqEW@2knzLF_&_A3MB}psOYoE<-2=>HW68cDFQ+&}Y5gF? z|Ja83AojtKHZ~v!X^jfa@jI|s>vss-@qpBc9@E4x3Md9h z3N_5WhUb>}rIzw1qV%taZ#!1ZFA;H*FMi&}YndFFUQmh}lzUixqR67Jq%ps$uQa#= zNxnosu-sX%OgR1-x*;=47ilhcewSo2e9=$kup7iJS zPoca9v;7|!!ww@{;x54>Zz6T_b*o$Y&VW~T+wU$vUuIu15_v8^ZFcT=1yL+O%X?J% zQm9SyqfAnN1kmqD|9tKGo`6iyVgJ|3kI4X9!Z&i$HoRZ-r*)oc4fB<+BW`A63cR+p zMt$0gye-Vmdelx$9=NnTX1{olmZa}acUMe133hb-H2x*ulI&BmdU?QqbQF81dgO6s zCTvauV+$o!@z}WIF>BnC9sSl)*lYG_R9By>qtxBm(&{ntl;`1~FKkw}sd(jzR;V>) z>tW;O=9@mdK5qNqsPa}A`tfMAytXmB48$ zp{MHO0V1`(Sx|Ejd6+_|H*P9Hrf78mPO;7JI5z$dZJYR;&>PX9mwgh{#3s;9w=dq4 zT6Ip&+?c$I8jccs5ia#nE#(o1)l0sQXaN%9#FV1Byz4@7aRt9k54WBZg2T5H5=$>N z?qZtJg8ti14)VjN|Y>FVRltT^F3@3C-!nn0~=3bT!R0(=s_RV>FFEXiRtXHj}g& zDGyydbVK%_I{kj*=#hEUqC8glH0D{ z2javAl%?SgVUESSK4)*I;V0sb@iNX*WB@HAz)l$Gi>^|f!2l3x#cC2h2iQ>|t$f8a zIAjCpMk0?977Jg609d3Bqe!!m&nd={!h5kT=`iL{IH7e*+(~#-L0+q*cBBi~K9VO{ z5z5daB$e z?_>jM9;xd$PE;AtSlQS-QDny8^$)nbegY#qy)%7z-Ksr9!=AoDoz-!O@2WLfOWmx7 ztW5UT_KA3hc%*o88;^B37YY_^-CRxv&xE#qtR$}cFujGC(=;;tVoIYhf_%d9g1ATs zD2VBQrnnLPD&4F_qs=8V@0IZ;GtYXqbMtiz8eVh08H9w1Y z2dd^L(>aMg%I~VYG>=RjeVJ)2{B*mPycIE3X1%0duW#K}KUTJgXYV+AP~F1mrTCDJ zgpEQ=zMi=geduv{kbk9d#$(~nH~WYn%y{$S{{4-lLH#-Lvd$0BUjN(C{QLxh<%?@5 zvXv+X9Wv<(W?%?DM4j&0SE<(z%q-kih#_4et9!@Nd8XWwHgR&QKTku;ZtnQTkJxl2bK%Jw5=xW8X*z~-CKAkOIb{@L!$VN6HvQ`iYEjQ`pQM_&mo z4L1+%6{;7}A?_^mE`7o4H~2pEbk9#GVjFgIak+XUF-I( z@n^2wS7SD(i@P0hZc1fG;!k0I!vPH9(_| zuUWX;?k2kRr`Y*B(lQU8_%5t3_@`TUv8RI$goz1-87#|4^sYKM?4G^IBE#?_ka>CH zP4f#ivQt9?^D+dxTUUk<`pH3hGrK&eJtu$Mdxz~D6pUsZ@_k^T=X2G_4BI|&ngA2# z6@b}qw7Y{w1D6TZ7fL{d_0tfJ{v4_yO$o|jRRQ0leiMAQWvSv&*?*<4@ndFa#&lN6 zuF>%`PfMdpBWGjBS?!7GvF4d0MSJ^em_}&S2gt`90VDH`!xxF*FC_8qzN%Z%Ci;V3 z@%k!xbl+diLui|2%HBQ16~rWjxMYuHk+rl(iw3ObROQMByyz0>UJLsYd7-Gy--3gZ zLTUHaZrsspU2nx=hqK|P6?;*=$9AfN;w{&XLZyO?b&-UISD?`c?OKx|87m0^u57;V zJU8z@s=VZCgTyhGScS-pB}FBhS6x@8SlpH^zW=e0vwzP*m)r(+ ze!igEP{Ql->xtq<$T|y+B}10{FT$HQ&BR1n58kKTy=w ziAvPf6O|y6{f>b05Zn8s8t-WqB)dFU%tZyaw)3MW{YR8V%x~*i-OiWrmkQ|?sv1rj ziVA$jw$@CBA8d_Gm|)g+@b?S=fB=jS{?*#V$q)jwwz6^Lg9%dnX9OSo`=8s)6p;T6 zak3Po&`^8}5w~?Pfp9W$FtJbwJ%>Ob0uCQc`BWsN{&zb3mmr0?lan1EGqbC!E0Zfb zldXdpGb=AIFEa}pGaDNtd<3JTn~jqpjM2uC@_&f@myU#qqp^d9os)&F4df49LnB*f zCqW8|KMVc!`5!(_U>1L`WaIe1V!;Ju{_}*Hm5GJi~|8wR)p8W4j0p>pf{6nDs(bj+N!qp}8T!8s6 z)eAj0R7n^C07L+?5~8Xwg#9)Yr!@8Cr>6)iBF)7%Y5V=&H~aYfdFnFM&>*XqjA)f8 zZ_Gm;db+#252J@2d`(vEzNt(=+CuPE(w00Nars?v6C33dK9tOSE=_)V(6LWfuaK^$ zj?9bQ@)&(FYQE)Vd$Yj5zU`5@y_71`^g)gSg7~j11_^lTkQMnc2Q}39Ul$A!SL7w? zzs5okdBsH#>CBq7FbNQFK>xVtz`LlsdwT~_{D+m1#N2afypH?l6H4T}ifVTfBEWxM zd{CARK@mko#d^C{v6jsQ?fskW%p+jH65&7S!D)YchA6HFsH?A^JKg+YeX`b9Z#tZ! zv-7S_`CsHDvheLoYnnUz*zhlLHy{XTStR>T zoSOe4@9@PJ__qAAb?)E9d1c^wK;hR_{1?-HI@B?BDA^9)*cQKvlr8Q|e0QBDMCiAUr=EQ zY{ZX0^JImhovwZh{!4z4U$!V@5BOGIKAcE6QQx~Ml9YeS`*tGJ1;hojBXi$@iVr~o zUlJ3SWoLI?F8lZpbKB@7ww?A9+s-I?pT=P!n)im{=zU0c9N~Rz`hjtt{VzR+c4pDU zI3tF#)J>MCYa1FGYKaDjbcZ{BgNDrDNRt@uO_kL&EV=)nQAmopyfr^sQM_&Nxof~e zM8$rqshO;p%tq~AtQY=oTf`7W)TH%A^+@G&{;HTEFdI_Pm)uZS=XQi`Xc^cJjn9Cs zp&dQ@q)+@r9P9K;S-Nj|YWe>tl~>GQnjhty9aZe-)@bIDAm4bM@c75TE4Pu+QSPZ{ zRW35J|Jr!C$u?8K1t}^SJbjT9Qdw82iP+M$iYdnPD(v6Pg^H*HtC@i1HG}QfYvEGY z^QD?K`(xtRb$#JP^Yj(1MrCDXE-QX0x4H{_E$T=AN3>7?uv!f;oX$V(;nqDXVC6Q9 zjArFAjEs8Jc9rq|{rlPD)t*R8>1eVtvj5|AAU`Iw4`l$p{mLFbRnPnD6Ynx?l-#vv zUrS5R5yLn|1mgecc7MJbz!_Bo^wCEphTsc`!L2e}Kc_?T-|i`qC65>&1*j6N|NQTL z^+i1o?#!BhR?Zzc+4g^w+oTA0hlV@-GNOO_uwNPl1R?(2Vp;#Ee`-v`1}_FMc<`vc z_phZPg{U%sO;y*Ds(%rWng8R(El-o~|FYt5ui#$HJGuC=^j}6Yk7-zcBz8Lu++$67E7Bqv+@;%r3G9T zXWN^z-X7Z?IPpE9znuP_Eh8`D$7WHrqloiO53yKv@X))cF9T-N5=oq1$?Q|mIl}X5 zxj^ZA&3j8cmj_bodI!bV9>iHGe_MDb0M7kOk?Yr5z-IZZs#hkXZF8na-UbN@DZ?qT zl{b!O2Z6a~)=O!DoYsnS-G%k@UngZPEn-o3ne=s;|Eq15b2J$M=7W$LdI-qxR?0CW zGtaA$$;3GA%ItALfLJ@W@^{>sRfQlfm%V5Al(o$4+SQy@nTHzgKg?+d9&(E)u^*@r zHRS=(O4hoA8J_LK!b+L@z!>eLcPnbAn8c=B!(mxoS0gp?o3q+S1^W+Q4w0$<)&|HA z3$9GQl`(RPm^NU&wfyYu*Z8(uwVyD-?`|H)w}Ffm1JQ~z?KP(i!ptT|42p9o^qUBS zOG~Q5f4LGe+?2*dV%3`{#uO1PxeN9$8tSzzOJ*YkPp#(gdzFl&nF#XHQdt=d^ZT~A z#ARkrvE%9|%g|K*Da&;zoQO2Txg4-MrSmpYR=bwUWPTo3jdz$7##g*P?RsrjbIR60 z_6;rfL+VYPNGSn@)0=
t}lX>>VNI9Ju50owW%6>J`6nm^G};ty6OMtZCG)$8m& zbYEt~nn~skaj6wr{YH6Z>1gz?5SNwi3yhKSN5w!y3GU;~EO;kCX=!Q*c--&JIp)W!7QQ2{O0+<-{=_e_}($=;WHH zj6wbxpiDQDO+diPOIKhwcX2sqxQkwOLufrlbp&N@r&UBCMH?TPXftp6ulUj=4-Z?e zcY2KE62OECx!IR+OIlxl_Li0`Yb+1#P$6r46YYekXyCDJ z{-I(D8xe87p>V&aPIg{3@ig1^9nIE@mNw@vG>t5ctORKDQ&u*#ja((R`@0{#X#VRE z5X7cGNXqqAi;*-CsHL+rH+Lc1kgGj-iuw z0yibh3;a<9pTE<1C+H7OK=rHn@Etc**r)w!XyvzNn|mG3mYSN{R?ixj_1p)TW4+Dd zZV+y_X@A6vmi+`)94ExgnSzm`dhPX7u_)lvV88e!hYTMEf+eaEQQ zGnHK-MNr@Cv^r5R%+2O?n%UBNRf&XmVVc8WIn%^8MGOIur!~HgpI%5IIhDu`YWHR= zVq~5X8-!^v3<}9<->dJ^YZxybOh@5xR#D?n{PH*G_d}qJnQZB-Y7ZIXm_n>tML_H7 z=|{CPt^7FoxtEslE4Z}UpfXTrtyr2lP!s32%ZhGb9r1^@jskTJS@8|Iw!tY zQ@h2)Ym|bogXq`H_)5D8IoiyFPP=LTR~CO5h=aE457>KtFJHdA_kj7M1{q_HwH&qYi7#t(1gOJ9CR_$BT3@v?S-39^ zmTi8o8Q)xVoFQyE^QUP%sKh(G&$@VT%6SNR|Bp=b%^7jArs&p>P;AQ=3F{bYJ2^S& zZN@cqShT}s3@XlJ=K%=h#6z%xKy=H5j5{qyIzHq#C9^8#IN zz6&oQ0wRozBur_}XJm^O3FUu-PCq@IZ+r;&T6kQXsC$0L$CZ(sPzS3hku}a&I_pnk z!W1kLs8%#^gN{M>BYqcqGsHH7V$Mwg=#b05V zBIW>C?eaQ_vD_`N_l<4oMHf=w$|_C=jZTRf4tO7^r8OtWmHKgLX1J`B%8=5da>#my zrGcOxPlQsMDh9^wb1n6F(6FlTU0(^?NBi|sbY1^iRyY)KJBbMuQrEp`diQrCI4 z8hZpp(?Q^N*Na)N6Qt+NzWvE9%U1Ho01Ng;D4X0bjK9n*0|bYCXq=0bh+YZ?#?CE( zmxp3AG>YcJsCBfGw;-NvQ6t*M;Qq^D&}S?9LaM(r1FsxBGf4C64UgC$5~l%-rt1xR zP!0EHZ^^YZVlt~wjOWEyG>`(#WTAGmi&tOM|H`Jze}JZT`=Bn+UBbY)t_jq5396S} zKP|QUFxvjrDoA&A1ba;(tDx*vPtAr)ociC0#4n9{jJ@QwnSJpp#h5T~N}bvoj||cg z=BM4m-fCuOX;UN7;T@`oUvKM*X#Va_Q-lvx=X0x^|5wZ4134Ub@9*JF(hZ>HrSZ+~ z072V;NRsa_M9_$ZT3z419>ldFz6s=P(cPSC5?5~EvyJ&jd9gtOpRKd+T*qsP2Fg%t z;5Bj9PTT9Zi2uYkb!4~oe$>Se9g~q+Q6r3BsVIMPL2c#@fKwjujLZG6^7|X(pQ?Ux z`J;6Lp1EXJsnRX!{PV@B>Gl3|z5B6^YL%MLMm1{N2wF8GXj#^pSYnfS|3xw&KOuOX z@=My_OBw2UpopXVpjx?X6DIo5r|=<~M#fT)-}fhzopGvKX=Y{f!&A73v{zi?*(T^y_Z!3qSVTVtAoOfIX)54prwU_BG01Rw*h6 zK`NMpST}uTMAVeYnmrh)cX0kmuBEl%Vr{t$%)TOEba5kyq=;wQtnYHUvEB31&^@xu zC;2G^)6*AnbY7niJ9D`MSvT6}B%@1T+x`l_yM9lU#-_|L8Ww zSpLCkWdoB-rPO0PK-ozeqKqxzb8WT6gby_Lj2uad1g{7266B~$3z$q&_o#gli3R`4 zu^U)_%DUf{bsRs?ATm=;j9=%|Xw7T!UYpoV_$w4BQx5m5Q7x1^m`-wzpx08zHPJKw zS7HPlFv*_^N?N!$fmg&pz70M(PKs{9oK|%(4TUbQxUy1EpX+^5x$G@Vqrz52>mNz8 zgwgU;UNuz7m)s3I38(x=j4{kVyXBiNFPX)R_KQ2us_hJL;^TH#KbcG*BAI)t(|)J} zoetfdi=TW2EN5d8oR?>A`#|n}o&6;~9#*l{ zes^ejwl!RHvOZu|L}h|U3qioAg*N~Ud{M0|WNtY{tWq$i0xcdP%6gSk9X(6**UIvmxH{ zEfIe%p&U~OZ<~OT`CK_3)1;xc7G~@PZ#HpR%~X;)?|d@*#{Dbu_L%Qi^tO49O>L|t zUB_6TgY+Iw8&~U_>5Lek=1WKYTA>p@r~c3Gy%p5V-E2s%k6SOv;z>I)T3`I2S1+%< zTJ~9%iXyQX9v4-CR6G1LO#ui>d zpX2#4YS(M%>ZWsF4nz{0fyc)Kab{P%@hvSatJ^v$>w#!^t@axF`nHjgBV~uUQbfpnCI%vBBm^%~xot0z>HFaaMx=#X!6xt~YI{bj zzMfvY{Q5l6%&?DtOm;iCK0ZKMKD|Y*7AM#3a(}jcNqHStsFog_0N(2f!M?gV9YR8; z0wPaOOgW+D#tU`w`<*B@LLaIvCTMc8Jh@DV!1Roa7dOE!Z++%)l{Q2dSytdE`rdLd zYxo=+EjM|z7;i}^<9FuwI9hFc`zq!_cHx)s!6x;LmrS^iw^H&dVyk4Nh6Z9*o--NVpz2q4mIOzok z2|s`Y^y0q<+^wVOCClK7Bxe-~NMt1f>uqh96Po*j3cldymp0OkK8U!cq3xOA2zBIi z$45H3Ag|i)^9@AHp9>E!C1l_I=|~y4qAs}amAPzwQFqVXneKS3BXt@RCG`$ZV9+#z zcUvnKVe65X2ev-*SVGqZ!t##+pmRtRq8+Ns$X8t+s>1^E*M4& z-4=ClftA4>9{W`xUR&&$RncDi#=#mC4;K|a7Zkp1Zv;+yNhhVP79B?gUAEI*=T<|= zZHRQ8Vmo{Wp1p8CnX{~zU36Wx9u>MP19OXX}xa*}AsuBnFhIeat!l&$Wcicoi z?3)SKykIwVYTT%wx2Z|BY5xATq(o31Y~WHsBPjZtakQXm!-B&Pte(`XVsazD zY7p8+Iv4yTXAMdw?=YQtQ zA53IE)~376S?K+W{csseXFAo8K0Ga!cj3Odt;r&9wDC zOAU@OvOXcbUp2#jmAf588 z2IB3*gJ>NRwg5|1p1KdE7+C)NSsKW}Qys2yEB=ibahF2_^`aX-JyT%*^@}Z$CnDSS=p2=0xs;X*g?#3j>3CWl6a^8d0_aqEetaHqz7h#Pe zg{As;Zrjz;JnYhJTFKgu_Yv@n!--882 zB`{T{z0GUDFrj{qvY<%>mx6@(5QKh?^U&GMjO(1MH{Sc8Bb|QC1a*PNEx)1wtemX%D3E|J2Lq4s!#ITP@v!5gtG$ zGH9>5Egp%*4?HD-)jLqa`SRJQ@X_=#tKM2SzZQ)#KzZ~*X8z!m}z=crdu`??1yafgeTqF(FHrlG#3lY#fv8mHMyy&si_5gXnl)%c>; zi36-1;6)mL+MSOCyu$|(2Od{)*(hqtTL!ZY`CI9nw_lMdffJj^(IYq_1R`WGS|PqH zE-atiu-AEoh({P6ss_mBUlEvYv)XA&JVx4j_UMOXhsK7-Mxh|ByB{tz)h~PBzVKb^E}m~c6kOC%=)HLecx zY$X{Bpw9)YMmGG8Pzdg}e?Gr0CN_vOiq8JUv>1XaBNN*0+JL?;#zYuM;9N+Nn z*?BPP2EZ?$oXYz5DVNX6@mmXuPiVbupW$>C50uA zH6b@F*%+e()}4foY<$m-;cVJJDtM)18_MPp4P8nG7+tVg1Z{%&NwUzm81W zPa^e_0;+2ym3b*S-8&|QArhg~o#hV*L_0E`aY+EN!PG%S%HnM`dv4@7VyJ|{yoQe8 zJ8zjuz&nQ;2X*kv zvq)#zkzN?ka^Gfli2EzDth^%c5_=$rzmyzJ-!q7Mo5kEjWFP&FLbw-s;ak8-CyWXM z&t8N)#+=_x#YX~V)m{OsGE9tvRS&EbaRu?zDd0#8(meqa|8mmy!xQlN?<$3y&$ zt0w@&#X}AKRm2^>XThzBaU|& z4ATtlyx=MLYE_1zcVNXB6PfG_M6LTF^aX}yE7xz_3vpD5XP|ze8{GO{N~*cwad{1r zX**`Aj~qB}g2snZQVr;&gpc+)k=gqhObjrL&EFv#1>du1PB*95y4{a3p7MJ7_bSM235LMD@|L{ ztLHk1KZCTDI8^YkPzMOqBVWp0g5@_R#Pm5mD0(#|+Od^O8%WS18NBgv=GsC#h(OO; zc_vwkj3A%!E4`UTIhLu*zfK{3V2-sN&pvi=X2r1|xE6lIq4yP*L+aUYi@1IcZ~uzj ze7nJe>F6lm`DU1SBl*w6G?;NB*0)e zEPY;cZ5d&PD`nA)Z(7LuQ$t)L9fTQ5KLs(M8+ZniTD`wHYm<>lq+K=1UO47m!VSdh z=SQ}avCDoCP3jEk5MT2;Tz_2TeC%lxSg%5p;xO{{WJ$rXQ`fPVJXcxfW^gx~B1cLc zqfZLtq(4XMw>L4#*C&al4Gk0>@nFarfQ68HDWJZrSncuxcS6S-emxsS67Wx?^c-O) zF;IF~6?rfuClc8RkGX}T)IHk)I$He*3m~!{=Acm+u2{&4LK|Ibpt%8q*J)hl0`$-vX-RT0nEhbwMKq@WD^y4?f{DFPYuQHRbmWO7 zX=6gYZd*Cks+#ash(ZeGrc?tZ`8YP^nj~? z7;c_QPF{*2@4lL#%5J+LdVeG(Bp>N{k}_#J=H0GPZ?fxSl5M>59=qUopuywr&@Hd- zB2<0xtheMCmKZL$UJ)`my0s{yQ{^fKFUrux0$Ih0k4vG5-@~f{zKM~rYz3IbRsqSo zk-pQyB)*5R_IcDcu+y}X3!z_xO%WRgy~XI}zI{;<5JG$F{f%}>Y1LLJnr1f)L=_l2 zs$m>bnJv8f#=`=8)ylKbAW|g97BpdYH%kay#&Ae$C}2EREd(?SBnpkGi~%7GePq{8XEHpmenZ(zhCW0zONbdSV!Nc^P?fj$Q6qt;EXg9mRUs&SGpHiSu^Q|<7%54y7^Gsco zd-roC?BLhL3MtKz(0Z(6SWMYGFM?&xaYomRs-7$4a?eaPo{`dbIm3a0 z6l`vo=ow8JV>12N#_08-)cqJ_s|p3B_#zxBZxGo&C5sXtSs9!d_^ven$a_6RWdLtj zv`}=ymN&%4U#2WT4c^?xHx4^2*g9uY35cvqwUC#uTGx*R&D%I-yME6T5b;9PPKF=X z*e67ox&@u~)K7zlVJK`bc5y3!QiSzL$Ue;yNrcGk=sz{j#JXAfzWke=T~@N2^-$AK+sTf55O1DRo2cdEImrSkU;1lAL(J_As?a8@+A8eWmaY8G2}g8 zR~Sw+f7k`ve&=P=sMknH_qZNx44I3e({%lwIzx8GcAwBSa=sEW;{erRY9@TG#U;f} zMgbcesbrOE48En*0!gzRFaSXaoo3Jo%-{`0^05X~41sqrAC||a1WT4*FNk2ZAZlGS z$m5ZeQztvDPE4?e-K1LTQ~EsWqJ%+p@F$nmY%!La@{l`mpU+3|GW1YTHSp&uC&fKW zsMRh$Hns$8MX`I&9~3@6biBn+K*abf&Sl_i-AjVVD*__15YyVW)=!Ip!!sTj(_4aU z-2S8VWYwMLOu-`nWHhvTlK&7vq<5Bnzx?!|e|PBGvFFyAP$&E=9n>|_uTYD%=(Z?r zs^_iKK0%i?Na8zqBdndqUC`N=q#EyN#JdXeQhv$b->9*Q>slVbpJK3ApNH9V22&G@A;V>*iOeI@#FN-rLln9~-q2UI5{HfY!vw(6H1 zy81#9Y%xPRbWbVtM)<+Wwl&z2B_cUiO2iPJSyAl$?SpZ`q3KMl;p7(}JIqV;U>2x2 zc%e2i*)|Y4>{RUW5%UV$x?7{yvVU8bdQQBBRe@E*f>?@!{kU~BCEtL-k+I)mgk-7e)`S&N_3%y*O{^tHBj3umBAz>TZ~5 zME0mA&qB28t8`H%7rP!%bVbW^$u3ZrugE%1F9XSOsjk<>q~1(tIM z|G@AziuIXxKgBdOPxD>en;}Tn@h9aYm_GppS4MYIzl&)a+ZLD`R(oAOu1ACHzx`aw z6NRY_p3T)a1};#AcfUV)n(Zh7nKJE#D{w{xYJ#JiS+K5!#+1%c5MR3ALl z$KNR{&J>Bk`{`5LR0}ROHi4J2?-$euA3|0~Wb6#r4=vYw6X`vOL$YzT7icA4zx&f0 z-}wv(W<$p6XIKj;i)3}@!xI6ggLO{=yMnVrt$njUWi_9T@V7|*NNwWx#U>jc2sD@f_Zmm zUQ{h+%l)ag833ZnA@t#5f%yP&FVWI01c2)=wmp*^5u`k8Y}6^kOh#rFR~s) zIezMgCPMh=@N&s$;={`Nxi)IcY64e(1ad&lLy<;i{vTCu85QNb{%;cl3{o@XAi^-T z$%zczxQuH?^rGt&fIau`8m$x zLOnh;W<0zv58tP1a7tbIXX3JgYKmOyOH$w(>qwH96}#SR0c!q}cW|G`wTBVxI!qZ> zG&UtKO_4z-#Nfm^phq=<%KaB!X15xx5Z;Aat)cD-T zEgGygp~`hf?eLqSJcn|HRIux}kF(6FoK6kJTak{ror*4uXm{H_s7sL#E?!e!Df`8H zXopmQNE;F}iJ`Dt*B;C(b|bCMH02+cxraXwWuNZlP{HT*8g|0@AQ*&wKP@{QK%C#`#4tⅅ%v0Fz%)c)G#YbmHu=Ck| z#oR~FB4;Y&3Md=m^IBIu_f=$;UzORl85T}_ohG~MY-Er{0$ z1r*zCLw+s>e!L2;`2as>POM2gg_4vI5$?DPoDnk%!|E`c8}hm%kxk0PjA3~M*YbYf zo{fao4S!bs+D)MfW)EaH<9RdZz~jogLZGRX7SSDJ{L}}gJij+xbl$g#uxh4ju)`j` z^QQ?DVlK#jI6Ww^#KRfY?t%ngqh{db4ez+-bh{LDrcQ=Ah*@2ilJNPTtg~>cbRRO{ zqIw@8VT?0svJo-x^8;qeCZxC04e@&rSs>Vv;yQD)Kw>A7v}>T~&n4545$H`dyUp<% zH<>S&2C4Hx5~d+l5+^C!ORpB$=Eoh2W((^L>iNwt`&4y3;6XFTjxXaHff<^SMJA6X zIwsL2+6y1)o)uzlD%08cXyN8eplg1ItwTxBM8h?qggNo&;M+EiuiF@0VjsiY^4BG9 zB|j2Zy4`m;JI`HRdA2jJoP*z4o-zg_{Y!`Q_*@n~K7SG;Eu=5T|MaE;SjD`Ah#%o) zLF7}e+`7Tfg%h&QUyeDOD-~x>7j?-VP5!mspr2X zd^m_1_t4p~KV!@4Mt}U`LL%XOWb|0-4dMHgJJHSXYdYR_G^dZ6_$BA@6D+8B=)BBu z_LgQ=-y{~c$SbkFG^BqbbpBV5S3S9cGn0|REBFT8%1>h)iQRog;{_^d9Pj-$|H;=) zK6o1EVKVmMii#YYe$SISHzLzi#)SxmQ>wp*9ZKMW%l!Oj6Q1n;Roe}A<%63UIR6f+ zCkc%&k+pOZgzGiNs`#ZJcMfm7qw9>_jzhMCS_?-$wiI=#bpP{|M+K_$Zc7I_gClO73DuT<+8Q8KRcPq~?VvaBjea}!iEPCB z5b)!lZMo`96`Z`?&>x`xms7*ufG`85f5KW5Jz4yLjy_ zi+E5T8{?Me3|pS47?VO$qMHCnn0$LV0GKU4_(@cX1_W6Uza;}X^D-IU4(UbGWhquD z%m(ykhS$M*w7fCr5UX~`0R7YtobjTXP~DMVyza`3rp{KklG35XC41w)R3#DvK6-+M zklJft^xo@XR0+@~7$nPdFoE7Te1L}N(Uc8E(m!^OR0d;HMbmZ&pyv^O}Okx9NBzfOM zr1vRF>cjnVniUzR2ut>5T_P#qyu@}9dd0uGK-cjqU)tjy%h(-K(cr9A`Pl*>W%Kxt z2mfIMP$*X5|D*igH|k=e(t}6AKxpmkK7X!TVfE3#YrFDB=AqDwGay#0Z(pJ~ z7%c}AyWkv0Zqq?Ta`PQ|$pXGMztH?BPLYLNm&~L4p_amUMB^UM{2#&tIS=xzoTIES zfexHx!>@bb8x`VuniQPfvTx^ZPO7gLGz~&?uyeETVPxRsGFY~G&+AC!`#7g*CEU#~ z1gPo))%V373$hlp{u2}<@jrMOYy;%Eg3Y8FNg&=j<9*og8%eg{Xye+lW6LrMDrLaX zFS%P3?t=iQ8-eIp;hU6z}l#s^;~DMdXwSECX7 zC)w6@E#JC>+|{bE;Zeyb z0lzblVNLx}m)>>@6<_}vdu3<0PeK~}$hcAsB*v_<3nH-GgW!Zf9G2tK`w{}vS?G(luNR96aR_U>8?UZerQ^@kW{py#P!G3aBK7Il|Dnd@Q-QAl!N~iAf-jQPXt#aXWU-gAdZh5MlzG~W&oOqXxcy(Q4t8;OUqo)#fQ+j|`f7np>MF9I z>@LC=-)q5@tj$gH?Dca!U-^8w$y+mzBYrY&<|cOJ{MSs2NHK#MTS9uPVKrfR;;fXg zTB&Gh?RsB(4~v!DCLl%wtnVkIP5WP_3io*iP*bjyh>wpy`C)Y3>*YRvPQphf-r&f% z@lly!y}G^$h_A2eGVXHcoASFnee%MyrQVPV_5_Dc_*;R6Q?D&edP(RKxzGoN+cAqc z0B!;}^rca(e`+r{{_n|d(O|zDbN+d)J&_s0@Ls^8Z%d{K zFepGA7nYU|r;`Ydw0`$t8lpl0Y>b1=Q(e>{RwP|)2^4o8`-9i#v()*p>H91~GRAaU zaZ{gCeiHrfQ~ezTjP8bh*DgPR+-@nS0>LjGGZ(3=q~g5?~CL;uIJ^ z6TTXQxCUdXcwh?xUm%>+nKaYQ+>U7H@#YMwbBA%HP;VxOIQv7b<%sLuECK=ibyF(UK>7vl$xlq))&7iM1m$-U&5=7ySXo zK}8%O&cFijBnC2#i}OG!drw*4Hn?wHCZ|c{jPa(i0$b3+TYhe%>l^7keR*M zTMA#V{whl!Y{opUog~VrbCCfdg3dgd}P%mFir!%#;se{;pLZzPL=Yh zv%zGJwu=5{XpnN7^Qo489^CVNv#5RmV1u{9jjpnyOM0QixWD@t2r~{2K1|s+UpI7H z7B`-hX&d?cqgD9E9C)d-XI!Uj0klZxc3w>1-6p}m+wwe!g9w7%~1?4j6&j6DZ>=!y;4Iyk=G;RMRr5MKojgD0?DG+Uv5?eFHn zEpMYQ<~?7L+Y73Sqfd9s2c>3%C*ut&e6Kx$IdSZY<&kYPTNK>nQ<6{&rVQos?p=QR zSBn`T+f18=clzPj4C>R}XrYhNcY*y_c^cj92u*!dQji*)^R}Rcmd0MaZL` zl+wgO>Ox-VH-&Sw-fv-+M5M3CDBgbms?qXbrG7h%WGr}dK@P4dG>Gu)VttMk71bj2zdGKlUf`)8kdkGI>?*o-cMJryR-!z|9=60eS^<^nmgiD~}WPXH@cP4OlL z3=If^iw{-E70@~7Ur6Gk3uLMJM*9GaNUKe69WW+MKh^v3ItEM(!9Ja`>F?j(^n0WC zLhHqrZ(M4*;9O7^i2^4FfN#qCLvggXZ*H@r?l{6m#+J`L*V3Oq+|H4Fi(?d`ZXcrc zZ&Z7bb~lH5(k)mUT_y`(WG~`i%VVbQSQQ#W_srV|fwz2q=i!lX>Deio5p1&uOCJ^T zBu(!vov!DmSGmo4bQkA?5hp+iXE=o3H8I_Q9sc_lU$YG?VVaIgMj=ll1o$(pQ{vO% z;2vjFgU1LB@I9FEv(j2hA!_rSXWWQ+PbSA2US6PL{q5dz2tD<98&+VF6@3T6u353< zeh0;DP2^hpS_2K}9>sXvPbf!8cN(+i+V$z&TzSy#VrO`xECY>zvK(>h zOXT=J6kCM$W z{EmV#a2{5iJ&7LW%MLnzX(351lj%#0-;^hDRw_e(kll`@;PWTR`9WY*lx4}@idk@= zi#)kB>T8-4s^w(c?$Ww?Ag5K0#bbYgZF}1O!2cW0>7^LZx&UsqcBW&5B!7;>x?ggm z(JGJjPoYw;oj`+#u7fpHpp#NRL-8%oSed$X)suTx@z6uD005?7FSE!G4%M|I)oor& z^J>s0z@^Q;yd#T33e6h2D7tu0@D~Y(157ZED)&;@AY!Kg1T_itPTQjgO#+c9Itgkb zYVPrmJk|o3_pLSEX{{XnU$NTU72Rh5n$1@Wo{3`gCkhty8wA#c%05|qdr?Er6OARh zDcZ32pZH?LBK#tBItX1SETu1X2mMbNu^=p5UvhCBA!^eEFMBgob*}cK{f^p*+v)40 zp4#sya~O}uO8YIPiU9Xqa*0t6`UsN^d~myNkm#5xT^r3*%!fSjYcc`}mLncR*uZCn zX;XB%V;8Nshh!d?EsMGWWf~><%I}bo<8Pl0%lvNE{Hk86Oa4==sQgOe;&1jWQHU~; z2@C`|ZT)n?6r8x1OT1-(7IwMV&~D!7W;s@7d}KkJUh;M3NMP)bc7!y#{U>|6O}t(0 zlP4wh0Gid%lR5Z~uj<2-qZy#CYt?*nTR|BX1$2VT`(r%R_-|AP0JB}NvWrkG*j5RWeAx$I1{@Vgyaa#$l8-8E&=w-R)N4p&V87-m(Y}~Sk)2-EQP_9 zpmk^Z%^LCQfQ1{vTR|v)bw?J`gs2)bgPz0@hVS~_UW%Is@%IC5H~_V}ye&a|mK`lM zNyN3)cz2Nvv09JO6wmj7TCOw`+B>i`0^`r@V(}2qgTPUtby=|<`oR6K@6BQQrR4=R zv`gfC_x8q~4~=0F+bk$|{my64*cTD435^=8mBKo#D1 zb@aC89PxR(1xzX-lYI-2{DtD5^Xd{HHK_b&_7fYv(4PA^12P||UtBUhS(+( zGSS;D#F7kP;tNLqy@rxt9A;X1UMbz)EqB3JJO(bvf?8=$dTSx%D>$$#;R{Z5AycxF zAZv>RlVleF!|13N4;Z^mT()Un%uzCcq@Kf|O{vX4>VA$%BRIBu{JA>`GI9UG{I?Bm zz5``22%D1RS6D)%qq>&~q`?}TDljPVhp(zTN*--8^oQXf^dM}t)4GFD2(BbN)+PWu z>#m*ge}{V>OVA~bL$3b7j{qBu@c{VPD=~7piA8`6*m}~1&lEovColP~`zd?sG9Cn= z-O*wShbm(XI!MC7aT#!1bi;lxV**tFi2u6BT0!$k$=e2{b5Lm{Ql{rol>DNAj>4wW z?SZj=&|^8w3lQ?U1tu$E;CsFzC9R{uI|eyXN?+1!AI)Jv*eAB!!w%AsrBv>wb&)$; z@W`GSR$xFHGnemO6Q#f8y^ai_RA;hnBLX#N#sCX$ySnup`u*?3Pq2VmJdY6$BhD*; z0m)znUfdmNUboeOQQL=n{(DWtUkNbChOn|YGSpO^83h_e@s|GGIv*7F71Sl(zCPYQ zWl4koj^ekLSHKjbaWBiSks=;g99o!v^ZB@U2|M^@+u3(#fn_kNrZp%tbojm+EDRi4 zQpA3t3*_#wN`>#n&Zd7|6F6{p@sz|EC?hh29@e=&5~2y z!e-W|Z}I-M(n6GkOr3{ydsv>ZeMb24DKRR|rMk_oM@kaEiV(G^f7n#8I!2y`xl+t_<=}A#=fWYJ-cbvrelWaj+O7w&0U{X#Hcb8@K_{hj_s14Bi9)R* zKmo%MyWG94sK9vEsc7`D;DdCepeZ zw#PAw#7-EDkzv6_4j^8mgbH$(=PV?v(*Gj_6VTsOVEMw{qODP zxrHSJP1>(;p|D91GLC-|DbX$lCVo#WO)MGlUI>g~mupAnWE1MKZ17-wsr@2NLRwl} zpMDOo3??)HL6qjx>^6-y6wam}=6+ek(>yX{3##Qc(4iUoCh$8Sw~O;Q>N)JC^v$YM zg!2ulz)eGl71P4IP`aC&z?n1lxDae$^TW)6Sq)|Dz*&qsVZJ}kI1em&l7uHGB(S1k zsx`qHvTQBu>L5HhR!od>55X`xBZ7T0Ogq@JS8Ys4gb@T2*H<>uymgmTSYU0_Q^Ah{_?QL=CMv5ZBH(_(KXdlRgI@o!wxK@Z1)`n;VVW zdSx68cE`M;S}=ClU)gWJKXT|dag)o)`<&(Z%&^XnVO=wWiiT|S&{!Xu({a;O!oWWT ztQ}8e;xC&k+tl#)tN+z>cSMCv%t!1au@Y95iju{pxCZ(q)S+fQxdrnQ>4SSk= z{#q~PsphVx3&X&^t&^t_5gVha>+L=YmtUeg_GyE8PSi(;6x<BmO~HYki=OIlG+13zjV{DP^5M%}0{6-Dh<$KgVVGM!S0( zb(H7+xc|b-^ouylu9{XS%zT#jhUyITor9T8sVhNLMbKt@4%iz%nz8J!@J&<{;dflF z#G&+k{`R#B3P-vQf!!dGQyZl?#qL5~=E<}fa2v=L2{^o=p+U>f6bhKW1L-X=r(ny? zkJ_qExSsma<7AIt-=>h@x2Oj!$sW5V-9xp#Es5`^7Qud>J&ovOFw2)2q$cN+_8c%P#j2# z76!;|y{5MXgJa}D`;3}y#9pHz5QgsO?^rG%(f5uOA)0PQL0kykee`}b|MO;aOhZjB zMk0^zJchuGbpYcH1qP(;rl+#{2#E2sR2TtLiTGnrtP~*-%?De-FTl}~_<0uu3iuTHbOBr4=Wu~Ul!*RehE z$!VjBs-`-~T7sX{O1bD8kjUV_(Dw=Ev{+Xc-xh41m(mYhxCV|7!K-f&13LjezEAh8Aae*vY!tg;+yZ_4LS-OEzlT#$n((opm za4JaGxouhpOC9zS8Bt407xI`ER=O-J3R`7~ctJckK>TzgnC4+}9@i9&Q!wc{e|t2e z$qW!eXQK8MlDMWO?BFmHZu54EYHh69y3-UcgK>}{} zjbF+3JM!N1jV<*plMEeX;;VSOpi>R?8iYk&yQ7^N)vj9tM8?MU+VA$%uj#=V^9x9q zJKr9%l!D(U1ibl94hsR3x?WembWrMo6EoH_(_lX;2r~mR+JCe= z>0<#t>!=WR%szp1FM{vl6a9XhuG)fUhv2b%#6o9VY}fUd(?DU2*zemT+O+Bt@hOkB z)GCyc{s3C9LW$C6^A~AJWF8@Cr{ueb|4s}WZM#1; zcQZ=Y>S*B}iKOPg$A3bYZ>A~r5atQVi^LpZ5y;p)LftZ51 zM<@UIDp1-4w4*MDbB`?dj?mt10xp~1eHZHVJ#YS|%tUGl450>%-zxdHw&R{6%efD3 zoN;q_`)P4V1`ZoqgFf?Pzg%T&Q7P-i9ohN#-d4?%EGA{^UlJgc6tll(L~F>le+br6 zj05u)7yy^Owun0Jr334Us~=H3K4)Vu*Z zo|onOkAr;aEc{};(6T&foN$PM1aXP~!-k)+LM{mq4KUqCP>hMJq{(~Oa^~$Bu_Jj+ zEX`>v9Rgs9SD~6k-o8h}%9mx(z>3gKFrhq0sRvf3DHwkv`U#t~1gET(;-;!N6c?SO z$o@BbY%lo|N{d;oL1w7W%iin-P%Tl~Lqf$~(10E>ZHcV?V_MMmX%mWa-(9>8ENMH0 zO}0r^gt)%kwK8oG;H^#b&E%Ds57GvoEX&g(6?HyHZe4J;#vdD~l4?Y^rjhRu{lhRl z9+|NBt+i4m1Um)0!^_(-sdk=VF)N(+Kw5^FTSgJSAGM=2Jkt~>+m;a0@!_{4P@;FK zJ{%%piXp_|Yo4$en;U+wJu_m#{vg&qT|#P(G#WZ+Dn z+~Oh++TIK+X}tpT!M23k5=EO3$?xFeh+_E0M0{+Uf+5{C7S>8T5otg>2=Eh$b> zwFl|RrAa^tMF?&mRLK!4JU%rJKi>UFfPpE*A@%SUm6m0%*o$;6a53fP;x-mk5P1pC z85=wmn$F1YyXw#pIOFSJ@K%_NS**vd%J22W56$Z>MLQUu+21yJl_>=d=a1-0eJiO( z{?VBgs#eRp{%?vGvTSPV!blgpqXICMyF6@$~SP6O=n8zNMOLG%EX2Ov8`=VCtYj5BB$c<-bj#j z^x+vXno2DhWu46h)+xU}FJRS}Yr)6ew)R&cL^*BR)jfasYieWq2F_is`D@m3aCf5Q z@$)mA{PKn_&tGlR20Hv1nOs>}O0>&5Ehb(Y2y}jL?)~}7=aL!D zzb?4~Oootf7!QLZN}N)gm8cIh5g}D>hF?xya{+BtEPe4QZZWe73NmaIC z;vuGe<9?JAn%>ZRMt>hDNo>$jjLy3jw9^UN=yY$2{V1OOZ!eybp9TM;b+x0X)$rGaZfA5kUiu&-($n(eV_uOCp)YQsl_K_#&ETw1v3OBz1(^N} z^;(e2F^`+e|1vX~3K>QqNJ|~Lq-Mqzcfem0A~|Z%fp7}+EY@&qsCd*N~=O~F+uL4noq54*rXG3!+1 z@cq+N%c+y(nVtQ7n5}Jg+k&hCQS4WWV_WlV+mtDY$yx7;*43!BP{I4ac&TgjA;&*D zGu`U0vl;RYkb6{!E0WgO&z~P{gk$|{>if5H1(m6kF$Wsj321+&@RzO)znJuLJmh5r zR0hmcRkiBRsX#^WWV@(laz^a07_>(awK4hi?!%6bM9`%;;N9rb%RnmR>x@KJ)r}pN3s-*~r$>tM0GXp6*7x%U1KsU@6dTi1miljm5KUil3Kd4>!bh8bgp|79k0RTzKZ zX*fBR&ykR3Qgo1*Vw{4KvztKs0N67$p z{dgBrZ{M{BPrY~Afvgdib_%7ZdmsGt4YzT1@j98Xysniq>ki)b5qL?q!i1B=Qj$MV zi2VWKfOr0oZWADfxaO)3gsI{-Syy#30D#5qm*&dwDGj=0`5%%g?$O@EeiK_)O9Q#?XHcVG71F;J4qf#5VG>3p%&y`hvk= z`l|01sbqdm!5ZUTo&bUHhykDpw(ssL^>~V2p|^GXcH^05%F%eER*hZIWA#)Em)tKq z3PZlUTZIjC$)$}oeH*FZNkc6=yhsuun}6=5>`luHS(|4^&bj74woRLtn=jj0%bYvQ zWBe~I2Z+pcbG<6;Z(+1RM) z`Wh6{Yh4x?RIF%m*%{hToun)YNr?0&pCnn@V$wUXFvQvxDHO5~ir#qjv2(Ap(f1nq z^gn;+`+L-m!FuWafdR+#&CN7ZRoDMWM^TwFz#BEBfmI;1EQA_O`1-nV#^O@D+4$uK zyecp@oaeE5)?;pwk>nHcp{jZ{LVQ6{XxszMzYQ8rJPWQm-1hG)BxeoZ=Gyv9R~0_2 zyf9xXG)0M9KQqk0-e#lX{SPG=BMO*>lFahIC>XQj*y`yO*bS?Q+iq_Q)t&2F|KKR? zl8<&sfpC{3IL5lx`DV;oadEp66z|yE?o4MK#BXlR^E|UTyzHzxf2!RrnwuCO@m`wI zDuXlc!=259Q7NOaupjjOh9UBPsKIyXyMNEXMPXy=*EO1MASi@dM#lR_wT8uN zA(L|^r`*%Yy8O#phw|7$mo0RGwcAvl>5o*2Uujco#8a;xP4v$B{K=VdX~E!=tJ*bEAXet!(kHbkb4^`>NtTEI1S@e$%QP#PKrkS4ye8U`?rY z4xO;SdF#5~X+bo7E^C+b8mPAcw0kmE)>;saVaXkNW-;(3zyBkCo%}1`Xz+Ze_Z^i8 zjMSx6Tv}($27tcr+L7;YZLm6&;_}2Qg5k9%W|{?CP(kcPf6pTvKrol)J#b)mo)TFw zYsJU5Iyp%gqB|TR3Y^4t^>)1o$3{Tfyg|~)HSZt0_mz%QY1O}*rQe4VF7W4_2Ws3=Pu;L)P50c;l35_Xp*ZyhlH$@M}r|3+f8?0cJzXo7I|_;9z`v!R}4! zGkiXr^WiGz`oF)Giq>k&JA9Df(6VaVDT_O$(fbh&qcx3?me_-=Q?!={>58K|j6fg0 zrhdJ-x#<=W2$&|H9}=JET9a+>ekaR54jn@rJu`kPiYRuz2F3oZT=3ipUF&zb6Ae9h z7&2D!O)9l?i6JUD^Fi;Lcc1h1efPJENp(QkP^-?h`&TC1ifH?9!8XFEOV)B5=oGME zn|g>%xyygegVV@5@5}NcoLX-&v%B#4e5}xJ9OmWR0Zrgcwd{_ksUevwdv#UgdU&e` z)G4Gm97D?<1!M@b8OX726y4i(~ZR*f*cOoiR&gN{t`XI+K}qKU(9Ir#9Vx3|{@@QqiwmtNYs1P>)Y zwr+6jY+RQ2)h`F67#@KhGj%Rn1_s-ky~lCwvYW7>2U!D7$Q-GwJ$d_SN9pt+G)njN z>y<;mZd#$1BGgZJv2ds=$!yAD`6owhc4!UjjF5uu?4*Na)hY?oatCyhN*-zW*^Y1o zDI0f4F3Wp`hlO2LRuJIB{M`6p}nkE6mjZ>bBg|D;(Z{8zvladNJv6(3A z)G9XI_6RQHFM@Vs@HUd`Nc#+}cOXj0wj8u~r*<+6uG^D3 z_T4P3miRp6)-ZUMEzui7F?J|QHtBP>$3JNTsMi~(E=OnX7re39V3tG;I2z#*3nx3s z^b<&u^BWtjn-d%xV;LVNlL!$~`t>y}f~3h087TQ>e!x+PW!AERe}|T=WZCH;h$>WS z&8at-t8e{O@?^Z-Z+6O$#ozOp#%Z`rod0F1YAu|#{&3fVO!{5Qp~`kzS*(qtX;nW5 zcWK!o`m!}_HpZa%aAw&m|ML35sxR#zrm zKc-%#a5FoYZ$Q16frE*+naLCqUIPdAOfWwljdE@_Tbuki(N!xdcB4D{ih0Pta( z@9pKBo`*+wV1<4Cwov_I7*|6kaeB)=`6B?gC>iuUDQ{|QxIOsAHwE;HvK#qMXRO#0 z@58U=30wimiYM+>b@O#0a1+dCTRJnkV`cyrYJ01Eu<99aZAY5ViLTe*%#emsuL<+d zE_qVdEyvB5GrQh1cccd0xyiWiosxpgPA2B+de^TSpo>3*2&29Dd-BE2fwKvU+VTJ%8ZaU3t zNA%Vw!!SbqBI(iktyPwkw|!CV>is$DCT(yZfaFf)N*zCxE_!zeY!U6;rX54>oLp%{ zfac)rPWcsWUZh*+oDXlmQytNGML@eI{?Rs~=PB#H)BQv|7Y=I~0KL%ra#p))@l4{h zjE0b8M|nSV15fL7oHOJNuWKvIJ;k^D%L2T6;4!HYIk~SrX;^=RI83|U~cT`oePug zQI%9$Ab@+%2jP_ibPyIZaU#8i60KQ;rA6cIX7kOj)qzwx-kJSAViA0)P;WBvEhL}o zS&CPZT9-%@a0JH{@eu%$?UINP3o__asKGV>2Umu0Phx2o#H>*>huqdwi=H2||F0Ip zL4Pw!(+D%lv=3oZK>})RJzsqRt@DAv(*CpgUzV^#So&TDcf&(r81#8BZ&xG<9uJM4V3e=d3aN)IrSoqk`4Z}Im7kdlJ3vfqH2dFN0E zusAn|BwZU1{YeME+6Yl5(d@N8JEX-IoTUR1%oY;y*0hAL#2`hb#HH)cGmNP;`1!LSpzJ^_h9xrDR+C zr~c5}t-Tw{^36)3f2O`HMr2&uEF-wMZ})Ti4E=s>1&edL{KT`k+_er}XfLl7{hk6Q z2BQLPbEtBHr%n{stU2+&nl^Gchef&;_HG5(M94=xjt~bL1^to1{CkAivLk4RuNpoQ zk6}BhtiIhyEdH+jtQe#N;ZKt)`e)Nz&I-q z@w&JDFPcwa4?`=}p1}?xY^8J$5>rZtk~y@yTcV`!dAWPYn%tk{{Xr2h{B5+}Q*w9_ zGXJo}U&(<{1DUq~ZD5J(Tyv*`bh@Vvh;4H7iM?Zvkgs9(A^1^)b?=zfuWeV(%Zgb) zpIMxMNeE`Nybq-EUSyQT`!@X4`yUwV?^SZp`TeR9m?5!hCA`>96PR8cmPCJeFDYrF@i#3;=tza&+Xi z%`-2&V|2#f#lmL_HW4&QG$B@|z^CjoePyg5y(SPLL9FUJZE8WQt^kmRnf}l)hnBN; z4rRf4#V{h;-qx0ml1{MNXJi_g*xw9NB{n54CH`PxeCENgckLa9UyQMS-xz;YI_xy= z5>d2aG<0Q0i0DeAF!Jsu5sN|XBHa$18j(({MrR>X8B*XE8>Gw^n1g+bc~;q$p<*x= zto#|=w)^il;){48vvE_bZVDIRL%^Ce)!{3~5q`i4I41}%*oe`^@6Qd1D%~8(!s##h zI&fSph!NmCicBroO#E|XEc^8ny}E-FM2Qu109r$m*jrBUXCR3EAeblAvWv|OvH;56 zlQNC+oi_yS-qA+Q6tGLoC&o0LKZ;f?nSK>P=u^y7^pZY?&12p`?v=)KK}WvpemAZ( zO5`&&-!6=ob!rIwJU#+Kj4GOSz1*&UxcbK|2%nF(mg0^_IZsg{rHLFqbWJ7MGQz5M}hIfU;H7_5W3aN?J0tW8XLj;3a5=EN0ZB~KgGSh z(x*13xVAo~y1jABWg<6!*;-JLBj(kg@p~GkEAR8xY)Mz#Ma-JMx~MwYYZoa#^X}w| z>o<SHZCm0^J*n5KpL6FLS3)Xc7&ZYecU5RmXik;DZFa^9Q$L_Pb7Hr79>2TJU~rBo5gG z;959Hkez20FDdw1*;@ITWYJetYoy@sqhcK4(@#fe()lkQ?(AM&SrOdm0y11&>Ij;O zgfr|+1G5H!s&i6ADjBeG8G3$QbyfaXuaD|nDAA#1jld?KY>6$Ma_zIvx9;cuMU?!0 zv(Q9r)Dvv7t&i+qA0;8{opL7z=!Nvh-p}~-;ruMl5h|P9IHzK;$m?n_U?SIV^fe<0 z?tAWPzTLH*d^}P0bL$UWK-_V1>+ETEzd}%Xw6A|n;-OZRw zF-{}&1zz5IHJ^H+uo#VBXj@!DDb28jc(E2J{;+IFyj(n&`>iB8g54HlzZwDw-Rto| z&$??#4A7uHom$~~9NfgS9OMwAM|5<8TQbiXk&3=qHcv=zWUX+Ae*0`&8xge$ex>@u zeIP6EFG_FW2(E@;3soo_ae;76Xw>ev2_5*pwaUsaygt##a|x4syXC_*E_^%QYOo1g#HEoFutW=(MYV2hH@AF zeI)q)cJ^FL_{qVw2{i%!bYKHC4$a7R__1i~M^ZGoB$@KOr<@Gj;p8u2c-mFaL|S!U z!b9|0x0F>CP%k`rg~3{HLTAeO7hzM>)K~}LKY?ztu?x5!M1b)6g0*`k0 z>M4zN-C5L?ZktLof8ZGn@F@}aoH$ODKeNL_5F`LH%}4{b1J7I0K`J0Gpx-T3^w(0a z(E0bJxSjq#s@^gns?i0{9Pmz(yyfj$Z4&LG9I?Y zy8_yeaD0H?g~sVD6KY|{83Z0?Y$_P}7;`t61vLJO33>W+!$I4weaUjhbM*SXA#WM# zx$4PZOTDj<=;F$xMnxG9MAPFFwqc?bPSDEj8wP+Wixb4nE@`^DtHi@d=+fN=b69?X zOCh`^uQ^xBS~E_g79(j@fi?PuGCfkmP{3dXo&{RHbVvQfY&ymyJR?#nFo*d|JJVJ? z(`^LzAb)M}IF~%8>E~S6y3w>g?v=m>_Fr#` zUxetNQHpDvPx-%Lk~|A9-f1`ojK{~}u;M-ysb{oZvr6q-wgzO)-~GjUWoxcew>1U;LY7yVNIc z0k?DP>MI08^@j1C(cXtVL#4A)Myo6(s9{|BLH@o8^&9o@iEi)5*jbVTrdW-K94{7lP1XZBKwKs&ioH?Ehnk_aTsE_$GH(z0J7$4_5yiT9^*clpJl+AL56Si&y-$i*%&yvmP{zrxbtGFdssXom&-59t~zLU=J{X{Br>EQ}i5yTR#P+7f9!uS5%)F_mAvou;Bo726KND8IJvDK#Iy+%Sq) zGH^guY@1c~b7whK@|(c;{PK|fl@`ildPKp9WJ`}c6&9gBJzvpb6k+-)yI(KG0x4fy zl@pOY9vP{rG|kjUf8Dn!KM8=CbiaxnOS!R63SX%_=Z-O7X1tASmSTT>)*ADqe&B|N z*)<(|TgP;aVvcj#MXqdDQuTOyJ#1tAWKX634@?MT6Ay9+APcJ#FOm z{rxYKdpTNo_!en<%Dw8b2aZL4(PDGrG+t zgp$e0AeLA1lyB|a%zVP0f&Crks#&U)4f8fg?yzTZmD4xfo)}|-sId2!K$&vR}r9x3K z)ujFWY-E_fp%)`cmc@{hE+gYH19?nCrTrB~0QZ1oq^$neJQ-%DAjGLucPOTME3UH9 zi!Ra-!O`CsJ+f2L;aa%`xz~xbP@p9JQeOyT7rE?TtzxX;G!6;6a^QVE98;QZ+YJz^ zzn^U4c~9*j%O<(pX#?+35k2gk#-jTMr;}|sX1kHZ1@JZXHDEk(e+<6~VMAp@zQig~xz7k^z#az(WM z)|PHN>Ues@z9!x777EZ-q}|w|<*=z9=i(v(v@5Mit`;RqO?_d+0Hb@?y`2Dn&`&!;IFm~6_;|+Xp z7T0dLv6e(*pQnL31Dbb)kGYq}D9QKSq|DHXXJ6Rq@_{Bx?7>J48>-m=A2M`f*j=!# zo}K;&q$8h&5K1$llFNQJ59?IMr&Y1EIz^WpmuCKoNzlb(|Cj(^#&4ySO0VHQi*?S) z`++AU9Vurjhas~TLntj6_zI&9!(o%yKKMsp#Ie9Enx;M{flNR;zJi}L1(zUj)!S2a zG+sdRQ#ljTQhqyNb|(J;naV8#jC^Q1DMqliWije7HlSo$fDN5=&YtkV;B4BTye%}? zRp|~?+8uP`^=fJkST8c9YUKeD-qMBRRzw7y_w|7CPHG->{4mPG6RBsVl#19}lFzVD z2F9%6=3M!I0cs&uT)2R)jUMh&C!5cJ#|;;mdCI;`a-QMWw32AvJi1mu$<3i3`NpEy zB-{pN90{`h+A5Sj)D0TFuOIrT2|f$aZG>^H1JsJ+T<%jiAP90ev_kpsf)dQ^&3mbqKj4_XM?JjO%@-_yehi7An~{%5pk63 z8H@yi<8ZD~<`{uQ!3Bl|G#1NO!+Nf$d?t#%;>s^j0`Ch0UXBEw6wW_3^230JR=^JY zH(+5L97`f8oU)#NP$m(pw$vmo@vPS5QBvw{)WOe*Di059*|2&z*6Bgqy1fh%-Oo@^SMhQR9Kj8K|!fzs-X?tN=e1zP(i&W)MOT4?}4xzG;3 z{FxgInoXF&v2^*@6V~B0aoT&X{d(GK`Z-|slvmwxjC>@9^$qH~uorGZE9=6t!2-Qe zzQ54Id=qFaf5mhK-Yu@;qDAujkqHY#poFy2Igm20lu@1zGZCG*)m^?gIOdkJfBE(% zs!m>lmk}^H@nf86%}qr%o~NGzg=UH$N(m@UpXPee*-;zh{o;wNpDOd+Z9;oKb-0J6 zN{HYFu_{J-Fug}fJni~)eDk=MjWw5yg~PC3^h0fbo^Zpjs9ULWx`H)SgZ1qF1mQjO z;KHZhvU$g^4nxYN7?Cn6>s)F+xkr1*aTIp1ixLoN^hU%PM0AJON~hN8wUK!k zwRv-ivAM61#DL4kFo;P2STle0%wX}ts+aoKcENE~)5^pV;L-_JA}??%u?eAI)=b|mEt_+kAX!?BfOhj)rs&oxe7emx-o|IwB_)^Na?0vO-8J!bC`^e7p{*hxrBZ~gV7 z*N3jZ-X*75xG~tZ^L4az&9}2$UWThLM;bYDRdqrmr+` z127n&^d0JFXFfH3(2P@CZL`9+&_tdIXyHf!)wPOdO~y(=oG9Mg6a9##6VVN-LM6kq zKFg)2O@+tUn~Ym%ZJ?Ww7pCP~<{RFxlCjU=)9T9Tt@|Di(tGjymmHIi{pXOwPj~a; zC#Z;VCA*Mnh(QoDTQ$e2jN3jDyroTtj=u={BMx|^`24*31Di-wOYy^k*Uy8dG-7ev zj`@!Jta-gamL0r{YSQ}<`ZbJqs3c+e{wUlg*KsFO0BNph!kq@phZDC0eCT#2p!rmr z{m+icki_V$>842#@{Pn80X7olV=AcJvjF!_4iW-R9mcWE4Zn(=AL4|U4PxpK{aNi& zF`akQ)}_Kpc;2HCyDF$0KEIAMsZpK%!SH66BiBPI@4SlPd;g94vzn2ubm8sz`Fk(s zv}WVIz{dtk-U#eI7k`|4I(%+?Gl^B(w;tieW_D4%*oRXNhhsG+*@6$xCJK#>hSal* zMq>JKeMrTVp6*kqO^g;&+7HJ>P?a%J0*dDwb~w6rwmz$@Iw#!J0*3*Q1`_f&6?ztC zrW(A_w_PAhd0nA1*-wvbF@Jx&SG7yM@k_Z+vr$(!k(c-}{B8ST{4^9D_elFVR9pzV z4Z2u(gqa87d1-_weg*Y${fCJD#7`$i2@`=!2Ma#E2{Vf9-Rf6=6v6hO#6CM?N%;7^ zy6%~O#hvnruS(eaWzSxAs}vO#$&hLW?uhNlui<-785dvlCQ*YB`1-6E=Xf@CQvp`- z5=q)e4vXwlg7~!Q(o!K@=P}Pxl%JzXjHAu*r+xb^0Ly$0otX^NiFwCdg`r&z-L zUn?>nJAQ?JMx~a0I`WDHgFQq0@yu$>1aDE8RRXZ6;xH+(zGY(?trO1n`h-_0>UwOx z%T;MRgd)%~6Q@k2UC%rl)B_m$E~#&$NR)^*lXGB9$Zztm)&9AV5TdGmCee2CHYVXj z1szX+3>-P|5xVcTJHDfPb^gk;QCmABpM#7-d(H+ujqcUuD@xlFIDd`RfQ1Fy!e9v5 z(oYS9nunz|qh#w;ohT_ze8Sp0njt1;-)qfQr8C!ang3nveavUV{K?-(B_{M37G8$} zcQ-Nh&y&a~V?M9^I5ZB%v%wPQ2?(&IAfEs_oTk`*!@~h3BgZdg*cT5JWIDGIAG*Fy z39&Yvvtp982}Vx7etmG~HU|J^qiY#3&+tplYBl;9BYEtfXO{~qp`B}06IQhx>F1C%-5uWzd;aam&wILEbu+6+=}Y?Wa_>;z$p6IDh!Xh; zY%%`)?^ysbCaoA2nmgy`84vMah%Rqy=gB$TZ+GJ}`B~Y?LmpqTydnI-yW>ip53>CX zg1s1jL!GmJ_{$4(i`brwUvLnw{JV;kGnt6jSGhAQIw?MST!K0fU6*<;x8EivB!>Yf z^Z!`S``FLhUZf_UERA%VEEAbXq=3+m>p=A?%Ax3S_OHLX%-o`4#zdIZvVSmhp1uhp zDb3t3G>gIGu9*m-b#7lgKt~t*c^((0(V-oThlRKwSRQ_e`L+RtGIUQqs}o?wU#m95 z{xQz{TeP-VJpgR65pC^!>fW2mZ;jr~Ug{j@8rY?`=bkoyMa_Me0kx@0gIX3%e~Qi) zlsS&{r+k?EubEQ@hfAAI;L|FOHM#8^Ojl?NFrF2amNG6jd)U)5B@p*dAXO=IM13Zk zTi)ces#htmJuV!f!Jh4hj#GBTG)!BLQmOz1E2EQ#A9 ziF%z%-Ed;_zAgPW``Nc5&TF6jtNOa#YFbaD#gOB)Jf~C%s;!i4QjjWMZulslh(RRI zdw>4arjn@6`?;b?O2*_`!Sb!oi~8K?a*o;;#cWyT*RHNH}bSixX01Oh>#vb?ak_}qXc=~=kIAEam%?%hyl zE3&WUZZfUieZqWGQ(N17D0P4xY4Tigl9y3=hUarrBqVK3M`{gVEuWvytd#2eKcM}H zRUJ^NDiE)aXf~j3?{$Rn;ZKUxD{&mT-9zX5=O{4%Uq7|!w=TVrkE_-bf*ncp za{IF%&6&MD{tXt$e1)&%KlY)r#K_1PqCUDeQ~8{1@9+@kQT*A*>e>%%x>Xnp`PJ2L z7aN^S#@9?)y_%-y=3Yn6Y~`NaDZfS`Ii7CjpO_lUX!D`nsd4R4fddejQ3A^3y2*U^ zL0XfKfCq?F9YM8#C2&hGwZ6h;aMBW}rzw1(eNYrz!eMV9Mkqi`qEP;pP(mqP+S%GN zq-=jHLw4?)nTg|oL(}L`_e0Zkomys9Z*#T~jTChR(W_wocmmMA4Fb*TkcYy5)wqd2 z`C~x$!D;WV9iho+my__BJdm?x+YGhx8aO{3H5>tPa+c!_u^(7iGXnCr z<^8QzRB?M0WI?hvgXcAH7VeY*Tb?9*?cixiU!LaC+@0Q`J}^7C8DW$Xg}TbT?EHth zFITE#F|RAOf%2_M_F!rB6t?c#0k3MF9O&MMaGer1XbqGV?p`7liK;mn6U=U#w(+m$S!e>-JfV#a?IB06%I_CUv-`16d zzAT5EIiAXD2-FjTIX#sJYdCe=!^hW3=xutFUEtU;@8H~j&>>OY?<@glXRSXpWCzyv zP#)(PN@h`3_s>3$eyQ6Rw*b5SFw zz|U%jbze?y20tS8^aWjt@}7y zr`LEdLs@a6lB&JiWK)2&pBM>LAaPF9F_e@=3;3jzm8?l^@M}#zNj8@yg?LcIAh}O~ zJ%nFh$T7+eD!$NfVptNX>CwFO-I7r+Cvn^6dlzFPL)BGk|LEb+oR=Q|f}~8#vPnZ1 zLJeW4-Q3G+sVivTMfA5i=k%qo$d?Q4v54!1d5LQicCB$jCaH$P9l`&?gJ~|{M{Ey| zdWn&gK-GZTYQPnl#Y-GK{DtG2&doSCs}7`q`r(S-5zamuJ_qg-O=J?2!de>;K$W0@ zoV;sAFi3x|3z(kYv*R4(u`%L%pp>!(*;j-+(}e zsAQD|Sq)lQOj}0+;a&@zT%vxwX{IvV5cB~io6Kk70i(sZNkYS$UE&2|4CO|Q-ccXs z7@>VVj#Z+T-CIDbEo}r-+_VJ`)m{!5zW`LS(`c)zU0D}=>*iV8J|$dg_u&a-ucBud z@O_YcQU?yy0T03Wt-ptMXlm&1F2Z4zZZQL2nLqVR5L!jolY$o=E~PTMV4NKo_7X1t zkBR@wJDAb|^xe@gv<0C;Rfo^#E5;8*ww=RT8C_!K`!UC)UwwI#&Xk!~V8#nc9$-`*ymG&S*bNPG< zH8VL4f_r1p8kVxIgH^WQ7laup9JVZymPIEV1l8CZF0|u-@{_pes#;Amd^Ubh;8anc zg+Z<_BF_4ZU!F|fe(JfC6~M;Wk%ljydH&}M1(*EG=er0>`kxZUq|~e7pse9$Ah^lb>ivr*0K$v=eb!SyPAyB~jCTC?7UdNRmbXkViM z>%xDcSH#KYS`Dh7xua3FuOzwRH99&fE|jskT54UdA5Ti z&4+hqlg&bwT8yV!oE&O77%DCN+(Up6*74H(4_JP3*2(gJ=GM{!?#c)e%Lp)xhP+`r z-fsQ(pxJ))YZ6;>tVL=O^Z3d)n6M%(5Ck`)ADnIj%jyLkUe*b;XdCvGNiee$y*=tY z$`rf7wv8Ynt_G18;;o333E#>5FQIPLLnGlpVRcAI%9WPAzyFS}(Ie;=P%|HNN4hW8 zG^W-TltFcSk1OJ=UY27kV!p$sV7V<|_dLBNMRh@=NoBrJ>6f#zVNPK=Om)VfL9sh} zz)rctz_zVr5Au}2N3+ia-jAq)u>hn~RF?KiE`l*WC}Mw0V2p&;`sOszhmL6|0=OSY zOG!+{cp3adgd-{)mYd#JzN_yQNQ+x|nHmqeIISw2Rs{vQc8w~Ay4QZ{@nyAmOrxwr zu}%G|d!b}5@afJ@_|PSzkDrCW*w7CKoBldCc(Hi!w{H~+u92_=U+C!0GnnL4SemD$ zo4YrW?d_)hHyA`lt~kN=5zj^t7#%wp!^9}4@^}m7In+n+hPFFM&6UvpQec;_Qw_91 z1a#Qbw&m$R?_$d@Z+R&|<`0hihF~rTIFk*9vADZ$Bn#X$PsgCuIn8)p!&n!e!u%(` z3e0g#hB-K<*Y;Ko?^hRvm6q$S*XrrcEc6dx*$acL?Z3WS>}B1p+0^DMJYHG`N{Pt& zqPk4CcNpRSC3^O|^}e`yi+3jDH9QmxsnZ0MOJQq-e+4ZzlrAG^GHVf~4+y?{Z9_3W zoBe%VLxsY5@^e~{$^QwMhDnjJ=Qg&|nDqo*0?B*^m(azch2sz_R#x1iQj*f*rqrS! zZ0IZO5H8q`u-GmAx~8X_NTxf@i+MZgS(R-AO&uUN6xVdBwCshs6pjk0Bb3fU&4Wf? zB}Gmbk51_bEEur-3J-CImO|=p3G9-WHf9exdcN3zmFJ@fl_;p$8{Di3;Oh}fA>|j* zBww7SUaS){-I~fu5##FME}-1Jr>Y>YSCbnM;XDM8!`!gG9~bfOgQeSb=RamlUx;xK zHl1At4;mh(*5kktAjs% zp{c5?^ASPCyXReQj#TD)idCl6a2H2IL*Wlb7L`edh}Mk&UA+k#{*2--jWolyOW5gb zMLObi7_k?7e?69$dXu&k#hPSb*v@Wgqf|YctZ3zM^B$kp_Q$A4ilLsh7MioxNE=U= z9%OtatCzx|>Aq}50%{b{FyA{$3483WS*$xJTMUrNp;|%M1h5Sq%-25$)-W9`US@L; z+8bxt!l))di;2eOi$yc=1rR&kl<5C8OZ4D<{SR5nXAc?n_`x3pz&qfd%~d8Ry}oi@ zL>X}$TFiUSOH6I*HN&e~y7oE*@%xYfBl6q;G5FRAp>B}tI3o6UP<`)r&y~X3>B=gj ziTTJL&k`1XOV4fDjN#70d}4!@x2O!fKlW$9;d5vnIAoQOso&p$L1JQ-0zBDuuIONP z&ODL8D)SGO=z84z2MJLWEF2|EJ<~syo9xH``YDyVf;T+vzJ#0wm_aUP${>yYvc>Se zOF5>)xC0kM3fO$6LkuJ_gR<21U|yJL;B5uhX72xPUpgjA8iAGcuNn?=G#)I5&v;|C z!-xoXzVsPk{>fd+0Z;TZ`13;1mxa8ZZ$(UPA=X92)>ZO>z#&UU^b>;=TR6;olKg-I zn$_WkaD3`hV;f_(n;(S;Krcur=DhcHV8p2Ix8C76cr3pSReM2;W$XpNe%$| z$jP-pMaqGaGN7|^HuD*NOWluN9uPGs6x5w+2tEvUX}PPIt*UBR^c6^5OuCry+{_ga zLFB@d1|B8-?|_MPw)e*;-}Dle6O1iIWP`?Efv30wRvB&=XF}b+SdxDxdZRA-n6=93m<8b%u@lt7+mE^j<7Wr%Nd$E}Eo=+7V|h!H@!y`bhhabjI-G}0> zX)DXkqSpj~s(`FQID9xgPVnhSdBo=+YF;_zi4>3*T4nQPeHW;(_j-9%yv$ zPEnL~^cLoF79m$`H1H@6koOs@_IvESLKGpl<|RfZ`bt7N8#`sgc>-qz+teEEB1H|S zpsue})wLXrDoXo25@sC@KBcC$`7DBharK6p^QWng)cWho|~H zNsE%Wqz$@X3BG8i7?bZ3aX*jdf`g#WRUdwsEexmR}AiJ4yNP z{4SDJ2A6#Kto%&5W{gxdMu9lB*|737`CSS@uzmKD#5Jr5L1xHMkd zXOPHS>S6Ak?`yLeI{axr?Bp(APb9569cQtBj4va0<>WYAR;c<8&fuu5A|)Lil;p9b zC_ZZ8ZV^uJ^B7R9XIpf#E<)MGCH6Jc!`uIJalmaGy+UB-*l^(+m~$VFuqCRSk()V+ z&FkvDZThdbG19|$htgc#>~tB_q z6-O8Z7WzYyy6-@?zRsRb9mz>8(k2QO&^Ke*jkjeV;iX4n<~Z?(_3p}{aZ7E+o7QD< zOG4mF&lFc-MZC+D`H2Ucpy36*GDr!(2Q1s}#M4x2WG{;c0afY5BRVdqWU~zr!!qT{ zO`(|V?3j?T2`QAe3D>np3X4|ge~$2s z6dgLx`=2D`k4Jzrs{6ymZlS}(59v2FNlKGL1PUhKW_x2ixvm{w$rh3B8FHNQ^NEPm zW4W+@4;`3f{B{04_8XAoTjUO{VH(aW!+k-Ty6qsp$?um`4esU;oWN~r3h%YI6sxtr zr47zpxW?0J>A$do-)}n&7315c+$?G-h21*ZC>mxh`2Q|OJQpT5$m@!((U%CqFvSvt zwa$+|)#TMVsD|^4-q!0-zq7J`itlKcGI<(9T(Mm(_C)ZL62IQ1QdtzRTXIOw*zEHl z<-p(cb-FBW`%Vv^n&kNeyoziiS?Q2sboE*!xyu*r7f)Yyv>#kR#qVHt`!6I=2JfT( zlLeO(eA_Oct@lB|YHc-o{BJf~29&p>0@r(?R3tzY7jAIv8ZIs0-5?bx>R?~IOXo|m ztvK9ij?gU#SKJ|JV^%UuN%8@CCxn-}$uEerV1;t0&NJA9PNe64P% z?$xE1n_Ma>?G+O#S){U-s%59~?tqxB>|lDgI7cWK>Xu`GpC8_7x)vgyLdDEV z5#shrBDu7t&o}VUT%cLI)U|=V9gPK4LL3%}<)!SI^S~4?_p^sU%UvTPl|5Bi@uIJA zR&E$?Uc!Q=5hr8Ivk388TE^Ypv&|!!pO-vM>&n;g-(h?3KFL2X51u8dF|*B}%o)S| zc)ZbxDR#LdHQv+lQo#f0zFyPtrUeMd@kD?7`M771hpbJ?_wD<%soP?$RMAB+j(Ue< zoJ8QnUhWEbtH@lycSxS%_9rey(@|-@TtDOXY<5LU<*=}N>SB*<2F(62ue7ve<=f9ejh@!?83qs2O#`js2=Zz#}kK=L$Vij)0((LxxGtyr#qF5lOAHaEHSu@fP4;~by zRZYiRy>MSAvOak0U4*5F(dF_x-TZ()uafyCPaz05NRP8bt^=S zS?a9E!kgJ#`y%|VPE!~WL{du=taUoJlr3Z9g;d`^a{s#$wFdl$yrO-{Gr|pqhLD}J ze&7!z8nebjGs!g;rcUNme}4t!0Vw?3#8Aa+7agv5VsMw@3$kEHLj2CUi#NFIcpT59 z@$VXZA0Dw8Rh2>sM4MY2y=s#AE9T@w*IWaZF%P zn&|Z3w6cWN71t;K`M9!zBa}uP&YY68e@U}yeh4!4fhBCtFcO(XPu8<)5r@Rt^ z$7W~Q$-g6lDho}H{-3|WgVa-&Yu&mCwuDp-*3Zs7#M^CCE}kauIA-dGGdr%bb=m?J z7M>o>DuuiUn}d!T1Yq*`zwNMwS!(i+1v0ExSVp#RqVcYp4stsAaP#1y!osww)+T%o z>dLcChQ38X6Zm0~`BWm{P(E1-i@gdtZ{n|=|C1kQ7f0FzN4q$SK^%{Pw2u0Vpvbu| zJ5)irAAMxqmG8BkQNkM>Q*S_DtVUc|ozhqU1r^+wc4Go$?PAFLJ^QEQh56*ZN2)_s zJg&Y+@Z04($aco^>CL=(ih>A7+SVeBwn?qX< zypg5HBAl(LCO2u9=QH(PEw|zHOORufONMpesUyWqVPg_o+Sv8u)>~cXZ${z6E158E z&l57~7$0q@fK4dIpH5+&9L*q%!p}F9n%l=@3xEMVMJb}Wmrry7WH_2}HN5UZ;}7ls zK@x_4kOcG3Fa1~B4uIUwgL0^ld2}fMC+jV2{JYZw!YwltC4^4JAft>sT++Qh4*s!= zs$r$+4;W$w_gi@oM*}hZ))pv#hQ%~$u&nF{*-EsA{H<8#aZ;X}-rEv@n_@=ZhTSS2Iv8Ma7Pr0+mL&)*-ziqSJSaRUu;<&3AEY&?KVr3U ziV?xy=%6Lxp;tg$MOeZlOov_l&9|@sz#Po%Y7-`Wad9q3fBES$K`eKfknuU31$sGZ z6EKbinIP9iduBU~u*uAq7ndRa%S)7S9`x_%D)=`t)F{7B=gcHfsNW#?JsM%KPinDr zR&P~vrJSD?t@YzXQ8K1VtH)X!F19mNbm8L|jZi$B%FY^Te-9Zo`W(qv27R`TV*lhM z0lm#@{}i<%E{CdYM>lL3vTgn6dE;h1i?s0z-v-Y=IKW&MKCfh$0Qxh17J?69g*&J^ zO1TAx$aCxJpvL~Obs3$@t}#3CRs=WF>t4llO>-OTnYWoVt@b+UgH* zZe62`LYQ_oLB~5}Ndo0>4K4Ti3`c<9Y`nSFZNG8i&F&X|r-kB=`W9#xI{maWS#eUu zld$KnIY??UObcPN0N13edpLtZbjY62~W#ODdu9W zt*cT}o~U<~`A9Nk56C5pP|Gf_HGkQMB&zm93o#0K+)?`v^&|?*^@HR=^+VsvS|BHW zWBM>@t1JJlZUOhFLxDOM)j-(J;k!#R>HRaIiNYzKMDv`2=ZSo>^Hae9sR*vbyO(}T z2rCd+8QKN6)C+%*53uK$1iYbtQp#;qJBj^|T`1G81%WwHhGDK5I)9n!wav^X%rw)@ z$YA&(9jfg#=8W9I;%X(frLbHMi0kW+n=9i8>tVrkN3H&rLjAKG= z)!gmN^ee%fcrD+-bZ+mm70lmqX?PfOCmVD&an@4QeJoHcyWPzo#= zCA9RksUf+a_7%K1eK2TnoLtaj2Op}7pU?0c*v}T0ueq*CrW^*eO=ik{&Rp2`G0wl2 zK8xoUKf%tNtDWSDCQ5@q;F)Q-HWSn4x>wmyuA~iJpFhyJ6~6|YWv`-=EOK_X)q;puaZUYRDL@Y|@Pg!r$w(f;kL zfMZ6AcDF3ms{M2~#MudLX5Ij%wtGWyTM3xe5^gzE4AJMegk5CZF#m4ur=Lu)C7hp! z2Xv|Bs4OJP5F-|H>pZfiKx~TLN>?$7^~76~ui&5{_EJ{YDr3-2oU?>f|-gP11-LI;QV9ZNM($1cf+LyBxH}X+I|Hna9Aaqh!H`P+<4h z#dILcDOfrL<3}y1$3_k=lt7Od3qdpEDf_v0>+UKtZpN+){-Yv4 zUSz9qk19ndkt-af%l1YEzm&YbLCKdI2*MxF7iO)a3Bl0N#m+=XoD{kN61h99uD8Hn~Z^2sjmQ=)Fa+A@8wj;`{DpzpFz)NZi-3LoB%-+j=w_rs!%D zy%Md)HhsTq6mZ(U1qx48pjf2i3G217^fb`de`gc#J}Sm14=8!pFAXH9JKOwkE%`|L zC+2tyZN_4F721`Ot%-a+p#Xs`p)HxN2Fhi6YTVx2yE+@5Ys8ufp;M9Xm;I)l^D3(# zOi=(-%*MAE=l46}Ej~%o(Qa5QpN!C!VE>r zD$M}W{{HNj&F9Fy2>J34EaYS}vG*?a{Jc05=FjibwRD`U<@L%|rK_=k4K$Y_VJQJ|!6UYGT-#GOLpKZy7Bgk6U;A%L4Q% zV%a#XVMBnkJG#`H^wvLWt$4C8f+JL=mD_7WK5MfjmgpYM*sEWE{M(`IJ&_Bd%w5ccqgV@dZl3(z0IaQfaoF7asrI<;{#S-xwn@0bb`j2w%ysF>8GC4~F<_1aOy7|nzg_V6PXyaPPucuRW)A>*jcOpxFDY5e^MJo7%I-#_{pid#`Q ze7X~+SZrU>0*|CZK<{{Z8b6Z4cYlE{#CUc)os>JeZ1F4Ks4F2k2$rE+qNT0He?=X2cx~krxEUQT3HS&Oa za+jQ?vF?TSn~2c>8XpvoI*}>vg{rgZa`fw8&BbdN!~fJjY`tk&=Qf^zzC*Wf{KF(s z3B;wjf@4M%LJ=?PL+8m5mr;s_E7T3V!|H?e2X0rt&BLB!V2zpA#B-q(M1{xbC#(te z<4McD+s-ymq*htj^GG=ZnXnNVxsah%S7@8E^u ztWj-mOF28s(Rc#cci8+20gby?qQ|LMyq0%X8eC}N1s%KVP38s^4$4OiIc$`&Ec$nc zc~p5$HO|XpFY6klz&I8e9sJqrms<$ncPZpI%9e6nOb%0*RbQ=N*ECoP<6U8-iOtsy zmoAWl&k?G+SA|f?Ni?0oovKp}Ym5xBk~?}YM_4D`vRzWv>|!#>jH=+QL305@-;LQ& z{Ha~~Mm3b^#JB+x1v+yIKl0P+&{Uax73R?*Uv_mHHz_nrCm#mKBji5`i(Tn#1c15y z7;W<31B#th3Aqk#IEIX;F0lKIHXuuAI2{5iKhQoEtrmdf!mCmuDs($!9PZ!Np+7O% z7E^fem!%*WR16$}Usj>~r!K%khQo{h;9BxOsiLWJJcW(Ru%*N&ue;tV3)GLDRjlNx zweNuI1)TRMv!9{}p1Gn*e{DUc?2__7?5eA-dksWmDVFZi@)kE9vj>yLsp?-;-Z{)) zLB)p%YtVvup;BF&$*AP7g4V3UVeM@1s;x~AO7bnhm`E8n>wSiff1Z97STE4DZUJo`v8`j+ivuKw00LMYf5 zmuxf(-D#}GU&Vy+sVg8w^yp8&f6=AjH3rIjvZAn0d`C0oG5j|~05i!*j7&g`6eD?* zv%O|VuJ$%rS9}?|u}bRMf_k>p-%bUR8Z=XVe_5-n#QKLuKi$ zO=xM}?2OO%2jHN5K~<7<3q*b!>~Re`5VqJVYj%f>4Jt6Q(@zyn7z!@@0cTmB!Uszi z(hR%2c&$sQwWP zyR9KF+o7_jiSyft?GJ;D)Eug{;Ish+hYj3<4E|pYc_+DF&f={DZWexID3x)L&k9S2 zcGHD>W-pkO4nEcdchrmm`E{^l~W zO(K~&BjyRW2kWgx=9s5`Ao|h$g%y_WphXVvAI)QHnAx8KDYGEU3X{6C>2=@jY$G;h z&_>OstUcG?QMPt-4i37~Ot<(iR->WVh8~NVXMyN==(S|hFQOOWARoO(9rw$AiE_QW zK;_l|c}C~0R4u-)5B33EaoBz7eKRxqrKzwl(3uYgAXyC86o^^gbZHwjYku%l@*H_W z0b)vXz)MWr{LxGsG{rjEsKJ<5l3;Tr%AhzNOUU7Jd6HXiCH(fs3(d@I+%BFHT8{Ls z@HWx(PkDWkvBgTCX#5#URJ%;RosmG?pzoV$?<4--(UN~!q)U+fw~xf+R8%vkT$yy$ z$y+zCq)&^b->9pqqA%Im*)cG0J(aY(zRO57GDdu&8CjzIi0k%nW3WwQ;&X}p^x{!q z3bRvOjZ(n@G}c=h-z}c4T)s1Z-F_?}^rWz$z=EF*{VV0}K2i#u1-`RPT2LRXk=$gW zJJt4R?_*WZg$J(^a+w4`K}`eQANDoXoEtQccwx+wLVX8rvu?GM z3c_g}gTMU#Zkr5=QBjXjMFi1jz}|bP>Aoh8qJ1*{kUKJ{QYOP- zq+|(e@yuikS&mHkxNu2^)`<2HQ_lYUchK#>TCpi&fUY6x(Gk_E)utk?Qcxg8>QQ%^oTz=vc)bov}n@LKEhm*Dc1QQMi@>eDUH=1(a( z)ga5~1B_Y821o(V6&?>B{BJ*dUJ0;JJARPRQ}2KI|J8No@lbvLAI}&Jku?%!Y}vQS z9!A#4R-r7}BWo#3jeW+xl`xTgm&i``v1Sk1Gxl9V#@O<`)2HqC=<%C>?_=)0=iYPf zd7t-rzn-tyBs)r;&`sn>PGV1KZQt?A@i))c+VFdWm`z!xh75ZuHo9P{luLGS{X)&L z_Y^!ve6E#k*?Cmu-Vr7cK%j3AE^U1hS1239UJT^t%^RWQmF?=IJ#@%(kaUplXdaBPteqeJ}1k0PbktWwwKTP;-v#N)9240qQpB;tJj|7HYB_~t|^z7 zZLDkjlKaNA(+>WPpV3&d&pOWD=Sy|86cJ)?m$H3JJb;)Bj^6URm{e%i;d*ecM;oW* zq19fDWDHSnSIpW0_8cSHXFY+ZMG^|7hBAngGC;y+WGmyjX$oO- zN+ulKb~j$Wvx~!_lP!A&R%Nq}Gl!`YUSb9_68^E6S;|i7xnZ>?=V^zPqwdb)5Zg|U^o+beCAIX*IC!+{2aTrMOl+G25Kp=ut1stAls`Z6Vw*@FzglE zvrzuYM1_%FW;sH9imOvEe5)BTzl0=OeA><}6wpye>_&k zMboUI;6K175zW3KAaL_@83<kQx5>yMJPVb2NpiTYMTuS~ zbAaDck1c0_oR&_EV>W?#tkcD2(27XQ(OOJ6_x2MZRM~@~T90H|*UharP>!5F&!`ef zpS`#m63Ll(PO;?oTJrKq+D@0P51v+$7`_g=czQoupJHtO>Tz5$cHSlkL(q0b*FGAJri38Kp06?8$V3Z_uXQVAlJ1&iOUh~pK(Es9D?5!2Y(Igtvq^3n z_t%P!NCqBpoc)xi2hP6RlHJ)xb6Y$)w^-MaohoUYm`P1+%q(4ZQS5S&E_R64l|5J` zBUrh#*EJK2j;UdRkXhLrR6hb(JVy^eO-O$m)8 z+XHCk1LJSutH|4DnD$f0@`@q~s&&Uxh)eT%pI=#6TRBiYwWEO}u!->-UA{KM)NL!g zL9p&vnm}YtQt{UHD1*S|=Bvp&kV9+eHoY83<9R zU441h?}M#gu0!Yzn>XW$@UKw0Xf}xMt1?~Ol5z=SYgu`?S5?YHJkdbrS~PXAmS&_y zNrtQ1t*^%c3L)V{dRd23ibPTw=2DNY)uDG@Yv1d7UOwp=sldZRk%N;S!68d3^xsSk znJ<)|uIyOfl@F~${w)78_@P4Dr$Cbz=3j4P8#u_su@@pv5yH@1khfHbV0%~f=p;qJ zFQl&ROdiO4XRzAwfUV^cCkq{1h2!2lIKys+h>`6+Pu!0Aj3j;Ztn3*3IaZl@)CU=N zf7!IP_5wensySf^c4?uZP}$z93b zH~lqVLSh#Rx4Z>Yj$9+TxVY9kp0f{QFga#)Jr!PuSa&kMZR&)E_ZnhmSb>98S#CqzV2R(t1!AbHOq?WZ$hzO2jaNv>AYtd>RB^bY^E~pE)lF1Nh1r zNpfD}-rq7<#sJ4!O8`=RhTx1%=jQdIG?S+QGco`}y~)NcY{{H>hx4pJ$Xi9-Xo#%A z9Y%G)`}F3Ei3j=Y`*CzmHsx17h8rbm7Tb*TzTjEgl*zEYQ}p4n{i8PbEps0J)0ns_ z!O%{oRh8q>>1e=M?foEeche)ILX)P)nq??#`c{*3PR>&8SIIQ0k9P-i5FzzG8|5QP zZ3jZO;4qU5Y9zX3tl5Xy4L-LmhS(s54;+ny+VYM|y-798rp4O1UB#B|>i}(4=niJS zk}>^gF;U8={%EaL_EIS4FV6F`M*G%_$?fcy0mQt|J)%?P#R}-aUd0ES#9W!CA^)ExVn+V_D%R@+xYmbFrLsaW=y)&zgd+*%n2Z@9n zg}>6{@|L;&Ssq?#X=&+~3E=LnXAiS{a#i!{FLYYh($u+%gpcT9gW@;-yD^=+VEQCd z=CB0s)tf0~-ttFH2&y#X45g$`t;jP)b|u?2)VY_Pbopf_OIbhAU%!R7cyU)O8=z;> znLMRN0p_l_&Be=nI(^pN56g8wp<AqI2U z=Q;8IzN>M;()*#55xiT;VlcMr>a)B@i*wSujqpI}jAOQ06CRo;jdVg&@ieqYjg0|b zliICqV7*AGOS_FjZ(e!`YcVpduVm;ABU3q0SBi6-uP61>x5I8-zs+zExEc7=#kli( zn)B?I;)(F{Tk8NIVx#v-ZCi{9vf;3`u=3X%aybSNk)-`_SPzSC2jSfez%XH=;pDI( zs6a?L830)*c&uc_`$xOvEiJzBj_)La5iHrQ9(`@53{o~1+Fe&PRrSCdWdv+eXbsiX z)t$aGS>V~QJ8T3P0kil_P66a&ck0;>m`0NUr&rHos#ez*qM{j;AB-gsQ#dR=m| z-uInf$!#ub)54{{K5_<|{U3}%2vTsbL5`o`>xj?s$j*zD`?J5^Ukk)|?>vxNs0SRw zNlwxLdOt5pur=aWwSD8PlCPNr&im<4^}h>vk;!k(l#q@vkQ8#s7`5v0^MK(bWN3Ie zkdw-g{!b-{F!0%B1c{}jdYb;JAO6|VTpZbSj&u}8E@_$C|B5t!NX_wz^QtrWGQ$gx z(25hwRdnR+iN&ECWyB%$j-@WKXXCa z3ea*3AK3LITybl^;BIJQlBBGAYkhTebQF~&?=yAgqO2{TkgWvN$!Fi5AtWRuIQ>

>n`X&7 zqo!4o?rkLKU0_f!)H8y;I-r>aqaj-a`z!0~Wm{WY3NNUu0Kw&#bh4weMCZNHVoP&2 zq)4a86aO*>QR~t>mTU{VBljprZ{4~zYU2L+wwNsL^SqJQ?k9td?pLB7&$pIOog!;i zSAyMQ7^kHFYm#IIDpO8*f~9So04I1q;Wv?|kS-?cudahh$^^S#r-$$o5fGk7aDlIv z$w6*v%k5{1Oi+p-UY-?A^Ycd>H?bVS`o*C`S5J<1{LaxQo?`9R757L5tOpuUAtfsT z7+eGf0*)O!&d<+J-y=nD0A_;b4S=Q??LIItK+~o!QXJgnpLtEzd(YixL`79~1MuE} zw2*J`B;;9KQe(B6i%B`k{Or<9fsOask0-WUs6~ZrGW1LW>~-djb5CYu1odb4=pqE} zRspPisWKKvM;`B+VV`V-eijRuZL#YZ=b3HIQ3n&3u3}EU?**(d`sDhoReE;;3~5Gi zg2ferQeL3_gNKKQ8kaM)j6{SEx8oa_#V8=U(Iwgd$9Lvw@w?!zrm|4R#}JYP2A8Jw zf>E@|Kg6taLsIV+#jh>_s z)otUCIcK}FoTG z;AUW8K*cY0uLDe=6m2c;1GriEtwWXSfms4JttwOLy3{M2SR1_ybw)_GfxJ$wz`kxS zFGEUKvY=*L{BqWFi7Iu=H5OcLgd8t7gWirNygS1B6Iz1q(P|dvGS%y5EvEqES4Ymv zzp>Am6sMpNx=`Atbf&>E{A|5>8w3$7r)XqIZlUI5M*qQz;M}{kI$1dG-IhQ=#P7=O z)KLh(CkUbA8^VAV2MLI_bx*YskWghp!H~Msb`4Qx{&tLLQZ%h1b0$d>(G3zbc^`k- z7^5}YasY`{G(`^x&7rjr&C=00UT%NwGyS7RMR+4Y6E&JZ5Lct1rXDS7QxW!D_*%_X)gdQ)m{)=nx*M2`j6s-JLOe+yi2!{TzlR){afCEGTfQ&7avio15cB<*0bH*9XkmYFDtO=AhTe~8$*qh9b@yRp>bri>#Y=8ONJdL6gaRUj zGAM3uS;<5jLqfbWc2H*cFZt2*HR;@-!OW(dd6>C-efx;o21sn{f82i$0GIB4ph5fTN&pa6 zBp|9^g$*<*576#O%(sm&2l}X$_NJs$6sH{{8TKfj_`!W|@M!kVes9Mhp;SJ*20mwP z2ILRN`o@7($n1p1Bg%__M}gTgLmLT<%BgNw{}9(MZ%X&#HKlaI1Yo(*Ru8yW5IgdW zH%~a#2z>jfsGZ%iJMB&}OMMdQ+b*JC(0tU5%Xu>& ze$CX}M4;#3_p?Yaukz`lcbW(y#g$pYW)X166JK1j34ar3LnoCmI9>oK$dDxM5|WT3 zCOm@li?w9yLmt_}Leo4$)(Awb^pD5xr%+_Oe>)8zgY~)#8A=5oCP71RkImRZq)bJK zq}8NF*HF&er0mN9MDqo7q#MjOH@?wYmeXO#?&`spEc`oh0QJCi*kXiaM^LPi>Wn6M zg}sdjcH?^5{l|8_}Nr0R#%2CF8Z37Q?yaSfK7ctk#j1nxLB3g;GTu442;rMFn;UE>jjKRN5S zKl{rx!2WWU5~k~q*7+B!C!I}4e`ugq_@A%}k0AsiBpUxs<$q#+g@@EGpj*bZbz=Yg zjhhvaLS2W{GyGgz{IyhQRR*9r54W%bzaple_duYUih%I%BXu-_>wv!*Q-cuHHeUG| zs!@SgZW%h1R#b@3!#rjH1c(gaR6YFm)r!IGVJl?}NN9<|aU}r!muL;&@lY3lF;O}< z=YGLYIiPW>?%4+ZE3AmK@95h+>fJvu3q1@PPCN!M9 z_4MC`MJ@aE`BcxKA<@Ub!2-VqTPwa2r*&M^ROp{^gL22OIb<@E)Bb*%Ke`6LK5$6j z|GgO4c8YbE{PzaVuQQt!vrU6-i?QJ&U4P!{&ylx?Z~M-fy!*?4J\n", + "RangeIndex: 23448 entries, 0 to 23447\n", + "Data columns (total 5 columns):\n", + "ch06 23448 non-null int64\n", + "nivel_ed 23448 non-null object\n", + "htot 23448 non-null int64\n", + "calif 23448 non-null object\n", + "p47t 23448 non-null float64\n", + "dtypes: float64(1), int64(2), object(2)\n", + "memory usage: 916.0+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Que informação o dataset tem? Imprimir o nome das colunas" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['ch06', 'nivel_ed', 'htot', 'calif', 'p47t'], dtype='object')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Os nomes das colunas não são muito descritivos a respeito das informações que elas contêm. Vamos tentar mudá-los pela seguinte lista: \n", + "\n", + "['idade', 'escolaridade', 'hs_trabalhadas', 'qualificação_ocupacional', 'renda_ult_mes']" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "df.columns = ['idade', 'escolaridade', 'hs_trabalhadas', 'qualificação_ocupacional', 'renda_ult_mes']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 Como o dataset está indexado?" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "RangeIndex(start=0, stop=23448, step=1)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.index" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Qual é o tipo da quarta coluna?" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dtype('O')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.iloc[:,3].dtype" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Qual é a escolaridade mais comum?" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2_Sec. comp y más 14634\n", + "Name: escolaridade, dtype: int64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"escolaridade\"].value_counts().head(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.5 E como a população é distribuída segundo a qualificação? " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2_Op./No calif. 17372\n", + "Name: qualificação_ocupacional, dtype: int64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"qualificação_ocupacional\"].value_counts().head(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.6 Qual é a renda total da população? " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "190114176.0" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['renda_ult_mes'].sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Qual é a renda média da população? " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8107.905834186285" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['renda_ult_mes'].mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Indexando e organizando os dados" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.1 Selecionar a coluna `escolaridade` e `renda_ult_mes` e atribuí-las a um objeto novo chamado `df2`" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "df2 = df[['escolaridade','renda_ult_mes']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2 Selecionar as primeiras 20 filas de df2" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
escolaridaderenda_ult_mes
01_H/Sec inc6000.0
12_Sec. comp y más5000.0
22_Sec. comp y más5000.0
31_H/Sec inc11000.0
41_H/Sec inc9500.0
52_Sec. comp y más6000.0
62_Sec. comp y más9000.0
71_H/Sec inc4260.0
81_H/Sec inc3800.0
92_Sec. comp y más10517.0
101_H/Sec inc8300.0
112_Sec. comp y más4900.0
122_Sec. comp y más11000.0
132_Sec. comp y más9000.0
141_H/Sec inc3500.0
151_H/Sec inc8000.0
161_H/Sec inc2500.0
171_H/Sec inc7500.0
181_H/Sec inc5000.0
191_H/Sec inc5500.0
\n", + "
" + ], + "text/plain": [ + " escolaridade renda_ult_mes\n", + "0 1_H/Sec inc 6000.0\n", + "1 2_Sec. comp y más 5000.0\n", + "2 2_Sec. comp y más 5000.0\n", + "3 1_H/Sec inc 11000.0\n", + "4 1_H/Sec inc 9500.0\n", + "5 2_Sec. comp y más 6000.0\n", + "6 2_Sec. comp y más 9000.0\n", + "7 1_H/Sec inc 4260.0\n", + "8 1_H/Sec inc 3800.0\n", + "9 2_Sec. comp y más 10517.0\n", + "10 1_H/Sec inc 8300.0\n", + "11 2_Sec. comp y más 4900.0\n", + "12 2_Sec. comp y más 11000.0\n", + "13 2_Sec. comp y más 9000.0\n", + "14 1_H/Sec inc 3500.0\n", + "15 1_H/Sec inc 8000.0\n", + "16 1_H/Sec inc 2500.0\n", + "17 1_H/Sec inc 7500.0\n", + "18 1_H/Sec inc 5000.0\n", + "19 1_H/Sec inc 5500.0" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df2[0:20]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2 Selecionar uma amostra aleatória de 500 filas de df" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idadeescolaridadehs_trabalhadasqualificação_ocupacionalrenda_ult_mes
443512_Sec. comp y más482_Op./No calif.8000.0
1065632_Sec. comp y más482_Op./No calif.10000.0
5475462_Sec. comp y más402_Op./No calif.8700.0
7624532_Sec. comp y más301_Prof./Tecn.8000.0
14079382_Sec. comp y más442_Op./No calif.8500.0
7559332_Sec. comp y más331_Prof./Tecn.4000.0
9571502_Sec. comp y más351_Prof./Tecn.7000.0
18322401_H/Sec inc602_Op./No calif.14000.0
9603412_Sec. comp y más202_Op./No calif.11700.0
10775412_Sec. comp y más301_Prof./Tecn.10000.0
11841302_Sec. comp y más362_Op./No calif.2000.0
3041651_H/Sec inc42_Op./No calif.4700.0
6880562_Sec. comp y más202_Op./No calif.2000.0
12165382_Sec. comp y más482_Op./No calif.1500.0
12333541_H/Sec inc162_Op./No calif.3000.0
1789422_Sec. comp y más302_Op./No calif.6000.0
4448372_Sec. comp y más702_Op./No calif.22000.0
6498551_H/Sec inc562_Op./No calif.5000.0
7185262_Sec. comp y más482_Op./No calif.8000.0
10892372_Sec. comp y más482_Op./No calif.8500.0
3779201_H/Sec inc552_Op./No calif.8000.0
13406382_Sec. comp y más541_Prof./Tecn.15000.0
18549231_H/Sec inc242_Op./No calif.1200.0
16092522_Sec. comp y más452_Op./No calif.19000.0
9869442_Sec. comp y más202_Op./No calif.1500.0
3733361_H/Sec inc42_Op./No calif.800.0
2868212_Sec. comp y más201_Prof./Tecn.4500.0
3561381_H/Sec inc252_Op./No calif.3000.0
12541231_H/Sec inc482_Op./No calif.6000.0
11859592_Sec. comp y más152_Op./No calif.1000.0
..................
9734432_Sec. comp y más402_Op./No calif.10000.0
2839402_Sec. comp y más561_Prof./Tecn.9000.0
1120621_H/Sec inc502_Op./No calif.5400.0
13890282_Sec. comp y más402_Op./No calif.10000.0
18621582_Sec. comp y más651_Prof./Tecn.10000.0
9469262_Sec. comp y más421_Prof./Tecn.4000.0
19453471_H/Sec inc202_Op./No calif.4500.0
10115582_Sec. comp y más402_Op./No calif.10000.0
11331341_H/Sec inc252_Op./No calif.1000.0
21837272_Sec. comp y más81_Prof./Tecn.2500.0
21184262_Sec. comp y más302_Op./No calif.20000.0
6260422_Sec. comp y más782_Op./No calif.4000.0
13224562_Sec. comp y más601_Prof./Tecn.35000.0
17424582_Sec. comp y más481_Prof./Tecn.35000.0
23266301_H/Sec inc542_Op./No calif.8000.0
8048491_H/Sec inc302_Op./No calif.4500.0
7595301_H/Sec inc352_Op./No calif.4400.0
16016462_Sec. comp y más301_Prof./Tecn.15000.0
4276302_Sec. comp y más401_Prof./Tecn.42500.0
12629312_Sec. comp y más402_Op./No calif.8000.0
8748472_Sec. comp y más502_Op./No calif.11000.0
4322402_Sec. comp y más602_Op./No calif.40000.0
21026462_Sec. comp y más201_Prof./Tecn.35000.0
20977472_Sec. comp y más451_Prof./Tecn.15000.0
18900682_Sec. comp y más452_Op./No calif.7000.0
501341_H/Sec inc482_Op./No calif.8000.0
13693242_Sec. comp y más182_Op./No calif.2000.0
3562171_H/Sec inc122_Op./No calif.1350.0
9694482_Sec. comp y más481_Prof./Tecn.5000.0
21117451_H/Sec inc122_Op./No calif.20500.0
\n", + "

500 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " idade escolaridade hs_trabalhadas qualificação_ocupacional \\\n", + "443 51 2_Sec. comp y más 48 2_Op./No calif. \n", + "1065 63 2_Sec. comp y más 48 2_Op./No calif. \n", + "5475 46 2_Sec. comp y más 40 2_Op./No calif. \n", + "7624 53 2_Sec. comp y más 30 1_Prof./Tecn. \n", + "14079 38 2_Sec. comp y más 44 2_Op./No calif. \n", + "7559 33 2_Sec. comp y más 33 1_Prof./Tecn. \n", + "9571 50 2_Sec. comp y más 35 1_Prof./Tecn. \n", + "18322 40 1_H/Sec inc 60 2_Op./No calif. \n", + "9603 41 2_Sec. comp y más 20 2_Op./No calif. \n", + "10775 41 2_Sec. comp y más 30 1_Prof./Tecn. \n", + "11841 30 2_Sec. comp y más 36 2_Op./No calif. \n", + "3041 65 1_H/Sec inc 4 2_Op./No calif. \n", + "6880 56 2_Sec. comp y más 20 2_Op./No calif. \n", + "12165 38 2_Sec. comp y más 48 2_Op./No calif. \n", + "12333 54 1_H/Sec inc 16 2_Op./No calif. \n", + "1789 42 2_Sec. comp y más 30 2_Op./No calif. \n", + "4448 37 2_Sec. comp y más 70 2_Op./No calif. \n", + "6498 55 1_H/Sec inc 56 2_Op./No calif. \n", + "7185 26 2_Sec. comp y más 48 2_Op./No calif. \n", + "10892 37 2_Sec. comp y más 48 2_Op./No calif. \n", + "3779 20 1_H/Sec inc 55 2_Op./No calif. \n", + "13406 38 2_Sec. comp y más 54 1_Prof./Tecn. \n", + "18549 23 1_H/Sec inc 24 2_Op./No calif. \n", + "16092 52 2_Sec. comp y más 45 2_Op./No calif. \n", + "9869 44 2_Sec. comp y más 20 2_Op./No calif. \n", + "3733 36 1_H/Sec inc 4 2_Op./No calif. \n", + "2868 21 2_Sec. comp y más 20 1_Prof./Tecn. \n", + "3561 38 1_H/Sec inc 25 2_Op./No calif. \n", + "12541 23 1_H/Sec inc 48 2_Op./No calif. \n", + "11859 59 2_Sec. comp y más 15 2_Op./No calif. \n", + "... ... ... ... ... \n", + "9734 43 2_Sec. comp y más 40 2_Op./No calif. \n", + "2839 40 2_Sec. comp y más 56 1_Prof./Tecn. \n", + "1120 62 1_H/Sec inc 50 2_Op./No calif. \n", + "13890 28 2_Sec. comp y más 40 2_Op./No calif. \n", + "18621 58 2_Sec. comp y más 65 1_Prof./Tecn. \n", + "9469 26 2_Sec. comp y más 42 1_Prof./Tecn. \n", + "19453 47 1_H/Sec inc 20 2_Op./No calif. \n", + "10115 58 2_Sec. comp y más 40 2_Op./No calif. \n", + "11331 34 1_H/Sec inc 25 2_Op./No calif. \n", + "21837 27 2_Sec. comp y más 8 1_Prof./Tecn. \n", + "21184 26 2_Sec. comp y más 30 2_Op./No calif. \n", + "6260 42 2_Sec. comp y más 78 2_Op./No calif. \n", + "13224 56 2_Sec. comp y más 60 1_Prof./Tecn. \n", + "17424 58 2_Sec. comp y más 48 1_Prof./Tecn. \n", + "23266 30 1_H/Sec inc 54 2_Op./No calif. \n", + "8048 49 1_H/Sec inc 30 2_Op./No calif. \n", + "7595 30 1_H/Sec inc 35 2_Op./No calif. \n", + "16016 46 2_Sec. comp y más 30 1_Prof./Tecn. \n", + "4276 30 2_Sec. comp y más 40 1_Prof./Tecn. \n", + "12629 31 2_Sec. comp y más 40 2_Op./No calif. \n", + "8748 47 2_Sec. comp y más 50 2_Op./No calif. \n", + "4322 40 2_Sec. comp y más 60 2_Op./No calif. \n", + "21026 46 2_Sec. comp y más 20 1_Prof./Tecn. \n", + "20977 47 2_Sec. comp y más 45 1_Prof./Tecn. \n", + "18900 68 2_Sec. comp y más 45 2_Op./No calif. \n", + "501 34 1_H/Sec inc 48 2_Op./No calif. \n", + "13693 24 2_Sec. comp y más 18 2_Op./No calif. \n", + "3562 17 1_H/Sec inc 12 2_Op./No calif. \n", + "9694 48 2_Sec. comp y más 48 1_Prof./Tecn. \n", + "21117 45 1_H/Sec inc 12 2_Op./No calif. \n", + "\n", + " renda_ult_mes \n", + "443 8000.0 \n", + "1065 10000.0 \n", + "5475 8700.0 \n", + "7624 8000.0 \n", + "14079 8500.0 \n", + "7559 4000.0 \n", + "9571 7000.0 \n", + "18322 14000.0 \n", + "9603 11700.0 \n", + "10775 10000.0 \n", + "11841 2000.0 \n", + "3041 4700.0 \n", + "6880 2000.0 \n", + "12165 1500.0 \n", + "12333 3000.0 \n", + "1789 6000.0 \n", + "4448 22000.0 \n", + "6498 5000.0 \n", + "7185 8000.0 \n", + "10892 8500.0 \n", + "3779 8000.0 \n", + "13406 15000.0 \n", + "18549 1200.0 \n", + "16092 19000.0 \n", + "9869 1500.0 \n", + "3733 800.0 \n", + "2868 4500.0 \n", + "3561 3000.0 \n", + "12541 6000.0 \n", + "11859 1000.0 \n", + "... ... \n", + "9734 10000.0 \n", + "2839 9000.0 \n", + "1120 5400.0 \n", + "13890 10000.0 \n", + "18621 10000.0 \n", + "9469 4000.0 \n", + "19453 4500.0 \n", + "10115 10000.0 \n", + "11331 1000.0 \n", + "21837 2500.0 \n", + "21184 20000.0 \n", + "6260 4000.0 \n", + "13224 35000.0 \n", + "17424 35000.0 \n", + "23266 8000.0 \n", + "8048 4500.0 \n", + "7595 4400.0 \n", + "16016 15000.0 \n", + "4276 42500.0 \n", + "12629 8000.0 \n", + "8748 11000.0 \n", + "4322 40000.0 \n", + "21026 35000.0 \n", + "20977 15000.0 \n", + "18900 7000.0 \n", + "501 8000.0 \n", + "13693 2000.0 \n", + "3562 1350.0 \n", + "9694 5000.0 \n", + "21117 20500.0 \n", + "\n", + "[500 rows x 5 columns]" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.sample(500)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.4 Escolher todas as colunas, exceto escolaridade. Dica: Utilizar a propriedade columns para filtrar na dimensão das colunas." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idadehs_trabalhadasqualificação_ocupacionalrenda_ult_mes
046452_Op./No calif.6000.0
126252_Op./No calif.5000.0
247252_Op./No calif.5000.0
352902_Op./No calif.11000.0
445442_Op./No calif.9500.0
538721_Prof./Tecn.6000.0
640442_Op./No calif.9000.0
753722_Op./No calif.4260.0
824552_Op./No calif.3800.0
944602_Op./No calif.10517.0
1072151_Prof./Tecn.8300.0
1140422_Op./No calif.4900.0
1243151_Prof./Tecn.11000.0
1347452_Op./No calif.9000.0
1440142_Op./No calif.3500.0
1540552_Op./No calif.8000.0
1643482_Op./No calif.2500.0
1743722_Op./No calif.7500.0
1842722_Op./No calif.5000.0
1929202_Op./No calif.5500.0
2044361_Prof./Tecn.7000.0
2125362_Op./No calif.6500.0
2248302_Op./No calif.3000.0
2319252_Op./No calif.2000.0
2453402_Op./No calif.9100.0
2547362_Op./No calif.5100.0
2640402_Op./No calif.7200.0
2754702_Op./No calif.4800.0
2837512_Op./No calif.2700.0
2937242_Op./No calif.3000.0
...............
2341837482_Op./No calif.10500.0
2341936401_Prof./Tecn.13000.0
2342029402_Op./No calif.9500.0
2342128402_Op./No calif.9700.0
2342229481_Prof./Tecn.3500.0
2342347602_Op./No calif.8400.0
2342428202_Op./No calif.3500.0
2342546401_Prof./Tecn.12000.0
2342658202_Op./No calif.6000.0
2342733482_Op./No calif.5500.0
2342836602_Op./No calif.8200.0
2342961301_Prof./Tecn.6000.0
2343062301_Prof./Tecn.8500.0
2343141561_Prof./Tecn.15000.0
2343238441_Prof./Tecn.6800.0
2343341401_Prof./Tecn.8000.0
2343463182_Op./No calif.7100.0
2343539482_Op./No calif.3500.0
2343637502_Op./No calif.5800.0
2343765562_Op./No calif.3500.0
2343831242_Op./No calif.5800.0
2343917562_Op./No calif.3500.0
2344019482_Op./No calif.7000.0
2344133242_Op./No calif.4450.0
2344241392_Op./No calif.9500.0
2344345502_Op./No calif.4000.0
2344458302_Op./No calif.5000.0
2344536402_Op./No calif.13000.0
2344649402_Op./No calif.4000.0
2344736542_Op./No calif.8000.0
\n", + "

23448 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " idade hs_trabalhadas qualificação_ocupacional renda_ult_mes\n", + "0 46 45 2_Op./No calif. 6000.0\n", + "1 26 25 2_Op./No calif. 5000.0\n", + "2 47 25 2_Op./No calif. 5000.0\n", + "3 52 90 2_Op./No calif. 11000.0\n", + "4 45 44 2_Op./No calif. 9500.0\n", + "5 38 72 1_Prof./Tecn. 6000.0\n", + "6 40 44 2_Op./No calif. 9000.0\n", + "7 53 72 2_Op./No calif. 4260.0\n", + "8 24 55 2_Op./No calif. 3800.0\n", + "9 44 60 2_Op./No calif. 10517.0\n", + "10 72 15 1_Prof./Tecn. 8300.0\n", + "11 40 42 2_Op./No calif. 4900.0\n", + "12 43 15 1_Prof./Tecn. 11000.0\n", + "13 47 45 2_Op./No calif. 9000.0\n", + "14 40 14 2_Op./No calif. 3500.0\n", + "15 40 55 2_Op./No calif. 8000.0\n", + "16 43 48 2_Op./No calif. 2500.0\n", + "17 43 72 2_Op./No calif. 7500.0\n", + "18 42 72 2_Op./No calif. 5000.0\n", + "19 29 20 2_Op./No calif. 5500.0\n", + "20 44 36 1_Prof./Tecn. 7000.0\n", + "21 25 36 2_Op./No calif. 6500.0\n", + "22 48 30 2_Op./No calif. 3000.0\n", + "23 19 25 2_Op./No calif. 2000.0\n", + "24 53 40 2_Op./No calif. 9100.0\n", + "25 47 36 2_Op./No calif. 5100.0\n", + "26 40 40 2_Op./No calif. 7200.0\n", + "27 54 70 2_Op./No calif. 4800.0\n", + "28 37 51 2_Op./No calif. 2700.0\n", + "29 37 24 2_Op./No calif. 3000.0\n", + "... ... ... ... ...\n", + "23418 37 48 2_Op./No calif. 10500.0\n", + "23419 36 40 1_Prof./Tecn. 13000.0\n", + "23420 29 40 2_Op./No calif. 9500.0\n", + "23421 28 40 2_Op./No calif. 9700.0\n", + "23422 29 48 1_Prof./Tecn. 3500.0\n", + "23423 47 60 2_Op./No calif. 8400.0\n", + "23424 28 20 2_Op./No calif. 3500.0\n", + "23425 46 40 1_Prof./Tecn. 12000.0\n", + "23426 58 20 2_Op./No calif. 6000.0\n", + "23427 33 48 2_Op./No calif. 5500.0\n", + "23428 36 60 2_Op./No calif. 8200.0\n", + "23429 61 30 1_Prof./Tecn. 6000.0\n", + "23430 62 30 1_Prof./Tecn. 8500.0\n", + "23431 41 56 1_Prof./Tecn. 15000.0\n", + "23432 38 44 1_Prof./Tecn. 6800.0\n", + "23433 41 40 1_Prof./Tecn. 8000.0\n", + "23434 63 18 2_Op./No calif. 7100.0\n", + "23435 39 48 2_Op./No calif. 3500.0\n", + "23436 37 50 2_Op./No calif. 5800.0\n", + "23437 65 56 2_Op./No calif. 3500.0\n", + "23438 31 24 2_Op./No calif. 5800.0\n", + "23439 17 56 2_Op./No calif. 3500.0\n", + "23440 19 48 2_Op./No calif. 7000.0\n", + "23441 33 24 2_Op./No calif. 4450.0\n", + "23442 41 39 2_Op./No calif. 9500.0\n", + "23443 45 50 2_Op./No calif. 4000.0\n", + "23444 58 30 2_Op./No calif. 5000.0\n", + "23445 36 40 2_Op./No calif. 13000.0\n", + "23446 49 40 2_Op./No calif. 4000.0\n", + "23447 36 54 2_Op./No calif. 8000.0\n", + "\n", + "[23448 rows x 4 columns]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.loc[:,df.columns != 'escolaridade']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.5 Organizar o dataset segundo a idade" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idadeescolaridadehs_trabalhadasqualificação_ocupacionalrenda_ult_mes
15308121_H/Sec inc72_Op./No calif.250.0
19856121_H/Sec inc152_Op./No calif.1200.0
20050121_H/Sec inc202_Op./No calif.1600.0
5698121_H/Sec inc52_Op./No calif.250.0
14556131_H/Sec inc142_Op./No calif.800.0
15198131_H/Sec inc62_Op./No calif.800.0
16659131_H/Sec inc602_Op./No calif.3000.0
3776141_H/Sec inc202_Op./No calif.1000.0
6027141_H/Sec inc62_Op./No calif.2316.0
6462141_H/Sec inc32_Op./No calif.250.0
15106141_H/Sec inc292_Op./No calif.2750.0
17971141_H/Sec inc92_Op./No calif.1350.0
14853141_H/Sec inc142_Op./No calif.450.0
19656141_H/Sec inc52_Op./No calif.150.0
14087141_H/Sec inc152_Op./No calif.3000.0
13727151_H/Sec inc242_Op./No calif.3300.0
15286151_H/Sec inc62_Op./No calif.400.0
1386151_H/Sec inc422_Op./No calif.5400.0
23005151_H/Sec inc482_Op./No calif.4200.0
2712151_H/Sec inc122_Op./No calif.600.0
8305151_H/Sec inc252_Op./No calif.3000.0
12169151_H/Sec inc452_Op./No calif.2000.0
19655151_H/Sec inc52_Op./No calif.150.0
11693151_H/Sec inc92_Op./No calif.500.0
14785151_H/Sec inc102_Op./No calif.800.0
17878161_H/Sec inc402_Op./No calif.3000.0
6131161_H/Sec inc242_Op./No calif.540.0
7447161_H/Sec inc482_Op./No calif.2000.0
6473161_H/Sec inc302_Op./No calif.1000.0
3165161_H/Sec inc21_Prof./Tecn.300.0
..................
9620801_H/Sec inc122_Op./No calif.5700.0
14543801_H/Sec inc92_Op./No calif.6200.0
22575801_H/Sec inc92_Op./No calif.6500.0
1404801_H/Sec inc662_Op./No calif.3600.0
20673802_Sec. comp y más242_Op./No calif.6200.0
21036801_H/Sec inc421_Prof./Tecn.8200.0
1701811_H/Sec inc301_Prof./Tecn.6900.0
14882811_H/Sec inc302_Op./No calif.6000.0
14579811_H/Sec inc432_Op./No calif.6700.0
21919811_H/Sec inc302_Op./No calif.6800.0
21567812_Sec. comp y más301_Prof./Tecn.6600.0
5588812_Sec. comp y más501_Prof./Tecn.19500.0
19386811_H/Sec inc72_Op./No calif.10142.0
5342821_H/Sec inc92_Op./No calif.4800.0
5343822_Sec. comp y más331_Prof./Tecn.12300.0
20819821_H/Sec inc152_Op./No calif.5700.0
16497822_Sec. comp y más132_Op./No calif.7000.0
20213822_Sec. comp y más302_Op./No calif.23800.0
17363822_Sec. comp y más122_Op./No calif.8500.0
1270822_Sec. comp y más251_Prof./Tecn.11700.0
12786821_H/Sec inc62_Op./No calif.6900.0
18209831_H/Sec inc562_Op./No calif.26700.0
20745832_Sec. comp y más401_Prof./Tecn.8000.0
766842_Sec. comp y más301_Prof./Tecn.7800.0
10087841_H/Sec inc481_Prof./Tecn.8000.0
4340841_H/Sec inc362_Op./No calif.7500.0
23317841_H/Sec inc252_Op./No calif.9900.0
16461852_Sec. comp y más401_Prof./Tecn.20700.0
16954852_Sec. comp y más362_Op./No calif.8250.0
22574931_H/Sec inc202_Op./No calif.8000.0
\n", + "

23448 rows × 5 columns

\n", + "
" + ], + "text/plain": [ + " idade escolaridade hs_trabalhadas qualificação_ocupacional \\\n", + "15308 12 1_H/Sec inc 7 2_Op./No calif. \n", + "19856 12 1_H/Sec inc 15 2_Op./No calif. \n", + "20050 12 1_H/Sec inc 20 2_Op./No calif. \n", + "5698 12 1_H/Sec inc 5 2_Op./No calif. \n", + "14556 13 1_H/Sec inc 14 2_Op./No calif. \n", + "15198 13 1_H/Sec inc 6 2_Op./No calif. \n", + "16659 13 1_H/Sec inc 60 2_Op./No calif. \n", + "3776 14 1_H/Sec inc 20 2_Op./No calif. \n", + "6027 14 1_H/Sec inc 6 2_Op./No calif. \n", + "6462 14 1_H/Sec inc 3 2_Op./No calif. \n", + "15106 14 1_H/Sec inc 29 2_Op./No calif. \n", + "17971 14 1_H/Sec inc 9 2_Op./No calif. \n", + "14853 14 1_H/Sec inc 14 2_Op./No calif. \n", + "19656 14 1_H/Sec inc 5 2_Op./No calif. \n", + "14087 14 1_H/Sec inc 15 2_Op./No calif. \n", + "13727 15 1_H/Sec inc 24 2_Op./No calif. \n", + "15286 15 1_H/Sec inc 6 2_Op./No calif. \n", + "1386 15 1_H/Sec inc 42 2_Op./No calif. \n", + "23005 15 1_H/Sec inc 48 2_Op./No calif. \n", + "2712 15 1_H/Sec inc 12 2_Op./No calif. \n", + "8305 15 1_H/Sec inc 25 2_Op./No calif. \n", + "12169 15 1_H/Sec inc 45 2_Op./No calif. \n", + "19655 15 1_H/Sec inc 5 2_Op./No calif. \n", + "11693 15 1_H/Sec inc 9 2_Op./No calif. \n", + "14785 15 1_H/Sec inc 10 2_Op./No calif. \n", + "17878 16 1_H/Sec inc 40 2_Op./No calif. \n", + "6131 16 1_H/Sec inc 24 2_Op./No calif. \n", + "7447 16 1_H/Sec inc 48 2_Op./No calif. \n", + "6473 16 1_H/Sec inc 30 2_Op./No calif. \n", + "3165 16 1_H/Sec inc 2 1_Prof./Tecn. \n", + "... ... ... ... ... \n", + "9620 80 1_H/Sec inc 12 2_Op./No calif. \n", + "14543 80 1_H/Sec inc 9 2_Op./No calif. \n", + "22575 80 1_H/Sec inc 9 2_Op./No calif. \n", + "1404 80 1_H/Sec inc 66 2_Op./No calif. \n", + "20673 80 2_Sec. comp y más 24 2_Op./No calif. \n", + "21036 80 1_H/Sec inc 42 1_Prof./Tecn. \n", + "1701 81 1_H/Sec inc 30 1_Prof./Tecn. \n", + "14882 81 1_H/Sec inc 30 2_Op./No calif. \n", + "14579 81 1_H/Sec inc 43 2_Op./No calif. \n", + "21919 81 1_H/Sec inc 30 2_Op./No calif. \n", + "21567 81 2_Sec. comp y más 30 1_Prof./Tecn. \n", + "5588 81 2_Sec. comp y más 50 1_Prof./Tecn. \n", + "19386 81 1_H/Sec inc 7 2_Op./No calif. \n", + "5342 82 1_H/Sec inc 9 2_Op./No calif. \n", + "5343 82 2_Sec. comp y más 33 1_Prof./Tecn. \n", + "20819 82 1_H/Sec inc 15 2_Op./No calif. \n", + "16497 82 2_Sec. comp y más 13 2_Op./No calif. \n", + "20213 82 2_Sec. comp y más 30 2_Op./No calif. \n", + "17363 82 2_Sec. comp y más 12 2_Op./No calif. \n", + "1270 82 2_Sec. comp y más 25 1_Prof./Tecn. \n", + "12786 82 1_H/Sec inc 6 2_Op./No calif. \n", + "18209 83 1_H/Sec inc 56 2_Op./No calif. \n", + "20745 83 2_Sec. comp y más 40 1_Prof./Tecn. \n", + "766 84 2_Sec. comp y más 30 1_Prof./Tecn. \n", + "10087 84 1_H/Sec inc 48 1_Prof./Tecn. \n", + "4340 84 1_H/Sec inc 36 2_Op./No calif. \n", + "23317 84 1_H/Sec inc 25 2_Op./No calif. \n", + "16461 85 2_Sec. comp y más 40 1_Prof./Tecn. \n", + "16954 85 2_Sec. comp y más 36 2_Op./No calif. \n", + "22574 93 1_H/Sec inc 20 2_Op./No calif. \n", + "\n", + " renda_ult_mes \n", + "15308 250.0 \n", + "19856 1200.0 \n", + "20050 1600.0 \n", + "5698 250.0 \n", + "14556 800.0 \n", + "15198 800.0 \n", + "16659 3000.0 \n", + "3776 1000.0 \n", + "6027 2316.0 \n", + "6462 250.0 \n", + "15106 2750.0 \n", + "17971 1350.0 \n", + "14853 450.0 \n", + "19656 150.0 \n", + "14087 3000.0 \n", + "13727 3300.0 \n", + "15286 400.0 \n", + "1386 5400.0 \n", + "23005 4200.0 \n", + "2712 600.0 \n", + "8305 3000.0 \n", + "12169 2000.0 \n", + "19655 150.0 \n", + "11693 500.0 \n", + "14785 800.0 \n", + "17878 3000.0 \n", + "6131 540.0 \n", + "7447 2000.0 \n", + "6473 1000.0 \n", + "3165 300.0 \n", + "... ... \n", + "9620 5700.0 \n", + "14543 6200.0 \n", + "22575 6500.0 \n", + "1404 3600.0 \n", + "20673 6200.0 \n", + "21036 8200.0 \n", + "1701 6900.0 \n", + "14882 6000.0 \n", + "14579 6700.0 \n", + "21919 6800.0 \n", + "21567 6600.0 \n", + "5588 19500.0 \n", + "19386 10142.0 \n", + "5342 4800.0 \n", + "5343 12300.0 \n", + "20819 5700.0 \n", + "16497 7000.0 \n", + "20213 23800.0 \n", + "17363 8500.0 \n", + "1270 11700.0 \n", + "12786 6900.0 \n", + "18209 26700.0 \n", + "20745 8000.0 \n", + "766 7800.0 \n", + "10087 8000.0 \n", + "4340 7500.0 \n", + "23317 9900.0 \n", + "16461 20700.0 \n", + "16954 8250.0 \n", + "22574 8000.0 \n", + "\n", + "[23448 rows x 5 columns]" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.sort_values(['idade'], ascending = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.6 Qual é a média de horas trabalhadas dos jovens entre 14 e 25 anos pouco qualificados?" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2_Op./No calif. 17372\n", + "1_Prof./Tecn. 6076\n", + "Name: qualificação_ocupacional, dtype: int64" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['qualificação_ocupacional'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "37.57085900688655" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['hs_trabalhadas'][(df['idade'] >= 14) & \\\n", + " (df['idade'] <= 25) & \\\n", + " (df['qualificação_ocupacional'] == '2_Op./No calif.')].mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.7 Gerar um novo dataframe com os trabalhadores que ganham mais que a renda média geral e estão abaixo do número médio de horas trabalhadas. Quantos trabalhadores estão nesta condição? Qual é a média de idade deles?" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idadeescolaridadehs_trabalhadasqualificação_ocupacionalrenda_ult_mes
10721_H/Sec inc151_Prof./Tecn.8300.0
12432_Sec. comp y más151_Prof./Tecn.11000.0
47332_Sec. comp y más391_Prof./Tecn.9500.0
48551_H/Sec inc302_Op./No calif.13000.0
88461_H/Sec inc361_Prof./Tecn.10000.0
\n", + "
" + ], + "text/plain": [ + " idade escolaridade hs_trabalhadas qualificação_ocupacional \\\n", + "10 72 1_H/Sec inc 15 1_Prof./Tecn. \n", + "12 43 2_Sec. comp y más 15 1_Prof./Tecn. \n", + "47 33 2_Sec. comp y más 39 1_Prof./Tecn. \n", + "48 55 1_H/Sec inc 30 2_Op./No calif. \n", + "88 46 1_H/Sec inc 36 1_Prof./Tecn. \n", + "\n", + " renda_ult_mes \n", + "10 8300.0 \n", + "12 11000.0 \n", + "47 9500.0 \n", + "48 13000.0 \n", + "88 10000.0 " + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df3 = df.loc[(df['renda_ult_mes'] > df.renda_ult_mes.mean())\n", + " & (df['hs_trabalhadas'] < df.hs_trabalhadas.mean())]\n", + "\n", + "df3.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Visulização dos dados" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.1 Plote um histograma para a variável renda do ultimo mês" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAD8CAYAAAC/1zkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGktJREFUeJzt3XuQHeV55/HvL5K52SaSLEFkXTLCNWYjqESIWSwvsZeAASF7LUitE6lSRsHEYzBswtpVa4FTC7aXKnzFVsUrkG0tkheDZQNGsUUUofIlqeKikVF0AWQNQoFBKmlAicGGBQue/aPfI7dGZ2bOjN5zWgd+n6qu0/30291P92jmUffbfVoRgZmZWQ6/U3UCZmb2+uGiYmZm2biomJlZNi4qZmaWjYuKmZll46JiZmbZuKiYmVk2LipmZpaNi4qZmWUztuoEWm3ixInR0dFRdRpmZm1l48aNz0bEpOHaveGKSkdHBz09PVWnYWbWViT9ayPtfPnLzMyycVExM7NsXFTMzCwbFxUzM8vGRcXMzLJxUTEzs2xcVMzMLJumFRVJ0yT9WNJjkrZJ+psUnyBpnaQd6XN8ikvSEkm9kjZLml1a16LUfoekRaX4mZK2pGWWSFKz9sfMzIbXzDOVA8AnI+IPgDnAVZJmAouB9RHRCaxP0wAXAZ1p6AaWQlGEgOuBdwFnAdfXClFq011abm4T98fMzIbRtCfqI2IPsCeNvyDpMWAKMB84JzVbAfwE+FSKr4yIAB6UNE7S5NR2XUTsB5C0Dpgr6SfAiRHxQIqvBC4G7mvWPnUs/lGzVj2kXTe9v5LtmpmNVEv6VCR1AGcADwEnp4JTKzwnpWZTgKdLi/Wl2FDxvjpxMzOrSNOLiqS3AHcB10TE80M1rROLUcTr5dAtqUdST39//3Apm5nZKDW1qEh6E0VBuT0i7k7hvemyFulzX4r3AdNKi08Fdg8Tn1onfpiIWBYRXRHRNWnSsF+yaWZmo9TMu78EfAt4LCK+Upq1GqjdwbUIuLcUvzTdBTYH+GW6PLYWuEDS+NRBfwGwNs17QdKctK1LS+syM7MKNPOr788GPgxskbQpxa4DbgJWSboceAr4UJq3BpgH9AIvApcBRMR+SZ8DNqR2n6112gNXArcBx1N00Detk97MzIbXzLu//pn6/R4A59VpH8BVg6xrObC8TrwHOP0I0jQzs4z8RL2ZmWXjomJmZtm4qJiZWTYuKmZmlo2LipmZZeOiYmZm2biomJlZNi4qZmaWjYuKmZll46JiZmbZuKiYmVk2LipmZpaNi4qZmWXjomJmZtm4qJiZWTYuKmZmlo2LipmZZdPMd9Qvl7RP0tZS7LuSNqVhV+01w5I6JL1UmndLaZkzJW2R1CtpSXofPZImSFonaUf6HN+sfTEzs8Y080zlNmBuORARfx4RsyJiFnAXcHdp9hO1eRFxRSm+FOgGOtNQW+diYH1EdALr07SZmVWoaUUlIn4G7K83L51t/Blwx1DrkDQZODEiHkjvsF8JXJxmzwdWpPEVpbiZmVWkqj6V9wB7I2JHKTZD0iOSfirpPSk2BegrtelLMYCTI2IPQPo8abCNSeqW1COpp7+/P99emJnZIaoqKgs59CxlDzA9Is4APgF8R9KJgOosGyPdWEQsi4iuiOiaNGnSqBI2M7PhjW31BiWNBf4UOLMWi4iXgZfT+EZJTwDvpDgzmVpafCqwO43vlTQ5Ivaky2T7WpG/mZkNroozlfcBj0fEwctakiZJGpPGT6HokN+ZLmu9IGlO6oe5FLg3LbYaWJTGF5XiZmZWkWbeUnwH8ABwqqQ+SZenWQs4vIP+vcBmSf8CfB+4IiJqnfxXAt8EeoEngPtS/CbgfEk7gPPTtJmZVahpl78iYuEg8b+sE7uL4hbjeu17gNPrxJ8DzjuyLM3MLCc/UW9mZtm4qJiZWTYuKmZmlo2LipmZZeOiYmZm2biomJlZNi4qZmaWjYuKmZll46JiZmbZuKiYmVk2LipmZpaNi4qZmWXjomJmZtm4qJiZWTYuKmZmlo2LipmZZdPMNz8ul7RP0tZS7AZJz0jalIZ5pXnXSuqVtF3ShaX43BTrlbS4FJ8h6SFJOyR9V9IxzdoXMzNrTDPPVG4D5taJ3xwRs9KwBkDSTIrXDJ+Wlvnfksak99Z/HbgImAksTG0BPp/W1Qn8G3D5wA2ZmVlrNa2oRMTPgP3DNizMB+6MiJcj4kmK99GflYbeiNgZEa8AdwLzJQk4l+J99gArgIuz7oCZmY1YFX0qV0vanC6PjU+xKcDTpTZ9KTZY/G3Av0fEgQFxMzOrUKuLylLgHcAsYA/w5RRXnbYxinhdkrol9Ujq6e/vH1nGZmbWsJYWlYjYGxGvRsRrwDcoLm9BcaYxrdR0KrB7iPizwDhJYwfEB9vusojoioiuSZMm5dkZMzM7TEuLiqTJpclLgNqdYauBBZKOlTQD6AQeBjYAnelOr2MoOvNXR0QAPwb+a1p+EXBvK/bBzMwGN3b4JqMj6Q7gHGCipD7geuAcSbMoLlXtAj4GEBHbJK0CHgUOAFdFxKtpPVcDa4ExwPKI2JY28SngTkn/C3gE+Faz9sXMzBrTtKISEQvrhAf9wx8RNwI31omvAdbUie/kt5fPzMzsKOAn6s3MLBsXFTMzy8ZFxczMsnFRMTOzbFxUzMwsGxcVMzPLxkXFzMyycVExM7NsXFTMzCwbFxUzM8vGRcXMzLJxUTEzs2xcVMzMLBsXFTMzy8ZFxczMsnFRMTOzbBoqKpJOb3YiZmbW/ho9U7lF0sOSPi5pXCMLSFouaZ+kraXYFyU9LmmzpHtq65LUIeklSZvScEtpmTMlbZHUK2mJJKX4BEnrJO1In+NHsN9mZtYEDRWViPhj4C+AaUCPpO9IOn+YxW4D5g6IrQNOj4g/BH4BXFua90REzErDFaX4UqAb6ExDbZ2LgfUR0QmsT9NmZlahhvtUImIH8LfAp4D/DCxJZx1/Okj7nwH7B8T+MSIOpMkHgalDbVPSZODEiHggIgJYCVycZs8HVqTxFaW4mZlVpNE+lT+UdDPwGHAu8F8i4g/S+M2j3PZHgPtK0zMkPSLpp5Lek2JTgL5Sm74UAzg5IvYApM+TRpmHmZllMrbBdn8HfAO4LiJeqgUjYrekvx3pRiV9GjgA3J5Ce4DpEfGcpDOBH0g6DVCdxWMU2+umuITG9OnTR7q4mZk1qNGiMg94KSJeBZD0O8BxEfFiRHx7JBuUtAj4AHBeuqRFRLwMvJzGN0p6AngnxZlJ+RLZVGB3Gt8raXJE7EmXyfYNts2IWAYsA+jq6hpxUTIzs8Y02qdyP3B8afqEFBsRSXMp+mQ+GBEvluKTJI1J46dQdMjvTJe1XpA0J931dSlwb1psNbAojS8qxc3MrCKNnqkcFxG/qk1ExK8knTDUApLuAM4BJkrqA66nuNvrWGBdujP4wXSn13uBz0o6ALwKXBERtU7+KynuJDueog+m1g9zE7BK0uXAU8CHGtwXMzNrkkaLyq8lzY6In0Px7Ajw0lALRMTCOuFvDdL2LuCuQeb1AIc9fBkRzwHnDZO3mZm1UKNF5Rrge5Jq/RmTgT9vTkpmZtauGioqEbFB0n8ATqW4I+vxiPhNUzMzM7O20+iZCsB/BDrSMmdIIiJWNiUrMzNrSw0VFUnfBt4BbKLoSIfieREXFTMzO6jRM5UuYGbtuRIzM7N6Gn1OZSvwe81MxMzM2l+jZyoTgUclPUx68h0gIj7YlKzMzKwtNVpUbmhmEmZm9vrQ6C3FP5X0+0BnRNyfnqYf09zUzMys3TT61fcfBb4P3JpCU4AfNCspMzNrT4121F8FnA08Dwdf2OX3l5iZ2SEaLSovR8QrtQlJYxnFe03MzOz1rdGi8lNJ1wHHp3fTfw/4++alZWZm7ajRorIY6Ae2AB8D1lC8r97MzOygRu/+eo3idcLfaG46ZmbWzhr97q8nqdOHEhGnZM/IzMza1ki++6vmOIq3LE7In46ZmbWzhvpUIuK50vBMRHwVOHe45SQtl7RP0tZSbIKkdZJ2pM/xKS5JSyT1StosaXZpmUWp/Q5Ji0rxMyVtScssSe+xNzOzijT68OPs0tAl6QrgrQ0sehswd0BsMbA+IjqB9Wka4CKgMw3dwNK07QkU77d/F3AWcH2tEKU23aXlBm7LzMxaqNHLX18ujR8AdgF/NtxCEfEzSR0DwvOBc9L4CuAnwKdSfGX6ev0HJY2TNDm1XRcR+wEkrQPmSvoJcGJEPJDiK4GLgfsa3CczM8us0bu//iTjNk+OiD1pvXsk1Z7MnwI8XWrXl2JDxfvqxA8jqZvijIbp06dn2AUzM6un0bu/PjHU/Ij4SoZc6vWHxCjihwcjlgHLALq6uvxNAGZmTdLow49dwJX89gzhCmAmRb9KI30rZXvTZS3S574U7wOmldpNBXYPE59aJ25mZhVptKhMBGZHxCcj4pPAmcDUiPhMRHxmhNtcDdTu4FoE3FuKX5ruApsD/DJdJlsLXCBpfOqgvwBYm+a9IGlOuuvr0tK6zMysAo121E8HXilNvwJ0DLeQpDsoOtonSuqjuIvrJmCVpMuBpyieeYHiq1/mAb3Ai8BlABGxX9LngA2p3WdrnfYUZ0+3AcdTdNC7k97MrEKNFpVvAw9Luoei3+ISYOVwC0XEwkFmnVenbVB8xX699SwHlteJ9wCnD5eHmZm1RqN3f90o6T7gPSl0WUQ80ry0zMysHTXapwJwAvB8RHwN6JM0o0k5mZlZm2r0ifrrKR5QvDaF3gT832YlZWZm7anRM5VLgA8CvwaIiN2M/FZiMzN7nWu0qLySOtIDQNKbm5eSmZm1q0aLyipJtwLjJH0UuB+/sMvMzAZo9O6vL6V30z8PnAr8z4hY19TMzMys7QxbVCSNoXiC/X2AC4mZmQ1q2MtfEfEq8KKk321BPmZm1sYafaL+/wFb0rtMfl0LRsRfNyUrMzNrS40WlR+lwczMbFBDFhVJ0yPiqYhY0aqEzMysfQ3Xp/KD2oiku5qci5mZtbnhikr57YqnNDMRMzNrf8MVlRhk3MzM7DDDddT/kaTnKc5Yjk/jpOmIiBObmp2ZmbWVIc9UImJMRJwYEW+NiLFpvDY9qoIi6VRJm0rD85KukXSDpGdK8XmlZa6V1Ctpu6QLS/G5KdYrafFo8jEzs3wavaU4m4jYDsyCg0/rPwPcQ/H64Jsj4kvl9pJmAguA04C3A/dLemea/XXgfKAP2CBpdUQ82pIdMTOzw7S8qAxwHvBERPyrpMHazAfujIiXgScl9QJnpXm9EbETQNKdqa2LiplZRUby5sdmWADcUZq+WtJmScsljU+xKcDTpTZ9KTZY3MzMKlJZUZF0DMWLv76XQkuBd1BcGtsDfLnWtM7iMUS83ra6JfVI6unv7z+ivM3MbHBVnqlcBPw8IvYCRMTeiHg1Il6jeFdL7RJXHzCttNxUYPcQ8cNExLKI6IqIrkmTJmXeDTMzq6myqCykdOlL0uTSvEuArWl8NbBA0rGSZgCdwMPABqBT0ox01rMgtTUzs4pU0lEv6QSKu7Y+Vgp/QdIsiktYu2rzImKbpFUUHfAHgKvS1/Ej6WpgLTAGWB4R21q2E2ZmdphKikpEvAi8bUDsw0O0vxG4sU58DbAme4JmZjYqVd/9ZWZmryMuKmZmlo2LipmZZeOiYmZm2biomJlZNi4qZmaWjYuKmZll46JiZmbZuKiYmVk2LipmZpaNi4qZmWXjomJmZtm4qJiZWTYuKmZmlo2LipmZZeOiYmZm2biomJlZNpUVFUm7JG2RtElST4pNkLRO0o70OT7FJWmJpF5JmyXNLq1nUWq/Q9KiqvbHzMyqP1P5k4iYFRFdaXoxsD4iOoH1aRrgIqAzDd3AUiiKEHA98C7gLOD6WiEyM7PWq7qoDDQfWJHGVwAXl+Iro/AgME7SZOBCYF1E7I+IfwPWAXNbnbSZmRWqLCoB/KOkjZK6U+zkiNgDkD5PSvEpwNOlZftSbLD4ISR1S+qR1NPf3595N8zMrGZshds+OyJ2SzoJWCfp8SHaqk4shogfGohYBiwD6OrqOmy+mZnlUdmZSkTsTp/7gHso+kT2pstapM99qXkfMK20+FRg9xBxMzOrQCVFRdKbJb21Ng5cAGwFVgO1O7gWAfem8dXApekusDnAL9PlsbXABZLGpw76C1LMzMwqUNXlr5OBeyTVcvhORPyDpA3AKkmXA08BH0rt1wDzgF7gReAygIjYL+lzwIbU7rMRsb91u2FmZmWVFJWI2An8UZ34c8B5deIBXDXIupYDy3PnaGZmI3e03VJsZmZtzEXFzMyycVExM7NsXFTMzCwbFxUzM8vGRcXMzLJxUTEzs2xcVMzMLBsXFTMzy8ZFxczMsnFRMTOzbFxUzMwsGxcVMzPLxkXFzMyycVExM7NsXFTMzCyblr+kS9I0YCXwe8BrwLKI+JqkG4CPAv2p6XURsSYtcy1wOfAq8NcRsTbF5wJfA8YA34yIm1q5L63SsfhHlW17103vr2zbZtZ+qnjz4wHgkxHx8/Se+o2S1qV5N0fEl8qNJc0EFgCnAW8H7pf0zjT768D5QB+wQdLqiHi0JXthZmaHaXlRiYg9wJ40/oKkx4ApQywyH7gzIl4GnpTUC5yV5vWmVxMj6c7U1kXFzKwilfapSOoAzgAeSqGrJW2WtFzS+BSbAjxdWqwvxQaLm5lZRSorKpLeAtwFXBMRzwNLgXcAsyjOZL5ca1pn8RgiXm9b3ZJ6JPX09/fXa2JmZhlUUlQkvYmioNweEXcDRMTeiHg1Il4DvsFvL3H1AdNKi08Fdg8RP0xELIuIrojomjRpUt6dMTOzg1peVCQJ+BbwWER8pRSfXGp2CbA1ja8GFkg6VtIMoBN4GNgAdEqaIekYis781a3YBzMzq6+Ku7/OBj4MbJG0KcWuAxZKmkVxCWsX8DGAiNgmaRVFB/wB4KqIeBVA0tXAWopbipdHxLZW7oiZmR2qiru//pn6/SFrhljmRuDGOvE1Qy1nZmat5SfqzcwsGxcVMzPLxkXFzMyycVExM7NsXFTMzCwbFxUzM8vGRcXMzLJxUTEzs2xcVMzMLBsXFTMzy8ZFxczMsnFRMTOzbFxUzMwsGxcVMzPLxkXFzMyycVExM7NsXFTMzCybti8qkuZK2i6pV9LiqvMxM3sjq+Id9dlIGgN8HTgf6AM2SFodEY9Wm9nrR8fiH1Wy3V03vb+S7ZrZkWn3M5WzgN6I2BkRrwB3AvMrzsnM7A2rrc9UgCnA06XpPuBdFeViGVV1hgQ+SzI7Eu1eVFQnFoc1krqB7jT5K0nbR7m9icCzo1y2as69Qfp8tlX5mFfDuTfH7zfSqN2LSh8wrTQ9Fdg9sFFELAOWHenGJPVERNeRrqcKzr312jVvcO5Vaefca9q9T2UD0ClphqRjgAXA6opzMjN7w2rrM5WIOCDpamAtMAZYHhHbKk7LzOwNq62LCkBErAHWtGhzR3wJrULOvfXaNW9w7lVp59wBUMRh/dpmZmaj0u59KmZmdhRxUWnA0fJVMJKmSfqxpMckbZP0Nyk+QdI6STvS5/gUl6QlKe/NkmaX1rUotd8haVEpfqakLWmZJZLq3bY92vzHSHpE0g/T9AxJD6UcvptutkDSsWm6N83vKK3j2hTfLunCUrxpPyNJ4yR9X9Lj6di/u42O+X9P/1a2SrpD0nFH63GXtFzSPklbS7GmH+fBtpEh9y+mfzObJd0jaVxp3oiO52h+ZpWJCA9DDBQ3ADwBnAIcA/wLMLOiXCYDs9P4W4FfADOBLwCLU3wx8Pk0Pg+4j+J5njnAQyk+AdiZPsen8fFp3sPAu9My9wEXZcz/E8B3gB+m6VXAgjR+C3BlGv84cEsaXwB8N43PTMf/WGBG+rmMafbPCFgB/FUaPwYY1w7HnOLh4CeB40vH+y+P1uMOvBeYDWwtxZp+nAfbRobcLwDGpvHPl3If8fEc6c+syqHSjbfDkP4Rri1NXwtcW3VeKZd7Kb73bDswOcUmA9vT+K3AwlL77Wn+QuDWUvzWFJsMPF6KH9LuCHOdCqwHzgV+mH6xny390h08zhR38707jY9N7TTw2NfaNfNnBJxI8YdZA+LtcMxr3zgxIR3HHwIXHs3HHejg0D/MTT/Og23jSHMfMO8S4PZ6x2m44zma35Uc/35GO/jy1/DqfRXMlIpyOSid5p4BPAScHBF7ANLnSanZYLkPFe+rE8/hq8D/AF5L028D/j0iDtTZ1sH80vxfpvYj3Z8cTgH6gf+j4tLdNyW9mTY45hHxDPAl4ClgD8Vx3Eh7HPeaVhznwbaR00cozo4YJsd68dH8rlTGRWV4DX0VTCtJegtwF3BNRDw/VNM6sRhF/IhI+gCwLyI2NpDbUPNamncyluKyxtKIOAP4NcUlksEcNbmnvoH5FJdY3g68GbhoiO0dNbk3oG1ylfRp4ABwey00SC6jyf2o+/vkojK8hr4KplUkvYmioNweEXen8F5Jk9P8ycC+FB8s96HiU+vEj9TZwAcl7aL4JulzKc5cxkmqPStV3tbB/NL83wX2j2J/cugD+iLioTT9fYoic7Qfc4D3AU9GRH9E/Aa4G/hPtMdxr2nFcR5sG0cs3SjwAeAvIl2jGkXuzzLyn1l1qrz21g4Dxf9Ud1L8b6/WeXZaRbkIWAl8dUD8ixza0fiFNP5+Du3MfDjFJ1D0E4xPw5PAhDRvQ2pb68ycl3kfzuG3HfXf49DOx4+n8as4tPNxVRo/jUM7OHdSdG429WcE/BNwahq/IR3vo/6YU3xj9zbghLTuFcB/O5qPO4f3qTT9OA+2jQy5zwUeBSYNaDfi4znSn1mVQ6Ubb5eB4k6TX1DcmfHpCvP4Y4pT283ApjTMo7iGuh7YkT5rv0SieInZE8AWoKu0ro8AvWm4rBTvAramZf6OzJ1+HFpUTqG4I6c3/dIcm+LHpeneNP+U0vKfTrltp3SXVDN/RsAsoCcd9x+kP1ZtccyBzwCPp/V/O/0hOyqPO3AHRd/Pbyj+B355K47zYNvIkHsvRX9H7Xf1ltEez9H8zKoa/ES9mZll4z4VMzPLxkXFzMyycVExM7NsXFTMzCwbFxUzM8vGRcXMzLJxUTEzs2xcVMzMLJv/D8KawdnijZdyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df[\"renda_ult_mes\"].plot(kind=\"hist\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.2 Plote um histograma das horas trabalhadas" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAD8CAYAAABKKbKtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFodJREFUeJzt3XuwpHV95/H3RxAVowIyuuwAGUxm3aCVrGSC7BpdV5SbymBWs1jWOmXYzF4w0XW3VtBUsDSkYJOIUvESXFgH1oiIGmZXDI54q60Kl0GRO84ECIxMYHQQTFDI6Hf/6N9xm6HPmT6H+Z0+Pb5fVV3neb7P7+n+9lPNfHgu/XSqCkmSdrcnTboBSdKeyYCRJHVhwEiSujBgJEldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqYu9JN7DYDjzwwFqxYsWk25CkqXLdddd9t6qWzWedn7mAWbFiBRs3bpx0G5I0VZL8zXzX8RCZJKkLA0aS1IUBI0nqwoCRJHVhwEiSuugWMEkuSHJ/kpuGan+U5LYkNyT5XJL9hpadnmRzktuTHDtUP67VNic5bah+WJKrk2xK8qkk+/R6L5Kk+eu5B/Nx4LidahuAF1bVLwPfBk4HSHI4cDLwgrbOh5PslWQv4EPA8cDhwBvbWICzgXOqaiXwAHBKx/ciSZqnbgFTVV8Htu9U+2JV7WizVwEHt+nVwMVV9UhV3QlsBo5sj81VdUdVPQpcDKxOEuAVwKVt/XXASb3eiyRp/iZ5Dua3gC+06eXAPUPLtrTabPVnA98fCquZ+khJ1ibZmGTjtm3bdlP7kqS5TOSb/EneDewAPjFTGjGsGB2ANcf4karqPOA8gFWrVs06To+34rTPT+R17zrr1RN5XUm7z6IHTJI1wGuAo6tq5h/7LcAhQ8MOBu5t06Pq3wX2S7J324sZHi9JWgIW9RBZkuOAdwInVtXDQ4vWAycneUqSw4CVwDXAtcDKdsXYPgwuBFjfgukrwOvb+muAyxbrfUiSdq3nZcqfBP4KeH6SLUlOAf4UeAawIcn1ST4KUFU3A5cAtwB/CZxaVT9ueydvBa4AbgUuaWNhEFTvSLKZwTmZ83u9F0nS/HU7RFZVbxxRnjUEqupM4MwR9cuBy0fU72BwlZkkaQnym/ySpC4MGElSFwaMJKkLA0aS1IUBI0nqwoCRJHVhwEiSujBgJEldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqwoCRJHVhwEiSujBgJEldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqwoCRJHVhwEiSujBgJEldGDCSpC66BUySC5Lcn+SmodoBSTYk2dT+7t/qSXJuks1JbkhyxNA6a9r4TUnWDNV/NcmNbZ1zk6TXe5EkzV/PPZiPA8ftVDsNuLKqVgJXtnmA44GV7bEW+AgMAgk4A3gxcCRwxkwotTFrh9bb+bUkSRPULWCq6uvA9p3Kq4F1bXodcNJQ/cIauArYL8lBwLHAhqraXlUPABuA49qyZ1bVX1VVARcOPZckaQlY7HMwz62qrQDt73NafTlwz9C4La02V33LiLokaYlYKif5R50/qQXURz95sjbJxiQbt23btsAWJUnzsdgBc187vEX7e3+rbwEOGRp3MHDvLuoHj6iPVFXnVdWqqlq1bNmyJ/wmJEm7ttgBsx6YuRJsDXDZUP3N7Wqyo4AH2yG0K4BjkuzfTu4fA1zRlv0gyVHt6rE3Dz2XJGkJ2LvXEyf5JPBy4MAkWxhcDXYWcEmSU4C7gTe04ZcDJwCbgYeBtwBU1fYk7wOubePeW1UzFw78RwZXqj0N+EJ7SJKWiG4BU1VvnGXR0SPGFnDqLM9zAXDBiPpG4IVPpEdJUj9L5SS/JGkPY8BIkrowYCRJXRgwkqQuDBhJUhcGjCSpCwNGktSFASNJ6sKAkSR1YcBIkrowYCRJXRgwkqQuDBhJUhcGjCSpCwNGktSFASNJ6sKAkSR1YcBIkrowYCRJXRgwkqQuDBhJUhcGjCSpCwNGktSFASNJ6sKAkSR1YcBIkrqYSMAk+c9Jbk5yU5JPJnlqksOSXJ1kU5JPJdmnjX1Km9/clq8Yep7TW/32JMdO4r1IkkZb9IBJshz4XWBVVb0Q2As4GTgbOKeqVgIPAKe0VU4BHqiqXwTOaeNIcnhb7wXAccCHk+y1mO9FkjS7SR0i2xt4WpK9gX2BrcArgEvb8nXASW16dZunLT86SVr94qp6pKruBDYDRy5S/5KkXVj0gKmq7wB/DNzNIFgeBK4Dvl9VO9qwLcDyNr0cuKetu6ONf/ZwfcQ6kqQJm8Qhsv0Z7H0cBvxj4OnA8SOG1swqsyybrT7qNdcm2Zhk47Zt2+bftCRp3iZxiOyVwJ1Vta2q/gH4LPAvgP3aITOAg4F72/QW4BCAtvxZwPbh+oh1HqOqzquqVVW1atmyZbv7/UiSRphEwNwNHJVk33Yu5WjgFuArwOvbmDXAZW16fZunLf9yVVWrn9yuMjsMWAlcs0jvQZK0C3vvesjuVVVXJ7kU+AawA/gmcB7weeDiJH/Qaue3Vc4HLkqymcGey8nteW5OcgmDcNoBnFpVP17UNyNJmtWiBwxAVZ0BnLFT+Q5GXAVWVT8C3jDL85wJnLnbG5QkPWFjHSJL8sLejUiS9izjnoP5aJJrkvynJPt17UiStEcYK2Cq6teBNzG4amtjkj9P8qqunUmSptrYV5FV1Sbg94B3Av8SODfJbUl+o1dzkqTpNe45mF9Ocg5wK4Nbury2qn6pTZ/TsT9J0pQa9yqyPwU+Bryrqn44U6yqe5P8XpfOJElTbdyAOQH44cz3TJI8CXhqVT1cVRd1606SNLXGPQfzJeBpQ/P7tpokSSONGzBPraq/m5lp0/v2aUmStCcYN2D+PskRMzNJfhX44RzjJUk/48Y9B/N24NNJZu5WfBDwb/q0JEnaE4wVMFV1bZJ/Cjyfwe+w3NZutS9J0kjzudnlrwEr2jovSkJVXdilK0nS1BsrYJJcBPwCcD0wc0v8AgwYSdJI4+7BrAIObz/0JUnSLo17FdlNwD/q2Ygkac8y7h7MgcAtSa4BHpkpVtWJXbqSJE29cQPmPT2bkCTteca9TPlrSX4eWFlVX0qyL7BX39YkSdNs3Nv1/zZwKfBnrbQc+IteTUmSpt+4J/lPBV4CPAQ//fGx5/RqSpI0/cYNmEeq6tGZmSR7M/gejCRJI40bMF9L8i7gaUleBXwa+N/92pIkTbtxA+Y0YBtwI/DvgcsBf8lSkjSrca8i+wmDn0z+WN92JEl7inGvIrszyR07Pxb6okn2S3JpktuS3Jrknyc5IMmGJJva3/3b2CQ5N8nmJDfs9Ls0a9r4TUnWLLQfSdLuN597kc14KvAG4IAn8LofBP6yql6fZB8Gv475LuDKqjoryWkMDsu9EzgeWNkeLwY+Arw4yQHAGa23Aq5Lsr6qHngCfUmSdpOx9mCq6ntDj+9U1QeAVyzkBZM8E3gZcH577ker6vvAamBdG7YOOKlNrwYurIGrgP2SHAQcC2yoqu0tVDYAxy2kJ0nS7jfu7fqPGJp9EoO9hmcs8DWfx+CCgf+Z5FeA64C3Ac+tqq0AVbU1ycz3bJYD9wytv6XVZqtLkpaAcQ+R/cnQ9A7gLuA3n8BrHgH8TlVdneSDDA6HzSYjajVH/fFPkKwF1gIceuih8+tWkrQg415F9q9242tuAbZU1dVt/lIGAXNfkoPa3stBwP1D4w8ZWv9g4N5Wf/lO9a+OesGqOg84D2DVqlV+QVSSFsG4h8jeMdfyqnr/uC9YVX+b5J4kz6+q24GjgVvaYw1wVvt7WVtlPfDWJBczOMn/YAuhK4A/nLnaDDgGOH3cPiRJfc3nKrJfY/CPPcBrga/z2HMg8/E7wCfaFWR3AG9hcG7nkiSnAHczuFINBl/qPAHYDDzcxlJV25O8D7i2jXtvVW1fYD+SpN1sPj84dkRV/QAgyXuAT1fVv1vIi1bV9Tz20ucZR48YWwxutjnqeS4ALlhID5KkvsYNmEOBR4fmHwVW7PZuNNKK0z4/6RYkad7GDZiLgGuSfI7BlVqvAy7s1pUkaeqNexXZmUm+ALy0ld5SVd/s15YkadqNezdlGNzO5aGq+iCwJclhnXqSJO0Bxr3Z5RkM7gs2cxnwk4H/1aspSdL0G3cP5nXAicDfA1TVvSz8VjGSpJ8B4wbMo+1y4QJI8vR+LUmS9gTjBswlSf6MwZ2Mfxv4Ev74mCRpDuNeRfbHSV4FPAQ8H/j9qtrQtTNJ0lTbZcAk2Qu4oqpeyeA3VyRJ2qVdHiKrqh8DDyd51iL0I0naQ4z7Tf4fATcm2UC7kgygqn63S1eSpKk3bsB8vj0kSRrLnAGT5NCquruq1i1WQ5KkPcOuzsH8xcxEks907kWStAfZVcAM/+7983o2Iknas+wqYGqWaUmS5rSrk/y/kuQhBnsyT2vTtPmqqmd27U6SNLXmDJiq2muxGpEk7Vnm83swkiSNzYCRJHVhwEiSujBgJEldGDCSpC4MGElSFwaMJKmLiQVMkr2SfDPJ/2nzhyW5OsmmJJ9Ksk+rP6XNb27LVww9x+mtfnuSYyfzTiRJo0xyD+ZtwK1D82cD51TVSuAB4JRWPwV4oKp+ETinjSPJ4cDJwAuA44APt1/flCQtARMJmCQHA68G/kebD/AK4NI2ZB1wUpte3eZpy49u41cDF1fVI1V1J7AZOHJx3oEkaVcmtQfzAeC/AT9p888Gvl9VO9r8FmB5m14O3APQlj/Yxv+0PmIdSdKELXrAJHkNcH9VXTdcHjG0drFsrnV2fs21STYm2bht27Z59StJWphJ7MG8BDgxyV3AxQwOjX0A2C/JzM03DwbubdNbgEMA2vJnAduH6yPWeYyqOq+qVlXVqmXLlu3edyNJGmnRA6aqTq+qg6tqBYOT9F+uqjcBXwFe34atAS5r0+vbPG35l6uqWv3kdpXZYcBK4JpFehuSpF3Y1e/BLKZ3Ahcn+QPgm8D5rX4+cFGSzQz2XE4GqKqbk1wC3ALsAE6tqh8vftuSpFEmGjBV9VXgq236DkZcBVZVPwLeMMv6ZwJn9utQkrRQfpNfktSFASNJ6sKAkSR1YcBIkrowYCRJXRgwkqQuDBhJUhcGjCSpCwNGktSFASNJ6sKAkSR1YcBIkrowYCRJXRgwkqQuDBhJUhcGjCSpCwNGktSFASNJ6sKAkSR1sfekG5BGWXHa5yf22ned9eqJvba0J3EPRpLUhQEjSerCgJEkdWHASJK6MGAkSV0YMJKkLhY9YJIckuQrSW5NcnOSt7X6AUk2JNnU/u7f6klybpLNSW5IcsTQc61p4zclWbPY70WSNLtJ7MHsAP5LVf0ScBRwapLDgdOAK6tqJXBlmwc4HljZHmuBj8AgkIAzgBcDRwJnzISSJGnyFj1gqmprVX2jTf8AuBVYDqwG1rVh64CT2vRq4MIauArYL8lBwLHAhqraXlUPABuA4xbxrUiS5jDRczBJVgAvAq4GnltVW2EQQsBz2rDlwD1Dq21ptdnqo15nbZKNSTZu27Ztd74FSdIsJhYwSX4O+Azw9qp6aK6hI2o1R/3xxarzqmpVVa1atmzZ/JuVJM3bRO5FluTJDMLlE1X12Va+L8lBVbW1HQK7v9W3AIcMrX4wcG+rv3yn+ld79j3J+2NJ0rSZxFVkAc4Hbq2q9w8tWg/MXAm2BrhsqP7mdjXZUcCD7RDaFcAxSfZvJ/ePaTVJ0hIwiT2YlwD/FrgxyfWt9i7gLOCSJKcAdwNvaMsuB04ANgMPA28BqKrtSd4HXNvGvbeqti/OW5Ak7cqiB0xV/V9Gnz8BOHrE+AJOneW5LgAu2H3dSZJ2F7/JL0nqwoCRJHVhwEiSujBgJEldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqwoCRJHVhwEiSupjI7fqlpWxSP8tw11mvnsjrSr24ByNJ6sKAkSR1YcBIkrowYCRJXRgwkqQuDBhJUhcGjCSpCwNGktSFASNJ6sKAkSR1YcBIkrowYCRJXRgwkqQupj5gkhyX5PYkm5OcNul+JEkDUx0wSfYCPgQcDxwOvDHJ4ZPtSpIE0/97MEcCm6vqDoAkFwOrgVsm2pW0AJP6HRrwt2jUx7QHzHLgnqH5LcCLJ9SLNLX8kTX1MO0BkxG1etygZC2wts3+XZLb5/k6BwLfnec6S8E09j2NPcN09j3xnnP2glabeN8LMI09w2P7/vn5rjztAbMFOGRo/mDg3p0HVdV5wHkLfZEkG6tq1ULXn5Rp7Hsae4bp7Hsae4bp7Hsae4Yn3vdUn+QHrgVWJjksyT7AycD6CfckSWLK92CqakeStwJXAHsBF1TVzRNuS5LElAcMQFVdDlze+WUWfHhtwqax72nsGaaz72nsGaaz72nsGZ5g36l63DlxSZKesGk/ByNJWqIMmF2YhlvRJDkkyVeS3Jrk5iRva/X3JPlOkuvb44RJ97qzJHclubH1t7HVDkiyIcmm9nf/Sfc5I8nzh7bn9UkeSvL2pbitk1yQ5P4kNw3VRm7bDJzbPuc3JDliCfX8R0lua319Lsl+rb4iyQ+HtvlHJ9HzHH3P+plIcnrb1rcnOXYyXc/a96eGer4ryfWtPv/tXVU+ZnkwuHDgr4HnAfsA3wIOn3RfI/o8CDiiTT8D+DaDW+e8B/ivk+5vF73fBRy4U+2/A6e16dOAsyfd5xyfj79l8P2AJbetgZcBRwA37WrbAicAX2Dw3bKjgKuXUM/HAHu36bOHel4xPG4JbuuRn4n23+a3gKcAh7V/Y/ZaKn3vtPxPgN9f6PZ2D2ZuP70VTVU9CszcimZJqaqtVfWNNv0D4FYGdzmYVquBdW16HXDSBHuZy9HAX1fV30y6kVGq6uvA9p3Ks23b1cCFNXAVsF+Sgxan0/9vVM9V9cWq2tFmr2LwfbclZZZtPZvVwMVV9UhV3QlsZvBvzaKbq+8kAX4T+ORCn9+AmduoW9Es6X+4k6wAXgRc3UpvbYcWLlhKh5qGFPDFJNe1Oy4APLeqtsIgPIHnTKy7uZ3MY//jW+rbGmbfttPyWf8tBntaMw5L8s0kX0vy0kk1NYdRn4lp2dYvBe6rqk1DtXltbwNmbmPdimapSPJzwGeAt1fVQ8BHgF8A/hmwlcHu7lLzkqo6gsEdsU9N8rJJNzSO9sXeE4FPt9I0bOu5LPnPepJ3AzuAT7TSVuDQqnoR8A7gz5M8c1L9jTDbZ2LJb+vmjTz2f6Dmvb0NmLmNdSuapSDJkxmEyyeq6rMAVXVfVf24qn4CfIwJ7YbPparubX/vBz7HoMf7Zg7PtL/3T67DWR0PfKOq7oPp2NbNbNt2SX/Wk6wBXgO8qdoJgXaI6Xtt+joG5zL+yeS6fKw5PhNLelsDJNkb+A3gUzO1hWxvA2ZuU3Ermnas9Hzg1qp6/1B9+Bj664Cbdl53kpI8PckzZqYZnMy9icE2XtOGrQEum0yHc3rM/90t9W09ZLZtux54c7ua7CjgwZlDaZOW5DjgncCJVfXwUH1ZBr8JRZLnASuBOybT5ePN8ZlYD5yc5ClJDmPQ9zWL3d8uvBK4raq2zBQWtL0nceXCND0YXF3zbQZp/e5J9zNLj7/OYBf7BuD69jgBuAi4sdXXAwdNuted+n4eg6tpvgXcPLN9gWcDVwKb2t8DJt3rTn3vC3wPeNZQbcltawYBuBX4Bwb/13zKbNuWwWGbD7XP+Y3AqiXU82YG5yxmPtsfbWP/dfvcfAv4BvDaJbatZ/1MAO9u2/p24Pil1Herfxz4DzuNnff29pv8kqQuPEQmSerCgJEkdWHASJK6MGAkSV0YMJKkLgwYSVIXBowkqQsDRpLUxf8DWYyADvSDBIEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df[\"hs_trabalhadas\"].plot(kind=\"hist\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.3 Plote um histograma da renda do ultimo mês dos funcionários que tem 15 horas trabalhadas" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD8CAYAAABthzNFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAE1ZJREFUeJzt3X+wXWV97/H3x4AgVQvI0ZsB0oBDadGxgR5pO/64FNuKYEU6UwvTaam1RqvOrWNnatRe9d4ZZ6jVYh1bbaiMYAUBKa1VbBudVtqZAiaCEIuUBFONZEgqKlq80OD3/rHXKfuEJzn7JGeftZP9fs3s2Ws9e629vvsZTj6s9awfqSokSdrTE/ouQJI0mQwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoO67uAA3HcccfV6tWr+y5Dkg4qmzZt+o+qmllouYM6IFavXs3GjRv7LkOSDipJ/n2U5TzEJElqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJahrbldRJLgdeCuysqmd3bdcAp3aLHA18u6rWJFkN3AXc3X12c1W9dly1zVm97tPj3kTTtkvO62W7krQY47zVxkeADwBXzjVU1a/MTSd5L/CdoeW3VtWaMdYjSVqEsQVEVd3U7Rk8TpIArwDOHtf2JUkHpq8xiBcA91fVPUNtJyW5Lcnnk7xgbysmWZtkY5KNu3btGn+lkjSl+gqIi4Crh+Z3AKuq6nTgTcBVSZ7aWrGq1lfVbFXNzswseLdaSdJ+WvaASHIY8EvANXNtVfVwVX2zm94EbAV+dLlrkyQ9po89iJ8DvlJV2+cakswkWdFNnwycAtzbQ22SpM7YAiLJ1cC/AKcm2Z7kVd1HFzL/8BLAC4E7knwJ+ATw2qp6YFy1SZIWNs6zmC7aS/tvNNquB64fVy2SpMXzSmpJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKlpbAGR5PIkO5NsHmp7Z5JvJLm9e5079NlbkmxJcneSF4+rLknSaMa5B/ER4JxG+6VVtaZ73QiQ5DTgQuBZ3Tp/mmTFGGuTJC1gbAFRVTcBD4y4+PnAx6vq4ar6KrAFOHNctUmSFtbHGMQbktzRHYI6pms7Hvj60DLbu7bHSbI2ycYkG3ft2jXuWiVpai13QHwQeCawBtgBvLdrT2PZan1BVa2vqtmqmp2ZmRlPlZKk5Q2Iqrq/qh6tqh8Al/HYYaTtwIlDi54A3LectUmS5lvWgEiycmj2AmDuDKdPAhcmOSLJScApwK3LWZskab7DxvXFSa4GzgKOS7IdeAdwVpI1DA4fbQNeA1BVX05yLfCvwG7g9VX16LhqkyQtbGwBUVUXNZo/vI/l3wW8a1z1SJIWxyupJUlNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkprEFRJLLk+xMsnmo7Q+TfCXJHUluSHJ01746yfeT3N69PjSuuiRJoxnnHsRHgHP2aNsAPLuqngP8G/CWoc+2VtWa7vXaMdYlSRrB2AKiqm4CHtij7e+ranc3ezNwwri2L0k6MH2OQfwm8Jmh+ZOS3Jbk80lesLeVkqxNsjHJxl27do2/SkmaUr0ERJK3AbuBj3VNO4BVVXU68CbgqiRPba1bVeuraraqZmdmZpanYEmaQsseEEkuBl4K/GpVFUBVPVxV3+ymNwFbgR9d7tokSY9Z1oBIcg7wZuBlVfXQUPtMkhXd9MnAKcC9y1mbJGm+w8b1xUmuBs4CjkuyHXgHg7OWjgA2JAG4uTtj6YXA/02yG3gUeG1VPdD8YknSshhbQFTVRY3mD+9l2euB68dViyRp8bySWpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNY0UEEmePe5CJEmTZdQ9iA8luTXJ6+Ye8iNJOrSNFBBV9XzgV4ETgY1Jrkry82OtTJLUq5HHIKrqHuD3Gdxs738C7+8eH/pL4ypOktSfUccgnpPkUuAu4GzgF6vqx7vpS8dYnySpJ6PerO8DwGXAW6vq+3ONVXVfkt8fS2WSpF6NGhDnAt+vqkcBkjwBOLKqHqqqj46tOklSb0Ydg/gs8KSh+aO6NknSIWrUgDiyqr43N9NNHzWekiRJk2DUgPjPJGfMzST5SeD7+1heknSQG3UM4o3AdUnu6+ZXAr8ynpIkSZNgpICoqi8k+THgVCDAV6rqv8ZamSSpV4t5JvVzgdXdOqcnoaquHEtVkqTejXqh3EeB9wDPZxAUzwVmR1jv8iQ7k2weajs2yYYk93Tvx3TtSfL+JFuS3DE85iFJWn6j7kHMAqdVVS3y+z/C4CK74T2NdcDnquqSJOu6+TcDLwFO6V4/BXywe5ck9WDUs5g2A/9jsV9eVTcBD+zRfD5wRTd9BfDyofYra+Bm4OgkKxe7TUnS0hh1D+I44F+T3Ao8PNdYVS/bj20+o6p2dOvvSPL0rv144OtDy23v2nYMr5xkLbAWYNWqVfuxeUnSKEYNiHeOs4hOGm2PO6RVVeuB9QCzs7OLPeQlSRrRqKe5fj7JjwCnVNVnkxwFrNjPbd6fZGW397AS2Nm1b2fwvIk5JwD3PW5tSdKyGPUsplcDnwD+rGs6Hvir/dzmJ4GLu+mLgb8eav/17mymnwa+M3coSpK0/EY9xPR64EzgFhg8PGho7GCvklwNnAUcl2Q78A7gEuDaJK8Cvgb8crf4jQzuGrsFeAh45eg/Q5K01EYNiIer6pFkMEyQ5DAa4wN7qqqL9vLRixrLFoMgkiRNgFFPc/18krcCT+qeRX0d8DfjK0uS1LdRA2IdsAu4E3gNg8NBPklOkg5ho57F9AMGjxy9bLzlSJImxUgBkeSrtK9JOHnJK5IkTYTF3ItpzpEMzjw6dunLkSRNipHGIKrqm0Ovb1TV+4Czx1ybJKlHox5iGr719hMY7FE8ZSwVSZImwqiHmN47NL0b2Aa8YsmrkSRNjFHPYvrZcRciSZosox5ietO+Pq+qP1qaciRJk2IxZzE9l8EN9QB+EbiJ+c9vkCQdQhbzwKAzquq7AEneCVxXVb81rsIkSf0a9VYbq4BHhuYfAVYveTWSpIkx6h7ER4Fbk9zA4IrqC4Arx1aVJKl3o57F9K4knwFe0DW9sqpuG19ZkqS+jXqICeAo4MGq+mNge5KTxlSTJGkCjPrI0XcAbwbe0jUdDvzFuIqSJPVv1D2IC4CXAf8JUFX34a02JOmQNmpAPNI9ErQAkvzQ+EqSJE2CUQPi2iR/Bhyd5NXAZ/HhQZJ0SBv1LKb3dM+ifhA4FXh7VW3Ynw0mORW4ZqjpZODtwNHAqxk82hTgrVV14/5sQ5J04BYMiCQrgL+rqp8D9isUhlXV3cCaoe/+BnAD8Erg0qp6z4FuQ5J04BYMiKp6NMlDSX64qr6zxNt/EbC1qv49yRJ/9eRave7TvWx32yXn9bJdSQenUa+k/n/AnUk20J3JBFBV/+sAt38hcPXQ/BuS/DqwEfjdqvrWAX6/JGk/jTpI/WngfzO4g+umodd+S/JEBqfOXtc1fRB4JoPDTzuY/5Ci4fXWJtmYZOOuXbtai0iSlsA+9yCSrKqqr1XVFWPY9kuAL1bV/QBz7912LwM+1VqpqtYD6wFmZ2drDHVJklh4D+Kv5iaSXL/E276IocNLSVYOfXYBsHmJtydJWoSFxiCGR45PXqqNJjkK+HngNUPN706yhsHFeNv2+EyStMwWCojay/QBqaqHgKft0fZrS/X9kqQDt1BA/ESSBxnsSTypm6abr6p66lirkyT1Zp8BUVUrlqsQSdJkWczzICRJU8SAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUt9EzqsUmyDfgu8Ciwu6pmkxwLXAOsBrYBr6iqb/VVoyRNs773IH62qtZU1Ww3vw74XFWdAnyum5ck9aDvgNjT+cAV3fQVwMt7rEWSplqfAVHA3yfZlGRt1/aMqtoB0L0/vbfqJGnK9TYGATyvqu5L8nRgQ5KvjLJSFyZrAVatWjXO+iRpqvW2B1FV93XvO4EbgDOB+5OsBOjedzbWW19Vs1U1OzMzs5wlS9JU6SUgkvxQkqfMTQO/AGwGPglc3C12MfDXfdQnServENMzgBuSzNVwVVX9bZIvANcmeRXwNeCXe6pPkqZeLwFRVfcCP9Fo/ybwouWvSJK0p0k7zVWSNCEMCElSkwEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKaDAhJUpMBIUlqMiAkSU0GhCSpyYCQJDUZEJKkJgNCktRkQEiSmgwISVKTASFJajIgJElNyx4QSU5M8g9J7kry5SS/07W/M8k3ktzevc5d7tokSY85rIdt7gZ+t6q+mOQpwKYkG7rPLq2q9/RQkyRpD8seEFW1A9jRTX83yV3A8ctdhyRp33odg0iyGjgduKVrekOSO5JcnuSY3gqTJPUXEEmeDFwPvLGqHgQ+CDwTWMNgD+O9e1lvbZKNSTbu2rVr2eqVpGnTS0AkOZxBOHysqv4SoKrur6pHq+oHwGXAma11q2p9Vc1W1ezMzMzyFS1JU6aPs5gCfBi4q6r+aKh95dBiFwCbl7s2SdJj+jiL6XnArwF3Jrm9a3srcFGSNUAB24DX9FCbJKnTx1lM/wyk8dGNy12LJGnvvJJaktRkQEiSmgwISVKTASFJajIgJElNBoQkqcmAkCQ1GRCSpCYDQpLUZEBIkpoMCElSkwEhSWrq426u6snqdZ/ubdvbLjmvt21L2j/uQUiSmgwISVKTASFJajIgJElNDlJrWfQ1QO7guLT/3IOQJDUZEJKkpok7xJTkHOCPgRXAn1fVJT2XJGnCeQhzPCZqDyLJCuBPgJcApwEXJTmt36okaTpNVEAAZwJbqureqnoE+Dhwfs81SdJUmrRDTMcDXx+a3w78VE+16BDQ5+1FptGhfshlT4f67WsmLSDSaKt5CyRrgbXd7PeS3L0f2zkO+I/9WO9QZX/MZ3/MN3J/5A/GXMlkmIj/Pg6wr39klIUmLSC2AycOzZ8A3De8QFWtB9YfyEaSbKyq2QP5jkOJ/TGf/TGf/THfNPXHpI1BfAE4JclJSZ4IXAh8sueaJGkqTdQeRFXtTvIG4O8YnOZ6eVV9ueeyJGkqTVRAAFTVjcCNY97MAR2iOgTZH/PZH/PZH/NNTX+kqhZeSpI0dSZtDEKSNCGmKiCSnJPk7iRbkqzru56llOTyJDuTbB5qOzbJhiT3dO/HdO1J8v6uH+5IcsbQOhd3y9+T5OKh9p9Mcme3zvuTtE5JnhhJTkzyD0nuSvLlJL/TtU9lnyQ5MsmtSb7U9cf/6dpPSnJL99uu6U4OIckR3fyW7vPVQ9/1lq797iQvHmo/6P6+kqxIcluST3XzU90fj1NVU/FiMOi9FTgZeCLwJeC0vutawt/3QuAMYPNQ27uBdd30OuAPuulzgc8wuO7kp4FbuvZjgXu792O66WO6z24FfqZb5zPAS/r+zQv0x0rgjG76KcC/Mbh9y1T2SVfjk7vpw4Fbut95LXBh1/4h4Le76dcBH+qmLwSu6aZP6/52jgBO6v6mVhysf1/Am4CrgE9181PdH3u+pmkP4pC+jUdV3QQ8sEfz+cAV3fQVwMuH2q+sgZuBo5OsBF4MbKiqB6rqW8AG4Jzus6dW1b/U4K/iyqHvmkhVtaOqvthNfxe4i8GV+lPZJ93v+l43e3j3KuBs4BNd+579MddPnwBe1O0hnQ98vKoerqqvAlsY/G0ddH9fSU4AzgP+vJsPU9wfLdMUEK3beBzfUy3L5RlVtQMG/2ACT+/a99YX+2rf3mg/KHSHA05n8H/NU9sn3eGU24GdDIJuK/DtqtrdLTL8G/77d3effwd4Govvp0n2PuD3gB90809juvvjcaYpIBa8jccU2VtfLLZ94iV5MnA98MaqenBfizbaDqk+qapHq2oNgzsUnAn8eGux7v2Q7o8kLwV2VtWm4ebGolPRH3szTQGx4G08DkH3d4dC6N53du1764t9tZ/QaJ9oSQ5nEA4fq6q/7Jqnuk8AqurbwD8yGIM4Osnc9VDDv+G/f3f3+Q8zOIS52H6aVM8DXpZkG4PDP2cz2KOY1v5o63sQZLleDC4KvJfBQNLcoNGz+q5riX/jauYPUv8h8wdk391Nn8f8Adlbu/Zjga8yGIw9pps+tvvsC92ycwOy5/b9exfoizAYF3jfHu1T2SfADHB0N/0k4J+AlwLXMX9Q9nXd9OuZPyh7bTf9LOYPyt7LYED2oP37As7isUHqqe+PeX3TdwHL/B/CuQzOZtkKvK3vepb4t10N7AD+i8H/vbyKwTHSzwH3dO9z/7CFwYOZtgJ3ArND3/ObDAbatgCvHGqfBTZ363yA7iLLSX0Bz2ewS38HcHv3Onda+wR4DnBb1x+bgbd37SczOBtrS/eP4xFd+5Hd/Jbu85OHvutt3W++m6Eztw7Wv689AmLq+2P45ZXUkqSmaRqDkCQtggEhSWoyICRJTQaEJKnJgJAkNRkQkqQmA0KS1GRASJKa/j9juRL89eASQQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df[df[\"hs_trabalhadas\"]==15][\"renda_ult_mes\"].plot(kind=\"hist\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.4 Plote um histograma da renda do ultimos mes dos funcionários classificados como Prof./Tecn." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAD8CAYAAABgmUMCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAE3BJREFUeJzt3XuwXWV5x/HvQ8LVC0kk2jRBT6gZK3SqxAhYnNaCclWCHWnjODUiSqfSVmtnNKhTvNEBtYUyVgGFNlCUmxdSxGEiorZ/CARB7jFHoHCEMaHhoqJg8Okf6z2wE85lvydnnb23+X5m9uy13vWuvZ699jnnd9ZlrxWZiSRJ3dqp1wVIkgaLwSFJqmJwSJKqGBySpCoGhySpisEhSapicEiSqhgckqQqBockqcrsXhfQhr322iuHhoZ6XYYkDZQbb7zxocycP1m/38rgGBoaYt26db0uQ5IGSkT8bzf93FUlSapicEiSqhgckqQqBockqYrBIUmqYnBIkqoYHJKkKgaHJKmKwSFJqvJb+c3x7TW06hs9We69px3dk+VKUg23OCRJVQwOSVIVg0OSVMXgkCRVMTgkSVUMDklSFYNDklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFVpPTgiYlZE3BQRV5bxxRFxXURsiIhLImKX0r5rGR8u04c6XuPk0r4+Ig5vu2ZJ0vhmYovjvcCdHeOnA2dk5hLgYeCE0n4C8HBmvhQ4o/QjIvYFVgD7AUcAn4uIWTNQtyRpDK0GR0QsAo4GvljGAzgEuLx0WQ0cW4aXl3HK9ENL/+XAxZn5RGbeAwwDB7RZtyRpfG1vcZwJfAD4TRl/AfBIZm4p4yPAwjK8ELgfoEx/tPR/un2MeZ4WESdGxLqIWLdp06bpfh+SpKK14IiINwIbM/PGzuYxuuYk0yaa55mGzHMzc1lmLps/f351vZKk7rR5B8CDgWMi4ihgN+D5NFsgcyJidtmqWAQ8UPqPAHsDIxExG9gT2NzRPqpzHknSDGttiyMzT87MRZk5RHNw+9uZ+TbgWuAtpdtK4IoyvKaMU6Z/OzOztK8oZ10tBpYA17dVtyRpYr245/gHgYsj4pPATcB5pf084MKIGKbZ0lgBkJm3R8SlwB3AFuCkzHxq5suWJMEMBUdmfgf4Thm+mzHOisrMXwHHjTP/qcCp7VUoSeqW3xyXJFUxOCRJVQwOSVIVg0OSVMXgkCRVMTgkSVUMDklSFYNDklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFUxOCRJVQwOSVIVg0OSVMXgkCRVMTgkSVUMDklSFYNDklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFUxOCRJVQwOSVIVg0OSVMXgkCRVMTgkSVUMDklSFYNDklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFUxOCRJVVoLjojYLSKuj4gfRsTtEfGx0r44Iq6LiA0RcUlE7FLady3jw2X6UMdrnVza10fE4W3VLEmaXJtbHE8Ah2TmK4BXAkdExEHA6cAZmbkEeBg4ofQ/AXg4M18KnFH6ERH7AiuA/YAjgM9FxKwW65YkTaC14MjGz8vozuWRwCHA5aV9NXBsGV5exinTD42IKO0XZ+YTmXkPMAwc0FbdkqSJtXqMIyJmRcTNwEZgLfBj4JHM3FK6jAALy/BC4H6AMv1R4AWd7WPMI0maYa0GR2Y+lZmvBBbRbCW8fKxu5TnGmTZe+1Yi4sSIWBcR6zZt2jTVkiVJk5iRs6oy8xHgO8BBwJyImF0mLQIeKMMjwN4AZfqewObO9jHm6VzGuZm5LDOXzZ8/v423IUmi3bOq5kfEnDK8O/B64E7gWuAtpdtK4IoyvKaMU6Z/OzOztK8oZ10tBpYA17dVtyRpYrMn7zJlC4DV5QyonYBLM/PKiLgDuDgiPgncBJxX+p8HXBgRwzRbGisAMvP2iLgUuAPYApyUmU+1WLckaQKtBUdm3gLsP0b73YxxVlRm/go4bpzXOhU4dbprlCTV85vjkqQqBockqYrBIUmqYnBIkqoYHJKkKl0FR0T8QduFSJIGQ7dbHGeXS6S/Z/RLfZKkHVNXwZGZrwXeRnPpj3UR8aWIeEOrlUmS+lLXxzgycwPwEeCDwJ8AZ0XEXRHxZ20VJ0nqP90e4/jDiDiD5lpThwBvysyXl+EzWqxPktRnur3kyGeBLwAfysxfjjZm5gMR8ZFWKpMk9aVug+Mo4JejFxeMiJ2A3TLz8cy8sLXqJEl9p9tjHN8Cdu8Y36O0SZJ2MN0Gx24d9w+nDO/RTkmSpH7WbXD8IiKWjo5ExKuAX07QX5L0W6rbYxzvAy6LiNFbti4A/qKdkiRJ/ayr4MjMGyLi94GXAQHclZm/brUySVJfqrkD4KuBoTLP/hFBZl7QSlWSpL7VVXBExIXA7wE3A6P3+07A4JCkHUy3WxzLgH0zM9ssRpLU/7o9q+o24HfaLESSNBi63eLYC7gjIq4HnhhtzMxjWqlKktS3ug2Oj7ZZhCRpcHR7Ou53I+IlwJLM/FZE7AHMarc0SVI/6vay6u8GLgfOKU0Lga+3VZQkqX91e3D8JOBg4DF4+qZOL2yrKElS/+o2OJ7IzCdHRyJiNs33OCRJO5hug+O7EfEhYPdyr/HLgP9qryxJUr/qNjhWAZuAW4G/Aq6iuf+4JGkH0+1ZVb+huXXsF9otR5LU77q9VtU9jHFMIzP3mfaKJEl9reZaVaN2A44D5k1/OZKkftfVMY7M/L+Ox08y80zgkJZrkyT1oW53VS3tGN2JZgvkea1UJEnqa93uqvrnjuEtwL3An097NZKkvtftWVV/2nYhkqTB0O2uqvdPND0z/2V6ypEk9buas6peDawp428Cvgfc30ZRkqT+VXMjp6WZ+TOAiPgocFlmvqutwiRJ/anbS468GHiyY/xJYGiiGSJi74i4NiLujIjbI+K9pX1eRKyNiA3leW5pj4g4KyKGI+KWzjO5ImJl6b8hIlZWvUNJ0rTqdovjQuD6iPgazTfI3wxcMMk8W4B/yMwfRMTzgBsjYi3wDuCazDwtIlbRXAfrg8CRwJLyOBD4PHBgRMwDTqHZXZblddZk5sMV71OSNE26/QLgqcDxwMPAI8DxmflPk8zzYGb+oAz/DLiT5gZQy4HVpdtq4NgyvBy4IBvfB+ZExALgcGBtZm4uYbEWOKLiPUqSplG3u6oA9gAey8x/BUYiYnG3M0bEELA/cB3wosx8EJpw4ZkbQi1k64PtI6VtvHZJUg90e+vYU2h2J51cmnYG/rPLeZ8LfAV4X2Y+NlHXMdpygvZtl3NiRKyLiHWbNm3qpjRJ0hR0u8XxZuAY4BcAmfkAXVxyJCJ2pgmNizLzq6X5p2UXFOV5Y2kfAfbumH0R8MAE7VvJzHMzc1lmLps/f36Xb0uSVKvb4HgyM5Pyn35EPGeyGSIigPOAO7f5guAaYPTMqJXAFR3tby9nVx0EPFp2ZV0NHBYRc8sZWIeVNklSD3R7VtWlEXEOzQHrdwPvZPKbOh0M/CVwa0TcXNo+BJxWXu8E4D6aS7RDc1fBo4Bh4HGag/Fk5uaI+ARwQ+n38czc3GXdkqRp1u21qj5T7jX+GPAy4B8zc+0k8/wPYx+fADh0jP4JnDTOa50PnN9NrZKkdk0aHBExC7g6M19PcyqsJGkHNukxjsx8Cng8IvacgXokSX2u22Mcv6I5VrGWcmYVQGb+XStVSZL6VrfB8Y3ykCTt4CYMjoh4cWbel5mrJ+onSdpxTHaM4+ujAxHxlZZrkSQNgMmCo/N02n3aLESSNBgmC44cZ1iStIOa7OD4KyLiMZotj93LMGU8M/P5rVYnSeo7EwZHZs6aqUIkSYOh5n4ckiQZHJKkOgaHJKmKwSFJqmJwSJKqGBySpCoGhySpisEhSapicEiSqhgckqQq3d7ISTNgaFVv7pV172lH92S5kgaTWxySpCoGhySpisEhSapicEiSqhgckqQqBockqYrBIUmqYnBIkqoYHJKkKgaHJKmKwSFJqmJwSJKqGBySpCoGhySpisEhSapicEiSqhgckqQqBockqUprwRER50fExoi4raNtXkSsjYgN5XluaY+IOCsihiPilohY2jHPytJ/Q0SsbKteSVJ32tzi+A/giG3aVgHXZOYS4JoyDnAksKQ8TgQ+D03QAKcABwIHAKeMho0kqTdaC47M/B6weZvm5cDqMrwaOLaj/YJsfB+YExELgMOBtZm5OTMfBtby7DCSJM2gmT7G8aLMfBCgPL+wtC8E7u/oN1Laxmt/log4MSLWRcS6TZs2TXvhkqRGvxwcjzHacoL2ZzdmnpuZyzJz2fz586e1OEnSM2Y6OH5adkFRnjeW9hFg745+i4AHJmiXJPXITAfHGmD0zKiVwBUd7W8vZ1cdBDxadmVdDRwWEXPLQfHDSpskqUdmt/XCEfFl4HXAXhExQnN21GnApRFxAnAfcFzpfhVwFDAMPA4cD5CZmyPiE8ANpd/HM3PbA+6SpBnUWnBk5lvHmXToGH0TOGmc1zkfOH8aS5MkbYd+OTguSRoQBockqYrBIUmqYnBIkqoYHJKkKgaHJKmKwSFJqmJwSJKqGBySpCoGhySpisEhSapicEiSqhgckqQqBockqYrBIUmqYnBIkqoYHJKkKgaHJKmKwSFJqmJwSJKqGBySpCoGhySpisEhSapicEiSqhgckqQqBockqYrBIUmqYnBIkqoYHJKkKgaHJKmKwSFJqmJwSJKqGBySpCqze12Aem9o1Td6tux7Tzu6Z8uWNDVucUiSqhgckqQqBockqYrBIUmqMjDBERFHRMT6iBiOiFW9rkeSdlQDcVZVRMwC/g14AzAC3BARazLzjt5Wpu3VqzO6PJtLmrpB2eI4ABjOzLsz80ngYmB5j2uSpB3SQGxxAAuB+zvGR4ADe1SLfgv43RVp6gYlOGKMttyqQ8SJwIll9OcRsX6Ky9oLeGiK8/aatfdGVe1xeouV1Nth1nsf6ee6X9JNp0EJjhFg747xRcADnR0y81zg3O1dUESsy8xl2/s6vWDtvWHtvTGotQ9q3Z0G5RjHDcCSiFgcEbsAK4A1Pa5JknZIA7HFkZlbIuJvgKuBWcD5mXl7j8uSpB3SQAQHQGZeBVw1A4va7t1dPWTtvWHtvTGotQ9q3U+LzJy8lyRJxaAc45Ak9QmDo0M/XNYkIvaOiGsj4s6IuD0i3lva50XE2ojYUJ7nlvaIiLNKzbdExNKO11pZ+m+IiJUd7a+KiFvLPGdFxFinO2/Pe5gVETdFxJVlfHFEXFfquKSc4EBE7FrGh8v0oY7XOLm0r4+IwzvaW/uMImJORFweEXeV9f+aQVnvEfH35efltoj4ckTs1q/rPSLOj4iNEXFbR1vr63m8ZUxD7Z8uPzO3RMTXImJOx7Sq9TmVz6wnMtNHs7tuFvBjYB9gF+CHwL49qGMBsLQMPw/4EbAv8ClgVWlfBZxeho8CvknzXZeDgOtK+zzg7vI8twzPLdOuB15T5vkmcOQ0v4f3A18CrizjlwIryvDZwF+X4fcAZ5fhFcAlZXjfsv53BRaXz2VW258RsBp4VxneBZgzCOud5guy9wC7d6zvd/Tregf+GFgK3NbR1vp6Hm8Z01D7YcDsMnx6R+3V67P2M+vVo2cL7rdH+UG7umP8ZODkPqjrCpprdK0HFpS2BcD6MnwO8NaO/uvL9LcC53S0n1PaFgB3dbRv1W8a6l0EXAMcAlxZfnkf6vjFeno905wl95oyPLv0i23X/Wi/Nj8j4Pk0f3xjm/a+X+88c2WFeWU9Xgkc3s/rHRhi6z++ra/n8ZaxvbVvM+3NwEVjrafJ1udUflem4+dnKg93VT1jrMuaLOxRLQCUzdH9geuAF2XmgwDl+YWl23h1T9Q+Mkb7dDkT+ADwmzL+AuCRzNwyxvKerrFMf7T0r31P02EfYBPw79HsZvtiRDyHAVjvmfkT4DPAfcCDNOvxRgZjvY+aifU83jKm0ztptnKYpMax2qfyu9ITBsczJr2syUyKiOcCXwHel5mPTdR1jLacQvt2i4g3Ahsz88bO5gmW1ze10/wXtxT4fGbuD/yCZnfGePqm9rKvfjnN7pDfBZ4DHDnB8vqm9i4MTK0R8WFgC3DRaNM4tUyl9r76+2RwPGPSy5rMlIjYmSY0LsrMr5bmn0bEgjJ9AbCxtI9X90Tti8Zonw4HA8dExL00VzA+hGYLZE5EjH5nqHN5T9dYpu8JbJ7Ce5oOI8BIZl5Xxi+nCZJBWO+vB+7JzE2Z+Wvgq8AfMRjrfdRMrOfxlrHdysH5NwJvy7I/aQq1P0T9Z9YbvdpH1m8Pmv8476b5r230gNV+PagjgAuAM7dp/zRbH9j7VBk+mq0PHl5f2ufR7LOfWx73APPKtBtK39GDh0e18D5exzMHxy9j6wN+7ynDJ7H1Ab9Ly/B+bH1Q8W6aA4qtfkbAfwMvK8MfLeu879c7zZWibwf2KK+9Gvjbfl7vPPsYR+vrebxlTEPtRwB3APO36Ve9Pms/s149erbgfnzQnMHxI5ozHj7coxpeS7MJegtwc3kcRbM/8xpgQ3ke/SUJmptc/Ri4FVjW8VrvBIbL4/iO9mXAbWWez9LCQTa2Do59aM50GS6/GLuW9t3K+HCZvk/H/B8u9a2n4+yjNj8j4JXAurLuv17+IA3Eegc+BtxVXv/C8seqL9c78GWaYzG/pvlP+oSZWM/jLWMaah+mOf4w+vt69lTX51Q+s148/Oa4JKmKxzgkSVUMDklSFYNDklTF4JAkVTE4JElVDA5JUhWDQ5JUxeCQJFX5f0YetlJUehtaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df[df[\"qualificação_ocupacional\"]=='1_Prof./Tecn.'][\"renda_ult_mes\"].plot(kind=\"hist\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/1-analise-explorat\303\263ria-basica/03-pandas/Pandas Handson.ipynb" "b/1-analise-explorat\303\263ria-basica/03-pandas/Pandas Handson.ipynb" new file mode 100755 index 0000000..fcb91bd --- /dev/null +++ "b/1-analise-explorat\303\263ria-basica/03-pandas/Pandas Handson.ipynb" @@ -0,0 +1,382 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# LAB: Introdução a Pandas 1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Introdução\n", + "\n", + "Neste caso usaremos uma versão muito resumida dos dados do [Censo Demográfico (levantamento realizado pelo INDEC)](http://www.indec.gov.ar/bases-de-datos.asp). Trata-se de uma pesquisa contínua cujo objetivo principal é gerar informações sobre o funcionamento do mercado de trabalho.\n", + "\n", + "Utilizaremos apenas algumas variáveis (idade, escolaridade, número de horas trabalhadas, qualificação da tarefa e renda do trabalho) e alguns casos (os empregados, ou seja, aqueles que trabalharam pelo menos uma hora na semana anterior à pesquisa)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.1 Importamos os pacotes a serem usados" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.2 Importamos os dados a serem usados" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('data/data_filt.csv', encoding = 'latin1', engine='python', delimiter=',')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Explorando o dataset\n", + "\n", + "### 2.1. Quantas filas e quantas colunas o dataset tem?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Que informação o dataset tem? Imprimir o nome das colunas" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Os nomes das colunas não são muito descritivos a respeito das informações que elas contêm. Vamos tentar mudá-los pela seguinte lista: \n", + "\n", + "['idade', 'escolaridade', 'hs_trabalhadas', 'qualificação_ocupacional', 'renda_ult_mes']" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "df.columns = ['idade', 'escolaridade', 'hs_trabalhadas', 'qualificação_ocupacional', 'renda_ult_mes']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 Como o dataset está indexado?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Qual é o tipo da quarta coluna?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Qual é a escolaridade mais comum?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.5 E como a população é distribuída segundo a qualificação? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.6 Qual é a renda total da população? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.4 Qual é a renda média da população? " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Indexando e organizando os dados" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.1 Selecionar a coluna `escolaridade` e `renda_ult_mes` e atribuí-las a um objeto novo chamado `df2`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2 Selecionar as primeiras 20 filas de df2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.2 Selecionar uma amostra aleatória de 500 filas de df" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.4 Escolher todas as colunas, exceto escolaridade. Dica: Utilizar a propriedade columns para filtrar na dimensão das colunas." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.5 Organizar o dataset segundo a idade" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.6 Qual é a média de horas trabalhadas dos jovens entre 14 e 25 anos pouco qualificados?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.7 Gerar um novo dataframe com os trabalhadores que ganham mais que a renda média geral e estão abaixo do número médio de horas trabalhadas. Quantos trabalhadores estão nesta condição? Qual é a média de idade deles?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Visulização dos dados" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.1 Plote um histograma para a variável renda do ultimo mês" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.2 Plote um histograma das horas trabalhadas" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.3 Plote um histograma da renda do ultimo mês dos funcionários que tem 15 horas trabalhadas" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4.4 Plote um histograma da renda do ultimos mes dos funcionários classificados como Prof./Tecn." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git "a/1-analise-explorat\303\263ria-basica/03-pandas/img/DataFrame_basico.png" "b/1-analise-explorat\303\263ria-basica/03-pandas/img/DataFrame_basico.png" new file mode 100755 index 0000000000000000000000000000000000000000..9aef9b077de38dea2d0cfaf398513573c54d3815 GIT binary patch literal 103176 zcmZU(V_2r)^FQ3S*|yzg*PU%{wz0L{)t$N7wsEK3Y}aO+n{C_u_v_ztJm;(Pnwih& zniq4-oZ%`;(#Qw|2oMku$g(mLY7h{RSP&4Oh~QxUQgXYQupuDu1Z>2`Rb<7*$yA(x zmNs@45D?nI$vUv=Sn_q}>EmsTCc}IOS)d73C$%7IIC;xqGF1t5NoZ<>FBFgkX%M0k zqO24YbOGp+P}m(|6ck6udFwA5A6X9*Cm_rFmE*tX*ZJ`;0|@u|(&_0fRt^aCct>X| zc}#L;79ja5?+*wZv`LXO)Lzw;N+@`R*8Pf?eP%1JSrG(}~c>Kz*DeUrb0~AJqDh{_c;_-dl))g_b z)}S}+eCkZbFH{k(nCuaq$syYhxeGD8$?2v4gOY3ks|J4)0>TomFyjwJ8frI1{1%F9 z*CEV`HO>N@lpSi@%yzi}&p?m=E!~09^;Th?HYjx?P0lFSHrh(rJ1z5yC0&DDbfL?l zu_UP3)9w%+m1=607;P+U^Pt9rxv|S#s4yrE@VcKr$X|67^+*KWIL(yBPTLxNoc03_qp_>)sdW+lWt-5yeY?D)N-HjM9czKvh{6-R0EILYWp>^ ziw3ZIg)97vl5W*0nmJ(eeF-Xc!^~+m zVq_#9ucBCR(Dm;}3pTqeQnAo^kN`LsQIU7ty$871yBwL_Gf1`Hv{2CgOTs$}3toXD zkYYyf;%n}sf!|L$;7=%fe)B^~L+GK!c*h!%Vn11NyItbsPrcjTLr5$-?CPAnuwZjdZ!+j4}{E zd9j8ZT3^|^ynpBu>q5r=is2SLp}a=_V~xUz8Yf*w&Vdg`j&GSqKNfb0{;1pT`u-%3 zBN`5Y$qO$9_0!MxH(hV(yYxs#(Ys9~a>wh3_UNthWY?m}GwKU8MQ-EAzQmc7fyA1a zOa6HtK&3(i&IQ>8e?GLeHRR(oy6MDg=fQ5`mZXA$A(c67*tOA8EZF4Jt?W-lXm1AVg6p(ji*8=FUhMSq9U}& zS2XhV$4nefB#{?Hs#WxlV%bxP7!HCT{Jx*AZiA2sJkNqf?XhTf3mraxqH>ibXHfe@ zAcBkc31s}4`;*otbR&f;is(H(F;&1B8RBk$w*v$b%-$v)@2BJ6_zs`y15l=*?E}1w zAp~G1<2u+s2?gL^5;KaS1qBYFG4vtBi*3g-7DC#H!o=~J!}5t6#*tznNs3)fxmv>} zp<;{eO*xj508kr54W@_>$vF`^Le|CWrj+rZIey!*3NwCU=+UiavqNm_5prN9`dspx z&*76kf>v*|1L7+5Mj&ag*`>5Q3bYCp7OWf|b?l5-dI5KSyXuOHvpV1#>MuNvXh7sQ zX#v3?0&zt!&XhJMgDxCX?5P$*Js|*sI8aIYLNXP6GR1UAa*OuN< z#WjG58714dYZ}4UkY=gC;^a!hx>2Le2&;)v7M>-@Vn@e~-G-|d{=LU=P^d4)?7)GS zh(`&hBz7eTyuIzv(#)<;c}`%D#^e9uPrC(u^~D{roks{GH=1RDXOsUb@KN@a!ato% zX^PyA0tzDm{so>Z$hGHl50pv#kXRDcF{VLyejlSL{S{+P>SNYpvIIqVT)nIk6#;#s zx*R~dRnb#X*Eo-Lh&7Gf&Lqr=&X~8~A=@Nriy>Vhg^V!1W7u&Q(n;_M=85_VmXZMs z3Fa~*GlMaMHbdMY+p(g7Oyo^uo7F7FDmE>SR6tEDPKO`E7%LuA-*?_e*yrA-9Ro3z zGmbE3YEx+6*K$^`nxq$O(qUkM6b$gdb0o@@MiRN{d zh!&$({Jjg4+`URBT4rum%BEGuT_ZvR{@Zbz)%$Pd+GZYJM(+Un`^yZ z{txt|W3;^oW2qx<0adZU7^5E>3Bnm&Q6DfL^$?*y;zde-llv?AKLnHqzyxr1iw7)1 z3B%PO;v)tlCL`Rzjl%k8qlH#7@8e+v`Ibsgu*kE{&%VEu9tkHPN)ayA*DX5GY z+O;j&)Rb&PIWk?LU1415ZQo!dV31(6QRz|_Q?*c4P=BRTmKRE;kjIznm(h?HOc;=} zl?|2El0zN(&3?>I&W_EFYHp%~tdn6^bSlmlmDQ+UsNb-P=>g+m_5}4bdtHUii*<@s zi>-?-#1KL6$v~psUesJrScz4s4!%`LFR%k=RjgJDlu>{&^3?LLWs=LkfA+U zl~neXiHERYqETL*NaA2Licd^4mubFFJ^_`aRZw^l??b5Bo9olhA~ zO;3f-w&dNUR<_%x*$18{o%jINdlUOqPuE zOkbI*^i0a_Do}IyBzHs$FWBntaS?&7_-bn?ldNpGKbM@`v$D z0P5`_Gs}6fzk6=c9pUY`_rss;9;$EMPU!scXuDy;)x2Gss z<7fdoR=MRqu-?$!;@zmi2aE~gwG6SBuZj*f^)Y1`tRa_mHELIXop@Y?hk?h27sgn_WTB~{ zlBBt#9;G^(RHdzO10c5})zC@}=|b@H4sPOjwK+9SHp?YCAc!zqMaJe;1fQ9KfR)fDSicQ>c6(29=uJU8dY~p`KX?3|B>HLjp3~0zOeDvP0+K{ z71teP_A>BYvYcI5t6W+4mfRZoiLw1Vc)`1rIkG~2eXG`;*m zo+OO*%<_Ep`tAkXsBiYzNx7=9ZMp-xtxmVhx@w)+p9n^KG5H+(j6cj@@I2VwHVI65 zJ9vnA<-O&v_fClRc2|kGT!j* zKjq+#u|ybMca-~5zx}dNFgrcAty}Z~>aPnBqT+o#a^IiLNKEiww{6RI4?oi<|BQLS zxqub2duP33d*0c0KBrAlmKKut>AX#yHuB-f;lMOHG}5$s@ZEd&JkDHhI_Dc~N!_6A zWSO{l>V5;;i`s52D97d|Muy8b7tL54?cHOqBp;Namz7Pc16%~LMaWUxzY{{#l|Ybr zefkZ6fN;E#`hH)QAGiD2@PL{UKbj=L7Te!94AMi)g%wHq_f9F<93y}f9E9Jixh-~O z2?b9<32!M9uY+fiUY>r$I7rX31hw?W$Lx^b^5$N71Al!0?~Q(q-bwq5(p4=$k^Sp8 zwE@va*&J1Jk*k84f{4m*<;$vfB+-i*h|5R-fmU`;-DgV}l#q2P@&S07mg0U(m;Eyw zH>O-&MV-l&g0r-|zDKSLYkhxKRs7z7dh-d}oArV$RLe`jfcL z*3_hy{OV{916Ns@?F&>K1WN)nfU-fE(j8V-Om)g74R<2MN_D!F^l%N&M1h4HrR2v; z#08By#;lA#QjR&UlroLqzI%$d9PtUn3Mz`M5@{vHIc&SR5dV7z1lki&~?-cPSf88JbNtr8Ye4f-?PN;iYW$(O0=zhMS{!xGt2o?VFz|1 z4?tBb>$p6mYY7LKZS#YRtI9DWa&KE76nPBQG}aG|)y6Mqk_3onwud{_DVH;0yE2n> z(bjUeFKM>71xvqq@7xt$9eRfQ9;t538+Wgg5Pznx5YIf$2o*M2osJ@nJ56wlyM|0C zMe7$C)VB5CKs`7de7#S&&wpUT_1^f{`+eFSOtDH{*{jx{L2X$SW05%;$Z#k<^TkaA zn?%s*bna?&K9CkiNp8`eFWG2O|D)cdNcA!5=}%m-&w=iwUuUVWjnz%B=C#Eex31Tp zWG~{f?Bm6rszqnPuI?GLIr+A9zp}0SGyaQ<_!spHuLmn(Ya(~{Fk&^Y-4|Y~=6%`8 zp|+AftB6ShBdV@)PZwLe_vmZhx3m86Ke8=9Hy>z)+B5dwcAuVxj5v%iI!7i|_rnn{ zCu8NcG_AW{m7%gkP_)VKl;E2YO~~aB$v9C?dIwd_=ae{648r1n>kq3!yu0g>T zkU9F_hHbGwQJLX?CBN}a5tHLPk!{4eUm;@Q!)>M)xNgVsR)0T(qz^ra9;OxSK%%`Xgk~oQSZH#HF zj5@Df|M3nVC?QTrDGKJ>5lT!fKC(RDN5H|0JV;3`zt?{GW4)AMH+Y(Hc0=SHC*$u( zM6}LO*6Ksy2*9;-UYvXr*u4%xkB12YDM8Qy0@L5i4Px zcCqlW__|PN*)YyB8KuO{vd~J`;>wE2GWM)F8{}&xX+KdJws!6T<3)8n`~>pKy=YUN zs{WYrFAoe4zAZQum(f)r`ik+DzyL=_sqB(}Tg~RHh1=YL_Vv}s@j7O%a_!=`oZ2!_ zrQ5e9Z$QJHF2EhtOW}PqF(UZn2k9IUbg`-j5dhX>Ww7O|a|ZUBaAeFa0jQ&f_11 zUDFj@MKRmFpNBq& z+_zLA#AY$!(!VOv89y)JWrhhxX7_||dOK<~r@Eti!@U#vrW;H1Nb&Z00Si$M1wbCnQK5Hm`kcoO|3-KtBY$1O9V zWT+=9s;W9H@<)+c-vt)qI+H7ev&;78MEjWLaQ>u=eV6;1m6^lCg2sXb=r|iO2w2*$ z{vK`+&=LRkOMJ1oBPL&o^MEK7R0&-35YQJuY=7oXY~p>w0uo=D75sYEgK36_fw8dT zCl-+WiZYHs7!fDtx;~4i=;?SG>mD04(5F0{MKAZ0W~F0>eP)FnUWfe81BlaA^TKpF zJBKG7*v?~R1nOS;G!Tdqe1P(k_?*d+uEWS)!?AAW=kZ|8%6v8#?l<{kH3IAC%t?Y= zGvSZt?ezVqg^KU%T8&2EI~u1d)-WAGlV`PUTt13#*`HBiX-Ri-4`a{0?$3%Iv~PHA z0sw#BKM6BE;lFA;Ng6la5^m^^diMo9PZkxWU~k+#lEc`EBGJJRZz2bUVv%XlLI0Ba z^2Wl-V+R@99lCXLDP3sEBWa%~r%w6}ohfoXfLX*X|A3Vp?@KY(4Vrw9uBn@;mxFc| zvc0f96iY~K{{zM&TzHU40rwSNxQrZ?BD*{LDs5&0KVAc#UK(fGavE|vkb>)&jyjBe zG-G^VKy%Q3NN5Coa(LiR&)zsPi09h<3d5cM(G=ZC89oc65S|{+2lpJ~56dw_@fRg5 zKZa>09m-@{Vul^s6Dlj_s*=2)rIm&G3@5HTs|+PiO)0+=8Q1HW z{A{@v=r*APzEhhaqg5;QY9GHF{}!>jg5%yGQ_o?UbkV19%Eyt?Ut4C+gSN`m^Skq= z%Gh&=ociDDg*n!foO7JF4yhaV+bVoh50>5BE)BkS?oUIz@jOh~U#}f^C3+}VT!?>! z`;P}QiZ7DD3Vfo(R&L1caIZN@9$6~m@!B|6Qc%|HaC>Cs>3Es#FSn3H`g5HPjgJ;zVQOD0P4{Gq-dYhg6vlVqe;NH8reBqLFH(v6GU}pk} z$0oO|^+yYyhfRHdZ9|3P&yIZY({KG;11B~Hr1tK&x2x(cF0Uwi_7fdXFI#UwSZ|UT z6b}JU_S5IxiPDkT9xGBKymm(SyX}V8%-bt}_-QxU#D|SYUztaDAJ4tIYa?zBL!)*} z;?83q%@1mLHzJ&X?@m!gwQ947=_i+!Y$L%N>wJ48~{O7h5}zN>UsB%fi9cUxF0Y&dv@178W-*H)b~uW}uT53mYFF9}6ox3p+d0UkN6V zhrP3jJCi+#@?T2+qesF5Waeb!;A{i5C;Nw96H}mzvmgb~p{U)_J90{@@_RBYTW?6f6pzFXLX{@M`Y;$Ro}r~Lnq^FNFK2dVQv zBs(wX|3&^E&cBfYEdL1L{{-}}Z2gn^H(f#q0xbVcy%2);`dTjpgb0MJgs8gvr_&Bt zV*{;Z=GV32GDF7U1V*iv702*dFEI=nDyq1kAo8Rj5ju`op35I51Q#9YCi}=YFz@&w zJhxLO#y|d!H{;gZ&UhPl*4ymlQz|O;-Y-@T%1^+yE&U0n+Ey#l2U$M%hF%RF_se%u zwMcN{L;i7}$zjD%f{5Vw(401*c+mv?+f5e!FOh8b$BxLMN>Buv6WOlFe*jsmuwtRx zK{|Ml{{a4v5lS)l|5X{phX%l+9qU2+FZ7?b09g6|Hu`TY?U?^mKCcN*2*iK9`6t7D zC?LM~6TcG`M)>a>X_PziqW`$dibYh-P3=q<63|vcrvPstIw5hWl2ssvFpcm}kACZg zeO{=9+k+!axhx!Oin~;Tn$If@lyjh9?QQ?Bk{&)Xo&e$nhagj^WB;u1{zzQ2-VkIN zDh$fMIT-$rm;(io3arNW;XhWn(IFu)=IrSXLE92|&zhqQ{?cGoXJ_Zl8F`leV=h~? z=>DFg*rp6Jac}W|2I!E$m)A&@sk8&ieIe?6@x>ort-vyX2gVu@glQl&A^TRCyv<9-0bl*#~VIo& zlEJxOa_zPw=C{+M>Ttvn@nG2hB*~qFC{8?|yD;^Ev`RZ1Zv}&!WT@7R0DuJy0RyiD z?6H}XMPnqSjf@Ue+WYtL3rPRb{*lhC z0HP^>#}LiSKifSoN4@^<*Ylhrc)U*N?BxGaIXL2q0GOgJo_s{q1WO+i%bXcGPFWUsZ3@a1>Gp0Cj^eCy^ML$~*QTHB?z2}8<@aN)VC zhDcAZb8RycM5OJU%;Yyn)E@@;gO7s*Gg)KaZ--j6a16PPW>9`|G-irul0&z5*CMn| zBG+-!d_CgLqh>)2zr)Ckr2gO=cR3n+bhCKinbNat;Z?n~U$X z$&i2qJBl=tf((*ZX==_q7n`EOj+4rlF6E?ZRQ*R(#Arv#G})4jI-8HfDT`bxuBkW{ zo~_+xM`*Hrk77PbchkdRi7cF3DV;{2dLOpuiSvm>Y32i+jh;761@qCP$u-HIvT5$R zhxsF&fl$HVK}f;2>DhH2P8XBMK3+QNV3hv6YBngRUrxX8BCLnZN6mxgGkN>UkN8oa z0L+1d0)NyI;zz!5X0gFSPm3tCXNry5R^{!8RPm?Zs_%_oZ59nE-wup?n{pU#p^GY< ze%+S0-dNcuirn#csjt`6yxP?%wa@s`NnAGF{ta_Qk-Ib$?!tO1ZZ6)_P@CVNI~ba`npJ2|Y*B%(B4s8SfYYbu{rq$%eLG-vW zHv)Gnx>p>g9y6<#R&=0sPgd76VHCnbp#s0*>xJ94h%HY6G%cX4)JZT@rWV9|)D6^m z*(pUe9EzRvYjPg+#6|r|lvdht%$@ZyOz8eY5od*~HPyDVB5pf@11u^9P!TFUN%Y z2NRxP<3RUKJ;Bm7*slk1ql+|t+lgX3+tn)wQu!5=;Rm6{6*>L~u~1AF=g2`9Ca(80 z@!QDppIao7=P}{Dwq9F@7axK1)K9mvtTAe&>K?E?K6%^G%r7Y)m9@3yNYILAs(ksM zf-%=)o#pur-`+c9tmfI+;PHdvL8uws@!~ErM`4>k4j`uNZ!RkfbZ|}XzhCsHr6TnvJs0j8*ILqkOrfgNY9Vl7;38?ZO1vG#KNwCzuLg7xL3%cbG^{b6X^xO&>BH>=o|6_9B(8kIM;$om)#DoF>a668>oq zoz=JrC(fNYaV6nFb%PW;q^tnIt-E-plZutg1Kr5k`B}hwazN8nRCTZ4@pnwa$8Lg+ zPkmf@<7D}CL9g)UZkI^|J2uQrPfS-j4)vGd1r)jp7`bJwt{+^nPM+W$hzQHE!8998 zdLV$G@5!S@P!OHeI}8QJdlTt=^apf?a7%gV#t!* zMAU{@p;9;xMEN6weLRHJ#?`9BQNEtKJ1O%7u7-plQ8SpF&pl zpGYqyT91pZWtzfp}Kv%`7AZ3!hf9YUe+yh=aenuhT8aX59koeeF1bdzYjd3AY+I1Wej*fF7^l>Q) zc`AkMPW#>VGCW-RX%vo3Shhgam7>fFyYv5IK$vd1w_t2}!96^cQ7sv3#{h2c5Qrhr z&C2T__IE1Xy1KUggsh^R_REaBr^&AQU!lPo2JuV_1^MvKq5 zSIb(4V$Z*Y=6rWqR9Hd-MD!_v7LT6W&fa(@;<|tYEm9)?zR|0JBkZFj!|<=?2F-Qv z+G}n|w9NJ^NS!Anib1HFuZLdR4@;v&od?gbTtmsorGjAiwJePIc#Y4gmOJ=m z-z3(eWa++Gv1B1z9*fW}H+>g5d9D~6?04nlZZX7(R!~+)C5=Mp)|}6 zkkVU!537F`B2wv0UOiInlV_>oJh3ZhZIoqM>xXE5R>XE()bV>e=}a zL3x~faM21E7GFDZ7v-9b2uEL+_c>%zDsFzP_cxC{$@*EFV;id-mK;7?1u!Gv4==W& z@gK$Lr7maqnJ3o0X+Pg$MO2kNI+2Zc!1a7Ncm()Rz%g6e}80{jsag`s%7)G_8>nZ?10@)d# zwO=B0O^iVN82!OXe0vNzrRevBKrAe<>AFCYW(tK|NmWxlx@6I}c1bWZw{Ze(xC@F& zQluArp4kn6lSOwJ`j@`=Ry#VEyOXcaKB;WTJI_9uzA_INMZ#7=PXc|N>a>b@*Q}3= z=d!3EaAkRHjzq}`ZI4=uDJ@p*nqN~}=AhwohnK6_#Wjz1YUzhlfKLu@J00B{0X6zq zx5*I+O%y-=oylAuTNrLF=9JHm6Ac`&II^(IxO;&Mdi?em^~ubT?Q4WS`BK6)1Emds zo4x2sYei1ysNB#n9bMt8oAG>=Z*Z$luISz)behvzk@n--%cqoH386QVKa^X*LzO5f z`dC(i?C>Ig1-JYB-7ygBd)5)B1-@O!N2>Pw=tkX@A|O z?XVx5cH{q$@7T>qwZk5UfM3tC*1GYER7T?M-x$C|D166p;62T+r}>5q6_a%93N~I2 z=6$I;7wh)daKGL0i{XyRaTq2b44+PW|2dg&BgdubeRrc>@5%pVf*;Z9<1RPRGEZfN6AL`sb!hgzYLK z+y3%{$un0fxY$O4xx&|O2%1}g{rQ;f8y2M|A2f%MCqIp$6Ny~Jc#uW4-8`wC8BK6iSwwUo;9GZ*O>h z-F&4)8X18l6GB?iaYEDww`wNv*eG^s;QKfH=UFN;mN2c*0@s9-&mJ8I$)PoeCvIRDuS~+0 zkr~-&uCbmmR3A7@mWx)kZ|K+nu%96kRi+XKM0%e=X%{Fpj1snoNL{j35pAW(IPUp#vK+ zxWihfBQR2yko6`OXi;U&bKgE4nxSJh{d>S>-bdN-nc5$6I=OUU_hci`y%Cc?$Aicx zxWQVR6}I7E33BYRAd8de5**>*FxGc z?{d7X$+WM3t0cikticsoOQ<20cC1k+aNw2TRIm`)$UD=8)< zTAIBZeK5^9nRCv^t;Z${Ka#jsu1b-B>JPL7b|?)})uGIQFK`o`I|S!SkbuVWp7nXX zLkua^o@}lnFrogWpx7V-F;g+e)duUs03!ORtJySpUVO<73()*Mf%>OUG0WxH{yK- zwjy&>0a8CJw$`u>}exmYV!zxp8j^wocI0na+AHApeJV``-<|vK7U61Nvy!6Lz_0mfpt_m;rEe#(Tlx7ch<7kmh-o?990kz=5;Q z_gUJkg=3e||6y|v36qeB=XGq$@ns)5(d!~!8;8)(m52L#Wp9yDYqsDVEK; z_WK>b;7I!pr2enPd8LIxR$Ql&?T#qL8}8ZQ{HI|fldA{cfX1~mnL8@B6W}|^O_jdL zd*n1#RUjoIu6_i)*2E5-ID@A5#YXk%dI|AHf|Y(aV%Me3Ty%C+vHZjq_pDdEMXbkx z&&FWH@DAHU>_j)-IYIjEF`&@WAol9(H+Uee;YTdcWbs)OB^Xp6O;7Alc0EwRJ-+P^RiXm z<5AdYgk8TWKFg7BqWSL2fx@ZYEgg>Ujs13KrbC^K)AG+>jd8P%x{I@s2~S$4BmBDx zw81!XKG$nF>eC46HxA86rv^gikPS1`MqSiy)GN2Rf^u3m^>@!xjN#`q(5-d zLDW`o;yL$&FmckpAW-NNwDY?sz$>mIM?~5fkR0{Zb5bxM^<(cNKQz+FOrIaUim3mN zmFTD01$e_6Etp|GmYRaM+Jfueepx!S90S`0IZPTyRWo>^lE@#kWUb`yfb~p*0Hcsb zR4Hh`*^FA!-d?z$`~a)z-s5IYE?**tBVQW1N*Zxg)$5*UQKZoc4>T^$GTRE0hC9$f zZNG%jWZ^~Ry68Z#;5cZ7scEXnT-c=>m}MDks}ayDcGJpQe0;o;7$xAuXMQU%@_Zn$ z^WIf;R&Li!q?EbP_m4&u4qoEpFjx*KFr{j)BkPqK;5y_q%k+K0WPF+L&5EEC_q^b) zxBC-O>|vI@vukasJ4mMWuKFGp+b90?IB39LKtk+m=mUxlT2Gcj{<6qa?n_eTyYs^P z+Xm(i?V-}#jHIRK41*jlM#;P-FWO3xGlgtrxWD3IEmAP^!I4&$ZL!=LbV8@c3?nNW z$vb<>q&X%`N{wZIkm9n`;!NChs<>6E3}ev7ooDfeGsm5j-)=(`T3~i4-;b``V0Pwq zF15ESyPBaB$nk!PI7GuInRwPe@bQeo-O(CAsYp~4Kf7)1EJ<<|>#*1w!YGZfEvX@M z*lwv4Z@=eZb1aiZWHF@3{me^P#4X8Ib!gj~vDYTcMSpU0d>)bZ zC~Bcb29kNV!-}sU=|~oQ+PyM=oA5^#$;Q4ZG~#Q`kGEhPZ&APF<^YqnEdXni}Ja*@MGs^mjxCdZyW$2jZ!s&{iPRIO0YZOUUgivEBze9sVV%lTZ*V2vm~EI+F4D^1r8 zv9)0b`U{W!cG#{`p(&AIA#t3*3v{P6?`hgMd(d?(=X7^f@pxWh{7jQ?xbjEp-$H$} z5TKw}NB#5mRa}&i>_7~ZQNC9XZy2~3%N7+WHL9Z9zvUUSuopRn8xH;vox1;X$F5$N z+wLHa!v~IlSj<^!f?8-SS6~*zs_}cIddWZVaw|0_yKSnb4LjVXFBhlL&5Z-V_o};f zL5Ak4J4e5RNb)LCSnW11#iN+WXwe=r11$riE30mt=PgCd7v}4deP_h_I%?q*j1sp- z`^)x*!1=2 zASIh6!>Q04(Dmw78G5CFXCCS+x@LgSY*%0hah== zT?fU>=#eYseIH-x!#$GZg{!Y}uJ;4|g-CfxM7sVlVNABJJjxX^Tv(_p%bHpmfFg;U zi~?jLIy;T14ppYRrIY|KT4O})4xyKxSL_llX52bW+dAL&qr^LVG2Aom-YR88^6>!* z@&+ae__|d*dZHoj7K4prbx-u!kElkzj26-y{^^Vmzah%rn#JKDSibXvI!M7YC;)cTRtq~s8nCaOPF>%yWY1!C_TMZi4fSYj)p3|2Lvpm z=A1oq?$EZ{>x3Lu z>_ejK<@c{KVZa8TM~2E9i=CvyM-{UqfP;=*GDRAl2%_ejJHi;rKJa6fr9 zAGh6xAY<;~P6ObNZRVJ+w`h;UCwRh&{*l@OX~r{z%~ettoKp^o^)GZ8nadE)I9tB4(-?MTySJ$jK+sV zey=X0!}IxU&jVJImQ|50b0_Iu$(#J&{oOqUNjj9J%@42uVS(2QcMPXQT4D9lg@=MNj08k7$(KB9$8E|rDsg;^5SE5j4;SP^palBu%Ob?(fYS^>q@=ozO zuuz{bJHws(Mb9cUh3}@yuAB3T(p^!xlt-SZu8&Puw;wuLS9_3mlEJ|PYE5qFR}Fk; z8&(b*Cc%1BAbrv@0hjPmW-U;&v)h5G>8>?ueN}oZ->HMlE+}n%4YXOQys&hv*InvF z^+hiJI}Mc5=e(2?xPe%gr#XnoML-GI78n}1*l^|2eyeOG4OA0!C1t%R;2U*;#458z z>NiSK8dz;R@1x5(h}%ZNj=2EeUuUvq>yd0U$HJmx;}U-)g_;2z?+EwICGlhX_w5t* zIi>3aP~F;Bb>bdW^U>mMwbXR_00EN+S5NYbmFK;o*esX$uD4qrv)FGrQ2+ z;59;tfJhxHvIRGYmkswoL?garX~C}!(y8D~J-?%7Hmtdrz2Qx^9OL2OLfxq{5j-c7 z-R9wGMHdGX3h*ewV4k@;(u@1DMOIr7yFpTKGYr;IpALZ6W+7AjIPmk3@U{l)<(+yd zYDj{EYH+lbS99+ks`l-1B3-srsOdFUl*fvOwSXDHfT0glqu>kDLRWRnNu0WtPx>#z zFT&DDl;yn%CI=I1Nle)qIlUAuF@>x@WbtHoL+f*5h#W$));f6?aq25Qq1&2j(6@#o z6M>$>#qDR_%RI#Hed0;Y$sD?CVY=s4iyp{7b2Lx&20=)0dCy~!Ei;`l$Y`h}$EOnB z*H3A#f1bjwcHS+jz-`$u8YrKTt5M3XnF%xqaFM~5Ef(|J4NHm>L7qdkPv{eET3k*s z?cl&2uo>G~C2C%4LgY2)+=X40RiS{kcS_vtVE6sTT3M=6ZU-ug7sP|LU6>)@1CuThHFL3IL99 zdRXA9mA;e@#9S-DL8+k~N>BO(MKh6o=y|;z9yqQVeqKSycZMZOzi7xgW-GQxv%gXM zr;Yon(}#A^_FRi?Y}AD#UW{|?$wVPTI0jbstbYdRhkb%maj-D)Wo+|2cz}bZU@|(& z-JLX;{Jd_K#ff+1EObqPurTrwD=Ir^=4ywpwn!C+RzkWBN6gaetF=+rnxvLuX5?}W z_ThKFA7YitX1JSYLA)Gq`S`x1xECPfsNxoW~%rRxRiHPb2;~Lo-JxSXD`R^^?UMGT;~m z$VVSR31laVM<*$`Q~!zDBiR;3De258`8j*4(W1)qOxZ7tTKI$M9<&zTm@zooyc4FB zl9FAckwxjU!wlqBUVzx8|l?evEO)`%O8&wXr|90?jOak0bz6u?Wb+1e? z_M~rPxT#a( z*1Y+@@Cp#bIvekZqvlx{z^V~076b~mn|oke`fOv;dHdpzSQ&-M;yU;j5uk4~Y5k~Z zes4X|raB-{u0rNd%liE+{WKmyz|=DdOhd6m5@I86dyc>UndW$tOjj7VuxJprd4{h~Uf9%IwwjTf%^ z72Os9`;{d-6plEoTytS`Gcm(Gis9187i;{Y6$9DqnC%7g<1=<$j_65D$HXRXiiYE; z8Fr)KtX&^_yRr{aw$U@Y zuG_UY3R5e8$Y!(j>khQO`7lgVGK#IL8TPm60o5}m>!FkEL>6jVxOozQ- zx=NKvJUq8MNp05+v(=H2jhg8>e8OJqTDX@SFTBjE4#-3+ZsQp*p@^OV{H5N{E46Hu zRcV~jgP|9{Z$2K8?OpcLu_AN28!ZiwP;j?^t`p4_^` zM=O1ZuIZ$DU3kF0cG$`gdkbpzEI9T6KePK#;Ryqb;KQ|63_{-zR!`oF#O>Co#J`J; z$RTx4B>`Vyc2D-=jVtmbi-()vW!%SnsP)?gbHCCNnfOj_HaF)*Z;ncxJ^C_D;m=`wWBr+5q(( zj|IdFT0r&-I(BTp^SirybD!;a<7&+0Y`uk9#uW^q-mvM*TCv|mcz8^>PLF zWqiDT;$~VK;#;J`{kzRCr#~SL{DA%Tk% z@kQUgcG7&e((P3Ki0`s`OQ38w?j=n&p|!nnN9_-XDqeV2op80%Gp8oPDsQ z)(-BY^|I~S|8jg=D_vkIQ4hj;7Cw8VpYu~Q{ z!J9j7c_znr3ce4dZ8JqeIyosVXAk{>2-oo@N|%qqd^iV=vRK=J+_ zIS-+4#>f%u``-109vfgdB>vqJ+?>;Ol>Zay{bX%^Y<~5`gBQb#p1qxjX5)T^G|y~D zZEh?rgzDgKe(0fr+iZhSzS{N)Kmd=Ac;CKceQNXyp`54Rog+Z_Ifc3R{Qog^)zvuM_OpJ^v*UT93l=2mZ>Auf)Yp^0CX!$nA40BiFY66IymNVNby?uMtLPkfLMqQT zBD0d^d1Ur89Yc<^@Y4m+6Z5%P(n=#C2OeKpa|c9WZ9VV;y|@*(-nyU3=yDYIcmC4i zE%CfZUd8t(kcFJ8_v>~;H#^O=iw@H=Lax}4<6Ac$5d)EXtm>=-=Mlz@RJXb zEEbQPbN)$mH4HeD>^Vc|ZqMKPk2X?6k+VpO;iV=5$()SjzQ3f;ibTrAx9`Z~x@J$t zhW0iKl?8tajBPYadGnbAzhhiA+I!L}yzU%bLLhq^0R%NW91)EZolhbv?_n6u&{n1I z$E|By{j}8DV!^B`g9cs{=90+QmnTc%T|Xt~JA-PdyCBzR|25D*VPK@_{66(=I@v*N zrO3(f`ADC8bp%&(tYn$JGDWH>WR}&f1oP767@s+R?PLe=jY! zpUx)+B*Ut=AvqqV>o0P1Q5+|O1N&-nmwAC&6J!Rp!u^YGA-LI9yaijckYjx0m+qb- zg|-m9HEo1jHMqu)68qU7<7e)WOQ9)tVc|WFuX8c*`b;fS1T3!yVatcGBzkqieT4J; z(aFW;lpeFM{{zm}^guGn&P|CSLGGyX7ychY&gu86w@oPaW2j8cKZfOS7KB_LEvf;V zj11Q`WrNqnxdZdt=;M6;tyii`Jmm@LX&=}Hu!VAMb6F^g`#LaJwvcA!#;LiH2b9OT z9JWk_UzxX8fd6)dU6AT^iqi_--%|^C_%Nx1xI~{$@b~`uIJjn5{hK^+EJg)te^jSX ze2pP74h);kAQM)De&zB9Zkc)Q7K|HAwZlULJbE1rR<1+RViG=Ue4jF{-E6sm@-R}P zi`?cBl3*<3gFFrksTe5bX>)57Ts&@g!;8$Nye8h30NSi%Sc^j=i?nwLr^MytVTU0q zomuwu@_vGE$4w?GL)3YSf6yilsDGI1pvOr4!Q^VXRw!2`jFB5?*a~g;mi}2nPc=mY zB!5%MqqB98+p@n=?*Ax!QRRCeF50V=MaSc}5B`^N6R!L?h2fYm8Mc_b>e>ZGdT*oM z9z3p7k#{zH*n2Eb^XpfP4xKWktfLD}n_{5E%S^?(hErn z%&J7k0efl5KV1jrEi1oF39JA^<#BT!TT5lW(5}5Libyx>i~{CRPMUGPkUaV@_<$ zG9Z%UaP5O90w4t;vE$Q>GxRfc4k^OQI3^E;-YnqRuq$(UyEsAPj3_ET%wqTPW90`+f!ZAfnh?R}^H*??b5FV>2IJ3*~ z|GU1c{g!eX5ZLd@pa-4xXz`p66zV%#Z+I0${_r_BGwJ38ezgPdEc6tebS|GhBkq9q z_1Qn#DUzrR6Rn8V)$2?$VSH04og*7)Ioo%qL<(LROIn(>o=-Dl;?aJ4u|Txl`2nKZ z(Rl~ZJe>aa^bJawV;hQII=M%RQFDkb*Lkwj*WrW^x!u;bpZjCz-(L#3^=|ZlBdj{@ zqT`@cbPn6M+fonysE0-(EE)4;k=!d#Cs&*ZqFIncRbZkwE@d$hr0mx&aL~9Z%n8z*H_{ zqTx(I#nvGK4&MfRvq;$%Y1XpXWP?-J4sStulJF==C zSvswXrhv*L5DiE+O!FO{Uof|Ur-)Pox?m;NnE9j@yLp`;^hqqv%aN2VoJh%jpZ0yo z)J>oHt9e0{Hq^Ov+tZ9SO|DyUKPipJHI!{k1AfW;1U#<3;VOAf!y9XCbT-4E8`+_3 zfD+p863;nYh;y{bcJ#R`rb391>Lhm7ofF@dyuV{ zybJWJXZVxEzYE;Y8K49>f7jjRokrGk#;~IV^J}Sm6po10DKAY;?wWW1!3S5)OeUC7 zR)SmKvC9PD-Be%l=FkY{V@Sm_o&R1JsKI_*#aK@bz8Th`8`O=vNxIp*9Yxdt`V_YL zkKbQOjdB#mqU~OwE}lULj3ei|ue^^|5C^mYgA!6voSyQLFDSQsOrQ<%A?2Q&Kfe~T zet;J1_>X`b+RdMmyaS8Q0j{sx?}LCDr=Vf-2m$tSXYk*7d4Cg|@iy|7ydCO!Uj(Z2 zb6=yWSTBN9#5{!JP4kyc?#HvWi`(+3v#;;ZC+Yd}K#`%pdsha(?9sEI>?LVP^l!jN z6Elg6uXt+4rNdZ$KurU-Fr7n!vBzz;rju!sWY&jcbiF(oUO?!fjX)!(|Dov1Fflrk zUujsmGdj;rvegHn<>EYfLTBp%(P6l16dLq+Eg~Gyl#!#A_#e_pspc(D+Sm`xf(^Nt z%7B+CB)ud)$Nxaq>&5QxnO-@o-OllJZA-NI+WerFmgb;{jKpKa*ke#>5RXQ<7-I&5 zJS1L7d970o{R!9Aj6eH%XM7t}*DwwJm`J})7C^y=KeoVfJOw0CtZ_^p00Gy zPr0)~Ighu{VC704L_9i{(pu6yunw;0SFFQu(Ob#Q_K_qYr5)n~1ysC+NB+LDO z7KQbiKd(Niz7(g1y;Cfv(Lb3LDTc{9LiT_6VZ^xi_~os0#|Ay$8_f8}@_)7ZpX&kU zco7e%iJ8_`_y51$Vx0glLYFT3J9E5WBaOS9`IAP<)|WyKis3+sI}HPqzAHbBn^hGs z1eK~p+AV6VIfZ78I{_|6v`2#}j913pXGXW_L!ps{VwZ)s=SOX_T_5W*-j?swvv=-J z>N6<*L1|EVFbBimyArWij>SDM@+}cV^Nfvt?CdW+q)CRd!2+NprXq=X*@SDaD1a+J{ zPTwE_!#SGvQq`$fyd7aJ3tj~Iat>G_e;akRdkJgWNKkk6uoN>-PW=D-3sEW4%tSbT zNB_@TrwAvXAtY}&gdi6-sdOj)blV`Dg~142X6pk9qvwYkZBLcE-FakK_@ebt#S%cY zaL^1vZ`3%p8L_C!3kFBfIhuJb7I1e2cIita9=RB~>_TcJiRcvbPjJep5?F^B5_%Dx z51!&g{;h7W?!)*s(E@PkH=M>HQVKNW2_xg7GH29v8Z1DsCd%N_@BnF(q;IkBE%H=C zI44*oNYp~EkKSGlVzRJjFK2$Ce|_0{)J2E7fe-cYv&PMbswJvgNahg#_A9>>0kemh z;^imipopUxY8Ys6IDxPeFGJ3yllKqB-|!g?=GK3-PCt=DlnYRVE(9jCbNeXDQierw z-3AfN|C8J{v;o!a{l)b7kk^jkl9R!dqV$^b(a!s`QdM6(Q;7p$*F;bK+ZMGf$W|H{ zomeENiZ#g|V((|royroLarX=IBW;`SR(BLralgQfC_}SsRXJ2yj(ETkuJpwib z2Q*!7BzT--lW+*wPC7aVY?kdUHYRi{kIH-~%lD7DfYmC$vKh~73;Qr+dq~$URD(d7%MRchES;lREP5GXR3^QDrZ_);?{rLJHj6T=?Bbf-`5w z58S%8_wG+(s!Ky5+)q}euZVX1Z-G^erRqrdAQf_L^)Qq37u{ef}ihjWmKO}aT<&!n+C+h9F zSk3Na;-#Mhiubk3H-5NtPB9kGi|UQYxuZSntG%XjLVaS%yh$ zTZtPv9!$hZHqr7ELgi$(WYh)rBW{vVKpUSqicajB(iGr%-eaG^VsRDr<`FR$yak!d zhfOP-U(froFu;>(w9+H_1Vyy0@Dvi)K0zKZM1kj(9Qwi&*c z#u&$jU2i{Z!j0_XGmF%;cNn9{Pf+yijIgAH`wE6{@X$nrvZmOE%QDgM{TjipRqP`H z%5%VV>=q~m>Ja)c^jfr96x-vN6P?IpBzy zyX8IuiV!i~mhWdDRv$JWI55ojlo+}dgd{1VRbgZdD&Sq@2bl?eGqYCp-;>PX9)J$J z{wg0(UVZa+pWj%~`UnS1Q@|a%ew*wgoMMkM;b4m^6jKY>;94-&dd12s{WkV@5@s0JTX$rS- zmwLV5cdNayrZg->`gN5abYw6Hb8{bE5(WE-+1Hw)@Z8aZQ&?>26TbIsfBm-C=-%+R z{5)YTD(*zw_!^NxV4v_)Z#F?en*}subOTMeBAQ(KTId%_?IyscilFqGnWcV3#?8f~ zKH&lz33bQxs?I;pzq1DbSq+ml$1BeXg)FDpQrVco3)5$U@TJ{#cH?RjNUVs^< z9^we^t9@^_M_*W{I@0~30b=qXPjD8YU1c6YY}o9-Bk9$5Tv^#w|8^G;7~oKcovh@i z`|5G>ZeQWl9ivZw`#@aDo^N|I;EY*Z!R!b6!e2%<9gma};ht2MvIyjW!FO)d;rf=1 zwhs$YiT`e1)|>jwF*<5eaTy5Y)j>(XNs)y=bLiZg`odWFE4=Bo0=4M4pO)e>z^iK2 ztI1Ss$70jJdNvhtj+0D5xb{6Uu~LidG3xi<-X?h56Kc<@hr8^1OB?sNYu_oBl@{Fl zVcHJ>?@c@Zwr^B6X=D_uk2mzC*hav}jN$X^J8Kx>V-tlGIJ^*kiqfxdKa96|M#Xi0 zTQ%1=z)hc|zUFgkFZ&n23*yVW6OrJs&3vW$iSzSXnxTxMse4UP%O5M`mIK3TRN_f5 zTmPyIUqS}8V%nUW@cnV@zjR8^vnSwdL^&7SH4NvHF(JdxGbKK=Z;tPSa9bSsS{vfz z++iaf^kD2a44oOyhYDZm`jW3ajAfPJ1>S@!_Yk7}mEF zin#q{RUe$+%0vV-*sx2*@p4JCfd<5PKOf37Qz!W8qTnA?gJ*0w{IxBvcqPd#h!%ut zEoO2(sUa$iwJ!q`+-jV(lqSS1t5{BUdbqxRuL zMFJKXy&nV-f8^=;78v%c7V?y4Q*$O;12~LTGL_r^@^<}BdLPd(pR<1GilpWS;?Md; zE8nvH{e=)`*uLP*TMHA6TV44lKus(Ht^Fx@^1VktfG=O1MD(LoI)|S$H`v;KwngcX_>s^7x+g zyhXmljGq7wCj~ZK`W4p|&FuXMG(TYsB~>^0d4i=_77$chcs1o`fuERS!~o+py8-w3 z{z4*U=A)wpZ!OLph41xJ<_J7YqT8wz|6rqFr`iC_Ib7(YXGIPuigo?NZSQ_X9hWwc zh5;yQ#yrjsOJ2G}T7q{W#bZE>tfrSnlxmuk%k4dZ9Esy41zpd_h%zW9LS+;?1o+o@ z4UH)i#MC>IKi>WYE{-}cp!l+X6A{h>({GDX9~SL+P^(Ap%sz?nv3#?aAT8GR!`;@phoY`d_6OX!3jd;Ozo zC8l0>c%Dd=($dYlCHjMO2a`cIW~N|YUyWUdoI*r-x+M-oqlYnfz!1atKlgA_ z+n^)g%r2b_n%febh(?FYO^GfVh@z%qicS>&OI5guJCrW|TafUhbHj)$4Fbq4UXHGc zMCWPedNQ-#MoQ|>Xm4>%TwB=13}7u6S;Mpwa+osDY4D8E@AeAW z(cI%+lA!-L3m|75cj1$u;`3WacytR88kze^9fKg&!RLKYYZ9ndO3|49rRer_7V%|1 z;|~%Jb?6qp&32JVKeVRxsaM2#*r=#-Wepk`wRW1E1@PmswoEo*wwvsK Z}js-@vyK; zb;rW02H4diCQR?0j_IGwbu6#!hp-~MNLs-T-@@c8Ag&jx)Pmq@<`)kb>-`=qV^oI0mj|YpLpJ;(8n8nycN+c77mc6LH`RVa_d$Sa%{?2}=R=7Kj>(mLGKY*V) z&5rlxTfczi0i$pcbyJ6hnU(O>jN_AbnldJM3MAMmRLHjVb#^cFA&c#hke9H6F)-jY zmI@~gCRMV|;J&=v3xLIr0eb&rS>pLu1*XzvC5aTA) zcZbSGtf(j6z=}p<*6GTt?Z&llz#=FnurdycfPc5*s;unqSbBz}2hcncQ331;JK&5H6Ad%|r~za6(bpQC24R2Od9IyYSL-ue8q>HoVYz?(a1Vh+>Q2)j+QgDoPFbrWq! z4rWu^(&68JE_|_H0`sD z|63AL3*5~wa2_G)HusA%zQc*y5XkcFF`%S#3CXU^1ba4jBN;>`AGv%SQeEM)pA-U2 zd{xTnAS8BO+%UYnxrdeR5CMbWQ=zf5gnI21?oXw;k>d3C?@|hOMn6?1D7NFX2FnLhaYV4XMi`&>Yy_;?c01lOrI4&aFL;HOe z=$@J9DRN_t#X`wSyi;lN*?&P-s8o#6_lY3^%`FKMcU}*}_#W?k3ae5*p8}PchzUUZ z6o+j2xYC34AU@ks!j=qM%@-G)pl??8&t$uRcCFBzCH{xb(EX#T)Ut8SMs3B0Tn%I(r4%G&?Nh$_-6wxLf#* z4XF{q6?c$GC=Flj`-aL_@5rUYf~hkLt2vuenA2Qw)q<{ymlPH0txA@&h}3O%S= zDH8N?@3c+yzGl>Xniw0Xda7==Uc}Acd}YDHIl4VVFV;!KkJpMHew(CO2BovoTI44^ zZWpy2EE)uOPA3Quf74px#}l#6(Gm-ZU0UK3j#mtvHS=oPo`Gqb34I%I#WxYHS!dT} zv0FYz(^EHJzqP!0t+-`*`Bl#+gnwb*)iy?Iw4Tj>#IvcK=ADKA*Unq-^2$oZt=~h_ zbC?<#i*s&%*}!c=iYxDFA@^3Oco$? z4&8nQK3a`kY!j%?oMKm9WSAX3UktGO2leh7Z=a$q>SE;>b}HRK_n~{=9Bc1>)c2dq z%~u+&0P&@O=3!TwWRN(4FbH9X)LU?!{ygTdy&`{Pd?n~p=Qp&!(xN=2C29B8iCuGn z-lfNop9YtFSB20{-&>N?F&bakt-s6VlRxl`d!%D~d}W;O?}a@B0R7bHBz#BfE9F3% zHODPjnYdWoqM!^rp$L}WpgSu#;rg;7Iq7Ri=ZkWGnH8xks&tju={h!}2pkY+=jHK@ zYwPfTU)TE;1hIE6uR0jC9;t5BGSLpN;j%!)A7{$v zCQVxg1V&uc29Y0>jVUlD)NKzV*o%TGfXh`@JFl4+mX;bm5`Ij-0&Mj?M;r+8mK3>v z$b+4&8%*{gj{eJA&ksW4Ko#3{B!k%a$_VqrRzA!Yrk_LIM?w5o1LJMllr=i;xXHs_Nn$$%0L$=O(5-PU zfl=pS$`-M5MuF2k+TLO_G40Ze3qQV*{~`8Jdrdf8?%`Xkj$GBWVRIY?X+hz2xAf1(H$Ug&QABNOxt>HAQu%8}vA<^LNMVEI~&7 z&hpw3lMNW^%}9~TU9$x4=(jUlVz!2Kl7a5`7t0EG=lKkfNn2dUW{krPnjK`5t$wMTeVgwzx}Q*g+&;o zDAZ+4cxt7Odi=3_uN{iH#kc=75^4)u(Utj%TJ>SyRAGFk%0-1+N}Qjou znBFO=TTg!oeWN#Reg5#2p)n8E2n35$r4Q~kHK2{>nY{`}g1*<_tk?$r)w%@xFh~Um z=DuWB`0s}Zd!;pI2(!kiKqZN&Mk>2cYCG`owx@r%;hWz*j@SFo5D9lZ^2WC!f?d?~k875{kH>Vme$NX0<44N|fTuz4RO3tKAx=g(=+s}D zHqr3pS>XD|kHU@n@uHyXZPONzkdne2vT5f*EjoS<4`R1uQ8+z)$EfgxU^nb|a=JxFbMK;LBM z*&?i420AAHc$L2;Ojvda(C4Af;ZuF}27WP`B*q>m*#DoIY$*(ef-iYVusE+Y-*KKJ zbCfnN7r@tz^i+ca5SZp+)84?Sf|OXP&JPOd%lc+ld7DE4{q|kdq%;Pr$X-oaF0zhC zGG=j-{dnO8Sfq=<(@B5V%DaE?(~$Vtp9Xs7S8PhcX79sCBcW$Hnd46sn(Eyh=SPR@ zYvE03!v@NW@br&N)K!kMGfUD585rHMne?}mW5I(i4q3pZ8YW9l!)BMPpu0wV%k8+t z0*Bdj_SQY0VkT3W@hCD=50@q*@mid2x`pPRvWf5)?L|PGhWW!a^1kI`*HICEYk1`> zZ$J`9gDb$eVXBQtJQ`~(dp+rl>*n!|nNrav{5k42%UDS@BStWv+Q1=K>wR1JxgZrrul2w3O9ouMfgS+w(>B;l)I7dHRr(;{ayTEx z%>h(j(Eg8Zm07O|X#cVQBX_`_bTVg!+{{eAtn;)V?{~ZK-1W;6ib2cE*38t)K?l9F zv1@l+gPu!Ots%&0-e7k^=E*bWSm-W>7TjCXWNphwjvzRp$(z=pZ!nh%Io3CPt440K!VtH4p)l(w&O+9EH>A5jLMH{EG_BU@VJ=#W|W3HqNiQsXF*v99bkQB&%tf zr#ssLz9K@#%*HaRE$*K#RFAfkjPKC~Wr3uX^NVjQexTMZ-w-#Qe3IEGrI!nu^ry+5 zATZ7LlEp1uui~z9?!giwK@tU_!RGQJqY;&kP^FuY-%dGN0WLd z<)!7113zdglK6K$>7-74@Z9^c$>SZL?q(iBBQ&n_RCu2$0<{`j)y-jQtFuN!I{(7K z2P>D#5_Crd5pL*QNc@); zAlCo_9~+vaAB`_=OUeqsRN2Ql3Ep||OV;T3p9}rZ7PhCyuOW<{8}kt^Abw+VJ%1Ny z^*86TXJ5fmPj;K*?}dMoGWc9*5p^j~zt)UOJVqzuY|<&sG=O|D|6VjhBBU;L!=|<> z$!p_`CF}~!n(-&QJp1Utwz?xvG{ZY%tOR&pN-slsa3_D|{nGZxsl+=tI(jIrNCZ>a z>8HU!kb(cO{nD;$$fn!Lcn(&AY&YIIuhsV@Gu&(LTEb~Nb~%O8g?eI5ejOVO*-TzJ zh{zlA?*>rS;fQwLTa5YT-d*1me0>MJK3+a36*n>Ypbg#!?WsW%UoZZ8%}XLgQM-9d zsvLxSE_N$1FM;3t)BZ*7jL|sOpQ{tNzM_5abg5@Bt6B6ICVP}u4ZD^jwjr@_5H1KQvrGbpP#3Q`$$F#q)qarbXAGsPUR zlFVtTChtdrXNu+Z6*x&kX`O~P`@F?*IDS?ofb^uJ5r@_aBSKu5c;KeLne_z2U< zW|Ne8{+5}1`DmZhQ6&Y$syem6V5V5LA@G$MsKq%<_1{Vj%|?;Ex^nC+^LX-voA{+i zt_&j5w;=Vc(Nl+*PGNq@oWT%}8@DGDad7_+_73Eh(zJ$Rm_|v6y5ZI0<;np(hD1tLj3cO-g|3H(gym1;V@f-B$XRSWPnRvm~n3iL&bDF zk|pTZvTt!GXHt#$q{HNGnGS7#zx?)xpB-K#{7)I;a&L4(lpQY;i%bXW{G4R0vZg0{ zd2Z#HCUy$eLkbhAt6cNvT5psvk0d7ijN%^qEU@tHjHnaKpyI05&Bt*xg3Q5gcWr&r zC15*qj4N-Xu$4t~8D%`Xg&0kJ7sgH~}JO>ou zA$81S@2E`ojFVPgea^*BuKf!(3HFXzTyNv5+=8~IxS9UnDR#glu34Cy?LHlMDEmIi zlVT&BkZ!Z}Ku22K4v(P^WvhXF84oYd%Vit|sjv)CQJkRxv+_Ow#tj^08JoLFGW|SB z5+)5leT^SrQ13YpKMOx|?jSM4Dt%|br%<+EO(tO1Nc%^vU9XGpTH+Z6`0yOln%PNQ zMJ}~pD*jiEdAEyLna)oCcN=>yX+j&Ss=GI3?%g&%y80dexvc|II5(X}KVO)*V0gjk zq!@0FBm_%8NCIEVYiVy7ox)Ry0<9<%@;C#n%r3t5u~D-?>-$StjQA(8y7+LmiZNRF zhxABHlqx$($O8x@`F4`zL3%-|c6+id{Ai8k=F6lTrPt%Pfs=*Pw1s=eR2DX#lZhl- zn&sY_m8aTLJ&|wNmnC5-*<-1F#aXD!Xe$;i3wK5Ty&gAyx82^0v7gu@YJxiJ&JT=) zIgFHu|5~BH68bzW{l!&Oo^Safcrs7%k5rW@I(XuZgp({(-k7Bhf{#Od zYnvD`9W+^AZXKeAiH00F-mp2gA|c$lSjToo?YA7&7D#Tve%PK`5NhPs?xaAxXU=yJ zEWVwRM?^M^wpiCaI##sDfZsg84P!Xf-1rS#d))NDDCg8uJ&8cEyvLblc2yrbfS|S? zS=q6Yp@#r9g9XG6s!+9Gg>c-)XUR2)a&Puj$hqYS`W?t7Jp;0^Z!G9itb7F|HB)Q9 zY{h7yNWO~gG!l;*YU5zvNh*XQKX$wR&oZZx3MUFmw{Ky0{T|*kYbLWDLkB~^8&7}7 zIxW5$DbVfNmE?OQ(R@CqhL%FyBlZ<{)&3;2@3ivw1aOGIwEDPk9-|QcRXA;Y`#Rn4 zweWHPf>Yc?>)Udq&*$B(U%s48mPVI~;+`gdT5PTWi+O&v=J0DJh+QD+2U}D}EU6FK zgI@G6W9E!#8OghKZwaN`O2?A1q9Mw8UD6@O-eHo_wAEF8)9)Xbe4Qk#>SWp8Vy~)q zz3Swm2QgBYgmHjb0iwKUnM{RT^KWpA_rj`f3vm=vEY@&?fxp$jke!(uK(46EVoGc zTnnI7S9XxLznIidd7X~unjliI95bOl-z*6 zj3c;J*z}R!5jfX>)Af((H(OppZ=;*736R+N^YkC8TstV5X6Biol09B+IG`m|Z|wa) zQa9m)_OO*sav4 zuw2%U3Ih-39lPFh-p4EYvMnT!X~?&RC@%z(Jz=2<)fEYO(1Ng2qXEQ4y132a>YSRk zdsG^^B2@8GXQtcObuTcQCgbKiQiQ71L8&x&I#_4yH@i4-Q+;)&oxMJvZ6JC|iDgwa zF>d(ji;%Bq^`x7Dq66e;kxXurn$J@9X$;FDCGQW%Ut0+oX@v9PIn1i@i4 z3Wzh@G$trbx4r2p=Ah3=C*)qsvvnppS~)+EBobdQt=-)1rr*DoRB}h;X~gR#O0Ef{ zZ4f2M0BcNFFgW|*RMig~aAJ*~b6omtd-CxpcF{XiX8(1Q;-;}<9nRvhZ(Rqx!L)w_ z^qwqR?}ET+IGgn0Zo>0{NvCAw+@eI=cerPWuNGj8ajborFkG!kbuSul)`);!?z9L4 z&CHqAn*m)exI1BPrDi}gK(+79`1Q!T1EViczEuIxvsEQII6=+R6yP`}-}UsN)n~ki zE)0W9?#7Zo7#IF)67Y@b_^ZAbwlF!FYBaILURBZ*jVBh1+~Id+i_vS;D>++C4e2Zy zRLGV%m>u$Rh=F7UNA60^YYL0ve?0|YDnv~E<{MH zlQQi@>05%&28N(bi3tIEE@S6DuAtJErG+rW(i1y7nAK$@BvSHJO{lnK_8`nW`UtCO z+IKJJ9n#L~*C&a(0n|(8Kow)UgOXeZSM@KaG$trEimLucaK65Eylpev9LUbFphIzF z^G1bSu6#G%C)LF5Q<=REf^!*1X3)y0fN-$L7B>Z3_*f8CzwSm6!?GS<_~l_v+%DO0 zScETtXy%H*_*a=BL-3$4d=yP>}E~ zUv1gF&=IqLvbYlz5qy0mU>RUSt);)ryxg60(}I~TWkRpOt?PJ^DtM1sahLsEJYP}d z{Qz;eZ^NGO;t?+pC$oU&a)q~FmHx+roJ;0jGBWIC*RV%2V)?xROkYbdoxk1)7Ym4& zT44cg@EOC!wFVWtzc~pX@Y1m-?6)JVk;8oU<&OGyDCsqTDZ>qCzk^yoM0vmve)J!m zwUKM~nr%`ZgFMN6_TU$2x`>A609kpgM`U;?SrIrM`%bwhZQ`W#$ly*-hQ~<3Q0^0{ z0+y=^uY#d18Mhf$8@})9uYW(z!*7C2BP=HV+cy&)cGNLJLzHkSl}#>e6WxW9*mqzK z;9oVuaifBO7mjJ%3S~AGmJRxHHkaRe1c4V;=)=^ty9}Y~pah?dDu%Y{UtjIaQgYl4 zfx*}Z)vKiR#aA}}BeGupJxp~cT_wBZ&361$5#})4E*_~uT|9oipJ!q4Z%Iq4YT1(F z>+Xx8kqxPyF@TRCE!I9&ft@OzzIPAb#=G)L>Xr!>q0#Re(s7Jzz7%2~4hj}ojE|Nv z3RfPN!KGF!XRMal`i$PCm(cO*`!6A`&m4mVq&_sC(RBhiT-=L$(9e0zLDlAIX zF-#bJ3M&-G^(GXskCnk(N7G4zVRJCvs zOPoAh`Aex*Cqaf&d&0(*Wr{<-VRegoW&qtIOfcXJ_na0p!-AK&186e8(ltKkiD1-h#gcC7*ja3p9G$dteyRJX^6Ao;5(SaU)klPO;`Z|+4W`|H zLEVEv%MtAk6T+WQJZgC+?xooU530t71;R)<2HJpzmvC) zxeiF@qGTO#(;otA(KF(h!#P5z-&1K`@b~ z`%=HTe*iior;IYt7S|Moi;r|x!?P~IcwtIOIz=(U2G+(NFo_gs!5LTaaLkhNs7)r# zh0rC)Uiq@V)EQKCA@4wPWEs+lPvW_q(YdM?h7{dnwQO4_j``z!>q0h+7N!Cq_3 ziCOPIr?J_j+?)j8jO7N7L51wcpyFNwf>{=;0|Xrcd$%tK9(9e{KV~Hm=HM>B)>fZk zk~sKP<$28X)YI^RUcbWo1hTsO~5QF1kk^SK=s} z#G}Ww(7P0*Rnygc*6#5``rLC+;P_(4H9MU!xVUNJfd}Wh3*zn3bo29uH*l?6EztGU z<#g|v_xZv_itTf7MU=(eQa@m1Ht=_^)$nvZ$G@iSg&VPJhy2FD0SWtyMVKKx;tiZc zFEb-b^Z6?*wf$`E>B?@L`k^UO_eCjhzUmmYPn5dE$y@AgM@LVFilvWlQ;$r0%51Ie z;>W=oPA|HJJ6a{5Ow zoeJANN4CBb%cbYx;~T;;(f@LD)PMW|da%JQEww3OT>6*W$pY%A) z!M7}n+wCJ%?vladdL>X`G`GpfD)uaeV*plR5?bx3x}EWNQC#nM)N42{vDWG zr#uT`QCpa2sonzK3jLTZCko1D7QSPZoFouu{1Uv8JC&GQ*N$b<82J1A;Cj|vFf<7$uh}(+$ zHs92Akdg6$R<;%VgMJT!mjdUP>mnB>#_2)yJUkNb;+XpE1>$`HeIxI3G>!eJ(en6G zgBAH-@-m5dGMi3<+QGMaGt&g!K=1NQv5X9EHLf;!)sx+i>mrF_*ZyZ6a@ZS2qY1CM zzS_f9Euz_6#Cz3;o058wHzWUD8tM0)-;@S*?;QF z@B}XjMy?*J5tpOi8VR{Z$LT&1XTDk;cb@;dP3Dy`aV`E3Xt+)$r2Mebu?OPz zdkNTnU6~c|ku}<*c^nBh%)C2l46AlEzS=hIY8&E^Tch)leH>f~`%M>Ek0l$$c*GU9alh<8XPWg@y8uxuCnC-qJpE zP{EvsVMBRM`rzWr*vmLCNz3?VYS#$4vGte3)!ab$`RSjC9whPuh(+~XVD+hq^>8|Y zjnc-v&875~!Ef-MITr~vV+RfZ+0ev2Iy}%}=qlIKwq|VBAavX3>^0}x1Xv8bZVp~G zZ}wYwxDJp5Sx89^h^G7hbKLXXTVQRBY%OFvG&c-+7&))A7(A~t7ja1=e{3+hMe@3M zAK*7j`nECcDnIWYKh|J5tYciHnCpOxrrL_=9VwHO6ep&64{vCl3K*u6m9I&hjUcUj zPqf=K@-a8mnyTqX`0Zoq5joGTt$Xb|iOrqnH+z8wK|@ou(fQFMC>nyo+8SkBwGV2K z-8{73rsroYOgZ&!g+ICk-lKUvclrPZ@Z2DYP+?_qoeaV-oBB++JT8-I$53kjcM1`KsM@p z1eoLdB~-^cW{n?*2$jzH{uor9dxfUcCP4KTMWjMV#|inh$HuLJ50l-SgvCFnKHv$b z_%yIdo87cDgzA%-`!9shw@=*GX}@Nsq~%4@OVfCl!5U~i@_D zB4iLtTcbTy+P|yzDfAvEhfEFh5c1$oX+yCT$hDMbi={KeNzIHpn+K}v;-n(D=jt38eIX>chbo51rrQC;#)@dwO}0CD7cr= zV3>Z$xcD^K#dFc(kcS%w8T@}T5(rxC%ZHJ<*O7aD6B1X z+xG}`JNS5bON(2bmQrSDC(i=I!TmXc>*gli$SrZzhmmecj4V(9+_dDb1kJNc0_jIx+?wV4``7k?sBML)El7 z%)pLHQ*q8leEZC8Y)^hT?!>FCd{)~|>CzAToPKQ$En5vopTa6x@yn;LVCnSFYGrIA zacom48d*_Ik9MPf zr9w&t_sgaQqgJVCT1y3srhqU)LV{u^ghW%+ohiduDCmVx!R*txcByEm-dV>K_&N^^ z9DND}8?|84C|g&|Iq{cJ-J#^m?sPg*PJFbaqT%4bL!~uYX1?8l#n<5)BzLxSQ$c)~ z0#WrP%aalKtXijG#!KC?oet|D0Zm2b}h5hDb!NP2o(yKqO6s4CgVN{R0@4@IQ{LIsDT zFl&Xm*P&ZKbnG(}-@p3|W<7B=hR{-xVw4I_N7O8Z+WH+k+i_TU)fw53k&Kd#t&mKo zC|D$z#r&+hT}|>ssf%ap;wakjW9nQT65;bTbO)}T!?-Svj)Jl4^|y1-sIRa*<>0u( zlFR?aJ~UKwb@6O{T3TFvv@{*AKkz$#UW21)2TnaYrL+z`YiTK11W8lC;V4~BTemo> z+@>hosjVIPu8}={?Q%z+uP?7;SPd;}+QUu^8tN;2C$7~fxjtA390#<9pp7oAO`&LX zRqa~F8e;j1(Qh%SM*j;ZJcz7$-@rqUTD3@%SM5gqidrZMTV7lUuR9oJ^kUEG(I5Ma zJsUGVd<8!nrQ&~7Dh_NGONAKTegua;`rSII7M7-h!J-m4I65_31CM@MAa}9SZJDO- zT9uAMsg{;LjCT<`r%V-M%Qp2E0C*B215;Ds>5rqKrLU89&Yick__Al4a za;ti5y7x4yBtL#_s(QBNY=viQ;^?ag3y*%1a~oAXHdC8IVQZopk5URmBv~9Z9btn! z=_q>TZ&-=a?6v4T_yE&xY<>qM5tK@WrZn9B5FOVJ)g{G9&g_Z3kC9UGvQMdyr9w(Y z(_1QnXpQNu{iLZGUZ93sHV%MHd=~L%f!&5 z&(a;4B{a;c1DWqSS9TajO|H*Q?$m=y#W_?eUh=b49OPIkG$*IhSXNW{RMY{e?PpsJ zwADac4YbujTMg9Iz>cl8t9h*LWJhYiDiL}{=lW=-OrdYf=_6qj3tASc>6NZemG5YO zJI4|(Z7em)gf&T3m6uYf=x!_(jC4b#;u=n!d}a9lflu< z1(~*|chrN!AKRtL*z9y{Qz)95=qlbS5%#ES)m8LdrWK)r3V|#Xy0;@q3}aIjEf>k% z`k>3;5y)S)2umhChVs%Pdg$654h;I`|6J|eCO#8`vq<4&r(HCy^G7E4yXFI7N9&=9 zA>X0mY+YKIw~3z*f9C~0Cp|wJ?$C={GP55oExwI?{f_2uY`IOI&kx7lnO{|Jh9+v4 zKAg8-m!>6~Y_$?+`%krI4hK$O8zUgwZ5QjhH^{3_a5+8Gk5f_?O@x2~C=PwSD{`r{~h!=QC;%1153Hc9B% zR8t8&DX-nG-qw-L7HG%1badL76sQIuHFR|DH8*Z;3Pl4nXs*j5s1eR=q#CtXk?H*z zWV`Q`kXFO?B@crI?G^?=sIXPjvU+p-f{)7*>yA~^Yk z+0(wl%%#~3LMElqu{v3LYg=A?|WMx#q&B={Jc6>_dhZg%d+rR~2OA<8OY#x?D!UB@Swa!j=Cn&*S<>UcvG$j-t>I zvM==A3tdv8;H@Mr^|T~gfF`Rf<+=N` z!Kf}~NO;{0cse?5X^-JoGOePBmgH=}3$MP4&*rXoqVU#G)R2s_gKd}!#ozvZ6AtXs zj*17{r6H%KxcM1yUs7~6m8|g5)p=`i$JKY?-`~su?Sc)bjt67JJ_8UN#%Fwt9k^Kf z9xKi22`rMET3!RLr7=Q3C;)$dS(I*lQ4ClF}Hy*KI5lGbg=_qG~r{MqY}b z^Z}^m$`5Z?h*3D4chq)T>gZb{nb9lZbCu=exksKg%0yD{fjD+R2IkF}f}b{o;pC(C zL3P$LOqens!99lIs?oiS+0jMIMId*wwe_ba%l#-A#Wa7#Ox%3`OITjw!GQ-IjBasW zeDL8EMD*x|!-sa`{sz4;~87rX_gi`{fw2?{ExCb>Z{LQ?RBY z0vDWi2r?tN=ZZ%7gkGP3PKFMmV?OS?=RVy2&i8(O#UCMe1%=_XOUrz;6L!tl540&1 zf2{vzzv6E-5OG7I;*sYH!NPg7s8Kp2T;(wxj$s}#dpT%&Kpd5c*!0fWxO6^#n)Iqs zCL#{J2*DWx;PF;)v>ajLPT0;$$C|R59W&hg0jV`?Iv`0qW4&z+AGPr3w?@;4(kIi_aBuTlcvTUa9nXG&+olEqk7;>Ga8PsCe~ z+<+94TQFtA=|2sY0C8BbD~2#QF<%~zj`VM*n<;rjm}{;;F)_i=~d+vi@u1K-TY z31?o6!+Nzhem{~U)_NMC>}tT0xFnX8Kc)C##scnx6po87y#`O-d@OP%J&kwgyn-_> zz5-XD&9eykP)MC+gXQU`uJDzugSA9_SExmM8A$4$jEBgyeiY5p}hw(|LzoQrg5r) z@}oJ*q(d)4^6B>>X6&s9KjLo)IqXIRkG=t(L$5>7sO#Vva|=8JkLQNsUIa5dcMg3f zX3}S(h<-+42V97dj)M@&f_6IcdBMv@*%;=#?Adx zvQ{rPaYc?Cc?eS41#{lE1lqnV$i=0>8}rchup@B&*j`xp#dv(Zm{UK&+NPMQq`m?; zi4NKgv78FU^wqhD&m4*8Zn+d=PdN(1yC$P5p#x4l=5U;M&84{Vh(0Lbw$9(K-0Ucm zdX~5aHio{+C#-t{zlz_y^l{m+Vkx!|^^?y&8+ToI4vszc5Om};R_8u_aLh@^U_~g6kSesu$MrND+QxKA1a_Y@1xmQ$#*@ZbkTzgzFW*FRD^_E{M-;p5hk5r6` zA}>xo|9tG9QH@8(e}$E~<-Es%8=2Oz1_x@xBz~eJam-rzJF;m&I_~swxc9nqaqMx2 zpbPQuOv~u8CmfGEZ@UZ!bPmB6(`I7jmO|s8%14_uwJ8+MTD`S}+s;Erb@GZ{sp$=! zhsCEMEU6Ph6EhInE(0M6={3h7n(I7q9pH{kFr&qdtCnKM#FtQ1#pgy`gitCIVeFv8 zBO(wH5m}>91k+j5d55F8=skuJo13G2D7!cs3JZ%yM=CuP;Vu-@`H9V3!$G(RjD%I1M08?11EZW3IfF$!H5meAZJ;m~ z!l6;L(f(q%?`a%P0}<%ZtI@uk~I)0;%={A z@~>ulTtx*a$SLKbGdDt#(s6itG_ZODHsuvlsdU<=dD0?Q8_yr7b4>0 z;4PeoN8kDso3l3H+pnf!Jv$zP3%6hI33)8Oahg(e29>53EoP(zA}O~e2KyrHNRC7fpt zqTqFrmaetSuzWLxGo5ea+#!f%{_-{JQ9&z|N4Nz#ezv9v=bpf?X7o<_rF86KXp>)F zKtA+vZ5V&Dvz`Cbdde2|JG5|y$Fwu#TfUJaTlEr#oQ7*{tp()K$UMqP&S9We`&b}1 z8^5i}A-{U4*GD7Vn~!%tcoVZ0uEmO(+*4ki5x zYUrqT>Bgct8<1O4&CMoB$7s>fh2@)wC*`cuESnG0Hie=EnuRn%5!D_I)AP4FeN9h< zg@q#`G7?eI(TI+TL2PU+V)S8$98E=D>+`2I-uRN?Xe+>fKr zyc!ohG699mKkR_M^a0_LL^c>>YHw~Jce#AhRE?V<)7y3Eg8s1~`0lesShq1BuEbPM z3mlBfvfuF6>uDy;WJmydN7&kmM0pEW35&rk)x0F{Nq{m07A0jRP92N>q zS-5DCKt&J+j2J)#A`dfu{*@7htC7-U0FLXIiuvDvfm1KK4#!=6FFwyJNBTbf(J7gh z3OQw(=L4B*{pm={HYMiwa~2>suY&S63cUxm!@}v4apP0(;HycWkd9v)`WZSBEzz<$ z+y|IGdjUX))KR03#I>XQF$P7YnHEs1*3-=k<*wEMp%Z{r6$nf2gh%ha z5x>l<1WFCD~s{OyVEe8R^#Nbpj9ONiK&iXN!N5Pg+NM#^6Dt1 zqN1D%h1ZSBN-^_nz&7TsYs{%rnjbk= zd*IPyaiGXq#*qSP7M9o%|Gw)sj2$~0>+&m+*{Lgr_31>@DiuZ6j!-R)$Ax>Jdm9V0 z%FutnAY6R$*%;D3%Ft1GnfhrasM{2ZW~x~KVx=I6S*0Wx?U^@q&7SM1=?|+&=%|lT zC}?pgqqZH_h2}do3N~&}XfzdyP~$JrSY<-x*#_eeTXUT2T_&kv>YV$PXpUNpEI*KH zE{X0rYzTVp$F&erq1gc|?6z5I=zI3h&=FZYO}z>a`nH&B!jntTxLy|fj~-)IwQvYe zWrNq)IjgfZ`GhO$C{R-kzmRs(2}$Ual1dz@6iVr(aPG4IL3m-n5Ns|iMsQdJ;^QJ6 zaxC=#06+jqL_t(ZONB7jw7Wqvpz*WyZs{mm?9TjZ>FMPtKACB#T{hn{#E_8&C{MO5tNUl$(E zxI|J4rD!!X9orO&I>c&@pJD(BEqm0tl!*F{dcUsgBZa~$9eUQ|X2(oLLe>mTZOAIo z7|VppvP{?<_|+}b;#FN)hDA$OqQn)6zTMIgLgyz37MfH!%9U4jL2eG6rm~URu_HPu zB(>bhnOYLwy6`vlH>=gGyeZAygas=%AU3r$RPu|D66 z-n}{_g3Cr(5oW1k;Hnc2ADX&QM=LFe!q+H<6wY!Ct1c;_avO$Zt}YUe#!k*N;Up>= ze)s+6Az;&_h&v18G)2crP{$ifl5bmEAZctjYD*Wq8&4#lg?_Gf65rd_e4bp?5` zZskg>;);&0T{4gqD@zNpAX?g?*{e+%C7+h9Mir;@`evpe*r$wWsxFX|_*KbR8Vnts z{=&37`Jr*#5*{6k@K`AjyvjT+MMu4{Eww-mh@f>pdabTWY4HC@VbI5{0P!gfTD>91 z%}C$J`b^lE6aHmebac(>z+1L~nD)r{1+LO;+(;jakvEUWCa!*P8CPmCxZvTw4>1u~ zGV?nearRZXY2vSpLlIGL=%M^?{>uTKn-Zb-D-KoJ)G&VH z&SCkYdARrS@%V7T2Ci};exe~iEz5a3SCe}RzZ!aQ1yb(H1^C~SFJt1*OX)`7Q*K#x zqLo?tTv3V{U%Z3=JpCrt6fp9xZ}1c7{A#FA*+PQ^K%a>BAASgjoplR7T12Hjl!5l7 zPw>9>5%L6uz+I7pt1h_)huk(E>$oaH@{(TxFMBK<^VTfFqffnp_h&4m&ywSlCtbs# zBikhvrk}rl4-Y*32Dbz#Gy^z2+njW4Qz#4*MZ#Yh@c*rIt5i6vLBh;5 zht6f0(9u7?X%IeC{NK_1*f~rpCBR`=9i6vUWgeo(+yoQClsKKx(5ClJc)z;h-)s*{v{ms_~WVk)iNhjc*Ui3LVjTZtrYB$g`XO} zz5*;690e0$lYI4ZJ)x^S4^Q0j2(EkLQ{-~WhJYI!jAE#K;bF*I@+)rPijV&=4uy*j z#Ij`6loen&5~~{69GV(*4V1eRzgj#UatdeiB6t4X{QEDs_TNw9g>UC_j zYMCx}zB9h&ijR9A#Ei9hMgf+2U3C?R$)TZOBaW7~WL^)gpan&RV2i80Ztn9padC&o zU`RqGmvwJIF{cMK7wMD|XjnS@DySS>B~ya2W#vL#@vkTF)EBc*?a_{^j_h>gC+Wx~ zq(6T*8Q0(Q5T>nQz&QprYi>HWDHJWpJ0i4Yikb%O#{~Aiy=RYhd8wV^&{5X{Lz!?Y z(7;-^F4;OY0CG%ob#L-FolPU6=~&8!T(z;78P%qpI;tmk09;}ttrtG+HcDKn0RADd z4z%lGSY(8GHm}f8I)p1P{2_bmUXVC7WN-v4e>zi8Zp4RiWXJd@v{y)O84H9I3n@j6 z_>S(K+M_pPQ&eW-istb`^b}sJ%4d`W2 zG9OLXxr343bC8iQIYlI{o+GQ)&->+s-j`CcPDpiM$+#sz(&jE&xTSP}@P&G9t9R*2S zYT+8N1XbhKxsFP8&;7yD6o`_2#+IR@J=c9(hW|BPZ{FmO11&C^+90DVWUo;3GALIN z;dgPVtAm9U4R*d|d6@Ja!@{z0bV!Xg17B_ZEr-59Yt*Vg?Wiey1e@yD1aC6I$()gm zN27WERy0C>nJRY^&yv-@SK=L87JT$8+r_O2U$U&Na)g zYI$x3%PYytHBRJZaS* zni07+g~G5;>wH;8u}7;c_&1QckSVXtZ;v*Qe%mtawU#-mqovuDyV_N3UXGXE{TQo? zLl9h^i^a4gV&h```_bo+5W?AZUyJo{)V_Ju61*_+8)K5}**As0L%hjGAshnHQX#lB zKkMN($BXCA#7m#fqz82*a+b|A?R4I>DY%P)bgJZ8uC_}_931S$ywAVEgkM*{%cZ1U z+eMq`lO$CQ9b1M*jd_csFd5)EQq3zYWLRzbfG}LKLj2O}5;@$DC6ep)>Cb0`lLTAY zx)u1(%agEWKg7@Ei1DmEtaY|CoiOR}>PH8?q`0Q)U$*DlceNqrFMW0@&;#g)0 zsATXXM53eO66NI=A}EsWld(0_3@f>EWy_XaxEc7+ID`A>xb}xxc=^q*3@$06Bip2- z9IC#W2g^2vB7j)OUm@^syt-arviWt-o;Q@YzUQ0znpZ-plKVNl@g}}nURqoH=B0S> zaXNt2lRTW$J#6fe_{ZUWO$-OYFKpF+)sJ;Og|yTq0%aOEL!syYz6=jN#;xQ1-aU8v z_t2-l6xOZ-&cFH^3}c5|ZFc<=%~)RnmDJHvnG15l(mPBvE*RhMGEEZ?hU z;Oxt8K)A=Jc(6V+!p+;X9>1*INZ*MF9KBy>vwFbtV<0Mqw#s*ReibcchzMe5Is2QB zapgl3=pY=1(i}!wWBU5Nw{i50Z_R2l)4?#WhpQu2&RvMr?0h2z9)y7%s34m7FdE+m zT#K}%blPQz3v+&$f_q+{U2|P0liqn9leW5If4I=8TX#Hk;ZaD7pcPIE2PIEy%1{fL z|FMRSksJ0SVO1#u@AVyl z0U1f8qZBH(-DafZ9;i@A7_!pqv<(q05E#h{V*jH*bNQcJn02)0{`Xt%T=hw+%um&c}WKdKN1q`{AE|9fO2W#-NZ&O@@|vu8a-1L#NIdwclXG(-F*! z5TsDlB~HsBvduRME?J0CT8RPs9)M@>sz$aa8o5iq!)?z`!Qhdjalz=l;40$?(BeU> zix)xPKN(jJ@4_W{+$NbN86MWL&Rbgl=bpl^ta}lP^HPbN zPcK=y0;?GQ-c8G)(w5v@EGjQ$2P97lhh8!vhPF$_zMOl%;>t_Vqg@2!#wbn$EdT-B zF4>rfK`@Tvmg`mN3lN_cj`v@D4Ij?if-}xJ3y1WMMroXT497YTuirxy= zrg#)S{7hY_f&wH7EQgM6B+&V?V$EtSC9bZDd_%V_oSyoPD|0A;Yw1Wq8Htf zMoFOX3E_SSr=5ES7w$(RYqA@+y)YI1_u31WU2-PC)f}3y-3m`F@@GdYYMQyu#=WwI zbNM=2?pElIPQyKS-;HY-ea};|5f`3*J!U2i$D0pdh}3W@hD1j+5-BS<|B=X`R~f93x@YjK>ff#1=!(m^Q|t)5{bnXggQBqhr-?Z7=2vjo$*1FA=N!RV z0mg(8Ej0(vj;Pujgv>6Ph>PZG9V*XOnFs{gSYLy1_>i!3fYPbYAY9jP7~_U>s_x4# z@zF0O7=8R$oO56r+a;9-<7dFUHYv7>FX&UC*$XX*{&eg(WM91Y+9N3TL}25bPjT!G z&tt!1Pr`i{9)qBAO=bDh(SwXm9gz?dYPK~n?NM}=%vHl}hP2x&6g7>&XxLOLG-7my z$y-;aX;40gI$tMV^X%3+TjZA^KHp@I4ZU=G_ZxbyX|Ma7+*F5T=_+!gm8ZbK>5nyJRy6Rkft5XKRZ$u74MHL3G6j1v@vSOi zqvp}f=@KWKbY}1hXgqx#t?0z%q3K<_Al)d2E0DtN%Dr5vGO%ASB-K?6g&du}s!KT9 z_0dvzw`Tj%`x{Ps2EW!=V#%v6Ml$WuyEo%A#2_haj?wGmlatVY5T_c8@(sU|c&svg z*x}GBQLPa@J79B#{2i$6(qC?9uaa_pg2IE4uYroU3`K08Rg^!K#T90Ci$5O1&S|FP zZ)y8X{`Z|Lt@~X=NBOCRhNBz9g=-+QF=v7HGeb?v^lWYiRS7I9T(+((pVn4HYoA%A zPC}N7p+bc-B)Tjs(VT-#ONc}Xm8D7|BAt9I{|M2YAEm&<>yPznX&~XdyYg$zswCp5 zL6n?@r2s1~Lq=jWV!5)Rl8&17D!`@#B0X&fq%!#2)*SuEdTos>HMA6b95^Zvt*g|F z!!EuE&vXBo{kw7n8Lenq<>J7n-;x4J^Hb?4z|iFFBEn@5bGJhei(KE%yPk`-p^j9Q&E zw4l^Xqz&F1DZ}~ck%>@lsO6aWSRNyamF8w6d;V->&6g;J>sc(UdP%T z0eNP4gFX?FsaL20O)Q9-V;@3cQv=l@zppX$>;`u)m8aNjWp9x0>AWLY^IcP3RTeEUC zb;I3^j;!)MfnOaN!Wa!)jg!LFM&+Bc@cYs%n#~Otn?`B*@z2PwrseqBq|U30iYdFj z*tl^s3K*@ouEL<-vfKo*L++Rq$G9@A2h(hAEtnDm?#uQCZif9&NsmRvmTat8mc?0S z(UFP5)nZ`jn3kH1C_28g67+BST_Gs}!fU*ol?EmDm|QPd^`hk3N7KQ<1^A_ITqjbCL7g z5{92$jv}tzb$LP&p3(vFo#=$rwI`DL_eJus1JRD#z9zr(3Vwa_J@D1k?&U*kJPQ3@ z*7T=VL9k4tHwaI!=0U0082=C38|$9$+&TheJ24#m8^w-8&=OBL%7mf|YU%6mv!~XR=dLq*WGRpriN#Gu8O%#jP02k{oSu2*Ih;J8y>TE@36_2>0r8H$qn3`rC|$M8 z(DC7qf85RJC~+epy9e+qI}*dMj5V?J$8T}lgHPhKx$DWVT&J@e@T>US3|OcnXi2cg zU4hB3yoQ@z{t(Nvomd+l4qB_(Cgpn&%<$FR@B-*|2)=*jI`oL+ejgI?OtwRIeg)FE zqYy}UP@lAX)->Gy&{Ozm)@q|rY)wb*2}MLII3RfR*~f9_UR{iHCTpqLnIGp{8Vfhe>diRwge%O64><+ zTF=m|=gH`e{#V?H9)mkG6PNe>^fi`F`WWkeUVyTEYOcOWYARt1W??O@AMS)SBo5gJ zosK#Norm;9mvMhZWLhF-J^2cE#pHcarzkYm_i` zxU!rWLCEt!>X;~-#j;d@s_^EMkK=FSzvW{1P^892ATMtVN<`0uI4XFB$javwK};%o zCPqlw8M+4&E)A2LN*?*jO{+usmX)~b#=9|TNjAbGqY%yY@Ef<}aU>XuWNv`AC7ae6 z7SyeKUnDSmwWO9<*R6^YzXoXXr{h~sJ%L+Z-5u#jUfl!v^_rXR+3omM%}ADHDNSzn zA-_-l5a-?T4A$~`TwFXi11rL2S`x$Pm>SC*2Ut4#j zj1i_B!O`TD!g;+Bx7~`)!~4NiRieIyx&$32Jz?l@@`c#%_G{2CBZH9#8PUv;z5zkZ z;2zaMG3aycZAO`>D$2%^mmkEGyY9#GZ)ValiH@19T#vQ^ula-_i0kg%B{W%oIT5q& zycsjbe}v-VDx@588uq&2L<)cT05tGUGGJ3AJ5sV`$y{Zw@j`J<7G^$nB^9DCs9-pw z-+zpsGks+s%fJ^^z7v_ESDsDNt7hGw>@zta^G5xu}qgSL0 zQR$s<)?t0AJv-Ze2X=$DwM!_a0MTD!!@_x(Ol2aq%TT=i%Cq=&!hbM?ygmAib1-k} z1iXCdF-BB%8$Jg6c21(g%jplXQUEIx!g9}`uvs2;HB`7FhM6b;L*yq;UG5GA`5JGLs9hHV&SN;vdFFpm)^g5~FNN~&A z&BnUWaL36SQ+U#!=AtlbHRj!SJAQugJ(SbyHzX>`$Z#`lAg1yAD5w&HzMDMm;yf&S z{y|KAcs%m6)**Z88Y*`zw~2{iaj?pOwNChJkh*7>oT1N(v)5zh<5ywrtj`%Ni7Qle zkNn~Pod2`U%R1XAU2sw9DbCx3A2}lENQVB`xKT(-O+pfB;N>SJF%~^X9f4afJRF4! zrsL5sxl1J@P&)WJql9g|ApmaqlsMwKVZ~x&ff#qjX*g=+03>laUIObNE}l#D+NI)@ zE6>N7!{YGiJFnu$mDzOK)UJOL3jvZe*=o ziUM|9C!KOKjz4S=hMdb^jNH*zGo@Bl zC^X0H4v#*X>;MR0>NDBT1CgW zSx;Ppbw7PV=GUB`qEC{m_@sf~2cvyYLvS?rb=IU=+#y$qc3tAADH99Er_g*Y3QAGN z^C||xI^yt=$Rroe_-Q$+IfWx%1I>drAImot=FT*e{97tzy<$p?h#{TIOk_b(M3F${ z7*-Y29w!|&ie{z_n7fK*Rx?#aiZua0nHM+X*X~b8r}B1xJogNKH3KY>RN_Zll1D~z zN6`>EhnJv?76`@HsL;-vY?mqh_rbUUaacER1=i;>evJI&_*`qt&TThmNgUBqhE6Uz z;CTYKVXwAwhwzutC#{sh%Bo_Lal#RlJEfa2cV!L*jusa<1JG^1W9RR-szTwCX^Iu% z_EaJN=g;utEjMAt>tAvsA{SB*9F4Af_29He5thC32&UY2H`Xm!VRkk&Oyl1f`{PfJ zkk5hJQ;ky2AxR_ETTDPJF_a;O)A`ms#%BbFmXXT&QF|?DYoj2}g_m*uTjqNO2H90c z)ARn;1pT(xkve6$*WN+W>Kk-r9z!FAy%?5wyLFq zv~f|o<3G7Rp2x&SzH93e>6$X=<>s zU*rdkhR9QCncd7o8;Uo=!zhEoAuJO3;iGx@bzK3km1FIud?N(1^XcKM`q2{&@vtc^ z0KWDJIy!V{pfM`3Vm3|C(jVs#$FQgi1`?TQ;zl7nf}XP}^*{%PC` zBYz#03+~8SQX*$?(<&uI1EBFW1cH@2UZiGpg?hJ*lshiQrO=wOP)0YM@%elXTyiOQ zDkygf9J#|moUe;$sNg2K-l|TS#=PXCosbL$WpgX(wVUW57*ZRA$Jfb=m#Vq@o~Kin;!^+xx#yBtju$Xm6@TyNK* zGXp3M#k6;x!p~1!3;YFWKaAmX>8)(yYN*cmoRWQCiz^o-thUv4am3zxU;;jyIu$>! zJO^V2r=oYCepJ?sUkJ+ERj}3%%=zz|&L^1j#DIDm|il%Z&B&k0xPL;(c zr!xvD@X@Dp@sDwbBQd@m_8;9HpS=Gi&bc)L$9D_Cqpy5Tx-tlmkmM zeeV%;WZmr%cX4F6O9C_)J%)CK_p^CaAm-zgVd+Tj)D8Vpf-v!or*OF^7l~UI zV*JWNg!b)%)c6RtWexb$G}X%lYO1AUTylFP1Xts;FXv(HSw|y1HUaw|(gPFT`VJTV z;{lx5I||RdHkooK4E-_^oc>j)`TD%(z_3*n3TyIJ?D&{|BhdTebCB7qqcBG9ZwpWv zo{V-KQ!()RJCV?T0_MLl0eNflIkMFpw1{6n;cKp|UzLKv(9c1=x?|Ag)idn0gqy|BzPBZgf=8nScSsbDKW!XV#4e=6Q#qrOda?hg!*R`sDfrLSMY!XC ziw!t&3H@-%m_dx^;A~zaMKka%6{=fuDyO32(tF@F0VsX~_7vqDu z_h9B1A7aiIPOa}V=42e)J;mUuX9HVssTJ-Cblg+$-2M4gtxWPxmQXNk_~3&M!#Ojy zAT5T|l7%IR$moST&pRIH{`W1s{L*-*QF>zW*P{7 zcfs}N9E};9+jBc4PT2&<;FNPN!25Ili7DTFieJBRpdUKwM2w;jiR7yst(#Nsw5mcO z%2yQ^B6{?h*#D~Y5gkcCg{o4lnLGh=o_-DG3B54rvP-yxvpX`5I0FgYdt=5w|A{Or z6+wQ>KDSA9BlTH{j0F(Ko!8QD{0Ab^Uczq^Kj!Xp3ZLxeD${aA4m}iuFFGIT-O`Z% z-Awjq>Mf{|@UW}NDnIJvwbZj_bq0S|k-#N1y;YYNqT`_9ghx{tjxyl?UK4+vib6~x zJEYQL?xvTHy^lQ)KTdoBv!9fu!i5e)#}H;t*_bJima|k?{H)Ss6d3~V<%*gS$DD$F zkKhCn>7@|ALGkIh`{93~`)eQIv-vBKz){1v!w<*7y_4xo%Sa8XZ_>=@g8mf{0Oxh_ zG$66Qy&t+*9~9G!{1)e%0=|q$h(ubsTsg-hUzrPrUvC7H3zGUx$%j4-061b=sfQUPqCr zl|Phy3|yGdbugZJWT5d`@^C;?#dr*dUvw!ZFo5CHpZ4p5C4y<$A|BEtPa|P>~(_>VJ4V@*F zv{i5iPEFl??>-I^!jmC@wKPpirAhVC*}2my-!*jP+XY$;j$Bx2;(G?q9%!+?10z>QI_Z`5?ziPvLD3jGruGeSgbzx9q_Zr{3L z31;1P8w$=j8$Cwui=_R=V!zamSo!M~bUykJgi*$q=d8w}@h@QM$5R+zz;Wi>X4#Fr z=`XZ&u8*t~l@!2LWN59@a8rX)h-z{Fwi|A(hN;bd;!@JF&#~v?#}8zwxW@QYNU88r zQBf=L@8s>dKZ77c@$4?pcyLO`}zpbuyQ$k#RGNhxC1I$Y%pv8%!3S(JOCS|J? zhR&7N|2CkCJ_ZzhlNLU(%&Ht+@xiTwR}ESF2r!vCkx!2BS3ycVx6eBlTK8LU8Mp-( z8{pQkIWP<2n(M-YIMyUSXPlRPbTs_Nn>G1sGPdqXP5t}8FtickOl+B^j}h$V3XgwY zekDDLlVt24&G@zSG>9AIsaSCT zte)^lgqXg=WeW7HtNqNHI-NQ zgzBr={*|Mq%8d&#|G#%&{q(UI^4ANH*kurUchLi0 zU**`T4hbqVp$f6)v^syb2psSnw;gV7zONEq*86UokxzF5SwC?u9 z#>hRB0}*x%zIUpeZIxU1J&pZs@MC9L&9LbIxcvz%ET+E)->C*o)J>}Qy}Zc@0!GgC zV(8Il;IgG(t!`d}!8Rzr3%3Ak{lu zck^}Fzf+=_77%Xr){AbmLJ}S2z2fC^v~_FNkuDO>4i%hx^~0-s`c#vD;}Q}X9n{&A zMb`oeKU<}OODnf_cYZZYsR3J29@b{((HhDQ$&hnf?b5ktrd?^-O-oKTd(SBPq!fRL z8*EJmz>#n%jCN3@8xtOT5wFc!Y{L7C#zqhn(Psr zq+V#IXs z%2gK8bi52fRqi@u&HIgf!4Yhf2YK^;q@!dQJA8JMs^ms-w=y}IrJ#687%w|v)2Z9) zWanO-wUSGSvW@B5F}*vCWwY$cQ4DQ`t6_8&R>gM;2JK^^V}nfJz>94;x~+}Q;<@@G zv){h>`Lov;a`q)8^*azDVG-uN%45s7aOhf-CE>?JApH{VOYb94ZF{ zL#k%t^&Nz&p6qOi;@85>>oESKZ|cdgjZ2}NPD3b8{R{V)p)`SA)^ubaQj;tl)s{(1(eaVzxR=MUF1z_&9zM!>>7^Fjxet1t zb~e(7_C-{Dl=1Q}TmCIRy8L!jx|7iB>dO%yT7ZR*JdQ1SSUKJ&=CP0INV$zeV(~=!aild;x3ctS~}fD<*1NTMfB( z>O>7uFxZczaupkMrA+_kx&x!wS--cHY@?PUq9lvT`bBfFWagKM>D(WkkGg^aGnnQ+ z#|g)ldi*P7yJ<|g?rcVrUofAmf);+pPYI+waibMWuG9>cH5#JxA2j?7pOcO0cv zilaks(I!0g^4plYcq5KI{Q}&3_P%r~5?x6x5i9_cEJ$8XOLZ7KTuKkxSF+7*40DWYX& z=5NcV=D`5^+Ee&dJ)>wB#Fz{U>_?&*Crqsr+e8`4ki&?NiR3bEn!`ySH_hoKc?HOk zB`z)reY^ETg7urxeaR&;ZXhMXp+`dv2C1>!%ALL0(M#axxzM@JB|>9E8XJekQuaaA51>+dx9kz#`&^jtp)SM7hd2 zIO5F31YEtiDUVaC^izwAjbz*j(|Z^?mgW_bjx>KW7ErG)ebA1+B({AwXS-}=3k8K0 zl?iWH8v0!IH}veEu9`y$gB*p%#3Oszl!W1vp7{kCks{d z_LAuYO6aZF8v}2>6P>#ynI{Ss&%m5Vp2Yf9#prUzh3J36p@{7>9Q)qh9rGXlHx^C) zi9Lc7_hNgm*pd4prcogHkd6|}I_kPVq5aS6mTwtD*F7|6tzWVLGd>!R>WBn%J>l;N z%jnDK<634KYJ`9-+rFo6dAs`Cz$&2>6oGwDJ_b|`q~$Oo=1RPL+r!8{a9><=!D)2r zqyLLW6H4r;M)d1~)35s{KK|r;96#<@bWMw5XG_H-;JR7|WFt(eI7K99;N;W0nW-gk zsc+6_#klJ6k8${@qj2^GhXeUVWLtKzq$!RYg}xD?IRDYNFmdu%xb(;&;3_uFe~7gM zDj7NwKW}6*9(wC(+`%b1@t3P`J;sgw3x0^*8=t&zBf7=8jbf;20~Bw@{~mrE|DE^~ zGW#BkYsL=YGHpk23%LM8(bV^z!mq|}LJIJpgYf+agSd#Q3ZdM*ZpF0sxT@|cj5_lI zJagr7+{36?x&}hRL$G%4EZlPazwvo-C5}B~91iMcmpO})0Z2`@F^xe`UX9EV`yulX z_6uCCgQQ^OemD^?g(cza3(vr4M#Mx3`x6ZksYsnNYHvh`{R{t|FdJ`7UyhMOyU@bQ z!JXu=;gZ1la_Crww0`^JtGD~J?Nu5&uKDpJ9P-ykFzl4G@Z7a0Bb2n(Kqi>M12@c{ zgWGPpACqz`anvcNU}UcjtQQS1n-?z)ELtsTi`i-}fs7q-B)U?#OE1#^G>YcvPD-} zHkLmAZ+!poQ^?6;jEjhN$Q<6EbF4D$Hc#zKpgBqbsqfSJ^}9-5@;)ccKOE)2$&Xbg zbo5XYU%zYtW`6t%D#PNCeAIOaO6i7jF2$AgLLcR`&lo}4s7l+hOwN*4Hbg2FRUF|| zY{^HZKDh;;B@r=^Vcbil80DLDxie=T%5(Ef6w^-oABv~090zaiLOe3*XRf2B5+cba zn0E|>7RjypGqmHTb(OjK#6x)IBB!vJ@An{zN>ml2?v>`~ULMMFxXUPSjk)=9+<44j z%=`QUe7Sf7orF1mZ_o@ZEFJu$+AIJhj?|`ZbFFbl14hSm7ga7#t=58u9BVIMgfTX5mh2%8b zro!A;=CJ*lcA1BKSv)-<2zFI*l^=IGmh55MEX&>uZ*&^&y5%Yy6_x4N)MvDXPA-nhDmR6Dd$_rUb5b-tu?x$ z`gAgkU5*yQD1CZaKF=4`(HZ7>Ay$4`0QU zJMY7~-#1f}r=}{2-#q$+;ZxHw8RF9Mjg6sT^9IbG{0`=R@gC-Wsm}!G^97Im%=zkl z%;hI<<2qw%R=kS!OXg$dN3WnPBnHu=E{8k0n^`Gh8-?=@$NHiAYIL3LU`ukAWAP#4 zp=lMFPI^}IQ%y6uMz|z0@`?)0sI`Lo>QpdFa0TgE zy14-D#~g+$&Krs1wZG&0B^%8=ygDL7(*WXE1Bz)w4wuO{NpXdOI3?$Chae?|7SDpU z_~OTf3>p}PaE{z1e?qw(gPVPiCp;RRIz+;?G7Fovmj~ObT4Z3gN;OASeqB12anBCX zk=s^q04X1r$~tsR9W@eHaP!5|4Xg0|Z&}7K#wn`#Fl^l^4>Gma8;sE4aKjs$=Pl** zMi|1P+0pZgV<6xeN9}Ub6x&qMJZCgEF_LO$dx?2mA>pW6yA-qU{67@0S;N63-2mCB zD$J5Mc7hC)5X?W^c3N8`Ou-^FFO zh2xrYN1_u)58QA&t)kpb82`q5czJ$4+-U=m5XtFn z^1Ja$Gj$a>s9L;qG#^olgX*}X6eLAf;l1}h!I`56WBQ zO}}CN8m>(aqf$en8Njytk{!!X!x)A^INf*X#RwaA5{lW$mTM%z&e%*>NC0TsB7{El zYv#Z;{doj&wZJA>CO#gIa#|+B54r@wX+021b6psBZZ)G~Dqm6{^s(>SF$i}px85n2 zK5un6PB`-%d@*YwUY_y=PWo{w(vuUo6fFj8R&79jK>>=m?marK6aG4G7+f6vY8Y=D z&8|Vw{7*|nSJRs1iSLM8Znz9Hulx_*c>O7SIO%mHXQUy)U4&I@^SSRCr$z`)ul-KP z=zbkI1;@Ee(N--zfRikUUIra=MJ3}DhAe*Wx)*W9^|#`e(~rZbex2yh7lxdi94ue5 z5D&cYKDMw;_8Q(DL7Ms!Z>tRlIF73RJ%wLM4O*ADB8<~ie;M5q|NQtHt~x5hU(Onh zUYV(gbd_S`#$3$!?mImB;Z(|<6b$Opj(c3lib|0zng%ex8qnC8ik{W9pmp4L4DP?+ zJ6!t2_xQh?{}2C(k3%N$EToT~+T`YZO;x&a>G`A3EhU_THuAdoK?Mac-%3eWnDCfx z{c$m;8gHF24dX7mm2^A|eK~~{#oe|yaZ}5mrcT4t?|(}RQ#%aknq>MC}vFLR2=}1c=!HZWTo2vq}Y*eEP zAL)7APEuA1a4${M9gjO3T@M=0P{FAPG8LPRX*XPp+;3N+(|PBk)8MYy@cwxG{^KJ0 zQ_yl^-m{(Zci^@IH`&P#~h4{&pH`L_f2C*TVVv3fmd)F z=mYmlaI#7%yecqk)Nz>fWIUecl-&o@7h==ORoFznlOT@o(jCWh50fj;9*gt{dXv*U z>C{nRW9Z<=Q5*L~IPmCG@X*o~xcT{S@%W>U<8hM3!xaEkbcVBOuaQUK)>DR>=@JLO zz^9>LcVK1P*aP_0On(H&;_{ns!h)=O@WHH^xbaqQHNe)UX#maiD!GEa*Lx)w_puMol29bn+#!8qg86LI0# zgAhvVu35^>TjGa6PJ&O<{?+anTyov@n7{sCc;|bR+(RB;ZiT}Nc> zI|5-FW?=b@U-=HPrmuzVB8OQ;!VzBTh%^V!aLwxcJ!J?JlAPaDAhhZ#I_>$KDyw;+ zik|l6oU<<@6D^-R6^Kr9l!-Jc6G4dJbWNl_R4QblP?;**DlG!tVZxRfF?T9K3)qa1u<8r z3_N5M9veCgH?8Nk$h0;|Kxv6=Ok6xN(%Mmo(W%x?nW%lfS;5@t!VUkcZE%%Ubw~m( zzW#O$-g^pOm^1~;H!)BWc~q-FLTM2@VB|>d<#8ZVV>vbHbDB0h$F~Qzc-ELfZJcd= zH|JN;Lt_m2z@&EUi`Sof03W{l5k8pqE3#!3rMwHFya`Lmz)43OhU53|gAlI5Go2Hk z)c~+@LU*TGt_dDgXG<{It7-*dbx;hBIpbW6I_xN{;i$coeg~p<2&dVTk`mFbT`UK2 z^b_(KqyG#%Yv@QEWTi;z&=W5|c^^)F{}a4FWgfDG3#~4}q+@7O2b_5LXq+&jFC#%y z=F$;L&o(C=TUVj*X_G-Am00)YW0*B4JgSP2pS=#NKYjH?FDui|D zz|j{y_Sx|@_BGoAMFPv;I$-eP1G=WpKa2{Jt_AVDf}?aZ-N9!Bi$({PLE$K*&@L`5 zLP$mzgpIfm!KvL5My8Q65fv3>6bhAN6cmoqCe zk8aAsMo~p&!ob@Sz%}7Jgr`*sG(AvNRLV%Nk?7bxX6v^|TCt&PqQh*)#Jl#ntuqGJ zFEiyq8o3n^&TO6(jJ*yW!_Q%)83mUVLrz4wVmY(Km)mUIB%eQ7E&R(>tq!JPF ziRjVJ=VM^Omwe^ai0Cg%vC^M`XAK>FFw2K4I3@|lU3fl@J4cSx&L(Gd=}6bS7NKK{ zD->H3%-6Xv2vd-^0vo@08(U^gMrcAigmVd#+f~V>cbmA}Foz!IxyD zvf`^bXC0oJg2;9p>Hj_pa~^&IYgQ*A^K2vHsj*ROQ^zN-SvIJUM9v%1gWtuF&`qIH z_;)-`qjrcZD}w#4=?SfVP{%JtLf3V!coLP24q8r2L`X_k#2j`dJPDn+dVou4X_1g+ zA|fKfC?(c9;Y2lb>bAajI|6h&^|s5mozB)2Lq$efv8)w!Q%z&$eTh4zmVwWC*RFos z`gH^~c~efcS}R*8Sv)Ph{~S27T~JXnFjFBkG^FK4xO&(So$aNFvlK?*DOV8lU5Aclj~!l9YEB$mR-q6+4yAoU%IWkdg>{1w z-DoW+$VE|Z4vKzXEZj{pdwQ5HD}BFJMkA9NgGN!o9y%=YJ%y`QpkQ4ILb(>(OeIlZ zYNA_>%S|PM&CE0?XQQgdzh_(ESO!oYOH4B&_u-*)Sr&{%f=Yy7wu(hXc?im>@Kki@ zijc84A~?M-T#U;RN}mc@B&1NtZ$iq5%CO3W-ece8|K4rE+0^&^-!Hmv^}DHG){5oT z;^pv5?eBVk+5z6J=jm3sB)U1TRr9q9gY9I@9cIu7&uMFaj_IoUDsn5j5udGo*Z07m z@LDZSl8g1zQ+f0eJ^Ag(>_0QEjiF`Ji24?*rLE{lDp`fWzg_y%(a@6h(A=qI6$*9U z`sYduH_d8VMZuq2H(dHb%30Ds)l?Gqw6A2a5?h(}=%2UlIhzJ6yBZ}Wn^8o?BBsv( zr1Ve4(qHmTRw*0aa&AV(z2!6Z8$eaog_3pajmNK-OGizEs$1v|{wy4$8w|Dv0*j6Z+pW92Vd&OZ14SsOT4M=Ir|?02pZS+EIl{kmh& zb+;mT;tU2Ll5xn3@J<6UVAKfo+J6vVQ-w_nSAbz3;ED8s&_LOZy{v|5J9HiGxt^C2 zpi!Tay{B`lQ0Q5wVbg-cyk2fFC3CYZ5_XDXdzK0R_o?i*)K&v+HPBWAZ8gwV15I56 zEv!(mW90}tG?SZg4IR2uxa5EPI+o8_Pc4LxOW)XD(sT+f4W5EknE%pqNVw@rB=pz^ z`&_>dJ8fA*-kL%pvB_{R&IIok4#M1=niK3$_P(U-!3i>6$u!B`F!2 z0`X7UaEqDDJ-b3g$2QA^e=W70x79#f4YbujTMe{E4YaI6L5qZk!I$zTPr!`LztJ&V zdp{H+dide!IlM2*SIx!z_rHOc#?EK5002M$NklHVy&y5|grZcveOef8CPyf%}bpS|JB<*izb51O~gasC4$yt&F6$KQ`Ip@6;T-<3tro|h6~tsA<>e#{O0W9zZc+w=9udJNQKpdJJD z7^ufUO<Uk^ z2}OB6lQ`|ziPD|fj8e&^g>de^p!uS@2V+~GZJ&-R`~G&?yGNO^ii4IxbWI;A82YH# zbLNNtx2@Bjt3TFbpdJJD7^ufUJqBtL1GTGAa3It`=jOm3!SC{m2&stW>Vjt8K9p%6 zKl28JGLeh&cW|WSR>Q4W^71o?Y4aasweOG2o|%~Y^>TzpGk}gW9`A!6|3GXm(qAFK zilKL#J=TnJRkU$EiZ-m<^Q;DGIY5T7UA)f>>bzQg_KCn(IkoB?wpax~N0q>9R&mfV zPU)@3TH|5J~FdJNQKpdJJD7^npd)UHB7fHZ`fK~n>#wrg^^p{#&0)H%2| z9MB)pU;l(cW(IXLW1NbDllTgEA%7e5aI{Q7L`E~}8jBeyiNRO=gRi;K{^1r&sS(DB zle-}J3iH0eL6?dtOuynGmvA^w6=k0eL>r2gGpw<-%3EoO_(hA|`ZiT!lv#{&pQ;^i*1oXVE z6f4Glhh1yvc*$WuG_@&OA2$?P-J4QJpcP~5Rv!109E|n*N{SHLstY7>VpB4&194mgIQAXp;0z*gfS7EE@A8)7f%s>t6TO?2kZ(w?fap(RPBs^Y(t- zW53(`>~pnov~AKcun67zoT}4y2Da_@d=JE}g<193^Mc-RlKFG^DHRr`BZZFY+fG<% zKMhGYhi5rR`M+EGTHNUO;Zkgy1Lr=JM!w8d7@G@2ie`ZJQk4c6zQluTbZlQ>XSXMe%eXjMee} z+Nr}o$e8wX>4^#1pagF8YY``^m~ip>qUAcCbR2&DNYMEpFGmI){e6YB5PcNP&Wt#U z8Y!kVnW;ZM=Zf!7FELL?kG@aTeHIV4mtX+21d4Z868G({Z814owkahlPh^ffI@()HMSLw>580wno(L>U+kafyX z#6-D}yLc+*jQrNIPMDYc`V}>OMvPzwVB2A;dS~E$b-_HgO{T54N?%04S3)dqfi_XMNQw)zPmP+BS92C%x zI5{~Ht zh+#HlLr2o`@Zwp&46)oN#aFy2w)8WX;`5lIeyQ_^5wH3|Fz~QfQogvbX3-)n*;$V6 zUD_f&j+0Kx8aH!!Wbeo^VE`H=FlwUY&tXMNOGg4J!f|J$gsY{Y@Ze%XNE7v0sSWCw zj&-Y02pbx-nad-@TY^oa-$eGLFAzgNiOAF>4oviCU_z{-O&iR%&NAjm2xCg|{W64@ zg}X<5`Pta;`G<@_!5td~xd`oiEHW=T1LbR$V#UbUvAZ~$+b+dioSC>Ik-c^&`u_Q1 zL}#=@Ok4!Emr`+Is_DHbr}oxTvBJw9f9tjX?fP#$SDoh#Jrs1SC4ZDa zI0i8;;+6w&-j+4^YVHQ~IJ!HIY8cG{*om(Z3~fJfJScjpoO&a%@~1Cw_PrnC=KCJU zKdwyY)@KiQ3zg$v_uhvwyJ9fr?Wd5z46@QcR1Oz7j|@7J9+Ela%ku5(aP9T?V#~4T zVd+zULXwXWX=CHD_`^4G@)JMe(PtjRWqs2)A*nFFSceN89j=pX_*Gd{AFpXv9M0vEaOSxPV-l_K*eH__ z(Zj?yUd}}#;&_cowIV1$BBR{cKITo#`Qis=Zfk_LC-r5r91ezNnqB2v>Q4q>!05|V z;)-{!$34%E!2eB{hYF@|6{5XP^}Wr}tN?DEeN0;)I+zKY-Yp|kMr zO&gJ4>_vP^3WXWNp^N7{C746Scg5ChO@a&$8V)5diXQ_%0`@ogw+=CJWYEzdpOcsn zlosV-QC<k(JcN8nVaz3vookn2Gih8{MvagX($XrBhJokmkYxLLwFV+`U_=;J zPWc-DeED7cuq2y#yVd__sR${?Bac3Y3m^Covb~&Fa$vUb?WfY9yTn!-%ZjoVFWIpJ z72z&qC2`WiM336FSCX?0E0%4>);xwAFq;5OudIaC!W_Kxbm)SJaIBs&0S~37&rXX4bmaDOvhzd`oyhRIB_)<1;;>H70#rYnP(^<99s}`Vlag*Q+7~cX@}Gf8CWxG z6PG-gcG)N&^wpq+q+s(7DmGq(GtIV(&Y~_4nXisjF2PX=4}snHdsXn)`Z<~4h;t8P zgcR_2URE07BPgH?IHPA{DrjYLxx(ONMsYf{+GsnmZEsM*W*bNDbK1x04cFIQt|-LC zL>p&cLBzSBlV61bTxAcG&Ua0Ubj~h+SXgxonsP+YQP}p&2bYoox)2}FNe5%kFtWcH zgu^JjU9NBw>qa8LmO%R1bC!;Lppv%sTHPMSSNu?xmTSq^6^|B~O-wEzqX2U$IgiVb z5tM;Sh)6M0Sq`Uu>4(yQDrfyD`q#zA%9);uK4rQ5C!!);2q$k_pAieFrKfXr`k|qx zgE@O!9UmRJBT|+ZQ;vqjp;@a8!d78qj*qdL3aA8!iH;;xTG)1TDZ%4b+k4H3vTSX)$A|fpVP0zmuN1uH>^$#~nx9u?+qQq-qq)Nm zo4I|@3xeRA(^*{F%Rl_4*e+wrL^X~&!7oMw~aLrviJ?Thv|FPK^@ zfA95}| zkbcxHNNUv`-EQfOHrYFA9bt!}V2Mmgbn?i1cVX4IALy7xtA#d~)bhwCxKu>=!0*a3 zDh*s98&hULN7wxZAO3UtU8_ZHnOy# zin-j8j}q#=ue~`EDYT}Q697JCxK!)e$|-Zw@WIGRiKSo&LO+rtf{x@k!Abl_rZ>gu zy_(^vpMJzef6B&Xrw>MYLNpf6UdNkC@ZGpE@GXx=VF{P+_>5Rm1CLyQj_TA0r}S

sK~IK-P7X6s)Ds&iY{)_(iIkuQ~P$rbCZ_iuDfr?@?TCzrxuM-u;CZvkY3*T zQ}N0xxs*Nfp)iCr^zyP_h9|Yag+qEEF^Ur(EfWP5EyZ^Z9UC;sL=5RR>f;a4yG=a$ zwV*42YY!bu=^ju{Uzk#@)ColXvviDPL}*##YMPF9s!%v=%2@!lW$KXF_T?v7`Sp(o ziAx{{5Gz#_`9?^iHkjezzZMZgbd9(uUE;t*F+h$UUXlObMxd@)Zd=$`m zaOJ4CnS5-elU`lViTP@=7-r}Dtb*WGXQ9Jm_VQUM+_nap$6v(R2HWM=NCTA)`%Eo1 z*Stzhs@*uD4V&RoI%7_G>nHr_mOC-BPY)z}5MZBR9ul)N7eET*Xr7CDO^5fMl zMT3H@*Wior_se@4hcSb3(XF-t+3)+<8u2NuW{GWj;Hf{Ig&RkV!HjXA@e}x99`679 zMbnCapzx* z>uH64ZQM+}_{s=ft}HvJjm35RR9PAiz<~bUkQgI{!nq@Opkzz@bZptRFNQUH4u%>jwhgL@8Jw}AV*e*`xTPgDiii->!^*RVNT-E=Z(M>H{FcYrIGk-(p>!T z(=^i=j8{DyvS8jUEFea$-mJET62UYQ0a+(ffDsP%2A34Zpes^&RVchXAvoo>TaY#A zSbRBg4mL2-YfQKYAALR^%XfQl)wx5F7Qz31;G_#1n%aX;hXuYZT7-Kd8!) zK}ScJ%D2Z?R*n|k24ei18TjhEDVVu_2cqZ~v+<`1c$d49x}J0rhO|lnN@Zc=1N>-~ zS4aoIUdJEBC0PdMBd^w!a6UBVAn$1)qE#?Fy)~YF@^-|&@&Ue|yBgystTk2@aWq2( zV&WuD;s}SFr3I#yvpz)P!kcJv6S5q0+o3h72A(!DQyqy4Vn}=wJp0(+arUsO_;&6J zl!eomV$&Lo_6bd126*U~|VimwddH7R%M zRH2ZNbw@^F*NzxgRc7O?9YTcW|0p@$IRp?`&!GhCGe>&P0E zbuUfp1QW4cS%{XM1?%J`Zj>uRtg;xd3Ddtn+hwJQ zOwPdLk34|u7A?b4hD(o1NWj98FXAtsEXL(`{1unHCd_@57;A-(9O#F`S= zgSF?MYdprvR{f1Uq#BP5I;x*o-lK9@R)J(L30!;*(^upZv%aL8|Lv%zb?)&?b zn6WDyuRMG!GPu)CE0ac-7r#=blyid6oz@AijRYmX3T;--=_m)q(5OTVI_(q;8ctf$ z((Rf3CB}aB1JVbahyOf044@y$uV|@2bmRkRQYNBujnL!wRvJjh3N#xy7;kj#fq4s- zVS6E$nMucoAA1fzZ1&)Vzu$tR5@`W0r+g8s5+_Dw^n{~pn{+dgscE@WrwWCHvj(B) zmd)WRD&XLmfJQ?v!+_SkQJ7a+$;8f}t1O^CtR3-hrZC@N{3s5HL=qlUOg!A>5!ay~ zI{e{MG;EQE5IQG`gZv`GRAu)2axmZZ?d$mA*$;U&+7RS`-gAIASp~v$0CrmENaiOq zYbir4;1z@GH!Tnzvp&cp7jDC1;yBZ-!0cCVH}_=pJDWIjI=d7LmAX(WDq$iQ`;-lq zs&K0=ozY5yDKQBN^FM;?lPC=8Jpd<4KTZtj{j7`Dd9!h zc}q%oByFfrgfd7{F$H%CP0R)Ks!w4Y3WaUOhgNaWAKr~+~ z`Bvnh?DWw`%g~ZOO9gCyahZ>YDhR4+Sk zT$jGcXrEz(vxIO$%eJ6lxXQA#K@0~iG5DUoT;+}Sq?n|fouWZ2biDmGG;0y-v^dtb z&tPm`KA%d(9Y&UA^gr8g)!5VN_paO4dWenR&*N6uIPYaU{ex`AQH)>*cZ?zwj@5bm)xmibjZI zuQKqEhyureXzq6gB;iR9*F0qo4n-Ee|8+WwBBGrse!55|_}K3iSuwg%7WxlhJcG0- z2G^s-pH?%9sy+Afo52<7sD5hk=D#Co4otv9?&cm`s|6Pk5wNasyLWOknI zA(5W7&pUi?3BBi@y8h<0FMy7k#1xQzqGNa=4P}~eijKKR7fs2tf}$?yShos=X4hKs zm^>Z}Lv!G!8PRmmeJJP%VER?K%dvUMR{9EQ8)8*=?(?92l3~0hT;o2fH5yQv@D^ud z)kp7O#e|vcKw1&qyJ#ncrzn@(khGUs@2I{a#;_ezBaH)>3puOjb2%fM1FEycqVxI~ z3k5AWKIS{wwR)auO+rdKnw{PqKYjc%=DdC<8|Q;86=tbKokPly&hmNtKHFi;g&O>0 z-(zq}1tF9U5^nBJY0`BN9=N?DPH2;YFvg<@qj}X7!C2`}z^4Q^FW7o&u&LEjwPQMW zafz9OktYgw-*p!)Ul9mnv^p;7sz;k`hvGpH4_ez4!x{Jpt2tjSEvep0EdGxiIy$tF zIoMZNjIJkNgl~tr81Rnao8>1#L}-hl1|x0pP+t?TihjZozx_&%R4+vir8W(id!7&B zBt^-3V7;QXUqJer*N7(zX|X?wi( z(zA$C%pqd|B^^JD>3&UBbo{1h6322@WN!cUoHVH18 zQSor-sAu<#JvB+kx>YC$w407I6)R?A@zNRlr=g#jUEEvjC=_Dw{Xb%^(o7`5AHr>@ zjNOQ`mGiLV?U5*;4a7KP{;CQN#Po`-Oej-LqQWw*eVw|fS+1a9{8TfSa3~b9Uc6gCtoZGkSiZh4zMY|@9kV-}07DK}W5=Qokx;Z*>L9kLG z@IW|rZOejW93QRwE7_5N*anDnwrSzKa@%Q z)-PLvkH7g53pZ>tRv1Z_%Me6>(Yxz#{z8KvI#pZ z9T|Hmg*k;H7)wQ|4r*%*s9S}C3~T_UFbhabEfm-J>%3^``9XsJY{dZdM^sz&~Zj*@P2 z@OFF4@cr0t@b;*2n6z*;ip(Vj`-+Ljpc7BPC1(u7;7(19;-pI!wyNY(jWqUmR%(=B zBUfo1jqu^iC;x++M|_Tzx%3g)r@ZmWN4V^df5anKor)w5KUS%rfU1OdpGSh?=U#MV z=>MO_Pr%zF$6*4)9TbSh{K((#_~QrR;xkUh&@RpBKVi28J0R2)9qUA)5JG+hkYV;; z(~H9{3GG5m`<_T?9EqLNrlH6<^^wUBL>N=^baAjQTe}3SCr(4kX?@Yt>dxEtb z8FW-%bOu>hs23l<@fsfeVGca;4RH1a!!R@}-B>G2i}Nsf^jG+B;V-!Uj;GM-{m0O! zu@c=m{WbV@2kgsLY9|Lxo(^Fihzak#i}N0Q9Xa&X3#XMhLUNELKQ9+=zwrh>`D!{| zeDZ!=I}4GXorEj35lyozmw zblRsv9Knd7YQO0C?ufVW$@pn__R+uL4<{bQi74eOFWSkbsi>O&)Ve~U&bvnukU7l{ zQRSDtA=G+bIZaooCtZT02eriFM{i;-kCn{jpw(9xYvXoO#UX%d(t3UflZoX|8;yDIe+_SFq{CbX@S6SIBA9J4!b?m~j;Ns7)Z z)fZkh%0$!deR10#&d2bqM#jla0(#PipW(5QWAM`BFQ8|S4!EjEBY0?LrTS&8EY;t# z>a5YBlbhk1H!hluj}~l3dS)-Y|KdFu(7CDME8(9+##txy!udBoh*_iG!q3+Y!?2@h zGN&_~q0evdeRa0<_tte}(2)Yx2w8?j-?a&!j+zKhXc8WN_yPRowBFoa$*HSupoR3R z(+8o`{rBO%adYt0*9-CSb^S~ql;@LhWkuQV#dpmA{3{d zJ`8`p>?~wb0oEjB*Y*u~`JGXCW!x-W|Kuy^*ZF>AGV8Kfxi)0Sq2fU8^m<5(NDn4_ z@QqO>hFo?XUcc*NG);_VzocBE%*6$#;pCo8aLL{8;K`3B;_8#SqgfRF?W8#cH7zwc zB^|kBT)c4+{{GavR3?C-!-nH8SDb~TQsd~;<-_jnoACPkAK?E!pN_x$`xW#h9XlpR z5;tPjz%lqxF~0ZnwX0D00nvV8W8Nl%EApixS$ZgV_b3{B8mVqj!9D+8kAhuAutRW7 z$krq7`LBfx#4Ua92F;K;xTkTTlLi}^+7ylWsj5V5Ys}NqerOF6=c6KPx5P9HpZ7X_sUA7jI+1oAE_MDHLJcCAJ9D zc9)^&p!4zO6SpBHnzByfjwQ2AYrNPg3#GZYVgv(x&0KpuT6S*CWjZqwRVkyLCxhd! z(wX}-Nh~YEoNP`QqZ{Mq%g#a5giw^_7F2dOH=U=CJ?~PSHS%*jw{RV{?g%+=e_ zA+;6Zlkd;}h(cjzJX9uJiH(raw>SNa3$gWwiKs|wiAK%IwEi{8y>)%%fN&v^+Lbzl zBZDdG)R7OQNLVO2*oIYD^43Ts#&Z{k%#^<>>TopE(^Qr}cQ#)`MMp2IhGLZnd(?ZB zD%nGeNIAWXt)g)-ui67YBizwa5!av*nzZSHdEb19^*@hBqn;-tEHcJfr)R~sgXlT? z{b1gAQ1|j3qIGdWE@lzeZ3hg*z}D$p8lV%4v;|6DFCB&4p@}%|#6ie>Y8-MGZDBAz zI#FqW#lw`VVJVGq?n%Az_Rp)ZdP_chT_ta&H~AUf zRvCmx)2-Mp$+=R}Q(2=Uqv;H-z*TI&LoW`=Txt$s;KJl2%6Tdu#hl!!*yqiUp#0;f zV~7hox38k}H!y6-@o1b(Oa5*;5c9l>p<`ki&KlASFHKl%=qS1Gh}W8 z--BjXT!CXQJi!3IBB~H;Lwcb9HK#jkUxK)bLcEdKicIHRw}W#Px9)w4N{EXAPTcw1 zvF_bhuuc{IR`I`E+c#xWGTMtBHGb=vgFG)rH_8By5@1^Pu;^fuo49 zpRld#7EZ^qsox;6bx*W9i-E7`^l0;dSX>1jf4lbTxZkQs?_?}1FB-4| zS13xPUO~k|`}>QF^1;A;h>s=CMOsO&YR0)O@XbVAaY{F| zNaW5HvzvpviOdjGjW+LeMguiNUB~aJ&+w*}<#k_v&x&@2T-fpd;xZ8n7=$ z#iw9ETo^u>G655QIT@#RZ(*WgiYK+S#YJ{}^TRBxB`S|;l@9hWE?M##X&Kyf6z!=L z(050C7aK%N>=E9@rN$hX!alqJ+>=vERZrC`zR> z@bXS_Rdq4ezJs~IP`kAJV%jGr*6iJ3=_&-2TH*k26b`|}Gj1*!tzR++bHp9Hja<%Gqh;F#t~cyY>?_|GRt4;_Vl}7Vk6<`(Y6WA#~xJhS(%Y*qn&*1Arz;LURsCJvpQf{>r{L?@iSa> zcPMTGG($4|wRY~@iJ3qDfCpY;S^(yJ9NxE;Q5p@7NXGzK z9;6hNeBp-^n6&0?z_f^X=flw$+P57}@79E3$B`|{p|oMr_jv2ANxUNtS&b9?@`>G6 z&j%@Vwpr3Al*QUt;zr*y2cpRrQ}N=X|3XCWPMmT~M>K7az-6o=tX#GjFT61lvvVpi zaBw^NS8&H4qx=d&v%4v1`zG5bI#7nBHEWF~)N?-=JqAOV+4+K=%{8bH6_lZj0krw2 zpGe0E{2fDilxXN^ETc6jUu#vN@Nu_BC>>ume(@0!NWd6(4wiiS4P1k-lXOMFyz%(? zt*_{IOb>Zl76iOHDx(>r`Ng-R^T3t{DGu{E9l-hi>%Vr8))jRE;aR%fZxtUM0Np?$ zzargfEzzV~TNE#yjhwaHIP>5CR@UFD>p;$1rNA83GB&V+;itvNfo-p>%P@+gK$x3^ z8~Q1%Upxo1sZ1a-0}W2O4eo@d>@Wq02#q)OsIEX|!g*h1tu^w+2xw(Wqf>e`orL|~0|u>MzX^Ht@6k-~lrt~E zH3M6lOrv&5#1Z4wi~s7aO)aF)6(<_0?YiMl!@J=jI$mCS<2^WcXm9jw+Y0e0#?rY9 z@#Xj*FnwnM+73J)eVaElN{D2r4ewvQ?W*S5C_h9KAGhKkb;2+_e)&S&G~!D<{q!?< z`u`%4)vU3}iL`FpF7x81Eqdai%T7W(LkoBqP+75M#1Fw+_Rul8br)QFYH!^0$#h(O z^Su~9q!0SFYlQ@N8J5rg1z&#s1Ew;c(oxL&bWCO=Dj{??AYe5KU#%(>QW9L@ktkg{ z3-caX!P&DHMVq#v$tl`O$OVnUT;#7<25*RyL&G5}*TO1f8rKd8{}~RF3RXpNUM1Zt z2V{E->o!mR7NbzG`zi_%)~-K#{rM8)e)}rE|M&Z>JzPV5mG3yzlY&<@%QB<&%iY^I znm|H^Lyzz|@f8q^rC(;jv4ybe*sZ>e= z6^Ov^huZ%AJulegrsgg2p#NDH;rW$0xO>!>_~_(M?+eUF1hkt zoIRkOKW~KdY$cxtC48d8kw8cGLBdJPKL?>QL^f`Tr{8!S?cV+bqo*!Fc1|91vy>sD zMWzY(bi&YKxbfT*kVx4@gPP%i;GWT1<`U1bS5e;hB9d^&-~Nj2-ly^AS99>jt4r|) zdz&PZU)-Q&?_=@seHS4;jy_rxDMoS9q()31#6`4_?N&!mc^EFb?{+lm)*jD}o{UX9 zc4AjvG5uiT(W_fiwCmgrH(Y)$dbVPEcKXMd2%3Z~xGgb$I%>il7LS|nxEb5apT(hpn%qfaYyRuZ#>w zMLy$^7ZoCx%7u$NIYPNF+M+~EuC;cTJ}%CBjk(xCs`&d?MJLUBxO_p!8#{2DT^2M? z8)n=0Ar4@k5+;r*^)g&^2osO#{Z99)iS8pD*ug~oGcv6ObBpX`RK7AgYbr^P1DHAJ zk3w>nF?rhVZD`i6J8?vxi3QUzm$3~zu}s5$+#eB^+>CQ4wV#nh6<(K19D?1z@2^ki z^xm2-rbF`GZZ025IlTCR+tL1nf%tCrFIc}h8+pZaB8^W#<3{NiFt8s6bZTydx#%W* zA07f)WDF6_)Fe{=gu?g-flXV`PISxap3+;7{DkzlA$?N|mLUv20QsBs0A^WdrGGl27@U5lvq{ zG*s8h(-uY(lA8HS{`2HNaQexUF>UE4Y|hT%#4Q93Qj?KErRvmS{n4^v%wB`gVF9OK zhNxp2`Qr}9@#mb6<4-viJJ>Jtif9Fp=`3G8t2sZp7y8IVk1?JUKN98I3YAd}x0zTQTJX6(*}p*s-T3z^q+`f)F_J zmmOGxB*m+nI}!3YFn%{}EJ}AOE(8~asD0TYeUtk#uyfLfn6o+-TNZAn!r^Qkt&;j; zD0yVNqma_450aWBVE3#aki)gIh8;R`(3QUiMLF-QEFw;65kik@WCjP1uIm=3wUxJ3 z*B8qW=15`IVBlql=yEEGm`SdbraC!WIv=%z5kkYbe|qCQVCriO#1)RsOXr$p4sTpz zL{gauZ_u1e98^rWLnWNfW1);Zs*eE#Tk+rVS_833mJ zqtZmWYrAl?oEIsaIWx34QJsX^VE(u250>*b^tNd`TdhQQYI$5zGU8I`8zdIfj8I#H znNrxoXq7ts4(4*?(2@P$DB2u^q;zu`i|#L6ii<%;Gx~cOI+823-JSd^*%7Fm2Rj`t zk69SiFTGk`jY`JQ^De|tE`uoJs+OcBU%*`v>ZjTnQ5%DhZC`aAEBlv`KkS!;#l^{M zYI-_SrOZpfaAIovtMDNbo9B2f*y$NaM;|B2h)BeVXP=J~NmHe&r^q24NyBK;(oe@g z*;AA7)w)8V&R8i%H8UVFJ^9oecQH8@nb~$!3pDTGjN6C8*^{t*1_vU>q0kb6`hS)3 zSk?xn9ggaD9D4oj9>jA(Q82GLCcQHST_1P|Nuhp|SQXq$*5ljQI@Y1O#dpjQNdueAsbZ*o?{#hp(!WOx9Ua<dTA2jcb+!1=F_+V>c^1uK;Xby|xDRbbnvbGl}q(Y3>=RMqaP&Y4l_Z~}~N zwQ$ta@h~G?mCbdOA|v0};Y3?I=?LtX>Z`hD&siR*vdUmRDY>^#+YU=O_JP6qd0=!5 zl&^ZOHsG&Yg(4704l2J5v~%r%MtKgpAyE-1STqfbKbwGz4vnzky|+9x}J_fe>&5w;rric+H|OY)G`%Qw081G6Oh+E~Cxj(sP?>NehRQ@tOpN(NMn>+X zOxSnns5a;wwZT++pDmT|tD=Md>K=Qd{up!^sHbDlk>n5>WCx`E4>FZBKZG~cKU$L* z2tGR2xkB;Z(Y*(0_TK$6I+qDt3j3Uwjg_xFjrB~AU9xEd!h4)xED|nmXDnK`k`ADZ zlR$;S=rJ@4d5iK8)%aMxLIbbfB$c9i)C#rN4(O(4|KKi#B1~&tEK)G6auKLdlyhCa zf;mOX!>D{TX@~fsw<0vDF~aGwttF0VDig9ySY<->sb0M^5Ks1ZU^~o<>;KeapdJJD z7^ufUJqD@)1BZb^agb2j!J9LGDGz1bzGobb7-yoKTZRfZZa^91>xR-H&`sYAqcc#U zaCw*~gwfNyQZ5({TM^eBkBUQADy%{wNbJCF%~3k1?^^m$ZVzk4(7-QiMLCx+${5(I zyh&?>pLQ3*(zCd(TWpkx2wEg!_E9EOkBU_$RFCRcsaGZp8tVVlW1t=b^%$tfKn-Bv ze@~$xlFR_^Uq;Yi>I;v8cl}b#xcLV7igz=|1RYfZ_K}+n<+N&)ubhE7ub0z_a|#uU z>dWO}2Xd<{*uh@(w7W56RnUDZI$A458NILFv{Ja5wPTnDE`M+d#2p#WG_~Qz0n_?S z1X?CcCH_AK7yfz!-y3*O{r7qd)MKC?1N9iF$H1Xt;D1t~5K<}!Pbn5sD!4VOV8a@k z1LOcIcV-UW&f13g?&b~?@1`YK{r)fXcIHkJdVtCyls6qJjvWPu@3U>P3WjZ`&Iei% zbYAz!Vxep1!*kpq!JstZmA)5RB9S7YPrYSASgSAf7^ufUJqGGAP*)iEpH(O-5o(t} zs8l$)Jg6klaWgO)8i#tLR0Qrek-`ypPi1|-^NUp`?Bo0XmO>$`gjFD{wIcBTFi*Hq zG-SCi#8l;gDyxKwX8q1L z`%@>)`GC`V-4l5J_kOpQ2|L)^b_E`-Vxf0Paj-@A*d-I)qign~du$zghpwyG_n9B{ zf9f$%kAZp&)MKC?12u?&BSN9rAO6fNo`W?5KG2my+d8RiXh}rp%rA4OmOp`mzP_7x z2h?oO1>Ps6LBFLW*!%5ot2o&ERh7O6-WO1Pt$o$|1KY9Ji`hOKfiduW;QfK{1l|*D z-}eWng-7=|3ujuoa@cB*UhD8!u)$^9vp@I*%>NP{4RI`CECO^C(L}?5Yoe{CuX9Uq z)6s&nKY9kjWAERK#)7%>LNI?3t@f6KYOSA)1_t%VN_tiSmv9lx<)G=PF^y8lKbCgm;b8y zft}hiweTaw!Tz@Q=ot8s^};F``^V|8UR&)aOdDCN=%&u?ba1DW>t%a&Xq^x&=1_aM z)@u*72u@oBqkwSx&xr<#xayA5wqRaRIOhsxlj8S)$L!-lc{~#7s9Nv+(j3Nn}ElI@@rsQ4~ULJh^1ofSfJ^49&a2335qOXNZm-+=&CPZ2XHR=bLIw>JDVe~-wAnO=3X(#o z^C~}tNrNr@TI^5VQ`a!44f`+tnUHQG54#z$lxtFs(jYp~sn?sIgPD_;Bb%@_ZrK9e zTQ)LzB6Pnk!3^h-K}TnhvGj1$(V3X-h8Is>hLnN^CD!GZs(AHF@D8*I=y?eU3r{I7$7 zN9|_#0OL1Dg1Q*bCuj3|%v-q*9$y5q+O|jYv}pEA!fRm+a#~i>QM@T@`mg9nnQP=L zFHt7#MMt5D@YNI@>sFy4f%VTF5y?b6%s@)Qdle~CA8wKKa+d?=24sHD&^1fvr#g$! z>h;n(5!V{cdu5r#VTg)D=HP)?H0CFU=hhC9nnL}rA<^KnM~FKedEccD-4i$n?fXpN zwO_xXcFqU}r!WUg-Y!P?bRj-57GXrCkFx{h?ZAjn#$x`)?TC)g#N`(cM^8?(# zS$_4>xn`git;iqT9aOw!8SZ-aLnL<_h`Y}jV1kahigNJ8V^82;?@dB38<5_n6P|kD z9$YjalgWyhc}j3rGe1{1oJR&7$&=z&DZZW}jC}SPOxlu+d+xXp&EvS!E6RnbZ@h~u zpMMw2wij~Cb_3ja+l_eq%AsJMWFyOcemd5kr1(9Q_V-E27>4uD*~#1w+)keu%P72r zUy9V0CG+s+yOXei3UJ%rN8_5I#~>z5TiEqJ-lGGb59Xp}IJMUm9f4oI`WVlBy%?vR zcPUQk(~Kavu$#G%Zoc~|ygzrPu{`w}d^%qL`}OFU9!vRS05vcMFO+-e$QS~Q_{=QS zVUb9TiKIv&ji^X$U9kvnzc&$Un1`nI(cN&>N&S!*p|MV4$4sMZjE;4yP$=YeK`xTc zyb66zJC^U6+zX#q^%gx^Fbw>YnQ9zgP z!ar}g9`EmHiSh5u{b#{i$T=br8s+?H*P%sNoArWHU`HW)f6-4EyQ(Cj>55B z??hu-&$X0iY4^LEP{R)%8Fci^Rw}WslHGXi-ydUQ>-?t0S?U-&da*7Y^QdbR=c5w(^Kn$NC)~(F&wpZE_Li& zzZy$6Y(+{m1LQ@}WKK9Ijr#(hQ<+F>orS;s=>lZB3-O;9KfvOx#WbsP5Th^*dVUou z$g@5z=M)!UNkJJxQZmssGlj6bP_%Uw-uiYHCjqIr@9z)bi~qYD{o_M1`n!eLyo)K$ znVFHd8CVY#tF?chgUq9F_aDzkR%9t& zd+kHa-$09$h0i~()I{6s)nsmdrE*SqKwxg;-%x2U>--G}z;R zBm9Bh_uuNNw(AnGoXr&M-ihVJUx&;z#7J4-lGaaireirL0zFSY6CJT6(EtEI07*na zRIfaKE4F@`g72?=2ID8L!kt6fvo~`##AhX-gIlSPfR>=8>?$p05HdQ&(kkPng`#ZR zT73573LrWY*PMSclAAWb@q>EcxgS2jvdua0b!upYg0kHPbvYvFC<;g+aG5By`IJeC z%Hz#J$yHK_=|4;Z*%g1h;1qOj-4xq;bmR4puzt=4TG$veUoylmBZ8Zn8i?3JD!`jI ztu_{w%w$?*Imozn?!;GLPb3b)aLx5M;~$syLc@X$xcQxFn6rKdI;1rWIo7WmTwn$Dx2=h|8cJ0E~-%cW5hTw{8ug4=-4?w182d;bd zd(2(84LzG31sB~3$g!G<+XbUfp7GI$Y1JN$diP~Q ztmXorNFa}tHdiI{|BbfnGpm(4p!uTT`NT8Q_!29K~z4DWLk69^Wg zi0ka6I(()1B)!Y=3sM!87z^evQYyeaKyma@luTs1xvZ13Y7s`y&jA|u!np%Fnzi<3 zSuJ?|XRO;sMi%e-=-(9V3b5!vpnM7e5Fd+9w7?*L8#d+9Qc<3RQD00zi6;!F_V0m& zXv!I$=V(I5#X{yw@<$~mUTSi{tq$&xXSO!5`a(z@yVvKhD@bd#w(dxBplA+ZM^CtSnCUCM{Zo^*J=T&6U+aa5c!p;9i~SfXn_!OK2m_?4vlDq(#~QY+wy$O8V)@iA+jb1|kXT^kvJC zm(vTMjUJ1YB_8xUvp3o{jH5Zggt@YZ>RvIM*+D{L zxT(b09UP{knOM8Qe%#4oXXiAb!oy#%KavJtA1l$oE4Y3$&;l> zZQlcbIkOLLA3Y5>KfpCwmS$at;G9970V++D&{#457wHjb)tDWfM}o@39;Mbi6l8yn z3_7ZBk?&|CM|?wEbIS!7bL$Iu^08+PH6oJIaQmglB7qKXlpa{Hd@WXykjJ&l;BtqT z@oFeb0<4}vM#6yRI0Dc|S(w`5DD;jA#n&HRh1^pBnhIW=XT!wr|EDzE?*?XEa9~EffvA z_eWgwcGx~|IzJ1sd({etijetD&sBjLndeH25W;8LUHu1yZJ3V5Z;wK$FUG9lM`pA` zN{e*lFP)9t9R*ZQq?ra!*;i4pzdc;1H~Xr&M5Ni2@iS0I_bWp7zF>evO_INaFFFBN z{q<^0+4wldPX5_6tzEByxaXqdDU3PLvdmt!8e8d=-7TvLNlF3Dhv_4xJ{{zR+-I}` zn!w%BxbdO85uf=HKAE}*X_@VD)72NETLUJXqv6Fx>q|^@3i|aPgtn-F$*%;}K#><~f!Zu$LF23SiTzE`dI)axWG=z?tak1#$r4xpB zqJ@nEuc4u6S(PjbD#AMa=4BwK*cKh|z}=VQk59aVG2gLYx}tE_C70pcV_Lym>LD(Q z@yqnNRPIC2GF|+tXW6IuC)m5Cmgv+@AK{E@(jKq8@GzczZ8Tm1+oP-#& zd=tX(3?8)X(-|$=cSVYv8np{XGF5aFz(H9o9m_dJw#B`7T!9UbkHA+{oWKR+Q_sHy z7Y=A+b|1N2C0IOb9?9n-9ko2-C`^K}rr@hvg+jy=@i{y2$cjJ{)W&yTz?Lu5(V$y5 zBvF%YdfW+U(5^9(+jT;la|$s3;hV7JhxG`Hr0KY-LPf*NT_ACd+n{y79`G*C$8uje zO8K4&ZwMNmeFORoYlp@Ex*l`KFJb(lLwD}1su{oMoK*^RRMAoEfl?%PET4tkbqmqv zlm!81*$+NK2mw>@T`k`&pcvMh$ zhcZ6JQJs3=-kT!Pzh6r(fylo=f{U}hpch>Z&Mp5&#x}&YxBMB`-XvvL7Bnxd7Zpyd z30E|3_{Sr-mShblEy;+6UV1i|%aKAyvlOazWzx(`C%*n?o{RpcpUK~vwXhG$$|RbS zKL-vz3sa9fjmib-$lu1XR*#a9K~7D!kNt{`^p^Q>(j`}7Z0k;#v~U$tnzY0zgL)%A zgw|ZI1gHzg4LcK2eWTGOjeZDJoCKkZleNR4hz@G1m-K1Wu^0aJ%+dTo3TgL;;u{eh zH@8qmr?$qYuRbTN@Di=1eoNEgM8^}TK#ZZk;e`3CkeJ>K!v^(25)J%2b9V259-J~gE($g7VDh^=@+}0Gu0pHKX zuCQ1{C(xltGjvkjKkn|$(G&o!yYZ^3mA6<23>R+29dvweD%{&u+~(mTZMv@^%NH(b;t!c z?xG=8!szAlMM?H{6z4MH;_m1w^?N=-Dgh z6cq}64a(+Y7|=OwxQPNpj7Kp;CaZqr+kqtTsJA;XIqk6D%{^)f+f!arggI~Ci*n*5 z^Tf*xm;!gNd)02jvp;3Y4{41ZOq)#Y>bySVXW(PU4&kiMB?nxY7iE!RQHS>w(;QBWV-D-AU?P739rw(oxqVBEq!e($JLV2{Y5xKx^nIL>(rjQZ^9I ziozneia9$MJlyROB8|d7QSlTMnn_ovUls~N^Xy>&XJx-MlQHIGQrwp^21umL5qPpn zhlfe4-~^L&)fQ7ZFdj~{{52glfuUTboC(pAj-n2e#-2ilj*63`$(rF*p06pTqHYxm zQILR^Z{LC3ZQD_iy$PjsA}P+@je@P)kiU5&iZ*USd7;cy%m&61w(9>$6Y7hS~JJs0cCfE5vXiu?dK1)QA=ku8SJYjlw}DFG`K_T{)aZ zJMj>zyZ=~52t1m15TJd}$r7XR;~s{;t>7_?+l0axB6q<%53b8;M`R9CVicox z`#U{<+q$Z|{RdK?!6Un;`A3|Fa7&Z7Fc0fV%iV<~CWd}%?&*(Xr`Tz7xj%_Y zl?Eocmub02vPmHF6ZFO3R<+nzAIkDEdE!(|oW2k%xg9urw+rW8b}_C#tt-lRY{P`_ z7a=LV1&(f;L4Dt^R0v4oDp<>}=@@DvOm8L~bMr~ZB@I()S)kW#MVT4gOLGg1ncPh+S~FQA!GDY3 zWT+4-3583RVf!!J(5h1!y4-XRny+1pl41{{8#gk1l5y5`NE$*DwUF)aEoSQ&1FGzMBCxKp^Rzrb(tpGbjt!JQTY@%0v4;L$P_)0?dE=0i!gu z9C9VS%y~CIm72N#yM0e>cMNMn)~wx456k)AkHx<~oQQdg88tJ%kh^cP@aYHtMDLdI zm^bNL{AcVeoO{`oII&$S=}%!t=z~9$v2ae3@J|T0G0*sFG_JVkIV{O>%;j2--;mmo zy8uWx;^5Oap2z*)c=6-pH_^WZH_CE-v##iKp!{%T&{187!;kcG%9p$~^KtWS4>NM> z+5j}Q!X5Wq4TdAc${F9|j5}Y)4Ntv<=g;p(KOsg>;q$@IuYNcs8z@74WqEk-lWLKR zaJ>51Blzox?~%{uOVo2U0G$U8)4CORg6zOu*WZbq{m#YQ|J;fOG*)PG8SEj(4Zr&7 zi1K`V@a88NHF+lKxCJ?RMd&i@e0=cGHArz6VeIQKVchCO-0_#QklBFwvNVw)4(wPF zz~t5PwQdy(Gl-J8OLI}Ut_+P%KMz?<%oUd$&!kIC%tM94%iRrms~2PCM;~D8qE+nt zJiotDUXp=pMD!-x zPo`win?ciBcRw1gZ$@KnP97Bs2D{>E+9?dp>J*Iqy!^Qb<9D+j7KC2m;k}(&~-2&G|-Hl&?@u49egPUJDP?G5kobGbG z`ONdU?&WdXJ&BerGLV;-k8QM4h%Z44@XBTL@zUtEIPHp|Xp*GxbcBuEY&5{(JxTBCdM=GX@0&TC`}20&e%+N~OYN!sXJ=8s-^#Y2*@| zc>W2QAahM}-)xkNh=Sbx6aeuinE3 zS}<$~Z$8H791~H&^10Mf!`U=(SM?NQrc%Rf;djMkce_Ke=%XjGX~vg`N@zevAYkUb z`-mqh3K4Nh^aUwJcw7Q{4ZjpKzkJs$f2hjL!Bi?(r#`mR3m*Gkd(OVTCXde25oZWR z*?8s2x2a5car)(dz@3*5!OyQff;-;NqdAW7Rk+c*b#r7fuE?hOTS+u_61CZn`F$`@ zlTH2|b^GbZ2%wvnF2Ka>BJ>%22}Zqe8&bV%G4eJa){~ZU=Mh}t^yT3bShqEgzq#em zY+Va-2+b1U|2iF|)3M)#a4^}u0pmZP4K(S55zjn?LEX~v>WXjKC%5q)(vi#3QL#}- z;7oS+s?8jX>3>P4-F!IM|Y{EM~o6otDq~Q3_pzd8Tp9D?RVde$FDsZ z+rJ$_W8oO%8zLF&V;-l(h8#=gP@yO&MccFplX0{r2i!wP!yY>3E}w?SUi$)N;pw>d z_CMf~<1%o|8Gpih$sEd2I*TB)b613XI1d}Mb9t^22e1AcC5#n6R?&yPKUZRL(kNy5D+7 z<^2cnWv}{GtKP?tms&DqwwcW*G-!;jgU|g<1whZ}la$_^`{j!mMKl3DsZ`7u_s$-r z;>62Muqa8ty0lbC@VGb&@a)=wpXYBv{Lv@lxjU~xvs5?cb4|}+n{aDPl|M`bgXt7( z-;Pq!ESznx9;_b#VGijQ!l;=o;mqE=)ND6A|ICw+n#5QdYv^fB_#}I!M9|RW%!>HF zGMSF0W$;?Cmm`CYq=NbuiB+7Ri)pl+4H!HK1GCcM;ZkcEx1fty@~;pbW%k!9md{5A zKhj?URHuW#IP!y@d)T^a34?RFaLJWd;{F>i0Ji+XsT<{x@F2B;yeVs`92ht4V2V32 zviMcUATMgWS+XcD!nA^2+(Fm^mkjAe=fr#zFb9Aj6vfQMP21;8M(J|W(z#+F3~D&p zPPP^FJ=?Z!IhK}qaqbnD;GZ{N2<%#pDARV{BRr63ny?x=W(Ux*25DHQ3WYkc_6jHV z?1X4Hb3Uw^f@%NwJ94(mw?R<5uxrjVY?(VB{T}`&8aC>LjE;@5VB#wJSa4wajh<}I zi!=DeMTCaN#XII@DimQ+^oyWS2#bwFL?RtC<&+s%5!)nYa~Mu@e$z7jgB z7y-rairlGXjmVfdG;P(){shIXN(s0a(G4G-wi9!+8y$|{dewOZ<6`-BHEeFc9P(e9c+tCP_Y{m|;J>cG9f zx*9l0@XE8rM>;5*p$8jx(#nFa?CYAh@{}e6R5;weQmk3A+?>m3r~qq(O=RZ3+O!-U zJQ9usItnXJKM$qza2jc|ZF@HI>C2PEgi;QDhzByOJDPEFR&T(D5}-@-G(?d8>c`b1 zB@UiC2ls>+jyy|#%-yw)ZH_>n?j30Y&!eMzndytFPgYZHyLV|{DN7_BHyutjKZE{{ z`jzCTk5-nnkO)*1bR6$!7F?G zbmUl)w`)DheUUi2tG479a@UTw$ck49ihMx?il2^A$|`Hl@KA$=Dq7tYC0FwKm{F8F zE`)@wUyjG_Eky{Aji!Y_R)PqGQ5h&+J`ZbVtuyyTWhg=&y>WkIz!fyQw1**Bu?B8_ zj>9et%8gf`Hm$102N7M-k4X3M11*ZQr9qZ{P64yGNvpwQ~AJJ|P{c5Cz)ljKu zK$>!!Xp>f*kwF9a%dftR55M_^>zO`i!A{$_!dzvT{Mn~?{NtJMMK(Z2N-X(M{3SjO zawv}oI!eq^;b*@OXQH~Htx~ak{AfJ#?w2TF`fHzw=t?UZ1LSB1?h>_<#<|?Sx)ASw>NVWZ^u)e{^tTegys@ zvK+)|kk){zcQ{2$N83lggl(Vl4q7gxu}Y9QMVQvT((w2ev;SIG_B^j&zo)1pTI+-e zZf55ka6M%FGR}mQh$qA_!hzLpl>^Ry{YphVdYy7PW{!Is3*Y@aLGUt8#TCx75Z`SF zu078k*n58OUB=0cbPHi_gyDlbyO+yXuHEz=x z1LDIl`mOhH3wP7qFr+bdvf(~Y88)t6g7@Bd9silI5+RK`A}c-7C?V>OR*nQOjD&#= z)pEFx=^6T8bso-PLdlOue~6QpuRza~5{CBo;M?(^Qfb_Q&!;U$MR+`JKl?Z|jpx#U zLIsc)f*Vdh9XaVtJE{W)rbgq-_dmcbF)_Glcnf4}{A0ZTP3xB7#Zm9zxvv((-LNg% zq^FRM9838)0j!2mt!gf)Q-#7AxXY2hVY>k`opJP=&smMN3s#W1NmwB#GyY#y># zY@~URCeJEga&RZ@JMB?VONsDMnW^9)y2t9U=WY9AYPJ9W+q(|HsH&{}%}jbF2?>xu zDAKDSpa=*e3N{2QEB4-9cU^VWwXXj5x{AH;s(=kE7DPlr!GZ!(M0zIyLVEqb@4mUo z5CKWZBu_FICU54I`|hdt+;h)8*T6tn?E%_Pi=T1Y*!KW~Il}m3q zm84?p({uK_xe$auY8Ev#Dk!YyTz3J!UUw_rdhbmPpZ*ylxy*^?70x*KGGwjWNc$RS zd(1doc35Wx7?`#huz0=-8$oE~URNnz5)YBT5RLP1zJ|e3@py*D!D0btK3-VD z7&lId9CO3~+<(;=lipY>x3tW#K4`HwU^WgqIcL&K_P9l6(D9x<6+am&9hz^VUy z439tjf0+2+BxH#vr@n)sv){w24O{t`2Y2oar6$ z#67nm;r^HK&eS=0)0xHLW@ukv4)0BC(+(rXoq;Qk>Sq$tiH_oV871!3Jymp!ZrKSp z-f#gH{PPh!GyXojHK7Uf{Lniy<3k)V_7kk$C^`aHUUVu4G7R`J%CLJ5ppio4y zH;Q>EW_*g(qeq|>cTekc(=AB-awhVa7)UeJQO(*Qeel7Ej}1rh>hG}n=T#<<&v-F} zo$5uJp|}9vR_)RIZ&xC|`t{xZR_E)%w&^e7(IN-n^k8OHWoT+U?W&bNKQ3|Vc_U-c<;bLm_GeG%wNCR1Ph0A30?*_ zEF3zpA6h0eQ5%g9857db^&wMxPgHf1H09aeGH!7_?37dSE0Fdm7uVk2470&0eJS&F1Tps zcbL6!1+qD4Q7)szCQZ<7x(Bg(nO{IK5Afzn;&lp9zwVZBT=PkTI1l)7)-eh@T#L z2;o;V#9 zRr9YCS*=c_3q1cj!IhM#m}m8{ea461e*6k^KYJSyExV!R=xg9jXwIBqOm)ru zOcWHT_o)+8`CYx{Y~B9R`y|%Vw??Sjb;FG}cEE*P3%+Jc4vIKL4-bz-a!NAVa1R&e zI5sKKtubMq7e4B?S#@5U11BLRZnX@woPiUW-Fx9|=A4j+#uVY5?n#q!n=lzVh=#ma zAGFvTpc@Mv&8jdG#EjfXoASa!#HF^xQK#>Rqr}T{aZ-*9O||C?NvkPQofnQoM?=rO zL3TYnYuYFtl-?m2{f<2v{e}#}HLKSnn~ALyK@b%ki)JmFqghjK3dTK6v{R+vlPp?( zuZO1Y#VZ^=%SIamp_~ShCoC5IjyMASj*={rc)VsV7STVdRac~~;+h=zh$UTjaoLfM z73eeaNc0&r5Lc6qn{#q2>6pg66U|c-xsOKx9SNJ^*&xB!a0Z2xDuI)=b8h=5HZw*ioO?P*esd4)!hye2Hd9WCvpKYYbiFK@!jK&zCISE3>| zg$|lLF2zi6>XyO_FeV(K2?9_7RjTP01_LYM(kLgjZCj-7XD$i=DrC;-@tRo)!Sv!1 zZu?w7b?*5po>j~J^s)`JI5m9?JEL+cVxxl1bcoaWY|qZZiY)HI!sIjY+}}e}C1L^9 z<<_##(vb+ad}e7U8rbhL`s8&g-=?5U!>MLkQcEti_t5fH>k*sU92rfSpiIVwWX#2M z6l}IwxMf6@F_D!oA_na`cSJjTgN~dsuE=Lc%z>HGQ5(aFr`-ypp&RjUraLSgR#v6^ zC~IZ8xs~!}RZZcJqWsp-ra_Xk&T@ zaV?AJ$gL`Npkt7EwZRMuJ5OZ-C&{!PW)m!4Iv;xb?Lr{3Pf*QN|K%Ax%~%V-zZ=+_f`?fdopRTK%yrPFgMu)OXF|qAMOp{MA9^9YaZbRWhk;gBIohMD3jDr9)qDBF*6T-o zWo`DnV3DDuk)MN3cFYo7Mq3wcT8p@xLbDAkniwYq$@OrpHV8*BK;QWW*$79bwh2xo6t&Cep3n%t@=gEfsTLqKDg0?mG z{Jud)M-B|$4Ks?CgtU^jx-RFiPFW4Zd-&VS6%e@#X5y^#??T4de_+ye!%)tINJb4+ z-fJFp#h*&LRcnnsZ!*#>cdKY%@J`l1E z6RCsNyXd+rV~A@E(?3V2#3OG5Gfpy>1uwu8%{9uK7h%a~-=Irxrs<}K#K-!TGr=(C z-eS4h^ObFr5+X0ew(3q}vJ_j$Oy=F!urB*2m!4kBe%}sI#Ay%*ppy*d&({O3U>2Wr9~l zs!Ka?7Oz{3>u$Oa8E4*t5eK(rN6Q!kU9&ejx4YmkX(jm761GjAFAis%O?Sv79;Ml? zUUGiuTmC z@RXpakckgBZ83|3b=}_SS5uXbG~Aaeoc|#m)kuHC4IP<#;)mJOamh{p!}zvcxzd9v z)Hx7UJ(aRv$AHzVK_OxprA!4}LC-@tS0!{j<6N}l&Xcm1OLOTK{@`_H%AAAJf(q^i zx*t;e9?Vq$!;#v)4cGM3K`}kS$tl6_;)|V?9gwAwFaxRz*Jg1wNiLFFcSDy`Pr|&3 zA0cPmR)b)9N21#wfOh@5s)Z)gnyEKPT&4EuV`2t48cG^)GQzrzKt7GBVlG20l_BK^ z&Lpx5=NjUbj7$FdDKq7<;)fZGnRts~${i3j_}G@)_O(V>gP%gZc@D;NBPIm@%qz0Uz0!G&S*&%dI8Gz=r1#gEblIx4HJkICoq znZKrt21vB7vl6Ros&n`bh;5J`)@WiIIUq4cliFcMsD1;udZP)CPeXJD_C<3a9*M1) z1`wQl)WX^z;Oye1;#qxUJmhU$i_gDbhy?a4hxBNL^~+XZ{q}rLUEAP#2VnCI`yl#9 znR1(OX=+EL=EuOfi+455X+Hp&KxV%k)i!zEW&Em`sVMd%J2QYS9hr+FMs(!u;d+ke zRf0*!dNn8nm=ia_t;l22(EYL-(Y0?I!RRk7k<`9Dy%hh#`r=G1M@7nOy_cUl2wCT^Dwu_2ublPdJXj(;7#SZxRiHwP7#xr_Qw0}r=F~TVH zCRYWG4duxw5060^(}4?jikZk-^D8P++ar4Ld5BET-~iZ%7-s&A;eHYNL)DeF<3zM!Njhn8# z9y9V8JHg;R^{rKfKV(cYD03Z0>s^?Xj{;eF*?sh6izHKovvA{bJn+QpSXGjQ%dR*b zt@4-S`KdoK&WeMM0A7@S5X|w6E&KYLMSR>EB@S;?L0buSgMXn^(og86;Zux99)Aqi zzc>{MtvX@W`~SgL&pv~jKlqN`L@!F{`K;1?mRcU30Noa7(=!6aq())MdGa zNI0l3+8oe^7IPss&HfUr7OqFrJ_FIJXFGJc^hR`uZo-aIo{T(XEt-dwpG?8(nLnU_ zQLJGc%{raq9w0|T!P~-Oz1Z-<3;4ci47wgY1o3UVn@?a36>Q78FDB!cDKlw=MAupT zgxVVD9S~#dqjT~mM9|8ND&h1C{Zty|DnEth{v<4A^j4HH7e^5-@Iszj%Q>;Ij4p_w zF%glJju;vfu{0)Pnb^b{6EY~|p|J0%5+vcj?xn`WnK0FD-imp+@XqmA%bi8PT$77I z|G5-T-TeqYX2!ukDiJ29Lsi?VzWvdY^>v*s(%d=?qwI}qz|1Kud04P=Gd$eCV?CD_ zmLw#hd&^WOcE?;7@5z|*V)LdlY{}zr$Y0zCA9+JsXrHH}LjVOdm*j54B6=KD7B5(V z9Flk2+I3jNvMG*IhzwC9dG&DH@AcF{MnMMfcT;nynYg9TE(8x&qz_GMhW8QZKKH!`U}9=GoP=8n6N zvz^JPKAj2Q{r4iH8G|xuGiJ~I0!u&q6l=JKxNtjjOUR<8LU)XbJwy&~bEa9ir$^a# z{QAuO$olRpwCKhWK9@%s+msze(dG@v{cRD}e8qIM6=4kMrZHob$sWFEHxyDQZtF6H z<-Jl)@=nO0h~h|HhE_NYffE08hddNAEEH2w$|&Rt&e`X2nkcgUL5!KW5aEf<5Jkf( zHZIN>6VVJ9i{w4lm{8p+)_~A^^-kLkbFq&87(f+~fc&dj zh#2XeIL437{c$$low=ASuRGmaq~Ej>#p8{^HD{fQsOB>e+j1ZiIi+9)&-=X5xaP)N zasH6j$Yb1#nQ|mJ@@ho;3UJ#cXX3u~^hUc@`S|HbeHoL~6sgoD>*>+WOlFF7W{~zW z#Q@1 zV*7?XL^Ml6(b`2=HFp)#5ATSrb3VjZx88@G9GV}T(+gwn2|l_<9pa9irrt*jTMu(C zF`Rl}+w7^>^6fPE;u(zTR|+NEjZRxchQ-Fv$Z)Je+Zn6f)(|i-)bNirDD;@V8zEo^ zBrk$(tG>%1Fy0Ba)fyBfT%l4zgQA472vHneBpiMP+nowJZxG}6O2{)IgF?oH3=|m? z)!S~{5O}_ZVC?dCQ#S)@Bh%X9g~x8g=f7n$Y0MxbdA7ns*RiL4U)*uSRY;2_4GhP# zD!KmS5>WEvhj?%DS16T&)^Nkc#o&(12@^6pFw@{a7$ZXCC_Wy`e&z;m6yT)TXf#bp z;*LrbD;kI@W;F}<2}t063Ff!>kUU`6&Sko~(a=$y2Myf{W;Pvt#YGrZz$8`Nmb_vk z^V1Y_nlU;7smV!b67ze0jiv!FrK#OyMMsg-oyE~J6{jihp+Cz*fD2c?eNA*J1 z^d;0OUK~2&2;6_|I2ypzef({T<~-PGO@875yfLOlYrQW5{ji?=uA*%B;wQ|Q16)8E5a#qx=SoA9ShKT$QZox zPzKiI`*8G#1CTTOeHy%895!qi9=!1!PRIFo6cr&w$Am~sdH!*{^VNJawG}u;XJ{RS zKa!1lDykZ2eSwzvIP_)(B{AaIQu~1i^_I$Hdi$e&m>BOaq}#&0NBrt5@=`9HCEof?1o;i8DjBF{qw4%It6L>t<@6qkvZXX6!b-vr z-7F1lT5~iX&w(2g8A`u;O-CReAbO~C%1XlNN%ePw;tLs?e*UQQ#@4DrOGkNhV=#F5 z;cPtVNH0@1Gh*h;15CI|NXIbgCI3Li(6N|wEMnROR#6&2M^e+!v{udegNN$XpfGJA zAqfuoSIiD1_a25r|I>@VIr%`KBh#E9%=BZ<$Ki*bW!#NUC&MX%@Nz7D_HHctYB?gP z#CKYVJu!rkY&tED*eg2%y_X*;5($Y$k@{^438VKrzxmh5BJ0pHMkSM?R&h)q`@o(b z?fV0tu;*k{SR+G5g^J+SM*^U8UXC(692IK?NEw;N#}Sk@B6QTp8WXl&9c7f*-&KMa z*owOOF02`Jvd!g25%G*7%Nd6<|CYk#i2*1)@a_G9xECd zYHu*xY8p_hKUKz#!KuT zBZJG-104Pe()3bJQ<78BnF+6&#wxap7@~pY;7fJ8r>IRt>e2N$f$JoDK5BgHkGL|xH;B*@;1L;U(M~U+^FclqBTHx3*M`F}~ zJ_utB$?xb$4{B1Ars&qSBhu(4<%5Qf!8Dla)u0fuwLHftQ(E}yq{9ht3g?Cbix?y( zy$zT(`*$TyNmdNu)$#uBvLit3c*8S0BBM_mtodjvJ7QXQjK2^QiRE@K7**$Wy_{)T zz40y4=BS?7JmYiZZsACjF#)wLmg#l0-&I$jKI$&u8X?Y!3A%jU^j2q z5yy4vB3F%3T*j1j8K{kgj)p#d>RLJ(8KDu}tWBoLNnv&&_R~=GHhf6~KPo8=haQE~&efVM+3Oxty)l3x5yF-&0UY32*2?%^_g|Fz0{&HZ6a6gUW7 zWlR!g)1d^`p?h3Vc16e3PW|!LLjxQ-D!&bNr=xZJbmTzhz#&Ir>VYHBB(aK)eufAN zWc6xLh*#BL`j}8+`{L=C`}!tkX;WHevAa`DK7IdlAX zzJmKibiC|3bnTsvw2Y>h``kpPrRT_=aR@eFf4~#=%}zULtdvpcyop?Ga^a=ud_-?- zYMX#BA9;<9r18cGUgap;L$V}m9k+1Hb~dQNUNr)jD92Cqy&Q9)Vjul z6jg;b7h)z?9}~23GK(@5j zjmtu%Clmng(9z*nqtuBXO&e5jv@b;ROCSN|custC-ABBk}0?uj(9T#`4zS&dZ7)0My^gZym3va3_Bp*sNHV zW8Umpc;~~fu(rg5GcGt2{aYrP`RPiyWn{2a{`P-2CtdqT29p#t=|o;C$=iadQ@+Og zvljwMU2)R|BajqHI#Y2IFaw2@R%PLHmS&abT=u1L(9xlx?MCF<-zC5L=~JC0!#++GO}~&_Hny)_i^A-jDna4e`>3>Z#5T`Fi{T^Cc2IvV#pH^M+>Q9uRgSM}QSe~j3=y+iG!j|5>%C^PxFCvfS* zZ*iAVMj*5FI_`KJ*qZyOD3vkqvj&lEK|{6KzJJe;G71SL-Q*R8o4K3nHF)yFU%>sO zIBB~HSDZTn$qMYNMk8DQp8?LsK}SdCLj3yY=U2&=rtQl4@h}VTh99S5#<7jcuKNy+iln5(aAqyOCdYPrU&8t(?+0K zJl83zYb6Lf3}S?zAOl#h28950=;i-L!aKzt{Xchg*pu7DObm((i!8&67avC6nziUT z?j$tJY>xd-K9?~OW3b`ppP7bx9jClGH%Kea7ng{H_MMQ@VLy{QL9fqQI2#LIcpA%R zFQyCBNkePr$9L7dJw0!UYK;dS1HY>tdyoBI{rAq!+s@h6rF$Bph-ba*Xv?>)#($rg zKx3j9haGhchI5~kK^ckkPDp+K8Af%x!ycK@D6R;s{N@`x^v*9R_BF?Orw>K9{SQD2 zr}ab!b5D?kcz3Pbn`@1Oj;3D;@#{Xoui|ydoSZ9R%qjBW>+cw2qD{}fIQfuXIApNj zJ3+>7XdPL5x%BH4rU+R3-E2Ji#$0TvNW+$KG47N48%p9rCj`;HxzyXgTN@ zym0q*Xqgtv=<9qkJPiucNgoTV+E@9Tj8c8%{&JqGMk(U^hlpHnWY=(u{xLgaE8{%Pl*kEj220&^@ewx>{f$I+!W z$l9t6t6zhuck0!kuz&^o=pc?}Dj6q&NwG@TFTnxz zffg;7{^hM%iM&-Su;GXAv2DeAZo0xGQA`}AcnsQlRh?ZB8y`q;%k1(x*zbCEAT#Xj z{=n-&Z0c^S7QSdTATll)ZMghy$z~_Qyeub&qX&9~G`Gil>^9M=%(mMcWl!lAR~PXF zo5}Ex)K)E-kdRAYIV%>%6Ghv&A(3KV6y9QNLkm#Vs3DMcZUwV(&`~4`@$0_8uaYCp zihDF*iHya5+<36OcnfpGP%w+~P{?iC!#M!ZJx=j|@f#RAXXH{x=LQ%4b^0PL!B0ug zFw;Bb;at_hl$rP*Oq>7!IHE~JK~%*#`J5gne45T7Xf!?ikkp^v*(VJOae>n@X)d4c zcNz!!l&)Kj70VVfLtYfZnc>h0cqHP>OHsnku9Tz7FeZx%lUG8-kTDU!Y&;qCQoW;* zF=1fgo9)py!d|mSd%mHMYG*lvTzx6cG49wdxOCF{_}72?neS|E%T2Ki%2QzPoK zNL*YR2OS-`3i0copI;?P;#uVsso+k)M;&`0?w|4;Zh8D!9N76Pv`u7A4FxOyPA;W; z_%Z*h^sPHZ)9RfPwCcV;26SwSSD*VI4)5I)XN_#fJU9(Y$9>kIFw7w4@+)sCab+ru zU^-HLFE7Yrx@T*{F_4oRa78lZtl5-HN?%N;=No{lBou*OiNNoH&9V3C=&B-I3&+f_ zKkmHC@$!u8@XUkvB7w_(FCWq1%)I z7~Mj5Oa;?(H%V^7^#3%d$m_w>JNvdlAsP_*hB=JlrgHRWV^rW~^%Lg*D#W?aY>QP$ZYgI@6~{SG8)!u5I%hTa&$}yca~eK9`lqN|M=+`8H3fcKET!g zc^jO`!S<{lao**BM@Cv4VWQCx2m^PG{rAK7;k15j7(+s1BZzuu-!~|#@x%@a+|O9{ zmL0Cylc8hHF+jYEp}EilIYpaL!BpWLl9SoNmN90i7|b!qBEjH&TspixYdea~y`w(+-zM?%;a+BCjQnYVih^tP}Z!#zZC>! zQUdCN0i{6MT`|ki8Lzc+<2J;nGJzvk>6FrIQOvBM20s3+)H?+nEE}(kb1s<1Qlm2{ zc1I*PU9)bfz@yqHqetfgzq`#4GVM`D!RTgqCqT`*qQr)?{RIY%R^jwDVczm6xrdJ#!=EdP>lAPO2>m?K^0BxKy5lwXzZ-r?7thF{gi2to^=Wg_vb zvcxz46Y;BQI~y+NGxExD@|9QP;4=%kV~5#4`ggSC3Cbc3f9^TdB98Y^uU5x{#fO`Y z(mNjRE7PLKA(%R;3)?JjyZ-N*j%m$O>P7E_3<@`KioY$EvF%Z(Eu#mX3q0?C)D;J( ztulJJdt-|>NR{`&Zv<5~P{J%J(0Q%;U}|c+XMpa})4IdW#lXptj!zNg9TQDZsnKRi zXDs+M_^taA93d(W6DIknsZK){S#@|*=oBl8VuEsB?Y;3%Y}3AiwN?C7=sGW&qS8N+|o&@?MAA3tSIF6x#Vu21lpuK z7pL<)hd;&(M`J?vg!70aD1yVvLoHBPuaC&}XwtTG8|*NqgwNf)3F|lKAeXTq(VXUK zm!8ZG@hJSH8|^E<@C#mHg~e#UdTsI^zpSy)(eNIzBA-MV`BgGjRe-89l7xVmdkv^z)qfmEM@Ld~L+%rTt5IB!JQ<+J1nYtspW< z^8Bz_{o;V>cFAPx1pwhJ=O|v&8rr6O)9Ovg&do7Lkg0T82 zX`Xd6lty>>=~zxWsxR;wgJ~yp+*v>25K@2Zyo3yjI!9^kE39M`zaZ;(IfY*Vj++*J zi|mEppxY_enHQLVK>GGf_D-I$La$>(7t;o{ogeMJq7AcFFI$Sa3zuX4)*QxABx2OD zgODBeNW$m=wC~3mc@Q~~tlWM1-8R_6F&BerL-@wGLzQ_Ef>yVw3 zhd!gmVZu#kAhtXg?>_%DK40AoS6?{_=?QeND)l%Ox|?BaEOb;Z8j_M7iZ0!xBjcX(w|iD`#Z{{# z#IxFHuq-bJKQCE|U&ybUxD`QK$L=_8a5qFy=M>~Ju8D?JTr4LH1RU|BRavet>S!gG zG!ncKk<5tv3m*ILJDB?ILaf-Fjcs}1xcu+`zzydPM$yV8xb>+wklOtqTyXRNFtGr^ zquvoSxImBY3fF;j^pTF``MFpy|5q&dZ5=jnFw?YsXN(%u6Vc2~QIID(hLesF4joyk z20_81WXPb{71iqDyy=Ym0-)DfMzOE9f?);^ocsLw)jOGND-rFFy4di$j14oN=C8v( zuVX_NwOblm`?YwAw&9hhpTh00O~=ah*<1-h1su^C-I)eAy?HFYdG~c(_~>L@cFP^O zFuS`EO^9?eZsJoySGkPRz!yQ8G8IYyI$^StbYwyar<8*h08 zZ-2iC8?tjDzr+Ef&%ww+`y;|rfT!=c9#8&|f{FjV9$nKSh$D^S9Ub*YZ)(WvMrRt` zL-Szka{S|OH{i+HYbb+pXqV!{hOCXq(W*1jE6h`h&t95<@4DvVgu@O(IyXHw!Hcdo z^!;=sjNY(tY+Ls$Zod67O!{^n){Blj-|OgcIPBowi1roXrTcEdBeP=g^0U{WPiCw! zfJL8R=^Y~r4aoqF@!ge7Po_3X+mD2ueK&bAqzw44jBeJSU%MNN-hPnYNvZ(#+th^i zIUTK0(V%!`JCr|$nh76IcmbC@@Fo_o&&NT-4#gpzlFjH`L2p_{nVt}VWxp=R4b;!IUi75~io33%z}B=HKw; zVdds+lx9cl%t*-1KsE|Gl1?O)mXUi3vhmb?FBoIu$iJM4$^Uxd7YiN=YehM@&7m&v## zJcx=yWI_xUESZXho3|T&6^`65lWeM_QZXMfK1_dQqA@1g?0*nmc^Gt#byHMAEa^B63pQ;v9#LY(@xatYQ+85E$e`E>Qi63#9lq`KZO0#|i~K44LZ8GG!8l% z3URa-hO%uNG2^>ci0gd>9=qXU3^||!5}CT+@S^lMg)J;1oEr$1BX`3F6qDvgj$KT{ zs-`*os%e1r^XA~$84Hn`*&mah8;_UnxClKZj_Qcj5s|0UGTU%Q&RLe|bh5;guDQHO zdoW^&%SH<^YxV*TQkvqQ*I$h@M<0ZiDTyYGNxD&>Xfb!BcIG7Aw{Ur>qm$hZrvstr zxM|^!c>eRBketyQuRir3ynN@SI3Sw&e-xZ1uBE4?X=ZC4%CU;eOEtn#e0(tVPRO9B zM*$JTI!r5u7G+6e9o4bu8X3SI&3bXgNN_Z(Nq|xf`FU@*fg{nXV=v5`bRUh1M~u;7 z1Vlbtf6;II9(%4nk5W8>rFeTbW^K&He#4K&RVNHZQUqZsH5^UeCJxwS4}*z(VHGIM z-O9N>1{V?5KSvQgXe@BVw=H`)TOEl({d+M$lPTP(oYWbs$W^S-odUyDBDtkI&sJVH zCtdodanMo77d<@O>md(w>2(;`zXviC!kLagpPoR;m3Y-j#->7sw1VyR zFg9y$aUQ~2G{=xG87R))W-`|j0|o-grF3LL5szL5yVExYkYBs3l-wGth(L`T6DWDL&2t1 z>|B|tO}(syLQKPB8JAO5gv+fy$DE5~@ZteS{lz3tTJXjLhCkYmy4;CoCg&KVgzwSw z)~L|2ev9)yP0MWNi+iReLj7o|S(>GmXwI6z(KC_1y#QI{^;XGAoFQ>wuJ6{?4mT23 z;+SrSrp-GNqL1*!_p@=~u{{vR)Y=*e@D4=MeeBKOh-ouso7ZG2lbx>dLud_+YWM#7 zc&ahbk$9ARPUN08uXlz8Ck@SDvDn!&fQ|Zr#9i_q;!e-<^DfL z*U3PNrk;#W#Dw*$Fm?V4Ts)#DB1lWgr0DJC#*f<<&cvtRZAC?9cO=C{a#JztB>~Fo z?uFOiGSR45F%w}(F?8f=Bw4$pmFZhZN{5b|>R@RqI+}06{Sz`Mf{WkE+QsP3a?dJO z)u=~-i;LfT669 z?_i7yuBdQb&#DLf^Onm+ow2Y6##fLSAQOD&a*tq6b zy!zsEc=Y4N@TPS^`(}y82oZ|h4rAk>qjWIosLkvW({R+#ZkRsxQ(Sy&3huseG*<=W zP!_oyc>5N7{@6rZJN`|sQu5-UUag#!I=m_c?*1TR=@kCs041aK{v6Ft#w%~VixUs& zjMgz+(#+zeM>H-r8aYe9$1`uw;F&OFaCxOVS}7U#8^D55+J$0QN4IM>Cwp;NPv9VFeT{aKTzw-s5@Np{u(vf^BQi_tn(mf%Aq8^yWSd4s+ zC8B=oqg2!)zV;AFOv^yuW6m&qtmT%~6_kWoF3ZHGj4UrIKqPlWJ>bYwOzRy_g$M0N zUFHf;1yw9zqJoZZh7->@91|b?0B2oxJ+43Rcr0DcU^X)S*I$2$Ngqwd!ykPM#3bV{ zimlLQS`r9->VYnM_Xy^CQ#e1u=Q z243aLOHN0>mPv+wBD9lBWbaxL%%>X%9sPZW4EcyeoO}KGn7-~-eDLP$IP8nh5W&DV z&B>p2!R6SrVhuF5Z#m**Trs>ecXm_`0MXI(w=U;dN3P15624j2UKrc4IbQhWO`Ld9 zJ}y75GnTXU<=JcT_S+Nj^m8xclZ9DGWh_bW%oG|}f44lF$+KI;6Gf#Ah@V;71a?lOiixo{ci@ z7ZJ%(zA-93te~gjewiF_JQYgjLMz?Bnn3SV8|-l>)zhP3@&`H-u=sCACvS5{n(BThR5 z@5HC#>9;<_J2QXg8hB27=5Sm#b_jP`Ei`d4=4n4&Tm{w+jcE*Y zbVSWVceo7orX3H$^N-w(M_zstZ@oJMi}F2)imbpg8WS0<+hWX7BXHSSCnBAz2+C*x z%kY1 zqIMR4zu^3++rJ@$qHgiI)7orDu4CXwD>t-tw_W;KUMzw;_v}(hRVpxVfKf5lyw`Xt zc)k6xjH%$L%Hwg27+nl(!!GMKwbbs9>gNlocpPz5EJt}McMgrqz&~&PHwFxuhDmQs z#rMobq2+11zfJp2IBxXOIBp;VifAaw9jUejqkXl5s`^u+jnhU0um7^bxynhpfhUZ? zfMG+hc;#9Kvu&qh^Koh?7R@u#(JC#8BU&y^qkG-JSiNeO{B9g{bmYPCt7OuTd(lN5 zOIpX?`1h@yamkshuqtaS3K?S%!KnI_rcKeIbvj+gH0u5PvFI7$%&k0Y+h+OJgap$- zXxHN)yz%10nEcUam@sWN)^pjUy3_K=IPBlIAI>@MPz>nO8s#!3B$K>m>v9RJRyM=% zEPokV=&T5;0Cx_$Dq@@Btcx$i@y8yEu&w<+OrSf{V7xN`sZ`7W-Al12?g8^pnLDWIQzJv7}Qk;6BU%7jxxIR zJs2fqPy_?3yQx!5Z@m)=S}dkwl3`(%Q3et@@O!oTEOTkLP@W2THx4-RFQ}lWVgWrB znlkBh+!d7`5v%N~o~u@29sIQKaI~|$FH}MjYV8FO9)m-VISz-8I1)wN#=Mm6i-?Fq zI1>dK?x)hCN;d6PQ-ayfy#m!31GWYk2KKw;lT%o^1@J}3qjQgLoPG{B@h}8NYksNR ziX5EqnSjTtDsaiSMnOm7x)M%OV@EpDKw!#d8H4E^J0P9QNhxNeAL*!-I?Df|l^=S@ z5;Cv?m(bB^#*T)L^p4u?W$MdvroK;T)dr_scpgqW>vZIERRk{}nz;)+9L0-gH9aC3 zwqUvnw1CD`(vq@fzZ)IGwmWIYOOenb9X&HMDVH)dhzH3fX(|0A-Q#W;tKbsY)#(_Y z(HdjVKL=w^A4fXUa3I_}(vhBD(NQpy{`?y>ctZw70AmL0tC(BU9flG7FEK_1g|d#0anMmj^oxZdW(lVqmC-aZT>jAsnRHbciSu1rcviFfFzXiV~~Lr>Kg zoFWMdl^|n43~B^dLaZqcKcg#6s^TZ~+n(E#rZ@~wH#?a`-_=q7^7Rxf{&p%-`;J7r z6Ru^KreIHY;#3y8NAGo>+mkoc^d5DnfW* z&6o8n1dT0n}DR=hv2r0 zj)K>0c1FXI%S1QMpM}$}xDC^mXwj@wnxwvuCmy>EryL|VvOk#5KWA(2Y4~H~prcFx zlOKe+7JQ{!@c5%oVdmCE{OhW7(2ePt%h@4mBR+4@X8ilQ+i~}2KbYilhCWQ;e9^Vn z;gPe4!^c%TQuGxxj8%fCrcL!V{$utiQAa`pzm!J&a>`{GS6;Pl-h};;bcY(P+%LtL zGT{w8^}%dpaZ|gf*aQq5cm%FGV<-(L=@}U$l4Bj+2Bp(Us%^eVA7;J(CLVhCXN)@c z0-WBrB@GG2Qcy4XqJXI{y^6DMeFiJ(6}F}4=cDlI9ao}jY9yU9jy}~jH$k}r9SfLk zmvr42HH04wy`z7$o8sTRKlKujkxvZ>oH|(b4+;hP8`^b3YtNS zzKCe#FQ0=8|9TrfUCXR(T#_aMm^SlU%-vLi5AV4MDV!zHLU5zHgpV4xBe)L;cM?i( zgb&M>%*Xf-KgYnNJ{9kuz2w)5tPObmwYTwYR4?3gt@4M^Gr^Hx1UIgm{=b)S zpNxs9COC4`5onjY8n1uwHJ-Tt2^>4PH;(GW6+6Xro2xEIs|S|>YgoI(uUwF)&?OfAoY6YDyHV#{U`2sgT^el~u z3bZ+B2*z|y!IvLQ!JJRI(yU)!Ja+L&8kd~*VKEZvB6?QRF+LJmv%kc+zuu3;fyd#k zd(TBQJ))XI4vUH8zDN^r=8X?wO&)*K>s!jHosXx@!p5*DJbd0zgvlc%;Alh!OY69E zC}_yK@BXpIg%q0tGG#4_X^IQ-QBt_`PcbdiVs2qBuY>J~)aCy2%~Z^r{vIOQ^+S{4 zmvHG@JW5!PY;dR3a*PvWu<$**G*tEy-6r!K;|5By*WtT4OR0mxnXD>`>)shpAU5W;48lQ8t+VBz^R>N+;RKOc<}aX@!A77VMN;~WX=2x->=Lv z*+Cu2-ka70=h?(}+#@~(`Pw5Bb)3BJnm^LxfHk0ngm<|p(_O4dSon%SyE?Ku6bJuS|WV3Y5 zLeg7K_`@Pmy74#M@%Ssom^k>b!|=xQ58%N|j^oBsg?Q)*?!mLMfYW+>z^|iBbuRp) z92!)fShsd94WITH$mOoikenlTPcc54JOwj0mm#&&P&|MCjd8)eiW3kQUX1b2yp4Hl8LX-J5m^*s+8~vXhayOb-IHoXS9SUl@U81s;EPuuWkW!Y=UD5SOTLd92NJQEA(nFwoh0Ade07oI3)zGKoBkC!`1u-+=e#c7Q(F!rQj zHNJ;N02$RwhRxr;4S9JUWTv!58kg3UZ!f3y9E*Y_KjNh+KX90nfU7UP6xWP9h&^yA z!gJQ**t_1uN8c{PrNj1PyV-ueU-0VarefMf`UsB|jDL|asFc0sn$J{wxsd&%cc)-A z2RerwaSF~nyblemt%zyU0b>vEi;th0!BqoV{lRUo^$hC@mVsA0yfqFw%3Kw{O1Em- zu#BTtri~K`X|Qu;RAM-OnKBDg=5In$W-r`%&PXJb62kSFWuyE-H>h57KE zaqasfqVo{sCbq@a*i2+cw?tM{I<@%HnMK7qP6xq>Ma76FP+k!V=`w+RbZI3+eWE|8!8HJme zO_Ecl0|y<*$BVFf6H|E!M)AHY`PGpiGgx9wOblZS04@*ZQc$(m7ZZ-zAAf{THs-_A zrXNNzGpO?2&~!#cSPZ&%hy%FM+qPWlRm!E}q|9mvr&?G2CC8GEB!%c`6s(_)g5}Mrx{-35=lLunf;l`haW= z3_9uvw21d|<0TKr3m(KKMlpRXP`Ew|CG4!D9Non$?klDfQb$Cisa=Z}NM;kKzWE;J z4ef%?NqKnezGpFqbLz?cN8;%HX+UuGfLRVq+2%m8?qm9Uh(jXInH2Gnwj8p&Mp z>{Xzm>1a)V>pGq_og;ZquKW}R=&Ag;WHmjBy*MQYEc@gmJU43@5SxNiNB2erb2KYB z=*krx$_FDos+Bz3a%m-Us@Ck;!g>sxg4adG8aW;sc1fh8TKChhYY0O>L{OKmoc0-> z|7sx+orJNY_ot^+UTPYQTpk>rkYFHLyOsJ!gP|aokU5D;e4gpH_Zw^rU+gGoj7FN_d|}?n~xONA}vK@MiWw_WjnVFv`K6tji2*y+<_if9{#U=`JYbJgQmx3k^*k4mYII>-rP2AhM*xj0Dm*th9 zegD2Vv~N1zm@@^ZU%4F}6Y}uk=X3dr7+i7MC>m1St~^hp9tt+y#hcesk&}M=F=L&8 zl#(z|x=eYA|Mqn{8qOl#l{Vd*nu(JS?}y3%nTo$(e=DZ-$;9VhGLVfd+VA+|F}iyO zJ0K^y6S!^p#s zDH?|k8;rIuPQ(AkKZ=|sv$2gktA4p~GvZox!$rp&%84zBx zZqM!g(dlR_=;E)4Yk~7l8IHHVc@g99xd-pQ6pz*Gvdk;aJ9iuo$Y?@ODuq~W@|0oq z+Kt%AtG!w`=V+e6jS?R7Z|_@G*EQIl+u{iel z3vlU3jrNpa#-VXV-eyc?I_~m{M6^tdH40kb+xqIdowcv8anO;NcjS+}R#D`^NoSvp z?|#{UCqAE#S62OM(AT~HAUt}-7%rQnw~(%6!>{yI{JeBNirKqnW^l5sc6e9M(qS0g#H1Z%VN=$&YXf1WlH@e#@uquD%q zVhHD&rAyfupUKf6Yr=phtHQ-_meYW5ec&+MbJ>r$_L&dy-Upu;geJ7e#BJAIghM+v zangv3?p)!MwQ31wW)&j7T_T!9o26IAW^x-XE9qEJjFg_eal)8^xaH;PxcusCkrG{w zb=jPjifN6j#~q2}7zSz`-$X|*+NIJ{LAV{8B6xHR85DIZ!#k}_3?ZW; zkWr0yf}OrPe|Z+{Z)MH228E8LTr#a3-cx)1)xGEx+OQNhX zQQbSC_t}r?(mSfRW2X(S@kvMFXg;|jzX<(DosK6NQGM6zA7IX}S%_p%*Xd(V#vP{( zWgMoH6;tjzjr@M0fkYoHdbLe9$*owEnZpdkRgIeyqzBC0DsgJ?NcV7$gAd1hPqku{ z_#CX>vK{R^b;k)u3_@%ey-FMvI#VQ6=v?X2vV{27y zcmF29*$3Lw>ctjh=0M^ti`PF>}u!C-s|Hcqg1F$HZcVaw0Iacq`)hQ`>Qr-y_eV2DZ289@2_nW;wXi$_eLtioPi|sNP@rPZ)zWo^@NNGJJq4*tH(~LZfiu?qt4ZBRh@Y}6kgZBV={J8W1AY0r7UG%8pf8)k0k3a z8OkK<7)*9!X&6Fd?2>J0kR|(AvPWgfzJ)T4E%`8YP#MX84}Mhv}Xf?&T5b5`>Xk0#%AKJIgire_zQ67NUcyF(f%|% z+++=O{`m&*FENwt$zk@DD(WdIV(=-C{)K6Wpqyn205ZEdLz!--m!L53nlXL%TaG7P zhsKCv3tYz$5TN{<=!*pA-B5ESb=;2ezTmMTC-qGQ-|2FZV!qB8W?YofYE`+_MNnxL z!x0!w;1K+sDN%6Xe-|G9z#_e7LhktwITRH#CYraLc#HfHCNAvee z&~hE+H_4Q(vPHJwbIj+zhP;v{1M3cDmqG3gMqGAi6-iw#-yAXaf}x}Ihuvl3 zr=NFQG7Q|E9c@J8tgl%ULkAK{lM@ZocB9Vg5rozf$~AKoYFVIex`$VEX0Yqe(E*ll z=R!$Y3D&&>MCfK8*@gP5=tGjx*z{-+JNSDfb zY5Dp=5CrR=F^=5Q)3y%<-4vHu^zvs5ndvqd}ZhCZGBHH(crzwrA04725v@{Po&UyjGu=$U2(6r<1gX&)xh}i z$UG(%-3eBR<t~8Q@Vgomq$9m5tg(|6203NQ+#m7 z?_FBv0MSnFbx6r3)lO60UI(0;5QwLOy6HSz5QmKxD7Z{fHI+9weCvzARvkDTo$C+E z3o9xnrE2#P3MDb_U%Y3iNfY|u4;({3{p&Nr+lL>l6u-83r|@i2C04T-`-X%&bmv(L zoBy;`S=Mv7B6&pK;ET9w-6|Cbywd4lf6i{7t=n@X{wUOfQLVFfLHsh0rm-(eE z=n#mPgDvv^QSd+CsAa}8v+C#-mjO38ylR0l?W^B~Fl3#FW;RlZr`Y@+x^TQO@H(-& zsdHv((QVOk4c=+75x(MWAh}zZAjpAbkkky9I^X85oTuKo!FDsKdU;xd0EK z2MD-iUz^j&m!{g9kRc&QZthQ$EKjOD5}36jT3q#7#Oz2ex_Q;r_m`c>J0@(7_kz7> zyLj5nD5#XWiwK=#(tlvgJyZFS+i8gT+aZQXo*WJmUVsz`9$Gl#u48xYnlU~>U50gIDg)$o&iWi zU&xx7zdqkcZZeK0;ue3}1(5aMMXO7F-G+_bguNExqD`s<8e zciA)QjI9;I0&IQIIje1*T*GtI_4RA4NPj?XBTO5GsvQ0m@39d8AjlZL9;t7L@(@17 z)=dLyp|OEuAMHtvKU-Md?T^BEIo&?D0`{iXdtuT}%pfOgGqz=26weHq!;_b_eK>z{ zHV9jd&TMbm55cx;z?IY18_q|Jac;M2{G|U@wMEx%ZKCsjh~CkXN1`l5AaQb-s+|-? zPe&eKTcy9Jsa;A?`lyO#FX}dGkM%s`w#zzYYu0%w{O8_0Ze$seV#t!bp5=MFJl}82 z&1H&qoHL!S}B8MQJlgLuUap}}{Wii<;Pvt}oHtRNrM(J1t{>LO`Oo5vSc zsRx1Ttmt3Qf9#93>C-UdG1@fQf%(|#du>m&ijWcx8vKwce|ph|%Vq}ac#0kec|z6` zLY8n#oLg0jO11V#Z}Ojp_t}5vMn1^9p9r36V2_*cL9lvc)O+x*AcFj?&U1Hxg{+?* zUoGxiV7}*fgdJ%}o@yx>ck)fhbO>k+--fzU0#$y4Bh+cte(UL$v-66E)v%jRWGgwz?q2lR*p@(p z9#tly(y8$#C%Lfr)lM&nsU;%`BG7^s>CbT$e9?DHSNdISbd!MrN~98ERg-Fc3ZPrSiw6D`n1+ zQj~SCg{sV{bP{@Xps&c)Jzyziro&sban0|Ad=qHEdOQM_GL7OuZi_<8J=Ag5y93VB zEe-3DY7-su-_y^>m%o&F0=_;}wU2D*xq06h6=hke66agYU0Rtl1D zT*I7E6$SxhF!|%fdgIM6QWK^m)o~N+exjX~?4+*A!;e<;-&|5dr?BAiWPvwYef7GUmb)b zlpA$@R($w~=6p^yP(h|`-?I|*hN#}U@pOs8YGwSk`0^y(N0Tx+ifd)tztH?y=}APz zWKkk+gu^&QXE4^KMCR$Cgu^n%WRS2f0#c7ji9-t8#5^7E4$FVoX14h#IZuiz8Qm`| z=8+BR!(!*&b-9^x`@Q1U)D|BotKi}k5Fia&R;As)hpyo4Tt8a(O`y-8ENSEF;PCbr z5%QjEX;R7@)wUnVi+7ZMO4NUrmw&xeA9f*lx5y^4grYCI=n|Il?qwHmuDpFLX5`YR zx0SdE-txzWeYGT*0fqXlwuaWMC|p5%vuDLWOqAS=o{_VoE@V?ib)As}nOyJ7Lgo#M zTLML7%E}+SWQvaBR*d*eQ6(}z`A=e8QzgHkGAGH@2lh_r!KbpOt`+;&UbP1TRR~)M| z=i!p*yU-8JRv4Nkx`ROn|D?0Wv`zvUmRv8BZ;0>2++W5JZ6QqvWIesog!z}S@}h~g z=F_g7O^o&w?w3zsepBa8b8Kj5t%mQMn;g>rYF1;r`t_>ts?)>Se_JH&QX8ik89T2` zMRpDB?L}g8Otnx6rJ-$lHSLj%IjHg_hT*|@bF-GSgU<1`j(aSkw&u!Oyk58E=K$U? z1%;1ZXZvqvXQ8IE>a0&}MR4ZcOo{J;JFbY>naTU@jj z!(E9CSNvo(_Riv;6wbj1qD-GCu>7$T&;P&zbDAj7P%I%2DeZsdzXak3dg58!&VL2N zPPbhBf8)#*0!&c24-dmf#QcXH{tXeAmH3&&f}@N|{ufo?m1-n`hQPPPJ&xa8|2gyD eq+;*1bj%`OwCU9`;B@8$vzc5sH>xspiuxDvuo58v literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/03-pandas/img/caso_real.png" "b/1-analise-explorat\303\263ria-basica/03-pandas/img/caso_real.png" new file mode 100755 index 0000000000000000000000000000000000000000..0feee201d33cc74f257fe14d083db7d9ed9ed713 GIT binary patch literal 334929 zcmZU)Q*>rQur?gqwmC5-wl(p@$s60YZDV5Fwr$&a<78svn}h$Hv)12Ny{qb}+Eo|5 zpRVp5p(rnj2!{s;0s?|4EhVN50s>YJ0s@K+1NBc5i?j^@0m0$35EWIF78NB?bhIh!(FjS=gjU6nZM@Ey?xZ&u=RV1Dno)984yJ^WH615W5XgU zhF{NJN%@8Sf+-<+L1nPd_CxH2k7#v#AO0pMS;45s-2(wJg(>>8PL__`PnNKcA+ag4n3g0`aH(+e(br&cKPUrbJ&L8EiJ&S%JfNYs($l`QYG(@fMT@6`) z&DZ4p7;tqUtx>}_Qql%5yXbHrlxc9XNk+y4Ob`U?^Qm@Az9_!@1J%>1rCDZJ%H3!N7e(6uk3@$=K znFq!L10^i@f^k7~!CemP=m`D3jA^~_I()XCxp)gEbu|C}N&L8)Wu+GNo2U9g&*Ds-I2>Lk zQk$2)L}`B9S<7B3E1m_dIw-h`930~)ST#Ah8B`<~}6mXA*3-r7X*B-Pf5NQt5Hqc8Sgb!*q zzMB=)@RKuNDoRkpjF3W4c|E+V9!hdUfRcP52^#F zJ{V&UzXiD)L_BD8Bk7I=sYrnVErUZDw;+;Hz>(jjw5jN<%43OKf%7|tC(2Tik3Ses z^j9I)oCZ6c77Rn&r8->`J`V_Cki6ty@wCE=IfhfB2b8y;o>1L^q((2y4LF3+KS$8f zqos$A3?o^Z(@o`=99^lHck4Ciq1DhTBeM9JtZ6tfJF&GRYzFj31%_gcPVBh|IOVZQ z<2Hi}4-V|x+gNqTukmbAI0N1TsP`dnf4IYUaSEX2#xRX=?(yCRy-0tM1!R!O&yiY_ zL7*kVzQg_ub{zm8fG|iH6G^5xN7s$WAEGy;y``^Dd&zo95hII;Z<3a$z@tr4mEn=> z_~rRaOFxf!j5(dv+92GFMxSfgKHDI9pDsf#l>|Sbd)(m&%#r^U>Xq^pnw+i>tnjB1 zi4l|$q!Iif$)On)SQ1wf%c5EdMu}lblpJz;Ne1i`+EmGu>ap`N+%d;7^^_BR75xN# zrUseDQv-Y5mO)0r9t|3XlMD%Em}8)05bI2&A*RVs6GZ*(eyzccNuK^tlO*FtQ+Sg} zGv2|KS&l(@19c-eGX=w1{oV7(+4GhoKC$>A~(ac_IjE8v-y zc#3-PWGZdKEwDDuE*9Xwn<)6FH~Jguy9p%BKS8Lhk2F9&;5o1=5Gs(pUo>zPLJ+1N z9v40YJ_YU(W*X)mRvUH{o*4TYTMr`v!vTF9%L2`VR0d-iZJWwds!7{fLQZi?&$@HX zqQ3M1!hzuy^AzDlw}v^?efJE@c^%ltq2o|=zQf2y?N zwNf_1c`7@)-xwclA59Q{A$E*t#ytNq{Nwval0DbF-h$imYPq92W}ahyX6|}UZ*G1r zVzE8%KCPz9Hr+PpIyt9EFJ3QZr>!Sk;P-diS9(BvKyE)v5R0gRXoW%ZK0dipp-`b# zp|p|3q2i&$;VhL5m2;A5l7|Z6BKzWnDGi%!BfshAF@_W8z2kiv78zDQRw;ui{W60J zL#?(!m31|e7JvP5D^gueYfk-qlXT-*y-A%*JwvOH5w($It5s{*mCa?;WiD?xuNY60 zEm&q1C#H?(KFt}&N8>Vw>U*U9jq_(=^2 z<4^C4-vBB=#b0s3=-eM6vj z9w{d&PAC;hG>Wq1#7m)yTx(I61 zb~3+jBE=D2aer`Ua3AtAxaG{4OckF9tQU7)oZ3FvZd`xyEq66^rSJ!MT_4i{u}_$; z5ZAoia_@Q;d@3O~;ohFDE^B%G`B6OdU-I_*J48|kk_T?d-V0JiMZ%s4-dxw7Z?X-W z4+<%V5?>PQl{*(EO$<$-CsHRwCy3S4RoMymc@y1?dsyon>n6(1FO|LuUnTvB3JLMK zZ9Te*wF)|3AfChqBHVsn|7?}F%&w{hmQUB}3SfFzR?W26lN&u#hvlJhy6G^|900;loG9`F`Pex>^vM;l1lTknSIUqfIG~ea89= zEnxk{e9Q87c;I|ZovI)yAnVifkTwtSVas7d2b==b%$|LLU!Lcg8?D#eqwQ(C zJRl$r_YyWwmHF{U;Cd&N#D&4QgK7sNx26!V zWaO}>LJ68UCK**3XY`}AOluHppWKZ0`R$+XHTST0C$QeAcc?wo738kUfxlQ)ER{!u zTcmT8NQG_-778M3EUPw@9*JUB|G;k`@bGo8dTPCyLLr6jNRW=eQni;1o4OodVYxBn zYW>oj-7L6Dzj`I0;H2d}=gQ#H?&NCY>1=QJa(DOi^ziWVvU}P&xH{}!UR>Rt&9MAy zhpLZKMnuv0i#h!#1a^beJHZ>zrP2$-k!ntCMf47Kl3eKs-l)TlxZjbjGcEM3Os>0-m+~J#6pINIG0? zIu!0wPjw>o$`Ov`mKj>@o*{3jF*4adq6&paW#Zzp^lMoJ&Q$O{eiSpde(8%2pC!fo zGTWHhF~{S3J`21VK9vP$Sg77llik$XAlAva)Hpk8EAig$uB`K_7_DeMIQ~aa?Pj-z zchLVfb`h@;zms_PUF9F=^`SVJ@6W#+z7MYEG{reb>v?TFR^59nMg=hq0y3f<;--6u z+!s0Yo?8qL`Z}|d##K=NehRGlsb-hR`F%LwJ52-H+42DdrprB%-bp$4uRE`z7W;Fv z>atstIdnfOE3Muk;z5`aDS61770BJ8rA3tHT+*>;Ld}%s%ZN|6aSY^`IFL&H-y{E0 zsiG}P1t8=YV@oJd`5n8bddm=AfNUZoNy`)0kX=J}84K`!b%TA17#mP01QmcEP{2Bk zLzHWsg|Y4)r2~sGmN1%Ano@rMF8U3*l)g;*XorVBX5*sW`Kwf~Rfh>6xJHj{RuNTL8IW1Un+82{7zOA})* z^YET-^-!?Z$Mxtg_hCOUKJ-FyZ`^Wpn+#u`u}Qe_vLH~@YIZq^Fzqh~_>}+5fbG5e4eYz@4m-lS9jEJ;jT# zGW&dWpmx=nzqfzEXi2s+!>@Ax>5BL7--LJ7zh2K~g60J7tl@;pUPtd-W^KpPvtym5 zLuQe)x&VsaDo+#vwQuFtFCh;`}q^1Wwjfv!KtpGU8+V*oY)TF=C+(s2a*&1{^k zx|(_KhXO>F5RwMzqdaUIyaB1~DG58$#o(xt@sd0{l5TiHpUx=M0Zkk4%Qggb0f|Gv zL-;=HD}@oR3hBLXs)!8tg>(zn(-(44$x9Zmw7-gVYNJj{9gj~2US|(<$ za6<`dx$RjJE3a`k5Ccg1Djb40EJlfMLJIUq@m1MBz6()+7jDY6MfyV zZoZaiJ$m`)>Yl(mUMj$Wz{S#e z#@WFE)9v%xb+dbmd`e|C>gaLm{oy#7K}~=_z^*mtdHSZY*im`(a~7%yLJOiEf`3yD zp8&l;R&?=ARCeHFpm?xXOec0Kx*?oO?0NXIcys8$$m_7-5b*#TT?^eP2_tcbdbQ}K zfeM-mo-UTAeB}-AfwF~)iQCeN#@+42`3`!nLc^+MPD7H-DSc)7|UP_Gve@Ey?v+ zDR=7g^6M7#Ic!iAH10UmE$${d$HVl&`^Drq{S!Z}6?$j7SCD=Ceb~j`!xC+~DbbfA?Y}t9Z z-cH;L98d109r`gUl9*Gq(JwJ(kr|RiqWX}yit)*b020Ywg)1aGw5YT>q-Nyxw1tJ0 zl*WbDe^KhVK%?Dd{tRXBwYtC1IHx*YzUXB=;<#gGWb-hgG9j{aSd1LySv#(?iO>z~ zPWY@4T`lR3&6j6CAxLwovD^0G)8T{fdgDlH<$A@iBfK>#sCd(cYJ-G=GO^|*2Mk69v3_^q%fXED^pIj*}cHJu*nLmNxJ^*#O|v0*Ki{{hcm;j zi_;9?)V~Hg5`+|Tf>cg;&EP=O4Y2*~(6~^3K3c!Ioc$BqQubUK&pak`7BAOG@cZo` z<2ZVy+Ga<+1z^+NGFQEg?%*_g)zJCV=htU8I5IRf@nP<1+_l%!Rq?aNJ(oow&-xdr zAj2!}$M08h{gwy(U7bnqp}@D<;^I`y-NzSFC~IK^8Ysd&#NaRt5_KBL3W*<|Ow63t zU}61X`xiHoMW&qMwn;Lo#FnTGQ9FT*LT>pd%&a&+N-*wGWCyei-3-0#HL?(G1#Kai zLgR*?(OzI8f(;5dZgC={WGH^Iy0dOkXD0IEG~;Nev!`#QBWBo<{XD0k3}>DEGd(h* zHflR2Fo8NdKC(UloJMrwymP-rbLV|AL4kjL<&n`h7@ zPoXBHJEXp#Fk`GO%_}dfDax-ZG%T>JZPDacCRcA%y9juStofst{G}PBNp5pUkVMKR zeUA`jrq;2N!ZGO@`y`I!#>v1<%LUz`+AbjO-8FpQwi-5luI>7Q@EZ9(tjznN4)z$d z(Bcw;Vt$=ZJ$OuhNv0siFzi0h^pAAdDY*YBO3wP@`18^1kG!XvgkP$Z>s@SqwoE%@ zr@#sKrNtOv%S^S-$L~I%U8J$#d@$J1b6hGz_%(w3WumNN-{@`BN}+D~XxUH!a|xbZ z$FfO~Z710|$9eyhviZ2P+BfZF!_DnR*QV!q9@35TdCvB3`@A>FL!tVw=yycGbP&Dh zDiJgvC^@D=b8feL{YA>eS|z8~?zz02f?BuR3o~c;`{Dp#g^jm2EBES~=h5boceU#r zc{Sup5FbmB-m02F@41)V9uhZ?2q6Gd3h&mJY6&K$PeTLoDGYf)R|<rK9fq~Q^Q>IXYzbJ*GtTw;+fo^iqnjj&q0%}`Y9>QxTle`M>@L5% z6uyO^kEn_Ujmx3bciK&~@nW>qoEvqG|)mFU< zx@J~Pygh=lq=Wc-w0FGy1_RL{1(}3aSI4eYS5H$Q5g%~^sR^_D_}l2a$_#E_u-+kCB}Xqk*xVp$VhAjs3rK1`rTFcb1!N$$y$STk(@={8A(lwR1Ef`N_!6$V?^xM?ylv z=V)xoqbw%z-|&A={AA|N&h|V^Om1#&jBadd-r2&=mgGPD8W`HSIP;T{{YRkx8UOX3Chivh8_Cw`ztj4c zAk%+nm{=H@nf}N3KPcaSNO=@3+)b=C#4Kz~Y@Pna5a8fq;rmbf|DWc6BmN(x=KmsD zIl2EY^8aZ58_CD?9|`=Qg#N2q|0(@fE&(_`rvE9u034*Bl_m&?5Qwyxu&O&~R=1{| z^>{{3Cl_VX5m7~xY;pe2rmz-tMrq*UOkKDWkoT9DTs4dXE~ z(!C~$L$5VIJv7HgPN03Uojhy9y#`5~ALaIv=u5*CebZ@x#{Rb>C5m?Ba^W!WIU*y=B zTYyiC=(=TcGN}*kH{N?kuM_ z92A*+7iW*;O+@vU+UD%{^|n0mfwq>L5<(_eac=Ngf(8{8(TCzZPFeVYa=_I*I@Njg zNTks=s!e3=wek37$)&k;$U|+*^JMN0fN@s`z+iVfPWS|E>d{PV4koNJP7o>_j3mPCmVOrMIurT*}Yo;`( zt<@NK>z^*aNEhKl?Fh-1S=e`Bjp;9AJNs)dFEY1pH*CxHpV&vF<(;g|4kTxTG@ znLWJEYuXeG`9af6#Sqo$sWT1*0h?PgV-D$H$Kb4&smh_f8p*BR3`2@8ir4=}0B z3%Aw~d8=E!r0>`m)9Fxq$tT)SnH%zYA%_%M! z41F(?ayeBc1se1u>IXU-WQapUo2JG%@FZmak%aoi*YLZs$}mTsS)9oQ&3Qq_)58^k7m$oG+v*!e_Wc-DhBfO!px)wZ!yjCq|GKM$3d=;7>$oQY;=+~X}+8lnGob) zwtfcLh+704F_p)DX*W_j+h_o((;p6ShGqIh{eA}cCExWWEE`F#5M!c3Z_6ueWFmCc zVNA8Kq~op}J>~%A_~Uy){Uv!_*gb;U#pCn_V{a&zH8^$`HULN5>eL&08j9!YvzB=Q za>uThEDdBHn!HmedH_dxArLZ5ZX)Qfq8!l*#!_KE$9Ev%$p(>Ra3f!lHeWN_^0W!t z6>oYhxH}5kHOf92tMj>gwgP!J@W{C{OMpCGem0HMt|k?kxJ5M=?C+8&7~^pa%7(m` zf2LG51vGRf5E@W7ro#rx3`-AvGWodtcz3*g0X%;*Z*T7@6m6r?Wth$V_HW^w40BtZ z?0>RAseu-eXi3?pG4&*z*&+MG!G+<5V^dsPh=&pC0kVF4Yv}Q^G%B# zUMmN@ufS^iNf?oeA_q~`!cxuOWjlgU!y^y8;Er3W7%ODLlhaki7^d?Lt@KIp)|bu> z;Wj|=%Y~DlUmivH_-Ex2G_hBLE5j^UD%%Q%AxPcnhimH9Ir4h+miu}@(xl+08fdROEOy1dGy)CsL33YoTrkEU}9NqPWN*; z*m5B&99hP46i*J$(;K2T>2D17a&@fM?#eLkGHzM_(88CtPgJJEY4Kbw7q4}!spW@+ zXWJAfi{4km43VV&@kPwS?LF@~EP9AVk4L=Q5;?_^@=1;0Y0%f9Vpo{YLQu#Wx|#Mh z3_d=)Wl2gEa6r)1*mEqR_i1j~2|*#ZH+BqG2^Bph2-qV&@m~|p4p9=kBN{GN^HW!% zt~!@dIfa1cW-oWaeGlL^C2i3ny2^x{?BdjAAq9J%lk~D;dG1-6HBK1Y=x@|S$Er({U^fi^eRuUm>2NLMKRO$r%MNI{ z!?j8M=^Y(VOrDoK>2!|OPKMu8u*@yg>6~xbJ}y9gjEWRrMBT}_puSgA*N?YbtC3fc z)FGv=kVaSxBa0t%R=W^I;~OBJKfHjg$TOpG90!ZQ$!Lo!NYEG?UWiC7y#4};{u~m! z8$lF~3n=F}eu|={bWX^@66K+F6|eUpj_ykN=_5yDEn8v{;^W#dbT3E+#*C5K6vWCr8~yys=pjp&N7*0Z1v;Q_&VbxKAmcv z9ER+~89O}k1FcRgH9J}cl~BrN!fC%>(hZRq;&(tJ41o~yShAy{b?2Z*nuxb+CeQD>9iu@RnQ}L5Lad zD2ed+mx)Z5@m#d}OtI@%xGj8O5}$FpMF*Ye-Y3QyS_?%)UTqf*0-E*rK!|np4SO)b zC#vHu%=SeZ`e?Q?#|6hgzUym`z=QDwM;=#Gk>a{RXhz5VrLX*GA=pyXtfE6ZXJ-OX zxCOV%haIL1wvVBRJMe~o#0e;NHn?o+@%-f4-fbY#<8VN^!%i&rAnFappkV440@>>( z2|#)O+Jnv|^EB_JC{-mc7UqF>n3MJu1}9Ls^DOv8m4OpEV`yerr*6VrQ#i$3U7Md3 zvpSk0`;%z!w}E6W&~seq*X zpsqrw@rCh@M$5ajXM>aMhv{8PuOm!GqLz z!?74Xy0mM^?@yD0tHM+nV-imj=ZOv(3ug(=TCYtetXUPvO zz!{|xAhNqGva+nxXHSNjV!Isk4r$ZwbxhLoHBu-wvEG#eHi7W!ZT!gHlzsz1*jpXD ziy~7y9J-RU$~0i&+gQa<*45&+ihD}tQp3z%xBPDf!C5bof@P1i{jHr48*YF{5-yv) zC!eetO)eXoFW;X*s8}JY@?@(XqWW!h00OO z-wU1{TI4HWQL3qU9q%F_RC;qbd4WEunL;2S1tKq2h0##pg-3P1EHWC_mZy^FYQ6En z*$kQs3B0|*{k5-R?7;0bL@BF$=azxUwZT5YGOx7p2a}6yAL6FTEP#N)%&c@0xV(DP z_lZnT-vFEsph-16xUJ%RqVPvXYPY_t(`C%brqA{B?dbCO_HFm|>+16HYu(ynUdyUU zYcxBVjPrAzH~?C|9$&aM0p>~7Cb<`vCzn0Bi(9$7%!5iS2{uW;n;i5PBF?f-lR)*? zw$jVv!mQT{qIgd&$$tfI@uSY`Q6xx>Z_el^AYo;$^o+O^1^DMzC#O`VYo1DrLKO{> zalOlWmjh+fM1)eqZ)xZrf|m!gbwnsl)+yEUw#9?TmMP(A*D(YNS#I`-;ns{e zuOzDxprZNEKMQwTmUSCvXK!ZD_8omM#)nL~_gFu@uu`Tl4YFlN7eE2N_4PI@EMy+s zyTU*Q`0d8VM@Qcod2UkR71s{hUhxsQn`-uv<=R}EnZBwWHUruWr7yHBR#!WHa)dAp z&>vr4UTb5V>r74Yh>Nw&wVv4>Ud+hekWeVpPAFm~VHzxP`pYzXK|(Tf=_gAq)C#uSF5{Hk z0vs~;eb|(|9MVVYTw6ZkVx#DAa9Hh@cuaj0bW{6Iz}HKT?5CCOpn+&2y8M-5&beFS z_HV{>rL&py(2#3V&`YFhbf%d=v`Np6R(Y;9r%{uw5cD-RE&Y({S7p?RPmNz8tB!X}|rHSCEu5X6C!39~a4D z_!%^n=z3YF+%AGuU{F)=UWd_@@w^wNl&n0@oO4tUSnpyGrM>VG(Zwuou4;~9T^*=( zi8rYohr#t3aB93U-I5t79yK!PqFy&7rY6!IrXfl0NJ-djoOr_tbuLH`Pl5>@OXsz1 znbs*7gO8BY%NTRm_fS8LneCJE*G#XZh;$vT4E-NwKop_iSc;FzPSK7uyfB8e@(I(<=L1~Pq}f8B!kg018*HY9)XQO z&hK|b@Q$>ZOAIQ}Xfa`)`Qbv$8(F%j^x0nT9sr{LvFl%@cGHUHoaaev%75feeP2R}>4|IW*C+2Pq3pFq) zkbNY#te<3$_)3(BpgsM(IQ2XL4WlG^*m|Yo_&!F%om(DUVp9dF42kULPSUSUf$K6j zABViLC7g~Ycyh^ZYxU=$GUMeG8EHBt=u!JJ#+JCH4fj&k7ew1PLVXqa?#=XiLSq43 zd>vyCGLd0g?Rg~dGleGNy3ViIwsBT8E)#YES#7dD6cl+X#9d5tw`-b2>Q zVaOyRPQDJ3XWv<9HEzAPUbi{o{E<+r4gSU+BL~k(u=Qc<5oGD0N``_c$MNFt`Eqar zIzxe8LqxWXlv)4Pkkm#P@f@A=;(1*$!K=!Fa9qnoxMqxZ%H_2T(T$%Ka{*#|$F!7! zT4R!~k!R|AaOM0VH0AuJ=P8S!8z5X~n(>Q^-tnRgkIy=k^G5hxZlWiKDyaCpp|k;h zXEqU_wL(>UhhRQ2i0O?IRbIIn(H)15GyFi_>z{%qp!FuVuYD%YZu%s6kx$H&_N^_{ zVK>98(2_R;E7VJ7gJfcrNq@r8;T3B;GM>k2Ot34aH`Bd5HH(O{cbtYpw*~$N9aqex zUVZRh*ZX|$o3?)lc^pb}Dph~XFC)|u6jkPO=aqU`#n01mC#MW2h2;!QXw$O9a=kWW zi6GrVPj3s+JVbL}<@vDI1W}e)=(lDK?7+Q06(|#X+gE`M_9{j)rKB`iFBuWIJz3>l z8t#0bXf0(g-6)7!6bI5XDty$Y6FX8u@U~f{ZS&lmz=Bhd%@Tl{(FcB+oxN`q1c}KJ z?N<+P&*x-9#fr~pmW^7baED%OOynfXI7lWK@k4aE9K^ixP{*eNg*Fd=j~Ytla{#3} zFYjY2WAc?6^Te0s&p0-91n_HQC3M@k5(<|rE)Q)P!`Yn6^j<=gME=dho!rN zM8cgM(m5dt6eGe31R9^v=B-Sjj4ZKMlZDvT0vijrTYMI;;?>BfXFzA1+ zQn%r~2l}=KRKa{p;m>`x(U7&XoG@ManpAZ`?-m`sdz2B(hf{j9*&GHYJtC*wGt<}7 zT|GwPw$;Z}@tON5_}X*&i{-PsyR6BNdB_e%s!Fw&vbatiUAPc*#ct6qCdEocBs@M*VzUtG8B%D*q8@ z(?nd*`%o^pxWF%9ubc1{ud%}cc0Hmp8j0+6O{Cn ztK51$(1rZU)@|A_MYp3d>as%MMlsn}MS_X&x-IyUvSf=7xyS6~`iYc`d53DCPE5dT zb)tGoZAgZofSUu+j=^lJRf|6)CZc*U?+X}!BXz{ec{d~bhy7=09%j@9NJ4`8Ah{#V z#o`=Xw{f);@9yw^-t4f2933=dJYmp<_6rW@03_2<@eTzd$iKC9JW3S&tgs7}^$iqj z2*8H`dZmr^$+`BR2FM#k()JQ87fTsMhyKg!JpwLiW}SQPhfOV`I$oE@3NLG|Yd=g` z80m=$|F*$F-QGtYYl!nbC0#lV`d(KQXdM(5u^}EJ94C zzMkCoG}ppV4b0Djy(9OGq0Y>@5#BmM9Zs5&pn| zwQgn@L7MiUoN`!3#Q8k5@z@X|w$Q$BM&6xE?IiPcOgJy%RB=qz4Jg{fo){RKVH!^Ku)Ap%+>6B zBu;xSj5DGXfJewx30=Mg;QDcd(Fher0!BS(3?{NYsji78-b9xOxKB5nP>H#3zCSr9w{6@wB+b>^PkAGhAZK49 ze%O*}=ymfPN^h9Fo>#W=@ptM9bh*)f*m4^^KLpRF0epM12zBWJ-?vwHPk+SWp80)U z9eS$z1u6WmQ0lQ7$aE7eJxVr1e*D-YdEMAorHvwaIA4rfLdEkwZWbRZ3(J= zva_D3X>nsd1>zOMh}<|@NNLMv6n1JV7y;n?%B>N`Miur(T8ouZ3SYDgcGAEL1F&nt zWuaa3XmIQ3;_TH*W=pYf=NX76{UH~OoO3uTXGE(9r0}`O!@@&qp8nRH%QAk~w*Nc~ z^n&Z{_U!H2*=j(!fmNKnEJQ4u6U!mW7jO3X&RQdC%W@thbDj)xx$daWKkGKTzV}M{ z3Q9^)NIN%iSI}K1^$kE;l=ns%CbNA!HS9E!ewoa9VU8%y7743D`w`czmC41}&iv@O zPDrXwSLWi2VHThLgJmf4NS33T zlj~F_u13+DY7H`Zx!DNE+4!Vysb86(N$FJ%gZi&4=}-lXLlJqsAL+MM)+04f_ldi) zy4wQ%^zp7IM8BJ%7=4u8e<$R6!kEJO?PrbMz;_l)Qg2~TB7I67;;{|ifbt#6vz zm{Kb-bit;Prh8vC%&eH1aRXK)Bf&tce-4U!xjWT+l{`#1tM<_>p$e`0??I>TOG}Sv z(tVtW~g` zmG4{($pmSF1!6Jvw)STqjjk>7+(_VU^WW9Ayr{Xm{of|z5`KAZd{jVe3gk!K*w!tK+gf% zx24DPMwrHB!h^R@iT*+CApynjdQbF!S8U$zN}1B`u}A6ES0UD7W#1*Yyga)<&hYgd zUHlropKxnixw`ce2Ejts=d=H?QE_^0%)#IS)%DnF{c-ma3>eiAmERSieVqw>!&!-a z_~(f!i>et1==?sZ1$gG_3k{7y!YN#VxWKWeH7rgk<~m>g@lwZB?of}%q=tgp%z(?RP@cv>G7^frC-P@sAVv7uUxw5XLvkAsa7*N5YOEA++1m0F-@|-J7FVIT*B_6DZy_?WU<`_O{x< zCDyt2J!N7y0J_Uo8t76kM4=?PeqeX;+EB4CS@s^^>67mZ8)WZ&)G~$ zv3RImt(jyG**_DQ5=~A^ErjZMg7(Q`^wh&^8OkR3yY=IvuXk{-d$IA!E)VZLMtG85 z<-+0{XrgLH6Sri#5k@0nir64?-kC~iBqpdS?x+fQ=dz2w2BGuUSJ6xLP!sKO0`{v* z>bC8hDRjapvj=2+AWy`9ZZTcrzViF}*cl$`iQzeoaM7f_bljV4=Oh)$eM_wEm86Kp z<3u^Mbi@E&3*rP$q9`vD6rrx7fWT_kK#tgIT^Xew&8R-x9I1#6FM4jRxi11Ew#c)S zg_!U;w!zV-vC{2;Rj~V)bV<{*aZ#oL5_%yuH6Q|78LX+rOa63LwK&mAv54Rsk09~6 zbE8B$OZOl4Jc2hJ~qt>QylWX*vP9 z(neBDji{aZ2=rYt`u6|=dP&VwVkjbdEsv|q@%RL_@~k;=Mu2>s6}==e44rDQLxYg4 z=IA>|^RF;t5OBUU*s3^*ByNo4d#?q_$K}SSfH?F(_$_BD6PPbm)hLa9?0$xtonaAI z2|~=$fxI++BZ*;!o3|!=qEIx#-zP$QR1Lf?mdBcbi+K-M8V!-)$#hv60(qs)d|t^x zZ)UI~^GlFC@Z3N}7A2@-Kwrr)0otCRs?l-dVC~bbKHzO4qeB* zSZC9oYuzS^{k~m2o{z5_8xK;*)3FPs|2LgI4~IXA-R2813KTMg?gzUhUk?OuZAj@dUQA=|!8E z5APhYz5a$V&NpbOckF0C$WGa+^z^;vRqj4PF5wBBG0L@fn+|Y2K}>!NF6ltx?X&t$ zW`8guzk(Ds8WJy!b+%S|TjPI}$J&c~;+sb-d(Jf_C8M}X*oB2@i={kjX6q{YOROxO ztMeneTkFE3S3*(k>=Z%)?<%O64q34|iuKPdbUOWui)fh&(X$-eHk%qXn<5<%Zh+_$^wjJOA?iA zxx2HDXEJ00wRU6dvjwHYAnYY^`8jhH|Jvxdh1~VhNP$`xh23aP)-9UWiH|aiEN$x{ zYD*YBs*Ajxqf~%BS>0$A`4+kE5%PwNj;ZcEd$M!^Ifglse#JXki2WL!{K)NvqEr7( zMz7@^8rIF<4Y6j8^N3PH;*4#DE{w%`Ya#EmL!)?y;}Bw)(x_D>w_Pd*pno*4t8Iph zYi0n|#i!G3?42TMEV*-2knQ*e3Cw^i{1{FO=4~eo3rGv;`ST#0tmkSCM4VpB^4vAJ z&=w|Y+YTZ*9Q;MJg>-~eAh5|a6wutu!(qYcLDPNjoyhY>{a5u=-JMkIqN1_hCR(3t zc%+tq94Vz-7L-?p5_8Y$ap7u+&C{x3@=PFd-B&4W=r>nl zShT?qLZffMVTLTGNIa&}Oz`4GI@|&h>od)uw^5|0UZSulF4?dxI(%-ycVdo7DpJ{{d(~ zm%krc!d0qJNN4C5?I>+rrd@ggZW&|S;vxfgmAge?VzlT#b)`YwHRAXP=f%V5SxO29 zR0F;QMFY2D=QzGbvvg&uU91v&e%DsYE(vXsV4|$#zO3J!6#sS%>O1b&;#r3b?mp>y zb9I}`t~(woc>n$#^j8Vs1eUBM7;efy(Y$<8M++U~B~SF_~ARpeVuT~XeaChM>%$ch)xdyxDTJC;*qda1Cjw;1E*&2t}}vCEz-RIdRkWx z*z{Q27?&nIsNTmseB|0NRyO;SF+^Qptt+kIB`XK13oG{cM%T$R(u2^y#;B+cyxQ2F zTC7p91ipiP7`Bs8OHAGKv_Fn`?gKNt)#2c1yIk?q?H!9&TCxaoVC(|1I^w`imeNBx z#$+e~LtI>P-|`J7Hf!E2;S1nhd?>mTrYAKnLT-7fbY3)%cbzS3B`Z zDbiAT&v@$JmR(O{%_M|3!Q#Iz5T*ZPGB{-{}4<}N;v;L0`_r=U;%-?5|B97%9ROBNqm%A=Xd3p z@QrWaqr;>pK6wTZ$E`ER3*=%=#yrG{Np|oZDN98x;k$UYp4(H9srUHX!XLJbRE${} z<`5-SwD~NDG$xF3pl+FutXFK009D>rbiJeQ?f)*u>KJZq36d>XU!RHZxBr6qXJwKC z6h?O>?uK9X;f=7~mgW5F0F^fes42>58^>Z7c52!CRV4{cnnD|1>a7jrYrl!q^y5P| zAhHnx&-7<;zAuFj4Khip2ciaF9uq?xhc=PVAk2v?yiGYtgBKC{k>8bTwn-}sdXAr5 zq=sp*2T_%TLFI+1nMhZ`au%j6GR%RD#*)Sml1$PJ%sQSbK|#u(sFO^yE_q$fpZqCD zwt$Ib-N!tnCC{EA;J}R9Kp8X|I<&ztfq{5h>J6Ot= z|4xc&l8hkMgWIHRBbPcM>YTu$Kr|h=u_Nu;-?JZ|<#kwgLiV)#h}Q|Ncwj|29(<66 zORcYt+4+14JntCXalfE1@NYK`AxRE(!zr}W*XXJ8Ic72O*(>fXUGJ8k{P@-KCHJO& z_1kyLAGkO5kAL7r{(o|p?1CMc6$1zp8G7Vbd!h$lXb_!~tL#=-ryLPL`^Lr{Xj_dA z)XlTy;83owun{_II%;S#r(K8r_jM>oUE6GzuQv6sWt0p}>C~Up&vuX6GRKhl=&O{4 zcW}_BVp3~EWHK{kg5hX&JV7jJTh~t@3qI;?v{hZP6#0@ZhE0{Xbc9nBOZzZR*iN|&x2 zu?KCjwG0C`I;L0 zmrs1VQ@7&br!_m-3=!PY;VY#$Ibf$sk+ikrS!9EEM1;OdD~fc|KiS3dL7O$V39#2m zGrW8^DvM7S57VxBqX6gobDr=%RvyC(VRb%5A5ToYdSd_6KgyvkA~ic_M~qu5ggxN4 zq8+OfcauKwCXqL9Sdd@Bf6HPQp2}rh&GiA)!l(8kZ!lD$5knNv)sqN!DP7RZ)%Z*t z1Mk9Ev?NI=UF0MWVfE53iJ~x~oQfVb<%BPh@g3IE23Y!$J=O(3(Izwgjd6~S!GKL! zP&cWIQfv;4x@&`Y%9_&0~>~UxH zKEEa=KWHPUehl^KVt)Yx+)1xd62_W6F(08dF8@;n$C;$PY}#o`*}ODOE)KO|#$ow_ zyPrd_tx{Je$5a5JDXO0K*mwhmd}z{MwzN>`M``TuZlC!;BHea>a?zbz8mP-jI>6d4 z!%5VDwtN#e07X?}t9^CH6;^5sBX3DPDog1*DZtcu6i&Iob2CF3=X{i?qB*uvTR{h1 zQN{OYUG+wObZfpgP?lkgf5swJa$pP|l**x(;cQcL1fgTArbY@Z)fzDq33aVkYz-%j zV*ZsRSy^#3)sf)oyn(AM@|?#3*#q@62@cDAtZR$Jo3A{P-l~0)SI$b6H-Dg@f-)Ik z*=3<@C(msWQZ_gvbTOn?-oplz-StcGgD2I~w1UgX5FY!#Sax14Y z)6PV4z`bk!s+0qUXK22o@W(%S$2jP^3nLgnd zuz94#a=#!YT+yuxUXJGfJlRx?ervzbqF#AtO5JEv?8+dnAK}DTFOET@WyVqj!BZT8 zpl_KKvq$|SN^T92wzjhDgzJ&d{!3&hjG)t=Vh0>25}zn_?cu^F122=F_c31ZlFCCa zy`C`Qe&7~>YaVKFV#@#t`EXJ`WL9j4z`g#~v-7s$_xJpHSZSR4(tqw%Jz=4G%nn^{ zQDMh+bB(AQb*RkBP;IJL`Vac5khV|_N0ynYSJjQ)GzbZq*v-B>R1Zqn#9k8`I7fPl z;hVN#?BVr7pa;s-vo4|U0IB@;^gfoxLIM7f4N_u1p3s+w9CGV{hyYrmv{qCD?4VF zr#w_bTal3%6;5wisQNG*yzjk*gZoWyj6dX^a^!1pT4hL^rxUa}DXfCN6t4}2FwiiV7esJJSOCK-nnLM77B zyf`+i52}Z@w7N*-?MKnjW*SY(rr!F_0h3g_7U_C}1J*p>(5xNxQTi1}PZTmfdK4<45JIsmwk+pF(S?n>>GUyJ_2I$FocR=5 zLDe>~AH0+ey7@+~{bCf70p^hLXDC?;t($Q$+jA6c&e_|qw z)v*(gY_}{}mBqebTxx{KF>Ix1^#w=%Or>4D0Ii{A%qt26t5boAf1$!;gy#3B( zd-xBZ*EiOsxt0d#lRK$S{7D+iOpZ}|lx1bTA~fHHWUEs@2Ss@&4998;}kMLIbui;3MX-E%FFQ*uAI^WoDsLeB` zd6~qr!{w4)ukG^h{_Ve7e({r^({{Sta;fe3fCVal21uxdd}&I%XIC2CIudR-s83mx zJn%l$U;pm)^7b7&v4=cV^Zaaic5#YmhL2wG_k0K@I*)@qn_^k0PMaJud3h^>l(X}p zK~j*1max8^FqbUI*JhP9?fDw8G{&ABwZFr5yp@h1%^9=8msiwEEKmk1lxzalX*Or2 zj#Sjm_|1d{<%E*_zmtZgsI5P$3i&}?U%_Db(5!Z*eV94T;0hDH9ekjs^id(b8SVB0 z42uFUZ$A!D64a;pvrQhuM$(=ORcTMS2@^UDPU`CJsaG4^nRCJ8fap`>E-Kx%lcO(q zcaZai(AwUgRfTAhu^XAtKpXgxpLpp*D()^1a2t0-c)*H1zvbbAlPeZGCoEW5pRia3 zjF`K-ac31lz&~JuO{{pS6P>1y3=}uyVpMpQzeg&OA4pg_LBI>SGsr_rn!=j0+cYFK zt|Bu$RGivfI4SmiRqpr6{ioi8>H}JNQ-hNv zuyF-QT-=Gx)zH@tqV3QLKXIwv2ip975q}x)#4AF`?W>4f^xSYO$PFhi{(50{mV!U% zDVBecS^oehC;y|Tx+;je&~BWPb)oD@MA{mxsLjcQbt>sU9kC~T3ZII=%ZgI?4sNoe zLZ)HPEPYoZ}dIg!i96>inB=jfe&gDDZ`lJH4L3*ay^8Z#4$dz&I031n^v- zCSH&|bCfpVle}c%?I$`+S(Fb7$`u(bDP!s(3*0_gFQX?_X|`THf}@;8k1Wy+Uh60& z6MmyU^h+r86Cdh7`w+Dm?>w?#)fS#e+ir}?Han^jt@0VyGMZO(I(7j`bJh>^p~xEt zRi)Sl9Q`EeocM=2C5@K6{LM;B&(*HAvpt?oEZT%o|BN`Q96tCDrWvE8U+jEKI<{8l zh-v%8wAXZQLf*l8iiq0p6 z^~k4OU6j#)QfwC?if2pgMQ2es>*6q}JJQJk8SRT*oVuWJXr%>UrSM&-C%&SB#p%)A z?egz``Sa!HKm9oq%jxp_Z@Dc0=FRe(-*Z1Ii%RJm%9UL~s)s+RDYeMs5kMc7`Q=YP zTmJ4>pD$nk$M!gXs4kqK$dL*lCzF!g^AZrNh|d7&R*~x zL|TsqFqtqAiGNZaf<-lee2-|W&}aBFixBBXrnWbxDx3Psz|I&?R0w3Dr2nPMWz}LT zapjpON)CR?GA}(PPhH{_Yjig|WNI9Anby^I#+tF^0(Fc0?xJ?VI(Afn_SO<7zD$%z zc|`o3VeF%|zgz+}2zYCNi`g4!xKJ^^A%*ySA#)zo8s*e*S(+a}gD+2`vm#zg>y($R zu-nIfw*T&V71oMvz-u19%J0sz7}6I|Rq5EP{gyoP$SOL~;?X{$%=VVZf?W3RE>yWU zPa&m3opRZxi5B z)wASXQ0!}zj#2;wG_SqAH_u;wVr_`+{oEj^zklum)rl#60bXpN<|%&PhkDKe)t@Fl z;-uEan{@QQ^mCb5ZWMY&LW!-1pVBKgu+;Ej6r=+2dhfBnROaH(6CbKPZ^2fmhha|7v6wIFr=K1mv+v!#VHb6CtGvoWoS~mN6Pje4 zbR2QEAIjO8VXLEN=zjOk{Lz z@tq`DQ|W;__!|F|Dg(NzUT%AUM10KA`>Riw%R&Q3sf9c|p$@$K_;<63Q>NsNTX{7e z)P<6?X;qcSR6&f7%RQmcr?%Vn5th2>Gi3hc zB2~9&QVkYnNCI96_&o}Pivm`Zz{mN*C`ju?nS+Iw)SR5{L`e!vHjW?0dKA1lL_rp* zJ8)Eq;7X#JrubMGm7z^OvM2*!F{TkfXEX0P?mgYAyxJ&q*&(k^+Ii zaKxJnFA$=u1G4$RB8PMWLtTObGV`oW7`uS~;)rIO1C^Kevp5$5+3j{7eF(+YdoIiW z>hJzF3(KFf*x=P2tO9=f^*776{6y(j-@FCZeHCO$q*gWuM>}Hbpkh!c+dZ?x7taru zU;gMhztR3Rw-X#J|KV3Z<=3Qcm%slXzg=#51a0o-S0TzArdiN0gR-Is85sl?TzP^S{25151HE|qQT}2B8d}mw{h$qe+CoLh@|qpW z`;DCh#Ldnn0K&*xf5%TL!#VPn7gYfa?TRT>5p6SI)Jp-CXXX`t*uks=my?Qq){Z7X zNzxL66ot*Gul)J=hdgT3T{yw4El=fAiI9}Au}$30opT4nEKq@Qk>iV=1@`CiHe`6_ zNiq58L1{r*ekkJ4X}W{oe!#th43O_xP`tj`umELw=#CoTzHB=0)k7F%4jm;#K^Gz3 z8@1v0b=T*oe7yY64j@+rj(N!Hj9XX^k3Vo9BE8-x9HJeF5P@3ciD{!THB`YQK60E; z|MVZ^aUgX-J<7O&9FTL75tT}$G|4NaHcA(VhW5@PRQTA_cKK@*Y!5B%s(s^f@;2!i z$Eo(Q2uB@l!ozshNJ>Gnvp{}7J_r#W)Ts#Vx*Vz4zl_Bf>+}ovH(l3F# zV8#EO#r_2kNSyP=jTJtV&VFKsWF{^BG6K(7Oz@#dhKjK591t0!w>GXfjDs!r3py5w z>jQQhcc}P_TFB@^6jLA{bSOV?h31g0p9AhM^qrmlo;c#=mJgp+_Kgt!IK(aYp1ys{ zPo7>;cMCo^Sd#><0-(z<3w5<;s?%;wtQ|QNc*-P>a2*Pf&lRTsnj3%lkk}A8_A)Qu z_*O*yXDlMSA2p4e0TgzA&#Vwrn!-EYP$R(sl#>gvvrttp{v3;x$=EaQdUP#f9vRZ; zQQIIPmA(g9T>m6LPiV8CrlR)JZk1cfDx0!EL*0yH$3q*@Pw^vbI)u;y0SjZXBEZZK zo21$%K7o013{UBrz{|J}$&O2f*G}5pQpND7OfI_VSKM;);IFJ{c=|wg;*~G*yJ!WI zm<}(#%#9Kh{j1pOXnp*mA!&)Ngh2+##RMMB_@JbAwwu&B_!463kj(;MG6&f#4d7aq zwtR*hApKcC7uP@3$Os||64X*?kA9I;{k5C4sMF7<^zjV~S;upCoW*f#A$EYT6N~aF zD-g+hl-^^S`FVV7`8WqX3GuJ3j4|`-CM$LDUl}KTs;$aLS~WFth+-p3Zsx>at_QEnR5zh{i$5|}PrWTH48 z<;*bxNsy2Kc-vnhNhc7v9MUcqu{3scu{CIZRTdXu!YPA}FyJz=iASBBa|9)Fre^3d z@@emv&?U4q5&!@|07*naR7nxJ++jc9ArSE;N}wro&+wU;7!cg$^8T#wH{iJR>V2Rm z>^2?ouF}8z#osKy{K+pfSRJw}_06BYS>E$v{oj54I#0!NXJPb{t&1`T87HPJ(59@k znO$SI|MIJ!E&t|cUoQXnzb}`6`2YUTa8T)cd_Jb(5X_YGblhl_Xr^b__;UR(K* zJ`E~5IO~XsZXlCFB9*u=1-TLUC!-d%_DSPS8^7 zmzZ?-v=J#14otBIyuv+6GnV&y&^GgtWAY3$YNW}Z6HIsAv4d@?&mp@7Y8^Y+1Wk7_ zw8Nxb`DvN*2$YXs!gW9uKJfrdA`;)cl8*T%rUtFZwgF?XX=qkZ%HiM%)UUmAw z4^C{jZ2bJidO2pXdhCOMK8DT}0bl68xxqp#TzqSVf`_I%Zfqks2DqEh%6aUd?tP8c z+Z=_-WMNPI$2O@KBor-;oaNT33t|Sp$C-yW_OU$xL$1x)4TihoRT`H-UZc17q~0^er7vn0E%N8xDk4mXJc#~CY?mRlgnS)(om6tp*>+w zJf?rd6M7z8WRCd2iQu3Ar4?dIwWl3kVQig%QU+QflTgko_2eLZeI{JS7ikd`>3;)V z8)wnV(f6o&RnvDK%fa~ZWW`^d^v6>O59EawFw*r`|LmiUL;H?Gcpb!~AXa$%%SrL} z@ilPfiFdRZs%2~(WJc9vDHT{mJMh2nr$E#+oRIuw5k?EP3qu5o$P%6TW{0zY3&3N0 zj2tqNB)N~jVmhjxEFxMC@YiEe1EL>oLBj^*uf2r~eNm;o%Tj1uZ0V5x-s7I)I$h*0 z4}p} z_n)3dlc*X$U?hy?Wmk`$y=Bs{Y~C-@>~L8iTVf?>Jo0PK???HN+~8FQWN@OEZx>4VNqR8w()XR0>hZa< z_*A%;l5^RXHe)V3JdkoyaBBC&Z3S(fYsmuD*BVLvo`vcO_bZs-0_OIR-8HrkckH_Px~eS?ZpA<1 zLOF4vBq}-z(lNHQ!4`V%F$!(7Is3o+PWoEe<{&AaF{$qtF`@(EzN>b=H@M! zln@+cg4mQdO+{!nL}<-|$Rh~RLmAp<-9hzIx<6HW&G7>}XSZC<@F!-s-0;~aWO;}Z z41IIP&dM3S@kcez$vZ(AhZRQhN>xxIas%F!VT_4|p$}q-ciq0&iT_}q4fd%TD5B#RxYu-x2 zz00}mqV>Sf!pc0=`YsDo-IWC_EFzeSG#^i>N3^O=Mxx`qOC9f*&pS~e>g<7mmeNuH!MY2VSJd=o}K=Fv;uTE63xDr+lb#2KDA`r52q zO^dI9WF_LRbT%2J89pK95S)dJPxM>RR=Jv?4W>LEm4st`uO!;jvh%}Ug9484*!QEF z?=L_mte&=7H&euzg>lRdKfJZo#8(bsbEU#g}7(+uy3C2jIKVai0{++X>G%#UeE3%-wsVfk}~HZN7nJ9JUT&Pprg zd^6BC=pwIe(zD%<`DQ3L-?}bKY@9ID-a*hEnH&@~67R#ebdU%^f-`8q?q8gwr9NJg zGHCTx_D zlP}&bz_y{b%n4EGNE>R_@dtDk9U&f0X(m?DJHd!{z$R`%5<^UNw&cHqopGKN$00MZ zI4`|L9c^nSH1xAL{-L&HWFQ}of>~dhmMxjgmv<%-PDm>S3sCa8_Y`6u@ZA+Z(s8Se zv@JKM?pUPC!k9@57->3Lvx-3KNe7yO|CM+xoO-5@BsxJ4e{@6Qm!!%~a^C-{@G>~6;| zTw}mG zYShK6h@LdMcosd79;puyybiE+HPe$W-n?%UA0UI`*3ZB|qvL^mv=w%jqO{}-K}VyA z9{SXeWX=yT^GhGKAZ zr+y4SbrS%Le3MtcFqQFWm$o+ZEg;gVwrbYd-!@~_Q6cjPG}KZ5*$0eAZ-)`Sn_3Ve z0Q|v@jQ8QL7{Dkqa!5~F`~FPxr&Dbhr2&rI9+9QDuSk1PLCs1(+A~&Y3B}L{+5s`a zP2Z#)f~lJ{KD|htiiM{JFiBX^C=Fqfr;q>`$AI$HPS}#h(I7R_tQ$&)ZV<>-_(I5L z;FLkC)0u^wVyI|>K^n!JWhGbXeaC@(IsVj(3d9&dt5TLg#>FC4XBJd*1^dI1#ZhH`ns*p;?rNxx#!a8A!kRQefb5i z^EvHA$Wymh*Szrh!`1SEOY-Nd)8)%Aezg4X^ViF3?oIWqrYgWeIpsH`HNboT#=0%} zufDlizWmX_^2cv)mT%sE$f8%?zTU>9oEaRD&a<_Cq=sSyzCo+Zkb}qMVopO8pIj3I zDm@x{IShkAKa_s^DF^wqc+A!TG*c&?W@CTz)KA|ZgoWsDp!6 zd^zBZ-+yTeiv4E9fc$f5uLgpTylW?6wM7lW(KZf|1)c91q`o&6YJ{> zaGZRNDc@b`nKc{l9NnSwp&Q$rxPswVOruOP)CMQS*P2&Rl=2|Zh!yQCZRtuitgPa*^Y#GRTySg=SP61#3N*E$HjiD4IYgAs zkd^jHaK=F72e-61l9{~IN9ap*8))06ujIiIc_OP7lBG@=?d_#T86bDm+$qs^zOWy2 zF1%7UKYQwZoBqH8&Ctg`=(J{1^4+#BQrAr2r}!%XSqOzojR9YKa(Mj8j-yZLKV&-#sWE77Q!=jLmpKTAj%~iDbpOR5_g4?p-Wyr+pk3TGh+hq!HbME zWg=(e)2tQNQ%YYVmxT>wZ4uj<2P{{afKC6z23~cc$j9-GPk0k+WPH;~#{}e&6aS`t zT&6;xwn)^DJ9fwnefSSq}Y^-JGY@XQmnLS(qm7 zgoo&~OOA#9l}xF(tvG2P_?a5b$BjG z71{yCa|f`&IFE70xy3@5Dk()0H85D|wNr!Z$C7ko=)%~^ zty51$(UE}!hJW&&xj;=A<;>YZ>3T~{h*BR`@)-1tx_LQI{Xpjc4RlK|s*BX=SUz~* z;z7R3=KD>3m*j!(C1mnHU@>{e&jb3q=)MqrgA6;a{ok_7^zGZrit*fg`206GG1bpP+sHd9gkW6kD>-F;EAAi9wO+8=!-+%Zmzf^UbC$L#J zFaWws%T5V0Rc{yc=zvVe$Z(8Zv~zSDwhO=5SwD$az2;7U=fm1mJJG+8%Xpzv#gw#x zrrnR2q$C`&d}(_FI4`NzQov-V1>D$K-GruLkCPfo@r!)5udUc5iys7#5V0$^4{<1$ zsXl_Q@%H~Cg$?}N&B9!BlF;B`Q~yKSB~ZFx{o{>tmUf4MzP`4E!k=%QT0$b&EB!ivBqCNoB9TWQ!w zm}H3Q+(!tk$%8uki!$PvoDf{ZaMMzF$tjB$%J#D?tby}{MA-s|5SbV=t|^@@&^LBd zf;RB-XZgcq#7-*pzHaJ<69Mj|;A9a$ibnwCG2D6#|m8P&)k7jIkC6j;=e59^geQ_cV1n@Q6EPM7cuZwXXgw3PDqgYxy?{H~w7gGwHdE_NJO)Yl5&`IC;k^VSgRGB<;eTMLv|nSgLyoU#YSGHsqD zFjNlxI8r}T`xp4aDFnxf>oN5MzA(__56H+?zQIV1G2qxEnam@>)h<+!k3Hx^xqSo- zDe1$;uyRy{=%$YY<2RSa?eBwLjsQnL`y@Jg869GVY-|BieI;uH!$h0>w1D=~y7mWa z>mpiZCohi56C@iYG6)&J`owqH!W}uts~<KWQh;$&Nvs&p(F4#kA&z-(qJ+x(*ug!(u=8X#tq z2#U!7IQ>f5tcw;ab4<4I8Y1-=45<94YUDM_ps1vSj-WN_>|l0c!^8<+O6owYdH_^d zj@FZ!m%n)$Jm!0RJt^$7WP$;_L9OFbGvqLDP&t6Oo5lPS-Hmq#Rv#caWKj3z`UdDza=>|FVzcEUcva>rzDpF8JL>>W?e?wsM^SNS?| zI;K2(ezAP^{5kZ_=`bhxSwk-?a`RYlw2d7p53&)EP9iRdc=#XNF-X#$NfEv5XqhOe zBYLB^Msp#iHT|>Jr@tLWop2q;cPw;$K+HCGHfkzk%89Eo+kpxHO!zJW3}joZGq0T9 zLe4F_d~540kvJks;FK>;q1Ay6$R)Q$`OitU>7PT&&OXwk(l(!1%s^y~ z^?Vd9;)#@q6d5xb@xq`ZdfOiycxnwNp3yo6;M$8yeFZ@m-JZ1gE>ur~oB+MN>4H_# zU2wz-a_FQ-%xU8__d5Fo>54$n-%2%QoC8!AH&#N-a|&g1%<%RAFIPKJ+wAQG!I1`f z(G)+YKN2hIthF8Ve5(77*P;0;qG!)eIWglG&|Ki~D`*$Qg!iX%&c@G!-f`(0Jasq4 zZrT{)BnNYCmrq9+5Mbd(DI72lMdJAzszM1{m`iyYP^^clc!Y*h{sU5UKZy18XKNz!%-8&M^V@g$al^Zv8NB*nhxB;c1N!{r2j|Ow{5L;c zUVVPP{Nm^5%m4g`-z}HCW#sVi4Bv8sOkCf=TTwmXah&w&@5qFR8dbaMTit1RSX~=5 z<`2D{gflSJbaBlM2(&xS5GxQi_Oob$hH>p=>YtS6WGwC8c4e=GPk3v4^YJdVCahv3 zpPUTQ?quyETfT&QWFxdQAH)~Y3tj+OmbY`4eALTvF|ie1)J0Kvs-&@{yuj!iDkEoP zRGQ!dGieN5jU{&U9QoMNT46}(%jCt~C)>iOFxJoZ*(WD$AyOxefhIpWr_CdoF5+>H z`q3}YAP;zIGavl)A+nBT#_ovU8RUb%bfp{`3N?I!IZ|g+>_h*{dq^=*FsL^c^fOsF zBkTCfV%f57u>o+(BaSTmi)qA6#W)TfQCeOm!Lk4x_6tPfI4!Y*C(hc^C7yPxt}c;{ ziBd5JYp>xK%0`RwC{f~n#6@h&SNpj#mWq(mXVGFWe)-mCl}o>gCVXm8IO{e2WW8rL zNT?wIK?0;#5Apa|XR1}LX!(U#Sl)!-b&f#N2 zD0OK_(~=JE%ALZf3)h^1Xs{yW5R8^}a4D337S|y#9oNpC-9UmeH09+V!sp1hG|bP` z_EMk5eKf#?>M>56KrVzr7m5fy7cB(m`o7NYF9cnMeA_)vviItxrEMFv~#smz`+Itln1 z7;n73p%7CZY<>tc^(7TxC#tq>FcZ9Z^|*35E-1D zh%=z;AIs4XnUoD2%+Df+-70M6;`G#47%3<9u|1Uatni{5zqyARS{`#>D^~;z9IsBS zc|WI@aJ6wJ+2AXjc2JiH3cZ#+DwFZGyW?qZ7OL0Rm-*$P=NH_I?L$?ZyseEB{CJQb zm+%A(`>?`rK$dqGd(f6VI=lFYSCP}(9J1vKFL%FO)TQ4k190kvWU+_%(`QsQ0aITo zJShixH*YR3v(MoWebTaslZdhhGIj1u0F9lTa(p<7#VK<75ZW!m-}0o7??a_aCk9-c z82et-U(*@Rvp{v{8y+Yu?dYNMBqv#ANc=>*iXu$gXDqa$`1<%!P8Ue}Wu9~lNYE8Z z%X6~mm_TmFji)Y>9N{>%&g}q4$i`Zlom9ZV+46AI+xHvpf5#^`#H9lOMBA^I<@0AJ z%P+rpxjb932m#>BAG}=t^M5>A{_!7Qa}smLNiCEaw{nY=++!c*MK=bJ`UryjCw8qb z3%+BF$Zfu{2^@ef5FLZmFMB@3vty@kBM?m&+UCc8Xs#zIWLw(XxgIvo?X$)u0OXA~ z{p@Jkd%?StYV6xrF0;jJNOQmmo7)sA_1Hj7T>%B?Hl1!OOG zC9~al=YQ{l?&QiZtoRZZK)8eE5Q${$vHW|CI;I8{pmX{Rw@vRe=fhhGdOMAD?KF5+8>!DAFV z9B0DW_O%|QkdeOs7!xkGB;PasTF4e@<O_3Q`y@Bq zua#G*Xd`4;vyhbT`>QKnCDahqR(`b0J(HWd*f}+ZI4(wG55B7hCF&gH{S}HkW(i*h zbmIMo?4aGUGb>zZA&~i45*}XW^IfejRFBvJIf@TyAB*7~zY=ptN7%B6xJ3pY{N~6q zk-WERJdn@B3JMt?aUef+2p_*l4q#5mb3o4}GU}>}J2rmwS39ooN7&T`s>c;G&I)U z)M-0#9V)F;`q-0!SjlTwa+FQB6<1*Gt|WX$efk}ktp{HiWC;?)tdCzaaCYMBrGBjC zeW}Re0<)3`ZH@&X@#PNa8pryO)Co!}pMA6w8d-3iFg@l906g5O%>?Vj7agPsE<_DM z7voCnB%*<*F2dx}xy)%(kL<=nC--XI6X)=`;kVoGco*w6zfAPmOMV0Z*&J+7&pnf4 z5y$SD4-|V$dm;u@oryRvGh3RggTQOn6Qr>sHot;?{_$?14aP* z6=EfcCwA>aNa+i`uF>Pl#VNbQyeX`g`EzTP zu?;*lxC@A%t>qR7PAo5Y$E>@kr6&{Rvp*=C{^ietwg+EM`B#bl3lW{1@b+V{_`-lY zq^Ab0sPoT$SGhT&yK=d^d!}&e#MrRn(mp@H&WSfa1i;%vxWze`{uHhc!);ig`Yu%i z%(=rKaqyukcTs=&qaQHFoU&s^8-{rC;(Ynhm$&@fGq-}E%MrTSe~*cW+$sf6)Q)Xk z2c0yE!!ift^Gkke;-3x3B3%JU#;SHs z5rFVU>)ei`2ofXd-`;9eI?~LVinhoHSI0A{Y8MC%Kj}m{H|8nC7e0^ThLpchX}fO( z$?MB1rBnkq7m-vXDYv|B?>H*Dacqr!C@r!>4!|l9l_=sReS8zM_@#GK5V&}Wj^N41 zk8Ja0hEe$w$xhtF(SP}nbf9exBqj~+r@wL_TbSvHH1Z{L4}K-3^jMC^NeDW#F0IO7-?0kBmhphClDQb54DD`cxi&)G6C(O}3F8K^UM)ITZ% zJ6UNWs`s`Dd~2)?VCl63=3Wz9Am-GOORVJ7$V+%ZVc{m+YR#gG&jXj-uRbt{`@TRJ zW{`pOAzQ2`$2>Ge&5oS}uV1R03nq8Y)KxX)pN0IGofCBW4;~3Tl=spA{SZnJCf#wf z-}-#b3;bU#Uw!q5TpE3FBoN0x38RBQi|B$TPY|=Hx#EGAyQ395rM!lQ4$ht|0|^tX zi&13rCmpj_1RXnQf>;g0mX1Q+RGZb_Hfd+|i9!O5%1Q$?vWOY~033hAZ^x|)zGpT= z2{_uJHgcDhg%~=YBH;ysoHGEO6I&O2PQ3h!j*6I*8tkJC+S=3smiEMnZ4T!0#h1v! ze{7p(;1$=DvP6wZEBW{UTx=2uVbCR?@+lIa;MFdAsmQRUUOA_%!VDRqp}xK_-&gzC zf4tP6=UT|Sv*kdg@w4LyP46wvYo_p}54W6gqM~p0RZc*pZk$HGL0=wzm>?X49Zcn= zRv!7v;9GqwE4@!^F!^9R-5PyDHu4w`iD2|Hp7S&)81BY;4spqL;sfsoK0D`{0>7u~ zJ=?1@mW3GPkQ-8WY}0$6@s^j%D}%f{8EIt7R8&TEgTJ!w#$v<8vFvNa_XN*-o$UjejTzJS{d0bTbhZ4XW18N2{tH}9P){T!Y zJe%LgdSF24zluPv_Ap;92O(fg>Y%-{5z?yQ$jkc7H`WJj(xNSaCQ$wb=7TmODmz6r zuvh3i7wwj{l?&7jI>ufuxa>BkNzW$yamY| z$9(4E)Y;kxh<%vRu`Z~@Yvyk_IF^>=;2Q|OFNHF9zs)gVYv#r?g_)ps)3M!?!ZMA(a`=zr#UEZyEGX zUc+P*E3C{_wtIj*;z(Or`d6ihGkLiHk^Hf2|hRHw=-33 zvgEpW63Y$fg%Vzxq*=*5I!}T_=l=AE!#(4a5wSoQ@kNnO!7?J&AGvQZ(Zu_q_D8A;`F|L$?$KX>$V z)+Hk!w$-n!Kn8-G(;$maS?Vsy_a!jda%q=3dS0G7aPA?UomJ!xFI{~@+KY2uAxKf9 z5AEdR`zruuK$*W7eF6P5hDBcU!p1ov-v#HsaA3o4U>Xl;!a1XktiS~M^J0VNvw3Eg z$84vMz-tttm(Imy7EBlmFE;^m`tnRJiG7TR8OsDKCg8MoK&Y!{@iNo@W}&z3TqOL!seG=H&RAgbA`du<3a;R>Dh=;-p%D`U57=NUxZLAA`s2 z1N}rLPde!voL-7m+vWeTP4T^JUOBcaF=z9&uSjnNibT667fZrYH}hc z0iXQV#gG*@@G_&wrg{S<{h`xRN5ZieNNR5WK7Cm6J8(T3QWa0O(UBun`XkslUM%mu``+^YqXz{j z(#;Q7ZAtc!uNIu+(Bj+2Cm@sF^(}*4yj)DO9naZM=Cz0T=&+3ttaCc#_=D$^5eEHQ zR^RAp0cm2=j}c2W0od9ZoQQMmO#4Zm8WLH$Q<>0K*ZJAxMDq$l6P!wCw-ujQg@rd$%r~h`)wsp3`EU=u22@D)X8)$m0=N2c6^CouAD=wZ zC05ub5*5V)WClHDtA{Yj>6~|hWav?QIL}zVEcmt!7O6Y~BhO^xl=L0)2CMQ;nm0v$ zL_=%(U%ON>GFM&M|0#?0T{Pkpfx1l_AfJJuSb&y1b1pC^&fCuR@S|OtI!9)FMN9js zKGT$ef;qkttnjwC;p2z6$@V=PaVa|q#Yr4V{P#8iwr%o)Lx$m7+fRHJBtO!v(ojry zmp_xzb9{2Sl97J$;?tW-2RxOs_2(|~Y<6A$H3 ziFh(LxT(hRW{w7Glm$4|Y6l{p8aT(ZeDaN>$oFhq1LIY^e&<}|=EZ}+$~c8KRo#@S zA`2}I;n*F;ax}{kA3L)QN`Pd;v&ZOz^v+)J*zX)undz-Pda3yU$o^>TgR_$7XzFVo zg}w5v6*hI^sG*fzUX@e+)VnV?xJ;0DVDh$4PK;$lx?eY!E-8UD&GfIoxzWn9do3#)5kTOAtw5&L!z`AnJwdS;( zo6{af3+96hMz=<@yN$IHj}FiVJ|gc^XDFfEDhUCUadz+az0-$>VWkG&j<4WRo^S~3 zid;D5#ka$E8I^N1&PT?F=){*s)RlJ0&w)1(wZk?`m#kAIeHvwwrDx+DEc{7;O*_c< z+<amWM;kBJJ zMy42rbOcsjls|U)J->G8dl~*9;$sb2uJZ(XZR-wT?47VdtW{aQ`{ecwVhRws>mafOnp-YoR)ddd$eT>(h$o z=1&1omgH+|WzAfV{P^d;f=XK$`O|AV2c}2(z$p3FK3W9uU~6-Q3z6m3A^FHA9avj# z@yP$x9{Op1{VhgB2{;&ze9DI#u9?Pg3!k&ent+l*{M(sor;k7RcsagzpLXym?UnxF z7#jYUEvb71^nPtf-+hhU_n5mpZyaTl>YDD; zp$&?JWyE%E~N*hZQK;j8He@i+l`cCCyy9jhw$ zJbk2$@=-WA2#ZEJJp)WeD>a;%o@b}SX@^aV_%O+p)uJX1ynVy~j$5x8J9(q+fJdJK z_T0K}K63UHC{*&P;3I4EPSp+jrX#7kO{!^HLOUb)fHok=$Y*WTZ`%a1TX=`{j zg!q|yZJabs-RNtZbR|*))kbfpfc4QE>M%+} zf9a2N;lc8D6Op*YZaXk`l-Zu(qIjX>1+3Ei{qk=yc_yFI(*F*5!l7RlYQ!)$aU&(s@kJ10$AT>vnIi(m$!mnCWjTxNw<`$1fXMTC^WfF7LCDch7;iW&PKG`p=qo_V54WR{-*edsWQlRAC2) zC|tTqWd$NhNifP~(4~28T&xv6I*BU^Y?}r&e^?z(Npn+~t9z863?_QA^7GaTaArfT z6NM8nj{2~jx_5qC=bkeQgF*cYi=FJ@0i(t|=Icd*3mfJ$=5k#w_wF1lKlu0u%LNN2 z{_2;XH4)?v26uMrBmCOULL*!@WMV{y!8|;d#*b-nLB4m%KDtuec5>z@ z5a-&_Q*fK^w&{_S$v{ulIh@Q9PUjcb>A}tBa|Vv?_I9FiMwPElok)X@m*s$*|(XXz15Y0Cg4{|36+T7Ck>AHxkV%^iy~ z^~*IdX%TpZQUohIURzA!eC+Gj`syAp6LJIPi$mDOm%sM(Q|>+tR9##24X{}XqUx)+ z!Pm|g=dNFvCogD4G~~r{H044&d12nzj1wWp|e@7UZIf$b*hg{mwees+X z3t0Hon~ZChs-i*kPwwQ;zHOH}`18+xxjcAu!l*t$Ah>xxz={DpU84LemfUl(@}omu zy`+A=VTw|^6@hXy1`ssnK0Xt!&( zD*e&!MK7M-!Y0m-o;6G@jej~q%&GL9XWC5*=RL`xtV?s*7g$fN2hyHOKD?{@0z}f~ zQybG<^Q&*ECx53NO;Pz3M=J1a&N-+X`LJxdi62u;TY2Mh%J&H!y1Y|8Zu-nrqn8~`M~B5rU+5QBG*eiY)8i!1#ETu7YH#H`P|JF-eQO+Do1 zp8Q*WTH3kdaMle;Vkom|YJ)BPk>OQspSI&v`T0|E^4-(3tqc}u`hfYXzE@~2tqrn)AS{p8WiiKSxRPb%A^>l;_ z>B*94h6V7N9&Qk<=^f$QE#K(uyY&BnkyHgA#26goZ<|c0e2so1fE3xrIX$uCIn-+n zb9ZX10!-7!>m_H=OfSePZ*E)mb~L5jV7P)0_n_C#_NEZ2<~eZ#FJ!}(gVrBHI7qITr&D^P>(odwU z-+P0`PKV`aY4Tx*t=>pP^7@&)baMufa9Ylhnz10~cKEf#=1xOgr^S^*$f=8`QzW}c z{~8;+_x8GyVQ(A#8V}&rn=P8U(NNZzL+ZE77oG572wz6B9SV#*ydQbkX_F?{ow-;v z>-n?6rsp=2w)bMT-2eqRCI~QJ{n(0t3c1JwzByqM0#11(nm&Z{a^sg{vXU78 zE*_zWBVO@X{|Uj}<<&kP0665yz(MtIhk(Mj-Y@rk^baQlss={Bq~kZ5q$7Wh+Nf$% zCvesd?DEG^y2Fo*nZv=t=Jm^&Fu|LeH-ulP;EET7p|OeP=K`3)DUdb=^&ZSJ%ua?(;@p}2;C+{!suukp)I@;S|eQ2KE?BTCR$J&gQ0nX2u z62-dE`2A)B+c^2w9LnJ)$6l-d)@KFAz+XS~X4LAYFZ9_|omoMZi9Nrji_= zUh+xmW7=SD6qp{PPhGH9*t2J6wAB~*n(Zv@G6)=j;{Ip?FZj{k)hn3NWKGNHoIDCR zrE5m-IYLg4YZNt};1Qm!Hu_?Al5elsR&$fLCTzzsPI^%&N)9}@{o53zjHqw z;z+-iB2QL0>G$SryTq@p>5fqDhsr7lco*%ICjmXpE zkmn89*n`lOYb6nnve>`(0_BR+Mlty%)h047(1~_$pu_frw23j(Mm%eGSQuWo&@UYT zu(*7=>979H6>>z+GD;xe9DNDQvW^Oyn~XP(;LFKUaA%W04d;^?T88}>y$En`=K4B5P!w09!gLm$- z%o5+Dr%`sn@6pT%>0N~+qg~c8FC8nlPBnos1_iLiabuVquYq&xu8gBsIzq|*fNpaH zbt5ebmS0I=1_gQkkytulmc^7ky70}!Mp4P!9s@Nn$)ie5dd7m*R}B5U`~Knb$A5B{ z0M+RYJcfRJ!CcYX%Qs&UwByZpc?|aT1WIbS=VLM+MZDv0>GT zH`zwB;3Um9W4k#~=72b+3w>l1M8>*-BolC%KKZdys<7611A%DVE1REr0WFg}^*2A0 zuPih0*!%`usQ3VuMByqIPvY=O+F%7&$&`+07Dqy!f&*Es{(?O^GsO=gh^wUii!c6cn$OOO2z6Ow0 zDQs^SB%C(ehz?6i;-gBb9x>ABoW?`!@0+Z?ATr)cJ&6wZz@z`#u^UL)VatlU&$&@Nm`)&M1R!TV|{V7d+Op^<2E-Y=jF~RaYr~lyh{ce#K56urqZ6 zya1drWa`H*uI?T!w@;M`If=ymjO#ux?)Wm*6$?>b_$-}Z&>%%Qluw&El94s!$Bsdr ztCC6WcSc=E$zSvvxrU!%DW3hAda@qZY<;S9bm0x29k;=%BdO;^ajYiCx}kKaR|M7s z)z`c6Cw^LYR1GlJCT$|X7;Tt|D_ zSxuV0B?5nYdne29es{i{Kl}CakS~wjX0;Jt7Ck+^Lmp2%_>$QRK2mbdeEc(>`WPTs zPf!WIirtY%zZ|^`=hDbe>1cg=Q6NKFH}qH`y>VR`bR#k^)v(jXIN?dt_44T_%kq;S z-&r2qd#IMvwUBS_y;>fyBEgI2XUnt4m&@}fOx(6>}EO%Efa}8 z@|FBidCCFLc2uk-adS7x${%Q6F-hgL-9r3-HMDh+&c8lWMwyv1iYIOC}Q zXlUu_K!PT-HiD{cq@$K&ciR@Ofir-!ZVRI=wV$*U@inv{7+!PioZ}xn!~4h}(FT6t z!SXSqj4%=3AhVnon%3iH4fC72Q!-Q}Cp3W83rA61y~k_y2DAX2i%6K^#q-Gnfq7o? zBb?=_)yppWRYP7$LT~jKD0m%wQ`8jxs7tnU0HlxMX_eV>(b(uq?++MBoxpQ|6-Px6 zZBHgamIn7fI1a@M$6`P#9cC%3Q9Mx?8|j<^Bc3w);e1qu_boKR#Efq+f=Cd{W9M7E zLq5UdI6^R@lPPgRwb3T=a@AuJ43xp;TL_KeQC{XJ`H~rgsXHDMfghDOW#xA*l0L>X zB?T-F+qMe8xXz#x)ezYj;k<-~3P=QQMpyzP2$%-snK9^QYjzr6R}yHqgE|C~9g zyu9@FGdfpCml-YkR{2h;cxRy4@8yHXj~_4Z+`rqXsEzjlyKi(GtQxHB(Mh+=2@T+k z2;g9iIzSU9j#wo9*2zip;J#wC_G>;ld4BE742)RQc+{C_6U7?wM}OoXo~ix-&$Vh@ z?NFWtFz{4_$rH8!2ObMX1p&spJv)m!3}o2D2YR`Iyw$@fDGi9w@c1<%N2P1n(XGp5 z^+qgm0+r4CN*ATHzx&P22sHJ>sjT3W?`*!F13h^ZCfyj-4#JT~fnUSxQ||R%z{6MQ z@?G@wF8rR*wBBOQs*R;yW~0$r<@iBC)&oZl)*duo)0I4NB|Y13096=iZb(GpcGX?J zIsBu>HAr3cTH#7yHU0olw6xf9Eb2>gzQKRQiVOv*0NEATbmzC=m5!r2-GzJZuHC{* zzUSbS?cvR9>FF)dp%Jcuk~%u7Aq2-Y_1zmD>-NYjIEZZg(-D{CjUG8SAY5U!lO3!1 zH}z4PHH36(=Wmv0uP*p}@HIDc&avk4oby#d@5d}I323Bw{nC+CnfK-bKJ+Dy+Qw_o z?HsME(`G1lrvso;<%y$c^81cr7g9?LGB&r6?ZdP)eX;A@9G`8Y+8({(Rn>e;KUB0bMn#6_|678^<(sBn)!i4Np882 z*Uq?BPIbh+avJHao$<8&eI zGC}m9mz;Fs3(4Q014m%5v7PHWKRth<%BoPHR>1%OKmbWZK~(qG*Wj~V!;xHVM1Sx@ z0qS4|QC9v}rsY+;l9^mSp3i=fG{D9CrO)O~Sv+WeY-ymf3+_)p-d%q3qy6Q44VU!`PD;P=Y2fr*;nkOX zx#?FHHwN?O(~_3W!}LG?24p>K3y~(AQTAK(YVX)0URykiY1nXNQ5Q^4d931g2|KbueV9Mx;{Z#qVgRU@* z=0el9QBQ+}P-35><<)vJOnFb^8JxYJKpEqxSxLi^aG5R!UTDkMMvK+!N$_-F)Z+!8 zx^{Y))2STb5?on>=hsd7$6pdEJ^PfDk~*4n{$6gt*LI50Ydo|-w~hXw3J)(B|&aS*4mx`x%5MC zqyyV1q|nmmxT*pJ+niub;BDR=MNNwwH1O&Y!EZm7_vIHmM1F7pQY^*}+Z~l9c}(i&48=s~|b0`f?XU zW0{lMsOzk}{GAT_hy?NQCVk!TUMHpIdO@2zG) znzGn|we#5TjCEtrk>!$gyIf!P>|pRl+Xxl*n;a!;mj>-ZhYA zW80mB;Q-r;4v8vOLiy-q2RH zJHY5WD%vJ&(qXS+JBd9*YNBo@SzQLs6 z{DKy6_&`sXu46GG=Qci$IyNU2TALo6Q*BxKgIUfE@6?u~v*09v(3gbqbEZiOA@!nY z?sjI?(Ue7L@W_jP=M7yaV69=37Mbc-o<^CRS>L(#MX49OoZ~cr+qd@!R{83h^Huo> zzz#Nh&8WgTHWELs0lYr0ZpCS5qrb`*8e=a&0Izl0X-I(m-X>Lr5nlGI7$SEQ2W1W5 zBshQS&UvRi-lxvJB=|XluDeT5xoE!~g1wQW&@MB2f}L(NI&{iNkvA7J4-)313uEAt zbZhoTTA55i9y;soPmQTB<=bGVa|;waD%%aN(}@}-Eg>i8<`)^p&g!1|p$Ckh5~TVW zXGf20jSMtioV{9}KXW<~j~(Gj)filO?g*hiQadkceTl#{2D!HN@WTKu0c0Ojldd$J zyL1=_km)-f6pEt#ah+~R+cvM=xvu`Jn~LDCbX3k!X5j87;F5=Kq$p!M_|DP(^1%b< zK6BHv^V$H_WdL3OLp|s#_>c(rKjF)0*C%x93?(!9gh+>}8z8$TUpCcw^@=p73Mh~A zL8@TOesh9V+A7kN%6eou|J2Kx+_CwvBtRS@g z=#O%;DBs$5TMBWXHr;;1rzXC8((-$>%dQA8L8|%`+ib(BSmZNw{7h~>tqj1|Z$sak zZGFv`lY5#=JF3{q?9&=ucMljx#|^}aVL0kP`sQ~xMQ;EtiO2!YE%^ZUG97pG1Akr% zMnQ2;f9MOpmeYRnsTAzgJMjlbiWlC<*+Rh7} zQ0>wNIn~HM^$JJMZ=~ObB-+a&j_g!?(pEAg#kE;*v-Na zLf9}mZ0{FVpYa01v&YPVCCGCrlv}>7?}#QqYKf9;69^QTicXiZMOA*v2qOtAkPW`U zut%>Ce4NZk?J;j(A2H|g-o1Ov9X`L>h_4+jGKfQat3F3V<$nTtX@N&v(dcS)Kp$o~ zA@&H?ou%Bg1$kKM%hNTz{T0s^&(C=L_Ut*2;hr-p^AcZr!F)f)HGok{M{hTuG);lF z$GDCV6g;7O=lar}0x&)@(sKiF>tOkk!1*za;$!Aee@sL1h{wtMjH+H^HyafzZ1u>p zUXx(QLUJ-Hq*FQ6uPoTG3p|yE^%T3 zdq5j-+eQ1ik@L;|0y_N)-qSRMI|K3fF?y7Ud;?Gmlzqv!6Esg|$X(~! zWB@3(`R%lys8ZN6XoAQ4J9~EC27BJf@JIW7PH_2z$MMh42|EZVZOig2DM8mM40j0p z4(Z5T2G5U($b+nU)aShUlp{H*qs2d!(R0*aTch;-dq@|PFP8KH&-(NzBu#ZKR_$j% zJ#9Y_+KBY(5&G3Hql+$&PFb1_pPo;ol0aFw1jeI!MP^yOkEum9as#T;;qZ@V&OZ0Y~kv7~oHC z{1anAW>?~JH`%kiI$ECVhZF{v>HcxEMH)3R+o)cHPG9Ep12V2YFvC{hR7ig8*X(B$ zYV#>?RCABj&S_5`mDh4|!cm>OUaRS7$V0k;!Kvp$;z0FT@b9+SLwWU;Y$l3TcdKH6 zL>tLGc|D!k%4k1{*)Jila_SjZ%x!oD<4zGaU^i~lm&>-kV88rRoym{K5RD98OP9>x z(tMZlDGlWH@K0^9GX!ODwA{gw1au^NHVA<6CO9i?ekNTgVd6zOryR;oVHm~=Szt<@ zMnB*Ua!0`OHVPcmfIWQw{pDNcYM#-{X)5E08yTB?)Slhvb$2w`m!sTrfhb-~k%5d8T;j|Se#Ii>ho`&@@S{h| zyYJpze*N38moGklx;$g;qu1BR=s?`N%QHq$8#Tu1y9?ybQ!{Az(XHI$l*oMn!LOgZ zpbubvxQYPu_F0EEJHo#j z$gdEQiv%70tvWCTx`~V;3}Ea?96)ds^n_und(4@2-s}lML2J5tqhUZJZhn&kS-Jz0 zKN=IAAM)i%SpG-RbI{iQsruOR*Au}wyrzvyVhTW^RD?JC0;nwN7aM% z+f6=w;^4HGXHPE~RcGzdW0n@X%^Jh3+3CXaub97j;ItM33Rlf|<+4`rCp|y0Xq}UW zM|C7eU6W9re49?bpu=I(m7vVZSAgv~b-;kPQB=;);n9)PXV87dh}%oPDtA#dk5qKn zPIqzL;$D)%mrrkge zOKxjpZ|Z-#4XjEl zci4}H9U8 zXlL;zN$FfuKL1?t%%f3d8hsmp)3|aig;jQMk#zv^W6NGeMTf7My7uZ8H>spMUr`U0 zK2??@ve0g0V#=69E!xHE0{Za@ zn=eJ3BmV_@yEI@&CzmLzDG-#;SHWq(yz!IlaUyym+qYx_%cl*>eq^Fulp z$^yT|3qr0y@(DX!j*P0$_5}7QV$R^1AZ)G;O!YwZV4&*fq71fQw`b=y&ELsX#)C8<=h;0aX_NY>O48BiBQXYw3E~wx(~_9H$?e z^nryIC!U9<55L12*Y0N#1&>(~vhAvjHg>=tPAushrMz z|L`3~ckb7*oX~RJdw8EO%)D9tmgPv!bUyIWuCLoDOaVs`b8Q2Vj^xV|lsXj%We90< zRvSdhm)p40^$ z_$wO@D-o!(v9fRu!*o__<$w?W+Q_$In@9MQdc=nX9=$_QdY^A>-@V(~s;;@IU6jFH z{y1?c3jS$w%oAaHbm|q)<_kpNsmZkx!K~eh(PhrS;vpEvUi#G?3l()mPBO-LyHBOG4%~KlrV+T(!cY^CR$0$7X*v-4@^QQOK8}r_(|(| z#DQN`Za+0NL1ddKHFVOHF0My!*15TPDG$71Q8w{V#;U2Exs5I`S7vGs?bNiZ%5&3~ z=qu2WCDqc@9ov*z8gY60sCvD)7p!S#dLzzad= zx}t{gsRR8*&l5?y5H|%|QHX*!?SjB=96Y|A z2m6GVSn(E5M%IU~%MR_QtIg=A6pr88z@!>^)Mp%d>B%PMq^=2*_`N}D%piS6qRe(2 z!+jSy=WQFcSXha#X&zus1^Ckl7Ya}bH3nE`&jt>mzu`^(pZxfT%PDg#z0>~UTi#&* z#jlocdD~pqn!8_>HVW4%#5)xi#eh>M)sd!>+1Yu)e}G`&yv{AYgqJPdL+2M60G>H`t3_b_V$lyI4F~>N{Yjx0|SVeJDh^!pc)Nf0~kl8)X_1I z@E<&UxV-oNdyJUA(_=axw``B+YWS=`ptd`kK4P6eChss$_9~%rr0t|iQm@^ufvUnS zfhj8}KT}~i$Drd6;}XQ9wQ0 z;n{EruHPmrJ|8-MYG|aTtn0O^xJDS~qS}yqvykv%wKJWOn9Z&R0)BwW;KpU9j(ogd zfNEd{FOr2n^=EKkM`0bypY`dLPe9goLUCO^T4ijlV`xo20uT_$m$Iuo{=4doBm-X_EJK=5 z6n3O|k_Ie)g!fFg~iLE}`rf%i7LJY|YTOV)@_ z5!qyeUs9Cbi`l!H%u@1K*<7zG2DI|kPI6+s4$mr!l?HXJ+vFRFDTi7~{(5@!!5YuL z%`c8i=94mTy*%ax%qLHnOV0-toWL=htv05-^Y0G`P@Ny`9QBh!M^T;MMqT5k_7=X_ zQ#GjR$LW=NVvtkdAr2^kgKtu06DjikFp7B*{|^*=Xlff%=~Ac2EvevF6xOzffcoT zKB6#gB&2JPH}q*UV7d`#;YgSF-e`B7T+fvQT(6MNK7!XPcsYtsXY*L$EWJ=C32?4# z(;%aq^3W2H76k3I39Ms_%|=TA=)&|rSRwYpW``jpc){Jik! zNMEViOOX4Qf?_bfa6pjpGs60EM!@UNPm1?ykjd#s(&RAnT53DcX*0F@%&?(uq*x>De!0N z=Q+;p%iq1&N091sJbV6(7kZx1fa6w- z`lV-hy5T`u2pDB>rbsw2ADP@J$v@`a-YZGHr!u-als>JJ`KntzB7VU z9~1Sch+>oQfZEC@aq<74BUnmcYE2M4&-{^Wn#zERXnH;oWx}sl848B;cb% zw{vOUB=AmCaI+D~4mVhbhIxn-z3taP#B=E@lYZM#*c(WJ&5!8IH!v6B)o;PR(d76Z{8; zKSyQc!c6PKJ!~ZM@CM_iZ|rQ(scxX45(~GNpl$nFPZacZIE0@&X=u zY9Bja(236))mVst>`j#zp$JICuaDZ^IO=D>RA57S`E#@Gd*vZ6V7esv<6K`{xgL4q zATEZF^7&a2T1MN4%i{`~+yLp*wch1T4H{noMQQ4EL$)5JVV*~R4D#iyQ9bZ^WfA)< zdJAsK&SY3fq&+K?zRF4&UXA z32=E-<6~3wSenQ@U$4C~gH0T3p=exEAH3N);wzPAq0oV0ImQ%*mQ5*Oo->k%gBxAQ zf5J-vJH*o;5~Ox36UWG4#~>k?);hK@!?Rf1%o{;r3CZU=)t6tM<>jEpg>xf%n4|6O zuG)#gyF}wJnJ4zulW&+O$cptSJ+9Z9>2xWbXB343;KREZWmAt*kg9N&i(=WMJWeZH z$LIM5!%^r0m(I;vWl~%TK|s-?!lllrM;V-YCtjycfadJVOP0Xd z%K39fgTMLW)$;TI?`s+?CtgpZXJC5k4a;SSTG2Z3RAO5KlB{y;6sbc9c(S57T4c?! zLirf@0whma*nEdMzB_cj7X(PxyPOM0<8MG98D*}rbslEL1HX5+JYwK@$b8Npe)z%i z0RieMFFn}-7$jZsqKUi;(_;N5yRfoGoQBtIDLQ$vLk6vLw0i7r=M1mIO?m;Up!(-mSg4$??dar z(I10Bj)5^8(1Hipng-w_$hGwR(|<^DAZiavd<*fCie0f~iW;A*MH-c)zI^mV)4hp5N+{jN~$Wn0Pg_*U($e}+X zi*3$kqa8<3(ZdxtDJ~!Mf`H=%I&+QJT^@PIFS2XDrUyX77tma>z%I;}T-E;zref?6 z_1Q06QdeFw+;+*$w*0D6Z-ien2jI>2=oVVFMd-zlLs^|VB0X)i=a8#>W}fjBacP;+ z&vwMGps7EN8h}Y}>Pj6VA2@YKUl{q85n|Wi-8+886AH%J_mxd8SsPbgk>y*aRz2hE zSTE0MOI`Ptpw*X4P;LE_wl?U}t_G;;K|C#kB_7h^XXUH!K!Pb+Ru37F}_)yqO^7lD>&kfAKQhVV3;32oUqB3q{MH! zn}aqcX_@p9KKw11G@o4NdLyIinqs!r3rAON|FpaH-cds}E0JVL7nD{$^#x41i5bP} z+MFrBxYV~$+eSIBvAe0Yhw__&u_t-)6$3Ng5ZR-ZBAVcx_TpRyYrQoIt*W$0m1D%_m=lR z_+a^jN8m1T1t{`ZDe28^^w=lpgZ>D?L4MrdR!G@X9&IxAvC$WssTLH#>S#IBaqF1% zl4{{w1UfW(^mNV@wxGK*rkTnSI&Pa5J-g9mIqQ{VS11l^3G$}+@QQw~ef-GZ?K`)Z zKmF;SEI<13kCtEj;_sH<{`NO@roCw`S^qfNFutV?4f#R7XZZNvUA&~h*k9gf?%u7w zHNMhQNtBYaX+*$d#Q>p=rM}foPz?}yfE!q<#$i_)2{(Zv7rq#EY=A>xddPVTzXu~7 z{*X-?+o+Ty4vzTRygM4v2n6TVCFt1P$fn}B+u%D=>k1AAsk)%oa_9@@#qduwy4}=29mRw5<)+MKaW(h7g+n`W;V9$rhfC zjl4m;WH`s^9KM)&c*3YEpC3Mj#vuid7+Kxh;R72iq2zRdK|=@Ti9BipV3Q4!Z##VX zM_P7yx&ZEihTqQl0^ZK-sOe-b8A-h~Q9oC|=;V<60#si@qz)hPk&QjtpiQUJ(*8=I zem(2TL+2hjTd#$ie_;Ekl*K#;S-Jv5-I!b*^|+R^iBY%Gb;W_#Okug@Tz5JnU)H>4 z=_z&KbdKkY9P$8+V3MF39M)xZQ2Dt6u|a`>t_aZyFL1s=_xg`x+rD&R``;7@{9d1I ztzPt^FUn`WfqftgU)p=-?8UNz^KZSJrv&8btZv#2vO_Dd;tu_c091 zA&c!c+6tF9U2b}XwB5FH*+3pKfO+b zkwl0=nsNn7`%gwUSMfH`qG(hZz6_Gpvpm~=Y(ePYFE#m;R}*_f(6l0WnRZf~Vsy7I zX?N?b=cWyxVhUzGsChTR&ut%hs&M3b)YP?VzeS;?-Hlu9Pe3?wst53pJUnPXFXVxL zx9<&7r&*iPIm~;dm@SJSqTB*XId~REl$LVc$cur)po$&>Y_PL(| z^rFI4WvzwrRkG?+aq>jd<<%%s5Li>`^1iaXvPwlE-SRqUjfa%HxHh(;}gCs6Y zL%t~|-O;0YR!-MNlK^Buo4?(29@C%Pf6cN|50-oHobs6X$@1CXK4t{fFVGN#*if7?5+Od{B=s%(H%y&4 zxI=(?$in|NhvZco)mo0iwQ_7SGQwxjbHRG7_wV0l^?^U?ZTKUWj#A&3K92-Pj}V|2 zKD88@!6m-!Y)E*8JY4v<-6Yr$>PGpMLbsudoI@X31E=!ThkBTXL#I+7n++TJRyH;v zTPY&sunWFutK9gIe=Ptmip;2rFy>O4w9yk+q=lAal^dX59zyj_d-&@HNotb=iw=R@2Xh;1? zUlyGsoj&^Pt287`usYta{|F-vrO-dr)FATmra+XQrABHc2Y z&21#&L_aZs%&{Y1wj)d zco%nAE{(N5eT;pJAn`yV#ns>?Qjs4&e=CQcOI~Z$fp(6gNQMyxZRgi>UNTbZV&&YU zGAGaPeLLrp?u8q50~UiJ_akoB51rS`JlPXIM6l~7vN_pe>hCtOI)t4`A1AXxIl=-{{ zWUm?>WsnY1;=ydo_d3J!APp}FjFYV#bY^XdM+MqY|vxd zrM|S4d?;5m*I!H523B4~XjTR{+f!H4_lBS2)?O)7dcm;vCyv6aPiCj>V_a3Fj3SPlJXBXWggool@x6s)uDPG_(qXc3Y#}J z2PnmSnVOpbbtAl_#3ya};cBh-`d1^m6f=F89}5a?nc;=34bw_ftnS?uW(BW-qL6)s z^Hcfa2>l~-&B^kK+8b`b{ma+FqaBoR*bL8Id`;h&g~Yx(?+C-T5WU05L0ljAgo;0PdFKh!h5lQ|H7p4XFeyCw?Jq z5WTY<{A*Fl%ZEOu1Ilr{gnuYlSR;(ArujGYEuq3~JZv~Ma2-0$>ebHW^5}z8=4?J( zzG8W&|M&m?Y&m=GI-w`v0*3|zTIViEB%*Gfh4b?O_`|vw1)PgFlWLF?QSKs@#YaB^OIV> z3j4QW0Pxz;F9XR}JR6jQL%!W~cyX8@TU9m)Ix68~hIx6%j~*yH&dw;J4bSkf`YDa1 z{M_7ht+++I**|*e-I9@8anLC<;(zDfo#khDf3`g21+riK{O8O!epcrxkJhr@TBqPm zaD>!8VtdN#kpF>?4BR?7T<$XpRg@Ur(U3M%Z&d)Vuas*@zb#bYX2g)c-y@ z?el}qaYeU2qL!07inOFa$}Z2^VfF;D{*otvr9c_1S7Tc*wJpD72GfyrfzgMuXLso8 z1KVaf8*1}i>sLC}Hvn#MOWzFS2}T5r@U#&vG3Ah{EX*T5A-Lp204IzRH~)}we&gLv z(`gtOC2`*Hl)}fU`g;v99rMa~`ZVBoIV(q7TnqA?dUff|fjHz}y=gx%oZ!EAj}MnS z9PjX92;M6yU$IA1@OrbE`iE_`w-oIrQ}+5BrHXg3+Vv@u`jH+YqN8qNyh*Aaa?5LQ zsSW^laFB3~QRsP-|LF_rF7tV>3Bom#28hemmaLMBOgxof3d$jA-BjXm!V1@S+VyXI z(_p|y{EfzuX-Ayhxgp9)DN*oM-KH>`ywBX;Irm!Ol-GDg`3qK7*n%E(FKsN6+;Wmm zR0=%0=`LnY%f<8$rZ-rZU4(uyaIYWYWkdr`>YJln(5tVEt zJ(Mgf_060pqIxob7w5u>TE9-texj z$WC|gFnrLsGoo_;8j!b={!j?4m6c!6&DW_gd1AJ>%q%^7djo<3Nv4{uXJ_@b2S z(t+M)ageUE>D30P9F^_|ydd4>#+cW_ow zhdtT`@CK6Jm(aVP2_i4f{J5JX2e9CCq3;gwzNB(yh*1S!ydcr6WDkVq-2IJhqZtBMl#k2mwqpY=A z$mYo48OA#UcW*CSmR_eI6=f@nBf{G4cJokqSqdLL!j|SGg-Y}+y?DOuqn|DZblkOa z>R7c*V3vN+A}BJl0k@MOb^&b*v} z!F0o9;1f(#tNj7e4hgKm)gAPkPn!dn=gpTgx^x_6IqLsYZwIH#{WPK`ell+DT+yBw zjQVtpxu;9ooE(;56en&F9Kp(=Vi??NO;DIe4SlhkyV@gU;HyrZ?>AOmXt5=-k^QeI~(>@)YU?UhpN;Vr-E~O_<^+In|0Pk^p9uRy)Nv53T z{g+Sc9zNz3*=?NkXNLYj`t0z%%CoiS*&Cs3b3|W!0IpVvAh5QMn1v|RW!qtba0^MF za_a0B_1UDRAR%8q<&Dt?&<%uV+;a$HTo0umv{40aL49q^~ zI+Qncx2&hYfM#twz`>t1N9XX2U1Z*3qdB47Jj%>$TdG(3tjt*wg(lbd$EqC4TGDBP z=gddnWe&YBuTeFiYhR<>pa7^rnCK6MzAUKibuh4`502j(q{e{!v{`r)K&yXuGw-{b z!lz;alZ_yy;|JxVnZ%)(l@`C_P79Z&(^PjFA<%wENVpMjDw%0R(}Q5!iwg#wO`JzS z9f$u6C5-M}BgTcYIm)W>REWA62RBphI9iB|8b^Sn6%I12Up9-E1c-O|MBb+#^Fq@8 zv*ihMkbd~1djzcWnNt_k|Kc~SyZO~QmGcCgI5GyS(q%Dq31w-4f8_FFHY-2XnzwwH ziU3HbwX#0rBMaZKLV+;8 z9le9hmvrPl#(BwFqgPDI@{3P(eDS2b;{(n^&H$9fV2PhiQGrM8r><-j<=^W~S6L4r zv!~Kyw|qyd0?XfYINFJTkLeKSezP4UzDe8iH*_$E3{^R&(x6p5c2N^Np{H6a=}SXj zke*CPV9xDGozEyf^>~+cV*mQD|C%)DpgVCUEoJ8uloUq!*NmqA?)Bwz51!u#?vT17 z9iY-xb3>^duwJ9De(flwZDRyFwrS+^q8qvVqLj-_5$F-%O`lyHFGwwLMZ%XV$57CzMnq zfe*V!Q~xB<-D{5K_p+BtK%nX`c*X6AUP$;+&s_p97Y13`+ujJBS(lyfs0nKrqlgY{ zgxsvy=3_f`3ec8&>14i2H~h*^VZP_r{ZSGFs|iT3ualx3SwDUL3lEevb)=eatVf3b@%1?nZ88fz`KLaDlGr zKx%w-qBZ~q%ME<(0@-rgs1I3sLjUXe1gD$-K#%I`i>-T1LD+X10=>uu4(c1)FV1|# zP4Rkk`NdA@Lv7IEfb#?dw`srptgCPJ%blIRYL{tw>~X6yYF7Nsky6x9ODG;41JTpR zSeY~s>D$Q&j?75804=fU3Z&^XAEMZ*Khxwg9^l)7aGz8JOIiQI?YTJcb6>V`M0p>< z4)ulfJ9F3f83E^#jXH*%ub2{{uJl1=&Ob{M%lLj$o55D7?Am;Eid3c`xRhGQ=X%(MA!io z!IWls(t+uT2AOFXTta)UPRvu9QYmLMKLZFra4lF(zZCG5T^P3AD??9IM*!8wuJpH< z$38I~lCHJuFE~>-TifV^>`4a(Uc{9Sg@d*?H@0)?Mt#H!I^?p=wr1D_D<}46Vo9w4 zjZV16kER}>?$}lyY04wVe#n6Cig^wj9nzzvzk|#6L`e)X8+hU>e5AENKjnO|;FrF{ zz03SmhJ>&senFq7zgT~=HDasD=QqG#lLB0wkQ~Qh~04uyZ2u2k7@LHJAuRmf}33>JqlkTd>4PHDt zf~-m}C*Z<6{V;Iundcc(zzWlFz(=DCbW&H0ek}*r%cBn;E${Go(+k!nb-mE@m$#O` z{;OZ(INUj&9Wmd^sSNgH7%s)!HZ!wB=T^w=~zY}ZLoKBbfnYn%AyO;oeEl_qjd4)hmRgCfBLhZEe{?% zoX2zWgM%YXi}pDdrgcYk@vrvXt#c%QvETR!{ztK~0# z{`vBM{mtjh)uK^?^gON?i;W%(h}#j-DhP6D1h^6rzg0xfOm5VBwL_Vf1&OBcCzFh` zm;(sqka=q?!>bO~itbI!4r}tM12^YLU7fT17uRGFq`C|aBZG9HKEif{L>}rYxT%l_ z`5qZUF+WyXIw~ukZL0qK>8GE9V;>**E9~y0(Z&LRAHT97gWGjT=h*5Cg8w_Lr+Vbv zJ|77R3GcP%;5DGxf=hL-2p-}knZbt;zKr3#P+yX=QP6+Xw>L%8Xv!xV0EvE90D>Ph znkr7x_}5zfrSC)*9(?J}Ej@5fF=Y(Ek_kN#rKMwW*|za)h$W{Sh4IM&ZGw2Hzdfm-oObgC zH%Aul@j~4x^Yf3Hle*^{^Kh3QfYS$tKh-wpi4D|Ey4=f4y&Ae008)_;9n|gtpNWKJ zPw$n38d1q~K0|N&SVZ{o^X8HAwC0fcMz@F@uRwIhjrVir)%rHSPXnC#VcTt`&l(zp zEjbxhIidUsbA4S8)cRro%1QD~kU|>u!}kdHfl8SKby?}gFkgOGL_G1?Yumf zZvp<{uWK&jAAGe1(gOvT3GP8(ErC3JNxULS#`Q{moZ>Vel|U$NV}!LYQGpXUkL@L# zt|+4|J+JMFjG4+Akx55|T1H)K1^v%I%ZOf3{oVG6DprtZ`FzO}otaeI2tP96dj_V& z2RJ+@t7@56${b#Y4>E%qKT|&vPS)x&xd7_(F;1GSDpwmvb*!w$7OjWvHFq~h^l|n_ z4wxu|`ik8M!$|VYF;5bgvV+*$f`59`a5tM;jB^g0+uCiL4I+x!8VZx)&tDh^7G{R5 zzayii6{g5sr;t(clHo{*_=6@x#TU(c3>S*vuc~A@h!vQMLW|+X^A!)ja$=`22q`u?6}M$c_j6_+eE8w=FaOQIS`Lp+dK0za zlZQ;N9FaGWFub9r@S8u2;>;~N+CI~vcf3kdV|I_8q|M{oO|Nd9M zT>h8;_5WP{{cj%gR`lHnichR=YSsqOe^WWck7#382;`XzGqHIBZwS|8nvQ@Cu8APP(Y&XVpK~7To^d0wdofEi9Wo;Ax9#neeWaO9G>g1!v{u|R zB5wx#@#h@Uk3RZXgD-#imw$i<#{6#iKD4Tr@TMHwE)F}n(ZukePNr=T zZv3DI9N?*Aq^H->Z!%G|P72&_8$x9VKm1x}oF7)3Nm>0}9z^89AKQ$%JwQ&JEq_C2 zEeA!J8D$t;!y}2|8I|!{oo{T0x@9MP=5Pet8*X@B(O%s?0o7jl56$NRUrK{{n*-{5EJ3=BcHQAv3tH95_0GbM5T zEk7tk+4MHLMt2z0I^zbn{;WYCeu(`IP!-R)gmZ(0-jJjE8e!n+H4Ml+`XbZ?ihYSp zFPR$Q2&yYP)M=A0wapgeqtq=%826nfATQ7qt%C#c%F%8`f3soMN0kNfxt3q@Nw*!a zP2s>k?TIfWxhWS((6xUk0e>Mq*@agF;sr85PKD>-0D!*d96Hf8k{1nmx#@8R2lm!J zji>^zoI3`qoq&t9Lq5B^tp@Rm(Poz!Yb24nDhrxey7``dD?g=ha06H9fZc+TWL5%B z@&oe#8eLHa9M&o8L4`#VtS9VJQ&s7~%asejQ_FU+E#gnxge$!IJ|n_ZD(7Tdx$HwN zYWp-#2?$cL>m`Qti(zL}Or|E+j%g$Lx4`hPS!0UF)du|f1>{Il_vQ#UXV{r?>Pi5E z(v7xh1*!0|>2$z?&PLKrREV!65lergOo)+}^L%}!BOFOXUuL-AJwf<{ie=!rwiva{ za#!*Q&6PmyfxhRTb(pemxVh19+~P?BQpi8yt(+B)y!r>=;E+Fjj^g&s7R}V0SSOl( zgK=JQ!`MitsHF)%$tusqZ5D(duBXjXYujd;g}C125Q&VDrs#G!W;-X}qxDNzue7JM zte3Wbekt_z{;TB#f0{S`2~-K7E$2@<5CoZX@b$klQ|=kSyY;BM!uan-Y`u#%5RR!TY{9(#ZA;YZ8A{ycqn zx8K1f#8iE;4^E3YDrBpxf3*NNE$a(1>`;%G1AI!*I(L!y42*K-s0XsirAku$O$<)51^Wfvz$8|vCzg>uiQ)CLU;2~Jr!WTe?Q z`E5*1ce5jzhHhjxO`2l|brC94LtBDCY@>OO@L;Z9>;o%(*@mz;QN`~cFtIQ0sahq7 zzjP5IK<;B>PXT$5SF4WaVyYb|Nv)$(12F01jNXLUCJgUniidm&)WQHr(PZbL!t$J( z8rOSdW+KbG@e&Yif;aDbHo(%LXnsJMOYrxI9}Lz6{hSyE)ZD!Cdq~iC+UTOwGzeO4 z&}CfSDBmwO8atBsk8J5;h5xQzJRdBhM}1g(>r?tsH$V7DK8B24(`GTyi*ED_PC%ke zj)dS?jh^N+aQB>LXP!QxT_8v;_y*hv?=4xE(_(%!Mb*)5=JlQsggeYIiqdZAWCTS< zMo}wGI!e;^y&#PX4u9}<+?^pPo4 z77kc?ULdncWZDaQq?>_lY7+?c4Z{td=656JgfAcQUo&8JMR4j<1K;Gortykb^rji~ zd-Xp3l64+>1U|jNPrB{E)@M(UJiKooh^dZ3v-Vh6{`{|2OF*8L&z*ezWKB&x72#?P z*6RYQlp}}ePoDsj@cO?R&?kDz3LXjRA1+OIi-9Aj>qt_s)$eUjw{~Z%YqpVX8HaQ6 zglm%3L@gcsy4BuroZu3^NDhO#DUg0Z8~O5Qb!JuY1k-Sp9JFlqQP`iw`>;1phbZS@hx3tJ zr6xWgvC93Hha0lXE_3Jp$G4aN>Dj$IAIAE|wiR2Ud%4F`Gup?%<@ck541l`GXkM~y z{D>+S&_O_=fGK%JYO;;hkjNamK}yl_bR=^fEfHu7hUG*nPQXKfFz_2cUQ#BS=IPkb z!La7v;MW1mp*_JBbi8XuHZNYkT<*We+NVE!l(YQi*Dse}efDJGn*-dvoZ>Ys5+)WJ zpTVrbhChwjh^!tbQF$k8*i#Z<8NoQBgLwax6#`fS>Mo;J2Aev@DsB8%)^zw%7v>tA ze#soi7c4tvr|X?bxzO6^=&}Z2AAa=F@@Iek=d5$MUt{ZwPgV$PgMSW_T%A2ze*D47 z@<05y|JCw7FKPMczDLO5#-Q!l4|sXYPr>0bD|hH{|HV)LX!)C;|A*yw-=6c>(#5&$ zUcfG${#PAy?zQ_?sbx6(A$Lb*Bu&>!7V%WcreL<0rJKJ^@07Q|cXvpMOYf7W?1-1* z16IQDCX^#$E{Ar>?ufX1wp0gcI5bfn9deB_s<8OxqeqVzQRf2=-+Ws-g=$E|9b007 zrUB9+wr8O-DzLuBbOh`%Z}uBhr$Mn3DbT1fsD;D_ zkx5+a<`3S1izlrKKiYJk8>M4|Q%6t1%STR2-@IFn;%e2SIQ4@%2Tr7Anw`20y)$|Y z3>}TE^MWO1cl3c1;vaWvkh_6e^(Z8RYt>bCp|Td!N2q$xDX;}c8%NKw>w4~W*(6qX zGQhMg11&CnMmUcC-ITS>;Tl>{?Q!KRmRq?pSXGZP4%U^3M?3IK+M<`}|D0&YhS@SL zQV##htG#?7>uy1+YuPdy?mSncaklvFDB{_wL!7Ex&uv$xO-nPSL3)E88vyI*rC4Wr zhc`p;q@PhW^#e!wW;)a8^BQ66%(bO$5W`5fc+CHb_{x{R{OZz^Cl||$=LEGp))o1z zWvU+l3(E%KC!F8Ihwd@=-LGb;DhRIr?*;pq8D0%!w3_nCt@&ICwITj5pjeIW&g>FUM9Ev^^gV?IVzjyrhc`XX+g)kqXbqV8A7H zck$Z4>c9HR@a4I>hL3>MOIKvPJ-0n^l-Q9vnwfApqU}lu`u-)bF01Ba{d4_^Al&81 z`eZW!szJV+eUf@~w_h_*bp+H!^PT$PO;9layplD%#_wE@Pf;Ew?X#T{U_U+Sqf6;z zyL6O-24_^&qV#7Qnf2{e<`g(O(syfH@`X(oaxRXc>#f$@;Cd}x>;$|)rl^GUNVQ7e zlO{2E$WG%c@vl&pQ1EPF9|lhU@NMg#{7O6j>?lof!C%L@Zhk6unfBijZnm>ARgfy8 zO;6^1cZ)8tt^G`1dICfao#y4-`EDF($HQrkxGAX2#U3gUebhHouDQ7QPJ@fUOkb&> zNtmv^vb@{I+xG{lcRyNDtOZ5Df2eI3{e!V`wRB7lzY;1avxrjPY$ot;qY{pag+sV8 zp82DcWQAgPUKPc$B{e06nH9GcU*6=S4J32zue%5=sneO~oi9#Kxg7!oml4_Ftxewy zf5WJu3Y(Es#!HS~FZUiEFUPkJm*0H(+vT&*zFeL?rn1%If)VuNo;I?0B~E3^{Oa6e znBmNG=yNe04UIWveBArd{kzM1rzhQYxHOLF(}DPtOAMBu2Fp(69R9!M&iq^EHD2-3 zMf0z~f1`KHvD*nb_w?T|g1S%3Y5*p3v>wg@)0yp5u9yFw5!6rapP~z9yXtTNNL~6< z&NKcL1bT*{IU%~cLudB!$L}xy$N%$l8Z+~?06%F&@DjK(b^gR0puaN1mOprsB263J znH0KsQr0OmN3U1BrJJ|z7UNur(<^YZ2>_V@JH5eaz9W(s1gg#tb#sZUd1Q$%i6{m& zk~qX~8jUHH`p%uZ%NKl3wUq$Ux6mukt6YUj1gE@~gTDEsEw*u@`4&h>HJyN5%stA+ zCWpQpMS=~70gmhD`54u=DQ%=gZx>->qL1ot`azFz&BuRaIzQ~p;1ItKA3+nnuZ>>y z58R_3J!b6CH9uo7aK#)yo~B#rA`1zkPH6NxxKye- z8v-1+2c9q`3aQye>@VU!U+sVH?SC#1z(R3wluxnG9I<7jG?<|r z4GvIkWu|H?!eN1ze8bcJGhx$(A0p)KutAqS{VO(0)}MtKsPX6Vo$+-^k6ZwOQ~f!r z$PRzJfQB1*UUhunGKf8#Vak$z+*3#Bk~})atn-67yzBGf9Y&V~!|5AZ`@xTX z#K^Kl_XC)SX*A(foFBf`|;3v}V}tUbpm%?rotC&~)u!W>Mc zaPr7->!amiSWE^PNN0mQIupacxJ~7}{p8s^W}Z0D%B23J;q->^RJx7=)>*}GXms7m z3Q^6#Zz^LAu;Eq@$LxgQ=+!Sj{&>klx~h<#nI+aO;b-Txkxg)lTRtVO4aBLf9YJ;U)DEia zT-$C)+5r zeO`ig*_@su$N`1HmjXuyB_(?7AW7r|V`WDC=IMafY%hpmWhTvf#StCD9nvOUy>&Bb zis2d^T*n_b6K?K*@tTU5I?U>vTU~zO;O4PcAJcd{irOBl7~Z{WPpR}=tM!Pp zPrM)V(3H5vE^2ZtnUs^*c#scd0#Lp^vH|oq_6w>X)0Qum2vW@7ERZj3u%50%O5Na$ zQ7>;Omo)58arOx&9^g9Srt<+Kht74LV~jIKQD5-drAyu_C2o1Dj$_8e8&!Y4-Rv17 z@y{qHr|kNXIb}<{PKV1r*IbQ!>ukD5HIlu4nE_Z^2wgjb?D~7YMS36PNpY((Kto(l zgFU08ph>^jlR!67>XF>lgfeKn*a+$)eq^({Ab!=`;sIHm&Od&L#kr}!?^Eup4JK=O zV_p0TTiFA<&g`855SDqjBCF2Ga7Jri&S^nZD*dmA|ZIV`bGG1?%mgOCJ zHU#AFh8X;=X&1(CdmIy&oDfo9s^g%}w`EeEz(syX*xgdt*#Y0=>-7FLWx%bbu2@6i z+T`s4ypg}!vpTf8oxFBb)rm`nYWsoTLsE1bgi4bVV-_~{OJ?w1->BE z2c>03@Y%6yR))Ol2Xx8GW%?dJQ?bfr6maq&KtRJodL+IN7`doYP#GLsA>If{Um6-l+ENrgqr;~SXIc4E zd?9rrol%3Rct75e%WMq?0ij`k(#$3-22#g5wv`!r!buEC(|F*4CCUtZJjP)x2pY=j z>&fxe?mNGKu=~?L`e66uG4G_u2sRE^S7(fzzT6#t#56A(@sP^@8Jk+a`|yNqSpy?87x~MWqj04(#Ae5y$5V=npoiPLJ7{biL@5o1y9St=Pi| z^5Gz4;IV;@OF*ZxwtQGGPAL(M?q+39tq^*3Fo9uCD*pVt4HH8CX?zFA`0Zq^4gf?> z%u`)Mr{Bu5{bRXVkfs>p+u(w=PTL{~f z$Gt8P+i7FeateX=U1cP-mm#PtP)jfAk#j!aS7uX4Pkyf!ANuCx6UMSXc1}&e%deo0 zZ1w79Zf+Y*H;wXc-PtelQpZj<{O+$zT_E2N;F0@ZMuusW=#cwX!11-AMb9Kn)wv>M zgXVTqr;NOuI)bV)9cd=Nexuf>!Gga0+JQq3Wy&J>h;~oz71B%>02@YX@h~IQ^l1z$K2xL3T2#q&g{o2 zHt`BnB=-#+nm4#96{+ubElar7)Z?xk#= zOYrzmR1Zfnda56A-^q(v&=Cf9$%ib&mGsbc^f_DSP6rhl;He#se~4-e70+S3F2iZy zgyp9SK$)zK+zZaHH1TLx;HLHvlK|suqBgHL@j@t*mW1^MrdEcA5sIL^9*4;xfrW!} z{s6r7uS=n%>6j^C7utMe6;Df`^mVyNCK5U1STx>T zI-3S2bhXM4+*8e%ozVEK9edvtsUKJWFT+fmDaNlpYV+jF1A_9_L4G^K+DThJ=53eM zCc7_qiI6xQoZGfZRLAlW!=|y`OJ3Z!yQOoY$H=mjE!2%)a4*Vl@1z1d3S60`w;d`f zg&6^$9}f-Z$0-2`iK7?^n~5vq410Cg33FP~jod~#gmUa~Z%cEb2p!0{Jeh(qLfR-9 zInGg~#?@po-mrz33YGJ_JhlD@A3WRr*&n<|XZ6wU=Ji9IgEz+SuyPyB?i`|RQxs!Y)d0#$21@0nxETU}E8$}z4Y74Ssny6&Q z!5%Ss@(v>m?=pINf_L4wVZ=%7Ft$)fAf|!`X21FFlilxqz?1pt(TXj;K_Bd!a_*gdj!T#bm!oUTW|o%za63c z7Cx+8#TLK)sWas_qo~zLoCP#;5SJXJlBbTtb}cS`9@}~Now(@;k>XvtQH%)9Hg1!_ zIz&_+TE$Mkjqp96O3klF2CXBL(yviZ?`F0>;cU6ZDwm9wp3@U~$pbRJ0N~-tEXR02 zeR9A^=^<&yG~y@JS*PT&lX^^fJ%kDElk|jTDYlYR;!86L;q~p2O^lZfKASwFdwHHB zOdpyOO>Ihqp3vG&LtmqRah3!Kd*gcO(z= z)pea9L&*ru#h>1i%p&F3>iRmcVJZVKq>IawHxYd9qtEG}dUGWfVj-Y^oa3v`-uY0D zYngpG$`w#FQQVBdJ7LSa3@MjfPTM`Yaf;uLlxO*uyMfX_=DIk-=HI6IWw7=qUPdQm z4Zj>huzzEut$o#-7}bP!7VqRRL<({vE&M4pP-Maq{ElLL$S#BICclk`R2dkHP%)eQ;U}z*jK&^N^z9#(Klr3SF4z&A}Wf^NLN3zY17JBgD zk&-@CTWf4IBs)40`|otbtAEnaHznqLQLOT2JW4xDo?hV)>ODQdcRVXhS)qwvt7n&e z=~s*ifNvo&fE~119STk!()ij#c$GB;VG6Sbi!Sjxe8w$KqYHxqA(q3zlw8!nsG68n zfjB_J{lww)n#L=M`-BDqr=^|-hY=3^52DV-Pp~gd14QEx0yP-`i#wJAMf6r-RwU7#pUkv=dX94 z@gNZQ&5cTk(@IiDO4}+~r&4~MhpTP!5r~m4F z((r`=t|@h2*Ku;ODU1JQFw@A)$-FgIoP+64!!T0B10nCziTlYXKkMNeVJj@4p$-yZ z#~rK_vHrLCeE~BfByfU5^%FLkL>DvhSzi9`;;5n{zbMGUPdppMBKlRQ@c1`Es%zJp zowEzT7oUHzdxw2&<3Uv7LF>~`Py#y569`SA~z`~s3@W4-5)x3btlq-|wEVygX~e;TzGBDhlqCsv zQXN5^@~E8rfRR)EWqf(AiWH~m@GyKBVK#7sytaxzM_ct@)X^+}dv7}WqI_~TJZVeO zc@Al3t2JpM(V+9RUy8iG&#iKM;eYwH2uikzBhNR z+g64!ssripkq_Xl8|5JX7b`84b;27)Q(rJrW@qH_6UK#U#fWADd}dFme|S+cZy966 z5r1;Dx3bS!eaN1iak&Cg;DUtoT!O@ekv4gZ^CuCZ3Hy_OM`fJ$bK~)JPbb-t(?-C6 z+225zPu;_eBdGUTgXs2JZK=WgGX=75EVf)?_L;82%)#(P1XX;nJ`q^?`iI z>%e5nJ68-FJdr78a&u)a(Sw5znZ+Y59YKFFUt5q67QgH|j?`!>7nxQ5R=7JSuAOc@ zqVhat)%zo!r1#e6(sebiDY}2o4k6dOPhNh$`{^%V?|%BTOQv)#cCXl8>e|iV-#mo} zAF85L39XTEWLpAuAHsKT1>T#a*Z89&Z64jI)qt^;4dtyTVQEdwuZ7#6 z4}*uvn+md}6X@%Kx|eafgyk-*q|G!Nog_M@M=Uovq-W+6{5DQi{A99&tmR$Tr#K#+ zR@kfbwBnPQ@aUOTGPRrnJkAEROogzWB}e4)cdoVFlxG{L(MgSD1ih9IKJve(J#>sz zrsP`Zu8rrnbz#c9_}v<+8Nm`E_~j#=&FF{lF8vWk9Xm2&$8KaquGOiKu(}nVFE+uF z-c+bIqF>WU-B58Kb3=TJo*yu4a(r;XE*`A&1mOXCX>Fj$6Ar7QZzU4nloJVXNZ*h4 zU1=>EucS>i?7mz$*Am9Nw9ig*M)=TAI-mR0Xp~|~tAi+8$ zJJ=|bM;qo(){DXlBY2#Gulf=llU8F~+n`{iS^kXYCwzIqYq)>-XSRA_A`4(-;gCy9 zB(wq4Eb{B2euUCLeOZR>&E+|xsn02&lplfhnR|?w-a~(u-gY*=ml%q_!U_W&Su~5>=cioj*TxL{MkE#2(1Ho&%@!Dr zXKv{@5P{8Fk4#Wrl<^I9k36_L%#5J&1V8*cv%2_;t- z#MO=iXx%Mn<;#rHC>MaD7^jgg_LSlwjJPo30d=Y`%&Fa%Ke@>l12cjc zJ|c_vl}vo&p+?I<;PNZ~euiYW4<&ZMQC)&zMdis3U**Av!1a&NkdWtd`kjxFNpN}9 zFV$De3O(cNigZi^?~Umd17fpuM?R;V$*?S>=e>`^Dmpvht#$evZ%m1Tyym+=EALx7 zsRKNj3`WOQuxGlEwv@vtj*|Rq92I-S6^1(#B5s{3Bw%(Kklf zyGx?tffBUDs{?8nPBD?SydX~fuHax4&6f_j8g4fJy)y1jJ}x5RdF39RkVjyS_|Z;& zrET20HoW=n9)Xbo7bw4|yu&_Yt?4Ou9IcaE%!pI0(sOr!BbJLiW;FZ77hhx(eMMVs zm2JAB&|gtF)QFW{9YqAOQ#xC;s6#45S+H@)50DB~tv1b_O{-2E#%9VA9yd?MP14!a4HBl1i~ z1b)b_j5D)h1v|W^hsY_b5)D26(V+>GF8}hZ)P6b^zOFzr__U=yvBE(;;sPzcJKpBUaJ&eX_{_gF3wayMD(W%MjqXp_=<-ydEAYTDswTk*t7XN zwCDiZpvSBDbp$)A@S!`-2!qH6hNz`G)3>rCxH=#Esh1fEX2cNodU7AUvZc zS!0zj^@DQhWAG?_;pu1Z&UjGj)l2Ni5TvwHov@@kBIfAhW2TCq`TAyj-B&l;>9|3b zMu#ff@Qa>R8D9>YF7+-xKdnD&rGe%3Kl zkD9Je4d0}G>4>zn`*}5rG}N2<)SEivb6b}UulkrekFFUwY_B1eOqP!>(t*5@k38GR zqxHCDIIw(`L=S-cXj$#3eX4ts0honD(5+k;r$Oy+WqZQf8PN7%%|GPP zx>t&k=Kps%k`p|Dsuy|m3bKUZgFv>2-U)A(I_D-vTRC#<8fGh$_#w_ZV-9i>?4d5s zGiokQ_~Sacz^%T2=T52^x4UgsATo(dRI=N&qEBqjD9#wof3>H<08c=jSA%CjjY?QJ zE4YLJr?6yP!bNfD2+L1J*N6ZisDh;^jp1RWc=$AnFQ4SIs2$NU^kJp@jS%n(%6qS= zlo$bH!O#Wj{lC8Zqut;9htHtlgAfecvu@N8AfFhhG0X(=9Kzy2KSD@WVU17-Ppg}t z+^38zyz735RAeW0P?w>=xphP-_T-oa>Y`P)3ZCJiO33)7FIcN^K~LwY!0MoeQC6mc z)g#`M?X~(7ZvjIn#yE}i^5t1h_WadrbU`OtH`FdBm&d<5N0E1~feeWup zYbq?8d-*bLWwciDo4tmHRx>jF3VRp*3U6_p$t$cV)VqEV4X**%V7=VqMJDsiI#6Tp z(33YaiNvGJ6*n>ae@*R3xg9HS0DPm$0XHE&*}9ie+&MH)0&}zAjsPB#@URnFnIYWU zvpCP_sWiz8jp?AyD5sUZKfOWY>eu>640Belk!O`DApuf9`i~=h%GN_tOlgOkQ42>@ zvrovxkYi1mRL9VempD|q`))z7Cuv^8e6iGFjGoHQ*zm= z{9@uNCZL5u7E57(FpK?y5Cn4I_$^0@SHp2d@djx^^Y4nIsUTzRnI5xBa-EJaF z69Xd%qDsmFi(uHJn0!u)p1q)>`ihPo4^^GN^N{tZE*xTSWU^QvIBljbZmes30-R$y zA>!d$I-IhTmm@-Pk>*eRT0b_@$@MfA#FMZ!3e_p3jW)?Z*v5Oai(zf>z$rX#fX(}w z8&@9=yJ(Vdh~=l{&%?ff6Bhd4=L~ZCv7sgr>&UAN4+YSWrmD)==fw; z;Keoe74>kKjfe+f->&63_#`fD%_)sWrUaKa@Y5=#m)bDEhniwTO}*IQ>j&t(vQ-aA z9%XOZn%R$A#wT7z=H`KX0IH*xFD(C*PnY2w(gP*_km5e{l!XI2s>X-We4x&C?Z>X= zB=MS2>Kh)wQy&BB86hG|e$M(SF+_Eo zOwS54`i-x;(soH+#A?h|&zdebb|{@K zdP7~|)_g^erpTh#!j0J#0N$>+i@cBT-=|+>d*scL4+oE2{lC4FItoS!;O&TlAw^f6 zgjDeAF&pFEBK_wSCYRzUo;U@ZX*>(Qjjc?BpAs(L;R8-C4UdpUOt?5x_<}j3D>?zc z;PA>Yh61lsT{!`9RZ}!5zLn>gsrJJMbi?SVUcce#r^83PUod+5m*4%~?qk-S?(QA2 z#ndAz5;|C{H@d!f%$|U33B+AO4igomiWQlavm%E#uk#cQ=hP6LMB*G}IH80-)+m6x zXr5}kQJU6=0b`|L2eeM8D2Y=Bolh!_-ayj3%I>BrDO0IPR`{k-q_9|1$F4iv>`C;U zBTdH3t25p_1>7$``(pR;=P!2OdCDHC8eajhk(S&aF|)1=bLhI$OX$&5EF~MY}h*g8p1BupN(*u;kt?-VY*m^EwE5xD#Wdwv_l0v9`t?kn=Wq_1b-ar zMm}4c#rXjh_}p1e{!M006wgaG%R)c$q(&~3#~VS{v-YDi;d`hbP&wE^g>XDdSN@=E zup_@A|9s_d;ysPL!>_TMT*9i_ZR*)f`mk$f<=3Y>aep%;XRltxNA_=>frrskWI;FA z%HoB*bTEfql~3j3_+2lp1=m^#p=$R zNk@f!*@8vMaIO47D|!GT+~^8OZL%&BgB7DIGf2D4wF~NAUKTnH<-v z4m@=YcngD5pU8>`q}bEoD-ZnGcmZR)qo*@!Y6sP|zp=(>81*uI>tjxFtCvRFl6;j1 z_-Kk6aSrG-&j_nafG%0?bl$d8j1Q7SzVuJ!1`+vqxSiL!GGoJy&qLNVrvq`@at1&8 zk;!NiJI7obE+k?B)}fvIsn4ZjaabkIbTu;+$bfbBBZb zbV!9Yzx8)hvE)C}_AqMur!O7yAeC?Nd4quf1Gj?tHRt-5n8I@0>O-E<&qSAA&_)&? zFwN^EAu1cIC!E^X)Yf_PCY$!rB?+}b`bwYLG2$`-dvS~fkc2w4d;Uivw$fLRynQy<^;N+c{Z6s6s3pknr zcpc^+-x`|@79u$|=t%K5vHq87;Ty;;M-H?28RiCKS%|Ofa}js?t-SK9KHGpq8TCjM zHiz|(9p>4o2QEgWbT_gQr!OOCHK{UV2TNI8P!HV0ZtB>)LH z!z7TaCp(exN4BXMIb*zZt9*pq?4MGEyciWfaSgn6PI`*SExdRyS?XeW$`{}_;|qu5 z$=$SfW&G+tomC!Ha0-zY*D6Fs7*>0(SLtpBp;apEQ4oLg*V!=GwCraG5ID+o<sKN zf|ozG8geTqEXjI8)}8Sre-BGCf=&Rjl!2^emqX)anp0P-?|gM{_X*pWy?)I@2anl$ zj3?-+(`g7;zv|n4xWThGdB2{#{A*Q3qd^i5-EBIpK?2TeKXy{Iw4C|K8Adna9 zM$PDryfu6E2NAt7iCG?>?q=pWUazU=U!B3{EBPN~n8#p6101M?jv{Yh!naR&qm+J@ zj@2PR+Hh=V{`vWDKDF%OSuk0%#<2tF(uEs@a>gn>V=G5qU0T8T>u{w&#Ey*&0s{kfUR#<*y1G(#(yu%yqfDZb zYu>tbF8=3C-FqXz9=Z3}XVeF#d|T6OXbvrCs(Cw!4_K4;;1r$n$ov8M@AOV2E9Mf_M>~b*1v~tBjqeRIKY>uvx3}YFt2{0 zD{sq0umG`cpT)8j*C;fiDqeViH#O2fGQ(y!(*!x>Q5Z46zxw324NmFH`ii5~hYT;z z&G_&=-md;9k75&wS7nmt?4+E)B;zlFXWv*iL|jH>C>SWi-*^oVxIHTRb@cfi6SpbT}*0;X)BDH zn;*RZEvGBXxi@cZrAHp^89w7F_tLX0$@CJ3i{E~Xk4tmIauvXPJS;tci;?UDTjd8$p3bG~owqz)?obeic8garnX>t5bngE*u=Pcvp@~ndVO^kYpeu5KeBX0%J z6f7b0Ix29;)0eIVavj(M7Pb4PkekyR-kJV+Z%;XS@@)6u(b4W_KYhOY@&Egrr&y^d zuGru2-eV|fTx7Qsp@A)l(%@gdvbv{ekGYyALSFX@I04@Erw^Gvv%_Hnr{QW0J5L8y z)MA}tA?{@X;HwOl;?;Lm7P3167o<8#QNvZX(7D4Qo{itpmx>Wmiy3gZeehDDQ(^q8 z|NDo#|C~Kx-=}h~aDmGTCt&mJ54BA!f3c^35WY_Z{hXovfBEnJjz*nE#D>NaBwb+4 zwda=%6$X;UVfx~X^Y40?$74Is)o=WVU+geRxO3s9pJbeH{B7u#d?klen9*TsSLg-1 z6+#<8ag?Oow#pnznQ{a_VJlX|VXtj=4KIzc8TZkh9;!B(4mzMV%>efR&CZ;Dkl#c3I zrN6dQYo~<0HktFUvOZyL;4wH|(`mhVKzeU<64v?xMD>T!t$yHsn~s`}FL>kYC~sml zRXa5V@^sm0G1b zWi)sm4D;ckt+fb!e*olRUd*p(u57f^6*#jeNSz5%Ms=6oJp(&`Qx~cS{rJ(-XTiLF zZD*7^79oxp2+*#+9Y=1?tjp1fYrPLyH)r{~q#W6a9iOW!TDUabxe^qae4~bV< zHdYAh7cxg))3m`0)~8;hk2+zDsy;xc-uz3YSuPz3eD0oL2i9$=cpkq4()VdXpl^C=9<@fQa4q;G4POowk@_;35z6tL>ex{7_DLO~xofW8q zivPGVziVcl0pfuTIu!5?ZfSZ{k83Zky9p-RPH@}efp0-!*TqkKkl#GewBv8bl>3{) zYQC9pe12>;MsBe1Eml6@X}C1U9Mu<=e=p&ommU}X@ubS}1}q2uhEA2t5-zHM$%FiF1je4| z1ODufm}c&tIRVpF2bq%YMZbI^)Zhdg$tHaD5&I;?yZS*O2Q6Lms@K$?BYn!x;E=C; zfpp)Tcf=ZP%iPEdEx+XVSBKRzk?NZ-d{YN8!xmpSAt`U~r0N{XA;VK?3^NkTA;7H3 zOiw6{V1O$?U|0tn!m4qL4~F>plwlBVn21`j1SVvD^K};irVJGo>6j)b8b!+duwGA< zBJ+`Z6tZdmy~7JC;RoEgGUfk-j?>BM?qlw>Kl=Hr-7kOsIaB+r0>5!vURJetmx65f z&f`rZ#T59r3P2qc8BIbulX4M{%ivQ?-%$xY=5DzL2flpQ_cjc#^G$)shtjD|y4`K5 zA7%1wP&p~^>0PoM?lmW|rjO!5U9I278?Brg2X$a@w;E8oO_J(4Vg(3@Y&v^uCVRZ}Ab z=OyEkHCqVBbuc7r7ozYNizT+^!YO#C_f2q>n!5MKM&Ga!vcgbXeSj%H+*n9TS@^9u zErZ8&9^CuXM!^x(rnD))RaRyopEx$2IlPJ`a(23LDJdvR?!w~=5p-iDt$PtjU@tBYi1>Lk+9cMn5B)v=GU zBRH-6QOx;EMm~8f$m^4v-AmT1K4Z=NsV@vUxY|A8k?UjWs6chV88=85?d*Xf?0_{o z2t*ADan&ozC{zBMr{Jv)te;Ku-?zv#s>Vp}4V_f$F*{AKSPgZ}G`4ks4Pw)HXq)vk&lNXQ!m%-Ke@wR$yadd_j8?Euu`8?S&LMxb$z6jhBjXlSe!$wKzu% zA2F!#guQ58OYcpWhaJgdIP-= z2K&0j*8w&?;$ga@*K9$@o4jhsr4J!Hja!F664NnMD_p3<#hcfoGkhgonhd{W>Zh^r zW0$bGZdNI#^FzEo1Rguav|2OT%#DxLzI(a4jT(*@Z65-&Y^Dte#1OGxF^ z)_D-1O4rvDaNCU#D5IVJMQOPbo_JIcFujC@+k9|Qy1;689T0MKT{)(n6yxntJIiH0 zr7lR^cU1N7fVZ>xly)#k)9We{ea)bJ5WCr4{T4&~oFxE%D8W7t7u__7%T8r=0l3EA z!a_m8Bqj7PG#Be%dLB~-hCe&<-9RxDCp|x+5O(+e2aQP=#>CDB#6?A3fmf=oZ7EW~14m7{Lp@|o5X+>xgXH!0z4?P@7TI!(pyg_c0_Vp6EsFhUguJV|`c24q62emvj-p>%dpcvyH(xLZDE z9J{+!3i>>FfkEOCcpDvHEs&KoaE?P8V@DSxjB?g8DJR$BcVlpy1V;vD0lyR%;V`c2 zElM;(sLU!YVg1Q)em<6{lECP+#I||x{LHBYX@v}Hhjo{2XsNAY>F$Rvbm)O@-=^hYXI(s zza~pbcVQ>2C8X+Eq2@Xh5MzgL3tPyA^rxqcLvvNc_`dd2ql1sin6T1Y0Hmj$6Eva4 zJp>$;aE*?g%dv{8Wqla>v#?XHr=ub*!;B{5YNFHe~7;W}0Rrur<=8!m*tB zFDyU!IHIHN44oB=?y-6I4&gbyl5+RRXM`r*nS*qxkH@EwcIu?4n*5*gWL@LiuudPb>k5^uYxt;U8HAvO zDJ1n!yh;GQ9nn!dM!)CmU27%nXs|cTzOhZY^hjBhf04fZL3aKPo1)3 zJqYjonkfX|H~{>Z-9JLr4Pu^~W8=M0YGXYH9>t-Eby|!!0qccPiz|mTv@MsyjzxfyMohiml4P!c8aj0r{_ZlD0+$ zzx(I^2X7}if#;zmP4#Dvsgzbm>E!^VW^5rt+4*gM$@Vs&uSg%7^1bMB&gbHB$z?v1 zxwHY$9bmU8#Gx*kD@)=TF79tAbMq+jD&oqA7S>$HLpF#|caGK3Ze=7cTEetwW z-BU?VS_naY{d0uPO=-_md1cvIryt_u1u28##(4U9)hF? z!v<9Zq4_t7PjN(ZjIZM>^3JdAkN}o{E46vbewtn%0-Py+N&(3A_031F(1nNeZEKO!H?MI;U{U@RUdu~$E)&55Ln+@cg=foKWBRN75FY6vm?h-Y{9hI zBRW(pX^&wx9ifv-hn5Z&eIfX;QF8PUG}uiQNT-ICuw3{rDbwtrsTZ$t5B!5vGDPhR7TKfDOzur2-)r;PYxpND~-L$OA9A#C;EBEx| zras@suGURc=K-XiNY*iIEPJCA?MZ_PVDr#VsJdB-A$~NB-AvJ!yg4zPUeS%)UtM0@ z@B$cKY`{&&(?@ia$(vGEL9fmPhwH-+Fs>u@4pO;R^_oEx{aL@SqonSZ{%Rr#OHlrz zo3e8NNVpV2Qpo7j``}Cu3sxScV`pCc7hJtA7YA~BztL0ttNIJPML{n zD%~Ux6XR>_Z2N3Kz`9IW-#n(Bn&vki#L76GKjtTmqZO%qw3}|Vyqy@$Sw^J z>w`jq#V7fs<+Uk;PSn{q9?OscM?N8uSKh*=L5#C47AHc~PUwTuRR%g3)ob=dKoxoN zXouQxA`SnxV@ndhz8$aN7V88(ovR>W@5D~KtAQ8q4hPN}gv6R(r0lnSI7 zII>@g7SH+_zkUPYwP}+f<3VJMAYNT`V5aiNU>edm3&RnksLa~m_e{lm{P1-5nzdCQ zet5I{+0Q?%;JfDUhS!>^VK|;jCnp}7kXWohDW&>n+&E$k_-B6OILnKAIKl%QMP>Aw zMomdDFzGtGcQ;!lQKN|tNK%-EN1P+8j?~KsaFinoh-)^g5aHeF{%b2ZV69N(VXPq{ zf*~|Mi>I5WvP|OG3KD_9Gle0Isi5qia(?e*_uu|6f4%$O_kX_oul~uO?f&5({r)VB z4#Vx=E1m%U+aG?s`=9>z|FHYZA3kR-$}>i=u?Y<>#bJ+gG;y0x+6lk-MUpO+7k?#g3fYIIIsv~>l>#0@II!9!5nZ-;hQ zW`F9v2XF{)9f`^x6^?#lCuA1yqgOxSpS=C+A0W2z)i)eLb=iQpK%Rd}SAU2F{*qC? zmyqGyoY7n{Xs09;K_wM=Oj4F|$BVd$UzMjkPgTho+3axoizaE-4PI3N$JaDw)`_m^ zj`T_wy_;mqv5knoFm)!Z&+_#c9~dJTB_0p+`q?U0)27>KshJVH=}^LxbqKb!>^Y6= z_F#^{DeV>d^SvtC!_mwcDczHYe&nKMsD`#OwHgudY?XMrgTWeWpql1_J zT|Hu&jSh@Yip!4;EEu3YoeQUgr-N?e`Rp*dWaJ?T9^zw1=th0*6`fy6f&39QxIAnbL%)hQ z0Mw}tS)A8|HE<`Pgf;(`$2t}#ap{UacApNsR`mwMw?0`0FYV<;n?HD~OvtCbOwwyJ zFrK6LjzAAT@F{6d-V~aj{|?0$MxN}X$)m2359_aH;w-!{>7Ew(f`>;w|LlDC;@J^P zICwUJ^5|hlQX9rU`COao)c<`ttM?9V%fJQEbOXLd(zp{yE-$-ChTe&kQo zd~5^t3EL{`9|t|`q`LoUbsMmr#W6I2 zm{)vWa}HT>LR!`oMF8v|@4{gB!8uf?K3s!0Ci9b)c2LjaL^WbbA4E+4lH{{M`r(fY z^)Ah^i8=G3h?7@bf+?2)!-7lGi`yvDrOH8^L2V%L*kbVtj^q)8VFajtEWX@xJ;D9| zU>aES4-eiDvpk8LSVu>lZI!mf!!3>IkN*AF+ubwSZb~%!XrPp#O2S6~!Nq@7W?&jfosl($ZyTAU)%iRxu@~?J(@b}-{{plb7 z-tOs>NATnG&G&Y{7Fm0N!5yT1ZB=L!B6gPwmG=Y+{$?V*7M?HxYFwhq*k=pPb6Y z@2-xGU*B6;X+SG^iya($cQcE0tk`XU@f)Z3w~-F5t=Yn0K(qS+R(G_bXiF)=u4g^Q zcbZ;XyjD2?v)5e=N^qDVG%|ll&XuSFzT&82%+J-|=y4QdS%F3QC!m+QZ4;$o?xy8i z2SJW}8Z*`(1edRyRendjY+$_!)BhV)h5s7jWhA24Au)pLWgRAUMVx1U!AlqV?MhO} z_%um&U;*?d+YwY8cKL%P+vZ#!RW3&v874`i@x3X6cq~^(0O! zaAo9zqlN|i<}>O(bLU?#lryg?Q$3y)UEmO#x1Cu7(#s?+7nR0>;b6St;FXm?okq*@n z52GF&u-`Q{ZKRuYJ3)ucG+AB-wQ1&^pO&<|`X)a+>ULaPyGLg{UN_>-sL2a3Ssr+& zB^^aqPGztLw0*heCPK$h92;hB;_-$N?$s*(D5a%I_>d%SO<# zor7it5KiB-?a__Lo*Dv*pe7ph`UNPtb~*Nx9n*j*T^#)I(J9mT8NhZ>g%L!}iv#s5scJ~s&1{ZY zIPSHGiL&zI(?1akq*LasDp6#k~ zkdCFW-sR?ShT{z0Rd8WW#mYByaD?HBPBEdjV&UmYr&(Rmq~)vt&AWZ9^>Q4}>cYy? zhS<(&hC#3GiHY;}01c71cc7zhxsbc||5MjtGWIu*^kq7D#jl*&(Bh?SnlkfRJ~=nr z2Aa*zR=9^a*(Ez2{6GKkv)y0)^lwVbTHtgYldrNnK6*+6Dt_IV{0UbGcrPsA#2fXc zgBZT?QYONjg%kd(j?#pMUk~$+pZz*CFv&Ikx6$8cB{}~kK^7~Np@3I##*Ud*`o@q` zk$Obei*`H&DDWhOii?du@qfuyLo~2#Lcwlo4LI|tv0f)?n4eg+yN3-y_<+@}`ktLR zR|k4yqfNL3-k*M>nzzrWC0>*}`)DB>PMh&L%hKO}Wl zhc>udBUoofp=_BUBwVlnNrp_}GGG3{wdK`P*0KdSy=2=dx1O?ts=M!}K)J}I;uV*& ziV$3L9ai|3KjkyY3LaqUm|zW-SDoG8eZng@Uy+&n>P9@DR4)LduL$SU*Nu9bkwv8- zMFsJmjfk*b?k1P>jB3%i*a_zWtsB<8y8iW?dhiTGy<%%D*B~Ab@!Ht#vQr2h4G|T@sC{9ZUO+t^WttOxdb^&95&K$HzBg+4+_5rvGjfr6-R* z-A?DP8!dRzR~?m3JA`e2dNF`_<9TGb;%3H;{;%G9zzqlO1bVmAtj|OYP7Wy#E+aUn z*LMi-J&b3YBa=8eT&1R_#tkFC*d6?+zR(x!kb=^((^(r3ufOYA=4kXCv=??zL3-`< zzG3)MR*iU{8zE~8@ozTYe6tZ!WVI|MI)8hcnWHqz^W0c6KwKxK_2%3d$!l$?wp8!H zP03PBN>{>Q284uIADX3G%l72n-Et*z6~233KR6gT;CtJX~Af%b(ar z$G~XZUptgggAb;ShF7D5WJC9AHEqb0k?<>fcgyLoq3&{QB(w4+7GL*@9as+ZkeLhF z&0F*}bR^H(VdJa*4dk9OaMwfFjMTf@+;%~3vr$SMS+&17_0P9)f=Jw1a3D`_8dq=!%CGmfi#Loj|e z9#fz^51)eQDv%#}7hgU-eZtQUg6TOHu#?lXPL6TOn7+W9Y{1%HIC^BK)F*9SN9dYD ze>LEwtBZ6Grdj`{bA!|PU-w<(M9w)rC)UET6!_M`>9f9p{_)r`2DqJiO{Z-KA+IaNhPWYDQUEE+n zh*%>!Y72L|6Gh-7#Xy+H@1&Sq{&l&9OP4;s;d`AY^FH?i31*`f$ua6+Utw|2DC*o* zs?+%NkMABAa8_XYjyEyB@4A~L)=WB860q>WaYbNIs0%9+5=6*XAj{`g!I%4Q1WkwDg7|}z>veK4Z@)Kb-XAR<=I6u;@sEhH8Jk}+i$0y<@UMvrb z<7n2eTMvl~thm>kuHd$n9JLEA+@=GpZIQz3+>sa(`wA^#k>Cki5YF;?fh+x%& z!UL=ilyBi$7)%&CpZ{=z#iw=W9kc?>*(cRCHD!(Mfdq zk4ztWqYSJggEzjuHBLx_5&5xmYA4mYL>fMvHp>`TQb1?v3L(yUF8-CHesoZ;y|bWx z>}DF>+TohI-Fk}7GV2^4^9tY-w#>5A;?0De_)+)LBbP=btFp}1$ek`0ctQfF4uaBJ zsVji3uG;El>zwLc8r_#K&UVk9J>8wMv%rg&FVmMxFWf=ph_$D7#vS+ZDSn>&Bn+?U zKswW5wWCSL)Vm@%7{oP@c7kHW6yi;?eAwo+mXdsmB`&?YbZ{G?S)^jVXwmsU_XQ5T z5a!e^sdz@>$hD%Z>$6d}A$D2X!4*43Iy%ot>m`Ny9ES8xbt5KmHFdpW zKjeT;uG>Hj@3b|sgcgYEMGtgJFQMsnQ*I4pC-n{OpM7(kC_5{R_5_J1JGyFMI`>8| zIM}k3&Wx+j>SlgT)#88K*>=iuQP~huU=*l7dgS*LNY0WC0WcpqfLC~|A3>5nU!7Ha zXa?47B>DjY6r2~K{87B~&4z;IqWzgiynzfo;W6RkPi2JnzA6Xtt2d}r zVHa1CAxtKN@w;rL&Ga+l%SVJXk|7?w;8-$=F`7mNIOlGxLDG#FiuYl!mIhT{F1>{4 zxBpcSMauFyQaEUGzGfNj<2(1(Nbu+dD41}KY04PYm&`ZV6R@#eh7*=hPUp5zC)eaxHMY^AGi0&MW`VV)rd9(1G) ze7LQLl%!3M$Ig&lYe8rFbL?YBJNo34r*saKAM2?qZ1^;1WW*g4!a|8W>ZOr-%OBSQ zy6ooq6>qCzNbs8a#FgGpcwGDeHb0=lL&fzSJ2keez_-i567UN zp{b3>H?^%T@6;wDN0xN1hPAzVFif3-ybzB+>&vFjbuhwE7CIl-XG|B5{x1$I!tfE) zUi#x0P>H0`30TU9K1#ay%qmH7X^&*Ljv}=>UzQ*soG2!jHN^Oo*X9pDbk&PLeMO|D zg$vB|6J$$l;*RfnuW};(Vbc0=%9*y34)G@8pu$+ry@3%y?KfwAcYElLl;3)6b$t?% zPh1kW2O-NB+!Q;VZ@VGyM#{^S0hy2|xtJQy_URN~zvKaSm+Mr{NmU09%+xMOV6wfv zlj_3)3Zo$;E=kaVkZI^*Wd_3&Yg*hJfXTGTpSir;jtLuaD@b`Y)Pk#k2w?W)ik-qo^=-W=Ax9 z+lE_m__L$i$Z51~Eu_S07)T$+SOKYb3y0ip77+HUj&b5~AccX|b!buef=-=IWv^lY zX3>`MDwT35hk|Z80$c@p81I48jH412``|K*e;%A_q`+&XHWH5Rg-}Og1PeSMA4;@J zvA}Men|9ald{}1yBvfV~49fe&wQY#>WNL^8ds`u!k*GUqMI?kcCZEaDpESax-~BD2 z2O_ZB^jmzBJ=jfukbh&XDtIFP_516jEgs3yOGjgk{d%Owjklg|t zy=cuS^`tj1+ZxZxUHY0%fiDBNWNVJ5f9b8-NwtF220MDr>xcGTRjQls$fCT`*H^_pfhy=@0Jn^`!Ldp`{k#* z_uhMl0g6*P<+Khqb|k){GiHa(Gvk!yw_%*0xFn8zp8DAtbYz(eiKEfe_|V9pfSIkk_>MhLvo@G*Qoqob${Xv=m2efu!lJ8V~V@QiiF zv{@Htth;5z{*qx%M?LFov`heg!KFRB+0wus@Zf{7j*?1W9bDlHu4%WO)F&^%lP#M8l!Xp60B4`kAIRUuUnkk9mz;*%LRs za$$g<2>Iy;b*@x!UtvfpFaANixV9!qp2RU{NkDbs7J)uBgF9S-sPZO8FT~49)LVPJ zuV;;yXoTZ(;KXlM;`LK`(L-Dc+Zyo(OOFCC>BL!dHBV0bgix3{q_-;ly= zqxtcoenu{G4v*MeUHgoLuZTZlUuXyKZ6hjZ;Jcfrc)CAtA4!z}!dgMvlUGS?CqY;- zl})BAjKy#zymUz)j9k>N!*TILSE`H5ItiKD{l&W<`WjUIvP?Y!*A`#lSwYJi-eH z;O&oMk4!2am4vejfD-H7#UT{~DZoz$Rymsf;B1G&#>z&-2E#Qw>eSBPIJ3G~1wz$G zK>9MV7%8YM@xJLzB)@s+0Nc;IU>m*;GxM`!e9G$tz0*?9LyHsPxt2Kb6u^>!AEy$F zw2d{i;gx?QwCsG!M^v2)F7~iyBBUB8%p&y z7v>z^CAqIW$utcRa4NEfpFe1eL!Y-C*tl6fl8prKsKsshlCC(ddmP=K?#7U<9E%Ge z@p%-YGPc|W6+=@=T4C?~)|NG;C3Ouy-hc~uZn&qgQ1{-BE zS3g3-O191?>D|~0M?K-oJzQ@toccJYWBA$|5;_b%j39BMvzz$@vlcL=kv`Hc=tN$A zPG^I+TwOjrWmMB?cb>N8Mp@k)L;r!DQaV9ywr_`_8$Ej_)Sh+l?aaNQiBU)R&l@|v z3>CX=(hVbQ>Qg@IEegZWb)FAd=l_tqB1@5Wl{bI-gsPl8X2ganAu(^yrHgiTTFg_& zPF&z9r{K^NmS{-pE9io=H$C>Bw~oEK|McwT?(^4-Lec{~MHh}5J5qW{qwGkJqn;iv z)o`7vjjOB~t7yuip7S?mvRYdRti23*urK1dy4P_7dCMj^3*UU57;(igzym{`I+EaU z#EI}Dcznq75pOQoo{zUUwfsx|$gDPf0l+EC)!yaB4zGRC3Mb^T38>9zodu-!R-Pp1 zhdh=OEul@O1);O;o|Xve(-I`1JEmz}M-4t_kbLMx{gyvP$3|G4RZ}0ygpBg0iT(NK z$KsP+;Gr92l(;=C<++=-Ew97#@HjY-)qwdqle-c9lni=pQKwu0_!q`c)QB40PJY?$ zAl_r(Mweo~&5NGQ3yc~uknX%AMSmWq?~l+6vFMnv@)$6Oq$7`#95F}YcoRn4V88-Mzh&Dko+{AdOICBEupgt{$`i!l8(ity3ij*Xn_Skv`PrBusv#Fq`>B zC@C|nqXtH&=GxevzJyL&WpJ*UVE*-pSDU{3{=2)El;rRJ^(R!aY@zas`)oFaedim; zEC}ZzhYO}osDw4D3K@pRTq>tS7GSjw2K=N}LE#|w0JCDEneRn$X**e*juQrN0T?(pSU&=9MoBQlwSXiu1g&BmTj+ zBIQR|zN7z*66XP~5F7SV&^$qSuKhDE**AW;UP*&nundaK6of1GX|s_U76&+56ET^I zjwWa6Y_1ZYrV*#UsvF87-+aWeeun!kdziD??4Zlt7gqtMXj z=dzG(l%gdfmXq`#{=nirU9Ia|dUr!Yke5vU>Qqp&wsIzl( zPAX?R1g_P*g6HXC@?Z>|JL?4N%^qT+%sph<{6tu8qRuXPN}UFiD}HiEtpD$Ci1>>vAjvo z3EaccQA6`UJ2>kA z9(1#VimqWJej%G)<)O{xiBEUf%<~~@b8T<*0fn&RZeE$0r6to2-9w*JN+qPlt?~+s z-n5^Pqo}lY>Isy*& zjU8OS&WW@h_#>fC>xNYH>LVnhmwovxQv4)tJS-Zj#wfEH(62(##R4a;G9e7{in6?= zyv3EI*NpwLh55>1nIcF0*_I8RQY#0fYr_?<(DJ1hsR!xJ==nw$4vm-7CEL(h{K|`m zkqNeOI8bIO8roY&b$Ed{5>1=(MJ&Xvbs8-t#qeYv@7Fr!5KjM}#6>i~Elkon_H3yi z>G>lv9>fPNv`e$C@V)hE_RRD7U?}+llP4e-lt%`q5^-g zd-2)5UVC~&g)>j+kFlgJ-VCkRzU^3iXDq_XrnFus8+xd-M!ZS)s*GG`%9ExyY#F6H~*aEFa75LGR2|1G8lc&Tw385 zneJ_zNX5~FmA=|}^*OvC84Q?Jxv!fv2HZq__4tNEo9T$w_ z+U7&(miaL1x#J;EJAZb_?L5-2*uCWG*-^95;-tfis0`C(Za5{O!T6f;O=UbV&$vQZper4wXwu!!Y$v&PCyvIoEXjMIdT^Z1Y zPo6VbwR`M(GW^btx%?oBnMeVUm^r-Ou&9BlV@)%MVAF&S26KtcvYP$Kj(X;h1#Jg? z?WjMCy}C$T#*r3U;7o5Vt+`3=+8`kLA`OT7G><;ilPw%c2jHNP$K zrG}hWJCXt&Kgj}pN5JhUYZu$*Iy6F%HiB3_$|o#YjCjGjHhWYA)L;%bkiz z_h8efI*3yTYT8bb7L3hdPszZjXjwnGeGsp94QFXa(DDR7sDrcGMDH459kLqlF)i=f z!bH!?WN_%_E85HWK-8@mCq17b-gIL(AA-WbtT@G$=0Xh(Vf7!W3N6XWZ+L#trLZW! zf5r_HlU_R+Q|gL1e*lc6OAhG(v;9m9Pk)KYH5UmjelQ?!Yw?Mm85d1Y&U7dRt``!s ziQBXBs39H<4?KRxa+lGuK*LvkHuFmR&auCO@4+#4RB7O0Vm!Urk2!~~ac^;MwF*C*Q+V!b*V9*@~v8@)bG~e1u&CvkVq1^_?3=%c7 zm6u{D0+)+<7$qzdxn@$qq6GU4Y|gUJuMtO8iZCN|;8p8jzhNDkvmuJxSpy#3?4G^< zXm`w8Jg#nD?mqbD!`;yzJl?(c?mN2|&tL97{q&RFrysxGefA0X?wzuo$|yJo29NxB z%yq$a?Md4G!`Hyo=%j;DvH~k}L+r`{+_W9TGbGT@6i#)wUvElS9jaIV9Ep*V+fV6q zzB!^8Wmkt=PgOmbWV8+eJq<4fPBq|V{4IakF<3`ML_!|$^9LV&Mbj~sz+NlDN=j!- z8o*AN%eIS&uZ z-{V7n9NBKum2q@ogDYNnY2+(EMLhB_;8!Crq?N7bV5w82(2x8xMd;K&9kn2oYv}5? z*Yp^ChkZImj;7e)&8^$w1F+GwI*l+U@ zQ^xPI1nS+B)3&Z+j1IjryM&C)Ewx+KGhUf_@ZfCs;N~^!_b+?Xl{;ERg!)H&y7%s5 zI&4qq__+6OEGVnx9zN8Rr>)~>UcEs->AcdrCZF|552}#IGGhE3)7aOcG!L-TInf^T zi<)wan~QV+4rKxac&GEN3#O5j1C`{+w){EuuLo{4lSL36hXymh#Qr$Pbm%mce4vY7 zQn5HCCi>3OI2zOrF~HU~D`Q5oUW5XSdh>C4>9Pt&PkH^Rc9S=^`Rc)1vZS>)ECpa2 zvqK;9LEw(VMI*W)W47FFJ64RQ)U8 zU!4Zam^>ykx=nnDY@IMW9dO)FeXCpZJ4j&Xw81N!S${T<9e>?YeCeOy)~QKG@=5Ni z4)s4W5)vP9YB9X1az@n$tG3&h^NHt&trQ|Oe_#ZrDAM2Fzm0|G7iYTKT9`TWzu-iC_CtT^l2gQM1 zyvTbPElbkOq2$XeGH_N8_M_s1eD2JVhs(o!f&KC^{1XRk_9rMFc`~o~=H_Z3CFes_ zD#CuMe&|xIxhWZ23?JqPr#!%`qw;$95rYF4jO<%J;!QfhOrGCiBz1dg%e%yFsx2MJ zILtU~t3tp#5uUZQS<)dzKVO5+Sb?Ec{5t$Fm_0jRZYFx-JFl z+rU|ulH5@N#RkHyj9Xv;*8e0!Be@1?dCWB5$$mFijsg?tK7LFC)|fd~WuRBe5NREr zx62h?DZhEzr;~vrQzRVnFMR7H%8u=NU20vbN0EF}v(9IdbZ;pM`YJTed`gHt+QZ;mB{Wf9NFCbG~%L4O+(d0?F>^H&BU zCiLPtS(P_LRZ>-0K-j^k0+U|+tUAGPztLai1rW=LJ1JZfu(M}F(_7n!3my{b8+=uI z@(do|MJf4$q-9qGkjHdY`5BrUT>PwMJ9Tu?jdhPzrZ=HJNW_hPBL#Mb!A=&+JN9r| z(}vnnD@VH|K5v(E>`b~I)*1YFW1-#T)7X)jK1#6SJZARgh>=;%bHuc@4>J*@0tZ^s z;v^6kA=g(3z_25TXLMGt?WFPW%?)+q`zLgqnKr(L*GoD-m%Ih;YIh12A3I_!4+9<0 z@qfaDP&e-$?LKAqfKR@7L5fsIkKRU{@F41AMqzyqcXg1oQF4u|Mm7vzqwgsLHI9I( z1@$`h7I-)K($=3SkSd*NBQXo7?f6;G)k%#8C{Tbb_ycukJB#{8H>7sv?1U?a&On17 zPH};E!>tLZiru@kV#O(yjUUo2@eA>(@)%c)Jwv*^DY2d-9 znSaG_^%p$Q_T-UTF*nnl{cr-VEBo>5dT2jLAzljv0qJz}Bu|bGbpYUA!Q$;5E zXWQvvogltGrg7Mx2qkc>dtdR{e?SJOxr8Aun(*Vz?RLx!6#Nm9lnbvs=-swLc*mYQ-JK2z zNgyGH3??B7BoZtT#3-bYVi1GOq++E?%Arc3D793as{9M&7fT#|us|j)D4;AOi3nko zjGazy_Z`nU_e}4Z{CvL8TJJgccBgLx>VDt7_ZpsgJ!{x&ue~?_f;Ei1@oDu2N12qH z^t}Er6y+hWZU=ds*(!$waH?$VVG+JiB)P4&=m&s5pSL2Q`qb0ge2Gu``!e z>0z0xHw3`00X0d&gkDa9XV-+%xAW3~$_#}J27ICYA%luM>CONoG6A+k8TgvGdEoOk zIKmEYoHgYXovhJHnL#w=nAy^F)WAVM<)zFLHKn_6+FKghIR=LN%)I%IPoJQ*Zl&$JB(WdL8A@LDG5`u2yTw$3<*C(2LOpyu4iek62IYkRr0SWBfY ztR1w;?QI4(Fr>|L&GUI5NaCq}f|@ouDsy}Y>B|?jKM~U1v_lf8U*)01F?1#!tgFEJ z>t1oHoP{A1|CR;2(mFFUI_Iowwl~Hn@&k4ZdPFTdg+MqcpKWO*A)GppGa_OIX{6ji z@pVJWo>@V1^U{6JUL-o;bA6|u8+Ml4@7*hF+O1MAxBsPAvO?VpN^ot1uJbO}D_e){ z!g(%oVoM)X<(<#~9Ft^$j(V0*Cav*$_nhTUCzS;^}+R6b8!ykU=3!Q3fV-?s~mq28bL)nEh zX+Dq~e>Du8Gj(OnqGf%xek-f?4FUNOJlnohc?=H98|^TOWk!Uu4~*$#T0Y8|v%)DD z+mJH^jAt*uthPZM_*Vw``bFobp88ZV@3_zqfclkg1l)?2-9i%sdI!|DR$bLRKV;JH zp&CIlcqdI!WnTy4&~zLz_@+-aJFsOx;Zr8GA5zT5g>`5nkog(hn-S&A>AC@)G9^n} z2H&(PPNWet+cbtTe=Nyq>f9_CGtr0bX3pYbLa^juO>M{LK{!{&()7==ZE z^olRxn+JZ9*)bK_@nel_Hivr;Qt2R7)v4sHL4}A))@^Ay8{;f>Bn(|?v!#21E*ckR>LZDYeHZ7DR~ zZ0%FCy0bOT0iP67U1Us5MpY?{n#MNGQW7Jz>olT_{Dg%!ZEX0|=me#!=2lj3|D|Gv zhYRkxU5N3$ij|8qFIiIto#1ekk*=7{X!rn~uri4WR2Qo%hLx797doRoI;bxmhu2+ zbbxmbKFSu5jSdtNodr9xxX0I`B(4h^8+o~T2P04HGb&hMO|!EVpp`iR7_$|=h~37^ z!BO<@GI>&uH0YkAf{fT=qzc~a=xxW+I|NjtHsy>Rs^%zk*_Z6DkAT|!D6>4aq$vsV z%XhV7EU7*yH=YJIEp-$+m0$8Z*_lR9QQW&;#jb1_)o2mZ@piwd7E<0?q;S({dXOjv z^b@0IT2-~AUmo(cb-t1*ogy#F1X6byQ8ti1wMfCz}jZpUB2D6UE9b2Y6)eP zW63Kebj#8n1&smuvE5%MN91uMSuqQijxA5RN~n7lL=)V+v*TN4_QR5*Pa$)2t6^BS7zk z3uZ_~ACr^rxo_5xF&Hz+xc{++}MVQ?oQP5mv*(^M4+qvf|GNNnSy6({6n1!FB7nZGiQ~b=NwG4_>Cd*Y0kdYKfpe#hoaw*e28kZ~6P|P?uJ& z_a3A=YZGUZb_6GGYf4y7whx-bs01}iB;ah=^wB8m$ocg=;X`9;1S?s8dY?4cWE{@$ zg^r7}tU0}yPV6(Exze_H5b9uWCA58l-y-wXDK+(M2|<@Vvl?=UkZ{vMQ@Rl{MzWGQ zyBkq}&GdhVDIBIt;;vPQ-0|Y>=|n$VN$9#epHk2DhRmTf^k1^Pr-L=Pp3(FTnF|XEO|+jXy6! z@lejbg(va5?Kbki&^Z-k$P7>_-WlsmIcTsE(Vh}anq?nPt0+fZAo`N7u>~vm9DBUN zJqObGl=}4K5!PplRaK@j7>_76?(!Hg2@`kpfc^Kl1-Hvn+@nlF2u{JxQCaaN^s(YD z@R0`xEk2B(Jo==*l-Wv<^%3PWSFUy&DPO{&isC5}_*Xd?XD3}gF-$N^l5so>8x>#^ z4(h?b24iwHF0E9WqE|`9CqAd&krJ7G!k9o}F=Gc_up- z670&8Tkzjzt1uUW{fEy*P(jhG?RPT#Y2lbIEx8YOuKu= z9zskX0yP~wWv05aV(Y*X*Y@gep;*_Qfz0dI@OR6@x24$1J2>N?O-?B@mEdnZ$XgIh z4-iBtgE0`Qxd?GM@pZ=-4L@`VGIQmn=w)qS7Wo9*)yzF+;?-6PI}zY{K$ zCeG-iaLt@5G&8w*RhWZO;*OQ+3+7mh?96`6R#P@~Mt&mJS$vhVPjZIe`hSEDzIj3? zhcf0Oou4*Q`?3IW^q}~_;tZY4r0Vza8{r^~-lAylOmLH`CB)N?!U#fQ-?WXvfoE9} z?eNMV-_!QZu=;}mJLMg1m`zgH3m^QVQ|pK2tt7%rvqUiLgn%(mLS-XtUN|I-50K#C zOFPHg5y1K^E&0Z_U<^8*vkBjKGlLUJWWXLi;*n=Kc)}HW`CyF`f+0$W3p{0~os_{{ zI&NxPb_3X?F0X_wHTl|Z*ltaQ5V3EjrhNx!K%^|XaU%nVtj`aQm zRA&j3eo-@`$^cgt048*Sv!1Qd&*9~aYrOj{OaSjaNVRZ9a6>N$6BoG~LMGv6TnO_A z0)hmeqnlNrvI<9KgsP`2kveoZERJHgNK#mgCOyM9)@j&4`ApKjK3t2 zu#%F?scf1kev1?~aQLr2tgMKR{OTYH8&?JbXsQo7NVNgeekETxrlB-nj~2$dmhz$^ zrGce=px;jerzFCq!{*EoFnpC%8j%=$VKNggGwT3^eVSkVs#~R&pUjNos4shDlLrDi zpmqty2#aiUUJb80O0CMkjwWV;jI!EZ`7q1^ultx|W{sOZz>_9T>gOT@)LCfn?(u~r z>n$S!p7qWQ-ZB>~%MjUdN|o7$6T(Nx?!~IgSPq$8g{WfNc^>lWz0W+g%OK}Ud-W?% z+N1Yh=80Nf(bT-iXORU1Ud!YF88RsV&DCXY`=7hWvc=o1Y2@LnEH}||rK9!2aI};s z+}#~G#n;U<9f77l5-fwji5~!B!kCC%#kKrgTj{K+?IogRfS`(YbVXl$%0zhZtmFQw z?A4nX>GDfaNJl@>K$M4Ysek0l*K(}-U!5{k)1SzjAz;b|5P>7Be(Ubc)al}Ok7p=&gJ7Hkr5_$iv>q#A)=JUJz z%<4lU%N$Tc>bdi%k4V%M&Wj8PR`H{Ezir|H{vl5%W)w^xFS*M; z>MS2^Wlt3u370MO2RBQYG;C^uVO5owWh4wKIf|G*CxE6EeVsLsML6k-qz;jrLxoE^ zi&2?E4_@+cpc>l3N;d~#jFbcp#f8g8ddl2L&o`L<8knG&Wg=VriHMX+3c?5}Iq8P0 zLK`BnEFDiud7370*0e^sjzhBkn2|u&KdMPn_<`7Ej0=+$T{x#6z|0FIM$`BJex_^*nCQHd7_VE| zxy}2vc(MOWsKO;tHV-5e-hjZnl^UWEoPvr`1Eb{3_bX>LE7-_g~pIwCbu zPxzUw&cJB{qdJ?04Sy233)2o+Xg48z>?^69k$}@2?PH^&q12$&XX| zO6Bxt*PB@e){q^-cY;n{4IlUl8;Jx;J=i#uES^u=r#}5DuG&{hKjewyl79BAE}0Do zflfq8B9k=Dhy`M!bc%wp6)v!yW~Kh$KgPV0HGp?(rw1Q=uq`_P=VGArQ4Vv|lTzsh zaj=*CAZsFgl<=K04-O(t4I#&DmWioVH$3AxGGNawjWE*>v@IfXF|x-X`o>K^%WDaG zrAg(*ro~BW?w<5V>3AK3rx3PYm@nTk^JYpq z-nnVJ)B1ciFST!rIyR3@ufWvit)EidzQzpo4O zRz2@M^?j+(nAdl~*M}GRvJ_IaS>6RI9}a<4J}*?wLt*~VB@&G@2wiB`H;&sUK7EaW z$_ZaIT5roPb4VTyZDdv-gS1cc%e1%Wn9W18qwOjm${`M@MZ?Qx5 z7M>|%>=`u>$tT$@6F-fN2~Yv4O+yM{E#TB~V6{-`yU7Rrhs*(&TffZ4V$PJs& zDDQ_MaS&5(!Wqq$ie9iLcGpZRq{8j6Ag$7R9 zk*UzENz^BV_fCb9i>rC>IY^BMgbIYUl(KMEPX+O;be_oK>~U-ruH1rENd<7zQEiC4 zT2)|g>l_^O)sXf1cIg40LY?1fjH!67)I-do?zXGXY%pNm<90tUCFV9r^OhA(qYPE~ zW~E*ni9k4QNyF!_N;`xJQJf$i0) zFKIr+GmdP$7(DJ_bQiuK;Ecz1OcsX@7DIq6S$+zu{D$0#zzd@AiZjaF#>d?f6o68t z*&{4Q6?kyX?g5?cU~#czZ-u4&ELy{Lfq|)LWqjA6(rbSkT+23%!c^~jOPq%WEf*Un z$stFnuFohJ9OSK!Q2x${T;JGCW%cRX(dCg@fYAkdMT9eW$cEeGbxU%v<4WUCo*GAg z;7NIU&OiMLi`K;SmIQxm#9o4mBWylopmiM*iyNk}Q)0X%|>>{?`qGh`6 zYliF)VUU@ic!>5uPfVxO7?eakokkWp15cyi;||&^g#m-4L}J`;yBxNHwrm{81=iY*OOS zLhMSG|D-;N+4B0LP;@N`0_JPVwPbH-R%rE)IP9SxoEp5G`cZ3{>fb$dt&Q#1Cl z9LOWA-ZU;*9;NEaTd(s&t}wJ7;ltV0uV6UddypD~1w(L+(g`3y1^^*V2As+aU7G^- zm#uzNq++r%l%{&$mY&yUVUsgbI4JARc6n#-MrQhFo$XHPOa%~|O-y}2e8OFs3<}NG%+#6Du?O2CVJlEl z^5-C|4U(kT`>7&96pPI~aRlg_GL((81xlD?)>)UdDKy!z3sLmy zxGHhC(C`S5+Gl1`d%7e4XhfAHehr>*>TA6`Vo;Zh1>%vG{LG++elf95rLHJ5;S9PN z6k3hky+GAZ?4Z0m;e%2~%rsixwTrU2c>(JHU@>ch2{VxMr-E_{T*69Nyu~vV8!$EN z0Jtv5`|KE*#&Zjn^`(ofRbJxNQ@++JFGG)=^(7m6tkH>S$z^Ua&#$s9fPwxDpMSdR*BFVvfSfu}O$7zDHv39cEa6R7+Yg*UWmh;*$Uqj_x#td$BB8ACD8o2VR z!Eec$z7aU>;T?yZ)kAfLE*gzZatfq9>qne4ZL4gCyE`B|pdg6q*^7!!M#yZ^sK4by z@C=N4XAorCkc6-@QKW&FU{Vye8#8uLR{D| z;}9ly#+4{PWpjs~dIV8CaRQN3(UhP&^wqC)C@5*U4W7z1=m{%E>OjU=v@z0`9SDU} zG!2Kf#O~UXr`{Qx6kg$iL;83~{Yc{4z*#zU8fB(`%g?&%fuR}~Q{BoJoad8L3p1RyLWr)#+4Sm55QvvrtA{IG;Ytx*7yG&o2zrqIia> zOMC6*uXwPna$A4n)}(#z_qW>a7Pqrl6XiPsxoL**&Yo(#n5^I0wZfxDj8cl__A9N7 zzMv7co{eT?Nr{=jALBXgALl1O#-n1|;P~BZ8)!}M?Kx+Jsu}Vs!r~yu+96#U$0MeE zPnIw6^@J4$s7_@U-7qo?Rj(XQXWB|0pDeeRR8&#|N05!Mok4O8E3i0rS=cZ1?M(q8 ziwyn-dNiS+B&6=S#oA$d_Vi?Vh?$e2@IvR1th}N;MXA6*7|Fy-ic{zjA0U6y^N>wO zHXzz>_=H?zN12-C!J}bz&0US9hKt$oqoQLc_~Nz!CvC#{!voqW2mDcA+1T7<4eDm^ zB$7#|gfCMT%F>Oic%ns8z09&oM{N0rXaT6pw45kMNu(u^v~_}We4c20LAk<6KzVAJ zU;%45$s;8K)C{Zy3$AQMTw3y!0a=5R1?J0oPcwlFhdq}$MkcXV_p zYMIy}deOz1J$k^$V9j2@13+(Y*|>=_+7-*JZrwpSbrd+|1bOI73=D7_T+*P56E%=Q z|8daeH_nd{)R{%wgGk2OPS3i9>qqsS@RPQhfbYQAHd?)Ge$$~v1=}~$m5H-U2)NG9 zEl_>ccwMY3i-QraJHeahiL6w6!dad~`Rhyi4G5VX({HI}zb99XY7yLQsH8SMHM z7ncFKUQxAk!D71;d}dVrf)%51hJ&nyYR&@d4U6OQe7Oa10IKvYf0A*%O8px|DM#rw*%Dy2hJ9x=9oO)d?hVs$}A+88H zCvK4R?BvNmvxdU3iGl#p!8YAxUY51*)pd!B4(xfwGEWSWD{kSw<&9psXkA?k1Er1dMP{^&irt6Tc!X9eHK9?7+5% zG+n-C7|MW8+`e-neH@C8J|SKCR~_iM0h9*vAw&5GaU$yM04?x@!#TDuUL~in`ew)1 zkUEHe&&tgy13i6AWdeh=X1L{SIzhE4W0pQD1%0J;vki(pIH-%|R9oR^0!tG8Hi!A8(eSN?8J5ROSTddtU;9V$=^z6LA(GW;cG7vm< z6cxjvl*@FWeBriy6X8%{J0#KpNG0OzlbO{lGOG|(=w?9k*3L3UUZmlWk5>-4ZE28!5bgsxLTmt^8^D4I^sZs#LtPUlPfPYYU>^lB-sp$NpR`1twMd)np4p7a(+jS2^boHn`>loQCr@itHHF#Q&ECo{$^C{J2sE-$v`n$J5Yfece^;GC*F`S@E6H;lL5|Ii7 zN=|4%$;O|4I~OY;lV;5|M_Ih9V!MF6qr5q1mWlkL@43n{WVlG#SLsGYFhxMpgfa{@_F_@Q!ke&4%72h|_>CJ81Nq%Pw`n7JE7ivTMn# z`BVn&%h}E)8{k%JTTW?5M?&gnnxxa7Lhl%VcA&IJ+qVo=SIx#RB?Mf_2ti@VhgE!s zQ?@#nAKH4#*tC=raqXnE2l@=*Tr`khv+w4ClRr8@91(-BkJvWV3_Kdp_Y`Hz0xYj? zEN68R2l}>u&W4(Bs7+KqupCiZU6fCFWkMz7fnFt$Wk!(Va}GG`HmdMyWWIEYmXhSw zJaqIZl1oO;YBB7ksN(s+SoL-htFuBYWKiEF`@*ynq(#*7(=pH%!7o>xP*%5C7I!kY z-R`@{UCFhzHp?A8XT*1RciOHm`RC%s8CG%Kq-Stio=LMjWfV;mIeYaR0#`YzJzR?b ziP~QrZI~E@wPnKM5KkF(zC^-X`^7JHK>j8U{3?S{mLP~rep*W5yzuGlMiM+rB1u%<8_c2{fJm*dm<0@e?V;Qfnv5PjfJubB#hi5vza3)_;e7j$eQm4;uUvovm-o3VEEUhm087lMlI4OuS5c-?m*o*# zy_i9&hDZelmrceRW)!nwqY*r3^N7Thd5mjo3?PFPR5*uE?AeRT^%&t*o{AbC=s84?aw+rWP8d z@2jX3r5v+ll)amd=WiO9v0L=1U>$`)2O@zGpFOw%Al3ggePEd=M(0!5WeZ6_b8Olt zHtOlaF)QD^0ble6-s$<2)@jHcwOq%^}Q6-^S_%3YcH=_N4(;i^>KEMdn1 zIBll{Y3hj-e5FZzNay*^jTCrUF)Pms2|SI9FVeov3%fUO?=YL;3&{YrCIS%{QF$;j)3IxbD%h``T?JA36hru>O{1)VR@QYGMG+U?Tcnr{S{$r8o1uxdPjmu@0K1%^>A*t_8xEEJMD!x?FU0AE-eB=?pmcX+`X$XIVBh$9qYu zq1OkXMS%y;c2z-@725i_O9XuI=EC|yTV%Ao&4X9IS2bYbYF*02jzRnSL5M}@FY}2^ zb&{e3ar;I)2j{KirBd2Wz0@-_6p$?gJo7DUvpni!?AlG+TV~=$YtjR$GNe0rGi1$4 z%T7FPD{0!Se$bIh$UzTW>uOKU(gS_M@|BlxZo*k6ZY6gQ3xL9cMGOx9f|vv|YVSEc zD(}MaVm}u-8cs^}r`!NgZg^OYgAdKv!g3N$Rt8Ad-+aBI6Do7OAJQ2wQd6E-JG7l8 z&+B-=^Uj`k0cwy6EbtbX_I8GB4B+#cHp)k9O* zkVG@aU*1&_MuN#pz8nC)#}=IeR=5s0tBvr&uz2OwW!fclOTUyy(z@=Hg_qZgtTWgr z+3rUygwh+mTvjT>>XV)DJ!euihgYCg0YS_!q@@>|nypDx$a9PVD;+p9kbpZlbyj7c z!RpcMVOwU+>3#QKOox8s8m~Ixy>Ls5GwpsJnBu`!p5o`#8+*{S#zV`k1W!nA;jbic zB##seL`%_V`z}&tO{0~3o8t-DIc}xw^B{u_df7$QyHSc&$(AF9g^c5uLR1!hhEo{=*AY35v=@R2bQA*$ zou*Els~KqvfxgIfHf-vskY~eZ(<(hj4}FuM7Wa%h>2>N{#5;^2&y&`3OZP#;^9yew z)jY)}f$Mln9n9k*o1>hWhA#ZJJp_D3OW zN_1Bf^%ZEEZvB+DFoZh}QSe0+9@}v)bQ9S-Bbys9#B55eJMxlV4MaGjYnmH$sk%?M z3%ccGj(Sxn%}~O1o3{AbXqD_x0XBnc(rgsvrF=GwxxJ1|xidnZ1E#SIK-tm;fad^6 z9DA2a1BbYuTU8}z1||$p4|xA*X42568eCf|hYB3Q1vLI8?Z~e_$d>_$)*u`>FRB4n zO=lOz%xU7JsYBTU{iBf96N&*E8S1>p#W{)Xga?`Y(vt&KEw23zxNU3OyXUvN2of(#cbSzbw>8Dk~-~j00Qyl&&Q!mB!B!uy<<5|VZD|%_)1W1O+wKl zwj)RF<*F8N3cgefr`Et*x!kn4>E?S%C^j({&Ru5Zbu-^GBN@!vt4v4(MxQZH`qpiC z+y2a=nr5cF`er+6TP6)R&kk5YD*5#b@~LIzm*fjCo^WYrO=AF%b^&l7@|?CM_-nX9 z$F^$xq?vjO7cG=oLisBTacKw>Wz-s--HH}R6~#|7K2h|@37Eh5oOGZBUdk|t>grnZ zvO~TwCMp9|+oDjHkG7B|W>A)(61{T^(oF1@!ClOqVMX=r)+l^Ft!Sx%}z1?QcZ2lWUPa?gl_Bflzj4< z)Xe!3@D*8QU|%71=q>)WOKrimJ`|SA6{Iy9wm6^cf+L+os(|35Z&qQMaVD%C%{;sH zv?=`a!34hJS)2McXcfuIKN}u!_dctE_@32EIV%Z7+bY%XS4Gm8@l&n=&Dg%H$D4t9=66@r(WrU~+@z*rO z`7SwNR``hHq39XctNn$3bSG$>|LEAPOLbeubZwB6fC*?reHu4rhc;m?=pdRyu`^lv zqzGRFQYE$aI2&i`!dtf5 zH?+X@RY=i8NeMVm$ZVwT24r1BZn`y=B1=bozzflR06?zpX>@@f0}7i>!^&e3#^u1Z zn4~2aJCqm-eC_1VB~3QmL;no*k|#0{7MGG3u#$zTH*7hd}M9RxZ8<2fKW}NOle{yDA`J{~*s}F8 zd*Q+z9vK{3jv+2B=<7Ii;L0)jE}s#oK^EBLn{KCS*$*96#(u;{)oSoo1A2APE(&eF z!Ws1<)^c{>n4mZauN@HSV6e0Zf*2=w$p; zzhsupGtwvnY1&oWfogYF7YE=8E}omVia!@v!bv4Q&OM0w;#Pey*HYC^ky$>W#Zh}p zPs5oiKlX^yY3Of(i|hge2+TkVE zACqaM?lgpR8)qSES8wevPxIBsv`&Gzm`ECb5x{y|cff4Z$s33oW^A2bvPwZA<3lNH zOMS>hPI0eu(!r6s6l;9b36qdCo!2~Qx}+vTL}r4WZt_V}EGa2VWRQ3CEnMrh?QiNP za9KW+L27DH3OG6{zXcDj)O3N&oI=qPocZ%u)Krd1TY8H9kwYcXX6==nb zgGemDPFPJw<*&+YWu#Ct7^MkiX4C68pKkZzqeEsUFJ4}4_dT@G_9uHZsOto|v0Y$o)-kox#o{*V z%3ohT=|&V28KtPvys}(jHgttcg%!eU+~W7^D#~sHrh`QiV2`5)!nt$2Zp1IP z_{wQ5VzHHRbt;)EuR(KdoV;@O^&mE)HVie0DGg&&=VK{Jfb;G71*h%jR6Xy}#}0*jY80X;)0R0r(=l7_JpHLYYa0On}9 zl25JxCi9ELBaVK<7V;Bj=q66W*jE_8&SU4SUiB*kO=KlWLx;bV&9q(lw*2Ipk|wRU zTe6C%@^P!iS)R%SE*C9Zd^X1SpKfg5h6jnxPI1c29K1}5A8>ZFl8dX{i4*DMNfe;+ zPWTjXI+QeW)+sxi>ex##fI~xn!nZ@WnAo{$d-c@o4ZEkIATLjU5+Mm4;7LPZ*uhrH zj6A>;mV?O-2n@xFku&tWz^AsBoAt6RYTdDY%+VMC_93q<*Kov#j>@f$DIfJEZh`7QLl4VQT`c`b3Q%?8 z$U(Y$*0seZHCWO%(~BGQ5)U$EQ}PVUQ`!zmy@<)|JLOVOpDPK3*(}GZ2gWS}gtHP6 zHoc@0jx^<=z%@l=)=~L8!zzaP<+lXjsg9N{!62Mq*UT;v*WcaC#}bl4HsS4WB0t7* zkZL)XUFfHjPhRvlzLrfLvd$I@xL9b0{>ZPJnHJl0y7nK=vX)(?r|-#I-#}9tqh}2; zlux2V9CMe9%*p;s(FqByF2xX$-ufpY4v}s3=YG!>rPYvh`yL6L`x` zyWnj>$lxq^1uZv~4~po@N5ox-Dre$dA8StK6~4zn1|DSKikM;l9*UljnOKkpKXu3k zu6zQ^+2r_#>FFDa%iya$Yv3FfB?xRJ=n1rl;RRUy2Y4THk7#n1rru_|ki9OX^f%jG zeN_niNqufy2n_ySkSn9>S*!Jwq3waEvSrDyFg_!6k4>a;D@`fW$(qI}*h*22mPS!A zI#H;4WtsshrOQY7P|(V>*B*cJfp+c^?{DK>s6H*bwYlG(dUm_*?>NZQK&xzagGR|~R0XOb2{?4m4zz@GA0jAj zqAEe64qR+X1{)ANViPr~dCD@jl8d8kIShNl7I+djlg@(o?+d9~+&Z5E$# zjrFrU9ChR7t%U8Zg+1iLMLXBPE2P4==s-#tq!qd)Pjrp2b+L1DvfD14-)xVbzs4Zt zh^Km;^>o%rw^m1aX`_-Yvt~rfH>6&4YgWr)nSF(IR!gy~gE0QkKkMlTJ03aaQrp+N z89q4T{hbHrcu(dzsvm&fXF$+o%UP)p>W> zNC-s=#*Q|zUS5GECHNe33s<;;0u+0I1NX=m7lTAnEKB}|y~QkP>!yP+8&Yi&I;3No zY?141{p`G|Fy%r?$kU%RmBTnRq;DLHMfZ{BSsBE(L{gWi2g5$43rA$5P`KFUYkK&Z z;-j#C+TxOx%dxaS4x*)I#P)cfS-GWU1~v>_uufa0)m5)|neb?XqJ*gowWd$2$&UL!;ZNOPQ1Mrv4!7 zXaf}6^|PsDJ372Qu5XS$JL?rp$qLu!w4j zXJ8k4CR973Zw)>X2;pB0itEs^t7Z{!|*0wBdg8_HarG?L{WxwVO0%$E_V z)*+LCRVIoVc%hXu+KTy{t^8CvpesY@hH}y(HEAgaX&L4$n0{CFLBA*((u>FnqwW&u zj8!8#hL6eMnCPw@nK+rH5738Q{=f(-_^MuH`Vn~L5T)+8L${cQROx}N1yHyUF)FK2 z6F%d{7cofHmYPuZ7KHJBv6TixU2Pnzvd{>@$y;6AMdMZzgGd@-?xeH+^#1nX!%Dw0As+_J_q81!IK$xDEZ3}gm0-cnqwG8b z*x4EAFQ4N|K@1w3@K#oh2|`ZFTn*=h+i#1D%k8n3KGt6P(kJ*L(nHK-tTKC?5pQfc zoU`<>bg+qqi*v=92z$1n3rvrz{n>o;jGx^`+TD0(VO}^KZvjNQ=x2$S-VAV)EtKjT;T`?oCGAS>9rErdk zm0x~tIg@TwFzH!A^eAO8187mn_h>mdG~j`RjjeX|+6`{gF%0qPYW!3Nbx}2ZBE&?y zYa_uw`;aAktyEM>^Nx>p+XD|g(_Z(wPjcILqb=}Mg`ceSLlCxZu`|97M(9L#?UEGm z?T}PM-A%}%JKN{l?ORJc6?~rXDjoSc z@Lot-35#|SC|em$nMxm~L$=F$Tdxq#S2K7`R3Z`abOL94Cf0fY& z!gxC<10+-yMVwI=Xi6f3wh-7^JWXR`=sB>~WiXZ5*#X-t2SV{%cxW5-u)Z5{c0op& z*)mR^_N`lo(1ExegKbA<4aJjRq$`{GR*>i??cOd~AVf*`>|o27h)M-TTq81)B#alx zenK!SpYh9bL2g0w1b3UAu=aGhoo7(Gw!FyfDHq{92xO8 z#Ea_v-ATK}`syv-r|NrSI1W&qA+~?e zE?EXfdd%ZNOnqDWR!GuP#`0E5+Ew>_r7yOsa-Q-n64j5u14UCdS`pIO>xpYgD?Ir6 z3};Kl8CBuDun@|4%Ujg}@ntIZPuT3k^0KyuoWI2CkDgWyOt12tIW;x@3bi;Wb5S_d6< zP_{Y~CQ$lUS|^z_2g^tJi4W{$?R{)ewhErA5w-rgOrh467d<&DCb5t_LchmFciEhDLgb={ghpdf(v%`Ltd*+F0$Vk=$b(s0}c<4Z6T@Q#^5J>*k?M=T3)y4_ns zngJ?PYbvL7Y_uG7KmNoM?N7b#bqqEhpdvHt%pl5Xa%VasPW0&o*25z`0MBy(8c6MO zdKRo~bSJ_{^E?0yT6#LC@@t#e%J3cN1JZN%asdg4-hihuC<1pN-x0C#KHa3j7Ut0H z%o8=8vR4lMsYCWg!7NhJ&;&5$n9hS%MVaitL{2y$HQBR)J6Eq?<0BJv-gwMh9-31R8T5uxn~aU*=WcKgb95Dt&0&of zRdyKFK`#;X>lJ>+lGn6#VV%sx^`@H`W@YEl$wl@6oq-Lf0W1y)+R82GjxP--rM<9h zv)9}C3v@`2@M7`9)wX;45^HZSwT+t(FvG?x;!dc1AW$14qh2Yo*q8E3@j}<~w9!*d zK?=q&wx!NUAwOtka7fH6bvp)Wl%BRNHlU!HKv+vV*s`3w_c3I#qmrJRERCt7u(l7r z>dteu6?!Pp)c0BPtBnv-!D)vOy!1iK$iks=$tN6PY}BhWHPYEQvcFGiHn!4g?6oG#IQ{Z)PKdK4N)juVCOWuAQ!!eAN$|lNO&MYI%(^tJgWI6SO>p zZpjTOvSNRL<8#_7{){ZZX{T)Ph-N|HU>-cIY%?@ESsxt2LUX^9j|E&jx5PkYtL<>1 zzRp9$3zWU`=~;@5xSWxhb83~m$3~jl*(7s&a`MJtWu#`DAq+re2af6sV(CGE`fGW3 zp;>jTXM(3dp}cH%mYeGO8@p3%lEXK_~W7HpBVZ zmIFiFFE5Eb!@BMxKF)CK<~8Whz+&6=HR=|VS&j{yJrn2bR(hPK=Vu=$|E*vFA)6;Ycd25bX7#c5PkZMuL4@MA(^CbmB2z5Zk zw}R~>fZvffEiV?HJ8YNlzm!ky-Q2j{Hf}KT-c?+0b32oO_-c=GS$$KH@R$|?jEBKw zsT@Zq+}g(o^DA?7pi6CSZLv+5J-Bs!huK*xBtX`TARx01yp^p|(h2$1l+4_am>E?X z-v#8!fR!}YRj9Q?)@>T-+swD_vIbS@-O{)Tp*6eQ7W#ylyd`EZzWmGI)L!+fSLG_x zD^8yv7Slm2qC*Ef61rt2$)s>ZD;8~X_w_AH?BV0ZZd-r1e3l;1SbgfrWSri@7+ z|0W#lZn3C$VQJkMwY{xTK8FPi$XeHw~kj4+tF!>45^}nhs=&7&3Z@|D^cRf z^9-^w*$`^K%;?cs`#LChpL*Ai3Qa$QKhBo+4c?|ZV3CrWEkcY9oVGEi1|nnvJj&mI zF6YB4p55cG(i4vK3|KnhvHnoL)gF}Gh?mWdxCS5U4{vB_v)nqS=QySzJEj#cUWDy& z`S05Rz5~Rm7#2BeqTnLM!cwFs8u3xaB72*oaVk$OP*k18a$fZun6C z#`(!NWg=*Ns4pXtAKC8d8=#+ol(hNP5We(MS4o8?c*^38qiGJR)X@uzdZ^6GAZXdV z)*#m%%Q3jsj?qb4!pea1bE~CgcJAL4pNN1Cdijl6|p&$P-#O`0o_VReK7bS2^XIc6Q*KR z+3WlIptGp9IA9SLVrzT1%`nzl;p>`9+?iQjSU}Eo1Y$m2>mYSyopn&Gz1-Zo z-Jbs3(`jgy7S1z(QwT&usT1ajPiH(dk@Wo&iqR4=HP*EAhYJIQLuO}rO7(*8F@-0M z@8->&%+Rt_mKOj3KmbWZK~!cwRA&PQP@8B!E4YAle3~Dh;kFrrRq|%h zC6^53%{lABV0w$IpPTdo6Q<+6+N>MCu?9SbU1%`4Lh`et?|Ro)wkIBcqV3V(+Zj6h zU`JG&XPO@hPE2JqE3%RkFw*#|!t_iq+ekMj6$Hd`Qs8^IDi7eAp(6+*JrAA}CT}X1 zd2EALkM)yCRzeV}N2zp?t+=74YsC#Ca{;`-F@l*d4d_OeNQF!`&OPrrB$82`O!%d0 z5uy?WU3#ZTr;P~7cPX1&U$Tzz#TSuMfw^DRu~XgVD)Gj~M%$!v91o>$jyx8=2)?earc+OtnzXR!JRcbFdo2^)auI_;DUZ9(b? zX~tF5mcyprek%{a5VI*X-*T6);rKy9rd8*VA(b#1CQdD|!eL8Y5j=lzwM4iNV{Ic9 z*u1Bi`t6`AofEcqP$E2R_?O?wUm;R7(6+NJ-vACe<>inNBY32nN;m^E5ba|eta*1S zU%`^5OoAg4xaeWKFfN!KBuhux7wd!t!M{Mj+M26&nGZ)+E#fNQIUBFA9 za$wgtyq&CfxMnu#>h51;cO#rMUCO8@C)+#?;bwY;a*n)7qkI7t*PmO)Q}A;}+6S2m zS8R63Igr!_`jodx?GY@NT7PRgpcXEPp=g5iBfDq0l%4b!Ww#vs#cwHZ{aZ2)MzxXe zP=!l)xMae%>A*a=>-+jyc#`K&_WG(+T&m`a`!{cIgvTQ7mlodVea`ySx%CT4S6;Ot z5><1qLqC!nTb;DGzU}qxvB&RgmoG23x4h-e?Q6c~tJ^>Sr~jf|efAo&f(}$A!4F!g zVm7Uz;3mkOypI9qM*oMwq>{f!^_F-RdF3dlPbIF?0`5W8=uG>6W~KqqBSJD}ZSQOY;Lw`Nw0V6@|4CpboZalafXQeav{qndSYyoY5tW2V2{@Ypx%MQ+!EY zO2UtHe{xV3i@?&zA2Iad=xmw!2R=(ml#%V8gH&%7NnU~mY;3&p6y4bZulOc-j_>5N zvMjJ@e};y0d*?Y6JpM}G z09a&3Vj-;)CPWwEH24;Sl^ZAXZHFrdQ>7K(S9v0u+|9;hVR5m&=RIG;#|a+ciivj} zlIyKFH;t~IqtKI>!E`sO8N<0`!d8?|&z0KasbB&{A~^XI10EX7wx-kZ6uzB+@l+ZT z)7gXPPkGI&&?#S?C$1Kr9WJy(`IM@jCsXxcj~qSsg-;wnaNcYl*x4z=8 z9A(8jINuc+_IXY+2@1g}GWMWg;b(x&{C=7y_q3#&Xq0JkN({sf!|U4#3!F>|MB1dboy-WQ&9=O{)V|^CzpB0S9dD<9dYB88`F8c{wf6JB@XPI&e(Be8 zVY9w^u4c_67Ibu1e6r+HC3xaTezyFPM=vo**#?in$>u?O(^tH?egE$FwIBP@ACEnp zWzL|w>ydU^ABULsAvlU32se#Uo3O^>9-J#y=Rj!>0%tH%MpfQg&23n)Vu9^+Z5UFn zmVtF{a0sd~wtg64v!tIs9E{>+yy%;sU=KuQfTAmYVm-gbvp7HegWt^n^())PwWq;l zQj676>*rRPVB2On4Qu_mKy;iFClNpL740Ie?vzdEn-g&6x$EflzT|oUJQs$?EE}U9 zs%dIld=uKzw~Qf{!K?&`D>EhzLDv(Pj^L-A!m~Jgu_^N8U@z}hPXB4ct`wwq@i^P( zs?(rDAX1Prn3yYoe4(vxcwr;8LVOW})CJb!+2Cei%GoPq2ZuJ6p3?xS6yc@i`F82S zH5B!hD2)vR!o$N|);R6)@C7SYkN8fs?>4d3K#Ww zMPBy*5KmUmFfcvg)m1yKZEsSjM^!B&hLpgq0ho?R1%{VTa5C}0sGQsS04($3>m>%@ zi#U;KaZl3I$s*4V@_!cIH=&ItX}D}8BU~D7lF6^Z=Slm@uY6~F?6H@yUU8>794KmK z3%NpYh|>|vpA7Z3vBP09_>ts`-9Qgvcw|#)HuW%=Y|rpYIJq5#uy&SpauqU|!iz*y zZ(-|Mbq+%_-R?Zc=ScHhok&6bQIEwJoNlLtjMd6m=-9k;hBy-ha5t^MkXBm=D!D1JpSPbXT23K9D!Wb6et zB#hj3u0~nARcWN9s499&qmxZppoCF%c|LAk-DGx`2%V&#QhaXcEWsXD%mh8KD`GVt zb~q$C#lv9r(xuO|)z|K{&wlDw`~2r0XtS(eE#Vw=*h*LjLAF7qZEz6a9GO?hxp<@= z*6d#AC)r{dv(`X`JTC04jm|py#*WAa;Iw@L%h}VkQRL^#a01yN=M1h_9K$elRJIKW z1twB*?o>I~jIVMCB7wjN7tTVMEaBR$!x_}1p$49;(b0nztdxCNVgqdA#j$T1$?bH` zu@U~LjcgyqtNP?p3d0;+OpndHeeUP55BW-;1JWbjxv5>Xc-mGj#GMS3u^rJNBd`os z@#%KF)3%vm-QK75sD0$W|BrU@ ziI-&d*6*804+(Nm{h_y=S7!fg&#5`@8llkRIwd|DU-ako0gZYa_F0qNFQQ2d1m_Wenm7dvX@5W8Til& zocx{1-s8dP%k8~?@z1xNEoQVc81v03hwU}5epUP4@BQ}nuYdACw3Ws4k);NW+M|0W zd?E|yNP;hgpKq79hR$+}sv7$Z7F z4|rKx`O+xJ;SQkv#0zez=+u-$W|VAzoHbQ3Ut^q^REYSxsnxZm_8?bShsS%sahv?s zQQP8HsV{@}Ss|XKM?jh&gsTb-5i2g6$I(HkSf2Xl3TbSDCEb)lcO>aqELL>s$;RCV&^1mz#c$ZF<#`<@uqBDMV@TYtqvSK- z?@=gB-~x>Sv8Rnsc?<-}*U{ec*0;2mzx)+63VSv1Q6DAfo>jV~3Isnix@??6CvF7E zKhg$n9HE!EVd)Jr$&?SiUTiHs2v0bOxv%14|(2?j_xWRCmZGuc*^{*5}w*d{+`Jra>}~+50PHz92_vM2ku3+QiB&}XX1mHEJ!v--Zs3E z4H+|N?DE)1NW${>EUbbLypSj9>=qaj3J;mY6F?e-3@6W6FLU{%?rqyV}Ykt-c42@X=DMT8Qf>=6qq6#wW}(tt}HmMB<3Q8wBi znkCM(OI~y^b?QQX2Q-$Rt!M0PkxDTCXqUJhlzR;zD7; z&gD)AjLLKIPv<-)G^!()Rdsf=KB&PAnzp;i-7JZ}=1X4L-tfk+YhU`MU)&yg@c#D1 zlMhoDuEP6>H#yLDFP*eEzv;E@=CfDY-u6~I=0hvzSI!|X6BpRnPT$h9o@oaMZh8G6 zI@?#&Ob+2;8!Mq0!h@$REZf+=m#YJJ2U)h$njsevoP~~$!YHOEErv9)r;UM$)Kj;@ z$AU=Fm7E$B`gANpMFzlnxcq=f$~gl|k>TM|Hu(ml0`v#gI|o0|lvn&rIi;=4CYPq9 zhQIz}UKo^P2QdB_LG(kClo41jz%11CJ;WUZIwNhSa5?n2gq2zEI5^mBANb+-x9|A2 zZy}8j2Hd_0ow|JS0X5eJ&n~XDx4r2#?O*-Nf7Cwop}*OF^SA$ynbJ#UYxuIEJkU@1 z4*0;tBab}DYr-$Iz1^Gio#f$Pb3A4F^wT^P%>#Rjj01#KzVv&9t+SOTyjJm8=Zcq& zOcE~UBvRg@UD@+1`)hA8A{qzT84oRZnPZ+?21j9K+9^+Y*dloWA&jnRn)`GM0}}E# zv*eavY%d=W^gGKnaAb&PG#h=*4ohji>g|8JJ@WAVgm1>blMj*)sDAK+KhQq^%(eEP zf9{vt#S7Sy+y%Zwi^At#L?iZXT4xPco|?yplKN z6B#9^eS|g-+=y+BH^$KfPg8tFCP)3)Io^Aa>cb&6Jp1fEC3r|9;sa7+ZHx`hgAbi= z_dmScHuzro=bzr-=|5rl{&ZtTg-SLjE<)572;@!Js~vteY)%&|ayEqaO8M{zhhLbq z$6q?zUiq@~?a_zU^2xu(s}N53Ch^C9pC=199cY%3DGO-YXrN*WP&($@skw03TS(mA zXVA$-1_M=;XAf`k5kvwp(DvM7+h7LukaehKCQDkA^3$L>J1eo@Uir#b@)ZB;8HoEL zW`@36HJh^`z>-ie7PkRp%V7#cLUC{swlZ;L%*&I~OT@-N)Q!s33 zVMCq^D9Q$NDLtXz|$ZN6r<)3#Vcv%R~+6(!${p^WVmGvEU@>};{%mCC}| zG%HgcMo7#;Bn|_A+9oiD@7_!*0>}uo@j4_P`|4h{mTtM=5}_z2tshDsasYL>y-$5~ zVTpGL@}z3V>QdDJr>6~S(&+6%s7Ab=mIMzLD?U;<>WO~QwIEElfiG(b=Zp`>+3oh& zlh@NJ{@(BKHjKITw$FN+eHi*7i#%ma*jcLF`h=CG2J|W8(Vc(~%lHmdr&Yb}_{KMWS^Ktc{pR-0 zx4ogQ^Xz~hKk>sPd;7O(*BSnDk>>a0kC*}a&hL0%d*5IB#`dw__|5j=U;S_GqaXeV zR|1F3)^Jx08#@@Sfh6#m$l%EVcxTNdZHwinX&lg&b1bni?`*xYtNj0sPf(~kcZSW7LkoNa(wZHYZ|9bnTZ~6;ubMsdEq1clAC1=BUQ-kY8 zwpnYxwQ;>YeE(YehyUP5+xPy^kF?KU*~sh5lxNsgUak*5;i2W1zwEJm)p3sx?^s6G zJK;Y4>8Dc1wF~M;)`3rSx|wIGr$!hFwEZ?^0>P9kb}u@NGtxgHE;?!lqrPDW^90rV zxheCMkrHVfA{w|r0+(3$#nQ2zgS(Ui=^Z?#cW|!R* zHtwVy5&8|Ue{EiGX>nT?T8|tC{(CGrTxfrWS?!@hwe`riYM-F+RCvlGr#=uE!zbB#3>=PsX_EL-IZc>STP=BANX)iwbL|eJ=V9Do*0l82s z^wOxy&!33OTrGUp%`{U(HK9Xh*A9**tYc%z1Gj&VkGE?;LPc^=6@3E_UByLqf2rFr zVaUWlm&Zw~QplR0Wa0KWc8Chfp2K-ap_cpmcpzaRXb?`VJZ{omHs z)|a^Tc&%;l+P)dq-DeO5KV=I#)EqGH?QTZ=x4iZB?X7QrbNgQ({f+ih|K_LK$N%6{ zyn~ewJs=P)sAKvLeFJ*riGI(KLLb*m>Wn;4)AH`(TK;LTf#vf9@d&qF+`E|%=F8VE-p9Hu~D!jd-qOnoey(&YrYpCwHDi!)jVqE{IsW0(2# zY}(nqbSgd^MfN~h2$yc8Qi5c*&1C8~JS{)lyK&n(NF{Y0JIT}w;37wuL0e(Nq-sq> z4Fhdou;Z*$$u}V7{K*AAKf?0+m9e%gJW*T6mg_+!*l9=^3f!!q5fsq3}_UOf0N zVkm*wc}ol$>ZJ`t)u-hvSmd(g@yU5EDlhS@&gJ`fsC=Dq+7dhE&UI}1!g`1Y`Utdu zJWs6N-*y>;O#blMwn?9uy26Es?^3pHSX*7p^E=YEU3Y?E8@SDF*3$CvqZOuY{b0y8 zeXJLx&T9D1-m)K>KQUESHbf#ZPGU>jJQGX>Q1 zX1St&;9O(&^nvz@M=!Q@XAkzc8aTO#qEzNtZbR`>s1q7zn+?#x(*+su2s0C%6)H+VbJfxneGa>EbAh%zd%65YKOB~S>&p*V+! z`tl2fo+hlBo?{neub2tNk5F*BhDK|X!GH%=6-1F>94=jtF}JdXJTfZ~SSt;?t;q9k zg;`nJRr)q~UM%RSNW^aA>PB|w)$z=?d2)baK6dm$wF72@JbR^wYvdxvnNqLHlvCOe z#Xo)5Eh!vqyi0D&&3t7C7GDYHE<=ninLo}Z|Ikracgu>6L&f1OyHr^cwSPgFc*kb3 zXjb9(xx#())o*Jr{j#rXCtR>ONT1S3`Q2$}m=!J0L$9O|H%oBS(SO2ciYMHnx_RT1 z?dp}^Zr87TqTRlEg>~G=dEhXOrn(@j{$AyVJuQ)tyU||yMSNI;+ryiG$b%Zks|*Zj zJ+SXA10vaF_7r{@pin<@`#bWKN2X&{R`#rCwG5*Y2k@vtG@Q=fIWT4RhynHlSZ4(s zBq>)Y0dC79YEr;eO-)|Drrd6}U*MUUG6(>NDmU}pq@mB%gEIIaIQp*XNEjF}3RY6m zBbxRNP8qc5hd?+$i!67rth8w8i@sR|s#`ix%|olytqFd;%R^F=e1c3`aPP9G>d8Iz z&w(a>p$G>%?eG1a54HEc@6Yi7>kak|=pq=j=a}Y*{C$+eb_S2 zV4ZWlI^DG;9iI7xQ5mwQkPa@s;4JYYFL|In`|LBUx837*^(Dws z_pR&Nt;=b#yJx@(FUtr;a)BUuE1rIr2BiB)(I_3I#lQ4bes+#23-2<%hJC#gSmLfTK>gKU z`*8d5zyA~MGf!PX&YAXof9*Tl2Y=|hP=~iWFr)gOcfY;8^-ZsDzy9kVFO2& zcVqn@_TB{U)1#{Mt+(HO?R{U;TawP6&YloL0trh%0U-fVVYtc_K^+}LKtw^PW*E&r#=530Y(^9p5>`i= zgIwuiGR|`RWcM8&DU*kXGCI@F>O?(k{L#-Exbx#fXx$xkGEi%G z>0lM7@nM%`ta!1=flSzm7hLkf?z8n=e5oXH@ORLBJY0`IA5TI9+D zsnj4;3yVYVZS?r(^>vgpmJgKEmM>yf;s8o8dE7!0bLw8Ae*Wuo^cQNkP_t zKS<^M6w7xkVh61=&o~2%23v)tA*kU~V$zQ=BlYaSg|DhRVFlJkgIt9%xdUs6XBni_ z_c{0+{0VV{XY*M^8jq`rSJL2>u%^QEp4%|TZ0e1C#DC4x0Kg$FjAzw`u zkh8bVo9~GjoB#;P0UxlzPGU27Y~n=vNUt0bK+W{N3yMY%gF1XNhiywwOtn*f8+X%{ zKKzo;$@db(hNi;t*feXNBxbxuedu80ijH{;OW*u8W%Y(j%H-%HW#_iL%C7I+S;mg+ z!8(c@XvM4|tpUdJ_^-Oe^751s{I(C3jhptA9fv2&(LJk)gKQwYTgnPc%5EJa-|!OG zz@CJFm%m_*pWq8XwT??CvV#67r|`fSc}=Jw@f-zJID*4kPl5@EZSC}r8}gL?zVWbg z>ihaVQOzLuAg|!A;`L|yUR6CzqCC4>PyP1mCMV~ zgGZR)(NSLcGp}Ne>Vfj%4}Ahfwmtr`b`-NlHfdWD;c3cep=-yf0Xm+@R9P$pZxLi<1fFlY=3xL`PfH4 zRX+FGTWANm;bE+U<|j`Gtmtg~LCoN?@*z0ko6T(IFpz#^6Esokn1lumacD9=SN;*t zjl(!(qHHovuV(09m3z=ky6{138^Hrl#aZPY`PRh!q*Rk{4d*h4&JaKMtTW1MUj5Td zC>{;$@}qK7h4X7)y|cXW4R5D|!{lS?^#~(NpZVLrFFy)TEWs+|$YgKVobs$|pGMd_ zXv-;&GF3QZu$e)5=_(4#rk*TAUp7}T7WOai|iQ1+beGqFjs#py}z~o zDzox$b9il-ZtWxckt(1@x?a`vs5H7>PPv?S8fZg?Q~mg z!zE#O%4=WY=W=5j3~|j-G6yhHHd}t$ zk;T1qJbK2u%LH(@^6WBoZLDOIc2g8n4_eu5pr=>z zQW)sN*9F&@?;TH?Kj$IE>WxZ@ALRODgvEHg*>1x^)U1)tW^ zPVPI2q%xZ|QQb8qnMz=w022h^o(Bj!!wyqNI0r$CICnQJ1FHE8cLbVwA)L-S`%ET_ zbi{gB9qb+4GEGGp(I}LSvAc6jGMmolSboVg`38OxXZ|6n&A6Z*Ol33zoxZ z&KR{}Ge7;stf&GxJM`0l!3tg#5!0^6tPmhhW@(!W;c{HM^n{Tz39HWE zPAaJuw*(9y7%Bc;&_r98@Tpi;UtGh>Jv7!TaOP!NT$`k5fcXFHlEehKRzC46zcv2? z(`=4}dxFf93g4UbuQ#Sw`7=lgv<*J+Ui8SuCT!-9clh4&iyv;~bK``jWY*EMwro6m zeObNsit^BXH7mU9lHA}&^* zMqUlWfBA(F7T5f9&xc@-P#ro|vjZ%?J9} zv2*y`&IDLUUe&4+$}|egdpZDZb^w$!DhkLi+d7wZic7=j6s{EHdkkOdph>EEQ`2dd z%REhghNXgji*0oFjh>85{RX7Qhwx4-pQ%Yu3HaMv0K zHkRE(nYs10JIg=bv$cHTD_<|~egER}Gp~Mmx#5M^GYMz792-4SZhXa!f$@Fs`yfMz zz3DiJKWQnRY%sINqVIsEmb)tHS)hQjIbqCEFTb5^K?@Fv2YN#veh48tEhl$=$Q$2r z%X8lIkT0|WlM@qVEdX6WqQ92E8*cnz+NYVa@w8Rt?Z5FRM!?P~fBc`{6L}&}BsxiW z*by>m-{ojL`yw#%tPdoSQ%>~`*{jyY*;s)`-Y_LYI=rdua>vA`GV8Y*f_O=TXuk6$ zhm=*$<&k{z$R!<8cuBq^Ioh;o>RL_#vm!w;x)o*!40Ka?B(fnTFe(XETd-D6)2*6%3Xne}U zgYZ}`YAN)XE_?UltAE}`lAwbR-y6;mk+~QHZomCo<(uEUgHB&hctkuTAMxNl8HJZj zH#t?>`^~l4`N#--8)pPr*^~+(lUQai-jj#F0T(>f@^G~b1|p3L zPld_w29}=9_`VX}Csk4>iR9kEo%kTkWAWa$4lEcGGx)SD#Ba2NS)k(xzab{19K(w0 zv_Sn)O_mJ#Gm}`?d?Hf?XGCfWg8d9;?83y{&9VveF;_1em`hI`pBO6-Jq7F}#I!mB zJOccldv}(h11O(u5CX(|1RWBT#!aXDF4Ag8@*$20}v__a`4Rr|(SPFZpVmW}uU96dXpcjL;0gb0d6~z#<_V1y#ysDq6Q% zQACaJrUX+k@B}k8E$alP{u!3HndY3p2hIsF!lYbN=!(Ib5{Xh68PG;5z5H4zzJt5a z#~@;~ad<=I8lPXjg)Q<~{8%2URPf1X=$Lej)(D&YMI_HrHc5?J!d0BvIQm?l490_* zc(ELofOkArxV#ad|E0%wCu-TOjE#&WSk3(ja}DSO4R;AYr@dI0(W)H)#ZQV;aYx9? z3q%4B$-@BOeavQG`8I-|l*G4EFV+#9n>u<{lrt~Cu`F1;u6*ljpJYqK-MG&Pi1o#= z{+O7{yI?)Q^tXE6U^)Mc5jUJ)7ttbfu-dWB|yBrTo%6P{DJ zVtSaSJnnKg&hwOck!@UPgoS59rO0+dk{+O$o;;qqEi%oG@P4P63q2}-1Pa32IjZoa zRWu|K}D!#lDoir?`R>H#Y;^JlV%TK=QWz^jv@&hL*saiaH zdghjo{pEiz@A$2EmJRDxm*q>B;Im3+8r-#GEZBc=s2pWzyl?KjG=%#PO_aC(#ygoH zv$g!NOV$ByzhpZaX+N9lEQ02MMo2%m-l!A;Zm7yyHVSd&#y zc~%)QTyRbP+@yY6px}yE>71GRT#Oi_El|v);WQsk@#>wwrd;94CtvawSbUV;+{IAB zvlTP*FeHd6m=1{(Ecv89k$`dQXTv2ygXXMx)%?@RA+p~h|7goxzq}2YJCNOjbOK-Y zvKN)j7oSl^S>mXTcV?Ca;_2`F;UD}Lj7q~Ou>I^1G(j8bXoj5>T=q~pkImqh418Kh zmn~abmM&dd9@_N?zKOKM$`&$qv})PX%PvXjpHnCDyyj8^-lp>Zd6af##=%1wL^k6-*~d5m}8$W4-@{KsuQPW6*jcX`GrsgZ}fGt_P@~8y1KGTW5 z<(6B^_18be0`RN_w3QwF7PA4uQ2FiO`2*@Ts~Cyzq)tAjC(neZ&68X$3r8#U%W`zE ze)~L@{ao1JPJL#w6DtL%XgVT{1TXb&X=}=X z%KR)hIZ+TX%zvJJMdtEK4~l6|H(ELc7@(Ke)zurT!7&h|YXP)GffV55<-qVz*}rG3 zbYWd>Cw|qq8-=52Hb6T5>Q~W*WzSusI!U0N-avYVKooEqOyz@!wEcFtc@)KX9Kzec zrr|KK7)v-St7h$)a`riAWxH2<60zhF#KJa-A|q&ZbST>BhN-xyLMMc=@O(`r@|o?E?`-U9`KVCP-ja*cF+aZdJ8`V4NuP*b^9i$E z8ji`1vTVZ@skh&_^}}VFC5yEFRdqpS_0c$O5NOWSa5-~BN7=IXaM`lGr?jwbuz)KZ zrIm1oX3!dp%;qOODyRga{>KW1ChE}sSWY@nC{+_!72_Wo*u_EfNOKXoMkzII%SC|7 zR`OWQKfJ?z(+!~ki63hit~QGHX^r9;zVSQhX&I|&@ZhsC{oqx)kg0jPaY0>4fP})l z(vHwrixl9;kW(i(Bg~2Cq=#|JKFoxLkr8KY(`lE~se49EPC}RTEt{~LpX(WpG3n`s z8(vyYIb{{I`VXL-(DBDi(%V0;+;a0*${+pbKgAl}Q%*bebmUnVZUOE}1dKFH`}X3$ zd2|HXZ=>oc8Zx?detG};2z;uspD3N486>WwOo# zkj0}c(tzSe7V0PKYvoh5g2rVJDM^TzUpXOf`2SKVInf$urs32|1lsrXT5(tIRM)mqEYbUE>aDWkUUa{eXaJGeK;`%~{iRbsA=P)#({IYG% z>KEJ}XGBCf6j}sk)765D+;nvtTsp;>sA*nn?-_q$)E(QKhrIyDjmt!!Zmmw*2+jlbOr8>^Q1~@XVsptu`m8BmA zwY#Ui`lAA|Tk?(5!*e+WCxgtPQPOXsGY#?avTOGdkZauZ4U$JKFUSDNny0&Q8|Xzi z&44^Ds}65Tz*f_2{soUz`B0A%fYV6?_z23c3nz!Lz?h{Sh*OU$_~y~`T)%!T<#z~Q z)K`L7rc@|j0?Q-{tV(JWrhEerCY9v);lDOyKoz`*CmF>s`3;^tnu|Nuw+TN7kl#P+NS2NKf%MT*K6z}5ECN!VlurisP%*42X(7oQ0)Yh%0w$u@ zyqHbnq{kXgXiVR20;wW3+a&$;H@gBLSl2PYFa@-zVd(n z>3^j|--{d=WD}BAq#OTNXLDi48}ps>+) z_~3I;3GJJ_(X?<8HQ(Y3C??3?w#d~fHlDhgMeI+nE?K5anqACH{x)+O9^SSM1>I2s z6xa~MypfS)6c{8Oyk+{KDR-7ZVB{qNaZmYx$?kq_>uSe890eRIvK4snN+SB;QH7w9 ztp+zKkBOQF?|{$yj1twmD34BmYVwd}L&xE{wv8h!r}v^4{y2;5<7Ya2h&Gh?b|7>>Y_OXH{U+O(R7w@r9}f#fJN@1nyP z2pS8gS^3>7G)y$%A%v5mA}8i_mtV)_;?tkKH66nJ`wx{Z4?Ij~s$kKckL41h9A&C0 znU?t}$H>mIHk53$=P46d=Rvy#-L0jcT|Vb9`eDZih>Q^hGPns(S=lh0(OGk;Ojo^e z`LU5PR=uH)`(Ag))FF_l;_WhD&g*e3+f_#9AfVlbxs5v0hB2>&k#$E{ot)f)Y!0=8 zyUN!95jfOwlnHfo$WY?NviaG2X3D-cF`4~pC{e}%2($mz>)XJ5^`~k(34W|`Vf0K%QVnZnZ zM1t-Px%%wk>s)FcmMA#P=bE0cp7=19Q1S;;TF&g2L?dBONvHUuBP=TfUZ+^PW(>yE zQrZF@UErH;St^6^{TEg%TtF2%iNK-XP#(!6B?pK3lBv1!BPclxQv>H3NO|YylVS5YQB2?a#x)O*^W1#@&$`Y6W#~Zgq|v@R z|0j(=070&N-?&dCabN#@v@x*Y;W-hNLmXA5vw~W`H$EmdKNWQI5JhB^*k+pNif1v~ zg4qS*TIpZ8xtw+R4du=+zK=PilSDC&{B3-HY^dQChF#aqJ5tWu&{w{)WtckV7RLHS zQTGwzZUz#oy-{E~m6%#q6gPOyp(SKFey41`O6O2Fnh6wD*W*MQBrof?hww!q%{}Z* zn$~||)-o?jtREiAr^>fx?BR1R{^ke|@lrl)e69CJ$vcCA8w2vLN!Or_vioe%T!kYi zuuw+DM~nWaDi$iL1T+uJH3n`*kuhUT5FH<%K^{WEh6da8-IOAh&%A7&sK&@qCO@DA zjI(pvHCJ6%Rxqo0a0umv^4o~3r2f@keT4O__mzRUi;%4?_-d{PDRyowy$QCKtq<=A zO`Je;oVZyL*|GBYbB5Y8FVQD&59@}jur6b?JwLK+TzM`_1S2;|t#-}VWplh~z2zeAX%OD}iNV?|MM{aasLxtdK z8MUTXOWJW}cCTEqxLkepRhj!>SPhxB(JffnKJoF7XF^kd-@^DHJ7HLc5uaTs8RwpN zIxuQ%skjvfqbR*2BP=^cCc>}f-ww(gMp9O;Tt=blq$%@qwH+q}+o5Tv+?L2Jyyl*3 z?XsRA&7)CpI^fNbk;!VYb*U@E2IuBOEXvj(LB2%}sm$`Hu3%@ejnU3bm_ea+4xbp3yIwfWlDzZK=Wm5!v=$gVCdn^eqXL;jHq4S2jLM#J~u zJ7Gw>jituA=-~Gex2wA?3a+acS!bd{i7RnHeKl5=Nd}5{?!u@EcG9fBLYC!^< z{1|!=mLhUH`;q$!!;@N4ckMXBu#c6T1!9fQnVF12!jVg;qs}d1tw<(b3lszs4jlTG zo*q69%tou*b|D}zXUZ6AsV8JGDww`kF1j8q9|T%?oVayxhziAhqcq9fg2^2UJGFe* z?wUXW8|CbAVh4E!Spv@4WFm=|xPW>L!W@MFV^lf}8uTP8a_!9oHj4uzx$pJHjT=*D z)A4MUufjwg{A*6n!sQm)7lvyPFhmg)TcqI42Q%Q}LEiQ9D10(%GkU!-PLhQdV4VQM zss%*FQ_JX4ED3{bdZ5L0jL8tl8?sPPgKwD)T-V`y%FmbN%8xWM^(g3GInCbyewz)* ztI&A%9q=|j+lTQ!2XHmZ)Ohnhb*c1vG>V`IRIZP{e#~?8n^(bTKA#l)f8DJaAmnF} zB(fSbeEdur{P=`n9zSNYFwOGB5>I~llgIpvz_d;Y62dR=NRI|V5?*+P+fYq-8>u!v zHJ%biqO3b>Su8`;i0&@;1+Z3l%_sc_V&ue+mMb;TtVOAC!A?QO<;!3E z8k0Vmn2L-XnA^uzs4G(*I||AMW!Lr{ySS&5O9QJs6mGFH#dCX4U-{Y{O!m0r?sDa2 zXEJ=wZbs1Z#SCSB`Ac6F3!!^cL2W0^cFM=tOk}zE5^YXY)UQ<>&7D85EStMHjh=2) zgG|Obc;FC5hn^@jGvFWqkcPMqmjPGguh-x;IVWumAs1hAA#|w?XqDG>GS#hL`XUp3 zhQSGIQ_{$GclX2}(`5p?dQ_aMLPVoNTD4vQZt@R)NOOqwNIRJcy@c8B-T1Y-s=*Q5 zBlhgu5A4Itgddh?43(Yow$hfk;;n-Z&i0V6 zjiQm~$ly?U&U0Q^maz-eFg~}LxI}*4Oget>I}esG-24UnP%b}y}CPiBkYb4R^ILIf}pyL3XA zv()&e1%k<`_{rnP1tEG>iUmMK2oi`2vvT!u3}g)g;|v6H0+rt@e+JDdr`F`vYnGQq zix)$DdX@q}AmbapN=ff!W^rYuf^iLz#LW89@KNOb78rPMLXB_|%G(N~@l3A5T2n~% ztvz)Ffr_aWePm>+46@|P@F>iRk~$+JC^YC`Xi2iY4cMUu9Gpy&OTDMnYZ0dnILx+@ zJFtkmK;qr({iEM~$w82WszK|!|E<6O%7B=>d>&pG!3{jg6OVgHYfl;SfATQNMzpY8 z@`cBsbLa!+6=ca7TB6<{rEG+zU{C7`2Oks71o$kq3@Kj)COR*rrHeFe8fhUdT7Fc) z9it5 zZ4}jag~azBQP@KR((sk1X%Wgay{oSq-+hi^RO1^U%DS{}9=uCK!gEcj`P*o46c?U; zl{QQu%cu$#)MHpvU9^7+|NhBo6*q?X>8Q`>lxn9E`bu`=Ho(l#XeQ6tU{OX_Gto!U zT&I~3v5KMoQ%~K%L?M?5gj(Rgli96Ifc8l!c2I#TufFaM;g= zcPENOCuwFQ1XHD`Vj0N6Ba8fF#rnb*zFe-n^i0ZS12|eP*nA$_s9wONq;Ij}%K}2V z@XezNbQ&9wpkL$o)Ch8NvRrcc#pUX2u3_iC^~_Elpn;^(gCCBf`25pdcb8B7^=Hb% z5AQk zcQyW?t58x6%V-=8|DHVu$}P8krF{J3pUet4UCiHz`9@d)t~Sx~m1n?$7brq-TiZ&X zY%^`MTXcuWi7tCM6E=BWD zdY}P(uY%ReQgug<455?{#e%6))RYo-n4DlWe|~>?!yA67Tyoh(7-7d#;0rImuv~N9 zQ_COz{vVdFvT}sHqJjfD@;&vMC*`C~w)oIGJfMT|Ga+q z8-Bzbc$oD*zsXGbkA3W~aOZ$$SR1zL2n~KAEzu<2Etd~|caovQ^6DBL7`ZAcr4<1Q z?DuizY^+aunV~b(#^$uoOmRk zz-md``s6AkkpqM@Ur&{BWt3Ka*T0PzR>t#Ay{;oV6n>%L_9yTMU%YHF%Z^Q#Ln!EX z-gO7o+S|dK9rU^+D6Z^LPDiNku{*vI6%` z7yMV5-LYeL`NlWzEcf2~0Qj8C`|i|#m2YKsD-$@|=@258)48>iBHHpJV>j^u;Nnxf z&&pE2)xg1*Wv*?b^btPdb3Cb%Ixv?Cc-*ZcyXkegGyx4BiB&lG6{}oo#sQ&b>?iI- zY8}$y8}MsYi6<@u)nCQ9nx;n(${j;2ks%RTre+F-)!k!MP-CVCDgLSCN@YO8I-@Tv z42=1+lL=Eg_iI|W_h9wXSRz4=<5m#GD-8|sm?wX<55V1421$D)&9v`bIHk;iOE^e43J9Pj zY*McIRY(N0R+8qkkbL*iEYf$s|F{1PCP9alsy5+b>H8g(mez>~G=c@^-;2)gO~5cF z-Ml6uM9a$tW#ki{g(bm`v*-HE;m}ycDu?wTT3`ci!l!=NsX0!EW=G(YFj`2dDEv`lln3BI z>y15qClIw@t+0_WjE$bPTZ6#&9Mp*bnk%xWfg{6Jg@tnP=i#am9u><%3J&uI8Atwr zkyAy3e*y{@_sFVN%G}<;6|2@Uo@an_3dgT01pYXiqS)Y81(kH930Y=1j;jj4>Co&^ zMl2a9b#-$R%kSaxTr*h8PQm(BeNMGXTNY<;-*LyCky+wOCDB>^bMZT!Vk=FRUMIgE zI6PJk9U4aQ0A_HZl|z|n?v_IuSH^RX7k9X`b730|9AiH zWidZ%Y&gzPw!Gmm{afDh3*{Loo`3#eJVRTy|$ct z&RKN4FouA`W3WTOEU&9s@g2n>LeU-+fh5&z9) z>oz9bwRb^>U;uDQUtp6K`2*W1zSDi^BCme!Ys)j9aSc-@Xlt&s~e*wu$tuULue+xFCM!|geDf`_Xs7g80jq2lK8|Fd>%<(&Gz!nnDN7eGDEqO5Q~2|ExY8Nu>DY`?uhE;x z*(JZ)D67N$qDy+$qWVxrgJ&3mryl|@_2GUof{g)%lo17`T^sc1W1{)YvEg$5(-XxqqtI_TrXXYt<`4{HY1SCvNR2+IcHBnL8|Kby zXY+@bm*+g|X=NoHR%s+)RhdSMnsafv@rLJ@&-~pjOq%>?Ll>*O1VG@=IxhRsnIX-{ zDTS;DNvRil$ot{{MrqAO?AC9&kXU^VK9GCHvaUa=lDcrgQkJ+FM*(tnsl$gxZ6;p@ zwUr>|dXsGcWws#_g;sfUSA^ykfca+roDrU?;Sg&Wze$xlXQ6671|xZ26|`DJeSw_u zDVki*&jtIPZI&JodDytwu-SNK7(3V?vDWlZJTkYx7K@^0^VH22GlIlf)Y@|1DoEC&*T?icxtU1XesX@Og6a!^P5CdJxV= zDhlh#fu88TlBm*E0zr3u#%k@T>DsV1Y6yAQpgZJgM4PG#n}o84R9N%CcfO(o9zTX< zhRuOb9HWEUK0qgs;jCCz2_Z9^hGj5G%Hc@J{1qD*`oEBgmA96@%rxa&4!euQAp9hC zW5uHBa@v}Sa@RIymSVM?z$b1Fb#)HQDp7Os2Uj5mm%*n?r5rDV$elr~3L{u_+|?+P zn1n%82aYsD2up{R>!~||&xi!lqoe{$^;ZH||9tCjQz;NWUgf#jI4Lihb)osqv{b*8 zb8eX&d1pNTOd`n;io8`Yl0QGW7bXL7e}oMtddiDI5M{kKgwTvJ*oy*N|RXeYd`U3Hl|d_7UV z`ucmz>)!N>+0yud2ewpYNO(waWONXCX0RHsD4WhWy_|8@nXFWBYFWB$0n1@A%#FgE z`Y2vFRO6+$mR8#k3KsfEGDdQGdnZ!NaV@x}p5e@4ThF{FOhCPcal`STuDH1`Iz^-WXq` zS|u@H@I@k%mdczpK~se7W@J0?t2`RWl?$$X>Xo5)_>^``Ki5_|88?0Q@3C;AfG`XV znK{B4z=}0;bf{c)^<~VhSVfsx>s-Zx`rFNVst5KTEZ?~OA5pekuanj@(W-Ciisj3} z1NDeJRFr5rdG08?cI{33*un5~eA0nmSH97qq4Kjo_p@d5MVnddAEge3f1J4x&L`>Y z>_KrGXCsLPLlFKmBRci$P=zsi7Q?VX*W2OJDNha?9tx7C&w~ zNg3LQe$sMgdZJu**?HyEjT_1%;A;0HkCZJBZO0YwC^P!!gJW?SsT6poz{{!?3(6bc z^zX|$I+{CC;NSDd|E28Sz5{ypgFDJFXB?~c0y>1(u(dJk)55qKohFd4ldNHX$z_+8 zFMZ|qa{FEP(#hxs*N#>p*MnDiy0DwzfpXrtXRrc6Arn^-Oj%@F-bqDyvPsX{cKA*F^A%bs z-h2x0ivgJ~?{y^b|KhNm;5S1PDRZ#ptGxeS9EfXh-Z-TNi&nvE6P(;cabkh;)>YN7>Pe-H4{Np2%4y zsG?heAO~KlgvxPkW!aW{qI%47k2uB5m zXy}Jfo`&dn4RRhvc^LFrUn&Hxjbw0Qd4z^X1*Gk!)`t${f>zXSW^s4WU~tQK>Zc$O zvBFGTkoVZL(xlR(aZesiI#s#WEH`oe#-mVp-~0<7@Z@1yj(8}WY`E(rDey?AdIp5! z$;CRaC(4nL>2d%Wdzf>W(U45IG0hOuMuP?c*mF`A`k}E1_Aw;aPZ@hCq(lDby*WWa zSwth24lTGYKoIHb@3m6XH%J|_?`P5D!e84+TEnjsTN}hr9 z@S)voKygla`O9B|m2?Vx;36=3s9b)<=JJ-ez6s?J3)G0S=!LHZg=jAGCnjS_mfy6T z^)Q)bD1|`JDWqRDCylxcnydSy_9E%d`uF+{n zQA}^Y{qC}R_aVy6hCL7^lQ8)ve9KoXqfV1ic-=J3llF-1JoOij`x~j5-x0Rmz51Ff zQ9z$x#_%8Qz;f7*E5SQ|=UwG}ANVuePH-mz_fu@CegR6X#vhkM3XuGI$ah*fr)S1d zisqKz_^r2RQUx*IvPf2Itdh)1}W*7$-}Ol^49=d1V2sSm>iI zULtc;IiQ6~Uk?^+M}#ede;zIgws^_B^6PK^mGZ_n{(O1o@4gu;{U4UU__IGMFMG)k z5q=bqnU@oq!%woMJg>lAV^2AT zf-j%+(s3AAv=m?8MbusSO&tt(tFfcyx@(`pHt@a3;W5&yveBwl`Ab$PVFQ2`>I%XvFbZdA0gjZFl`i6|V$IGl35Gu)Xx{VYiI33{n8{u?=JGmW$^?ib zb|eM~Dom~X$D>tK19?IhrKjIk`e2d)YQ#K*)Bqa+^mIT}I-V`eP^0#tq(fl@*)h^_ zE}9LMv&lT{;dd~M--$5RQmUVXD+1^nWF>1QzgSYqM=@*9RI8`eP7vz}@&GsuiLio5 zks8DzgvVjHalXeDl?ctorz&n0p~A6#-TK6lIjuaVtzz0tD@v-vM^t>j^P%Q%n$5F8 z&{-IS#RUCtz$NZtg+cJAGGHxnDXjhU>>hl0XW6=whK3oKDx@F-xHX155P%RQohYD^ zMk4vlZI0ZKw&~B(jv(U3cQBFHN?alu*;C+~*V%$J-sjWF_l=-j65Z>+^@HLEbKtb{ z0=yA^jtD15Pc7m5#L>!9dcj?-SXVgsbWMkp?U1<%jZ}V1iUjCk-!4#>~)? z>NAh~JqzaJM}BCuOb#;~&r1~;5vSr{2iPTpT%afSd}>GL^&ksfQ(7g}@@u)VO#E~3 zoo_dN?sH}T?!9Gz$t9f~Jt!e_%eHN7Cmn@JnZX1bU|EZ@({R?zw+kSr>&XP$Coz4wx$)u=!2{q`|_XoX}-S|D<#S(a@k$g+VwSr zkmsGnuFUDOM3v7`^5{f5dC0U?oUJ!1_WHX1_>cVcRp-fPyZhHkzSEA>#}InEmGXdhVnUWX#P3hV4hbONpWy-bYy z{LNo1ulbqRm!Epo&z5bpja{x50N&eaGwm3h!m?a;y2eq4Rp2aBU+Qhn~(XW%D6O9Gu+Ubn3?ULBqKp!$5GDO!Mz~DahKOSEt((f!O@Kc9QaaG2QLba@ zm>`Ww1uw&g%$Y#w;3t7F$~I>(pG@sKUQU9N`K_E5%Cx0IdMku!K$4!NpCoAZaK~>g zPS{{e|5p{%G)BfDZ*c*LY3Q7+FwFN!8s)a^xDb31f;@vD6lW}_3l}XcOBf1pLR6r! z_if=rn#z!(p{|Q+;#4qR#EFU2 zK!(Yad*0TgaWnhu7xGUyc(4i`!t2+{B%V14H-Q_4&EKdO=snXOUkw_ zUq!*F!Y`i*A{aJI6rB-?(Q@W$mZQ2GA*%%qh0e`YXLPrrV8>KQvCd4>*pCunjB8e< zNJcg`$PW_qP9@ECl(n38qqu0XLu^n6@51x3h7H9h&jz#)^VR47;g<5w z-+mW3V_n#x(ell&-&sy)Qp|Cbg$zfNMt5&}x#B4olyBd=4Quex$l81FySJ=5g-Ih= zQJkgkN-=SVkUhnXpmNHmP=z?9?B9Ph6KwYF+f(-8f4GD}*sUwO}aK7!@6hqP`l-+ACcCXSs8JauC2ag>V{ z%NLZ(8SZ^}*S>NDD_~C#v(8~m@fnT-!NOKMw&K;gDoKHv0@Uiom2jSR6g%-rbVHde zoDU78yTj-+OfLN9SHBSpn64to2VXI!c|0}IB_TN4;^C?*fIFTj=RWKuUW}T5iflH^}rxJ z)<|*9`tS$#ltF0QGQ?=p$Y^=$6_=KkYfok5nVI~gD?NlriuvsOBdk6UL}+**UnSrq z>8?W2eCwNk8TrB5DwDVh7%TN_UU~1I{kQV_fBZgVF$PKME3eB>z2XK|Z#k5vMpq!M zsv|sibS?opWP*RnM^1Ulb)Q{h)jt{5`s*6n^6Ci`!)bWPWiT^*A|8?XBoP>+ry(1i zEbF_xCyggnQUio&5C@@46D1YlRy5BHsga;F&-y4#AJ-m`(~D4U!>r09g4)Hn>v9De zJn0C~Q_%;GG~vx!Sl>-XA#7)@HwCJds%hzSKkG0#;D`tb;Ij_Y&T92u?Db zy}|_WQ0i<-FSF1qJTgP&29YYWu|@?umMAz*rLd>hhtvK9iek*s#1$6`li-AMTZWXw zPkaEfTnX{$A^yacalIPfv;Gji5|%j#OkOygp|o)pEmvVZj&e$r47wUaA(o>7L#hqT zQC~N{ft%!!^qZL_!y4BFe{lSZFwn%J7*z1sAh-^p!z0#DJ9WV>G@Zq~jRtS+%y>j` z%o{nNR`x1jjbZ;4-sRT1?;*c=51Es8i#*{&co&Xp@Pzd!mU+Ha9+l_hN3Q(Idrx#k zz!Jnd;n6aOVWMM0@E{YaT2WF>SB0~FO_~bCW6Tg9SbjPV{O6Z_58fQhQ-#ft6(4{A zo`%Z0Ro&%VTNVaR1+gP3He&8}=A@xxp5PU`Stf*J2@{@$J@SAQ5d{o&v%{Q2-dGnq zsn1UKvCzR2Ld6nD0ZT3}nw?Ld{g0USR-wUB8yCJNtU*YNh^Es(X2qo`T9_O(CuYmD z4U{81Zq3}qP*;09c)}0W-K35&f;0_I-98#4F|)yWHwpb{$Y=f7nm8w4Wr$6cMRIGx zPL)$+YZuB~luG!i(o!fn$iK=%CJ3Q89bgHk5B>Q^iOYzVlU`6p`v>Y|8h2z`vSekM zzhD6O46S@*LL!sMPGW79zT!Vt7t)M14r|OC z-t;N%O+d>l)lFdw5VPR!EU=|S`;Xnp;2%ZK0h=jFq! z@2aBYl10KFA4}qeZmGM_l7_;GRIcrL!%JRJF1hp~EKrA1w^jCBa>(^y|Kcw`iQ=~? zxg0-%1y>#tUdnA6DjS5|7#B2XG(JvK?GP`(8Ha z`C$~T>FE*5MTZHOkG*^LmfOB|8IZKopDFYY|p20CRw)GBkuAs*3pY zp8s5in%N1BN}!zR#HC@!_TA+Vm`pdPr56jGll~gkWMCHe>I_b1n>)9={Kx=1vktNXZ_0QxxWWY3X=hd%z1wOBA6U^Glvb(NG29ZY!yy+VF4sTjnPn**mV4P@ZUUIXM0_M`896kShAOO% zgouwUTgE39{7%-fpM%SZD@>d~VFhBokP7m#9hqr85GLb$pN?8WJi$+07@5Rul*nCy zk^RuE05US!z-OH7f&hXBXej34A31<>Iv4+)ZiZ+S+RTA0gD8?m9J)iG=yW{ExS)!i znpd-s_VnG!z-_}6q_TyM%ANF-br#oj+|AXViSRhQ;NrAn^n#};czUTIOW0IUd-1Qy zR16F3U*INDm|%n@0!BF<-n1OnnFx!tW-7ncDsjpwr$ng6QP}d5mOWf9IS582(-&3? zt7Rb{!*CzvJ=f*{SU{)0y>TlXpe8CYJ_S}}Xt%G3(`eXrp+!!`LBUX!!*p~@0)!XZ2WBo1<=QLHkG z4k`B_7y1xxPS)x}-Z&a(y$kMC7>x$(sgJqyxmseCZ4RTWAlg7C5AnqbLAhed;JY)( zn{rRrgj(k+o+XM(l?`K^9EBB#Or20c+YPEwo|K)0i8})g#i4_fOeSGr?Lj)%Z0kDP zxwVYK%2k}Hq-sTozbSGcGLVK(|5k&h{!nK^-P8!+=5qw$`%XrNqt z@de;_4nxNW%3FW+9px*xe3PZM?k#`up-+@I|H|9S)~(w}ulltHHgNB7vMU={K7C$Q z)?K4BYi(kg)557QrV4$n!|qkT7~jDgu~3fD_=|IJ3LST|TF_a*@RMcH=q-;8MEfZDFP8*?uCqD);p|qhm#Wy!z#c0|hUO-l425k%9bT`;= z>IRk&bL9g0mzv4nJAHMmBVK z{|7!??z!haERXC42Yo8^)Dg<&GD!1T4Pfrvf%;7W#o>gd{Ra=Q8e+;-d7ur%)tO@t#u?-6uivB0KmsIO|fD=*#nqc@c9ez#FZMg*0p zH1Ore|MC-bz_7B@sZo81%ZTg2B1=SPt+S?s9>HWF*EPNL@{5CWX&6~Rf|p!;5qYCW zkc0G6!P~oUAM|CS8}G-*M#_a3UQpJpUyoAdTJe^=5!$*IIp2!Xyd%n^nVY`n3_8w= z<;%*tQ`SHyy4oo~Y6&A!ZRNo&-@$M51QVcGjbaHa6Pz-@sK>?N9OaJs*sN<#8tdxC z%DQ?k9nE%pcrPfYpSdZMq(HF$4S4}vz~scOeUxE}5drg57TRId4dyAAUs|rc?rJ7m z9S#kYt!;E}cI-Y}-u0i}SGwEhGPsWmAxeKMOM*_*VV$N^1W=WqDetqMd2M;~8(&|3 z?q^olqBYIS zWN9`*i_FNg!iIZ?A!-E>SLVcP(r&)Xiw$Ne>U&kYO_hcqJqjhhd^!B5kST&{X{TRcq=!^Xa?-%i{-VrL)4N;oJI1NL_RAABKk}$Y3(9c2 zl^o@&DycP#rZ7~^F(_z<*$4-W{uJWdFGb51Z@`UFd#v?$oAmnuAH z5u`wFDI%p~6lB3tCK)bRQzi$uArs(X6VFAMdRfWMhZ$N)>-PYewxU$ zSP6totwmfrU>d zoqEhQwW;~i_nzV)H1xY~NUTx+g+>fOZWI`1s57L+L}h&Kkz>$ECGQw`9-+fMIy#Mi zBFZ>B_tBpv3F1LNQX_p!Woi{}ajVa57mZFQf*`9Fkd`RVvV4Tr${uiXX~I}x3zV8$ zI4q7!af$c3W~T}PlcrX!M7g0O05DprI^f^k`;TNfJN@ueOcO9Me&l)iHK-tdvkp{@ zRLo4HD7Xxg4ZfCJ<>INQpIR=sQrm3HpD&hnbqEKFNa6To!f9ZzJFy8@h{~eo0>9yAGsV#Rec!r=S^8RO37?!PU4vkD!rUJ9 zrqA8NvQ;a~PrULa5e}dH%TKee=%-k3bRmWo+a~H3XfYlvfub@&x#rUWXZ>0%!{ zj54*Ay|h=(*l%kaNS?5JdG@ofqr{b`l||DmTk+*D-3HGfApzRXgKObV<5z3?9@ee2 ziC#HJ@%`M)ZebUqM7pJ~-?Yf7)I7X>XZif+*;*8Ff~mli>e zN$04*i;o8%+{QOmDW!+9N`KVxvUcrhbX*3oe$#Q_ormRfQ-JNezXKim*j~Dimy@_g zc9b(tUkA;VUGN7m+YvZ)_z+3Yu=Ox)3ou-D)fIH8dKiLds9%J0sE5QLz;zD1u#;5; z95U~~C-ekzTcb%gZkI25(GLTM+LiK?4hS--uXld=$VdK!UBmW~hc1oiIdp_wW={Hn z`tV`oANRv-++j!Iw2iE5%xKNgBdh{Lf~iWBP2Ah*cT~X@Rg4cJBMK7a`l{xhxV%*|)8LCn{;VphBE_<$dqF1P*P1__6mX_45`2<)lw_-+vB&g z#L=9uGN$SHBZG_B%<7jSwjv}n8>Si7JosdgX)PDrbm4eELc_IV|Dh}=1@`;@5BoYOr`-)rXrDc>@!e!k}-nj@<4>RBA_UaSFNQ3EcTBS@Q2l=*O zk?5eI58wI)Uan~p*np&!XDUQfzUCUZ{Lb0%2g-dCu0PEnK83}|#doNH)LVAyVOvuL zPpoX#DS@P*^1S$HZC}VTLz~M(hqgwOk^{wuY1AuLU=-e!OGZogK02Zu^V8`(M$dgR zbs9XzKeZ|oHDyy*g(EAFk;#)tFK1b+7^Z%+Zl$!aj-~(0Rg0z*S;V%#O}tdaRorlj zK9M7Q061%r42^hcrum+d@PP0qT$ER72s|D5o4VDcvszo6H3}v5Kc42qc*^Jz6Q#yz z3@2@@?I_cxk-tV0Y0N^xy-jf{Fy=Jz=CLSJ@BDlTIxcZ^=_Ic{UO6 zxk$gtX?Z1?2x%O)xm>-HunCa2TDkV2c#I5>mA38yWGZDdq>`f!|*+#I0}#o!ObWeS~guG$YTZ{&iM=a%DT0ykm=4gHe(J8 z!ht!2My|Eo&HAi)1`U>Oat%8f8kKgo3K)@@jb2N{y>heu7* zGSu>zy7V*$%j5c?&Ox~T`e$LW8pHA>2rBZfsX0|X{kNZoNUk6dl^@rQv2y7q+zuAA zK|+R(8~j0%;>qQ|4jnpNzH|R~(l`hI4H^Xq@(kZamJo-sIppa$qV%0cNH_#OO5@qZ z%=mSuZio^uomD3796yB8ymKd$hp+~lr}WawYSpw%me_S24ET8?{ z&2${>T&qaf-oUfaFhkp1rQgam%aJ$0k;ykIM9vm(DZBUVBY(ZHzXwZ-DlV@(Cm0glD9q7Bk^=hct!Vv!4Bo)bUCE7yakEmhQj5 z>GSvy4`FR*rad^4R*S&dRjq$XGoi!vQPfA6#JqLu)|Ax}SZ?dv49obPfyL9h z;1W<(pWqwv=-|-%NpEg(p5D%oSv0n&B`A zAWF3MbWv&bKkWzc^SGZ29Xs17Xxjw7MJST=1jczki6wM;#@-%{@F;1atU46nuN-S0 zrV3;MPK4OY)spFu#0W!GZaH^^B~OmBMe8s~*D9gE<|Jlq&B<0)5%2b2-Yfp6K$yFL z&_+b*3sHfa?6B(6VMXiVV`ta|A&#Lqh{E46(#oe4FJD`QD`9zvv21G9cbS z$4FT*Kplf|V~sI7;X-nLXm``tb~D`*&dj%bBoBEt;PFLHvPa%jsB%p}GZipXqyPcJ zYdsyN%upp)`L8Oo`WTY*34QtKX_A0BBsaNs4~L_6h#;}qN=Q#E%n8^Po2%OJHihvrj;^_ z>(s#{6IdH5SD~ERW_kF7e&X=tvl+qiMyVsbFu4G@i->o#L{e`b9rZqzUcq#nC0A^G zusDqZ(-;j0dJHpl!4E$07&jV?ONB=kvI&e&GsSneo*p{>`q^fdJdKY^gMS{%C~@_8 zr?C3opM+1@8!>}_aE0YhzsQx05V=OCG751^c-)Pct*uolRuuE9sRU3P#+p*iUv~)? z*st(ZoK<-TNr2xGgB7b+lnX9C7e$WkQfMortFBtE!}<*t{cmTOJf#9&CqP}o)|vVV z9z!9jmN2nXdBbIf_F)m-v3(axkIN*XBm#JNo-isSYff27hXM16mdel-SZHJJz31ET z2PuI|%aD2{UnOm?9(A?rKp4L z@QYl;5c0w$?hvLCCm_=iYh``UEhtkCNh1$<9VIj66CCj;EY=x1KlrA)OVX$R<|aBo zC?aXw_(pQzrug6nR+?H*vr976i&jMQcd4>yN&!0l!qSLhQcNc;1#`M!}@ht)m;h; zTG)|=M`rM;-??)y$}l^>u_M~m*IXW-?Ye}U>DEL3QJK?t<;1aFJ5l)26-2kZ=8co? zPCIoYaDq3Y)jEPtEyLVI{Y(}d zE_dH`h}8<<$(0*fx~ow)L=1<#W8O}x9vmDi4?nyUnpU@px;n^Ax#p_Nk(scbalnzh z+eJt8GklTxXo)t z8H|$Zx3B<-d4qrR8%=tMj`;I>nd02$pe5_ac`#n zaU-;xKvN%^iRNlPj$S<8U+Cl)V5mY?ORjQVze-#)P)w2K_;-;u@~;KCr*h#kT8C&f zjxyn4e3*ut$zTpqBAfz)@Mt|{ARd{+J@Qo_ITz>eX40rL`P+iuU|(IFcoioplQ`m8 zD})U~&V(@>2?mG8l>$Ed3Z)0x)`R6FTRd~Ga+2WCZr9E|LXv!ZADL*HhA~kCdQUpy z!!1Rv1If#9gwdzY$ylTKkY0!nU2lI6&+ua6RSV98TehMQ?4~i5ca`(N#4zUd&%Hhk zwfW`4N%^@1;TEh!2eC@3eAMsKxhhcN{){s>Km#Myj+P3T*3|FZzaI%1?99v5E9 zAzY1ukrsRck6rb&D=3$~dE%gcZN-=Mwy)oTp+sfVwu4S5%R1?U`LwH8dW}^J#E)r; z(IhP-D2{jB@hv(8Rmy9Ps>(HRlfL)0Q6~DMpnymCi1eInr+eE76VO&NiMI z!8b~mR$AMxbdoJiV6JrHHYKdqsan5!=v=tAr}HSP+k@rgq_U}`R%UlrdV73xskJE+ zN#(oBlv}{srm3X6?AaApT$X!HEaoNN|LI%z#Zs#k*E;5=0KpOW$p=7P?I9L=#~wk~ z002M$Nkl;Ix^s`-qwO-{^e_~~Y%GW5yu)Qd3w&@EN%q`bG^BQ1) z2O7o)%Pur20BO6N*>*Zi&ZO63Yq?>&&|m?sC~McOiN!lhDuu4(gEIS%|8!s3zVis{ zl`?#O1YhAt#>;|v%Ncs_Mc2@65S0!5Okjb%_nsZ>Iz`9!L>D`0T}S>l3VbL3@TEVb zt(ezEXAhfe?Ad!5NbIDe2qJ@4tys#My{BepE$K^8%G4I6|8sx$Mev|+FLK*@Oj>fU zJh7UQ7CS(Zqsas=fR1)#RL;ehvd6FqBT)z!BZo=B1Cd`1vJ#}yla|963PFb?-07*6Z_Nosh6}dHP@&=SGgfc- z3C1K33hU{x1n7yxF`sZV2C&Fyf)>B z9q5x!2^e`~T!AKhTn)(I<)ym2u#TXp7H07~gZ~8b&yKSeg5jabGDU~ z>y7C)bph*p8!)-9bT`9m4)eREag;>Ek!P$^NG$zZGg72nG)-vWsVwu9D&jZ_H$35= z6DkdBJR6WH6w`$)_CJ@I{rXeN50xcaP(1c>FV7?;Xkej%-{0g{%itT8f7c&;b-&1RUVSJ^ zC{;AH0^Q^pEBh!Te&51H!F4K4%M9f)@$52*wuz0EzKJP(@}zXGwAOx^HlCDMuU^eB zIhYLTsE{9JX{7Be8&;J!aUu*tAsxArhxqcISoM@i_;12vmOEg3z--vy(_5JRB_Z+zIE3>WoTS0y=b1mlK1jgybS-$7KSaQ29uF@u&XOrhbGL=n{cjwrs@^ za)eQgI@0XCo-;OWiUr%wyl|_GcHv&|zylAV^zX_fCfzI=oWT_t2PiHj7g||nK$54$ zg4WJQ_B=v;sFN|PaRJBy6jW71A9$9}UX*lmiOspn6 zq#`B<(@?D7{?rQtpsPeM*_$K?}G#2odgiXh+$;mmv~4kRb~jj=-Gq*~E}C@$$|h@+LiP zuP2?P&R=rL@BcS`9>tB2f6vLQiofsrmT2GgF7YkZcfWtUcS*nxj~lkyba2t4V;8J?6s#lBb0`OJECQh^-|`7%l;@uZI|V6aN76Ev24GQ6sgk+1BO z88YDrKaEe=K-Yd2yJvek*TaBKnsp>8!lcQbioJBjrrJBTn-c~mmj=%%94wSuoEjng zq?OaWy!!p0dkQ^q%r|_lBv7ESD0OOB(y?xsr(w9qFBGwl;61zXY}R}?sak+kXVf_? z2v}uXS#pkH@DnpyVa2ZslFAwNiFgWR+X%N-#wmu$Sj^;iC>%Umai?hLMp5pE8SZuK z)G_M(1dXD~*fjM#OPUbR14&}b95|Zv44wZ6b8iBz*>Ti)X4TubdbRJWO|?jtO1muC zl3bE4+meiJ$=C)AZWv>r8JcODxjyTOw#xqnrdZsKy4ZI_t)26 z%ToL*fhmoR-+1!WDXvwJ(@!d?_(=aCl=r<NBfjaxTi zvAQG?Sfsi1)A}^Y%I~M2dYWsezU_oiYPf&$LrhoxQ zR^u?cGP&DVH&eaVDG&0gxtcS{Qw;9#%-20krX|%Tp~X|>cq6ODGbjL#s;h1fM_KH1 zl72;cl4bJFK*O>MI4~>F7Cjf_88^hqysRG&&(6-cpl*;T2&-1EMDZto+YRvB;SWO` zsnAImS8-o`)fMc%h0z87MH9JI?2}LKU5KM9pSfexx(ypJ>eTwNPj&Im5SuWVwMzba z6vNG1wuDEOlVYR}qA&2nSRi!|@zC1Y(bgB=+GqD2U~$*livEzQ@ohVpU~i*eFh2d}#AR+J>#t#C+_Xa(SrqmmSvHH-h}(`g4P zd37qBhixM)7F@?{1+xU!Tl1%Ke17aKv%AO3rX4+H#X1(;ts#oU#@@1JtIE6eCErw6 z!(%AThWIk3>m9Fp6%iKL<`(&)1@Z#BY@wdQH>M{~bqLO1f85A#c z?ER8A>?360{9SYwaBwA!V|3e;GR)Y<^K^8RD5yi{$LqkJnR0P*wnACkP@R{)+0l%s zaq}U}OIumWDzRm}s1?<{nN?6-y?=p@VhAD+(@7cD2?ZV{m61OKb&;(Hg@g+)23T4k)Jtz zG8VI1mknIs;ax}gQ-pZBboD6~6b(g?Te`Ffi(~%$p?9(PU?ZLJ#-Lo|BvyVjukdKn zDgxwP6ceyZV@vsLVBguteEkcIWJ05!!^u)5*xwDUd~REi2DH>NxMDNb6I>F)!zqkk z6-TaSaUJMi!cI9IY=t_)zSGRU%qSFvLL0R$GH3@9?NNEd6u4U|8*)m2czrnQMgUk) zNvGf5813}}ozFO*36)hkk}2B1t6ixkvWG76ZqTkW!XMJDMeCHu1RP|MFHhp6GS!U? zbhoB1d{Nt25HtmnGbjibXzXW3aCI6(X(ImV9Evwui$%_WM2M9#lnXj(tL zlkF7;V?}FC0lG`mDYkPyfZv=xed23T^!fiV3pjrEr+=>eAOH53P(E-4z)Bh30l151 zoMPP1Ugjz)sY{Tgw8`5kTz5rUg3?^^v7K74ZA|wbpfjx$$Bh$OKFdqw9J!Dl2LR|VM*1> ztxxh!cxG@Z0|XUF#S{R2c9wL9a78hEn9X92*$OS0_kZA{#QywQtl9q>tKj|xA4++^ zg{;RJ_&iI9DE(38eamFDhh-~_W}tk8`T$%++dFjl5N?H|Y(Kh^EqAX&!M#A#gQew< z36u8z_y0+JMiXX|ns?CTCJ=`YAE8SpZZQkXy1J*z($y2hiJmW)U%45JEd{r}DF|d? zEeccnESj2HL>`ymw@<9-)$7?PVN-v0wbJz<^#eYZ^9b>ZhuF|y`Lcm>$DUi6d6*`2 z+DhV=K1iI{UqcSD6)WYjF70E+afy8V$$ijF7Yr6_jxkd~Ti&_zQv9`z@h(1fkTK4H z^b2453T+G-rTdA0B1yg2;*}j=`P$c^SC!YkXBzR-r}q?Y1@6wK)n0y#bu@{nw3N5u zHLeqelRAq<8aP^itLvHa%KR8SvfCS?J0baW6RBbOYJRf8w>(%cMl8ZbtT=8f19T9} zxn9NqxQoVRh@2_PIK@=<2oi0a0!%PUnm{X_c8fnd1`6OOM^jK4FP0<<)lDG`UF8l7 z896~n8^4O8N4|k;C3GS<2AE<~Q67K+J7g}IAPJjJC~xsa*{h!%BU`LGqcHUuI>FOa z^zZ~BBJ>6IMg7_q-mx0!JgNAB{(eR-gJ~#ntR`KAi!|lqNL@l|ov`AqkMrAfe+x%NXaP_w$Iy|x zt=|jh;AKtKX9|Do)!Iw_TF3r1XD)J`XBXXaEg;LwsVRqm z=THFW^&jOKmNy!Kx9%BH>bE?I#x$BI?V zL6%u0ldmm~q*{o2I>yVgwjlTPiB{bCbA2<`bnbT&fC^M*S_z9AKf5aL^{Rw zB=X7}HeRxkvxAHZUnS+-x$_JbhEWQzAR+HSIWjqAhc?;4k8?E$5V(Dy2Zh2Nlxk-$ zZx{|~gaxjnSfnmvb+eXd`vFk{1?bpW_V3>x>zVStTE1#0+t0!gJJ$O@aDQeUR0LWx zX)dZzaW(RQeSva6)kMjyN-cF8Hxh}3L4&(QnPH|jDeqHHKgCbzBAI-W7eR2|159z_8dXQptL{>r{1H0FM1|BCYX-lOGx@BgzX=;9Z+ z@SQm5qF^5wMUeD9mj|q48P7H$vFntw1kP+124fSQ6X@T6gmjMFdn6wsCUC<2NX_x&=mJ_Uh8b$KM zz&f2URRPbJ%I(v8pUsYq?O6S7=Jwh8;%Z=M4OmPsb&elDilRJ>f_f!uQC5&Q3wziB z?E@e9AXeZNkV*hmsZ{|!a9|(G^BLBzw6p#2d|AF8*Dqq84zB27fzu@^V>P%bFZl^g zpFMB{tM_mjK8ryQnK3d%#1snDPk1mD;QA6LvO0`~+(eksRjcCK)8d&}X_-+tbdYEh7|y!-T_?l) zEJSTb(UvQ_Q0U#__ox2F&z0Z&t^bFJ640uV6B2P8L&9mcX?J0)l~(IRoNZvOMn*{} z^g=rgpK&i|>z4vH1M5W$8TbEp~5 zBE;O{ZxSS@Xe?tuy@1(&nnhAGn44?0i-?V-A}(Wbherw}{J9W}eS8$+Zk38_0*!%& zM}x57ybQ_sqp*w(${-BB49it#M^72TOud)}G77=m_uEF8CK`@QF1#KfoNaLUJ&@)& zo$DONuSrHzT6;8uBX79ok96=64T^x&2m=Go&XR}aZJ;Ne*9s1|`10^NDL5ODpB7h+ z(uki$F}Xkoy|}|rLDe)LoIneb)kfIhUFp)`9jJeQUs4G)Qnm;O(P&5)EE+oInU9*^ z3aeV7o_K+}Uhvm#uETsh%X8=`;OCdJW>y!CI9I9o8D zN5CrBY@9CMOU~B4jKDqjsouQwXu0eXER;;4NZU#i_=hwKOnvBPXm4vbU(GcNvVMQU zsL+5@Ihj;k(~;52eP*6^h!wYQPL1c0=As{YgL0g%u@xe zy<;h1R@Rl_Gfy+!rrh8OaFk`HlXM-6u|9NB4yLE{V-sU%OH@9)&;SPzGMfgh1pg8N_I>n%Tj73qSL+p5m_0(-3Q%35{_iK)vsXvleC0v;Ns8&=J zJCzplBIj7*xk_CLz(d+wpyqh)TIk$2T^@76*?a!keMuXwB3e?NI+l+*=&&zANsV>P zS4pE)%N?p*A#X^cx@G{Jz)hvz-ES5FKxH@6s4U1>OFZ0u6xCTQV=eStNOOig*5~NJ z+^J6sj?bc0SVlTXw`bLAjv>_t;1uNfA)n93KX1dj4fyY&Fv0KQw}?Uh6OZlXy81-A zZEos1_#?NW_vS5|LO0V(Kb723g3TKZK;_t6#3gmov=wf7H#Ah)UcF{HzJ$b!)bBNq z_GCHk^m+sg|24dcC1#mUR*(r1{C)}mDnGqoMSs^n># zvHf#x)8(S2yxK8`Gs#1FF@yC=3!@5_gSpTI9@46H_{ec^piO{?f5K@vBm5+e85ny8 zv3zVV@LOC5fPdFruV$l!W#to}_&7U`ohp3{E|qWVm`!xhGQ;eE1PQ9}!f`BVHJZkF zxdea74Xm!8A^xXvzwO-4V{twLUd~9`pZ8&rz3JwcV^P(L3LJ1*w747E9LiLF4~rpH zRJU#0#Gqa)s(3*-_*vy)iVETQ--H{)#`W+Ud?{a~p26d>C!U6X zL&?;Mb-Wboeh&(NEakwG$H&npjvYHj`(8{?{a1pat`t4xGoSe){+FlA6<6$r)*2ar z4V~Lr;Pce8@G&z=%a-*M!ii$z{xeCQ^X!DRa^*VO1wzo@Amhgf1z&vdv2yrnmP<1W zBjO36rOR0NAbeAm*~lQ?-T&+%l(m`i>N{>_#;zMZs||OTedY6Ce7L;h`@R=E9IVjJ z5w?bO+smS|5nN*W`-H`mKT7KMONnBDONiSIBWQw02X&%9>UjpFy-WLXHG(IhHvpOW z=EFdx19>~f?ru}G`8Fam%*_&=gW7LrM&lel<55yw*P~ud8N(TXFb!1}nsSq)(!O=A zY>k8sA1W*JCSRr#1!zT{bLf{jIK8Bj+K1V>55{vfEi-PZB*$#iSW>4U+89WVGN(U^ zf~w%DF$opWwYiv)ie@T`dn%{=BE$;Qfe1?#Ra<$-ECL0ApK*Z=QF%cYsgJ-8MHg{!;Q7#r}=K|+GiVam%DJsY*HTXz{=LGUeN+tC{~pJKN*wxmSI zOxyRFv=A4Bh?e>8!Bu7D#vLRuPie=$$aAiRFn>OD48CdWYvJTCe&qWlzXGqO&U?I8 zaWOyNZv0Z)h;a!$EWdcvvu}X)q9tYNiY?{nGY=#?%MN?wXkjsra=sd)a4&)`o@&S$ zS_?BbEY3u@vSm99iJ&F&rW1w5@G}vD2r@Q74sWWQCPx_+1iY5jsxPX)olU7X>r;PF zho&W+et?v-;@Uh$%U zff>-i6+@_$DRg~n^*xQEN`fpH<+(U2YLp8$3GuS56$lW3nKo(~KCMUQ0aoN~F7;34 zv`)i;r!3(K&6{d9P%neJD?vAp!#oNK5a_by-R3=#y4!bIJgS37dn4$;s^B&KuH za=D&`W1T4I#8u^e2lw>E>A+n4px>+aj54vI% zf%4NhEFJGr-+T8xBXJ-HIPpTIg>^{(fySFfMRe{e9U`sO?a(1CS0_(amrr|2dZm>m1@pa4hY3MB@+wJFV{ynLtFS9E&y5&VPzJv3xEFl6OhOU4MI35AQ&ov>Wfu(|5}cKl)GqhqCsPwdK{XzNP&1 z&-^?y0w{Z=Rbh9bpeR;2(4TydwIhq8Mp@`%oj9HTWDJ7sIb@+O(lug@3L5 z-N}wtAN|-TP+ajJ)i2k+Uiy+=zJ229r%TV$9zNaZLKw>!I1RDTX|Q)$Su)5rvJQ?F zL{x?g>Mjs0`QfkaE2HNafHMUn{w@|;gF8hZab%T+kr>d&!LNSI?s|3$p}ky5-%pwk z|HUWKG3Kz;GRUO;O7GBt^J7muMVVD}xkvj_KUuwMW$1XZ+_0@b{P?4&D;nc;Uy=rL z5OYnGOXJ(*I5SqGU1js8E#U*-R}ZtD8%j;SYh&T=ToiGNXr55r;sz%x*IKZia^3vq zUgVe$Z4bFkqNL-VaseRjH0Pi6cu6I-8w-e2Ze0*rWo(MhLKFX_{$5xP+`e!E0W#(4 zeXR)Q9nHET7y%42${P!bu8H;3uvMLGS;`77m@tA0#KvIMAZP&u#E}AWZG&vrxEg@rhx{q zp#M=EVpAE1vW2U-Q@JNJrA-FcD5P9kkKQt=F&#TFaTyHRzCk9A-=-rW%4dC4npN2D z_7i0W`0}nWE1jE6LX<#HroOv?i&9IxJXheHxiTMag?I8Jx4BmbNB(Lx()y% z8O~G=G8~pwNWS&0kEDbU7YiIm+bZ8$v$Rrb@w6@Yt%3%+;DM3=8gp4Z#mvWwUGT^f zNK1GgF%iX-z5cZR*RXi1yKA_do>^A<=Eve%w6q)FQxw8}7CH1`-B1R(T3_CAWwhA(&;lpgF=y+pRZ>eR32e_zje!R>2LdEZeMhe~UFsfq)Q9{F@W>ddJps2DGdP}S zN^IKvficC5(HIKqG=oyNHbrYCuc+Aqi>y>L6Gt6|wDc*nvQUb%)BMubPLG-mOvR=( z<}IJ8Xj&f2CNBb%ADsB}nfEPwcsq4X+4ybK6GvsP9i?=MsN$Zx^DW)D6jvrJ@!WKv z(^`Rhf`vi0PeeZAi~Gns!{&MTunKZ=9HU?UCci1&pva2Dcd1@D_6z!K~9h^=IeEoh(Ke9EZX5En>ONq z+Kw+}^}UqN$~UK_N3amL#Ug6GSYGllGt0nvGhvNnxLRK-xB59^v10XoH@m9U`XsG9 z$vfc_P7Zo9%K+xeT4k!yZUh?sA8nOxQyMV`Y_y_KXbfXdG+PQs=c9nzyQ5jg2Os=mS-W->u3h*# zBXq2DmG*I-A3KSKp7_X9D3{~RK)6xSnPX#R-L5TIy>W9QVucoA4PfmI+Ma#(csaQL zD0P8lQh8x}$1P}(t&2NRjOLLesXL5a=MP|Iu*p1a*A(0yh{)A#~d zK>nwsxi8}{#(aJpNAf40J{VVr#rSksB6ARD@mF~J+kE^BGja!T|A5DHU*ntz~OwEx_T9Qb7u#P0)ev^i~ki1nwe|;N=8Mlt+ zI&jPrv4Of3L^JwFlgl=#(qBF&jku_^Em>|{$JMMx9nKU|$`v|R;F4oS|6EzMbgG;? zHo?GkG4Yq#eT5JteJBTgSn9eto2{LZ!dQjdK>#`aFH)J!vy>MYOB-<2r!M6F($=h!7rvc2&G{PkICA;&WASD$Q!?ELduUEI9iQF@0uQ zebQPMRFyJ24LLw-n~QIZlRC|=I$}a*60e*-c`7azo#53$S?!Q?!7%)faZVSps#tOj zqv&eszHHmp(gtuXuHs^+X#NKe9VYzP3M@1X+;z)>m?p7vKY3hb;7sz=Y9oE5nF*BZ zDiJ$&?1%-8r{D$cP-sq`JkG*H7IiV*NX3wxS|))xYIRyonFjC^PdGqerTy|$C3PD9 z&=g_%d;n|Hu!EIi=92*~=QV5B)H~7?W=%hW5_9b639MQ8tTJt_)h|cnk$5neB2MU) ztfHR71xNnV!q~~CE$+B9iGQX_;Jnk={K492?UF4vKWz=Nh}smhauf}1(`iHGcGo7%E@OSV%T#piL3 zzJ15`t>q*0pNzu0l6aqVgvnniZToh?(P=Ei@~ev(Hxt2OE>=CO5!XK~r#IfTyS(;w zd&;Lj0BS&$zxipbv_DvGe#LcI4cQ)49--cK*?aK8kH;loInf+0ObnwiErVt(x^|Hp z{6&o+J5gq#z5dcJ^s9s9iobOyU1m`dckS91K3Rmflr^gL{?y4M*_}#Pi`wFNf_q;! zpnwX(5+CLD2yP+L;?`SVnYvQ}`|MwSf zw{clo%oI7mz;U+h+Oaudjpop$kmyi>rRP=>xg%&QL3t zV{B8uA|vn1GsgKn!Gf{@2C7{c3Kz3Ei|czjGfT}tz)>xO@VTN;Oi{gO&5 zY=N*dFg_LofR52Ho#IcqmC-I==bS>A2@Rz7;T1`hP=BkS4#0qejGFpjAOlv@52R4W zL#$TJ%6t~dhF(jOM1G|R5k3}Sfn+9seOvVW<_M)uZ^=3jvKyBIUJc9 zPtq>kqgr~o2uKM=aBkwd4KTWivoUD{Bgu2cZ~cF;et^e3s~GnmKV9~*UoJ*n8i!0$ zD+5xbvQ&&MlY#*(yr^ZXD2T@2`yoD|Zz@ZC{fLkq0M{@iHJ?#^H_YBm-Stp+Hmr=+ zEdsQ{QB6oNmW(OG3PU|H(&d0hn2Q>j-PO|2)>6^m~pS{@8qT36eNmCnz_4^!u zydcqw{A{IFq*o>HB4UWY?@&Y$vfOrBEljQBI+$wGB`rb#ei7EQ`>>##JFr6bf8m$L|%bnq17sXZ6Yp z-+>-oOG?kcS~>yz3BkekSMkkbzL?H$V`cWrxpMFXn;5Wd9Wwo1Y)5mwt z3=pzfMHKq;SR=G7X}#6$N2`u{j~^~m4;grge+mwkoRxv%=6}i>5RW z$kS|LoHvv)_~uO_0JXv_#ziRtSGt;jBemOPr{vH_&*}YYMMdTTGi`%3*%}oje7nWJ zvYW-Uy?9h!$Yt>LD(%iQ@4>lwX#Ud0O83?HpiAJ(AfLps#R5KDM35o?QS}gig@V72R%eyB#G-zs{y;$kdK<K~`^pwiqrbCKYZrG2dI*IJ2|BJ$=*S&tI;)#+a8Dy=+AvHIJ0{q3J+EU}`^ zvhpqULAo52YyZK6L`6V3Cyl&SWv3UwfG<`-595T^0Q3P0xHdu*?Sn?ZS2mGZ>fUQX z_+tDvZC326z+l9t9g z70%1nr+q%k)_eZfpDsf`@xx5TucGc6nhFD@-x#2O{-+;ANzym8(tkNFc5Y$o;uLA4 z!N_enPqG2Zc|(X{Io6UN+)coh^yy>}dl{QJ%(5^w2amLPyE@)&cil`vy5~dXX%$uZ za1l{_oWa-dXKSz;Uw-*^W{KGXodL$DKKHq}1+Lw&4zZ)$sCA=EId$$Bq377fcTgo1 z7YA05FTr@AOVZBEHqq`{a?yOC6#kq0h{7-pU-uwyRMe%P185gWm~TG{s)A1xWle=}=08G07!U?X z<+V^YA@5tJz$ASXVqR0Z?L&ETV*v%H%-~jXzF(E*CL>@;rUVn0+B5_^OOJZ0Fokbt zsFG^@x#SyYrZZ*p63`5?KTbtGjqp5#WnhNh%n_TWbcvt>lM%P&$*a;MAe*oJ{CoSV z^-;5v?8of8~jmL9#}f3c7#jP zG#>Lz9^4Bfo4uLjT))J{d(GVjP*Qy37c^aX|DvZ=_*ec&p3Sp#G{GSyyy%U3>C}W7 zS8J$g7O-eRkWeY5{9*$Pje>K{Poktq3h3q>p^S@WH;BrVte zux#}*Pq~CH@^4HE-d&xjw}v3Hef;$}(b?o*^b<7s{(- zss5;9&HLbKRvH?*u-YtQLB*CW?0rrw#R&*faYw8o@m8;1UbgStir*bmzSMp2ryz$89gY&axQB8fcT*bM zQ}|=LtXe&oY5FmI>BL!uSnJYJ)&{t!$%1AhgoYM|Cd|Ocb|P*OghY;Eagx5Icqx*S zgLJlG!x-7VrD5fF?uULT?QHqFYuE0~zDFI-{S;I4iFfdA&EB`5HtqN%(%V2#!aUz2s zw-gmh+Hc4}e@{dP7rX7)v5hq`@*;8;o&(WxVE;kzvYi8$!BlnSp7qv~qdafIl zVedNV@7s`jZ5XEJX*-LVrn++XWmu5A;!7I=0AJ5BP&-b2M0S#ogBFocmMCw+Tkw_T zvdwXa4?2RE%~9!YT9QaqZbUwqHur!f6Y$T&m$syiG4*A0)v&C?u8X74VaUJ^*mEEO zij0B@gs8A1{1j?SXb5hfYNP<$npPbTUu{_hQc97v1TqAFwWWz>lMl~YiU)V{@5p5d zN~H^;nDZw@NcGK8NT={*;-y$g2rV0nz$pZj5FE*iv%g(cYW5tu#Byvb^XF~>-lqMFwcA94k)i%`6UrQ>VJL3XDN?2 zTQr3-yyi6SIN?H`dHQL>>zs=PK)S@*8q}nl;OH0-1XE0%_O~4?ufOtGS=o*d#(JP) z00qr5G!F04UeF23x-G9LE7x8{+r!#{%teyav`%+dwDNn7X{W5bS4-oL^<&{$))y0B zTm>ZfmWL2h&7S!PHUrbNFK;f?Eb^X*2&NX@t##t0l%=c!FOP{YvZI01kfcG6Al^$^ z)y=ej9mvu_(iv)j)JIZzV!tC?{Up8N`>iR_MA<+YmU5zCCy?E$xYjq*#E}PF$fMPF zm1`>wSPESI?FH>Lqr04>#Zwly@0+1Bn&#t9M{_eMJZabBB^H*ElSSvt8g#m~#S^;1 z*xmv^JY$N=Gb$sg3&8|{&q%8*6CdwF{7O%6@(jS%rSPqooVc_ME*cqO(-J$fX%zns zVtX#e`lS5Q2h{hBFtLusK~8&y)4QN#KWGUeHcLRS@3%9l*chP=th->yw)0Mdo^insJeGEA1O4@unNDjupy&s4ALR zqfq8fk$)$OLJCPfTFA}PJed>V{#rmsCKdM;|UBOR%Ix z@vvR<%=|CFV=m+|@0BZ;$F0Ln5aiVk7Wdr$!M`Nz)0y&%|MnM&mClY$@QkHu$C%Uw zPyW##{9$?Dd;gGYw?5UCfWaxs@GD+%Gi{9(^l32S?rYRNn;}?Vx$R8}$XNwRqreqc z-oO^WD{v{oFhHVe3@9vM#>X1^>aTB`w^d7Dr|zACukA`&pgN%7%G2(2c6lFy(2d%nuzo$0iC`_EFGhCOWeo4Nt5;hY~3)W*@@#PvVlmaiYc@-Vw1Ag{Kd%n?qadnWtUwJ ze5oeMc}6|DJCw!0(gnR2uQJtRYfDC3IOCExOL<%NJTfyN`>~Ik?S)$s5M2cK3pae zHmZtTm4Dnz0i`%akkKmkDS(|x6-*MVIRro&LH0BHpPkpF&uEFMpHT=Yxg}h_c|Y%o zH+Y3yyxW2ah)OJ7Bl!er1fgw_)Tl|IfcBa0Et=4A%LA#vyv z^r%G3n)`Xy!k#+|H+}GTcUZ>I(t1hnCoO8`Vx|?tE=FIVen!FWp45SfujLV9n3E)-wAz))^SH8PeZq|wlso(zm;wKdUoS|X1l$v}k31)voKv%0 zH3tupdn-Zf{=(xV0Fb;uT7Cv*3$QnVVCnt$`E!e56smN7D z(&!ZH=;T}(Y+Xqkm54Je8Zlf_H_Dyq#WA!Z&ss^=t&dpffiK&&S6@Y6pe3}06%@u- z@2P$Jn4V;XGjXPUPkcjb>e=ITTwvHO3d8JA1D^$Q$Tn#H!{o}|HlyuoRP1v^)7MrLD8ZXxJXvLMD)lw7eEGTJITIxRS z(!_Ra%hzhA&*$k=EZm__u)hgz78@K@v?3;46PBi=}-^%~{2s89H$2!R5-3LbLQqw*Trv5F}E6U~1C< zf_Z>>LvQhQ5t$0StlsJmEyxsB$V+!_D=XKn$N<~?L~NLaSd%D!11L{MG>PvfIC+@2 zVZElBP)}L?kFw)7ocb%yV8}XraJc-@pMHpq9@drbecKxoz~B519y(Uu|A&86?*G#d zGgCr+!5H$MO7He-c9ttxRX;hwAPbk0xT!!#dEH?DIY=M;DP>bZoaf5**IfdWqL!X2#nyD`f&WhqUfUw|4c0vSrgI>f<>#jSg@hqCL5(hU-$y zr!^qQTfkbO-e|Y*n(jtcNy}{Px8_d&2h6w?7lPrdX2R*VhQv>^uPy2ygF$og9%0aT*Oq|v7N zQ7sHjK0~x^b9x|+oDPfM^kow zVMOZ+m}!xg)!&>hK3ebk_&Yg-(|UISZt`eh7mgyodTznKIDeni|N3J1q$!K(C0Wi3 z=`0Ez5d7juQg;qR_8dEWh!KA5@&Eup07*naRMo$PWI>3in1p70OR8Aygv0cBb(o<& zjg6I?HXkdu?|QPdPhnZ2t%QJ4Wb90AEF!|LA7cF|!vIvv^ztQ1)Et*@lO22B63!MWv4=U|Qv?8HFx?b& z(hd(#LreX6ky^>acf{B}%#K^@Mw>!f35apj!KX+gRD}!XT}!DiC!CuM6D6H=N-1)zV4bLF2`g z=>m$v8{V*|T)J&*`ES4derN+C0nS;(WE#qE8x{u_!HhBxQQk!9wf-oNE@rxGG{g?x z-p>p|u$1<)yd=f8?GZ?AobxY_*vqEde~Q5uHoTf z>Wisva9V-YyRJpx{Y5S=njoUd5q!y)m*4r_KP(^o;77`O!b+)>xvlId5fTOlR#aCN zZn{&EeSJT%Let;SMxw;qKET0zF2FOjjFyCKD1-3qrwq$=?KRiLr`lnu?^p-p)Vqty zBuo}Zl7})ve$=JK`|`OnCq|Umc*!MEY#o%ixxkU5Y|p#gXbQw=W@a_%n~I;o2zKP~ zX=WZA_(5yx!f=z5EH+xXo?Xup3BYYjE6?ffa{@n3W0h***T>gdsf^5YKW+?Ea`KSw zwuKEWSh9>tq){x}wksD!spKw4X-+I&pdds<4NL#|!1ev={stU$wn+vPS-1$DtzZ8x zxE(0GrGZMGcGgMCIzy%lk%O{ZUV;0{(q+V5r9a`G{Or9Bd~wC?!;`s8TJD$gju zvRW49-l@?uXHMZS#Z(j{Pi2hOn@l4GpcwE@^S%m{R>CqpT6S+dRPMZSf9aV!ZVGTB zC3%J?8=^=)L-Z_Py`{YDy1NnF2saedSiX5?I4gNno1ub-?5PR_(!6m3t>c=%g={z= z#j#Wtuf-j?`E7pH_splMac=|~Rw%CR7^BLGj5szGqn}joz)D8&`w`OQY(?ccC(c^6 zIyz<$?!;Us^oeas9+jx#yTB|YP98q6Ddn z-F|&BxGb(KO}K$D1+KWvu-#v*BT-HP0;$DW9?0Q|k7{j8L3NhM!Aq>TxfX5O4z$9q z00y4TIRAWE##*%M8!i5DLX(B~FQoOt#L2&@O@5kSg3fryj_u{&|A&85mapo?a;U#q zHZ^8_EvyvRiYHyAw=0)NhY9gR2p;|G^gnL-q^gik;y?JZD=sgaFWpv# z&ta)TAqe|ZHiOAeGy6BoDrA*((9EZ0kPtBk7WQq*_y6TR?MVmiCp}(y^9_-u!{-Tj4$g9?vclOFT}5=A(%SD~{l-t7&ij^EUSHn+ zmbYMKJ5&DPk3Lj-Sg<6`l7YNJK4}3U-VQz&P*NvQSo%<&rd*iA^KPtuO6UZF_Z^PK zM4O29&;(>?IaG|?hBq^V;H}T^O8iA%e$x%$sI`pu$YTtp`|#nz7%$iX4`s{EOJE!L z#O$aO%H^ta+ll2*C^O!TeB}LeC`;#t2?Isn-__Gs&a&O{sdEQX*S$<353oa&KCV;Lm*Ii=M9D^3*ermeEPdz)n(74kePU%)!}y zQN&gJ^t}#EWGdvaddNHq^$K?1G77^qkrG%XE?L;vE-%8r110|tz2W> zD^t*4XrC&Zz4)s>`p6S(?~3&jytNDu;!5Ly)3lK>H2mC*?i9*A z>rNbjIYs-@1%%Ng^brs0fcw&Bjv1p)ToSIj>N`Ukqo_Ni0xNp8=Aw@{Qc zm4#1n(qrgyj;_A zwgCLf?=UB1=|b6ZL3NvM35>E4KNUt(NeU0snqA)ZLMWUav5HGCPTwtsS-f41IE0{j za{o~RK3iG6_-53_DUKMbVh!#>%zuNIrx!hHI#BvsKAN%!bpbYI4N}}dnb)D%uoL}s zTJAe9e>jTv9CW2QNmXj|n>wm>B21brADP+=>~yWph(_N_V*s8EPX(sF#U+5eXby3! znV8W<&tI6Z^}-9!P2uDpdZendGL%G<8p zUsf$Th;dcOHSbym-b=<6=hD_!c3=0l(lxMyn0wVaV|xnH;>9O1KexTnMzz<`UqwrF!VNGN~zDXJq~yHO?wkI_w$?fvDnUO>AG_E5SU0G zv*MEzNlh&u4GfN96~tX(o+(D^Bb_;UDOiKA=$StGTVHY>&lUIxYUyFw70T_rV?8VU zYwd`s2j8U8BCUezA}Ko`c|(iJ^aM&OtKMh%WakqG3S|if6_dDr@N-4Njk#fcRCRW+6*{~d6 zXjUB4;hE^$^_1B55OUNmvcUP@io@v|*OfzS}nW)j8Pn|yHg;9B8k@R-2YTqVVY zbyPJlDvwRiVErGQFMDpg9%VqE&Z;CqG~no?J^{^H&CO0kW+pAnPx`8?EN7=86$w|B zy9midmZ|b^g<+kDira=yqM)8f@f}#jLL1U4XO|NqstZNcHYcYDL)Sa&&GOmU{HsrR zN;}a-X_OeWx9+*AtXsbpnPzAu-3mHUhR()kQDxtt_Zlm6;=p_>bk-Q)gp7U|5&3_)7N>xFcm znAF9IQb0F~h2ld!gx1sW%#FCYV9{pBHx*-PtXP;NpD|>$zSwoHM|lqwfa9X0%!r7& zJg=;9^ueW0L;DUr#DIZkSiY7G3{qFs-`#q!&DiF~od#Fv)s`E4wQeqhX8Lv44TgBZ zC)C}cgGYj!d;uZ3N&Qk56@AN8Eu)pzDZ2OMY3kwOuRoGJyZYJOgxyVg`#Kwb5ey18 z`Nld5Y{Sl(t9s5P1G`f!z?yF}j&0=v>q^V1E`8xG@^BHMhn8sL-EY}+1ws6Grhf}^ zAe0#Z28<_99-}=?q3aPLf&0Qs+k@zlw!z!>Ciaxm6sb1{oX$#7CTqeh>til1J}NH0 zXN5@fmsC8gBicDR1u5QXbzl}=1ZoEq z{t#r+dB4?IP3Lt4w0H>1gtZL0KMfI_OpU#Q3Q&7D)}KL<<0Fw5gbnVgkP5HD4N$*0 z>isqvm82JU71UE~@wS&$n)F{VEFGwGxWS_~-tal^@^%ID5B4qol{A_Y?4GscDZFiz z3iLjd)1?Cg5fo`P;2gIKa1M=m-$ve=@{?wvn>QJ~IZErmf7J%&=-nyqNmg&VXv0;X zlPF?NGeqcq$KfNY57tRwmLL%fMY0~_vy?AHvlE54bcrL!~z zWkaP8Ec0!uf-7YKzv)ygdsU_oktA@6Fzw&;q)C?#PS%0_0(~JJ8)>B@0$Lp?2y!8O zEh&>@)HAEYDGtgLK*+~7qEIz&4`IpsQrH6Inwu1@$yav}%gh@j3BJv{%EKr>fksJz zT@T74EdCJ?zCceqZG}fkWQgYtXj3K+{%=FcEOUK zg3f40%8Pl$MOo!_rHu8#cBq>-k=Vf*kf9@09@-e5DQ*tXIrQ>9(^#J*l84P_k{F$D z`|fuU%T#6OIXZ@y<)KX9^R7G;8c|c6$63U9?Nyf%GHY`bf?%3~GU&*J!JBKZ8oVuw z3yuZ{iPmw+THwtSs_s0j1aRn`w@4e;k>q6!==Q)`2&~P<+T2WtBVNObJ5|=OV9XuD z&YyD!AncMVTvTe>hWSg!rXCFq|!hPlnT;MLrOR94hgU6P42bmB@Ql*zvY%!qsU{eXJDvn ziZ8e1{Lt_zHYy-=75tc;&&W_?fTbbV@SCD@iu#RTG4%Jo#8z2v)l=H2w|xhEE06Lk z^+kS`!FTw)q>`F)m`NI)g{lY(%xB2=G-3BRnX0&DYMLzSlxn7(s{Ih7@t6Y`ncFst6O~rP@J?S2rU&iKV}f%5fIG zPuvG|8}(6dz@ zSMDp?2UyIYGkgTCBX?*)aw@@cM+(qjRr0Iyk*6lG@k6WZ_`x*9B%O*KmaEte(jJF? z;R#3D2v>SH?}?L#cr};#ov+rz=k9!)S1o8YAL~NiYB6`s$lOAWCi8Sp3wZdX_Jg(F z<#G8kiait)wUna)Azvh*bTEWx>=@x2>8N@Uo`;UMGn#0c%(VPQEYz2;KV05)_0h7t z?GPO?X_4*H)W6C{(ndaH${QE3HJkUanBYE?VmkwcEIA|}UlTWL)EYtpvO|j>6*~n+ zU6~xn+!L1Uz}jS5L@eBbjLdPtvEDO&Yg71iVlOmZ?U=g5(iS{h^BOr7yu8ls#U znBOQQVkw@=1}#LBERLF*;5pkBT8{uCf8m=yxzjGf*IbLg)gEOqOu`NR751rnIuRa6 zkx;5=*-|K*#u^h~Xj6ZgMer*wsN&V4uLWtjZ#ZqIrAJ@B zyWVhjRZQs2=#7EnqRTG)vX7U~{`G@Qb@rf4jk1O5vzek-aneuPVr$~iht%Nv-R^ac zCELd{`10*})h%TmxQ$;R{wAGs3y;)&NJd@Qmdp`(4W+Yqr=KbEZQHjpSZ-E@bKj2G zf%4gNL(rM@yl;KWPpK66#5&fM;N1CB<<2`_S?;^<9^4989S%L~QR~QS>)p;(carLJ zr*a13SV8Z;=k>TZ=ws@>^|nd>e987;4dzk?$~70+EpFT9tt?<$7sbr&R+TOCj{Kqy z;u!#uA^r|a0PCqIo+^7@_bPtV+EJ8NGQGTG+t%{=FFZtf7!)kzTk!`(;2;^o!=3nz z4v&sN@0XXWuemDQHd{8goprm@FMi=G;Rj>2CSGbdSs3C#82~tfBC0&{o^7ZiC;Ub9 z2_vx{Gvl4|XBynvvJLRux=Y_L{mH|fn{L1TwnPyaHY$oruYmo|i5z^7zbMS+41bI< zo&TCUZ^f5%9c6HrDe8^-6`$}7FSqC^<#m%vU68-H+r(|t;w~?^fJuv~+uxp|Ex15w z5CN;{yH=)yF=0Rr9ro7WZ|ED)D(&ndGfL|6I<9$ z*TGp9j8g*PkTCtN{=aA032fE!{^%gx#1W3NPk#35a*BKwcLZMxvy)F0**5%x_XEk^ zh;oppv{|{5=pGiGeDtT49A)RmM!XLrYgeF(Yd>e-hMluP@ z*@6ZokaUXQ;QVfJTAMd$h7kl?g-O%o%rc0GY@C*b38gZPz&l*z-4?jb3epF%iWOj(jTy{`$vpNE*;i*}M?LunbdW3QwKj-J{vEYZ*w{p`EEx2FvFA z`CUupNYvP%GOH_j&z(J;6|?7=8q|7fy`{lGM@5TMAy#Ps(thgnT!rQBzuhA_0g|(s z|4k3ji|}g@x8eE`th5OolZJcVhkhna5-yS!I(Z=+8=pd0i;lOu2oQS9)+fq6SDq^U z^M@H!)%vKMX*N~Jq!xIc#pI={Z*#fw_})e^auY>am;s9*GVd-{ z&bGCqq`J|7v@)4llgMl7*w%(W?P3GoDd;P2`Y;1qfq6|MRQ}lM8GXVwsiJ8Z9{JJd zW^BicDnZ*PU1uY3)hpnYI00d~nr1VA8K$?~+BA!#oO(tp4nEeQb)!@OQK#huT&+Ry zJ2duI3zrm~be1i;t;snevpn;Wo2;TJ!Q7B;xocX9!GDFv@8$>??wc}SjqJ(vwY)@! zeTqd-k39Mq3y5Bq*$jKmPNoJ=u>j=X|GQsi(b`f5?C=ob$=n-VqDfQBXWQ0)Zy2ki zmY&wYGI)WjETa`qKf^t@zlv}_S28e#C&^bi>Ee}6rbPex{*MqU=ve7pLgWDMonY~e z+mQ|~(P~rcrX2;=5Iim>B2*@{m?9o?cWKA>@$S3tiUnE@7A{35LGvE{iz}|@@%glk z>7Hbyg)w%3x{BDA#<3h5J1ghs)0)0CfIL7K>QEzvd?rn`431EyomlbS^DqB->NVqb z+EJ|o%U5}*meuP;?WDCRXE?3=k<(8YVpbeA*`;V1pp533>DH70*D7^^g%Q}+R{i)K@UiR(VSAAx&h|Z!QbYgh8 z=9;U^=O6rPERz~-iv(T*= zvxzcO9oQ+8FktY}vaL}_Ly$nN?=fg{9_3eek-P&E>L-Q^+`45=x%ARaEY8E7g|a!o z5+B__+S$AQmy`M`lc82Lm7z^B2<#v&cG;HjWw>VkV|8rCuJ=kl9t z>peW4LQ*=rQ_IZv9MfC2b<8c(2!L6Fo35EXR^EKo>U0|6?TYRhEOt=83SD=OYGah& zj__wuRyzwhb>orF3iZNnUlT~!u_64+Mu;`ZLQBK3EJAqXBR`N|I7wW=N1m_0Nn<-n zQB(y|sK}d?h4)lQR8(dtKubn6R0^%UZnat82@mCLUOcsK&DVQrROG=8?*legTP?RL z1jd5=$X|Rk3PU(PN=ABV{x;S>SrN~K8yl@B?O+%($%^b@Sj{*=s`Xy z8%fBVK>&-|n8tkj_k9nLp(zjToIxmxt&0dh`j;Oo1Hd=7vu7okdv8=HPSb zH$%9!H{SbtuCTyE1CR;LC07P3;t#kCcci61!NrhH=UHU6bJynbUw-XBqF5})?{u8| z#(v~EGE>HrKb3!dSjY6e3}Qg>`8bNh+rI~Q9JYUTah5d607br#W>~1!u46BH!wbPv zPUm;h|4iWyv1$Fra@Xtb47i6LewffiY>5mlsN7oL(%X!&uFqc>GBe zNzz+#6!AT;y0xrZvlh&%by&PJ3jhy>A4w@sxeL@Vn+?3{T|dAMO*>FTYB)QM5#1=_ zk38~tIe3sj{8-*apr6oMtwU5Kh|1F_3z8fFirdinbItvlGA=B1(B_*(%@)Bw0ayVX z^h$ujqDw5?`|f*V*|KGGB2m<*wKbX8Hl(t-lokB)pmiafVFo|9-liq^a>8Lz25^ZC zx8P*s#sc#Bnw6_E>z8!{)VYS1UX*dCO#OQ1K%rPkGjbf0tacy4-R5E7=K(EnLY@=#f{{zh#l{G?;bL zZ}t*JV|I45y!__fEM^>_T*^=0kw(DuJ!fk6KeLx~6SOTBq7&YV^@$A5>Y^;Ak!001 zV-oqkLI`?F_8%bmA> z7mF8fW)Mmw3)_JBkb!?%mPc^&7`-sWMh(oI_kjzWu5_aN(NvQz@(%v6tW`gf20UBn zSHU5?ok9ZNbWlk?_0KcUgDdzZZ=Ne@zU7ex45A4UH8A52&5HfGGSJ1!KK9q{?^08C z%F!i&cC!|#B5eohVP?(ED4!~zt&h*ZjgCy_rcf%g zkuvDjw7#t%5nqqsnX7-8uUerMm%0eZ1yb#0B|B(zyOIp*!lTVmnZ=s2F{FBAn1)Fd z*7}=qBKC?XB3%*I8pO!Ag(<-6wq*FF?C_}SY0q3RVQG0WifKnT`$V(lX?Tp(k~m}z;#?zF+B*#$)QU189HB@o zo?Ab;hT~|zDt}dmIQ*sEs|-6In-6kG1r_CV5nKJWA>8MfTFx$}&~ysR$nelO$|+VL zruc~t)+neVMt1fW3VZU6Z(yt>l$MH8$&q46p_Hxinym}?r02EZ3J7qlvaO!ICKbv? za3{SrstZR-Y58OXnZpA6&!sY_MJwMBu5h%Z=7YfN?(Hp~`}~)(vc3oZL?P&>*2Dc* z5+Hq=)yOnk{Ly=`q^^%5XFa&$+nJ-Gp;44BLK{&w^RV2Or@@4X0VCy|@BD#Gt4~bo zvq=ID6_#GCE}!}9&z6J4WnHS}kO&l=SR2QP{ribef0jC}Gf=)EEw3c@qak(1S^YmW zG=T!LvfTI9H#2Rhk891b@&$CE@aCZ(rIyDbg0)}3mEZ!a?~ffnTJHVsyR#?!EQJ5e zgAZX*Cg8pcLZDBqKoXIU3u>IowyZ`M7#kTX_uhL?`M-btSIg=ZgNY`f9P7qk|0ver zud=gGH?*>|RS_9PsoAuNoqtdQTpV=%{ONM@E!Q*E|5`e9SDx#et}KveY^$z_XZzW; zYs<~7{6E8V?KEMWMo`MMp8d1`@kh#rbt_}7{Ln`}%6pZkAwjR?JXjSMJ_b-um`?xgJK@v5%7X93038^>71#ZI?2D!Nttg{}&h>sMNjtM}7dD zu`IG#1tlbLRch0pfspWC_u4yA7)Kbe5xNV$nZ&C4_P4#c?AW;zrBe40a;(J*Z6}D} z@aQ9Zi4wu)7H8X8MA=hL9zVwpO;|xumgP%%LWS+BE3ZIV9F06M8pas23qSbIx8d_W zNL`PS&T@#BEs6FDA9c7^2b!y_x~230agE<_*XybhX?;nfrVZFutiXc@_mKyYCD;LK z0DY^2g?%HqMd;oTV?lVXl&i13l6)AfQP;YpojG^9y!pO6nfYKRF5E&KEK+sw8cH9q z-}#OoEUQXCL_kP#+#DeOgK3#S$pmn6`-xj?ipF z#=7`a8pgmP{CuqER6hjpISHz8t2oOQmX{ah&u~94R6dao*1fy{S8*+8e9J?Bsx~SH zg_*6{+zF=opLR=Zh+jMVjT#@I$)s#_{jowNSp{9YPqp3KXG@Y12CIxFS zOC#kSg?$7*6>bdFX+})boTq5fQ^2*clSSZIPBCaHso7D1(n5cp+u-C-6PdaANLUyh zVRo8nrB&U7R6^bJIZ4DN3{lg`K+@WLJOawRTQ}+)Gies1J!-+kticT#?fr5J z6tAUQeOoLR#;DTrJ37L70I*!bwa&Gk$S4Zn`dkH7x*7e$X=#R}@zA2=I{2G};p3+3Qp=Hg5Y$}FTL6lCyN1250Gs?$$G=qS53V0SRb&M%4 zeW<6|G0qSxGBczxQ!e@Vy10a~>D)Q<6THBK=PkLVQXc;*o`%|1m(Kx^rYJ}rh$jTe zS;|KR5jKb4=4A%*ht|&IMtajqTm9#S=U1lqp@nLBrG0&0m~+z|<-h&b`-mBNJ>)|& z({8ntz5cE}<5}@05AA|$F;%jF#gwOdK zzU!`X4^yl9i>ff{W~J4nqrE#mh=1_=@5_veGb?jg{zvfR>%^-1@lQQie(0aPy{uTm zJR5l1@!k2FJIZ_C`^V+k{m+!`yDlyN>?eM_tj9NVij~M&gd+t|^fV;M&+_d!tIuEk znmvg?@W5YxhI~8A?RWeDZa|U0KzZ|W1oBgg|W{3xM9gPS6yDd{~g~`?zrPtl!@^y+KL64&b_^}ul(-syf+r3n{T>> z{H2-r%$7Ib`-bwxFMb7uhC7_9szX3`ayq9e#19!m6e&SShoZLDL)yl>VoG z{$os^E-H^d{sh*yoh;D0x7>KcwWORWPd;^!Y5K?544`g3>bAcbBvSW*CGUmbYdwog z7Yld4{Q0kz{ZAh#8@Fw!F2Qd0J_Q8Pv@?ZT71AyL4XPc%Ep1J@2`^&Z0 zU0c?o;7>D?WbD~H?zpXdePw&L0`3dH%huYWkp-6^$o35pe_6Pp)Fyc*<*9Zf%Q`sQkg6g_l`w3CvO+c;I8@6*uppO|s=}__>tBM-FCS)s8}7 z`Py+kXz%3OnFKz{g}9HjZc=%+j+*hGTw+_stJXY z!}KK9mqoUpBv1WrCJ?Hv&S{#4ptVNA1U@)9b*tELvedn(9Q=16yobR(uq96N;2mJ+ zUCy+iOpkfb=johy->IkP$_BG4JVcRX=9%(Ji@&GC%1lM_Rh18$9G#bq0%5FzYLIiS zB@r;-CBBwNr8Q*}SIbBloVFijn&Rm3Bjpr9DHL?(U3W>EXBR0a z5V{wgFPjEVm+LkjE;npCSyuNDN07k!GsdEn-XK~Rq)8@!b4PH%k^iUWSCngC_3pB9 z*PR6yE8cO+o_7_ZL72qy8y%l@y%?WACf(>joa*9{7XR>WZD;&w-s2r<YW(x$NY${cF*u>`a?rmN<`w*#T3UTFKbJ&I-hu6Vm0>0&LZ zZo-UW5DOE4EJ2E4+vll%y(*{*;8-Vx$$dX_D5bM>(2EeBt{|^_#ABt#dOD89V1iIy z+1eTFX%s^ME0=<^@+W^mESXYsltucHhQiejjh|^plr!bAgK22n$OT^!zA{6oI#-xW z?Ye83d@D2nZmmc8$~>C<%p>##hO`AlW|Be-!C9yDInbhyU2Z=A`A5p{{r;bqcm42v zvG(cvxMAbU@_pZTZ}~O$O7CSug-Zmg+GP;mCM zH~ak`_(=KjAALurg%?p@>(?wV|MkE8YWdpNzgDhfhoNm7HxOP8tCsal-j>Hs_P_t$ z`^w#S-IblBj2S6P@BE?fEpPkY`_fq(Gj$Y;=pcdNfA_!tIpMFKDxd!Jm&zOOc?}(F z2bS95avw^{JaL2fKK(RSqm?WO*u zvG_hKQ{@L~4ll_A9aPB!l zmqn5G*A5QbI{M155^C-Hu@W0*txi3UW#FRqxD7sMj7)w^aYI*qVwF{CfiPVc?iObc zo@M7XW(uIW%B~jQf{g$2R~{*Edc$kOo6>oT&||At4wV1;YrkB+_@ytQfDV?I-*_eR zevCl`ZePH6n^~cQ9-CA!qjB?%+E)j7{@a!*n|I*RZH+<_az65L9D>EFC3xaz-s<4so~7YG^G*$=P0 zzkK+^A1=T5-v1Zl6$3^FZN@QPxqMA|^_~r6$#(J#5^ZP8mi3fB|G=NH;A&sF=kB*; z7Dg##SU#OA#wU0?_Ypcc&gE|7qfFg})4Ofhy#aWJq@!fp;34~TlclpaPk z?gOsE){cPa0+%@Yifj;Sy#@Zk2L`2V)vu!FEwUyRmwHfbB#zP=gd0FUejdyw`QPfP z;t*PsR}^mWOJ&p3INh_1-8)n|vjPzTQHh$wsiWWs{#sA;j}hfl$B(m0_!)#dtANSE zEz_#62tVW?tzxy77k=yB(XN6d6Qe-Yvdex|X|hgh#h8P&1fQtX^Q)@!zW-jQ z&txW(kU~fxBoLAi385LfF0d-rwSbCZdlU<6L1iCBL}XppiYP9-&mtl!76hX7s$eJy zAp}TBpJXz9{=Gi$_vd`S|CvM}$b-+m{Qm#HZ@J~%bIv{Y+;cl`-h5L4I~QFyuHN0J z0D5I=TwRn6^U6H(vJfRsm#2o;-&?)cGhuZnMhB?}7&kG}ukO6&&8Kg;B4*qbKV5p1#x<)DVJE=gybq_?vZxwfYA?;{sU(ghj}JDqcKF%W7udDVG#oyCD=g9WrJLj0wl7`Q9yy`B_S6uDvW6Ax4t^BSkyt6upUdiu_w(!3~! z;XJ*U-}KGT;>4S~+nfH{qbjG`+pl_ed-pp&z^OK;(Mz)#LxTlRF1L>i(cq`DnxPlx zX$(a^{|CMggN6PTj0N|c6mjPRZ|2mhtN;1xoWnjfxtY!xWDp$e4IHO&;41zpD$duw z_RreWpK@h;z-hag1ALr{lev4R?P}*d@EI6+^knigj;rydb9&qM_V%~Ez5T^szOkKi z?m6vokK-h%qijA7V_a}$UYOSLBa3XDzMJiNZfJk_hp(pR?Nn&`V0+(tKHRQ+;wA0S zfqnGm4z%Zd`?H}7#N-jiq^Ic|qvzP3KaFB}x_Qg)_O8EwfBTJB{5Ff7c7oS(do4Yx z7hd=agrirD%HF+HFTC(v7HXYG&*2_3iE3zUy1s zsi(jbR<5rzUpkAGsDBpckMUzc)vhz!>oKg~{Fb-3Y0j*-w^IY8q{K3fPDbY{e&uS` zkk85iR?ifTgAXvp;$n>DE1pQtF-DKNc$8tn=X}q1wy$~S*I)=cFOqqT7}LAxeRN3L zo=1D$1e|T5aNEr0`d3}`&h$1;V^l78#+7qHHB?D5^5t_F9=gTg0tSr+tEV5`v;Qu7 z-QM4x^PF#N^UO~bw;y=^^V$nv_~HypkGkhL=~x%d!Vh~wU-*+h(w_Fz$HYK&?&Aup z!JYT}5C8BMdh7Pn^Z(X%yDZ2@ALi>Q(c%BKj$1zrU-zKS2P3i zYGdRG$Lcx{)H$HT!!E|+R5lLax&8LfVaVUXT9dO7Kj)94=TLIaS$*nL9!1`8kOV!* zQ_P*c;ZrxYKYRU~+5KZ5hgJM?`?X*D1$ezBjju)OpQT0XyJ#8k+1#$Zjxznmzi40o zb>BjI)KP^ITU^aC+<#|yDL+T)aPat3M-v9=6k9?kxDWD*JEARBdLvQfvojY*EY0y^XC7;^9x?Px1P>q<8drT_JS!hn zp~70nu*h&KVbd#)GFqoHV3HXQ^fYkj!62Jd=KQP$maWLQF#t(e`4N~a+ z7Jt9#4gu~WheUA3_Tb^Rb?lCI?#^52F+JF>e8}zXaSytsJ!I=GZPP0A&8%o;6Ff5K zy>jnvDKEOfVDx+&-}IpNh$sI*+kMuR7^qZE2v900;u|PA-N!|qGiT6wsH+%#^t2ix zd1Ywxh5XELp)!@3mD|#%g4btfH5JtynGe%soZyD96siT%ZD5U~}VR$LK-j@R_#4JT7`vt=vv5 zl4C>&2YG`PW^oRA(&dVN7ca>7c*_U=EkB0Gm2ba70c-*eKQDEG?nP%`4M>HT;k_(} z6{d%o5TarTKCC|M4b~_wBUK%#JJ5}bUmDA}IXu70T*!ZB*!GG?KZ;G_cQJ1cImhqv zD=yEzn%7)&4S6<#8+%$}xbMIFAe9^=0`N44Rj}veCid|B&gXnPJ(u4F?Ha)LtQE#i zud>(hPPV*y*-KwePY>l8eUs@%HpYrk;Duqpr#*VtUVB4(;uD|9v9}H-v(Sx3h(nn+ zGS$KAbK`AdJEaeN-~;WIfAA_9kW+dtyX;Zu<84&pwZXnCm(9QJJN97E9BM!NqL)y4 zGQ7{iJdKU(ulqz++;7{l4TEX{o#r7NY^u*sxd~wThoS3&lgY_V?X7Qqcl)ou{+r?V zFbiayPH@|;H)qF#$35=xq7tLq1v!ftG3IF+V}KhQA8q5)TiS2_?*E`y`LEE27#AG& z@${!Y6`nFBhv9LjFQA@dAa2^eqrICsrN8(~FQ*a3ap4$g%8-pC*Gr6Jd|7unly0w` zd6z4d3vy(BgOKImx=(zfJ@ldHw^L4Kfe^-<^er(QJi)5=T|2gCv6oXEJdD5v#=^7S zkRBHRc{127x9_J{^CcKNt^jxJ5jipp{!eGe1vm7sy=!TJfa?MFbp4yZy^8P{d*JUJ z+rtO;)1Y}$WW~nGIp>_+9>OVL2if$0&a>w+>UJ`Z^r=sILi>dm{ZxD8r4P#xwNrpH z(#N_FW=*u0zx+2a%#P8!yv$UH&$2k`3S@DbMkb3Q!B5&U3J3!6d?lJeg>pVH(7fo_HmAPp6JHuP7zZJ;;F~JKHUH-r3&uzW28CAACMc6b2VJw^94R zKYpyer03*Po0Xfz!bC1 z+xB3n&$b_Z!Ot+S^&aLIpF-KVzJ2r~A7KRLT(-SBD|6P}c5B47Iw<82edzt|)vx)( z@cCKKdN!S1yCPGA=!ZiG_qBJv=kKC#5R~M#1;Kf+@^GC!kuiyo75Rep>J+Jq*WL23 z^kwPAVVJA!;m#t}MFs>jO375Xh0jwtH6K*%U-X)SDfYHuFcU!|r-}{vl(!N9JqwJA zM_ba&$weYj*7zI8q%COV1bAtr%3LcSLi_9B_^4OIv(*J~J$b~8S|)xB!~_Bse!gZK z96m=-6w@dg7N5}~VdnviRCz|C;4B6OQ#6u_=m0=Q>Sn9Yure%eJQGw`c|h2-q8XA* zJn#-lBJpo@nSLrG@#J0OS*#RJFLBz=(9Q&{X$vsrzlbsvo_*n#CMzWOOkAOG-F(xH zOb*{iVB^4@j+eqTY-LK(=chQBxdTp$L20`PWN2ieZKkJe=lD$9J#~~_A2?-&;gj(( z=PEf>Kt2i%X^~-q2<)VCpIgyWj#lorc$G4u^|*;vf)(6~kyP-|^YdQ`SAi>lIDn7F zknv(%1#qQUkX(4jaO&g&EoD|YbH@C(F$`zAONTMS5JXOrLYAiGZV>@m-6le-?u98|+mT;)&3dqvVXxTU9Blf<4T z=E$+#ROWwnbQU?}#fAWObO@^pv%w7l%cY9rJMrRXa=e%~!a2DhZbU|)dVlz}Mx_b0 ziI=P-e&28!piwgbuB*%Y!Ixo2jkZrn+?O> zG9ZU=?8`mgc@KL!jh8%?U7?u}5)s^`Enw@JxJgJV2%`fJjF3-m9JHODx{qFaef!=Y`ib@{%q4u-g%5%z z#>3DZp%}T>K$v0S)?fb3-?cw^?d#A>j0mx@{HJfcrTy}+{CfN0ANk>S_E~48Qj_;C z7JBddKgvm3zt0@o+tV|o&YNWT(LG~-;pbo4e&ttR%p#Uu9AE5kYNyY;`eg*8Xo5vv zM-ClpfAD*M(BAl$Z%U8Z7`*FGSe$11#GC&1?HIYs?fZW4xorolr`>}#jS4W=upb0kT}`e8e=ID*mfwsh?L$Pa!GN006TZ`1_BIKz%Hule79)qdyq{8DYaYE27cgxIo+`4tDz2<+uu6>eS3$|`$s2&`z{@5qm3x48f z+E4$?kGBghcnHJJ7(?W-{I|j6;-v)+-uUDH@u%%~U-^eLLf8s(VjELCZf1JLi`#$x z*&lAFpS~xfr*`Hn(FyQ=_JIAJSG|(qcJO=rliOByH1Me4Dpjm-XMa=;ec7(PpdQy2 zuxz~Ym9K7RpK)q?`qy4bTJTxRo(! z4Cnj!(0%&pr=utF;flh%&--N$x}uDiFo*>3k3#AYPqVw5;|l}I-Xr< z_bfBj1%(!7%u;CQsAcR`wV;`X|0$@zo1oxu`WdZF2lfb)gb62DxFx;JiCwxYz^RQn{`F05gAZ|DW$X~emRV4eba`WX*w=REkK%oUU(OD%Ls3(S=B zR_=${`q! zS0N+TFp3Y}4zT#df;~2Hxb4LtJ?j)U0N!?}?VUc{c23MOXPKT$6RwQuUdCds6xnM73dJ%<{=p76|7G|0bOpn3e-tGk^moKwV`d-Bj>! zB?hWSsA(vzW#$U43}`CZfmswN1|K~aE<_T3pQdtLJ!+MH^^$H-2b2?6Nb{2y?xco*(&r9(@9^#Bz!NAh8i*z+*L9MOF@eYjoy z{x@*&2Xc$S82rVd5}?u_X`lSegJ|)e8zrtYrHfSI2NhKE!*q$i!rawGR=wJbs?E8I zhITg&PDgA<8B(1&PGfcnmB?@w!!Cd@vtShETvC!V5N>6Zy?|wcplyJWM*ddH?mW(}Rp+wd29cd(-Bv9GSVl{n|@^t$mU?pqpIqLnF=n z?I{p9OXLa$t)o&iG=yoBwZqH-ot_wN&t{&e+w`1v`sv~G3@i1o{lq8R+urexcJr+_ zMURD3$j1uZYo2c8)>W51^73}p*=MJB>bmQ%WApl}i9dp$!^z+PzvPvN7&xr`fCubp zKly?mYL`Fi5@g9~GPY1;ncM9gZXbC6KQe#!PubGxE)1>BsW+61G@{K3_^G_iEgWs9 zv9-|GvXcK17he=(3&qOAI=SAVSi^2vk+o%PgF0<#)y4gCtda{-8Dr0s!O)x#+W7l5C0<#yAkE0l$45=eGPE~L} z-s$NvaQGUI;(avoyoa90(e$=nf5T_m-~9F8v6#)nDp(*)oiDx9o9G~!rVc-IXM5;F z9!~t77}o3bI^V>6&5yFcb(vn=+4jO8`?2!P=+hRXVV6@IM^#7y( z*AKOC`8KASFyiG%1k8&3Wt%hd*xt=ozv_Q8SM=?awN-Xq_>b+Ue(p!w0&?U2w^Q49 zwzvP?o3jJO>1S<*COVczC|l(DD!R-e^<_>aeAH!6phxuz8jEa+1>g1`IK+ak54Sh` z`QK3vmgyn&2zQjCf|LTFnaIczbIchkWP3OEP~V1aH9gRFG0%3D2FBB$^33+F-}F4_ zplg&k)9ktYr+@yc_Re?z6${>`$VbQlhh^m5hRp&S$N6Q= zzC^w9?&z*3UJYwYq`cYTSe+16lMn@WWgwb_kNY)JFMsf3qCmB%OQ~9=_$Se-qaxh` zmmU%%QYG&^Jclo1kch0gq@ibAk+p^=Y#FIkDztRwQM`-zooqDstw0YAm}WN~M)c_K z0DY4eCx~zlI*lwBcX`T`7X29S*>Vb|q>vMwKH3To+{D;v?2($I?dQ1tDi-`xEyfE7i@moXSVvq~K3;g6xvAB3u9-rrKA%It3ijf-p z625SiUa_-fIz^^?@(A9kgi`?{l-24aT$B%<1aRNj!v_yAl<=8UTyBe@fo?@@E*VCg z{3y|pI_6~!aO@ft(zdl@?YvX&X_q{RmFznXwQVCaZOq|Zl%j_oh(h2913^3CARbmE zz{gqd`?~^55QZg!e;QTx#G7X(BrNGnW9EJUc2Q17>3(9|*IOAUSpb>CWz2|!kPA-@ z3iC6GP!Myv5k@`iY13QIZRbDoJK8B{JRTaDaPH()@@6A{j1*8QB?UKzt4FdPM$ykw zIZw46skV(gPY4?ju@+dF8+?HeA<&LpRo}qv^8juQPNJcYYhIeV@sYp9_YV7s}A7y_fcih-)Cx(9J?Ldd-}BXqif3(^#U{XPA}zAElE2 zo!|Z~_K&;+Sm+z{wXtj3k#s8D~ zwzTmCBzx&jt$NJn6x<;4SX*-QMiT12?B9 zczow12FL{SY~{s4dZ!OCXK<7r-*xH|r>YrO-DG27LS8VX$R1ut03u}$?K8@^3~c+6 z6$o=ygL8;FW{N!Xw;4lCne@1E*dP3|H4{jtafDywf;cWZatej@^P?X7==Q{?KBb-e zkn`X%X~{^!nobeJ)@ux>|NTF_xBc;J{-o`@`w+wF7}qo;3@hG-_vsW_`RQ=>8K|y7%-~8{tp1GPDYSI-sHWVa)z5W@L^zp-zu*ipe2*Y)yBX zo_#w-)-eXBFtoO8A7!)oQR?v}rh&|}$c%bv-jeE?6pSO{IHwqUyZzkH{zQA)lOGpe zUw8ed+e=>do9&aIWx*HnZk;F&7LUS3xx_}{&Nv;he|whQFE{aC^^tKg7IJc3l`pXQJm8=$(E34?LF@ z|IetNOQzGj`qh8Lh{q?}?o(N?&i2N`BkC@Cl*KD~Mfo{O-LN!QG&+QIP=Nr1pLV#ePMg>c^8APJJT>S z%T&7GedWvAO*eDUgZWPW*?HpBABs16gC2Hzvgha64dDn4yIDrVmMoJ^_{J?2o!Zm*C)BfG*6zP1qzn;`bW28!>jP!+K$h$&hVdh)mdG9W}$f<@Jcph|hpmJKa7bT>5B+#=8LRpb3A+e+PV{U_NoZZ;KJ=u$zM zD?BX#=@|jOdF2srt1L2^T)V5Cx9g7fg!Arc=bmze)02*(^f~DWu`tUZpYTYBJU2lA zsYvCozg`ZiQkS1%`K4X*Qked!==@H;;r8Xg`_fYV{Gq_4(iVpfCn?D)b1{?OMioyO zLpi6%bZQD z@P#;5?Dy=urv1~q{%597C?+fdFS!9>73nCAt!qB}!1j(0?xEqe9XM|9Lm6j5)CBXU zY+wzbsMkjMu?OlBX)IBe=d~fBZ!0;7aBUO6UIrea>KJgKSJU}trsYo~Jp42shxbVkA2JxWwL_>I^USfPeBwT`;H)#aJ3-X#B3b4$^D&CWbNJR0b}F-2l2e=glW_ z(Ik(hIfB4F>kY``8RmJr8;i#!IuDb!E@?9!Mp#F_G^p3<6(1#EH)CM9IvJ^gPAhw+ z6k!Cc(i<+{oFnL-lcMdGH^~#^%=}Wzr-4XF7s?J$p}S{g5(KU6A=*{Y6Bs=fF&B@D zvFWAGksa_@7ax&#;+PkPm0vmX5!{^|vIsGA7({E((O-sTtd7w?M-VLQ@`Z*JG|yA3 zI}&J~nm+f?Fp4Zsp`TBj-bmvB1EGvmLYw{M4UqVOSa2--a-=G5$61(W1K`0N;&9%B z&ue>5+e@#hJ)VtuvPasDpS!8O@BJTOX!jNt2Td_Ggu?~kr2&+^lxyhEUY;hw-zfFU z0t=qznW`|3k)Aq`JSfK?VOuq94q@(Uv*J?(a-->JLiE9z-XaHM1!kR^?ZMO!3JqYKa+2*N;f-On z6^2-B$tZW*wquNice-ON(NH~nnE9Ga^I^>oz4GLrMo)0S&cIN0#N#YZ4bvdM?Uq{^ z=_1$J2FoqPdV}5kkyguj(~T8_8SQ*8&Bb9-kw zQr5+3W1JA>;UT+qX|KEnu;2+lefVp$n-4)LX#| zz7EjgwoKV@>c){nOeLd7lXf3Qqx4cDEGVQ6#-T*rHo`XqMduDC3Y&#XsRM4@ zyp!K#l<4CQGG)Dsgn{+Mk4J*xmO_V@u;pXsY3c5F1?u9Jn+iGx5lx_VYd5G+7|eW! zM(C(vVGD|trxVW|VjWZg5hgvnri>f0`BkCU7}Kz(VX0%2w3o^iG?mq)g>9p_!aYHJoC?7VDC%ejulfNr? z$DqI=e+wMpOjlf$du7mx{^AXu7^f6UlC@lR@u5xim@i>;@+qCU?(j6U(BC6B;5 zw=EU2O1s0w%Fw(_`612dBjMmLJavYAsQlm!9IUi-6~qQ@1U4>Fihg7HZFt?dd6F4X zBSVQTfAB~g=~YSkFoJ&kENAvmI_<_v7k~iJUjr4Xk}f`zKgiJ_2E`VJ0G z|7v^q!!K-K&5H1cKm4I>?`fyfGeU1_=r1Km4?f|8yixWhIY7c*oBS{&#a4Y7B(QNKGfb?W83Q=9B#Qf|JM#ywFa=%Q)6I;$HO~ zDOityhiN&*z&upOT!p_%*j{dl#6`SLp$4~tM7?Nz=KRQ7Jod?Ju4^B?`s2~h8Ys>| zU1WsNIjjKA>hpOF%Vmsaam>^Ko*qoHI>0opMEMle%NQ-Hbu_=Ku9NwnTaZ z^Bh^gg~1#?hI6Gu6l+O#+K4Zu`N&5NcjRb@&KY~!+&^?;6GPU!hTGOtm|ieSy@hc$ zjiT@f8i>l*&9_mXVJD0;4a?K0mPoJabO|+S^VFxZDA%1& ziF{(-0xf8%LVS}SH3<)>QvA2rYB09>3l~5*_n&7mKW%T-@jT`EK>^ltYqZqt* z(z|^-QwVIRjiUSxV0@0UZ}vR0wq*-bZrERToDJ)h?EzZdYxJVKTgvz(e3*Ci1UaKe z)I4(0s0O5^(O%%v5z49fLQe<-dk&6STV;+j9dDOjdO3#oR&*(gla)<)c*AF|kKYu> zs`vSxg@e>%^2DKkP52=inWO9pyo_z&GywH;rX_}j>H>6>G6n9UKn4^pylFDH&cW;k zB=86zZ2a!mNOf3UMamtJL{cdI%&pulAj#5Hu7ou6;+5P@p|diVC*o*W83YX-9K-u3 z?1)7WO`%V!L^W`fQi`+Cv;ENs7833KtcrB2tWg<}!d(#i!ffIspCLcDo*_`^%06Cd z5V_Xj=efnU;#~kx?d&86PDQ^+6Fon%twl^l)k%!0NMC`wcv~qX)5H}##BYp+0@H5( z#wBk3vkcUHhA!uSEYY0QKwYGDH;hD7;UXSz&0qf8C<47c$buIN(dx=Xo1EF#Ee!xW4viRQ57(zHWwm+uirdI%mRQEm z$+PVcdn+Dh?$iQCsx5bkNqVN;>8coafYNxdXU6hiFI9SGfhjlBBOpB@f_~8G4}O9P zP?4-0Fi3uU`w~SBLo|fcgi%#N#Q+*AmN#C76UNnd7Ei$}D|ul@4y4y;@LRmqr8?MS zs8N>qYINx{40=FZm5dlTyvV9V!_7vMJvg2}FPv+y`6LS@KF;d+Z8=5hbcS-bvU=Vg zAuHIU45J>r=N{%P-pb1V{V{AD;@isbzJ{I2R;fQhXE6%!(%1cbQxC`!N3~Yyd0m7a zafA@E#-E`@xai3|HyU_zb69nB%%g@<5f9T?PS3F&cGj9+BoLjKggQeZjFT^gh5j0~ zGQ|4BIhNrO{;6q1g}gDGU~&_ceDDDOeDYl~z)Mi|tK>%BcfN@xe4+X4%Z)DPn`!zq zhFB_J=6S;No+)sBeElM11cXQCuV9R9jKbM;_*1^5lS>J7A6WjAj+MSf>L?An3487^ zCg(9ud-+IRjf||JzcNBOI7cruJ$UTzI)#yx-4W;wHUI2Y&k!bL*Y9(Zg;y2+1M%!5na_fC63cRT;OJJp^L4< zL>plsAK5Vsb6n|*B14=TNlzhVp!8LxNp^&%^2?D(x8HOjxx?0WcF9OntFmkya5wKn zSa)xv?MY}lW%>s_7&Zu`v4U0kUf1ZR=XwCX8_pB3oL4`Lk!|CAavVK1i5!uvs=y0X zMtV-)aUmW(yKGlwr<^z}F^_hZ9&qQfk6~cS-;|$|8b9mgt9sL|(e|9Oow>h{PmiwF zsj}f{%O|e8CJlNeH*`^+)GOkUGDccte(;cgPC*f`;0Wy+{V8|wPmY+!^2D#$H9Skg zEywDJWJlidx_={enVtm+R^fy%<~8ps%m|O!z<)B`aC}s6fCWf*ypt0arUa~~DClV@ z-0|Uukp#mX)~?ia6=FOCEFeILz7PlO8B)a&h3&6;(-An)0LSz~8Lp3G;LmgEzY(Tm zs1N1Obb>dJldlbT{kgP@bnBvTyjy`M%LzkPcgP!~3tU1`>7Nuf2A09NEJQYLjJ{6! z;6FonW0R+~v(9>C+k4KF*plQNPSo9jKYU>Ie-^{YmEhHtg-dA>G$+?PUVhcmBEu;>)r6i^SXCj)3+RSbonlW_}2h8M@_zXYA=(D zmf^gG&#@omO?*Sg`X2njmNJ}D3$co(j1I4fTsnZD5el9iLI$f|8Rdo8FxgG{myyX~ zcC1+8I|`9_)UoXtweOJ`dQq7JwJ?Vx%2w=q{MAv)wcs^MopU{o;&m8U<8)Lv=^?eu z8I&-Q;L-^0&`z4V3E3+UeI-nKyb{fK@CL_d#W1NbNzZz)D(&EUC(A|P$&bJdkV-4C z0S`dujoEXwaY++FjUyi&7FFY6CO`}C#5Lco90(T3g)ws=Df1fWlMH8y`~2K$yYAZ0 zVlaFvI?i4W;r3EsZ;`9rH#1VB4s;%CV8cUUdoxe1lqxkH>r#&w2a}T-UYwv}U$KV{ zBb3gx;xUz_xvj33mns-L1?&wPabHOExuXt@4#&{t?27bimLVvyGK-6+ZyFa>4*^rq z@Qltl@)`FnovBlphF}55WQi3}b-If7TCtloO;M zkJ2sHiuOv5j2&xdoi*9c+P$4q!lvj1qWod?9XNcL9=;iR^;T2%EYmspQMmwyP~<~$ zlL~QwQ;IgT5by2-^X=xV-becHgNn0?IS(gFOgS6S0ae>jw99#_WUfv8WG>f29qA0GwV%i_Ma-6xc zHcYN~G>gZW(E4GH`aR58{16QdlFB6<>wEKfh6PvO`s}B(cyc#8G_WHE?k+~V<@Out zZN7==A&dfAUgZt3mCW2PurvSQn(IFJZWU!PW&>6|*j^57LTqsMid2kCQv&G->=fA=+U&vK~2xZ6a)1JQEN6R%lTTLC+Ku-4EH4 z38M_6fS81-QZT6nJsM7-wDn!n1@yNoAFzOSUWFSGTVeLN@eVr>c01sF>+QGEJF=gZu+W1tQjiQ)*s91dIFi9ED5HjW zz~uGqTQ1+%&e?VwOhaHPG_usPlU{0K!ZE(OtK(f3%Z2X+JMh8BX9PL1z?CqmOz;z3 z&?)47@NR`4FuHT~@1~hN!ruZe;EHM*yy2$v7lT2W54^+;AB34yycNI>>c%H8>nPK% zqmGJ_^d)F`f|mRq&i_8AZGFJQ*st&s=0=?Z0W^h>pLJ_v3Y)_+X<#TjVhVvOh@LAz zBVES?9in!T6&fisqH&^76}Rh&$Ho=3H@;51^yGX|{}aKxw{Vbm)kiSOyZELewFe#S zZA1>RSL+(vORX;4jy&x{CopGrU>Dw&VQ2w&<0&-tjg#N0*eUh0h3`mVmuKdI`MU&j zv*9)sk6TQ+;(v|(@0OH5!n)lN^-w#4ku`tZO{^KlBaSeWG{T~cW=G~p>8q7wPW!*7T4s$x;& z3Bmj)yp>sf28NZ5KjDoy)dnNg-c7H-ROpR}|8f8@Tnh|)-~{6(9q~#^VBW(wEj(Q5 zD@^s}==+p`inGbL6{tZ7C{7JMf1G?_0Iq&oV3MPstuKhDZj!nZ&Q8?o&zU2nS9yB)rjD~2aQZkB5IUbP|R zVJ)txmI?A|jp;;Nrf1s2FBoeN+ zEhF=DLwVt(sha!;qBPjKHALCnL@#_~rNc|zCy#1-BW02=P)T+wJ34G!^0xe9xsj2R zoW8Vm7uz>&MK_Ew4-#3LJHQSStl*zxs>lLcHrXS;&Pa>H&MW*<$Ven|BObu?E{`@6 z$1U;#BI1I|Hc-m+I09(zsSR95auPH7E~J9fL+yZv2l@&l0QDekNX0;{e9^@08!7UR zlnJYA-k`yFSheo zMCUY}|L3)T-d_A)Ue?Ch<|=s~hKm}yl?9C+mhh}+er+0~!?X%*JPgr0`;m|T6LWPr z$bf?jmZ;ODDKaLGet22VxG1U7Eu&1iuzb7KpQjV9ypRhB9d?}bptnMs<3wlwBZ`USzn{w*#A8LCt? zrBSkr!Dd#sYSf5caI~aHqH*TWS9@U&+9EizZJ40ZI6jTJa19BHOx1~DL9Oc%(sU>czZi{ zFC#w-9=O0ZWx}PV^+1k6_R-u*@8$08%NVKdGQy%7z*=XT58_r06mj5PTKH4OT-=)? z1l`#&K{xUD5;^`Akq*(&7H{3;nldX-5T#L0RGQpM4 zek{hsGx*zUy0cLWa^p%?bZk-OVJfAoXd=wJFQJU-G>kB*jf^UjhXs_ucUf$DB7 zBXo!@gCp5NZ#HF+Ek-Suh8JCL1&yb82tbrfBLYNN+yI5V-p{oFCMri^h?R^9qCzw^ z6X22gSYTi{v)QLV6@({MnGqsTy=b(~=srI440>Ofh`+Lby&Zy4$Cw11p+%4^&;`%0 z;E<<=rgPIU5;4O3sX$BG2$|Q4pN~MoTki0VcZ^(>j3-w47kPj-eXAm1#U`upd=G3S zsT6^kLAWp&)a~hDdz3QtpcnUKCTV=-F0cw*Fh{_}auXA>rQ3!=GFRNg15zcJG+ChL z*@N(wn{JA^mEj)Z<{yBi;KkRTReDgD54MM&dSm-fm+WiX+ie&j_GmGe%*2VL$z~Ga z7vHJiaAVpGl_hPckDe8WFr`Aj7s;D6=S z$LkeP`0#mPn1=X=F?s9W@i;LzsSi^)DLrLmO0Y7Ep##r{M%jLbo`FI3ZOjp+?CWPu zYwuoOkoM{wgZa|u4dJqK@{;E|;ZXiDQ0YPS6satbV#_8g6Zz4FjocAFPJ!}oaVwt0 zcm`Ju=T#aQ8KMD?h`_)h=APct2IlrrsM&Ii)gUn(5*2*au+k~&80+?CDyzxb6bkr_ zQ6(&ba4EALD})gjU1dRq~~uAxtZ-iOXl) zN+!Dx9)9aXss+1;pJe-ne4qtDAKDQb=hEquOZtLer7zCPNP0Z2e zwA_`C$YdB?u@sK(dhzSaQAc&)h7So)iEM-cCeis7+%$oIWHdEDKpZvfNmW_7Dng>clgkGh#Cz`$fw%_CY?$;?~-BeNM~p@NWxY9 z;b1^g!Jqn5R&|IP-mp5HxOzGbC_Krm`0$)}f4W5$cqWg!r}9+nHUGt_VB{Gn@{V*n z*gakqj__uh%#|Oe?Wc(76cj6N@1|qsHpka+q)t5HRvsCVFW{=nM>Fbyi9#K+XXi-U zyPHkmmzf{Rt{Cd8+85fKXC5l`j{D)9vUQBbS?GL*hwUj=UzkFY44-`sB1xRbVT)FJ7wPr2u}Z_u zxs-}rF&{jEC%;V1dxs`6U+?;vP}v70OP-+lFiULMqW5W3Y4(PPJ`LaDl(@d@Cf@K? z*-hPQTDU4B^2uIW8|C#Y^aR$+sc?f^-~kJVvb8Md^1!XMmP7ZZO>l_mFpwJ9)-iR0 zUKy!7F+$Hh_d(b&wGEhnSC{A8FaG=splz-F*&E-?ezM!sx##h!&wAEV+Bbf~GwF%0 zLl&G4IL=mZfB&wxv4hcmwuPHOXJRLqKN7?<)QPl+!f(xy95{egiMW6lW!*W=RFSis z__s)lXw9Am8<*Xmw1|^?QYlj@-IULg!xKe^4p)hu;*tS!_ocXbd)OOw{Q|i(9&Ic^t=6*&t-o< zSJ!5^8Gl>7iir{Z8)PBR(!$~P$kRXFzU|UG+7@<_wGwy5poNWkf$#-9%9wZ#d()u9 zNZ-^p?|yLGedc9t*Pe^W)3Y$(wj*6+j=1C&q<9BWkrkQ*ZTK7R|K}@de}ObbG5);t z@8TP6gDmmx2~%=i*)#}Zxj~lP_cKvLCt;Kk0fz?iI-9#c7!<^;!#4x)uWb36sJyrueTv0^D;OuMAh5_>$R%`v zE&sV$77}=Ttn9avB{}(;`HVOT%<}49lWvGU$qLyihAFLZ(nv$M*nyxfGSAZEq0+Rm zU;!5d`D`|MCBNz|cRfVaD?M;sxO`XPBTgTJF!BYY0*3+|V=(*`fcaU5Okw~lh9fmk z%n0CwZ|cEHz)0X-iLS8~O&U`AIx1v%WmHBIQ(f#OS%8RZ_@+J#jFPVygdNO;H%|Wp zMq#0>_E+U?|8;_16D%I~I28SSkyjc%=Ddvsu%l;%V@?^n%yvV;RfB>ml=naZX;0so zVG)(}#3)0%))Cf5HejqLu&)4axw5gMf62IIQ@p|s7!f{0l)W-#fKh2j4ia4uT+m3G zeF^D}D1E#NwgF2%tYiF{-Bwxa0ymTnTpHujZFs9)?+F{>;ypfuFOYf4FVmG%#*6sy zX4+Y&fegXPq#+&BtgkvE+09^#?WoepLJz8)MD7xh z(HabV_d8x?UC97j^R1C@+D+@}(OzjU{-qypr|j9mNnNjJ!Rcaq!V@0VUi7m+&b(AQ zO@*QtrUr;=vZASs}5tPsw@-r?+N z4f6i8b|5?xW&!NrRxb5i)=_*Ev->wvEx5!_p#^?TL>H+f5$0Bb?o#YZzXd_%VO)(G zGf;+)Nh}|(N?$|)9X&k5@C{6bD8)9FGZjZ9D)C5(@L5%dcET=g6AXimq0DXJr025> zXXR=^&$d7oVi*yDj8G}0ie$HVip*|z@T%dAt{{@T2bhC;VE^6l z3kkBoTVMgvxAvTc|%N**ycW9VMR*@Ai5r1W=(rAF(G8*H zr@xg(6nH2yo|FNrOJA6MI>~Rnag!32u?Yzy8*tMr8n4lDxR6PM0nj>d|23Yc~ z0-?Xq-%N~LV&qIb%nj)(K8ud=!4c$K6gR`+4V%>cQUq>fZKiFxN_`;Ppov4}skkOb z z(jugtFz!FR#=e*19HKBa=>$3q9m^hR`d+dtJW8s@DsIll9HznGDM~$`lUMjUl|}fe z3wc(Wz7QS!NHY8@1G#W28^L@ASC|tFJ^2#-hbn&&V0@$YUAIAeFa z?)uNRAO4}|vugnLI#c~dC}W-=H^%8{Z+P8n+AVkA({}FQ&ElO00JXGGXXXwuk1fCw z1P`C2YdWqP)=+hkRa%X>;SC)@p$91@U&aM5Os<0^4;7RNRz{{Wh!Ehf5EzK3XsLi! z5ym@izm+t_v$#<>DIm}t=_kscD7@+sF#C`XUpTVlVzB^J_XoSFuJ3$9!V191g? zPn_F=VY-?4n;GVJMY*FZ_F`Dc=kza%gvyhmB&2XWMj7QPcz}py$`qor%Nba9|dO65$z5a;E}!U|DsF7;>{_&syq) zf|&@WnRL06PAXB*Ht!>Qc><4T$pbG+9*NzXR-6s%A8;bqT^Lgkn8ic>*QaoF78l=6 z`ZgYaR@Ax|Ox_fXgfoo_Z)D#pA9ObiPZCRUUOIBRfBs zV$WzKb*nvwLleNK?CD()c=ms#mr6Gj4B_NQSkdbF6^cTma0+K}l{^hD>kWz)y`FWMjb2 zF4B``7xHGu4Zg+2bi+#++4EAo>~v6`Mlp;hXaS8fnq&LW-g$4`Sk0nZr}Q%BP-30lyKa3_6Td>fqT~jwNSb)B#7Y z$i!vld>UU3Y-gVbI=tb}|Dx^MvAg|;uX#EhZu2zIStnt6qx>B|cA$Oz*FCj;!`J@@ z%GO-UkZXE0_P1==)!zE9_qI3u)tl&ma&KI0B|EzK&*+gljC>3&;49rwh+D@4zO%iS zJdsw}ryNQw4>e7A2;Iewa5Zq`MHee^jp8L;U-U|*8lq3cltDzz;-kN^W(GHt32^)> zks>I=%(&U2aG1u`(iyyvZe zDM{riEd0|#0iG>eTRsv!WCh`mSj9tG-7`+1a)s$UN1$;=FYkB-zHnu$_5)#yGFqn6kHi~klqX^znVH2W4N%e*%!cZJ+cip*8(|0ftov9YeJfLz3oXd3Vfmvkeb)YWW0$89Uc;eCV$FgVK6hhEAaq0T+?8$ju;f`_2Q#G;DQ1rEF^>3KV2<=6=f}@;q~SaZBOLZOJ#h`XM&$Bg z1rupTc&90g)ApcZppLQgMd(H((~D1nieU|(sVMmdfX0cbE5FeLJX4vQfI5bFC(2=$ zsBWRlZv%pZ^hE#Fd#E(cUZER?IKiKrxFwG1B|f=BSSvh@xXhQgO@offe1CW@9vZst zE9v~+7^uP&0pM5x1+qL5crN2exw&sJ!U4lbk-I`7e5gDlkly$k&hWvDbn?!3T?N03 zE@Z;PLy`iG;FE@d2@yygrOwpPbRZL5=A3sI;C3Jrw|FKF8ZPp0br~H?hY(ZTsDSBV zBcC-&CKv`@oL{8kwmgMsp3+Mi{7H2Ziab)rNZhnNL?LnrP3FJ*MvFpf1Hl-LpKvxl zc-2+%)xY&A&rJz8BlzT(SJITf@-FdgkQ$)7d`~>_;a9_{;w~Tc!C#*HBD3Tjc&p1J zsGYywrkyB>W>_4P8}05qi$7?$CZqkB4^qmT$reA`bJ|4eBB zM-p|2Uqj5F2LWkoU>bPG-*+N9qzGK;5&x7l@<+RdN69w+c_)-*Q{yB4MvsA5xY((b zyaZ0b3KK6a7zJ{JKR8N{-*UoUSr;KShWy7Sv7VSZBaur?iwVC?7X$`}r{L#W`<>ta zqxR{~e6D@-H$S_bcE)Lho29(WXNt|?Lq{oFZgFSBz%+(fP_?67{gLb2FTeB^v|cEi z?3l3R7I5_1ib3?EIPq7Fji3dN@F?;m}(^|ybf+)n?xKscYJ%n5dTy#ym(aCoXP^G zNT{uiWsJN!-qlW{HtXI>>Y~RYD=D{)o$eUBruDkmztrW|Y(Np;;#?VF9D7BVQA9H{$5_F=Gx!7vVHy}_n7&GlnFquK2ja=#2ynvq&Hu?b zb*SC{!!(E-oJ!zLV~QRk=kuDb?Iw##f&~Nk0p5#j5O?Rk+mpX#ocBsk+zeiE*Vgy9 zr<{Lld)SU+oO5hXaD_7u`_$F1%Fc0?=$&)kGuy*2|L!(0aXOU-Cw{1O%^1-Pp4{bu zxDZc#yHCOhl=OLidHgVq|Ff4o>GQXUC|WxPqRwaT;0Dc&Ha5^U8qGJfwg!T97d=bk;aBJ)~uT6KodP$gp}D41W@V-K&QjADCHb zcOPc?K69#8I6-BdBV=6!RYoOg6IKZ}{Zx1`({Y(egnJ5soUlj4ULr6_INXN8!~Go5 zHc@!;#`vL0S|G?3&o;)SEru!YeQroWlxDqzq>z<2N%YG+G(g8&@G1SHBXAu=5;*Tv zHwNV5TY88n{7wXLui-&A>X%*{)G@BD00RW9Son~X9AwsaX=P`n4v!Z*kh)*iMP8`2{9B-VZ4pb6CtMM1_+0h16d~=&3;bZ0vJLkOuz3r|cweEkmVS zG(cT^Nt8TwRR(>^YyFeH_yNybuLFV#PCg0R@mRd%ci|sL;K}Rg5@gh;2ZtR#B5r=tg~pyqpM*+O=l#h$N-ak z*L&XE{_mH(q8($6(AHfX{J@#s?!P+Byk+|!1~GiK#|&$!mM8KuPYL!7PyOYgyOUVP z?D2KfWQ6G&3ovgC#!r~PK0H?e9?6H{68@EX%vfXJn9`Lwao1DX3vaB?aRsaActK!e);h10^6TB(N?@0=RwV zh{2$XlBC~1X$~B3riZ_7|LUuwiIe~l99-2p&ThTB1SCQrpXEciM?rAD&_0eYoaYQ@ zCx2UbMWRECQZvThb*!4@6p8b9-PIoRpu1QleJBE(l*G9UEbACqXmc0|=Uw!D?Sf0b z6+~G5xx$nHg_?q3Pz$B4^qQm|m+;BLDU9TZPXNn9@#!e|S99g_MKHzU(dYC1;%Y50m$GJBF7B{R$cTC$vGwYGQ=8NZnZ$37H22QIJ9(g31Y zOSxg#uUh*Kc?eOMrC9RKXCRxdDP}IJijjA2mG6azxEaTh0MGKKPRNB*P=#H2>b$hV zg#BYEVTSMqFkCzcVaUTJoKr23q-Gj6Tx;5jM+0X@9m=qu8|C@lPJ1cbh{k1jD}Y+i z0u25Ak+4Rp&?_Gd%Qp`81m5?GPBOGLu2&NAh3_uGa3y>w&)OG}k|0pR z(_f<4iD>1cd3-V-^bZ}ti+kaqQ(wW#$1-B1RW!SboTn;DMoUvVAmF1X2?Ygfd-6jX z@}hYwVB<6Ybe^6ahhj&k-E$QkZou@&sO#Kl-iX2_9jPl86m03>&k*4>FiRBGp>jgR zI$k0a(h{8|-#R$P6=>+zAL67h@Cf5m7?F9t#9O^6{WUk15XLhM-r^$;W!wp!@PWsh zi5ljl#FfY54M7vShjkLIp_6z5ieL!W^a?xE6Ly+O6h?cr4jr1!Lgt;@IG$AOFoxDB z(}fG`3ouUP?alj+vye@r2#odg;_1GtUY4b>(Rc7j^5V?TGNq^Q_d1P^ILZoBDLMI! zVfJx$@L+n!%nU>M$2e7v^Wf*%$J2&NTdxJf84`7FDi8<31rHL0A|HH_05tLtua0h! zvC~FfrEVBvl!(?5jan9Du{zl4gN)NAz7Pp57(kX}gnxl+p3{H^?kal7Ufq7)Y4Vvg zJlesf{|LI@0bI&`copYP<6wmeHu*o=-tn$? zx3^q%6*dI(e>brW8QtbfY#TMi2*$9zp{B#1eC>5ON#!!%BiDF}p)yd@AK@r=i{YJy z;o5=`dQn-jf*oNXv&S1?l3Bp-{)+h~_9Ymp&bhSr!>kG-z*F4w*E3rA06~pE6`ua~ zxTYl`VZ`xW6hsgE%JN~gJ+ad?8-Tp%gF~@Pbz}st$4sAh4h|# z?hc+ZTb^t41TEgz2RVs@%762~{&wYgceJgXBqaby;VExB+K6G9nd7|UGavTMcHw2; z3H{DlVr4f&vI=DsG0IFFNCk&ZSwsSoV(}5s6@o~?8O%F3e`%%P{hX`t)ko+|f8Lk_7ST5YRm$+nS(;yuk(|#4V{bB$z}=&BY35^zx7f2EyQ`|Dq-THntWka7o{e z2QOj!69+Hp2HQxm?&|PbSXcTiJ+LwwckbK@Z@=Y{am;z;OWsRN*rJbmfsfVbhD41) zL18jG0AbjYJNY5(GJJWLrH1nl+{@?(TN!9}1|I`)0VBAX$NAT|B^~@b2XH>6FvgO zdsiYzsOalylp+g98GWR|yK#-G;pE>C^IoS%7uo~%OtjNZ-I}~VcyOT|IZTgo8ai5J z#xcDvkA26@-c%dGcK+9jedVC&@>vaA`J-FGh`oR((J4P7QnU*@Ws2|6r$4{qpJ^v~ zZUralh>zbZBg`j7@|bIbGZ5YhYVSiD!EOGA zsgQW-NI3Vl69Fgp-f?uEjnJ3cj#D+6}ZAaSh!ZLGCl)iqBl}ZrU1oz~h zJ*PjmU3}U1qx9`1)9}JSc$vBdL%NFC;2APglt{B^23*mB2_fGK^NN-b^2spzcJC*< z6Qw-kXdpfboUnTFv5`gx$Dl^@3f%4)hm&qSZ=;OF7rGOkcX=RxgKrX3mVioylY<~6 z(8>q8LGfD6_5TZJaiW+ku+^9QR51O z7{Q&Vc}b&YeU&kxfg`k94^X!5AsDAZIkeAnI1L@5khUsbI3W?-L?@ZYGX_b|hj_@1 zx`Ly$knq3|n5j{(DN<}4E;q&~5XYN$Gm!2Xyj z`nahP{l`6j{d<@rR${}2yZM+WZjli_^z|1x;aQ5Bz(NbG;&Z}Obo{uIhZ+=y?c#Mq zjLzLx|N3u*TfH^CEb1&z%s29ZAYnhZ4dVny@lX%Qd*fF*CXO)01Dz}BD$(J0e^d-(-QQ>$Mj^Y4+^Xu>?hHwRJdd4=NJqgKL#){A0F6{(MRwaNN?lAy~ zvBd5n$L46L)8n&FLxItM)iRYRFTnByzzSRZ6c+*IAx(VwE8>&|KMYGK@UrJwetR5i zhBlRd8Ik-JPVv5nmtI>wfFw|pD)@r+lX(6K(|7JV!fQPJ_h*>A)HClUK)SuZFUBT# zaPdn}RhjGBeaGJ*c=q9WCT;ak|IV8W^ip4;-|sp^UDxiWKAxaQa|`8>JcFOJGYjnw z4b)o?w&M%#bmO$1>e)+DLC7*5bb;DoDQ>=p4m>T^l*y!TUPI52J#=GiN4agNZQDlk z0|S|HI(F{CkJFP@F@{uk%N%b?C6u@(XI2PXgFQx}h$?>_Lh|@T+BnKP{fW0u59*HX zL+ygoPUHC3$xLw=Tpi}>=7caZTUEsZ*BGyTQH)CxNt z#Kp#r@4VOp9DEJY;okAYZ*{P|(9n$LOFRQsnofiC2UM;~OUQz7YBXXh>AK)6EXtg^ z4Ywi6hkh<(a&KZv8(XlLtO9~A%=vUM6#OazGFFTB3s&P6>hqXKOcs#K?C@f$i zjI$M(?tP<5{V8iIWnLtP%QB-dnD0)LSfemIJHwN|+}bh=-z*2vY=%VklcAQYg3-&r z1MI@NUn4b!5eP+zSqF0oBuMy-wgDlTOS-^~pNhYP0`}tN~H6s zy`3#4wzY$|9HnyU3Qbx^2(-Ysq~8pXiej~u3$RRELiEMkFbUV)lfD9Md>9uoNMFF?4noX+|QdOmgf zQm>9pr9i4x=n71Gs^no5fBu6Fs^ zcT;g6#+*=DVxb z;cWnN--u(5DTPE4hHUpEeCJ&>;}Z8otE|EOr2>P&NnI`C_Uo_rfJu-0vBbib3EzV%6>+%Fh&;-lQoCQ;RX63oPRB@@CY0; zPe=&B5!k&dG|E(lV#PHm$YDcq@53j3KCMJlA)M7cNMk2Dfv{Bufs-_NB9AjOM<`Eo zH0Z>-~R;X@&Qk4{e_>U%l7coN2N8v%N*%#d96DY}mJoU(%6yXw9BrxFg zt9YuT&ZGn%_|3QCY#2jXq52etJh#LIw7m8&83I0p>*ubyz(V5U$J2(lKdY1S) zfL-9GA?_lse$HQ%K7KK%s-N8h$O_I0|S*Xj;`PCG828o2QPgu`St*CkL}vV{=V8G;s5 z!N&S0b-XEpg!H?4vS1_;6sapB634kr@U z*h)J1C+*;=8-ck7=;0e0CJoxO+qO-#En6qr_!bP)Nen5=GDE_4itxe8eryK5osyu) zSN#%dfg~}~2VDOHzE1<1^v2IJ;?Os>G&Rsd+qG$>J?bH+wH@>tvls*INzWnv)99DI zJGQYHYq=esU4S>rpZcZbPfe?_sE)C>T{*S9i-#!WmAk#yamS%>;spnJk-RN#6`u$o z#)dob6IhiWRA1<>@?=utM0%#izn72o7}ZJ%a43sXtG-uGQnFKlYV6VgLlBNO-x&_B}FBGwB*04yQ5jmOp{+a$|S&$ zr0JiAy~caWHRZM%wZWQqzGXt-TOSs`)g1S0q&k#cJpyDrwS!2RXnIuvm~9P2SVZ;2 zO?FkKsD}&}242O*oHxBpGvtorGj0E;kEIu7W=1A5!~miqoI*u(uebpH;9uJE=-m2@fwhMvq>{8IEk-zH3hutrcA$ z5Vr)N;5sG3p#5J2scLg+fK!ZKK&bR9;CrPeG0nqvIeT8i~jvhG}I*`wf zA_MXZA809|+|N7x?sn?tyV}A!dvsDT!Mf-splNCBE-#I=2Vd~aHnscVw1O~Ym1B)F z7$`WyS;_k6QJHIN%yD#>HM^`*oGGZGpTLH%oKo;WOy2U>^Ctd$7~ae8-p`lbKYm@9 z1kjEr*9U_@;i7WsscQFhw@vNWmf{Q^_%=*hO-IMVsR=>=T zPIv=O>r3DX4_rm4ToPPkq5xND!-YHW%3dY&GR-@-2WtattgkW3S<21)v$u5BBUhMH zY982IYF`9-IDo=8cU8_+e(Y}(WpEDi=0{N^3Z|}eT>Qut*Zza2-{3^N%;O}YhmQ^o zu$q*f-6*iYlrP9DcS=4$7u&I8G@w+RN}Mu4LP3L2o*b zISdf@`boIb0KnkucQ`~u-Tf;=w_wKbG|wasT7?oFl^%CXS_e;Wa0tHyiAS)}&2O*7 z_XUEy632MbZpDBD=>$GOETf6t$(Io#mbglrSEZTPjhnI%`Nc)@1#2SW6Pz|e>cwAZ zBOp(M`!k|=`LlOvqxaPOfR5luT(4^U8CJbk$jTXc=Jta6yD%n==K?M(h;991<^rEZ zb#upTV#5c{az~A|!Et(3Y0Ow3t<90|sv#NG(Qew-A19|9Qsr-S8+e8`$~GR+g(N0! zx`$fgM^5B}I1A7BkS3BrSSmMuseJkDUBttyLUta3K}yOAFu4(;_+{9n-SId>-Y2~D zuIpqs-z)PAKT|6t;eogV(R?8t7vXK};Ys-#T*S~n&Y~K+=`_SvnclU6p^{9HS9a|D zzvR7nxMtZ^pSSNk-?}wdS9kTGo+Kf)TCLVBrU$UF9}EU#0wiHJ2!n9~#^9Lvi4DOx zvEvwmnG6^#upc`ZL5vX*BEm>mvyjy4c^;~&tGlK<&o}S;TjzXLEwxk)=pVzm_k8D^ zJ*;W3z4khLI>>dPGgd}v)h2R@=_5WI5TJbOK^ivslF@EEaCEHA9~`ai6e+JQ+K`KE zF}KOv7-PE4>@^-$g1xoa=P9qohS2? zTkVdUu5QQpz{l>I-H`4QAv?5P=)eqXK4xYo+F7=eP=_NMUhmKpWOa^^2DqddlU0>1dvr4AxFk#|xCc<`r} zQ(7rg+Zn5iBnesyQXedvFjLk!FsVRe?3Fsgf*q#&#jvo8g7aIasdw%$ zh@Y)5q-4pl5fK4?_5j>nv6@g9ao25-I1>;BUbY&J~^1 z`rIk`NgY9wU0~sxyOKaXr2u1inCAd;g`+5)GnF?Q1YmAMRrXyc054Y9C~v{cg@+lL z;#wRheagoR4j3uEDa)+a1CeL?Ij{-;zFJnl{uA5N+yS%X}4c{rp*qoQvu;Y?<7VB zN~x{(5ZhBRH+Mt3;U!;1rNjAfk4zm9k!gtFG55TKDvNy1la&PBOEP9I$V=t8hPs${SZ4}HW#=6>r6*?(z ziL21MDu2y|bG9sZmc#SxmQrBGz;huBFwqzJM0ld&=yXwNWyva@4EBvvYk4Lgvd{i( z!n8-)XI>KM=D=v#b;R6loY8zwTSqiyLr-Cb{_BOyxuMQ2)h&y|9X{ovqX$wV3&T}V zUnr;pRW=>H)5#-^fU_CJf<+5bg4Vap#pLh zt`1G_9HjwB-m+H#Y4+4%Z-Ar-{ShXATsZmhUwB$+4sF3Mbu_6IY-oXMV5J}}o8$+7 zXiW;U23(v`lX93PY5NC}0ZKDL)+7*y!DdOe{2(7?!k-O^wZZ#1mZY`4v2nG5w;fD5 zC?nET4;y!ZBVvxgPi$ESBe8RSg3)Rs37+2TE}GsS`_pw)SC&{9f|`%89S=Jf5xR{% z=Tny8X8K)vjZ*N+6WHbqgpLO}i~PC95d~TBnLKIXg8)sW^OjQ|)w9ds_573^NYe)d zg7}QlmLLu260B@gTUz)dYpFBufKF0X!h~6f+IEBb!+Yy>u1Q-lp--a4N4`txyh{*a zloM}s?uwuVvdm(CTSdR(Y?ix-}h(bZA1>S*WwUMftPM(lYZ=cUZX}RJMB%5>mj`%MOA8-+8Ac>cp;$thSe3f4E(*WR+ zfxxy@N6rKA{)UX$QMo6uY6e7*R$D3jO3Vm>IfQSzPF}vOB_HsdzigR_H)TRz|AI>1 zL`i%uJ_*`WtkEy@#CDx~rwU24NAQv_TahW7z%2c?*K^c4_GrQ;ANN_~B~RZh&73v? z|6+FwA0W0!sSyTJPjyWjkH)*YR~tk&7JZaFA!5RFBL^H(v3qAcGLmcn zsB?o(G4fu~Nws1+9Aic5jdvU&l>_1wo5O<+Gxcwu;l=ont-3g5ZI4Sa6hV_u<7`ia z>62C*o-iAwCt-|RaC46!ZIII=*9%3#K%eDOa4i_`g#&e_<1~(B5rPO*o>6#nb7}lIVuRQU41&dr%s-?zb%cr*Zljx4DxGU8K0QmvXU?{p_n$@xH8(Jt zjIby^(#bD|9V2n#stJN5 z$S971OiXwAp{PDN?DF`*eV3@p+0d$Z5gqaf#iAre`HM6BDl?AK2;UUNXf=?2%Fi4+ zh&qJyR>l!UUVGd0UNT&*GwCO0cXS*{GfXd`TLihaT3)b#VLUZLX^=+eP2`pn=+L>~ z)_{@L9>F-KzG)_pd8LIs2vd2QGQEOayMN+MB3$XW%-vcx3hc&@fJF5?k}43}h6z4J#84))pC&U~4Ob z#NWa8lDdn&Ec14K^4y^|)#jKh&Z=A9*cW&?JBWiiKQ&Q%Wa7YRM>f%Ohh}$pw(dIT zRLuQn2BpOw)eUtThkpn-#%lnp(ULJTX-^U^xpLImDnl*P@JTX-zv+v5(>*Jg~SeUdf+w1ftQ< zCV6>L3ofWJ14kTYWLGqFfkG3miNF)uxsT)_ktI`^W4_x5gX?-(GxU& zwlkL7=ot0N;pt85gRrFyxe%vx<8&ws0TQ0EG-1Ygh>Hj7sm_BidDPa9xaNR5q%#nC zN?+uXBqS1uhgZvlc>lyJNbsdCN*?G^*5-j0%}^HfsSCZ335*T|q$NR|_vDkZ!eW_= zMT~U_ccAOG8``Yo5P!!XA<|=ymUA#m&eH0L7_e?OaGu2ZnNyV`^avYS$Kke!pw$?0+Ck{NRISb!qhsp%j`f;1 z%3*rVov-SYEYqhRMe)sR%VOJ7bYIa))fkZtG;*%ud5<6^66>Ae9HR*JuyFN`Q*hiT zH$txliiB!D|5g2o^*Ks`5M`D>7i{E6oEZ5Nt%unq9!AWW8r`J}jV3X|conHqQ6YhW zY;6Q&-ophj6Y#{SLJU)APU8bz0PziDldgZijI}Vcz^(-4xJq+XQo-|WIaJ%tSS>O{()N)Y`ZSZCCGzxj-ud^>LpneS%! zobAS#r@PG}zFoeu)OMNEiGB?0?YNzkU*iIHxD2n92lBD98$OCSb{!pv%&3HbM(p9$ zJfVwA!iY1-(EQ>oh1LkB)BTiSMOXHYCxW8a8olr;6dNI*x-tk2UA(vk=}b}2p$Qon z(2K{o#3Q$e)Hsv(SHhKLhozvhV2Z(b5?OOQ#*&A$kTA@Gzoo@9`9pcz6HMYc3^sjp44$x;xZGpbKdOzp<=c@H;86fDm^dY%~zVJ zhqYfOxZ%xVx>ddruUbq1*Wy+xewMRuuFYv*kGvR1R zuR`I04CXPcw|QjcARq@WuJ-7Y@p1)M;h7j_%*AW(!})GM#ByV$nd-*lx0S<~mO8Gz`b4 z*>mHbNW8hIUt-az3^(Kvk`b~zpsOoW@c>~!p1)g%jngqvzEw_S;UUh9piH4GazdY^ zP{wIv1saM8Pcor#PxvKRgxN+Wt?7lY-a$ckc7f*X>ZdTI!J}j)108g3`gCHi@G2|u z${9!S6)hP?#%B4M;^>xX)O{VGq^-97QXb)7;v-3bs%k5zjz}&B6d#IO$8UCawC!hj ze|LD1Z^Cb6j_c|Yb6yw6aDdGoQ$o)B~&=(EgpJ( zH{aOk1XByJ{xogZ-b8IiC`aUr=(xzwqMEYJ^VRwaU?|}|6mamS%3O(Bs&RNakDr8C<D04q)SEy}O#q((@9B2$zUVl)`_b|r9#l@sDE z)F3kj&jzb_5@CTlWKskv;7~`yA<6t1Kzi@vRFJ0^5|D$(Mkb9!B_*Cr$#05eH#c|P zLx0a>Rh|m((>j%U%w99*!)+rl9Sg~@AkC@*I~;rQ;`ugz_$rAbn1~2dpwd{5>o`uT zhlZy&YU0!?$HUI1cqs)OnvgflGN@LipN$9xyOD@|q5@uLx~ZEA`P>N&;b z3k7AR^3;D_#Sfvmc*{-7CZRs6Q8HqLf&6rNc&bDG66vGyJv1|zyw~~;5-@V79+A}4 zK6^E7e|T>agZgXHR;djuJ>t2`R#40&Y=_eKaWdvg;-m@vW;9K4ck%2=43!HeC<nGLEXfCsXvcX-TXVP2YuvCL&U!hlxg%za=AkEj9dLXS+u;we6_ zJShwQQcuC9T+)abr>YK~p^^t3RHq_Dzo4PMgHHYKa0iz7XtH)PgN$E$#f&Vu7}PH9d`egj82C`GZEgrPy6eMvxiNt5QlxX^DZX|CTm zAmB74P8sr$e?LoU8mD6nx#NhI4m-Baa{cPt6K|1}+=9g^-=PO?%`Xz++>Xpz=doMp znG0hJqaOn3c_^AvF47Ofp}Au`^5Z@_Nx8&T0*|{5h+F$``O(YNI19DPCPIdeDzlbh%|OA(fpx(}%GpMV zaQT$HdI3|Xs(hsNInI&KMwo-j$OgH$S0|{a zlgvLwo}^K@rq^Li9npRgV3Bk`MpPW>QnMrL4p%2f5|csQvHX;z00<#IUJ3f?&Nh2= zP*htL1f9;yd=X*io8@f>k8<&9ue!2!+M;*@-SpBWk`U{oI-R7!n{+bg5nCl-;$s7d z?ZZfuDK5Y+-vhYBsi(HTDV(6=hj4LPcPN35Yvdi;dMSudLTLBB@K;4+9y23FJ8I}b zot$ChVupFg+goh8Ne7nG03lFa7Pz?Fbbo^{jrn!2i77heH2dIFU;49?MBr;3qH`d# zR%;(ZwJ#LFt!WP4x>*)iiIP|FDgUZ>1e%t=D>|uCnV!)g0tkv;M%#icA!(GNJZO55 z0=SSvoHt=rzGO-nk&isefnR?RCaQ!Y8J;j`j1eQRJtA)V;36&+%s0LWPb~aPMGD@W z(kY|B2|kOmfbvYPLPupq*xXM5z#dOmhT3(Wo+7V`JFxiT65Bdu0g%IB{MAEB-Ae^lUOePyS4%qbg42 z>oYXu3m5pBBvx+0fkhgB|QxJslkP-Zzp^K*6Cpc2ve#I2YyU2+B zGu*O&EMHS{Z_qtH&pE_ic}$i>7Bp)1WCEqWUr(9Av)l+bMk8^S1-wJcCEbGm=t9SF z$SfK|8n<1s^`wf%|9U1-m4Y}8?JkyIQdF3F*6Ul+BrX{0k>@UV2cUa4Q+M=t;=6P| zNIoFSI3dfsM^AqUP$R-GX)KeGIfjY$+bKjsT?zHnTw(!_`p?VEh4ZHp9^EvSG(C$+ z&VtD^&rG%X(b=}2E{_9~49`tdpLh$`jP;zx(2~IoqW5@-63!Goq`SN5D3xvnhsJuX z!H#1AetQbi`-*KD-mc+a=V^^XKmKoIp^?<4#jXL=(y(!2&{$?dtS{pB7A8Yirz*1h z4I?F&Xb$jFZUF0_y&E*f1va=8lcz68HTpp$OlwDcQIAa%4KT}~_YyJCV8WqWnf7u` zcqEtFk#qw=)|22Q>A8o`&jp`HWn=%dQMKAwXWIJ?Kl!8~E9*O$)yt(G5Wwk6oQ44$NRUNt@+4g{>77WWBxF_H^11gBqE9}P zDq2dq-f}3vZC++JSe(^n$;->Iy6T{E>Wz4?6Hfa$zq-bhRqY715&qS6k&4~lDpek& zg(Fl#TRjmpl-!1TR%ATPXOJmQ}~hc?bS z6Kw&%t)B{DJ}LF=>s{ffUii?Db2>6bex_25PP(HCU-n{dup<-2hj0YQk7cVYFsSR) zvDIb9&8F~`Xfx9iFRh*QHS#Kyh^DKb z>Q_z1Bk0o~o1Kv?<~2$nBdqKO_X;KmB(*P40;DudT1g!!ac)8hHB$x5Lvlr6Qh5SY zl7L@da6@JreN?u3gk1{_^Kb_f^~KxrZ8P025G`)+_!-h4HGmd=VX;o@<9#T|0vToIvmGP0-LNQ|T5*oIDD^ ziTLqEDKKBIcA0l-!3?wS-v+X@0k*d&IsqJeR52nnK4#M~@+FnwWgT7s2Zwr3!%<}V z3vBZFvKD77F-o4)lv|(9YZ?UVkYwejyXl>Ji&^?F)g!1Spn4I@kUOW?+O4Wfr}*XE zurvjs6ClJpH7c;>k;99+CY#mNkh3#XQ85!JJmQN$=_zd}QX^roQO2aP3GZ!wVgR16 z+CZFB3v9flQCg+4@7mITx(pURDd9@1(Y zx4jM}%n=cu|LsMswwx%ThzFdCOv~tf#i)Tk`fGUp`RR0> zfTV=Dso5R2lN@P>t{P#H6seg5u?1pX{1MN z!PUv3LW;h~iD>CmrDd|$DU*kO^Lr3SEW3TQ_Vk72cJ%NxUvS2yV=iQDgT$K*Wm#gx z<>Hzj7P4J~Hu9#EN1YBa{90b2spKN`$OitUOC1)cQsF`dQrNE8R)~v0)2UPHvQVTi zPbqiPm{ScG?p!-QyN`nG6e~cBj=&?_A^&<~ zkO1|4S~ zr2?XWDvTU@$f`!tm&~cTYcMW1D0IS6CY=)T3MAEmCt$|NmNdaJfE0N7NzD+jPkp>F zx`IfePx>(`N2RY}4z-#HWu2_*p^2yv_Ga-Q?R&d?8EpF`9ivasOZsTOLqEc2KE>$D zLU~jWxFwfJ2pr_o=}7Tm!XQeS70M(`sBw{3$FsEb{8uWu?fC^1$8(=5Z1CG>ik|V1 z=Rx2g*`=F4&XE4Tzg|l9*}hBfQe?;vOy@5Prszq^9KF^zdhW9D=*ck*)&MJ@GqnBLWRwke7qg-RI znV*`MCiL4abu!CET%fdmZb6r$A=~Km7;p0KmSNq5Namr@!y3{gTs@%z@a%A#`Y+i= z=jBcQfmh8&7oNs~uHBNgHz_avw^2V)O>b*SiPc|`%OTU6ZCA+>tK8K73?63WL$V>@rp~Em;H-LV|&4G{S&UV4GJu2mkAE_v+hgg^4JHNWZ-ZT zm~3PKRWj9c2eX5(e3e1uAni#?xpFluJPVi?tk{&$q3n}TU1FVNw0o;_D7D2I^UxFox&KqTM@6DTxU z2O}#(J6RJKSrHUD!j$^si-;qQ>XR=SyjGGS!Yi0islNJgkJD__e*`D_D4&1b!%KHl z5R=>MPUmVndHM|d?>Z^L7hYh|u#_m&SdLI(+g(`OHPN#;)9t4sy2 zY$aE!)w4*n(u=uv1=KwY`~>4mvURx*Fhu;V`WqXc%Sqc#>_~ ze0f`0U2V(ku&~Y6f4C0}={wwSTH99POF=X@K#g;O+cM=k!mcZRRK>+m_KfyATiPhX zu1tg5`M~giVRxh@y9v;zG=`H~3%%)3;B&j_wV<4F$H=b^SU~RkdW9ofB9JD6Mu_Pp zgaF~lMGDRvFFtYg#E;PPGEIfOz^YQ;n&ea75T7|aW#AL4 zXU?=E$FGJbdpL=ge&gju*zn?pH%(Hb`s?QwM3p#j^vYR zh;TSUP#k-EzKWl3o6CT`tGK=miKA`q!?!q#a5guVFGDfp6);vvWf zcmf^XBSn7e=+KgsyA*`dnUy)(4NGQ7jHFc z(QWYgr#uqQvyPzh2%lWyyhCe|W9B+CKQ;M)5M@w$b;zeytsIMTE*upDe0a0YN^g3Y zI@D@VwgtlBT*I-l9KyS_lHSHNv?3epH`D6c8vLxX@%RYy=G?+eoMYIsT|9SN329GW z5Zk6iS3@hYT2D%bP2$g@+Nvi_j?QJ`?002M$NklN)BzuE(dq}^lXwhN=C z=5&JDw(-I)qmMi6IJ3*H9`wMmPIIt&Fj z%D~q!<+aUviw$c zd{$V7NfG}BR1aMV*KmVnu0P9ppzi>qkqSx8ca@#4@OJD6ad^3$7W4{MTKm0jNP!5MrY>&h-N zFz(YFJsn;>0<+7TS`$U5Sy!>y%zm2%PrDnZm}B|?jS>rTcF#}&T|QkVct%MS-vj-Kv3{AqtWnqL?g@fQuxP5)V? z=n`nb4$xuk*c)}2t*6ph^#+XuWiF{n8laWM_UzM7riWj#S9WCR4e)A;#Wd3a4zLI6 z{tUUP+m?vvY>-r^-sTwQp}v`blFq54r2*DXO!ER;pD`dEJv`Xdnhp?XDZM1zlnCsO z2xvpmAz-3n8hm?Qdm~?Z0wt#BKQ!>8Q|LWGoZM-E3G6fru!KQq=8ch8dk6TgG1b1A zRt}U0a`QQQPbkke3-+>ljV%S7w$cWt=ij_>AP5#(>Yrfq zD*uF5*3cZN=1Mw|X(x5G>Ixm9kFcIL6BAbDK|TvDQ0rIDZD=w3$XSPihDlyRhnYDd zBWNK^nF>#GbVL30^n_hKG)6jGx(nrQgV9954<_cg<-2QaK0Z9otU`tsCzJ!l>_Q$J z@=*(pwkmp-2D}`FG_t@Jk|=t6olXg93)U!SY#<<0<|%(N)OJ-;VTlzF!ci8gjsOD1 zur99*+9uj&g^%Z?HIa$C3>^(!XyPn^z=#aI4dl=+wqQi=Ze5r?QSCiNuC`5aLF8W$ zA+Bn!)7O{|ocd%(gk@*F8jhFF+(bm6I*|kzIAAQmnP-Z{+}t>u@9$8TcbV6@oz>uL zOE^nxTeRoUI=Sr0vpmBSbO>0T^4U6|;8jtjmt_Km@nmjK(^zjDMaj#Kb&85xFRI}J z80ds>!x&Dl-X?HesHKx_FY?CDxps=7|M`6^*5qa3+_`P$G;iZz^VwH;O4&x1mUl-l zdNYjDq#Y7=D3X5Fz%rCVX#@{fUks{l8V4MrtBi>xlYjPpnpVm8FP4a?WTKqlLkplx zbW(ME9eHxcA90FXII$m*Ye0wQ&?9iAY2BxR&pKBeRLjp-ID5JCWhtD&vP8i~4)YY; z{-x4()oGiKD!T{qnstmqDjNLio6qL6Jh(^Z!Vs=ij=`!p{@hAZWD-Y|G-cmR5B

" ], "text/plain": [ - " area pop density\n", - "California 423967 38332521 90.413926\n", - "Florida 170312 19552860 114.806121\n", - "Illinois 149995 12882135 85.883763\n", - "New York 141297 19651127 139.076746\n", - "Texas 695662 26448193 38.018740" + " population area\n", + "California 38332521 423967\n", + "Florida 19552860 170312\n", + "Illinois 12882135 149995\n", + "New York 19651127 141297\n", + "Texas 26448193 695662" ] }, - "execution_count": 7, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data" + "states = pd.DataFrame({'population': population,\n", + " 'area': area})\n", + "states" ] }, { - "cell_type": "code", - "execution_count": 12, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "novo_dataframe = pd.DataFrame({'col1':[1,2,3,4,5], 'col2':[5,4,3,2,1]})" + "### Identificando os tipos das variáveis" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 92, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "col1 3.0\n", - "col2 3.0\n", - "dtype: float64" + "pandas.core.frame.DataFrame" ] }, - "execution_count": 15, + "execution_count": 92, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "novo_dataframe.mean()" + "type(states)" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 91, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Index: 5 entries, California to Illinois\n", + "data": { + "text/plain": [ + "pandas.core.series.Series" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(states[\"population\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "list" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type([states[\"population\"]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Verificando as características do DataFrame" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5, 2)" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Index: 5 entries, California to Texas\n", "Data columns (total 2 columns):\n", - "area 5 non-null int64\n", - "pop 5 non-null int64\n", + "population 5 non-null int64\n", + "area 5 non-null int64\n", "dtypes: int64(2)\n", - "memory usage: 120.0+ bytes\n" + "memory usage: 280.0+ bytes\n" ] } ], "source": [ - "data.info()" + "states.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['California', 'Florida', 'Illinois', 'New York', 'Texas'], dtype='object')" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states.index" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['population', 'area'], dtype='object')" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "California 423967\n", + "Florida 170312\n", + "Illinois 149995\n", + "New York 141297\n", + "Texas 695662\n", + "Name: area, dtype: int64" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states['area']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Criando uma coluna 'density' a partir da divisão da 'population' pela 'area'" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 167, "metadata": {}, "outputs": [ { @@ -380,95 +659,159 @@ " \n", " \n", " \n", + " population\n", " area\n", - " pop\n", + " density\n", " \n", " \n", " \n", " \n", " California\n", - " 423967\n", " 38332521\n", - " \n", - " \n", - " Texas\n", - " 695662\n", - " 26448193\n", - " \n", - " \n", - " New York\n", - " 141297\n", - " 19651127\n", + " 423967\n", + " 90.413926\n", " \n", " \n", " Florida\n", - " 170312\n", " 19552860\n", + " 170312\n", + " 114.806121\n", " \n", " \n", " Illinois\n", - " 149995\n", " 12882135\n", + " 149995\n", + " 85.883763\n", + " \n", + " \n", + " New York\n", + " 19651127\n", + " 141297\n", + " 139.076746\n", + " \n", + " \n", + " Texas\n", + " 26448193\n", + " 695662\n", + " 38.018740\n", " \n", " \n", "\n", "
" ], "text/plain": [ - " area pop\n", - "California 423967 38332521\n", - "Texas 695662 26448193\n", - "New York 141297 19651127\n", - "Florida 170312 19552860\n", - "Illinois 149995 12882135" + " population area density\n", + "California 38332521 423967 90.413926\n", + "Florida 19552860 170312 114.806121\n", + "Illinois 12882135 149995 85.883763\n", + "New York 19651127 141297 139.076746\n", + "Texas 26448193 695662 38.018740" ] }, - "execution_count": 16, + "execution_count": 167, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data" + "states['density'] = states['population'] / states['area']\n", + "states" ] }, { - "cell_type": "code", - "execution_count": 22, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "mascara_pop = (data['pop'] > 19552860) & (data['area']>423967)" + "### Ordenando os dados por estados mais populados, maiores e mais populosos" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 220, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
populationareadensity
Illinois1288213514999585.883763
Florida19552860170312114.806121
New York19651127141297139.076746
Texas2644819369566238.018740
California3833252142396790.000000
\n", + "
" + ], "text/plain": [ - "California False\n", - "Texas True\n", - "New York False\n", - "Florida False\n", - "Illinois False\n", - "dtype: bool" + " population area density\n", + "Illinois 12882135 149995 85.883763\n", + "Florida 19552860 170312 114.806121\n", + "New York 19651127 141297 139.076746\n", + "Texas 26448193 695662 38.018740\n", + "California 38332521 423967 90.000000" ] }, - "execution_count": 23, + "execution_count": 220, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "mascara_pop" + "states.sort_values(['population'], ascending = True)" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 221, "metadata": {}, "outputs": [ { @@ -492,32 +835,2670 @@ " \n", " \n", " \n", + " population\n", " area\n", - " pop\n", + " density\n", " \n", " \n", " \n", " \n", + " New York\n", + " 19651127\n", + " 141297\n", + " 139.076746\n", + " \n", + " \n", + " Illinois\n", + " 12882135\n", + " 149995\n", + " 85.883763\n", + " \n", + " \n", + " Florida\n", + " 19552860\n", + " 170312\n", + " 114.806121\n", + " \n", + " \n", + " California\n", + " 38332521\n", + " 423967\n", + " 90.000000\n", + " \n", + " \n", " Texas\n", - " 695662\n", " 26448193\n", + " 695662\n", + " 38.018740\n", " \n", " \n", "\n", "
" ], "text/plain": [ - " area pop\n", - "Texas 695662 26448193" + " population area density\n", + "New York 19651127 141297 139.076746\n", + "Illinois 12882135 149995 85.883763\n", + "Florida 19552860 170312 114.806121\n", + "California 38332521 423967 90.000000\n", + "Texas 26448193 695662 38.018740" + ] + }, + "execution_count": 221, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states.sort_values(['area'], ascending = True)" + ] + }, + { + "cell_type": "code", + "execution_count": 222, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
populationareadensity
Texas2644819369566238.018740
Illinois1288213514999585.883763
California3833252142396790.000000
Florida19552860170312114.806121
New York19651127141297139.076746
\n", + "
" + ], + "text/plain": [ + " population area density\n", + "Texas 26448193 695662 38.018740\n", + "Illinois 12882135 149995 85.883763\n", + "California 38332521 423967 90.000000\n", + "Florida 19552860 170312 114.806121\n", + "New York 19651127 141297 139.076746" + ] + }, + "execution_count": 222, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states.sort_values(['density'], ascending = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Selecionando dados" + ] + }, + { + "cell_type": "code", + "execution_count": 213, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
populationareadensity
Florida19552860170312114.806121
Illinois1288213514999585.883763
\n", + "
" + ], + "text/plain": [ + " population area density\n", + "Florida 19552860 170312 114.806121\n", + "Illinois 12882135 149995 85.883763" + ] + }, + "execution_count": 213, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states['Florida':'Illinois']" + ] + }, + { + "cell_type": "code", + "execution_count": 214, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
populationareadensity
Florida19552860170312114.806121
Illinois1288213514999585.883763
\n", + "
" + ], + "text/plain": [ + " population area density\n", + "Florida 19552860 170312 114.806121\n", + "Illinois 12882135 149995 85.883763" + ] + }, + "execution_count": 214, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states[1:3]" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "California False\n", + "Florida False\n", + "Illinois False\n", + "New York False\n", + "Texas True\n", + "dtype: bool" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_pop = (states['population'] > 19552860) & (states['area']>423967)\n", + "data_pop" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
populationareadensity
Texas2644819369566238.01874
\n", + "
" + ], + "text/plain": [ + " population area density\n", + "Texas 26448193 695662 38.01874" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states[(states['population'] > 19552860) & (states['area']>423967)]" + ] + }, + { + "cell_type": "code", + "execution_count": 211, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
areadensity
California42396790.413926
Florida170312114.806121
Illinois14999585.883763
New York141297139.076746
Texas69566238.018740
\n", + "
" + ], + "text/plain": [ + " area density\n", + "California 423967 90.413926\n", + "Florida 170312 114.806121\n", + "Illinois 149995 85.883763\n", + "New York 141297 139.076746\n", + "Texas 695662 38.018740" + ] + }, + "execution_count": 211, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states[['area','density']]" + ] + }, + { + "cell_type": "code", + "execution_count": 208, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
populationareadensity
Florida19552860170312114.806121
New York19651127141297139.076746
\n", + "
" + ], + "text/plain": [ + " population area density\n", + "Florida 19552860 170312 114.806121\n", + "New York 19651127 141297 139.076746" + ] + }, + "execution_count": 208, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states[states.density > 100]" + ] + }, + { + "cell_type": "code", + "execution_count": 209, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
populationdensity
Florida19552860114.806121
New York19651127139.076746
\n", + "
" + ], + "text/plain": [ + " population density\n", + "Florida 19552860 114.806121\n", + "New York 19651127 139.076746" + ] + }, + "execution_count": 209, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states.loc[states.density > 100, ['population', 'density']]" + ] + }, + { + "cell_type": "code", + "execution_count": 218, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "90.0" + ] + }, + "execution_count": 218, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states.loc['California', 'density']" + ] + }, + { + "cell_type": "code", + "execution_count": 219, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "90.0" + ] + }, + "execution_count": 219, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "states.iloc[0, 2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Caso Real\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "Agora vamos ler e entender uma tabela de um caso real. O arquivo *UKRetail* traz um banco de dados real de vendas para verificação e análise dos valores como segue.\n", + "\n", + "- Leitura dos dados e acesso por um DataFrame\n", + "- Identificação dos tipos de variáveis\n", + "- Descrição básica dos dados\n", + "- Seleção de dados\n", + "- Criação de uma coluna para o faturamento\n", + "- Tratamento dos valoes negativos contidos no faturamento\n", + "- Obtenção do total faturado por país com agrupamento (*Groupby*)\n", + "- Visualização dos dados de consumo para um cliente por histograma\n", + "- Visualização do consumo de um produto por histograma\n", + "- Tratamento de valores nulos" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lendo e acessando dados de um arquivo real de vendas" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InvoiceNoStockCodeDescriptionQuantityInvoiceDateUnitPriceCustomerIDCountry
053636522752SET 7 BABUSHKA NESTING BOXES22010-12-01 08:26:027.6517850.0United Kingdom
153636571053WHITE METAL LANTERN62010-12-01 08:26:023.3917850.0United Kingdom
253636584029GKNITTED UNION FLAG HOT WATER BOTTLE62010-12-01 08:26:023.3917850.0United Kingdom
353636585123AWHITE HANGING HEART T-LIGHT HOLDER62010-12-01 08:26:022.5517850.0United Kingdom
453636622633HAND WARMER UNION JACK62010-12-01 08:28:021.8517850.0United Kingdom
\n", + "
" + ], + "text/plain": [ + " InvoiceNo StockCode Description Quantity \\\n", + "0 536365 22752 SET 7 BABUSHKA NESTING BOXES 2 \n", + "1 536365 71053 WHITE METAL LANTERN 6 \n", + "2 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 \n", + "3 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 \n", + "4 536366 22633 HAND WARMER UNION JACK 6 \n", + "\n", + " InvoiceDate UnitPrice CustomerID Country \n", + "0 2010-12-01 08:26:02 7.65 17850.0 United Kingdom \n", + "1 2010-12-01 08:26:02 3.39 17850.0 United Kingdom \n", + "2 2010-12-01 08:26:02 3.39 17850.0 United Kingdom \n", + "3 2010-12-01 08:26:02 2.55 17850.0 United Kingdom \n", + "4 2010-12-01 08:28:02 1.85 17850.0 United Kingdom " + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales = pd.DataFrame(pd.read_csv('data/UKretail.csv',encoding='latin'))" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InvoiceNoStockCodeDescriptionQuantityInvoiceDateUnitPriceCustomerIDCountry
053636522752SET 7 BABUSHKA NESTING BOXES22010-12-01 08:26:027.6517850.0United Kingdom
153636571053WHITE METAL LANTERN62010-12-01 08:26:023.3917850.0United Kingdom
253636584029GKNITTED UNION FLAG HOT WATER BOTTLE62010-12-01 08:26:023.3917850.0United Kingdom
353636585123AWHITE HANGING HEART T-LIGHT HOLDER62010-12-01 08:26:022.5517850.0United Kingdom
453636622633HAND WARMER UNION JACK62010-12-01 08:28:021.8517850.0United Kingdom
\n", + "
" + ], + "text/plain": [ + " InvoiceNo StockCode Description Quantity \\\n", + "0 536365 22752 SET 7 BABUSHKA NESTING BOXES 2 \n", + "1 536365 71053 WHITE METAL LANTERN 6 \n", + "2 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 \n", + "3 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 \n", + "4 536366 22633 HAND WARMER UNION JACK 6 \n", + "\n", + " InvoiceDate UnitPrice CustomerID Country \n", + "0 2010-12-01 08:26:02 7.65 17850.0 United Kingdom \n", + "1 2010-12-01 08:26:02 3.39 17850.0 United Kingdom \n", + "2 2010-12-01 08:26:02 3.39 17850.0 United Kingdom \n", + "3 2010-12-01 08:26:02 2.55 17850.0 United Kingdom \n", + "4 2010-12-01 08:28:02 1.85 17850.0 United Kingdom " + ] + }, + "execution_count": 108, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InvoiceNoStockCodeDescriptionQuantityInvoiceDateUnitPriceCustomerIDCountry
32514258158722899CHILDREN'S APRON DOLLY GIRL62011-12-09 12:49:592.1012680.0France
32514358158723254CHILDRENS CUTLERY DOLLY GIRL42011-12-09 12:49:594.1512680.0France
32514458158723256CHILDRENS CUTLERY SPACEBOY42011-12-09 12:49:594.1512680.0France
\n", + "
" + ], + "text/plain": [ + " InvoiceNo StockCode Description Quantity \\\n", + "325142 581587 22899 CHILDREN'S APRON DOLLY GIRL 6 \n", + "325143 581587 23254 CHILDRENS CUTLERY DOLLY GIRL 4 \n", + "325144 581587 23256 CHILDRENS CUTLERY SPACEBOY 4 \n", + "\n", + " InvoiceDate UnitPrice CustomerID Country \n", + "325142 2011-12-09 12:49:59 2.10 12680.0 France \n", + "325143 2011-12-09 12:49:59 4.15 12680.0 France \n", + "325144 2011-12-09 12:49:59 4.15 12680.0 France " + ] + }, + "execution_count": 109, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.tail(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Identificando os tipos de variáveis" + ] + }, + { + "cell_type": "code", + "execution_count": 99, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.frame.DataFrame" + ] + }, + "execution_count": 99, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(sales)" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.series.Series" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(sales[\"CustomerID\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "list" + ] + }, + "execution_count": 100, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type([sales[\"CustomerID\"]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Descrição básica dos dados" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(325145, 8)" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['InvoiceNo', 'StockCode', 'Description', 'Quantity', 'InvoiceDate',\n", + " 'UnitPrice', 'CustomerID', 'Country'], dtype=object)" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.columns.values" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 325145 entries, 0 to 325144\n", + "Data columns (total 8 columns):\n", + "InvoiceNo 325145 non-null object\n", + "StockCode 325145 non-null object\n", + "Description 324275 non-null object\n", + "Quantity 325145 non-null int64\n", + "InvoiceDate 325145 non-null object\n", + "UnitPrice 325145 non-null float64\n", + "CustomerID 244154 non-null float64\n", + "Country 325145 non-null object\n", + "dtypes: float64(2), int64(1), object(5)\n", + "memory usage: 19.8+ MB\n" + ] + } + ], + "source": [ + "sales.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
QuantityUnitPriceCustomerID
count325145.000000325145.000000244154.000000
mean9.2733404.84523915288.823120
std154.394112116.8304511713.496816
min-80995.000000-11062.06000012347.000000
25%1.0000001.25000013959.000000
50%3.0000002.08000015150.000000
75%10.0000004.13000016792.750000
max12540.00000038970.00000018287.000000
\n", + "
" + ], + "text/plain": [ + " Quantity UnitPrice CustomerID\n", + "count 325145.000000 325145.000000 244154.000000\n", + "mean 9.273340 4.845239 15288.823120\n", + "std 154.394112 116.830451 1713.496816\n", + "min -80995.000000 -11062.060000 12347.000000\n", + "25% 1.000000 1.250000 13959.000000\n", + "50% 3.000000 2.080000 15150.000000\n", + "75% 10.000000 4.130000 16792.750000\n", + "max 12540.000000 38970.000000 18287.000000" + ] + }, + "execution_count": 110, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Selecionando dados" + ] + }, + { + "cell_type": "code", + "execution_count": 111, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InvoiceNoStockCodeDescriptionQuantityInvoiceDateUnitPriceCustomerIDCountry
053636522752SET 7 BABUSHKA NESTING BOXES22010-12-01 08:26:027.6517850.0United Kingdom
153636571053WHITE METAL LANTERN62010-12-01 08:26:023.3917850.0United Kingdom
253636584029GKNITTED UNION FLAG HOT WATER BOTTLE62010-12-01 08:26:023.3917850.0United Kingdom
353636585123AWHITE HANGING HEART T-LIGHT HOLDER62010-12-01 08:26:022.5517850.0United Kingdom
\n", + "
" + ], + "text/plain": [ + " InvoiceNo StockCode Description Quantity \\\n", + "0 536365 22752 SET 7 BABUSHKA NESTING BOXES 2 \n", + "1 536365 71053 WHITE METAL LANTERN 6 \n", + "2 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 \n", + "3 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 \n", + "\n", + " InvoiceDate UnitPrice CustomerID Country \n", + "0 2010-12-01 08:26:02 7.65 17850.0 United Kingdom \n", + "1 2010-12-01 08:26:02 3.39 17850.0 United Kingdom \n", + "2 2010-12-01 08:26:02 3.39 17850.0 United Kingdom \n", + "3 2010-12-01 08:26:02 2.55 17850.0 United Kingdom " + ] + }, + "execution_count": 111, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales[:4]" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 17850.0\n", + "1 17850.0\n", + "2 17850.0\n", + "3 17850.0\n", + "4 17850.0\n", + "Name: CustomerID, dtype: float64" + ] + }, + "execution_count": 101, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales[\"CustomerID\"].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Quantity
02
16
26
36
46
\n", + "
" + ], + "text/plain": [ + " Quantity\n", + "0 2\n", + "1 6\n", + "2 6\n", + "3 6\n", + "4 6" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.loc[:,['Quantity']].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 115, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Quantity
02
16
26
36
46
\n", + "
" + ], + "text/plain": [ + " Quantity\n", + "0 2\n", + "1 6\n", + "2 6\n", + "3 6\n", + "4 6" + ] + }, + "execution_count": 115, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.iloc[:,[3]].head()" + ] + }, + { + "cell_type": "code", + "execution_count": 114, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Description
0SET 7 BABUSHKA NESTING BOXES
1WHITE METAL LANTERN
2KNITTED UNION FLAG HOT WATER BOTTLE
3WHITE HANGING HEART T-LIGHT HOLDER
4HAND WARMER UNION JACK
5HOME BUILDING BLOCK WORD
\n", + "
" + ], + "text/plain": [ + " Description\n", + "0 SET 7 BABUSHKA NESTING BOXES\n", + "1 WHITE METAL LANTERN\n", + "2 KNITTED UNION FLAG HOT WATER BOTTLE\n", + "3 WHITE HANGING HEART T-LIGHT HOLDER\n", + "4 HAND WARMER UNION JACK\n", + "5 HOME BUILDING BLOCK WORD" + ] + }, + "execution_count": 114, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.iloc[0:6,2:3]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Criando uma nova coluna de 'Revenue' com total de vendas (multiplicação da 'Quantity' pelo 'UnitPrice')" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [], + "source": [ + "sales['Revenue'] = sales.Quantity*sales.UnitPrice" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InvoiceNoStockCodeDescriptionQuantityInvoiceDateUnitPriceCustomerIDCountryRevenue
053636522752SET 7 BABUSHKA NESTING BOXES22010-12-01 08:26:027.6517850.0United Kingdom15.30
153636571053WHITE METAL LANTERN62010-12-01 08:26:023.3917850.0United Kingdom20.34
253636584029GKNITTED UNION FLAG HOT WATER BOTTLE62010-12-01 08:26:023.3917850.0United Kingdom20.34
353636585123AWHITE HANGING HEART T-LIGHT HOLDER62010-12-01 08:26:022.5517850.0United Kingdom15.30
453636622633HAND WARMER UNION JACK62010-12-01 08:28:021.8517850.0United Kingdom11.10
\n", + "
" + ], + "text/plain": [ + " InvoiceNo StockCode Description Quantity \\\n", + "0 536365 22752 SET 7 BABUSHKA NESTING BOXES 2 \n", + "1 536365 71053 WHITE METAL LANTERN 6 \n", + "2 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 \n", + "3 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 \n", + "4 536366 22633 HAND WARMER UNION JACK 6 \n", + "\n", + " InvoiceDate UnitPrice CustomerID Country Revenue \n", + "0 2010-12-01 08:26:02 7.65 17850.0 United Kingdom 15.30 \n", + "1 2010-12-01 08:26:02 3.39 17850.0 United Kingdom 20.34 \n", + "2 2010-12-01 08:26:02 3.39 17850.0 United Kingdom 20.34 \n", + "3 2010-12-01 08:26:02 2.55 17850.0 United Kingdom 15.30 \n", + "4 2010-12-01 08:28:02 1.85 17850.0 United Kingdom 11.10 " + ] + }, + "execution_count": 120, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Criando um novo DataFrame somente com os dados que compõe o 'Revenue'" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [], + "source": [ + "raw_sales = sales[[\"Quantity\",\"UnitPrice\", \"Revenue\"]]" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
QuantityUnitPriceRevenue
027.6515.30
163.3920.34
263.3920.34
362.5515.30
461.8511.10
\n", + "
" + ], + "text/plain": [ + " Quantity UnitPrice Revenue\n", + "0 2 7.65 15.30\n", + "1 6 3.39 20.34\n", + "2 6 3.39 20.34\n", + "3 6 2.55 15.30\n", + "4 6 1.85 11.10" + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_sales.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 325145 entries, 0 to 325144\n", + "Data columns (total 3 columns):\n", + "Quantity 325145 non-null int64\n", + "UnitPrice 325145 non-null float64\n", + "Revenue 325145 non-null float64\n", + "dtypes: float64(2), int64(1)\n", + "memory usage: 7.4 MB\n" + ] + } + ], + "source": [ + "raw_sales.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Análisando e trantando os dados da variável 'Revenue'" + ] + }, + { + "cell_type": "code", + "execution_count": 134, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 134, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEACAYAAAB78OvLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4VOXd//H3NwkQ9iWAskiCEhdQAYkLLnUHXCq2VYt7e+HW1lrbatHH+ujj8lSr1t+jRVusVkVbtFg3FHBDqRsCssieoAHCGpaEBLLP9/dHTkKADNlOMgl8Xtc1FzP3uc99vjMZ8sl9zpkz5u6IiIiEIS7WBYiIyP5DoSIiIqFRqIiISGgUKiIiEhqFioiIhEahIiIioVGoiIhIaBQqIiISGoWKiIiEJiHWBTS17t27e0pKSqzLEBFpUebOnbvZ3XvU1O+AC5WUlBTmzJkT6zJERFoUM1tVm37a/SUiIqFRqIiISGgUKiIiEpoD7piKiOz/SkpKyMrKorCwMNaltDiJiYn07duXVq1a1Wt9hYqI7HeysrLo2LEjKSkpmFmsy2kx3J0tW7aQlZVF//796zWGdn+JyH6nsLCQpKQkBUodmRlJSUkNmuEpVERkv6RAqZ+Gvm4KFZEodhaX8vq8rFiXIdKi6JiKSBT3vLmYf83N4pCu7UhL6RbrcqSFiY+P55hjjqG0tJT+/fszceJEunTpEuuyGp1mKiJRbMwrAiC/qDTGlUhL1LZtW+bPn8+iRYvo1q0b48ePj3VJTUKhIiLSyIYPH87atWsrHz/yyCMcf/zxHHvssdxzzz0AjBs3jqeeeqqyz7333stjjz0WtX9mZiZHHXUU119/PYMGDWLEiBEUFBQAcMYZZ1Rejmrz5s1UXO+wrKyM22+/vXKsv/71r6E/V+3+EpH92v+8vZgl67aHOubA3p245/uDatW3rKyMDz/8kLFjxwLw3nvvkZ6ezldffYW7c9FFFzFz5kzGjBnDrbfeys9//nMAXn31VaZNmxa1f79+/UhPT+ef//wnzzzzDJdddhmvvfYaV111VdRann32WTp37szs2bMpKirilFNOYcSIEfU+fbg6ChURkUZQUFDAkCFDyMzMZNiwYZx77rlAeai89957DB06FID8/HzS09MZO3YsmzZtYt26dWRnZ9O1a1f69evHE088UW3/fv360b9/f4YMGQLAsGHDyMzM3GdN7733HgsXLmTy5MkA5Obmkp6erlAREamt2s4owlZxTCU3N5cLL7yQ8ePHc8stt+Du3Hnnndx44417rXPJJZcwefJkNmzYwJgxYwCi9s/MzKRNmzaVj+Pj4yt3fyUkJBCJRAB2+8yJu/Pkk08ycuTI0J9vBR1TERFpRJ07d+aJJ57g0UcfpaSkhJEjR/Lcc8+Rn58PwNq1a9m0aRMAY8aMYdKkSUyePJlLLrkEYJ/9o0lJSWHu3LkAlbOSirGefvppSkpKAFixYgU7duwI9flqpiIi0siGDh3K4MGDmTRpEldffTVLly5l+PDhAHTo0IGXXnqJnj17MmjQIPLy8ujTpw+9evUCYMSIEdX2j4+Pj7q92267jcsuu4yJEydy1llnVbZfd911ZGZmctxxx+Hu9OjRgzfeeCPU52ruHuqAzV1aWprrS7qkNq557itmrsjm+Z8ezxlH9Ix1OVIHS5cu5aijjop1GS1Wda+fmc1197Sa1tXuLxERCY1CRUREQqNQEZH90oG2az8sDX3dFCoist9JTExky5YtCpY6qvg+lcTExHqPobO/RGS/07dvX7KyssjOzo51KS1OxTc/1pdCRUT2O61atQr1U+JSe9r9JSIioVGoiIhIaBQqIiISGoWKiIiERqEiIiKhUaiIiEhoFCoiIhIahYqIiIRGoRKizflF5OwsjnUZIiIxo0/UhyjtgQ8AyHzoghhXIiISG5qpiIhIaBQqIvuJe99azM3/+DrWZcgBTqEisp94/vNMpixcH+sy5ACnUJEWpbQsQllE35Eh0lwpVKRFGXDXVM750yexLkNEolCoNHML1uQwbdGBtUvjxS8yWZ9bEHX5d5t3NF0xIlInCpVmbvT4z7jppQPn4Oum7YX895uL+enfZ8e6FGnh3J3i0kisyzjgKFSkWSkNjpfkFpTEuJKWZdJXq2NdQpMrqeH42ktfruLw309lxca8Rq1j/IwMLvrzp426jZZEodII/jhtGSl3vMNrc7NiXUqlhVk5ZG3bWe2y7YUlfPntliauaN+8kY7Fr80p4LvNO9hZXMrK7PzG2UjI1uUURP3ZVbjj3980UTXlXvg8k5Q73onpTCD1rqmMHv8p7s7r87IoKC7bbfnbwZlwIx6fGXWMzflFLFqbu1tbcWmEiV+uqvUJIY9MX87CrNyaOzahd79ZT8od77Aht5DpizeQX1TaZNveL0LFzEaZ2XIzyzCzO2Jdz1MfrwTgT++vqHb5p+mbydi0+19PGZvyiEScbTsa5zIvF/35M059eEa1y65/YQ5jJnxZ6zdeSVmEK//2JR8s2UheYfUzipydxTX+pywti1BUuvsvArNalVBvpzz0EWc++jFX/W0WZz8W7gH/krIIP3zqMz7P2BzquCc/9BGnPjyDl2etqnzfPDxtGT97aS7AXq9hY8ktKOEfs1bj7pXv7Z3F+37PZG7ewdRvaj4m6O6UlO0KqLKI1+qX+qK12/l85RZ+/coC/vfdpbstS4ir/s20esvOyrpH/b+ZXPjk7rOMCTNXcvcbi5g8d02N22+IkrIIE7/IpLRs92BeviGv8rkvXpfLXz9Zuc9xcgtKuH/KErzKX2IvfpEJwLRF67lx4lx+88r8MEvfpxZ/mRYziwfGA+cCWcBsM3vL3Zc0xvbmrtpG5uYdPPvpdzx66WAG9u7Esg3b6da+9V591+YU4O6s2JhPas8OFJdFuHj8ZyzbUP6LIf3B84gzY9Z3W7jimVmV6903ehDXDE/Za7yMTfms2bqTM4/sWaea93zTfrIimyF9u9C5XSsAlqzbDkCkypvy85WbueKZWUy79TSOPLgTAF+v3sbbC9bx988yAfgsYwtJ7Vsz9+5zdxt/YVYOF/35M07s3437Lz6a7QUlpKV0I2vbTr5YuYXbJy8kLbkrhaVlLFq7vdrL2pRGnIxNeRzWowNmxgkPfsCIQQft83kWl0YYPyODm04/jG/W5vLyrFXcPvII+nZtB8Carbv+2v96dc5ur8+LX6zizCN7ckjXtixet50VG/OYuSIbgJ/8fTb/df6RnHxYdwb07EDWtp2szSnk9MN7VI7h7ny9ahtfr87h9skLObRHe1J7duSuC44iPsovtwrTFm3gD1OXMu1X32P11p306dqW9q3jsT0S9q7XFxFn8O0fLuDp4A8Xd2fiF6t2f+3KIjzwzlJ+fc7hvL1wHWu27eQfs1bz4W9Op2enxMp+JWURZmduZfHa7VxxYj9Ky5yrn5vFb0ccsdtzKyoto01CPL9+ZT4fLdvEoN6dKndP3jdlCfeNPhp3p2Niq72e2xmPfgzAh789nS+/3cKVJyazIbeQB99dykEd23DKgO4s35hHXmEJ42esZM7vzwHg+09+Sn5RKd/cO5KyiJNfVErntnuPD/DH6csBKn9mHRITuPuNRSwO3tcAM5Zt4swje5JfVMr3HpnB0X068cw1aWzOL/8j7pMV2Zw2oDtxccaM5eU/9607Srjr9W/YuqOYqYs28KuzU/n1uYdXjndw58Tdgm/64g38+aMM/nXTcLLziti2s5hj+3ZhybrtmMH8NTmcO/Agtu0opmv71rwyew2PTF9OQnwcPzquL60T4jjy7qkUlkS45awB/GbEEVzwRHngDerdmVNTuzP1m/UMS+5Kj45teH3eWk48NIlTHvoIgGc//Y7TUruTktSeL7/dCsDD08pfm/eWbOTN+WsZPaRPta9hmMwbaz9DEzGz4cC97j4yeHwngLv/obr+aWlpPmfOnDpvZ3N+UeW1vUREWqJ+3dox83dn1mtdM5vr7mk19dsfdn/1AarOU7OCtkpmdoOZzTGzOdnZ2fXayH/S67eeiEhzsXrrvo/NhaHF7/4Cqtu3sNv0y90nABOgfKZSn42MHtwHd9iSX0y7NvG89OVqrhmeTO8ubcktKCG/sJT/en3XwdIfHdeXE/p35fnPV1FaFuH+i49mzIQvK5e99nX5QfybzxxAQUkZvTon8sA75fuErx2ejJlx8mFJzPpuK/FxRr9u7dheWEJxaYSOia2IN7j37fI9fI9dOpiV2fms3rqz8jId3Tu0oU1CHHecdyRtEuLYlFdEQXEZDwb7nR//8WAiESiNRBj3Wnndv7/gqMoa7jjvSBasySH1oI4UFJfy9oL13HpOauUB4ZtOP4zXvs4iO6+o8jk/eulgCkvK6JiYwLzVOTz/eSanH96DC47txTMzvyV9064D478+53Ae/6B8v/y93x/IjuIyOrVtxR+nLiOvqJS+Xdtyw/cOZfLcLErLnEvT+vLRsk38J738eMX9owexZUcxhvH4Byu46qR+pCV3Y1NeIYbRqW0CKzbmc+TBHdlRVMrS9XnkFBQzffFGAG45O5XuHVoTH2cUFJcRcWd7QSkHdU4kEnF6d2nL9S/uPaM9/KAOrNhY/jzat47nutMO5f8+TAdg8CFdWLAmhy7tWnHD9w7l2+wdnJbandIyZ8byTZRFnEO6tSMlqX3le+UnJ6fw/OeZe23n6pOSGdi7E9l5RaR0b8/LX66iZ6dE3l6wDoCTD0tiZXY+G7cX7bVuhdtHHkFyUrvKg+kfL8/m2L6d6ZTYin/Py6rcRfLUlceRV1jCtp0ltEmIo32bBBatzSW1Zwc6tW1FcWmETm1bcePEuVG30651PDk7SzikWzt6d07khS8ySUlqz0GdErlvyhJSktox9tT+9O3ajp8+X366+C1nDaBdsK0hh3QhqUNr5mRu4+VZu85ku/vCgXRKTGDp+jw+XrGJY/p0JmtbAcendOMvwbGGRy45lrKIV743n7h8KGu3FVBcWn7MruIY5+9GHcEfg91Bf/jhMazeupOk9q3p3aUtq7fuJCHOGNCzAz8JTmf/8xVDWbJuO6/PW8thPTrwacZmfjfqCNq3TmDN1p0MPqQLE79cxaHd23Noj/Lnuj63kJkrsjk1tTv9k9ozd9U2Fq3L5cT+SfTv3p7vNu8gzoyDO7chIS6O/6Rn88b88p/psOSuXDM8maT2beiYmMCabTu5+R/zAHj4R8cQZ0bHxARWbdlJh8QESsucbu1b88t/lvf5/QVHAeW7jiPuJCbEA1BcFuGhqcsAyHjwvKjvl9C4e4u+AcOB6VUe3wncGa3/sGHDvLEkj5viyeOm+PD//aDa5dt2FHn6xu3u7r5iw3bfXlBc7fq1tWRdrucVllQ+jkQift/bi33e6m31qtvdvaC41DM350ftu2htjv/h3aUeiUTc3f2NeVmePG6K//IfX9e4ne0FxZ48booPu/99d3d//P3lPvb52bv1eWDKYk8eN8X/8nFGjbXWR/rG7V5QXFqrvre9Ot+Tx03xV75a7e7u63J2eiQS8UenL/ORj3/SoJqqrlNxvzbjVO3zl48zPHncFH9gymLfnFdYpzrmrtrqyeOm+N1vfFPnmotLy2pdb3XSN+bV+B59aOpS/+8aattz+9sLin3R2pyo/Zesy/XkcVN8xJ8+idrH3X3g3VM9edwUz9lRvM9+zUVd3zf1BczxWvxO3h9mKrOBVDPrD6wFxgBXxLKgaFOhLu1a06Vd+QH91IM6Nng7R/XqtNtjM+PuCwc2aMzEVvEkJ7WPunxQ784M6t258nHFwf0ajkUD0DGxFW/ffCq9u5QfLL71nMP36tM6IW63f8M2oGftX/c9f469OrcF4LcjjuC3I44Isapdrj+tf637pqV0A+C01B4kdWhTp+0c168rE64exulH9Ki58x5axcfx8nUncuXfZtXcuRoDenaosc+4UUfWedyOia12e2/uqeK9WtMZhmVBv/j4Rj4VcT/V4kPF3UvN7GZgOhAPPOfui2NbUyy33rQiwYllcbU8F/iYvtH/0wP84swBRByuOLFfQ0trsMqfYyP/bunQJoH8otI6f7nbsOSuLLt/FImt4uu13RGDDq7XegCnDOjOE5cPZV1O9MvpNLbzjzmYIw7qVHPHQMV7taaz8SrO6Ipv7PPb91MtPlQA3P1d4N1Y11HBo85Vmq/kpHb1Wq9t6/JfaF2rOaW6Ptq1TqjXX6mNoeLn2Ni/Wr666+x6X3m5voEShosG947ZtgGeunJYnfpXzFRqHSq1mX7LXvaLUGluWtpMJf3B8+r9i3PUoIP5n4sG8ePjDwm1puZkz8+L7Om+0YM46dCkOo/bvUN5ELdrXbf/hkkhBfiBZmDvTpx/zMH86uy9d7tWVZHvCpX6Uag0ghaWKbSKr//xi7g449qTU8Irpjmp5Q+yug+q1uQ/vzuTTtV8WLAmf7nqOI7p26XO64Whd+dE1uUWxmTbYWgVH1en2Y0ypX4UKo2gpc1UWpIRAw9iaL+uTbKtxjykcki3+u1uHHV0r5Arqb2Pbjtjt0up7K9+c+7h/On9FTXOUKV6CpVG4EqVRjPhmho/0Bsar+XZQgeKxFbxMT2G01RuOTuVW85OjXUZLdb+8Il6ERFpJjRTaQSap+wfKnd/tZCZyvM/Pb5JL3EuUh2FSiOIaPfXfqHix2iNflJxOM44om5XrxZpDNr9FaK+Xcs/cX3zmQNiXImEqaXMVESaA81UQvTpuLNiXYKESPNNkbrTTEUkCp3FJ1J3CpVmpGfHul0UUBrXrgP12v8lUlva/dWMfHz7GZSU6a/j5kaRIs3ZOUf15IOlm2JdRiWFSjNS12tASSNTvksLMOHqtGZ1xql+i4lEUXmVYk1VpBmLizPimtF8WsdURGrQUj6nItIcKFREomhGexREWgyFikgUlZ+o10RFpNYUKiJRNNU3P4rsTxQqIjXQTEWk9hQqIlHomIpI3SlURKLYlSmaqojUlkJFJAodqBepO4WKSA2UKSK1p1ARiUoHVUTqSqEiEsWu3V+aq4jUlkJFpAaKFJHaU6iIRKGdXyJ1p1ARiaLimx+190uk9hQqIlHs+ubHmJYh0qIoVERqoEvfi9SeQkUkCl2mRaTuFCoiUZzQvxsAfbq2jXElIi2Hvk5YJIqfnX4YFx7bi+Sk9rEuRaTF0ExFJIq4OFOgiNSRQkVEREKjUBERkdAoVEREJDQKFRERCU2jhYqZ3Wtma81sfnA7v8qyO80sw8yWm9nIKu2jgrYMM7ujSnt/M5tlZulm9oqZtQ7a2wSPM4LlKY31fEREpGaNPVN53N2HBLd3AcxsIDAGGASMAp4ys3gziwfGA+cBA4HLg74ADwdjpQLbgLFB+1hgm7sPAB4P+omISIzEYvfXaGCSuxe5+3dABnBCcMtw92/dvRiYBIy28i+zOAuYHKz/AnBxlbFeCO5PBs42ffmFiEjMNHao3GxmC83sOTPrGrT1AdZU6ZMVtEVrTwJy3L10j/bdxgqW5wb9RUQkBhoUKmb2gZktquY2GngaOAwYAqwHHqtYrZqhvB7t+xprzzpvMLM5ZjYnOzu7hmclIiL11aDLtLj7ObXpZ2bPAFOCh1nAIVUW9wXWBfera98MdDGzhGA2UrV/xVhZZpYAdAa2VlPnBGACQFpami4TKCLSSBrz7K9eVR7+AFgU3H8LGBOcudUfSAW+AmYDqcGZXq0pP5j/lpd/U9IM4JJg/WuBN6uMdW1w/xLgI3ddW1ZEJFYa84KSfzSzIZTvjsoEbgRw98Vm9iqwBCgFfuHuZQBmdjMwHYgHnnP3xcFY44BJZvYAMA94Nmh/FphoZhmUz1DGNOLzERGRGjRaqLj71ftY9iDwYDXt7wLvVtP+LeVnh+3ZXghc2rBKRUQkLPpEvYiIhEahIiIioVGoiIhIaBQqIiISGoWKiIiERqEiIiKhUaiIiEhoFCoiIhIahYqIiIRGoSIiIqFRqIiISGgUKiIiEhqFioiIhEahIiIioVGoiIhIaBQqIiISGoWKiIiERqEiIiKhUaiIiEhoFCoiIhIahYqIiIRGoSIiIqFRqIiISGgUKiIiEhqFioiIhEahIiIioVGoiIhIaBQqIiISGoWKiIiERqEiIiKhUaiIiEhoFCoiIhIahYqIiIRGoSIiIqFRqIiISGgUKiIiEhqFioiIhEahIiIioVGoiIhIaBoUKmZ2qZktNrOImaXtsexOM8sws+VmNrJK+6igLcPM7qjS3t/MZplZupm9Ymatg/Y2weOMYHlKTdsQEZHYaOhMZRHwQ2Bm1UYzGwiMAQYBo4CnzCzezOKB8cB5wEDg8qAvwMPA4+6eCmwDxgbtY4Ft7j4AeDzoF3UbDXw+IiLSAA0KFXdf6u7Lq1k0Gpjk7kXu/h2QAZwQ3DLc/Vt3LwYmAaPNzICzgMnB+i8AF1cZ64Xg/mTg7KB/tG2IiEiMNNYxlT7AmiqPs4K2aO1JQI67l+7RvttYwfLcoH+0sUREJEYSaupgZh8AB1ez6C53fzPaatW0OdWHmO+j/77G2tc6uxdjdgNwA0C/fv2q6yIiIiGoMVTc/Zx6jJsFHFLlcV9gXXC/uvbNQBczSwhmI1X7V4yVZWYJQGdgaw3b2PM5TAAmAKSlpVUbPCIi0nCNtfvrLWBMcOZWfyAV+AqYDaQGZ3q1pvxA+1vu7sAM4JJg/WuBN6uMdW1w/xLgo6B/tG2IiEiM1DhT2Rcz+wHwJNADeMfM5rv7SHdfbGavAkuAUuAX7l4WrHMzMB2IB55z98XBcOOASWb2ADAPeDZofxaYaGYZlM9QxgDsaxsiIhIbVv5H/4EjLS3N58yZE+syRESaTMod7wCQ+dAF9R7DzOa6e1pN/fSJehERCY1CRUREQqNQERGR0ChUREQkNAoVEREJjUJFRERCo1AREZHQKFRERCQ0ChUREQmNQkVEREKjUBERkdAoVEREJDQKFRERCY1CRUREQqNQERGR0ChUREQkNAoVEREJjUJFRERCo1AREZHQKFRERCQ0ChUREQmNQkVEREKjUBERkdAoVEREJDQKFRERCY1CRUREQqNQERGR0ChUREQkNAoVEREJjUJFRERCo1AREZHQKFRERCQ0ChUREQmNQkVEREKjUBERkdAoVEREJDQKFRERCY1CRUREQqNQERGR0DQoVMzsUjNbbGYRM0ur0p5iZgVmNj+4/aXKsmFm9o2ZZZjZE2ZmQXs3M3vfzNKDf7sG7Rb0yzCzhWZ2XJWxrg36p5vZtQ15LiIi0nANnaksAn4IzKxm2Up3HxLcbqrS/jRwA5Aa3EYF7XcAH7p7KvBh8BjgvCp9bwjWx8y6AfcAJwInAPdUBJGIiMRGg0LF3Ze6+/La9jezXkAnd//C3R14Ebg4WDwaeCG4/8Ie7S96uS+BLsE4I4H33X2ru28D3mdXQImISAw05jGV/mY2z8w+MbPTgrY+QFaVPllBG8BB7r4eIPi3Z5V11lSzTrT2vZjZDWY2x8zmZGdnN+Q5iYjIPiTU1MHMPgAOrmbRXe7+ZpTV1gP93H2LmQ0D3jCzQYBV09drKiHKOrUey90nABMA0tLSatqeiIjUU42h4u7n1HVQdy8CioL7c81sJXA45bOJvlW69gXWBfc3mlkvd18f7N7aFLRnAYdUs04WcMYe7R/XtVYREQlPo+z+MrMeZhYf3D+U8oPs3wa7tfLM7KTgrK9rgIrZzltAxRlc1+7Rfk1wFthJQG4wznRghJl1DQ7QjwjaREQkRmqcqeyLmf0AeBLoAbxjZvPdfSTwPeA+MysFyoCb3H1rsNrPgOeBtsDU4AbwEPCqmY0FVgOXBu3vAucDGcBO4KcA7r7VzO4HZgf97quyDRERiYEGhYq7vw68Xk37a8BrUdaZAxxdTfsW4Oxq2h34RZSxngOeq1vVIiLSWPSJehERCY1CRUREQqNQERGR0ChUREQkNAoVEREJjUJFRERCo1AREZHQKFRERCQ0ChUREQmNQkVEREKjUBERkdAoVEREJDQNuqCkiIg0fy9fdyKb84uaZFsKFRGR/dwpA7o32ba0+0tEREKjUBERkdAoVEREJDQKFRERCY1CRUREQqNQERGR0ChUREQkNAoVEREJjbl7rGtoUmaWDaxqwBDdgc0hldOUWmrdoNpjRbU3veZcd7K796ip0wEXKg1lZnPcPS3WddRVS60bVHusqPam11Lrrkq7v0REJDQKFRERCY1Cpe4mxLqAemqpdYNqjxXV3vRaat2VdExFRERCo5mKiIiERqEiIiKhUaiIiEhoFCoiIhIahYqIiIRGoSIShZnlN8KY75pZl3qs9xMzyzazeWaWbmbTzezkWqx3sZkNrF+1InWnUBFpQu5+vrvn1HP1V9x9qLunAg8B/zazo2pY52JAoSJNRqEiUgMzO8PMPjazyWa2zMxetnLnmdmre/R7O7h/uZl9Y2aLzOzhKn0yzax7cP8aM1toZgvMbGLQ1sPMXjOz2cHtlOpqcvcZlH9Q7oZgveuD/guC9dsFM5mLgEfMbL6ZHRbcppnZXDP7j5kd2VivmxyYFCoitTMUuJXyv/oPBU4B3gdOMrP2QZ8fA6+YWW/gYeAsYAhwvJldXHUwMxsE3AWc5e6DgV8Fi/4PeNzdjwd+BPxtHzV9DVSEwr/d/fhgrKXAWHf/HHgLuN3dh7j7SsqD6JfuPgy4DXiqfi+HSPUSYl2ASAvxlbtnAZjZfCDF3T81s2nA981sMnAB8DvKw+Rjd88O+r8MfA94o8p4ZwGT3X0zgLtvDdrPAQaaWUW/TmbWMUpNVuX+0Wb2ANAF6ABM36uzWQfgZOBfVcZvU8vnL1IrChWR2imqcr+MXf93XgF+AWwFZrt7nlX5jb0PBlR3jaQ4YLi7F+zWufohh1I+KwF4HrjY3ReY2U+AM6KMnePuQ2pRn0i9aPeXSMN8DBwHXE95wADMAk43s+5mFg9cDnyyx3ofApeZWRKAmXUL2t8Dbq7oZGbVBoCZnU758ZRngqaOwHozawVcWaVrXrAMd98OfGdmlwZjmJkNrusTFtkXhYpIA7h7GTAFOC/4F3dfD9wJzAAWAF+7+5t7rLcYeBD4xMyCZz9tAAAAeUlEQVQWAH8KFt0CpAUH8JcAN1VZ7cfBAfcVwH8BP3L3ipnK3ZSH2fvAsirrTAJuD05FPozywBkbbHMxMDqM10Gkgq5SLCIiodFMRUREQqNQERGR0ChUREQkNAoVEREJjUJFRERCo1AREZHQKFRERCQ0ChUREQnN/wcLQ6rfggjZVQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from pylab import *\n", + "\n", + "sales.plot(x=\"InvoiceDate\", y=\"Revenue\", kind=\"line\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Como existem dados negativos, vamos eliminar os valores menores que 0 " + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5588, 9)" + ] + }, + "execution_count": 135, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cancels = sales[sales[\"Revenue\"]<0]\n", + "cancels.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(319557, 9)" + ] + }, + "execution_count": 136, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.drop(sales[sales.Revenue < 0].index, inplace=True)\n", + "sales.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 138, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEACAYAAABYq7oeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xt8VPWd//HXx4Bi6wXU2J8FWbBLfxX9VdR4K7utS1tEa4Vu1eJ2lbpU2qrbdttaoetW22qrtWqlBVpUFC8rIm0VC3IREUVASJQ7QiJGCRcJl3C/5PL5/THfCUPOTGYyuUxC3s/HYx6Z+ZzvOec7yWQ+53s555i7IyIikuioXFdARERaHyUHERGJUHIQEZEIJQcREYlQchARkQglBxERiVByEBGRCCUHERGJUHIQEZGIDrmuQLZOOeUU79GjR66rISLSphQVFW1x9/x05TJODmaWBxQC6939SjPrCUwATgLeBq5394NmdgzwJHA+sBX4hruXhm2MAIYC1cD33X16iA8AHgbygEfd/d509enRoweFhYWZVl9ERAAz+yCTcg3pVvoBsCrh9X3AQ+7eC9hO7Euf8HO7u/8j8FAoh5n1BgYDZwEDgNFmlheSzijgcqA3cF0oKyIiOZJRcjCzbsBXgEfDawP6AZNCkfHAoPB8YHhNWP7FUH4gMMHdD7j7+0AJcGF4lLj7Wnc/SKw1MrCxb0xERLKXacvh98BPgZrw+mSgwt2rwusyoGt43hVYBxCW7wjla+N11kkVFxGRHEk75mBmVwKb3b3IzC6Nh5MU9TTLUsWTJaik1xE3s2HAMIDu3bvXU2sRORJUVlZSVlbG/v37c12VNqdTp05069aNjh07ZrV+JgPSfYGrzOwKoBNwArGWRGcz6xBaB92ADaF8GXA6UGZmHYATgW0J8bjEdVLFD+PuY4GxAAUFBboRhcgRrqysjOOPP54ePXoQ652WTLg7W7dupaysjJ49e2a1jbTdSu4+wt27uXsPYgPKr7r7N4HZwNWh2BDgxfB8cnhNWP6qx+4oNBkYbGbHhJlOvYCFwCKgl5n1NLOjwz4mZ/VuROSIsn//fk4++WQlhgYyM04++eRGtbgac57D7cAEM7sbeAd4LMQfA54ysxJiLYbBAO6+wswmAiuBKuAWd68GMLNbgenEprKOc/cVjaiXiBxBlBiy09jfW4OSg7u/BrwWnq8lNtOobpn9wDUp1r8HuCdJfCowtSF1EcnUi4vX8y+fOZUTOmXX9yrSHunyGXJEW71pFz+YsJifPr8011WRNiovL48+ffpw9tln89WvfpWKiopcV6lFKDnIEW3vwdhs6407NdtFsnPssceyePFili9fzkknncSoUaNyXaUWoeQgIpKhSy65hPXr19e+vv/++7ngggv47Gc/y5133gnA7bffzujRo2vL3HXXXTzwwAMpy5eWlnLmmWdy0003cdZZZ9G/f3/27dsHwKWXXlp7maAtW7YQv55cdXU1t912W+22/vznPzf5e22zF94TkfblFy+tYOWGnU26zd6fPIE7v3pWRmWrq6uZNWsWQ4fGrhQ0Y8YMiouLWbhwIe7OVVddxeuvv87gwYP54Q9/yM033wzAxIkTmTZtWsry3bt3p7i4mGeffZZHHnmEa6+9lr/85S/8+7//e8q6PPbYY5x44oksWrSIAwcO0LdvX/r375/1tNVklBxEROqxb98++vTpQ2lpKeeffz5f/vKXgVhymDFjBueeey4Au3fvpri4mKFDh7J582Y2bNhAeXk5Xbp0oXv37owcOTJp+e7du9OzZ0/69OkDwPnnn09paWm9dZoxYwZLly5l0qTYFYx27NhBcXGxkoOItD+ZHuE3tfiYw44dO7jyyisZNWoU3//+93F3RowYwXe+853IOldffTWTJk1i06ZNDB48GCBl+dLSUo455pja13l5ebXdSh06dKCmJnbVosRzFtydP/zhD1x22WVN/n7jNOYgIpKBE088kZEjR/K73/2OyspKLrvsMsaNG8fu3bsBWL9+PZs3bwZg8ODBTJgwgUmTJnH11bFzhesrn0qPHj0oKioCqG0lxLc1ZswYKisrAVizZg179uxp0verloOISIbOPfdczjnnHCZMmMD111/PqlWruOSSSwA47rjjePrppzn11FM566yz2LVrF127duW0004DoH///knL5+XlpdzfT37yE6699lqeeuop+vXrVxv/9re/TWlpKeeddx7uTn5+Pi+88EKTvleLXdmi7SkoKHDd7EfSeefD7Xxt9DzOOb0zL97SN9fVkQZatWoVZ555Zq6r0WYl+/2ZWZG7F6RbV91KIiISoeQgIiIRSg4i0qq11a7vXGvs703JQURarU6dOrF161YliAaK38+hU6dOWW9Ds5VEpNXq1q0bZWVllJeX57oqbU78TnDZUnIQkVarY8eOTXrWr2RO3UoiIhKh5CAiIhFpk4OZdTKzhWa2xMxWmNkvQvwJM3vfzBaHR58QNzMbaWYlZrbUzM5L2NYQMysOjyEJ8fPNbFlYZ6TpvoAiIjmVyZjDAaCfu+82s47AXDN7OSy7zd0n1Sl/OdArPC4CxgAXmdlJwJ1AAeBAkZlNdvftocwwYAGx24UOAF5GRERyIm3LwWN2h5cdw6O+eWUDgSfDeguAzmZ2GnAZMNPdt4WEMBMYEJad4O7zPTZf7UlgUCPek4iINFJGYw5mlmdmi4HNxL7g3wqL7gldRw+ZWfyas12BdQmrl4VYffGyJPFk9RhmZoVmVqipbSIizSej5ODu1e7eB+gGXGhmZwMjgM8AFwAnAbeH4snGCzyLeLJ6jHX3AncvyM/Pz6TqIiKShQbNVnL3CuA1YIC7bwxdRweAx4ELQ7Ey4PSE1boBG9LEuyWJi4hIjmQyWynfzDqH58cCXwLeDWMFhJlFg4DlYZXJwA1h1tLFwA533whMB/qbWRcz6wL0B6aHZbvM7OKwrRuAF5v2bYqISENkMlvpNGC8meURSyYT3f3vZvaqmeUT6xZaDHw3lJ8KXAGUAHuBGwHcfZuZ/QpYFMr90t23heffA54AjiU2S0kzlUREcihtcnD3pcC5SeL9khQnzDi6JcWyccC4JPFC4Ox0dRERkZahM6RFRCRCyUFERCKUHEREJELJQUREIpQcREQkQslBREQilBxERCRCyUHaB92gXqRBlBzkiKb7RolkR8lBREQilBxERCRCyUFERCKUHEREJELJQUREIpQcREQkQslBREQiMrlNaCczW2hmS8xshZn9IsR7mtlbZlZsZs+Z2dEhfkx4XRKW90jY1ogQX21mlyXEB4RYiZkNb/q3KSIiDZFJy+EA0M/dzwH6AAPCvaHvAx5y917AdmBoKD8U2O7u/wg8FMphZr2BwcBZwABgtJnlhduPjgIuB3oD14WyIiKSI2mTg8fsDi87hocD/YBJIT4eGBSeDwyvCcu/aLHTVAcCE9z9gLu/T+we0xeGR4m7r3X3g8CEUFZERHIkozGHcIS/GNgMzATeAyrcvSoUKQO6huddgXUAYfkO4OTEeJ11UsVFRCRHMkoO7l7t7n2AbsSO9M9MViz8THYxG88iHmFmw8ys0MwKy8vL01dcRESy0qDZSu5eAbwGXAx0NrMOYVE3YEN4XgacDhCWnwhsS4zXWSdVPNn+x7p7gbsX5OfnN6TqIiLSAJnMVso3s87h+bHAl4BVwGzg6lBsCPBieD45vCYsf9XdPcQHh9lMPYFewEJgEdArzH46mtig9eSmeHMiIpKdDumLcBowPswqOgqY6O5/N7OVwAQzuxt4B3gslH8MeMrMSoi1GAYDuPsKM5sIrASqgFvcvRrAzG4FpgN5wDh3X9Fk71BERBosbXJw96XAuUnia4mNP9SN7weuSbGte4B7ksSnAlMzqK+IiLQAnSEtIiIRSg4iIhKh5CAiIhFKDiIiEqHkICIiEUoOIiISoeQgIiIRSg4iIhKh5CAiIhFKDiIiEqHkICIiEUoOIiISoeQgIiIRSg4iIhKh5CAiIhFKDtIuJL0puYiklMltQk83s9lmtsrMVpjZD0L8LjNbb2aLw+OKhHVGmFmJma02s8sS4gNCrMTMhifEe5rZW2ZWbGbPhduFijSa5boCIm1UJi2HKuDH7n4mcDFwi5n1Dssecvc+4TEVICwbDJwFDABGm1leuM3oKOByoDdwXcJ27gvb6gVsB4Y20fsTEZEspE0O7r7R3d8Oz3cBq4Cu9awyEJjg7gfc/X2ghNjtRC8EStx9rbsfBCYAA83MgH7ApLD+eGBQtm9IREQar0FjDmbWg9j9pN8KoVvNbKmZjTOzLiHWFViXsFpZiKWKnwxUuHtVnbiIiORIxsnBzI4D/gL80N13AmOATwF9gI3AA/GiSVb3LOLJ6jDMzArNrLC8vDzTqouISANllBzMrCOxxPCMu/8VwN0/cvdqd68BHiHWbQSxI//TE1bvBmyoJ74F6GxmHerEI9x9rLsXuHtBfn5+JlUXEZEsZDJbyYDHgFXu/mBC/LSEYl8Dlofnk4HBZnaMmfUEegELgUVArzAz6Whig9aT3d2B2cDVYf0hwIuNe1siItIYHdIXoS9wPbDMzBaH2M+IzTbqQ6wLqBT4DoC7rzCzicBKYjOdbnH3agAzuxWYDuQB49x9Rdje7cAEM7sbeIdYMhIRkRxJmxzcfS7JxwWm1rPOPcA9SeJTk63n7ms51C0lIiI5pjOkRUQkQslBREQilBxERCRCyUFERCKUHEREJELJQUREIpQcREQkQslBREQilBxERCRCyUFERCKUHEREJELJQUREIpQcREQkQslBREQilBxERCRCyUFERCKUHEREJCKTe0ifbmazzWyVma0wsx+E+ElmNtPMisPPLiFuZjbSzErMbKmZnZewrSGhfLGZDUmIn29my8I6I8N9q0VEJEcyaTlUAT929zOBi4FbzKw3MByY5e69gFnhNcDlQK/wGAaMgVgyAe4ELiJ2S9A74wkllBmWsN6Axr81ERHJVtrk4O4b3f3t8HwXsAroCgwExodi44FB4flA4EmPWQB0NrPTgMuAme6+zd23AzOBAWHZCe4+390deDJhWyIikgMNGnMwsx7AucBbwCfcfSPEEghwaijWFViXsFpZiNUXL0sST7b/YWZWaGaF5eXlDam6iIg0QMbJwcyOA/4C/NDdd9ZXNEnMs4hHg+5j3b3A3Qvy8/PTVVlERLKUUXIws47EEsMz7v7XEP4odAkRfm4O8TLg9ITVuwEb0sS7JYmLiEiOZDJbyYDHgFXu/mDCoslAfMbREODFhPgNYdbSxcCO0O00HehvZl3CQHR/YHpYtsvMLg77uiFhWyJNwpO2RUUklQ4ZlOkLXA8sM7PFIfYz4F5gopkNBT4ErgnLpgJXACXAXuBGAHffZma/AhaFcr90923h+feAJ4BjgZfDQ6TRNClaJDtpk4O7zyX5uADAF5OUd+CWFNsaB4xLEi8Ezk5XFxERaRk6Q1pERCKUHEREJELJQUREIpQcREQkQslBREQilBxERCRCyUFERCKUHEREJELJQUREIpQcREQkQslBREQilBxERCRCyUFERCKUHEREJELJQUREIpQcREQkIpPbhI4zs81mtjwhdpeZrTezxeFxRcKyEWZWYmarzeyyhPiAECsxs+EJ8Z5m9paZFZvZc2Z2dFO+QRERabhMWg5PAAOSxB9y9z7hMRXAzHoDg4GzwjqjzSzPzPKAUcDlQG/gulAW4L6wrV7AdmBoY96QiIg0Xtrk4O6vA9vSlQsGAhPc/YC7v0/sPtIXhkeJu69194PABGCgmRnQD5gU1h8PDGrgexARkSbWmDGHW81saeh26hJiXYF1CWXKQixV/GSgwt2r6sRFRCSHsk0OY4BPAX2AjcADIW5JynoW8aTMbJiZFZpZYXl5ecNqLCIiGcsqObj7R+5e7e41wCPEuo0gduR/ekLRbsCGeuJbgM5m1qFOPNV+x7p7gbsX5OfnZ1N1ERHJQFbJwcxOS3j5NSA+k2kyMNjMjjGznkAvYCGwCOgVZiYdTWzQerK7OzAbuDqsPwR4MZs6iYhI0+mQroCZPQtcCpxiZmXAncClZtaHWBdQKfAdAHdfYWYTgZVAFXCLu1eH7dwKTAfygHHuviLs4nZggpndDbwDPNZk705ERLKSNjm4+3VJwim/wN39HuCeJPGpwNQk8bUc6pYSEZFWQGdIi4hIhJJDHbv2VzKpqCzX1RARyam03Urtzc/+tpyXlmyg16nHcc7pnXNdHRGRnFDLoY7NO/cDsPdgdY5rIiKSO0oOIiISoeQg7YKnPvFeRJJQcpAjmiW9QouIpKPkkIKONEWkPVNyqMN0oCkiouQgIiJRSg4iIhKh5CAiIhFKDqloPFpE2jElhzo09VFERMlBpFV5cn4pF97zSq6rIaIL74m0Jj9/cUX6QiItQC2HFDTkICLtWdrkYGbjzGyzmS1PiJ1kZjPNrDj87BLiZmYjzazEzJaa2XkJ6wwJ5YvNbEhC/HwzWxbWGWmW29PQdBKciEhmLYcngAF1YsOBWe7eC5gVXgNcDvQKj2HAGIglE2L3nr6I2C1B74wnlFBmWMJ6dfclIiItLG1ycPfXgW11wgOB8eH5eGBQQvxJj1kAdDaz04DLgJnuvs3dtwMzgQFh2QnuPt/dHXgyYVsiIpIj2Y45fMLdNwKEn6eGeFdgXUK5shCrL16WJJ6UmQ0zs0IzKywvL8+y6iIikk5TD0gn67H3LOJJuftYdy9w94L8/Pwsq5gZ14i0iLRj2SaHj0KXEOHn5hAvA05PKNcN2JAm3i1JPGc0IC0ikn1ymAzEZxwNAV5MiN8QZi1dDOwI3U7Tgf5m1iUMRPcHpodlu8zs4jBL6YaEbYmISI6kPQnOzJ4FLgVOMbMyYrOO7gUmmtlQ4EPgmlB8KnAFUALsBW4EcPdtZvYrYFEo90t3jw9yf4/YjKhjgZfDQ0REcihtcnD361Is+mKSsg7ckmI744BxSeKFwNnp6iEiIi1HZ0inoNuEikh7puRQh67KKiKi5CA5UFPjHKyqyXU1RKQeSg7S4m5+5m0+fYfmHYi0ZkoO0uKmrdiU6yqISBpKDinoDGkRac+UHOrQGdIiIkoOIiKShJKDiIhEKDmIiEiEkkMKGo8WkfZMyaEFzCvZQo/hU1hfsS/XVWkx/R+aw83PFOW6GrU0+0ykYZQcWsCERbGb4BWW1r3b6pFrzUe7mbos9+czaPaZSHaUHFqQjl5FpK1QcmgBOnoVkbZGySEFb4bDfF0GXETaikYlBzMrNbNlZrbYzApD7CQzm2lmxeFnlxA3MxtpZiVmttTMzkvYzpBQvtjMhqTaX0uwZjjMV8NBRNqapmg5/Iu793H3gvB6ODDL3XsBs8JrgMuBXuExDBgDsWRC7NajFwEXAnfGE8qRRmMOItJWNEe30kBgfHg+HhiUEH/SYxYAnc3sNOAyYKa7b3P37cBMYEAz1CtnmqM1ItIeuDt7D1bluhrtUmOTgwMzzKzIzIaF2CfcfSNA+HlqiHcF1iWsWxZiqeJHHLUcRBrm+cIyev98OmvLd+e6Ku1OY5NDX3c/j1iX0S1m9vl6yiY7fPZ64tENmA0zs0IzKywvL294bRugKb/H1W4Qyc6MlR8BULy5eZPDn+e8R4/hU9h9QK2UuEYlB3ffEH5uBv5GbMzgo9BdRPi5ORQvA05PWL0bsKGeeLL9jXX3AncvyM/Pb0zVU2rOL3I1HKQ+M8MXoRwS75Ft7lb3Uws+AGD7noPNu6M2JOvkYGYfN7Pj48+B/sByYDIQn3E0BHgxPJ8M3BBmLV0M7AjdTtOB/mbWJQxE9w+xI4eaDpKBm54szHUVWp1D/zotc2ilrt9DOjRi3U8AfwuDrR2A/3X3aWa2CJhoZkOBD4FrQvmpwBVACbAXuBHA3beZ2a+ARaHcL939iLrOxJzVsS6w5jh3QuRIFm85PDSzmAFnn9bs+5FDsk4O7r4WOCdJfCvwxSRxB25Jsa1xwLhs69IcyncdaLJtbVVTVVqp9RX76Nr52Jzt/44XlnHKccfwwy99ut5yqz/a1SL1aW0nqi4q3canTz2eEz/WscX3rTOkU/jppKVcN3YBZ4yY0mTbbF0fO2nvpq/YRN97X2X2u5vTF24mTy/4kN+/UpxyubVQn2x8P62pcV9ZXcM1f5rPkMcX5mT/Sg51JDYv56/dSk0r+rCINKVlZTtiP9fvyHFNcq81divVhEy1csPOnOxfyaElNTLRVNc4B6qqm6Yu0u611EygTL20ZAO79lceFsv2S7uyuoa7/76Sir0N69JtJb8K4PC/y6Yd+9m4o2XvB6Pk0Ibc/EwR//eOaUmXrd60ix7DpzBnTfOe/9EazC3ewlV/nMv+ymqeml9KVXVNrquU1jsfbudPc97LdTUOE//ebQ397Ks37eI/n32Hn05aelg8k+QwsXAdBXe/Qk1CM3/qso08Ovd97p6yKqP9t8KGw2Eu/s0sLvnNqy26z8bMVpIGauw/4fQVqefBLwo3Epq+YhNf+HTznAPSWvx00hI27NjPvS+/yxPzSqlxGPK5HrmuVr2+NnoeAN/9wqdyXJNDniuMXZhgybqKHNeE2ktkbNix/7B4JmMOP/vrMqpqnGp3jgrl410ylQ08cGhNMwpz3dWllsMRphV9tptN/FpV8S6Dnfsq6yveau09WMXqTS0zCyeZj3bGZuS9V74nZ3WIS/mxzfILsqEDzK3x+me5/l9WcqijWc+QbsY/9qHPduY7+c5Thfx44pJmqU9zqu0r5/CfTaXniCnc2AIzRL7zVBGX/f71Bh/dHsnq/v815P8x8f+r7mck4200sHymdu5vewcwSg5Z2l9ZTdn2vbmuRq1spuJNX/ERf3m7rJlq1HyaeyDVHWavbp6xmwdnrGbU7BIA3lob6wqsacFDRHdn2vJNHKzKPCHtr6zmlRxd2iOTI/pkReLrZfq7rR1/yeJPsWRdBXvquSbTotJtfPauGQ3+HdbWJUeNGiWHLN30ZCH/dN/sBq3TnF8BrbBV3GyOCm+2LfagjXy1hPunrz4s1pLdB3PWlPPdp4t4eNaa2li6z84v/76Sbz9ZyOJmHJtoit9B4phegxvSWf7/7DlQxcBRb3LzM28fFq+u8doB8sUfxn5vC9ZuTbmdnfsr6TF8Cn989dA5H7meKKDkkKU3irdEYl+4fzZXj5nHa6s35+wSw9n8k137p/lJ40UfbKfog/qvZFJVXcOaFjp7Ne7QUZ6Hny26+6aTg4S+ZXdsnGZjxaGB33TVWLct1kJON7bj7uyvPDTVuqq6pkEtFIgmqlR16zF8Ct97uiiUiZY6dADRvB1L8S7BuonzUz+byg3jMu+aLN0SG/f53Yw10YU5+nwrOTShD7bupfCD7Xzr8UX0e2BOZHmzjjnE91Hnk7TvYHXSqZ5vlhxKbgtLkyeAr4+Zx9fHJE8cO/ZWMv+9rdz78rv0f+h1PtiaflCzsrqGfQcbf55G6dbYl1WbTQpBLhp78W6Wo45q+r0/t2gdn/mfabWfhUGj3+TTd7yc9fZqapzJS5JeoBmAl5dvOux1sjGHmoSP/r+OfpOxr6eYThzW3V/ZdOM/c0uiB5ANEe92PJijMal2nRyWrKs47EgHWueshUyk6oc/8+fT+I/xh1/tc86acr756FuN2t+NTyzkukcWMO+9WFM5fkRan+sfe4szf578PI1s5OqfJpm15bs56+fTao+yG6Kpk9xDM9fwt3eSjyXFuzryEj7n8WTbUDNWbOKJN9+vfT01fFmvDUfBy9c35Mze6C/hhcXrDy+R6hcV3kri9dASD5aGPrGIHsOn8PaHFfx66rtJNxGv8z1TVjHir0vZsTf7AeSvjX4zaXxi4bqk8bp6DJ/Ch1v38l6Ob3DUbpND2fa9DBz1Jv/zwvIGr7tqY3anszdnH2J988Ffr3Ni3Oad+1OUzMz+ymreDv2oDRlMXbA2s4vtzl69mY079rF5137umrwi5Wye+P0P4r/XpWUVLE+4FMTBqhoefWMtEOvTfW11w64hdPMzRfT73WtUZ3ANlYmFZew5WM1LS1Mf6daV6XHI8vU7eGjmGv7tkQVJP3vvb9nDb6e9W/vl+fCsYv7rueSz0Kob0XJwoGTzoS7EYU8VcddLK4FYS7QydCEdlcUBVvyIPb7mjn2V/KjOTLqBo5J/6cb1e+C12ueJB0uzGnDtqPlrt/LswnX8flaS7h1iyTVZkkqMvfNh8rGZnfszv5HQ5++fzUMzo3WYtarlJga0y+Tw4da9jJtbCsCKOtcteTWDD9LlD7+R1X6ra5ylZRX0GD6FpWWNG9xbsHZr0r7+xI9tcZLlS9ZV8Ej4wqzPWwmDZzNXfsTBqpraf4CGDsQ31I2PL+KKh9/grskreGJeKVeOnFu7rDBFFxjAVX98kyv/ECu7YsMOPn3Hy7ywOPZlvW7bPr71+CK2hSvkzl69mR7Dp7B5V+pEOXXZJtZu2cO89xrXPZCtEX9dyoSFHzJo1Js8PKuYee9tTfrZu/HxhYx+7T3Ktqe/vEK85ZBNr9KkojK+9ODrkYONRaXb+OajbzE/fGay2Xa8JVvtsTGOZFOsl5bVfw2oyupDn/75oUVbX1ofPHY+t9QZSI6rrnHKdx3ghXdirZfl63fw6BtrOeNnUxn2VBHVNU5VdU1WFwZcVLqtNsnfPmlp7QFMXXuSdMEOHd9y9/xol2dIDxw1l+2h2bhy404+2rmfXfsrmbkyeWLYsvsAU5Zu5Nij87i24PSkZZJZW76bM/KPq32992A1s1bF9vHKqs18tlvnrN/D4LELACi99yuxQJJupXiXT6J0R19xT7/1Ye3z+E1ofvDFXvxzr1PYsjvzy5nf9vwSftT/05x2YsMuC719b2Xte0m8XPOi0u2RsnVP4nJ3/vtvyVuEV4+Zx/cu/RRTlm0EYv/0/T7TqXZ5smvxNORIePPOA3z5wTk8fuMFdOvysYzWcbz2yyxuz4Eqnl24jmcXpu+KiH8p7j5QddiRfTLxVlDdFl/5rgMcnXdUvZeGjn+hrfloFyd9/Oja+DV1JjR8sHUvew8ePh5QU+McqKrh2KPz6q3fknUV/PNv6z/4SLxiUK4zAAAIRklEQVTG0OjXSpJ+PY+fH7uzW31nPMdbslOGR6+8XF3jDB2/iKVlO/inXqfUHnRA7GDpqj/OZcWGnSz5ef9665pM/Pe19tdX1J6lPuab52W8/soNO+n9yRMavN+GanfJoabGaxND3EW/nlXvOgV3v1L7vG5ymFRUxq+nrqLoji9F1puzppz844+pff3Skg2cclzsdaYnPq2v2Edh6bbaI16AdzdFuxbirYR4F8ueA1Xc9dKKw8o05EScyiSzTCYVlfHwrNSXV961v5LjOx3+5fJ8URnPF5Uxf0S/jPcdl5fkEDQvSVv3w617DusymrZ8U8ppl2u37OG2hOv3LC3bwfGdOnJBj5PYvHM/Fyb5LHzz0bcOJeEU4vnjiXmlQKx1df3F/8CvBp2dep3wtfaj55YwbcXhX6Z1+9sT/XnOewz5XA86dczj/unvsr4i9mWZqkV7oKqab/x5AXd85czabqC6SeeCe2Kf8Td++i8cqKrmH089PrKdknAf58pqP+zLsq47knTV3j1lFePefJ/Vdw9g+55Kpi3fyHUXdU+5jfokXmPot9MOnxb8xJvv862+PWtfZzues7RsR+3Vaquqoxup2+Owc38Vfe99lSvPid6QqDqhEuPD5wPgvyYurn3+vRQtmGSuGPlG2s9jU2g1ycHMBgAPA3nAo+5+b3Ps55J7608E6fSoc5Txk+djzd8vPRidnfSLl1byi/DPCId/oJ5e8AFf+X+nceUf5vK3mz/Hud27JN3f10fPY1OdMYIBvz/0JVD0wTb+z4nH8sgb7x9WZvz80sP+MR5+pZiHXknejwqw8P1tLC2rYPG6Cv74b+dRVZNZ8tocBgGXlVXw9THzuPOrvQ97z3HJLhqW+Lv8j749Gffm+zx+4wW1sb8v3Vj7fM1Huzi2Yx4PJ7n2/5KyHXzr8UW1rxtyk/jfv1Ice3yjT+ToPdG1f5pfO6vrjFM+ziNDCvj40R0YOGouF/U8mWM7Ro+In1rwAd1P+hg3ff6MyLIDVdXsC5Mh6iYGoN5Lxf/m5XdZvK6Cq875JKNmp76Yn7vTc8RU/vW8rixeV1Hb2qxP/Kh98q19ueqPb/LKj74QKXPftOSDuvV5viiWjC75zau1Bzp3JfmcpJNukPaul1YenhySlPnyg3OYmeR9JUq8jPnFv0n9nbF2y6H6rK/Yx5/nRLuI7n350O/rzsmHDtheXJz5+FQuWGu40JSZ5QFrgC8DZcRuGXqdu6f89BQUFHhhYcP73+p+ubdGZ5zycf52c1/mlmzhlv/N/Iiiqfz26s9Gro6Zzme7nZi2T7ilPHjtOZHBzFyac9ulfOH+11p8v8M+fwZjX08/vtTcHrjmHH78fNP8PU7o1CHtwO6bw/vR9976r2D69fO6tcjVAb55UXeeSeiibSqNaTmYWZG7F6Qt10qSwyXAXe5+WXg9AsDdf5NqnSM5OYiI1Gftr6/I+lyVTJNDa5mt1BVI7AQtCzEREamjJc7xaS3JIVkKjDRpzGyYmRWaWWF5+ZF/UxsRkWSyOZekoVrLgHQZkDgNqBsQGa1x97HAWIh1K2Wzo5YY5RcRaetaS8thEdDLzHqa2dHAYGByjuskItJutYqWg7tXmdmtwHRiU1nHufuKNKuJiEgzaRXJAcDdpwJTc10PERFpPd1KIiLSiig5iIhIhJKDiIhEKDmIiEiEkoOIiES0imsrZcPMyoEPslz9FCA3d3BpGm25/m257tC269+W6w6qf1P5B3fPT1eozSaHxjCzwkwuPNVateX6t+W6Q9uuf1uuO6j+LU3dSiIiEqHkICIiEe01OYzNdQUaqS3Xvy3XHdp2/dty3UH1b1HtcsxBRETq115bDiIiUg8lBxERiVByEBGRCCUHERGJUHIQEZEIJQc5opnZ7mbY5lQz65zFet8ys3Ize8fMis1supl9LoP1BplZ7+xqK5IdJQeRBnL3K9y9IsvVn3P3c929F3Av8FczOzPNOoMAJQdpUUoO0i6Y2aVm9pqZTTKzd83sGYu53Mwm1in3Unh+nZktM7PlZnZfQplSMzslPL/BzJaa2RIzeyrE8s3sL2a2KDz6JquTu88mdmLUsLDeTaH8krD+x0LL4irgfjNbbGafCo9pZlZkZm+Y2Wea6/cm7ZeSg7Qn5wI/JHYUfgbQF5gJXGxmHw9lvgE8Z2afBO4D+gF9gAvMbFDixszsLOC/gX7ufg7wg7DoYeAhd78A+DrwaD11ehuIf7n/1d0vCNtaBQx193nAZOA2d+/j7u8RSyj/6e7nAz8BRmf36xBJrUOuKyDSgha6exmAmS0Gerj7XDObBnzVzCYBXwF+SiwpvObu5aH8M8DngRcSttcPmOTuWwDcfVuIfwnobWbxcieY2fEp6mQJz882s7uBzsBxwPRIYbPjgM8Bzyds/5gM379IxpQcpD05kPC8mkOf/+eAW4BtwCJ332UJ37z1MCDZ9WeOAi5x932HFU6+yXOJtRIAngAGufsSM/sWcGmKbVe4e58M6ieSNXUricBrwHnATcQSBcBbwBfM7BQzywOuA+bUWW8WcK2ZnQxgZieF+Azg1nghM0v6RW5mXyA23vBICB0PbDSzjsA3E4ruCstw953A+2Z2TdiGmdk5DX3DIukoOUi75+7VwN+By8NP3H0jMAKYDSwB3nb3F+ustwK4B5hjZkuAB8Oi7wMFYaB6JfDdhNW+EQaW1wA/A77u7vGWw/8QS0ozgXcT1pkA3BamwH6KWOIYGva5AhjYFL8HkUS6KquIiESo5SAiIhFKDiIiEqHkICIiEUoOIiISoeQgIiIRSg4iIhKh5CAiIhFKDiIiEvH/AY+T/I8Ck203AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sales.plot(x=\"InvoiceDate\", y=\"Revenue\", kind=\"line\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Groupby\n", + "\n", + "### Encontrando o total do 'Revenue' por país agrupando a coluna 'Country' pelo 'Revenue'" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "metadata": {}, + "outputs": [], + "source": [ + "CountryGroups = sales.groupby(\"Country\")[\"Revenue\"].sum().reset_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryRevenue
36United Kingdom5311080.101
10EIRE176304.590
24Netherlands165582.790
14Germany138778.440
13France127193.680
0Australia79197.590
31Spain36116.710
33Switzerland34315.240
3Belgium24014.970
25Norway23182.220
32Sweden21762.450
20Japan21072.590
27Portugal20109.410
30Singapore13383.590
6Channel Islands12556.740
12Finland12362.880
9Denmark11739.370
19Italy10837.890
16Hong Kong8227.020
7Cyprus7781.900
1Austria6100.960
18Israel4225.780
26Poland3974.080
37Unspecified2898.650
15Greece2677.570
17Iceland2461.230
34USA2388.740
5Canada2093.390
23Malta1318.990
35United Arab Emirates1277.500
21Lebanon1120.530
22Lithuania1038.560
11European Community876.550
4Brazil602.310
28RSA573.180
8Czech Republic488.580
2Bahrain343.400
29Saudi Arabia90.720
\n", + "
" + ], + "text/plain": [ + " Country Revenue\n", + "36 United Kingdom 5311080.101\n", + "10 EIRE 176304.590\n", + "24 Netherlands 165582.790\n", + "14 Germany 138778.440\n", + "13 France 127193.680\n", + "0 Australia 79197.590\n", + "31 Spain 36116.710\n", + "33 Switzerland 34315.240\n", + "3 Belgium 24014.970\n", + "25 Norway 23182.220\n", + "32 Sweden 21762.450\n", + "20 Japan 21072.590\n", + "27 Portugal 20109.410\n", + "30 Singapore 13383.590\n", + "6 Channel Islands 12556.740\n", + "12 Finland 12362.880\n", + "9 Denmark 11739.370\n", + "19 Italy 10837.890\n", + "16 Hong Kong 8227.020\n", + "7 Cyprus 7781.900\n", + "1 Austria 6100.960\n", + "18 Israel 4225.780\n", + "26 Poland 3974.080\n", + "37 Unspecified 2898.650\n", + "15 Greece 2677.570\n", + "17 Iceland 2461.230\n", + "34 USA 2388.740\n", + "5 Canada 2093.390\n", + "23 Malta 1318.990\n", + "35 United Arab Emirates 1277.500\n", + "21 Lebanon 1120.530\n", + "22 Lithuania 1038.560\n", + "11 European Community 876.550\n", + "4 Brazil 602.310\n", + "28 RSA 573.180\n", + "8 Czech Republic 488.580\n", + "2 Bahrain 343.400\n", + "29 Saudi Arabia 90.720" + ] + }, + "execution_count": 140, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "CountryGroups.sort_values(by= \"Revenue\", ascending=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotando um histograma do consumo ou 'revenue' para um cliente" + ] + }, + { + "cell_type": "code", + "execution_count": 141, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 141, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD8CAYAAAB6paOMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEVpJREFUeJzt3XusZWV9xvHvI4Ny8QLIgBMuHmknCGnk4inFYG0FNSgWsFGrNWZiqNOLtRpNdLRGbdImkLQiTY12BHW0KiKKULAqjqJp04DDRUUHg+JUpyAzWgjeCgK//rHXaU/HM+fsmXHtdfa830+ys9d6z1qznjlseFjXnapCktSuRwwdQJI0LItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1LgVQwcYx6GHHlozMzNDx5CkqXLjjTf+sKpWLrXcVBTBzMwMmzZtGjqGJE2VJP8xznIeGpKkxlkEktQ4i0CSGmcRSFLjLAJJalyvRZDkoCSXJ7ktyeYkT0tySJJrk9zevR/cZwZJ0uL63iO4CPhMVT0ZOAHYDKwDNlbVamBjNy9JGkhvRZDkscAzgEsAquqBqroXOAfY0C22ATi3rwySpKX1uUdwDLAdeH+Sm5NcnORA4PCqugugez+sxwySpCX0eWfxCuBk4NVVdX2Si9iFw0BJ1gJrAY4++ujdDjGz7prdXndPbDn/rEG2K0m7qs89gq3A1qq6vpu/nFEx3J1kFUD3vm2hlatqfVXNVtXsypVLPipDkrSbeiuCqvoB8P0kx3ZDZwDfBK4C1nRja4Ar+8ogSVpa3w+dezXw4SSPBO4AXsGofC5Lch7wPeBFPWeQJC2i1yKoqluA2QV+dEaf25Ukjc87iyWpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDVuRZ9/eJItwI+Bh4AHq2o2ySHAx4AZYAvw4qq6p88ckqSdm8QewTOr6sSqmu3m1wEbq2o1sLGblyQNZIhDQ+cAG7rpDcC5A2SQJHX6LoICPpfkxiRru7HDq+ougO79sIVWTLI2yaYkm7Zv395zTElqV6/nCIDTqurOJIcB1ya5bdwVq2o9sB5gdna2+gooSa3rdY+gqu7s3rcBVwCnAHcnWQXQvW/rM4MkaXG9FUGSA5M8Zm4aeA5wK3AVsKZbbA1wZV8ZJElL6/PQ0OHAFUnmtvORqvpMkq8AlyU5D/ge8KIeM0iSltBbEVTVHcAJC4z/CDijr+1KknaNdxZLUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmN6/v7CDSAmXXXDLLdLeefNch2Je0Z9wgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIa13sRJNknyc1Jru7mn5Tk+iS3J/lYkkf2nUGStHOT2CN4DbB53vwFwIVVtRq4BzhvAhkkSTvRaxEkORI4C7i4mw9wOnB5t8gG4Nw+M0iSFtf3HsE7gTcAD3fzjwfuraoHu/mtwBE9Z5AkLaK3IkjyfGBbVd04f3iBRWsn669NsinJpu3bt/eSUZLU7x7BacDZSbYAlzI6JPRO4KAkc1+ReSRw50IrV9X6qpqtqtmVK1f2GFOS2tZbEVTVm6rqyKqaAV4CfKGqXgZ8EXhht9ga4Mq+MkiSljbEfQRvBF6X5NuMzhlcMkAGSVJnxdKL7Lmqug64rpu+AzhlEtuVJC1trD2CJL/RdxBJ0jDGPTT0niQ3JPmzJAf1mkiSNFFjFUFVPR14GXAUsCnJR5I8u9dkkqSJGPtkcVXdDryF0cne3wH+PsltSX6/r3CSpP6Ne47gKUkuZPTMoNOB36uq47rpC3vMJ0nq2bhXDf0D8F7gzVX187nBqrozyVt6SSZJmohxi+B5wM+r6iGAJI8A9quqn1XVh3pLJ0nq3bjnCD4P7D9v/oBuTJI05cYtgv2q6idzM930Af1EkiRN0rhF8NMkJ8/NJHkq8PNFlpckTYlxzxG8Fvh4krknha4C/qCfSJKkSRqrCKrqK0meDBzL6DsFbquqX/SaTJI0Ebvy0LnfBGa6dU5KQlV9sJdUkqSJGasIknwI+DXgFuChbrgAi0CSpty4ewSzwPFVteDXSkqSpte4Vw3dCjyhzyCSpGGMu0dwKPDNJDcA988NVtXZvaSSJE3MuEXw9j5DSJKGM+7lo19K8kRgdVV9PskBwD79RpMkTcK4Vw29ElgLHMLo6qEjgPcAZ/QXbbrNrLtm6AiSNJZxTxa/CjgNuA/+90tqDusrlCRpcsYtgvur6oG5mSQrGN1HIEmacuMWwZeSvBnYv/uu4o8D/9xfLEnSpIxbBOuA7cDXgT8GPs3o+4slSVNu3KuGHmb0VZXv7TeOJGnSxr1q6LsscE6gqo75lSeSJE3UrjxraM5+wIsYXUq6U0n2A74MPKrbzuVV9bYkTwIu7da/CXj5/BPRkqTJGuscQVX9aN7rP6vqncDpS6x2P3B6VZ0AnAicmeRU4ALgwqpaDdwDnLcH+SVJe2jcQ0Mnz5t9BKM9hMcstk73pNK57znet3sVowL5w258A6PHV7x77MSSpF+pcQ8N/d286QeBLcCLl1opyT7AjcCvA+8CvgPcW1UPdotsZXSX8kLrrmV0NzNHH330mDElSbtq3KuGnrk7f3hVPQScmOQg4ArguIUW28m664H1ALOzs968Jkk9GffQ0OsW+3lVvWOJn9+b5DrgVOCgJCu6vYIjgTvHzCpJ6sG4N5TNAn/K6DDOEcCfAMczOk+w4LmCJCu7PQGS7A88C9gMfBF4YbfYGuDK3Q0vSdpzu/LFNCdX1Y8Bkrwd+HhV/dEi66wCNnTnCR4BXFZVVyf5JnBpkr8GbgYu2e30kqQ9Nm4RHA3Mv9b/AWBmsRWq6mvASQuM3wGcMuZ2JUk9G7cIPgTckOQKRid3XwB8sLdUkqSJGfeqob9J8i/Ab3dDr6iqm/uLJUmalHFPFgMcANxXVRcBW7tHRUiSptxYRZDkbcAbgTd1Q/sC/9RXKEnS5Iy7R/AC4GzgpwBVdSdLPGJCkjQdxi2CB7pnBxVAkgP7iyRJmqRxi+CyJP/I6K7gVwKfxy+pkaS9wrhXDf1t913F9wHHAm+tqmt7TSZJmogli6C7M/izVfUswP/4S9JeZslDQ90TRH+W5HETyCNJmrBx7yz+b+DrSa6lu3IIoKr+opdUkqSJGbcIrulekqS9zKJFkOToqvpeVW2YVCBJ0mQtdY7gU3MTST7RcxZJ0gCWKoLMmz6mzyCSpGEsVQS1k2lJ0l5iqZPFJyS5j9Gewf7dNN18VdVje00nSerdokVQVftMKogkaRi78n0EkqS9kEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGjfu00d3WZKjgA8CTwAeBtZX1UVJDgE+BswAW4AXV9U9feXQ5MysG+4BtVvOP2uwbUvTrs89ggeB11fVccCpwKuSHA+sAzZW1WpgYzcvSRpIb0VQVXdV1U3d9I+BzcARwDnA3GOtNwDn9pVBkrS0iZwjSDIDnARcDxxeVXfBqCyAwyaRQZK0sN6LIMmjgU8Ar62q+5Zaft56a5NsSrJp+/bt/QWUpMb1WgRJ9mVUAh+uqk92w3cnWdX9fBWwbaF1q2p9Vc1W1ezKlSv7jClJTeutCJIEuATYXFXvmPejq4A13fQa4Mq+MkiSltbb5aPAacDLga8nuaUbezNwPnBZkvOA7wEv6jGDJGkJvRVBVf0r//+rLuc7o6/tSpJ2jXcWS1LjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJalxvRZDkfUm2Jbl13tghSa5Ncnv3fnBf25ckjafPPYIPAGfuMLYO2FhVq4GN3bwkaUC9FUFVfRn4rx2GzwE2dNMbgHP72r4kaTyTPkdweFXdBdC9H7azBZOsTbIpyabt27dPLKAktWbZniyuqvVVNVtVsytXrhw6jiTttSZdBHcnWQXQvW+b8PYlSTuYdBFcBazpptcAV054+5KkHfR5+ehHgX8Hjk2yNcl5wPnAs5PcDjy7m5ckDWhFX39wVb10Jz86o69tSpJ23bI9WSxJmgyLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1rrfvI5CkvcXMumsG2e6W88+ayHbcI5CkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmN8/JRaQ8MdVkhTO7SQu393COQpMZZBJLUuEEODSU5E7gI2Ae4uKrOHyKHNM329rtdNTkT3yNIsg/wLuC5wPHAS5McP+kckqSRIQ4NnQJ8u6ruqKoHgEuBcwbIIUlimCI4Avj+vPmt3ZgkaQBDnCPIAmP1Swsla4G13exPknyr11SLOxT44YDb3xPTmn2XcueCHpPsumn9ncMY2ZfZ73q+af297zT3r+B3/cRxFhqiCLYCR82bPxK4c8eFqmo9sH5SoRaTZFNVzQ6dY3dMa/ZpzQ1mH8q0Zl8OuYc4NPQVYHWSJyV5JPAS4KoBckiSGGCPoKoeTPLnwGcZXT76vqr6xqRzSJJGBrmPoKo+DXx6iG3vpmVxiGo3TWv2ac0NZh/KtGYfPHeqfuk8rSSpIT5iQpIaZxHsIMn7kmxLcuu8sUOSXJvk9u794CEzLiTJUUm+mGRzkm8keU03Pg3Z90tyQ5Kvdtn/qht/UpLru+wf6y4uWHaS7JPk5iRXd/PTkntLkq8nuSXJpm5s2X9eAJIclOTyJLd1n/mnTUP2JMd2v++5131JXjt0dovgl30AOHOHsXXAxqpaDWzs5pebB4HXV9VxwKnAq7pHd0xD9vuB06vqBOBE4MwkpwIXABd22e8Bzhsw42JeA2yeNz8tuQGeWVUnzrt8cRo+LzB6VtlnqurJwAmMfv/LPntVfav7fZ8IPBX4GXAFQ2evKl87vIAZ4NZ5898CVnXTq4BvDZ1xjL/DlcCzpy07cABwE/BbjG6yWdGNPw347ND5Fsh7JKN/cU8HrmZ0w+Syz91l2wIcusPYsv+8AI8Fvkt3jnOasu+Q9znAvy2H7O4RjOfwqroLoHs/bOA8i0oyA5wEXM+UZO8Or9wCbAOuBb4D3FtVD3aLLNdHkbwTeAPwcDf/eKYjN4zu6P9ckhu7O/lhOj4vxwDbgfd3h+QuTnIg05F9vpcAH+2mB81uEexlkjwa+ATw2qq6b+g846qqh2q0u3wkowcTHrfQYpNNtbgkzwe2VdWN84cXWHRZ5Z7ntKo6mdGTgF+V5BlDBxrTCuBk4N1VdRLwU5bhYaDFdOeNzgY+PnQWsAjGdXeSVQDd+7aB8ywoyb6MSuDDVfXJbngqss+pqnuB6xid5zgoydy9Lgs+imRgpwFnJ9nC6Cm6pzPaQ1juuQGoqju7922MjlOfwnR8XrYCW6vq+m7+ckbFMA3Z5zwXuKmq7u7mB81uEYznKmBNN72G0fH3ZSVJgEuAzVX1jnk/mobsK5Mc1E3vDzyL0cm/LwIv7BZbdtmr6k1VdWRVzTDazf9CVb2MZZ4bIMmBSR4zN83oePWtTMHnpap+AHw/ybHd0BnAN5mC7PO8lP87LARDZx/6hMlye3X/cO4CfsHo/zzOY3TcdyNwe/d+yNA5F8j9dEaHIL4G3NK9njcl2Z8C3NxlvxV4azd+DHAD8G1Gu9CPGjrrIn+H3wWunpbcXcavdq9vAH/ZjS/7z0uX80RgU/eZ+RRw8BRlPwD4EfC4eWODZvfOYklqnIeGJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY37HweQX80uK2vbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sales[sales[\"CustomerID\"] == 17850.0][\"Revenue\"].plot(kind=\"hist\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotando um histograma da quantidade vendida de um produto" + ] + }, + { + "cell_type": "code", + "execution_count": 192, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 192, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEtxJREFUeJzt3X+MZXd93vH3UztxEw+1TWxG27XVsSXHDXjDwo5cIgqawflhTBRCVFIsi9rBzYIEEZUsNetECrQIyW1DaKukRJvYNVFbDxQHsNZuwNoyoEgBMguLdx3jYJNN2LXrjbFZMoDcrvPpH3NWutmd2Ts7586P++X9kq7mnu89P76P5vrZ6zPn3puqQpLUrr+32ROQJK0vi16SGmfRS1LjLHpJapxFL0mNs+glqXEWvSQ1zqKXpMZZ9JLUuPM3ewIAl156aU1NTQ1d7zvf+Q4XXnjh+k9og5hn62opC7SVp6Us0C/PgQMHnqmqy4attyWKfmpqioWFhaHrzc/PMzMzs/4T2iDm2bpaygJt5WkpC/TLk+QvV7Oep24kqXEWvSQ1zqKXpMZZ9JLUOItekhpn0UtS4yx6SWqcRS9JjbPoJalxW+KdsX1N7XlgU4575M43bMpxJelc+Ipekhpn0UtS4yx6SWqcRS9JjbPoJalxQ4s+yd1Jjic5PDD2kSQHu9uRJAe78akk3xt47HfXc/KSpOFWc3nlPcBvA39waqCq/vmp+0k+AJwYWP+Jqto5qglKkvoZWvRV9bkkU8s9liTALwKvG+20JEmj0vcc/WuAp6vqawNjVyb5cpLPJnlNz/1LknpKVQ1faekV/b6quva08Q8Bj1fVB7rlC4CJqvpmkl3AJ4CXVdW3l9nnbmA3wOTk5K65ubmh81hcXGRiYuKM8UPHTiyz9vrbsf2iXtuvlGdctZSnpSzQVp6WskC/PLOzsweqanrYemv+CIQk5wO/AOw6NVZVzwPPd/cPJHkC+FHgjG/+rqq9wF6A6enpWs2X4670Jbq3btZHINw802t7v+R462opC7SVp6UssDF5+py6+Ungq1V19NRAksuSnNfdvwq4Gvh6vylKkvpYzeWV9wJ/AlyT5GiS27qH3gLce9rqrwUeTvIV4GPAO6rq2VFOWJJ0blZz1c1NK4zfuszYfcB9/aclSRoV3xkrSY2z6CWpcRa9JDXOopekxln0ktQ4i16SGmfRS1LjLHpJapxFL0mNs+glqXEWvSQ1zqKXpMZZ9JLUOItekhpn0UtS4yx6SWqcRS9JjbPoJalxFr0kNW41Xw5+d5LjSQ4PjL03ybEkB7vbjQOP3ZHk8SSPJfmZ9Zq4JGl1VvOK/h7ghmXGP1hVO7vbgwBJXgq8BXhZt81/SXLeqCYrSTp3Q4u+qj4HPLvK/b0RmKuq56vqL4DHget6zE+S1FOfc/TvSvJwd2rnkm5sO/CNgXWOdmOSpE2Sqhq+UjIF7Kuqa7vlSeAZoID3Aduq6m1Jfgf4k6r6b916dwEPVtV9y+xzN7AbYHJyctfc3NzQeSwuLjIxMXHG+KFjJ4Zuux52bL+o1/Yr5RlXLeVpKQu0laelLNAvz+zs7IGqmh623vlr2XlVPX3qfpLfA/Z1i0eBKwZWvRx4coV97AX2AkxPT9fMzMzQ487Pz7PcerfueWB1Ex+xIzfP9Np+pTzjqqU8LWWBtvK0lAU2Js+aTt0k2Taw+Cbg1BU59wNvSXJBkiuBq4Ev9puiJKmPoa/ok9wLzACXJjkKvAeYSbKTpVM3R4C3A1TVI0k+CvwZcBJ4Z1W9sD5TlyStxtCir6qblhm+6yzrvx94f59JSZJGx3fGSlLjLHpJapxFL0mNs+glqXEWvSQ1zqKXpMZZ9JLUOItekhpn0UtS4yx6SWqcRS9JjbPoJalxFr0kNc6il6TGWfSS1DiLXpIaZ9FLUuMseklqnEUvSY0bWvRJ7k5yPMnhgbH/kOSrSR5O8vEkF3fjU0m+l+Rgd/vd9Zy8JGm41byivwe44bSxh4Brq+rHgT8H7hh47Imq2tnd3jGaaUqS1mpo0VfV54BnTxv7dFWd7BY/D1y+DnOTJI3AKM7Rvw34XwPLVyb5cpLPJnnNCPYvSeohVTV8pWQK2FdV1542/uvANPALVVVJLgAmquqbSXYBnwBeVlXfXmafu4HdAJOTk7vm5uaGzmNxcZGJiYkzxg8dOzF02/WwY/tFvbZfKc+4ailPS1mgrTwtZYF+eWZnZw9U1fSw9c5f096BJLcAPwtcX92/FlX1PPB8d/9AkieAHwUWTt++qvYCewGmp6drZmZm6DHn5+dZbr1b9zyw1hi9HLl5ptf2K+UZVy3laSkLtJWnpSywMXnWdOomyQ3ArwI/V1XfHRi/LMl53f2rgKuBr49iopKktRn6ij7JvcAMcGmSo8B7WLrK5gLgoSQAn++usHkt8G+TnAReAN5RVc8uu2NJ0oYYWvRVddMyw3etsO59wH19JyVJGh3fGStJjbPoJalxFr0kNc6il6TGWfSS1DiLXpIaZ9FLUuMseklqnEUvSY2z6CWpcRa9JDXOopekxln0ktQ4i16SGmfRS1LjLHpJapxFL0mNs+glqXEWvSQ1zqKXpMatquiT3J3keJLDA2MvTvJQkq91Py/pxpPkPyd5PMnDSV65XpOXJA232lf09wA3nDa2B9hfVVcD+7tlgNcDV3e33cCH+k9TkrRWqyr6qvoc8Oxpw28EPtzd/zDw8wPjf1BLPg9cnGTbKCYrSTp3qarVrZhMAfuq6tpu+VtVdfHA489V1SVJ9gF3VtUfd+P7gV+tqoXT9rebpVf8TE5O7pqbmxs6h8XFRSYmJs4YP3TsxKoyjNqO7Rf12n6lPOOqpTwtZYG28rSUBfrlmZ2dPVBV08PWO39Nez+7LDN2xr8mVbUX2AswPT1dMzMzQ3c8Pz/PcuvduueBc53jSBy5eabX9ivlGVct5WkpC7SVp6UssDF5+lx18/SpUzLdz+Pd+FHgioH1Lgee7HEcSVIPfYr+fuCW7v4twCcHxv9Fd/XNq4ATVfVUj+NIknpY1ambJPcCM8ClSY4C7wHuBD6a5Dbgr4A3d6s/CNwIPA58F/ilEc9ZknQOVlX0VXXTCg9dv8y6Bbyzz6QkSaPjO2MlqXEWvSQ1zqKXpMZZ9JLUOItekhpn0UtS4yx6SWqcRS9JjbPoJalxFr0kNc6il6TGWfSS1DiLXpIaZ9FLUuMseklqnEUvSY2z6CWpcRa9JDXOopekxq3qO2OXk+Qa4CMDQ1cBvwFcDPwy8Nfd+K9V1YNrnqEkqZc1F31VPQbsBEhyHnAM+DjwS8AHq+o3RzJDSVIvozp1cz3wRFX95Yj2J0kakVRV/50kdwNfqqrfTvJe4Fbg28ACcHtVPbfMNruB3QCTk5O75ubmhh5ncXGRiYmJM8YPHTvRZ/prtmP7Rb22XynPuGopT0tZoK08LWWBfnlmZ2cPVNX0sPV6F32SHwSeBF5WVU8nmQSeAQp4H7Ctqt52tn1MT0/XwsLC0GPNz88zMzNzxvjUngfWMPP+jtz5hl7br5RnXLWUp6Us0FaelrJAvzxJVlX0ozh183qWXs0/DVBVT1fVC1X1t8DvAdeN4BiSpDUaRdHfBNx7aiHJtoHH3gQcHsExJElrtOarbgCS/DDwU8DbB4b/fZKdLJ26OXLaY5KkDdar6Kvqu8CPnDb21l4zkiSNlO+MlaTGWfSS1DiLXpIaZ9FLUuMseklqnEUvSY2z6CWpcRa9JDXOopekxln0ktQ4i16SGmfRS1LjLHpJapxFL0mNs+glqXEWvSQ1zqKXpMZZ9JLUOItekhrX6ztjAZIcAf4GeAE4WVXTSV4MfASYYukLwn+xqp7reyxJ0rkb1Sv62araWVXT3fIeYH9VXQ3s75YlSZtgvU7dvBH4cHf/w8DPr9NxJElDjKLoC/h0kgNJdndjk1X1FED38yUjOI4kaQ1SVf12kPzDqnoyyUuAh4BfAe6vqosH1nmuqi45bbvdwG6AycnJXXNzc0OPtbi4yMTExBnjh46d6JVhrXZsv6jX9ivlGVct5WkpC7SVp6Us0C/P7OzsgYFT5ivqXfR/Z2fJe4FF4JeBmap6Ksk2YL6qrllpu+np6VpYWBi6//n5eWZmZs4Yn9rzwFqn3MuRO9/Qa/uV8oyrlvK0lAXaytNSFuiXJ8mqir7XqZskFyZ50an7wE8Dh4H7gVu61W4BPtnnOJKktet7eeUk8PEkp/b1P6rqj5L8KfDRJLcBfwW8uedxJElr1Kvoq+rrwMuXGf8mcH2ffUuSRsN3xkpS4yx6SWqcRS9JjbPoJalxFr0kNc6il6TGWfSS1DiLXpIaZ9FLUuMseklqnEUvSY2z6CWpcRa9JDXOopekxln0ktQ4i16SGmfRS1LjLHpJapxFL0mNW3PRJ7kiyWeSPJrkkSTv7sbfm+RYkoPd7cbRTVeSdK76fDn4SeD2qvpSkhcBB5I81D32war6zf7T29qm9jzQa/vbd5zk1jXs48idb+h1XEnfX9Zc9FX1FPBUd/9vkjwKbB/VxCRJozGSc/RJpoBXAF/oht6V5OEkdye5ZBTHkCStTaqq3w6SCeCzwPur6g+TTALPAAW8D9hWVW9bZrvdwG6AycnJXXNzc0OPtbi4yMTExBnjh46d6JVhs0z+EDz9vXPfbsf2i0Y/mRFY6fczjlrKAm3laSkL9MszOzt7oKqmh63Xq+iT/ACwD/hUVf3WMo9PAfuq6tqz7Wd6eroWFhaGHm9+fp6ZmZkzxvueK98st+84yQcOnfvZs616jn6l3884aikLtJWnpSzQL0+SVRV9n6tuAtwFPDpY8km2Daz2JuDwWo8hSeqvz1U3rwbeChxKcrAb+zXgpiQ7WTp1cwR4e68ZSpJ66XPVzR8DWeahB9c+HUnSqPnOWElqnEUvSY2z6CWpcRa9JDXOopekxln0ktQ4i16SGmfRS1LjLHpJapxFL0mNs+glqXEWvSQ1zqKXpMZZ9JLUOItekhpn0UtS4/p8w5Q2yVb9jtzbd5zk1nWa21b9nlxpHPiKXpIaZ9FLUuPWreiT3JDksSSPJ9mzXseRJJ3duhR9kvOA3wFeD7wUuCnJS9fjWJKks1uvV/TXAY9X1der6v8Cc8Ab1+lYkqSzWK+rbrYD3xhYPgr8k3U6lr4PbPSVRut5BdFqfT9eabSa3/NW+N2M0j03XLjux0hVjX6nyZuBn6mqf9ktvxW4rqp+ZWCd3cDubvEa4LFV7PpS4JkRT3czmWfraikLtJWnpSzQL88/qqrLhq20Xq/ojwJXDCxfDjw5uEJV7QX2nstOkyxU1XT/6W0N5tm6WsoCbeVpKQtsTJ71Okf/p8DVSa5M8oPAW4D71+lYkqSzWJdX9FV1Msm7gE8B5wF3V9Uj63EsSdLZrdtHIFTVg8CDI97tOZ3qGQPm2bpaygJt5WkpC2xAnnX5Y6wkaevwIxAkqXFjU/Tj/pEKSe5OcjzJ4YGxFyd5KMnXup+XbOYcVyvJFUk+k+TRJI8keXc3Pq55/n6SLyb5Spfn33TjVyb5QpfnI92FBWMhyXlJvpxkX7c8zlmOJDmU5GCShW5sXJ9rFyf5WJKvdv/9/MRGZBmLom/kIxXuAW44bWwPsL+qrgb2d8vj4CRwe1X9GPAq4J3d72Nc8zwPvK6qXg7sBG5I8irg3wEf7PI8B9y2iXM8V+8GHh1YHucsALNVtXPgMsRxfa79J+CPquofAy9n6Xe0/lmqasvfgJ8APjWwfAdwx2bPaw05poDDA8uPAdu6+9uAxzZ7jmvM9Ungp1rIA/ww8CWW3sn9DHB+N/53noNb+cbS+1b2A68D9gEZ1yzdfI8Al542NnbPNeAfAH9B97fRjcwyFq/oWf4jFbZv0lxGabKqngLofr5kk+dzzpJMAa8AvsAY5+lOdRwEjgMPAU8A36qqk90q4/Sc+4/Avwb+tlv+EcY3C0ABn05yoHtHPYznc+0q4K+B/9qdVvv9JBeyAVnGpeizzJiXC22yJBPAfcC/qqpvb/Z8+qiqF6pqJ0uvhq8Dfmy51TZ2Vucuyc8Cx6vqwODwMqtu+SwDXl1Vr2Tp1O07k7x2sye0RucDrwQ+VFWvAL7DBp1yGpeiH/qRCmPq6STbALqfxzd5PquW5AdYKvn/XlV/2A2PbZ5TqupbwDxLf3u4OMmp95qMy3Pu1cDPJTnC0qfGvo6lV/jjmAWAqnqy+3kc+DhL/xCP43PtKHC0qr7QLX+MpeJf9yzjUvStfqTC/cAt3f1bWDrXveUlCXAX8GhV/dbAQ+Oa57IkF3f3fwj4SZb+SPYZ4J91q41Fnqq6o6our6oplv47+d9VdTNjmAUgyYVJXnTqPvDTwGHG8LlWVf8H+EaSa7qh64E/YyOybPYfKM7hDxk3An/O0rnTX9/s+axh/vcCTwH/j6V/2W9j6dzpfuBr3c8Xb/Y8V5nln7L0v/4PAwe7241jnOfHgS93eQ4Dv9GNXwV8EXgc+J/ABZs913PMNQPsG+cs3by/0t0eOfXf/hg/13YCC91z7RPAJRuRxXfGSlLjxuXUjSRpjSx6SWqcRS9JjbPoJalxFr0kNc6il6TGWfSS1DiLXpIa9/8BC8m2h29lOPUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sales[sales[\"StockCode\"] == '71053'][\"Quantity\"].hist()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Identificando e tratando os valores nulos" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 319557 entries, 0 to 325144\n", + "Data columns (total 9 columns):\n", + "InvoiceNo 319557 non-null object\n", + "StockCode 319557 non-null object\n", + "Description 318687 non-null object\n", + "Quantity 319557 non-null int64\n", + "InvoiceDate 319557 non-null object\n", + "UnitPrice 319557 non-null float64\n", + "CustomerID 238801 non-null float64\n", + "Country 319557 non-null object\n", + "Revenue 319557 non-null float64\n", + "dtypes: float64(3), int64(1), object(5)\n", + "memory usage: 24.4+ MB\n" + ] + } + ], + "source": [ + "sales.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 203, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "NaN 80756\n", + " 17841.0 4702\n", + " 14911.0 3449\n", + "Name: CustomerID, dtype: int64" + ] + }, + "execution_count": 203, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.CustomerID.value_counts(dropna=False).nlargest(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Foram identificados 80756 valores NaN em 'CustomerID', vamos preencher com 0" + ] + }, + { + "cell_type": "code", + "execution_count": 205, + "metadata": {}, + "outputs": [], + "source": [ + "sales.CustomerID.fillna(0, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 206, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InvoiceNoStockCodeDescriptionQuantityInvoiceDateUnitPriceCustomerIDCountryRevenue
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [InvoiceNo, StockCode, Description, Quantity, InvoiceDate, UnitPrice, CustomerID, Country, Revenue]\n", + "Index: []" + ] + }, + "execution_count": 206, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales[sales.CustomerID.isnull()]" + ] + }, + { + "cell_type": "code", + "execution_count": 207, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 319557 entries, 0 to 325144\n", + "Data columns (total 9 columns):\n", + "InvoiceNo 319557 non-null object\n", + "StockCode 319557 non-null object\n", + "Description 318687 non-null object\n", + "Quantity 319557 non-null int64\n", + "InvoiceDate 319557 non-null object\n", + "UnitPrice 319557 non-null float64\n", + "CustomerID 319557 non-null float64\n", + "Country 319557 non-null object\n", + "Revenue 319557 non-null float64\n", + "dtypes: float64(3), int64(1), object(5)\n", + "memory usage: 34.4+ MB\n" + ] + } + ], + "source": [ + "sales.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Substituindo os nomes dos países por números" + ] + }, + { + "cell_type": "code", + "execution_count": 223, + "metadata": {}, + "outputs": [], + "source": [ + "mymap = {'United Kingdom':1, 'Netherlands':2, 'Germany':3, 'France':4, 'USA':5} \n", + "\n", + "sales = sales.applymap(lambda s: mymap.get(s) if s in mymap else s)" + ] + }, + { + "cell_type": "code", + "execution_count": 224, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
InvoiceNoStockCodeDescriptionQuantityInvoiceDateUnitPriceCustomerIDCountryRevenue
053636522752SET 7 BABUSHKA NESTING BOXES22010-12-01 08:26:027.6517850.0115.30
153636571053WHITE METAL LANTERN62010-12-01 08:26:023.3917850.0120.34
253636584029GKNITTED UNION FLAG HOT WATER BOTTLE62010-12-01 08:26:023.3917850.0120.34
353636585123AWHITE HANGING HEART T-LIGHT HOLDER62010-12-01 08:26:022.5517850.0115.30
453636622633HAND WARMER UNION JACK62010-12-01 08:28:021.8517850.0111.10
\n", + "
" + ], + "text/plain": [ + " InvoiceNo StockCode Description Quantity \\\n", + "0 536365 22752 SET 7 BABUSHKA NESTING BOXES 2 \n", + "1 536365 71053 WHITE METAL LANTERN 6 \n", + "2 536365 84029G KNITTED UNION FLAG HOT WATER BOTTLE 6 \n", + "3 536365 85123A WHITE HANGING HEART T-LIGHT HOLDER 6 \n", + "4 536366 22633 HAND WARMER UNION JACK 6 \n", + "\n", + " InvoiceDate UnitPrice CustomerID Country Revenue \n", + "0 2010-12-01 08:26:02 7.65 17850.0 1 15.30 \n", + "1 2010-12-01 08:26:02 3.39 17850.0 1 20.34 \n", + "2 2010-12-01 08:26:02 3.39 17850.0 1 20.34 \n", + "3 2010-12-01 08:26:02 2.55 17850.0 1 15.30 \n", + "4 2010-12-01 08:28:02 1.85 17850.0 1 11.10 " + ] + }, + "execution_count": 224, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sales.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 231, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1 292640\n", + "3 5466\n", + "4 5026\n", + "EIRE 4789\n", + "Spain 1420\n", + "2 1393\n", + "Belgium 1191\n", + "Name: Country, dtype: int64" ] }, - "execution_count": 24, + "execution_count": 231, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data[(data['pop'] > 19552860) | (data['area']>423967)]" + "sales.Country.value_counts().nlargest(7)" ] } ], @@ -538,7 +3519,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.8" }, "toc": { "base_numbering": 1, diff --git "a/1-analise-explorat\303\263ria-basica/03-pandas/pandas102.ipynb" "b/1-analise-explorat\303\263ria-basica/03-pandas/pandas102.ipynb" old mode 100644 new mode 100755 index eee1606..8626738 --- "a/1-analise-explorat\303\263ria-basica/03-pandas/pandas102.ipynb" +++ "b/1-analise-explorat\303\263ria-basica/03-pandas/pandas102.ipynb" @@ -1,56 +1,60 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pandas 2 - Trabalhando com modelagem de dados\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "Python é a linguagem preferida para *data scientists*, pois fornece o maior ecossistema entre as linguagens de programação e a profundidade de suas bibliotecas de computação científica é muito boa.\n", + "\n", + "Entre suas bibliotecas de computação científica, o **Pandas** está entre as mais úteis para operações de *Data Science*. Juntamente com o Scikit-learn (que vamos aprender mais adiante), o **Pandas** fornece quase tudo o que é necessário para um trabalho de qualidade na modelagem estatística de um *DataSet*. Esta aula se concentra em fornecer maneiras de manipulação de dados em Python, com a finalidade de dar fluência ao aprendizado desta linguagem, e aumentar a familiaridade com os recursos do **Pandas**. \n", + "\n", + "Dentro desta proposta de modelagem estatística de dados, passaremos por técnicas básicas de manipulação de dados, como segue.\n", + "\n", + "- Leitura do DataSet e reconhecimento dos dadso\n", + "- Tratamento de variável quantitativa contínua (salário) com preenchiemnto de NaNs e aplicação de LOG (para correção de assimetria da distribuição)\n", + "- Tratamento e análise de variável quantitativa discreta (idade, anos de estudo, região, cor/raça, estado civil, sexo)\n", + "- **Desafio: os homens ganham mais que as mulheres?**" + ] + }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 147, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", + "import numpy as np\n", "%matplotlib inline\n", - "%config InlineBackend.figure_formats=['svg']" + "%config InlineBackend.figure_formats=['svg']\n", + "\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" ] }, { - "cell_type": "code", - "execution_count": 21, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " O volume na unidade D ‚ Novo volume\n", - " O N£mero de S‚rie do Volume ‚ 9EB8-09AE\n", - "\n", - " Pasta de D:\\OneDrive\\datascience\\datascience_course\\1-analise-explorat¢ria-basica\\03-pandas\n", - "\n", - "26/01/2019 15:52
.\n", - "26/01/2019 15:52 ..\n", - "26/01/2019 15:52 .ipynb_checkpoints\n", - "26/01/2019 15:52 data\n", - "26/01/2019 08:30 img\n", - "11/01/2019 10:38 12.954 pandas101.ipynb\n", - "26/01/2019 15:52 74.033 pandas102.ipynb\n", - " 2 arquivo(s) 86.987 bytes\n", - " 5 pasta(s) 253.047.848.960 bytes dispon¡veis\n" - ] - } - ], "source": [ - "ls" + "# Leitura do DataSet e reconhecimento das variáveis" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 375, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Wall time: 133 ms\n" + "CPU times: user 143 ms, sys: 30.9 ms, total: 174 ms\n", + "Wall time: 173 ms\n" ] } ], @@ -60,169 +64,7 @@ }, { "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Unnamed: 0ididadeanos_estudosalarioestado_civil
count66470.0000006.647000e+0466470.00000066036.00000047878.00000066470.000000
mean33234.5000003.445307e+1037.6348138.68606519706.7903230.587724
std19188.3805341.292491e+1011.3801583.37452288627.5320240.492248
min0.0000001.100190e+1020.0000005.000000-1.0000000.000000
25%16617.2500003.110060e+1028.0000005.0000003780.0000000.000000
50%33234.5000003.316781e+1037.0000008.0000007113.5996091.000000
75%49851.7500004.310361e+1047.00000011.00000012720.0000001.000000
max66469.0000005.311702e+1060.00000015.000000999999.0000001.000000
\n", - "
" - ], - "text/plain": [ - " Unnamed: 0 id idade anos_estudo salario \\\n", - "count 66470.000000 6.647000e+04 66470.000000 66036.000000 47878.000000 \n", - "mean 33234.500000 3.445307e+10 37.634813 8.686065 19706.790323 \n", - "std 19188.380534 1.292491e+10 11.380158 3.374522 88627.532024 \n", - "min 0.000000 1.100190e+10 20.000000 5.000000 -1.000000 \n", - "25% 16617.250000 3.110060e+10 28.000000 5.000000 3780.000000 \n", - "50% 33234.500000 3.316781e+10 37.000000 8.000000 7113.599609 \n", - "75% 49851.750000 4.310361e+10 47.000000 11.000000 12720.000000 \n", - "max 66469.000000 5.311702e+10 60.000000 15.000000 999999.000000 \n", - "\n", - " estado_civil \n", - "count 66470.000000 \n", - "mean 0.587724 \n", - "std 0.492248 \n", - "min 0.000000 \n", - "25% 0.000000 \n", - "50% 1.000000 \n", - "75% 1.000000 \n", - "max 1.000000 " - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.describe()" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(66470, 9)" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.shape" - ] - }, - { - "cell_type": "code", - "execution_count": 25, + "execution_count": 376, "metadata": {}, "outputs": [ { @@ -338,7 +180,7 @@ "4 157800.000000 1.0 norte " ] }, - "execution_count": 25, + "execution_count": 376, "metadata": {}, "output_type": "execute_result" } @@ -349,7 +191,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 377, "metadata": {}, "outputs": [ { @@ -465,7 +307,7 @@ "66469 460.350006 1.0 centro-oeste " ] }, - "execution_count": 26, + "execution_count": 377, "metadata": {}, "output_type": "execute_result" } @@ -476,7 +318,57 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 378, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(66470, 9)" + ] + }, + "execution_count": 378, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 379, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 66470 entries, 0 to 66469\n", + "Data columns (total 9 columns):\n", + "Unnamed: 0 66470 non-null int64\n", + "id 66470 non-null float64\n", + "idade 66470 non-null int64\n", + "sexo 66470 non-null object\n", + "anos_estudo 66036 non-null float64\n", + "cor/raca 66228 non-null object\n", + "salario 47878 non-null float64\n", + "estado_civil 66470 non-null float64\n", + "regiao 66470 non-null object\n", + "dtypes: float64(4), int64(2), object(3)\n", + "memory usage: 4.6+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 380, "metadata": {}, "outputs": [ { @@ -607,7 +499,7 @@ "max 1.000000 " ] }, - "execution_count": 27, + "execution_count": 380, "metadata": {}, "output_type": "execute_result" } @@ -617,1191 +509,4755 @@ ] }, { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "pandas.core.frame.DataFrame" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(df)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "pandas.core.series.Series" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "type(df['salario'])" + "# Tratamento da variável 'salario'\n", + "\n", + "O Salário é a variável quantitativa contínua que desperta grande interesse denro do banco de dados, tanto para análise quanto para predição (como veremos mais adiante em *Machine Learning*). Por isso, o seu tratamento deve contar com a maior atenção pelo cientista de dados, no sentido de obter a modelagem mais favorável dentro do estudo." ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 381, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "pandas.core.frame.DataFrame" + "NaN 18592\n", + " 0.0 1841\n", + "-1.0 1101\n", + " 999999.0 367\n", + " 5229.0 277\n", + " 7200.0 260\n", + " 7560.0 244\n", + "Name: salario, dtype: int64" ] }, - "execution_count": 30, + "execution_count": 381, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "type(df[['salario']])" + "df['salario'].value_counts(dropna=False).nlargest(7)" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 382, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 36, + "execution_count": 382, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/svg+xml": [ - "\r\n", - "\r\n", - "\r\n", - "\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - "\r\n" + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -1809,1841 +5265,4691 @@ } ], "source": [ - "df['salario'].plot.hist(bins=50, xlim=(-10000, 100000))" + "df['salario'].plot.hist(bins=500, xlim=(-10000, 100000))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Podemos perceber que a quantidade de valores nulos é muito grande (18592 em 66470 -> 28%). Além disso, temos uma distribuição bastante assimétrica para a direita. Como boas práticas, vamos preencher os nulos com a mediana, o que deve centralizar a amostra, e utilizar a função logarítmica **LOG** para corrigir a assimetria, e observar a evolução da sua distribuição no histograma." + ] + }, + { + "cell_type": "code", + "execution_count": 383, + "metadata": {}, + "outputs": [], + "source": [ + "df['salario'].fillna(df['salario'].median(),inplace=True)" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 384, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + " 7113.599609 18594\n", + " 0.000000 1841\n", + "-1.000000 1101\n", + " 999999.000000 367\n", + " 5229.000000 277\n", + " 7200.000000 260\n", + " 7560.000000 244\n", + "Name: salario, dtype: int64" ] }, - "execution_count": 32, + "execution_count": 384, "metadata": {}, "output_type": "execute_result" - }, - { - "data": { - "image/svg+xml": [ - "\r\n", - "\r\n", - "\r\n", - "\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - "\r\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" } ], "source": [ - "df['salario'].sample(1000).plot.kde()" + "df['salario'].value_counts(dropna=False).nlargest(7)" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 385, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 40, + "execution_count": 385, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/svg+xml": [ - "\r\n", - "\r\n", - "\r\n", - "\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - "\r\n" + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -3651,243 +9957,9071 @@ } ], "source": [ - "df.anos_estudo.plot.hist(bins=50, figsize=(8,6))" + "df['salario'].plot.hist(bins=500, xlim=(-10000, 100000))" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 386, "metadata": {}, - "outputs": [ - { + "outputs": [], + "source": [ + "df['salario'] = np.log1p(df['salario'])" + ] + }, + { + "cell_type": "code", + "execution_count": 387, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + " 8.869904 18594\n", + " 0.000000 1841\n", + "-inf 1101\n", + " 13.815511 367\n", + " 8.562167 277\n", + " 8.881975 260\n", + " 8.930759 244\n", + "Name: salario, dtype: int64" + ] + }, + "execution_count": 387, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['salario'].value_counts(dropna=False).nlargest(7)" + ] + }, + { + "cell_type": "code", + "execution_count": 388, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "df = df.replace(-np.inf, np.nan)" + ] + }, + { + "cell_type": "code", + "execution_count": 389, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + " 8.869904 18594\n", + " 0.000000 1841\n", + "NaN 1101\n", + " 13.815511 367\n", + " 8.562167 277\n", + " 8.881975 260\n", + " 8.930759 244\n", + "Name: salario, dtype: int64" + ] + }, + "execution_count": 389, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['salario'].value_counts(dropna=False).nlargest(7)" + ] + }, + { + "cell_type": "code", + "execution_count": 391, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 391, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df['salario'].plot.hist(bins=50, xlim=(-1, 15))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Podemos observar que, apresar do pico central, a distribuição da amostra parece normalizada, ou semelhante à uma distribuição Gaussiana, como veremos mais adiante." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tratamento da variável 'idade'\n", + "\n", + "A idade é uma variável quantitativa discreta que não apresenta valores faltantes (*missind values*). Vamos explorara os valores e a distribuição dos dados." + ] + }, + { + "cell_type": "code", + "execution_count": 288, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20 2104\n", + "28 2056\n", + "26 2040\n", + "22 2034\n", + "27 2017\n", + "23 2014\n", + "25 2014\n", + "Name: idade, dtype: int64" + ] + }, + "execution_count": 288, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.idade.value_counts(dropna=False).nlargest(7)" + ] + }, + { + "cell_type": "code", + "execution_count": 216, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 216, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.idade.plot.hist(bins=50)" + ] + }, + { + "cell_type": "code", + "execution_count": 217, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 217, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df['idade'].sample(1000).plot.kde()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Como a distribuição apresenta alguma assimetria à direita, podemos pensar em utilizar a função **LOG**, de acordo com as boas práticas, e observar a evolução do seu comportamento." + ] + }, + { + "cell_type": "code", + "execution_count": 218, + "metadata": {}, + "outputs": [], + "source": [ + "df['idade'] = np.log(df['idade'])" + ] + }, + { + "cell_type": "code", + "execution_count": 219, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 219, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df['idade'].sample(1000).plot.kde()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tratando a variável 'anos_estudo'\n", + "\n", + "Também trata-se de uma variável quantitativa discreta, com valores faltantes (*missing values*) ou NaNs estatísticamente insignificante (434 em 66470 -> 0.65%)" + ] + }, + { + "cell_type": "code", + "execution_count": 220, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + " 5.0 23349\n", + " 11.0 16790\n", + " 15.0 5636\n", + " 8.0 5017\n", + " 10.0 2704\n", + " 7.0 2612\n", + " 12.0 2610\n", + " 9.0 2474\n", + " 6.0 2237\n", + " 13.0 1348\n", + " 14.0 1259\n", + "NaN 434\n", + "Name: anos_estudo, dtype: int64" + ] + }, + "execution_count": 220, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.anos_estudo.value_counts(dropna=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 221, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 221, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.anos_estudo.plot.hist(bins=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Observamos picos de dados nos anos de conclusão das etapas do processo formal de educação em 5 anos (ensino primário), 9 anos (ensino fundamental), 11 anos (ensino médio) e 15 anos (ensino superior)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tratamento da variável 'regiao\n", + "\n", + "A variável da região pode ser classificada como qualitativa nominal com 5 categorias. Observamos que a opção do **nosdeste** está muito reduzida, o que indica possivelmente a presença de um viés (**Viés** ou tendência é um peso desproporcional a favor ou contra uma coisa, pessoa ou grupo comparado a outro, geralmente de uma maneira considerada injusta. *fonte: Wikipedia*)." + ] + }, + { + "cell_type": "code", + "execution_count": 222, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "sudeste 25220\n", + "centro-oeste 14702\n", + "norte 14653\n", + "sul 11890\n", + "nordeste 5\n", + "Name: regiao, dtype: int64" + ] + }, + "execution_count": 222, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.regiao.value_counts(dropna=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 223, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 223, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.regiao.value_counts().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tratamento da variável cor/raca\n", + "\n", + "Também trata-se de uma variável qualitativa nominal com 5 categorias, com número de valores faltantes ou *missing values* insignificante. Como boas práticas, vamos eliminar o caracter de barra ( / ) do título para evitar erros de processamento computacional." + ] + }, + { + "cell_type": "code", + "execution_count": 242, + "metadata": {}, + "outputs": [], + "source": [ + "df.rename(columns={'cor/raca':'cor_raca'},inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 243, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Unnamed: 0', 'id', 'idade', 'sexo', 'anos_estudo', 'cor_raca',\n", + " 'salario', 'estado_civil', 'regiao'],\n", + " dtype='object')" + ] + }, + "execution_count": 243, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 244, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Branca 31689\n", + "Parda 28370\n", + "Preta 5249\n", + "Indigena 597\n", + "Amarela 323\n", + "NaN 242\n", + "Name: cor_raca, dtype: int64" + ] + }, + "execution_count": 244, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['cor_raca'].value_counts(dropna=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 245, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 245, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.cor_raca.value_counts().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tratamento da variável 'estado_civil'\n", + "\n", + "Trata-se de uma variável binária (duas categorias), sem *missing values*. O fato mais curioso é que não está explicito qual a representação dos valores encontrados, ou seja, quais opções correspondem aos números 0.0 e 1.0. Geralmente os bancos de dados tem uma dicionário ou memorial descritivo com informações complementares, como por exemplo quais valores equivalem a solteiros e casados, ou alguma outra opção." + ] + }, + { + "cell_type": "code", + "execution_count": 248, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0 39066\n", + "0.0 27404\n", + "Name: estado_civil, dtype: int64" + ] + }, + "execution_count": 248, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['estado_civil'].value_counts(dropna=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 249, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 249, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.estado_civil.value_counts().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Tratando da variável 'sexo'\n", + "\n", + "Também trata-se de uma variável binária (duas categorias), e sem *mising values*. Além disso, também apresenta um fato curioso de 72 observações dentro de uma terceira categoria denominada 'gestante'. Trataremos destes valores com a substituição por 'mulher'." + ] + }, + { + "cell_type": "code", + "execution_count": 250, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "mulher 33607\n", + "homem 32791\n", + "gestante 72\n", + "Name: sexo, dtype: int64" + ] + }, + "execution_count": 250, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['sexo'].value_counts(dropna=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 254, + "metadata": {}, + "outputs": [], + "source": [ + "df = df.replace('gestante', 'mulher')" + ] + }, + { + "cell_type": "code", + "execution_count": 255, + "metadata": {}, + "outputs": [ + { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
rider_id_xrider_feeorigin_latitudeorigin_longitudelogistic_regiondistance_origin_destinationdistance_originexpected_delivery_timedelivery_date_localexpected_delivery_time_minreal_delivery_time_mintime_to_confirm_mintime_to_assign_mintime_to_accept_mintime_to_origin_mintime_at_origin_mintime_in_standby_mintime_to_destination_mintime_at_destination_min
015158.9-30.030975-51.231535Porto Alegre781.00.780 days 00:34:59.4660000002018-09-06T15:32:40.637Z34.99110029.8488502.5343670.3694830.0000003.62730010.1425830.013.5401678.640600
168858.9-22.973995-43.188620Rio - Zona Sul845.04.330 days 00:39:59.6170000002018-09-23T19:37:43.494Z39.99361739.7098330.42475028.3942000.0899177.1042673.1277330.00.5689679.248500
260412.9-15.774803-47.885519Brasilia6633.02.140 days 01:04:59.3780000002018-09-07T13:00:29.639Z64.98963349.9025670.5303830.3245000.4993507.98538313.0563500.027.5066002.030917
312369.9-25.438178-49.266473Curitiba2196.03.920 days 00:39:59.2310000002018-09-09T19:35:35.349Z39.98718339.1148000.4553179.3620500.0928177.2729675.1878670.016.7437832.726683
4228288.9-22.948660-43.184058Rio - Zona Sul609.02.670 days 00:39:59.2010000002018-11-08T21:00:56.439Z39.98668336.1013500.6380170.3188830.2046178.69818319.6311330.06.6105170.560167
\n", - "
" + "text/plain": [ + "" + ] + }, + "execution_count": 255, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" ], "text/plain": [ - " rider_id_x rider_fee origin_latitude origin_longitude logistic_region \\\n", - "0 1515 8.9 -30.030975 -51.231535 Porto Alegre \n", - "1 6885 8.9 -22.973995 -43.188620 Rio - Zona Sul \n", - "2 604 12.9 -15.774803 -47.885519 Brasilia \n", - "3 1236 9.9 -25.438178 -49.266473 Curitiba \n", - "4 22828 8.9 -22.948660 -43.184058 Rio - Zona Sul \n", - "\n", - " distance_origin_destination distance_origin expected_delivery_time \\\n", - "0 781.0 0.78 0 days 00:34:59.466000000 \n", - "1 845.0 4.33 0 days 00:39:59.617000000 \n", - "2 6633.0 2.14 0 days 01:04:59.378000000 \n", - "3 2196.0 3.92 0 days 00:39:59.231000000 \n", - "4 609.0 2.67 0 days 00:39:59.201000000 \n", - "\n", - " delivery_date_local expected_delivery_time_min \\\n", - "0 2018-09-06T15:32:40.637Z 34.991100 \n", - "1 2018-09-23T19:37:43.494Z 39.993617 \n", - "2 2018-09-07T13:00:29.639Z 64.989633 \n", - "3 2018-09-09T19:35:35.349Z 39.987183 \n", - "4 2018-11-08T21:00:56.439Z 39.986683 \n", - "\n", - " real_delivery_time_min time_to_confirm_min time_to_assign_min \\\n", - "0 29.848850 2.534367 0.369483 \n", - "1 39.709833 0.424750 28.394200 \n", - "2 49.902567 0.530383 0.324500 \n", - "3 39.114800 0.455317 9.362050 \n", - "4 36.101350 0.638017 0.318883 \n", - "\n", - " time_to_accept_min time_to_origin_min time_at_origin_min \\\n", - "0 0.000000 3.627300 10.142583 \n", - "1 0.089917 7.104267 3.127733 \n", - "2 0.499350 7.985383 13.056350 \n", - "3 0.092817 7.272967 5.187867 \n", - "4 0.204617 8.698183 19.631133 \n", - "\n", - " time_in_standby_min time_to_destination_min time_at_destination_min \n", - "0 0.0 13.540167 8.640600 \n", - "1 0.0 0.568967 9.248500 \n", - "2 0.0 27.506600 2.030917 \n", - "3 0.0 16.743783 2.726683 \n", - "4 0.0 6.610517 0.560167 " + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df.sexo.value_counts().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Desafio: os homens ganham mais do que as mulheres?\n", + "\n", + "\n", + "\n", + "O objetivo deste desafio é trabalhar com os conceitos de **Medidas de Centralidade** (média, moda, mediana), e a partir dos resultados, fazer uma análise do comportamento da variável salário.\n", + "\n", + "Como na nossa modelagem fizemos muitas alterações nos dados, vamos começar do zero lendo novamente o arquivo original." + ] + }, + { + "cell_type": "code", + "execution_count": 336, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 149 ms, sys: 34.4 ms, total: 184 ms\n", + "Wall time: 186 ms\n" + ] + } + ], + "source": [ + "%time df = pd.read_csv(r'./data/data.zip')" + ] + }, + { + "cell_type": "code", + "execution_count": 337, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 66470 entries, 0 to 66469\n", + "Data columns (total 9 columns):\n", + "Unnamed: 0 66470 non-null int64\n", + "id 66470 non-null float64\n", + "idade 66470 non-null int64\n", + "sexo 66470 non-null object\n", + "anos_estudo 66036 non-null float64\n", + "cor/raca 66228 non-null object\n", + "salario 47878 non-null float64\n", + "estado_civil 66470 non-null float64\n", + "regiao 66470 non-null object\n", + "dtypes: float64(4), int64(2), object(3)\n", + "memory usage: 4.6+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 338, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "mulher 33607\n", + "homem 32791\n", + "gestante 72\n", + "Name: sexo, dtype: int64" ] }, - "execution_count": 24, + "execution_count": 338, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df.head()" + "df['sexo'].value_counts(dropna=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 339, + "metadata": {}, + "outputs": [], + "source": [ + "df = df.replace('gestante', 'mulher')" + ] + }, + { + "cell_type": "code", + "execution_count": 340, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "mulher 33679\n", + "homem 32791\n", + "Name: sexo, dtype: int64" + ] + }, + "execution_count": 340, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['sexo'].value_counts(dropna=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Separando os dados em dois DataFrames distintos (homem e mulher)" + ] + }, + { + "cell_type": "code", + "execution_count": 341, + "metadata": {}, + "outputs": [], + "source": [ + "df_homem = df[df['sexo'] == 'homem']\n", + "df_mulher = df[df['sexo'] == 'mulher']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testando as hipóteses de salário maior para os homens para média, mediana e moda" + ] + }, + { + "cell_type": "code", + "execution_count": 342, + "metadata": {}, + "outputs": [], + "source": [ + "media_salario_homem = df_homem['salario'].mean()\n", + "mediana_salario_homem = df_homem['salario'].median()\n", + "moda_salario_homem = df_homem['salario'].idxmax()\n", + "\n", + "media_salario_mulher = df_mulher['salario'].mean()\n", + "mediana_salario_mulher = df_mulher['salario'].median()\n", + "moda_salario_mulher = df_mulher['salario'].idxmax()" + ] + }, + { + "cell_type": "code", + "execution_count": 343, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 343, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "media_salario_homem > media_salario_mulher" + ] + }, + { + "cell_type": "code", + "execution_count": 344, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 344, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mediana_salario_homem > mediana_salario_mulher" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 345, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "10738550.000000007" + "False" ] }, - "execution_count": 25, + "execution_count": 345, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "df['rider_fee'].sum()" + "moda_salario_homem > moda_salario_mulher" + ] + }, + { + "cell_type": "code", + "execution_count": 346, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Salário médio homens = 22650.38 Salário médio mulheres = 15590.65\n", + "Salário mediano homens = 8400.00 Salário mediano mulheres = 5562.00\n", + "Salário mais frequente homens = 386.00 Salário mais frequente mulheres = 1099.00\n" + ] + } + ], + "source": [ + "print('Salário médio homens =',\"%.2f\"% media_salario_homem,'Salário médio mulheres =',\"%.2f\"% media_salario_mulher)\n", + "print('Salário mediano homens =',\"%.2f\"% mediana_salario_homem,'Salário mediano mulheres =',\"%.2f\"% mediana_salario_mulher)\n", + "print('Salário mais frequente homens =',\"%.2f\"% moda_salario_homem,'Salário mais frequente mulheres =',\"%.2f\"% moda_salario_mulher)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Concluimos que na média os homens ganham mais, e segundo a mediana também. Porém o salários mais frequente (moda) é maios para as mulheres." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## No histograma fica claro que os homens tem salário maior que as mulheres" + ] + }, + { + "cell_type": "code", + "execution_count": 347, + "metadata": {}, + "outputs": [], + "source": [ + "df_homem.dropna(inplace=True)\n", + "df_mulher.dropna(inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 353, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot\n", + "\n", + "bins = 45\n", + "\n", + "ax = pyplot.hist(df_homem['salario'], bins, alpha=0.5, label='Salário Homens',color='blue')\n", + "ax = pyplot.hist(df_mulher['salario'], bins, alpha=0.5, label='Salário Mulheres',color='red')\n", + "\n", + "pyplot.legend(loc='upper right')\n", + "pyplot.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -3907,7 +19041,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.6.8" }, "toc": { "base_numbering": 1, diff --git "a/1-analise-explorat\303\263ria-basica/04-probabilidade/aula.ipynb" "b/1-analise-explorat\303\263ria-basica/04-probabilidade/aula.ipynb" old mode 100644 new mode 100755 index 5e8bbec..daee24a --- "a/1-analise-explorat\303\263ria-basica/04-probabilidade/aula.ipynb" +++ "b/1-analise-explorat\303\263ria-basica/04-probabilidade/aula.ipynb" @@ -4,18 +4,119 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Probabilidade\n", - "\"Probabilidade ... é, portanto, simplesmente uma fração cujo numerador é o número de casos favoráveis e cujo denominador é o número de todos os casos possíveis ... quando nada nos leva a esperar que qualquer um desses casos ocorra mais do que qualquer outro. Pierre-Simon Laplace, 1814\"\n", + "# Probabilidade\n", "\n", - "### Exemplos\n", + "
\n", + "\n", + "
\n", "\n", - "#### (1) Qual a probabilidade de retirarmos duas cartas de paus (naipe) em um baralho (52 cartas) em 2 retiradas com reposicao (apos a retirada da carta, devolvemos ao baralho e reembaralhamos)?\n", - "\n" + "*fonte: Mundo Educação*\n", + "\n", + "Probabilidade é o estudo das chances de obtenção de cada resultado de um experimento aleatório. A essas chances são atribuídos os números reais do intervalo entre 0 e 1. Resultados mais próximos de 1 têm mais chances de ocorrer. Além disso, a probabilidade também pode ser apresentada na forma percentual.\n", + "\n", + "### Experimento aleatório e ponto amostral\n", + "\n", + "Um experimento aleatório pode ser repetido inúmeras vezes e nas mesmas condições e, mesmo assim, apresenta resultados diferentes. Cada um desses resultados possíveis é chamado de ponto amostral. São exemplos de experimentos aleatórios:\n", + "\n", + "- Cara ou coroa\n", + "\n", + "Lançar uma moeda e observar se a face voltada para cima é cara ou coroa é um exemplo de experimento aleatório. Se a moeda não for viciada e for lançada sempre nas mesmas condições, poderemos ter como resultado tanto cara quanto coroa.\n", + "\n", + "- Lançamento de um dado\n", + "\n", + "Lançar um dado e observar qual é o número da face superior também é um experimento aleatório. Esse número pode ser 1, 2, 3, 4, 5 ou 6 e cada um desses resultados apresenta a mesma chance de ocorrer. Em cada lançamento, o resultado pode ser igual ao anterior ou diferente dele.\n", + "\n", + "Observe que, no lançamento da moeda, as chances de repetir o resultado anterior são muito maiores.\n", + "\n", + "- Retirar uma carta aleatória de um baralho\n", + "\n", + "Cada carta tem a mesma chance de ocorrência cada vez que o experimento é realizado, por isso, esse é também um experimento aleatório.\n", + "\n", + "### Espaço amostral\n", + "\n", + "O espaço amostral (Ω) é o conjunto formado por todos os resultados possíveis de um experimento aleatório. Em outras palavras, é o conjunto formado por todos os pontos amostrais de um experimento. Veja exemplos:\n", + "\n", + "- O espaço amostral do experimento “cara ou coroa” é o conjunto S = {Cara, Coroa}. Os pontos amostrais desse experimento são os mesmos elementos desse conjunto.\n", + "\n", + "- O espaço amostral do experimento “lançamento de um dado” é o conjunto S = {1, 2, 3, 4, 5, 6}. Os pontos amostrais desse experimento são 1, 2, 3, 4, 5 e 6.\n", + "\n", + "O espaço amostral também é chamado de Universo e pode ser representado pelas outras notações usadas nos conjuntos. Além disso, todas as operações entre conjuntos valem também para espaços amostrais.\n", + "\n", + "O número de elementos do espaço amostral, número de pontos amostrais do espaço amostral ou número de casos possíveis em um espaço amostral é representado da seguinte maneira: n(Ω).\n", + "\n", + "### Evento\n", + "\n", + "Um evento é qualquer subconjunto de um espaço amostral. Ele pode conter nenhum elemento (conjunto vazio) ou todos os elementos de um espaço amostral. O número de elementos do evento é representado da seguinte maneira: n(E), sendo E o evento em questão.\n", + "\n", + "São exemplos de eventos:\n", + "\n", + "- Sair cara em um lançamento de uma moeda\n", + "\n", + "O evento é sair cara e possui um único elemento. A representação dos eventos também é feita com notações de conjuntos:\n", + "\n", + "E = {cara}\n", + "\n", + "O seu número de elementos é n(E) = 1.\n", + "\n", + "- Sair um número par no lançamento de um dado.\n", + "\n", + "O evento é sair um número par:\n", + "\n", + "E = {2, 4, 6}\n", + "\n", + "O seu número de elementos é n(E) = 3.\n", + "Não pare agora... Tem mais depois da publicidade ;)\n", + "\n", + "Os eventos que possuem apenas um elemento (ponto amostral) são chamados de simples. Quando o evento é igual ao espaço amostral, ele é chamado de evento certo e sua probabilidade de ocorrência é de 100%. Quando um evento é igual ao conjunto vazio, ele é chamado de evento impossível e possui 0% de chances de ocorrência.\n", + "\n", + "### Cálculo da probabilidade\n", + "\n", + "Seja E um evento qualquer no espaço amostral Ω. A probabilidade do evento A ocorrer é a razão entre o número de resultados favoráveis e o número de resultados possíveis. Em outras palavras, é o número de elementos do evento dividido pelo número de elementos do espaço amostral a que ele pertence.\n", + "\n", + "P(E) = n(E)/n(Ω)\n", + "\n", + "Observações:\n", + "\n", + "- O número de elementos do evento sempre é menor ou igual ao número de elementos do espaço amostral e maior ou igual a zero. Por isso, o resultado dessa divisão sempre está no intervalo 0 ≤ P(A) ≤ 1;\n", + "\n", + "- Quando é necessário usar porcentagem, devemos multiplicar o resultado dessa divisão por 100 ou usar regra de três;\n", + "\n", + "- A probabilidade de um evento não acontecer é determinada por:\n", + "\n", + "P(A-1) = 1 – P(A)\n", + "\n", + "### De maneira objetiva\n", + "\n", + "\"Probabilidade ... é, portanto, simplesmente uma fração cujo numerador é o número de casos favoráveis e cujo denominador é o número de todos os casos possíveis ... quando nada nos leva a esperar que qualquer um desses casos ocorra mais do que qualquer outro.\" Pierre-Simon Laplace, 1814.\n", + "\n", + "Vamos a alguns exemplos." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Baralho de cartas\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "*fonte: Wikipedia*\n", + "\n", + "O principal baralho de 52 cartas, em uso atualmente, inclui 13 cartas de cada um dos quatro naipes franceses, paus (♣), ouros (♦), copas (♥) e espadas (♠), com cartas de figuras. Cada naipe inclui um ás, que descreve um único símbolo de seu naipe (muito grande, muitas vezes apenas o ás de espadas) um rei, uma rainha, e um valete, cada um representado com um símbolo de seu naipe, com valores de dois a dez, com cada cartão mostrando o número de símbolos de seu naipe. Para além destas 52 cartas, baralhos comerciais geralmente incluem dois coringas. Em muitos jogos, os coringas não são usados. Os coringas são geralmente distinguidos pela cor. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Qual a probabilidade de retirarmos duas cartas de paus (naipe) em um baralho (52 cartas) em 2 retiradas com reposição (apos a retirada da carta, devolvemos ao baralho e reembaralhamos)?" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -24,7 +125,7 @@ "0.0625" ] }, - "execution_count": 1, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -43,12 +144,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### (2) E se nao devolvessemos a primeira carta ao baralho?" + "### E se não devolvessemos a primeira carta ao baralho?" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -57,7 +158,7 @@ "0.058823529411764705" ] }, - "execution_count": 2, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -82,22 +183,349 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### (3) Paradoxo do aniversariante.\n", - "Quantas pessoas precisam ter em uma sala para que tenha pelo menos um par de aniversarios no mesmo dia?" + "# Dados\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "A função do dado é gerar um resultado aleatório que fica restrito ao número de faces dele. Esse resultado, então, pode ser manipulado (caso seja um número) através de fórmulas caso o jogo exija. Por exemplo, um número entre 20 e 25 utilizando dados de seis lados exige a aplicação de uma fórmula matemática. Os dados são comumente utilizados em jogos de tabuleiro tradicionais e jogos de RPG.\n", + "\n", + "Uma pequena curiosidade quanto aos dados clássicos (fabricados de forma correta), de seis lados: a soma dos lados opostos resulta no número sete. Ou seja, se de um lado temos o número um automaticamente teríamos o número seis do outro lado. Isso ocorre também com o dois casando com o cinco, e o três com o quatro. Isso se aplica também a qualquer outro dado, a soma de dois lados opostos sempre é igual ao número de faces mais um. Assim, um D20 somaria 21 nos lados opostos, um D12 somaria 13, e assim por diante. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Três dados comuns e honestos serão lançados. A probabilidade de obter o número 6 mais de uma vez é?\n", + "\n", + "A probabilidade do número 6 ser obtido mais de uma vez significa que ele deve aparecer nos três dados OU em pelo menos dois.\n", + "\n", + "- A probabilidade de se obter \"6\" nos três dados é:\n", + "```python\n", + "1/6 × 1/6 × 1/6 = 1/216 \n", + "```\n", + "\n", + "- A probabilidade de se obter \"6\" em pelo menos dois dados é:\n", + "\n", + "Obs: Deve-se considerar que podemos obter as seguintes combinações,\n", + "\n", + "dado1 = 6 e dado2 = 6 e dado3 ≠ 6 ou..\n", + "dado1 = 6 e dado2 ≠ 6 e dado3 = 6 ou..\n", + "dado1 ≠ 6 e dado2 = 6 e dado3 = 6;\n", + "\n", + "```python\n", + "1/6 × 1/6 × 5/6 = 5/216\n", + "1/6 × 1/6 × 5/6 = 5/216\n", + "1/6 × 1/6 × 5/6 = 5/216\n", + "```\n", + "Somando estas probabilidades temos:\n", + "\n", + "\n", + "```python\n", + "15/216\n", + "```\n", + "\n", + "Como pode aparecer duas OU três vezes, somamos as duas probabilidades:\n", + "\n", + "```python\n", + "1/216 + 15/216 = 16/216\n", + "```\n", + "\n", + "\n", + "Leia mais em Brainly.com.br - https://brainly.com.br/tarefa/4343213#readmore\n", + "\n", + "Vamos testar este exemplo na prática, através de um simulador que capaz de realizar **n** lançamentos, e comparar os resultados com a probabilidade teórica calculada (16/216 = 0.074074)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simulador para rolagem de três dados, obtendo o resultado 6 em pelo menos dois dados" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 56, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Digite o número de pessoas: 40\n", - "Digite o número de repetições: 10000\n", - "Em 40 pessoas e 10000 testes deram-se 8905 vezes em que pelo menos duas pessoas fazem anos no mesmo dia, percentagem: 89.05%\n" + "CPU times: user 4.83 ms, sys: 74.8 ms, total: 79.6 ms\n", + "Wall time: 79.4 ms\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAG4NJREFUeJzt3X+0XWV95/H3xwCK5UdQIkMJGqupLXWNChmI0loUByJW47QwRR0JDJ2ssVh1Rlel7ayCv2bhcvxRa6sLJZK4RKBaS2qhmAKKbQUSBPlZSgoUUqjEBhBrxQG/88d+rpy5+9zck4Tcc294v9Y66+797Gfv8zxnn3s+Z/84e6eqkCRp0FPG3QBJ0uxjOEiSegwHSVKP4SBJ6jEcJEk9hoMkqcdwkCT1GA6SpB7DQZLUs9solZLMBz4DvBAo4L8CtwEXAIuAu4D/XFUPJAnwB8BxwA+Ak6vqW205K4D/1Rb7/qpa3coPA84F9gQuBt5e0/x0e//9969FixaN2E1J0rXXXvvdqlowSt2RwoHuw/4vq+r4JHsATwd+F7isqs5KcjpwOvBu4NXA4vY4AvgkcESSZwBnAEvoAubaJGur6oFWZyVwFV04LAMu2VqDFi1axIYNG0ZsviQpyT+OWnfa3UpJ9gFeDpwDUFU/qqoHgeXA6lZtNfD6NrwcWFOdq4D5SQ4EjgXWVdWWFgjrgGVt2j5V9c22tbBmYFmSpDEY5ZjDzwCbgc8muS7JZ5L8FHBAVd0H0P4+q9U/CLhnYP5NrWxr5ZuGlPckWZlkQ5INmzdvHqHpkqTtMUo47AYcCnyyql4C/CvdLqSpZEhZbUd5v7Dq7KpaUlVLFiwYabeZJGk7jBIOm4BNVXV1G/8iXVh8p+0Sov29f6D+wQPzLwTunaZ84ZBySdKYTBsOVfXPwD1JXtCKjgZuAdYCK1rZCuCiNrwWOCmdpcBDbbfTpcAxSfZLsh9wDHBpm/ZwkqXtTKeTBpYlSRqDUc9W+i3g8+1MpTuAU+iC5cIkpwJ3Aye0uhfTnca6ke5U1lMAqmpLkvcB61u991bVljb8Fh4/lfUSpjlTSZK0c2Wu3gluyZIl5amskjS6JNdW1ZJR6voLaUlSz6i7lXYp511999DyNx7x7BluiSTNTm45SJJ6DAdJUo/hIEnqMRwkST2GgySpx3CQJPUYDpKkHsNBktRjOEiSegwHSVKP4SBJ6jEcJEk9hoMkqcdwkCT1GA6SpB7DQZLUYzhIknoMB0lSj+EgSeoxHCRJPYaDJKnHcJAk9RgOkqQew0GS1GM4SJJ6RgqHJHcluTHJ9Uk2tLJnJFmX5Pb2d79WniQfT7IxyQ1JDh1YzopW//YkKwbKD2vL39jmzRPdUUnS6LZly+EVVfXiqlrSxk8HLquqxcBlbRzg1cDi9lgJfBK6MAHOAI4ADgfOmAiUVmflwHzLtrtHkqQdtiO7lZYDq9vwauD1A+VrqnMVMD/JgcCxwLqq2lJVDwDrgGVt2j5V9c2qKmDNwLIkSWMwajgU8NUk1yZZ2coOqKr7ANrfZ7Xyg4B7Bubd1Mq2Vr5pSHlPkpVJNiTZsHnz5hGbLknaVruNWO/Iqro3ybOAdUn+bit1hx0vqO0o7xdWnQ2cDbBkyZKhdSRJO26kLYequrf9vR/4Mt0xg++0XUK0v/e36puAgwdmXwjcO035wiHlkqQxmTYckvxUkr0nhoFjgJuAtcDEGUcrgIva8FrgpHbW0lLgobbb6VLgmCT7tQPRxwCXtmkPJ1nazlI6aWBZkqQxGGW30gHAl9vZpbsB51XVXyZZD1yY5FTgbuCEVv9i4DhgI/AD4BSAqtqS5H3A+lbvvVW1pQ2/BTgX2BO4pD0kSWMybThU1R3Ai4aU/wtw9JDyAk6bYlmrgFVDyjcALxyhvZKkGeAvpCVJPYaDJKnHcJAk9RgOkqQew0GS1GM4SJJ6DAdJUo/hIEnqMRwkST2GgySpx3CQJPUYDpKkHsNBktRjOEiSegwHSVKP4SBJ6jEcJEk9hoMkqcdwkCT1GA6SpB7DQZLUYzhIknoMB0lSj+EgSeoxHCRJPYaDJKln5HBIMi/JdUm+0safm+TqJLcnuSDJHq38qW18Y5u+aGAZv9PKb0ty7ED5sla2McnpT1z3JEnbY1u2HN4O3Dow/kHgo1W1GHgAOLWVnwo8UFXPBz7a6pHkEOBE4BeAZcAft8CZB/wR8GrgEOANra4kaUxGCockC4HXAJ9p4wFeCXyxVVkNvL4NL2/jtOlHt/rLgfOr6pGquhPYCBzeHhur6o6q+hFwfqsrSRqTUbccPgb8NvDjNv5M4MGqerSNbwIOasMHAfcAtOkPtfo/KZ80z1TlPUlWJtmQZMPmzZtHbLokaVtNGw5JfgW4v6quHSweUrWmmbat5f3CqrOraklVLVmwYMFWWi1J2hG7jVDnSOB1SY4DngbsQ7clMT/Jbm3rYCFwb6u/CTgY2JRkN2BfYMtA+YTBeaYqlySNwbRbDlX1O1W1sKoW0R1Qvryq3gRcARzfqq0ALmrDa9s4bfrlVVWt/MR2NtNzgcXANcB6YHE7+2mP9hxrn5DeSZK2yyhbDlN5N3B+kvcD1wHntPJzgM8l2Ui3xXAiQFXdnORC4BbgUeC0qnoMIMlbgUuBecCqqrp5B9olSdpB2xQOVfU14Gtt+A66M40m1/khcMIU838A+MCQ8ouBi7elLZKkncdfSEuSegwHSVKP4SBJ6jEcJEk9hoMkqcdwkCT1GA6SpB7DQZLUYzhIknoMB0lSj+EgSeoxHCRJPYaDJKnHcJAk9ezI/Ryk7Xbe1XcPLX/jEc+e4ZZIGsYtB0lSj+EgSeoxHCRJPYaDJKnHcJAk9RgOkqQew0GS1GM4SJJ6DAdJUo/hIEnqMRwkST2GgySpZ9pwSPK0JNck+XaSm5O8p5U/N8nVSW5PckGSPVr5U9v4xjZ90cCyfqeV35bk2IHyZa1sY5LTn/huSpK2xShbDo8Ar6yqFwEvBpYlWQp8EPhoVS0GHgBObfVPBR6oqucDH231SHIIcCLwC8Ay4I+TzEsyD/gj4NXAIcAbWl1J0phMGw7V+X4b3b09Cngl8MVWvhp4fRte3sZp049OklZ+flU9UlV3AhuBw9tjY1XdUVU/As5vdSVJYzLSMYf2Df964H5gHfAPwINV9Wirsgk4qA0fBNwD0KY/BDxzsHzSPFOVD2vHyiQbkmzYvHnzKE2XJG2HkcKhqh6rqhcDC+m+6f/8sGrtb6aYtq3lw9pxdlUtqaolCxYsmL7hkqTtsk1nK1XVg8DXgKXA/CQTd5JbCNzbhjcBBwO06fsCWwbLJ80zVbkkaUxGOVtpQZL5bXhP4FXArcAVwPGt2grgoja8to3Tpl9eVdXKT2xnMz0XWAxcA6wHFrezn/agO2i99ononCRp+4xyD+kDgdXtrKKnABdW1VeS3AKcn+T9wHXAOa3+OcDnkmyk22I4EaCqbk5yIXAL8ChwWlU9BpDkrcClwDxgVVXd/IT1UJK0zaYNh6q6AXjJkPI76I4/TC7/IXDCFMv6APCBIeUXAxeP0F5J0gzwF9KSpB7DQZLUYzhIknoMB0lSj+EgSeoxHCRJPYaDJKnHcJAk9RgOkqQew0GS1GM4SJJ6DAdJUo/hIEnqMRwkST2GgySpx3CQJPUYDpKkHsNBktRjOEiSegwHSVKP4SBJ6jEcJEk9hoMkqcdwkCT1GA6SpB7DQZLUYzhIknqmDYckBye5IsmtSW5O8vZW/owk65Lc3v7u18qT5ONJNia5IcmhA8ta0erfnmTFQPlhSW5s83w8SXZGZyVJoxlly+FR4J1V9fPAUuC0JIcApwOXVdVi4LI2DvBqYHF7rAQ+CV2YAGcARwCHA2dMBEqrs3JgvmU73jVJ0vaaNhyq6r6q+lYbfhi4FTgIWA6sbtVWA69vw8uBNdW5Cpif5EDgWGBdVW2pqgeAdcCyNm2fqvpmVRWwZmBZkqQx2KZjDkkWAS8BrgYOqKr7oAsQ4Fmt2kHAPQOzbWplWyvfNKR82POvTLIhyYbNmzdvS9MlSdtg5HBIshfwJeAdVfW9rVUdUlbbUd4vrDq7qpZU1ZIFCxZM12RJ0nYaKRyS7E4XDJ+vqj9txd9pu4Rof+9v5ZuAgwdmXwjcO035wiHlkqQxGeVspQDnALdW1UcGJq0FJs44WgFcNFB+UjtraSnwUNvtdClwTJL92oHoY4BL27SHkyxtz3XSwLIkSWOw2wh1jgTeDNyY5PpW9rvAWcCFSU4F7gZOaNMuBo4DNgI/AE4BqKotSd4HrG/13ltVW9rwW4BzgT2BS9pDkjQm04ZDVf01w48LABw9pH4Bp02xrFXAqiHlG4AXTtcWSdLM8BfSkqQew0GS1GM4SJJ6DAdJUo/hIEnqMRwkST2GgySpx3CQJPUYDpKkHsNBktRjOEiSegwHSVKP4SBJ6jEcJEk9hoMkqcdwkCT1GA6SpB7DQZLUYzhIknoMB0lSj+EgSeoxHCRJPYaDJKnHcJAk9RgOkqQew0GS1DNtOCRZleT+JDcNlD0jybokt7e/+7XyJPl4ko1Jbkhy6MA8K1r925OsGCg/LMmNbZ6PJ8kT3UlJ0rYZZcvhXGDZpLLTgcuqajFwWRsHeDWwuD1WAp+ELkyAM4AjgMOBMyYCpdVZOTDf5OeSJM2wacOhqq4EtkwqXg6sbsOrgdcPlK+pzlXA/CQHAscC66pqS1U9AKwDlrVp+1TVN6uqgDUDy5Ikjcn2HnM4oKruA2h/n9XKDwLuGai3qZVtrXzTkHJJ0hg90Qekhx0vqO0oH77wZGWSDUk2bN68eTubKEmazvaGw3faLiHa3/tb+Sbg4IF6C4F7pylfOKR8qKo6u6qWVNWSBQsWbGfTJUnT2d5wWAtMnHG0ArhooPykdtbSUuChttvpUuCYJPu1A9HHAJe2aQ8nWdrOUjppYFmSpDHZbboKSb4AHAXsn2QT3VlHZwEXJjkVuBs4oVW/GDgO2Aj8ADgFoKq2JHkfsL7Ve29VTRzkfgvdGVF7Ape0hyRpjKYNh6p6wxSTjh5St4DTpljOKmDVkPINwAuna4ckaeb4C2lJUo/hIEnqMRwkST2GgySpx3CQJPVMe7aSpCef866+e2j5G4949gy3ROPiloMkqcdwkCT1GA6SpB7DQZLUYzhIknoMB0lSj+EgSeoxHCRJPYaDJKnHcJAk9RgOkqQew0GS1GM4SJJ6DAdJUo/hIEnqMRwkST2GgySpx3CQJPUYDpKkHsNBktRjOEiSemZNOCRZluS2JBuTnD7u9kjSk9lu424AQJJ5wB8B/xHYBKxPsraqbhlvyyRpPM67+u6h5W884tkz8vyzZcvhcGBjVd1RVT8CzgeWj7lNkvSkNSu2HICDgHsGxjcBR0yulGQlsLKNfj/Jbdv5fPsD351c+KbtXNiYDe3LHLQ/8N05ug4m21XWCUzqyxxeP7vMOnnTjvXlOaNWnC3hkCFl1SuoOhs4e4efLNlQVUt2dDmzwa7Sl12lH2BfZqNdpR8wc32ZLbuVNgEHD4wvBO4dU1sk6UlvtoTDemBxkucm2QM4EVg75jZJ0pPWrNitVFWPJnkrcCkwD1hVVTfvxKfc4V1Ts8iu0pddpR9gX2ajXaUfMEN9SVVv174k6UlutuxWkiTNIoaDJKlnlw6H6S7JkeSpSS5o069OsmjmWzm9EfpxcpLNSa5vj98YRzunk2RVkvuT3DTF9CT5eOvnDUkOnek2jmqEvhyV5KGBdfL7M93GUSU5OMkVSW5NcnOStw+pM+vXzYj9mBPrJcnTklyT5NutL+8ZUmfnfn5V1S75oDuw/Q/AzwB7AN8GDplU5zeBT7XhE4ELxt3u7ezHycAnxt3WEfrycuBQ4KYpph8HXEL3u5elwNXjbvMO9OUo4CvjbueIfTkQOLQN7w38/ZD32KxfNyP2Y06sl/Y679WGdweuBpZOqrNTP7925S2HUS7JsRxY3Ya/CBydZNgP8sZpl7m0SFVdCWzZSpXlwJrqXAXMT3LgzLRu24zQlzmjqu6rqm+14YeBW+muWjBo1q+bEfsxJ7TX+fttdPf2mHz20E79/NqVw2HYJTkmv1F+UqeqHgUeAp45I60b3Sj9APi1trn/xSQHD5k+F4za17nipW23wCVJfmHcjRlF2zXxErpvqoPm1LrZSj9gjqyXJPOSXA/cD6yrqinXyc74/NqVw2GUS3KMdNmOMRuljX8OLKqqfw/8FY9/m5hr5sL6GNW3gOdU1YuAPwT+bMztmVaSvYAvAe+oqu9Nnjxkllm5bqbpx5xZL1X1WFW9mO6KEYcneeGkKjt1nezK4TDKJTl+UifJbsC+zL5dBdP2o6r+paoeaaOfBg6bobY90XaZy6hU1fcmdgtU1cXA7kn2H3OzppRkd7oP1M9X1Z8OqTIn1s10/Zhr6wWgqh4EvgYsmzRpp35+7crhMMolOdYCK9rw8cDl1Y7uzCLT9mPSvt/X0e1rnYvWAie1M2OWAg9V1X3jbtT2SPLvJvb/Jjmc7n/tX8bbquFaO88Bbq2qj0xRbdavm1H6MVfWS5IFSea34T2BVwF/N6naTv38mhWXz9gZaopLciR5L7ChqtbSvZE+l2QjXeKeOL4WDzdiP96W5HXAo3T9OHlsDd6KJF+gO1tk/ySbgDPoDrRRVZ8CLqY7K2Yj8APglPG0dHoj9OV44C1JHgX+DThxFn7xmHAk8GbgxraPG+B3gWfDnFo3o/RjrqyXA4HV6W6E9hTgwqr6ykx+fnn5DElSz668W0mStJ0MB0lSj+EgSeoxHCRJPYaDJKnHcJilkpzWfukpSTPOcJhhSSrJhwfG35XkzEl13gw8Y+DCW2OX5Nwkx8+Cdpyc5KfH3Y6ZluRvd2DeM5O8axvq75vkzwcuFz30Nw1JZs37c3skmZ/kN8fdjtnKcJh5jwC/Os1P9ucB798ZT95+Zj8ntR8EnQyMNRxaO2ZUVb1sBp/uNOCWdv2ho4APt1/n72rm0132WkMYDjPvUbobhP+PyRMmvp1X1blVVRPfzNoNSr6e5MIkf5/krCRvajcDuTHJ81q9BUm+lGR9exzZys9McnaSrwJr0t1I5LNt3uuSvGJIW5LkE0luSfIXwLMGph3W2nNtkksz5NLNSV6b7gYk1yX5qyQHtPK9Bp77hiS/1sqPSfLNJN9K8icTu9SS3JXk95P8NfAGYAnw+XQ3atkzydHtOW5MdwOep7b5zmptvyHJ/xnSvjOTfC7J5UluT/LfBvr9oSQ3tWX++sA6uCLJecCNQ5a3tfa/p5XfmOTnWvkv5/EbzlyXZO/22lw2UHf5wPK/v7X2DWnP76W7QdRfAS8YKH9ekr9s6+4bE+2ZpIC9kwTYi+7Xt48Oe56Bddprd5JF6W688+l0WyBfTXcpCJI8v70vvt3acnCr/422nG8lednAa//17Nj7f1WSryW5I8nbWtPPAp7X1sGHtrLuD0xyZat3U5Jfmuq12KXszBtW+Bh6E4/vA/sAd9FdKOtdwJlt2rnA8YN129+jgAfpflL/VOCfgPe0aW8HPtaGzwN+sQ0/m+4aMwBnAtcCe7bxdwKfbcM/B9wNPG1SO38VWEe3FfPT7fmPp7tExN8CC1q9X6e7pMfkfu7H47/A/w3gw234gxPtHai3P3Al8FOt7N3A77fhu4DfHqj/NWBJG34a3SWLf7aNrwHeATwDuG3g+ecPad+ZdDdO2rM9/z2tn7820O8D2mtzYFsH/wo8d8iypmv/b7Xh3wQ+04b/HDiyDe9Fdymb3YB9Bpa5caAPE++Foe2b1J7D6ALs6XTvtY3Au9q0y4DFbfgIuuvxTO7P3sAVwH1079fXTPVebn+HthtYRBcqL27TLgT+Sxu+GnhdG96zPZ5Oex8Ci+kuEwFPzPv/b9u8+9NdS2n31r6bBvoz1bp/J/B7rc48YO9xf47MxGPO7mKYy6rqe0nWAG+ju77LKNZXu9BZkn8AvtrKbwQmvvm/Cjgkj9/vY58ke7fhtVU18Vy/SHe5Yqrq75L8I/CzwA0Dz/dy4AtV9Rhwb5LLW/kLgBcC69rzzKP7EJlsIXBBuq2KPYA7B9r4k2vAVNUDSX4FOAT4m7bMPYBvDizrgilekxcAd1bV37fx1XS7RD4B/BD4TLqtnq9MMf9F7TX5tyRX0N1Y6RcH+v2dJF8H/gPwPeCaqrpzyHKWTtP+iauDXksXugB/A3wkyeeBP62qTemuKPq/k7wc+DHd9foPAP55YFlTtW/wYoy/BHy5qn4AkGRt+7sX8DLgTwbeI08d0p9jgeuBVwLPo1vX36j+5a8nZIp2Q7d+Jq5zdC2wqL0nD6ru+kBMvC+T7At8IsmLgcfo3pMTdvT9/xfVXbn4kST3D7Rv0FSv7XpgVVs/fzbQn12a4TA+H6O7tvxnB8oepe3qa5v0g/t5HxkY/vHA+I95fD0+BXjpQAjQlgXdt96fFI3YxmEX3gpwc1W9dJp5/xD4SFWtTXIU3be3ifmH3VdjXVW9YYpl/esU5UP7Ud3FCg8HjqYLorfSfdD1qg4Z39prs7V2bK39E+vqMdq6qqqzWnAdB1yV5FV0IbMAOKyq/m+Su+i2jiY/1yiGrbunAA9Wd4+ArTkFOKu6r8obk9xJt4V5zRT137SVdg++bx+j20IY9h6Ablfrd4AXtbb+cGDajr7/J7dj2GffVO+nK1vwvYbuQncfqqo1w+ruSjzmMCZVtYVuM/vUgeK7ePxeDMtpV/ncBl+l+yAEoH0DG+ZKun9okvws3Sb4bUPqnJjublQH8vi3s9uABUle2ubfPcPvprUv3eY/PH5Z4WFt3A+4CjgyyfNb2dNbu4Z5mG63B3SXMF40MR/dFTm/3r4h71vd9frfAUz1OixPd/zlmXS7Lta3fv966/cCui2oqT4UJ2xL+yf6/byqurGqPghsoPvw3Re4v33AvgJ4zpBZR2nflcB/SndMZm/gtdBtsQJ3JjmhtSFJXjTkOe6mC1bSHSt6AXDHVrozSrt/orXjn5K8tj3Hnu1YxL7AfVX1Y7p1ua0H/kd9/08YfC/BFK9tkufQ9e/TdFdCPXQb2zUnGQ7j9WG6faATPg38cpJr6PYHT/VNdSpvA5akOwh7C/Dfp6j3x8C8JDfS7bI5uR6/WdCELwO30222fxL4OkB197E+Hvhgkm/T7X4YdibNmXS7L74BfHeg/P3Afu3A3reBV1TVZrqzkL6Q5Aa6D9thB0qhOy7zqXSXZA7dt9w/aX35MfApun/4r7RlfZ0hB/+ba4C/aM/3vqq6t/X7BrrjEZfTHe/45ynmp70m29L+Ce8YeA3+DbgE+Dzd+ttAF96Tr9/PKO2r7j7KF9Ctmy8B3xiY/Cbg1Pa8NzP8fuTvA17WXtPLgHdX1XeH1JswSrsnezPwP5Pc19r3TLr35YokV9HtUtpZ73+gu0kW3a7Am5J8iKlf26OA65NcR3dc4g+2sV1zkpfs1pNSut+WfL+qemcyaeYkeSPd1sIV426L/n9uOUgaiyTvpNtKmfHfjWh6bjlIknrccpAk9RgOkqQew0GS1GM4SJJ6DAdJUs//A46IXFaciBdcAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "\n", + "# definimos a quantidade de ensaios.\n", + "\n", + "n = 100000\n", + "quantidade_ensaios = n\n", + "\n", + "# definimos a quantidade de lançamentos por ensaio.\n", + "lançamentos = 3\n", + "\n", + "# definimos a probabilidade de obter cada em cada lançamento.\n", + "probabilidade_sucesso = 1/6\n", + "\n", + "# binomial retorna o número de sucessos de cada vez que se realizou um ensaio de 8 lançamentos.\n", + "%time samples_binomial = np.random.binomial(n = lançamentos, p = probabilidade_sucesso, size = quantidade_ensaios)\n", + "\n", + "# construímos um gráfico.\n", + "eixo_x = 'Número de acertos por ensaio de 8 lançamentos'\n", + "sns.distplot(samples_binomial, axlabel = eixo_x, kde = False);" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 57993\n", + "1 34518\n", + "2 6984\n", + "3 505\n", + "dtype: int64" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.value_counts(samples_binomial)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.07489" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "simulator = (pd.value_counts(samples_binomial)[2] + pd.value_counts(samples_binomial)[3])/n\n", + "simulator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comparação do resultado do simulador com a probabilidade nominal" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.07407407407407407" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "probability = 16/216\n", + "probability" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A diferença do simulador para 100000 jogadas é 0.0008159259259259283\n" + ] + } + ], + "source": [ + "print('A diferença do simulador para',n,'jogadas é',simulator-probability)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulação da rolagem de dois dados com a distribuição dos resultados\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "O programa representa o total da rolagem de dois dados por **n** vezes e exibe o total dso valores acumuladdos em um histograma através da função **roll_pair( )** que exibe o total das possibilidades dentro do intervalo de **n** vezes. Para a rolagem 1 e a rolagem 2, a função **random** escolherá um número inteiro aleatório de 1-6, e após isso o total da rolagem 1 será adicionado ao total da rolagem 2. Isto irá repetir **n** vezes e depois produzir um histograma, plotando os totais acumulados em uma distribuição.\n", + "\n", + "Sabemos que o valor médio da distribuição é 7 calculado como (2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12) / 12 ou 77/11 = 7.\n", + "\n", + "Podemos ver que a média da amostra não está extatamente no ponto médio, o que é esperado porque é uma estimativa da média populacional, ou amostra.\n", + "\n", + "O procedimento mias interessante aqui é aumentar o **n** e identificar que a média cada vez mais se aproxima da probabilidade teórica nominal. De acordo com o teorema do limite central, o histograma dessas médias amostrais será uma **Distribuição Normal** ou **Gaussiana**, de acordo com o *teorema do limite central*.\n", + "\n", + "O exemplo abaixo realiza este experimento e plota a distribuição resultante de médias amostrais.\n", + "\n", + "Para uma ferramente interativa online [clique aqui](https://www.openprocessing.org/sketch/124236/)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import random\n", + "%matplotlib inline\n", + "\n", + "plt.ion()\n", + "\n", + "def roll_pair():\n", + " total = []\n", + " n=1000\n", + " for choice in range(n):\n", + " roll1 = random.randint(1,6)\n", + " roll2 = random.randint(1,6)\n", + " total += [(roll1+roll2)]\n", + " \n", + " print (total)\n", + " \n", + " plt.hist(total)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2, 8, 8, 7, 9, 10, 10, 9, 9, 9, 5, 6, 5, 8, 9, 4, 7, 4, 9, 10, 9, 8, 6, 10, 10, 7, 9, 11, 8, 6, 7, 7, 7, 4, 6, 5, 3, 9, 5, 7, 8, 8, 6, 6, 11, 12, 10, 10, 4, 6, 7, 11, 8, 9, 9, 4, 9, 7, 3, 8, 6, 9, 11, 8, 5, 5, 5, 8, 8, 9, 6, 5, 7, 4, 7, 8, 9, 4, 3, 9, 11, 4, 7, 9, 5, 4, 11, 7, 7, 8, 11, 5, 8, 8, 4, 5, 7, 5, 11, 6, 7, 3, 7, 5, 7, 4, 7, 7, 6, 11, 4, 9, 6, 12, 8, 8, 6, 8, 6, 4, 5, 8, 9, 9, 10, 9, 10, 7, 10, 7, 6, 8, 5, 7, 5, 8, 9, 5, 11, 6, 4, 6, 5, 4, 8, 8, 8, 6, 11, 3, 9, 6, 7, 7, 8, 7, 11, 2, 11, 10, 5, 2, 4, 9, 9, 8, 8, 11, 4, 11, 6, 5, 8, 4, 6, 5, 4, 6, 5, 5, 12, 6, 7, 8, 11, 5, 12, 6, 10, 3, 9, 7, 3, 3, 6, 7, 7, 5, 12, 7, 10, 6, 7, 4, 9, 2, 7, 4, 2, 7, 7, 11, 8, 11, 6, 10, 7, 4, 6, 9, 6, 4, 9, 6, 7, 7, 4, 7, 7, 8, 9, 11, 4, 3, 7, 7, 10, 10, 7, 3, 9, 5, 3, 7, 3, 10, 8, 11, 5, 11, 5, 8, 12, 7, 3, 3, 11, 9, 5, 3, 7, 5, 12, 9, 11, 6, 5, 8, 7, 9, 7, 6, 8, 6, 6, 6, 4, 9, 10, 11, 10, 11, 7, 11, 4, 10, 11, 6, 9, 7, 6, 8, 8, 9, 11, 9, 2, 9, 7, 7, 8, 9, 11, 7, 11, 9, 4, 11, 7, 10, 8, 6, 10, 10, 10, 6, 7, 2, 11, 12, 10, 6, 4, 10, 9, 8, 7, 8, 11, 12, 10, 7, 4, 10, 4, 9, 8, 7, 7, 6, 3, 7, 7, 4, 6, 10, 3, 6, 4, 6, 6, 5, 7, 3, 8, 8, 6, 9, 11, 9, 8, 3, 3, 6, 4, 8, 6, 5, 7, 11, 8, 9, 5, 7, 6, 9, 9, 7, 10, 6, 9, 5, 9, 4, 4, 5, 2, 4, 3, 9, 4, 8, 9, 8, 8, 6, 12, 11, 10, 10, 9, 9, 4, 3, 9, 7, 2, 8, 7, 5, 6, 9, 7, 9, 5, 5, 7, 9, 4, 7, 9, 8, 6, 9, 7, 8, 9, 10, 8, 11, 3, 6, 8, 10, 12, 12, 11, 9, 4, 7, 7, 6, 9, 4, 10, 4, 6, 8, 6, 7, 6, 5, 6, 5, 3, 3, 7, 7, 8, 7, 10, 9, 7, 8, 6, 10, 5, 7, 8, 11, 12, 6, 2, 12, 3, 4, 5, 2, 10, 7, 6, 5, 8, 3, 5, 7, 3, 7, 11, 7, 3, 7, 7, 12, 6, 3, 11, 7, 4, 3, 7, 5, 9, 8, 9, 9, 4, 5, 5, 3, 11, 5, 8, 6, 5, 3, 8, 8, 7, 4, 4, 8, 6, 7, 8, 6, 10, 7, 8, 3, 7, 10, 5, 6, 7, 6, 8, 3, 2, 4, 3, 5, 7, 6, 2, 6, 7, 3, 4, 7, 3, 7, 7, 6, 8, 10, 9, 7, 7, 10, 11, 9, 2, 4, 7, 8, 5, 9, 5, 9, 6, 10, 5, 6, 12, 5, 10, 8, 9, 9, 5, 4, 7, 6, 10, 8, 4, 8, 7, 8, 8, 5, 9, 9, 6, 2, 2, 5, 4, 7, 4, 7, 10, 11, 5, 5, 6, 5, 5, 10, 8, 11, 7, 4, 7, 6, 3, 7, 8, 12, 7, 2, 7, 4, 10, 7, 6, 11, 8, 3, 5, 3, 6, 9, 8, 7, 11, 5, 7, 8, 5, 3, 12, 6, 9, 12, 7, 9, 12, 3, 6, 9, 3, 3, 7, 7, 10, 7, 4, 7, 5, 9, 12, 3, 6, 9, 9, 6, 8, 7, 6, 3, 7, 2, 9, 4, 7, 8, 2, 11, 12, 3, 8, 2, 5, 7, 4, 4, 8, 12, 6, 6, 6, 5, 4, 8, 8, 7, 7, 11, 7, 4, 12, 5, 7, 8, 3, 7, 3, 8, 5, 5, 8, 9, 3, 7, 5, 7, 6, 2, 11, 6, 9, 9, 7, 11, 8, 8, 11, 3, 8, 4, 9, 5, 11, 12, 3, 9, 4, 9, 9, 6, 10, 10, 11, 11, 5, 5, 8, 9, 10, 4, 6, 9, 9, 8, 7, 7, 3, 6, 6, 4, 9, 6, 6, 5, 6, 7, 6, 7, 4, 5, 4, 6, 9, 3, 6, 9, 8, 11, 7, 7, 5, 8, 11, 7, 7, 11, 10, 7, 4, 2, 8, 9, 10, 5, 9, 6, 2, 4, 5, 10, 7, 10, 2, 10, 9, 6, 10, 5, 4, 3, 12, 3, 6, 9, 7, 7, 9, 6, 6, 9, 7, 9, 7, 6, 6, 9, 3, 8, 4, 5, 8, 8, 5, 8, 12, 8, 5, 5, 8, 11, 7, 12, 6, 8, 7, 8, 9, 4, 5, 4, 8, 10, 9, 7, 4, 8, 4, 4, 6, 8, 8, 7, 5, 3, 7, 5, 6, 10, 6, 8, 8, 7, 9, 5, 2, 6, 6, 3, 7, 10, 7, 5, 7, 6, 4, 8, 7, 3, 10, 8, 6, 11, 2, 7, 5, 5, 8, 6, 9, 7, 6, 8, 12, 8, 6, 8, 7, 8, 9, 6, 5, 2, 11, 2, 6, 11, 5, 11, 8, 6, 3, 6, 7, 8, 3, 6, 10, 6, 8, 7, 8, 10, 12, 8, 6, 6, 7, 7, 8, 8, 7, 7, 5, 5, 9, 3, 11, 8, 6, 10, 5, 7, 4, 8, 7, 4, 2, 7, 10, 6, 9, 7, 7, 7, 6, 2, 9, 8, 4, 10, 10, 9, 5, 2, 11, 8, 5, 7, 10, 9, 7, 4, 5, 4, 9, 2, 6, 7, 6, 5, 7, 8, 7, 8, 7, 9, 5, 10]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAD2VJREFUeJzt3X+sX3V9x/Hna61z88cCrhfCgO6CqWxKtM4b4mY0THSrQECX6Gicq0pWTWTTxWQWTaZZ4sKm6EzcMFU6MGMVB6JkoqNhRrJEnLfY1SKggBUKXXsFJ24YXOG9P+5p9rXc9l7u+X7vl/vp85F88z3n8z3nfN4nvX3lcz/3nPNNVSFJatfPjbsASdJoGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxq0cdwEAq1atqsnJyXGXIUnLyvbt239QVRPzbfeUCPrJyUmmp6fHXYYkLStJvr+Q7Zy6kaTGGfSS1DiDXpIaZ9BLUuPmDfokW5LsT7JroO3qJDu61+4kO7r2ySQ/GfjsE6MsXpI0v4VcdXMF8HHg0wcbqur3Dy4nuRT40cD2d1fV2mEVKEnqZ96gr6qbk0zO9VmSAG8AXjncsiRJw9J3jv7lwL6q+u5A2ylJvpnkq0le3vP4kqSe+t4wtR7YOrC+F1hdVQ8meQnw+SQvqKqHD90xyUZgI8Dq1at7liFJOpxFB32SlcDvAS852FZVjwKPdsvbk9wNPA94wm2vVbUZ2AwwNTXlN5TrKWty0xfH0u/uS84ZS79qT5+pm1cBd1TVnoMNSSaSrOiWTwXWAPf0K1GS1MdCLq/cCnwNOC3JniQXdh9dwM9O2wC8AtiZ5D+Aa4C3V9VDwyxYkvTkLOSqm/WHaX/zHG3XAtf2L0uSNCzeGStJjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuHmDPsmWJPuT7Bpo+0CS+5Ps6F5nD3x2cZK7ktyZ5HdHVbgkaWEWMqK/Alg3R/tHq2pt97oBIMnzgQuAF3T7/F2SFcMqVpL05M0b9FV1M/DQAo93PvCZqnq0qr4H3AWc0aM+SVJPfeboL0qys5vaObZrOxG4b2CbPV3bEyTZmGQ6yfTMzEyPMiRJR7LYoL8MeC6wFtgLXNq1Z45ta64DVNXmqpqqqqmJiYlFliFJms+igr6q9lXVY1X1OPBJ/n96Zg9w8sCmJwEP9CtRktTHooI+yQkDq68DDl6Rcz1wQZKnJzkFWAP8e78SJUl9rJxvgyRbgTOBVUn2AO8Hzkyyltlpmd3A2wCq6rYknwW+DRwA3lFVj42mdEnSQswb9FW1fo7my4+w/QeBD/YpSpI0PN4ZK0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklq3LxfPCJpPCY3fXFsfe++5Jyx9a3hc0QvSY1zRK9lYZyjW2m5c0QvSY2bN+iTbEmyP8mugbYPJbkjyc4k1yU5pmufTPKTJDu61ydGWbwkaX4LGdFfAaw7pG0bcHpVvRD4DnDxwGd3V9Xa7vX24ZQpSVqseYO+qm4GHjqk7caqOtCt3gKcNILaJElDMIw5+rcCXxpYPyXJN5N8NcnLh3B8SVIPva66SfI+4ABwVde0F1hdVQ8meQnw+SQvqKqH59h3I7ARYPXq1X3KkCQdwaJH9Ek2AOcCb6yqAqiqR6vqwW55O3A38Ly59q+qzVU1VVVTExMTiy1DkjSPRQV9knXAe4DzquqRgfaJJCu65VOBNcA9wyhUkrQ4807dJNkKnAmsSrIHeD+zV9k8HdiWBOCW7gqbVwB/keQA8Bjw9qp6aM4DS5KWxLxBX1Xr52i+/DDbXgtc27coSdLweGesJDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxfPCLpCcb1RS9+heFoOKKXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY1b0GOKk2wBzgX2V9XpXdtzgKuBSWA38Iaq+mGSAB8DzgYeAd5cVbcOv3SNw7geXytp8RY6or8CWHdI2ybgpqpaA9zUrQO8BljTvTYCl/UvU5K0WAsK+qq6GXjokObzgSu75SuB1w60f7pm3QIck+SEYRQrSXry+szRH19VewG69+O69hOB+wa229O1SZLGYBR/jM0cbfWEjZKNSaaTTM/MzIygDEkS9Av6fQenZLr3/V37HuDkge1OAh44dOeq2lxVU1U1NTEx0aMMSdKR9An664EN3fIG4AsD7X+YWS8FfnRwikeStPQWennlVuBMYFWSPcD7gUuAzya5ELgXeH23+Q3MXlp5F7OXV75lyDVLkp6EBQV9Va0/zEdnzbFtAe/oU5QkaXi8M1aSGregEb0ktWycd3zvvuSckffhiF6SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjfOhZsvQOB/AJGn5cUQvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGrfoyyuTnAZcPdB0KvDnwDHAHwEzXft7q+qGRVcoSepl0UFfVXcCawGSrADuB64D3gJ8tKo+PJQKJUm9DGvq5izg7qr6/pCOJ0kakmEF/QXA1oH1i5LsTLIlybFD6kOStAi9gz7JzwPnAf/UNV0GPJfZaZ29wKWH2W9jkukk0zMzM3NtIkkagmGM6F8D3FpV+wCqal9VPVZVjwOfBM6Ya6eq2lxVU1U1NTExMYQyJElzGUbQr2dg2ibJCQOfvQ7YNYQ+JEmL1OvplUmeAbwaeNtA818nWQsUsPuQzyRJS6xX0FfVI8AvH9L2pl4VSZKGyufRS3rK8LsWRsNHIEhS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1Divo+/Ba34lLQeO6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuN4PNUuyG/gx8BhwoKqmkjwHuBqYBHYDb6iqH/btS5L05A1rRP/bVbW2qqa69U3ATVW1BripW5ckjcGopm7OB67slq8EXjuifiRJ8xhG0BdwY5LtSTZ2bcdX1V6A7v24Q3dKsjHJdJLpmZmZIZQhSZrLML545GVV9UCS44BtSe5YyE5VtRnYDDA1NVVDqEOSNIfeI/qqeqB73w9cB5wB7EtyAkD3vr9vP5KkxekV9EmemeTZB5eB3wF2AdcDG7rNNgBf6NOPJGnx+k7dHA9cl+Tgsf6xqr6c5BvAZ5NcCNwLvL5nP5KkReoV9FV1D/CiOdofBM7qc2xJ0nB4Z6wkNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXHD+HLwsZvc9MVxlyBJT1mO6CWpcQa9JDXOoJekxi066JOcnOQrSW5PcluSd3btH0hyf5Id3evs4ZUrSXqy+vwx9gDw7qq6Ncmzge1JtnWffbSqPty/PElSX4sO+qraC+ztln+c5HbgxGEVJkkajqHM0SeZBF4MfL1ruijJziRbkhw7jD4kSYvTO+iTPAu4FnhXVT0MXAY8F1jL7Ij/0sPstzHJdJLpmZmZvmVIkg6jV9AneRqzIX9VVX0OoKr2VdVjVfU48EngjLn2rarNVTVVVVMTExN9ypAkHUGfq24CXA7cXlUfGWg/YWCz1wG7Fl+eJKmvPlfdvAx4E/CtJDu6tvcC65OsBQrYDbytV4WSpF76XHXzb0Dm+OiGxZcjSRo274yVpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJatzIgj7JuiR3JrkryaZR9SNJOrKRBH2SFcDfAq8Bng+sT/L8UfQlSTqyUY3ozwDuqqp7quqnwGeA80fUlyTpCEYV9CcC9w2s7+naJElLbOWIjps52upnNkg2Ahu71f9OcmeP/lYBP+ix/3JztJ0veM5Hi6PunPNXvc75Vxey0aiCfg9w8sD6ScADgxtU1WZg8zA6SzJdVVPDONZycLSdL3jORwvPeTRGNXXzDWBNklOS/DxwAXD9iPqSJB3BSEb0VXUgyUXAvwArgC1Vddso+pIkHdmopm6oqhuAG0Z1/EMMZQpoGTnazhc856OF5zwCqar5t5IkLVs+AkGSGrdsgz7JyUm+kuT2JLcleee4a1oqSVYk+WaSfx53LUshyTFJrklyR/fv/ZvjrmnUkvxp93O9K8nWJL8w7pqGLcmWJPuT7Bpoe06SbUm+270fO84ah+0w5/yh7md7Z5Lrkhwz7H6XbdADB4B3V9WvAy8F3nEUPWbhncDt4y5iCX0M+HJV/RrwIho/9yQnAn8CTFXV6cxe0HDBeKsaiSuAdYe0bQJuqqo1wE3dekuu4InnvA04vapeCHwHuHjYnS7boK+qvVV1a7f8Y2b/8zd/922Sk4BzgE+Nu5alkOSXgFcAlwNU1U+r6r/GW9WSWAn8YpKVwDM45D6UFlTVzcBDhzSfD1zZLV8JvHZJixqxuc65qm6sqgPd6i3M3nc0VMs26AclmQReDHx9vJUsib8B/gx4fNyFLJFTgRng77vpqk8leea4ixqlqrof+DBwL7AX+FFV3TjeqpbM8VW1F2YHc8BxY65nqb0V+NKwD7rsgz7Js4BrgXdV1cPjrmeUkpwL7K+q7eOuZQmtBH4DuKyqXgz8D+39Ov8zunnp84FTgF8BnpnkD8ZblUYtyfuYnZK+atjHXtZBn+RpzIb8VVX1uXHXswReBpyXZDezTwR9ZZJ/GG9JI7cH2FNVB39bu4bZ4G/Zq4DvVdVMVf0v8Dngt8Zc01LZl+QEgO59/5jrWRJJNgDnAm+sEVzzvmyDPkmYnbe9vao+Mu56lkJVXVxVJ1XVJLN/nPvXqmp6pFdV/wncl+S0ruks4NtjLGkp3Au8NMkzup/zs2j8D9ADrgc2dMsbgC+MsZYlkWQd8B7gvKp6ZBR9LNugZ3Z0+yZmR7U7utfZ4y5KI/HHwFVJdgJrgb8ccz0j1f32cg1wK/AtZv+fNnfHaJKtwNeA05LsSXIhcAnw6iTfBV7drTfjMOf8ceDZwLYuxz4x9H69M1aS2racR/SSpAUw6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJatz/AcvW3IjDSy8tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "roll_pair()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# AVANÇADO\n", + "\n", + "Para fixação dos conceitos de probabilidade, passamos problemas matemáticos clássicos envolvendo o cálculo das probabilidades para os resultados em **Python.** \n", + "\n", + "- (1) Paradoxo do aniversariante\n", + "- (2) Paradoxo de Monty Hall - *Let's make a deal!*\n", + "- (3) Calculando **π** com simulação de Monte-Carlo " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# (1) Paradoxo do aniversariante\n", + "\n", + "Qual a probabilidade de duas pessoas fazerem aniversário no mesmo dia em uma sala com **N** pessoas?\n", + "\n", + "*fonte: Wikipedia*\n", + "\n", + "Em teoria das probabilidades, o paradoxo do aniversário afirma que dado um grupo de 23 (ou mais) pessoas escolhidas aleatoriamente, a chance de que duas pessoas terão a mesma data de aniversário é de mais de 50%. Para 57 ou mais pessoas, a probabilidade é maior do que 99%, entretanto, ela não pode ser exatamente 100% exceto que se tenha pelo menos 367 pessoas. Calcular essa probabilidade (e as relacionadas a ela) é o problema do aniversário. A matemática por trás disso tem sido utilizada para executar o ataque do aniversário.\n", + "\n", + "O problema foi apresentado pela primeira vez pelo matemático polonês Richard von Mises. \n", + "\n", + "Para calcular aproximadamente a probabilidade de que em uma sala com n pessoas, pelo menos duas possuam o mesmo aniversário, desprezamos variações na distribuição, tais como anos bissextos, gêmeos, variações sazonais ou semanais, e assumimos que 365 possíveis aniversários são todos igualmente prováveis. Distribuições de aniversários na realidade não são uniformes uma vez que as datas não são equiprováveis.[1]\n", + "\n", + "É mais fácil calcular a probabilidade p(n) de que todos os n aniversários sejam diferentes. Se n > 365, pelo Princípio da Casa dos Pombos esta probabilidade é 0. Por outro lado, se n ≤ 365, ele é dado por \n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "porque a segunda pessoa não pode ter o mesmo aniversário do que o primeiro (364/365), o terceiro não pode ter o mesmo aniversário do que o segundo (363/365), etc.\n", + "\n", + "O evento de pelo menos duas pessoas entre n terem o mesmo aniversário é o complementar de todos n serem diferentes. Consequentemente, sua probabilidade p(n) é\n", + "\n", + "```python\n", + " p(n) = 1 − pc(n)\n", + "```\n", + "\n", + "Esta probabilidade ultrapassa 1/2 para n = 23 (com valor aproximado de 50.7%). A seguinte tabela mostra a probabilidade para alguns valores de n (ignorando anos bissextos como descrito anteriormente): \n", + "\n", + "
\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Digite o número de pessoas: 357\n", + "Digite o número de repetições: 1000\n", + "Em 357 pessoas e 1000 testes deram-se 1000 vezes em que pelo menos duas pessoas fazem anos no mesmo dia\n", + "percentagem(%): 100.00\n" ] } ], @@ -108,26 +536,25 @@ "num_loops = int(input(\"Digite o número de repetições: \")) # num de testes\n", "favoraveis = 0\n", "for _ in range(num_loops):\n", - " ani_dates = {random.randint(1, 366) for _ in range(num_p)} # sortear novo set de datas (dias) de aniversario\n", - " if(len(ani_dates) != num_p): # se o comprimento do set for diferente do num de pessoas\n", + " ani_dates = [random.randint(1, 366) for _ in range(num_p)] # sortear nova lista de datas (dias) de aniversario\n", + " if(any(ani_dates.count(i) > 1 for i in ani_dates)): # verificar se existe a mesma data (valor) mais do que uma vez na lista\n", " favoraveis += 1\n", "\n", "probs_perc = (favoraveis/num_loops)*100\n", - "print('Em {} pessoas e {} testes deram-se {} vezes em que pelo menos duas pessoas fazem anos no mesmo dia, percentagem: {}%'.format(num_p, num_loops, favoraveis, probs_perc))\n", - "\n", - "# Em 23 pessoas e 1000 testes deram-se 506 vezes em que pelo menos duas pessoas fazem anos no mesmo dia, percentagem: 50.6%" + "print('Em {} pessoas e {} testes deram-se {} vezes em que pelo menos duas pessoas fazem anos no mesmo dia'.format(num_p, num_loops, favoraveis))\n", + "print('percentagem(%):', \"%.2f\" %probs_perc)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEQCAYAAABBQVgLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XeYFeX5//H3vYUOSy/SmyBIU1Swo8beS2KNNUajUTTRr8bYYopJNGqayg+7RsEKYg+KXaQILEWKdGkLwoK7wLb798fM6mpWzmw5O2d3P6/rOtecmVPms+3cO8888zzm7oiIiOxKWtwBREQk9alYiIhIQioWIiKSkIqFiIgkpGIhIiIJqViIiEhCKhYiIpJQRpQnmVkmcDlwcLjpXeABdy9MVjAREUkdFuWiPDMbC2QCj4WbzgOK3f2SJGYTEZEUEbVYzHb3IYm2iYhI3RT1nEWxmfUuXTGzXkBxciKJiEiqiXTOArgOeMfMlgIGdAcuTFoqERFJKZGaoQDMrCHQj6BYfO7uO5MZTEREUscui4WZHebub5vZqeU97u4vJC2ZiIikjETNUIcAbwMnlPOYAyoWIiL1QMJmKDNLA0539/E1E6li2rZt6z169Ig7hohIrTFjxoyN7t6uIq9JeILb3UvM7EogJYtFjx49mD59etwxRERqDTNbUdHXRO06+5aZ/drMuppZ69JbRXcmIiK1U9SusxeFyyvKbHOgV/XGERGRVBSpWLh7z2QHERGR1BX1yAIz2xMYADQq3ebujycjlIiIpJYfLBZmtj8wy93zzexW4DCCZqfJwNHAB4CKhYhIPZDoBPeLZtYXOIOgWCx19wuAIUDDRG9uZg+b2QYzm1tmW2sze8vMFofLVuF2M7O/m9kSM5tjZntV+qsSEZFq9YPFwt0/IigSbYB8dy8m+ExvDGwg2sntRwmOQsq6AZjs7n0JjlJuCLcfA/QNb5cC90f/MkREJJl2eWTh7lvd/RNgupm1JGh2mgXMBBJe3ODu7wFffW/zSXw7L8ZjwMlltj/ugU+AlmbWKfJXIiIi3+Hu39xKSr69VUbU3lC/CO+ONbO3gJbuPrtSe4QO7r42fN+1ZtY+3N4ZWFXmeavDbWsruR8RqcMKi0vI21lEXkEx+TuL2F5YzM6iEgqKSthZVBwuv719f3tBUQnFJU5RSbgsdopLnMISp7ik5Jv1ohL/7vNK18PHS9xxoMQdPFiWODhOSUmQtcQdL/MYhM8J18u+tvS9SpxvtpUqveflbkvu9zvqtKoHEJzszgMOAvYys/vcvcJXAe5qN+VsK/fLN7NLCZqq6NatWzVGEJGaUFBUwpbtBeTmF7JleyFb8gvZkl9Abun97QXk7Swmb2cR+QXFfL2ziPyComBbQRH5O4spKC6p9P4z040G6WlkpKeRkWakp1mwTDcy0tK+Wc9IN9LTvn1OZnoajTLD56alkZ4GaWakmYGV3g8+zMpuK11PSwMIn2NlXhs+Hmz739damU9HCz8qv7ut9I79z7byXjv6zxX/nkXtOns/MMTMhgDXAw8RNEkdUvFdst7MOoVHFZ0Izn9AcCTRtczzugBrynsDdx8DjAEYPnx4kuupiESVX1DE6s3bWb91BznbdrJh284yyx3frG/bUfSD75GeZrRolEGzRhk0bZBB04YZNG+UQccWjWjaMIOmDdNp0iCDpg3Sv7PeODOdhplpNEhPo2FmerhM+2bZMP3bx9PSyvvftP4YXYnXRC0WRe7uZnYScJ+7P2Rm51difwATgfOBO8PlhDLbrzSzZ4D9gNzS5ioRSQ2FxSWs/CqfVV/ls3rzdlZtDparw/VNeQX/85rGmem0b9GQ9s0b0r9jcw7u247WTRvQqkkmLZs0oGWTTFo2DpZZTTJp3jADs/r9YZ6KohaLbWZ2I3AucLCZpQOZiV5kZk8DhwJtzWw1cCtBkRhvZhcDKwl6XAG8ChwLLAHy0Ux8IrEpKCph+aY8Fq//mkXrt7FkQ7BctjGPojInSBukp9G5VWO6tGrMkbtl0SW83ymrMe2aN6Rd84Y0axj52l9JYVF/ij8BzgYudvd1ZtYN+GuiF7n7WT/w0OHlPNf57thTIlIDdhQWM2/NVmat2sLsVVuYv3Yry8sUBTPo3roJfdo354gBHejTrhnd2jSha6smtG/esN436dQXCYtFeBTxpLsfUbrN3Veiq7dFap2SEmfZpjxmrdzCrFXBbcHard8Uht2yGjGwcxZHDexA3/bN6duhGb3bNaNRZnrMySVuUeazKDazfDPLcvfcmgglItXD3Vm0/ms++mIjH3+xianLviJ3eyEATRukM7hLS352cC+Gdm3JsK4tad+iUYJ3lPoqajPUDiA7vMYir3Sju1+VlFQiUmlb8gt4d1EOUxbm8P7iHDZ+HZx07tq6MUcN7MDw7q0Z2q0lvds1I11NSBJR1GLxSngTkRS0fGMer89bx1vz1/PZys2UOLRqksnBu7fjgD5tGdmrDV1bN4k7ptRiUa/gfiwcE6qbuy9MciYRiWDJhm1MmrOW1+eu4/N12wDYs3MLrjysL6P6tWNwl5Y6cpBqE/UK7hOAu4AGQE8zGwr8zt1PTGY4EfmuDVt3MHH2Gl6a9SVzv9yKGQzv3oqbjx/AUQM70KWVjh4kOaI2Q90G7AtMAXD3WWam2fNEakBhcQmTF2zgmWkreW9RDiUOgzpncfPxAzhhcCedlJYaUZEruHO/d1WlhtkQSaLVm/N55tNVjJ++ig3bdtKxRSMuP7Q3pwzrTJ/2zeOOJ/VM1GIx18zOBtLDyZCuAj5KXiyR+sndmblyM2PfX8Yb89bhwKh+7Tlr326M6teOjPRE85WJJEfUYvFL4CZgJ/Af4A3g98kKJVLfFBWX8NrcdYz9YBmzV20hq3EmPz+kN+fs103nISQlRC0W/dz9JoKCISLVpLC4hJc++5J/T/mCZRvz6Nm2KXecNJDT9u5CkwYaU0lSR9Tfxr+Fw4k/Czzj7vOSmEmkzisoKuH5mav595QlrPpqOwN3a8ED5+7FkQM6aqwlSUlRr7MYZWYdgR8DY8ysBTDO3dUUJVIBJSXOpOy13P3mQlZsymdI15bcdsJADuvfXsNyS0qLfJzr7uuAv5vZOwQTIN2CzluIRPbB4o3c+foC5n65lf4dm/PIBftwaL92KhJSK0S9KG8PgmHKTwc2Ac8Av0piLpE6Y2nO1/xu0nymLMyhS6vG3POTIZw0pLOam6RWiXpk8QjwNHCku5c71amIfNfXO4v4x9uLefiDZTTKSOe3x+3BeSO70zBDw31L7RP1nMWIZAcRqSvcnZfnrOUPr8xn/dadnLF3F64/uj/tmjeMO5pIpe2yWJjZeHf/sZll890rto1gcrvBSU0nUst8uWU7v30xm3cW5jCocxYPnLs3w7q1ijuWSJUlOrK4Olwen+wgIrVZSYnz5NQV/Pm1zylxuOX4AZy/fw+N+ip1xi6LhbuvDZcraiaOSO2zclM+v3p2FtOWb+agvm354ymDNHeE1DlRe0OdCvwZaE/QBFXaDNUiidlEUpq78+z01dz+8jzS0oy7zxjCqXt1VldYqZOi9ob6C3CCuy9IZhiR2uKrvAJueH4Ob85fz8hebbjrx0Po3LJx3LFEkiZqsVivQiES+OiLjVz9zCxy8wu56dg9uPjAnrpmQuq8qMViupmNA14iGHkWAHd/ISmpRFJQSYnzr3eWcM9/F9GzbVMev2hf9uikllipH6IWixZAPnBkmW0OqFhIvfBVXgGjx83ivUU5nDx0N/5wyiCaNtSosFJ/RL0o78JkBxFJVbNWbeGyJ2bwVX4BfzxlEGft21UnsaXeidobqhFwMTAQ+GbCX3e/KEm5RFLCCzNXc8ML2XRo0ZAXLt+fPTtnxR1JJBZR52h8AugIHAW8C3QBtiUrlEjcikucP766gGvHz2bvbq2YeMWBKhRSr0VtdO3j7meY2Unu/piZlU6tKlLn5G4v5KqnP+PdRTn8dGR3bj5+AJma+1rquajFojBcbjGzPYF1QI+kJBKJ0ZdbtnPhI5+yNCePP54yiLP36xZ3JJGUELVYjDGzVsBvgYlAM+DmpKUSicG8Nblc9Og08ncW8/hF+7J/n7ZxRxJJGVF7Q40N774H9EpeHJF4vL84h8ufnEnzRhk8e/lI+nfU9RMiZamjuNR7L8xczfXPzaFP+2Y8cuE+dMrSsB0i3xfbWTszu8bM5pnZXDN72swamVlPM5tqZovNbJyZNYgrn9QPj364jGvHz2bfnq0Zf9lIFQqRHxBLsTCzzsBVwHB33xNIB84kGNn2HnfvC2wmuLZDpNq5B0N33PbyfI4c0IGHL9iHFo0y444lkrIiFQszyzSzq8zsufD2SzOr6l9WBtDYzDKAJsBa4DDgufDxx4CTq7gPkf/h7tz5+uf89Y2FnDKsM/8+Zy8aZWpebJFdiXpkcT+wN/Dv8LZXuK1S3P1L4C5gJUGRyAVmAFvcvSh82mqgc3mvN7NLzWy6mU3PycmpbAyph0pKnJsnzOXBd5dy7ohu3H3GEDJ0DYVIQlFPcO/j7kPKrL9tZrMru9OwG+5JQE9gC/AscEw5T/VytuHuY4AxAMOHDy/3OSLfV1Li/HbCXP4zdSU/P6QXNxzdX2M8iUQU9V+qYjPrXbpiZr2A4irs9whgmbvnuHshwei1+wMtw2YpCIYUWVOFfYh8w925ZWJQKC4/tLcKhUgFRT2yuA54x8yWEkyp2h2oyki0K4ERZtYE2A4cDkwH3gFOB54BzgcmVGEfIkBQKG6dOI8nPwmOKK4/qp8KhUgFRb0ob7KZ9QX6ERSLz919Z4KX7er9pprZc8BMoAj4jKBZ6RXgGTP7fbjtocruQwSCQnH7y/N5/OMVXHqwmp5EKmuXxcLMTv2Bh3qbWZVmynP3W4Fbv7d5KbBvZd9T5Pv++sZCHv1oOZcc2JMbj1GhEKmsREcWJ4TL9gTnFCYTHFmMAqagmfIkhT347hf8e8oXnL1fN246bg8VCpEq2GWxKJ0hz8wmAQPcfW243gn4V/LjiVTO05+u5E+vfc7xgztxx0l7qlCIVFHU3lA9SgtFaD2wexLyiFTZpDlr+M2L2Rzarx1/+/FQ0tNUKESqKmpvqClm9gbwNMG1D2cS9FwSSSnvL87hmnGz2Kd7a+4/Z28aZOiCO5HqELU31JVmdgpwcLhpjLu/mLxYIhU3b00ulz85k97tmjH2guE0bqAhPESqS+QhysPioAIhKWn15nwufGQazRtl8OiF+2pQQJFqpvkspNbLzS/kgkemsb2wmOcu25+OWY3ijiRS56hBV2q1HYXF/OyJ6azclM+Y84bTr2PzuCOJ1Ek6spBay935v+fn8Omyr7jvzKGM7N0m7kgidVakYhEO9fEnYADwzTG+u2s+bonNv95ZwoRZa/j1kbtz0tByR7MXkWoStRnqEYL5K4oIrt5+HHgiWaFEEnktey13vbmIk4fuxhWj+sQdR6TOi1osGrv7ZMDcfYW730Ywq51Ijctencs142cxrFtL7jxtsK7OFqkBUc9Z7DCzNGCxmV0JfEkwXpRIjVq/dQeXPD6NNk0bMua84ZoOVaSGRD2yGE0wT/ZVBNOrnkcw34RIjdlRWMylT8xg244ixp4/nHbNG8YdSaTeiHoF97Tw7tdUbdIjkUpxd26ZMJfZq7bwwLl7sUenFnFHEqlXEs1nca+7jzazlylnPmx3PzFpyUTKeGrqSsZPX82Vo/pw9J6d4o4jUu8kOrIo7fF0V7KDiPyQ6cu/4vaX53Fov3Zc8yMNdiwSh0TzWcwIl+/WTByR71q/dQeXPzWTzi0bc9+ZwzTcuEhMEjVDZVNO81Mpdx9c7YlEQoXFJfziqZnk7SziyYv3I6uxBgcUiUuiZqjjw+UV4bK0WeocID8piURCd772OTNWbOYfZw3TmE8iMUvUDLUCwMwOcPcDyjx0g5l9CPwumeGk/np97loe+mAZF+zfgxOG7BZ3HJF6L+p1Fk3N7MDSFTPbH2ianEhS3y3fmMd1z85hSNeW/ObYPeKOIyJEv4L7YuBhM8siOIeRC1yUtFRSb+0oLObyp2aSlmb86+xhmhZVJEVEvShvBjDEzFoQjA+Vm9xYUl/dNnEeC9Zu5eELhtOlVZO444hIqELzWbj71mQFEZkw60uembaKXxzam8P6d4g7joiUoWN8SQkrNuVx04tzGd69FdfqwjuRlKNiIbErKCrhl09/RprBvWcOJSNdv5YiqSbqTHmZwOXAweGmd4EH3L0wWcGk/rjrzYXMWZ3LA+fupfMUIikq6jmL+4FM4N/h+nnhtkuSEUrqjykLNzDmvaWcO6KbBggUSWFRi8U+7j6kzPrbZjY7GYGk/sjZtpNfPzub/h2b89vjBsQdR0R2IWrjcLGZ9S5dMbNeQHFyIkl94O7c8Pwctu0o4h9nDdOMdyIpLuqRxXXAO2a2FDCgO5oESargmWmrmPz5Bm49YQB9O2jcJ5FUF/WivMlm1hfoR1AsPnf3nVXZsZm1BMYCexJcFX4RsBAYB/QAlgM/dvfNVdmPpJ7lG/O4Y9J8DuzTlvNH9og7johEELmPorvvdPc57j67qoUidB/wurv3B4YAC4AbgMnu3heYHK5LHVJUXMK142eRkWb89YzBpGl+CpFaIZYO7eGwIQcDDwG4e4G7bwFOAh4Ln/YYcHIc+SR5Hnj3C2au3MLvTxlEp6zGcccRkYgSFgsLdK3m/fYCcoBHzOwzMxtrZk2BDu6+FiBctq/m/UqMslfncu9/F3PikN04UcOOi9QqCYuFuzvwUjXvNwPYC7jf3YcBeVSgycnMLjWz6WY2PScnp5qjSTLsKCxm9LjPaNusIXectGfccUSkgqI2Q31iZvtU435XA6vdfWq4/hxB8VhvZp0AwuWG8l7s7mPcfbi7D2/Xrl01xpJkufO1z/kiJ4+7zhhCVhNNjypS20QtFqOAj83sCzObY2bZZjansjt193XAKjPrF246HJgPTATOD7edD0yo7D4kdby/OIdHP1rOhQf04MC+beOOIyKVEPU6i2OSsO9fAk+ZWQNgKcF1G2nAeDO7GFgJnJGE/UoN2pJfwK+fnU2f9s34v6P7xx1HRCop6nUWpXNxtwcaVceO3X0WMLychw6vjveX1HDzhHls+rqAh87fR1dpi9RikZqhzOxEM1sMLCMYcXY58FoSc0kdMHH2Gl6evYZrfrQ7e3bOijuOiFRB1HMWdwAjgEXu3pPgv/8Pk5ZKar2cbTu5ZcJchnZtyc8P7hV3HBGpoqjFotDdNwFpZpbm7u8AQ5OYS2q5WyfOJb+gmLvOGKzJjETqgKgnuLeYWTPgPYKT0huAouTFktrs1ey1vJq9juuP7kef9hokUKQuiPov30nAduAa4HXgC+CEZIWS2uurvAJumTCXQZ2zuPQgNT+J1BVRe0PllVl97AefKPXe7S/PI3d7IU9esp+an0TqkKi9oU41s8VmlmtmW81sm5ltTXY4qV3emr+eCbPWcMWoPvTv2CLuOCJSjaKes/gLcIK7L0hmGKm9cvMLuenFbPp3bM4vDu0TdxwRqWZRi8V6FQrZld+/Mp9NeQU8fME+NMhQ85NIXbPLYmFmp4Z3p5vZOILRZ7+Z+MjdX0hiNqklpizcwLMzVnPFqN66+E6kjkp0ZFG2x1M+cGSZdQdULOq5bTsK+c0L2fRp34xfHtY37jgikiS7LBbufmFNBZHa6U+vfc66rTt47vL9NfaTSB2WqBnq77t63N2vqt44Upt8tGQj/5m6kp8d1JO9urWKO46IJFGiZqgZNZJCap3tBcX83wtz6NGmCdf+qF/iF4hIrZaoGUoX4Em57p28iFVfbeeZS0fQuIGan0TqukTNUPe6+2gze5nghPZ3uPuJSUsmKWv+mq2MfX8ZPxnelRG92sQdR0RqQKJmqCfC5V3JDiK1Q3GJc+OL2bRqksmNx2rmO5H6IlEzVOk5i6Hufl/Zx8zsaoKJkKQeeeLj5cxetYX7zhxKyyYN4o4jIjUk6qW255ez7YJqzCG1wNrc7fz1jYUc1LctJw7ZLe44IlKDEp2zOAs4G+hlZhPLPNQc2JTMYJJ6bp0wj2J3/nDyIMws7jgiUoMSnbP4CFgLtAXuLrN9GzAnWaEk9bw+dx1vzl/PDcf0p1ubJnHHEZEaluicxQozWw3kubvOT9RT23YUctvEefTv2JyLD+wZdxwRiUHCcxbuXgzkm5lGiKun7npjIeu37eDO0waTqQmNROqlqEOU7wCyzewt4JtZ8zTcR9332crNPP7JCs4f2YOhXVvGHUdEYhK1WLwS3qQeKSwu4cYXsunQvBG/OnL3uOOISIyizsGtYT/qobHvL+Pzddt48Ly9ad4oM+44IhKjSMXCzPoCfwIGAI1Kt7t7ryTlkpit3JTPfZMXcdTADhw1sGPccUQkZlHPVj4C3A8UAaOAx/l2KBCpY9ydm17KJiMtjdtP3DPuOCKSAqIWi8buPhkwd1/h7rcBhyUvlsRpwqw1vL94I9cd1Y+OWY0Sv0BE6rzIvaHMLA1YbGZXAl8C7ZMXS+KyJb+AOybNZ2jXlpw7onvccUQkRUQ9shgNNAGuAvYGzqP88aKklvvjqwvI3V7In04dRHqahvQQkUDU3lDTAMKji6vcfVtSU0ksPv5iE+Onr+ayQ3qzR6cWcccRkRQS6cjCzIabWTbBeFDZZjbbzPZObjSpSTsKi7npxWy6tm7M1Yf3jTuOiKSYqM1QDwO/cPce7t4DuIKgh1SVmFm6mX1mZpPC9Z5mNtXMFpvZODPThAk15N9TvmDpxjz+cPIgTZMqIv8jarHY5u7vl664+wcEI89W1dXAgjLrfwbucfe+wGbg4mrYhySwZMM27p+yhJOH7sbBu7eLO46IpKCoxeJTM3vQzA41s0PM7N/AFDPby8z2qsyOzawLcBwwNlw3gu64z4VPeQw4uTLvLdGVlDg3vpBN04YZ/Pb4AXHHEZEUFbXr7NBweev3tu8POJW75uJe4HqCiZQA2gBb3L0oXF8NdC7vhWZ2KXApQLdu3Sqxayk1bvoqpi3fzF9OH0zbZg3jjiMiKSpqb6hR1blTMzse2ODuM8zs0NLN5e36B/KMAcYADB8+vNznSGIbtu3gT68uYESv1pyxd5e444hICot6ZFHdDgBONLNjCcaaakFwpNHSzDLCo4suwJqY8tULd0xawI7CEv5wiqZJFZFdi2UmG3e/0d27hD2rzgTedvdzgHeA08OnnQ9MiCNfffDOwg28PHsNV4zqQ+92zeKOIyIpLtWmPfs/4FozW0JwDuOhmPPUSfkFRfz2xbn0ad+Myw7VwMEikljUIcqbAL8Curn7z8Ihy/u5+6SqBnD3KcCU8P5SYN+qvqfs2r3/XcyXW7bz7GUjaZihaypEJLGKDFG+ExgZrq8Gfp+URJJUc7/M5aEPlnHWvl3Zp0fruOOISC0RtVj0dve/AIUA7r6d8nsvSQorLnF+82I2rZo04Iaj94g7jojUIlGLRYGZNSbsympmvQmONKQWeeyj5cxZncutJwwgq4mmSRWR6KJ2nb0VeB3oamZPEXR9vSBZoaT6rdmynbvfXMih/dpx/OBOcccRkVom6kV5b5nZTGAEQfPT1e6+ManJpNq4O7dMmEeJwx0n7alrKkSkwnZZLMoZ92ltuOxmZt3cfWZyYkl1ejV7Hf9dsJ6bjt2Drq2bxB1HRGqhREcWd4fLRsBwYDbBkcVgYCpwYPKiSXXIzS/k1onzGNQ5iwsP6BF3HBGppXZ5gtvdR4XjQq0A9nL34e6+NzAMWFITAaVq/vjqAjbnF3DnaYPISE+1azBFpLaI+unR392zS1fcfS7fjkQrKeqjLzYybvoqLjmoJwN3y4o7jojUYlF7Qy0ws7HAkwTdZ8/lu5MWSYrZUVjMb17IpnubJow+fPe444hILRe1WFwIXE4wsx3Ae8D9SUkk1eLvkxezfFM+T12yn6ZJFZEqi9p1dgdwT3iTFDd/zVYefG8pZ+zdhQP6tI07jojUATrjWccUlzg3vDCHVk0yuek4DekhItVDxaKOeeTDZcxZncstJwykZZMGcccRkTqiwsXCzNLMrEUywkjVrPoqn7vfXMRh/dtzgob0EJFqFKlYmNl/zKyFmTUF5gMLzey65EaTinB3bnppLmkGd5ysIT1EpHpFPbIY4O5bgZOBV4FuwHlJSyUVNmHWGt5blMN1R/Wjc8vGcccRkTomarHINLNMgmIxwd0LCYcrl/h9lVfA7ybNZ2jXlpw3skfccUSkDopaLB4ElgNNgffMrDuwNVmhpGJunjCXbTsKufO0QaSnqflJRKpfpGLh7n93987ufqwHVgCjkpxNIng1ey2vzFnLVYf1pX9H9TsQkeSIeoK7g5k9ZGavhesDgPOTmkwS2vT1Tm5+aS57dm7BZYf2jjuOiNRhUZuhHgXeAHYL1xcBo5MRSKK7ZcI8tu4o5K4zhpCpEWVFJImifsK0dffxQAmAuxcBxUlLJQm9Mmctr2Sv5erD1fwkIskXtVjkmVkbwh5QZjYCyE1aKtmljV/v5OYJcxnUOYvLDlHzk4gkX9RRZ68FJgK9zexDoB1wetJSyS7dMmEuX+8o4q4zhmhCIxGpEVFHnZ1pZocA/QimVV0YXmshNeyVOWt5NXsd1x3Vj34dm8cdR0TqiV0WCzM79Qce2t3McPcXkpBJfkBp89PgLln8/OBecccRkXok0ZHFCeGyPbA/8Ha4PgqYAqhY1CA1P4lIXHZZLNz9QgAzm0QwPtTacL0T8K/kx5NSk+as+ab5afcOan4SkZoV9d/THqWFIrQe0MTONWTj1zu5ZcI8hqj5SURiErU31BQzewN4mqD77JnAO0lLJd9wd37zQraan0QkVlF7Q10Znuw+KNw0xt1fTF4sKTVu2irenL+em47dg75qfhKRmEQ9sijt+VQtJ7TNrCvwONCR4KrwMe5+n5m1BsYBPQhGuf2xu2+ujn3WRss25nH7y/PZv3cbLj6wZ9xxRKQeizqQ4Agzm2ZmX5tZgZkVm1lVhigvAn7l7nsAI4ArwsEJbwAmu3tfYHK4Xi8VFpcwetwsMtONu388hDQNPS4iMYraAP5P4CyhCM/VAAAQlElEQVRgMdAYuAT4R2V36u5r3X1meH8bsADoDJwEPBY+7TGCyZbqpX+8vYTZq7bwx1MH0SlLM9+JSLwiny119yVAursXu/sjVNN8FmbWAxgGTAU6lPa6Cpftf+A1l5rZdDObnpOTUx0xUsqMFZv559uLOXVYZ44fvFviF4iIJFnUcxb5ZtYAmGVmfwHWEsyaVyVm1gx4Hhjt7lvNojW1uPsYYAzA8OHD69T0rlt3FDJ63Gd0ymrMbScNjDuOiAgQ/cjiPCAduBLIA7oCp1Vlx+Gc3s8DT5UZNmR9eMFf6YV/G6qyj9rG3bnx+WzWbNnB388aSotGmXFHEhEBonedXRHe3Q7cXtWdWnAI8RCwwN3/VuahiQQz8N0ZLidUdV+1yX8+Xckr2Wu5/uh+7N29ddxxRES+kWggwWzCOSzK4+6DK7nfAwiOVrLNbFa47TcERWK8mV0MrATOqOT71zqfr9vK716ez0F923LZwZqjQkRSS6Iji+PD5RXh8olweQ6QX9mduvsHBEOdl+fwyr5vbZVfUMSV//mMFo0zuecnQ9VNVkRSTqKBBFcAmNkB7n5AmYduCCdB+l0yw9UXt02cxxc5X/PkxfvRtlnDuOOIiPyPqCe4m5rZgaUrZrY/1dAbSmDctJWMn76aK0f14YA+beOOIyJSrqhdZy8GHjazrHB9C3BRciLVH9mrc7l5wjwO6tuW0UdoEF8RSV1Re0PNAIaYWQvA3D03ubHqvs15BVz25AzaNWvIfWcOI13nKUQkhSXqDXWuuz9pZtd+bzsA3+v2KhEVlzhXj5tFzradPHvZSFo3bRB3JBGRXUp0ZFF6XkJjY1ej+yYv5r1FOfzxlEEM6doy7jgiIgkl6g31YLis8oV4Enh97jr+PnkxZ+zdhbP27Rp3HBGRSBI1Q/19V4+7+1XVG6dum/tlLteMm8XQri254+Q9iToWlohI3BI1Q82okRT1wIatO/jZ49Np1SSTMT/dm0aZ6XFHEhGJLFEz1GO7elyi2VFYzKVPzGBLfiHPXT6S9s0bxR1JRKRCEjVD3evuo83sZcoZI8rdT0xasjrC3bn+uTnMWrWFB8/bm4G7ZSV+kYhIiknUDFU6FtRdyQ5SV9395iImzl7D9Uf346iBHeOOIyJSKYmaoWaEy3fDyY/6ExxhLHT3ghrIV6s9+uEy/vnOEs7cpyuXH6KRZEWk9op0BbeZHQc8AHxBMFpsTzP7ubu/lsxwtdmkOWu4fdJ8fjSgA79XzycRqeWijg11NzAqnIcbM+sNvAKoWJTjwyUbuWbcLIZ3b8U/zhpGRnrkqc5FRFJS1E+xDaWFIrSUejblaVTZq3P5+RMz6Nm2KWN/uo+6yIpInZCoN9Sp4d15ZvYqMJ7gnMUZwLQkZ6t15n6Zy7kPTSWrcSaPXbQvWU00h7aI1A2JmqFOKHN/PXBIeD8HaJWURLXUvDVBoWjWMIOnfzaCTlmN444kIlJtEvWGurCmgtRm89bkcs7YqTTJTOfpn42gW5smcUcSEalWUXtDNSKYAGkg8M3lx+5e7ydAmr9m6zeF4plLR6pQiEidFPUE9xNAR+Ao4F2gC7AtWaFqi0+WbuInYz6mcWY6T1+qIwoRqbuiFos+7n4zkBeOF3UcMCh5sVLfq9lr+elDn9KhRSOeu3x/urfRlOQiUndFLRaF4XKLme0JZAE9kpKoFnjso+Vc8Z+ZDOqSxXOXjaRzS53MFpG6LepFeWPMrBVwMzARaBber1eKS5y/vPE5D767lB8N6MA/zhqm6yhEpF6IVCzcfWx4912gV/LipK7NeQVc9cxnvL94I+fs143bTxyoK7NFpN6I2huqDXAbcADBRXnvA3e4+6bkRUsdc1Zv4fInZ5KzbSd3njqIM/ftFnckEZEaFfVf42cIhvc4DTgd2AiMS1aoVOHuPPPpSk5/4GMAnr1spAqFiNRLUc9ZtHb3O8qs/97MTk5GoFSxLncHN72YzeTPN3BQ37bcd+YwWjdtEHcsEZFYRC0W75jZmQRjQ0FwdPFKciLFy915dvpq7nhlPoXFJfz2uD248ICepKdpiHERqb8SDSS4jeAchQHXAk+GD6UBXwO3JjVdDVuy4Wt+N2k+7y3KYd+erfnLaYPp0VbXT4iIJBobqnlNBYnT2tzt3PffxYyfvorGmencfuJAzhvRnTQdTYiIANGboTCzE4GDw9Up7j4pOZFqzoZtO3jo/WU8+tFy3OH8/Xtw5ag+tGnWMO5oIiIpJWrX2TuBfYCnwk1Xm9mB7n5D0pIlSUmJ8/HSTTw1dQVvzltPsTunDOvMNUfsTtfWGttJRKQ8UY8sjgWGunsJgJk9BnwGVHuxMLOjgfuAdGCsu99Z1fcsLC7hs5Vb+GBxDhNnr2H5pnxaNsnkgv17cPZ+3ejVrlmVc4uI1GWRm6GAlsBX4f2sJGTBzNKBfwE/AlYD08xsorvPj/oeW3cUsnJTPis25bPiqzxmLN/MJ0s3kVdQTJrB8B6tGX3E7hy9Z0cN1SEiElHUYvEn4DMze4egZ9TBwI1JyLMvsMTdlwKY2TPAScAPFot5a7Yy8JbXAShx2F5Y/J3Hu7dpwil7debAPu0Y2bsNWY011amISEWZu+/6CWZGMH9FEcF5CwOmuvu6ag9jdjpwtLtfEq6fB+zn7ld+73mXApeGq3sCc6s7SzVrS3DVe6pTzuqlnNVLOatPv4r2dk14ZOHubmYvufveBCPOJlN5fVX/p5q5+xhgDICZTXf34UnOVSW1ISMoZ3VTzuqlnNXHzKZX9DVRx4b6xMz2qeibV8JqoGuZ9S7AmhrYr4iI7ELUcxajgMvMbDmQR3AE4O4+uJrzTAP6mllP4EvgTODsat6HiIhUUNRicUxSU4TcvcjMrgTeIOg6+7C7z0vwsjHJT1ZltSEjKGd1U87qpZzVp8IZd3mC28waAZcBfYBs4CF3L6p0PBERqZUSFYtxBPNvv09wdLHC3a+uoWwiIpIiEhWLbHcfFN7PAD51971qKpyIiKSGRL2hCkvvpFrzk5kdbWYLzWyJmaXMGFVm9rCZbTCzuWW2tTazt8xscbhsFWfGMFNXM3vHzBaY2TwzuzoVs5pZIzP71MxmhzlvD7f3NLOpYc5xZhb7zFRmlm5mn5nZpBTOuNzMss1sVmn3yVT7mYeZWprZc2b2efg7OjLVcppZv/D7WHrbamajUy1nmPWa8O9nrpk9Hf5dVej3M1GxGBJ+A7aGc1sMLr1vZlur70upmDLDghwDDADOMrMBceX5nkeBo7+37QZgsrv3BSaThDG1KqEI+JW77wGMAK4Iv4eplnUncJi7DwGGAkeb2Qjgz8A9Yc7NwMUxZix1NbCgzHoqZgQY5e5Dy1wLkGo/cwjGh3vd3fsDQwi+rymV090Xht/HocDeQD7wIimW08w6A1cBw919T4LOQ2dS0d9Pd691N2Ak8EaZ9RuBG+POVSZPD2BumfWFQKfwfidgYdwZy8k8gWBMrpTNCjQBZgL7EVwhm1He70NM2boQfDAcBkwi6F6eUhnDHMuBtt/bllI/c6AFsIywmTxVc34v25HAh6mYE+gMrAJaE/SAnQQcVdHfz6gX5aWa0i++1OpwW6rq4O5rAcJl+5jzfIeZ9QCGAVNJwaxh884sYAPwFvAFsMW/bRpNhZ//vcD1QEm43obUywjBiAhvmtmMcNgcSL2feS8gB3gkbNYba2ZNSb2cZZ0JPB3eT6mc7v4lcBewElgL5AIzqODvZ20tFpGGBZHEzKwZ8Dww2t1ja1rcFXcv9uBQvwvBYJN7lPe0mk31LTM7Htjg7jPKbi7nqanwO3qAB51UjiFoejw40QtikAHsBdzv7sMILgROhaaxcoVt/ScCz8adpTzhOZOTgJ7AbkBTyr92bpe/n7W1WNS2YUHWm1kngHC5IeY8AJhZJkGheMrdXwg3p2RWAHffAkwhOMfSMuyhB/H//A8ATgxHOHiGoCnqXlIrIwDuviZcbiBoX9+X1PuZrwZWu/vUcP05guKRajlLHQPMdPf14Xqq5TwCWObuOe5eCLwA7E8Ffz9ra7H4ZliQsKqfSfIHOayKicD54f3zCc4PxMrMDHgIWODufyvzUEplNbN2ZtYyvN+Y4Bd/AfAOcHr4tFhzuvuN7t7F3XsQ/C6+7e7nkEIZAcysqZk1L71P0M4+lxT7mXswovUqM+sXbjqcYJqClMpZxll82wQFqZdzJTDCzJqEf/el38+K/X7GfWKoCidtjgUWEbRf3xR3njK5niZoFywk+A/pYoL268nA4nDZOgVyHkhw2DkHmBXejk21rMBgglkZ5xB8sN0Sbu8FfAosITj8bxj39zTMdSgwKRUzhnlmh7d5pX83qfYzDzMNBaaHP/eXgFYpmrMJsAnIKrMtFXPeDnwe/g09ATSs6O9nwvksREREamszlIiI1CAVCxERSUjFQkREElKxEBGRhFQsREQkIRULqbXMzM3s7jLrvzaz22pgv8vNrG2y9yOSSlQspDbbCZyqD26R5FOxkNqsiGAu4Wu+/4CZPWpmp5dZ/zpcHmpm75rZeDNbZGZ3mtk5FsyZkW1mvct5rzZm9mY4qN2DlBn3yczODV87y8weDIfP//7rl5vZn8PnfWpmfcLt7czseTObFt4OCLcfUmaOhM/MrLmZdTKz98Jtc83soPC5Z4W555rZn8vs834zm25l5gAJt99pZvPNbI6Z3VWp77rUSyoWUtv9CzjHzLIq8JohBHNPDALOA3Z3932BscAvy3n+rcAHHgxqNxHoBmBmewA/IRicbyhQDJzzA/vcGu7jnwTjRkEwZ8M97r4PcFq4f4BfA1eE73kQsB04m2AI6aFh/llmthvBnASHEVzxvI+ZnRy+x00ezFcxGDjEzAabWWvgFGCguw8Gfh/5Oyb1Xkbip4ikLnffamaPE0zusj3iy6Z5OIS0mX0BvBluzwZGlfP8g4FTw/29Ymabw+2HE0x6My0YcofG/PCgcU+XWd4T3j8CGBC+FqBFOHbTh8DfzOwp4AV3X21m04CHw8EfX3L3WWZ2GDDF3XPCr+WpMOtLwI/DIcgzCOZUGEAwHtAOYKyZvUIwr4FIJCoWUhfcSzAp0iNlthURHjmHg6eVnTJyZ5n7JWXWS/jhv4nyxsUx4DF3vzFCRi/nfhow0t2/X+TuDD/MjwU+MbMj3P29cDjx44AnzOyvQLlDyptZT4Kjk33cfbOZPQo0cvciM9uXoMidCVxJcFQikpCaoaTWc/evgPF8d1rI5QT/9UMwln9mFXbxHmHzkpkdQzCoHQSDxJ1uZu3Dx1qbWfcfeI+flFl+HN5/k+ADm/D1Q8Nlb3fPdvc/Ewym1z983w3u/v8IRgvei2CyqkPMrG14ruQs4F2CmebygFwz60A4d4EFc5dkufurwGiCpiuRSHRkIXXF3ZT54AX+HzDBzD4l+FDPq8J73w48bWYzCT6MVwK4+3wz+y3BzHNpBCMNXwGsKOc9GprZVIJ/0M4Kt10F/MvM5hD8Lb4HXAaMNrNRBOdA5gOvERwJXGdmhcDXwE/dfa2Z3Ugw1LQBr7r7BAAz+4xgZNmlBM1aAM3D70mj8Pn/0zFA5Ido1FmRJLNgUqTh7r4x7iwilaVmKBERSUhHFiIikpCOLEREJCEVCxERSUjFQkREElKxEBGRhFQsREQkof8PZxL8Rf/6NK8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEQCAYAAABBQVgLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XeYFeX5//H3vYUOSy/SmyBIU1Swo8beS2KNNUajUTTRr8bYYopJNGqayg+7RsEKYg+KXaQILEWKdGkLwoK7wLb798fM6mpWzmw5O2d3P6/rOtecmVPms+3cO8888zzm7oiIiOxKWtwBREQk9alYiIhIQioWIiKSkIqFiIgkpGIhIiIJqViIiEhCKhYiIpJQRpQnmVkmcDlwcLjpXeABdy9MVjAREUkdFuWiPDMbC2QCj4WbzgOK3f2SJGYTEZEUEbVYzHb3IYm2iYhI3RT1nEWxmfUuXTGzXkBxciKJiEiqiXTOArgOeMfMlgIGdAcuTFoqERFJKZGaoQDMrCHQj6BYfO7uO5MZTEREUscui4WZHebub5vZqeU97u4vJC2ZiIikjETNUIcAbwMnlPOYAyoWIiL1QMJmKDNLA0539/E1E6li2rZt6z169Ig7hohIrTFjxoyN7t6uIq9JeILb3UvM7EogJYtFjx49mD59etwxRERqDTNbUdHXRO06+5aZ/drMuppZ69JbRXcmIiK1U9SusxeFyyvKbHOgV/XGERGRVBSpWLh7z2QHERGR1BX1yAIz2xMYADQq3ebujycjlIiIpJYfLBZmtj8wy93zzexW4DCCZqfJwNHAB4CKhYhIPZDoBPeLZtYXOIOgWCx19wuAIUDDRG9uZg+b2QYzm1tmW2sze8vMFofLVuF2M7O/m9kSM5tjZntV+qsSEZFq9YPFwt0/IigSbYB8dy8m+ExvDGwg2sntRwmOQsq6AZjs7n0JjlJuCLcfA/QNb5cC90f/MkREJJl2eWTh7lvd/RNgupm1JGh2mgXMBBJe3ODu7wFffW/zSXw7L8ZjwMlltj/ugU+AlmbWKfJXIiIi3+Hu39xKSr69VUbU3lC/CO+ONbO3gJbuPrtSe4QO7r42fN+1ZtY+3N4ZWFXmeavDbWsruR8RqcMKi0vI21lEXkEx+TuL2F5YzM6iEgqKSthZVBwuv719f3tBUQnFJU5RSbgsdopLnMISp7ik5Jv1ohL/7vNK18PHS9xxoMQdPFiWODhOSUmQtcQdL/MYhM8J18u+tvS9SpxvtpUqveflbkvu9zvqtKoHEJzszgMOAvYys/vcvcJXAe5qN+VsK/fLN7NLCZqq6NatWzVGEJGaUFBUwpbtBeTmF7JleyFb8gvZkl9Abun97QXk7Swmb2cR+QXFfL2ziPyComBbQRH5O4spKC6p9P4z040G6WlkpKeRkWakp1mwTDcy0tK+Wc9IN9LTvn1OZnoajTLD56alkZ4GaWakmYGV3g8+zMpuK11PSwMIn2NlXhs+Hmz739damU9HCz8qv7ut9I79z7byXjv6zxX/nkXtOns/MMTMhgDXAw8RNEkdUvFdst7MOoVHFZ0Izn9AcCTRtczzugBrynsDdx8DjAEYPnx4kuupiESVX1DE6s3bWb91BznbdrJh284yyx3frG/bUfSD75GeZrRolEGzRhk0bZBB04YZNG+UQccWjWjaMIOmDdNp0iCDpg3Sv7PeODOdhplpNEhPo2FmerhM+2bZMP3bx9PSyvvftP4YXYnXRC0WRe7uZnYScJ+7P2Rm51difwATgfOBO8PlhDLbrzSzZ4D9gNzS5ioRSQ2FxSWs/CqfVV/ls3rzdlZtDparw/VNeQX/85rGmem0b9GQ9s0b0r9jcw7u247WTRvQqkkmLZs0oGWTTFo2DpZZTTJp3jADs/r9YZ6KohaLbWZ2I3AucLCZpQOZiV5kZk8DhwJtzWw1cCtBkRhvZhcDKwl6XAG8ChwLLAHy0Ux8IrEpKCph+aY8Fq//mkXrt7FkQ7BctjGPojInSBukp9G5VWO6tGrMkbtl0SW83ymrMe2aN6Rd84Y0axj52l9JYVF/ij8BzgYudvd1ZtYN+GuiF7n7WT/w0OHlPNf57thTIlIDdhQWM2/NVmat2sLsVVuYv3Yry8sUBTPo3roJfdo354gBHejTrhnd2jSha6smtG/esN436dQXCYtFeBTxpLsfUbrN3Veiq7dFap2SEmfZpjxmrdzCrFXBbcHard8Uht2yGjGwcxZHDexA3/bN6duhGb3bNaNRZnrMySVuUeazKDazfDPLcvfcmgglItXD3Vm0/ms++mIjH3+xianLviJ3eyEATRukM7hLS352cC+Gdm3JsK4tad+iUYJ3lPoqajPUDiA7vMYir3Sju1+VlFQiUmlb8gt4d1EOUxbm8P7iHDZ+HZx07tq6MUcN7MDw7q0Z2q0lvds1I11NSBJR1GLxSngTkRS0fGMer89bx1vz1/PZys2UOLRqksnBu7fjgD5tGdmrDV1bN4k7ptRiUa/gfiwcE6qbuy9MciYRiWDJhm1MmrOW1+eu4/N12wDYs3MLrjysL6P6tWNwl5Y6cpBqE/UK7hOAu4AGQE8zGwr8zt1PTGY4EfmuDVt3MHH2Gl6a9SVzv9yKGQzv3oqbjx/AUQM70KWVjh4kOaI2Q90G7AtMAXD3WWam2fNEakBhcQmTF2zgmWkreW9RDiUOgzpncfPxAzhhcCedlJYaUZEruHO/d1WlhtkQSaLVm/N55tNVjJ++ig3bdtKxRSMuP7Q3pwzrTJ/2zeOOJ/VM1GIx18zOBtLDyZCuAj5KXiyR+sndmblyM2PfX8Yb89bhwKh+7Tlr326M6teOjPRE85WJJEfUYvFL4CZgJ/Af4A3g98kKJVLfFBWX8NrcdYz9YBmzV20hq3EmPz+kN+fs103nISQlRC0W/dz9JoKCISLVpLC4hJc++5J/T/mCZRvz6Nm2KXecNJDT9u5CkwYaU0lSR9Tfxr+Fw4k/Czzj7vOSmEmkzisoKuH5mav595QlrPpqOwN3a8ED5+7FkQM6aqwlSUlRr7MYZWYdgR8DY8ysBTDO3dUUJVIBJSXOpOy13P3mQlZsymdI15bcdsJADuvfXsNyS0qLfJzr7uuAv5vZOwQTIN2CzluIRPbB4o3c+foC5n65lf4dm/PIBftwaL92KhJSK0S9KG8PgmHKTwc2Ac8Av0piLpE6Y2nO1/xu0nymLMyhS6vG3POTIZw0pLOam6RWiXpk8QjwNHCku5c71amIfNfXO4v4x9uLefiDZTTKSOe3x+3BeSO70zBDw31L7RP1nMWIZAcRqSvcnZfnrOUPr8xn/dadnLF3F64/uj/tmjeMO5pIpe2yWJjZeHf/sZll890rto1gcrvBSU0nUst8uWU7v30xm3cW5jCocxYPnLs3w7q1ijuWSJUlOrK4Olwen+wgIrVZSYnz5NQV/Pm1zylxuOX4AZy/fw+N+ip1xi6LhbuvDZcraiaOSO2zclM+v3p2FtOWb+agvm354ymDNHeE1DlRe0OdCvwZaE/QBFXaDNUiidlEUpq78+z01dz+8jzS0oy7zxjCqXt1VldYqZOi9ob6C3CCuy9IZhiR2uKrvAJueH4Ob85fz8hebbjrx0Po3LJx3LFEkiZqsVivQiES+OiLjVz9zCxy8wu56dg9uPjAnrpmQuq8qMViupmNA14iGHkWAHd/ISmpRFJQSYnzr3eWcM9/F9GzbVMev2hf9uikllipH6IWixZAPnBkmW0OqFhIvfBVXgGjx83ivUU5nDx0N/5wyiCaNtSosFJ/RL0o78JkBxFJVbNWbeGyJ2bwVX4BfzxlEGft21UnsaXeidobqhFwMTAQ+GbCX3e/KEm5RFLCCzNXc8ML2XRo0ZAXLt+fPTtnxR1JJBZR52h8AugIHAW8C3QBtiUrlEjcikucP766gGvHz2bvbq2YeMWBKhRSr0VtdO3j7meY2Unu/piZlU6tKlLn5G4v5KqnP+PdRTn8dGR3bj5+AJma+1rquajFojBcbjGzPYF1QI+kJBKJ0ZdbtnPhI5+yNCePP54yiLP36xZ3JJGUELVYjDGzVsBvgYlAM+DmpKUSicG8Nblc9Og08ncW8/hF+7J/n7ZxRxJJGVF7Q40N774H9EpeHJF4vL84h8ufnEnzRhk8e/lI+nfU9RMiZamjuNR7L8xczfXPzaFP+2Y8cuE+dMrSsB0i3xfbWTszu8bM5pnZXDN72swamVlPM5tqZovNbJyZNYgrn9QPj364jGvHz2bfnq0Zf9lIFQqRHxBLsTCzzsBVwHB33xNIB84kGNn2HnfvC2wmuLZDpNq5B0N33PbyfI4c0IGHL9iHFo0y444lkrIiFQszyzSzq8zsufD2SzOr6l9WBtDYzDKAJsBa4DDgufDxx4CTq7gPkf/h7tz5+uf89Y2FnDKsM/8+Zy8aZWpebJFdiXpkcT+wN/Dv8LZXuK1S3P1L4C5gJUGRyAVmAFvcvSh82mqgc3mvN7NLzWy6mU3PycmpbAyph0pKnJsnzOXBd5dy7ohu3H3GEDJ0DYVIQlFPcO/j7kPKrL9tZrMru9OwG+5JQE9gC/AscEw5T/VytuHuY4AxAMOHDy/3OSLfV1Li/HbCXP4zdSU/P6QXNxzdX2M8iUQU9V+qYjPrXbpiZr2A4irs9whgmbvnuHshwei1+wMtw2YpCIYUWVOFfYh8w925ZWJQKC4/tLcKhUgFRT2yuA54x8yWEkyp2h2oyki0K4ERZtYE2A4cDkwH3gFOB54BzgcmVGEfIkBQKG6dOI8nPwmOKK4/qp8KhUgFRb0ob7KZ9QX6ERSLz919Z4KX7er9pprZc8BMoAj4jKBZ6RXgGTP7fbjtocruQwSCQnH7y/N5/OMVXHqwmp5EKmuXxcLMTv2Bh3qbWZVmynP3W4Fbv7d5KbBvZd9T5Pv++sZCHv1oOZcc2JMbj1GhEKmsREcWJ4TL9gTnFCYTHFmMAqagmfIkhT347hf8e8oXnL1fN246bg8VCpEq2GWxKJ0hz8wmAQPcfW243gn4V/LjiVTO05+u5E+vfc7xgztxx0l7qlCIVFHU3lA9SgtFaD2wexLyiFTZpDlr+M2L2Rzarx1/+/FQ0tNUKESqKmpvqClm9gbwNMG1D2cS9FwSSSnvL87hmnGz2Kd7a+4/Z28aZOiCO5HqELU31JVmdgpwcLhpjLu/mLxYIhU3b00ulz85k97tmjH2guE0bqAhPESqS+QhysPioAIhKWn15nwufGQazRtl8OiF+2pQQJFqpvkspNbLzS/kgkemsb2wmOcu25+OWY3ijiRS56hBV2q1HYXF/OyJ6azclM+Y84bTr2PzuCOJ1Ek6spBay935v+fn8Omyr7jvzKGM7N0m7kgidVakYhEO9fEnYADwzTG+u2s+bonNv95ZwoRZa/j1kbtz0tByR7MXkWoStRnqEYL5K4oIrt5+HHgiWaFEEnktey13vbmIk4fuxhWj+sQdR6TOi1osGrv7ZMDcfYW730Ywq51Ijctencs142cxrFtL7jxtsK7OFqkBUc9Z7DCzNGCxmV0JfEkwXpRIjVq/dQeXPD6NNk0bMua84ZoOVaSGRD2yGE0wT/ZVBNOrnkcw34RIjdlRWMylT8xg244ixp4/nHbNG8YdSaTeiHoF97Tw7tdUbdIjkUpxd26ZMJfZq7bwwLl7sUenFnFHEqlXEs1nca+7jzazlylnPmx3PzFpyUTKeGrqSsZPX82Vo/pw9J6d4o4jUu8kOrIo7fF0V7KDiPyQ6cu/4vaX53Fov3Zc8yMNdiwSh0TzWcwIl+/WTByR71q/dQeXPzWTzi0bc9+ZwzTcuEhMEjVDZVNO81Mpdx9c7YlEQoXFJfziqZnk7SziyYv3I6uxBgcUiUuiZqjjw+UV4bK0WeocID8piURCd772OTNWbOYfZw3TmE8iMUvUDLUCwMwOcPcDyjx0g5l9CPwumeGk/np97loe+mAZF+zfgxOG7BZ3HJF6L+p1Fk3N7MDSFTPbH2ianEhS3y3fmMd1z85hSNeW/ObYPeKOIyJEv4L7YuBhM8siOIeRC1yUtFRSb+0oLObyp2aSlmb86+xhmhZVJEVEvShvBjDEzFoQjA+Vm9xYUl/dNnEeC9Zu5eELhtOlVZO444hIqELzWbj71mQFEZkw60uembaKXxzam8P6d4g7joiUoWN8SQkrNuVx04tzGd69FdfqwjuRlKNiIbErKCrhl09/RprBvWcOJSNdv5YiqSbqTHmZwOXAweGmd4EH3L0wWcGk/rjrzYXMWZ3LA+fupfMUIikq6jmL+4FM4N/h+nnhtkuSEUrqjykLNzDmvaWcO6KbBggUSWFRi8U+7j6kzPrbZjY7GYGk/sjZtpNfPzub/h2b89vjBsQdR0R2IWrjcLGZ9S5dMbNeQHFyIkl94O7c8Pwctu0o4h9nDdOMdyIpLuqRxXXAO2a2FDCgO5oESargmWmrmPz5Bm49YQB9O2jcJ5FUF/WivMlm1hfoR1AsPnf3nVXZsZm1BMYCexJcFX4RsBAYB/QAlgM/dvfNVdmPpJ7lG/O4Y9J8DuzTlvNH9og7johEELmPorvvdPc57j67qoUidB/wurv3B4YAC4AbgMnu3heYHK5LHVJUXMK142eRkWb89YzBpGl+CpFaIZYO7eGwIQcDDwG4e4G7bwFOAh4Ln/YYcHIc+SR5Hnj3C2au3MLvTxlEp6zGcccRkYgSFgsLdK3m/fYCcoBHzOwzMxtrZk2BDu6+FiBctq/m/UqMslfncu9/F3PikN04UcOOi9QqCYuFuzvwUjXvNwPYC7jf3YcBeVSgycnMLjWz6WY2PScnp5qjSTLsKCxm9LjPaNusIXectGfccUSkgqI2Q31iZvtU435XA6vdfWq4/hxB8VhvZp0AwuWG8l7s7mPcfbi7D2/Xrl01xpJkufO1z/kiJ4+7zhhCVhNNjypS20QtFqOAj83sCzObY2bZZjansjt193XAKjPrF246HJgPTATOD7edD0yo7D4kdby/OIdHP1rOhQf04MC+beOOIyKVEPU6i2OSsO9fAk+ZWQNgKcF1G2nAeDO7GFgJnJGE/UoN2pJfwK+fnU2f9s34v6P7xx1HRCop6nUWpXNxtwcaVceO3X0WMLychw6vjveX1HDzhHls+rqAh87fR1dpi9RikZqhzOxEM1sMLCMYcXY58FoSc0kdMHH2Gl6evYZrfrQ7e3bOijuOiFRB1HMWdwAjgEXu3pPgv/8Pk5ZKar2cbTu5ZcJchnZtyc8P7hV3HBGpoqjFotDdNwFpZpbm7u8AQ5OYS2q5WyfOJb+gmLvOGKzJjETqgKgnuLeYWTPgPYKT0huAouTFktrs1ey1vJq9juuP7kef9hokUKQuiPov30nAduAa4HXgC+CEZIWS2uurvAJumTCXQZ2zuPQgNT+J1BVRe0PllVl97AefKPXe7S/PI3d7IU9esp+an0TqkKi9oU41s8VmlmtmW81sm5ltTXY4qV3emr+eCbPWcMWoPvTv2CLuOCJSjaKes/gLcIK7L0hmGKm9cvMLuenFbPp3bM4vDu0TdxwRqWZRi8V6FQrZld+/Mp9NeQU8fME+NMhQ85NIXbPLYmFmp4Z3p5vZOILRZ7+Z+MjdX0hiNqklpizcwLMzVnPFqN66+E6kjkp0ZFG2x1M+cGSZdQdULOq5bTsK+c0L2fRp34xfHtY37jgikiS7LBbufmFNBZHa6U+vfc66rTt47vL9NfaTSB2WqBnq77t63N2vqt44Upt8tGQj/5m6kp8d1JO9urWKO46IJFGiZqgZNZJCap3tBcX83wtz6NGmCdf+qF/iF4hIrZaoGUoX4Em57p28iFVfbeeZS0fQuIGan0TqukTNUPe6+2gze5nghPZ3uPuJSUsmKWv+mq2MfX8ZPxnelRG92sQdR0RqQKJmqCfC5V3JDiK1Q3GJc+OL2bRqksmNx2rmO5H6IlEzVOk5i6Hufl/Zx8zsaoKJkKQeeeLj5cxetYX7zhxKyyYN4o4jIjUk6qW255ez7YJqzCG1wNrc7fz1jYUc1LctJw7ZLe44IlKDEp2zOAs4G+hlZhPLPNQc2JTMYJJ6bp0wj2J3/nDyIMws7jgiUoMSnbP4CFgLtAXuLrN9GzAnWaEk9bw+dx1vzl/PDcf0p1ubJnHHEZEaluicxQozWw3kubvOT9RT23YUctvEefTv2JyLD+wZdxwRiUHCcxbuXgzkm5lGiKun7npjIeu37eDO0waTqQmNROqlqEOU7wCyzewt4JtZ8zTcR9332crNPP7JCs4f2YOhXVvGHUdEYhK1WLwS3qQeKSwu4cYXsunQvBG/OnL3uOOISIyizsGtYT/qobHvL+Pzddt48Ly9ad4oM+44IhKjSMXCzPoCfwIGAI1Kt7t7ryTlkpit3JTPfZMXcdTADhw1sGPccUQkZlHPVj4C3A8UAaOAx/l2KBCpY9ydm17KJiMtjdtP3DPuOCKSAqIWi8buPhkwd1/h7rcBhyUvlsRpwqw1vL94I9cd1Y+OWY0Sv0BE6rzIvaHMLA1YbGZXAl8C7ZMXS+KyJb+AOybNZ2jXlpw7onvccUQkRUQ9shgNNAGuAvYGzqP88aKklvvjqwvI3V7In04dRHqahvQQkUDU3lDTAMKji6vcfVtSU0ksPv5iE+Onr+ayQ3qzR6cWcccRkRQS6cjCzIabWTbBeFDZZjbbzPZObjSpSTsKi7npxWy6tm7M1Yf3jTuOiKSYqM1QDwO/cPce7t4DuIKgh1SVmFm6mX1mZpPC9Z5mNtXMFpvZODPThAk15N9TvmDpxjz+cPIgTZMqIv8jarHY5u7vl664+wcEI89W1dXAgjLrfwbucfe+wGbg4mrYhySwZMM27p+yhJOH7sbBu7eLO46IpKCoxeJTM3vQzA41s0PM7N/AFDPby8z2qsyOzawLcBwwNlw3gu64z4VPeQw4uTLvLdGVlDg3vpBN04YZ/Pb4AXHHEZEUFbXr7NBweev3tu8POJW75uJe4HqCiZQA2gBb3L0oXF8NdC7vhWZ2KXApQLdu3Sqxayk1bvoqpi3fzF9OH0zbZg3jjiMiKSpqb6hR1blTMzse2ODuM8zs0NLN5e36B/KMAcYADB8+vNznSGIbtu3gT68uYESv1pyxd5e444hICot6ZFHdDgBONLNjCcaaakFwpNHSzDLCo4suwJqY8tULd0xawI7CEv5wiqZJFZFdi2UmG3e/0d27hD2rzgTedvdzgHeA08OnnQ9MiCNfffDOwg28PHsNV4zqQ+92zeKOIyIpLtWmPfs/4FozW0JwDuOhmPPUSfkFRfz2xbn0ad+Myw7VwMEikljUIcqbAL8Curn7z8Ihy/u5+6SqBnD3KcCU8P5SYN+qvqfs2r3/XcyXW7bz7GUjaZihaypEJLGKDFG+ExgZrq8Gfp+URJJUc7/M5aEPlnHWvl3Zp0fruOOISC0RtVj0dve/AIUA7r6d8nsvSQorLnF+82I2rZo04Iaj94g7jojUIlGLRYGZNSbsympmvQmONKQWeeyj5cxZncutJwwgq4mmSRWR6KJ2nb0VeB3oamZPEXR9vSBZoaT6rdmynbvfXMih/dpx/OBOcccRkVom6kV5b5nZTGAEQfPT1e6+ManJpNq4O7dMmEeJwx0n7alrKkSkwnZZLMoZ92ltuOxmZt3cfWZyYkl1ejV7Hf9dsJ6bjt2Drq2bxB1HRGqhREcWd4fLRsBwYDbBkcVgYCpwYPKiSXXIzS/k1onzGNQ5iwsP6BF3HBGppXZ5gtvdR4XjQq0A9nL34e6+NzAMWFITAaVq/vjqAjbnF3DnaYPISE+1azBFpLaI+unR392zS1fcfS7fjkQrKeqjLzYybvoqLjmoJwN3y4o7jojUYlF7Qy0ws7HAkwTdZ8/lu5MWSYrZUVjMb17IpnubJow+fPe444hILRe1WFwIXE4wsx3Ae8D9SUkk1eLvkxezfFM+T12yn6ZJFZEqi9p1dgdwT3iTFDd/zVYefG8pZ+zdhQP6tI07jojUATrjWccUlzg3vDCHVk0yuek4DekhItVDxaKOeeTDZcxZncstJwykZZMGcccRkTqiwsXCzNLMrEUywkjVrPoqn7vfXMRh/dtzgob0EJFqFKlYmNl/zKyFmTUF5gMLzey65EaTinB3bnppLmkGd5ysIT1EpHpFPbIY4O5bgZOBV4FuwHlJSyUVNmHWGt5blMN1R/Wjc8vGcccRkTomarHINLNMgmIxwd0LCYcrl/h9lVfA7ybNZ2jXlpw3skfccUSkDopaLB4ElgNNgffMrDuwNVmhpGJunjCXbTsKufO0QaSnqflJRKpfpGLh7n93987ufqwHVgCjkpxNIng1ey2vzFnLVYf1pX9H9TsQkeSIeoK7g5k9ZGavhesDgPOTmkwS2vT1Tm5+aS57dm7BZYf2jjuOiNRhUZuhHgXeAHYL1xcBo5MRSKK7ZcI8tu4o5K4zhpCpEWVFJImifsK0dffxQAmAuxcBxUlLJQm9Mmctr2Sv5erD1fwkIskXtVjkmVkbwh5QZjYCyE1aKtmljV/v5OYJcxnUOYvLDlHzk4gkX9RRZ68FJgK9zexDoB1wetJSyS7dMmEuX+8o4q4zhmhCIxGpEVFHnZ1pZocA/QimVV0YXmshNeyVOWt5NXsd1x3Vj34dm8cdR0TqiV0WCzM79Qce2t3McPcXkpBJfkBp89PgLln8/OBecccRkXok0ZHFCeGyPbA/8Ha4PgqYAqhY1CA1P4lIXHZZLNz9QgAzm0QwPtTacL0T8K/kx5NSk+as+ab5afcOan4SkZoV9d/THqWFIrQe0MTONWTj1zu5ZcI8hqj5SURiErU31BQzewN4mqD77JnAO0lLJd9wd37zQraan0QkVlF7Q10Znuw+KNw0xt1fTF4sKTVu2irenL+em47dg75qfhKRmEQ9sijt+VQtJ7TNrCvwONCR4KrwMe5+n5m1BsYBPQhGuf2xu2+ujn3WRss25nH7y/PZv3cbLj6wZ9xxRKQeizqQ4Agzm2ZmX5tZgZkVm1lVhigvAn7l7nsAI4ArwsEJbwAmu3tfYHK4Xi8VFpcwetwsMtONu388hDQNPS4iMYraAP5P4CyhCM/VAAAQlElEQVRgMdAYuAT4R2V36u5r3X1meH8bsADoDJwEPBY+7TGCyZbqpX+8vYTZq7bwx1MH0SlLM9+JSLwiny119yVAursXu/sjVNN8FmbWAxgGTAU6lPa6Cpftf+A1l5rZdDObnpOTUx0xUsqMFZv559uLOXVYZ44fvFviF4iIJFnUcxb5ZtYAmGVmfwHWEsyaVyVm1gx4Hhjt7lvNojW1uPsYYAzA8OHD69T0rlt3FDJ63Gd0ymrMbScNjDuOiAgQ/cjiPCAduBLIA7oCp1Vlx+Gc3s8DT5UZNmR9eMFf6YV/G6qyj9rG3bnx+WzWbNnB388aSotGmXFHEhEBonedXRHe3Q7cXtWdWnAI8RCwwN3/VuahiQQz8N0ZLidUdV+1yX8+Xckr2Wu5/uh+7N29ddxxRES+kWggwWzCOSzK4+6DK7nfAwiOVrLNbFa47TcERWK8mV0MrATOqOT71zqfr9vK716ez0F923LZwZqjQkRSS6Iji+PD5RXh8olweQ6QX9mduvsHBEOdl+fwyr5vbZVfUMSV//mMFo0zuecnQ9VNVkRSTqKBBFcAmNkB7n5AmYduCCdB+l0yw9UXt02cxxc5X/PkxfvRtlnDuOOIiPyPqCe4m5rZgaUrZrY/1dAbSmDctJWMn76aK0f14YA+beOOIyJSrqhdZy8GHjazrHB9C3BRciLVH9mrc7l5wjwO6tuW0UdoEF8RSV1Re0PNAIaYWQvA3D03ubHqvs15BVz25AzaNWvIfWcOI13nKUQkhSXqDXWuuz9pZtd+bzsA3+v2KhEVlzhXj5tFzradPHvZSFo3bRB3JBGRXUp0ZFF6XkJjY1ej+yYv5r1FOfzxlEEM6doy7jgiIgkl6g31YLis8oV4Enh97jr+PnkxZ+zdhbP27Rp3HBGRSBI1Q/19V4+7+1XVG6dum/tlLteMm8XQri254+Q9iToWlohI3BI1Q82okRT1wIatO/jZ49Np1SSTMT/dm0aZ6XFHEhGJLFEz1GO7elyi2VFYzKVPzGBLfiHPXT6S9s0bxR1JRKRCEjVD3evuo83sZcoZI8rdT0xasjrC3bn+uTnMWrWFB8/bm4G7ZSV+kYhIiknUDFU6FtRdyQ5SV9395iImzl7D9Uf346iBHeOOIyJSKYmaoWaEy3fDyY/6ExxhLHT3ghrIV6s9+uEy/vnOEs7cpyuXH6KRZEWk9op0BbeZHQc8AHxBMFpsTzP7ubu/lsxwtdmkOWu4fdJ8fjSgA79XzycRqeWijg11NzAqnIcbM+sNvAKoWJTjwyUbuWbcLIZ3b8U/zhpGRnrkqc5FRFJS1E+xDaWFIrSUejblaVTZq3P5+RMz6Nm2KWN/uo+6yIpInZCoN9Sp4d15ZvYqMJ7gnMUZwLQkZ6t15n6Zy7kPTSWrcSaPXbQvWU00h7aI1A2JmqFOKHN/PXBIeD8HaJWURLXUvDVBoWjWMIOnfzaCTlmN444kIlJtEvWGurCmgtRm89bkcs7YqTTJTOfpn42gW5smcUcSEalWUXtDNSKYAGkg8M3lx+5e7ydAmr9m6zeF4plLR6pQiEidFPUE9xNAR+Ao4F2gC7AtWaFqi0+WbuInYz6mcWY6T1+qIwoRqbuiFos+7n4zkBeOF3UcMCh5sVLfq9lr+elDn9KhRSOeu3x/urfRlOQiUndFLRaF4XKLme0JZAE9kpKoFnjso+Vc8Z+ZDOqSxXOXjaRzS53MFpG6LepFeWPMrBVwMzARaBber1eKS5y/vPE5D767lB8N6MA/zhqm6yhEpF6IVCzcfWx4912gV/LipK7NeQVc9cxnvL94I+fs143bTxyoK7NFpN6I2huqDXAbcADBRXnvA3e4+6bkRUsdc1Zv4fInZ5KzbSd3njqIM/ftFnckEZEaFfVf42cIhvc4DTgd2AiMS1aoVOHuPPPpSk5/4GMAnr1spAqFiNRLUc9ZtHb3O8qs/97MTk5GoFSxLncHN72YzeTPN3BQ37bcd+YwWjdtEHcsEZFYRC0W75jZmQRjQ0FwdPFKciLFy915dvpq7nhlPoXFJfz2uD248ICepKdpiHERqb8SDSS4jeAchQHXAk+GD6UBXwO3JjVdDVuy4Wt+N2k+7y3KYd+erfnLaYPp0VbXT4iIJBobqnlNBYnT2tzt3PffxYyfvorGmencfuJAzhvRnTQdTYiIANGboTCzE4GDw9Up7j4pOZFqzoZtO3jo/WU8+tFy3OH8/Xtw5ag+tGnWMO5oIiIpJWrX2TuBfYCnwk1Xm9mB7n5D0pIlSUmJ8/HSTTw1dQVvzltPsTunDOvMNUfsTtfWGttJRKQ8UY8sjgWGunsJgJk9BnwGVHuxMLOjgfuAdGCsu99Z1fcsLC7hs5Vb+GBxDhNnr2H5pnxaNsnkgv17cPZ+3ejVrlmVc4uI1GWRm6GAlsBX4f2sJGTBzNKBfwE/AlYD08xsorvPj/oeW3cUsnJTPis25bPiqzxmLN/MJ0s3kVdQTJrB8B6tGX3E7hy9Z0cN1SEiElHUYvEn4DMze4egZ9TBwI1JyLMvsMTdlwKY2TPAScAPFot5a7Yy8JbXAShx2F5Y/J3Hu7dpwil7debAPu0Y2bsNWY011amISEWZu+/6CWZGMH9FEcF5CwOmuvu6ag9jdjpwtLtfEq6fB+zn7ld+73mXApeGq3sCc6s7SzVrS3DVe6pTzuqlnNVLOatPv4r2dk14ZOHubmYvufveBCPOJlN5fVX/p5q5+xhgDICZTXf34UnOVSW1ISMoZ3VTzuqlnNXHzKZX9DVRx4b6xMz2qeibV8JqoGuZ9S7AmhrYr4iI7ELUcxajgMvMbDmQR3AE4O4+uJrzTAP6mllP4EvgTODsat6HiIhUUNRicUxSU4TcvcjMrgTeIOg6+7C7z0vwsjHJT1ZltSEjKGd1U87qpZzVp8IZd3mC28waAZcBfYBs4CF3L6p0PBERqZUSFYtxBPNvv09wdLHC3a+uoWwiIpIiEhWLbHcfFN7PAD51971qKpyIiKSGRL2hCkvvpFrzk5kdbWYLzWyJmaXMGFVm9rCZbTCzuWW2tTazt8xscbhsFWfGMFNXM3vHzBaY2TwzuzoVs5pZIzP71MxmhzlvD7f3NLOpYc5xZhb7zFRmlm5mn5nZpBTOuNzMss1sVmn3yVT7mYeZWprZc2b2efg7OjLVcppZv/D7WHrbamajUy1nmPWa8O9nrpk9Hf5dVej3M1GxGBJ+A7aGc1sMLr1vZlur70upmDLDghwDDADOMrMBceX5nkeBo7+37QZgsrv3BSaThDG1KqEI+JW77wGMAK4Iv4eplnUncJi7DwGGAkeb2Qjgz8A9Yc7NwMUxZix1NbCgzHoqZgQY5e5Dy1wLkGo/cwjGh3vd3fsDQwi+rymV090Xht/HocDeQD7wIimW08w6A1cBw919T4LOQ2dS0d9Pd691N2Ak8EaZ9RuBG+POVSZPD2BumfWFQKfwfidgYdwZy8k8gWBMrpTNCjQBZgL7EVwhm1He70NM2boQfDAcBkwi6F6eUhnDHMuBtt/bllI/c6AFsIywmTxVc34v25HAh6mYE+gMrAJaE/SAnQQcVdHfz6gX5aWa0i++1OpwW6rq4O5rAcJl+5jzfIeZ9QCGAVNJwaxh884sYAPwFvAFsMW/bRpNhZ//vcD1QEm43obUywjBiAhvmtmMcNgcSL2feS8gB3gkbNYba2ZNSb2cZZ0JPB3eT6mc7v4lcBewElgL5AIzqODvZ20tFpGGBZHEzKwZ8Dww2t1ja1rcFXcv9uBQvwvBYJN7lPe0mk31LTM7Htjg7jPKbi7nqanwO3qAB51UjiFoejw40QtikAHsBdzv7sMILgROhaaxcoVt/ScCz8adpTzhOZOTgJ7AbkBTyr92bpe/n7W1WNS2YUHWm1kngHC5IeY8AJhZJkGheMrdXwg3p2RWAHffAkwhOMfSMuyhB/H//A8ATgxHOHiGoCnqXlIrIwDuviZcbiBoX9+X1PuZrwZWu/vUcP05guKRajlLHQPMdPf14Xqq5TwCWObuOe5eCLwA7E8Ffz9ra7H4ZliQsKqfSfIHOayKicD54f3zCc4PxMrMDHgIWODufyvzUEplNbN2ZtYyvN+Y4Bd/AfAOcHr4tFhzuvuN7t7F3XsQ/C6+7e7nkEIZAcysqZk1L71P0M4+lxT7mXswovUqM+sXbjqcYJqClMpZxll82wQFqZdzJTDCzJqEf/el38+K/X7GfWKoCidtjgUWEbRf3xR3njK5niZoFywk+A/pYoL268nA4nDZOgVyHkhw2DkHmBXejk21rMBgglkZ5xB8sN0Sbu8FfAosITj8bxj39zTMdSgwKRUzhnlmh7d5pX83qfYzDzMNBaaHP/eXgFYpmrMJsAnIKrMtFXPeDnwe/g09ATSs6O9nwvksREREamszlIiI1CAVCxERSUjFQkREElKxEBGRhFQsREQkIRULqbXMzM3s7jLrvzaz22pgv8vNrG2y9yOSSlQspDbbCZyqD26R5FOxkNqsiGAu4Wu+/4CZPWpmp5dZ/zpcHmpm75rZeDNbZGZ3mtk5FsyZkW1mvct5rzZm9mY4qN2DlBn3yczODV87y8weDIfP//7rl5vZn8PnfWpmfcLt7czseTObFt4OCLcfUmaOhM/MrLmZdTKz98Jtc83soPC5Z4W555rZn8vs834zm25l5gAJt99pZvPNbI6Z3VWp77rUSyoWUtv9CzjHzLIq8JohBHNPDALOA3Z3932BscAvy3n+rcAHHgxqNxHoBmBmewA/IRicbyhQDJzzA/vcGu7jnwTjRkEwZ8M97r4PcFq4f4BfA1eE73kQsB04m2AI6aFh/llmthvBnASHEVzxvI+ZnRy+x00ezFcxGDjEzAabWWvgFGCguw8Gfh/5Oyb1Xkbip4ikLnffamaPE0zusj3iy6Z5OIS0mX0BvBluzwZGlfP8g4FTw/29Ymabw+2HE0x6My0YcofG/PCgcU+XWd4T3j8CGBC+FqBFOHbTh8DfzOwp4AV3X21m04CHw8EfX3L3WWZ2GDDF3XPCr+WpMOtLwI/DIcgzCOZUGEAwHtAOYKyZvUIwr4FIJCoWUhfcSzAp0iNlthURHjmHg6eVnTJyZ5n7JWXWS/jhv4nyxsUx4DF3vzFCRi/nfhow0t2/X+TuDD/MjwU+MbMj3P29cDjx44AnzOyvQLlDyptZT4Kjk33cfbOZPQo0cvciM9uXoMidCVxJcFQikpCaoaTWc/evgPF8d1rI5QT/9UMwln9mFXbxHmHzkpkdQzCoHQSDxJ1uZu3Dx1qbWfcfeI+flFl+HN5/k+ADm/D1Q8Nlb3fPdvc/Ewym1z983w3u/v8IRgvei2CyqkPMrG14ruQs4F2CmebygFwz60A4d4EFc5dkufurwGiCpiuRSHRkIXXF3ZT54AX+HzDBzD4l+FDPq8J73w48bWYzCT6MVwK4+3wz+y3BzHNpBCMNXwGsKOc9GprZVIJ/0M4Kt10F/MvM5hD8Lb4HXAaMNrNRBOdA5gOvERwJXGdmhcDXwE/dfa2Z3Ugw1LQBr7r7BAAz+4xgZNmlBM1aAM3D70mj8Pn/0zFA5Ido1FmRJLNgUqTh7r4x7iwilaVmKBERSUhHFiIikpCOLEREJCEVCxERSUjFQkREElKxEBGRhFQsREQkof8PZxL8Rf/6NK8AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -156,7 +583,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### (4) Monty Hall\n", + "# (2) Monty Hall\n", "\n", "O problema de Monty Hall, também conhecido por paradoxo de Monty Hall é um problema matemático e paradoxo que surgiu a partir de um concurso televisivo dos Estados Unidos chamado Let’s Make a Deal, exibido na década de 1970.\n", "\n", @@ -171,12 +598,14 @@ "\n", "Qual é a estratégia mais lógica? Ficar com a porta escolhida inicialmente ou mudar de porta? Com qual das duas portas ainda fechadas o concorrente tem mais probabilidades de ganhar? Por quê?\n", "\n", - "\n" + "
\n", + "\n", + "
" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -194,9 +623,9 @@ "This problem relies on conditional probabilities.\n", "It is suggested that you switch doors, you will have a higher probability of winning of you do.\n", "The door I will now open is: 'C'\n", - "Would you like to select the third door? Type 'Yes' or 'No': Yes\n", - "The door you will switch to is: 'B' \n", - "Congrats, you win! The prize was behind the alternate, 'B'\n", + "Would you like to select the third door? Type 'Yes' or 'No': yes\n", + "You decided to keep your initial door, 'A'\n", + "Sorry, the prize was behind the alternate door, 'B'\n", "This is a check:\n", "Prize: 'B'\n", "Selection: 'A' \n", @@ -268,9 +697,16 @@ "print (\"Door opened: %r \" % open_door)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Comparando os resultados da simulação com a probabilidade nominal" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -368,70 +804,121 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulating 1000 trials...\n", + " Switching won 669 times out of 1000 (66.9% of the time)\n", + "Not switching won 344 times out of 1000 (34.4% of the time)\n" + ] + } + ], "source": [ - "monty_hall(3, 100)" + "monty_hall(3, 1000)" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### (5) Calculando pi com Monte Carlo" + "# (3) Calculando π com Monte Carlo\n", + "\n", + "
\n", + "\n", + "
\n", + "\n", + "Na matemática, o número **π** é uma proporção numérica definida pela relação entre o perímetro de uma circunferência e seu diâmetro; por outras palavras, se uma circunferência tem perímetro **p** e diâmetro **d**, então \n", + "\n", + "```python\n", + "π = p/d\n", + "```\n", + "\n", + "É representado pela letra grega π. A letra grega π (lê-se: pi), foi adotada para o número a partir da palavra grega para perímetro, provavelmente por William Jones em 1706, e popularizada por Leonhard Euler alguns anos mais tarde. Outros nomes para esta constante são constante circular ou número de Ludolph. \n", + "\n", + "O valor de **π** pertence aos números irracionais. Para a maioria dos cálculos simples é comum aproximar **π** por 3,14. Uma boa parte das calculadoras científicas de 8 dígitos aproxima **π** por 3,1415926. Para calcular rotas de navegações interplanetárias a NASA utiliza **π ≈ 3,141592653589793** (com 15 casas decimais). Para calcular um círculo com 46 bilhões de anos-luz de raio em volta do universo observável seria suficiente uma aproximação de **π** com apenas 40 casas decimais para garantir precisão de 1 átomo de hidrogênio.\n", + "\n", + "Um engenheiro japonês e um estudante americano de Ciência da computação calcularam, usando um computador com doze núcleos físicos, cinco trilhões de dígitos, o equivalente a 6 terabytes de dados.\n", + "\n", + "### Método estatístico\n", + "\n", + "Um método interessante para o cálculo de **π** pode ser realizado através de Monte Carlo utilizando-se a estatística. Nesse método são sorteados aleatoriamente pontos num quadrado compreendido entre as coordenadas O=(0,0) e B=(1,1). Em seguida calcula-se a distância dos pontos sorteados cn=(xn,yn) até a origem O=(0,0). **π** pode ser aproximado através do número de pontos inscritos na circunferência de raio 1 em relação ao total de pontos sorteados no quadrado de lado 1." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ - "import numpy as np\n", "import matplotlib.pyplot as plt\n", + "import random\n", "\n", - "n=1e3\n", - "x = 1-2*np.random.random(int(n))\n", - "y = 1-2.*np.random.random(int(n))\n", - "insideX, insideY = x[(x*x+y*y)<=1],y[(x*x+y*y)<=1]\n", - "outsideX, outsideY = x[(x*x+y*y)>1],y[(x*x+y*y)>1]\n", - "\n", - "fig, ax = plt.subplots(1)\n", - "fig.set_size_inches(6,6)\n", - "ax.scatter(insideX, insideY, c='b', alpha=0.8, edgecolor=None)\n", - "ax.scatter(outsideX, outsideY, c='r', alpha=0.8, edgecolor=None)\n", - "ax.set_aspect('equal')\n", - "fig.show()" + "inside = 0\n", + "n = 10000\n", + "\n", + "x_inside = []\n", + "y_inside = []\n", + "x_outside = []\n", + "y_outside = []\n", + "\n", + "for _ in range(n):\n", + " x = random.uniform(-1.0,1.0)\n", + " y = random.uniform(-1.0,1.0)\n", + " if x**2+y**2 <= 1:\n", + " inside += 1\n", + " x_inside.append(x)\n", + " y_inside.append(y)\n", + " else:\n", + " x_outside.append(x)\n", + " y_outside.append(y)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 75, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.1216\n" + ] + } + ], "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "n=1e3\n", - "x = 1-2*np.random.random(int(n))\n", - "y = 1-2.*np.random.random(int(n))\n", - "insideX, insideY = x[(x*x+y*y)<=1],y[(x*x+y*y)<=1]\n", - "outsideX, outsideY = x[(x*x+y*y)>1],y[(x*x+y*y)>1]\n", + "pi = 4*inside/n\n", + "print(pi)" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQgAAAD8CAYAAACLgjpEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEeJJREFUeJzt3U+MJOV9xvHvwxLgMr0Gdm2vgc2CghIjJYqhhUgsWVEwEvaBtWNbgoshAq1QgnJeCSmRuMTkEskKkrV2kNY5AAkXjxUsZMCIQwRhkDB/RViQLEaLYAzRzEZJIJhfDlO9NDNd/Wfqra56q56P1Nru6dqqt2tqnn7ft956SxGBmdkk5zRdADNrLweEmZVyQJhZKQeEmZVyQJhZKQeEmZVyQJhZKQeEmZVyQJhZqXObLkCZAwcOxJEjR5ouhlknPffcc7+OiIOzlmttQBw5coS1tbWmi2HWSZJ+Nc9ybmKYWSkHhJmVckCYWSkHhJmVckCYWSkHhJmVckCYWSkHhJmVShIQku6X9K6kl0rel6TvSzol6QVJV6fY7i6DAUi7H4NBM9spW27WY1Z59/o5Z5Un1X5atHx73U87173IdmctW+X9FOWY9f+XdaxHROUH8BXgauClkve/DvwMEHAd8MysdV5zzTWxkJWVCKjvMa7O7TT9SLArp705/nJlpaX7s+5j6ewHr+mzzwFYm/U3GBFpahAR8RTw/pRFjgI/Lsr2NPAZSYdSbPtskp45k2R1pepI55aqe1eOb0dazrYWUvcOGH3wVn74T1tWH8QlwFtjr9eLn32KpGOS1iStbWxszLfmZR3No21l8EutouMfrx8SfpEtKyAmHXax6wcRJyJiGBHDgwdnXmhmZpMk/NJcVkCsA5eNvb4UOF15rT2p8ps1ZVkBsQp8tzibcR2wGRFvV17rMpsXPbDFSq3rWfTn1rwk80FIegD4E+CApHXgb4DfAoiIHwCPsH0m4xTw38Cfp9iuVbfFCvvZSrrORde3ny02GTDAgd82SQIiIm6Z8X4Af5liW7a4AM7Z3eXTKg6JdvJIyh5oeziM7GcLEZ96uPnRrNZOOWdp5P4HNqu5EhNPkFkqeQfEyoo7Kscok5qC5cNNDMta7jWkWqyk2yd5B4RrD2f19Q9lvN+ir/tgl610Z6XybmL0jJsQ003qr+hdH0WkPUbyrkGYzeBIrcYBkQlXn/fmHDc/KnETo6XcnEhrZ/PjY9S3xseeuAZhvXTOjgFZrmVM5oBoIR+ozRidEcla4iucHRAtMvomS33xlC0m64A+cyZpSLgPoiWyPig7ZjygszxNmnB8kAOiQdlXZ3tgi5VeX2HqJkZDXGPIQyf6JSrIuwaR4cVafT7YLD951yASjjlfBkdDvvr6u8s7IDIwfp49l4lbbLdzchonkfBqzrybGC2XzQFlc8nm7EbCmrVrEDXyeIbu6kv4OyDM9mB0dqPrQeGAqEnXDxzb1vVaogMigS1Wdl340/UDxz7Rui+DDO/N2WkOg35rXXMjw3tzmnVeF78o8g6IFtyrvjXfGmY18DiIParjnpZmbZN3DaIhDgcr07UapWsQC3I42DTZjLackwNiAb4S0/rGTQyzmnShueGAMKvJ+G0BWzVOYgEOCLMlybHvygExpxzT36wqd1KWcIekWe41iIQz55jZbnkHRE1zUro5YXVZyrHlKefq46aF1Wk/W/UPoGrblHOSbpT0mqRTko5PeP82SRuSni8ed6TYbmquOdgy1P4V1KZb70naB9wH3ACsA89KWo2IV3Ys+lBE3FV1e3XxEGpblvHZzWupTbRsPohrgVMR8WZEfAg8CBxNsN75JGpv9fn2amZlUgTEJcBbY6/Xi5/t9C1JL0h6WNJlCba7LbOb55iNa3uzNkVATKoj7Wxm/RQ4EhF/ADwGnJy4IumYpDVJaxsbGwmKZtZuo+HYbe0aTxEQ68B4jeBS4PT4AhHxXkR8ULz8IXDNpBVFxImIGEbE8ODBgwmKZpaHtt51LUVAPAtcKelySecBNwOr4wtIOjT28ibg1QTbNbOaVT6LEREfSboLeBTYB9wfES9LugdYi4hV4K8k3QR8BLwP3FZ1u6m1vS1o1gRFtLNqMxwOY21tbfaCg0Hl0zo+xWltsMkg3dm0GX/Xkp6LiOGs1eQ91BqSnPN1OFgbjDos2yT/gKjITQtrmzYdk72+FqNtaW0GCa7XSHixVu9rEGadsrLSvou1zCytPTczzpzxzXvPSrgjzNqkUodlyy7Wak6FHdGmjiCztuplJ6U7J83mk3cNwqzjmq7p9i4gmt7hZotoehBf7wKi6R1ulpO8A2LBASGuPZgtJu9Oyq0t0OwRZ+6UtJxtsdLYlIh51yDMeqDJZrEDwiwDTTWPHRBmGWjqUnAHhJmVckCYWanOB4RPbZrtXf4BMWMshAdGme1d/gHhO2uZ1Sb/gDDrkWWfx3BAmGVkrjtweU5Ks/6a2fHuOSnN+muZHe95B8RgMPViLZ/itF7ypLWFGXNS+hSn9ZInrTWzZXBAmFkpB4SZlXJAmFmpzgaEz2BYl009vhMOlMp7TsopfAbDumza8R0JD/28axAlSenag1kaedcgtrbmmdTazPYo7xqEmdXKAWHWMQlHWucdECl3hFlXJBxpnXdApNwRZrZbkoCQdKOk1ySdknR8wvvnS3qoeP8ZSUdSbNfM6lU5ICTtA+4DvgZcBdwi6aodi90O/GdE/A7w98C9VbdrZvVLUYO4FjgVEW9GxIfAg8DRHcscBU4Wzx8Grpd8gtKs7VIExCXAW2Ov14ufTVwmIj4CNoGLE2zbzGqUIiAm1QR2zqw5zzJIOiZpTdLaxsbGzA0nHHJulp1NBgTa9dikXTNKrQOXjb2+FDhdtoykc4H9wPs7VxQRJyJiGBHDgwcPztywb4lhfTZg8mm8sp/vRYqAeBa4UtLlks4DbgZWdyyzCtxaPP828ERELP9WxWa2kMrXYkTER5LuAh4F9gH3R8TLku4B1iJiFfhH4J8knWK75nBz1e2aWf2SXKwVEY8Aj+z42V+PPf9f4DsptmVmy5P1SEoG9XfSmPVZ3gFRMtY6ZSeNWVuVznviGaXMbOesUnV0++ddgzCzWjkgzDI0aZAUUvI5EBwQZhkq7WdLPAeCA8LMSjkgzKyUA8KsaxL2QzggzLomYT9EZwPCoynNqutsQHg0pVl1nQ0IcC3CrKpOB4RrEdZFy/zi63RAmHXRzC++hBdrOSDMuibhXIwOCDMr5YAws1KdDgjPimtWTacDwrfusq5Z9qn7TgcE4DkqrTM2Gcx36t7XYixmwBmHhGVv7nE9vhajsMD5Xg+aMltc3gGxteUbdJrVKO+AgORTbJm1UVNN5PwDwqwHmmoiOyDMWq7JDvZeBYTPZFiOmuxg71VA+HSn2WJ6FRDg052Wl6a/0HoXEGY5afoLzQFh1jWeMMbMSnnCmGqabteZ1coXaxX2uCOabteZ1coXaxU8zNqsVnkHRAVuZlibbTIgWjDlUW8Dws0Ma7O2HJ+9DQgzm61SQEi6SNLPJb1e/HthyXK/kfR88Vitsk2zLkvStGjROIjjwOMRcSXwePF6kv+JiD8sHjdV3GYygTxnpbXCKBiSNC1aNA7iKHCyeH4S+EbF9TWiLe0966+2HoNVA+JzEfE2QPHvZ0uWu0DSmqSnJbUyRFyTMNvt3FkLSHoM+PyEt+5eYDuHI+K0pCuAJyS9GBFvTNjWMeAYwOHDhxdYfRptTXHrtjZ/Mc0MiIj4atl7kt6RdCgi3pZ0CHi3ZB2ni3/flPQk8CVgV0BExAngBMBwOJx9Y6yVFQ+Wsuy1+YupahNjFbi1eH4r8JOdC0i6UNL5xfMDwJeBVypud1vCzpiRNqe52bJVDYjvATdIeh24oXiNpKGkHxXLfBFYk/RL4BfA9yIiTUAkvCjl7Co965QtUduPtZlNjGki4j3g+gk/XwPuKJ7/G/D7VbZTqqbmRZurfNYtbT/WPJLSbMlGYx7acK3FLA6IEj7taXVpe61hnANiipx+kWZ1cECYdY1nlCr4xr1mu3lGqcLWFsTs8VRV+IIuS6Utk8AsIu+AgFrGQkzcjPsjrKIcj6G8A2Iw8FBry0KuNdC8A2LJ4fBxZtVDa48caw+Qe0AsmePBFpVjv8M4B8SCRp2W7ri0aZLOENUgB0QFuf/yrT5dOTYqXaxlZp/2Mcq4QbFb3jUID5SylmlFOLRoVutm1TBhzKLcJ2Fd5iZGQl1pd9r8Wtmk8FDrMW5mWINaFw6J5R8QLWhmjHNToz/68HvOPyBayE2N7ttk0IvfswOiJq5JdFdfwgEcELXqy0HUN63/vfo0Zz58CrQbcppotk03723ekuaDqMr328hb62sNNck/IDKaD2LAGQ+ssqzkHxAZ6+u3Ui6yalbUxCMpzcb06QzFPBwQZjgYyriJ0bDxPgn3SzTH4TCZA6JlfKBamzggrNdynzOybg4I64XxMxLjj07W2HzrvW6bdCC7j2LvetcB6fkg+qtXB3oCvQuHxHya0zrJwZCGaxAZcrNjNodDGg6IDujbH0NZh+MmA5+VSMxNjI4o+6PYYoX9tGtavr2a1WzoW1Aug2sQHdely8wdAMvngOiB0R/Wx5mdPt3ZlLDlqxQQkr4j6WVJH0saTlnuRkmvSTol6XiVbe7iae/nNu1PbNlzVZT1I3R+EFNmqtYgXgL+DHiqbAFJ+4D7gK8BVwG3SLqq4nY/0bJp79tq0W/gAWdKaxzzhMe0jsTR+q0mCb80K3VSRsSrANLUg+9a4FREvFks+yBwFHilyratfmW/1Xn+uMuWcTDUJKKW1S6jD+IS4K2x1+vFz8ys5WbWICQ9Bnx+wlt3R8RP5tjGpC+iiXEn6RhwDODw4cNzrNqA7W+P6bU4sz2ZGRAR8dWK21gHLht7fSlwumRbJ4ATAMPhsJ46k9ksDtyzltHEeBa4UtLlks4DbgZWk26hi2cyIj55TPt8e/3ss9Zbsy0W2PYyy5njsVRjmaue5vympHXgj4B/lfRo8fMvSHoEICI+Au4CHgVeBf45Il6uVuwdtrY+/Qc17eBfWZn+3jx/lKmNb3f0GDfp840eo7M4k96b9jlH693D59z5xz2x+CXrHf3fS1e25i/r6PPP+r3N+1kmFXjn/qz6+5+2jXmDf9b/31nmGihq6v2sajgcxtraWtPFMOskSc9FROnYpRGPpDSzUg4IMyvlgDCzUg4IMyvlgDCzUg4IMyvlgDCzUg4IMyvV2oFSkjaAXy3wXw4Av66pOMvg8jerb+X/7Yg4OGuh1gbEoiStzTMyrK1c/ma5/JO5iWFmpRwQZlaqSwFxoukCVOTyN8vln6AzfRBmll6XahBmlli2AdGKe3JUIOkiST+X9Hrx74Uly/1G0vPFI+1MXHswa39KOl/SQ8X7z0g6svxSlpuj/LdJ2hjb53c0Uc5JJN0v6V1JL5W8L0nfLz7bC5KurrzRiMjyAXwR+F3gSWBYssw+4A3gCuA84JfAVU2XvSjb3wHHi+fHgXtLlvuvpsu6yP4E/gL4QfH8ZuChpsu9YPlvA/6h6bKWlP8rwNXASyXvfx34GdsTRV8HPFN1m9nWICLi1Yh4bcZiZ+/JEREfAqN7crTBUeBk8fwk8I0GyzKvefbn+Od6GLheM26cskRtPh5mioingPenLHIU+HFsexr4jKRDVbaZbUDMqc335PhcRLwNUPz72ZLlLpC0JulpSU2HyDz78+wysT0f6SZw8VJKN9u8x8O3iir6w5Ium/B+WyU/3ivdWatuy7wnRx2mlX+B1RyOiNOSrgCekPRiRLyRpoQLm2d/NrrPZ5inbD8FHoiIDyTdyXZt6E9rL1kayfd9qwMilnhPjjpMK7+kdyQdioi3i2rguyXrOF38+6akJ4Evsd2ObsI8+3O0zLqkc4H9TK8WL9PM8kfEe2Mvfwjcu4RypZL8eO96E6P+e3Ls3Spwa/H8VmBXjUjShZLOL54fAL5Ms/c0nWd/jn+ubwNPRNGD1gIzy7+jzX4T27dqyMUq8N3ibMZ1wOaoGbtnTffMVujR/SbbifkB8A7waPHzLwCP7OjZ/Q+2v3XvbrrcY+W6GHgceL3496Li50PgR8XzPwZeZLu3/UXg9haUe9f+BO4BbiqeXwD8C3AK+HfgiqbLvGD5/xZ4udjnvwB+r+kyj5X9AeBt4P+KY/924E7gzuJ9AfcVn+1FSs7uLfLwSEozK9X1JoaZVeCAMLNSDggzK+WAMLNSDggzK+WAMLNSDggzK+WAMLNS/w/DdPHhSzn8JgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", "\n", - "fig, ax = plt.subplots(1)\n", - "fig.set_size_inches(6,6)\n", - "ax.scatter(insideX, insideY, c='b', alpha=0.8, edgecolor=None)\n", - "ax.scatter(outsideX, outsideY, c='r', alpha=0.8, edgecolor=None)\n", + "fig, ax = plt.subplots()\n", "ax.set_aspect('equal')\n", + "ax.scatter(x_inside, y_inside, color='b', marker='s')\n", + "ax.scatter(x_outside, y_outside, color='r', marker='s')\n", "fig.show()" ] }, @@ -459,7 +946,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.6.8" } }, "nbformat": 4, diff --git "a/1-analise-explorat\303\263ria-basica/04-probabilidade/img/.DS_Store" "b/1-analise-explorat\303\263ria-basica/04-probabilidade/img/.DS_Store" new file mode 100755 index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6 GIT binary patch literal 6148 zcmeH~Jr2S!425mzP>H1@V-^m;4Wg<&0T*E43hX&L&p$$qDprKhvt+--jT7}7np#A3 zem<@ulZcFPQ@L2!n>{z**++&mCkOWA81W14cNZlEfg7;MkzE(HCqgga^y>{tEnwC%0;vJ&^%eQ zLs35+`xjp>T0SJZQHhOb!^*CI?2~-?X~y2zxVt;*O@=&HEYxu zqiPiIc~^zW%ZkCnV8Z|b0l`a%3o8NvfyMy=0lPv${EBdn*af+2PJ7hDx*m?T%}EQP#cVK9A`RBD>y0!l0r$Dju9#dBa48O!h8pS3m!1g-InKe^ zObV4qj?Ru~gZ(EE1`;rwa4B%z+;DWXE09GG-&cbVfoN+SD@hO8dC&XT@-PY(8V(T9 zL8$&$@5)aoFg*~UDr6*?7*HUls96!z{e0v|kw!3UXJG-bh^pNk_{yf>54PG(&X|e@ zO8*a_UMBgn2Yn!{HeGwBbq1Aoc0Rl3GDokGmq$2hK;&u^S zdrlzM%`ujsM6D4!=JzUf*oOQ49w?6W?sf}v)tyqdQzi9stfI{1yi+r7>C#k)1eSVC zno9y(J*`im5lLn@@Q@}$caG}}Xq$W7c?$zmIe#DJjd0bRM!w*JH_y>zvboC}BG>gS z2hBt0X>k4ScXc4DR>d(=&;l(zZ+9SKXQo(MxN6Dv6EHo(ITtj66lwpMCs4t{Gu!(e z(L=_$af``UPE4`k7)9&9^SJ_+vTbCx7dzElr^_4~?c}^U3qOS++2pV>3rqug@spAs zRFDwg5|34x@Zh|E(j+SgaH31=HW9`%wx9r!6k@dFF6>v-wNNp^paNq zKZu~-r_iSRM1akC7xX!Ce=ir97?2iHw0Ddi0s5;MtJ@7m-t4E<6Oiz-{ei~$J6$@` zf*tk}u2pbTzovfC9Je`WBkdZ32M$pTj3#W=hgMC`E5kKCB7+@$41-asf}SSphh91? zuor#siTSOS%jcIio+e0Kc{HoQIq@CxsyPBPVysvN5!1H<__(%3MWR zE_qkEobpxtP%iK;-xfpK+k?L@qFTL22p*R+tyCjaIIA9XEl$-4 zLSZGtwYaE@73RjAHSNVSV;NAY0sDaPkf-?meYL*zteMz{-I0 zDApnT z;)a-s?P3Jx_5XH*M=gjH7%+-NH3$zaxED)Z2x1`s5zAo=$swd0OMnI^B6vINY7Uu* zh%R_I>rjf%iP$8dGmCdZ#0=9Fyd~5yD~AQn)N4)8M-5EXuUX4r4cpPrYfq00TGGp5 z53CKNHV|bGy8*r(Krmo*Bj%0(E>D66DTzfIGcTBy&zje%urBYc%xQ^Oj-?XC8DS~L z%@c?%BvXJftIkZN2}Kigp+?n+!wG~JAS-q)l2UL!OLKz%fb_=V3DM zGK`8EDKU6p7|zg?YAQ|V=t@SvU8hbBsftn&mdQhBO~H!ZfvFW{)2}8$(=J)PLz6*Z)-5s`*jTa>+if))~hwC=rMdCNWFO5)k zmdF|ah7u3`4$Tti+7H?fW)L?jm`HMlsuPwsNNq@YOI?@plKGM(3X{@s!cj&!r!wPi3?=2sNY7XCJc9GDzH|N|R0|#EI(~b2tETiMocYEgPug0ES^+8az27NVm%_CbfT`L z9;ePw2dF>QGuLhyq~-5WprAQP5|V~E`a1?NPKO(!o3NO`>u>gH4y;XZ_63_H7&n;0 znoO8+4J^&D4#*m)8M&Fs8P@3cjPnlr?ZxiY9zh+i%sBWNrS6lH^OZ1|A(`PHYfKAF zd(i6A5?2#e^JvRx$F%u6!a8I)g*Xr#*dF@!1suigI_yatl;2r0=S%O2{DSyu1Pb{X$6wk@|f~*;m_PBy(!5^WJ>lgv}RQOj9WT7FX3 zx?{znu4E6)f#w$J7UfoJ?;a%{1s|n@M3c0bq>ZGCREb1RiZ=xy^-Xd}Tt$i}epu2< zB1A$>5^=Pb@r;p(5uFjy*gykbBi*{_LWmXa>m!9XT@feX_ zsTr%8v=+))(cbk&`)K=U0xtvKKCBV-oNk!zn=ZzjV_s*$VR^aOUKKURIyXIgHLE*2 zHygIlmV2L4-D#U@8*r7FU8ozY8@1Ki9m=cn)%uz07webP#}L3EWFS;-(6oy~tWdyT zpjjYcWU(*5FS!rExTnEX#nelINV%>itA5wXX_IIh>Tu~` zYO`~wam#t8zo&S>x>tUXzVAF9+84QRzlgebeXf4YUbpUky*Ub_In#1%fqNH!BYE9e z9dBUqK3CBr(<{Fg;fu@((F@o{aY1cL=RCH%{4w~0td}{LWXC91VJENmS>R0|NFZVT zp#|MG17-=47RHyr5K9r4QHH4~X`wq%GYB6(3vnII^}99825~1P2*EDq9EL;~T*O5f zN~mPGCl(D(77h6c|_2xxR@K9o&VI&aE*iJ&X_LvKW8T%Gj`I`S2ivu)PwvIe`pzUCKd-AJszc0U zx=Z*KFSne#?s=aI@O7BCXRC`E&YwI;9{Ml2yM66~$^D7_w}AKjWFf(jC)_vJmFJr* z!=}9g(!uzb_&UXo`3Vz46Ug!8aiMVnwNzzhyj`w%H{))`TF2V)(z6SN&w^L6ANU1$ zI2^Vfokg1Y?Jr_wi|`YPITIZ+TyZ zpTUXo%=CQovhlLpZfy0~Prj|PYI(GC+n8%xa8*0EJ?Dw?qVYNNnR;HlW_z}JXyKmq zw)f!o%KgaO8kiOs=&L4b$jgYSB-r%2xOv&FUB4MkpphFE1raM29T4l`mT_-?p}yxh zdd#Fo6{V2DPHo7>oYFPHM)8697LB#rcVST!s7oO(2>)4a%8+)TnDvN%` zxQ67l{-nQUc-!A|z9LVS6XTWg>3&F=)AM1Ym`O zDHt?>7}}ISP6Nv%tupPDdW4d01#IPmgVsK;?ZdtL9{TPW+8g-}xtqM4*j3SAhEd5< zaaf>PB3pro|2BU(T_ zjV4D^Mq_3@|1$OR6_0FtziV+}d2=Ss z^4bnrAE^|dq(O#0l?4p5Ui=;Rjq^g`h2}sxJGwk_3o}8wWEgwIVZw83jz=&i_Os0Mf1MjI4j>q>R+Llj!p`p`+ zC>gW0=`C|??&nkgo1qgaP@4Iw-4v;H%{2n;v#3Uj3dC!1IX(sZl{B|qQ8 zugR2A7R3GFvW+oC<;Z>x}OAUlnDxjwr5`7JX5{!nJM&G3>d*JQ8z1(D5&tusN_n49Nv#O zcB)z5!ek@Zj6X*0SR7g2kc%Fd{Mh{hc1n2V8dQoo$S{p-^_;|h|f?& znM*#rr&>Mauk^A%x=a7I?;jg{A-OkhKDbSUElXR+n}3<-Eo?Enn1GvdoMshr4W5>b z(k{}e?-;rVd$vDTdWwI_d#1tk-u^o5z32-9Y!FosC=R8QnifTyWK0B5orukUcT+*f z=W)FFbvv;bK#n0Rxopdkq_?d7)o4(p@DlmD8e8mhtU2?eyVTdh?0!J?&g6qt(`z-! z3$G&UY`MQ?*_o%OZ{FyaR7cv6iruG6uIuZ#cjarZXEQ!?TzAG$JVmdAcXqSZBZ-;O zj*>yM@EILFlAcOW7c1+}s5|zL%b~DUiMFzxXL8=o^rMf1*Vj=!COwqy@fn4qFxZ=! z7%4SX^Pb;wV43^~>O_yS(5nxc5py<`?zvl@7f@qR9cQWc$|EHI7*~Z<;CT-Ysr3|x@jnKR2=!3fhYvi1git% zSy#ouMa`EIT6hzZ>i^weG|(fg9X%OYA4(?tJakdCKDcM(wO_vvzlVvciE5O97QaQl zT=-IaSIE1j8*7?`P~v7RdF27&MRGUx>g1Jk-JvjB z`!(xV84woqkbfd1t|^bJgrbD4gP|c?al^HzXrW}{_Ul;v?soia3pGcse%Ug+zQU>6 z&2q(?v*~s|ZHR2bN#s~hC$TGWc4JYp{bF8q?Xyzo#nSzF@w`$eZ%r>I4`Cqf(F1CTul=uSDj{uLvTP87r}Mj7982oSyKRWx2M z!~`eiPefLK*p9b@N^6QcvNzNxu5X&Y7`y0;tTRbAQJh3vp#TI; z@V+q$hadO!$>7RRVZZXgtmW|>K zI}g{}@q6B*iJg@FAGGp>=47qZzi2Z7hJ@kBK7_8q+|q)2@qkx>axRKJ9=6s4-+yId^?AQ@Da|HqgtCV z9sjPlk8+{q;;!gCS>|Kh6sKytO%HBuZrIK@)`S-JS2R1kTciB)H!X-(a0mz!Yc4!) z5ha8v7@Y7}LD#JXEE!LSix~Hqz~Mo;u}n(IGP3oqdB*v5MraM9)n_MWSJi97wXAHm zG`mhVGd-ui72x3jgrH-DGQ2Aq2Z}B|TNQ_f`LeT-y7k2@7EDX2GevCksEirx93#H3 zx4pEZ$fYWqEwyGno37^Bs!db}rh(k@OIz>L(mA-D8S1_zkkrt zvsr_L^o8u6--s2OvWeIxNGcOpBGW`{`P1^devjec4QILi*PNYu_ z537#Yj`EHp&x{SP_8(5cJF(rl-=es4y%-|v$w6nL6hc!%`Cwk5tkRuP6@QmS`$08F zqd}ZRjz_gmeokUWTT_x-R$5({S6N_~Z&}lraQ7cnx)Hns*3(d7I(di&dZW) z1MlEH=D4sJ)!Q&ruJ!qG@7E^SkbgE1Xy`d6o+j`bM*K2fTE1)aHew}LyLhl@D2M(F zmRZ}fk&kIB(K*|B_k^_RsH4g^<#^4_?MBC@`)Cf_jqQ2X_HOg6C&5Fm>RRY4%x@}y zT4)&`k{g&9U9Kso%f0SAX?&%E&1?HiR$5NA%k71pt?PZEUvG(tt0yz(@{9A)=8O=@rHcoJ?+7_-7zGznT6XGIbPMq@hrB5`=k!Kj_b~ zp0F)hA*?Q7Ecz5Z-j2SGS@D8WPkmx#a>aC2&c4+tp1q@0v6ZE@=f3gQ^hV>}3DDjB z-CaF2+L+KXpWD#<;ObinRuXQa=TGIM7!$p5pF};yLW(iUbwcuX@hYW{gyPub5ZAov zT>Osi7=eJ@{JH{(fNy=={d-|aQI9fOTph@e>BRQs_H#}?`?@<8CoCk#qjH0@2D=X;R5 zysi@1X53!-{`*FRZw;&q?- zpk@tBb-ix!=DZ4hjZ6wI$&Jq#MFb9|4$YA!6xA1%nM@sKO~j}QtC>@oshX-TswSw` zRKD`LW|WV=JpwbN0{!%8YkyM#0n#P{nt)VO!>mwKOOYcK8Fm7y4zc@v-Qc@S4{BfN z2EQro(e-fsrS}QB2|v1@+wb!9=TITbLRsBeT}GPI$j*k=z}U{vgx1~0{?9oB5D>RJ z=buj-6K4ZLcN=S4Cr)=Bz~362f4=_`(*X$oR&loC0jSH!6AIZmnh>(kGSkuncwq<$ z3Ar7OO*s{XMgKAXli~rGJ3HHR($TrOxzV~Y(b_qh(J^pvaL~~+(lIj9{L!Fs^00L_ zaHp|#BL0_?fBO+OaWZnWuy?kwvnBk?uYsYRi!%=Z@K-_qdHz*T6L*XMDaqF9pRoP} zNcUF`9Rn>r-G6-lG3EYC$|-N*Zep!2Y+++!>-47#UJeE(?!Wc_kDUK0@xLrJ{>PGu zjrqSV|10MoOK!Tq0{E|h{?%H4OaC+%FAO)`f0~{bCajdA6bOhPNJ3aZ*&X;o2U=TY z=<~~ebO>A;*eUOqJ+!u9!=P@Mi6u|tr^TbTZiI%##DZthqSSh$Oio&|NzG(R@>;&l zjr1IfmbPP_^eDK92(<&Kc5CR{m(TH5+cOlVFh<F zKl*=#QhR zg?)R5fn-cTZt>1Y93fEP@lrAOm|q?-n9fY%H^*v+!}d>gn(&4;m>izu#be+dLiX8N z55wA~stlaTwqfRq$0R2t9ht*_6Yn;$Kv-Q(1H5>C4}cfQ6S!);Tosp*5jADqhal=S zA`zU3uPdRJN&P2qcNP#{Q<*}wXNI8q5^GRr$r(rQFC7t^ zjG_}QsKEG`pPmUu_q&a-|` zP~0EZKX@QXn>`6Qy$>nK7k(Z;m^-lfyN^1-fsLlmXjm*>{_3%5E-?RT3b%`aQ6i^Y zG{NK22UZ<21)ee`wV#ojG{=WJnHQV3ebnDw2?5hWizz%j2>ZvNo9*y}dk4xS-8?V~ z3dpG(Ovw1?-iN@7eQy*l>8I+~!L9P&zvFm)7xhFU{N`~r+MU|{sogv%D1rv<#-^yK z7#pAX^8yBRL#UhV-<>{<{ijx*OR;H?e-Ei%4FD2@?4&qk*lupX#cCNAd2xYL8Nyo1 zPvv*}BGSFhi(g5hQsRpKMN=5zQhXCV%@lBs z=`JXLj`P4sq#XQ(d*M4sKy>m8bc$0}Psi>$H_$QxA{iN(u|Q&T0fWk|~^S5hFVDZ?IIHR$?M4rlLx|OBP!xE2q@=z3}2T^@Notr!beVqBWJU; ziXA)zn@%Aoa4L#L&MQoWpu~GSuKY z2`vGf|9CR?Fs&W(W)x{O==!OUvum}k4!0D6=;F=La7ia9LNKB-igZfIW%(z0uGJN1 zONiXL95_7DImYt#(+d7s#WLYRhBF_nXBi#f|60}gEs(^qqdtX1^+#ig&X&nHE?Y^B z^$CiSgiP~Ae!>Y@_xPS*An#4u02h;UHtObUQw#6Ois0v5VGs)C&)Vrz1Dq#c9PD|k zg~EA7orPK`vTC3(iAzGe6B45pRDl@*7$1f@9Qs$FT}Wb8h643LMi=yy5nK`s$Wi_D zbBPK#Cu#Exn*e^%p(i10HaA`367up97+wN&94bIm#-FmiOl%> zdth4VBQ*S?;@@;cq6xy{91ze{WeG0P2!&?tez8kqi6Bo3I1!}o3`&Ny#*8tEwV#Xm z3swGXEgmOp9nc=ce)H5v+$z<;PL+RLD8 zn3#bgzm?K+#E+MOKCmcf$?h0@ByVl?A@i|8_IX74&ZarR88&+zX(6;u=M zp-km%&M+SxL}Ic1PKr7wD55{@ZAs&IaI<+*p`7qutHrF8?IL}37b5OCL9S?I@hIP} zRV7zoDsNFi;`yuec?gYB)S^=K2^oGCG#dE#1IPKCnR6qTfC~nRff6!uc7Seyh4d;s z>d_3Ek~Xr;k$S!;+@RQk7(fvt9wKb@z_tyY$X_+E@>`bpWrh!rtJv0eK!kjF;@BO9 zTu0P9HWMUtGHQsCu(6(+2Bl-su#DT#6?yt%SiVM)DvKf*v7&c=CHiFYP^_$@1-%LU zZs@4)_o~Bv<1F1Ad26Zp_Ez!1Q2I4;N2L6IfXJxaP`8gF-(+oUW@7j$ExH5PmM%9z zSD`LsUCob8(*p=qeB&j;NHv5FkbS3V?YcGD(K^!S>-Pf}?-N%Xf zUqH!^kx)Nyl<}t-KFi+%QXzh3y8=(nDOHhD4fGK33B055Tg1U!H9*%71i`yET1$BS zy_en8G-|7vhhB9?N^S)F&{M#TMI52|taRmd|6`&w1=6kQ-&Hse3gW=N5AJIX59^*iDVjp+av<1Y?2q&RAg6Dp?Sa}T$Vp5 zY;1S(Hq>=&G_L>4Q^O4_q;-(;gwF{*zEWTOs)UF3Z3OuvD_cb5{u}YxsC$VET=J!DhR^PuG1IAxj~SgMNAl|wRODxWLKQA8>>$r=kJh~q??E6V{2huRno zX2S-SJRE#j_)x4s0Dbchh0gV)pGAKt(rPgA><|&e{?yPgTf}Z{rxWTHX<+@|H=lsM zIoV$-FolEA!}ZB^^uq#B(0NzPDEmj!ahFQ<$ZVGEq9YBp5~*$6=y+MCW0PDQwjgiO z-XSFj@z8;{4DBqZ{38rJq02k+hC0xgJ!KcOT1c^J&j!7uC!H!YQM%H5V+=AFROZ zws@CFBw0h!;W@CMqFPI`+0%Y)|8B5(z@L#n4=~GS`g`P?2=1Pky_YgL`@q(RF1I$~vcxN(J%d0p}SyFZKCwcJ5qkaKe@oDIt)PJT16BNkSH^>Xx=`WcDM3a%vlj*c{v?gV(*NW=(1=0el2*%O^b^Gq-T!$AS<1N-G~zggHJR^!NNBkPXYM~ zDAItz(*oltGAEQg=g^PJ^T}PFW_q@(`jlFo3E^O#QdlzY4`jw6*Trrw==+k0*QO=i zks0A~^GhD(2rjDsfGxA2pVt~gtZ{#D=|2T_E|A63iOAOS0aB@dpW^1#MsOXiO3A^XhAfQe_MicWvias-}NieIX|p$*VZK@ExQAO9td zOrgl2)L5RLutKzkyM*54Opb9(#pC6Q3aq$`G8PT$PBmx68~Tz+E>l5cL~kDussW#6or2>k-{9zhV%# z32|61D`p6FW7?$>P*LHYKU8F2DxOIl6`@79GNww28r%U!HzH%JvKL8C*6;8TOj6$c zE6^dDQJf=~y^s}e%mXc9lk$2e%WVtU=0tqZK@P3#tCjLfq{JtGP+27t5-^t z6zMje3dBo0GZp^6g?$xZ-_Zb-Kx51-gG)OdARId>ogFiWib?3}_ghi8LJPs=D7&=Q zD8rf<(2?AF%p7j9{B*#fNN$L+rN)g(ZcN-hgH$#ECLOkz>s5(970-eFub*XpN+kO9 zQN^F8_zZs!ezOpMl;N1Ad{sa4pMuk+Ddvzz1xMjBU*5njjc0_IOUz2^V~c zh50cI>>Ec5%D*cK2ViOt##c^V0Avkel(2%OzXiKN^c2`m;dxLUVMLPRK*F38pO65$wX;c!;6d$#(nQ$Js!B?^H@Dl-X^a|-eL*GQW*BmebmFuzb_p+P_ z;fJ)^ufGx)qy5en{QNCM0g$U+wq0saO+ytwJcA4>tsrgj?XYpK72c<~^E&)oJYd@U zt*yB%l{aLK#p4sD#C7P`R%r{qL>g^zM!$@_k{Q~$rr3m1dPuH033aw25W(;{ zS#d=)4+5#ur1lp}u#1yb4KC$ac6dGH(V#BcmjCRJX~W3xXdw(kk?P!07$%J0uz9c} zO5mJH%D&uif*C-w+&L#KVXtEz4WqRwB4Ta#7F9a8F$_Ghm&^dX8S;caM+-J+7<2?z z>K&E5wL9d2Ih5V{1(^ zo%^)D9rUL0_MweaGp0{&H#JO*V*duJOdz}^f#aFs691-v#=-qACY=w{6gg-p*~fW} z5SE&pM4-XUqz@vIFAT%euAG1McVQ36K8HIEA4_5PWoJQi;?<9N4$dy{%qB92f!rF) z6i^Em(#yngP;V@}2{QO7zs{eiOfsKx4-4^})Kg|mH1zQ=T^A*gCq13^JNfksHi3sx z0fnOGqAZaw9COO@y0RXAPxU}vUOhdnzlw$8#6?9P6x~-$=5(q|GR9bgwHsS+^8Jw- zEOS=PZl)koYyRij@V|gI7!(#!Js4pc#Xro`e@Lo-v0OX+y{Qf9$^T3G?1C5bt)LlROmZ7=d+p*=AthBhRw*hTugNT)oc5GE z|K$ZAnO?9^OkFzn|4&E$+l#y4pWgYuSU81ij(Ch*Dt`@sZ+0D?*3&VNACdWTXPDZJ zGZ~rV=zaFbcg@Y6BlAt}1L+v|5g#vvc~-lAKkj)slQ{~^#C0j>u;_xZzXqk({j38%CpP*iG9CgqnixI=s~rs zepFbP8`|sF&gUFaC%a0gcUSI}0zOvHN*l9W%;(#uNER%&nGbcx9cLiTN3U%LH5UVXFzjE>T!xf^eckzefv3DI*txv+IIJdKXE!Pb-Yt+F)z zX-fPRrgYTVDyXnE1tWNP>LF{UxFStZ%Dl3;kpU4=I!779nN5>Os##!;jEus>O%Slz zJ=;Y5^(QjcH#MBpiRFbB4ssY6glY51udVmZF~%6nQe&S~__u`o@$0Jv@5BrPQm?#G zRdAihD1;sbVJR(cT+P2#`9te>cJ1!BT6kn27HxqUvEZ4v@3LcbY9;hMRvE-Bw7Vk9 zQ0fQ9X8S=%2)62XC?mBly7088gJZa%Vh_B*@o~8qthy~+=V*(=k~thc8(Kx6V-MuWF%U;kD_y^&R$=(NZ~0L5>4K02zA%SxQR=h4^!rj@5zhJ+oA*n3z zX!B9UNwxoW(IBrA_bp3YpC;89|1$-=H=bTBt*7q2m(PV}LSqQ+e^Y$E>dtLH2x2Wh zh`GxUD*EmcU9l=r=yHH#$ry70dwh~71iW~??L2}oHQ!i2x_&k&?V+sI+4jMhT|A}! z9{MrcB!Peti4_V>b$IWnkD_Y25uOc@_QE-|-rAX$=e~2rh0xvt!!<{=pVs|qHX|@h zcW;rf)7*$iy|h91g7Ce2Vh0RH=R}CLvkGK0+Dr*$ZxXS@vTm6<7+3{35KM#rrbz((^icPm;qN@WIKOs((!Ac!NTNN8 zx@{~b65$I8EMp^*2MZVT+(3k&li2uK*VQ@KsT6oTmVma-Pe1J23RGt(d%ylW#QwVC zu8Qjh0%aZ|F9)-9%Z<7f)=id57jC0rkLkof=Hi82cv?R`@o<#xzz}~pw|^@3&2n}(7^Q6JH6N9lzj_-~?8h``(TT3B zCRKD_`xr4zwl)-@2B5CIPjEVW4&{yMHj_cNJ@*%lO-srS*XPv7dT6hWfdilXx4r-{_*sX97`RqlY|4QElbiy02?I zR3kgJ_jM|EJ?0bsX>4XFw9K0VN`+a0^S4Zz#p@5ys5R4xO4HiF;0Y zOjsd+Y>Pd$`Pa%PGYKc%bt-f(EvAo?|L44M!Nb0 z=O#hLF`D_mG+6+Iv$tp;h*eHcwp;1eMC}BP$|iWMFpUb5F?6IyNgOiwxeyo*yNHM9 zmI@#@V5r?ChBRwgg#t&%HQMJ`$)MCd#gmMl;`tmxPylj-91P1teei05z#TtEW=GtN z;;0hI0sNC&0eNnX{r4hix%d(zjU%kPCL@Xx#|t5gP7AuNC|xmjBF}0EYZ4PnxcqLf zG@dokYxyr`cD9FTk`DtW+?v}%KZ~nwf3M(9x)1wJMFx4@BtpdjllBt1jj%qr!l?B| zFG#Umb8Rdgknm2`g8g^|-SXnVW@9b^dxzxpuqOVr=$a|jlNbm$|5-KT>?iY;wcrZ^Sya%F}GTUP~Z@JMtYzd%#d|%{+!y~*rFlA7|AbLMsb~Q@l##{zM_EkDs22VX= ze$7Sr3O>WhY5^7g>kheH5+TnoGYGPc&rIUZzD@U!>S_EvcZpbYgX_!XwLaXQ1;l~ZOrVi0>w`Ch0Td)-XcO!tyu<{F(qSEe3f5E5s+?Ds+O z33C=qrglxdW-|4<#2y!Gf{D+SKNfH77KUU?2%1iDo>YNmj%*=g5;jh!Cp0uFO%~1Sw>%_NZ;>;nE!kuH5$Nzx&n3 zqeHTGT1gBUN4mCGDV+wFopVadZvz?Qg_wjkB7R(d}c@taCl z?u6E_qxEQ#a7P7d#W=aW&fE~2swHvHdtb((8@XqD%;<-+jcpe3{r4rE$qVsT0>o%< z7%2)B%66PNnTNJ#yi<8|YmnEo@H$Yg(2j0g%mnlg8)p+`X!0i>i}A!6r6p}hF1r96 zNI8dc>(n1}*Ei!9i2GZJ52aP(j_UdTB~w3;Z>LjZr11cp?$^b#bys11qzhyQ%@ZD) z^oDfLTM~?FR+tNmbxuFxT>`A=Z3>O%C#|fshextUgG7Qi>v`2X7d^whrw6d}ybyUN zr-z0&6@NDJF$`!#=dsNvvS50NB#0Z7c9;)f$hAX!c^0GMJNo3@$CU+Ef&|U1N69(2 zkoBJ|X)GHKKj5pg_HKV;K%9tX9g1wL((c#1&d>~dx^`ry9&4b4gf&**N>R1JUf}h@ z4Mu<(**je}JXfE4v9xprW`)5Z=-yl*4K*5JkiZ+=ATq51=!-7F_A)Zmd@LI+@3i4; z`Y%;eGdNUHuQ>qOT_>MOEBWzs<%Sob%2weN*#;AE1*47bYRi|yYRd84aG_nHR4to)Wk z8A07DPaE&m5+bK$HX;vIn+9n;le6~IuW7Sh{3&bVf1B&RBct5~a?P`_JhXm({dvF| z6 z%e&W!Y>K*!Id=();7S6P`*GZUtV7PK{Wa-Co2)A9iv?=iL(uTU30!3+;of<;@bb|X z*lcyl+4@7ILe|H@$xJfb#r~d3&1e`Dezs#;0nX=wD-d2gDui)k@dPDtQ-FWi*Soxi z330z{1cl*YOqiQ}hDS#75+hnYuxWq#KAyK?p(fTy;CBDQ;RNk;whg?obC!le4+Ews zwrdB#eK0@Cd1uK%4}qg+9v;FOF?6jIcEVy$*-nSnch^a#(W0RQljEz%Xv2zSyO9&CjjYk@da}nfeN=x}JMA!K^bboTt6fGJk zp#gP-#Wt}Ox*4J${QJTp!hYgXj&h-gl%R45wTt_rMMc6zS$B1f?MKK=R@hL_9ooF< zs)^2pso5yRhQ}088utqjPnSHXjnx)TL(i!XcH-sRMpQGM_oaP())k%PSBnv%-% zUi6P>ey(ar_^T*#{PX~?5)QJc4WWwi2`vZG?H=1`DOjHoq0QYX7iruJF4oqUF5lnY zktyA9Sbnn4gZd!g<$*J`uW42$KGa5Dn5*gAfq`-$x8>Aw>U-Mfo2tpBCy!rSTT4|< zr`b65%8ixan760DbB~xUcmh+3n5nwgh^~v2%q>s?#fyaNjfM&d2BmK=!ZW;n0e<7o z@cH27GL^|Yum+@K5Y2zn-7}l17B|Dxnq<`xw8!K1d}3c|l81whsisH9O{+HPI@!wc z6)s_G48Fby*P5&AaO*%?fM5;I(mdXWyj{fMy2(Vr&Wa9cKN|n8%0`o~+C;c`%XMtU z8HJ=#i!#~tOhkyFir)woyUh1ioXW0y_!v;ReY8mmY7QgkbNgzkfk|oBd{kwULgT=_ z>(g|RRsgz}r@AzmBb!l29x^~Zk-Pr@rScS>4PzEY4DFB?=ta;y7Qj*9HL7Bg_MmQ$ zjGa|@{OWO9G?B$pkz9aBwVid{X&aO3N|fxiSxyAi|@- z%|L%JF*G~1gE3^V|%xTjklN#N{h|42XSl2!@w5g)nLD{FS({}z_((J zZ@$|sK@)Li#n11PTNw~0aUNCgs=%x}_N`6aHTj?~Bb^iCcYV#am*!7vMVyFF56U&x zs+g#2()?#dM1TMLSD@Q9Y|3agWzVb(z(*a%C{O=O+bHj#?-nL}1}h4@YWh7i2m3N= z@{7iEf(f6Jf4=MyV&`+>`v7-iNa|xU3S`z^T8tqArxa|gZz@kSdb=nqaJ*XHA^W-7 z{v@S}Fx)!0i^4UCLP2U@s?ij`*L5`GY$F+8k;wM~fI_Lx@oul@6$7-vU+nlz04!=T6 zb@TNr_QKwqk#!F1O8rVz75_cI^3!n>06VDaw#ohclJ%-EXp9H;Gs@vMgS3(bKkcTq z5%?O{_^{9?c*ZPF?i*L=^7LF+x{=hz4;`(p##6m942dZ0lNr5? z@46ZUVhx#1?k@F0u#|QjXP()e)Yf! zn3a8zepAR_<0P01by=l()!LTpGSZru?LlNP?rd%tz%jx~BIGVHP%0qCS69ZJs*ylt z`5_Qt_qjX>M2=HA>T#}l?m2v6c4VZxy2qMh7Ia{Hrg2pDS*O?IqoT=^-M^?#8>(az zemgTrIZTe^YgpAOOiEd#w_Q~Txl2I{NslA8EL7M|F{`zk1qGa!p=6p*8F#Ho{)8Ky z=)EXQqT?@*@3^tQ$s5vPQ+q@vqvyb##~;c^Puq)PN7MRhf!H+TGJNi)Bw#vlVNWp* z9CZq79y{M4Ce*?wAyaQi>KYK`wTABvU_$9q47J{RRNZw7+H)C$bu$`+Evbugc=jk8 z)6z$EZqMwh%9wW@&6V`Pt;^K(%2$6=oaGRb3f@FUrU|)va!zlIG;gJW7#^> zn=hYS%XVUI=f2-h`+nH{&jH5FX@1x}W|tWNToRc9okpu2)L_Cbl%pW}gk7;logNNq zKnPUv_LSSQ;Lc%P=^Qss=L>XJ1=>#o$}N~QqIUJET6%SFe+`BAT(WYKoQ}@9X0w6p z>5gxmqjr>v2w^Ei$}2l5D!CrNzC2dP1FJdjU0y+nvnfGNW*h9Y^1+QEEQ!)-xzO)X zS0sx|HA7YTjBN9s0Jw(0rnQCp|D)@yqvH6MeV+spASAdXxVt2{JHaIo+})kQB|vZ) z+}+)s!DS%04({#@GB}UlJ@?!v>%94^SMSwpO?TDaUAw-Ys-`Jr@uy!|E+~#o_zoIs zsI}cSX)1G4bFBF8GGJJxjk#}FvmSc?k+s^kn^zZLV>N|;!J6sB9q+&j!LIttGa|84(7Pjfly~IlZ zY(HT^W@zqFbtKK+mGo4zUm$ov!G#IyROjvcdwVT>(0zXznIulO%S+du-I_VPW`6;C1I0g{R&g%=d#-Z{1n~qOyR@YQ`klnVw6iX^5HmiJW?oCZbkt?a`%* z7gvkrOsXIlF552%?&faVM;H>N=Uj^Zdjb!MnSml^*B(N(L3rkpKU`d7yw9F^9YKNS z%M9NWL{tc1k97`yj0%tE+Q2usK4;#v?;g4H-yFG6;zY8AqfJoE?=YAzO!3dtSy94i z>O@5viP~%VH80O?O(#|LHOPgARLL@PmFV*k>PAUqDT`!Ir9BO)H4EP?u>5jB^r~a4 zSv1tvajzoiIGK-2%t=3EcWP2th}v&a75|}=C^)wr z@6P0ZAn@`GG&EK7@L;4Yk3NmA9`rX2GxN@aeR%U&9FAXxvd(2B`#z#}0 z5kZ@rZnKk+LJ@b^FKwU!^`Br_haPgx{nRPlRG#+^K!;)KXs?Arfv$Cr00d~INaLXg>z16X{qDEc9+r~Nf3?9G?SCCg$mAAJ0 z%}M!Xos z8PTw?p$9?J`&ncW^?7kKuf}4;*7k>o2O~(OPO(lKM-(A%&=wd-@56p(cAcRti;U6J zrYDDQd4EUB2`iRXfN1^Pp`}Zoud}tBD-R84YDIKsS#4Z+H<52KolC@RbX%#z>!39C zcsVXua5}BB=oRwB7iuzlt^2DJ%mvyzI-*YA$u0D?;jZ#~1m&GqXdr`~V7*O07&lfF zqI_cYG9RHTiy$VXJ0u?pC;<*m5Hd4J@$Vt9(9wtESMBl`l{jY8GTLC>-o}*7QoNSO z9$ii$^c@v-Q9MuE;a|?TWtAW`wGO$AwC9Q$!X0j(>hh;ni=)}93bj2RSX?)#(^t-V zrBwxqr=+ALBq~bPjxiAaqdHbOcSzB1alatJ)oF6ti=#bFa+a61XG&FMrY`z-N7D#<{^*U?QiK{w0CQ}XB)uL^nr@$9YZpgVoqqvZ zY}WINNQzkc$<*#mODA+^xhxdEcX!l(?9x2uATTVH)1}ZS1eA@~#1nYtkDHWP#*kYU z!H-T1!+vlGzqmcF4+A6dIdN3tF#`99hQ-@lY+{m=i{S@NM^j7c;o#tAFGqkP?036B zfKD{c$dVIqV{jwDe5RhCg*8^3yABmMP-5dei~js*+-}o9+)k*->a@FKWvF;5`~5r1 z_hHpv-#pYXP=3+6n>jf8MpSZa@E{{46?5Ui^6K6}Yd#Nh5{ws<{|K~)%M#_Jgn^aL z9s712cT^uf1*JvpNC76ejv0?;@@w(ryEJbE;e%3LM>)Ui7quD>VayIJlsFYm@NAW?Aq`Ms zgIxZoKE8w%U#6!MEW0e(G@o@mOmzCbhyZk>A^s5T@dol>=(-N1xo$U?!+$+bqk{^{`vRB?*=zpzst_d#NH*%lh95&y{fZKD}8Yt-wFM6&Z zsd`^UpK6xj<9@CieMYNXSnRUe;$&83d(@|hB*elrI5^maKxTzD1+B^J=LmG*v*Y=Ac`=2$*wcQnwH0TAI;}>1K}r@cGz5n z*3r5M__$mf-O({$k1KHN&VBx2Pndwm4L&E*f1<_7IOo<3zuID&igKjEZjA_^!@7&u z_wnsV0Ta@dRoL-DUhKw~Ad#81=NnGID34x^Vc;e|1x5aRc`*g{9S*M&BwR(85MFN{ z4+#A78~mg5_ke-;ma28`SlUvfjdG$7)_IflLhhp0&&BT8d@vW*{etZaG^ta6GFNu+ZzmA|Fz2WXgB6IgX)E5qczh7zU&ylR$KAc z;}8h&XgKD&-*aRuW_=S3Wcs04CxMO?9h#-aAPP()LeKQ)qx96AhpqWCr!H%=*)D%U zKqdNR(il}IAFe&pe@7jNr96M=GQ8-ggx%o@v#s7DJwRQ$3qlfnGY1s1_-nS4R;ThA zkF6_7&!;5TaL9I!sc^*IEy(QTd3aQ)k2rT!A)!N zo!yr&cFb&5;|G0EI4-j)Ycm7qT_d!|Exmg?g7m$OuGZOQN~~hHSqQ3Gq}2N}cj<9W zT?Lp7-T){WC-ls{)8}a>g1z?|K`sfL=GFw2iz}+HXS+6--AFa_K4An@-WhmblKaf6 zsFf_(>mIpeyTc0aseDyextlfHJ=o{UHF~vlpE9-XcDn#8tpN2#>lDbP+z0lv$IOeR zHm5y#ubTz4?DL+E4DWQ#M%O46^PbWMx$T4}USEd`2Wk85ZFK5EJ+BLK_LMFuif8C0 zu&l9Wvk1_9f7s^WzSl;%n$ZmX+csGT%e(E=${YYdqPmP;(iuc{-eRjoy9gW&itee* z#5~cST}aws$=TdZuMwE#7Vzxz?A=Bhampv2d&;eHWm+uMQhHqN=TM=q`aIaoqAY{< z%G?MVCgNeUW@mkUW(bBuF9LnhytX2;N#QXhTX45?s^jQ;xo%fjr(KY4&IGKP4nl56 zvFq;E7e?&q#NcFkd;97sd+3tO5M@$v?Eo0ORXfb2jM=BA>rPoHpHaHl!9?xO&44*n zS0oselzAMGAjs4WTpQ~l4t{5UJmEr7l@hGnu(;`;or-AbjIH|e1z1pqLgKxI_votR z%hpMuM0NO>&&a*_X1eaV{H~h+bgffwWzXHhol_*gU~_y=dCd5{pWa41i+*+9Js!8l z!0F}?I?N1ykE@*>%fEyYwX-49SFh{7gFWleWHJ4t9VDx`MsJle9A}ppcyIwHRzc58 zGPN-0t+JB=z`(-`%O(L^Mv9SYH%2a8+{wg8FQOPOU1hDoT&&!CI z3{@3hl>}}cGnyeu_4P=v{^g~HGr#FeamTp3x#2O(>Jxa%2_{lH<64SKFxyM;a?bK>lv=KwYB%MT zbRc*+!fM$Q-9ztA#BLcs_2pshcDCsl4$ zSa*+I$Il+-HOj)_y{j`>uR6Iy=y_Z3p86b=g1<3eiW!W}uvIrMP{sxYfnhItFZW4G zpSb@r`k>{%Y3T1`YkUzM6nITAHMYHzfKhIQr@(UM_Rr>{&%be0coD`4&PPyZc_S11 zo`0O;U<4mkwTGA{3HlA^+F`RAfbXRu#k1Ulx}-!`a){@ULJ`ip*Cy<#o4_PcT4=dB(Y z@Wv#j#@Uh67?u-Na$ohu7PxG|$a~GBzEEQoFy{9GL9=PuF`VVv;NAl*cX+)5beX5% z=U>-z-wxrs+>i9K60n$(wnDb@oC0~0uiX=FwhiCNE7Qg9Y7n=_xIzb{MpP>_TUKqL zl}qo=Jn`4IhorqAv_jF&X|OpS$fJhb%tFz0ZUn3x&V$K>1mzPk@2<)xJU$HW;3bl5 z(`LlzrFnWq=t=8ji;Sh_LzC3++7M1I;(x7|dGpZQetj?+Hb(c3iD5p{o7tn9X(IX+c%hRCYMV3o<-;(7zJHXWx z%-j048)LG$9!p5U`&CKmNc*yz+*c*k6*@Q;S(kTjH2Cc~1j$#M6a3XiPN&TUuws@joe_~cKOipvrKbLR7&aiH5AeB@%iomLQ}^$X);T|4aJg{)7Egw*wJ zt6_fM7{@z0Xn*ZC||T}X_^CxF_=7OEV)<5l2fp4$`bo&=OH zg)vQ0G#5@SP9>1(Q9Nkj-L^a{*G!^}2Fa`3x9=r0kJipNdJ{OJzf|jmoH#L_;(O4) zJ37XFEr#n92zj5i77P?5^snk5ielb@!FUgc!M0xy^(H=DAGzX;t`M`Ct8lUC6e<&Z zM+r5_bXuK%rcU}kZV`vs&G8P~?`61_vM0Aby^tDZ z#-O5fMZAm&n?Lh0+}`T2wcpZ#uE%`E=oi!(R5^^6k;jL`oJv`MKCc(eXlfKM}<}**ELA^7|duj0U<8oF(@afm=@cv|;N=pd)87A^Q*CdE_#30J!T?UWD zmfOT<_4~3Jr+uMEfcd*00{FpgM0$UybszEScA5HaA-EeQ-+`NBq^LQG<=rN&vf&5k zd!bj}hT={}{2fe@j( zD0*KiJF}6*vjn{3*Cj~<_t+?t1${e^m7ioC4l;*5kLS5OCBXO$_%$?AUjgZ*e|Z~N z%860x%R%-ov14lc=>~lv=%sZLk&!Cbu&ZeWqbHA)hPeAV!uq0CLl02Zme=#$-WOKW zPxm(`Ws4sI)hd+@zAQyXm2G)S*YWkLgBjp56r!)dqf72Z3-{5aqUXLZFyGhbPA+)3 zI>woDGGCL2H+Y_YQrCJeXGVU!WY>PJ+V2V|ar&s3{;6<_Va^q>k+#UmGrf_&n+Fs) zWVtXR-m5s{K1zE0*(MuokpCJ5%4sZoBINlsD@ZN8fKYvg|4skRT%`{ESYc&PpRZsL zDXg(;P{K1$6pUlIIR9f)d}E!|VMghQi^%=z$FirdXT5d%him+Du54@{-OxnpnhGawjLvB+)!ng-vPIrC&sZ0{+w)%3t*n>FqFNzKk~n0e ztgMJ(9^KH$CHc+LnV{yHhhE9mTEg(oP-UACAGqgxNGBa>^cK8NnJ*@4-lGpxOK$41 z1bJAHaI6NKI{aWcNOK-a1@&10KuTcgaUZm)dXXp+GsJRI=a)Ut+TG5(5fVtoYq=Yp z9lVfjLkR!SS9xN!+q%E=HGOY*6h-h@Yk)lEdgcez)0rusMf=YGLPezAtCHHvY`~MM z0O*A(Z1qAN?hwDz&{gi#kSRQcfsAa^)e!B2GJ6!9ib#ff5?&(``rR&Iuk6O(q!`C?t4 zc$J@1fu)0Ow$s|@@+aAqPGjb^c9k)!Bx8T36ZlqzS`Wws1tow)#AK`XCMitn5{ZK00Y~uVvCevHgZXSysQmFjqC9#iGynlLMB`A;UL*MC5dW_k z`}nASZyF-*% zi|z*9TqZ5MVw101a-al}J3Jfj>^sarV?$Bq{_QxEf^Wm#biQasj-aG#urB;#4T1(E zQ}^U!Tr(6pW+{cyG@6|)MHX}^_H#ld{!@2nx%gwT#B3eNtp7J8)tT!uU;NEok!mF< z6x4Y=rzL&#{Oayn7h`<1h_QmF8B%;~XIF6Do)n3p9i*|bvG!sEoSk-y5%iVE{%_$B zLL2X-6g|B|)g31c59YM&l#OsU2lvV!vB8*0@D3xQ2CWR+?xh_Jw5ewF@NZF)Ewn21 zoKf-@(Ar-O&2OK{xQ0b{%W@IWpThj{L;BlNz0M8{v}TmwrsSYq2J|gx%4Mju)}BfR z%-_qYF*Q}h^0Ng_-_dHjXBp}nGqi)D_zY6m)@D#k|12f1HOAJ2@l8AIRY63y#-Fi< ziVigP@Rt{V&rYF#HMOaGV~YPtd+WLFt&3Y$CDZk&YvC(zeyw$S0vPL1R(8KWIR;m3 z5$`$(+?+6A9wjZh_}H2M><^VsOu|gKniewfn?v}N=MvI)hR5EB&+%B=;rTlEn}(U; zNA=kqxW}@5pL1^VC>m$X9cA-sY7BdvcDu8@-m0YIb+E@P${?dLjvUkvZw>Ns4-KF2 z4PpjLU^JXNf9sdh-yLQ_hr_5C=L)*u_khcgBHb2RqJ4uismkb9o6>G3~iZ-z|`D zGNMI19LG|&+p9#l;6tkC z!z~-$ld}uFsPHu*W+10`ntjR&>-y=2!!iSjE-hE8w^tU%IS>$rE8!L4O^?uq6l`vtxTN%7nYo9PU3Q z!`z-fpobM=F)&o~Eh z=mMz)LygA0Hu1r==C8bZUMM9$3DH;YKBng@o<6#;%0Y{2)?=26&}9Fb5jgHDP6dWeO4G%DZ~|RG_n{Hja5^z=wveC%iLb_oIYdQ(N_%u znZ3E`)8%ZwujX~d!NR!9vmhI#yv^B=Ma4CZa~9ysWX>P{wc-ZrYdS@A-v%dK#gzN$ zBS=CPJYx8J7g|_!f96j^9Jnz@h%=zo-qlV!5?bT;8q;+GTEFg1kRS(IM6TYwbC%knonaop7!{J#Q>?)*td5P6s@7bo;6AL|&I4rx;A>wkP;`(h?YpRuiW$7*)@4;tm?mgW6Tks*KXzyZ!9B3nY)%IM+&Y0xfOHX=Y$S3ia}`Ca66Jq4)0{z5`fdC) z4SAPwWN$a(dD*B)U8>vFAIIg2yoXN%XRai{necM(MtP1s=0`|fYHXBt#67+!s5l*zO8(7+kg%}=w9Tja<#&)OL&;Jocd}&d3fpR)w@p*UY6%v zh|~^@3s(ozv+Ikb3>KqWJJ%o0U~8PT z2H94SvUr^EM2?mI)UY{o**Gx+5#Cd7uiFqr!Zi3eg<01a8Q!a=5s2D|G>{Nnd+Qnv zy?jTooD{X<=`?wiiul;Uj0L%RY_rb8I)Gw#J0>6;II{5jC?6mt_+vNNvgK_rszWQ> zi$v4$pievUNu54dZ+Y}QXhp;&4@nBswpD;jw+yhbLbau*+!!mSEqe5q*Q191!9kVQU>*EA*9lBE2e2_S=qig z1%VRT;;)65P0;>tADb8u0w-&u(f<`PsdCC%C1&=N!`e5NF@c#qAEBjN=f&d-e%KN` zx(*IwJNybe7g(y*vOFljdl2145a`vde#{t@*2Kg+BLNE{!7EUJ#GKeF??9@YDtBvi@FlKMr8~jfqL|nkfzR{U`A$B!*%JPC&1>&I^5({POxc@ zid>{eDV4$^vp57_|BlE*7*AMO9io3PktlIFO8%ad2bSkfUy);eBk3ga5d|QADM`(# zT}Di>EW`&M$L=l*(C#d&PhwM}7+)4mmGD7L4CREpstSKOh_CxZ%@8g~C*^%k43eC^ zDf!p%IyTe$qaeCpf_iy33xHgKGFtFk@eIPtsZjbyV>_vbM1t)`J4y$ukEy3;neUni zo@4Bu=LLUmf!X~qsbm#OEc&!T>Hb(Z=nd;Mzo@siak%>8{|D7( zZiuHKC{dH!QU?-FWtYTPcUA|STp7pZjT$Bj2Z#qec(SOju%jVly1!Lh2B2DxHTJMn zuT9uUBvla1|B~7l2sJHYFjG{_MzjJuXs5%~tX8$1YBtCrQFoOj@=h8&M!9Qfg;FQScK96Y(Xzk(3_CJz zijmp2T5oHli5=Mmh5ZWiecighH{XpZ4fuUsurZvg_oYMey^uf#<^ZmZ_tnj$dP`i0DgA79&G98!{{%wT*^Sl{Hb*JEZaE+#c7pscDz z)}nyMK8E9`pl=Llxa_5o+j>4?LhEj~e^%TVnT5hn> zlBW4*c!42caQE}FGNRPo=d^cX`xd@m8;25U$~yF-Dr@5dO;fS*2Vc7U;A(WKFlelG zXf+o_t$crE=j#;(p(;V4=sMt_$c5nZxfxDHyQiw#Hn+Py;~JMKNrDQK=^fgmn1fgv z1}C!LyR{k*KHw%~Gx8g|mss|y7kd-ojR`PVE&c8U^K-8CMvdkB!f=aAhZMzX8LfHR z;mZ9ggW1vq^I0f{arlBmFiKJ=t?LJzFiKTO<>YH>fLp!6qd_xBRJ%uv{-K@g!!hJV z)xyl?mv<(YFj$U&mmA*PB2qfU*wfIH0XgC1pmy6jlN~V~4!%6&4-QKCg65f4@9P5b zH;wbW@^0fN>X(Y^{MS=qypRj`ZQvJd3c@1&+m?>Go%Nc3TtUFe`$!nMX4B(Kqfx56 zMlZnAgy0!eP@&~s{x4T(bf;R?7`LutgWGB4sWd3kAchS7OwLu50jU?^N*~EK6(>Dm3t-4i%?L;!vf#5;)rkkobELg=OQ6jXB6vQ<#xT}DLP8IRyL)y@l)ACnPvR{KvNVq5bb~G z`f46Y?tSF9^kJCb#UhX}YTr0P?Of3~XVTd*Mv;a*}VtSiSEMTY6*f2C>v z<)~o5lkNVh_RlU#5_Yn=CqP&k;MRnn*)Ft`_FkD!25L(httGo zGq|sh;okuHiOHh(WXGE_Xp6;xT3Iq5JI%6k&8^eta(wFr{zojZh{h36Ha zY-}LAZ0dE|ifCK=_A$GC^=lAcGHJ>YwkPqKj}8zoL)AZM6`gP8MeRHp6a}N;lA4$? z`DnDm3xHYs34(im^rPKDeu>@+Fm+~8D~JV5k}Ixdh7+L2%7>}VrEby`S-8pErt{^n zwQ9de*X@LaAnwS9yrYDCdS<{hqek7+@A@Nk{@Er()SY@lc0|*)7dMN;Ht5awy$Gz) zGh_4#3xN?E;d!;g)(I2Zs=P`&B86Nkj>_jR^q7J_psS7ZpiPzX2aC*MkJ6xIyzv*~ zudB)F5piHGLp2w)XY75TnPqrNV=a|~^}+X-IGBBZ0ky+b7qi>LD8&91nVrb@;XpY- zD-tWiOjzGHHxUT=R0+HQSmmnJ?cP!uAPJ-hzZj+J- zEKQG9vlude4dBz=|LHLJuU?A@zkd@In=5lyHf$um@%WJvaI$3EHd+vKk>6hV$1q7I zarJK-k#=0Czkks6>ca2Wz5Bt1hVCmHF^*6R-3xUcMS%2cghmN}#DFAQJi93rfiIng zJb%t>_HrYMkV2cyag_Da!iqC^(fmpH+}%DmvYUstb9dLuSCg7{T(dw~@isTB3pZ8R zh1itdni~uH>8ug=y>JxhU;lN<-LU!t!t^oMG{ZN9od$JgS(i;p!Z+d_aM{}Zo*>cJ z`74}%`d4@?hELlgM)1a%sJ}yWv$#@<(Re3hXzPODHZ$5A-=x4;Jf;%gG87p0yLq>y z=%?=?{Px4FP-6Mer&0c(_FTf@(EV yrTc;d(CI*27Zskqlnki;D}(vWU;Mr@-Ab zyP>}Bvsxw=wYh-CkanaST05f(b6(%@)_20W?)Bk?wT0$RCGPo1&eqoDQ}eXP1)s3R zXK<7+A+0Max7Xl<`8rtjYx9-fY@&9RGzt_66Xp@xxTLV5nk;i7S8`Tnc&X=xZ>=sw zF1uMh5quI4xAtRd=G#s0Alj>Ms9EdKDZ&gN#(E78JqctwhXD<+#b=-7&9q>_MHitT z!;;#nuJ}G$4QQR^I)4U>SNE66;BasA4cBgvtLtn9wI`1(;QzKNJv}FU2oJNOEuf8b zANU{ZfABLzpCI-|5u+h-eEH5ZK4p98J|q7nm2aMj`51_FM>Nq|#n zn_fSpb>L=J%4?;4^gCtGnpGBzwb{(~lR>#SDZ_IJ6%R^kU| zrk=H;ET2+>82cl{fgRTT%M@1?1SM4JzJ;->Tq%B1E&CZR6EL<0yS-em@d!77@lkB7 z>O>E&F&!Xz|7?bi1(WHnSJbU1qM*0A0NfbIjk=oQiPT_$;uVqR4P!yd~E%LRE1gUBV8)Kki^X^R0(#K3g=OLMa|W-|zvc zEA&so2Z0u^q@y-63oZV?F~#g2wCr!^HC&0=QpB7oyQZt!_?m;b43XR(Cib`<9tR)xHU(JL1TZM!#Px6Q9>Bp=pP+i2M!>v3iix!(bARp&0qtzfx zJ1C~#d0|WnjR-GooU{;cE+Fu3w!j**EkyA>w7-S{lTOi3aL*sc$eWL<HY56!F9#WBtr3%!B^>;!9S|Xe4i!BC%iQ@YvWGsFnr+Z8w;HLCeT{%&s-TW5QF+| zAqhR^OK_l{#o(v5Pii{eaCn>+Av}Np`=9D^=Q-CdIopYbP+o9v&7#Bgtb@6 zcS{%^E-TN08{@sH&zdjg*;{V95r~T!SIs~0I`1p83yUhWXy<95=Pxn1+qzn?ej>&S zJvZINR;yeXm^OX^r<_%Se|n}O{_#O`L0cw)Z}XNnD4MZZTC#4oNkXL>jmKx9t@Z{I z8@`ZP;qUNQs>swsHctS)I5JEpl465F0C8T%&s$~pk@j1Wkd2UE4+6b_e`5Bu4htS*KyVtQvi-B&f&}k0l5sc<_8k9uCJ&+LiotVsQmwj*Bv8< zujdF|#I-b*TrStN($n?1Guffa+#nE}PJwUGw-34+VI8Ld0;S0*Ae3?n{My1V(mlMxLoBRJoMsA= zl8TuEL&Veyl`Xq?NxO*-yj65o2E zLl<5jh2bCLWq1a#%)E148{_s?4llG$LgWq`(t#p?{R}m(8j-a461he)Q`#Ws?b6!$ z7OwK-%fK90vE@x%r0O_W_M0!0NN<}0e zx*`EDbCO+P8IN=0aIYt9OK~Y+utE!224~lxcUO5IvVyP?=`;xo^xluT{~WY)A~q2s ze@kYEujHcvzr7gWL(_p8A#Fx9~MY1G!rq3x(<2t5?8~_We9j@zcj77@a~Re zVR}{F3xXXZSMOcLtZcK_SPc4zD>+O>RV&VW~OLZ=vXY%3v=I zKd3y&y-U+nQHV;#r;99D{z=U3%KQB3Qb){%FX9aHknNL=`s|aJg}5hRKBq35%DFS- zxfwuD{v>YCA7SLV*EM$~rNR^}pq!C-oAsJJ{FD%C{%_LS@2|vfIIQQ6hf`jaFJpz% ztXTpYTGSg^dG>~mI9k|y;(sW*-^46q3(HoCoW`!p=9O9%{w2glVCn(yR6W;Olzq_sd$jb$ z*VI~My0uNb?!(owBHW9XH`WsCW1pX5kmV&ZF4Hf}PY@l~j8yx1CX{gV55pB|^Mabx zO6rZ!Lgic)W6x1RhfgV<9Hit%oOs&vc%2jln@jy|>wBGQe|q_5Dons#x@pEwN2J!P zCkP8G@MJKfts5`x=}FYJa)GE3Q8Z;^;!m9gg;(#pf-0ylraycv=rCXVt9SD*fjt>l zFVtp;euDGxONac3aPRsXbVUV{dY?Bux|(pFH$#g{D@A?jvk0FLXN3qS6?G%lVh-wb zYUI^~%w%5I7p*>7um9odf04Z-U~sbUX`d2!d30)6V1qo`U)rSBnVOoGzU7u{`V#DL z{iY2gT!%@+6Z1?ngyb7vQ3^gn(|vkW+&*8>1_g?TMv{08JAZp+?4sF;b^=##%m2go&Sr*<@94>ysKeX1yZ@O+?m&2#*XSv0?*#}tzl+#zdZ9mA=x-NIwCMB z!65GC961?xh>+{IvPwiUfm`l7k{hDI-qbZ<*zVsTxZt$)+fe-wTcjLn@iui%{HnWI zVW5nb(P)tI%*A+bzuaM15ro`)g#pp`xXI`&$Llx&5F>G7NS5M25Q(=PS{(})GdfWq znq4kHhTJ>O~cdXx*$xhytHtv8ttt#Fg8Cl^0|%3s;qk z^iw@YqO=!Uja~0K>d%}BpC8FFEe^^iY3dWoe=hs&yJ$_)9e)dw7x1GuMn5hgAfAZ> z#IR}Ec*ii`>+Jy#kfG5jI|22A@;SC$NY?Ya;o29AT3RE&O}^5sMpi}o__h%w{kS!1 zE6)HG_PW3$3K08{$Dtd53qEH=vmG~on@4a5D}=6}QXhy+{q03T-F^MfnsWenSw&BrNH$swfLHj{^=S#xdNbQlVZw+Q^85GIDrx*1DM^y{CK&Xk1OG#o1{z{c=iSq4 zo6YGmx7jP{!Mc}z_9brY>3gw(JMY(WuUAmE`RQh<0;!H_!gbZX2rveZ$2rdFwW8M| zv8CPHO2l+h+T><%J6R3FjCAQWt5fkN%okqboSrk}dq3z35(yd83^zmb$M9rdrXOBk zPZgGnWacpbHT|b1m8!^A(qbn(K?{1(U#@A163}wqrH_%YR2^>`dotGfX3d8^a!QkA z>xb%3#d5KvZGDCnb?cN80T-Kh-rIb%imHZ^Fd=OZQ<>o`$Atm1Tg>tTP;R4?A3&@s zcE7&yxEI;SiwNmi(CAoS@XA~ZnYc>YOQ4N4)6EG!>?5tvqV&O;qzZu@63K)DADkdg zV#_qb41Qn%M{e!C!7~rBH5uaga)Jt*Lq#`koj2N=3&r!@?r?tFRPD(AL=N0N%UFI- z08M6LeYD4Te*auswm9+~QCU=>k1A!_`gnca;98v8JKvA30)x44)B+9!EAw`_qMnPE zG+>tL3t)sgHC03PQeG2f<;m)y4EW8uRFqdFrbXRD&WpskFl(X(@ljr*C zZ6T#{-g|(RAIi#r{_yUs`C1KfD{3nWeIwWaTq*5LCWLAt<@F-N?onU2Q5g>U{%tnk zT`?T?r(h)sxh7x}L^li-Bm^KyY-Wo=*o-&=g~KtSG;^(Q{tkzuCP5haBY|m7T64&0 z@)v8+O9qoXh5jR-h?IN8%_%&^PIZ|x-J~s5s$~|c!0nq?SiI9Dm9|?C`5iRS>uOSh zQF-PS)!!&c(ycYzDv^Wjt(8I}&dUCGQ zwhyP@LHx%*Ec!l6NVgpxYOi4?xQOmOAJSix*4KyN^^wjWs06mPpQx)e5unZ*=O$}z zu49l{dqAf2W8%EhP#a>f(%qE@PCrH*;)eEXiMWjsa#)gzZqZm@w_w>U-RtX%ux=;5 zH@t3DN|jb6?`WZ>`W)Uz6%_a-8ZYQ*;0LA{SQu07Zgv5E`^-;^IRqR|Tu}{Q`h#uH z#}54@x2?m*lAFWbU;x!FPh&_q1ks`Q{saTX==>yoEV-kaoZu5+;~*hCH;e%9dai5Z zG$@+TQ!!pCT*z|A5t-nV!@Kfj<03B&3E}zfbBb5Iyn)+`T!Q3}135OU^WNB}Bb`ZJ z7K0x6BOQ#`sz>r`pL&yJNoCGL|JVSFMmU`h z?N+3u#I-ky4Kd{Hy_oCKeJ2{2=PR?v>l$HgRKJlV>g+&>F90|$I6Tp^3gn`rVLu^Vea(I&8W z=<0uqi}24ub|#$ZyL_ZnD)Cf!sc7vw)5rv2(+U=qnd|$|k;(51JVYlB|K(6q0v*ph zMnev{^ulMaP)*~a?fumOPB`H7RZHrAWp+OWQb(h%`~8tzc`YG*&DWMcXMg)pNT9O> za%Y_+X|J(e;gJy~uZT$5xAH8XDv@v7S7v!qdGJt6Fg7f?iPN~~xucKHz#ip_65Fpo z>qa2538_pClsUAFSvM{EP#WYw#Bbhs7>fL(USF%lh_Kh`>J%*qXnJ4$sQJ-vW?~lG zz(kYqL!X)fbeU2z@aNsiV)0-0Tt99s{Bmm<%4L{ExxBYc8HdC>XH1JJ$gGsK zNroFp8S@hHSny&vV)#t%6WmDNI`)UjxovNlAYKtjt&NFTYMju}gi73;+8U#5sm`;6 zR=0-w_#efL+v5_!KVJ-235A=+%%qz128)=ux8Ose+^dw5q8h<+8a~Oayoi42?&fE> z5j93&4P=YgpQ`o{=bG2Fh=_{d%W0b(Bi51AIN|U`j6VBSpm?)=^6}2P-DGY0t;B7bQ;OLmp zFmV$3DK6Pl=3eNgl0VHP>QvI=$jeBv@KGX%w!{_0uK7#>VI-vTdiNyK{RJ3~)?zk9 zwEWoXXI*IlciKW&r+Wm<&wGnnFvl+!_jN|BV*vu+d(2q~mr+>GXEDfOb7XlLS2z^a zoLi)nhOaqdEY=fy12kS%N-5;qgN}0B09_p`lWt%VO^3y;mMnBWG^+VdEY3Vx(;Z{H zNxo#0HitzOC6IqSChl8~`0u;RJ*}S3$EWQoN}}WWnqD5vE}7h!7SuP?t@i7P4n@zK!+x98WgIxR1O zz4ST@+m<-Z9ZAsLcomJ<&J>6xk%Y_d-0`vp7qD{`0gv(5F@!ZQ2Kii?Hto?2+`MK3OWWb;Oee?Nv+*-a+d`BX4iX73rA=2|-TGyF5YYqn|AXASIw z{bU|^(cl980q2hoakx3PUGP*9s;zcdqrcfXexdf7iVl35M1R|p*o2S&-KcK#Y5mXLQRG}yM8H$ zb~9H955N(kCieq2&bhKtY;-X`Tki&JfX>qQ&ZS*<1kkzHmovvsj{i9!mfx*X)VuZD z$&;t4?y|!vvzPv9eviW_@vz*uo_UOo>x{TOh^mTqJR*R{rNcDSvl<#T2e|Z79*3K> z$*g(|`j9bQ!wvZcj8gd3s?sza>M~jCs_Y-MNkE6?7d6gv#K3pE9)N}xQm^`2LDkq( z?|ia2+gkaof68uSvFf0ste4E?K=$$DM~2^&7R;S@yZA@kbXxkdguE{GLP_zEcE-;$I6V486IJ2b{9jh8RKSBARg`g8&&s< z_A4rpqI!|j+X)CJC+blE%6lSp5Kr*i{mUBnHflMv_82wApi$monm>WH#Kze#A(Gp2 zDSa4N%&7b_zK&hkio=ar+A9h5PW^w9O83BmxLyPx#^)y(uaBn2ikL9nnN zi;4UrMxydU6w+2A=<=Tp;wYd(LV8DPvfa@Jd-}h|HS29pgKEs&e%>}r3Pw|9Bt+m_ zX!&o}dSRKpkMX%bZ+UNEu)w1&OOi1x`Z(bp`Po~e%COVR_~(A8!)4G5dlRN}5!OvL z#*B?7aClgz<`Qc4Q&O=;BE)o=PGHpoI5U29D{r$<`<0$XKk$RQ0l4w={zMD4=)RcN zSy)$@tWq1h$`o&ko?=9prk+g5QU@55a2&Bqj#J+F@ox;9&C@$y5P&DK+$y*Rj$<9P zA)wCD@J{CCk%aCPgpfy_4t)GcUIXaeX?7WKeob>^+U&_;UOSKIr;qmaH5SvT2g^%o zDXI*1edBE-x$1XCORXV9|8xlzZYK23^XEc&gYA-vqPF-geSCb`2F#S&kXS4DN1_WF zfIVs(nf-K&7$eVkwcOkOt;9PUP)K7#Y5VNNWO`ukjf5q^s{TOJwRoWQT`;oL!v8v27#cXr zImR;tXTMHn8ZeCdFH}^NM7ynZ81Gk+=erO{p0lebHlmz0gb3~g45te_O;EVlZNN-F zwf%TCQ*+xogr_N;WTOk_E0p)n2oP-3IyjLzviK!kS$on`goy~!crAJsr3yJ~c&eSw z?0XiEO60T%smV$-Gq_`A*Ys-jK~Paqe^y1^H})UK;+(Ve&UbkkC;lmJbtyF=jP{xW z5KwQHyY{zn6LHVGix31}^T{wdL6!R-~-96HYN-8z$VJe~^n`&XFewI9u1X%Eqs zD_Lfte0wCY{r50wNl~cuA4}}Ao^R(PEwM@rA@3Sj4gWm-gv)ktLC3uM8p0<+h1prn zWw=25S>7+%RDs-sjB*H&H1ZnlR$S5$q|nfHxsJCnP0-4NS{9bk2i+z^xL_UJEIC|(w15R5;m*&rwLy=J#4GE6HPTb!}HX?P=daYX#mD1G0g zlJ^=~AzJ9Tp`}aENo#W`0yv*(jtAIc4S2+!5DVNZ2$V4u;G_W4J3Hp+5by!rn<>nv z+lqJUe+brcxGg59R->o4TJT(DKp`Jt^GB<*psSqKa|9En0)7m2(2Dal?weq&zs`j! z)jA1_I5B+L?`FAu_WSM&S~`$!j?I1zqk_MI|NQ+6yRMM*GnA-K{}i?G=`<4VuPZS< zH&oSH;ZB6~Z^4?a&MJ-yrhT8i@L?EoXQVs0$oP~-M3jZLBx_v|kq1%r2Xdsf1>%>$eB{a41-d zcx6GAI$*7c#dFR`VulR!SFrbgTe0cdq-igRccho@RPt$;o@6CmbC%!1zW!d3L2zud*laOUiI1; zUSi>HMh*y6Et1xm9j+YTE(aDaA5C%F;%?`sypNg3oQh%Z^)kW{eWwN{`I8!WzSOq{ zO6KF7UcDF=WW3AQ!mJ=427i85e?fOAn=@s4X*rv|j+nnUcYjU_mHoT_ilpx{M=`3- z@=9#A^!ka|vi2d6$>}_uV`=l-BhmPuE6`YCv{0%DG|+?=rOmqQu)8~X)f(SfR@BKG z>3@HH-j31KT+oakaH?yF-?x?ZpNciRd2r4C)_j~FQ2F}H)Jj83`-@>jZk$#=vLl`0 z?7h;;G{CBB8R{(=kME4oLL-@0!;l!T<#Aq>Y+vr!W*VfV99pnif|tCBy(ZdywXVms zJn`fX39FgUpL1vM>nyzn!`Hgn>S0TLGI_fx86kAWci`q_#T^VdipVQy3IeE z`qeE9u+Ia(;$`DII=yc$kLis(J#eRRC5U(ehAVZEgNum7h~F@{r#@YYg(%+hjg)@= zCKR;Co9ZKA*|f>nK$ZXe#PRaF75O#eS{HCVK${-yqoot2M#;b@P3*Ke6phX3!t;i4 zT<|z{xFV2u(VC(+WIZ%|F=j75&2t}xVfXlUZr3xEv~9Hekm4|?vBl9)L-AG!sqZ%C z_3~$`2oeB_v0$jm03JH$|E6a2q9`X=ot&KH4uPI14fb+XC15PVako;fqLKuzQa&`v zz8!ROviag=s+PX#BFNL57}4^B#oQHg>gzaC-SJk`?Qm=T_CAVgrGsh`HumnKVLI0_ zB|8jmTr^{c>;dc1pQ3U2YoWeaIU!?YFpTaY@|x+(GRV~j1mzFA>G1)BJj~alEF0ge z50)nQrPx}GFQ~NCwr81lb9#70 z7yYF-&C31O=I=%{_SkUYI1@sxoKtqGes9wTwllOe*yf%1)khlI%K~q6>Yc#GZS*~r zG9Ih3+pz;$9=4DhiEhbms#|t7xe%~>2ZrL`ZyZ38yJvD*odyy$Wv8$74g`Ieu@3 zy-|>)RBd?oYNmkOip;-FY5$J067m^ZV?D1mW@1fO+&Wom;8z;riTc+D-EqIP?JzIv zTRXHtehOuqz0zU{TaCLPQ-k$J;%I^(W@b#hIMfo8{g7lF7Ouz*SKF$?^4H3Rgmn}_ zs~%3kgf!dh)Wm6YY@ng*YUIv7l)kmTbSMV)4T*kyRLnTXhjRO0h#ddt4}N*qAc&dJ z)V_JRg`;8L=d4B!Y&5jUJYlH)$f}%N@xN3MX7XO|(ilTXcfIOD z2L~dN#`j$WRG(*&5zAJOqLyj%hjzfQQf6r8*uE*Yz2l73l0sFMUa;Vy+E^kT!2cYf+6T64c~_f&adA;Mm$ zL-_X?SyFIM%)dJ@ZVqX=CBl-x{yO%Y-~^_t?D{#rx2}C0 zSTvKCot7;endX;Pz12)~A1sp$C?*5}N?_9YW~B1B)1b(6nu>WGbxfr2a%UjPC4Vlq zhV1Jr%Ti7_`q){Wxwp;IWoJ$SB7NrBvz`ah`mr20t&z;M*`HJICYYV9pQ^I>hJa~*Lr{QT;%C(%30P(Nr&}FRcXmOLtxTt{=ggVNo+|r zCqfr)P~c{=DzA$lsZx_MkIrUMgx89TRkJA9jKF?bC#f@4V}|cI5H?n66k4w?&__Cj z%NgNg0lN%+c&IYR+5ERwH@6)X*gbp>rdM&T)#$<=btW3$G7#u^_Tvu)`fh^Ul|krtGx(W{ zZ{yBe3q6Z_B_@O;YrS{v0704iA1rX?Ip6Cm$LSgez%na+0J4E(vVCWbmJkJ`79HP4%9{%NdIpE zY1k#+wZ9IewTL?H&vh(Co}r-syk7uBzOuhqV;drH*YwtJYR0t^e)>jvzrj0cNfHg6 z7PTBzr=_Mpu6KkMP&~kVso-aFabqc)P1nDTv1WlWJl##5i22v?iSFOI^7S5i#>yQ< z<4CZkdcU2PtkfES0pT*n2-aM{t-!H{gL9B!(Y@4Bc0$_KeCt*5r?!pH+e3hI+2lEY z*W->JtoO~=`?VI@DA3l4g~a=SJjHV_BfW!$JlcAkZ6!Nn3`^-h2W-@|bdLv!$PVMh z9D&3T%$pI-x0I7~0g1x2#Mj)t2r8UxO{n3WYo{WuO5Q9BcAfDD_IWiVr!R%!$B;vg zloIcIU31Tl`Mf!wQs>XkJ77^4S2HCf${)n?e@W0Nf{rF8X=v{9^WQ;VG(JdX-tq1k z+LG!^QCJT61Z}ED3~vg>Es@48yXucVs6hwJVV0raEt#72ce?V^YSk|YT{`cBuGdFh zw$Ly@(?q&5E`-wWoxVSvXyG~N7W1nnuHOcxKm~k2lGNBkd0&5tRH^1d=%S%)!cLNU z#n(Aw==$73yg-5H*|axdBF6wq#got86N5?b2#V&3e1RfV4m5il@m^_s3QKe9%M;;DPT?#3bl}G5hJEw>JwiJD^451BZ^s{3=yRYB3CAc9sizCus7&^=tmH| zv2(H_!=-V>bybAvOvYnUJ$6AiZY2--q6?*bJXNTCBe63%Az~5u8x8+hGR%k{19=w> zph)9bLKQ!8cUbb~3T2S@9;sbi$FD~=<~gd{uei4G87_}4@Ao%Rhp%3NGsj3wGMEr1 zW(?zYrOsFRFbD;Q_e+tZ0;)6LuX`dI!t5aa!<40ZgSjB3WfnxA*TWRmO5U^vSi0Gb zf**@GI5_X*3YrSc yO{eLswUVsJd#RDwp&yfe_2G--rCdTWQ)BfV9kaaNL3WKf! zZ|gIICWIW<+q+#Xzp|)7=RU@tVV;2;tykW*H?qkpdg1P zD{&`l>2yF-?(_zE5TsM^CLJ!8r)dFQXpb-1;_ij6!^__(O}F2AF(5cTD=d}V$!O-} z8{0^MPzZfaZ>mqZk{8vBaJSCJKj)Uz^7nu00Ui(p&Wi@!dTK(1La_{mv?X_r0EHaV3-n0=my>hm^G%+Y0yW3SKJP}*{V8#Bg|CWVt*&*_?$I1!yD#; z3IAwIcvPB%jfSEOf{Sa#VBaO-jfQ%3!xT>FeRY~&%@;QUu&?hoCRu*sa%9mwIC9t^ ze?gbNFSc(kDu=v(e-=r3y4?M|c8y2A2;^nirlqYJ2ul>9MT8kt_Wh)3Q@+=dlC)l# z=?%Nn3QJTcy4Z0PM|9|q8eH&8ULaP3fQ@SYQN!~(NnKqnx*bJlE_gklvzT2P<_sJN zJz)lHdoic<+2TztZ+6Bh&SIHGp9OtY@tI6W%3Djg>buEX{vK6(4t9nv%e8AXBeTBb z-d{ZB-_4fGQarES2Xa=hK(goRShMQb&i~r)t`bArW(O4(f>+3w*RZjDUSl=ak+I%& zIZ`?y&Ifm+06RK4Onfz;S~6wo}GP@+d;Ba$(yLR7Yb(g@j{=? z!qyC>pbf&VjJhS|$k%KfhrT``ak}{l9oQ*oem|p7EaEsLeuC4`fhduK0(r^_Qx-~O zzi2GTV+(~jQ_k1;`S9%MizpMQMM0Ha!6p8B@+2I;WUO za%RB3^VF)i`z%wknEq^S*Js?fh9}9F_Psf;WcNwIoIkUT&DkB{+>>&6ui{8sQc@Bc z0YUJ(>$BEk@Q=0TCv*8`-_GgCu#xX8)+8DngQFN%KP|0rm>o)WNimg`I<$(SN-7ft zULJ}Mwk}XEbo~?EVPd__0qsKj2Th@!+t0?BiYA-k*pw*2lx#4@K1Vv!$rlQ)>c@e; zH7+j|I(3OQ2sey84FPo62(Z~2J-a2U)w|h+)a6(q8*>Th5Hz}{8uXq*s>Oiy_(E^* zDaGJg%+A@mVNUhOMP_Jyuf7>%yb!0yp0??V8P=uNo1@Orh#@{pc=S)e#(^&_V<5ba(cGtOW5zpyR@TZtOu9?VA!Xh+fCvJqR32^S6y z4UeWB8SdLlYE4%0IGW{QY+G_sYr3z(|Biw48Sx-v5bIOHyk@`bj+@0J$0M-2@<$#N zdk_^m|E2&xo2rymZ?dF0yMwJW$RG-SUO&A*9ls%QcnBpBBd$R-YI7De(8$9uG$Q!K zRSsz*O--No?I^Lsz`mac%bAiM>WgNRfzJRDUp2MfHW9vVT9A6mWqZ>}clzB}fFbL9 z>C}^M)*9^!us5C81=a)NSUHRVAm)ggQ%WPY}?JB`Zf3dN}e-5*& z%!a)Cjh3dQ8Q8Z&OZ!z$Xonu-!p1oXv7R0^s~NcBs0<~j?RYi2=>0zyfE>sXN73ZB zMr4<(-M~(XtD%np@>E9$|CSFO%5o}?n4?A`0@CAI2&0*ca1Osu1N%bgsMBAYN1+o} z7=u`h9`!JjyYG1SU`T|^^UTcdq~Qbp)>5a%r8KZ&1Ra~Ji6mvu??0A~vn2iu3~^!J zSbEm7)vP#Z0wG?J==XBOd`@!v>NUEZl^;;)FQq&QQ+)5%efi?*efeG_?~mu9Kuf-s ziG<$*2PK-urV)Am(N;kxFRG}uCb3^SXFHA#+)B@fhCzu5lvT}nQyUQ zW*9%=&FNPYnXfM#5}a^$yXroe-%9Ul0tA?zHXM9>77h4`bz%yq#(aA(?ZL-Dl1XNAHb)+sgaEykcir;5N01>wS z4kAPZZsRr&u?L>$TSQ;Pfhf&g(6J-={Z*_L*kL-WGVVaFz_Y|{&Wi`>ww-_vOCdx6g5!H)uo*gA?uYlz+QZT>frKY?py3X_0k>XBk25c+COR z1nPSlU%hq(%()3SQ8jdSzy+gY;}SmHa3F8U>JaxXH&vn{5^HL31A|q)Zgt2`lYz_W zBC7PL?&jI7C1H%3cDoiOsY0zUL6Q7|knaXIzXe}tZ=`vUxL9w>Ey<&-=l!Jb zoL3{awXR@lU1D)#JOP8})3kcs-$N8STzpsALgx8z*BnOT=j_bKd6$8SEjjeX?IXhx zycYoMpgtscT9Nd6_U3Du561g!%CZpuF-wbHL#O75<;5NZTnl|o zIwW)iru$!V1YO(-7WIh(IC2qo!2><-$3@lSHz2u%?pq?Q#pP^abgaTt`}E+@uVPYu ztI5iGQhtyPOE$u>e##K zscOG@9WQ!ZB@BIaJvPhhzxma1XOBY8r~6V-V?@KxBbxLGmMlp_ z5QzghNYToDwB3Td+@bqs)zyiCvq%a*twY%TJQCS7>PKdn4SG`Pk;j_qd<2{91Db>^ zl&U)VFqiGTq=C6P1$Ln;*1|?X3^f6@ym&-mu+LgQ_FtEH;aD$xAo0@L;Sh*ZX*St= zyKLUpGzeD;>nSPpu_a$=t1)0gleBq6Njk0YIp-vPe?88rGQ&VeSNG!uDh;?UY9>Oa z%_EGC&9dd3B3(;pE=}v{-WJ&xQx4DHfe0Ke!L!HcuAKn5N(iJwm2Qp&2c6d>H3P_p zD|1vTH2YvAl(=lF=~hJ9*;u4T_~TdU=^tNA8_H9hy?1ea*Z2#6Km9{oQTFZg(- zU4BUwj`8v1KM6C3t2a}HMO5&Vj7oNj?*ro>JFzs)7I!{-{>tD^;Fw!5)0RBdYPcX= zU^ua#B?LU_wDsqF#q3X=#mb(m{w!g``}BM~$X~&f25U}QYmtIQ)tHt1F{$g_kEx4=5gTlG3f5Xsr7WFC``YevB?#{kDv$w!+vcJ0`6vjf4fg)NEBb(x7$v$ zB)3IJe4)s$-}NDqwki)^5QCs!lw@`tjjjUUEuimBnw~Gzv$_LkJlXUoWe?Ii6ZP({ zYD~w?&!D8_f@C3MzQJOI(aD+mU@!usyPIv!DB;s3Rn>0U#4`)m5~TfP1h^T-7aAUS zSnp@>0qj&op|zfH3T^Z?9LF ztBwp%qiey^%F4p&Z@Hn8i30aZddrH4S{f^g5O@MH{uSP2{2BEXTqedWi;JWKD;8_|wEWtx~O%m#T8EV=(mEJ|cP6qE! z2uW9_N<@`VFAF6}#A}vyPp8&?xajzeNT69}ROl2~HKZlMxR(kM23eKBNyk6P&TYKH zDw*nTwCw*(*>^KaM`_%s8(Ym4=hO=&Ykh<`{>U_1%ol4Ai3k>)tB*p*E%o|*We&3( zvZASatMk8|ke(x6T4^sl?z19hS36aJ$f>PGGyHlh`kbYwrj9`C-bzl^zJ(~VVVArP znCtC2qy{Preo&>^ZVUU?wTEd_A#_Mm12->jg+p_;S61p~j$3Id!wFAqTxX#?V6_fU z_t3U=IN7>BsVw=d{ca2TTjgHbTwIvM{@EiXl4jSxn$97E9uBwxlZBfQ(97pc4_rWAHU5Y)39k^BSX4NTQHxi90Pg?j(#!p$z&9$##Zx#tDc4WhHe8y-;qcbkY6rN&=38eKNPpYfg#W zBpq8x0#qsnK-5FENSMYGPlP?H47zf)ZT~aL@NR17m;$h#0539gf;bRQ%M*QIxU`vhX|}V zJ)Y1yQtx zF@<$gN@#ffjfo%V)l)+xL&q;+Kdi8H{^EdkwD$z^#W=^P0#s-V{R3jAk0ne0SX*Ynx~I*bCvN`OaGsQB}f9Q3&C5 zn+#^6WI}-(@yeHhI;}}7Z-;Q$+Lu2HeEaBsp&zE`hys>y%!%~EFNEj|pRPl2n2Tq8 zyZN^Y)2`XNmdh5}p16#DYPw$djbF9lWl-q&4KDQgd|$`bGIxR_>9vEbyA18@TgO=xtFE%>Od~De%e%?LwHs-6P2t{^3sPfQE$pu;NSTGF2 zv2LufdfQ1of5*#Anog1fil~8`8_SyF(o5iMB!sYGF=*gdw8l}#l*PCH=mGnB$bRlr zhSeHj&4D)5;;mDj)`u13K2L zhNXqCtJ5`hRjHI$k7kWpO{_ zv9Uym#}L-*rFVuQ>P_PX)jP@Y($=MK+;w62eDdLvE2o9G=NLZRzicxdzc*iA3T#*; zqluFTe?MGd!|Sd6{Vh*36t*>4OSg<=Ao4-`6ee)aL;s*JymgM*vl8KaQ^K%+g<^^zmrNjuNkoY0;>vt*xOCJwVICl9=oz8fVcxv`h*d0F}#vQeB+7t=11N)UyvK zOm{@OZhayLL$sO`5P@kVnfr@q8V#OjF&aT0O{E1ET{H-`GtIs?amUwrgJAuERK$Bl zSaKO33bEEi_Q1$j(IysKcH8@4%}$kYoPjDo0h8R8kL7}0Zu)Ea=t06fjilAEWH@y0 z0{*ssvu}upS@kSH|EBP@Exl}X5meE#Q}4Kq{~~cx-QE1PzAL6Tl^=i)F!34*;JKP- zb#}y%RlO&;*=N;DKOGWVX;Bxj!u6zELUvyIUTU9pnfL{uK^SVV;|ug5CDNCf(POY) zVR$=l9$1>xT2aftnPc`HoaFC_{Fv&mEq(ssgvSbR#{cQ-=6`mFXtp#i@hv$IH=mE&Wp!qpl`Hw z-C`fSyv}SrTFcJFx3^V3_76vMgs! ze{OY+)>N(9rG5(>;~jCQ4;Le@{pVI&0#&eiFbl2%+T?ThOhZ>SEC&q>ThBsGJ?vg5 zI9z-YV)I{PX@Y1YUM&MNAVuE{qvk1Duh55F()^!q4j^fc57)oUpmQ)Xmy5L;YGaQ^uXO# z8S7oanf_8UIBFmU!?*@PA&V4wV_SyD{e2!kHDBfNQzwi9NuA3w&@l&XWA;xU#AQKp z6nA2l_u}Uc4d_M~U&fdNux5G;Tk4ukh=BSz(ExUH5b;nn;o`>`@Vd~eN%{*IP6Of} z6o1t>*2p|VsH$G0>c5l?!r#h#R#5#Li#JtXhx^?UXS&h|+))q4`FAn|`tb=3=r))l zpcs9dJ_-}t!Abs!2SdNUeYX%bPiw~GGvP0AIscQmLJ7^}H0pkNnEb<7fwcXv2yvgsn1oulTieu_AK0bse8$%&koVFtqRD%JDQ(>L& zzrEV^8JD`AAuTU3&=cQ@mpt*>WN13Q53Lc%~)8-l(~N(Ux`Z>pt4|) z?zAV#dBlQdCRJQS<}#biYCJ2So^EpO&wkP3PBw8aCtgR6Er7-XvZPE*icX{s7ISxy zEh$oVr?{^HZ=C{D=)3}v0!;1MQ(s&b9~$PTl7K~sSM~121bv<>5sXGfI`p5UrL71gesY*xWa$5zgKwTzMfpcqDd9U{%w{EL zcWagX%9|}M%6)8pc(Cw6)cSmKx9>Q2Nh<{RU_5Xc~EIdM2!e*X`b*>PR^d+^%I%aqvyi zpx{4GsU7*R^|(c?OAunhSm&|*qJF&cjr!}9`?|wu@OHh^v-xnDQnv7i%P;%S?3rWj zE$3yO=II9&pQJ%}IeMGokKal1pylLG-DFyRoezrbS|7%LrBZUYxULdRs~|jWI|r$HsX>+@X=s z=ka4~^f^zwP1UhMYWF`A4;M*#O7PE{F#kIEDPmKldU&)2#^&j(L|elmCV}ThIXn-M zSd!D1Rfri5DtW1>#ayBbP?uYkK~%WfF?FC3Wxblcl-`S{%V!g`FL3h{uQzB5blkq-74{ zd4G9XqVo7q^Yz!$t!_zHYG^jbafIh6kdKix{mzG`g1goDtZj8g3d?)SH^J<0lb)4? z&ul^dNRpmUM3NSzQ5(>#u22MiY{qGc_*VmB%qtL`qzc2C*DV)Kxs#du2F9XY(#hZR z02ic{df1VkSDwi7ABV(Gfea!ZbmA&k)-;57Yh-#xT6@;klchb)dTQ#2!=ekl%X0R_ zeEr{E{14t0*pbrdy9qXnrH0%oiQ@UW9P6mXR#u?#eQs2)TaM&ok<5%XmaJ(MtW7M--v6tDcJ_J{_x#dsEb4(Qeyf_!rS!NlZRIZ&rsqWDJgYfd z$~4ayr6gRP$}58|F;`@hrk2@UPK7+;i`6leZIxr<{55*HobTndyF=n4Q^8BMrlV=gTdrT>5#)P|x&2oh; z7=^IW>d5nHEUEo}d>ckxT=lg0(@`O>%`!4V$1iuqE;ER8f^UtV6+Be7A*f$mZrX*V?73!CQ6 zknTBa72Hu^eA4-*tVEdj{fTN=arcg2lh$eTaVSWcE=NNwg-2t9a)B0@-85I?d=2wT zcMM;wGv#eD@_-oxGRSfupxqsOCnUV#HpQx#xTgW$6ZRuM-e&l1lVH~69A-*qb(XZ$IRR{Z<%4+@XOTF}A6A8dj*P`Ws|!=&A~! za<}{0$`T(sOs{79-;TEbYi;9@!;d?XN$8s9dxr;Rh$Xic&xmCukXPJ2zXL(>jP^S{ z`^7en)$?CZqM;28WV_;^NmEu8zjBx^rPY;`e2PA0y|TuY36n~4l=|-ymk*X7Ka)!C z#c9&aGCc4RFUKlG!N6)s?Ne`VZoGMvvSRr!BR(b36<|0`8YPUaM?MT;1qdV1PQ?Wh zEJ4rzCT9{#QeciiZYBRW8Mwsg(^bDh_%jk!k& zug#H9mQN`Vg1XxHkNEe7O%eEAnQ#-`k4AWwR1uUTs6Qk@$LLagUI+Hlsg9-einZLB zqYo+#DxNwMHw0&qpi!u>bsuRtK5rIq>f*b+TR%Z9yu7SL+-U>kCp|7!`rEk1a8L(A zwsZ{Zhzsy%4U*7*9V$x@N%BJlKpXy%w$Zd9kY%OmWT?K@l)>l08)sjsa|;B9C{+j@ zT~Wh#pGZYntRuR-CAX~(1P;N;Lmh2zF_ERNeqgT+#w15+5TW(fl51U@q$`D1KZI(> zALaU1p6%$vOX@2;Tl0KfBh4O1p_t>s7YazIs2SpcKA_KFGva!+T!jX%P&gnN z%V>18SxVAf<_oRh>01kKQGRq`K4|v^n07s3^(hL}C2B@t}CyN_{zSwwf!$V>*K!37966IhgT&)jmDPlK}xqYELA; zrlDM6d#UNk2pYZ7jqGP+jBPV&LjSAp7q!3QcN$381O%T+PpyGiA?k z`9{3a3C)<-x{_)kOx8FFa2k5Lu=HYBmGhrQ0O*^}1^fg1&Q=ZN*F8bdY*acv4N+*O z2FL)3w=A12oY#M_*y+0IjAh$#D@J22VKmO2XvW4C3%sm|w2!e}QhrYXt=Jj{ zGF}$>?nh~6ntfpc8i{9(G)q?w1v)-4!GlQ)e5!d^ifZg;i43Z_M3dAN=2O@~l^>Sr z?QLkii!n0-^y!UnhWo|QVUoOXw^rjL>xz4>bl5mY>@&`=?tiH!9s=HE)Zzep?M;|m^gnOTwKaO z;&XX?7wbHNKMKRdTM7r41Bu9XKXWPl^`miF%lR-Fsvw05@)^G7#_L=(uv(T?@}%|MheAkZX@eVYmej%Hj~Gt)0Mgi-Vw-h4yHI&m zT5O7;E~cMdbF{Q`8qPN|Ue>E0!rJ=KNH|isb0W^Xl#WXz5+uIY)b5cd>I4_5i#O@b zTZZubyxMN>9K>S}6EC|Js14Ef-(LLxu9cqI13&UYENy%LM`-`ERAkHsv+1TFX&r`y zr2>uEV(N977S_6?)*LTV72hoOzJ%&DFDTFIQL{1SjZspnYyD~Nf9DA2YjG|G28rQ! zKz2qr0v?-y&F^nDnE2)`j|#FxfSKPLP>_!lA0Ph?4t{(0GNZe#YP0uIhVqvppcF}# zDbhhK1v$i%GLI;ehzwaF@g~uCWByV%}vxGN)IX*0rMM->2&kH0GYiARiY?f36F9rs5ViL=vUj6UcP437`=1MuB7ayhuiHfEfq`MA(Aj1UZXx}D_({OIC*;uar1E5uTKgl8Ll z?JU`GSol~1gd{jW?(gHw>GKq7G3>f>_e}^|+DbCbh5Zbm|MiM*Aqh{>(m;^ESj4Yr3Ma;h(

JzR`3A$ifI&JHfEo zPK)6bbgi7;yp7)B%0NFC?nrcNz%HApfWSM?;q&!6x4hJ6B3S6DXUYssl=~|jr`9`$4IXXo6=evHEMCaY*$R2i(D#GkT1NS1Fp)mG zRv=&3`%z^mg0{g+9hj9FSw1EOh>8`zUYMfv{JQ4gp21odC|tGc9@wd<8Mf5p*LLgu zMbmV^Jk4X&xefsVp^C5aI)I6Oupc2!pXY7|F~{eHM65Np1AQl`Qw4U3t<|uTPc!qD zc8oG0N(KcX;SbA7<_)zMfAX7-&d3*R?Xd+sm z2OD`Fms{5t=G)fI+K_*}h-yG{5A3 zDLTI+;6{O*tM#Uwl((1r>)Rn6n3)>hq4^3nhY}J;Pgc1k|D>)6qa86>H=w89DHBvW-M$E8X2;mbe@*%2VvGXuK*F&B10g- zT>!AU%i-oD*5!v(D+fP;%@(+@5K+!Ih4$rx0loZB(O`>@e@Zq*pY4XLlsh{gw+JmW zxVz8WO1N2nOW__5Qjle-G3|eZe;{!DX%ijKD+KiXwZh0>lZlllo5fdHJvyI3YV{L zdL*LowV;ra_-~&T``i9l1Ia61_1YaQ%j>@IDa{aheyuU>RrD3@|W`S zLg7C3IMZPW2ielr!-FeuOMdWJ&o{cI92VXCn~n?O)ld-wMVoiCMP1=e7l-X*Zq-I+hGtxz1yeLq^m~JAjXbC z31@3R9i^=0F&3-#`Xw)UdX_uypg%YiI9)P2OQum&n~eytp=CquDXW$vOpTWA{@dvA z+j7c!u;MV|IE_pm~MVk(R|=REta*5zReYSDUIoMC^usJ5SC_8r3u@|CKr8gu2tw=(pSp2yOOV4mg21RJv1 zB2eg7a~Fz%S~H>FXs@886aX_Pp>*?Cs~fjHqCAejmc5V24P1B{ze?rT!Tf{s=v+~< zK6#$TBQ}dU@*2RRA=V`tXHQz0Vz#`NtGwdhgxDkPqF`TPW0Bu-R&htyRf^G2<^Q4U zEu-4%qIcgGmjcDzihF_JR-m}MThZVYg1b}P-Q9w_ySsaFceir#{_j2Go)7nY%pN;C z*=sDBYp!QLKdmG~A>b_K7|}=j?PT4K`RJR5soE?*7b`2G(a$Y`%l6yr83|Hhw}E8+ z4tJv;AKseHCUlc{-xI>&&tnyQw4P(Z+G0#BpG)rAXY!}|ryVc;-kuu&RL-ou6tMjA z&P-m*s_VF63=(I*;;ZZXax!@sHPoq(bNF)HSDOGGmeT_gOtGI9ab{3L>(HI%o|#u6ICD#7E*pTFWpUY3nr`J; zPI`#8xV127DFGxZbd%3V%vXj085x<#@b?2d3qt;pA%PsUWV0g3s&sA zq_#OZ$n{hy(!Yw8j#gX(sjj&9>V`Yd#CfeO&ox_qqjX7KU?IfOJ+Yd7gM~%(70FKI zWTl`8AQ*m}>GJVmz&V2WI*(4%?6SIC=<+`-=ZA)cp%c=^!2N<4w#6uH$5F{#6$`zO zu)QyEB<2^qNI!8xHG^sq|EYqH59ufCqj_+DxCaY8eTNWwjh>+&4b_B6;_#P#3&0j# zH*NW$0*=S2To+&D(itbRzUr$<ob07r@p!RObw=;Z%U&xq>F-!~D}w z-VAw^N*s8Adg+Js@&`mi_@B$w*rm??D2?h;pfcm?&*+!lq6r=Q-TS3Ev|5Jj&oUmR zU+KBlyT!gR^IN3H%_c$B`L+eVjf+LSlxf}r#|=6rB#bYdHXOAbbG+@>`Thc@*IwCK z_QJY}RB#vM0-_q-$*WpV=uZb0kim}9)R#Rcm2abvis(zlOCil?Inc(u1c*Ns$i?qm zBvB4#!&EZdffW4>X@8v#8S%^*7kJ$*1oGKTbUx*y9VZ4xbv>+FReJTYA9@z))-5#T zrxFNC3>8EF*Jt#&d5BkaE@R3k^lZGjchkq&V9RbG3$4yJd6xSLolJazo$n|Q`k?cn zyG8G1F#V(exUV|=BiMnfJ#0I$59sFFam5;E2Q!Ri@5n{2kb zExOE&2dOr0XQ~aO|0`vjqh6&C6R%s~@$%Rh&YqVk#rL|;9=6-WNaaVRD6s|-zz%JA zgmP=6B~eb40xao8g;I~eMfPg#j_^3s6?M1oXgW|POdO?obbNekH@S&dmE5(h8VFq& zC;bd6TniE)o09^!z*T9ejJR9&FWC)hd`Mr;AjSRS$;^5c?m#7-+l(sU1)tA9Pno{A zVT$N#mWpZ|#Q9?J2s~jMJQhzQ@R zQIz~2Tp62L1k*l~efK_$tuehN=%mhcjMFmQnGGQzpaw1f>s&2t>fgTwog`OcZW9Vl zoOYAb*qGFYJN;ovMKk>x34n0Bf@&08A!FW`bvr(TB0 z^C&lDx`tv#iZ0>(I@+iHCGr4y_GBdC9^zJ7f0FyVzb!vDVyg7WI;9`F4_Qy8jcT^b zaX5y2QCFPR-V~S^7x$|n7ci36C4F0hm!5V>JD_y>(u=&OrH%t3zZ=n^*tVT>%2dyL z9zgsP>qgaup5AV!D!Ac#P)IR5E>di70zIqrRY4*HyR#>Qd1B%A5Wu@; zS_Y;clbQW25(J%X%%~zp-ZT>ZBcNtn$Yit37?BKvEW_Xkdd5C)uF^f*vOb*Tz5av| zOPq@Q7Px;7$wc?PLn=K`f}!EQbSE2l11syxGVeZHrKm>1S?Q^4;c?k!G)R|pl4F{q zlxR=PailhQL)2$qzxu+x?anMIXsqfvwY|I?-(+Qjz4Xr4@Kz_DDp@yqfDwx#&MHyo zWdX+otO- ziWNzTmdC>qI zu*6iX&>SdFX;Ur*0Rbm1L<0ZW)3@*Ukv#>3mj_Jx4_BC zAKFRRj@61ThdbJ4OT{aN6V3Tn+00-r6!ABvWZu>uzviO3`UO3qMg#lMz6O=VjL8<@!UA0 z`~y~37$xxRj4Cwq_b43-TvcU7+KiIo{_K}%`b;yu`l*-;x+7w}HM{YN_cwIg4w`lC zs+@ax6vU=l8;5zC2go@RnqB+#AbAfsO7(zOU8h1`IDDW`Z1F5D>o`+BqhE2?gG^t0 z^@x~fN=Z?oLQ6Vzw8Uu9I_tm3c9a7KZXvV8+L@eliR)%eb$L6NSk@S$wEh(;>=YqJ zSK+ph>YKVAgp!+1KecbaulTUvu-{@c1VZgl=P8p~13%iVfd%E_Cu@Hy5g|QTd(YoQ z?sX+EAJm1~6j+Cw6~Tg*w{MHb>8 zI^@c_Kp?{K6Zn>os090rsTlJ;w;?$#Cy|UQvZ%1wEjP+1a3k%HG@i2JTjH@LYr46o zg#Y|;v_RNBlQv-puS*S6oQArW%Zh1os<-Bn(D=X4>_rM zIF0RW10gfZu%$NcW|rMJS9?TJ-xy;3&eD+jtb^~g7!izfHTq8*wt*amVQ=)k2Hb!L z*^%)|sd1{2oLA+q5Cg%1ecp~aZ>IuYRipnPW!Q#2{;-2;4FpHQ7>rRb-OO*iCRurM z*`_K6*~>vX;Ny?rSb-uL2zwpN~*@Rbyyt+i8!-25)McKn@iS}<7s>~ zw=*W8ogR?+@4vW|;s+!r^NejOx@BP#VrGkdr?a2aDI(g#oQ6<79tX%T#n%H(-(wRH z*tXH6j;{Y3kLwi<5BAr=QwsqA^W1ZL65$N)@d=Qebrw0&t2n`(HC%voHqe@!Ldw0~ zkXjM}l=A{GQp;qu#32H1jqNr*08Ve)C0x;GA#47 zm(P|4W)@j1- zAU|nbvsEc5%6{F8SCAE)&z4H(uvrD@PBC$rd?TF9Ij5^H48~S{2oPBuaEb~bhaE~ z#6Ue$rStUm?$M#2dM_Ljq5OE}nTKl1-8in93kX*BD>42P+4PBlu!w)OKZ-y$NS224 z&Gf1O{evaHk7ZZTVni%~K9jDkWY0m3V0F2}()bP}1~hM!L`ON{v#2H~DXnX}9weNA z`dx{vxVp0o3Aq>+g%IjCw+z18FnVDX2mU1f)5rX#(GtUx;J-POn{!!T^z+(kQQb=E zgpbJftheHG=uPfD#m!Uk%E=3A2w~GzX@%9NUo->-h{=X(+1vKJI9+NXSb(Fsy>!5* zkZ+LhlpR{C^gA|u9!p|kKaDooQ2d{}rqqg=Y_(2^%0~Y7Me3RAg=CbBtd%d$jGSFU z05^q3Ef$zjIgLLx%L%hb^Tsvxz-({Nn?5^XG+Uw~>j)-igoECexZuv4t$FK*eg_H< z3J$6yEhi;B&G0Zx9HZMJK!(@i`TFFx>N@B#a_~9kdjzC3pdwk7gp$7$&FilpyzEDj z7tDTy7)by5i-w~1ABA`}j8E8sm1TfCaMp1}ZAmNlAE;>;BIAy$USzXggVT@Bw;N=N zui5rHBY2)p2C|;pN(osRk?gHpefel_=*T`PfgYr83r`&}m&mZ!D)(B#RxpKb0=MJr zkq25b>HuI4pbuXa-0u>}RK_k}yIcrT$2?;h>EE0B7!x2>5Pn@m#3I`L?rJDRIoQ%{ zXMtMebFB&{4Z>=4rnG3~abmU4QB7|Y>(R#{z#SZl4{ zor7$)h{=@`Kq8s6Ij9l`P-Sl@RLe-Eb*OIOS=oFPZBJ$$5KvWh#U@{!_{)PHN3V7? znOuh4)SwUd6er8Q-^Q#&<3BdKg>g&T_ufbyJgfxptkPG~0Y1V4sro4=mOH}ND1kNe z2Z8sb7|J0z(qq=$k|}sx|CD{Xokaeux7d>wO*=am5r1Nuiz>^? zw-SFtZoNw;3*rLI-Aqd>~g?V zj`#TW2qpp4O#Q{t$nH74?y-ZJ#FDS)l+f?_ozQZl>5VzQ=R35^!Ji4y<^zWkakt}+ z!2nh1F_KZ8=IT>o4klct=tbFE9}s!0yJxwbbBN zeYw1qc#HM2t}jzpcJGbUS`5M<;9fiAT_bZ@WlK#Qk!%(<&04!ljOq|1TDEysU%l}x z=EVNrUI6M0jx-y{8WttZOk4X{!bv!3YN+OrPeDp<@z1p<$w!JjRiHxA{U_^Z_4bDs z`vlOKW2KZb5AHwv;NVa`fI`_)8s!{id7)VIRY*}jH&eD~6&lA>V&gV z{-qzH>@JqR_1r?bxxCE_S0hAXrt)>bMJZ)a=Z1mczV43$raz+kTa5A@RaUP$&{ja< z)40WdH;S3uXdKS_3yY*Spl?Rf#KzpBqWw(XI_uh}l}rY`9S=?9J2(alorrB_R~#x# zj$R94|MdWY`Yag=nu#`mDnV!v1K{WSX#7O7>>bBZqnB>8Jp)Plpx+LE!g;#Q+=9>X z^lvysZGtN+DB;tA6A}0Umhm*hCFL*A3Nd7*|3({`;PZkCar2G%e=OPBG~?XhWO!_b zJ4e80esepeRet|y#2G!qdK zhzian`PZiZ{&JladlU(v*TRDX6&tQF7eLj%=`ciWCRb2DiBVFxG4GLAvpM&=-EUKa z&^D{WtM1w~MW0Reqqg60V5cROXcPl5u;9v%QbyCd6=q$5h$vW^oQpzbzT(Ck{tRw-ql`dx+rT&U*`w$fRo zKP=_#A||ipRppJioUgAX9<5kKqK(W#Dy|G1b<{&D{2qweG*LXMtxH01RyXYd-`0qd zVD`J-TO=}8gxh}2RW{J*$@n@5xh->H_Log+8!)F3m78d}e9W<qnl|Id`Zafu{5HMJ%Ab>5@PQblXmeJU3CZ%`2zn zJT1FaK~LfT``_T79cgQj>ulBv663Y9lPpRimrQawg!v_t9$z(gVSrP6v1-?)B*)rb zMK(GQuMXH~j4W^{Ct;6+A7Pm8sTs?bru9;`TtU>}!rNEqtHh^L)3H3blj8R{*@S&^ z^;67+5UJ*cpUn;5;zvpc+0rQIDLwQ8ZpxbhGv!jW3rvNkbLGG{);CTn9ulwD`@u0g zxxrDYxvzxDf$5k0IDAc&95XcWBsip!?60nccFTk_!Qy zzctv&YrpK}*h{?jb^;Z|K&RJfx*%QoA`fz`!rNY0fs2zoJk8fTy$J(Yi2-o!_`Jo00XJTxUlC(4W1OR@fX)cuPQ zn$NcM{K;cJ#GC-ICy~*!R%hStlwrgC7Q@qwC47LMvF>bc- z_rJ4Dh-sy)Oat^zL-`QI@R;?@D2QB1V;KR53)$ zT*D3-Ck9ERN6ljCFW8-PSOmc#x{MyCHCV-@#sUKw<#Oh!5|r0UYV+?4Z?wo1axfGV z)ouK-A2g~`!Y4Og=B^juu~NJco|=pv-Wsq%fBj8o_32VVE)V1}O4jh&jyI&S$)Fyk zl%=oQro9}%8pevIMlIM#`oxr_kjdNNfABg%OX_s&LG6s2VE78SfKQ!=*I`d1AM?Sg zy`jkmWyjapui!kz1QO$u^qaL!dv`aayooZ$sT|}aU}lTU5ytseTS19Zx6cNLSo-f* zs-037=2kK}ON4$QcNT4nDAa3`eZZRkw4yZ|oTPxQyhc_Ucfy+%)Y!N!*;5%TC!EMa z)C_6$z>TCKdqbf(`|vHK?e0p~D9W?4wH*)cYEru9bjw%jId-F^ZWU;7YvZYewicSX zfROU2yUO{TYGY+io^azT*L4^3E*@?WKaj*j=?8}hGKbI~72ry3A+J(;4!1QwN7&d- z!gKk%{G;+H@s~!st)BWz48>E7da%O56~?&fw~EI8C|pazs++Zggxl?+xs1GCesNKD zYos|-qL2|R)hsDAtbPNd#A=J%ymz*RMybC`tumF75vBRh?vzbyF}FfC#NW=rdNKwZ zkjVC2h6X2+p;Rg2!Z%~xv;Lg>lg;Wow5?qnx;&=JDuxG)^To3C1eoZPdkvS@$C$NA z63dz87}J&*18~69l8J$FzlC#u1N|GC>Iv#?9jDDI$pH~j)?PZjtx{X*FT1j4;w;iE z&I9|R6G*mL>b)<%vG2A|^sz71vN@BDSe}tXuFbK9r@qr_E7w>~NGNY>X%;>xDwCIV zhPy2N89Mx8A#%WND%V%^a|jeFED;hnmObrX#qR%oAq@tWh`d&+dgb%+|9A2Kyvy%O zu^atcpQr>4&j0TNh>!q?NX^a5wbEQlcI}VAcrst;+5i3Y|MNlr^ZR8*-HAechdv}k z(>0UF`3i5@Xc>gt`Q5l%vVBvNuQQRZPrq!RSUVoC3#h|3dN!`c%$gmKuK3rnY@V)p z`0bwfkz7!TvqIAIP=o|S4pFitwkM5L4&2o0oyN7w^Zq#g-`}*Xz!$;_mBKkJ`oA;< z5t6EyA9Pxs`n{jy<+PIF>w^s~Gd)|nUmA)?3nH_N)BAVBM+LI3>6vN8VenRDdzQvvB=v0PI}F#e!C++b z0=TUi-ANSXUTtyUmM!U)da08GeVu*^dtX4X)AJ|~WoKcqrk!h=lbL8=uQ?nEdE($o zY_Exrm%wy=zOzX9JRto%VC^(09Ns1Qa9gZl>6k@(c3K~8L?EcJeYUquIhCGKgbG6kHhCSEGzMgs=)GQ0;-)6U~WR_ArHo&Fuv?w+9okX=%YpmD&ruCy=(vD`>`}qM}+(P7Oo2 z5#1k&09vA#cdBjf?8L9=zDO=b7&aIsl!?~VAO;^YKgFh}TMb4mlxqCZ@Lba3$GtTE z^=qb8E}dY17X6#mPq66gZwDn-_xlr&1tyA$C4&aI0wfy*3oF5Rp;oTGK+q&;UB>@E z!-uQmVS?@yb?S6pifAYLbT*l5|6u}iTUgbE@?bnY1mHvGsl!Qbc{QE$L%0`DSgLox z8wN<>deuV1iXMaoL2aFjjAU)ljxEExIO8DE=9pe(;1LHE=zF2NtxFatDYE2Mo6$6& zsj6aiZQiPMCw5a9Ng(;wP4Zg#Xz?mK3Avfou;{m9ZL~RyT}$k4A1|PxPo%xm?w!H6 z!SLe3?%r*j)>ypES#0Gp+~|5;ZMdkg{(7>vUdak#EzTC(mu{D;;@u8`QAD}S1d8b;tbWVDb*bXuCm?=pn#7m^l*`3w`o{R8ugUCnxtkPVHcFyr6wkz=KuT`uuu1NATIU&(U&xULDT)Qe^w}lI-A6BmZa)?JMXl?8@mB-Fk~7 z3DIVZ@bg1TibaK99YH_{>VSg;DCA>A0{!|nJDidONsPV7Xhg@(5Ho1dKa+2JtqHB| zvC!B-oTSkqB~kJvs}+PC#l$3Xduk_g=oes#_0bACtu`J)&9Lu9OyRJ?;j~`%{S2+i zeERhpMaObltlzG9Wbb!Wtv9Q5@^8#Y+=o6L9v3XB0_o;E@k^ZKG>-7@#Kg#UGs+Pk zmu&U2sD{hg9}%`29v6_;+0a-?AY-!8rRE4>(ylL=c}z5TP*yAB)@ihgp3^I|m}})p zO@R4As`b2J`SI_iLn!BQT56cVMoRdGs9yeF368c`DF8fZaIg_|zqiGa{6=D)1##8e zO}L`{tlggUsgi%mj8P>79oTSt(yl3k6k1B4NLc7qidIOtNKSUo9VGd?J*j5#(j1hD zt$e{~8!(NDD36(YHHU^SMb1_&5y|rt#nh27TY$mtVKwVC&cMs6W{E0m)Qv8S4IkZRO<1JBK3R>`D9;I{ zVa%<>YV_LzYA#Uyu=RI8Bn08MSsnGkH)o_!5Fn0~Kx2C}J+Rnf#ohNIfOZboIoI($ zP$(o^qDW&OZ?%I<;3xbS{K?L`c?{`>M{54nXT1Fj3IV=t58}St%4P>`Do0<+jdUoC z-1T4EH~vSv&A=Tup_JP5!ms#bwsH}i+F9|JWla~&t_fg$zwU?13?eUF+bH92txoK3 zb`i@|DXt}938rdv6AE=DdNM^k#i?Ho8Yaash1lb1(E-F9pn&rZfCG9#ayE6u+LkMJ z_WK2I{Un_*SJa{maDw1Cvis!+exq1Rb$i5hOed+`a%L;_#49*7y9z?bv)$BZ@>gPj6TwzKiW%)qdPt*%hoCR|vt5e{m^iF zF?m12u9tJ?r(eN_!y`8KgDbfCDVVCZNtN$(Db|~RfVOQOj~7TN^&JL;XAAl6Hou%Z z5eZ?x#9Khl2feWf*VDel_ay~cN)+_sHRcQ^)QQfDv>NZo8jmzKi1(ndAnx#D zMcT;r#va=Dqa(?xI*q*fah{;-wI&Ib;Xi#0bS5n?aao-8>J4&KUlf=$V_^6Gn5%x+N{$WALz8#q+k zj9X;wPBkN~NzIWD$z?Uxc*R++L-w8weZ>j-YrDtqQg`OY=OX%6+0-}J;8A^+lzcrn zZkK3&y`Gqcq@j%TZMA-mNu^k=ijduT&c8-J*}{jQW*#$o{ zJk~B*A5IMHLytr#hr*>#e}vS_yOStjY67<@@6;27Rme}DLR<%QaA8%@yu@7d^0w)B z8mg;wA~Ov1qv8|<5e{mI+F+JTj_|PRtlMvH91*ZCdY6rC?})jPMCCh>hqCPPwLv`i z9*;%FH+v)hNtGuad-K}Ey;}vRja<83uqXlHn=hOd%lKSYE!&{ub<(c_hGgrE&~UG# zro;d4)vlCSzjaC+2|ia_o&IirZ`!>Y7wD+|8xm$QQ;Wheh3O~fvRhybMN98M!OjKs z-qtz;HU*>=yZ)yv+Sx$s6f=+)Z_y>{w5v<+}#vK(NAvt|QI_FAk2PKtlo!aHUi#e@yf0I=3g^0si zhFw&g84~$s3YC&TJM$)C>FU&`8Kt;Y3j-X^S><}Mh~_`p)0&lZes=ReZQX(P&z+5T zc}{N>{1-DEDwFYh6v<{+8rLGh?eSH?Ls%FHvoSry_^?}pD8v6Ys<=~snA1iJ`tI1# zs0>JM$9i>}J^1Vn=>-k=bi&(|q>|zs3j>&N)ZO#0fFeknLYAMr@zJA0UQmKAtEO`1 z2rqYnt2%p+mm-j7mEVorw1sj#3Q3D5uk}eX-;btSe|S{QmN&criOgy|+tRu6VK)R5 zuyO2fa`4~UT)w>?Y}sSvBDg8=`{&Ua^ogC#mR>A(B9eB#@-GQD4(9wj|Ni)Tsg&f5 zIJ+9%?>N=rYgatc9XEg+I}FOhNcd0XA)C%Q@wXwRJV5wTvO5mP@%7>SpjDj=?GC-6 z(sF6wV@E2xM=oN=1Lrwv2jiE|vW0PE9~Ez!f^0BU4E)uvdo+fmBa!7I@ckA)V5+85i>RzjJ zQQYkpzcK7lM?zG}$YS*uzc3&X-X6M4SLpEZ`hwWBWemeXVWCDb8BmBnd5975rYnju zJSvWlJ4KjP9$O;*P0eV^?M)ag`aJA;zP%dJ&-ZVhtOimlOjDeKs>Z(9`-=~D0eT|u z*-hv*X)DKRgl&)insyx!_J`*@f-LJM`0j^E?H%IL#!YSP?J_iN!4LYi>kNqt(VY&o zblQYQGiNlh7^(DZD?LvcI!Om=EnzyHO)mAb;3{1qCdB|aN&N9O)?ouP9@9svDH`2b(s3YCJ7ACk(ny8Rlcisf_^$iUJ?glN|pChz4A zITAHD>}$PGkop58C&&n_elI*fRNX2=veZB>xt?p0h$h(wDP|xjD888L2JZ_#e#7dz zvg^|<`CSOFrcUp=V3jB^v8pjPl1emYk)di?}l%+1i;P+PV0BG z(M{1{CNv6=(Cc)G{4`C5?yJJzFEkV1XI&^xTdfqYwzw?HiOvdw_J26dvJ+eGnJOoG zT@q(tdm=D{b!H+gHshnoPcL-jC|GhAJAHnng>2_;^EmDosraXifsuawwJvpFoDZ!j zXPWC5zFWclb}(NfyiR{A=X;2e&M(0INl`+cH^o`c%rr7(tBk(4^xi&}LgD8;p8Thp zEMWD<>)%`N5yr4iC|$9jv#y?WPFRGk;vB6`PN8*$>JLro+@V*u%_SCtV0k z*Yx$l*L|`-BMEHaE}vQW!*`Bvn{_D!H8+p-8X%-D&Ivwbo|&~u4Z8@BR{UmJ}gjOOv1-Hw^pW*Exd>fO0jvqf~4(I;L@7+*V!kVr6$)(4zUa-MXd;hs* zd7~Qi=|n<%KR3R^_oUNy#*1=uG{=u$^L~fJn^=LA%-g`^K=d($EdTyH+Bd6g%tjSJ zZha?qx497?KR@CDL0BV$8BNU8nQF0`?~Nhy=oCKAJik`55BXorv8J9rGaG4a4RRXb zXrww7XgqCu^f>1hAkah#5^lU^`sMRs??gGAPv`Ag)Du0>i|gN@2S>MH283h=r`!I6 zmgnF9<#f)0fvZ<>Z8XiV(Tv*f@hVH8$+K`g$x(z+aQKL))?u$MAec2?9Py%^TuQp)chedH8z` zjsNma+*%Cym2c~r=VN9*GcEaLH$ZVv*(mm~-Dw|(54t2!2ogY<6HKd%Z7LJTeZ zQ*RR-!#)pm0hc+NqhsQ}>@h1%x(c6PSu%(Z_e6NS7Han2x3+j>o~)cb@q73ad@$dX zgnUq@=4QWwRyAE)#3x}2*I=rVjpu>IeO66sj%Ev_W)yv}*PoUv zjGrh(zpm1SA~Ozq5aU&UX1k&C6Z674aK-Xo6piSuV=s002?{*4hojHbINJM1c)3I7 z*aepvr?2Lj5`JN;G^p!i0E@%DoKgSdXsyEy-Q<${cSt1TPo%9c7EkTv?M?Ly+=6NY zhth*!xs^5(SZBWFty$yFk)&*YGS|ei2-XR?#v+TxALekW;KM-0G6%taYa_8I44OId z#$>Etcw#vF@^X5-ioKZ+KX=$I&HljlsFyK}?Tj=hh!pp%VGz+TWdOmc<=ek3*Ugy! z1-d@IN25=1cuerrWGGDSL*Nq}QNHz5L5(UNj~gyCi4INMo5A=Q1z%Ap0e|3-yk|vU zt)+9={RuDE%<~c#p+^DgtCAjDo_JA0h29V5&^(QQd6!X%OXMc@IEJbsbbxe1wne0W ze+Q2{2ubwFe3-3W=6*N$vl}IZ|E|!APdC*5N9j-?6em;Mcr{`Lz&BaQwUEyWI%#@x z9@WrnH4!9+21eZM_P1P-(x%iuM{UN_RTZxIb@EKJL-ajgK?K9>*oYrVk;Bb@W%s&n zJgYyIDH9b`17gmWcnRSi4#xlGgs}UjdS6rm7(P>6*L2Ou*a@Y5+MmrQ=lcSh21H9YpH79gUAP28H^y#~@=-EM z*B#4CQGJm9Ji`_eC5x6PdGc#aL)gP2dzeLzaoy^>iyHH)d;(i&Z}t3A5OT4Gol1v# zKw3Ai$?AH`CaX;UG{s<_&C@EituDZ}ywI5Ks2$&H>z0K+3+8&^wOx}(=z5UnKOgNk0M?I=YHn|||8GhVzl)S*U5+Vck3|8deJ&X6Me zc{d_nA#ZU;!RW+m{O?P5gVj=6$6JL;!c4vd#5^CL`*GcIrc#GX5)W`Mb4)^6qA<7G z{4EMTE-o%2J~6;kIe$ppBEJ#ENxkW@08{Y}pLnF+W=b%989#m`FOUvt!IoD~+V!u4 zD@zwa(D>A8RmY!)^R-?XBM(TX&urqCm3#F&gmVs&@si>(rNIaRsmv!cq$Kz}Vh0g5 z`I2ht6GK$F8Y*oO&-bBwzrt2^A+S8&Fft%S zt;q={l7cZoRFvPY!+gjdG`LduTQ|_>+Xs!Nhs&#tbOdo&(xT1iYAiO&f*hbI=XN26 z?>i9m`i}ebaj=W_R;l6jC7KMZ9=B93A`CEBE$IXUvf*K#=L_6|gqL8mTJBypY{kQ( zuK>qGGb&?-U-Xh7hjKpvv=1i^dL}Q$e$Wyf-t^Cy-h9;mra&$7ZAAnmj%_X2sg;rx z=G-($qTG4%p{V@|ZU;;tF+prD?AEV$KSt&(Xcf8~q(gYST5F4QRNiB1PT)05C+T$x z-6|%ObV~Opf+vFDZ$ICqu{m-5Iodg6SzZ&+VkNXJKKy7JeS{I-VaXxa$D5q+S)~8{ zWl7TeS}rM)nb8r8?B13GXrSiK(W2qkk#Q&o+twpDglhIf%%6j4-9Zku=_C-icI?$k zce8%CFIO0qj0_OB&+*Lx{rXIDz_q3}r@vHfqd{mp`gJO?O3q^=X4Uy1$T=mH=Y!uh z>Lh5n+$ZQrN!0&TgachVZTN&X=oAXFw;A$QQ0uj+H=Zj}7=j=h5NyO|I=wuGog6th zVtrobvZqT`Xehow#-uwhwQP!^w+2Kp_98s%LrSb$sVg!_7LI_&vS6~ zdyL*@AN_GH9o-G8scOglN1scf)Mw^rp(=`h!CRv8W;iUmp?KPObQTi_QZ$(+4{X*8 zWf1(-v#ICX^^o|{>3R$MU^HoTIkTeJT)Ta_t+Zr=8>2VlpplUS)Zg3K8yieO67*M-Zvjz1J4zl0mXM`D(cxzhnOPQIPpCPC|QMO&IDPLKPhZ<)IOfEBfbrCzdU@cxKpE ziULteQfsn2Q6HpzApWW1_?Ud&`KtUQNOH}i!0Y>r^{XL0HF7%B*O2cFA%N2Czh=2y zxoOQd&{DYiW{XqU#Nh>90?;2t_tXTCUM5QnkSSEWj(i5We!Ri7!O(LIg1W)@lghT9 z6-eCx8x*~YO8%Uh9OJ!;7~1wveC`^KdnG3fZjFbi#5S;# zqDOV}CN9ersnAM_G;Nq#;F+b4bM{PX6d>2~HFlnE(b%GFnRs2T{#0JeF5$jiD(U{l zS*6doX^=JBYb4Cbwv%MFI4HM$jdSZ^7bVYzhIu!rNyeq1{SD_EH!zPa=52OunES&i z0jz`O5`KV{r(bBulXkjO!k7~*t10-rhw1t8&Zv7+m#t(W{XMM?LcQ#@h=!bwm~O^O z6}2ZwSI6bJJ*=1$G8F}eLBq~SULM83sjM;~s?JUmpRGX;5WbAx)zxC1EWnrUwj@gY zQY4dhd+r+Mj$Y=n`Mx{V!>?318 znQKf@K7u^qqgTZtbwJDsb?xM>I>;LQlqJ%6+2*?p{BtTVCw${rMfQTlyhi?@i`0|$ zCB~j{Ti(Ov;cO+I5X1G0I^t{UI*mS*8B)i?>2fQme1vsSsi+9xs<`oFboi%N_LF0ah;-kTyb1r z_HgK+DGhyTzoF>QM$dcKdFyDb$|9kGfL)oX-hK;_N6@DcoyID*b8C*Vwn3m5T{jIe^!nmv#w1-Sb91PMTL)y>EP`Ixd%HYCuP7uL= z)x;SdoXMQiKxy6y=48e!qrjhtnizQnk#W_zWbkwwtspM{B4UP>I=9?eQW=WOhJgSW zI-b;;M}`jlw(MRoSx-Vd+>R1{Q|+|-M}dz(w3qSJPyXbH{tPdYxBX>PeR^_f|Hwun zd=AS5R<84Q)pw^%j2enY{Rwg;`Pv%w(BOUIK{ebU$qEl0tXJ zb$@=ht?cC7A2Rs@*H-VEXMFU2GXxSGQEiHFtM`1IzLD~r;x_(*ap5zL5QD)9-A~0* zw?Q}U(_x0PSs1MLw$SejvpyyCvA(yT;W)|KuAxt*DBZnTV;rJ|>%IysPDO;7k({dh zUWz7`tmyetiHI;WinP%Hdy4R%AT9ST>WjvAltSdtl36XDtjUt-ZjEsOCnUjQCa04j0jOMGO z7q?$}L*g|Hr2i`Zwb3+>8c^oi)IJkQz?+vL$Y|VNtau&utTyG7M(+&oQjHpi+Stxx zs%PV4e^alta9gCkxZtGT3+8Mq+84k>As({8NU(9bu1Iydl_}P}+q1c(lYh-(jJODfw|utbFhzaduT}o_nXgy zM)OlsS6^vY7j`9WjKws|M0{WebgcU*6;}GH_k~Ur$%*XOS zWvI~{;Q-kT0<;m)^1vATz(1U_%chNGt{h5aXJ=L_`re;ohoaf;LjSHx@wlNgBi3tI zm4LEF#~|j20o#2cgpv7rUB#X<0lW}Uv~d)jLjG!*h!y`mW7HP0%LI!O_rI>t;o+XF zdXqc8UD+LD!4!C%hp7EpJVKEmW{)an^BI+0c?_v`Gnsi9JhQvio7N{8LeytTfqe7X_~;Vji#_5Hl#FO*v}k5l55DrS zRYdw$ntYJCm(EO2i4kTBoa`9y?fMS3^S|=$$&Nr-=&H%2DFW?fQro%>ICiViPq+Ul zNPc0465Q10@#DQ5IbzCGXUu;S^ip1$R;}S{mhy|a(V43S*Xk%`X(609lroTaJ$G9y z5vphj%~o?Q)PfsXiIxi&X8!WWWQJvU{Oh*DZ6}pyLzNz9M`ZX?6v0(+WBa;sBe*0c zr*rpw$7`VPLWN~DG!AKVLMx4dZ$cj2>f=n^DgDMX9y_l`jxTrxBYO!?I?Auqo}^wc z_y@92c%t$|;TO6tu1+6dfQ*fPltHh|f>~waX~cr~%0ur@#UY_TG9sn^PuK)a6=T1c zJ7!ZHPFiM@$!NDFs53F((z)zx8y_s@ia1_oG0!1^DlM&e`s-|(nPZnls$&!$YcGQ0 ztnTQZN|v?^tzX)hFE*4Cwjzky2M&M#dL8pq zY4a+jUZe_5YDdEPThUEzPXjbWLS-G&Y8^OIgOt@uS3wJOHV4O;BR+0jSwOcs9{1E3#^SNPY<+9%` z028wszo0$6W}se4oQv1h+i)Ar|5(3!m6_?(vyaTLM1H8KSU#Pu>tLR;%vAWJ;GgRs zxt6uylJ1l7$^N#39~_iGMw81P_e$Ahz0&L16ua7t!?cFSWW3gRUhO#KT%p)63~?0UmtxTV)ZDI(&9`zNw|jF!ArTb;G-K>e^B}T zW?X0{ANZ~AE7n;;@gL7r)xKMa6w06Up-Zzbbdo9Yj@bwbFb|5zE!O9}jA_@z-rFdD zE5-#vQ`nKw+}P2#YA715fgxsf!WG{UHT$+knv&Xux>4=CE~8!$Y3;ZueG7(JNEDjzN;2EdcT!k4Q3FTT#HG1F+<(ow~>&5CW?wr$(ClZtIs zRIzQ_{9@ZU*%#gW^iBVPbv57l&NbH<&)8y)T=TeSi+Y*#hTDsuD&kd7T&Z+WbDim} zzg=}kyJZDiMf+50z5CAzVNu*H`YCtV2UOxcs7yXC0jc-BTa<<9(`W>nx%s=*>w!Ehk~V z-O48g?V!Lfh}st;Ej5WD_`UX5-FP@XnNgHAd-S7|LThiLH-iX*KfWgDGWxzaT}6#% zAKs(MZuo288+bk#urrL3#c4fK_F~WM zd4ldt92M!hvp9pv*LL=r51kofP(a%v=T=>u;IH`UphE+FF~6t9)0+*Mq1#F{zrTWK zGqsCHwXdrll)MjFS1=8|K%439HzTO|>(Aq+`P+IT&29e+91v%Dz z#egO7ENw-i@h@;K%qD2!)hGj0ZPb&&MYW zi$5GRoEnPRz0%IH0`R!rM#KEFt3YEuNx@)<$HjUZDCZEL&3Y3!*12AP&12qfy4!g| zn;#l}r!8mu1O5~(UAq!tTz@<3Pejfag~wCH)Pr9Kgz-!lI6m~U(`0g1R_wv{^BymB zMrg@x>(^6q{qFnoo;^EAaC~NHjgGV=IVHrSY*5q-oEr2!GNH2*6QgB6h|k@rO1A49 zV$9T5_(FO8CMI6E>oLTvrwnQ+&ve=(Ri7;NeI3=eHH}NH2)V2lASuoi*KSgy6D&{v zff@E>1yqkqOpC`HUx^zWF%Ks^{etF!z=P$-=_^?#JmuiB4i6ur5l?st&+!!H$^{Q4mA$}@{dren zK~FHH!DydsJ1nH-lRZ=&JmLxgn=&Yq{r=yeyp$Z5vJu1o3hZol)T8(u6Hj)S0}eQo z>#H27yCb;}By&**9paDM-of{(zcw5;OwY?D?*Ul|+$8R{ScjdE;H~UU$HcB;|08b5LbEFJ>cNBAUO$@0MS(oy z>p4&H5bEAMiktCn!wg`;x>ndSZ;9hA+ob0FfhY_UWdvfja}>s22ulmM12ik@2bqSD z+m}yUji{>-wWu6fuw+9@W582l_xI#fl;t^J=lzsolx|ww=^h?)t_)UpVfiQT9=XN^ z4RAz3Fc=oA$MbN*dgGLZlH7C0SKNH?^RHi5ntq-BuPPN69C}sIz##z{l@Mmz7v^>5 zJG#wLILmuP&j$+vO2>adu-W&U!G!ffQi~=QsRPdi+W62qx}y|Km1i%ew)9l}`E%Uk zF=wh}$gVTR`6lb-SUiR#XEXeob&lf3y`R<{6HY%ANK;N2M_lzbBOYOnKogwu+bO@n zY>kPg>y#Z+##Ym%EKXyYA35)8H3a3Y-BASt;~#pOAuek|*0`Fnd7t$vwlflInl0jS zY!PV6J(BJR*Hx<#_Yv)xnD4sYG!EG=>T}u&vSthx4)N^YcpRu(#nz9r9VhLC)0dH+ zuSknaxT$~n4^@Sa1%$#Dny_Ax@x2?hpLkWreDRj|Z$_W}E}d(Ykhg*8>AaJ%uT?F3 z2Z4$lm7pyq)Xu@&t_JpMK%ng%i8<%u8%J~(V?f&nPnbCBGDGb{BfFV6-@*1hugEhW z=aM=uw=)haIqrq}JNT=uj-Xr%xN6v=ohp+L zHb3I^oqLv}okt+9?q}fUZhtB_TfMNaZoO%{;sKSg9W!BV4hE?9aK3gJfo|Hx z0HdfW<<(K3dn*Q(WW5Dv52|RxM1qGgY`1Pw+*b6;Zl`m2Z_6{S&Fa-iA*-oI`*yta zh}docMz?UoAIMF|XZk6ym_tch%idQgivLFfEe`!_@pdDS&;ma7d)|4pJun!gy|%0j z+C=vo##w#_)$i^r5yXlA^#dwZENly&ht~d*a50+|M`0k}!v?ot*}L6*q1^D#<5T+` zY9@V_y|=tj`WjOpC*H=z?&>!FMX9LQOb*@P-7~((zCEKiW917PSQL6;NNI(lB4aww zvkuRV6UN1~git`y3tjFS$65>2*kZr#*^}YDJMckk$9}u@^<(NZCa`;G*>pf*-Y(}gq4wTSF8VO3U0$N(y*vPleehJ)R{$fH*7s+$j0pe!AZxad5_i!; zmXp_sh`v7>m|#tcMA!nI+5g4yn2NQU7ekFef+o9WhNLJ(>p zSNKOvgxI(RqwN)+<@!L>%L>T&UsS!J6_wH3^H6A-eq>^f*)E288-uMOkbIANNRu|D zk2|$M8T@Pd=WfyJ+a7mmuEl&wVa#$6VjQ9-Od)69f9oP}Kr}E)F3)@BkjIB0bohK~ zS5r*uXjg#ioPCAl7%B64>E7T}VIjZX2!qZWGgE4|r~%PiJ_yNQC2RAoMhFNXFxOgL zJWFh=anfKVt`SeKX3+TZ+mHe=-PS%NGLwZ`hJ5>*lHJyyMS?EXlUG@%P+7RI#)r~E z)(E^MU&D7~>V(ywZ9jQGQ5R8Qn9$&?6y(FphEz#;lX4qP;GDJ>8XEJ`!t2z{^M>1= zXkAn$pJF~`xXKcUmI^mp$k2i|@3=_$luj){f2?e7kM>dg4aadLNGOuW5dG%CNFxmbRk2SL*2 zSbD++u)G4(Rdz<~JQgsGK0#<3^~Y-3>B#yN+2&VK%(SZxC1oL^RG$Ul3E9P3H!8&% zCNU8u5}%eiqKgb!0&ut)%@mCy8_)ZJIL&uX^Kswyy*oth7xyrg6^m7UXZ(s{cOdw; z52`bRdD-ALh$pkOv`~GX?V~;&UzHhVH#${-mxoLL{kNNrFB((F z<6!C{%U_b~mcOHeHM*PgX3}&)Pw8uGj zIRCGEB5*(enEQqb;Af#Y0xx`9CwMcJB|k!3PtFbu&(b*nL1H!P&@k2(eWdb~HIT4X zM{eoJf_;J8YY9oAgT0EA7z`r*buaI%`~*PcG{~Rp#9|hKB3;6KS?{aI8fB96)qXks zx#}3eK9?tR<}FYEmVLL=$WYlDwF=xiQa86ht|2d(^=>zG)V!Y?2-SW47alT7tK1_x z9};PihCF4<1HE^R7SAcU`OMh!=N!9e_ui@NfM@?V?EortBA^rhFQ84n0wewz7(F&O zV&q$Q@RA6eXnY|G1VHW*@qxVs&79a<&DeT^@Sa&_=%pncV>5@mrEM!-ONVcAbTK@* zLNC&X)gzeNL*4Gip9x~pdr`GotM5;u0K;koKAT`B{8AKVF~ijz5}nGzXNgGTt6&&+GxC7 zF|||{l+U+?-*4TV3x_^GTYz$_9gFjM+c2BfGaesOzKl+cp@h_MzkUaI{H}lnPH(S* z$jx|tJl-EUoS3>yTDX_aqxtXIx;XRwXl#|@Xf?`+w{ji*c(i~Mc{3W?-l8$_Y(*E2 zbGhSrYZGkz(Mw(2-|mdYHQ{yGxcoJ<$gFdKlOv!+e?O;oJRw(9J|{7_!az?rdDX~A zX;;jrLB+;?8N`^b2gLL|SHz{t=3?q0Us{_$i>!9odS+Xsj3v^;KoNrHE8e}%b1ht> z$Af3O?PJf$u*Gj3@>aONXu5DLtF|-5&(;mFC}=mSa{<7Qr%LZ?g)=Jhr4+-x(?NCG{u6?I%Mk)RsWfN3xWHtY*ysBO)Z%HFJ0cE}-b|Yubn$Iu z*4lym+3(}-9xFmdWrK(U{UxF=PI|~n_n;>sJQvXg?7QsxeT~h!h%>h3E9n%d&awtqh>XiDn-zUf@$T) z;G6aAt6`E95zj3QbqSUo8Y5EO8rm_Ux5x?0RMnsOsvu0J^WtZdKl0u0P7l8+ zo>r@Q{|T3N@@>hDb|In59YU)`@@P<=iFY<`@Q12DSD=Z^c4TTW+>(sAH#4#>%bke* zOeTlj24SnrW05$1Cm0NxggBx8nmFQGyhC>piZ5Elz_UK}*lhQ(-39Z^_X1thbq)=> zvzUX8+^>nEDICOE%l*IFoFp(c<;g`{42xC?WM(ZH-v6=_;!Qa}d!?V3&8o`yz^1kJhfN~!NFYkJ^nEh{qx?-wJl`C`zlp9&L%>^GLDZl{9g(phW?jf{if{iVirEEJDM zDiU=j#AywYDb$mSKu!>k!SR-ff3JrUXC5D!TnP!{^G+RH48?_DPU15nkHq3d;o+$7 zZkscox}0FTT&^RWFV_q+e|y4bq01+|hcV*BInc7>8?Ud!1x^xQIA*=f*J!&}^7@;C zpxjfp3F{{ZYuCN|EKYMG-q3SB2y>n#vkuUOBr$et{2H|t1~Q+!%z`TZ*uNR21 zGt>8Cx%1yO0E;Yi2(RhMcT}j=J##B<{jO`DO2=@{okRZYCoPj)_|tX?t-S7SO7;ae`KeP80`_C zRgDp|RN^SB?a;xun-z5}*TBd%`EHhHB&BOkpw6}0LDOjnUKQU^*whAtl>`e{%hO($ zeWSk3kH_1Wqtcd&?q!PgWTAt?Y(_IA=)(4-wm=K@2zdMBDG&%YeML!u^zmw#=AL@6coQA-ZvI6LjSANXgZjIz!dd2 z#@s~%!qBGNq)NjJ$K>XOBs$meTD>{_y4l5my2_dtm;3OOJzr_~GOx$m%qP+o;CJW8 z{C(^3RY&63SQ7pB6RDiUPBhSYf6ax`gUsG`R{h~)jMjj|uV~MeINo$dRs>T_Zegr@>l+ii9;ZT;M|3cB9F4x2B> zAAW!0pXFD!B!#LDNv$QQ7mytmK%8+RCFqBD>|nu?_^N#~smgCKDJ=-Bl%Z2FfYIBK zJkNNezOx&Rwh1&0^(YU#!Eu7?rTb0AO@&Jb9dgI{@aAwhBH8jqg*bjZd;TWh=BETX zgy^Nau_y$9?5eT#d3@Bh*cPgtSb#w*b&(EM=7uf*nDjx$7C&+I^np7=&Fq;yzmriL zb|*E$06(`}+-N{h+Iaq+EH&Czhi^We^bs=OfD<3@x=Yp5+`PDCVq>^ZAD+Fy)YV< zLg>$&ilfZoFNTTb3u{sBYsU*k$5AK(>qd+acn6@sZPYvGWd-RFp-;cf+7J-S=6Im| zr%-{~d`>|+pWi@H9TphBa0t57GolHOW(F1U^ajfNu8mgb8j$cbCB)ekSAPtn@gB;N zzGSDZ|5yaNY_XImHLkU~vpqIYlwsZMH^N-HH;yXL6S_^I+KX*_p@NAWCTF8(0p;D8 zTn`#C{@1*vZNG{NiD#+kA*ew%HIxrLg?`nCk4N?0op`vDB*df-4q!2F_fq>!UzSxLQap zC4rd)IvpF?UJY-NGr2H~$yS8;-X|9#WNkv>BeNKuR-0VJ4n*Ayfg05Q7@eB&tI1P| zhC`KXz7=sp>*6JzWyJ~V=xfUu&dK9t1BB`FG&Z<6^G}5r1rSk z&F#G!noD+>=QG}Jx{P0J$+Xdy>F7?}Bnsr6?Jo<+UavPunABbpPNTPy0Jq$&tJG3jT$O|12GS$dou4SWgTBwA5-Nw-0=u= z0m-CZZe$j{Z11w}V)sy*;bW#zwxBpePsd)%i`O{2$9@sQo}>8u zD@;zRSnFQVwBiF$7NT^Zu`6H8fJRUe1TGp4cWSvS zN0!t0^}Tb$&E}51u;3B;mGVhgTCSlg&jK=)&O*UMoNq@$P7g>K0Xu}X8~ngD9G#C` zgC6~_+@s<(AT8RfqQA+q%CnR;%$q;!Ro=Dv4yyBs@xh}91!+SnOKyM0+kH z(YooeI2marIf<^GZ$$3>sV9w76oYUF5=3PMu;jCP)=cGjVGuW9)b_%$=)-}t5A(ax zgt@K?zj`N2Z<>x}Oq=Iv-t;n_i86h0QetcV4ed2_##~4{ zoV{AXBe$hOIo#e>#bB)mTr08IDgleT4dvTjmQnU3&$xn_E+B6ys4w<3hUBDnT=@4N z8H{bnRM5lSyEr5=Mb=VDz`*^PQsr&u%BY9k`fnp8cJ;QcN}pOT85U64E)7v`jjWf- zWHa0C3Me~i3~%^;7KV8E>PLCxi-SbQuV?=d z``e%NXh&IvfMTeu=wLG_A~X$&yvp%9gL6C*+&iuQpNXPD!D;JyGPgi1;7_j0D3nf%ST$mc zm&IH=2HpFwmP1QV^cFW-Q5IS0g^Kp}|3 z$Tlb7lyx~6>2veNOpwrh}vA^diP5v$oV6)yQ3q z@!6Y3z{&_XlMG$aSsX%eHSAOqDgDUV@l+e?swkQ0kUYq=9pjXNd_I(CKRb09no~1_ zBM18pK0SIhHLJCZv}G8|MZluyT2Tp=&XxdG&>Zvt~gPJ2c5JL`1%BFdOq)k;)DhH<;sB= zXYJDW63b!-Vw=08qG+z)dzKy=NO2q13VcsHJIwPpQER#L(7w+2cyF_P^M1CZQFYe( z82sV-7_p4654Bwi*`wEqa-FBSwml)A}$kL%XJGh=it$5<=%Tukh!(peCsL7bu zZb?r19d(aVG=S$Y%VUUd{YCh3zvFHhJD{FWA)Zgs`e7bAEAT>TKz03Ef|Lw3T ziv?d$&}n%PZ$d`SAIoUV=rx6m=sWWQyjvu&nK3IgR0j{eUy9hT)x*Qi!Qwmspnh17 zrq}j$IxDN+SEm`4lkn3zL+0R_nc&B+8Mx7P5U!5HT6+%gmBP+DDvr_MvT)v_YpQF1 z4*LF`n!U>TJ(1mS{Ly?`DBa8yD(uTkBu7|HJ6BCHA1dS6_jjj`ev8+#zL&XHX}C%+ z9{4CDzO*u`l~c3L4#(-3<4e-R&y@KsPv?a-MISRTHZnbY2ZzI0tPUoJr4*KxJ6VFx z1hOT*6_S_31wUa~(`LCqE|dGg+4EEsBD-{Dgz>M{4*^vs2@oh}%S&m2KG787m+k!; zyUJ$DG)$WlZJQl1x|i91*-cuS21f8J!N_V`X}-|$6V88dvu&qHI2?Xc-Vwk1>%%sC zVX1SYUcj z{4(z5gfL1!OKi!`T7nO2haYO!M%S6F9^u`Zs!SA^nA6|nSC)j&`B2v$ojHyY$B)0p zKPeOsv;vz)5Z=N!Bh-?ch^Z%2jf1C(mh!@IJVAfkl5?IQN9#x0v-E`3!34dV`SpFF z3*n=p`t)T+o{{l@uLMa-N{Z-p4XLCG2Ijrh^w;RS)_3LV?5e%0s>av#l8#LUOt77> z3k5P~R!QPIgH-uzr;V9jE+Hud3}kZ3{%*Uo?Yi50n)cf7xpAnx5W3D?m`jx;oe1BK zEb?H@uv)aD8rE~q@S)wR59!+hv)xrd&ILTEGYS#^AXW+Ftff18;JWrS;9~O>@}BIA z!F)eygQVV153~8Y0Z?KadZH;+4Prm+MM}VSi?@2Y{XGyrk!s|m0!GKLQ*0wwl81(b zJ5Pb+IUx%>&$EyzQE057^h!dG^|y}0XVgARDH)wY480cUrFC7~x>hVfnqj>#a@vIr z1-mPRBmNN8&ZVK*p>|Z)0P^Ze+`Yyn)wXqp!Mo2U1IWO>A@+5-dC6H$c)^` z=dU*{U80;T&ljC%$XD`|rWQWu zxcE_LRQwJgXc+#x<4S#I4*`y@Rya*3) zP5~bsR^-8f+vp@u3>vk%Vyq)U$rAXw39`ld=UU!mjH1L2sY`Ree}A{K+_W0du$~WG zVK8*P-FDvXYbSx_j63KhfoV;VuR#sL`C_ai6SacE8ytLMGouQbPjex%STa7JPVJXS z`M;|1Ap6MjLllu?WsKO1u~{k-GQf=AQo|4VcvXyw*%E;F$^-dJwrA8W@7*e7U?2 z3(Yl<%&Py2`E10wRQ`!d;YT&@M_VCgbAX>`!xK|bprdPF59xK))4*AVD*=ww$VraH z_OhF1og3!lhJd=D#=BfH7*teg$UAK{Bz-C-DwYfxQ;SQ3>*h7A+>Un`AZjc#-_Z)v zp{}wxvS0KT;8Zp6)df^iWm^~`YW7&32{T@@V-Tw7Lt#^4T5HV%Vkwjuh=(Br{Wv`U zzGpR+2cflJoQT0-kjo}}UEVF+f`BI;8%l7H7VFml!OwmMI~U~P$JLm$Z}FvI9e?8x#W*Qzp*drDjkuDD-x?xXv zb1DcPTfbDcO)8al9V_Q1po2|PdX`^=huL}mTJ(fpscQ?|0A3#cZ>+E}C1i}qZA;fW zG*^YbSqb?hmxHChyZH2Pan*lHk6le)kSOw7B0C^>!Qeq zrVIp~T{EG<9mC#ao{f+@= zf4!{Xe&d>!H=!9kZ?o{cUoe9u<~Rh%nW_EN2$c3lo3BZdGmEn2a3KvjYlh{MAL{QM6EWwZw3OZp_1VX z!H|LJL$q2ozD^-`;em#X6mo41*?A%BEJuJY=V4H(Tzjb+0)zwI3W}jil%zHTC7cQb zg!<<6nHh0`4t|KNL_*RgUie{sy;c_yc$dhhK7xqjA2&%aHLUvOJNVm5P~E+|@?6sl z&tJ_hlx14ea)yVI*`2L$x-lvZ@iAj9Eo>tVH<|aR)i!SgSWXB7GCVK7+3^`9Y;JPM z{NhGOK?7u`ae$&;7d+Im5G>qHa3Zqf8pZ5{cS4d9jH({zR5>Z2q`tz_Yuqt!JX7hP zMw;BZ9Il1jnCliT9Ixj^?p3-7_gKDxR)v~IonS}3Z$65^xVtgzux|058TXTkVl3g2 zIy%qi7ci-A1EQonItgVz20ITUEI{`ut2DjO!}Q9f^Lx#QhmlQ?x@(DG2}azD**mh+ z#cH`m=+@W0S5VhUT#+d1x+`Zzt!jrL zgOV-Wrik7ikKYkrTksF!i*USBqdCTP1w^%`^8L`rNmA!L3*99KM2AMNz zZ+BOq9amJ0+u!gH&vea(fRZ4K_hP%|%sKTb(f07+Te#XDK_w{8YrhrAxzAjl!Fi`! z@xd?ur|YZLQHsAP^_3IxRH~*}bT2b|l`Z_RC{Q9GgnO>gKsQT|65O7G%%fTFWsT-` zNZ!jIAP9K28~Ll*!1;K>@E(51(K?gmW?z5fdLhd5FXc%a%D;+u^pB?HaFW&EnTyC` zOm3RQkQI#RA+HC0 zMnwW*rKa?iZ>izC{?W<~!JPPM1d}BMD0p5#XT0E)3y2mo%h&KrdVsUaq-oC5`r|seMBRzC9gM?7LNvBSwMJev7cuW0} zMT?4h)4CrRiXKa(t0!C->9^hi;t*hy8~xrS~azd$+GL@Ahx$ z&7MT!EzV2fS$A~q)B|0eJ3K9{Iu=*$Z0?@1yNN*R9Rtw(J8U*1gdn3zQd@3C>FNKx zA$Xywg)w^=po77mg!BZ7x?I4SI|tx>UJsf6pelAPPC!U*hu*NF5@*62Qt||22qyGR zghYhQLBdCh+RS>1gsl{Y0rd^O{!YuXT5~BkUd&okreVmGc3k^I)ac3L7^9ezY?a&A z7Mkv22rC>st7oUldMEvPDnSwFibg0%1%H35PeREnsD|+!ilNjwSs}XS`7%&In|{!M z$X6;=smnx8N_Gw|+|8sqF^(WaZo4DrhtgB34zHL^5 zis}_KgphpG9}RH2QL)z!e&ekmPM3t!a0&u{JQ#C4vG!N9PWg%}!6@PZ%1D}Pez3^T zcV+6(YgEQVt3Xn~QaHQ=h>-B@-NrRxR?;XPD8xXmETx;->P^qy;$eccRuP-*sVQ1 z{+dmWwGTSxw`~Zjr8q4sKWDu|-KQXuK6P^e^M5kJ^YdcIroChDxs(8Y#`1ZaXKtQj ze0UFz-MxTt&|?sYv+CqCUrvm2Za%n2iR$OWm*;Hio<)+D?KJ05Aq2eY5Kxfy!Hl@A zBWVbBF)qalp#*=rC2=^8Kia{_pNK9pR}t4e@43Cb5m|Qa@cf^x(9uWNa_l zaPc3)6=OQzCpD^~GoX^1ex&;o0?ANgYV}7B2e#qiPbx({6@w)~6@bwqULdi%>w~ z@p<|3Tg7yQ;-9w2>LQLfLsY~+Nh@EI4eQe3dmzfWRWbR6pK-!Ox__`F+wPhdr0&Tf$5dbeYar&T@KtD4b0n0NOn<}CX zw%u!jL!-kd!H5++vF}0`6^Ei;F*IcyvZ6?pnah8EzxMgx@JrT~JdV5E>wkEZVP>2m z=_eK%76e|$cng@%3mD!tJwA(C!7q1?QSP< z)_=nS99hJ<2e8{ox*h#hwrtvuJ>@p2pfuPPW~s3?DAWc}uXo%be||sugVn|mI9m*9 z#gu#F4|o)>Gv4=Io_y}w#dvd~l&o@c-i@85bAls4~rXfV9<&5IpBGS&baBhCOY{zd6K?scZ;9)x#VTF zfc_bjw^3_yww|+p=7q-cEkk@bJY=MgYj>m%XuQB%)8k#asvLR+X253XcPl0zfTBFD zr~Mf0K6O9-&pAOr0Qa@{NsF_g#7VEg#>3NiJP{qfA+w)IZx@0Ph6FGA*u<}yQ<LJ(N+F_OB2J4Va@m=77sXQTCwB<)SCM@22yM0y~u|*6%8v4bxpFv4Hyb(>9Pl0-z zRF92{u+FpiK%m#RxAeV>)N}&xFU?@}YK^h6{hhz~7wAp#`#+)U?gLUD3!1~LLGPkO ze3bhga5Pm+(JD;uL4H%oPa;c=kMD`nCK1b3n{{B2t6cRBrQ{h~^zeMVj%CeOYyajV zEhB!ap`z@egXi2fTfbHuA8*SWhFSH!HF-GOg4n{CEPbm%;{!8K`BNy#(9Lv57~Eg{ z^w4MvNh3bCm(%EaG2RwRj=<&hP`XeUD>`taVSs?i-E_#R$c_edh$_H2qE3SSLaHfR z(rD|7Mfbf&Et7sr1+wjjcDd~Z%17WI2Zu9{xK0iw7|19A#}P7kM_k$BwFhJwTeki$ zRL?Q#Bxa=JFJg|D%h0Z1FjZvZEbcWiEG`cwaHA~^b!}EztnkJaDwqSqP15(p$WxfqK1m&zA`+fSe%cdw5 zTRio(F7lFc5Imtg)PO>OjpW%OO*A#U5x4Oo<~y9o%?5#he37xQ21n4&Ys3mT2cF8P zfO<3qaBi+kvr~Qz9IvfkGn--2xi4K)8x4mE6bVbDR#iFf>$V3>(ATT|YBUs~c&s4g z0Kti{P!8~_uJdvvI-eC1$vxr3zlDr|dW_&!|Ce7bF%N%XpoMNm^!r!S?g=r-GuJO7 z$E{sJS$D&J<_N>7SD6m)6$PIJzq4T!*Q+xC6FK%L-7#;a&Pwb2c(Spz6h&bd)#IN# zj>v4r^-C}?F%kd=IMY#41vZkP_TEfMb?sQ#K&T-kbY$sg!LMM89d^t45|8`GZ=>TU zrx2yjx#*-Z0e1 zvO;z`WWuq89*=a0A2}8fnN!&^Jzt2Bm6)1|wbMIbI=0lnKHFpkuQl`(Eu_;%a*&%ouOhRafVXByK?Gr9#_>CA!_;k$=qt**efdsb*88yl|K(Xz*zR$ z8)G9~vKp8RW~M}O{NxK|{TcBHFWKgptyH01)a+sFFBIyzh8W{K;>iw5AXLRLnwAQi zrQKww_SVf|?592A+_b3c6?7FRUaR-%#`dW{W)u*Wzo}=v zYAeJ8uime?d_3B(d3>|~uJHPJj1$>(5bS6#%T#_h99x=TFnX&sxQyBhlvo$8Aiktf zHtx))A!Jom-R9oD~OlE z91UV~V|L-lTy=r9?ccFdmNkqiaMC|z8hkBI#=htFEQJnQxFe|KMe=kHvy|S8B>fZh zXT0!WSI<_Q>6l6x65fB{Ja-{cU1r4PD!B%)o$Z~I?p(>0{HGi{C+PTjGmX~1e`^pr z-U1}-NGr~rRCcmEtxh^?ZdD%-jQ^C?>VVkXyww()rAlG+fpZLm@(zcW`C z5k=Bx+R=(R`LfS{lEH)MTL_b&j2)(9bxJlU_CrLJ;998&Nn;m|dU+}_neV?{?Ytwa z2)-%uT7f@E`9ql9eBxP{J24DJX0R=5S%Be5c9!`G{viC6XynsVht001A593dwJ%(- zn)fHB#&)AHD!|6w5Xr6KGVR9rA5NV(X_Cre*UU-?Xd<`=#@Wqw3~pnrmXw1JSzlqs zQ@L8@tCR9SE@WpvJA{TyJslQH60cbQ$b4RrrE89@3duCpcklbplAyGn5A>urUdKd`y z_VHReK~UOV#2ie(xI{+wnq;wxYg2+HEP2}qs1SZ?lA~ki@YfL=%0r+-zv%p zc&IRw$zq2M6v1F}CFzA>daTF{7)ZLe9Y{LP??*EaoeEKA27Ip zNIXuPwuekx-COBSxAt02XN{#s^knmj1Q zEf%SmPC`fHra1VUYRC) z0iK*G2^#Tq-y3=8j{cbRvc zLuLh8Ccfd2zR1(nMi)@O?*Ib6Jni6LRn<3-cya%t6xOv;m5n5^NO`@W1O9w1caCwk zsLi5W>aBl0Ch*C9f!*iDW`)>;ix>J_YCW89;S>-VO2|I+orww~JTnECjkO<~zZCrxPHc#}Axj@c@!VjG zFsGIn$T3^BkFw5Cxff|Pk21z30XJkbFz&V^KX#rQyy5Tz!PI!J#b69@Wb8WeWJ`Om z)c$}izrc-I#|3SNGgg4+3Yl2z!4Yj5I&mFJS^YRg2YWR!*hge$Gg~Zd=nImDMj*C6 z2PRcZT|iH9YaqgFotuqCb7*oy$^2}TAl~9G;v@!_M4G1VaV!MnDo%e=-tpJ8EEh2o zTz5bv*2`4@Zk@`{{eUA5j&)?M5-Vh3vq^tIj%f$&J|-&O^PB^~@>zMzvTFuH(@kvZ z53S|uFqT(p=Pz?gc$ABD*$0$|OIriZctSZh(yiY^nbH(74`@vK0eQ_fdyOD5g;K_7cw;ih?VN#byV7Pey?r+8 z5==f2M1-n}v$~v6yThJ@y4h#K7zxf`JcH25;Ai zUcyB3%(b|E#1leKtAq9p8FA@zn+M|a1*oBA8=1Q6g4o|VrwXPkLIxVLW!!DW6j>`z z%}|5#8_k9vt+z3!cl@2>43u8{U3c?YBX`61VXx=V35lg6dyNJ$t;CS5!%U=MN5nIy?)xP*V z`lqS43z+Li^)!1pgPD9qlp_zL>v5`f?6Mh4rRQgwVykPW& zIb){fYe-?wAuq50q3fNaBaPmz!PrK}wv&#nj%_>LQOCCJif!Arla5`nZF_R>{l59; zH?!uis#SIBtoN;T>Z$!;?`_JS_cLh9v|Nr0Z58S6LliZ^5hVc{zjw>#$4MfjH4bn9 z`xNm59}mn7SUa*6W6X2vUL2(_2Mf6O`pj&Dul>DK()uACB33@Dl7;SeQK3ve1Z8;9 zj7nWoC|#+QI_RhRV0=bGCK~Py09qDU^-gLg%PPXNSx`5}n#i#FBCo!~7yxam! z@uj}A5QI#9p3$L=1Y|Y102RG0K{~&q3|HG9m7fmghrb;dbsj@3FmABsI1a@h&-SgM zykaGW!!}=ejT3pi21?rBZ0CJXGqj z`0z4XOhAq~SweHzm>RyButnCdc!|!9<0NAino8EVb_KzWv69?%ts`j#UaV~ zy&;{%woLw^kd3z)5tE>-S+nE~>V~7R`g2m`Cw=Namr+Bh^ID5PFj60Lm~kXx5u&Ur z%4ddkk1#vJ{CZhZW3miitCvFQ)8x3NE5FFO3M_L^a$m?Z0zjv2V` zlt%k+RgOd#M6S{TE3V~^LynQAVGb;wqVD&j#;>aKU#oWt`MVd(MlcWl{AA!mEnE9e zeiFnq?(DDo*;`Stx4G4P@#e`%dG~38dA9{$<+qi*uDM|c!JQu@oxDX$Ow&U>^Uhop zz*wa*kAo&KV3B}2k4Sh-OkbR^_4Uq=nLA5F;9$!@A4OYOp0$pV63Y_(C-R<1vXSAF z^)ZIQILFP<&N{zlvVM%%#hQtVi$I91C$^*DS~Nu{_(?8RWS+>s(SKD#Ve+CML&Usd}KqVKW zVO);!!BJ5;AZ7xaqRW#e(@gI~0hil80l4YWN=ZNCH%)!REMsAxHemy=sN3+9l0;NzMfXz9_hH;s1xQE2{jw+$mMg~Mp_Pf9(zBc&{|pUn7A1FHe*WJ>$4>}Zs$Sk=NEF#YH_x- ziRf_+`POgNA9F!zG0JfyZ6z0BB!;+&<@x1t^p7_vB`O9Z@_TP@iH1tqBP{kualf!f zo#FT`3(^lB+kcCI_X>^Va--88s1)3rIUCOFOTGk zM!FE5?uwI_m7m&{CqFvNrX86Ez8?;n_PsA390gtZRlrq%{SrS0fW{BUTMG=Azgu%! z$PuY%bWUl?odJUusyhehijUJNrGG98swZZ@JyYNqas4BZzY2Pr+9j&qf2WO;H?|(z zGu8Z=hr*D>3BBdiuc1?zzWwe^-i{dfMNA7;8)P>$&OdH-RYw*N~ zL`)0A*e>r0^Y+I#@*RAWOPLE(h9gKhtLX;;(1YX*hCj1@nYEEjggSnL_!&=@_-9(S zu7UeLs`OQTooyCk#gb0E3QE-O9Le+F%jgw%W;IaBS>Xg8^~B|TZ)gI>v=!tei1vIS zFjLBUyS6vIA8cO<(v^Nusp4h5EqG|f z(YZQfMkunpZwh2frd7KfPi-CraHUt8(V{w$S`?!s6Q_SsM=zXJgsUK~)EB^W*yaRO zz4^pm>PhSc_y|9*ZTK8xK+C2(kTGJjhXWMi2ggw?3DcXn!zh$V=>;UIj}As8)n=XV zk#znLLM5=HhYzsUy5@tHrC`rgkO|%-3e5#pu1*AL$$-z8Ja?5An-qCowjo~t8-;P! ze)^9Dh(a4OG4vH1`1l7ZuMWCg%w!{ldN^GKv^FbAT5dsQDSNSaBE}^lue-7ADKIvY z)QgO0CRW0zr7(zxa8}9+=MBX^)~ba?{L!Qv0(UlF5R4_SS318neYEQx07Zu8!@vH1 z;?Ft;s+DUMDWIft#?uAvVwV5QsZZd4HNjY-kV7z5>v;QUz*8i8lsZBP>q7v;S}VBx_5ilENj7&ii*Z5NF9=v7swNv7p{^~ zczYz?;RHj>k>rbvn~mWcIm~ifUi&yj>qQAU3UJtzg^b|`8|_v53$BS|Vn_krC*#?A z&*c<&+Sn2D`d-7QtzYJG0G|c zVwmRR`bm@{Tob3)!AnOGX(RCERN~=mO@9FlFo?0?Q$o@WN~sERS(G@r7eCjvZGSUZ ziI*}Hhmyv)lfHh$^Odl^j9u{^gyt3#2UfZ7B*O|E&yV@fe!R!4;YJk7@5RUYqD=h6 zY0qNE%BWfU1(~Tfr=-t0=qT==nlDJoI<@ zGMjjPAs*v@(RzKT&ws`Pc=)qwHIog^->09=U-gccYw-5ec}$c~)3*%|etk%IR9%x6 zv|_{uxqY5HW>i=yq2WYRQ3szZC^WI3pOwBqDs1is8-47~m|Q2d{&W<4cm2~(M-QcR zp%Rz4l9nwW9R>>*8VvT%fT^B1rzFQsQR|8G(-hs}j}tOj*-sp0h^)=yOfT$&kbl31 z`(&jJyk{7Pi2{fDgT7^R>HL^Btth_ro@P2bi^)TYQ%(yo**SPV^X_B4b0hTK-(2Mf z9c{9^d z3g9EeOj~}Sf#WyVCd-Q2@|&#e!O(;#WtvAXNB`Am{J%SnRaxNmGx3mRm1qz5`{o4$ z(fJwGLDp9`2VupEQw!Fef%KNbIiB^*GB3-rcjDdkM zA!EN-yR^sYu^^Q22z@MIHCJPkl)4BU&BGJX>(TZ!t(*@uj$Y!DcjF}0*_!xb_eB{1 zMpYeA;W(G~qaT-Pn)#xfF=8Mw)%iGP6RRr(oZDmnK-pU5@0(M1)RTt)<4&;CqX_1J zfuFzLBy|N_A1Vio9`RJ4_$bfKB&Jh2fsDzy9fFW&-oyi2w%%2nJbO~Z^ZdDJe~weZX~ z{lBTJN{bvxc;xeeSL+lqio#g@kcm7;$(pr-cQA19@bMFhEMROOUhfO3*JUu`gH#?t zwuQK?EDk6+Bval2qp?@s9fq?zno&en1HJ<7co%C!bY|kpN5%iZ37yq6Eo|KF zQXO}!%FQx7y8n6feX>9CLafO;)|zyuqxu;% zN_dhb`~){+>oPd~HiWOI@TilUL^A%WI1f1qt0|ZFcm0gOPiI+nVv`;Mx@IlZAIE`K z6A#x-hyCW9Bw2HO-qW8^W|E0JOEqlWfUHSCVNH1Y!7-k#$ncc)3g3qchUFn}`e6>M)G7#X4aAyUW-v80)R z*^{mQU}ZFoOc7*4O?H4RkX>Bh3Bkqvtzc%vFY@h&QkG_{_nY-~i3+)a2V?}o4@GQ0 zqGd|5Hb*L5hsnj29&31USGZq32QK@cjrdr$K!0F_H2!47lFW0!O8{rbg7ipXE9f zP9_)Wu7V)5LWp9^D?D~#&9P9b+=iNeEG`10y2g=~I=lnsyH)(S;Ah=dam`cOB>@E> zWeW?c4|<9*Apxbqw}eWshjBwy9Q?hwSd)#*Z&ZEI6Y|0zg`~-+ZqB| z)$Cu@l8F~L_<}9@49tzNuoQQUE*FHicx=%g)>3?@by?w1I6`zp$jxF4vmgu3oknH< zj_YRMes}^*b9J8t6JKn~>a<)VA|Y-a=I`bY&F*2pl9IU?rkMzECsK^#Bbn`@0gwPD zMG6hJZkcgsYD*n|#HZm0;0~NHj7ayC*!e&ghPvB z=Np-c*lE8ZJ)OwKhigGCDI&H`1bwr?wF3u^Ae)((`ViPkS$VolXnFA3`;4PA_CIUV zTK8>5O(yKv*>6qZ3KO`c5Q)4GfBJ=2H(`a2d0ZP^zN1!{&@`Zf_r=71i|;1hz&~4P332hN}P}7Y3*p zPduk6@Q3{LVS}x9z$b^qM?{(;zQC2kjpis5JR^g5g9SCNs1omZtZO}wKT;gKMj!L8 z{BN^*2FM<9j*_6#eSB{Zwj* zl92}wcs<$5mcOAO^lpAvVnV4v*`{RiU2ds9$6ra9UX)?J&f$2eCdH5mnmej4b)W|i z^WXQ4Z$CJ>{SJ}Eb5aHbU&)$4m+ZV*B^aMWt-p_OdARjS)|a_0n!GME;Zy6FQIk?~ z;R-$U;(1RL#|ft5ny(|r?GD`eGPJV=I?S)gaKdkw{ogb_?Kd95 zh_m;)c#RhPz^+GHj?X>q_v@>ziq=>H+jdN`b-dD|3k$ZFr+Rzr=A`Dpu6&F#{`avX zati-Ml9Gqn;(PxehsG-9`)wot5n1@~pBbPVhgv}(LBqRK=54MQU8zs=$N`bXxyzfu zR|^%HAOQE%+pp$Qb=M*!7!#62)N-D32!O!<}drQe6 z4oS@$ixZ8f?*=-t^lxAaGl#^ToH=WUkk+~>)gnwH#F=_8aK_5YjwHM7w_r6cdxB6! z96*b|NP0}ux*Kwy-X5m-K?hbZ;L@fmPxtvAwP zD_$KFCko!&M6GpB5}KrRb`_5_`AMQ#P4*2T;)-{w5gk1b%(t^kUjRqSi{Vi&wJzG9 zBDiyf)RsqL^{a>>#1{Ub#5`Y6IZDi`U9aMzj-Fi_BGL>&C3GfZ1 znXg;&af1)4u>OT%;g_DzsYN!dwO9cuc6ne2YN6!Z_-xGOvT6wHv%={Q7&tLMQzw*+@hUSz0ld3(jYw&m;&`(CbGe ziI^?t=a%1uJZl`J0f3IcPy)@`)sQnDce39;KhDL}R^}-%X|8;N7Hl>!a(*qU9_?z# z)Qc8q%;2@aDazAmD=IR3D3-e{UuYPe5yDf-cVdW!A`E?gcru&+>pJ%Bdw9OgP`J4} z)RNqi@PL<6`O(GL;2!v4@udap)d7ROx*SBpFB?WpE7V>FMdt*H{R1yNvN%S&*7FHRk-pNiEaDg4A z)abl^f2Xk0(~Vo?9d)fIbluYkbtct7HcxcW2P%0}Z*m9pLih{+3+uU;Ds(FGFHds^ zf&Q`wNe*rG1t36)-vo26rW1c)%Nv>wT;%$+qD}RULF`I^gYRWM8k<}BucbAxZ$%{h<_jKd&t{J&>LRuC2ox z5vh1P<6ZiGjeZ*)l^D1GdDru8+EL=TX!s$sMGonFU`sL35`T(2Ej z-6d`~-t@Frq>(Kg6`U>oQPNwD9Msi}_Icl&ZfDL3w^{m|8XnK4_EOBESA@PQ4a}fi z9tu_V@-b_028#u|`H1S5xEfh9hrON#m=XeXeQ<7{+tt9aEQrNkgA>HTPkDI_07txV zdC6YJdGz$&8iUyARD&T3sH%A@>={;i4K#D`X!i z5})04mE`dX@}Dh3Q^Kju|jPc`dHYm%>#!FYpAm{sGBAd1ypJ|cMgYpDPoRxN@B2`Lyr&Aw%BAi z28o{Zp~-4wM%7Hlk(@?D{PTvM=U2xou7reHKOy#*PW+FLH6e)~7@6uzc*OaL>wmw- zmZ<*6&)S>>sg-H&S9_k>Gl&!%pZUmqtB^YK)4LTak~zE{!Ntit(JQNozIwsw8B^Z6 zjtjhzd3)-$CL-p`dJ9eFBP(6Ujc*7yl5y;O zV~W4-3j^vSeh!>iNq0Ida3@VRvtr9ZI;NinkV{xB=k^NmJzp1Sa+UCRr@!H=7jrY) zjY?K-)gr;d63lel8Z_p4IP|18!&sn4bOsm?H$@Fkx^BdtNrNj30HGr|fP|5kX(8Z=0|h z(_dJ3w!Xa8j(9w*Hgill%IkRHo{8g_`(bhGG{!Xck>0-jx*T`AewR~r_ung)0bbln zdIy{{X#h@wT8N%I(0Bl>T8?ji`JU%MG)(cbLe^@Fz95&9JA;&j$wc)RQh{Es0kJ^V zC!xOg0Udp25588KHMKQAh}Epfpx`wqkAVkHUr|%9r4`WFzWdB$)=_sn`1-GtXV^0ceHoAqYh$RAs zN=vDW&@#G9APPqGBI>Z@f|6n)B4lp2t)qVF>f)ET?QEZ&A$*aY38qnC^aP_UXYTMh zPZ2q6u1me<@!H`z&$3IN|HNmKvw6RC?HM>oF#z4l6{`F!BKUk6!+%aW+M7BD!5?SpkFY6AH1#N0 zhAd$IdyN7%O8on69IUMWG{_ssck&mVYDLYYGJeog$dnA{aLfk-+7xAcR}U{rPIr_@ z&9cEq4P2CxDY;w@{d8T;)|#39G|volLu5MK+_ti%hvzes2Kchxjs-HEHJ{y}ep*Dl zjJx_3BnafEVu*F0)-*V3n3e(ZJ5{iF&2?*Wa>e>OR6jbqwzHkab{~Fz6n65d?7e$k zoXwd>=jw4!{btehvNedMG z+#)iR{6cN0?3$?qcSlnWq^mxS%&_f}az9gj$i)~JMj;{LZ{!(`H(0NjqdzLwO(vJP z&~1>oXYnk!y2e{HJE+g8Gd*Ek$7e^&V*CL0fe`m7KZR16)7I3K6uO9gfA{*k-io?6 z5-VnEiq~kprtUwnzOFm$buY|gLhDixQH?c}pu=HnA{i&Nc@)~&$rlt7Qr-ksAcDr# z@qk#Cp?I4Aq47B}bSS6Xd@WR9PzboWFuu83{tT|tX+fjUs5P4=ESmC~m+Kk$m&Q8V zVoL<3z*JaNL<4*W2eaD=F1Ws%mbv+MYAe0%2Ya6-Apw+71r5@W9u<}@){w}R9V8Xd4lHt(y5_$Ia@-JktGX*V8VDL#Jk4C3oKfK&0r{#4 zexG;bSa)KVj)YSZvZLr}vY3aW7#h+PozBL=k`?-l zS!OZUM5z28Ne_lL8ecGj8AXWF&>X@J6xVz@5BRRYrZS}!?v{_AlS+A3KQcP&^EZ9r zB06BuWRhFc!-Y900@5>5B7=Q9kz1_SA_0Q@LDo+AtndDzN$pj!v9VwgVA!00SNs5I z!y~4KqwH2oGu2G#XrsgsD4Jsr&Sy(>e$>hm?&4ZnX1qRBG5iSE z8R>)lq7{diT}=*=+OEkYUf>iz=X)DUpbClbGR92VmsxC-Ox73i}VYi0vJ zCH{#Q^&OfQ(hueSYDr5tSCP;kT}KMov8s>GNQgmrhuEgcyE&-jFtz)uS) z0;{DOB_eJO^t3bAv9&nWSewlm+>;+XF;Z{oY7gcb3F$Li7(n+ei=r%NjNXdQODP>R zA$6uy__Iy^^40zJMne-yVX>Y>nvUf;PW8`#bWA7KDaW?rrY4ufZg26|*B9xIP@ATi zyZeVb!_1r-?~Rvw%j@;($yHM8MDDE>TjD71S8mSWgLDpwj!i2w51W)%7(X6|eVFdg zSF69P^7~Lb>l0pP-%T&+WUyHQ0ez_xh+op&MG&%AJvUG; z2L}aPjc?307>JP0`l&w;cqoPvoMZfvoFNQ#y5Hc$I1Rwh9<80PxVslpH`ZWj-5Iai z4keXsL8;Ty(%i1Po@$*=lpj75c_t|RBv+R{xuDe&YcF%z=u^y1`y_~R<2oI-5Ks)M z0X*?+>Zl0t+wt{9_@E{oE*Hv%Duu~RJ?}sJ2L{w0A|oOa2j`S@3bL)z_|e5Ub&<}d zoTx7LBgwN$UE7zCC&fBwQ@;wc<$K@h6wY3m-5DORc=pLYeihb~ce!<2uW^u5QSGH$ zRp+VJ*Sz8jcxme8aN1^reM_{&uXMVzE~Z%3rJ{{TGIqwXu!ExxpJ^C)vjdeNHOHI& zW%_@&9mFn{7@Qkr_%%V#k zT2>0#}IdvaKS!Ei)&ab%T|Q{&|M%ENhQ+Ua@Nk}!1v^we7$ zOk^QDx~*P5v}BLb9$RO0MtzV5{{N?y4IeR1uBGfxKqB2_1~(3_<@e=HMa6{%{#3YDx%0@R7EUfu|k zEH@hO&;a<6gUZ8W&HZ2#(DyH&`W}-DUaZ`V?#H9iIfp$+-%m18S5F44r;SnJO5|H! z{!RRPz?svE+4Zyyjh@rZ)3e4-NudF1*DRj&Ael8ecywpN>?sjx1jLU{F+>r)pX1y{#MTuFPtu7-|`dJv#j6lSMB*Z zxv|f1?Pk17x)x^`WcesBo)knMEc3j%rQH}C9YZRp?0L1o7YaVun%b5a z(=n8%2~_A7?IW-=SM*h*ZZ$srBV0cxzm)`KG%~D4_GSx`%3>f2A8~Pazi#AJ=M8&8 zKw~4XI>22n-O4v?z8z*tYpfplw#=Vqs;q4?+qxO?uu2^DpBi7%Y#rru&Ezs$a~+@@xy`Db0rLj54>HqcS1iKHApOr;7%9j^KUp;-)jL56uc z)w}lg)8Cs7`@r~yTLJUMas}yTh{^BotOBq5=wRj9t>6BLiH!=!Gw70PKKxl%AH0d_ zrJK{CxSSP=4o?iVbH$DCw$u6Bw`09Kf%4&|;HNJ2?Gsl(4{4zqKXcb4sdzRx!;7DP z@Y_3I2xX`F!mF=*!f0H#WDF(3fBK^1is?De=8H)K=sLwGNDqWVJ$tBt(0FvZ%ZFL*prlevcd7`0-80sJmGt_u6BqSuXJ@HmV zFN|Kvw|lV7i+>;|>i?yM13Ya41J7`}YLG3Lt3+=axAI($ToOO_+!OUZaTayw+kTK= z$jN@km|w&0He}E%Cln`b1Aol%By24NPCc!jsRE@CHIc~IJ`n<9@RYbeOpcE)Wd1AA z>~qHaN_x@+fB)5Zj1wtMggSPsjl7|}<IAwU+rz~F=^e4FQxnQyLNwu6?rDzRb$V9fZ&T)4k+(7Q>*ED@ z==42Q5YF%W+J4XPb6*l}bE02WTw`_B$OD{I?)o896=H)G48%@(`Xy7MlBai>L_Sh5 z&5pS={O{uOL+@zscK^i7&tt0WGa6FGtXz%9hY=8#D@!6Nyf}Qc+o=OhCcS1Mf`Uwq@d{CN~7W=ofK^f6H9qIrb7xGtxlhPXB%z}8VhTl4w z`#!b4#e`N*NsbThx1BOFgrqcD9KG^JT$~{!Jv?0GY=Z`ow4vOoYunb8=fvj&X@qSX zA(FHnB=K_78$vmX?@gLVNGkXVbs2xsK4^SNf7ji!{>lFBPFTp5bC2k;M9x5ly-m6+ zHb+(;@Yg{uuGy*qVd%jGjy%X1oOBbU=a=E8MD4(4rF$E_*W zmfcC_*_09Q2 z?A%399F%VlxZYON*l6EWqUmr?a`q3PaXXI;sv3vrmHfj*LPfAd#`gC^7A zXSm}_RX8=~%&SUE6i@6{0npAMq$y5mjeCzr=!rr}MgKtc51@J^T-4Vwrtt*~?o=_UV^bFG)|DX7iMK zO%zB>FVV1pBMrWqc*?9ubYul^h=BaqW>VoitBmK`5X0Sd=)4D$DHLXGx*t)~OTLt~gA z#oh{#6ZDTD^d#O)ka;c42&KL=>ih!z3|pWd+~uEDhkAJ@nTGdb7mC&8&KCg8%U>uj zMgj#jbzq|huQiTyV%&dC;=W&YD##^M6%8$N-mBukdK@r7%+O^9))nnj6g&@vZ+*po ziC*`7`%)Q<)3*IUR}=IK1xDkY>RJ6Dja8AX$lXwD(e`*mf3=2KV#v~l+^FVAd8~fj z(ODFnf^OfyvS0FkE4`c?TC|X?Dw`Yv)fqA)vX|&7AEL3vbm}N=ROT(ZU8^zrb|Wq8 zD+#H)ke#oVVyMD-Qxq#<{qC+L>UZ@$!COOQ(2VhlsWOR)DHU2G%3ba$USc5^C0N`g z1KU_1mFt(IIUMSgtm71zvO^tW3=bYJxLSP}I;r*6Uzd86WaDt&_YF|q4?8TQ_fXzA zZH6OG84aA^sL!wkM3pbbF+rM=sHb>-Z=cKO%rNS!LP~}Q;!9Z)kWf{I&Y0&W%JPkj zD|PewI($;P54A;=UdpF33zt1aILV(A4k0O@Lk{K1tE+Pi8?Yfka$7uKp2e1mq=%eG z4vRdk!(YSY9_h!J6si5HFEZdgSGP=ImL2VEvs2VA&0YoL*Y7PT&64)U1H=?>g=V|& zp~J*=JPjYu7L?UzfPVR*+@Gz1uR^Pv>`mL|I!#iHOY8xqg(0iuETRkc-mRrqkq3u|$w1gx>pzX%f;vLmU!p_mIh&JFb` zN_E{9*ub?ZJNML8rQ(KP;R5Y(85YX(;5>v11pNDGo9_G#rxb0C_@I5n!fjbfMWVvB z@pOI!=yaCdD+FiuRL;6Z39ZzOqc4@B2OuF_%o~i*7fyKkGm9x1M6E)6mJuZVK*Rfm z24TkuO~`pVSyp=^(VLV?!cBd`rrnEeTfzr*T{1E>N zXVSha=Eo(j41FW3a7Q_~D@`!6+PvUSe;{wNB?udI@Cajp+6;r*{OfA~_jpHES7E7` z)b|mbXf-rQX&>DkX!d2one9iMqH2T!E@G#M{jjLX7EEbYkuf3*vynR00pBP`s_wQ) zV}*wr-kHaT2b?|MB z)U*C~qv<#6yN@p(m;qT_;j+B@$jN=;CuYjPQH0F4>)nNA=dz79a#RmQyY|%8zLX<* zS<4E&bd@;Cn__qz!5GpJZT@ zImPGQX<)05i0k`BuweeHuY9LzfJ!hy-HL)gmXgzUJX1==j7oF^Gzz z5cuih41InGoxbtnA1QDfw9V0P;D>)S^@;|$no;Y02j+FXnX!`84L9NYPRB9XhWUo2 zAU0LabPXI?tM!THoLipkePx$9kr@4VV->I^*FyYUg`8WknzVHJxC{3zi#_r%wO9JS z-&3kpKl2-T^}bHN+8q!IF1P3BF(z4Z^o!*6@aMLI_qesTUQD+PUYOklpY4?Et?*b(KGIg^jq2kF<=@51Ok9y1I}9@1ak zSDr03eYdlLG%hbgEFLG^pk|0EL)m}ZSOx`wX*x-IrF9BKL0<3dzrMMId+=_~k`O-n zqjgg=#1J-*ZKkZDTb)_i4Fnr%%THzz4<7%w$k~W07l*LJ$1MPnCm#H;^p8JXUqRH}`qI#ihmN zuasbsaujE%1X-8zgU&CHf4T}zPJloC(j5yw`YbcWucoEqZNMcBP!1WFKi#Z!gj-vOxmweSgyq!`D{5 z`86ybc};WG(T)Ua+xWUpkp*dovQ+>Z##^y@xyiu$Ick^fCGU=%q`9`$*Y@k$rdfSx zWcPe^#-E$3(+31JJ!STc%km_!ll8;YCiD`pyd=tO|D8ZPjAoK$I6DeFgU}gxp{5Ll zkYqkae~SsKqEkd1en_B<79_dTCpK5n)C~G$fo_xy1MhZ5wkOTt!@xPU#B@g5f0GRu zd&{asyJGrbs5$eiNnuvq(oeZg0*@KBhft$Roh-e#HLscrUP#;vFKGOTAH3MP4?@y+j7dYJ!v(6%Uyxmry5J)B2-B){j4h+|h$ z$KxCen5r(;bQ#qy_j~^C;y*ooI%9o1sL#u%2inkxE+!5=$)R4hkm;J)kDKX)H%#%t|zByfzJ^AG% z)1|g6lZ^;tQc^tyyw(Mk{4CWEL9C2Sq?%SKujhNpFRvsYBI-_Ta$FAo_A)l*C18=V z{MWF6NcFOeYoX!nz);xfc|ZKs;7Z`9q^9+jAs|H=4U!iE0YjmBLJUKl|7|5_EQ~SK zo~*a=u;r}by4>8J+*FxwrI8+B4E+ld^rXubCMZtYgECF_t;f+!AAvPE2O*0Hq6QP+~}$S~|gf`8O~Nzm2pwB4OkjTEOF)ZBD{ZVd_QY*yJ4Mcabt) zL?j5!CO1Vmcg6dU=uDTZU%x%mrhk!`u5ucf9PY(dRDKC0LV17-A-mZZE&5FrsyKvW ziMJPUoihkizSP|1_@aipZo!kC0a#Nl3v@Z!w6Y(7ct$*5V7YQ&2h!zrt(W0gDzS|+ zL1tR$fp?qXK=lnXV;Xxb@q3Pj)FV31eeYIZe?z_dE5!dV)mIk2YdPQ#Sji zMB?ESew33LJKb-WqCPC_b>CDFZIUJX^Too30B=5{5-b&yqw0IsUuFVM)zo$w$4vbL zljw_-Q@+k=gEVoOs~8FD(U(*KdW~_?*G1sDSsku>?Kdf8-OlvIJzr=*yBGW9bQDaZ zpoT%e-#X`E7w^7dNHn=eYXjJ9=a%>9t~jy~tK$9}a_!?VKVG#*wm?j31elwzKsev> zgie6%IOZuZOkW)JL|K+|!J{fe>o^`)zX&c7*mqhNNArmO{!P);{V^p0cv5LI z$LJVd`>R*KYh^ezdNlrAVCQlta8#JkoUB0ON#)#+u$K-CDv?DT2liK~87#9ckIz>t z$3E(GSUTsNmp8Hw<~gqfudkZuDsu0U93fgt-9=dQXyG*;VXjqwRIkq6!xPdj*Cc7^ zr_fgh&92kH9@_Aa-%w3Abr&A+Cs`f5%BzbHy#uf2K|2zwg5Z9#+FULrGw9)S$@D{w zHvs#qn?6jhEvM-Ymwj@6v_c9P{p22TKUS3Fz#eqcQSJ)il~nOp`uFOkbuW+qV}@rL zavk>*gS6tMXtr&)qa^UK{C%6N<^DwBFo7%g#6_>t0&`7Yt~NH!gbhCvsTEUi%zb>3 z!?ZO0NVaP44B@f?(E^&*eYBLezb#jFbaEWm9A;oCft zWej7wJYNa@BGF4exsk7Gt+CJdssmo8$H1=*8tL{p1ncD-CWHF<$MA5!n93}Qjh(ag z1{~Q)jOa=&s((Ig3XBacx4$5V91PZF0l20E0r8fD&U+(rV$5wUPy9OoJqG2@112vzbNn+`qk6`;`;U9V! za4wc1-W9$f_N1{xrU$)~ayRXMdeJnyipJWM6clA~_=`myY_@%!+?pI;?2WOpy#rsP zA}LcBJG6Jk2I&ON3xWeilVbJ@1lasHTYxS;F>&<^;t?-G3q~SJ^w>X=KOeth-`RCrajvtLIQoNI_WtdcF;de zGR}9^rJGL9lozy+J>x*@40v#FXO+83+Mu2w2UeF~W|bL^S{kx8_w6tX^Y*BO1P;oQ z?PR#kc+aKbM_hoRdW8bG=MP;q6I$+4#_bG542wT(Xpa6Cx52~#{)H1PNciwxb{jC# zCec{OJZel<4-Lsv{Q8&0t17jHpae-8dTRZ|Dto5o40_G&f>K!k6#qBE)U9? z7+}FTSv9l|oJOq9s@kh%>cQSDQvn}|iWxbpmHnxCkbxm$;u;TM?7AsN(&U&Di(7;b zA~r)ZQC5sLT$tz>=Xm%}=?0PR)=7D*jJz+H9QA#VM?Z)%TBO$VO5j}1k+|$l=zO&u zBT|FX#CBNLCPx)$n&hqXGrjode*pGj@3*{-eowDekF6xf0~W7$J==)0J`+{^Pl2hKQt|I; z^klwdb~!5)kK`WO{%0qeOJDA|1paI4)_AwG-3BFB=?;N_=_pNKHGKRC$?>WkZ{lW& zi%JoL6s7US`{wFQv&ouJG=!^lk;*uUu@uR9W=Z<~27!|XgA|@-iT09(w?bqYc><x72Zc#^hk#QPOs^a$C7j8(-6Z#NEXV52Z3CB5|sreKA&_9Y} z3%r6BiMdudMuYm_nI2&8q8m2Gs@3)HxeY5n%UO6@15yFwZIi-*P&BOSG%EdG3*;L< zZ+icHI6L<%WHQ;R4rR%GI9t(-=CWero_29G%|L?%(u?bJvMm9ecu$u_Kq~9x=4H0U z>XL;<4u0Qg=9z#{Up!+=^%1k!DGGcJ)pSnP)*@RD)fMN~>7ukU8({f-r_Hq+W73?W z1tAfUFJpX}{2DNXvK5h?f}EU!fh9%cTXv8lDlmPtyypXGnJrg`? znI|<}`2T(Lf2|GxC44|Jxi%;%Yryst`~Tl<#*l^C{vER?;3LS4l&Q=7xJG}*c7Xuu z@LP3nZzQI?18h1E@W-2_M!3Ivz#GYVj>ocG{*FgvpIbFb{?0K>(|JKP>(Du9)Ugyh z>+lGr?zFTFG3`(-Pm$BC3XblT|NnX6|8Xa!XyENAS`^y%8UN?b{$s%miy|hJy!n*& zBK&I?>;J{pH*E|tfrZ3|#*qoR5=Q$3((Q55qh%H#XsZr6uSgWK$3MAx3 z>Z@dsx*nfYB5H-0LGKc&@K}u=n%mK;15fA|dMk*|n>c6W$GdrcTdy~4)I+=9mnw5= zYeiI>#*VoU^d=&gEMUgOD=a84oYQB+MF;IE4LlA|$K#XUWhW?G4-0&2@NpA_kSv0CSniIA37rlN(3heyW#PEl4s0wOx`Ghq#54+Zq7Rw;?~ zRN_;0f5yqvyHb`yWbhqTdgvY@hY~tdLe02Xy`EzN_1)Oz8oh}zen3C~S3b_C(R#4|i{d+yfClUM5@~dBKYXzD8eMAM zJ>ez?wm!SVA$>g~6or!7-{WVyuG@fi5J&}|q&8|Z>bEG?+Y3zJWH( zW>GlVw(_s&k?6m7@ETI#;E<5|O{K%b!`%QV+TQD}4yqo7!k$P-sJUV(w9cPCuu+bz z0F^2Y`PtGqwCi15iZdC^pNMOldF_NgVS@C>-5DIN=RRrdCYuG+wRCgIGHUycTHCFO z+ax2x`YmGOK^9d&vos<|*;G823jeP{ertB6B`{zU2}161$2Q1IF^WrA3`Sth7MrDD z@!))qd*fr-NJ7qVng-E3u^Ym}@e2J2Yt%G1ql-OiDGjpZ@H3^vW=Epz&CKlJgf%Ap zs|C1}ZXiIebQTIt&}eD&zTsJ%y7wcrEXML1JzVDl^#+0uLGvyMFqF zNhf%{gu6=IMOwW#>t;N6byjOS0rinc`^1Ll$tR6?idv!=U|iBSyp3s*d+q@%zrb+0 zdX|J%WBoJxgCDL|P$rMBd3@Cu&IvXJ9iwCK6p@rUO<5TCqY)W?>(WfYcvv%@%ydHY|ogZ)Z zB&3udGRu{-5HVp?s6LUuI~%!~NQnQ=(pS_G2p&{xd)_@`ZNz0|!E{WCO(|kD#k7$h zmQEUzXr2l_m>?@iX6~10z83&pP$2mW19dX$C4WELc}qx11vV-JH!oGF9{dum;DsW} z)(OFmX}h%|TG-W(p77TCfg17+944Fg5y_xGf`gi%;$@~2C!=d)KcBGsx7-2#k zt_1lXZo(cZ233wM5s{L!=KPR?1%+{n^I6`3HOM}(*tT$wSe}~h>SXWn>FMFWlEg;a zot!VLREq}iOBNZ^Tx11B@N@g`KZWRN;$KP&p3gVIvBIhns96p45RUk{>!cJy0^%&Z zrtC>xPwsm82#J0c#7{QCA_KaTOo(e|3C&}nuSzd!DH>|Twk+d3I;b!<)^{8_-RGMt zx28qv!F3Xft*CSgH5lw;s$|&}wU+G2@2#lce`dCMj_jaxSU`JqwTjG8dXYXLrg%P$ z#E*C|P$NL^3nPlg_rAuD?3I6tZQ*CW3k08<7uD~wBSb8&l%JHn>>zuJsm<$hq5ZBB zCiJiDbN;RLMi-1*Cwo1CJpaKyB%zRYPk0%aZ{b5eR$CoU z=^uS+S$mNUMNI_p!C$OGW$x-{8j3;)84&BKi~*7Ffx&m~T;GU*$k4*eAye}L2>^#B zNMs#niCrcW;94J;DYPlI`vni_Ze!5n8O>j3D6GN9GxX(#qIi`O`zFbiJ|i(c=RJ3k z@#R3nOm|SGZCVVPZd!2vC!umRxP!v?81L`czuIVyG)1aCe%Q(i=@$`(uxgDg+R$ph zD|s2ly_`5AQ@B`t75|cJx<^1ONr7$5Xf+sba~1Ei7EHdUg&$yz5o{>I_tOa~1jZMz zVf&5ARB~0&Yt~<#jq^7y9Wv38BFF2R$BU5-B{cSM*X*4(?948_K|Ecqqm6*fSowR@ z`)ciYDznaFi4yW`Y`jvD)$^PX;?kr7r0qA+)9J#bHKU3DdSZsCSkd&5_lKGL@?qLo zD$Zw*zXH9sRFx0lx7bzmn+PlF!4WDff1fmn6*|KhqrV&blqWa2_Q6%o26@%|GE1 z?w=Z8VUGKM}M?Y6`{z4!L>Yik`Cehs&$TrK=M;IIcSZ0N^ z>*@TE)Rkn`X`mw<;2j$CATIM;y$=|acTs-Q` zy`q7KB(h5#DC1R@8B%kgktjNhE7wz4KrHqMR^YWCjO4=CYg2V?&3(NzUn7%sINzl` zy_?nAac|b>-rCE|hEB{;@$vM{7D#y*-C38t8N+Y?bOvY~t7kjp zp`~TaMUr#H*4YBcj^Y9|E2WKWX1WcEGBzA-u)%b3PoCknk2kk5F|_vs9l4-5`hJyo zW$wA|>}k7M49Z=Za||&TgB=!KqiuJT$|G}BwEi!4c|LVc<=m;N-unT(tn*8zE_XeAZvT9CJomjV?#RFQY1(z)GLM`1 z!tk-Fbn;OP_I+KRBOQ=6_BGHwj^KSS!T`NT51!+s?)^3K z)Z*C;OA|-JrV&#_*NO~&C?O2W;Drh{^_KxQn5$NPiZ^xmc3iF1e>9w{R0&X0W+yxs z$R_5NLhWC!M}b~T=O5Qk>VCwQ+;KyhKKTKeDM+TD1q*Y%b2$7t(_uErIfaPw;Q%q%RzUQ0C;V5*Z1r8@25b${pN)l3Zh8*demj~0EP zE-?VHhpJ_kf&kc4wEp;#aY0+rpW<`V_zQ*LHpz_)3}rbl0aK_Fcxl7Fw*M)h-5@d^ z<9{?Z?eke;8UGxVbDTc!t-7~Eq)2~(iO_k2gH~a}c%T{mIq0IEg?dS;qF- z6}XR3lDs(ZhKCoWec#gOQ9aB64<|+w00R0;e;}l6Gk6>uM9_hpj|&iaK-e5eMWjKc zj(sBw&~*Iz^g}(rSRtd~7+MgnSu#g&gYs^NQq^^QgLJ&R7@3k7R1scKd{zG)Cw(hj z73^B!aX^yfPWyQ;nlXZ5|FN?54$)SV1{!IKk7481WF4Tlh%#sf#(ToCnd^09T39lP zKbPa4P~6!|=_9brh>fc7KZ*Y|m?lB$s$F}^ItJ`$vj!vi8~&^=O_|&zcx)oCTP31hQ60O|lTsWC23J5D0cq<{H$~ z@FH9!FXxRA(U}g_g{yttx{sR+=TUj_f_Z%=h3Tab)ykQAytQEEDqJ}} z?>%PAjDTJ5ZuWPhYRIUEc{hH-PUri>U^h7Za1{e)%WIfhT$lZ&xn40+!?L|VXpjAH zx;_3j-n2qi53G{(N$$aAJcO6_%pE9N6x|ivrZm1`e`G=hK|R4GRcS)w zvB*I=MGz~>3G+crDvbV57C^_Na`g3~`6kt}qoY39`V*F4q)nE;d5zpKk}L9l6&;@_ zQVSZ<2VgXuZLcaH(1Yq9YXjK54es$HvF@R&mYpCh((QqKVpx}`prcnOWOflhR5C$9 zS8Jv{rTnG;jaU1~akIWb-Y1y|r)a7>$uSFL?Hy;QoO>~rjp=dhc%cxuZi6|BabhI+ zj{(@#6X%Q@3Eny|Fx*=COYbwfyEp$G5CX>RzXZTuhhFppzU-r#WFn*bZsbE_5~Xu3 z^WqR|qmpWuiWYpZSoD$|prsFS+&?<3NT=@?9?po&P6g|QaiIkl^rda3%?Jz|;S!O0 zhQf1g6)8Nj-SMAHH!G+(C4&s@>lQEt0;h! zhUp@&4Ilchyk2_frd>#*PstmAID4@0Nwn9QF{gEG-BBEtnXu>1sVDoxX0B7SXTrCV zAP`eJ`)^dQ!4b$`6$1#lq*E-wk;|Td-GN3OIc=k@kIb^W(!V>3=(feu_p>cKd9?H9 z1#5{D|H8k|M%l9GMvqa88@33T#YT3Vb6-YA-iK6ru-`D9{R>Gic)PC)Y0y z*>#SUct@b*iIs-+{)B)f=*^*uw;p$Va(Yt*n!i38SS{ZLyDZ;t{$#e`erE)bQBs)< zasd8G2G6JKFyo1odub!Y>~<$=G-%mIlQAX)_CcmnGomKPD2JZv1pk9I-h0L*A3nGg zghIeh6$+5-F!+oHMJ6)mIvbFV-SGO@)K#Ga<2bqIfHwn_~wg$FquTvc2#+$xtAtnPG1q+Gy zEKoz{DuU;$jZl|H;PQ{b?x_P)ljpU05XZ3@WGOJ^M%1COB8T<~+j^>q@4>M&Dq6Ao z>kIfJUz9Gc(1X7*K;_>6W=w~Kn~nm^qB|PInl{YZyaDM8+apUWI#TRFBLKpFi@RJo zQTQ`Qo0i~(dtxXB`%b@c*=gVu3l`Sf9+*4R zIM1R7(@w)Ok1@=2GR@Obp^lRC4%I$xhPUvV!r=tjL(N#RZC&b=1zk=OPisq?*ojF0 zcVZ{?gQhmc{bSLk$4-6n1Us9R!uphb46Fn|7vMO$YKbMP3pZV%0}1oJSxDbh$QobL z`7EER7*=RE)NOmVj58f8OW#7)#BsJ+{f=^CqmD6Y&C${l6X;1)C5fGNP>kExRf*O4 zezvwa-xPXoYjE@%TrZfj;!Jo+$eud=gPEe^t&9^9YRF^pX?c-$myIQrSW@Gxu0K23A(HCxu6#r zd;?!Fzn2(LNV(Shg^;3F(hcfP!K1UYGy+v!vuYE+p&n+ie*Lo;TVyxT8ZqmkWmaTa zODa?Cb%S`fFqU_>O_Z#<=UV`BZlKowK-78L{&#TkQtuze?$_8SsPiVChjT5}#bkS^ z95AB9!u7U6#0*|Ymm{+HR{OqdthkqEt}~dY(6PSYuG3X-&jqtI;Iffs6P-hfr4*3g zYh~P0?HN0v2X0xU4bH-$!1&4oG>!xGrz&O{pgfp$p5P%jj6Iwcr-Dg zkkhf~-n`lBnCR6 zc#-)@OYVPFKcR=^5`T_mv6l*R!%RxCmFa*EdL8p_l&WR6{YMXO(sm;`JU9153&<`K zwasTiD{v!o*sYh34t6k3@vFjTfCis(^-O6XDK2lgowbJrIK#6Xg-PLqDCQn>933rV zB7L+r^t*r+Ji2NF*u&pyn_-O(56V#i&}%69#ASMvu|?N2Py=d6^Xcx`g+eSx0#`9o z1-$JTRJM$<5NsLZX=1c3_ad}SQ*-)DwcOM}7pZJ9y8V0q4&!d{yaY^|tgGrHqLpCU z(Naro+*0Am(Hmip^|IMhuL#Vi`WanBVB>;i-hR60?l@C%v^kC5YW1&{!L;N^HSRWd$-JBqK;cK!Mn{E^t29AE#; zgCDQP)2r}-^hJ#>ek#HYai=nVfkSfHL&k69MiD+vIG)cdK&Csj z`A&D&=;-88y>*^)Ed-e2zWstV+`$grC)(Hhv*?HH7lO@yEodXe7KM~s7BWc`b1GAlY-}ilX{}5rY8Okz zgzszf0YB>2>2$?-o_z(}?ygu9PiCO~KNYJ4vYJOd`hAes7V3@r)`syTll*9iVy~b@UM_(C=7KpggNf=q7HWT@t89?hgsje=Ddh)FPrOn zdT@_VaPcyGyf^utKz5FTPYaha+^!*fchGGJwCw%TaY{b=nDz0Yhp`C7i~eu4{aS!p2J=@62})qDq1~CIlrnSC@r0& z=Db!#dS*KTdTFJD5)Zg7N9hm0Z5#sg+dy5PJX2G z6tedNP=%|Dq2e7UuI%P7=RK3Ai^6OrG&TS~(Rs#Uuc5$L!f~HNgIMoQN7eRXd7ja8 zJkBYO^qsdm-MPu$8X<)oHmnovZ}ZIN8H=G921U?E<_VBZZ1eF&OojHnb8pR`%JBMX zB5uPaOfi~@38iu54At+pFuzJfB-ZXpMoBJ*Y`<0S(B}!4;M|pO8}7Qj=D#fFz5A!m zJ8RN0jU*7eMH=h4nyr=G9Uty7ChW;&v}=lxitL1I@w9xuV2V7`BW}n|H9(pp>@0hJ zWq|WJP?d;13XL;OFy;kN@t7_%`xTcoL9*Rg%LHG0tuJu&bBRg0Ku5w{4yFw3OEwt+ zAI%+lIEz^NkTyA)kc^LHRKlQHzWm3*&KC}ZmurK)iUtDJw0vQu+5dC-_OKv2uAKJ!RQLPUt zH$m3Fai(5-ERbG{S`K^g*vdKF6K9xNMks{@-holVheJ#dI&yhp@ z+s;um-B9mI@+MjF^!hh)OA&IJ@Ffq-O*`l$`EJR@EjV@C(anj^^t2j{Vfnnx6-==iFUsK$ zY(AfEo!{>ll%rojaNK_BOs16i;>kFJz9M;z?IMoJNl8UP3J68SOC+?Pi^L(@9%vv3 z_IBK_^p^vof4L^*@t1`FJ1Un3W6MRLguDCM`)D-pq>EB9N2XTm49RF)cL5*IMQYxW zAK#y^BB^RR6G}Qb+@YHVgp^R`Z;EPC7P?g9t{;I2aw4GIwv`Q>BihUr z?+L|XiU_h%-31RM5=r;|RRCf-g;{ND5@}= zRmsfH2rq+rnx1OMKSnFvjd;BmbE09ulgd6^uVDmS2``bio&oZiOs`Pt81Q>4@w7Hc z2sW1+?bSZx_?`ZA1!iSdD<`TxYTo>NNRTWX@-LNXPA1DjYPxaa{Q!Bc@$t{DRVwv9 zVZ2oC$0>@HLlt7wis`sHSm8||IIKX_3>!bg6I`o#^Ov-yA8T~&_5O+R)?>@3!3$`G#5XO_ax!$h zXl}C{O3=0&WEyU#6se8gSjRFV@kT>^-A_APxwuqem`Y%gYXPt>ehs&DB6<@Wh^6X_ zLBC(vd0TOvU|sc1JcIE_*~6r`)~qPK))lOVV70ynhL!pUoM?RuMl+E%h-BAH^xl#g z^_3a@NayGKD>>z1w=XcEN;XkIFV;M2_Qx9>Z>C%G^s&t9i81HvD{k98(8*S)y+^1$ zu_u*S@G1ZV3VCv$#rc;|jp%j&Rbq}Nyp_;gn4hl=`XXXrkmmqJylPB4gybQCh{Bva z7rmA0Ae;FO2`FKuTyM74WRQyXy%02tmVd_T#7Cm$D(w^9i4B6Do5qaZ!!yB&yNS}S)QLFBs^v*YQHGLEv1Qno2A7nI7}?pNG+Cb zuk|P24>Z9!+Xh#19Uhn~&mB<;1A*F15Tmcb6LEO_X-NxRbA<5y>x_P`s6`t4A}ECZ zc+aBPKO)jHu-O_(344GCng0FxtWeN145Prrhhnc%*ptQXkVNhI%N3c_3ONS!-phyx zKpp~BLuU!!$DBKM^JX)BgyR-mrr! zDYK7T!935;!ii{8w9j(w0^RNitIq`F-M^P2Lldc{-kn-voxDGl7@;>IG4TS}MH#;* z=zTu-3mJb1ATOMtl29j0u%=O+oMcPJeoEX`V<7&zKN3{|>uX+$E`HlOxi&2^v2dN5 zbVBe3g-QiKHS@$_YI<75o@a<44m_n$G+JSOqF5^R-z<*7J2k!K0l#IU7Km@bTJlr~ zc(X+3g2m&%w3_xFXM+0nw0D|^G3j1noCF?z=YW5lBerXU3kt3@zeuG*3>hT){l?t~ zABfewaXg16h`4~s|NKo*IMK}J;T~^Ky?{gZ`4DkOkG$%kMm!cu65gL?-hsZr@6bHw z5Z5u$1dunftD@o@^=i> z(%U#}0~{w*9?P(bVhW$kv6EeffCI+2pTsjMB3)1M5gb(OGFRFgw+OY-=n?<{DJ1ne z;y+N&eG4ojQaFTJW6ED8wPel_v!(`aiDjufgL7MGgpc{5`saM&<`yD;ljD+omNi|_ zSS+sA`|FG$`j(Jf@~_t)And-qe+K8%W59W^DAdB?5d=yD`Mlmpps7*}#1h#XZ{}mx zD@>3hVDm^o%pys8KgiPpdsRMZP5?>5kEL$uei_gzuQo~=`#4vc(ClSi^$jq>#}WyD z^eqL~+seatXV3VYB{({iZ>J zmR)=WMxnXoPmFnmpCFa0GcY0U8^i`e{)iS03Bb}cZ^;ejcQblR)#SPqU4YfKnKBGC zrlmiZ`C(pXFr4b`VVTRmAx%5{OL!{_k+o?{G1wdlcE10BkAE{l_Ww#k9#3bBO2{F3Mj_F21mth$QmeE-N&RD0;{iop-r$h%^SX;X=3>F`M>FlR|7fdK`)e(qB(v*n z#&!^=^XIbKYX6caH9DRESZ%w(<8}W46&M)QS!x1ku)5A}IsxUl?K2QJg$Xg`;3PQ) zWH#G~&~{mv{HU%&c2vMt`HyTJ79()N+2}{XC-cExAR;{S)mBd85b+ zR%<;ETa~@8oU_6zp`O63FJk_4n6oIM5m6JErmowEuk#XkwJ-D}>!Jd1VAO8ERvZ3$ zL$xzM*&OJA%xo|SzU0Euu~y*D{r+U>Z?3pP#JJgKm_kCINqD<7PtWZ(C4j9?G#-#T zTkqV-_>}E7K@5$-jh=YZ7P>CU@R3wV=l@Q*FVsA_)cbduPdCk-*iwW5C<=PlMmF0B13yTn)X=7664}&2pf&6r61gk>U9=MGN zQ-{qKCkor+Z>*F`hH@L5`~9KAx`m$EBTC=ep51H&yB0)Af-ZA+X@(QQy%K|K$xg*D zt@O>iaK*mxq#V?=e}marxKErfV}o+Dlvl=-*+kfh;=7WEg0jbLs#gPU8N6c=07uJ? zsg;a2gqc_3g)m3D(g4VZvYQN|D)of>3|V__2Zqk$05C%Dt^DM?WSTC=V17w0898M+ z)YJ4*M7LDh?K9oK{r98YsaG*bTPOK&X2MuYqJk5PjzPqmA{5XtsHA|wwlHDcy9io9DFMj6jPZ{Pu+G_&(&y72p~?1zp;Dv>kyIpdwG1KG+E9)B z?Gd5gBh>~>G1wWG8jX_jO*waHq_2;D1-62$>iIm;vw}bwnQWv{&{o9ob4pK z2-N!OICI6V0-BvFwNRs14|oC!Yft)^v}r70vl6WvUqS}t9QnArI88YH8sRgchvC)m zL!{p z?Azsbm*$>!MN5gQc336F@Z;wRF=!)%LI)%~if?WrzjDJIX4d*sR!BBdA*sd^3bzKw z`cvi5|I8sDX>F44<-y&q!YGnpW;|~v8<6j*HJ*sdsAvH*| zo!F@6rrv>Hz;?Nm>dfyJsuZRBH;ObZ(>q)MmxzEu>(u@i`tP3ndeC-10s_Rfdw{s| zb@M=FhfCY#&^PG;+UN1HX~+?Oik~#w#>H~l-mHcl>GH=KRc}o#6n5%ZhuP*H#dR2g zV``7pZmmfLi6F_DxBTb^o(;9OQ(KQSt?AbXn8ueY+JT6En1TU}xO4(Rz~#;~*=aTkRjk230zpeTA` zivmoKRB%Qp#2^vP2%-|uF(J5fsE3794{F+WMNFVKr~^Cn8UJ3rNTJj9m&NJGmr_ui zd|QPOV;|5@`YX;hh@a>Q4l+bK7;M|;+JM*h-F2crp7|4U)=>)2=1SWwy%A+~!>Psk zT$4rDc7|`ts_v^zRwdmR>?Ri-8L2oOi7XoihZqo0gy-vhh|qbzvoh{YC+;J&J59A3 z`()Wp#Q6TFDOy)S4LgrH35(5UQ1?uHtk*G5BAa&L(L9#|JqmePsysi}X@cg}XqlS( zX%NXw?50BnavPCTWYU6V9h{aWQSEBGd>5a8PSIV_SM0xqy6gw&vue0^*q2$~1Ti|k zAon*tSUHVKZVGTjKmHv{JSS1HNv`_ldC$`rwpKW*Wqot-`Zb11IZQ+50jb3!?op+# zP@ln%=NQ~n0%a*UEhE$m9 z(5D=W;XB%0pxWzQ{)_`U$jG9EG{q3(+`aXa&#%1Z;N9JnfLx>^`d3v`f9cnPYPVsN zUNw3R^7Q)Uub+bojIAiYZRgoWrL?0$@ji)IXOT*SVO<9m1b%0-8DYfL=ps2>Z4d16 z$$lM9_V>4&*t|HvqD?e_L_U-lEog{(3lY$IhYUi($*>Pw*ddq$+95c;@1S75@3Ka# zUs#gh`=y7??umu1z_$i{SZb4huMB!mpOsqYqA%Dx!(bRNCpOwDXzOfBUdbYq%abxA zB!zI?Ow7LuTr-6`d}g~9L5xX}JnSwEsi`I59FYvL#f(ry%~CSac!9?CoO)LfRv6eR@maa=7t{{V1G56$cY;_|I=ujq5~Nql4^|1A3>XV&k$RfjItyDjJmnG8;x_@O@C(T;Gg;Jmj=@_ zRt9*_>J@j%Zw_GCSZb@P;_25!)UBj(Mb{zn z$HdlHJGaH?K+f^;c-A%ho@X+X1>-D6MpS){9*h|t0-s_jv_=AYzkG*O>_noVVk;1O zV@&H($|wY%U6w&v@3Ld40dgMPD|+s%|4rEcsUfzwAU|e6BTN^9w?GoQ0L$c$P&j&y|WEv7)slJU>iEH+z3UB%OA>F?G%K}5;Bwx zQ92e-J=Je#wqdGf%^9_ASTcaH^v}ym`7-o~K5HM2LJE7O(R@KP+nKruO&g+vkhJYr z**oZ~;{)MJtYNn#5B0666oEGm2xv5PE;x{t#^XrF=~Q1J_j4VU--d`5-HPt%@_u_4 zH8eV{J9HU*R1*aMq)O}@5byY{W=e~g>w!FBA|tl9#I~ytl433qZH8fJpCYf9+7RCq ztcpfBAz$9;$fIXHJTzc_;DW_FvThDJnqB1878k=AuB7gkK!H3; z)8}?lgN+6ly^e9B$rBOs32dykkfLLL>%&PeL6K3KTdd*s1XGZY#UnI#;7PofrXFk2 z{$Eja*b`0r6B0Co$4fZ+Owt&Nj~ByB!=IvMh0ekGtoY-ej58zc`BWaxzgd02Ei-<( z+i!U5K6f;d;5OI;9$p8}L|1rn1_#|nn-9a8cB^I)!O>8WzGKuCkSqM+_0- zK9>wbkeEhfTc-1YfzwqDsE7$-)Jn(lg=QgI(+ue<_*)$(spVO2Ez{rKMX*}uP37@y z5fL~0rPg|CI(>%`7C|ncBd`lX!80dq+sMtgzGTHeANv50Wg#|NjWg~gVa%31Z!-N_~&eG zlo<-@oMcNG^6VS*^16B}=rSa)2xFi&pkX26)%5^*U(45)Z*qgDkWkd?8VLAHAAR?S zI8Sru;E+X<4IfzWYJtV=wNgkRa0TY6tFd#oU2sG=f#_#-%pVG?`sjnGEiZ|E9|NQd@V@z|zAu~*sjDJXM6 zOF=2$@Pnl(2BLLvYz9;X-XD9yOi!k?DRrBqA9NZkC>#Abyp6wlalKL= zGgM-!5A;rUOT8Qr$6~X0yj)+XjtSZ45kk=Xg4rKAV`y6gp(32LmiZuQS6g9DX|+~6 z1e^&g#XE%51*x-==*&9T6AvRiofz6Hp*lMp8agfGf1EY3{be^~*rQfKtl@$BblMTG zz*HHfEFy>B*lsk)hde-Ytz&PmPVxYp&CYqoqZVGD$JXSdGK%bT(wdf$uo#x}J;aA0 zX1GIz|3;S`_`YUEiEq?`vb=~K=Dk-3VM2zJhHYBF-i?Ra3$ZCqDH zr~2R`d5a74r8n&)2r@+Hrj-#VP?6S}p<(8oH=9md9>p46JK|`Y`!}t_pqUKy?@2p< z)`6V1oxs!8-^Mppq-`t{oe2IvjjbRV5p;;v0l8A!4Rlh1j8kA(Eu$dKdb`2t0`?+I zN=e7Pl(*;|xMSFiG9#YX7;8DtZ9SCSPz{X1{n2>t^ZH>8+VT#h6B&5apK|XnQYYnt z;`Ky2`BRo)Qs}l+q^YdXS-}kfU8dAzSRUNNCz7ilq|&AU39OkEycWVvfgBxr-fq?6yeVoo{vtzukhAcE*juCzLR%f zYTMa|0ZbufS8<#+XP8qhb&*cOuK0_$Ik@R(LJwY_62J3g0bx1?hpXslA6G}e^A+`2K%n^`xizk9&M zifeaxJzLa+tO*`8WQtxLD9=)L6p?Vuz zj#tpOG}GHOUB>9aQ@LUvU|o$)WaM;zma9!*tfOLV4>#ySF`AxZ8N$!|MD8tsP*dai zrn>n_C$BxPFhE&0#+8P#f+bqO*Vx(ODu;W_Y;+(PoS>lRr9tN?&BhD<$tYzSPpE$W z`>geU7%dsLI5@h1_)Z>>zWQRY#jXgWlRhy`h>3q$0&1aT7; z<#M%952OLvX7G|dnUPsoHGyoU;K#2eVLlJu;#z|SIwZkco?Hdw^!|@Z1rmS3DaD|D z!EKmbzqf_J)VGuEXbS&|$})P4`<_J&2X%J%iups;KFJ6c%5?{Xo0^Dpkd;K6GAf7g zxb{2WV$%c^TT>U5bWWtjI{xK8;#ndF`Dh5@AqMBVBe@BU>d@gy-LW_jt`1OSynOTZ zO#59EynGo2hqZFs~Il)4SXr<5#S={ zBBQdvQ_PFse#Z-u5JI9vUHU-C4vu|lFpCxNG`f9xP zO?M=r*v#eygKz6}#cr4`*Y*$JgsN{UdP?yo-t`hdLcqT7nTp$x^ zZ!9>u+Wiw5-or!rStn}&)f^gZw#|T*o_hV+p|4he2TDZ6fjKJ^OhWJ-AHs5EQnzf) zI1gsHhVF|1hJmir6@4ad9}8e88DukKMFFH8B_z2wsV9kjrCUmg^znJF>QH*jRNq)F z$lgrWg$@f~w%Aou^D@~HK2a?}3D=ZJ72tbVJ}lSN-H1LH>DEC%9I&WW$1`z}CSo+?J-AIzxBk9pP~7&bxf%{h&R^|)3WOo3 zR)}53yQG&S0wKsxLeUh9j6a*@drFS(f3J(LGW7US;RcMOpBtcAa{711#pVe9!s!eN z3}Ig1Bx)aU3V;EJOKIslMSad{=H3C?3>ikdpO5ROMGsJT7<`TuX0Hyhgg5?Nd+++Z zY(SUvtj&dw7c=t1O!9=(64G7&5-4M5fW@luPN)Fpu~)!BLqUS+zOaI4ej)?XFpgW% zTbHfG&H~&iYy3%VOZ)j%mO{?Axj>)gO8PSCYQ_3onX%g7Hiw$0cxW&G!NCvTf72ca z@B(t(9c(u%?@8U7MCBi3+;l4&zdOYAZ*pd2ObN2{seA5rJJU__s3lAUyp?@Y&RYzrU^K_q{jnGe(9vlz0Es!Wn+~$cT zI)Om1aLfl62^-U+|QSaXrcHmAkh+2p^; ztBA|)MjOLo>(vkMJulX!_b~}U#0HTg9R1amOG|(4f)SSn>uujFI9aWvWsEW=iv`Kp z|6TayikZ!^gDiWdU;Z&_@y&;smaz5r%D)i3RhXkUc0yN`;spmf z7L`#O7aCcrLElFqEFPoav-x82esp7WtIY#Ds*n_j<;FwD$_s0Kt`|KD*W%u!_mX&P z83c_lNh+EE89KL@qp)3F=1L z=x-qKNp8h2Mxg%dej6jp#b;wv-Ba6*V_jj+UaKn2XqKI+`ES=Tb|AozpJN}HCInwL zYmk;Jl9!R}J>D1J5V$b+m*6gLZoE*Q>&PD=M@s2_29#V7-$l07VC#o?-hKQry?tF9 zi}*3ScZyqbl*GZ6Le!8f1NSVR;_%7{RLMm6Mbgp);~H`J&)qABR2$Y$Zp89 zri7>t-AVm);F`Q%T4#(yYTO;P6rM1K z;vt~iDtbdpN;~>w%wZzZPhrK0j+;&(pi}URo1Pz>Yh!GFFpx@u#X_3L_&c`X_#g!F z8Hm13l*dmAF-{ePIB>t9KyU~u;nHcII?n^_Pj|rJxlwp4j@=d2sh4ZE~FB!I2R| zuqpqOsSi-YcI4fL8!h&%J&_7ho21q#r(L9IXjf|3>D=fat|U-TRvM;DwR+N(kDaa#?(P*kiZNk0Wem zI*P&beRz+=;xp!?>*33hf>xe-y>jQZwFb;yRP$kpcX zu<-m5-F^=_7)i#XV!57TJn@w5 z?*&O^Lk@Dl%8K*L)4<~vy@sCK+>`|rsc?58jc?Kkmi((BE4Mbt4b$`fzuGe}cNy&`r5u=qavI{4hP6hgrVn*(*hp zrVyf1#HCz=9E3|=2FDM$C*gA*?vyMIPT zs)h>}tf&-iHJ4_dxjQ0gcDMZ8%jYxbFVft_WW$9!?x@RMA7x1KVt%kXHUSFOo1YlH z2T0qoi0)4y*L_mWX9#}clyR1dDIFmkIo(@{(R$ZxJvMb8N0EIn` zOd2TgZY*#P?OSa=hMLTH55Ug^2M0fCLM1lGrKBLKL0Qjo}n??lFx*J{Oiy@C%9MX=RIaxB({beD2Wybi~@7&JsX=6kxz)At*=J9Hs95eJ^2OjNd*o=G$!Z!q~*? ziXDcvAkOA>vb8J_Q^A{GPmC$XzM4dr;A~8miPMA3ceh-5R?*_22G&NLx1Tswo#pVM zX})ZLhh@`XjvU@42xLgem2l@4s$z~bsdW5^liFig)D4kq#i+}ywvTKpoo`T;vk;rO zeV8Xf=W?MIDq&V!SE%aF&~cVAl3^%0S^0n1VGjf7;bkhZeuBt7dHJch6S{{qZFGrvsKi|6oHeSuw=OwmG$=TQ5lqhTL&Da|myg&{I5V1~?RewxD> zW5VJ1!~ek;5~>`?$QjD2lJp3*sUU(BH4|ZX-H(Dt{tUmhg83`WA|-l#*zLblLa91K zd7Sd9s-v#%9RvF%qXMvh_06%cOK|o^;RyTvp9nk8_EIBzJlLgOs!S2eiKnm!{)94y zw-Nj)oX9vJoc;nQ>{pC|edJ}tu>@!5W{l9Fj+2Z*6NQ1?Tn|cJcC>EpLtOKp(6?g_ zIoPA1h&>a z5FOJ3pTGMSTC`3?s}AgM89!tB{Aba*$1sMD2vgcP!DC${3pYph=d?qcgw7az@$Int z4o6Jvf}+3q`Jdup5%mBC-%WcBk`P<#zP$ z(+8<(6cAlMVaW!1=%p6DPd787!rWN2F@o_QTO#|%&l!|*GYpKqN%X6EPqe=VZm1m< zXFWbEF1@S|2K5_^zdrh~7->*3U51xldI=X^c%kY)Lbtj|8V&^q(q}UdA4b`$&*6dt z`%v1Ef~AYv#e5$;HUoCIq5!!`l#+fpxJl5C?b=BRSg253YQTow6nc|N5fMgBVvHX} zbjW(;1s1H_N^iu}u}09LPUD5&(J9jo#sDCVooecYqR>JnqOx~h;(5u?eD*vSAe}vfMWu!XsdqZ4IR)c zp1oX8rxgPMh9Y3jq*bJKmWl&L?rC|oeERhq!~iEjnFcj_Y7m@|=8~z777ndG{d#6G zppD(iV_I5K`JR^d%(k#*wP|gv-1ds_XnkCgTRbJ5?LC zB01i*HX9?O)ZNNuXwS7*u81dqNVXp-H z@kAV@aTokhh_+ua9N|wrhkTlaf{eO&XZ063sijOp$3zOEtTbZ{b1)Cp zvozNf8c6Vu9BTW_6x45HY|1Mp+=RE^cpY1|Y(SSTT`9npqI>u5N*kw*rMl?;+IX__ zY@%#lgs`5jIT^HSrV}lyMw>efXqUiPpP>fKe#?am7=ojes>n!o?l$7#hk8``mXI}h zt_T$R!mua3kk;8=Y9h_peS`w0zXfi*{&IY?ZW9JG>`80BCr2FmQ?g5=;QR&#QE-k! zeB=Qv+qxS)+F9`Ps$EFx)sbe;U6qx}+3%gT_%Po2<1YL&zY?>v8QBt??3t zNj;q&3}_u$4Qh5OWwOA5?N_D?tWy>uVJLWy+a=}9NL>!5(*v1a>hUn37E(o8(v~zg z&_qKyAP6!Y@}62axk&jrxv9lY?#Tl^os$^Q#Z+c zPv8)oh+q;N?;5RTF8I~_f0n>4Z7zpF+TB24FYmAH*P<0Ow~0se`!jI#x+~#LNnv02 zBjSl?5O(Wb0k5lEtCjar4L`@M<)l5wxRj&9gAk|UnK$yq*Wk;^LFv4&1q-LESSq1iTjbX4)bD&q*B27cB zMgj27dxz8{Mgolexr;?KD-Y*HZR41LBkZSx4-o|q9{buFcYZ+C^a_~!#l5G z$iMTcwF_sM4{D^!N>EU;70p{jp^WETk7l)G48`U+l+p}6961ar;>RCf$ivwFCJgM= zgrP&ikVVg=?b^3j8mMh4rPPFnVQ>#87H-;tc?Ih*d}u$0(-8gLsV9xLF2=%i`NHXS zwHWc9QZ#Pd1YS2okkFiR^ytx;KmU8=^SG*LY(?O-m>Bnx=9iJ_He8WqK=kxg*c%gq zWo8TFTZN!?49&hbxiKrpgPm#Fhzhae{mc+Fxzd4*LrajmD+6JmNhNA5f zBwRTX7t(-*n>}d8YZnTC4E2daoR2&5cN^Z5B;Q^iO`20%pi9U8usibEMh~{h)WCn+ zlJ}!i`$8ns9M{SCpwAIcyF70Eg{HhyN<-nYb%eFdhVwce!1Z)Ow0I-6m)~#3+D(V3 z4R1t;MkXv+@I4(e(M+02YqR>JnqMO5p2k#&S(OCHVJ*zKB+y<}@9eKqFnMP3X>3Eo zF1nn7kVS&RgxYn~t{hy#fNA%n18EC+!^YaV4ZUJAWU&p>+)qYC(OBpm{HS}J*d&jl zx#ZW=Ig0^poGV(AuG*N^=v_YcWj9`<`EeMr-x>+p9Hd=^Ay#lme^r|zoU>%!3VvjR zMBvvLm#W&Y;YS-2zrv4J2j|A}F>!|Rqrt0PYXY|hyGC!pfrb+)?`(!!+N!~<20#Xsyylf!qWlCus&*q!&l@!-S6PvC5%2u}(}75b}2^JB)iYz{E5n5r77nTh)E z+pu))4s+)&h<^P&Y9%Aeg;EXYLWeV*RNWO}m-fB&Az^nYEo#`ke^Bts29FYUrGY0J zmx3Q=k-XZbP}qGBBJ2)oBh3tf@YYAl%vbQN&WQ%+!qWpcTS6(o$8%{-8tp=>rkU8Z z&xX}Itk`zgfc0Jz(&9tW`)U)tu{zPTc>-da#Zd!SfUWPpjeh@o6(2Wopd|$*&TcTe zJy^7O0iCOSjMTgwZV)s>lNKE)pjdGG?Gt!@un`XJkECefL33*nZcfd`HES4~@Q?|M zcTqEWgxb8#hcR>dGzv~uo&h|9pO)=Jt5&TTGt$H0^YjRuTf}F-Y(SklUIP4toH1+@ z*9zO{EmwX^%E`&a)~(x+l*AA-(J?%qc@Q><&&YOrd=^C5axlTa0sZNv^m1x0holzc zuKhW_Js*WI>02V;9P}_0 z33nae|}zj%w+teg$9`$2FqSU9ofx ztX!+y1{c=HcyX9*Y3??_l+FzzTJR2}HnJ@R>8%{&_ZGU9*3>~7NRrJEKf{8I$VkDB zZ~PCpfBhM5|LSu*_T#rOe)BCZ9&;`B?cIlB3X>unkE1775lT0Ee4uh0#l(}1=TTvF zV9FeB7+6|j*RGwI|Lvz({{5RM%uB<(`3tyb7uYlqoYgc1s9Mvvs+qrZ`%XMmu7Nb- zohN$Y(!_xI>fRrgVc5Gggl78gt5js(5Raz8a!XV9()2Y0+p+>TS|>%~k`Z0eln4)` zLLLTA1y2f~RZ<(+j_kuvD~i?Mt^34dU{Z{hF>uX0j79TOv5$7dHY*2o`$!Dz(GHPe zq^6e2j$-|iWUSvK%5U15w+KhCK?!Kzq`XpfU)=So#KW?-z^}9VTk90E(3CD&1Q%mb znVPjg=xukfcXE^N{kPyvrwPENm%}z>m>PI$Vn5MDeO5!PH%^-d6wSZ+5+!rLf{`?L z-2b3(Ybbi{W%$yMAms8ZVZZ!}0L_WEz}}aRzjF}-700>j=fx`KoGG>$LT|m3;LyeQ zdmQJP8L(e+S->nV$UJGn$Jqq468M5lu!KG+`EoYg>o&kLpg%&#UJLim?I`(lCYeGD zLdV|-Q``1RQz1-aRq$xIk*hEWu9eGp?(9pLc#b4=;;l+E>zw)?wI3-Q4`X0Ee@OW} zD0r!=%+rCdh6=ZaW7!N40ihw$yc~A+P1VoXKLroAfkO~8V>%t%8jo8tiOO0QSL%`D7-{i5-VtHx>WdM4?Y5I|Lp4ZGnSeXMBg9B}-;K?=S zQ*$c)LgOM%1mB6C1-JrwNWs%Wp;1|5u?cc5pkNrobE9ppx(53w%pT3oRt{yPZBwR9!M*q1tJ+qfPkgAZN1c2#qX6mlx_!D$pC z=~nnl8gd8IfP=UC)z1T|*Acw;d|!-`@{aAq4G-jc%G0vacys!3 zJaT(S+%+UoowV$ofgv|Mr;gj+$Cx$~+iRIy?6()sc5hdKW7G z_Nw|_GwlOJeX~$`HIoUZF`cQ!GT}U{SY4ZMT!-Sxbp6lxK%7(feO$IhQON+zqS;vU z#ixj#y$I$^w;hJB&ClJAqP4k=apX#Fx>g0$7HS;aED+Ve3aW+4vY_T;j`MF9xE*S= z&~YxbX!KNl`Uy&I{w-?iBkRX6hzIO2Xl`LxX|XVG=b{RmCjeXg}>)B z?LxowQQ?95_VB}h^fL@TpM%xMncFH zD6nKvEpwZyQFV1Svi9vl_io*3%U6Tis%|JQq#dZ4aRAv*5{eJP=wb{?hBt|#>g0G% zb3qrjN4s|Ix$LtkAScdbx@Qi+o>d2EndwAvxdVZ5GWQDK8_Ma^G05Fsw%S7U>!QQs zk3Wurf&%3QwQJX|5SvT``(U?j7f>2`3{{oXHlZ4-LAM04$5-PJV;_#Ee&^1J5R?z0 z03_If<>i4$n&YGt(gFj+x6F!6pu|mw6u(?XtSQ5{EBx_VJiVSCU|dE@DQO0Zodlba zWT3roKlB|s6swjmQ{h6S*3t(iO`3#qs)5GD#JKw!&owoPw_{0uMmrXN^8&6N*G*YB z=H?Y)^_prFM(ePEu_1FeI?#jQcJaPi45vD2G1XR+*w>{Bx!m|Mu^}Wlh&YCtM?vA? zs02iW2QuV~3tMO(nNU=W!kipburEl;C#Zgv0Q3fb9RexUwHV@9mOrJe)!3R{jiPcV z4lzEeJ>UQw))GXA0bkDi2EFL8NbFQ42~W;6xn-tjdRK$;*CJn(xmD8R+J0^zrk!Dz z#$_*DjH4g&Gi?ak5X<4%mU;kkXh(lsLqgrji5nl;jC}dQff3_5t9=cv%Lgo8nv0Ki zmhck2S$P4-ku2|))Dt96o_0XpzH#~q0D0%d;dq0(!&-X&?frzCKTIcb{P0>!I-{vJ zS{PK=#rQFXgb?Us0%>SJ1=Sz@2l`mX%;7m@Ga-3o;+0v%m(E!Z)V2Ad1#~^e2{$&F zAL`@Jn2uTkM>&>ra?P@6zOT*C*_J+0ajng3sc9eqwd;-Z52?P!ac)%Oybx+GXu;!L z%|Wv8<;zn7j_Vlj%D@2OLSy-}e}Q%V8unk#Tl`qou7Z6x9dXFZS9VHHkyLpez-(Q$ z95w<-Luxb(k+i=dZ$wIKi11VA?1zip9vu~b+>6*#6xl4N&R4pHnddX@T4z$ghKo3D zA*bvBr5~zuT;TCo_;e;?oHuyxCz#RZ-+hPZm}p7@^I+7~ zA}zKCv7uJRoOA>BrgjUVU6M&(h2%IBC4Dvp)CwsDjEIOJpe&><-aNEzm&VwZp|t0$ zMqscXN~(6?9ZJ-4jAl4$={dJu0E$~X(7#JH{5n>^*x#Q((;rJnTj3>_qg$MX(!NbN zR%AqG`#?m7`qPF`sHWtWb+E7+e*7$q%7B@hgC`7njU|!7&7VIXL9`D( z(Pz#aNGW1He`K6W3N;rY=fGC{?cY1GV$m$jne{2=t}1~)+o+sjN%9E#=FVdLPDczD zb0a`>AZO8bvy|=Lp7A2-cSj{X)l_dHZ^Gyh>!Q1BQQ6UsxPHUXuBMV|!aM3VRxV`Q zeHLcIV6%a6+=YCdI4TN)-KIyIWF5MM?fKvWIO-^g702B>~Iuxff8>csPRcf`~u2H@ql2ja6{S~Y9&^*RBE-pPpX-ntl5 z-@X`&C!BzGkIdxOOI0nhm{kDgofFz(3d?)y@m3hA-F}EWIH+G&NC5Fmj4w7_ge(^5LcEug%Zx4xzPq zER6zqtj4sA^V%97t3YDvoQw7ny4bju-{$fnrqRD4iaW$M9$OjjO{6C>Z&gvVgx6hk z&Y%yaXF+}>iR#i%B|SZ0>dbt_(o>#}ypXcwBf-aIPSjC_Odn3b+JLft>RFAte!kKz z%sQWG_jDEwD60O)ce0k$;;xZnyl!DA_lpV&lbrj-`nX2aN#9bRx_X^V`$>5l`m>I9 zxj{CXyr0p~LK>M*R6<<@k$xsCT5(#gC8Alsm$rySPHfu9jWDWfhJ?_==*rbt`27NG z+`I+F|9uZhWmT|ouB)I&(H#U-`Q{!3f_~JDFe4)=7Jt7R1XV6{>e7qgz=fhCOAtm) z484wOs&q`#*1rgT`Wl3a8njHKd=Ko8h{b-+YuN`6;#;cAO1kojD;eIRmVSqNXQsOB+r3Y1N z#f9jPqkBLVvKbTg?+zng)fut$SSiAFHe}@*kxb`A+p0|Xoa>hv?YhycY8i5NPRB)k z0udXjW9&s6W@TGZPLLhJc0NYhqbLJBn9v6EcKKn?-kpeyic%8LC!c(hs=OsiBAc0+ zNhdoDA0umFnS+{`v=S<63A2YH^1>O8jd zV^x$gv(Idx2h<)#5%7)A>_GCwg}7x72R>~p zpMRmBTT04%{1W@)mATU~<>UEy{F3y#Qd;x@2a^nFKkk0%;|U}=h-HHC{s^!Tn>op& z20!!r(mBilPn(OKt1&&py#V(jM_Sj#MY%DfHDhIs_O-beZ_e4nx^X@h`h+C6>wXgB zJMD*x{6>wTPXN9sxyaC7&Wa{32wk;ym>DeH)S;u2GKlTi zsgf#B^7AEY9xxcDo*ft~jzHA2s8qa=>$IsbcWn*xprL9pA@*eI+Nla{hI8jD-NMTA znf7{J$uo{Mo@o6~eK&H9dzayTT<^IpGVKJX20H(t+P|!cIng#%n^l{OgTq@Pv+tFh zYIXGZT8$n(dcdEmsBP#S_Tq~#rjwVQd{{9(1v@b=_y8WPD93P0O(pN2=^=J*l?9)E zQ;UE8&w|&cIq=^0eEch>6+$|9r7Gt!s`}Po)ixVuuckAd8ampc8tWUh1>8yg1BlnX$ri`<1x2}5UsN##T*H)E!coh zr}6XQCgfX<2-Q?lO*EqQ%3Mo>SuMqc)vt198^ZazM5j4k$D+>q-sFuK|4}KP-)hBo z_3@`CCtV-kk%~v^fTa8M&KxW4Fpr_l#1%N==5Jle=hA@;2vK9vM@1v_sps8ND6icX zHDJhIxh6aCO6A4t`ng1_udZ$m)U`Q1@P$76qO$ptcGZ#`>*$Rv?75eemp)&cYn(ZE zzw6pu#`#~KV{qmAyQ*?sq#PkK&Y7nrx4A6#MCvHO(SPX02)Ox1xGF?)C_s>JRC&SD zcF35XjF3m3WM4L`^V%Zu~zR^eBue zX>L%eJ@4cKo9XxYO1H4{e5Spj-Rajf#v4lWxtvc)^eBxKRn?3nJylqp2nt|`3co<* z3ACuFhz@a9Q9V9(cSLf6A7bN!k&g10HX~hRbY$ge1{_tM~@2%;d_I1=Km%oHBYky0cHYH1*8agOG!z=^y$;paqHF@ zShIR9D(pGv7-q#p%XWlO6Xb4_6ZZw`(ZTGGD~8guaEJ>@F*-UY(jzIBp)#UlQBzfo zFTS3IoI)c(5^V=*Lzzv%(W2vJc#E5hkJ4vnAvINYMWr#UNg$#l5|DX8KQ+&kF{a2L z{_qEy!W$KM6e*;Qbo8}4_7Vv(`+Myjdp8=6<<-UHI%?xlJt)-vmbJ*tXQ_Kn(a==SeT6( zI#43nDoG0tqdM#B!Df{3@mp*Ts`Ap#lz_6zvI}jZofy)~ge9vF;)^f8!MJhbuzUAj zO#kFV?4hH&z(BDll=eDv+Up}SRm|D?6GR>C6MlQ1pR&Dv!BzY58h->a{jqe^##dmi{;*pLg>P;mCtjan~Wz_vG`;WYwRhQ->Dd3vx5d838 z;NstJ;F#$NqwVt0yQarQ|)`VytCT>Z_f`0j&Q z^5Da6m2MB%R%7C!hY>j8MwLhN-YEC|TfNUXq!U0 zfQ$Cwe2A5xBN+t@I8Wy(R0S1pzPf5F%6j+5#gl%E`QLtv{n-Q`H8phPQ-(#~e@}-t zWmLD-(biH&J51Wq6r2JZ5A)U-_rt+ z(ZL@hG7Y%qVgn)xI`4=GLp(v@QZ9GiBA;JGCsaC95n!@W`a1;s_h(`1)Q<_E9ay$( z8S?V-lw>sLXf}3jUkNh-zQhl0Qu4er{QUe8K*u>yrk(mgwk$*vC5T)E& zO+`ddM9J%Hs~t;;d6IOM7-(O}K2v}MT|U;Vuwv3*oyb0F!H&fb;rNET30U7lpNxIT z-8~I)VQvXqW4!VXh)W07brB%@LrBleLJM=s>ir`%;RkE+9uly`#jXYc5I zrCT_7KGW{qgH*ql{x5w`#;PZ|`>u=$uXlL^$9P>|KB+vd?3VJajnPxl-q<<{?RAOt z*Lz0Yg=RVsi5_7j*Y*erq@+u4W5D?UgoZ|7=dK-`hV}UKV~=6b;K683Cn*;c<}j8Z z<6*MS;$gLxo<#OpBVgk?t&*ypRh1RkcRWhPnq0GT5&r!}G46dCC}3H zMQNsVG0nqhQ#m6vN?1IJ$C#LysB9vyzy5knu@9 z%=9vPb?Y#6hzmtXFhh4FI$#QDg*;n4T5nl}y9yXDl8)lyll*Z}cPAyBdUT8S!-M4A zvql@z$mexrd{%V=jLrz!d{#0(WsL&yqDCx0x|Z|4#HtiPxo!PS7_Iv_5eWt%)6PN? z31?|(3ASz9g@U7-(Wy-+a*r2a)Al^j=_~;xogUfver8+wQ+2tk!G#P0=syM+kw_Vj z#Ceod!S-Jq9ER-#m{ms?BP~gX9Tk2!z`Qm}leM&!;%hqS#a@0#u*^=nGNifIu#F24 zRs(dRnr4un4%>E@VDXMb^tpN#3T<6bQ+Al%gWctLjTWugpZxX~x&373GtLm+32)v= zW73b@`k*@xRbu25drm6Gh({*2QRiBXPRA|N_h1Tt?c7yLHPf~A^LC8Js3bqyc-23B z|3CMDD#l)kI~l`M;7^yrT6*M}wRlAPp?z18aY1poEAfy!)JRz+GAAw6u6n-d^(j?T znRP!{oZ(h@bcj#N+~R&}lct&(JdPh@;j6ZWc$t?3P8w4g380|zBX?VOIv)Vx;E#_gWK4ueZ&6x4>Ttsq&hOW#=p1!q4-WcA;POIr)|!Od<`JB8rv-hdH!|OG%{(N+dxRy=|`FupV}Tg(HmG1*}8}H8WyN3FzRW$|}K_A0=5; z1RoW{M<8YJ5DKpR5FC++nAikt+q4dWln%xdOs!oq7ehPP5gG1>!?_}bi{?0V@Y5JL zp-B0`9~+(cnJ8ftRaUXZ96x?MZ6WtijdC}}Uv?RKI13P6S%kw3r!4!K(LEhwXV5pR$%ULf)d+4EjPJ|CQB-Y0_ro=a;2OS-k+Bl( z6_^sz9p$wQabc)t8#s}hTSPV9zPRb8n;2j7h^kXK9j!^I5sQWP_5LB8|25g(56Ecn z39V0w6QK((xR9#1MKIQ^MqW`M-gs*&YKu1F;w}d4J>q2D%3yK$BhFPuCpf?cI+1&` z#)58iDn~NZ;Eg8VstC4|t(B-)T7a300#Kr}Vin7;5vPgnY{+K6$snS;%-_iHCNAv8QQx?uyY{o* z_fV<`FLv{i=Z*O6`CjNOWd?P@*B7tG_=Tb|>`o)Q1tPPs8qZ7lW#w3P%#6#PZjbV3 z_TZ62S}yI|i1!}vQs-EQ71S;u;T-YKDjiyzPz5l^0!mMniO`qca03YHV7s_uqb;0- zKy47z5$iiRr#NtOn=AV_QV{myzoc>9{ecs;^oP2>!SlX!?sDK%Z7z0yVXwUDmOOII zOFuYg+T7Dm)m$X~lyx^{v_aI@UqMfs7}clQhqZaDA#;}E5t~@?K;}U@cnEumV?xgH zSc@g8q(SQJFYxDlrCT+E*Ji-^)aInU4%o0?DprvG+F6v2bm$CY>o!WoTF*^iW>g?k z>%%`b##Mj!lqYx9&YlTV*Gw2&rMTAt9+0XY_zV82qn)$~eL|ar_A$0?PrK*VYFvu* z54qORq~2y6OQOCme6t_Of_>i}I+CLa2YI4kx%XIWXu)TYPkSy%^QzJX26-}&oU^JWSk0}X%)J3 z?m=gdFTqGV@DtJ$8>LmV;LwL7G034}4LS&hvS=51WXu(~h#tFlZu%Yp#cwelU<|Sj zFcQL!a9nxG07}5}`FzG)TuGp6Pk`PO#>r6n;MrRbNE}9Sr1QZCA1GVASk_0>cn{L4 zOFpHM=I>^!$nCLgcUi_uzco{(_9)G++O>9}8zpF~55&?NZ9hazeHVUZ#i*s3LmWMi zo4+;Sc%nag(=%<^o(dR3O*qEzDc!;;_0)}mtA;Tw47Ie$wBX2*z3f6`@WvZ&P%4^$ zw6ruOg`7EaCcd6eJJL37sTM3=>zhWqwx*JI(}D#H@%%G?!h5eVw4Pr$x^_&0vn&an z(+?puI1vAvr-#YR@FtF2bf%QBJ+&v}xe2hHAiA2J)Q{~PN}xNiYZnB(_74oDH(d+& zkOBy4zK@T`cD~~+l&VU9j;G|CUQMvg=0ta@D4Pf}+qcspx59zZG|@}mO_kSJKBKiC z%yINm&hfN)vkpCnJVYl<5>?a9dv$OIf0`XcN?l^RUw|poEGRoxfC6RHs7EM+d&YA2 z;|GZzRVTlchHH-Hpq$K*tiYgKjcb6UQ0fhJ!af1CqaTh_HNvm3-aFH_w)d0}(H_N8A32eh{IZeLl1 zN%B6Yuy5uUAH0hxfkp1m2S=~>bLO!=T7x#r$&IHov~btelrn4lP4kUAFtJ;U8DQQ z>Z#>X-<~<5^7U6x^`8$BJ!=m9`VAmp;ws!T-nINcR%T6Q_%0Od(m&qrP#K4 zElPGghjG1&ux4)wt~}&KY-KQJEv`gDn{t#@xfnyxfEf$Z5tku-i_{X3G$jd7B}pF@ z2SNgvM^cMK0HlDc^t3c25Cnbuzv)Qdya5(UA=?o++IXKx%>_i}lvohm!%4-%B*ZgJ zNXfGK=s~Zu296OwmRm!rW9*Evxw{-;EYqJ7xFfU)Oe7F{CZHdxi=+6gV$wsY9?P>z z2q)erYP6A&5tI^Mpro||a${rSkeWtsx0LLuG1dg)y=mXLaRVJH>CnGVXRKI%1YdkL z2e&iY#MjFmC@z;xPz&Q(2B3|;7DWsP^BhBTTx!;#6@!7==`1NdISFGfyAmag?|mgz zbZsUhyR9BUq|?aF5sB|8`eq_OZO!we=qPEb#fDZCV+tT2d8r9U0x8)wy3j5Qc+PIZ z_s>xJ`G=zzI0|Uj>qh(S+{OR$t~COL^Z13eFui56ofqRh`R11 zEn+h#Nt2k@qnqdDs?6`IJOU-_y45JTeG<>qpz8I1G9Gjig73ahN$FgaR#AhHnR$n& zT>kpm(hq3gv>qjsenXYcDpbAwI<*dB=(FMR`n3O8U1hFd?M35CZ5WaMiWi5dBQfZyztXWwFy5T;Dnd&aA~qo$H92-%=(Hk} z61OV*VYKQ)HP2&oxRM)1@2s5>*P5Y}L=x9TX`HmHBvBQWa2?Vfy?ghD05)-~Gi1;} zw4$13+R;PM(-Ub(5W|{C+wns(2(AqDD$2NsxdB+76NbwM`=Q-|gE+|houL89r_S%{ zRwhc+La{rm2&r@&*o|>6cUqj-8`&8fO52j_4p`a0ZT2z(_BezS2b7c)DKHxpL?cxu zsbyqjB>5PnB*fyewW&#?UFf;thU*a#6^q_OehX8Cn3ja0y6`oOA85w^7TOq_Ga6CB zlq@<7baVr(A)HxAeq_*#Z&XGbBoN@)DvqNvvn&1^c`+&~3H;+@seT-YCCk>sb$GTK z>r!V4X(H0^e}$M(KuP9I+Bw=PT{vFhLR=6*ceo3Yw2jOpVBbvp%36kb>pQRyvi4^y zFskTo#2j#LA_$wEKB(MDb{>4G;T({Tt&(&WPlu^H*YIL|InN;usFx}0E0dcx!D;8t zAu@bbJp&GC?fYwJbD=>kFl4^++VpDdyrq?=*ePYohpFxv>eny-N2{lNpHFlP=Nm%1 zw3pUq>RUD!`0+j`$KK_6ezcf2m-?v>0i@Ug+7BN@DFLMO$PwrRsLJS1&zw&_imLbC zR@bGc3V2ii(u+3LM}#=9@aWsRBvcwDQOPgzAq!P->pyjZrI4 z@#bgz^8?xs9YE==H^G^c!@By>$B7A*e|>@y#CLu``{}Bw(IR{jepXGP3g@$bVMrg7 zDpSfX{ryd_A3DgsLTv={U8~3G%53a;k+@aSJL=GjIx-e{Di`f~*sZ1L(J`F%jCz8W zJPhdH2l26y*q5Dy$yWy9qesjL?_7#mk<~~`-Gs#WeaJ7IjfoSk#O&ECsU;VIwggYf zF?LERE!eOs76JYv(UXo>)Jm8;0&|^|R6Xtnkg~zhzUx37C{97iE(f};qKDIJsyGrW zRdx-;@(m7#(4gw;(M(iS`%}8bE+nwTJta1lbj4G-S)A9bTel9!jvZ4#Qes5Tp7kvv zxjC>YD+^dKhg%zZB#T*9-P5Rs%z7K?IA-xW+E89L3EQ@Qhl4?-n41=ahuTHseyF4e-RlTKZAFWanfMiAb?-t~{xObcy@v9`FCji?BioB6 zYMu%oCWxeeU&P9;5cfy&7#gLJc91>O4U8@6LQs^B{Z2Mmtc)2+IWF^AYN>h2R5yQk z$~u#;a}z`cCE$_Uqw&!#(RiwVeU;NQA^v>Kt92In_C7uzd2!y*>{%qU!DY5^ldXN9 zH%vIs2-Vv6SJLL*bCvgTV_Vg`4DaK{me*YOdDqSRxUtXkF2nn{vE?=Aectu+K32~p zSdy7c&I<^Ti{X1bw9AGOB}3(pJ&4-nOX|~pnz{;K6g|9G z_*L=ehiFSE;Vww00Ch^Bgui7E-2)e;T8i(&e~p)?DYr4F1w>k?TG**mDh7 zHWXw3-c4A$ej}DHS*nW7+P4#1_u6p0!0j3J(msCpziSM*@0yhak<&2wwh8!>YLK~f ze3P0mg6gMsI%%OxkJ2KT>0oBxfp`pdCF1#DhPfauX2yj~rz0`}kV1D(ZVBU3+Hq*D zA1=&eSO_}g+11I6o_(s3LNNN}vN(nx>8(^g?Tk&S`rHXb*BH|4#-vCgSFBi}B#^=n z3Gval??rg<{{O@6x7>}K>>~)L`mK@*OB={X#;e(gyjlaUzV1&b$=`>|haW(~#6aYv zI}sUNh_QX+V2J)LuATHM+IPPJ@#&Z2imUIz=>8q>yAcP_E@LO@#llG4f!bnTi! zP;0^9i$+q#*nyd!zk|KIH(|;8aBHV!$^u+2^c8~`tAS(|DL}hFo?qMuTiRoys%0icPN?kb| zE})HL&o+#k8E!>FIKy%<2B($|v0W<&Bt?a~h_N$!P_$W8#J0|MBA;N=5KOuVn)k&d zz#0>$!pKz8`I0tQYUP~i_qhoo!5EZ7y5pkZ-O;a;w+-Z(lJCp!s_E{x?-byF>FRMcZs+UQ7)sNFI6;ovrtT-!pkMOIM_n6%N zG!*>;til3O`}G{ue*2YM!bzUUeP=sKnWD~FRZ)pc#@>iw!!JiVt*#F2oQpulMQ_`# z6YcYgQC_$U2aoHpV66>%4pNnoAsnu`!i(_6R2 zfxT-fS+-%yeBcJ_eq3!Xz;HTNiYMJ&Xt!x6?R&WiFg-9FdD+?6pS6vlVO;oTxdnx# z!C12+f>Prk#7FDVF4>8YfD`?8KS5-rs3B7yID)`DIm?A$#!E?{GaVQ0EUT%tnHQIc zxL4mnM(551%r?|eQY`h=>f9LG&ruNB7*c)r_&DI>fR6({4){3WIR!}n47#>>i?j9gQTxF#-=nv++G76J_?9eP-ne9uP_|io3n4*4BH+`{?xfs zmv^dXoULwa`O363=BB&*1u!jp=9J_%|}K`Gzfi0Uh zpsZjI=C5{P#v&Uw?{i}PZU?q+(c|q|u^2pTJZ%>9a4a_x{(edDGc&9QC6+T5F^(kT zFAA*&+EyMgbi^7*fO5+61|6x)dFpX&W^Bf{-+l)h*RRBe-N9J8z6k3(mST2S7i|m~ z)+4}%&%f`7tiv7Quva50+Khhv+tP;7s+_l+4K@TaR^r%8M`POmX48?)FiidUOKfFZ z>I0I|-)u)pO%bdFlGLJQ-=sqw+H~p-{`fL93LS3vEr$09M(&Y~$_8-HQ7dvNz3bT_ z0GoD|W7EbpR23f1od!LMic4XwEkj6T8mg>exN%ekVxsn-h#>v4D--a+NB1HzsSVaI z_&ZAXzk@fYXXDQ2^BFTSA0eUPSiAURN^$4Gp%bSl)cHIM$&Z^g;#6qr)Tzp`P;z1{ zR;^lvGK&L)6I~dF+67OvC4kYOs1cZ9YAMNC9#s?BE6LYfg@dID*Fbd>xWFtT*j(FdnA?1x0kV z^PB6?@uFb}XS;}GSb(l1t*@#dXZXhlBF~UvzU)2@_&DI>fR6({4){3m%WyyzJhJE) zAgQN~U-c&+p#14SLq~@Z0tm`!Ls&iiBXvzD07CK#I%%Ovz>QMFq*TyFX##crsCGth z6Umr;Ve|+{(8pChBRbH2iM0Gws>@-cYM$In9x2HtL*wY^5tM}}8(SwqNL_iq5PPJq zigtS4RJ2Q7741>=X&2iqPhfSaYF&E@KRi5PV#c_f7 zG%XYh(z_sU-$po!ze24&7&(P5Oc>#Zq$mqPq7gkV7>d-?6!OG{<;#~d{$mnawMxd( z++sE_V_xR#sh*pIi!Ow{V{oKV+b$YSjEQY0GvS0C+nLz5ZQJ(5PC7O^o{4SSwzcz~ z@9a9~+vn`s|GN5FwW_=7S!>o_CqZ2UErg-*CmbV*S0=+U@Puk z_5y3Y$j{=000P+LUb2{n8bVE642j87vn|!#fjX3_e3VsnWt(qD@afi4mMiPB9`%>H z#4z3jR}MXc;Q#eu3z3rqLHrvZ?Drq^X$5z^udqDk)I56;IQeOaQfKe-i!9chw#M>1DQc)m&VsP5X6C;j?CrR6C+s2KJ`S^l zZy)50Dkdjz6d~PxhdpqMAeE4B#`T1M$Z7F37_Zss(54s8SsiA5a%V^D}hUg|X``1cpx^XIU_)dULPawf; zD`wKKYuwnf^8gSpsIONIh%AZ4KK~%_)T1fxahT*%v!{fru&aX z%4V_~JY8)MO-`1kt!OV4Nt8l$j8BqU&~J0CRn6_)?8UvnhqDbW*#4up{< zo{JDm44JH+m$)sXJ-p6m_lj?D5FU(eKqVR_Q~c$zhZW3U;>aPon@btw z`ACZu9}DbP)>ubC-@StaV{u z_Z8(Sj!1f&U>6>lKt%ipbNC-Fl;)pWLz@#!tiEk0(tF*&sP@~l&xHDQA65B)TF5ke zBN7HGM0vie?+mjUQ*IkAoSv26$!Gr76%L_rVG6>=q6nXcuP>d`1$BGSoSG>@STqcO z*^H?!{W$xq*8C@mx%=CeOSW|kVd`$%LoS22z|w% z?(|y77>ulCRiQx3fB*cICRcomR z<`}E>`#4;LYggZPL*}w6LULrGUWULDl@m8`rDxL7-$@v0X0_4uZSc#ZSwYCn{FlwM zD;0a!E6YgKZ9HHHXQtg*=rKoli&&qUX4g~*{Sm$K5LN(PQtwOelZ;LoRg9M(u)pN> z0}POcxy>SFSdQ<%Xwi*>jun6%6F`FqKQLXTWgom@O?iJx6us?Zc|GSvWxdvrA@wa^ zy=`0~#SGuqsSY8C74mu+f_qS*E#MyUJVBJ!ON$JkpxiXyI#rPb_w1pDf` z1qFgZPQ%3#{ODU7EQ$FH*a4%;;ViG3*3fW^H`LOQc%nOQ3TH$>nvRMaXoN8@$xNRR~EF1hH0u2Ij|WxbG+zuy>G zMVV6)!(L#5vN?ImjkD?&I80uyOjkKpff6UsvotEdCjWxTL@kg~G_u?BBd@8w3}O6g zuv5a#&UdL?ZmHAE@5m0R=NjM_mfj(x4ttg;Wp%aDViMl=?5e#Kbj=$lI~ZAYPD3c2 z=N#=C`2xl*RJW6ekc~4pPHg42?7&$=@EV8nUEeSd(TBp%ih?(Qq5B#le3 zK8lU+YE$8&%8Y6L%R%XPC-C&XvN*O>%17-vc7{%gpe+}rgR?-~)W zabZx2fVS^>@rY7gSwrMs>Tx2)IgO^eEge2_)p9g265?j$R6E zZ-^fv5R{t*smEMcDypv+I;eAp_a_(~hJL=Fpb9*ZjQRTZZe=8HGsjnlp)`28I6%GZq9ZCo@tzrY`YVAkXu z_k3yNqRdrF!b&53C+o7(oE-`0hD~30Q?GDg{RyEOb#QZQ2M;&NtmY&zuov@EPhu5} z#0%#X{S(h>YArKkW(M>F2fxpd$ra#`1pzC?Zz|pIZ1CC7fT9(_hNwNL`qO`DF>xR9 zSGMtsjPi)*iFawQ3vT~7bUH6-3|$e0K~CGS_Lk%#-?c%U2KlLi&B)!`fdl^7WL*`N zOVSJ5F&W+6+vN#Q)~PqO!FP9)A$pFA6}4oCNfqLLB)<_7poth5!#UD3=G~^_{X0IG zHL^y*NE_%icdYPgkw@z55>`phDkb4;hpFy(Q@p$62ZMx06sXbdgyr$d(-|b|%?8Iak^J}(Oc;>Ks+^I-dv4_Y@#Pq0(n7*O@trbS7?;J4xkQf{`q_kAq#19> zwcKHnRMy1*&==h5#$uHn$+x$>b$bEZe*YUet)y!~Q6*k^v|5I&aVlLX5G&(hQ7 z!DE3Cb`=$YshH$ihY;oaYs91eVKSYAOlV|R$dHCwCR+wwcSzj2W2IqXa(X?Oz|Pxu zb)Ame`4n-B>?}JO5B`VB5?z3aj=UgDNB+C6E&&ywie_g9(~&YU6-iO|*gc zm@#*JodS|_n6y}|(9vlP=~eDzAqxOIbwTp#G9elk7!5NWfYiTfdn4Zc__S zuU~AtD=bHaBki#b3V(OU;LkPlLybnjBpJFrCmG&)ndyrj@Yu6ONFxLnHJ{gh*(6BP z?fcCQe0=IO-tucjovjP=s{;4vns$xiH{*BKXv!B@8{xx!&Ff7Uv9Y%sT@i87GG>ZA z)fG)Xy!5#N@y$?EkHLdotn5GZb;mKV0-9A=~&6@GxX6F(r9QpoX## z;F9M`j_HZu=&i|hZz=+ofhFlRukgPVIpJIUPcHyx8`M%CFS7@}L!Yzk!#$&)xew<) z>#tdlb#6Jix9Sx^59jaJ=UG48=b2aQ-fH6hwmW~jLlu-dSGhUG)tYTLZfnPSnB-W~ zRV!vR&zn{%Q_XpZPV%!l%)Hft#Ij^&6kuV;+SUEQh7gbY`(pMHoqhTdM!Fbkv^_Ab z%w;W)l6}V_T`U&VmFOA;auCEucO@WIv}dOA8E0-B=Jd~gxB{^gCfAZ~Bhh -A;)!Lbe0X!)zbucDiUue4Iotc%5Dd!Vj)n5R|uLb zLPP7wN^ZUS3H9ceb2hJr!-={YyX1+)lRK%&;mfqzLK%({^;cp-;JA_UQX;ht!nxm) zT^({5Iy|@jinim$ljpl;;;n)v{HTdcfd3l;U z#l3|mD@S*o+IqX5(d^LEPn|rv_23Z3>;*$9FV1E0di`b`u<(v|Pbb4ovuDgt{#gHV zRiSBrv8?>`hQ3j)5(9d z_wxl1UP3V@30BdunkZ2o^)P+n#%}J`lBx9*z(fI^^zp>kRm!`!?ZQY}*%8kkU^=#$ z6Mm8LSE2FI2J!5?NL-P><5v}g8VVp9yA+y5Ta@Q-l5^?19-!mpq(WJz(_jBYm7wqz z7ksCmvbc4(dDHNPI&AxL6D6R;awQAe=qjEs(hWKYp9D}G7k?m~>y9VKy_q;gmI$?` zfqNr#q}I*5c_NPfDUtE#tJt@k0`(S^v5KSi#8S|ldGx0|4f1~o*3{=Gqp6iq!*BNe zUELbk)D3ny<)^-i9$=OK#I!g*mXMP(=osEt7X2xjX1lH4&`b`rY5~4B%AylmplMC7 z+ID05eZEFrG-I`^S99V@NlX95;!cOZ`WKbV&Cc%OOpWIS`p>=Zt4?v3|GqJJD0ZHy zDsAW48JDSg!syIFEo6uHA4MAZe+koc8`j;rW-barwgJ>W(x-(n$7U;?H|IWU>Ggl^ zbCOODb<`gF=8SF!`{VpYxk|0K_Bi79vtGuf7WU0D5;cFFf4LO`y~#h^Zzo<`QAOD< zfAWg~R#i@Hbs7c0!OO!X(uzgr!v^W56(U@&h1@nD*2oY2rVettwz`hfo-1A`iO+SP zPDz?0);*E`1#9say=&{GBY{JaKxH6GT{`YCBx84EK5b?15f$;Q>2wH`|E`51?tf8o$Tn0w5<-`v8dCQf}ZJ<)%1w5Zh zVo<@kHHo?KwG-<1P;Y*u%}zA47%r8CF>ha^)OyV^{a9CyxlF^J8nvW=j!O?NOd%W! z(~Lf<8ccXoY?N-9hW;IvM*?8CTZyrlEy2}GuVS@7J$EaprGVQ` z@D!o^qWL67<^L8DqV5?!=M>9gK8CA=z!g^lD_ZK0oW(EC1EUAmxp?t>QAEcjF_HXQ zXRCn9tG*uhvK4PkX~{Z8*2HS=rldw6ktbm=ZGujONg1GtFkgiC=!0j2_=V> zWtHQ(Op-jBM+w30e$62Gv9so2GJ@mUOrjg1ijGEa(qy(pcIRc<*G+9*k@3x zX78@Xmb>-P#lAuHIb_ub?3R18FBMj`~@quXelSp1bl$;t)b6x>ndw6*J zNmi=s@b-JxRfpDImXw(VVPR8%w-xavx5XkGTw;>qV7@SD=6HfS{dOD`XyR%X|E#}e z_X*ESxUA0p!4ix}AVJMSIGwOzUO{7`U2jk7`0>h65XqjWQn3Mxz(U4kO)ngw9lkG( zvULKe7DWl2!r>}F?<ZzJ1qd`&I@lVI>?fz&-xHuRMA_ zTgq>wp_+&E*X`fGe`SVhUwHdnBVsfz8`Si4{*a;daEEqi=a$plE$uyeL`{%oWp$(@ z4!1KJC0hqw6>=w_x(EM3od-gk@Bjlkg}KoX79*3wTh(V8h^H2MqR~_M~GkI zaYQkH!%$|Y6`55l)niYqLCA}Gew{BqcSj1&W@SW@Ra$0wKp@)fA)~-1crOm~345is zB&HoV9_WkMTx;+bnxe&0h1$mTY!d-coOO`Xd9tEb5j9nPUC-S3Do|vJwwXI%FK`-s z^E1iLh+E$%$BXK5u7cbyd7V0gTsvo-w!9&=G=JanS&L;|NV?PW1KwQiJ?dR%x__N# zBHofi-gUVMA;&_?@?E8=@Jf76hob!E(;=$^b^pbi!*L3sZL#k3b@vanc|bIpb*i3;m=LFqA_zt=2j zzn4mO^=I_E{qj7Jr_^&Av`A%Xi`^tfJ4s$;N;PjHm$SP6wj6+ZzbPqH=-qfYKmGI0 zqf?0hnfId03k@1sTN;MtwAS?5H2F2f(DVRS#yk2UZ{I{YswjBWR8UBrrka2Q>rzc+ z8)>CQj&v4}(%Rb5h2V z+s}VdM}4UrF?ta z5H_||u%|5Y8PS5p=>QRtm`^Am9})&xe|I1ThsT}iqQeW3$oI(rgP1s?agL_nioN*- zs~yPaNz69OCvx|;kLa?idZ?0eeWh!K@1~O}*I|vgx3@=0{;vC3gdg5%c&{>m!k-HpE*`v4kl)mK-0fMj4K*{ zl^*j|cAI1j*)F(U+EhNS}ZlyhbCfMfx1?6-@ zuc+Wl0dC0AyORL5lx~~I2r6m+oU%u4D+=34&xgk7x)o`+JArl`Hyp|xPiqlfy>NP7 z)!K{hFHS9Os$sV=UwcDS>JZMY6vEu?Sn@_D5;8Og;L2}@zxV_IdzaY2 z(DFigd3o8kCrP5>NkvUpBFTtEDIovGy=BUOvMS>?M)P&~@l1T#=fXGdajLQ@Y(e$r z)tZ7a`3(zd8FeyG=i{U_U9!4wElTy;l`Jga*c;@ z@loA0nK5;lB$5Ny;_Y$DnFmb-=yDdxh$a|B?v0<01&Q*gq@AV#rl_FUXgC#)%dvG? z?byFusnk@=l+tXkh?zA5q_JUI3&Mgv_5^)dzPUKx29BDB>>e4+tUv5ocOPBq;h*F2 zvP@eB4A8gY{(e62sc3UZT}n>H`JKgyUFIiY8* z#nCs_{!``{7v8@0)~O2_HZTX6weo&rW1Rx@1x*fXpXY4eM~9gKYV|y9ntrT;2^&HP zeZ(0UJZZP{C?L4^`#q1xHPrem0$bbb|9Fy^!22(O-0TRaP^XF{i#kRZUjn?bF);KW zbFwRQ;V3Cnp!!S^$?bp5+D_)4ggJKmD}tjdHka{6cII_Fj*N_0FfJ0Q>9|myK@oh3 zQ_7#M@#sD-bzO9@F~V0Ey9GSX-eF${t-MR88%ib4{-LH+9`3EXrzTD@xF8~%c1ROR zYYXMeCq~;TP-BwN3P@E|Y1_W`yJjrvzfPx3Qyr6}W&oHq^UWxu z+Q~q{3|)tIhdZ+{h@gPA1j=NV#sf-*|EdQPK3M8{KG%20){WcNvE}uUrc{YCU*`ym zKPV#Bm>v2x}li~NR zULD5Mb~c*MbF2Z3T{#LHS}AvHoo+E5r5PIJolwL)?sl##x=nASkhHiUpTh^wIv-yy z;JW+=+cd-5!cl@+=2@0%*E2lb#|w7X8Kk}r2)x+s9XU48+hrW^dAuUHZ_uW>S*Fto zLFp!Ix|v7s()D}vqWxQw_q9a#^h+pRg>L4h`2+i7$-Z~Nx_FCL1F}g$37r$*P}j}((XG=XBZg$L(MgI`bOYa8 zjq@h1@NPk}_L`T}M3v{Ag6{J^Q46AUT^x+^n!Muki=M}zT_RBGHTv7cToK*slEKf< z4GqRa&rUJGcYnkoX)niu#h~DHK~mU>2**HYqPgU$|g= zc6OCOe@_4;Z2K7#nuu1Ho`1d9v2YEh!ms!s_-&@L&i;j?oCd4>08^=@&>{>=SYq|LiJgd&ZfUKkr$6Rl2rFQT0 zrp2AE*9)as`+w!}ca#pPNm*Hy1c*&`o4VQfV&Ys$wp|+QnrAS?~GFUUtu=U?~oCVq{~w8|vim)*maj{5Aa>8UT(?M~<)E_Qpz8f!v2?b|@7V z){2anxIC4GHlKXSYmS6j-uXwZNz}xL*F4E@7u>pqf_%5;&weN6_eWHnv7KJO-wj6d zwN7fLXDS>0o`?uu|Kz%Qw9$C(_5XDR<}efP$MK0!!+$YVknXnwYR9yK>tQaSH>qrU zXc^%*+(syTghuX?%~m^;7!x+zUZFeNhK*0RY#YHOS0Ab_x_Z;{c(m^C%QZ9QEgrfy zcFfb*)!sWjEbJ1TFB86w;A!4(59{OdEzz^7iw8;*n_VBQowL4E2V_6JPMD=+jwqE5 zT%}@uM8B)MeiE+%(^%}RoIqy2X)Jq%iHGW=@$B^Wolktz?o|hGE z+4`)E*eQ0M@TVheWgk6OSym>X+^Mo|&3CMynnh>Jdo5tWUsNSGj@vI3#s;4AY_pqK z94=9WO)+-g7aR|QLWGXZ`RMmIvVJT%WjxV!mDq1GtB+?w%j-$oMXY$)8c!$e(|J-T ze|Me=O&?^GJ0G!te9vg9HKwh%StcZu_e9Kw!S&ndFLK|?ezk{CLy*18B0o`Yj{TyI;Unr@wd;=I*z`{F>c-mJ-`~y;BceFkh=uFM4Qy;w-j^ti z&iw1Tf_VbldTO2)_Wif!p`W-`Z+GF%I*J1Cxo{K1-rxNb4e6N)vKS1wN{TARtT(WH zJu5Zv<(cXrXe31v4T`aXb~=v|x$MXrovRVg3SBobUQ4?%i zcWw&Wbi!ZFRy^}OpP+_u)E<9_RR~g-KvnS7dgb` zNd=if8q@F7h=Hj1K}6#0fV`&!y7w(bLc(zguerMn`x!ub*+&+1^?ROf3>Rr*nJBm$ zy-o6y>Q`E$T#2$DbE}TAG!F$~fbqClZeQ{;0_h`P*$Wx|T{3#J;`}zRcM`4I_5S4h zw}*4D{3zqitvz~4aTJ&4b>#rh2RMFC=*}MN# zMz;nMrpKkcq6%M=YSwnM9@NK|4}QklW^8hX9sT{AnR0=(yx3Oey39F2ev~InwgGpD*X!N!sC$sXiTa!}z3vCT^((RgfpfaMBcEZg?%WUfAswDGtEJbX5ue z@CQ}ChJdk!MR@^$mi9RLPP&t##vA|1Hf@g>Cm^r2t9C`L?%Z-qzcopH;IDR*B_;R+ zak8_VJ82?c9TJ9DuiJ(PjMf*2R<^-#M60%1eXz@$<@{{9-Zng1V5`b)8dnJpQ8^Cl zexf0}X#Lxgv_xWZa`NmLG`xD<{eW=mvSrG??N* zaieR8_`lIbIbh1CZ203v=l$dIP0&jEl?eZ&P~#FQ2hlMs!4p{#{Cxb>(wK@u`%Xe_6cPoee(Lim7xu z1bvLjkdgfNL2b1^bes(bHCM6#3pe$s_yqT7O1yhNvaOgKN7YHsxo_4J#>dmcuWpOR z*PW&HoQ%(R-v-$ErER=`hMF>7PS#HQgQDyzeM<+>&@Hxd?IGAdLtPnO=HA4-+*VCj z_9z{vy?_JU(ubOe>p9HTX6}dpHkrF=MDedX0*?;!M&shxTb9!+_~RM_SfXTg1>ADp z?i!zpWGcnN`tgCQOWfG{m=V8Y`hz~Pl8uU~bIk{3CfV6+bM|uC^9zEDEV!!T=@u`R zCqvZ^#F~coUf06EZZa2iZi)SVt*97+^xXplA);$h=SlRx1z>8D_lPp^#@Q- zdc%3vV|7|T8;_DDP8&Baq^&*2Yn8*Kj zfv2ar>oCU)bF&)ci+0g^Dmc(9Q|f%9<$ZNodc8kKUFW;**;Kwo(Opbv#s3*Cl%&)M zLZm%F1^3T^0E5gWy=*C=AP%>Nf1KF$Y7+dy?vdhy^s-_bvqWlpz-gP~HPL936Ga@v zuGxuNKKQ-Vz=`MUI=jyXFeL+F+z@R0Eogrh!_Sq0K%MO!+@H-gm-FTLQ!}ZlSU*+Q zbkHP7gd~Kt*_SCkZ^un%r2h!i*HO0Jj*fQ%+%Cqv&F;pyoJ>0_ogI31T<}V-q;N2G zamoVABtl;A^m3?nEPZr>mWqX`9)2j;G(JUPcEG#FPV^}S0TFX#sQn)06pT!^;rNc9 zB%C;K-&#G-56;V}z+Dw8R6qLB6K0ONM?b&XZJ)ekGlv7mN85Ta{_|97v4N|d=RNUiZ^r?lSjzjfc-CTjR2M0Nof zRMaYNsJR%qqg$rcOI^kVDkSJ=CjHk%S*o8XX}xl5iU)0q2Ojhv$vz+Tzg2@KOzg2a z?GMM2hD#;9lF_;6idYR>E@^A*(z?{|&&7KiNTP~f4+Hf)VlQz*cO4DJ6j05$8YR|@ zV}*W2f@5mi>N>t`d_2-8=>P|pyXzeQ)Z@25)nT$ z;R@w{4$S&&fgYwtONk`M9T9X)9u!95{Q)zPOFc7e8tKvcdI1u-ci~*9T0h~(8WG|?x&CV2KW>l*u_sZ~sl(?L2G`3*q^UILva1ZE2dGlD&ez;3 z9*|V+vJVvqca3Wdzw}O+ce5#gO{MIVyYQHm5KILAzN|^Tf0c2cVauC-QLSaN59!V2^5_F=lcsdGe7Xr^ zvI?P2=(j4MtD=F%aa7SYtz<}WH5Eq4Nc3 zwx5<((?>&qDWSWage=j&UO?$>2NIvqvaGI*R@u7Mgi|bB3Mu(#YcZ#e)UK*<$}>M= zuLAyMUqT?EmV_WWRUMn!>UFoP<2Cb!Ug;>x=J(gGP0e7BNFqM zOon!sPNuons7K!&nV=x&m>T+8z#DNiavYRd`2$OVl9oJ%NF~H=5KxbB)!+tngkwjOK>BcD7g?H@ew^zaW=Qn8e}=t>RrPz0mG35cBmx;cT@(&IeSc zt|(-QT3&nCGXg8;Au0sPg=m!E;J+)V5G&hnV6lpdI4GHn9{MQ!}b=`;X zIgr)HzZ1h@N=D|`&AnoKh$*Qn|go9l2~mz%6U!eP^UjT=yOD z{(^14X*9XDE6>+=M{k?lz!U(M8-v420}+KKPRc;_?Wg7lJCG`%FRN)Vo)ofHF!)TvPvIRge8I9~ z=1rhH^i;q0PVA#BOTh#EC^|*Yib_*b!y9_1BvbJzjM8`bhCnD&UnFUkFmHST=~5G5 zq@#@qN_=o+AxWxT6YVbijm)D8>4bat)tXar2%16YJ)hRX%4RX%_K(7z0Q+%>pVnVR ziCu8>Pq-}w-kl34>)uu8EY|fx3|a&SL3-A(JgY%K+UIbjRb?HkB0GePw~mDTDl0`NwcZg9e~Dbc=J_MgS2sqlUQO|5u+z4HGPg9r;42*`W{dZv zW2q%Mr6Z=pTxdc~t)Cwh846{OC0ybz0ov8y$FS?=uxIy|>1_9>E*JL)z1Qoh^~|f4 z?nk5HK5Jvs;vU`aQ5lS%5zpd^-4Jye5L2!WN1cC73-<|7bEU zdFl2U*>rx~VTTLi#TqTdX6wiCX;-1C$0W6uP5eovib4;p;u&;HR=sshb2uy|?)q0f z?zeT}RXw=Wuwu9re!=PH4i<`H8Myg?*!RaLX4-4YSlhFI-Tej<@aA*IS-T^6wpJ%) zADe76(k=loZ9BwBdlkJ}+-DeYg;z@4cA4-X1A|NHM`vlBSacG$qD9F$)?37wB2>^h zEOdUUd;$W}B6Asm=zIl4zmG1rujmPvA~sd}#sflQRG~xiu=T`yk|sy}Ng;!oK+dF& zrWk4jKMS0y|FHkfF|=nf)%%7SCzN5lXQPf#Q3gHrB;vxY);|#tQ!OyD;dq;TTU`{? z7#=C>(l*ojti|jjmQ=G;KNL*oA(Q0V$>sPI@U5HX$PJyF{FHR^u0# zqTij3!n*I#YGfq)B=paWPO)Vge*>tUXVaGB_a{Y=8RWs6m?R+3>=$qU_^FKrno61| zwBv+FGnOwat5TzOO&k0Pompw6R)OhlHriZysg2c=%y4UpEgjz$h1GZ2j&G0x=k3Cs z)~~BwhY%+=N~ZD0$WEJn6Ayn@0!Hm@068>@G9dj5@&Fjs6B=&dXJnzdUr(T#hvT&+(F3%_5R@`vumNX>AIAw^UaB#UpY zT`8qBOU?z^ePfj-G6!?55r3?uofn0^#!d$fCM=CZ)-AYKW75V}M zwrm%+)yGQAE^Wp3{xJ;7qdwP(FpiH`J&TYMg&DmgadxR&`xoISBRX!$$k1@A zJc-E)vqzT%;oCoS3Iwj8(CnbBqtESzCu{F#5cL2GU*xU$-gXNn?NSG+PW?7L#DX&v zRPlBMHDlj9iX0~1@Q0ki0_27V@$n>Y{@fql!N=elCWSefQF$4Gi@;}^Jt5T5O@<{C z-JxFti>R$V&^$Uq2nw~hYkej9?cgYi!ECnY4qpBXrfYO(jkeYh{|IYwR?dy6K2Tr8H({pYS_ex*@d*k7Ydia zZI$)!!U!YR9E2+Rk?+pyzac9-953f^FLc_0c2UB)?6R1Lv>(~kW2XclMBiVk3F4#n z2!276#c2R4E6lt{TK(MSY7qQ|Hy8DEr;fNnm}UOf+-v)UBc-BS1@}%60=u(H|2U_1 zSG5z_&*wV=9_1znxmGJ9nTpeP23GTaWrfuq*>nagb&zGR%@3!L1fpVXjV0-q1F5@n zI?dR7Zr=qX13r`I(e1+5ik+9r7grYK9Xm{N`h_7_1D5uv>snYgJ$;|jlt~~b3vy$@ zO1GaMGwiIq>_U0TNCjE7d~QxUM>n-<)l$^s2Z%r#i&5P2MXt_omlE%f1w_5AX|+9ruU2nXu-XRDwXYkZTSgFf+O@ zJmH+_{>B~==XbOQ%OLwHvvzuE2z?42eF)qNoA1pxe{37~A!eJUM(D2HiC&_FvB+5K zCIjjZcAFI%ysIDbG17;H9iZG&q?XP1*0LFt5IX^8bo@rf5~R%kmFxrJ#&fzqtmG7v``52g>~z(A{9q_QD3V{WP$tF4 z!eieAT(QSKtTWc9ea}3`dd01`9}#Ey$_ok#1xmx1=5U!S_qTDoO4k8V9xJbAs)0-N z!64=3V{XNEYnL23FGkGVY8c9E=D-~$PnK<$h4e&omsU;MTSbp5m9u_yqTE{sFvjx} zpA78X2OSA5UBaC0H9@H_QZIbv}5(yXG4NCp@19y^d5p$P#d=mNH3)Ai{Bev z4yu}NjevQBNuA(>V1$+ubDJUs_b^T@8)qM=gok z!<@;8;p;fZhP%}KY~&s<|0Z)-6gu3OvzJ#2o5}>7hb|fO@pVN%-Yddq9P*6X;tvgPW<$@JyBu_LlTM5rKgbL%VeAG z&*8m7Eef?I2T=>>zRwfHb#S5*OB`T)j(o1p0_adLKZWGvoc`4$-jXPJ8Cf}V_a&N* zF5oA)JGx|=j7K@C?3g@DuSwm|xxHWyo22yLJo&(&ju~bB%k`+NWX%{FQLM!J`x+U1 z*aJSe0pX?~!jWMRUH7EMZgg{?E6X1h`^PIT|n`IkAkvf1Cz{dzfW!~HU7 z+NEV!pC~o1?D1RNkWTgY2JYHi=2jP<V0=CL}so? zGAW*Pm4qfjaZKTQNrBG2jsICTKppFRs;lAOK7$#!6u&aXE8jZp@oh2{of9LR5hnDA zDZPlPY4a1{1(+zY?DtNtb8SS`zsX|%{j6SoO6|aIFZG{tKFrKd78bNGB&d1? zWypinK{+(QR4D7#Gx`sSI&VT!c0j{qp=xv~&N}AlabV_xc0;}KX0G}SgA!#@E1N4h z)it@ZbS__QWaBE8czb+rOe~f#pg$@M6GBsrL|(yw@}XgZ8v)KSw2;AR0+VhBo~x#a z&E4SUXX?RC1pZ5ibelW@J*P>IMl$8SAdXx<(tKT20kdIBe@(|uXAE_5VI4kt2{GZN zql?Wl8fkt$r}I%fL8)RLFDMq4;8T`rMgj@j%a%5^5wE~Xx02n|(2f&>X|!WIxk+s0 z_h?7{j%gc*@);5)$7n~B`n+v;wae)O5^8gwHtQ1MDx76-nSsGP)=$c~m5@lvwU-O2 zpK5b%tyFwT5LDk};L|afX!RApI02I2|MQD7_-`^)^>lNr-E9BsqyHK!09ojdQ#J!% zPfh;m_`pc*mEQgTJJEke=Lst44>Zz#_IQo(CLG2RzsI4-#GMrO5KF7+uZSiA8T(ji zN|yQGH%RI-TPO3RG-Wl|Mmzq%dO(XBr9R^-tIsE^G>lb5#GC#8Wtx#I7@{JpVKZc+ ziv=g^vQS@U_>%Ge{R98^ul#zFF~l-#==tY=J4E9@L;g>*aPH>}v2-)>TE#%r)iDoE zjs|sicXQV!!!)IOXY9gOWC z&EH-IQZ^7C{~gpp1&tKF&7MyUE-oHBF^mFFqZct97L`8_4iD8Fui7h`?@#^_p*txP zLg%KYhFX{3ZftA}jg8IC1BKk?`5Moqak1Cd*SAS;dxa_pm>8MW&qal1dEC9gx!S(b z&@}cLHj$*+R0f8vqBjhTx0!y?Jt%7U%t^zh0AFIgoZK3FYHI32huwjpkrAP;r@D>P zyR4X8ht@WY?cH4@jwsA;4?M;uhqPy^&pOKHNnOQ9jnk||C@3g<2M2U(;NakBrH!{( z6Scx}4j-s7aiAtZ zb8r)wl|$$&LiP>qOjSF^qp~3`!?UwWDX6($P3kC9$7+*?gA~B(j4|0LrNesnP{V${ zR!g-@Zi3Xo7qd`xslm*Svik+#F5E8*|LZ@iq($Sv^z*@O@^D37<$N(>f-0%WcD=og zeag|X#qaaOaU*ME^=uPQ7rwX?g63CX43E7_IF z6ivqKpBY9iM?pzyag0`EtsW$j`OQWgvJgPn+XY3BCbyK3Y60^{JN&|DpdgP#zPLCe zJqeBdEl)pC1`4kZOABhxE|E#}P<2o_^$ZjOH4qDq}2qC>c@By=C zd}!$C^O!_Lv20cgd0%lxiMsn5eItGfLUgzJCA9h}n3Ou(OFf%Dk2=~O`zhwM^dg>= zH6^#dm!C59xZT{Ulei9}TjPlNV;Q@iAinyfeMi%UDn@2T&I1;jH(I+5tPUw3CEWI` za^w%e!BF1M`)NQ{zQ;AEQ#RL_%wPJY-NwUcDua_;hXlBY2p^;YH4!(nL9(K|)e$U* z{_HL%%4^=YoY)X`KGzD(SrHL%`v3 zq!>BfbXNDZ@;tv7QJb{pD>*;dwgit|W+rgb}8j zQa}=gj&(adQiyHG;K5BcpK(tkH+e=AfP1O9bYnt(m+ z6f`-hXS%3QWw?p=3m*(;?I7n>@I6zxo^S)DtJTMv?GdLWrjsmW^Eu18az3?7*UOEn z^w$#E%)rUyRBk}`Ttr<}L(JplrXKT@cr1Y+LV|UDm)cz2U<5xCG3qP3!BAN_=h?v* zR{GJmm0x&0Q++7XFu8X&v=KuIj5`e za9Ai9m#4)OF@BwJ@bC9 zXU*{NJv=O&A9o&_&aKz8MmVx&C zcf{V0Yjt#!2_Ab&_oJzN_zK-})17-H5QEeIpz0jB;|#cV-6oCIB#mu5jV5Yr+eRDP zY3zw@+je8y#>BR9<~?hD=l#xKnDxxee(rtU*ERx4{iI^j>0JEim|HMkujm6a!Az+w zM=$zB_T{|^zPM!Sy-U^l(cp4?sk)V;X=3Yy*aEwzCR3LaZ(`@EPr!SQT6wt)V9CAQ zsts|<_UDCg2(sZ=5`#vUS8I3~@A`eEFUSoO2M12B>~Jy@LCPgeSK9nU8$iV&H+tV2 zL#SV}DmC;0i~#9S7m29T?U0_>j^s+YoxPz5H0#Tzfd# zu#WS3pHJ&#-X2Uz7T=)XI-p4_Z-gDE2sD@<7vfrxLGzZU?GMIl;3`;Un!deHD%D!? zu!w456&>@yr^cc0+qHO*<5rh9aeZ$~s|Jtvi&Mwv$15%QY1?G{r13G}SjhFw4dUbF z50cAeRNzKA9sL72;-72ugK-bUC|sDn_J#fBMq@HHhEEK4XumQR{>-H6k`gxX%g}qm zW$IR$(b5(h5@SY9XMC#Jo6{X0rwxAB%L(0m`tmanjAkDmj+hS3EQ6lT+YhhTI8jKc zwg|e%y-{pC-x=E)?t>et3D}CFdThJBBEVl!Ovj{Fl2H!WkudRV&>Cco(Plm=oUHOS z4(NdGl;V_lOfVVh)bAo&rHJ-=%7m2eS4A7*$^L$!T1W=N(duZsjo?BoAss-yx&%Uq z&zlES@Zw|{qt=0qa%q+0Dk(0L2z6e3sap8Qd6$xLaER~6*)+iEC?`jaG8%DA8U%X3 z0GCO~YU(qDgoM6hV{7=QYe=B)ZvPvX%O1y64SLdc1tKcP)=lqV6J_HF96P?AHz#{l zZzW>syMNHm$$jMi2rrWd--cFViNPG~SX4htXmgCK^|(JlTfgrd*X(ZD^*zjVE#s&< zH58_{#bj0gTp8@^?Nv#w?~qRBUW1^xA@Y5*Ph8_hC$V0cylep>FCd$k4^4E21@#;!e*XTt z5B8D|$P2uadtQ5qAjEoZuh;Ag*pghAPcf5IAuVC;894xvcJ%)GrW@=%oCC8UUkr>i z5OlsDeYM>qnJA`Oyu9g+HFn1)`N{`xM8OwPaHyba+GeU-@n^ym1;4SQgs1$roK+X; zGc?t7{JjQ$&8_xr<-=?$D=LK0Lqf8Ud&y8^5#u2Kc{cfhEC2w$sHdr-A2gB9X*eCj za>Tw1wHLDPZwk=fost#58fqi=x>?Z#@WW`yl1={Ng3u1j@*t*`)97YG z0Cc)FceRgaZme@@+~P9q;AGW)=#)r;G*G@2AjnlCbSgI(8)CC4mRYwFX zPi5Urd)=OZ`*K6($Yvg@3GtcW?WJzvKn=d#9Vd^#3jlOk#?K}o^9p8-2f-)V@>G1C zHugICjSu_%;=;l6!A{*6qw*c)g!_W}dRvx*(JyNRU47>bdIU}?e06>A#yRIq=Xs11 zp4*-vVmZcADe>Yl?PP8w<(f=oqoDyPxrZw7QHJ8$dL+K5?Es2*Vk|TB$&6A;SDAW_ zRqnZ+&6>$fK=PeHf7PjwH@%|~2TzkTaLB1`GI^;x^Y~sjnU2MAR&MC}Eu5}OA;QdS zs?#xH)SFnT^|Zi;DIEYKP2`P@<=L9so($s>ex2Yya@gZN8$@lf_4QX~dro7CIAKy3 zD=2D-SrHo;anVi`z2QlyX44q4L%YI;O^+svvst0W3PUxgZ<_Z+G!`sFfWvp8KEH2> zsGMk?M5oG4v%klNB_En;%t_!|FJMgA@^_4RJbn_!_cry}SYV{fe<_M{v!uycR0O~O ziz1%xgSq^k_YG4)8-~%$3uMafp8?0I4}=G@tz75F9c;&A8O3MoD)7$8>eOi*Z!8$i zVdF!3NgZQ4%y%3RL@Z;w(;EaHs9+ddwjq8F&P1oEwvJ`o6{XwILVA7`17`X&Zg_y^ zd>@5>`{3a};)d3c@EL{(KnF{5yK)6j_)eg+Jp97v_CPciYwp{K=00c<8a=M1hKt{)Lm3zTB~9*p6CBCy(q<(sT7sYBep5C^5^;(|ZLdyDv=AGgNe z)c}kxKqAO9xR4BeV8Oh~>~u099wz*@6(u4beO9R(pxV)R4|FGSDdV@ePYzFVw>(Se z%A#2gi>1pq$%<;xOgej7UUB@s+G3wi%Y^(7UqK_OdBY_gw?wjCc>zV1DA?FT2ZI8# zbnLUTc~c29_;{$Tr{TUmjo!DYC+sI@YkaQJW{SET{|UfFD;U(T)GRvN+Lg>bmh@Xh zhnf4b<5ucq<#;sR_;0;)rjopR$tk_QR9(W5zO@I|KvCd65ZHz()+zT`BtZo$7U9(v}1;QH`g+Dx;44SN~L?; zLOsllNOex{DwQ`f?C53IUR}Mcxm9BMD}&yAwJB#2>Np2WYUR=1wxM|1IH9EFqW$p~ z`P4i7C&r%)aTw&GJM%2@8fIR#(#J{@FJ5wQ=+v(HoWUc0uzjcM2?yj!LE8M!|E_nk z<>JOy@(q7$IN^PwqTHYQW5{8rrPqyXX&Zv_-N_xNkLOj!YaKLoPJ^ZE6q{xn>&I?n zzMhd?OMw0Q^JOmj+3@wS<8LHoVTg(!_%FO&Lf-U(GDUedI^T8-GbJU?Pe1*|a17Xa zWNjIR)BF*<6W~c!Vu^~(**v;05k12@91{)c<*KTV}r-czZt# zUhX_67fG+{cpX|o`<5TD@@Epx?b%9^tW0G&FKSX;&I?m~rplO5z^SSCtf0=65dd^` ze>o47l=Ci#we^opEUWmIBH9onIeCJjIHl%um&4|2bA9e+#HFGlm3UrG2UYP}Xyby_ zm<(aYI%+|c5~+B#%6UbqJyOQD;9KrlZo6>FeR8FUs;b=fv!=Zcd$zOw=+d*n0j$S8 za3hc?yg4!|bAm7ciw)FdQS-qO=C_9dEPa*u-=Lg9^Rf}8f&JFQEIK%C)YarfJ<~Uh zEpTzC5?aSc93SZ`U}1qf%qY`JqD8Z*FBnPrUi0x+F|Dl}$Emb#F*^`lrW0jRW2yCO zz-4j-gDTI;v%`_47Cb33(*u7;x!#6>v>4B#1yV^SBg70yqwifB?U4t@vE|w z?-0Eb9z;YKj+2eGlO%9gs>o$+Cwc+3ym@og&ps>K?2t zNB6xAg=Uqc3*2b|-E&?=&OaaRp&wyvqHHSZH+|k?$qnZn2j!JINX#2H+iZlR_ht}o zHp3WCokm+aH?vJhsqvuhwL6ADqwUp_KjFli6;NF{PmjTHp(c~cCFB7P+AF8 z;l)x29RbWu`>qbSU8NIAe*w$~5;)6xqEV%aOL5@%I`a%paLA1nuLDKGsG{~0gEHAk zT_!JKPzWn5a%N=aAzb-x zc^saogLf*D_dhNGPX9SmQO+N%*k^VU0`Cl4*Qq{UL(Ep|Rbui|Ag-`oLimH^DpL3P zWp1vHht)s(Mu!0PzN)cMv!<2jn`X18BnIu^E#FVwnLr<0ss&aq*qH0Nt?Y0)`~(U0 zsxAj*p3|>m*;w6&qTQF>pM;968f^4)>@E*qJ!}=M8yp!^6egl3L)*KOxLIcHKUl3-*$XE}STa{(Jl;yDmRIyj zlVtC$SQXDe8r4y9(UK+&T~Bw)jhuC_IX%O%{4BDQ1mtrqIw@lkVFAWuAaZomWP6&W zqzIn?s_j9lrJSi0Dn!JBd>_jfyg3ltoC#h*LnH`)&G6U@oCVZ%r*fn!|JI&EP zUk+a32s>u0H5g-wmPxSL@+wM5L(}98ZGegqzimLin5Ystkc#+ zB|oHd;lU+46gwE!Omt^;i7=^ZK|c8q+Tv~|MVGWRad#@CHw!k`>6a`@QBp3-mse#j z>hrQg%=vNGe%VEb^XU8`5kUZG8uNESsE7{=6({o48SRiD4`m_!@`UB{ey=Xd^bo=7 z1*?`GH-F<xQu!#tNGy=26I#* z-BZV%t;_GK(9C!qsch~mG)}4|r;I?0dnyn|^JvvkK1hy6O4{r zCT*8(v1=XCMrw*9s-4~@-^@~#js08jjKCX%AxGm>^`@><`xsXc+n8{2Yptz$>!PT) z`6gGmB%}I^AG;ytme;-N!lHN3F|Y59Nyqa+`tLs|g{lQu z);tPrl0|Wmad?&_hzUh7EO^JpG67Q_IuyEhyM-S`P8#OEjx(pH)!k~2*cStopfUE) zOxGsid{8eKD7_*Wi+?9-_5dH$V>$`+XVh)me!HDYu5nk2cG%uO52zPM{L3(oB}x*t z-Q>#ztkQ%kZx5Lsh=s81VL!gR1?MOUGh)9#YpQ213G}%>v#;ydN3fN26O|-%x56@S zQ)c%k!QN$6CbQG|Rw`cp4{Wh$oPf{wOTI$x9*+J>jfU)hA2E)(4BAbjLZS(E9x^mP zZw1Xe(1}3iJSKMFMrgI&DKpQ+=(;>(�GWaHT4|LL<;qWLTmO?W#)^RO5kq;=`N4QK+|Klr=M`esV=9ZUOja>5K?zpQ;dgr#IzW|YL;?-wm9EK=&{nuS z2mzB`AwrM$i*EHUdOO>BM$5`#Yv|zZb_#N>+@2MN;?d6z|UvlZaQ~4UoC|S{(SBJ?1MD= z79NR|N+pF57G-arv71L#m}b>pKtiF3-xuBwi;|fIY0;MP`^*Tt2}aMWYM8S)eCi4K zYzhEz{9xtJRvM*UZsn4WC`?e8wIl7DnGqz!at+gdw9aT&c#&8|Wx`=zBw)l9c)JQ% z?y{!)c%SXI+bASpHdFX26i}hzNR8pA&5^qn==g&%!cWumB{JR8j!~p2@%?WVVDJs_ zDua9CQ2bL(Z#`nNVWh^9vCn~=kk6NdKZ)X2R6J6L*kEhQ>!cO=RM^3R_2uqZIgW2O zbd|m#x5qesd2*N>7psRtdKdrJ=%Eo`y}>w5W)0_XU462^#7CI|zNUUh>IZ;Ojd5eU z{KqlQRW0}t3SBX9uSGX59+&fnNxj|J9f%;vjCf)})OB{rTKKh!N+wovV;1rcSf2-8 z!niErWQh;Cl`sy<1^85jcJi*%3utkI27n3Tkkhcp>Mspsgi+-kHwE2AsHe~VWquH+X&ARAHF3e=E zPRNJ_E*yt?M@mdnU+?BI;D|^mxyRNPm?XV_!O3PZ78~<_9**NZVl^caY>TyIWtG$N z7!JC==!7Pt{7t5%hZ;`G)Q-JIBXm|bFx+{{AFBkxE>Nav#w{_q;X>{nS5&|O6 z5D&ik?(}j!`&?>y#*-PWbD-KY=`m89W;*E6cO5y7m3=(q>eQBXrI&o4dCVq1?_s11 zc3#6?4YR()+Z%pZdIb;e4P!T;2Q!NIDr3aS1TXZV*OJm0x95~`V)eE=9Y;E!Hs>23 zcIDL_hxwo#62@u~pqCO__S8h`FL8?g=o65o+QdmhL`Wq(w}sUz6dxRVkRA+P9)cAf z8NfTp9=`#vdlD%juxv&I&CE>8@3;hZM2EPRAMNF7UPZj^%TaKcSi{)Nbi%;*h)Mqm zKpo3=^iLspe(C^qw|qnw$kbp(5e5gOlM!&trB2!N2V56+oZbqoHL#n%?;Gz8$4Z_0 zArg*dC<(Jh>wKd^_7NVkEuj%RopI7}BVnKx%yU+MFl_kzXC7RLiAk{mGFii-h;&IM zs!Vzwf2{i%e5+%GMVmJ)d!!i|O|2>KW;y;c$xa87ku)(aQ583IE?i2K`80FMV0hy3 zS1L96DQ9kXYMV-ohY29$5F%8QE>_=o0$$%bP-vZWs9*rpQ?X$leP$I92>`M$miJKV zy*@na<7_Y#ReBDJf|qQ>jC@B|&nj|DNSioB0HdlqrTb)HxlbB@$K0`3Dbde6`C>zv zxhEa{T27O7dVOOYylhD<#uU5Rk&!Q_okfY@clUSVh0S3>7RCqPiq8t|!G=F2;mIOn z4e}wG@mgixGj88%Pv5vBGOz6+hFJa{qq807QpJpC6xm9Ol|Sc_w%|FWW+MYmzl=qi z4v8ve(Ts&LQ!OUQ#3~xTGbdHkEw~;eVpGe`;<8sq_yNj1kds^{U88w#V5`s;2Ft74 zw6I5P_pK6CS~U4Yynkw@bRsq${m7019&D~L*A79C>u%sjDaTFgJPeph64=s47Kzs$ zpv}>Z;hb_)G_A%q4Z5y&)4J*&x|{1OQ@?U#`y5bU?9*%F=OKMz6{I`tjuh)LJYqYe zH8C+Kp<;m}$+H%b{l=QE-DLF(U|53#bKFm-OCIXy_se3X0&X4M8x?~pLa58{=rT3z zXx*#A{emVCi2yjA)hX3w+{+^$DSRmXstQ&9kz_x^y=$TmnkL-qUFLgS&)-x;2q=4- z?Q7yaJQjx|x1W>ymg>!#lQHIintAQWC=H!HtHWAUaS5P6M3Fn8!liF| zgK&#*T4eAh3-|KOAI3d0ppUpMVO0+Dr9{_++Fdv(Zc{p8m;PM*xIfp!H9y`e?k(@D z%isPd6hBy)c_AY8+TLrM>6@86+ui7^`8aFXs^nbMGV9LyVdk#rESznc^^6+DoT`?1#CAJzMn?80Ri_ zYLM+gqEfPCJmvAy{^n1)&EwHNxhP~QFDbygx8-Nri*^49dt`SiIDrCR^DG9Lc$q7u zX2Sz&kDyR4s6Zt54OTMZG@IbGvT(jD3f)2dU)3qrSm5)aTOXermYy3)QTXphT_2*v z5#Nt>ZYc&0jdZ$>_FxD)0O!C#lN3XDU(IZG6}~wv*TS zYI7g$46R0|2Spkd;jie2&1E9$$olEl%ILG!C;_19lt2JYeb?V=dgMPZ=<>%ckv?8k z;l^3_i3v{lIF@in)1}d~fq1-bF{@x{Zzc5#`bcMP#+<_bA}yjx5_1}zdX>s5>3qs| zFMJ=pUWdd(1d1|kO99z}fh8|3BcqyRWpf0kYMa+74MMK(`^v{bXq|y?G{PW`QH6-=*+q$kvU@VtI1mwn*r{{cvK7KR(%o8OS$3W3QQLIEnJmgF zlVME0n{AQk<@lwlTQMpJ`SaN8YSKr#J>0-t1N4Yn-__3QV%!z=Opnl9G*Wu8KX7OuOOh{KicqNjvh6ba*F0Q_Rx->45WC8ZtWNEC&=VTceGI;RP^$9%xx=^51K<5f zkA0&P>D{&yCi#sSML>@QW2CP5(yR3InvQ;%fFDbn{}Ya7$XY^bZ zq*;5mP(m}*+`5TvHulcgcd75Z&e2|mRT>T?1`J!5Np zSjmV{LQ{H>GgkcoSopi4wawqJ$jPQc*#s%kynaCs9c{GO4$Sk2=Ja_6D)@q)1#IKgUAM@&&^Ustu zqJPiQyhv%rH?4RQ3HCQ-$8ueXBjWP>!a<(1RCbtThVmcL#cY)`G20m(tNvHTkd8`M zHsUl+S9mcZ1O|F7{jzS`NDCp_#ptKOih$-LJbu{og3V9rHP2w!hOu4J?-Z{@-BWct zwN%+ck3~YZpBg_*&QL8)PUA#qa+UoZ*qhiY-I>4avp^#=( zQ^oh}L5u!LxroW9u2rRJ`kSMX z?5rGn{{pJYLD#mt*sQ^qK6A1t=a#k(yxaUW^2(cq9J>c@`kg9`j9N*{yvym;J!(9P8S!ofR4M@WrJEbemu&LE@MUh@#7(M6s>bL}>ZO-?tgvJnu!L(`|=pbpg!!kqYN%BZ;D`%_k`244EjK zf9BpZtBhkgs9dUQ1PNh}AB##hUyLX6K8dHYpu5)<8lEnU@g+z84(R=Diop6u#s=v^ z2?p%KN6KY8hMGEqv^m&`_< zbJ4b>)rg(~ABUb$g{R4_5YgBexCmLqEvDRa$G?`B5~j$QSkF_lA^i`*#!RCi`(qmY zmmDh>$xbG^xm*o*>|(s_J8@FFOVv{0;m~5BdJ9nC$ z0ZIcoa?-UexO0_MvwOq9#T6V0{brmEXnkPB5VXOnMvl6=?;d$SvE@TD7o*ZJGYXwo zbvu+ekmBEMv%a1EFTzD$FQQ!((K69|Ax)i`XS+S{EmtF%=qXL^*3gMFh9uEs(9Em3 z!PMeb4ODIlIPtCSa6bq?uR%vDS2_UIj1DGcaHJlp{`#uop)5 zuR7?f1W@bm`Wd_UYMGo`Ct=D-g=%pwPQd@75r4uTh2f-%u*xR<;{#h^M$>56dPYXT zNlw+~F>_;5E3RA#y9=dwMDz<6j1+?&x-kW!Ymwnny!JuoUHzc0<_&AsNn~~1u{yh# zWyhP`p|-L4%1vm}O1*ixh5I-z^xqNuE7g5eOA>F;i-S z@p%0ZefO^c`|Bq<0{Sf&Vc~@nNS09y8opP5?jmqQYDSWYU0>D6hw1q|7vKx@eiG^h zp~Bjn0QuUN$SRJo3d9F;%g^4&PB+xaV|PL~n=q+dtb2~W*j8}WpnSR?;HumO5M)WDbzu>X zCHEwy`SWr=+RXrL^FiayF~q@UE#`J986@e6iD9l=-sg7@NCG$^ePvmf#h2Sx61L;D^zO^j{R{LB4=w3G(Mllj_V$; z?-rYRjr2YWL5&)jYOHs!R78eTovwy;+Jssh527|*1dlK;M#iy7*A5~usqCZjWXM#z zZ#|kd14JTv9e}!c`q0hP@WL>h<(4(nt>s=`kx=;4I!3;P6B}@Swcl<^^XkqrkYJPS zJKifMt|-0GD}StL}>E) zAW0h{6n(JaUfoH5RNOuYk?}M}M3(ML{`7?0=oDd4sfY>Iv4e}7W3zXA6hHEobrhKz z3A8;mOX+kWc*yqT*!;9XPHVEgR3UIEqQB>C%c|6BR07^DME8%!OoAoKeoYSS+ww!xkRxy3uG>U|PRY?HC} zvvRQdRx8tW;euR9E02Ja6<<_bK)h{FdI9R|P`l_!;0EOoR_7B>6NYXix6!YAzYGCp zwMD@fF!B*sO=Y$}vJ#C3vylXO5h{t+=TAtp+{KA9QYsjoL?}`JOhU`A9)v@Er-eR^ z9mcSyGZABu;aG)Di7p19d?D_7V}VZ&^33@&>QD+)R^4=ZRUiU9PpOzY$Jrg2|CeXZ zVWiHXBpZO6Q{lytkb@m|yV_-&!XZN+k>tp{PT!TE8cs)rsYR!{R>Ca@7q7bZQUfzn zBC!y}&Xdt}RW6nbMqVZfV7d|yJI6p zC3HA#Q92bb+h@PMqVyfQ>Ufevg0q+!k6D)hOnW}BsOe9<+hj^IUJ9JeUW2`mM!~sS z^q6Ff2vBVLjGMyOhx^7|m@Uc{QF1SahqK<^B|SB8(uBooA*O|wy|3EHH7Gg6x_!;d z9$N4DD5t}74!wSRg~x@K9w#-0qtU5tFjciMU^xa6P9N#+*+Qm|eW_o_ zKon0#hbw)}^!`jmuiH#`>HGeZV~lWlcsKxi{rOwgJ2e7lS3-bG?!}YngQQP&WJg-mhKpa z`>^psMk=3ka1TPloW|V8{J*IC$zO><%&W(1Xa44#M`uvVz9UUvT>7ojVQm zz!`(PNtV0fiyVy!cr`kIjpDV)zUxWQR8@P*YKL{e!3KayzwE;3?D`OzXW)yah0oA? zCiO;i?YlnR*g>UK(|BB&X{ZHEp5TTgfB@So?E<8HeBY^0s*;0I`k~Z$1EtM)>CC_C z!A0NkvQN>8ypr_UaV-HM@wx_bvU(*%21qJML+Xw%lR#z3))9Y_}rQU2Xo!hPdRv>;IV+AjZvH z`(bG1>xy_{*wbSHh~wR0Hhs~R2z|qNUmM&xTnI{O6a*@Aci;@KQrw5&XBZQ?{}g24 zgjY&=LVzDQO0K{(F)xBWC-4~$P@-xK{q2xjfwmkS&XVJ$(E+pD*P&36_`t37&>Q?3 zW}%vK6;~G%6EaR;mmr!#O{oEB%1eAFrQa~Y!qCtpM>7_6Obaoby|a`+m#zZ8n#WGR zQe!f%{|!Qj+pnh#4Ydw>S|*d=t&_Tk)EX^Cv%kqMojf7m8K3%ZpFvPpK~O$nqI2+%*;B0=lS9(Fjb6$RFMIs%Jd5^lVb_ z$63A~?!08LE6~XJq5s*@f~BGgGI2iD5Q(?)LqqMrTkv*Lfi~w3w6mx3Sumf(PNsXu zxi6w=yvd`RDNpIdbJmtYC6`e`9`_b3L-Fp;BB#eQ$uq$COziC_n$+-`I`o~~lRNvC zC~`lk$0Df{uMbc;^sJ86!}M3jKLd4j-9P6`7G7#}U|^xe+79hr6JjEgeQnA%QFxWH z?XR3_reMq`qYtL7dQ9-Mu~@{_^Rr{F;~m5^OeCj4j&HmOrEAb3{KuCv0uMvUm&;# zL35hf|MVXMo2=(>30?z1+f%nSrVp;6zd2#cIhSX+Ur?T2i}DMzsTkv4JVvguVXLWy z8b|{Vo_C+zvyNsbfqI7g5>vIt2UbLG(C`mO_bt!sWWyulJ;~jWWFFevm!{}Vd{c^B zL8!{^_Z0DLCHtwo+EDVZEyBLYfSbzc@ZsKVI}67l z*aY3M|FeI5DY<83RjFd&05m-#IIf-MZ)k3t)R9qrqo{fY9$Hl4)3*Ni&{FW%EVN`* z{CE~ja95;2vcfv4kbn#qqxl|Els-X$lD^6jD;2Q??8rvh09Qt8`+@;6rrOr=y$>7C{-eJ!#IL?8<{g}z#uS_lBc0AYy zYduw+{d+9D%oZy&TXw_gQuR!)U>2mnh;N5EHZpl5B**wr;8#u9yZYX-HKbZ9-m7yWoMpPQQj`u4f_3d? z(HiF1nb(JZ)@zi3V_7{Qhnfygo3C|3xVf5#RiWQ8rgZUkXNtXz$Muc_Mh;PghMX^r zDkUgjzC9DOj3H->c7v9^QT!033s7-*+cdZ<^k^gLRh(4r#g>Tf>%u=f0&6YThfxe= z>4?Jrxrfc)qIAPvA#K;jtRrH}5=CN?OGI z8DMgExx*?iH>?X`S0eX}T89@UScd76^@>SI4c}|wEm-xc)qFq#wi?iD{qXTa^^U(@ zrB_5nZZf`+pi_!_t9j0>WpERPSnL1iE7-?tpsOljH_DD>R!6K4230t zdS#$TArvF$mw-mx&OiO>KZfaQ45~GfI|WlVi^&6wYSdcEhTvx^E9c`E^B^*hgSW+O zBoaDf8PcHsog7Df-RX?QWA8^LxJf{IY< zODD#8^nXD>?xNrMGdO*C@4EY`h}m)B62W?IJ5U3HtW#;%hdy-?jBT(HSWIH+9M)3U z1vfWSm%}3V`a72nF6+)qy2aQMvM{V=oa=T0Mjc?~nG)&F{N-3gGv!<6K-F>K%2ij$T zL-da}$J?$kG1WYo$U1B-$M|02yrHm1_N(Yu&rO)QHF7dqYFoYyuLWIWQZJrIX7Bc_#GdU#p%fP{%Eu}_5KoS&rS|smHOuY6+PR73 z*1DjWZNI8JIc1uo0wXQ@1nAONL`r+|{pJ?F#%;t%CX)vv%9O<5<>wNq@fN>H_Z2LM z8`99l88R%AR3BXQy96r6#COABkzBlXQB$^GC-;~;C3~ zR9}o&HsPAz=nY9ljr8_%Q!E&rI$vh3mK|`z8dnwEwD@AwkD^ZLU#I8FVNVNyGWT^k z+3gs3Hv~$%fhu$_u8pB2xugYVKSF7%0YHlVT>~%XqKOv#wJl#rPQFFV%_zV~YQo5J z2aVXnhDUFbx$q+)f6Hgjt(~2`_FL<&F(R)k(YhD(572boBzzw&IOX-GdA8*L|2l$I zGGFEH?gk{;n52?1={5f9`@UoR$LV^L-;F%v>1`**+b^yvmi9(v!#c&@kRNr1-PcCz zVw5v)1$JYH`|YtYom$Ujeq*V&F?Q`>EhC4ME#RtSVsw7 z6z&47DOSnQLet`@O8Ypcci9DrdR)zR>%swU`za3@)P$GF+l&*}xSpi+&Y>Izb3J)% zx~^b!xPHUgq-OZlBw=>E{X)%KbQ(+<(;KRA?;cGpegrLt3)uHA>8r5w#U`bOMH*jo z;d*~_C!NTL%QfrifjwF!un$2Y{W%3uJ&8W8Hfx*zQP?!WL7|009ckdoCSH@lGKd6C(W8kgEucNi* z?2I+8?;$8egW!)WXs0hEUwB9^)a&M#h)IOUA2V}}`Z+}dN%5Fh4lk-9y=9T#?zIvm z?Fa;%V}#RHy}#lLwM^0XRot)8OHJISzKfX12pWHS=`hpdML~2Xv{{@gAhZRJ_=uzn zG!5SW3fKO=%AoyM*q2e+S?o}GtK7e}!}d1lYXT*e(%=tES7f>}tN3W%J0AXbH^?`y zHfg?*0Px+)_9qjAn)ZxO%_ATv?;@Q>Y5dw>yZtSXxWQ75dNA>Z*M_S)4 zBB5FI7v&`Ch$%=+78Py%$LW%dunryUpAy?xekCNY2Tg@q+vu= ze@Ty2MjR$HxSE}Br;|^2dlA5b_3&31vTgiJ<3%cEQdtsF0rnO`ALYGJ2}mMWYbqo) z=f7EyT`)vO&aD0RA$gk3+tc+j72S)I%AbXgx5~cTXBk)Ah(WoGcuLt`uuby^yAda= zAx}s7u39`7&CoY)tms*|d=P+j#OeC_`b3WRjtK>83)QzRqcWKu5t1PF_xYWpl2V)z zdnsnwyHm<)+miWNzZfJ7Z=b`M8A@%z35mE<%LsqVH(tB_YV1XTlnR5lsCVOc!n&C0 z@?;`Pog2j7A-$sEZn4q#okP8Uu-t9NG4jMW7Iu^zn7XFf#%5|9B5)X`aA8mGg9{SN zjp~R?4FmSve;rPPMZBEPtk~;Bj1(s2?(kT?H&K#=>Ng>VU@`O#!^JaK*y?i&k?AM; zc5TRFcYG-zuNneQj4>O{yNAbCND)js&yivZqDK!!n5y9w!Sc0e)cU-8JUzeW3co%K zCk{k15qW*t(Ov@GiYW(i%LPZsJ58YrpP^fy8Vxmz*gIxcLqXv6u zqb6JT>@WtkP>*AMK6VN~1fe!lF!YtwM~A*xkgWhTsAcf%c;|wJYbUN(-)7ua(LzX$ zXF@$M1%}bXs+PAEJn%$(?_n-J)HSVbNC@-p_ECTcM=s*R|?{V)Ur1r`3S9p=I28AleNi)71W z$Xae-G3-vsN(cG*&WJHKmY;DWKhz7?EAo=bs!-V_vz`zN@Kp~^q_E9Hp8l62!S{3} z=i2tQR1INBrb3L`Ajv%{W}%R*Qr=Xrt(tVFeAPA+?yeNp2DDcUE>jd&#+yUf_?OT> zfI+aV+U1{p0GoBLb&u0ZFpdF-`|~$BCRe}$d3JC>%i(QR`vt8b;RsinK zBDl;L9cObRBTA6v9E>J0C?3G4h3lpTu_*Y(yf!%*L%nx$q`kNp3g#hOP^g3XJ+De* zFDdNL^1N(*3cGI%SDk^d6F2Z08NxL^mO&?;Q zWM`U(i!?m}7q(yS#I(){g!#V;6cUo&oRPeU>}sMotFYx(XQ)B>4BAWlllc9a*1QiF zPeLA-qo}Y$-7&^$(!Qu-K!`T2u!%3#-yE z;qC0{(fI}L788y6GDYCh7dnXO(hYTyYZ5cGcTn0SBb&5tn5#{U+v zu9F>U>$17rlAl;@8wFZaJ_(yh9Gw z63N~%qOwdw{bT+?KAS>A>dX&s<#t|UJc#lFewBRQiZO(L{bmQFMaG`{`8 z^@Sh_-h|ORovcIFrf$?apHenhd{XiR>N6n#ksHm;uK-gbQaiyJ9HLnBNfhdrT$$n~ zu}DM5&_)?v$HDpU5=fwef*ploA5w4^-Y4m_RAHf+m5OkKD)HW`-;=iO$aU~)0W}-g z+;(ZYA7yFb8zo#^{%UtVwY4fAvZMQYEvL@Ie_pM(I3tirl_{_p^}L83wL*8Uj)`oH z&tr35JjXn!sXdiOf(Q%y@Aa~~nj8o&NJ_Oyfdq{QBNgLBS>yU8omFJXK)M2KTWQ?w zx03)CFy%WC!+$p|EESa~9-;s*3GKhd{9bpYiuaV+<5T8^8d7dhJcC(|ttcs-c#C{n z8RH0I@!r+CyTJA%Rs?fM4E;B@kTVYM@VvKms79xL{da0crTqlm-fwV=ABPN)@Q=M0 zeH`S)7^AVo|88_Wzvw|P4XB@t&X0YscV-(LM#Y|3UA5alz@Sa&f7%P92=xfN5A`%_|ftz-C(a)6rOoo z6&1wb;NWcgi<$KQ!bgYubLw0klb#l=38i-x_jXN>kX3F`Xphqn;@ZO!S-01Bp&ELA zp*Ilcv7$^XV-{>OyS9OD-5we1h$3$=SOa;q$%rx|zF~Mh+y~76bp_aljJB4oy)^i; z&OkGKkNKy>1;x$Ggw$q4D5K>_DG>fW(z+PlPMY7;>*eN}(cj_+C`2I7uJ=%xUe`kb z+k|m*IG6BwnEvLn9DzgeXM@+#=eJc{$IJS`Wox+6y3gm=n}q^{tLL3DPVCxjlS^ljVYFvfATml`UNL{6&P3+)2mld^Lj z-gg|RT;n-HQo%=UehzDly*w+w`zJzPUO;ar-&YdvcVRCCAy+p;5iG^`O8>x zfgo@@Fu548dWXcaSIK3i$J$g8*_#xQ2Zn=cOuxLK*nUQ{H!jd=ML0qYjmiumCq<hfZA6V=TyggErkHMCNp*H5whs0IUg_kJ?|qmb)SVJD-%hUDh)lekBDG&> zqIup9>1~YWo}3=QGzzvZD(9^ZrprNU@?hR2F4?8&GtSoSifS!7+ikV|jRhL6lvcA% zCJ&v%*>WwhvgC1ItlzwwTQM7OKQj7S2_tEobRh!_dJ5maHm%v9FO2A&q+TD_VC3dX zmEeAI2V{;UC#w@=(-|xsvK)jpu!z$~y4Ylg(ilIGEHB|%l9Hr#w*5q|lo+sxrENOf zz`*)sCwi`2GuU6}*0?x6X9EPY0LcHHKut7$>3Sc;K@F-k=d~O?-U4 zu#AXFc2~d-`{D$Pkl1k$ZZgY4SN&VDJ|ohbi8(aPJ1D%v7keI|K znmMqO+$zTj;@Bb57=gU_PHYT4wWXaH$A%%G_A1F!k=WVe@#EcscF?RtongqskaR;d z9QVZe3qO>nJ=Y`(TY)uqm#q!mEF%bhn~5hFvl{6>Y`00 za(#HR-#AS0&q$!cmusbUm**~p2T>Pv=x7;}`5obw$0kb$uaIbb$ao-fCpaAR%fu#G zg-7rhP0odaMGFv4t@GvJW>HU(w6VVWS0pQ4`}QgdJ02;Ne06(0=~=%+FpnB5P7Wl5 zjBU7J(rEG64lF06oRt@uqP@OhHSAk`Tr@Zt?Z)$i?^4m=h}N)rHo_L#C(qok#vgz* zVNPsnhF5%(@AZ!T%W#PjYvy7o}nU;`XzM{-@ni zw;e-qL%n2+GgXLj%offAb&@YHMCNev;6={@%0RNx7RKU7`!`-6ZP#_~Hi~Ycd6cEy z8}(A7FYAvB@H(5Kd&|y8PQ|12H7uu-kA5(O3IUT~$&%{DlU(&SPIqZvMY<$F@~iPP z&e&TI43WydZBlD|p!3eu$)D8v?%DXm{(g~lH&9dxzc)`++X=06U{Kb#dJCs5H9Zzf zT>II|KK`3wvNCY_3|rJ1&f|5AXF}IcndE$b_7Xl=P|}U7mWCkjF`ap!y$~Qc6`( zt4GPc@1%i%DyFknzv|<%b1RQZ^c3M67EiMT#!oebk9Byfh~H5z$=T5p;>gCeGA~0- z$N{>e-ml_BIq`SS&+5;{t|o+O9L|0FU)2!N=nAQ{pnJ^!Vt_)-4PRZD&a^ZGuW&et z-A=VytXG2kYX+~7n+(>kbXJ6qf}Y2MW^`JK=swzs9?FZx?8ykF5?j-;L1EE+ffT-P zeobO@TR#Ljisr?UWN|Loq&o}GL2iO6>EC;yB#Uz#b(o)dI7uCyfzkLRoZcO z~n21~GQOYs=9fDiY-E_zZ<~kQe6dTgAbqD2> zzB3pnZ3UdlU4g-YCVUKnfSi~tuCoQ@ib2L9Ux62Joi=))@6k7MIo}8N2VKLCZZjDh zCkEYPYkq1cER_ouiEzp=WgN_N7%WT8oF7CfKAwNN8>r4O*6sC_UdQZV+9+@!W52&ZYosL=->}eXM6KQlOA_u<7wkJ*e@a1S3Z4#{} zD>9kRWS-#u-^|;}I8O_GBH<(J~+qP}nwtIi$boV&_-Fvb3-5LuKPt3XJ7ejcvBz;x)9MOX@ibKs!Pa?MX z`+2=il;`VkqM%hVb+ngTQ^o+sQ%uX#Nz0cMhzN&^d^5_sGY%&!f}O&O#>AE*m{f#y zB>Cps1n&lY2ZB2;iZg|SD4wXcz6E1$+uCb5ZeLQ65O9)(g)GAw7tFkc_rsHnkInW za8Jl64wew`boNe#onwNBaib{94ce6}0G-;XGUlnx5YLeV3(KmhZ+^){1Q@MfDdqO3 zRH-agNMrPwe*^%eX~-QJwL|3+iZs<6%kN;cT+XU}}JbI8Se z>ffE4bH*6VPl~dNo9MN_s+(_yxiaBAh3|)7oid%nwHFbH3H#yrqV3rHqN!gfj;V+r ze%3nRZmG&EzlvYB#RSC2@&dO#(GU>p{7@#=ovkf*ny%h!uB(HTSDKfb48fs=5kU%H zw#CIDKz^Tfecf>G^`iq9^5=W8&KMnMv^n0epCkjuAVr4p$ic(L%EV5W(QNLl<0iVZ zGj#vOUuo{u*iXpJr^@A@G|0(bn&oX#_FGI9&OUDkP>EBRf)nzYX+1DdXDM?bGx zBmDZpxF>7MxXoX^D%R09e>7zGlJ{<*&jWWwE9{>G&)pWR_NN@cs|dNw{8OoQi+YXq zfMk8_Rm)z7-kr$9QebUNU$BPxz7)7kI$`);bAKd}l{7z#zW$~^{W5y7{P&}aVU8mI zwyul(s;`N@?t80qx%a5rD%d_TYLoXNg%y&XEo1sy|nKL1=BBc2OF_L4dnIl?PyX2XAOvo592U01DhsL3#KyJAwqA5 zL*%PhHI@8N`FM?tFMBU*z5`xMnOm*I{@jOu)tdaMLquH((e~WE?oXJncJ9`kE_Q<& zc<@BB4NV&9Hnl8_tuKCe>Zgh&v(YY*+%YoC#b}n%G0zy>I$TzhK#a!Y$d+g)L1;R)=wb;i_~1&03%gPkJ9EdT8WE~A zy;G}S+>wq`yc$%Nijvp6#w$g=7wxni>0=3`n$Ow>43l7K8eeV?$=8_grCQ>)Mwlk| zlwJZrOX*Cw;pECX50_5QBunlj`_}6+tr6ei;^Hb9w3^MAW*HS#OD)7f)z%pi)$no_ zdD6fO)c|rvBk|ori)>ll`eym(C@*lpSw*|`?h?0S4~^kwXT`nKX$$!VoS>mLrW;JA zvV9G8WieNh;W$@St7`1D5&pzP)+~(+CYZCb8JONsGDD-~USv`jRF?o}Pi6o_LCB^t z%-x?>Gn~%Sg;U==T9^2_j}`DD2y%E~(Hf{iInA2>wn%#T3A*kWQkCMz!SqZMwjD>{ ztXi^7(2a!&P(MVOQ{)qWYVfSma&^B>!J^Q!EvPgj1x+C#f-Hq;Kp#}^Xj0YwhPc}8 zX@bEctcX?a#Q|$_v_uh80+#ZHTBzNFRPY0Ew~**{(d!L`u=+R@94xsWh)h*^^>M^k zQDC?@9=8*cVWPwnWTat&3_vPdJlpq6fufxC?GJ(|xH_Eg|2FjZ&SKT&H{oi}qqMV_okik;!{EH3EgW&2Bx`js>8`e$odaEQ=MDSgp)WwB`C4ez>R#=b#x(Isn-#_M>WZhaa;%cEpA78%BK{I zdK?(3bZ@2eQ*m;946&k95H6-?Jd-K5;aiX47ol-V@>EVkTGXC4keqmoY}2wum2Lri zh6Gj&mF!9eN&2_2sLwjYcz+q3Kf%1xX1Y;wA)322#*O^s(<^88Nlh z#*;hE)|#8%FI&q-mfPkOY;3!w*q~A$<^&4@>ekiItk%_*q8TgE#nRj_H&s(hs!P5o z_k1up=wjk1jczLO$j8Z=Hg#NbaM&D=rGxiwS48ij{PGwINQERz|OTf{J!tM#A%8dwOx=Idg$sAy=Ke>m1)#${$3Pwv)5 zt*c#>HY^hOU<$iBivv6C=nU0NJ?nSSuq{5QTT+TF6}!h7j8&%`+kG+FV62LL9DAB; z(_hLdWsO&wxqxM>rZv(c3n{5>Awf&#lo2~z!&9(*1@ef zYH#XqOVMR>bqXP(aBP5s!X+8ggJe4DD-=i5YGV*jW1wWq3hEaHfA; zjhqTr$emxxfTdHEW_kYd;}5-i5_DwnQY?`X#wU)5Lqu$ZeQe1T!NxP(jG{=F*Q!04 z^|XX5@{rupTsW|#S~;VfYg#g}(m9JJ^W`WSCl_!KLnk=ZD^(QmX9kO%N?7?9F! z5jAuXtWdAzCyklBkhV-RIMm$l9~2>yr(J<^eX@*AV z$G7kx4<)F_059f<(?R%2J^dUA%4c#eU7 z*@g`X8W35VD_YRwyt~n^Ydtf@XQbm?AhIo`IU~=jX`E{)?9J&dAC?QQh*XKf`APX; zrbkcgpo2J=xLBz%>=V86UnyEhc#t&#{GHLLRR^JW^LMHtlP%P z&+xG3E5_!@Opb5kRKl0t;F}DT^<_>PKy&;4L~9{Q)558H@8^R!mXDBP}#m+AUccY7})0X^CNNe?0YD#^+z{aANk-=pbY-K%Vi{3dQ0$x+@MW zM%Thj8dnl8fyihi;T zdOj5^wjPmnoO9SPxg<2am}h_>A2VLfxQ?pLHDib-ZXG=Nh23j35aM_Xy=W4N&48SF zS=CySj*0xy=$S&}B#{vG{q-*2zYLy@wSqhOjkwpHO-4p8l4py~<9ZI#vQLnxS~>JS z2;~IxB3L5Fdx)IU=Y49o>2uX&w!rd@c2M2jn*KuBBMiuBC(q$PkY`0t0&CJeCCE}G zy#vy(DU;f$Pk*7yg3lvb0@@8#D{+H$wtrWUHV)pS<61dTG!zzhUkVOw{(7368mMg$ z$v3V*eYHQ93O+aMtEE+voTeHWG!Hs`PM`%l9?3uIGduK>3%y-xQ}QWdYNv}3$d5+% zoK|yND4W~u6SSin!By8$&Ao{gSNWOkUJC2Z0joKmh8+-6QLX>dAsKq;GPt`Bpig}g zgV{#E2%}dDV>z3`Fef^yYc#h`zH+69E5`9Wj_ZL3M4#_D$1xkS&-@Z&L=2WkDFl=W zSEZ(e!=w5pstKAl=}&g$l{ZFeB8G-pMF@_f&|x@Lh-+Fg6HlVTT3UuH!42szp7ppE z`*d{iQE%u_zW0Yje)6LAc~bA^i?_6{OeT8OL#mx+>C2ef(m$i%T7my@DE2nytuJgJ z%Wr}va{CobT}Z8yeC*#eO*Ji0iN~Xhh$jIkpVa2@O0q*vrM{GDL3?3;#h4V-p^9?Z zWkZhn=uM7WvdLraSxo8=s_yOHXo;RpS%g? zjqodY782&*Xr{cN(3Qcm|WhL^{>5q+cbnxNO8VkY;IIT}j3}o+tBycEW`*;o{Xz4>r>os&V z0%P?!cFrz?3#){knvue`3r2RARCW5QvpNtkSK>P?oaB%sHYU4{U|8{k<8)+Q-xRty z|M>?68xz24Z;c{XtM%Y)bbo;P1hQt_{e4Mf2owenu7-%}&&zB+MX7@}ymv{ks5TR1 z;|PAkH`>+nV0@}K02~L2j4R9-X=wm3B5>AFp9$r5)GjBR|Ss2fL)e#Lo$}1L8X1MoQo?X?(BeAyq}nvJhDN+!cj3A(y;VK#n{>Ee=Gw9=ix#B6aDsVD zT9E$tDB_q!e7_b>{}dfNP(T7Hr@>Rd2#b*<`$%KbgdE4$o;kaN25!x=Wv}y1*(D{0 zp`p?Fawiy=D<<10hJCIscUp2d37%M)Ap;1Y)DqC$Wch{8XblwXZN;`Y?ts+ej*#+g zO{~iq_`$0l34K6;Vo>GqcQ1z{m;|6U{I7`pACP8Qlp`TPZsyT`DLPtdAW;Icr{dm1iHIn{H&(gja+tvN2<7rtF+gbZTbQ4>`+8at zJdYQlaB2VW$F>!hI+?W>09k4V&}I=QvpoAKiuozJ^JTSflgF=BI0|P!G(w3SfbaWg$_4 zG_-1AvpvaHM?HuGvO=yZ!un>|ykB#*4TM+; z`1HlJz{;Fy!PHEIIec1l7kQ(!5!a|caF7{_^hn~?SgBoj zNnd)qVI=(n3?4IB!RA+Z9+s@BJn^A-@%K)_D-y=_JolB@VeZY$TPu0c&NI_uX7&!I83Lj9%Kr3upwDObgI+)6 z=^T8qP3uQ`*E^!u|vHq$Q45Z#TCODar4NM@K+A~%^W zK2Az9_h{_6y6=Ql*h^LCgZ+E5{LWF2XAi<+6D>(l0JHc$e1 zxF<{JWKN_i;dUxF6M6p^PbHtucQ)Lk#)G+TR}q89j_(XVOX5CQQq`>zRVk;w{wjSg z78L&yZv}9c4wh}dEGJobp+IP1V4arph_sR}dn_NQS3X84XSf{Q8J#I{eXMqU7()a8F}kBen%>+~AyjXK4yr`)NZN#M27Dx3^y0L&2}I?UtWcOz3rjn#09?Q3xUu_ z7tm7kHC4j%e0VvXujTCVD%=iSuC+d{^XhG|E+Dd6fz+R>KdIZmX-`TILBfD4jN0x9j9srF4!gUfazMLf`UgKlGX8=XdN zspUw`)OAeIh29Cd%E7vOX279iA%V91YE^ZXhDQ^_MZTnH89LmG-i?BVT1!)3gYnGQrIc`IX5=EjcA`z(6 z{ry4E|AiPNr7Pq2xStU%ty;04RIovUg}R5$iUnT>Vb1FMhWn|>3Z3p=DZ19pWtHrswUZSP^>0mfig85 zPjK4cVmx9#UfWes+>`~Y=;|CE)TSyV@*G;MoS38*6pZtgSNxzM0g$q}d* zO7MG(4JQPJOWQ^nrE>7Y?W%jeJ`C6MIHSrNnbH!8(*3)GIQ8)?GPbfH?+}`|%Eete zt{!+M{)i;dFeQ3;2*r}owNA*OYU1dQO3 ztGYrb6x2Z&L(y2#(jwqNl0z25Qe{1G@VLEDM`E$!aCX0A@t_=ymSmmn@(0kR z$}F*bGQqb!svN4y2ZQ#_rFza{8WW!tasvXdo(mZjr1@Lu0)%UzVbq$v1+1(IY|};z zc-E-Izz1XRD$+R>T#g`fl2#>qz9U1dKK~$*h6{*X!6g)TL~2e!SDSdDe!lfUniJx1 z+^?l?Va+0hf^*E|uY&>PA$bQjT<9{41?y1=s*i8x*LKsnO@En0hx)phZHq7MvS&#V z2b!+d?}$IA4H-ZY9PIkAXBncl9lF$x!u)G0My9R%y0X*;N=ZkL^hlwNf=6nt_rKCd zoC8Wkizs}x&Gp!7(&vxWcwUZQFGRVbx7hcTCuh4;xtZYAJsru&3pX?ve82S(m2j&} zMpE)Px4oK4q2RAYS%TcZ^`~~t4@UaIAB81qu&~%t1&imQ_Z+B)nA)H~vhTL;zD3I$ z=J)3b+ZFcN&sI%nc0&6PO$+Gm#I$kz^pohcb&Ke7j#EElj#E=zA=aRv6$CKqGvNEn zWGrRv3x52FxzZ&RMrI4kiI~x^F2}P0tlw@n4_RDeS=pHa-12r8k_x_&9+48hC6<-n z^5vd6zTa(2!`+)niw0U>eO`9h*4w93Dzv`Hw*;6L$Yb z_Kgr;s@FK-rVwjcpar4)j8d{0eiO|@*6i1?7??^{kf(@9Ffl#qfT>+d;UeJIcIjT@ zh9lb6)ut2`K4QCgMcL8vO}op`dI1b@}p+;Js|gCjlD7-H!A#S zL+-3kOg~%9^@R#k!np+cg4Czc)HyuVRWI%B?X@RWwsGy9IkG8|w^J)`wor_+Tr(qV zJ8fl&+n=V#M`AQuZhDSlmN8PU zG|i`JO}RW5GiHCpXU&o#MZ{UWLjgsPM9ix~iBBDXA z%4&`s(+n|+(Gz+pBPZA@`z{6utk|TMH${G?rg=v=S&s&?%YV2W*AJv4RDOmHC8?cV&n=;qO3IPAf zEMFA?lH)g*c@fb*ZlABj9<#^wOmxlnq2kAu*^RT~d+Te*QwyTq;oN7LlVb37?m|XG z#ZQ^zz~K0(Bgwg>7307p2`_q*8}M44Y9GPrDk^>q)cP)D@LmqV!M84Ti!K;{6J<&@ zt9;2j|By&kscvd|nLp?$#<{+O1J|EU{YB<(;ufp79#2r`CuUGq`6M$ywG0Rkq0e6E0WUNsA{o71P>LuchxcOm~qcCF&Qj z7)@ZnV9@_%*mkcO&}f}V=}6)d$rw~ zvsu3AY4c%(@XL+~r?mp)$HxvotwL+_xsb>eB~?0v9qHp~C?bYCnuvjy&B~F;!3h13 zF?(Nkhe||?iIs4E{PuOhcO*6}fzI{%Ma^x4+N{Hwbo{GRo@WuBRn`PXq@3rPT`usg z;=@4I0n?@tIYE6vM5BoNJ?vB~#k86xDZ?Po397(_!ZF_$%v6?5_0X`B*SdQ{RF8Uz z&b$4%z;;mQkp!vsrIz*kOB|#6=fKVD`P#Q`*AC3VWTtLW&bJU%n2fvIMRF}@O=f%4 z=1km#9Qs-kem+hH{lf*(P?kX{*HYB2M%zEWI!lhn3uc;-@myR~M7TLhY{AyaCbY2G z)!u$&dWu*70iJbtf@q$@otLKd)Z!3yD=ZF8#vpUHrOw42N-&EK&L|M=_fbxvKSk_xX{#oHytHCQ>YXVTuO`a%qi2#~HdRwxFafbG$m|(fM;uCB7yqIly)3qsE z41xxH^1|HoLr$aM-w$zfdhgz2(^wN@^!bepru*J@_nHNGC~1TP|0;IA+w)RMjwz|b zFn%fyw?lUxS3#^Ye)3#61F-O}fzxbuscf*SRe7}n`QFA7bK9&WDbI}W+y=rg9~JGVzlIePnz*8P&?y%Z{yh_z{-bDjf$( z-r=ek!qsaj3^tf9eYQf#7l5RXh>mW?p5*bm7lL2naWC-M4^6A4V569wH+IIgg7R|E zXEtsL)k^uSL$7?j-eeipFQoBCk0mG&lAP>FDvlGdN0jGuz+%(>5%YRKQ4=flVdl;b3qY|Xox594^MphOGO~C-fhw%g zKF899c}mi|^n+-Pr3OOL&bJ$rEl2B%#TocIU7tt$Al0906(QG6Nz^$BQhk3M{qk^e z*2gt;i$#wjt_Kx89y*w7V|kfkdwjVM^whFE#Eo-&=TrptU+Md%G2;#_|L{IjA|Zp% z+kRA%0GlKohK%V+3JFvF#;{bS(xVzQLRP5S$vz}9X%ebyMCu$(!Iz(3i9?Lecg#i@ z?kr?N<2gOS{@3>bUH6s=i7uHTWov_XtXME$rVG(sUr)G`+cfpsC-V@6s$|JD6S-mlcy0{?swY{uuzgL=$A7W)Pd7y{&a*4Fzr6 z9lp70;~z9_H+lw(4c|HthX}{Myo)nN)(OHkL_cq$J$+Y1)+`sG@5w2NUR=(~eFG*> zpeZHW%QHxe+2&r>deTjfOx75n`wV^SwDAw7n^0})j#9|Nt^krgjtBi&k7&E#g~$yY zTlcp*a3Pkuk2H|;pCTk@)P$22Th8lGRC2xbg}LLNq2&t9$(|OLmIKAC_9%B9MT@jg zj*N@)8=M=TC9jhE7C-)z^IMfI5?Se8I(N+S&h$m~6)xr=<;i&Qdhdksig+R?>au&2 z_%1F->+H0LyX%aTl6$K~3F87v`1%n^+OEex!SJ{?^kD|cFu+>OJ(FmK-UJz{?rq#U z3hwbPclX)lA5VQ<9I1l{tSFnrK~z+eq9-=McUQ?Z2x{$^0250|$`L|EP4Vo8 z86f-#9K~kJ!%+3VI z2)VB}@Oo3k?7V+lyATdH{-X>GV1d3=^|Ie?y_{4iKI4NXUJx@Cs3Jr z{|k!S9Wx364}u)1|JvJh%4EXnRW^)qSdqG{#9Lx=)nJ=qU^&d^G&w#f?A?MtT80o( z435t*2wH)0P84)rJLT0GD^1FXeA2g6fnKN6o17?6Uu-lh0oOmY1CDl7)0?+^h2S;q z_BwCH&+@ch80Vx@>-{ifDJH!g9hy8q)(1E-)R8u$Q$&xFQ&RdO?kEg9z7V-xzaynP zlJzf+n@+bXpp&W81E@0?O0o9_VsT}R2ns6gvGTjDo?~|FP@x z1XX5A!JMIl^W`uUmH>mZ?_8C*2y+Q0JMAi^3JM3$Mj8wT1|Dn;QSV)6%81+INk}-x zWhI1@e&76Ih}AAr$&fhV&K@mf&fTC#qZtuADtw`QB9%$MdNhJC#hc$Vbsn;FF%or< z>*WUm2gO3R`#&F-$hDF?gP);@aRZq$kIkimE)Bu-^PbP2&kpJ1O{ke1$OghL?FMkf z=1TM4^uiMN3YPKLxU_2%2~{;L_>&@mU0m*;%x6MJX!5zGpnWVV(NvhrA3#D2UU#s%jm3{-On~3MzRpfjM7* zr9`C?2HUu!_RzRNIR)?OcX+L{&N7?8!rJ&P&+m6TO)Kc=647xs#AXAEP3rT&tn=|O z@cJ125Zh+Ti2=TTbkxdlCyIQ=Mc@i(I3H%oz| zFpK}SFEU{%TxZsvH_!L0;l#0;p}@nSU*b}vV%cghR!HS`uO{xNa;}P8Vejs!B4!go%mzUS`KnQ#&*Zq zOPmEI*5PL)gu&lG@!$6HL*yo;TCF!kJw6piWgumBx9)@A=r!_~5@f>r#PkY^i-lVF zVLwV-wd-RSE}jV{8O@;DpDq?bbF~8D|KQtjy5>@Gfaz9k1U`)9hz6hCK%fIU(WJ_` z-bz5-uVu)tJgn%nQeCMO1u*V=0`U?7x{&Sg-C*{4A&7FHkjC>bSPN>`~sCQHFr)iB$JqRssZGAoJs;_R10y6S&>q5c%@tMqI*-RMPH0h(Ssg1mc z!I1_-5|;S%_ANtH@YmRq;(DBxnXyq^P`2K;HG@s{RP-fz@>g>WmJkXq)O|A%sQU}D z$#MGD!#UDI~1 z9H?4%;84jZj*Q`v=B$Ve||1vE-|JndLuvY+XE?R-iHP-WdWI zf&Q5|N#r}#-$$#;3U0F2E~C0WWZN-WbRB0;O9QzA$C&Ak|GHJ(x<#;QKZ-Hi>FzSl zp%@V{)*2hBn=yIB=xq%~5i4;-W-a$FUhuIKiI6cvOAbJl4?A_v#^iv#jNY8eAfHE=4VwgESfsk=CpY3>RVwkqh5bw zz-Y$BkSk8m9Ssna7c)E#t`ivLf!{fZwu~mNHtYaX6F}2nd%!1x2_t(OFt)QNLbUzTalbR+|#at8os~DYa(X zB-y;a1mzODpmk}e`1F4O`B6s1wlqyS2@yL_1xSKZ?WbOShEL%m2xuiq)#4_j;upl9 zZlg}#0^s783BynUNGJ(L^Ov@;^7^;dt7u2^tHc+3`dy*8=H{bB83qfO8*E=3dgshb ztujXYdadXaI4Cx<-Q0fxzyHq%AE6>&1Q)dvO7)=uN2c7R6fr%Vgn?M1N{!AG9n=N2 zv)n`UQ*PK7l9j)-SF3p(*2kby(c@3mt5d#d;BC;LpSM{G6 zs0wY^tx8j?7bu3Ps_IrKj0N6-dzf-Ig(7!(Hy8~Uiy*Zf<6G*T;M-TZ#tb`l2~?W= zmu;oPHjX?|PL4f&s@~7bfLk-fC@EUg*WxSD?c%7`{c~u9R$o{FZ>T!TAQ{!tbG1RA zWv)dOc#-NM*|9UVlSQzv*l_V6%~<;*Wi!t`A)=Y=p;`zWR9M(dSeIrt^k+>5MtrB* zgxgP~)z>Q_x1%HdzIF$gYZ7qQX*XvP=ti?G@Vm#^cHb9*NNnUm9}PZEc~cPjLg5Lk z@~io}SWIgf%>;L=soVt6!ja%jhs)^~p^H~97#bbP6$+Sx#}m>x`%}E-8qJ7b91I$R zucv^?_XfE?z|N<;Jd;T#ePrCW?L9wPecssx9 zhR`IBIH6=UN?-}PFD>dPC%NYym#qmZ|Va5Cq|UiGf6+uI8DQJ23#Ky^yW(ist< z&pK)yS?8PBT6M;zaLJdz!>@0EMl@Q<(H@}+L%b+{+97=BzWosMz+Hc=-nRt9P*>Bzlzsm zX;)w}wRc@aw1q)8h3GBL^4U?Kmc*^Y=_K1#yXNe{m@oe9#s%3Gl^e|7-&dEXVr|!IVTjp15l}WDw>q+- zCM&Tn#U%{L5>Q9SrVL9Hm>R=mcflm_kWr7#JelyeWn>(71Gv^n<>XH(8TO9dyTiYS-y>m$Lo;DE4}E^gBGZa=kLW4QK3RxLkY=H46#FxsG-D2Am)6ju zme?X>nyXz1lpWSRqXwvd9O@BR$})~%{?C3f3xPaKuu1idtV++$zNQfvHm4AuUYv?> zz$Wr?3GMo2V^K!o)jw03k#5>Qx-GlA!n!r-;I5YAF-M7pzJkSBrz z3o?O)1!(^$Q{pU4i~#+*Su);RHm~7rPTQP-DPvKhn&v?Xs<%{Ql{JGkb@6yep4+%! zjX`OQ`l#5GvBRvg3&+j!(Mn6D{yT4OGPeYz5c+(!>T@9=+f!?;hwS^?2{r%jRUamJB$r_^Zo16SCaV zQ>OKWoER*WIHcmd7M(Re`~9i2>vOz-(1KM%OXOVWHQ9OHNSZ2E7KcK=9 z5Dp0_>a-}p`=W>+oLfhSyfBG1>s3xMz&JU z1{1;NF+U_0F5VBnBQ5;G!na{VDA!4e5d@fqnVo{{DE1EKpXmve<{ZI4O@K$tIN?7- zZiA3$<$}JiYjXB{Y&!v3S87kFD^+rDmNV?(TpBwcnXXpp%JRsLf-O?KonLs-^VYzW z%4CA7!|jQJ3U0l9B6eJvMA_CsNo`;U^7eS*`*pz6PDfHmI#fq(V2CIJ&aSE@u7!@~ zxZLs6z*VCH0=~dWj)06B{0hhIPSrb(o87y7WNR?=K7p|2!1hd9!&g&{mTUPlVf0%< zr2LQV0yt(o7=@x^tTP-|^zq)z-aX`8Xt)ii>2SB#v2JF|CO3WDYm@u6X6FP8zdpS+ zZr?1a`>HbXzd$(r)75$``M4pau_>XLSA|Kf@#DnWESR@Re*-G`TRztEYPh0e3xVsE z*W~$imKd45mkmP&lZ72GZb^DW*tEITBeMn7d9f*W=YjP;q2(x>=$8M#AoAbGE|X#} z)ng+aV`Tq=EU)$2n0Xu#n1cId1goDJwT>)fWmDBO+`(P7rQ-43c0`fiJKip8m+1!gWjYTs&A27CEPpHIn$Zhm#4wGv>Gvl+PKT^7=UelXQ2!gKH z!f1I$4`5bqkM@Txwo%PpU<3e15z!YN5+!Bk9Q!EdovIFSOD473L62fv+&%n-1%6XJgV@xEW zAQW)I+t#e$v_=J9ZGOED>??PRA16r$gN_@FRC4-U}Z~+-IELd+t$6- z^Yx5Tp?7>%Rx|)dYq;a43mlgN|1XObdgtdCqSV;q1U%0_X-d@sX7&u7NDNGlH?2dE zKtdWW7)O>yky2YYfdEuO1}cODn(lB)iudU*Qiq_(|hfG&(qw7r1P64hN?Clpwr`gghUAO}vdA z=(V*5gpJJX5`aySKdHR07igVDCU0dOUc91f4Rm$Um+qbW7VQy}`}kCg%qz3)EV-E% zw5IEmYWnId8im(4;PrY(K?6ffwr^-$;o`ruK$>9$`hU*?bmUr8W93vK`h<9)^E7>` zsp}p+E|iFY;odK)ss%ch`hX;;3Zl4p8VQdQqiWi=!#|P~RiDA?=2Gbxt*~5RB#zB5 z#ux8mKin^}FMH85yn=EmHm#+m@P(Uh%=Hh@2y$w0KM^AXRq7Bv?+&OeaUt6&+R-oB zJxKPD-g191LU25r@!sT6=eK`wgS+m*>PMmjelmW7Eaib%Mh5#{%E(Wd_PoM&sE&tw z2{_hjWKp(YrYUp{pMG$B(X~BY1&@cL*eF>OWNak%&c^A8(|Ys1itJt>hbozQ^$tt# zLeEy8B40Y^>P|Wyc2mCpUZFyme3LO$zG01IYL8{mOnFMGW=*+RM%4>vT z+J1xo7TmzIKO1;7bc8TY+>MJUPLzYIkU?n{9VhlOSl%K>feGV88^Y8bzP6^keR6%6 zE3?&gn@kJZ=DqPedR$ zuyJLEDsfK?hBj>bJ*Qv9Or(0J5&0o7mchv>X+>jln_3V1zaefZ`irA75OHo9_uCKm zCMwA;Z8yNOFqRGW&~gY}R>=-O>7d!=rx1S*8_ZTJ&?Ly`sE<6vrb82zTH^gy-tD1& zFtixqa78>^;J}1L2XgRb6dW87js!eMHVw3#qrssVC2wbFf6ukp`ZizCYnr*AL>+V1 zM=%>(XR-&Z9IdWV{Q>GwKwz_ifC7gZSq;cQT)S|8Jokl*U+M9ivlSVHn&p~mnnl4e!|~yu4P}* ziEJBcrtfAqtU?5zmNwu#)W?o`EfN>{dZ-hnW46Z-0J(J>DG$LN7H&ks{<%@Dvst2$ z`nmD-OVKTc%qIPQ9pRnNlkzXy=BU_7vww^Lhy5I&d*^S|{d_HmxqYr;9U%RpyZ1Up z4x2XVl$@BQnuO)8q#Y^NK1yAU!KZxnUde;?$Km$iv+fRO8>3NS!ghaRUS+-3^5WH} zN{`}(=TFi8Ck=hgC!#|HXUiKn(_QRgckX1h0kXMfDQ2vmoRJ46Qk}j}v6pO3w0pkr zXUgCJP&#+K4N+OyZ5KbmZ&gLR%mvQ;tQBi4NZAtdh?SOJivqOp(*S!nfFh*QXt@&I zs!Atg2K5R2o7%h*OTwIx50k8=fqP`OF0ln&Z0Mh{=J-LSRUnFFi-U}Pzp|>d$PSQc zUgZpsgds6(b>i_#(-z>p&kTFr>g)iO3RlvnU;UKq!`Mvg# zZfVSm-J0>Pl)^LIFPdQB%zN?j@~VtUyt_9YUt)aN zKI_+fO68bg+MIFfTzU?H!>)gCKd$ii|83c~SZ658&5>@guyXZ~yS?yP;x1?5AG}S` zTKCbe$0kJ{bZiyiNri2$r2Pmb6VSts`RdHVc9u5WHcm-J)wqoah^FGKAP=|sDbnSP zS^F?-4tbq=E_Zu-dfg47wchqaSKXvm6Q|Xq&WK|DDVxIV=&8^KZRl3_e7P3JDiStu zyS%Dm;Z28VP?0n68lq|AT4B1#UUiDnymx8!1h`o#Zfj+PSP8 zs4M|}{?G{sQzgw4eaRlh)oB}RfqJUlGE z)en*$@Afwx@3LI?F4lJPLnDpA?BU6PRBWC5=Bcw=AIC4^lCq)zW!yZ~nr%`2r4LS* zOFj*aztij|SkPjs9I)rFw+E-nHaLE#4%eoOlvk5aW{|SBnsfep@1KTQvl$?Q zo~0&d`muI|2(fmGAj`f7MSqsIxhq44=smGSR*^K56MW!aO(Wb=I%>sRKHG z=A3*DRUz`h@}bh}z_559|8kf-5e+?T4|_-Dmliif#5?`@Ip zi8POBeQ#a+;Pe#Qsd}43Nisj+aPT9k&e--*38qo#qV6PvN29sP!ql2U-tkpWiap zVku4zxXV?ToJn|Lw>UsD4{{s;EJf>)4_{Qe3RD=>Gz?K%T`CDBtlE^^i`xi^c0Okg zA}VAMwtlwTd@56MO`jj!uM?_g6pr%xTd7WYw#U%Hlfoc%Q8e2ct-Z{d$GbcOEByDG zD73{>!P_sheKCam6?X;7&NAobDF4QA6l`94=NyhUug6~!xVfOJP|v(mmSN@pnO#r#MG(b2x3b%6SCQEYuc012*OPNCX6dQXVgIu70Ny}n&{I?-` z8ku;kSQ$YmFXJG`_voMR9(C|pDDuYIaG}K$L{3F$;=GC#c_|{eRp~7{?O^Bf>njn% zYu9I^G8c|p9YzUU7FLT+1FPyibFih%m_~dFj1=ru8n!^FxhT;#QsJ;$SOg|uVi`m* zHK9TjPPYTwYu7yev&p@IcV@k2oaiX4o7b}ZR;q=?sHs?Gm_zSUH*^r`xk;>;8Z&J% zg0uuTU#CKN=Iy>@=TmsYLp!=0B;b0?^kYfdTgIoy>MEjQPBVY6%zj3)C9v2zI6z7A z7e#*>OT=9Q%n_^}`iG@~*1^?A_orW?t4-orW>BBb63lh={&d5Dh*x?_u|^{gg{&*< z>*_0m_{lmxT0MRt?0@2@7Q#!&LngkuSh$HJKxYkIxlqtGV-7$Kt~l>T-2~zoD_df* z^xIDJd*`sH#PhX~qmSCZDXVn6@3fp1M5?b!?P>NAv?=7Mk!%T*tUIM`g5d`~8-)?C z!c|v?TAeZ(JXO&I_Lxw=wHZ!JyKheZ+*Q~}2 zHsJX6WP>GpE(5f0-12eeMbu+Q3I@^NPz$H?m3Ud>>g=tqIBDWV6;w1?qL&OduEYzy)o z9|5sGaL;#Mbh%ssz7k9uEf@l)~PO;vqfT15<=bsWn>4z0MgWF?7MFW zvz`Zp54@2BGyMcD-g&p-dQ&U7Za?|z-5u#9;1@C0O6*tRRp6m%qch8Vz>x;12&H7W zx48nP9>$?9;;Un(ZHA=ge8|0sw=%;C|JGjutCsyW-jm=%{zDH{)(lG*Y*KJJt)R4TSCC+_`KUImZp|{|A z%i<=4ZVZ!|*ts_oJLo1NPs8tROAE;KE(Kh{ma@(JAp7vfZLgjB22v3c95X z?2oT%Ztu97O99fF4g~YaG36VZMAiZ(JvC5INR=dl8kJ(0qnc-%D9Om=>g~1@v!8Yq7Td|`^s?N^T?FcIT@icJkqkN)*oCnEa5StF`xIFo`rN zkftclp5SkOJ7OzMRKIOjRYfF;`z-Ji55<2+6@{qixOZ8De`KY5a78WAi*N^YGqM8Q zQ`Ug+MvT!>dJ?{yfSR=z$~Df9>M%YXDy~|4?34fmy!U)%RM%@Pn|WMnQohi7O4asH#y3hPal>SY z>znD`YH!MUomQZO57Qa6$BdPlgVB~3N#Z@B3_~cbSJZUWaavUT1e|H%fX`9Z0ys)I zB#FI3$4;2_LEt<1ur1xg0gxJE6n_tRPqO^SxZertgO%VjDlb2Do`I znoXnO%G!?*R*qS?){a0kn+y_Y^-iE!^uyRhgfs!PenU{?RrTdFu3O?^N6tx(1?Il1 zsm8JHP8npZ$)ckpMQRNSB6g#1TU-#+bz|AjvfqT&!l$p zU$r}&m(FAIkfoNEFd{Jc3uW?0_$zk{JC+l6NQ$_KCrV_5yl$0#9&-n|mLM+sVK8#m z2ce<=N4MPt-?~QWlz=sx0~q0LM_;%@HH-p@D^S3i&IWW*bAJVvwphgRuOMhP(=!92 zcHaB>9LMx^{5JuiW&O*ghUxOT+(86rv}?C_1eKAltG{3;WG2wI9|EuCq}7;sKe$*T zRN_-;*#z@?aMkzQVW-$TtZcXacv6k79?~#@|NRSK^0s14!qq;uP*N-+Dk>SQ>w$Ln z`c{1P4whK_3>X<{?x(ax1+S_`cIc?-%PheXm$YGQ1=s8si$jMzdV#oH9|Aby>95nD`RCWlu~5GSD5AjC74tu_&Q*?O-)p%qXn#b?rApf(dMoQ_@!Qr zO~4?>BNob4#5ua{_krWU#Vn$dt|HJJ;#ti|@8^LFf(;8!$Eoqq1^!-dR*Z48TwoWk z-A+)Nqz#4Xe%CUXj4P!}%i5pvO8QgI2Tv}GPryuqli`rVEh{jYfz4)dQQh%Jz4M~P ztL7n^dCb+t^~D|^(jI``d@VsTi~BseyPJtx>o&>eEMs!v`=V}PAd8$WR*;uF_QV;D zP-9P#I8Tw9=q|~*qinB#J1eFXU>0v_2}tRRX|&K1cR(sELwLn>?9bbR!|$!&$Ci>> zFL$4;5Qh4eqf9F%<|eZv-iCG;a7;r>v)QQ@Y5}=sX^UJdwaBcWuW^|SSx|l+Z;*zi zktsDdGda`l16=9E#9`Lsq;`LyErOliq)l9U4D&TEDhTV5Y!Bx`sxhIZj6LD;?_9ML z^im5G@$K9uXr8@3dJ9+vH^dhthx#Y|GzQ*WBS}ziok*rY(`ptDKbYw2heYaEEzQSL zS^l`6*eOIEjb8tSm}Bga=|C~R8q9>nACIINO)9I}l@xK8Vp8}njT4aL|aot9vZ3KgQnIEjXtm2ET)-LaVIMm3#JaoPVwh%n@o*)j4eV2Eu>O} zpBl)_q21cR)GR8+EskNxzj-NKCH2jas56mo2S6VYjn40ViGz00-{N}hsC#aUFbG8e|v9b z>ZMa=6+tWkT`n|T}Klu;no_yOUaHZsCnq*Q;&jHjui<6J>{dpZCy!~AwDG)ASr+I@fYFPz^c9Ysc{>`OEE3r3!vtBctZPIB->qM zKihsdOOQ0WMeC7t<|mTGX*y<7asT-ibMmK40%Txtn5wbT-{fybb{s0nxw&Q^m20Y= zQk)lF>PQD|*D4KuQheC)@gL7GXAmRt+%&F;0Bo!MD_S)fkt78wfu} zp6Y6tC{;BrSCrV*qvDpdWuLv6;;);>*d}bHCC{Js(svXhjP{lfin;DmKKayA^S%VM zv-_Ls7eVYQ^)h5(vAiuS$C?~km!%`@b5CFzqRLTG=qkbbLM30X)ZP`Ej8SW{KSV@m zQn?-<(C0Z&2U5U7`HS6G5#R0YwOJhfY&p%RBZh2y)f=E{Xv}orcI`mr7u~!er2m&^ zB`oiK@zN}iS~m&S=Sw_DR!A=cZV3<-Y_(D)E@8DsC=bA0)9)?-ay7#n34Jg~AKekO zp6i|Wv! zO@)hN0uY>$fxDH?rki#t=0niZhpr_uq%&D%$)xT8_ZX9=(Wrv22>#l<5#Mf zqYVxCfTauTKW!5>(1|*Gz%|=-GK}%YHj=vY@~wK|cO4Vx30}7&NR30sN`-0J^25k! zyLeOXs~T*ghsIG^H6=4CDNcf(-r%2g$>*gumxCHc*3VvdEzangmTq@`@F8jL8AjYq zPvD*^ZR)t0WF99?7tdjD7r8R9$revd(M(c2n)wCs3#(5;QPr_d^+z2t{#BoE$Zq>7aaasH(ufRD^2uroZ`5>+sYuLf%chv;kN&tj?SE^%=lYmrf|;0V`w-kZGY0U50H`gVfmFAHHQXulw zOg?sN^bZ$4Wjb;sE&cSM68|pJX#5%K`wP2Qho&}3hf~%MxbsPilG<_x4?<$vK!??k zE!})Aj@{C^zVX4n7S3WUXMcF_$FmITZ!&(YLa%E%Rge`d@{kPGtO75+nVd>K%0Lg4 z)PKs2s{|X}rnc2H9CoDk2Tfv%qZ*F>5SB^potgea6&I2>f-8Zrd+L_&e6-r62C@$* z$9lYj1MlRXY=7vV?E9;vRWfWh(w%1{qJ4cnz}0*~r=El3aCYNYcv615#fe-8!saC< zF%BPux>Z^ap}n2EzmuU{q-g@4kR!Wn7Atm)eC+ur3SFAo9i;)7(d8$K^w0w z*E6LOlTu=uITU=RrKwdss*~j)u19ne6k!itAh`}!rVF3?NRi%#KPv*{q>zOR-3mux z?8DeGRnGjkMGjY-DqwL6>l;UKrhY%^*-M|P-J}m$GByJidK-<+>&rSS#YPJOkyN$6 z)=Fv?5AIg~atdxEUI-E=kqx>M?YOyo_{ZnMl3n0JWR_a}{ZmF4JLqj*#>)|76&Y37 zrt_L0@}vqfYv)$r2l~QH|H$d*ZL#%43Lc8a-diz zq5G2sXQ!PvR~2r~pOXH`PreZHq|BsXJ`t{1HuDUUGIQe35JlPKJtwRD*j3+SoWE5X z*}DJGR5c4-adL#IrmPHsUIH#0b`xM~FLA#X zJhQv&>F8hIVNd(j_2^slFCW_=Hm3-~YWCnP1sON5r$2M=e_+W!;~j0;a!xs%@u4Z% z@36K9ua%$6VT`m0kpdGg*`KCPOA3=W$_`2oNBX~S?sYF@n(GqZzP&^4ZZa}O_=aSAfF&^TnNQFreo^uAf!Q00afb%j8CTH8oSLb`*ap?y1YyGb=mS#KauiYm{A-H1wO)nCYJ7TlGAsAbPEFACUu*)6v2S zrGoYw()FhA;{Gu58K3rKYqc(47Sb}zp~++gWMkVeTi-EHll1XjyhDBZ z!e-#j#(aF-WsdZ#m!g=Bi54}_3~S7Aj1{uj6C$1sHwXMqC(Prc>xfbxBYv^X;^Hvi z7B8Vy^l_!|opc6?)QW2`!Kf~Q{AflBEB&QyIUvxW()5z$ zB-Q&D_Mh~=mq2&j>Rh6`y@<2_#tU$@?|s=oK{8Dafue=qOh!enkplnc=s^ii$dibpnhYr9Z%I8 z-fLo$snX3~C45Se>tI~wtJS)4pSq9;GWEbG`%C3*rp0^~@1Dh(y-Xg5AFZ5bt9p*l zA+3X>?~{{ubF0PaDY61$X>K7w_@b^dal6pub{Ac~u}jo$8>hKc`*CH*p!s~%kORf6 z0tn|jJ;41chVF%G=c%{^tIssdKHWGjWAsiNW!&U^g6@#xBQbgZY&Wo^rl|ArpFj1A zBtJWF*@xRJrYnQ&NMO+LTnF7J<8mHkqcb2}@2|?WSU-crjxb@EA6;v&qCrD^6ouJj zFJ}&Xg-5dIYR-nGXU>2d_!Q;5ys}o{-=5jF$PA_k^t18vk7CC#k&og^^K;8DgF^e4 z*TcN6W~$33>Z_O}`;$Ju&58XC{HC0_6(#Jv!M8U{vJ(+6pM65c73CaP9+&%I6qg|l ziO7}_(9=%7lh0^k*-z2)f=pjyQDik|qf#t_d0#<6!6(au6Xdn> zOmV(t5);7^8IBYWcs&tfvqythso^jHg0$7mS*%&B3l0USlo8LL;T z=?`lBTR-iD@Aw=;vTLpEo?o^PCkk%*ih{%*)mAOXLwRS0#X&OXeLo|3Cj&>e=2|@K z)kCJ%`o$;PED-gC0x);U6E+K#!5V1?vD*v-Rg(dxqC!Lc)b}Hf4kZ2oDtv6Y?V+V3sZu01p!S9C zfg$75fA&Q1Cc!|(KTShPkF{&>D_BkFo*9(9R|sQI;pZwem<}Y#9VZw=<;BSrn{V!k zNZ~$pOi&zv-E+8|1<`^b3v1^Ig$Piw`Xe0`HMmgK8>kHA`(E_7 z90`}a65&?cktb@upAR+wL!qlCr?gzj-1(9fPe(|fm;9tZ;r|;_kYK2)weYRggrsHQ zCfNUU3?crw@AH{%5jXn>k7vqc+B_r^&McAz&dTa~9E#!{S`k6y;tl$i)l;L&T;$Lx zMY9$UAbr6*W&a?}n(xX#nVC7x%;Zgoy3^N{7nta(7x|S%0nRi8p{P%{*h)gWs=F2)AL1B zIKwd@52&xYrJ7x7K!Roc$aLWBc@@%uBlma3CKy#{LkPApmY#fz%?R?enKpNJ_D!dD zTBzQ|^=G-P^cZQ0wriSS%ox;EXt4`j(nD|5wLzxZ|?Yr_THHn1$m^%|iBC`zmH#i&cd2 z#6*cJR8YfvWoigK?Z`Q10Hq$f(YXC)+*Ir}MT6jY<*Ju9 zHbUvXm9@NY$a?zgon^l*UBH6HpKPf_R%oG0rKj@Fj_nQ9d zemvjZcX!Wu`;R`=RduWS*1gsBxzaHow3P8)QN2P!Lc&v3QPf33LWy}PyJBIy+}-C6 z7m<)CB<&RxKBy`vFnn+a+Sof;BOw_?{4m7)_*%X0Bz>Zd%X~y^Kg(lM$6Yu44VJpi z2!oCykrMiwS8th63eu3|6y^AsnAk&!l+Z{!qM4Wu@bcE~*PpX)CXYO9u9pvAuJV(^ za#JMm+^^~BO+G;+q9iv@TXhmfZC)VbifAwr86h&R;xFWy>A{2q5R!eD%yV4;{rl!5 zVU{k|qpths`9Wfe*VITzJJDaByBC77&;Te%zljJn6H$=_;~`2U+XX~%O7&Vje{+mZdldhbNgHnUY}Dl*s`a>>3AINvPFGw?`VPg4Wr zI>y^-`=@2XdDA~J%KhuIZY&LN_H}|{6R<#5XbH!oH}-4Hc^bRG(naBE;tzZILlV^o zakn(+jnmv&BH#}eL^WOW5i{8Nh7u3GAUDRU&(xMW#;CuJTHP2$h1mbio;2lz$l2^s zAIV!|Dz!e&(0`(!wcUD%?P3*Qfs@OWGqbO_$Mb}4JT0K5u3Oq}eVb^kF%ybT@bFxP z;7yRJHMp%nkhxKhgE{z6`B}c1xfsBN-DW_$LDBN$+fhz0b(< zAy1CiNQ(2WJBCO1ycvYEK&pQ{0q0E~nm0U0>ReteNoJGi6Q)3XV!5lT{dg0S2X^EuI?9lj93H{}XOLCQkB zq?S3NLm995=en&f=R0*Wxfmo8QSA3;limUQo`6qeeAAZYXdEt3c&PBDhMm`_MHy!zH-#ASkA;KBm?VjJ! zU(IJZevbVl{`=C*{y?8T8b|G`u>@C%&h&_Jc)o-DZ*r;mY3Qu&fY0m#7{qCJ0gmO9UdrFT?Sud|?rC zF0Wa4id<2VSwO0coVv(Vvg8!V9$!#}k@Yvw8<{}(a@QQRETJ$4oSjgAS0oyY-3@k8 z{fQ0(O}zKL03 ziYb_VqkoO7BoBvx>@ZUZNac4SZolZn2^!=~A+%6Np;sM|YYKG`Z3=Y3ZYMq&E@aML zqd)vkIBmVsu6#78rQKq#$R@A!`{G@3R?yeO==&_sl)?DuA6Q;vs!_a2oRLp25YBJc zS^nVpQQU!`oZ?fwc&vl6q*OSSf@UEZ#6XDC2#Y)MSf8_=S{#WsOiTGxDYftj!VRUn zBt*RP#pnoSw7li3rJ#*_H%LMfr`o?`@s+P78EGfx_pPhmMEF^$RZ=d$2{bJe8Y zX5Ic!WQzG#ud2mD#gY6`O&&UB5R4Ae;- zBW^n=?oxLccW>@6nK=tl3g1~WSYlYBTjFdpY}>M;B#S2V&weg>U1CuZt3i-fl8!x2 zJYF*XanEz_)t>Mk+qef;CD$ldrU8?|b*<2!74!6h4R+$!9%>A4qTEB>!vrS3T98`5 zv&Q?f+GEtWG$!5?X`O6UXM9CYmORErIShZkZlYZuC1YyMaAndr6ya zTdF%{TL-)8d)C`?yLcO`eSRS~9Q5OCef#67qu!y_iNFLv@cMU|jIOw6jOTi!sNf{o zU)_u$S|K-~m7y4+LOlwh^Jp?yH8_+w5ja0yU13dNU0@qy58=?0pOBlqPI~P|GD2og z?8B(`dX9LN)mNq7*z>){hjBBfwgvl|(k(PMZa5*F7;e0ELHwPVj<}7*=uHVr3(M~} zdMw)N(y2`9lxhPipVXzk52`t;Mycwn5e#<=911WBkO~l3nH%C6W;hieD~QEqHJTKe zG^~*LVE9Hu7M`AjoIuPV(~y|imb{D9s&to|~W2 zLcWFM_V9=CE0`;kn>TDyGwT$}78(_*TH0@a*nYn~#j3{YnQW8nqenX{G<#&jE~s87 zW%IcA+C${R{UVi&iL8gLl-q`Dj$4nr+St6(={LTSRLx!!{-3I*oSNx+)w+Wk>pxyK z+)V+NY?jJRj!jW8=i}JpT#0B2Me%wUl*~#IQfJ>y_5+G-@BsGF4)o*Z<)q=FPum4I z`Db!KDn{yQ6>HVKX>N;Z%Rrk~n_vsjt=c>HhVO#?lH%gyrN%}3{=l}mrbzz z8uZrb-3oI%2MYZr`81ho3~uak3~{vDS6>Ql>TGH$vO*FMQJY8?_3HQtivSDWp&CY2 z5TO0z!{qHeHU>5+whZwq2`_66ixTVAn=zLCH`*lzMOhk3r5HsZAo*HO!=qP*+Y;Q9 zeO0DILP3a`&5~(WppGXtjr6CNj4?+W-~BRvA}vhpK`dQtTY}p=XVQAScwc(4xa|n) za_O>k@+3LeUfcddD#Y((k8_uNpBIL=;OCut-Z>Lcfxi3-apQPgEgmdI==0?^Z?mUW z{%3DWFP!PV;HQFo)HMwPv~Y8lZPBn*_@@8+?e`kpwwW<&3v0~LpQ8$+^!jNZg=jY= zzI$7B3jA^ZGy3cBSm&wmPC1CKkd|7^#iza4sG#*0?OL%n#{1pLyCyA%?8@rhvWaR_ zX;L4D%E^|hQnR|w&X8*JXZu^vhl87VV=BzawCooD&rip2)`XG=j}4QD7J~i9Ndmy1 z4oHB`(bl5+R%(J!o$#rBh|zar8zTjyAs#=|zy+Jxf2&o?YyL``qh4h1 zB|OCStBXxC+voxUS~;5?+n1Z}7xAX36MeIM5q{2o!1elOpY5OU-;PaJK<}05mRXSg zk;{=(ydQVKVZg-A+^NWo<7Ja1#NX9N)-Ufdf30s)uCJ$xu`WL|v66n(@A&L?^Uw0x za5A^{;CmG1lJ|YeU6PvM)?2O%vAw$-@^Rj;fb)*Zz&DTO_8OMQhmLjg0YH;ANooR$ z=Ud@x*o@+&#ChA6YR?FQ<40M-4cRHCw9^wGoFB2h<$1#PQ(IYDJ)rY4bs7*Lm?KC6 zfC4_--URMG`5tC2HJykJwWO{yck)i2-t{~dy2v?h{?ks(O^%IGZ!Vs(KG?k`UH-9O zK~zyO{ZZUYid2@7pxv1osjd`>!4J7x90|$o;=S{AMgF%PRI~jz%#`tT-yKOq0;5rU zKDofCDkl{15MLp25T9CQce8dY<27-iuFGX-C(94eP|uIS?DGjNu0#U)z> ze2ow`82FKE?->WNSzAg5Y`pehWZvAlMw*6G%LTAB*c}av2#3U>Xu7Czn`pCmTT6={ z80_oo|YNMBk^ zH?HTjYBHl!UUQfBt?ua*yl=oa5p6bM0jpg9k+0E>aW8X7H)`>XKoG^NWxtIrlp9h@ zOw9UH%`bhRNA2^rn5XIKi^9M`a=fPP(&U;QmE_Gq=-B{N9hH0L_hzd4ve6Q~N&2zD z!A^6D|7u6YAHVXU@}{l57k~VOEiKWJTE*Z z04;*~02-UQ&aeK-ITv?pcMA5KkSTrjm9ZSocNGp;BH z$R{Ihb*6vOLsu!xHF$;bOM~yfp0a)d9K&9NeXugw~?2ma}=Mtg*`On|SdMPJ2q zg4u2*E%DTW@+fa*&XyEbfV#zk?JxLioKR$gb`h@;BZI1B@ zNJTR2>}A}hS!&i~!V8d@WBBV@mlReL6H`(anw}<>h+g;RpZm1Kpl`2Df8$iu>{FJ) zRSDA&O{sxxd2C@tNM@x(D(2vJ?7m0!@*24a{p$C9lD4^_`4#PiQMJd-XQn*PKdg2) zjeow}6Dm>Rz#O65e}10LMDM6fvB%q~UEZfTUKT8Li(Y{>9$b4z`fph-tQvRVDL7^6 z%d|7MGtxy(w#Q?*6Yi733ZTeIt$34S)7rLy3$z>8eZA}N*ZDWx^Q>7wg={-7S7A z3D`H93hMk7Xm5Mb_xarVQP{|D@rNI6MfTx*Z}q&VR9DZ8rLUKx(^LGp=p$?(W>K}JY~zMa zx;ap&%C7$68B?i`)c*^9wBn@UvI|7_RwppBL#i*LYqrG?#$W6r1!We~zY>KoFr z`l}^`ZyKG{Z8C(h#ojD&yNZTcz~B~g8NDfR$6`sT$9NI=Q(jH%NVSpddYOh-jJ%mc z^1PkQ|Kk%3-(T*faDSGj zkp?#9+)SL+6}#&WJx*a1p&6moph+!%rluh&P*<2mD5&>7^cMGZDVijV$JIu&D&7nn z7ccj3S^90)ZsTo{lNga$Ccpl^#x`GcTXJ3`y=3;y<_CVMw@s0)ku}_w+a?j#ob3^4 ztK>3S6}@`mgW<<=K62;bmwVc#1Nrj|38@T=iMT9)DySHJpwT1NqcSBk)T%g>*wVGv zv-bYGZ*UGDJzOKn)vld)$f>RHsPcAL@E31@&!i8qj(I5U158soQXngHYOTjJpO>C0 z6>c5C`*TN?runNPzF@y?m+SSP&B>q}o!s%q<0m-sO;n!(a^ha3cj8%Gj*rcy|E=|2 z+9P#p6Xx1PmyFQr{eV}X=fpF0*Yxjql^95D+(@o6Xu&wTWjS0(vhDaSGM7lMET|jh zcwbHgkWAw-AY^4SH&IA@?@tnF^Dr)%rcq=22^`sRmoVQkHmr%Hk^GAY*rau(T_Ffk zg6GBQF#bYSd3?msly}T4g9bo_FIggKEfZpt%d3dEQ2$Y6MoYzJ_r`4ayM1a-1rzyW zJ<$ZFe^C~Ff2-xmlEav!np7l*!5z76MJyH~ISK7w7%1xf*f&1m9~{wLn~b7YYsg>e z<23GMeY|x{E;cUuUbL|J%;eol$qLX11RuSS-W%IU-45dUz+lJP%=MQii^+oFD^UOg zNKsNl9`K#%POeF=NQw_j-gnTWbeVSB{D&VS*q=_U>J3=_Q zN%ZbDkQQ!PP>wLhXhz4tuy&H5l~mHhpLj+6^_x6sZI(jQ*X=kFoESdXuRW5*p;pGa z+%Y3Cvn+sZ$hdgpAq4t-YO$1^Ba#km7qJC+^ei9`hT%u-qEif;@qMD0Vx7oU)2xbG+*KHVvOX}qLfHyQKq4@FEB7yl$(zq)0_ zaFWAi$DrN73y*rupwEt8{{HPFFQ14LN>oqO=FypQk&TFwOS0NWdIuuz*tJj|S?~OP zJ^_liC9f|C)q9OBye<4(4YKfDWL(gABNGR1h;OlC!p#eW;S@0{YAl)pV1X63%CI$yT54j9Wj}lFd3@-NWPT+ZnoP*)SV2N7`B7in_ z7I6_a2UY<23GpKDA!o^3t=B=E)7*y4KiFtFx7m(ZYYs58*LT!nG20bPj)eUz)PnMSV&Lc5cEw!S^)VIrX^y?QTxx_&YXod>0cZn6Nh>k!L=069M4VYn})r%-+`(7OWxjRrp}#v z)9BtJHxQTe)x)l2AMM|#3ePbi6JcBm^K_V!$jqeL4Y?iQnxh}13l$=M>xWtz+MheT zZ}~(z?q_=e{{$tvvT|Y1;#baB67%hc1oIIv8EP^aF2~| zka$C;db?N+hCXr!wV0l&d#@BgXjb+28RMk3%i{Y%2bLUG%3EpANLZi0iyva z0Nodn9|eVt&M5X&Otk5n*O9 zyOz67djxEoZP-KKHQluntm^jx|8+5a5Qb{}(NJ;zrDzZkZee9yZ#}N!q$nwzFFqoA z_sKz*O1Og|nY+R%N@X(LWYzTM0_8lvqZFr+rkk#komkYfnL_`&fwiPA-??MYk_``n7w;1&uW`}%>}hTocH9r+5!4g>E7kL*q9UBH)@ zD<50D9`JWvCOhu#Hy?qR{&WfWK9ary$B3QDU!$|Vw)6msb}sPMR>MQ)B|HRs+FLdG zW<54g@ov33C;1cssAx>lz6OIotlDfv16{ zhPWlrnaA7;XkpC*c6NP|7(!{-#Cia9+vL*uAcTl7l!}FHManI zc}g)c{WsD7x&GICT7&KX?@TTp|C_BB26_K$;pOMyqlD^WKJF)=9`x{}g2R#q&=kI2QUs?d(ujul`a^>bqKwzD?x>8fM4 zV89el-OYIVZ0AAl^Ia}mAL~Zf(@|IC^Ud?qI$yd*2uY2QP*8&m(RDG)0am_FJEF^z^@aKyqy|76oh1cOH|HDU@A-X4H>KIB5Pmr$5T_# zeG?;mbRmrGd|)={X+J0@R{!o9QT=RmIm?;Tx1M&oYJ~%{E2ei-hH6kghCe}xCJvQS z+eZ3q5QCQB-m$djqANN48Or3rebDke(;DQ0d;OeyKmkg=rP^6@^LrifTS+7+Uphk& z-n69lv?37xr`-Jf+<%XhebBP$iRh zqhP9o?}MDlNRVz+*Z_Q&-<@~bCY?sC}6hBXj zZ;$x_`vAAd`7-T#r*So}`jYqfKyw8=*8H7~F8dlWE8V;!(HI&9Tsmgrmscc2vAo0` zhSRRYX|1`;MK#LVsx&Fo?)iQSA6QECQZ#kmKS84K>q8(E8HGh>nc_XA?LdIa^#*pl z-C(M!VU~v=->zy!U(NOpt-_;WCy_;}+3?SvsF(RNa7cxTlw?W!TUejoAlup*OMGcj zUmaml+{#Yzqf3p8WJDtrO_SBo9IBY>J9AEZc#6rlMgtYuW4hUi$~`0R?3Kxm!Hn{? zSEpOXM$7@$OP?;OO(CRI#c=Y#q62-p97rXu3Z}R9@eH;mQqXKS(<$I-7w{GIL^J{Z z`p}S6Ek%j+uw|OP^QnhUG(y`y+}mnoYC6@L>jZg*{5#>AE>X~_BtXqYlMzP+b6+{_fuK+_!wp4Qt*ZlepBd^CND81Y7aA?BBMs&D4`aX`R7j4 za^8Rg^}c6Ec3Y?(<2bQ!Nara0wM91$X>MPog=Q%kP#-olJ4M?N z$F?%Yjbsvq5?+5#-AKRFN@qVm>{r8YVCzq?K6D<}klJ_RM_v)+p5nyhgX_n9BS(k$ z^zg(T+GjGB^RpQR&+C?{fGQ^*5M|W*ytdhTAm=vRJV_>Sf&BSPsD-8f_T8j+XKS-! zqVOQO%$@W4wX>2Ik7UCD0o}%u3qphwr@nwhdm1&T=uY8bJ(8`E7%wn^|vQVAz*tZBuZB1+jCQ`;y|Mo|< zzxD07t+bx>_sL-Q$oSv((bGvk!4nDS?}n8}(*`xVlbPiy z<`>I7Ukeh@(^33;!|OA$>7LrQ;=0QT@M)g(suFxSBY1Y@h_CAx86w1#*RiTwy__oa zOBcAb{<4`ooBT8s^f0tJoBMR>x|eQ?e;V|BALZS?P1_eGeVK2>GQ(-`9yA8|vnZZl zm@3j|@g=qEVK=HULEPbXn*MQGyz}(Fvzq1&T|*%oT$WyY&FoblXGZ@tbp|(&^mR=l z9x&*BIZC7x9^Z#4eHOBLTsKA6`LN5I%A7T*yrjjs9MgWL;O!qd@OTq=dV{auI`adg zRs5uRJ5t^BP}eJDu=AG6@~=UBJPa+H8W!dck2Xul&gB!n!v^hq0RRIpGSz|4FARR@ zOqx7v8xC@6dMe1x2@1H58aaX%Cel^8MsVWJx9`0hn=InKz9S+B-iC9=D!Pe61FCz{ z_90X`2WL{JK2v8UA|3YNBja@=goQ2OVT)XS=+HhH)HXs-HB6y-j1K83e%U%1Q_y3o z`Q|~_jw93RW3E^ZuXw5L&&&Vu?Go7$H-JnveZnV#!;P|-es`RG>c4;1LlF4q(k4GG z!u%E@9n~m-oNo%~h)bS|O;_sxXB)^xgPR-Bcb#PyS7uoB{nW zRR|9Jr2Z=_jFvU>qBICm+Q(@I|GMc6^fTt*BoTWrs;2R(foK%dc;E|TrpF;Eaa2UE zs4Gcz1zuZ@-DuDBvZ16W6yh3dyiy<^OT5b}@JdkjMjVnF<{^9Ewsuvu`JcX=9qMWKlVb^*iS zr=F7AYyx-zQnb+i>WBv%z-{m5<*at~>fN{>`124g8)ojXh`4XN)MWP8WRHgex8crX z(2SuBD2|`pTIO+9#Q}@$QHQ87MXkBl3Nigbhi|G zW)P#9MaDy{P%qtoFPDgAKhB4xF??SrgDBkmtEc^&v<f)dBf|yAO=gq8`-& zRwEblvA=}9_WjoH*IGk8N$rW^T*9Wewrxb(7F`qlRtmwEo^EvV2kZtEQMv8$=f8u( zLg@s$H@|Z2CIb;f`&=m!_54ULLVWfY-A&PRNQyR##lrbj0eC!YNOPYHRrVco_Le*r z-r#MIB->6hUyQH0KX~=M)9j{o{)dOYwuHn-GCI#l5%4gFXfl584i|pVWu~+U)gb|o zcs@=PdYI(nQ7q2_(dq%f)a&I0*vBi)1{uN0Gq}+b#rD!N@=V>_AIPFX&|1Fm`5Ju& zt@!8Lel}?x(6x8ajrThaW2B(-a&YRy}j{LXGGUv>FSJgp} z=kYvQyVJ%9!;1DkBF{udANkJdlXo4DkL%9?nxiM;kT-X;@v9GjhXDXh;3j!s{%vpa z$W#_m0fF23SLp+Z0FGt$ZgZ2%VBtIeOkY$Kl@1Ujx6!cXlu zwvHW&HQ8YrAn|Ye-ISy6Cb@~Z?!T=pgP7hLs-mLy>!V)#fHQnHbh`d@-9+yaaAZ7R zkm_IW4bgVpBGKBFn!3aattO_HghxEkN?7P4LQ^M>W|Q0s(Dx$c6_r>r;pL?P=bL(D(Cv}s5khAq+Hkcqq%PbEtumz=V?PXPX)ei= zfK$JD(4TtjobBM)-jRVkwxJE)B5KhA*)Ys(N(xB6Dxk_m%q6k};JLXeHszzmEqpAS zKaB$UBC#1x66t7qWK>)SH3PU29yFagqV51&W1a*-XLM@}3EPD4uUYxpkb~}0gA5UR z1nW($bH5{BGOnH)j*`$RP4Im&$tGBp@&jo{MNpS)Yb=~709G3MRZj45I$u;Wjj5og zi?K;jKi3#_6N}~^JeLpnt2|{91)v>bsZRqSwa)t5VV+$H+8K3iJ*!}RU*^+emuEQr zvl|Qp66NOm03Vu1k!doipFoS}t({0KuDIn2cPx(vZ+w9Yq| z)3#kQ{BTAh(sefxMSmMY|I1i)Q%pEAw_ikU+h#eRl%=0nC3-3cU_E$3X`7`(p5tGb z9RPzZWkDWBvrjxrml(R~?~-%H!Ji1E8L|W4TB5R@ic&h^E zJd%#L`d6i!{>8rw=6Q%8a?$pZi~)1CWVVPS?J+PfBrH}GxZ@&%i$VgiZeOI_6bUcBjo6P!w+%=!8^?KhRIcpF4(KPJls-BVm;;a7EK1fgYWq;n{H)$}soob4^xrNJd@M_}VO*o_NfvLT zOz;ZPVvrG6Hv`&|;gj9$e3}31&-IP|VFPm>1z_4}^>E#$==o!HVd89c7ESws;_hqW zoxqUPRhc$z&fT~znJF}{!f*A+jCAnXoE1s%esI`K0#6%~v}s<2x#&MkYaS0R>{py|yGW|U4iPw~051ziOeiz)tKx_P5t{@- zVA%BxM=RIfY2Zy;?okpG7zN6N+I|H&QeO{ft!~nDd$g6@q+j(U4d56OT(`T}Hk|VP zx6xwr1@n165H{~nh@UY0etFo7Lpp;u#FJ zG%2h#Daa|baxO%~Ium;{gdosTzSZ>QJqFwt4Ll&p*J%?)Ff(!-%G7DiTihUdYs%b! zr@-i0`^zZ(c8YoDCd(O@vee1pqSfontU$!U8(svHM1Gj`R+n%gwJ0>qr66d#SI%}+ z@UxZ#tX{S4(I9X+&7rM*m)BCe_biN!Z=xziX~<6wV3(h0U(c#d>t0Zb)Y60=IB~S+ zeWBE*rz61Fbj$7@&o!{Q_-Z|kAIV!r|9$HD-9aPKJN}%d0#EmsZ>{!H;oCRQPzFnW z|9IF}T=$|$GkgWkr~X1gH}~g`_4^LhWz9-A4Is?rq{uYy_oD1^EKO<+_wum^rwzjg z$sPW;qxJ;)sXa{zgs9b3lpYdj(~??>4d+8r5Bmvxedd+I}TAGdaub;*gmO zVNLRLXr0I(d&DYUwvxy!^nLZi--847bjkJ?tD~A@d&_l+bgxKC`JFw1Pb!TVM{O~I zSHu|Aq9kpBTuY5?(3X7j)gtH}8(AdOtq0!Lb>B9Cl7m3ilzI+m-#2_}b^&x|!VQI@ zSUss{DJy!fo0Yi-mrmp~Ep9qa11b{WryF(QH6j9U91nh{4Tmy!PAh#`UgXNIsRPAU zkX>%dMZ1U(0>Mf2tI?Z2`2G8f zlLFQ?oW8bt&2T)hok`IavDL2;lh&K;A)_Y^Ns4Xcp{QJ+xD7_Gt-~?eY(! zCyuS$gURSf{N(t>pr>Er7Ym*ku7mh2TF+jx;V}Qy>FIXy%jB9c{3rzMZf#`hVSMVf z6j?Rw4wB&kpG#Cd$eA}|D7V4Ek?f{(KHjpWj1cPU{IE=IjAi<(Z{*r#$+##j95zhpEyjwT9oMf=#Zt7y)b zmlu<-ul2;_aPqd7=YF=+F@^1@V!r51xSwjGlF+U9f0?AWuTnOJ>j*_^Ca$!eheF+=B;8U#BuUzyI->Y|31gWS2usZez ziAap?QYi;r%Se-h`u+S=uglr}h14A!(Jrlkui`ceHl-%9nRBFTlb~1Ixue1p^oJ4 z!tS5UeGHId{!Q+%+^TlKq29icMiV)U1KlS1LGnti?Cah(vw-*`W#HL>NauA!_3v2R z?ZMuw|GbpyB8ai(zF5!d)SXRq_FVMoyUO#`VFJxtECBX2$wuKwZB{NIW$ZsdzJ?1 zr`h?E4$9XS1=Xbo=9`+GzD|koW>k61nR>fWtOup?=B1AZt7k(sR;B5lA}EJkY#XC; z)Lmed6RLjqZE-Pmy1edy#Hx}xr9yx3L0C`c{px9z@fzK>E9WjcFIcWdS>zC>PXU~q zAg#xmh3TghW!JAfr4CKVk*^S1M0JnuOlg`j)qs8lIuNXAOTO<8>QV2ss?h9elh$Ml zpi93#aHBC3dYA(|eu7;Z{q-~1*18jCvUnOXCrs^B)8>A$x^+qO&9o`?F7ydEBG{mp03HXn^bcb{Tn;E zX_^pUsLrtUQYB`9QKGI{#4M$-V&9S~cT>CLucqX|-$l+%rdD6+_zBr+UZ0c8J*Fk9 zNz;iyx3pU!DQ*)MhjF6DChvJNaTmXAw?RrJ0=AGOew|l^!ETcFjL@S1=6&jYC6vP# znfhxe%P{EuB&4OR-_oJkYyw8k{SdTnz-(#ikEYNfJ2z~G&i=^WCzK=~z-}aXJr9!1 zfK;zCb?Z&(1A;yW0&GjS>!1TbpoSD|R95~f&YE$^sx(Wl_RO_Hr1st7FTsgl|B{Cq zH;NQsD|_yolPCED0e)CM@tuZ}Rz3MlYrV0z&GDY2IB+`A_=BVquh+zW()Xe{wP$~p zH`6uGJz|SHJ~j#Wd~5LaH{!kUL0GUQ7&jWrDQrDhWzz+PwIcQ zSF~14o9PG8=uif2784wFo6oN(31z1nFCab6%yYF=v*mUke5+bWkBG9}Ulhu20HXdY zAnI_E=_G>X0}N&MARSn}M+LrZpS1L);-#wdIlTUoBxd_uKm969C~qn5VBoh0lBKRN z0o>!XjsMfk-KeYO&MaNTR^l?-pMQ4Pnoyh$C^~#y`n# zkTu}#m?&s^yc5y#CblnpcIOmtQn%{cpHIXkL}B8ku=j>e1}n`=b+aMe_F)dZSRU2W zvi2!THZVa>FVda2#~j)|Y9nHku9Y|k_G(8L8#apatrlrZExn@(3ovS@|I>bj+}om6kE9LiBlxLg~(_@SO1*gbiYq| zHCG!osPOpOJ=CSkhpx8NI>X6NDtd@tqr#8yqBkguk!~@{HrNAaTAm+7^!Q8RTFf_- zYN(LSYcpR#TyF|T(M8X_9Tq?OHZf~{o4!wZ>D7?%d@5{CR2m``p9`tvQfB3o@EfA@ zb2=Dz`J;&?`~zKnj}>A3-gcTXz@F18=v-<6=masmuQJ(Gpzad=XE>#7hflw$C;D$r zG+VfhD8U}P!!mHN{;Iu{%V!5VY2jzwWp&Wo7{KP?EM3U#?wz(?PzTk%hbm;nV;{uO zL9?@4s9CeK`7Uhk#buM2Wh7Z}voGWyq7r?suH_fOk_GmZW_oP?-+9ke;_#R~;@)L@ zA+K8D$pg}x3UZBDbhWbB-dw$MqED)##nU%|`I#kOZ~kQ>hBM~*0J594bQ*WgRq2U)_VJB}r>m zCSEH2UQWO(rlbvx{+(!@BR)c3+K@RX?0l^&T0-wUdp;;sk*q-Jmlu1@R`k7e2;Btw zehnVsnG}I4rKnsd4{Mmyf`<0sGp*m}VM^J>|66E5;9s&31e_O8!wtV(*Nu8}1`(Nh zCW&`EA#T$^h;yel93zm8$U=7F!fWb$a`&AJsBF%MrF@g&R0m~ce4mHHKLM7WFh@o@ zHwBWc-Y1ILRL{f9gZ>+JyW{wwRZ*$f)NxeoWnhwHz?UA_WYmpDoVWOkhc=$>2visM zT37A$o2jE&+|jBObPHT`x$v&gJ7R`qQR;Ihfcbru9_3H%T~`yU$uGkz;b^tS{A0+h z0P4qIKsgn7+`msb$aylmQdUf_oCDIEg%7c8d)jLaov-x*Z<(1f(v_n2(E`+>Cx@l+ zj3eK7($;A$hS+;)?a>{`qrqQ5Q`}`-nY|{6s zb)z?GPrhKPSxFal(4_|ylHa<#B_>DSzN2Y-tVwMj72}+9l2TK*P{ykTewyA{cv{jE z57WNmGO*IN`;3`m|1jR$rgsNDV)WFi%j`4*A71qDCiWy)m_5Oj2&mN`7+PkirL5$p zw77_Ar#bHn)US36#XNGS-na1C+L~#hj?MwddOZ#kXGhj!H^Cb5_9l_38-(v&=-{FV zXrX$Q^qcqBmx@47!j6%Po*8$4v|Nyb+3%_kTvYM9bl$TCOU|RQSEXG|swqp_6q+JFzQGZNeeT7aDSg48 z0i6QD`t|Q^rB1iRI(7U`vlRf^H$t6*DK}RGeoqI;2IIEVZvOYak^Uh01W(Alv|H4} zn#|Vr$4x_W-ku?0R~bZ)>?LEt|8*Y#^?3t z94h^7_Y6AykjxDFp`DTv`;4EE$cOtma(V>lWK}tpEunvHa1SRr>E~tG z?e!<<+Wt_R+a?h$cDz~VLQv?FMSC7cC%;y+RUWMq_S};n@7u_mpJQs7{&ZYJK;9ss zvP&67*_8wsY{B6J(j?bS%_z!@Es#IX=(7reekv1ae7Sqjw^PZ@a@`sm7O$^po4;C^ z6^T{$5=iIW>Z&FW+Fj(B+Mih@$-V8LLC$2d6(3e)qoH@=!la$e&Q@slw@Sl9g~JXaX6i%n29<~*e$MV}; zbMT9&++=W5?W-2M-D2OEqFZ^651M5FB_AaX$5{70#;0{r>hQ8CEnl*dfKi0-{kzU+ z^4jh;U$+lg`Kv~eyFQe6HMH)#$D%zH#;i@pUpVwnUpyed!?%+^YNynKFBv$AP3-pXwr?;R>af8TGv&bb@=lq_*c8Z;g_nt{gkx%_Y zh_Nj`#_U}sQsMg-n;>5$p-R5%!}`UZQ2Vb!ZYn*IbEsRfOKuaj+hu|mWHuJFeZ$_! zROsf;(j=+Sjq9n1O{(m;Z%mo)G%puAvhb~B2&%lk1^sY+_mX|wdwoB>B*`z*2tXx^ z9~F6JHygz))JJL_wIAcPV;W9Ja#@TvWTWLjsrq zl(#K-ho9AC2rp>^tRcgwaqliwZzg5MVg0Cw6s`enDX^h$8iVc!chR`Iy!JT0Bnvt) zLBgEVFKjNPwgoK4Bq%uM)zg4X%%R0o8Yd7s5>lNb9KCo*DPO6e6 zIV>s5HcEH(OZi882P`+nF(p_Y|0*Z=5wnjcL^SE+C) zkP?{#UU__s0KGCT%Wa(rScPQzc1-TWe?Mu-YNIX#V)0C!3jyw?Pw|F0x@KZhfR8y;1jZXODR3NCenlGRi^;GBso3h=}QL&TJ z!u&F)oBy@@>A}}=xBy;CSWTtCJiDddeCxjk2e9s5B|IzK4EMv*EzPp4Z5IL0 zTgJOFz|(pDBVBpmO!oQS%4ED#NZ$3XANWQ zdAjfclHX+$-1ib;5zGp>UcA~qyI$#qDD29o7+tOLzu zN-P0j=q~#zYk9s{U;bmfHTc+)UZTE@rM6Vw>NPFa^15gw;BgK>yHtH0c^!8R$=Nle zelANSgWH3sJFrQBz%zUpo=)N;E-Wc5zoT2owxz za4&5IcV20D`K?p)($T-1p0e1v_jYL5DA1`&D%aqt61Ia6TdwW7KMtG&plSbX2X#g_bVcqE_T=P_?X?%zt1aj8;1Un#h}p~a*_K&1 zclWfYa9D4nzkl16S?6e4VI4@M+_MC~E5f^7(K~4*E%45M_Qc^w`$)m+B+U{^kR}}r zqZVxZeZQox{ARn+ z5fCU~9rmec&L1S!KDj1dz8?Ip_uuE8EzSixY=ascqr4QS@W!Hd+uw8TK(M_>9?tQbl>S6Jps6H9>XX;0`g{^-q-}Y{1j<|@+0*1 zO2C@YrgU6*uFV&v4nm;SVOyk?qBI>!LMJpK5c>6G;U`EwYU;gEsfqrwG$GDR;w{(W zThs%!eUnJilUr>~W-S zmNDg;*g)DlS!M(6rq)8phQ_SmEXWpU^8e9v7H&8<4jFOV_Eeeto zY3Ujx2GU&uBGRo=(mlFkjP8!n0|vqfzvJ_}et!Vhb+hMw&U4@AoY(7|)%L!LJInre zQ`>bQ5~k2==G?b`DBB=G-Mg#|-!0BITgm4d8p|F#!j=QPnlU-@O};+V6fhBO`hRPG zH}O}m)_~UmNCo3TbcGfs1I&2D^0z^) zRh{ZOPuA6Wr7kuF6AyvxdXus~U)U2y^MuHY(j41)?`ndKWTDHas=g3czO2y$uB}it zNBqQ450r|;DOw;?6gcp~Hu`(*PQ~uPV#jC|wN|P}&nQ!c_lW&(=9MYI_8~J2?ELB2 z%!fLS{Jz7ZjRj3{v-RNyEl3Bc*&nm0aaILmTZ+5PhZefIa%f^i_X?BOqAPXVlych% z6EM!n`PsEo!A`lNOQg_Hy#L8Dxo8U}>Nua(z^ZnsRhO9usM)@hFKlcQGHm0V@g7u10c8)tYR zy%}}pSl@3F*{p;^Jh)lBi<}(+wg;i9W;Q6FFh1{2@B=evoojqu3Zy&}n;TgL@Twgy zcVJGz2SrEwQh%#-;K*;AH3J%M9W&+3D5FLn4y2JYV+;B7^VMA*!Q>co`?Nn>*Tyl% z3(F`14C9%I4ty^_>cGpf8tvc>vE} zo-K#7?v@S1NPx{y7iEV)7f=VClRF1WZNdO6YBqM()5&6BttHJr0vngezcuk!UoRZY zm)}Tk@Al$V)<17pi&;jFFNO=sXR6Cz{^&J+Z(BTO<*;kKbYGaaPZwO9m@Ozq(bF$t zrt8bEo&X)Ybm7=wwI>XHP;s}B3S}7K4Hd0Zs`mhrK4DqR^0Lq3_hIUgw(!t!Vd_*xu2JN{6Z)Iw zuMa$E@=1CSAbGYajrnpFrkp@q%Ff6*DMfQoucA=_4#WreShp?LqAeWTj3C^*FUKLgVM|Xx?8`i7=6dj5mYi1xv!@uNbpX3RH zd&%=B4vsEwKCqFd7I=wrX*v_`=!rsvFJdcVDp9=eXxi2d?P_eu@?|ZcG!%QPquy8D zUFTW1DY|Md7Z?k7a@O@xr!*0YRd-9Rch<5Ryh2;K0?mAvF0XV+PM&9%ckhzNW|d%j z6IsmAxR|QJ+4koR<2AaxN2yJIIv%0Z$ikUasQ{|wgBL;ls!XF}nZmGF^el4}{i%$8 zJW&E2)GO*XXd7~ONiA600i7CnVn7H=!d%Vf_CD^L@zS1tA*o-t&?rN;WstLl%t~O^ z6db(MC%@YVf9h5r30tQYCHHL&CGw7kbaO@xo7qGoi_|bUjdT})=b&e8u%u@l3B*$p z4uqE+n`=u>n)W|o_$_wlcM(- zUYlYu2|SIi*8Tz5zzL=2Je-^AM97kDv?~g=#;t3uTi!H_)$^ds;*pMR`=6<9TLBBz z*fu{QHbk^W)KSPS`!T}NAc(0IfV-NT@9n0yogqB|Crs%gE7(Q9M8U&Z3fc4w49L}S>fwNi?V6EAw*}TJw@eaE4 zszgm=q{+Aqc!?I{ontC>-qHf-jnLThBsY)33V%_r6DJYUULS_yl5rlLM02>VUu302 zX+Fj6$%e*|J33l*7j=1GCD!IieDwA_G(Ib}JB9vluLDqS>)*CVJHsQU#U)$FEp`QAZS#;GKc*e!gnY4!tSDj^}hKO*X$l ze-Fi%UNJl1&+(^BSJ~gp&#r$iMO%cX8)#C~F zgLgQ|-gj{GHU7riZGUU;@GsVF;`ziBkuPdqp_f!!v$KY7WCTi!R!b=h$@l_Adpk*u zk+hs^+E=@dVnGh5PZ?@D)s}N-e&ZUv@Bf9*t08tH`G-xFnxZPWoZ+8yhss61$or{x z$r5f2)F)B1^xmivu1Wf6&Tk&Nq%#u~Lv(}D`U;ja8xkNKI3a_wB^Aa8$|You{_zI3 zv(&R%bLD6_lddu;*-^GL>7_^I?Y1vQ@vm}%6WFd0ZQqTEz3sp##D6s`ij_% ztc0?fA72-our9sM7rODuz(rS;#xP4+nSn*DZgNC?l-+5LY_ zQJdvgH!p4pa&y`%iBGkqOAi3#QS%oL48$ENNS%#9#M838^kfA~-&lK-e8MtXayqlR z4bwmo;jlHsLO}esm!93izJN{xuVyRRLyB(ekKE#P8?Qtu^`NEYG~RpQ^qGVohp3ai#eNAr`>w5a@4t-rcw5( zv`AHPl9Y^{On$bV+TQb_sqNi-W0&jqLPO)sMBfJ{HaEdyjaOz?=vS#cqFZR2nQx_Y zKS;$e#N~!in*-jO4{X;~g1tVsv7UR1emFuh;K##M{z<8owDSeZ)h(NUz4t81=F4zf z$vAn}#3M#$Vm3bn9p0tvBxk&OejAc1 z5^G5dDvIkG;zczp+p+i8RVDotl+CYRxr|+THaB-pfVgUix7$VUdaof#Dh?!CLf}B= zMlM~bP*Ni$T{-ZA#GQ|b$=O&IH z-_OPr04>G{Ur#xPz4crhCuGhwn2o7MWrOGKo)Z2uDkfr6qLE9$rw{J0lAc)GmTdFh z-BS_r`7Z@g++_LM-|}qG09Iu=4F>I3)1#Fy$aAvpRv)ap5T8F^`Tj-Ilt?}Ebxo2_ zM{Yn(4N1-(;`tY%cF(a6DQ=>culU|I1Mao~9?$0LRC*d;<*+Oz_!=vG%Wwu)r%&1N zzKd~yPuaf4%aWLz;{E-kK6Kc~7(E=c8t>#M_$o`+5?4lRj-SamCHrJON&awD^*kC} z#m?!GBVh3c<^fR%m$4kx8Gd;kfqpoZnk{VQ$Gvnm!PfG10*sf{ zNo%;lefPR8F@2{&Ir*ab}*;>s|-tK4#!kZF(i%4Q{7=K5(r4lyU| zu9-E&@gL}$DS4RkOO2npG>A|V<)w>{=Rc}rI_yg*;!^x;l4x{&RTrFs-!o*HNzM=H z87yF7@^qX@U1o^@DIDoPY5mITy) z{kwf5%419~=XETntTbJo71N$l*HfyMG|^n_eJFiSI}=}pd<$|YJ#M>ADTH(vOUzs2 z7Qz5uiejF!tEXYeSFD+oFORO7W(*~mnILq*FvRz&v7g$TG)5epQbE*0^EH`mm~SPa z(KV-&k&EZ}t5ey+r$c_$=0dDyv_O~L6)%Yql|hq+LXeLU0p|S*lcnFT80`bwci&_z zOrG}z%NS}k(A%sOb?N-*3Wr=_fQJ`IHtHcuu++nshT? z?yx%x_-}c1kp6?>9{(#+Uj?l=V8GLr27-R-H?Rgp*R+eZ&#VEC_54G*MLLAd9rn1t zw6Dvzetg}H9={GusoTS|+H0(`ujhOLf4*f`VQTxja8siX5mhg+n=4n)q8fmC2Tow? zjpTL1JMI4^w;){;9&7*KvBgMYzNnfnT_aOk1H~jCZ}Dm%pPNMi)PzwcUnnkt+}9|X zD9?8nD1ZA*G7d>92$?W&;W}90b#4n?(~e-x4W`}Z75%Ux%!Zl%o{!E8FbwCWvsu;lYDXfA~*=}p!iO!XL zLElLEX@8!cM1)t~Z4!;))r3wk6*~Iz{|48;Ehl54g$b4}4WLD?VEj#G}A&y2RqZg{0(n^_B5^ua8Ebs+Z#)t_osY>81Zo7KE;vJmaAr=^(Hy%0Px} zG;w(-#?~E-uSOF&NcPMM`-*-CcP5{I9W#hAHIY3Z`#G|P2kB|%vxp{dr?;L786Ma= zbPn*neIIPL>u5Lz^wCydS*Pdgc&U4|m*4gM@jUaN{k)M<@E-HKKR7N!bNLLH#jG-2 z)#8oSa&Bh^_@pY7P(eOgQVO4Oo&M$SCF^wFYnFidF#{B_7hcRuK!WxP?|k2eGmYGd zZtjx68=&?bNB?(8r}G_MrF%3biU+$-u8@knnYaO&pOPjNuvx#z;IVw61QiQz>kLtL zzFrW`w*yk*^A0s)#m?6bYtJD9E(oPjHrY>zU;r9jGn7txq>rC;IsUPgdbc{VHR_ka*G?-ej8N1XF1x42(wS$g=G#AJcHan)4xk`3C z>B8!unMk0whW*Nh7#(gOl7lnBe^m~tz!Jj*nWp@}^;M)X5jWpUmf(ZBo5Lo{m3~JI zHB$yo+W1SuK35^m6?7scOE{?Akc-(#!8(zVxz@QM1u&Z?E}dA>u=Jv8@c6fAWn$V* zzsEPSl%&c#*tHme;7u>HTNzadmwr<&` zB0D2v>|eKHiE{E89ECx&_yw7$ubV(4+#>I#n=>mRNDgI*9n zG%+FG1^sl|{N}>2Y;`uak3-Lk9Mko4+a~r=P{TGG?%J_0+2dy`V+l-45wSAU(@8O~ ziEU!+BXTLU02j4PS68mY&V%}kHQt7z&|XT63BZ=|?%SHcWljD*GJO%nY+AGo4!?8+ zDgG2;HljJ#AToT?OHqQEu^-W(Ffk*GaKxYDpUJB zmK1y(KjC7}Oa99_)kkhLn68hvv0)4kyqzE4&*r_?tyr!`gEHnqC)Kv79b=)Ckx@ z_5B*!$30@Q9e&k6x=xhbRk=jze}e1qEJtIdQ-xAGS5}ts4*CdlB1x)i`FwL{b;xAP zTlWeX(ds>^%q(LZ2FoHpTy;HpRM9AW8y;`x(JOyJN*({OV~ghZ4UAv((UF~0>Imt| zUN{Jv8%c&XPkj^--)H`GSUOSK&s+MfiTu!bR;a$iGk;2Qi~iXnwbc~_ih&Q&!!-Uo zVkBs>s28+p{6I6SCg0gn3|PHt^0+7LcPKoDf>caYVW>qUb+ksWZH6c15N71-P~b6OzqnUVStZDYU6-iyg<3;%;mzXQ>#boLrWhsg(gHlu;Jc36(sB`JN;^3gE|!-a37 z2m}4N;-(@G8W#}oy*^$Wz$4_n$Fg)lM&3k*27hg_%awFnYC=eC5D3iYThaG(RNv}5 zj%20U)j#zdb6l*Uh^#o|$O|x>KOwtha;25&b&+Qu$*-O<-dq7nzQ=e}YQ>SC&t~j^ zwG%w*V&YJQc@!Rov$eXpPg)0+f+1`-;YF_VbV2E(3WF2=C0)pFsaQZu#0zrMjAL~(|Y z@>Pgl!Iyq%@Naf)5ipf4%oH!Ba~pT*SSHL0H*<~tAF44yrfK()dU5<9UFKUF|H2VN z!&z2yCHxpXWGU;1ltvlHbb`E`WvYQQz{r1U%O*2HC9*Jm1n_EueHps9Z+Leg7b3 znVnSC&t`AMQsCV7rc|X?=Cog40w=zyS|K~p?wZ$ks<3)9vMW^jYGmd#tS_~$H|Rm4`26f*{7rxSB&cVg*=N6Pe zk6cgydA!C4Kxk2nyk`nLj~zgYZR}ZWM1>J;?$O4nd||n@EEo04?IOf)y40Yx95f{e z=V|C#$OHCgKDzc`@)^mr1r7KSSQTd(P{Vpa(g;RF!x=Hn^!jwtp9Hf%XUk zBy&vV6CT5H5_HVSf-3p`J}RNsk;-+^_^YE}Bx_D_y3QnZ*Nm+qoOdS4*lL5;cPpF& z#?~(h&>vGrIjA;!*iKrwKB@H+XcSpe8~zfbKyo)pmA86Y=Y{e$8Ay;CcofQqQ5?Bv zUzf&adf&1nSM`T4_J!LJ%1QQ?BehK9rjNo1&r;+5zY9Pk4|?f$ILC5|+*<6j8HkFT zKkg0N$5yT0hmP2)38mHaIi@fg+|K&klO)u+l?gXi7}gClXBn7M^Tkkgp5niuixJ%p zMc9quwd}h@9HKkgK!2taWhG42Gh0@;U}mC-p9dje#;UYLHgaYJlD6JNI!`02&_z|3gA4t-l?l2btzMJOvz5 z>6a2KaIw+hO<(bM(xB^Kn1vJcO9d;6**&Co^N5KN{NiV)`cYWL0AZTU7&>9GKKNFs zAw<`AeqwKs+lr)ie|KC+IKkAFKA}808(qNr)J*($1$^>R`DciNZlbr654&s<2eXWp zbw&xFiA;)`gq@hKI3inS&wk-f=gsJwERURcUfnj2JdjUy`zEn+u#1uGVQQ|>?ZK2V zAO!BJPC>)e%YQ|;GC#{ryKOPNNi13_`Fx5n730sD0 zSU0BQn59?iRuhQiZ*fWgZN@IdPn@_bVH8U04ri=Ygn;?sure71SqxdkQ1!u)!`a%nBhR*rN8i?<<6~A;W3hg+v$+wCh= zTh(}G#67Vyl{}2e@8bnQ4`(0KqeMIilZEi0_Cl{n0qbaLS(#4!I+-AoLSo)d(B!~x zzq7|V!(>lppN(|<_k8GSRfCG$gWqtJPo~wIXQZ%@=cKhFuSch6=FT3I`3?FIIr)9K zL4Twj&wg}Z8_55mXG-2ACzY>t)*H`5^Bk0Twn1Te%hXJ5Jx_3J>qQ|{g9 z!i<}~hFyN2?eB8omn}PT6{kV&W-GP_eKRdhzO@eDGP-EfwglQ|>7|Wl@i8I6OtmDh zrZwOXYY}%?Zo6Fm2;wx=NeEkI4tIcm$jiUbtjWF2av#YG){PiFB&@*|555Qgx~Q{I zA$hti(jm02YL|)GHEptuDMi|X1rOIA7iZZtoE#pSOQ`5#aOX(2C)!IzSh6Mq`J|F) z_9p5-L$#LZ+KI+eNz1!KTPq4AWzX+h+%;8mwOi4A!|VZKlo_`lkanR9an|5|{;*+2 z9LHQ{-FYjM#N&I%M@8$ckUXUJ@H#2$!5#uXvzcxqoS!TyyV;V3Vk{g#q{0x=cZE8u zW{JG)lE3MC3FENw+nb;QMFwEpG9c@b_Og)1_UxDby-;T!xozry$SUs*1cx2gMB$lV zjnw>MdLjTMIC>!IJzq2;&Y-8t!)E8|-P`Kw`l=!s_BD!cmY(Dl(QYgY6FmW;0%7T! zw7@4@MN6tmQv5PE9X*EybaDR4RtXG0+w)K&@!nduPJ`2T5AO`{&`Q=yZbMW{&)vUN zj{c(^`WI`5A1<+ur7B}=2Dr&ohF^Bt+CsT9Ue!&Se)AALrZ`-U za17BG4F@$CUSbhUtRs$;AE(09+GF)U*74J&AGh}e&>B4)qAC!wdH7(J^#G^--{1^m z1&y8I2f6@AB_s*EbvGDk;oiH})qr+g8YP)1Siw03=JXt$Dnej$vnt^1J%myCo2wlD zumUI+{=4s=)gq*$%R1b&dv#DnwRge?Y3OX~L9d2!ONbN?IFW5TlYN^CX{VyYDDk;0|6k9^n!gg8D?5|$Tzj`|tP*>uKKxwHtv6oP(hEJ(iG9cIRp{Q)#y zd+@Z4*WD{TZZ<8lCK9#0w**x11@X=^jAuuYowqLEk0}1{>=gh z!vad6=#NSBG3PHI{ngpDTFjlw=eY@7IX9%cvNi|CTd=Pu@%pI%y@KN_4`wvoJrsD! zr4U@K-xu0dcf<}?qef#zV2Gfl(3pS<#(bJLW?B=HnOJOi=6BDZ9(m&+d_i<*-N>m~ zjDVDt`SK8s9L*`%Z%G67tqJ62w0TV@4a&{5ahBV6_|L%=JGmf^g0k`5r(TV8yB3~f zfFgrsHN$Xw+u*ViNsN`QM%-pJwOk6Qt@i5PrgSr!y#O@YbBQ2_ z#VWWs6&(88QbTi7G9RL1Ak~G>w4kCa82fJDU2;IS|YI9fBW3*Inv#Fa(v%keY zMm3(a>LV#Xz#74ygN{sYdN z@HY{kh(-Zq+z~6m7i=4HO$Ym>ygEhXkh_`rnPBtmnI1pF4KvHa;zwm{=7V3C`EOAj zJtCGL2gHyC+T`nm*|@)l*~~g5xrB8oHmZ<U!0|+_FFwrVqudqFAxT0iP&m14v)h3|J`7Te{93 zUlMt-&#jUO)T+mMAA|Ui&NApy^DJL*EZP8Sj+529;)1JCV-;8eQpr>~FGU_IJbmMa#!WFN662yr78s zkX9!?caK3jRx4+_s?^HLSMrG(GJ~PqrZNhU{OYU#&m=RUTT6+fX3TGve>*i)+~a{4>pEpKHL+bDLd@ z40#=)uSACFZ+1h63wLu^@iWx+#^~Q#iPxo52>dQ69jz7XIO6wqp6N5h)y`JeaRIeU|mvBxiy3@6mu7ulMU zm6^j6M=l*5gbIWb?+OYyf2*HDlQ9M_58{;>ABO1hQ0R{59P^%P_@lT=2^Tz+h%g~E zeoEr1cSypyEi0Sn`9iKYyyZ^gc6`o;bZ0SHwF@H;-T9+kgeLc&0%Eg7CMNa{tXVM6 z^1=)Ha%E0yL=x)0N;Z&{quI6QafUaOA%nj=%>DPyDKn`eZ(t7mJXX+KSMTvePppt} z-i;7JQJfelZJ}ZWa=l~Hb}5KAG{?MQ@q;dxg0H39W{lS-AZDro9;(xOK}a4jmk=Zb zp*gsl1Y^SWo-grUyScE zMhftYcAjRfH(jE#1gY6P`(_Y@FM5Qgk}Fz)@t=IIiRDFyl8YCD&{d4l{RgMNi(x(| zSA#t#lz{O)e*874{*uvC0{ZpG*;5~j&y*0&fN<91@@vI0wIMVaE#5q)9H*UNvW<@4pyxfD}z87m`(td}84GKmHlZK<-h!@+z$ zHZtAyP4iOkg}L+*XRP>SpAXMW;neh%&|7aY<`Hs7$=3mv@=k4aNe!mM&NR-%eSU<{ znAlTYES$U+BR2XoQWI4E$DOa23*1S)wUi`0@gZ!fzFSUwek1W~*9lceboiz}+f-Bd2%6=29pc zD9R4XZa>jp@xt1mJpYRh5Pb`hi*{lS|7$;YAoIJc@9@bhUBh_G%wT_SpyCdNG2H*6 znuvCn4G^(FAbYQ6`eaPBB_`FONN$X49Bjq+EG;m2{kZ@&oz>%<bigO^{5H<3B_H_u$YKVIO7Q+B#{%s*$7^JMkLfRmlmBU7!`RXq z_Z8#FNuRlG^&Jd1Hq_={4(R$ApKf-QiEN&;#5!W^_!oS95N$D6& zcWc!Xw=VSWRLDTK#gY5qN`<3?@`o_t4x>Mq=#b%pQ0WhOQkq1F%1`|bpw9mB0~egD zy|RzofnA1pY3*7PhD=p2uYluw*H@ZOl-H=Kk9jKg-O71_Zep|6uNgJ?`b9Ac{JGiE)8x}RnxVZU?cQ!{$n05kx3F3SfyKDbJ-0Cjew6Rh z$(BqUmN3ctF6l>uqZQl-2R}?y|IgR zk&4?{%{P7iYmjxno2)Db|MwR!aL>s5Gs}lH5Bf5|_nsPO(h-a8Uy~N@U$m|BXbp7J z9*o@U$f~*~tpWzmT^n$+aOYO9u`&+O$O*8T;BA&?P)omF+IgUOfakp|Y}xKjIB1b% ztX|~n%P6$kyey4ZLl<)t*e`I5zubS^!`VEBHd-aX%6l@O7-F;GtaM`sSM z0t9QK+KAGne!|W*%pn@g!FN_LRS0QL805H#C3c*$<_-+zzy(u=_X|q#8BAk={nvBE zybm{tKFQ9fO-jAEpa)>P@>7TY`$c=LO~+K?f_>~Nc(=2X6qRDpbpO2TERrRs<|t*w zitRYd%9UBJ$Ia4ok24TiJptIXpD~zWVaU&`pB=MKhUI_ zB|&H;-uvWyS2w_?cHmR1bA6_3b1G70hLhza!biF%^c7A0X_p!#jx~;=?n8I zYorel|7#)aJrw5apBOjz+CiAPl z^pF0z{$r_##~*ne*heQqzYn}fdJ7pPC@7bxe7?0lUo9zngLR7qy!jWVz3{#P`_!KW zF6*PvFaEjU-mEkJgZpiZ zMLW7y5ws3ZZsq3%Usm(~N%7X`RuTM1%M@yxu7gO2p^x#FNVRDEb9HA1^JX^tNwW)J`Ckw)|1S;I6E<&u7+_=GogQ07F_qq9VuQa1OD3?v z@)yA@ao=OL-7|?S@2{-J91NbHoI7XrnSPyi&;8IC)**W1#V|aWt?!jm|Fzve`HMGC z-4jL&J{o+p3`+QoRe6-QW%(z)Jsc}TsX@IyO$+Sh+j!I}8)YcPL{51HVfnGbLF=}i z-yc5A0rK9{+tx2`lX>+(U} z?9xN*`}Ioeah@|%;}X-Bs??yxhY(s^o)~i@roo9LEEmF`+qb&>DCh9en&ve2QM;4YZ>ee&KaOSKZQLa3hFVLGF;`eS; z*O57_<0Q+Rlb)39|3LBx3lWo~NY}j7-y~WomcQL?A`UEZ=4&;(j}XMW_o5OMb`hQH$@8kRMwewXwc=?^-<9 z);~!hAlD?ZR1Eiah0|751LeWV(y`3v5{$lxCf0TD)GqxNt-&L`fkThnYmr?OqG)@yzn5=V1>ur-*&6frKXtb- zeW8`o_YBAeQ71@yd`L!q` z{#b}c6BgwbcMhT3~GQBD7B(lEqc{|dX-Fw~IAw&;1q z?12wgK$`H1Rusog-~*Q3r=?sj4VrBA5?WGsJ^Uuql|OePs<(eiJ(nu?DCA>4$}>G_ z`>LS9Mh)RPvxt+nb}SAri*XdZDE42c>{0)>{kaV-Uir?e)2}&t*e%x@HQegt+4WPQcB*GG5bokSfcj~mrzBi}e9{s)HpmML% zmNU4-x?Cro76X(%s3y$&a%Y_4s@!|vCf_=yK3)I4{2K52J>Ee_8424RzB~&5oZ?M1 zFwTvBjQmfn)aN?y`zmJIc8Lrh3DXA>OR6r_PmHJhpASBy4KY=+V{e)sR~uCYwax7h z1cgnoY>@Fn>x`K{4aGPS{pB-QZ$McER@gb&^BX(+uY$~kKdDT9^-C%Ji%M-?^uAaP z)--wNaPkFP$Q$0vDi6eTEiy{f%GlU6@-An*wga4pc5~t<}wl zSf_VwO}{&*?69Ao4|oTk9MtYB!eRG~srIzCX`7K6(A{nei}8VQcu%IhJH+n=X+F$} zU23(se~@TkAjpIxKP389j<#ULt-v5NC224JB2DdzL*w1V%)OFu?Oq?5YXXLj?=Q=c z2wK=v{Tqr)!G>e9{JJ;ykV^S&c@gaafSZaS_ZI~V*7iCL4WM4FQu+}d@V*WkVZY(* z*cN9guiMV`-239zuntem4`?^o`XsHydrNS6)n~SgrH<2Jz1r4jtAgtfE!W4py&YE9 zGxGFP(nhSs_SmRdWpPH?_rS>rc7?)b=$+^2(>)1hLE9sn%#*^Roh#S?klpk?#!D1A zw0)B8`K4_ZfQ>Q&b9UJ`-j0&S(|#`#v}c7*ow|E@s1iqSh*CG`wVR`k5kixuoM zh_dGTg5&po3Et3Cmb3FHB$*2E;L@v_M3{Qc=Sih{Ldj_g!9@wdES2#`J%`v}^w6Js zt!yl}ci`;%@p)V@Asm~17QdN|zny(cfhcLK>QZ-mdi0XS0qkde^bmCW;csVTn|-(c z?0ay{r0!C(%^K&5&dmQjpT4ji-$CnhPWd|NBgtDK#?F+xRL5$@^Zu}ZkB!9d-P?Eb z&g2MXax6avwDSArW*@YJts9*;XipPW&&QrP@MHq{(J1rEfQj^F56G|uiynZUB5rbG z<~#3(l5zZ$=|xp4^S%CRU2O@L=|OQei1E4plt>pOvNhM8+Oo+VykJNcibEnm$W`-5 zDEau$gX=FufRB)i>g?9(u(!!&s~swD=!5v9pH_y^`{j->wm0~9Pc?1Ui7?( zCegk^fpj;M4Tc%I`%5YX*6rCklvpX|S^rpRUw?g(w1IqZw!2Sp&1%jy(Oa#7icP4V z2rjc<`oGRzfyW2LhBw4wf3IlrB3I7P{#`cp&q)icu2nV^Cn#3%`E!^c=%2&JE12mf z_wNrRSBm)WUL0aot^Rp;qFeO9I{}aq``^rj_tTt^Rf9lMyl9x3+}?j(SmF(6f|a70 z=F54W20fHNsFvofd$4sMh&ob@*VF5x?zYT8{Nr9buPT#u2fp)s*_7L4r=UM_jrW~w z`wqIEpP9zmnrYZUTQ3agNMfHSO;kMy&$TK4|Fx?W(3=;SWHi$`N|~FH@tTBrd8rVJbL8ZjnwPo0kU^@a-m{P zal@u<&s@#}&X^sI8uMDo%KVeAiS_Gx?$2Qtf!)E6{$B}V(K`Al%kbIafwg2wCKUXT z=z5qu*`GGH&~8gkU}BK=qz zQV#{#39STu1=JjGH7xB~^q7RKtMPLbTjBGW5D%=F&8^|Q%-Qsu7@MC9&LcP{fq(pi zBp4*Cddg(>c=kBXwYjE;rk{trmm_}S>+z#OY&(H@!&&CB$&!uRzGHt6tuH}q44*~s z^K+l{!wsRrevw;Q* z?MJOHIsp-#ZR7Y&h{u^Z${8?IF37&L$8XZFqf!HeA6y(B++MGP-3gQ^3Guo(2%=kw zga7nQaX;(jil=<8_!HWxkc~Kjgr5{ftd%D7i&y(6J>b+mg)K|; zT;D~Qo02F!4oQOaObS%QZb+#|SoE-|@au=z{PGr3T3hlhoc6n6f0<}dq^!iM6s zImD!*^y2L;@{nymvZc#reNEEbLsW;ijbd%@P|Z;A4?oT?jcpxEd%$M6^KL%_(8`d%XbBvW%T7B>Pdb57vKd4~Y@@bC zWb20%*NqF|&`R}~Q)0Hk7@S_Ky=O!1B5ZlYRv{0=Wef|4Kph>)I7|4L(eLzq6g)da zt|~O;ucV)oKLh7`t~)p!B#-l4xth_0xt0$Yhdq`c34sD+_Fc8Gskpy-fDJKm8;7vI zkmoD*?6<)oxkCQZ=BIz{XX6KeaoI@zlXDc^Z53nH-h?5Jf7a@y*mkrc`So zd<0d=l2zX%*to_EKS`uz9(2&KX%zL3Ni{|m zR1u(Q@RJl=?*%RV`|kC;?G16}IbqytD;d?OIK#DQ5E;66az^9IDLk2?w<+O>y=Fr@ zJ*xt?tQaMh%v62(mYhS)yjR@fnE8b=m;BbRt{lAej#Oc*YNcCjgGXXhWUPShx?I2Hg@ulGaPetb+}vAK?bpzRsrgwwn^>m@%2Hmm8;)lY`maI$5!Jf9ZeqGr%08PLJ8uYE(AL z94n1s3YkZW?>s1(W1lh+!ET=%`BSvU z_~NB_%fByrwn2!CfePhPDBh99=3 z?Mvhc=@4)#_>Ws-vq=1tg1UAL?bO2xniWFYzYkSl7L4Lwv(yva$F zL1~5UDr0+!vA^71mjC&9>ZLVX%Y|q{ahv}^&k^u;S2tVJ#!R9aD;+k&=2uY;LBc5GBqQ}l|S6t zFkW%VwI4p?Fp@B0@kcP3MyZ*h{ISV5rk32>`wXvNetmuG(r|Aa)=Zu!jXB(6yn^SK zRRn)SazREp#|@M|JltV7OL5F35LM5MMk>#nuS&fw-yz#9%l~xzDGK{_Qx~-CpB>o6 zdOzrOfLELMvklDLzs@r(WCZH6F$LV5bak=bp)kEqY;s!tYiM<)O5mHtS#>Dc8nq-? zw;}}TNykJa-R+zqVAw++ZBzO8e`O%QwwH}+pv|2zwa2mHy^j32{^e%uOZ_7 zJzCS|&MabrwKgYgDYD9l5h~=ic!oEAhxVY7#QmP+{#ol#cF~fg-yN(mJ2zPwcf0{b+ZzrqP(#Ui72dj#SZfCdIj`s+)F8X zbz$iUd`@Kv!s{>7-I|wG(p}m4o^@Wd#=OxL3>ybso-(%+$zOJK{VL8fs!J6K2e~%* z0al8)oUn5uD&#i8c%+i?A?NgI2HP=um%6g%mh8j01}LKUd)#t-;u2zntBQQGA`8o}YNqdyh!gzCLVTWUZT8mp^-Ly)@MT z0>iqX^zJq#>KnCd139haGSL#+MNt1&_Sm!EZP?k^;fb;1c;>wm*mQ!V^+atXw*qS>EZ9B7_DN;6 zU=@^EW8NNwUU61dQ!~!8LsJIVz$F6HxcfOBDKq7hGcH21JU$Fc`2dN+tJ~Dp7vl$JyQIeEMrsW)ABcNpNuW>o&T?+^NdTn@8WP}YUQfia*u3i<-nB_ zA=9$bv@%z2ag{3wH z(4_w#NZwq9zczE2BYoe)AkrC9=u+r4fMW2M%31E|=Q8@C>P~HSqhl1Sn!dd@f*j9o z9MWR|Bw*`Q;amdJlK%akkB1xfKLw-B9umJ3=NxA)XUz&Gb)*fy4K!HfErh084L~=3 z3w!eL=hxP3mmH6az5AWm6WAAbm=(b%_=`K+q`PXWx|Kgj78Fi;Y=r*p;njG&R|+7l z2xH473iq1EfPo)3$?eX9a0*ukGNJ3E@VC_toU+5ObkYjXHBEt!OKh7Ux*R?%mz3dBMiQwX5U4as{Yp% zz^@IySk!+O{K;-%;oX$F7SwLJXTwf*buFn7=#q&ql9lzG=m`D>-VWs`-mv{HDC4SG z;>DCF=3ZNQmj7erR{o{0!25+3_s5FBPUOSn^621@TCxQ`-kB8X<~23P?(@^!P}QKt zuEzm+?XwH$+atJ8l+W7c3&hdZ*V{s0&Q@vdU+j-{4c?%fY)qM!{&{L}LVVlAuyxEW z8jx@ClbH4MQ|9KKsK<}`uKS(?UcYiK2Y2fU1K-Qbj5n;rWa$Ry&x0`b|wP|cg?KAIf=(m+owa)nDJI3G`o zNfh852=wZRkAEM-?0@Z^>SHb6xDse*=vUK~dKBYIWZ%`4Y#Qd!)*m#&256 zR~s>x?xmV_nw7G-463yaUO*01J_J&8ONd=rQ_v# zp{#q}Q3tkmV6Or;|Ng%mk%au$$9=g9+~r?U zL)tA`94HS=N;+Bcu+(IqyOQ+vS$$U`4XU`^& z<_X0LGTEp3ag`>atZq2+qX)dA5`uN5uavsLC0v&i1moXwyl>SAlM=Gx+M+h=SwBxT zD(-2~V>}Vu8dIyN4Bbh&|MppOb`~)d&2iMn;eyu1e2+9*Ob~+ zWjrVTvwZ$$`LP5e^SWp$cwY&|e96CNzLy*glxpAp z&wibyv}5)2?RsLO5s8Li7Hlt4vAy=CFgD#Cn}|B^+cKFa(bKo>oLxq(*d2c=d}&BS zdt7ql6y&L3Ek=~mP|k7E(1l&}4Isu^0s%o1n?t{*i{Ix7D}?z(YAG#`KB^4<-0ix} z3Lu1|S$CBGzN78R_1pRpDc`cS~T>#_SeEw$lo1X-|i(Q|5w@Vg<|MYkMCxf@XxhbuQ_S{ zoL$Z-QMR<@!P!WmUw7^ zh~DZ6HXDm`;7?&0n+8owiR+#0(MuGKuArMKiFUi>OO`-~i61Lz#mAoHQ>MPCldam< z6LYoQn~@z%6E73Ez=Iq;tA{t#er`Q^+z=7kgg(rkp=AFG_Q-4M`hfyf4L#;t~%`%?kHWV&Trw1~F%IIZFkgOjLTKz~b z8^Rzwn3LGT$_C8rZtwN(beAxPC2NO_ae$O4-w>IL zi^e%4{uCr|Klb3%;p9miHw(9Qp}Auhj2P4w%0G!@$l;vG!6{|&X-mZqs1 z9i`$k$x=A-;QAlxSIl**bEJ}_A!}Mz>Zf&!!0eofLM;wN!%k}$P}lms)Zct9W-Sk% zzHG%8ebsGw9e*yV3$iz`fA61+&kqw7tDeXcjQi55NRP}Y8kLBjAV`}vo((SZd8u4n zr)9DNp)a+&8kVcy75$$zkzQqNu+Yf{L`_Q}e??A-aY{OrOK|KWJS_83utGRoENluu zYX#_h9Szy1zMCsw{V2gk9+NPkAk~9`MhYu^Z6&U*kC!rkY1h);0pV4CbYPHT=KRx> zuD>_pXFhm}fV#!j07nCWUT9Zq<<9Q>@{keY73pH37n<#Z&JO5J$YDSO4H^_oX7CesA{tQtwq`?{BR1q)UUm@ z^GsZud*M?}pO@C9#ImMqXTiiZ_XIE{8JzB4Sc$%f{4CzsJ;F5HAzmt#o9xmH24w4g zaVY!)-b4f)QC}~d%9frlio|{U5+KwcKuIkMC9%EdIrH~Sn=}Y72ZE?H!U*s^6Zm~q z#S2;7vJJakTO`{0zv2I{rFsFqzu275wc*GskfG@Pu7O|S&yvf4p(TlI+ny{#e_j}M zABR=XK3pHKc1p$&`}VzBsXwt(0)<-C0(*CgXtCnB8P~}=86Tg(OKsmcB5}6lTk(vMimXmeJ4jt@|1~3{aR}?_LsXVgY<6n; zT2#4eRoy>e<1$(}N&%@jX5Z+GeDuyIbGwY11~N*2<|Nkq8(0gbCx8>(#1JNP&56*J z^qjvg+$L0N8iH)-Kko^BL$TWT4k1a{WIA3VUmew~J;0j=y=D1)|BJ9N*{-nFH`=bC zx|3r;ESaQ#k(vBe zEwSA*DV~Nx;GDaQ%-oC{ZFk;u3=0n&1k#he`{%n?c|GG;D=+EKJ`$V~58mOsaQW)8 z>QR97vltL?qKmwy?PPV;2La>Vezm+YPzcceV1x|J~w(?sk-rZGYb@GQ}kZw&v*s*TUgWz zONnt&zTlHHSK3Z=_Qdn;}Su(7$H z6!drOfvv-48skHkb}z1+?RPIW9zHcmBXEvi>k>CiJ#H%&WH%n-5Mbndar8(JNuA7S zDllKaIA#p}aRT|^?|jj6gLO7hK+-Vr+pg`}t^DwkTs>N|teRk6JZ?354(kvO*$`&) zR$bT3vkTMUwGbfl!O`h@ zOuUs@a1?dZ_r!Qtl_xU<`3d_-X2HdLHR$WHnw^XPZHs8YeAIaX7_X;B;w57)RqXvg z1+zM}BW>i@g-qM03ElXb<;H7tFdhXy`17(F*LMxpNpXZRLvyD!4@=U5ALlDp;gGXf zN$P1P(+k@Yls@Zt^f9LF= z!xldKn5ct`fW9qZ*Mn1D3JF1X7fMC^cDM=L)%_q!T;yg{y`3ZvfBzHAYD=6;DFm`u z*&ixgHCuv`S53k`=8(^R)R~vf!axwujvWUN?U248sa#}}6^+1R@9oV#LnOzp`J1`l zAd77g7qRJx2vwVdv5J#P+|i_8wUxs&rLQeh>|5DjWj5P8PENS?Gh;prJV3~q+y5t{C;}9iEV|x?zbv@N_Hn9YzczTU z_o5(|fNN3Rn|)e*P}}O|4aAQ)B-_Vhp_gx_WkPdWzbl9e%g+M-x-~h{8fZu)zR~GAorM> zFC4JB#sVh(Whc$q@w{az)^N!$Y}Ckftj={)d5$9Jnv%Z5nZx^QaD{AmB5nt^p`$Tix(aH*m@-TB-XQMbRNX&z{1w8 zqaOQ%GyxX>Iuj<(X%X!Gl>gym?5Kl204u@42=)o@FVK&fO&j6@1CMrJ)Zi!0mVST` zd!Ao}EZgDFh?naww-|(aLjfol+ZnAh(s)wy&xu|paaDmhvDqJNNynux13A91@K*T` z2oUbgVxXR^71}Je;KxA?d7iipDa#97X1MEo;9LV@fo}8A)>J z%I_AS^0a?$M+=oy)vJ@oRn0b#gx2znp^?(3q*IfY6Kap>f{y-g<&wQ5&u*-jyYt9+ zTMM?o_k6JU2c^WjGn(Dp@!t+x-z9fB@oz$p);uL=eq75gYiG&M zE$lffNAP+aG5(Jr)tjl7h#NxnH%GDvAKfjoNc+Qr2@FJA2CXI-B4d;NEGO=B2m)MN zrnBrE-kHM&SppF}m2-11uYN-rzBwEqKE?T7gL;>jPGx9u!Ib(Og_OQVrVRHM;K4I_ zH}_rUe2N8})GCx{d&P{?kJL>)#Kb9-!F>FppdZN}E}jD|IzDwgmI(1CbzOY_QtO}# zj${ha#GSc#$E{uF%i&g2u&&i}>8_#s)~Cag>DkA0mEl}_@x=?X;mh7ZifC8Ms{AB& zSF|fXj|B2a{A08FimNv&){7v_#TsO}XJC1s`+y08jnU=AoL(h#nMuReSl=sCs*SJ_ zCTqxblE5qfPd-BSUd9(Vy(uA)v!|6~?0i`l-1fKSNyql^H089Bsr-N{_5}^x7`q~| z_eX~u1}29^n|Li`V=5~?2(F%PlyH~K+>~#gI*04}{K#3!<7AVuU*{T^Bi%-?<#T%! z`zsY}!IDegT+OYw35a6y8(Nf;PCjlZJ#27ECWQcElS(NWrRlJpr+!^VK?f`5f|P_) z_fQt3lzo3_3W~fn>@N+0dnq0dY+dxQXvaLZJ zR`9CNG`3c#FAym;)TKM2Y%L4`^r&yesNzWdi^$TT#1-b}9&fDbrG1DkkMj^a-!@S% zELZ(k`hc^-rhOl0elZ09_gAFMJTzzEq(_OMr7Fv^AR1Y-B*M}W`$548{N8GBdk7%dKi1v3dto1SY?xX;uKUe|u8+d~7TE7f$+4_Cn z_fHGuw9CD5LQ4pJ7ds(RjJB#d!Wobg60y1!(nX1|pU1;yN!KM*cGs6 zZYnOGh45AzU$Z|(p4}SW?2Ctb#flff*1z`zRoveZ`s^uLw3((^iw_IRGlv((7zLu} zs>_Uhe!ULyCc+QQM^$1F-Obxzx5vXfa2tfyzV3jhP$(zE`2L^Kyp!nf3P;-OSse2a z+nglUtkz|Cbl@acEG!5`J$hL&9Rt{GTj*DMX zQIM6Qiq`KsZtX7$pdRj?Q8`=~PvtK0QXf9Wxh4;bQ0&9CX(CSh*M;~WB%h#T17TZB zzqBLD4wvaA#`DVTD{@CGrc{XV;pqBImV!`cI_}kT3}0}Q91A_Wf^u*gz2HEndhm8- z_(ZE9JiZTzwH#TiG4L44dx}_B%)elZuwl83iKWZuOb!ZzRtpQTUoP^J4VuOHk77#6 zF~4Hn7l9C!NyQ6Gnq3~POt!PRTYo7XC1B+3;rQVNuX{>fAG1BfZh(lh zi5ub6u=M;Fbg86=j$Y?itPU%Fc=q3;Fn{j2+xjaVShY;l<0A59jC)XT?GR8{n@y-cZ%o$TI5!po!TB>QPD9Jfc;{C<^GOgE^&ZEBAw^Y zi)(>~jo;cJpc~`s!Rt}Z-ql65%Z1%jJ8skhw+zS={CVCsJr&BZmp|n+t5)fb2tXMB zPP7HvWeLo?v-kwaTxAzGEMhH!N!4X13ex2`G4}i0A3ucltzABI<{s*)ruu95iY}fU zFp(21vl7?TpS59@MU+h20pRmGj>wwWu~EhxZw!k>vKNW`Vui|%m?ysz;_-PRCMmnV zTfJcTbtc|Hsdo245JDVp2NyH)+EWz@Q?C3J;#0$2IzNE$_#~oCm%B9ueAYJVA0BZH zUMV%6+M;2%vZ^eOR*m#dDmqk|Cy06N5rZGh``TG6vlxBB$ z;j>t!@-+Fsz4F6qXM?x8bhIBio>Pwd4V(Xlrm`YWtIqm6qb9sbb-ii0#i({^;O$JB z>V4Z8GN3nMW$3(pWXmjKZCkrZ^t;E}vlrUE4@t1fl2CQpb_AP58pQ7GURIV!>xqyq;or(`0Pe%=&ds!?v zxr6w>+U)2})`c+(m5D`bLn>UD^pRLGFy@tv7#hfm(!1caIGk z4#G%IO6vMr+I3<-M+0r$dGgT&D^bjfZR(M&xM7Z~a?_HI zKi3INIFZcpoVwTcEVy@OF)}_L!ze1q&%{0Ez!S4UW*PHWsGPvu#ZpX;o;IDfW0ZJz zw}(fWg`tKP3R;FM#O2vBUpdN2SsK<*&G0U=9Y02;FY!nJW_&45^NW5p8|?}?=^5by zah^7Y0=rQ+Zn;@Hc>4oD77T0Gfz$qhtwUczaV^oa|8%v|(nry|H#p@u(=V%e^IIhn zmau<1g{E2sImUIF=cSn*V5`}$GHLjAO+Bo7aJ9`Nl^O5yRI^_eKM97Bt2$y0%I+{*mpEl%9qG`Q6ssydAfl{!4a!#je3Q z;ydAMQ=OolJgN*HT08fSwlUNmjGUGBk%k5qcSOLB<%J5s`~bL)MOCj<3~mK#zlJ#O z=f{cZ9y)tqACKLfFcWj)UgrSQwrh^YXEH$lPVBxAS!A0NB@=P!J&!C|Zq;O2{#ohT z;F;k`uHC1McAaD-SRS>APsKO&W>ITj$X{$_1h5B%m&mVId1eky@c_49dgU1e&ks<| z2Z`3-$SIbTlnM8bFl&r%CtIPdx6wSk`})53U|^CfM@c&@R~3U5eTz`g}<)2xoB~4UUWzO*7H!lbMX`Am`%r=zZgW!+4aj zu;lwJ2UEp}Kk?jrwH2Sc$?Ce0u2o2vbH!-mcX7-;mWD!hYPZ4~i?Hi%Eh0vbpO3<8 z!pHd|CDGw4AuEi@-#Rf!i{yhRkxxzE$zQ9l>j(%9PfBU>)UvZh<(wF&q7fP{WG^Pe| zlb7;O%0B2Pr;pC)4!0O4y;=`nZwhn^a5YoDa?#yFq+V*D~BOJe^ zszHN(`)(*As@gQgxE>K*J`f-scscV4%)RZeg2kkPeiU-yrGf=CoqC$NlqZO%l`#@y z(jP^|%0*7t`|cX+ie$G0vMplrWxW{XXZA{bvdx=<0tcKzQzmUV>ktp{oNATNNlTqB z$4@arzsj{o{^-DJm7H77R-PIU=*6xvC*j9luNx|C@;+zJ#H9`vpiX<`I$*q|xzesM zVL9J{wXY=pw-Ivwn!eKx=~|%siti{U5m;lxjBuaveU-7!)w^_-dvhsdd4 z5QbgqeBD4J{z#Vdq!aU;v00qZ96?&|46Rpe8ytPiF=gPeSn6IeZu^Z>g*wX&R`NcR zuXlEQ*%vh@%W8*GKj6j(pIFc%9d6U~ITLKHbEC*@*5(>FTAXgqwqZ~4`z=Dj{UqH$ zt{=5d7@I)3oIj(e6vYRbZs1?4tbwcMZ!XV(r&)I;f6J`6plwxW-t$G22SQd0(i>R# z$fh@h-~Skqd9SCspDk5NI?Rf6i(=EtYT#q93v}{i-PiZ0=KDZ5lcZP+GiLtmS~g4{ zzuJV5K<+o$@@1BFvZ^$SKoJm}+dXPt2u=-2>2;f?HFMCKi@^fHs9yyompS$V#L$Pf zxjriQ`cldr;vVgK@`9e@IYlAo(r3=^nQ*#A`+FMjgi-#n1)5)-RVP4RN`ot9EZ&VG zXBh!$mTWw#+`9q!UBrA><8PUP&3#}8vOId!e2jL=jaZsMZA{n)?p4ij_uZT@e%;fs zN*r40_w*h&v~%535cU<_ zG|;SbTuofL?v}xqYE_UOCJ>$?mCa%s=C{k1-8Xe=e(g0*(rrKmF9+l=x9FGxR}@Y2 zg*RXa+#EaLoll86mIk8jEGpw&T6%nLDTPih+if_E_SxN;boBX#dJrmXg@t80YVYoC zQk6qy|L{JP5t$?|oV*`sZYfKQ&c&cdFWjtg!1~RGGUr%1k<{5$bY^zC#8SONIr0x? z!#G?m=y^~qK+jmO>>J6H-)pQ+uQ8sH@=w`xhl{>oF0V0)Gm(FuP@RFBSv}6@n4}+a zx+&W*eJ?PQa{2GDkXT*7iI8G_u&Hb0rS&Dk-^v)$fT z=9|0uT#M9aR$=p6*hbbc7+F=x8{4alrL@L?`nKha;!6GsOfPu`2UN{~B&MznS^4ru z^t%im{HItLdiEIUahW5@9xrndD{g1h2$9Z+l=N%ZiqS6C(K+cdkKR*&i)+@JocAg{ z_jn~ykcA{8;9QW>?@o~Oq!qh-@h&k7w62W@+Cd(C&N4!|?r{)QcO~+~tpj7teSa~F zljqp%ce2{-%tD?EdoJ#Gx;s5GJ~Z>o2>036gVuFjm0C$IxnwD6 zyf?51ldGo}Ivt%jzxSqi8k?ch*qX&bLv%WZas6RFy&JGK9!%-1`;6?UyQUCa-#maxI1#a=Cq(%~7DvUvx}7xyIWXhg+o z6ozqhl9zXeb#h1MVxlk&gFs#rL%tR*+3dbV8sszyRHH+qgsYON!iR>P=eUb>xS^rLhxVtnDaf2<+qiY4Y99HI5RzK z3zZf}$1-@9G!K>Q5FSQiA|?c9g@9`gGppYN-l|VAA;t+G6GwcJ@v`2SO>}#YiwkbE z`S01AfxNz1Z5O7vNIS~HX$6$**K1-hT;1|&vk^>qKK%K5*F(U12=GUK zc~>T&TYGhw#Rr9bUes5Ywu~? zIidH#o)lU@%ar8({0!NI1TZ4KZ_g~gm-=d?GKusa4eOj9y=tg+++;SXrcAmUBb_QyVV`m=R+N>W4!M(Z6wSBr#<7HnR6QO zRg`M&WjO=8W}h>M<~U|2R_qACJF9A96Y4znMpWn##bET^U_=tVVMpxHlA4ix|XbE4tmiq#Lqa7rl%%z01|bHLZ*LgL_GoJVUK zXS8KtvevrKJ!*s>jlr|I`z)k(?|viqM?%=T3_(SR;jz>b3y3DPwlpzt10V;mfZ7de zQNNbtc*$~ii?8Qbe!Z*JO}q)-x#_9nnYuW0yfL#hIs#;hrCb!yWklLAvi;6lI~C-8 zZ;~~RoagyHSiOF)a8O&u+%{>zYqJ-SoRDfT0FHbK?Kvx+P*9>iw6M568j=+HC*o=X z`Hf#DTgj-N|F=Q|?iESzzH|?c^+X2_!n`XmRe@QaM+r)NcX^V2@gbjf+67pjTY)a> zH+4`g2eEiLfkpH12b&2CQ-xvDy(2(c;Kn$9ruVQ#nAQ@_X*m%&CS@p^z{THHr5=W( zA~Esq>XOC}O00z~ohSxR9f}sFI$VcZ-XvlrrICMaB?9OPKvhgHSLj?{U2W``|1@K> z4-Dg@(*wL`<)9t%DIc|4S=OCk2rBhZY5b1x`Xtn=jHlH9a!?KFbr7eI-VT`(7aXRC zy|s2@o5-;T38C**+x2PYLrMr&0UZu6QN8+V^E8UiCm4uRbUVXMvG(1+(TVhXXL}^C z)k>RRgUxfo(=^wlBM17WjI*2=0ZS$Cbd0<{Zz_e%#v3Qc*ETzscQYrbzw-Ca2*er) z(X0x3Plw`Hj6v7tGqoNbJ!`Y$22hOd_jRc77B}Q^F7C9m*S@eC9$8*N-ULd;6agMj zOw@>K2uE%13hn*Dol|{7xqD(kYf_l5yP5#Q({q-??LCaV;7~mtvyUm^7c*$DOk>r# z-Cct#800Cx$|ih#&AnmdkyQxEM&Mn-1#!x1df4P}p(UI(Z)&Xw{HM;Zy=1CVtr-bY6A(K>)1TDpv>$3>^E50Rid-uJ|0)Dh)VfPM{NZ;D2 zOr=lxn)VoiW3+0jsIw(NqZMG&e}e|pE*yr(Dgy4ySMeqWh(?>WQcI{vIpyZBG-_eQ@WIF24ifg_rwO}I%;)ZqF?|6fCf zgBPQjU@Sbw1*H$NgeLrv%K|~G3L@qo&BF?7-oH!L7>|{Z5|G$DQoGqu_Nqn|1p2gA z+(cebod%^P}t3j*FKym9yfOBstHbP=VCPKUNh-=&*4M#jyn{rim|8Oc5Hnd z{D|IdBSYQmx`k00PFwLQRYc!hw-!j4RC6&4E#MQP&C5|@!EIZTjb&qr4(mC4{xbVb zwmWbA?giLy#-f&E3m_DJez(lCG7l3gcbaMqvMmjg{!XcLkj`IF$ z78*E*zm&?3Yg@42p$jxP^EbYx1z)tfNsH&q7n=o4Zwoe6ZpR!YOU-WIkAStAA~+$$-uq!WHqFu83&d}_nmt@Zi?Nw<8RgsHoaiP3;z|84JVzI^Zyub zRX*pZuCT>*OedYIU^J9|IZ3?&H|6i5yJNTU`tk7tOA0QMR|BlziEXcDN6t;p``DY! z3G*yCc+HnxwEkpWE_sZg*G+#J`SvLa4jw!rR|PrthAP0~8y)}p@Ep*G?rU8De}Mss zP=#B=ZnWsqcgEglYL{36Tof(AAO#QhagG(!3#;^LXbpk+9p=EnV3cAp(En?t#^6mClB9 z7Zo*zSq>WpxGZ#6mX&9olVc!~6?0Y`U~Fzi-a5BbdwTBLgbJ}ZPZT01&FdAUY^Q#_ za_ukp6RmBkvLx;`oyOcvACv&YcI4dg#e^x^Be5QG1B?9G8c8nv?mf(yn{kGQzi!{8 z4MTJw;(eZ~af>u7d&g?+lJQaTK7}{nechfj`yzhYfB(@1?~hB>W#ejq6W0WO;f}R5 z$R9LT@RUMASYiQ?r+Wp)2kiq9R3i8e9X_k4&?hiN_6 zK|*SrsYH&(-=z8b$3BY<6S$RUxy;mqN$nFJD|hhmwA-qz0IQ+b5Jf+Fk6BIzRKbFH zc`P<6RaWGEQokDdK2*+f=&1yMc*@gm^%INpo=)i~WLB=^{^<6bZj!k^qt)+N%?|*I|vd>tQ3#VO_?jBj*3TQeAD0JaZM$e4*a#*&7 z<*WcFt-c1|NsVBbviL~n*RC2(p|z_7@mu3dyC%~3-Q(!O+zkVcwTInV#0~mMau7ov zqvu6v6zsXilH;ou+}8Opy5{q7z{)tmbI01Ay-`8x&S-r7p5T@*ri#&c(aCw^ceuCn zt){l@JMjPV#CM~r`32@KRgxqMCdxPqPd4PD?bgv*+7L>Vht=EK={K}GzTLA9f)~?L z*niG<+5aFyX3aFhIx~EV2JZUSHu=8k{xR~@-(0}RUU9j*iPlZ%n)+z{2?|+XWsFg; z2z4?dr1}X#=jr8C%k+u8647;k^A6#r+j z^R@EWh9>1u%9r>2)WCc1o=u~|i}12_T7^v@FOT5qIQxxX1$NHm~l0l@IFtsld3p-2*GOI$-;X2doLGcEu;oTsWvR2Mu zbYZOH%uD&}{Ap7${3l@zf-G&4Q)1dw(Lq!hN841*;dr(z05%WlxJw}=9xR-ePug~! zcsHC!7vG=NOhn%e^1e4S-qFXizNiBbnv0wX_&I}>_WR7>cFyEr@kiKdF`;tKg*sNv z5BuXc5bi7LvvV*1W~N|{JHY|9vg&>p&w03I>>Xgjv&w&D1BzD^4y3o^rC58bEsk$8 zz&^`mdZ7T>>+|DLZr*(knDK)ymSQOJx0#OX@$KhYs20^@0?bB~&fS?&+j9hkO~s6S zBZbFmo^dy0T~-CUB&FE(DHb@fGWdj1QDNiL8Nk;I>&lkh%nR8&?~Tp~aZyfBIfVHXxU$(O zBKE}-c9o~7u6B}FF=`lEdxI@95IEwK7G9lZUV#VwLgOURJtFT_s-7SvdiWSj|MdZi zw~G>MQG0(T2^`eaTYE0cta-GpFmMDp#>ic|2sZ%TpjwNJAJq_ z_Hv>jy&4>9Ro`Og%rc2R=r6&OsL?n=mja|BZ4YfQY9FHFEwc4bUAT=$6x>!WwnY}^ zaMkNU|5@&A9gQEOZF8J#+nZ&(pxKG`I?l;jJ8bxIR!Ei~k+pUkT+JG}>;M)ASo1;W zLKEcq!&}mF74R{>ayi18&?kV?!GtDWw_G=L>^)OTANFxy+_4BM=a~sC{}XK9{cH`d z>VBroFI^$DoN{KlQ#CKgH2tldgQ(ejDdb;Ii>S@twY#g+t1wUm7<8*$d>!q&wUkN^ z$137G>eF$CbN8W_74h%<=Cwu13AG8eE_$~arui6V(KYS1m#0YuiY{n|gJghr(}Fh2 zmOAD8#i}dSa>#x?Lf3zFv(3Ib-g)PB#YTS7iEm$%OrNoJTrRVnuS2A5Sevh(BR$`B z-s-bJa5eo?E@ZmPG`i$V`8ylNMZB=wUC;y*OL65q>1pw%Y5JnbIKs9f9irCl&?8E` z1@Dm_&=pd#7EN^J1L(C=!)*t}oiCBm01M)%QmBI;%;UEWvDdPE~^Z~=xZoX~&3IMu` zwm|r|1JV}nr4>o?d0F@VQ^H-$BB;ghMBx7e+wBk<%d=tMSdJR;p=fet5+dD=8!#M4s!dV{7CU*37Pu zy}_mf{w3uCQm2i&f=Wbu@jiWQL6D6nuwM~i;2Y(?ZCJI*-(+6(UcKG0u z*_T_0rwvbYf$Pt}f~~(Xu$!pAF0HaJ6gdv4#r;L>$=j+*ja(Xf5DfQB@v2KeR-b92B@9xmjH7|j4yn2%G zpbWg>NgX{SVn%n}k6r=6iE$3j=*_(<1hExuwovMkU(N4Y3;*NWUszV8PeG>;;Uu~v z6+zm4_}Uz07fKsQMS00tNM|&B-m-~mYH_htDlHB4=2$ebT@zECqfbZsd;d!$kt56N zkIP;%aHAA9U9r7!)Xih z?d~i#ayh}HaU8KYmDO>XYL+kL#|^Eb&X}b!VA-JrvE%6)10{uc`L|J=7u zmy^hJH+7S9ZNavEbS{+18S1FrE!3Xn6#Y%ylH)8T-sxVV?|p8Hc(}{bBQeu!XfW6X z-8Pa*eBRniMh;f#d%V__V&+#6`WDc2hT~|t6ttImG#d^es>VJ-w7_~F-OfpAi-5xuRYEbjoG(95gMOqU@;Y9gPZJ zkB>>3AW~MhULjS*Zg$4n7AYqsnwedJK})3w@^O}Xfix2wK)dOg#JV9fARl;v2u3DH zuGjJ_?#yakPi9qYdmWXJ?& z$JL4Y++f1ao`}L@`$RetP?f+KL)3hM8MSu4m08|zX7BtR4s$UK%AnbTZL6;f0OWLg z(1geWcuP-$l)zttRCsy6E5L7I_paU8&HnEz-R^OLLe)?HU9s`Ls(bQli}Ljdjz5a@|3=uW+~REeW$Dgz%cVSlo9RL&u`{)oywGn( z!te)K+qYI8M&#^H@P5|QIiM5KBdnLC&m`$JH>tPSvdY!o_@Y|H77Tq?7HMAdJ23ER zn^BTaSBO~PECYz{ls#(gvzpsa3NLGEGR+>6`)!*$~0bF)K>KeSG2D#Qw7(; z?cJCk9#wqcqTn%ig;p$-A#(wM<^=A_WeO+KofebwFW{i_u-0yC_jLH}iDEDQpzUy< zie^?rS{&|v%`b+^wUJU>EP&eznx6qEW1ILuRnU$5bhuy|$X=j#yAKdJZ}gy4rq6F5 z&BX}Bch=X?oPjK=KI4;fakb=%_qQS`9QLFaCd6B?JUIEv8cyW76s;}h$mG_W$G$mdz#OQ1gz~d&GyP?2J?nbr9y8Gw7hp~Bh&hqPsyyE;#2jZ=;llOeuu5UM*p*Fj2~I1#;UdP^F`S&WPd{9%oZOzrEvVQ{VY`+nBp^5 z4x0UhGyRg5Dj_i2)@1bqsH0}N;`(_?A4Fh}>&#Ny?D8I?O|z(@f>xW-LpSQ=lE338|?K^IM;DuS4phlHZDPxVnq<$^> zf@fU-_k-f5Sk$M+-{R{Gz6IfZHW0Ek%kFGWNyPmldn8h6>u+lx?D6BYKE^jFTsO= z{le1rx){bPO;oBjSyCk=6kxYtUuDa23ptSDp)OeAbaQ4X2I&8UyK+7{X!{zVAxe=# z#iTYHf3`$<8LNmfz|7PktDm4tO=5TQ*1NJD895|mb&KxG{h;GpT*3oiH_&-pCBSt@ zC^m$*xQe?d3|f@5LEeb+nHjfmWmhhl+q~^npvQdd=3+9&?3-F~tEQl=V_`8& z{*qGzvO5mX`5dAqh@bhsJ|7bYdlF>{{KSA;Y4>%scGDdcvR?q*KS?fU0F#__-Zy_p ztS{lUe!fN3XUc2YVQwlh(nwZiRAh$uN@#Kv0{j%lKJV9Y?qv0@5l4>mtEAz_ zV9ZAr?r6+q<<|~&3UdqAWfdA5a49?DvlWB~(A*cuD4Z3yE=WxZYWP?d1vj5&WqL?K zxNmHdl+@PIOi}k=TUbz+X;2K=G|_t&F@?;|JF$)5kBO{+Fz<}dBq;H=pW{_=Wd;|n z%27TWff3|la&}B&<~M#^_1L1@4B1$a=z6$3`PAL_HcP$A=2hi+HIw-O9~j_77M~3G z527HVin}Z~u;YWDf+7|RL2feqO~m9+-a+p`uG~ip6Ddu!k|kH}U_=;6N|-1aY^kCQ zotU~y=&b5;xA2GS=yB6N=PU85%wP_uK5H3jRm3EpK u8TVYJUa(%{2>xy{9)je`_Yfx^o}Bw|MZx5AzVsRT>**t1&60;!AN~i5IIOl%tyPbRiGvF&7HIB*~!An+36!U`ZDpe|p(A23i~Ex|oI(I6mL+-5>TauPy9 zL~`~vCT5n#ARuaiiR#cwXi{|-spD<5`okQD84eTj_6h;yFj6MNMDoJOB9P>8)Ffbe zDIfyE0*oXiRDQ@J5a=BtBqYc1IUBE=pBax6rw%3$t0!Mq>BUK@Hi+wd@$~dI<4+Le zSUX2kDO6%v1{>lvb{`N7B+zfd#h^9Q15r`VAZA^BpLL#uqRp|aWL*@eU9X>u11MN% zxF8^VA$p(POFl3Vx?ms`$Vk%B;2=LEr$kV9^N=G%>LDy0g#{qOE4H`b%Nv5;*{at$ zqs!{P`@Ms7|CB4a(*wa;yhD+Mff3zfybyVziuJ7*54gwjg9j5V_650$Am+A5MwW*; zFy^mL_~hGz_zeE_$;VVOx5ejbNOuZvBN`rwP(<;`H-7Ei6ms>n=@3GKCp za0Z0eYWIa)Or48+2TQ~JA$mflv(5B|?*fE2*}wLGk`gVT)nIRdfSAA(q%D)AAoh^N zZX-B%9YL-B##n$6wM1;2*(uj%8|d}DqdL^R*)GUYb4cDyk<`t$h%}Y;NJ+nDNL3~l zSm-itEDC6Lvpj-DB%4~pM;Z&+I;_#BZ|rjAEeJ^Ad^^Y;xFgd_I6*PtxX?>p|RK~(L z-FXY|qTpP+#^fs{rCPI(r1#tUSb|92G&J3b8E>r7VGfCMa9p2)AIFevuv?n~r2{|n z`OXL~NJId96F`H3tp7M(Fxy)djfTtt^L_qKOpc5v@yz{%p$Xa)psQ^_qB!7$EOy)23Txq6sy1~=?(JoZvy8Q}fCwP+v zNJH`~A`x#qrDHIE<9`K^ts#H@kvJ2M`ibMi zqX3G-kBJ59pa;$hs=5W)NaBnj@bDd<%Gt z=dK6B4K*3l!34_dhkb=lD~J@}KZHc{7amq{Cx*5F%uE0(hQkP&Lr5ov5bc|Y;PsUA zZ|DR>biw^8yJ7-P#0CNFDf}a1X1I=^4WYUzSuDt(-Ik1ew4gM-8r4560d2j!wv2e- zMco{>pjvRMeUY|+HONhW!al<*F;@ggIWjb8Ni6c{8Nt*%*4%daRXIl`PIJUkEagbf zaC0$ko&X#n>3obSHD($O7`o^)RhoKSP7r*58L>-|KL&roe<7y)NrfFl8T&J)bl`XZcffi; zIp#oHPCG)Iu12EvP|IAsrk|R(MTLUqAW1|XZ0~39&omKcfNsoU46nD|qtUlA%GncS z9B))-0x%vml)!5@ZE{osy=`@T$;4=HB8y1q~t65VTxo* zaHu{ZFaf03p(m{*s^rm<){1WNvIp3uI|SPi?pg19_4pseZrklh?3L^s@24IZ@6PYT zZ>{&a`#ydr9HZ3tOp79iRCZuCia!_ee^5$gYskU z5%ODv;Df0FU;_dHiE#HY<1n|dny`ZaLd*+H9kf_9JJeweGZY}PB-%X6I)$5fy{4n+ zFS#)t%eE!6nxY*DJGyJ6Ym{rvom-SR6athsG7a)SWG!SBuDy zaRZVT62TIxl88gyOeajlOz2FAM*8aT>S>mRXF?ni8I4*6S`BNcKq#Q$GsN@kO%*yj z+8J6cx&}HgP1tug8Um&E!sfh!O0-I){JUSNd6xMZ6>F8;WhD71ISRQq;)&(vxoNp> z>i6Mki7O$TWvv}A^!L{H#_-bctpn?*}rSdILy!ITPq@`S*Ita zE~a#*rl&$@TXJrbE8DG8to<(%vI=x!bRsvJJ41MtKbt>Nd}DmGdw%%;5YiVa)o<9w zC6&+T&)3M8Ff`kh+ZElNq>!X=j5mn~D&o&F&z_o4{gkTXF?l~gb6~r*zfHy($p`vtU%Dy>{?T0-<=GpS5b)`FwQ{N_V1Z-}LQO z{Dtg!ZF!`Q#p6_2mqNGnQiLxeJ6P9$6U7O&A&v9U=G^Rl7MbvoPvB0ZcJp#hcx9+ULX!o=Cm0F6Kb_)NrAG-ql{mNnA$?_h-6n9~>% zq2I#KLQz5_!`!gwa5HgvF!E6y*iC}0rK%zW4Ll7P25X2VoORok-X@+FVWD8rVfj$j zQ5h&|$V4da$w$c!$z}hj6=eJpDS|3+w!z%UYIt`_vs<}#q*~|e;1Xgcr8Fd&WvZhO zPeD&|;?w-z#`wC55RHG%@y3zLvCBp0k~LvGR(Qy}T-bJcWPNA7a`C}E-(K6E$m8pN zaX_<=dB|`MzvS+cebYJPSq8ZZ_ws0QR>kSVg9Oxj%GvH|6-??)=)ER+%}Wvz41U0S zab9}7$~0)$$tV9C_Y_y7&^9w_Y+wvMk~AVTLa3Ue#Eieq73X5q$y9A$JyLvfCjXKD zEapv+kB`e?4Qwye$ZLIqco6Olbz!++X_7I|EU(%x8L!gjMF*OfPqb7P>C|<0`c~vGeh%L&)r&#s=ft5>gv;^|}uM8U-Vi1vwfaZ9_l zKGEKC96V=XjxmJk-gK0Ek-wLk{W3f|v8Y@0w9(q&#zn;Xd}4h#pAnwmx@p^y=ox&s~h;a$cYx%)={o`eK$MJ$PNmh(k%Cqw>d0N-=XVyi+b{#bP^jS^Y%#QfKJGkIZ^=H)B$_XLrPX@He)oZPKUZW=EpPzXUAqQnER6fJ-H zO`HzSF zBqAhhB`~CQWPoui^`0(ix~(Qqr1p)KM(8HNXH%2<&@mTLDt9CCPEN$93 z_$p9sCfE8mP%rD+36}_8i9EW`a}RR5k?ekNPe1Lx_AO@BM>|I7xUbxo-vVdD{Tcdn zQzPu6$2$pJXIXU~8x3~4+cM*a6_GFBd6&GEGXMPYesjEa7}st2nX8LuGT#~I5ubJY zyzwk#wmmheDz!G6MZ;27X7LIU1HuqT&Pm!JOX>e8 z6`{!IHSCf?31wE?_gj_`rl>51_knAYha~Y0zm1cXvmY5k_kTzR@ru+;OT+WaeACOh zlA#B7!w(&*RyQ!&2-o8dQQPJR7uRH?MkL?2KS^?EswsXyHdgDsB8lJt&Ml61tCOx~ zLiWTbsUm+%-o2(++~qBGv){Y^db8~v{`*9BYt*=Rod76FUB#byn&B;IGCdppHf}$` zD&!nAArq-ps9oFEe+%(wd#Lyj_mKNYhv~8Tx!--(6G*Z~T-m44pGIy{7-gJ3>Q8ed zHbd>Aj84E~e>QhLI`2=3AtSkH&5@|PsP$Q|Unu_+@w^=K$MaBQ(z~keia89Z%)w^u_;hgL8GWJ#J(*4nt?>C++QwY9-``#KjZC$diayKUn%a6z#_V@Gt&}E61lC4Kd-uASE_r2%mA>E(4D4ipd z@&}=StI237Rh8deZ?X^>{0M5q_cE}}0DWSqBO+#m)4oA@qd6I71nrR6ZmmJ69ja!o zr*#PEJR&>ayO3?BXEH-Y8WZmW6TRj&8XTS2;5nq#9E49J zoExLsDkCmxH+()|{e^{aNd@vbc6sCD{~ViK9Kc~n-f-64r_ui>M8u5Ps}GD_s4%W9YtHy9>XAiK>BW z7>^dWLAhA)^yj94cSR@0BoU#=#iYPg!}!{i&LsN0In%+*RK$9sGGzS%2<1+8GyLq} zo_*OSKUMuXm{JwWDCBXzVg~sCIKbag1sQ0Zd6gOkubG3FWGuFqq6c*F7#yXdN_YtuARHi=H}|Y zYyGg9)Ew{pD4#v{e)e$<`WW0N1R8x1Noz*&Dj$VW-@j?27CG^MU7;swc)S`Xu8>mPH&Z z5nCVtMHjSdgu>y=J#qARslT9Csc&rD!zZx2HXcl|R{cjg&~nVu_-yA4lVglsls&)s zN{eOf&zcR;`FiA*_h57@dDoj>j_5Z!Z;jmSd5_a#w?b!o84KoYjnWCU)kY|?~)}Hs~s~;GpkIn>cq>B4$RIf zmj)}DS!}5`?QEvH4n0et1O5nshX^J37j$-19lF-ac6Bo)CxbPs^O-D|=29mLIKLy) zCvmb3`95EEQV${)Dy%kC8+ENZ8mB7OQSBTi&uiOQJf+_=!4aV;33s!PqA%PZ&I=#a zZrRQJIF~;_`RJap-;|$4^cwGQH?>AR{`$R478WLO%5Ha;+*GH5--JAynpJh0rmKMwD}cH?@D;>z`8fUGMEn}JdQ`yIv;^8#g=;e_T7 zwG5g!%`}}lX(A;)%`W9BnJIl$QBFy5WkGIvzCoUORiiqO0;y`9%Bk-|SY?_{!iT!Q zI;qtzUOe$niQ8}CrYfxqiL9f}Q4b;rE^Krh-`SyCm0Ea3Jlgwjn-_z}Pc)sMzCDM% z_A79`se;}6&onv(BK^L|rR+N(JtL77rt5c|X80;PY-C;23KBBX>{;$j(`4LKM7@*5 zoo}LYGbLLf+jtK-&di2%*G!eFJ-u&zTLkO!PWl22+=j(d1)f7mpGJyHw+&wgEo7_b z_vQ^`(dPinTITh9KQ|H_vmCdN$QusYD!h^pS6p1Kw5>W1rXgL}9;d8t)=#?PfwC2s zLZ6|&{e5Qe+WkG)fUGf z4zm~A&#lbs%qyJsI%2v*3W7BZ9v)oli>sMfVmiak;HHOv1Yz)2v?vov?z)?b@k zsoy$~baqm^s)a-u5t-+48~on8z)r?W#7l7VQ96h=)*bOo&{Zg)8vedYMA<4{q4*yE zCnhP_Id>w5psh1nz<)chCSSrIyNA1XCp0ngURsl@4H-I()V9=i+QD;IXUpt}rRljH zab2~~W}%Bjj`iqQ^)GR&VqrDU00Se+@uFp% z-HC5(X4z$}J}p>4v--%r+kV}RF6&Pn z-F6fF&J$16%)arC=MCQMXQ9u*F~J4dkx9ewfc}*JY4Z5O+QJg!@%_xvXcb}A-!!Hw zCMxqP@hVm2&wS45r6Vu*pg&STe1I*jFUnvbTErlu(5kAKWvZ&lvP2>S4j`4mHgA`8 zUW<(2wgoQm>%V{P7hxn6*A3~)Ew2Me{mYxSkdbn*%%npyIR?P zeP;jx;dbTx`fFwEs88f-Wohle>B>X$9|_K{|Nk^IkP!Vx#LL`_tuM>}vLZ zEm=GKw_9HwWccR^!w-5!hX29-Qsw@ql~c~l)!0%^*v!h<+TqIv?@u-s?*GXDf1dnb zi~mbg{eNjP{=YQ;*OUKhax?tXf&bN^f7$v^>laQ zO2{&NzwobU6XrB42}>4DBbRvTRcTh~X|&Pmb{8sF#j6eXGmht&epMnl$j=SWW^6mV z>x;I_jWLEU?&tkshOTco#(wEqu+1p8K-EgDWB;q**H#8z3GvSj3_ol@1jFp{t?GcTJzv{@(7qrDrSu*j=r)Je z*}An|EY~w0BXQRO|7v{M^G0cQygvv?wKq$J?cdRH{PN&Sr;dEfudVKMa=hao2Pz>b z61oHGBOWv3Q{Ofon?L^#c6YCY9`)Qac#rmSW=Oeivq7_s{l5S-pftWEoE^>e5s4}8 z&i`rqVz?Xf5v2526V<=gt5Ixw)+Kv+{zW75A=~nE2T}f`iT000Em$?!<}GXT?JVv8 z5QD`3CC%eQJxdq%uS?|+TDDDbwv+$uJJFXk0e|8#M*qL0seF;9DbZ~DFBU}1mo#F| zh-3K9zpT=LVy;z?t=0XD1t$I_4J~KfDq{Dq`-xv9tDsyg|BD4m_9YEo%(R~O?+|rM zc0;<*z&@V+cSz#?84{&bYx#eNMDHK+5(EDKyPYz_>i%HzAN6iFaz<|Eh{_B4dX}c# z@&Yt+V{&mx$=->~wrXaF?}CEsCJ)jjEvg5aV3iBwO#$nN&>0Y-Vq!n0*nAfLU?iv{ z8%d;NW2Q z@dos8x*?m$;_$cPYBcoRa1$04eUTqtD~Blkhupa|r%@If*l&o4`9)>8`-SMmrImj( zPq?7QNb^XlnP>pAe2?Ga6yuO_P{OvhY-F^DTV=(?yYr)Y!-5IiU(+F~1b@|ZS!-?&+<+`DXiGc}iuGm)Qb1y!Z zE(dZ((tm(SYg+j1+aW}KeZ6iD3gk*hOXYw?DDy5CL|F@t3X&-Hw<^1^Gt|Sw!!U4Z zxVM~SWDsTcs>C#0fc^dbpioFhe4a)l;HSIpO}@REnOroa#c z%hPyqdy$jZ@!iQIsc&e^^{yril?YXS_G6OTa{w z02G|G$ zUNED{48gPxzgM#nGV#xJ-!0<%uP9^d0}3M_KM|#WIdYnVW+H>Y|P;vf5DN*C{YVABnug&2Y+sU zu%4Wr+W7+VczNt0C}o8OiMrg*%>x1hr5_v~Ur7E*3E|ZZSMfi2wD!9m+-z|ux-S0y{d>=I-Qn-yY({~R#`C41W(b!Xryr-GU%s|H zU{;^)46m-NOv$bKTqn_L!`<_hC~gIj{fW!*;9AepE2J3 zSv6k`r;-$x#&jM7`*S4Zm9*=h!0V-q?;DRjO=&f*wKD0W33jXUu{k{(8u3e1UaN~B zn)f*+7xBQI<@c8OT@QI|aEwt|NW%H~Ifd7Fy3JcqnT={nVior2&$TNkL=403wQWE5 zZl%I#fZ(5k%%qmL@$?fMY>65;Iy$-t53KMrWsap9cS;2X1&>A?N8-Yt?99JO#Oe3A z&fA35&2E%QiSbMQEmW(v{Si0B33DXUXo8_?MO8JrQZjhj$pfTYpiV%19 zHp8X6it1+bR5 zmsAq<>#b=5&MwCS3<%oxc6Faw#jkUV9gIN81jwn>ZIfY0AEoGgqX^fHq+}mX+t>A?I$JpfGzvf_g3^^yP-LA(B_=F;Orm8ltbKf;*1yHuD97Rc<#F7X6Of3%_P=d z9nh8QG~fWg*~RcbD(ddj$vF+F?%VgQtHwR{J;MDpifv?O&abYHX+uiPZ|cI7>ctA? zri9+~dRQIcM06|_0kJN@$V`M-0&_^z?&ehntogO`YvTui=;&3M9;a3L%mv|392ium zrQu|7IN==Xa@c^CGP@d6TnRr}EHykaj-AwH(3x|!?of=MYH=Uu5nu?SXLDZI&v-d0uJSR|YY z8Dz3Zq~cIBCYgM5ecftZ`>1tjae#tgdRB6h6bLbEF-g;-RCP1#P4^S^Zc@ z?e_3M**b;^Fe!+&Xkh&wF; z_B@`>mY+euiisV210RIH(EjTq$-_;yknXA2l=?>N?C~qj^21{h;2nUa%2@Bn`QPj? zF*CE|_-Ct@Yei+ODVv}u$)mBfBkYlJ3ZdpCS<9=7)TovAm)t^a5ZRP4sozj1`{?Z7 zh{RcDxi`oXy;5B+7 zg%@qK#JqL+@;~~C9r~Hhc$yLI%@lVZO-JuK13kKvYyUdIjInGNeJZQq93-!!C+3C%yH3ofe_%Jnh5Y?%Q1p2Re288x-M=p}}_g&DTlP#*3|mcM(;ShoDT2Qyjr;ZFJ> zV61{IoNYdj39tlV&?;8x|Kk0_=f$-p9A|p_T;H&SO4sSG6x#P~yDwPU@;U4V4h<7? z`(&SHNHaN@1!(ch^0{A4clXqWn6GWCGiK(&ExBBdj%Y^3K5-tsxTLgaY6z*G+E!#i z(&KcwC^ttIXXC~E={#{A`1&<_l3L0Y(jk(b_L-9_a___DF0neA{V(^2$5= z)~uSbKk{fWrGd8UHzAv#n?acX>9-p3zDjbR;ECGrKK}bM1X0J>_Ifm(=JqkvzJrEEuTWb0IBFu2E4b(PS#S_9@e7Ay-IPF^T%nxA$@HGL-RG!~hP z{y)7_2|pF=kwO5j!au*4$O9aWGDl}n`CH7KQDV3ui#JOs9 zCXpOzX=!5v8<#&DJ*W*|ZPpch_SHv`F$kJ(MO6?w+1s{wgB37i?(gq%<1$*>HTLKi zHr55gx#35#y9^yZFpNx0(&lq~EgRHIMSSS>lC>bVzz6{czFHp~N+sAll9_*~Z~<4G zQWr@FY12Z7TVgBa`=OLsjBUc}?LgFQyl1R!;%yVsWR}wfB5o4f{O}3ir$6s7U-OKv zw#qx_=>YCyZl(8pZzyw+Mf=}f0?5W={&OrYUDHE7Bg$`Z`MA`>u0 zmjaN3U=DY>xwVkK9`{yxC`DDjo>86;JU8-;r@>;V;`t^?VXafMKbgrDKG_l)!uq;V z{XJS>bS<*uFwa`cHaiFnQUm-Q{I`|m_D0S;)EJir7ZM7x-(0v(kuf*1L7FAAC_=7>F~n!p+hh5 zzyl4(U-e}|b#k1TYlKAYvD?VZY^=GBoe1|XCu18q(sbhm>Ph}6^H>z^(dZMEq1xK~B^JS!q zgpvzdv(Z|B)8z#Y4q=R=q@~jE@~~y=f)4(Jp;V*{q=D_XvNE~#S}W)PK-g8OdD-@9 znv$?jfm&1T_f`cII=iM1#yknqV$6nLOJ}?jy^n2=N5&5OQ9g+FwSiF#%pQ7|XfQhv zv|`>jkUs9FaOs9A<>d6l?qLjjsE;C$_wJRDv-=8%=GO-Xr>=}=HsGSXCD)gDZllE5 z;}(UPjX4#TklwkdKPD=e(ETrMoz6FYEH16fwVM{OFde=^n)}ucxQl50{Kch} zl~r+GxB<|(C0DE0tcI+J!VvfXcQ(nX=Vvp_2|xFh%`8$i5it{0g&gs}<|=>1VrqgE z5kr}FQu|#`tHMbgEl}6##H}h)zwUDjRIAGif93nh&NJW}S37Krg#$7w=FfN%hOkXq zPTOSis~)b)e3zU>OU{^{^ZrhkBcJ8!-ejSf=LJ^Z76cX@b+ZK~Rq!~ci}mXHsdZ*9 z*r%|S6zR%D(*{udyd9%{z)^+Q(ODT8j@e)oKE;`>o!yU#EKdL3!D#)_B)SOkmP8`L z)1REfs!YHscTZJK#F1rgPhDl@K;ImJ_Pbp|oMc*Eb@E%Kc6R~`pu=b;U`<)aBC)In z%KrHhc>v4{3-84(%K%iDtEei@`tRSrYmh+T(ovd^?#pf&8L83kKqSSTt)0XVYn?XV zlAeV%qZQK`m?U)$C*9H$A-j*VRQ8Jr$3vOEgN=q}6wf}t z-F_c#!~Igbps3K0#wB`0BQY>$N(9zHEu-+kx&q;K^CeZ2U-bd<01T6bn?+EUg*iCX zUUC`Tb(FISb+QpWvE2%~^s^&=uZpv#yJ%D6L!)cjsVFKZ!R9!1M32W3;_juqFIgi0 zS|}Jn|8k?FnHn)&mN$Rweme>jH>oY9m0G*YWyBCqbjx%f%-M4Qs;H% zx?qy*IXN*gC^R8w2wlX!lA2nG#p2hNz_UXHOBZ^2qb1Y13GwY-nakIbry1Tn>{y^q z?x)O=M}ZkKQ0TLxCR!^R;{B9lN^W=h3fkSqTvN*$D_}y?n4Gjj;qi}^s@VX2DC{dJ z;IK?a`$!?#)nj3$c~Px)n{%oh6goP3{Xx~%%e=*qcA|xIsHDlaVi5QN^Sw*IHe~oir%Kl}V z#qReU+uwwkv*qfML&ZmCrjqxZ8>k}p7F;Nl3k^54EhSpi*+#T6i(liN>6v(EZFQ2F znK`a}sBE%-n(ECV6{8!t?*2%`!ZTm=oX*hlB(rm?OajfVs%Oxn1!5SF6I||~9$MFc zcK&m{P7DkT7jVFNS_d)=7Tq)^b}T>NttJ@QWRqY1hd?*6X-n9c%Q~RIfZg)@)OtYT z;pU)AZT{7||7x}2E2}W-+@Ev^PB5WkKPvbN1eL4;@EOP=3T)E2GP>lZ;K-4)vI(hY zlx~{8zM=XK=QtZ~uXJRwWt&1-yfj=iIV+if3&4~gZAuv^Kq;YMOTkgyLV*+CI*kif zd;$y;a8wFDtd;aEe3#U`qhJki=_p2{ti;&%xMie&5Xs@P=P;bR09h!A#m)DATmmVr z?SlTS=z!vLzlHL8>KA#t+CE>B;bn{RxO9v^(aEA3soSqeBm^zEIh~8zNE*f6>)>M0 z^=r>-I+-%zO!IiZ8$$j&*l#!+G`?2H4v?RgpREw>YTJZ-1Qw&PDENl5RUfhJkj;lU ziPv}*uHDKRW%DU8E$SQ7^UI?!j=(h%aiorQaXR66-!}2}G)yHPtv%6JTe9pjPQChf z9s2VGYcX(p{zMuW$Zmwv{@(I580FS}vjEwCcg*po_o#uoVn6{VzcF_WGbe%xyG1ut z_Du#Fm?&k{-KN#bs-8I}95nkL>0G(ut;g5&LDM~s%Vu}>H(Bc$Cm?h0WMAKqe;7 z&({aDguM;TLbj1Ekaf2_7$jx-<7h=O;7AjKP0XUW$o^bI$-;ccOj^1uQ*-0xQWW<< z90N6V@AxU3?b%ZDz^;ju0B=U~(R5XhcFkO3{ov6PGdHtkLJ!wOUGF_LP#5>Jt>uMQ z4><;)1VImmK`u|{ymTpLoLOf7GV4HQ$n|%zQc&dp?A!2K8)~L?CuDI)>>4PQIrh{n z*cxwC&P^Sbb}PZqhLCv>(In>}NWRI*>i|klZcMg&iEY6g$n`-MY{Sg!~2yC=d@t z(V2ph=F|(;TCWXG#@@`(rl8>oQyQUe1&|n-kOvA{Y~z^_XW~OqVU8;JzuB#NJSL1P z5z@9zkTXX}vGe^QE?$^&E-+#;&Yvrb(2q`yDEZl1v2L#OOa-xj)1^pL4+0MB0AGJS750 zK^&a)26}T2gm7^N({~J13TBin(;4KZOjNgz*^r>Psg8{x`&mQ*xG7all#(!3cvUgI z7$w6ln$gp0;Kb~B_v{=Ssoy+LPI9-f0JOTdj%O9v=es>dx-3nt#-hZAy}Uq0`T18H zPRfvxQSQvuRDJCbM@p&E8}tRihrnb5n>7GO=2RP!|=t6TzI0rFQn9mHeuj|w@B6t}WsqT9)B+w}+j|Jl91nFM=<>YSxr-~~Z)@>{N=J{s*=l3dIzqWEi#3C%q@}Gfn_;?m`LVZFZVFgXFk4j2&Z1)%0 z9#=KXEh1oY(N&p=f_*%2m605kI<4lcJ3}MGtzx2JD87L_cRFQymEk))d1vmNfBEfS4nL+Z&q74cMVP)yLl!*-qPg75%#;M11_9qz z{9)i=wH?mXOCG`-%9?U+t?0|EnE+}ADJh9r>?~cR6-``H3#e_7GXB;hv6SGHOj&1B z6=r{7|C-GY^yk%^8b|d3Z6K>H-@vX|wEnTZb-h%XcgR*AvM-K*T(>a1K%e&e<)4;B zpKi@sjA9Gn0-5}oA&1A_v0hHdx)J%bkker zOE5rN__enx3!)U^=lxnNJjWy32l+&T!W=bkk{f9F6UHje1~)GQCe8C}_mrU$M_2nq z7cFs}olZ_y?xbuH;b41FC%Hp!!t4#V_xJYr(=BOX^P??)L1evdI20R2z}#=V&~y8# z@XV4%^GQl=7zTQ43y-@%64Ub{th&^p!r-v>ycbgalL}oG>70cNpeS>$WlN1OMlPyk zYim_KVZO2KC~K>Itmxi)c6q?I&tEtdYn?O;kC&FeoJF;FC1rihr`n=O8#b$rJ13dv z?4S%uSc%XBM#Ao{tii47zo-Fz*Hgx z5+|+qsS-b9pn8EfghweKXlte`I-5<^u{-70ilz?Ebe&hv#@rR3fpnoXzvezrC%QP7 zC{Qh#R+A+WWA&h?#~~&cm`%u~-Gkq+BvI*b^Ka+0Q@;ii0?h@P4t1hym3t=OdoG=j z%3L^L_%JkAyQlG}nLm_s5KyUSiTed#*usJ>u)af3o1Cc{kiAx*wjA|sFGZQp4 zG;B}KI6QzA5JfZ^@^~2mCn1U7&KdwiM#VlMc3fn}<%2d{>DR0ABCcnDPoMnHX|5Qx zjig%+eJZ9&7W5~Szd4XM#K(ik2JexyiYjH^{nh9N`&C4~3j9uyaE}LPgoyjKA^#^A zaj1&cK{}vReuT3|ht50&%t754V~p^MO3dT^+BDlCKC(+ld580x^(#TlgpUsKN}kL% znBz>g-FMbhuZHjJGj+&fGMW9k(Vw8PR_JTeffygO&~&68$1t1AtE(=HpBg?#!XFw6 zsNFOR;gCY=9bgi6D>LLpe(mS&mMsuBrKA?aTs2y|^?3Bn(a9m;eC}U?`Xyy`Hfn@|Uy6kr_CrxlfX0)~Q{6 z3*d)U#B3I~fS7I9w_jK5DDqlo;w+#Q6H0o;$gz*&W`5bv@8sAJ)bZVuH;W6A3PhJm z@3s4J$VOsR=3J#*_%cvH%(eGUbD`o=GUBvBPF|`;DH=#OA~A8fD*d(w|O|*Dje!kcY+vRNtk2 zUh^iD_L$)fQhCJBtpoIK%wNRh(dm*??h5KSErfj#G~(=&9%kz0M3+YqwSyeP9#(y7C)jIT9Z*(ML8OI0JngjNqFGq7$rm%(kzY zFXP(^2|RA%9lw{x z;S}NIScSZllUekC*w8n7{~-sZvGDcVD;AG_H)P6Q@W->S8=)eq*Q0vB)}g;ticxKW zIBL9A@EqwIXd7oQ2z%p92ZRUAB8eyi(Pi*>tZ}Y=gAomu;a(V`3wuuk+1*dR<>lqu zKGpPLku?*1zG1z*zKna7p0bvwvmrGog|pdIS`MF7f03v2^`e;xL1qCsI$=NmJozO( zD3Kbzq47V-ijnfRkOB!-=KK)nL1zB?^SP;i1%ZQv|OWZ)46;5rS3e`}8ZJ!G0KeNLadY3=%`= zC^cq^CO}(P0@PT(r03YXh?Ty|;HAGSt|7B1rk$>WoC5%Jr~WDRaO0zHX^)w+Dj})f zzRP3zmWN^*1N&9tx+jjhEj1JIf$K-T|7GausAxd_q2T=W%_#Z7Z(CGdHT(zcUSaq`ToX~%WL&0V z{7Q<)ejz4K?vlM(!NDGK7{f^)LxY~H(bBiJ<0y+cE7@@~9kK>wPto=e<@)_Br3btsy z2V?-w`q5V%G2b;pCZ}4&5VM%ebeyI*+7RQkoxD{kd2To~$7_G|wZk0}X2i^?QcT-G z1?Fz5N(lwcz3SI5+@EuFVr5h@-s`~N1^s#3^$u=saT=2_Qe7!&d6`&<{&crXIy5>e zB<2zfYNO7c#P$e<#l?-bw1%k1jp*_zBLWuJ0O@!c8)H<_>J?MY5~`-E8g9`fW&8gC zEq<406VtjBR+uv%H}aiS0zt*WLXMPmanb}44rD6s9egwKwah0A+UFPx#m$7?mpTt z!96}90V~LxzyHqfjH2c!YF|e;if9TN@kB4m7tm2YZ)Bm8n?rqNVyJ5XQFJk7>x=WjL)nP<^M`RF;5V zbWB7vhiNepc<#H;p{BMLVWDBB6OiSdQ@zS4^HOe`mY9@uk1V9v87ngJZ648_Xsv6k zHxsb#(C!{F&FX`lqZm)M$m$Z<%+zu$E-A&&&sCvz3B&V7b~5TCt@I_N8U*a(+jY!3 z5p2V_W78;`!%TtQM{m406OC1b|_@{`+m>C|iZ{`MT~*}93_`(?~n zCQ~i0fLw<_USMcry*L@OdybBaL1`zpSlDt&{{;NH?$mP4l{)w>xX)Dq-RI1W z1VpW<5y?`Lg=DD~frF)5=5HiKz*M;2IBviZO)%_HtoC;h6hY6Wp*{?b(ppx;$5~n3 zb0epFo?`Q((S_p6cd~QhT+%1i?YMm59O4q<@W(&;(LFzz&kw2}>qaSS-cC|lPJ909 zZ$3+Ib!KQOqQFsG?Y`zHB*gt!F{HZ3&7tA&}Eg2!?a*7 zt4APiC$0R$3L+qC7bOCGe>W+caPsB)EIMSalDE}8JYYr$LmVZTr0*tt7q9nqAf)&h zhVEPi253Pp;l!^t4oO%ww)>Ns9PbaASHl*l%X*WwqlPWsQjNgB8UjJlB!YN9E#uxc zgm>4Yf2fz%doo?0G$%6~fYV^7l0tVW^MZIf*N|_iDW7 z-tq4XS^_S~B89{~T_d=zLc2nlj$kZbX2TF$4pSJP{}C9fz6E~L13O9SbTITTm+icC zma!s`U-*&d!dA5l?h7k#pT2D}szt+9HDoEflwTaW-y{N0umDj2K0s=trwKvBeHe`) zm?tkoe;Pq_kQQ|d>6uY_(TJiE^`ZSzr<4e^qXc6Spsk+dUS!{ZsrA|cwL}wz})k-zyB2&N)L3X(^qG& zQJnNc9lrEK_c$$igS5X6HB;sVgFW&-aOu2?%y zuDhP!r_jSj-`}T10^gPr&qOC(7)P?WaduL+#|uYRcQ`vaftdkmJ|~LqmCvFC!I0TE?W=j3~w)v4AH5pS;s7$XgE^S@=4f z3i95am-OAbhgwVCiRGG1EnIM)Ofn9=E>Ijl5h{h1)g>^Oa$7L>*CHza@4WXOe)h(D zI3B(ZZQFiKDufn#G*@{F%#{pQ$}-kJ1mIX&?CTx@mJ^_B3A|Mo5lr9?CGS0Pm&M<3 z1Q1qp2@(C>=vaG*zUlkefn<6nZ4IE?=bJZ(g@X-OP!a>V%vyQ z%jK)Ix;+jV;8RDcQpjV@JiMSEojjnvYcg! z8;rC-$qTxsKeFIM!fAPD(UNaMTvIWY^t3?>i6%_Ee;_Ol1IZhJ)`eHKP(I5$87`jmPW zbU767-b}z9W+;KkM6|6s#NXW_?i=*?-2aWg{7xMLCuB#(>vzz7@ysttwXic;wclgO z>w232z1#!r;?*^Q8%^syk`t>OO^noEBc_wPR|g}jUn^D9xUfzKI~sBIAtlE#6wVGR zbIUh!;gkz95(IqGHR+xJQHMSY_??=(LEgGh+Rn?b=Afn_;37%o*h7<{~SL4b@Hem4M_W zK)0R@`d>*PZikVM2J^{EZ$OfO5xLagzkdk)C%A@%g>v@Gt)k5u*%XC;ndC zxm+5TZTCE10B<@C{%(-qZ=b6X1Up)A^kID6IbVP_=8=~E(2@|uG!>#NfujS5r-?vb zF>GY{N-t$(I5DXmsZHsyATP|)B&^z@lhTyH{m=gF&!Cts>ai7B@lXEbPjKYO5mSjO z>`#CCQ*7F_2@gN~F#i7U{~jARZp2ehJ!RxjQc{9n|N7VX%fI|fBe1{wyT8Muk3MPy z_x}6u<1hZ=FC0Y~EL7#HgA|y{I@15vI#(U26IBCp64f$uxs5d_O;E;if>Pcv-3^F1 z_bc?JF+i6lI711_`ku@C(OTxQ=4C~PMe!b5&YJ8bw=TbU6GNt#t3|cSmDeNsJ3wEX zu{8EBbpmo_ER5@V8oc zMPK)>pmTf-?_=`R@vx~+`v|9-@+_-_4UV6zC{)s1^z`y*R&V1B;}BB07D zrzJhmMc|C4MJE{^aqNhGhp7P$l z>mTujW1xP|t2H{}h9ClZbsVF^_k4TL2ZDTPX9MY+SNLqwG{MXxI~Js@C4CfUXd83C z=?A{<3A4Y}tb4%a`NjmtQs@ZYdZELY4dd?|&bE^EZD3{pLUa=l^Vg zO7xC;c@5RLd-DoPasRNz7jPv1>wA?va|nRE&3}u{jCP2mKubRdU`C z-!1FE^aN6F{2qhDqiByMr$5_d-cM^?z%DR1p#I>8svU)J4`AtrEP3ls9thU1?W`=w z3*ZIx`mAFywfzTc!rb36WpLlVeLL2zqh-RRN|M!HUtf=9%a$2yeZz(ghI9YPPksVf z_Zb-(_~@gL@WKl(n8{UHq*7#?G#ZGFjYVRjxXi#z-c*YK-45%d*nwc7`LfpfxyWcF zeT(7Ear+ohcG}}flex)5$CwFE=5TG9Yxawd)P?>cC{+=x{-PeiiO(w7t)J9-&8!tZ$n%oZP#2FD_rcjLghT<3aP{ zi!Yk9C>UAs>Hx~h%I@~gvivQ$={frCwr$()d9HoFlh2kj*Ll2Gi$068vYe!o%jp++ zmq8v$mqkrjl56QvkSS};LC(#<`CK>Xk38u%2ajlFdWumabnt+wxIVV$t>u=F% zhStA{OXK@e3B=XDEXZ3Rl+Nh7ldWCl-2%D=dC{^m`cyV`Zf=@82}}vx|NPJY{2OoF zzkffnv$KsCjl5@U(qyZW+$Xhzk}Omu-EWiVh+VsO1q9b_d2>6gRvFbm)fjb1VXf7r z4$uB?W#OJ@DFI7=h@#PMN`u`%`6YyxoIt-;hQ_2~Wce-+pj&#z(kA>Zr>)2M@mc0$ zj(_eA@&ZEXj(|`)C4h7~5Zd-3BS>Ylv0hX*edngxOJGXiKGACg+N)Qup6Dxc%}%yX zbb}OE-2MI1@X#>oYwC=pl9rK9rw2B|v82th>+aMcA~GB)>GX&o#o1WbfS&GNEM2~o z*T=Y5`-3?=t7Ed(xf-2KvOcV@zYE}2DhqiYn-&$w(?aj>r=NOyp2t7kbO2rxn>JhY zq#2e4e>eV%{lb6F(k1JXC%uy;FCdh@2?)KZPXEdE)N`WzYcy*?-g?-$wB^)gIN6;u z2KUJxI9JzC96gS!m#>VDG_woHq+%;Jp!i{J}@4D623E@$h4hpqt8m=F}O^ zr-dOhA`;)@_GQuWwBqI{SumG%u0u(dlZKK~PN!Q@b0nrYdkp=CFrt;7GfHD1u1Qvb z`U9Uc)+x;BT?_jo>6#Adpg`UNq4dz{)~*G4QJ1phZ5RMsHrHU9zOMNtxOcU6;?jjn z_|A8qHt@8p$DygN5k1(i>SrE8o#=djTA;-BE&-DRki_@sEoZVKhLlU()2Wz7Qj z_RbD&jvWVWbe)ith|Zo)6znN58)koX^d!Q=NY$ir8TwcfXsEM@jOOABK5L?6sTS*^ zXz!6VBt=tWa+S(TWp2(E%tdVpq*Mo%f(Q-qY~^>~g+p_b4M#skdTGP*N_XXEXk87Z zw@x-dly?ETC@F7{SDTbI@3zMWtFB*y``wCTgIA;1XRE0CU)MZyVxC1mD(3Moj^WCs zD|qJlZzDdD!I{RAxcg&AkD;-?5nHz9qq~DE8TosGiv@E_wP*RM4$>5t)fjc-1I;RNQSc7btnnoHTi0}dMnolKFAMm7!UHIqdGb| z?oKSb?R4@=^GgJajfsOMO{*%Z8T6?aar_+0RfcVitw@NAM`uSTYVXwIPE|Ehl2dTz z#2H+?a1q~m_Bo^`q|mi(nCnzLZdIXSp?LW5M{x7%4V*rC3KdlqShHcRQGO|oltYa| z4ZwCFlZ(s!W~vfU2Wr7wov1$R5D?iRw&XpL%tyJ@e^k2~xoO%GkY#ISERYu%>Y8M( z>rPG56O}=Sb)(drgW9i*16#I<^vS7Zo^8JU65JzWBXQu+L7e*PD+34*9Xf>W-X7c` z*l*jl9lLk$#>ZSB6~YyV`x(dPEJejcVf)@4 z$ltydM?U=ot!-^)0hN<28e2AhI$JQeXMwpIo500_&SZ^mi1bWdZ4GXfl;LV|1x{YS z&54d&e=441@?vE!;InR&7Ub^iX9{IBoU(h}D&--5|xpdAtxf~4eRbd3cx`dSR`e>0JQ zrCJ0aI+P@P9Rd+G!pXo~4O7GG;?i=QrB~FAJ1sch6^2v&473%(MM=X93Z@t_Zkn+K zBzsXass{^%*26}lRav`})z6Gyx`01a{_VuFMu#?Zg9U#lmu)V@=(pgm!g+(VcSUh9 ze|H$B`}Cb1mg%#b=0^hRJOvVVu0o%cBzu8{tS0X|yI(HOo;{2I^ppRNvrDp3mtMdX zrTIWAebgi9cdi)gjNqsUyKb7j1k^rMH#%(nS&;Xp$Y%d0-#o$UpPkR~o>*4-ys^VK zIrPn2{TkeTBNF$mRssTVS?6jr0(1d`?MP)23M|yHrrUT%>3e>quo%B@3d2woW4|mZ z_k{0_p~bGm_iz~I`9FaFdgQjSqZ12+0zFY00z$bOsy>|#gesdYpY&CS%BXUwd{Z?% z0!8Iqa1WH4oTG9G&_%IW>)bw8L)|$Y%5#EzD2_4LBe=p?8(TEK!MHE{exJ?TS@&Y>5rv-TdynxVxyig>O zu3zgX&tvHcLO=iFB5qXwzxdN~I><|o0(t4NK;448 zoqQGe>v|xkz%E@N*W3)tCd)?jij-Xzy1-pYimoFrE^huKbrRIgd)fHd0zDxD6k|Oh z%kzH^z+VMF1QC;jZRP=0jZ@~^uGXJN!FPZUP`XRT5c0OVh%2GIeC8{ z%F8Qo<@yaA{qh(>+j=k=I}XBUWPR7IcPJ z-|b}QK+v;(gml6Jp)7gtu)I#Uc9nnaBcXPn4$OMks8ds!0}13^aG!Nk@V^I0ab=y$ z0+Xep&jN2LwgvQwl-Pp)T$QMgVIx|&N3ML=ua#EgWYHa59*D!O5r&6|eFWG@_sRMq z##}EZz;jixHlfybb)MzNp7S>{L-03NmMkr&T3cfs))MW{%5CTTv>ehG8?jM9D9TQH z^B_0ZZ&aBdUa(fXKwUvH)C4DnQp~H9{$96Lny=d@_P`-N_*Dg8O`F%{)HWg1P0*Wu+@=;!{d$UBVW+(Wzs3 z`Cnea%kO=H3uy%Hm3z4LojhVhTa&7T002M$Nkl-K0}>?CTGn} zPPOQneLqeDx``q-3J7&L83@%@yg^=uk`~#iTq?5@lMC(+s5J}bvYZ5<);d>Xl0_vz z*Lk7Ae7xvJhKEp8-;N6-O9|9>2*}5P9D;l@yug9f@W)Le+c=tPVrXYm=^IN?g`KY^VE_dhjhc!1VE!M*$xxBeo%6UNo8(FA!n z&8q~YXVN(VpPi?X)vIgLRVOD4@&bCbGnGq|uNtj5t!ys1`>7^Mk*sBId2=bAKwOrD zfL({L0e!sqf<%!dEb{=ZXp_tDlae8qp0SaWhqTT`xd;Hd=n>OdOHi%=+UWw>&Cd)L zmQqKGhJatU>yK#p@1WJs`$gp}A(f-w8Soeb5M9g2LeOioG;K?^5|bn1Earde#GP(u-j zYZC@FbSGML9tn&Av0NN2$agm);>IWF%OX{iNt#8z?E>bzi5*-h`T6)9&!VPVN7*5e za!FrD;Lhg=AkA~X!T}HTvV$P?Ba2p~D zKNmAqFo;+ck7cBGqUlE2P2g^=;s}5ft%hgk2q8^W5a}DaQVR6-of8suVp&E8e)OXs zFj{F3PMkP_%a<=>^XARS$;mO3d`>8a&70uAmVkbexM`{6uz+Bdi&Q2VL&s=1(<^||FGueepL;bY6>Eg(c1LkbL)IDAxKS)cx zeAv960m0NI&9py5x40|dhy~# z96x>>n>KAShxEpYN&0QW@(Sc-&FiorADG6Bf7Fx4^Y+&6+hRE-r>bBVW041=-oz*tKgH5)(Ox;lN};UhP4~j=WC<_AbcJ zUuBMON%Qxn0DZFP6&=>I#e%sv_h_vXDf8kUj?$NyT=+ogmlzEV$4ETsnPr<8%Y6l@ z8t$Cc*#KO6XA(^z`dJVsoh3kYZW5?-Zl${kLp2xBHd=$DCr{$g{(VSIOE<+5=*fx~ z$X8WW8IXVV)mIH4zkU05q^EoCbD9jK|8~?Wkhe6YH#OWtJKWbH0_n?^-sP#A8=DZr;cIw=7PHJxl4WkeT#BhAg_UJ8 z-3=?|Cx`z1)Nn35T0&s%TD1pQ`!M+ka^>=G*UlV@3b|0p&^e@ZG%8^Ine&2l80?e= z=yk#1Xfb`QXv^7!vyr>;{mYm+}vCP>aDG<2ISv= z|9vc7x)k~O`Q|L$b6T<>uku+pO2x3T7QPe9nlE zAp(66SD=sJ!{7bhY>+KW_|PMVq3`$f?AAKB z9ssh;7q>+|bzyhV<7Fh7-Y?CZ^gQ(necws3WbI&R0$T47*v?lHfGbhC#PKWgBsu=r zjyvcKB_$*dU*0<=&E=@TzE=+xu=gUW=O%hma?zf))2q)3 z-{fcF;I_?Jk(G7V%Ooi&2~R%xBn0xJYTkYKT_ljJmxoPGPL8?HlYeLZmDR38Ag?xU zL0;`^(NmbSs7k*C_s+HsT)T1&FZ|#|^w5Lgi%&jB!HxpN#>b(tt^sAGW%##$`fqXT zW+AR$y@n`m&356`d33gSV2GRNKpj2;XyulF2I$bs&~mUA10W~TJCCO$O5@ca`HBozV#{D3}dj09y#Ryo66a@ z(1VArln~hKcQZ|PB%l?vdYAnAH7a2Ug?Re>cP6nTp=;-8%4*N|4MkiB@S$fEleq;S z1g*sfXK!QA(bw_A4N3UU(@)Z1$-1j^;@uB%(|B3#mo8nxXPL_hb3;<&Ir0 zZ$Vz|Patn2Hd-UfZFAF8NWTR4?w)Q#am2>Q8ak$@uLs>dJqFx6ICP7Tk4I#56g>>$ z(Z-!@Qqq#~{P&(m$IlsSWLz5M;+MW2&dx`L-=%NH-C`_pS>>WxtYxly#G7lT--5ZT zT;nA-)6W8L9w7wNglvK@0g&Me!aBY}C|8$u$I6PIZW5S}0kXLHL54JFDI>7bZBi4p z3~PY+Ova_zN{*l4suir{{Y{eJycSh)kyTLLEjrxrISIUHx}A&`S_#ngPWtqNoVtm3 z6O}+P-^_(tIcN`MndRPj=PKPhFLH8t4XySq{GR!0xD9XtmRZHij_FiGABwIXK?n8s zfB%a=MHJUQcqduyhYue{K|ukoU%!sir%&U^kt4>E*W{}}(TT}YGonD%CS5nmnbo3S zg1cyr5xTUA{?HLZ4+=Xesft&ndw&;3;Knc;)&xlwz+1n0leBIy_8!=0s1@BN5SQWz z)b%_ifw?BKbk=*^v=9ga&s{a z@g5O`~DAe3Pdh8R@Lr}ll%=L z-4a}V2E+3D(W=^%9ANc6Achm4^39i*kCGl1$7_nWBTu2mVvp6H!1t%{8W(j1l^jDF z(!$F zUCZ2Cax?tjTF*22IXUOiyS(>g4;TYUQ7tC?F9A}Nhg>LSjg!kB#?4j z%V?$3idFD3GkNO;*UGQyAb3rbkSHSoEmyuKR$o8|y?8jTxPRjBLkGJN#mVBf+ylUx zL!Qn;v2QdgP$yzL5)q z{6v6mJxm1bN>+#M{DymViYa8~_0{`;pQ3K46KK_`Y zZkEv6UZ1zl_>p@TQ-Gb8nQo4~2lwIAPdUsbwWICiTrl^R)a?Hsq=%D6O0!EszR6P< zCqM`8a8xxwYC|D@6G@+lYLP2tBrRrH&UbC?e1bcD=|y+k`ov>FD}b56Tb+S`w}(`o zIsvVCZ7%nOEeK;L5uJvHJa!Omy#Am>&>i4P*@3uhK8Kyn+1ETF6PA%~N#-?$STKO@ z^&myU)Jj@e@9jMJo_rT{t0uViDzGU&Rm=9kF0p@Q`y6zoqgtH_qx{~ECDqz#SUq1 zZbnH-39eteipy6?X@sfXWMSVQs2}`>ad)tBC)Zv@*T?`mx4htq8W}Dgdh9(q89?;< zU33zVvxm_mH<9PQf+d&V#juGc$vn0RTpM{a^J)NnDJ}o?1b$lFvaGowh*>r3^|;CZ z<^8hy<7kbG@2@K%O>-3^DOr3!>6v(TJ_Ee2SU62(9*$qJa70OIOTqNb7$jSRJLfrq z7~(%;W#WHwi4=HgmFh%bK3Sdw{@K~tSg~RS8XFsNm38ypd+!+we)sO(Shj4LBfU}7 zcD*NGMc1hF6WCjjpG+o;>AK&7yDH&+0DQmi7E=W-WLZTEs3BP}*U(>+U7E94wQ3cf zdHNaLYVOC$+XiLlK5Kk`UB*_7lE)4%`~oAbm2{(ICr>KISmO4LZ2ShWdA|uJro~aR z&Up-zdWoYY-_KxU{VR4GP&Fd}0lENHzcGnt6Nz%{ z$bqhnK?LVfMaoo)BnPi3n4zSJG|_82Ld_dYkiuw*htWD!$0Y}WAVV!paN{JG1oHBW z*C9~X7ah5G?_R^fYvT3PsZ)lw(P~&73XkE$ zB#_s1LT#JmBuoc`>BTaFTM1V zSvWJ^DjJpB8m)R+PxGDxhywX|(sY^x?V)vi`FHeDk0ZDfNRT~jb{z>DZFQX-!1RPZz4$<#ga;DZp1&nat=RAKY<@SyaU-QSK^A+d)zAK zt9!5}YZ)GYXdf~dX);)4o+Qb|cgKz$2GC{6iFjv0-{<3=B1^jsHmtgD+C4dt5>haqmMp{RL)aO z#P^PHLb8FsD=aR><&r8~zFCB`S8vk&kNmc!8fKfhNq;YQtpOYeAIY@yf;B# zo+g@D6(AeH90OBhosWU^q|cq;3jw+&KFvZTjsmnQyuZ{UYpGw{s8UC7SPp%^AFv#ec#yu4}3%F1x&>={Gb$c=K_ zwr!>(_hiZ$f2Frd0(x2T0(2Q1(s6;jjFQFTVdH|kGjw)Nb17xl;xADx0(5y)Na7sX0HSf7yRD|$QF6@el#kpGq^wJvK?Brq_9(}!oSklsp*j8Gu z#MOmOY|x@31n8nY=$mekf7(>bxLnhMj-eOJ2)6_5QK*1q(m6?49;!v)?hTs46#3D| zKI&PJ#K~LKvZGUnV=Q)d2vbNQ+Vs2eCIhR{^{=N9{ajHSOqyZv#)kxbjusT6A%-2< zift&0`xf&;i(d54SigYLjX259;pB}%{QTw-{CHg)p4_vQAfJs0*5_nN^)K#S^)J0p z$l2k1COqZUA`q8l z-q6rslw69hpj0ou_#zayM3#=O^>T%H$FlaJz{9rGx7V$^2g^5#gNk3_!Q?6ve2W@1)MVo zD*7BrJX%)m=W`$NfV*+8Ug+$Ym=KfOLc z%cHHe1vRy`C@!x=9K$edE7(dGPXdZp(lAsOm>Q^fa~-nIG~CvNni{a(07Bp|SGk7z zI@~C~gQM3gaH*je=SE34M3A$tzJcVvFf^|tu*j`YULKX_kW%;&S8zt5EpwyC)i9Ry z2!YI#ywS!hV@~>)*x4igTtUS;Xf>aEoz^@5=U%M>Uqh3qn8Ir%ZT;8Pz{%P=c6{X? zS4-~y+K{!^vwGIt^Z>btijiBUCWf`}YUOqek&{opzu=pBDX{RPKUoHTd)Hw9_I%XV z)}fLXx;S(xt0vC0phbbEG$|@29q!OGU+Y+E_bmL=oW z;-h#nvyCj1EPgl&`!dU$u#d z+$uHlTf&iAKaB~w$QBh9^I8s;ugs#Z`8T|%EvS9SxDm()num>lOMe>8A&_pBl2wvE zsjR+(D^(5n;#Li=buK}941pwO2VDW#U^93Kc-em6>uSb($BVJ^w?9RC>utRB?6>gr zx4y-VAJPo3_#oL_ynYjJ*9KuAg5cFjfKVJ3g`pL_qE(!FiLA-UBvLjl=#8P5Naxd5OkM4vOe&A@ zNA!+7p%SW_FEVdXO)KH=XzzFhU&f>)_%kkuXh9b^gMJsu78fdzr znUDMBL1W!0Ey!!+E8|F`6Q_FExZpk?+A_;$zW(|f_@~$3#mR&MjI7*EDquT3Gh#hJ zF$U-caM`X*idBP7##vftXu5@#i)G};PvGf?b|X7G`+>?COaK}XC`A*v7@ZMZS&3u< zxE2U$dH-Fn6TVFwP;+TMVp2So;^p`GKRbe~U9@6XjAba0PZYX9o*>EX&CxYTt9&`- zBpI2y;rFwd$d%u`358Hf3%rP6-pLM@@>HCe=%vOA*GQs=U>(YiWtiX^R#%9DRfp*@ zGo~XZBdUY3yr_fW5lxG}|LiYFrNv={om5=}DHwU+DAcm@FRng5oyI~7-aB>`hdzG| zPpwPAcOE^6WtkZmV27@SYiF((;Y8sbTxyHJWl$G-sW-_y#&oovdH#anzxBeqcw%`t zzWeBYY}}BCXg~L%_Xc_EVIy}+Yu!ttPD(Dg`(15~;^OTx9Pdd$@NhMU^=zC(sGwJBP->9!s}|4N!eP6H>qaVtUyxYkLbhPmXeZ7ZB z*$i|v@Jlv!H_b=_CS-8hM$gFTF6i=66O9HWdjYGdj4^P&-&@6jYckw~K~OD@fw38N z&~g`VPq$CAvR9#xbVsl1$Q6TmMj5rd|DA&L?80o zbUoB?aLw{`yx3KNFKSEB!UZab%Apqqtz#{fA*ds^wDx`+3+p;RB!iKj#U>B zURXOpaDg#kiHJvkBmqDp2sce%0s?ajcHY2#-zSX$^nLH~`clug?+~Xy#1Wb{4Y_AR znD>jfPv7F9pg0dR5Jm$cF_)vXLEy^!1a49}E2(ek96gwk0H3QoYtoq;t{8(uw30R^ zQ76OzZa3FFkDL9#KfhawCqFuem-cVKq21ff$TC>-0e+mE$h*7X?gNF=9+6rNs6#G@ z^0!qOR>k&^XNxvh_+z@>oxgY)AANNJZ(S`xen1hBmudMnBO5bxnAlD>)dXTAT9S!Z80dzUIEWK%8|XK7rT;!k(RLnUvP5&S}&;>fxH0x<`)RQ^%+LA z2d-ApDnOe?lKL%2a^_mn9uN3yoq*|B_-Yy?Z_~5rZF+e<^zl#e(yldlY~N1fdE-P7 zozLo;&9hx_pN;gU@LO5u@}t$lAq8quXk1;>Do`yH(e61b86QNe<-C(VKlS7jc;xUQ z(k1jv`1Cm5xKxQEZV*18VR0})eV`ku{ngkUHGnOvl5mg_{?@O~<+GO|ftxl=lmzOv z3`BMO!d3kAwcp@;eJ?s!umP^lBacb|*H(1*th^*(Ycq+;vxqG@fna)T^hNO=H#tiJ z?Ej-kvGsAnc0?f)GB=RdUy3?e+M@I73mNym5D6TYZA=Qs{=Ajgzj+68mSxc3$TpD| z3puj<;LB6^*Aq8zd4&2Jm&NX$qr_6Kd1!tWeFXTf4Nn2`z=lq( zf6*`5+1b!0#_}1~0wP7|ldtXlQW#yab}IJA=FRv~Nh#iZ|0CSuE>ww$o!F3_iEW$r zVEx+FCYoQ!6kN^qd&u&_)*A4E!elG#mZI2c{ZGFMhiF^B?kL1(aiC$Udr?9H;HvVw`dOUvUAhK8G z-s5Sd9iG-PM8WfqmE&#hYWB`o*Kx9)dcy#1O|i?_do1OSQlxk^DXfKFN!c7(k}|YO zpl;@4s6V0(<>skHU!)h$)wiPP)(tX@;rNSx_lE%;7Ql*QzRxbW&w+%s(oJA4H!&^m z7pN-<%oVRgEByrM@|#uC{hFK+9ivGbS?QX%x!>fHKz;+=$yTpkWnxx`hesIST=PIq zjCHiNa{*Ja@r|!*sON-LKGtzHs-Ekeni;Szj@6pKZxNt??(E|1#o&D&zvk4$6a znTtG(_0GUqLF7bcbhqNquV2Aq zXI{n+cCN<3{db?W~{-Tv-V3|K*+;d~WUrfMD}jIjcdan1 zsjNYFS2tGXtb}%Dn$IL~mTQy(5DCa{-n?mECrey(%QMeBV*)M-%qIeDS?k(hz~Ps=8Z#{greS5=hbmLf9VF2|YLZk%WjMNL0Jn}MU&9Qyz-tv`tu4(&qT`gM2R z&$u`o!}6Gj=FohElVeTQ^u{S=16;+4(*h2c3G(ve7B?#nmA=s-cP=A_zSoi5;!c3x zl#qi#bp)C`)x81;fxYPr%m@C@YZf@>vohRgPf-Fv2+@Y$SKmb#dGSGV>!VtmaCe1k zw}&rpr?*T~6^^tI;MhACvF=zAUf7m{=MV3}2I^55jS3~jVp)~D+8j?kd>E%VfAjXy z^LUFcwH=(hF%$e;(HvC!21eu3s4FxG`lwS{#VlT*Kt8f^pV221o|&t7V>?P2hCha3 zGwMw{deEqLiUnV^w*>^aU%7Av$G<#g6fQ9-5zl|`1!zmXxlCHjph$|E1l6V$THY^k z)(%7uKm4%SutLlGrxSq4E}9Ui+eH%sd0E@zSH_9%(eiFZalFl#GAD}aaQsd;ZUrY| zC~>`~F(t>V)fu1TB2I?>$J*QY`9B@Q3)!df!-on`ur=RwHo{$#WW^<9)5C!cuBis$ zAt*P(6u5BMGey4)SLFKJsb8!9a|HCF8+#Dz6+ zU3KU%u668WwDjGe{MRS`H}=7o=&yI*m4eAp;Q!%f9`cuG$b z<|Px&xhx}1v*BseOF{@oI84s2F=3{ zJ%s;-?zF#r|1-RGvmAB72^dY`Tuy5_^@H60(oK994GUT3n$&H)g|#sw*qa`K%_~x{ zam}}l_m`qkYNV@>!x|;HAb(fX)B4Bp;6B8-*%!}V!0vr}NJFf}EC2io>T2qcwJK{` zf*60Z<;@j%OMqTjSZDw^Cnv{vwCvfl$4rRMh2qJ&mz6J2w;(T$-Y$REJCuk2`)~gX zK5vgkRq|$fvydZQo9=Ogv^XW2L==jW7Cx=WN9FJ){8uht|HT`(@yExnB0Z=Z{hSj( z2=AlMx@qJ?-H2ek@@R&X4e6-CAj8?Vr01b4?@4+_(301J8V%_M+DZxZ%u%S>vXh9f zx`cLF`JLdsio2=Nqx4zXO9>9M{Ko$(T2r;)8H_e=eN>=uEJDnQ{-y*R5AL$4WpE@UCUD5ekhN?W@*B5F7O!X&0pvs!iT8cl ze^J(PadEM+&h>2lCObPDFTC)AaZ%J#1>FPFhyOUJi zzbfnhJL%Oc=B{;P*6NOR|39(Tt)#lUV!Cc=x~fc788WF!)FdiS#0dw$2@u4AN#;r9 z{Liz``Hlw!6afeFZ9SZGzVm&1c=z7Ve)l_VPat5O&Eyo&>tG4WG|MUj@#`IjFuY(d zn*BJ@f~%dj${}1Jg2toy+pacZ6PgcGHLBp-nqC%E40!G|^CMt{O`>Ja1Wt1HkB*&_#g9T6h?`R@29o z;R?q84~Yhn|IxW{HddoKcOQnGPsidQ2UaZmA*M~Gmn!Fx4*qT{Dg5;8*|VV&p)?ow z?Ab#SIE-bPl)CrpQGji=wI{FL_uwutSGvXl?BG8EuTS6W&AQrn6<=@t3jKom^RyW% zcQ~jmkQaBXP^TAY8mL!ZUY@aZk*Gz%k;22nO`P+d0`vAdR`nAXua`i+iH=QrcSvsO zAInKfF8E{`Ip_Ukz&H^VXPjnbCh63mT7oAzaHk{584~9z{0MG?FK6QN$myt$d(gT4 zrufBhY2>CFFJ|K6@R?2-eER#G+|#*@CTAxuj%S1V?)^^$mgS*L-2CWyPR?Bmi~)a^ zEbvr-E4}N)A_7Mf&owQd_&owR7ZZtdxWGE=NU)(Y4dnW9;W$BnAfi)?Omg<8>&tDt z@p&DCCtGWQxppVb{H|Cy!$~Ka>opTJYjux2d*#3*U{x3e?Iz@aW$@7jJZ@lBz041{ zQ76|U7NB#1F-HTcj@S5E;H=#bLn@aGP<0a1#S`p9>No<2IcaCSN(~}2GuB1*Dm{%p zG-dQBXIxX3!}{}H6D*9sYr)_y2|NZ+yCxr&*_Re7b(x!;{Yo*LS&YlIs1!K$E2Vk3 z#sFl#r+1=J(LM*UPGS%Q{4$qR|585_LXlhzY5U%RX1ssp04^z9MF1D=p7to`Z; zGOq;?3}QI($RXz*bOKcPSWawS*925t817aKU}@qp=v2d*Z%{foj*3urxvUl_c5!ls z0t!xGi6_iq&YYZdZb8;g=KU>2J4r_5;vnFZF&dM)5h3kfuw=;F)_cgC46FtS8O0y&9sB=XTBlJ_n8oIe6z?hdXJT$^-n3oi5) zsm}#IxbP6F82j8IJL&tedbHHR7rjDxl~DGiK(JpUW)PM2BR1VrEd6G8|2! zsqVX+MU%yJ_^==bpQM>1boE@@rC9nybsA^EROd$8n-9r(M)=HUBJJYmMS#}hYv zluk;=0O~9P9XMm1_bN*?iEsq+cbWmap_2FDg+8m8JnL0>@iK;na}c@GrJ@oHkGKw& z*7bYlo#SS3=wO^Yb<)VCr%tEiMO>^KoNIY#@QLHcQC3pM7#C%nmkwMgC`7@9^Ty_U z;lhPx`zJ>tS+Lwpd~>(j9l&5qQyGtA;iOo^dXrNt&PPEdK~|9*rPM4W7hFp&EqDZ9 z1dI@Zr@|6Y1QJ+VfSAThxEwT!kpl@_l%0AB%*16IaSDM&9JHLHD6A)O5MzR)?YrS>_ zqP6PRR?>A^hz!Wz2Y)#cX))7oCYJS+7qC1zwcxg{pOl{hesS0`BP>3NK-!`Ar5Ey5 z%D@{bPH9qTX6Z7tyOPP_P~Jf#NFA(h@n{i<7e7zM}18lLzOlnaas~mmZb2&iVzgh z)au~32XSEk0p!v#Xx0O>jgs_USJ-IKYG7-d`sAZ|*iH+fP2Xl?+vR2+$;JuPmt42F ztcGGt=u?GRQG+pg^l(fbGYg-7wF_??tmQ-|m@s0aLrTSB0#?y!PWUkR5)c|gVx2U! zI8#}>kXvo4Eu|!gpe@k=qYyep1z}E5&-e`f%J=ZuQ;%#$EVux^Tb5M`5pNTB0=Mr1?KC}Z9H1~?ZQD@J;oz3jS3?y-DG z0_nguW`9j?Je`&w6R9|4y`)1hTqOSpeDqo7o?4hxo~(Z;CTa5Nhms+jz>-Bv;mBJ- z@e*nXloz=G<{x6+i=4UwEn+uK%z))pa#3t%>>U(l8qV9CXf=40YvJ+8M0Hc4+D*~s z+~_B?pphlE+TfSIErxCXc10n=#qIAX+b zV-qhN+kKb-;Khk(60c~INzA~AkBS87PsftRAaeaJlAdJZcDzZlXmRP5+*#XjO>S=I z>nZQ`Ze%`6S`Zj7oGSt+eGb8loSHaPai2P=NO=gr2ePcl6h2STHF_SpVb|#Z zjbH-2L^DS|A>a~>?ae zcX3Ab?$n;_T#DGRVM8#VFPTxE;SqL64`tx+!9$2o7;9F4IVIi8$%~?aVA|F{@z|qS zFn^vo>a4FXfs=Db3xL{wq3}FTojHqR$I01M65It8;-Hia7sm-m&bgA@xiL+2{?h8N zkVLOGl7N7VM6)KhfYscl3UJcv>`^Tqg;@yWAtLqUEUOsCz;LbF!i#IO0Ns+un$;d}@FD;^ zO8IO*)@wiv0j?T2LE!b<#qR_`Eq;1lqBAMG6&TJ0+#+3-l&7`W2pM%Cw~|@V*dBp5 zmFFQ@Us9;$K-t{?jwb0Fv?yx9xNrqi{6yNXr8Hx(?Nk1-9W;bOB=lnci1g&nkE2u2s!ob~wWb~$gUH5o? zHWlyOAAz|{g^iJc3=Ei`C5BPpJq6v9b(zk46~OB#Kv~>qw=3oBcP;fQa4)%3%n-MI zF(8zaqZ7$Lz#kKmCJ@x)ar)$G9N?hX`SngDQi&;UUd~DFEfSq5rblme9uww^Dw=_2 zpFWE{wEaI@T8$$${@7hjz;7l{Mi3lI@>macyEs*G*peNaBqK~9H4m*!HbcOLZw<;sBsMC}-EIVn%(C$J1-IN}Qj23%I3VdE%j8OGmPKY@N77f0zZB*T|w&M*S4V(?2|ZDRg-!J%D( z6qV9%$hyUkfUMmT<=DPC`_LFOkD?ORRSTwBC{5*9ChKAWu2pYK#3c@2p>%(1(`awG;C4n(b8Jp;FT%MoKI&+aCcW;!gqNykFnljkeT9~!-kP?=9np_^X z{hM0$ccUNrH0DwQ$2_%AiD7Wp&j-!wbM4S>L*!!W>iQ!vml?AFT`wgmPW94w*ABb& zyc9#GqX5OtD@b2PMh1>k=O$&WIC=fv`WaVoz3#2ofO}a{DgNy@|Bm_elAFiF0B)xP z`}+08xJlzMI({^APv_$JiDP*G_wQpA6|_^PO{Jol+|@mnH0WjZbAo`L#gMFDW?jIM zs{?SwkKjFklboQ2;hf|GPJwbcC+a!cGZSEFTx7U*1%7f*&erX7ajxF7zL9)dvU-89 zb_lXSVW`;piH|r%3YSl!55eP_OdAFAk};b^kTP3zf}s`_D&&y$m8l0LE|D@&9IilA z944)A3>Pa|vrZ3kaoDv|YL*ggJDmiQOj?)(WQG>5YtCO<{$>06=I+H+a=Hf4RR<{+ zCBN2=#6=Tv(nF}ot|K^Cjhb&v84bs+``l)t9_0vNWd)-hiRAq32NU{%px-DFnYeWU ztAMs0VD#axph=<^=?i2^NgaXNp-40$P?clYHG=Zxn(KL}3haKP7#6)Hw`bb|8Hxaf zhv}@g*hLfGBry>C5DG(}{OQj3Zk{CphXA@H)Y(KVSl%fjYX@@ZAY z`|4}20C(B4@7=wZ+U!~~JQ~GaOERB~pAe5RKE(y>ob z4txj}4FVLA&zg0T&DInVNGiD_@c2sqB{gAWyY4szz#B#YM~AiH>)MJ>AJwH_=p0nS%>#80Q4PQsT zb2mXn_@Lr!x(1v@gTP<;Yavh^e=SOG&~_E3F{b$MTC8N^DW8RMmf>KT?*4XH%;N*w zrMx({yvS@w#3E-wOWdLx1>l-r0%*OulJvaf@e5Ab zVq)$p$T!jnYwyVdq?NL<^?95yd>7YfOb|I>NgLOn>yy)563Fs*DIIAB7(_d2ADSUv zrFBZPWUvBPMeD1~!{GA=P#+e9ng^bvm?4&6N6yvCLkotByE50r70Y5HguoERT|@ps z^9rJ~O;r#<%boa~Cb&2~Dqx$6Gx^TC$Q)5%rQb}xYJh13-+4{uk$Trh>oPxfdor{k zfEr*|?ykaAFBPsGkajOTpt?bdX&qi6PC8=~Y1-eZB-QCvve3~p5|>D3FK`uCEK!QM zYqf`>smt*T_?^EKc)czkgQE{=ED@BH%@!xGYEWELD?Nf7j3kRUAnHK~jeRB2&RDUK zvz8c0PD*lYQyEe=dvN)Uyss}EovyNv%d``d?n7c0DS36^x%#x3`FZxUDTD1&+hkfP zWwYwU9mSC2pP`&}Z?tH|TMW%a1JO)6h1yFPjdDznk0!WZH7149OfkPwNkYsu4$6pzE$jcYR1HEj$ad=%Kn9db;SNH!U6#n`!5CwHhHMXW&PX(dDqQ6rJ%kG>SCV!fZXukIIkq zzdG&_AeuWqC7EB!jB-NT?`gt`op{i&JJ# zFmEVBq@x03{2MSiW*BBAO~nL?I)@I6Fb;@!5>!=|;?(G+FeL){EnBu2`+1#&ra)!) zy0x6u4L5uD7+E*F_1^ql-fIs(y1>LnFJ_2QDM$PGY9jPN;#?5O&zLt8iPMvCGV3HV zshQ6>bOe(K`qIkFTehc?6in7OR`W)&At_`Vcg(T!#0>Khv}= zl7PdBsY!24>c~|JP^8F|ySu<$oSBv6HOk5Ckbu==0Tr6Z>D7m?mee@I-fHl%;qEt>kvIJ=>sS#EZ&|9BbGnJ>v#rE3+=Xiz^nG%R)tp(gp&$z)?GsuqkGNyGl{Y zRh28HYwmt{mt@hdob;8VRf&3qq1=^}Gpug?#3!AycH>ax{Mi6>>qSq>Sc$zP?qEPK znS$a17Yc@raJJK;(N!0H24)KkFPh&AH%kQTL($f`3Vd zv5ilR2*KP5(L5pSLBvEynX?VNrH{A=k_;tucurDMk^y;{QSRKi)7Z)jc%^3`V2@2($|uee*8Fxw(SC#_4(9viX z$kS}o>tZ$+A79eJ-)XujF-P`Rie$L>De|I39@+_gx&Ph8t20<1uH*hGRWLB(XE8$E`U#640J@}LMU z4u(@yIRbOli6V}GD>(?FGO~;uZd24$?i5B6w75vftzI%`C6lH8@G2Q}0RR9%07*na zR9XHv-vug)y`tb>#x#(17r@CrysdPR_bFDnIqbWw8+47C(}E<3uNneobKJb^^wQ5Q zr;DyQliH+Rki;W${K@3;7oMt^nNAw3&f1}fGuKOIm0A$A8<2;vb}Oofc2nZ!@o71#mwng&B~AjqK#*0W0eo1sK%a{NDGzch{SCs~FAMZl~^` zfVYn~M#hfB@TlRqRCv*NzHa*HGlbCQem1v$BSwyZPaE4&0lK(yMX0pETwIRieiAte z)NhsR38YA9!9(*gD|ssZ{?ut~{&G7$-IJx(r8;u?8diaR&vZ{#W^ zCzmKhzTpJzW+`T`5`b?=L=l0mI8uRoYvrDRPKYAWhUDe450@-ndCNOfK;oq`2wsE2 zQ8zRebyBpce!5SJUMcrHm5J^;2*H@QiV*lqaZ7n{aK?x5ComR8CcE#vy${Tv;)*I` zmrp=DvzPQD$15>~Oc>?q=_$(6PC}q3nX@=^=`t8)Q#+Y5$-Aw4wVR=$(IMHr#3&5g zV8S3vmaPR<`KaB-N{IIw#jTJIjEGg1O6GI+-aD7pE zqQ7WV6y$~uLtlUbB@_+l*2K$TgRK-&_v7%>CuATYN$bOCyIB$-O;T-Psl z?!gCpxZNz}TJB3g72t}CbTC}3gF(B609ek|Fl2q;m)0IDva`*jOoOSv;Lb>T4p|8q z`+5H8rlWN$?`5cF!?|lmL(bcXM0CHx`SLIfBZ?8Nr2LfSikziH3(=@F&-4Rifg^p3 zIB^lYg4dJ(*14cKR|IE22;{|?(;L{-Sqy+;#%Kp-B`w}sxNCUt#Y0%sn2l#<#^I?Y zOYU0{hMFcuOLL~Es0ios&Y^(ZdkN2X7!VYUQ8AAdfFLB$DXKqDnfd6$RAYKIj&i-(^q@-^KhA_27NE?wUYw5gkKO7-jC(?s?qAamI^1muDA`iXU}X!2MR~%Nb&)o}z#_fxWx; zFt*ESBrz)GlBbuVp{@bPc)I+tqsQqGHQso>cKe|N0tz!>&CKPz^`;$fB!05|X*@Q6 z4!+uzhELNDA&uv-UXpBAaZW19g&p`a!GM6FSnc9aO;R4td|Vfm3^upaZ=7k49A7?Q@Gm1dfnqmJ7t}= zrX6iQJ-bU7(!7$os<5z7j2)AJdGqHRD;XIqv^DH4FZQt$#**|N|kQ&t~kPMndq-0g7jI;p9usuD#!wENJhJnTPw4E?AB z`2M1Kn4n|HT;`d|JA&S|fAgcKk@CnwhCKcj8@GOq&l#&a-;11RaEx=Sf8uk>=D&dt zfvSm?ItH-B*|kU<*!*2wqDhfSPH~I4eP!9f;q5=LcWn#Fvc!H9^ zMq&iX;i>#Z@hO5#iIdYL_gFhD3AH}FCVP7+SxpkESwN)=EJqW~y#wNBgM9j}JCn*} zexijHA=3?<-C0iSyc`IiquJG}3+T_?Lj@Jk2nZ!D`I3pKvr^{sHPKYI^|GngBG6VM zt^8?`Q?Kv?62nNOqz37Nth zbmU0kAoo$v^InTeijm1cXZud(<48#Zc9%F%+Aorv@l@IC>@fG9GN1bmq~9^>LciwzSBSV~rLgR%w@ zrzvy8p_BO8*9o9}TxW~6;5e;?M&PBzMWPs)^-(r`mG?Ku0ZT6{zDtXGxAR3{rbdeM zR=$P&65an-M{Oz`NpW$pQHJK`aN1}b9u2L%#O`rLA<0{>9T_8v)j6jO?(kdx0u>IWavQEC9DB~M5E*p~6A z70xt^r@|jPQ-B>O7$<`Pn@;qlsG@&7U*xwo-n)XM@zhlI$4(F!5!0u}=%)@KWR zwLnO|uTz;ME|8nOxJgD}tRBuqMc0hE-U;T(vZX_i&AC+vcl});r|$xD*8(9M`v8hJ zyeO`yReg2xl$4h@Jnzn^=Rc_JiW?uqg-?CKsl(*{S1~%&53?r4WBP>05k4f02h$H~ z!H6hEj4Z!uYHAF~YkYOYsIaguC+!wws;Jm8mw7tVYxnC%gv-00JKUfS0FD-5pv$m3JAs+?tvwzP%$*A_09awdQo)H zAi1!j4N7)vIA(!U8%f|R?p+Q`%3IF~?4)RwwTW!71;otOB%W7likh(0+|*n zlUPrcCG$WnMvSRrtWG3~5NL*vMqU2}{GB@j#eflTdK28$He=CZ72?Y7PQ4lMWntF4 zoXrMD6QJ3C`7WIP8UyIfTE%)&Sa!Wu)-K1GnX=8YWMYWs5JuQ6msm$$#uCTqJ}sP5 zmP$l+tsE11n%C5X0hmoNA5Z7JF*E_xdBa{EEcOC&y(HV#oT%jvQ=GgG&CvDkkW*^` zQNG1R#mLIaq)mDOd?_Xy#Dyl5hjc%@U;@bfs{G9{yZfub=X)^i?7e^!i24d z@uS(}@yKlF;$cl#Utd2=qQ~p_3FEPR>G!bp>u->{_c%T&F4bu^yD zLox@H2#5|m1L)~lq2vCp@ORNGkcwX|5b}bROj%YUS}c{1XsFmQGS8Hg)P+p$61d1{ z*I|-HWY^agZ~V>lhwI(lH!W`J+!y5`y6at5EdptIvMS!aVzbjWy+*zX+WnaF*a$6P zQvNDpB^{Ey3H#0RYZy5N-o;m#I_A&CR8?$|=P`>Wnc#XE=u?zsoiGJY}IphPhmDZ${99uED zX`gL4PJxoRG#;8aBSq08Z1$ZD&3Y~B_)%_`%` zO%sq+lxH%)#tSm16lX5wEb9@#khXpMP}fjZh%(ugk9nBDPP&QXS0*MO{xPBr=OxoV zEu7;XCw-@xI4=P@UXKn-r8>B}MREbTiHlQ9@TKgTyA5ydBAOJI!A-B$6>gD9`(Lbx zl3HwZ-mBW>!^KFu7@0)UCcjDTW!MDcT`C)RiL7MX&fSQ({AP)$=SUXyJ=Lfgv~yha1P?a9%Ff|Hn2gi}k~z zAOxpU_t zkm8Qca{aejzpmV;oyEzM*|>Q5BJv9hP(nk8iHu7#=`M$DvBAA7y~<|`@(PTl%jBfV znDM|&^y%!xy~XmiI~YB76n-)4XLxdPKK3&1#mBo3VRL>BkGCUe&^jd`?_2niL#>cy zg+vXE)nWpHnYqkAipy;!Dath8CA+0(7%JfDjR<<$ZkCqi0}+~nO=2WxRKAX(`INOG#) zloK}-BZXNG zu~Ou+uLHPG@8Er;UpVhqTos8jv@p0tSw^fQKnx(LQbF59&aqqzr8sH1^XpyCO>s-Q zyaIu|z+5lIZ8>`MsPPDuX|TfYPNHdI+~_z=T9}A|g9g%pi2ZesCyAIINqK}jl6sst zb{wa(PBRQimEg}ey?n15|KWfY<<6{xS z*JF<^;L%|R$w@O%SXLg2IAiM~C_dn!9bQL1h9h_nCpW*#A;~C2t-Lw2O`Ml%0vSP3 z0i|T3NZ>dgHUr0teDTg74r9r-gZRO$ahOLPLcjj<&?G0zB#*sC3l|z$=a0!{ZT@;U z{|;v=2uDXSTYLZYTn{6yKh9HInV;-cji zPx-euW7an-N~MWz*o6L>U!pI;u3XU(4VXo{K#*Ls08LnEB?EA5zrrl&rI`10l=40J zM>NrnyIEkVd!#&-5_YHyP*n#5#(b8$iXmseLP=CIn)z}@jO4unPz$h4xvqjG3em|| zvJ6tVTt%~_th+x?xvD|DRkQZrRkqAY#erL3uDf+z<;WaV{aH;r_~r&w`3}N0IaysP zhS#M(!VwnDMdtyh@>RPREnw1zNM0|RYG-2T!u+U^y*zv_&RwbFW{A6?ZcGx%lwB!9 zeqKJ#p5a-p6ub0c8-|UDKz!U7;~6S3i_COod#;GD_e;{8(955qn9*FELU@ed-A*>R zcclk7&!3>ualvB?8NU3QIR#1w@ZPC3h+cJ%Eq)Yp=ggww^(g-G$*1@@GY9AT4rAm& zf|kO%W`9HQI!u}IWTzrhAYhbm1XFpAio=vFUWi0my8&p%zyO$~8l{fRXd`+4Fle4ISfb zkAPcX=9vVJ601mjqY%A%r~JB!@?ig(Le#1*;^2+>BOmkxQ`JY{O;Jb*IqBvGih&ec zMmqs56rR9tmFam+N?`3OC>rvkGBnVDyLIC&ybH{=Xi5a7oeLLcpT<%o1YE_;q5UxP z!2~YAqwx8+S=d@wiW>iLIAqEx(@{B)g|MDldh3d1Y%6=7(`Qqsq+scn-=%m*wBcaQ#t00gs>r@ zh!}bIx!+spl@_;XcdOUEknF%=_d+jpQypq6YjE(}1Ne07SNQzo1suCduvTml$$crd z7(lUx7XhMN+^yuXGW`>v6ECjguqPnv2PT3%uAIc;KIieh_8X6eQG6YN>c@vy`^Y@}rV51oGiXku2h(sy6*Km@a zx%0DtQZFe>r3hq9_u#WT(U-3ArJ;OQic7_7vCJC>uzj&?r@UmvsVZ`#76t*jyfP)S zk(fsdoKk)|x$p$mA+%Nbu5x9PNy{DY+?{mp;|Di?{>P@pO8ot@g4?Mm|qxG6TrcIW$*c)U{HK4e`P3@uTs; z#4#AoV<3k`M9@0L=^x}nY=mE2k~ zYt>648G(=hQugjL@6$RVOA*<5ivtzN>HrT0f->@d#etESr{*%PEQnvaM}V#cO^bkJ z*G48T1Yu^9_Zx5@=aj+ossTThEl$7cBI{gkI9xyOejF6dG|F*Ed8sVPw{;-6!Ye2| zu#~$p!_-0~3mlnQ4j943hrlL!>y^99sm!&&T?>L%TJ093KM;4$;A@f9XAws;#Y6({ z14#*pA2kYbv^keD(lTLHbz7&}nra**$bYftAT}JLD5QjS6dibyR^ZiAB(XcDj|@d} z{79ojj~+SFoMd*ZCnX8YWdS4Z{1nX-r3e);d-IU&=uy##ijFpB!s5&&YqwMPP~cX< zog>Uny^R6^f&DOX$|Q_WoPZ}Ee*~!?Z^7EX`~`&s{kl+crs7nK@+jKKBFM+W1Pb#E ztt%jPN;>1Tz!K?Jw^v`mP*nCq*X4#n>5uy*)&J=J@y$I2lKP6S{NDB9Wk z8W2gKBG+D71{_KyF!6iPV19RjnmA)|)UrN_oXRicyrhV$zKHNZ{|-4ZnT9ozqpK*t zf|FBb(eA@qKrCRl z%2hSQozrs|jyjBSTtPxeAIzV|5D{ai7|wiXxa_!FPEm=zq?nX@zmm)gZ|3Gbj(4LGVquoG3ZUM?l zN-;cU1cuOIsS{0TyJ6pft1U;)cc8)Fr6&6Fw3zt#1T1`Hgi&1er8(u(v>)EHdmlD3 zP}o*FU0m!#fa*sM^U6i|(p|q%N9IX>t@z&pbeR}lIgNzA^_Vd%05fMtWA4o9?Q(kp zpY2<>V%xVFG^=yqkT=C363K+jBSL z0F<)-YAT(5q+gJ@$AmW^7>a9GL8`CHb0_7=FB0#_8cBh*&ZT3};lC2J8&Eb}3nCvd z)#D#MFAED%apy&sE>lm{&e!$xvk*r`Jb*x=qFdG7BYhYlYGy*yLs zuyA~D>Gv58axNV&&fw3VZo%h_3Ykqtuu*bh$z*FUVyqNw{!K_uio%@42N4~~ycm+$ z3Los5r|0L(moMR+KYfI)*@dW2SV$8AorER2ncz~Y4uQg%JEh4qS_5!WucyF?{=Ss*V*A1hDK zzG?5Xo|S8V0Yg7a8CsBk9sz#-JO?-miHtWioSw=92D1HkBawu`{e$t;(?3Auh)DeQ z-~I!aSXUd|Z{8U;xZj*cz3vXLK3?R$24TkRWQG_{#NTEd$EMG}z^;reG?u5~M~^?m zvsj;m6l{G76gQLYdJ;$qw(>r~s3#zxq=2t=1Y!cDWr``2MkNFGoVkj9BiXh>B}lv> zF$Lw>R|ZBAgekTVqG}f*lRjB^2uzP{fj6CxnkA+&ibsOBVvW=8-4QvGpLxF&mfCsH zaz;V2yejf>MMuWP&2?I*1aKE&>LRpe8HO|GyEt`Oy-2aE5Ds+B#|bVf48R7-(FN!N zb8-E$&*vjXfoqu)Qi0mU-HuP`NkrE5!Q7}pJYabc#zarVM8?)1Hf$(E;j(^gzk{Nh z+UgqQl0!a~OYzm|^Vog43H!Mo)c50p*k=mQS}no46CdN*q;M>nJryxgQQZ7+x8O=L zAr#jxK$jna0A76{u3F&V7I!UCi@ZT|&gK};%Bm`ccjobg{et=-YD5%f&zy}xp@U6W zjn2e?vFg;V@9ds23|uCklD#|jFo37S96sNzW%Sa_Y;eENJGQB@2{oLk{Q~>nRunv6 zS~5(g{rZHYN%#jIF_v}w1o8wnw0@9yV59(E&NH`|WVbwdSRnRZyuk1XQ3NOgQ7M7@ z@+l`k%AQ__E*mdU0wl#J-c;B&8>b<1&>_)AEYeJF*DHTNxnGKCOz}if0k-7v%esZxV{Vg1^nX7a|!5**HT(qW`b=+(1ddK1F;xP z$D#flLw6m_tp<6#H!<#f+Sj`n0Wu3u{&0y|cszc#Kej^w+Z3`L!rTv+>lhjDi%p-K zKt+SY24nH}7bB<}+_lR~ui)^(!#Hu`1Va&rB5BHGM3G|@CwQ|YS+K+kU+>s~Pxl?i z_VaZp?L!fWz?;YMdGkPLZyz5t8E2(HCs0b{A?q9CHCu+zrZP+oabT!-1JW)v;;e(u z%h^U8uK{fWr94_GyGHDMR!NBL1aeb9iA3~Wz|0*%pS=CJ7DoBGY$C~Vd-rjmSq@P; z*HyB0$=oGEk;2%BS@N7>9$5)V$*YAxV6X2ZxH#!rV>v?VFCo_NDrUz;V%FG^h>IFw z=oF@S`5s_y>g4((dG`PN=3DsvXI~>PZV}nigE>`Lxtc(ld(LBGkYlDnHxRhd{E zT!v+f7h%TCSvPR!>I0P{tCmxzPT>R>Y=y^-9v;Q$qA@0(e{4()`qP={UIcT~WRE}J z@U*aPUv9$_DNj(86=}v~K(KTn-_2y3LVgGO{S0GRT%wHh>1UqCryqZctfN^-o~0`j-EzceFKkYoMg%uXRcT+`R8cQozve@ZJ@Np_$k7pcX^vfiSrV~v^;f=)+3iRgB zorC15Q}8!@_Jc2W;j05hs3xZS*D#;KeKBuV91`PZ(u;8@!l|%ry*o(cVlpmaES8-* zjZ_^4xaS0pR+8gyq9uty&v4t7Tqw#hs!uJ(1vX>OtXL{6sR$%phDAgg%Z}#?^0DQc zJ@~^{2e7-G@@~oSCCa&!1Ahiws}HBei$BFe616B%6oQ(Ih`LsWF@X-um^=b=fATzK z-Xkf_7;55(IB)FSUoW0*JE$K;Ip9tugk?$Lnz_wsFRvK%Qs8PQqYwd}x`;|Hf-+6j zjz_lpqatyx=8OrpRnLG`XV08P8BI@z4~s+$x$+s)XS9gVGV_61I7?f11-6p-C7vRq z`yokZu;{Tz%Z4wzh#kbKJlHHy9(L8Vbr11t23iAt* zzJEW`_w7gA7)I}7gvd~yo!OCfh7Nm}J#z-8Bu>Ps(`SshK!<_HMn@U${AL_)-@d*W zKc3}}8H1-5p2FtsyRcsUfm^pe7=J3$*xY$^Xj*X!MO~4Iek*KI>{Pgce z;)#dnVEfKAe764tw&d3`aF;jgxtlP@|20<9);$a3{jXwr)IhrT$1n!U0>qCVZH`dv zjAFUHKIl)!qMtpp6azo~0w13^gKX9x!BOly?j}y|prz1Gfq5;-4^$@xEFU{++|@|T#HN5Vr`+tWw8YocXxLy?#trx zqukiL0xc6MIyMW@c>T{}&?QblQPQi1RN zjoCp6lo${zOd#ybz-ThCc)Z~#R&lFOF6x3W{s3?33in_7n$RI*b`gwoUPnG9kjyy= zl@Md#Cvu4nDhzJQ&CL~lalJrSgCBw`Y#rs8)vx~XT?qMav~fueF9}&V=+YsXDZQG! z1avePH9|7R4PV7=?~PGWAr2LcZleIW3V70e*n07+Hv2f%4k;47ZgC;!bD>EpHq@IN z`nn!WVb!~nDRy4q5cwU5KOp^#6^p`1<)pB!Gtiey4D`a2-kdYStkStVIbnQKd4&RV zv1o7!?ef-3Q6ojuWFv?FSKupoFZGD4$+&E8E9i0|J;r7f2f!^6T8+?!7WRnZ48@9{=N|H4Qs3eE?__iHUdiVUVyqSE^9 zE$7xgKGWg(MMZx-g?PJ{@VbE)7q6$2#`F{F;Ye_Fx}6G}05>ly8#7mRN_H2chf{LE zh3_TnOMBA09A(>K3KoWGJoTr+vLXi&Sgce669W2?Sv@ zOjE#Lvc0caWJ($xzQ4Oh2y_5kq6XyO@^L0@&%}1(_@7r}#1((0a&KJEl8r2HzK?RC zk1W`OeGS}N?^&YipBDa@b6X!R3-~)Y0)k-;EFZa2D9$~(Uu$3zQndYe>Jv8zZ}vv#V#Gy)Aas`kqW0Mf6a*u)0#kqlxe*H$(|8tLWdG zY&;)M45CR0tOVAAU%gqcnpAnmMU9F_uhjYV9nEXi<$)o5?b1{ULvB|VKLzpreGkJQ z99ET4MC{+IJ{A*8ebExpo25(x^c>6{Y36@mQ?*QRy;e*=Hq`N;1>wfvPZ(|(8C5<9 zXYVvM$FB@*9E0{PgKrPjj_60S#C%EhYwg?qh1p*Hcdp|p@J!f~oBtbn6=ZhKD^At} znia@o@0h6IqD+q0YoOF`0oSkjJiZkP(E1Kepb!v=fw8p=Nk>Ix+~q$ndy9n&V=_{B z#}S(*HXpdhvBSvI-s@*k=ALXKW1n|p)%RKkDVUD_HNeXk4V26` z*}c<=`LMF+dGWNft#B&C02@I52Y!YT=PQ|A%5q{psJkStj1LDLG9zgn^~?uNlSM$= zq$r=5+l4FFrRLAOhu7k7i73Kn$Dms%JCMQ$iYXu`&M)OWnt2&A^}ce*+E`ayx^+B- z=){=QS*)g-0rkt9@hezh6HO#?(TT6_@~uM+!IVND!VQPObEZ<0QR{GB7;X&)Lr4Uj z#wTf`b2zidFx^~sRzDuBRK@kraHYv6#MEA74Z(!bO-q2JdtW{wT1!e4@kcAW;By0Y zhv91M_p`ZiWKcC@%CKKj_QQ?!y`tZu?r$%+f=)FRAtnui-etmj;}c-UJ4A34WqZjh z%Um4uo!;mg7CGSzo5@1^<;FSIul|ph{wv7`2Uc*2XJm_TiN@oz+{FBB0dG{RN)WfKn?V zPX7Bx%(~niq_F?8&sPPaS9={3C3*}@aU0!TAH3bGzchoi?Q^F8o=FVn8P%i`VW&LiAp{c17oW1mCU{dvgq6^phn^VhJW^I0;GUi`DrDHNw z%Z$K_rJ_WQ` z0WxRUK$I#j^L4JoXYKB@ZdQZ@Q^w`T-s7JNdVf^ne$!0II(qXo)wT$`w;U@>{Ulf6 zfPCN9dm}ZM%sn|hNt*S^lSeW0p+un+PWk zyxT&@p8?oMOP{)rrRgK-as?RwRxc1*@r6u(kQv7zJML!iugKGH6cA-%D%1Uy{fbB| zq_9uj<=})1Z+R7+<^z2+mCPH6VtBtc7-OJFY7uPO26i)%LU}S;AQnU2*ow(7pu>O8 zIMbqD__M6-tHb8bR60dlR*|u1QZ7iz^liNim2Y*ZwyWo+!}gfqzjY%)Z{Pf5EsO4r z@YpXQE@)2%1;LpIRo!_myExgOCKBqH-y0?pPJcikghJl!=6XhwWAS&{XK zt+t->OC|C22zq*M_NJ^Op_kq(I}Q7^hfM_Wcq;whqLiMGWQqhEKOR5EL~Jlne~X;j zi?n@m0e8aFkWFB7PWASyB;_7kK%W`^{>OF(~v zX}M#R?d(o8QByqQe5S*P+fDc0U58j~?uyHNEso19AFjg&-!W2t8W0fhD^EK_@5jsC z{Y~#z*d!rT_g?91lE7EX3;{FOw^{NJ&mOuP=$Yv;Q;Eyz%HQJze?m)_aKMEuD#&3i zqs}95U!kq?#7S#-S&I9&Knf#4hTb3k{mDbKycxdJDkNTiK5A}PY%Nqp^Io!(vrL}X zmA$@O?Z8<(=&KTmyKox>JF|b<6|rE*KoynySE0lP(DI56=GDpIgrDziTh1%*{gbn5 z3i!!rFpg>aX2jy=Vw=OTX9H0)JOWVIE2;V~DQJ>bRg0sxD3q8L`oFVR5yh`)Yq~uDy@Z>A`cG8HWD*R|z`uC)A3Uf0 z*CQb}I&uHibW_cbVN> zt#78@`cK6F#P|Hx{$TPy7`XiTU+bzE&$B_9{wI2RM;%5m3!OO-TKJzntMvGFg*sdGBMajH z30nWOI;j2l^9PN9fZ$MUsm0&_H8JOpr4`|uHnhvw0`o`9{~C@mueD#>=%a%nTVvA# z;V&Lzco=N@Zm$-l`P=GpK>xZtj~Czc2##r6+e|r+#;>{;=&`TER*=P6HyXMI(P%9u zTUhu+eD9;d9?TxU-e4zVpI~Vz&DElbr^RJ44Wsg6&F=#R6tdBaoQ`I%-O(%8#ES|pa_p>uv zf1n4TGIVeDMxuq!dRbL>P;k|1OJcyPVO#&p7_jm2;THY%YkNRPi#`+;iA2I)9yxFj zIS_V4Ve4M?HP)vcUw==Cb{Q#u?$VVPR#KDJ!bw8HrWK$?LYQxUs9$(wrT3s0fs^z& z&#Jzxgs{CnDV+)QJkk>+{ANXKX3&m1s36Z)Y53=j^^gt(Wy4rUT+;836nOw-)pZS4LW7DvOr4!bKg}$$LMsEEk6r zq`hS}F6eD2vjxB<~Eu!}%^$#v45W5wVo;@3)Vf*Mc`R(oAX zJXrQK8m%5JpPe$0P;DCIyZ%k^NE38=X0$jgby}-NCq_MFMc))gD9E$9+C}09-3c8s zJeXK0(nzJ+Bd_~Lg#;!%);S8lq3Yu-FWuLo;c?(4Wb;G~F>Xi9Hn36jQLz5N*3`Y4 zf;iP+Fk0Y1?H51?w^FzYXB|2ZSbOiwYZ;wcJVtFP>fN7TKq>Se&zYC+CP0k|fR1@+}xDjz-Ed>fSFk66^Ku4T9<+dLo24vG(j2b!G(>Jzxut$cb_dZr>&aJuk#@63>zP8f{Sw(=5TO@-QHZH*&FxW zI4*~1YEiNJ&rFsJ+#8CVD)hr7qZ3XST875o!9c}ZhjwOwtP0TxY6QFw!MCqtW)KR(bF%q z366a}yo)SeZr7$N>GX-6`CFX%ce$j*kP_I`=$IM>wX^1$nVR0e@4KlM+@?Nto5qpt z8nA;UpmCUD&Bd;?z$cXe#rMOP^3{f*0r=bcw`9f&ontfF?+yPFI&}c-D!H~xk+P1# zaW+Wz{AQyDcZ|pV)Z#H!BW(K&$I^z z!mZMLsmwq|G{>-Q|K>2+qcC=Gow=uBQ%B|uUh>Lc-^@>cZPuN30SfT=jc9fVjg2fp z-W{;YAd##y2)C^;f~|B<7*KeaQjQm?qMLfiIQvJaQ|O^OD#vY{!ihuEP@RHckOhFe z0lXBniA~iA-}EGxD&0{__-1>ib0%H1aguNto2qj>JNrAf!ye-6@|`Aqy z&e1Xd(Q)Cax-~axoW{K@tK>$$T(dmN#0PBp={r_7wFT3@(zi^Bx?n2$tk9ro;cIfF ze|iM!(Y;t9D>1g`MikiRNDp)6-f9VfDEpjirUb*7V-2Wa>HC?7(>kNG4G&rFqXHkA zjHuagj&E9{^EW-Y$)yBIVm&wtoq^e%!NdYnQqCu=(~t0W3?&;dZee@!@WF z>>l=i(*z+FRfRIF`(xC{hy^9Xp(|B=gOwSeriaMGj9`zyeZPE9cxLWQPoSN0PxD|y z(V_-GTszMaj&Lk4$#VM2&NRrfkg&UVoa8y7s~uPGIF*d34yg9gzbAoDM@JAkRNhzw zyS*;tSe}(8cQJIjU-p}0>-mPLH|SycjwSBjbJ~p=^NnoVXaCM=8=~x(y)kE%;}F;= zemgfpzCTm$86WI)>V4M7K(T#>HSdtqPh<&878;-57?eI?^@K6q-X73IBpJsYKERf8brco9Hix4S%ZS9 z-wCJCsTF?m_%N=OZ+gH|xRqYfYti^Y`KN_wrM?SpD15r|S8>JB-!56%v?zYD$?3AT z14mcBmaZm@0i7;Bscy5~B2P{X5?QAx$hP|9RX(q5Y>cE?zwI3eW1(((PFiJNGUZ^M z&xMt*8NrH(mOLBR^m2Q1Qam(gTg?Ph(!1_jKZMO})FfHRn*?$4Nu#FVYLLY0_^X}F z&08f9lSL(Iwmg%Ij%%j7bnKmNuFK24$X((li?0O%KFO`5K5ZXw{++!7VHW3l#{-O% zzO#d0v0RgppfsMX$sb{=C)n-v>l?@|ik{#u`+(S!+vL1o1PIVgH#A?2~kj9 zL*yhsYADjgl&m;2L0S##t5&UA#`&$vzIhh;ik$@(@Ny}aJ@K?W)3!xkiU0a;fYK6ip|57w0gpUhlfKJ^Mre&ux}8CYst1S=0k6Rmq^O* z0o(is?N$r(8{L7kn=iNg`pqjOJnUJ%yqYwf;}^k;NY2oDu0Oph+TNW(md#7uN9MR6 zh^6-ZXr+Z}q2;Ei%kC6U#pGnQ4W?*Nroin;CoI6IB;lD%`ZM?bQ`yP zhE`zuHE7%IqmM$@uMiDSzMG24m({Uv@5HSUuwt)CP#xZ)Zrc3C7zgJy%}CI;!2VwIWI*mQ(CwL#ukV?ZtBWCkNOvDS z=5Wk9)S5g}mH$4dEEq0)oZ(MQ=9b0z@h5pEX)8T=FyLa|X=%@!Lvdx08GK>Gh@1X< zjYg=KCM9~91@0H??;VDft42){!LLPK8Cvs|YU|F2d3t;W;=bUQ z5B6mY>&Y-}STI(X4*U+dOlQ*D3c#16FsiDP^3$5O?HKB>J(_~=ozBlDdx^S;s!@yD z?SQps#0Ef3g}bC$qqyDjHxJ^*`k`OHqVKDvt~kZHZT~-#;>`U4jTsb z;rMo={3lgwerd3zk#w1HCL)8VU57Vm_68@j1W9?2+Jw0}YdrD+0r5GKyqaXv`1@za zzU+Ox?-u@O_HCt}2w6=Z7w%~3<2dR4R?JE-U{SCzvivRowR6JUv5a}Y;9l@BxeuBf z+F7MSDlb59faR6jdB13r?oDZGcSlCAB_J&sqgS^t^Mw-s(AIb-Nhcx+MFl-us6GU z1|9rfkSjZN5U9ngwJV|s2w@`CIzpsb#C4ID!wZJ{x!O*%ceVXJ+B|qgIbUAu;F?TRjlf-)HcAHQF^Z^xe@%byVeAF z$0-UdoutKut?~7K>#t_R zlKpNLkA4)1xr&Z#)~E|US`)2XMBp~>5zgP)lNrk(6G@f9;8WUgR39YDWt!sq7hV+ zl8Il_rP||Ez`8B>x3lb=KVUL3+qB%X6_N-VZdd@ORU^ubX@?L;Cz z`~|Go(iZmAxI=HP1s{~|t(VRbz@Jx$eLGd|@OAtdV!nXItt)<&np2sLRwmcz*I2v{ zZv?A3uc_88Neu_p^?_r!wiq^-%io81EZzgO(xry|Um7J9RZx6l)+ZL4KM^ZIGDOpnKb&0N&!Q^lt1{<{> zk`*?a38xQb?~-!cn031^yah<6rBy4zh)EJ!{jnRDu zNV;LKqx#=;q3*dmAeBEgLbWrS%Wz9}-0Z zgsNkvK!RfThvP&AzP`V%=w|HKu+>;|r^_ZM&y^+!3KQUF?i*MxkMKSMgtH5ynEpy*vHtkn-Lfnm;1FL&v!UIF5hipH=r7 z?SGJ7cvmpg>w1nYbwU z(X3%qU6yuG61yg1bvju?SqEV13nT!?l9Rwqa)aIlO%`t_l4f+Ebkb1_lldn*;5*qb zz)jQJhO^F2qV-om9LTu(Dy8c)KehDIZ$qyOEEC`htp6HLd z7gTpBzKI#d9r$_cB2o5o4m8%Rtfgj#GBh7yVU@4Om*Qq%5kNutm}Ikvc%`fo6mENj zS%H%pCer$1(Wy@0(1TlJE)29Qv3X^Vc&RmPtX>epL& zPK1gcteI)wxfzYK4BO-{Jc!dBbhdR`m&`NHn5qnC_p?()QLg2qi;jw#Q3?bXO-2|z zx4I8UKd&qnZOi$F2@a06^hcHf9p^YG5ySj_Bp zQ_{7R+Ho1htX*B1y`c0L|;phsw?jMXHO{urGuLfgHrA(^G5{wXdVBUi5kJbtO|_Lx&>M<+9y&VJ+;Kf jvShHF=D%mO(x1GNA*plR23BlbxXpjK{gS)%C9G-XYv-k6T z=kHlRX7$`%bys)Ix@J{ZRk*6M4C;rE9{>OVs+_Fk7XSeI@qH|W2><@MY&U)m01yaT zNl2*5Nl1{ZIy;zK*_r_W+CP$Y5HxTU>QB?h+Zl~V`1Z0~Ce)n2e5XNFFdrdTlf;yQ zqxtZe61pG_ASNlsN=Zo{gee7!+Zjeld4QU?`n2|zbvJS3Vt%`H_52X^*;} z-XMcm1UN(hz;>9?ThDv|A}kOZP>G456bl33hz3hxZxvuhNj1RQx=M<{MpkaDqgFJA zyztbl@W+5Ewe+B~1qbLNO zF)`H;cg;j=lHNqNVc$X(-$dBU{;rF7nlc@sI!H%Gqm|OWiHu+PH;0|yuepR#qDvsI zjC$FP+qfe~)*1ANoq|tf{X>-yOUUmrnH;nIQM-}Do1LEq-l)juaB2zH0RVHvqKpN~ zH1uA|_zg7o?tSCFlQp25DrYx+IlZ`*w&bZYQ23C391`d+Oub5pmcaMAZP{^#BNA%W_HsC#0#rYWW@ z9#2&h%-U|qk7=ZQ9f9XQcPEM}O(Ih@J(!7Ylzs|#^u9;eF#*H`C8ghokxVWx>QOEJ*8=aQH zP)sn#0iRf5#K}p$p2ctw;Tm2K=B&1tq+{Xop!pHu#YA86ckU2lZ*pX}PoTf_(80n5 z&Wmg*&iMq3LW=`mC00ED1lt{TA{|ln^$5Vq0Q4|od}D!RxDOWG9_M)Z;8&YlfF#6m zTj%JBB?Du|;o}^!O-N&(u2J!npe0NL^CFrT5k>3=UF6Caz3T1`b zTm5FY-Gc(2SU3Qi7fBkn%-^PmzW?W|%xFgOt5qaw=kuHPpKF!LZiw+C`V$;wZqwVY z$=OY-n3s$lGyr^O4Wio$bWY<97;Y%Qr5v8%UOoX5?4? z%4P^;{%A+!Ww^CqvVPNZ8Ba7gRcagrc>``u@SQ;v zruVFM1SC;hgV@+na=*7tBG?+!%oSOj-Dz3ZYPA^=G_lIVvxHb|>A7*+@%6&(`V5DJ zf5({aIr0+oDC3pJE`2ZD+;nVhVb`ZR{b-ND6ZjNJw*hzY*%P^gM;I$Nnq`n@UEm`4 zUhbJPFr8c(Okqn2i1g?3&z^i`>gw9Ny_lJ z203NwkDn4XN3%N|mP2o-9Op&+9w=8I(6L}NaW;9E1N=!;3717g5(viln#!ALCc3pQr z>~inYjkz#ZFpe^2YEx?8)^XM>8>bhn(_`Vd$dl8AItMuivrj~r;F@unp&G69>h>@G z;qMJGOZ--Ej%@bFLZE+clDl8oSj*JILdB%osC!g+FmN+&y=E72Z+_A#&@^p}j!vYM z%>u)MbWdkOY{HA#keRBAyh=!4Nk6vL&l%Y%(yOo;pgIr+m4;yB_Jk{;3!G8z6Uz9CLLjuZ9>o)wlCg*?tI)(Wk+ zY=fSww4&;mp>6xTRc+}etP|4(#s$`e-sTln0v0J&JGCxN33V%VC5<|@ih^(|r2?V+ zfb3TVp@czs8@W(9EqV0e9`-|a3U*v}^l!#Gs5%+8#m5qSQCUs;Mf#1)*k15nrVp?W zGndu4yg0`=b-22?!VD3gyctL}I*MBgimGs`Gzza3(+g}1vnrRX1j{K4vGTs;U&o0L=_W6R@t3!CJ~H3f-i zU&f6aL{w^pqJ_GJa;8>Ws$0@qleF@*u8HP}Ug{(>oHIw}^c)KHLgp{KI4(R_&R3~; zlz6>(rA+3GvrOtt)q2Jiwv}kQLbbciXf;*MIki&_a`gwbW;JfLOwAxuI#Zcuo956H zyW_~?T!AnFN&W_V=*$WpTs!X#`U8S3&jF;P?R|}n>j|9&ul6e@d`)~{Dtzi$6>Zg% zL2j#D>p;6(J4dU7Q?*C#9qSeSHNlm}wc=IB-oTdBRoij&mHS=QP0o^S*Tea4IMbn? zb2G}5>?8HV^1^66m+#S6AT99MnUqLWZYVH#4a*I?F@t~4;l%&9KWz_Z9`(9up4xhT z&z;z#*blM9rR!!~`^*n>=*%Dd$V>>n5VI?B6erJgeb@a#ikgkSgya6%mTQ@+;}bO5 z2L2SDTsTVPaX40(e1tav6Hzvi5MCj+3$J;Iy+U>L4-=3H%TO(aoI9{X<9Xs9f&`C* zizI@zg3Ur(OD#ovL-U7vk4B|LyC_RhsuaG+-2s0!r}4!t!)futm3~E}Q$T`~iq4dB zhP|FSG7UGyO+@cgJL}UDS}e&4-!or2-b#Ff?q%0Bs2pzT!{eRJaW#K{5Qdl0ecncIn|MlJQr`vTQ$dP^ zc<3$hqx<~bdA3R8W+Bb*g!_crFYVKR%uLJ>MpH&5M#;3&G&o5%1QI;Hb+Okt*Npx= zJXU)xe30=cEhHi0v-j#K)-7nehrN~T3-{nUI$qjezUrFeLlF0*87Msk(S-+tND6-K^s%@?6R)^+={;UGJy`P=>&t+jy4w*HdA9b z>$%UY0(BGg%ylJnhnRf~{N~MP=2ohfR(+*5M$6DPVj{|qweCEy1YG#Fs*CkA+ety7 zHij0Pj-}?O1=LBRSnn+FM;|*MhqZXY}9zuG?`*56x2QJx*aA71HG%k}u{ZW*6Nr zD)%ozO6=;^Uk1gRHx{v1YXd$c86oW{# zttA8IZo4OV9!$BqN;;EE1t)1I55&|wp9Bth(|PsUd0Y6~TU&iRJ-xlXynK8dZdW%? zwmN5LAS;vU)@KfwMi@Uysq2+k)3{*q>tvsZANh~f?wPhVa$PytmJWU#avB1~ zoXOM6MakF6;VBs^dnGJ3fIKpQZRYS)&P`R{aLq%H!IQ@0>5B{LdJPQUnhi;1R-J{t zt9!dRo*L2gd0X_UJ!Nle#B0BVJC|9f>$ZCTc*KmB&;A@)C^jS?8=GZR%_e-HPUQ8u zn7R4YNMhh1F9_17}-bLy;!)(}fU)xUGDaQGW)0o_l{Pk;vDx3M zNjaYm+m@ZAkG7P*eoC{sE|~A(z426hcI+GZeNTP$t!eur3ArqNiDdeITDYj$;`k5B zxbp7pvVzJuJkPfcA7J{kwkpSy^25 zYhIeYaO?UkB>Rw*XCFfPsv)jI-M!PMe-+x({mVCQPXx}+;-56meC{knEQvkY!$`jP zY(Mc@wCu`F4!4*7wuqQC08)2Xc)QuyzD8g2zMKq%FUYl)t>4iJcVz6oY(G2<137?L zU89p~yWz;^ld%d~nwH(qDzI6iXxbDv%1AB9#uN(sE#eUEo{i4$cn6gV>Lc1ClgEW)wSK$$qoCjjnDysC-J= zE|N!4?oBc6RZ*vPs{yY_!IBb0RAPmETf&KnB?soGyC3ifBKJ~KD{i%)7A)rzY=@3B zPOgZ3<75M!h~2DRCtRJJa6Mj5-IqF-sm9bHk=r+8PuIIiOq#;P!Vb+jcjM>v#m--b zUMAs-V0B?@VTG17iHNZa6eMOIB^3Ie`-=O!CG}&*qUyqECGQ4~iCq7Y*aglhH~&%!@2^%`PmM%wtblvR(Wvr0gfE!d6bb;C-ks zM;=^!a?je;z%_5+z>47TAJ+x@60*9g#Ohe;9}Vzyl*`WrHosV@n|b`*)4seIJzT}k zRjGqm=hT(ERC!p>`|>wlOs5af{&A7o0~#cCCV`h{<=c*@H5XqiB<`&}_hyeO4Dwfa zyghxk>~GgnS`yvw)N;pOj$bdJ?n3(|pkjAJJYvtIa=gs1eecb7(_V;Dn-NyWyG1xx zo(A0fT*u#tx~D3+D&PThOaMm_*Z|}&WjTxh(GIj$k!ye>HO%@iRHIXNfI&1o7_Us^ zE)>8jeHufO2Y*dD1rzxj-G&}z5rK=Mag`?xd+rBlgT#?!8Qov%A}>mf;wOyk%L}}c zxJ_Q!K4_o&nmUBUG$vf;R~05B%p5^xm{4SPU--JO)7O?%PfTCLS7N_(BN<-ldu3PZ z9Ey0k_#!cQrjV^~SbTwk6Z^mC2a5VM`p3q71Ag?>B|@v$>9AFJ*^b$o9d91v^NsOJ z^A@(8>vJuaEIW9)UyNP}@BUd&-STHvCAXw)Vf@RSMQK7Ffe9jamlRYK2PRNHi2agj z)1}qpmYq;G)Dsg^QyURoP@>UyL%_PsJwz)deKBV2BJ?duP=DuWQ=I}D3H6wL! znu!?VpWm&q3pWVrjDPth0V(N>$yeswBTjXxa#-;a)E7kVc;rrO=6%3%Ah|Ft`1Pm< z-vS2@Z)Ph%A}FPfHvWMqB2L_Wb%sF6+vzygGxq!7ZduU}Or%X=tok07qPW97eheNeXv)Nqu)(VGT zK3Ya+PJYZa6?uEyOy7-~tF&9yY69AIHi0Wwu$^2cPwLvaKuRy!Fz5($WLvrWv8O(_ zC&hQ#SG-n1{0py8B1{j2&tD&;jGC^A*7X1Q{tkMaEG|yLUAwubfVUMxp@%0~NBtg( zL#{;+_e=Wo3kxfcEp%va=*H2xOp!T{lzpPS2AMS`Q{-w8v#3Y@9xFS+=MtPN423>j z6Au#~N9`kh?;Ow9ssuOXmLL9&;;&=E1|n_lXywO`}y<%C}?Sss$1{eyHbu zkMa=lH1I{>Squ6mc)H2$2ZrToK3)GV)iI@tB-4QB6w7wX!NpDo`C*Dk!rcWgBbT(;1t0r_7Awu;vm9QJ=V@g9*)7kdb&x*z@dYs2($ z$VR1Rc6-)D1@|v9r@nQA2*+xYYmV#2K276pd!=9M-lB)cxq)5R?i8E{&mGwQa^Hg=k)j0R%6`1?qy38*-J`9IdK-$~ zXCRA55#cPelV4TPRZu+Tx6gi!5rSkIIx@7}pHMq7&wfmlCCH3=2Ve=D?CYl0#$v`8 z2*agDn>K!r{+#Q`TT|4+YlBB(4sa73SZg`I9Df38|Ct|~H(yY3Y;j58ZEyL~!qw7! z)o@{cu5;x=+12&gQ#&l?8@Y9Xpo!)7DPbx>GI5f3fW~gD8E_Po1pHD&Kk{jboUTo_ zQvD^dBrYY?J%1vPw7n}YMp4%8r=&LMyU91b2D33)TS-CgeEt#Mhp*OOK5}=GCo+}W zhRRN)>#rExT|r;wca|bI5%-W*&|~qswh(9~X!Glw8n9^`=-ixWgWOb6Pq%Xx&)jlu z#!DAIZcU)@Smlb>>SPTMuvz9$6WX*?V4JFKe{AJ)`Z|Pjo&! zZM--j_>#t;c?o*6A3ttS{2ZO>vmgT!bTE3}Y&Je;US9+vO?k*A-mOLY$=-W{ym#s^ zf!rL1zz%bgu0s%ZcK>+i!>VxZgT&j=nE0H^=%i`n_kpy5DVoIMy5cgk@ty2Hv6_-v zmJAk}=9;sbiJH|F4bTgU}DDX zY3KM}X8-^MJ^9~p$qbw}d|kviy(dg+Caz;~)Y6v|DnL zVj7-MCo6o_oLW-|=e1riSickE1H^taqQ#@Ye_@T3MV!w;p&+ykhox=``#z3^gcbP$ zg_0HqfI*9&e}=MUrG`yYBFFgCu?K0Xnmj4>DJdlYvhim#Y!&|v{zrrp@mpSQ#J@!UgX)t*6Yc}^RO{vbPo8j5 z_{TDs{|oDZql^oDh5Nvj`F|UJr{@3vn>tEreQE9WcD^Fr0RY|odQ;7__HychP&7sz z-gEK38Gpf$#FQSu^MQ(gM#ESmPE%3S*3Lm`t|78(;$_)M4A)Go-*q8Zy$JGI_wx>m zMcEx#KJ+>LDULIAZYfpxFygAp^=W!opqW_sz8BrT?f$rJZgwvJpzU%s$;M;F4YI4Z z_BgkT-+e!zWaZrCA`Qz9&c%FopXGlU627e+S1`OxxUD3*c#8FZ-r6-d^M)M5ki^_d zkUfHTi&;Pi(LJ3j!~fBK+C$@A^hJG9aK@l^H34r%xqS%&Br6)+vE6<$m_*m%HNwmZz;_kW>*W7eod`(+1z9j zz}L%Eo-@C@cB1xZ7PDqKkuNMuAtKyeu?^^FF7Z&#>jZ-Ll`4EF(6D6&Ev@kCcHiBE zOi7&8LvDK|78Ph;QQ#MUz1Vr*Z-f%9w3cD}*a_~wj$71l;LDj^XEy*~{a&wf9oC+A zc^o30v;jO@+VmlQ`h%bG-(P8MknxcI`bpuXzi)rlRle$1ZZYIUN-U(ToBA-mU3On4 zS7#}qnPPUoy*@SPzFwCOnRoB|UYn4C)?vuz{jM_CmQ#-_?iPNtKh!dbS*lkH>t~;xAYHeOOD!IiaWH;A3t>B#>MkMMUvlbf zo|pUE8}=1|k6#i?%Khs=msc<@@xrmO8SDDccjXGMl9>f7_LeSoEDibg2(7TUW|YR| zxm6>Oc)OKV23GH`B)RsImzwEQ@E><)$kS=#%G#A>40fx0viq1?CLR9uID3qesJw?!lvx|S~Ik95h(y` zL)E95c$hI*i4A>yfe=`_pwh;;+pYs82VLZLi;YB=$k&nZlcQW)HLV&CJaeDV;eh+> zGhd5DaiWIeIi=nN06TO*X{3ZjY*uie@JT=U^qGJR_%!Mo-xtXwc)!p)7#4qV3eEY# zbq#dKW%p}FrpqPkLeuo4+h!?RfYFHuilGtndG(2sPfzD<0N&fwYLD4)x=={+vjH_h zakE@IW?rx@q2NQScK`|B0ohCO5SrDYpETMHg&j!bTAw6UnsA>*v;f67mqHuhBcQYX z-3=xCH(N6H*OUowWl9*a%SC$PN}VF|!8o<@>VZy)iBX+kd*?K0jlH5h%&=FvkZWVv zHym(JoqNz^D(@uE38LSyw%%b^1dtmB>2&GjdI_|5+ete!9830k9;(F$_wha=fagBy zb<2Y+J@C5#DTzzmdIxC{Ec*F(|F}STp`Q^@v7GPj5-`T#mE_yw?dQCf2Khnk2uER7 zcZ8DerTM2I?rpLjLrEZd78@lNw19k3viRIJUv<@@@W8HDYSd@7^)Yks#eU)V_?~c| zg*4$!XQTh5(4!R5F7?w#|C@54+v!PGVs*Y-_Xeti<*g~2k_e~4!OwBSNt2>bbH2~n zdsM=250lkj&~5=sdpc()OcO1=g#>MdjufHQemCWj{+451>n1-lUzTLJ?)%td4{~e$ z7hkW6Vx@6Ely zxBG(dWvzJX%|JJJ?k{ObqBwiZM%di%w@+Tt?^RI#-Lmlf^&%nFX6~S`>0jIN=${`Z z{d0;4&si-!&wCMghR{CJ8viWB@J0I7Mv8GP>vyXV6hScNLVNu{C-NY-l?F?tKpnVT z4tzPJbu^UECAa8xhE3XtgL6PE>1s#QdPXid1n9Do_uwaDWnVDYBR&p)F$-1jHyBV87p?LQ z2RC_`9~Ez+h(VFRfopiJHvFSOg76F%T2OpNc7OUWVI3}YcP!;SI|m;<4vdKS$4>R%fE7`KOjB9R@JSPjr76a|u z!Xi#9csO`*j7gvi{UzE@oW)iVto@`1=dKJ$BXQj)Gr#}S6kx*Ns*V%IkT;FGVG&8y5a5?#Hr91$&NIu+%_Jh;QTeqf>jEjcE|*G?Y26&?i-vaDS5iD+j6q zs_I~m$=~CB7rfAvGAg2Cj{B^^vap%iUMgPRuR?pDQ~U9=*g_;=!VEfkf8_LiiaM&g z-s_-SHwMF*Do}UyDv27cc=r6 zO1X)y=+l$2EfM#+k>F&=?VKN|LW~qzgZd2YsvjaAEB(@yq5w5$q(w6Kn6M(3!&K3o z8t7Pxl)++Vl1mwplORdLo5p+Pp|;DGGk(zWYz}>?FvQL^+pq^UcH&Udt+Tfiyc#{3-87Z1CylBm|ZP-s3#h^^pVxW$;mU)l$7^3hi<8=ch$A;GeTnv4GP! z)Hho9>9uvT`j;K4kK>|xC&xiz&0oERBcBg!uKhs@BCLR@`OO5g^uSjuS7(Q^Eaa^T z0IeHUp34VTzW)8Fl}|%Jv-@OV?DJ46x4*LVU>9%qUc?Q(SuwHh?n zJ<5`(d1z&TP6CbF4bxUZcPryP@~W|vm#is1!yB_`Z63U}~`YvD+d~B=Ik=iu`O2MOt|FfaV`^mrGE+{SZ58NOz8# zK+{<3rAv$2x3GTl8{q^u3@n}bQWbFq~Gz#!Y0+bSe}QQfu|WdRly&8kDkm0 zo`%;oiSE>R%RmQ%%Mccn?|UfM!DnsR=ify7A7&=KRdF~T@`-`~c9;$Dat?F%V8YYk zGezNEE!gTqr)XPHwM8Wrs^7)moSrc5hH8jg&ZdChh3RD(iP09{xdu;rPy@w;CfmNN z{)~CA&2VUi370~SJE4*owm$*RMthULC#RJ$z{KV!6Q2uq#lGAZ9_ZszKg__kSNZ1Q zX3}MkotR|yw$do?@|f$I*jELWO&={Co350=SH5-%CLZ_fa!x z?DG$78wg)B2>b@?bT3FtZr^+qw^n1!GV(D6EzsnoVSIFh>zb?tx{V--KXb}lX1F(< zxQIxh_Lyb8C$-oyr4;-K~QuJADW{@ZkJw0OS=j@EsTYs%p>fwPYK^akFY z^<-f%jCZ6-Bwo}}AOgv6i_Sxgj@<`;#5io?2eSFzs2GZuez7WpCU$t$>nX9jL)=eh z@U5j;3Pttsk6D?@_@d}gu8KJnI}_=H^hshnVa(z0p?9~ddz0zn&nxGI(hM(SQD!kT zV)`vD0hS4Kh~Zy}ojyxvZ4|pyHKB$M(;1HCpWJifKYoC~Z1ZsDenS8$BVB=4_1Y?7 z96^*yI(WL892-%ZIF0U}RhX;iP#s}Nuznc>H!}>$cJxr`?L5U@D$H=KhQM3t(w>h%m{Fr;TEoVe>+^&qDz68KL=$rs& z(5RsU{q5J=;5X54-^=r|fs(!*VxH@he)OTt2s$qu^Cg*TTFZJ*4>1J+PmmBgOB#tG zL}LEnK3;Y#V{%#}vs=n_BQMuO&|eo$MT9L;iReBjYg1p5l#Hh43WZs9I27}pv0b(VOu$4qs?2DfK#F2kWI&huuBQyK8gJol-)}Ovw~D7N z@N3y*I#lDMiLjLcZi zIu68+eHp4{znXrI_Gw>Me;f2*^BxDLsOV@pWx#7?zmd;ZA($@$lRT#VU2P%t+iS%z z+@8ttw?(!oQ@-k_asD(#Yt#7sPNr`I7|PdpXfEo{Gsfv`OMfC7rcy(T*7Vj<6;w49 zo5GjIG1`Q4>V#t}{2CeG&pw4V`Y;M58l#lj ztN^q#Xq(lbklXlstBl?;s5eQ$T4Kj2eC-(U5-nJ2eU$JAm9HnyCj4!=BXc7>l<&@aC$7fm{j{DOE!Wm%Oep@KBI4IZ$o$ z8ID5Q?H{xSE#fp((D-VZQ+oSz8H}Pr(0-K=44>W*ag%`dVtW}5FOxBt@WmyUv4BOU zr<(<|+D#HjK;2u@bkbZp#*i8yYMb2oy@|0A)%NGeA8(tHFJ4MrbFn?yrkSE@o#BBS z9*BLg%62k66sg5M6GAF>7IteIKn#j?ZmOY$iu7}bbJLWH=-G@VH~Cc+w)s8>!M`r@ zt1M;5U^3pOE=x@MlJT1jFLM-XQ?*V>|a9*i(o=!1NjZN9sQbc-B5 zk7RtcwNFjs_b}N-#)$h`60eoc+Ez0~ZQ*}vX2?A}KS?~TO`n`?FijGN_taqw3pX)( zF=l6~>3P8J-!d(g+Qg>!tf4eQ2p1r9mgt+rWBZWpjCJ7o>A7CItj?;(@+ypCZM z;R>}|VJpL4!aj0+5Wu07Vb_-GV#e}ccKE_d!#(221bkzN*24a9 z882!p%Ssy!3V=t3N4P03UbaC;ftI%NfLkF($SEo5Qr3W&{^;-7AU;E=I;!mMpSUdr z6$!QTi?lwUdUP*ojZxn*8F#(CoRMkFVeo0AdQbYS&UBD93u#v{gcHV7n9V(e_>z4_ zFeBW*oqEp~ywnRlKNaA2{=8GkTzn?9?XN}`;NQQgH5{405zXywxx4VV!8Oy{xq9S; zc@+-2AXqdLDG+={|FrfU=H;Yd?d|n0v)cdV$eQu$Do6Vf~+E zMkd+wIzr+_3LFizjcAX+nnxw)P|-e)9UJ)dJz>KyrKU4Ti0Qe33~YJ$O()FOGN=~V zg;|V%twzGSSc2W_3B*v{+rT)?Tc!U>2;vaG93<<$@8bN3B?&tjS`;lPF`=IHPg=?J zs=52cPS#DPR1HEijpKa3C-UaS&DXIG$3nmuLSctZfA%5eY1DD0mf_4uI#zamXbnvH z$7Xqgwmo0at@vru|8>UA3lsACa^_zR-7gi8tf-Fy{q_jyo|sE{chlLz&_u|sD=vw3 zvkcthe4`}8&uXB@en#hAd(gAxXPJ)-&`#srcaxQAt^dOxVAn$*eitkEll9dFR1-2vK1k1F z^?s1Yp7@^x<+&g8Dd{u-Wwi~~;v@RMf z<+OSZdppSVd^l4j$^xCbKVQmI)}RN5HQpAxh&;_>Br%JO{}crpQGLv}( zS6}O)L%MBlm37g7&!OpIoSn@%thBi;Ni=4KJ|12hY^KZCzK~ox_&+U`Yq47A?%Y3m z1ywzU>es*7%YuK6JNg~h4rQ2-`JVT}!%#hTb@oae0`)S|I_K%0*iO7R!|856_Qy$d z#9ZZvl3H&&&up{8uc_~ZL-|9f#oLwjpcZg16IICk1{e&d1nK@NXLdhf5?H&G)b+k( zZD&ia?^4FS9PN(!+5UO|joFA;0Cfh^fK%d$X7jamtiRTrs|Uf zn2sAM*sG5mAo_2GD8xileqDwl#^|(?hRwPsQ|fixD%1WEFoJ2LC<{%zDR$`_q)E*kVy1fL!wAJE@?@woj&vY_R zrL97MQ*y{yLnFO|%ZkSiy$`(<;d>(U9?Td#y@4w-Dg1PtckM#^+2NN}%@3$&c~MWI zke&2IJ0xf#uLFna*`i9cOF}9H_C$1h7wpU$9K)Di@op3Jtc}sCl#v)4slMznN|M$& zP@qtVloQtY#uMA^t?tea0#V*X{%u#bi2r18kGhIbV=sk)MHX`kom*x91kT#Qf&?)yPjr5W4hu%eBb%WOcgyQqXj()c1_)k=osM z=98B##BE~jaqshWv;M`B396*WAb>O^ zTLMF}g_K$pGfQ%P0<3^dO^)gN0gu>iRkr?&F_!($5y2ge(7y0$vL1pG0i0||0}4{w5c`fOK%#4zLNyhn_8YC!5OxSR_CZz`lN$P2Dh zSbVOL!&Jc3ae%PF>@0`#(m6`~HgR2TLGDOQG){#sYeZEfU&{~j?OfJEA5x8q7d(&F zrb*T~?zHC6OJtHew@g;J!gDh=ISuFCPwTdT=`B8J_T=P(_6E)IxRnECMBKPSU%nCD z)iQVoPSwq|UZyg)MOO|zr$5sswISWTN1OauzfSS&bsyLweEsYz$;}!Xu^EOYOkHmD zBM+S>0yo0Ra<#Yw_@$=-xe&32swT3BHz^thQ*h3ii$0DeY*YHN#eF~hV#D??56u+Q z&fK%I&Z~ymk1p8U3nFH*C>J3D`#(_b2JqCE=zNJ(9c{!tanI_dQ=}(3x-2ETE?Qpq z9m0hA|Pa}C#pV4GGX+wAyI6e>YafywBq+&+u z(dC@LZQN^4>qrdWun!G#$@_gsAhJ-9$ZNQXw=VdQC~+_EgSqUnSWm$=5qd^Np!}YL zp+^J|U2!Nl;36*P4gI{6;APj?z{>j4oXA-tCe%xz=gZpaLnpnp|e6 zi6HmA9t`f@%ClB*^I#7vsrel_@ujyeJ0-%KpaHSHi;!>;1ALJj)fxCLD=wFKn}x$y z3;nB1t4nqxoYhsvh(xp@&9MmUzG+7>%I-Hq^YILS0$RwXC=ubPdLjfGcmRV%hZy#+r(Jf=Nf`?_y%;?k`J>F+VjG`Tg4+a+q`GKGGz~oA})= zH!Gc3-z%`gw!JZ+H!*KRmu(CXLHWqG(47|mk4kl00+35K2?NZq&E3K$h6GvR9S^%V z^X|V883|9{A%Ru4h@me2*wzUP8wOx8*@49(UC!ZE_vvgG_cKe>P@J07Gzy~Q7_sNc zUkjtHyw9c&JkaI)&yAN4RR&4zk*;6vLgCT*J3&RIA2Fm54!4@iQC)z@IYO*I#F-nN zQ272r7JWGeg90dUf|1-{huM2wmHwS+@WF9k^cD zg0mq@k%tW0RZQPwa>r5p*F#Wy~&wV=M7AuSqC_9Q$RgM-bN*z`J&_BXYjE~v=r;66VR`aN7o&|i`!$Sk5< zqf6QLT}M^>cNQ-zP-pj%g*HAQ2a`cb;h*LAK)=*|^GK#1jbN{`clAXIg(+1}h|wmh zP@m%}v3-u0ATS`122^jIB?OCNA`ue~vwBvsal&Ul$&&i_d_%vV4vR@yh}~WIQGC%9 zONIvS@(oVr{vk%!9p{!!`-q%UUC(m%^;C7OzhdCREI=Sskbz?Z~O{AQUGJe@wM z75q&0UeWF$LP^`^*VZRf8m4 zt;_9bu0>oqjUi}w-xJd_^#m)rPbzN5Tae&T;73eo7i>NbCq4g5-1>`tAp9y^@Y9H>Eeb*|mbt=oCe!|go%>DZq8 z+5#gEN@Ab9{<1@7zHaD_Wz}M8f>D~*C&l8rg~RmApE7N><$(n%ZSM4C5`5-)33H*M z_t+rlS_FFdTQ)w7rlQt|WtnB{7VtpcISkuy)RC8=2=uoJcWHlgogr!o*q`mXqd9Uz z&3`qHR6(6*?Jb2WER*9@h8@qF+9r?zf@} z{R{1D?$UD^dkD{LA)Vi13c?__`x}*G^xRJqg5S5mc#xooV5`@n5yQh4k#8a$ovs6- zuCEIENkTh(Iq6|9Kh#q|wmPg0ljwfiswmd=7SlK6YmpQSeL5eVf8IglOQTwVD3=qU zI5lR$h>Mm*4?;+)``oR;6MyQU!#OtkdII5t>xh#7r$8Sn$Yz|wQ820VjGtM{nab2? z5BVF0L44Zp$~6=zZle2%(y%&%#LTMq=C~7=Kmg~UT0&jLHrvO zGP-W#@2Z|c8&d1Jd&quKg(hWNO$Gx%UK*2~LJn-+M_~;(Nyf|hX#0`E^BZ+!swsecljc+2gMcY{ksAE{eAU!zZ z^CVuxI~Z*mHLr`xMh_|$wn!Mf%lIt<56_Ac5%{PL^bHO2E`7Qh)WM+7E?YphT421B zw9mNf*5ht6+g{d)l2rG%_2Tn*QTP=roDlf(!-iaM-L_K~xm)3P5>wp{LW)&n3VnXR z=jN(uyC`r15$bXJq|)6sX_V2+-}aMG}Pv#Ah@+dh%|S zB&>f4FdsBxW*=ssXW#FeRH8n)Wu+&c!`V(uCIq4Lr9a5=qd=u4@7yn$r=c;>sMGz^ zCgn&B9rT>ZtE1j@$C;R=-YjHs9Xm5L;^OmBuV!Rpm9x&)k{g7?@Nt`b-Ht_R6*m31 z9`>+FCAB3`}^?BxH2l4G{~r^9OND>>A^rQdN$*jKU|bdwE)XYIXznh)iqlqIXg Hje`Ckjoy^x literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/04-probabilidade/img/paradoxo_aniversario_2.png" "b/1-analise-explorat\303\263ria-basica/04-probabilidade/img/paradoxo_aniversario_2.png" new file mode 100755 index 0000000000000000000000000000000000000000..f49b7f49f1b64c678ea1ce1aa583e256cc41e181 GIT binary patch literal 29013 zcmbrk18}9?x&|0^Y#TeaZM)M!$F^;CY}*~DV|HwI&|!CM+ve>3pL6d$GjpeEre;^A zYG-}x#aiE5&+}qOe)%ko1dk671_p*CD8Nz*}>e()(i|xGc;8TMh#QG@jUZ)2ZPZl??H~sq_VS02qmn%`6#Kf1e)Y0N_aW| zL}3P)sDvmB06-IjCJBYr6#)PoA?2^XY<%QAOrE%y->)14KNaW46?$Nve}Bx(Y_YI| zp(Q%GTF7INDKR^ct?~qbVWWa0O8fw?pBavea|g5P5&mfOBav!Nimu+;M5_83_QqYe z#us1NNE`G9*315-{MHZ*ci|RY4i;8wm*rgYnIR0ZO&Cv*9HgRSk;|w)gnwUsYl*mg+;E8ipoqh+jd|Jq zwsA*@ZqOTuIG;X~`4+ASTT1$f#^{*)4XFnqvc>sj=!2Ye9U5CvBaK-m9jZv3gYR{}V1&Q+DCUvyQ}YaC4!7qQ zW3>97h0s~J0xka6es?Fb8g&8_WgW;LC+$vTJRCIhbLTC2fuiR71Seuw%Z2VoG%$X*0w@$lLR)o(hrJx{C`EGVoFEb*)+8OjFQ zTyF+h2;e>}VTYDiHg4}9xq@c>b+4Ry3{CJlh%PM)dibm>s{m>l0RhsHqFnUIL`2_gh{IM@_ zCZ#8_CgxUfp3nECS_IY&$qnysczb);$7yWKiO zTYak|4Uz~1xhNfehEnC3QCDq8nVbYx^y=V{Dso87-4L~ul%L?5(QgC=dzCld3gJA& zuZjqYpF~tq$<`mUu{jV$UJxi&(LPFLPbK2m@dNn%!LM#Zknp|FLPhN{sdkGUA;Br! zWy$DO!0|u4^X^AL;&PWkn}U$1 zKiLQQ7=j5vPbGA*feQuUT@o>fp@sziLZu%>f)m?LU?_&L5`|9SHHG07*H0k9M3fY} zns&E@NkPF9+naX!LClBpQ&ex7=#Y#9zAJ29ym49y_Y-@sEsHP%IDNl%9jh%uN57CG z3n64#FRvrGF1*G-tRuqer;T8e0h3E4J10xFlEPWxFUUV|ecu0JU`poGK-4#S; z^2pMFOBBO7jDZm&JGg5c#riYDT!Goyor-0nUXuYv9lbI#N08Z;h6}3$M<>#*Uw=es zFwW$_k%y4`Gj>`0N=VW6wqsi>n=bh|zC9{;;7cI&)~72vPlQfxA@uLD%){K9{8zz` zvaf)^Ow!NOWVQe(^dz_!IL;9Fe#m|(qr_igDHO*TdXWW#492uq4E5=cIghClfXIX< z+0PXCw8?66eA4ZT-iq3W`7FO!GT3a5A}nYOd4?QwjZ(JgGZoTE2@<5CwWI88`RpiMrRAncItSWrPE^CYv*sh47w8ka^Zpk$P0!cCx0luoGayY9p9 zbL~@4xG+>Pj4@}CmTw>JW$v5p z{M|#^TpRESe4r(npdL7wNFVbEs*QJuGYHs763*(0`GEdt0t*jF6#3Ch7Wg^vA*d<{ zI*6lBJZJ$*7`7e(4oPK;NmSLjzd+c)S*=)~w96xx)f6m1mMl&Ta;@CovHHB>b( zdf(e*+lD&aI@sGBoN7J3Kd{`;+~VG--74I49t`bB-n5^_-nc*1+~uvz~SuM;5VvXj(mzulYHgP zg5C$wXVFm6YfP-8!1=8<|bS$Bg@wb#kV1vqFp zEI48GH4J8|dJ0LZJIZm214^Y*&Egyd$uj6-cL$vHyq|AwSx(DWt~6`HUHsx4r!KIU)rwTq?or}SR|UJBF1 z#lr6ipWPQ9E_024ZWmDwCOszAt8~ncn;DzIjHQi+8`&tPVcRWJYeAuloDx6;)j6tIMYDYa7bJ+a!uXUDvdq^2zp+{C0XA zMt|6R$Nr&sm6l`I=>5_Ms101b_cPa zUpsxPP3KC>%M#KQLA-a4_p^_kkHbb&tJhB2RkcmaorA~fOxv8h#)q?g0@J>ZULrpEZw2cElcEECHDrwi+3{5*Yd)u!k6U#sm%ox3m4>Atq)Vj+ zq0ceY*6sne9Ch2;IZZ_{TC{Mhr@F$@k3)GZ$T_ujpa zvzJ@Wc}LpPH^{r0Coi7*-iqu+ZMNo>;=d(Io(Lv-B%VQ>_X}vP?F=t5+~VU1^P!oc!{~OAWHY{{2=|q zz(-OPf;XVPEp}xN1qUF9GZ#tJ!ZpjR$~=Huz=PzZ7S3H!U4??^#?IUqasTNClpSD%nRW&->LE=Tt&<}PO?JTF#d?s zh+o`=9F1&@T!SpOqW)*Eq~#_*k1T_Bb7*qs<{DEh^YGK@DWl(+%S)L$P4uQM`oz-f z&O+X`eckLYKaq8LT6HNrW$x?5>Qy40%dIoD+q^@c(PHIt>7t87N95w;a|~-)g^pAS zyy!}pTHX!ChmMkC6)l!0*Ddh{9*%-8hYsZ-8E31v(&bmQmq~OpPc@HrTT6Y{x+?2@ zDn=?=w)cSns>9Uk&^pFNV<*WX$qT7(?^(fqelMz%<<`vO&db0;UQ@hljK0tEUDb`( zTy!w=fI()AQ~d94V$V4){fB1b?cR>uWiR#~KE^LQH=Pc} zGW`}^W&`2Bq<ez2}JEl>$Zx%QP)2 zqKhg6v#a>iVTO024_skMB|CGio? zYz}wo(k^Esc4ek$VlCxvUovcN3m1EN?mQJ<9s5TIA1Q83n|H5L5Xv)Gh-M#Wg^F7& zPR9{{J5O?nyN6AFj@2#EYv>rdfqHN}P`yvOFL+?Y@!j~?>pkrY1+0?Q45$ocQJR;; znPra$(;rID(s_KvA{KN${c|<`H<%jxv)qC`Z>qt9?njeRiSlF2(^5jI-+}hjx9%VQ zRu(q{>eps(T-rWMsXj!NxyK9rwF|C-J$AJ{pu(iw1}G0Goa|H@^-VaeUH87c{>}5T#{`o-+Z7J>de}I+kJZa zWx#HL-aR&@ydQ~hITbIjp>EmpssxoIf~-k)_ZhAg!H7)$kdy=YWMD+u^v`DwWW9*Q zUfmJsZJJj8$2BOJLQyHoLN5G><=P&2{m&khGtyiC8=L zg7%@f9({80`F_!%JYDxO9at3{8G2iIC@!P@g-{h;6<-fq>vQEL|F(*is+q^11I_EJ zvEy}&?@A2|)_Dz;E;Sz3i@tn6uVyocsK#9+4-E8Dx>BZB|H`$W&Z;lJSBXDbdmj8f zsnRQ0awx97vklq5b z{<}w*W9? zEc7&Xx$r|c7>m?-98o^>Eno&RdJx5i25}jNlkDd@cLv6MsNWWmBhf0#H_5B~7-g~_ zkTP#?(28O<`Q?Xxhg`Q5VMHczkgk;F01fYQ5CuTrFL7@N&NzyAj$S-%Q{6#`J~MlB$*A4^s}nm^2E_kJMd4KtaqP z3GgIZA>FP`rNbpN`B`5_R8(1cRAfn!Qr8Uz{W_a7jHAcq=0x+D>hSML58E!+H478F zml>5Av4hiG)Ck|=ew|&UUQk!!TZQ;SX;)mqXO08Hbe9^3H7@~O0ff$HuH+V;Crk&T zE0e;CXC3I)Ptee2w){i_lB&qR;R&J=#N5~Ca236sPUAh}Lxu;HMssN8%BfbmX4z&} z*x0kE(81}a_?8Qa0z*x* z^ZhXX+~@wR$0~?#=^b2{@d@ws>yxBm^DV)K?zrz@(DPJDNgCG1-6I*attcW5 zG|?tfNH`{`2F<4mDY`di7H(UJ@V@Y^lS}Dhb8bodWH~hwYc$5_^&ln@kAedhHe9+= z%o|kser;n9V;@J&93*>Tdno3x_@M{%N7%>^qe8AL+(;QY3PmP2(56O*m-_d9Be`&2dtRY?@;@4*87RT!pcli@ z!usKyqc1TZ)0fhH#{5PC1`N=-z+Lw!PF!Bkt8U;d+}xS*=YxX`+`SxZobT%%F_ zB=A0}CQCo%T`O3N+-`?3nT%cb1~J+~y?s8FYur8VUJ}`Zn~|562c})EO-RzWbLggZ zA^i8Tj{76xQ`F0l3jeDH#9i=gvs);t<#_@1z&`mYKuLme$a97n7<4!&d1e)- z-dSXQ_EwkrmL}tV9aoSm*Y>GH=z#as>X*T)g<758x0}E=vBtvVfe>TwQJGB9r%3Y0 zu^$y%CeI@_N_BsC{~9Y{{XyW+wQdq-Ur%w(bKN?m{JGyz?VoOb^wIDW#*Cq@j!lEJ_7r}_gM z+pDRGbRUk=uP1{|7Ue9xS5Q;fU05>Xf5>)=8U|+)K02~GkW@dp$aYGQBfy080LC0R z)!##w`z*jGgjJ$%S>kKuIWA8KwKAel_4|}_7Ydop!2x4;%X#m@@bvxv8o+u-JNOrxqU%8 z-_2XTaLc>GSU7kFmLa3lam|P6p4r?VqpNw^xC1GajgOo+`ZjZK+EhYV#5%}^$nG?bK^ z{oczRk5`w_u%x$8H&_3wo~&M5^(5?`T`~522hN%S7U0#^{`?gJOqUF797aO}r&2>B zU5Qk3*afU6+~M`2(SLyj(y`bBX-&ba>-OTq;2mZS>DNwvzuP^qsgP@>rs=AwsK969 zV8>)+>R@cf@$FY33&1WzuK9(8j*V1+1k7Cc?tslnZXDA4jN_#kp45p)kYAY zsrZFd+`-w5l#_{ri3K18PfAKE;B0Enry?QsZ*ky%f&fcbS4Tc(W)BY!CJ%Nd2WJar zR$g9SW)?PPHa14!3`Q3(dsib*Mtc|Xe<}GdJrZUvCeBulu2v5Aq#(UU#tv?-f&c)> z(0_ma<)@ja)&E$sclr0SfD2>>Jz-{LVqyMo-9S+R&?w&*D^D|9O$jSIGkX`H4Iy?G zPJw^s|KFbckH!Cx)cOxeHm?7a{EsL9mK0zHE#N;E^sn9eXB4@cf>i zMZv&Cz+@#v)jYw^y6kLqw6dt~Z;cJ#BOgt|;8})9BH>(-j*eLOmh6@V(awq~r=(KK zNS7g_hwYW&N!t^CVpYk$q3)eVE$1fXh^Q$_T|-dv;YCBMlZa%>4Ha5wtB{+aTV;36 zQQqHXDsfO|_JV z66$;xU9Uk$$ME@h$&-JYXz9ArSTSfy6?7m#vHy-{2nE)MFccY{JY;#vMcxZb$Pbk< z7`H}i5)4$3j|)y!Z_MGD4V)H71fgI&a-LG(2Q>8sXjGFGzZ2xa2r_VziO1NYAerE`imyj+qUr5dsk2IzDDf>Z&ITYK2RI=SxjF3d*^%h zN5r?gi~Xy^va-vLms|Neexk>#o$yEQ4`)K*)O+5HMkP$p^kdh&;>k{_&2s^_Lyyaz z)%T10i;Uxk%i52#mc!PIttoDUvu^?6ssF4E=49$+2FUentnGC#8rp`YoyB~le9v>^LueCcLgpb)h zgWn!uj&B#jufls&4}E{zoa%gw+Mq)BdA~5f`n&hyY4DY1M28wDkSb}>M&P?o1Y`SU zGuKBggz?9v;A{5BQLWQf?fWM_cptA5J?YJbZzvzb9+xPO$jw~vhOYxA+|NgHPf%l= zw=WtWS~G5q8=Uu3GaoCxkBw0m(9NeuU< z-X)f<^5Dx-7~iL0f5CRXA8nuq(jE;6>kQ)*P(Lng{5pSJAt8VITf2vn{;}CJd0yP& zS6h$V`Jsf>a`vRrLzA*ojS(v{C!_GZr}4;-S0UW@9qA3tRO#JK8~mcjkmOXtKr;Mr z_1pW*#;+3pmt%na+tr0=i8l&PO;iRp<=>BRk~f(psP$d0x)09M{)L{qZr|6Fg;3`w zc+VXPz%&Q?%U=9@GQ{+raA9kR47&g8(8F#uLi)OfjN<#?2X5fP<1zm?`T@h9XBaOY z|0ixt@siuSkNuv(scRnu0yjMq0d_60Q=%nn^hh)#zYBggQ=G%>FOg;M5C#GoUpg;g zF1pAaow-lMM4mt8y=n4ZFVq^06V!ftUU+;U7(<=4?hY6?(70CGgG9U2H9>#37k}C| z6|SmbcLE?=s~CPPJoc3ajSM-M!kyq47|E~S!8{IM&^5UOPMM`J0I4jlTE2V6Hr0)n3II>u78UD|!L-f8sv9et8{Qx{Tzb!r~ag zNVfDO^?20r>Q8z%*dxF;_%M0ZAVlYF&eHg;*W^*dSC=xbu13u;OaqDPR9k6^MVe zx?);4hcboofA0E__V2lL5FYqGhtJ9j`|TK$Pwi8D*UtBMIB!vTcVeY&pBApG>bSSs z`tSZ%BzvPJwJRSm`sDY>dN#kW2G_}YTPtG$3Ba{J*t8`fTtir5@$vD=!75m7aoCT_ zyZXm|)TQKdR4m=n3p{`C5tp9cJ}&sCej_s}pashknOk+U^xl=|A4@WhFi3M-r*9jU;M-lx<8jNzNYC@e{$;p8lI_Pyek3-R1<#U1aBBrd99Ssv zdnd!~m#z__RsnyK^h%P1sUy!1NP*`{l30ORaL1?2|zD}J3xuvBMQya1Jw}S$77Q7Aq9;m5#-~qxv^YhsC6Q!dxrYQ z$}{HWiib0EC7r;5VIZD@-6t&G1$H+Fn%TY4E|2ClgNGp*L9H7>K`~=e6Mx1o>RSO} z?I}k~tJ^pfM0Lqh>bkK;Y~Sv_RCMIt8NDK zNRtaRQeUG&@mFb=s}>2*l&F$rN>oyBDx2sd-@lITtO4y!>%$TT4YFOj;W6dwIJZZN*cJ$657BTfwB4D}G~8Rq>)~4vcR4aCSgp(&O04F#-$B5mZUC zCF+w5Ce|Q|j=*BKr;_l)l}OU6f>L_#g>9mTxJ$W;u!_Y(;cl*f@&xzG z;yFj=MI(2H_wxQVztGBlF|>3`Sd(iY76%c`1T*=0N>oFo;E;?O#81*t_f?Cv=EW(n zn`6@osizdaHKfxAL!AQ*7*T5{BhOy^#I{3*c*hkg=a(HAfjYR|IJKIADKVnE6EzdP z#aQ8%tX+r0sw#6&MnPeDC%wN+gsY&js-&>ynY=IM+Tl$20_y8NWee#Id3#X<>8*(b z!p+B+ZU9w(c-!;I_|x;Xe?mHyjJU%eECIkzG!p#4M{j|Py%Zdq-9{rzz2<|b1|J7b zYe*?*L6$M7Qq!_zI4^OD4!&PCFx{j{m>to!wbTCW>#DM_i>tV#4fJ%)E%xgJKvuL1 z6)zUzU>b*t^RB|f80FKteDx4!&U8zYBUbv;PJ5=}!&zP)bJVqR3Hk3@haF$B&=U= zU;kjX3H*feeI}vl#!hpC0<{%iYBPlV%Y$PBF=3umv;{e3X8~z@=}JJ$))Ykxl~aud zY6fw#yl5w4Yd$@zMCj*gQkJZg#cRXgheP>HNH}Pk8%-orR?fx}B!icJeF30IC0`HC z5;?N`k8=(K@n_6=4YO^{5|PZ(LXUZ4o+O=J#cDC(!=al+K4`_C5O;72vCyn1XD}+P zuL<7H7A)5TlG*!QyJ^QF2Ou&(`9e4$_Qhle6j zg?{435l%=*K%E4tE_1`eKt6@G^|K4u)c1ecO{7%Mfkk<&qmjNrI;5%$U!%|X>AKmc zMu=Z_RqdH1jf~Iz3zkq73R%>c?x}P#B{b5Ni^RMLJ4SIa(Z_V@F$o3md40JUw~%fk zTE$S`>MGpDJ|>k@$i4|R(k!;@&Qv4f2XQxxMf|MMeLapz)39wun$aPQd7Z7p`*i|a z@*_F$+;If-F1XX~jR|YNbZ$|Xn;%*T)t2|G5^1|)dkM60Az!aQQ+Gstr<|c{plhsv zsZWhJ1HR`XQIX63@CD&t-0rYS3dSb-SR1mf9uXtmVf8D_lMaTLE(ZMqD1PE z9NG}*YJW5qH6PIt^aFLc0lu6sUOF~>-h5;MU2-L${^gs_y01WEU#NkQ=ms$q4$|)f z^kP2mAhg;TxL7`*u}TaYp%`GWxr_ny^Kj928Jd*^+QH-lX;w=z za$=I{2`m%-ZR@e7L{-Kv8`<%Ip>of?+9*Hhh{vM-$Q}gf^AFGO9A@8|+$?eJk1$5m zcCg~h{92R!FZe8a{V(*y)~umiOG77UWkX9lVVY+erNDswl+NO65_jFyVC^*-kWdzG z>le#^qo1QVwYB_I(#fDRz1O>R#CsS;KaREQ0oqS~sAGzHL^SM3nR~`w8+Or^a>=P_ z#9`Sq)^7ZQ0u6K_jfCs2437+21DK8lW*cRp#i*ZkbH#W|7h?+sn?!I*cG$kVS!6_` z*A!b=w0N-s_XEo-C{x=IM4Kb@Tji9HxClC%Kaa-{t}H<2RDtGLv2I%kGn%k$WJ(iB z^)X}z`vyzbf6&90mB&6#%TP$~ws<5^iT zat4ymRhwjcbe6Azcv*uqUTP!`t%ef$)}cf`_!bpr)F&QVf69 ze^$yoS{a}$fgw6or3)e8)|e5*3&DMojm$w&H=wuH6DA(yrlYKRfCV7am!~nV9vQB?^oT|K4C~=Iu*OITLB6 zqM^n_^mWu0%XTEig@TxBpG2zUepPo}PLCbk9_iuj^{?diH8dDV*Kt`NYKNHknZWWW zBg%Y?KH~ALBU<2{;>%SI6}8l@DB?!^d{rnrFkRa`1AJ+rZdPRXMw#`Vuzxg~NkwW@ zv*wNH!Tv0Q&qm`^uRvIdNi&D2c0GxI($xIIMa4hMBMEgIradl^b_qAMe(Q&fc!+Y$ zIkVeqiQ1^c5uLf59|mJ8-nO(@VJ6vSPk zrvIBariWfAB@$bRHwuGs+t=;}D zc(lI*IQzEU$c^z`xE;s+EQ!tjhS1~pHDhL8%s{AU`UGLHQj*fRJF|RXc{^Hz_bi)~ z9|MBtv{*iuvp+8&cs4(zR%^m+9;>qMa=&&0!K*7Qtp4NWGt3k8$?f3v$VEp1cHgyM zymdO{9|^-VV}zAHAR2~?=D#nE4*Z!k`zL$11jU4m&>58$K+Ky50id>Tn>*;9{r`PX zXHj3NiL~;$eC^bV+IA5esPo6=%Ba*g_dg0>bb$D5u08Gs0)J)FfAIO5=F0&W2*k{Q zEb$XjyCws44IzNYTO^XX0*W)z$bjy#S+*GiRq?=s3Ih;k_Q9Yx9|p|-$Mg51K&Ord zm4_wLOoi4P-x|GKVJ}=P`V|v|%|cN^SU*Ld6Z^5ff3nG*%`B&Pn~sD9o9bWzuH@ zpS*~CiVp}GT$idh{#BDRDJ-ca2>bhBL zttgG8U)E65a=}+KbVUBlA(%w+YHQjyZ*NC8z%hZ41wo^I~*_Mi`(pF%q{Udf1#}O+D8;sO?kEU^&0FYM8pxI2t(QTnDOQmiWC%DZvI03F^8er zXX-+Babt>p*~Xwr&R)C0mfW5Qf6OHLowb=Gz~-Uh6dIwsnng63KV|q~kE;K1_hqeN z^DMZWG;$5un4K%NM3LyvC*;b;H>mS9QcA}i#M9C$^JKYjs|(VaR$DDWMRH;xcC!5w zQD4(f=6ni;k&v>6j+f9UP0=VO!0TZR`{yWfFUkTHPGNh(3qh!0Ysbw2HE&(zH@n^i zqEPO`ws%Vy{3j=F(#}FE>g(2SUY>~f^yVw)J#cJ|{zYBaFXWXO2vL`UMENr~Lt|0P zQ{Fa`KG)f!`6$Ji(eY)BS^%{M*EHJB)ks4Z`VeN5N|y4%R<5$4|?2EHK{+E5u92v!wUD#f>05Is9&ILDjk}c&G|aol$Z~{SwSt*ds%ueKk$mk$sNolZtX<^SU#HgwqxR z!Bk^i4)FZH?qj>nXZ1T(9?0#tTtbBfWu$Y=T-f&a2>22hHLR+PuRf2YzBJ{t`nC2<&|jg2}8SI;B(iAF}V`>^mC6P z#ut9}E~C>`cmb7a#>$fTCV7;WYh4nGvQaZ@rGEG^w};c^4O z2iwyzkExlm$MKcp5Yvu}*>_Z`Ge};5!jX(SCVG52qq}AV$Y?THk}qtx33yBjRhH9b zrDjBbHu%?mj%ie-c(4J(0!Y|D(#B6EIm)YUZF1RjK88m>jeG~9p{jr5cZlvLD6V}b zDIGPj@}9j{L7a#rXu3a<`cP>078KII7mXYtsFS(ZCG!dM35Ag=UkRSlZ7YY%TEl#a zA{=QF_-h^59oClli=%WKS%4cuURA~FAj>*S)3{kSg=Y{=Xccx|e3)v$m8;=9tmhPx6{FYEm5Yv%X8J33RP3e` z>W+jXz7fM z0Wl{Q#6`IN{{$ZEY`|F#Pf(6G|6fG@_wsuE^CE&VHjxXEMBC|WME+Q zUf9Bx43vL}05d9Ro}8h7o&kyPDB(q0O6NWw`__Hr)`ob)z@rt=FpixXHJ zssu;20OdF@#P~^pHto5DyyjHvg;OQ`l+SEesGI?LJydFqSWNFRp!TU>w@LXNyEy zM3frBZa9cBk@c$S{zduJmTv)tQyy0tCpj2}$BR)YgqSwg#n}a;3tAEfLLi^4g4ktq zD8+9M-0vs}5vTA}FSnk2W+UEWS6WG;D8uSSsN1C3Q$e`YXum*pAMDXm&T&i2m<+;) zgkNWfU59HYLqtU?9nGqi4T;yNks+@MDKx@si^Iv1+;E1In+-nlLNpTBE+&<=PT>;% zQ>6!vXRj*y>=cL2o2MLBa_Y(MHrmv!0MI#v28MOGUQF*SoCmrAT?-;pGZ+1vG2u|N zAyn0*tYn$k6n~mEAi2p^t47a~#cRO0pUiae|mvlCfFh8P>AH zun!#^cy=}iPOU-)IR2 zWHJ-mjOmM%p&OsxTic!jT}f;Zz^T9|eu3gZC;w{$IRQwM7^vqTG%@;S6n1UZ&9J{R3E)tGb=25=#_lr97sOS^9kmZR;KVotGj71Hd4&c zZdR>QeuvrjJG_dYV-ACHyGiU4uXKSp0m}gy*e;_WH~ZUn4*6T>m^VFoIhN?FCr=`Q z7DOhGy49cZ^21!t0at54JLAZ<6hoV4u1c*GeN`ktf6#cwG2q@Rf0@0xBy(bh)V%9W zgieY*%X_sUE5CF!GElU_f`9%xL*He3QyVwX0|R8K}K{6xCFTP=&%iB8_t zZSPesElWTLi9NbbZ+hWad)Z6l=5v`Doo0+#rU3QtD%Qg>%gbVPeWhC5zl&HJR2)&! zSD@Bl6Usky!F~Xwiyv>M8j+n0&OJc7Nbyvuu{{?Q&zrJ&cB~MOp45G$P50`32>X62 zCoi02wS;fkl)I!gZcI+|z29>gSl=3wzWzrc3`7vlKmExJKEe9cD-OqEL(l4BU=F1X zLuf`kbZm{0@=I7QxRnufa=9Sfh6c0NXcjiue z%|QTWFy>^VcfeV_I-s6Fb?;;>h<5+qiWp8AYt-X6=c;rp&3#_1V+5XPuv4=7Wnq3k z?O*usOEWWBMbcT z$vJo|V#iC*ImW10=|YtpDTv-I&G@0HD4B%Q#y#Z|wr?--^%l@4VCC>GSyS8dD{_qH3%!82Fx+=~ znK5zwiE(uMfdA+fSl1XQq`;0w$?e2n3>c%@77g4Q<15upCMXmm+}HSfW08qeNTD2> zJh+01(X1-TNs-6D)v0LFTeVi}-EOA3Vhp>2nHV8(`MIKkS`<7$EECL8pa%RQBiZ-W zZzUwpxU3;f8$+g~MV8`gn;k2L7#!6g6Za4v_&7h`r$63-ZFq!aFq9ikPF)^G`q|5pzuW2RyLLDjViG>D; zr^x4*Hl4r1KS2>_b+3n6k)&IBrkl0+O_E8=X)ley+H!awX1nqHfN||}ZotM9>@!$L z!o1W#TnsO0Ec5y&b{w;VAP;_LG6~~f<**D)u}sWGoMeoDYV&VsKYVzWj0y{imtu6( zlTYmwJDMGf9=N2sbRM0h@ceVrpAi1E`wPU~0VMIW=(L2{|IdZ7`+=bFDRaYPhLq}Q(REN5<$xB* zC&&t_^yO$lVBA+UnR~THXdJ!5o?9haPz<{{SX!1Haj8WVa4wr*F}OGhXyx?XP<) zaD#4WHR_M}!D3uSi)j<%N)}(pCn060Z>kJ(lFWj3!vm251!Nc_bVxfKSY3_KtTK|D z4RM>Plko8t@RJ4p)*o13D+-oo#qt@t83pJNyxZYl?wfOZ{{Ty6>;9xzMR=NBr*;+m zZn(I``gS8(By%e^P#3@|d7wDp3rQrJtksXeyBS&A3yK5pcCT0ge=;Uwuy!6ah9x9JYkT1qOMwmW+##_@>C3mgf!L za{q9~3>zw6>6}P3*EX(uEh+kPZ&x`Fhr0=a!07S4BQg*e2@wPNOpLV^?4J@!e`*zR zGdy8KmuhTIG=xp=57_<*s)y_7d=(|+=-v&ENahwSSIo%u*c_wzbl`$g$jNs#Xvf4s zS+eV9=eLiKDJ9QbgQ_g(n@C?aaB9LlT+_~?u=C}u7cotK-Ws#w;2*?Bfdc+$h1O!M z=;u`ZMzY?}l&^k|S1>X!X&$|n=M+V6NC%1AL+)2bS>0?{W*C#U#bLN2dXk35@Bx zzT}fU*vct-%SkCAQ>A6z6Ri|0rQytKwmxUCQg)-KP>x@3LzlZVN#H>Y(YUs?(=HA?AG|b4%IA zne)4G?G%(|tw!spOc(V5F*mz8GyOjtvvmkCm6Ck&eHs+mlza_ z@~{^jxLL58+>IZMk()tPZf%{C&MwQJEfv)PderTAx0Iq$iW`)2I{MB9Weai==AzzA z03ZF)01TxL979GGE@74gUEqZQhyA1YKkal$sqq| zia%sVJ=^n-3%D{&3pJUQk)~b;Xw9lT)$NPv%8T)oSMw{jttiZn22`d zJWTWzCO|KcO?7`iKaBdQ!1cqEX8rQ=k`2*_WQedPfAVWn$LjZPmy}3cOD!~N^yTo% z#mkfn(0(dh+_IG=V|)}83g0SN@x+Wx&UJbGu@RCDer@=bPr(P~%C%qWs)1M`G}iNw zi)^3VXgd)r15QackA^nEt{LHV7`Brg_EnwT$6Gu3&RveKBvWBYcussp8DAPB{3~D} zX&X!Ehb#8PeH-h3!{$*8G`=y!&;ohig~ROSEK6WF9QrjSTWi?@Dbds(zR_$dD=pek z>p~Dc6AqI=iDydK@ffkcd%&NbhtZ2ac=!#JOcH#wvCN@{+;AmZ6tB(1tJ#;N=31eB zY@z9bOj-u2;sc6UaPN7UbK9eF$Yd8_Lf)jlhR;EVH=B*T1lk2(8Mu3aKiT4v%rB?7 zPZ1!O)`+8^=p=&?owEzb+Lr4_h*C+|_`!slNm^$gypKBl!!R>i+ySY#rwj7V3ZuJR zal2@S_geo4AAs0_At*2v%XTDrS~=%)vUcC1pmCYl&6B%Z8n3{DPW|zQSc5oBqgL== zG90ubXJF|7+79h=%6hP9W^ahBwkw8LkXXD|5cBN9>iweAdp>NcWVl!u_2gdlXwhe;R+17khSHkVnb%3!P7GK=0V;JgY{t{% zUBM8&4A|-aqmi==ifiq*bwY3n?(Xg$+#$HTyF(y2!GlZV?(XjH5(w_@?k?eWXYcdf zs#E9IJ^bqKT1~&*Yt_5P9P=3yA!W5^RW@t|sbQ@K%U6zc_Y{T)3;-TmgRqK6QYE#M z&2>khR3PD;bM1L_wO|e4P6hpm|}D1^n@uxp`+X=t~@c(pQEA zS*y3fbNA=n+Rx-{Ix?8DCS9y-O${M!D-pz)djlg=xSUOr!r_tEY95JzAf@&J=yYfB z&s(9?ewQ*M2#|+1{J+GhKZ}Wqc@Y;~krV#<79$?nBL-XlpzY{796NqC*oUyNWyEEL zYIcC%%yK-qr(-Nmnc0lqCB4QT_yn*`?V(-#=F$(<#LdY=qh_EOOZsH8G7aX>hKGAj zP7)u7e4~xZqKTwCJ7GVGfj%zEe?>t}anRGCqu;u=n2uZ*7Ze{VV@z}2?F6AvT>tj? z3wMZp!M1$H@KfB6>u-o#a~P?c^x~TuB$o}kU%AJCKy8$G)@drSy>NdiP_QVrTM1bP z43kPRd@A@{!O<2WG*WWwvq9N5JsoAD)l04Aw$jqXoZ6DNB!H8Uk-KGQu1Hs@q|FvW z${3*$Stvc1fhM@&G|B%Ixh%Y=d@UbB^APkyU##rzwxft{T)N7n(vKM>#qKtx3>tQNf{J)WM?wJ9_#ahy;Du%tPPD8wuB>lms@|05 zgyk0(DHvyDM2Smw4q`Xz8G(xB%+qd>1t?#NKLORx7r|{2kSy{B5gr>(eTg8e5+5i# z=02hjf*6i7pg7TZ$;530;TXpt2lR8yBN9mc=!0mEht+CRP)!E)|A0c+pMmX0|JDnj ztGa{*tXYAWFqq%Bp`XEVL)-N=0MJ_zfXlENzWf2wT^Jz26F$=~4l2{xfgeyx-1h>~ zT^c}()rC$D6&KXIn*-UZKjAMx?FD1M|AIm^5h<*CM@>HA^7U~XH8Q8JU3 zXK_6NH#&;Q($jC;gEePzcmhT?|V z_V>AUV87(1@-d@Cr0eGth7CTH`ui9jcvHTKi&+VH>)~?ST6A6FTQD>;}kt) z*|xZRr|{WoWgMkFAOn)#Fav~EfWbP;pl&<*AXlI38}&Ba@TNW7-?eB-p*xfx_v)HI z0$+VR&($Rk8e*wwU-wRbCy|&#(04rJY&)~oHg0|`ENEsoTlukICvuQKurO1lM->&|P2Btv z*I%|aPEJD6dI4z?<<`K%a4vN6>wIwV`22%y8V1SI%ToaELYIw!6W#?Mkl zM{8n2C{1Bfn|J5Am*sT+e07lPuxQC_=<5wJIf-H{Y{>CEPPExbnM{}Jj9%BB1DHp! z{kd3rkt*+wl-e#ulSjRsx93UWy`=T$KT;l0HcTEgUG&k;l%bhvK3Qo-V4M!4ozbpO zAlprK3bzH<08gG0LEq}g=sD|?i;wE8+@E}mGi%Eg=boktTQMv=$p3Z@)0&3@^NiQL zQ`+S7Z_nF*;r7F&Ky#xMzP>%wA#B~!4SQY1p||Rv4XnntVbXLZ#c5LAQ7CVfPE&IBN z*2oyy)!H19Wm(u8OsrbOwz9qb9}j^;@ij8D+7?L}4r$>OaIYwWaz*O}`;?n$Yhmv; zrP1|+0!-O^K_y8ZQ6;;lGZL@}JNx0ga-S@4M^*o7$paQ*IO%B@l&v|Yjv?fci#Wt0 zA6P@aHImJ`HYEVkZr(y(z5TnF;%RlGGjy#7jyT<9R{Qis%++*jo%^ zczb+0cn;cbK7?ILwbr>9yy-@oX1BGrT`3iPS)NB?&@DyvoUq!NUbe>e6Ivy@d#(#$ zby&HR41UGxkno>f)AKqyQSbaREP|?4gA*&EVoJj0v>r~$!%v2J`grKaQa^L+ez}xh zQ7W3V8Ps`h-PaXhu;FpHvIc9cd^mq7I8^bWt%=)g|?Gk`{zo9 zLW@3Opoy(dmaQnT*`e^9e5KLY-=5U|bZLJf=)D|hZx#1w;Vj3c#&Y6mj0|61Zorcn zIAQpcqQSq$)5I(1$xHgn7+&T{g~pvd@lsB}QhCpDOn8VQceBe6!65z37; ztLaSD$}`(&eDjW#$$}=wAn4Pb0$XQmqsQWRj`J0|%j8jLaq7kgpN_gXTsh_d^CfQ} zQx);;YK{fQ%C?rd2-4D5y2l)|`%iYp6o+U!%n9N0_Ole^nP;y`B`fC~K2 zk49oMVVSnyN^H8g*JoN582N7dP9m9x>C`Fns>_~YtR?enmhK!(+8e(Umd1}1V*THM zw|R>(*3>=x)T0O-x;S&1P%9V9ik7e$3DH>(br^CTbjxyes|?YTGZ9k9PfN> z8^awfUmqhkja;li*YXF1oXU-zRMNGjU29d}p2xl})wkj0l4J0EbQf1JFBPSM$SaH0 zaM@RO4WBP5m~LYfDH}zBZ4!oTDbX_=t5OPQ+El|O`#v3Xg}6z`;Bt6 zmPOv%Hj%rB)0Kmb;cnKb^&_CMT|*(UlCI0G;e}Q!wf0mc(RJ6s)AK)Hv5ULrz=lvq z%ZuKAG%CvOVIGCP4!9J3yQe*L*jA$haTf)&UMD*k%B^ubJIzoh>gG0Vh4i$ijIR^1 zy$Hc%H5N;~N?Qr0`qwCMiY*%OWvjlx!gncdBvy$gl{{ESQ|t7ro^q5fZHGEJ^YP!3~O zgb#e2#`xkS$#^3N1<&2=c2AL5oIGh%n-9H2SVXy0C$SmGnCLgnVk@R0dU7 zrAf!%LMT@Iz*{dxLjD|KQMQt6A{|1>SYu+Ntbn2=a9iY|boLt-+V2BhO_;6ITJH2? z4{O$8Zdu2^jlJGdm}pAQ4;Mc2=PfXM_f2tW{6F$`Y1d)4LTs>EQ%Ryk4)|0 zOO5fWF-HdQ1vxgL{G@!o{dNEpra)J1aYSHfRRkE)09tP@x$=yzQOH~%e=g(I=@*~L z|MKuxHFwMb;aZokz~}~#VP7LCx=|h6Ux|3zfWXjh)MYCN0fdq35y1AM5D+O>_Ghb! zfvVF13n(r>2jC=uY}rO&bEy2E<3O06fxOHqQ-VWEQ?MWnAm$DNHu`hyp%5(&mUD)Q z3glD;QtYh?+V~MeGCV{>Ns~Eq(=TW?OrVI}-*)eBkaGKCG9nP&HQ9{%+n9s5A%#gS zn(yL#o)j-ig!QnGHM+$C%O2?dfVx7)-YBZo!Q0gb&qQaNR!Iovm{OV)jl$rCJ$;yl z&>cZQ7>Z%_lH{19Ps3s58~IZPGFKxs9v4NT)RZzdD>lkd`Kmc_ep*Qa(fXGb)?lia%zD0xK)n$PVhL%N@+@w#RdN7EL)}Qum}2X<9Xo%c4L=yM$}{`);Bof zVAFnJCmN7IE-L9>YI-#JmUolb!T;GPjcl1m@+1GfD6xV-DByHCT{RjGa~z0Hi*6@- zG^>$_Vah`a{U(|KSnLM@VFac8bJ;yUl|Sjjc?;Zq&?F^;)$u4Fb)4KKX`60^78Lan zmzrWR`)te6X=Gbd)e$_>OKxik>NDWIbj8zeF5*+?i1<@7$Rqg4e~-4xin7!lw z0NQ`^EmE+L>k5ee*K-B&`lRNY6GljBxco}6pN$`L+Z=KTu-suz7&w^@C89$NQ8Orv zd7v3u9F3zgcjS!=3nNnxvENAJ2xR1bZyG=C4GfX3(-yICdzzXDz3=8wNNTQLxNM@1 z@=LdV2vWh#5}k|;pBGxR5o5IG0j<|Jr^ocgJ$NcJMoWcsXwki%{hp<4d_^s?AqB3I!T=fHu)mi{6!K#l{o*{s! zhRy3%HX7(eN)@ZEX1Y`no*bOHRil$e6Gbx9Y)FJ{eXfi8_B~nGMLEI@a)rlk@uqYu zUe$b5G?7UxpQ|l~9QE2nylUE^bmAI{M+Po@Tuq5=`)=yM&Wj_D3RijroCOE}OLz-) z99itVpfm}2uXQ_%sHieExd{6eHrr>TRX|{A@}p$RBN}pXx}=n5Pj7scZgC=Fut&Aj zeF;wkljf0G7BmrHG+UyqZ#N%#L0p}Qz)4j_YrRU~>1Qo&z zy!Pj)?@$ewUhMTlb0&=nUcbm}yALul86m~MHjlJZ_DdKFvPBg{l1(_o?^wz2+g^wa zSr5Z6DnE&9BTqeRzzp>qWAA$;3eNlorlT|0*L%bH(-3Om!b}3IeFIb`;To*gXGl8u z1FG>D<6{$!5Vv}Ug zJiW+1IrL);AsZMYS)r}ppc}defH zHdnS8CQyFrY2&1g`jw1cM-&QkQ0L>5NQDTHBQ@OiY^CrQZL4B6e zzwkoGR1hnEF_5Pea5`D4jmxv8=1!#>>Yt5{CYT_>f{(=gs+E`$%GL9Zh8T=>G~Dtv znJkK#sV~TPF0zEyrz>%=9Tr(%fJdJ+xOYUt5b5BY-@0OUAMT?~PF_0>G^L0jaCIq+ z+x94!PJ>P1CzoGTH00WF^BF}bof81l&66l7lkmbWL3rCWeTY>f$zVn}N+@Ny#M)v}skp6F zz!?ZG1dSua##SF242ibOiLoZtiwo?cIu{)aH^rK(s|!&_N}v*?Y89ssM)Ijj(goNO zy7PH(dWfDD(tS^rK_ky2u5Isv+9*%zhAvXuB(+inxYjNx0qT6dIQxv2trz(y`P0eF zI4I)KAXVU5&k1JX|ACDzj{{E<`)cQ2ZFaj|z<{9Lh3Gx=L&nAWajVu}H1m zL%#O={zn?hI9Qt^d)iPjDk~Igc|EBE=Sd-p3hgIW zwPHlMc$QX>d?W?6bWS6G-Z#5@ycI#8(UavW9~_)zFvb486q^EP6?g#5m=0C00_C_# z)W6xYu$v>tF{|7WIDG17{fG}AFbP4k03abtGS5WxP=g@dPLhcgFhfh6JFv2&DiFAl zR;7rfSRI9`P_q=;^;RcoU@Mj_8{rHwDZr3NH+t{@dg%<+JQ%6)hit+Vnbo97IoBYw zHZ{+B){mc@<%i&+%B1#ifV8@vxFU-E7lZMJ&+=lNyCV?P~Y+o$aW`mL)Kg)X=b;(lbgQzL`T0P{8^7rL6@2lpwI7J|y|N@2 zw?=MJKPcE)Y7Q14LeVLEKk;jTKe*rw-+-_pe@Tl^4;Eo+#+>JG{?tvu0$Ehx$GCDR zQjzvyk09m!itZEe9Y-U+_trR<5d zc2-W_v9HqdGJRbm@Y<)r#h6x#r4>~{)ZhK_E+ze)z?0b}VRQ;hPk<@F)H6vb^Sz4| z+RHXcsj?}0o?qe&=+gQt!B&RN5<_V?k;7eJKT~-B(}r$w{iRAJe-+8M6lAqqu`KUG zZr?K*Ko|ve=|tP+k<>fXy@tADpdhS!C+G}GruOhz~S-q-R z&sg;SZ%WjUJ#d72??f9d|8h;gAl02bM>po!?K|Jbk`~n8>M$nAp%~!Zk$}2=!CF<| z*=?5%HS3sfLR76<{G^t@4xjz$Vn!gWVxEEupx>dNeq%?Xpe_R(bETMOH={)bQ#Q~w zWutDqGROe4mGGgGaUbKjG1AZmn$&>`{PSTberY5IhSHQ)@%Jz#$5O(Ny*3QLlIIYy z2$%Mu@vP;`$7@V)K%Hi2pry(K7SjR)a&|!z9xD10twE7yQlRB~3N5(*|Kpmf%|nC! zTj&Ispw>9c!pEmKY4CAzu5Wbs8!{w-j_2XvO}B}@=~V-fS;U}@I+=sc-?$&hlD_9c zw1EI&3MjxQB47(Y1|(sq(5OA9ZGqYw0XzUVq#ss(j($ii(K55W*OXtuXCPF9Kt(9qaALsOfdWH6*D+1QJ&@WujDp zBs{0c7oXsh0E8TENn?bC#FB;m&F5OkssA1J4*d^$Cp%h+L4I1TZdIz zs>wW#%hG*_c0@hLYtpSP^+8myQdi2qRPaQaLyk0}`V|D@S-08bj?B^+;h3J7FkkR! z7OLsd_X#H9-$VBBSX)6r8J0@SYuNQ?LD&1=UjJ8VJRCxgLcWn& z%h9`&Sx60!?i8cVoLh5mYuP%K zenh7G@r096mB|{FZuo75+u017eWn&+G+f(DOsMiSVMg)z;Ys(?!UWyeDgTo}d3m67 zb6kth`$I(%Z>T6+n1jK`tjQj8`8`1ta_b#Zh&8NxauY_Hji~s*^{wEc+_8(&`kd*d z%U4atkt2G8WKo?)ddFK8&wf@I7a94PNFQU!M3JndZ?slfnA9zPw3VtTkd8Ye&Wy35 z7KCec#<@<~7&-q`5~I0nai6qoo1OcD>PYo|oseLC*YtZJ3BzKV z<7r=yq-1TlqHanQAQS*UCS`6ld^J2yclvm*x7Tv|A4UFnPKqKOzQhP6UjF6@As9;> zq4>makMy~&xmdEmY)O_m72D>b*{~{GP!?)VCS@2!@)5EQjtrd=#hoQj-L^Kdpf)e` z{p3hsWYLuEOMHmDd8}ltOKu`~K+uAlsYPL};>#wh1zvwMDU2%f6@cZcWMG^f8~&Oj+!hmY7DUXA^GsGui(vk5KASV5ZWKY|FnZ`!5D=tx4|-hN9gYy77Y3G(-SHcs{nOMqUMkVX_H%9Rbou=2c0yv0}o zz?Q_&Fh{5jBLpKYc|#7;9#Ef}B3X$9CmB=Z*3t!q+5>w~yYCK&!N~d2Q8SFIp640U znY=C3o{N2ej|S?mf~?w!pD}12C*mu)_}caMBG(6L4qYPNj$1ZylM!w=;PV^H6fz2*iK?oiJO7<+0rrt#inGQ5Ix_r4*1 zF7YomT4V5oZ)P~t0E=ssjFn#`2vDDDo7gnt*sRhq`KY}y;YaQFDiOTVe=EwOqSXb6 zYH)fusK-z9)L5$Z*k2l$aMKLE_nUkOIUUB{cNRu2j_Zf*Sh$!f(UJ$bPhv}>NnOTv$y76(r4OiX~QHv=9L6~oE`>D*Fzi7hRn!8k|k`Z`hkM-2zi1`0)| z;oYe3Rfr?9Rhlk*A}gnx0P$TMax;N_>!Pgf&iC}0-*35;C8f!rB!r7nhRMz?%`R7C z3PXzt!ggrLUnt%#r(3z@C=vahfpj}DiaSK)6nMt`hdQ^r)ExG-%h0UC-3pFm8wNCe z5~DEv<~LXU0%|*oVUj2dCI6a3T16y{rkrUA9m2^3-lW#AUoCl4FMWHR(Px@#isJk4 z&$?JvkJwTsW!Yg7;SYN_Pso{;tZn%DdtuSXbucbwZUBY*)sH%{Tsp&-bIi z)L{u*F>T}JC^T;7MrJpbO-W{5C8G*x zsaGpZfY|2B1)2rawYp5E1&S_0bMRvl=7dVjPqSkU#8425sAS|>f|DoxlxS5KsCDAb zH84I_-p;XRxCyVmFBl~<0d|K3#a|+m^TYXMlwbXz_l7KN5yypvb_BEVlzFHE(VA)$ z!jD$#g)N`@J}XLFQ+q8py`!~0IBQmmyU9!=O&=vIVPp*+I4re?2t&6kn2)H0FxBl|^$kt4IZu^jlDo8r1s1>VC942K20CE!#z>&XO=%nRzr+NE;K zQXI8@8(x?TNvp)Yt~$LA+UXVb4Pj^r;C^O_L?vIV*`-LSrJuq)DyEHiI{M)r+}VU{ zsa0CjiY`3KNuR`=;LWXC3wXc>-pp|2rU%$Mx5RQc#Dr%3RcxDPD6966*D_bHiPuiL zEfoKB-@>MAzI!_``&x9Ny9R&TYrAsjBZtyQ`~<2TERC%EFn%o?Fr?+56r%}q%aA^? zyxi&go36qJOhxvbM&`1w<$n+uUnm?m_0A6}RIx7%B%QV3;CG)vYzOpnj9(uOMWP3X z;CKr_LbfvT8;|c>Z$aD4d<{lVzBQ%HEkFBuAZA*<70UTF?vtHPj*Hka!Nbh=yxD@f zzsZS+&JT4CRmwPr|@TKi16PDVDfLhQ%PEzVuSUh;NP@AyuC@z#Z4 z3G1x9`#4?8Eu+{~gs=E);54xId!@dQniD6S_NBX+2@6V3UL~Wr4Zu9adUOty03N96 zx774)?>M!(Y4{J#n|(PT_xYr|sHTx7Ne)o-{m2Y$jORqcV@A5Zkl{^harUEa(9$rx zyCunsN-zdm*G3!*HLPket$v*6=Y9Mkoc}5}g8!BqyPGrPsP!;6phriHi%0Z~A6x zwB;1$HYl9b?J|HY0$F4SNtq^72{@np0AZ z2&_C_KJ+gEA5X3WI{^(3PlhMJ`ow?`c+~yJkUCIEssqHTT-@}{gQ6Gw(5IS4#A?w9~?H9+2 z+NyC##M%NHplGp0j`v6yl^a+SU;z}vAET>u;4VNDUCf9;u6pY4|G4UbaJoQOU9z%b zILx9ul2tce;%PgXH40txO)HFk3%-O{)nh5qNQ@oNNO`%()M|#1mV8{s=o3ePVx!oi z(_jtRN~|@p&?uLA>$fNIRh_WiTA~7%%^HN5jDlK><{oGzpo%m}fhQ5z>wL2SQzo;z7E$th zbvDM8$5=CgD{*RT+Re+~g@jRt9w6Y%v{gs^MN_^8D zWZjuzb0)RghE3F9Z>{M`9(e-=0)&MB&WT!Vj1Lr$;hun4^h8&T>cK`l7ia)5RSFxe zD6@*H+1bRR)DxjqB*gcIZg$G^hnLpD1&HX1sTOVCOi9GPr8XXh-7j>dK(F>*c9gd} zY1WWYGlmk%kK3&VYf8)?{;WQQ--Ik7731rWWNfBd2&3#I4gva^g#RUCJtH0&U?%Aq zTXqkAWo004O;fq2lbxr2=8{@)_^78y35ttYz=0p%^s8vefbxS(MKol@jUB0XzWoRl z(0j*cTB1#0m(6RJk6@Eu_BYD~l@tjr;Rf&A4*A+8jIp$mg6y*xq@6`t8vx>c5wy++{jC=2=0amS93HpQ8siDVw(&7Lb(5> zU&FxuraWXprf#0L#zKLc5-3$T<|zo&hr{rS25*?NIghKh@H1`e7NTB!z75=*p(Eng zS`oRwji_9W8KTaQ43x?CRMDMx(2l27dYaYrh1G^Lm*H z|5^xm1i}zxm=secAD)sF)Gc__`MQAPPr9dw6tXDQOu{RZeum!Y>0Dr>ZV0U+KvxC# z8|=N4g}l&34bhglJ^hkLrZ%u5(Le!5^c+yA#N9#XWorp5e9a@S6qkqni5|=H93)P8 z$|#Q#__bjI$g1)nhrI<|n%baKsG=?G*Smew4vumCaM0gB=uXNIYjE0myuK%UX%0Fa zKxZG29G^?%0S;qClQ93m$zA{fGoV?77wI0;jOuQO!6YcnPma_>a$PT<&VF+6^T5=w zveUXaZQs{kY2hy+CY^?cfsfgKdPP)Kg#lOoy5Aayn>IUEp;ZbfBFE*Hv{yjW@i3 zyYl4eFSY6=2ZU9Epwv)H6iz&tCFi_2wc371-UUj7e)u2IvtmXxt%gv=g+M9d&jUji z2Ls+A=Ot{7`;2FHtyW(xuVlb`n%iJZJStC8zdML_)%#)ZK;;VXF_516=E91$rvJn5~N`R_7^^u~647|vABkww|> zIP3jDKZW!>4P-&x-3VmLZHUoy`q2`es;iQ@95u47C)Q&Kv_vh9TLMt<+L7!5iXGLsa0A7#S zGx$FNcnWvre{ShLo}85?geEI|=fSK37>S4?6fCl$r`=9YMM`oj(ZAarb)41)znozw z-}c!JE7mLheE)ly{slc-C_tbm(DzFi9wT`OPzn~;cD$GWwQ4H*8u~Li17TvF{nbQ0 zm0h+_KdzxDdt|W5WT)=E-(QnEt?)zrGOS5_PL>9MaLGa-Y-QILbnU_adtcU<%E;6> zcf;YbLjO(MRP?G_P?*-~b+GbG2X#OjqdZTLpcVdgHGxxoZHeD|1a|;5%0VFl=$6-P zgZ&+`8X?F73J}Vf2Y`ld`F#TQ%?*Z|KY-9qR1n(f%<*^J3l|gc3DnOBIN(PAzkkdB zkc-dWHJ5;g2L5}XX@>BTK#rh^b?_dB_$MVM LCt4|N;QxOBSw{PA literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/04-probabilidade/img/pi.png" "b/1-analise-explorat\303\263ria-basica/04-probabilidade/img/pi.png" new file mode 100755 index 0000000000000000000000000000000000000000..234a78ce186d9978a3cb08b9bbe8dfda65c80557 GIT binary patch literal 90873 zcmZU31CVAhv*?&RwyoW6n{bO=l2noqc2ni9&JJ^|8SepO= zsRt)(Kq{k3HD0Apby6FQaU5qkPAfPl29ZHYnT`=E2qTGrlfnEX1}R7b5)c-kCnly0 zKoS8%>kcC(K84HMe*g2G^*nvKF-6acpzIeQMTsOM#GnqfAdY<`nHDMy!>$tBSsK{+8TGanX+<$jcm{v47-}W z6!#64fhr+&9CYl*ajSlt0Q zRgh3_Iz-b3?0l_)rT#H8+l!lOsn=x=i*a38!=YeoSK?v}FVH`d~#XjbUA6$Yc_ECU=`>*otOD}r{@`DKKeF<&3 zO$6GUcSE0(4D@kQI>IiQMI_F>IamrWo zLpj4aV=aYtbcB3gM7N%M?mt^kpT7kWIhcR55InAAS*b>z}PB!`f090BSN5y9J87jwuY1T?|JSwI;+ zCqlD;&Me*u5i?A8$hJ`9tQ;mdQ=c_GA2sl=0nIuFYuL^KUVD06(9%8*dthxCwZUk6 z*iG<1fdqp_H)3w^;PRxXkdl~WvGaoI1+4j93LElH%AA%66__f~oROAd+&n?pLNbNu zv+B&hG@)o>FVucD;cx=s1%`Csw;9kK*XTQG_A3`HkAe~8+U>Xy1b^(E^iS(rFHu1P|c6q_nhS&~z%L&if! zQ$LUXH+>qTwLzE}r9S(xeYQc;?yq#|6hfT%?lHgthy%|n#4Fh=B+0KrkU|zCLL&$x za3k1#!hJJxkVN)Gh6U9U)DpvzNNI$$l62@v6FB{?e$B!43C{iylSJc2Q&^J;Gp@nq z8P-8r12rR8GdaUr{oZlj5&yloow_5a#s^goiv=4D zn+)>^H3fAKtpz;_OMr2Op^F-i3P2e{w?K9$l0;oX-Xix9Z_;uSm6o5>weDQCs4v|E z1JK+e-Xh;>?cF0MAmbxpZSB#cN}NrXzMNh192 zV?1LdVnky^FgDPD)5x$cz7XPw%4*Rr(r(^Faffg>dIfu3xT{5DN4-F8K+{Cy{S`sw z@e5zMtGKP8s0Ou0x$r?cy}-IKt9rAByOOvNIZrYFPCU8FGCw2VL*p?rqe?SQGkHCX zv$CW6jrP&@(F9Hgu46ce!zV+GIoG`2g2VE1siQi2j&*K&_G(slc5XI&p*`uoC%0XqeYn%Pld0VfQ0toe zOn*=LfO)U{AbsC;JiIS*-*FLr@A6#pn6qKs^Lld>PIIQ^(E8(D{EhT=b8Wnl#p_%} zk6f?fT7)kuH&ie153(~#a|Y+J-KFo4FL@tx9_fxzp2ALk-?PA*K(IjK#zQNbZ6?ez z0xgUWfgz?ME~5-naq>b>kY+GGTsFc6s>@GnmQ9i_DiDHQj5&0P@E?&E;mBc<5gwQ{ zIN3Nn=!Gbb?4}{MQnk^+hTevBqxD1*E_z+cAJZ=@&=AmQ(0s^SD0JlYq$1>xWD}&v zWO60yMOo4!r4U6fb{N|^&7aO0fc0A^$}PTbE+J+T3M1kL#zxx6G_(|FJ}s(F`u7d^ zSiDP)4~}$>eJ&c;oN1HE;$z;m;?DCE+XvhAt1s@Qu7<8;9)HiPqhE&@$8?u)tDdg8 zcRlmomEapNZ_id2wVZxDi0=9?dAt1`f++(@1GmKQ1t~&;p-;GPF00Qs*@n$~g=9ks zFA4REo%0hWh9;2XDdR%p1Zru@%y_$839iOHjCBrm<7HP5tSEe&#uT^j+|<>#oC#j_}<^N zWq8})bGo8PkrU&U^6q&^ozwGX%3(s$JJC}$d-gf}@;J*}Z@uCeZBP9}(nB|W{o4Oo zXe(f~yDS%*n;01`)mA)ja(eiLwvl{XiBwrRr_AZhgT_yU&}D-I)L05c=n34%2?PYV z7qxk+%#S+&)jcL7!HULDutM|q2?KE#bf*6y*0*0qxJb=OP#A9gB9Ws& z#D7~bUl37aS+%b4h#$R@0lWT#le>e_L-WlP0zPD0lxPH+yuD=D)cNQV-IXR+Q$}NE zqu?^_@)ehqjf(4xJ)K>vlf8|zv%THZ&CSEZ-QCmE?rD4Pa=&|NVP$J3-SXNFNguHc zpR`eiK8*zoqe1)~_l@&H;f3ZvIVYwfY8xX_x^x746fo)?b1g|J5hd9mfi9yf>z=UQ z0mA<}~uGRF*xK$TlY}Ae|Vo4rk&)J^=U zPOx4v+@ahuU9;UI_zfvqGW%y_p}?qQY;2Z(Ed%eV5{~=NV%pX(eWBsg#Aq3__33SM zZ0_gNfSchHDNvgE>fKbS4b61|?eq)v(}T7WudVLNI?syHiq^fOzX7V<%;xYm%5`HG z!79N!p;zB!{!v~ZBEWoi?q&ada3!ZH)+tKYbN#XE-hCl5kZw>fJqi#z)r0T0z^eP) zVz}4WnVmSMgmnGMyXvc)T_WxK;dJjfrPt1suZL^8)Dz*Am~;QS{VHU!J3FH$wK0#C>K!Z&h%SMQlcZUW#0^qHP+`_N4P!dQOku8!;A9KaK$?yfzSQqM;+k9;c|qL& zM~*Rus2sWPkz0zFB;GmD1_Hc;U(n( z>1iCX;EiO<4s(_x9s{OBEi*L>Us*zrCB&n+rRruCk%g81nN?h=kR$t%$Bwld+Zb#F zTM5S~olB!Dn{qMZlApWZ#CgB!$jzTy>h#|cMX+HntxopqQf}tM4#a0Dqs=8B-qWle z3Re5rAKj!s><7k%UP$kaTMllMV9V1t@aA9Ud5c=jE+&3VIZU$(xr9v1Mr#-AG;|K% zgFV|HD?KGVVc4?7Qd>Cf+2f8B`q3ATuqFG0B_={Bm?NNw5$~LZ-EilLeLV*86*e>HM zsS%bE(Y;TKpd`n+L<{=U1}+^3MjI9PT^G8S^4BE@S%6t^M=(LSbeIovCR(mQLkUv3 z?P($-mvQ$Y>LJmqKrr^OFd2>s(V=^?&yr@dlQSC}hm5+T@OhL=OH5}?)K$Z_-xqYC zun-Q3Kq1FIZ(?G}sp-`b3_51yaY|~{lluFb`D%jo=taimJ+4=rxIX~b+0tp+2>?KI z{k(G7=-womR9cBVc$|EHI7*^X<;CT-Yt4C{x@jzSP#pc7fhYpg1gi(**-*v7MJbRH zT6hzZ8u%C}9_$s?j+u;V2qPDM9=<5v7}_)P+;7;2+rvQ7L@`Q4P1vSbDS9cnE8<<( zjWbP#FLgC7GSf7N^f42$ovsPnx^jo`B)uDZb@a@=?o^nq`=0f$3Jec^ zC^!)k*ObRqLRP}oLD!J2yy4nYv`{i}T|8F5yB$B zbqo9)Iw%AjdlcdtdlQx8Zu;Q$Vse!BiIdt2xjog($Gr7E?Cj$-^^MazSItrd0YpIq zWX}iY2dh|~Lk+~=1>es10Ax=Jx>EtCf5ix-6AdwoUe5O%3Pdk@6@!-t@jyHW8aaeu zMfqbLl7*;wn=K7xIoNv_&mM0R!B^xqFG_)^3{?E{6GBGNDzE&+`-Js@Gz8BmCS0td z28kMU88b7CCo+2=e8&r*(w6Fmyxf8#xD9I>qMGE6fY59BmhAZvTuyc;mD?`cY(n%$u7!X*mk4MvRSfe=k9Vle$RU} zv6H&*ODj)kPToenNSj4$NEm_SP3R)bEiI^*K>R9DA=aTuuEi=oEvu^~AfTWy#=j;* zrtJ)ge3!`*!rW_hf3AK;ezJ7l%Xq+gM^DS-ZbEK?ZwFY280B0&s5j>lWj@ADb*!=5a_83OhV6P|O>AX!HI|y zblG0Ol<@#u#Ja@>jSR_+Wl>3%lW%m-GtO@?LTeDMJv%bHs9qbcXXmh`+jX&-={feV z0*?g32OqnahSw7H^r)Y)}M93WELIlh`ZIr_17J^?P=U0M4~9U_P2xtPhn} z5&f12oIlzVUPA$IGsVRzXn!7Gh#;&5eo#W-?Z5?vq7tf6f>((C{G_92vjz$658XY# z5i2rf6R}N{R3@-QqKVuNpyhYXKc;8I{8@r}k0>>uY3OR`X|J9IXUk^`Mi&x0{EYkp z6&_?zzCb6i;b z*4s2wuJiW2_iq<$EI1nsGV~Y|PZxL%CwUn!tJpPq8?}{YqJt1p8>a6xjJzjTpz0tAhIhq4^WqY2rz1uqLO>~#5z83lp_n!)+7FxlF@dHkpr@dC&gX>j z0Wk#HD0FOeb1V< zpuSKd5UZbiU@ts5`cX!Us}l(_gT%hVe$LT*Uw6migr)Vh3t>xb&~CYxSf2Gnx=vc$ zrc7AfJIK&jtI1?i+*+8MHJ@{g{Z++M5u3G}Fp;LxI#hf*U3*LC`5xphzq=H+1-B2s ziV~UKsSQ&tL7h|MN{2!DRO9hd-P>6n?&=_C{n|O_ajJ9;dw==|n?-JAhhICUyG7G* zLvyuEd3V0hh2=2I$hn0Mfvwxa!=`e(^9TH)?R59+`|hV5q!)e+ygRoCF<6iSe=EJQ&^qi|i;`5(KAMqDAZ;!*qJ3Uq=UA-<-yq+^}lSJ z+*hIR(MiE&x$zmJ$e`i0;W@Iz;)ddKlc~e(iC9%(HS=F)s-~(-s)?$#Rj+(5nHA%2 zkH8FRKz{D+9d9ZiK-xq=6Od|Z7?o;jsd9uOBaT2dp>`kFjXo>%p!P+sa9h&u-4EB_ zdS8%RaKHES2ArS%UMgf;D62cE%Sdw?+1bz<7~2_|(7M^!|Gi-V0^)Y#{9Cm#aWWuu zv$3{yCls=CFd<~2Wu~Pk=7k|7B;FNH5_g_-(e^5?&3pW#Mbzut|6I;i>WAHMua&Z5r|Nn>iedbpNAzUKpQEkyaoeejo{90cAJfi|!RyZM6=Hr%G+{ z;4DW%{s16x#7R_%VO!_t%br%djCLj~)96%!u9TGwNWN7$pBn;(7J{sioZHo&XW7yX zMJY>(q#b$8P}dqu0LN-7}@}I_ThX# zA>dFDc<>f7@Xd{eCD}qe79${qPW`95GkC=%{}nsw1sJAN;$KJKy$|Bd%+8w7<1 z|A$>2LAB@i!s+EMJ^e3$J^$wJe|X};SR28(wE{M>OMGErhH_kJ;bgXMRR}wPUO@aN zLVs7_FkDik2DLlY!}Iyp1Sy;i%>V3Z9&ETek?F@G=G~&Kp>=~LpV$vLSh~{h|K1SQnf`}3k(=cqctOZu>_>wGxLFg z<05_&m3@J3F6^8@^lh&~;YCROBp(u`{3%B_3^;u9-n={+`51uNt5hg@^L9Hv0A5VS z0ItU@Il`FZ*$fRi>MpDK<4-^QxE-pKMu69U`ziB#;x;gqlz&qMsMQz-bPIq%=COTk z0k^R#Z8q_D-TY<#DIP^YH+f3zCWGsT?j0}zN6IRNbo9O4>b{8QH`KI_jo9}r{hgy@ z9JZ5@mnptf!o0h#lQSCAy_9-bRbE#ML?Oz=$@$3u|1+ZGz2M83mJQ`^m_9jprpG(t z)>jSG78S-42A4ryv^}nwUHKhw#XjI$4DpL&_sXfhs!O={Hlix#0oGInQLQjhwcU~! zA->DhFVAGPYT>;$mvh<@DvN6ii-B7q&$v{)q16*=$$O=E$x{y>vXOgL=p$Qc8M>XT zM_Ou`Xd^KZqM1L@A$aaph?rRTp?o`Hs-_Si$o;uMtGChBhZb_|@hbl@SAS<1cETRn zNSof2AL~yY-BF10;ETGzR4PPFut?I<)5Mri#7XG^{QL{i2`T=??NAW!5b>$W!GT#- zRdg~eC>g;j8m5X$$38msNjVws79aB>bIFAJadbn2|2J@XFMkl87oH1)zPI zmK@)Ff1ELGwmV|*2Hb93cLfhZK0E9s5J~~O007`!aZC;Flz2(Ml}BN99Aof3{N+?M zn7sNP>`$Y8xAy}gT-!G^*~X;$=iGBe_3sh7-B zq1555{sGVytXMEMUW+}`UkaON*oESFMLXxB9=gEWKIcH>C8>bJ5uVMqh46|7VrDfA z`Os{^jT^suRt?>h4_b}QggWpJylkDMCi@Spx-eYAX>8O^Iya=MuO)o+7r*Z8HRkr|)mXAGF9xJP4N9#SjYWNueQUhQ>v1 zyN_kg=w2IEB`Wjfr0cCnv@1DTzbrpJkfROc&maXqO0bjIvu^_2*ku z-4ohHVJJB{0fP{ZmFO|z$ZBZ|$mi1o`F#iyz>q_};%9uj+p#-SA@@~<=wT?zPYHF$}9BXYsOXgXL$vy{1MK~XpHfzC|*+M7SxFdJt$S`*e@q(q|#VJz0&f8+EE25KPcTx zgo!SO*mJHBJFZC{m37gqt8%=|a0+f8zYw>!$gb2RRc*JJ*6gJ(hp(wYJEyK>vEphk z_+0PwAyxRJDU~qevWy4Q#s1g(eeIclR$mzl4UI&CZB|0FCls9=ra;1?dUAyv-&P{< z3jXP%)Y+a|B*K4)AuKKPLnjqcR`FC2tJ_xK3GPIIq-W)o+L;mHw5s|!HjvYyxY_MY z;QO-Aabdd_em6kq^QQaDvf>U9IREnT0g{1JF}K+U3da)sd+LYzHVRV3B-Jbql@}f> zxU*M4+9PU2?4Bk{s=N4(EeSOn&Cqc>=a#6>rEk#*VXrFpn33!vbcguLT@H3~n)9Vz zZ*a|geDhm#&A^1yByGhQ=a}XK#cwKja9x*wf;Ds#6-4;Qu{aUge{4=pLV&Gq?2IzmqcTpSoAp`z{ef8wJAS^8K6dszD8%WLGsYI5#xb}Wc|KC-LO zAF4-qlwG+LW}GGNi^1;`_`E~&eqIm*cflnOyZ<()9gV5L9m3=yJ9s9cA%g?Ib{yoFlv6F$V+S@_#pNgetI^cz3Z-43 zkRBFaE9j=Qvb2uIBeS z=Kb@L{$*N<#c-_3E~6Y=SfvB*OMVRfnLv_o;lR@-qUG4Q`4gVs^s+hZL4h>Rn3e`lq@G>Ca>KggX7h5{f+x^|*GSJww zt|-w9ieBPU6AZ_{MMZv(nx^GWxOqs9>q3fAaTg)PQW@q`E2@VUlVQv%xXRU%G*5_H zT(S@VFAIDVf`;B*=xIg}cQyT3IfH3vWITPk&fnmp(4@eKS~vHw1xE4~HdI)z6I0O5 z3ekfmbv$0>rj_QW=H^BK2k$>IT48+t24$&Wx zM!KsV72lK+&O9xrdfDVX2ssJbf95CT<&i-HeVnk7X@_R|S60QL&dsaxF<`>NF7TdFepk8qYX|!wefsVvr0Qo&r z*i;KvRf9oHYbtZ~@c}`zUR=x1_^jh~E0DD_+GQ1E6b0Tj4aAtN>T{=lztv#|U_?0@Q{|hpF>vCa74GhUb zBfIzR&p^j`mn-E8FRu@CH-)rRfo4VEv!C}C$M{E|BbdPe^qdE$wod_{Dv-rn$kR>X zi7dYvuNSbp^I+yWf(`D@996!?dY_EOqrc&q(%(?zSlZrm)$Y&8kME^t6cI>bHAEOIuJFOO|taT1{U22O306PpNavZegwcF zosXkfg`0!ok?Kc~=GcyogK25%yQBQMMCt4uvm4FQc8d_GhgVFu+Opn{EVf(M!lDXP zibCl>c;fsAKB$?M(F)sZaCJd^pI4c|-3jJ77$p$g;spUZ$Q_U454($?kq~ko;oJ{2 z5tfp)T1r+9(bI30;(zzh+!ZYqNHqgFW(O*PWuUfZSG?P{YNqPOYNjxM+?n%O>*VqP zLJyZmxt-Qr-GbuZGHoOi>KVL(<*$T_4R_^NH$;<;w40ej)i}>c1#r*1JaFd3?2O=NiL+%d?@Ieh3ifpr6Kq)45*J6>kth zcQ+)9vqn=6;Qq@1g@%ENVzkUv5E#Q{?xUWaE|{<*YISGFlcksYcP=zem<-|u0 zEMFNRphhDJ?d1l8k7MX0f;TE=#waEp{c~~moxAem#h+n%5Q=W*2DHIkl)&hLQ3o@p z#FBi{qk!GVufMYbrk=m!^C+=)7v8v_qyc8hL|N#tEl!dpVo|B#;QszQdG%+*I5+w&o3a^Y)+xEjZhRb&#&6Pb;O0uQ{)vKQ#hNC7uxiA-qJg=Yc?3Hz?9Oi0NN4H0mxs-t z9uVYnYs29S;R3ik^$70Zub3y-BbQog3|wgWHJhPbo7Bc881(e2@Z;lUjnD0;8G51X zAs%PLuXBXr9nb~a>Or?!tK=BK%NPPM0z4!vTgJGW(eCA`N8Ycyfcv%$v_n@rX#8Fr z=cQNmh&BaTw5XF4GkHe@CKzxY&XwSjk)Ml8OLw>k>lRB)y~zD1t5Bj4p7OfF@9xVC z%)I^^&sU6_wz#Q1?S{l`ro|RTivHP4Xsg2}w&*sVs}OVIcJtVY>I9q$BL(nktZ0{i z`XDl6xH93vd*J>ZTUi%9#@iuIUPhhti#eILGGV2fT0CkvB;LWclT@L36I#^vl{07e zgbN+Zk&Pj@nV2IdS_$;+$)oBmI8P3a_qvUo*}Iqs3ca@|fBr6ffRYTuayuT9@B$oB z-<=Mj+?W~JQ^#;ULjt}o)E+u;hkAHqRvRlr<|z#_;hf%;lKiKn6BOH+pV5$qDU&;2 z1>%}RlaMl`qlZ*??=@L>m(4=k;^q+U znKoBdl0%Xbo5A)_g9O)bIf_VlvgcU@7E zX%|s!Toyi4980;c&Z|#^iz8Z&z;frl%(vN%*Izn#qe1A}# zY9xV7V12QK6+{t6v_DYUz}v-3IFIjoqhaD)j2s*=*XX{590l`MQPUZun}&KmHSOtZ zfsUJ}3+my4E>;TD63of#o1s|=?;tmzBn1&xP96zO7V54tJ}jgsF5G7!W)*&Ih043o zG69L$`^yS`f|4Mg#E&T3n5dXEML-ucFe6xeL0OK^D%V;GVRwBc zH^tP_`MWEgS&hFKROctE0C;U~ls*cI+)Eow!xyBLo}JFurgXLXOVG`E%DYVwzPX90z`#fFBs z6{-hHtTQH||DaNAip5panhN&|!MVNEg(i>`58e*pfkP}I0aU5) zd)cq?FzV7+%M^kTv8_7OK$%7yH@m{uku;p=HtA$P@4!l+4IMTJ(ldlL+=1cop@>MP zM9NtwNfFn6mz)~XHUe1$$!FmRYtT}F@+dpYlTYP6R8u^9fae(qft<&-vwVkXa<-J0 zS%f$ARHSG$HO8)KJ#n;%ReE!~TkxzMd9JaPnU47GPEd{$HFSci)4;})i!2U?zQ$)A zocNPO>L;CLL(Q`Xq!lGkOjUk*(ea`xbhD`Ig?CRqu5QUoEyzk9btMCvlg}c`T5Sy~ zq_SKav>JVWo!d0$ntI3njY0I8{(6)@((%`AHm(AoBUL1_k7362Qu8fEcz86 zJ40e84o0T7;ma7P@04%jn>0#(X_tfe8E`Sullm#-&PXHNNG=x0N*WGDJ?L=@#E7Sh zzX-OqqCshvz%sBvd@-?3EtK`_S>=v@L7^=XD|~@%;>%7}OX>;KG1{q!%q2kGh5?k= zB(@j2`)v6=D?ku=_dblKDLAN@6m~Z^UvGSUemRE$J?Vh&Bc1KBNNN_W2UcKIICfn@ z;pGKH7k0xje%2uVSwW90U#WrvzOv}CZ70k|^3xEc7(rh0&dF~zERh{|9 zlwH`EL26psi7Dk%l}8;>#=tY*Bvb@k(aur|f3P~I<|H9Nmgoz z^Jqi&EbBXfQonpV$BRh}*_Y9#X91~Gs4R1%j!@0^vekD8*jb4rUS>+<_WSD$)h31D zhMk7WJcW(dgTUQAd9}GSEip+KcYQ^;v5j&%hbL4?Pq$yMdnmEj$akJDRDPFif5mPPZXZf;!tN}cI%B~u4?qTj_X9ewhix)rm9Ga4kgV{VG zZgy6Dg?H1vm={&{4(eHz0knZ`Ic{ntE_Xq9ITczNGu-Zixobn8Rh`(pl2tV{Rh28O z*~u$mAn;*)p{X==rj)i1jF`!}rZ!yX5tBM#;L9g#XAVq_urE`5I>XI4-san_1S%}W zC#P420l}V7MaBw>rNv;iRO8UI6Aei&%PQ=yw?7lvlIDqm0llZlbQZcg+!`6)+MzD6 zea?(T{UUwIpDjBoo)DuL_K(v-+8th?g-!dq8aYCyF_1Q%u6w_C(VOVOwZignB}>zF z{ZI;Ub=ovQhdnFN9fev3glP^SgB~-FnFo=!`>Ea4E02Ke-sY319H?dzJ!DM?gcsPKHko5N!^{Zfd_@ zJ)>Hu)tR%jk6JSyPf~PI5=D_a8h%3e5m5ZHv%S&`YWAIuNzHxtm0+(=8Qas9d6(V~-dr+PX- zAmE|uM|%U%?%s~cd?v`)Oq+5#w5u97Zd-%NAUT=^i0dJ8eu-l{!46Tm<4|e2lIl}E z5XNfqd6TMx@q#dc?tnO6N!g}NyJJPNIH_B$H8N|&mfctNgA*iiHQ}j6=~my9;m|4f z{Jzu1h;WRUm5-0<-xbuvJDeXFmRnlF)9&$z{Xi^DRK!}(_$5Dn(|_7TeYdc>8OPAB zg5z3+R}YolbXwKJ`tPD9Qn#72_TXMKAR+!a_gFar!+~ z{VQhckle2X3l9i*IO(~$p}@eYPRyXOgtY6~FE>B`TmnE3f@fIoFX&hWM{3v$~NE;t1MbCe+r{zt35R@ z7M7$n+SI$BHMlEeNn+3*cAuu+sh)u^n?0;|_)~Gl@)f=>!#DR^LL#JnA2r$BhF;42 z#A!`{U#%?imw^yU48q|ZH5{f z`A=7{e~KTvBQi=28j9+=a68hDnRe-mtJujN=*@_EoFY>XLxa=_0)Ltum=;>)<>nh5 zGw>n{IP3C0EvpjtS&_0lKmA}N0^OR%nh7!xoR!}Z8H|Nj6eMA%Jc8aJC|oBqC8wqt zjvz~1;LOZB-?ht0EI{x`vEQBN+3fHRv`HWBefY+e=^VeA@c|?uvld&++IX=0A8TZ@ z^cj~+DffOM`Aue9Qz9~x`U$bd9AV~*_SNP_0Mpr?!6s6Uoj>)YniVk3*>+ZI*R*ch zUhb!gI@{)CHtmSmc5CZU^UjXS4ANd=_}*~)s7m02vxMzz8AY#ZBuD>Rx!&07#nZA|wancP+y*Z8t1OGodR;!+ zY^8Iec_yr)z)*2sfmCGC3iQ!Rpe^V+gZXrAHxLuTxgaLvNOo8G2Zk~jLl_C>@uDeZ zEN^+yCb;&~Y3=)>61L5$JJI%*=>rp}`Nz*>y*Sy}DHF}|1$b;nFnk&3v!AlXDSmA8?EA3v-|Ge~=Gt5&Qgz7S6iNf$zECm_`C=cI7WtT8j5nXpZ;9U3-f=hq|b zuB3PG7tBuihu!EN%Ce1J&R)kv&L$kGU48tUcfpqO3yPmO4xNktW>U2tj+RWeF7ogt zH##jVZ}Uu%UAaVW#n#nRnF^=d8(T5GA~$&}wgrWR$TD13EUvHOANc#{WfPEI3=0Ba%VDjq)p=*Soj9=_Or**ts z&d@6=u>{+y@l}d7n#^yJTMmg$$#PSYY`y)Qjo!f}HCMEnm969~6cx|2mM%sA`QVdi z3uYQFi(twrqMeq@t>GOBsi@kyPyuoV@d?WQTNEz&am<}NOXbo#`D(??T>sXXD}x^~ zoy=S~Lu-+ZBQl-_F34PGR;TN_u?-2<`&$(KS{kOzel3gWs-elGww&dx&@cv)XDM@9 zQSg+JO)j^4ZWH*-*VJYnEySotjOeYTb|XIlV-V}gg__wlwDUc2#EOYmAP?+(19v6K z+g*O!b?InC9zzfe-Ca@1#TwF+vIZyPa6jaJ%q92!fXp~!PmP~|p?;LU^IWKG^6dzI z6wQ8?RP1UP{%hV|%|mkg@+4>uyv|$x{C)~wC0N2#lj_*bWg7|;K=S1C$XpnQq%rkE zV4sCF&5N$1r!`x#?xtz3O4;$lS*hSQlrO-;*$ z%q$z+O}oYn>MEnY;(!&%+Vnw1xR7K3hrzDOxZb#o8wiudH_Rwr+w*BrjODp2h=uUgNhuy4h(CA5?D`!&ejcOB4h-yW?g%s z!5lD4T8@Qt0&6e{aaohAzMk3jCLxk&6Dt%oDq~8%a(gFjP2PI;UK6Q5!_S;!!q@AL z;PK38f=q{$T==jVwGd&#aW>ps^xkL{`C+Ev++k7EuzK$yAWEbCmv? zp9!4yb-OZ|F0pcjNipHVnv|x#Rr$;DhrvW8yFZrEGVVES{y8{9fCH?h^%y z+xii}1Us({LC`3DEMpgi$EBYxD*H!n3{#hTOFA`_rw{Le#^;^gL?mD&pVEy~cXd{xy%W z<-YDgZ?;D@T~5^~z3+p6&6VJ|i0bC(R<%jdSxG#0=7I2>-0j^MBz`tw!*zCL8)`@*xwawI*|I!Mefo;)P-Bh?kq9-^HcRzDWw!j zXssqFozMf2gM^mMPl8rDy;=C{8!85$FKi1HejdwK{i{)c$hV-XcFi-YDt@)DUH>z! z@yS7kxyY z*NHujMP|qLQ*vIRugRc1Y8NS%#vyG=a?M=EM-i8e#d1S2@1q?4qpfCUBKvNWGEdD| zL1(iB&b#e(;a3siPGP7WwvDik&k=v|hTZoIYRy(x!1k`jLk!&hYCJ2hNmu4sz+@3C zd9P8m*2c2i!)QW|3MxQ0&m(iqwdduHmUjE3 zZ;0DbAViQHT{O;iL2`lY(>U%Z5Jb&n{S*h&D5w){LBqk2 zU5;*VxT#bP)4eadbPU;5xViemY!*U9z>3lqU&aI2l(v-O^HiIta^D{~5C{(%`hGR0$ zRPa9+#*f_VL82_U7=C{j}O? z9kl;iOO2PTpTZze>y`jvL9>@(i+w1eYkqnfUGq8o8ylO(!0qK+8_I-+K($6VB1O=>jXcQ{zx996nr&gpx@kcbei2a%a$tz}drTdIX`4E#6 z17@U_${e3A3J-qro_rEaTrNo?WDt<(&8@0wNho=L>(?&AiPdn_t{_{5&-t{1U^{ankruhzZ_VnY>-racr_LO+;_0QL|KoyS>*JL{KWX#Me zL{Q#Qp3Q(}EexEMkJ+Uq6z8R4ITAtd0(}t}qbFP0pm>pAk~x<$M$`<8^@$J+I3WJ~ zUfA=k*|AP}3Vkg}g~E$;;^gxve^ZS4edX>DE`D>Lw%NT%Ne$wyH+JLC-)*Ik!*EgT zJQrvue&)h8j1KmpkXg{*Vsd~t+IAC{{RUe#JeHG(kK&Q~6>;12qZs!~Xcvg9tBnuM z;_v@(4xeAT&9L2W9N1IM)NO5yHkfAOeXAo{-H#oc_f>{^Wv5pX2vf2Bd=k-}@`F*p zP~Un{No~-Mq@9wG6S8sANgG!U6S6j%5XQX>wzjfJp5nTGv{=z}&Eo0`CYYt^KmO-0 z(bYSFqX!Q%IYk>vn4}`W;|8+n=mq{vyNo@HBhPIl^vkoQIk7)goHzHUsKaAx0xA1i zLWscxvz!0pZ$854^eUwt7p+jdMqfQopwHq=W;!P^+Zsxlc_)AycXDy-?p^%)(+gC= z_|USe1~~+EIc9jNq*Unbks;n9&#})8h^~&_{*QQq9EJD$;)}R zhk&hKDAd=Ibt(m#X{c!|_c`U|p@4;$N$oK&FKPQ(R(XwvZS?Nc(9mTR-C`o~!it&r zOeGJ7>B*VNAX+Pnb2xkE8!XR;@#c|MG&5fO5+^_XOdF?o_2L!l)3LE}5+IziJt*LS z_%psIVd5gw%rnmeK|F#!PGC0eJ3$k{R16LFp#4ENzBnDkq20A8Wo(jM2KD#V6f)a9 zV}BQAGIP#2vhs2$K+*1(Qnyqx>Na*~k$`1{Ebd!eUd7|T*b(U zbnYlG3Yf@)inC$tifsVb#pb{M@aL45iUM2qM)cJ-!#2HcF_PZ5IEkRHZLWIBA?e;A z-SziSP)Nnio87p{Bqd-thV1tbB0oFBjMl946A->-4ScD{{#rD~0rA9ZRyRm4Hcty1 zrRkWUN#NDHy_j5B#j1}1{h17SXMK&Cs2u1`L;JmUoIiJ!>XUKoZK}o2nj(7Cr7+-B zJ}QcGu&ZVsMFkmV@>2J)r61dLTL4U<9#eGSdC)V(q{x@yi%sFp6Z=qG%@DPWIqjz7 zj+cpv)o(SalOoC>TOc zFauX<)pYB|Rpf@;c>k>8iBxPgiqMPxj#oS65?Y&btec>U#W>mx6%w;sSRG~7QfmB|jSl}ksx4B+J zX#UhlZL0#Oys{Lqc~kE>F2FWYx7o0sS?}NQ1?N}@?3xhwtS+FYD1_8Qji6=)UthY0 z!Tx?MaZV?a%A_IkC7{Wn%vqhXeJSvogSg!_B-yBlp%XH4Vj?g`eYZe7J1?E!U4)Ll zF%)6lM0+jc*(k2%Yifda3&vyZxiH7R5#Bv26YqnRns$_w%^Gu)5x!ZgjkQczf!C(~R5 zyb_kE73WV*9CYQNXfCtD+ualR?MJ6^sm|sWP{6#?KT*$X zE{TgW0zzBD(9&W}dB8>Js@y#`N;~a2RFxFcr9B;cYKxHmi^KTxN&&83xr8r1KaU_| z$nM=)jZ|6$r1}Eb*I12w06RXbR)un*_`b{<<0=V@N*YmC&Sz9-%7VcJ< z208V(X-eppIV**Spx=%8g;`85F5&K#TXflvV&&*QG}RSy!ky6&iQ=|nn`HAx%ab9+ znyP>F3TMyrrGO)e8;BLNYS?H=GDf-~xGplx>o+(1aGDdA6O(fYrlit5knv73Q;|(T zkI@8hkP+mjCgymhj|m?bGlglk(q$IN@Ux+e3_C+X#E7GCdsbz7% zFypAFwBJUL&f)@QckwWFn#>68i_MaMlDB!OQ(hkm7)~$n867>68~ofhT`9 ztv0;oAWkA^rqKYnhNmnBF&P4s-jy_`#UwNB+`iL`?%rWc&n{3(aT@?H$Vx*2v-d2_ zN6}9``S9?BiR-+BW`!D(N@9|$vtmN4PE&W{b}{aw6(NSE=5Xfn4d%a`LJ@WDwalMb zS)7Ty>>wvGHSMY7#r7ycjbkzGvsRtIuPFr*Diy<2Vl4ZYL=FplDIJgx-A3Q7^9bh@ zPEylC$jHhvjzMFLgxJYA^h-=MQOP(gX^i*dqqEq0oO6qF?ORw|NjGvZ4iIlql(c?5w~g9#ex8Bi362Q%0u(QlvGAK z3}tX1N0UPX80hatOJf5H7?eJ!Y*Vbq+(sV(bEW-ljJSgxq8aq01 z3AzGvaV*(2PXBu8tYwj+AXh=U#lL-Q7aA%{@#*JZ<2+3W?{s{O_ka2x-Z@r@>WXwu z7#(Cp!e&GX;?gHl*dc%?Y;P$AsS^mvHKJ8`lR1j`H}Ci24LPmo|7k0v`g(WzXk)x`wt!wvN8jL{+J z7Dt#8IAYX|Q=2ZqMx8*_Bz_uQTK$CkSX8%Des~JJ-mz1Nkp?6MlyYSzv(C}0ZFF{# z0PaC{Hf?MPra>N#Q2#wS7sa)EgZSj^b%v7dr4vsGCl2q${ynu+fuxeD=_W79o9EjM zzDkjPl>sd@p`0vqK zsp3fD;z0?`k}_EC(<}3fi?`qkrqf&UFq*1EhB4iWi9&ntrlumKFm}nupT}|U?k)V` zvq{DY2g(n&@M^*M#v*)`J+AOr68e=JOdfIhDyF8!P+gvnAHCU%vb+Fw;7h!gNhZuh zrm-s^kh2r2g3Xm~yoIynP+%hkY#q4a8x6*}LN?M;mMh{$&iWX+g&qhLECTQZ)0k{~ zocw%&iAz>-pmh)4INU)4(sANw3o1CIRVJP|!8@h~=n7TF|JI-N?xQ_UaVYRK3K-Bf zBQL{5Nw6!4Ts)>9t)3D`e6&`PtQVk3>@pKd+@~}ijWf(`C<|?kINsbx(7e^XG+7;Psu@Oz>Kqsp;d2!A&lej1uI8r7I9*nyVQ4Xg>Jx;Q*%R>88vG zg#Oe3R+y))vuBh}IoDBBQHf&*_cAU@Dec24+fWl?bcuX*>MTa`;eC`DYiT)RR4M8V zY4m|^puPG2<{D%MtyF4CWGsE8I+LxCadG@=)GDk=HFCo&HgblJJwr*1G@jwiXFKH? zZ~JVOIcIGp1+EypA zTCAR<-=ppS_ItLZ65dvAb;=J#0n@3U_)#XPCQHLYTWxb`{%KW1Lb8Gp*7YhCEMJqI z+|g8DjN!p)oSSUNeP#*Dy^?{HjJ@#Fq}KQ|s5*;Pxx%u>Qud0yv<^FepFag&YjuiY zZ}MD}c`V15mht7eud%zS8O5a~s4UAwSz#;cYj)#zAAW*6_n7*sqn&vR#qV>-PW7Xn z0G>;KW-mL4a8`LYE#)`+1y=>)%)-Vnv{U$pUw^>x&y)E1&yJ&Q&klsr7^KLYob-}; zk+Ce$F4M!3jybCi1->-}lF*jSu2E+sybPc6zB2B-+skO2w3G@jggIJ_(|dCf54(q{ z-iy=fDhJo@w&U}!KEuwPCCE!HW4s{hRn%$pM}i8u)$ptKsSjuu|C&?Gy7T8nP~f!& zak2Q+5^(Lo82pvp0G|Bi)m11JobN%-E+2N){)qW4M{wm%J0>|HS&&nM zpS^RE79~u%Mxkbvox_+GQl(-F8GMxz{ye$)0Tb7rVo<9GOvP4L8$?!iI#N?Oe08MR z7s21J={+ns-Td&fa`4iWHO!HrpVGK+ILZXB19VpV`+xW~`iBRpN(|r^fBAQ4X+46X z%2Z4kkZ1I~NBVpOa z%$F{c-1uHsAFkiM4KIQFC-1+D%JO0}NhGPr>JsbkcHK*EeV?=DP~h89zy|R3rL|^e zXvlINjwU@OT*URO*J+LQ5M$JTk55cvet7{u`NdDMV@DA}IbNJRx|<_O4?;{o*h9;e zGy;4c)r@{7G-0Il^LUsWP!T!&aPo(FkVU?Z3zPbh3(X6GU3F-daPM{tCJ`;ic~9$ z%Q0NL`2gS0oG|8E#ECceG2$UV5R9z?TEv)QbG)@>?wMF!TWmUIZNIbPP#~ECQMnBh zLOphFRT_e8pU0<(OXl9>g#6shBsx30(AP`P)J zXd9E4_@d<16wEKVar^pJIs^3~H?J72dmB(w&J0x?dP)qDG_U?(mnW*~?Gv2kmQ&!h z0&xS(@8c<0?WQCU$!lS1;eTj7{v^jK!p!^v@4X)y&M!zH^Zjpr9;(;>(LaRIm`Xz;Ii zHnDi5fzFQSMuFE3#3h|*Vn=|PLWT@6+MtJtANqUx5ZS}vRg|>dG%=BqBucSjnT&kD z^C2w&=h0kU2w#4-kwCoaC_IO<4}TWuYicK&U}EJfE-lPLd{-5!8JV!GAPuPuYNeRX zx=^uIjL81nUaeE{>qG%b;4%>uPloA>Fh4VoiScRl^$p-2C*?aj9x_PVu!)_r%J?bb ze{s2=Bg3rBH0;~I8_j!na=s==b3$NDwuvS zAJmeYBJS7e8_T16HXe7jwu%C;Fo=ttS=3*_!^ zS1&$2^$jXZe@q8CDHW~0Voo-l%_vyD^K&>CetQbM;?6!cP$s~V3!^h6ouZ6qqN6G4 zjQP#j;AhT$%?>b4FSQH~Ekn$q>BZ#yB0fKJ4G-?$#~b^av3o}~W1v{xZ5p+z2)NCU zb<@`e6H8(I`~UFwjClBf?)YBhXVRrP&X_2)8;?boOn`n}XL^tkcdRY5XVZ4#to0LK znl(}`LDH9|Nlrr;61f)_FPy_CpL~KdXU;RU!#o8M3LmscaT`Y-zBWo9MprJ$o$s)| zz8b&$%RfVTRV4viPCtCN0(jGP$m9wLN6mLpNx899>FVyq)c7nXJM&P+*g*kKlA4(J zCS;sYUyR`Z`Bt*y)4JL#Dv6T=jfgCGwU|m00|$vrw`Q@Jcv}3HPN{oGWe(o`@tgSi zn~RwI=nQuC)HA6=3i<~J8B6>=O$;k&RZ>U^ow{#{CuUmHdQJ5ATvNSFErxOCN)K*y zj4(lMDq0)EmZzI>rl6ZMb&Z-VRncE-&1^b<9146d3M?%xF|=$52M-tK!{p zCULk*)d>RyqNK18#SDa>MQQoOu||4n`tYE0fKCn_9DZ`bhs?XXz6J+dcA}y*pSpB@ z0X8A8T#=ci9*dkD9h+Rl7w4`qYl@dc)G9_n%%y!Hb_fATF};Z5NT;y zme6AphYV_sQ@MjehoIf(T0sTl{Tx5k$iQud*il_&fcqkDWFHm#6!__t!U)1u| z1aZNmk;FBuBXV;QCu1&zql+7}`*%P?yhIThAgC0f368nRc9A#RZJTTIGUSxqiug1N=iz2T%2t2@j8QB+g3V3O5zOAmd;84hN==&msK-<{tCXn z(vI?yBBNGG4F-+C61Vk?Tl8E`HBYC&D+=Oza2qCVW&{>!PIc|hL&ggaGZuIjb>4II zQX8cTun_@D-IVR_KYwxQ2KgaS;#jvyR7^dgz6MD}iWQX@JI>G`JvuL4XH4)_ z0)Guki*p$jj>A%O5_LC;kBTOithU+hGgUZ$9146d3K#&FSj?h?$DOpO`tqw&$Y9>r zgNF`M6_|o+*RB~qhrGNzoP6^HYHF%@wk%b2)p`-D+9jc2;U+~8*DCu1*Jy&()6Un^+w9h|RSP;yf&ALRW+-i4P7< zprX7MfBR?q825zfsUkG{leRn(;iP52s5;aYBAU>lgM`9!T3l|#d4s=ZsL2Wm&1O1h zYI+5|J;N9s>PBrv0p2*c69x3>^gt7t0&tzl&SKm-)gXNgHuW6taf(BMXQF^mS8S9J zG;~dDH9{32r`CDQO~E5Szkt6Sy#4mOI7B_UMu-RJrOwbQ{Qm}hxJ$5zp;qLu@T)Ekeyu3{8YpJrj z3$NW!#adm?%JZPWHU;rVNuh}y6-!+qmZa5)7}R*MxzWk!Y@eUGjnUB=Mr)hnufc@H zS9nb^9KGx5P01hsh^du0S!``Vwxvi}-(#s(^ud^)pXX%0i<6k?IJCEkS$ty5h7z>^ zJSN**ovXt3u`-LfIrw$B+#-wf_uEr|d?Xc~l9{+XetJ{h!xvwC!3p~-$YK`z`}gmm zh#ts!`MD-3vL^V0DFII67vh(H@e5k9q*3RxLi{FgiVru5&yVsZIbW6mMrxPAVU%%H zTzK!qAxut8F~0so+;rMMHr2wb;8rn8Ii@Dt8fCo$8fjiP;jXoNsY<6f6nKOqY`(FV2@;Xl7Uvi6pyL7l z_{m3ftG|cp>T2q~4;iz;@`^IDD0!D5XC=vKG+0zjH6N27`xt5>PW`#mgC@(53IDLp z+2#(9V@&ZY_ltk&ZNVO}#P}&5s!+->6`4fX7o@egonX*zr_R^Jso{F=w4cLXCeCvf z--`mT0Ek;07o%h%NqTgW!#hd@W#uK*c{AD?8OY83r8E=#(McwHs9C_(yZ6vV_u=;T zZVdGfVOMn}qI0!0CCoq$GnfRF`GME*e_}F+o4k#YDfpoJ)wp5F8hL`YJlbE^-!CRoN+SkG%8+6v5 zM6nLqTV@%jWr~sB)fOG6R1=TRaUwqtVNWvy#rbLRmCw<^GQ2^hbJM6(q7Q#I{~IyL z{$M2C&)mWJ^Ia)G0n%cT?^?kRbDfyO!bGd}giJF1{6Yj@UAl_jfAs}Uo;Zd-JKV+z zO6Jd@!rRT^rJI4TG`G$?5SW~e;?CV}+_-uNUH5yGO$}}P8u9+Sdr{6<5i0A6VPi&T zZt2%8waYZ`^*{e_pW$Iw7v4Bpfp_2BfnrW@(!Palu{qslRC}pfc`SKTyB=3e$9=X_ zA9wj9`x5m%vj02nP{;gE7djU`kpkii@pa-w84%~tkiZw`s4vFwn6j?w@9pJ8r3+a( z8T4hC!&j$I?M$GtD{skt42m6H48i%yU@LXS29xvFA& z;&C}nq!Gy7H1P6aIqJdmELE1wKf9-e9?!Ibp@ToK<Foc{a*uHU?gy?ZJ+0mKO*QqHQE7qF~SO%gW~Kpsj#QS|gpGEja$O%a!o zM+rVRS8mG;a7DWpGgLL5!(7Tg8#e5n&eEa4pP+!aPd_puW1lD(oAlqGeEbn7E8_(2 zBRGEY7=HQJe?@4NS>e;V`V(%Y;pS6|KHB=gurKIz^MT>Wm+DBw81<8qedpay{O0$k zFgzVcarwVBiBvo?`!dD)5GZ7`r6Eu3b{1Pgfo%!mYmi80vPWv-MX%RI@3CxzvY1+p zL&!L#?}r52OIL4Wi9YuwzI!)mu6RDQN~sgud6&$=dez7{yG#e6fl#A zVjzK^#e@=;XC^1{*{7#)=JYv?j*XzHsR8L385Ev9hA)j2E#3B7$Jk6y8%#ItU*pjy z98W&o)UEUEA8$u>iCd~i3ft-*{?v5LPla**c0XKHsg&iWG7X&danYo{l#|KVCs*&R ze|HLO<0yt2kXeH=!-D*yrI)~+%5-W$nj9LJVXqIXo*=z5SMZ>#9}heGm<+a$xiaU- z^GpIkW(zR{XF79g=F`?SCFnDD<4LS)sOzGn6C*H8C$KX;a~ zP=>I7|6ZItc^q{+YLSwX%E?K+3SMjJ70m-bs!ri<1K9RGHZPw}C(ZC!SJ_}pl?Xo~ zZu(v*jyY)RxU}lS>FeE?;YhWjqKLU@L)486{pD4mt9dS;O>0hhb_zU=UfWL+H~7KF z5^wOQkzJUhyqkBrsFPbZV4Rm9VoV2S;9)6aER-M}9tsL_(f+Ut9bE(H9T>pS_yivG z4Krp+0qW^xxoc;&l{JkNF&#ton<5g@QiZH1HeR7VWC9?A+1A3lJS zZ@r0zh8-q(!#WzSG3ypL*REGQE%3H^Tae6u)T7&zq?uXisHv->!`oekvKT-&lTp-{ zWFak!hT{ZptMK~dDieF1#rLCtP2KNT%L~5RxEoulY9?6#6THUp@fUaSpnDvJoRn;C zEyWRb`M>qNV{X^(uj?KB53N#YLX{BiLYZ?%@ z`PDp|jH)bwKr4P>|#oY372Oc@|PwY_ZR0QIWDJEV^oFia2-TXs1bhsIRJav|# zZ#yu~z6r~@dl##))RRBJG>j`k{3t;rOT7`kz3&w2&Go~Jn@1? zV4Hd3`!{S28ma!1=cVHG2q(qA=gwWEq#ZzgLj(4n;Bd8=TjsmrChZ8%1965_~Bi+aqT=-W=63zN0lY}g+?{@^Exulv(o$7&)b$D zuH*_XPGX8P!i;s&!T8_v)6+Pze;0oA_8wH^Gfs*un+%^*y3wiPH!j7BG>$@9D&vXo zEJU;+-*nS79+PmtnN`fhsTPyTl8#XNI9s9F=hU$IhScl;2(c{3a7t1!(dj+_{+cgbG-G|Nfeh9 z@-)WuVW6Lw5g4dfrY?HxKP``Ywx{v41<&&03@{0JWv&;0{!S~Z3#(95T4^a#>_Nj5 zJJ;jx>+E}03T#gh7wn36^rK`lH8YE4>I^fp+$hNNGruJVr8+^!*%8gDg$`u z_1m{_psj(q0}D8{X-PKotMl+Pu#byLlO=sw9VCf?Sx*nuFc0oOd?tZ zW>yybCv-gKj@;#xmz)CR3?oUpOdiTpr@mrt%A2&g&comS?cXrFQ!2syIZecopFFbb zru4tc;B6i4_h^Cg1+HDaMR1Sd$dLosK}p=t;h_Lhx^qb-Zl+Lsgg2iXm6Q127NM=) z^vE4$1uid)Ow#LMa|6p!NS}O3JWqHIp5i_brjfsAWpv09HNR;7ZEbHD=n4T zrTkc?Lj*IVA)Wgfzupw1<e!e z3FsHZb034sQaw33Hc5$pg8J}GG}B!_g&z<(8Oe0YSi%^|P1U*XVSIV!B0us&oaY!pB<8S|$A&IRD9FsiXJ_xx*r1|^X)rv1A1xwki|t*`j%_5*SIg@_3V z)^UP(P9YO8qy;g^2!(xvlgO`QMjag^lNnVCPc>jJ9Xj>mW3*!F>K{k_juL`+fC3IB z>Ll(GZ|Y|OxwSq)lf-GNYywRBP{{^qgmpcMH_Jf_Lh7=LB}AWImo4-XAu zl%ZsciV7)#AHiY%vY6UW0oEk37}gX=nP&5kc33;tTeo?8{m9m=>5p&89HFC zYl14ykhN|~<6~0`xJe^|$pxl3Y;L4`ex^0wq^6rIoj+Sefo%!mHouB>6y&O+B$v{0 zhzTEtako7KJ1aBb=TKF_t8Dht(!+_Ng3=H{H-d?&F)S_4^E;4hn2Lj2LsOfC=#~iW z!X*Uo!|+qk(0q<%*lOS3=1hBO?|&JVY7^<2P`SjIG`XUx6xo!-$ET(knxcpOro}vy z^;|DQn_rzaY)cTgKjkvWBCevgC=EwiYVpCR7jcskl^hKY)6CHLAS4i9U6=DmjQdR& zANMR4W>*ninx`~vNd{Ke;1JuaNCvkChkDhzwx&EE-ji)un4hA#Vk+aY%<`ka7EqG0}B%SpA$@zRAXPeb7 z!Eu|HRWnRG+FFbKO;wnkp2UZre2MmvFqSzQ)__>Qgc{w90!_kW#zJv%vPkl`h@g&Y zv7)r#*7^2Q*Dgll2<7IXvZ|8OQ;w191qM>5Sa7fKoc3LKfm2>m3J^g!bP9O=D9kU! zo~CB5b3Vi^m73pr_mm{vGGQ`0kFEJCTa%bB0@^kFkN@u9;o^m_P4b2zs#2C2nb6HN zfci;IqD(x}o6GviGI@MSNx8XM0%uLs#v@2ep_(((%l@^DA^KvBjKshsM79=Y^Oer_ z_n^S`bGuicTKh?-D0g>ei@Tamv#L&(#vz@&I)OY7m1zxg-+1$OV=&14RApO=nVw(5oh?YnZHNNwv6?c1B`UxF84J*L%I zt}BsBgl=(~rxLxxjAuSGJx{-lY1)uyFt=?U>2CFqN1n-kHfQ+=1)lb%x2HNqk13|- ze}leU@ldT%S(1a3hxfpro{rNOzrhE8_!PzY+01lOLg~hfuHHdhyWNMpoP4x4*YjA8 zRfh!V1f{f4j!g|?RU$MYymq@2S8sLTKq}L(`5C2(@AXeTS*X z`SU|jfNm&}Fa~;haGGIT=Vlk+BY^MP*@!oeA7gy^3jF-1@8LI}evMn#zD90_3r7w# z@Eu#Dw5N5T$32zI0mYswvH=g%0_F41KF6ugPhnwU9<8nW@ZOJqOfTV`M#wNHnhS*3 z{BJ;;Je8=!9DmvVZ2qvYu_hB1M=?6&-x%snrJTW0jok=PuE^C>bA();*Mp;37MA3|Hb?w;ER@B#( z8m~B`Yq2{Emy*VnE!<=hWItM5j-ji2fDsE9k(m*o6z*p~qon4hDPb(aHc;|VOAJ#> zqPIBI;nS^S((hB#;^HFXk95<7?<{jsb{Z4D$*CpA!12*)q7^wg0qoto8zWOQIDh3P zu3SEcyxbJj*H$7x$x=Q6-@1qw$P%lXJY@>C0M#UNBGM#g18u)$eIgUWM=j9BH8wMT z>%0D-7pM;?ua74Bm4nmg@*yuX9lo8J4A;z1%{f_?>3|;bv7N(y?#CYdL7(kqzxnnA zaZxoP3B+X{$oC(o#4Pza)$c-0aT>DUKZZ-U@^I&V2gZgcjFP*yx)`O^rFipL3vw8} z&|D+a5^+ z0BWPSalad9&QT)IFGc}B+L}MHRUFSsB3&`Zgbjn7z#QZK_qMj8jrT6EsAQ7jkjccO z;8s%gZB#3)G2ye`>Lof)rjz{OF#&{nfK-g3v@{M{{TQF4Ak^25Jo;wj(eBnrqY??HWCYQ6unqH37j7^)NEvn3?;byZK+3aq5j&99Djj;J=sy3= zH<#!_|1tH#E6AY)URzT~i;Z#v+P1mjI!V4IvwX|b*YERu*VOMUA%-w)O)_!xJCF01 z?&H%>&*IIa$MDY4y(pnyhx!};8!Wf}CO?#pIOSO>@N69VthK$U^XzxbrI{wtwpPRk z`X!Dl*G|Abm+LB~pL40$7&1XL$ZlW59Y&5|T{^V5w18{Zuh15KmA2u~bIOaMfRKaqj?#or9=TpWlO<61>gGpwp6as+hGbY}tn13U z21eTR;_AfrJd6+j@CRJHc+of#)l}C|1(yM@k|!h>lxNcxoZD-Bl33A!wPHAXZR?Sh zwQC&%_Oo1@X@?_~Dl|)lZ zGqbsuBCND|L$pewt#=0JpG`_V4e|NLJbbUCg9GU4>Ow(rC3Vv^)LDm3^uVjsh4+W! zXni9UjXN4p!Nk{L#{9@&I0wTS0_rCeBZ1S}MZv7@-o1-2zx)!n8JkCX@V0&X@ROhX z#6%#JRfb)SmT`LsY1f;$#YXjteemU98kG~x3%v?2$M6?1bqbD(Qd3em;z?sxtQh)7 z#xO@4cy$;3Q8$b5xmV~Rn-cI?BU>KQjFiq%AGQB-#VJpq!1e=iy;tiEZ+xUgC(urN z)n0BqF?ov>Y1n7vZ%s2%zs@b?=24Nfw6CQMRTV)LXU1s?CO{y7vlrT(&0;ijy7T7+ zQa~0U3m6c8X zdmFtl_tUSS$^@^n`DH_OHmVzb6CZBhVuT=mm?CnMW)GU3UxX(Rgol!NI^(9u`DbWo z218@>l**S83v!+m zLC3>xOfAqVBBK~71Y@Z${IpgoE6PV*MKLa2JWDtG6*M+Bp{lx)UXY4eGJct=GO?Hps?3jjyoY!QM zi6z{---C}nIg8HDek?7mm?5wvs>e!IKlHP_%J(<#Y2yQGPNQYd9$K4}Vwig9o1BcC znVG?X0|)!Hl&Vz|RoyWi)n+E5 zCVJ{&qTlDWA9^O{p`WIsCnkEjRo$wRs!FAjNQn;g1YrnAcpx3pdv9*u`Tlk8NhFd9 zAW4ECfV>;HdHg>6tiATyYcK28Ao09iN~zJr_*{!0HVm1Gc)wNnhU@qsz;F5)Az>6dIQQu0WN*iQPxkB*+Q z9-Muu&^Hw37uzDa6ldlZ$-_B|Q(m|I-9LUrZh%5Opc78A1Goz&4+mWCMF(a$amSi) zE)(LobPw}0mf7cfi62gO@vZZ=xQV45+&CJn3=zK+;3UxsPubB=KW4cc3LKcgxYwuL<$wL_U)#~6$E>)xhzNu=_N^CR zw2DfSjL=khEM_TQxQd!C=JInzFM4>2MvlB=^}YFp`G7auPF*-}M=uW9QwN?W2-X&B zuB#y#c>*ul9{bgAKeo=kVcQGQS70LtJKzwwf>HSJz~<}xk_-`FhOSTuTXTqmWZpB_ z@%9gnfLIZ<>4Ez`DwqrbUxwE`+7aP|aLcA&)KMwae3yKmJGOfcFzXDmy37 z4!?iI{=@(Ef7t)_Z~v{ewKTdIV~J!Rh55Pmhd+76cI?@2M~H#_H;EO>rArs>Z~yl1SfO39>gp;xaNsHDzH^9qqUeYb z2$G)MSOvI=fa3tSI6rQSOrVWT_14faZihcQZ~r*-j{V6Ge`LFN6xrCsv>iLsXYJhs zR$N|cO|8v1=;brk1Z$D-O!*=Z$PjVO|9F`>8^F*L3TXh&OioyLZ#x{-G)wkEwCqx{ zXn<$R*8zdGA)D4!&><1b*W3vU>mU*HTpUS$`qQ5}w_AfedTxHvMJ2!Z#c%Dmzy5oR z{rDAYC2>b~G>1r)N*%Ujty>Y9RM%nmkL(;SF()VAa!JAvi_AhkFdao69!Y@%DGdv? zNCD0u=xOe9oScz|-+J4@&~UZe;WMa%_Q!yUE4Z0iXw=P7NMBnHSyM za@HE_Dy+G_#@<;tXA?s+tX$qD0Y*9ElxgJU-8M2gXN5&kE2?1CB3oc4=%B2P4G#hc zzKJ$Im_+<;PS(<73TITOn|;BBGoHr@6FR>zWo4yt@N(?`O0+e); zy+2Ld@28%A7H+cLiHaE3^T)7Tux8Qe9PJ!QuTGt0FMC;lZteA~xD0xr`s{nQmAq*@iJKL~JuBJvDz z;;&rmvPl$TaZJ}58*1>z-RFw5Bt$_0&XgJF+bfz|f0glvi~fHKkHd?X&U+k`&8?elJF!o`^PTT_^ubLnEr@+( z7tQ4E-zdwLkO29K4fcnA!!m_A*0l+WX;@9Nmc4s6BRcs6Jw@EpCu-7-VMCrp5Vea~_K>9gl-*A}7x zmIfZ0dM+zFYAu_a?c2{iYp-K5(thqV_WgO*Sa}GhPC_!36a-)W%>&NpX~NKdy_n0A zze{m!6^h!Agze4Oav| z!IA)R>_+Jjf>#hRG|zVJsJCCe{x-_!T${%cNRC$meJ&H=CYYo=V5{B{_|*?#5IG-{ zI=K#fGDj9d79#~k>gGxdx0QhF=B}q+hi|mCZb2C z7Kyx1XJu>kR8fZBB6P1?Ri!#6UEQiHnZp$j*x*Eb1tfe|13F?;`1FintdPh~S#@C$ z3qqWDK;llT^-_=aFuksx--{q1%VAt#F^?{ai%GsA})fZ-q~{(?7d^3K}2Tkm2dB`&2SMB zkS9}EP+_3Y+$h8&%N~GOJrFp;=V+eD~dV?c*aKLu``v z!na@W0Ea+$zYO&C4GqL;$w}jjYRHteArP!^6#qnwPn5nZ%!%2~t&R5UH!oQ(@^IEz zz<uxqHM#?iQ0O&`yZz<%E>F`{R!a79@KW)SZw&oa zP|O^z3j!{#(4BC~viEjfgk-0LjP=;=aKo`Eu_wuO>DfyO` zuTP*!3V&B=AElij;_x!0$XNaW_^sEI*g zXPI*k&uQ!5vhqY`UmYuMJ7A6$Ek7&Y9^2Js7cUQE`NenwW)h?17vy+Cm9T#ta?1eE zz;Qhg*w{qek%d2LE?oS!`0+^$#b=1|5Kk0xBlnJ`Dj z?UPTA*_-d4v_xJh_TP`$V|#boriN;~Wvhr#*npR0yLAtYT6JTaoB1s+%#pbIx_$To zqLlG5+q{i%v^8ZAhhRk&P8v>hLn2Ez>Nu*z5$w;a4km!ZhY#C_@4pWhUx`&xAvsw$ z*|P@^29v;gKQcs-@P47n>T}_>hk6@+v?fXRb;yb*8@RWTS*y0H(7O6ZHO)fAvpfv@ zJomBKN}Cx9IGJ(wMNnj86LCQ*EfaU!WC+VFdDiAZx}3ZM;$T#h0Y(Xt;pSxekSXhe zKuAD!vxufIl2?vPVCiOjzR9>`z~@%JLk0 z{)HFpuYdU);@QkwZ4)TFIE4sh#NNk@u&d*mZ6oyTlaKF$bJv8+OT$T7A{#_EtBI+E zEec=T-hSDB|N86p{(J9X2gNFP458;uivtG0qY)Ojfj_9%u;c$QU_XOoPBD4|K>+7MsG_0Gg&7X#(oxWi8{ z%#`&)AVb8(l{w;oc$g7RW15mALR}t;%p!6xCP_XJCmmZv9t?P+Wy+U;!178aO~`zV z;1#N>iLVm_&0E5x%TR7Z`jEb$82U|(Ejp&{c~&Gvda!UGlRv@VLNsD z6wxJ5lR2AfxBGxW}+}NGhxS$9ksvxbp#7?``J!%6Zi}+w{cYSj%VwFG<3h0F!X*9VdSi|}=TZh2LCgLl{m`AXS zKp3L7yS1J`_F2TDE=1vmeYm2mQJi~R`3&cLx$ajpe^x?3+<53TlZs*Yjm3yWQ`tk7n841J5DGXeRMSA<3wtR$dS#OU^s?@BiI@us{Ew{HLi{pn#RY}Lpxz8;R}N>FgQASSzyd{?nVbr+^*vwGBOli!EYTQ*U$L$y zMn~M4XWOpv*7Sc{|)Q=(iPn1LG_!jWN5BnDLF?t8TxzIczODif4fhb)UVZ+ zUZX!L!Z>;g-01fLX!tpNdu z5+7q8+Qo=MRFx!?j?Bx3`UdUt)pi>vn%xrOtLfQkPqUWAWSIl;Y^bZUg9o3)b~^KpZCi1*4?@0*JOuK0k9;E1%g7BBref_xRu&Q2OcE{c>ZPl8_?@@i z8bZOVnwlC3L0e(PmoD9h(1U}gP#*AC;WPz<77zq z)6WA4Pc^1PuPNBx*MGh9fG6&zyVCaaXb ztg3|hBClug^o^$;=DiI~#D$YV!rA~`QXpzi|Db(z@|;Z(EpPX>1}opfAZNM1hJNf} z#*6iTn?T3lTV0%Z!6C;WfDs1T2w8QGz59{P5E{0wajVTRh}(8PYWsF>wn|JnfAy<> zus7d+)21P&TedV1+BMhenrrPRfATV-7$V^Hby&~!4#XaKYC>SL$Xu@hoN}3Kn%Jr# zVjrCyhD&BUI5dp;;AdFB94G$wS!>!(gaU5U5CCxV57D@07Wp6 zqJI{>!zm_Ebc;CBt8HO(E?kF6 z1t8n1Mzr#$|LlLT(`U|GRZYERq4`RpXpTz8t;IM|^E}r0QrtPRxrKQ=0Tm84MjEy$ zJAU$v{mtM0y-h%Ln>JP0w_f@dnSQo9_bme8q7iY8{0n5?LHk{v%>bLHa7LG=(L#T`G**&GI~4|d=+KZEWUZ%b(xLr!#Q+UXf)37kR> zT~lJa_GR1NbD!DKQ|BxP6TWCxku9bqqppMF{!@$R|2;VwkJvlWSvc+Q+x8t>>4Ov& zBel4`BZlF{aGNo(EQK(gX8d+Y7r+naB`j^oap z?bzLFKYZmocnCJYfzu`kYe;BCyuE9k*s`YsQ7jjE)Bn1cST05=fW^59yME=IEl$r7 zz$sy4{nrVWHDa}!He1D(J%I>Va$py;P=RnqKYzh$0(VD9e{(kgYbCmPnxq$BsQ7o^ z`U!kB5v3Ul?K$)mOV-xVjFMQPo>}z(w?>5S{ss_X zDJ$ZwW$gmc!g@p8Z8Dj%V;_BDpBz1IC8dq__><4tX5`#|{L_D8vx|RiSIBVQak;}b zHz1oX%dz~*8vDb4@?$dXPCj)H&y#1)Sy_1@i3cWZQ)` zgcnX7Zq(vTNCd!5&Q03nr3)5C)K*r8JiWXEx$y)Zqn*}$WuCT|T0#9*RtZcJLMjMa zuo4Mim4@K`zwt?$=CfVS6T043-+_n|`P~M4hU~(%J_s~1Ra&;Ct-l1YGz$PB){%&l zAh<>^>DEk1Lm)%M(}0kPm^ksIxNnF!Y8D7Z$Orhy&LE8-fcVMdo@lU&))DX9MG}%n z0j4DsfBpS^_8L(DJ3Bfdu-D<}hFO}I;89s=m1L*?!H@pPe)03S?aap?S#ct6FMj_J z6M$J!NhOgA582S*j7?4vk#L+WJ}CvAlHxE;!08q3i_T;by-?8y&wO@~=!OIK2+;=n zdb@3LCh3{hTQC*fgK6THEqHy_RU_BdVxM@|JdgC1?Ts!~eIaM=XT_B-kyCY%ke0@e zki?6VV>WWFoghvmGpMSw5 zi*KCuOMYkiT5xl4T7PvMKIUgv-{2?j!#`?t*lg z#L0)o0ll7Z{pN%6ncpDf(`%1!um$(gtA#H@vnX5`yd?Wz(*{GLaL7pq=gLV9CsDiQ zpJ7cx26M8!kB*Kp?ywG!H4m^813Sh!S)qLN@lh+SsD}eTXbEDUoId%f9XwhaLAEZOTGqQ(aw+B}$!}J4abrE%F}qY|ydl?G+uIt~)?U zy^K74M6xsjaZL~RTR(BkXGSNjq^KP6P=n=G)mmX~omFjW!gMj$Mh6FMet3v{%jty6 zG+QtfEQ8lLl!EGYLQ2^i7sDo{?_F-<=a17h+@BlZ7GOiry!0mv&gwPE#Cr#3>>?hw zU41h)ICp+y2anksum8r1 z%727;SQ)nYSy+!e!e9pS;_k(Pi#j_YRBynQ6RuVSK^cIiaG#$dfkQh{CkMx-Q9CYJ z1Ic+K*pe@jkT*F$#iR^T#a=xYNnin?4voV7iJ%08MZ`lk%+BrWGS{4c1|dZ9ld}^x z(cNx+7cY^8ro_scuq&^uvnUBDVDBxbve7DQr)=t6hb>HvvZ|PdizIQRI7|nozm#Kr zk6u90_aQI{CJ}v~)`2&s6x|ly%C4_Ge7o|bPTV&oY_W*3I!j}Q&2oDM;h0U#My!7{ zX#=A`p9Ra+{t0WX&9`E~8u&P_`D7|YOjpGwQ*I3br%|`Q{P151O$;@gCBVO(5Sf4W z2hZBSeB}juVp}6<$4RtlGM!q+$A=Xx45Fm0KiDquQ?gs7*GWaNJ|Xp({}_se`2|FG z#On^3wLBoRu?&c@jS)6>0tX&(#XELAid>q2QbqZ8@To`b(387tq_4|kptN@nS*$46 z9(`(u?cCjDqa$5*`uGuBn4Mw}^G-ZGeMUvsW#l&%fzxCnZ%IpWa*^Ls4s!RHUA}aU z=SMhCHXf9XHFd4FbI(33TjHLTsW3|x5IE>Sh*NX8_ooPNi%ea1&ywFS=?90d;!Z;n zwXhQNRS3>TlEKfSyqq8CK}Jtl+(M!%)^D*`0+T|TY1lo-bE~YPwnY_?ZD^QPz@)>C z*@IIs2;3L0Ae=HeA_Wr?-Uz%uu*{HkR9LhhT54#!@>+P$eYfTNeaQsANb&3wp$M|z z#7J69C9I=&+y=%-LLSYt2`0eP?VUD_iQ%H;;QD_31ey&`nSjAM%ZBH~bLGT#I-qEt_MMIHiqH#0~kV<6|`_o#LcFJfJdv@Pi-Vn?dph2Hw1^H1dcs zf-Sv5(kU*uJReJoi)D2P_~tPE%7gQM5+Qbu{ik2OVL$uXf3rV(5u#UbhPu&Uj4f1p;GTID68j zMtkguM_TRay{%STT?S`7Yva9LIB_8gsYX#+SVukL=J|&RM{e|S2)is+f+c^9HwXrB z@C)PC+i}_Yu3RQ0gF@X-Az^_?=WB+cjl{%8D9-&+#6~zFfiFwQ(s_`d8lJ`*=g0&2 z1uzX@9B`i64_7?wt|}{gVAZAj?2wi^A*WfsRo{sk3l2>3@glp@dDZ%cCz+5FHaj1& zb5}d<;A5?PeFE5reJ*%ps5n4aSJ~i1oaHXmTFW>Mlq3W4_?gT0{*mLhfW7g)z1!@$ z{ad+!f{l9u0<$i-K3F$7mCyjh08HWw4M0C9?kMYbZ@qWK+O}@B z+S&@t2BXk%QmaA8y0N8B9(;z3NDw|U;*=snc`U2I{%9^@@4o+m{lEXuf3oj?_uH7T zJ!Or}EgHVmnTD|wa0arsL7?Q_v_rD-MM5Aa^J@IDHXgIr{WpwkvOqSypk0<>Mh3Cu@xYYW4SAXPYE!ZfoFdBF|1u z1X{s3LDEozmhf?rt>0UA<5VCdThCP|ExTrE4ur}6U+DB(;eRL zlhuuv1|tj0B~Hz9?OJ!A4GoV2>ugj93)X(E2f6qnV$592(X0<6l__5g0vn!)i*R^? z00y##-4yHA?vYuWn3}eRapbDVE(5}*A@WTRk}uY|U-a&PP=v%YAlf1zffrsNLv}&~ z@sa#^Zg$4boH}dgE?lzj|KWFS>(*9WpUbVXti-OIKWo=Ju3_HSXnDlTkfElS>d7$$ zugb&ur_#zX(Q}wWv}17TNz$~%d4!iu+#=GUA6g%KCDuv$mcm`O8Ybmai7GosIscb z@~bP!`w5rsa(J~}gq&ffpNkCiG5Wp$&i?%ZjDKXX(Wm<@I-M@w8!L`O@Pya(`2A5t zh-nNTAQ2dPZ&o@GaYRd_=qW}f6{~-d$zIG8`E0R58XlRq`66yi=qs79n6U4k@3}vq zdb?I^Xd*7W7Xg>vOs38v;)%jyGdv0BrcyR9MVOpPgo(}_K0HL+Cof!`qkMQkAOsB! zKJkDmY<*u`DpnoR2qL>pNzRL`SjiW1a0Y3vueCSdd(S>5FjXOOP|D$kcM;$FG8QcF zynWdAA2{F+Hj5DGOXn}z6#`#LarwyZ9oB?5W`YoY_4vElb#+E#T(t>y~sp2Yd;m@`_2(*$)Bua5$nj5!;A(X6mAT7>e;lk=5mzXix z{Gvo$3@lcVm21_L2D`pI=o7?Ie76XkV_Uip6kBAu+^=XTE<9+pGvqqdPo9|bD4{#9 z58DVtdmcu~Em9e93-d9!@d0Zq%d--hjB>B0&?J#AgZ{tyV>Jvj$AY4aSA|P>3J2VtN{rx*6oi zlaqvNokJYGgm`Ju@`y{J9F&!0kyrTF0z??!ed#&t?C!8LXUw1Ml5Oo|hjm380{Q;042v)0^LYdKP2B6@L=4Y@Ky5G&x4hjvw`&?;rT zKT77GcMgAGy}bj-xohqD=bp9Nx=OqzxhIrC`}_kJ3}+lnMZx5dlD;FS!t$HTEU$XZ z@)40t4fnt#BR*2tO5Qz*;!9#Y_T88^Ypcb`nKyNuw3x#FK^fOa+rp&&0UR zl1{E%BAm_JErz2~1gjc?+%ie@W68pEgG073IZcd}8CP5uRMl9~Cd4?HBxWOukwTUE zP?Y-yim>ki*Zf=>-vE){qubO`x~8oIi|zeVoPet_YPWhV_$S>%6#4f8%IGuT#K0I{ zuP#<%g~z8P=i^N7UABL7g&EdhDtc1fyDUh9Z}!u{AANhK+ysFQO~eI>D4bf1pBPOI zDj6h5R4_w$)CmS_0@vy&T!c{TVJaF63L2zAvVcNzmKfW!$S7wKBXx9i;5>8PE?>Ul zri9~U-%)@lWxZ)`ZuYG5n_G$fO%SPa#3DcV!|&POzxFyJlyg=GC;G&mo%Yi|{WF{T zuYX0Bo-3|wl$B2zgzWo&^i!*^t0kig@5byei2p6fYBCK-ZyZiE34vXhn`NM+m0Ok(4m7Qf_REYWEKdg>s%`RBeT8bK`!b?QMZZUp*UNT0ziCS^khO`p0u9si@2H(TJ^#%tK9ymfKQwBy=q{9 zTM@icy-(mm{X;mN#5;6xnlJ91o2HwX89 zxwFqkCpBr)5A?MbB1r!t%9Qm%V8avf5KJ0IV(JPZE(O^P zCYI-OEQ{yi@?vn4ae^w{C&MFb@>kpHW5nt}B)ht zY2W_#^VZzl1YzWyZk5bgTwp4&T9L>n=qM3LUDG}M5dTD-*mEy(b3;Ue?2PmDD3HsrE@JB6MWCGI|nu6m#cZC(u zJS(3VA|<#ciB6IW5gX_qvw=Zm;UiIetUfAI_Z=YRe$ zt);HUHgDbHF}+2&#eGL*G%Z(lH35K%`~^feAVw1Ij3EDRZ*Rx?WyGF6bjV(O=|$w| zkD>@IW74Q$LM7tn?BOwcbmMQ@;MOVYMz82jtxwn}{=hG=?+|0x^nK%u###vF(_x)xw2J zMm)tuDajZ#y4gqC{ocE3r+&97A{cUXf%8)~`Asb?Hbl7BcwvF9| zr@3wsFc+mznbzWAp)FzY*9a!M&Nq2+0?HNgsb-ZnAPXQp&C1h@KIRqK}!J~AzV-R9b z=%;Krd=#nqrHF8nleW}5M4a_rRzFy|V3|=ss=12B7Mh3H1jXxk#|0Z7=(BhplSXkq zs{wr*@DmK35Yl!KR{_B|!B5{SK@R8LBUInZse4gYzDJWD?TJ97!5}8_EMn*kdBox* zVV%{lMfnLU$tyxhJjlwAq}83*t#7CnoGErg9`CA^b>53_ctGE=p^3QqOk>(PHen6O z#md@=PcG~0nb{GRe4OSc{aZ;N?(hEAU|&_%8W4P(BoUjMo9*!@rfdL3+`wSJUF#s; zcQMiU$gm@iMJEVeWs)$i3ER1=6&d=d^$!o*@e^n4;DMJQOu5#$xy_z|JC4>=BR0X} zL$no`!XFEWG)R@O)voUesucccU|+j(1@pn9L_R!f@x{NrO4Z^Cql72~W7k~98ew=phU!1!i(@2PN1WTkycA;hERintn)*Z7#B?-yq zd*=t+ZDF9(KOtH=W;w+bm?xH5$s86egj0pIBPQu(!k>po7h{QnsD_C_%exdIR|nhs zupy6HMNOlX)Hc9rCawSSX-jrN#QRW$&Ju$r7nk(WG7>RNSv9(Yh2HBnHPD4lCd*11 zYLWb?FBE92*JdYhO3SZ6$H0UV=RN*S5KRbtfTJSjoK(?gr+58$tv`3VzSc9V&*?qO zMGy|gi$WvJ&Zbyd^|*6Z5gxDd!6+)qwk<97R$iEE*Up_K8A~61KH=j{<51jsj7d;3 z@=Uos1U5VoclT=WL`Wx$7y5O>A)UeYd3tKle)QePaW6-n>O|=Fz_4>JJ-ZR7pkU%Y1qBNV0r;8e8nB1n3Xy&5!w#%iW~{6* zhx0kMjd~ilZ6(beCWvs94pu$5<_yToAC4j9XC8Iv^@sLTZHYnJTX&ni8FYoPEVmL7$3AO z?8YMy;;hnIh;ljblNV>g1`xr-nDCa6e<$aM1ABGkzKaCpn&=<01TZdXZh;sVVZB0h zM`FfgM~f`Gs01%kyh@|;@HA}iS=q#M>1ln3_mSFkQ{`Wwkq_si8=Hvx0ETc& zPV2?_2m9<|xBd2w<8X(Q_T=N+t+}cY4qYzU;&ehn5I*u?BA6=^Au_)71`eggh4%Qa z?KZ*k{`JG}+KEq25(m82wzLwhFRrkyz=$QfuUeSUWVKU@99U*O8hDFyhzlShS!jpz z!Kwvhzfz2P{kIu}3VAR-Hezr7{&)7#M<3z3oQz}2(rcbf z_su#sYjS$bY$>0BWI++L9O9v;i1V?SI!`u(%QkW8B$<2$Ew^chWmVuPgePh>1bVjf zA_V&yfw2~V0bYr~XtwK$C8sB>rme*Z*bLt~c;Nyf@1&LP+Uh2XIb{VH$_(4^wX-(y z@nP$}c$zpZ5ckSWI3v{~TSozlavcFXi8KnZ+(4|9$aB-hU@Zd>=o4YDJZS?Q6`rz2 z(5!SXi!(cVCt@As;fq8ml!I3eF>s!H;c>fmeb5H4PZG|zz#14=+czcHf6`w62ZCY^ zELvC3jBVMB=twIJeNP&L?&T*uXz$wCMBI@CM1hD20;un972IPMD9vC2kk?#T2d0&YNuw& z`r@|6;y74aHe-A4Hsgqg za7ZexZ^U`3+6LOYT)dQzK0p>J2-~5@4Aoe^?c8^Oi3O1rab#p3n}lfkB1uYJF&U1* zAycB^9bopCgTt473i#nj6~VQBVr0n15z+nl2j8{rkK=Gf2m{hzBM(nO#N}#lwrw*J zAzymddPo$}-`@if-?ID_T+Wm`KwyItanS`4a1dQwrvJl2g*etFD6l$4he%MsAl=&N z_XVRxgJMPb9B01b+5@s1*k{A@KqL#0_5P3l>`(2l|K`{B+57KV0@w3be)@{b!eOld znEYC^th1}n-hTH3bbXj)l8q+|C1^y^0rkxga%ae*gdZi=Nd&VDWg{06cDr!6%1&&l z-+t?D=Nx5yvZbxf{?)(!*Op&ch?_p{^Wwn0U--Kk#(KvWF0{-WmnLdnr-)6uqMIfN z-N^SqC^dCyKN`oPLxZao4?y&^6^I7C{j1WRV_TeKZk6S5@VoketSnvAN9^zDroWq!2x5qLQ!ZJTmlL!Uoi|v|35M!rf*g zW|_3klb3*TfmJnZwmiA@3vUszC_7G&=LoR-rzq`0`WxMHB@M^mqn?#eauY z#G|{nS^`Dy5;&3vj+7z)uPlgLG1i9a1}V_@>>zPRWgZq{z)8&qffO#-@rXn3x_i*< z2k{jfo`|c{oWo4_o(Op^78M0JYG?^NMX;r%1qO_?S6;$VpFX^4@Tbo`Ae)t<1bw$C zS_H*pRb!*Q_^m^>fPDPosgw3Dg#9~z__6@ygrd9qx}Ey$3eGDtcJSbfR$j`=1$Xt8 zlbqLwyLl8*OcDziS8zh8=5R&7K%ULRhu^VN)Gd?2-Me?Ot#xN24-vZzQ}LC-ox|+02Wy|a;#x#3^_GXX>=Gu5i>y+Z3E<*6rY1#2cT+3GgFfHt zTLqm}D7#L8eZkxG5`LOEM8IXC!b&U$XQzrRnOeqdk`>y%oja_hrVfQB-oG@LFNa@8 zJVzk0SULAmg{GY)uR~2(*(W;Al+_T}*hHMcdBb!t0FB0WQ63fnxsY}^s!8mC<(MFr zz?GmYA*ivv^7sMT4+;1(m#YsEJY2J9wq?gwd#u0L-uvKVJMzK%*4olSw)qScVwNHzI-sT8Y=HjVgY02z7&jy}IC8$AP&y0K=NAWXm*xS2z8ii-M8Fd5ii(;~%z zS6mw@qJ3~Xj^6`d@e1!b2bNkQQJPj@tUSbB%R85Z5aqz3wxkLsN%7u;NlZqOOSCtK zl|>Bv6H}#lE19xB2yAR34zh^m_~_L9F9w3cGGv@Bb=a`hmSUyA5)TIq4Gb@-X2H(T~Se{m->B* z=b~~`yZp>O{39699>r1-Myyn3>wEYxks0uX??m1mt!S{K(n?z>#w-x8&xPUZHch-2 zk^ouDGvCKr1y%w1brc0{A^0?zz)SY>8C$}QKZl@UQAAc#m=un6^blL7+A7-~A%;sf z3gZbI9q6{f&UULQueX|pI#!98B9fT7=i+C$uuob&VFQ-n;ys=_4p}0fYP;KwtFitq z%NxJS#jmmOLT>`AgkVT<2uUZ2>QMibUF*Vo7Z|i`s>YPEz;VX|)q*cscycP=rkV}7 zGG(0**uX?Qjol8Y5b<>oAvrjQkB~2O=c9Y=ablNj-@chi5OEV+SJXK`y;uCJ7Q_r) zIIua0w+ubTFu}WY>9TdeZEoG#WE4%$R zFK{kg+@#BPd5GqT7{%pC0F_yi?VO4}4yPbe)mSzhae~Qhp{LZQ`+96a=i|AapEG-Y z8X~nstZ^gnXNh%mb=&2W#}GHG1A7`LRY^SFONAO}SvTEwi zC&X`3UbC2E4&o(RSVGv}3c~rKgNUH~jFSRLGI#N}GSj3>*yC6f(TO7`f>|hNyShtd z1x)VFKP%BXNK*Ff?$7g;risfRY8COZSNJ;=Tt5rPkBZX|2SQ#;w=^GG6G zSzTi>MKB)>s8nz+;xWu+28hU`euouSYl4H=W8u=@)nPVx#fl=+h>nV^pti&sQFLA) zA;Jt!MT*x`@9D6M*QRc4w zIW-Ny4eKDX8cp>L+Az;7EXHliZh~wn#tOeBh`7WPYH1d2a!Ls@hhLNKy|sYwCC{bd zs~7m>!DNou=^EarePl&yD{WP5^00n$W^{JxUPW7@-8q~>wUT&g2&lOZ`n-n5z?q?PTV2V0Ly#1)=w z8tz<^V~`;ZVUTncZe;_u$AP=IS(q==E8+HCD2@-RM*yHs%qLSxl5tGOY;1TDuU_Ks z;H9c?zz#YGnK?QwcGokI z6esgGn6(BThV?(VTS~citk(rjRlC$b<7WsA3tVqzWJud!gvJt`6r%u z!WEfG2ue&cWnz_x=r0f474eh-nrUFNl?uDB_{5>Hv| z8xf`S*b++U;<{$5Xl?+!^CWjZhtiY4UFiu%5d`zdT$K&+j}x;5ZzLvY#A51?yIlO0 z;7bZldk)2J?;u%{CYY2+h+V?>WDys|amgoaO)xZIEkb^m+x0M3clUem0fmz2NJx;h zu+L?n)z(!L(;|xu-Q6sQw{ioB9}dp+ciyB3azuPU0dR|EhuCaG4b7HYQD-^mE0h$4 zURVbd!f#yrR=>JjjlLOkNN&YOiJ0Q^R@Z=|6!GNC@GDTGTn-K`4@$c3u>aNQOj#EM zGDQ3qV3H|UMG0}VL8h_MQB34WvnB2k+!6s3@d^oCxD5yHEvmfFPHT{?Z=fuHtHd7q zemw>ZG~RSg#9MCr%8jWTibz}bB=YZ9$V}p z=oJYds+*h1TT$aS=?Vsw8lMKntPZmSox~y>c8sWo$<(lQUN~tJGjrCoWt)}Ysy~aT zaqrnrEe zE%lYw-*XL#1m=->pKm#GKl!jhBB*35U>Xq zXt!tPe0ZndE8(AWW9bWQ9`+)SMFofIz20HJ{N*pPAwP@7NumAtpZqZ#_wb7wzK@-*+XZ#3+0B zK5CV4;}S1qV`bqp9k6)V2=o`~UZGXUi92fXM??zl)QLC*Gy=ygi;)y!jc8UjvhE_Q z#7QU*qMeUhev%xc^OzM*g&%ox9jeqLERnE}eI~dCgzkk;W13_vdsXQ@#uYHZT!)Gy-Oy$DjbgAVw&H+BVhM zFoB7N7(@!LSzeAcfz4tQjiXBxd*Hien)PLR?`}V{f(w$!L`6hc5K2kj&HeScnP=Z!w~H0!&`1b&g_;q+=~mV+J4h3 z)7N~Xk4hh}{660gPjEfl6%p4ya&kF5>A)}Hb{;`=Qb07nyd@OBaN$c+V?;@uwXvZ= zur5gqmR!s=bGfGsrDU=7_RT_=x0^EH4R%~ZF)~a^&}Y~$Q94tRQvM5^3HPYnVmaBAVb6*Mj?Wx(F+3N))#D(5VI?nui5F-7p$eZ z(H?oE2@St2U}fVRBBStA`ICHiA^X!I~h`4e8(#fpXaL6;k*52e$u-$L+xWC;33WQ}<(i zu$semi2B6#fWqOPH#O*zunX;% z5baG{Wh)LqI1F7rcFq<_I(*?&CyLVrL@Xp}t|jJ;=j3!YnK}b|eaB;0Zhl3aRhtRK zm7JTg7>ZgczPm{R-8*od#1Jui?2%SCLuFKPqi*((yysAU7+;tn;PwmxLUu8AY zf%v4JtnFl?;d_;dMj{ujK(gS`EPy88k?F>#=#-#D}jxyQ8ENP>~f&ufDDhn z*w!T+%M}R1AvvXg5Zx__BacG}74=WbLj@2cjBQ!#PMhpRUom+dVm?Sz$Wek|m0`)! zVx`&Gk0(m7dMQCH4V5Pwkrb+WHpL6I;$qF^6LCsWBwa?Yk68U7L3?iZMUDrWXk?k9 z$)+%2+qNaFmP|fPRb`~|6MQuBOBSj6GUaYSAVb7&14Sp~To<}EH`Q3hxdNM+9J7Jm z0oz_j%x6y&A+AOU4|4i;HS%-%J}mHe&f%%al9{SVETYJQ^YgP#z~4E1*h9xE{>ifk z585M-KH?5M%fk;Me#>&ZYbzgO5_mYuZD6sU4-~wBML@_wE#C?1bW#qOJU^-8my5XT z689@bTyaCIWfOa4evo{h!=0EK4%ryujK-G7SV0o=XE7}gR|-Ac-yNe}ZcRO+son)? z{PiGNYK!oCMOjxj={Z#xx9fuw)J{;o59(ngcM;Cq3qwkp9B!w;qdg$new$kKr}F2xd^Mf^!o`!5Fz1a8`znHmAdBC zJWhbEdP2OC4G6_^WVp}f#wUsSnvYU?8u|Dbo|2dzE+LZ9@{v%vMBidk0Qx`$zX(=Q zF>%g_Kvcw;D@nB{s+PEH-6d$eR(4C6=AOOSX&-%h%_>Sutm-*JFBFh;+9xVj70WBw zbyuFb@iq_uPaYap=r*7E$_LXI)grG{rMMXZS<zy|+1<+`tpPO&F!3RBkJYxMQNND*Q$+ z-=cwX_<%zj9~!oI-gyTX`d`qxCHu?2{7Y+YX(1y|o^$1DvJ{#6DOO5~Q7ENvrhLs1 za3Za~3;R!7u@&H)Png=jA@)$%S8?f)7_Rq3E5zN?veZ}HGdVVZ!%w$m4-8sf^(M=! zYPCd3EettaIfT~aj3%K@ z#z$9oKk4Wa)>K<#^;Lz;H;8`3>u|f6fK0i25Xg+gJHRqTH_7tG(e!@+cky?xz6*z% zYyakd{+`v8;LD6O zPy`~3#Y+V#;HG=qaSpmh;t7&bVA-;SqfUfS08tkq>V4igy(wKJ%V$ML2A^3{!<{^P z!bXQjZEN#Z+u7C{%sbo}CC8|LN7(N0@yzxsK_ElKZv(!S<3+Fb zI{HSfAivlOLlJ`p-12C0k`HTNE_*sOA3y{qLV5Y&`ybe`V<+%N{mc{g9zuEf z%(DlGS4{?X?vtg0b7&BSu&gOY2`^^0Ul{@+&fNrO@3R$E2b#$A2{4o6V2)Lvaavt2 zmsv3taOLr$DvL>vgT+dD5vk%jyD&YMUWfZ;Mh!1E%omxo!R3NDG2iEgY+-c3Cg+AN zpVe0+k7UeJsD`%XUbjXBFY~rAY4BqB7*eoJ*~!yq3Eezto9fH0u@1Aw;7*>Wo%h}N z@a8?xe=&+=jjYT0ZVl&=hd3=zL02z^vIf{Ht>sVua;yBh7&;~&_CbJuLw)=gGk z%upy;48TBJAx{6!`+3zmqj8Ga3`!Z$I({=7uhzZe-SwDocdBkB(n8KQ9nUK zW;}D3$cq{!9!`XW4N;OVCnAK~!drK`^CBF377~|iJT4)~5~n!<7aJcEa(%YU9Wg>F z%(JJSe!`NNH8wR?1-ElGjfLsGFZ*G7Po}JfK!%8~hRB-7;xRCt0(nb{vdMg3U+b9$%;$u)G*zPLRP5wgIP$b3%$oJw>yv2-D;)U3{G#>s_S>g;V0Pok^UwdqpWC75 z4%)ZA^)2_%R5ZP%#d%g640f%vu~x_s@O#}~U*LTKZ*hwU!i(C9U^2{Q{|(J`1|4F& zgn~YTSz#_BmPAXN&39a|#jy#S?`r4nNyKSOo~bD-HDeQ`k1HVAL{1jW3V4rs7Ije> zOpTijQuiVuai`I#B=OFC`pIXx%zeCj0X`txmH%ln9yTf5-r@@~r`HdG*#Ayh|Lq(1 zPUQm(yxGwIpyf=?rR>txt8T$jQ(KN4xxn!{3c(b*1}OUt!%H$CxTqvn2j@OJXFvb> zU)!s{ebolBP$(+Mw+0lL$|Z_fIPH~vFpFLNn6mV!Ni7IvP1?U z2}fKR4oR2g;#A)dK@~BpO`rrN!7{;G*n(RSYsC%kB2wWSZydF^-}}ret2SFcGWeL< zqPL5lQ@lyR?y7_EWM=ziAV6aetg^NkOOo)vgCc5?CRJ8`?6bK zMsXsX-oJUs1=llwA3zACi8v(N*OT-&DoCU)II7`hzc@8vb3+8m8tX-*GGI12j#Ci& z9Vh;fXC7a25!;;2_g=LLY|sm%N_f3wbNCG`;nu&flxJ6ZC+zJb1l~&K;N>fqesrY} zZxL`w7}W|9@l3h<5Xcbmb-@&+5Lxf#Od(_xBhrNCo!lrk!Lqccf7J3ZByXxlo=E8a zz;-uH3`3e2zGvN-tOxmtuzDSY7|?lQbuktqwm4%19=9Y3 zC+5ZmZ34%x`SD@Wz~R}+HDwTTJtp6ngy2U}^vI(#IfoO`z@m-g>{bYl#mjSzSa8-p zFlA@1Puj>*j&0xEN}>?L;$nUthtLasgHdyz1MC5AUWSO@vGal@p}1O6Hs#rr=pm1s zn~S)ho%rZeyL6?)T1gmDRsJN-72F565|q0{2}N9QS(Pr_OvGhMxIBotIz2UIk3ar| zJ@?%6Sk`PK?sPsOG?0nvv1J0zzSyVb7u{SZ7c%9(fq?qvmI#q<<*NR3G?6a@t3=61 zK+_18DDvveO(9AtEkax}Y_ahH5-pEFu%~gshtn1{SCN7nLcTOVZgT_3zH#I!Bx{iJ zgI>CZuH|wUCWNA_3Te96dx05zYL|j6^(337b*qqB<>qX&UyTzdN%e+wpmVp$?ncEy*M1=CD_k0rCO*nDx+x-WIxDCys7>zi!% zj%Fhd1(StBh$YW|dFJ#f`|Yc*k#RoH{^_6n8HBvq{`8;z(;H2o9!1Ie z?DNNMh*&6_H*c})*L$pyfJZLiTy97BwAx4U^JqUdZZX|%@)*`P5Y z_F(0T@ut^%<(WTs69O3`zD{U{d~2HZU4E(%@3cMJTFE6iYy;gLSb=;^Et5u@e5M%|$L;TgLF^9j{xoHKpt=JRgO#@9pb#(anBOix$3KW{-x_a?t+s zfBw&Q>Cz=E17_{%XP&h~hYr~m5;-JE8W5F@FfR%vC*jk<_U8AlXwc2KWsV+h2&@b{ z8&3E_7@3zuM4HJCPHYs%x94!awo6_pp(0DYh$f#+0=lHe9;Dm$81rN-$+k|dmKLv0)Fo0w)#akYUCy^uKZzP zqUCvf6XENCe&UwrXJObLlnM-ZzhjyowI zptl-H;XBo~a6jCxZg1vzLqI^pJDl-F&_TncC0RV>!&8*n++vaSkihdRj)&EdbB%BiobQ~0Nub_uQ+N#og+yBTGE6q(= zWofZx5l9GMAP|268Mc&>xFoN5=4PO*fzf`i&f|^&7ysGWb9U_Lajapalwx8)IW;nj zB>`NLxa`uBGTXX!n>~VPXW!mOt)`~NuLTNB>hV`#B}~0H1y;JbA(^8L1Of=GB;bAq zdn}?HE+IT$N)_11wAq_jWxaLcvTfg$V>=eXZ|;*Ji=$cwj`tJ-86tiMaEC}4au|Lb zp5$5W=8-#aJIRz=nyPJNe8##4h&N6utjf|{E6OK{0+uQfnRV%Y5okTMT*vZ`F5f7K zQ6k91dwZ@s0l$hFqhg#Su?_3)?0_>rL#&fL+uXLzyI+cUbUknF>Y*Z@GLC*pL&7- zR*$(~M?|6A8EY1^{1 z(Kff#SZQ%C`Ws@c@bhf&X~?$``J+ z6I1!36(UxtttqvlT-oPhRU*nQg{E`H?EAo3S+D9=!6JpUX;-hd6R_&64GoN0ZC$Nr zO8Gzk-M_c)>)r1Dzir!2+q|XC%>|u6i*v#uBTV2B)Rp<0fxuUVfW&%+3G1w#zu09T z9ytSwChR2~dzvaM+(I#qbxSHM!-aoUNPn5 zcII5W)m9hTQ~T;H34!%^6f8Mq^PQ&PYt*DuWG*M4=U@HozgcH{7YTTl5Ucbvh^B2~ zeB7EgHQCGGd)Xe{yT?k3Nq(y$0xqk82yrn`um;M^;8Nyq1_F12z)h@#^B0`)lj1bM zT`W+>Mn}oRI*b)cwmrIUpY3d^AdV2>D8OlGyfZO(dQay1-G@Mih_4%_Lgv*aJQr~0 ziUL?l(1>pz+Hc)mBe)}9w=&{OG&UAlLuH;Vrsg2eM3O)-9&pYYC_x=j*@QD#%1Gy-0*b>u(v50 zPW(2&S^p(T#DgMEJDZX4)ZQI7h8bW-*Ci4V!yz+JBt~(BkFxlbSjD+zp2X%`u}>E9 z%)ENF!`^-OV;hBld(bTg+L8hfLBz#ni(q#WxL+K3X<4!55TrjzUDMOk+!urpm5g5X zXG#VFw}*hR7TlAL1`Z?;^MN{!tJ!V|MV<#cb@`edJ#x~T8#mkjCksjESK;_2j1EE> zgKs_n#6Sq|!qIU1w`Z>29SCHI_}zh{*CH+?3g@C2LyZ-=c5vSo8{1ZEjjfe7K0iT} zxEafaD;Kl8q$O*(jAhU$1AQM}nWs*kx6jU9wk$m0lw@atfI~|-{lt;CD;`Q^8JSoT z*?41av8SFoU|Y6sp-u)Ib!+eh9K9x$3=zMJUHi~h74XjigQ1nAP;vogU>*#bPi5Q4 zWXgVh_@oUIR4q5B7`@D7K*Vo?h=_Iu-);iQJv_(|@w*Icp|d=d@pdP+a4Ao$pyC*i{5cwOe_ z=a93o(SGvdS8NCN;%*I~u((VdOAz`6%p1k2#}K*1v*NTtTv4WEAaEN9q#0%ra&h0j zo&+V6MCY8xLvwI)-hTb&NjrY7+qTzL*`tr{wJqSZ#`FkPFZhnA0m`EnNdn@&+eVpyr~gOfLg03&`@c4IYb?Y3y610aiLx24I$SWn3uXj z$={zL;CHc0AMUDzI%ys}E?k5(%Rd1OL$ud#r;dMWi<47!=)g0!cNbwL$i*3ASFjC_ zgz1^`O+g?-#P1g5!Q&g;Nl>X!TpIk^(mZ?lxdYbUpS1R_VLNu>ik0QYZF5t(jbXj= z<{R(XFoCmnLAV2x*Cp4{mu>2$E_qDN-SNogx(Hy9lCIl3i&pJiXUi>dFxBt%czsKCbzK z%*lHIfeaD9OF(wA8RBzDM>!dV(}5g3%j`SPAGE=q5o>^eCnT=Z^J}6NCw*necFpS> z2J+v?hZ3_UV~ciIATINj@j>`B|!SYd~r*=NNi zSe#T85}r9bf4Oag^toY#N2@1=OD^^MNj-~IY^VxXk#$$fk6 zF+7js!eO$sx#_sV@+_lJ_xtN&-O9JJG|C5TC)_Q;caQD7=_&y;5dkCGup8Eif3ptC(;(5&=8 z(YRSQOI-D$&mD$?EWB_BObBnwY##s!+ydFcmg};|n@?-konY&ta3aJ5^eSYn7j>2s z&&154{qogQ_TkA9?wGTJvR>Qu=$=4&2bGYqlTrhQPpdW+)ab#E{(AMR@3?U}v-kBt zAVb8z9=Lj~!6FCV1RL-W)oY18Ubz1e?8GBBP8Rz2KRk*B$|kET%Qu3-;S40T(gKN6 zV0)ZkGcq#c;%n@shrjATXc8ci{}qFP$FLNci%Z!yIvKGer?1#2C;xx;-uyYPBg^+Y zRfVd;zHbCU5CHd8qDYF=-mPAyr)TMzH*e-Whr`dF@DFypa5(&n!~cYTba?s2;qZH2 zX8c~y^g6BXQFp7QZb{wRC~+5e5+Jb<`&xyn^5=W*y@dh@fD}biq*Mvqy7%VI^M$_?{^2LK}!uzWk(mB6ApF%M+RSCn3=;zt+s7xD>7= zi+1YK`OYjX*!%CFvDbcm(*EBcyloe5Oxgk*Q644S0uxQaOj9&eRnv>ECn4A6G=8BJ zP+fD82`a3<4YEXfXq`}na*X!;VwGk#R&BSY;`ZB*hwO*Hc;6VCOh+_P2jH zYZuuxYkrAk^fVX8{331_A0A?A%Rzs6D4^N{10XR9SHVYj+U5b#9a}yu!Bk{9H!~Bf zvC-+6ow+<}1H)6cduJa9e{Z*~ooweI`8TIZ6*BCKNpNKVe|&34S)B3+%0^%w%^z!r z3Yms_PU6|!Z!eEz?VsQHy`4CH#VT1oZ??_)x~teb9PURBor`x!*IU_?DR55|@ERlT z8Bw0h3)ypzP?8QJ}1y@(4&Bap6H!frL`OQtet?T(bY`AAf7_oVa9j^K*9W>0bNm?;f(& z`W*X{({?nY1oy6!deo5anFW%FPu za2Jx6#VHS#-0OxWZalbjN(xPB3C#eO+oxEc|JQ&1H9NSc-?Hp>c>VfK8yFZtTZLIp zu}Nwax@&fcMp-sx3fv0?RM(PKbs-ncz9_LY%jfIR1n;oXakKCL=neb#|Id$Ecy`A3 z=IP-CsyZ~L(o{1|$*9lIYinAMOux}}FR_>1JW2{sWM%V6C=j#;k18QR_IClaSq;yB z`EAb0+`pBEW-PaFw)rdvNG#5=3_s>O7&;5YUgC^#A4zh{kv!QH5GS6WpN0uYzyq*c zK3;7z^9j3hW7>Z3+FN$!!Y$jmYo|50wz=32mLcG>1>QUh#0&hyrSj@^uFUT}t~H`8 zPI&|+qXreSG~QHviLu1AVP+tlh*_Vd{ADc2e z{ppas&bG1_t_|4Ey*upr7xvrUZJVs6CT&c?82o~d7Ny1FTO|{ZWaEm?>)gH69j}n< zr>p$sJ}7V(x|cce`=IH4d5H=FKo^%2H43+e$pNDo{#N)lpd%wXNoByM*a~#sn(UQ| zI@{XaM1w*u4v1H9>WZ{n)LwkC1%7?t3xI11%jKEg@JOjzB+m}s9@%}RzU=7>r+^Ak zh92KJV;)tsVezUm=;SATt3a-;3C&=24%$w+xLvz;i>;2|wTl;rt$*hZJAUMV?eFih zrkWJ>DwwD7;JuDWgItDM8b#~x<)6oq0_8E%BPf++c{nXZjYL!z2VO#b--L*UsEw{_ zs%vcf_IZZ-iLISn}`2 zkKp1-?0eZfffNVz%Ju8>Qt(dycWJU^5WkaTUzkk<;sV+%Em6lL z|M(Zbv!DO+Ee=f{u|xZM?0@)g{s!=#4i2eRTSgby8?|%w45=NggHo3~)43_n5q8eC z-=#);VYx3yyfFm?%_>kYbO-PNttAnqOp$#vt>Qd-0d1z4Ox*tQhrhFHSBC8QV@K_| zqX(@r#R!f1l0Qy?u;-aF{ z>V?T10byTb4~sMhON>p<+Cetv&snXjC?*8f2v?XA_05TbRe8LY7+)w2imMJdXI}EH z{P-oIfaXciAQ6x+mKvk34Ca_p5liV`j;nQ zm5mJCbWVGsP+yQ^i?hyi9%hco@5zOvonqqhSMQ#()90_kVHfPhqlfK9CNX(Lv!kfCPkgO*H09@$MHFSRPV~>!BXHZBrS8|50>2b9a_YJD}W-`Ov94gvb~`W zF^Sm}t2>8A=IoR6!*=o7sEyC&?5TZy*1M&V9S|iOWq}8bK*E_F7k4lb_z>tAs;ZdosebM4D1hDp|kk=`Mr#<5~ks8oQ>d1jX8*zpgTFJ9hNj z+4Gm|EjG;>LCkXO@NV0`bF)>aDlO@IM=#P5XaY>WxO{JEy%$^U%3McrML4nYYx(W5 zq5!o4^+DI=rffBLGQ9vivk>g|*qqHw&RKVBiydXJ`sWVsvPN{kE7Yk|_Df8L$8}VF ziBSzHnmSbha^%*J4#8j~Y6hlyrghCo@OWTc9=n>dn*k zi(kKIL&G=h;NE`wH~;!O*4bFWX8v<59ukP-o{fv#_>pgF(NUmL(*+G&{1P}rQ9XQk zL^n^)BaZVCW$lh=?f`LFa79HDzTV+a4#INFve0WOUSksrc{_FKs(t@I{LH4|zW?&i z{sr5}9gIA8du zV&Mf3VViWV6&2ho&-B}t<|?~#ec1Nx-)U9JI(z@4b1rh(+TCmobt$XJv-Fzd-(s*` zv2a-J`BEbnTPJYPv2g4&9khCdEEFh4&U4v(ehNgxDupBng}yH4(p{IV_)!^Y106F)BU} zlShJ!a9uIW=(Db}dGaYx=ER?vGK~1}Ai=>TmD&7!#%AUgEnQP%m#>f8KmGi5o0zz5 z{Vb_I{PZq6w7U;nm}cm_fK&#p245&b7;4~Z#sUqUwdm)2s)xK0Z~|vPIz{4-rhfb(cb#-s-3<#YIDfK zpFi@n9e=vtc5Lmo*18&FBSK$BAIyKKd=-4Ci9+xZrJd}&D=LpJvf#aJ9y1Df0j-~= zGAF)1Z632Pu0v2vQ&g_i>>Zk7^<4(et-6Y#bX^@MwG7zc`%i7s9 zx(eBPT!391R4X`vhAu)BM;J6|eJGm;N&#pq@DpL8krm-wTh$-+#I*zn?q*~gevaNs+b8F)+54xi+qLmY8=c)} zuk7!!p2l>D)zWa#LLukTf`$!X#5C@9Ab+BX@|Y$bB$W|r3TVSuiLvyEl^gAS5>KQZ z+h^w&YtId9<=&&-u~;q z{;oZ}t&2l~7A(iYAhwvs%+cVb&B8t`LKV3ASWJ7CKfES>2c&rN*NSf~JEi%_G`=Aj zS&B+)ITwz+VOJb8jV`{i37*ernEw|k2ne5T8GZf&>L z>XaopgAsKI6eAQ4zN6qCBz+XDCiCuQJTDI;0e6e|;eGeLZOD?3od9ud0Gp#61h_HO z22n&|1?~c?aj$W3!yj0go3UwDFc)V4{f(Sy{%SXRn2f5bwqsJrQUqrgx{lo zWhg=!rRecU)jcLYbQb1;vd~|khaXH>=Gf;ulZheoo&l2+R@cyEmFYQ~7@4u2)=oS4 z%3kY3>!h=_$u_lBJ1s`S~v=?7GVs-5;cJ|7cUAcVIKAyT^wTYB9RaRL|Z@UA8)&y!|T^~kvg@%uo&L=3b1SdzZTOBC3;_sAjl$a`e9uAk5HL4mCfFp5aw@Lc>X zdtSnuzPee?Ag`r^on3#X6dsY)5~$HKYHns5EckhdvbLBVn8+QL7{ONzD?wm8mJeeHkfG2JtUrsnXD+ zW7{Nc)wA|Ys;#ZGy}Pz@y31zUc5%c`e0b3YuU&;p&s%n>VAJzv=dO-3u@6N~Nw^g3karkxS>McDp__VgKX*`U6YAl^=O}yB*xM$=aKeR#lm^de(BM*gPqLs6~1(F=Xg2 zgXN@WU)}F=S^x%M)1Dl{x45)jBm;LjII!cuC)GxoFrj)>y8JF{J%t^C+!sGY4s=(T zy5El>_r6J(rV(}KEyMpW_c!nwkA+)lH zF1InV(HzAR8<#9;l_gsr#0s3W!)Z+?FAmw8ADlx4^s;xaP0Uq1wXNHpJ+Q;}?b^of zgS8%wLiMDr$|odsd;jJxgP$;UMZYDVHhx?c{>F~WU%wCvtS;EmBX;%jb^CQ=%yw;WXP3lX_7r=w z)Ym2fw*rewSkCXK!3dDmQ4ksSIv>$r#1A$@aD8xv2s~pLe8#V8?yI5IBD^!dfUHmzkU1bNA2nUHmk3IjvURSwX!RW=YQEINbT}_ z`Ke5SGAI5etpfs>Qd9c23Ky7M%LGSz0bGM4llI}6F*|Ycj9s~Q8BTKEHf?IO=bt@b z-+KNK2*)S43q}yQr-KWwFdhv% zw5z0&#W(MJWJi7$;kcJrXthwNvRmWxcJka+`#pf2nVYqL`NvECXxtyR`gTVpjTR$I~$#JEyC-;XKHigJ0+rqts-dn!A8q!hSIf!<$@d89cgNA@5n zuwFgTB&fhwB9ID10o%G;tfs2Y_HA#p8$VL^Hcg|tByuu7Bos^q0@A@Ex~c?o6e|AB4)}l zz8M-CwbK_^oO9`x4UEom*frZ8jLmRhN7ANdC4P$8*6t2#X>PPCXk5u+OVQt>QJ*4N z$$gsp_j#WYmc2bT6exrEV^b7gTtX6lPylEK$O;Tvn^M-^(r(>d?HmKwYPTmRtf#w; zy*pSQG&*G;pSh0HVLSWjgnis`+ge+yt!GQU_4T%)O~G+-0&(e`!(Hn@f;db33ob+F z4%Zs@RiVV^`s{Km*rzjb`7+)-1ilvmHGn7wStrwHfh<5+duTIS@bEOl>n22R1*LdA zIf0#vg(Txgo~?b@1-|M^mJoL26O}mSAYv4|C#Pm@c5((0Q_Qya_uE2l-cFspVJA+X zXScz$wRQE_o_(CG!%mZZ=;LdTo9a};s!}Os-9;x+P9%#LcORz8Qy6{om-0`U0_#wq z4C3n$=1I49HN$(%L_Ac1aB+el3hfjDWlK{-~vz} z9sEm5)B^VioJp`?uN*&O&mB5qBO~*6{?lRm+BkF@&atxIdDfD zG_Ut+oRf!}X7W)$tqk~Ffq-4XqE=aOJw8@UVwEMYIXagm>~kEtu(X(QZn?H5WfK7S zN2jl{73?j$GB9G}#$vozpD!> z8sc=Ld-NPym2YJV+$#mj6Px!+sjq^&6$qmv;lMiV@}Rj+Nf)d}SR<#xLGAsaCE^KJ zLrmHypPaFO_xC?y1E(c4Gjs|K8ZCfYZEeE#^*7sp|F_>m7_nrdV+bcWp+>7j(=NtQ zh^WZ0Rc@hx!a5RoO`-cU1;$1;AV&SHR@_KJrFYd-tk2#)8HbaTa*nYOD4Rna36em$iMeO$A_GRa`1Pd zKvX%_aaQKU*CEVT-CC1)YTw?*sYC*7uPl1N-xW6y5(FsZN~{rnC4=HFZ=N7CsjcgeG>EY=Z=Lc2U?9@#T`W>(vBeTA6rW$U2|H0js zXlu8d1Jm~I??1AUVGjNUpi>p7;#JpKHM;7pZB_Qdi-&D-amhaX@RW_PGh;rNV*f75 zvk}i!WUX^^wQb+g<>^0t>YTm*9=h4+a%)v&4lvIzEui98Yt22|5Pih$%8gOGaCz90 z?AzVgP-h)2P1cPVXmdxC^=#_2#_DR@$D*9RuAEg@S6UTE=p-PH=o4_=>L#F(EM?&O zMZtu{WFwdth_ zCJJXg?!?$8BVK(LO*SSX)inYXI^_tF2C3b)_a|6Le5q+J_3`^brYy*W$11%8L$Mnk01>;Z2U5 zYJ5yxl|O?6e;cJ^&%M)oKm-omIMgPq)~agq)=*!?3P|9d z__YVO!W7q{TL-&~@?aw-q1V z{WKj;^U+=S{2}0*Wchz!vV_7POa62D zge8;mp^#P?N8G$+IL|VUsHY;uz9-l*Z|mW@NCZz2U`KZaRDAXzmCgVW%OJjr#^u+~ zM}a#k?aJWFAik0w<+ppFKmbzfIoz1Fi$GZr9Kf((oM(X|{I=?A0EhhgzW_a`#X-n` zvCuzs7XhbxlFRU0&=JT{;5S;{uIX2G1hV&hxOyY*#C_`vosGhb^5`J0Ph2ZN8)qxt zJpn-q#rdyg%AELGR4Lotl>%#5r=qvAOuR^n^25DSU?q61_O*VE6KBmjNIbB|xvK~U zpcjC7#D&YhU{_uWLLhIDewhSpbX+)Ao0IyQ3v=J0dWbM7D0S1iiGZ0 z%Qx0?T56}@Hvrt|Qn*#ST_hF3I#9--l6u6ds1WP}psr8wAl_*_Na4LYvPS2(GdSA=PebF6@ zJWBoFks>+Nb!SSo2Z;V;6vT>PHn8S&_|Txt(K2)MMqEdZ_PH*l;iE`o2tGU(E!(orz(GVoRcrqS2+?~$Ib zysijW7Hg$-y`WaRUHz`$2vhkCx|}GnL4b0;?ByOJFZHmxFDU&MMYAGv>t$ji`zUo$ zfa|%9BG)}~t2;Tyr>L>nGy&$yyJcE#n^(FR6gn<$CFWAvYm+C|advUA6}(7tH9Q5Z!> zcRn~rt^G~eGBwN5H2SOH=&c0DZ7Jyy$6b;m0#QeGmk9anPC{pX`nsZ5y8Rmur9rID zkKAG+C#&zl*C4p)xzv5Bot~G2S4iq^wY#^T^+i35uIT(q9?Rw)DG-%RsqNt@y;b)shy zlIO~B81F0x1}p;T70I;KR>qA(&K=;L>sH>#ygEE3BszLv{WO(CBuAwY>)jKhJ6B{x z6yjOmc!JmXTpEZzuYND}qS9U+PDz|4kEOoK&k+SSqHW}+d@obr!Bb#E5Eotxn8k;A z`&K(=w9V0m#vzB6he?Y-SJ>l>9Jd^vGCH{hPt{lo*f?pCOGpr+L2>hbtRllF1><<- z5B%sJ`H9>`ciem0qW98!7)@YBAS>P@hhc=#tKSKcf1LrG%`Dl)tGDf4PE?KNre zGETtgrQ|OA=v(Ao?@^Udn8ngB@mGE7R}%*hcuec_@l z#un_x@D0vEEZEbWc>5>cc-H2pGWO%2{@BuO4Yu#tGuGMO7=qbqkWqB9TiXQCA|VB) z)LDc%CH4{2t#HS8IW2WAFKZch6D6<2)8MTUd+Y6w>?g1P)@B#^P^hqhs{`~-Pg~ck zhXbht{(N^-?okj?9D0{DMx7gCbT>ipLFcCL>eOTxnczF_i(I!{g{IVDWLNSzvhw){ z!VQA(R79Uj?#qGYIT}r_0`~%Ke_M4g@%p8CT&BUsSz3e0cX+thuBUK>S&dibjA8#*fE>y%ne}VON0T)LD(p6?zBZkcL|jfTy(;5k(S|f-imk<-c{g79G<>F zpyG)m99c=cu6X$O19`>w>fm0DO?3XGCQGw~rSw&B&ZE;vj_~U;_|UKHqYgn~$tY|c zC`{Iacb?Tb1m1O?rKp7)jT*?XA6Tq_BSYB)(sHF+DI$#!$j`uZH(`emMHu;eV(;YE z%Sm_Yw+aTcoW13zpk|cNYL!cWE&r4$@C8#~Ll92@1$kJ_t5=5X55GHYZ~x(p4Z@Xn z_4Qj#b=t;;2W)y`)MjVr{q*w2wp!cLyVVu|&*sMF02~Ey-Y)o|@u>ayDdxNiL|q~Q z5h9S2(*S_o5x|6^FeL#Z00lxz4 zD69w^mFUIAybX`f*o~2Kt844D=U#f&4({AyJ&Y{ss!{~U$?E`s&p#4eK0H;of=)_+ zsm@7FUzdJ74#=Rqdfq%O`Y0Nx+X+uu*CZ*OljtLfRg$pzTufu}IkXpmD=uZd7@vo! zkco=~DvvrlILEVd_zHyhloszmy#or|ifVB>Wp{!r`BA`}OB_VNt%Q7fd*X}$TwS~f zC*3J09J!EfV1n`pGAde?nt*ntHi5gyFJD6XDwMJ*Q{YihU_%fWINcnXw6{JuW$&Cg zZ_~)R_Z`}1&pfl=nrmw8>?cXPaw%_}h)?1iSKhOu%U*~dvqG}c8rqxSP=iXJ)#&NrbOL2{CL z(z3BUO%usG@7cwS-5eUWmX1z~r#Ts&Fa)G%3Ob;HQ@9Kong8mYZyqTYbD5lt&t`0% zG;ZtPVTX?Hv96|St0ujQR(=YgV*;*O+9^5McX8oy66yd>cnVAH*~8~m@3I!)D*poM zJPwlK+&~hfR40=q9qOPWXDagA#W3qglo|(3qnkwY-DdZ3ma--)}?;2@_Mjf(;p^+x;g7@X`k-JB8SAI&(7nP3EG?Y9?$-9?i zMQ-K&Ufh>N^Hq4<5X9%RS^NDbC+&CV&e>otYx@uGv48o!SFF1=X;oCz)?|R|ZoV%Aur;-k)v$fGu>Kp*`8MI(-Pt7rjnsJdvU9x~SOv;*| zQ6=fjF6L}xbk{DxU`w^4g~GTIWU_1;ez zRmxSbxaX-0dFjKeE0qbp`BT(e3N0Lz-9g~QAJsL=hyttm?XUyTtaw}u2_2-K!>}Gb z&6F>hAm->Tuv`8WBXoy(kco}L4@g!*OT`*}j8brCT2~~c)cJ}Jk^gn>>-j6Sm)E<6 zc`xqo#mzd&ydUcgLHyRlg1vY0yj_N??d;ucM_)Q*o4Zn$gd0pT*5A9o*Y@n|wLJB7 z5jOYq*)jXk4}WTV_V(L1zIoiz>4Lre&UyRc4}V}UzkD2ybC6QHlOeFyg2 z-~8FDwymezrswl^^3)~!-~Nxk1H=~zKVePv4fZS(q<`|K-=e6O>?g0iZ6BZb*uL}4 z=j^-Rdd_On$dVTq?T7#PPxgm1XY8eKylO8TJ8lDmqxROjAKA!awbizC*riJs?An!! zR##VVFTL`roj!HiZd|*JEPc-Q@7-hH`?GJ^f!%Fz;01f{{Zn@K(tusMHHMfdW54cDOL@h^U3r$4=pUu5t!+}4&R`^)cr*Y@n} zu=?txeRAre{p2Ta*w)@{*4^7}zkBCBJ9lxwW#fIl9roY-xBtr37OMcwkI4UPum8bL zd~(@2CA$?``(B4i(kBM2c9|%hn-_2bkU~9MxbYfJ#*}N z`_8wIS?`uMfXZx=iRfRydB%SF+G{pHGft;NN7U48$DTWGfBENsV)P3xD!F={(bn51 z?47sYwwbXp%K_>gTYBtUfBZ-G+_C-E(y&~&RX^`m&+n%qJ{&(vZ3di}2d@`{XU&Mr zPEcW|$%uw`xN(jgg84JfoRfxx0&y;J>;k$V-vV)-e1)5A6o;_p1Z^obRRKuS`Nz z=%q!xc4U#i(y-Qc`M_;A1o78?bKb5EEm%kACVT$yc001G*{GUUfOU*`8&zrX8nT&~ z7_s?7R-<>OiV-d}vn#%OohSd$eJHN-}(*-XL^FxYIe z%BJCb#^x(*Vj*e2e*c15YQW;TdANN<4|93@{%gPW0*PhBDOcN>%cHjRi{D$%_V3vH zAD$&0AKA6R+cupgS9x-kooBN4jHPMtlN0>_r)1$VyE!mw|NcL|ZkKOOSvu8Z9nH0f zLE?7m`j8F(-D~!5|MPF6j<}W1&Ftn_#x4(^v%-l_ZI(&c%IZd|q-jsh&Dy8euh{-w z+wINYd}43B@sZsa9I?8lCfn56Ws_qwcK*hM{eQoB--eMV?b+UC!&Bon4%ht4cRxYg zQiF&m4#(U~x-$00J0IEBoja_lsm(IellIYxOZM|OPuTcE3iZhS7B5gXw@2)gv*&Hw zp51nMe~+CxJ77Qg)gQ3COgUEAuDv^L5!K3T(>eS5*WZDb)ApZz?>ObgSc`mzysS4a zmHp#o)Pgj|VPr=I)eJ~Qew^Oyg5^*D&L%H^Vwu@7%Vg&0M3*RD>Z5=h*-{+6S%J0Z z4^5;T^=JvXn?zr6>=RrP!zCQNwcLwIbiiKr3Hg;U4>Vj%q->_5$?E!^vHs)VHEZ2V zLXx--Ow`uH*N1RZOi^sh!AG{bM{QT&4WF=V5f!MTdK5-vxg6HIPmvb|S(4FW2+?=l z{h6PHMnh6V&{$rcq@2LyzS{;E>S8}xD6KMb7FRjTLN9Jn^30s2l$P-#joJ25kF2M<4Eho0JH@$9Vq!$15S zQNSeXds+MV+zos8qbq=Y+FoE1@$jL3Ye>axoz()ZLhxkjP2~HwQ4%9uGUs-szZb^Ib*N? z`c1ofbIkTW{jBZV+hY|F;_QVn`{eqF-9~0T1z2Zk;3)Rk0(D}6bhI=#+Bc8wM1)gs z=TBd>>sQZEXL2??I$i$NB*Kl>O>g9~0Ir^7#d{Wagdjapd4uk#@Dm zEu9_q+<|`E*HdRFKE7Kqn?f}6$A9u|+q13N>MEDu&Sz|f z&TM;sJ3yAO4?a0-XHlK(=*82%Hw55HmM-f*?T$SEI`6=f>`ak=zb z!9Ad{QX{9j9=6#K#7Bk~t+1G~F66>JO$~65feEu2W-@31c|dj^`L`w?YpM}rF!2_r zfyiDBWEU!WFEBKJYG0paXD89Q-VL}f0%%pJ@(tSMn40tNYP1?UjM?sX z)c6XBWl{iK7Mb+|A{kWiXcU^HQyJ;|>_Ub~IPGha2vqk_yI`KrMLvg)Y`3pJd%$K# zZ`+xVPXT0UJAQPlJ-vN0&jy!`rdDiyz_t~=tS`pnK zXQpH%=f8i}mUg&y z@IOnZIJdBbXeni56M4HngxHAL<@TCJn_f!UyC*N(r#D92-FD>eJNkRQ(1XgT1`$+E z7Y{s&8XDHQd%aPVG%yyJAwtQIU9!cC@7eU(cPu@1$x@jyXqfd8oV0eF`{SWlpY^~M z1C2FNt(C`7D-_;1CrD+ zdq_?M?H&>@VJd>^=idUrUzQ0(E<7{1&^!51g^=+$^+TAXDRM1$F$%J16S*V5`qRJM zM%nj%fhgoG2*W+_uD9Sh@)N#c|8UKQAdVz~3Y)fSINEAbq}7Pxs)NL{_=icrIF+`c z2Hpm6o10mL6K604h)Pv0hvOxN`QVBjKDgWVAr5HJO3y^Kefw)inAj`W!cql8{M$$_ z^VZ$B#dh^JGX$o2LHw#JCQ$LKau72U2lU~Os2FN~UPR7Ox&AoRjXSr*uopK80J^!p z!d^bM%?|Xp*~giPd^0DjU-_GB#)9Q(4+({D`;bcN`IAKcYueeDOWyRqIboVrGbu}DW!X=g4CArrsNMC6oh?eDVg zu3kF^@bB8%K^$|Ij#pZeQO2gudfU5ull62r09J6z1v)qYN+N)f$vL|rIm48({F2BoGVi){K#KvIG7Gjlj+SSA%mWSr$ z02X?R8aZDctx^0+vzKBRwaQKz;T9F=a>hb8y2+XJK z&jp>_1@@w~ex*635{Qg|)GsVlXJvwTG_I0Mg%Bl3cP@2Gdi20)0q%ry_H%32z6$hNIrR4U}n z*GKV(BpeY;OKUp~2U5@>_%e1l>lnjYZfHxe(x1uBO5Rm2QWxY=3n^(UG&&*{mmJfF zC2>KE*4NW!EdVv!owy7-Rmj>56IyZHX$V{gXx9Sfi)fJC7?`rXh&y6LRv^u=qKMtH z1Op(5TT{A7ycP+~^L+~4_)MY_AiRaBriKaLE%w6mhi%&qz#9-*T3SH%$`BkGX-!>& zb+orx6~lux6ifi@^{q`7hYQa!Col)cy#PQDv*NX;cE&cL{d4r0gZ9$P2d$;4lJqjK zfHsXpRnnkQ`u6SYx2;|6aP`Q4xsr&N#8E7u9yzx_dBH{|pi5^*6Iv-jh4;Ed9)wMc z2#rTah6$5>Vdm!ugt6eJZ3oT~jUn`OVtcEOW>@gD^kaLDfU z4ljacxzPuKqV6l}k^FgE|G+#A9 z2%)er@EQip3*MG}3J2ssHlf4tquv4&JcU9xtd@O8E*|uKLlCd6T7*j;w+n+~_UX{P z?dYuqKnr$taN2(I3ns(R^5{mzF#GL8c4YrEl%IMp>Mr`zNtB!ma5=srj(jEfpw*J% z<`t<5Fpp|p6(E#`+e!ovE~!UU<>|=%u~Z*OB%#Ptn1B zaPpFkP2RHYJNxKZ=p>LqPfyHwXONE3kpZx(%&67_2^njwtAzVcTT8skjz728{^l>x zfPqMwUtzFgr_Yc02w-bxD{-Lrj##M^RYHlPa*PZLIXVpH8D^L)9vz*rDuz3Ac$}V@ zw2|9`wk=l&kOd2oASK))@dE6<-5u5d{Sx@!zvqDcm;dHZtrz@4>SE)>d-Bs!L_4!| z1PykSNo{rFkn*9|%jE{4$O5D4a5tky8&ijc7;oXz_bqn)W2?$c0Juzi=b=GcpVfD4 zMKu$7b!OfcZl1O5!0&BgcG_Zy#cDfuTV?w$%T;w*9PN@EL(yb*+-5JoZ;OMcERmU{ z-XTwC9YnUK%W8K#Yn5%=ZHf7dCCatnBcYhJ*EU(2c&rW}7c~*p6>;WnnRq1M;c(#w z)HY+1JGu!dENmCZLdwvnG`RG>8c8D;_yHE=ijJSoj0c4pkKDst=xZ1Q&x!=&fFHy! z7y2H#fzNU#4ayabzAeAYM-Zpx$%F@Lra}X)n@~s<(SiqA>s#O@$Q#dM7KK?k+LThH z@mG|zAR;j=GKy7Fdd3J$f@{7-SFkcgh$dHo%OH|4qLS3&;GvlfLHv8)K5oB$>rE#5 zPT2V?rw#lfS?Cla1D=CBOHcuNdbTjE-|MpImX=1iKPm>5BdJM7RMi67K@2jDbxF49 zs{qJmIMS_MEq4CGEjxSal>N{D`#3}S-Ao?N+9#i!w!z!Cth>L{{)_+gui%`;$>v!- z`U%7TQRKyG8waTLToF%ON`=8hX=Y)DiO@L*u-S!P%cDCkk?=E4fSo002M$NklM=L17oaP^wVq?^fs0ozFh4qdG=u%iScrVCRDV| z-J6*(9YPc6rk(k4!G4yQvL3`QQ_>_kg@zEKjxBw=EQR`HfyS4BC9eXkQd}|88bbsW zN2ff;$YGAj*v{?SExmIK6Sp7Q_y6(xcJ1a7+u7f5W20keqg-IJau$yJDSP$U(~OX+ ztQHy!T)AQY@$X)@!)z-sJ2`3RnC!ebFl2FtKnD-*vb{TAu{!9cIJ9^w?#noxtdGeL z1eH8CPw!J;!hGrmnng2cQdL>Dp~w1P{xgep?MC&lk@5gICWkGJ%IW;AGZwF61XIyq zRe*Bhz^gRSb}B)Gt6v)7BoV6>CT`LBvfTu83OPF4iq<|$^gd(p-lMdO4j2>~2OusG zQ7w;EAWo@Jy+a^K`7bwe9v_(rTAx=orwv0nX#!w?F3HxQ7qk%QNlr><6N8~bYXAr0 zB33k5e5umvT82_JaFMeJ#V~Gahe4czMhQpcUTlku{6|J@DhSJ6s0Z;8g4&tfIIQ9$ z@F}m_QbTl(p>gJFqogyQg7fe=11L@?{luz~lj5Z!;Fi3THVQHLhPBrNI@y#9ZRIC4 zo*BY-RRY}OH>TBwjJ%WJ3&02MTqs8%Ok`__?DT?u{7L-g{Z^RlDAos@xoMMdq?&M&Xfnr7fkih|0qQFp zJDheclcp&;n*#g6#1MbPB(o>XEGmv!CZ`GlN2o9LGZ9N8g~rA@`>VhFwxxddE4#)d z;0GU0*r_xPn=mtIk%%LF>G|huS6`nEGC7>0Lgi^Z>b-M_dlW{3e9OcEnJ)C?j~tq2 z%iCES9=T;7zCC5N*=89JIooKJ?4G>^3^>KYQnQthPPn+BTxk)Z`T9RcZbG+Y$4i4fOmmn`JiiB)aY& z{r>khafOevu zI#CfY2~@8f9A>(KQBiBJ#p=7MFb#koLmEVjK74Xu5(o+yRBP0lA5n`YCdEZE{Sv4+ z^CBS23&0Tz0f2e7%vhR4{SvXE=6ezq)n*Ny7Hc8zRgJhy(`KaV7t~YNmB;qZeBfD; z(Y9mE%eY1kb4C+GqfF8_Sryw>#Od_%fNTK94s&=2gel@@@yrOH`iy8VH$I98Y=HJz zVO84?AP1!*#4k<9r2sBdOpuqt3?0(AElfS^ZTlcK$^;%BVpw?)2rErv13cm$ z@vX6OpLYW4ppt-pj&dsyN4kY!JQs6LM%y>)2R%LHx{X%TO`9KLEe7=^Mq8<9MvU3c zD61ZIXR1?zw4%)F`SZCuI!2E^ARS>5)I&5If_QsNwHXE_4g4JvGcqS5;ag-{YwNNp3I7rU0pqmS)@A zw-s?nD;+^Vb%}xUnnXn=+(iDwg;x-NoRU$4NV6Jq$M((a-1rmk-wH)$8hOnMB-%Mo-EH5navCYUF}j zFkt`wU2y$Pww+1e_U3Av-?0TQA5}m^A=PNicwa!co9PJl@7}?x%}!s@+QX{WmtQ_= z1vnnRv2&T*uVr(-IaSE14nLr=&iuj0O7zS+x|?IpD-!60*&?7 zwTp<8a#p`-r`7Fw$*Q-%Km`Dtpg}=gClw%`8H~;|thOWLXN$Vdlz`9Um!IT$eARw49LvQOE$pf4wVi`mmRZ`jM zDm64dvA(JwqETdufiDBNeEOThlC}(@rToxE8@+zfGPhYDf%<3+1}NomGmY5TYN?K1 ztL}fwQtiEA_`&3&=LUDu>?k!_`RemVnHdH_BQ`s9+NNOmrqQ-)-nxsn!l zFY+HpiMVo-h z$-ySIfG<|J1tzTqvOpi@S!tTOZi64bVTHNdl*BASiOC|(gqdT#2}n$b(Pq^hyRB{K zGnA{+M2Es0(Zr39Z2HPs=2rl6Rz+9wmxIyEqa9Y!M*G`>D)jzm!39>M({41Xh&nx| zQBVN>_%MG$R9QO;jjTF5o2{v%*$z?h7r6=m29gHU^T;P$xssiPXwuu>0?2lAAr^yB z(2)tuy?eJ>b6XnijAr~%pj1%ckSmx-fJX&P61H=DH(=grH^$*e8M120duwx*HPvZ>BClXq``gyD5b z4Gg16-y=`$v%P!vAU|fZ6L!CX9vSAA30N?LNab(q<`zq#Hraq2T@$*hUoh-$yo_-q z$wc?27IuAXK?aVN&n)?e<5lNTgUVtR9RsAJ5}WPb-)F6KY?bJ%YZEdJRyBdy*4Ap@ zdg(CvY_~4d8^K`PS=(!ETYC_vjKGz~nJZwM14K~G4XnB)JQaRzO{E=T4ZxmV+gNmk zIwW%iSwOtD9y)UR1zDj3ATL3Z158oImTjUh%Xei=Cc68J=oWG~8VYNut0BI|IdZ2N z>H=I4+8r@9E=FPw^zP_@Y_HXX9Yo?ffpafHHvyA~)b z!^rNB%?m*jECNS?n$qT(rW7<$x-<_iAW9;_V3RTp^%WnN58qkP z15JhR?vEg%M^B#rC?_%=aPV0Cg+7`%Eig(L8)8raz`_wq6N`tyPeBWipif<=C2HH4 zgk_qXQDns$qAih16c>nV(UWDSY-#wSP5$9E8@_zW(oFzlBgzH!C?v3@gaEX_g0$qd zPtbyzvAX?iov~>fX$lkQG|>wn=E)D?3c5@Wp0oLzpIRKiT)cI{#t;i;nCxxPWAE4pURyCqfrBG+R2#60~vRfzLMuA|2(xS77Eqa`a zd7h5EkZJ{#VUTjw*0yaANh5uvXXg4lcKf5(ZE_HiVzSK|+qYXBHQXFx*J)_AG;qpl z=|qxMwN}-=6ZK$ai~36}d9X$Jret{1mHdZjRIS%HqBlkjz8(}&ql(H@42PDPdm{M} zw@aO(f|KyjQ3_dW3gBvJqK6D~qe4^`6_5%M=pzQ+iKDJIX}jte)?yO|;j$$qL*S>f zmuW=|(u@o;s7zR}LQ!s_c##$(XYUd`c)a>15P$B)gLX82kT(St#H~)MqmyA&G2QIa z*xiO*D-E4af(}Mo&cYuO2O$xOvXVx9Po63vPCJ*NFlNJX-%y2)u2xFKC|W>s+IM_BkHx`kx&`q+eOP6Kl8 zQsZG2Edr2C(NVM!h6lhmr+>(OO9ZHQ`SWGv?ssJO*;#yUps^o095L-f{36<4& z0uaI~Xq=?SIbzyGNN^>uSiE?b+vOIcB*=x#TD0SvL<$S2eV%#OVq*h{GUsSx;uS}X@V{aHcWc3ayQ7EXM+xI>ei<= zdgd*wTDWcvOM}*gI_GSz21W-p*Ce#21OqV#`BRCaw(JcPZaER7bDX-4LXgI&;BSkA<^_$%$#1hbQ5P8 zn7}gN2JqyqGw>|tCocVN=ROjYtwO?5&b)Y{Fi0!JS*guhq?S8Uh*6!Ag<_QnVhWyD z|3+@2`|9s{UydbkrQc$HLl0}&>67A);#cP?ce>mZA0mt8yE@k>GaEQt_7FY=anX$7 ztY*%CZ12DE0~!_pg+@)DZ5p%zT0+M}p?5zUXEb;G&u#P3Z@?+G15jAQHA}n{DuLY* zeqf;#QFGw9Yg+ou=$FN%@*jY7(H9ngOaX8%EKX3if)^I(FoCO)SwI}Rf9HV7u~Z8I zQ}&nSViYOBq*qI!8I+LrgA7qSZGyMRs-%pdz}*O@x`wK44pGO&6MwJ-pj(LyTSNc6 zmY9ok1;l5N&&TE~>2TYudv`k)_pu)6lZA)EN%|3s5(22s=~eb)%`;2EX{*q}~aToh!O4~;t9q|>%# zKMVBw5G~DIvi$is?Dmj>sD*D z!)U3wjt-elvZPsBZ9~1i@@IdFNadQ@;AtEB;B8wNoTQEro~KK(@DOs0(mr7Uh^47p z9Y?v#4yMaK`qGt6hc1UeLEZ`kl3erAc=*R2ZXt%`Yq)&q#+YBy7nV8*)G zW_u4x1~V6I^x{=3j9(`U7ZIyhTa1ye*AZwOuzHH);hWX%{^7^?SjQ07P*7LE8@y35 z9EDYpqpJ8=XX5cmT+n{K$B`^`2{Fyc&0*9h;jrQ0#QJIi+ZUmD?~nK(zJO$fmA{b| zftP{;`V6!W3s2iK+-V345kPK!!m{&|zV09gE1j-n&PE$n71Wtf@&Yaa6_a$aMZgqM zqF#ObVU0kmk)dnxf}613gm3qEBMfy4%xT1#V9PT(R$zFmk%Pk}_CiK_9zTF4B4A z08xn@d=iiaXr@t;Oqk7;xh2gtn*c!EFp?{D-m>`%H(2<@2tss(lh>Fx2aBP313l#t zr^V<VaEs+`(`aaa)eLt)|mV z&dx9aPg!VA!~Liuqpm=&0+VK$5tW@LtoOl5BXUtalNOQBK&nK!#J+oP!RRbLVdFQ? zTbkWOlg0#ZC8O9XID$&zRK0?Ex6U40>fL5@m#$cRe848od|-{8-Ii?JL}=1lSxF&$ zJXG`L1M&N&Ux`N^sX75}h-+{Vf2if~YeYw z@3P4uA|{}yJQALZN8oZr=0F?@H=AJbT8fSZS@=97hP)4< zaG=fX)s`@Uc#y?zY&j8&O<890nhpN*KOlmhu!i02O3HQ@*{e)SFJ7m^*ZhF|K?6ms zGSQ@SqLVxI2HAHG#e|IJ1Eez?U6Sj1bfglo*}~KW>YsEYE@z><#Caa;jUkma1scZ#90N}(6bAg$V$M)UBKkP!?Pxb zd_IT?G-wxPl`nyD8Yr_$u{MJvFNBe7Mg{c%OTL%{tU_%s(bk0}&I(gZBq9>H^gf*$ z>noU?t8VMIs&+&z%A*ASPCNYsmqM1LLXz$vJrW~eSfMKIkPPLig?K*U>mnZU;_|J# zIz%+EM$Xvq3B)K@Mw!3bZ*^$I#Nn!QXtwyOY4s4!f_sKY2fjTmq$!R{Cm@~&z@gciZYD+`j>nA*$~8sZVlP^#JJ1cqT$-=9^Vso4-v2F#61W3jFP*iyXa$h4>*j- zGV}qF^c18g3MGsna=PX{fCv9n!hv~UZb``&Usi^<@+}Hn)pgm(&1!e0AinJK(LecU z<1W!QHM99yPtRRk-TAr5j8GK8vzo8~0g$eiC?J%X>Z2N`e^V$>aTsr3(@)zsJo#`psCl`XBW!o9O&X^g{M($YUiA3nZyH~Q#@EiJuo=q{QSppPqUK#u}y ziqhVMO_L&H3}^SvC2Ijg5~Z$5J<=%Hq)!{diof?1~>t9^|XkXVfXki3&XUs=~f| z>Q#B7d`F?iy#@!ASk`6b-Gk$&7gHEhY7S7)ji;Hnt! z@>=Q*Zfc%=?-xdH5Su0hi4#qQ1iM4VC0BJ#7J1-8BWnrHy`WX9vI)cSp|uae1?_5) zr4jI2YN9M`;KcoV{naj@lQw_*s&Cfjt15xvf-gQ1h+{)XldPBa&Sp4ir8fZCWdK*? ziZqB&ElMp{bdDpg$sr3)k>}~rvo?L{V_O_K&zhO@7Mr`_D{@=6^jcL^>xkojv7&OD-yshhWb zkd*@bwI#>=@C~#$Pg(5hr`F8ob4|~@VChac{B)y>P;!N7MqrbcpS{KUrE5rU=-?%O zq7#zpVw`yrsV+;)r2<)eEDaMN@tQidD9vhLo*3+c2Y-vIOHlX8mx!nfHxVv6&dTl{ z%!VK?SzC%pk4i3`I=_}#4eD#TS90b zhSG}~gTEKUP?~f_CJHAE%fq}Qw9s+rw$ytR%o=ykUYN%YmV{ z7Jy$wY?NgMWRk6-V@y1=9y$z5`N1!pt>W^P?`jiRt9?oQ;M*Ob<|j@&g{q`)<161v z5{Zb3gGGe3cmu7D^K47OHpuNe4p_&F-=t&5owi6I%mQi5qsm$EiB*k8NP|XaMS7~E zAS{^53U*9QAx}vOo1{)CCPB5%%Z15Wv`#8&cS^z1wj6!c>h`f_fR&2bf%7)@?$53I z+6U}wblt{3d4oOR(XwfIm8ja;w&Ji&qn#5UziB!4qo4c$HQ}!V(ptv=t!(71#Rsmi z_=`CSHcQJQip#Ujf<^`|;-c%&AtO==4eE&qAtR*2kY0ZxsW{+WL<$I-)1Eer2(Vj2XE>l>KS!vo0PwZKTgz^BOl!S+52_Coo(hmBU+@;WEf$p_64-++4v{3rx{3*F1lMy42^9P#4d>m^a*OJPN!mn5OY z#R>o~+LwkGrAY}6!YVrRIE!y9AKdLqtBu}@bz}oaNvYjE2%{{i@}hZ=LsXGP1ua8k z4^-$>sii%^nmQ)EvXWb4BQHVueD(y$w0M!p7D|as(IR+V{VQiIrqhI` z_9f4fZmC};wdxKdu}=cj&N4E{AZ}6Y>lxK@ViGZq`cI>eB%}m&7RU;dK zWzKwPqvzhUn>Pkf4}9I~#`D&H?2pJ|Gk^*A3GK8ysPQVu6UF!apzGRfHO{a_1kXknNtUM-Mkeo8pL>v zL@G8Xt@*jE-5x(@HFS{q`7yJB%Vt+@SggB~xr48>FVcDF!0wf3GRESn}%i~zijaa+f12;!COv7u{)iRxpi@*+p>|Lz~8c+KPkSV(Tma&-rb%iLgmeoxInW&@0ul7+URCThI;DY zTM%bd=Yp`5&M?!G6AL-QaD!V(0*dj5sV#n5Gv#48ciu$Xjg07gKPF1Kyn7Vlj#BlO z*mB6apJ(|pz@gnDW5_bITGXL3V1bAB;%;CCoH*hjX;DabPlaeH@K%@L`p7(~?dT9{ zSST9SuuWZo`x?H&f)Wk1u}8j{WKBSfJ>S_Jg?K3gU7m531uHhi9qJopBBof3K(JsX z0PrA(vQ_7!?`l>+C|-&?`T3WPe&h#{j%~JWuly~emRbC21fcd276S1v!TBYdx3e!v zD|u7C?lc;aYPUsP^HC#7!uF0pfUZi2$cjz7DzsHDaTMxUdSB57XPdL}>le@wziIg^ zh+5h?h-BAs!kDqakN?SLuAYQLXFKS|e(OH;P3W~1Mw6~Y$y0sRT!BCppiPnN1RbEU z|=7pD&T(eHwJC=7gyQ7mxH(oBMAzo0I-UQA*Hg4hXwz{PTJzF(hnE-pxbn<0ZT zG33QLXU@!=nVy-Rp6;IR@{Lc!x@rJ7j9K4D|6#NJfn1=tb-S(I`wHn=g0`uNO9YLa zl?fpdk_wjuL~-fmYCA&b`o`SzYIk_=8_jkQigvt(H=(|GT9?J?8)I(nh=^tLmrI)e@c`E0^5XD4S zy;W&Z(0%SZ#p^jYjpCLsEQaLo_qC{&KDV+};RzmSOoFT}wN8yoy-y2Tu+vknK>U?J zb3pvjh;EFExYu_D1^v{wl49sd2utAhy%%a@HU$5-_aw)|dpQ6S*tr*y&Bqo_97odu zvZMsh&OnrEp^%0UIYfeRL6*<21=fF2?}lHNhK)|5LMLZ%6X+FE#lUY~@KTLn>}N2# z6)RY06&ssKtMYo~J z!wDNfNlYo1wqCOF0bm0%Ef~LP@saDi4%$C)^8zM$kAXlr!CV2mW#ev+Bd?>H>=%mzXxIfckL?q7S_zQ)crVEM+*vE0DYwEke2YU#vTQoTB)>g&3nwy|gK)%;)lSW8my_}?TXW6Aa530ZJ}hhi7wNT_zW65I=xwlajs!@KC$>D>o@%-Ve%YsMW4N} zem9=CiY>2gi&e5)h+z;eHn#?+EI6teVr-3d97E}+ z-%|O_Hdj+`#=$ClRyxH$!NH~i)LT;=YAZ%f)auuR#L>or6*U2SXSNTs2kN&H^*;!n zZyE=@?iE%HiEHAH;-$Uw{1kP^$YHD|EfNB*C{te_C9Q9_W3cpxvLdmBB_XFP$7&Xv~>9eaniYtXzr*9 zYFcg(?CyxleVx4z(Ws+8p;qRse@EtfW$|trKbwic4ol8RcUX%oDIg#UFt!$)zSLLr zHC^aGsK_|fWXy$|AQ3NFrH1dtCLp;GyGR5`5I7HfXLOJcW8kzBWQ^W>K&6uCo{i9Z zrX#zRyTUvc&%RPokq|5!nR65H$0-lW*k(}a8|?)__k%18tb9!iYTeCLQ8EC1R}?$j zcAS@_rA@-z6jDtJpkh(5otKryG>g)lgnRI!10ZwH*5p=ChmBo1g^{QW7}vVW0*TEX z%9+8=$awo%E11Z$vUMC#!oE-Grf0GK*hrs)Fj;PW81t<-EUV-Q>;yb;Nv#w65>|}n zNP+`E#UQ~%9z6Sr5xaKwm=(-|#Jf9ScOYOyb`fWx?d|x&3U5`QDPdg_!`xM;vxiaV_Q6x1w|f{Nl6+aLtLuBsL5EDQk=X71=4Xi~@`$TalqTxu2C4;`OB0lqxeja&ENO6&#Ogu$k= zvN9{iu|b?|(PDzm{((L_`ROUU)^pwd=6mm038&6v$DG7Inbb!Mf`A01e7tg}^+7|^ zqq#nOxa$jEgvy80#r$VWNrz71G3OTc8Q84a+O=3oBvn)gm7xAx*h{KW^b2pj7jtVG z-79l+&+S(zh$38!dW@Qo+bZ4XK1XTpygEFI)Y7RSL8xrEi=~i(LYf=ywy_JxIWBz- z9y7Z?fG-P%b4<4U(lzV^#WrMA_%=|;nG!LL8WR!+na9vA*7yoKO<#dc03t#U!^;u7 zPueb%7+e~Z^1a?IUZi$@e2=!oq**hK!}F^jS?7`8 zSn+JBZQc22*iC=MY^@H@2vGnd@tWCrXa>n_tSkej`6c|cCJGK~wphG&h(!wYQoV_G z!Cw}PWG7|xGEU90%MMSs5IuCUHxkaDMrR!Jtz!e6;^e4*`PLV)OSFwD17E7AZ#i5* zq_QqJefGFbocN7R-oAjw=US_Qt(2(WNkXVmHUu*W8?Rr(bU+?D{s^LD`K=&-OiDwk zPTo#p{S;v&0@IRlmQ&buy&wI?5;{m!zuu}2{RPJIICaT^B7HxDS=vl$l*JrFXgtgL zjG>0f3dAsAQNiM;vuGsvmTF-h3rmu;0|-L_uIOUx~wIi(jX7u5LL2e zHv(c7^BKHERj+3^0P=_J62nSn5_aO$U=L++n60*jqP1v)HIOqDa>y;MMG1R2v5Gce z17BP!ulETnhQtLkZKw0G=RFDk>(i4b?eysmE9dC*tFOIk`wwGswy73jvd}GnRfmV6 ztLu_|^64ko-^NRQe?Qy6b&OYy3IQG;;oz0JF!)NZD1XJIX5d97DN6VH=g+3y4Y~vj?RW(g*_+VUuu5EPKl;%R{hbs9)EY+!y6}r?Bn=sXbT;|JskkpTJnxF@Q8j4LKelpGknb22l{F8SrJO-MG?*imCu3iYQIDyKVMxr_|Aw6LPRGB#_G@UlV zHb*`tS1~+o{T!OPiSVwfq1hVJyT}0YzjLUloF&5i*qcvqcOTEcTly~SS1n4Y#3jez zHKQ&Un_zJpZ?hO`o>Y>?h}|&EnuMFW-b)}5Y>mS^o`&k20nuPRn@`~U<=|VkZs&fG zDeZx$?5^kJ_=3f2-80YHI{e4#D7+A0KtTda8M=~Pc32MRL;@e`BsLJ#Z~$v(ctP-h zp%Dg7&sDGtV){9Qwg>q#$p$D}2_r#}pxROlP`&t_zvmgM7{gkD=87g1-x5C@r0K#y zEEZn>^fMdmI%Caho)+7QA<`jqgzAp7U}RX>rY^Mu4+QPVVW!K0Me`;nz+C@dyARD+ zjS1#hhO+{hn^)}eZ+~Tz-PbtGio3;ztyZ@8Fz{fJ(QX^Ot7~iw z2MjuhQh@HSw-aDT?G>Wb4{#8o*x*i-axC2D=-U!J%9(}ID@esu+kLrZ6CYGTYs7ph zGS?bfHiVK<84@HVC0SKMU0F@1IsJ9(7B16Bi+N?&I4S|++FfWTqRE+n>Pf*T%so2o zyL7f|Vl@Ou&s75n&Vm}Kp0k+iP4KOF)<(P1Jh?%T(J$z4!9j=^Y8gKG+`0Ggw}}Z; zCbtm#6tHt7j?f-g*j9!XgM?sU8ggkbrIHwIq?^VEY63grNhY(jE##Y3eo1FKK86yj zvqaNQ2n{Bq_R+8tG6SMWhatY(kW&&b{9x6N%0$=bg9z+4=S3|+dk{<%o zLJ%bRr;nq>a)T4E)tGQOVAcD-MzcZS zRKY7LgdYd_%C3$iplX@REflXbYCG+~d5*^m2T5)c?9qv%eQ+VPXowx>@b&lH-Xo~g z6$(rSD4jG^&U4Q_XM3JK2*OI(xznH7v5$^h-}S5Z%b))Y;l+r(@-nW$@JjEeoj`2z zaao8#ni-I%Y;+6JYCD@@k}=1aPXZn{1irvOO-lv@`o5#^1ydkbIb|+Hfab6T84BbY zVjd_Y$W1X}q_sU8)wmXDpgj(Mx3;Q|xl|%Z^ClPzZfgUI zRNHDH5NFK*W3A5#SO}B&=Zu|$Z_1WDS<{SQZ-8Uu|BHFj%dYhi$J3K?W#{g&;d zdw0}g@L4R50v{|$D+M8D0SKzRZW}v=Gj{FjRd%Gu@F@z9oMAjUbj3z7yE?_8mpn`( zRJJ^2m3Y;OqXOs1RH~Q0tyfzBu*RIIUmvX!6w0;;>=(@SioYx=M;s(Ctr*QcCD#lL z{wcd)9Ke}Z1XAd9B-E<>U5foU#||f2P_>(uEtWX-i22D-l^D%YN|LOM65UL)4i&L5 zSKx@Eb=y80#W>Z#5Uh{SKeIxdqr@=xFfrO`lW3i!hErBv)@nz2I2&85(S; z3Fgg>qfB$bhSA8G?(49`0B-umMy#f`$qKg}w!Do8ELpie*qJykP>q5`M<+g2Lk0D= zLrM|C9a`8#nR^P}`tFabOi#o>;Jz^NTCnwZKAIJ=WLQBYP8~r`LR2+1HTKlD?Ra`G zwU&l@YsF*GnUfz|*TqZr0o#{p3^9E3uijuA9DrsB=grq|aFUANeQL*UC?N(4Dq}MU zJg?(Mshxbi7^WBEZ9pG&grlY{uJ8J$$g+ z_WsX)0xx{bx-MO_8+|t|1+PrJ{{#r6p|0AV-m%%%HDZh&ildKqoH%h3iXHQ)%=OBO zDqN?v*``e!S*WlL0iW{YQztP_l)}NrP8%M&WhYObg5N%g?eQ|(yk!%*{5w=bujl+V ze7xsHLoCX7&xCipR6hM4F8o2r=susy)`sS2&2!W-ibXyQ_)p`_rWieE36eC$HR-je z3z;DGg2;rLf&vSS9H}G~K;NRLo5Xf|Ms_+<>=cz;ivx>6>edxYb)wTgfZlmgxy_EF zanN@WLIh_Tc%&)A{s_!ceo$JX((e-lo5ffu_sO>S>)b9C^2PB%UhOWc+R5Q5Osb9{ zKpg13Xg3EgJ5dpvz%3fPjq(kLt)zLQRlw6NLSW}eNgl3%MfNDY;HQ63k#ME_UKFO{ zMDU2WF4*#ipo*yNVl{+OVQhecqa{-WQU*FcZlfUo32dh4!LG=_=J32KjAE49%O*Bk zz665aUf$|c`op3nhu1aFVAGt_zZ1Pzaj<^HVp4Hrp_xMXEL($Xw|ourw7abkd*QMv zlcs~^FEb9GJchmUK@J7=v|}28Lr@K9RaI6HC1L-nVSI9qJTBno`;Hg* z>(!!4eib|%2&$yg3j%77vU7EKiTWmFGZGoR2;!IcyMjoZ?r^G>9San)emYpPzO~gF z@B&mzl&oBjYszrRloW*yWfWxs3qp8pHyqiydV?YKk)j zHC9sB(9i@PQ(>}wWwj)AjeZv5rBE>1SWq#K#|F3VN*_etwVb*?+)l8yoSzdCe~M4B8aV4xZk#+e*ty ztfi^W8d0?x9U8J@An_~_L!@G@m4aA z87AN?eA6|s4&qEwsh(+(4GQ5Zq>j>YqH3L`OY1B(*<&f3?7H~?QYB!8 zVw!{lMT+$AzZwbhlz3kY;ZoYh`G#cG1Z z5m1Q7y=~_{9CH-dg|7dzQ=c5SmtNS2{dyeSO5F>-S5>)$7c(I1Df{jJ{mwetdu-3H z1NNQoecS5ms!;75v~JiXY1EOLTU%k9@XcAI(fr~CW%k@lhe*G}daqoxfBX0UvgVCj z?E8QFU2CbTvfqJRfBCETtOG<`Ej9@{s$X!RU>srUYj3=6Z@lt4)bOwk3=gntW+0T7 z*pz%UQul+ezDd1q+tsU=?KdB=ICKu!-+lKl86XTT$Q7N$`{?```~8PUZ7qZLAOGox zwzj<3u3qf0p5E)sE6NKU4u~I~k4ex14ky&rHQPJyeBZWj*VTmiy22_i);JNYT6$ugB9m6w-6*aE~BmA}&5b+c}sBkny z82?V(N8>wNj=m>kL1JHgxh|LnBvb{N=NSLy2jb3070?s$JskoH1&Xd9K=KGY!Yx5x z0UzWwyLjty~}+crORHG@BxFMzJft( z)qEf5UNT9kHO*;xV^E3rCe4o`IR%zbijEr?9I(NGVO-v|IA8fTj$KDb$KWGxg#tee zD+V4Q5S52|{h*ipBR)ytqsWTei?69&Vw;aT5i>7x~^S z*3?inHmRvf>OFO9$ZqxBAb!R+vt2v)MTh-qanoYlNv-2_{^Zc;Y}B^YZ*ttHQ0gB zG7ZuuS}L4VAcuHyvsE^sk48*e}yj-a^E>yJgC{XtzIHln&IE<%Dn8x6(RdFdov%E{b+O(rkPI~y$G+W4?kZ()#jXf zd#MXE&OfO>%1a(aX5qtq7;;N`&~_{9!hB)zQK64`U121?u-01S1v>G+gakE-#1qSC zwbNqF$||)XZDD3OB0CEoU0MV;dN_@SVVbtqCTnSK0I@+qh&@AD8W)m>I{s&2$Vc0t z5Mfr^`ZffrwQRS?V4uoy6rSp}<)p)t@Zv>Or*PlZ)!t?M_w2M01g7JIgVuBP8mf(` zseypEZro(gA8zK<=w@qdS#Omr1kyuy9c3CLcUsz7%pjCZO~4$NO=lRgljC?%;Uw7{ zg4l~+wA&+cu&E8D7mjoDTw1;c z=g6|u#)G$1*C#jt2ZuMv+u^}BIiFLB)jQBUK&N;LFYe_gX;kP? z3Cl=bPW|RgU9n@>EkXVX&eDd6SMRXmeR%$9+H13&M>y!wgUn*gcXkP={UQ!{RATuq ze*>ox*R+8j5n7{>6pUi^iN>*alpg*#VbRY;k<0;6f!{1a;uM0ZI(W%(?T10&(&5hMUM6xAnyer;>3PfA+zi?r+I~5p z!EpMQ5Jd&qB)cU-;$@{({7}1c_Q#Z!psol>#c^K_1Hk8$5wYTuI12pR z-%OxQlH~if7~=+$!H~_ zVmjoM2U(b4q0vs^`ThGjsoLn;E#+&fIn|uB>%HApRaS`RRj^PcXs;~psa;y=bWA)S z9;R4Q0iTk{CpysS>UXGY0om2laIaO=xCi-UnN7B#aUt6s({mtQbf#<2g~leg?3DzV zfc;tsOCOQ|IvhO=28=@$Vyc!!VU7hL$ytVcwpM8t=mfj6d<0`9HS4h@(n`nRwu?m} zBq1m>DE&{RYnF}W^QQuk9Rr%zFeAn)+99WR55)+3;=fN*2KpQ|p(6zN|kv8YUPrhOoFu+q$iQyU$UN^$d z+o(^aCb7=O$#sX&Mmq?XRD;Y#;mNsxOHZhL z5dx-Cl=^izr~rh%1&Y1}zIz_+>qnF3a(9n)bhg{htsAf>vzBZ~zTJKY2%Wyx&sjCX zTG0Ryc2|g=gQq9sZ`Ae>9@#}r9$*Tpk$)sXvaN>kRCZkw(!rv`hRdw%xQOrSP`2*H z%>V!hlSxEDRMKA&2-?K~VGueAfoHfABrcYyM%MN;{PhWAjc4H}0R)2BYmgPB#XT8U zH?pKMwJ3nag~+`q|I(A#K?25V__83dVn|&2;R8B&19jAY^CoI~7}0_4kl^IzP+y;Q z;!)_#Nw&Zs(5?Fp*skpxnR@7;a-gRGp+tTGdIA`}5i+Z+tOVhfTUY04`{?KqC~|n$ zs0f}teTr`k*)WHDx-Nngx3u|bJ)InmHie?uG}-c?bW=Jii>jC?usrzA#UR`CEZQZL z8EZs?q!EpiE>!(GQA0d|W=U~PDPE5T?A)1iHh|h=OH+%zaG32op1;KrkBR-mVv?jy zGPx?f#tiI~JoxHWb@gb$)LGx)kR3g8#BN|Srl7FEy74i1x*elnm?EvIEU{|bqs?&o zGmT|9@%g1C<6K*+Ej$v10I5e$Pwq9Md>uvtgR2greS%~}5R)ko^>A>ohusZ3A;D1x zG(4}6vM?_3B=cL>>80PalZ#_}BZd&uU$X!Qy`U>v9F&pfg|aKBn@{FTQqc>(B3|oi zScSmyLSV&^xTxSwn>O2NkoCFq=RjOta5Na?FtB6jZA%Q12Y>U~=U%YCe&+|_oDyP; zTSH@mtzU=jVPQ28b^@vP*WY>*&m_}!;y5aa=!@sUZYY5|7g1G+KJ^5`&+eWcq@4wJ zn=Q4}1gD_*6HvMO<`nwY`mVOrQd3HDz@r3X@?{mb5vs;GFwt z6CXm*2o4S>!9)W<&X0kcSarcqOSh0R5$Y@j-G@KL`z^2B1T9EdTGC3Ipe!x&davG) z{6j{V^sGODCIvTMh?WX{F%03SqQ}+iDg>4T0^lrRttG6DgY zr}?wJ_I_Al1aCi2lxfYL6( z;cA8WqSzEpqR%A+BFbAj$~XJj3Bc0Xz72MeR434F_nFRwo?+n_L0?=pU{a{Sv9`eX z$F4Ifk!7XDs8C9WbV&_BT<8yrF8JZE3b-*}$+$49;kzWx|t zq^Q{u`R&jAQ5E%bA!U$ALUSe4lkjXpNIrblHB^A|MR6JuM+%2J!6*H2<&x1XdY6BJ z*izQ|V#rf?48Em8G|scX=!JG;qQoB~xT&tI;h`ZA4YP;NxI~6v1TOLN0ist1i97Pq zq`>T{DI<#G7QQ(Pfm5&U8O0M)q?Y>UfdModg_pCwEpQOlYPP(WhID6LFsYI5jV zuC``pm|!4Gsp83B-86h|IcrFO$YsE27Gu5%*fBC+E0;=>6C9=Q?8g04n^mD!SWqmR z4z;ACOYck;m6>;YS$2`uu(^L2hwg3lAS`}DZTb8 zPJhk95|M`=*+5o%GO`!JzgbQiq@m`t>6Uf3I4Wyu7F-zO((Eu0ibA2w-)VHpRfuFE zLJ+bDV!2r~2=y#SP&vz0)^gOx%TV(p>>NczAae3p2^{J`NjJRY#+`KVC_JnXr!R!a z-EKV{It!-9IuGMUY%O4)}#(>Yq+)u-wEnX3(;VZzeG{!(izv`9kGPe7KedXReyvQ^b6kjcl=(l`ikB} ze}lB%h&y8aafv^I+HwSyvs`5@M}54E2ylAPy^j}N_0yjKe%yF)R#Z-uSm6p>9u>U{<2;f6gz>rQ{atSQD6uDs9yuMgUg)Qw zOE}?FdQh*R>#{0Vo>XtcJkixNC=&q$pyCy!Ux2Df?`ilWMB~|W%a~t0RD?o6qbpnR zPBB6uL1q=^1uAJ&3%~!e{yerw{LThPV7)UwdY%VcuuPI(T_VV4p{h8Z^~=VE`91#5 zNWIgG#llkYi=|zSdu$=_xFPWs5^VbLf3!~0q*)Mh%F3N2ccoj9Da3m@c{N3I^M}bj zN`E2*uX3}Ii)6UtGkVP8YJX6~f*U<72ztG+WIaV6zF)%@6!qjhECkrYx10Q4L|Be4 z;cd38#o|2Coe85Ht6ddAV)gnZLSTiE_`O=R=u{!YQt|gHYZ>2(GIy$-G8dbii%w+G ztcxXn*m^~6S6RV_7X94A7W<^9&jI2ex}{wdlsV-u`hGQX6#~lufiGq3ENTZ00000NkvXXu0mjfOJk_l literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/04-probabilidade/img/pi_monte_carlo.png" "b/1-analise-explorat\303\263ria-basica/04-probabilidade/img/pi_monte_carlo.png" new file mode 100755 index 0000000000000000000000000000000000000000..9cfa6846b2e15cc12cecb7c450fcfda691155e0b GIT binary patch literal 15393 zcmd72g;QKX(>IDN!GddWm*5cG-6262mkqkOySpa1O9&8Pad(H{5Q0l^2#dROH_!9l z?|ZB6KX6agR?W`zuWjaZ&rF}_k81K5Xe4NGaBvuk3NjjSaPX|KA1BJ2e?2xTsc>+_ zA~w>}9~GsgsXn?mTH4rIz`+5-Q}vLw@RjRNGAG(u%|-WC+2wKYm6mEAzxLe*9GoS} z_pBwF46I(7ubY@2-3M=0tO@5)BgX68# z{W7x8IWo1WCFi>>no7f3eC!TTvFN5($+5?yHuh`H*qge&#J-1R2tDl;4hvWRjk_a5 zYMNoo;rIGzj#Jyc5dI6bP*3=&&%>FzN{1Bm$pG;Ow9T1X-~-eA>`8N8u%zW4DOAb= zS+?!@7o|2axz*NFY&V0@>N$~kIW5zwOFVnX#>*lg{SU}$>&rw_t?`Gb1Xs7UX^aU% zrAFt~X?QloqabEZL@6o??6;eMh*%>wurFhJlTs(5>7!RZ8&r4SbDeTxaXE4( za)B~FndtL9n`EKG`*KDcSf7L4UtSH#^%1_7C-6x^X)kb=tT8`eeUY!A=6P3y@wIgh z=TO`|{RvE=z%?jcRbCm}{MDt5LRX405N0j;G&AC+@1&6Pg$uVbGz>zEh`$r2m6Fm34~%^#E!?fR z^ihcvpmXO+SZ3;l`BGJt_9we^MdJA#emn=gW&kp-oV zzfj`8m6bZ5_OM1y!6J~_op$~~A%xW^X*5lKK>Y!&Gh$u3ep;OviKoYoQ=Ao^rBA!9iLV{ zx@ig7VwDqX#|y>U%8Q7Gkw~i+5l#a?u;`<(B_8RrG>{6xk%y|upUS2eL8sXcD6X&{ zczxbJPtWc+G`rHLzHMO#}=tu5S!v?nAE*!;nd!HklL+=!yXo54T)TXKJXaKlLsE??;VIF;meE_qsKc!OW4)Khl3kO)una^2k)9-Tb zQe|kOzceVS(UCAGYbgoIx2gK5>YEmD{^ZQywlj;eVlovNbjmeL*<{I7NuwhD+BxF9 zgWw{1|K^_l9+{S<2%(4SLIR<0Q*B!@AS4SUbIt0M;Fp+}#HwIrlw_igkLRd#xvw<|go4OA*t7e(sHkfenU6rWlBV9sVLb)en%n2-bEig>i zdiDF4$Ao$#ERsLhTcTTxSqb;gPx1AundyQ&t<=q{O}j_MhJv@gY}D+b>@Q9^2ZJ)U z85zY(xva3QDE9RxB`3YvjoE3dsH#K_RSgqc167#n@Qu_YJ;frW|MN-ycsO^$e*_bWAV_`jaG{)gAZx=CuJXGU%(sj~?n^ zwcy(jNXVOz553YM3jlGHTJ(45;pnMo*C-Pxm#7A)!|0SmCq%~hU-6ysMhIC~0Q z(rJ|6DGe%UD~l!#DS;Iu6?K)ce)e!5a#M2?aASQo)5FlqvMWB47L3bjGW>4XxQgff z#v61GxSzeKCJ?|s!mlIHClF(aVfJC6(CR2|`S!gEze=m{ zxk9<5&7{lC8aGL4KNU$7=@%)2Y_>mc%WY3FC^5JtTPAyJlFxpag<3N4DA$WxKJVeX z@?W}KrW4W-_7aw|S+dTtX|h!tm_h6+G4(}j_nI+ls+#j^XBrgi|JGX6xYx2Z`-2!k z^3CAp$YcAX*rR;mC}A0)1_y*}2tR?n&nDAf;%%=%ROrru*5=iu-ja9wB^!|rkxBZS z^wTPasz;;zR>juAcK3FkR!8S*&-`1?OQtL0ORX!F%Z~lQZQ0AVqxegY+p6ol6}ztc zv%P4xLj#xQw~q=BboZ-EqxHOgP;C)#fdhdIJs%3_ zHb4cRHVS)gB_AZiC6iaKnh6}T(dMz((E=#Vi8aW$Re6e2XS>4m!znOwu~zUs-rMo6 z(snQ-P;L^<5GqE$jXjFSjZ%v7A!Z}ZB^4zs!gCd{jBrq{jt@8YH|H3xrB?JX>Ck$b zyjwthgGzuZj=P4(!B9&l%WzFUMz>F|UIP4{qas`S=DUX@(RyCvvwN2F^0^z+ns}$M z^aol-5X~%iJ$q~hL7Ka`0dqU&;|gXX`LW=WV5Z=!Iq{VpgzSvT6JM_Te%3=BB zMP#m{t|L`6*!N_QWtV85;}~Pn*E9d3>z988(hAzcE%>NfC`c6B+w`trv$stutuLkT zoaXUcnzU5p4cUXo;_X?kdE-_Q{Xo)PQmsb&uQ3aA3*^zXQRz`i-3+Y{52Pp}Clz$??kLv()^-QDk?D)}$|#wtIb|*?%baK-o_h{AWvrGw)*M39Gx>Hlsvg^7(TUP?LSXqnbdSn`+tIN zEh%rMCw!>qJGBYcPcpF7m)0L<_caPww49w^t6Ew2lieIG!`w`WsW{TT^~4o+71FIP zHq36P@b_CvOSgg6G2Z{z=LH-YV+)!t6u{<(lu&+1+N%%Gu9kHuWJn z1o;xVe)(<@Rj;-?)=R;?`#hp?ju?}RPDlX#bGeNQ=;#n!zu@m^xGqA9Mf`flcXRwp zW>WZ~eM_--neT5#GfaR2hZfdM91nj zVE4u6FnhWAL~yt@{SR#y$K>gK?{krZBzSXPJuyEyHd?u*_?N}s-5Y|H)cp#aii#O6 zA$L&%32Lkkds4XiQaCDK_#PoRIOj__`*3CaA+I?T+m2v~d;WOpiTefFxlM7`KY z^~1Tq>0&IW_0R}W<<_*-7?NyK%=<(wasKVsx0oth$nvLaiui>r^yRlgB5mA0`VW?G zFeBFGsE1G)T1y5k-S>_OJ=ya0RrRJ;z8z;A-;>etGYcOIWC|Fx3$zHex3>CvdHMKw zd;9u2-mGsOZ+FhkF04&u+MYV%m}38+psQEq%-{tO)hRrZJqR6rx?|hX%1bDZTPI3Z zDIFpib{_UmI8|a&j8m#pBvdt4^G;fB@b}CzX|sGo>(W&9nZPpgXnM+QB6E2u)1ZOn zbF(pp{JM*nPjzn>&toH|p+JivotMH*ja02hv`d+7rhcnW_ybP7QttcMBFSN;#Kaua zYA&(Anxx+Ei`koBOr;0^CdaERC%P!SX8DY7o6NU*+H;dfG;vO!#TEm#a!XVKpWH58Crny- z3Qfo?=elD2lJhR_*YBlmHm9d_l~>2|Sa>Tcz>k10a2!eWLbQ$Qv|h-HQlF;XGl(W5 ztUk^BpgdS3HdEo?!z>MYj5%e{!ktwJew+81NKTz0aL+5vPl+4~w}OSKs76^ubAsIQ zSxoq)6X99vvl-*p&~J!abf~T)fHM8Rk=%cFGIopcf8#f%Hl%86f7eF(oiRs!?MQ<6 z)85^nUA5G>*^t9Te2(h3Q~lS_+UV$#vXIOS!9=8b`gxZb+aaGm%Ymk;s@azu>FW}j zVX{)7Re5YtMQ}DmI30OtJ9gi-dS#u6pK>i}AFq9GcwtpNVN~gP^OdH6rG~-!wyDPS z5nGl7{TO_(U6Xe9D{4n!iYeY&>FO~9eD!UyN8s8^<;kgUWZ;hO@^jP9c?x=2<_h_* zyI*48o2`z<-cGno@=1F{Osd5j78}*I4_*Rpo%S_vl5Prb*@*o9yzcfK^@h`|QdjkB z3}(?=7AII_kA<=v$p3opsZBs3>T>k^d~7b1kx)%(!9g(9WWn&Y!L0bxUEKZBmlFSd z{i(pN9|1O2m;E{y7SDY8zDudTxTHagY918F9e>C2cwr1Tgx_X8O1uX z_MUg{?|+)`nBaDePJP;oMn9WMRMyq8?tW4ST8eT@S82B7U8=!0P;5~=isZTP40U-&^t})%YZZ~B|)fS6XDGY8HXTI3$w^Y z2ce(V%P|6dh*fx7IAyd-Q~+)^LB3>N2~L^A-(+s#&z-yYyVUoR;Ut4H^rRNlyWXh* zbNY>L?)(^nsz6s6Xq-n=LVH!*N!@zT3u>s0G%2lQk>Ivia&pOE%ac7cLgLu{v~E=0fbw_4wn}UJ9Fz7@3%3 zbKdR5S$(mK#_;pho9_U9KrKLYMTe9O@0+sp?1Qv&-&0?4f47Wb!gyR=6obs|;8F3) zz!u1NyKWm}iwI9250s3bw9dHj{jTKVyV$bv7t2)4Qcuh8R{9p_R&17u$1S<80amgO zlT}e`C*E&-=`Kd@U48RU+doa$yiNy0LZid4z8y#_=zk>B#MLA*BGgl>I1}E|u+g;e z{JjsnI3GP+$IDl*Td>Wmt8lIIv|aQQYCQjyImj^PD!XrDl+u|py*j7VcJxbU`2`|< zXX~{;2Zb0FuJQYL`EEPh{7Gv`_PG6&KmL65at?nR*)I*BxEJA>covuEZF%K)XR(*@ zOq$+|ygtz_{$cHL&^^Fy;+3>}rji%(29A*p&Pf~)gsxGR#|kIWf!Qj41?NPExKWN_ zdcqB76#r(LuuS|m5{^^uB!Rr(%@xfIV(b7GnCa~@GB0)GI)4V(vzy)Oo{s(+lbP?pBglPHlDjZhCdE)FS(b(L+=nX$-?Ur;e96yv7 zvVcrec>%dQH8;9E>aU7lze~Phi`f2*D;O*?c`&dz_`Of7e|*9(D7>dG89}p7j|<{$ zH*RNfv~@%zI4&S3P}Fi}$h%sy>gerpK6)v(H@1Izg2K^xHfC68aj(Wc+9;&+>vOsELP=*rq1uOivUJxf$2D&eLlN|j2fpNH zfqQ&M@^jF)@&|)AEl6+PSl9`Zi^ytXPN0#-e39~4pCwlHaXw1)N(>tsP#?)*Rw`py z>HNk0YlRzCk9z6W^@E4bsrhnl9)G4|2fvkxYwsfbP$*{jK4uyD37a!hr-_5MbN#Qf z!{OSMxm;c%TjfIy66^TvDUy7U`0K+~=3d-yWIZMQMw}7P}t8F5y|Y z&&f^vz6AdgTe(l)+|%6G37CW7AnpL*h)5i~#l1s`4m114cTOCwphTz2?Zv&yn4Kg{ z+(>MY@gZY510&OshWC((K8kxRYhq|fXV~GV*eK4_$k0;X?gWM_|Ap5%u9xtgIgW`s zY7XvqRAv-^q7&RDjzgA`_iFfoEHi9+w5g2bEZdAwIxF_-(t@%dRo@FCMdsgZtDE#h zHE4C~b)dmFF;!W{DKC1VdbIZ2WXaS#ikEL=t#sPvQ~Aa`5^iKMJ^9%LnFWyBv|7bv z{W=COTNWZG4h=l+-rmPN4r&NL=^|W*{%Ud$$F@ExWbEIgJ)%*UVH@&*Q`{z(iMO~-U z^Ny3h^KrJ%WS&R3J1776Rp{FOT6m%35Njd)Se%qloE2P2W_;WI!3pVI0ma*30tJ%u z0EXWv@jXBw#!VzvpOFF~b&QMrZei88u5ZON0SDYy*b%6p$dTdI{-oN;MeZZg91(Vm zTR4v3slILoATB%hU=#rz<}WkY?$4!;sx|FXbZzKJ!e4?UN6y+08b{0~z_G>gMaw01 zrxw>Ff%X=S7T%Wb%Z78yGrdb!ny#+*Ucjh?&s4VGM9i&sPTr*xr;?@k1ZnLhT9}Ob zrgr>t+q%p^j)t=-&S;L{I#lqa61li z7Ohjc(~PVCw(*9|0dMnt2iBTyzvFy2%}2fil^PWV`yVnu|1k5<1`QVD3U)Fge1$?I z0{7as8YFz3RLN`=c99B`nTBgdx0eVPg`K77O=LY35GGs!w-#dEB%qMqi4m99U%l&N zpuhV^jFX+bxt4OlI_X2{5JU&Z9%QX-Zl+`b&Zv(Wu1l6N4A5!Lr@zdN(Zm2 zt5vO5_b1FT$$-55y@pAhoI`7xT^6#ZzhsUMn)kmj5v0;N5gEREW z#dXDH78AR|cKkb7~D?DElvYj~~GnNXMts`hW#aM5phb7;7rtomZ!?CNIcq7(cfQ`rL0|MTJ}&Eub4v zRYeHoXwPo;+0opB-OJtyR%d{N6Y&y)HSI0j%&5HV?HpW%yhLgKLm>of|Lf+Uq52Pr z8(5SEsQQsg+R?>=ikJNZJ13188Wk0lh|6b7Aq^S1|AE8)iPBiRxj6}OaCmxpvU~Ed zJGxkLa0vk*c@DG|I6h6Kq{8vv4FPr}>$-(u1%z_!n@o$8Ki=C6>|L}%EMgH{)eYEkiumj52*jqTb z!eof?aB_HQbZT6 z7+90$Oi?1FI3Ct;dJB&_&!t=}BP#)*11=-N28Xe~n3C6PDQN*@U__$-elvw=gsrWHlfr!bWl21$d63EBSqDo{p#=aeq+T%(Olkr z(Hb*9stz>9fin@oRI`wHv5R2gC*u8*-x06Ng9u7@toWS&D;Gb0ol{pOi+hdN8N_~~ zF}HiR*8=0`$llMFQnu$4oq7QD@2FZ1C7RX=oVp6jyFdqN2%u0k3y=Y5xK!N!?IRFo!Z8H$|^X99SVnca|4oSMqPz~G>M-kWB*VC*)uiz_~Yn1+Q*)46Ons4rdPXKGQzeI>C<;BUl*j8u&Dht{-) z@(EV%ZuS%p6h-7-4}wqq(1OF0a2XcEZm_@TOT1?BC;`b}#XW{3~>1;h*M;MENpKD6=3*($~mu}avD62E! z|KP_)_EDse9uD(oi~ez|F5_j;$q*0Sj3eeEWRdO1%jWwj%4kP>BOOQda21wHb6F5L z2k-Ue;-ZX2Hn-MbAs$)S^M^0o3HiQaSEuXw#aB~rMZqI|{*L}@uqqP+5B#|PFk{F} zD6$M=y0k;w`KENf+1DZJV+ckU9_H`W_YB6y>gFP5gKZt&KA1Pjegd94WJ4>pb9nQi z+UE`j$kbKYN|wca){$ul8dJ6Jl`4l-jMI|Sr;ExqG&i$Q>V<}!}zX*u%qFkv)ZKN6c?%v z{e*Gk5AGwD33)VWG;4N-VcYQ7$YmBl*{c4d{i<;*Fu&5faeQ`xBbFIu@<@NL3TI|og^z0)>;=r%eYlTu4{`@jzIZ#5@`j=<3 znjArw;tKe6llasX`tjmj>}*luW9Yf_m-}I8xAwH{HWlTNxdAlva?uBTWKqfpK~bE7 zk5btGCnLe#TpwONS8SH`vY3)%koiC|%zpqshzW&w7IYuV*u-fw7)w@#~` zFfpE4O9!MopIMeRZF67Bgv0WjtR(n$CX_>TNd!gTk8hDTjGEtPIfv%U57=MZ3`TDK zJ_HYmpw7Q)sy)l(*P_JC$eE@xrPf&(w~8V;7XWM6?lFc9_QM0b@-M9hS*_$viuC;> zt|j@JYvqEw*EsTZ@_$E%PW3xh``!g45$(|+t5Y=8Bd;3|U-Wp5Fz|6KEF9u(HE0y{ zWf`*pS5-vtsmaz#QFky|hJU8t+Bmw?wpS5BWqHje?)Jx-q(qT|#Goki1}iyMgK-x3 z%co{$(#LJ*AoNB}$}Z2#$iV0HsT7U3BMTI(DaUG!q9fsrb!yx}>SQiagu{6Qn}%qS z1b7L%%k$o6@3JdS&33IliR($rLfaSGev*qN)Lu)WVRd@0V|tiX-n?jPiHU_#YEy;* zxXeR-C975n+{9s+R6k7n|F-me2sfM(bL#eCMdb3UE2e34kU%G+VQI2)~=glD_tDVXd zvpreg$CZ4z!C*F;vx4O=im#hf4-E@(q+sP*>2CVREawx|Y;Xm(gu-1ZLnMhojP^uM zUekh@nHi!J&lP~d*oj{Ht}ObAbeV|@o9rpfNabM@ z#>6t7GV<|&ye~y`YIN+VIJA~hQLn_FL{@iydZX`HxYjSMx;Al~R{mi!r|G&)#m&|d z&&$)#E70Hb0!J;8-@hZ|SA$SpPf*uvP2WHu46h_B^JL6&tw3TH|JDXxu`pKr{Ijk( z&nfR=)U<)}{fn`MNr3rQxY*P?g=kd>rMdek^ha}8Ubqm_)5^twWGs1)F`3-sX{r^L zIDREX*9I+vd8gm)jcc5#BE*N|*((sp^W;5S(P)fTmA+&k3q|SeqcIP@!VS(v{Rml1 zm~3pej-PCfd_6`|HlG7!?uG(t^6w)3Yxx>_J8uadH%T6p@B3C4pK|<}n}5H)Q@LMl z4Fvc0N&RMBpDb`3oA8Cxoih>|VDp}_0t%mk2TSN97s&=J9BR+A9}*tB!}xod!_i(q*WbF%q}^XkBpqK_BI`c%Gi9isbxn&D92pzB;(73%6ymZ`;)LUVUaT;Hr#q@W?#?O1# zlqNgo9uGIMinZb&F^BFoMq@K62&hp%L+0?!E$;y(XBiw){%yx6-QEcTN7Z-An;geF zz60-1)cjGavBa+=2BC}#v7*&IZ3 zqSkYQ=Sx0Dx-HT}zq0rQ%)i#Xu(1bq`CO&C)NtJaQXj^d=N$bvvI30nA8Y7zHa!GR zyY{BXs~q-Med{y_pRuQEs&wFj0E_$1ODR8#~~0DaRjUP-tTgB38|uDzqQ3gdFm0{KLt;3 zggEQ(y{QWD5boQb3K0+nT3L&+49}T|x221iH9Cwt6}kly1%E=udSr87>;(AUoejk- z4PIcmqMd36=!ZwD+j4c+!}dYEu~+C@XCLEnDLACEk*f{%eD=p1z!u(KEG~UYG?Nffod7Eoo|li$wsNipM8Yrn~Uex@9;oM6~SF7Q4*90Y+KUK zpcO{E{B)Z@-r@Ic9K3qRN(DF7=3(l*qWOd#7H(3;BFV*!tSq)%U(469)E8B}`)D#4 zqis(_0aEbN7PVcz?~OH4Glp8~@*OciGz|>fF2Bq2%~EH-4#oqH@U#!%3LWC~R#t#D zH?y{@iqjF|W@}xjj>1|+&|b4fG0x-y6#nfql)O6HEyKhUDwKu z9xrx<=63!OvbeSts7|w*oJyG1l*``xE8ZfXk67*{j*>9^=Nd%)Z$@WaF#Y$2KJpL7 zyzP4gzE;0vcW$qkg%E_0n8eVGQ=NHBOqc{XM59vPY^3;oztK=(HTUPORcehRYi?bE z8mfRJ!Skcwg!=rhMaNUk9GiM+VU-#WCN;r0Mr;Q^$AM+<*8a~}ph^?Ru0o^J4BCql z^}U!!vf&!JDbaP3$tQWH2)~Fq(ir3%yFI*(;GeR4X2BRoqORsIE|)GK_3a^-TL0q3 zd5(%AniVXXIY!m|AygdDzITbs8u6*J4Tuid3T zS>-8y^`q?3pf4@N7oUa_iW=6(sUJ13>u2=_DF38y(V;=v7Kq7yr|#LS|1ngGLdld- z5`EBvPh&`aHMa$b`SiYD2?zQf7}UjLhi<%ZN>d>E*Tk{T=R*1AY37iv9ZkpIYoa9@ zj=#OMWG#=$*5&rME*LLXU9Pq^lsoZoE?+#M(YzC+!DE-krsZH>zl~-k$v7YGx0aBTaeg%!b3_95m-A zq4;#MSin9%I)5WtmTj&;xhZ-HS~b$+32gFFR=~Aw$KHT1;PJ(Voih9Rawro@Pei)} zn}?b_F#RHV&%_A%8%o)hGej@Xo7DX|yGsK)?$eGa#Lcb|43xCCt#CKsuPpz#aKcjd zW$@Yo$ro`j%1V}qft~$P+I{`L$V+<|E@Vl$Ni6U7G-0XJth$q+VZ64Bi;^P-t_tk` zOa1`)ma!wF+v3ZZ@X+whVAt`<8dht|dab-VunF5yVyQC{4ht0v!vG6@x$b)We36qe zk8&&1u+NC&bUy?g+`3*cK>~X@FNS3Sm;a+*q|bS|Ha>p%!TR;PtV5As`co46k(W_mF+I%wrBz4cXNj(2}_R zquxXDQA^l$TReKOqqV#L@z>}~7hmMEcjHZQN9Xnr^jba2?k&zs%0g>gR>$DF_Uxdw z4$=3!l3^SaXib8zf}{`QOFjI@PO1hCO>)alWKCY@dE4SQRregOrfPiMdG9_!d>*du zY+t6=whj4i@iyR5SsIZU$b5YgGs;>jyD~Wp9#Bu0D8Xi=_3GEN@^+ZR=Ju8TU}Y?qPUIj5@`{6s@OhZV@+J&p2}`G^kRfhI9<)pc4; zM4DZoT!F>x>$oBa*?i@$(IIcLI(}hgeIAqgJgOiUbg6i4kWF4i4-|&-I_2f$pwHJj?qCA>sJDHwTM=aof(L? z*?nHC_b+O~&BhUIMFPt>-Qx!vp#nF(leVpAeBP53UHbO1^XY~V6n*P@kB}$r`m0wV zn&8p3ac8K!K!@1(&cHKI2=c79plt$PWOm-ILxy*FNwec@{_qDhi@PGs$RJUi)7fRi z|7{3IEc0|!C!{gy1*sN<+@`D78Qz<%TVA5oy>N;myrY$^JC=jf+I;uhppVct>k=b) z8L@w)*qdyB7U5J-+)g@}WhwHq-&Z)lYi1a{e7U~tIzHPpES!UNC3-0;!Nonv9m01N} z@a9QCUp6c`CT>qUGsr;$LkcCILt7g*bMOotG3MEa?U4}EO)C{txTa`=RE^tPnE{QL z3MK9o`|0}7KgN-;Y*uK0>_6&RF24Uq7}-Oo!CdTb#b=`I$M5PP*I{{ka;S@{7jqzJ^II>d~)}e_W#@&4B+ZcrC^_!v`SpWO$An!dSde>`{xhxW{4_Yr3MO{-#S zu0)M4(IL>d{&T`4=}W)6*-NEh^S?_S{U0`JNfLH=MI7__Zd=4X@Fe~U_9SL6o1KlK z$3o3wY4y9E*PK&Y@ePmT&*|M6I#TDT zEU9M=ZwU@i5JZAJXhEk=uZu5pNLL#_mZ0(wut_23CWs4xElZvpI4o5)5g*3h{wcoQ?hkoc z&6?u(Cn?E{ME()Gg>HOIKt{L^Nu53AJl4$g_mz_^z^ORpb`5BK(Y3U~Eck34raNe*O9pSBv`YY;=7w_&;I^OGkRd9asU zmR8Xa%OF}#!Ei0HA4#~ellE0-oitifs?qt?&E(+)Czrk#t?Qa0`U2F9XWL&)^Va)X zBj#*Be6*SchVt-pq^VB^>@NN*3%H+X*;hCcB&d!8f4JnxK&q8@aZcryw+G*9E!PK3u5%BargmEBe@E5 zA5+5off$+IH^BGyatJZc+-#}iYiuRu!cK~L?=w<+it2%82m$WQGe4l^YsKI^bbdmR^9(g98GuiH(ym8?jOi zTF?hp1ezKwSmj3yT&N-=0YC#7=9>}tSpxwHj2|EMl%_&-hfef{-WhzA)AtUb1}FrU%}0e|Z0|GzCIcs2RFQ^~AvrPJor6 z$jwG!Q`Q4SmWJ-`1n2|=AhFMdH1eqIGQbK~{4n*`pcRKQ8}DIaD$+Cu zqk7f=SpemH&{`+6RxZi_3gqPpO^_E=2SR)eQ!J{-8b&x1wrc{ADIg8D?ESUU=K!XX zr>PMQCSS)y(5N@HR|lfT1fdwpON6+uC6!a*w50dY{-g8dk9dymk|06!j|cQ791S;^ zqg~X3fo!2o;l{Fti84G+S`#DWU* zO9iSM0jsEmQKzofsxr#agB#M55fYRhTE-2l+!5j&umgQY^&67VSP;ljj-K4YFWS&` zkS$%P|GD=Qf;2!`UGLNUA%1Wr>d}iEl9x094AuVR0vjC0C1!wOg*?=m&WUgZHvgiH zajVoAx9q*w1IUiu3((|k-+T)8dCq^oI&#+&Vfwlv8XvWZsEnS4ivf>1f)(GQ!E6=7=oXwco5Mv zMLn1^b5u;rP5&}OcPhWFI#N3w&Jx_I6F>|I4c%db5Nb{%n5P>p3kkFV5*s_EEIZ;x zHP~9;kkEXhdkhguV+pL;a3HN?->qSSo3VlaOlq@0FH68fSv_+@nj8b5_tNVZ6r`iX z(L2QggMVrClC-N_u)`J-Y4Gkp6IYs24ws^PRMmAi+6-&Hgvp@e!>;+d01kL8(@Rn{ zU!wloAqH^3XZf-uSM$J{+yT>URmGI$p9>}oR2wH~oS-nZ?dgFE3jfhef;2dL5KX2D zkCl%8KUNnc^cHcespYn#idH7)>HY?rx{|MNSM{vYv(F%w& zrPhlkWIDL^KyV~rfjoW+2@m@RSujBD(1Xu9i6_oiQ#pQvV=K-Njn&TzN^@<6$@FfM^S+Mg1V=g7OF(+_|)>&iNi;0 z2gFz5v8J%hjB>Qe-O^FjzONojg|VR5-yKXJ6a&!dbT!_cL?)(BU8%6x0XnEmVN>k@ zXb^|$?D+K3U_JwAQ5)N_r}H2t(cnM05lmNvTy)wrc-A8Zpst$zjVlfQIe|4gXG4 zoYDY=af2GrSf@j>pU!9sE+7jjQK)COlQ;E1&y4`zr0MxYPdW!4Z0^`pml$Mu7 z1|izLhNKM$^MfVJ$WTJvkhvaX(kA$2B+Z5sDAA{oYg3GdV9Fk0>+*T;{J|tscObg` z0VX!TTcP`!<0n|WT#zB{pdAmdYDhreB$85wMR@&)#!Z7CmH9>P2HkIp-_pU7Cf1NU z97RvIfHw34&Q1SETu3CG=&U!DX$1$dPt-*1W}CI@-q{I`Y{*=wc{mn%5*iRuWrVVd zUJDTp%Y(U>PnnA$4b}17eTHP0CYe*c883@4qW$0EiULernj*DFHi6oQ&7{R)Q8)pi==Tx z;abCXAhvRzF9Rt-apiVR5((wf0Sh=^Oe;avKVh*T6=3|RKBw!F)Cx-gZ(zxVlr=;H z8?9;Y8hdG&kZ`c!DdADm5|be?6dx5;@3JXQN(d}f zBnAP-h81;SC{kF!x357_k_5=~z|zd_HXRErx?`X`A)-qUtvyACd;R+&M^RQyrb@~* G8uC< literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/04-probabilidade/img/prob_dois_dados.png" "b/1-analise-explorat\303\263ria-basica/04-probabilidade/img/prob_dois_dados.png" new file mode 100755 index 0000000000000000000000000000000000000000..53bf8102754015c29110b1e71b585112be510caa GIT binary patch literal 128737 zcmZU(18^lkur?aowr!u-w(V?e+umriNjA1^+q*F~c206)+y7p?dvDd7s;Qdk?yq~g zYi6puW@1&9WsngF5Wv8|kmY10)xp5P+y8YQIGBHwegDm0U|@KHwh|JmauO0`s&39! zwhoqHV7ifMda#;U3eA_9)7?yFfB24a+-KC>)FY_j6s-P`sY#+sK~p0zP(T!AfQd

rh>r#H8M3ole6_4AH<3NgAo(`#65h1OM1wYJ-C2SAE1ST4qX)iDlYqni$aK- zd`fKjOolt2^}?S~4h;xE$$%N4B?cs!kYc}B^LSt56wZCxKY~fFxE$!6y|HGYEjkk{ z6WK?#4(Xeg&I{T=wy>Ve3)b*g8Q>Y z9oyX4dwzZy66-@GS0(a@ol)MRui2n*q5hDmCg;R2Mo#WrLO&JpO!#Wv?{|Drz!8fD z!{mjRhN=v`H*D*d#LL+*Y5(w)3lneAUOdqsVNrpRym0!dy-8%b`7dlp_6 z@T=B}!g(Tl;x9#abwz!hC$yjW1D_mb&R!$P-E6+NNgq~n?6u>x_-pTtZBKMaV-V%P z8wfC!sm=fK(07r|`N57+8y-&ZrJfAc~6z z?rsXn1Fo|R-A3VsBKAm6Oci!PhIkMb-~vVjbGS>#3w}C)?*iTuhB6236y|RVCI~b8 zqn86*I1K-qm`NNhBK$WR;|Mam`2G*35(rx{m>+!KVEH7Be~@A!Nr~UgdD+0GqGF35 z&bd~Q@T0bh8O;$NlXD^TMr}(p&#B-+a}GGLi7ccT7o$D~R5b}c&hbzlmNu?K`%`qR7+@rm6`@!^vky|{oHQ^D*bB|$S z#>Tj?EEbb)e(H?#4BUbsRDt7amEpIC9}70x08@ zCv8L&@9(>Gc5oO{UJ^K=0YcwGY4@OS7<>?W0Kypg39Ms)U4fhMXSsKZ&`dJrIdTUI zD2$)*Z}8j^UPF*WP-e-$#Z#$HF^ysiN0`j%ZpL3qmBq?Hlw8$w_5zwb-%Ja)~ zDfubsn-;MBX3OAkFpIIKGvyt1$u&#eW6V_iMMjw1`^WVF!cFJ}=7stNmXfg;qL|x) z%mT&&+5!i8m@1pn1bKiEKs+GYDR-tCrU|BO zT?*aDCa#7}v&^DhIt(m#c{1u~w=lPGj+yV~*p}Ru$fjF^`ors!{DV=JDc_o{5G^OI z1%{Vrd4`qEbS%8BRm|&6`zM6QLic~{Hh|!cR%cy9Ei!<#v?Ar~)@arwM|v}2Grlaw zER=O*bwY+phDn`4Ziueg?$NHK2Tq4UgW;g$J=cA?gUbDr!%UDRaOn_vcWc-`^ogEy zigx&DDt*E`tUk#((IjN&r$|$HOc>XoMA!Kw$^o8-Yc!7FZysgLP#X84o!q&$Y zX8ca?$4H{tQ`%8fQioNiS$waUS>#ZhQ@dFwSWQukQJ`LUE1OnhSD01kr}q$-Ripny zKW#mRzq+gUmF2sxob=>;VH{JD=15bE8nKkme1~DsjD_&o@ah$?sCp}ZhkIy zv9sVVy{^Y8!zuhSHLt|@hjGGoM_-Jv)>p@8M(B^w{6Y3`b_p|yDznx-LQ1t_(PI5# zISX5$Do`3YOCwL?kz$qNt3kZTwRmPl$EnaPWc2~UatGYG-KFDD;0)rFGg~n&F>5f_ z8<^EN)S~DMHGmFi`4ZK9bw z;7rSe#-!>>N+do%+9Z4j!xOVLi~q>^B6uX2W`L`JYS*GbZMSgXN$gcDQY>ZTz8%{s z8(|rh1tEyk98aByLy5CAZLu#xKavDF7j*;6i@||=ld^{%f^-je9!D+~DegQLBS!wa zA09JdE};-kF{V4ORg{xLeL|#ppgHS!Be|THNss3H%<~F73_Lcx2*wsBD@`Mn6wL$m zB-IhMN||m+j-pgKOo^8>?si`5hi8`S`i%$OmPoIF1Q#W(1;rvqGfP|s_AgHn1Nv^Z zw+)me;tRfazDz!#0JC@AjOA46k?>k+_t~-2z0>;Tr{GdgQ%{;usQ)F1@eucj^#Xa- z-#h=dZy~T6dIRD0$^N{aKST)4*YvqyZ?H@J*HG%v4aHm0FA4GJN1|7+)u-!R^Va=h z>XDz%KO5D%7bY#uEnz2qO-M|T>SSng5$_57^#0bz(csoFQE_^%_F4QQ6HHP}OvvZt z+f%Av)b$MYC^;1C&3(z;u56cEQ-4@FU2i0e?Q2&v(^*$;+}zg}T5tAc`|R<4@|0je z06UYB+Zmw!d45BaSoZF|Yxv%Ydh{`aYSPd<7pQi&zoxLCp2*eAb7dQ<|I@%qUqXMJ z#os7s)oO8ht8QaEKx%KI5@j#(d-b`_lQ)KdJHJkSsbO|ENnl_XV~2guM*G_u@+@JJ zUyk3azoWnNPD_U`@YhYPefxv6_vU=(qLAdw51{c(9JVxiCAahIGsS{Q7yXVdMID3bV?XG=xl<^sr37ppsA5Gt(U(=p_$# ziuJq6ZEsBw^+%PhqQ&{Cee+77v*ETNAu8V2GtcA2g5-?AZTG(1;Gb9ew93RMoGVyi zhflT}_E+G($0hAA6&YcLz`pzRd6PiSJWfoLV-s!br=Y`6ztimX_DjC;&h#D1KGvD5 zm%)!>Co%iIWtF7-l(<-hj?x9olfy^sjkKd`^y=z)O@2=yY*BL59!Em3=5jDHfA9f* zFfi9UX~)Ov!XF2a#z)kY_z5IG?Xg3HVjz6QJ=u_C27nc0f0_76izD!dwfDtutf1g2 zDB-O{llAZ{Gix$Wn8xW@SD{uv_*h&DJ3oBt?%;2a-~-Ta(feqtD81CflsGi()W^iy zAzaRphRs;laImEbe4@;d4eu*yqWX$ zmGoveiY_uPUWljw^a7{6nY;$wydC`Aot^$ZK7M|_zW)BskK6kfz}}_Bm95!KyDMjO zQ?v>as%9m&3~nggCfPTlSN?OgXXXRVyu_;bZQK;a@-c#O*YUu_D|tG(c=;wd93^9A z-=FI(f!ed`>Ua7@zM?0{=Q6|pn?H3SDU^0XW-lLN?uEnN4&BB`a{i~?_yjy>##{?ylc{QABoQ* zkMUER`Tjt6Zpt4G^s5iy)nLusGR5F`k308ilTOY;6C$gnzV87kd3P_{FA}zUbF(@M zo0EBr+|||gZ%{wLSbtLUQ?{y5`oPMGtIc_4;Lb!@tIb!C9&h29DYEjQl!v^1zoOB^ zSdql^eGkvYLo2k^OaPP7ZI3 zjV-GT%go?Qf^Mc>cAK{w^Bb}nX`8KE{LGPfD5DrBD%Z8HiYu-T&8`thhaCgP9l6(U zY~un*w|*XBb}x;uY^o$q$bam8Q4}yX(AYe+HJHAkNf97k*dGHMeqArb9LUbnCD_Q{ zzh&6p7p)HPKKLlUyA1sqd8WGi)^>1{iddPsLA>z1AY9UJeLjga?KZ>j2({%_uZ$ZHpk-3K6 z$Lw*uP+8z>klzLU5|`&YlWW6y+#q7*!|k9KyzRjW(EPlBpboQ+?206fRg4M3$i~hW zYbrypbUI1l5ct-6h;>N*A{I$7DoIUfNq*>?7PO?_>fs4M=2OyjmpqI2YD?^{i@$8z z4*7%+my{r+6f5Qf3a6x$omgFh5ODC~j((-rJnFu!*{uF_7(dUtxFZVqAsgySbyFYzn1v~U(uZn<657xv zB*H9GkXU?`P#Ah2Djn{ZG)$a|Z;GLjd>TD3-5A-o@CP;lk@s;i^)W3{uzqgSu9Q5N z-IfTi8~?CMLn-&RDzVnLys>7sO1kLCbq}(Za+;}&*}C+F@u#}|^WyHGf7Puv*YGtL zS`!`{d0%uaA*-)Sq=BJ9V1%QmTzxIDuWqYh>HYUe_x5JubQ?2YrD?@3uc_L-&f9J^ zfWP%-A#;>w(p~Dv#3;2lb#8M>zUzEJd;POU;@QsUXz8rRsBjD5=i?7_dffTdk>d5F zmOu4z{&@rb6g?~fo&<{WPP&fI^R>DUc(w#(d=RF$!){Oai*Rkdjd})oOn(vf&)0I- zz<|**gSm)6g&?X|<}rbZ_Mmi%+=IDLLGD%|n_hB&8708X;Z%w|MT4J zL&lAu+S4Je!*Y|iZUZtfmm>rBh+T*`QG=y!3gXqsDd=`Wm+`V=gyM3CVs`^vwK~#$&;#H;iGngsWq75Zl|88P$dl!gOT=K9qk!Kq z_(BC|jz?BUONKOur=|l!A_tmMAT*lv*lT5AG z{SjSLqBit|#kkGpj^gUKzdO@Cr8!*qM&xn*PF^tGh1Byo0K{65aV3TkkSH45uZ z{-}~zDeFxvROUJ&N_Vew-trYR6h!QKe75l_j_^*qTZDPn9y`K>b;-ux;yij>M-ng-p%Z+QNaH>vVlaM`2kZ&RK^}3%4 zieIjE+}3F`aqMlItKGtMb)UUx>gEnq`pAVug{370<{u|r`afQjKIz`^+J^D3eS(WH zzu>=Xy-1n1-4pH@P6mvGz0Q`F{=(jQcqWH&5JRGaA>Kufh{ht*p@XiHX82%b12{lL z4@U2uUCWeM0i>K#<+l~xxw%ecs55jQGw6FD1oPk3&g#|SYth9EMri{3TB*V)}u_L zC1wQDo>5t|)Rz}jR@9Xg))bo;+10n{38_=+G;5!QK7OyuGEV)}3)iD`1QMl?bIRQz z#aU~2EvNBJdL=$ep?CwB`RI9JyEHq6r2=|J?>bhZr%w&Mo{?U@zm2L3yz4+bgfFyt zMxxnV7SaxbD9+Da+S0+lWW8<^3v=Z=p}U2T z_|9#An`~NZHUtLWg?5TJ7o84AnEU;a%@liyrF@>KsM@o59k*9$SUOlTSHb>^$Yp5P zBEq?y>XGNMcTC+1>aGn+KU(+pzBY2~1I-q<%n@Wkegb0+ogM0@(Zygv8;!xHLRm2Tm;Jdlk#+u3 zi){@5lX!yt)0wT2OZ}YQM0av^YSn5@#ihgjCvSI$dIxt$|6R+C)wSN8J4Ig~gO6@Z z;x{t8B0+PTgG>B$yfmUzzYtAOlBLN+V5*6F3Edz14Kms;*;5av7WS4S zwh;}G)X-t@dUW9F{M6;wyEJ0gJkfi&&<*rdMZP@9Tfg$mdzda?BLL1I0c`WDyFxng zd~I7sn_6p?Dtikh&h19I$IfhxNS%D{?>99&J>O9doo0Gp-u6D6VFO4KQG5mcIL==W zW-2BYhpb6W@Oqeh9`;+`v+r+0;pe^OQl56=f@Gh40{sq~Z%ueOjZJ#2i2F_hF>{Bf zdtbJN^Is&s#;3%WRVHRF;vz;fM(3$hN}Eb6EvFB2CzG@#b!-@|wXL+5v{SU}YhFaW zva2RuAHdl&z(RaGyI!>*zzoU3CSi4SaI1B6(pAW$#@xZ`qMhHbnuAu@AYDqlk+&3m zd+)ElOg>?^kbeUUhCCntJu2kdYU+CEDk<_?I6JbKeRDRqWbtuy`S;EM1}5mk|8MAM z>0w6Z|Hl78W~CtePZ1A$Aqrh3RWb=@H%l^Z7A_Vx3Sk5?GBQE8 zZ&v*3lG6VT|2Gq&u<`J4;b&#__V#A+=45epvu0)Iz{+H z|G{BpXJKRgAKm|;g8xC~SGD!AbkLQwb+mMH|7Sy(i<3|AKjr^_od31>e~^0ri{xZy z`@hKl!})KdAnSiP@P8couW0=z^NPC-lMyq6XdvU|^zPa*|@2KHxpQupPNt znNJ@(z3Gbz%6=+j5z2I7_labjMXPiuVIixNygUt4yv6aw^$^SGQs~f>oN z0#9`3MQbmS!Om5_6GL;EFPX0k(`xXb{?151U#q?g%Vyw1cKwF?Tee7#>&<0b`ObMn zt9AXB#OtK6l1l5Db6%i3r@wH2XRr2T@W+}8Fz3)-3 zeOBFarft^ep=a<`G+_NL-+J37Q~QPE!~b;xkhqo%5OIEe+wpt6Zv-I6FDcj=c9ft-F7+UV@IZ zUkW|vJ@U5$N(0-{mE09B^>=ojg#sTg5zAE0L2)Pb&OIt7Ut{QR_tMVW&*wz$Ealez zP8)Z72{2xyS;CwjeMezm|H5MR+R(c(IVKV~#n*7OlAYA|a+inrDRN~mx4P4Jl+f)R z{7RU8c&qLk3Sve{reEE9WdeDwHm}JRnva1T+ z=la=#S5B@oEZj{E7+2D(B=^N59yda+bL-X$H#a0tD)u1Exvl8S2J_l9ew@ig=@s0x z&Pt}qx$>F`ivKk;DXjRl3NG-cb@6G#o!IPl4z|wy(sL2eJ^ni6zvwG{CeWV?T&5|< zFJ253zMHlEoyZ~Io&WFtCJb-|2(_#c#7@FEK5Y;ZH?kArpL^N=#R@D&>3!ZUV)d$p z?{3xcc7@En|GPyLZp^j2R~EIgUUo=BTbsM(*xj-1815P$zBnn=vR}2#*)a&3Q2u)o zVRYyT*WmwIgUW-r%yN{ob3grZYB;{OmFqpvS6s+xYbc7F`^j(Qa#^4hjatHRwApgh z%mT2B-x<3HyxIsgJ>o-7oy<+;U9?>M80Vcz)U_vSPkOZTOzY%PZf@i?a?Jx8_PzDo zt=ayNS(RLM?-*8YzuYh31g~w&Rp7I|@_$aensLu0$?o4ucOSj4UQ!Qy3gk)DMto%Q zpZ9(TG;2>#E zr)*aqzxWO?b|L!U*mi6+(OL2>n7ptc;R8*@8L6<^wmnon2ygx56t@o{wcdP`1vuW$ z`o3NYx4`_dB=X4G+6u{aa`iszXm#@N<`+k-)oXt&PttYPzgX2;WVN4JZ~fG?nMVfi z6`VSO1?W0g-OpP9clrI@L8(tLr22w?_npgwH#t9?9Ix{DkJcUo-ZF#unvds9UuDmF z%{0sc?dG~#W%8@gmMvxh&^KjbYn(YeFKpAKkAbfptrqns?%n0Xe9jgg8}J@6CkWQt zW?t442JNk{j*e_--5!2mWz`q-kIPwATRYx6*0^mpHURyjbK^y7!*L}ZgmUIYf#{q& zqGoU7<@6IDyDU-z>(8fP|GtT{E5~L0k_0IE^iyi?GvhQt%g#7TxAdN>L!pVTswy4y zYsd!%q*T?U`8 zU|HvJw|2?iZKi1b9XA^|l`>o-Sd65BlK^i&h4rO$Y=>5_4cs=@d(c443+&7=WadYY_6v+o^h7b@xa)3g2dO&P`sasp_;u< z8h>I%o`{L}sA|q(?rNFpNP_wpBA6?qyZ_R{F^Q`ME2jot7Fcy{^Qt%MTG16p#KKNP zn(96&0XXlecA5#%3GL2rmOd*e;hrY`69RwXu7l!y{sGrZt8g6K&ogSbE+H? ztV>UFXIkT8TAX&pTXB$h5`^s31~!w7tuV~9^4rfSp%aMekDIx;cl_~0F2=udI#!{a zqWlO+V#tGN*E;Zi!7r>7&a+(M&sWUM@`z#2l=w!Jh{VkqkIj!`#&xWBkGlAkT1KD- zO8)G)n@beK6`XiGA!KF6blT!l$5V1tHq&}l*C^KfrmVVcECS1Gd%v?7t!;Adjj7M0 zuqi8{1eL$$A~}`AKaypg2{b6FkB5A5%7WChWpET!t16JFu}o1QMCX8--m^M}4R-nZ zLDN}ZXgX7mB*D0H8()b~@8e4qao}etXgw3(UriT^kzzViwZepPk+o<~$;Rm1q$!Ex zz%s|c12N`s&;1m_z8X1`vnn8Hbr&Ic1VQbKrmK=>{c2l(x{`5w?F`)sdf_^h9@q4d z9*oBbu$h%<=I3%<3>vk8LoK$-J<>eRdsxgfD9SI}xh1(b!0DS=P^O9`nW)x_o%bT{ zDoQ%R0Ss=ulbOWC50B3X;$1D8AVSrMc-mMi-B{X? zgseE=C6qT!s?59@FH z#-q<9bev*%r7-g*kkC%^ipbKl<}Cr>NF>b*-yq_19z`OWP_gZ+&R0XOMNfT+t9*KM zhVY7~itsc^G1JZc0`>~R?x$0gVyxFCk9uQ-MZ_*+$Q_+9Dg2{WiYaC%(GxX4gt2Um zi0@m`MbVL+Mse7-0u``r?`#DeHVH3uvVDIj2LFi@3yWnwN1zpl1A{oQpo*s-nRiR6 z7Gxh~OJ!MqyzrB|v63G=mWNIegAyzciOYxkj&Z^wzGcN+;Xqe~^&#&TOaz0%w)sP- zY^I0Il^d%z$+c@m2)TCnmN`R8Gd9eUh+6QR-Y@;2d?Fy@H|2ifzMI4jnIm*O3?2=p zC#SS8>rj@cXwI1(ogG#cU`i$J&JtQe%vTx~`*$K8n?Bb-NNireGvj-=uh%T)RFlK>o?(;*;a*kZ^!*#U|g{afE8_$3fuNdze* z97w0M&V{LgqKQ>6{zSm_C}y8$jgZEO9l;tfS2(u$O|61v%y=D{6U4hx{84C@;Oeg# zX{D7a_4AHKb{U1?7j76zzocpzh;ANCW>>~0rc3J2fWVX-c}5DXB?*_s_*2$+oLC|5 z+}e1kAZhPs0fwRT>o|oKC#LXv6|DXQ)a1dn*;eN)wMgL84OTEDOA#_HKS)@^YLPW> zn}E3qgr}901UIpU)lLYsn^%kMw0H8;`m_^!=-jG`U`N86g7b)ZF8ZB^FNFk`wJ~gs z8t5^k;8P@Sayuuogv2oPL_*^5w>8+`xa_4M8Xq~%xQg6gm_NS}T5Sj<%f7_$ViRl= zpDzY|#Po}HH6d(FE{bJr-ZEpu27?XK(NSChm_ZO&Ki7etCOQeSi8PBe2Ml-E;M_xTw@1)FZ!TxPzRu^bx*g+6X@Cn?Sac#aq zBo4irGZCC6Vz~=%08<1942rzmOxr1HV<%n|C(346?TPdl;jZ}GZp5Knv*j`Hhe_PS z0-d4|gC2D^8Z;w?4VtZ1x2BB1rL;=ozz;}p^DyI4KWom{DXuj2`@A~JiW43?W0XOK z_6%@a;p*8pJYq8FVl6irpDnvX9?5)>#y+cgmLiV~5@w6YWA@-PzHGbfmzC}*h2&!w z?;LJ?S6;w8n}7cv0v}%ygIp5duRi@0lCwE=rA^&{G!!-*p;8%xs5%jZW~EpD;?v`o zzq~*EN{u(_rtItg2(=jHy;lrP>95j&!8|Sn&~?FWH+AMQ&r)a9?uT}?Achfw&r4;A z%Sqj=1}M_-%LZjE8-%5*av{2RF{_8%duH48c;8V4c(D8yT2EX4^<-F)3wT#1wkBe6 zHYgv84EZVh!-(?_)e+i6g%T42V>ICEa4YGC63o)82T!gHT4yd}K2pr1aQEDD2&*(a zh_^VA9Kmv8{j*TT_PKkd@~+|IFl#XiOy{rOJ)>yESs3MXF}GHFxZb!Kc0GXX%SC>} z`I!~_vR@7hh*4V}QndYMVeX8Upk{&x4f60gg zGIYU0QR&rauQ%!^;Cv~2^8jmfW-y?|_DN^ck~@|Uf9Q3INp%0O!KG=%hI_{yOx zP-)P9+4)X!SW?)EP9mqdliQ57*tF@ohF%G>cH*AT;V$}x9$osD_hmPdAdsD;74FXv z8m?IatmRyUl_i$Kwhm|;3oClIV?04UDjW~f!?H&D4u1QL2rz0kFArIKT920eYmy-h z3J;1z+@FWfNm=R-C?gmr_J!@1B~=*{ILnpg73xeJ>*+JVl_XU;c!Pu^G~nqJUzv%h z3Y)KjU39jx^QJ=Z@&W|UJ{#Q!65sUFFur_{=x?UTnac3ZJ^gGy!YtV?@AKL)#xc30)%iH89yt*s8_C=bBd;er%M2k<%2WenS+GN8}Mn;}im%-3Q%B1JoO( zCS@uQI_7L6Q!`I?&6tvj70mB`SHF0_d|K-Lg8%I+@>6{rf8-n9I@nidGBfMzSnNbX zJ3_~|7QWD8Yd@%J#U1&%&agatI-p{M0X)d*`z-VraYT9GNtIXN3xnhH<_cD3yXfJE z4zC5=P+U+@hV8e6M?4E`e0WhvTtQQtbUrDuzmcQ|!$gx@J)4qNhQAem`9|5h;PhN~ z;AkW~db^~l2Ix(wMs;agxrdfjIwLw~O{^O@?D$Uek zYsD5MuYL#BB0R8Y$HH-94 zqHil}wyI($>pjTUA1$LNmNry&$nh>{n%O>dr7#7em&Q05%Hpr_0AKggo!TPBpl{uv z^L`PCF`ucF65A+{kEfHNP;o4MaJaeMdqlbP5`eGnCYHEL3`j(IA)QHk3Qhs{nj}ga zYLG%LicTiqp8v+IZq~zs>ONePJ&4Fz51!h0I2S;NjXTB;=3A6ka7(_aAn4%iYe@X! zs+3T>gf;Jw+9!EZPLH_F#xghJfN$YQ!Njue0dB+?zbG03@mnT%DqPYP!Z{1#L0o~8 zKxvrz#2MPS0uL32-Hw+&*<;d|P6nx{YPV%qF_aQ|(zq3F~>d%g{ERq__j;|bD z2>p0z_Wo=;H#Bac-)VaH(*PZ!xLio&9qnn47II#T&5fpm1uLccGMYtcEI$nvh_OqM zjbv^V4~GJdW`kV1A7vs`M+PLvkjcz6<2K_cX0_R#6vW>=X266V0ALr{o`u8K7bk)@ zH7pv0uokM#6=Kd&JQ3#FWbl>q1x>wq33Ime``mQcLFt7)k|Qz<&5?GjxHz!FlvyLe z+D&HI5xUAAv1%DG{q`hJ_0~Z58AI~M%xhxzFYND~8ps3(;4Q^x-4sg^D8uG3>h~)) zvSU4`c!ZZiLV#aNfjV{)+^zWN><1kYTC=nOZU!5j5)YN};yh*>mQxSI`JPExNgLf&|FOBkg&g)5K6OA zaC_Ifxj1*MC*^Gc>W;`wiIM_3Xh!(h_POTz(6 zE-srb_A^o`u7EwUY#xb`V}wAC@zULE7l=IW@{LI%AGSItEHPxDP1iyk7=F1x{P>4Q zV(?TOag*~5>yhNyz-5y2_=W+8({dqBN*09~1`+R|jS?P|D`dt8FIt#$f1s986K>uy zPwH2Mcs?q>BAm|7UqqY$u&i(wM1LG=^f6FG@30Gz^j+(oc7B({A26 zqE#oP(s1+1Xk?nE2BOoYSp5v$xX)g^YB)u+&h&p30p@WHdL3WH)tM(AS=#mZr>=+v~UBDH`rWzr4xtoV4J~w`ZW>MiKv*i1@R)y?554HMUV=h-n zHw&-Bg;Q$-WmCwhPJTL=0;zugD!_d=kizD0aDX8OWhozP11F_&U^<4Y6wTnaYtH#d zT~K7iX1kCyN3#)UTEhyC5`ucA#TrR#YDtelf5E49TJ9IIDAwf|%*WN${$lw*t zD*ezaqn`ppTa>PPsx|QO=i*Jlw-fkEw7wKlo;(IWaXRkfP@TN}Zr>X4xiDd$Neks4 zq(6QcDklUHPJa-wE?PwizZP2L!X;Y$ao1N~?F)w*U?ew*@w)bQrQ+~#Bf79@uqEu7 z7lWw#)2ijO0*m@gW=9O<`*Vyyr-V8&Nmx`qrS$7;a!LA>TbpYZ00~xAQQ31`wV$TQ1i##AE;xK6XSW(7NS)@i~Zh}l89I6*@iXS**I-qe~ zs+ZxET2Bg8qjglXn8~JIcaP2yG(m=~9Pq?{o}a^JDp)uU;lH&y38yo}qL{b`ONctb z)TrTi2N`uJCUc@tB7C=p2w%2VPUZW~iwHhu%J#r(kuAE-j(jS`Gqpo6S`IhkH9(|J zAsY9MNe3a8SYi=nHuXoZ8cQPHS6OG`kru^o8fCFARm}w~5nvsMvsnDMW_49mcgt(P zP}%vbM7r^V)El1tYulJlQ{2{YzK3D!UfUFfVJ^jV)1KtqZ<*{1=(s(WaFHj4Xz$wQ zmq^PA7SBr2+yzEtusLzVnXP>mc)fU%oa-zLGRiY~Phfs?uuZ@tzER#8NPcDrqm2rB z7jPqv&qQ`fPU_HHVZJ&Wg1?Kw0u~!diyP=UuXlz|{=Bzz0v?xt{Z$ zRJm`awaq9&;^_cyX1jf7gjI=ErJ*NDQ~J8FUmAlD3q`u?i?=CO&{xI2j!EhM?B(3t zHsjLM4I?r2CgupED74l-vJ#n#BTi&1H@7&??Cw&QY$U*hpZuzB>>17C9U4aL8oetfe4FV-Dsa3ywHRq(VE@%nJ&cg2H;IPk@AhIiV7$_6`~2C z4}C+hY23ns`}OO_C#FUyKDiL09*QWcg)U)0uNbcd3|c6tn0~A)6#Vxn4w`-grIFQp&R|O z>5kyIES+Y9u%9RzddK^1;f^1g{(&BqV8Q#S<`?G3*VzXO2<# z*j0bVTCy8#3#XEu>&wMAnAIVa>Ng4Kp+pW=S`Q|Isv847`p(MO_&X)yMI=r_W zH%r9z%n_9m)mxBn`~YzI?ZWcT4q3DNCriw34wsKZ0*~hOHxMmR0`=O=(=>IO4w~&0 z9IKBJ$^?^EWtroC7M0aJ9^aW$&KN%O(j{~e*CWdFJBnTlrzN^*FBqHX4A%WvY#1+2 zd*5Av&iBm{%7A;swR`l?w~pn4^))FZ-m#r%@M};L8#lVlz!lymQ6wP=57rO*5&s#n2Q-|zrwo8g07vyPNCOb;u#YQBIJ(>nuTJD8_pDSv< z+&PnpLy9xV!y0Qm=H=pFg(}nVr@0cFBFWZ?SPTx`pNxQpR=E$$!Zt>W=!()N6jEDI zfo1EPaALFFd`@GEQd}=#+8LHzXAGT^69LZ-o|u3@V6M>tmgd^%B4CZ$dGU-HAHa#X zEJrB0ghYVA3bwh>Qo@Bm8Fn-#$ha8)18}T~VSXf}X^i~56g0ZM{(c)MzvjDlCpmLyBQ(Zw<8NN{kK9LQ-5Hyoq(}w@OP+(8*4gj@>4SXm=bTh4NUJp z?S8dgUVpiJDkPG_pOywbqfLo071>>qd^zAsQ3b(+@r$D=O8Re-*%LnY`mxuZ8Nx#H zyWLDY^W1*ka=yignrcEdOP4H;fNAN7lyB}zPt-|cZOKVdshYcLcV|r=Rh$(-nyJR4 z6-tnRCdgXY5flj6#&zLV-C$HDe03$fw^+ZjrmHkc_4L>bI8{XS(!j61da6VCVA#A$ z4d;)Ao)|LnRCngfd5wcmMj>3v*fz1qC?42Js)d^w)BzKgD_uuvBmwI4;oF6hRPZ^l z%m40qb_XZ<)1r9yfCuI(;g>25{J&Pg<$|;qsHv-DE4#Fn@fIPNKPf5bfe)_}wn~Bz z8C8^&w<=}WM3X85geM}xM`Vq{eG71t9Sr?G+^$LyRHe|cd z6Mi~M(5K&A7E_N24BlP#n5^Z7+ZFVl3Ay^dbuV>Z1xY^l@{+U5obce`N|jC^)h!;7 ze$|Aw3f#1n?sW#<61)D`hb1XV#U@K@;E|-oU;mDbYWqARaA-7Fdg+~0vl(@f)pZ6g z)#fx#wkt~1B_9e*T4;0Xw^IF<()l39P3lJ=+fz}iU`^-qzGr9B)n8<4B39HwKRF$$ zI@0E>a}k@)#lb5XX#-?Va5qaTA#~W71L2{m$7Yt5Z@aM z&3;`BblZ6&IteXnn=S!6%LvCFxFH;Smf7=WXpKVsvXOPF27D8c3kVz&}bF)$H3a}m_MXydU$m6x90e-T7&c|=1WDAy4r0A zFlu(7s8*oU!RMdWjMms3Bi(Z?VtvkEyQ|@;WCzQljRE=Bb z>D`tKgzv2Ex96i7xaZ2*ZL&t*rT5NY#yqi@t=R(1bGjzqw5x9xq^su3x#ri3kN05b zk~q|eWMN1u+9jC~a*z;I4!z|Zr!2j;Cf8pE>_(%bwTiS&Z3=YuG!oS}ZUgDPU_ey* zr4#ZRya&Yx+5&Tgz$BsK_pBpq<%DXy2V0LBBu^%jnuGVzDROWaznvnnaUQnu=jvlK zB9)`95PchqfYp8Jqs5JzIFk2|dZ9c#`En~9lu;>BpsphkJ`n~J-;Rtq{3s@tIn;QF zt=;#7ZX)NIUbns`fa%R2S|#=ARMRF6@9o-T#{Np*G*)_#=MtXaO9EfxU}KGw+N>NQ z3C3Sc+NM_$OC4{v7q1iPT(9>+6n~65oZq_B}x_{bGs4XD*K{H~xLRHYrlx*E-AK z$dGC#-H``CfLzxUzVVrU*{9XyHx>CVv1uofA?S01e=7x^Iy7)GOZRYi)(ZS1K&&D- zQDc7FvWMHh*h3lwN!=%3oK^(d1*2*^XuViSqEFeV`fcKrn5c=-{$R+D!91eopjP-d_{EW*1_u zRjVP{yd}ku^@h;Wfi!!HAi@sp$0`YsPg~FGG)^aG_agc05VxBxDDVWvp4KC?9`>4- zJlC*w^$^3hyV zyfMFae8D?DpY~V2j%eVyQoyFlzyLM-38e1wI9qlVOjHAB)RBJe@&3k7R;Sll9-$Sf z-5V@&!wuHuOlJvafiLo-;3h)OCe?%}OX!sOJt111G5~b+DIXR26x*nO4P~ge2(g`e zUV0uoMP9z@t=A6tVDL>8h^pdGdc~Ld008V4)B9_#%U0B=N*rFmiGPaB*C#57)FcM? zLFvX6Q4Vdwqk-)#&e~j4=Bs}VDx`{h^7VQQJO6F-%`P5c#@JrMS*TG7RNpGkD|FNe zG^!N&!iNrPwp8wF6>@Ie*D<1B>7G%|Iv#Z+fq(V_diJY5R#h)4<(J1>cP6rf~qiNN7`kN9V%_Er`fg zMBjaQ^eO&zI+QZAS%AVn8Of}Ee-U$hJ#Xjwd}Tz@#4AN@NK@ZANoIMW^$dD7{Q zk`+dsLY($MEK#^n83s7F9?r0qN%I2~`@+t|^1ELJpFCZ(0>jIuIPXvOxv-}RgiGB$NQbZ0q^lffeLbK^$WL~GNj3NvP zv~8Bxu@Ge!+B?r(1NzIa+Y+V(rbZ^+ZijVDs{8J?>!I_zAo!q52MP%MINT?t9X~&p z2zpLbPB$Y{Mjt>eWtrnhTJwcZ0jh}gee3incB{8^d57S+4fp`ruE=XWDr8_} zts}RmYQ&F$V!8d~m%6XqwxBbe({cYQ<_nFZund@#T!NVqZtoA8i}xvCgx(&pNfdsm z7Y!5*vw5V*6-UimZ*RtjGZCA(_5wYTE)sBLwA&-P8mF4`8^Z*5Ix`09I zs+sd-?||qczz)mP2f%(9)!Gj9ROfYT`}x{25osjKbMc)txJ_Q>zJecZo=IWf`Tqf0 zK&8K#QvR-IRJiST+7U>r|C%2mATxdl z3JZ^ICLUEEf?paPr>N*zz4~8Y(29fSD>!3cq9h_!c*+w)X|C8`Z3i5x_?)PM zi3IBuOA4=kUV+=z==HB&r8YeL(1~ZlOTgu*5X<{iiAE?e#b6L6qxc#mQ_~;?VZ46N z?YC+8vdh)IlicqqXKR>eR+C+tu@gSK{YhoE?F51~s1zebwP`IMk&nDm>KFf^)aSpb zwvJ`$`{ajJTQ-*{CZ?X@ac%$UPpFQ)62yXv%5y(JP8swB$j}OKcH^U_Fz6kgJo?m( zcP*dQ=x07A&jXKY=KKRyJLzbp=gwB#a@$Wls`}&i1KE++rSdjHj@YuJ8Q^c<>YFrj z$t9XWm2um<&)3w!$0%;a60bd@@!Ni@%#~LXQAzVY^F`94`>{+Bqzwy_kl6SAw$c9Jc8$E&Oe?ZYXOI?U)D@13O zZ;vy!Y<-Y-bO}bP1j@AOijOMz$~N^McdGm=4kWSOsY+?5CZAuc>fH|ktK$42+d&-R zF!UkT12qAfT)bGmV;5@ClBMct^s~M&t;uKZRPvT*wfV}gD7u1b?01~1B85_6+-1+U zQ4L=7F;!lCUjCKGD0)6dkN+c_)WA@8N1 zRJb>(ZqT#%*m~9OeprKR9#(Gi7DX1$vDw8IAc;6vfg-j5Zfc>GptsG}uB*SJ$#v@#K6aJ-pS(m3 z3yHgWKlE_bP)M0SpqNg)O9N-U4=56GpsTjdWrO9U-X=z(IQhqalQ`UhRGB^~$C*c#tqnM>}m%wi^YGI^#K&K5&8Z zPrj(e^Bd(mXs(9v+kD-?YEN!4z9 zP&5AFTwp{NL?UuE1jVZ1{52v?6k8J<%thqWq}1Mv(sEf|3dL(NzIo%8pRt9w=8JoP zMg2gMedOHM{`BXny|h{VCmyNDWtYgic&^$L_nxoPOPlcMP?Yr5ltPmT za>+lwTkfMy(P&qzT;EHnbd3th=s9_f65S25^kCzoYqb3ERTNWnQTZxuz3!)K-1fLa zE00w8OP5J2mn#uZvQCXi86KFr1jGBg-@_UBxoEVouc9`bjLkp%w$eMcX#NEsR^q*v zYJ6e8LgXnT4dCT{S1SG9cWL~$kI8rHYwA3<2PlPX0yW3M?u2$7cC5-HAJ)S6oUB?;QrS2Lc02jAi$9?J+SO{#PAKrtA5rs=!&O?) zrT|3;{^K@k>YVcx-?&YaFTSMi*(-sgiFjFSHv7U06+HF=O-8yENLqy+N{+l{_eUl) zdBIoI_Pbwc{Qi42@QzccmUU|j<;r!O#u$77qKHh|FY?ClkLBgOL=5Y%xki4fZ$sx^ zMAh<{s?49KW*d$q5o6%wrweX1j6~h3Me0S7@6X_%4_G)?ZI4b0TCjWT5Y8W=( zAq$lG#HFepa0ofr0d5N_dhY4k`H736^Bqn;)1mpl6+n(6gxwRj+`-y4 zO6<>hpHeuzaSf;g$EAl#l<-+Q6n^A3*4cKcw~++Z0Q!ZVw#>xF5k&qNq(Z=WmXlxq zoonTOWvhZ`A1^<$7w%mSlt6W6TSE)C4=cOz!%A;>iN2s9knsRx8f4RhflEIk-#PEn zFok0t5D!l^K~*X`L>Fn|g3qdSiUPHmD*>f>Yx3xQvdl2_3ZZ{b?-G7BfnFFIOSc&*B70qS57`gvsrT($>LD=vY6wN z5mkVb%j9Vzw&oXEFzsYfq~G)tIvA~QGv6|7j&XZ?t=n5OZcMEGYtVUHpA?|_%MG(O zfsh;qAd<7;^pbZNdmUIOxRo6a3M#IDR;6$KAN6e*)bJq($bZ^_il7J^So%1Oi^Hk@ z6Hb&q@iA?k(M2-09S?x2FcQa6a#p$LA0g>UQuT!66x?gR;=SE4n1}UZxb7#sQ=Si< zC-2w3s?4AMC>?W>f|0nIc?u)&`r^rMHBLNB)xB1!ui1eCF`By-KkXlt`}HpszU4_} z*W9DpQ42_jo6vgodQU*JdOOrjjwe?cmzOHG(&o+bWYRzur70z3WdVV?GGP3=ElebB(? zRAX^<=K$5GjE%gVANatkz?yhx#kPnh`aH=cHoVlmb)QJqzbg`IUVZXiXLbVF{i z|5r9B_1OJ5CM%UZ{W5uHkz?zi0v3+6BBaoMOVxPy@hT9#=U>=D4&?|S$)LJ1a9-x( zpr8Cy`N;`jXOuSvB}hJ{VMRYw==yqHr*^{wT%Qy<*jnfgkKq} zrP8h9vP6k{__$NFq{^aR@|DfaFUh}t9fm2YI=q-=4PmsMVi^p?HjG=x`_5A1#+&7R z=mDi}ze(}EKL`KP7osFvlj&MCSLOGds=)kZis5i$nWr=`Ynf8#oUHni znG^%z$N)hVxUaZ(2fR;ZFh-z+vubP5T;xjgkN!!8Z8!+$p0E0uM@ci`E8yk^3O_~R zQ}?@$QTjWJ$j7lI!nQHFCm z%e?$q{@?#e`8)1a=Ya>H;OPT$MbRm7oM|qKPpmSmSX8Y%3EWAZeI&1F8;hNZ3{f{I zXK8T$fMQE7Q!GOP5sMsM7z$R9I3w~vU+`UWrYsFdHZvPvmh1QTX%^1R$XTZ=zifd* zkr+`ORIoHhTS5i$^R|`^pBhLSnZ@aDhX-po&f|S?5G)L4i5;8ruc^9y3doQ07V^Sj z+Rtqy?@K|84;a3gN@@J&Us4&2ql6C09SpA}x)g)gil9{09@ZLnhj0p|Zt!1!Jx1gS zlnJ~TeD+nM$quE?JW=ks1DZ)hZr*$f2)J_L2Nb{UZiR1ujC}pQ>e=Ufxlm@|3>DgV zN`2g5Ps0>L6uJm?C)X+Q`a0GSLFoDW zDjp;8ZP5qkgD4;%)F&}Jk=jPow}RXY^+_bxVv|g6E~)kaQKYpQ1@fcc z!9a&x1N$+YlWopbhm_i?+%c|ixOz)El1pv2g)61^*-?SVi|?UYR;AVg7K7}5`p zZ)Up`hIckqB%+~ubq;hLqu?ctGV+ka z@V>H{B>YB2I}yr-`;)-#C*g1F8lkfl8KE#LFgS&oS^A(v%o@>s5>=*)% z0C##pATkqMSOhz$07XL;B7(L^FOR_R5w+W5d|$9f?n4h#&wcl*n|#k$ZcJTCu3=70 zZ|8Yt+}EK%sEgvCvSuLM5zq@O&LN$`1w{DyFnuPH2KJ3JHg^|Qaa7geR;Wb82$%!B z?HB1&a*6oBkFSyb_(zRCcON@;u#MS77}(sFw@j#uyC!i!iWo#U`QCQmE-TisOrDD( z6I+YsMlLN)7!oO(pIM7V-BlQLw9v{4NHJoE0e=q6XtX95*1OIuQbyS_*U6 zL1q1Rj2XLHys%BKuYDPVk;ZYLkO}3TV`1?)yXeFw(kf0;$gpi(uEQ+<>10_P=ge5v zUZyt;o+=IRQs~v^|v5S<3~0k*S>MI#>Q zQ^auyP~kncYb{P=T8$Zt)!nr>dTb7h{y|-sL|eNTh>oDLDDqNZ>ZkZC5kLwuC^%IVDw27w4i_< zLiBLfZD|Ea9ahHb8c5AL^6I=f+RQlN?R&j7<3=wXv;(61FiN&RqZ==#W;4Z483=Hc zkG>h5S_GWfB>#~m85^E8N2P@aD0J|#EO4H$5IG8$d4~|cKyIYSc#C*yVW<%`s=%-w zBsIc1w(KM;ekMj0OZHH5+RjRR%dWs7ULvAp3H=bJ16hC;2OJ{qZ)qk zUKZd_pqR5Peg@8@e7^~_XuH7#JJ_nLF+~KELV0vJ2D5--N)~`WP~x`Mro#HFAjLLQ z4yU-4WSylCD_H>2ZIbA3M;Vy0^__IQ5?}gf1;25te0QwT_#F>BW!aPSG5!Y~q2BW^ zR?n&ITCx|G3ajF#X_=!+sIgCQwq8K(hBiG0zsWt#C!>8)VE{s`@b&EFNwm2U} zjIuN6utX)D?H1EZUKCxeOq<(*tJ{%{5c#Zp7~w&7AcwU`e%hQHj0cLQ0!*Aik;m)2 z|J%Qj@BALS`{Y%gO{B>#HNoX9u?cs{KfX;vcd|rLr&B-AnZz`^7+~It5_1aM{Ng+$>kHeH(2_4bp=IQlM`+bt3i{ zh9RGeBeLk#{11LaJ2q`q@t40;?1n#SjGwXx zXnX!l`48P+y&nZ#*k_qDUm>c>Y>~S;(6*1P2P4JSn~t$g4{g`>$`n<_otlNw_h!+9 z=rY@Rri@{>@ieF;X9)C%>Ry`@`sH;^Y3L_cYs-IpM^V<9h5F_zHy5XTNtfKc%-yz4 zDpTQW%UkL=1r-`d=YWhcfYsiJnjO7LxG>%rl%y}roYOi5K+fWC#)yVw;W<^=Smw(1 zZO9;nH_5mbh59f`pk<9LOJ0EY*^kSMfh$Bh9p`&;bO&n~SvC<4sQs%~Xj5^QbkDQE zy+2XrXJ}@OwQIk1eEW8U~#Q_TKryPZ55{C>^EzoD$~>k(up6V(W({qN5O) z($wZ0ylo%A9m2!frz#a%P1d93ffE`DOQ142Kquo}gi63iGg#OQf3d3x521ji0#ykh zfDK3=17FUr&Qc8_9cDu3KuroZnGK*T+X4%Tx83Pu2%aD1Vuc#vjMZmxebfpRs+tSa zjeLu0O$=M*;N{AE^g?y+^GMts;8Z%%94F32~Vhlb!YBtf3B&!p8!&^T|Q8tOmdY)Qa)h6Dn_y#wrylt z0|YJ2nW*AHBfcn3i|Y|)6J&#`8NVMzltn2tdiK%0Pk#$%0VC98<7e(^0+Hm|S;3DG z*c!kz^POYvyAj+vj*x9EJIRg~Cgi5ZJP^*r1pgT?k*%nbP!I!ZYql&>wes}>#v%j% z^?sa6&}FA;@cCy{BJUA-ajkqC*UR_X?HGt>)baiADD>Xv+OYrtKmbWZK~(FAhjL$71ZbarW01qN=>jgUz^fkC>s3HLM!tNN0>H+FOV3y3 zT}P?CYk$Ra>^(ZiuaWDoR}JGaPXiM;Fu=>4&Uvtu01&Q-NtpE5uw{WuJeF{$u*AM8EE(XpF)u<9IKQg)e8^flQ!a zVKwFxI+K6JO@Ypgkss_P&I*wnr4CEK{(TjXf#+A>C)b9}81G^BV0}@64eRtG`SIm9 zU!&~OMHrAE4hLoizBiSP2tgm4e>aP=<4#&-ge5h7%lGY{IcMzw1|yRN%N6^xq;-Dxr&upa_} zDcW@-4*^0zGq(8F&JHrRQGA2S*$m4UteUY0Cnlw0vAe^OH+(@SVzUhq><5u?WXjSkt=Zu1ZG0J@{QWP7KcNzxEhE$oEI<27Aeb;C z3O33&+f`;b!rHcd<}wN7L5R*QKJ`KT7?7TqMas#>C`ygeWrp5xb_Rf1&;YhwQouY% zgsQ;$j4>*uRp5_;kYL`U%l~}8YU`q zm02Xp;_s?SHW5LY!UO<1yn6BwD3l6+nV>ne5y2p`Ymc+EBd$EKS!vB0D&#O0ANr8C zzURFtX3A?>^z7_ZoLf9W$Ycd9g%0L~{n`P7A(C=CoNe!L;wj6s=>Wr4gH9bVOE-LtneKXYtjXm2(*fwmK#iV7&2??M~4FGbP!($6O z9WG|tLj)FyMmQyPe4S7*&9XLNZ;JNHc2gr5e0qPnn z5TTL-UC%OvtG}nV2OrY*-(Ro(b55tibrwuWu6A&U;up|@xzL!07_2%@^dGeKRWCf{ z;R$vSb>GqQ4%Tyf}R9gYGq+4~9o%#X?{6#ZY)LjJ557XvVOH@-hD; z1~Xe+Xgilg$zfYr%#NoYN0y+)AxF#iuFF)XI4F@rrV`MT6LBv^4xAq)|62sVn~AoC z``|s3Mw>Gvi+ED(-Fzi9BhoTCOZZIIk%KB(|CH`te5+3(kl^o82ai$p)2*?$V(r|dz zlyn%!z!mG(aCS)TwJgy*-Ni5)PiBa=lOP|#kS$EMh43Mw6NB)eY4=Qa&>&(X0xcIN z9S1lF&$%fMvK{qp0eI=PUCwj7tnDmAd*cP$N7feIJG=ZdUv;jnp$lyLzH#(T=&)0j zJnU%n1AqE-a8HSFwnYDp1F3S3$tlEL5=Mwps zM<+F5dM!9t1GbQyX>hYX(?fpG&1MR2O9S9+kc!7pxi$LG)9S(TO&))O>gRq)^*I#Z zQ-I>h7g#Wk6HW@ioPOIiCtx%H0uHqSgLn1<&yLE!>s8ebT0~9_lmtU!543cRIZUWl zG!Q&nAzuxT1ZK}+aXE}b^qp<+S0CIx&cg0MgH08@ZR4z2X{^NYeBj@c7(DHG*M!v?9YSv5o!~zAO#p?CP;|ldBa3?HbO1q)y3F~ zCJytM5Ey5;$_rqYKEC7i6E2$|2W@u_3LvUXLWA8nswkxp5Jn^dT9(;tP zEQW;Km>)>A6YtRv^Hd+Wi^L}D>sFC-qAb6UA_zZB-=MgljA%wMmVU}o^AO!bvOW;$ zAyKf>VXx9BQ!WvpjRX~;evG<>>q!>c26t>#;f}jmpd8fD5i8lj123}<>*B?l zT5?nXLg*MQ2t2JEIOKSn#(Z{;Uwh`x*u@qx+rEYV1v6FYTcq|ayVU*YGbmo4cHl;h zqD6y5kIghnmqneH&!_|GSe`PDBCQa84VqyH&QdhKMDxJnXAq_JqAa`VS>tu!419wE z#@-kwhqF_$uz}?T2mu2UEP!11^*dtW3x^VhD<2#WGi_+t498FY#tos)%P=5YwO|bYl z{lfk53!60{vypt8I&i)`sm+>LL*Wj*=%2lqP>+-WZCl)C3;k^lfQ!&A7=SVrr<-16 zr!ky^Xi+1936{o16o=NGXM9x6Lr*c=E$_Cp!YSHdZjdsZF(Oq^pghiPfgG_#hh7Ru zIw)F8uHT~Oh7CB4fT2-fLl%(-g6K2;yp-SQiVWEHVfNP}EQ0i~8`v2vnc9H z^y5_apa{E}Q}})t%T?$@87I^)053&MZldQ- z=-PoE^V^>tLXYjl(XXH%s`Cb<&0Cas=mpKdc-h9%E-N|-QDI9#T5T~M z+Col}x`6P89c+I{fPfzH5UqRK=TZdq4*5TIk*28945E`guWey73i5=cpj_AkOM#d} zVUb%IXTph?O?5HmxBG?Y{rxZNo>R%kLI0yg_1V^vEijHU`pF&$NnscMI9NGVEDY# zHP*qVTencQ|NXBiK8mq`;JMOE+WE~dsPX4VVE!da9(ky>nY0MhmKs%VoVl6vu%)fUy4(hwCWwd#f!U}im4Ih zhPJ5mz@2*SeIHTpE1TKIi{$}TO2a827^85-K#m+caJVQEslG^6*Q@K;eZ8PO3GwnP zcWUZWpHW~FOM(wNlr<|WRb-z<+jJObo<*5>*m!h#a)EiO!@LI1n85*dF;BNj)KFtb z122UYO$5t_cZU9;d>*gWqCYAiz3e6uJmnoSB&z(Q->}I0$5aZkhH4W#3;gyEdi_0= zPQL^s2egwST*@X;K+IumzaDN{J=^rSX0Wz|} z1)iHWLy52@jye&ql04(DZ_wm#e~gR$wDQ{?RrTiI>gD&nU*q@Qj?mCaV8;lKjgQ@5 z8tgLP_Q6vqLSU>v`xR^cKC3bba$68>fBP&y_K=#tx>m1VaFJ3EJ`DU!j?`EcWmUqd z*!JzKH29e-wClIOBAP<68YiRRY`d@~9;oH*-0Y>6#VG7RiP`>-8?XFN?RejLc;UAw zoMtB!N*n6|_{!`yNI$$2%B8o>K43e{Xs;K(}u%fnqA(){>eMQRls~Cw8k*2}BHFA6fD=0y-Sh%F%!o8I_{uGQ*O6l)@ zL)k|kP`Nau!ul6A{@=gQBbR>=n0|x;BUZ?z}Ad^lfGK6;cI7;ND>tFR%XiXH*(t+XKsQo1$=D@WAwo>m5Z$6=>fXXMx_(K75e+ z$yLnF(-cdrQT5i}Xx&H80rI++JZgxDi-Ihey=Z$@_Qn-@|GS9{$&X(1b7gP*qf-@H zrkJVm%3~U1-P{E0VADsOE6={i(LdWk31ftV44d#55HJAniTyb&ZzZjJ&;O`0mwrLs zhn`U=#||L*DCk5T-S7~FJWudk49V=dY}8=b2m|7NlNr;0w(+<1tw@fmv2dBDPC12w zB^(|0%+;+wQ#SjeGQ(?>`Ng%`c+Lmp+rC-(C@2DJ&lzx9AJ-8oGa!y^Y|J~ zRVUe>Z%n#-jdoplu|}``KF}jkJ-OtDD+7uFe|L9Lx_=s#m^hkLg^u5NqbgSL#yY>; z%{S@ki_Vwt0sgcV&c+yj1JcJj(+YX8+U(h?|KmBDg8$1`|Ch3NT+eoZ=+GpN+}ekf z`rKz^yD|CRai-c<9H&SPIGm!XJ3nwd>)*bl!e$&&bE>b1phZ6yd@imj;!Q! zyN}2WIK=W=E(T|wta(7Jnk1^ho8`E9PGMsbgw7U$kAl_NU&w6-_Gu?FaJEz85mBIk z3V%2(#rmAYiKnUSiq9x_6+0Sy@oUPlMx{7+vC2DNmgljT$RBmecka8Xgd0#~Mgmhq zR0-5k&JU>@fgSwz=jFNnCrZqp#~LZhsh@vZ9YmQ0{v6BrhfY(2^5%Ic?*_#Lv;XN* zwo`gR?wjrcXMSF>u4T&Z%4*xT^_nq1hEXL?lmXVDx~+<0>W1l}nUr=?k{!W=8M@|s z%HQ~Fby9LY&K5-z8=h3xCZg8)EF%BFdsOVixU(s3gQ(M%-j>rWTF%2b2$B7H3(Pvo z5tXrL33NN52K5~WfZ0%&_ zyc3&PY`VBZQ{-B@T}w1eC#-R*i|KU{+Co?8>Rpod5*595^ipXX2+?t+cAix zwZEmtetT5i8AKYp@I%Us4@=kGp!`?ZVc{n?uvmXN5u8_p6f2b10++dns^51ch6Tl4 zrCb>!VSi9FhT<_#bt;46MM1~$IP1)D7P?ssWwwrrZ6Y9wKmbDPRBf z^%IIVSlSS@!Wj&wd4fAVR^UYB$`~w~ssgnpPCHeZ-`%I!J$ImhKdo)o%~fv}MB|w) zI3^X%=!bvC#?_XyVl0X;fW*UWE}rW$rw3L+CX4WdZ7S^ixhQgZu0Tu+F1<_}*W4^U z^0)@yb%B}-=QB?e8XMlK?!}bD11kl|nGFN=7ASU#<8->&J9WudzNA+u=qTdgl|M>k zv#7P;zYc0rS^JDKV-t$3Br=3Xq51Q7M`;F&G9i0(n(;5r9L`Pf47Mrz)1AuSev3+< z{F+?X+(`8)Q4P7!cqdhgeVaxzD^#UDw*y<_+gxPiB`_+7r+}O{r)6@n3q^VW6 zg6ooBdmd+M%NXVRv!n}-QFdM%g*TMJ6M2V-UWRdEGN3EnpcPD!+)@7K9C6DD$)%D=%Fc%ymGIig9UY;em=19ek`7*+SW7*=>to{)Y*6<1ib7bCsoEVtdgVZ zxcGccJo=#8*1V|f2R^CEW$acno|bphX7$eOhA%C$M0)T(vmi=wWUS+~lQePDO^V$| zCGUBk(9pg!_{#!yjXb_VuI^59tewtwTw(tFm7C~kDimX@zq0y)2dmc}sEM^tslwXX z()>;ZQYCHQu}!gs6vHHZ8XgB~WWA^Towz>M92Ri==3HufE!mpV^>zp@^)kYY?VlR7x#ou5B=ji|bFV9zby_IHL-KC?9 zqe)iW+4~SL%+`XWCRoeVAX+)(aJB8jetEzQ4n)BN?LJdLt?z`b2%!}VOpWbQZpWlt zhaarq-unXqvPYz0(?FIUuxi^NcM3SIn>A&TIjq+j9@OO4*ZJ8je+mO|;Jyl6agNHT zA4SMMN8NbI9+% zSo>Q^;XZaJS-4Qy?I{&U3RG#O9f-2~^y3w~?A;n?O+yoCFS2Tt!b=xBCD<q`ja}OZ+0F<9{mxbDf${9`Us++wh|o5 zcTUw`^Y;Xvn!vg|I=q=PFyz&nr@4b)! zfiwsK9t228sDVc(p*eJHY>csSH||xkWJ#;l_PzK1f4}+e+5L32lGj$-tLKsKe&09! z%$%8X=FFKhcX2E8okK9++?)5*v(u8dye{32CRw9rc{=2zN2gVXJrKqNOC=EBRVQPa zp?PN-zH5EzzHTFD`Ivmqcrc0>FG{12dRV&IN&4i6rp1qVB%A-M+0=()KNMwxQ;tSW znd1+4z=+(*3T6s|@|1JZ>bJcPZLUKho=oJAel!dOecG#-1J(6KOVXidKPmOBIU2-g zUzPJS+izusdGmE?W#6%>hc=yh?X%LIk3TUDVk>Wz#0^AYPD-0@zKN?lR;2A5w(q81 zwZ-gCK`h+Us?m<_?RBxQ!FC+`V-h_?v6y?CTDpq8515BdH^JGTmwIpA!r7x$sq%Zz zO`~smdD_IeyS4qtyU0xAt2l4@*e9?t&+29UhE%!qyfkv%g=zE{L`u(nTGKtaCLIEV9EHm(w$EDRTeQxT0+HVm`6Mf0(C8?bgEGUY)3v8aOMZJe`UgG zv(=AB`x9b4rt;6vU{r46liW@J6(=hgYr{D7C)O^x!rnU4{|8gV~Su>P53dAeaZg|@1c;tt~&A@%= z5Pi}s_tE8~R@TjG_BQHlM&^UZ(`>{`?It+bjGFRY(?_Ib>;Wz3%+55dl7mZEEK%X$ z_?$wF$u!Kq+ED6aplm|qRXOy?G>E)<8(ep9lQT1DY}LkBf}~gpWRaabjG$?Y+Srfx^&`PN&CGc+7Qm|C?W^{*bF95_r&UyVV8 z7Og!TR+)pyz`k_L2&<9}X(I|Jt68=7+`c_++`I|oViH=nGSyM~IEKBUC5TMx>_f4` z3v3*o?c1JiMzwsL0e8gmBhqqD1;Z&KXG^z@Z@>oUa5`qiI*v%77D~H!aW-aZTm5~k z(wA%5Ay(?>i2Yw3t&I0DeaYIR9v1+cKE zvlTi0#_KT|wH}chrhe#)@x_bNG=vfMGaXi2&dSa6R;)re!=$0+tvB7u;b&HIhpvDa zF5}7=Hrru*Dsa5p2N}R<4raA>mY-WO)HlSHN2tK0>Dz9{vO5L=Sd~;DMh(=NN3bH& zpsp+W5J`cHY87s#4LyMB)k~Edu1y2CuqVp|JbcJeX=L?boO@y~6-z7=9Dq6m5op$) zLxCdQwISWa0r-_{zAwUZjtA?f5m9*eh#bQH2df z7@VsS=iQ2k`#8eaFo{ub@OKP}#&V1Y^j>v)8i&ytTf*Md5v;V9a+3t2We;9om3OiY46X`u2FN(G$}^i&OX!H8^+T3RTu}KTAv2!>&-A%!)uR9 zhm0fI#JKY)+H{99wia^+aF}*)aHzOS`%W;X`ftCP70G%`v;hb0y?t$O+Kh#b{w0SY zo&rZ0>)nf8KE{~ORmsG_sSPPQh7mYufar4orLKvqZcW?oU}|j}$f4!|&L4IU zp&+wm0%ifr9eitp)RjRmtII76kp?R3eVq9kLo_?I;_x)VA?ihF-L8Sb?BiHQgUgdQ zBMPj;6s&+rUcVjMGIHaFG;-4rVtQ^IfzhaPtRS%;yJY#wJXfm)?AbzQ3J#7V(%o`nsvrUD zf>G;b9vXuIx_k9ntWWh|4v;Yeo^?5o>eLUAkV$3iaOZv`7doxY>`S*t#7*&#^|PuX zX^n=mx=kh-@1z>5ao!3c&!Xuyh-|p_g8d=~S5R!9ZdjX#;sLoH&!W`0zikq+K_8tk zMXQW5zbPNE-TWgx1NlbfUtb>z@}PKsTK6*3`l^OHR{Is$yd_M*UH4hzME24y%&J;mdK*lce-G=IVAA1a!0)ZLG7xu>Cb-3Bw~$mF7s0S z)s1ov(;)kQaQ95y4GhZ;GjP0Tte?qYoJn$=y|2Y;Z&B}I6)jj5R#?gO0-x8-Ou}9@ z+~1_!3LE!GgERb0&Bg7$nKecI8bUaUHe!uQ%R}pva&u@?Zl(=6j?K{n#Fgx$)@dW} z+iDU%f&~e0O|Qc3HQAe8GRjH-Wrb<>tG2TdK8cuz;lq9uacQt#HPTRMv2WaK8&hKv zWbvlsZnO$3>}SyzIzT;Zh`+|z2b&~swZ|s8uSP*<7euZb4!y!&Sl8x4oYi%xqDO8fMxxk{ z(h`z83>Oy!m}xQ{-Xwsw^ei4l=lw+Q|MPNM_mMqtj+znm1Q+W}z^qCqyTNmmLKd-y z+lQE+1D7xx)Q{EJ6rC}Mc(DpGn08z+1_qs|SdDDO+(jR&zrJm#e>1_1VfS#UoH1p) z*P-T|;%ybaJffpiLcw4c?b5^E^B7E+7y2&KHWj@v0>SrOn+gG5$XVw%B9WExL!8!6 z+j)LaMXx5u20%k_lH$;mMsFM(rXCJ#6vGZ-9~AKOnbKjSWnW-YvG0?^}VTi^=s+@YqW_z5h+-!!lLFupA_U)|z&~YCYp_0_G4NiZfas zO!mwq`#!8dCVL|Md1WefXgi=0>3lfA979kW|Y5#fW& zj5)x}YWFhoRE_?aN_R0X9n*_oz{I^eN0_GBR`D`dCK^_}XlswqZ_8lXU^u)t60@5q z#!aDzKoq22O_b?Wc$=gS9-rxlF|U9FlicOVOu!gN+Cux+sn>*z61e3_qdfV#hr3J> zJU1UG19V)XeL289>Q0fCMKsdjp0oo)(RVMnUIBN|GDDlxD}jblc7ccuV=c*<4+Wtq z@M@gAD&S`q_^elcC@P)`bw5S zEDJio>ppRy#BN-!kPT&3c6J^JEkZoI1GZ3kR5tjBMoFm_5KIrKnO#hm$$tw}@;6Dznq8{~q+t-&pgzHMrZ8>0dilDa#rieOi-W08D7c|L?O*hEvzMGd=62LhrCMM2&bu+-JImLqb z#Pzxzq=D=|F;IYgN|ki(rs`s}k0B4*Ot#*7?ZvIyP;`~8Xm^^4RCQ$4ynDfZ&x*-9 z+G-A16(6 zmnRJ-CeLb3Lm=IIc7SUYgs6z6;TFJg7N3;oG?;gr!5R91zHVZp(SGki%-FZZj zG!lLka%k;_c7vl$8g2wBhBsz+yAMwe6=cZbh&M;5KyxGpkB3;5NDg`+Hbc~3g8{2x zninG}$py2zsB;wq+tAD#Fdty340-QX#uej#39HXO+NF{;tub!Q97C~AFE9?^H4VB* zoOI4&OdjfGk#3KJZxi%?4}I6mDsPhUHYM!z;}BYmlfbqNg6;K9nmOCTF$ddVa5EZ@ zjKi%+0*t^`!sM%oT`X7y|=P%S+*tfwfN?t^?a_8xyL2~Rrybk^Yj?TZk-uPbA0ZB z+wIEDDwus1Kf1JPb9vAhPOLG2tI^@zR*KG%)0e%gv|flCxn%?zWKb}tGXrjR95>+bGM!k#5q8OmZ&_8`kV_xgf|ih%6FTA%ayzA>8+#k*LX$he_0O#~`W= zh+ZG*n8q__FIJCopw-)S`)JR6{*5dd(jcCb5n?t6ph#ky;-(-XsNGO222`%O>J%~) zOnSUc0MTkzhy94d8ffrMFgf>OFDxIVv~7XI-eQ!%k*T9fKRJRSrnTIsgfTFtfJ07| zTBCx&jo=WU#nj2`K6>S5>BEhbFVANy(p0(qrdVaT{8N0m0xoqi_C2Rj%gz&?3<7G@ z_Tw@pu)YyENR(wJXgd~id8I1;xksRBCBR}LX0-}jPSiJZxOxeb+~E+bG4MdO>OqK| z&~ISkuvJzgLfXLOsVEK|-mD?(Ue6GOi*wYR0i{52=R@U`R~-B$E;#Or&VCYO z?ayM&Fu~KFHQIk1VmE{sTj|9L2slRwX;bhSJCqfOhsOveAjFeQBw73jo&!E(0~`cb zJj4xYqKv}j)e^90ZBEKpH0e6TTb)OZPd-Xx#N|c6*M-L4B;%z@KWi~a%PTT4+gP2- z3#n;14iRDL0&}ERGi{_KfUfGHzTGf=P#`1-Ow^Q@2fZDtvwZ5plApev;1DdtNM=-x;0#^rT@_tV4T|~ zep3Zsi$Y5vQ2peq)g*hq!Eqf=%2=RGu9j5BL|FRUxom*BfnJ4pA^`&jy`_E-{HVyR zgCEw#6?7d5OI;;5z^D6xkUD|`&hrvBV&y#G^YYlt1zJ7(zuhrTGd(c8J?vh7@0PfU zfb*rE!~_HZvjbs{`Po2@c_mp^6dqx>&h%w~5bw$iG5P1|mr1SoHV$Jem(}W<{7v)b zXOw3>IMu;lZoAHZ{idV%nFrG6oClBWEZ=+~L)qW_grQs~K0&P_p1e$?@!hzF`7;mG zS*}lpd48I|^)oJfRCb2>)6e=@Zn;d`(smS9)7p-PTaIz{x4ig{xRIxEt!LCB`p9_J zM`!&l+c4uHIb?@jz!A75q9VM!h}ESWt(`i&T{SJXm7vGUl`0^nDk>| zncLp>*BP#}j^c{n!sv=t&uAah`))e(wM^?(&c|jF;SEz9AYkW)Git^U&}d zLhsDbu+Ua-HcLQ^zm?o!2hmzp%vg*E(^yy27wj1?xV!lo$Fl4fo%Pg3dstV0en)$k z`{p+M&2u$B(~3*RHBZZPJfh!}`!Dk0bEXXpcLk+5(Rx}R+rvC;|02AAJMb;)=6Cp+ zx8+9}`rEeRrg$6e%WHNK-@J@#+Q>IYX#FYIrR=}U_j^Hmc9q9&iCe6yRPo*TZ~unD zT@)3dtTWCEWCxArU1mcO4Rktl@-?_|m-3UWiYice_d{CIi>H6h!d8JxDL6?uH#kqv zc1r*fU(l3)Rwh(hFWY?4am z{um635pqL;Xtbj@EsL&A+N1{SRiO^r^DOK+suTizru9GNx;SgXnK$4-<%gBbH{rIb zS#(C;6ezza7u-di(3;3xwFizHtTMA$mrUG~tFkvig(#C=X5(TC(McEe)}~=ou@oxN zu5hXxr1fN1oxbUzpQs4jH~yrX#EOMOTq_-lE)@;S#MNlCY4+ogY|=N{<^b1dM8(6d z7`tKLYjXB*`&}r_OreaS5n1i`HCY|lw{oTVz%uozbL_yjZqR2{R(`I;^N;qcfE!(? z;oFkJPxcfgpGrRV6?Li7$4zingTk%|Dy%|#m{@8)<+*F|%B_`;=6Zy7EuX8*sBUgm>G+x>b>cR5X0c>Z56& z)AtgbF2^4~Et_~BqVUuiXI+fZ3HF()^x*)at-70v)(w9uMSbZ@#-x5#_Z}(RI<)@e zIKHcRrpVEwLK+|zKZU~^LX=b#>u|b}?8OywNmZmW&Y*S1v#``yu1>Lp@)%OL5*f^C zDT$Z_HwmPUNMjH)*VsGjn&#L9WTe7s%KBB9Te?t`sbfaWs&}zR$Tl41u)1MsZ~nq# z-*&O$Q#pWEFY1bQnFcGZ3Ci)XIm4g&Qb+oO7Ue_O5g#(Aup|S2Y(we^p4QpI0MuM} z=OAyQ5Ld-ha%Ck+9=17Spo%z{sKh~ROnvAA>Pa~i;q4(6aH@*`N+4`1@P8TGS$vMb|)VYKVyz(894+rN!gH#!@}byC;^w_D=Y z5GZ?z+?#lAlwCQV`N^F|8BrJ0 z#CslptvFF9K4Z%;SZcch6h%hTx}e(mpuN0{%Chwtq!;zb_u zY;XH$ALH9zu4*H$dFo#-$M}(^93JHbJ{zVpZ8?3s`;0UZFUpEI`nNmdxbld&bLC;0 z$ls@R(nY?0ho9+%yBxp0jiM}~?cl<{T!+Z7oM$A8^8J>rx18O%a=yl!tB(3dym;zY zcHv(x-|%ujmgC2Jq>FE#Wxw`!^A~RYqptBDu(sEMs5?31*gtn6COzyHv|hQPB52P} zk?)0vc(Y3v)K~tYZ`In=i;8m{${qf@Ojr)cQ1eGNBR8+j5uoGUqR`TIISV=2q7hAK zqZQQNAnmyA*xW^oXx=)+c($1hE4w1CoM+}EG8c$nt4us|xiSky`9)e&nWt^w>OsCO zb7v;NWzIam7ryYW`tq*`H%<$J{DeQs;ZaZXEMkZ#SovU;qKrF0wS8c)3kIK<#tFi} zD@hBkh&Miw&*P^Cs9%L6To~gE_;Wjl2hXC;#wpsyL-cZok%Li-(BdiKi0?>~i)baV z?(J#KL#IEyEI-LpkvhNdr)Vd`;cWR?Mv+2ZwirgHH^jI*)}n}7zzQdydn$4yY+kM? zab8j96{*|`^GYy}Nb{*<(U0~keEAM7WopsG{xT%vduvP-F^ekXc(gKW#8wW`6Fz7A zMkxU6Npqd4`|KO#v_5jJEtBu4QBlUMC@;rpa%SQ}xFSZBSEOO(3`1UU z{ibo^49SF!a`@~VUqF$wAv;>o>g$TEX=C@8 zQQqP#t0n|!+n%-i#cG_j(Ht`E2)T*77Aa{361@(7-B?Q#8{ zA%3k`<-GK2|8B2CE7?wuNN4=^GRl#S7jeVC{o5Upc6f}V-(2}e8$^DtE{zxMsDG4U zTGhAWvR}OW4A&kn{Cyf0Y0CcbUQSzv$#CmmPH#SuS3Jw%rkRg3tz}7L zRuuBmnSAGyephjJOWX?X2cS@0AAQ!-(p{X8ci&`3blg?e^Yj-o9jzjw=nC$HQcBc2 zb0NgdVaCbLT*L`3A}4PDGt*lpZgo$=Ze%blqu^F%p^79Hk*jAM@|BC5N!qGQ!D$pL z1XmY%udS^P=8@C$bmcYswT#G33KsD+j5 zXa+gR9DQdsfwq+fesil@%_1cKooU~apRYw96>ytVvEM+-NMNLRC&ElS?U1{X4t`hQ zbgMaRld{XWQM8Z!Bbw#zA&zaVIB2FF^~=8&H&3`O=a|!}1*e)mY7|k9adHG6yt);q z$*;nh9{i$=nf|1NViL_GywqE>D+tGWQF4(>d0r@dV&*8mTCwuOY89j2I+#!K%=k-P zGs^HMYYn%m9%bd2{Bd7$BJU}ZMUlKHBG;<$@TPOyGY`8~=*$Cuk2)1AyP_6qU+$O} z{xj*L21R*04Q1+^$E?vZ09G7`@`?$+Rv*L|ovB9zQBJEXXM!RdYZuNka#qCG?no?BF0v6y>Fg~G^v zFRVRfZYTcOfO*1fz0VcTCb4mI8lJmsySBvT_;#S*Ic+I}>}ME$GvTFt!p~>CmxA-_ zuKe5MmARo(6=tG2Oy`@|Orq9Hq$>tCH3ZmE*Xo(M4GCHH!n0NBGb88D*G$clcucRVHaKzg&)URC{>j@3Ua|c8+5nhU-ip zX|hM_Px#$qI1zUup8B=&&V;CyXM0`C<(1z}t24gs5P9iWcH!^*RZdfmvnTK7DWjG5 zCaFx&o;}HPhm~7o=u;Qp4K!&cIH#r7OR*xjuSJ^gY_k`fMbTJAiH6C~7jcT%t|XLj z>tDpR^x0he3b(Uw3zAj@at1rv5hRzxAN{i{63rBn!&^ZjfG(o?9vqTScZ-U!a*WwH z#onV~fb(SbyXRd z=!58!;HEPsw{Kj-dE1mD`FJb7HBh9 zUz67V*4=dctWuGh7hI9QlO{WdjH~z--;C=Y_wpREj+nxCha8Ah_-i_?aOH4)ic-~L z&2Iryj+{&3%{03v9YqdBta#7KTYtiDu0G1;(+Gt|A~R*HLE39sWVN$zQN!|I<``HQ%R=;P1Ysx12c|M(^w*?|6oPJi|Zohdm!K9 z1IPC1qo~1bB*Rps$VWbAy?1)s)p#(X^)qL&x|o3Voy7^m4JnArj$`W~ikcSX%s1zNCt#Uxx_cWhU@zA(-p$MK-L0?h zZFz-+X(m+=HlIP*+)ugXmRqn6!uc7`e$A7j7MW7vfN2iS#h?I5)Y%a|Th+2Iyb5+c zKa@F5PtvIY#Tg?_GQh2P7Rz%&t}L3IE2*&W43h3E0Y!vUHY1`D$I8p2dkhkWxj96)R=9S(Ot;=5VdZyWIy7UNdu_&k|>u8of=+ zlRPyHoxgLb)}U}jj;zdFdGgDd5hvG;6gs~+0Y!P(d(7oz@8XY9ipaajf3^;a$Rln6 zPbr_>y;6n-TPLyFqUDVmmS-|fXHBx*CG4=UXiKUseD<+Ui!2$ZTkV|p+=y$x7Cn`t zwf+>Dh%RKYLo*wqXBEpJk|*&&XCB2HeZ@b=pTAlE9F1?1^G|J6tZ)c(Yy+ zr0)*zxeqg57v34C$v`u3*+iP>w@PECNKPK60hv6v3FhZ~qYnBAjgknh4i)v)vsED? z6mgtWLfTQlM64X&r?EYcHXB>tSr>WCwn2m$f{O^n*A9P+eql_}#@ffMd7hXvkvids zHg4s#L)zkFwhY^Orl^2%CdDjVdbL_$CiI?PB4^q-UQ4;m^k42H>J4Bq|73i%OzKpA zpP1l^u|v2Rmc6>XSKNvd@pf3bMM9rOjs$Ob!yD3?HEYwFwOniNA=#Y(zh}^j7&B1K zHv#dA?#Ty;LBJ^x&0Afk(OcDs=^*DsYh0SQfrE+N+QoAq5ia>t)=|Sejb|vkFpD$k z0auVrvs*e3raJ6ASli7{czd}*;-a5llqdR=PC6+~U>~o5_uhABE@ZAh8QTenETdV9 zYGv>6YERyZ((ZjPzl#buFl1Qny6diV`Q?|TC!YPp8Pi5NL;88PiXykYQT)A^1@4>Z zQI)9VJWA1^s|K&X`K@oIGq`eOF<0d{5zY`f2hcq7S zob_z}=INKY=*sVfPvPf#juR0gi=B&)Wc%@HA3Kh#>3iS%UV7+5AIe<4Ciig_Lg!R% z_TMsuX@$1x$;DVM+dKSB5<&O;~U?|lfpBf`OJeC*b-zn-F#E}>Q}y+-tfjZlzb2F z*NKVA^nw?>ARURp4d?FzPtf*$dkdG}rd~S$06+jqL_t&pPD19YE$Eab1>K704#Z8* z7z_@G5M}r-w`WF%@6SeyPHLjmQs*{kE`DM~#s>5#24pdxv=wXROIUrZxOsiL>Pz2A z*WP$tI_Wo`n2tL0H16l(t|nHRnx?H_0!z#A9v{w!6%|F$Al?M-EdyD)iIGw7Rub+h z(pk3e!oNRZ-uo!AbB=)&(YL~xMRgh0LOf%tgAH!slwk{a#b^6kI2|y7Z#%bGC;1fI zyfBSnI&T28M#AN!aIoXF@F|TL9pQQ^`ZoW7+Z!fy2OB;MZ@?^Uj$!**obKfaS215_ z$TR$%`bQXrPq=jUvF}PHbcRLWM%*2UTX_161ir@vAAXTZjcobn~MhkskEyr*YHs1Z>MDtoiLZ%pxkgpjL!cnOaY@$iJX&r3zL}*nn-p z<2)UD5qbq~9}MHzeiIJ+)PId|Fb;dUTy;b}(Yfp3H9qJW6EFP>3GJaflT z&;)fFVo!FZS2JKxx!3C&uDdmT@t;1HriV7CbIv*|jji91`nY8mU4^vmTj!_Ce|l-U z>WputhrarE(jljxiXm02p`__a?ti ziYvS^Px}L~W=?W~% z0wZB5EWC_se?*!*`4H$maorG|jokat&3@WlAO2jr_w7%RM$Tz_*+eb05+6-)s`r#{Pl=6n2vC;GHgVcS)`qb~#2c$VRfIJ?TDQ~U!q>$|J>PJv~< z^^Cp?cL1}2 z;(N$EqtNj887{BHO8H7qEXC7XE}gvp$j#rn>iUG$k*RtNK-**2efo=O)8Bq9J$Uo2 zX(@M!jjfzYH+}2t>9TWwoR)Uz2)|JBDKdsFt#VpRvSGEu#L`S-9fo_rc<#Z-gh{^I3N7-{r7Q zeGi!Cf?2x;(xH}oPd#d|f{Tl6YPiYr=czIj~OaZTT zFTcn4E{WT&fVB{v8+pEmoKwQ4^XaCaa?!b5gH_a&7lIN`!q(MIJhDVLkzMc#morZ0 zv}5drO|ybq#)0JVYpzZge()n{;@^LiPDSK6*58+I>l@AnhST}KN~;@#>FDmoX%u6; zo)GX5aZ_Wh5IN8JG`S$Kk9m7J8YB%wl6U{#e@{R7@fGRR-+xtF^ZX~LVGd|QO*u?D zTjPLp*604W`&;1t7P!9!?r(ukX@R*Z&>Xdo$v&uN78kPWQFF!jo}QkW4Qo|2FTC)= z^p&rCC2iceF&%sCvFVhPPfkZ1endLv*au|Q!=Xm@mXb*GEJ zb8fowlb=abS6q_TEgDS|TTo}_w%Xo7)VZ~y29 z54dxLJ^T~-MVsDJc9tD!?kVm<3XeL^7tZ#&cOu;XFT&j3Z+`Et9XhdJ=YsK`;4G&( z7+~I2p9XBgTYfKp>%YIq)n!3Ak# zWF&|A$FnxB=pONiM`U7m+;PXHM`I!4sH2Wb>(;HydtHTo4;qbA!>PBYJN@FPKS?)| z-*X;!X8OS|&P%IM`|rVj%a-9ZJ-C$pHLi=FK*bqrBpbQOzL#t2vl$$!*n>$Q4|q?Z zIW!I78sZxELm_ZotOh41x1~e6`_f^P)9K28`(paP8*fg}`oOzWV_QWO#&yUne}H-ci?pGrj|+Xov8Rco81{ zo%#%TqWoj1Jb+x_^qjb z+eo_fyf3C92;yq?-flVa@bs9E{6%VByCL26x_76ey0|E@KEb)Q(bPSO^>GN=a&F1& zqQSTIv1i9pa1gc0?W{6Se$LZV;{k`I@BP95PTg1EoSFl*bT_6-mW@oN!y7A7&$tIZ zqd9h5LYF%(1GyLe1Oi06$~3qdjEXr-Hyc9d?KRmKM)etFaxVDPb>hbY$^gU{6 z`_ORu_pg5=ZP`4OZiZ-XylX?c^Un3@lf55EXDmJ>O`m^ZIs;?ITM2*23tpI(o^)#Z z@u&YP9X;NkmaxBe@hbM)jyNpUwrooS!>-vhtjr3N{kIBACH-{{{Bf}R@*n>+opi=) z)6p0ftzU5q=iGYIwr;{F*k>a_#h*tI{NF;_XcXb!SDj<$ix`&SPo%KD94HdH@^fF+ zA>iEG&uF)RF$lNt3TI4mma7PRcz8HhAr2nLq`$Z8wXgFFxMQ-Ds4ZHwXvS2Ko3vX6+Gg5z#Nl(dtM9qJMc8% z4LF4>`qnY4Jzgbr<#|iEBK`h`abCpD$ySQ|p7*>bz3+YR%XPf{_S@4Be(-~t`nuLp zg0Ol4=$14{RuFVCg`*`FlTRfc2!l&70DuehEi4Ek^0Y>n^tRV0bx=rbPmQYwwKc z%p!E}{tbljDYE?MfBt8BBFI+p^Q5bFVgS38t&Vi9S06}2fgBZ;SHEHL~c9C&+nAox`r9^Zc)W{p*a!zx7+cm8EssG?m~7ZXXEv=0)6Mz*#{nd-&mp zXX2$bdGAY-XLFE7huV4mjH{on2{9>Fc1+?Bw;rybq4(J*W692y6g@qCX$-qrN3#n1 z!&ki`edBLFk{Ybm`j#$7wI9mH;q0qF^Rd)FUQZ9{8%S4n-umj_?oRBEcjtgV{nI~9?|kPwGrZm~qQ7{3Fu3Tm zn{U23U%hhXnP=wls=q7tYxHS6?OVs~_19mYUh#@oWH=>sGN%uJ_`@@C zGp_Ltq?;FUvywr9?X-{n<3FagYuBddJo`E6rkife1kStD{3lQX-j2Yo)~Z~T3E6XF zu2|&(`v64l`OkcQy5O2i(j`}4l^%EM=~xu$PlMyrgwZtJQ)yy!BK5JNTaFlVEn>#* z(MGx*b^b*wmZkdD*QXoa|K-%U>B`i*((`RotjHi*=wEKa24w@ql%9z(i0DLGMII9n z%3%m(7bmyJd))}Fq@`R5FgRx2_MeME;iTquGk^Z)f1dX-9Sm~xA)*Sx7KpX~YPfew z5>D|a@WS_#ITrH8FMctde){RT5C?@^y#(*i{_M}Pcv52D=`O~Bn!$?lAOHBrXOJ8l z-WB-vx4%6zG%;43@NFmCtkYc7+5Yt>Bjbc8v*w<>L_Bal;&vL0yQ;5!W*@FY0^#Z{ zRx}Ym4E@G;CqC^n`!)K`73y=J``jck|Es_Ht1NaGF2`~(v4P8`@qK^0d9hDXNr98| zderHUN)I{l#PlXEF>Pi`BCO2v`mLzG6SD(b&eflTwvP)0Jt#drHO*d|q8Ciucs z=YN>af6f0&w}0c@G_|5D-B8({woFZ=?UbJ!t2BO-x*=HIukCNUhzK5uc<+1Po8I-VckQq*VR#@$Ak}`Y;9e+9+!2l- z(q?(qS!ZR!7W-^Vxtd6^q$1f)g>$Z^l5ug&oN>k(nXtL1=($hZ!h5%_x#pS-uj9pb zig7kqUJKnX@U%?WzVL-FM7jlyN1=9WUY!t z5U)3vJT$OA;&NQ~@|V9n9d-0k=>z}p0Tf5JLCosuX-|7vItTUscfac|(}p|lNRK@2 zG*)sn$kt)h_ABY%Ia2Ud2-Fi-u1VW_SOFp|9D`WZQ0edET-r7m`t1-!q`7IyZEy+I zu{1)1-aI{=wpGV5_s?RFvU^$O^}8zbctE8aKaLGF5kGb@iEz5R3uTj<2uZCm*p;@` zN7G8m-(N#7I$YwW(v5o&azk=}h6N&(30!W}4*DYuI^hvc5#Px#@I%;i`dxnc<@pSx zaieW=V2Az*7;FRkRQO$uDyDS5`tzUveEQ=*{^Ja*@Y@zXoj80(`c47g`Uc&%9233qIt{jR|3uyGL;Khj z>g!+s`gFw=S7dr%pFi$#kIQ}UKC?Kii!ol#Yk$4Zo48q7MUi*keRn2WPkiDN(~nRn z(TYe7Ggme2H&*DtDq=r@f5PLR08#sgG{9y$N2}BS`m_Iyy8p8DyTALpX~n9QX*uuf zA#OillYIn@$*XU;kyu@6it}u}sOWF4Os2I@d2D(>wLjhPrT<9BPIjloW0Pt9U`ltO z=0DCwrHe3%+=TFLK@>UErA87OOU##(5VlE()+np73F^IwdM%<}eeU}aF7d0ONK!>) z*8fi04U_)Q256IPWi zzW(*E=R^OBC5?NqImd(j>%{k$fBBbrGWe4}`IGc}zxR8Y(Aze~i9PCQw@zyZ`%VJx zB>(JZKRb(E&tjGC>Lp+jPT%9#X)w-JUtw9ke0h4vLmra;`mg^wZ8s^+3WA>>}eJY)D$|?C<$%Sp>IQO}~-MopL zm0Pl8NuGQzgUi13vR^@jx(ZGcA|j2DHn@UQVPp}LR-N-~s{XszFo=RgT_S@@^fp#; zLm<5FEC2pAeqZGcb6XIyF4j>E2EdZ#%hF??`;3$>ygW^CA6>1=87R)QH4!ORAWGXX zw{>@OJk@K6I$5DPK`iC~_cRTewfl)PMO{V^f3g-zQG7ppa!)Ismc#mVn=uX|lmT&41idvQuKbhcAW9@(SA{zTn{`?arq zZF=cTUz(qSu?$AmHi#8Xi0;G(+sa=!+o6-3br*K`%FjFRyqT&?0G{%cr=Q}#-nU|Ts4tojQjB3k_Z`raXi!NUm3u!c-1S@FE73r4s|Mx&?w*k{`a%O!0oKs zMB`%diWm{H)up(my_^`3Omc^6}~zm{%X0zq5K8L&}Ao+y-bV~7%y zk|>NoQ>jCRBL-b{J~As&=S2i;7Ua85{P5>W<_>T`3BYgu=5MCI_=~^DXWiN-yPT+l z{=`He91d=YwUfB;I|2IB$@!{9sG7K8<+kb|aCfMxu)9igCGO<@-S2)khwHDZybO$t zu1Y4hiS45c*yEW!JLr$~c17w>xMXAwJ@nA@hky8o>8)>lYgV#|g+Yw-4gzncs@C0~ z3l!lwi&eSGGUB+}-Qx4Z9`>+w$t9QMel{!=5oa>lk1z8gZqXrf+B!Kef4vYmJ9cnj zFm2_KwwI{&qd4Nen~EcEWl!OApZjdO_L^%m(GbwTM-5zMk{*a*lS$6J8T$E(n!^`&&jMVF=3$gppo+?qD@PNhXPR)wRKt(Xx(rc|uXlB>dv0;B!K zzJ;sByb9xH0as_<2d906VF@3`mixGgU>rJFBhpeVpERiV&_+Zj#HB(R#{Kmt!_R=Q zJslh|Q2dT|*H0JU`>SqyT8{O#?oRX)G~shXQxtjawb!O6Kl#b&K@WOR`t+wiod=0w z%JgGz#_~doqeF{@BEUs4lxso{%g{)6-L_lKTibfdY7yWJePIFFrimTkdaJ<{+ zPIB6vebl2KmCiZmoE<<4{OHtv78vU;v!=6uW&CyGd`M-oM~D6?_mMCuf<5xcBQp_G zTT)4cdv3yNJ4ons68e|}4g~1)B5r|rPD(XaJg(4kr2$lD`179iY%Gi1ne9vV_w_?| z3R&yV&i`3HD$szy@IMds9>S(v^^w+VZ%jYdLqlM}q!)8oC-iisiR*4jKfC;93>^2Q zJMXw1C6KAK1S-_k$ABSxw22mFE}KaoVpeCBwxx#r5^cyuY`pbhhO37aSq*{)&CKWQ zCcA5C3mTUd#G6~8VPr)fDwMD*IF>KnnOV76r+wvYJ3HP<&!>o?TfKU9o)A>r2^aC= zyHlSraa(_FkiP6?FH3KE%UjZ$-~8sCK$5U`x{E%Ri~r#df0#}^_0)Vm)WPorp?0iC zB0S_9s^a29r@A~JFlJ;-G`rXCKJbALq~|~X`B_va0g&iR_=Gvqwx{WoZ^x*bz8+_B z(zlOY&3yR7AI_q77X`vvX4*OhHtQMvV_&J^ECZv&<=yXocY5IqUzq1D8?wEl?Iy#8leXj#F#zovo*0-xs^S%zP?2q4zHzcaE%QJ*`#}M4G1wr zE^%0VGy8PgFuOIdY(?5OJd!HI+tTQwX8QHS-RZdxIV#uB#%MZ4zmuE@<2j&z z!o$wdMx6?C3~CudH`#yx_kTZ~g&4<4&LaT&I~mxwPI|V@!QkvKVHB=_O=6}9 z+SQzW>^x#T``mVlzV0;mqwe;f%0em#J>dyY$T+SRp-igg3WZ--JKYJdgxmgA1nFvA zr5SH}Q3B!o^~q0ua)xOar|oCc9SAos;%3F)Qhj)98oBxkbWB|}qKuLH)3(VQCw(Ls3KL3Jr#SeeV zJ{~K#OgyPG8j*|Eu1b$b6xQfljPd41`UOPzyvr_1Pk7burANH*+3X#nwTShT{n;T7 zb~zzs)u(YRLbFUx0{S@#1Yz5$**eI>!S8^uT^;BiSeJ;aRkv>4x|xYRR&2uTzz|#`#PWvb7@6(@s?lbz*m79~G@Qc@xCeme(4*L_Z z3Zw9;9HaqxzdhirqEva$wZp)hsjhwIcno4COfqLOq^f6`n2`+rL}T>ESGx3KL9(R1RSAP!ph znQ#ecd8!h0f3Dv8Q5xZj?lkW8HHR)wJ&!suz2VQ_lm73AKAb-O*)OuM*Og8{^}lh; z^=T0z?J?^>gO4y!hSYW(+MaH`{)V(>U{RXhKAHNs+pUkiKeZx9kV}rRUR+&Sm8vMK zY;TOGo7nKawLYF+{1^W#o%8CKr%}>PLW~Q^xi#JQPGk{Llw132ceY<3R(n{ddg!9_nw52*D~ zE?gnMaaM&0AJYKh$PFx!D=4mvLL@8WBPhEx(lBHe0f~Apsk?VD-HL|VC13tZ+QeWx z=JZq3@4xpw>49gS4uRniHw3c3R%`?pwcI~{o%kH^4uBwLG2w;yX8+V=@0St??o;@5 zYTRn6!@=$Z7ZY3g*@+Wed+Q0a@Y%oit1$Z%ZvCQdB3-A$++P2HFP=_%x-#tLH0Aeb zlTLUFpLO@=epKLe5CQ#TrP>Mb%vDEWh<@}bZ1$tD3Ud%|!vfZ56Z4BUnk(;p={GOp zCINHLtmhB$b7te}mh?>)mPldgT6n zT)lDPgVM`i`Kolz3!krHOO723voAQ17GrA?3Y*({e|3fk5Q9CC#kP(~abI@){>WSS zbi(EU5H{caWu~Z93EN!fz=?qoex+y~^C}F%tqX@rLoxA1|Jn`*tBXFgpW{8?_xoUR z0h>=5H~ZB77T+T*nAJ{)S-70DV_XWKI35ad`U}7Ptcx*jyaVCpMck~k^_ygc;fm=n z%;`KHV)ObpyfOVxERQVZD1fT}-H0Mp@0WrNuu@WwqYK3jjES%k!}3T!8))QJoQp$S z3el#G^NN?fEdBh_OVSnBUV}2owsiF`E=#|IC6jK5;UvFt_Q#q%mGr2WzAQcb8P7^T z`t)bh_y6hRY117yr8SFbT!>OHoZ)c)1nV?907BKpfp8>{X&94TTR1v!)Cni1=e^|V z>CE4GLF!+-CQXv(1a>U@`q@Wpa@GygCB@o8(MZ8<6dh7by4E{WX8S3Yo<)Rv{Wm(h zXxD=4Gm}6DpAmMiGv7smsB#OM41!SwXJ5H8oN-2SS7k-qXoI~Ce|x#MLwj44<3w25 zZ$9qbAmd2lMwCZ4&T@|7`hfiRbkhsati= znU)gf;D{4}@hrvLgV%sdTnz%|yZsxC%^qZbuagR0R?f5KW4_WS207k&ZX;fJ&8Lun zGx{&SO&fmYe0KCJR<^UFtsHZH@4^-7g|C3IJ#7Jf;alLuyoj3#TzU1ODKmn&@xvea za60>mXQ!jrt;=~$!KF+fB2>HvJ%g~IDG8bBXCG_B=DQ(qSTf-^O}L%^g6F>=U3cAe z=@-AeIGyzHlk&mV|3JCJuy3FH?exlLz9{|o|L=dWkOB-4MKf7-h|%3Bd~~f?nttmK zU!NXx_LI|hKKHNbyI=oYx_fL(S_greo>u#c@|)e+^8aRz3-oem_M8`^#q@&bp-{4% zI!>oijvKfl?B#wpg_aGD7*yG#L&lk%d6b>?%67d-DQcpWK@)uhi4gt z{9d$yq?T#cn$1z6J@=ZyRZG~h(f2&_-Q_@8Gvx^yzt#h2eY1^P8MK<~-nT+zu)B)v zE^N=z=lYUG&c#2i>`JfME1JDnoFER~U6p3S$X#v7BRIpMNg0j4dT{Ud+iqjOt5Ct{ zRYjCIHs&bm{^vaI?DU@Z{%!ikfBZ-KTlUMwhPR_tIgw62>Evvh=f^+(aVBoc;yw5D z%Zo2bM;&)UddDCCX?nr4pPMS2GYTXZu-(cd@$Yh{hy}>D>N;ZjG{@o;+Uh-Q=a~mbmnuPodyqE%Sx@DhOm&*T|-pL zlCmEI$_g&0-I0SLclY!bM+StT#BDktr~-bi7M*F7PJRI(!4WQAYzg7ZgF!emsBqi@ zexSfEms@_{!)DL7tqU(BA^*%Tj|$)wSlht{u~qhBx#oBvT!k@{oiMgocp?2_+I;-d_{9>F6s*Icc=y>+M>hr#owSd!<;St;n?|$dIawDJl*faAgPzx2h%dWUQ-E!Nl=?%aC z+Vp13)f{uwksR>mW&sAJ!?K5RExW+Cve*pC_PsQ+W?I073h;Awjj!rM<+lx z|2k$v*+g#ucOBv_jDiyY84QlXmEA;6AG_edWvPi(mdyme)Sx8PCYK6hHEjk2G1{ zi0#G#33mrT3l{}hH5zIaZN;<7TEMU0Vahe2f_0c&_NSHhJ!yMh~#^c>w=ul zy~hrLaYlqfv_XU8=f9%y^Ym!)gT|FbIGLCOS%bdUB!RFO@au`68{^nlEE5|3UiRGyV40`?o(H+V=tlVPY`;7OTknha#kdfz*GJ(MFSVV*V zUh|sQWUC9m`qi(p(bS7Bx+q(QKI^Qr^0|+1fBV~+Xt~My1w@*KAW3!-``lK= z=fUtd+Ybeh8eDu&=I$k8xgjz^6GqWQE_BfCIM`*q83a)`z)}a zfdf8th3(J;W~cI+igZ(hjNe1>gDHpmuc+@((F(8Q+*QJEvs;*f_O<=SuXlpmW$F;M z0kl!k^AJ8=lhs@uT@SH3rsf@pn}osv9ok$$;CyBkZ4xSa41d*KL+w**=bBB@ew-G; zFT3or^o?(PBmIc`+HPZSF0_ZV3a+(mZ(de|&ONvCnGo~N#M2t$r+!2RiONJ4u?A{mG z)F`OPWRhsc{JEh2IH?z~GMO`R2kg1hwn?;sTo3OO`utWj_=1M*-c>I8tkvg^nB4h( z12GRE4xa;A0nkXg^mG=j)V8G~7eQ6-q>cYfl%Vs-n+xa7X+p#=Jd+ zM24|iVWrl9qo0Hk<$7ZJu3+GD*JfNU;yMT%2M3R%uR&U6GR>~rA!>*v0j}N+v)ZSK zQb`kbEn#LFUEF_}0rzi=gAQnkJb#0stSD;R*03t2{sX`~#as+iQ#i(IX5gH+@B`m> zAZ{~+#febF&jX)$t!EH2zhi|Zv6DDSq)el~27tBx?axDgiYpCw)u$DBO|?iE^)r5` zj+)+IloQQfbV%zfe>iw?t$>}wi?|sEK=zrVxAJZ;BgbRh*V&)b;z~YP?qE@VKTVU> zL<)ExmcGr3SExIrW{NKgTi|~k08ZWw26{qt;RL5fD`(v~WRIq4Lvw0qxn@zEz!m!w zt(IQk(9OSk-YHn~)(YSs_X+NbZ%&prjq4ltE?nXEbUa~4(n9|-tzl=CeumI_V}=Ak za|J4BWon)$x=h~Y-;leFNnv}{6-2q5Wl=&==em*xaJ!D=VY5CsX4*BJPm z%LQ?oD@+??TFY*C9tMol?CoI(>bo1I5@D>?rdVkf7l`)v2F$$&s#<%$+?LeQT?(PA zAih=GwaQAx-@)uWi>d3fe=#zk4OFYs*;ag?U7%DGb}eEWA$D?gbtbRyV+ zzwO9&aQC5@(%4Gie5-C*&r)p5g5M~i`8%jx3w_7OkHG997IhKN4K&a}s4W9*n02L4 zD6(U{u=5>@HIHv$xDExuJ{C*`{$^=Z(>*wi`lBDh!ep12ow?Z-b@xo#hd%V7Y@t3* z-j`cRA}CRa6`o;19LuY)x#E@cIgsy)Dyz!qX}U`<{YmQWo5UdK4*-OQY_b>VYKK)_ z1<{9alwm!P^`3v(nf(C>VqN6G=MKQY;t)0D&GJ>tdp zf_MUA(R7HTxN3*nbJF<4EfBX2>8!KXa*|*RQvw_C^#KrrV+GyA#CPJO_ML4t&+ z^uWf7bVypv>J1%Iz)@0Ug#1ftqUlay=@zye4g`Z^eFUPddDD zV%j!_=uV9&BIf-!;fqAOY`ldPATB#eE3TS=V^=Sxe}YLIV+?Zbn^>(3uANTDvBy7# zf%HD?-6FX<=up}|^eW~>)q!;5)t^sC9{%-o%4!T|Y(6rL^bM!!#dl+U2`SlV9|{*L z)!5Oxy*02SzarN?|GS%dL65p1A)&+EQ`b8x#!X7~CVPrzPULY#UOwN=caSi@DF>;Fz|1Cda~aaYMRe0II? z45T$HtLe%gElH1f$Xa!0nDHVm&&)32cQ80-H;7wW!u3h3u1%*MeL^~7>2gl}qgm#X zO|XUCnNsm=R*BVfHv?`#woBBRE2kP`sm9IU8*ds(w~j4NCm(Z48X79F+0!jMfYza4 zPIH#aJ<{GOw4B9XL|3Eh`!V>?m5zVNgR@4w5;>s(B(LvM)`S;#z`+Gk9ifaARKaD-9Ci8WzMD{$=lU<~+BYX;-jLOx5GUleT&K1GG6(t?=4|>ZYz_~msmhYv*xe}8 zO!Lm^=N64>+fA03Nx(vJ#0gOsgiinRUR(}582-@HsuFvHL5AIlA6Eron(j-%$$RM4 z6Olg@8j;vjK00qCD^rw~Tr z##Q8KRg=fBV&C#BnnAHwj?r0@LGEfQu89?DUhIeG*9>QdjW`)*y}^yV$H@EMak%ExBipoR5%qd`RT7lpK5U?&t1T2H`^u$k1JZjE6K!LFc{n|=BVriz=hc{ z`~f={nZ4Bldn=#lkLcI<_L)(YKY3eC7+Pag_{7^BM*?p@^Q$O+<+;PkEx3E1@m?gH zEiwpQ&T)=Eki`0eldEf{At`Q>`%*7IEs&pJBjTW!&5f-JLcz2{b6Fo5j7B6f!m zW#UG~iwR9YKn4+l2wAB>?Dw62(QmuYxr0IlH#dav+ZMEl{VcrsTeyAq=Ud@yw@z|J zeFcbGi@&+@(a*)x!9UaQEkHXBP65or6c~$sYr%x4U7Pn4fjv)v8K4*azd?ERTJD>^uy_muTK!uLmuT3ySruM3>j1K9WpYvEe49LTvf=2*D}acZT= z4=4Kh5~PS1Pczund%27Q_8uKgo8*C#D-xc-?Z4JwG04W{&jG9Mo)j#6tzjS}1uSML zxEc5Y-u#{ijIbNw;Bf^m+K0dt4}px|tS4_qD%z}g%byGW&+PCnAh7Pa{_(BGdA;0Cy=lZ+yZGkge;b?}U zSu(6Skni^Pm`$|s-a_)RgGe{S6o8fL49r<@MCZ;CT8g;vUhOVLLa}19{#i^UlJXJV zY0a~=!xvm3A`{+XOz7u=tK-l)15>~`SKk%mx`5NDx|um359Y#eq5qxfM_&Ta8P8Vj z=kjm)<-QFd^^3H;N3sas+t2%n+um-`x$?`C7roj-YH3{Ynn~48DOyuT2@jMn7ipXn z@=UO=F=MA%?WsqB%`^2UyB$D?55UVVzFVK2^2j1=Dq9xC=gyny%@QOT377zdxx?Vi z{TO&HW%7T9fj{DE3Cv8;;@dC)Ei>1h@QJs8Ph%uN-H`T=x3c{lsmrH|ZQ1%HcW@NTG0f z63DMk5x&IFgIH)Xs^)RE)#6PEb1?u{)B3F z8sMYVH~{5)%k4lY!gGN>^U967N#Ju~tFWvpb zZC|$T4tckFHLzb}uMjbfoO*erCa*AQi?LpB9pJ1+16!V${YqN-u5ASqK&E^Rj{`)) z5N=)3{CaGtPR>%};mt1}>MwGY+S zOdG&)*pxoyy}`8{QydD{XtRV`b#2cXc5Bd=zVy0|4w~-()J_3D4U2oO02nH$Vtb`Z zg|k#x8_#{HnKwJIR_8Vil4MbBYnMM`1D+B(?-eXm`EA3_>1~-46|Ai>*QRCs_8_r` z;|s-W`kSF@+vNN6il*wQzMdI>z`=0EV$<@}n80Km=VN758q87k+9)HspR;GHQxEYP zU0jyR*~)J5owH~hMoaZxEQw$W%*z^d1nu*7IN-!B_9n78M~GXl{2lM{G>Y#XI&A}y(PG+`7h70cw2OClh*99AR(NiQUd9J zs$J*W99QfT0q$JDQUn0unC|)EFP!*4_yaMb%6U9W%&_;@q+_)bQsA~s8?f8i zFlY5HZ_RXO_Xjg0#@j%=d9D%+&uxZ>&CxNgEMmmgL&k3>d{H2aUV%}Q37(6swfu8n z2LYL3p-1d4jqX<}n;~A@E&wy`eB>RF)oBbPG`C|d1e=c#uqI4SbDC9LzB-Kl?UD&# z1VH3#9wc`dhzk4I9dP0nM5;{Wgt`4Y4r$ z$N2+J+-#oU@Z&vQrX8iW zns&^10gRcU=^!8_Lak2af|S*n5p8sjr0M2L7<0!c7Oh5?@q^6uZ%viOW8m}_q!hr~ z;NH$A%n$bm*4U4e8rmLaxj)2{Y-$_eXPO+ld z!iom`fED&u-8|X1E*mwUg-+lkY&yqte&rsutFPOb{^sMKOqX5si?n2*E8V?qJpJCw zUX)(_^50I4(L2)sA`Zv^ppiB+204q4_%nl>RK3a#q4_EuRyWYGG$r%8qCfr5_y1M8 zZD?cq=RbN^>Ym8cert;C2oQ@((l14y0w}f|l|WRvC{uBI7x!%a>lgnzoqOIlnc%qy zx3Uq=z9&s!@b;C@`-Ak9vwu5{4`U;+iL`>`ndy=Eo1>X_hzmmHI2?e98RSZlZ+`Xb z=^x+!f71Fp)~87rx%d6k$I`Y*BYubt+KKBm?XrPOtk_X?%0W6RSU|NEx& z^XqD9q8HI?|0bAK+5o$yMy+=WcFwH(&eA z9q`t6GSKc@tk$NuJ@>Pp{cO7M!VB{qa_@fkyLSS9W&+tMWMO;I&CG5pj6mEFQB=65 zV%xT%^tG>lE4}VbzmrZm?a?4ZJ^kUE|1!PsdH*|o{o8+@YWZee#FG`4^oln!W@I&l z1xMGIr$FR_9@!Il(t>GeDthC);i`?h#V+~Pr5HWko<97MccxyD{L&llOt1fwcOskb zN`LT@r>4oxL#dY)PMI?{zfN$OkI4!pUUSdQ=G-`6;}YBn0&1(4q`&#(2h%5h^5t~g z10T$d*sgl=^pV@gQJ4K1qDCjHZy1$2H;Tk#6FCxwrW>@x_$js>47I4 zl3w$&x2EAOLuq<~2@X#G(3MB0$#JjA<$lBro%rJVO~{3IVY`@nif4hLu3pwa(BJyU zZ%zOH`Ol|6{fl>`letCZ=8ap@id8ES&VU2#zh;*Q$-;)QT)T{(dQk7Ffyq=KP|QA@ z-u9NG(%8tM?4oRfY1y25dj`{0H=UZ^@ptE@Nw!m5nK!2gkUpVPP~Dz-rqCl`EVzIR z(R8_-eer(4iCdlkTafuKp*#27bJP0u>+`BDZtIr#g)65CzlHpC#Uhf}sjayT!p4M9 z*`5X#jij%A^DPYPeh^_}>ZvVF@BP4A(-Y5lS^C-e*QCdvy#%5#!iMc)5+eq1nNNlb zZB>)UYzw~GDQcEHIT_TrGFc1dPkqW`((_;P^u#TxbXzT*_{cNU)wle1`qGy_liu=@ zGZ45Ut51t)6WPU_^Fr?49qZNtUL37}vl_7-gPZL;WO@3>uY4-~;)+YsYkuby=||`P zl)LoUlM_CPnejyw-{Wb{3lx08%*;0;CsgP7lDKiR7@{X{BWQxFOSv@jxFa5)wqljv zo9(@Z#6E4X{|LvE<7Z|K7#$b6E%@6pj(XQwl`Q8b_wRi3Tj}3E@z3eYKm0*@$O#Wh zn~*e}bRw%$;F;#O4YyckXRwZeu;>?Y5Ld7Eq)Aq&1FX&;whqNNM3Jd$iSzik002M$ zNklZRpyTl`;&*O1DJYe&Yp=tO-MD%7BA}I zIw7>lyi%t&j(F$xG}&Cm3a&f#^)Jf%64UI*IdN1F;{?Z;ccO|JVL`NpFy`vC;4CVI zubh3JxCtlBHC!)5Zs?A?(n?ju2e^r9x;I_v^8f)Q zbhXq<>Q^Oh0E_6w!)dvV4^P9bSvPK8kU>PAO*}3Xh@9hG#!mZ~Bvih11kL-xp$}b*XSf_8BA`U!@@RY? z4nUPZ)M{D>Yw2PsWbK8op9^P4p1lGrRKOAMN@2{p`{vno%ZKeRf4{@7`|}U1kF~`< z@&4CaVSFRwX;cuT@T36SO&?d!NzlJgemB*&R*KdU2Spj9)eEdX^SysKmt z`dYs8%kSEs{{CC5j&HJuJm~TE#xp-){i(Uc7a+gX_DaaLA_*0Oq3FpP$E}3t=JXEX z{h$b(-D#E4A~48ZPY>IMUn?Co)K&^ow58%#&sszkon^K!_S9 z7{8_PevOEfq08i01h!tpu%)QQ?Pu5gZ_z&f!5`RXzxY-R-8}kiXp&SLHtp6j4H_2| zRDdK-Fzx~=nF1-K@T7JC@Ti^pv5(rzPCwJ0@`RHKr!LvN&K`J5h(!<0%s6m$ z7E9F-IA4Ey!>B{L#&L@f!Z}Jg6}%e6s~{)UywZev=aKIWHPV+q`&D-8iKnnS z@(7ECj@mcB{R4Z``(9Kn8o2mOJM6J-F4T?_M-11exrT6f218a;!>o)vWc|Gl zvK4m~?W7Z5Z7+Dy6YLeQdZKL_T5Ua@^AHw|_+P{07)Qo`rP7RrQ|%Q)l4t}S%xZFl z$40nLBo*XPs69fId%ln&K|>Xk{>jHIwUaOVI3D~0d-luUYA=7=hwPgde8AEp_wt;c zj1Pyy_SlL5A>b!F&}ZMg_)9iO)YzhZ_qHGY>T;Xg+h>1SeW$I2=T}_)dpmmJ0k&XZ zKE@3Vfc)psBnjqWFPgR(8Kj_H(*bXV+NUtiFkVsN-#KbvnUSm=GUrHp==`J9pl)?W zza0Lc6YUkRd%FGR&)>Hfocu~Ftj9o*H}o?m3cuB?IIuS->7cY~)(VmWY1Obrhb)eY zde_eX!sqRfM;&jgn1o?ZYHAnkzmGlh#HZNHuf4$zIrbjwg!0>6z(HkI_xc|8Z(qON9(%%kJ9ojfEz0+Qbpo6lcMjW1>Y020L!n*uw6NMHSeSk8!PnbCr zMArb(bK^F?af2Dd0Md*5>>1BL&EEBI@3Re?25kuuqdxLeIL3GF1U$3xNTQ~Jo8BnA z*MX%pE#H~3Pkr(8Oyq$lOMl}n!)t5>#_bE2Txjn-?KQSw{vP-(^hKfU<=Z;SiBgF8 zw-Olwj)I836!jUZH39cr(`{unBmfyLju$Dz;KT9oVA&C6wSjB*n7$Mo!)n%QXgpwje-U$tr+p*70Ty_st%`X*& z^fMla`6BUkshK^*uK&wD_Tn=>XlI`JD*Nz9pMm(SpyBdCD2|QvxiN(*DK+EJ z-^Pf*-~mPj=#tZV8}U|4+)EMYm&U`bl!`Wz?Y23K54T*`3fw_zEc52ujW^w7U35V8 zb!M5(gZVU#8mhcpFIlaJ+twh8>^S4wFoN~$IGT`w-}M0uo|IrKVR>H;$5tcl zGvFj%Yk12ZT^+X9;fL5yfA%wb@k`FMeD4BVLJ-Xrx7}bxc)s7E52l6_%0iImC?)s( zMoV4+T<1)V{&H%cxk|}0rFk|y|3EwMf@|#b6ArM$4%uMk^+g<(1Oq+8Lpt?+yuJ$& zYzgBgVTqysGH};lf4!e;IKZ8E-f34~eYJZ)2OoT}D@o;VrzFFsX?N&#huPG;(t~(G z>j@-TYJa}wc02KjZ?~tN`p<{1jid}s1CH8^0 zzkPQD@G!B9Uapl0E691MCYIyp_CbDMV_GgWNvyaD^xC(p7co^Xtf zZ@Qc5$QaY-FThB&26|H_u=5%m75P`_Wo#Gldp|lJZw=*EAZRAv-(yRbEI|=4;z7zl z8YJN>S|0v}=S9zme=Cu}We>n=f)yAuSSJM>WS9`UR;buMi}$lfJ@R8A<97MP=!3DwFTa`aL5 zA3y(@oqN`M?D^ln-16N$_UdJr=c!7GSzrmS`eN35V8;W<4j`Is%1&bo1vu*4)KsPr?c_qwjxN)$O6 zg-X}dEZJ^J%0P`6s4PNhiF%~pEtOtmCD1+Ykq6neH+&AGtzyj>usmK+eTeG+Jwz3D z((FMK08Jcq+r&@Cjn;dbuUx^n;IxJ^@G>BQPS`1>-bnB*!|Wq9d9UoBaNHsGghw1{ z!)2DspnI*a3!_)rWW~{Y$VU`frYo62pO<;*YP_lS4}do%IaVYgH1IyhGQCP5Dpbbt z=%4=B6YZ48Kgn_%6nl=enQ6W|Gb>Aq14*5v&EI8r(2! zY37KmjHhgV#~$|j=f2Kf@{H#*1r;&z>3-yzsphDWS4UVJg+62-(@W!fm8N!0FPDxE z(Ci|%-LE%0;$dh@D7WL|V|L^bN7?s&{Zkt&l&pxF>OgmG(6A=Tt7>hY#M9Pcou3vnqg6!>G+7uCs33qOinq zZaQ~QABCua+iI>$dkA<2H;nUU8 zVT|{%brMpn__5k3&6QO`i)ps3rL`oGOt&Z|!X+hZ3*T(TOAb3Ssy&g=&MWmxrD>AZ zc(#6Ixy0-Zo%BB{@IuRhh+2{juk}GV$+#xrrNxUA|8FT&CCL#kNwkkogU1doc;S!P z$Od@I3>7(QEM;0L#=$wmumM$Is?4%eBflmDm%KD^_cyc@s@nu6=py)pBa`Xq@utU7 zIo}-&bSV~X5W|*7hh?atN}k<9Xx~Oj&?1h`ZxzKHlVPXolvRW?UArEqrfOYs$Z|}0 zE=NXrg=!1n*fPdVw1@+?H?N(!SL+m(u0!c1$1Om=seu5zp#aOI1-0+hca05_+v);O z4hC{(nA0M|09T`vUDrKQk|RY*PD%~eXwub|Iq@d723{C(@eJjjq3~;Q&JH=UC^?15 zc*^Q1IaAHY$pTFr&m>Pf?3~x)myDB2If%G&V+Z_P(Yy_zMn_PB&XpQczyDIi6&JKl>ix2}-#q*_2Nt=K^itYhnHAB??(aNd%b z3f!$Em0NH?u2a<1LYEVcO=rMS{EZljQ0=F?#A9&am(dth>go9sMq7tTam|mbyb>J5 zx$;Tmh4*Z8a@LL8RBK_)`P$9Exqgv8`Q@O&}N)K#=-y$5Cu91%4sCYoc_B8j&{1y%yg&wBoaHYw$7v9WW0x z5{@p%2|l`~C&F`_`Sa|O!+1Z*KFd2G)83IIPD& zwB2|ehcEa(kzb*rV)V|kN*=8WZtOd0yeA5WOHLv{epAxK&E&pzE;LQ~Tgk8qWJe)_t&>JdP8w1V zC4yF*(1+ypTx>)sPofzFi^j6?x)whOymCYWQo@^y;#VRCIwg5d--qkT6)wAhi?^Fz z<&U+*MnHm7!czxTY|{al>QE<*OFE7Gj~dc5#hmTQYjrC`0~c@?q9HlkU3i^34O&E+ z#e6NlhefW6v`>I_HYdlr7S9{UT!`$RP5frvxXmW=yXxDqxW|3tyHQ$nAvvD7#L=W{ z6X)UiiJXo1&GLamv^khtf+>;wNf_McT6oc*id0esT+2D{_s z24?Y{jSI7W07MO-HpeFd7cw-mH7-wFnRLX-#Cgoz>U(f^ptlTs<6eSB`{6eMctlfI z8h9iJ&F9VelBZ{F_keK|>7(lr_l;}1Adfrjy;mg(1C9n z_rsZIX#0(DnZPITHSkubO`OMTkrETnv?m=4tHw?J0kNMe z?)6afvA<+D*tjS_jD$`?lH+hDV(KsuwSAF|xW&CN5l%924IG8FG9*^7=}_5stK@h( zMxlXs;yj?a`FVRIFTO@*gNYcc9oKZ(f8kQwY!ei`$;|C{11Cq!af--9{Ngk5`fjmL z_~%UJSoLVHODDXYgrf-1u0#-?fWLWdxEUeW*`7%mH#2V0aA~i$;n+T`eZ1FveG=i? z_Jl~EhDZd?dq}oZF`+?&7H$g29`dyl%C5oz-}mCLO1$?Oh}RN}fUEOd_asWn(oRTj z4^~H6cqQ^p6;`ZN-=530pC{Ku4^?qJalE~Ex6=K{H^+w)=dIW&F8f))S=aqsz_%HW z0@;&v6OoD_BK$NUA?hgSt1wjg)t=<}$CyQ8`7@&4Zk1FxKuB7yLRhm_@X!Tjzt%jC zbuF$}Qyeof%@T>4LVP0)CP>c37Eg|(OLvvoA+#=>raek)*g;hT6d0VO@s}EdlxD$D zAGgFaK^wFkqtI8lc%}`o{_h}|O)?nnIB&J5k*2sktlkrBD zv*`_1OtIXKRsmJ9yr~L=U~b zypph~X()z<1M81+EH`eFag)d66Wo$f$-Vdla$S$V=IhDr_T4#m5D;*$lwm%E(E>!8 z15%^$E38G8(WJ#1sF>2cj>&+XEpefRsQ`xVy;V`}Zo@Fxnvq?Dh0A3Oou(gP%u4 zLK$!w*~W`o@RrYvBI5=B>ZP(}nK}uzpcr+Of@=XLlRze5uSfHS28?OJWV*?#cV1-Jz^?+6tK9*Q6Q4>**F{{rw<=3=&v<6-V%ZA)b4yHG48OHnfjj6#%E_f>A zT`n@?%UG833|Yz);1SJly3lIfbt`m?G2NdA+-q#5RR45AJT)k%PKhnU6(Y`Y*2+xs z(4lE9D7WLxWW-{rDy#)2!suWXco{u8J>vBw;}&aZaUTKF6j+*}UxTYRA7CBx><;^` zp2To5xi2e8g6n(+W6JNH%TFeOC0Zylhz>ucondTzHoReawo`#4d{+zZFi!*qOx8=a zQM1ne9BZnTnDelM*}kcn)-ZGoJa%QU8yPoe7c(j_ZG_DMzs0O0*HdPOdKQ+{bmqAX zM$NUoMx#P69D#-=oC&r$^=Duc#X(b?qP6#VdaGiiB zgmOD2cjke)k~+{88MC;-GHTx7xQdl0deRGRE<7HCtzLUgkQ17bMAL=uOptD>Fv>5{ zln+a4JvOI%p>_3g1xMUcD1X&-aMpWq&Y8%RW8UgA-pZJ723sU9uyzXxd?3!z?u|4Qg-i(x?OwKz06!WXoU=gK#EbsNo1f6P@EEoHH=$l&zRk^ey#Pd__M8K zF3&99ZjEM1(L&~4b0kXB`$W}{!Ta8Jg4a`3PE!Ir$ut!(Tz|p5iad3km_C-Gxq9_I zc3XPXO3SWeVX+ZbW5_c9q2_Hx2GlHxGH54OtM(xtsZXht+hhei`uTO%24s4-+S(pl zwqm2L$=_tRUw@U2Fy~>qgDwUhar#Y#h&#fRSIvvuZmq&cUSuh@nSd0YLr zv|V4@gmbsa%6U!tn>1Xslg8T)6-1{xa@|26#7!%yhj*>Ez495$71flXehCae%2LKn z3(Km1&e7L{Gr_p+z7$>Rm(6xE6wcV;8a1YWwUvjBRAUGzg}QB|Kyv7FJ~DRzzxO?Mz$L- zw?Px(q!yUFvh(ehWy36*`c&&(w=c`^jG(WWqZX&UlP22?6C00GeC^y@iuthjEGJ>@A!paF4%>MYZt-pb4%dyJe4M>{IK$U8h7A}PR! zCf2UHt+^*{-&=pJz3{20S{Dn2+K8GmVnfbuqzQz-`kQ)s?e4XGcEmrOZu@lZXUtVi z^9BW<(jdo0OVmgKND;JSilRvuvW+w6-yU=+l>hiM>w9dEJ?$wc(3hzBEkgsl^2XF| z=tkHxD0dpvZ3skA>E1-Qdi9OA_}d?~H$7GI48}P*vBDHA+YM2Hy{)9Cb{2Im;h3ND z@;BR}1&6WBvDqlpNZD#ALsO;AVIN4)j_603)?V!l3&5Uwac{S)xuL~`Q>jX)D{b|~u_8-%5H-jW9kt;i zo~=5hiMq;AP(0ECqO_faAQsZx3XxR5AqLJ@1XpMD2yNHn!nFXei>#*1?KIaUI9_#; z6zm>J%d_-SlPPQUg>fw!J4Cc3QL^+s)mUp!HTfL<6Y>(PVfN>?V|7#nRV*|pS!Nv1 zc8EyAk#Q?x+{a5J)KYVJ@Dw2$7o?2p)d8`>I&=5_VaOIsH(r5a?J8z-i^SuNybeIJ_=1U zxVj#LNw##qId8iiD=6OeH_A*3U3h9yNuTALW}6h+Aw_=-krsFa>=j8TVmc4D!H5tx77 zZ54qUlYm zMAJA$A*eGxsH}+4%3K1g%9is;D`1x%mGYaK2Yk|gAUrb@~_#;!n~Ie0ma zw#$1P;pnm%Ff9=!n8Cn>&;lG5%4t4J|4R;q*Ts5}BV*KRw1!*|GgRMhle{ttHd;Ds zyoNl(>q5sc!q-%AIp9E#^PE&5A^1BrFx71p`L znS;MsbaQNy6oUWfjhmAUZ@>wt4N1n%7nN|j+q3<1%o|STTK9D^83>UVhg-T_&yOA?(Dpro8@Sdu#;1;~%!;RycC`29mxlj*7xy9iH z-XF3Z0(qyXnjYK}*-qwGx$R!2yH5_0pGMeXyFonH-mBMs5U$1tpKA?ynDof3oiy;!K?FP;OhPSUAwc6Z&DR0~;Yxg!zb4#h`K`mu#&Js! zQ*rilL9c6#6HYmoxI2$q9=imheE(fcr?izcFNw0MorK~a3}O}f)}c?KWT9 zYBwGJz?lg>mH-(pOIVv3m=Ggi?ey^5kqXM{FP(8rXWh7MZm=Z$ngUE~$?2Ycn-3t5 z25-ixGff|u@OZ>l4M9}W76qp0L$AkuV&W^;^BVGc+idY}+So|JIu4SHV? zv_w$2+X`utjC0}`N&|?Gf*;-rc13Qc7+a=EPBTQh)tCVXL>WNNYzis^{4}?tI|Ke~ zD_}P@7@RLo2q7XT1zh>l@=4;JBK$zj`A1MQIBRgVgn&RVXpvS>i%7xp4hwL3~?b{#)+yy(s zYD5e1FXGK!=%?X#Mq$dZ7*qpq*|$v+USf)Lj}Q)}H{ls$=~y-@$ST7wDAS5zLWn&g zTe+pV#MD^d^HMFw^Do^#lWEqCTNLy%%W-I$uTJJj%P_-$elf*+xg680sN}a<3XGMA zz+}zo=$w^8ud)sm<8VN=cQNx;mp2in&NLw0^ice^0Va5Kb?0#IVGX`S(dnN1_shfzz-@3-1L8?4mR z$$;aO^;T4vM5#cxR>5<-a3ll}+!aP#NsdztHtnC!ObRK@mccY{yhIB~=2>U0yoo8# z7(uQ<)gHX8slV>?k^5e`PnKPH!Flbx0T1?qE+f48G2)Ejp$wenYP!JG06pEzSf6p6 zwOG_3)4b(77;}Za(^{~S;{sZUL*LA_!qaD_D+y)cUS(`ucHkil5Z%ONo=7-jCoSL0 zIX6cbXEt~f{G}WRO+Q_q-!<=PFow@n7)}Jg#!8GQ^jVEkwjjqiN^Xe`BSqFjtd^~a zkuzpTkyLjf?<&U{J6ypqYTVtfN-bgBV(m=EO*OXbuDi}Iz4TH)UbJYDz4^^=o@DHH z6>+BbJ1BEXbhTq0wG%u%U)`H2kSaY)kJE2o{L-)NuH`GNhnXafc-Z0gPbWW>MF*KK zsWOC+Fb^bC33-xMkic-#N{TGf@K?Y5Cr>$e&fc^UB zKih5B-f1s8__3D7xnZhDH;M{f*L%Z82knpqvEXJ_a*ZrS@vR@a$A0|#3vI(DW<6om z^BV4bCB4R$_CC~3ddzcJUJ0iSpC*eT)XWm{{v&q-HC@B_dv#~FQ{;({G{Aw8Q42V; zWe&ptmq2L0Ea$cHf-PnO^1E-k%|8FlZ&?9_xaiPB?Ad3$0F%#xqCBVZXqqmG`EuHj z&p|AOd6mKPU%a?rD_8U|otvg_%h_0-c{_WnHh)f!oqp1uwoeyx)0S~-oOrX%!5#QM z@H%(JW&ux`)a)P&So?7B-gWlni_W*wAoE)0y6mN|f3;=zoM-FC#bMRfNpkM=EHdE> z#^Ts|>jtk%N_WUN1KU~mC1lw2lTqvL?zS&{;R|-sNhjIz<;#7Eo$r7D`*z%M$Jwe? ztGv0gEo*LYH#8+u5LgPn%5+{8+=>cw{AtzeGtYdRU3TfOY;+t&$h78Xec;pf?)QI^ z`O^kyzMI2Cc)EE1;U_=I#cjrgV@Kpo5P3rQ)iM!`T)VGoS!JL9#>ecAd+xN2 zLmO;(!<{y^X4pnH7MLAIMNmA|9x6%`U^SQk&i76O=XdK+At)=rgEwkPkP{-Ft9G7& z$Jt`Z_U!Jl_rLY+_ROa|)$Y9OZd<xXWTc5K#HuTxbO;uZo!vFido%a7ebG5Bl%OcM#kW02U!%#d8_=(pQCf%+f z(+jdWTX*vv_Tm$tYJa=(k2Z4e2D|dg|F)+*_VM=jKmUb^o0%4iTArku$NU{GEIRXl znKj*++0+s>H=(G0wNj~Mk9o{v?20R{u)_~Oyn*?##~y3%eeZkit6%-9H(fS2SvE4Y z@PQcVwJfHNNmUlPXYM)-iP1^~XP@<4JMy?kT2CLwtarek_Fvc9X)k@1J?+$E?eUM? zpM|kmsmdF(HL-6jQmv&31dY@)wks517h(*W_~M$6jdw5xuRXi4-&Su}Yw!ES|Fffx zILg*<8e+m%&FGCHU_}Phq|+>7tJkzs@|s(=h|`8K?@Za;B@69!um6xOox2qL#;u2D z<|4=qjgHY*BL`2kleeoG80e>yf%Cpr5mdx%9ZEPP0t@C!EY*wb6Cj|yb6j82M@z)# zzGOf7!4K@a|M^4P_ppc3`oN6t>VKnVr)iu!B@TKL#AV;1QY)c2B~g=l7A-QVF?;VD zFxD9K6kQ0pGShu6?y;|bdoNpm;~npFc#A)ld_gMi10s8FkU68tM=>SHuNR?0ONh#j*H8%INdN9ntz zKpljcC4k8Zknq=!BSmHi-W_u$95 zH{E5QKInJ!6l?b2qmHohFfvWcj4CTt92tdE$>EjEh}XN)N1OGUTNLPMPiGSa$U2=Zj7A~Z}?S%wT z*=;_luNQgpwg?xeL|U~t$vKtIEyAx+nkDzmb=a9_yx2bX;g8w?>jJ*~HLqiB#ERW` z`LFH8FMN?lO^%O^Sw~lQh%b;15V54Ig}h$53+OQG#w{AAW@9C)D?+lTr^mkcz38wUG?fWe8jH4bve;j z75m|(msx*L$qJ+Et%n)CYs^^hg618yv3R(|h+Hj{gqOfUO;afRNX`fsX{58BxdZm8 zi@s#Tcim%OI_EqquiIqf;L9QfczpQ(EL%~LW0RDCT~P=e$m!aMH8RNFpPI*UsoFrt z0(;UUpJB^xz1fyi;{LJxuXgc|&$kc0_F_9=$#GUFFq1n`WNyPDS!|LGnqU`bfgQy? z5jz>-6mqNxx*AIlC>l;nlKg|dwbjd)+1Y2Gg;LC0Wu#)a-*Km1_O*-clNWv2^7%O| zILVp>G;yh^tCwaj4=)k!ZRE%ZRQac>(F|tOHYeR>R@lRqt+N>wS1+-l!AEl)TEjyZ@TFwJN@+2 zDI{mxqaO7r4?2+t(VSPu(b&xxmG0+@<&C?$0%yyqIh(v~Z*fHNyg4`TFPD zs|XGjr)JKT2BI-^dh;^;CCL!^6-cP`0=y69aX_nNnJlg_M zWIgi-?7y%5gZ=T(SJ@Xo@NrwjB8s^BHaw8GwX8MPO{8R={G(`$EDwoJiY#p>Z{A7j z1i(RKK~!{}EuO!Rz58|N!?HfBG0tn4{)o4H==t{X^UuS;U&145yrIdG+Bt(G67ITM zXPIDWVC}>UTKLFIAwX+V@h%LxdP(|vXn8sNZ8pMEI#=C(yRBcp!7lpBSM3{@ zU1Iwld5AszrDs~XK%bjCwZXAfK%F}S4Y?5=W|k1M?nlHLo1!I)ti3c&XS>F;DO&Pz zk9(Y*cG_w7fe(BD@0RgE$xwkf?oBcgpKoFLpumf(ASp3gUhHHiWR=owGsLt z2CZDY+m1SXz>Yek$KH4L8FuTv%k5h~`<>N$_F$+0Ve>R+)>&r^vnZ^S-^>cf{iSJu zl7d0odxmJS6u(<^Y~}kz3cC`dj^+7 z7YrJTAWLEQMR6JK;k1*?xS@>v-u!E`bS{?glj188L88cCH7)j0-hHBVdo8g; z_c_>B4X?EuhS%Htfj&E(vi!$i{hF3|3?ZZ`fM;3w3BBZLkzAKp%{!f~*O%r9y67S|YPzpJxG}24+AC@3fUd`yoL_9ojYLFT zrH>&)vm{B(RqSKBgEo4q@M@acuwle{Fm|2u7uw>bOKc;Zvo*%UX$BJw_|`yfR|LE# zNJ-QR{>qlwxHAuEu9p+2()2Bk4-MNXPdw4~KkQH&DU4#|3)b12u`90oz5U{U|HsaL z`J3&yz5^|_j!x+g3IfUB;RPajQH$?A{IvdM@3 zsWi>6YQ71@5N$7-fpAa=@_5ypBOIXiD&HwP=J@07+h6~> zZNQ`NpVMnYBSYRirGS#Iz8*Y!<|)9Lt!BUxS>j*KfG2Tsm zQWI&{2+73vrgkJ$9p}Wlsa)gmS+-EI1-*0Z@kl(LF`R133VX6TCdTFc3$`s-uiiq5dfBmwQ|`s&P~yeZkSMh!$bfd_Xy;c zu~6@1_|9B{q#inVkzM!qTkX>CeAiy^%9k@+Nr<2$W|(GZOr*a{G)Qo6F?6>IP6Dpz zkXx|8?z*FDKmW$v_R5#ex8CfC*Br7P>Q}^>q4mPEw;75-7R7M!85yO!;OHZdvc-Gt zW9Pm9|5-P99X@xSElg+aGv}UbM?d;_JLHHXZ6nQ+HRK`0Lh%+a$MJ2v51P$%YSxr9 z{jDv&KN=|QWwg}4cITaU+PA*-E&JjZzvu=`H8s`hKJkf9*a;_`;N#(B2;;L`d~pk1 zRP&8{9vz~oj=o0vp1MjMwzgQY zHDg6v$#}lLu1@QthB^RkYW^Nx)k;Wi4;B?-3|mEE&_odCItzB^svGRnmwXq)y*Huq z-L_`+9Mv00q^OvHEY+|EB^KM_RQx$*EZ1Pthq(8{azE$;C)}+ zzRjX70&k!I!8CQ8)-QebZ?W_96Ggl+a4&z;}&afG3;LkO~!3_c-W1d?yF-`#_iyP5B6i#;A9Au+QPu0 zoaz)@Dg87h*>U2$IzDQL9kh@A=l9RIU;O$HHaa#=|61N2|G49Aj{$-$M(<&U3kLZz zQYcN}NjiMLj zkndc){D&WXtQCnO%rJFR1;geob1M1}PweG!hyXo(&;8b7cYxF3u^BCF57i7;#F1mxrtjfcOo${{=vZ?vb9p{C?jbTRCG#G&@% ztNv)e{?U(^T8-vr4Bko4e1;9-wij@4QcV2rn1Zv0duSMxl5^MvTxT;&iIy>LGGIza z9C3vI{A3Fo5ji$X>UM+ht_`;EKr395!l&~@Gf|{9jh0{n-7M~0y|l>{*VCVJ1f9>Y zBh_s~L!(w5Tg@Dd4BpldSOiMmVTNFOH3PZkgAP&%GbOYTEGso_dyLUK&wNqg)8UThH(lG`Uf zu}BT>cA6kHIDZb@M1Irsu`2R6$*X-}YI~sQu*w*5AZ}IUl;@d*ff`&l{Cmc8p6>ir z4EGuYyNVu9F=?`h5?mNP2_29R88*F1#%@=L^Q;@UX3qe;JwQa)wv=SlqA}C`c&vR( zC&8!E>{>p;s%}>Bq$ZZ839G`474mJ0biHfB-F(u9QB5<(4YMX`(BN+c7=(yPuiUo` z+DRD)M~SfT4S32xh33gnzy+|3mu3l9at~fj9n43Vp{c5tbCuwX5V<9XX+Bkkqx zIXLB*30`4C7`Or}02B&LQ=y14Lg2H^zvq#WAXw#^M5HEXhv(BerwoY0O0E(_h;ZuH zW_uIMZHx}}NpXd`0|^e4)iO1>yTO~#5$k3gUzTAIQg~Vo0DbSXnmFQ)Od>b4jo1!+ zUusG|x#Tp*c*auk?*s@H2_j*n19DuY=AKJ22?LWfIGz;V;H>SyM`k&zmqF<+3|UrV zmN>3xz&`vdQ;^q|)ZWTU0q(P8ea?TUi#RQjRrx2g3X)CHsd<|^mf zhv$RZ6RMK!c1a1EpuhlU`j1o9xzyS;XXuDkI!9OqpqJ~&yZVnQ=3;TATD#!rPK-(} zIBJ}m&Z`J$nQJQ1Io0IAO8%U%%fnaopGqi1A8}Sp)$_vLYi%5d`!mbzSvPJX$?l#c z)MBu_Tp1*1DMH{3)^*tKJ`KlOz*03cUDGy;0+iB7W7L8%;|?zjPbKea5du1zz!HQw zDmn0US(c#_yx=AK&aqF=<+%d_DmWR8TE_7Mdu8IEhuS7NUmRXaJIfiVnkqDehvQFR zkl*H9wH%3oOun8=`#l*(p5gI;IvM)Jj zBZDSeCPNhhM`YxbnSc1%a7ekYXQOQBzRnxO(D4kW2aMYc5_jU&;(RE*n!+Y8%LbPn8}L0)v(e`Ssq`ND)JUt|T-=|DaCvi^yW+u+qUi3!5Yb z%dG}j&+mSoN>;liKz1cBd>v(3a*&9q=vtDrbYmlNJ*^rZ7hFVCeM=q+^3cfH5(hG1 z0oI6^#8b!%0pSqt%alhf!_f4QK}OG0lD{2U?HmGr_rWB%nGr9d>T&YfqG@<_G}So6 zCC69??UZ1QoN|>{tyN;jHUI!X07*naRKb^U*_)PycvXx;FGU{9@fM~NXmX#E=?VJzN?{~%cn2Y0PIdB6Z!^WGE$94huQ~pGR-1opI zB`sWnB8-SgRYM2e*KN=28=Zy3sVj6c1*I3CjTu^Z9}SU|f#VJlCb%xd9Bb|cI!s^^ z@-;9G#3NhsjLsW3C!U(Equ^ixkjtdd0e<0@z#01DnsE;p2d?Y-L=uWkubH^f;zvO? z6ORl^A4TBD?Z%O`ZC*Ie%)Dj25VFA`e!v}2PYviBHvq0UPdlTmqM|w|7ptWN_B=Q`}WO!6)1fD0a z@(ZCXIEu+LJNBVj%q_-H7=wOFxXiUsJ~?+}9kak{zZA-MfI2C|O$=_nJCm3_VBBVs zy2-np^=uLmxbGKX{KUO@%zonH#54Y$E!~*NGTTQHy0~w^6E7rt-?5prkC~hE#A|J^ zckVe(2?FLefpcgKAw)Q-wp@IYN$BwX0lRM#} z(LxG`?V7}whycDly3oL^e^EMk&<0JRw?m6 zzpo7KmL~9WoCJP?XJhZzln;8eBZ^aDiO`F9M;eF}5$&dXo^LAeY_U8-LHrXN-D_^h ztS$yQ_Pvgy=zGQ%Lu6av2o>E2ZegSY=a-|XbHA$`;V7Oa`1+0AVH5FcLOJMd@OJ(} zo#dYOp4~U?gS^8pJ|=iLPD5T_vaw#DlfjPyBgC(ZcZ#+jb#Az#>S9I{f9yP5czHp3uSZ6;^s;_eznI3V!f@ z1o2#Pene}g6n`IOAlZumfd)HHiKN_3D*>kt1^9rD95;n*Yf(^*rPDwY1vv2^_TsW$ z%5UoLo>r9Z*UJQZgj;)!E)a6Q4j_|PDm345Rm8DUQ~q#a_t=W33OIH&CA%KC>BMlP zbwz(l&0D|F2Acpg@(lF)HSl!d1t<0@&%(~j9r|sOaZ?5@A)~3VwAUJI8dM#Zn-L9m zN5huThp<*~hcs1|rO9PGC@FIZTi?ieHH5xa3Dwqoi0(o-F+`HKNb+*Re;#}~tklgy zk*v>@(R2#A5i4d#ZJd?AyUKYhvu>PdA~d5=-G3xqtJ!o zZpI?jGvknjJIr00WkTOHG^wY`6duO%PzDlp!G6cTx8qMVkh@<8p?Cv7IHj5MW;B(z zG3M;tyVz|Dv3U1ZyP4k+{xbUwBPm@CN?}YFyt{ zKD%q|AgdHMz{i4>vsx}n&MKLv3(@<`%Pz8eODP-g9`+hdp0RZyO`myl znoT3UwnlrEUCF4g9>JVmne3RYOLtgbso(Oq*X^oX`mBT_r#U{yn8?@P15MltP9uD? z{wndCsm=cPnjsrqd#R=7&9`-(>oIKo)>qJ)dqo@Mes38k9lahRA7>rvDFYDstk#w^ z)0^3Nm(9%%*tOUF+@AS@C-{3b@j<4_+@&zNE{7dFqh#ObLo#6csTQ|%=~6rS2h~p2hh(%Bs0B)4Lw> zw6$WF+-|9zU}j*rmSO?y0+XL+SRggmov~FLHrO3Qf3@Qt^-{}?_u62-Kn({EXty(N za1QUT6Mp`#`*Ze$_nl&0T4snT6{yfz2UDOibDpmdUB|dnw?#PA+_7_v+{wqb`LQT@ z+sdTxN=CD+Fi~dJ_jFIz_WE_f@;6^@r#^h6jgK%{cL&N(iVmZ$+|#M>ryK9B;T#7S z7dtv|Oj6cY95NanES*o=tzGkM%^uIRV_x?$YHq{esH)wzsMev)}+5OmDKzQnxK&p4v*LWJ9#Tbu!;&yBoK`j!jl&mGAjI12#Tq73&2qbjGP- zl404QEM+(}IjN?)mDF5|(_*1}?X{OJUc7iKxp$Atb(U^OXMUDA8oMxhgO#u!!ROF+1%2Wf*vkEjbmRn!W(#0<8>%7Oh z_t?wQ;~ln8@*!QI*UkjEJ500bc|hoB?n9Q0v$%eBb&m3J%`Od0;87#MI+*D&zpIfY@X+1R=JT+IwYpq3sorMOG7r`jp z)!G=#v8V%njKwC0tX{@TpsA`xzf846<5f*+kNzkKFg zQWm4Vj*j<@%<{b+B{1LeEU>5*2->arVtW!G<))fjp2=*#F8vUihrR-jfZ8G z=wS!PHWFrMN-TrOX?f5}Og_DlMN!9cz1H86q3^9^6_k6f#QI{C+o7!bo08OSs7AQA zuotJ*n^I;)jSXExwkb1cLrmaYqUKhH7HXBKV(^FZnjlNfxUTHB@TL~N1jugSfWH%m zEss++&Vp7d`O|$qOK?oVudhis2(iaJLCe1|2ngT5TS@=tHTcHc3M_*fx{k*dR00a3$f^q{JvnUPt(7Jc?Xjbun!WrIc`=23 zj%rC)x=4+55S|i5gCehGdu)sv%V55WqsqF7a@Lb)+KZdpBQgD|a%L#ATKJW)8P-|L zScw>cVpjd;bhjYm6((=)qZY5#ID(qowIvW9gYJwV4dgjE9S(DWxkV>lt5`hI0?LP#s7qZ2hpsH&SR+L#eUl zn4KQJQWLFJ7FdxeNtO6I(Xli`kf%rwqm0}AsHI1;G_!GY`jE$OJ6xOJ1dMGxd*AHg z3hz|7e_H*e^=?)R>a9W*Zb2XgOi07<9ycG2{ln`4D~m#?ystI`FbWwTWFMFjRT0y~~IXVgx;WQRYiGON`H zw6CQ$(UMlA!odpm8ES4gsY)_@>PvA56EG(kw`L=z2bybW@mTwKtUT?XLyI)8NStU?&#& zbB%*|p=r;(=G!~)`fX>`d&O_GbBQup$yoC5VK>tLLW7U?LZd+-FiaaZ^+h6~lv}*RU)Vl4d`Gb7@XYEs zE?L%n%vMz!4cONt@6_UGq-dlEj9U|<>nXKZ)8|ItTUGsSw9_LYI0uT9gt%(2mYWX) zB}`3^az520@t&MqKDgusJl=L8LU{aJhzr8y21?wMdm`h*-i2%O>$Z3%`Bc?iEo~_} zpR@cbs;#P4&&6T}p`q!bC`E)K@OSfa!89Go(PE=wpeA0ytpU>tzL#pyg&Ng~I>M?o zqP+ejn7KQBFi0gbo{?|Y#9IZ9fUi1Z1Q$^8r|+q`3q>VG&A*_Ya*_rGVDU=DJQVs^ z*b{o{BfM8vku3k_l;1zajH;#3i%O^a9Iu&M0*7I!;W@ zFq9{QGEe0x!vxFdBi&Fq!`Qc)q6rgVBR8h}fvsc=xFWY8K92j4;ai#Ihe)=>lwa2{ohTdpD_pmN9eoeo<;>OPmn zR9!?)asJhWU2{H)W0GB&5bafd0{{I1a8!=zNKR*97VL!%IpF9%m0i9enk%U_M$V|d znrLT-Y&yQb)9;7^q8I3Rd&!#?$Txig5{s3-AC5!YG{+*S6BUxNcbQCJ6g%}l9Vz*& zzfSs8%u#XBzxFPS$u(-;c-<AtOWx(b1lPz0hhd8E-yRg< zHQMT1D)>57CqG72ic!~4QtAuSxi>kGMc2JHu)PmV;l92u+7G>T?vA;^?uyjY!D4w-GMGE?B}+HE#Wc z8Rzc#%cyO zO@r$$V}5rE8+}AV9R-|y14rS>%lup~)wyuxf2YgAeLxbtf*bm&q9$Pl>k5cDjpd2) zjG9%P!hBdpSl7ax`@C=`F6eE-m3Q(Jmf`LC0>6X?K?b=`Ca01zPcgY8LVhVzHD>G0 z$yfdTI^mW+?gn1ub`FDYlx^+9#VLMtvuyrNUK*58LPLF5ALgfhTHjzFAXMJXUb2l- zmx)GxH8;vwNkRi{z4l!v482Bw7hZmf{_8YN{29XY)s&*=}A&T7aeXd zc~-}fXTc>XJ)r~)O+R6;Kb5bL;(mKynA&~S+EhgI;H6`!`LgJW2de&C)l9_?IirG2 zIO=@*l4Mlx)HcvThk+i#oO{6KvfyWdN1lC3KnQL!(toR2d!(Z>qAyXn!CcFgq2B0C z_++bVcnRMXst#CyYf7KmS|-8oui>Slt=`>ue|U%-;e!HJc}cTw++u+a-~hWLl0e5r zFX-&!__}EPw4a`&_dqF6I_9T$$DdOwxvo4qY|gH0_cH}0#ETQ$rFf*+UCE;}g0Tw) zB;@6To6%`|AP8(v9QbkEI4-)_^i#%o-}m9s`?C!Nnk{f=v2J;q7HTvhsog5A`8u)M zReHa&G<_)OBUSJ7LKXNtO+ZAv^g8er%EHqNO1P9<@XK6R!B(-E`u7|8c~0tEc&ofA zxx&$2DiD;_C@FVT=aQ-El5Me6Fo*9Z&D-j@-*b=oE1-EFjYVTzPp-j>;AxTp0E)?wT zy?h7mJ315i>d8nE=e}^)FAAd5Vyf>ChD!K&D+bPKodTLx*Md7K;#i1DkW&-oKYRj? z@1UOAB2+@n8O=VR8TJX5dZuw%XeQ^gZrlWz2%rJuGGKAwxCBzaN=4OP1SLx+BEM+t z^xW>0f)L;X(R4#O_vRcg1r^5aFfb9sIn@tgQb&g85=+}9B_ane>otrR152wiYAWem zllPmd(ebSS7iJ47(VUf{pM=bQzkRSou~87k!%66=-HwnN?q2jsfD(pfgL)S00x}5y*sa zdl|;Cg(yw8j}EA8glnl80(-h&8}u#89~_Icrl?7xOfZ(5nhL{fa+KQ&_@=n0`Aoe= z;|h7YA(`3tNz2GEXS~_S2ah<YHG%HoGh|&~w5wc{n&=?WOYpJ>ioWNZ?LM9sV+2Xf(<_b0E?;Lmy3fOaTt0PI-nr z6*Ne=))rg%Bvt{tYTP;jb9dHDqodZ%6j&Vu^Qb4Uijz`7F}i^xzej7zGxk3om3&CP zb&$Nt4`z8ImdFmP-&Da?(PLNCWr{J9b&Oi3Tjrb^I?Y$!_Dpzwnz2__9${=Hk$jZ# z8rP`jVFWbU>Scs?FC-*2Vk2%mTA3ou~zQjClT(Fu&M zW56rjovcJKPR)&(CBPjCqIn|>B$qPDATaLvCxX*X#YA)v*a}NuU(jGorvG9Vg=&FW zGnldLn`2{FWVJym^C~5v^D;$B=jWT=HuT?kIcxlakvUp%Vj@pQAxa;oVye(X8 z87BR$P)qfJ)_T^T*K=Sk#Ca~t4`(frRKpT?#LG;jgJb&8(xVvjQLEs9j$yFYjrH1C zZ2>j(afY7I`cPhE=^k@B0Z}hA$XZmZJjQJIrDq%o{cN4G&aus zr8yhOEwS1rH8-m@2DVB_^qeD|yhl4fOwMPJAhT}VRB)vX^i$33nrp7HcfRwTcH@mV zGElF>1_uZ2g)e-eoqO)NP6pNLWDJ#GDL&t73c!I&HUU=oYrzLsJ5g-kyx`0B-EVx;)~{M=V?%@X!Eb)k9{1!YYmzTm97?^Ku9VbwA=F*IbwCpL zTOkPwhlov_xA9 zg}vmhZ((jrLe!<_ru5bp%hUw4Fvv1wsKkJH4d?jO1s|~AUGrN!9Av(8++OyqH`YMGu zU-+;s&yUzjCWDpGq%e9?9E!fmLnGG$+VMI+ZApah3zURfy@}duwuoA(Xdi#`SL~og z2Q#K{IUeBvllu1CoZK2_l^DSVJN^t=TYWXMg5X zHU!Qc>MJLITcyOwl53U83}e`cn(UloAO7rz?DiFZv`@YN0-M{pul@eoAK1q~^G@q} z+kid#&{M5Cs;(8>HVl0U8BWt*$C20c#poD#GLy8BYdq^ohE0Y_D-UShxC<}5(DvJJ zKbGj|u_KQ>(mwK$kJ#mxU+#h=!xn=~BH*oW;80FU$xYD&)i+B2A>K`)H)msXIh6LA zV>jf7?KK~Lm%Z$n&$Gk#KG3S0hJ0e<9Bq+m!oeg0;V*zo7_`$z!u-!$`{2LF(?e<=;-LNp^=r=(KT-U1HCpn zQn2;wE4GnVr~@B-sI6Xmk8K*+K@BGk5tar~Pwvi=SvINwq*;a;4NwqdVN_ZUl z;=;XFphT2CR2Sd?E9=JTTAfuT6am3SSe>RxZ6P9_AQL&!76rg?7d>o@2-Df3Usst#7q? zbUkE8%J$y#KW?{|N39F~YUX~KxVB2pRN)EK%w1V#S($t!5MZt5O|17ZWBDk?4S_%Z^8c{g*4=BD ze)!)pdW24Q=WVPTw#=gmU?Iy^jEvF`!<=!5M4CPsA1lK|5S(5ED${F zV;LtPPE6gzg;_rGQU`D9wHW$NNs>+&2uSQ@xnGJ$&Jv?lGl_;5SzCFR4q(ECbfs>N@PBIkaVji;N?u_EG|NHm8Vc7>SwlDwpkL>eTe$OuW zukYDCL!0bZfBu7A{<9xj$pg`(MZ&Y*6vC;Dn;W>6Mmzu~!zLEx@(KVVdN4i5mJS?Y z4_b0GhVCFc^`Bm3uRHTC_UqsNr>$ADhCDH3n#|zcP6>!T32dKoi3^%t@a%WL#~%IY z$Jjz-`RHSgv9Em#r{<==+aLbtO6wy6&6id}4XF89?@&2#gXSl#rT7z&0-Si`YIbsW zT%NfUTAo^4XVE(7PyN-;v-bC!R@ob0O~BAt3Foc{y+@!;nb3G9bI4fFI zRBvdjB;A$3T_^lCM_De7RqZt|dAEJ=tk2u6w_I(1TXq?P*w@(!M0e-Xoi?{`p^c5u z?5uT_cwViMVfrz(MTvUhH`8=z8RMqH93vpLA7#Mn>eZ{g=62d?r`c_{-R6oT*H5Kdb zTEHM!_)dRho{$)k8v!jT!6Gtc(h??Aiu`WtK$&Fc3u?rGW35aWV+ zZ9Ze6M%S(PNJ%x=xM9+Ym>?o)HgnFVi zqJ=>6;}mLUGU%c?>fC3)##lPnmxS+7vknsnU;p+O*~?Ep&0hJ>XV~DKE0F|@VIm+> zg1iPtSxr~1t^8fdCkjEJs#!9ZOWUTwWwv;a9_EpRe|WTMhJ4(1`!zN&P_m^5Eywp!|m&ezaZo{U6wwZ+pAVrFn8GX#DQ#zu3_5kR5sW z;Z|five?WXQPyw(g6>=ygn*>h!QG9UHo*7)*?SK_$%-of|8(w`CPy+uW<(^22#R7r z5k*}@QCtvZRm{My;kS!n6|-O#b%j;dfCAzQA_@wtC_xd)N%9Oc!{nFxb^L$6r*8H1 zn_(jF&Fkh*z1KJ2x^+UGbLv#pskGLDocd|FbY~11Z@UCQ3<0ftATlvQPQ8X;Rr>XJD4WMh)ax z3U9`Y={CT~uixMBXZx4^_OV)b!Dax%Rrft$-BTyolDTt|} zB^CGnLK|+Jgwzb}3pBwpIW2ga;+S}Qj2x>EAk2xqSHYTHO@CbO@v2pp4qAl?+*w8y zYK5z;?~l3!nB zXP*9f6n=rVG{bzj_+BT8gQ(E4S*;6cy=1s#?>hbc_PV2AYwvjdarVYH9cR}rTWX*G z)R}hj|NDr|+H=0GDlv&&(P&8SzTsWbTK{3!M4~^_Hk+h;6c>J!*@ZijYn72Hw8D3@ zFP-%#d+iZZ>=`>PuzEkPxh@tF9b$;Mrh5qpro$+BvQj4q{YYEw)9N3^;2goY-f_-c z`}Z?GZvS!GX|!JYZTDSvwg-tq^X0FeZKr?o44b#(cD4+;)r=9lrcyZU?Y#-Sry|!F z!L3n{#omfNu<#DM9fP!Q(k#38;YaME-~QO%^Uoi&`P&?ZH-=H(YN--XSuX3GG^6I~ z5-i&V7yt)pIKGg#g>sW}Qc_>rhd=ybyWoNg?Ci78c15<$Hrv>>*IsM;?z?Z(ZK-G5 zy|tz?#^mgw3IUidwCI5L1l;K&L;gAS3Pc}0Do zRa=xhHi&&-PY@u(#(h}{&$Iy&C|S@>9C+2mJWuI|qN*|VA&ZOo-rE-1&huv3n_o}Z zt?~_~#m`gV!p%CYd9~6s_bF_W{MrXZLAXweMzrtMvUU_D&lqe^10u$XTRu$ws6%lMiWjUKUMT~vTgGVYPALLSeX?aQh1gM#FDF_tgg7~ z|Eyl9+qT%{WDv``bkQ<7?ZaIXv0%CE#* zp=j}Pv3Ijta>b1R6g%}mF*ThpV2pO7v^Y`*m-hoZG~z@x$7ICN8mm8Ud+c7duYF}d zpRnyqx9KG@x!@6wIFx-R7?o5t0`9_jJ8mOgUp>4#H)oQN8xvPkCX zyoJzyoAa$8zuH2%MMWhmUjs>mOt~o)L|OfCQhEx-)tdB-Qrx%RYq#S-->8a2*p?D< zEcm^Sv(GW8qF!Zw5Wbr#%^U@e4mY)vEfh}MP2jaa)I1biqG_OSVyy#jiNPdHi(>67 z`V!IF4VFjA(^*|dv1jCRrUD@+y#jOsoK1jL0Z01C~vfn!`xMO%kb?&JWnZ%(gMeF(+X})(a&mZ0MAI+s;@jsf_8^B zlutwvgfg&YbWwV&n)(Ry`xHc(TT*yZa9NC3J*VfJc;YOi7UKG0%XxfcjQ4G!+ys*< zcoc*>kIJldnHybyDyG2fFa%PeiyBd5AcE>fHqW36q`xx?5TcGpy9@uDj;Cl5SI^GpIRMeyVlMj0e#;xbL~7MPp| zc;4UFUI!hVRD4lTrm0%sY23@{0`(Z=0KO|f&DV4k`Exw)i0dSv1zk|cs;YHjo(gWC zj-^TX@NN!6yn(`VMW+ogwu38u!j)STfFgJ6aU}l}U5od|YcFODEUBZ`U(2Z|93JH0 z$tCfFs)=XFagMk(sskRf2MM6t!h>8vO#!jF-}i6mJ4!l9E=XzWSXwjL%jKz*JmJS% zvQe3phwsT>WtYzK3EEO@e8=rUzeg#kIQ~3JA*Bk#iHi=sI0i|1$Dd~xPqdHF#%un- zn#=KYV|xiNx$8u$JQj+(%AZ0 zV6Q`M0-cj%zqsZz$?1BtYrUbOI*gQ4$D&gMO()}wb&N2+*sFmGAX>E42at%|`g8)K z^4pwmwtm0$-H?a2k&ly%!zKU5n(xG;xL-Th%{vc@P46&NBFR!P%S;ihiWRCPm_dh+ z78GAN9sJH%Y+`N+Vx5m-zDc3h23O~yXz{@f?1N$pHJLDL1Vh%Vbr?W&&QO`Z+R?oOl(e+JE0U*aW@5m>W>ToTAe@0P0UZVg8$Uk$fnG z=&L07^%ss*Qn_8&2?2gNDF>IfB>7haH!tJ4AzLQl*|XQ=P<7q0Ss9g=)ro(}kQa!F?!Op!-a+7u&x<$Ckr$;6oSzCzCRt(3z33x4HI z=Kj1kW0XWDC5hkA$HU$)2FRNL2_HPA?V5df_sMKs9srlfD0=#*IhT-+Nrx(?^OX)- z?!{-;x8IaU6BL9jk{5*UAghv`y%3^9z>DkLQ7^8q1WC4fkC#$vs_U2_3sT~kGr*=g zDi~FtY1%n+s3pJQJU8dAO0E1nM4OJ2%mbXtNl)n0y0_+h!j+qpl~UaM$woGt^Xx{l za`HqvxB%vbKuA#x;yE$JxFRk$V|hiQ3cvd{$s1=|YuE;E%sEn2r z95PA*Y>AMQOw{%D=J+ITC|?RAFa@6*E}VpOaZ#YN3Lt*-a{JXM@y+DbC}jOq{Dbh1 zQEAqOS4w~q@O|NZ(=eg3ZY(+M$%8?81=yXp1+V{9HsRkleocp)ll*<3m`$GIUG*=p zS0AE(UZ*@1cthXW%nxj!Fv>}k^t?HVFbV&G2D%r1dQRV#>YZ@qwgH&7$}LAmAdg!j zP7;t-m(@w@LT(kea+##r@Cl4UnWK8l%h$@x&P<|{E;>O`c8QSChrOJeRRXV8yr{ zEZEE{$U`qac*r2TynJrqkn5&o?jH{&R=w494=E1KUGuAK_%!fx?)mB&UC?GMlV|D~ z)-k4(H2A7cT+_N_7^SJR;Bf;u73xj_FI2Lpl^ci=fs}kS5PLC;ej;Q;9R@-Z1g#QU zXe3VvArYFZ%@=jN$tiwq<1fS~H_j>>e?kl=iz|mP%d_@#4dI^AN|Geat;;eTy-c); z9ImB2vHvt#Q!sBCjGG7>*#|ZZ`_{KqvQ2=h^_7htt8(ivpC(LHZh)56YAdD*XO7iS z2j+5$QL2QE%GI^h67){9Gz(~O90XKt^c(AaAbDRXRhHwLK%6TaTElgse}rKjSlL-_ zc(^M@;1)63i1p|K%ZacV1>;f456Li1b&yL+;5Bej24qF(l(7ru<=s4;v#C3)gU#<;G z$nYt#ZB{xVNZ3O7fJj-jj056~A?kz`k}E0Q7=cOpowCl#Pl7@GLtAkpp|1Zl0l6gEA2Xstk6hFxsu)N^h(OEsr%1Z9ei{wLx#iwoI#kDA!K}dm?0@ z@M{u?RC-l@wE)BkRh~&9G&(Ny)E0M{ga zZR)2OUWiH2e~Vy9K`3sTPImElFv#K zNBxTAgB-5WMKp{#Q&m48{GDMMk$zZfO~pM*xkVu_1*e~q6rQ5*_x4g5G&A!loHAYX z#gMv-J(ei~FY)0r>M*B&LO$zMrN|^}o^j^TlN}`aBSWj_+layrlNfF(F+(1%$uohv zYf{eoSU|3V@bkW7@l*$aD2i+-2^@91XyxEyex@~gW)ji7$KCb*QM1cU*d^pQW}du_i5LN~q|R_dd>U^0|r zP*gW9aLeP4E71Dx%~($s;l~_9dYGN2Pa$@0QbyM88PprRQXj$ z%dGBQqc381ZjRml*WcLc#l-f!6uJ)#W5l4-h{|8hmw;WwmP@B|sI8W%M(x#b#VrGv zE?S`lMuC-yZP|y?zH`B#-M8dXyY7msFkXoA$Uq^`(vjp`FGF)fFwqjRRH4uQ_Q*f1 zkI{s)m;J+*rdL{TorPhmQ;=E2FikDxF~$#|$>nNiA3%-!00)3I7`BgDm9%>s*BUrkHSbW$Y{PBxqnc~KZt zR$F?c$CgwEZ5T!OFfkBU4zptRNH-Nn6=RqVYpen(Hl@yy1zrn8axI@DUwj!sp0Cnc zqhJDW+g_N)w%8rFVwwn^st9^}!YP z*zfB0P??V@%E88Q;km|k8Fiwq)RSghsiGi*|MG1GPwo*LJyMzzzukY`|=Pd3LxHA=Y& z{ZeRZwdp6tCRgOVdGqYJ00G=BLV^KlW>Ty{o z*4W}S9`a*z$|Igum&*v0XTTgjdb64R_geq5yd8bqOC2tHEt;;nEe5nrUxb9X>F9F0 z|F`z$18%nIv(m@-})ze-J!2V(Qyy=tOkjB z>Qq3J;$0nZuZ zL2U92M#L_s>qzt7a6vPAvO#~M7K6_5tPImp$}P6Yq~H{=I1V6Dg#P~iepX7J(rnqa zBDj-}#T>C?TCGwAKuxV4w9){rwgEb32bnKZ#vRFmRGL5-JUE@@!g2aIe_*&^(aj)>g=hc(KmbWZK~!r6r5=H| zml2|WMR}!79bAYaFR^+u?hab5*%9Wub!p%f@&O}J%FTIXeR;Owb(P(X7--#(YjqMU zo>%&ZSue3{!@%E&x)G3^RZ#=SwZ&!6X5rV-tnUOgh-^_tYY

    pNQ;V40ng6&VjAnlgdOVe*iLcxU8o8KvB$)RY9c zT5USlv3_dFsTHT|orD+%XagG{#BfL4Gg2lrnmck)Q883WwiE{e z!y72j7Tnq-k;I2(`~ZQ*00IYl{StTq$fML}yw#pO8(!Fg61C|o!h!nK;A0sn^3Ut% zUJBtxyv_}GLt^H0Duj7Tc5MpSy2Vo2J+Q6l8Q~OsST4@zVs7z)Gc?ao*In?fn^oIh zaR{JkhL*Sbk~7e(27NQQrt}kh;%A_AS_T@1ZQBC1B?WUtu;E|4thyce*e?J(hMTVG z0cUFMIPRFFl0#?*C%~45zJRIp}+d3k*ksN4ilCD--l0~|#D7BV^|xlj|YLNI4m)q((v zgWz=JoO@1VHUT<4(<6Rgl(*YQZY%+@0T5uRyh$?za?1yBGrITvjM zGyvxSj$(yT%FUnq|J^1qg6c;Ls+z~~s&E&oPdL)Hvr;U#pbU`eO87;{14I$FxbG}D zH(c5XvqRnrV7$??cj3_b%!adWue+36f-b-r>D#(r!vo1v?N$Dbl_n8%F3nt`i%iX#N?tJ48cf=MGZl5$)qKp zc&}~uiQ(lfAE6V{doMLIo`T#~^ZkDE`$ z3(2#7eKdlak51HqJcHi4P0AXJyrJ?05cH&ups>T|o8-0d#D?-{n|pvE9#v{>H^eY* zv7F7golbPY8t=5hJ`zo3a(Dtw-Rs*dUQ$b)*m^F$lu$7;aA-FBTTT9MzLR7YalpsM z+co;Ma%&QBJP#mbQ>rJ*D&ddF=Lv6xsuE9+3xM$;_v1!(Gj$7gK0&v0EAt{Y3iM31S86_86kJo-~qRxTA zWtxEV@<{;dAVM3DNAJU3f5BgjvaTaTy#Yq#(EwLKhF}TmK=&oY!}UayM})C&gA_@j zqBuOEOi?E#XTEFB6KuKZkioz~ytQN&^NNblZ?OpvhL45J$8GzxavL|)wq^{A!{AF;Skya{~SOhOUd`B3-TC?f23dEipvj zzg`gidDB-RR}PE>Ojw1N#;A~Ek&WP^c#?A}pSaVD-%`i`iN-X9f@|EOPbuU{f1Vc= z4bGJT#|~$U;2eu$j%ywuKrkx>2(=YYE6@c~ZFHu<07Qv#3~}3Aap7UVKjE8J0Gy72 zrlG#Z(goU77@jEp^-zTV053o<(NZ@QEk=CI^h%#osAn|_UCFQM9T#`H##`e|YklhJ zH0~IH=*~E7oTy@aO*vKU2pB>4SQM27wxInWzY&B0Yfy1r^U}haTiT0>TJs8wLl$kH zR8kjW?0rGdD$LC^oGQU>E5Ia72uE2Ye2#;_{_J(JgOW%jqH13&YEtPW=GGzLsA(1U z3i4ZJvT2QJ$CcVFtJeEmASm8zgBXAn!bEA_Swqq6eSt|Qx#!tdXb_APh?u+{<;3S9 zC3LK^*G~a`>(IBxu_D%Mf~{7gDDX~!eTJX&Gx<23UAwgvlp8Ee;L_v~2p$BuR62E= zwE``(k|Ft8O%M270q6~3t$mV86H65Lx&X;S@?+{I3Tp)Z9A+AgM$~HoSYys)3OQA0 zIuVl%pf8Za5DmijrMRzUi1f}#PAe7=6ojA%F6;O}Gyic!#e}!q;#|5o1wpV%qqm+% z_~Z5Q*7)&zW49NFX#Ny!6u0Q$6le1g%1hQP}2SOOrvO<6jRJiuyU$D431UD7Pth3EI+Qx(o2M#u1QJo-#JM_K?P=CLqXM9 zVIjpt>IOog%nIj3wnTxm)C_U{a(zpPd;?7h`Bo$RS3S=$bXElW6zdj<-b&+a;QBW< zcO&7XDRLTWE`S3aCA@S4x$Z`pc$xV|TtmmXKw~N?knxBJ%QYEritE|X^C2s3+cLHC zv-7M#p!`bmrl=L_Ei+bHs1v`{!$1i^EEwC+sswrfSQALYixa$U@)m%sk*mR!p^})snuxBRV3Fmw-6#1SUAvW>hG~IFsqH!Wvr1GaWG`#C3NP(IHw6$ zZV{nzFL)yp={QD7QN$D_J=c2QFSh*#=79O#)#%bdFyO92QHkHRG-i#c5t@}KCg2Pv zK*e#KA!eGE(v)jUF%MIi_)>78ia6`FE%cG5+RI264pgyOM93FZlzTEmAXHTrPgzDi7AB(N@GUP#dvC_hF4hT%F72Hb=RzoffGO2jPmu6{bStV#{ zEUalY1q5TCT>-)26DdP2Q6fn|aw@kO5>y<~MrD&?gScKVgYcpiqib038CvLS(NtyK z=bQ8|l#PE4l*^icV<(F0tQoXQcw$rpvi=*l6hYS2{1sJGf(qfx(! ziZX%`r*-8Nsv6tQlfs{g2jrPi5P^oCA7^4uxN?)CQWE1xk@*b!q@pMsRxT$oCmaXM zBJTZSr)>m-ODtfLf)YO=>**;<)KU2>R0?{Zh`2C9Sgi7pR-T1ZBmgw$UdPT9 z?JxG7wq9vOJ1U5x+W>zWLC~P3(w!^Xblh-?4Ja;P*-TqSOD2sgLzSviX$`0jkKvL^ zbz!~s?L?sBJ&}PA^Fx7^iT$SlpG0;X8C-x;Be*Z2-HblCI{ctkfFq12LPp768MjG_ z%1C?lnYwkay~+rk74>Hdb$2qXt{SX(rH>)_YPpn+0A7X%Sui>nHmVn5Yfo(iWGqs$ zcYaQeou4Vcj8Ne~GMtrmtd~_~U~U9>!B(%3*{X!6MXeXF|Geb&*KbVtMx{|wgc|P~ z<$@%Q97BRJ^oh&kB-5HjLc5?_U$2d<81P6xdMG=DLWh_vGGf_jy_TKSMKE$;UOjBp zr2~Y@!pI>qP6~It>b0yGC_e63Xba^gg(k%oTWMkf2|}$Sr=@nTz4luB=tnV7-tJKwXv z{^cfN$4>sY(`=7t&9{N!5zBWKz0bxWY;Q0}lYp|S{%T>^A=U&OVcooMd~>DUdCP+= zFEnUfMMOu97>}5?bBkGf$2G!|4R~__h`}>VI*#3L%?r@JF7<0I1GYCs5M7`&gpj`mmgmOfR$S%#* z5NN|$+kQs3?X}%xd)9W_*lyEvw)2kNHhbHh?9xl`v_(s4-Sq@m(;8JG*R$}4J6d^( z){e;bl8J!_DV+M4BE41AJOZ(ZmHy%Pz1P0`m9N-d`|oFa?YEEp;5*;36JB>5Rz98z zDMMhCa&yB+LQeU#c@jUW+<~8IrQl(ZQeb&NyY{AE*(o1+8;!Ic+xr>&**y>5V(&lW z1Y5j<<%L)#tENuJH5Iq5AQk4-G7||ziokH}fX(9xb8Xqmm3GhL58Hp7`vv>upMQ_> z+2ux813pcaD%Lfn*M9JuOYBqMILmh1ZC88NUi0m&?|jwH{NC5hW>03p4P2Vk?`8{D zJU-58!dq@)6eaCr%T2Dx`|i8X-v0Kt+X*L}V7J_Ii{FdS#^)oW#l2_LjvJ>Vl>&=4 zMM iwHJwTW|%pE3HumlI%PG`S#9}Kf;2NE3GTb;1Y%qmx=5>Op`yweOHWZoBdO* zOxPwcC#0k_fu^b{s?XkHqrOGaa;`oWnsD5tfKwoCxdp!4L!E=9z^Uf zW7ILAhz>}h44EQ&V*t@FAv=iwh|%^y0ARQv3>)WT6|g~zrVmN~m+Sv*m;T~nyW)x~ zZLdA|V$B7!x4!vAJ7oU;_NObawwJ#CwYESDsR~MG8c`qN$}i!Z_JDJ(QUs-@AjDyC zSQQV147S1HrS`RR|J7b~^qcIIfBp}vmFsr=v5(saPCwaxdhrkJy(fPR@C0L9v?WGC z6?KdZD)0N`t{YdPG2XN~BOSB3g8lH~AK5jxU1NV+algIn@T06cIH;jffj4`5Yys=$ zeg6FK*hk-bioNCK$GD&NIs5EqCx7ZA_M9VLWQWe)&FVw+KPJY3??;tn>`&SX+X7ev zN7U?p!yDdUr<`(%E4QUfm%0U^`})NsW^*KY1&LSNaPJly)mD34PL|eS0ho!7)tVN^ ztfA~`-5jfbVhV1^f-PTKvBA~6!|-u=yIFP6-}6zE2$g_^HMnR8s6`r;NN!WfJwJyw z>XT8bu@2K@gu%DI^(~t=b+UaC#TFKKO;?>L) z8!GqN>Y2>dybzfw_ zVcW4cg>*2XbKpd6RW~u-xUr1-S{f`_fj$;dZ~?-97HdKF(yfrv03yK%gZLl}9`M0d z+PBng$6=doqO4i75AZHv?YL57iM{Xzhuex}bzAf>Zn}Z#cF1#%uv_o`3)4LUUE2&C zFOKNt{KY2hx$GC&(f2PpSLh@8=Qo{TKl#oN?Wn_#uz{7UtjOZ8<&g@F4sg)hW&d~2 z&6e#h+Kcx(z$y^iwnV*kg~i zXFl_p_Re>{(-tmdy)7(=3W8C44Kj)6QPIWycp~aa?YjJ&wuIR_T!6wVW++Az4o#9eZcO%;g2?l9{C(2?6OoC$vGJ> zs$3nHywF(qxqizOWxRB;ei}SbSYhc&Q|zZdsoCW2UVHOv5DY7qu!bBk=NHlnV4kD; z<{3|@8FI}gn~2^?N;yxvij8>&wz$0I2mACpL>;+C2sD5q-(HUnQ$Dz?@>lYiVe*jr6B& z605uya?FFL5Qo>(8PcOO&fQybZWKY_SW$&z{79x|J*(%5w{>Og% z>#M*ALa~3)-tmf8+u3LQKij6*Z5g@nlDuNY+wh0m>#oWis8g|O?s3!rS4Exx}KW6to^st@zsWWZ<-t+DB(@(QAKmU1~j0;P&)w6<8>j@^vBEL2R z^aPJW_7h_S?^~?RU!B*U$L~3&P%qp|ac_UwyCr{<_ z2{yHK+Y3gO#($zmgqLH{NQ1%D!uG*nG%7TgZG^!1_%5uSOg?9WGkfg1m5*3egMpQ)<4-$|$2qO(+!*H%tuK24DMgh>`(JwLrS{w3 z{?>l|>tEaI)vK+$yBnm*V~>DDp(%;6WHAK`$}f#N4p-W2E3VN*5zO*Nn&sbhh;1(G zuFm+`=kNatd&$ACa6zBxuG;I4z0%(Pfq%BE{_rz9?j`TG3KkQdZ!+PcWI3>04P#YN;uys5*?aQltt+sTf3=eey#ews(BseYT3{rttgGFOIZ#p7d5b>NRh$ zdC%I14(K2VlB|?nM#p{1GWF=v}y8C_FiP}o$PIeVs${8eR0$T>RW2|N=mg>hFl zl+Us63MiCSl~`Au=D-IIZ_(5p?*dZmZ>~UfZTSQ0~t!Z zx7~a1t(JP3o@JOV15r}ytE*{_6xOdy{5DGh%PUJ#IXLrwtpqLKye4jT^%kvrI<5<> zyu0w_-^bL48TjuHJp2VVedbKN>5f}%hyC|O@ym4;`fR+ywHd7ID~?xQz^>CA8-doj zVYy-%Br|i!Zd)?l&i|js>~o*k)%r5b0a9zO7aov@y48o$3UKT3`aZg~uZ#7Pa>?XW zqr_XB(0DQ)mXCe&Teiczo$bh1zQUH2hitz?4z{0O`b&G>z6aT7|MQdfUl)Ae1)x@o z)@Vt!>IJ?AG$3EwHc3WF=C~q|$fv9s>T4PMdvfX!`|Rl#*}_Hl+AyJZW^B8I{pQ-A z*_BIvY&}y3t-hMMUrglp2s9CS?Eq=0q7E0fi6>WP!0MV9B_sn)wt1>MW5c*t6+;qB zh98z$31!dWv`N!k;b}yq40kEF+Te(l9$jqv9eAJ>XxODRvs;8#Ui#KJ)4H`v1<1DY zR?H$HrgY+oC)$lS-smm3Yp%J*uDtR}```yZXw#-m^A_Fl#~<$_mDHk((*`<1!BJ^t z#fX}+<~@P|O?SislO0E_cT&pwrdF+cGIN9&DX7tr72F|UD5^hpzdd6K} z9fE^ac_Wv4nto&zJAR!{5uyf)#< ziv<9#u(cO3A}X3rq}9}&niL$}BXwNP#i6oIkr?8b0Rs#hpyf_$?OD4%!yczQ>E3L= zH85Now9@J*!X+bvHfQ_oVFV^}FV$53gx>?>`1yEk+CsUB;QFaGw(G9D+8%rCVSDbm zC-WtCvz>R|*{|=j&ptL~$`mI;d|vx#O^p|V#w1^Aa;U~I3>LduVT}}n1`164T)M>m z`zPPCM;AS8h3=H~Od7EtUhs8$WZ?shzIvHe7+gu!@qs8-ogG?jk__TJuU6W(NAik6 zQJgNSBqTS~VB|2Li9QM{%^Tl%oc-ebAKB%XTxthTnqhMZS#kD9K4J5B-rZiwWZx7D zL3v2(Yu8E1Nkf_Gm7o>AiixhPFj$z{a`#^Lt4o&J`%l;wD}R+$3Ix_wY$DOI(_mD2 zlX7cLVn+5BG_KHRh{&^79`jne5##iG-#^c$c2BaIeGHn-pAWa^6N}^jJTZ%HY(jjr2+B5lRmw zci>L*ZI@Yd?Q56+*cQy7)wbJQ`^sfMq!u*nkOL030R>pbYZJbukLqZA(}cSvLla-H z24)XFZFSfNx75(kkh>=3o>aeFWU95_i`T~&U0a^J*hS<_)o@KlnpXMQAN`CC4i4C!^LMfHF8YaOn7CfU zDpZRvsbZT`gb9Dv$wR?4PNE=^5dyzFrD5Oxk9%#8xj8%PrJS#R)EZq(&}Zm>Mw454 zek;`VF~dz%;380tlPuD27~#j@I9pP$*x@gJp`H1Suh}=hbhe#y*4YS0tbQgjfA-5~ z*Xvybh# z%QNjQ$GwYaEj^a$8f3)>Mi>%LHoVnd^;U2QF7crsi;1P|=rWNPCdWLtZ=ZLLo%g^E zcH5+WD=b-ISHJscJABte>|1a97&DvbR~x9>x$pT;JMG(_vDdxlB#$mPC0n$wpZamz zw=mOI;I6DrF4$yQKl%=z7;h|0xN>V{XdQvQf`SGvW-4EVmrID5NzhqHryIXhf9P3}kFkC&G zUQOj#1+x)gSAA|tXKi4P@n(_Dz+_}t2>@P`p{gkhIjp}5J{%1w(LBaSs)P2@lip$n zzx-9U@b-HwO$&DZ^AEHE@N@UbkQIqwA~%*&z*{)(gl*CYp~c3K>5<7;t1Ixxr0w|Q zwzX|$5GyrxJBp1p5h{BC+d}BN%w3b?Uem`Ad63bSu|~fsKBU^`L+t5lvO!!8H3l1; zc+yGsYN89>bH|-d`+4)`*|t0Gz?`>1A8}X5(8+7Gum)(L7}fZ5V+h`9*A(SU+=qF6 zxSuO^+Zp&yd;e#c`_*mTUHjOsd+%VY`xjY_d5zszIvOCQR?LLE%GN?|tY6+(fDR#v zz&Z-&Bhd8auQdbqQI6z_&&BeW&0 zp_3xdz}dtgqz|gMZVPc$6=%$_XT9Jse^%c0g|x_1%#Bj}MHN83I&yaje&M0R&>(2N z9;+KXpPFj(cX}Plnh}(Y`zk$N=GtWFtl>n8>hs)mK{OGMI)un6 z;M;S~PPXTyZGcad=U0&GfPy1W%7|MFf$DI4`~XIE~EU?34z12Enun|c!s`dxzXN-l2w3+Y@(d(hX(`*Mh#$Sj4Td4X$YVG zqWf#hwswH7iE#=onWSC`iqWD;5H2w_o+mh;l}tPj z?&s)l_Dq$bl%}6;9r+c-iGQ>mHc^3TA5&l=5CVeY^>$>GSl)H^a7~E9Adx4+1|AB} zappB7VWi})8%TaEJ_%eGG2)}kl#laDV3>8jIl&iHR=FgdPV8gZ1#3KZg_o4mF%xg- z-43O-NF^|uG+vuLoQvEsiH154w2W8Ve4oH5NF#VHAbH_+UB5W0*)Jx5$7gllkNrR* zld}#&M37Z$=qV-V7)iizPS>#mujdkcwGoVtf0eI=2~}^K*L6<-V4Qe;)_Kcam&cKb zb&F?1o!9XidENR>pmZV|^v*b?wo`6VX~q58aIf$B+RwGud9;Mw=JBFMh7TvB&O*^g zT?!}7OB}4psl6bLrSY=HO3c1l_V~bB`zN~Jk+gQ&1mH%&)Oyl-%%c%aYoVllPn$5V z0c6e5#*5whZ1dO;nr9o&qz#^k{MkysRxnzRRor%ju34s0K&+>}wm!2q{@1=2GhX|8 z^4@yBuy(Fb>Rb)#r_<9Icp3vwW8i5FJdJ^;6b9O^Rbbp0s=$HJ;HilZT}y5xyH2LI!`A{^1Z^~Tx8Nb-qeJ!% zA7u?7LOBka$H`ILbqGjXUd#YE;5HBZC}Knz>rUsV1U>*61<$CH0Ocs<7W=c-x7RE2 zUU%{cg40?)mEY^FE;=yDSprznO`W_Vfc0E*`jpxwun8s*AKiVC=Ap9dnZN@Ywdwfk zARIW^D8KfSPcEY(9HO_U2-h0!8>QUjL)MUcbppqs_j*s)qu|$Z^fiY}JAW(KG)N=D zwFX`g1 zQ}9qx1hUf|_?dg)C{P8`HDw^sb>Jt>o$ho*QrR6Q0Eqk?_&A)$<4~`;=0qPG(8ii$ z5)!OcIPozsilh!JbW8Zx;pL*HqDUnAzL|+0UMs5(K6P9R9_Ay6mf;6IrRzD@FTgK+ zh|m3oE2TDS6%-^Rx-|PvwP=orVm}PAMRF2A-~T*$Bk0*G2$`sV77U zsc~IG!-azH$GpJflcD5Lf?lS?Gj)U$$R(JVP)HpubDKyv#BgObA)aN3zT-v5<5Q%G z$kh#1;7-?=Ur44x4!ILeiX!k_EoS7KTMt5Q(;8&YgeYBn82>%j4v3MLF|l^6oa zTao%1MsPabiEo)oBg>q|AcTACD7V;ZlfaL2%lu_FPesKBQ~^BbT_ebABg3o>f)=M3 zi=QTxP>K*)=~@oNF<*ygebOp>z12bd5eybsqQbNjR@tHKHTEnkRAaq7A`ax3iGflBJc_)YVFBC%5!+YhQFsJ1P7h8v6{5bLjty_6i2$h8=3 z7e-EnkWjuxB1&LvY5fGn9^*@@fwDJTr=iHQtZ1L3o{Cf%v{`|m0C_^a6^KM%!Jw%U zB1>sJC^E*NZB}+*0UQv<59K9cUda*X2OiHgreVlvJwamFRu$8aWof+CCLB2SHtRbR z`LIh{r?uwG!pB-m52LKCwJqH_P3g3>hGM|DaRZgX$tdOK%{(fF_DZqkCM6fwP>c8c zfv3bq&D#Ko<{JvWG@(PXnHmuWn0N|PPF?W3FVL_kCd+=1ac)TdRARX)mB*# z{M$=R)8#1ep)`w5Lhn36K*5hioldITLEx$GQhu#mjzY_%CP7aG9|EpS-L0^g=18$d z>y!!QM90|#%#Ffyr<};aM)*g|678sv>S3}x>!*!m@ieJbj>kznjnSUr=N5qj)@j%X z@`F|6EZ0M0L(}A0*jU~Pr3Ny)o|Z>~O03EA@WCkM=1=KC34uh(iQ#44_4oI)%Iwf6 z7iE0Dv-g5ERP1tjg%w#jw_G2#6)Z`zw7SH~ELNpu)m;D(>r%o{f-j^k5!mtFvBcWO z%MpCkL~dt=fs*1=qP){6YE}TbKt{ilvn7>+4VDq`BddTrX9Zd`?&ER1jAc0|I4|JQ zs^EqTHZ@YR%3@lv`B}ztdKi8Pf-YPe1inp`32u!+)5u}bIBKEUc#v(p(4qQE-WddZ zb&$2VSVwGVc)4Y(i?Di^*>GjGt;Ap@K$J~OO^3JXW9N<5N%iAZw6V%JC^vG0E)|q> zPHxs3G)37pP-^{nT$a}daJ91_EUh{t~i6l4r@3t4Tvj6Mzk>J8S2 zd{pnUm4h`K=s}@Z`0-aoc4ukTWNEcGv}_Id;a>u8j7q!lGH%|7)-9K4t?>XV`v{SJ za>(IsO!HNx$8Abuo@cMV#0o8tG<-lC)oJ~N$}JW~3Qp1a@4N3l``-7yM;ySptV1QY z)w%_U?{wbYDV->DgdU-TZvOiN)<2N3WmvdnR-09&S06>F84?6o#-L!V$vUpMYbk6U zw^SN8Ynrv>QYgB?)&2Isg7fXl&;Arko={+Q1xONuj9ndQ`TUrGxg{JZBSsY^PyEBb z-ni11EZM=P&cymd;bpK0(;3#M%9c<7xTfigtZOxffQE$jn^*KLDdWbzu&HlJ|94qWEk{cZ!$opS2<#v@H-aKZ_`Zyj6`i__VAkOuYya~W$s zPhi)dT>5Jpq(Z#xRWGy0)d%IF&xwYL8z%+B1gWn&vMwRo78ha;%A18fa`k@NYXmWd z0Wz6h8+h1b+viAqWGw6E{tX{?xwwTr2$gGJEv0njO8%tE@V} zvLy(K9JnacI@Lgt=a zPrhta0_E5OJE671F@UvQWtHsjTy>kh>X=<^mz{{jKd9xw@Ia(lI}$!lX%%p_T(Q=K zvra;R>R_}=>KNV`7EH}eo?`VYi|&rr-MW^8_t>TE1sw0JqueCW)W;TEXWI9%#+DWm z)e6{8W7@5~{FFLnVvltFYJz0|~z_t)vZ(;FHc8PYAJPwdJsIi`8yc z5@T=)VZevzS1R?)0Ny^EHhGZ?`YtSAoY8^QVw9&yQYBFXJcl5d)IDgE7)jRM(_^da zEVF}UU&OVOq2mpTqu>~fffX3t^Bipf7RCd4n_3PDu!eQfYRfRFB*Wm5nSH}HXA*sG zvgQeLD`k+yy`x?$@%LD(xGg}~7QIr&+oBaV2h18ElR)1*fL}DNpOHo5f)jgS;vly|gC8x!+AhCF&Sl2Q{lFdr%C^spySfS%+Nu8_3rhU8@UVjQ~1ruNh?mD9* z<=d^6iQ-P@Yo2>W`lB>-KI3jlby_AupLbe^mb5!2f=I+?OKX;9NjJQiKl^CwVldQgI1zj&;XlJQu|?J1Q6 zW&}yFArx|qt`fxRYtujyDLe^2$vy@oN%DCGi55af;6tFn05u9-qLq?qFz$#2HM4>- zHDCo=aB2D%8CHUYCv_({#Rp>rT}1L&<+o)8(-40tFghcs0BK{LRO@C?g+|391(*VX zcS7|==d%5_>@#Bp5TvPB&4+9PQosX-yZR!Q%^*KC0cC_BY zVsFN4USc+~Kj=bc&_n}8tp#!6WBOi-z?Y>bp<657)8|x2@o9R5l4`Fjh0XZh#vUCH zg}KRP1TM^PekgJlL(b8+R%dWcT5BsYtw-ZTQ}Wdy+nk+sd1C;z+kIr0*1>Fy;AhBn zQ~o?HHMK?qBsKN1Vbll@BC~i|HMp5#t4$Yltd^US&xJ`CqgCbH#Hr0nq zmvK|APL~-n4Qtd_;F@E=3C|%XIB->9o!g87vXKVl~I$a zR2O_a0GxED(1)C%Um0IC=Ygk%gHB1JtCCc6QF2PeWxYTVImLv1PgtpWra|aQ{WRcj zlyYlrl|>h%UTjrptX*Grq3l;>Ed zO)Z93eANTN>F`B(1C1RI5(pGfkBEo-WULE3LHR|vyiy2$(b;JoaN>Az*b^bh3xWD$ zFAT>O1zv8!0M`mW!6YT!3BRt|~j-8c*t?qD& zu49=3md7&3z*cI_(kUg0ltsK<(`aIrLl!R73hYfyp(AWs9*a-1@ zEZ7Abbk;MYl$#!mNNH7Qt%Y9S_10%P>e#U%j07a?PU%0P+HfM}P3A6*O z0%229EVn}>c)8%$^fH+^{hP<}nl3zbl3m z@z^78Q_ASi1Y!mrrWh)T<0YUdDYkfA7x=9~#D+m?o4XFB!{xHsj{@I@JAygzvKLt( zf`n1Zt!-eLsDdQ?>AU3E@z`>#!+1JT#oW^GiVd8Y-@1DlM(-?Rf15ab%X$*8Y z1}41aCO4?Nf8-=xE5+;DD@B)Sd~EIe@p}91lV%Vw%7f7K3IJCtOu;VUnY93j*TZGG z%91<+TGo1c;!Yh(Ho?smY{VxZ>$(LL9K4t8!U30rCx><2H`@A&^EA+il95Eh&Du$9 z-HM+kKR4e>;MdDBqqQ@cpz}~~RelNvp}csam&y~%nlM6yGxQ6sxve7yjraXM&f}{S z1lFj}dfkkLk9XES*Y(yy2SDP}&AlFp^+LeWh%UU#xvnqP5B$gyFgsJXHPo(i(o5Xt>t?zL$`V?~}T*c74&! z$p8MFGSP+PdVJUO=A`+IUugeL0Bem!|F6gwzIuOFUSxY{n;rc7yN;sC_xA_g$Swe`@-ABpu{ zxZr7jRQc&BzSsJ#(O(&tGyiP-rk5ptrlm}}iOu&Uu(#PCcp0X17E{vF|ys!UK)Jc$5rOTFM)yQd~kf&c|R(C}r^Un5n^ zEWskYh=2-eoMq}o;AtTvOuf;$AM3I3s2_+&+9f#%lv8EWv_b8G#NpB;iWE^Xs+vVx zWf(dEj5Xsz&uQLO1OE1B9V;H@YV~M}jw4cdz9BcWR8gOZXbp{v};KEz-%r}vo%A|&QmO8De2+-YO z0v}te%1VsSktjq4{R7WX<<&}RM0<+A_uj#3Z^6AH!#KOU+^ zET@Qzf_BCsN43|k*-a7`gxQXcp#z$xZZC5rRY!h9b1#4EuDKfBd$ zMy0EL{HYKP=8F*z1$ercaW$2I&C@JXoXlj*>6V{7)ogmN<-4}G^bo5Rl>1ngM{)3Y z&)?nZU_7Z0MqbpKTD3CKUu3+Dux?ywh-fh4XOtR?r8eO6G?D6SS`?KC?uy>7pMdtY z1SJb#Z{a`!vz?L`2LfrYMM4`yW6!662Mwmb;nZqkRxX9+!`59)6S_}=ylQ1FBFb6> z85W$(u&$h*)w+Qa=OVc8+X~PG@hTf-uc4I)R^*Y1WQdo`B^ze`YpIL5umvqArAg%I zbK(|D$d_0jvdnzK>@?<|QGth9QDlf;4H;Hvg%#y7$osxVWb;!TY$e4eRI8r3OHs5$ zfziAm1RwOG3<}RjNwH6)#JNTk{t^KIh6&eKZIpnsVS`#%EyV)P$l@ACX{pXUG*%X= z5f!IigAZWdQmT(tH;DY?v<@Flz*P~(ElqgKt!e23coxAf<#o#~x7hHo)@Z^45cWyB zx9hIETArAX@w(pagcK{StQl%B!ax-{@Nk9-K)@iI-d9BYo85TbUz|}2lX`83J$8q= zU@CA>(Yu#XDgqnaVoz{q5q z(Ur07cUo*L*Myar)NujZK}r0o$Tl*&>d90ajO*x-G=g7-oM&*D$eu;LsfEC*s&oRt?5a9wyH8VrU`xqf3UP7F)_(m$^(45OxubCmss)7aS)6X85>DCfVn}-tIi%fjY#}cQB>63 z1*>e&9z9P)6lYfWmGajxN=vlVGug@Z*vdiMrk9wOYO(UJm|FG0L)wAQtwH4pS8iek zB?$#7u4T)X*-=Lw_LP97UArjce3+-ejy8HDyoF6DHw=%F!VfRmew|s z=-V1h!iP33sYn7$1y#ZHaz&W?K4GAvuxRU@xN=95upq{x%>cap7IywYBH z=%Mz(vp#P<+sr23CjtRn`HI;>m>&Z#d!aCF+6R7#Kk;sehQXdDW`h<@5QzR}JYb^ z)|Qi^(@!lqy`y*AJ$avk7*>SkU#<&RRGds=6@vT!euo|Znq%yg_r2Fnzwn11TIQie zi)@HiPNqN*Py~U}+Mu=_z7MYt#mF0TY>C^%XUfPWVI~i zBKLTO#N@Pkk@`ri&Yra0eCKuc`LjM@r@ZYgcI;6n*x*pwKKsqHx%M&p`se)j}@3{1^7yTduK7@A!kg@SqprVUgj zuggI9Gd}tWn?7}#ef2*-XVbd-?5uOYX&?RcC++87{I*SHb@UQ+XT9K%uV7dH@QyyU zwGyA?dwdb4EY~3=;7pYkFBCxyXKV!|itQbvN7VU-@EWFwfAB){y53 z*Q6DScIoBU*iV1{H~Yi?U2n7J?TAYY<))N1EJdd^=H!};icRmda|+fGC8V6{J5y<^TohCF&^-CTzno%k zJ?SJn>!TmGVU}=Mj5So8J>4oSy)(kI3ViAj+}Z0`?|bJp`?gK+ugId-mpYuYz?-E4 zDZp(u`w#2N|B;UMyAkSlvyM>KK7aPjw&Ou*+x_rzg&*PX6}~*`4>@V}t5yT2=Wce)D?e<@AKt+-gWK6@Z$E=R^<{R;%~#S7 zr~XD(ET|CtmQ^<*iN(`xl@b~_Nd#?TU8>&Bm^RH0Irw?D&+hwKKdUd)Sv=E2ongQg zIllkidu+kI57>K-J<+xS#_VG&?ca`ltM%fJ{Qd8KN4>x}2iUrdb(p=8*T4)g%QvbzuI`@=LJrWJ@;o?>nQbuq|0rX&P8> zeo++&i&cWGRwgq2XatxF%d}Md-w1CMhX( z522;?SS;fIBvrA0SmX0P4zz~Ahp2fvJW7+fPCABJOT%Klqu%y-uv#d z-tI2?oft6nc)tb&vm$!K`dB~kfrlRS7GRBxC4kjxml2o-AHr*(`PQLvP^7|skf-6R zlmb_C7THr}$slYmd*!R1Z`tj4vcKQ^xGh@tfHC6DQU#XPL0&gBGPE>e&p&9sJ^$!= zcHTFBZ-2bwcF!uy>Lc>ns6Vd?kZk$V)=3kt+#;A!L1`pp4-9Y;Eg3D6x?;r&JMzdQ z?WxEZ&GUQ-eQZeiGf@h!z4K;G99!C`z|W@t$+P1eQYE4=}&&buDksv ztE?QdA=cb_!-;RQ_k8$6Hq1ym79R7;FQ#|KSEUm_@>2zDm!vYeKv3C8Qow@UuTxle zOUOk*-&+NjRH}fI@9nj3{@?+7Xs*$n z@g*pNE(S=sGzUh69qudnImI9C0;7oRDp$0mT&~cY!GIZDd-R#7G1jZlSACR|wwq%QEn5Pd^iax}ksQ+>fQL!$!I<4@h!DbE zm@wFj<3Irn638RPhK2*SGVl&r7lUU~r6ss2@vw1igc{z+$q)rEtdBVO_)?Y~VpQnr z$KeAlwS&=y*T!44-lwY8sXj=>_N3$SOB1f#V#`Y{GPxk<&Yf#lUwt)%4z0L*?zzWa z|N7V4i6@?Dzxc&3+#RXs)Vk9%v9E6YQ1s+;cFPa85$iY?>yV2Yakl*N$8BI>l|ARs zL+sQq{HIM~?$`Y{-wDje*i@{(cbxhzTT*2X3BGSt0?82PM>Z0K?Ubb0lzcB3bsTnp ztAguSg|!g|Hq8pG4E^ithwP@i9=A)*+u0hA4zmtdFXIaa!drq-`NT|;yxMsuFp&#B z`mu!7Itzt$-Jkz#k1bweU-;&??D1uf+Xer9zOOy?&|UY~F3;ZI8n`ag&{qk07ZMri z5HaJpi^gAacS3hwG8GO%C52RHhvTa1j-@)mWX$R(H4)JH8FrT#J* zsB*PS8Mty*e<}5}gnP19K>5+lP{)v~;(pF*@xWrnIp-Yv z{qKKo4?XmdD>U`ZNvTD}sC`?fgpL{*!W0nZwcuw*@JZmOm=HNgc?n9nJtP7hT5Z}HY{9HwQpQkb#ssrWd{z~``lwYJ zMf=Y$EU_28Y`X2S+ajwM`Ykhkz_P;{J;#5``{dLSDT*oaWC5YjDA(*?-+h`L{^FP0 zTTgkXo%kPT*st!o!}fXJA@-J|UTq_fEwLhsO_g6-QNlvqLI?Z^D;Bv zXL;PsHM}w-YMnw)vatNZWsDfz&W3xL|Ht@x!~sf!-l#Cdpq-#k%Cd$gsnisvGIZG# z=v`;TR|fhOR<8tx3Zp}5r==!?o^IM}C^YaeWW8L|YJ#g}1rW4A^L8VM&4YMh%=Z(n z+#*C$RaL0Lbt z@G&12T*Km9j%Bp%wsT<;2HC({^3Cf#S&MR71Pd`@u6_10bd|LCWAU#*O@5MHdZdg1 z%=B(!zrDO>%N{D(KOaBGDg(HhGfZZu&!$1&gp%I#7yPUU;my{{3G+Y*Txtv5Ioqp0)S05%|E#%MP1f z*D?7x&v-8Fu~7>n)HT5id`Af-etSm97&eYNOUf#d4V`9l%}2(y26hXqk&c=v`w3Z3RyhT;WQtLKllS zX0{TDZK2!*aBQ{RefQn2(56h8V$-J+!2+dr;e{94j2Sa*haGnCQIv6{q~41PZtJnb z7JSKxsj7^>9>VLFrk%eUhClGIgKgQW6?WN0|7*|4_1Ip_{-2B=`|`^#xBU-$9u^;h zkN4FFqYn6B@v72!c3V)G@q0y)c5b*AO!?qEf_O0qpu zt#^kVtvG2iEq6^7P+x1sdZsYFXXcJJb^11pYVWd{Gq<(wSvxY&U$}Pr@r-Md*J?m*v>Pj+qHlBD+8=n z+vm>s2*ZpqnI!n66a}6#6X(g29Dn}UEQEUf6sT*JOQ)*9zQ_HNVF201KYGY+y<@3; z`eO%JW5qp|$rF(VomL}6SEYB*h-MUChuDM?wCYlAk0NHd@Q;^*xB|ME6_Wbvc6 z=We^&B3g2nUwDaq<_n*-U3S~W9v@*cEXZ+Cwc$j<)a3x@&OdDgywsRPo@lCQBWke( zMNEraW^1(>sJ$PBi>UU}jOM7iR zi)o!Ef)PHZtZ9srYi|0Z-Tk{q?UuXlv;`}d+UG7f$95$G%aPAG*m?%dCQa_OkG%O5 z`|9_;ZMQspugzgp@P(KB)Sma8=h|WWJ=@Al`mKnsQoUB{t`My~X|Hc?r6idAgU~^8 z*l8ZzyN?Af#JiYu;gr8Q^H9Q)hf{$@MwNHZTr7AJIzBpuOe^MX>=MB+EPvj!1bR-oLnSo~RDbQgwdnoBzgKZMNq z@`p-4Cdtc5(Y3G9U$G3=)%#D|)#mN6$f|=xYMBnx4>OudJu-~6!ekti?{4i(BrD`v z)I{t;zF>pUS99EUp1-$!{j4wAO}HT?OwPUNXZEaTABd~6gk`H?qwTiCo_5=9x6*3a#Tw7V1Hp5p z6$5t6i;uG0)IPiLkH4}<7d~PqAOALcjSp${5>gi+HSk`PRs1v$IJU8mtkR^>t8iw zH{9?Sn?m%KHyr(PyX*ElZCP)|UUTGgp*0c@`{U#muc!}>9>*FN5)PJXet(Q<7d3NgKv&mQY|4N_pDAsfwTOm>ixOl9|lbd-v_TzVGkUzi!{|>6yMgbG!TA zajN_N|Mjnb{j2IMbxy6P0JY8#R}pI$lIo$yCdGl)@PxRKW-mFXA!U`I*W5RQYLJ6@ zrE%Dm6J9%YL&frhY_`zIeW&_PqTB+|5YUz6trX=+&wpjIX&j(8Z^|kD9-s? zkyaVdbysdtNkt{6xwomQuoPU%O#9w+kMSbSW3MfKxA=XG*9&)%Sp6>8ft6KKOfU|C zS^Q-!D`vOHUl77kRVJ94QpFbg^Wk>;oF7@m9mS zLsdN%TI@wO!TJ(x;%K-_N+T`}cSs}7bnhW2GCCu2^;MoKH$M?qO1jE|k$Pj!suMHf zUMn!HC50!e9NNU2*08!1nFx$>6CVfom2wXO>k3?rQW-9fi!Fea;?E+?>omA?*j~(( zWmb+EIe59sp40{kFOLFCF|1b`owNqMxGEbr1z9Q0>cQEtl-?Iel2!&YS6-)){9*2r zm}`UvCxKTo%FTmDn0&4gn5Ed7ngW7vr$_ftwq2Bqxm1iPr=W9&R%(%Qil?)f7pu%n z*c{U-8k$x;XrKf+IDp|u{b<5f*+xL)Mm;^ze6`)WE4Re}YIw4J9!>k%qAkhxxKWwK zd;7ay^G9KzyAJwL|I_D`2+(A#Y|N>Zl*4j-jg@p|DpE$PsaP^k$4=GXzmv%>={NQI zlF^YhVUlj(Q?NTj<4M8jMNBWHr#S-WgejXX=d3t4%)TI2U8Se3glQ(P+`uY1xKSfjm$t zmUUiAE@5v}D4(t>V}s4<0+v z%ji6t(5%2_SM^HdWQjzs2w)jnCz{KUAS-g$A6`U2fZaJlu=CTqUUDjp%Bs5`RRgRV z!gD1>V@=@=dM#Qw6`_&oDUC^08G9CQ``5lGN^v5L!S4Y*aB;jtD>WudHHPBwH<>RK zSWOK@s@^hRs=aO6gfIAgR0cR*fkAgsJdfaaRfa+ka&pkSPQz8bANAO@DADn$^og*R zSWtb8d1~XeoaV;Fv05zT1tyMoIusOqNU6!J77(W}?5-^=Ica^tquuE)pae6jnxXfi z(_6|BEC8rrZZQz4td?7M?P-=NiGtEEea798=g9pH2@gy!iVgs zrd+@!Jf481TS%oXtsVe4C^u+9v0MU)4oT5na7r1V>AcaRI0A$?g2Kb~C~pMIBj_dU z?m+Xs;*+Kx-L*V1V0G`Fo#4W0-ZZ)hyUOPdIya$ReDtP_loqgsMjIZ76U-!^=;nA6 zk2u}A5vXW#Nwn~=3fFa4Zr)7=;#esh=ta-%a7W?MYZbn|jEns)tVMfK(*&3h=Sr{&+cxbb)EeQ^llr9~taI)Eg&ygut)3-)=u_$Ltv zzEM&R^@0~M!us94@d-Vg7Ai&ppUUfQ0eplcF9eIc^YJ`(TR`%hd>`Wr2_m~=!x56i zTg97a7iqKr|GbF+s4PiYLy!u}Pv7aC2P#bd_)%M-Jzdd%{*#2@ZIQa~U3cXcl~lY( z5EnnkaNQ5}u039__(gMP+~gk0<)H+Jdk8!9wG|Uj%YW!kdgg7bys_-9fTW1+&oPc( zwTJf%GzTw8l zi-P#3?XwW6N3M|uE&L}1T~OXd@WrAph;yjGyuxGam~#pm{T zG3l5Z0K|Eah}pQBsITA;z=a`k`2%p_F35eZXI`NDYxV2>yS{?-poMj?BS@`> zHURPZlg3U!Kv*ony;Wllnsjfya3EBE=qbN0Nu_rR3pV&$L2_D+s|75HxCntqaE<96 zK@tl-b#NAh1aK7Or3TLVJm+PX%P>(iAi?YOqGbC1G2kY^7{PSP>V<+6#Hi6a|GvM# z7AQ_&*1Ko{XQ1mm4>+6-Zjjl&&IMo>C^rds?J;X#ov3t`n8LN+O#TDL%@wI%ors=P z0EZDcBfL$l2)IccV3Pn)71B~xU)sHvgU8*#tus0omgCh~73KSBfK{-_RFq?Z<=a}a zC}twq_bPQG>t0Et1y_XEVaKkiDh;*YZ6pFc2bDOjrQEbh*;g)l?dlasmMI72mQWLz z;$^Ku6>rNmWI;slS-Ggyivmlq%iApwmDFlGFK&brffr%&ycNz*PH=J!za&iIM~jQ_ zdW8ij$tyn@+i4r*wcyw8LT{w=fy=vY5qk{~>E(42B73ESsF8txfmK=?9+pmuddYd7 z=LO15fr_BJ6j`hgvgbH5GO}QK{u;ov_E}^&M+{753!7}1jfq>>cjtrIn z`__p+FrL6_=8SRhJ?BrQ4TCxea5hlq8+ znS;zCx8iq;)B$hZ!`4#eisjY42>rC&UPs92H0dnWcsO5lQ(u{ZA-0+*1p-~UwSU>Y zGIkGp?PXF~J8)uF4#mx2;U|Z&`ShkD8_5e0Sams(SUT;Ty?VaaL8!B(KVhxM+nOWF^ z$U^8Mq1e-q3r?6iSJOFC1>4KPpiS)EZLc106TA1?f8Ca|_kCf=w(Q%ErI35rdozR3 z1Hhw;)ZVf!V8Q%{H%-{k$3J6(gBzUwb!=KT)0L#|b36xsjg&U39zFsN|I34OlGtu} z=S)o{r)N%2Z799XZockEHg?-B_T?Hj{>CtM#%Ale{C=R6MTw-Ot5M+P3wu~Gga=p3 zl)0KhkaPE*wp#UQ_0iG0?7n-hw}I>LVH+i;pEyKQmDV>9JG`A?vh%{N2J)6Kqeha% ztGQIszI*Eq%l_*e$IK8?E@AJogdCf|@(Ab7q1<)kj0-MD-fEP$b8M|FW`YM`)p0zv z%pNOl&f8b6yT{Hv>(QQ+>?3&R%=bhSpZ^8QO-f6>H4RJZr{0^KKGMn9I%DmqQ*Ocn z%&u#uF=fqM)ixb>lhsE*ZzJW+SR$AJnbTIB+=7C`oJ^WiW!}QptV`G@_E%`{H7Tz(YAU54(G7<~X-r$vOw&flDyH*mw3 ztoFTe!-P4)Pqc*ZBe)44k-r&^b;Dqu?Fqx7`L6EYnD|n?XFRK5T?H#wgCga z%}ILgS*zryfm6y&F4P0}_Q6H`92HfqIp;&KvLu4#N~;g%?2g)~rM8aS2@mCfP}xY7 zpw%wEt_-So3rs}`XvpH!f{8fiHu+|YCG7AQB@d;qO` zyM>SwPdw3{`OIg!f?EgjtzniT6vj>)cUbM-f3;_wMvHKcuI})lrN?Rc&4ERZp>a7N zj4nZkH7x83vvLmc-e$8nX7wUR=}Z9&w&QkBrEGWRfp+dQF1B%v&G%K8bY*Bzb8Q2^ zAO62dd)(G1+40*RjD0++g@)&(`~^EVKe$nk361-S)Z$|GYA|_dWzJt2;o#8g_V2eX z+1u@mCqBY#H!o3c%`Ap&YaFhp;~4Zo1QuV@3-L zv-|96Pku5;*iF24LiQ6i9m+#rWN3V3v;FXnZ`c#hzQ1kX!mu+&{L*g7PmOWe@}#bN zy-x7fPqcRERc;NHZR5v*dDP^iRt_vsZhYY`&b!5D_14D6 z$9>){D!};eXt+n1<~YitfCcyJ{$XqEq~*Jt79ZC78yH7Tl_x=*7MKtw1Pbszsv|B7 zd>n@Z66fk1+kpxj-E4z4WBWOFrZS$j8BPaoe7 zF&a@}l5M&?W8)ktRN!2>)Es7okPpFP6xD(jVk(W@%PeNDnV9d#VR*IY)rM_OV41zb z{P`?!(;IJ0Oj~0TtA8|a>sgL7G3GC@{}g*c-J;KGrz3uHcIGmjgO{gIFW(oJ`!C{Etk2_ua?-1w~KPVqjIb^Y1Moe?L{lGm;SDxV-1Y4Spn-12jF;SZ- zVAUGN;J@Yiia}HfXwjtTiDoD1iBj1$SJ52MDFk(!DXE zJl8Cv}b7(wuJ_5y%35NtYctjf@o)Oa+2 zE5%S}g|M?f{(jhRNU;@|L(exRXrOA|Nhd*T$X#wV z=;8^l%f%b#z?9~=C>`?aBM(vn9Ghh{)Gfp46N{rNT0Vy$t+98ZFvhGW`u$<+<7lA}ed_;3i!$|%=D04jW-W`*%dOHHyJV7z1-ffJ|^1Vt>CSAkE%bINClg!(lITuG2q^DKARW@D4u7-3uq{B;5imlHw<}I*i*MEQ)KB?S7WK%zOmn=~)^z%EIvrW735nEAp&wv& zc6Ypb8OU9CM@8Emv^WL?y8InE|K4+9PZx@t6+jK03n-qZ2bZc3(^S*qF9w_&GYmOv zG=h`^8Sv=g(9WZCQF&vT{fk)0*;v7(fLj*V!yw~W40~-+HUnnDfjv&34oWgmu#k{S!a=It! z_;dRu#%T{zbmEhTR92Kt0bbQ7z2d!wBfT6UhhxgkSpfv8vM2b~kVdA;7(GHiMdfb} zOwlTuqj#S}#f5np4O?~UJlROk7LmvjLTIiJ&J3iE-6T(&-W3H3L&IW9#eqpBq(no} za)o73bOu?iFiX!2kmopPF;#;3$L4H?G}+mPf@7&T!;>1L56ZPuC_9NK2-MnE;ei2v zI|%VPLD7PDous~O95P^80T@vJ49#k;O^ZoT01V1{%hxy|yr7;NU4okE6AQJ1(zJTK zQY;WjjUovgIj@)?pXEx>5C!V9KhOQd0|>PbLR_+KG$t9Ay+txLjO5y;E2Wk8s5F z+tY|)OWu_Lkr#izWZbquPu~#=yfn(fL9q1DfHx(?!e@TtxxuJJSU42wVOuiGd%ey| zap|YRN(g~dCnS%`%89H-1n*rqN%1Hiw}>H!(*s&TdOPouck=HwEZf_g-=m=3c;1I}cj4?hTcOO6{#1CkV{%%tF@OgF@jB!JH*P zn&`O_r|4oZk-Dand--$WMk^<+g)8C(-bKcCeu?qLOZWp1u^J4#Xqh_yAzb%PUGiPv zJ;9^^O2bcrO*nPfl(@n?lTH&~KAw_uICZ5J8SuOCJ1?aHo)ot z0;KW`tw9k2yy&N1GvNv1SCFC7Qx4pf6BobBgLIU5)xaqID&p}|minOEjx-(Dp)d(; z2?@macPdzm2fUOkECk;x58*5TExaYLgcrP|93r(dck&Lul&K3{#ZcV%3U5cw;|tdk zp1Oyh%MPa@5uA=8FYmFCaG;8E@B$t(E03XMh^4x#tlXn};=Jtm(~`VN+}696Cjh9p zVgqLZ#pT)AEJ-)Y2*nO=-WNj-yer>OS0$t5S3x2^ByFVRyl0~_Qh?BFKQN`GLj*Ym z6cLrQV?zZ_kl^^|vGp!dDUK}SID!;6DH{sdT`PWgJk-@e65{zL$YJ3{a47kJBf;k| zDxAE0&iqh`uE)EmwBmjB%OHUxboeY&D?5b=feG$JnovPSBgG0hm9HZgnYfXql}rMj zE`)EgKt)4fI;l1YJSC?H>Z!p95KZ0hZv<1&)$evdTwkD__lrC}P440cu`##W{7Ajs87L zg}9vY0kSep&B7&t_#GeqLUBEIMrxr{(X8uQJ4#^7A0z z+{G7!^Q_>W?zu&4DWUKSuMXJ4pu>KO$Ovc=3LTAp^`{Wf@+u<*t<>q8tXl8#pwzV5 zN9*rXn(Jc~kd~gOnH5cG+&W#Qt%9kqY?YxE4W@+_j|57jX)IQ!DQ_eWS;cM7pm=R#gIBw_u$Cj>4;M;;?w&d85ahyV8rkYau?Er(hOM6*=;&8YkhMVDQ{XzQO!o zhPmtpL*H^9hqnpU6Ih8I;r3V^T$DlL+Pq#a1uIOs=q?=U-jm9Wa(U&@=JCk%S>}P_ z-n$lKC}Kaj1lyu#x}w!<3J~#GoWe$0>_5@sV_!;v)(x*3nh3!LpbVk9&_EGtq*=@Q zQYbx56t9#w)*Vg2r3&KkA=I>7TP;~v0={r35q?Msnb(QVzljfha91@KwL*1Qfdh6$ID_pHjC7yAjN;3~kZg-pVX zzR@^E3L)66!T$*odcIz(heD%8%B?cTe5I@vK~uragsr2*6}+?nairiy^9+XP>%i#v zk)@nVKQw75sECL;+2(OfuF znB<#QbLy?0Tb!hTuDf|D()FY}OE4-gF-7$2OEE@OCUp|O-bLl+fqirle`pbik6CCr zE`(0GeJ3q$z}y%9Ofd&@U@d}(DVE|lwZ{&@pyjO^3`o(lOZh&0F~wo5*jyugwX>|# z6S}(a5+74B)Pl_+460a;aKTuC#)OIf8Np73Isz}PU79!_(oq_H;+&7+U2nAmSPj4S zP&csQSY>Zvmc2(94BK&e(M`P0JSR z{HgSa4U8NQ!;ByRhF}b|8Am!~GZ^*7h|uiJ9>gEd3{R$5(U%sJz-ulD*R&FJhUNJx zq6!i@nR_g=ganm+q&Q$DhNu)nqa79AmuJg9bd{s>t15U}q>-f3Spn8LmJ0+5ti=I3 zT}P|eGW4`%)-9he(a@JFXxiKy$_|rQSq(cr5XPlYz<7;wfLQ4O0hL)oJ%1}sTBtY ztUkl>GlZ+briQu?&npqdkBq}(TUP#VbuaC?C1v5J;slt*txga(nxAH0SplQPWlR;i zl2@aJ$li;~Zvr1DP+Zk$bxb&Uq&5Z$)sUq@u5cGzcm-v9)(YyfTX*Fam6jMoeho!R zsoizgUG{+we88@~_F6~cJKy#>$CX9%wKA?MrOy$OElDi=gubMJ%z=Ub|%Y zSu#%oF9?nv!vaKhI#WLSAJ|=nx}2qz9vQH|{PSra{|G(ri`G9>WH`c+E|@f+IX;yDYPHBLc9w6Jp&TV5K-bLJPLBXg_8) zo3~PFyM6Q88|=FOxXxbtyU+GchI2$w)b9fg^iByWk@n(7hdoycHv9U zaUNA_8Vf2IhZXaywyEOxnp2U~YjMV+vLM%dzM(=Tu0ms- zs`Ve=_?rFpIcM7AAM;4N{F009>1RI8e($9(wvW8`eYRz=gt1#4U*RCSQ0X-o4_O}I z4T1sKt92XPn6`hu@gw%iKlu%Nz{5|n=bV3zHHRDa;x|9bZr*jh@GkYxS~SD5+<wz3yqk?}eW|QeX zG*$zEsx-J8)#L1zo0|5eFW+o0y69^A{(rL2O)zqFa|NUFjatEW-Zf{hxb#Eza}W7B zd+96Av){bnh4!X5eac?J7;;50nf6veCV^{u(UHbf2*(J|?qm?--@BF8jz3z|iv%kIiFYQm?@I(xBGjt~e zF;TA#$2yP^TmGJO%FPS$E<7do^}R_R`Zf({tA!!8=~;X4d*5YuaImk;BWbQheCmv< z`O{59_Q_9u%!&xh_q_g(Y$!Eor)ST!>dcsZ=x;t^Pk-y<5bn^M9*tW|f#wiD^ke{4 z?4*&4AP^JgS_>2iP_Ja|Up=lB-Y-x&)fl%%ZcjHP2RLQu@j(uQZ(>w^*^o z#U(K{3A`xu;yu3WwY&IM^;JBR*Yf_<49be?5B7Bu^6dCcRvx>-%6o6I#^62nfBx!P ztM0nRp7$$TtvSXJPI-XE78pM*@g4l3bX4c`>qRG6`S+j7DnXbLy}0XWiVAZPKe_EE z%qSwmSY^gQB#6n_$hPBX6-$gD5WTVkYjRhV{&2~#4jU5F#a%Wv{S#WQ4SV8ae#s{H zmTh*DlikN__S7ewWw+mTtL>lJ#X=LRI&-i(o+QmMkcROxZr?MubVcaiA-3on>tB=J z>B!Iq`|Cfy(mry<2W(Sm2%)F>r!c}GI?m;q_N|}%$e!}>$65)2c;AkDEk7}5PdND( z?A9GWvmN_(S$-HBkSsP)@5l9t^5B?@n}5r0{?RAw1ur<$?%jDe ziciDHnq#3iOPqr2)n<0u)a(tmfBIINtzK_iwknMQn=R9OXI@exH$bk8_^rNMcje|S z88HMcdMU6QZ@kfmBtQDmkJ_`I^(_C%ugVnT3N6te@2iih!_Ps?ESid}S|z5_aqFxs zYH(0wW0oPxMjqRadCOHwwsU;MuKD!s_L9ps+2FRHFf72>JnwTd|Kc^F7_e zFV?Dk8Ch5G%E{c8%BpY)?l-;t?Y4Jx%zop^Pqpv;^H=T8pZ?VT>Dqs_m;L_l+7=ch z9EX4pE~bz?_Q6d8Q372HeH#rX*VD%{uUNJ{d-l-cEwZPp1Rk<>zvCZa6Vns6YxkXQ z0!z%HbI8>5kVH`kEweGVl|IAJ^tT@AhC!QrQ^%KE0L_JCG{Kw7jTM}{aM(9IF{Ovv7G#~t>$ z&wb8z?AT$aopzc%?s1Q^H^2GKcHxB=f|JlyR)tbePcAAwf9TOmq^IthUrDQlo~EVB zSalX*pUW|JT}OEho@`frij$`vu+h%?)nP`oSt&U}>xf=Js*KP>VESQ$;ydxiT33Wl z@vC|gi|A!VJV7rl{hncN<#c*6r#-7lYaS+4dZ0+~*Awt8Q3%N?`BAn9xF1yaR&nYPZ?3yy_chMND!}~b2!P;WfWR^ zUbzCdhFy`>Ihm7UkDu2|;<|Fm z_z{~W(d1|7 z!425u7r)Iu`RNbXAHVyxtQwrM``_vq|Nu^wc$^$3}mK zd!RnB3Y+a1U4QT;4Y=Na7Yi>wb7YRy-xd3our{lM13lJteq3@g zG*rt(gXjY<)T$hqTG+~p=V3eVSr^+Ap73CM-D{u4oa3FW5JgBr&ZgaC8y&WG|ZS{&Iui7nT-#%zxd#oJ>Z1AJ?|++tKTteg$*UEWVAFsji`sg z#Pp=2IwL00Z*|#&3|8n=CJjY7tST|^M(Y(BhMex*wa>ot)vwr9ANeaQ(^}s*J!8)} z`x$n>PyUUa^~-12v%mFq`=8G^+sg2R?*Z#M2$w-fLKF=z=4Uth0tEGJUiE^v*^AG4 zJ(fBqth8m5efp~(x1G0dvF#gAw)%cGZa7Ajm2*u_%GN41omJ(u6(WO&jC+IH0YsHW z1_;s|9Yk*oC8ky0s?T)Zoc>-fY1C}sNc$~ABQ{=Rcy5S2VN(+v9W`isnY&^LhAj~r znTTZ(2D~CA&tL{Z)h~Wme&YS09@Y>Cj(bEo1<*n$9r`Ml($K5^D5ICnH2{i1&%mI= zZb1$IQWkm+c+uRQ|NLvbt_+n15u_m8#e4F&+P4MSsl39ylsJtH%0!6+-d({FSqlXm zYAtxu92!=WQ2g4{nadx?9P^<4%Gocm;)aU-{pUYKT6?L-nw#SwRnb(ix@-3*L0!HD zYIQl$l_VDxlNcpWYwppHezbk@i(hpA(9n==+_=$Z8P*sb9d!k#_))1v#ki9E)+4Ty z5t@puL9uD*jV^wZ9sRQmO{Pw;n{R%Q{oQAF+N)j!%q+1;kJIw4azqKXCmUL2RN#bN zm`R(wRhL$uH4YC`&bkS#s~=A4Vu@4QSz{tn+>B+k`5s$la z5f3GOHa)MQ^X$dLz|??1ULNxI{a;!Dlw+&hl6NBuOfl#PrKXG&u(c_J zaMwsnn)oS3Xrv7If_khvq54b;{6zi00c#1QvJ~S9;Zo3QM8{qzbVbRzk#ELQQYjX; zX&4<~RPHoGl#Mi_6U-@QGQ+lW*C^YXF0t(=Y_+d^?cFvsGELisle6_L^L0%u^t9X> z&~n|CTLe}WMZK^~FTK>h^{sE&yWaIKUtqGE@p$cZJN494?aVXJ^iAASZu&`Z_JdQE zbl&0K(2{=`#wVexo0(AGY>naxcFo7`vM zwU1amMyrtom1eKI_A+YzWs<#pBilCFQ=fT`z4K+Sv|Dey-nPz6+dfuKzW$O|+b^GS zjy>h{Gi;K17|~Zq>kkUgQzDd?E9Gx6AHiv$cHhL9-9CPsjSt>uKiu;jd(9tQY7c+# zBkk9oc7c_r*yPLzY*ltcYa1+wFvv&xl1#v%uE95-(>nVo4x-Nu3sh&O?4J6#?aa_R zZ`5qGJYoCh#%+e4TA88rIT|w0c`~a*Z~C!a{k1RHnu|eM;DZN9+aZo{ zuMv!B9kS);*rq%Vw1yp}3J$>84%Ts51j>_aLQ?ABXH z?c8%-V-J1EBkU8O_%lY|CTz#u_hNyjVwD*d&oSpFg)fYHCTl>;o*0&tAd}S*4NX4& z@sIbO+vS&EZXf>ehcQz$XHR|VQ|+2-uJK_@t*F%SW$d*@rKo$)I`I#Dqv0k$ec8MG zfq@FcW7+lwWTMe8a8 zVEP0rZD`oU%)i^)uDF;}&{6IKC);BmalTz}{{O=K6eOjmqMm_zEn$_K5>p~vTkwbH zAbI@Nx?a3-MUm7io82;C-@R|Az4{HmYZJ^Fj`4fL-+s{EQU42j%gf(j&wSizmfbgL z=bZEyD_rvX_V$l|$lmhF57{6i5-)w)`S!~HaXw4yQHt<}XdUZuYrc)p77wgL9rwI} zRlP0woA7F8q+}m{@5k*^U%HV+FjeLf)Amc}U22d2#gpv{=2f#yI}DAC*r%`lvi)GegWdWgHfq;?WT&3; zt1h<+^jaq-=j_+cJI&sI)oZO*zKyw7$wBJ3=eN3`uDfy*Gshm7grJ5XrOdwbo$uJL zUAvswHQ%Opil?DVSu>HK)GsQz)kV`0rXIK#SVUB{1yyeNm=kz zk5Ws8JlIbWSxc%qaW_t)9YqAS1m1pOQ9L9vNVfFB(F}~`f&U6 zxBMfrj6Gq4n^--z)%NXSNp%DBOtjnsu_fqYse(rW-r-*hNf5K{;2!2qpenR1j+O0k z`EB<3-+Q-Z1{iY0v|3%puraQ?k)`4TV=N_t*@3JSKHDtHn^9dW9AS|u zBE{f1MTzlR0qzMelO$qD&)nO~CBYvGE&&4Z4nj|mrI7gA%&n8S(`?jkV7e&H&NeZUeo_eftgoGD z!%yu&SsoFC=b>>;EkxOy<5^WX!|+E2LEsG?s)Z)2llHoY2_Jpq)a+L2)n#jJ@!nbv z;nAqiIIL+VmU1i^YR+j@A)KIb=YAu$G!b+Yy;9JXg}>Hh@km3%tQyIp(WXTSSONFe zKLls$k@*|WD;&dGN&2{)6_JyJ;2@=ajqrl^Rzk8pLuv=pA%#rdLQ~C^QsyX^rcnVa=h^4xbjFfWQzK0*mXSVe_+DK#&ydZ)p#Engy_;!;ol1cS z13=2EZ&};{50;xDo*0GUSh+Q*(>8*0Bw_vQ zFW!UCpOhyIkYw#~ybv8;l#-m^A!Yt`ZD#l_*zpNf;Wu$CQDxMh3nccrU^2>rU z=)nV`C)^KwIR$}By!G77FTfHFY% z4^CFCSb^_ZMB>iV6)rk=t@1md5n8@aXxbLid7?>7ajh^ExKhK2l$DC9Mw*7%rNFfq zq){(hsfzGc^Myu@561(BdOzyHYi<$@p!D^gufUP7k|e$epftRO;E#1hL-+4>Vj)ECsiUpvObGb}p4aJd*(B6PWJ8WAKYc_|{#yMdcKg zRw&*4b-D1^bBoGx{>#pNQY7AZmSn=kN(z;oQ3(kI2W5&Y%&n{n214pv|6X~BX|nXx zyfQ!r%+{o|Vh)B#vB6tJi*Z$^Zn&6U>?q7HZC3RSRas2zunEp1bWS@5G$y7ytWTJ# zfam0Z(rV>R$T=yAXdxVVsF&ynOSABE7r+uSWbBaRkzi5oUV=#bPz*2k!W0hvooSyQl9R3Ssa^WJcUlI) z;dtZwwD-PMMBvcL+71sHvieW3sb|_?>qni%6Ipub!&5Y4FeF?nG5s*a@Eu^qc6{4u9wEMZRVX(l=uZ6<`S}6AZfQwv%0U+o z7=W1`nBu3@bCIxj{VlQ1TUU(Y4+p?u4zy8{g2yxI{Ni*46Ap0rOpq!WNW|T-q^D3u zzbDBr$V}aCF9JnZ`J|{76jIQVeos_elK4q|1TGF~X=_uqJ_vj?(Al4x;#|sxuL4B@ z*4gF*9-2+OzhWy-vU?Nmu+RNe}9bSI^mBT>B5f*`nUwe9(a&mmD zSZc}A{`K;RDP8sH8@w2J@~B&TdQBH54nMD3uqHA?fA_~DflVuN#PP2cU%rd zL_TVG-(gFD^m3_eq~|;heWN0$AYOJ|J9CjQ#G7iIcyk246_*OPYN7>>ZO~wmSe1=D zpL!4;)L3oM%Ynve1icWWZvw3)n1eE>gkBt-{GqV$zS9yC&v`icR(AJKzq+-sgXKwX_hmmQiTZ`CUn6$IJCjRdzs265LsaeMiUEx9h@gtSUw%M?yRH> zKjFfp7dkUOyYxPJ}-1he`n;Z$DL16ADax=@W> zjRCWq1dr;Ym^M2393zg1SoP!EBfBea;av3Au`=pC*IBloK?rFcB~6P{t#ohwaT3FP zsXEKIop$umsDOk>dAVQ&rwBOhnR3Ce;hZGAv($x`&Ya32TFx+BsNT~o^I9c(R&22H zGNpk{!d7$^r9;B)r9V_Y#1p;5P)buN07n>>3TgPXf~>4aD0#djZH6&Zlu3e0_9!Jp zg&T=|cZ%DIQ#3IS_c~__H909TTSvfZZy|GFnZ_(95Wv6ml4es(o)_rN5$*N={xW%+SM50s?ht(vkJ4J30}39ahl_9@bl&d z%q2Pn&g>|MqcoC`CW3RxA>^`Puvp%JEyoQQ!-GKBvCJX(Gc5Md@hqtd$88edQ5tH> z3K0`2N(#~2o*<@ zO;sY?BT#x?y5}wA#QeL5DEbb-2E0^ymbXw@bO&1aK;f#OelSlPUxbPrOMK}2f|8Pk zSLX^I5&TY< z7QQ>lRX~ZBQ6TCYo`nEjNw`Fp1o2M3#G&L`QDS(KWQ=mCdq_#;CK)XB=PH~?py4v+ zt(%xT(*l+fa2w0kvz!3#qSmu)mF7^%AM{;2v@KvG&8WmM zZZ5i*nBGNye7E#n>_IB-yszu&vHilgBm{~mrO8uDeuuUQ0kvLRvNkfuGRYqL^+C$%!3TMF=ma}>OZ^3w0zJc0 zZ3ZDff`UW2F(0J8R^FnQac1^fWd*DQyi)qa`0>8DSO*J_@s@iZ;~ng-?~}$7HaRis z2EQW28TZssV6&-(4*1oYN2zB~0Ag=|O@!`|=D)aHt3k`<%P43xosnYEicWE_F(QMH zd0kd&0;}dkIYJM`CxdRtGzl-~>(walVw`m6*-NT2L%?hunbn}!TF`MRzQSXRTKA>=?cesVUoCZ268bE8CP872xzc_V0As}1y{lj? z1dB7Y{<2n3)2E~rjzUgw2s(P%v%d;F`!e70}{(@4p0x6WcrnU93vG>Na^i)`VIZNka7Smr< z8gsMM-MTM9SGPs3zaR}|KKNCuH*>inJgi2k@FF;&D`0A*!WVF;D}$4q6VCkZA$@Y8 z%<8qN`3Xn!M{iZ|N~y_ty;ZNxA3SJ*a#Ig2DmW=QSptcB&-AQcjN@M)B^Tddh#;?F z7&OJO-Hay38H#M?*`rbcr5q$`Q=4e&WB9Wq1E5Lu=%+g3f&j*#mzKd!Tt*YZ66Qs$ zXt0T#aafca%8nMG&R+7GAvmSry5N+3H{D^CibB-ry;k63^ltt|r(q9SfnIt;L(pu#O=HBi3C-sU2t~zq&<_i%0cUMj ziJoq{gW+Ff(&$2(QHM0cuWGHczJ=xLvd6DIqrh0>1Z)gK)^+Au0;ZtsZV3~4&`qFM zP)5lwO{b*UNS-Q#3md^ksT3H)wyg5W`dl(|>db?MMPq%Y+?=7|DiNH`lr`quGH$Dq zjs`u{;D8p{O#pnY`hAc&HwiQ;wy4Z48oI$baw!eDVh)HUZ&>NiVF!dJ9~h)&dy3+ft}RBw5f{9e#=^H|A63QoN?-N(nr?e4qpcE6Nf zw_5Y<`K_B@-7uW4X^u-T3=Y}eT?|X!m$f}RiZ+F%?@>5(C>KSjsb`9rpuPL>%u{&I9w+9%BQ(P8k-dXTW=JfXEl9?;}_CwJT3 zd+)OH;6`>?l;L8;J3Y5LDTt8$JthkyTtgy%=!>|s@A+9C~wQC8?^=43Ls_E0EF7uh~1U{somSS*Rng(R-M5nB79KEO)xCW zP!>W@LwXv<>Kg}q-Yucj8gA2u;U>yW!I|7~wvVHtc5rsuC$Il0BECWou2s$XqTlFw zaH_aq2OLaO+ge9%5)3+*$=%OYdVjMBTn~{Z2dg>1RTFI9Dd$nz9n3xkqh3fS*B5t95|LS8GT=KMkBSsAjPsP-hR+ zK#DnvG`0`Djn@NZ?Q#*s?5aR>HHNUXH>kC&Sp%{9DTW3#ma1k1_niw6*QwjhCNR7C zBnGJfFGAaQAW>jZN07-$C3`~*B^G?Le4>3%{^-=~BehMT55oa#b%tJR5xCu6srH!B zPZOOJJZR{>-<|qrvT;dQgyVIzhmW)I*xT4(F3$TM92)B_QsOO8ZUQ_iIQjp3xr758 z=;%+lVc~5-#p)LvMPZ=31JDL%7?6rE2chBd`USX^mNSCNT|L@1ge*$wQ12E+?diwR zXjKtIQ&tq0i(KIkeSTTQv6?h>N4OOG{8QpP%5DyRq-VrMg!(9hbzXouUw^67zU1E;1~vuVc@?32HHm(1GquCvw}2g`J)dD2Ws@CU{tG4Lyq&UyD-s0 zXwvY}yo;KCLY0F08Dp{h4w_FW1vtGeFMwkNhqCps6yo|cEW$JotJ|dmaIXrj*9p=4 zlG*_X=WOw8!obeIyb9bdMvge>e^_JvjgW*|D)8_vV zE83mDm(x3+;3KZW^eh*{qF?VcmnY|k_VMiY=(rzB;l_OQo&1WcdwaO@)U&oP#PCC< qskDx{V;DGwfnyjrhJm981OFeR$^v?GP6b>50000nIQ^K4y9Pf)PD04Irx^%ge~f9!{u;LE83-k#P_A+cI+HKI?M$z|;0(VITGTd9?r2 z4B$8QV{B}VR{%hm;O=FoPRyXq@33?B9nk4o!8b$C)RibdiQ&@YCu}^;>QT)DKwjK27{)`+KiMp4vdgNmjm6&FZm5bI3KiOA29vykibv|m=MGT#e?Wb5q849f62a& z-Z@GO88~QxydQV%Pn^8(?oDZo(Gz~g3CkWZof6L3;|bz_Q7&Z=c%F}& z&@@H3FYO(BU%L)V|`x6ZYo({_=w6Q-j^{wBH4WZIyt!>%`p0w z>ibsdS%5~QDD90Vj^<+-JpzX1t4uP%XEI0}=0(E$BGp5MI04Fc5+P_O=kIYT17IIy zT}W6r3)~)|G5e@8aO$E_%8*l_d0IRYMl)D_3}N)alfB@eVGf7U<7|cpxdEs#w^rFj z(e^u@yP?&EX zasD>0;sfKf{06%5Qa>v05OYH_eQMAd>xQ%VcqM|a)9SCXAKv3v%p_0LC|Kgh<56!YS*UaXTJJ0TMZr$A6DL#YQvXL^odHNvZQ#x z?82liL`AwOQC|w9d!jNHXYmZM}_~EpQ z0Eu#Ad3r=vB~Bu)RBsr=(&@EE8NiGfM2Xl)Y@zo)zaRa^c$@G?E}40s*evRM*Go%| zlb6-0S6Npn3XD-->QuFuDLIl}tBET&YX)cus;?r`y8YY=fRJ%U<@s%rs;)yr>bZT6~+Hx5`dL;;BZ@66q1{5y3zF z*^<;o$OhM9>6dZm{DAnck2XoxwYE4m19lRf(<8#2T5k=keC@O?D=nb?z@D)6FRNAC zSUa;L?qODG8*FUS#e8-IcCYM z#9Ypz$E>XmOl4GmuGX#cMqMhgN6kq!Qq@2W|4#@1K0gCLDL=mTTO(Yf3~=G0yjV;Y z#I(S)ev#N8)87h#ftWb0Bo!q&B&i`aCIxbS<_O@Vecf8vm{(9iQt>+fTq8XXoS#*` zSRq-;m{0Ug_xq_zN}1#LjPC(P@aT*(<1fZ3^Pj{^o7=9r;Vy6+Tut2O9;4XH49kp= z3}wMw`)UUzJ%re;)~#ue=Gm)mBYrX4W*3{Ry9_yB-x@i33}9 z0rgrb+uLmtPmwc^vs5xhvR`DyT(&Q#xb(OxP2QG)%khk*s<#{Pswx_Cs>kY7Yxk;c zs=TYY8iK9Ztdtv^8X{rNhtY?*5}za##OqwpGs{Fsoded`_b4{}y0H&7cVDla4;#(- zx14d2>yv|0F;kB#SSyfbxlO7~-7VfN0!^;&mA<)`yl3p^6lbr`HO^Xhx;GThnh#^o zd@d{CISb%+#NX{Gu6+}ahG$5XYi7jaTz{=l(7_uJE9mF3qI67dBq(Bq$eXx6Lwv^- z7TOic+9CLjdDZHh&g%D$OWAAL53)%M=MAJTnNO$jxu1s6SyJdy^J@wercAWIH~v72 zn~lFf;`0J5w8+%TfljwZK1QY*^(^`@is+Nt=Ku;Ws%$DLvV3AsQQMC$>Xoq{EQ2k1 zdaD^!eL$_RZ-%dCuraYov89QYh#ECb9tEZRke1z8%3#h3*?uH?%(^|#&` z?(-*J>`T&Z67qsfY*vgD{I%TCX{2AhrA;_mc##Wu@iZ{88?kh;4GAvaoMD^6!X4mT zVavg;%el+^(VgT}YfWp4R9N8AHs==k4i5}>HqbZsw0%6d^zp*e>r1D@O7VA61pXFR z-`0LL%YFTw{QHCvnfFy*F7kr<+GqCiZ?M)Ljq{qXFfJ5+NBIgJ2{mXrW|viN zl?+vy0ZIKG%Z8gOip^`=+rui~-aA}*-Rxb)novF&PRniz(!V=AVT~)g@mw{%X~N&R z9mWS$wT%Yr9IVf&ucyWd)(Rgxgc&EA*c!_l_i_iCh0NMcOfOX|EC(sB^_SqS#eFV4 zG`RF7lJFEas4O(iY@rPfZsu%sYF%hR&f$(w#Rp^sTn9P_x~|kU`fq$aDR*jsyZSDU zHBI;!9Jm}v#RhT(?*|WEP92L}I-NI2jt05;%LIPA{l45eEZh03f}!?%W_%glQsCj= ztF@|yzkiarw0o4$m5Y=*m7$WFe$7`e&&0M7Ipl*ppFyW>Wg#rLKOHoz4)>jEXM$Z# zmnEt2DekX?FJR*e!xE=0>#D!{t~pXl;x5UKp8&ykyeE9u8|z+2Y+tpNf$G8S=c!|$ zV1XO~V$d!~-|jMG>n>nFbH3q7thXt3g{hrq_!#l)Hs3|oX>D3NJ~t^kO1-gg+-7g< zf^;Eerrd7XUZKLKj`VsE z{4;UMX8r)Xn$1@deG-dWvxu}w>){XKgaZERE3ixnM7^{~3 zB068TS1mq1%c7DGxTi0sFrFt%Jbber@b( z1KBx~Qy1?QV;(pUFFW&}h>qat1f|Eg#}BpB`b`L%UqUR`J6f`n`t%5oZ-KL+ud|CZ zLT|jzJcmF{0^dQ@wo~n&gOYO25X%U8hqciW1NFs$98RIqQYR$F7XVKpi#SugHk02I zRXLqe?=680>|np{bnHFVqWYmgev0bl_i zPgRSqg7N4{t2I#Kt_}TG&iXA|LPXx9b!KeOK8zCMy-5C*&9tpTl1Y;Kl)98RZwlT# zo=lr!fV)x>|8e#m4v6KiN!yzWtsLEbL9(VHk$Ca_l8ZcO<$kN< z@Ye^%MTUw_-R=w)+rl`T%z+5bUFGo?zHdlrr92KNPX?wU*vPchW?aNlKr^QIb#DuG zu3`{#Uy6cvj7LJ-e}p*LoptJ;+T02o2hODg(v)WJ&-|{O@sfi68n>EMZ%Gd=UAuru z93LkjUmpiv+DY3}`|*FG(GA>0irO`9tB(9>DekiSJYoi7hL#0*JAv*!ib5egw1Cb3KN$kgsxTVh5@avWo?3 z9x?Jp4$0G2vY^*@Fm#r1yARDD=%O?}g%D+u=E~L-5tg{@CGksGw{4MZF(70=P2O)a}HM9$gICW3npGhk=bL0?qD+^M}Cy@tKq-AR3Kk9-!|7MTY1W}-LYgUIvk zWG;OmHPE#o=W^(8ZJ~#5@9hX?0fsR~HHOrJJ{2`_p1SW8o8N_sEmqH5<6=N{+NNxr+o;|z}({&ozbfM(Xg_Js1N6PyYec=uc-Bi^eD~9jI>Js zO04TT=-K#A?iik)^zSbd=W5r?IOf!pdRF*4&IXCspNyw>vkrJF?tsja+mc5Yr_`Dc z$Mxs$%H*#c{dT4f%FMnmi3IosZn#{md~Hnfxzx!Wygj@-LA#9Xlt+u-{^%S3Hzvp5 z_B`myW;^YcDz)Ls@(@&7a0%J%9pW`~PX!$-7b?R9uyFz0q%q#%=$7QX1jw}FHA$ZX z+?XG&{=~I7;s=<;VvdrPNMA+*c$JRgXue^dGmbrq?!tFse>VR_h@pO2B#n6bL+~1n z8_gnqsN%`D7#)Tmk5q1NF*W6!zLo3-?+TwYf26UBi&FksLHP2~G)3kosp#zAQL91j zZyHnm2!pWhs6)~%ltq=Uw7i&e7!p(y3S=?4K5keOiG@iH?{>|07yN$RIXD#b?n6gS z61rZE5nq`RA{ki(beDQr2h=KJ+PX(5z76F-k!DbkI7yrJe zOS>2$p>3Rhe1RX^h+*#1Q_x5M*m6EQMw~@OWe-wBDE4(y36Lkm|pSweo=0ZHbd4o{2fSgmUm<|MWg

    p z7JemNfnPCTf@PnvW74eRzK+${a%+pz<$D!zMi??TSK^>BBy>Q zM1B%imV_W}>@1=JY!0ko@*|=-o_)@u7g{8toMT)@Oet(MoEvNh%y!(B#otPPR1|zK z%eTyPtb`az=`tDA>K}w%e6GkaPrfsXFk*7vpiW{CP(6DVZKvNnogzHo6L+DA=PSY` z#v%Ho`E?UeF{ristZ^oCXy3%=>KWoQvRhZ;#sD22F%I$mKwy9Lovm}5>5x%dfvekZ zj0Z(JT($i&3X-!jJcQtO8Cn7QN}*p>d`{!OXR9?mZUOFy9Xk90E!w@V3JyIBYm%$Y z+wXjD8PKPaE{lj_y6XS&bIt0y*Gao-YIDj`n{*OK(A2R`T3|WZE5~bXm!*EYr932c zXWrNMubFfE_Sj=zk;_q+)1`fAlD~HOvHX2h*ighv`5D?Ll4wk%+V#0@e$@vl{j;Sa zfh+r38ru48zE`{=ZODn=plJaKXjU%lUL5WWmzZhY$DjEClcpk*e(6+BZGH(AbbI{# z8|||&QWeUR5Y|bo*bYNO+>1#3-)1Ug44*xex4u{8wdWO%h3xX56MV$BitOuM>`bg4 zp5;HJ%97;9y#(-tjr@kP8WM36bblgc#v6Z&Vt*br^i5xNqN*eM;`T@rU3seobq_f} zh6A&Mv$k{EZjGLaqAiWOjY5skv$_-8zeZ=CjP30&{0u+ES<^e_Nm|-(9z9Q`NTE&+ zc=vic-UiekoD9+}VDIBtpl54VDc8GAD*Ey@(&zi|H`D%g0=_lz|mLa5lGJp18!_oNC0Pp;pny=rW z156nJ15XSL$V&|jQnl$7dprRZk*+t#wIMUSkK77;ahEjw+s=>gL3dA(3|cx~uqsHq`ty7`d|2qefB$(;8$XBtS;@uozsy1z$n!A5!^h3b^WVBrqLL52;;$V1 zY`}&J4$d|%o~Si|f&!wF|K|UHBmcAF|B^KNA4xtjzW*)xzefH`Qj+Jvfd6ICf4udt z7v(PCQ%Roxc0KT^WnJGi06<-+sv!H?4-J+TmAEBb@fa3$c@LEwsoH5AwRg#DR8><< zZVCgW(MOeNR=>8smb zWWB`vH&F$Ah=%nb zSUSd?YtbobGp_m3^V=u6HA2R&!}lVW(S;x;Q>oaqgM3SNDNqb_nl}ITF_|$krXC2a zc92hAP3{rQ^`Hrx{0IRe8T1d<-Fk`mTIG)~n?hEk;V-X*ZrXoKf6al-FhfXG;N9}O z3+*naj!qRRWV|bt0UTcvPXdC>Hq0B&9R>%S2CoGx+Km?u{B_L^PJvEC`=xz#ahc{k z3zo{jWVK2GmST5T5JYHu$Kn6ZY|@MODNuK+I?2*zJ=iIwMHWuPmuffPQpXylQ>MBm zCdJHD0{gD`;P5~8F0LHXHIc;%W$}~wwf|TNbGd7TlLk#XO<~nhyj1-;;v4rNHbv1+ZOf&rucYnUK>QP+| zYUo3ZVONNffZ-6;>G(c6xFU4&esg>}ZQa^Q4IYSD?>^FP-K{4Mmb^ef=o*^0Q>-;y zrt{%y(D~Ee>->0geGiW3vHt!^>hMyYLgh23!o4cQg$l@dIOSx9Sy=Wox)N<5witaM z9#>Wzq*88EFtpSR9x~2XJLBkH|5@249vldYR zFT9zVRc){Qt9YR0t~Pgh7$n7_4w69YW)SMM%y&-#nwN+*0f%P%DrtwHy8V!bl6KAj zrM}Olh;Pk%7k5+OHrDDXvUzcCzo%uZkYNx*vBiM0t6s2iB%MSdZSZ7(?p=0kTr!js z*`+Dj<_!NeqSs_zc{0)HXM)l+9k6XWb}uxieG>|nlBH=HtJ@2_`7v}7avk8jOxzo5 z6>AecxKuwA^k?rlJ9T0Q8GIPLG!XMsJ=8RQo>F@*NyD+MaAbRBYRr<2MX$!p*i(%> z*am&Q#IV#X2QJW0wSXVJ8FnI5ek9UB=jnJC9DE_Gvouh+Kc=L%y%*dh6p+JYZR}N7 z6%#O7F_e;JS?S}P6RWQ8X|i3G+=sBcy^Hd2oUsO*)+B_1CwtmrOW|ZoV?2nUDgDZz z==gD(U{ZMmctc0YGx)hpD=p8AZv5TK7%A))ky-=twM_no`=0|kDLiGfpGeZzDAiH1pIWX^ND_K<625J&5-ETNfRV6bl5~CqUii`meCXPmA zl1)hTfJgLy=}}To9^)7=px{X6o7Ow&%Sr*c^-zp;gZP^iW|K$g1fmImC|K7I>V4v< z!_kgaGL#Sw8qoresQm*ziAKD;|F}6E*{>6z_F8|IeJZPB>%;erZJ`P7^e0P4Ty|Q6kSO z)%T!mV()nfW;MTgVY``DD6_GCNe`;rk83vrEoD5o$$!2)?PTBsf1!kwL7@Qa{MuDPqRw` zX$b}6nPn`gRL{DbZ`kIOfOErgIY^T05A`FK`|#mS3B3kT=TU$oPtmmxvZ)go<@^L5 zIe*>Ur!c ztUkIBEj;_lGgT6ie>!QC6QZJ?+O5~46?;2#qw7)YoqC}aJCNNZv?S5-YQn3JduNo=|VvzsWM$p-C!wdwE#6MDag@aQw_9rrJWmD-fX<3aZGB2sBUJiE@!=a6$nX( zt?s7RH?`r;)p&fBa_yYaKIufB7hP+#3wY;}JTfVkCKu0dKV}X!xc&_#ZAuh|+_C&k z8Q58Q99l=jvqJlf$t(GAcp6kQG)s-%T0OM(SznnxrR(bT9-yr;;F8PIXFR!`x!PLBu%^1 z14)IIq@K^sRz!9|qHiK#+rlrg4}ZyK9|jyR?`F@`WTiKo97>xNeVvSPJ*r4+^C4OQ z|HhxrT}U>?!pD12L8mQ){VTOiE0Cs8!RrmwYcEa|rbSf+iNIHE9T(pIBy>*-nZ5@wV3AROt{T?9If-B65D3kkWTA_+;!q~}jt-QxNHSy$h@&VO?QabpeV5MmG zX1*HMd}HZ3>=Qq!#2(0%E2E5MCdE*?Yi#%p;1dOSmwRCV`&sQ24kncC!n zb;`}-{rZB#!XWj&K0CDsF>N-t#av`A=If|6%|02Y)3TL1Ae4I_g}0Yj;7}_G(kAYE z5%a4OA&0il%4$kh$qxo-vC3GgEA($*EVwiEbSnl7d_aWRL-lP)aMyxq7L}@=UwMbxR=2>9Pg071uSd5)3ZY72ADjT?H z)>(3{-nwT3A~Dt^gNL)zIpDzQwW`G5UNh0&J+{2Od32tj&0sx z)uxGIKU2ah!$#-AP|Eo*Y2wNoK{aPtL_(e7L)gMg(aeD13HpnToM^uQ` zJFOx)3;aqB74{BI7sZ}r1R7{_9!y>6hB#}3@A!$oBqI5KN5L43~M zNlrZ5m>glM+SjG2K1~YJgxxO-%{Lh}L8dMwQ_G{cxR8(JA*k^Ar46c29-nyZjt7&zL%GlvQzlZG z%BqOV>)z9WB9gRKPng8Dn~^1-uiqQPgWQ7~D2DK+y|?PSk?2mHate)TD~}p-&C$vH zb3U6SA?k`X@8I;eOu74HpRx^K*Z|pa5XB!-R#;JA0!}}(Nly~(BTwOSufFwAY**aT zN}qBvavrH&%9tHYNXWEfQ^AK1z!OedJNZ(&z@fXUvB>Juz`dWXV4XOY(b{{hnCz8O zr5|-5b&R$ga~h7@ajLnJ`?wK~Km#O%O*l-)-y4mUCynXR%*GSXVb+d2L-O35vqb^B zi_hSZ!@o|G<}`(D9>aS>@Lojif(dcv3NL0?g9-VvK=B(94*~)-=t#ijPcNOjAPTcz z;j`u6g1*L`ytLpM-{tWJBfBBi|9!-FGGY%YU`!>nGc zZ6ox~=5W?m6HRiq+x%!S5DRS~qVU#$D)bM3abvnw(t!w@u2o4pS)|jMxJ&S!sxSv-E#P1*%maigpXkI?qdU~ zh4zn_QOB!*S$Jvb;k8)oE@G9sR8nl}_kq}pnl7b%hs`nd!}ih;mKoiirs}1C6n+{e7z7&C7!_fj}5+s z?abBLHM5)+U!2(pHmDY08DHK5Fm4b{NQjWGfs^%MQD`fEd#G)&qvZs;UV89$-spe0 z^8t2OONcUxP-!FR>QwCyL?&IL=R02bA|ryaB-7s=y)u#4ATyW|(oJnx%JZEG=9R35 z8Gm}B6^xH&35}G{M{!vY_A{hsXv<{dY{&;>;a5vn7W@ZD&Bpl1ENtfJ3rhD5@9>dE z>s}F@rKN9z*IKh;(7WY!Y)R9qni(_KA;V-I{o~y+3~qa|u?51I;>Hh&xr_yE*nlhe z%vAPF54)?9&Oaj5k@q029s*a)iLZ*Pz-uw8w^e~1SaM2+V?U-ev4nR2f^y@p|z zsxVWYlV_-4*CB+Sx-#pr@2zSaUaJhtlDxGeTy=((`K{t&(2r_c{GrMeam5}ANnX97 zfD2#~lnQKw8=wd?UD(>aeu1w%IjgH{PJfg4^89ctZjLMf9ft7{TJ1m4+U8IBFCfZT zJPvycwc->zfM#sM$`wBIJw!EWjPvqT`1x`+lh=*kxgKY5r@+8=Jlw-s)lz_*goMiw zRudRA%>2#p4<;WWwi;HJ{OWL1OdlI0(BS!TTyl;?Nb$MZp2^qQ&15o(r&Z^==4{^# zO>_I6p`0lk_H|R|?Ctb(kv6e=k6R&-a-8-pjY*$Qm>8N|pLWlK%Ma--d<%~H2rpn2 zLcz7UVlhvQY3?aEHeIZ4rT>AT8?xTPyhAM^4ZCv18_F zmWe1+uJ{>rW8y>5H`Eu1`VQ=f4exrHgiOCK9_o1LwFt+bIAL^&2;ppVyf|NCut35% zko$rl?XzNUy2JCpeW>L4({IcT#9DnkJoz<}5eVQ|IU3e)U z7b0O?x_JZ{XgA_7wY@=O77}Y-Ig@^H>1i+-A7~XFEo>jYg{CAnPe7qc-!KE_+3r!A z4~?!!^4nVfdOBvUcU!uicn1G@s}qp7l(lRcnkC&5+;uz)euT(vw2!cnX6<~0h9w!% zG1Wzn&>I%>9TvDS>K{OvCswp+V{e8=3{^=ho)8^-ZKQ^_4Fv=R)s9duv-LBYF7W>jX~b{{FdLoSl%N zA(2v@IM&b-GJi9hjNFtkdZ20Whp09Av@q$KB*q#@Ji@Xbx7bGpl&J73{+ z^jf0TPxObA?va;TP<2Q>exAlb`wza7SmhQFxPdn@rvH!X?Td}86dz4xhgLzK?#Smg z%OarMw+E`?4bbY?_l42XfCe2>wiM^u;Y9wGjr?E&q=WpbCdPVGeJ~wzxo(-$$^VVz z#BWjyC(pj9{>nmWz`D0MXX0!nUjf`1z2q!oAIVslPm~D-A7jd+P22pqFl!sk)t2Fl z{;Kt9?T-}Y%w-Xz`)AKjR3WKy&vnaaT#wReYK7Ad0$-d%=AZvbHALZluh|VMbj$J? za_|zaPeHtn(1WH{-kkQ>2qVAN`_VC1rj@kiYanbwvQ`)HXkDui1!)QCvRzX3j(6L& z<}1n9Qu?7jFla!W#NhuIvZvxCPMIa4ek}V-M|#T}eSS8i=;|7{zrwQ0GsE^u zbjzHg+c`OhLSlr&Al_5IUOIgi!vL)TGUeZop<-zRjM>JH0fO@3{v&q#7e0>OEI27b zh{eY3(!oA6n6^8m^Tto@#CtDG0j#H5t}<$80lg$yW`&6CfUXxpN~mOlH|`x&;&2gh zLCP7jOe1CB9N>Q(ahz*(A7n{v`gmy`)ZF1b(Y>R75bsosiY@2FpL~1c3T&5M)xjk= zQyVewZf47x!TlojfrlL5UIco@9dG)XyBPPJa#5Uu|rapz;g?KZ!8ZiH25b zxBb|f`N8~V-Y_RJH3`2xUi@D~x>2)09?x3leS(3Oq#9VDZ+t?w%!EXbE&o0w+s+uKp3!(KG z8VZlHJ1#^ZX@i!?y?4Gy?V1G|v_q7>Qf%sz9!S6#sHQh_DK&4%7!~@MWGs=ZKzmgm zj&%Gy%RZE=9$|y;UyP?ADhC>0jm#7{e?vW`i>$W3!&(U zDS8m8zY93->?OQMsYZfZLlh%ygqXfMI0R?$kxWfXZ~Poer5~ztb)q3%S+Z=4Zo*0QA1BnehUKY4YnS&6Nqbel|Y#UG}#W0_1F{UIAv z$pazf;mL0&Wr=crYy-YgqOV_5^?|<4+vvp5-TD5c7p2N)|K|GSxp3Q^aW?dG8KGs6 zXjtQ(dL(myh5!po4N`X-WbrmqmFXdJx<5*cu77c#xH*o%7-W<(r+-KRV1~6ABhx ztlBJm69>7;F?2jr>cES*l*2avvaW-u14u9&A|%C!CzPuS7Ltp>XR{!Wkn&B`_Ik0O zh|5E6gCYhe7!|C5zEbMrv13Xb^{rzf=;fEikTlb^3jwE)*e>B*J~C>wTvJ=xr>@G| zLpeEkciKb@?fFw(bhg_Pif^*-a8R5=Wcs(+j!iv(K6#-uVvYy z_RJr}21L$i0ANlfis<8fFbyA z$Z;G|M+F1j)j!EFdvY)*c*kun7e={^$Jt2+7| zr7V7=aDM&UAR+b}K?I6>RegS^ja84Kd+Ly!V=oUhYGQI%47JScB8wXRh#GbSps}!U z9!ow1nB>KRm3XJY%W_l^OMkp)dIjU0*}s{Df4&IfK4tPeu`?PcP0u)=u&>H+L7 z5wToT1Fmf8OAu=7?ukZ~3=qcvQWV&L(C@g|SffKfP`*IDj9z(wZ5KlkPDnb{@}wN+~pcEN`&)9ZFSOvpm$>L5evP zq(R~TG`OH(&c#dPKYW%LRnXUpc?v|yp%}jis*o=t&iW7x-gQKwsz_`~k8}T}FW)jd a?jH$o#*Gmt1R6ZtAFC>ADOAW=g#RCrms*Gb literal 0 HcmV?d00001 diff --git "a/1-analise-explorat\303\263ria-basica/04-probabilidade/img/regiao_critica_bilateral_aceitacao_exemplo.png" "b/1-analise-explorat\303\263ria-basica/04-probabilidade/img/regiao_critica_bilateral_aceitacao_exemplo.png" old mode 100644 new mode 100755 diff --git "a/1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/Distribui\303\247\303\265es.ipynb" "b/1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/Distribui\303\247\303\265es.ipynb" old mode 100644 new mode 100755 index fecb91b..5180d78 --- "a/1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/Distribui\303\247\303\265es.ipynb" +++ "b/1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/Distribui\303\247\303\265es.ipynb" @@ -1,5 +1,26 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Distribuições de probabilidade\n", + "\n", + "
    \n", + "\n", + "
    \n", + "\n", + "*fonte:Wikipedia*\n", + "\n", + "Em teoria da probabilidade e em estatística, uma distribuição de probabilidade descreve o comportamento aleatório de um fenômeno dependente do acaso. O estudo dos fenômenos aleatórios começou com o estudo dos jogos de azar – jogos de dados, sorteios de bolas de urna e cara ou coroa eram motivações para compreender e prever os experimentos aleatórios. Essas abordagens iniciais são fenômenos discretos, o que significa que o número de resultados possíveis é finito ou contável. Entretanto, certas questões revelam distribuições de probabilidade com suporte infinito não contável. Por exemplo, quando o lançamento de uma moeda tende ao infinito, o número de coroas aproxima-se de uma distribuição normal.\n", + "\n", + "Flutuações e variabilidade estão presentes em quase todo valor que pode ser medido durante a observação de um fenômeno, independente de sua natureza, além disso quase todas as medidas possuem uma parte de erro intrínseco. A distribuição de probabilidade pode modelar incertezas e descrever fenômenos físicos, biológicos, econômicos, entre outros. O domínio da estatística permite o encontro das distribuições de probabilidade adaptadas aos fenômenos aleatórios.\n", + "\n", + "Há muitas distribuições de probabilidade diferentes. Entre as distribuições de probabilidade, a distribuição normal tem uma importância particular. De acordo com o teorema central do limite, a distribuição normal aborda o comportamento assintótico de várias distribuições de probabilidade.\n", + "\n", + "O conceito de distribuição de probabilidade é formalizado matematicamente pela teoria da medida – uma distribuição de probabilidade é uma medida muitas vezes vista como uma distribuição que descreve o comportamento de uma variável aleatória discreta ou contínua. Uma medida é uma distribuição de probabilidade se sua massa total for 1. O estudo de uma variável aleatória de acordo com uma distribuição de probabilidade discreta revela o cálculo de somas e de séries, enquanto que o estudo de uma variável aleatória de acordo com uma distribuição de probabilidade absolutamente contínua revela o cálculo de integrais. As funções particulares permitem caracterizar as distribuições de probabilidade como a função de distribuição e a função característica. " + ] + }, { "cell_type": "markdown", "metadata": { @@ -7,7 +28,7 @@ "id": "EVE0sbeI2vi9" }, "source": [ - "# Amostra de distribuições com numpy e scipy\n", + "# Amostras para distribuições com numpy e scipy\n", "\n", "A biblioteca numpy oferece um conjunto de funções que geram valores aleatórios, esses valores podem vir de diferentes tipos de distribuições estatísticas e nos fornecem um conjunto de dados pertencentes aos valores do espaço de amostra dessas distribuições.\n", "\n", @@ -21,12 +42,14 @@ "\n", "Vamos trabalhar com dados de diferentes distribuições (dados por numpy.random) para visualizar o comportamento dessas variáveis. A quantidade de dados será grande para podermos apreciar corretamente sua forma gráfica.\n", "\n", - "É importante reconhecer visualmente o comportamento estatístico das variáveis, já que é uma primeira aproximação à modelagem e previsão desses dados. Muitas vezes é possível ter uma ideia de como eles se comportam matematicamente apenas visualizando-os em um gráfico.\n" + "É importante reconhecer visualmente o comportamento estatístico das variáveis, já que é uma primeira aproximação à modelagem e previsão desses dados. Muitas vezes é possível ter uma ideia de como eles se comportam matematicamente apenas visualizando-os em um gráfico.\n", + "\n", + "Para biblioteca original [clique aqui](https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.random.html)" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 62, "metadata": { "colab": { "autoexec": { @@ -44,7 +67,10 @@ "import numpy as np\n", "import pandas as pd\n", "from scipy import stats\n", - "import seaborn as sns" + "import seaborn as sns\n", + "\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" ] }, { @@ -54,8 +80,8 @@ "id": "37EluvzT2vi-" }, "source": [ - "### Distribuição uniforme discreta.\n", - "Diz-se que uma variável segue uma distribuição uniforme discreta (se escreve **_X_ ~ ** _unif_ {$x_1, x_2, ... x_n$}) se a probabilidade de aparição dos valores em cada ensaio for constante e igual: \n", + "# Distribuição uniforme discreta\n", + "Diz-se que uma variável segue uma distribuição uniforme discreta (se escreve **_X_ ~ ** unif {$x_1, x_2, ... x_n$}) se a probabilidade de aparição dos valores em cada ensaio for constante e igual: \n", "\n", "\\begin{equation*}\n", "P(x_i)= \\dfrac{1}{n}\n", @@ -63,12 +89,12 @@ "\n", "Onde **_P_** é a probabilidade, **_x_** valores dentro do espaço amostral e **_n_** a quantidade de elementos do espaço amostral.\n", "\n", - "A seguir, vamos realizar uma chamada à função ```randint``` que ajusta a valores provenientes de uma distribuição uniforme discreta, com a motivação de simular o lançamento de um dado equilibrado 6000 vezes..." + "A seguir, vamos realizar uma chamada à função ```randint``` que ajusta a valores provenientes de uma distribuição uniforme discreta, com a motivação de simular o lançamento de um dado equilibrado 6000 vezes." ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 41, "metadata": { "colab": { "autoexec": { @@ -81,17 +107,9 @@ "outputId": "a3bad4ce-2e84-4e3d-f62e-fae46c2d7b3f" }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\sn3fru\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", - " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEKCAYAAAAb7IIBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEaBJREFUeJzt3WusZlV9x/HvT0YF8TLAjARnxo6XUWuoCj1FlIZasEbUOJNUEimV0ZBOatFiaSLoG3p5A9GItbakUwYdFBEEFLREJVzqpQGdAeTiSJgAwinoHOUiSq0F/n3xrJHDcObCec45D3PW95OcPHuvvfZeaxPm/J699t7rpKqQJPXnGaPugCRpNAwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcWjLoDO7Jo0aJavnz5qLshSbuVjRs3/qyqFu+s3tM6AJYvX86GDRtG3Q1J2q0k+fGu1HMISJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOvW0fhNY6sUXrr1rxo71Z69/8YwdS/ObVwCS1CkDQJI6ZQBIUqcMAEnq1E4DIMnZSbYkuXlS2b5JLk9yW/vcp5UnyaeSbE5yY5KDJ+2zutW/Lcnq2TkdSdKu2pWngD4LfBo4Z1LZKcAVVXVaklPa+snAUcCK9vN64Ezg9Un2BU4FxoACNia5tKrun6kTkfT05pNOTz87DYCq+laS5dsUrwTe1JbXA1czCICVwDlVVcA1SRYmOaDVvbyq7gNIcjnwVuC8oc9Akp4mdreQm+49gP2r6l6A9vnCVr4EuHtSvfFWtr3yJ0myJsmGJBsmJiam2T1J0s7M9ItgmaKsdlD+5MKqtcBagLGxsSnrqC+727cqaXcx3QD4aZIDqureNsSzpZWPA8sm1VsK3NPK37RN+dXTbHuX+YtDkrZvukNAlwJbn+RZDVwyqfy49jTQocCDbYjoG8BbkuzTnhh6SyuTJI3ITq8AkpzH4Nv7oiTjDJ7mOQ24IMnxwF3A0a36ZcDbgM3Aw8D7AKrqviT/CHy/1fuHrTeEJUmjsStPAR2znU1HTlG3gBO2c5yzgbOfUu8kSbPGN4ElqVMGgCR1ygCQpE4ZAJLUKQNAkjrln4Tczfmym6Tp8gpAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUqaECIMnfJLklyc1JzkuyZ5KXJLk2yW1Jzk/yrFb32W19c9u+fCZOQJI0PdMOgCRLgL8GxqrqQGAP4N3A6cAZVbUCuB84vu1yPHB/Vb0cOKPVkySNyLBDQAuAvZIsAJ4D3AscAVzYtq8HVrXllW2dtv3IJBmyfUnSNE07AKrqv4GPA3cx+MX/ILAReKCqHmnVxoElbXkJcHfb95FWf7/pti9JGs4wQ0D7MPhW/xLgRcDewFFTVK2tu+xg2+TjrkmyIcmGiYmJ6XZPkrQTwwwBvRm4o6omqur/gIuBNwIL25AQwFLgnrY8DiwDaNtfANy37UGram1VjVXV2OLFi4foniRpR4YJgLuAQ5M8p43lHwn8ELgKeFersxq4pC1f2tZp26+sqiddAUiS5sYw9wCuZXAz9zrgpnastcDJwElJNjMY41/XdlkH7NfKTwJOGaLfkqQhLdh5le2rqlOBU7cpvh04ZIq6vwaOHqY9SdLM8U1gSeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6NVQAJFmY5MIkP0qyKckbkuyb5PIkt7XPfVrdJPlUks1Jbkxy8MycgiRpOoa9Avgn4OtV9SrgtcAm4BTgiqpaAVzR1gGOAla0nzXAmUO2LUkawrQDIMnzgcOBdQBV9ZuqegBYCaxv1dYDq9rySuCcGrgGWJjkgGn3XJI0lGGuAF4KTACfSXJ9krOS7A3sX1X3ArTPF7b6S4C7J+0/3sokSSMwTAAsAA4Gzqyqg4Bf8fhwz1QyRVk9qVKyJsmGJBsmJiaG6J4kaUeGCYBxYLyqrm3rFzIIhJ9uHdppn1sm1V82af+lwD3bHrSq1lbVWFWNLV68eIjuSZJ2ZNoBUFU/Ae5O8spWdCTwQ+BSYHUrWw1c0pYvBY5rTwMdCjy4dahIkjT3Fgy5/weBc5M8C7gdeB+DULkgyfHAXcDRre5lwNuAzcDDra4kaUSGCoCqugEYm2LTkVPULeCEYdqTJM0c3wSWpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTQwdAkj2SXJ/ka239JUmuTXJbkvOTPKuVP7utb27blw/btiRp+mbiCuBEYNOk9dOBM6pqBXA/cHwrPx64v6peDpzR6kmSRmSoAEiyFHg7cFZbD3AEcGGrsh5Y1ZZXtnXa9iNbfUnSCAx7BfBJ4MPAY219P+CBqnqkrY8DS9ryEuBugLb9wVb/CZKsSbIhyYaJiYkhuydJ2p5pB0CSdwBbqmrj5OIpqtYubHu8oGptVY1V1djixYun2z1J0k4sGGLfw4B3JnkbsCfwfAZXBAuTLGjf8pcC97T648AyYDzJAuAFwH1DtC9JGsK0rwCq6iNVtbSqlgPvBq6sqmOBq4B3tWqrgUva8qVtnbb9yqp60hWAJGluzMZ7ACcDJyXZzGCMf10rXwfs18pPAk6ZhbYlSbtomCGg36qqq4Gr2/LtwCFT1Pk1cPRMtCdJGp5vAktSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROTTsAkixLclWSTUluSXJiK983yeVJbmuf+7TyJPlUks1Jbkxy8EydhCTpqRvmCuAR4G+r6neBQ4ETkrwaOAW4oqpWAFe0dYCjgBXtZw1w5hBtS5KGNO0AqKp7q+q6tvwQsAlYAqwE1rdq64FVbXklcE4NXAMsTHLAtHsuSRrKjNwDSLIcOAi4Fti/qu6FQUgAL2zVlgB3T9ptvJVJkkZg6ABI8lzgIuBDVfWLHVWdoqymON6aJBuSbJiYmBi2e5Kk7RgqAJI8k8Ev/3Or6uJW/NOtQzvtc0srHweWTdp9KXDPtsesqrVVNVZVY4sXLx6me5KkHRjmKaAA64BNVfWJSZsuBVa35dXAJZPKj2tPAx0KPLh1qEiSNPcWDLHvYcB7gJuS3NDKPgqcBlyQ5HjgLuDotu0y4G3AZuBh4H1DtC1JGtK0A6CqvsPU4/oAR05Rv4ATptueJGlm+SawJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdmvMASPLWJLcm2ZzklLluX5I0MKcBkGQP4F+Ao4BXA8ckefVc9kGSNDDXVwCHAJur6vaq+g3wRWDlHPdBksTcB8AS4O5J6+OtTJI0xxbMcXuZoqyeUCFZA6xpq79McusQ7S0CfjbE/r917EwcZPYNdb67yTlu6ymd8256jtva4TnPk3Pc1hPOeZ6e4xMcO9y/59/ZlUpzHQDjwLJJ60uBeyZXqKq1wNqZaCzJhqoam4lj7Q56O1/wnHvhOc+OuR4C+j6wIslLkjwLeDdw6Rz3QZLEHF8BVNUjST4AfAPYAzi7qm6Zyz5IkgbmegiIqroMuGyOmpuRoaTdSG/nC55zLzznWZCq2nktSdK841QQktSpeRcASc5OsiXJzaPuy1xJsizJVUk2JbklyYmj7tNsS7Jnku8l+UE7578fdZ/mQpI9klyf5Guj7stcSXJnkpuS3JBkw6j7M9uSLExyYZIftX/Tb5i1tubbEFCSw4FfAudU1YGj7s9cSHIAcEBVXZfkecBGYFVV/XDEXZs1SQLsXVW/TPJM4DvAiVV1zYi7NquSnASMAc+vqneMuj9zIcmdwFhVzcg7PU93SdYD366qs9rTks+pqgdmo615dwVQVd8C7ht1P+ZSVd1bVde15YeATczzN6xr4Jdt9ZntZ359m9lGkqXA24GzRt0XzY4kzwcOB9YBVNVvZuuXP8zDAOhdkuXAQcC1o+3J7GvDITcAW4DLq2q+n/MngQ8Dj426I3OsgG8m2dhmCpjPXgpMAJ9pQ31nJdl7thozAOaRJM8FLgI+VFW/GHV/ZltVPVpVr2PwRvkhSebtkF+SdwBbqmrjqPsyAodV1cEMZhE+oQ3zzlcLgIOBM6vqIOBXwKxNm28AzBNtHPwi4NyqunjU/ZlL7RL5auCtI+7KbDoMeGcbD/8icESSz4+2S3Ojqu5pn1uALzOYVXi+GgfGJ13NXsggEGaFATAPtBui64BNVfWJUfdnLiRZnGRhW94LeDPwo9H2avZU1UeqamlVLWcwhcqVVfXnI+7WrEuyd3uwgTYU8hZg3j7hV1U/Ae5O8spWdCQwaw9zzPmbwLMtyXnAm4BFScaBU6tq3Wh7NesOA94D3NTGxAE+2t66nq8OANa3PzL0DOCCqurm0ciO7A98efAdhwXAF6rq66Pt0qz7IHBuewLoduB9s9XQvHsMVJK0axwCkqROGQCS1CkDQJI6ZQBIUqcMAM0bSRYkObE9GSRpJwwAzSenAPdV1aOj7si2krw3yaenKF+Y5K8mrb8oyYXbOcbVSbr6u7iaXQaA5oUkC4A7q+pzs3j82bAQ+G0AVNU9VfWuWWpLegIDQLuFJMvb3Oj/3ub//2Z7A5gkVwOvq6rPJ1nUpkvY+q37K0m+muSOJB9IclKbZOuaJPu2ei9L8vU22di3k7yqlX82ySeSXAWcnmTfdrwb2/6vmaKfeyb5TJu//vokfzxp87LWzq1JTm1lpwEva3Pdf6yd583tWHsl+WJr73xgr0ntHNPauDnJ6TP931t9mHdvAmteWwEcU1V/keQC4E+Bnc2HcyCD2VH3BDYDJ1fVQUnOAI5jMMPmWuAvq+q2JK8H/hU4ou3/CuDNVfVokn8Grq+qVUmOAM4BXrdNeycAVNXvtSD5ZpJXtG2HtP48DHw/yX8wGLY6sE1qt3U2163eDzxcVa9pYXNdq/Mi4HTg94H7WxurquorO/sPKE3mFYB2J3dU1dapLjYCy3dhn6uq6qGqmgAeBL7aym8ClrcZVN8IfKlNo/FvDKaZ2OpLk+4p/CHwOYCquhLYL8kLtmlvcp0fAT9mECIwmLL651X1P8DFre6OHE4LuKq6Ebixlf8BcHVVTVTVI8C5ra70lHgFoN3J/05afpTHh0Qe4fEvM3vuYJ/HJq0/xuD//2cAD2z9Bj6FX01azhTbt51LZao626u7K/OwTFVnR21Iu8wrAM0HdzIYDgF4SjdQ299NuCPJ0TCYWTXJa7dT/VvAsa3em4CfTfF3FybXeQXwYuDWtu1P2n2EvYBVwHeBh4Dn7UJ7BwJb7zlcC/xRu9+xB3AM8J+7fNJSYwBoPvg48P4k/wUsmsb+xwLHJ/kBcAuwcjv1/g4YS3Ijg5u3q6eo86/AHkluAs4H3ltVW686vsNgeOgG4KKq2lBVPwe+227mfmybY50JPLe192HgezD4E6DAR4CrgB8A11XVJdM4b3XO2UAlqVNeAUhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI69f+h6YR5ZAOlJAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEKCAYAAAAb7IIBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEYpJREFUeJzt3WuwXlV9x/HvT6KCeAmXyGASG9SodagKPUWUDrVgHVHHMFOZkVKJDNNMLVosnRH0Db28kdERa1uZpgQNilwEFLSMynCplw5oAsjFwJABhFPQHOUiSK0F/n3xrMghnFw4zznnIWd9PzNnnr3XXnuvtTNJfs9ee+91UlVIkvrznFF3QJI0GgaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMLRt2Bbdl7771r2bJlo+6GJO1U1q9f//OqWrS9es/qAFi2bBnr1q0bdTckaaeS5Cc7Us8hIEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6tSz+k1gCeDL1949Y8f6sze9fMaOJe3svAKQpE55BbCT89uxpOnyCkCSOrXdAEhyVpJNSW6eVLZnksuT3N4+92jlSfLZJBuT3JjkwEn7rGz1b0+ycnZOR5K0o3bkCuALwDu2KDsFuKKqlgNXtHWAI4Dl7WcVcAYMAgM4FXgTcBBw6ubQkCSNxnbvAVTVd5Is26J4BfDWtrwWuBo4uZWfXVUFXJNkYZJ9W93Lq+p+gCSXMwiVc4c+A0l6ltjZ7slN9x7APlV1H0D7fGkrXwzcM6neeCvbWvnTJFmVZF2SdRMTE9PsniRpe2b6KaBMUVbbKH96YdVqYDXA2NjYlHWk+WZn++ao+WG6VwA/a0M7tM9NrXwcWDqp3hLg3m2US5JGZLoBcCmw+UmelcAlk8qPbU8DHQw81IaIvgW8Pcke7ebv21uZJGlEtjsElORcBjdx904yzuBpnk8AFyQ5HrgbOKpVvwx4J7AReBQ4DqCq7k/yj8APW71/2HxDWJI0GjvyFNDRW9l0+BR1CzhhK8c5CzjrGfVOkjRrfBNYkjrlXECS5oRPOj37zOsA8C+cJG2dQ0CS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnq1FABkORvktyS5OYk5ybZNcl+Sa5NcnuS85M8r9V9flvf2LYvm4kTkCRNz7QDIMli4K+BsaraH9gFeB9wGnB6VS0HHgCOb7scDzxQVa8CTm/1JEkjMuwQ0AJgtyQLgBcA9wGHARe27WuBI9vyirZO2354kgzZviRpmqYdAFX138CngLsZ/Mf/ELAeeLCqHmvVxoHFbXkxcE/b97FWf68tj5tkVZJ1SdZNTExMt3uSpO0YZghoDwbf6vcDXgbsDhwxRdXavMs2tj1ZULW6qsaqamzRokXT7Z4kaTuGGQJ6G3BnVU1U1f8BFwNvARa2ISGAJcC9bXkcWArQtr8EuH+I9iVJQxgmAO4GDk7ygjaWfzjwY+Aq4L2tzkrgkrZ8aVunbb+yqp52BSBJmhvD3AO4lsHN3OuAm9qxVgMnAycl2chgjH9N22UNsFcrPwk4ZYh+S5KGtGD7Vbauqk4FTt2i+A7goCnq/ho4apj2JEkzxzeBJalTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnq1FABkGRhkguT3JpkQ5I3J9kzyeVJbm+fe7S6SfLZJBuT3JjkwJk5BUnSdAx7BfBPwDer6rXAG4ANwCnAFVW1HLiirQMcASxvP6uAM4ZsW5I0hGkHQJIXA4cCawCq6jdV9SCwAljbqq0FjmzLK4Cza+AaYGGSfafdc0nSUIa5AngFMAF8Psn1Sc5MsjuwT1XdB9A+X9rqLwbumbT/eCt7iiSrkqxLsm5iYmKI7kmStmWYAFgAHAicUVUHAL/iyeGeqWSKsnpaQdXqqhqrqrFFixYN0T1J0rYMEwDjwHhVXdvWL2QQCD/bPLTTPjdNqr900v5LgHuHaF+SNIRpB0BV/RS4J8lrWtHhwI+BS4GVrWwlcElbvhQ4tj0NdDDw0OahIknS3Fsw5P4fBs5J8jzgDuA4BqFyQZLjgbuBo1rdy4B3AhuBR1tdSdKIDBUAVXUDMDbFpsOnqFvACcO0J0maOb4JLEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjo1dAAk2SXJ9Um+0db3S3JtktuTnJ/kea38+W19Y9u+bNi2JUnTNxNXACcCGyatnwacXlXLgQeA41v58cADVfUq4PRWT5I0IkMFQJIlwLuAM9t6gMOAC1uVtcCRbXlFW6dtP7zVlySNwLBXAJ8BPgo80db3Ah6sqsfa+jiwuC0vBu4BaNsfavUlSSMw7QBI8m5gU1Wtn1w8RdXagW2Tj7sqybok6yYmJqbbPUnSdgxzBXAI8J4kdwHnMRj6+QywMMmCVmcJcG9bHgeWArTtLwHu3/KgVbW6qsaqamzRokVDdE+StC3TDoCq+lhVLamqZcD7gCur6hjgKuC9rdpK4JK2fGlbp22/sqqedgUgSZobs/EewMnASUk2MhjjX9PK1wB7tfKTgFNmoW1J0g5asP0q21dVVwNXt+U7gIOmqPNr4KiZaE+SNDzfBJakThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVPTDoAkS5NclWRDkluSnNjK90xyeZLb2+cerTxJPptkY5Ibkxw4UychSXrmhrkCeAz426r6XeBg4IQkrwNOAa6oquXAFW0d4AhgeftZBZwxRNuSpCFNOwCq6r6quq4tPwxsABYDK4C1rdpa4Mi2vAI4uwauARYm2XfaPZckDWVG7gEkWQYcAFwL7FNV98EgJICXtmqLgXsm7TbeyiRJIzB0ACR5IXAR8JGq+uW2qk5RVlMcb1WSdUnWTUxMDNs9SdJWDBUASZ7L4D//c6rq4lb8s81DO+1zUysfB5ZO2n0JcO+Wx6yq1VU1VlVjixYtGqZ7kqRtGOYpoABrgA1V9elJmy4FVrbllcAlk8qPbU8DHQw8tHmoSJI09xYMse8hwPuBm5Lc0Mo+DnwCuCDJ8cDdwFFt22XAO4GNwKPAcUO0LUka0rQDoKq+x9Tj+gCHT1G/gBOm254kaWb5JrAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6pQBIEmdMgAkqVMGgCR1ygCQpE4ZAJLUKQNAkjplAEhSpwwASeqUASBJnTIAJKlTBoAkdcoAkKROGQCS1CkDQJI6ZQBIUqcMAEnqlAEgSZ2a8wBI8o4ktyXZmOSUuW5fkjQwpwGQZBfgX4EjgNcBRyd53Vz2QZI0MNdXAAcBG6vqjqr6DXAesGKO+yBJYu4DYDFwz6T18VYmSZpjC+a4vUxRVk+pkKwCVrXVR5LcNkR7ewM/H2L/3zpmJg4y+4Y6353kHLf0jM55Jz3HLW3znOfJOW7pKec8T8/xKY4Z7t/z7+xIpbkOgHFg6aT1JcC9kytU1Wpg9Uw0lmRdVY3NxLF2Br2dL3jOvfCcZ8dcDwH9EFieZL8kzwPeB1w6x32QJDHHVwBV9ViSDwHfAnYBzqqqW+ayD5KkgbkeAqKqLgMum6PmZmQoaSfS2/mC59wLz3kWpKq2X0uSNO84FYQkdWreBUCSs5JsSnLzqPsyV5IsTXJVkg1Jbkly4qj7NNuS7JrkB0l+1M7570fdp7mQZJck1yf5xqj7MleS3JXkpiQ3JFk36v7MtiQLk1yY5Nb2b/rNs9bWfBsCSnIo8AhwdlXtP+r+zIUk+wL7VtV1SV4ErAeOrKofj7hrsyZJgN2r6pEkzwW+B5xYVdeMuGuzKslJwBjw4qp696j7MxeS3AWMVdWMvNPzbJdkLfDdqjqzPS35gqp6cDbamndXAFX1HeD+UfdjLlXVfVV1XVt+GNjAPH/DugYeaavPbT/z69vMFpIsAd4FnDnqvmh2JHkxcCiwBqCqfjNb//nDPAyA3iVZBhwAXDvansy+NhxyA7AJuLyq5vs5fwb4KPDEqDsyxwr4dpL1baaA+ewVwATw+TbUd2aS3WerMQNgHknyQuAi4CNV9ctR92e2VdXjVfVGBm+UH5Rk3g75JXk3sKmq1o+6LyNwSFUdyGAW4RPaMO98tQA4EDijqg4AfgXM2rT5BsA80cbBLwLOqaqLR92fudQuka8G3jHirsymQ4D3tPHw84DDknxptF2aG1V1b/vcBHyVwazC89U4MD7pavZCBoEwKwyAeaDdEF0DbKiqT4+6P3MhyaIkC9vybsDbgFtH26vZU1Ufq6olVbWMwRQqV1bVn4+4W7Muye7twQbaUMjbgXn7hF9V/RS4J8lrWtHhwKw9zDHnbwLPtiTnAm8F9k4yDpxaVWtG26tZdwjwfuCmNiYO8PH21vV8tS+wtv2SoecAF1RVN49GdmQf4KuD7zgsAL5cVd8cbZdm3YeBc9oTQHcAx81WQ/PuMVBJ0o5xCEiSOmUASFKnDABJ6pQBIEmdMgA0byRZkOTE9mSQpO0wADSfnALcX1WPj7ojW0rygST/MkX5wiR/NWn9ZUku3Moxrk7S1e/F1ewyADQvJFkA3FVVX5zF48+GhcBvA6Cq7q2q985SW9JTGADaKSRZ1uZG//c2//+32xvAJLkaeGNVfSnJ3m26hM3fur+W5OtJ7kzyoSQntUm2rkmyZ6v3yiTfbJONfTfJa1v5F5J8OslVwGlJ9mzHu7Ht//op+rlrks+3+euvT/LHkzYvbe3cluTUVvYJ4JVtrvtPtvO8uR1rtyTntfbOB3ab1M7RrY2bk5w203/e6sO8exNY89py4Oiq+oskFwB/CmxvPpz9GcyOuiuwETi5qg5IcjpwLIMZNlcDf1lVtyd5E/A54LC2/6uBt1XV40n+Gbi+qo5MchhwNvDGLdo7AaCqfq8FybeTvLptO6j151Hgh0n+g8Gw1f5tUrvNs7lu9kHg0ap6fQub61qdlwGnAb8PPNDaOLKqvra9P0BpMq8AtDO5s6o2T3WxHli2A/tcVVUPV9UE8BDw9VZ+E7CszaD6FuArbRqNf2MwzcRmX5l0T+EPgS8CVNWVwF5JXrJFe5Pr3Ar8hEGIwGDK6l9U1f8AF7e623IoLeCq6kbgxlb+B8DVVTVRVY8B57S60jPiFYB2Jv87aflxnhwSeYwnv8zsuo19npi0/gSDv//PAR7c/A18Cr+atJwptm85l8pUdbZWd0fmYZmqzrbakHaYVwCaD+5iMBwC8IxuoLbfm3BnkqNgMLNqkjdspfp3gGNavbcCP5/i9y5MrvNq4OXAbW3bn7T7CLsBRwLfBx4GXrQD7e0PbL7ncC3wR+1+xy7A0cB/7vBJS40BoPngU8AHk/wXsPc09j8GOD7Jj4BbgBVbqfd3wFiSGxncvF05RZ3PAbskuQk4H/hAVW2+6vgeg+GhG4CLqmpdVf0C+H67mfvJLY51BvDC1t5HgR/A4FeAAh8DrgJ+BFxXVZdM47zVOWcDlaROeQUgSZ0yACSpUwaAJHXKAJCkThkAktQpA0CSOmUASFKnDABJ6tT/A7/YdfTnLhxoAAAAAElFTkSuQmCC\n", "text/plain": [ "

    " ] @@ -119,38 +137,63 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 42, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEQpJREFUeJzt3X+M5Hddx/Hnmx6F0qVHoXTBo7ggUCwcSG9olB91FwyUHrGgxUCQ8MtsQG0KKdojRKMS4gGWgAlGm4JAVBbUNtEeP6zQbSVwhV0o3JVr7Q8uoQdeRaCw2LQevP1jvuvtLjM73+nOd+b7ic9HMtn5fuczM6/7TOa13x8ze5GZSJLK8YBJB5AkDcfilqTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBVmWxMPetppp+XMzEzP2370ox9x8sknN/G0W9bmbNDufG3OBubbijZng3bnGybb8vLydzLzkbUGZ+bIL7t27cp+rr322r63TVqbs2W2O1+bs2WabyvanC2z3fmGyQYsZc2O9VCJJBXG4pakwljcklQYi1uSCmNxS1JhahV3RDwsIv4hIm6OiEMR8UtNB5Mk9Vb3c9zvAz6VmRdGxInAQxrMJEnaxMDijohTgHOB1wBk5n3Afc3GkiT1U+dQyeOB/wT+OiK+EhFXREQ7v6YkSf8PRA74z4IjogPsB56dmTdExPuAH2TmH2wYNw/MA0xPT+9aWFjo+XgrKytMTU2NIvvItTkbtDtfm7OB+baizdmgd74DR+6eSJadO7avWx5m7ubm5pYzs1NnbJ3ifhSwPzNnquXnAnsyc3e/+3Q6nVxaWup52+LiIrOzs3WyjV2bs0G787U5G5hvK9qcDXrnm9mzbyJZDu9dX4vDzF1E1C7ugYdKMvM/gG9GxJnVqucDX6+VRJI0cnU/VXIR8LfVJ0ruAF7bXCRJ0mZqFXdm3gjU2oSXJDXLb05KUmEsbkkqjMUtSYWxuCWpMBa3JBXG4pakwljcklQYi1uSCmNxS1JhLG5JKozFLUmFsbglqTAWtyQVxuKWpMJY3JJUGItbkgpjcUtSYSxuSSqMxS1JhbG4JakwFrckFcbilqTCWNySVBiLW5IKY3FLUmEsbkkqzLY6gyLiMPBD4MfAsczsNBlKktRfreKuzGXmdxpLIkmqxUMlklSYyMzBgyK+AXwPSOCvMvPyHmPmgXmA6enpXQsLCz0fa2Vlhampqa1kbkybs0G787U5G5hvK+5vtgNH7m4gzU+bPgmO3jOWpxpo547t65aHmbu5ubnluoeh6xb3z2TmtyLidOAa4KLMvL7f+E6nk0tLSz1vW1xcZHZ2tk62sWtzNmh3vjZnA/Ntxf3NNrNn3+jD9HDJzmNcdmCYo77NObx397rlYeYuImoXd61DJZn5rernXcBVwDm1kkiSRm5gcUfEyRHx0NXrwAuAg00HkyT1Vmf/Yhq4KiJWx/9dZn6q0VSSpL4GFndm3gE8fQxZJEk1+HFASSqMxS1JhbG4JakwFrckFcbilqTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBXG4pakwljcklQYi1uSCmNxS1JhLG5JKozFLUmFsbglqTAWtyQVxuKWpMJY3JJUGItbkgpjcUtSYSxuSSpM7eKOiBMi4isRcXWTgSRJmxtmi/ti4FBTQSRJ9dQq7oh4DLAbuKLZOJKkQepucb8X+H3gJw1mkSTVEJm5+YCIFwPnZ+ZvR8Qs8JbMfHGPcfPAPMD09PSuhYWFno+3srLC1NTUVnM3os3ZoN352pwNjuc7cOTuSUfpafokOHrPpFP01uZs0K58O3dsX7c8zPtibm5uOTM7dcbWKe4/BV4FHAMeDJwCXJmZv9nvPp1OJ5eWlnretri4yOzsbJ1sY9fmbNDufG3OBsfzzezZN+koPV2y8xiXHdg26Rg9tTkbtCvf4b271y0P876IiNrFPfBQSWa+NTMfk5kzwMuBz25W2pKkZvk5bkkqzFD7F5m5CCw2kkSSVItb3JJUGItbkgpjcUtSYSxuSSqMxS1JhbG4JakwFrckFcbilqTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBXG4pakwljcklQYi1uSCmNxS1JhLG5JKozFLUmFsbglqTAWtyQVxuKWpMJY3JJUGItbkgozsLgj4sER8cWI+GpE3BQRfzyOYJKk3rbVGHMv8LzMXImIBwKfi4hPZub+hrNJknoYWNyZmcBKtfjA6pJNhpIk9RfdXh4wKOIEYBl4AvD+zLy0x5h5YB5genp618LCQs/HWllZYWpqaiuZG9PmbNDufMNmO3Dk7gbT/LTpk+DoPWN9yqG0OV+bs0G78u3csX3d8jDvi7m5ueXM7NQZW6u4/29wxMOAq4CLMvNgv3GdTieXlpZ63ra4uMjs7Gzt5xynNmeDducbNtvMnn3Nhenhkp3HuOxAnSODk9HmfG3OBu3Kd3jv7nXLw7wvIqJ2cQ/1qZLM/D6wCJw3zP0kSaNT51Mlj6y2tImIk4BfAW5uOpgkqbc6+xePBj5cHed+APDxzLy62ViSpH7qfKrka8AzxpBFklSD35yUpMJY3JJUGItbkgpjcUtSYSxuSSqMxS1JhbG4JakwFrckFcbilqTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBXG4pakwljcklQYi1uSCmNxS1JhLG5JKozFLUmFsbglqTAWtyQVxuKWpMIMLO6IOCMiro2IQxFxU0RcPI5gkqTettUYcwy4JDO/HBEPBZYj4prM/HrD2SRJPQzc4s7Mb2fml6vrPwQOATuaDiZJ6m2oY9wRMQM8A7ihiTCSpMEiM+sNjJgCrgPekZlX9rh9HpgHmJ6e3rWwsNDzcVZWVpiamur7PAeO3F0rTxOmT4Kj90zs6Qdqc742ZwPzbUWbs0G78u3csX3d8qC+W2tubm45Mzt1xtYq7oh4IHA18OnMfM+g8Z1OJ5eWlnretri4yOzsbN/7zuzZNzBPUy7ZeYzLDtQ57D8Zbc7X5mxgvq1oczZoV77De3evWx7Ud2tFRO3irvOpkgA+AByqU9qSpGbVOcb9bOBVwPMi4sbqcn7DuSRJfQzcv8jMzwExhiySpBr85qQkFcbilqTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBXG4pakwljcklQYi1uSCmNxS1JhLG5JKozFLUmFsbglqTAWtyQVxuKWpMJY3JJUGItbkgpjcUtSYSxuSSqMxS1JhbG4JakwFrckFcbilqTCDCzuiPhgRNwVEQfHEUiStLk6W9wfAs5rOIckqaaBxZ2Z1wPfHUMWSVINkZmDB0XMAFdn5lM3GTMPzANMT0/vWlhY6DluZWWFqampvs914MjdA/M0ZfokOHrPxJ5+oDbna3M2MN9WtDkbtCvfzh3b1y0P6ru15ubmljOzU2fstuGj9ZaZlwOXA3Q6nZydne05bnFxkX63Abxmz75RRRraJTuPcdmBkU3JyLU5X5uzgfm2os3ZoF35Dr9ydt3yoL67v/xUiSQVxuKWpMLU+TjgR4EvAGdGxJ0R8frmY0mS+hl4YCgzXzGOIJKkejxUIkmFsbglqTAWtyQVxuKWpMJY3JJUGItbkgpjcUtSYSxuSSqMxS1JhbG4JakwFrckFcbilqTCWNySVBiLW5IKY3FLUmEsbkkqjMUtSYWxuCWpMBa3JBXG4pakwljcklQYi1uSCmNxS1JhLG5JKozFLUmFqVXcEXFeRNwSEbdFxJ6mQ0mS+htY3BFxAvB+4EXAWcArIuKspoNJknqrs8V9DnBbZt6RmfcBC8AFzcaSJPVTp7h3AN9cs3xntU6SNAGRmZsPiHgZ8MLM/K1q+VXAOZl50YZx88B8tXgmcEufhzwN+M5WQjeozdmg3fnanA3MtxVtzgbtzjdMtp/NzEfWGbitxpg7gTPWLD8G+NbGQZl5OXD5oAeLiKXM7NQJN25tzgbtztfmbGC+rWhzNmh3vqay1TlU8iXgiRHxuIg4EXg58E+jDiJJqmfgFndmHouI3wU+DZwAfDAzb2o8mSSppzqHSsjMTwCfGNFzDjycMkFtzgbtztfmbGC+rWhzNmh3vkayDTw5KUlqF7/yLkmFGXlxR8TFEXEwIm6KiDetWX9R9bX5myLiXWvWv7X6Kv0tEfHCUeepky8iPhYRN1aXwxFx4yTy9cn2CxGxv8q2FBHnVOsjIv68yva1iDi7yWyb5Ht6RHwhIg5ExD9HxClrxjc6dxHxwYi4KyIOrln38Ii4JiJurX6eWq3vO18R8epq/K0R8eoJZHtyNYf3RsRbNjxOI39uYsh8r6zm7GsR8fmIeHqT+YbMdkGVa/X98Zw19xn56zpsvjW3PzMifhwRF44kX2aO7AI8FTgIPITu8fN/BZ4IzFXXH1SNO736eRbwVeBBwOOA24ETRpmpTr4NYy4D/nDc+TaZu38BXlSNOR9YXHP9k0AAvwjc0NS8Dcj3JeCXqzGvA94+rrkDzgXOBg6uWfcuYE91fQ/wzs3mC3g4cEf189Tq+qljznY68EzgHcBb1ow/oZq3xwMnVvN51gTm7lmrc0L3T1/c0GS+IbNNcfyQ79OAm5t8XYfNt2aePkv3POGFo8g36i3unwf2Z+Z/Z+Yx4DrgpcAbgb2ZeS9AZt5Vjb8AWMjMezPzG8BtdL9i35R++YDuVhnwG8BHJ5CvX7YEVrdit3P8M/QXAB/Jrv3AwyLi0Q1l2yzfmcD11ZhrgF9fk6/RucvM64Hvblh9AfDh6vqHgZesWd9rvl4IXJOZ383M71X/hvPGmS0z78rMLwH/s2F8Y39uYsh8n6/mBmA/3e9yNJZvyGwrWTUhcDLd9ws09LoOm69yEfCPwF1r1m0p36iL+yBwbkQ8IiIeQncr5wzgScBzI+KGiLguIp5ZjR/31+n75Vv1XOBoZt46gXz9sr0JeHdEfBP4M+CtE8i2Wb6DwK9WY17G8fmc1J9KmM7MbwNUP08fkGecOftl62fcc1gn3+vp7rmMO1/fbBHx0oi4GdhHd69v3Nn65ouIHXQ3cP5yw/gt5RtpcWfmIeCddH97fIrurtMxurvWp9LdRf094OPV1m30ephRZqqZb9UrOL61zTjzbZLtjcCbM/MM4M3AB8adbUC+1wG/ExHLwEOB+yaRr4Z+edqWc61WZYuIObrFfenqqh7Dxp4vM6/KzCfT3cp9e7W6FdmA9wKXZuaPN6zfUr6Rn5zMzA9k5tmZeS7d3Ylb6f42ubLaTf0i8BO63+Gv9XX6MeQjIrYBvwZ8bM3wsebrk+3VwJXVkL/n+OGGVsxdZt6cmS/IzF10f+ndPql8laOrh4yqn6u7p/3yjDNnv2z9jHsO++aLiKcBVwAXZOZ/TSDfwLmrDmH8XERMolv65esACxFxGLgQ+IuIeMmW843iYP2GA/erJx4fC9xMd0v7DcCfVOufRHcXIYCnsP4E1h00eHKyX75q+Tzgug1jx5qvz9wdAmar9c8Hlqvru1l/su2LTc7bJvlW1z0A+AjwunHOHTDD+pNE72b9SaJ3bTZfdE8OfaP6t5xaXX/4OLOtuf2PWH9ycls1b4/j+Mm/p0xg7h5L9xzFszbcv7F8Q2R7AsdPTp4NHKle48Ze1/vz2lbrP8T6k5P3O18Tb+5/A75evYjPr9adCPwN3eOhXwaet2b82+hupd1C9emJJi+98q2Z1Df0GD+2fH3m7jnAcrXuBmBXtT7o/gcXtwMHgM4k5g64GPj36rJ39U00jrmju4X/bbon9e6kuxv/COAzdPdWPrP6Zthsvuge7rmturx2AtkeVY35AfD96vop1W3nV3N7O/C2Cc3dFcD3gBury9Kaxxl5viGzXQrcVOX6AvCcJl/XYfNtuN+HqIp7q/n85qQkFcZvTkpSYSxuSSqMxS1JhbG4JakwFrckFcbilqTCWNySVBiLW5IK87+48LbSuY+6MAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# distribuição acumulada:\n", - "# df = pd.DataFrame(samples_uniforme,columns=['face'])\n", - "# df.groupby('face').size().hist(cumulative=True)" + "#distribuição acumulada\n", + "df = pd.DataFrame(samples_uniforme,columns=['face'])\n", + "df.groupby('face').size().hist(cumulative=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Distribuição de Bernoulli\n", + "# Distribuição de Bernoulli\n", + "\n", + "*fonte: Wikipedia*\n", + "\n", + "Na área de teoria das probabilidades e estatística, a distribuição de Bernoulli, nome em homenagem ao cientista suíço Jakob Bernoulli, é a distribuição discreta de espaço amostral {0, 1}, que tem valor 1 com a probabilidade de sucesso p e valor 0 com a probabilidade de falha q = 1 − p. \n", "\n", - "Distribuição discreta de espaço amostral {0, 1}, que tem valor 1 com a probabilidade de sucesso p e valor 0 com a probabilidade de falha q=1-p.\n", + "Um exemplo clássico de uma experiência de Bernoulli é uma jogada única de uma moeda. A moeda pode dar \"coroa\" com probabilidade p e \"cara\" com probabilidade 1 − p. A experiência é dita justa se p = 0.5, indicando a origem dessa terminologia em jogos de aposta (a aposta é justa se ambos os possíveis resultados tem a mesma probabilidade). \n", "\n", - "Um exemplo simples é jogar um dado, onde uma face tem probabilidade p e a outra o complemento (1-p). Em um dado honesto, p=.5\n", + "A média dessa distribuição é sempre **p** e a variância **p(1-p)**.\n", "\n", + "### Exemplo\n", "\n", - "A média dessa distribuição é sempre = p\n", - "e a Variância = p(1-p)" + "Vamos trabalhar com uma distribuição de Bernoulli, com ```p = 0.7```, e observar a convergência dos resultados conforme o tamanho da amostra é incrementado." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 79, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAE+hJREFUeJzt3H20XXV95/H3R1JAfCBIImJAIiVaM3ZVXSmidWmmMCqIhj+0RasNTirFttYpzIjVGeuyOqvO2NKZVmtTseIDAkVHMoy2KhJbrWCDUDVkHBAxSY1wUcKDD1X0O3/sHT1czuWee++5D/nxfq11190Pv33297f3uZ+7z2+fc1JVSJL2fw9a7AIkSeNhoEtSIwx0SWqEgS5JjTDQJakRBrokNcJA16wk2ZrkN/rpM5J8ZmDd3UmOXYSaHtPv+4BJy38myXVJThnTfj6WZOMYHufmJCf1069L8q65Vzd0Pw9N8k9JLprj47wzyX8ZV10av2WLXYB+KsnNwBHAj4AfAv8InFVVuxazrpmqqocu0n53AsP2/fvA5VX10THt5+RxPM6kx/yvc32MJGcAv1FVz5i06jzgNcDxSTZV1fmzefyqOmuOJWqeGehLz/Or6pNJDgbeAfwZcNpMHyTJsqq6Z+zVLVFT9be/Wt8L/PnCV7U0VNUr+skrF7UQzTuHXJaoqvo+cCmwdt+yJAcleVuSnUlu6V8CP7hftz7J7iTnJvkm8NcDy85JcmuSPUlePvB4hyZ5b5KJJF9P8p+TPKhf98Yk7x9ouzpJJZn2IqBvd9wI7U5Psm3Sst9LsqWffl6Sa5PcmWRXkjcOqWdTkp3ApybX2Pf1y8BbgBuT/ObA9juSnDowvyzJbUme0s+fkOQfk+xN8s9J1g+0HRxuOi7Jp5Pc0W9/8f3092X9cf5WktdPWjf5eD9jYP+7+qvvKc9ZkicA7wSe1g877b2/9v26M5J8Nsl5/X5uSvL0fvmu/jmzcaCm9yR588D8hn4o684kX03y3H3HvT++d/WPOXjcVyS5vN/ft5P8w756NHceyCUqySHArwJXDSx+K/A44EnAccAq4A0D6x8FPAI4BjhzYNmhfdtNwNuTHNav+7N+3bHAs4BfB17OGCV5SZIvTrF6C/D4JGsGlr0EuLCf/k5f03LgecArk0x+tfIs4AnAc4Y8/m3AqcDD6fp13r7ABj4IvHig7XOA26rqC0lWAf8HeDPd8fyPwIeSrByyjz8EPg4cBhxFd0zvI8la4C+AlwGPBg7v2w9r+xjgY/1jraQ739f1q4ees6raAZwFfK6qHlpVy++v/cDungp8sa/nQuAi4Bfpnl8vBf48yX2GsZIcD7wX+E905+eZwM396luZ+rifA+zu+3UE8DrA7x8Zl6ryZ4n80P1B3E03RHAP8A3g5/t1oQu4nx1o/zTga/30euAHwMED69cD3wOWDSy7FTgBOAD4V2DtwLrfBLb2028E3j+wbjXdH96yfn4r3XgtwBnAZwbaFnDciH1+P/CGfnoNcBdwyBRt/xQ4b1I9x05V45DtPwK8up8+bnBfwAcG6jgXeN+kbf8O2Dik7+8FNgNHTdPPNwAXDcw/pD9fJ00+3nRj/v9ryGNMd84mn4dR2t8wsO7n++N3xMCybwFP6qffA7y5n/7LfedihHM8eNzfBFw26vPDn5n9eIW+9JxW3dXVQcDvAJ9O8ii6K5pDgGv6l6t7gb/tl+8zUd1QzaBv1b3Hlr9Ld+NwBXAg8PWBdV+nu5JfSBfy0yvllwAfqarvAiR5apIr++GCO+iuQFdM2n7KG8ZJTuyHR3amu+F80r7tq+pGYAfw/P7V0Av46SuDY4AX7TvO/bF+BnDkkN28hu6f7eeTbE/y76co59GDtVbVd+jCcpijga8OWT7TczZK+1sGpr/X1zZ52bAbzVPVSJKTk1zVD6nsBU7hp+ftvwM3Ah/vh2NeO0XtmgUDfYmqqh9V1Yfp3vHyDLrhg+8B/6aqlvc/h9a931Eyk5eut9G9k+aYgWWPAf6ln/4O3T+QfR410z6M6OPAiiRPogv2CwfWXUg3LHN0VR1KN0acSdsP7XOSA+muBP8YOKaqVgNXTNp+37DLBuD6PuShC973DRzn5VX1kKr6o8n7qapvVtUrqurRdFe/78jw+wd76EJwX32H0A1zDLML+Nkhy6c7Z5OPxXTt52JojUkOAj4EvI3uSn858FH6415Vd1XVOVV1LPB84OwkJ46hHmGgL1npbKAbm91RVT8G/opuPPKRfZtVSYaNHU+rqn4EXAK8JcnDkhwDnE03BALdmO0z0723+1C6YYCx6189XEp35fYI4BMDqx8GfLuqvt+P2b5kBg99EPBgun9MJDkZ+HeT2lwEPBt4Jff+R/J+uiv35yQ5IMnB6W4w32fMO8mLBpbfTheqPxpSz6XAqf3NzgPphh6m+vv7AHBSkl9Jd7P28CRPGuGc3QIc1T/+KOd4Ls4HXt6/CnpQ/1z8ObpXBAcBE8A9/XF/9r6Nkpya7kZygDvpjtWw46VZMNCXnv+d5G66J/tb6MZtt/frzqV7uXpVkjuBTwKPn8O+XkUXeDcBn6ELtXcDVNUngIvpbphdA1w+mx0k+bUk26dpdiHdcMjfTBoe+i3gTUnuohuDvmTU/VbVXcDv0l2F3073z2DLpDZ7gM8BT6fr677lu+iu2l9HF0y76G7+Dft7+UXg6v6cbaEbK/7akHq2A7/d93VPX9PuKWrfSTdMcQ7wbbp/rr/Qr57ynAGfArYD30xy2wjtZ62qPk9/wxO4A/g03Suhfcf9EoYf9zV0z9u76Y79O6pq61zrUSdV3mCWpBZ4hS5JjTDQJakRBrokNcJAl6RGLOiXc61YsaJWr169kLuUpP3eNddcc1tVDfvqiXtZ0EBfvXo127Ztm76hJOknknx9+lYOuUhSMwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMW9JOikrSYtmbroux3fa1fkP14hS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSI0YK9CS/l2R7ki8n+WCSg5M8NsnVSW5IcnGSA+e7WEnS1KYN9CSrgN8F1lXVE4EDgNOBtwLnVdUa4HZg03wWKkm6f6MOuSwDHpxkGXAIsAf4ZeDSfv0FwGnjL0+SNKppA72q/gV4G7CTLsjvAK4B9lbVPX2z3cCqYdsnOTPJtiTbJiYmxlO1JOk+RhlyOQzYADwWeDTwEODkIU1r2PZVtbmq1lXVupUrV86lVknS/RhlyOUk4GtVNVFVPwQ+DDwdWN4PwQAcBXxjnmqUJI1glEDfCZyQ5JAkAU4ErgeuBF7Yt9kIXDY/JUqSRjHKGPrVdDc/vwB8qd9mM3AucHaSG4HDgfPnsU5J0jSWTd8EquoPgD+YtPgm4PixVyRJmhU/KSpJjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRowU6EmWJ7k0yf9NsiPJ05I8IsknktzQ/z5svouVJE1t1Cv0/wH8bVX9HPALwA7gtcAVVbUGuKKflyQtkmkDPcnDgWcC5wNU1Q+qai+wAbigb3YBcNp8FSlJmt4oV+jHAhPAXye5Nsm7kjwEOKKq9gD0vx85bOMkZybZlmTbxMTE2AqXJN3bKIG+DHgK8BdV9WTgO8xgeKWqNlfVuqpat3LlylmWKUmaziiBvhvYXVVX9/OX0gX8LUmOBOh/3zo/JUqSRjFtoFfVN4FdSR7fLzoRuB7YAmzsl20ELpuXCiVJI1k2YrtXAR9IciBwE/Byun8GlyTZBOwEXjQ/JUqSRjFSoFfVdcC6IatOHG85kqTZ8pOiktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWrEyIGe5IAk1ya5vJ9/bJKrk9yQ5OIkB85fmZKk6czkCv3VwI6B+bcC51XVGuB2YNM4C5MkzcxIgZ7kKOB5wLv6+QC/DFzaN7kAOG0+CpQkjWbUK/Q/BV4D/LifPxzYW1X39PO7gVXDNkxyZpJtSbZNTEzMqVhJ0tSmDfQkpwK3VtU1g4uHNK1h21fV5qpaV1XrVq5cOcsyJUnTWTZCm18CXpDkFOBg4OF0V+zLkyzrr9KPAr4xf2VKkqYz7RV6Vf1+VR1VVauB04FPVdWvAVcCL+ybbQQum7cqJUnTmsv70M8Fzk5yI92Y+vnjKUmSNBujDLn8RFVtBbb20zcBx4+/JEnSbPhJUUlqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUiBl9fe5i2pqti7Lf9bV+UfYrSTPlFbokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSI6YN9CRHJ7kyyY4k25O8ul/+iCSfSHJD//uw+S9XkjSVUa7Q7wHOqaonACcAv51kLfBa4IqqWgNc0c9LkhbJtIFeVXuq6gv99F3ADmAVsAG4oG92AXDafBUpSZrejMbQk6wGngxcDRxRVXugC33gkVNsc2aSbUm2TUxMzK1aSdKURg70JA8FPgT8h6q6c9TtqmpzVa2rqnUrV66cTY2SpBGMFOhJfoYuzD9QVR/uF9+S5Mh+/ZHArfNToiRpFKO8yyXA+cCOqvqTgVVbgI399EbgsvGXJ0ka1bIR2vwS8DLgS0mu65e9Dvgj4JIkm4CdwIvmp0RJ0iimDfSq+gyQKVafON5yJEmz5SdFJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktSIOQV6kucm+UqSG5O8dlxFSZJmbtaBnuQA4O3AycBa4MVJ1o6rMEnSzMzlCv144MaquqmqfgBcBGwYT1mSpJlaNodtVwG7BuZ3A0+d3CjJmcCZ/ezdSb4yy/2tAG6b5bazlwXf46DF6fPiss8PDA+sPmfO/T1mlEZzCfRhUVf3WVC1Gdg8h/10O0u2VdW6uT7O/sQ+PzDY5/YtVH/nMuSyGzh6YP4o4BtzK0eSNFtzCfR/AtYkeWySA4HTgS3jKUuSNFOzHnKpqnuS/A7wd8ABwLuravvYKruvOQ/b7Ifs8wODfW7fgvQ3VfcZ9pYk7Yf8pKgkNcJAl6RGLLlAn+7rBJIclOTifv3VSVYvfJXjNUKfz05yfZIvJrkiyUjvSV3KRv3aiCQvTFJJ9uu3uI3S3yS/0p/n7UkuXOgax22E5/VjklyZ5Nr+uX3KYtQ5TkneneTWJF+eYn2S/M/+mHwxyVPGWkBVLZkfupurXwWOBQ4E/hlYO6nNbwHv7KdPBy5e7LoXoM//Fjikn37lA6HPfbuHAX8PXAWsW+y65/kcrwGuBQ7r5x+52HUvQJ83A6/sp9cCNy923WPo9zOBpwBfnmL9KcDH6D7HcwJw9Tj3v9Su0Ef5OoENwAX99KXAiUkW9/OcczNtn6vqyqr6bj97Fd17/vdno35txB8C/w34/kIWNw9G6e8rgLdX1e0AVXXrAtc4bqP0uYCH99OH0sDnWKrq74Fv30+TDcB7q3MVsDzJkePa/1IL9GFfJ7BqqjZVdQ9wB3D4glQ3P0bp86BNdP/h92fT9jnJk4Gjq+ryhSxsnoxyjh8HPC7JZ5NcleS5C1bd/Bilz28EXppkN/BR4FULU9qimunf+4zM5aP/82GUrxMY6SsH9iMj9yfJS4F1wLPmtaL5d799TvIg4DzgjIUqaJ6Nco6X0Q27rKd7BfYPSZ5YVXvnubb5MkqfXwy8p6r+OMnTgPf1ff7x/Je3aOY1v5baFfooXyfwkzZJltG9VLu/lzhL3UhfoZDkJOD1wAuq6l8XqLb5Ml2fHwY8Edia5Ga6scYt+/GN0VGf15dV1Q+r6mvAV+gCfn81Sp83AZcAVNXngIPpvrSrZfP6lSlLLdBH+TqBLcDGfvqFwKeqv9uwn5q2z/3ww1/Shfn+PrYK0/S5qu6oqhVVtbqqVtPdN3hBVW1bnHLnbJTn9Ufobn6TZAXdEMxNC1rleI3S553AiQBJnkAX6BMLWuXC2wL8ev9ulxOAO6pqz9gefbHvCk9xF/j/0d0hf32/7E10f9DQnfS/AW4EPg8cu9g1L0CfPwncAlzX/2xZ7Jrnu8+T2m5lP36Xy4jnOMCfANcDXwJOX+yaF6DPa4HP0r0D5jrg2Ytd8xj6/EFgD/BDuqvxTcBZwFkD5/nt/TH50rif1370X5IasdSGXCRJs2SgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEb8f2gXpZJwl0TZAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEICAYAAACj2qi6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHJxJREFUeJzt3X+UVeV97/H3Rwj+iD9AGY0BFK2TVGJXjE6RNFmJDZYfasQ/Yi+mCaOXhsSa3LR6G0l6b8jVeJfettdeWiWlkQpJDBLTRK7BEIqaNK0oYzQoUhcjKsyFCDqAGKMW871/7Gfi5rhnzjM/mAPO57XWWWef7372fp59zsx8Zv845ygiMDMzy3FIowdgZmYHD4eGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNo2AFL0v2S/jhNXybpp6V5L0k6tQFjOin1Paym/jZJj0o6f4D6uUdS6wCs5xlJ56XpL0n6ev9HV9nPkZLWSlraz/V8TdJ/H6hx2cAb3ugB2OCS9AxwAvA68B/AvwGfiYgtjRxXb0XEkQ3qdzNQ1fcXgbsjYsUA9TN9INZTs87/2d91SLoM+OOI+GDNrJuALwATJc2OiFv7sv6I+Ew/h2j7mUNjaPpoRPyzpMOAW4C/BS7u7UokDY+IvQM+ugNUd9ub9jp2AX83+KM6METEp9LkfQ0diO13Pjw1hEXEK8CdwISumqRDJf2VpM2SnkuHCw5P886V1CHpGkm/AP6xVLta0nZJ2yRdXlrfMZKWSNoh6VlJ/03SIWneVyR9s9R2vKSQVPefmdTutIx2MyW11dT+TNLyNH2BpEckvShpi6SvVIxntqTNwL21Y0zb+jhwPdAu6dOl5TdIurD0eLik5yWdlR5PkvRvknZJ+rmkc0tty4fmTpP0Y0m70/J39LC9n0zP8wuS/qJmXu3z/cFS/1vSXkS3r5mk04GvAe9Ph+h29dQ+zbtM0r9Kuin1s0nS76X6lvQz01oa022Svlp6PCMd9ntR0lOSpnU97+n53ZPWWX7eR0u6O/XXKelfusZj/ecncgiTdATwn4A1pfKNwLuAM4HTgDHAl0vz3wEcC5wMzCnVjkltZwM3SxqV5v1tmncq8GFgFnA5A0jSxyWt62b2cuDdkppLtY8Dt6fpX6YxjQQuAK6QVLvX9WHgdGBqxfqfBy4EjqbYrpu6QgH4NnBpqe1U4PmI+JmkMcAPgK9SPJ//FfiupKaKPq4DfgSMAsZSPKdvImkCsAD4JPBO4LjUvqrtScA9aV1NFK/3o2l25WsWERuAzwAPRMSRETGyp/al7s4B1qXx3A4sBX6X4ufrE8DfSXrTIT9JE4ElwJ9TvD4fAp5Js7fT/fN+NdCRtusE4EuAPy9poESEb0PoRvFL9xLF4ZS9wFbgd9I8UfwR/a1S+/cDT6fpc4HXgMNK888FfgUML9W2A5OAYcCrwITSvE8D96fprwDfLM0bT/HLPTw9vp/i+DnAZcBPS20DOC1zm78JfDlNNwN7gCO6afs3wE014zm1uzFWLP994PNp+rRyX8C3SuO4BvhGzbIrgdaKbV8CLATG1tnOLwNLS4/fnl6v82qfb4pzMN+rWEe916z2dchpv7E073fS83dCqfYCcGaavg34apr++67XIuM1Lj/v1wJ35f58+Na7m/c0hqaLo/gv8VDgs8CPJb2D4j+zI4CH0679LuCHqd5lRxSHtcpeiH2P9b9McbJ4NDACeLY071mKPZLBdDtv/Mf/ceD7EfEygKRzJN2XDq3spvhPenTN8t1eJCBpcjqUtFnFRQbndS0fEe3ABuCjaa/uIt7YwzkZuKTreU7P9QeBEyu6+QJFoD8kab2k/9zNcN5ZHmtE/JLiD3KVccBTFfXevmY57Z8rTf8qja22VnVxQXdjRNJ0SWvS4addwPm88br9JdAO/CgduprbzditDxwaQ1hEvB4R/0RxJdUHKQ61/Ap4T0SMTLdjYt8rlXqzm/88xRVaJ5dqJwH/L03/kiKkuryjt9uQ6UfAaElnUoTH7aV5t1McwhoXEcdQHLNXzfKV2yxpBMV/tH8NnBwR44HVNct3HaKaATyRggSKP+7fKD3PIyPi7RFxQ20/EfGLiPhURLyT4r/4W1R9PmcbxR/arvEdQXFIqMoW4Lcq6vVes9rnol77/qgco6RDge8Cf0WxxzISWEF63iNiT0RcHRGnAh8FrpI0eQDGYzg0hjQVZlAcK98QEb8G/oHi+PDxqc0YSVXH8uuKiNeBZcD1ko6SdDJwFcXhIiiOoX9IxXsfjqE4ZDLg0l7QnRT/gR4LrCrNPgrojIhX0jH0j/di1YcCh1OEH5KmA39Q02YpMAW4gn3D6psUeyBTJQ2TdJiKiwredA5C0iWl+k6KP9yvV4znTuDCdIJ7BMVhmu5+x78FnCfpD1WcoD9O0pkZr9lzwNi0/pzXuD9uBS5Pe3OHpJ/F36bYszkU2AHsTc/7lK6FJF2o4uIBAS9SPFdVz5f1gUNjaPq/kl6i+IW6nuI4+vo07xqKXfs1kl4E/hl4dz/6+hzFH9VNwE8p/nAuAoiIVcAdFCdJHwbu7ksHkv5I0vo6zW6nOHT0nZpDaX8CXCtpD8U5gWW5/UbEHuC/UOxN7KQInOU1bbYBDwC/R7GtXfUtFHsfX6L447eF4oRv1e/k7wIPptdsOcWx+6crxrMeuDJt67Y0po5uxr6Z4pDO1UAnRYC/N83u9jUD7gXWA7+Q9HxG+z6LiIdIJ7mB3cCPKfboup73ZVQ/780UP7cvUTz3t0TE/f0djxUU4YsKzMwsj/c0zMwsm0PDzMyyOTTMzCybQ8PMzLK95T6wcPTo0TF+/PhGD8PM7KDy8MMPPx8RVR9js4+3XGiMHz+etra2+g3NzOw3JD1bv5UPT5mZWS84NMzMLJtDw8zMsjk0zMwsm0PDzMyyOTTMzCxb3dCQ9O70Hb1dtxcl/amkYyWtkrQx3Y9K7SVpvqR2SetKX8GIpNbUfqP2/V7gsyU9lpaZnz7SmO76MDOzxqgbGhHxZEScGRFnAmdTfCvb94C5wOqIaKb44pmub8eaTvHRxM0U3yG9AIoAAOZRfF/wRGBeKQQWpLZdy01L9e76MDOzBujt4anJwFMR8SzFdwEsTvXFwMVpegawJAprgJGSTgSmAqsiojMidlJ8Ec60NO/oiHggis9pX1Kzrqo+zMysAXr7jvCZFF84A8XXLG6D4otmur7pjeK7gcvfqdyRaj3VOyrqPfWxD0lzKPZUOOmkk3q5SWZmA2f83B80pN9nbrhgUPrJ3tNIX+94EfCdek0ratGHeraIWBgRLRHR0tRU96NTzMysj3pzeGo68LOIeC49fi4dWiLdb0/1Dkpfbg+MBbbWqY+tqPfUh5mZNUBvQuNS3jg0BcV38nZdAdUK3FWqz0pXUU0CdqdDTCuBKZJGpRPgU4CVad4eSZPSVVOzatZV1YeZmTVA1jkNSUcAfwB8ulS+AVgmaTawGbgk1VdQfGF9O8WVVpcDRESnpOuAtandtRHRmaavAG4DDgfuSbee+jAzswbICo2IeBk4rqb2AsXVVLVtA7iym/UsAhZV1NuAMyrqlX2YmVlj+B3hZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZskJD0khJd0r6d0kbJL1f0rGSVknamO5HpbaSNF9Su6R1ks4qrac1td8oqbVUP1vSY2mZ+ZKU6pV9mJlZY+Tuafwf4IcR8dvAe4ENwFxgdUQ0A6vTY4DpQHO6zQEWQBEAwDzgHGAiMK8UAgtS267lpqV6d32YmVkD1A0NSUcDHwJuBYiI1yJiFzADWJyaLQYuTtMzgCVRWAOMlHQiMBVYFRGdEbETWAVMS/OOjogHIiKAJTXrqurDzMwaIGdP41RgB/CPkh6R9HVJbwdOiIhtAOn++NR+DLCltHxHqvVU76io00Mf+5A0R1KbpLYdO3ZkbJKZmfVFTmgMB84CFkTE+4Bf0vNhIlXUog/1bBGxMCJaIqKlqampN4uamVkv5IRGB9AREQ+mx3dShMhz6dAS6X57qf240vJjga116mMr6vTQh5mZNUDd0IiIXwBbJL07lSYDTwDLga4roFqBu9L0cmBWuopqErA7HVpaCUyRNCqdAJ8CrEzz9kialK6amlWzrqo+zMysAYZntvsc8C1JI4BNwOUUgbNM0mxgM3BJarsCOB9oB15ObYmITknXAWtTu2sjojNNXwHcBhwO3JNuADd004eZmTVAVmhExKNAS8WsyRVtA7iym/UsAhZV1NuAMyrqL1T1YWZmjeF3hJuZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZtqzQkPSMpMckPSqpLdWOlbRK0sZ0PyrVJWm+pHZJ6ySdVVpPa2q/UVJrqX52Wn97WlY99WFmZo3Rmz2N34+IMyOiJT2eC6yOiGZgdXoMMB1oTrc5wAIoAgCYB5wDTATmlUJgQWrbtdy0On2YmVkD9Ofw1AxgcZpeDFxcqi+JwhpgpKQTganAqojojIidwCpgWpp3dEQ8EBEBLKlZV1UfZmbWALmhEcCPJD0saU6qnRAR2wDS/fGpPgbYUlq2I9V6qndU1HvqYx+S5khqk9S2Y8eOzE0yM7PeGp7Z7gMRsVXS8cAqSf/eQ1tV1KIP9WwRsRBYCNDS0tKrZc3MLF/WnkZEbE3324HvUZyTeC4dWiLdb0/NO4BxpcXHAlvr1MdW1OmhDzMza4C6oSHp7ZKO6poGpgCPA8uBriugWoG70vRyYFa6imoSsDsdWloJTJE0Kp0AnwKsTPP2SJqUrpqaVbOuqj7MzKwBcg5PnQB8L10FOxy4PSJ+KGktsEzSbGAzcElqvwI4H2gHXgYuB4iITknXAWtTu2sjojNNXwHcBhwO3JNuADd004eZmTVA3dCIiE3AeyvqLwCTK+oBXNnNuhYBiyrqbcAZuX2YmVlj+B3hZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZskND0jBJj0i6Oz0+RdKDkjZKukPSiFQ/ND1uT/PHl9bxxVR/UtLUUn1aqrVLmluqV/ZhZmaN0Zs9jc8DG0qPbwRuiohmYCcwO9VnAzsj4jTgptQOSROAmcB7gGnALSmIhgE3A9OBCcClqW1PfZiZWQNkhYakscAFwNfTYwEfAe5MTRYDF6fpGekxaf7k1H4GsDQiXo2Ip4F2YGK6tUfEpoh4DVgKzKjTh5mZNUDunsbfAF8Afp0eHwfsioi96XEHMCZNjwG2AKT5u1P739Rrlumu3lMfZmbWAHVDQ9KFwPaIeLhcrmgadeYNVL1qjHMktUlq27FjR1UTMzMbADl7Gh8ALpL0DMWho49Q7HmMlDQ8tRkLbE3THcA4gDT/GKCzXK9Zprv68z30sY+IWBgRLRHR0tTUlLFJZmbWF3VDIyK+GBFjI2I8xYnseyPij4D7gI+lZq3AXWl6eXpMmn9vRESqz0xXV50CNAMPAWuB5nSl1IjUx/K0THd9mJlZA/TnfRrXAFdJaqc4/3Brqt8KHJfqVwFzASJiPbAMeAL4IXBlRLyezll8FlhJcXXWstS2pz7MzKwBhtdv8oaIuB+4P01vorjyqbbNK8Al3Sx/PXB9RX0FsKKiXtmHmZk1ht8RbmZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZ6oaGpMMkPSTp55LWS/ofqX6KpAclbZR0h6QRqX5oetye5o8vreuLqf6kpKml+rRUa5c0t1Sv7MPMzBojZ0/jVeAjEfFe4ExgmqRJwI3ATRHRDOwEZqf2s4GdEXEacFNqh6QJwEzgPcA04BZJwyQNA24GpgMTgEtTW3row8zMGqBuaEThpfTwbekWwEeAO1N9MXBxmp6RHpPmT5akVF8aEa9GxNNAOzAx3dojYlNEvAYsBWakZbrrw8zMGmB4TqO0N/AwcBrFXsFTwK6I2JuadABj0vQYYAtAROyVtBs4LtXXlFZbXmZLTf2ctEx3fdSObw4wB+Ckk07K2aRK4+f+oM/L9sczN1zQkH7NzHor60R4RLweEWcCYyn2DE6vapbu1c28gapXjW9hRLREREtTU1NVEzMzGwC9unoqInYB9wOTgJGSuvZUxgJb03QHMA4gzT8G6CzXa5bprv58D32YmVkD5Fw91SRpZJo+HDgP2ADcB3wsNWsF7krTy9Nj0vx7IyJSfWa6uuoUoBl4CFgLNKcrpUZQnCxfnpbprg8zM2uAnHMaJwKL03mNQ4BlEXG3pCeApZK+CjwC3Jra3wp8Q1I7xR7GTICIWC9pGfAEsBe4MiJeB5D0WWAlMAxYFBHr07qu6aYPMzNrgLqhERHrgPdV1DdRnN+orb8CXNLNuq4Hrq+orwBW5PZhZmaN4XeEm5lZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllqxsaksZJuk/SBknrJX0+1Y+VtErSxnQ/KtUlab6kdknrJJ1VWldrar9RUmupfrakx9Iy8yWppz7MzKwxcvY09gJXR8TpwCTgSkkTgLnA6ohoBlanxwDTgeZ0mwMsgCIAgHnAOcBEYF4pBBaktl3LTUv17vowM7MGqBsaEbEtIn6WpvcAG4AxwAxgcWq2GLg4Tc8AlkRhDTBS0onAVGBVRHRGxE5gFTAtzTs6Ih6IiACW1Kyrqg8zM2uAXp3TkDQeeB/wIHBCRGyDIliA41OzMcCW0mIdqdZTvaOiTg99mJlZA2SHhqQjge8CfxoRL/bUtKIWfahnkzRHUpukth07dvRmUTMz64Ws0JD0NorA+FZE/FMqP5cOLZHut6d6BzCutPhYYGud+tiKek997CMiFkZES0S0NDU15WySmZn1Qc7VUwJuBTZExP8uzVoOdF0B1QrcVarPSldRTQJ2p0NLK4EpkkalE+BTgJVp3h5Jk1Jfs2rWVdWHmZk1wPCMNh8APgk8JunRVPsScAOwTNJsYDNwSZq3AjgfaAdeBi4HiIhOSdcBa1O7ayOiM01fAdwGHA7ck2700IeZmTVA3dCIiJ9Sfd4BYHJF+wCu7GZdi4BFFfU24IyK+gtVfZiZWWP4HeFmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmls2hYWZm2RwaZmaWzaFhZmbZHBpmZpbNoWFmZtkcGmZmlq1uaEhaJGm7pMdLtWMlrZK0Md2PSnVJmi+pXdI6SWeVlmlN7TdKai3Vz5b0WFpmviT11IeZmTVOzp7GbcC0mtpcYHVENAOr02OA6UBzus0BFkARAMA84BxgIjCvFAILUtuu5abV6cPMzBqkbmhExE+AzpryDGBxml4MXFyqL4nCGmCkpBOBqcCqiOiMiJ3AKmBamnd0RDwQEQEsqVlXVR9mZtYgfT2ncUJEbANI98en+hhgS6ldR6r1VO+oqPfUx5tImiOpTVLbjh07+rhJZmZWz0CfCFdFLfpQ75WIWBgRLRHR0tTU1NvFzcwsU19D47l0aIl0vz3VO4BxpXZjga116mMr6j31YWZmDdLX0FgOdF0B1QrcVarPSldRTQJ2p0NLK4EpkkalE+BTgJVp3h5Jk9JVU7Nq1lXVh5mZNcjweg0kfRs4FxgtqYPiKqgbgGWSZgObgUtS8xXA+UA78DJwOUBEdEq6Dlib2l0bEV0n16+guELrcOCedKOHPszMrEHqhkZEXNrNrMkVbQO4spv1LAIWVdTbgDMq6i9U9WFmZo3jd4SbmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWTaHhpmZZXNomJlZNoeGmZllc2iYmVk2h4aZmWVzaJiZWbYDPjQkTZP0pKR2SXMbPR4zs6HsgA4NScOAm4HpwATgUkkTGjsqM7Oh64AODWAi0B4RmyLiNWApMKPBYzIzG7KGN3oAdYwBtpQedwDn1DaSNAeYkx6+JOnJPvY3Gni+j8v2mW4c7B730ZBtbjBv89AwpLZZN/Z7e0/OaXSgh4YqavGmQsRCYGG/O5PaIqKlv+s5mHibhwZv81vfYG3vgX54qgMYV3o8FtjaoLGYmQ15B3porAWaJZ0iaQQwE1je4DGZmQ1ZB/ThqYjYK+mzwEpgGLAoItbvxy77fYjrIORtHhq8zW99g7K9injTKQIzM7NKB/rhKTMzO4A4NMzMLNuQDI16H00i6VBJd6T5D0oaP/ijHFgZ23yVpCckrZO0WlLWNdsHstyPoJH0MUkh6aC+PDNneyX9YXqd10u6fbDHONAyfq5PknSfpEfSz/b5jRjnQJK0SNJ2SY93M1+S5qfnZJ2kswZ0ABExpG4UJ9SfAk4FRgA/BybUtPkT4GtpeiZwR6PHPQjb/PvAEWn6iqGwzandUcBPgDVAS6PHvZ9f42bgEWBUenx8o8c9CNu8ELgiTU8Anmn0uAdguz8EnAU83s3884F7KN7nNgl4cCD7H4p7GjkfTTIDWJym7wQmS6p6o+HBou42R8R9EfFyeriG4j0xB7Pcj6C5DvhfwCuDObj9IGd7PwXcHBE7ASJi+yCPcaDlbHMAR6fpY3gLvM8rIn4CdPbQZAawJAprgJGSThyo/odiaFR9NMmY7tpExF5gN3DcoIxu/8jZ5rLZFP+pHMzqbrOk9wHjIuLuwRzYfpLzGr8LeJekf5W0RtK0QRvd/pGzzV8BPiGpA1gBfG5whtZQvf1975UD+n0a+0nOR5NkfXzJQSR7eyR9AmgBPrxfR7T/9bjNkg4BbgIuG6wB7Wc5r/FwikNU51LsSf6LpDMiYtd+Htv+krPNlwK3RcRfS3o/8I20zb/e/8NrmP3692so7mnkfDTJb9pIGk6xW9vT7uCBLuvjWCSdB/wFcFFEvDpIY9tf6m3zUcAZwP2SnqE49rv8ID4ZnvtzfVdE/EdEPA08SREiB6ucbZ4NLAOIiAeAwyg+yPCtbL9+/NJQDI2cjyZZDrSm6Y8B90Y6w3SQqrvN6VDN31MExsF+rBvqbHNE7I6I0RExPiLGU5zHuSgi2hoz3H7L+bn+PsUFD0gaTXG4atOgjnJg5WzzZmAygKTTKUJjx6COcvAtB2alq6gmAbsjYttArXzIHZ6Kbj6aRNK1QFtELAdupdiNbafYw5jZuBH3X+Y2/yVwJPCddM5/c0Rc1LBB91PmNr9lZG7vSmCKpCeA14E/j4gXGjfq/snc5quBf5D0ZxSHaC47yP8BRNK3KQ4xjk7nauYBbwOIiK9RnLs5H2gHXgYuH9D+D/Lnz8zMBtFQPDxlZmZ95NAwM7NsDg0zM8vm0DAzs2wODTMzy+bQMDOzbA4NMzPL9v8BFcY4mqSyqC4AAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -161,24 +204,24 @@ ], "source": [ "from scipy.stats import bernoulli\n", - "bern = bernoulli.rvs(p=0.7, size=123)\n", + "bern = bernoulli.rvs(p=0.7, size=1000000)\n", "\n", "plt.title('Bernoulli: variáveis dicotômicas')\n", - "plt.hist(bern, color='m');" + "plt.hist(bern);" ] }, { "cell_type": "code", - "execution_count": 111, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([1, 0, 0, 0, 1, 1, 1, 0, 0, 1])" + "array([1, 0, 1, 1, 1, 1, 1, 0, 1, 1])" ] }, - "execution_count": 111, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } @@ -189,47 +232,54 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "84" + "0.700312" ] }, - "execution_count": 112, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "bern.sum() # casos na amostra" + "bern.sum()/len(bern) # média empirica" ] }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.6829268292682927" + "0.20987510265599996" ] }, - "execution_count": 113, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "bern.sum()/len(bern) # média empirica" + "bern.std()**2 # variância" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulação para convergência de Bernoulli com o aumento da amostra" ] }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 47, "metadata": {}, "outputs": [ { @@ -243,61 +293,44 @@ "var: 0.0\n", "\n", "amostra: 10\n", - "média: 0.9\n", - "var: 0.09000000000000002\n", + "média: 0.7\n", + "var: 0.20999999999999994\n", "\n", "amostra: 100\n", - "média: 0.75\n", - "var: 0.18749999999999997\n", + "média: 0.66\n", + "var: 0.22440000000000002\n", "\n", "amostra: 1000\n", - "média: 0.688\n", - "var: 0.214656\n", + "média: 0.685\n", + "var: 0.215775\n", "\n", "amostra: 10000\n", - "média: 0.7008\n", - "var: 0.20967935999999998\n", + "média: 0.7024\n", + "var: 0.20903424\n", "\n", "amostra: 100000\n", - "média: 0.69961\n", - "var: 0.21015584789999997\n", + "média: 0.70024\n", + "var: 0.20990394240000004\n", "\n", "amostra: 1000000\n", - "média: 0.699868\n", - "var: 0.21005278257599996\n" + "média: 0.699683\n", + "var: 0.21012669951100005\n", + "\n", + "amostra: 10000000\n", + "média: 0.7001807\n", + "var: 0.20992768734750972\n" ] } ], "source": [ "print('Média Verdadeira: 0.7, Variância Verdadeira: 0.21')\n", - "for n in [3,10,100,1000,10000,100000,1000000]:\n", + "for n in [3,10,100,1000,10000,100000,1000000,10000000]:\n", " bern = bernoulli.rvs(p=0.7, size=n)\n", " print('\\namostra:',n)\n", " print('média:', bern.sum()/len(bern))\n", " print('var:', bern.std()**2) " ] }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.21000000000000002" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "0.7*(1-0.7)\n", - "p(1-p)" - ] - }, { "cell_type": "markdown", "metadata": { @@ -305,11 +338,18 @@ "id": "FOwQ6J-K2vjG" }, "source": [ - "### Distribuição Binomial.\n", + "# Distribuição Binomial\n", + "\n", + "*fonte: Wikipedia*\n", "\n", - "Mede o número de sucessos em uma sequência de _**n**_ ensaios independentes entre si, com uma probabilidade fixa **_p_** de ocorrência de sucesso entre os ensaios.\n", + "Em teoria das probabilidades e estatística, a distribuição binomial é a distribuição de probabilidade discreta do número de sucessos numa sequência de n {\\displaystyle n} n tentativas tais que:\n", "\n", - "Quando uma variável **_X_** segue uma distribuição binomial, escreve-se **_X ~ B (n, p)_** . Onde **_p_** é a probabilidade de sucesso (que é fixa), y _**n**_ o número de ensaios. \n", + "- Cada tentativa tem exclusivamente como resultado duas possibilidades, sucesso ou fracasso (binomial, a que se chama de tentativa de Bernoulli), e;\n", + "- Cada tentativa é independente das demais, e;\n", + "- A probabilidade de sucesso p {\\displaystyle p} p a cada tentativa permanece constante independente das demais, e;\n", + "- A variável de interesse, ou pretendida, é o número de sucessos k {\\displaystyle k} k nas n {\\displaystyle n} n tentativas.\n", + "\n", + "Mede o número de sucessos em uma sequência de _**n**_ ensaios independentes entre si, com uma probabilidade fixa **_p_** de ocorrência de sucesso entre os ensaios. Quando uma variável **_X_** segue uma distribuição binomial, escreve-se **_X ~ B (n, p)_** . Onde **_p_** é a probabilidade de sucesso (que é fixa), y _**n**_ o número de ensaios. \n", "\n", "A função da probabilidade é:\n", "\n", @@ -319,7 +359,7 @@ "\n", "Onde **_x_** é a quantidade de acertos, **_p_** a probabilidade de sucesso, **_n_** a quantidade de ensaios.\n", "\n", - "\n", + "### Exemplo\n", "\n", "Neste caso, vamos simular o lançamento de uma moeda 8 vezes por ensaio, onde a probabilidade de sucesso (obter cara) será 0,5. A seguir, a função de distribuição para o caso:\n", "\n", @@ -329,36 +369,12 @@ "\n", "Vamos realizar um chamado à função```binomial``` que ajusta a valores provenientes de uma distribuição binomial e vamos realizar 10.000 ensaios para montar a distribuição.\n", "\n", - "Nota: A distribuição de Bernoulli é um caso especial da distribuição Binomial, com n = 1 e sua média, como esperado é np (contra p) e a variância teórica é np(1-p) (contra p(1-p) )\n" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([5, 5, 3, 7, 4, 7, 4, 7, 3, 3, 3, 5, 5, 3, 5, 5, 3, 4, 5, 4, 7, 3,\n", - " 4, 5, 4, 3, 5, 6, 6, 2, 3, 6, 4, 4, 5, 5, 6, 5, 1, 4, 4, 5, 4, 3,\n", - " 6, 7, 3, 6, 5, 1, 2, 3, 4, 4, 4, 5, 5, 5, 6, 2, 4, 3, 1, 6, 2, 3,\n", - " 3, 3, 3, 4, 2, 5, 4, 4, 2, 2, 3, 2, 5, 3, 3, 5, 3, 6, 5, 4, 3, 3,\n", - " 3, 4, 4, 3, 5, 4, 5, 4, 3, 5, 6, 6])" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "samples_binomial[:100]" + "Nota: A distribuição de Bernoulli é um caso especial da distribuição Binomial, com n = 1 e sua média, como esperado é np (contra p) e a variância teórica é np(1-p) (contra p(1-p))." ] }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 57, "metadata": { "colab": { "autoexec": { @@ -371,17 +387,9 @@ "outputId": "9c8e0f35-326c-4648-f8c7-e701719909d0" }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\sn3fru\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", - " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGFFJREFUeJzt3XuQXGWdxvHvY4Jcw80MVEyCw2LARasIOgsoXlBcRbwEFTSgGCzcuCUoKJaiVmksdSuWgrq6YoWLBJdbuC1RWQUBCV4ITEIgQEQjxDAkkpE7XtCE3/7xvi1nJz0zPdPd6c7r86nq6tNvn9Pn191nnjn99un3KCIwM7NyPafTBZiZWXs56M3MCuegNzMrnIPezKxwDnozs8I56M3MCuegNzMrnIPezKxwDnozs8JN7HQBAJMnT47e3t5Ol2FmtlVZtmzZHyKiZ7T5Rg16SdsBS4Bt8/yXR8TnJO0NXALsDiwHjo+Iv0raFrgAeBnwMPDuiFgz0jp6e3vp7+8frRQzM6uQ9LtG5muk6+Zp4HURcQAwEzhC0iHAl4GvRcQM4FHgxDz/icCjEfFC4Gt5PjMz65BRgz6Sp/LNbfIlgNcBl+f2hcBReXpWvk2+/3BJalnFZmY2Jg19GStpgqQVwAbgOuC3wGMRsTHPMgBMzdNTgQcA8v2PA89rZdFmZta4hoI+IjZFxExgGnAQ8M/1ZsvX9fbeNxsLWdJcSf2S+gcHBxut18zMxmhMh1dGxGPAT4FDgF0l1b7MnQasy9MDwHSAfP8uwCN1HmtBRPRFRF9Pz6hfGpuZ2TiNGvSSeiTtmqe3B14PrAJuBI7Os80Brs7Ti/Nt8v03hM9uYmbWMY0cRz8FWChpAukfw6KI+IGke4BLJH0RuB04N89/LvA9SatJe/Kz21C3mZk1aNSgj4g7gQPrtN9H6q8f2v4X4JiWVGdmZk3ril/GmnWzi5auHfeyxx28VwsrMRsfj3VjZlY4B72ZWeEc9GZmhXPQm5kVzkFvZlY4B72ZWeEc9GZmhXPQm5kVzkFvZlY4B72ZWeEc9GZmhXPQm5kVzkFvZlY4B72ZWeEc9GZmhXPQm5kVzkFvZlY4B72ZWeEc9GZmhXPQm5kVzkFvZlY4B72ZWeEc9GZmhXPQm5kVzkFvZlY4B72ZWeFGDXpJ0yXdKGmVpLslnZLb50l6UNKKfDmyssynJK2WdK+kN7bzCZiZ2cgmNjDPRuC0iFguaRKwTNJ1+b6vRcRXqzNL2h+YDbwYeD7wE0n7RsSmVhZuZmaNGXWPPiLWR8TyPP0ksAqYOsIis4BLIuLpiLgfWA0c1Ipizcxs7MbURy+pFzgQWJqbTpZ0p6TzJO2W26YCD1QWG6DOPwZJcyX1S+ofHBwcc+FmZtaYhoNe0k7AFcCpEfEEcBawDzATWA+cUZu1zuKxWUPEgojoi4i+np6eMRduZmaNaSjoJW1DCvkLI+JKgIh4KCI2RcQzwNk82z0zAEyvLD4NWNe6ks3MbCwaOepGwLnAqog4s9I+pTLb24G78vRiYLakbSXtDcwAbm1dyWZmNhaNHHVzKHA8sFLSitz2aeBYSTNJ3TJrgA8CRMTdkhYB95CO2DnJR9yYmXXOqEEfET+jfr/7NSMs8yXgS03UZWZmLeJfxpqZFc5Bb2ZWOAe9mVnhHPRmZoVz0JuZFc5Bb2ZWOAe9mVnhHPRmZoVz0JuZFc5Bb2ZWOAe9mVnhHPRmZoVz0JuZFc5Bb2ZWOAe9mVnhHPRmZoVr5AxTZi1x0dK14172uIP3amElZv9YvEdvZlY4B72ZWeEc9GZmhXPQm5kVzkFvZlY4B72ZWeEc9GZmhXPQm5kVzkFvZla4UYNe0nRJN0paJeluSafk9t0lXSfpN/l6t9wuSf8pabWkOyW9tN1PwszMhtfIEAgbgdMiYrmkScAySdcBJwDXR8R8SacDpwOfBN4EzMiXg4Gz8rWZjYGHjLBWGXWPPiLWR8TyPP0ksAqYCswCFubZFgJH5elZwAWR3ALsKmlKyys3M7OGjKmPXlIvcCCwFNgzItZD+mcA7JFnmwo8UFlsILcNfay5kvol9Q8ODo69cjMza0jDQS9pJ+AK4NSIeGKkWeu0xWYNEQsioi8i+np6ehotw8zMxqihoJe0DSnkL4yIK3PzQ7UumXy9IbcPANMri08D1rWmXDMzG6tGjroRcC6wKiLOrNy1GJiTp+cAV1fa35ePvjkEeLzWxWNmZlteI0fdHAocD6yUtCK3fRqYDyySdCKwFjgm33cNcCSwGvgT8P6WVmxmZmMyatBHxM+o3+8OcHid+QM4qcm6zMysRfzLWDOzwjnozcwK56A3Myucg97MrHAOejOzwjnozcwK56A3Myucg97MrHAOejOzwjnozcwK56A3Myucg97MrHAOejOzwjnozcwK56A3Myucg97MrHAOejOzwjnozcwK56A3Myucg97MrHAOejOzwjnozcwK56A3Myucg97MrHAOejOzwjnozcwK56A3MyvcqEEv6TxJGyTdVWmbJ+lBSSvy5cjKfZ+StFrSvZLe2K7CzcysMY3s0Z8PHFGn/WsRMTNfrgGQtD8wG3hxXubbkia0qlgzMxu7UYM+IpYAjzT4eLOASyLi6Yi4H1gNHNREfWZm1qRm+uhPlnRn7trZLbdNBR6ozDOQ2zYjaa6kfkn9g4ODTZRhZmYjGW/QnwXsA8wE1gNn5HbVmTfqPUBELIiIvojo6+npGWcZZmY2mnEFfUQ8FBGbIuIZ4Gye7Z4ZAKZXZp0GrGuuRDMza8a4gl7SlMrNtwO1I3IWA7MlbStpb2AGcGtzJZqZWTMmjjaDpIuBw4DJkgaAzwGHSZpJ6pZZA3wQICLulrQIuAfYCJwUEZvaU7qZmTVi1KCPiGPrNJ87wvxfAr7UTFFmZtY6/mWsmVnhHPRmZoVz0JuZFc5Bb2ZWOAe9mVnhHPRmZoVz0JuZFc5Bb2ZWOAe9mVnhHPRmZoVz0JuZFc5Bb2ZWOAe9mVnhHPRmZoVz0JuZFc5Bb2ZWOAe9mVnhHPRmZoVz0JuZFc5Bb2ZWOAe9mVnhHPRmZoVz0JuZFc5Bb2ZWOAe9mVnhJna6ANvyLlq6dtzLHnfwXi2sxMy2hFGDXtJ5wFuADRHxkty2O3Ap0AusAd4VEY9KEvAN4EjgT8AJEbG8PaWbWTfyjkT3aaTr5nzgiCFtpwPXR8QM4Pp8G+BNwIx8mQuc1ZoyzcxsvEYN+ohYAjwypHkWsDBPLwSOqrRfEMktwK6SprSqWDMzG7vxfhm7Z0SsB8jXe+T2qcADlfkGcttmJM2V1C+pf3BwcJxlmJnZaFp91I3qtEW9GSNiQUT0RURfT09Pi8swM7Oa8Qb9Q7UumXy9IbcPANMr800D1o2/PDMza9Z4g34xMCdPzwGurrS/T8khwOO1Lh4zM+uMRg6vvBg4DJgsaQD4HDAfWCTpRGAtcEye/RrSoZWrSYdXvr8NNZuZ2RiMGvQRcewwdx1eZ94ATmq2KDMzax0PgWBmVjgHvZlZ4Rz0ZmaFc9CbmRXOQW9mVjgHvZlZ4Rz0ZmaFc9CbmRXOQW9mVjgHvZlZ4Rz0ZmaFc9CbmRXOQW9mVjgHvZlZ4Rz0ZmaFc9CbmRXOQW9mVjgHvZlZ4Rz0ZmaFc9CbmRXOQW9mVjgHvZlZ4Rz0ZmaFc9CbmRXOQW9mVjgHvZlZ4Rz0ZmaFm9jMwpLWAE8Cm4CNEdEnaXfgUqAXWAO8KyIeba5MMzMbr1bs0b82ImZGRF++fTpwfUTMAK7Pt83MrEPa0XUzC1iYpxcCR7VhHWZm1qBmgz6AayUtkzQ3t+0ZEesB8vUe9RaUNFdSv6T+wcHBJsswM7PhNNVHDxwaEesk7QFcJ+lXjS4YEQuABQB9fX3RZB1mZjaMpvboI2Jdvt4AXAUcBDwkaQpAvt7QbJFmZjZ+4w56STtKmlSbBt4A3AUsBubk2eYAVzdbpJmZjV8zXTd7AldJqj3ORRHxI0m3AYsknQisBY5pvkwzs5FdtHTtuJc97uC9WlhJ9xl30EfEfcABddofBg5vpigzM2sd/zLWzKxwDnozs8I56M3MCuegNzMrnIPezKxwDnozs8I56M3MCuegNzMrnIPezKxwDnozs8I56M3MCuegNzMrXLMnHvmH5tHyzGxr4D16M7PCOejNzArnoDczK5yD3syscA56M7PCOejNzArnoDczK5yD3syscA56M7PCOejNzArnoDczK5yD3syscA56M7PCtW30SklHAN8AJgDnRMT8dqynmREkwaNImln52rJHL2kC8F/Am4D9gWMl7d+OdZmZ2cjatUd/ELA6Iu4DkHQJMAu4p03rMzPrmG4/N4UiovUPKh0NHBERH8i3jwcOjoiTK/PMBebmm/sB945zdZOBPzRRbrt0a13QvbW5rrFxXWNTYl0viIie0WZq1x696rT9v/8oEbEAWND0iqT+iOhr9nFarVvrgu6tzXWNjesam3/kutp11M0AML1yexqwrk3rMjOzEbQr6G8DZkjaW9JzgdnA4jaty8zMRtCWrpuI2CjpZODHpMMrz4uIu9uxLlrQ/dMm3VoXdG9trmtsXNfY/MPW1ZYvY83MrHv4l7FmZoVz0JuZFW6rDnpJR0i6V9JqSad3uh4ASedJ2iDprk7XUiVpuqQbJa2SdLekUzpdE4Ck7STdKumOXNfnO11TlaQJkm6X9INO11IjaY2klZJWSOrvdD01knaVdLmkX+Xt7OVdUNN++XWqXZ6QdGqn6wKQ9NG8zd8l6WJJ27VtXVtrH30eZuHXwL+SDue8DTg2Ijr661tJrwaeAi6IiJd0spYqSVOAKRGxXNIkYBlwVBe8XgJ2jIinJG0D/Aw4JSJu6WRdNZI+BvQBO0fEWzpdD6SgB/oioqt+/CNpIXBzRJyTj7bbISIe63RdNTkzHiT9ePN3Ha5lKmlb3z8i/ixpEXBNRJzfjvVtzXv0fx9mISL+CtSGWeioiFgCPNLpOoaKiPURsTxPPwmsAqZ2tiqI5Kl8c5t86Yq9D0nTgDcD53S6lm4naWfg1cC5ABHx124K+exw4LedDvmKicD2kiYCO9DG3xptzUE/FXigcnuALgiurYGkXuBAYGlnK0ly98gKYANwXUR0RV3A14FPAM90upAhArhW0rI8lEg3+CdgEPhu7uo6R9KOnS5qiNnAxZ0uAiAiHgS+CqwF1gOPR8S17Vrf1hz0ow6zYJuTtBNwBXBqRDzR6XoAImJTRMwk/YL6IEkd7/KS9BZgQ0Qs63QtdRwaES8ljQ57Uu4u7LSJwEuBsyLiQOCPQFd8bwaQu5LeBlzW6VoAJO1G6oHYG3g+sKOk97ZrfVtz0HuYhTHKfeBXABdGxJWdrmeo/FH/p8ARHS4F4FDgbbk//BLgdZL+u7MlJRGxLl9vAK4idWN22gAwUPk0djkp+LvFm4DlEfFQpwvJXg/cHxGDEfE34ErgFe1a2dYc9B5mYQzyl57nAqsi4sxO11MjqUfSrnl6e9IfwK86WxVExKciYlpE9JK2rRsiom17XI2StGP+Mp3cNfIGoONHeEXE74EHJO2Xmw6nu4YlP5Yu6bbJ1gKHSNoh/20eTvrerC3adoapdtvCwyw0TNLFwGHAZEkDwOci4tzOVgWkPdTjgZW5Pxzg0xFxTQdrApgCLMxHRDwHWBQRXXMoYxfaE7gqZQMTgYsi4kedLenvPgxcmHe87gPe3+F6AJC0A+novA92upaaiFgq6XJgObARuJ02DoWw1R5eaWZmjdmau27MzKwBDnozs8I56M3MCuegNzMrnIPezKxwDvotRNJJ+VepZmZblIO+SZJC0hmV2x+XNG/IPMcDu1cG7+o4SedLOroL6jhB0vM7XceWJukXTSw7T9LHxzD/LpK+XxkKuu7x7ZK6ZvscjzxM8oc6XUc3ctA372ngHZImjzDPBOCL7Vh5Hvluq5R/JHUCaayPTtexRUVE237uXsdJwD0RcQDpx3xn5B81lWZXwEFfh4O+eRtJv2j76NA7anvNEXF+RERtj0nSYZJukrRI0q8lzZf0nnwCjpWS9snz9Ui6QtJt+XJobp8naYGka4ELlE7e8d287O2SXlunFkn6lqR7JP0Q2KNy38tyPcsk/TiPXT90+bdKWpof/yeS9sztO1XWfaekd+b2N0j6paTlki6rdVspnTTjs5J+RvpZeh/p15QrJG0v6fC8jpVKJ3HZNi83P9d+p6Sv1qlvnqTvSbpB0m8k/VvleX9F6eQOKyW9u/Ie3CjpImBlnccbqf7P5/aVkl6U21+jZ09ucbukSfm1ub4y76zK4z81Un116vmM0kl2fgLsV2nfR9KP8nt3c62eIQKYJEnATqRhtDfWW0/lPd2sbkm9SicUOVvpk8G1SsNWIOmFebu4I9cyPc9/c36c5ZJeUXntb1Jz2/95kn4q6T5JH8mlzwf2ye/BV0Z476dIWpLnu0vSq4Z7LYoREb40cSGdZGRnYA2wC/BxYF6+73zg6Oq8+fow4DHSz/+3JZ0M4fP5vlOAr+fpi4BX5um9SOPUAMwjnThk+3z7NOC7efpFpHE0thtS5zuA60ifLp6f1380afz3XwA9eb53k4aTGPo8d+PZX1J/ADgjT3+5Vm9lvsnAEtIJRQA+CXw2T68BPlGZ/6ekk2gAbEcaenrffPsC4FRgd+Deyvp3rVPfPOAOYPu8/gfy83xn5XnvmV+bKfk9+COwd53HGq3+D+fpDwHn5Onvk0aVhBSmE/Nl58pjrq48h9q2ULe+IfW8jPTPaAfStrYa+Hi+73pgRp4+mDQmz9DnMwm4kTQc7lPAm4fblvN13bqBXtI/iJn5vkXAe/P0UuBteXr7fNmBvB0CM4D+Fm7/v8jLTgYeJm3HvcBdlecz3Ht/GvCZPM8EYFKnc6Tdl632Y383iYgnJF0AfAT4c4OL3RYR6wEk/RaojUW9Eqjtkb8e2D/tiAGws/KAVsDiiKit65XAN3Mtv5L0O2Bf4M7K+l4NXBwRm4B1km7I7fsBLwGuy+uZQAqEoaYBlyrt7T8XuL9S4+zKa/Go0hC/+wM/z4/5XOCXlce6dJjXZD/SiH6/zrcXkrodvgX8BThH6dPIcGPhXJ1fkz9LupE0quMrK8/7IUk3Af8CPAHcGhH313mcQ0apvzby5zLSP1CAnwNnSroQuDIiBpRGC/0PpWGEnyGdL2FP4PeVxxquvuoAfa8CroqIPwFIWpyvdyKNeHhZZRvZts7zeSOwAngdsA/pvb45hh+mWsPUDen9qY2VtAzozdvk1IhYDFDbLiXtAnxL0kxgE2mbrGl2+/9hRDwNPC1pQ6W+quFe29uA8/L78z+V51MsB33rfJ00QNF3K20byd1j+WNztV/06cr0M5Xbz/Ds+/Ic4OWVQCc/FqS90b83NVhjvYGNBNwdEaOd3/ObwJkRsVjSYaS9qtryQx9XpBOIHDvMY/1xmPa6zyPSAHYHkUb4mw2cTAqtzWatc3uk12akOkaqv/ZebSK/VxExP/8TOhK4RdLrSf8weoCXRcTflIY8Hnpe0Gbeu+cAj0Uay38k7wfmR9qFXS3pftInv1uHmf89I9Rd3W43kfbc620DkLozHwIOyLX+pXJfs9v/0DrqZdlw29OS/E/szcD3JH0lIi6oN28p3EffIhHxCOmj7ImV5jWkj92QTjKwzRgf9lpSqAGQ94zqWUL640TSvqSPuffWmWe20tmcpvDsXtO9QI/yiZwlbSPpxXXWsQvpIzbAnBFq3A24BThU0gtz2w65rnqeJHUtQBqeuLe2HGm0zZvynusukUbaPBUY7nWYpfR9xfNI3QO35ef97vy8e0ifbIYLuJqx1F973vtExMqI+DLQTwrSXUgnL/mb0vcmL6izaCP1LQHervQdxiTgrZA+SQL3Szom1yBJB9RZx1rSP0mUvlvZjzS65HAaqfvvch0PSnprXsf2ue9+F2B9RDxDei/H+qV3o9t/TXVbgmFeW0kvID2/s0lDd3fTuPlt4aBvrTNIfYY1ZwOvkXQrqf90uD3I4XwE6FP6AvIe4N+Hme/bwARJK0ndIifkj7VVVwG/IX00Pgu4CdK5PUl99V+WdAfpI369I0LmkboIbgaqJ6X+IrBb/lLrDuC1ETFIOprmYkl3koKz3peEkL7H+I7S0Mki7X1elp/LM8B3SH+8P8iPdRN1vvjObgV+mNf3hUgn6LiK1IV1B3AD6fuB3w+zPPk1GUv9NadWXoM/A/8LXEh6//pJ/4jrjbM/an2RzvV7Kem9uQK4uXL3e4AT83rvpv55k78AvCK/ptcDn4yRTyzeSN1DHQ98TNL6XN/zSNvlHEm3kLpt2rX9AxARD5O62+6S9BWGf20PA1ZIup3Uj/+NMda11fEwxVYEpd8uPBURmx2RY1uOpONIe/E3droWe5b36M2sJSSdRvr0sMV/l2Aj8x69mVnhvEdvZlY4B72ZWeEc9GZmhXPQm5kVzkFvZla4/wPcMHW64mplcQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEKCAYAAAAb7IIBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGFxJREFUeJzt3X+wJGV97/H3R34oCAKGI4ULuFyykoupEnUvEDEGg0HAKJpoCRpEy1y8FYiSaCVoqgLGeAtLMcZoSCGsQC4/RJHrRrnCiggYA+wuAssPkQ0grKywERVRQwS+949+jozLnF+7e84ctt+vqqkz80zP9Ldn+sxn+umep1NVSJL652mjLkCSNBoGgCT1lAEgST1lAEhSTxkAktRTBoAk9ZQBIEk9ZQBIUk8ZAJLUU1uOuoDJ7LzzzrVw4cJRlyFJTykrV678j6oam2q6eR0ACxcuZMWKFaMuQ5KeUpJ8dzrT2QUkST1lAEhSTxkAktRTBoAk9ZQBIEk9ZQBIUk8ZAJLUUwaAJPXUvP4hmDSfnXftPRPe9+b995jDSqQN4xaAJPWUASBJPWUASFJPGQCS1FMGgCT1lAEgST1lAEhSTxkAktRTBoAk9ZQBIEk9ZQBIUk8ZAJLUUwaAJPWUASBJPWUASFJPTRkASXZPckWS25LckuTdrf3kJN9LckO7HD7wmPclWZ3k9iSvGmg/tLWtTnLi7CySJGk6pnNCmEeB91TV9Um2B1YmWdbu+7uq+ujgxEn2AY4EXgA8F/hqkue3uz8F/B6wBlieZGlV3bopFkSSNDNTBkBVrQXWtus/SXIbsGCShxwBXFBVjwB3JVkN7NfuW11VdwIkuaBNawBI0gjMaB9AkoXAi4BrW9PxSW5KsiTJTq1tAXDvwMPWtLaJ2tefx7FJViRZsW7dupmUJ0magWkHQJLtgIuAE6rqIeA0YC9gX7othFPHJx3y8Jqk/Vcbqk6vqsVVtXhsbGy65UmSZmhaJ4VPshXdh/+5VfUFgKq6f+D+TwNfajfXALsPPHw34L52faJ2SdIcm85RQAHOBG6rqo8NtO86MNnrgZvb9aXAkUmenmRPYBFwHbAcWJRkzyRb0+0oXrppFkOSNFPT2QI4EDgaWJXkhtb2fuCoJPvSdePcDbwToKpuSXIh3c7dR4HjquoxgCTHA5cCWwBLquqWTbgskqQZmM5RQN9geP/9JZM85kPAh4a0XzLZ4yRJc8dfAktSTxkAktRTBoAk9ZQBIEk9ZQBIUk8ZAJLUUwaAJPWUASBJPWUASFJPGQCS1FMGgCT1lAEgST01rfMBSHPpvGvvmfC+N++/xxxWIm3e3AKQpJ4yACSppwwASeopA0CSesoAkKSe8igg6SnOo6a0odwCkKSeMgAkqacMAEnqKQNAknrKAJCknjIAJKmnDABJ6ikDQJJ6ygCQpJ6aMgCS7J7kiiS3Jbklybtb+7OTLEtyR/u7U2tPkk8kWZ3kpiQvHniuY9r0dyQ5ZvYWS5I0lelsATwKvKeq/jtwAHBckn2AE4HLq2oRcHm7DXAYsKhdjgVOgy4wgJOA/YH9gJPGQ0OSNPemDICqWltV17frPwFuAxYARwBnt8nOBl7Xrh8BnFOda4Adk+wKvApYVlUPVtUPgWXAoZt0aSRJ0zajfQBJFgIvAq4FdqmqtdCFBPCcNtkC4N6Bh61pbRO1S5JGYNoBkGQ74CLghKp6aLJJh7TVJO3rz+fYJCuSrFi3bt10y5MkzdC0AiDJVnQf/udW1Rda8/2ta4f294HWvgbYfeDhuwH3TdL+K6rq9KpaXFWLx8bGZrIskqQZmM5RQAHOBG6rqo8N3LUUGD+S5xjgiwPtb21HAx0A/Lh1EV0KHJJkp7bz95DWJkkagemcEOZA4GhgVZIbWtv7gVOAC5O8A7gHeGO77xLgcGA18DPg7QBV9WCSDwLL23R/U1UPbpKlkCTN2JQBUFXfYHj/PcDBQ6Yv4LgJnmsJsGQmBUqSZoe/BJaknjIAJKmnDABJ6ikDQJJ6ygCQpJ4yACSppwwASeopA0CSesoAkKSeMgAkqacMAEnqKQNAknrKAJCknjIAJKmnDABJ6ikDQJJ6ygCQpJ4yACSppwwASeopA0CSesoAkKSeMgAkqacMAEnqKQNAknrKAJCknjIAJKmnDABJ6ikDQJJ6ygCQpJ6aMgCSLEnyQJKbB9pOTvK9JDe0y+ED970vyeoktyd51UD7oa1tdZITN/2iSJJmYjpbAGcBhw5p/7uq2rddLgFIsg9wJPCC9ph/TLJFki2ATwGHAfsAR7VpJUkjsuVUE1TVVUkWTvP5jgAuqKpHgLuSrAb2a/etrqo7AZJc0Ka9dcYVS5I2iY3ZB3B8kptaF9FOrW0BcO/ANGta20TtT5Lk2CQrkqxYt27dRpQnSZrMhgbAacBewL7AWuDU1p4h09Yk7U9urDq9qhZX1eKxsbENLE+SNJUpu4CGqar7x68n+TTwpXZzDbD7wKS7Afe16xO1S5JGYIO2AJLsOnDz9cD4EUJLgSOTPD3JnsAi4DpgObAoyZ5JtqbbUbx0w8uWJG2sKbcAkpwPHATsnGQNcBJwUJJ96bpx7gbeCVBVtyS5kG7n7qPAcVX1WHue44FLgS2AJVV1yyZfGknStE3nKKCjhjSfOcn0HwI+NKT9EuCSGVUnSZo1/hJYknrKAJCknjIAJKmnDABJ6ikDQJJ6ygCQpJ4yACSppwwASeopA0CSesoAkKSeMgAkqacMAEnqKQNAknrKAJCknjIAJKmnDABJ6ikDQJJ6ygCQpJ4yACSppwwASeopA0CSesoAkKSeMgAkqacMAEnqKQNAknrKAJCknjIAJKmnDABJ6qktR12A5o/zrr1nwvvevP8ec1iJNkeuX/PPlFsASZYkeSDJzQNtz06yLMkd7e9OrT1JPpFkdZKbkrx44DHHtOnvSHLM7CyOJGm6ptMFdBZw6HptJwKXV9Ui4PJ2G+AwYFG7HAucBl1gACcB+wP7ASeNh4YkaTSmDICqugp4cL3mI4Cz2/WzgdcNtJ9TnWuAHZPsCrwKWFZVD1bVD4FlPDlUJElzaEN3Au9SVWsB2t/ntPYFwL0D061pbRO1P0mSY5OsSLJi3bp1G1ieJGkqm/oooAxpq0nan9xYdXpVLa6qxWNjY5u0OEnSEzY0AO5vXTu0vw+09jXA7gPT7QbcN0m7JGlENjQAlgLjR/IcA3xxoP2t7WigA4Afty6iS4FDkuzUdv4e0tokSSMy5e8AkpwPHATsnGQN3dE8pwAXJnkHcA/wxjb5JcDhwGrgZ8DbAarqwSQfBJa36f6mqtbfsSxJmkNTBkBVHTXBXQcPmbaA4yZ4niXAkhlVJ0maNQ4FIUk9ZQBIUk8ZAJLUUwaAJPWUASBJPWUASFJPGQCS1FMGgCT1lAEgST1lAEhSTxkAktRTBoAk9ZQBIEk9ZQBIUk8ZAJLUUwaAJPWUASBJPWUASFJPGQCS1FMGgCT1lAEgST1lAEhSTxkAktRTBoAk9ZQBIEk9ZQBIUk8ZAJLUUwaAJPXURgVAkruTrEpyQ5IVre3ZSZYluaP93am1J8knkqxOclOSF2+KBZAkbZhNsQXwiqrat6oWt9snApdX1SLg8nYb4DBgUbscC5y2CeYtSdpAs9EFdARwdrt+NvC6gfZzqnMNsGOSXWdh/pKkadjYACjgsiQrkxzb2napqrUA7e9zWvsC4N6Bx65pbZKkEdhyIx9/YFXdl+Q5wLIk355k2gxpqydN1AXJsQB77LHHRpYnSZrIRm0BVNV97e8DwMXAfsD941077e8DbfI1wO4DD98NuG/Ic55eVYuravHY2NjGlCdJmsQGB0CSZybZfvw6cAhwM7AUOKZNdgzwxXZ9KfDWdjTQAcCPx7uKJElzb2O6gHYBLk4y/jznVdVXkiwHLkzyDuAe4I1t+kuAw4HVwM+At2/EvCVJG2mDA6Cq7gReOKT9B8DBQ9oLOG5D5ydJ2rT8JbAk9ZQBIEk9ZQBIUk8ZAJLUUwaAJPWUASBJPWUASFJPbexYQJL0lHPetfcMbX/z/v0af8wtAEnqKQNAknrKLqA5MNHmJvRvk1PS/OEWgCT1lAEgST1lAEhSTxkAktRTBoAk9ZQBIEk9ZQBIUk8ZAJLUUwaAJPWUASBJPWUASFJPGQCS1FMGgCT1lAEgST1lAEhSTxkAktRTBoAk9ZQBIEk9NeenhExyKPD3wBbAGVV1ymzNy1MxSprPRv0ZNadbAEm2AD4FHAbsAxyVZJ+5rEGS1JnrLqD9gNVVdWdV/RdwAXDEHNcgSQJSVXM3s+QNwKFV9cft9tHA/lV1/MA0xwLHtpt7A7dvxCx3Bv5jIx4/W6xrZqxrZqxrZjbHup5XVWNTTTTX+wAypO1XEqiqTgdO3yQzS1ZU1eJN8VybknXNjHXNjHXNTJ/rmusuoDXA7gO3dwPum+MaJEnMfQAsBxYl2TPJ1sCRwNI5rkGSxBx3AVXVo0mOBy6lOwx0SVXdMouz3CRdSbPAumbGumbGumamt3XN6U5gSdL84S+BJamnDABJ6qnNMgCSHJrk9iSrk5w46nrGJVmS5IEkN4+6lnFJdk9yRZLbktyS5N2jrgkgyTOSXJfkxlbXB0Zd06AkWyT5VpIvjbqWQUnuTrIqyQ1JVoy6nnFJdkzy+STfbuvab82DmvZur9P45aEkJ4y6LoAkf9bW+5uTnJ/kGbMyn81tH0AbbuI7wO/RHXa6HDiqqm4daWFAkpcDDwPnVNVvjroegCS7ArtW1fVJtgdWAq8b9euVJMAzq+rhJFsB3wDeXVXXjLKucUn+HFgMPKuqfn/U9YxLcjewuKrm1Q+bkpwNXF1VZ7QjALetqh+Nuq5x7XPje3Q/TP3uiGtZQLe+71NVP09yIXBJVZ21qee1OW4BzNvhJqrqKuDBUdcxqKrWVtX17fpPgNuABaOtCqrzcLu5VbvMi28rSXYDXg2cMepangqSPAt4OXAmQFX913z68G8OBv591B/+A7YEtkmyJbAts/R7qc0xABYA9w7cXsM8+EB7KkiyEHgRcO1oK+m0bpYbgAeAZVU1L+oCPg78BfD4qAsZooDLkqxsw6rMB/8NWAd8pnWbnZHkmaMuaj1HAuePugiAqvoe8FHgHmAt8OOqumw25rU5BsCUw03oyZJsB1wEnFBVD426HoCqeqyq9qX7xfh+SUbebZbk94EHqmrlqGuZwIFV9WK6EXePa92Oo7Yl8GLgtKp6EfBTYD7tm9saeC3wuVHXApBkJ7peiz2B5wLPTPJHszGvzTEAHG5ihlof+0XAuVX1hVHXs77WXfB14NARlwJwIPDa1td+AfC7Sf7PaEt6QlXd1/4+AFxM1yU6amuANQNbcJ+nC4T54jDg+qq6f9SFNK8E7qqqdVX1C+ALwEtnY0abYwA43MQMtJ2tZwK3VdXHRl3PuCRjSXZs17eh+6f49mirgqp6X1XtVlUL6datr1XVrHw7m6kkz2w78mldLIcAIz/irKq+D9ybZO/WdDAw8oMyBhzFPOn+ae4BDkiybfv/PJhu39wmN+dnBJttIxhuYtqSnA8cBOycZA1wUlWdOdqqOBA4GljV+tsB3l9Vl4ywJoBdgbPb0RlPAy6sqnl1yOU8tAtwcfeZwZbAeVX1ldGW9Et/CpzbvpTdCbx9xPUAkGRbuiMG3znqWsZV1bVJPg9cDzwKfItZGhZiszsMVJI0PZtjF5AkaRoMAEnqKQNAknrKAJCknjIAJKmnDIARS3Jc+xWuJM0pA2CWJKkkpw7cfm+Sk9eb5mjg2QODno1ckrOSvGEe1PG2JM8ddR1zLck3N+KxJyd57wym3yHJvwwMuT302Pwk82b93BBtKOo/GXUd85EBMHseAf4gyc6TTLMF8LezMfM2iuBTUvvx19voxkEZdR1zqqpm5Sf/EzgOuLWqXkj3A8VT2w+1Njc7AgbAEAbA7HmU7td7f7b+HePfsqvqrKqq8W9YSQ5KcmWSC5N8J8kpSd7SToyyKslebbqxJBclWd4uB7b2k5OcnuQy4Jx0J1X5THvst5K8YkgtSfLJJLcm+TLwnIH7XtLqWZnk0nbugPUf/5ok17bn/2qSXVr7dgPzvinJH7b2Q5L8W5Lrk3xuvPsr3YlM/jrJN+h+mr+Y7pejNyTZJsnBbR6r0p1Y5+ntcae02m9K8tEh9Z2c5J+TfC3JHUn+58ByfyTdCTdWJXnTwHtwRZLzgFVDnm+y+j/Q2lcl+Y3W/jt54oQj30qyfXttLh+Y9oiB5394svqG1PNX6U5+9FVg74H2vZJ8pb13V4/Xs54Ctk8SYDu6ocofHTafgff0SXUnWZjuJC+fTrclcVm64TtI8uttvbix1bJ7m/7q9jzXJ3npwGt/ZTZu/V+S5OtJ7kzyrlb6KcBe7T34yCTv/a5JrmrT3Zzktyd6LTYbVeVlFi50J355FnA3sAPwXuDkdt9ZwBsGp21/DwJ+RDcMwtPpTlDxgXbfu4GPt+vnAS9r1/egG8cH4GS6E7ps026/B/hMu/4bdGOMPGO9Ov8AWEa3NfLcNv830I2//01grE33JrphNdZfzp144hflfwyc2q5/eLzegel2Bq6iO9ELwF8Cf92u3w38xcD0X6c7sQnAM+iG+H5+u30OcALwbOD2gfnvOKS+k4EbgW3a/O9ty/mHA8u9S3ttdm3vwU+BPYc811T1/2m7/ifAGe36v9CN0Andh+yW7fKsgedcPbAM4+vC0PrWq+cldCG1Ld26thp4b7vvcmBRu74/3ZhF6y/P9sAVdEMOPwy8eqJ1uf0dWjewkC449m33XQj8Ubt+LfDadn2bdtmWth4Ci4AVm3D9/2Z77M7AD+jW44XAzQPLM9F7/x7gr9o0WwDbj/pzZLYvT9lugqeCqnooyTnAu4CfT/Nhy6tqLUCSfwfGxwFfBYx/g38lsE/3xQ2AZ6UNAgYsrarxeb0M+IdWy7eTfBd4PnDTwPxeDpxfVY8B9yX5WmvfG/hNYFmbzxZ0HxTr2w34bLqtg62BuwZqPHLgtfhhuqGU9wH+tT3n1sC/DTzXZyd4TfamGx3xO+322XTdF58E/hM4I93Wy0RjBX2xvSY/T3IF3QiZLxtY7vuTXAn8D+Ah4LqqumvI8xwwRf3jI6mupAtWgH8FPpbkXOALVbUm3eir/zvdUM2P052vYhfg+wPPNVF9gwMb/jZwcVX9DCDJ0vZ3O7rRIz83sI48fcjyvAq4AfhdYC+69/rqmng48ExQN3Tvz/hYUiuBhW2dXFBVSwHG18skOwCfTLIv8BjdOjluY9f/L1fVI8AjSR4YqG/QRK/tcmBJe3/+78DybLYMgNn3cbpBnT4z0PYorfutbX4P9rs+MnD98YHbj/PE+/U04LcGPuhpzwXdt9dfNk2zxmEDQgW4paqmOnfrPwAfq6qlSQ6i+xY2/vj1nzd0J3Y5aoLn+ukE7UOXo7qB//ajGy3xSOB4ug+zJ0065PZkr81kdUxW//h79RjtvaqqU1o4HQ5ck+SVdEEyBrykqn6Rbmjp9c/5ujHv3dOAH1V3LoXJvB04pbqvvKuT3EW3pXjdBNO/ZZK6B9fbx+i+6Q9bB6DrFr0feGGr9T8H7tvY9X/9OoZ9xk20Pl3Vwu3VwD8n+UhVnTNs2s2F+wBmWVU9SLdJ/I6B5rvpNt+hO/HDVjN82svoPuwAaN+khrmK7p+WJM+n21y+fcg0R6Y7+9auPPEt63ZgLO3k3Um2SvKCIfPYgW5THeCYSWrcCbgGODDJr7e2bVtdw/yErosCumGgF44/jm700ivbN90dqhu59ARgotfhiHT7Q36NrptheVvuN7XlHqPbEprog2/cTOofX+69qmpVVX0YWEH3AbsD3UllfpFuv8zzhjx0OvVdBbw+3T6S7YHXQLflCdyV5I2thiR54ZB53EMXnqTbd7M33UidE5lO3b/U6vhekte0eWzT9g3sAKytqsfp3suZ7myf7vo/bnBdggle2yTPo1u+T9MNkT6fzlkwKwyAuXEqXZ/kuE8Dv5PkOrr+2Ym+cU7kXcDidDs+bwX+1wTT/SOwRZJVdN0rb2ubx4MuBu6g28Q+DbgSuvO20u0L+HCSG+m6CoYdoXIyXVfD1cDgicj/Ftip7Uy7EXhFVa2jO7rn/CQ30X2gDts5Cd1+kn9KN0R16L6tfq4ty+PAP9H9U3+pPdeVDNnh3lwHfLnN74PVnTTlYrqusBuBr9Htf/j+BI+nvSYzqX/cCQOvwc+B/wecS/f+raAL6GHnOZiyvurO5fxZuvfmIuDqgbvfAryjzfcWhp8X+4PAS9trejnwlzX5yeSnU/f6jgb+PMnaVt+v0a2XxyS5hq77Z7bWfwCq6gd03XY3J/kIE7+2BwE3JPkW3X6Cv59hXU85DgetzVq63148XFVPOkJIcyfJm+m+9V8x6lr0BLcAJM2qJO+h29qY899VaHJuAUhST7kFIEk9ZQBIUk8ZAJLUUwaAJPWUASBJPfX/Aa/ofZJSn9RTAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] @@ -392,7 +400,7 @@ ], "source": [ "# definimos a quantidade de ensaios.\n", - "quantidade_ensaios = 1000\n", + "quantidade_ensaios = 10000\n", "\n", "# definimos a quantidade de lançamentos por ensaio.\n", "lançamentos = 8\n", @@ -408,6 +416,50 @@ "sns.distplot(samples_binomial, axlabel = eixo_x, kde = False);" ] }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 4, 4, 1, 1, 4, 2, 6, 4, 6, 4, 3, 4, 4, 4, 5, 3, 4, 1, 3, 2, 2,\n", + " 4, 4, 5, 5, 7, 3, 3, 3, 6, 5, 3, 6, 5, 3, 3, 4, 5, 5, 5, 4, 3, 5,\n", + " 4, 2, 5, 5, 5, 4, 1, 5, 4, 6, 7, 5, 4, 2, 4, 5, 5, 6, 3, 3, 3, 2,\n", + " 4, 5, 5, 4, 3, 4, 5, 6, 4, 4, 0, 6, 5, 5, 5, 3, 6, 6, 4, 6, 3, 4,\n", + " 2, 6, 6, 2, 4, 7, 5, 6, 7, 3, 2, 4])" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "samples_binomial[:100]" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10000" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "samples_binomial.size" + ] + }, { "cell_type": "markdown", "metadata": { @@ -415,11 +467,11 @@ "id": "d82_kn_N2vjN" }, "source": [ - "### Distribuição de Poisson\n", + "# Distribuição de Poisson\n", "\n", - "É uma distribuição de probabilidade de variável aleatória **discreta** que expressa a probabilidade de uma série de eventos ocorrer num certo período de tempo se estes eventos ocorrem **independentemente** de quando ocorreu o último evento. Por exemplo, o número de clientes que entram em um banco durante a manhã ou o número de falhas de um carro durante um trajeto (embora podemos argumentar que esses eventos não são exatamente independentes).\n", + "É uma distribuição de probabilidade de variável aleatória **discreta** que expressa a probabilidade de uma série de eventos ocorrer num certo período de tempo se estes eventos ocorrem **independentemente** de quando ocorreu o último evento. Por exemplo, o número de clientes que entram em um banco durante a manhã ou o número de falhas de um carro durante um trajeto (embora exista o argumento de que esses eventos não são exatamente independentes).\n", "\n", - "Esta distribuição tem como parâmetro $\\lambda$, que é sempre maior que zero. Este parâmetro indica o número médio de ocorrências de um evento por unidade contínua (como tempo ou espaço). Por exemplo, se o evento ocorre a uma média de 4 minutos, e estamos interessados no número de eventos que ocorrem num intervalo de 10 minutos, usariámos como modelo a distribuição de Poisson com λ = 10/4 = 2.5.\n", + "Esta distribuição tem como parâmetro $\\lambda$ é sempre maior que zero. **Este parâmetro indica o número médio de ocorrências de um evento por unidade contínua (como tempo ou espaço)**. Por exemplo, se o evento ocorre a uma média de 4 minutos, e estamos interessados no número de eventos que ocorrem num intervalo de 10 minutos, usariámos como modelo a distribuição de Poisson com λ = 10/4 = 2.5.\n", "\n", "Quando uma variável **_X_** segue uma distribuição de Poisson, escreve-se **_X ~ Poisson ($\\lambda$)_** e a função de probabilidade é:\n", "\n", @@ -430,15 +482,6 @@ "* $e$ é base do logaritmo natural ($e$ = 2.71828...),\n", "* ! significa fatorial, muito usado em arranjos e permutações. Ex: Placa de carro.\n", "\n", - "Propomos o exemplo de um trem onde ocorre uma média de 1,5 falhas por dia, portanto $\\lambda = 1,5 $ e nossa função de probabilidades: \n", - "\n", - "\\begin{equation*}\n", - "f(x)= e^{-1.5} \\dfrac{1.5^x}{x!}\n", - "\\end{equation*}\n", - "\n", - "Vamos obter um conjunto de dados provenientes de uma distribuição de Poisson através da chamada à função ```poisson```, com a motivação de modelar o problema apresentado.\n", - "\n", - "\n", "A distribuição de Poisson representa um modelo probabilístico adequado para o estudo de um grande número de fenômenos observáveis. Eis alguns exemplos:\n", "\n", "- Chamadas telefônicas por unidade de tempo;\n", @@ -451,12 +494,24 @@ "Nota: tanto a média quanto a variância em uma distribuição de Poisson é dado por $\\lambda$\n", "\n", "[Calculadora](http://www.elektro-energetika.cz/calculations/po.php)\n", - "(Será que conseguimos construir uma calculadora em python nesse estilo?)" + "(Será que conseguimos construir uma calculadora em python nesse estilo?)\n", + "\n", + "### Exemplo\n", + "\n", + "Propomos o exemplo de um trem onde ocorre uma **média de 1,5 falhas por dia**, portanto $\\lambda = 1,5 $ e nossa função de probabilidades.\n", + "\n", + "\\begin{equation*}\n", + "f(x)= e^{-1.5} \\dfrac{1.5^x}{x!}\n", + "\\end{equation*}\n", + "\n", + "Vamos obter um conjunto de dados provenientes de uma distribuição de Poisson através da chamada à função ```poisson```, com a motivação de modelar o problema apresentado.\n", + "\n", + "\n" ] }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 72, "metadata": { "colab": { "autoexec": { @@ -469,17 +524,9 @@ "outputId": "e7b085c2-ccd1-4091-d595-67a9012ac552" }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\sn3fru\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", - " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFNRJREFUeJzt3X2QZXWd3/H3RwZF8AFwGgoZZoetjBildgUnwC4uIbJhMVqCBhJgoyNLijLLuqgxPiUla6VMdHVXs+WKOwFkjIAiQiCsUSlEUVZGhwd5GhCCOExgndkoKLjoIt/8cU7Lpb093XNvN9398/2q6rrn/O55+J57uz997u/e87upKiRJ7XraQhcgSZpfBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpccsWugCA5cuX16pVqxa6DElaUq6//vq/q6qJmZZbFEG/atUqNm7cuNBlSNKSkuR7s1nOrhtJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWrcorgy9lfBBRs2j7TeyYeunONKJP2q8Yxekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuNmDPok5ybZmuTWgbYPJrkjyc1JLk2y+8B970pyd5I7k/zefBUuSZqd2ZzRnwccM6XtSuDAqvoN4DvAuwCSvAg4EXhxv87Hkuw0Z9VKknbYjEFfVdcAP5jS9qWqeqyfvQ5Y0U8fC3y6qn5aVd8F7gYOmcN6JUk7aC766P8A+N/99L7AfQP3benbfkmS05JsTLJx27Ztc1CGJGmYsYI+yX8EHgPOn2waslgNW7eq1lXVmqpaMzExMU4ZkqTtGHk8+iRrgVcBR1XVZJhvAfYbWGwFcP/o5UmSxjXSGX2SY4B3AK+uqp8M3HU5cGKSZyTZH1gNfHP8MiVJo5rxjD7JhcCRwPIkW4Az6T5l8wzgyiQA11XVG6vqtiQXAbfTdemcXlU/n6/iJUkzmzHoq+qkIc3nbGf59wHvG6coSdLc8cpYSWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekho3Y9AnOTfJ1iS3DrTtmeTKJHf1t3v07UnyF0nuTnJzkoPns3hJ0sxmc0Z/HnDMlLZ3AldV1Wrgqn4e4BXA6v7nNOCsuSlTkjSqGYO+qq4BfjCl+VhgfT+9HjhuoP2T1bkO2D3JPnNVrCRpxy0bcb29q+oBgKp6IMleffu+wH0Dy23p2x6YuoEkp9Gd9bNy5coRy9BicMGGzSOtd/KhPu/SU2Gu34zNkLYatmBVrauqNVW1ZmJiYo7LkCRNGjXovz/ZJdPfbu3btwD7DSy3Arh/9PIkSeMaNegvB9b202uBywbaX99/+uYw4KHJLh5J0sKYsY8+yYXAkcDyJFuAM4H3AxclORXYDJzQL/554F8AdwM/AU6Zh5olSTtgxqCvqpOmueuoIcsWcPq4RUmS5o5XxkpS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuLGCPslbktyW5NYkFybZJcn+STYkuSvJZ5I8fa6KlSTtuJGDPsm+wB8Da6rqQGAn4ETgA8CHq2o18EPg1LkoVJI0mnG7bpYBz0yyDNgVeAB4OXBxf/964Lgx9yFJGsPIQV9V/xf4ELCZLuAfAq4HHqyqx/rFtgD7Dls/yWlJNibZuG3btlHLkCTNYJyumz2AY4H9gecDuwGvGLJoDVu/qtZV1ZqqWjMxMTFqGZKkGYzTdfO7wHeraltV/QNwCfDbwO59Vw7ACuD+MWuUJI1hnKDfDByWZNckAY4CbgeuBo7vl1kLXDZeiZKkcYzTR7+B7k3XG4Bb+m2tA94BvDXJ3cDzgHPmoE5J0oiWzbzI9KrqTODMKc33AIeMs11J0tzxylhJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuLE+XrkYXLBh80jrnXzoyjmuRJIWJ8/oJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNGyvok+ye5OIkdyTZlOS3kuyZ5Mokd/W3e8xVsZKkHTfuGf1/A75QVS8EfhPYBLwTuKqqVgNX9fOSpAUyctAneQ5wBHAOQFX9rKoeBI4F1veLrQeOG7dISdLoxjmj/3VgG/CJJDcmOTvJbsDeVfUAQH+717CVk5yWZGOSjdu2bRujDEnS9owT9MuAg4Gzquog4BF2oJumqtZV1ZqqWjMxMTFGGZKk7Rkn6LcAW6pqQz9/MV3wfz/JPgD97dbxSpQkjWPkoK+qvwXuS3JA33QUcDtwObC2b1sLXDZWhZKksSwbc/03AecneTpwD3AK3T+Pi5KcCmwGThhzH5KkMYwV9FV1E7BmyF1HjbNdSdLc8cpYSWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekho3dtAn2SnJjUmu6Of3T7IhyV1JPpPk6eOXKUka1Vyc0Z8BbBqY/wDw4apaDfwQOHUO9iFJGtFYQZ9kBfBK4Ox+PsDLgYv7RdYDx42zD0nSeMY9o/8I8Hbg8X7+ecCDVfVYP78F2HfMfUiSxrBs1BWTvArYWlXXJzlysnnIojXN+qcBpwGsXLly1DKkeXfBhs07vM7Jh/o7rcVjnDP6w4FXJ7kX+DRdl81HgN2TTP4DWQHcP2zlqlpXVWuqas3ExMQYZUiStmfkoK+qd1XViqpaBZwIfLmqfh+4Gji+X2wtcNnYVUqSRjYfn6N/B/DWJHfT9dmfMw/7kCTN0sh99IOq6ivAV/rpe4BD5mK7kqTxeWWsJDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0bOeiT7Jfk6iSbktyW5Iy+fc8kVya5q7/dY+7KlSTtqHHO6B8D/n1V/WPgMOD0JC8C3glcVVWrgav6eUnSAhk56Kvqgaq6oZ/+MbAJ2Bc4FljfL7YeOG7cIiVJo5uTPvokq4CDgA3A3lX1AHT/DIC95mIfkqTRjB30SZ4FfA54c1X9aAfWOy3JxiQbt23bNm4ZkqRpjBX0SXamC/nzq+qSvvn7Sfbp798H2Dps3apaV1VrqmrNxMTEOGVIkrZjnE/dBDgH2FRVfz5w1+XA2n56LXDZ6OVJksa1bIx1DwdeB9yS5Ka+7d3A+4GLkpwKbAZOGK9ESdI4Rg76qvo6kGnuPmrU7UqS5pZXxkpS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuPGGQJB0iJxwYbNI6138qEr57gSLUae0UtS4zyjl7So+WplfJ7RS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjZu3oE9yTJI7k9yd5J3ztR9J0vbNy6BmSXYC/hL458AW4FtJLq+q2+djf5K00Bbz4GvzdUZ/CHB3Vd1TVT8DPg0cO0/7kiRtx3wF/b7AfQPzW/o2SdJTLFU19xtNTgB+r6r+bT//OuCQqnrTwDKnAaf1swcAd464u+XA341R7mLisSxOrRxLK8cBHsukX6uqiZkWmq8vHtkC7DcwvwK4f3CBqloHrBt3R0k2VtWacbezGHgsi1Mrx9LKcYDHsqPmq+vmW8DqJPsneTpwInD5PO1LkrQd83JGX1WPJfkj4IvATsC5VXXbfOxLkrR98/adsVX1eeDz87X9AWN3/ywiHsvi1MqxtHIc4LHskHl5M1aStHg4BIIkNW5JB30rwywkOTfJ1iS3LnQt40iyX5Krk2xKcluSMxa6plEl2SXJN5N8uz+W9y50TeNKslOSG5NcsdC1jCPJvUluSXJTko0LXc+okuye5OIkd/R/M781b/taql03/TAL32FgmAXgpKU4zEKSI4CHgU9W1YELXc+okuwD7FNVNyR5NnA9cNwSfU4C7FZVDyfZGfg6cEZVXbfApY0syVuBNcBzqupVC13PqJLcC6ypqiX9Ofok64GvVdXZ/acTd62qB+djX0v5jL6ZYRaq6hrgBwtdx7iq6oGquqGf/jGwiSV6RXR1Hu5nd+5/luZZEZBkBfBK4OyFrkWQ5DnAEcA5AFX1s/kKeVjaQe8wC4tYklXAQcCGha1kdH1Xx03AVuDKqlqyxwJ8BHg78PhCFzIHCvhSkuv7K+yXol8HtgGf6LvTzk6y23ztbCkHfYa0LdkzrpYkeRbwOeDNVfWjha5nVFX186p6Cd2V3YckWZLdakleBWytqusXupY5cnhVHQy8Aji97/pcapYBBwNnVdVBwCPAvL3PuJSDfsZhFvTU6/uzPwecX1WXLHQ9c6F/Sf0V4JgFLmVUhwOv7vu2Pw28PMmnFrak0VXV/f3tVuBSum7cpWYLsGXgVeLFdME/L5Zy0DvMwiLTv4F5DrCpqv58oesZR5KJJLv3088Efhe4Y2GrGk1VvauqVlTVKrq/ky9X1b9Z4LJGkmS3/o1++q6Oo4El92m1qvpb4L4kB/RNRwHz9qGFebsydr61NMxCkguBI4HlSbYAZ1bVOQtb1UgOB14H3NL3bQO8u79KeqnZB1jff7rracBFVbWkP5bYiL2BS7tzCpYBF1TVFxa2pJG9CTi/P1G9Bzhlvna0ZD9eKUmanaXcdSNJmgWDXpIaZ9BLUuMMeklqnEEvSY0z6JeYJCuSXJbkriT3JPlokmfMw36OTPLbA/NvTPL6Icut2tFRN5Ocl+T4MWp7eOalnrT8Cf3ogFdvZ5lfHEeSNyT56Kj1zbKme5Ms34Hl3z2f9TxVJp+7JM9PcvFC1/OrwqBfQvoLki4B/mdVrQZWA88E/nQednck8Iugr6qPV9Un52E/T4VTgT+sqn+20IWMYWjQp7No/o776w5mVFX3V9XI/+y1YxbNL4hm5eXAo1X1CejGYgHeArw+ybOmnokmuSLJkf30WUk2Th1bvT+zfG+SG/oxvl/YD0j2RuAt/Zjfv5PkT5K8rV/npf047d8ATh/Y1qokX+u3dcPkK4I+jD6a5PYkfw3sNbDOS5N8tR+g6ov9UMdP0l/9/I0k30ryn6fc9x/69pszZMz4JO8BXgZ8PMkHp6txiOcn+UL/yulPB7Y33eP4/v74bk7yoSF1PC/Jl9INYPVXDIzVlOStSW7tf948ZN33A8/sn4vz+2PYlORjwA3AfkmO7h+jG5J8Nt14Q5PP73/p79uY5OD+cf4/Sd44ZF+r0o2Pvr4/louT7Nrfd1Rf/y3pvkPhGQP7eE+SrwMnzOa5y5NfQc32OdGoqsqfJfID/DHw4SHtNwIvAd4AfHSg/QrgyH56z/52J7pxW36jn78XeFM//YfA2f30nwBvG9jWL+aBm4F/2k9/ELi1n94V2KWfXg1s7KdfC1zZ7/v5wIPA8XRD//4NMNEv96/prnCeenyXA6/vp08HHu6nj6b7vs3QnbRcARwxZP2v0I1fvr0aVw0cxxvorlR8LrAL8D1gv+keR2BP4E6euABx9yE1/AXwnn76lXQD8C0HXgrcAuwGPAu4DThoyPoPD0yvohuF8rB+fjlwDd34+QDvGNjXvcC/66c/3D93zwYm6AY6m7qfVX1th/fz5wJv6x+H+4AX9O2fpBu0bnIfb5/md3a6527w8R76nPgzdz+e0S8tYfgIncNG8pzqXyW5ge6fwouBFw3cNzn42PV0f4DTF5A8ly7Ivto3/Y+Bu3cG/nuSW4DPDuzjCODC6kaDvB/4ct9+AHAgcGW6IRP+E93gdFMdDlw4ZH9H9z830p3ZvpAuKLZnuhqnuqqqHqqqR+nGIPm1vn3Y4/gj4FHg7CSvBX4yZHtHAJ8CqKq/Bn7Yt78MuLSqHqlu/PtLgN+Z4RgAvldPfAnKYX0d1/aP49qBeuGJMaBuATZU1Y+rahvwaPrxfKa4r6qu7ac/1dd4APDdqvpO376+P6ZJn5mmzumeu0GzfU40oiU71s2vqNuAfznYkO4LDPamO6M8kCd3x+3SL7M/3VnZP6mqHyY5b/K+3k/7258z8+/EdP9soOtG+j7wm30djw7cN90/qNuqajZfoTbd+v+1qv5qFuvPpsZBPx2Y/jmwbLrHsbpxlw6hG5jqROCP6LrZZnsMo3hkyjaurKqTpll28lge58nH9TjDn++pdRYz1/nIdu6baZyV2T4nGpFn9EvLVcCu6T/9ku6Nrz+j6675e7qX0C9J8rQk+/HE8K3PoftDfCjJ3nTjeM/kx3Qv8Z+kuiF7H0rysr7p9wfufi7wQFU9Tje42eQbc9cAJ6b7Io99gMk3Re8EJtJ/V2aSnZO8eEgt19IF6NT9fRH4g4H+6H2T7DV15Smmq3E2hj6O/f6fW93gbW+m60ab6prJ2pO8AthjoP24JLumG43xNcDXhqz/D+mGgB7mOuDwJP+o3/6uSV6wA8c11co88f2lJ9F9jeIdwKrJfdA9dl8dtvIU0z13g8Z5TjQLBv0SUl0n5muA45PcBfw/4PGqel+/yLXAd+leon+IrjuDqvo2XVfDbXR9rtcys/8FvKZ/A3BqV8IpwF+mezP27wfaPwasTXId8AKeOMu7FLirr+ss+oCo7isgjwc+kOTbwE0MfNJnwBl0XzDxLbpQmHw8vgRcAHyjf9l/MUP+OU0xXY0z2s7j+GzgiiQ398f2liGrvxc4ou/2ORrY3G/zBuA84Jt038Z1dlXdOGT9dcDNSc4fUtc2uvcVLuxruI6uG2tUm+geo5vp3n84q+/COgX4bP9YPw58fBbbGvrcTTHyc6LZcfTKJaz/dMKFwGurnW8P0gJK94mrK2oJf0m9fpl99EtYVf0NT37TTZJ+iWf0ktQ4++glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4/4/D2ZzDAtk6ggAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFGxJREFUeJzt3X20ZXV93/H3JwyK4AMQLixkIENXRi26Eh+mgMFQKinF6BK00PLQOBrWYtmQBLXWh7RL42ptNZpos4yYCRCw8iAiFopWnYUokcjoMCBPA0IRhynUuamiosEE+faPva8cbs6de+ece+Zyf/N+rXXX2fu3n7777JnP3fd3zvmdVBWSpHb9wlIXIEmaLINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1LgVS10AwH777VerVq1a6jIkaVm58cYb/6aqpuZb70kR9KtWrWLjxo1LXYYkLStJvrOQ9ey6kaTGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxj0pPhmrzsUbtoy9j9OOOGQRKpHUEu/oJalxBr0kNc6gl6TGGfSS1DiDXpIaN2/QJzk/ybYktw20fSDJnUluSfKZJHsPLHtnknuS3JXkX0yqcEnSwizkjv4C4PhZbeuBF1TVrwDfAt4JkOQw4BTg+f02H02y26JVK0naYfMGfVVdB3xvVtsXq+rRfvYGYGU/fQJwaVX9tKq+DdwDHL6I9UqSdtBi9NH/NvC/+umDgPsHlm3t2yRJS2SsoE/yH4BHgYtmmoasVnNse2aSjUk2Tk9Pj1OGJGk7Rg76JGuBVwGnV9VMmG8FDh5YbSXwwLDtq2pdVa2pqjVTU/N+ibkkaUQjBX2S44G3A6+uqp8MLLoKOCXJU5McCqwGvj5+mZKkUc07qFmSS4BjgP2SbAXeTfcum6cC65MA3FBVb6yq25NcBtxB16VzVlX9bFLFS5LmN2/QV9WpQ5rP28767wXeO05RkqTF4ydjJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjZs36JOcn2RbktsG2vZNsj7J3f3jPn17kvxpknuS3JLkxZMsXpI0v4Xc0V8AHD+r7R3ANVW1Grimnwd4BbC6/zkTOGdxypQkjWreoK+q64DvzWo+Abiwn74QOHGg/ePVuQHYO8mBi1WsJGnHjdpHf0BVPQjQP+7ftx8E3D+w3ta+7R9IcmaSjUk2Tk9Pj1iGJGk+i/1ibIa01bAVq2pdVa2pqjVTU1OLXIYkacaoQf/dmS6Z/nFb374VOHhgvZXAA6OXJ0ka16hBfxWwtp9eC1w50P66/t03RwI/mOnikSQtjRXzrZDkEuAYYL8kW4F3A+8DLktyBrAFOLlf/XPAbwL3AD8B3jCBmiVJO2DeoK+qU+dYdOyQdQs4a9yiJEmLx0/GSlLjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMbN+/ZKaalcvGHL2Ps47YhDFqESaXnzjl6SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaN1bQJ3lzktuT3JbkkiR7JDk0yYYkdyf5ZJKnLFaxkqQdN3LQJzkI+H1gTVW9ANgNOAV4P/ChqloNfB84YzEKlSSNZtyumxXA05KsAPYEHgReDlzeL78QOHHMY0iSxjBy0FfV/wE+CGyhC/gfADcCD1XVo/1qW4GDhm2f5MwkG5NsnJ6eHrUMSdI8xum62Qc4ATgUeDawF/CKIavWsO2ral1VramqNVNTU6OWIUmaxzhdN78BfLuqpqvq74ErgF8D9u67cgBWAg+MWaMkaQzjBP0W4MgkeyYJcCxwB3AtcFK/zlrgyvFKlCSNY8X8qwxXVRuSXA5sAh4FbgLWAZ8FLk3yn/u28xaj0LlcvGHL2Ps47YhDFqESSXpyGjnoAarq3cC7ZzXfCxw+zn4lSYvHT8ZKUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaN1bQJ9k7yeVJ7kyyOclLk+ybZH2Su/vHfRarWEnSjhv3jv6/AZ+vqucBvwpsBt4BXFNVq4Fr+nlJ0hIZOeiTPBM4GjgPoKr+rqoeAk4ALuxXuxA4cdwiJUmjG+eO/h8B08BfJrkpyblJ9gIOqKoHAfrH/YdtnOTMJBuTbJyenh6jDEnS9owT9CuAFwPnVNWLgB+zA900VbWuqtZU1ZqpqakxypAkbc84Qb8V2FpVG/r5y+mC/7tJDgToH7eNV6IkaRwjB31V/V/g/iTP7ZuOBe4ArgLW9m1rgSvHqlCSNJYVY27/e8BFSZ4C3Au8ge6Xx2VJzgC2ACePeQxJ0hjGCvqquhlYM2TRsePsV5K0ePxkrCQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpceN+w5SkBbh4w5axtj/tiEMWqRLtiryjl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0bO+iT7JbkpiRX9/OHJtmQ5O4kn0zylPHLlCSNajHu6M8GNg/Mvx/4UFWtBr4PnLEIx5AkjWisoE+yEnglcG4/H+DlwOX9KhcCJ45zDEnSeMa9o/8w8DbgsX7+F4GHqurRfn4rcNCYx5AkjWHkoE/yKmBbVd042Dxk1Zpj+zOTbEyycXp6etQyJEnzGOeO/ijg1UnuAy6l67L5MLB3kpkxdFYCDwzbuKrWVdWaqlozNTU1RhmSpO0ZOeir6p1VtbKqVgGnAF+qqtOBa4GT+tXWAleOXaUkaWSTeB/924G3JLmHrs/+vAkcQ5K0QIsyTHFVfRn4cj99L3D4YuxXkjQ+PxkrSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklq3MhBn+TgJNcm2Zzk9iRn9+37Jlmf5O7+cZ/FK1eStKPGuaN/FPh3VfWPgSOBs5IcBrwDuKaqVgPX9POSpCUyctBX1YNVtamf/hGwGTgIOAG4sF/tQuDEcYuUJI1uUfrok6wCXgRsAA6oqgeh+2UA7L8Yx5AkjWbsoE/ydODTwJuq6oc7sN2ZSTYm2Tg9PT1uGZKkOYwV9El2pwv5i6rqir75u0kO7JcfCGwbtm1VrauqNVW1ZmpqapwyJEnbMc67bgKcB2yuqj8ZWHQVsLafXgtcOXp5kqRxrRhj26OA3wJuTXJz3/YHwPuAy5KcAWwBTh6vREnSOEYO+qr6KpA5Fh876n4lSYvLT8ZKUuMMeklqnEEvSY0b58VYSdphF2/YMvY+TjvikEWoZNfhHb0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapzDFEvSiJbLkMve0UtS4wx6SWqcQS9JjTPoJalxBr0kNW5iQZ/k+CR3JbknyTsmdRxJ0vZNJOiT7Ab8GfAK4DDg1CSHTeJYkqTtm9Qd/eHAPVV1b1X9HXApcMKEjiVJ2o5JBf1BwP0D81v7NknSTjapT8ZmSFs9YYXkTODMfvbhJHeNeKz9gL8ZcVsATh9n46Ux5zkvw3NZqJGu8zJ/Pn5+zsv8PHbEgq5zS8/H6eNl2C8tZKVJBf1W4OCB+ZXAA4MrVNU6YN24B0qysarWjLuf5cRz3jV4zruGnXHOk+q6+QawOsmhSZ4CnAJcNaFjSZK2YyJ39FX1aJLfBb4A7AacX1W3T+JYkqTtm9jolVX1OeBzk9r/gLG7f5Yhz3nX4DnvGiZ+zqmq+deSJC1bDoEgSY1b1kG/qw2zkOT8JNuS3LbUtewsSQ5Ocm2SzUluT3L2Utc0aUn2SPL1JN/sz/k9S13TzpBktyQ3Jbl6qWvZGZLcl+TWJDcn2TjRYy3Xrpt+mIVvAf+c7u2c3wBOrao7lrSwCUpyNPAw8PGqesFS17MzJDkQOLCqNiV5BnAjcGLj1znAXlX1cJLdga8CZ1fVDUtc2kQleQuwBnhmVb1qqeuZtCT3AWuqaqzPAS3Ecr6j3+WGWaiq64DvLXUdO1NVPVhVm/rpHwGbafxT1tV5uJ/dvf9ZnndkC5RkJfBK4NylrqVFyznoHWZhF5NkFfAiYMPSVjJ5fTfGzcA2YH1VtX7OHwbeBjy21IXsRAV8McmN/UgBE7Ocg37eYRbUjiRPBz4NvKmqfrjU9UxaVf2sql5I96nyw5M021WX5FXAtqq6calr2cmOqqoX043ye1bfNTsRyzno5x1mQW3o+6k/DVxUVVcsdT07U1U9BHwZOH6JS5mko4BX933WlwIvT/KJpS1p8qrqgf5xG/AZuu7oiVjOQe8wC7uA/oXJ84DNVfUnS13PzpBkKsne/fTTgN8A7lzaqianqt5ZVSurahXd/+MvVdW/WeKyJirJXv2bC0iyF3AcMLF30y3boK+qR4GZYRY2A5e1PsxCkkuArwHPTbI1yRlLXdNOcBTwW3R3eTf3P7+51EVN2IHAtUluobuhWV9Vu8RbDnchBwBfTfJN4OvAZ6vq85M62LJ9e6UkaWGW7R29JGlhDHpJapxBL0mNM+glqXEGvSQ1zqBfZpKsTHJlkruT3JvkI0meOoHjHJPk1wbm35jkdUPWW7Wjo2kmuSDJSWPU9vD8az1h/ZP70S+v3c46Pz+PJK9P8pFR61tgTfcl2W8H1v+DSdazs8xcuyTPTnL5UtezqzDol5H+w0NXAP+jqlYDq4GnAX80gcMdA/w86KvqY1X18QkcZ2c4A/idqvpnS13IGIYGfTpPmv/H/aiy86qqB6pq5F/22jFPmn8gWpCXA49U1V9CNx4K8GbgdUmePvtONMnVSY7pp89JsnH2+Ob9neV7kmzqx8Z+Xj942BuBN/cfUPr1JH+Y5K39Ni/px0r/GnDWwL5WJfmrfl+bZv4i6MPoI0nuSPJZYP+BbV6S5Cv9wE5f6IclfoL+089fS/KNJP9p1rJ/37ffkiHjtid5F/Ay4GNJPjBXjUM8O8nn+7+c/mhgf3M9j+/rz++WJB8cUscvJvliuvHW/5yBsZqSvCXJbf3Pm4Zs+z7gaf21uKg/h81JPgpsAg5Oclz/HG1K8ql0YwPNXN//0i/bmOTF/fP8v5O8ccixViW5M8mF/blcnmTPftmxff23pvtuhKcOHONdSb4KnLyQa5cn/gW10GuiUVWVP8vkB/h94END2m8CXgi8HvjIQPvVwDH99L794250Y6f8Sj9/H/B7/fTvAOf2038IvHVgXz+fB24B/mk//QHgtn56T2CPfno1sLGffi2wvj/2s4GHgJPoht/9a2CqX+9f032R/Ozzuwp4XT99FvBwP30c3fdthu6m5Wrg6CHbf5lu3O/t1bhq4DxeD9wLPAvYA/gOcPBczyOwL3AXj38Ace8hNfwp8K5++pV0A/DtB7wEuBXYC3g6cDvwoiHbPzwwvYpulMcj+/n9gOvoxrAHePvAse4D/m0//aH+2j0DmKIbSGz2cVb1tR3Vz58PvLV/Hu4HntO3f5xugLmZY7xtjn+zc127wed76DXxZ/F+vKNfXsLwETqHjeQ5279Ksonul8LzgcMGls0MFHYj3X/AuQtInkUXZF/pm/77wOLdgb9IcivwqYFjHA1cUt2IjA8AX+rbnwu8AFifbkje/0g3ON1sRwGXDDnecf3PTXR3ts+jC4rtmavG2a6pqh9U1SPAHcAv9e3DnscfAo8A5yZ5LfCTIfs7GvgEQFV9Fvh+3/4y4DNV9ePqxqC/Avj1ec4B4Dv1+BeRHNnXcX3/PK4dqBceHwPqVmBDVf2oqqaBR9KPqTPL/VV1fT/9ib7G5wLfrqpv9e0X9uc045Nz1DnXtRu00GuiEa1Y6gK0Q24H/uVgQ5Jn0o2bcRddaA7+8t6jX+dQuruyf1JV309ywcyy3k/7x58x/7+JuX7ZQNeN9F3gV/s6HhlYNtcvqNur6qXzHHN72//XqvrzBWy/kBoH/XRg+mfAirmex6p6NMnhwLF0g3L9Ll0320LPYRQ/nrWP9VV16hzrzpzLYzzxvB5j+PWeXWcxf50/3s6y+cZZWeg10Yi8o19ergH2TP/ul3QvfP0xXXfN39L9Cf3CJL+Q5GAeH/b0mXT/EX+Q5AC68a/n8yO6P/GfoLphc3+Q5GV90+kDi58FPFhVj9ENRDbzwtx1wCnpvkzjQGDmRdG7gKkkL+3PZ/ckzx9Sy/V0ATr7eF8AfnugP/qgJPvP3niWuWpciKHPY3/8Z1XV54A30XWjzXbdTO1JXgHsM9B+YpI9041i+Brgr4Zs//fphmse5gbgqCS/3O9/zyTP2YHzmu2QmWsCnEr3VYZ3AqtmjkH33H1l2MazzHXtBo1zTbQABv0yUl0n5muAk5LcDfw/4LGqem+/yvXAt+n+RP8gXXcGVfVNuq6G2+n6XK9nfv8TeE3/AuDsroQ3AH+W7sXYvx1o/yiwNskNwHN4/C7vM8DdfV3n0AdEdV8BeRLw/nSj+N3MwDt9BpxN98UM36ALhZnn44vAxcDX+j/7L2fIL6dZ5qpxXtt5Hp8BXJ1utMmv0N2hzvYe4Oi+2+c4YEu/z03ABXQjGG6ge43kpiHbrwNuSXLRkLqm6V5XuKSv4Qa6bqxRbaZ7jm6he/3hnL4L6w3Ap/rn+jHgYwvY19BrN8vI10QL4+iVy1j/7oRLgNfWrvftPJqAdO+4urp2kS+f31XYR7+MVdVf88QX3STpH/COXpIaZx+9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJatz/B0/8NIoqoqahAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] @@ -506,20 +553,20 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([1, 1, 1, 2, 1, 1, 0, 0, 5, 0, 2, 0, 1, 6, 1, 1, 2, 3, 3, 0, 1, 2,\n", - " 2, 1, 1, 0, 2, 2, 1, 1, 3, 2, 2, 3, 5, 3, 1, 1, 0, 1, 3, 1, 1, 2,\n", - " 2, 1, 0, 3, 2, 0, 1, 3, 0, 3, 0, 2, 0, 2, 1, 1, 2, 3, 2, 2, 3, 2,\n", - " 2, 1, 2, 4, 1, 2, 2, 0, 0, 2, 2, 0, 0, 1, 2, 1, 0, 2, 1, 1, 0, 5,\n", - " 2, 2, 5, 3, 0, 1, 0, 1, 0, 2, 0, 0])" + "array([1, 2, 2, 1, 1, 2, 0, 2, 2, 1, 2, 0, 2, 0, 3, 2, 0, 1, 0, 4, 6, 1,\n", + " 0, 0, 4, 1, 1, 0, 2, 0, 2, 3, 2, 3, 2, 1, 3, 3, 1, 0, 1, 1, 2, 1,\n", + " 4, 0, 2, 2, 1, 1, 6, 0, 1, 0, 0, 4, 1, 1, 0, 1, 2, 0, 2, 1, 1, 2,\n", + " 1, 2, 2, 4, 3, 1, 3, 0, 1, 1, 1, 2, 0, 1, 0, 0, 0, 3, 3, 1, 2, 2,\n", + " 3, 0, 0, 4, 0, 2, 4, 3, 1, 1, 1, 1])" ] }, - "execution_count": 55, + "execution_count": 64, "metadata": {}, "output_type": "execute_result" } @@ -529,37 +576,58 @@ ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 67, "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "365" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "### Distribuição Exponencial\n" + "samples_poisson.size" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Esta é uma distribuição que se caracteriza por ter uma função de taxa de falha constante. A distribuição exponencial é a única com esta propriedade. Ela é considerada uma das mais simples em termos matemáticos. Esta distribuição tem sido usada extensivamente como um modelo para o tempo de vida de certos produtos e materiais. Ela descreve adequadamente o tempo de vida de óleos isolantes e dielétricos, entre outros.\n", + "# Distribuição Exponencial\n", "\n", + "Esta é uma distribuição que se caracteriza por ter uma função de taxa de falha constante. A distribuição exponencial é a única com esta propriedade. Ela é considerada uma das mais simples em termos matemáticos. Esta distribuição tem sido usada extensivamente como um modelo para o tempo de vida de certos produtos e materiais. Ela descreve adequadamente o tempo de vida de óleos isolantes e dielétricos, entre outros.\n", "\n", "De uma forma bastante resumida imagine uma variável aleatória Poisson, onde temos a contagem do número de ocorrências em um intervalo. Suponha agora que estejamos interessados em verificar a probabilidade do tempo transcorrido entre duas ocorrências consecutivas. Essa última é considerada uma variável aleatória exponencial.\n", "\n", + "Essa distribuição contínua que pode ser utilizada para descrever as probabilidades envolvidas no tempo que decorre para que um determinado evento aconteça. Existe uma conexão muito próxima entre a distribuição exponencial e a de Poisson, de forma que a função exponencial é utilizada para descrever o tempo entre as ocorrências de sucessivos eventos de uma distribuição de Poisson. As relações entre as distribuições podem ser associadas a um processo estocástico, chamado de processo de poisson.\n", "\n", - "Essa distribuição contínua que pode ser utilizada para descrever as probabilidades envolvidas no tempo que decorre para que um determinado evento aconteça. Existe uma conexão muito próxima entre a distribuição exponencial e a de Poisson. Ou seja, é Utilizada para descrever o tempo entre as ocorrências de sucessivos eventos de uma distribuição de Poisson. As relações entre as distribuições podem ser associadas a um processo estocástico, chamado de processo de poisson.\n", + "Pode ser representada pela fórmula abaixo, para valores de x >= 0.\n", "\n", - "\n" + "\\begin{equation*}\n", + "f(x;\\lambda)= \\lambda e^{-\\lambda x}\n", + "\\end{equation*}\n", + "\n", + "### Exemplo\n", + "\n", + "Da mesma forma que acontece na distribuição de Poisson, vamos adotar o parâmetro $\\lambda$ que define a frequência de ocorrência do evento igual a 1.5 e os dias contados igual a 365." ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 80, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHVCAYAAAAzabX0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8nOV97/3vb+5ZNdotybZsg81iwHEgBAfIk2YhhRTSFto0JHBOky5JfZo2adPkSU/S9qQNPef0vNo8bZOedKFptmahNCtNSUIWsofFEALYxGAMxrKwJWux9lmv54+RbNnI1ki6Z64Zzef9eumlmdHtub8aGevLdV1z3eacEwAAAFYu4jsAAADAakGxAgAACAnFCgAAICQUKwAAgJBQrAAAAEJCsQIAAAgJxQoAACAkFCsAAICQUKwAAABCEvV14q6uLrd582ZfpwcAACjbAw88cNQ5173Ycd6K1ebNm7Vr1y5fpwcAACibmR0o5zimAgEAAEJCsQIAAAgJxQoAACAkFCsAAICQUKwAAABCQrECAAAICcUKAAAgJBQrAACAkFCsAAAAQkKxAgAACAnFCgAAICQUKwAAgJBQrAAAAEJCsQIAAAgJxQoAACAkFCsAAICQUKwAAABCQrECAAAICcUKAAAgJFHfARpBf/+tZR/b27uzgkkAAEAlMWIFAAAQEooVAABASChWAAAAIaFYAQAAhIRiBQAAEBKKFQAAQEgoVgAAACGhWAEAAISEYgUAABASihUAAEBIKFYAAAAhoVgBAACEhGIFAAAQEooVAABASChWAAAAIaFYAQAAhIRiBQAAEBKKFQAAQEgoVgAAACGhWAEAAISEYgUAABASihUAAEBIKFYAAAAhoVgBAACEhGIFAAAQEooVAABASChWAAAAIaFYAQAAhIRiBQAAEJJFi5WZfcTMBszs0dN8/b+a2cOzHz80s0vCjwkAAFD7yhmx+pika8/w9ackvdw5d7GkP5d0awi5AAAA6k50sQOcc981s81n+PoP5929R9LGlccCAACoP2GvsXqTpK+c7otmttPMdpnZrsHBwZBPDQAA4FdoxcrMrlKpWP330x3jnLvVObfDObeju7s7rFMDAADUhEWnAsthZhdL+rCk65xzQ2E8JwAAQL1Z8YiVmZ0l6fOS3uCce3zlkQAAAOrToiNWZvYZSa+Q1GVmfZL+VFJMkpxz/yjpvZLWSPp7M5OkvHNuR6UCAwAA1Kpy3hV48yJff7OkN4eWCAAAoE6x8zoAAEBIKFYAAAAhoVgBAACEhGIFAAAQEooVAABASChWAAAAIaFYAQAAhIRiBQAAEBKKFQAAQEgoVgAAACGhWAEAAISEYgUAABASihUAAEBIKFYAAAAhoVgBAACEhGIFAAAQEooVAABASChWAAAAIaFYAQAAhIRiBQAAEBKKFQAAQEgoVgAAACGhWAEAAISEYgUAABASihUAAEBIKFYAAAAhoVgBAACEhGIFAAAQEooVAABASChWAAAAIaFYAQAAhIRiBQAAEBKKFQAAQEgoVgAAACGhWAEAAISEYgUAABASihUAAEBIKFYAAAAhoVgBAACEhGIFAAAQEooVAABASChWAAAAIaFYAQAAhIRiBQAAEBKKFQAAQEgoVgAAACGhWAEAAISEYgUAABASihUAAEBIKFYAAAAhoVgBAACEhGIFAAAQEooVAABASChWAAAAIaFYAQAAhGTRYmVmHzGzATN79DRfNzP7oJntM7OHzeyF4ccEAACofeWMWH1M0rVn+Pp1ks6f/dgp6R9WHgsAAKD+LFqsnHPflTR8hkNukPQJV3KPpHYzWx9WQAAAgHoRxhqrDZIOzrvfN/vYc5jZTjPbZWa7BgcHQzg1AABA7QijWNkCj7mFDnTO3eqc2+Gc29Hd3R3CqQEAAGpHGMWqT9Kmefc3SuoP4XkBAADqShjF6g5Jb5x9d+CVko45554N4XkBAADqSnSxA8zsM5JeIanLzPok/amkmCQ55/5R0p2SXi1pn6QpSb9RqbAAAAC1bNFi5Zy7eZGvO0m/G1qiBtfff+uSju/t3VmhJAAAYKnYeR0AACAkFCsAAICQUKxqWKEwLecKvmMAAIAyLbrGCn5MTz+pgwf/UpIpCJoVBG2Kx3vU03OzotFW3/EAAMACKFY16tix78ssoY6Oa1QoHFM+P6aJiYcUBK1au/aM7ycAAACeUKxqULGY1cTEg2ppeaG6un7x+ONHjnxKx459T52d1ygW6/KYEAAALIQ1VjVoYuInKhZn1Np65UmPd3a+WmamoaEve0oGAADOhGJVg8bH71E02qFUautJj8diHWpvv0pjY/cok2FzewAAag3Fqsbk82OanNyjlpbLZfbcH09n57Uyi2to6A4P6QAAwJlQrGrM+PguScXnTAPOCYJmdXRcrYmJBzUzc6C64QAAwBlRrGrM2Ng9SiQ2KZHoPe0xHR3XKBJJ6+jRL1UxGQAAWAzvCqwh2exhZTIH1N194xmPC4KUOjt/TkePfl779/+RksnNZT0/1xUEAKCyGLGqIWNj90gytbS8aNFj29peJrOoxsburXwwAABQFopVjXCuqLGxe9XUtE3RaNuixwdBSun08zU+vovL3gAAUCMoVjViZuaA8vlhtbZeUfafaWm5XIXCmKamHq9gMgAAUC6KVY3IZPokSanUuWX/mXR6uyKRpMbH76tULAAAsAQUqxqRyx2WWUzRaGfZfyYSiau5+VJNTDyoYjFXwXQAAKAcFKsakckcVjy+bsFNQc+kpeVyFYszmpx8tELJAABAuShWNSKXKxWrpWpqukBB0MJ0IAAANYBiVQOKxaxyuaFlFSuzQC0tl2ly8mEVCtMVSAcAAMpFsaoBudwRSW5ZxUoqTQc6l9fk5EPhBgMAAEtCsaoB2exhSVI8vn5Zfz6ZPEfR6BqNjTEdCACATxSrGpDJHJZkisV6lvXnzUytrS/S1NRPlc+PhRsOAACUjWJVA3K5w4rF1igSiS37OVpadkgqanLy4fCCAQCAJaFY1YDSVgvLmwacE49vVDS6RhMTPwkpFQAAWCqKlWfOFZXLHVn2wvU5Zqbm5ks0NfWYisVMSOkAAMBSUKw8y+eH5VxuxcVKkpqbL5ZzOU1NPRZCMgAAsFQUK88ymWclKZRilUptVSSSYjoQAABPKFae5XJzWy2svFiZBUqnt2ty8hE5V1zx8wEAgKWhWHmWyRxWELQoCJpDeb7m5ktUKIxrZmZ/KM8HAADKR7HyrHSNwLWhPV9T03ZJAdOBAAB4QLHyLJN5dsVbLcwXBCk1NW2lWAEA4AHFyqNCYULF4mQo66vmS6cvUS535PilcgAAQHVQrDw6cY3AcItVc/MlksSoFQAAVUax8ijMrRbmi8U6lUhs4vI2AABUGcXKo1zusMxiikY7Q3/udPoSTU8/qXx+PPTnBgAAC6NYeVS6RuA6mYX/Y2huvliS09TU7tCfGwAALIxi5VFpq4VwpwHnJBKbFAStmpx8tCLPDwAAnoti5UmxmFUuNxTqHlbzmUWUTj9Pk5O75VyhIucAAAAno1h5kssdkeRC3cPqVOn081UsTmlm5umKnQMAAJxAsfIklxuWJMViXRU7R1PTRZIimpx8pGLnAAAAJ1CsPMnnRyVJ0Wh7xc4RBE1Kpc5hnRUAAFVCsfIknz8myRQELRU9Tzr9fGUyB48XOQAAUDkUK0/y+VEFQavMgoqeJ53eLkmanGTbBQAAKo1i5Uk+f0zRaFvFzxOPb1A02s50IAAAVUCx8qRQGK3o+qo5Zqampu2amtqjYjFX8fMBANDIKFaelEasKl+spNJ0YLE4o7GxH1blfAAANCqKlQfO5VUojFdlKlCSmpoulBRoaOjOqpwPAIBGRbHyIJ8fk1TZrRbmC4KUUqnzNDxMsQIAoJIoVh7MbX0QBNUZsZJK2y5MTj6qmZmDVTsnAACNhmLlQTU2Bz1VOv08SdLw8Feqdk4AABoNxcqD0uagqtoaK0mKx9crkTibdVYAAFQQxcqDQmFUUkRB0Fy1c5qZ1qx5tUZGvqFiMVO18wIA0EgoVh7MbQ5qVt2Xv7Pz1SoWJzU6+r2qnhcAgEZR1m92M7vWzPaa2T4ze/cCXz/LzO42sx+b2cNm9urwo64e+Xx1Ngc9VUfHVTKLs84KAIAKWbRYWelidh+SdJ2kbZJuNrNtpxz2J5Jud85dKukmSX8fdtDVpFqXszlVEKTV3v4Ktl0AAKBCyhmxulzSPufcfudcVtJtkm445RgnqXX2dpuk/vAirj6lCzBXf8RKktasebWmpn6q6en9Xs4PAMBqVk6x2iBp/uZHfbOPzfdnkn7VzPok3SnpbQs9kZntNLNdZrZrcHBwGXHrX7GYVbE45WXESiqts5LYdgEAgEoop1jZAo+5U+7fLOljzrmNkl4t6V9tgZXZzrlbnXM7nHM7uru7l552FTix1YKfEaumpvOVSp3HtgsAAFRAOcWqT9Kmefc36rlTfW+SdLskOed+JCkpqSuMgKtNoeC3WElSZ+d1Gh29W4XCtLcMAACsRuUUq/slnW9mW8wsrtLi9DtOOeYZST8rSWZ2kUrFqjHn+hZxYtd1P1OB0ty2C9MaHf2OtwwAAKxGixYr51xe0lslfU3SYyq9+2+3md1iZtfPHvZOSb9lZj+R9BlJv+6cO3W6EPJzOZtTtbe/XJFIincHAgAQsmg5Bznn7lRpUfr8x9477/YeSS8JN9rqlM8fk1lUkUiTtwxBkFJ7+ys1NPSfOu+8D8hsoWV0AABgqdh5vcrmNgf1XWbWrLlOMzP7NT39hNccAACsJhSrKsvnjykI/K2vmtPZea0kaXj4Ls9JAABYPShWVebrcjanSqXOVTJ5jkZGKFYAAISFYlVlhYKfy9kspLPzVRodvVvFYtZ3FAAAVgWKVRUVizMqFmdqYsRKkjo6XqVCYUJjY/f4jgIAwKpAsaqiE7uu18aIVXv7VZICjYx83XcUAABWBYpVFdXCHlbzxWLtam29ggXsAACEhGJVRb6vE7iQzs5XaXz8fuVyw76jAABQ9yhWVVRrI1ZSaZ2V5DQy8k3fUQAAqHsUqyrK50dlllAkkvQd5biWlhcpCNrYdgEAgBBQrKqotNVC7YxWSVIkElVHx89qePgucXlHAABWhmJVRaXNQWvjHYHzdXRco0zmGU1PP+47CgAAdY1iVUX5fO2NWEmlBeySNDzMtgsAAKwExapKnHM1O2KVSp2jZPJc1lkBALBCFKsqKRan5VyuJkesJC5vAwBAGChWVXJiq4XaG7GSSuusSpe3udd3FAAA6hbFqkoKhdLmoEFQm8Wqvf0Vkkyjo3f7jgIAQN2iWFVJPj8hSQqCZs9JFhaLdai5+VKNjHzLdxQAAOoWxapKCoVxSVIQtHhOcnrt7VdpbOxHKhSmfUcBAKAuUayqpFCYkGQKgrTvKKfV0XGVnMtqbOxHvqMAAFCXKFZVUiiMKwjSMqvdl7yt7aWSAtZZAQCwTLX7W36VKRQmanoaUJKi0Va1tOxgnRUAAMsU9R2gUZRGrPwuXO/vv3XRY6LRDo2M3KW+vg9q48bfq0IqAABWD0asqqQeRqwkqanpAklFTU8/6TsKAAB1h2JVJbUwYlWOVOpcSYGmpvb6jgIAQN2hWFWBc0UVCpN1MWIViSSUTG6mWAEAsAwUqyooFCYluboYsZJK04GZzAHl88d8RwEAoK5QrKqgHjYHna+p6UJJTqOj3/MdBQCAukKxqoLS5qBSNFofI1bJ5Dkyi2p0lG0XAABYCopVFcwVq3oZsYpEYkomz2GjUAAAlohiVQUnpgLrY8RKKq2zmpj4iXK5Id9RAACoGxSrKjgxYlU/xSqV2irJ6dixH/iOAgBA3aBYVUGhMK5IJCWz+tnoPpncLLOYjh37vu8oAADUDYpVFdTLruvzRSJxtbTsoFgBALAE9TOEUsfqZdf1UwVBi0ZGvqm+vv+rSCS+6PG9vTurkAoAgNrFiFUV5PP1N2IlSanUeZIKmpk54DsKAAB1gWJVBfU6YlW6bqA0M7PPcxIAAOoDxarCnHN1ucZKKr2LMR5fr+lpihUAAOWgWFVY6Xp7hbrZdf1UyeS5mp7eL+eKvqMAAFDzKFYVlssNSqqfXddPlUqdp2JxStnss76jAABQ8yhWFXaiWNXniFVpAbuYDgQAoAwUqwqr9xGrWKxLQdBKsQIAoAwUqwrLZuu7WJmZUqnzND39pO8oAADUPIpVhdX7VKBU2nYhnx9SLjfiOwoAADWNYlVhudygzOJl7Vxeq+bWWbGfFQAAZ0axqrBcbrBupwHnJBKbZJZgnRUAAIugWFVYNjtY19OAkmQWKJXawjorAAAWQbGqsNUwYiVJyeR5ymT6VChM+44CAEDNolhVWC53tG53XZ+vdN1Ap5mZp3xHAQCgZlGsKmz1jFhtkWQUKwAAzoBiVUGFwqSKxem6X2MlSUGQUjy+TjMz+31HAQCgZlGsKqjeNwc9VTJ5jqann5JzzncUAABqEsWqglbD5qDzpVLnqFicVC434DsKAAA1iWJVQfV+ncBTldZZiXVWAACcRlnFysyuNbO9ZrbPzN59mmNeZ2Z7zGy3mX063Jj1abUVq3h8vSKRpKanWWcFAMBCoosdYGaBpA9JukZSn6T7zewO59yeececL+k9kl7inBsxs55KBa4nJ9ZYrY6pQLOIksnNLGAHAOA0yhmxulzSPufcfudcVtJtkm445ZjfkvQh59yIJDnnWISj+dcJTPqOEppkcosymUMqFjO+owAAUHPKKVYbJB2cd79v9rH5tkraamY/MLN7zOzasALWs1xuULFYt8zMd5TQJJPnSCpqZuaA7ygAANSccorVQq3g1PfbRyWdL+kVkm6W9GEza3/OE5ntNLNdZrZrcHBwqVnrTi43qHi823eMULGAHQCA0yunWPVJ2jTv/kZJ/Qsc8yXnXM4595SkvSoVrZM45251zu1wzu3o7l5dhWMh2eygYrEu3zFCFY22KBbrZp0VAAALKKdY3S/pfDPbYmZxSTdJuuOUY74o6SpJMrMulaYGG/4379xU4GqTTG7R9PR+NgoFAOAUixYr51xe0lslfU3SY5Jud87tNrNbzOz62cO+JmnIzPZIulvSu5xzQ5UKXS9Wa7FKpc5RoTCmfH7EdxQAAGrKotstSJJz7k5Jd57y2Hvn3XaS3jH7AUnFYkaFwviqLFalBezSzMx+xWKdntMAAFA72Hm9Qub2sFpti9clKZHYKLMYG4UCAHAKilWFzO26vhpHrMwCJZNns4AdAIBTUKwqJJc7Kkmr7l2Bc0obhR5UsZjzHQUAgJpBsaqQE8Vq9Y1YSaV1Vs7llcn0+Y4CAEDNoFhVSCOMWEliOhAAgHkoVhVSKlamaLTDd5SKiMU6FI12sAM7AADzUKwqJJc7qmi0Q5FIWTta1KW5jUIBAEAJxapCcrmjq3Z91Zxk8hzl80PK54/5jgIAQE2gWFVIqVitzvVVc1KpuY1CmQ4EAECiWFVMIxSrRGKTpIDpQAAAZlGsKqQRilUkElcisYkRKwAAZlGsKsA51xDFSpJSqS2amXlazhV8RwEAwDuKVQUUChNyLtsQxaq0UWhWmUy/7ygAAHhHsaqA1b456HxsFAoAwAkUqwpopGIVi3UpCFpYZwUAgChWFdFIxcrM2CgUAIBZFKsKaKRiJZWmA3O5I8rlhn1HAQDAK4pVBTRasZrbKHRs7D7PSQAA8ItiVQGlYhUoGm3zHaUqksnNkkxjYz/yHQUAAK8oVhWQyw0qFuuSmfmOUhWRSFLx+AaNjd3jOwoAAF5RrCqgUTYHnS+V2qKxsXvlXNF3FAAAvKFYVUAud1TxeLfvGFWVTG5RoXBMU1N7fUcBAMAbilUFNOKIVTI5t4Cd6UAAQOOiWFVAIxareHytgqCNYgUAaGgUq5A5V1QuN9RwxcosotbWKyhWAICGRrEKWT4/KqnYcMVKklpbr9Tk5KPK58d9RwEAwAuKVcgabXPQ+Vpbr5RU1Pj4Lt9RAADwgmIVssYuVldIEhuFAgAaFsUqZI1crGKxTqVSF7DOCgDQsChWIWvkYiWVpgPHxu6Rc853FAAAqo5iFTKK1ZXK5QY1M/OU7ygAAFQdxSpkudxRRSJJRSJNvqN4UVrAzkahAIDGRLEK2dzmoI1yAeZTpdPbFYk0UawAAA2JYhWyRtx1fb5IJKqWlhdRrAAADYliFbJGL1ZSaTpwYuLHKhSmfUcBAKCqKFYho1iVipVzeU1M/Nh3FAAAqopiFbJSser2HcOrEwvY2SgUANBYKFYhKhbzyudHGn7EKpFYp2RyM+usAAANh2IVonx+WFLj7mE139xGoQAANBKKVYhyuUFJFCupVKwymT7NzPT5jgIAQNVQrELU6Luuz9fW9lJJ0ujot/0GAQCgiihWIaJYndDc/AJFo50aGfmG7ygAAFQNxSpEFKsTzCLq6PhZjYx8gwsyAwAaBsUqRCeK1RrPSWpDR8fVymYPaWpqr+8oAABUBcUqRLncUQVBiyKRhO8oNaGj42pJYjoQANAwKFYhYtf1k6VS5yiZ3KKRka/7jgIAQFVQrEJEsXqujo5rNDp6t4rFvO8oAABUHMUqRBSr5+rouFqFwrjGx+/3HQUAgIqjWIWIYvVc7e1XSTLWWQEAGgLFKkQUq+eKx7vU3HwpxQoA0BAoViEpFGZUKExQrBbQ0XG1xsZ+pHx+wncUAAAqimIVknx+SJIUi3V7TlJ7OjqulnM5HTv2Pd9RAACoKIpVSNh1/fTa2n5GZgmmAwEAqx7FKiTZ7IAkitVCgiCltraXUKwAAKsexSokuVypWMXjaz0nqU0dHddocvJhZTKHfUcBAKBiyipWZnatme01s31m9u4zHPdaM3NmtiO8iPXhxIhVj+cktWnNmldLko4e/aLnJAAAVM6ixcrMAkkfknSdpG2SbjazbQsc1yLp9yTdG3bIepDNHpFZXNFom+8oNSmdfr6ami7U4OC/+Y4CAEDFlDNidbmkfc65/c65rKTbJN2wwHF/LukvJc2EmK9u5HIDisd7ZGa+o9QkM1N39+s0OvodpgMBAKtWOcVqg6SD8+73zT52nJldKmmTc+7LZ3oiM9tpZrvMbNfg4OCSw9aybPYI04CL6Ol5vSSnwcHP+o4CAEBFlFOsFhqCcce/aBaR9DeS3rnYEznnbnXO7XDO7ejuXl37PZVGrFi4fibp9Dal09uZDgQArFrlFKs+SZvm3d8oqX/e/RZJ2yV928yelnSlpDsabQE7I1bl6e5+nY4d+74ymUO+owAAELpyitX9ks43sy1mFpd0k6Q75r7onDvmnOtyzm12zm2WdI+k651zuyqSuAY555TNltZY4cx6el4nSRoY+HfPSQAACN+ixco5l5f0Vklfk/SYpNudc7vN7BYzu77SAetBoTAu5zJMBZahqekCpdOXaHDwdt9RAAAIXbScg5xzd0q685TH3nuaY1+x8lj1JZs9Iok9rMrV0/N6PfXUH2lm5hklk2f5jgMAQGjYeT0E7Lq+NCemAxm1AgCsLhSrEDBitTSp1Llqbr6M6UAAwKpDsQrB3OVsWLxevp6e12t8/H5NTT3uOwoAAKGhWIUgl5sbsVpde3NV0rp1b5RZXH19H/AdBQCA0JS1eB1nls0OKBrtVCQS8x3Fq/7+W8s+trd3p9au/VUdPvxRbdlyi2KxNRVMBgBAdTBiFQJ2XV+ejRv/QMXitPr7/8l3FAAAQkGxCgG7ri9Pc/N2dXT8nA4d+jsVixnfcQAAWDGKVQjYdX35Nm16p7LZwzpy5DO+owAAsGIUqxDkckeYClymjo6rlU4/X319fy3n3OJ/AACAGkaxWqFiMat8fpSpwGUyM23c+A5NTj6ikZFv+I4DAMCKUKxW6MQeVoxYLdfatTcrHl+ngwf/P99RAABYEYrVCs1dzoYRq+WLRBLasOFtGhn5msbHH/AdBwCAZWMfqxVi1/XlOXXPq0gkrSBo0Z49N2vjxnfKzE76em/vzmrGAwBgWRixWqG5XdeZClyZIEhpzZpf1PT0E5qYeMh3HAAAloVitUJzI1ZMBa5cW9vPKB7v1dGjn5Nzed9xAABYMorVCmWzRxSJpBQEzb6j1D2zQN3dr1UuN6jR0bt9xwEAYMkoViuUyw0oFut5zpogLE86/Tw1NT1PQ0P/qUJhwnccAACWhGK1Quy6Hr7u7teqWMxoaOjLvqMAALAkFKsVYtf18CUSvWpre6lGR7+jTKbfdxwAAMpGsVqhbHaAhesV0NV1vSKRlAYGPsOlbgAAdYNitQLOFZXLDTBiVQFB0Kyurl/W9PTjGh+/13ccAADKQrFagXx+VM7lGbGqkLa2lyiZ3KLBwc8qlxv1HQcAgEVRrFYgm53bHJRiVQlmEfX0/BcVChN66qk/8R0HAIBFUaxWYO46gUwFVk4yeZba21+h/v5/4DqCAICaR7FaAXZdr441a25QLNatxx9/i5wr+I4DAMBpUaxWgKnA6giClM477681Pn6/nn32w77jAABwWhSrFShNBZpisS7fUVa9np6b1d5+lfbvf8/xkUIAAGoNxWoFstkjisW6ZBb4jrLqmZnOP/9DKhQmtH//f/cdBwCABVGsVoA9rKornb5Imza9U4cPf0yjo9/3HQcAgOegWK1AacSK9VXVdPbZf6JE4iw98cRbVCzmfMcBAOAkFKsV4ALM1RcEaZ1//gc1OfmoDh36O99xAAA4CcVqBXK5AcViTAVW25o112vNml/Q00//KRdpBgDUFIrVMhUK0yoUxhmx8sDMdN55H1CxmNVTT/0P33EAADiOYrVM7LruVyp1jjZu/D0dPvxRjY8/5DsOAACSKFbLNrc5KIvX/TnrrD9WNNqpJ598p5xzvuMAAKCo7wD1KpPpkyQlEhs8J2kM/f23Lvh4R8c1Ghy8TU888TY1N18sSert3VnNaAAAHMeI1TJlMgclSYnEJs9JGlt7+8sUi63V4OBnuY4gAMA7itUyzcwcVCSS5HI2npkF6u7+FeVyRzQ6+l3fcQAADY5itUyZzEElEhtlZr6jNLx0+mKlUhdoaOg/VChM+Y4DAGhgFKtlymT6lEhs9B0DKm1vPoVPAAAXa0lEQVS/0N19o4rFKQ0Pf9V3HABAA6NYLVNpxIr1VbUimdyklpYrNDr6Tc3MPOM7DgCgQVGslsG5gjKZfopVjenqul6S9NRT7/WcBADQqChWy5DJPCupQLGqMbHYGrW3v1JHjnxCExM/8R0HANCAKFbLMLfVQjJJsao1nZ3XKRrt0JNP/qHvKACABkSxWgb2sKpdQdCks8/+E42M3KXh4bt8xwEANBiK1TJQrGrbhg2/o2Ryi5588g/lXNF3HABAA6FYLUNpc9C0otF231GwgEgkoS1b/rcmJ3+iI0c+6TsOAKCBcK3AZchk+pRMbmJz0BrV33+rnCsqkThb+/a9Xfn8mCKR+GmP59qCAICwMGK1DOxhVfvMIuru/hXl8yMaHb3bdxwAQIOgWC0Dxao+NDVdoHT6+Roe/ooKhQnfcQAADYBitUTFYlbZ7GGKVZ3o6nqNisUZDQ3d6TsKAKABUKyWKJPpl+S4TmCdSCR61dr6Eo2OflvZ7KDvOACAVY5itURsDlp/urp+UWaBhoa+5DsKAGCVo1gtEXtY1Z9otF0dHddofPx+TU8/6TsOAGAVK6tYmdm1ZrbXzPaZ2bsX+Po7zGyPmT1sZt80s7PDj1obKFb1qbPzVYpGOzQw8Gk5V/AdBwCwSi1arMwskPQhSddJ2ibpZjPbdsphP5a0wzl3saTPSvrLsIPWikymT0HQpmi0xXcULEEkklR39+uUyfRpdPQ7vuMAAFapckasLpe0zzm33zmXlXSbpBvmH+Ccu9s5NzV79x5Jq3Zl98zMQdZX1anm5kvV1LRNQ0NfUj5/zHccAMAqVE6x2iDp4Lz7fbOPnc6bJH1loS+Y2U4z22VmuwYH6/MdWuxhVb/MTD09N8m5vAYHP+s7DgBgFSqnWC103Ra34IFmvypph6S/WujrzrlbnXM7nHM7uru7y09ZQyhW9S0eX6uOjp/T+Ph9mpra6zsOAGCVKadY9Uma3yQ2Suo/9SAzu1rSH0u63jmXCSdebSkUZpTLDVKs6lxn57WKxbo0MPAZFYs533EAAKtIOcXqfknnm9kWM4tLuknSHfMPMLNLJf2TSqVqIPyYtSGT6ZPEHlb1LhKJq6fnZmWzz2po6D98xwEArCKLFivnXF7SWyV9TdJjkm53zu02s1vM7PrZw/5KUrOkfzezh8zsjtM8XV1jq4XVI53erra2l2pk5C7eJQgACE20nIOcc3dKuvOUx9477/bVIeeqSSeK1ap902ND6e6+UVNTe/XYY2/Ujh0/USzW7jsSAKDOsfP6EsxNBVKsVodIJKF1635TmcwhPfHEW33HAQCsAhSrJchkDioaXaMgaPIdBSFJpbZo8+b3amDgUzpy5DbfcQAAdY5itQRsDro6nXXWH6m19Uo98cRbNDW1z3ccAEAdo1gtAXtYrU6RSFQXXfQpSYEeeeQXlMuN+I4EAKhTFKsloFitXqnUOdq+/fOamdmv3btfy/5WAIBloViVqVCYVD4/QrFaxdrbX6YLLvhnjY5+S0888VY5t+AFBgAAOK2ytltAaX2VxOagq926db+mqam9euaZv1BT04XatOkPfEcCANQRilWZpqdLi5qTyS2ek6DStmz5n5qaelxPPvlORaNtWr/+N31HAgDUCaYCyzQ1tUeS1NS0zXMSVJpZRBdd9K/q6LhGe/e+Sf39/+Q7EgCgTlCsyjQ5uVvxeC+7czeIIEhp+/YvqbPz5/X447+tvr6/8x0JAFAHKFZlmpzcrXT6eb5joIqCIKnt2z+vrq5f0r59v6dnnnm/70gAgBpHsSqDc0VNTT1GsWpAkUhc27bdru7uG7V//7v0xBO/r2Ix7zsWAKBGsXi9DDMzB1QsTqmpiWLViCKRmC666NNKJDaor+9vNTW1V9u23ca0MADgORixKsPk5G5JUjrNwvVGFYlEdd55f6OtW/9Zo6Pf1IMPXqmpqSd8xwIA1BiKVRmmpkrFincEorf3zbrkkm8olzuqBx+8QkePfsl3JABADWEqsAyldwRuYOpnlervv3VJx/f27tRll92n3btv1KOP/pI2bHibzj33rxSJJCqUEABQLxixKsPk5B4WruMkqdQ5euELf6iNG9+uQ4f+Tg8++GKmBgEAFKvFnHhHINOAOFkkktB55/2Ntm+/QzMzB7Rr16U6dOjv5VzRdzQAgCdMBS5iZuZp3hGIkyw0dbhp07t05Mgn9MQTv6u+vg9o7do3Kh7vXvJz9/buDCMiAMATRqwWceIdgRQrnF4s1qkNG35fa9e+QZnMMzpw4BaNjHyT0SsAaDCMWC1i7hqBTAViMWamtrafUVPT8zQw8EkNDt6u8fEHtG7drykeX+s7HgCgChixWsTcOwKj0TbfUVAnYrEO9fa+VevW/bqy2Wd14MCfa3j4LkavAKABMGK1CK4RiOUwM7W2vlhNTdt05MindPTo5zQx8aDWrn2jEole3/EAABXCiNUZcI1ArFQ02qbe3rdo3bo3KZsd0DPP/C8NDf2nnCv4jgYAqABGrM6g9I7AaYoVVqQ0enW5mpou1ODgv2lo6I7Z0atfUzJ5lu94AIAQMWJ1BnPvCORSNghDNNqq9et/S729b1E+P65nnvkLDQ39B6NXALCKMGJ1Blx8GZXQ3PwCpVLna2Dg3zQ09GVNTDyq9et/Q/H4Ot/RAAArxIjVGUxN7VYisZF3BCJ0QZDW+vW/qfXrdyqXG9SBA/9To6N3yznnOxoAYAUYsTqDyck9TAOiolpaLlMqda4OH/6EBgZuUz4/rgsv/Oiydm0HAPjHiNVp8I5AVEs02q4NG96m7u7Xa2TkG9q162IND3/ddywAwDJQrE5jZuYp3hGIqjEzdXS8Updddp+i0U49/PCr9OST71KxmPUdDQCwBBSr0xgd/a4kqaXlRZ6ToJE0N1+syy67X729b9HBg+/Xgw++WFNTj/uOBQAoE8XqNIaHv6p4fL3S6ef7joIGEwRN2rr177V9+xc1M/O0du26VM8++xEWtgNAHaBYLaBYzGtk5Ovq7LxWZuY7DhpUV9cNetGLHlZr6xXau/dN2rPn9cpmB3zHAgCcAcVqAePj9ymfH1Fn53W+o6DBJRIbdMklX9eWLX+ho0e/qPvuu0D9/bdyQWcAqFFst7CA4eGvSoqoo+Nq31EAmQU6++x3q6vrl/T447+txx//bzp8+OPauvUf1dxc/lR1f/+tSzpvb+/OpUYFgIbHiNUChoe/qtbWKxWLdfiOAhyXTl+oF7zgbl1wwUc1NbVXu3a9QHv2/BdNTDzqOxoAYBbF6hTZ7KDGx3eps/Na31GA5zAzrV//67r88p9q06b/V0ND/6Fdu56vRx/9ZY2N3csCdwDwjKnAU4yM3CXJsb4KXixlui6VOldXXvm0+vo+qEOHPqijR7+oVOoC9fTcpLVrb1ZT0wUVTLoyTEsCWK0YsTrF8PBXFYt1qaXlhb6jAIuKxdZoy5b36corD2jr1n9SItGrAwdu0X33Xaj773+B9u9/j0ZGvs1GowBQJYxYzeNcUcPDX1NHx8/JjM6J+hGNtqq3d6d6e3cqk+nXwMDtOnr0Czp48P165pn/o0gkrVTqHDU1PU/p9DbFYj1sJQIAFUCxmmd8/EHlcoNas4ZpQNSvRKJXmza9XZs2vV35/JhGR7+t4eGvaXDw3zU5+YgGB6VodI3S6eepuflSNTVdILPAd2wAWBUoVvOUtlkwdXS8yncUIBTRaKu6uq5XV9f1am6+RNnsoKam9mhycrfGxu7VsWPfVSTSpObmi2dL1jZFIvGK58rnx5XPj8gsmC11gYIgrSBoqvi5AaCSKFbzDA9/RS0tlyke7/YdBaiIeLxb8fjL1d7+chWLWU1NPaaJiR9rYuInGhu7R2ZxpdPb1dx8qXp6blI02rric+Zyoxod/bbGxn6giYmHNTn5sLLZwwsem0hsUlPThWpqulCp1PmKRBIrPj8AVBPFalYuN6yxsXt09tl/7DsKUBWRSFzNzZeoufkSOVfQ1NTjsyXrx5qYeFBHjvyrOjquVnf3r2jNmusVj3ed9rnmv8uvUJjWzMxTmp5+QlNTj2lm5mlJTmZRxeO9Sia3qK3tZxSNdkkqyrmCnCsonx/W1NRPNTp6t0ZGvi6zhNrbX6r2djbqBVA/KFaz+vo+KKmorq7X+I4CVJ1ZoHT6IqXTF6mn5ybNzOyXcwUdPfp57d17p6SIWluvUCp1vpLJLUqltigW61I+P6Z8fkTDw3cpnx/S9PR+ZbPPSnKSTMnkZnV2XqempouUSp0jszP/k7Nmzc+rWMxqenqfxsZ+pJGRb2lk5G5NT+/Vpk1/qHT6wmq8HACwbBQrSZnMYR08+H51d9+olpYX+I4DeGUWUSp1nnp7d+rcc9+viYmHdPTo5zU6+h2Njn5LmcwhlYrTySKRJiWTW9TS8kIlk+cqmdyiIEgt+fyRSFzp9Dal09vU1XWDRka+roGB23T48Me1fv2btWXLLYrH14bwnQJA+ChWkg4ceJ+cy2jLlv/tOwpQU8xMLS2XqqXl0uOPFYsZzcwcUC43pGi0XdFohwYHP6dIJBb6+WOxLvX03Kxt227XgQP/S/39H9LAwKd11lnv0caNf7Cs4gYAldTwmzVNTv5U/f3/rN7e31ZT03m+4wA1LxJJqKlpq9raXqx0+iIlEusqUqrmi8e7df75f6sXvWi3Ojqu1lNP/bHuu+8CHT78STlXrOi5AWApGn7E6qmn3qMgaNLZZ/8P31GAJVvqpWHqXVPTVm3f/gWNjn5H+/a9Qz/96Rt06NAHdO65f6329pf6jgcAjT1idezYD3T06Be1adMfKh7v8R0HQJna21+uyy67Xxde+AllMs/qoYdepkceuUHHjv3IdzQADa5hi5VzTk8++S7F4+u1adMf+I4DYInMIlq37g264orHtXnzn+vYse/qxz/+f/Tggy/R4OAX5FzBd0QADaghpwKLxYz27t2psbEfaevWf1YQpH1HAmpOLU0zLpYlHu/R5s3v07FjP9T4+L3avfs1SiTOVnf3a9TV9Rq1tb2Yy/YAqIqGK1bZ7IAeffQ1Ghv7gTZvfp/Wr3+T70gAQhCJJNXR8UpddNEndfToF3T48Md06NCH1Nf3N4rFetTZeZ1aWnaopeWFam6+hP+hAlARDVWsJiYe1iOPXK9cbkDbtt2unp4bfUcCELJIJKqenhvV03Oj8vkxDQ9/RYODX9Dw8H/qyJGPzx5lSibPUTJ5lhKJjUokNimR6FUs1nXSRzS6RkGQ9Pr9AKgvZRUrM7tW0gckBZI+7Jz7P6d8PSHpE5IukzQk6fXOuafDjbo8hcKMRkbu0uDgv2tw8HOKRjt06aXfU0vLZb6jAaiAhaYNOzpeqfb2q5TPjyqTeUaZzDPKZg9rZuYZTU/vUybTL2nhNVmRSPp40SoWpxUEzQt8pI/fjkTSx7ef6O3dWclvtW7N/Yycc3Iup2JxRs7lTzqmdIHuuDZufGvdTOMWi3kVCuMqFMblXF4DA7eptJTZFInEFIkkT3v1gVr6u3KmqXfn8ioWZ1Qs5lTaKLionp6bZBZXEDQpCNIyi8vMqpa31phzz91B+aQDSn+jH5d0jaQ+SfdLutk5t2feMb8j6WLn3G+b2U2Sftk59/ozPe+OHTvcrl27Vpr/tKam9unpp/9MQ0N3qFAYVzTaoa6u12jLlluUSPRW7LwLqaW1KgBO1tu7U84VlM0OKp8fUi53dPZj/u3S/ampPSoUJlQoTKhYnDntc5olFATNSibPViy2RtFop2KxNYrFOhWNrpl9rE2RSEqRSFKRSEpBkJq9P/dYQlJEZpHZzzbvc7hKvwfmPk69P/fY3C/UGRWLmXm3S/cLhUkVCmMqFMaVz5/8uVAYUz4/fvzrmUz/8T8rLb4PWen1ObnABkGLgqBV0WibotG259wu/YKPKRKJzf6ijykSOfG5VOoyKhazKhYzz7ldKEwdL0ml7BPH7594bP7Hmf9OzDGLzv58T/5Ip7fPfg+tCoI2RaOtJ31fkUjTbP74SZ8jkYTM4pJMpWtvFhf8PPczKhYnZ39WkyoWp47fLhQmlM8fU6EwpvHxB+b9bKdPun1qAV5YcLxkRSJNsz+3ltkNhdtmP5+4HQRts8eW/u6X/ltIHv9v40QhNUkmM1OxOFfIS38Xg6Cl4r/bzewB59yOxY4rZ8Tqckn7nHP7Z5/4Nkk3SNoz75gbJP3Z7O3PSvq/ZmZusdZWQZFIUsPDX1V39+vU03Oj2ttfWfFNDAHUJ7NAicQ6JRLrznjc/P9Jci5//BfSiY+T78dia5TLDWlm5mnlckPK50e00OWAlu5E4Sr9oil9nitCJ/7pdWd8rLJstvy0zJaF0ud4fJ2CoEWRSGJeiZz/i3M2pcurWMyquXn7Ka/r5PEik8kcmi0Dx1QoTFTwe4kcL3PRaMvx7ysW61IQNJ/02NwxZjGNjHxTpde+OPv9TD+nkBaL08rnS2WmVESPlVXQKsEspmi0rfQdz/5sotH2k35OJ4pObLbkmzo6XjlbdOZK2tTs7anjZS6fH1c2e0TT048rnx9VPj9aZkkrT2/v72jr1g+F9nwrUc6I1WslXeuce/Ps/TdIusI599Z5xzw6e0zf7P0nZ485espz7ZQ0N955gaS9YX0jNa5L0tFFj8IcXq+l4fVaOl6zpeH1Whper6Wrh9fsbOdc92IHlTNitdC486ltrJxj5Jy7VVLDzYuZ2a5yhg9Rwuu1NLxeS8drtjS8XkvD67V0q+k1K2eD0D5Jm+bd3yip/3THWGk8t03ScBgBAQAA6kU5xep+Seeb2RYrrZC7SdIdpxxzh6Rfm739Wknf8rm+CgAAwIdFpwKdc3kze6ukr6m03cJHnHO7zewWSbucc3dI+hdJ/2pm+1QaqbqpkqHrUMNNf64Qr9fS8HotHa/Z0vB6LQ2v19Ktmtds0cXrAAAAKE/DXoQZAAAgbBQrAACAkFCsKsjMrjWzvWa2z8ze7TtPrTOzj5jZwOy+aFiEmW0ys7vN7DEz221mv+87Uy0zs6SZ3WdmP5l9vd7nO1M9MLPAzH5sZl/2naUemNnTZvaImT1kZpW7vMgqYWbtZvZZM/vp7L9lL/adaaVYY1Uh5VwKCCczs5dJmpD0Cefcdt95ap2ZrZe03jn3oJm1SHpA0i/xd2xhVtomOu2cmzCzmKTvS/p959w9nqPVNDN7h6Qdklqdc7/gO0+tM7OnJe04dYNsLMzMPi7pe865D8/uPNDknBv1nWslGLGqnOOXAnLOZSXNXQoIp+Gc+67Y/6xszrlnnXMPzt4el/SYpA1+U9UuVzJ33ZPY7Af/Z3kGZrZR0s9L+rDvLFh9zKxV0stU2llAzrlsvZcqiWJVSRskHZx3v0/80kOFmNlmSZdKutdvkto2O631kKQBSV93zvF6ndnfSvpDlXOlZMxxku4yswdmL+OG0ztH0qCkj85ON3/YzNK+Q60UxapyyrrMD7BSZtYs6XOS3u6cG/Odp5Y55wrOuReodAWJy82MKefTMLNfkDTgnHvAd5Y68xLn3AslXSfpd2eXOGBhUUkvlPQPzrlLJU1Kqvv1yBSryinnUkDAisyuFfqcpE855z7vO0+9mJ1u+Lakaz1HqWUvkXT97Jqh2yS90sw+6TdS7XPO9c9+HpD0BZWWhWBhfZL65o0cf1alolXXKFaVU86lgIBlm12M/S+SHnPO/bXvPLXOzLrNrH32dkrS1ZJ+6jdV7XLOvcc5t9E5t1mlf7++5Zz7Vc+xapqZpWffSKLZKa1XSeJdzqfhnDss6aCZXTD70M9Kqvs33yx6SRssz+kuBeQ5Vk0zs89IeoWkLjPrk/Snzrl/8Zuqpr1E0hskPTK7bkiS/sg5d6fHTLVsvaSPz75jNyLpduccWwggTGslfaH0/zyKSvq0c+6rfiPVvLdJ+tTsAMR+Sb/hOc+Ksd0CAABASJgKBAAACAnFCgAAICQUKwAAgJBQrAAAAEJCsQIAAAgJxQoAACAkFCsAAICQ/P9lTov++j53GwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHVCAYAAAAzabX0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8neV95/3vdXbt+2ZZ8iovYGMbjG0g7JCYLEDaLECWpk1K2iadzDSdmXSemUwnbadtnmn7tE3alKQ0bRNCdsIQCCFhx2BssPGKbcmLdkuyrKPtHJ3tev6Q5AjjRbJu6T7L5/16nZd0zrl9zg8fbH19Lb/LWGsFAACA2fO4XQAAAEC2IFgBAAA4hGAFAADgEIIVAACAQwhWAAAADiFYAQAAOIRgBQAA4BCCFQAAgEMIVgAAAA7xufXGlZWVdvHixW69PQAAwLS99tprfdbaqotd51qwWrx4sXbu3OnW2wMAAEybMebEdK5jKhAAAMAhBCsAAACHEKwAAAAcQrACAABwCMEKAADAIQQrAAAAhxCsAAAAHEKwAgAAcAjBCgAAwCEEKwAAAIcQrAAAABxCsAIAAHAIwQoAAMAhBCsAAACHEKwAAAAcQrACAABwCMEKAADAIQQrAAAAhxCsAAAAHOJzuwBc3EPbW2f9GvdtbnSgEgAAcCGMWAEAADiEYAUAAOAQghUAAIBDCFYAAAAOIVgBAAA4hGAFAADgEIIVAACAQwhWAAAADiFYAQAAOIRgBQAA4BCCFQAAgEMIVgAAAA4hWAEAADiEYAUAAOAQghUAAIBDCFYAAAAOIVgBAAA4hGAFAADgEIIVAACAQwhWAAAADiFYAQAAOIRgBQAA4BCf2wVgfjy0vXXWr3Hf5kYHKgEAIHsxYgUAAOCQiwYrY8yDxpgeY8y+8zz/EWPMnonbNmPMOufLBAAASH/TGbH6pqStF3j+mKQbrbVXSPoTSQ84UBcAAEDGuegaK2vt88aYxRd4ftuUu69IWjj7sgAAADKP02usPinpifM9aYy53xiz0xizs7e31+G3BgAAcJdjwcoYc7PGg9V/Pd811toHrLUbrbUbq6qqnHprAACAtOBIuwVjzBWSviHpDmvtKSdeEwAAINPMesTKGNMo6UeSPmatPTz7kgAAADLTRUesjDHfkXSTpEpjTLuk/ynJL0nW2q9J+qKkCkn/YIyRpIS1duNcFQwAAJCuprMr8N6LPP8pSZ9yrCIAAIAMRed1AAAAhxCsAAAAHEKwAgAAcAjBCgAAwCEEKwAAAIcQrAAAABxCsAIAAHAIwQoAAMAhBCsAAACHEKwAAAAcQrACAABwCMEKAADAIQQrAAAAhxCsAAAAHEKwAgAAcAjBCgAAwCEEKwAAAIcQrAAAABxCsAIAAHAIwQoAAMAhBCsAAACHEKwAAAAcQrACAABwCMEKAADAIQQrAAAAhxCsAAAAHEKwAgAAcAjBCgAAwCEEKwAAAIcQrAAAABxCsAIAAHAIwQoAAMAhBCsAAACHEKwAAAAcQrACAABwCMEKAADAIQQrAAAAhxCsAAAAHEKwAgAAcAjBCgAAwCEEKwAAAIcQrAAAABxCsAIAAHAIwQoAAMAhBCsAAACHEKwAAAAc4nO7ALgjZa0OnxxSnt+r4jy/ikN+eT3G7bIAAMhoBKsc9cKRPj25v/vMfSOpsjCoj12zSJWFQfcKAwAggxGsctBgJK5n3uzRypoiXbOsQuHRuAYicW1r6dOjuzv1m9ctljGMXgEAMFMEqxz0s/3dSlmr961boPKCwJnHC0M+/d83OrWnPax1DaUuVggAQGZi8XqOOXFqRLvbBvSOpsq3hCpJ2rykXPWlefrp3i5FYkmXKgQAIHMRrHJIylr93zc6VZLn100rqt/2vMcY3b2+XiNjCT11sPscrwAAAC6EYJVDdh4/rc5wVHesqVXAd+6Pvr4sT1uWVWj70X61nx6d5woBAMhsBKscEYkl9fMD3VpcUaC19SUXvPb21TUqDPn0yK4OJVN2nioEACDzEaxyxL7OsEZjSb17be1Fd/yF/F69e02dOsNRHeoemqcKAQDIfBcNVsaYB40xPcaYfed53hhj/s4Y02yM2WOMudL5MjFbR3qGVRzyqb40b1rXr6kvUUHAq11tp+e4MgAAssd0Rqy+KWnrBZ6/Q1LTxO1+Sf84+7LgpJS1aukZ1vLqomn3p/J6jNY1lOrN7iF2CAIAME0XDVbW2ucl9V/gkrsk/Zsd94qkUmNMnVMFYvY6ByKKxJNaXl04o1+3oaFMyZTV3o7wHFUGAEB2cWKNVb2ktin32yceextjzP3GmJ3GmJ29vb0OvDWmo7lnWJJmHKwWlIZUVRRkOhAAgGlyIlida27pnFvJrLUPWGs3Wms3VlVVOfDWmI4jPcOqKwmpMDizRvvGGF3ZUKoTp0bVPxKbo+oAAMgeTgSrdkkNU+4vlNTpwOvCAWOJpFpPjapphqNVk9Y1lMpIjFoBADANTgSrRyV9fGJ34BZJYWttlwOvCwcc7xtR0lotry66pF9fmh/QksoC7W4dkLX0tAIA4EKm027hO5JelrTSGNNujPmkMeZ3jDG/M3HJ45KOSmqW9HVJvzdn1WLGjvQMy+cxWlSRf8mvsaGxTKdGYnq9dcDBygAAyD4XXXRjrb33Is9bSZ9xrCI4qrlnWEsqC+T3Xvrg5JoFxXr0DaMf72rXVYvKHKwOAIDsQuf1LBaOxNUzNDbj3YBnC/q9Wl1XrMf2dGksQU8rAADOh2CVxS61zcK5rG8o1cBoXNtaTs36tQAAyFYEqyx2pGdIhUGfaotDs36tZVWFCvk9eu4Q/ccAADgfglWW+tUxNoXTPsbmQvxej65dVqmn3+xhdyAAAOdBsMpS3eGoRmLJS+5fdS43r6xSa/+ojvWNOPaaAABkE4JVluo4HZEkLaoocOw1b1pZLUl6hulAAADOiWCVpboHowr4PCrN9zv2mg3l+VpeXahnD/U49poAAGQTglWW6h6MqqYoKI8D66umunlllbYf7ddoLOHo6wIAkA0IVlnIWqvucFS1JXmOv/bNK6sVS6a0rZm2CwAAnI1glYWGoglF4knVFgcdf+2Ni8tVEPDqGaYDAQB4G4JVFuoejErSnIxYBXwevaOpUs8e6qXtAgAAZyFYZaHu8ESwcqAx6LncvLJaHQMRHZno7A4AAMYRrLLQycGoikM+5QW8c/L6Z9ouvMl0IAAAUxGsslD3YFS1JXMzWiVJtSUhra4rZp0VAABnIVhlmWTKqmdobM6mASfdvLJKO4+f1mA0PqfvAwBAJiFYZZm+4TElU3ZOR6wk6cYVVUqkrF5poe0CAACTCFZZZnJHYM0cj1htaCxTnt+rbQQrAADOIFhlmZPhqDxGqipyvofVVAGfR1cvKddLzX1z+j4AAGQSglWW6R6MqqooKJ9n7j/a65ZV6EjPsHomRskAAMh1BKss0z0YnfNpwEnXLa+UJKYDAQCYQLDKItF4UgOj8TnfETjpsrpileb7mQ4EAGACwSqLnDxzlM38BCuPx+iapRXa1nKK420AABDBKqucOSNwnkasJOna5ZXqGIjoxKnReXtPAADSFcEqi3SHowr5PSrJ88/be163rEKS9FIL04EAABCsssjkwnVjzLy955LKAtWVhLStmQXsAAAQrLKEtVYnB6PzOg0oScYYXbusUtta+pRKsc4KAJDbCFZZIhyJKxpPzdvC9amuW16h06NxHewenPf3BgAgnRCsssTJwTFJUk2RG8Fqop8V04EAgBxHsMoSp0bGg1VFYWDe37umOKRlVQUsYAcA5DyCVZboH4kp4PWoMOhz5f2vW16pV4/1K5ZIufL+AACkA4JVlugfiam8IDCvOwKnunZZhUZjSb3RPuDK+wMAkA7cGd6A4/pHYqosDM7pezy0vfW8z43GEjKSvvZsi46sHj7vdfdtbpyDygAASA+MWGWBlLVnRqzckh/waUFpnlp6zx+qAADIdgSrLDAUTSiRsq4GK0laVlWgtv4I66wAADmLYJUF+kdikqQK14NVoZLW6vipEVfrAADALQSrLNA/0WrB7RGrRRUF8nqMWnqYDgQA5CaCVRY4NRKTx0il+e4Gq4DPo8byfNZZAQByFsEqC/SPxFSS55fX406rhamWVRWoKxzV6FjC7VIAAJh3BKss0D8SU0XB3LZamK5lVYWyklr6WGcFAMg9BKss4HarhakWluUr4PMwHQgAyEkEqwwXjSc1GkumTbDyeoyWVBSwgB0AkJMIVhnu1ESrhXQJVpK0rLpQp0ZiGhiNuV0KAADzimCV4c70sCpMo2BVVSBJaullnRUAILcQrDJc//BEDyuXWy1MVVMcUkHAyzorAEDOIVhluFMjMRUEfQr6vW6XcobHGC2tKlRL77CstW6XAwDAvCFYZbj+kZjK8/1ul/E2y6sKNRRNqGdozO1SAACYNwSrDNc/ElNFYXr0sJpqeXWhJKmZ3YEAgBxCsMpgiVRK4Ug8rXYETiorCKiyMECwAgDkFIJVBhsYicsqvVotTLW8ukhH+4aVSKbcLgUAgHlBsMpgkz2sKtI0WDVVFyqetDrRP+p2KQAAzAuCVQbrH5lotZCmwWppZYE8RjpykulAAEBuIFhlsP6RmAJejwqDPrdLOaeg36vG8gI19wy5XQoAAPOCYJXBTk0cvmyMcbuU81pRU6jOcFTDYwm3SwEAYM4RrDJY/0hMZWk6DTiJtgsAgFxCsMpQKWvHe1ilebBaUJqn/ICX6UAAQE6YVrAyxmw1xhwyxjQbY75wjucbjTHPGGN2GWP2GGPe7XypmGoomlAiZdN24fokjzFaVlWoIz0cbwMAyH4XDVbGGK+kr0q6Q9Jlku41xlx21mX/XdL3rLUbJN0j6R+cLhRv1T/RaiHdg5U03nZhKJrQSY63AQBkuemMWG2S1GytPWqtjUl6WNJdZ11jJRVPfF8iqdO5EnEuA6PjwaosP/2D1eQ6qyMnmQ4EAGS36ezTr5fUNuV+u6TNZ13zx5J+boz5fUkFkm5zpDqcVzgSlySV5KXfAcxnK80PqKooyAJ2AEDWm86I1bn28p+9WOZeSd+01i6U9G5J/26MedtrG2PuN8bsNMbs7O3tnXm1OGMgEld+wKuALzP2H6yoLtSxvhFF40m3SwEAYM5M56dyu6SGKfcX6u1TfZ+U9D1Jsta+LCkkqfLsF7LWPmCt3Wit3VhVVXVpFUOSFB6NqzQDRqsmNdUUKZGyevnoKbdLAQBgzkwnWO2Q1GSMWWKMCWh8cfqjZ13TKulWSTLGrNZ4sGJIag4NRGIqyYD1VZOWVBYo4PXolwdPul0KAABz5qLBylqbkPRZSU9KOqjx3X/7jTFfMsbcOXHZ5yX9tjHmDUnfkfQJy976OTWQYSNWfq9Hy6sL9fTBHtouAACy1rQOmbPWPi7p8bMe++KU7w9Ius7Z0nA+0XhSY4mUSvMzJ1hJ0qraIv1oV4cOdA3q8gUlbpcDAIDjMmPlM95iIIN2BE61srZIxki/PNjjdikAAMwJglUGCk/0sMqkqUBJKgr5tW5hKeusAABZi2CVgc6MWGXQ4vVJt62u1hvtYfUMRt0uBQAAxxGsMtDAaFweIxWFprVELq3curpGkvT0m0wHAgCyD8EqA4UjcRXn+eUx5+rdmt5W1RapvjRPv2CdFQAgCxGsMlCmtVqYyhijW1dX68XmXrqwAwCyDsEqA4UjMZVm4PqqSbeurlE0ntK2lj63SwEAwFEEqwyTslbhSDzjWi1MtWVpuQoCXj11gOlAAEB2IVhlmOFoQimbeT2spgr6vLphRZWefvMkXdgBAFmFYJVhJlstZFrX9bPdurpGJwfH9EZ72O1SAABwDMEqwwycaQ6auWusJOn21TXye40e39vldikAADiGYJVhwlkyYlWS79f1TVX66Z4upgMBAFmDYJVhBkbjCvo8Cvm9bpcya+9ZW6eOgYh2tQ24XQoAAI4gWGWYTN8RONXtl9co4PXosTeYDgQAZAeCVYYZiMQyfhpwUnHIrxtWVOnxvV1KpZgOBABkPoJVhhnvup7ZC9enet+6OnUPRvVa62m3SwEAYNYIVhkklkhpNJbMmhErabztQtDn0U/3MB0IAMh8BKsMMjixIzBb1lhJUmHQp5tXVuune7uUZDoQAJDhCFYZZLI5aEkWjVhJ0nvX1al3aEw7jve7XQoAALNCsMog2dIc9Gy3rKpWnt+rx/Z0ul0KAACzQrDKIAORuIyk4jyf26U4Kj/g0y2rq/Wzfd1KJFNulwMAwCUjWGWQ8GhchSGffJ7s+9jed0Wd+oZjerG5z+1SAAC4ZNn3EzqLhSNxlWbRwvWpbllVo7J8v77/WrvbpQAAcMmya04pyw1EYqotyXO7jDkR8Hl01/p6PbS9VQOjMZXmn38d2UPbW2f9fvdtbpz1awAAcDZGrDKEtXaiOWh2jlhJ0gc3LlQsmdKjb7CIHQCQmQhWGWIkllQiZbOqh9XZLl9QosvqivW9nW1ulwIAwCUhWGWI8EQPq2zqun4uH9y4UPs6BnWwa9DtUgAAmDGCVYYIj2Zf1/VzuXt9vQJej76/k0XsAIDMQ7DKEOFobgSrsoKAbrusWo/s7lAsQU8rAEBmIVhliMFIXB4jFQSzfyPnB69qUP9ITE+/2eN2KQAAzAjBKkMMRuIqDvnlMcbtUubc9U2Vqi4K6vssYgcAZBiCVYYIR+IqzvJpwEk+r0e/duVCPXu4Vz2DUbfLAQBg2ghWGWIwmjvBSpI+fHWDkimrh3cwagUAyBwEqwxgrVU4EldJKPvXV01aUlmg65sq9dD2Vg5mBgBkDIJVBojGU4ons7s56Ll8bMsidQ9G9YuDLGIHAGQGglUGmGy1kEtTgZJ0y6pqLSgJ6VuvnHC7FAAApoVglQEGI7nRw+psPq9HH9mySC8296mld9jtcgAAuCiCVQaYPM4m10asJOlDGxvk9xpGrQAAGYFglQEmR6yKcmjx+qSqoqDuWFOnH7zWrtFYwu1yAAC4IIJVBghH4ioM+uTz5ObH9bFrFmkomtCjuzvdLgUAgAvKzZ/UGWa8h1XujVZN2rioTKtqi/RvL5+QtdbtcgAAOC+CVQYYjCRUEsq99VWTjDH66JZFOtA1qNdbT7tdDgAA50WwygC5dJzN+bx/Q72KQj59cxuL2AEA6YtgleYisaQi8WTOtVo4W0HQpw9vbNATe7vO7JIEACDdEKzSXPfEIcS5PmIlSR+/ZrGS1urVY6fcLgUAgHMiWKW5rnBEUu41Bz2Xxop83bqqWq8e6+f8QABAWiJYpbmTkyNWObx4fapPXLtEI7Gk9nSE3S4FAIC3IVilua7w5FRg7rZbmOq65RWqKgrq5ZZTtF4AAKQdglWaOxmOKuT3KOjzul1KWjDG6NplFeoYiKi1f9TtcgAAeAuCVZrrCkeZBjzLhoYyhfwebWthETsAIL0QrNJc92CUhetnCfg82rioXPs7w7ReAACkFYJVmusOR2m1cA5bllbIWtF6AQCQVghWaSyeTKl3eIwRq3MoLwhoVW2RXj3WrzitFwAAaYJglcZ6h8ZkrXL6nMALuWZZpUZiSe1tp/UCACA9EKzSGK0WLmxZVYGqi4J6+SitFwAA6YFglca6wxxncyHGGF1D6wUAQBqZVrAyxmw1xhwyxjQbY75wnms+ZIw5YIzZb4x5yNkyc9PkOYFMBZ4frRcAAOnkonNMxhivpK9Kul1Su6QdxphHrbUHplzTJOmPJF1nrT1tjKmeq4JzSXc4oqDPo7wAzUHPZ7L1wraWPoUjcRb6AwBcNZ0Rq02Smq21R621MUkPS7rrrGt+W9JXrbWnJcla2+NsmbmpKxxVXUlIxhi3S0lrk60XttN6AQDgsukEq3pJbVPut088NtUKSSuMMS8ZY14xxmw91wsZY+43xuw0xuzs7e29tIpzyMnBqGqKQ26XkfbKCwJaVVesHbReAAC4bDrB6lzDJWdvwfJJapJ0k6R7JX3DGFP6tl9k7QPW2o3W2o1VVVUzrTXnTI5Y4eKuWVqhkVhS+ztpvQAAcM90glW7pIYp9xdK6jzHNT+x1sattcckHdJ40MIlSqWsegbHVEOwmpalVQWqKAho+7F+t0sBAOSw6QSrHZKajDFLjDEBSfdIevSsax6RdLMkGWMqNT41eNTJQnNN/2hMsWRKdUwFTovHGG1aUq4Tp0bP7KYEAGC+XTRYWWsTkj4r6UlJByV9z1q73xjzJWPMnROXPSnplDHmgKRnJP1nay0riWdhsodVbUmey5Vkjisby+T1GL3KqBUAwCXTaultrX1c0uNnPfbFKd9bSX8wcYMDfhWsQuofiblcTWYoCPq0tr5Eu9tOa+vltQr46H8LAJhf/ORJU10T01ksXp+ZTYvLFY2ntKd9wO1SAAA5iGCVprrDEXk9RpWFQbdLySiLKvJVXRTUq8eZDgQAzD+CVZrqDo+puigor4fmoDNhjNHmJeVqPx1Rx+mI2+UAAHIMwSpNdQ9GVMs04CXZ0Fgmv9fo1ePsnwAAzC+CVZrqDkdVS6uFSxLye3XFwlLtbhtQNJ50uxwAQA4hWKUha626wlFGrGZh0+JyxZNWe9vpxA4AmD8EqzQ0NJbQaCzJjsBZWFiWp+qioF5rPe12KQCAHEKwSkMnJ3pYcQDzpTPG6KpFZWrtH1UPndgBAPNkWg1CMb+6wpM9rLKv6/pD21vn7b3WN5Tqyf3deq31tO5YUzdv7wsAyF2MWKWh7jDNQZ1QFPJrZW2xdrUOKJmybpcDAMgBBKs0NHmIcHUxzUFna+OiMg2PJXT45JDbpQAAcgDBKg11haOqKAgo6PO6XUrGW1FTpIKgT6+dYBE7AGDuEazS0MnBKAvXHeL1GF3ZUKo3uwc1PJZwuxwAQJYjWKWhrnCU9VUOunJRmVJW2k3rBQDAHCNYpaHuMMfZOKmmOKSGsjztPHFa1rKIHQAwdwhWaSYaT+r0aJzjbBx21aJy9QyNqWOAg5kBAHOHYJVmTk7sCGTEyllr60vk9Ri90TbgdikAgCxGsEoz2dwc1E15Aa9W1hRpT3uYnlYAgDlDsEozvxqxooeV09Y3lGpoLKGjvcNulwIAyFIEqzQzOWJVy4iV41bWFink92g304EAgDlCsEoz3eGoCoM+FQY5xtFpfq9HaxaUaH/XoEZj9LQCADiPYJVmusNRFq7PofWNpYolUnrqwEm3SwEAZCGCVZrpGqQ56FxaXFGgkjy/frK70+1SAABZiGCVZk6GOc5mLnmM0bqFpXrucK9ODY+5XQ4AIMsQrNJIIplSzxAjVnNtfUOpkimrx/Z0uV0KACDLEKzSSN9wTClLc9C5VlsS0qraIj2yu8PtUgAAWYZglUa6wuPHrXCczdx7/4Z67Wod0PG+EbdLAQBkEYJVGukOc5zNfLlz/QIZIxaxAwAcRbBKI92TXdcZsZpzdSV52rKkQo/s7pC1HHEDAHAGwSqNdIejCng9Ki8IuF1KTrh7wwId6xvRG+1ht0sBAGQJglUa6ZpoDmqMcbuUnLB1TZ0CPo8e2cUidgCAMwhWaaR7MMo04DwqyfPr1lXVemxPpxLJlNvlAACyAMEqjXCczfy7e0O9+oZjerG5z+1SAABZgGCVJqy16uY4m3l308oqleT5mQ4EADiCYJUmTo/GFUukOM5mngV9Xr17bZ2e3H9SI2MJt8sBAGQ4glWamGwOyojV/Hv/hnpF4kk9deCk26UAADIcwSpNTDYHrSFYzbuNi8pUX5qnHzMdCACYJYJVmugcGB+xqi/Nc7mS3OPxGN21foFebO5T79CY2+UAADIYwSpNdIaj8nuNqgqDbpeSk+7eUK9kyuqxPRxxAwC4dASrNNE5EFFNcUgeD81B3bCipkir64r1CGcHAgBmgWCVJroGolrANKCr3r9hgd5oG9CxvhG3SwEAZCiCVZroDEe0gIXrrrpzXb2MkX6ym0XsAIBLQ7BKA8mUVXeYESu31ZaEtGVJhR7Z1SFrrdvlAAAyEMEqDfQNjymRsqojWLnu7g0LdPzUqN5oD7tdCgAgAxGs0kDHRKsFpgLdt3VNnQI+D0fcAAAuCcEqDXQNjDcHZSrQfSV5ft26qlqP7elUIplyuxwAQIYhWKWBzjMjVgSrdHDX+nr1Dcf0YnOf26UAADIMwSoNdIYjKgh4VZznc7sUSLp5VZWKQz79hJ5WAIAZIlilgc6BiOpK82QMzUHTQdDn1XuuqNOT+7s1Gku4XQ4AIIMQrNJAF60W0s7d6+s1GkvqZ/u63S4FAJBBCFZpoHMgyo7ANHP14nI1lufrh6+3u10KACCDEKxcNpZIqm94jBGrNOPxGP3alfXa1nLqTDsMAAAuhmDlsu7weKuFOkas0s6vX7lQ1ko/ZtQKADBNBCuXTY6G1DNilXYayvO1eUm5fvg6R9wAAKaHYOWyyeagHGeTnj5w1UId6xvR662n3S4FAJABphWsjDFbjTGHjDHNxpgvXOC6DxhjrDFmo3MlZrfJ5qBMBaanO9bWKc/v1Q9eYzoQAHBxFw1WxhivpK9KukPSZZLuNcZcdo7riiT9B0nbnS4ym3WGo6ooCCjk97pdCs6hMOjTHWtr9dgbXYrGk26XAwBIc9MZsdokqdlae9RaG5P0sKS7znHdn0j6sqSog/VlvfHmoIxWpbMPXLVQQ2MJPbmfnlYAgAubzhkq9ZLaptxvl7R56gXGmA2SGqy1jxlj/vB8L2SMuV/S/ZLU2Ng482qzUFc4osUVBW6XkXMe2t467WtT1qo036+vPN2skbFfjVrdt5n/hwEAbzWdEatznbNyZouUMcYj6W8kff5iL2StfcBau9Fau7Gqqmr6VWaxrgG6rqc7jzHa0FCm5p5hDYzG3C4HAJDGphOs2iU1TLm/UNLU02mLJK2R9Kwx5rikLZIeZQH7xQ1G4xoaS2gBU4Fp76pFZZKknSfYHQgAOL/pBKsdkpqMMUuMMQFJ90h6dPJJa23YWltprV1srV0s6RVJd1prd85JxVnkTKuFEkas0l15QUBNNYXaebxfyRQ9rQAA53bRYGWtTUj6rKQnJR2U9D1r7X5jzJeMMXfOdYHZbLLVAlOBmWHzkgoNRhM61D3jYdlHAAAeMElEQVTodikAgDQ1ncXrstY+Lunxsx774nmuvWn2ZeWGzvBksGIqMBOsqClSccin7cf6ddmCErfLAQCkITqvu6hzICKvx6i6iGCVCbweo6sXl+tIz7D6R1jEDgB4O4KVi7oGoqotDsnrOdfGS6SjjYvL5THSjuP9bpcCAEhDBCsXdQxEmAbMMCV5fq2qLdbO4/2KJVJulwMASDMEKxd1haPsCMxAm5aUaySWpBM7AOBtCFYuSaWsusM0B81Ey6sLVZbv17e3n3C7FABAmiFYuaRvZEyxZIqpwAzkMUabFpfrlaP9OtQ95HY5AIA0QrByCc1BM9vVi8uV5/fq6y8cdbsUAEAaIVi5pO30qCRpYRnBKhPlB3360MaF+snuDnWHo26XAwBIEwQrl7T1jzcHbSjPd7kSXKpPXb9UyZTVv2w75nYpAIA0QbBySWv/qMoLAioMTqv5PdJQQ3m+7lhbp4deadVQNO52OQCANECwckn76VE1MA2Y8T59w1INjSX03R1tbpcCAEgDBCuXtPaPMg2YBa5YWKrNS8r14IvHFE/SMBQAch3BygXJlFXnQIRglSU+feNSdYajemxPp9ulAABcRrByQfdgVPGkVSPBKivctKJaTdWFeuD5Y7LWul0OAMBFBCsXtJ4ab7XQUEawygYej9H9NyzVwa5BPXXgpNvlAABcRLBywWQPK0asssf7N9RraWWB/s/PDymZYtQKAHIVwcoFbf2j8hipjuNssobP69EfvHOFDp8c1qNvdLhdDgDAJQQrF7T1j2pBaZ78Xn77s8m719Tp8gXF+uunDiuWYIcgAOQifrK7oLV/lPVVWcjjMfrDd61UW39E393R6nY5AAAXEKxc0HY6wvqqLHXTiiptWlyuv3u6WZFY0u1yAADzjGA1zyKxpHqHxtRQTtf1bGSM0X/eulK9Q2P65rbjbpcDAJhnBKt51j6xI5DmoNnr6sXlunlllb72XItOj8TcLgcAMI8IVvOstZ9glQu+cMdqjYwl9BdPvOl2KQCAeUSwmmdt/TQHzQUra4v0yeuX6Ls72/TqsX63ywEAzBOC1Txr7Y8oz+9VZWHA7VIwxz53a5PqS/P03x/ZS/sFAMgRBKt51nZ6VA3leTLGuF0K5lh+wKcv3XW5Dp8c1jdePOp2OQCAeUCwmmdt/aO0Wsght66u0dbLa/V3vzxyZhoYAJC9CFbzyFqrtv5RLWR9VU75n3deJq8x+uJP9slazhEEgGxGsJpHp0fjGoklGbHKMXUlefr8O1fqmUO9enhHm9vlAADmEMFqHtFqIXd94trFur6pUn/86H4dPjnkdjkAgDlCsJpHk2tsGLHKPR6P0V9/aL2KQn599qHXOe4GALIUwWoeTY5YLSzjOJtcVFUU1F9/aJ0OnxzWlx474HY5AIA5QLCaR+2nR1VZGFBB0Od2KXDJDSuq9Ds3LtN3Xm3VY3s63S4HAOAwgtU8amVHICR9/p0rtL6hVH/0w706wnorAMgqBKt51NYfYX0V5Pd69JX7Nijo9+o3v7lDvUNjbpcEAHAIwWqeJJIpdQxE1FDO+ipIC8vy9c+/sVF9w2P61L/uYDE7AGQJgtU86QpHlUxZDl/GGesaSvV392zQno6wPvfwLiVTNA8FgExHsJonrbRawDm88/JaffG9l+nnB07qz356kM7sAJDh2J42T1p6hyVJy6oLXa4E6eSh7a0K+ry6dlmFHnzpmI71Deu21TUzOqT7vs2Nc1ghAGAmCFbzpLlnWEVBn6qLgm6XgjT07rV1iiVSeuZQr6yVbr9sZuEKAJAeCFbzpKV3WEurC/lhiXPyGKO7N9TLGKNnD/fKSnon4QoAMg7Bap609Izo2uUVbpeBNOYxRnetXyBjpOcO9yplrbZeXku4AoAMQrCaB0PRuLoHo1rO+ipchMcY3bVugYykF470aTia0Ps31MvnZZ8JAGQCgtU8ONo7IklaVkWwwsUZY3TnugUqCvn1i4MnNRCJ6yObG5Uf4I8rAKQ7/hk8D5p7JnYEEqwwTcYY3bKqWh/a2KDW/lF97bkWnRqmQzsApDuC1Txo6R2Wz2O0qIIeVpiZ9Q2l+uR1SzQaS+ofn2vRoW7OFgSAdEawmgctvcNaVJEvP+tkcAkWVxbod29cpuKQX//68nE9ub+bLu0AkKb4ST8PmnuGWbiOWakoDOp3b1qmqxeX67nDvfrGC0c1MBpzuywAwFkIVnMsnkzpxKlR1ldh1vxej96/oV4f3tigrsGo/v7pZr1+4jTH4ABAGiFYzbETp0aVSFmCFRyzrqFUn71puaqKgvrB6+36+IOvqm3iLEoAgLsIVnNs8oxApgLhpMqioO6/YanuXLdAu1oH9M6/eV4PPN+isUTS7dIAIKcRrObYZLBaWlXgciXINh5jtGVphZ76gxt03fJK/e/H39Stf/WcfvR6O4vbAcAldBycY809w6otDqko5He7FDjsoe2tbpcgSaorydPXP36VXmzu01/+7E39wffe0Neea9Hn37lSt6+ukcczP0fiOPH7cd/mRgcqAQD3EKzmWEvviJZVM1qFuWWM0fVNVbpuWaWe2Net//PzQ/r0v7+mRRX5+tiWRfrgxgaV5BHuAWCuMRU4h6y1aukZZuE65o3HY/SeK+r08/90g/7+3g2qKgzqT396UFv+9y/1Rz/ao23NfUokU26XCQBZa1ojVsaYrZL+VpJX0jestX9x1vN/IOlTkhKSeiX9lrX2hMO1ZpyeoTENjyVYuI555/d69L51C/S+dQu0ryOsf3v5uB7Z1anvvNqm8oKA3nlZjd51ea02LSlXQZCBawBwykX/RjXGeCV9VdLtktol7TDGPGqtPTDlsl2SNlprR40xvyvpy5I+PBcFZ5IWzghEGlhTX6Ivf2Cd/teda/Tc4R49sa9bj+3p0sM72uT1GF2xsETXLK3Q5qUVWt9QypQhAMzCdP6puklSs7X2qCQZYx6WdJekM8HKWvvMlOtfkfRRJ4vMVM20WkAayQt4tXVNnbauqVM0ntSO4/165egpvdxySg88f1T/8GyLJGlZVYHWN5RpQ2Op1jeUalVtkXwcxwQA0zKdYFUvqW3K/XZJmy9w/SclPXGuJ4wx90u6X5IaG7N/909Lz7AKgz5VFwXdLgV4i5Dfq+ubqnR9U5Uk6V9eOqa2/ojaT4+qtX9UP9vfrR++3i5J8nuN6kvz1FheoOXVhZx7CQAXMJ1gda692udskmOM+aikjZJuPNfz1toHJD0gSRs3bsz6RjvNvcNaVlUgY+ZnuztwqYI+r5ZXF54ZXbXW6vRoXG2nR9XWP357qblPzx/pld9rtKSyQCtqirS2voRWIgAwxXSCVbukhin3F0rqPPsiY8xtkv4fSTdaa8ecKS+ztfSM6NrlFW6XAcyYMUblBQGVFwS0bmGpJGkskdSxvhEd6RlW88lhPbanS4/v7VJTdZE2NJZqdV0xI1kAct50gtUOSU3GmCWSOiTdI+m+qRcYYzZI+idJW621PY5XmYGGxxLqHoyycB1ZI+jzalVtsVbVFkuSegaj2tU2oN1tA3p4R5vy/F5du6xC1y6rVF7A63K1AOCOiwYra23CGPNZSU9qvN3Cg9ba/caYL0naaa19VNL/K6lQ0vcnpr1arbV3zmHdaa+ZHYHIctXFIb3r8lrdflmNjvaO6OWWPv3yzR692NynLUsrdN3yShXSygFAjpnW33rW2sclPX7WY1+c8v1tDteV8fZ3hiVJly8odrkSYG55jDmzPqsrHNGzh3r1/OFevXL0lG5bXaMtSyvknadjdQDAbfxzco7sbQ+rNN+vhWV5bpeCLJcuZxZK4+cW3rupUT2DUT2+r0s/3dul11tP6651C9RYwdFOALIfK03nyJ72sNbWl7AjEDmpujik37hmse7b1KjRWFJfe/6ofryrQ2OJpNulAcCcYsRqDkTjSR0+OaRPr1rqdimAa4wxWlNfoqaaQv3yYI9eau7T0d5h3bOpUfWljOQCyE6MWM2Bg12DSqSs1taXuF0K4Lqgz6t3r63TJ69fokTK6mvPtuiFI71K2axvZQcgBxGs5sC+jvGF62sn+v8AkJZWFur3b1mulbVFemJft/7t5eMajSXcLgsAHEWwmgN72sOqKAhoQUnI7VKAtJIf8Okjmxt157oFaukZ0T8826KTg1G3ywIAxxCs5sDejrDWLmThOnAuxhhtWVqh375+ieKJlP7xuRYdmGhPAgCZjmDlsEhsfOH6FayvAi6osaJAv3fzclUXBfWt7a365cGTsqy7ApDhCFYOO9AVVsqyvgqYjpI8v377+qXa0FCqX77Zo//03d20ZACQ0Wi34LA97RML1xmxAqbF7/XoA1ctVFVRUI/s7lRnOKoHPnaVSvMDbpcGADPGiJXD9naEVVUUVE1x0O1SgIxhjNFNK6v1t/es1+7WAf3aP27TiVMjbpcFADNGsHLY3vawrqDjOnBJ7lpfr299arP6R2J6/z9s02snTrtdEgDMCMHKQSNjCTX3DmvtQqYBgUu1aUm5fvS716oo5NN9X39Fj+/tcrskAJg2gpWD9ncOylrpCoIVMCtLqwr1o9+9VmvqS/R7335d//RcCzsGAWQEgpWD9rQPSJLWsHAdmLWKwqC+/anNes8VdfrzJ97Uf39knxLJlNtlAcAFsSvQQfs6wqotDqm6iI7rgBNCfq/+/p4NaijL19eea1HHQERfue9KFQb5qwtAemLEykF7JjquA3COx2P0hTtW6c9/ba1eONKnD37tZXWHOQYHQHoiWDlkKBrX0d4ROq4Dc+TeTY168BNXq61/VHd/9SUd6Bx0uyQAeBuClUN2t42vr2LECpg7N66o0vd/5xoZI33ga9v0s33dbpcEAG9BsHLIi0f65PcaXb243O1SgKy2uq5Yj3zmOjXVFOl3vvWa/vYXR5RKsWMQQHogWDnk+SN92rioXAUsqgXmXE1xSN+9f4t+7cp6/c0vDuv3vv26RsYSbpcFAOwKdELPUFQHuwb1X7audLsUIKM9tL11Rtdf1VimaDylJ/Z2addfndZ9mxbpc7c1zVF1AHBxjFg54MUjfZKkG5qqXK4EyC3GGL1jeaU+cd1iDUUT+uqzzfrJ7g63ywKQwwhWDnj+cK8qCgK6rK7Y7VKAnNRUXaTfv6VJdcUhfe7h3fpvP96raDzpdlkAchBTgbOUSlm92NyndzRVyuPh4GXALSV5fn3q+qVqHxjVPz13VLtaB/Q3H16nVbX8gwfA/GHEapYOdg+qbzim65kGBFzn9Rj90R2r9eAnNqp3KKo7//4l/dNzLUqyaxDAPGHEapaePzy5vqrS5UoASL9aAH//Dcv0yK4O/fkTb+qhV1v1gSsXqqIwOK3XuG9z41yWCCCLMWI1Sy8c6dWq2iJVF3M+IJBOCoM+fWRzoz541UJ1h6P6u6eP6LnDvUqkOMgZwNwhWM3CaCyhncdP63pGq4C0ZIzRhsYyfe7WJjVVF+nJ/d36ytPNOtY34nZpALIUwWoWth/tVyyZ0g0rWF8FpLPS/IA+umWRPr5lkWLJlL7+wlF9f2ebBkZjbpcGIMuwxmoWnj/Sq6DPwzE2QIZYVVespVWFeuZQj15q7tPejrCuWVahm1ZUKy/gdbs8AFmAYDULzx/u1aYl5Qr5+QsZyBQBn0fvurxWm5aU65cHT+rFI33acbxfNzZVafPSCv48A5gVpgIvUcdARC29I7qRaUAgI5XlB/SBqxr0+7c0aVF5gZ48cFJffvJN/Xx/t3qHxtwuD0CGYsTqEj2ya/zYjNtW17hcCYDZqC0J6TeuXaz206N6/nCvnjvcq3f85dP69asW6mNbFmk1JyoAmAGC1SVIpawe3tGqa5ZWaHFlgdvlAHDAwrJ83bd5kfqGxtQZjuiHr7Xroe2turKxVPdtXqT3XlHHNCGAi2Iq8BK81NKntv6I7tnU4HYpABxWWRTUX/z6Fdr+327V/3jvZRqIxPWH339DV//ZL/Rff7BH21r6lKKTO4DzYMTqEjz8apvK8v161+W1bpcCYI6U5gf0yXcs0W9dt1ivHO3XD15r12N7OvXdnW2qKwnpvVfUaeuaOm1oKOWcUABnEKxmqG94TD8/0K2PX7OYaQEgBxhjdM2yCl2zrEJ/evca/eLgST2yq0Pf3HZcX3/hmKqLgnrX5bXaumZ8p6Hfy0QAkMsIVjP0w9faFU9a3cs0IJBz8gJevW/dAr1v3QINRuN65s0e/Wxft37wWrv+/ZUTKsnz67bVNdq6pladA5FZhyzOLAQyD8FqBqy1enhHm65eXKbl1UVulwPARcUhv+5aX6+71tcrEkvqhSO9+tn+bj11oFs/fL1dAa9HK2qLdPmCYq2sKWKEG8gRBKsZeOVov471jeizNy93uxQAaSQv4NU7L6/VOy+vVTyZ0itHT+nvn27Wgc5B7esIy+sxWl5VqMsXFGtVXbEKg/zVC2Qr/nTPwMM7WlUc8uk9V9S5XQqANOX3enR9U5Xa+iO6c90CtfWPan/noPZ3hnVo15DMrg4trizQ5QuKtbquWGX5AbdLBuAggtU09Y/E9MTebt27qYEhfQDT4jFGiyoKtKiiQHesqVVXOHomZD22p0uP7elSXUlIl9WNh6zakpA8hh2GQCYjWE3TX/38kJLW6mPXLHK7FAAZyBijBaV5WlCap9svq1Hf8JgOdg3qQOegnn6zR798s0eFQZ+aqgvVVFOk5dWFbpcM4BIQrKbhjbYBPfRqq37z2iUsWgdywEPbW+f8PSoLg7q+qUrXN1VpKBrXkZ5hHT45pEMnh7SrbUCS9O3tJ3RlY5muXFSmK+pLtKSqQMUh/4ze53z/LSlrFUukFI0nFYknFU++temp12OU7/cqL+BV0OeRmeVIGjsckSsIVheRTFn9j5/sU2VhUP/x9ia3ywGQhYpC/vEA1VimlLXqOB3Rsb4RpazVC0f69OOJs0klqbIwoMUVBaovy1NxyK/iPJ+KQ36F/F4lU1Ypa5VMWY0lUhqMxLWrdUCReFLRidv49+OBarr94z1GKgz6VFEYVEVBQJWFQVUXB1VfmqeiGQY9INsRrC7i4R2t2tMe1t/es37G/1IEgJnyGKOG8nw1lOfrvs2Nstaq/XREB7oGdbxvRMf6RnS0b0S7Wgc0FI1rMJpQ8jxH7BQEvPJ5PQr5PQr5vSrO86u6OKSQ36u8icfy/F6F/F75vR5NHZRKJFOKxJMajY3fhqJx9Q3HdLBrUCOx5JnrSvP8qi/LU2N5vpZXF6qmmHViyG0Eqws4NTymL//skLYsLded6xa4XQ6AHGSmBK1zsdZqNDY+GuX1GHk8Rl5jFPB55Pd65mRaMxpPqiscVcfpUbUPRNR+OqL9nYOSxsPcsupCLa8q1LKqQpUVsOsRuYVgdQFf/tkhjYwl9Cd3rZn1+gIAmAvGGBUEfSqYx95YIb9XSyoLtKSy4Mxj4UhcLT3Dau4dVkvvsPa0hyVJ5QUBLa8qVEmeX1uWlquiMDhvdQJuIFidx+N7u/TdnW369A1L1VTDgnUAuJCSPL+uXDS+0N5aq56hMbX0Dqu5Z1hvtA/oMw+9LklaVVuka5dV6tplFdq0tJwlFsg6BKtz+Pn+bv2H7+zSxkVl+txtLFgHgJkwxqimOKSa4pCuXVapZMrqsgXFeuXoKW1r6dO3t5/Qgy8dk8dIaxeWjoesxeVau7BElYxoIcMRrM7yzJs9+sxDr2tNfYn+5TevVn6A3yIAmA2vx+iqRWW6alGZPnPzckXjSe1qHdDLLX16+egpff35o/rHZ1skSXUlIa2tL9HqumItrSrQ0spCLakq4BggZAz+T53i+cO9+vS3XtOq2mL9629tYhsxAMyBkN+ra5ZV6JplFZKk0VhCe9vD2tsxcWsP66mDJ2WnbHasKAioujik2uKgaopDKi8IqGii3URRyK88v1c+r5Hf4xn/6jXynfneI+/Eon6vZ/zmm1jo/5avZvyr12NYV4tLRrCSFEuk9OBLx/Q3Tx3WsqpC/fsnN6kkj1AFwF3z0ag0HeQHfNq8tEKbl1aceSwaT+rEqVEd6xtWS++IOgYiev3EaR0+Oaydx09rJJbQebpMOMLrMQp4PQr6PApMvXk9WlFTpIKgT8Uhn4pC48HurV/He4sVhXwqDPrk83re9vpOfLY0XU1POR+sXmru0xd/sk8tvSO6bXW1vvyBdSrlUFQAcFXI79XK2iKtrP3V5qGpYcRaq3jSnml6mkhaJSeao042SU2lpj42/mtSdvz7M19TduLxycfGv08krWLJpGKJlMYSKcUSKcWSKYVjcb3RPqCRsYQGownFEqmL/rfkB7xvC2D9w2MK+LwK+KaEN++vAlzQ+9YwN37d+PVeD6Np6Swng1UimdL2Y/361isn9MS+bi2qyNeDn9ioW1bVuF0aAGAajDEK+Mb7dRXP8wzD1JGisURSQ9HExC1+1tezHh8b/xqOxNUzNPar0JZMnbfJ67lM9in7ytNHlB/0qSAwfvRQQcB35n5+wKf8gFf5wfHHC4M+leT5VZw3Pn1akudXcciv/ICXaU+HTStYGWO2SvpbSV5J37DW/sVZzwcl/ZukqySdkvRha+1xZ0udnVPDY9rTEdaT+7r15P5unR6NKz/g1edvX6HfvmGpQn6v2yUCQNbKpmnN6f63hCa62lcVXXynYyKVUjxhFUumNJYYHymLTRkpmxrCpj43NtEhPxyJv+W5yVG2i8U1n8eMh63Q1ODlP3Nc0mQAO/Pc1OtCfgV8b5/mzHUXDVbGGK+kr0q6XVK7pB3GmEettQemXPZJSaettcuNMfdI+ktJH56LgqerrX9U//ziMR3qHtKRniH1DcckjXcFvu2yGt2xpk43rqhSXoBABQBwl8/jkS8g5ckryZkROGutEhPnRo5NnBEZmTwvMjb+dVl1gcKRuAYj4yNpg9G4OgYiGowkNDgR1i4kz++9eADLGx8ZO3tKMzhlGtTn9chjxo90Gr9N+d4jpVJSLJlSfMotlrBnvq8oDL6lYa2bpjNitUlSs7X2qCQZYx6WdJekqcHqLkl/PPH9DyR9xRhjrLVzuLTwwhIpq+/vbFNTTZFuXVWjFbVFWllTpI2LyxidAgBkPWPGd0f6vZ7ztqu42AL4aDypwUj8TOiaGsDCoxNfJ4LZYDSu7sGoDvcMKTwa19BYQvOVAj66pVF/evfa+Xmzi5hOsKqX1Dblfrukzee7xlqbMMaEJVVI6pt6kTHmfkn3T9wdNsYcupSiZ+LAxS/JBJU66/cSGYfPMDvwOWY+PsMpPuJ2AZfuLZ/jn03c5tii6Vw0nWB1rlVtZ2fQ6Vwja+0Dkh6YxntiCmPMTmvtRrfrwKXjM8wOfI6Zj88wO6Tz5zidVWftkhqm3F8oqfN81xhjfJJKJPU7USAAAECmmE6w2iGpyRizxBgTkHSPpEfPuuZRSb8x8f0HJD3t5voqAAAAN1x0KnBizdRnJT2p8XYLD1pr9xtjviRpp7X2UUn/LOnfjTHNGh+pumcui85BTJ9mPj7D7MDnmPn4DLND2n6OhoElAAAAZ9DZCwAAwCEEKwAAAIcQrNKYMWarMeaQMabZGPMFt+vBzBljHjTG9Bhj9rldCy6NMabBGPOMMeagMWa/MeZzbteEmTPGhIwxrxpj3pj4HP+X2zXh0hhjvMaYXcaYx9yu5VwIVmlqylFCd0i6TNK9xpjL3K0Kl+Cbkra6XQRmJSHp89ba1ZK2SPoMfxYz0pikW6y16yStl7TVGLPF5ZpwaT4n6aDbRZwPwSp9nTlKyFobkzR5lBAyiLX2edHTLaNZa7usta9PfD+k8b/Q692tCjNlxw1P3PVP3Ni9lWGMMQslvUfSN9yu5XwIVunrXEcJ8Zc54CJjzGJJGyRtd7cSXIqJKaTdknokPWWt5XPMPP+fpP8i6cKnQ7uIYJW+pnVMEID5YYwplPRDSf/RWjvodj2YOWtt0lq7XuMniGwyxqxxuyZMnzHmvZJ6rLWvuV3LhRCs0td0jhICMA+MMX6Nh6pvW2t/5HY9mB1r7YCkZ8X6x0xznaQ7jTHHNb485hZjzLfcLentCFbpazpHCQGYY8YYo/HTJQ5aa//a7XpwaYwxVcaY0onv8yTdJulNd6vCTFhr/8hau9Bau1jjPxOfttZ+1OWy3oZglaastQlJk0cJHZT0PWvtfnerwkwZY74j6WVJK40x7caYT7pdE2bsOkkf0/i/jndP3N7tdlGYsTpJzxhj9mj8H65PWWvTcrs+MhtH2gAAADiEESsAAACHEKwAAAAcQrACAABwCMEKAADAIQQrAAAAhxCsAAAAHEKwAgAAcMj/D8XT/9Ph8199AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
    " ] }, "metadata": {}, @@ -571,12 +639,61 @@ "parametro_lambda = 1.5\n", "dias_contados = 365\n", "\n", - "# poisson retorna o número de falhas por dia.\n", + "# poisson retorna o número de falhas por dia e a exponencial o tempo para o próximo evento\n", "samples_exp = np.random.exponential(1/parametro_lambda, dias_contados*2)\n", "\n", "# por fim, plotamos\n", "plt.figure(figsize=(10,8))\n", - "sns.distplot(samples_exp, color='y');" + "sns.distplot(samples_exp);" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.76820747, 1.36323582, 1.39373736, 1.14134532, 0.29919301,\n", + " 0.03234264, 0.47398208, 0.68103603, 0.97048864, 0.0943977 ,\n", + " 0.30171689, 0.37967919, 1.26887538, 0.48971952, 0.16778011,\n", + " 0.04293686, 0.29955847, 2.41714907, 1.84523852, 1.01430334,\n", + " 0.31763228, 0.00443888, 0.18072796, 0.12275792, 2.63430663,\n", + " 0.47810353, 1.26597642, 0.50794551, 1.56032902, 2.98651326,\n", + " 0.95106112, 0.32917332, 1.01172693, 0.8475592 , 0.54606061,\n", + " 1.05140209, 1.58484419, 0.65211205, 0.12419268, 0.0059618 ,\n", + " 0.18066926, 0.14093276, 0.62362037, 0.10791053, 0.65958543,\n", + " 0.68009407, 0.41460734, 0.08592923, 0.80772691, 0.05755562])" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "samples_exp[:50]" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "730" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "samples_exp.size" ] }, { @@ -586,15 +703,15 @@ "id": "ef7cLBzM2vjT" }, "source": [ - "## Distribuição Normal\n", + "# Distribuição Normal\n", "\n", "A distribuição normal (ou Guassiana) modela uma grande quantidade de variáveis observadas na natureza, como a estatura ou peso de uma população.\n", "\n", "Também sob certas condições, algumas distribuições se comportam como normais, isto é conhecido como o **teorema do limite central**.\n", "\n", - "É possível ajustar uma distribuição de Poisson a uma normal quando $\\lambda$ é um valor de grande magnitude: (podem rodar posteriormente a distribuição Poisson alterando o lambda para algo em torno de 15e dias_contados para em torno de 3000 que verá que a forma da distribuição ficará parecida com nossa normal)\n", + "É possível ajustar uma distribuição de Poisson a uma normal quando $\\lambda$ é um valor de grande magnitude (rodar posteriormente a distribuição Poisson alterando o lambda para algo em torno de 15e dias_contados para em torno de 3000 onde a forma da distribuição ficará parecida com a normal).\n", "\n", - "Também é possível ajustar uma binomial a uma distribuição normal. Para isso, propõe-se como exemplo agregar o argumento ```fit=stats.norm``` à construção do gráfico.\n", + "Também é possível ajustar uma binomial a uma distribuição normal fazendo-se uma normalização dos dados. Para isso, propõe-se como exemplo agregar o argumento ```fit=stats.norm``` à construção do gráfico.\n", "\n", "Dizemos que uma variável aleatória _**X**_ segue uma distribuição normal **_X ~ N ( $\\mu$, $\\sigma$)_** se sua distribuição de probabilidades estiver dada por:\n", "\n", @@ -602,6 +719,10 @@ "p(x)= \\dfrac{1}{\\sqrt{2 \\pi \\sigma^²}} e^ \\dfrac{-(x-\\mu)^2}{2 \\sigma^2}\n", "\\end{equation*}\n", "\n", + "### Exemplo\n", + "\n", + "Para a definição de uma distribuiç˜åo normal, é necessário estabelecer uma média e um desvio padrão, como as características de uma certa amostra. \n", + "\n", "Imaginemos um exemplo em que temos uma população de animais cujo peso segue uma distribuição normal, com $\\mu = 342,73 $ kg e $\\sigma = 45,78 $ kg\n", "\n", "A seguir, vamos usar um conjunto de amostras que vêm de uma distribuição normal, chamando à função ```normal``` do numpy com os parâmetros propostos." @@ -609,7 +730,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 81, "metadata": { "colab": { "autoexec": { @@ -622,17 +743,9 @@ "outputId": "37713d5a-fe7f-4129-c2f6-2fcc6f8a063e" }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\sn3fru\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", - " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHjCAYAAABvkBg4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl05Gd95/vPU4tUWkv7LrWWVu/tdtvt7rbbuw3YhMGEsBiHXJKQSy6BCTfk3oScmSQzJMy5SeYOIQlkBm6GZAKO7WAIDXYArxjs3ve9W/vWraW076qq5/4h2Wm31d1qtaSnlvfrHM5Rl35V+ohjlT76Pd/f8zPWWgEAAMANj+sAAAAAyYwyBgAA4BBlDAAAwCHKGAAAgEOUMQAAAIcoYwAAAA5RxgAAAByijAEAADhEGQMAAHDI5zrAjSgoKLDV1dWuYwAAAFzXoUOH+qy1hdc7Lq7KWHV1tQ4ePOg6BgAAwHUZY1oXchzLlAAAAA5RxgAAAByijAEAADhEGQMAAHCIMgYAAOAQZQwAAMAhyhgAAIBDlDEAAACHKGMAAAAOUcYAAAAcoowBAAA4RBkDAABwiDIGAADgEGUMAADAIcoYAACAQ5QxAAAAhyhjAAAADlHGAAAAHKKMAQAAOORzHQAAbtaT+9oWdNwTO6qWOQkA3DjOjAEAADhEGQMAAHCIZUoAMWmhS48AEO84MwYAAOAQZQwAAMAhyhgAAIBDlDEAAACHKGMAAAAOUcYAAAAcoowBAAA4RBkDAABwiDIGAADgEGUMAADAIcoYAACAQ5QxAAAAhyhjAAAADlHGAAAAHKKMAQAAOORzHQAAllrnwIR+er5HxhhlpvqUkepTMM2nD2wtU3oKb3sAYgvvSgASxtRMRC+c6daexpDSUrxK83s1Nh3W5ExUknSqa1jf+N+2qTIv3XFSAPg3lDEACeHMxWHtPtal4YkZba/J03s2lijg90qSwpGoGnpG9cyhdr3nL1/Tx7ZXqa4w85qv98SOqpWIDQDMjAGIf8c7BvWPe1uV5vfqN++r02O3lr9VxCTJ5/VoXWm2PnP/amWm+vTN15v1ekOfrLUOUwPALMoYgLjWNzKl7x3pVFVeun7rgTpVXWMJMj8zVZ++r05rS7L13ImL2t/Sv4JJAWB+lDEAcWsmEtWT+9vk9Rg9fkelfJ7rv6Wl+r365R1VqivM0I9OXtLQxMwKJAWAq6OMAYhbPzjWpUvDk/rw7ZXKSU9Z8PM8xugDt5Yraq12H+1kuRKAU5QxAHHpcNuADrYO6P41hVpbknXDz8/PTNXD64t15tKITnYNL0NCAFgYyhiAuDMwPq3vH+1UTUGGHlpfvOjXuauuQGU5Ae0+1qXx6fASJgSAhaOMAYg7L5/tkbXSh2+vkNdjFv06Xo/RB7dWaGI6rH89eWkJEwLAwlHGAMSVvpEpHWkb0I6avBuaE7uaspw03VNfqEOtA2oNjS1BQgC4MZQxAHHlxbPd8nqM7l1TuGSv+cDaIqX5vfrZhb4le00AWCjKGIC4cWloUic6hnRXXYGyAv4le90Un0fba/J05uKwBsaml+x1AWAhKGMA4saLZ7qV4vPonvqCJX/tHTV5Mkba2xxa8tcGgGuhjAGIC50DEzp9cVh31xcoPWXpb6ubk56iDaXZOtDSr+lwdMlfHwCuhjIGIC68cOaS0lO82lW39GfF3nRXXYEmZ6I62j64bF8DAK5EGQMQ8zoHJnS+e1T31he+7QbgS21VfrrKggG90chNxAGsHMoYgJi3pyn01pD9cjLG6M66AvWMTGlPI7NjAFYGZQxATBubCut4x6C2VuYs61mxN91SEVR6ilfffKNl2b8WAEiUMQAx7lDrgMJRq521+Svy9fze2TNwL57pVnv/+Ip8TQDJjTIGIGZFrdXe5pBqCjJUnB1Ysa+7vTpP1krfP9q5Yl8TQPKijAGIWecujWhwfEZ3rtBZsTflpKfo9lW5ev4E96sEsPyWfrMeAFgie5tCyg74tL40e8W/dnF2QM+fuKi/fumC8jNTr3rcEzuqVjAVgETEmTEAMalvZEoXeka1vSZfXo9Z8a+/qWy2AJ7sGl7xrw0guVDGAMSkvc0heY3RHdW5Tr5+TnqKKnLTdLJzyMnXB5A8KGMAYs74dFiHWge0qTx7SW8IfqM2lQXVOTjBzcMBLCvKGICY88PjFzUVjmpHzcoO7l9pU3lQknSyi7NjAJYPZQxAzHnmQLsKMlO1Kj/daY68jBSV5QRYqgSwrBZUxowxjxhjzhljGowxX5jn86nGmKfnPr/PGFN92ef+YO7xc8aY91z2+O8YY04ZY04aY/7JGLNymwgBiFmNvaM62DqgbatyZczKD+5faXNZUO0DExocZ6kSwPK4bhkzxnglfVXSo5I2SPqYMWbDFYd9UtKAtXa1pC9L+rO5526Q9LikjZIekfQ1Y4zXGFMu6bclbbPWbpLknTsOQJJ75mC7vB6jrVU5rqNIkjbOLVWe4qpKAMtkIWfGtktqsNY2WWunJT0l6bErjnlM0j/MffwdSQ+Z2T9pH5P0lLV2ylrbLKlh7vWk2T3O0owxPknpkrpu7lsBEO9mIlE9e6hTD64rcjq4f7mCzFSVBgPMjQFYNgspY+WS2i/7d8fcY/MeY60NSxqSlH+151prOyX9V0ltki5KGrLW/mS+L26M+ZQx5qAx5mBvb+8C4gKIV6+c7VHf6JQ+uq3SdZS32VgWVFtoXMMTM66jAEhACylj8w1t2AUeM+/jxphczZ41q5FUJinDGPPx+b64tfbr1tpt1tpthYWFC4gLIF49c7BdhVmpun9tbP2sbyzLlpV09tKI6ygAEtBCyliHpMv/TK3QO5cU3zpmbtkxKKn/Gs99WFKztbbXWjsj6buS7lrMNwAgMfQMT+qVc736pdsq5PPG1oXeRVmpCqb5daGHMgZg6S3kHe+ApHpjTI0xJkWzg/a7rzhmt6RPzH38IUkvW2vt3OOPz11tWSOpXtJ+zS5P7jTGpM/Nlj0k6czNfzsA4tWzhzsViVp9ZFuF6yjvYIxRfVGmGntHFYleuTAAADfnumVsbgbss5J+rNnC9Iy19pQx5ovGmPfPHfZ3kvKNMQ2SPi/pC3PPPSXpGUmnJf1I0mestRFr7T7NDvoflnRiLsfXl/Q7AxA3rLX654Pt2l6dp9rCTNdx5rW6KFOTM1F1Dk64jgIgwfgWcpC19nlJz1/x2B9d9vGkpA9f5blfkvSleR7/Y0l/fCNhASSmAy0Dauob0289sNp1lKtaXZQpI+lC94iq8txuRgsgscTWYAaApPT0gXZlpvr03s0lrqNcVXqKT+W5abrQM+o6CoAEQxkD4NTI5IyeP3FR/25LqdJTFnSy3pn6okx1DIxrYjriOgqABEIZA+DUD45d1MRMRB+Jsb3F5lNflKWonb1lEwAsFcoYAKeeOdiuNcWZurUyNm5/dC2VeelK9XnUwFIlgCVEGQPgzPnuER1tH9RHtlXGxE3Br8frMaotzNSFnhHN7t4DADePMgbAmacPtMvvNfrgbbG3t9jV1BdlamB8RqGxaddRACQIyhgAJ6bDUX3vSKfetaFYeRkpruMsWH3R7D5oXFUJYKlQxgA48eKZbvWPTevDcTC4f7n8zFTlZaToQje3RgKwNChjAJx45mC7SoMB3VsfWzcFX4jVRZlq6htTOBp1HQVAAqCMAVhxXYMTeu18rz50e4W8ntgf3L9SfVGmpsNRtfdzayQAN48yBmDFPXWgXVaKi73F5lNbMHtrpCb2GwOwBChjAFZUOBLV0wfadN+aQlXG6T0e01K8Kg0G1Nw35joKgARAGQOwol4626Pu4Sn98o5VrqPclJqCDLX1j2sqzK2RANwcyhiAFfXtfW0qDQb0wNr4G9y/XE1BpsJRq2PtQ66jAIhzlDEAK6YtNK7Xzvfq8Tuq5PPG99tPdUG6jKR9TSHXUQDEufh+NwQQV/7pQJu8HqOP3hGfg/uXS0/xqTg7oL3NlDEAN4cyBmBFTIejeuZAux5aV6SSYMB1nCVRU5ihQ60Dmg6z3xiAxfO5DgAg/j25r+26xxzvGFRobFq/vDO+B/cvV5OfoT2NIR3vGNS26jzXcQDEKc6MAVgR+5v7lZvu1z2rC1xHWTI1BRmSpH3N/Y6TAIhnlDEAy65neFJNfWPaXp0nTxzuuH81Gak+rS3O0l6G+AHcBMoYgGW3pykkn8fo9gRcyttZm6dDrQOaiTA3BmBxKGMAltXkTERH2gZ1S0WOMlMTb0x1R22+xqcjOtHJfmMAFocyBmBZHWod0HQkqjvr8l1HWRbba2bP9rFUCWCxKGMAlk3UWu1pCmlVXrrKc9Jcx1kWBZmpqi/K1L4mhvgBLA5lDMCyOd89ov6x6YQ9K/amHbV5OtjSrzBzYwAWgTIGYNnsaQwpO+DTxrKg6yjLamdtvsamIzrZNew6CoA4RBkDsCx6R6Z0oWdU22vy5U2g7Szm8+bc2H5ujQRgERLv0iYAMWFPU0hej3mrqLxpIbv1x5uirIBqCjK0v3lAn7rXdRoA8YYzYwCW3ORMRIfbBnRLeTAht7OYz/bqPB1o6Vc0al1HARBnKGMAltzhttmbZyf64P7l7qjJ09DEjC70jLqOAiDOUMYALKmotdrTGFJVXroqctNdx1kx26uZGwOwOJQxAEvqQveoQmPTurM2ec6KSVJlXppKsgPa3zLgOgqAOEMZA7Ck9jT1KSvg08bybNdRVpQxRnfU5Gl/c0jWMjcGYOEoYwCWTN/IlM53j2p7TZ58nuR7e9lek6fu4Sm190+4jgIgjiTHZU4AVsSe5pC8xrw1P5UMLt+qo3dkSpL0lZcu6PZVue849okdVSuWC0D8SL4/XQEsi6mZiA63DmhzRVBZAb/rOE4UZaUqze9VS2jMdRQAcYQyBmBJHG4b0FQ4mnSD+5fzGKPq/HS19FHGACwcZQzATYtaqz1NIVXmpqkyL3m2s5hPdUGGQmPTGp6ccR0FQJygjAG4aY29o+obndbOJD4r9qbq/AxJ4uwYgAWjjAG4afub+5We4tXm8qDrKM6V5aQpxetRS2jcdRQAcYIyBuCmXBqa1JmLw9q2Klc+L28pXo9RVR5zYwAWjndOADflqQNtilppew1LlG+qLkhX9/CkJqYjrqMAiAOUMQCLFo5E9dT+dtUXZSovI8V1nJhRnZ8hK6mVLS4ALABlDMCivXS2R5eGJ7WDs2JvU5mXLq8x7DcGYEEoYwAW7Vt7W1UaDGhtSZbrKDHF7/WoPDdNzcyNAVgAyhiARWkNjelnF/r0+B1V8nqM6zgxp6YgQ52DE5oOR11HARDjKGMAFuXJfW3yeowe317pOkpMqs5PV9RK7QNscQHg2ihjAG7YVDiiZw62690bilWcHXAdJyatys+QEZu/Arg+yhiAG/bi6R4NjM/oY9urXEeJWQG/VyXBgJoZ4gdwHT7XAQDEpif3tV31c//wRouyAz619Y9f87hkV12QoYMt/QpHo/J5+NsXwPx4dwBwQ0YmZ3ShZ0Rbq3LlMQzuX0t1foZmIlZdg5OuowCIYZQxADfkaPugola6rSrXdZSYV52fLom5MQDXRhkDsGDWWh1uG1BlbpoKs1Jdx4l5WQG/CjJT2PwVwDVRxgAsWNfQpLqHp3TbKs6KLVR1foZaQmOKWus6CoAYRRkDsGCH2wbk8xjdUp7jOkrcqC7I0ORMVN3DzI0BmB9lDMCChKNRHWsf1PrSbKWleF3HiRs1+RmSpJYQm78CmB9lDMCCnL80ovHpiG6r4qzYjchJ9yuY5meIH8BVUcYALMihtkFlpfq0uoibgt8IY4xW5aerJTQmy9wYgHlQxgBc19hUWOcuDWtLZQ43BV+EmoIMjUyG1cpSJYB5UMYAXNfprmFFrXRrJUuUi1E9Nze2tynkOAmAWEQZA3BdJ7qGlJ+RotIgNwVfjKKsVGWl+vRGI2UMwDtRxgBc09hUWE29o9pcHpTh9keLYoxRbWGG3mgMMTcG4B0oYwCu6c0lyk3lQddR4lpdYab6RqfU0DPqOgqAGEMZA3BNJzpZolwKdYWZkqTXG/ocJwEQayhjAK5qdCqspj6WKJdCbkaKKvPSmBsD8A6UMQBX9eYS5eYKliiXwl21BdrbFFIkytwYgH9DGQNwVSc6B5WfkaKSbJYol8Jdq/M1PBnWqa4h11EAxBDKGIB5jU6F1dQ7ps0VLFEulTvr8iWJpUoAb0MZAzCvU11DspI2cxXlkinKCqi+KJMyBuBtKGMA5nWyc0gFmSxRLrVdqwt0oLlf0+Go6ygAYgRlDMA79I9Nq6l3TJu4inLJ3VmXr4mZiI62D7qOAiBGUMYAvMPLZ3tkJW0sZYlyqe2syZfHSG80st8YgFmUMQDv8NKZbmUHfCrLYYlyqQXT/dpUHmRuDMBbKGMA3mYqHNFr53u1tiSbJcplcmddvo60DWh8Ouw6CoAYQBkD8Db7mvo1Nh3R+pIs11ES1q66As1ErPY397uOAiAGUMYAvM1LZ7oV8HtUV5TpOkrC2l6Tp1SfRz893+s6CoAYQBkD8BZrrV4806O7VxfK7+XtYbkE/F7dVZevV89RxgBQxgBc5uylEXUOTujh9UWuoyS8B9YVqblvTM19Y66jAHCMMgbgLS+d6ZYkPbiOMrbc7l8z+//xq+d6HCcB4BplDMBbXjzToy0VQRWx6/6yq8pPV21hhl5hqRJIepQxAJKk3pEpHesY1EPri11HSRoPrC3S3qaQJqYjrqMAcIgyBkCS9MrZHlkrPcS82Ip5YG2RpsNR7WliN34gmS2ojBljHjHGnDPGNBhjvjDP51ONMU/PfX6fMab6ss/9wdzj54wx77ns8RxjzHeMMWeNMWeMMXcuxTcEYHFePNOtsmBAG0qzXUdJGnfU5Co9xatXzrJUCSSz65YxY4xX0lclPSppg6SPGWM2XHHYJyUNWGtXS/qypD+be+4GSY9L2ijpEUlfm3s9SfqKpB9Za9dJ2iLpzM1/OwAWY3Imop9d6NND64vZdX8Fpfq82rW6QK+c65G11nUcAI4s5MzYdkkN1toma+20pKckPXbFMY9J+oe5j78j6SEz+47+mKSnrLVT1tpmSQ2SthtjsiXdK+nvJMlaO22tHbz5bwfAYhxo6dfETEQPrCt0HSXp3L+2UB0DE2rsHXUdBYAjCylj5ZLaL/t3x9xj8x5jrQ1LGpKUf43n1krqlfRNY8wRY8z/Z4zJmO+LG2M+ZYw5aIw52NvLqXxgObx2vlcpXo921ua7jpJ07l87O6PHUiWQvBZSxuZbs7jyfPrVjrna4z5Jt0n6W2vtVkljkt4xiyZJ1tqvW2u3WWu3FRbyVzuwHF4736dt1blKT/G5jpJ0ynPStLY4S6+eZ78xIFktpIx1SKq87N8VkrqudowxxicpKKn/Gs/tkNRhrd039/h3NFvOAKyw7uFJnese0b1r+GPHlfvXFWp/c79Gp8KuowBwYCFl7ICkemNMjTEmRbMD+buvOGa3pE/MffwhSS/b2WnU3ZIen7vaskZSvaT91tpLktqNMWvnnvOQpNM3+b0AWITX5m5WfW89ZcyVB9YWaSZi9TNuHA4kpeuuSVhrw8aYz0r6sSSvpP9prT1ljPmipIPW2t2aHcT/R2NMg2bPiD0+99xTxphnNFu0wpI+Y619c3fDfy/p23MFr0nSry3x9wZgAV670KeCzFStL81yHSVpbVuVq9x0v/715CU9urnUdRwAK2xBAyLW2uclPX/FY3902ceTkj58led+SdKX5nn8qKRtNxIWwNKKRK1+fqFXD6wtYksLh3xej969oUTPnbioqXBEqT7v9Z8EIGGwAz+QxE51DWlgfIZ5sRjwyOYSjU6F9fML7MYPJBvKGJDE3pwXu7u+wHES7KorUFbAp389ecl1FAArjDIGJLHXzvdpU3m2CjJTXUdJeik+jx5eX6wXTndrJhJ1HQfACqKMAUlqZHJGh9sGuIoyhjyyqURDEzPa2xRyHQXACqKMAUnqjcaQwlGreyhjMeO+NYVKT/GyVAkkGbbbBpLMk/vaJEnfP9qpFJ9HF3pG1Nw35jgVJCng9+qBtUX6yalL+pPHNsnr4QpXIBlwZgxIUhd6RlVbkCGfh7eBWPLIphL1jU7rYEu/6ygAVgjvwkAS6h+bVv/YtOqLMl1HwRUeWFekFJ+HpUogiVDGgCTU2DMqSaqjjMWczFSf7q0v1I9PXVI0al3HAbACKGNAEmrsG1VWwKdCtrSISY9uKtHFoUkd7Rh0HQXACqCMAUnGWqvG3jHVFWZyC6QY9a6NxUrxevSDY12uowBYAZQxIMl0j0xpbCqsusIM11FwFdkBv+5fW6gfHr+oCEuVQMKjjAFJpql3dl6stpB5sVj22K3l6h2Z0j42gAUSHmUMSDKNPaPKy0hRbnqK6yi4hofWFykjxavdLFUCCY8yBiSRcCSqpr4xlijjQMDv1bs3luhfT17SdJh7VQKJjDIGJJFTXcOaCkdZoowT799SpqGJGb12vtd1FADLiDIGJJHXG/skSbUFnBmLB3fXFyg33a/vs1QJJDTKGJBE9jSGVJydqqyA33UULIDf69Gjm0v14ulujU+HXccBsEy4UTiQJKbCER1o6ddtVbmuo2AB3ryhe3qKVxMzEf3n3ae1pTLnHcc9saNqpaMBWGKcGQOSxJG2QU3ORFXHvFhcqc7PUHbAp2Psxg8kLMoYkCTeaAzJY2Z/uSN+eIzRLRU5utA9ylIlkKAoY0CSeKOhT5srcpSW4nUdBTdoS0WOItbqVOew6ygAlgFlDEgCY1NhHW0f1F11+a6jYBHKcgLKz0hhqRJIUJQxIAkcah1QOGp1Zy1lLB4ZY7SlMkfNfWManphxHQfAEqOMAUlgX3NIXo/R7au4kjJe3VIRlJV0onPIdRQAS4ytLYAksK+pX5vLg8pI5UfepTe3q1iMoqyAyoIBHesY1K7VBYt6TbbBAGITZ8aABDcxHdGxjkHtZIky7t1SkaOOgQmFRqdcRwGwhChjQII73DagmYjVjto811Fwk26pCEqSjnWwVAkkEsoYkOD2Nc3uL7aNebG4l5OeolX56TreMShrres4AJYIZQxIcHvn5sW4H2Vi2FKRo56RKV0annQdBcASoYwBCWxyJqKj7YPawbxYwthUHpTHSMdZqgQSBmUMSGBH2gY1HYlqRw3zYokiM9WnusJMHWOpEkgYlDEgge19c16smjKWSLZU5mhwfEbt/eOuowBYApQxIIHtaw5pQ1m2gmnMiyWS9SXZ8hqjU13cqxJIBOwACSSA+Tb+nIlEdbBlQDtq8m5qs1HEnrQUr2oLM3Tq4rAe2VQiY4zrSABuAmfGgATVMTChcNSqtjDTdRQsgw1l2eofm+aqSiABUMaABNXcNyojqTo/w3UULIMNpdkykk6zVAnEPcoYkKCa+8ZUEgwoLcXrOgqWQVbAr6q8dJ2+SBkD4h1lDEhA4WhUbf3jqingrFgi21iWrYtDk+ofm3YdBcBNoIwBCahzYEIzEcsSZYLbUDZ7r8pTXWwAC8QzyhiQgFpCs/tPVXNmLKHlZaSoNBhgbgyIc5QxIAG19I2pMDNVmansXpPoNpRlq61/XCOTM66jAFgkyhiQYKLWqrV/TNUF6a6jYAVsLA3KSgzyA3GMMgYkmO7hSU3ORJkXSxLF2anKy0hhqRKIY5QxIMG09I1JYl4sWRhjtLEsW429o5qYjriOA2ARKGNAgmkJjSuY5ldueorrKFghG0qzFbXS+Z4R11EALAJlDEgg1lq19I2pOp95sWRSmZeuNL9X5y9RxoB4RBkDEkj/2LRGpsIsUSYZjzGqL87UhZ5RRa11HQfADaKMAQmkJTQ3L8bwftJZU5yl0amwLg5x43Ag3lDGgATS3Deu9BSvirJSXUfBCqsvypQkne9mqRKIN5QxIIG0hMa0Kj9DxhjXUbDCsgJ+leekMTcGxCHKGJAghidm1D82rRqG95PWmuJMtfWPs8UFEGcoY0CCeGtejOH9pLWmOEtW0gW2uADiCmUMSBAtoTGleD0qDaa5jgJHKnLTFfB7dL571HUUADeAMgYkiJa+cVXlpcvrYV4sWXk9RvVFWbrQPcIWF0AcoYwBCWBiOqLu4Umt4ubgSW9NcZZGpsK6xBYXQNygjAEJoK1/TFbsL4bZIX6JLS6AeEIZAxJAS2hcHiNV5nJmLNllBfwqCwYoY0AcoYwBCaA1NKaynDSl+PiRxuxSJVtcAPGDd24gzk2FI+oYmGCJEm+pL85S1EqNvVxVCcQDyhgQ5052DisctVrFZq+YU5mXJr/XqKmPMgbEA8oYEOcOtvRLkqryKGOY5fN4VFOQocaeMddRACwAZQyIcwdaBpSfkaKsgN91FMSQusJM9Y5OaXhixnUUANdBGQPiWDRqdai1n3kxvENt4ewWF8yNAbGPMgbEsaa+UQ2MzzAvhncoDQaU5veqqZelSiDWUcaAOHawZUASm73inTzGqLYwQ429o7LcGgmIaZQxII69OS+Wn5niOgpiUF1hpgYnZtQ/Nu06CoBroIwBcexga79uX5UrY7g5ON6p7q25MZYqgVhGGQPiVM/wpFpD47qjOs91FMSogswUZQd8DPEDMY4yBsSpg62z82LbqnMdJ0GsMsaorjBTTb2jijI3BsQsyhgQpw609Cvg92hjWdB1FMSw2sJMjU1H1D086ToKgKugjAFx6lDrgG6tzOHm4LimusLZK23Z4gKIXbyLA3FobCqsU13D2raKeTFcW056ivIzUpgbA2IYZQyIQ0fbBxWJWubFsCB1hZlq7htTOBJ1HQXAPChjQBw60NIvY6TbVlHGcH11RZmaCkd1vHPIdRQA86CMAXHoYMuA1pVkK5ubg2MBagpm58b2NIYcJwEwH8oYEGfCkaiOtA3oDpYosUCZqT6VBgN6vaHPdRQA86CMAXHm7KURjU1HtI3NXnEDagsydLB1QJMzEddRAFyBMgbEmQMt/ZKkbcyL4QbUFWVqOhzV4bnNggHEDsoYEGcOtgyoPCdNZTlprqMgjlTnZ8jrMXq9kaVKINZQxoA4Yq3VgZZ+trTADQv4vdpSEdQbDPEDMYcyBsSR9v4J9YwpdA9SAAAgAElEQVRMMS+GRdm1ukDHO4Y0MjnjOgqAyyyojBljHjHGnDPGNBhjvjDP51ONMU/PfX6fMab6ss/9wdzj54wx77nieV5jzBFjzA9v9hsBksHB1tl5Ma6kxGLcWZevSNRqf3O/6ygALnPdMmaM8Ur6qqRHJW2Q9DFjzIYrDvukpAFr7WpJX5b0Z3PP3SDpcUkbJT0i6Wtzr/emz0k6c7PfBJAsDrQMKCvg05qiLNdREIduq8pVqs+j1xtYqgRiiW8Bx2yX1GCtbZIkY8xTkh6TdPqyYx6T9J/mPv6OpL8xxpi5x5+y1k5JajbGNMy93h5jTIWkX5D0JUmfX4LvBUg4T+5re9u/XzrTrdJgQE8daHeUCPEs4PdqW3Wu3mCIH4gpC1mmLJd0+Tt/x9xj8x5jrQ1LGpKUf53n/qWk35N0zZulGWM+ZYw5aIw52Nvbu4C4QGIanwqrZ2RK1fkZrqMgjt1VV6Czl0bUNzrlOgqAOQspY2aex+wCj5n3cWPM+yT1WGsPXe+LW2u/bq3dZq3dVlhYeP20QIJq7R+XJK2ijOEm3FWXL0na28RSJRArFlLGOiRVXvbvCkldVzvGGOOTFJTUf43n7pL0fmNMi6SnJD1ojPnWIvIDSaM1NCavMarIZX8xLN7m8qCyUn3MjQExZCFl7ICkemNMjTEmRbMD+buvOGa3pE/MffwhSS9ba+3c44/PXW1ZI6le0n5r7R9YayustdVzr/eytfbjS/D9AAmrNTSu8tw0+b3sSIPF83k92lGbz9wYEEOu+64+NwP2WUk/1uyVj89Ya08ZY75ojHn/3GF/Jyl/bkD/85K+MPfcU5Ke0eyw/48kfcZay43RgBs0E4mqY3BCq/LSXUdBArirLl+toXF1DIy7jgJAC7uaUtba5yU9f8Vjf3TZx5OSPnyV535Js1dMXu21X5X06kJyAMmqY2BCkahlXgxLYtfqAknSG40hfWQbBR9wjfUOIA60hsYkSdX5/OLEzVtTnKmCzBTt4dZIQEygjAFxoCU0pqKsVKWnLuhkNnBNxhjdWVeg1xv6NDveC8AlyhgQ46LWqjU0zv5iWFK76vLVMzKlxt4x11GApEcZA2LcpaFJTYWjqi5giRJL5666N+fGuKoScI0yBsS4lrfmxTgzhqVTlZ+uitw0vcF+Y4BzlDEgxrX0jSknza+c9BTXUZBg7qrL156mkCJR5sYAlyhjQAyz1qolNK7qAs6KYentWl2goYkZne4adh0FSGqUMSCGhcamNToV1iq2tMAyuLN29j6VzI0BblHGgBjW0se8GJZPUXZA9UWZep39xgCnKGNADGsJjSs9xauirFTXUZCgdq0u0IHmfk2Ho66jAEmLMgbEsJbQmFblZ8gY4zoKEtSddfmamInoaPug6yhA0qKMATGqZ3hS/WPT3AIJy2pnbb48hrkxwCXKGBCjDrQMSGJeDMsrmObXpvIg+40BDlHGgBh1oKVffq9RWU6a6yhIcHfVFehI+4DGp8OuowBJiTIGxKj9zf2qykuX18O8GJbXrtX5molY7Wvudx0FSEqUMSAGDU/O6MylYa1iiRIr4I7qPAX8Hr12vtd1FCApUcaAGHSodUDWMi+GlRHwe7WzNl8/pYwBTlDGgBh0oLlfPo9RVR5XUmJl3LemUE29Y2rvH3cdBUg6lDEgBh1o6dfG8qBSfPyIYmXcu6ZQkjg7BjjAOz0QYyZnIjrWPqTt1bmuoyCJ1BZkqCI3jTIGOEAZA2LM8Y4hTUeiuqM6z3UUJBFjjO5bU6g3Gvq4NRKwwihjQIw50DK7vQBlDCvtvjWFGpuO6FDrgOsoQFKhjAExZn9zv+qLMpWbkeI6CpLMXasL5PMYliqBFUYZA2JIJGp1uHVAd9RwVgwrLzPVp23VuZQxYIVRxoAYcubisEamwtrOEiUcuXdNoc5cHFbP8KTrKEDSoIwBMeSteTHOjMGR++a2uHjtQp/jJEDyoIwBMeRgy4DKc9JUzs3B4ciG0mwVZqWyVAmsIMoYECOstdrf0q872F8MDhljdG99oX52oVeRqHUdB0gKPtcBAMxqDY2rd2SKJUosmyf3tS3ouPvWFurZwx062j6o21fxxwGw3DgzBsSI/XPzYgzvw7X76gvl9Ri9dKbbdRQgKVDGgBhxoLlfuel+rS7KdB0FSS6Y7tf26jy9SBkDVgRlDIgRB1r6ta06T8YY11EAPbyhWOe7R9UaGnMdBUh4lDEgBvQMT6olNM7wPmLGw+uLJEkvnulxnARIfJQxIAbsaQpJku6sLXCcBJi1Kj9Da4oz9cLpS66jAAmPMgbEgD2NIWUFfNpQlu06CvCWd20o1oGWAQ2OT7uOAiQ0yhgQA/Y2hbSjJk9eD/NiiB0Pry9WJGr16jk2gAWWE2UMcOzi0IRaQuPaWZvvOgrwNlsqclSQmaoXuKoSWFaUMcCxPY1z82J1lDHEFo/H6OH1RfrpuV5Nh6Ou4wAJizIGOLanMaRgml/rS5gXQ+x5eH2xRqfC2tccch0FSFiUMcCxvc2z82Ie5sUQg+6uL1DA79GLp1mqBJYLZQxwqGNgXO39EyxRImYF/F7dU1+oF053y1puHA4sB8oY4BDzYogH71pfrK6hSZ3qGnYdBUhIlDHAoT1NIeWm+7WmKMt1FOCqHlpfJK/H6Ecn2QAWWA6UMcARa632NfVrZ20+82KIafmZqdpZm6fnT1xkqRJYBj7XAYBk8+S+NklS/9i0OgcndNuq3LceA2LBfP89FmSm6vWGkL78wgWVBANvPf7EjqqVjAYkJM6MAY409Y5KkmoLMhwnAa5vQ2m2jKSTXUOuowAJhzIGONLUN6aMVJ+KslJdRwGuKyvgV3VBhk50UsaApUYZAxyw1qqpd1S1BRkyhnkxxIfN5UH1jkype3jSdRQgoVDGAAf6Rqc1PBlWbSFLlIgfG8pYqgSWA2UMcKChZ0SSVM+WFogj2QG/VuWn6yRLlcCSoowBDlzoGVVeRoryMlJcRwFuyKbyoLqHp9QzwlIlsFQoY8AKi0StmvvGtLow03UU4IZtLAtKErvxA0uIMgassPb+cU2Fo1pdRBlD/Amm+bUqj6VKYClRxoAV1tA7KiOpjjNjiFObyoO6ODSpvtEp11GAhEAZA1ZYQ8+oKnLTlJbidR0FWJRN5UEZScc7Bl1HARICZQxYQUMTM+oYGGeJEnEtmDa7Aeyx9iHuVQksAcoYsIL2NIYUtdJqtrRAnLulIqje0SmdvsggP3CzKGPACvp5Q69SvB5V5qW5jgLclM1lQXmMtPtYl+soQNyjjAEr6OcX+lRbmCGfhx89xLf0VJ/qi7L0w2MXFY2yVAncDH4jACukvX9cLSHmxZA4bqkIqnNwQofbBlxHAeIaZQxYIT9v6JMkNntFwthQmq1Un0ffP8pSJXAzKGPACvn5hT6VZAdUmJXqOgqwJFL9Xj28oVjPn7iocCTqOg4QtyhjwAqIRK1eb+zT3fUFMsa4jgMsmfdvKVNobFqvN4ZcRwHiFmUMWAFH2wc1OD6je9cUuo4CLKn71xYqK+DTbpYqgUXzuQ4AJIOXz3bL6zG6b02hnjt+0XUcYMk8e6hTa4qy9MPjXbqlIii/d/6/8Z/YUbXCyYD4wZkxYAW8fLZX21blKpjmdx0FWHJbKnM0FY7qDBvAAotCGQOWWdfghM5cHNaD64pcRwGWRW1hhrIDPh1t516VwGJQxoBl9sq5HknSQ+spY0hMHmN0a2WOznePaHQq7DoOEHcoY8Aye/lMjyrz0lTH/mJIYLdW5SpqpeMdnB0DbhRlDFhGkzMRvd7Yp4fWFbOlBRJaSXZAZTkBHWmjjAE3ijIGLKM9jSFNzkT1APNiSAJbK3PVOTih7uFJ11GAuEIZA5bRy2d7lJ7i1Y6aPNdRgGW3pTJHHiPOjgE3iDIGLBNrrV4+26NdqwsU8HtdxwGWXWaqT2uKs3S0fUBRa13HAeIGZQxYJue7R9U5OKGHWKJEEtlalavhybCaesdcRwHiBmUMWCYvne2WJObFkFTWlWQp4PfoSNuA6yhA3KCMAcvklbM92lSereLsgOsowIrxez3aXJ6jk11DmgpHXMcB4gJlDFgG/WPTOtQ6oAfXclYMyWdrZY5mIlanu7g9ErAQlDFgGfzk1CVFrfTIplLXUYAVtyo/Xbnpfq6qBBaIMgYsg+dPXlJ1frrWl2a5jgKsOGOMtlblqrF3VEMTM67jADGPMgYsscHxab3R0KdHN5ey6z6S1tbKHFmJm4cDC0AZA5bYC6e7FY5aPbqpxHUUwJn8zFStykvXkbYBWfYcA66JMgYssX89eUnlOWnaXB50HQVwamtVrnpGptQ1yO2RgGtZUBkzxjxijDlnjGkwxnxhns+nGmOenvv8PmNM9WWf+4O5x88ZY94z91ilMeYVY8wZY8wpY8znluobAlwanpzRzy706r2bS1iiRNLbXB6Uz2N0uJ09x4Br8V3vAGOMV9JXJb1LUoekA8aY3dba05cd9klJA9ba1caYxyX9maSPGmM2SHpc0kZJZZJeNMaskRSW9LvW2sPGmCxJh4wxL1zxmkBceXJfm460DWgmYuX1ePTkvjbXkQCn0lK8WlearePtg5qJROX3shgDzGchPxnbJTVYa5ustdOSnpL02BXHPCbpH+Y+/o6kh8zsaYHHJD1lrZ2y1jZLapC03Vp70Vp7WJKstSOSzkgqv/lvB3DrZNewgml+VeSmuY4CxITbKnM0Nh3Ra+d7XUcBYtZCyli5pPbL/t2hdxant46x1oYlDUnKX8hz55Y0t0raN98XN8Z8yhhz0BhzsLeXH2bErqmZiC50j2hjWbY8LFECkqT64ixlpHj13cOdrqMAMWshZWy+3ypXXhpztWOu+VxjTKakZyX9n9baebdqttZ+3Vq7zVq7rbCwcAFxATfOdo8oHLXaVMbgPvAmr8doS2WOXjjdraFx9hwD5rOQMtYhqfKyf1dI6rraMcYYn6SgpP5rPdcY49dsEfu2tfa7iwkPxJKTnUPKCvhUlZ/uOgoQU26rytV0JKrdxzg7BsxnIWXsgKR6Y0yNMSZFswP5u684ZrekT8x9/CFJL9vZjWV2S3p87mrLGkn1kvbPzZP9naQz1tr/thTfCODS6FRY57tHtKGUJUrgSmU5adpQmq2nD7Zf/2AgCV23jM3NgH1W0o81O2j/jLX2lDHmi8aY988d9neS8o0xDZI+L+kLc889JekZSacl/UjSZ6y1EUm7JP2KpAeNMUfn/vfeJf7egBXz/ImLmolY3VqZ4zoKEJMe316pk53DOtk55DoKEHOuu7WFJFlrn5f0/BWP/dFlH09K+vBVnvslSV+64rGfa/55MiAuffdwh/IzUlSVxxIlMJ/HtpTrT587o2cOtmsTGyIDb8OmL8BNau8f196mfm2tymGjV+Aqgul+PbqpRP9ypFOTMxHXcYCYQhkDbtL3jswOJW+tzHWcBIhtH91WqeHJsH586pLrKEBMoYwBN8Faq+8e7tDO2jzlZqS4jgPEtJ21+arKS9dT+xnkBy5HGQNuwqHWAbWExvVLt1W4jgLEPI/H6CPbKrSnKaTW0JjrOEDMoIwBN+HZwx1K83v16OZS11GAuPCh2yvlMdI/H+xwHQWIGZQxYJEmZyL64bGLenRTiTJTF3RhMpD0SoIB3bemUP98qF3hSNR1HCAmUMaARfrJ6W6NTIX1S7ezRAnciI/eUaXu4Sm9co77DQMSZQxYtGcPdagsGNCdtfmuowBx5eH1RSrOTtW39ra6jgLEBMoYsAidgxP62YVe/eJt5fJ42FsMuBE+r0cf216ln57vZZAfEGUMWJRvz/1F//gdVY6TAPHpY9ur5PUYfXtfm+sogHOUMeAGTc5E9NSBdj20vliV3P4IWJTi7IDes7FYzxxsZ0d+JD3KGHCDnjt+Uf1j0/rVu6pdRwHi2sd3rtLg+IyeO37RdRTAKcoYcAOstfqHPS2qK8zQXXUM7gM3487afNUVZugfGeRHkqOMATfgaPugjncM6RN3VXNTcOAmGWP08Z2rdLR9UCc6hlzHAZyhjAE34H/taVVmqk8f5PZHwJL44G0VSvN72eYCSY0yBixQ78iUnjt+UR+6vYId94ElEkzz6wNby/T9Y50aGp9xHQdwgjIGLNBT+9s0HYnqV+5c5ToKkFB+ZWe1JmeienI/21wgOfHnPXANT87tgRSORvWNnzWpvihT+5r6ta+p33EyIHFsKMvWPfUF+ubrzfr1u6uV6vO6jgSsKM6MAQtwtG1Qw5Nh3VVX4DoKkJD+93tq1TMypd1Hu1xHAVYcZQy4jqi1+un5XpXlBLSmONN1HCAh3VNfoHUlWfrGz5pkrXUdB1hRlDHgOk50Dik0Nq371xSxnQWwTIwx+tS9tTrfPapXz/e6jgOsKMoYcA1Ra/XTc70qzErVhrJs13GAhPa+W8pUkh3QN15rch0FWFGUMeAazl0a0aXhSd2/plAezooByyrF59Gv7arWG40hnexkE1gkD66mBK7CWqtXzvUoN92vWypyXMcB4tqbVyZfj9/rUWaqT9/4WZO+8vjWZU4FxAbOjAFX8XpDSB0DE7p3TaG8Hs6KASsh4PfqY9sr9cPjF9XeP+46DrAiKGPAVfzNKxeUHfDp9qpc11GApPLJu2vl9Rj99csXXEcBVgRlDJjHzy/0aW9Tv+6pL5TPy48JsJJKggH98o4qPXu4U819Y67jAMuO3zLAFaJRqz/70VmV56RpR02e6zhAUvr0/XXye42+8uJ511GAZUcZA67w3ImLOtE5pN999xrOigGOFGUF9Ik7q/X9Y1260D3iOg6wrPhNA1xmOhzVX/z4nNaVZOmxW8tdxwGS2m/eV6d0v1d/+SKzY0hsbG0BXOaf9reprX9cf/9rd3AFJeDI5dtgbK/J03MnLqrmx+dUlpP2jmOf2FG1ktGAZcGZMWDO6FRYf/XSBd1Zm6/71hS6jgNA0t2rCxXwe/TSmW7XUYBlQxkD5nzjtSaFxqb1hUfXcQ9KIEakpXh19+oCnbk0otYQV1YiMVHGAEmXhib1jZ816b2bS7Slkt32gViya3WBsgM+/eBYl6LWuo4DLDnKGCDpvzx/RuGo1RceWe86CoArpPq8enRzqbqGJnWgpd91HGDJMcCPpHPlPfKaeke1+1iXHlxXpJ839EkNjoIBuKpbyoPa39yvF053a3N5UOkp/PpC4uDMGJJaJGr1g+Ndyk33M7QPxDBjjN53S6kmpiN64TTD/EgslDEktb1NIXUPT+kXNpfJzwavQEwrDaZpR22+9jf3q2twwnUcYMnw2wdJa2RyRi+e6daa4kytL81yHQfAArxrfbHSUrz6wfEuWYb5kSAoY0haPzp5SeGI1fs2l7GVBRAn0lK8emRjiVpD49rPMD8SBGUMSamhZ1RH2gd1d32BCrJSXccBcANuW5Wr1UWZev7ERbX0sfcY4h9lDElnOhzV9450KD8jRQ+uK3IdB8AN8hijX7qtQl6P0e/+8zFFoixXIr5RxpB0Xjh9SQPjM/rgbRUM7QNxKpjm1/u3lOlQ64C+/lqT6zjATeE3EZLKodYBvdEY0o6aPNUUZLiOA+AmbKnI0Xs3l+jLL5zXmYvDruMAi0YZQ9KYCkf0+88eV3aaX49sLHEdB8BNMsboTz+wWdlpfv3O00c1FY64jgQsCmUMSeOvX2pQQ8+ofnFruVL9XtdxACyBvIwU/fmHNuvspRH90b+cYrsLxCXKGJLCkbYB/e1PG/XB28q1ppg9xYBE8uC6Yn32gdV6+mC7ntzfdv0nADGGMoaENzI5o889dVQl2QH98b/b6DoOgGXwO+9ao/vXFuo/7T6lQ60DruMAN4QyhoT3x98/pY6BcX3l8VsVTPO7jgNgGXg9Rl/56FaV5aTp0986pJ7hSdeRgAWjjCGhff9op757pFO//VC9tlXnuY4DYBkF0/36+q9s08hkWJ/+9mEG+hE3KGNIWO394/qP3zupbaty9dkHVruOA2AFrC3J0n/98BYdah3Q559mQ1jEB5/rAMBymA5H9bmnjkiSvvzRW+Vjc1cgafzCLaW6OLRef/rcGeVlpOiLj23k/rOIaZQxJKQ/+eFpHW4b1N88sVWVeemu4wBYYb9xT616R6b0P15rUkFmqj73cL3rSMBVUcaQcJ7a36Z/3Nuq37y3Vu+7pcx1HACOfOHRdeobndaXXzyv/MwUfXznKteRgHlRxpBQDrUO6I++f0r31Bfo9x5Z5zoOAIeMMfp/fmmzBsan9YffP6mA36sP3V7hOhbwDgzSIGF0D0/q0986pJJgQH/9sa3yepgRAZKd3+vRV5+4TbvqCvR/f+eYnmJTWMQgzowhIUxMR/R/fOuQRqfC+l+f3K6c9BTXkQDEiLQUr961oVg9I5P6wndP6I3GkHbW5l/1+Cd2VK1gOoAzY0gAM5GoPvPkYR1tH9R/+8gWrSvJdh0JQIzxez36+I5VWleSpd3HuvR6Q5/rSMBbODOGuBaNWv3ed47r5bM9+tIvbtIjm0pdRwKwgp7ct/BlR5/Xoyd2VOnpA+167sRFjU2H9a71xWx7Aec4M4a4Za3Vnzx3Wt870qn/691r9Ms7uFIKwLX5PB49fkeV7qjO1avnevXMwXaFI1HXsZDkODOGuPU3Lzfom6+36Nd31egzD6y+ob+QASQvr8foA7eWKzc9RT853a2hibA+vrNK6Sn8SoQbnBlD3LHW6i9+fFb/7wvn9cGt5fqPv7CeZQYAN8QYo/vXFumj2yrVPjCu//7TJm4uDmcoY4grkajVf/iXk/rqK4362PZK/cWHt8jDFhYAFmlLZY5+fVeNJqbD+tqrjTraPug6EpIQZQxxYzoc1W8/dURP7mvTp++v03/5xc3sJQbgptUUZOizD9arNCegZw626z9874QmZyKuYyGJUMYQFwbGpvXrf39Azx2/qP/w3vX6/UfWsTQJYMkE0/z6jbtrdW99gb69r00f+u9v6NylEdexkCSMtdZ1hgXbtm2bPXjwoOsYWEFP7mtTe/+4/ml/m0amwvrAreW6fVWu61gAElhhVqp+/9njGpmc0W/dv1q/9UCdUn1e17EQh4wxh6y12653HGfGELOstdrT2Kevv9YkY6TfvLeWIgZg2b1rQ7Fe/Px9+oXNpfrKSxf0vr/6uQ63DbiOhQRGGUNM6h2Z0mefPKIfHL+o+uJMfeaB1arITXcdC0CSyMtI0V8+vlX/81e3aXQqrA9+7Q197qkjaguNu46GBMSmKogpkajVk/ta9ec/Pqepmajes7FE99QXyMN8GAAHHlxXrJ/8Tp6+9mqjvvl6s547flFP7KjSv3+wXoVZqa7jIUFQxhAzjncM6g//5aSOdQxp1+p8ffGxTdrX1O86FoAklxXw6/cfWadfvataf/XSBX17X5ueOdiuD95WoV+7q1r1xVmuIyLOUcbg3KHWAX31lQa9fLZHhVmp+srjt+r9W8pkjKGMAYgZxdkBfekXN+s37qnV377aoO8c6tCT+9p0T32Bfm1Xte6tL5TPy/QPbhxlDE5EolavXejV//hpo/Y29Ss33a/ffdcafWJXtbIDftfxAOCqagoy9Ocf2qLVRVk60NKvfU0h/frfH1RWqk9bKnO0tSpHpcG0tz3niR1VjtIiHlDGsKIudI/o2cOd+pcjnbo0PKmS7ID+8H0b9LHtldwXDkBcyUz16YG1RbqnvkBnL47oaPug9jSG9POGPpVkB7SxPFubyoIqykq9oXvnUtySD7/9sKystTrZOawXz3TrxTPdOtU1LK/H6P41hfrD923QwxuK2L8HQFzzeTzaVB7UpvKgxqfCOt45pGPtg3r5TI9eOtOjgsxUbSrL1sbyoMqCATasxjtQxrBk3vzLb3QqrMbeUTX2jOp894iGJ8Mykirz0vXezaXaUhFUVsCvoYkZPXuo021oAFhC6ak+7azN187afA1Pzuh017BOdg3ptQu9evV8r3LT/dpYFtTGsmxV5qVzpTgkUcawBEanwtrfHNJzx7vU2DumS8OTkqSA36PVhZlaV5qtNcVZykzlPzcAySM74H+rmI1NhXXm4rBOdQ2/tZSZHfBpQ1m2NpYFVZ2fwb12kxi/HXHDpsNRHWkb0OuNIb3R0Kej7YMKR618HqOq/HS9e0Ox6gozVZaTxpsLgLhzI/NdC5WR6tO26jxtq87T5ExEZy8N62TnsA61DmhvU7/SU7zaUJqtTeVBTYejSvFxVWYy4d6UuK5I1Op017D2NPXp9YaQ9jf3a2ImIo+RNpcHtWt1gXatLlBDz6j8XNYNAAs2HY7qfPeITnYN6dylEU2Fo8oK+PTw+mI9sqlE960pVMDPXG28Wui9KTkzhneIRq3OdY9oT2NI/3ywXc2hMU3ORCVJhZmp2lKZo9WFGaopyFRayuybRGtonCIGADcoxfdvw/8zkagae0Y1PhPRC6e79b0jnUpP8eqBtUV6z1wxC6ax9c//3969x8hVnncc//5mdva+vttgsAGbiwC5wXUaIEVFaWgTSKs6kWhxICmKIqVpiNqmqkpctYVWrZRWapveVJoGgkmTAEqKimjTkNYJrVrZQILBgE1isEMMi9f4tl57rzNP/zjv2sN6Zr2CZcdz5vcRqznnnXeOz8MzPvv4PZc3j1yMGWMTFXa+Nsj3f3SIrbsPsuWlAxw6Pg5k87OtOWc+q5f2snpJD/N8IDAze1uUigUuXT6Pm686j/FyhS0vHeCbz77Go8+9xr9t76dYED91/kLee+kyfvbSZVy8rNd3ZuaET1O2mJHxMrsGhtjRP8iO/qM8s/cw2185wuhENvJ17oIurl69mHdfmP089sL+Bu+xmVlrmfqcsXIleOrlQ2zeOcDmnQPsfO0oAEv7Onj36sX89IXZTQLnL+52cXaGmelpShdjOVOpBIeOj7FvcJSBoyP8+NAwe14/xo8OHGP36+dT/H8AAApSSURBVMfYc+A45UqW81JRLJ/fxXmLulm5qJuVC7uY31XyX2YzszPY4eNj/HBgiEoE//fiAfYfHQWyMxlXrJjPFSsXcMWKBVxydp+fa9Zgs3rNmKTrgb8GisAXI+JzU97vAO4D3gkcAG6KiD3pvY3Ax4Ey8BsR8a2ZbNOywmpobILB4XEGhycYHBnPlkeytiPD4xw4NpoKr1H2D44wcHSUicobC+zOUoELFvdw0bJebliznMuWz2PXwBCLe9v9jBszsyazoLudd12wiJuvOo+I4MX9Q2zdfZBtLx/m6b2H+e4P9jM5ztLb0cZFy3q5aFkvKxd2s2JhFysWdnHOgi6W9nX45oAzxGlHxiQVgR8APw/sBZ4APhwRz1f1+RTwjoj4pKQNwIci4iZJlwNfA64EzgH+E7gkfWzabdbSyJGxiKASVa8EETBRCcYnKoyXK4yVK4yXg/FyJf0Ew2NlhscnODZa5vjYBMfHyhwfK3NsdHL5jW1Do5NF1wRHR8apnGbgsqtUZF5XG32dJfo62pjXVaKv8+T6wp52+jrbXHSZmbWIkfEy/UdG2Dc4wsDREfYNjjI0OnFiBK1aT3uRJX0dLOxup7ejjZ6OIj0dbXS3FylKFAqiKFEsnFwuFERB8MzeI0T6fZj+IyLSa7b9iOCSs/uA7Jq4UlG0FQq0t51cLrUVKBVEqVigrSjai4Wsb+pTmlyf+l76TKmtQFtBSFCQEOlVNHxUcDZHxq4EdkXES2nD9wPrgerCaT1wZ1r+OvB3yv4PrAfuj4hRYLekXWl7zGCbc+6Df/+/PN8/CAGVCCpTvlSzqVgQ3e1FetqzL313R5HuUhtnz+vkkrP6mNeZFVbzOkvs6B+ks1Skq72YvZaKdJYKdLQV/RwvMzN7g85SkVVLeli1pOdE281XncfIeJlXDw+z99Aw/UeGeX1ojANDYxw4NsrBY2McG51g4OjIicGDSmRnaMoRlCvZ78Ts9eSfJWCy3lEqhKauP/PKEQgYr1SYKMcpZ2/eblOLNATd7UW2/eH75nQ/pjOTYuxc4MdV63uBq+r1iYgJSUeAxal9y5TPnpuWT7dNACR9AvhEWh2S9MIM9nk2LQFen+M/80zguFuL424tjru1LLmlReNmmrh1x5zsw/kz6TSTYqzW0MvUsrZen3rttR5IVbNUjogvAF+YbgffTpKenMkQY9447tbiuFuL424tjvvMN5OndO4FVlatrwBerddHUhswHzg4zWdnsk0zMzOz3JtJMfYEcLGkVZLagQ3Aw1P6PAzcmpZvBDZHdmfAw8AGSR2SVgEXA4/PcJtmZmZmuXfa05TpGrBPA98iewzFPRHxnKQ/Bp6MiIeBu4Evpwv0D5IVV6R+D5JdmD8B3BYRZYBa25z98GZFw06RNpjjbi2Ou7U47tbiuM9wTfXQVzMzM7O88czOZmZmZg3kYszMzMysgVq6GJN0j6QBSc9Wtd0p6RVJ29LPB6re2yhpl6QXJL2/MXv91klaKek7knZIek7Sb6b2RZK+LemH6XVhapekv0mxPyNpXWMjeHOmiTvXOZfUKelxSU+nuP8ota+StDXl+4F0Mw3phpsHUtxbJV3QyP1/s6aJ+15Ju6vyvTa15+J7PklSUdJTkh5J67nO96Qacec+35L2SNqe4nsyteX6eA51427O43lEtOwPcC2wDni2qu1O4Hdq9L0ceBroAFYBLwLFRsfwJuNeDqxLy31kU1NdDvw58NnU/lngz9LyB4Bvkj037mpga6NjmOW4c53zlLfetFwCtqY8PghsSO13Ab+elj8F3JWWNwAPNDqGWY77XuDGGv1z8T2viue3ga8Cj6T1XOd7mrhzn29gD7BkSluuj+fTxN2Ux/OWHhmLiP8mu/tzJk5M7RQRu4HqqZ2aSkT0R8T30/JRYAfZzAjrgU2p2ybgg2l5PXBfZLYACyQtn+PdfsumibueXOQ85W0orZbSTwDvJZu+DE7N9+T34OvAdVLzTW46Tdz15OJ7DiBpBfALwBfTush5vuHUuE8jN/muI9fH8zfhjD6et3QxNo1Pp+HbeyaHdqk9LdR0v8ibQjol8ZNkowZnRUQ/ZIULsCx1y13sU+KGnOc8nbrZBgwA3yb7V+HhiJhIXapje8P0ZsDk9GZNZ2rcETGZ7z9N+f4rSR2pLTf5Bj4P/C5QSeuLaYF8c2rck/Ke7wAelfQ9ZVMIQmscz2vFDU14PHcxdqp/AC4E1gL9wF+k9plMC9VUJPUC3wB+KyIGp+tao61pY68Rd+5zHhHliFhLNtvFlcBltbql19zGLWkNsBG4FHgXsAi4PXXPRdySfhEYiIjvVTfX6JqrfNeJG3Ke7+SaiFgH3ADcJunaafrmPe6mPJ67GJsiIvalA3gF+CdODmPmagonSSWyguQrEfEvqXnf5HB1eh1I7bmJvVbcrZJzgIg4DHyX7FqRBcqmL4M3xlZverOmVRX39el0dUTEKPAl8pfva4BfkrQHuJ/s9OTnyX++T4lb0j+3QL6JiFfT6wDwEFmMuT+e14q7WY/nLsammHLu/EPA5J2W9aZ2ajrpepC7gR0R8ZdVb1VPa3Ur8K9V7b+a7sK5GjgyOfzdTOrFnfecS1oqaUFa7gJ+jux6ue+QTV8Gp+a71vRmTaVO3DurfkGJ7Dqa6nw3/fc8IjZGxIqIuIDsgvzNEXELOc93nbg/kvd8S+qR1De5DLyPLMa8H89rxt2sx/PTToeUZ5K+BrwHWCJpL3AH8B5ltz4H2Z0avwbTT+3UhK4BPgpsT9fTAPwe8DngQUkfB14Gfjm99+9kd+DsAo4DH5vb3Z019eL+cM5zvhzYJKlI9g+wByPiEUnPA/dL+hPgKbJCFepMb9aE6sW9WdJSstMW24BPpv55+Z7Xczv5znc9X8l5vs8CHkr3XLQBX42I/5D0BPk+nteL+8vNeDz3dEhmZmZmDeTTlGZmZmYN5GLMzMzMrIFcjJmZmZk1kIsxMzMzswZyMWZmZmbWQC39aAszyy9JZWA72XFuB3BrRBxv7F6ZmZ3KI2NmllfDEbE2ItYAY5x8vpSZ2RnFxZiZtYL/AS4CkPQRSY9L2ibpH9Nk4kVJ90p6VtJ2SZ9JfddK2pImHX6oatJhM7NZ42LMzHItzbd4A9nMC5cBN5FNMLwWKAO3kE0qfG5ErImInyCbwxDgPuD2iHgH2SnPO+Y8ADPLPRdjZpZXXWnaqyfJpoO5G7gOeCfwRHrvOmA18BKwWtLfSroeGJQ0H1gQEY+l7W0Crp3rIMws/3wBv5nl1XAa/TohTRa9KSI2Tu0s6Qrg/cBtwK8An5mTvTSzlueRMTNrJf8F3ChpGYCkRZLOl7QEKETEN4A/ANZFxBHgkKSfSZ/9KPBYza2amb0FHhkzs5YREc9L+n3gUUkFYJxsJGwY+FJqA5gcObsVuEtSN9mpzI/N9T6bWf4pIhq9D2ZmZmYty6cpzczMzBrIxZiZmZlZA7kYMzMzM2sgF2NmZmZmDeRizMzMzKyBXIyZmZmZNZCLMTMzM7MG+n9Z3VUCAJhIVAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHjCAYAAABvkBg4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl83Fd9//v3mRlppNE62rxoty07tpPYjrdsDtmAUH4lLWUJaSltA7QUWnrh19+Fex+X3sujuV1/BX6XpaXQli2ENCQPQgmEbJCQRZa8JfEuW7tsbaN1tIxm5tw/JAfHkW3Z1ujM8no+HjyQRt+R3gpk/PY5nzlfY60VAAAA3PC4DgAAAJDJKGMAAAAOUcYAAAAcoowBAAA4RBkDAABwiDIGAADgEGUMAADAIcoYAACAQ5QxAAAAh3yuA1yKsrIyW1dX5zoGAADARe3Zs2fAWlt+setSqozV1dWpubnZdQwAAICLMsa0L+Q6tikBAAAcoowBAAA4RBkDAABwiDIGAADgEGUMAADAIcoYAACAQ5QxAAAAhyhjAAAADlHGAAAAHKKMAQAAOEQZAwAAcIgyBgAA4BBlDAAAwCHKGAAAgEOUMQAAAIcoYwAAAA5RxgAAAByijAEAADhEGQMAAHDI5zoAALj2QGPHgq67d2dNgpMAyESsjAEAADhEGQMAAHCIMgYAAOAQZQwAAMAhBvgBpBSG7QGkG1bGAAAAHKKMAQAAOEQZAwAAcIgyBgAA4BBlDAAAwCHKGAAAgEOUMQAAAIcoYwAAAA5x6CuAtLTQw2EBwDVWxgAAABxiZQxA2puMxNQ6MK64lbK8Rj6vR36fRyuLc+UxxnU8ABmOMgYgLU3NxHT41Khe7R7R8b5xxeL2TdeU5mXrlrXl2lJdLJ+XjQIAblDGAKSVuLV68cSgnjx0WjMxq6LcLN2wqlQbVhTKn+VRNGY1E4trZHJGL5wY0KP7uvXU4V7dvKZMN6wulc9DKQOwtChjANLGwPi0frinS+2hCa1bVqDb1pWrqiRw3q3IzdXFaukf1y+P9eunr51WS9+4fndnrbJ9FDIAS4cyBiDlWWv10slBPXHwtLweo/dsrdKW6mKZi8yDGWPUUFGghooCNbeF9Oi+bv37C636/RvqlJvtXaL0ADIdZQxASrPW6mcHT+v54wNat6xAv7WlUkW5WZf8fbbVlcif5dVDTZ36xq9O6g9vqle+n5dIAInHKw2AlPb0kT49f3xAO+tL9K5NKy+6GnYh11QWye/z6HuN7fr6cyf1kV31Ksi59GJ3KWec3buz5pK/P4D0wmAEgJT1y6N9euZIn7bWBvWbV1jEzli7rEB/cGO9RiYjeqi5U3H75ndhAsBioowBSEkvtAzoiUO92lRVpN/eUrmo54XVl+XpN69dqRP9YT13rH/Rvi8AzIcyBiDlHOsd009ePaWNKwv1nq3VCTm4dWttUNdUFumpw73qGAwv+vcHgDMoYwBSymQkpkf2dqmiwK/3bauW15OYE/SNMfrtuTcDPNjcqclILCE/BwAY4Afg3KUMvP/XKz0an47qg9fXKSvBp+bnZHl1z/Ya/ctzJ/TIvi790c11izKXBgBnY2UMQMo41DOifZ3DunVdhSqDuUvyM6tLAnrbhuU62DOqR/d1L8nPBJBZKGMAUsL4dFSP7u/RyqIc3bqufEl/9s0NZaoO5ur/ffyIRqdmlvRnA0h/lDEASc9aqx/t79ZUJKb3bK1e8vtHeozRb25aqcHwtL745PEl/dkA0h9lDEDSO9Ef1sGeUd2xvkLLi3KcZKgKBvSBHTX61kttOnp6zEkGAOmJMgYgqVlr9dThXhXlZunmNWVOs/zl29apIMenz/3oNVkOgwWwSChjAJLa8b5xdYQmdOu6cvkS/O7JiwnmZesv375Oja0hPXagx2kWAOmDMgYgaZ1ZFSsOZGlrbdB1HEnSPdtrdE1lke7/yWGNT0ddxwGQBhZUxowxdxljjhpjWowxn5nn635jzA/mvt5ojKk762ufnXv8qDHm7Wc9/r8ZYw4aY14zxnzfGONmEARA0jraO6auoUndtq5iyYf2z8frMfr83RvVNzatrz930nUcAGngoq9uxhivpK9IeoekDZI+YIzZcM5l90kastaukfQFSX8399wNku6RtFHSXZK+aozxGmMqJf25pG3W2qsleeeuAwBJs6tiTx/uUzCQpetqkmNV7IwtNUH9xjXL9c3nT2pwfNp1HAApbiF/1dwhqcVae9JaG5H0oKS7z7nmbknfmvv4YUl3mNljqu+W9KC1dtpa2yqpZe77SbOn/+caY3ySApIYwADwuiOnx9Q9PKnbr6pI2C2PrsSn3rpOkzMxfeXZE66jAEhxCyljlZI6z/q8a+6xea+x1kYljUgqPd9zrbXdkv5RUoekU5JGrLU/n++HG2M+aoxpNsY09/f3LyAugFR3ZlasJC9bm6uTa1XsjDUV+XrP1ip99+V2dQ9Puo4DIIUtpIzN91fSc9/Tfb5r5n3cGBPU7KpZvaSVkvKMMb833w+31n7dWrvNWrutvHxpT90G4MaJ/rBOjUzptnXJuSp2xifvXCtJ+tJTxxwnAZDKFlLGuiRVn/V5ld68pfj6NXPbjkWSQhd47p2SWq21/dbaGUmPSLrxcn4BAOlnd+ugAtleXVtV5DrKBVUW5+r3rq/Vw3u61NI37joOgBS1kDLWJKnBGFNvjMnW7KD9Y+dc85ikD819/B5Jz9jZExEfk3TP3Lst6yU1SNqt2e3J640xgbnZsjskHb7yXwdAqhubmtGhU6O6riaoLMfnii3Ex29brdwsr/7nz4+6jgIgRV30lW5uBuwTkp7QbGF6yFp70BjzeWPMu+Yu+6akUmNMi6RPSfrM3HMPSnpI0iFJP5P0cWttzFrbqNlB/72SXp3L8fVF/c0ApKQ97UOKW2l7XYnrKAtSmu/XfbtW6aevndarXSOu4wBIQb6FXGStfVzS4+c89rmzPp6S9N7zPPd+SffP8/hfSfqrSwkLIL3FrVVTW0j1ZXkqL/C7jrNgH9lVr/94oVVfebZF//zBra7jAEgxyb8HACBjtPSNa2hiRjvqU2NV7IyCnCx96MY6/ezgaR3v5SbiAC4NZQxA0tjdGlIg26uNKwpdR7lkf3hTvXKzvPraLzl3DMCloYwBSAqjkzM6cnpUW2uDzm8IfjlK8rJ1784a/Wh/j4bCEddxAKSQ1HvFA5CWmucG93ekyOD+fD6ya5U8RnruOAdUA1g4yhgA5+LWqrktpNXleSrNT53B/XMtL8rRe7ZWaU/7kMamZlzHAZAiKGMAnGsdCGt4ciZljrO4kD++ZbVicatftQy4jgIgRVDGADj3ateIsr0eXbU89Qb3z1VXlqdrq4rU2BrSRCTqOg6AFEAZA+BUNBbXaz0jumpFgbJ96fGS9Ja1FYpE42puG3IdBUAKSI9XPgAp68UTg5qIxHRtZXLfh/JSLC/KUX1ZnhpbBxW31nUcAEmOMgbAqf96pUd+n0cNywpcR1lU168q1dDEjI6e5hBYABdGGQPgTCQa1xMHe7V+RWFK3BT8UmxYUajCHJ9ePjnoOgqAJJder34AUsoLLQMamZxJqy3KM7weox31JTreN66BsWnXcQAkMcoYAGd+/EqPCnN8WrMs33WUhNheVyKvMXq5ldUxAOdHGQPgxNRMTE8e7NXbNy6Xz5OeL0UFOVm6urJQezuGNB2NuY4DIEml5ysggKT33LF+jU1H9c5rV7iOklDXryrV1Exc+zuHXUcBkKQoYwCc+MmrpxQMZOmmNWWuoyRUTUlAK4ty1HgyJMsxFwDmQRkDsOSmZmJ66lCv7rp6edq9i/Jcxhhdv6pUp0en1D444ToOgCSU3q+CAJLSCy0DCkdiuuvq9N6iPOPaqmJlez3ax1YlgHlQxgAsuacO9ykv26vrV6X+jcEXItvn0YaVhXq1e1jRWNx1HABJhjIGYElZa/XMkV7dsrZcfp/XdZwls7m6WFMzcR3t5UR+AG9EGQOwpF7rHlXv6LTuWL/MdZQltbo8X/l+H++qBPAmlDEAS+rpI70yRrptXbnrKEvK6zHaVFWkI6fHNBnhzDEAv+ZzHQBAZnn6cJ+2VBerNN/vOsole6Cx44qev7k6qBdODOq1nhFtr8uMeTkAF8fKGIAl0zs6pVe7RzJui/KMlcU5Ksv3s1UJ4A0oYwCWzNOH+yRJd2ZoGTPGaHN1sVoHwhqeiLiOAyBJUMYALJmnD/eqKpirtWl6Y/CF2FxdLEk6wOoYgDmUMQBLYjIS069aBnTn+mUyxriO40xJXrZqSwLa1znM7ZEASKKMAVgiL54Y0HQ0rjvWV7iO4tzmmmL1jU3r9OiU6ygAkgBlDMCSOHPq/s76UtdRnNu4skhG0sGeUddRACQByhiAhDv71P1sHy87+X6fakoDOnKKMgaAMgZgCRzsmT11//ar2KI8Y/3yQvWMTKlneNJ1FACOUcYAJNzzxwckSW9Zm1mn7l/I+hWFkqSnDvc6TgLANcoYgIR77li/rlpeoIrCHNdRkkZ5gV9l+X49eYgyBmQ6yhiAhJqIRNXcHtItrIq9yfoVBXr55KDGpmZcRwHgEGUMQEK9fHJQMzGrWxooY+dav7xQMzGrXx7rdx0FgEOUMQAJ9dyxAeVkebStLug6StKpKQ2oJC9bT7FVCWQ0yhiAhHrueL921pcqJ8vrOkrS8Rij26+q0DNH+jQTi7uOA8ARyhiAhOkamtDJ/rB2NZS5jpK07ly/TKNTUTW3DbmOAsARyhiAhOFIi4vb1VCmbJ+Hd1UCGYwyBiBhnj/er+WFOVpTke86StLK8/t00+pSPXn4NDcOBzIUZQxAQkRjcf3q+IBuWVsmY4zrOEntrRuWqzM0qWO9466jAHCAMgYgIV7pHtHoVFS7ONLiom67avaf0XMccQFkJJ/rAABSzwONHRe95unDvTJGunkNw/sXs6IoV6vL8/SrlgF95JZVruMAWGKsjAFIiON947q2skjBvGzXUVLCroZyNbYOajoacx0FwBJjZQzAopuaialraEJ3b17jOkrSO7PKGItbTc3E9Q8/O6pV5W9+w8O9O2uWOhqAJcLKGIBF1zoQVtxKN7FFuWD1ZXnyGKmljyF+INNQxgAsuhP948ryGm2pKXYdJWXkZHlVHQyopZ8yBmQayhiARXeif1y1pXny+7gF0qVYXZGv7qFJTUaYGwMyCWUMwKIam5pR7+i0VpfluY6Schoq8mU1W2YBZA4G+AEsqtaBsCRpVXn+go7AwK9VBQPy+zxq6RvX1ZVFruMAWCKsjAFYVCf6w/L7PFpZnOs6Ssrxeozqy/KYGwMyDGUMwKI62T+u+rI8eT3cAulyrKnIVygcUSgccR0FwBKhjAFYNMMTEQ2GI1o9zzlZWJg1c//sTnDEBZAxKGMAFs3J/tl5McrY5Ssv8Kswx6fjbFUCGYMyBmDRnOgfV162VxWFftdRUpYxRmsqCnSib1xxa13HAbAEKGMAFoW1VicHwlpVni+PYV7sSqypyNPkTEynhqdcRwGwBChjABbF4HhEI5MzWlXO+WJX6sy9KU8OsFUJZALKGIBFcWKuODAvduUKc7JUmpf9+pltANIbZQzAojjRH1ZR7myJwJWrL8tT22CYuTEgA1DGAFyxuLU62T+u1eV5MsyLLYr6sjxNzcTVO8rcGJDuKGMArljf6LQmIjGtKmOLcrHUz93bk61KIP1RxgBcsTOD5vXcHHzRFAeyFQxkUcaADEAZA3DFWgfCKg5kKci82KKqK81T60BYlrkxIK1RxgBcEWut2gbCqi9lVWyx1ZflaSISU9/YtOsoABKIMgbgivSNTSscibFFmQDMjQGZgTIG4IqcKQqUscVXkpetwhyf2gYpY0A6o4wBuCKtA2EV5vhUwrzYojPGqK6MuTEg3VHGAFw2a61a5+5HyfliiVFflqexqajaBidcRwGQIJQxAJdtYDyi8ekow/sJdOafbePJQcdJACQKZQzAZWNeLPHKC/zK8/u0uzXkOgqABKGMAbhsrQPjKvD7VJrPvFiiGGNUXxpQI2UMSFuUMQCX5cy8WF0Z96NMtLqyPHUPT6ozxNwYkI4oYwAuSygc0ehUlC3KJXDmn3FTG6tjQDqijAG4LMyLLZ1lhTkq8Pu0p33IdRQACUAZA3BZWgfCysv2qqLA7zpK2vMYo801xZQxIE1RxgBcltaBsOqZF1sy22pLdLR3TCOTM66jAFhklDEAl2xoIqLhyRm2KJfQtrqgrJX2dbA6BqQbyhiAS9Y2Ny9WRxlbMpuri+X1GLYqgTREGQNwydoGJ5ST5dGywhzXUTJGnt+n9SsK1NxGGQPSDWUMwCVrHwyrpiQgD/NiS2prTVD7O4cVjcVdRwGwiChjAC7JUDiivrFp1XE/yiW3ta5EkzMxHT415joKgEVEGQNwSZrnZpZqKWNLblttUJLU3M7hr0A6oYwBuCRNbSF5PUZVwVzXUTLOyuJcrSzKeb0QA0gPlDEAl6SpLaSq4lxleXn5cGFrXYn2tA3JWus6CoBFwqspgAWbjMT0atcIR1o4tK02qNOjU+oennQdBcAiWVAZM8bcZYw5aoxpMcZ8Zp6v+40xP5j7eqMxpu6sr3127vGjxpi3n/V4sTHmYWPMEWPMYWPMDYvxCwFInP2dw4rGrWpLA66jZKytc3NjnDcGpI+LljFjjFfSVyS9Q9IGSR8wxmw457L7JA1Za9dI+oKkv5t77gZJ90jaKOkuSV+d+36S9CVJP7PWXiVpk6TDV/7rAEikpraQjJFqS1gZc+Wq5QUKZHspY0AaWcjK2A5JLdbak9baiKQHJd19zjV3S/rW3McPS7rDzN6w7m5JD1prp621rZJaJO0wxhRKukXSNyXJWhux1g5f+a8DIJGa2kJat6xAudnei1+MhPB5PdpSU8zhr0AaWUgZq5TUedbnXXOPzXuNtTYqaURS6QWeu0pSv6R/N8bsM8Z8wxgz71+1jTEfNcY0G2Oa+/v7FxAXQCJEY3HtbR/S9roS11Ey3tbaEh05Parx6ajrKAAWwULK2HxHbJ/7Np7zXXO+x32SrpP0NWvtFklhSW+aRZMka+3XrbXbrLXbysvLFxAXQCIcOT2mcCSm7fWUMde21QYV56bhQNpYSBnrklR91udVknrOd40xxiepSFLoAs/tktRlrW2ce/xhzZYzAElqd+vsQaPb64KOk2BLTbE8RmxVAmliIWWsSVKDMabeGJOt2YH8x8655jFJH5r7+D2SnrGzh+A8JumeuXdb1ktqkLTbWntaUqcxZt3cc+6QdOgKfxcACdTcHlJVMFcrijjs1bWCnCytW16ovayMAWnBd7ELrLVRY8wnJD0hySvp36y1B40xn5fUbK19TLOD+N8xxrRodkXsnrnnHjTGPKTZohWV9HFrbWzuW/+ZpO/NFbyTkv5wkX83AIvEWqvdrUPa1VDmOgrmbKsN6tF93YrFrbwebtgOpLKLljFJstY+Lunxcx773FkfT0l673mee7+k++d5fL+kbZcSFoAb7YMTGhifZng/iWytDeo7L7fryOlRbVxZ5DoOgCvACfwALmp3G/NiyYbDX4H0QRkDcFFNrSEFA1laU5HvOgrmVAVztazQzxA/kAYoYwAuqrl9SFtrSzR7ljOSgTFG22pLWBkD0gBlDMAF9Y1NqXUgrB31bFEmm621QXUPT+rUCDcNB1IZZQzABe2Z2wbbxvB+0tlWx9wYkA4oYwAuaHdbSDlZHl3NO/aSzvoVhcrN8jI3BqQ4yhiAC2puG9KW6qCyfbxcJJssr0ebqotYGQNSHK+uAM5rfDqqgz0jHGmRxLbVlujQqVGFuWk4kLIoYwDOa1/HkOJW3Bw8iW2tCyoWtzrQOew6CoDLRBkDcF5NrSF5jLSlhpWxZHVdTVDGMMQPpDLKGIDzamob0saVRcr3L+jOaXCgKDdLaysK1EwZA1IWZQzAvCLRuPZ1Dr1+fAKS19a6oPZ2DCket66jALgMlDEA8zrYM6Kpmbh2cL5Y0ttWG9TYVFTH+sZcRwFwGShjAObVNHdzcA57TX7cNBxIbQyCAJhXU9uQ6svyVF7gdx0Fkh5o7Djv16y1ysv26od7umRkdO/OmiVMBuBKsTIG4E3icavmtpC21TIvlgqMMaopCagjNOE6CoDLwMoYAElvXHnpG53S0MSM4tZecEUGyaOmJKDDp8c0weGvQMphZQzAm7QNzq6w1JbmOU6ChaouDUiSOoZYHQNSDWUMwJu0DYaV7/epNC/bdRQsUFVxQB4jtiqBFEQZA/Am7YNh1ZYGZIxxHQULlO3zaHlRDmUMSEGUMQBvMDI5o6GJGdWxRZlyakoC6hqaVIzDX4GUQhkD8AZtg2FJUl0ZZSzV1JQEFInGdfQ0h78CqYQyBuAN2gbCs1tehTmuo+AS1ZTMFui9HRz+CqQSyhiAN2gfnFBtSUBeD/NiqSYYyFKe30cZA1IMZQzA6yYjMfWOTql27pgEpJYzh7/u6xh2HQXAJaCMAXhdRygsKzG8n8JqSgJqHQgrFI64jgJggShjAF7XNjghrzGqCrIylqpqSmb/t9vHViWQMihjAF7XNhjWyuIcZft4aUhVlcW58nmM9rRTxoBUwSsuAEnSTCyurqFJtihTXLbPo/UrChniB1IIZQyAJKl77rBQzhdLfdfVFOtA54iisbjrKAAWgDIGQNKvD3utLWFeLNVdVxvU5ExMRzj8FUgJlDEAkmbPF6so8Cvg97mOgit0XU1QEkP8QKqgjAFQLG7VHgqrlnmxtFAVzFVZvl97OW8MSAmUMQA61jumqZm46jjsNS0YY3RdTTFD/ECKoIwBUFNbSBI3B08n19UG1T44oYHxaddRAFwEZQyAdreGVJSbpeLcLNdRsEh+PTfGViWQ7ChjQIaz1qqpLaTa0oCM4ebg6eLaqiL5PIatSiAFUMaADNc1NKne0WkOe00zOVlebVhZqL2cxA8kPcoYkOFenxejjKWd62qCeqWLw1+BZEcZAzJcU1tIhTk+VRT6XUfBIttSU8zhr0AKoIwBGa6pbUjb6krkYV4s7ZwZ4mduDEhuHLUNZLBQOKKWvnG9+7pK11GwiB5o7JA0++aMghyfHtnbLZ/nzX/3vndnzVJHAzAPVsaADNY8Ny+2o67EcRIkgjFGNSUBtc/ddxRAcqKMARmsqS2kbJ9H11QVuY6CBKkpCWhoYkZjUzOuowA4D8oYkMGa2oa0uapYfp/XdRQkSE3J7C2uOkMTjpMAOB/KGJChJiJRvdY9om11QddRkEAri3PlNUYdlDEgaVHGgAy1v3NY0bjV9nrmxdJZltejFcU5lDEgiVHGgAzV1DokY6SttayMpbuakoC6hycVi1vXUQDMgzIGZKjm9pCuWl6owhxuDp7uakoCmolZnRqZdB0FwDwoY0AGisbi2ts+pB3Mi2WE6jND/EOUMSAZUcaADHTo1KjCkZi2cb5YRijOzVK+36cu5saApEQZAzLQ7ta5w14Z3s8IxhhVBXPVOUQZA5IRZQzIQLtbQ6otDWhZYY7rKFgi1SUBDYxHNBmJuY4C4ByUMSDDWGvV3D6k7WxRZpTq4Jm5MVbHgGRDGQMyzIn+cYXCEe5HmWGqgrkyoowByYgyBmSYRubFMlJOlldlBX51hXhHJZBsKGNAhmlqDam8wK/a0oDrKFhi1cGAOocmZC2HvwLJhDIGZJimtiHtqCuRMcZ1FCyx6pJcTURiCoUjrqMAOAtlDMggXUMT6h6eZIsyQ/16iJ+tSiCZUMaADNLUNjsvxjspM9OywhxleQ1D/ECS8bkOACCxHmjseP3jR/d1KyfLo70dQ9rfOewwFVzweoxWFudyEj+QZFgZAzJI22BYtSV58jAvlrGqgwH1jEwpGo+7jgJgDmUMyBDj01H1j02rrizPdRQ4VF0SUCxudXpkynUUAHMoY0CGaB8MS5LqONIio1UHcyVJnWxVAkmDMgZkiLaBsHweo8q5P4yRmYpys1Tg9/GOSiCJUMaADNE2OKHqkoB8Hv61z2TGGFWVBFgZA5IIr8pABpieialneFJ1pcyLYXarcjAc0fAEh78CyYAyBmSAjtCErKS6MubFMDvEL4njTYAkQRkDMkDrYFgeI9WUUMYgVRbnyogyBiQLyhiQAdoGJrSyOFd+n9d1FCSBnCyvygv8lDEgSVDGgDQXjcXVNTTBvBjeoLokoAOdw7LWuo4CZDzKGJDmuoYmFY1byhjeoDoY0NDEjNoHeVcl4BplDEhzbRz2inlUzZ03x1Yl4B5lDEhzbYNhVRT4FfD7XEdBEllWmKPcLC9lDEgClDEgjcXiVu2DE9yPEm/i9RhdU1mkfZQxwDnKGJDGDp8a1XQ0zrwY5rW5pliHe0Y1HY25jgJkNMoYkMaa2kKSmBfD/DZXFysSi+tQz6jrKEBGo4wBaaypLaTiQJaKA9muoyAJba4ulsQQP+AaZQxIU9Za7W4NqZ4tSpzHiqIcVXD4K+AcZQxIU60DYQ2MR5gXw3kZY7S5ulgHKGOAU5QxIE2dmRer5ebguIDNNcVqG5zQUDjiOgqQsShjQJpqbA2pNC9b5fl+11GQxF6fG+tidQxwhTIGpKmmtpC215XIGOM6CpLYtVXFMkba30EZA1yhjAFp6NTIpDpDk9peX+I6CpJcvt+ntRUFDPEDDlHGgDS0u3V2XmwnZQwLsLm6WAe6hmWtdR0FyEgLKmPGmLuMMUeNMS3GmM/M83W/MeYHc19vNMbUnfW1z849ftQY8/Zznuc1xuwzxvzXlf4iAH6tqS2kfL9P61cUuo6CFLC5pljDEzNqG5xwHQXISBctY8YYr6SvSHqHpA2SPmCM2XDOZfdJGrLWrpH0BUl/N/fcDZLukbRR0l2Svjr3/c74pKTDV/pLAHijptYhXVcblNfDvBgu7swQP0dcAG4sZGVsh6QWa+1Ja21E0oOS7j7nmrslfWvu44cl3WFmp4bvlvSgtXbaWtsqqWXu+8kYUyXpnZK+ceW/BoAzhsIRHe0dY4sSC9ZQka/cLC9zY4AjCyljlZI6z/q8a+6xea+x1kYljUgqvchzvyjpf0iKX+iHG2M+aoxpNsY09/f3LyDB56uXAAAgAElEQVQukNma24ckSdvrKGNYGJ/Xo2uqiihjgCMLKWPz7XOcO+V5vmvmfdwY898k9Vlr91zsh1trv26t3Wat3VZeXn7xtECGa2oLKdvr0bVVRa6jIIVsri7WoZ5RTUdjrqMAGWchZaxLUvVZn1dJ6jnfNcYYn6QiSaELPPcmSe8yxrRpdtvzdmPMdy8jP4Bz7G4NaVN1kXKyvBe/GJizubpYkVhcR06NuY4CZBzfAq5pktRgjKmX1K3Zgfx7z7nmMUkfkvSSpPdIesZaa40xj0l6wBjzT5JWSmqQtNta+5Kkz0qSMeZWSf/dWvt7i/D7ABnhgcaOeR+PRON6pWtYtzSUn/caYD6bzgzxdw2//jGApXHRlbG5GbBPSHpCs+98fMhae9AY83ljzLvmLvumpFJjTIukT0n6zNxzD0p6SNIhST+T9HFrLWvgQIJ0hCYUt1JdGTcHx6VZWZSj8gI/J/EDDixkZUzW2sclPX7OY5876+MpSe89z3Pvl3T/Bb73LyT9YiE5AFxY22BYRlJNCTcHx6UxxmhTVTH3qAQc4AR+II20DYS1ojiHeTFcli01xTrZH9bIxIzrKEBGoYwBaSIaj6tzaEJ1pWxR4vJsqpqdFXulm9UxYCktaJsSQPLrGZ7STMxSxrBg577JYzIyO9L7rRfb1RmafP3xe3fWLGkuINOwMgakibaBsCSG93H5crO9Ks/3q2uIe1QCS4kyBqSJtsGwyvL9yvez4I3LVxXMVdfQpKw992xvAIlCGQPSQNxatQ2GVVfKuyhxZapLAhqfjmp4kiF+YKlQxoA00Ds6pamZuOrZosQVqgrmSpK6hiYvciWAxUIZA9JA2+DsjA/D+7hSy4ty5PMYdYaYGwOWCmUMSANtA2EV5WapOJDlOgpSnM/j0YqiHIb4gSVEGQNSnLVW7YNh1ZYGZIxxHQdpoLokoO7hScXiDPEDS4EyBqS4UDii0ako82JYNFXBgGZiVn1jU66jABmBMgakOObFsNjO3Nu0g7kxYElQxoAU1zYYVm6WV+UFftdRkCaCgSzlZXvfcAo/gMShjAEprm0grLqyPHmYF8MiMcaopiTAyhiwRChjQAobm5rRYDjCYa9YdNUlAQ2MT2siEnUdBUh7lDEghTEvhkSpnpsbY6sSSDzKGJDCWgfCyvZ6tLI413UUpJmqYK6MpE7OGwMSjjIGpLD2wbBqSgLyepgXw+Ly+7xaXpTD3BiwBChjQIqajMR0emRKtWXMiyExqksC6gxNKM7hr0BCUcaAFNUeCsuKeTEkTk0woOloXCf6x11HAdIaZQxIUW0DE/Iao+ogK2NIjDOHv+7tGHKcBEhvlDEgRbUNhlUZzFW2j3+NkRil+dnKzfJqX8ew6yhAWuNVHEhBM7G4uocmOV8MCWWMUXVJLitjQIJRxoAU1BmaUMxa1XFzcCRYTUlAx/vGNTo14zoKkLYoY0AKahsMy0iqLaGMIbGqSwKyVjrQyVYlkCiUMSAFtQ1OaFlhjnKzva6jIM1VBwMyRsyNAQlEGQNSTDQWV8fgBFuUWBI5WV41VOQzNwYkEGUMSDEHe0YVicUZ3seSua4mqH0dw7KWw1+BRKCMASmmqS0kSayMYclsqSnWyOSMTg6EXUcB0hJlDEgxja0hleZlqzAny3UUZIittSWSpOa5vwgAWFyUMSCFxONWzW0hboGEJbW6PE+ledna3crcGJAIlDEghZzoH9fQxIzquDk4lpAxRtvqgtrdNug6CpCWKGNACmlsnZsXY2UMS2xHfak6Q5M6PTLlOgqQdihjQAppaguposCvkrxs11GQYXbUzc6N7WZuDFh0lDEgRVhrtbs1pO31JTLGuI6DDLN+RYHy/T7tbmWrElhslDEgRXQNTerUyNTrKxTAUvJ5PbquNqgmhviBRUcZA1LEmfPFdtRTxuDGjrqgjvaOaSgccR0FSCuUMSBFNLWFVJjj07plBa6jIEPtqC+VJDW3szoGLCbKGJAiGltD2lZXIo+HeTG4cW1VkbK9HubGgEVGGQNSwMD4tE72h7WdeTE4lJPl1ebqYu1uY2UMWEyUMSAF7J47X2znKsoY3NpeH9TB7hGFp6OuowBpgzIGpIDGk4MKZHt1TWWR6yjIcNvrShSNW+3rGHYdBUgblDEgBTS2hrS1NqgsL//Kwq2ttUF5DIe/AouJV3YgyQ1PRHTk9BjniyEpFORkacPKQob4gUVEGQOS3K/nxUodJwFm7agr1b6OYUWicddRgLRAGQOSXGNrSH6fR5uqmRdDcthRH9R0NK5XupgbAxYDZQxIco2tg9pSUyy/z+s6CiBJumFVmTxGeu74gOsoQFqgjAFJbHRqRod6RrWzni1KJI+iQJY2VRfr+eP9rqMAaYEyBiSxPW1DiltpJ/ejRJLZ1VCuA53DGpmYcR0FSHmUMSCJvdw6qCyv0ZaaoOsowBvc0lCmuJVePMFWJXClKGNAEms8GdKmqmLlZjMvhuSyqbpYBX6fnmOrErhilDEgSYWno3q1e4RbICEpZXk9umF1qZ47NiBrres4QEqjjAFJak/7kGJxqx0M7yNJ3bK2XN3Dk2odCLuOAqQ0yhiQpBpbB+X1GG2tZV4MyemWhnJJ0vMccQFcEcoYkKR2t4Z0dWWR8v0+11GAedWUBlRbGtBzx5gbA64EZQxIQlMzMR3oHNH1HGmBJLeroUwvnRzk1kjAFaCMAUlob8eQIrE4w/tIersayjURiWlvx5DrKEDKoowBSajxZEjGSFtrKWNIbjeuLpXXYziNH7gClDEgCTW2DmrDikIV5Wa5jgJcUEFOlq6rKWaIH7gClDEgyUxHY9rXMcz9KJEydjWU69XuEQ2OT7uOAqQkyhiQZF7pGtF0lHkxpI5b15XLWumZI32uowApiffMA0nkgcYOPXt09g+0jsEJPdDY4TgRoIv+/9Baq+JAlr7xfKveu616iVIB6YOVMSDJtA6EtazQrzzOF0OKMMbo6pVFaukb1+jUjOs4QMqhjAFJJBa36hicUH1ZnusowCW5emWhYtbq6cO9rqMAKYcyBiSRnuFJRWJx1Zflu44CXJKqkoAKc3x6/NXTrqMAKYcyBiSRMzdcrisNOE4CXBqPMdpYWaRfHuvX+HTUdRwgpVDGgCTSOhBWWb5fBTmcL4bUc/XKIkWicT3LuyqBS0IZA5JELG7VNhhmXgwpq7Y0oPICv3762inXUYCUQhkDksShnlFNR+OUMaQsjzG6a+NyPXukXxMRtiqBhaKMAUmisXVQkihjSGnvuGa5Jmdi+uVR7lUJLBRlDEgSja0hleRlcz9KpLQddSUqycvWT1/jXZXAQlHGgCQQj1s1tYVUX8qqGFKbz+vR2zcu09OHezU1E3MdB0gJlDEgCRw+ParhiRnVl1PGkPreec1KhSMxPXmIA2CBhaCMAUngxZbZebHV5Rz2itR34+pSVRbn6sEm7q0KLARlDEgCL54Y0KqyPObFkBY8HqN7tlfrhZZBtQ+GXccBkh5lDHBsJhbX7taQblxT6joKsGjeu61aXo/Rg02drqMASY8yBjj2StewwpGYblpd5joKsGiWF+XotnUV+s/mTkWicddxgKRGGQMce6FlUMZI169iZQzp5d6d1RoYj+jpwwzyAxdCGQMce/HEgDasKFQwL9t1FGBRvWVthVYU5ej7bFUCF0QZAxyajMS0t31YN65mVQzpx+sxet+2aj1/vF+doQnXcYCkRRkDHNrTPqRILK4b1zAvhvT0vu3VMpJ+wOoYcF6UMcChF04MyOcx2lFX4joKkBCVxbl6y9pyPdTcqWiMQX5gPpQxwKEXTwxqc3Wx8vw+11GAhLl3Z636xqb1OPerBOZFGQMcGZmc0atdw2xRIu3dcVWFVpXn6Z9/cULWWtdxgKRDGQMc2d0aUtyK4X2kPY/H6E9uWa1Dp0b1/PEB13GApLOgvRFjzF2SviTJK+kb1tq/PefrfknflrRV0qCk91tr2+a+9llJ90mKSfpza+0TxpjqueuXS4pL+rq19kuL8hsBKeKFlgHlZHm0pabYdRRg0TzQOP/9KKOxuApzfPq/HzuoD+9apXt31ixxMiB5XXRlzBjjlfQVSe+QtEHSB4wxG8657D5JQ9baNZK+IOnv5p67QdI9kjZKukvSV+e+X1TSp6216yVdL+nj83xPIK29dGJQ2+tK5Pd5XUcBEs7n9eimNWU6ORDmmAvgHAvZptwhqcVae9JaG5H0oKS7z7nmbknfmvv4YUl3GGPM3OMPWmunrbWtklok7bDWnrLW7pUka+2YpMOSKq/81wFSQ9/YlI72julGboGEDLKjrkQ5WR798li/6yhAUlnINmWlpLMPiOmStPN811hro8aYEUmlc4+/fM5z31C6jDF1krZIapzvhxtjPirpo5JUU8OyNlLTuVs3e9uHJEkTkeh5t3WAdOPP8uqGVaX6xdF+tfSNa01FvutIQFJYyMqYmeexc98Oc75rLvhcY0y+pB9K+gtr7eh8P9xa+3Vr7TZr7bby8vIFxAWS37G+MRX4fVpemOM6CrCkblhdJp/X6OvPnXAdBUgaCyljXZKqz/q8SlLP+a4xxvgkFUkKXei5xpgszRax71lrH7mc8EAqilurlr5xNSzL1+xuPpA58v0+ba0N6tF93eoZnnQdB0gKCyljTZIajDH1xphszQ7kP3bONY9J+tDcx++R9IydPUzmMUn3GGP8xph6SQ2Sds/Nk31T0mFr7T8txi8CpIruoUlNRGJqWFbgOgrgxK6G2V2OLz/b4jgJkBwuWsastVFJn5D0hGYH7R+y1h40xnzeGPOuucu+KanUGNMi6VOSPjP33IOSHpJ0SNLPJH3cWhuTdJOkD0q63Rizf+4/v7HIvxuQlI71jclIaihnXgaZKRjI1j3ba/RQUyfvrAS0wHPGrLWPS3r8nMc+d9bHU5Lee57n3i/p/nMe+5XmnycD0t7x3nFVBnMV4BZIyGCfuH2NHmru1JeePq5/fO8m13EApziBH1hCk5GYOkMTWssWJTLcssIcffD6Wj2yt0sn+sddxwGcoowBS6ilf1xW0lre0g/oT25drZwsr7741HHXUQCn2CcBltCx3jHlZnlVGQy4jgI4deZ8ve11JfrxgR7Vl+ZpedGbj3rhtknIBKyMAUvEWqvjvWNaXZEvr4eRSUCSdjWUye/z6KnDva6jAM5QxoAl0js6rdGpKFuUwFkC2T7d3FCmQ6dG1T3EuWPITJQxYIkc6x2TJM4XA85x0+oy5WZ59eTh066jAE5QxoAlcrxvTMsLc1SUm+U6CpBUcrK8esvach3rHVf7YNh1HGDJUcaAJTA9E1Pb4IQa2KIE5nX9qlLl+X168hCzY8g8lDFgCRzrG1csbnXVikLXUYCklO3z6Na15To5EObcMWQcyhiwBA72jCiQ7VVtKUdaAOezo75EhTmzq2OztzcGMgNlDEiwSDSuo6fHtH5FoTyGIy2A88nyenTbVRXqCE3oWC+rY8gclDEgwV4+OajpaFwb2aIELmprbVDBQJaePHya1TFkDMoYkGBPHDytbK9HqxneBy7K5/Ho9quWqWd4SodOjbqOAywJyhiQQPG41ZOHetWwLF9ZXv51AxZic3WxyvKz9dThXsXjrI4h/fGnA5BA+7uG1Tc2rY0r2aIEFsrrMbpj/TL1jk7rv1495ToOkHCUMSCBfn6wVz6P0bpllDHgUlxTWaRlhX598cljisbiruMACUUZAxLo54dO6/pVpcrN9rqOAqQUjzF66/plOjkQ1qP7ul3HARKKMgYkSEvfmE72h/X2jctcRwFS0voVhbqmskhfevq4IlFWx5C+KGNAgjxxcPa2LnduoIwBl8MYo0+9ba26hib1UHOn6zhAwlDGgAT5+cHT2lRVpBVFua6jACnr1rXl2lob1JefadHUTMx1HCAhKGNAAnSGJnSga0Rv27jcdRQgpRlj9Om3rtXp0SlWx5C2KGNAApwZOL5780rHSYDUd8PqUm2vC+prvzih6SirY0g/lDFgkVlr9cjeLl2/qkRVQW4MDlwpY4z+7PYGnRqZ0sN7ulzHARYdZQxYZHs7htU2OKF3X1flOgqQNnY1lGlzdbG++uwJzXDuGNIMZQxYZI/s7VJOlkfvuJp5MWCxGGP0yTsa1D08qUf3cu4Y0gtlDFhE09GYfnygR2/fuFwFOVmu4wBp5dZ15bqmskhffraFU/mRVihjwCJ65nCfRqeibFECCWCM0Z/f0aCO0IR+tL/HdRxg0fhcBwDSyQ/3dquiwK+b15S5jgKkhQcaO97wubVWK4py9Dc/PazJmZg8xrz+tXt31ix1PGBRsDIGLJJQOKJfHO3Tb2+plNdjLv4EAJfMGKPb1lVoYDyiV7tGXMcBFgVlDFgkPz7Qo2jcskUJJNiGlYWqKPDrmaN9ilvrOg5wxShjwCJ5ZG+XNq4s1LrlBa6jAGnNY4xuv6pC/WPTOtgz6joOcMUoY8AiONA5rANdI/odVsWAJXF1ZZHK8/169girY0h9lDFgEfzr8ydVkOPT+7ZXu44CZASPMbp1XblOj07p8ClWx5DaKGPAFeoMTejxV0/p3p01yvfzBmVgqVxbVazSvGw9e6RPltUxpDDKGHCF/u2FVnmM0R/eWO86CpBRvB6jW9dVqGdkSkdPj7mOA1w2yhhwBUYmZvSDpk69a/NKLS/KcR0HyDibq4sVDGTpmaOsjiF1UcaAK/C93e2aiMT04ZtXuY4CZKQzq2NdQ5P6xdF+13GAy0IZAy7TdDSm/3ihTbsayrRhZaHrOEDGuq4mqGAgS//zyaOsjiElUcaAy/TY/h71jU3rI7tYFQNc8nqMbr9qmV7rHtUTB3tdxwEuGWUMuAzxuNW/Pn9SVy0v0K4G7kMJuLa5uliryvL0hSePKR5ndQyphTIGXIaHmjt1rHdcf3rbGhnDfSgB17weo0/e2aCjvWP6yaunXMcBLgllDLhEI5Mz+vsnjmp7XVC/ee0K13EAzPnNa1dq7bJ8feGpY4rG4q7jAAvGCZXAJfrCk8c0PBHRzvoafX93p+s4AOZ4PEafeuta/cl39+pH+3v0O1u5PRlSAytjwCU4enpM33m5XffurNHK4lzXcQCc4+0bl2vjykJ96enjmmF1DCmCMgYskLVWf/XYayrI8enTb13nOg6AeRhj9N/ftk4doQk90NjhOg6wIJQxYIF+8uopvXwypE+/bZ2Cedmu4wA4j1vXleumNaX64lPHNDIx4zoOcFGUMWABhsIR3f+Tw9qwolD37qhxHQfABRhj9H/+xgYNT87o/3vmuOs4wEVRxoCLiMbi+rPv79PgeER/8+5r5PVwlAWQ7DasLNT7tlbrWy+1qW0g7DoOcEGUMeAi/uGJo/pVy4D++reu1qbqYtdxACzQp9+2Vllej/72p0dcRwEuiDIGXMBjB3r0L8+d1Aevr9X7tle7jgPgElQU5uhjb1mtnx08rcaTg67jAOdFGQPO41DPqP7Hwwe0vS6o/+u/bXAdB8Bl+PCuVVpRlKO//slhbpOEpMWhr8A8OgYn9JFvN6s4N1tf+d3rlO3j7y1AsjvfURa7Gsr0UHOX/uIH+3X9qlLdu5M34SC58CcMcI7Dp0b1O//8osKRqP7197epoiDHdSQAV2BTVbHWVOTrZwdPa3gi4joO8CaUMeAsTW0hvf9fXpLXGP3nH9+ga6qKXEcCcIWMMfqtzZWy1upH+3tkLduVSC6UMWDOM0d69cFvNqos36+HP3aDGpYVuI4EYJGU5GXrbRuW62jvmB470OM6DvAGlDFkvGgsrn/6+VF9+FvNaqgo0H/+yQ2qCgZcxwKwyG5YXarqYK7+nx8f0uD4tOs4wOsoY8honaEJve9fXtL/eqZF776uSg9+9HqV5vtdxwKQAB5j9NvXVWlsakaf/69DruMAr+PdlMgYZ7/TylqrA13D+tH+2e2K92+v1qaq4tc/B5Celhfm6E9vXaMvPX1ct19Vobs3V7qOBFDGkHmGJiJ6bH+PjvaOqaYkoPdvq+bG30AG+cTta/RCy4A++8ir2rCikPlQOMc2JTJGLG71q+P9+uJTx9Q6ENY7r1mhj+xaRREDMkyW16Mv33udAtlefex7exWejrqOhAxHGUNGeK17RF/7ZYsef+20Vpfn6y/ubNBNa8q46TeQoZYX5eh/fWCLTvaP6zOPvMpxF3CKbUqktamZmL7w1DF94/lWBbK8+sCOGl29slDGUMKATHfj6jJ9+m3r9A9PHNW22qA+dGOd60jIUJQxpK0XTwzo/3jkVbUNTuj926q1dlmBcrO9rmMBSCIfe8tq7W0f0l//5JDqy/J0y9py15GQgdimRNoZmZzRZ374iu7910ZZSQ98eKf+7j3XUsQAvInHY/RP79+sNRUF+uPv7NGe9pDrSMhAlDGklZ+9dkp3/tMv9Z97uvTHb1mln33yFt24psx1LABJrCg3S9/+ox1aXpSjP/j3Jh3qGXUdCRmGMoa00Ds6pT/+TrP+5Lt7VZ7v148+fpM++471rIYBWJDyAr++++GdKvD79Pv/1qiT/eOuIyGDmFR6B8m2bdtsc3Oz6xhIIt97uV3NbUP66cFTisas7li/TDfzLkkAF3Dvzprzfu1E/7je988vye/z6Nv37dSaivwlTIZ0Y4zZY63ddrHrWBlDymodCOsbv2rVo/u7taIoV39+R4PesracIgbgsq0uz9d37tupSCyu3/nai2o8Oeg6EjIAZQwpZyYW19d+cUJ3ffE5nRqZ1G9vqdR9N9erjHtKAlgEG1YW6pGP3aTS/Gx98Ju79aP93a4jIc1xtAWS0tn3kTxb9/CkHt3bpZ6RKW1YUah3bVqpwtysJU4HIJWd7/XlXPfuqNGTh3r1yQf3qzM0oY/ftoYzCpEQlDGkhEg0rmeO9OpXLQPKy/bp3h01urqyyHUsAGkskO3Tt+/bof/94Vf0jz8/pr0dw/r791zLKjwWHWUMSe9E/7ge3detUDiibbVBvePqFbxLEsCS8Pu8+sL7N2tLTVD3P35Yd33xef3je6/VresqXEdDGmFmDElrMhLTI3u79M1ftUqS7ru5Xu++rooiBmBJGWP0oRvr9NgnblJJXpb+4N+b9PkfH9JEhBuMY3GwMoak9Fr3iH58oEfhSFS3NJTpjvXLlOXl7w4Alta582W/u7NWP33tlP7thVb9cG+X3nnNCm1cWajfvb7WUUKkA8oYkkrv6JQ+96PX9MTBXq0sytHv31inyuJc17EAQJKU5fXoXZsqdW1lsR470KMHdneooSJfN6wu1apyziTD5eHQVySFeNzqwaZO/c1PDysSjeu2dRW6icNbASSxWNyqsXVQTx7qVSxu9d5t1frE7Wv4CyRet9BDX1kZg3MHOof1uR+9pgNdI7p+VYn+5t3X6qUTHLQIILl5PUY3ri7TNZVF6hya0A+aOvXwnk7ds71Gf3rbaq0oopRhYShjcGYoHNHfP3FUDzZ1qCzfry+8f5N+a3OljDGUMQApoyAnS3/9W9foY7eu0ZefadH3d3foB02deue1K/ShG+u0ubrYdUQkOcoYllx4Oqr/eLFN//LLEwpHYvqjm+r1F3c2qCCHw1sBpK7K4lz9zbuv0Z/eulrfeP6kHt7TpUf3dWtTdbE+dEOt7rp6uQLZ/LGLN2NmDEtmaiam777crq/+4oRC4YjuXL9Mf/n2dVq3vOBN1y70hGwASFZTMzHt7RjSyycHNTAeUbbXo9+4Zrnu3lKpXWvK5OMd4mlvoTNjlDEkXGdoQt/f3aFvvdSu8HRUDRX5unP9MlWXBFxHA4CEi1urtsGwDnQO6+jpMY1ORVWSl61b15brtqsqdEtDuYoC7AykIwb44dRkJKbnj/frwaZOPXu0T0bSumUFurmhXPVlea7jAcCS8RijVWX5WlWWr9/ZWqlfHO3X46+e0rNH+/TIvm55PUZbqou1c1WJtteVaGttkLGNDMPKGM5rwTfT3VkjSTo1MqlfHO3X04dn7yE5NRNXeYFf92yv1j07avTLo/2JjAsAKSVurbpCEzraO6bjfePqGZ5U3EpG0vKiHFUW52plca5WFuVoeVGusn3zb2ueeQ1G8mFlDAljrdXYVFR9Y9PqGZ7Uc8f6tb9zWKdHpyTNDrHes71Gd6yv0PWrSjk5HwDm4TFGNaV5qinN01s3SJFoXB2hCbUNhtUZmtChU6Nqbh+SNFvQigJZKs/3q6zAP/vf+X6VF/hlrZUxnMmYyihjmNfUTEwDY9MamohoeGJGQxMRDU1ENBiOqH9sWtPR+OvX1pYGtHNViTZVFevGNaVat6yAFwYAuETZPo/WVORrTcXsSf7WWo1MzujUyJR6RiY1MDatgfGI9rQPKXLWa/CXnzmuurI8VQVzVRUMqCqYq8riuY9LclXIlmfSW1AZM8bcJelLkrySvmGt/dtzvu6X9G1JWyUNSnq/tbZt7muflXSfpJikP7fWPrGQ74nEiMetQhMR9Y1Oq398Wn2jU3P/Pa3+sWn1jEyqa2hS/WPTb3iex0iFuVkqy/NrS01Q/3979xsjV1XGcfz7m5md3e6fdul2l+CCQKWaKsKKCZKgREARIrG8QGlStCFGYoIJEo2KUVESX/hGiEJUImIhECAgsfGNICASEwpFCgWqiJXAWkKt3dJtd7u7M/P44p5dpu10dxrtzuzs75Nu5t67Z87eyTO989xzz9ynP52ZnbCsgy+dt7JBr8bMrHVJorezSG9nkdUnLJ3ZHhHsPVBi177suL28q8hr/9nP9n/v50+v7GJ8qnxQPz0dBQZ7lzCwtIP+7nYGlrbPPA70dNDf086K7iJdxQI5Vz1piDmTMUl54Fbgk8Aw8IykjRHxclWzLwIjEXGapLXAj4ArJL0fWAt8AHgX8AdJ703PmavPphIRVCK7xh9Vj1OVClOlCpPlCpOl9FO1PFUOJsvltD3eaVMqH9RuItCXDYUAAAeSSURBVC2XK1m/QfDKW/vIpvQFc03tW3V8diZVKgeT5QpTqb+xyTKjB0rsmygxemCKkbEpypXDO+tuL9DfkyVX57+vn8HeTt4YGeO4ziK9nW0s7WhzaSIzsyYgiWVL2li2pI339HcfNGcsIti9f5LhkXH+tWec4ZExhkfG2bEnO8l+/o09jB6YosbHAJCNzrUXcvR3t9PdUaCrWKCrvUBnMU8+JyQQIqfsMuv2XfsQIv2bVfVtjHIShZxoK+Roy4m2fI5CPkdbPlvO1kXxkOXCzO/Tc3I5igVRyOWyvvKiLS0XctlzFkKCWc/I2NnAqxGxHUDSvcAaoDpxWgN8Py0/ANyi7DrVGuDeiJgA/inp1dQfdfQ57y679c9se3PvTDJUnXwda8VCjvZ8jnxeiOw/20Spki3DrG/0AF7fPUZA9uYr5GbezF3FPH3dRU5Z0UV3e4G+riL9Pe0M9GRzDaZ/at2I0Pf6MjNbWCTR191OX3c7Z9a48/89m16nEsH4ZJnRdJI+eqDE/okSE6UKE1NlJkoVjl/Wwf6JbPvwyBgHpso1ByT2T5ayz8xDPihrfWy+8tbozHK5EpQqMTOAcCzlBIVc7qDP0SXFPFu+d9Ex/btHo55kbBB4o2p9GPjIkdpEREnS20Bf2v7UIc8dTMtz9QmApKuBq9PqPkl/q2Ofbf6sWAe7Gr0TdsytwHFudY7xArXu6Jo7zolumJc/c3I9jepJxmoNyBya9B6pzZG21/p6Xc3xp4i4Dbhtth20xpG0uZ6v7drC5ji3Psd4cXCcm1M99xwYBk6qWj8R2HGkNpIKwDJg9yzPradPMzMzs5ZXTzL2DLBK0qmSimQT8jce0mYjsD4tXw48FtkF5I3AWkntkk4FVgFP19mnmZmZWcub8zJlmgP2FeD3ZLeh+FVEvCTpRmBzRGwEbgfuShP0d5MlV6R295NNzC8B10REGaBWn///l2fzwJeQFwfHufU5xouD49yEFlQ5JDMzM7NW4zo1ZmZmZg3kZMzMzMysgZyM2awknSTpcUnbJL0k6dq0fbmkRyT9PT0el7ZL0k8kvSrpBUlnNfYV2FwkdUh6WtLzKcY/SNtPlbQpxfi+9GUb0hdy7ksx3iTplEbuv9VPUl7Sc5J+l9Yd4xYj6TVJWyVtkbQ5bfPxusk5GbO5lICvRcRq4BzgmlTm6lvAoxGxCng0rQNcQvat2VVkN+v92fzvsh2lCeCCiDgTGAIulnQOWVmzm1KMR8jKnkFV+TPgptTOFoZrgW1V645xazo/Ioaq7ifm43WTczJms4qINyPiL2l5lOxAPkhWvmpDarYBuCwtrwHujMxTQK+kE+Z5t+0opFjtS6tt6SeAC8jKm8HhMZ6O/QPAhan8mTUxSScCnwZ+mdaFY7xY+Hjd5JyMWd3SpYoPAZuA4yPiTcgSNmAgNatVPmsQa2rp8tUWYCfwCPAPYE9ElFKT6jgeVP4MmC5/Zs3tZuAbwHQhwD4c41YUwMOSnk3lBMHH66ZXTzkkMyR1Aw8CX42IvbOcJNdTPsuaTLr/35CkXuAhYHWtZunRMV5gJF0K7IyIZyV9fHpzjaaO8cJ3bkTskDQAPCLpr7O0dZybhEfGbE6S2sgSsbsj4jdp81vTw9npcWfa7lJXC1hE7AH+SDY/sDeVN4OD43ik8mfWvM4FPiPpNeBessuTN+MYt5yI2JEed5KdWJ2Nj9dNz8mYzSrNE7kd2BYRP676VXUJrPXAb6u2fyF9S+cc4O3p4XFrTpL604gYkpYAnyCbG/g4WXkzODzGtcqfWZOKiOsj4sSIOIWsQspjEbEOx7ilSOqS1DO9DFwEvIiP103Pd+C3WUn6KPAksJV35pp8m2ze2P3Au4HXgc9GxO6UvN0CXAyMAVdFxOZ533Grm6QzyCb15slO0O6PiBslrSQbRVkOPAdcGRETkjqAu8jmD+4G1kbE9sbsvR2tdJny6xFxqWPcWlI8H0qrBeCeiPihpD58vG5qTsbMzMzMGsiXKc3MzMwayMmYmZmZWQM5GTMzMzNrICdjZmZmZg3kZMzMzMysgXwHfjNrSZLKZLdkKZDdN219RIw1dq/MzA7nkTEza1XjETEUEacDk8CXG71DZma1OBkzs8XgSeA0AElXSnpa0hZJv0hF0vOSfi3pRUlbJV2X2g5JekrSC5IeknRcQ1+FmbUkJ2Nm1tJSbcVLgK2SVgNXkBVTHgLKwDpgCBiMiNMj4oPAHenpdwLfjIgzyC553jDvL8DMWp6TMTNrVUskbQE2k5WAuR24EPgw8Ez63YXASmA7sFLSTyVdDOyVtAzojYgnUn8bgPPm+0WYWevzBH4za1XjafRrRqrFtyEirj+0saQzgU8B1wCfA66bl700s0XPI2Nmtpg8ClwuaQBA0nJJJ0taAeQi4kHgu8BZEfE2MCLpY+m5nweeqNmrmdn/wCNjZrZoRMTLkr4DPCwpB0yRjYSNA3ekbQDTI2frgZ9L6iS7lHnVfO+zmbU+RUSj98HMzMxs0fJlSjMzM7MGcjJmZmZm1kBOxszMzMwayMmYmZmZWQM5GTMzMzNrICdjZmZmZg3kZMzMzMysgf4L2RXNsZnvn9UAAAAASUVORK5CYII=\n", "text/plain": [ "
    " ] @@ -670,9 +783,18 @@ "# plt.show()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Distribuição normal convergente com o aumento do tamanho da amostra\n", + "\n", + "Utilizando os mesmos valoes para a média (342.73) e o desvio padrão (45.78), vamos variar o tamanho da amostra em 10, 100, 1000, 10000 e 100000 observações, para observar o comportamento da distribuição sendo normalizado, seguido do gráfico da função densidade acumulada." + ] + }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 103, "metadata": { "scrolled": false }, @@ -686,9 +808,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAJ4CAYAAAAeIVbgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYlNWZ9/HvTbMKssjiwiJEQAUXxBZQjBpxARdQRAXjboLJaPZMom/G5B1nMm+cSWLiSEyImriCuAEiigvgztJsyiKxFRSiKAgisjfc7x+nWtqmmy7oqj5V9fw+11VXVz11qrirr6Z//ZznLObuiIiIFLp6sQsQERGpCwo8ERFJBAWeiIgkggJPREQSQYEnIiKJoMATEZFEUOCJiEgiKPBERCQRFHgiIpII9WMXsDfatGnjnTt3jl2GiIjkiDlz5qxx97bptM2rwOvcuTMlJSWxyxARkRxhZu+n21ZdmiIikggKPBERSQQFnoiIJIICT0REEkGBJyIiiaDAExGRRFDgiYhIIijwREQkERR4IiKSCAo8ERFJBAWeiIgkQl6tpSm5a/To2BUky8iRsSsQyT86wxMRkURQ4ImISCIo8EREJBEUeCIikggKPBERSQQFnoiIJIICT0REEkGBJyIiiaDAExGRRFDgiYhIIijwREQkERR4IiKSCAo8ERFJBAWeiIgkQlqBZ2YDzWypmZWa2U1VPN/IzB5JPT/TzDqnjrc2s2lm9oWZ3VnNe080s4W1+RAiIiI1qTHwzKwIGAUMAnoAI8ysR6Vm1wHr3L0rcDtwW+r4FuAW4KfVvPdQ4It9K11ERCR96Zzh9QFK3f09d98GjAWGVGozBLgvdf8xYICZmbtvdPdXCcH3FWbWDPgx8J/7XL2IiEia0gm89sCKCo9Xpo5V2cbdy4D1QOsa3vc/gN8Bm9KqVEREpBbSCTyr4pjvQ5tdjc16AV3d/cka/3GzkWZWYmYlq1evrqm5iIhIldIJvJVAxwqPOwAfVtfGzOoDLYC1e3jPE4HjzWw58CrQ3cymV9XQ3Ue7e7G7F7dt2zaNckVERHaXTuDNBrqZWRczawgMByZWajMRuCp1fxgw1d2rPcNz97vc/RB37wycDPzD3U/b2+JFRETSVb+mBu5eZmY3AlOAIuBed19kZrcCJe4+EbgHeMDMSglndsPLX586i2sONDSzC4Cz3H1x5j+KiIhI9WoMPAB3nwxMrnTslxXubwEurua1nWt47+XAUenUISIisq+00oqIiCSCAk9ERBJBgSciIomgwBMRkURQ4ImISCIo8EREJBEUeCIikggKPBERSQQFnoiIJIICT0REEkGBJyIiiaDAExGRRFDgiYhIIijwREQkERR4IiKSCAo8ERFJBAWeiIgkggJPREQSQYEnAuzYAe6xqxCRbKofuwCRurR2LSxZAsuXh9tnn8HmzbB9OxQVQdOm0Lw5HHIIdOoEnTvD174WnhOR/KbAk4JXVgbz5sHrr4ewc4fGjUOYHXooNGkSHm/dChs3wvr18M47MGtWeP1++8FRR0Hv3nDMMQo/kXylwJOC5Q5vvgmPPQaffAKtWsE550BxMRx0ENSroUN/w4YQfG++CW+9FQKweXPo3x9OPTW8n4jkDwWeFKQ1a+DBB8MZ3UEHwb/8Cxx9dM0hV9H++4ezut69YedOWLgQXn4Znn0Wnn8eTj4ZBg5U8InkCwWeFJyFC+Hee8NAlEsvDWdjte2GrFcvdGcec0wI02eeCeH36qtw5pnhzLFhw8zULyLZocCTguEOkybB009D+/Zw/fXQrl3m/502beCKK2DQIJg4MYTfzJkhXHv1yvy/JyKZoWkJUhDcYezYEHh9+8LPf56dsKuoTRu49lr4yU/CwJe77oJ77gmjPkUk96QVeGY20MyWmlmpmd1UxfONzOyR1PMzzaxz6nhrM5tmZl+Y2Z0V2u9nZk+b2dtmtsjMfpOpDyTJ4w5jxsD06aF78eqr67Z7sXt3+MUvYPBgKCmBW28Ng11EJLfUGHhmVgSMAgYBPYARZtajUrPrgHXu3hW4HbgtdXwLcAvw0yre+rfufgRwHNDfzAbt20eQJCs/s3vpJTjrLLjoIjCr+zqKiuDcc+FnPwv3f/97mDpVk9lFckk6Z3h9gFJ3f8/dtwFjgSGV2gwB7kvdfwwYYGbm7hvd/VVC8H3J3Te5+7TU/W3AXKBDLT6HJNT06bvO7IYOjRN2FXXpAv/2b2FE6COPhJGiZWVxaxKRIJ3Aaw+sqPB4ZepYlW3cvQxYD7ROpwAzawmcD7xYzfMjzazEzEpWr16dzltKQixZAuPGwbHH5kbYlWvcGL7znTCo5dVX4Y9/1HU9kVyQTuBV9WukckdNOm12f2Oz+sAY4A53f6+qNu4+2t2L3b24bdu2NRYrybB6Nfz1r3DggXDNNXs3v64u1KsHF1wQaisthT/8IaziIiLxpPNrYiXQscLjDsCH1bVJhVgLYG0a7z0aeMfd/5BGWxEgzK8bPTpcH7vhhjBCMlf16xfO9lauhN/9Dj7/PHZFIsmVTuDNBrqZWRczawgMByZWajMRuCp1fxgw1X3Pl+vN7D8JwfjDvStZkm7yZPjggzAXLh9O+o89Fm68MZyV6kxPJJ4aAy91Te5GYAqwBBjn7ovM7FYzG5xqdg/Q2sxKgR8DX05dMLPlwO+Bq81spZn1MLMOwC8Ioz7nmtl8M/tWJj+YFKbly0Pg9ekTlvzKF0ceGZY3+/hjGDUKtm2LXZFI8qS10oq7TwYmVzr2ywr3twAXV/PaztW8bY4MMZB8sW0b/P3vYQHn4cNjV7P3jjwyTFT/619Dl+x3v6udF0TqUo5d6hep3uTJ8NFHcOWVYd+6fHT88XDZZWH3hXHjYlcjkixaS1PywurVYYeCvn2hZ8/Y1dTOKaeE7Yqefz5sMtu/f+yKRJJBZ3iSFx59NHT/DR0au5LMuPDC0MX58MOwbFnsakSSQYEnOW/hQliwICzd1bJl7Goyo6gIvvWt8Hn+/GdNVxCpCwo8yWllZeFaV7t2cPrpsavJrGbNwhy9L76ABx7Qupsi2abAk5z26qthKP8ll0CDBrGrybyOHUP35ptvwiuvxK5GpLAp8CRnbdsWRmZ27QpHHRW7muw5/fRwPe/RR0O4i0h2KPAkZ730EqxfD0OG5M7C0NlQr17Yw69Bg7CB7I4dsSsSKUwKPMlJW7bAlCnhzKd799jVZF/LlmF+3vvvw7RpsasRKUwKPMlJ06bBhg1hF/GkOP740HU7cSKsTWfpdRHZKwo8yTlbtsBzz4VNVL/2tdjV1B0zGDECdu4Mu7iLSGYp8CTnvPIKbNoU5t0lTZs2cP75Yd7h/PmxqxEpLAo8ySk7dsCLL4brdl26xK4mjjPOgPbt4ZFHYPv22NWIFA4FnuSU2bNh3To466zYlcRTVBTmHa5dG8JfRDJDgSc5wz1cuzvkkMKed5eOI44I1zCfeSYM3hGR2lPgSc5YvBj++U8488zCnneXrmHDwuT7SZNiVyJSGBR4kjOeey7MR+vTJ3YlueGgg+DrX4eXX4ZVq2JXI5L/FHiSEz78EN5+G047Deprl8YvnX8+NGwIEybErkQk/ynwJCe89FIIupNPjl1Jbtl/fxgwAObOhZUrY1cjkt8UeBLdli0wY0ZYaWT//WNXk3sGDIDGjXUtT6S2FHgS3cyZIfROOy12JbmpadMQevPmwYoVsasRyV8KPInKHaZPD/vCJXWieTrOOAOaNNFZnkhtKPAkqnfeCQNWTjtNUxH2ZL/9wlne/Pk6yxPZVwo8ierll8Mvc01FqFn5tbwpU2JXIpKfFHgSzcaN4bpUnz5h6L3s2X77hXl5c+aEffNEZO+kFXhmNtDMlppZqZndVMXzjczskdTzM82sc+p4azObZmZfmNmdlV5zvJm9lXrNHWbq0EqaWbOgrAz6949dSf44/fTw9fbb49Yhko9qDDwzKwJGAYOAHsAIM+tRqdl1wDp37wrcDtyWOr4FuAX4aRVvfRcwEuiWug3clw8g+eu118JglU6dYleSPw44IJwR3313WGRbRNKXzhleH6DU3d9z923AWGBIpTZDgPtS9x8DBpiZuftGd3+VEHxfMrODgebu/oa7O3A/cEFtPojklw8+CIMvdHa39844I3QH33VX7EpE8ks6gdceqDgubGXqWJVt3L0MWA+0ruE9K64bUdV7AmBmI82sxMxKVq9enUa5kg9efz2srKLBKnuvY8ewfdIdd4T5iyKSnnQCr6pra74PbfapvbuPdvdidy9u27btHt5S8sX27WGy+XHHhUnVsvd++lP4+GN49NHYlYjkj3QCbyXQscLjDsCH1bUxs/pAC2BtDe/ZoYb3lAI1fz5s2gQnnRS7kvx1xhlw+OFw5501txWRIJ3Amw10M7MuZtYQGA5MrNRmInBV6v4wYGrq2lyV3P0jYIOZ9UuNzrwS0HrwCTFzJrRqFTY5lX1jBjfcEEa6zp4duxqR/FBj4KWuyd0ITAGWAOPcfZGZ3Wpmg1PN7gFam1kp8GPgy6kLZrYc+D1wtZmtrDDC87vA3UAp8C7wTGY+kuSyDRtg0SI44QSop1mgtXLVVdCsGYwaFbsSkfyQ1s5j7j4ZmFzp2C8r3N8CXFzNaztXc7wEOCrdQqUwlJTAzp3Qr1/sSvJf8+ZwxRVw773w299CmzaxKxLJbfobW+rUzJnQoQO0r3JMruytG26ArVvhnntiVyKS+xR4Umc++QSWLdNUhEzq2RO+8Y0wJ2/HjtjViOQ2BZ7UmZkzw2CLE06IXUlh+c53wtqaL74YuxKR3KbAkzrhHkYUdu8elseSzBkyBFq3DsuNiUj1FHhSJ5YvD12a6s7MvEaN4MorYfx40GJEItVT4EmdKCmBoqKwuopk3nXXhRVsHnggdiUiuUuBJ1m3c2fYw61HDy0lli09e8KJJ4ZuzeqXfBBJNgWeZN1774WtbIqLY1dS2L71LViyJCzMLSK7U+BJ1s2ZE3ZGOPbY2JUUtksuCSuvaPCKSNUUeJJV5d2ZRx0FTZrErqawNWsGl14adlDYuDF2NSK5R4EnWVVaCuvXqzuzrlx5ZQi7J5+MXYlI7lHgSVaVlEDDhnDMMbErSYaTT4YuXeD++2NXIpJ7FHiSNTt2wNy5cPTRYa6YZF+9emFB6RdegH/+M3Y1IrlFgSdZU1oatgM6/vjYlSTLFVeEqQkPPhi7EpHcosCTrJk7Fxo0CANWpO507Rp2k7//fs3JE6lIgSdZsXMnzJsXwk7dmXXvyith8eLwR4eIBAo8yYply8LozN69Y1eSTJdcEgYLaakxkV0UeJIV5ZPNjz46diXJ1KoVnHMOjBunffJEyinwJOPcYf58OPJITTaPacQI+OgjeOWV2JWI5AYFnmTc++/Dp5+qOzO2c88Ni3WPGRO7EpHcoMCTjJs7N8wH09qZcTVtCoMHw2OPha2DRJJOgScZ5R5GZx5+uLYCygUjRsDatWEiukjSKfAko1atCjub9+oVuxIBOOssaNlS3ZoioMCTDFuwIHxVd2ZuaNQIhg6F8eNh8+bY1YjEpcCTjJo/Hw49NAyLl9wwfHhY4u2ZZ2JXIhJXWoFnZgPNbKmZlZrZTVU838jMHkk9P9PMOld47ubU8aVmdnaF4z8ys0VmttDMxphZ40x8IIln/XpYvlxnd7nmG9+Adu1g7NjYlYjEVWPgmVkRMAoYBPQARphZj0rNrgPWuXtX4HbgttRrewDDgZ7AQOBPZlZkZu2B7wPF7n4UUJRqJ3lswYIwaEXX73JL/fpw8cXw1FPhTE8kqdI5w+sDlLr7e+6+DRgLDKnUZghwX+r+Y8AAM7PU8bHuvtXdlwGlqfcDqA80MbP6wH7Ah7X7KBLbggXQpg0cckjsSqSy4cNhyxaYODF2JSLxpBN47YEVFR6vTB2rso27lwHrgdbVvdbd/wn8FvgA+AhY7+7PVfWPm9lIMysxs5LVq1enUa7EsGULvP126M40i12NVHbSSdChg7o1JdnSCbyqfn1V3nSkujZVHjezVoSzvy7AIUBTM7u8qn/c3Ue7e7G7F7dt2zaNciWGxYuhrEzX73JVvXrhLG/KlDAvTySJ0gm8lUDHCo87sHv345dtUl2ULYC1e3jtGcAyd1/t7tuBJ4CT9uUDSG5YsCBMNO/aNXYlUp3hw8OKK088EbsSkTjSCbzZQDcz62JmDQmDSypfCZgIXJW6PwyY6u6eOj48NYqzC9ANmEXoyuxnZvulrvUNAJbU/uNIDGVl8NZbYWeEoqLY1Uh1evcOf5CoW1OSqsbAS12TuxGYQgilce6+yMxuNbPBqWb3AK3NrBT4MXBT6rWLgHHAYuBZ4AZ33+HuMwmDW+YCb6XqGJ3RTyZ15tVXYeNGdWfmOrOw1Ni0aWFFHJGksXAilh+Ki4u9pKQkdhlSyY9+BHfeCb/7HTTWbMo6MXLkvr1u4cJwJv6nP8F3v5vZmkRiMLM57l6cTluttCK14g4TJoS97xR2ua9nTzjiCHj00diViNQ9BZ7UysKFsGyZujPzhRkMGwYvvRQW+RZJEgWe1Mr48eGX6DHHxK5E0nXxxbBzp0ZrSvIo8KRWJkyAvn2hRYvYlUi6jj4auncPG8OKJIkCT/bZypUwZw4MqbzQnOQ0s3CWN20aaPEiSRIFnuyz8nUZFXj5Z9iw0K355JOxKxGpOwo82WcTJoSusSOOiF2J7K1jjw2T0DVaU5JEgSf7ZP360CU2ZIgWi85HFbs116yJXY1I3VDgyT559tmwLqO6M/PXxRfDjh1hpK1IEijwZJ9MmABt20K/frErkX3Vqxccdpi6NSU5FHiy17Zvh8mT4fzztVh0PiufhP7ii/Dpp7GrEck+BZ7stZdeCtfw1J2Z/9StKUmiwJO9Nn48NGkCZ5wRuxKprd69oUsXTUKXZFDgyV5xD/PvzjoL9tsvdjVSW+WjNV94QTuhS+FT4MlemTcPVqxQd2YhGTYsbOI7YULsSkSyS4Ene2XCBKhXD847L3YlkinFxdC5s0ZrSuFT4MlemTAB+vcPUxKkMJSP1nzhBVi3LnY1ItmjwJO0LV8OCxaoO7MQXXxxmG5Svj6qSCFS4EnatFh04TrhBOjUSd2aUtgUeJK2CROgR4+w6LAUlvJuzeeeg88+i12NSHYo8CQt69aFCec6uytc6taUQqfAk7RMnhxW5FDgFa6+faFjR01Cl8KlwJO0jB8PBx8crvVIYSrv1pwyJSwdJ1JoFHhSo61bw3ZA558f5uBJ4Ro2DLZtg6eeil2JSObp15fUaOpU+OILuPDC2JVItvXrB+3ba7SmFCYFntRo/HjYf3/4xjdiVyLZVq/erm7Nzz+PXY1IZqUVeGY20MyWmlmpmd1UxfONzOyR1PMzzaxzheduTh1famZnVzje0sweM7O3zWyJmZ2YiQ8kmbVzZ5iOcM450KhR7GqkLlx8cejGnjQpdiUimVVj4JlZETAKGAT0AEaYWY9Kza4D1rl7V+B24LbUa3sAw4GewEDgT6n3A/gj8Ky7HwEcCyyp/ceRTJsxAz7+GC64IHYlUldOPBEOOUTdmlJ40jnD6wOUuvt77r4NGAtUHpw+BLgvdf8xYICZWer4WHff6u7LgFKgj5k1B04B7gFw923urumuOWj8eGjQAAYNil2J1JV69eCii+CZZ2DDhtjViGROOoHXHlhR4fHK1LEq27h7GbAeaL2H134NWA38zczmmdndZta0qn/czEaaWYmZlaxevTqNciVT3OHJJ+H006FFi9jVSF0q79Z8+unYlYhkTjqBZ1Uc8zTbVHe8PtAbuMvdjwM2ArtdGwRw99HuXuzuxW21RH+dWrIESkvVnZlE/fuHeZfq1pRCkk7grQQ6VnjcAfiwujZmVh9oAazdw2tXAivdfWbq+GOEAJQcMn58+Dp4cNw6pO6Vd2tOnhympIgUgnQCbzbQzcy6mFlDwiCUyqvtTQSuSt0fBkx1d08dH54axdkF6AbMcvdVwAozOzz1mgHA4lp+Fsmw8ePDclOHHBK7Eolh2DDYskWjNaVw1Bh4qWtyNwJTCCMpx7n7IjO71czK//a/B2htZqXAj0l1T7r7ImAcIcyeBW5w9x2p13wPeMjM3gR6Af+VuY8ltbVyJcyere7MJDv55PDHztixsSsRyYz66TRy98nA5ErHflnh/hbg4mpe+2vg11Ucnw8U702xUnfKV8xX4CVXURFceimMGhW2DGrZMnZFIrWjlVakSuPHw+GHwxFHxK5EYhoxIqyt+cQTsSsRqT0Fnuzms89g2jSd3QkUF8Nhh8GYMbErEak9BZ7sZvJkKCtT4EnYMmj48LCA+Mcfx65GpHYUeLKb8ePhoIOgT5/YlUguGDEirKmqOXmS7xR48hVbtoQlpYYM0d53EvTsCUcfrW5NyX/6lSZfob3vpCojRsDrr8Py5bErEdl3Cjz5iieeCHvfnXZa7Eokl4wYEb4+9FDcOkRqQ4EnX9q+PSwWPXiw9r6Tr+rcGU45BR54ICwqLpKPFHjypWnTYO3asFK+SGVXXAFLl0JJSexKRPaNAk++9OijoTvz7LNrbivJM2xYOPO///7YlYjsGwWeALu6M88/Hxo3jl2N5KKWLUN399ix4edFJN8o8ASA6dPh00/VnSl7dsUVsGYNPPts7EpE9p4CT4DQndmsmbozZc8GDoQ2bcLgFZF8o8ATysp2dWc2aRK7GsllDRqEKQoTJ4YBTiL5RIEnTJ8euqnUnSnpuPZa2LpVc/Ik/yjw5MvuzIEDY1ci+aBXL+jdG+65R3PyJL8o8BKurCysrnLeeerOlPRddx0sWABz58auRCR9CryEU3em7IvLLgvTV+65J3YlIulT4CXco49C06YwaFDsSiSftGwZJqI//DBs3hy7GpH0KPASTN2ZUhvXXQfr18Pjj8euRCQ9CrwEe+ml0J15ySWxK5F8dOqpcNhhMHp07EpE0qPASzB1Z0ptmMF3vgOvvAJvvRW7GpGaKfASSt2ZkgnXXhsGr4waFbsSkZop8BJq+nRYvVqjM6V2DjggjNh84AH47LPY1YjsmQIvoR56CJo3h3PPjV2J5LsbboBNm+C++2JXIrJnaQWemQ00s6VmVmpmN1XxfCMzeyT1/Ewz61zhuZtTx5ea2dmVXldkZvPMbFJtP4ikb/PmMLLuoou0FZDUXu/e0K9f6NbcuTN2NSLVqzHwzKwIGAUMAnoAI8ysR6Vm1wHr3L0rcDtwW+q1PYDhQE9gIPCn1PuV+wGwpLYfQvbOpEmwYQN885uxK5FCceON8M478PzzsSsRqV46Z3h9gFJ3f8/dtwFjgSGV2gwByjs0HgMGmJmljo91963uvgwoTb0fZtYBOBe4u/YfQ/bGQw/BwQfDaafFrkQKxbBhcOCB8Pvfx65EpHrpBF57YEWFxytTx6ps4+5lwHqgdQ2v/QPwM2CPnSBmNtLMSsysZPXq1WmUK3uydi1Mnhy2eCkqqrm9SDoaNYIf/ACeew7mz49djUjV0gk8q+JY5TXSq2tT5XEzOw/4xN3n1PSPu/tody929+K2bdvWXK3s0aOPwvbt6s6UzPvud8OuG//937ErEalaOoG3EuhY4XEH4MPq2phZfaAFsHYPr+0PDDaz5YQu0tPN7MF9qF/20kMPwRFHwHHHxa5ECk3LlnD99TBuHCxbFrsakd2lE3izgW5m1sXMGhIGoUys1GYicFXq/jBgqrt76vjw1CjOLkA3YJa73+zuHdy9c+r9prr75Rn4PLIHy5aFVTEuvzyskiGSaT/8IdSrp2t5kpvq19TA3cvM7EZgClAE3Ovui8zsVqDE3ScC9wAPmFkp4cxueOq1i8xsHLAYKANucPcdWfosUoP77gtBd+WVsSuR2srl9SuLi+Evf4HOnWH//WNXkxkjR8auQDKhxsADcPfJwORKx35Z4f4WoMo1O9z918Cv9/De04Hp6dQh+27nzhB4Z5wBHTvW3F5kX519NsyYEQawXHRR7GpEdtFKKwnx0kuwfDlcfXXsSqTQHXww9OkD06aF7YNEcoUCLyH+/vewlNiFF8auRJLg/PNhx44wBUYkVyjwEmDDBnjsMRg+XDsjSN1o2xZOPjkMklqzJnY1IoECLwEefTQs7nvNNbErkSQ555wwSGqSVsqVHKHAS4B77w1z7/r2jV2JJEmrVmH5uhkzYMWKGpuLZJ0Cr8AtWgSvvQbf+pbm3kndO+ccaNoUxowBr7w+k0gdU+AVuL/8BRo2hKuuqrmtSKY1bQpDh8K774YzPZGYFHgFbNMmuP/+sJJ9mzaxq5GkOvFE6NIl7MG4aVPsaiTJFHgF7JFHwjyo66+PXYkkWb16cNll8MUXMGFC7GokyRR4Bewvf4Ejj4Svfz12JZJ0nTqFASwvvQRvvx27GkkqBV6Bmj8fZs4MZ3carCK5YOhQaNcO/va3cLYnUtcUeAXqrrugcWMtFC25o2HDMFp4w4awTZVGbUpdU+AVoLVr4YEHwiavrVrFrkZkl06dYMgQmDsXXn01djWSNAq8AvTXv8LmzfCDH8SuRGR3Z54Zri2PGQNLl8auRpJEgVdgtm+HO++E00+Ho4+OXY3I7urVg29/O1zPu+su+PDD2BVJUijwCswTT8DKlWHnaZFc1bQp3HgjNGgQ/kDTNkJSFxR4BeaPf4TDDoNzz41dicietWkDN9wQRmz+z//A6tWxK5JCp8ArILNmwRtvwPe/H7qNRHJd587wox+FFVhuuw3efz92RVLI9GuxgNx2G7RooV3NJb906QI/+1mYtvC734U/2jRlQbKhfuwCJDOWLAnX7/7t38LO5iL55KCDQuiNHg1//zvMmQOXXw4tW2bv39y2LQyYWbsWPv0UPv8ctm4NN4BGjcKtZcswnaJ79xDOWsghf5nn0Z9SxcXFXlJSEruMnHT11WGj1/ffj7NQ9OjRdf9vSuHZuROmToXx46GoKCyLN2BA7eeTfvFF2JPvgw/CoK4VK2DVqq+eSdavHxZraNQoPN66FbZsgbKyXW0OPBC+8Q044wy48EI44IDa1SW1Z2Zz3L04rbYKvPy3fDl07RpGvf3hD3FqUOBJJn38cVhoeu7ccEbVqxf07Bnm77VuXf3j9Ww+AAAgAElEQVTrdu6Edet2hduKFeG2bt2uNq1aQceO4dahA7RtG4Jrv/12P3tzDyvD9OsHixfDyy/Diy+GsGzYEM47D669FgYN0nXzWBR4CXPjjSFw3n03/CeOQYEn2bBmTQiYOXN2TV1o2jR0M7ZoEc4Cd+wI3ZOffRZu5WdkZqGrtDzcym/Nmu19HSNH7rrvDvPmhdWMHn4YPvkkhPFNN8Hw4eFMUeqOAi9BVq0K1xW++U24++54dSjwJJvc4aOPwk4Lq1btCjf3EHoNGoQAbNUqdOl37Ajt2+/qnqytioFX0fbt4VLC//t/sHAhdOsWBt6cd56u9dWVvQk8/S2S5/7rv8J/up//PHYlItljBoccEm65pEGDsNff8OEwaVL4fzh4cFg+7Y9/DF2wkjvS6nU2s4FmttTMSs3spiqeb2Rmj6Sen2lmnSs8d3Pq+FIzOzt1rKOZTTOzJWa2yMy06uM+eP/9sOfdtdeGvyxFJI569ULQvfkm3HEHlJSE646/+c1XB71IXDUGnpkVAaOAQUAPYISZ9ajU7Dpgnbt3BW4Hbku9tgcwHOgJDAT+lHq/MuAn7n4k0A+4oYr3lBrcemv4esstcesQkaBBA/je90LX6+DBcPPNcOKJYdqQxJfOGV4foNTd33P3bcBYYEilNkOA+1L3HwMGmJmljo91963uvgwoBfq4+0fuPhfA3TcAS4D2tf84ybF0aZiv9C//Em+giohUrV27cG1v3Lgwirq4OGx8m0dDJgpSOoHXHlhR4fFKdg+nL9u4exmwHmidzmtT3Z/HATOr+sfNbKSZlZhZyWottvelX/0KmjQJf0GKSG66+GJYsAD69g2XHi6/XLu9x5RO4FU11qjy3ynVtdnja82sGfA48EN3/7yqf9zdR7t7sbsXt23bNo1yC9+MGfDII2FHhHbtYlcjIntyyCHw/PPwH/8BY8dC//6wbFnsqpIpncBbCVTsNOsAVN7B6ss2ZlYfaAGs3dNrzawBIewecvcn9qX4JNq5MywOffDBGpkpki+KisKyf5MnhwnxJ5wA06bFrip50gm82UA3M+tiZg0Jg1AmVmozEbgqdX8YMNXDBL+JwPDUKM4uQDdgVur63j3AEnf/fSY+SFI88ADMnh0Wit5//9jViMjeOPvssKtJu3Zh6sKoUbquV5dqDLzUNbkbgSmEwSXj3H2Rmd1qZoNTze4BWptZKfBj4KbUaxcB44DFwLPADe6+A+gPXAGcbmbzU7dzMvzZCs6GDWE1h759w0RzEck/3bqFyxKDBoVVkq6/PqwUI9mX1sRzd58MTK507JcV7m8BLq7mtb8Gfl3p2KtUfX1P9uDXvw6rTEyYoHX7RPJZ8+bh//Ett4TFI5YsgSefjLPwe5Lo12aeWLAgLFl0zTXQp0/sakSkturVC3/EjhkTLlOceCL84x+xqypsCrw8UFYG110XVnT/7W9jVyMimTR8eNgS6bPPQui9/HLsigqXAi8P/P73YbX4UaO0/5ZIITrpJJg5MwxmOeOMMDhNMk+Bl+PeeSdMMr/wQrjootjViEi2fO1r8PrrcPLJcOWV4f+9RnBmlgIvh23fDldcEbY4ufNObTciUuhatYJnnw3X6m+9Nfz/37o1dlWFQ9sD5bBbbgndHOPG5d62KCKSHQ0bwj33hOkL/+f/hF1RNIIzM3SGl6Oeey5MLr/++rAen4gkh1lYJ3fsWI3gzCQFXg5atSp0ZfTsCbffHrsaEYnl0kvDEmQawZkZCrwcs2VLGKDyxRdhgegmTWJXJCIxnXjiV0dw3n9/7IrylwIvh7iH+XYzZoRhyT17xq5IRHJB+QjOr38drroq7JSyfXvsqvKPAi+H/Nd/wcMPh9UXhg6NXY2I5JLyEZw//CH88Y/wjW/ARx/Friq/KPByxN//HrYP+eY3tamriFStQYNwXX/MGJg3D3r3hldeiV1V/lDg5YCxY0NX5plnwt13a76diOzZ8OHhut7++8Ppp4czPk1Sr5kCL7IJE+Dyy8PqCuPHQ+PGsSsSkXxw1FFhysK554ZuzosvhrVrY1eV2xR4ET34IAwbBsXFMGkS7Ldf7IpEJJ+0aAFPPAH//d8wcSIccwy8+GLsqnKXAi8C9/ADesUVYdTVlCnavVxE9k29evCv/xpGdzdrFqYufO97YWqTfJUCr45t2xZ2Of75z0M//DPPhL/SRERqo3dvmDs3hN2oUaHL87nnYleVWxR4dej998MZ3Z/+BD/9KTz0UFgYWkQkE/bbD+64I4zcbNwYzj47rNayYkXsynKDAq+OPPlk+Avs7bfhscfgf/4ndEWIiGRa//4wfz78+7+Ha3tHHAH/+Z+wcWPsyuLSr9wsW7UqjJ4aOhQOPTRs5Kp97UQk2xo3hl/+EpYsgYEDw+4rhx0Wuju3bYtdXRwKvCzZujV0LfToAU89FVZRmTkTunaNXZmIJEnnzvD44/Daa3D44WEMQbdu4fdT0s74FHgZVlYWrs0deST84AehG3PBgrB6SoMGsasTkaQ66SSYPj0MlOvUKfx+OvRQ+MUvwviCJFDgZcjnn4clf7p2DRPJW7QI0w2efz78VSUiEptZ6N585RV49dVwre83v4EuXeC88+DRR2Hz5thVZo8CrxZ27IAXXoArrww7kv/4x+EvpyeeCNfqzjpLy4SJSG7q3z+s9LRsWVjHd948uOQSOPDA8Dvt8cdhw4bYVWZW/dgF5Ju1a2HqVHj66XBbvTqczV12GXz723DCCbErFBFJX6dOcOut8KtfhS7Phx8Of7Q/8AA0bAinnBJ2ZjjttLAqVMOGsSved2kFnpkNBP4IFAF3u/tvKj3fCLgfOB74FLjU3ZennrsZuA7YAXzf3aek8565YONGWLgwXIObOzd0ASxaFJ5r1QoGDYILLoDzz9camCKS34qKYMCAcPvzn8P+e089FS7L/OIXoU2DBmEgXq9eu27HHht+H+aDGgPPzIqAUcCZwEpgtplNdPfFFZpdB6xz965mNhy4DbjUzHoAw4GewCHAC2bWPfWamt4z43bsgPXrw/W2zz8Pp+vl9z/+OFy4ff99+OCD8PWTT3a9tnnzcNH3ssvCXzz9+kF9nR+LSAFq0ABOPTXcANasgZdfhpKSML/vuefgvvt2tW/ZEjp2DLdOncLXgw8OvV/Nm+/62rx5WGyjfv1wa9QoBG1dSedXdh+g1N3fAzCzscAQoGI4DQH+b+r+Y8CdZmap42PdfSuwzMxKU+9HGu+ZcZMmhTOy6jRuHEYtHXpo+MulU6ewPM+xx4ahvboeJyJJ1KZNmEtccWPqjz8OvV9vvhlOEFasCCcLM2fCp5+m975PPRUGy9SVdAKvPVBxYZqVQN/q2rh7mZmtB1qnjs+o9Nr2qfs1vWfGHXts2Ddq//13/bVRfr9NG2jbVqEmIpKOAw8MA/POOmv35zZtCoFY3oNWflu/Pkx6LysLtyOPrNua0wm8qiKg8laD1bWp7nhVo0Or3L7QzEYCI1MPvzCzpdXUmQRtgDWxiyhA+r5mT0F8b6+/PnYFVcr77+3Pf56Rtzk03YbpBN5KoGOFxx2AD6tps9LM6gMtgLU1vLam9wTA3UcDo9Oos+CZWYm7F8euo9Do+5o9+t5mj763ey+deXizgW5m1sXMGhIGoUys1GYicFXq/jBgqrt76vhwM2tkZl2AbsCsNN9TREQkY2o8w0tdk7sRmEKYQnCvuy8ys1uBEnefCNwDPJAalLKWEGCk2o0jDEYpA25w9x0AVb1n5j+eiIhIYOFETPKBmY1MdfFKBun7mj363maPvrd7T4EnIiKJoLU0RUQkERR4OcLMGpvZLDNbYGaLzOzfU8e7mNlMM3vHzB5JDfIhNRDoETMrTT3fOWb9uWwP39u/m9kyM5ufuvVKHTczuyP1vX3TzHrH/QS5zcyKzGyemU1KPdbPbIZU8b3Vz2wtKPByx1bgdHc/FugFDDSzfoRl2m53927AOsIyblBhOTfg9lQ7qVp131uAf3X3Xqnb/NSxQYQRxd0Ic0DvqvOK88sPgCUVHutnNnMqf29BP7P7TIGXIzz4IvWwQermwOmE5doA7gPKF0cbknpM6vkBqeXcpJI9fG+rMwS4P/W6GUBLMzs423XmIzPrAJwL3J16bOhnNiMqf29roJ/ZNCjwckiq+2I+8AnwPPAu8Jm7l6WaVFya7SvLuQHly7lJFSp/b919ZuqpX6e6gG5P7foBVS+n1x6pyh+AnwE7U49bo5/ZTKn8vS2nn9l9pMDLIe6+w917EVae6QNUtdJc+ZlJOku+SUrl762ZHQXcDBwBnAAcAJQvdKTvbRrM7DzgE3efU/FwFU31M7uXqvnegn5ma0WBl4Pc/TNgOtCP0DVRvkBAxSXYvly2rdJybrIHFb63A939o1QX0Fbgb+zaySOd5fQE+gODzWw5MJbQlfkH9DObCbt9b83sQf3M1o4CL0eYWVsza5m63wQ4g3CxehphuTYIy7dNSN2vbjk3qaSa7+3b5dc4UteRLgAWpl4yEbgyNfKtH7De3T+KUHpOc/eb3b2Du3cmrK401d2/iX5ma62a7+3l+pmtHW1hmjsOBu6zsOFuPWCcu08ys8XAWDP7T2AeYRk3qGY5N6lSdd/bqWbWltAdNB/4Tqr9ZOAcoBTYBFwToeZ89nP0M5stD+lndt9ppRUREUkEdWmKiEgiKPBERCQRFHgiIpIICjwREUkEBZ6IiCSCpiWI5Agz2wG8Rfh/uQS4yt03xa1KpHDoDE8kd2xOrYB/FLCNXXOsRCQDFHgiuekVoCuAmV2e2s9vvpn9JbUQdlFqb7SFZvaWmf0o1baXmc1ILS78pJm1ivopRHKIAk8kx6TWmRwEvGVmRwKXAv1Ti1/vAL5J2Nevvbsf5e5HE9ZVBLgf+Lm7H0PoHv1VnX8AkRylwBPJHU1SWxiVAB8QluIaABwPzE49NwD4GvAe8DUz+18zGwh8bmYtgJbu/lLq/e4DTqnrDyGSqzRoRSR3bE6dxX0ptUjwfe5+c+XGZnYscDZwA3AJ8KM6qVIkT+kMTyS3vQgMM7N2AGZ2gJkdamZtgHru/jhwC9Db3dcD68zs66nXXgG8VOW7iiSQzvBEcpi7LzazfwOeM7N6wHbCGd1m4G+pYxA2BoWw/c6fzWw/QrenVs0XSdFuCSIikgjq0hQRkURQ4ImISCIo8EREJBEUeCIikggKPBERSQQFnoiIJIICT0REEkGBJyIiiaDAExGRRFDgiYhIIijwREQkERR4IiKSCAo8ERFJBAWeiIgkggJPREQSQYEnIiKJoMATEZFEUOCJiEgiKPBERCQRFHgiIpIICjwREUkEBZ6IiCSCAk9ERBJBgSciIolQP3YBe6NNmzbeuXPn2GWIiEiOmDNnzhp3b5tO27wKvM6dO1NSUhK7DBERyRFm9n66bdWlKSIiiaDAExGRRFDgiYhIIijwREQkERR4IiKSCAo8ERFJBAWeiIgkggJPREQSISuBZ2b3mtknZrawmufNzO4ws1Ize9PMemejDhERkXLZOsP7OzBwD88PArqlbiOBu7JUh4iICJClpcXc/WUz67yHJkOA+93dgRlm1tLMDnb3j7JRj4iIfNX27bB2LWzYABs3Vn/bvDm0rXjbtq3qY2VlsHNnuLnvul/xVvH4b38LJ51Ud5851lqa7YEVFR6vTB3bLfDMbCThLJBOnTrVSXEikh2jR8euYN+MHBm7gvRs2AArVsDKleHrhx/CmjXw6ae7vpbfPv987967Xj1o0CDcGjbcdb/isfr1oagIzEL7yjez8Hz546Ki7HwfqhMr8KyKY15VQ3cfDYwGKC4urrKNiEgSuIfg+sc/4J13wtfy+++/D+vX7/6a5s2hdetdt+7dw9c2beCAA8LzTZtWf2vSJIRZvQIY4hgr8FYCHSs87gB8GKkWEZGcs2NHCLL582HevPB1/nz45JNdberXh699Dbp1g1NOgY4doUOHXV8POQQaNYr3GXJNrMCbCNxoZmOBvsB6Xb8TkSRbvx7eeANeey3cZs0K19AgdBkedRScey4cfTQcfng4U+vcOYSepCcr3yozGwOcBrQxs5XAr4AGAO7+Z2AycA5QCmwCrslGHSIiuWrDBpg+HZ5/Hl56Cd56K3RZ1qsHvXrBNddAcXG4f+SRoVtRaidbozRH1PC8Azdk498WEclFO3fCnDnw3HPh9vrrYVRjkyZw8slw0UXQvz/07QvNmsWutjDpZFhEJEu2bIGpU2HCBJg4EVatCsd794af/hTOOisMy9d1trqhwBMRyaBNm0LAPfEEPPssfPFFOGMbNAgGDw4h165d7CqTSYEnIlJLO3bAtGnwwAMh6L74Ag46CL75TRgyBE4/XWdxuUCBJyKyj958Ex58EB56KEzybt4cLr0UrrgCvv71wpi7VkgUeCIie+Gf/4QxY8LZ3JtvhmkBgwbBH/4A550XBqFIblLgiYjUYMOG0FX54IPw4oth+kDfvnDnnXDJJdC2bewKJR0KPBGRKuzYAUuWwMyZ8MMfhkWUu3SBW24J1+a6d49doewtBZ6ISIp7WHR5xgyYPTsssLzffnDlleG63EknhQWQJT8p8EQk8dauDWdyM2fCRx+F63JHHx26LY86Cm7QMhkFQYEnIom0eXNY+WTmzLDjAEDXrqG78vjjw04BUlgUeCKSGGVlsGhRCLkFC8Ljdu3ChPA+fTT4pNAp8ESkoO3cCaWl4ZrcnDlhB4JmzcL6lf36hR0HdF0uGRR4IlJw3MOu37NmhaBbty7sNtCrF5xwAvTsWfe7bUt8CjwRKRhr1oSQmzUrDD6pVy+E29ChcMwx0Lhx7AolJgWeiOS1zz8PXZWzZsF774VjXbvCZZeFwSfaakfKKfBEJO9s2gTz5oXuyrffDl2Y7dvDhReGLsvWrWNXKLlIgScieWHbtrB25ezZsHBhGGHZpg0MHBhCrn372BVKrlPgiUjOKiuDxYtDyC1YAFu3QosWcOqpIeQ0wlL2hgJPRHKKO7z7LrzxRui23LgxLO91wglhrly3btp2R/aNAk9EcsLatWENyzfegE8+CRumHntsCLoePcJyXyK1oR8hkTw0enTsCjKjrCycxb322q7BJ927wznnwHHHaRqBZJYCT0Tq3Pr18PLL4fb553DAASHkTjxRy3tJ9ijwRKTOLFsGU6eGeXM7doRJ4aefHrosdV1Osk2BJyJZ5R66KydNCmtaNm4cRlmedhoceGDs6iRJFHgikhXusHQpPPVUCLqWLeGSS6B/f12bkzgUeCKSceVB9847IeiGDw+7EzRoELsySTIFnohkzMcfw6OPwltvhQnil14KX/+6gk5ygwJPRGpty5ZwjW7q1BBuQ4eGwSgKOsklCjwRqZUFC2DMmLDnXP/+cMEF0Lx57KpEdqfAE5F98sUX8PDDYYrBIYfAt78Nhx0WuyqR6inwRGSvLVwI990X1rkcPBjOPltLf0nu04+oiKRt+3Z4/HGYNi2c1X3/+9CxY+yqRNKjwBORtKxZE9bwfP99GDAgbLaqQSmSTxR4IlKjt96Ce+8Nk8m/+13o1St2RSJ7T4EnItVyh+efhyeegA4d4Prrtbiz5C8FnohUaft2eOihsD/d8cfDVVeFPepE8pUCT0R2s3kz3HVXWCLsvPPCzSx2VSK1o8ATka9Yvx7+93/hn/+Eq68Oe9SJFAIFnoh8ac0auP32sCnrDTfAUUfFrkgkcxR4IgLAJ5/A738PW7fCj38MXbrErkgksxR4IsKqVeHMbvv2EHaaTC6FSIEnknDlZ3Y7d8JPfgLt28euSCQ76sUuQETiWbs2nNmVlYUzO4WdFLKsBZ6ZDTSzpWZWamY3VfF8JzObZmbzzOxNMzsnW7WIyO7Wrw9ht2kT/PCHYW1MkUKWlcAzsyJgFDAI6AGMMLMelZr9GzDO3Y8DhgN/ykYtIrK7zZvhjjvgs8/CAtCdOsWuSCT7snWG1wcodff33H0bMBYYUqmNA+XbRLYAPsxSLSJSQVkZ/PnP8OGHYakw7WEnSZGtQSvtgRUVHq8E+lZq83+B58zse0BT4Iyq3sjMRgIjATrpz1DJsNGjY1dQt3buDPvYvf12mFSueXaSJNk6w6tqESKv9HgE8Hd37wCcAzxgZrvV4+6j3b3Y3YvbatVakVp56imYNQuGDNEKKpI82Qq8lUDFmTwd2L3L8jpgHIC7vwE0BtpkqR6RxJs1CyZPhv79YdCg2NWI1L1sBd5soJuZdTGzhoRBKRMrtfkAGABgZkcSAm91luoRSbRly0JXZrducNllWghakikrgefuZcCNwBRgCWE05iIzu9XMBqea/QT4tpktAMYAV7t75W5PEamldevgT3+Cli3hO9+B+lpuQhIqaz/67j4ZmFzp2C8r3F8M9M/Wvy8iYamwv/wlrI/5ox9Bs2axKxKJRyutiBSwceNCd+bVV2tiuYgCT6RAvfYavPwynH029O4duxqR+BR4IgVoxQp4+GE44ogwBUFEFHgiBWfLljChvlkzuO46KCqKXZFIblDgiRQQd3jwQVi9OoRd8+Y1v0YkKRR4IgXk1Vdh9mwYPBi6d49djUhuUeCJFIhVq+CRR+DII2HgwNjViOQeBZ5IAdixA/72N2jYMExBqKf/2SK70X8LkQLw9NOwfDlcfnlYUUVEdqfAE8lz770HzzwD/fppvp3InijwRPLYli2hK7NVKxg+PHY1IrlNgSeSxx57LExBuOYaaNIkdjUiuU2BJ5KnFiyAV16Bs84K2/6IyJ4p8ETy0OefwwMPQIcOcP75sasRyQ8KPJE89MgjsHkzXHstNGgQuxqR/KDAE8kz8+dDSQmcey60bx+7GpH8ocATySObNsGYMaEr8+yzY1cjkl8UeCJ55PHHYf16uPJK7YIgsrcUeCJ5YunSsDj0mWfCoYfGrkYk/yjwRPLAtm1hVGa7dhqVKbKvFHgieWDixDDB/PLLwwLRIrL3FHgiOW75cnjhBTjlFDj88NjViOQvBZ5IDtuxI3RltmgBQ4fGrkYkvynwRHLY1KmwciWMGKG1MkVqS4EnkqPWroWnnoKjj4Zjj41djUj+U+CJ5KhHH4WdO8O2P2axqxHJfwo8kRy0cCHMnQvnnANt2sSuRqQwKPBEcsy2bWH5sIMOClv/iEhmKPBEcsyzz8KaNWGgSv36sasRKRwKPJEc8vHHMGUK9OkDRxwRuxqRwqLAE8kR7qErs359GDYsdjUihUeBJ5Ij5syBJUvgggvCRHMRySwFnkgO2Lo1TEPo2BFOPTV2NSKFSYEnkgOefRY++yzMuaun/5UiWaH/WiKRrV4Nzz0XBqp07Rq7GpHCpcATieyxx8Lu5VocWiS7FHgiES1eDPPnw6BB0KpV7GpECpsCTySSHTtg3Dho2xbOOCN2NSKFT4EnEsm0afDRR3DxxdCgQexqRAqfAk8kgs8/D1v/9OgBxxwTuxqRZFDgiUQwYUJYJPrSS7X1j0hdUeCJ1LEPPoDXXoPTTw87IohI3chK4JnZQDNbamalZnZTNW0uMbPFZrbIzB7ORh0iucY9rKjStCmcd17sakSSJeObj5hZETAKOBNYCcw2s4nuvrhCm27AzUB/d19nZu0yXYdILlqwAP7xD7jsMmjSJHY1IsmSjTO8PkCpu7/n7tuAscCQSm2+DYxy93UA7v5JFuoQySllZfD443DwwXDyybGrEUmebARee2BFhccrU8cq6g50N7PXzGyGmQ2s7s3MbKSZlZhZyerVq7NQrkjdmD4dPvkkbP1TVBS7GpHkyUbgVTXmzCs9rg90A04DRgB3m1nLqt7M3Ue7e7G7F7dt2zajhYrUlY0b4emnwzSEnj1jVyOSTNkIvJVAxwqPOwAfVtFmgrtvd/dlwFJCAIoUpEmTYPPmcHanaQgicWQj8GYD3cysi5k1BIYDEyu1GQ98A8DM2hC6ON/LQi0i0X38cejOPPlkaF+5c19E6kzGA8/dy4AbgSnAEmCcuy8ys1vNbHCq2RTgUzNbDEwD/tXdP810LSK54PHHw9JhgwfX3FZEsifj0xIA3H0yMLnSsV9WuO/Aj1M3kYK1dGmYinDBBdC8eexqRJJNK62IZMnOnWGS+QEHwIABsasREQWeSJbMmAErVsCFF0LDhrGrEREFnkgWbN0K48dDly5wwgmxqxERUOCJZMVzz8H69WGvO01DEMkNCjyRDFu3DqZMgeOPh8MOi12NiJRT4Ilk2MSJYVeEoUNjVyIiFSnwRDLoww/hjTfgtNOgTZvY1YhIRQo8kQwaPx4aNYJBg2JXIiKVKfBEMqS0NEwyHzgQmjWLXY2IVKbAE8kAd3jiCWjRQpPMRXKVAk8kA958E959F847T5PMRXKVAk+klnbsgCefhAMPhP79Y1cjItVR4InU0owZ8NFHYYFo7WQukrsUeCK1sG0bPPVUWELsuONiVyMie6LAE6mFadPCyipDh2oJMZFcp8AT2UcbN8Kzz8JRR0H37rGrEZGaKPBE9tGUKbB5c9j+R0RynwJPZB+sWwdTp0LfvtChQ+xqRCQdCjyRffDUU2Gy+fnnx65ERNKlwBPZSx9+CK+/DqeeqgWiRfKJAk9kL02YEBaIPuec2JWIyN5Q4InshXffhfnz4eyztUC0SL5R4ImkqXyB6ObNtUC0SD5S4Imk6a23whZA558fujRFJL8o8ETSsHNnWCC6XTstEC2SrxR4ImmYMSOMztQC0SL5S4EnUoPt22HiROjcGXr3jl2NiOwrBZ5IDaZP1wLRIoVAgSeyB5s2weTJ0LMnHH547GpEpDYUeCJ7oAWiRQqHAk+kGuvWwYsvwgknQMeOsasRkdpS4IlUY9KkMB1hyJDYlYhIJijwRKqwahW89poWiBYpJAo8kSo8+aQWiBYpNAo8kUreey8sEH3WWbD//rGrEZFMUeCJVOAOjz+uBaJFCpECT6SChQvDAtHnnQeNG8euRsVaFysAAA+LSURBVEQySYEnklJxgeiTT45djYhkmgJPJGXmTPjnP8M0BC0QLVJ4FHgi7Fog+tBDtUC0SKFS4IkQFoheuzYsEF1P/ytECpL+a0vibd4MzzwDPXrAEUfErkZEskWBJ4k3ZQps3KgFokUKXdYCz8wGmtlSMys1s5v20G6YmbmZFWerFpHqfPYZvPAC9OkDnTrFrkZEsikrgWdmRcAoYBDQAxhhZj2qaLc/8H1gZjbqEKnJ00+H6QiDB8euRESyLVtneH2AUnd/z923AWOBqtac/w/gv4EtWapDpFpLl8Krr8Ipp0DbtrGrEZFsq5+l920PrKjweCXQt2IDMzsO6Ojuk8zsp9W9kZmNBEYCdFKfU84aPTp2BXvvL3+BBg20QLRIUmTrDM+qOOZfPmlWD7gd+ElNb+Tuo9292N2L2+rPcMmQZctg7lw488ywbqaIFL5sBd5KoOIe0R2ADys83h84CphuZsuBfsBEDVyRuuAOTzwRdkI488zY1YhIXclW4M0GuplZFzNrCAwHJpY/6e7r3b2Nu3d2987ADGCwu5dkqR6RLy1aBP/4B5x7rhaIFkmSrASeu5cBNwJTgP/f3r0HWVGeeRz/PoCg0QjoQoKghhJvxCgbQa2I2SQqEQUBMcpGs8ZoiFZMmWxlN1qbslzLTVxTKbNGs2qh6z0o5MJFlBiNWKUVwcuQLF4iKikRCIqCIAgOvPvHe1jGcYbr9PS5fD9VXef0Oc3w1FvN/Oi3u59+Abg/pbQgIq6KCK+HU2k2N4ju0wdOOKHsaiR1pqIuWiGlNAuY1eqzK9rZ9gtF1SG1NHcuLF4MF14I3Qrb+yVVIzutqGFsbhB9wAFw9NFlVyOpsxl4ahhz5sCKFTaIlhqV/+zVENatg1mz4PDD8yKp8Rh4agi/+50NoqVGZ+Cp7q1alRtEDxuWH/AqqTEZeKp7M2dCc7MNoqVGZ+Cpri1btqVBdN++ZVcjqUwGnurab36TG0SfdlrZlUgqm4GnuvXKK9DUBF/+sg2iJRl4qlMpwa9+BT17wkknlV2NpGpg4KkuzZ+fj/BGjYIePcquRlI1MPBUdzZuzOfuPvlJOP74squRVC0MPNWdJ57IV2eOGwddu5ZdjaRqYeCprqxfDzNmwEEHwVFHlV2NpGpi4Kmu/P738O67MH48RJRdjaRqYuCpbrz7LsyeDUOG5CM8SWrJwFPdeOCB/Mw7G0RLaouBp7rwt7/B44/D8OH56kxJas3AU12YNi23EBs1quxKJFUrA08177XX4JlnckeVnj3LrkZStTLwVNM2txD7+MdhxIiyq5FUzQw81bT58+Hll2H0aNh997KrkVTNDDzVrObmfHTXr1++WEWStsbAU8167DFYvhzOPNMWYpK2zcBTTVqzJt93N3gwHHFE2dVIqgUGnmrSAw/AunX56E6StoeBp5qzbFmezjzhBOjfv+xqJNUKA08159e/hu7d85WZkrS9DDzVlBdfzLcijBwJe+9ddjWSaomBp5qxaRNMmQL77gsnnlh2NZJqjYGnmvHkk7B4cX4awm67lV2NpFpj4KkmrF0Lv/1tfs7d0KFlVyOpFhl4qgkzZuR77yZM8EnmknaOgaeqt2TJltsQDjig7Gok1SoDT1UtJZg8OTeGHjOm7Gok1TIDT1Xt2WfhpZfg9NNhr73KrkZSLTPwVLU2bICpU2HAAPj858uuRlKtM/BUtR56CN5+G84+26chSNp1Bp6q0ltvwezZMGwYHHJI2dVIqgcGnqrSlCnQpQuMH192JZLqhYGnqvPnP0NTE5x6KvTuXXY1kuqFgaeqsn49/PKX0K8fnHxy2dVIqicGnqrKjBmwYgWcey5061Z2NZLqSSGBFxGnRMRLEbEwIi5r4/t/jojnI+JPEfFIRBxYRB2qLa+/Do88AsOHw6BBZVcjqd50eOBFRFfgRmAkMBj4x4gY3Gqz54ChKaUjganAtR1dh2rLpk1w992w555wxhllVyOpHhVxhHcMsDCl9GpKaQMwGfhQU6iU0h9SSmsrq38EBhRQh2rInDmwaBGcdVYOPUnqaEUEXn/g9RbriyuftecC4MH2voyIiRHxdEQ8/eabb3ZQiaom77yTH/0zeHC+706SilBE4LX18JbU5oYR5wJDgZ+098NSSreklIamlIb26dOng0pUNbnvPti4Eb76VR/9I6k4RVwHtxjYv8X6AGBJ640i4iTg34B/SCmtL6AO1YD58+G55/JTzP3/jKQiFXGENw84OCIGRkR3YAIwveUGEfH3wM3A6Sml5QXUoBrw3ntwzz2w337ecyepeB0eeCmlZuASYDbwAnB/SmlBRFwVEadXNvsJsBcwJSKaImJ6Oz9OdWzyZFi9Gr7+dZtDSypeIbf2ppRmAbNafXZFi/cnFfH3qnY8+yzMnQujRsGB3oUpqRPYaUWdbvVquPde2H//3C9TkjqDgadOlVI+b7duHZx/vlOZkjqPgadONW9evipz9Gjov7W7MyWpgxl46jQrV+YnIQwcCCNGlF2NpEZj4KlTpJR7ZX7wQZ7K7OKeJ6mT+WtHneLxx/ODXceNg098ouxqJDUiA0+Fe+MNmDIl98r84hfLrkZSozLwVKgNG2DSJNh9d6cyJZXLXz8q1JQpsGQJfOMbsPfeZVcjqZEZeCrM3Ln53N2IEXk6U5LKZOCpEEuWwF13waBBMHZs2dVIkoGnArz/Ptx0E/ToAd/8pt1UJFUHA08dKiW4805YvjyHXa9eZVckSZmBpw714IPwzDP5frtDDy27GknawsBTh2lqgmnT4JhjbB0mqfoYeOoQb7wBt92Wn233ta9BRNkVSdKHGXjaZUuXwg035ItULr4YuncvuyJJ+igDT7tkzRo47TR47z245BLo3bvsiiSpbQaedlpzM5x1Fsyfn6/IPPDAsiuSpPZ1K7sA1aZNm+DCC/NVmTffXHY1krRtHuFph6UE3/0u3HEHXHklTJxYdkWStG0GnnbYFVfAz38O3/tefi9JtcDA0w656iq4+uo8nfnTn3r7gaTa4Tk8bZeU8tHc1VfDeeflXpmGnaRaYuBpm1KCyy6Da6+FCy6AW27xQa6Sao+Bp61qboaLLoJbb82vN95o2EmqTf7qUrvWroXx43PY/fCH8ItfGHaSapdHeGrTsmX5iQdPPZXbhn3722VXJEm7xsDTRzz7LIwZA2+/DVOnwhlnlF2RJO06J6j0IffeC8OH56nLJ54w7CTVDwNPAKxbl/thnnMODB0K8+bBkCFlVyVJHcfAEwsWwLHHwqRJcPnl8Oij0Ldv2VVJUscy8BpYczP8+Mfw2c/mi1Qeegh+9CPo5pldSXXIX20NqqkpN32eNw/OPDPfctCnT9lVSVJxPMJrMCtXwne+A0cfDa+9BpMnw5Qphp2k+mfgNYj16+H66+GQQ/LR3MUXw1/+AmefXXZlktQ5DLw698EHcPvtcNhhcOmlcMQReRrzhhugd++yq5OkzmPg1an33stHdAcdBOefn8Nt9mx45JF8kYokNRovWqkzL76YH91z++2walW+ifymm2DkSB/nI6mxGXh1YMUKuP9+uPtuePJJ2G03+MpXcv/Lz32u7OokqToYeDVq0SKYMQOmTYM5c/I9dZ/+NFxzTZ7C9MZxSfowA68GpJRvIZg3L4fbww/DwoX5u8MPh+9/HyZMgCOPdNpSktpj4FWZ5mb461/h+edzwG1eVqzI3++1F3zhC3m68tRT820GkqRtKyzwIuIU4L+ArsCklNI1rb7vAdwJHA2sAM5OKS0qqp5qsWFDbuO1ZAksXZpfX3013xP38sv5/Qcf5G27dMnTlGPHwrBhefnMZ/I5OknSjikk8CKiK3AjcDKwGJgXEdNTSs+32OwC4J2U0qCImAD8J9Apt0Fv2pSXjRu3LC3X2/quuTnfvL1+Pbz//pbXlu9Xr85XRrZcVq7c8n7Fii1Hai3tsQcMGpTvkRs3Lh+1HXooHHUU7LlnZ4yIJNW/oo7wjgEWppReBYiIycAYoGXgjQGurLyfCtwQEZFSSgXVxMyZMHp0UT99i499DHr1gp4987LPPjBwYH7t1w/22+/Dr3375qM5SVJxigq8/sDrLdYXA8e2t01KqTkiVgH7Am+13CgiJgITK6trIuKlQiruQGvX5mXJkg7/0X9Hq/FRh3Bci1MXY/utb5VdQZvqYmw7wIHbu2FRgdfWtYKtj9y2ZxtSSrcAt3REUbUuIp5OKQ0tu45647gWx7EtjmO744qaSFsM7N9ifQDQ+njn/7eJiG5AT+DtguqRJDW4ogJvHnBwRAyMiO7ABGB6q22mA+dV3p8JPFrk+TtJUmMrZEqzck7uEmA2+baE21JKCyLiKuDplNJ04FbgrohYSD6ym1BELXXGqd1iOK7FcWyL49juoPCgSpLUCLwYXpLUEAw8SVJDMPCqRETsHhFzI2J+RCyIiH+vfD4wIp6KiJcj4r7KRUBERI/K+sLK958qs/5qtpWxvT0iXouIpsoypPJ5RMT1lbH9U0T4yNytiIiuEfFcRMysrLvPdpA2xtZ9dhcYeNVjPfCllNJRwBDglIg4jtxy7bqU0sHAO+SWbNCiNRtwXWU7ta29sQX4l5TSkMrSVPlsJHBwZZkI/HenV1xbLgVeaLHuPttxWo8tuM/uNAOvSqRsTWV1t8qSgC+RW68B3AGMrbwfU1mn8v2JET4cqC1bGdv2jAHurPy5PwK9IqJf0XXWoogYAJwGTKqsB+6zHaL12G6D++x2MPCqSGX6oglYDjwMvAKsTCk1VzZZTG7JBq1aswGbW7OpDa3HNqX0VOWr/6hMAV1XeYIHtN0arz9qy8+AfwU2Vdb3xX22o7Qe283cZ3eSgVdFUkobU0pDyJ1pjgEOb2uzyut2tWZT1npsI+II4HLgMGAYsA/wg8rmju12iIhRwPKU0jMtP25jU/fZHdTO2IL77C4x8KpQSmkl8BhwHHlqYnODgJYt2mzNthNajO0pKaWllSmg9cD/kP+TAdvXGk9wPHB6RCwCJpOnMn+G+2xH+MjYRsTd7rO7xsCrEhHRJyJ6Vd7vAZxEPln9B3LrNcit2KZV3tuabTu1M7Yvbj7HUTmPNBb438ofmQ78U+XKt+OAVSmlpSWUXtVSSpenlAaklD5F7pT0aErpHNxnd1k7Y3uu++yuKeyJ59ph/YA7Ij88twtwf0ppZkQ8D0yOiKuB58gt2cDWbDuivbF9NCL6kKeDmoCLKtvPAk4FFgJrgfNLqLmW/QD32aLc4z6782wtJklqCE5pSpIagoEnSWoIBp4kqSEYeJKkhmDgSZIagoEnSWoIBp4kqSH8H/p/+EVjYAN/AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAJ4CAYAAAD8/U2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XuclnP+x/HXp/OJohIqCrXKmSmRdSoUVk5R1OawwjrbXSs/i7WsZdc6hm3lfEibpE0rbFiszkSHjVZJIlFC52a+vz8+d9sYM3U3c9/zve/rfj8fj/vRzDXXfftc7pl5z3Vd3+/nayEEREREkqxG7AJERESyTWEnIiKJp7ATEZHEU9iJiEjiKexERCTxFHYiIpJ4CjsREUk8hZ2IiCSewk5ERBKvVuwCtkSzZs1CmzZtYpchIiI5YurUqV+GEJpvbr+8Crs2bdowZcqU2GWIiEiOMLOP09lPlzFFRCTxFHYiIpJ4CjsREUk8hZ2IiCSewk5ERBJPYSciIomnsBMRkcRT2ImISOIp7EREJPEUdiIikngKOxERSby86o0pyTVkSOwKpKyBA2NXIJI5OrMTEZHEU9iJiEjiKexERCTxFHYiIpJ4CjsREUk8hZ2IiCSewk5ERBJPYSciIomnsBMRkcRT2ImISOIp7EREJPEUdiIikngKOxERSTyFnYiIJJ7CTkREEk9hJyIiiaewExGRxFPYiYhI4insREQk8RR2IiKSeAo7ERFJPIWdiIgknsJOREQST2EnIiKJp7ATEZHEU9iJiEjiKexERCTxFHYiIpJ4CjsREUk8hZ2IiCReWmFnZj3MbI6ZzTWzq8v5el0zeyb19Ylm1qbU1walts8xs2NKbb/CzGaa2Qwze9rM6mXigERERMrabNiZWU1gMNAT6Aj0NbOOZXY7F1gWQtgNuAO4NfXcjkAfYA+gB3CfmdU0s5bApUBRCGFPoGZqPxERkYxL58yuMzA3hPBRCGEtMAzoVWafXsCjqY9HAN3MzFLbh4UQ1oQQ5gFzU68HUAuob2a1gAbAoqodioiISPnSCbuWwCelPl+Y2lbuPiGE9cByoGlFzw0hfAr8CVgAfAYsDyG8VJkDEBER2Zx0ws7K2RbS3Kfc7Wa2DX7W1xbYEWhoZv3K/Y+bDTSzKWY2ZcmSJWmUKyIi8n3phN1CoHWpz1vxw0uO/9sndVmyMbB0E8/tDswLISwJIawDRgIHl/cfDyEMCSEUhRCKmjdvnka5IiIi35dO2E0G2plZWzOrgw8kGV1mn9HAgNTHpwLjQwghtb1ParRmW6AdMAm/fNnFzBqk7u11A2ZX/XBERER+qNbmdgghrDezi4Fx+KjJh0IIM83sRmBKCGE0MBR43Mzm4md0fVLPnWlmw4FZwHrgohBCMTDRzEYA01Lb3wGGZP7wREREwPwELD8UFRWFKVOmxC5DsmCI/tTJOQMHxq5AZPPMbGoIoWhz+6mDioiIJJ7CTkREEk9hJyIiiaewExGRxFPYiYhI4insREQk8RR2IiKSeAo7ERFJPIWdiIgknsJOREQST2EnIiKJp7ATEZHEU9iJiEjiKexERCTxFHYiIpJ4m128VURyXwiwZo0/6tSBevXALHZVIrlDYSeSZ0pK4OOPYfZsWLDAH0uXeuBtULcuNGkCbdtChw7+aNw4Xs0isSnsRPLEp5/Cm2/CO+/AsmW+rUULD7QDD/SzuXr1/Ozu66/hq69gxgyYMMHP8vbeG7p1g/btddYnhUdhJ5LDQvDAeuUV+M9/oFYt2GMPOPFE2GsvaNhw088vKfGQnDYN/vUvmD4dWreGPn1gt92q5xhEcoHCTiRHzZ4No0bB/Pl+SfLEE+HHP4ZGjdJ/jRo1PNxat4Zjj4WJE2HMGPjjH6FrVzj55C17PZF8pbATyTGffQbPPONht8028NOfQpcuULNm1V63dm045BAoKoIXXvCzxfffh/PP11meJJ/CTiRHrF69MYTq1oXeveGwwzykMqlePTjlFOjcGYYMgdtv9//WEUfoXp4kl8JOJAfMmgWPP+6jKg8+GE46CbbeOrv/zdatYdAgePhhP5P89FM480y/9CmSNAo7kYhWroQRI+Ctt3xk5a9+Vb2XFBs0gAsvhOefhxdf9JGcZ59d9UumIrlGYScSyYcfwkMP+TSBHj3g+OMzf8kyHTVq+Jlk/frw3HOwdi2cd1711yGSTQo7kWpWXOwjIv/xD2jWDK66yufKxdajh98rHDbMQ/iCC3SGJ8mhsBOpRkuWwNChMG8eHHSQz3erVy92VRsdcYSH8d/+BpddBvfco0ErkgwKO5FqEIJ3Mnn6aT9bOu88nwKQi7p390urgwdDy5Y+iEUk3ynsRLJs5Up48kmYMgXatYNzzoFtt41d1aadfDJstx1cc40PmOndO3ZFIlWjsBPJotKDUHr18vti+TC0v0YNr/ujj3x05h57QMeOsasSqbw8+LETyT/FxT6c//bb/bLlVVd5u658CLoN6tTxe3eNGvlozeXLY1ckUnk6sxPJsFwfhLIlWrb0wDvySDjrLBg5UgNWJD/l0d+ZIrktBPj3v+F3v4PFi30Qylln5W/QbfDjH3vj6FGj4P77Y1cjUjk6sxPJgBUrfBDK1Km+XtzZZ+f+IJQtcdllMG4c/OIXcPjhun8n+UdhJ1JFc+Z4f8nly/3e1tFH59e9uXSY+THuvbf3z5wwwSegi+SLhP1IilSf9evh2Wfhjjt8MMfVV+fPaMvK2H57H6H57rtw7bWxqxHZMjqzE6mEzz/3QSgLFvg9rd69C+NM5/jjvY3Y7bf7MkFdusSuSCQ9CjuRLRAC/OtfPkKxTh1fMWDffWNXVb1uvdXX3Tv3XJg2rTBCXvJfQi+4iGTeN994C62nnvJOKNdfX3hBB77O3l/+4mvw3Xxz7GpE0qMzO5E0vP8+PPoorFoFp53mDZOTem8uHT17Qv/+cMstfjlzn31iVySyaQX84yqyeWvX+pncvff6Gc0110C3boUddBvccYdPrzj/fCgpiV2NyKbpR1akAgsW+GW611/3lQAGDfKOIuKaNoU//QkmTvTBOiK5TGEnUkZJCbz4IvzhD7B6NVx+uY+2jLGKeK7r1w8OPdSnXXz5ZexqRCqmsBMpZdkyvzz33HN+H+o3v4EOHWJXlbvM4L77fPCO1r2TXKawE0mZPRtuugk+/hgGDICBA73jv2zaHnv42e+DD3pnFZFcpLCTgldS4vPG7rpr4yCUgw9Wd/8tcf31sOOO3kNTg1UkFynspKCtWOFz50aPhk6d/N7T9tvHrir/NGrk0xAmTfKG2CK5Jq2wM7MeZjbHzOaa2dXlfL2umT2T+vpEM2tT6muDUtvnmNkxpbY3MbMRZvYfM5ttZgdl4oBE0jV/vo+2nD0bzjgDzjlH3UCqol+/jX8wrFgRuxqR79ts2JlZTWAw0BPoCPQ1s7ILfJwLLAsh7AbcAdyaem5HoA+wB9ADuC/1egB3AS+GEHYH9gFmV/1wRNIzaZKv0RYC/OpXcNhhumxZVTVqwJ13wqJF3lJMJJekc2bXGZgbQvgohLAWGAb0KrNPL+DR1McjgG5mZqntw0IIa0II84C5QGcz2xo4FBgKEEJYG0L4uuqHI7JpIfj9uaFDoU0b+L//g7ZtY1eVHAcfDH37+h8Sn3wSuxqRjdIJu5ZA6W/bhalt5e4TQlgPLAeabuK5uwBLgIfN7B0ze9DMGlbqCETSVFzsLb9Gj/Zu/ZdfrtGW2XDLLT5I5frrY1cislE6YVfexZ2Q5j4Vba8F7A/cH0LYD1gB/OBeIICZDTSzKWY2ZcmSJWmUK/JDa9fCAw/A22/7MjVnnaVJ4tmy885w0UX+h8WsWbGrEXHphN1CoHWpz1sBiyrax8xqAY2BpZt47kJgYQhhYmr7CDz8fiCEMCSEUBRCKGrevHka5Yp836pVcM893sz5jDPgJz/R/blsu+YaP2u+5prYlYi4dMJuMtDOzNqaWR18wMnoMvuMBgakPj4VGB9CCKntfVKjNdsC7YBJIYTPgU/M7Eep53QD9DegZNyqVT5/bu5cH2152GGxKyoMzZrBVVfB88/Dv/8duxqRNMIudQ/uYmAcPmJyeAhhppndaGYnpHYbCjQ1s7nAlaQuSYYQZgLD8SB7EbgohFCces4lwJNm9h6wL/D7zB2WiPe1vOce74hy/vnQuXPsigrL5Zf7nMVf/9oHBonElNZ6diGEscDYMtuuK/XxaqB3Bc+9GfjBEo8hhHeBoi0pViRda9b4sjzz5sF55xXmIquxNWwI110HP/+5j4A9/vjYFUkhUwcVSZziYhgyZOOly/3LvRss1eFnP4PddvMm0cXFm99fJFsUdpIoIfhiqzNm+GCUTp1iV1TYatf25tozZqiNmMSlsJNEGTMG3nwTjj3W11mT+Hr3hgMO8OWSVq+OXY0UKoWdJMakSR52Bx0EJ5yw+f2letSo4QvhLlgA998fuxopVAo7SYQFC+Cxx6BdO+jfX/Pock337v74/e/hu+9iVyOFSGEnee/bb/2MoVEjX3C1Zs3NP0eq3403wpdf+pJKItVNYSd5bcPIy2+/hQsv9MVXJTcddBD06OFNor/9NnY1UmgUdpLXxo6FDz6AM8/0noyS2377W/jqK5/sL1KdFHaStz74wCcrd+niZw2S+zp3huOOgz/9Cb75JnY1UkgUdpKXvvvO16Rr3tzXT5P8ccMNsGwZ3H137EqkkCjsJO+EAI8/7vd9zjsP6tWLXZFsiaIiX3ni9tth+fLY1UihUNhJ3pk0Cd59F3r1gp12il2NVMZvfwtffw133hm7EikUCjvJK8uXw7BhsMsucNRRsauRytpvPzjxRLjjDg89kWxT2EneCMH7K65bBwMGeGcOyV833OB/vNxxR+xKpBDo14XkjcmTYfp0v3y5/faxq5Gq2mcfOOUUD7ulS2NXI0mnsJO8sGIFDB8ObdtCt26xq5FMuf56H2ike3eSbQo7yQujRvl0gzPP1OXLJNlrLzj5ZJ+GoJGZkk36tSE5b948eOMNOPJIaN06djWSaf/3fx50994buxJJMoWd5LTiYh+U0rixz82S5Nl/f++qcscdWhFBskdhJzntjTfgk098AdD69WNXI9ly7bXeM/OBB2JXIkmlsJOctWIFjB4N7dv7SteSXF26+Hp3f/oTrFoVuxpJIoWd5KyxY2HlSjjtNC3GWgiuvRYWL4YHH4xdiSSRwk5y0uLF8OqrcPDBGpRSKA47DH78Y7jtNlizJnY1kjQKO8lJI0dCrVo+gVwKx7XXwsKF8OijsSuRpFHYSc758ENv9Nyjh4/ClMJx1FG+5t0tt3hbOJFMUdhJTgkBnnvOQ65799jVSHUz87O7+fPhqadiVyNJorCTnDJjBvz3vz7vqk6d2NVIDMcf730zf/97n2cpkgkKO8kZJSXeFqx5czjkkNjVSCwbzu4++AD+9rfY1UhSKOwkZ0yZ4oMTTjgBataMXY3EdPLJ0KED3Hyz/xEkUlUKO8kJxcU+gbxVKygqil2NxFajhvfMnDEDnn8+djWSBAo7yQkTJsCSJX5Wp1UNBOD002G33eCmm3zgkkhV6NeKRLd+PfzjH7DTTrD33rGrkVxRqxYMGgTTpvn3h0hVKOwkuiee8LO6449XWzD5vv79Yeed4Xe/09mdVE2t2AVIYVu/3i9TtW6ts7pcM2RI7Apc164+5+4Xv4Ddd6/cawwcmNmaJP/ozE6ievJJn1enszqpyMEHe5OBsWNjVyL5TGEn0RQX+8Thfff1ScQi5ald29uIzZnjfxiJVIbCTqIZOdInDl9zjc7qZNMOPRQaNtTZnVSewk6iCMGb/bZv7xOIRTalbl3vlTpjBixYELsayUcKO4nipZfgnXfgqqvULUXSc8QRUL++piFI5SjsJIpbboGWLX1ouUg66teHww/3P5IWLYpdjeQbhZ1Uu7ffhtdf96HkWtlAtkT37j5g5cUXY1ci+UZhJ9Xutttg223hvPNiVyL5plEjOOwwmDzZGxGIpEthJ9Vq7lxv7Hvhhf6LS2RLHXWU90/V2Z1sCYWdVKu77vKehxddFLsSyVeNG3tXlbffhqVLY1cj+UJhJ9Vm2TJ46CE44wzYYYfY1Ug+O+YYn77y8suxK5F8obCTajNkCKxcCVdeGbsSyXdNm0KXLvDGG/DNN7GrkXygsJNqsXYt3H23j6ZTw2fJhB49vJH4K6/ErkTyQVphZ2Y9zGyOmc01s6vL+XpdM3sm9fWJZtam1NcGpbbPMbNjyjyvppm9Y2ZjqnogktuGD/e5UTqrk0xp0cJXtX/tNVixInY1kus2G3ZmVhMYDPQEOgJ9zaxjmd3OBZaFEHYD7gBuTT23I9AH2APoAdyXer0NLgNmV/UgJLeFAH/+M3To4PdaRDKlZ09YswbGj49dieS6dM7sOgNzQwgfhRDWAsOAXmX26QU8mvp4BNDNzCy1fVgIYU0IYR4wN/V6mFkr4DjgwaofhuSy11/3rhdXXOFDxkUypWVLXzVj/HhYtSp2NZLL0vnV0xL4pNTnC1Pbyt0nhLAeWA403cxz7wSuAkq2uGrJK3/+MzRvDv36xa5EkqhnTx/49PrrsSuRXJZO2JW3+EpIc59yt5vZ8cAXIYSpm/2Pmw00sylmNmWJWibknQ8+gL//HX7+c+9tKJJpbdpAx44+UGXt2tjVSK5KJ+wWAq1Lfd4KKNuG9X/7mFktoDGwdBPP7QqcYGbz8cuiR5rZE+X9x0MIQ0IIRSGEoubNm6dRruSSO+/05VkuvDB2JZJkxx4L334Lb74ZuxLJVemE3WSgnZm1NbM6+ICT0WX2GQ0MSH18KjA+hBBS2/ukRmu2BdoBk0IIg0IIrUIIbVKvNz6EoItcCfPVV/DII375skWL2NVIkrVr54+XXoJ162JXI7los2GXugd3MTAOHzk5PIQw08xuNLMTUrsNBZqa2VzgSuDq1HNnAsOBWcCLwEUhhOLMH4bkoqFDfdDAZZfFrkQKwbHHepeeCRNiVyK5qFY6O4UQxgJjy2y7rtTHq4HeFTz3ZuDmTbz2a8Br6dQh+aO4GO67z9cf22uv2NVIIejQwe/fvfgiHHywFgWW79NAcMmKMWPg44/h4otjVyKFwszP7r780pcAEilNYSdZce+90KoV9Co7I1Mki/bay+fevfgilGhSk5SisJOMmz3bh4FfeKEv5yNSXWrU8Hl3n30G774buxrJJQo7ybjBg6FOHa1ELnEccICP/h071lvViYDCTjLsm2/g0UehTx/vmiJS3WrU8BURPvkEZsyIXY3kCoWdZNSjj8J332lgisR14IG+5t0LL+jsTpzCTjKmpMQHphx4IHTqFLsaKWQ1a/oKG/PmwZw5sauRXKCwk4z55z+9F6bO6iQXHHwwNG7s9+5EFHaSMffcA9ttB73LbS8gUr1q14ajj/Yzu7ffjl2NxKawk4yYN88nkg8c6I2fRXLBj38MjRrBzRX2cJJCobCTjLjvPh8Fd/75sSsR2ahuXejWzQeqvPNO7GokJoWdVNnKld70+eSTvWuKSC454gi/d/e738WuRGJS2EmVPf20d5vXwBTJRfXrwxVXwHPPqatKIVPYSZWE4ANT9t7b74+I5KLLLvOzu9/+NnYlEovCTqrkrbdg+nQ/qzOLXY1I+Zo0gSuvhFGjdO+uUCnspEruucd/kZxxRuxKRDbt0kv9e/XGG2NXIjEo7KTSPv0URo6Ec8+Fhg1jVyOyaU2a+L07nd0VJoWdVNpf/uIrkv/857ErEUnPZZd56OneXeFR2EmlrFnjYXfccbDLLrGrEUlP48Z+7+7552HatNjVSHVS2EmlPPssfPGFphtI/tlw705nd4VFYSeVcs890K4dHHVU7EpEtsyGs7vRo3V2V0gUdrLFpkyBCRP8rK6GvoMkD116KWyzDdxwQ+xKpLroV5VssXvv9dGXAwbErkSkcjac3f397zB1auxqpDoo7GSLLFkCw4Z50DVuHLsakcrT2V1hUdjJFnnwQR+JedFFsSsRqZqtt4Zf/MKXppoyJXY1km0KO0nbunUweDB07w4dO8auRqTqLrnEz+40MjP5FHaStpEjvWvKZZfFrkQkM0qf3U2eHLsaySaFnaTt7rth113h2GNjVyKSOZdcAttuq3t3Saewk7RMmQL//rf/YtB0A0mSrbeGX/4Sxo7173FJJv3akrTcfTc0agRnnRW7EpHMu/RS2G47uOYaX6NRkkdhJ5v1+ec+3eDsszXdQJKpYUO49lp4/XV4+eXY1Ug2KOxks/7yFx+JecklsSsRyZ6BA2HnnXV2l1QKO9mkNWvg/vt9UEq7drGrEcmeunV9kMrUqfDcc7GrkUxT2MkmDR8OixdruoEUhn79YPfd/ZJmcXHsaiSTFHZSoRDgrrv8h1+rG0ghqFULbroJZs+GJ56IXY1kksJOKvT2235J59JLwSx2NSLV4+ST4YAD4Prr/TK+JIPCTip0990++rJ//9iViFQfM7j5Zvj4Y+8FK8mgsJNyffwxjBgBP/uZz68TKSRHHw2HHQa/+x2sWBG7GskEhZ2U6447/C9cDUyRQrTh7G7xYr9vLflPYSc/sHSpX77p2xdat45djUgcXbvCCSfAH/7g6zhKflPYyQ/cf79fuvnVr2JXIhLXrbfCypVaAigJFHbyPatXwz33QI8esNdesasRiWv33eH88+GBB2DOnNjVSFUo7OR7Hn/c71PorE7EXX89NGgAV18duxKpCoWd/E9JCfzpTz7H6IgjYlcjkhu2286DbtQoeOON2NVIZSns5H9Gj4YPPvCzOk0iF9no8suhZUtf1bykJHY1UhkKO/mf226Dtm3hlFNiVyKSWxo08KkIkyd7v1jJPwo7AeCtt7w92JVXen9AEfm+fv1gn31g0CC1EctHaYWdmfUwszlmNtfMfnCb1szqmtkzqa9PNLM2pb42KLV9jpkdk9rW2sxeNbPZZjbTzDR1ObI//hGaNvUFWkXkh2rW9Hva8+fDvffGrka21GbDzsxqAoOBnkBHoK+ZdSyz27nAshDCbsAdwK2p53YE+gB7AD2A+1Kvtx74RQihA9AFuKic15Rq8p//wPPPw0UX+YrNIlK+7t2hZ09fGeHLL2NXI1sinTO7zsDcEMJHIYS1wDCgV5l9egGPpj4eAXQzM0ttHxZCWBNCmAfMBTqHED4LIUwDCCF8C8wGWlb9cKQybrsN6tWDiy+OXYlI7vvTn+Dbb33NO8kf6YRdS+CTUp8v5IfB9L99QgjrgeVA03Sem7rkuR8wMf2yJVPmzfO5dQMHQvPmsasRyX0dO/qyV0OG+BJYkh/SCbvyBqGHNPfZ5HPNrBHwLHB5COGbcv/jZgPNbIqZTVmiBnUZ94c/QI0acNVVsSsRyR/XX+/z7y6+WFMR8kU6YbcQKN0OuBWwqKJ9zKwW0BhYuqnnmlltPOieDCGMrOg/HkIYEkIoCiEUNdepR0Z98gk8/DCce67PIRKR9DRu7H0zJ0yAxx6LXY2kI52wmwy0M7O2ZlYHH3Ayusw+o4EBqY9PBcaHEEJqe5/UaM22QDtgUup+3lBgdgjhz5k4ENlyt97q/6oNksiW698fDjoIfv1rWL48djWyOZsNu9Q9uIuBcfhAkuEhhJlmdqOZnZDabSjQ1MzmAlcCV6eeOxMYDswCXgQuCiEUA12B/sCRZvZu6nFsho9NNmHRIl/GZ8AA2Gmn2NWI5J8aNXwKwpIlcMMNsauRzUlr+nAIYSwwtsy260p9vBroXcFzbwZuLrPtTcq/nyfV5JZbYP16nyArIpWz//6+KsI99/jtgD33jF2RVEQdVArQxx/DX/4C55wDu+wSuxqR/HbTTX4P79JLIZQduic5Q2FXgG66yRs9/+Y3sSsRyX9Nm3rfzFdfVd/MXKawKzAffugjMC+4AFq33vz+IrJ5553nlzSvuEKDVXKVwq7A/Pa3UKeO7tWJZFLNmn5rYPFi/WzlKoVdAXn/fXjqKbjkEth++9jViCRLURFcdhncf7+vIiK5RWFXQH71K7+R/utfx65EJJluvNGn8gwcqGWAco3CrkC8/DKMG+fNa7fdNnY1IsnUqBHcdx/MmuWt+CR3KOwKQHGxn9W1aaOVDUSy7bjj4IwzfNTz9Omxq5ENFHYF4Ikn/Ifullugbt3Y1Ygk3913+xWUs86CdetiVyOgsEu8FSv80mWnTnD66bGrESkMTZvCAw/Au+/qcmauUNgl3O9/DwsXwh13+ERyEakeJ50EffrA736ny5m5QGGXYHPn+qrK/ftD166xqxEpPPfc42d5Z54Jq1fHrqawKewS7Ior/B7dhqV8RKR6NWsGjzwCM2dqsnlsCruEeuEFGDMGrrsOdtghdjUiheuYY7yRw513+hQgiUNhl0ArVvgP1+67eyd2EYnr1luhQwdfP3LJktjVFCaFXQJdfz3Mm+e9+urUiV2NiNSv7636li71wCspiV1R4VHYJczUqT7ycuBAOPTQ2NWIyAb77us/m//4B/zxj7GrKTwKuwRZtw5+9jNo0UKDUkRy0QUXQO/e8H//p2bR1U1hlyB//KNPYh08GJo0iV2NiJRlBn/9q7fuO/10XxJIqofCLiGmTfN7db17+2RWEclNjRvDiBF+/653b1i7NnZFhUFhlwCrVkG/frDddt6iSERy2777wtCh8MYb8ItfxK6mMNSKXYBU3aBBMHs2vPSSlu8RyRd9+/qAsttvh/32g3POiV1RsunMLs+9+CLcdZfPqzvqqNjViMiW+MMf/Of2ggvg1VdjV5NsCrs8tmCBX77ce2+NvhTJR7VqwfDh0K4dnHwy/Oc/sStKLoVdnlq7Fk47zf8dMcInrYpI/mnSxNv71akDxx4LX3wRu6JkUtjlqV/9CiZOhIce8r8KRSR/tWkDf/87fP459OwJy5fHrih5FHZ56OGHfSXkyy+HU0+NXY2IZELnzn6V5r334Cc/gZUrY1eULAq7PPPaa94K7Kij4LbbYlcjIpl07LHwxBPw5puag5dpCrs88sEHfhO7XTu/qV27duyKRCTTTj/d58uOHeuBt2ZN7IqSQWGXJz7/HI47DmrW9HXq1A5MJLkGDoR774XRo+GUU7TKeSYo7PI3RA8kAAAgAElEQVTA0qV+2fKzz/ybf5ddYlckItl20UW+TNcLL3gLwBUrYleU3xR2Oe7bb6FHD7+E+fzzcNBBsSsSkeoycKC3FXvpJejWDb78MnZF+Uthl8OWL/dhyNOmwd/+5t/sIlJYzjkHnn0Wpk+Hrl1h/vzYFeUnhV2OWrIEjjgCJk2CYcPghBNiVyQisZx4Irzyiv9eOPBAH60pW0Zhl4MWLvRVxmfP9kuXmksnIl27wr//7UsEHXmk38+T9CnscszEidCpE3z6KYwb55cxRUQAdt/dr/Z06+bNo3/2M00+T5fCLoc89RQcdpj3uXz7bT+7ExEprUkTn340aJC3Cywq8q4rsmkKuxywejVcdhmceaZfj580CfbYI3ZVIpKrataE3//eR2kuW+atxm6/HYqLY1eWuxR2kc2ZA126eK/Lyy6Dl1+GZs1iVyUi+aB7dx+lecwx8MtfwsEHw4wZsavKTQq7SNav37hC8aefesfzO+/0ZT5ERNK13XYwapSP2p43D/bf31dF0coJ36ewi2DKFL/s8MtfemeU6dPh+ONjVyUi+crMe2rOmgX9+/sf0u3bw5AhsG5d7Opyg8KuGn38sX8jdurkrb9GjPC/yHbcMXZlIpIEzZp5x5XJk71h/PnnQ4cO8PjjfjWpkCnsqsEnn/jacz/6kQfc1VfDf/7jDV7NYlcnIklzwAHwxhveS3erreCnP/VpC/feC999F7u6OBR2WfTOO3D22d64efBgOOMM73F5yy0+MVREJFvMfBHYqVNh5Eho3hwuuQRat4Yrrii8gSwKuwxbtgz++le/VLn//vDMM/Dzn8PcuT4npnXr2BWKSCGpUcNXTXj7be/AcvTR/sf3Xnv52IE77/SuTUmnsMuAzz+HRx7x9eZatPBO5atX+3SCTz+Fu+6CnXeOXaWIFLqDDvI/wBctgjvu8JXQr7jC/wg/6CC4+WY/EywpiV1p5lkIIXYNaSsqKgpTpkyJXQZLlsBbb/njlVfg3Xd9+047wWmn+aOoSPfjtsSQIbErkCQbODB2Bbnrgw98LMFzz/lIcYCmTX3+74ZHp065e+vFzKaGEIo2t1+tNF+sB3AXUBN4MITwhzJfrws8BhwAfAWcHkKYn/raIOBcoBi4NIQwLp3XzAUrVngz5pkz/TFjhv+7YIF/vU4d/0a45Raf1Lnvvgo4Eckv7dvDNdf444svvCvL+PHep/eFF3wfMx/Vuc8+vn+7dhv/bdIkbv3p2mzYmVlNYDBwFLAQmGxmo0MIs0rtdi6wLISwm5n1AW4FTjezjkAfYA9gR+AVM2ufes7mXjPjvvrKh/9/+62PSPruu40fL1nip/alH0uXbnxunTo+mumQQ/wN79rVRzzVq5fNikVEqs9220G/fv4A+Pprn8YwYcLGx7BhUPqCYLNmsP32fgtnw78tWsC220KDBtCw4cZHgwZQq5a3O6tRw2/v1K1bPceWzpldZ2BuCOEjADMbBvQCSgdTL+CG1McjgHvNzFLbh4UQ1gDzzGxu6vVI4zUz7sknvSVXeWrWhB128Dlvu+3mTZh33NEDbs89Yddd/U0SESkUTZp444ujjtq4bfVq+Ogjv/z54Yc++G7xYh+78NZb/vGqVem9/owZ1dcHOJ1f3y2BT0p9vhA4sKJ9QgjrzWw50DS1fUKZ57ZMfby518y4447zvyS22goaNdr4b6NGfj26hobriIhsUr160LGjP8oTgl8t+/prvxW0YoUvQ7Th3/XrfQBMSQm0bFn+a2RDOmFX3l2osqNaKtqnou3lxUq5I2XMbCCw4fbyd2Y2p4I6c00z4MvYRVQDHWfyJO5Yzz+/3M2JO85NSPKxpjXWPZ2wWwiUnh3WClhUwT4LzawW0BhYupnnbu41AQghDAHybqyemU1JZ4RQvtNxJk+hHGuhHCcU1rFWJJ0Ld5OBdmbW1szq4ANORpfZZzQwIPXxqcD44HMaRgN9zKyumbUF2gGT0nxNERGRjNjsmV3qHtzFwDh8msBDIYSZZnYjMCWEMBoYCjyeGoCyFA8vUvsNxweerAcuCiEUA5T3mpk/PBERkTybVJ5PzGxg6hJsouk4k6dQjrVQjhMK61grorATEZHE02B7ERFJPIVdJZhZazN71cxmm9lMM7sstX1bM3vZzD5M/btNaruZ2d1mNtfM3jOz/eMeQXo2cZw3mNmnZvZu6nFsqecMSh3nHDM7Jl71W8bM6pnZJDObnjrW36a2tzWzian39JnUgCpSg66eSR3rRDNrE7P+dG3iOB8xs3ml3tN9U9vz8nt3AzOraWbvmNmY1OeJej9LK+dYE/meVloIQY8tfAA7APunPt4K+ADoCNwGXJ3afjVwa+rjY4F/4PMOuwATYx9DFY/zBuCX5ezfEZgO1AXaAv8FasY+jjSP1YBGqY9rAxNT79VwoE9q+wPAhamPfw48kPq4D/BM7GOo4nE+Apxazv55+b1bqv4rgaeAManPE/V+buZYE/meVvahM7tKCCF8FkKYlvr4W2A23hmmF/BoardHgRNTH/cCHgtuAtDEzHao5rK32CaOsyL/aw8XQpgHlG4Pl9NS782GNZxrpx4BOBJvgQc/fE83vNcjgG5mud8GfBPHWZG8/N4FMLNWwHHAg6nPjYS9nxuUPdbNyNv3tCoUdlWUutyxH/4XcosQwmfgQQFsl9qtvJZr1dgop+rKHCfAxalLIA9tuFxLnh9n6jLQu8AXwMv4menXIYT1qV1KH8/3WuQBG1rk5byyxxlC2PCe3px6T+8wX8kE8vs9vRO4CtiwOltTEvh+ppQ91g2S9p5WmsKuCsysEfAscHkI4ZtN7VrOtrwZBlvOcd4P7ArsC3wG3L5h13KenjfHGUIoDiHsi3f06Qx0KG+31L95e6xlj9PM9gQGAbsDnYBtgV+nds/L4zSz44EvQghTS28uZ9e8fz8rOFZI2HtaVQq7SjKz2ngAPBlCGJnavHjD5YDUv1+ktqfTci0nlXecIYTFqV+YJcBf2XipMm+Ps7QQwtfAa/j9jCbmLfDg+8fzv2O177fIyxuljrNH6pJ1CL5CycPk/3vaFTjBzOYDw/DLl3eSzPfzB8dqZk8k8D2tEoVdJaSu5Q8FZocQ/lzqS6Xbpg0Ani+1/aepUVBdgOUbLnfmsoqOs8z1/ZOAGamPK2oPl/PMrLmZNUl9XB/ojt+jfBVvgQc/fE/La5GX0yo4zv+U+iPN8PtYpd/TvPveDSEMCiG0CiG0wQecjA8hnEnC3k+o8Fj7Je09rSqt0FY5XYH+wPupex8A1wB/AIab2bnAAqB36mtj8RFQc4GVwNnVW26lVXScfVPDmAMwHzgfNt0eLg/sADxqvlhxDWB4CGGMmc0ChpnZTcA7ePhDBS3y8kBFxznezJrjl7jeBS5I7Z+v37sV+TXJej835ckCeU/Tog4qIiKSeLqMKSIiiaewExGRxFPYiYhI4insREQk8RR2IiKSeJp6IJIjzKwYeB//uZwNDAghrIxblUgy6MxOJHesCiHsG0LYE1jLxnlRIlJFCjuR3PQGsBuAmfUzX4PuXTP7S6qRc83UemUzzOx9M7site++ZjYh1fz3uVJNukUKmsJOJMekejP2xDvXdABOB7qmmjcXA2fiTbhbhhD2DCHshfc+BHgM+HUIYW/8kuj11X4AIjlIYSeSO+qn2rJNwdvNDQW6AQcAk1Nf6wbsAnwE7GJm95hZD+AbM2sMNAkhvJ56vUeBQ6v7IERykQaoiOSOVamzt/9JNfF9NIQwqOzOZrYPcAxwEXAacEW1VCmSh3RmJ5Lb/gmcambbAZjZtma2s5k1A2qEEJ4FfgPsH0JYDiwzsx+nntsfeL3cVxUpMDqzE8lhIYRZZnYt8JKZ1QDW4Wdyq4CHU9vAF+oEX6bmATNrgF/qLIiO9iKbo1UPREQk8XQZU0REEk9hJyIiiaewExGRxFPYiYhI4insREQk8RR2IiKSeAo7ERFJPIWdiIgknsJOREQST2EnIiKJp7ATEZHEU9iJiEjiKexERCTxFHYiIpJ4CjsREUk8hZ2IiCSewk5ERBJPYSciIomnsBMRkcRT2ImISOIp7EREJPEUdiIikngKOxERSTyFnYiIJF6t2AVsiWbNmoU2bdrELkNERHLE1KlTvwwhNN/cfnkVdm3atGHKlCmxyxARkRxhZh+ns58uY4qISOIp7EREJPEUdiIikngKOxERSTyFnYiIJJ7CTkREEk9hJyIiiaewExGRxMtK2JnZQ2b2hZnNqODrZmZ3m9lcM3vPzPbPRh0iIiKQvTO7R4Aem/h6T6Bd6jEQuD9LdYiIiGSnXVgI4V9m1mYTu/QCHgshBGCCmTUxsx1CCJ9lox4REYE1a2DZMvjuO1i5suLHqlWwbp0/1q7d+HFFj5ISCMH/3dyj9H5PPAFt21bPscfqjdkS+KTU5wtT234QdmY2ED/7Y6eddqqW4kQEhgyJXUHmDBwYu4LMCwGWLoXPPtv4WLQIFi/27cuW/fCxalXl/lt16kDt2hU/atRI72Hm/9aqtfHz6hIr7Mo7xFDejiGEIcAQgKKionL3ERFJopISmDcPZs+Gjz764aO88GrUCLbd1h/bbAM/+pH/W/qx1VbQoEHFj3r1NgZZzZrVG0rZEivsFgKtS33eClgUqRYRkei++QamTIHp02HGDHj/fZg50y8rbtCwIeyyC+y2Gxx1FOy0E+y4I+yww8ZHo0bxjiGXxQq70cDFZjYMOBBYrvt1IlIoQoAPP4S33974mDHDz+QAWrSAPfeE886DvfaCjh094Jo1S8ZZVgxZCTszexo4HGhmZguB64HaACGEB4CxwLHAXGAlcHY26hARyRVLl8Irr8CLL8K4cX5/DaBxY+jSBU4+GQ46CPbbD5pvdilS2VLZGo3ZdzNfD8BF2fhvi4jkitmz4W9/84CbONHP3LbZxi9Bdu8OBx8MHTr4YA3JrrxaqVxEJNfNmwfDhvnjvff8smPnzvCb38Axx0CnTj4aUaqX/peLiFTRN9/AY4/5vLGJE33bwQfD3XdD796w/fZx6xOFnYhIpc2YAYMHw+OPw4oVsO++cOutcNpp0KZN7OqkNIWdiMgWWL8eRo70kPvXv6BuXejbFy66CIqKYlcnFVHYiYikYd06P4O7+Waf0N22Ldx2G5xzDjRtGrs62RyFnYjIJqxd6/fjfv97H3xywAEwahQcf7x3F5H8oAGvIiLlWL8e/vpXaN/eJ3c3awZjxsDkydCrl4Iu3yjsRETKGD8e9t/fG0hvvz2MHeujLI87Th1M8pXCTkQk5aOP4JRToFs3+PZbGDHCW3n17KmQy3e6ZyciBe+77+CWW+D22/3y5E03wZVXQv36sSuTTFHYiUhB++c/4dxz4eOPoX9/D72WLWNXJZmmy5giUpC++QYuuMB7VNatC2+84aMuFXTJpLATkYLz8su+dM5f/wq//CW8+y4cckjsqiSbFHYiUjC++85HWB59tK/I/dZb8Mc/6t5cIVDYiUhBmDHDVxwYOhR+/Wt45x1fR04KgwaoiEjiPfyw967cemtfQPWII2JXJNVNYSciibVmDTz9tM+VO+IIeOopLbdTqBR2IpJIixbBkCHw+edw3XX+UIuvwqWwE5HEef99H2lZpw5cdhn89rexK5LYFHYikhghwKuvwvDh0KqV36fbZpvYVUkuUNiJSCIUF8OwYb6g6r77wtlnQ716sauSXKGwE5G8t3Kl35+bPdvn0J10EtTQxCopRWEnInntyy/hnntgyRL46U+ha9fYFUkuUtiJSN5atAjuustXE7/8cl9oVaQ8CjsRyUvz58Pdd0OtWt7fUg2cZVMUdiKSd+bMgfvug0aN/IyuefPYFUmuU9iJSF6ZPt0HozRv7nPoNLVA0qGwE5G8MWmS97ncaSe45BI/sxNJh8JORPLCxIkedO3a+WRxzaGTLaGwE5GcN3WqB1379nDxxd4GTGRLaNqliOS0d9+FBx+EXXaBn/9cQSeVo7ATkZw1Y4YPRtl5Z79Hp0uXUlkKOxHJSbNnw/33+/y5Sy+F+vVjVyT5TGEnIjnnww9h8GBo0cKnFzRoELsiyXcKOxHJKZ9+6kHXtKlPGNf0AskEhZ2I5IylS70FWN26fka39daxK5KkUNiJSE5YscKDbvVqH4yy7baxK5IkUdiJSHTr1nmvyyVLfHpBq1axK5KkUdiJSFQlJfDQQzB3Lpx1FvzoR7ErkiRS2IlINCHAM8/AtGnQuzd06hS7IkkqhZ2IRPPqq/Daa9C9uz9EskVhJyJRzJoFw4fDPvvAKafErkaSTmEnItXu88+9DVjLlnDOOVBDv4kky7LyLWZmPcxsjpnNNbOry/n6Tmb2qpm9Y2bvmdmx2ahDRHLPihU+8rJmTbjwQvW7lOqR8bAzs5rAYKAn0BHoa2Ydy+x2LTA8hLAf0Ae4L9N1iEjuKS6Gv/4VvvwSLrgAmjWLXZEUimyc2XUG5oYQPgohrAWGAb3K7BOADb0RGgOLslCHiOSYESO8wfMZZ/girCLVJRuLt7YEPin1+ULgwDL73AC8ZGaXAA2BCsdhmdlAYCDATjvtlNFCRbJhyJDYFeSmN9+E8eOhWzc45JDY1UihycaZnZWzLZT5vC/wSAihFXAs8LiZlVtLCGFICKEohFDUvHnzDJcqItVh/nx4+mno2FEjLyWObITdQqB1qc9b8cPLlOcCwwFCCG8D9QBdvRdJoO++87PdrbeGc8/1gSki1S0bYTcZaGdmbc2sDj4AZXSZfRYA3QDMrAMedkuyUIuIRLShFdjy5XD++VquR+LJeNiFENYDFwPjgNn4qMuZZnajmZ2Q2u0XwHlmNh14GjgrhFD2UqeI5LmxY2HmTDjtNGjTJnY1UsiyMUCFEMJYYGyZbdeV+ngW0DUb/20RyQ2zZsGYMdClCxx6aOxqpNCpb4GIZNzSpfDgg7DDDnDmmWDlDVsTqUYKOxHJqPXrfUBKcbFPHK9TJ3ZFIgo7EcmwkSNh3jwYMABatIhdjYhT2IlIxrz/Pvzzn3D44bD//rGrEdlIYSciGbF8OTz6qK9kcOqpsasR+T6FnYhUWUkJPPwwrF4N550HtWvHrkjk+xR2IlJlL7/sDZ779PERmCK5RmEnIlUybx6MGgUHHABdNXtWcpTCTkQqbdUqn0+3zTbQr5/m00nuUtiJSKU99ZRPID/3XGjQIHY1IhVT2IlIpUyeDJMmwXHHwa67xq5GZNMUdiKyxZYt87O6tm2hZ8/Y1YhsnsJORLZICPDYY94W7OyztT6d5AeFnYhskdde8xUNTj1V7cAkfyjsRCRtn38Ozz4Le+yhZXskvyjsRCQtxcXeJaVOHW/yrGkGkk8UdiKSlrFjYf58X5+ucePY1YhsGYWdiGzW/Pkedp07e6cUkXyjsBORTVq3Dh55BLbeGvr2jV2NSOUo7ERkk8aOhc8+83Zg6pIi+UphJyIVWrAAXnwRunSBvfaKXY1I5SnsRKRc69f7YqyNGsFpp8WuRqRqFHYiUq5x42DhQh992bBh7GpEqkZhJyI/8Omn8MIL0KkT7Ltv7GpEqk5hJyLfU1zsoy8bNPCVx0WSQGEnIt/z8ss+MKVPH79fJ5IECjsR+Z/PP4e//x3220+TxyVZFHYiAkBJiV++rFvXJ4+r96UkicJORAAYPx7mzfNpBup9KUmjsBMRvvgCRo3yieMHHhi7GpHMU9iJFLiSEl95vFYtn1Ony5eSRAo7kQL31lvw4Ye+8vg228SuRiQ7FHYiBWz5cl95vH176No1djUi2aOwEylgzzzjS/j066fLl5JsCjuRAjV9OkydCscdBy1axK5GJLsUdiIFaPVqePpp2HFHOPro2NWIZJ/CTqQAPf88fP21X76sVSt2NSLZp7ATKTDz5sGrr8Jhh8Guu8auRqR6KOxECkhxMTz+uHdIOfHE2NWIVB+FnUgBefllX6uub1+oXz92NSLVR2EnUiC++ALGjIH999eCrFJ4FHYiBSAEeOIJH4xy+umxqxGpflkJOzPrYWZzzGyumV1dwT6nmdksM5tpZk9low4RcW+/DXPmwMknQ5MmsasRqX4ZH3RsZjWBwcBRwEJgspmNDiHMKrVPO2AQ0DWEsMzMtst0HSLivvkGRoyA3XaDQw6JXY1IHNk4s+sMzA0hfBRCWAsMA3qV2ec8YHAIYRlACOGLLNQhInjQrV7tc+pq6MaFFKhsfOu3BD4p9fnC1LbS2gPtzewtM5tgZj0qejEzG2hmU8xsypIlS7JQrkhyzZoFEydCjx6www6xqxGJJxthV1472VDm81pAO+BwoC/woJmVeychhDAkhFAUQihq3rx5RgsVSbK1a+Gpp7zvZc+esasRiSsbYbcQaF3q81bAonL2eT6EsC6EMA+Yg4efiGTI2LGwZIkvyFq7duxqROLKRthNBtqZWVszqwP0AUaX2WcUcASAmTXDL2t+lIVaRArSokUwbhwcdBD86EexqxGJL+NhF0JYD1wMjANmA8NDCDPN7EYzOyG12zjgKzObBbwK/CqE8FWmaxEpRCUlPqeufn1ffVxEsjD1ACCEMBYYW2bbdaU+DsCVqYeIZNCbb8J//wtnnQWNGsWuRiQ3aCCySIIsXw4jR/qlyy5dYlcjkjsUdiIJMnw4rFvng1KsvHHRIgVKYSeSEDNmwJQpcOyxPt1ARDZS2IkkwJo1Pqduhx3g6KNjVyOSexR2IgkwZgx89ZXm1IlURGEnkuc++QReecWbPLdTawaRcinsRPLYhjl1DRv68j0iUj6FnUgee/11mD8fTjvNA09EyqewE8lTy5bBqFHQsSN06hS7GpHcprATyVPDh0NxMZxxhubUiWyOwk4kD02fDtOmwXHHgVa+Etk8hZ1Inlm9Gp5+GnbcUXPqRNKlsBPJM6NH+/26fv2gZs3Y1YjkB4WdSB75+GMYPx4OPRR23TV2NSL5Q2EnkieKi31O3VZbwUknxa5GJL8o7ETyxKuvwoIFcPrp0KBB7GpE8ovCTiQPLF3q9+r23BMOOCB2NSL5R2EnkuNC8NGXIUDfvppTJ1IZCjuRHPfOO/Dee/CTn0CzZrGrEclPCjuRHLZqFTzzDLRqBd26xa5GJH8p7ERy2HPPwfLlmlMnUlUKO5Ec9eGHvqrBkUdC27axqxHJbwo7kRy0bh08/jg0bQq9esWuRiT/KexEctDYsbB4sV++rFs3djUi+U9hJ5JjFi6EF1+ELl18rToRqTqFnUgOKSnxy5cNG0Lv3rGrEUkOhZ1IDhk/HubP95ZgjRrFrkYkORR2Ijniyy/h+edhr72gqCh2NSLJorATyQEhwJNPeiuwM85QSzCRTFPYieSAiRNh1ixfumfbbWNXI5I8CjuRyL75BoYPh112gcMOi12NSDIp7EQiGz4cVq+G/v2hhn4iRbJCP1oiEb3/PkyeDD17wo47xq5GJLkUdiKRrFwJTzzhIdezZ+xqRJJNYScSyYgRvqLBgAFQq1bsakSSTWEnEsHMmfDWW3DMMdCmTexqRJJPYSdSzVat8pZgO+wAxx8fuxqRwqCwE6lmzz4LX38NP/0p1K4duxqRwqCwE6lGs2fDG29A9+4+r05EqofCTqSarF7tly9btIATTohdjUhhUdiJVJPnnoOlS/3yZZ06sasRKSwKO5FqMGcOvPYaHHEE7LZb7GpECo/CTiTL1qyBxx6DZs3gxBNjVyNSmLISdmbWw8zmmNlcM7t6E/udambBzLR6lyTWqFG+Vt2AAVC3buxqRApTxsPOzGoCg4GeQEegr5l1LGe/rYBLgYmZrkEkV8ydC6++CocfDu3bx65GpHBl48yuMzA3hPBRCGEtMAzoVc5+vwNuA1ZnoQaR6NasgUcf9fXpTjopdjUihS0bHflaAp+U+nwhcGDpHcxsP6B1CGGMmf1yUy9mZgOBgQA77bRThkuVXDFkSOwKMm/kSPjiC7jySqhXL3Y1IoUtG2d2Vs628L8vmtUA7gB+kc6LhRCGhBCKQghFzZs3z1CJItk1e7aPvjzySPjRj2JXIyLZCLuFQOtSn7cCFpX6fCtgT+A1M5sPdAFGa5CKJMWqVX75skULXb4UyRXZCLvJQDsza2tmdYA+wOgNXwwhLA8hNAshtAkhtAEmACeEEKZkoRaRavfMM9778uyzNXlcJFdkPOxCCOuBi4FxwGxgeAhhppndaGZqkiSJNn06vP029OgBbdvGrkZENsjKkpEhhLHA2DLbrqtg38OzUYNIdfv2W+992bq1lu4RyTXqoCKSASHAU0/5/bqzz9bK4yK5RmEnkgGTJsG0afCTn0DLlrGrEZGyFHYiVbRsGQwbBrvuCkcfHbsaESmPwk6kCkLw+3Tr18NZZ0EN/USJ5CT9aIpUwRtvwMyZcPLJsN12sasRkYoo7EQqackSGDECOnSAww6LXY2IbIrCTqQSioth6FCoWdNXHtflS5Hcph9RkUoYOxbmzYMzzvBVDUQktynsRLbQRx952B14IHTqFLsaEUmHwk5kC6xeDQ89BNtsA337xq5GRNKlsBPZAsOHw5dfepeU+vVjVyMi6VLYiaRp2jR46y1v8tyuXexqRGRLKOxE0vD11/DEE7Dzzt4STETyi8JOZDNKSuCRR2DdOjjnHJ9uICL5RWEnshnjx8Ps2dC7N2y/fexqRKQyFHYim/Dpp/Dcc7D33vDjH8euRkQqS2EnUoF167xLSv360L8/mMWuSEQqS2EnUoHnnvMzuwEDYOutY1cjIlWhsBMpx/vvwz//CYcfDnvtFbsaEakqhZ1IGV9/7aMvW7WCU0+NXY2IZILCTqSUkhJvB7Z2LfzsZ1C7duyKRCQTFHYipYwbB3PmwOmnww47xK5GRDJFYSeS8t//wujRUFQEXbvGrkZEMklhJwKsXOnTDLbZBvr10zQDkaRR2EnBC8H7Xi5b5vfptJqBSPIo7KTgvfUWTJ0KvXrBLrvErkZEsj9ku4kAAA2tSURBVEFhJwXts89g2DDo0AGOPjp2NSKSLQo7KVjr1sGDD0K9er4Yaw39NIgkln68pWCNGAELF8JZZ0HjxrGrEZFsUthJQZo6FV57Dbp3hz33jF2NiGSbwk4KzuLF8Nhj0LYtnHRS7GpEpDoo7KSgrF0LQ4b4auMDB0KtWrErEpHqoLCTgvLMM36f7uyzYdttY1cjItVFYScFY8IEePNN6NFDy/aIFBqFnRSERYvgySehfXs44YTY1YhIdVPYSeKtXu336erW9XZgNWvGrkhEqpvCThItBD+j+/xzDzrNpxMpTAo7SbQ33oBJk+AnP4Hdd49djYjEorCTxFqwwEdfduwIPXvGrkZEYlLYSSKtWgV/+Qs0agTnnKO+lyKFTr8CJHFKSuChh2DpUjjvPNhqq9gViUhsCjtJnLFj4b33oHdv2G232NWISC5Q2EmivP8+jBkDXbrAEUfErkZEckVWws7MepjZHDOba2ZXl/P1K81slpm9Z2b/NLOds1GHFJbFi2HoUGjVCs48E8xiVyQiuSLjYWdmNYHBQE+gI9DXzDqW2e0doCiEsDcwArgt03VIYVm9Gh54wAeiXHAB1KkTuyIRySXZOLPrDMwNIXwUQlgLDAN6ld4hhPBqCGFl6tMJQKss1CEFIgRfsuezz3xASrNmsSsSkVyTjbBrCXxS6vOFqW0VORf4R0VfNLOBZjbFzKYsWbIkQyVKkrz0ki/GetJJ0KFD7GpEJBdlI+zKu1MSyt3RrB9QBPyxohcLIQwJIRSFEIqaN2+eoRIlKWbMgOf+v727j5GqOuM4/n1ABJFGXgTkLQpitPgCSgFf0BKrFnxhK1rYWisQVAoFahojUo1R00Zt09YWDQqCgCKISCNBCkJAEg1FoCwtSkEqqBQEtEALlYXdffrHuVuGZXZZdnf2ztz5fZKbuXPnLDxPzmSfvefee84foWdPuOmmuKMRkWyViaUrdwCdUt53BHZWbGRmNwCPAN929+IMxCEJt3MnTJkSbkgZOlQ3pIhI5TJxZrcGuMDMOpvZ6UAhsCC1gZldDrwIDHT3PRmIQRLu4EF4/vlwI8ro0WFFAxGRytR5sXP3EmAMsATYBMx19w/N7EkzK19J7NdAM+ANMysyswWV/HMiJygpCVOB7d8Po0ZpxXEROblMDGPi7ouARRWOPZayf0Mm/l9JPneYPRu2bAlzXnbpEndEIpILNIOK5JQVK+C996B/f+jTJ+5oRCRXqNhJzti4EebOhe7doaDg5O1FRMqp2ElO+OwzmDwZOnTQkj0icur0K0Oy3ldfwXPPQdOmMGYMNGkSd0QikmtU7CSrHToEEyfCkSMwbhy0aBF3RCKSi1TsJGsdPQqTJsHeveERg/bt445IRHKVip1kpbIyePll+PhjGDYMLrww7ohEJJep2ElWmj8/TO58xx3Qq1fc0YhIrlOxk6yzeDEsXRpWGr/xxrijEZEkULGTrLJiRVjFoFcvGDxYkzuLSN1QsZOssWoVzJkTHhofPlzP0olI3dGvE8kK69bBjBlh8dX77oOGDeOOSESSRMVOYrdoEUydGiZ1HjUKGjWKOyIRSRoVO4nVu++GOy47dICxY7UunYhkRkaW+BGpjmXLYODAcEY3YgSccUbcEYlIUunMTmKxcCHceit07QrLl0OzZnFHJCJJpmIn9W7ePLj9drj00jCM2bZt3BGJSNKp2Em9euUVGDIkLLy6bBm0bBl3RCKSD1TspN5MngxDh0K/fmGWlLPOijsiEckXKnaSce7w1FMwciT07x+u1+kanYjUJ92NKRl19Gh4dm7qVCgshOnT9XiBiNQ/ndlJxuzfDwMGhEL36KMwa5YKnYjEQ2d2khHbt8Mtt8CWLTBtWpjrUkQkLip2UufWrIHbboPDh2HJErj++rgjEpF8p2FMqVMzZsB114XZUFatUqETkeygYid1orgYRo+GYcPgqqtg9eqwgoGISDZQsZNa++QTuPZamDQJHnoI3nkH2rSJOyoRkWN0zU5qZfbs8Pxcw4bw5pswaFDcEYmInEhndlIj+/bBPffAXXfBZZdBUZEKnYhkLxU7OWWLF8Mll8Brr8Fjj4XJnM89N+6oREQqp2In1bZ3b5jbcsAAaNEi3ITyxBNwmgbDRSTLqdjJSZWVhVlQLrooXKN75BFYtw569ow7MhGR6tHf5FKl99+HBx6AtWuhb1948UXo1i3uqERETo3O7CStLVvCunN9+8KuXWEdupUrVehEJDep2MlxPv0U7r03FLW33w43oGzeDHffDQ30bRGRHKVhTAFg0yZ45pmwMkGDBjBmDEyYAG3bxh2ZiEjtqdjlMXdYuhQmTgxncU2ahCm/HnwQOnWKOzoRkbqjYpeHdu+GV1+FKVPCEGWbNmG9ubFjoXXruKMTEal7KnZ54sABWLgQ3ngjnMWVlECfPjBzJgwerEVVRSTZVOwSbO9eeOstmD8fli2Do0ehXbvwKMHw4bqzUkTyh4pdghw8GJ6LW7kyTOG1enV4ILxLl1DgBg2C3r11V6WI5B8VuxxVVhaW1ikqCg98r1wZVggvLQ3Td/XuHa7DDRoUJmo2iztiEZH4qNhludJS2LEDtm4N28aNsH49bNgQzuTgWHEbPx769YOrr4Yzz4w1bBGRrJKRYmdm/YHfAw2Bl9z96QqfNwZmAj2Br4Ah7r49E7Fks+LisFTOF1/Azp1h27UrvH7+eShu27bBkSPHfqZZM+jePawI3qNH2C6+ODw2ICIi6dV5sTOzhsDzwI3ADmCNmS1w949Smo0A9rl7VzMrBJ4BhtR1LOmUlYWttDT9Vp3Pjh6Fr7+Gw4fDVr5f8fXwYTh0KBS0/fuPf923L3yeTqtW0KFDKGIFBdC1K5x/ftg6ddI1NxGRU5WJM7vewFZ3/wTAzOYABUBqsSsAHo/25wHPmZm5u2cgnv+bOBHGjcvk/3C8xo2hadOwHE7z5uG1Xbvj3zdvDuecE463bx/29RiAiEjdykSx6wB8nvJ+B9CnsjbuXmJmB4BWwJcV/zEzux+4P3p70Mw213nEmXF2cTFflg9VJtjZpOm3BMqXPCGBuY4cmfZw4vKsQpJzrdbS0Zkodunu+6t4xladNuGg+2Rgcm2Dqm9mttbdvxV3HJmmPJMnX3LNlzwhv3KtTCau/uwAUmdW7AjsrKyNmZ0GnAX8KwOxiIiIZKTYrQEuMLPOZnY6UAgsqNBmATA02r8TWJ7p63UiIpK/6nwYM7oGNwZYQnj0YJq7f2hmTwJr3X0BMBV4xcy2Es7oCus6jiyQc0OvNaQ8kydfcs2XPCG/ck3LdEIlIiJJpye2REQk8VTsREQk8VTsasDMOpnZCjPbZGYfmtlPo+MtzWypmX0cvbaIjpuZ/cHMtprZX83singzqJ4q8nzczP5pZkXRdnPKz0yI8txsZt+NL/pTY2ZNzOwDM9sQ5fpEdLyzma2O+vT16KYrzKxx9H5r9Pl5ccZfXVXkOd3MtqX0aY/oeE5+d8uZWUMzW29mC6P3ierPVGlyTWSf1pi7azvFDWgHXBHtfwPYAnQDfgU8HB1/GHgm2r8Z+BPh+cIrgdVx51DLPB8HHkzTvhuwAWgMdAb+ATSMO49q5mpAs2i/EbA66qu5QGF0/AVgVLQ/Gngh2i8EXo87h1rmOR24M037nPzupsT/M+A1YGH0PlH9eZJcE9mnNd10ZlcD7r7L3f8S7f8H2ESYFaYAmBE1mwF8L9ovAGZ68GeguZm1q+ewT1kVeVamAJjj7sXuvg3YSpg+LutFfROtI0GjaHPgesKUdnBin5b39TzgO2bZv5BSFXlWJie/uwBm1hG4BXgpem8krD/LVcz1JHK2T2tDxa6WouGOywl/Ibd1910QCgXQJmqWbgq1qopG1qmQJ8CYaAhkWvlwLTmeZzQMVATsAZYSzkz3u3tJ1CQ1n+OmvAPKp7zLehXzdPfyPv1l1Ke/s7AyCeR2nz4LPASURe9bkcD+jFTMtVzS+rTGVOxqwcyaAW8CD7j7v6tqmuZYzjzzkSbPScD5QA9gF/Cb8qZpfjxn8nT3UnfvQZj1pzfwzXTNoteczbVinmZ2CTABuAjoBbQExkfNczJPM7sV2OPu61IPp2ma8/1ZSa6QsD6tLRW7GjKzRoQCMMvd50eHd5cPB0Sve6Lj1ZlCLSuly9Pdd0e/MMuAKRwbqszZPFO5+37gXcL1jOYWprSD4/PJ+SnvUvLsHw1Zu7sXAy+T+316DTDQzLYDcwjDl8+SzP48IVczezWBfVorKnY1EI3lTwU2uftvUz5KnQZtKPBWyvF7orugrgQOlA93ZrPK8qwwvn87sDHaXwAURne2dQYuAD6or3hrw8xam1nzaP8M4AbCNcoVhCnt4MQ+zbkp7yrJ8+8pf6QZ4TpWap/m3HfX3Se4e0d3P49ww8lyd/8hCetPqDTXu5PWp7WVkZXK88A1wI+Av0XXPgB+DjwNzDWzEcBnwPejzxYR7oDaCvwXGF6/4dZYZXn+ILqN2YHtwEgAD9PCzSWsXVgC/MTdS+s96pppB8ywsPhwA2Cuuy80s4+AOWb2C2A9ofhD7k55V1mey82sNWGIqwj4cdQ+V7+7lRlPsvqzKrPypE+rRdOFiYhI4mkYU0REEk/FTkREEk/FTkREEk/FTkREEk/FTkREEk/FTkREEk/FTkREEu9/ixmpTnOQ9z4AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
    " ] }, "metadata": {}, @@ -703,9 +825,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAJ4CAYAAAD8/U2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmcVNWd9/HPr9llk6VBoFFQcAEUxAZcYlzQCIiCiopxiQ4RM9E4UZ+Z6JNnNOOsyUySSYwmwWhcI6ICIiCIAhoJW7PJjogoHRRaWRRkabrP88epjm3bSzVU1al76/t+verVVbduVf8u1c23z7nnnmPOOUREROIsL3QBIiIi6aawExGR2FPYiYhI7CnsREQk9hR2IiISewo7ERGJPYWdiIjEnsJORERiT2EnIiKx1zB0AfXRvn17161bt9BliIhIlliyZMknzrn8uvaLVNh169aNoqKi0GWIiEiWMLMPktlP3ZgiIhJ7CjsREYk9hZ2IiMSewk5ERGJPYSciIrGnsBMRkdhT2ImISOwp7EREJPYUdiIiEnsKOxERiT2FnYiIxF6k5sYUkQwZNy697z92bHrfX6QKtexERCT2FHYiIhJ7CjsREYk9hZ2IiMSewk5ERGJPYSciIrGnsBMRkdhT2ImISOzponKRXFFeDu++Cxs3frktPx/69oUmTcLVJZIBCjuRODt4EF58EZ5+GhYsgF27vr5P48bQrx+MGAG33uoDUCRmFHYicbRvH/ziF/Cb38DHH8MJJ8A118DAgdC7NzRoAM7Bli2wcCG8/Tb8+Mfw4IPw7W9Djx7Qvn3ooxBJGYWdSNz8+c8wZozvsrzkEnj8cf81r5pT9AMHwlVX+ftr1sBDD8GTT/ouzxEj4IILqn+dSMQo7ETSId0TKVenrMx3Wc6e7VtlP/whnHKKb7394Q/Jvcfpp8Nxx8Gzz8KECbB4sZ+0uW3b9NYukmb6k00kDvbvh0ce8UF3/vlw//0+6A5H27Zwxx2+dfjRR/Cf/wmbN6eyWpGMU9iJRN3u3fDzn/tuyOuvh+uuO/LRlWa+i/NHP4JGjeB//geWLk1NvSIBKOxEomzPHh9027bB978P3/xmat+/c2e4914oKPBds0uWpPb9RTJEYScSVQcO+AEln34KP/gBnHpqer5Pq1Zw111w/PHw2GOwalV6vo9IGinsRKKorMy3tD74wF8b17Nner9fkyY+ULt0gd/9DjZsSO/3E0kxhZ1IFE2Y4FtY11/vLwjPhGbN4M47/UjP3/4WSkoy831FUkBhJxI1S5bA3LkweDCce25mv3fLlnD77f7+b3/ru1JFIkBhJxIlJSXw1FPQrRtceWWYGvLzfdfp1q3+AnTnwtQhUg8KO5GoKC2FRx/1M5rceis0DDgnRK9ecMUVvpX5+uvh6hBJksJOJCpefdUPSPnOd7Jj3spvfcufL5w8GYqLQ1cjUiuFnUgUbN0KM2b4C70zNSClLmZw441w1FH+koTS0tAVidRIYSeS7crL4ZlnoGlTv3JBNmnRwrc0t26Fl18OXY1IjRR2Itnurbfgvffg6qv9aMhs06cPnHeeP3en6+8kSyUVdmY2xMzWm9lGM7u3muebmNnziecXmlm3Ss/dl9i+3swuqbT9LjNbbWarzOw5M2uaigMSiZXPPoNJk/ykzmeeGbqaml11FbRr51ug6s6ULFRn2JlZA+BhYCjQC7jOzHpV2W0MsNM51wP4JfDTxGt7AaOB3sAQ4BEza2BmXYA7gULnXB+gQWI/EanslVf8auPXXefPkWWrJk38oq/btsHMmaGrEfmaZFp2A4GNzrlNzrmDwHhgRJV9RgBPJu6/CAw2M0tsH++cO+Ccex/YmHg/8GvpNTOzhsBRwNYjOxSRmNm61S/Eev750LFj6Grq1rs3DBjgR41u2xa6GpGvSCbsugBbKj0uTmyrdh/n3CFgN9Cuptc65/4K/A/wIfARsNs591p139zMxppZkZkVlWh6IsklL73kB6VcemnoSpJ39dV+SaBnn9XF5pJVkgm76vpOqv4U17RPtdvNrA2+1dcd6Aw0N7MbqvvmzrlxzrlC51xhfn5+EuWKxMDatX7uy2HD/IjHqGjd2l9svn49FBWFrkbkb5IJu2Kga6XHBXy9y/Fv+yS6JVsDO2p57UXA+865EudcKTAROPtwDkAkdpzzrbp27eCCC0JXU3/nngtdu8LEif58o0gWSCbsFgM9zay7mTXGDySZUmWfKcB3EvdHAbOdcy6xfXRitGZ3oCewCN99eaaZHZU4tzcYWHvkhyMSAytWwJYtcPnlvkswavLyfHfmjh2aSkyyRp1hlzgHdwcwEx9IE5xzq83sQTO7PLHbY0A7M9sI3A3cm3jtamACsAaYAdzunCtzzi3ED2RZCqxM1DEupUcmEkXOwdSp0KGDH+wRVSed5Gd6mTEDdu0KXY1IctfZOeemO+dOdM6d4Jz798S2+51zUxL39zvnrnbO9XDODXTObar02n9PvO4k59yrlbY/4Jw72TnXxzl3o3NOa4WIVLTqhg2DBg1CV3NkRo2CQ4f83JkigWkGFZFsUblVN3Bg3ftnu/x8uPBCWLAA/vrX0NVIjlPYiWSLd96JT6uuwtCh/vIJzZspgSnsRLKBczB9ul+6Jw6tugrNm/ulgFas8PN7igSisBPJBhs3wubNPhji0qqrcOGFfgLryZN1obkEo7ATyQazZvlW0Flnha4k9Zo29V2zGzbAmjWhq5EcpbATCe3jj3033/nnQ+PGoatJj3PP9RfJv/yyWncShMJOJLTXX4eGDX3YxVWjRr5198EHfho0kQxT2ImE9NlnMH++775s1Sp0Nel11lm+dTd1qlp3knEKO5GQ3nzTX3h90UWhK0m/Bg1gyBA/EOe1ahc5EUkbhZ1IKIcOwVtvQZ8+cMwxoavJjLPPhrZt4V/+Ra07ySiFnUgoy5b5bsw4n6urqmFD37qbP1+TREtGKexEQpk7119E3rt36Eoy6+yzoUsX+I//CF2J5BCFnUgIW7b4C8nPP98viZNLGjWCu+/2Yb9wYehqJEfk2G+ZSJaYO9f/p392jq5ZfOut0KYN/PSnoSuRHKGwE8m0vXt9i2bQID9rSi5q2RJuv91PIbZuXehqJAco7EQybf58KC3NrYEp1bnzTj+V2H//d+hKJAco7EQyyTl4+23o3h26dg1dTVj5+fB3fwdPPw3FxaGrkZhT2Ilk0nvvwUcf+bkiBe65B8rK4KGHQlciMaewE8mkP//Zd90VFoauJDt07w5XXgnjxsGePaGrkRhT2Ilkyt69UFTkB6Y0aRK6muxx992waxc88UToSiTGFHYimbJggZ8iTF2YX3XWWf4PgF/9CsrLQ1cjMaWwE8kE53wXZrduGphSnbvu8hfZT50auhKJKYWdSCa8/74GptTmqqvg2GPhF78IXYnElMJOJBPmz/erkGtgSvUaNoQf/MAvebR8eehqJIYUdiLpdvAgLF4M/fv7kZhSvTFjoFkzePjh0JVIDCnsRNJt+XLYt88PxJCatWkDN9wAzz4LO3aErkZiRmEnkm7z50O7dnDiiaEryX633+7/MPjjH0NXIjGjsBNJpx07YO1aOPPM3FvK53D07esH8TzyiJ9ZRSRF9Nsnkk4LFvjLDtSFmbw77oBNm2DGjNCVSIwo7ETSxTnfhXniiX7SY0nOFVdAp06aL1NSSmEnki7vvQfbt6tVV1+NGsFtt8HMmb6FJ5ICCjuRdJk/38+B2b9/6EqiZ8wYf47z0UdDVyIxobATSYeDB/2kz7q27vAUFMDw4fD44/7fUuQIKexE0mHpUti/H84+O3Ql0XXbbb4beMqU0JVIDCjsRNJh/nxo3x569AhdSXRdcomfL/P3vw9dicSAwk4k1T74ANav9wNTdG3d4WvQAL77XXj9db8igsgR0G+iSKo99ZSurUuVMWN86GmgihwhhZ1IKjkHTz/tr61r1y50NdHXubMfqPLEE1BaGroaiTCFnUgqLV4M777rpweT1Bgzxg9UmT49dCUSYQo7kVR65hldW5dqQ4fCMcf4yxBEDpPCTiRVSkth/Hi4/HK/LpukRsOGcNNNMG0afPxx6GokohqGLkAkNmbNgpISvyab/lOu3bhx9du/eXO/CsLtt/tLEpIxdmz965LYUstOJFWeeQbatoUhQ0JXEj/HHAMnnADz5vlBQCL1pLATSYXPP4fJk+Haa6Fx49DVxNM558C2bZocWg6Lwk4kFSZN8its33BD6Eri64wz/OCfefNCVyIRpLATSYVnnoHu3XUheTo1bQqnnw5LlmhyaKk3hZ3Ikdq6Fd54w7fqzEJXE29nnukn2F6xInQlEjEKO5EjNX48lJfD9deHriT+TjoJ2rSBBQtCVyIRk1TYmdkQM1tvZhvN7N5qnm9iZs8nnl9oZt0qPXdfYvt6M7uk0vajzexFM1tnZmvNTP0/Ek3PPAMDBvj/iCW98vJg0CBYswY++yx0NRIhdYadmTUAHgaGAr2A68ysV5XdxgA7nXM9gF8CP028thcwGugNDAEeSbwfwK+AGc65k4G+wNojPxyRDFuzBpYt08CUTBo0yLekFy0KXYlESDItu4HARufcJufcQWA8MKLKPiOAJxP3XwQGm5klto93zh1wzr0PbAQGmlkr4JvAYwDOuYPOuV1HfjgiGfbss35W/muvDV1J7ujcGY47Tl2ZUi/JhF0XYEulx8WJbdXu45w7BOwG2tXy2uOBEuCPZrbMzP5gZs2r++ZmNtbMisysqKSkJIlyRTKkvNyH3cUXQ8eOoavJLWeeCVu2wF//GroSiYhkwq664WVVpzCoaZ+atjcE+gO/dc6dDuwFvnYuEMA5N845V+icK8zPz0+iXJEMmTfPL9SqgSmZN2CAP3+nrkxJUjJhVwx0rfS4ANha0z5m1hBoDeyo5bXFQLFzbmFi+4v48BOJjuee8xM+jxwZupLc07IlnHwyFBVp+jBJSjJhtxjoaWbdzawxfsDJlCr7TAG+k7g/CpjtnHOJ7aMTozW7Az2BRc65j4EtZlYxfG0wsOYIj0Ukcw4dghdegMsugxYtQleTmwYMgE8+gc2bQ1ciEVBn2CXOwd0BzMSPmJzgnFttZg+a2eWJ3R4D2pnZRuBuEl2SzrnVwAR8kM0AbnfOlSVe8wPgWTN7B+gH/EfqDkskzd54w/9He911oSvJXf36+eV/Fi8OXYlEQFJL/DjnpgPTq2y7v9L9/cDVNbz234F/r2b7cqCwPsWKZI3x46FVK61wENJRR0Hv3n76sFGj/Dk8kRrop0Okvvbvh4kT4cor/XyNEs6AAbBrF2zcGLoSyXIKO5H6mjHDz94xenToSuS00/ySSurKlDoo7ETq67nnoH17GDw4dCXSpAn07QtLl/qVzEVqoLATqY89e+CVV+Dqq/3gCAmvsNB/LuvWha5EspjCTqQ+pkzxi7RqFGb26N3bX++orkyphcJOpD7Gj4eCAjjnnNCVSIVGjfxlCMuWQWlp6GokSynsRJK1Y4cfnHLttRrmnm0GDPCjZFevDl2JZCn9xooka+JE33JQF2b2OflkP5NNUVHoSiRLKexEkjV+PPToAf01jWvWadAAzjgDVqyAAwdCVyNZSGEnkoyPP4Y5c3yrzqpbzEOCKyyEgwfhnXdCVyJZSGOnJfeMG1f/18ye7devy8s7vNdL+vXoAUcf7UdlDhgQuhrJMmrZiSSjqMiPwuzcOXQlUpO8PN+VuXq1vzxEpBKFnUhddu6E997z/5FKduvf3y+/tGpV6EokyyjsROqybJn/qrDLfscf71ejqPjMRBIUdiJ1WbIEunSBjh1DVyJ1ycvzF5ivWqWuTPkKhZ1IbXbt8l2YutwgOvr395cfvPZa6EokiyjsRGqzbBk4py7MKDnxRL+w68SJoSuRLKKwE6nN0qXQqZO/STQ0aOCX/ZkyxV93J4LCTqRmn30G776rLswoOv103wU9d27oSiRLKOxEaqIuzOjq1QuaN1dXpvyNwk6kJkuW+BGYupA8eho1gksvhUmTtIK5AAo7kep9/jls2OBbdZoLM5quugq2b4e//CV0JZIFFHYi1anowtT5uugaOhSaNIGXXgpdiWQBhZ1IdZYuhQ4d/HyYEk0tW8K3vuXP2zkXuhoJTGEnUtWePbB+vW/VqQsz2q66CrZs8edfJacp7ESqWr7cL+ejUZjRd9ll/ro7dWXmPIWdSFVLl0L79tC1a+hK5Ei1bQsXXODDTl2ZOU1hJ1LZ3r2wdq26MOPkqqv85ACrV4euRAJS2IlUtmKF78LUKMz4GDnS/+GiC8xzmsJOpLLly6FNG+jWLXQlkirHHANnnQWTJ4euRAJS2IlUOHgQ1qzxkwirCzNeRo70105++GHoSiQQhZ1IhTVroLTUL/4p8TJypP/68sth65BgFHYiFVasgGbN/HpoEi89e/rJodWVmbMUdiLgB6W88w6ceqq/LkviZ+RIePNN2LEjdCUSgMJOBOC99/zMKX37hq5E0mXECL8CwrRpoSuRABR2IuBHYTZsCL17h65E0qWw0C/XpPN2OUlhJ+KcP1930kn+nJ3EU16eb93NmAH79oWuRjJMYSeydSuUlGgUZi4YOdLPkvPGG6ErkQxT2ImsWOG/nnZa2Dok/c4/H1q10qjMHKSwE1m+HLp3h6OPDl2JpFvjxnDppTBlih+sIjlDYSe5bedO+OADjcLMJSNG+G7r+fNDVyIZpLCT3FbRhanzdblj6FBo1EijMnOMwk5y24oV0KGDnyxYckOrVjB4MEyapDXucojCTnLXvn2wfr1v1Wni59wycqSfSGDNmtCVSIYo7CR3rVrlBynofF3uufxy/1WjMnOGwk5y1/Ll0LIlHH986Eok0zp1gkGDFHY5RGEnuenQId+yO+00P7OG5J6RI6GoCIqLQ1ciGaDfcslN774L+/frQvJcVrHG3ZQpYeuQjEgq7MxsiJmtN7ONZnZvNc83MbPnE88vNLNulZ67L7F9vZldUuV1DcxsmZlNPdIDEamXlSv9xM8nnxy6Egnl5JP9fKjqyswJdYadmTUAHgaGAr2A68ysV5XdxgA7nXM9gF8CP028thcwGugNDAEeSbxfhX8A1h7pQYjU28qVfpHWpk1DVyIhjRwJc+bArl2hK5E0S6ZlNxDY6Jzb5Jw7CIwHRlTZZwTwZOL+i8BgM7PE9vHOuQPOufeBjYn3w8wKgEuBPxz5YYjUw7ZtsH27X6hVctvIkf787fTpoSuRNEsm7LoAWyo9Lk5sq3Yf59whYDfQro7X/i/wT0B5bd/czMaaWZGZFZWUlCRRrkgdVq70XxV2MnCgn1BAXZmxl0zYVXe1bdVpB2rap9rtZjYc2O6cW1LXN3fOjXPOFTrnCvPz8+uuVqQuK1f6oef6eZK8PH/N3auvwoEDoauRNEom7IqBrpUeFwBba9rHzBoCrYEdtbz2HOByM9uM7xa90MyeOYz6Rern88/9SMw+fUJXItli5EjYswdmzw5diaRRMmG3GOhpZt3NrDF+wEnVsbpTgO8k7o8CZjvnXGL76MRoze5AT2CRc+4+51yBc65b4v1mO+duSMHxiNRu1iw/a4ouOZAKF14ILVqoKzPm6gy7xDm4O4CZ+JGTE5xzq83sQTNLzLnDY0A7M9sI3A3cm3jtamACsAaYAdzunNMiUhLO1KnQrBmccELoSiRbNGkCw4b5VRDKax1CIBFmLkKzfhcWFrqioqLQZUhUlZdD585QUABjx4auRtKtPp/xc8/Bt78Nf/kLnHVW+mqSlDOzJc65wrr20wwqkjuWLvWXHagLU6oaOtRPMqCuzNhS2EnumDrVL+XTu3foSiTbHH00XHCBFnSNMYWd5I5p0/xM9y1bhq5EstHIkX59w3XrQlciaaCwk9zw8cd+hvtLLw1diWQrrXEXawo7yQ0V00ENHx62DsleBQUwYIDCLqYahi5AJCOmTYMuXfyq5IsWha5GMmHcuPq/pnNnf97uZz/z5/FqoxG9kaKWncTfwYP+YvJhw/wAFZGa9Ovnv65YEbYOSTmFncTfn//spwlTF6bUpVMn6NBBYRdDCjuJv6lT/SwZgweHrkSynZnv6l63DvbtC12NpJDCTuJv2jQ4/3xo3jx0JRIF/fr5+VNXrQpdiaSQwk7ibcMGv8qBujAlWccf76/FVFdmrCjsJN6mTfNfdX2dJCsvz3dlrlwJpaWhq5EUUdhJvE2bBqecAt27h65EoqRvX9i/3/cMSCwo7CS+PvsM3npLXZhSfyef7Ac1qSszNhR2El+zZvluKHVhSn01buwnDF+xQmvcxYTCTuJr2jRo3RrOPjt0JRJFffvCrl3wwQehK5EUUNhJPJWX+/kwhwyBRo1CVyNRdOqpfrDK8uWhK5EUUNhJPC1Z4hdqVRemHK7mzeHEE3XeLiYUdhJP06b52TCGDAldiURZ377w0Uf+DyeJNIWdxNPUqXDWWZCfH7oSibKKiaHVlRl5CjuJn61bfTemLjmQI9W2LRx7rLoyY0BhJ/GjhVollfr1g02bYPfu0JXIEVDYSfxMner/Gu/TJ3QlEgf9+oFz8M47oSuRI6Cwk3jZv99fTD58uBZqldTo3Bnat9d5u4hT2Em8zJ0LX3yhLkxJncpr3O3fH7oaOUwKO4mXqVPhqKPgggtCVyJx0q8fHDrkV0KQSFLYSXw458PuoougadPQ1Uic9OgBrVr5Ub4SSQo7iY/Vq/08hurClFTLy4MzzvCrl6srM5IUdhIfU6f6r8OGha1D4qmw0K+ioVGZkaSwk/iYOhX694cuXUJXInF0/PFw9NFQVBS6EjkMCjuJh08+gfnz1YUp6VPRlbl6NezbF7oaqSeFncTDjBl+WR+FnaRTYaEflalr7iJHYSfxMHUqdOzo//IWSZfu3f18mRqVGTkKO4m+0lLfsrv0Ut/VJJIuZv4PqjVrYMeO0NVIPeh/Bom+efP8JL3qwpRMGDAAysrgxRdDVyL1oLCT6Js6FRo39heTi6TbscfCMcfAs8+GrkTqQWEn0ffKK3D++dCyZehKJBeYwcCB8NZb8OGHoauRJCnsJNrWrYMNG9SFKZk1cKD/+txzYeuQpCnsJNpeftl/HTkybB2SW/Lz4ayz1JUZIQo7ibZJk/zouK5dQ1ciueb66/0qCFoJIRIUdhJdW7fCwoVwxRWhK5FcdM010KCBWncRobCT6JoyxX9VF6aEkJ8PQ4b4sCsrC12N1EFhJ9E1aZJfZ6xXr9CVSK666SYoLobZs0NXInVQ2Ek07drl/4O54go/FFwkhMsvhzZt4I9/DF2J1EFhJ9H06qt+Ql51YUpITZvCt7/texl27QpdjdRCYSfRNGmSn/h50KDQlUiuu+UWv3r5+PGhK5FaKOwker74AqZPhxEj/Gg4kZD694dTT1VXZpZT2En0vPoq7N3rh36LhGbmW3eLFvmFXSUrJRV2ZjbEzNab2UYzu7ea55uY2fOJ5xeaWbdKz92X2L7ezC5JbOtqZnPMbK2ZrTazf0jVAUkOeOEFaN8ezjsvdCUi3g03QMOGat1lsTrDzswaAA8DQ4FewHVmVnWs9xhgp3OuB/BL4KeJ1/YCRgO9gSHAI4n3OwTc45w7BTgTuL2a9xT5un37/CoHV17p/3MRyQb5+b5b/Ykn4MCB0NVINZJp2Q0ENjrnNjnnDgLjgRFV9hkBPJm4/yIw2MwssX28c+6Ac+59YCMw0Dn3kXNuKYBz7nNgLdDlyA9HYk9dmJKtvvc9+PRTrXOXpZIJuy7AlkqPi/l6MP1tH+fcIWA30C6Z1ya6PE8HFiZftuSsCRPUhSnZ6cIL/SQHv/td6EqkGsmEXXVX7Lok96n1tWbWAngJ+KFz7rNqv7nZWDMrMrOikpKSJMqV2FIXpmSzvDzfunv7bVi1KnQ1UkUyYVcMVJ5SvgDYWtM+ZtYQaA3sqO21ZtYIH3TPOucm1vTNnXPjnHOFzrnC/Pz8JMqV2FIXpmS7m2+GJk3UustCyYTdYqCnmXU3s8b4ASdTquwzBfhO4v4oYLZzziW2j06M1uwO9AQWJc7nPQasdc79IhUHIjlg/Hh1YUp2a9fO/zH21FOwZ0/oaqSSOsMucQ7uDmAmfiDJBOfcajN70MwuT+z2GNDOzDYCdwP3Jl67GpgArAFmALc758qAc4AbgQvNbHniNizFxyZxsnu3X+Vg9Gh1YUp2+9734PPP4U9/Cl2JVGK+ARYNhYWFrqioKHQZEsJjj8F3v+vXrxs48Mjea9y41NQkuW3s2Oq3O+cXFD5wwJ+700TlaWVmS5xzhXXtpxlUJBqeeQZ69oQBA0JXIlI7M7jrLlizBl57LXQ1kqCwk+z34Ycwdy7ceKP+SpZouPZa6NQJfqEhCdlCYSfZr+Lcx/XXh61DJFmNG8Ptt/uWnebLzAoKO8luzsHTT8M558Dxx4euRiR5t90GzZrB//5v6EoEhZ1ku+XL/bmPG24IXYlI/bRvDzfd5P9Y2749dDU5T2En2e3xx/1FurqQXKLorrvg4EH41a9CV5LzFHaSvb74wv9VPGoUtG0buhqR+jvpJP/z+9BDsHNn6GpymsJOstcLL/iLyWu6nkkkCn78Y3+R+W9+E7qSnKawk+w1bpz/y/jcc0NXInL4+vaFyy7zA1U+/zx0NTlLYSfZadUq+MtffKtO19ZJ1P34x7BjhyaIDkhhJ9lp3Dh/rdJNN4WuROTIDRoEF18MP/+5PxctGaewk+yzb58fmHLVVX74tkgcPPAAbNsGv/516EpyksJOss/TT8OuXf6iXJG4OOccGD4c/uu/fJemZJTWSpHsUl4O998Pxx4L69bB+vWhKxKp3uGsntG/P0ybBtdd53suaqNRyCmllp1kl2nTfFfPxRdrYIrET5cu/vzdnDm67i7DFHaSXX7+c2jTxq8HJhJHl13m53x95ZXQleQUhZ1kjyVL4M03YfBgaNAgdDUi6dG+PZx3nr+05sMPQ1eTMxR2kj1+/nNo2RK+8Y3QlYik1/Dh0KIFPPecP08taaewk+zw7rswYYI/Kd+sWehqRNLrqKPgyith0yZYuDB0NTlBYSfZ4Sc/8asb/OM/hq5EJDPOPBO6d4eJE/21pZJWCjsJb9Xhi/02AAAgAElEQVQq351z553QsWPoakQyIy8PRo/282VOmRK6mthT2El4Dzzgz9WpVSe5pls3P1hlzhx4773Q1cSawk7CWrLEd+PcfbfWrJPcdMUV/mf/ySf9Qq+SFgo7Ccc5uO8+/4t+112hqxEJo2lTuPFGP5mCrr1LG4WdhDNxIsya5acHa9UqdDUi4Zxyir/kZtYsP0JTUk5hJ2Hs2QM//KFf2PL220NXIxLeqFG+l+Oxx7QMUBoo7CSMf/1XKC6GRx6BhpqPXIRmzWDMGL8iwtNP+25+SRmFnWTemjXwi1/ALbfA2WeHrkYke5xwAowcCUuXwu9/H7qaWFHYSWYdPAg33+wvNfjpT0NXI5J9Lr4YevXy3fxLloSuJjYUdpJZ998PixfDo49Cfn7oakSyT16e7/Xo2BFGjICPPgpdUSwo7CRz3ngDfvYzuPXWuheuFMllrVr5WVV27fKBp+nEjpjCTjKjpMRfS3TSSfDLX4auRiT79e0Lzzzje0L+7u+0OsIRUthJ+u3b5/863bHDz4HZvHnoikSiYeRI+M//hPHj/Tk8jdA8bBrzLelVVgbXXw8LFsCLL0K/fqErEomWH/0Itm/3PSJHHw0PPhi6okhS2En6OOenAZs0CX71K79+l4jUj5lf2Hj3bn99qiZNPywKO0mP8nLf7fLQQ36S5zvvDF2RSHSZwbhxfuahf/onf2rgn//Zb5ekKOwk9Q4ehO98x59nuOcePwJTRI5Mgwbw7LN+4ugHHvAtvf/5HwVekhR2klrbtsG3vw2zZ/uQU3eLSOo0bAh//CO0bu1nIfrkE9/ia9IkdGVZT2EnqTNtmr8Y9vPP4YknfOtORFIrL8+fA8/P95M0vPuuX0HkmGNCV5bVFHZxM25c5r/n7t3+Ati334aCAvj+9+HAgTC1iOQCM3/O7pRT4KabYMAAeOklGDgwdGVZS2Enh++LL+D11/0aXIcO+Tn9RoyARo1CVyaSG0aN+nLy6HPOgX/7N3/qIE+XUFelsJP6KS/3i0u+/TYUFUFpKZxxhv9l69AhdHUiuef002H5crjtNrj3XnjtNb8mXrduoSvLKgo7qV1pKXz8MXz4IaxbB2vX+nNyTZvCWWfBN78JXbuGrlIkt7VpA88/D0OG+Mt8evWCf/kXf/mPeloAhV08lJX5uSc/+siHUWnp12/l5V+dasi5Lx87558/cAD274e9e/15uF27/Givijn5Wrb05wh69/YzoTRtmvljFZHqmfk5NC++GO64w1+P99RTflT0kCE5f4mCwi4q9u71Las1a2D1ah9qxcU+4LZv94F3pBo29EOYjzrKD23u2tV3UXbp4m/HHKNzASLZrmtXePllmDzZX+c6bBicdx78x3/k9GLJCrtstGuXPx+2aJGf8XzFCti8+cuWWKNGcOKJcOyxvoXVqdOXt/nz/fNVb3l5X/3LruK+mb/l5fmwE5F4GDnSB924cX6asXPO8bd//Ee47LKc+8NV/7uFduCAP7m8aNGXtw0bvnz+xBP9cOJbbvHdh716+dFXNfXDf/JJZuoWkezXuLHv0rz5Znj8cX8h+siRcNxx/v+Um2/293OAuQgtGVFYWOiKiopCl3H4nPMXgC5aBAsX+tvy5f6cGvhuwkGDfLgNGACFhf7Ec33o2jaReBg7NvXveeiQvwD90Uf9YsrgB5pdcYUPwR49Uv8908zMljjnCuvcL5mwM7MhwK+ABsAfnHP/VeX5JsBTwBnAp8C1zrnNiefuA8YAZcCdzrmZybxndSIVdnv2+HNrK1fCqlX+67JlsHOnf755cx9mFeE2aJA/L3akJ5EVdiLxkI6wq+yDD+Dpp334LVvmt3XrBhde6M/xDRzoe5ayvLszZWFnZg2ADcDFQDGwGLjOObem0j7fB05zzn3PzEYDVzjnrjWzXsBzwECgM/A6cGLiZbW+Z3WyKuwOHvRdhlu2wPvvf/X23nv+a4WjjoI+ffzKwxXh1quXn9g11RR2IvGQ7rCrbPNmmDrVz2k7d+6Xf5S3bAmnnQY9e/pWX8+eX95v2TJz9dUi2bBL5pzdQGCjc25T4o3HAyOAysE0AvhJ4v6LwG/MzBLbxzvnDgDvm9nGxPuRxHum3tat/nzYoUO+67Cmr3v3+pbZnj3+mrI9e/xQ/JISP/KxpMQPIqkqPx+6d//yHNupp/pb9+5Z/9eRiOSwbt38ub077vCXGq1Z4wfHLV7se6hmzvTz3VbWvLn/Py8/H9q391/btvXbmzf3f+RXfG3SxA+Aq3orLPT7ZEAyYdcF2FLpcTEwqKZ9nHOHzGw30C6xfUGV13ZJ3K/rPVNv4kT4wQ+S379xY2jRwv8F07KlnyGkf3//teJDLijwYdatW8Y+NBGRtMnL8z1Rffr4P9or7Nnje63efRc2bvzyD/+SEr/ayapVvkW4d+9Xr+mtzcqV/vtkQDJhV91JpKpHUtM+NW2vrplT7b+OmY0FKtrze8xsfQ11tgdSOxTx4EHYscPfwkr9sWUPHVs06djS7bbb0vGu2XFsFU49NRXvktRw0mTCrhioPB9UAbC1hn2Kzawh0BrYUcdr63pPAJxz44A6T0SZWVEy/bZRpGOLJh1bNOnY4imZE0mLgZ5m1t3MGgOjgSlV9pkCVCxeNgqY7fzIlynAaDNrYmbdgZ7AoiTfU0REJCXqbNklzsHdAczEXybwuHNutZk9CBQ556YAjwFPJwag7MCHF4n9JuAHnhwCbnfOlQFU956pPzwREZGIXVReGzMbm+jyjB0dWzTp2KJJxxZPsQk7ERGRmujiLxERib1IhJ2ZPW5m281sVaVtPzGzv5rZ8sRtWKXn7jOzjWa23swuCVN1csysq5nNMbO1ZrbazP4hsb2tmc0ys3cTX9sktpuZ/TpxfO+YWf+wR1CzWo4t8p+dmTU1s0VmtiJxbP+S2N7dzBYmPrfnEwOwSAzSej5xbAvNrFvI+mtTy7E9YWbvV/rc+iW2R+ZnsoKZNTCzZWY2NfE48p9bhWqOLTaf2xFxzmX9Dfgm0B9YVWnbT4D/U82+vYAVQBOgO/Ae0CD0MdRybJ2A/on7LfHTqPUCfgbcm9h+L/DTxP1hwKv4axjPBBaGPobDOLbIf3aJf/8WifuNgIWJz2MCMDqx/XfA3yfufx/4XeL+aOD50MdwGMf2BDCqmv0j8zNZqea7gT8BUxOPI/+51XJssfncjuQWiZadc+4t/CjPZPxtijLn3PtA5SnKso5z7iPn3NLE/c+BtfhZZkYATyZ2exIYmbg/AnjKeQuAo82sU4bLTkotx1aTyHx2iX//PYmHjRI3B1yInzIPvv65VXyeLwKDzbJz6ehajq0mkfmZBDCzAuBS4A+Jx0YMPjf4+rHVIVKf25GKRNjV4o5E8/vxim4+qp/erLb/YLNGoovkdPxf0h2dcx+BDw2gQ2K3SB5flWODGHx2ie6i5cB2YBa+JbrLOXcosUvl+r8ypR5QMaVeVqp6bM65is/t3xOf2y/Nr3YCEfvcgP8F/gkoTzxuR0w+N75+bBXi8LkdkSiH3W+BE4B+wEfAzxPbk5neLOuYWQvgJeCHzrnPatu1mm1ZfXzVHFssPjvnXJlzrh9+BqCBwCnV7Zb4GuljM7M+wH3AycAAoC3wo8TukTk2MxsObHfOLam8uZpdI/e51XBsEIPPLRUiG3bOuW2JX8hy4FG+7O5KZnqzrGJmjfBh8KxzbmJi87aKLoXE1+2J7ZE6vuqOLU6fHYBzbhcwF3/e42jzU+bBV+v/27HZV6fUy2qVjm1IolvaOb+KyR+J5ud2DnC5mW0GxuO7L/+XeHxuXzs2M3smJp/bEYts2FXpW74CqBipWdMUZVkp0f//GLDWOfeLSk9VnoLtO8DLlbbflBhJdSawu6K7M9vUdGxx+OzMLN/Mjk7cbwZchD8nOQc/ZR58/XOrbkq9rFPDsa2r9MeX4c9pVf7cIvEz6Zy7zzlX4Jzrhh9wMts5dz0x+NxqOLYb4vC5pUIyE0EHZ2bPAecD7c2sGHgAOD8xhNYBm4HboPYpyrLUOcCNwMrEORKA/wv8FzDBzMYAHwJXJ56bjh9FtRH4AriF7FXTsV0Xg8+uE/Ck+cWN84AJzrmpZrYGGG9m/wYsw4c91DClXpaq6dhmm1k+vvtrOfC9xP5R+pmsyY+I/udWk2dj/LklTTOoiIhI7EW2G1NERCRZCjsREYk9hZ2IiMSewk5ERGJPYSciIrEXiUsPRHKBmZUBK/G/l2uB7zjnvghblUg8qGUnkj32Oef6Oef6AAf58nooETlCCjuR7PRnoAeAmd1gfn255Wb2+8QkzQ0S65StMrOVZnZXYt9+ZrYgMenvpEqTbIvkNIWdSJZJzME4FD/zzCnAtcA5iYmZy4Dr8ZNod3HO9XHOnYqf8xDgKeBHzrnT8F2iD2T8AESykMJOJHs0S0yrVoSfIu4xYDBwBrA48dxg4HhgE3C8mT1kZkOAz8ysNXC0c+7NxPs9iV/4WCTnaYCKSPbYl2i9/U1i8t4nnXP3Vd3ZzPoClwC3A9cAd2WkSpEIUstOJLu9AYwysw4AZtbWzI4zs/ZAnnPuJeCfgf7Oud3ATjM7N/HaG4E3q31XkRyjlp1IFnPOrTGz/we8ZmZ5QCm+JbcP+GNiG/gFOsEvR/M7MzsK39UZ65nsRZKlVQ9ERCT21I0pIiKxp7ATEZHYU9iJiEjsKexERCT2FHYiIhJ7CjsREYk9hZ2IiMSewk5ERGJPYSciIrGnsBMRkdhT2ImISOwp7EREJPYUdiIiEnsKOxERiT2FnYiIxJ7CTkREYk9hJyIisaewExGR2FPYiYhI7CnsREQk9hR2IiISewo7ERGJPYWdiIjEnsJORERir2HoAuqjffv2rlu3bqHLEBGRLLFkyZJPnHP5de0XqbDr1q0bRUVFocsQEZEsYWYfJLOfujFFRCT2FHYiIhJ7CjsREYk9hZ2IiMSewk5ERGJPYSciIrGnsBMRkdhT2ImISOylJezM7HEz225mq2p43szs12a20czeMbP+6ahDREQE0teyewIYUsvzQ4GeidtY4LdpqkNERCQ904U5594ys2617DICeMo554AFZna0mXVyzn2UjnpERHJKeTns3Ak7dsCePbB3r/9acav8+OBBKC2t+Xbo0Jf3y8rAOf89nDu8W+XXvvACnHBCRv5JQs2N2QXYUulxcWLb18LOzMbiW38ce+yxGSlORKRO48al9/3Hjv36trIyKC6GLVu+eisuhpIS+OQTf9u50wdeXcygcWNo1KjmW8OGX95v0MC/xuzL15tBXt6X95O5Vby2YeYiKFTYWTXbXHU7OufGAeMACgsLq91HRCRWyspgxQpYswbWrvW3detgwwbfEqusdWsoKICOHaFvX2jfHtq181/btIGWLaFFC39r3vyr95s1+zJ8Yi5U2BUDXSs9LgC2BqpFRCSsnTth0yZ4/31/++AD320IvtV0wglw8skwbBj06AHHHgtdu/pby5Zha4+IUGE3BbjDzMYDg4DdOl8nIjnj4EFYvx5WroRVq+DTT/32hg19kH3zm/Dd70KfPtCzJzRpErbeGEhL2JnZc8D5QHszKwYeABoBOOd+B0wHhgEbgS+AW9JRh4hI1ti1C5Yt8+G2fr1vuTVp4ltsF10Exx/vuyMrzmONHh223phJ12jM6+p43gG3p+N7i4hkjQMHYMkSWLjQB5xz0KEDnHsunHqqb7U1ahS6ypwQqZXKRUQiYetWePNNWLAA9u/3g0WGDYOBA+GYY0JXl5MUdiIiqeCcHy05cyasXu27I884w59/O+GEnBn1mK0UdiIST+m+Dq6Cc/7SgClT/EjKli1hxAgfci1aZKYGqZPCTkTkcL3/Pkyc6Ft0bdvC9dfDWWfpPFwWUtiJiNTX7t0+5BYsgFat4Npr/aAThVzWUtiJiCSrvBzmzIGXX/aznAwZAkOHQtOmoSuTOijsRESSsXUrPPWU77rs08e35jp0CF2VJElhJyJSm/JyeOMNmDzZXwQ+ZgwMGKDRlRGjsBMRqcnu3fDEE35C5n79/ACUVq1CVyWHQWEnIlKd9evh0Uf9ReHXX+8HoKg1F1kKOxGRypyD11/3oy07dIC774bOnUNXJUdIYSciUqG01A9CWbQITj8dbr5ZIy1jQmEnIgKwZw/89rewcaOfAWXoUHVbxojCTkSkpAR+/WvYscOvIzdgQOiKJMUUdiKS24qL4Ve/8heJ33WXXwlcYkdhJyK5a9MmeOghaNzYD0Tp1Cl0RZImCjsRyU0bNsBvfuOvm/vhD/2acxJbCjsRyT3vvutbdO3a+a7L1q1DVyRplhe6ABGRjNq40QddmzYKuhyisBOR3LF5sw+61q39OToFXc5Q2IlIbvj4Yx90zZv7oDv66NAVSQYp7EQk/nbu9JcXmME//IPvwpScogEqIpJ548Zl7nt98YW/YPyLL+Cee6Bjx8x9b8kaatmJSHyVlcHvfw/btsH3vw/HHhu6IglEYSci8eQcPPssrFsHN94IJ50UuiIJSGEnIvE0cybMmweXXgpnnRW6GglMYSci8fPOOzB5sp/Q+bLLQlcjWUBhJyLx8vHH8Nhj0LUr3HSTlukRQGEnInHyxRfwyCPQqBH8/d/7CZ5FUNiJSFw4B0884demu+02aNs2dEWSRRR2IhIPb7wBK1bAqFHQs2foaiTLKOxEJPrefx8mToR+/eDCC0NXI1lIYSci0bZ3Lzz6qJ/rUgNSpAYKOxGJLufgqaf83Je33uoneRaphsJORKJrzhxYvhyuvBK6dw9djWQxhZ2IRNPmzfDii3DaaXDRRaGrkSynsBOR6Nm3z5+na90abr5Z5+mkTgo7EYmeCRPg00/hu9/VeTpJisJORKJlxQr4y19gyBA44YTQ1UhEKOxEJDr27IFnnoGCAhg+PHQ1EiEKOxGJBufgT3/y19Xdcgs0bBi6IokQhZ2IRENRESxZ4pfsKSgIXY1EjMJORLLfrl2+Vde9O3zrW6GrkQhKS9iZ2RAzW29mG83s3mqeP9bM5pjZMjN7x8yGpaMOEYkB5+Dpp6G01HdfNmgQuiKJoJSHnZk1AB4GhgK9gOvMrFeV3f4fMME5dzowGngk1XWISEzMmwerVvlZUjp2DF2NRFQ6WnYDgY3OuU3OuYPAeGBElX0c0CpxvzWwNQ11iEjU7doFL7wAJ54I558fuhqJsHSEXRdgS6XHxYltlf0EuMHMioHpwA9qejMzG2tmRWZWVFJSkupaRSSbPf88lJXBjTdCnoYYyOFLx09PdfP2uCqPrwOecM4VAMOAp82s2lqcc+Occ4XOucL8/PwUlyoiWWvFCli6FC69FDp0CF2NRFw6wq4Y6FrpcQFf76YcA0wAcM7NB5oC7dNQi4hE0f798Nxz0LmzRl9KSqQj7BYDPc2su5k1xg9AmVJlnw+BwQBmdgo+7NRHKSLeyy/783U33qjRl5ISKQ8759wh4A5gJrAWP+pytZk9aGaXJ3a7B7jVzFYAzwE3O+eqdnWKSC56/32/Tt1558Hxx4euRmIiLfPtOOem4weeVN52f6X7a4Bz0vG9RSTCysr83JetW8PIkaGrkRjR8CYRyR6vvw7FxTB6NDRrFroaiRGFnYhkh08+gVdegX794PTTQ1cjMaOwE5HsMGGCv5Zu9OjQlUgMKexEJLxVq/x1dZdeCm3ahK5GYkhhJyJhlZb6mVI6doTBg0NXIzGlsBORsN54A7Zvh2uv1YKskjYKOxEJZ+dOmD7dD0rp3Tt0NRJj+jNKRL5u3LjMfJ+XXoLycrj66sx8P8lZatmJSBgbNsDixXDJJdBeU+NKeinsRCTzyspg/Hho186HnUiaKexEJPPefBP++lcYNQoaNw5djeQAhZ2IZNaePX6mlFNO0UwpkjEKOxHJrGnTYN8+uOYasOrWehZJPYWdiGTOtm0wdy6ce65fmFUkQxR2IpI5L70EjRrBZZeFrkRyjMJORDJjwwY//+WQIdCqVehqJMco7EQk/crL4YUX/CTPF10UuhrJQQo7EUm/RYvgww/hiit0qYEEobATkfQ6eBAmTYLjjoMBA0JXIzlKYSci6TVrFuza5ee/zNN/ORKGfvJEJH1274aZM/3F4z17hq5GcpjCTkTS55VX4NAhuPLK0JVIjlPYiUh6fPwxzJsH3/wmdOgQuhrJcQo7EUmPl1/2F5APGxa6EhGFnYikwebNsHSpv6ZOF5BLFlDYiUjqTZoELVrAxReHrkQEUNiJSKqtWQPr1vnuy2bNQlcjAijsRCSVyst9q65dOz8wRSRLKOxEJHWWLPHTgl1+uR+cIpIlFHYikhplZTBlil+nbuDA0NWIfIXCTkRS4+23Yft2P9mzpgWTLKOfSBE5cgcOwNSp0KMHnHpq6GpEvkZhJyJHbu5c+Owz36ozC12NyNco7ETkyOzb5yd77tPHt+xEspDCTkSOzBtvwN69fgSmSJZS2InI4du7169X16+fX5xVJEsp7ETk8M2a5QenqFUnWU5hJyKH57PPYPZsKCyELl1CVyNSK4WdiByemTPh4EEYPjx0JSJ1UtiJSP3t3AlvvglnngnHHBO6GpE6KexEpP5efdVPD6ZWnUSEwk5E6ueTT/zUYN/4BrRvH7oakaSkJezMbIiZrTezjWZ2bw37XGNma8xstZn9KR11iEgaTJ/uZ0kZNix0JSJJa5jqNzSzBsDDwMVAMbDYzKY459ZU2qcncB9wjnNup5l1SHUdIpIGn3wC8+fDeedBmzahqxFJWjpadgOBjc65Tc65g8B4YESVfW4FHnbO7QRwzm1PQx0ikmqvvupXNLjkktCViNRLOsKuC7Cl0uPixLbKTgRONLN5ZrbAzIbU9GZmNtbMisysqKSkJA3likhSPv3Ut+q+8Q216iRy0hF21U157qo8bgj0BM4HrgP+YGZHV/dmzrlxzrlC51xhfn5+SgsVkXqYMcN/VatOIigdYVcMdK30uADYWs0+LzvnSp1z7wPr8eEnItloxw6YNw/OOQfatg1djUi9pSPsFgM9zay7mTUGRgNTquwzGbgAwMza47s1N6WhFhFJhZkzwTkYUuMZB5GslvKwc84dAu4AZgJrgQnOudVm9qCZVcwWOxP41MzWAHOAf3TOfZrqWkQkBXbu9NfVnX02tGsXuhqRw5LySw8AnHPTgelVtt1f6b4D7k7cRCSbvfYalJfD0KGhKxE5bJpBRURqtns3/PnPfg5MzZYiEaawE5GavfaanwNTrTqJOIWdiFTvs8/8ygYDB0IHTXIk0aawE5HqzZoFhw5pDkyJBYWdiHzd55/D3LkwYAB07Bi6GpEjprATka97/XUoLVWrTmJDYSciX/XppzBnDpxxBnTqFLoakZRIy3V2IpJm48al770nT4YDB+DSS9P3PUQyTC07EfnS3r2+Vde/P3TuHLoakZRR2InIl2bPhv371aqT2FHYiYj3xRfwxhvQrx8UFISuRiSlFHYi4s2ZA/v2qVUnsaSwExEfcq+/Dn37wrHHhq5GJOUUdiLiW3VffKHr6iS2FHYiuW7/ft+q69MHunULXY1IWijsRHLd3Ln+koPhw0NXIpI2CjuRXHbggJ/wuVcv6N49dDUiaaOwE8llb70Fe/aoVSexp7ATyVUHD8LMmXDKKXDCCaGrEUkrhZ1IrnrrLb+Uj66rkxygsBPJRRWtupNOgp49Q1cjknYKO5Fc9Pbb8NlnatVJzlDYieSa0lLfquvZ07fsRHKAwk4k18ybB7t2qVUnOUVhJ5JLSkthxgw/+vLkk0NXI5IxCjuRXDJ/Puzc6a+rMwtdjUjGKOxEcsWhQ/Dqq36mlFNOCV2NSEYp7ERyxYIFsGOHP1enVp3kGIWdSC4oK/OtuuOO86sbiOQYhZ1ILli4ED75RK06yVkKO5G4q2jVde0Kp50WuhqRIBR2InG3eDFs364RmJLTFHYicVZeDtOnQ0GBWnWS0xR2InFWVATbtvlzdXn6dZfcpZ9+kbiqaNV17gz9+oWuRiQohZ1IXC1dCh99pFadCAo7kXgqL4dp06BTJ+jfP3Q1IsEp7ETiaNky2LoVhg1Tq04EhZ1I/JSXw9Sp0LEjFBaGrkYkKyjsROKmolU3fLhadSIJ+k0QiZOKc3Vq1Yl8hcJOJE6WL4e//lWtOpEq9NsgEhc6VydSo7SEnZkNMbP1ZrbRzO6tZb9RZubMTL+ZIkdKrTqRGqX8N8LMGgAPA0OBXsB1Ztarmv1aAncCC1Ndg0jOUatOpFbp+PNvILDRObfJOXcQGA+MqGa/fwV+BuxPQw0iuaWiVafZUkSqlY7fii7AlkqPixPb/sbMTge6Ouem1vVmZjbWzIrMrKikpCS1lYrEQeURmAMGhK5GJCulI+yqWzDL/e1Jszzgl8A9ybyZc26cc67QOVeYn5+fohJFYmT5ciguVqtOpBbp+M0oBrpWelwAbK30uCXQB5hrZpuBM4EpGqQichjUqhNJSjrCbjHQ08y6m1ljYDQwpeJJ59xu51x751w351w3YAFwuXOuKA21iMSbWnUiSUn5b4dz7hBwBzATWAtMcM6tNrMHzezyVH8/kZylVp1I0hqm402dc9OB6VW23V/DvuenowaR2FuxwrfqbrlFrTqROug3RCSKKl9Xp1adSJ0UdiJRVNGqGzYMGjQIXY1I1lPYiURNWRlMmaJWnUg9KOxEombCBL9e3WWXqVUnkiSFnUiUHDoEDzwAXbrAGWeErkYkMtIyGlMk540bl573nTcP3n0X/v7vNQJTpB702yISFaWl/rq6bt2gb9/Q1YhEisJOJCrmzYNPP4URI8Cqm4JWRGqisBOJgoMHYfp06NEDTjkldDUikaOwE4mCN9+E3bvVqhM5TAo7kWy3fz/MmOFbdCeeGLoakUhS2Ilku9mzYc8e36oTkcOisBPJZnv3wqxZfvRl9+6hqxGJLIWdSDabMQP27YPLtTqWyGfO6NcAAA6gSURBVJFQ2Ilkq507Yc4cGDQICgpCVyMSaQo7kWz1yivgnJ8DU0SOiMJOJBtt3Qp/+Qucdx60bx+6GpHIU9iJZKPJk6FJE79enYgcMYWdSLZ57z2/OOsll0CLFqGrEYkFhZ1INnEOJk6EVq1g8ODQ1YjEhsJOJJusXAkbN8Lw4b4bU0RSQmEnki3Ky2HSJOjQAb7xjdDViMSKwk4kWyxY4EdhjhwJDRqErkYkVhR2ItngwAF4+WW/MGv//qGrEYkdhZ1INnjtNdi1C66+Wkv4iKSBwk4ktJ07YeZMOOMMvziriKScwk4ktMmT/SUHV14ZuhKR2FLYiYS0ebMfmHLRRZoWTCSNFHYioTgHEyb4C8iHDAldjUisKexEQlmyxE8NNmIENGsWuhqRWFPYiYRQWuqnBSsogLPPDl2NSOwp7ERCeP11+PRTuOYayNOvoUi66bdMJNN274ZXX4W+feGkk0JXI5ITFHYimfbSS1BWBlddFboSkZyhsBPJpA0bYOFC+Na3oGPH0NWI5AyFnUimlJXBn/4E7drB0KGhqxHJKQo7kUx5/XX46CO49lpo3Dh0NSI5RWEnkgk7dsC0aX5QSt++oasRyTkKO5FMeOEFvzjrNdeErkQkJynsRNJt9WpYuhSGDdP8lyKBKOxE0qm0FMaP9yMvL744dDUiOUthJ5JOr70G27fD6NHQqFHoakRylsJOJF0+/himT/eLsvbqFboakZyWlrAzsyFmtt7MNprZvdU8f7eZrTGzd8zsDTM7Lh11iARTXg5PPglNmvhLDUQkqJSHnZk1AB4GhgK9gOvMrOqftcuAQufcacCLwM9SXYdIUHPmwKZNfvRl69ahqxHJeelo2Q0ENjrnNjnnDgLjgRGVd3DOzXHOfZF4uAAoSEMdImFs2gSTJ0OfPjBoUOhqRIT0hF0XYEulx8WJbTUZA7xa05NmNtbMisysqKSkJEUliqSJc3DrrX7ZnuuvB7PQFYkI6Qm76n67XbU7mt0AFAL/XdObOefGOecKnXOF+fn5KSpRJE3+8AeYPduvaNC2behqRCShYRresxjoWulxAbC16k5mdhHwY+A859yBNNQhklnFxXDPPXDBBXDuuaGrEZFK0tGyWwz0NLPuZtYYGA1MqbyDmZ0O/B643Dm3PQ01iGSWc3DbbX5lg0cfVfelSJZJedg55w4BdwAzgbXABOfcajN70MwuT+z230AL4AUzW25m/7+9e4+xojzjOP59ZFdgoaICVSwiF0lQa6TaIgQ1phdFW0sbbaBWJRWV2gJeYrw02lqtidaoWK9QpYpSLrGaotLUG9V4AaSCVlBkC0qxCMouK7KysPD0j3dO9rB7zu6BPYc5M/v7JJMzM2c4+zy8Z3mYd2bed16ejxNJhsceC8/U3XILDBoUdzQi0kwpujFx9/nA/Gb7fpO1/t1S/FyRWKxeDRMnhq7LSZPijkZEctAIKiLtsWNHuOtyv/3g8cehU6e4IxKRHEpyZifSYdx8MyxcGAZ77tcv7mhEJA8VO+l4pk0rzuesWgV33AEjRkBdXfE+V0SKTt2YInujvh6mTw/z040dG3c0ItIGFTuRPeUOM2fC5s0wfjx06RJ3RCLSBhU7kT21cCEsWQJnnQUDBsQdjYgUQMVOZE988gnMmgWDB8OoUXFHIyIFUrETKVRDA0ydGmYcv/DC8LiBiCSCfltFCpG5Trd+fbhOp0GeRRJFxU6kEK+8AosWhet0Rzefi1hEyp2KnUhbqqthzpwwGesZZ8QdjYjsBRU7kdbU1obrdD176jqdSILpN1ckn+3b4YEHwuull0K3bnFHJCJ7ScVOJBf3MG3P2rXhjO6ww+KOSETaQcVOJJenn4bFi2H0aDjuuLijEZF2UrETae6NN+DZZ2HkSD04LpISKnYi2d5/P3RfDhkS5qkzizsiESkCFTuRjI8+gvvvh0MOgQkTNBGrSIqo2IkAbNgA99wD3bvD5MlQVRV3RCJSRCp2IjU1cPfdYf2yy+Cgg+KNR0SKTsVOOrbaWrjzTti6FSZNCl2YIpI6KnbScdXVwV13wZYt4YzuiCPijkhESqQi7gBEYlFbC1OmhNnGJ0+GgQPjjkhESkjFTjqeTz8NZ3SZrssjj4w7IhEpMRU76ViWL4fbb4fGRrjiCujfP+6IRGQf0DU76TgWLICTTgrrV12lQifSgajYSccwYwacfjr06QNXX62BnUU6GBU7SbedO+H662HcODj5ZHj9dejVK+6oRGQf0zU7Sa9Nm+Dcc+G55+Cii+C++2D//eOOSkRioGIn6bRoEYwZA+vXw7RpcPHFcUckIjFSN6akS2Mj3HRTmJ7HHV59VYVORHRmJymyYgWMHw8LF8J558G990KPHnFHJSJlQGd2knzbtsENN8DQobByJcyaFeakU6ETkYjO7KT8TJtW2HHusHQpPPUUbNwIw4fD2WfD558X/hki0iGo2EkyrVoFTz4Jq1eHZ+YuvxyOOiruqESkTKnYSXK4h+ty8+dDdXXopjz/fBgxQrOKi0irVOyk/G3bFh4lePll+PjjMLnqmDFh6C89NyciBVCxk/K0c2e42WTxYnjrLWhogMMPhwsugBNPhAp9dUWkcPoXQ8rHli3wwgthHMt33gnbXbrACSfAKaeEgZvN4o5SRBJIxU7i4R66JJcuhddeC12US5aEh8K7doVjjglF7thjobIy7mhFJOFU7KS03KGmBtasgQ8+CMVt2bLwumlTOKayEoYNC7MRnHZauAlFN5yISBGp2MmeyzzDtmsX1NdDXV14tq2urmmpqYHPPguzgm/b1vRnKyrCowJDhoRrcP36Qd++0LlzeH/lShU6ESk6FbuOrrERNm+G2tqm13xL5v21a0OR+/LLcObWXGUl9OwZptIZNCi89u4dlkMPVTETkX2uJMXOzEYBdwOdgIfc/dZm73cGZgAnAJuAMe7+YSliSbXGxpZnVXPnhiKUvWzb1nJf9nutqaiAqiro1i28VlXBwIFN+7p1gwMOCM+89egR1rt00Y0kIlJWil7szKwTcB/wPWAd8KaZzXP3FVmHjQdq3f1IMxsL3AaMKXYse81992XXrvzb+d7bsQO2b29aWtuur4etW5teM0uu7ezCVl/fdi4VFeGGj+wlU5C6dm1ZyJoveo5NRFKgFGd2w4Bqd18NYGazgdFAdrEbDdwYrT8B3Gtm5p6rT6yIpk6FK69su4DFrXPnpgKUOXuqqgoPU/fr13QWlb1kzq5efHH3wqY7GUVESlLsvgb8N2t7HXBivmPcvdHM6oCewGfNP8zMLgEuiTa/MLOVeX5ur1x/PpEaGsJSU5PZk57cWlJuyaTcSm3ChFJ8annkVlxHFHJQKYpdros1zU+XCjkm7HSfBrQ5hL2ZLXH3b7YdXvIot2RSbsmk3NKpFPPZrQMOz9ruC/wv3zFmVgH0AGoQEREpgVIUuzeBwWY2wMz2B8YC85odMw8YF62fA7xU8ut1IiLSYRW9GzO6BjcR+Afh0YPp7r7czG4Clrj7POBh4DEzqyac0Y0two9O82ydyi2ZlFsyKbcUMp1QiYhI2pWiG1NERKSsqNiJiEjqJaLYmdl0M9toZu9m7bvRzD42s2XRcmbWe9eZWbWZrTSz0+OJujBmdriZLTCz98xsuZldFu0/2MyeN7NV0etB0X4zsz9G+b1jZsfHm0F+reSW+LYzsy5mttjM3o5y+120f4CZLYrabU50kxZm1jnaro7e7x9n/K1pJbdHzGxNVrsNjfYn5juZYWadzGypmT0TbSe+3TJy5JaadmsXdy/7BTgFOB54N2vfjcBVOY49Gngb6AwMAP4DdIo7h1Zy6wMcH61/BfggyuEPwLXR/muB26L1M4G/E55VHA4sijuHvcgt8W0X/f13j9YrgUVRe8wFxkb7HwQujdZ/CTwYrY8F5sSdw17k9ghwTo7jE/OdzIr5SuAvwDPRduLbrZXcUtNu7VkScWbn7q9Q+HN4o4HZ7t7g7muAasIQZmXJ3de7+1vR+hbgPcIIM6OBR6PDHgV+FK2PBmZ4sBA40Mz67OOwC9JKbvkkpu2iv/8vos3KaHHg24Qh8KBlu2Xa8wngO2blOVp2K7nlk5jvJICZ9QW+DzwUbRspaDdomVsbEtVu7ZWIYteKidHp9/RMNx+5hytr7R/YshF1kXyD8D/pQ9x9PYSiAXw1OiyR+TXLDVLQdlF30TJgI/A84Ux0s7s3Rodkx7/bEHlAZoi8stQ8N3fPtNstUbvdZWH2EkhYuwFTgKuBXdF2T1LSbrTMLSMN7dYuSS52DwCDgKHAeuCOaH/BQ5GVEzPrDvwVuNzdP2/t0Bz7yjq/HLmlou3cfae7DyWMEjQMOCrXYdFronMzs68D1wFDgG8BBwPXRIcnJjcz+wGw0d3/lb07x6GJa7c8uUEK2q0YElvs3H1D9Au5C/gTTd1dhQxXVlbMrJJQDGa6+5PR7g2ZLoXodWO0P1H55cotTW0H4O6bgX8SrnscaGEIPNg9/kQOkZeV26ioW9rdvQH4M8lst5HAD83sQ2A2oftyCulotxa5mdnjKWm3dktssWvWt/xjIHOn5jxgbHQX1QBgMLB4X8dXqKj//2HgPXe/M+ut7CHVxgF/y9p/QXQn1XCgLtPdWW7y5ZaGtjOz3mZ2YLTeFfgu4ZrkAsIQeNCy3RIxRF6e3N7P+s+XEa5pZbdbIr6T7n6du/d19/6EG05ecvefkYJ2y5PbeWlot2IoyUzlxWZms4BTgV5mtg74LXBqdAutAx8CEwA8DE02lzB/XiPwK3ffGUfcBRoJnA/8O7pGAvBr4FZgrpmNB9YCP4nem0+4i6oaqAd+vm/D3SP5cvtpCtquD/CohcmK9wPmuvszZrYCmG1mvweWEoo9lGaIvFLJl9tLZtab0P21DPhFdHySvpP5XEPy2y2fmSlut4JpuDAREUm9xHZjioiIFErFTkREUk/FTkREUk/FTkREUk/FTkREUk/FTkREUk/FTkREUu//fUr9t10mIFMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbwAAAJ4CAYAAAAeIVbgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8VPW9//HXh4RNEVTAjUVAkIorEhH3BRegCNpCxVurVa+0VmrV2lbbe72t3vZq259Wq1ZxF61ABZEqiiKCSwUMiCIgioCAqIAiCrImn98f35MSw4QMyUzOzJz38/GYR2bOnJl8DkPyzvme72LujoiISKFrEHcBIiIi9UGBJyIiiaDAExGRRFDgiYhIIijwREQkERR4IiKSCAo8ERFJBAWeiIgkQlqBZ2Z9zGyBmS00s2tTPN/YzEZFz083sw7R9pZm9pKZrTOzOyrtv4uZPWNm75rZXDO7KVMHJCIikkpxTTuYWRFwJ3A6sBx4w8zGu/u8SrtdAqxx985mNgS4GTgX2Aj8N3BIdKvsz+7+kpk1Al40s77u/uyOamnVqpV36NAhzUMTEZFCN3PmzNXu3jqdfWsMPKAnsNDdFwGY2UhgIFA58AYCv43uPwHcYWbm7uuBV82sc+U3dPevgZei+5vNbBbQtqZCOnToQGlpaRoli4hIEpjZh+num06TZhtgWaXHy6NtKfdx963AWqBlOgWY2e7AWcCL6ewvIiJSG+kEnqXYVnXG6XT22f6NzYqBx4HbK84gU+wz1MxKzax01apVNRYrIiKSSjqBtxxoV+lxW2BFdftEIdYC+DyN9x4OvO/uf6luB3cf7u4l7l7SunVazbQiIiLbSSfw3gC6mFnHqIPJEGB8lX3GAxdG9wcBk72GdYfM7H8JwXjlzpUsIiKy82rstOLuW81sGDARKAIecPe5ZnYDUOru44H7gRFmtpBwZjek4vVmtgRoDjQys7OBM4Avgd8A7wKzzAzgDne/L5MHJyIiUiGdXpq4+wRgQpVt11e6vxEYXM1rO1Tztqmu+4mIiGSFZloREZFEUOCJiEgiKPBERCQRFHgiIpIICjwREUmEtHppikhk+PDsvffQodl7bxHRGZ6IiCSDAk9ERBJBgSciIomgwBMRkURQ4ImISCIo8EREJBEUeCIikggKPBERSQQFnoiIJIICT0REEkGBJyIiiaDAExGRRFDgiYhIIijwREQkERR4IiKSCAo8ERFJBAWeiIgkggJPREQSQYEnIiKJoMATEZFEUOCJiEgiKPBERCQRFHgiIpIICjwREUkEBZ6IiCSCAk9ERBJBgSciIomgwBMRkURQ4ImISCIo8EREJBHSCjwz62NmC8xsoZldm+L5xmY2Knp+upl1iLa3NLOXzGydmd1R5TU9zGxO9JrbzcwycUAiIiKp1Bh4ZlYE3An0BboB55lZtyq7XQKscffOwK3AzdH2jcB/A9ekeOu/AUOBLtGtT20OQEREJB3pnOH1BBa6+yJ33wyMBAZW2Wcg8HB0/wmgt5mZu69391cJwfdvZrYv0NzdX3d3Bx4Bzq7LgYiIiOxIOoHXBlhW6fHyaFvKfdx9K7AWaFnDey6v4T0BMLOhZlZqZqWrVq1Ko1wREZHtpRN4qa6teS32qdX+7j7c3UvcvaR169Y7eEsREZHqpRN4y4F2lR63BVZUt4+ZFQMtgM9reM+2NbyniIhIxqQTeG8AXcyso5k1AoYA46vsMx64MLo/CJgcXZtLyd0/Br4ys15R78wLgKd2unoREZE0Fde0g7tvNbNhwESgCHjA3eea2Q1AqbuPB+4HRpjZQsKZ3ZCK15vZEqA50MjMzgbOcPd5wGXAQ0BT4NnoJiIikhU1Bh6Au08AJlTZdn2l+xuBwdW8tkM120uBQ9ItVEREpC4004qIiCSCAk9ERBJBgSciIomgwBMRkURQ4ImISCIo8EREJBEUeCIikggKPBERSQQFnoiIJIICT0REEkGBJyIiiaDAExGRRFDgiYhIIqS1WoKI1FFZGbz/PhQXQ7t20Lhx3BWJJI4CTySbPvoIpkyBmTNh/fqwzQz22w/69YOSkljLE0kSBZ5ItrzzDtxzT7h/+OEh3Mxg6VJ46y24916YMweGDIGmTeOtVSQBFHgi2TBtGjz8MLRpAz/9KbRose25ww8PZ3fPPAMTJsDChXDVVfHVKpIQ6rQikmmvvw4PPghdusDPf/7NsKtQVAQDBsA118DXX8Mdd8AXX9R/rSIJosATyaRVq+Dxx+HAA8OZXU1NlZ07w49/DCtXwne+A5s310+dIgmkwBPJlPJyeOihcJ3uoougYcP0Xte1K1xwAbz0EgwdmtUSRZJMgSeSKS++GK7HDRkCe+65c6/t1Quuvz5c93viiezUJ5JwCjyRTPj0Uxg3LnRI6dWrdu/x3/8NPXrA5ZfD6tWZrU9EFHgiGTF+fOiIcv75oUmzNoqL4YEH4PPP4corM1ufiCjwROrso4/CwPJTT4Xmzev2XocdBr/5DTz2GDz9dGbqExFAgSdSd08/HaYKO/30zLzfr38NhxwCw4bBpk2ZeU8RUeCJ1MmyZTBrFvTuDbvumpn3bNQIbr0VPvwQ7rorM+8pIgo8kTp5+ukw1q5378y+72mnwRlnwP/+rwaki2SIAk+ktlasgNmzM3t2V9nNN8OaNXDTTZl/b5EEUuCJ1NbUqaFn5cknZ+f9jzgi9Pq87bbQdCoidaLAE6mNjRvDBNE9esBuu2Xv+9x4I7iHryJSJwo8kdqYMSOE3kknZff77L8/XHJJmLJs+fLsfi+RAqfAE9lZ7qE5s1076NQp+9/vF78I83T++c/Z/14iBUyBJ7KzFi0KZ1snnVT7WVV2RocO4Vre8OFhNQYRqRUFnsjOmjIFmjSBnj3r73ted11oQv3LX+rve4oUGAWeyM74+usw0LxXrzC7Sn3p2hUGDdJCsSJ1oMAT2RmzZsHWrXDMMfX/va+7Dr78Eu65p/6/t0gBSCvwzKyPmS0ws4Vmdm2K5xub2ajo+elm1qHSc9dF2xeY2ZmVtl9lZnPN7B0ze9zMmmTigESyato02Hvv0HuyvnXvHiaovuMO2LKl/r+/SJ6rMfDMrAi4E+gLdAPOM7NuVXa7BFjj7p2BW4Gbo9d2A4YABwN9gLvMrMjM2gBXACXufghQFO0nkruWLIH334ejj66fziqp/OxnocPMk0/G8/1F8lg6Z3g9gYXuvsjdNwMjgYFV9hkIPBzdfwLobWYWbR/p7pvcfTGwMHo/gGKgqZkVA7sAK+p2KCJZ9ve/h69HHx1fDd/+NhxwgDqviNRCOoHXBqg8r9HyaFvKfdx9K7AWaFnda939I+DPwFLgY2Ctuz+f6pub2VAzKzWz0lXqki1xcYcRI6BzZ2jVKr46iorgiivg9dfD4HcRSVs6gZeq7cbT3CfldjPbg3D21xHYD9jVzM5P9c3dfbi7l7h7SevWrdMoVyQLZs2Cd9+N9+yuwkUXhYVmb7st7kpE8ko6gbccaFfpcVu2b3789z5RE2UL4PMdvPY0YLG7r3L3LcBY4NjaHIBIvRgxIqxT16NH3JWEuTsvuQRGjw4rNohIWtIJvDeALmbW0cwaETqXjK+yz3jgwuj+IGCyu3u0fUjUi7Mj0AWYQWjK7GVmu0TX+noD8+t+OCJZUF4O//gH9O2bnWWAauMnPwnDI+6/P+5KRPJGjYEXXZMbBkwkhNJod59rZjeY2YBot/uBlma2ELgauDZ67VxgNDAPeA643N3L3H06oXPLLGBOVMfwjB6ZSKbMmBHOpAYNiruSbTp3htNPD9ONbd0adzUiecHCiVh+KCkp8dLS0rjLkKT5xS/C9bKVK0MzYrYMHbpz+z/5JHznO/DUUzBgQM37ixQgM5vp7iXp7KuZVkR2xB3Gjg2rmu++e9zVfFP//rDffnD33XFXIpIXiuMuQCSnvfVWWB3h2u0mGMq84bVo1e/eHSZMgD/8ofrhEjt75ihSoHSGJ7IjY8ZAgwZw9tlxV5La8ceHr6+8Em8dInlAgSeyI2PHwoknQq6OAd1zTzjsMHjtNSgri7sakZymwBOpzrvvwrx5oWNILjv+ePjqK5gzJ+5KRHKaAk+kOmPGhK+5HngHHwwtWoSzPBGplgJPpDpjx4aFXttUnTo2xxQVhfX53nkH1q6NuxqRnKXAE0ll8eIwf2aun91VOPbYMCPM66/HXYlIzlLgiaRSsd7cd78bbx3p2nvvMPvKv/4Vxg6KyHYUeCKpjBkDRxwBnTrFXUn6jjsOPv0UPvgg7kpEcpICT6SqFSvCmVK+NGdW6NEDGjdW5xWRaijwRKoaNy58zZfmzAqNG0NJCcycCZs3x12NSM5R4IlUNWYMdO0KBx0UdyU7r1cv2LQJZs+OuxKRnKPAE6ls9WqYOjWc3ZnFXc3O69wZWrZUb02RFBR4IpWNHx+m6Mq35swKDRpAz54wf77G5IlUocATqWzMGOjQIaxCkK969QpDE2bMiLsSkZyiwBOpsHYtvPBC6J2Zj82ZFfbZBzp2hGnT4q5EJKco8EQqPPMMbNmSv82ZlR19NCxfDsuWxV2JSM5Q4IlUGDMG9t03NAnmu6OOCnNsTp8edyUiOUOBJwLw9dfw7LNwzjmh40e+a9YMunWD0tIwx6aIKPBEAHjuOdiwoTCaMyscdRSsWRNmjRERBZ4IEJozW7YMq5sXisMPh4YNYeTIuCsRyQkKPJFNm+Dpp2HgQCgujruazGnSBA47DP7xD9i6Ne5qRGKnwBN58UX48sv8myw6HSUlsHIlvPRS3JWIxE6BJzJmDDRvDqedFnclmXfoobDbbmrWFEGBJ0m3dSs89RT07x9WGyg0DRuGnqdjxoSmW5EEU+BJsr38Mnz2WWE2Z1YYMiTMIjNxYtyViMRKgSfJNnYsNG0KffrEXUn2nHZa6IGqZk1JOAWeJFd5eQi8vn1h113jriZ7GjaEQYNC0+369XFXIxIbBZ4k17Rp8PHHhd2cWWHIkDCbzNNPx12JSGwUeJJcY8eGs5/+/eOuJPtOOAH220/NmpJoCjxJJvfQc/G006BFi7iryb6iIvje92DCBPjii7irEYmFAk+S6Y03YMmSEAJJMWQIbN4M48bFXYlILBR4kkyjRoXmzIED466k/vTsGRaGVbOmJJQCT5KnvDzML3nmmbDHHnFXU3/MwlnepEmwalXc1YjUOwWeJM+0aWEl8HPPjbuS+nfuuVBWBk8+GXclIvUurcAzsz5mtsDMFprZtSmeb2xmo6Lnp5tZh0rPXRdtX2BmZ1bavruZPWFm75rZfDM7JhMHJFKjUaPCNGIDBsRdSf077DDo3Dmc4YokTI2BZ2ZFwJ1AX6AbcJ6Zdauy2yXAGnfvDNwK3By9thswBDgY6APcFb0fwG3Ac+7+LeBwYH7dD0ekBhXNmX37hgmjk8YMBg8OqyesXh13NSL1Kp0zvJ7AQndf5O6bgZFA1Sv9A4GHo/tPAL3NzKLtI919k7svBhYCPc2sOXAicD+Au292d/WVlux79dUw2DyJzZkVBg9Ws6YkUjqB1wZYVunx8mhbyn3cfSuwFmi5g9d2AlYBD5rZm2Z2n5mlnNvJzIaaWamZla7ShXapq1GjwtyZSRhsXp0jjoADDlCzpiROOoFnKbZ5mvtUt70YOBL4m7t3B9YD210bBHD34e5e4u4lrVu3TqNckWps2RIC76yzoFmzuKuJT0Wz5uTJataUREkn8JYD7So9bgusqG4fMysGWgCf7+C1y4Hl7j492v4EIQBFsue558JSQD/4QdyVxK+iWVOD0CVB0gm8N4AuZtbRzBoROqGMr7LPeODC6P4gYLK7e7R9SNSLsyPQBZjh7p8Ay8ysa/Sa3sC8Oh6LyI49+ii0ahXG3yVd9+7QqZOaNSVRimvawd23mtkwYCJQBDzg7nPN7Aag1N3HEzqfjDCzhYQzuyHRa+ea2WhCmG0FLnf3suitfwo8FoXoIuCiDB+byDZr14blcS69NMywknQVzZp//nM4623ZMu6KRLKuxsADcPcJwIQq266vdH8jMLia1/4e+H2K7bOBkp0pVqTWxoyBTZvUnFnZ4MFw883hD4GLL467GpGs00wrkgwjRkCXLnDUUXFXkjuOPDLMralmTUkIBZ4UvqVLYcqUcHZnqToOJ1RFs+akSfD553FXI5J1CjwpfI8+Gr5+//vx1pGLBg+GrVtDs6ZIgVPgSWErL4f774eTTw69EuWbevSADh3UrCmJoMCTwjZlCixaBP/5n3FXkpsqN2uuWRN3NSJZpcCTwnbvvWHNu+9+N+5KctegQWEWGjVrSoFT4Enh+uwzGDsWzj8fmjSJu5rcddRRsP/+ataUgqfAk8I1YgRs3qzmzJqYhbO8F16AL7RoiRQuBZ4UJne47z7o2TMseio7NniwmjWl4CnwpDC9/jrMnRumEpOa9ewJ7dvDE0/EXYlI1ijwpDDdcQe0aAFDhsRdSX6oaNZ8/vkw76hIAVLgSeFZsSJ0wLj44mSve7ezBg8O1zzHV10MRaQwKPCk8Nx9d1jr7fLL464kvxx9NLRrp96aUrAUeFJYNm0Kgde/PxxwQNzV5JeKZs2JE9WsKQUpreWBRPLGqFGwalUIu+HD464mN+zMv0PDhqFZ86qroFevmvcfOrT2dYnUM53hSeFwh9tvh333hW99K+5q8lPHjmFmmlmz4q5EJOMUeFI4pk6FmTPhlFO0DFBtNWgQ1smbOxc2bIi7GpGMUuBJ4fi//4O99oJjjom7kvzWo0dYMujtt+OuRCSjFHhSGGbODGPIrroKGjWKu5r81rEj7L57+DcVKSAKPCkMN90EzZvDZZfFXUn+U7OmFCgFnuS/BQtgzJgw7q5Fi7irKQwVzZpz5sRdiUjGKPAk//3xj9C4MVx5ZdyVFI5OndSsKQVHgSf5bdEieOSRsATQXnvFXU3haNAAuncPzZobN8ZdjUhGKPAkv/32t2Gw9K9/HXclhadHj7BkkHprSoFQ4En+mjsXHn0Uhg0Lg80lsw44IAxCnzEj7kpEMkKBJ/nr+uvDagi/+lXclRSmBg3gqKPCHxbr1sVdjUidKfAkP82cCWPHwtVXQ8uWcVdTuI4+GsrL1XlFCoICT/KPO1x7Ley5ZxhoLtnTpg3stx9Mnx53JSJ1psCT/PPMMzBpUmjS1Li77DKDnj3hgw9g9eq4qxGpEwWe5JfNm+HnP4euXeEnP4m7mmQ46qjw9Y034q1DpI4UeJJf7roL3nsPbrklDEeQ7GvVKvTYnDEjNCeL5CkFnuSP1avhd7+DM8+Evn3jriZZjj4aVqyAZcvirkSk1hR4kj9+8xv46iv4f/9P693Vt5ISKC6Gf/0r7kpEaq047gIkoYYP37n9P/ggvOa00+C118JN6s+uu8Lhh4dmze9+V83Jkpd0hie5r6wszKiyxx5w1llxV5Ncxx4L69drBQXJWwo8yX2TJoXrR0OGQJMmcVeTXN26hRUU1KwpeSqtwDOzPma2wMwWmtm1KZ5vbGajouenm1mHSs9dF21fYGZnVnldkZm9aWZP1/VApECtXg3//GdoTjviiLirSbYGDaBXL3jnHVi7Nu5qRHZajYFnZkXAnUBfoBtwnpl1q7LbJcAad+8M3ArcHL22GzAEOBjoA9wVvV+FnwHz63oQUqDKy8PSP0VF4exO4nfssWFowrRpcVcistPSOcPrCSx090XuvhkYCQysss9A4OHo/hNAbzOzaPtId9/k7ouBhdH7YWZtgW8D99X9MKQgTZ0aVjMfPDhMIybx23vvMCbvtdc0Jk/yTjqB1waoPPhmebQt5T7uvhVYC7Ss4bV/AX4JlO/om5vZUDMrNbPSVatWpVGuFIRVq8Lk0AcfDMcdF3c1UtkJJ8Cnn4YJAETySDqBl2rAU9U/7arbJ+V2M+sPrHT3Gqdgd/fh7l7i7iWtW7euuVrJf+Xl8PDDoSnzBz/QmLtc06MH7LJLOAMXySPpBN5yoF2lx22BFdXtY2bFQAvg8x289jhggJktITSRnmpmj9aifilEEyfC++/DueeGoQiSWxo1Cmfdb74Zes+K5Il0Au8NoIuZdTSzRoROKOOr7DMeuDC6PwiY7O4ebR8S9eLsCHQBZrj7de7e1t07RO832d3Pz8DxSL5bvBjGjw8ze/TqFXc1Up0TTwxn4vfpErzkjxoDL7omNwyYSOhROdrd55rZDWY2INrtfqClmS0ErgaujV47FxgNzAOeAy5397LMH4YUhA0bwi/QPfaA739fTZm5bK+9wri84cNh69a4qxFJi3ke9bQqKSnx0tLSuMuQTKg6tZg7PPhgmLrqmmugc+d46pL0vfVWWL1i7Fg455y4q5GEMrOZ7l6Szr6aaUVywyuvhFW1+/dX2OWLQw+F9u3h9tvjrkQkLQo8id+HH8KoUaGJrF+/uKuRdDVoAFdcAVOmaHFYyQsKPInX+vVwzz2w225wySXhl6jkj0svhRYt4E9/irsSkRrpt4vEp7w8XLdbswaGDoVmzeKuSHZW8+Zw2WUwZgwsXBh3NSI7pMCT+IwfH5aaOfdc6NQp7mqktq64IiwOe8stcVciskMKPInHzJnw7LNw/PFw0klxVyN1se++cMEF4Wx95cq4qxGplgJP6t9bb8FDD4WzuiFDNN6uEFxzDWzaBH/5S9yViFRLgSf166OPwtCDXXaBH/8YGjaMuyLJhK5dwx8vt98eJpYWyUEKPKk/X30Vwu6LL2DYsNC7TwrH734HGzfC//1f3JWIpKTAk/qxdWs4A5gzB0aPhnbtan6N5JcuXeCHP4S//Q2WLo27GpHtKPAk+9xDT74JE8JUVH37xl2RZMv114evN94Ybx0iKSjwJPtuuSX81f/LX4bxdlK42rcP12YffDCsVi+SQxR4kl1PPBF68A0erGs7SfHrX4dOSVdeGc7uRXKEAk+yZ9q0sGL5MceEFcw1bVgy7L136MDy3HNhcgGRHKHfQJIdH3wAAwZAmzbw1FPQtGncFUl9GjYMDj44nOVt2BB3NSKAAk+y4fPPw6oHZWWho0rr1nFXJPWtYUP4619hyRK4+ea4qxEBFHiSaZs2wdlnh190Tz0FBx4Yd0USl1NOCfOk3nSTOrBITiiOuwDJYVVXJa+JOzzwQFi1/JJLYN68cJPkuvVWeP75MD7v1VehqCjuiiTBdIYnmTN+fAi7s8+Gnj3jrkZywb77wp13hg5Mf/5z3NVIwinwJDNeey1crzvuOOjTJ+5qJJcMGQLf/W4YlP7OO3FXIwmmwJO6mz8fHn0UDjoIvv99rX4g32QWJh5o0SIMU9m4Me6KJKEUeFI3H30Ed98dmq5+9CNdo5HUWrcO13dnz4arroq7GkkoBZ7U3tq1cMcd0LhxGHelsXayI/37h+nl7r4b/v73uKuRBFLgSe1s3hwmgl6/PoTdnnvGXZHkg//937DK/dChoSlcpB4p8GTnucOIEWGs3cUXhwmDRdLRsCGMHBnm2jz77DBJgUg9UeDJznv22W3DD444Iu5qJN+0aRMmFV+8GAYNgi1b4q5IEkKBJzvnzTfDDCo9e2r4gdTeiSfCfffBSy/BT36iVRWkXmimFUnfsmWhp13HjnDBBRp+IHVzwQVhyrE//AG6dg3LSIlkkQJP0vPll2HGjF13hcsuC9diROrqxhvhvfdC783OnUMzuUiWqElTarZ1a+hKvm5daH5q0SLuiqRQNGgQ1kosKQmTFsyaFXdFUsAUeFKzMWPC+nYXXaQemZJ5u+wS5mFt2RLOOitMZiCSBQo82bHSUpg8GXr3hh494q5GCtU++8DTT8NXX8G3vx2a0EUyTIEn1fvkE3jkEejUKUz+K5JNhx0G//hHmGD6e9/TcAXJOAWepPb113DPPaFzyqWXao5MqR9nnhn+302cqOEKknHqpSnbcw89MT/+GK64QtOGSf265JIwKP33vw9DYH7967grkgKhwJPt3X9/aMrs3x+6dYu7GkmiG28MU9f95jfQoQP8x3/EXZEUgLQCz8z6ALcBRcB97n5TlecbA48APYDPgHPdfUn03HXAJUAZcIW7TzSzdtH++wDlwHB3vy0jRyR18+abYTLo008PnQdEdmT48Oy99/33hx6bF10UpiM76aTsfS9JhBqv4ZlZEXAn0BfoBpxnZlX/7L8EWOPunYFbgZuj13YDhgAHA32Au6L32wr83N0PAnoBl6d4T6lvX3wR5jZs1QoeeyyMkRKJS+PGMHYsHHAAnHMOLFwYd0WS59L5jdYTWOjui9x9MzASGFhln4HAw9H9J4DeZmbR9pHuvsndFwMLgZ7u/rG7zwJw96+A+UCbuh+O1Jp7+Et66VIYPTos2CkStz32CMMVzGDAgLAGo0gtpRN4bYBllR4vZ/tw+vc+7r4VWAu0TOe1ZtYB6A5MT/XNzWyomZWaWemqVavSKFdq5ZZbYNw4+NOf4Nhj465GZJtOncLqCu+/H2ZjKSuLuyLJU+kEXqoZgqv2Fa5unx2+1syaAWOAK9095UhTdx/u7iXuXtJaZx3Z8eqr8KtfhbF2P/tZ3NWIbO+UU+D22+GZZ9RrU2otnU4ry4F2lR63BVZUs89yMysGWgCf7+i1ZtaQEHaPufvYWlUvdffpp2GQb8eOoZOAVkCQXHXZZTBnDvzxj3DooXD++XFXJHkmnTO8N4AuZtbRzBoROqGMr7LPeODC6P4gYLK7e7R9iJk1NrOOQBdgRnR9735gvrvfkokDkVooKwvdvdesCU1GmhRact1tt8HJJ8N//idMT3kVRKRaNQZedE1uGDCR0LlktLvPNbMbzGxAtNv9QEszWwhcDVwbvXYuMBqYBzwHXO7uZcBxwA+AU81sdnTrl+Fjk5r89rdhnsy77oLDD4+7GpGaNWwYph/bb7/Qc1MTTctOMM+jqXtKSkq8tLQ07jIKw7PPQr9+cPHFoSkzlWyOsRKpydCh1T/3zjtwzDFw8MEwdWoYwiCJZGYz3b0knX0100oSLV0arn8cdhjccUfc1YikVtMfXN//fph384wzwv2dsaMwlYKlkcVJs3kzDB4cZqJ/4glo2jTuikRq58gjw2TTL78cehqL1ECBlzTXXAMzZsCDD0KXLnFXI1I3Z58NBx0Ejz/KP72PAAAgAElEQVQe5t4U2QEFXpKMGgV//StcdZXWt5PC0KBB6LHZogXcfXdYQFakGgq8pHj33fCL4Zhj4Oab465GJHOaNYMf/xjWrYN779VMLFItBV4SrF8fJoVu0iSc5TVsGHdFIpnVvn3ouLJgATz5ZNzVSI5SL81C5x7++p03D557Dtq1q/k1IvnomGPCwrEvvBDW0CtJq6e6JIjO8Ard7bfDo4+GQeZnnBF3NSLZ9b3vheWEHnlEg9JlOwq8QvbSS/Dzn8PAgfBf/xV3NSLZV1wcxtg1bhw6sXz9ddwVSQ5R4BWqDz8Mf+126RL+2tVirpIUu+8OP/oRrF4NDzwA5eVxVyQ5Qtfw8l2q2Sg2bw4zyq9bB1dcASNH1n9dInHq3Dn8wTdyJEyYAP37x12R5AD92V9o3GHECFi+PAxD2HvvuCsSicfJJ0OvXmHF9Dlz4q5GcoACr9BMmhRmUhkwIKwZJpJUZmGoQtu2YYL0lSvjrkhipsArJPPmwZgx0L079O0bdzUi8WvUKAzLadAgLIOlTiyJpsArFB99FGaO328/+OEPtXK5SIVWrUInlk8/Dde8NRNLYinwCsEXX4Q5Mps0gWHDwlcR2aZr17Ak1vz5oSNLHq0DKpmjwMt3GzfCnXeGpprLL4c994y7IpHcdNxx0KdPWE7oj3+MuxqJgYYl5LNNm+Bvfws9Mn/ykzCfoIhUb+BA+OwzuPZaaN0aLr447oqkHinw8tXWrfAf/xFWQbjoIvXIFElHgwbhGvcee8Cll4brewMGxF2V1BM1aeaj8vJwEX7s2DC4tlevuCsSyR/FxaE3c0lJ+PmZNCnuiqSeKPDyTXl56Gb9wANw/fXQu3fcFYnkn2bN4Jln4MAD4ayzwgoLUvAUePmk4szu3nvhN78JKyCISO20agWTJ28Lveefj7siyTIFXr7YujVMFXbffWHlgxtv1Fg7kbpq1QpefBG+9a0QeqNHx12RZJECLx9s2ADf/S48+CD8z//ADTco7EQypeJMr2dPOPdc+POfNU6vQCnwct2aNWHh1n/+E+64IzRjKuxEMmvPPcN1vEGD4Be/CGNaN2+OuyrJMAVeLnv33dADc8YMGDUq/BCKSHY0aRJ+zq65JoxvPeGEsK6kFAwFXq565hk4+uhwhjdpEgweHHdFIoWvQQP405/gH/8I05AdeSSMGxd3VZIhCrxcs3VrGG5w1llwwAFQWhr+0hSR+jNoEMyaBfvvD+ecEx5//HHcVUkdKfByyaJFIdxuvBEuvBBefVXThYnEpXNnmD4d/vCHsIjsQQeFDi0bNsRdmdSSeR71RiopKfHS0tK4y8i8sjK4+2647rrQpHLPPaG3WDqGD89ubSISlhYaOTKsOdmiRVhv8thjoXHj+q1j6ND6/X55wMxmuntJOvtqLs24zZ4dBpPPmAGnnx4Gle+/f9xViUhle+8NP/sZvPcePPVUCL9x48J19uOPh3bt1Hs6Dyjw4vLhh+Fa3YgRYRzQY4/Beefph0Yklx14YOjF+cEHYZmh116DqVPDZNSHHRYGsHfoEB7rZznnKPDq26JFcOutoSnSDK6+Gn79a61jJ5IvzML1vc6dw+TTs2fDnDkwbVoIP4DddgtnhXvuGW7NmoVhD1UXZ664pOQepg4sL099H0Lz6e67h/euuLVuDfvsEy6FSI0UePWhvBymTIG77oInn4SiIrjggjBrSrt2cVcnIrXVrFlo0jz+eNiyJaxN+eGHsHQprFwZzgRLS7eFVl2NGLH9toYNw++R9u3D5ZD27cOZ5iGHhJXe6/s6Yw5T4GWLe/jLb8yY8J906dLw19kvfwnDhkGbNnFXKCKZ1LAhdOwYbpWVl4fFmjduDLcKlZs8zcJZWsXXyreK/TZtCsOVvvoq3L78MoRqRcB++GGYF3TFim0BW1QEXbrAwQeHADz44HDr0iXUmzBpBZ6Z9QFuA4qA+9z9pirPNwYeAXoAnwHnuvuS6LnrgEuAMuAKd5+YznvmpaVLw1CCqVPDwPGPPgr/Yc84A266Kay2vMsucVcpIvWpQQNo2jTc6mLXXUNY1WTTptC55p13YO7ccHvrrbB+ZkUTasOGIfS6dfvm7cADC/qMsMbAM7Mi4E7gdGA58IaZjXf3eZV2uwRY4+6dzWwIcDNwrpl1A4YABwP7AZPM7MDoNTW9Z27asiUEWcVfVfPnh/9Ms2eHv6wgtK2ffnr4a6xfP9hrr3hrFpHkaNwYDj003CrbsCFMV/jOO2F4xbx524Kw4oywQYMw4UVF55uKJtKK5tK99srr64XpnOH1BBa6+yIAMxsJDAQqh9NA4LfR/SeAO8zMou0j3X0TsNjMFkbvRxrvmXlr1sCCBWFS2C1bwtfK9yu+fvUVfPHFN2+ffRYCrnJzAYTVkw86CE49Ncy2fvzxobdWUVFWD0VEZKc0bQrdu4dbZRs3hjPCefPCH/Dz5oVgnDIl/C6srEGD0AmnVattt5Ytwx/5zZqFs9CKr02bhjPJ4uLqb127hks99SSdwGsDLKv0eDlwdHX7uPtWM1sLtIy2T6vy2oqLVzW9Z+a99lo460qHWRhguvvu4esee4RQ23//bX/1VNwv4CYAESlwTZqEP9IPO2z759au/eY1wk8+CX/8r14dbh98EGajWbcu3HZ2IpN//hP698/McaQhncBLNZik6lFVt09121OdE6f8lzKzoUDF9ALrzGxBNXVmlvu2s7v0tAJWZ7GibMv3+kHHkCt0DNnyox/tzN65eQyV1XwCks4xpD1TRzqBtxyo3He+LbCimn2Wm1kx0AL4vIbX1vSeALj7cCDn588ys9J0p7fJRfleP+gYcoWOITfoGLaXztXHN4AuZtbRzBoROqGMr7LPeODC6P4gYLKHSTrHA0PMrLGZdQS6ADPSfE8REZGMqfEML7omNwyYSBhC8IC7zzWzG4BSdx8P3A+MiDqlfE4IMKL9RhM6o2wFLnf3MoBU75n5wxMREQnSGofn7hOACVW2XV/p/kYg5Qql7v574PfpvGeey/lm1xrke/2gY8gVOobcoGOoIq+WBxIREamt/B1BKCIishMUeGkws3Zm9pKZzTezuWb2s2j7nmb2gpm9H33dI9puZna7mS00s7fN7Mh4j2CHx/BbM/vIzGZHt36VXnNddAwLzOzM+Kr/dz1NzGyGmb0VHcPvou0dzWx69DmMijpCEXWWGhUdw3Qz6xBn/VFN1R3DQ2a2uNLncES0Pef+L0GYgcnM3jSzp6PHefMZVEhxDHn1GQCY2RIzmxPVWxpty5vfS1DtMWTn95K761bDDdgXODK6vxvwHtAN+CNwbbT9WuDm6H4/4FnCOMRewPQcPobfAtek2L8b8BbQGOgIfAAUxXwMBjSL7jcEpkf/vqOBIdH2u4HLovs/Ae6O7g8BRuXA51DdMTwEDEqxf879X4rquhr4O/B09DhvPoMdHENefQZRbUuAVlW25c3vpR0cQ1Z+L+kMLw3u/rG7z4rufwXMJ8wYMxB4ONrtYeDs6P5A4BEPpgG7m9m+9Vz2N+zgGKrz72nh3H0xUHlauFhE/57roocNo5sDpxKmtIPtP4eKz+cJoLdZvKty7uAYqpNz/5fMrC3wbeC+6LGRR58BbH8MNci5z6AGefN7qRbq9HtJgbeToiaZ7oS/zPd2948hBApQMUt0qunYcmY9oCrHADAsauJ4oKL5gxw9hqgZajawEniB8BfeF+6+Ndqlcp3fmPIOqJjyLlZVj8HdKz6H30efw60WViCB3Pwc/gL8EqiYVLYlefYZsP0xVMiXz6CCA8+b2UwLs1JB/v1eSnUMkIXfSwq8nWBmzYAxwJXu/uWOdk2xLSe6w6Y4hr8BBwBHAB8D/69i1xQvj/0Y3L3M3Y8gzM7TEzgo1W7R17w4BjM7BLgO+BZwFLAn8Kto95w6BjPrD6x095mVN6fYNWc/g2qOAfLkM6jiOHc/EugLXG5mJ+5g31w9jlTHkJXfSwq8NJlZQ0JQPObuY6PNn1Y0CURfV0bb05mOrd6lOgZ3/zT6BVwO3Mu25oGcPIYK7v4FMIVwLWJ3C1PawTfr/Pcx2DenvMsJlY6hT9Tk7B5WFnmQ3P0cjgMGmNkSYCShKfMv5NdnsN0xmNmjefQZ/Ju7r4i+rgSeJNScV7+XUh1Dtn4vKfDSEF1zuB+Y7+63VHqq8pRqFwJPVdp+QdQrqhewtqKJIS7VHUOVNvxzgHei+9VNCxcbM2ttZrtH95sCpxGuRb5EmNIOtv8cUk15F5tqjuHdSr+gjHDNpfLnkDP/l9z9Ondv6+4dCJ1QJrv798mjz6CaYzg/Xz6DCma2q5ntVnEfOINQcz79Xkp5DFn7vZRu75Yk34DjCafNbwOzo1s/wrWIF4H3o697RvsbYYHbD4A5QEkOH8OIqMa3o/9M+1Z6zW+iY1gA9M2BYzgMeDOq9R3g+mh7p+g//ULgH0DjaHuT6PHC6PlOOXwMk6PP4R3gUbb15My5/0uVjuVktvVwzJvPYAfHkFefQfRv/lZ0mwv8JtqeT7+XqjuGrPxe0kwrIiKSCGrSFBGRRFDgiYhIIijwREQkERR4IiKSCAo8ERFJhLQWgBWR7DOzMkJX7GLC+MIL3f3reKsSKRw6wxPJHRvc/Qh3PwTYDPw47oJECokCTyQ3vQJ0BjCz8y2soTfbzO6JJp8usrB+2zvRWmJXRfseYWbTokl3n6w06a5I4inwRHJMNOdkX2COmR0EnEuYYPcIoAz4PmFS3Tbufoi7H0qY+xHgEeBX7n4YoXn0f+r9AERylAJPJHc0jZYNKgWWEuY+7Q30AN6InutNmI5pEdDJzP5qZn2AL82sBbC7u0+N3u9hYEez54skijqtiOSODdFZ3L9FExk/7O7XVd3ZzA4HzgQuB74HXFUvVYrkKZ3hieS2F4FBZrYXgJntaWb7m1kroIG7jwH+GzjS3dcCa8zshOi1PwCmpnxXkQTSGZ5IDnP3eWb2X4QVoRsAWwhndBuAB6NtEBYvhbAczN1mtguh2fOi+q5ZJFdptQQREUkENWmKiEgiKPBERCQRFHgiIpIICjwREUkEBZ6IiCSCAk9ERBJBgSciIomgwBMRkURQ4ImISCIo8EREJBEUeCIikggKPBERSQQFnoiIJIICT0REEkGBJyIiiaDAExGRRFDgiYhIIijwREQkERR4IiKSCAo8ERFJBAWeiIgkggJPREQSQYEnIiKJoMATEZFEKI67gJ3RqlUr79ChQ9xliIhIjpg5c+Zqd2+dzr55FXgdOnSgtLQ07jJERCRHmNmH6e6rJk0REUkEBZ6IiCSCAk9ERBJBgSciIomgwBMRkURQ4ImISCIo8EREJBEUeCIikghZCTwze8DMVprZO9U8b2Z2u5ktNLO3zezIbNQhIiJSIVtneA8BfXbwfF+gS3QbCvwtS3WIiIgAWZpazN1fNrMOO9hlIPCIuzswzcx2N7N93f3jbNQjIpIY5eWwfj2sXfvN27p1sHEjbNq07Wvl+5W3bdoEZWXhvXb2K4B7el9vuw1OOKHe/mnimkuzDbCs0uPl0bbtAs/MhhLOAmnfvn29FCciUmvDh9f+teXlIXg2bNh2q/z40EO3D7Kqty+/3BYo6WrcGJo02fa1USMoKgq3Bg12/LWoKOzfoEG4mYX3TOdrkya1/7eqhbgCz1JsS/kJuftwYDhASUnJTn6KIiL1yD0E0/r18PXXqb9WDbSq4VaT4mJo0eKbt06dtt/WvPk3HzdrBk2bfjPcGjcOYWWpfiUXnrgCbznQrtLjtsCKmGoREameO3z2GSxeDB99BJ98Ah9/vO22ciV8/jmsWRNuFc16qRQXh9CpfGvefNv9Jk22f77ybdiwsE9CAirT4gq88cAwMxsJHA2s1fU7Eak3qZodt2wJAbZsWQi1Vatg9erwteqZl1k4Y2rRAnbbDfbYA9q0gV12gV13rf5ro0Z1q7tp07q9PuGyEnhm9jhwMtDKzJYD/wM0BHD3u4EJQD9gIfA1cFE26hARSam8HJYvh/ffh6VLw/0VK7adnRUXQ6tW0Lo1dO687f4ee4Qzst12C9euJK9kq5fmeTU878Dl2fjeIlIg6tL5oyr3cPa2YAG8+y689164pgbhLK1dOzjkEGjfHtq2DeHWQPNyFJq8WvFcRCRt7uG6W2kpzJoVrq9BOFvr3h26doUDDwxnbZIICjwRKRzu8OGHIeRmzgydSYqL4eCDoX9/+Na3QuBJIinwRCT/bdwIM2bASy+Fa3FFRdCtGwwYAEccoc4eAijwRCSfffopTJ0K//pXGMfWrh2cfz4ceWToFSlSiQJPRPLPBx/AhAnwzjuhc0mPHnDKKWEAtsaoSTUUeCKSPxYvhvHjYd68MDSgf3848cTQ01KkBgo8Ecl9S5bAP/8Zzuh23RW+8x04+eQwNZZImhR4IpK7Vq+GJ56AN98MQXf22aHpsp4nHZbCoMATkdyzfj2MGwcvvBCu0Z11FvTurd6WUicKPBGpvUzOhgJhHN0bb8CYMfDFF9CzZ2i+1OBwyQAFnojkhhUr4LHHYOHCMMXXpZeGeSxFMkSBJyLxKiuDiRPhmWdCJ5Qf/ACOPVZzWUrGKfBEJD7LlsHDD4evJSUwZEgYbiCSBQo8Eal/W7aEgePPPRfWlfvxj8OEziJZpMATkfr18cdw771h9fBjjoHBgzUNmNQLBZ6I1A93eP11ePzxsPL3sGFw6KFxVyUJosATkezbuBH+/neYPj2sQXfJJbD77nFXJQmjwBOR7Fq2LDRhrlwZBpD366cemBILBZ6IZM+rr4YmzGbN4Oqrw9mdSEwUeCKSeWVlMHo0TJkCBx0UmjA13EBipsATkcxavx7uuQcWLIDTT4dzzgkrkIvETIEnIpmzahX89a/w2Wfwwx+GYQciOUKBJ1LoMj3Bc3WWLIE77gjNmVdeCV261M/3FUmTAk9E6m7ePPjb36B5c/jpT2GffeKuSGQ7CjwRqZtZs+D++0PIXXEFtGgRd0UiKSnwRKT2pk2Dhx6Cjh3DzCmaIkxymAJPRGqnIuy6doXLLoMmTeKuSGSHFHgisvNmzNgWdpdfHubGFMlxmt9HRHbOzJnwwAOhF6bCTvKIAk9E0jd/fuig0qmTwk7yjgJPRNLz4Ydh6MHee4ew0zU7yTMKPBGp2cqVYQaVZs3gZz9Tb0zJSwo8Edmx9evDDCrl5SHstI6d5CkFnohUr6wsrGW3enUYerD33nFXJFJrCjwRSc0dRo0KHVXOP19zY0reU+CJSGqvvAJTp8IZZ8Cxx8ZdjUidKfBEZHtLloSzu27dwnp2IgVAgSci37RuXVjAtXnzsFJ5A/2akMKg/8kisk15eRhY/uWX8KMfhWEIIgVCgSci20yaFNa2+973oEOHuKsRySgFnogEH34I48ZB9+5w4olxVyOScQo8EYGNG+G++8J1ux/8AMzirkgk4xR4IgKjR8OqVXDxxZo2TApW1gLPzPqY2QIzW2hm16Z4vr2ZvWRmb5rZ22bWL1u1iMgOzJkDr70GZ54JBx4YdzUiWZOVwDOzIuBOoC/QDTjPzLpV2e2/gNHu3h0YAtyVjVpEZAfWr4cRI6BNG+jfP+5qRLIqW2d4PYGF7r7I3TcDI4GBVfZxoHl0vwWwIku1iEh1Ro2Cr76CH/4QGjaMuxqRrMpW4LUBllV6vDzaVtlvgfPNbDkwAfhpqjcys6FmVmpmpatWrcpGrSLJNHs2TJ8O/fpB+/ZxVyOSddkKvFRdvLzK4/OAh9y9LdAPGGFm29Xj7sPdvcTdS1q3bp2FUkUSaMMGePxxaNs2BJ5IAmQr8JYD7So9bsv2TZaXAKMB3P11oAnQKkv1iEhl48bB2rVhCEJRUdzViNSLbAXeG0AXM+toZo0InVLGV9lnKdAbwMwOIgSe2ixFsu2DD8IqCKecotlUJFGyEnjuvhUYBkwE5hN6Y841sxvMbEC028+BS83sLeBx4IfuXrXZU0QyqawMHn00rFo+sGo/MpHCVpytN3b3CYTOKJW3XV/p/jzguGx9fxFJYdIkWLEirF7epEnc1YjUK820IpIUX3wBzzwDhx4KRxwRdzUi9S5rZ3gispOGD8/u+48ZE5o0zz03u99HJEfpDE8kCd5/H2bMgDPOAA3vkYRS4IkUurIyGDkS9twT+vaNuxqR2CjwRArda6/B8uUwaBA0ahR3NSKxUeCJFLING2D8eOjcGY48Mu5qRGKlwBMpZM89FyaHHjxYi7pK4inwRArVZ5+FcXdHH60ZVURQ4IkUrnHjwlnd2WfHXYlITlDgiRSiDz8MwxBOOy30zhQRBZ5IQRo3DnbdFc48M+5KRHKGAk+k0Lz7LsybF8bcNW0adzUiOUOBJ1JI3OHJJ2GPPeDkk+OuRiSnKPBECsmbb8KSJXDWWdCwYdzViOQUBZ5IoSgvh6eegn33hWOOibsakZyjwBMpFDNmwCefhLO7BvrRFqlKPxUihaCsLKx117YtdO8edzUiOUmBJ1IIpk2DlSt1dieyA/rJEMl3FWd37dvD4YfHXY1IzlLgieS7f/0rzJs5YIAmiBbZAQWeSD4rKwsrInToAIccEnc1IjlNgSeSz954A1avhn79dHYnUgMFnki+Ki8PZ3dt2sChh8ZdjUjOU+CJ5KvZs+Hjj8OcmeqZKVIj/ZSI5CN3ePZZ2Gsv6NEj7mpE8oICTyQfzZ0LS5eG5X90dieSFv2kiOSjZ58NKyL06hV3JSJ5Q4Enkm/efx8WLoQzzoDi4rirEckbCjyRfDNhAuy2Gxx/fNyViOQVBZ5IPlmyJKxmftpp0KhR3NWI5BUFnkg+efZZ2GUXOOmkuCsRyTsKPJF88cknYezdKadA06ZxVyOSdxR4IvnihRegYcMQeCKy0xR4Ivngyy/Dmne9eoUOKyKy0xR4Ivlg6lTYujV0VhGRWlHgieS6zZthypQwQfQ++8RdjUjeUuCJ5Lpp02DdOjj99LgrEclrCjyRXFZeDpMmQfv2cOCBcVcjktcUeCK5bO5c+PTTcO1OC7yK1IkCTySXvfBCmCS6pCTuSkTyngJPJFctXQoLFoRxd0VFcVcjkvcUeCK56oUXoHFjOOGEuCsRKQhZCTwz62NmC8xsoZldW80+3zOzeWY218z+no06RPLWmjVQWhpWRNhll7irESkIGV9My8yKgDuB04HlwBtmNt7d51XapwtwHXCcu68xs70yXYdIXps8Gdzh1FPjrkSkYGTjDK8nsNDdF7n7ZmAkMLDKPpcCd7r7GgB3X5mFOkTy0+bN8Oqr0L07tGoVdzUiBSMbgdcGWFbp8fJoW2UHAgea2WtmNs3M+lT3ZmY21MxKzax01apVWShXJMfMmAFff61JokUyLBuBl2qwkFd5XAx0AU4GzgPuM7PdU72Zuw939xJ3L2ndunVGCxXJOe5hGrH99oMuXeKuRqSgZCPwlgPtKj1uC6xIsc9T7r7F3RcDCwgBKJJsixbBsmVw8skaaC6SYRnvtAK8AXQxs47AR8AQ4D+q7DOOcGb3kJm1IjRxLspCLSKZNXx4dt//pZegSRM4+ujsfh+RBMr4GZ67bwWGAROB+cBod59rZjeY2YBot4nAZ2Y2D3gJ+IW7f5bpWkTyytq1MGsWHHtsCD0RyahsnOHh7hOACVW2XV/pvgNXRzcRgdAzs6wMTjop7kpECpJmWhHJBWVl8PLL0K2b1rwTyRIFnkgumD0bvvgidFYRkaxQ4InkgilToGXLsKq5iGSFAk8kbh99BO+9ByeeCA30IymSLfrpEonb1KlQXBwmihaRrFHgicRpwwaYNg2OOgqaNYu7GpGCpsATidPrr8OmTeqsIlIPFHgicSkvD51VOnQINxHJKgWeSFzefRc+/VSrIojUEwWeSFymTAnX7Xr0iLsSkURQ4InE4bPP4O23Q8/Mhg3jrkYkERR4InF4+eXwVfNmitQbBZ5IfduyBV55BQ4/HPbcM+5qRBJDgSdS30pLYf16DUUQqWcKPJH6NmVKWBHhW9+KuxKRRFHgidSnxYthyZJwdmcWdzUiiaLAE6lPU6ZA48bQq1fclYgkjgJPpL589VW4fterFzRtGnc1IomjwBOpL6+9Blu3qrOKSEwUeCL1obw8LAPUtSvst1/c1YgkkgJPpD68/TZ8/rnO7kRipMATqQ9TpsAee4TB5iISCwWeSLZ98gnMnw8nnghFRXFXI5JYCjyRbJsyJQTd8cfHXYlIoinwRLJp48awqnmPHtC8edzViCSaAk8km6ZPD6GnzioisVPgiWSLe2jObN8eOnWKuxqRxFPgiWTLe+/BihWaN1MkRyjwRLJlyhTYdVc46qi4KxERFHgi2bFmDcyeDcceC40axV2NiKDAE8mOV14J1/BOOinuSkQkosATybQtW+Dll+GQQ6B167irEZGIAk8k0958MywFpKEIIjlFgSeSaZMnw157QbducVciIpUo8EQyafHicDvlFGigHy+RXKKfSJFMmjwZmjSBY46JuxIRqUKBJ5Ipa9fCzJlhKELTpnFXIyJVKPBEMuXll8PK5uqsIpKTFHgimbBlC0ydGoYi7L133NWISAoKPJFMmDkzDEU49dS4KxGRaijwROrKHV58EfbZBw46KO5qRKQaCjyRulq0CJYuDWd3WhVBJGcp8ETqavLk0Cvz6KPjrkREdiBrgWdmfcxsgZktNLNrd7DfIDNzMyvJVi0iWbNmDcyaBccdF8bfiUjOykrgmVkRcCfQF+gGnGdm282zZGa7AVcA07NRh0jWTZ0aruGdckrclYhIDbJ1htcTWOjui9x9MzASGJhivxuBPwIbs1SHSPZs3hyWATrsMGjVKu5qRKQG2Qq8NsCySo+XR9v+zcy6A+3c/ekdvZGZDTWzUjMrXbVqVeYrFamtadNg3Tro3TvuSkQkDdkKvFRd1fzfT5o1AG4Ffl7TG7n7cHcvcfeS1lpbTHJFeTm88ALsv7OWDwsAABCSSURBVD8ceGDc1YhIGrIVeMuBdpUetwVWVHq8G3AIMMXMlgC9gPHquCJ5Y/ZsWLkSzjxTQxFE8kS2Au8NoIuZdTSzRsAQYHzFk+6+1t1buXsHd+8ATAMGuHtpluoRyRx3mDgxXLfr3j3uakQkTVkJPHffCgwDJgLzgdHuPtfMbjCzAdn4niL15v33YckSOOMMrXknkkeKs/XG7j4BmFBl2/XV7HtytuoQybjnn4fddtOadyJ5Rn+eiuyMFStgzpywBFCjRnFXIyI7QYEnsjOefz4Enda8E8k7CjyRdC1fDjNmhGnEmjWLuxoR2UkKPJF03XZb6KF52mlxVyIitaDAE0nH2rVwzz3Qo4emERPJUwo8kXTcc09Y0fyMM+KuRERqSYEnUpOvv4ZbbglNme3bx12NiNSSAk+kJvfeC59+CtenHEYqInlCgSeyIxs3wh//GIYhnHBC3NWISB1kbaYVkYLwwANhsPmIEXFXIiJ1pDM8keps3gw33RTG3WlFc5G8pzM8keo89BAsWwb33aclgEQKgM7wRFLZuBFuvBF69YLTT4+7GhHJAJ3hiaQyfHiYSuzhh3V2J1IgdIYnUtX69fCHP4TrdqeeGnc1IpIhOsOTwjN8eN1e/9xzYdzdhRfW/b1EJGfoDE+ksg0bYOJEOOQQOOCAuKsRkQxS4IlUNnFimEps4MC4KxGRDFPgiVRYswYmTYKjjtKcmSIFSIEnUuGf/4Tycjj77LgrEZEsUOCJAHz0EfzrX2HOTK13J1KQFHgiAGPHQpMm0K9f3JWIyP9v796DrCjPPI5/nx0uIUJgDYNRuWREoyBRRERTGNioK7cNmEQDBEqKSrywUFmSmF0pq1JuqrbipbKrBqKiRtCgBtREEjUxJZpYiVHuMoCQGZkChASVm4CZG8/+8fbIYTgzzMD0dJ/Tv09V1+nueWd8Ht5T/djdb78dExU8kQ0boLwcxoyBrl2TjkZEYqKCJ9lWXw+LF4fLmHrIXKSoqeBJtv3hD7BzJ1x3HXTsmHQ0IhIjFTzJrgMHwsjMAQPgwguTjkZEYqaCJ9n13HPhrQhf/7omiBbJABU8yaaqKnjtNRg5Es44I+loRKQdqOBJ9hw+DIsWQbdumkJMJENU8CR7Xn0Vtm4NlzK7dEk6GhFpJyp4ki1794Z7dwMHwtChSUcjIu1IBU+yZfFiqKuDyZM1UEUkY1TwJDtWrYKVK2HcOOjVK+loRKSdqeBJNhw8CE8+CX36wKhRSUcjIglQwZNsWLIkPGg+bRqUlCQdjYgkQAVPil95Obz+ejiz69Mn6WhEJCEqeFLcDhyAxx4LD5ePG5d0NCKSIBU8KV7u8MQToehNn67JoUUyTgVPitebb4ZRmV/+MvTtm3Q0IpIwFTwpTrt3h1GZ/ftrVKaIACp4Uozq6+Hhh8MlzenT4Z/0NRcRFTwpRr/+NVRWwpQpUFqadDQikhIqeFJcXn4ZfvtbGD4chg1LOhoRSZFYCp6ZjTazTWZWYWa35vn5d81sg5m9ZWYvm1m/OOKQjPnb32DqVPjMZ2DixKSjEZGUafOCZ2YlwDxgDDAQmGxmAxs1Ww0MdfcLgKeBu9o6DsmY2tpQ5PbtgxtugM6dk45IRFImjjO8YUCFu7/j7jXAU8BRb9l091fc/VC0+RegdwxxSJbMmQN//CPMnw9nnpl0NCKSQh1i+JtnAttytrcDlzbT/pvAi0390MxuBG4E6KtnqYrH/Plt97dWrgx/b+RIOHTo+O1FJJPiOMPL95Ixz9vQbCowFLi7qT/m7vPdfai7Dy3ViDtpbNs2WLgQysrguuuSjkZEUiyOM7ztQO4Mvb2BHY0bmdlVwG3ASHevjiEOKXb79sG8edClC9x8s6YOE5FmxXGGtxw4x8zKzKwTMAlYmtvAzC4CHgTGu/uuGGKQYldTA/ffH95zN3Mm9OiRdEQiknJtXvDcvQ6YBfwO2Agsdvf1ZvZDMxsfNbsb6AosMbM1Zra0iT8nciz38AaELVvCTCq6tysiLRDHJU3c/QXghUb7fpCzflUc/13JiOefh+XL4ZprYMiQpKMRkQKhmVaksKxYEaYOu+wyGD066WhEpICo4Enh2LIFFiwIb0CYOhUs34BgEZH8VPCkMOzYAT/5CXTvDjNmaESmiLSaCp6k3wcfwL33QkkJzJ4N3bolHZGIFCAVPEm3/fvhnnvCYwizZ+t1PyJywlTwJL0++gjuuw/27IFZszRHpoicFBU8SaeaGpg7N9y7u/nmMFBFROQkqOBJ+tTVhcmgKyvDg+WDBiUdkYgUARU8SZfaWnjwQVi3DiZPhksuSToiESkSscy0InJCamvhgQegvDwUu5Ejk45IRIqICp6kQ8Nk0Bs2wJQpMGJE0hGJSJFRwZPk1dTAT38Kb78N118Pw4cnHZGIFCEVPElWdXV4p93mzTBtGnzhC0lHJCJFSgVPknPwYCh277wTRmNeemnSEYlIEVPBk2Ts3h0eKn/vPbjhBrj44qQjEpEip4In7W/9erjrrjCTyre/Deeem3REIpIBeg5P2tef/gSXXw6HD8Mtt6jYiUi70RmetJ9f/So8X9e3bxig0rNn0hGJSIboDE/i5x7eePC1r8EFF4SzPBU7EWlnKngSr+pq+Na34DvfgfHjYdkyFTsRSYQuaUrT5s8/ud/fvz9MFVZZCWPHwqhRsGhR28QmItJKKngSj23bwuwpH34YzvA0CbSIJEwFT9reqlXw6KPwyU/C978P/folHZGIiAqetKG6OnjmmXCfrqwMZsyA7t2TjkpEBFDBk7by/vvw0ENQVQVXXAFf/Sp07Jh0VCIiH1PBk5O3ejUsXBjWb7oJhgxJNh4RkTxU8OTE1dbCs8+GS5j9+oU5MUtLk45KRCQvFTw5MVu3woIF8O67uoQpIgVBBU9ap74eXnghLN26wcyZYfYUEZGUU8GTltu+PZzVbdsW3l03cSKcckrSUYmItIgKnhxfbS289BI8/3x4tm7GDBg8OOmoRERaRQVPmrduHSxeDLt2hZe0fuMb0LVr0lGJiLSaCp7kV1kJc+eGgnfaaeFFreefn3RUIiInTAVPjnbwIPzoR3D33WAWRl9eeSV00FdFRAqbjmISHDoU3mxw553h8uXUqfD5z0OPHklHJiLSJvQ+vKz76KPwctazzoLvfS88YvDnP8Pjj6vYiUhR0RleVh08CI88AnfcATt3wpe+BEuWwBe/mHRkIiKxUMHLmq1bYd688HLXvXthxAh48kkYOTLpyEREYqWCV+ha8lby+nooL4fXXgufABddFAaj9O8PmzaFRUSkiKngFav6eti8ObyMdfXq8ObxT30KRo0Kly179kw6QhGRdqWCV0xqa6GiAlauhDVrQpHr1CmMthw2LHyWlCQdpYhIIlTwCllNTShwmzaFs7nKylD0OncOoy2HDIFBg0LRExHJOBW8QlFbCxs3wtq1YVmzBl5/PTw/B9C7d7hUed55MGCAipyISCOxFTwzGw3cC5QAD7v7HY1+3hl4DLgY+ACY6O5VccVTEKqrwyjKLVvCUlUVPjdtgg0bwhkdhDO488+H6dOhrg4+9znNbykichyxFDwzKwHmAf8KbAeWm9lSd9+Q0+ybwB53P9vMJgF3AhPjiKfV3MNy+HD+9dzturpQiKqr83/+4x/hXlrjZc+eMKPJe+8d+dy79+g4OnQIbxI/+2y4+mq48MKwnHvukam+WjJKU0REYjvDGwZUuPs7AGb2FDAByC14E4Dbo/WngblmZu7uMcUEL74I1157/GIWt06dwiwmvXpBaWm411ZaGrb79oWysrCccYYGmYiItJG4Ct6ZwLac7e3ApU21cfc6M9sHfBp4P7eRmd0I3BhtHjCztD4w1pNGsTeppiac1e3aFW9ErdPy+NNLOaSDcojLTTe1pnU6c2idluTQr6V/LK6CZ3n2NT51akkb3H0+kPrrdma2wt2HJh3HiSr0+EE5pIVySAflcKy4Jo/eDvTJ2e4N7GiqjZl1ALoDu2OKR0REMi6ugrccOMfMysysEzAJWNqozVJgWrR+LbAs1vt3IiKSabFc0ozuyc0Cfkd4LOFn7r7ezH4IrHD3pcAjwONmVkE4s5sURyztKPWXXY+j0OMH5ZAWyiEdlEMjppMqERHJAr0AVkREMkEFT0REMkEFrwXMrI+ZvWJmG81svZn9R7T/VDP7vZn9Nfr852i/mdl9ZlZhZm+Z2ZBkM2g2h9vN7F0zWxMtY3N+Z06UwyYzG5Vc9B/H8wkze9PM1kY5/He0v8zM3oj64RfRQCnMrHO0XRH9/LNJxh/F1FQOC8xsS04/DI72p+67BGE2JTNbbWa/ibYLpg8a5MmhoPoAwMyqzGxdFO+KaF/BHJegyRziOS65u5bjLMDpwJBovRuwGRgI3AXcGu2/FbgzWh8LvEh41vAy4I0U53A7cEue9gOBtUBnoAyoBEoSzsGArtF6R+CN6N93MTAp2v8AMCNa/3fggWh9EvCLFPRDUzksAK7N0z5136Uoru8CTwC/ibYLpg+ayaGg+iCKrQro2WhfwRyXmskhluOSzvBawN13uvuqaP1DYCNhppgJwMKo2ULgmmh9AvCYB38BepjZ6e0c9lGayaEpE4Cn3L3a3bcAFYQp4xIT/XseiDY7RosDVxCmp4Nj+6Ghf54GrjSzfBMetJtmcmhK6r5LZtYbGAc8HG0bBdQHcGwOx5G6PjiOgjkunYCTOi6p4LVSdEnmIsL/mZ/m7jshFBSgV9Qs39RqzRWXdtUoB4BZ0SWOnzVc/iClOUSXodYAu4DfE/4Pb6+710VNcuM8avo6oGH6ukQ1zsHdG/rhf6J++D8LbxOBdPbDPcB/Aoej7U9TYH3AsTk0KJQ+aODAS2a20sI0jFB4x6V8OUAMxyUVvFYws67AM8Bsd9/fXNM8+1Lx/EeeHO4H+gODgZ3Ajxua5vn1xHNw93p3H0yYvWcYMCBfs+izIHIws0HAHOA84BLgVOC/ouapysHM/g3Y5e4rc3fnaZraPmgiByiQPmhkuLsPAcYAM81sRDNt05pHvhxiOS6p4LWQmXUkFIpF7v5stPvvDZcEos+G2aBbMrVau8uXg7v/PToAHwYe4sjlgVTm0MDd9wKvEu5F9LAwPR0cHWeqp6/LyWF0dMnZ3b0aeJT09sNwYLyZVQFPES5l3kNh9cExOZjZzwuoDz7m7juiz13ALwkxF9RxKV8OcR2XVPBaILrn8Aiw0d3/N+dHudOjTQOey9l/fTQq6jJgX8MlhqQ0lUOja/hfAcqj9aXApGiUXRlwDvBme8Wbj5mVmlmPaL0LcBXhXuQrhOnp4Nh+SNX0dU3k8HbOAcoI91xy+yE13yV3n+Puvd39s4RBKMvcfQoF1AdN5DC1UPqggZmdYmbdGtaBqwkxF9JxKW8OsR2XWjq6JcsLcDnhtPktYE20jCXci3gZ+Gv0eWrU3ggvwK0E1gFDU5zD41GMb0VfptNzfue2KIdNwJgU5HABsDqKtRz4QbT/rOhLXwEsATpH+z8RbVdEPz8rxTksi/qhHPg5R0Zypu67lJPLv3BkhGPB9EEzORRUH0T/5mujZT1wW7S/kI5LTeUQy3FJU4uJiEgm6JKmiIhkggqeiIhkggqeiIhkggqeiIhkggqeiIhkggqeiIhkggqeiIhkwv8DfjQIFMDdfrUAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
    " ] }, "metadata": {}, @@ -720,9 +842,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAJ4CAYAAAD8/U2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XucnHV99//XZ2Z2Zndnd/a82WwOJkA4JBwCRETxjGKgvY22IFBtaaXNrYXetra18mvvHuzPtt53W9u7FW0UKkgrIuptVAQRtCpySEAChIAsgZz2mN3Z0+xhZme+9x8zicuym50ku/udw/v5eMxjZ665ZuY9F8u+c52+lznnEBERKWUB3wFEREQWm8pORERKnspORERKnspORERKnspORERKnspORERKnspORERKnspORERKnspORERKXsh3gOPR3Nzs1qxZ4zuGiIgUiMcff/ywc65lvvnyKjsz2wz8MxAEvuCc+7sZz0eA24ELgX7gaufcy2bWBNwNvBb4onPuxmmvuRD4IlAF3AN8xM0zdtmaNWvYuXNnPpFFRKQMmNm+fOabdzOmmQWBzwCXA+uBa81s/YzZrgfizrnTgE8Dn8pNnwD+J/BHs7z1Z4GtwLrcbXM+gUVERI5XPvvsLgI6nHN7nXNJ4E5gy4x5tgC35e7fDVxqZuacSzjnfkK29I4ys+VAzDn3cG5t7nbgPSfzRUREROaST9mtAA5Me3wwN23WeZxzU8AQ0DTPex6c5z0BMLOtZrbTzHb29fXlEVdEROSV8ik7m2XazH1r+cxzQvM757Y55zY55za1tMy7D1JERORV8im7g8CqaY9XAp1zzWNmIaAOGJjnPVfO854iIiILIp+y2wGsM7O1ZhYGrgG2z5hnO3Bd7v6VwIPHOrLSOdcFjJjZxWZmwG8A3zzu9CIiInmY99QD59yUmd0I3Ef21INbnXO7zewTwE7n3HbgFuBLZtZBdo3umiOvN7OXgRgQNrP3AJc5554FPswvTj34bu4mIiKy4GyeU9sKyqZNm5zOsxMRkSPM7HHn3Kb55tNwYSIiUvJUdiIiUvJUdiIiUvKKaiBoESkcnZ3b8p63vX3rIiYRmZ/W7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSp7EREpOSFfAcQkcXV2bkt73nb27cuYhIRf7RmJyIiJU9lJyLzSqfHSCZ7cM75jiJyQrQZU0ReZWJiP319Xycev49EYg+Tk/sACAZrqao6ncbGywiH2wgEKj0nFcmPyk5EAMhkUnR330Fn580MDz8MQHX1eurqLqG6+oOEQvWMj3eQSDzL/v1/SyjUQGvrtdTUnOc5ucj88io7M9sM/DMQBL7gnPu7Gc9HgNuBC4F+4Grn3Mu5524CrgfSwP9wzt2Xm/4HwG8DDnga+C3n3MQCfCcROQ6ZzATx+IMMDv6AdHqY6uozWbv2b2hp+VWqq0+f9TVDQw+xe/f76Oy8mYaGy2hp+dUlTi1yfOYtOzMLAp8B3gkcBHaY2Xbn3LPTZrseiDvnTjOza4BPAVeb2XrgGmAD0A5838xOB9qA/wGsd86Nm9ldufm+uHBfTUSOxbk0Q0MP0d//rVzJbeC00/6BhoZ3Ynbs3fl1dZfwmtf8Gb29dxKPf49IpJ1Y7PVLlFzk+OWzZncR0OGc2wtgZncCW4DpZbcF+Mvc/buBfzUzy02/0zk3CbxkZh2599uf++wqM0sB1UDnyX8dEclHMtlNV9ctTE7up7LyVNrbP0RV1ak0Nr4r7/cwC9Laeg3JZA89PXcQDi+nsnLN4oUWOQn5HI25Ajgw7fHB3LRZ53HOTQFDQNNcr3XOHQL+nmzpdQFDzrnvzfbhZrbVzHaa2c6+vr484orIXJxzDA39hH37Pkkq1c/y5VtZteqPqao69YTezyzI8uW/QzBYR2fn55iaGl7gxCILI5+ys1mmzTz+eK55Zp1uZg1k1/rWkt28GTWzD8z24c65bc65Tc65TS0tLXnEFZHZOJeht/cOenq+RGXlWl7zmv9Jbe2FZDfCnLhQqJb29g8zNTVMf/+3FiityMLKp+wOAqumPV7Jqzc5Hp3HzEJAHTBwjNe+A3jJOdfnnEsBXwfecCJfQETm51ya7u5bGRr6CQ0Nm1m58vepqGhYsPevrFxFXd0bGRr6CcmktsBI4cmn7HYA68xsrZmFyR5Isn3GPNuB63L3rwQedNmzT7cD15hZxMzWAuuAx8huvrzYzKpz+/YuBfac/NcRkZkymRSdnf/GyMgOmpvfS0vLe+c9AOVENDVdgVmQgYHvLPh7i5yseX/jc/vgbgTuI1tIdznndpvZJ8zs3bnZbgGacgegfBT4eO61u4G7yB7Mci9wg3Mu7Zx7lOyBLE+QPe0gAOQ/gJ+I5MU5R2/vl0kkdtHScjWNjZsX7bNCoXrq69/C8PAjJJPdi/Y5Iicir/PsnHP3APfMmPbn0+5PAFfN8dpPAp+cZfpfAH9xPGFF5PgcOvSvDA8/RGPjFTQ0vH3RP6+hYTODgz+mv/9bLF/+O4v+eSL50tiYIiUqHn+Ajo4/IBo9j6am/7YknxkK1dLQ8HZGRnZq7U4KioYLEylC8122J5WKs2/fXxMOt9LW9luLso9uLvX1b2dg4D6Ghh7SyCpSMLRmJ1Jisvvp7sC5JO3tHyIYrFrSzw+FYkSj5zA8/AjOpZf0s0XmorITKTHDwz8lkXiG5uZfIRxu85Khru4NpNPDJBLPePl8kZlUdiIlJJUaoK/vLqqq1lFf/1ZvOaLRcwgGaxka+qm3DCLTqexESoRzjp6eO3DOsWzZdUu6n24msyCx2MUkEk9pCDEpCCo7kRKRSOxibGw3zc1bCIf9D60Xi70ByDAy8qjvKCIqO5FSkMmk6Ov7KuHwcq+bL6eLRNqprFyrTZlSEFR2IiVgcPABUqnDtLS8j+wlKAtDLPY6kslOEgmNBih+qexEitzU1BD9/fcQjZ5HNLred5xXiEY3AnD48P/1nETKncpOpMgdPvwNnJuipeVK31FepaKigUhkjcpOvFPZiRSxiYmXGR5+mIaGSwmHW33HmVVt7UZGRh5jcvKQ7yhSxlR2IkUqO1LKnQSDMRobr/AdZ06/2JT5Tc9JpJyp7ESK1MjIY0xMvERz83uWfEiw4xGJLKeq6gxtyhSvVHYiRSiTmaCv7+tEIquJxV7vO868mpvfw+DgD0il4r6jSJlS2YkUoYGB+0inB2ltvcbrSCn5am5+D85NMTBwz/wziyyCwv+/REReYXz8ZeLx71FbexFVVaf6jpOXWOwiwuHl2pQp3qjsRIrM3r1/DARobv4V31HyZhagqemXGRj4HplMynccKUMqO5EiEo//kL6+u2ls3ExFRYPvOMelsXEz6fQww8MaK1OWnspOpEg4l6aj4yNEIqtpaHin7zjHraHhUiDIwMC9vqNIGVLZiRSJzs7PkUg8xamn/m8CgbDvOMctFKqjru71KjvxIuQ7gIjMb3Kym717/z/q6y+lpeUquro+vyif09m5bVHe94jGxs289NKfkUz2FuyIL1KatGYnUgRefPEPyWQmOP30mzEz33FOWGPjZgAGBr7nOYmUG5WdSIGLxx+gt/c/Wb3641RXn+47zkmpqTmfiooW4vH7fEeRMqOyEylg6fQEP//5DVRWnsrq1Tf5jnPSzAI0NFzGwMB9OJfxHUfKiMpOpIC9/PJfMD7+PKeffjPBYKXvOAuisXEzqVQfo6M/8x1FyojKTqRADQ09zIEDf8/y5b9DY+NlvuMsmCPfRUdlylJS2YkUoHR6jOeeu45IZBWnnvoPvuMsqHC4lZqa83WQiiwplZ1IAXrppT9lfPwFzjzzVkKhWt9xFlxDwzsZHn6YqalR31GkTKjsRApMf/93OHjwn1ix4kYaGt7uO86iaGh4J86lGBr6ke8oUiZ0UrlIgejs3EYqFWffvr8mEllJVdWZi36Sty91dW8kEKgkHr+fpqbCvcq6lA6t2YkUCOfSdHd/AeemWL58K4FAhe9IiyYYrKSu7k0MDNzvO4qUCa3ZiSyi41kz6+//NuPjHbS1fZBweNkipioMDQ3vZO/ejzE52Ukk0u47jpQ4rdmJFIBEYg8DA98lFruEWOx1vuMsiSNXbojHv+85iZQDrdmJeDY1NUR3962Ew220tl7tO86imG0N17kMwWAthw7dTCYzcXR6e/vWpYwmZUJrdiIeOZehq+sWMpnx3H66iO9IS8YsQHX1mYyN7cE55zuOlDiVnYhH8fh9jI8/T2vrNWW536q6+izS6WGSyU7fUaTEqexEPJmY2Mfhw9upqbmQWOwS33G8qK4+C4CxsWc9J5FSp7IT8SCTSdLVdQuhUIxly95f1NeoOxkVFY1UVCwjkdjjO4qUOJWdiAd9fV8jleqhre03CQajvuN4FY2exfj4z8lkUr6jSAlT2YkssbGx5xga+iENDe84uhmvnFVXr8e5FBMTe31HkRKmshNZQs5N0dv7ZSoqWmhqeo/vOAWhqup0IKD9drKoVHYiSygef4BkspuWlqtLejiw4xEMVlFZuVb77WRRqexElkgqNUB//3eIRs+jpuYc33EKSjR6FpOT+0mndckfWRx5lZ2ZbTaz582sw8w+PsvzETP7Su75R81szbTnbspNf97M3jVter2Z3W1mz5nZHjN7/UJ8IZFC1dd3N5ChtfV9vqMUnOrq9YBjbOx531GkRM1bdmYWBD4DXA6sB641s/UzZrseiDvnTgM+DXwq99r1wDXABmAzcHPu/QD+GbjXOXcmcB6gbRhSssbHX2J09HEaGzdTUdHsO07BqaxcQyBQydiY/gzI4shnze4ioMM5t9c5lwTuBLbMmGcLcFvu/t3ApZY9cWgLcKdzbtI59xLQAVxkZjHgzcAtAM65pHNu8OS/jkhhGhj4DoFAlIaGd/iOUpDMglRVnaGyk0WTT9mtAA5Me3wwN23WeZxzU8AQ0HSM154C9AH/bmY/M7MvmNmsJxuZ2VYz22lmO/v6+vKIK1JYJiZeJpF4moaGdxAIVPqOU7Ci0bNIpQ4zNtbhO4qUoHzKbrahHWaO2jrXPHNNDwEXAJ91zp0PJIBX7QsEcM5tc85tcs5tamlpySOuSGHp77+HQKCa+vq3+Y5S0KqrNwAwMHCv5yRSivIpu4PAqmmPVwIzR209Oo+ZhYA6YOAYrz0IHHTOPZqbfjfZ8hMpKRMT+0kkdtHQ8A6CwSrfcQpaONxKRUUrAwPf9R1FSlA+ZbcDWGdma80sTPaAk+0z5tkOXJe7fyXwoMtes2M7cE3uaM21wDrgMedcN3DAzM7IveZSQGeUSskZGLiHQKBKa3V5ikY3MDj4A9LpiflnFjkO85Zdbh/cjcB9ZI+YvMs5t9vMPmFm787NdgvQZGYdwEfJbZJ0zu0G7iJbZPcCNzjn0rnX/B7wH2b2FLAR+JuF+1oi/k1MHGB09Enq6t5CMFjtO05RiEbPJpMZZ2jov3xHkRKT15XKnXP3APfMmPbn0+5PAFfN8dpPAp+cZfqTwKbjCStSTLq6vgBAff2bPCcpHlVVp2MWYWDgXhob3zX/C0TypBFURBZBJjNFV9cXqK5er/PqjkMgEKa+/q3092u/nSysvNbsROQXOju3zTvP6OiTJJOdNDfPPCVV5tPUdDkdHb/P+PhLVFWt9R1HSoTW7EQWweDgjwkG64lGNQbm8WpsvBxAR2XKglLZiSyw7InRu6mru4RfjI4n+aqqWkdl5SkqO1lQKjuRBTY09BMA6ure6DlJcTIzGhsvJx5/kHR63HccKREqO5EF5JxjePgxqqvPoqKi0XecotXc/N/IZMaIxx/wHUVKhMpOZAFNTu5jaqqf2lqdVXMy6uvfSjBYS3//N31HkRKhshNZQCMjO4EgNTUbfUcpaoFAhMbGyzl8+Fs4l/EdR0qAyk5kgTiXYWRkJ9HoeoLBWS/iIcehuXkLqVQPw8OPzj+zyDxUdiILZGLiJaam4tqEuUAaG6/ALMThw9qUKSdPZSeyQEZGdmIWIho9z3eUklBRUU9d3Vu0304WhMpOZAFkN2E+QXX12bqUzwJqbt7C2NhzjI393HcUKXIqO5EFMD7+Iun0ILW1F/qOUlKam7MXVtGmTDlZKjuRBTA6+jPMQtTUnOs7SkmprHwNNTUbOXz4676jSJFT2YksgETiaaqqziAQqPQdpeS0tFzF8PAjTEzs9x1FipjKTuQkJZM9pFK91NRo0OfF0NLyPgD6+r7qOYkUM5WdyElKJJ4G0BUOFkl19WnU1FxAb+9dvqNIEVPZiZykROJpwuF2XaR1EbW2Xs3IyGOMj7/kO4oUKZWdyElIp8cZG/s50ejZvqOUtJaWqwBtypQTp7ITOQljY3uADNGojsJcTFVVa6mtvYje3q/4jiJFSmUnchISiacIBKqpqjrFd5SS19p6NaOjTzA21uE7ihQhlZ3ICXIuQyLxDNHoBl2RfAkc2ZTZ23un5yRSjFR2IidocnI/6fSIjsJcIpWVq6irexM9PXfgnPMdR4qMyk7kBCUSzwJQXb3ec5Ly0dZ2HePjzzMyssN3FCkyKjuREzQ2todIZBWhUK3vKGWjpeVKAoFKurtv8x1FiozKTuQEZDITjI+/SHX1Wb6jlJVQqI7m5vfQ23snmcyk7zhSRFR2IidgbOwFIK1NmB4sW3YdU1MD9Pff4zuKFBGVncgJGBvbg1kFVVWn+Y5Sdhoa3kE43KZNmXJcVHYiJ2BsbA9VVacRCFT4jlJ2AoEQra3vZ2DgOySTh33HkSKhshM5TlNTgySTndpf51Fb23U4N0VPzx2+o0iRCPkOIFJsskOE6ZSDxdLZuS2v+Sor19DV9XlWrvwIZrbIqaTYac1O5DglEnsIBmuJRFb4jlLW6urexNjYswwP/9R3FCkCKjuR4+CcY2xsD9XVZ2Km/318qq19LcFgbd5rglLe9H+ryHEYG9tDOj1MdfWZvqOUvUAgwrJlH6Cv7y5SqbjvOFLgVHYixyEefxBAZVcgli/fSiYzoQNVZF4qO5HjMDj4IKFQk65KXiBqazdSW/taurq2aXBoOSaVnUienMswOPhDrdUVmOXLt5JIPMPw8CO+o0gBU9mJ5Gl0dBdTU3Gqq8/wHUWmaW29hmCwhq4uHagic1PZieRpcPDI/jqVXSEJhWpobX0/vb1fIZUa9B1HCpTKTiRP8fiDVFWdQShU7zuKzNDevpVMZlwHqsicVHYiechkUgwN/YiGhrf7jiKzqK29gJqaC3WgisxJw4WJ5GFk5HHS6VHq69/O1NSA7ziSM/2E8urqs+jtvYO9e2+iquqUWedvb9+6VNGkwGjNTiQPR/bX1de/1W8QmVMs9lrMIgwN/dh3FClAKjuRPMTjDxKNnks4rPPrClUgUEksdhEjIztIp8d8x5ECo7ITmUc6PcHw8EPaX1cE6urehHMphocf9R1FCkxeZWdmm83seTPrMLOPz/J8xMy+knv+UTNbM+25m3LTnzezd814XdDMfmZm3z7ZLyKyWIaHHyaTmaC+/lLfUWQelZWvIRJZzdDQj3SgirzCvGVnZkHgM8DlwHrgWjObeSGv64G4c+404NPAp3KvXQ9cA2wANgM3597viI8Ae072S4gspnj8ASBIff2bfUeRPNTVvZlkspOJib2+o0gByWfN7iKgwzm31zmXBO4EtsyYZwtwW+7+3cCllr2a4hbgTufcpHPuJaAj936Y2Urgl4AvnPzXEFk8g4MPEIu9llAo5juK5CEWey2BQCVDQz/yHUUKSD5ltwI4MO3xwdy0Wedxzk0BQ0DTPK/9J+BjQOZYH25mW81sp5nt7OvryyOuyMKZmhpmeHiHNmEWkUCgktrai3KniyR8x5ECkU/ZzXa9+5kbw+eaZ9bpZvbLQK9z7vH5Ptw5t805t8k5t6mlpWX+tCILaHDwR0BaB6cUmfr6N+cOVNHg0JKVT9kdBFZNe7wS6JxrHjMLAXXAwDFeewnwbjN7mexm0bebmcb5kYIzOPhA7pD2N/iOIschEllFZeVahoZ+rANVBMiv7HYA68xsrZmFyR5wsn3GPNuB63L3rwQedNnfsO3ANbmjNdcC64DHnHM3OedWOufW5N7vQefcBxbg+4gsqHj8QWKxSwgGK31HkeNUV/cmkskuxsc7fEeRAjBv2eX2wd0I3Ef2yMm7nHO7zewTZvbu3Gy3AE1m1gF8FPh47rW7gbuAZ4F7gRucc+mF/xoiCy+Z7CWReEqbMItUbe1rCQSqdKCKAHmOjemcuwe4Z8a0P592fwK4ao7XfhL45DHe+4fAD/PJIbKUBgd/AEBDgw5OKUaBQJhY7HUMDf2EdPpqgsEa35HEI42gIjKHePxBgsEYNTUX+o4iJ6iu7s04N8XQ0MO+o4hnKjuROcTjD1Bf/xYCAV0cpFhFIiuorDxVB6qIyk5kNhMT+5iYeFGbMEtAff2bSKV6GB//ue8o4pHKTmQW8fiRS/qo7IpdTc2FBALVuvRPmVPZicwiHn+AiopWotENvqPISQoEwtTWXsTo6M9IpeK+44gnKjuRGZxzDA4+QEPD28kO8SrFrq7uEpyborf3y76jiCcqO5EZxsaeI5ns1ibMElJZuZpIZBVdXbf4jiKeqOxEZshe0gedTF5iYrFLGB19gpGRJ31HEQ9UdiIzDA4+QGXlGqqqTvEdRRZQLHYRZmG6u2/1HUU8UNmJTONcmsHBH2oTZgkKBqM0N7+Xnp47SKcnfMeRJaayE5lmZORnTE0NahNmiVq+/HqmpuL093/TdxRZYio7kWni8fsBqK9X2ZWihoZLiURW09WlTZnlRmUnMs3AwHepqdlIJNLmO4osArMAbW2/RTx+PxMT+3zHkSWkshPJSaUGGRr6KY2Nl/uOIouore03Aejuvs1vEFlSKjuRnHj8+0BaZVfiqqrW0NBwKd3d/45zGd9xZImo7ERyBga+SzBYRyz2et9RZJG1tX2QiYmXj16zUEqfyk6E7BBhAwP30th4mS7pUwaam99LKFSvA1XKiMpOBEgkniKZ7NQmzDIRDFbS2vp++vq+psGhy4TKTgTo7/8uAI2Nmz0nkaWyfPkHcW5Sg0OXCW2vEQG6u28lEllFf/+3fEeRRdTZue0VjyORVezf/ynMXv2nsL1961LFkiWgNTspe1NTQ4yPv6hr15WhWOwNTE7uZ2LigO8osshUdlL2BgbuBTJEo+f4jiJLLBZ7HWYhhocf8h1FFpnKTspeX983CAZrqazUVQ7KTTAYpaZmI8PDj5LJpHzHkUWkspOylk5PMDDwHWpqNmKm/x3KUSx2CZnMGImErnNXyvR/t5S1wcEHSKdHqanZ6DuKeFJdfSahUCNDQ9qUWcpUdlLWspswY1RXn+k7inhiFiAWewNjY8+RSh32HUcWicpOylYmM0V//zdpavqlWQ89l/JRV/cGAIaGfuo5iSwWlZ2UreHhh0ilDtPc/F7fUcSzioomqqvXMzz8Uw0OXaJUdlK2+vq+gVlEQ4QJAHV1b2RqKk4isdt3FFkEKjspS845Dh/+Bo2NlxEK1fiOIwWgpuZcgsFahod/4juKLAKVnZSl4eGfMjm5n5aWK31HkQJhFiIWu5jR0aeYmhryHUcWmMpOylJPzx0EAlXaXyevUFf3RiDD8PDDvqPIAlPZSdnJZCbp7f1K7ppmtb7jSAEJh9uoqjqNoaGHcM75jiMLSGUnZae//7tMTcVZtuwDvqNIAaqreyOpVC9DQz/yHUUWkMpOyk5Pz5eoqGiloeGdvqNIAaqpuZBAoIrOzs/7jiILSGUnZSWVitPf/21aW68lENCJ5PJqgUCY2tqL6Ou7W1cxLyEqOykrfX1fxbkkbW2/7juKFLC6ujfi3CQ9Pf/hO4osEJWdlJXu7tuprj6TmpoLfEeRAlZZuZqamgvp6vq8DlQpESo7KRujo08zPPwQbW3XY2a+40iBW778t0kknmJkZKfvKLIAVHZSNg4d+gyBQCXLl3/QdxQpAsuWXUsgUE1n5+d8R5EFoLKTsjA1NURPzx20tl5LRUWj7zhSBEKhOpYt+wC9vf9JKjXgO46cJJWdlIXu7tvJZBK0t/+u7yhSRFasuIFMZoKurlt9R5GTpLKTkueco7PzZmprLyIW2+Q7jhSRmppzqat7E52dn8W5tO84chJUdlLyBgcfZGzsOVasuMF3FClCK1bcyMTEXgYG7vUdRU5CXmVnZpvN7Hkz6zCzj8/yfMTMvpJ7/lEzWzPtuZty0583s3flpq0ysx+Y2R4z221mH1moLyQy08GD/0RFRTMtLe/zHUWKUHPzewmHl3Po0Gd8R5GTMG/ZmVkQ+AxwObAeuNbM1s+Y7Xog7pw7Dfg08Knca9cD1wAbgM3Azbn3mwL+0Dl3FnAxcMMs7yly0kZHd9Hf/21WrPgIwWCl7zhShAKBCtrbP8TAwHcZG3vBdxw5Qfms2V0EdDjn9jrnksCdwJYZ82wBbsvdvxu41LInMm0B7nTOTTrnXgI6gIucc13OuScAnHMjwB5gxcl/HZFX2rfvbwgGY6xYcaPvKFLEli/filmYgwf/2XcUOUH5lN0K4MC0xwd5dTEdncc5NwUMAU35vDa3yfN84NHZPtzMtprZTjPb2dfXl0dckaxE4jn6+r7KihU3UFFR7zuOFLFIpI1lyz5Ad/etJJOHfceRE5BP2c021MTM8XPmmueYrzWzGuBrwO8754Zn+3Dn3Dbn3Cbn3KaWlpY84opk7d//dwQClaxc+Qe+o0gJWLXqD8lkxuns/KzvKHIC8im7g8CqaY9XAp1zzWNmIaAOGDjWa82sgmzR/Ydz7usnEl5kLuPjL9PTcwft7f+dcFj/SJKTF42up7Hxlzh06F9Ip8d9x5Fi3Lh3AAAgAElEQVTjlM81TnYA68xsLXCI7AEnvzZjnu3AdcDDwJXAg845Z2bbgf80s38E2oF1wGO5/Xm3AHucc/+4MF9F5Bf27LkWM6Oioo3Ozm2+40iJWLXqj9i162309HyJ9vatvuPIcZh3zS63D+5G4D6yB5Lc5ZzbbWafMLN352a7BWgysw7go8DHc6/dDdwFPAvcC9zgsmdmXgL8OvB2M3syd7tigb+blKmRkScZHn6U+vq3U1HR4DuOlJD6+rdQW7uJAwf+QSeZFxkrpstXbNq0ye3cqRHI5dh27bqMoaGfsnbt/08wWO07jpSYkZHH6eraRlvbbxOLvRZAa3kemdnjzrl5h0bSCCpSUgYG7iMev5+mpitUdLIoamrOJxxuZ2DgOziX8R1H8qSyk5LhXJoXX/wYlZVrqat7i+84UqLMAjQ1/TLJZJeudVdEVHZSMjo7P08i8RSnnPK3BAIVvuNICcuu3a3Q2l0RUdlJSUgme3nppZuor3+bxsCURfeLtbtuRkZ2+I4jeVDZSUl48cU/Jp1OsG7dZ8ie2SKyuGpqNhIOr6S//9tkMknfcWQeKjspeoOD/0VPz+2sWvVHRKNn+Y4jZcIsQHPze0ilejl06GbfcWQe+ZxULlIQZjs5PJNJsX//JwmFmgiH23UCuSypaPRsqqvXs2/fX9HW9utUVDT5jiRz0JqdFLWBgXtIJrtobb2WQCDsO46UGTOjpeUqpqaGefnlv/QdR45BZSdFa2JiPwMD9xKLXUxNzTm+40iZikTaaW//EIcOfZZE4lnfcWQOKjspSs5N0dNzG8FgrY6+FO/WrPkrgsEaXnjh9yimUanKicpOitLAwHeZnDzIsmXvJxiM+o4jZS4cbuaUU/6OwcEH6e6+1XccmYXKTorO+Phe+vvvobb2ddTUnOc7jgiQHR+zru4tdHT8IZOTM6+CJr6p7KSopNPjdHffQijUQGvrtb7jiBxlFuCMM76Ac0l+/vMPa3NmgVHZSVHp67uTVKqf5cs/SDBY5TuOyCtUV5/G2rV/TX//dnp6/sN3HJlGZSdFY3h4B8PDj9DY+EtUVZ3mO47IrFau/H1isUt44YUPMzb2c99xJEdlJ0VhYmIfvb3/QWXlKTQ16Tq/UrjMgqxf/2XMIuzefRXp9LjvSILKTopAJjPFnj0fABzLl1+PWdB3JJFjqqxcxVlnfYlE4ik6On7fdxxBZSdFYP/+v2Vo6Ce0tl5LRUWz7zgieWlqupzVqz9OV9c2urpu8R2n7KnspKANDf2Ul1/+K1pbf41Y7GLfcUSOy5o1f01Dw2X8/OcfIh5/wHecsqayk4KVTPawe/dVVFa+htNP16jyUnwCgRAbNtxFVdUZPPPMr5JI7PEdqWyp7KQgZTJTPPvsNUxNxTn77K8TCtX5jiRyQkKhOs4559sEAhGefvqXdMK5J7rEjxSkl176UwYHf8iZZ96mUVKk4OVzaam2tg9y8OCn2bXrnWzc+F+Ew9r/vJS0ZicFp6/v6xw48L9ob/8QbW2/4TuOyIKoqlrLihU3MDGxl6ee2szU1JDvSGVFZScFZWzseZ577jeprb2I0077J99xRBZUdfUZbNhwN4nELp566gqmpoZ9Ryob2owpXk3f/JPJTLJ//9/hXIbm5vfS3X2bx2Qii2Ny8hBtbdfT1fV5duw4l5UrPzLnlTva27cucbrSpTU7KQjOOXp6vkQy2cXy5b9NRUWj70gii6a29gLa2z9MMnmIAwf+UWt4S0BlJwVhYOAeRkZ20NT0bqLR9b7jiCy6mppzaW+/kVSqlwMH/p5UKu47UklT2Yl3IyM76O/fTm3t62hsvNx3HJElE42excqVHyGdHuLgwb8nlTrsO1LJUtmJV+Pje+nu/iJVVaexbNmvY2a+I4ksqaqq01i58g9Ip8c4cODvSSa7fUcqSSo78SaR2MOhQ/9KKNRAe/uHCQQqfEcS8aKycg2rVv0hzk2xf///Ynz8Rd+RSo7KTryYmNjHrl3vxCzIihUfIRis8R1JxKtIZCWrVv0JwWCUgwc/zcjIz3xHKikqO1lyyWQPu3a9k0wmwcqVHyEcbvEdSaQghMMtrF79J0QiK+nq+jcOHvxX35FKhspOltTkZCdPPvk2JicPcc453yESWek7kkhBCQZrWLnyo0Sj59LR8Xu8+OLHcC7jO1bRU9nJkpmY2MfPfvZmJicPcO6591BX9wbfkUQKUiAQpr39Q7S3/y4HDvxv9ux5v654fpI0goosibGx59m16zKmpoY499z7qavTtelEjsUswLp1/0pl5WvYu/dPGB/vYMOGb1BZqa0hJ0JrdrLoBga+zxNPXEwmM87GjQ+q6ETyZGasXv0xzj77/zI29hyPP76JoaGf+o5VlFR2smiccxw69FmeemozkchKLrjgMWprL/AdS6ToNDdv4YILHiEYrOHJJ9/C/v3/W/vxjpPKThZFKjXInj2/xgsv/C6NjZs5//yHqKpa4zuWSNGKRjdw4YU7aWrawt69H+Ppp3+ZZLLXd6yiobKTBTc4+BN27txIb+9XWbPmrznnnG8SCsV8xxIpehUV9WzY8FXWrbuZePxBduzYQE/PnTjnfEcreCo7WTDJ5GGef/53ePLJN2EW5Pzzf8KaNX+GWdB3NJGSYWasWPFhNm16nMrKU9iz51qeeWYLExP7fEcraCo7OWnp9AQHD/4Ljz12Ot3dX2TVqj9i06YndSCKyCKKRjdwwQU/5dRT/5F4/Ps8+ugZvPjix0ilBn1HK0hWTKu/mzZtcjt37vQdQ3LS6Qm6u29h376/JZk8RH3921i37l8YGnrIdzSRspJKDTA29hw9PbcTCjWwYsXvsWLFDWUxOpGZPe6c2zTffFqzk+M2Pv4iL774xzz88ApeeOFGqqrWct55D3DeeQ8QjW7wHU+k7FRUNHLWWV/kwgufoK7ujezb91c88shqnn9+K0NDj2ifHlqzkzzt3//3jI4+zsjITsbHO4AANTUbqa9/K1VVp+vSPCIFJJnsZmDgfkZGHsW5FBUVrdTWvpZo9BwqK1/DihUf8h1xweS7ZpdX2ZnZZuCfgSDwBefc3814PgLcDlwI9ANXO+dezj13E3A9kAb+h3PuvnzeczYqu6WTTicYHt5BPP594vH7GBl5HHCEw+3U1m4iFnsDFRUNvmOKyDGk0+OMjj7B8PAjjI+/ADiCwVoaG6+gru4S6uouIRrdQCAQ8R31hC1Y2Vn2ULqfA+8EDgI7gGudc89Om+d3gXOdcx8ys2uA9zrnrjaz9cCXgYuAduD7wOm5lx3zPWdTSmXX2bkt73nb27cuWo5MJkUy2cX4+F4SiadJJJ5hZGQno6O7yP77JEgsdjEVFU3U1GwkElmxaFlEZPGk06MkErtJJJ4hmexkcvJg7pkgVVWnEY2up7p6PdHoeqqqTicSWUE43FrwR1PnW3b5jI15EdDhnNube+M7gS3A9GLaAvxl7v7dwL9adrvWFuBO59wk8JKZdeTejzzec8FNTQ2TSvUDGZxL50YgyP50Lp2bPn3aFJnMRO42nrtNkE6PT3s8Tjo9RiYzNsvPxCumOZc6miX7eVlmIQKBMGbhaT8rjj4eHn6YQKDq6C0YrJ52v4pAoJLZdr86lyKdHs3lSOTuj5JMdjE5eYDJyYO5qyL/4h88oVADNTXns3r1x4nFLqau7o1UVNQfVzmLSOEJBmuIxV5HLPY62tu3MjGxn+Hhh0kkniGR2MPY2LP0938L56amvSpAOLyMcLidSKSdioomgsEYoVBd7meMYDA24+9XxaseZwvTAMMscPR+JLKCQCC8JN8/n7JbARyY9vgg8Lq55nHOTZnZENCUm/7IjNceWTWY7z0XXHf37XR0/N6Cvme2dKoJBqsJBqPT7scIh9uOPg4EqnP/0Q3nHInEUwBHS9W5FM4lyWSSOJfK/UyQySRJJntypTpOJjPG9HI6HmZhgsEo4fByIpGVRKPnEImsJBJZSWXla4hGzyYcXq79byJloLJyNZWVq4Grj07LZJKMj3cwPv4Ck5NduTXATpLJTiYm9jE6+iRTU8Ok08Oc6N+h6TZtepqamrNP+n3ykU/ZzfaXb+a3nGueuabPdhTorEvOzLYCR7bjjZrZ83Pk9GQ8d+tvBg57DjOPZO4WZ9pKdBHkfpVizAzFmbsYM0Nx5l7CzP99Id/sJHKfsxCf/5p8Zsqn7A4Cq6Y9Xgl0zjHPQTMLAXXAwDyvne89AXDObQMKfhuame3MZ7txoSnG3MWYGYozdzFmhuLMXYyZoXhy53Oe3Q5gnZmtNbMwcA2wfcY824HrcvevBB502SNftgPXmFnEzNYC64DH8nxPERGRBTHvml1uH9yNwH1kTxO41Tm328w+Aex0zm0HbgG+lDsAZYBseZGb7y6y28ymgBtc7siM2d5z4b+eiIhInlcqd87dA9wzY9qfT7s/AVw1x2s/CXwyn/cscgW/qXUOxZi7GDNDceYuxsxQnLmLMTMUSe6iGkFFRETkRGhsTBERKXkquzyZ2a1m1mtmz0yb9pdmdsjMnszdrpj23E1m1mFmz5vZuzxlXmVmPzCzPWa228w+kpveaGb3m9kLuZ8NuelmZv8nl/spM7ugwHIX7PI2s0oze8zMduUy/1Vu+lozezS3rL+SOyCL3EFbX8llftTM1ix15nlyf9HMXpq2rDfmphfE70guS9DMfmZm3849LuhlPUfmYljOL5vZ07l8O3PTCvpvyKycc7rlcQPeDFwAPDNt2l8CfzTLvOuBXUAEWAu8CAQ9ZF4OXJC7X0t2iLb1wP8CPp6b/nHgU7n7VwDfJXt+5MXAo56W9Vy5C3Z555ZZTe5+BfBobhneBVyTm/454MO5+78LfC53/xrgK56W9Vy5vwhcOcv8BfE7ksvyUeA/gW/nHhf0sp4jczEs55eB5hnTCvpvyGw3rdnlyTn3I7JHmubj6DBpzrmXgOnDpC0Z51yXc+6J3P0RYA/ZEWy2ALflZrsNeE/u/hbgdpf1CFBvZsuXOPaxcs/F+/LOLbPR3MOK3M0Bbyc7hB68elkf+W9wN3Cp2dIPXXOM3HMpiN8RM1sJ/BLwhdxjo8CX9czM8yiI5XwMBf03ZDYqu5N3Y251/dYjq/LMPsSa1xGUc5tuzif7L/dlzrkuyBYL0JqbrdBzQwEv79wmqieBXuB+smuYg+4Xgw1Oz/WKIfaAI0PsLbmZuZ1zR5b1J3PL+tOWvbIJFMiyBv4J+BiQyT1uovCX9czMRxTycobsP36+Z2aPW3ZEKyiivyFHqOxOzmeBU4GNQBfwD7np+QyxtmTMrAb4GvD7zrnhY806y7RCyl3Qy9s5l3bObSQ7ItBFwFmzzZb7WRCZ4dW5zexs4CbgTOC1QCPwJ7nZvec2s18Gep1zj0+fPMusBbOs58gMBbycp7nEOXcBcDlwg5m9+RjzFlLuV1DZnQTnXE/uD0UG+Dy/2HSWzxBrS8LMKsgWxn84576em9xzZNNC7mdvbnpB5y6G5Q3gnBsEfkh2n0W9ZYfQm5nraGZ75RB73kzLvTm3Kdm57BVL/p3CWtaXAO82s5eBO8luvvwnCntZvyqzmd1R4MsZAOdcZ+5nL/ANshkL/m/ITCq7kzBjW/R7gSNHas41TNpS5zOyo9vscc7947Snpg/vdh3wzWnTfyN3RNXFwNCRTRVLaa7chby8zazFzOpz96uAd5Dd1/gDskPowauX9WxD7C2pOXI/N+0PmZHdHzN9WXv9HXHO3eScW+mcW0P2gJMHnXPvp4CX9RyZP1DIyzmXK2pmtUfuA5flMhb035BZLeXRMMV8I3sR2i4gRfZfL9cDXwKeBp4i+x95+bT5/5TsPpvngcs9ZX4j2U0ITwFP5m5XkN1f8QDwQu5nY25+Az6Ty/00sKnAchfs8gbOBX6Wy/YM8Oe56aeQLd4O4KtAJDe9Mve4I/f8KZ6W9Vy5H8wt62eAO/jFEZsF8TsyLf9b+cWRjQW9rOfIXNDLObdMd+Vuu4E/zU0v6L8hs900goqIiJQ8bcYUEZGSp7ITEZGSp7ITEZGSp7ITEZGSp7ITEZGSl9fFW0Vk8ZlZmuzh2iGy5+hd55wb85tKpDRozU6kcIw75zY6584GksCHfAcSKRUqO5HC9GPgNAAz+4Blrzn3pJn9W27g5qBlr4X2TO5aY3+Qm3ejmT2SG1j4G9MGyxYpayo7kQKTG7/xcuBpMzsLuJrsYLwbgTTwfrKDYa9wzp3tnDuH7LiKALcDf+KcO5fsJtG/WPIvIFKAVHYihaMqd6mdncB+suODXgpcCOzIPXcp2SGc9gKnmNm/mNlmYNjM6oB659x/5d7vNrIXHRYpezpARaRwjOfW3o7KDRB8m3Puppkzm9l5wLuAG4D3AX+wJClFipDW7EQK2wPAlWbWCmBmjWb2GjNrBgLOua8B/xO4wDk3BMTN7E251/468F+zvqtImdGanUgBc849a2Z/RvZK0QGyV924ARgH/j03DbIXAYXs5VY+Z2bVZDd1/tZSZxYpRLrqgYiIlDxtxhQRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZKnshMRkZIX8h3geDQ3N7s1a9b4jiEiIgXi8ccfP+yca5lvvqIquzVr1rBz507fMUREpECY2b585tNmTBERKXkqOxERKXkqOxERKXkqOxERKXkqOxERKXkqOxERKXkqOxERKXkqOxERKXmLUnZmdquZ9ZrZM3M8b2b2f8ysw8yeMrMLFiOHiIgILN6a3ReBzcd4/nJgXe62FfjsIuUQERFZnOHCnHM/MrM1x5hlC3C7c84Bj5hZvZktd851LUYeEZFS5pwjnR4mlTpMKtVPOj1KOp0gkxkjnU4cvWUyR34mcS6Fc1O52/T7Mx+nAXf0c3KfeHQauBnTX/n8XK8B2LDhbqqqTl2kpfJKvsbGXAEcmPb4YG7aq8rOzLaSXftj9erVSxJORKQQdHZuw7k0qdQAU1P9M34OMDU1nCu2USCTxzsaZmGCwRrMQgQCFZiFpt0qZrkfBCz3WnL3wcyO3j/y/C+mv3LaXK8xW7oK8lV2Nss0N8s0nHPbgG0AmzZtmnUeEZFi0dm5bdbpzjmmpvqZnDzI5GQnyWQXk5OdpFLdODc1bU4jGKyjoqKBcLiVYPAUgsGao7dAIEogUEkgEMYsTCAQIRCIYBbOFZjR3r51ab5sAfFVdgeBVdMerwQ6PWUREVlymUySiYl9TEzsZXz8RSYm9pJOjxx9PhRqJBJpJxpdTzjcRkVFM6FQI6FQPYFAhcfkxclX2W0HbjSzO4HXAUPaXycipcy5DKOjT9Lffw+JxDNMTLzEkU2PFRWtRKMbqKw8hUhkNZHIcgKBSr+BS8yilJ2ZfRl4K9BsZgeBvwAqAJxznwPuAa4AOoAx4LcWI4eIyFKYa9NkJjNBIvE0icQzJBLPkk4PAxCJrKah4TKqqk6hsvIUQqHapYxblhbraMxr53neATcsxmeLiPjkXJqxsT0MDz/K6OiTOJckEIgSja4nGj2b6ur1hEIx3zHLTlFdqVxEpFBNTBxgePinjIzsIJ0eIRCoJha7mNra11JVdRpmGrDKJ5WdiMgs5to0OZ1zaUZHn2Rw8EHGxzswCxGNnkss9jqqqzfoQJICorITETlOmUyK4eGHGRi4l6mpfioqmmlpuYpY7PUEg1Hf8WQWKjsRkTw5l2Zo6CEGBr7D1NQglZVraW19H9HoudpMWeBUdiIi83DOkUjs4vDhb5BMdlNZeSrLlv0m1dVnThsxRAqZyk5E5BiSyT56e7/M2NhuKiqW0d7+YaLR81RyRUZlJyIyC+fSDAzcy8DAdzEL0tLyPurr35obK1KKjcpORMpGPkdYAiST3XR13crk5D5qai6ktfV9hEL1i5xOFpPKTkQkxznH4OAPOXz4a5iFWb78v1Nbq2tLlwKVnYgIkE6P09NzO6OjTxCNns2yZb9BKFTnO5YsEJWdiJS9yclDdHZ+jlTqMM3Nv0JDw2U6AKXEqOxEpKyNjj5FV9cXCAQqWbnyo1RXr/MdSRaByk5EylJ2/9z36ev7GpHIKtrbf5eKigbfsWSRqOxEpOw4l6Gv7y4GB39ATc0FtLX9FoFA2HcsWUQqOxEpK86l6e7+IiMjj1FffyktLVdqqK8yoLITkbKRySTp6vo3EolnaG5+Lw0N79KBKGVCZSciRSvfk8QhW3SdnTczNvYcra3vp77+zYuYTAqNyk5ESt70omtru45Y7PW+I8kS04ZqESlpmUxKRScqOxEpXc6l6er6PGNje1i2TEVXzlR2IlKSnMvQ03M7icQuWlquoa5ORVfOVHYiUpL6+u5mePgRmpreTUPD23zHEc9UdiJScuLx7zM4+AD19W+nsfEK33GkAKjsRKSkjIw8QV/f3dTUnE9Ly1U6j04AlZ2IlJDx8b10d99KZeUa2to+qJFR5Cj9JohISUil4nR2fpZQqI729hs01qW8gspORIrekZPGnUvS3n4DoVCt70hSYFR2IlLUnHP09NzO5OQB2to+SCTS7juSFCCVnYgUtXj8e4yM7KC5+T3U1JznO44UKJWdiBStsbHnOXz4G9TUXEBDw7t8x5ECpoGgRaSg5Hslg6mpIbq6vkBFRSvLlv2GTjGQY9KanYgUneyYl9vIZCZob/8QwWCV70hS4FR2IlJ0+vu/xfh4B8uW/boOSJG8qOxEpKiMjT3HwMC9xGKXEItd5DuOFAmVnYgUjampEbq6biUcXkZr69W+40gRUdmJSFHInk93G5lMguXLf5tAIOI7khQRlZ2IFIWhoR+TSDxNc/OvEIms8h1HiozKTkQKXjLZR1/f3VRXn0V9va5NJ8dPZSciBc25DN3d/45ZIHc+nf5syfHTb42IFLR4/H4mJl6ktfUaKioafceRIqWyE5GClUx209+/nZqajdTWvs53HCliKjsRKUjOZejp+RJmYVpbf03DgclJUdmJSEEaGvox4+MdtLRcSShU5zuOFLlFKTsz22xmz5tZh5l9fJbnV5vZD8zsZ2b2lJldsRg5RKQ4pVIDHD78daqrzyIWe4PvOFICFrzszCwIfAa4HFgPXGtm62fM9mfAXc6584FrgJsXOoeIFK/e3jtxLsOyZR/Q5ktZEItxiZ+LgA7n3F4AM7sT2AI8O20eB8Ry9+uAzkXIISIFIt/L9gCMjj5NIrGL5uZfoaKieRFTSTlZjM2YK4AD0x4fzE2b7i+BD5jZQeAe4PfmejMz22pmO81sZ19f30JnFZECkskk6eu7k3B4OQ0Nl/qOIyVkMcputm0Obsbja4EvOudWAlcAX7I5zhR1zm1zzm1yzm1qaWlZ4KgiUkgGBu4llTpMa+u1mOna0rJwFqPsDgLTB65byas3U14P3AXgnHsYqAS0vUKkjCWTvcTj91FbexHV1Wf4jiMlZjHKbgewzszWmlmY7AEo22fMsx+4FMDMziJbdtpGKVLG+vruxixES8uVvqNICVrwsnPOTQE3AvcBe8gedbnbzD5hZu/OzfaHwO+Y2S7gy8BvOudmbuoUkTIxNraHRGIXjY2X65w6WRSLslHcOXcP2QNPpk/782n3nwUuWYzPFpHi4lyG3t6vEgo1UV+vg1JkcWgEFRHxamjoJySTh2hp+VUCgQrfcaREqexExJt0epz+/u1UVZ1GTc0FvuNICVPZiYg38fj3SKdHaGm5SiOlyKJS2YmIF1NTQ8Tj36em5kIqK9f4jiMlTmUnIl7099+Dc1M0N2/xHUXKgMpORJZcMtnH0NCPqKt7I+HwMt9xpAyo7ERkyfX3fxOzEE1Nv+w7ipQJlZ2ILKnJyUOMjOygoeFSnUAuS0ZlJyJLqr//2wQClTQ0vNN3FCkjKjsRWTITEwcYHX2C+vpLCQajvuNIGVHZiciSya7VVdHQ8A7fUaTMqOxEZElMTOwnkXiShoZ3EAxW+44jZUZlJyJLIrtWV63BnsULXQpYRE5IZ+e2vOednDxIIrGLpqb/RjBYtYipRGanNTsRWXQDA98lEKikvv5tvqNImVLZiciiSiZ7GBl5nLq6t+oITPFGZScii2pg4F7MQjQ0aF+d+KOyE5FFk0r1Mzz8CHV1byIUivmOI2VMZSciiyYevx8wjZYi3qnsRGRRpNMJhoYeIha7iIqKRt9xpMyp7ERkUQwO/hfOJbVWJwVBZSciCy6TSTE4+AOqq88mElnhO46Iyk5EFt7IyKOk08M0NmqtTgqDyk5EFpRzGeLx+4lEVlFVdYbvOCKAyk5EFlgi8QzJZDcNDZdhZr7jiAAqOxFZYPH49wiFGqmtvdB3FJGjVHYismDGx19ifPwFGhouxSzoO47IUSo7EVkw8fj9BAJV1NW90XcUkVdQ2YnIgkgm+xgdfYL/197dR8lV3/cdf39nZmd3tU8zs1qBLFEgIGIwwUAUDMEmwsiYBwfc1i04dZy2PiGnDXF63DTBx+e4rnN6TuwkNm7Lia1Q13ZcBwPFtUxxCCAZW7YBCZtHyQIhwKxWSPswM/u8Ow/f/jFXsFp2pZV2Zu+dmc/rnDkz987d0Ycfq/noztz7uz09VxCLtYUdR+QoKjsRqYpc7hEgpsv4SCSp7ERk2Y6eGiwddhyRt1DZiciy5fM7gqnBNocdRWRBKjsRWRb3Erncdtrbf5XW1vVhxxFZkMpORJZlfPwpisUs6fR7w44isiiVnYgsSy63jZaW1XR0XBB2FJFFqexE5KRNT7/K1NQ+UqkrMdPbiUSXfjtF5KRls9swa6W7+/Kwo4gck8pORE5KsZhnbGwnPT2XEY+3hx1H5JhUdiJyUnK5HwIlUjWKrnYAABeBSURBVCkdmCLRp7ITkRNWLs+Qzz9KR8f5JJOnhB1H5LhUdiJywg4f/jal0hip1FVhRxFZEpWdiJwQd6e//0skk2tZtercsOOILElNys7MrjGzvWa2z8xuW2Sbf2lmu83seTP7Vi1yiEj15fM/Znz8Z8HpBroSudSHRLVf0CpXbLwDeB/QD+w0s63uvnvONhuATwKXu3vWzNZUO4eI1MaBA18ikUjR3X1p2FFElqzqZQdcAuxz9/0AZnYXcCOwe842vw/c4e5ZAHc/XIMcInKCBga2HPP5QmGEwcH7SKc3E4u1rlAqkeWrxceY64DX5iz3B+vmOgc4x8x+bGaPmdk1i72Ymd1iZrvMbNfg4GAN4orIUuVy2wEnldoUdhSRE1KLslvoQ3yft5wANgCbgA8Dd5pZaqEXc/ct7r7R3Tf29fVVNaiILF3ldIMddHZeREtLb9hxRE5ILcquHzhtzvJ6YGCBbb7r7gV3fxnYS6X8RCSiRkcfo1ye1EnkUpdqUXY7gQ1mdqaZJYGbga3ztvm/wJUAZraaysea+2uQRUSqwN3J5bbT2noa7e1nhx1H5IRVvezcvQjcCjwI7AHudvfnzeyzZnZDsNmDwLCZ7Qa2A//J3YernUVEqmNycg+zswdJp6/S6QZSl2pxNCbu/gDwwLx1n57z2IFPBDcRibhc7hHi8S46OzeGHUXkpGgGFRE5ptnZQ0xMPEdPz28Ri7WEHUfkpKjsROSYcrltQJxU6oqwo4icNJWdiCyqVJoin/8pXV2/QSLRE3YckZOmshORRY2O/hj3GdJpnW4g9U1lJyILci+Ty22nre0s2tpODzuOyLKo7ERkQRMTz1AoDJFO65p1Uv9UdiKyoGz2ERKJDJ2dF4YdRWTZVHYi8hYzM/1MTb1AKrWJylW7ROqbyk5E3iKb3YZZCz097w47ikhVqOxE5CjF4hhjY4/T3X0Z8XhH2HFEqkJlJyJHyed/hHuRVOrKsKOIVI3KTkTe4F4il3uUVavOpbX1bWHHEakalZ2IvGFs7ElKpRyplE43kMaishORN+Ry22hpOYWOjneEHUWkqlR2IgLA6OjjTE+/TCp1JWZ6a5DGUpPr2YlIdAwMbFnSdgcP3kks1kZPz2U1TiSy8vTPNxGhUMgyNvYk3d2XE4u1hR1HpOpUdiJCPv8o4DrdQBqWyk6kyZXLs+RyP6Sj450kk31hxxGpCZWdSJMbG3uCcnlC16yThqayE2li7k42u41kcj3t7eeEHUekZlR2Ik1sauoFZmcPkE6/FzMLO45IzajsRJpYNvsI8XgnXV2XhB1FpKZUdiJNanZ2kImJZ+jpeQ+xWEvYcURqSmUn0qRyue2AkUptCjuKSM2p7ESaUKk0xejoj+nq2kgikQo7jkjNqexEmtDo6A7K5WnS6c1hRxFZESo7kSbjXiKb3UZ7+zm0tZ0edhyRFaGyE2ky4+M/o1gc0V6dNBWVnUgTcXdGRh6mpWUNHR2/FnYckRWjshNpItPTLzEz8wrp9GZds06ain7bRZpINvsQsVgH3d2Xhh1FZEWp7ESaxOzsIOPjT5NKXUEs1hp2HJEVpbITaRK53CNATNesk6akshNpAqXSBPn8T+juvoREoifsOCIrTmUn0gTy+R/hPkM6fVXYUURCobITaXDuRbLZ7axadS6traeFHUckFCo7kQY3NvYkpVJOJ5FLU1PZiTSwypXIHyKZXMuqVeeFHUckNCo7kQaWyz3KzMxrpFJX6SRyaWr67RdpYP39XyAe76K7+11hRxEJVSLsACJy4gYGthx3m9nZ1xke/h6ZzAeIxZIrkEokurRnJ9KgstlHMEuQSv1W2FFEQleTsjOza8xsr5ntM7PbjrHdh8zMzWxjLXKINKtSaZzR0Z/S1XUpiUR32HFEQlf1sjOzOHAHcC1wHvBhM3vLYWBm1gV8HHi82hlEml02uw33gk43EAnUYs/uEmCfu+9391ngLuDGBbb7c+DzwHQNMog0rXJ5mlzuB3R0vJPW1rVhxxGJhFqU3TrgtTnL/cG6N5jZRcBp7n7/8V7MzG4xs11mtmtwcLC6SUUaUD6/g3J5gkzm/WFHEYmMWpSdLbDO33iycrLPF4H/uJQXc/ct7r7R3Tf29fVVKaJIY6pMDfYw7e0baG8/K+w4IpFRi7LrB+ZOwLceGJiz3AWcD/zAzF4BLgW26iAVkeUbHd1JsZglndZenchctSi7ncAGMzvTzJLAzcDWI0+6e97dV7v7Ge5+BvAYcIO776pBFpGm4V4mm32QZHIdHR3nhx1HJFKqXnbuXgRuBR4E9gB3u/vzZvZZM7uh2n+eiFRMTDzL7OxBMpn3Y7bQtwkizasmM6i4+wPAA/PWfXqRbTfVIoNIsxkZeZBEopeuLn0jIDKfZlARaQBTU/uYnn6JdHozlVNdRWQulZ1IAxgZ+Qfi8U56et4ddhSRSFLZidS5mZkDTEw8Syp1pSZ8FlmEyk6kzo2MPIhZklRqU9hRRCJLZSdSx2ZnDzM29gSp1BXE451hxxGJLJWdSB0bGfkHzOKk01eHHUUk0lR2InWqUBhidPSn9PS8h0SiJ+w4IpGmshOpU5Xv6mKaGkxkCVR2InWoUMgyOvoTurt/k5aWdNhxRCJPZSdSh7LZB3Ev6zI+IkukshOpMzMzB8nnd9DdfRktLavDjiNSF1R2InXmtdf+Cvcimcw1YUcRqRsqO5E6Mjs7yMDAl+nqehfJ5Jqw44jUjZpc9UBETtzAwJbjbjM4+B3K5Sl6e69dgUQijUN7diJ1olSaIJfbTlfXr5NMnhp2HJG6orITqRPZ7D/iPksmc13YUUTqjspOpA4Ui6Nks9vp6tpIa+u6sOOI1B2VnUgdqJxXN0tv7wfCjiJSl1R2IhFXKGTJ5R6lu/tSfVcncpJUdiIRNzLyfdxL2qsTWQaVnUiEFQrD5PM76Ol5t2ZLEVkGlZ1IhA0P/z/MTEdgiiyTyk4komZnDwXXq7tCVzYQWSaVnUhEDQ/fj1lCc2CKVIHKTiSCZmYGGBvbSSp1pa5CLlIFKjuRCBoe/h6xWCuZzNVhRxFpCCo7kYiZmnqZ8fGfkUptJh7vDDuOSENQ2YlEiLszNPQd4vEuMpn3hR1HpGGo7EQiZHJyN1NTe8lkricWaws7jkjDUNmJRIR7maGh+2hpWU0q9Z6w44g0FJWdSESMje1kZqaf3t4bMdN1lUWqSWUnEgHl8gxDQ9+ltfU0uro2hh1HpOGo7EQiYGDgKxSLw6xe/c8w019LkWrT3yqRkBWLo7z66p+zatW5dHScF3YckYakLwZEamhgYMtxtxka2kqhMMTatbesQCKR5qQ9O5EQFYt5stmH6OraSFvb6WHHEWlYKjuREA0P3497kd7eG8OOItLQVHYiIZmZOUA+/yNSqU0kk2vCjiPS0FR2IiFwdwYH7yUWa6e39wNhxxFpeCo7kRBMTj7P5ORuenuvJx7vCDuOSMNT2YmsMPcSg4P30tKyhlRqU9hxRJqCyk5kheXzO5idPUhf3z/XtGAiK0RlJ7KCSqVJhoe30t5+Dh0d7ww7jkjTqEnZmdk1ZrbXzPaZ2W0LPP8JM9ttZs+Y2SNmphOMpCmMjHyfUmmCvr5/gZmFHUekaVS97MwsDtwBXAucB3zYzObPgfRzYKO7XwDcC3y+2jlEomZ2dpBcbhvd3ZfS1vZPwo4j0lRqsWd3CbDP3fe7+yxwF3DUGbPuvt3dJ4PFx4D1NcghEilDQ98BYqxe/cGwo4g0nVqU3TrgtTnL/cG6xXwM+P5iT5rZLWa2y8x2DQ4OVimiyMqanNzL+PiTZDJXk0ikwo4j0nRqUXYLfRHhC25o9hFgI/CXi72Yu29x943uvrGvr69KEUVWjnuJw4f/nkSil3T6/WHHEWlKtSi7fuC0OcvrgYH5G5nZZuBTwA3uPlODHCKRkMttY3b2IGvW3EQslgw7jkhTqkXZ7QQ2mNmZZpYEbga2zt3AzC4CvkKl6A7XIINIJBSLOYaGvkdHx6/R0XFB2HFEmlbVy87di8CtwIPAHuBud3/ezD5rZjcEm/0l0AncY2ZPmdnWRV5OpK4NDt4LlOjru0mnGoiEqCbTN7j7A8AD89Z9es7jzbX4c0WiJJv9AWNjO8lkrieZ1PfNImHSDCoiNVAuF3jxxT8kkeglk7km7DgiTU9lJ1IDBw78dyYnd+ugFJGIUNmJVNnMzACvvPKfyWSu10EpIhGhKddFTtDAwJZjPn/w4N9SLk/T3X2ZDkoRiQjt2YlU0fj404yN7SKTuU4HpYhEiMpOpEpKpSkOH/4WyeQ6MhnNlCISJSo7kSoZGrqPYjHPqad+VBdlFYkYlZ1IFUxOvkA+/0PS6atoazsj7DgiMo/KTmSZyuVpDh36Oi0tffT23nD8HxCRFaeyE1mmwcF7KBSGOfXUf00s1hp2HBFZgMpOZBnGx58ln99BOn017e1nhx1HRBahshM5SaXSOIcOfYNkch29vb8ddhwROQaVnchJcHdef/1rlMuTnHrqvyEWawk7kogcg8pO5CTkcg8zMfEsq1d/iLa2047/AyISKpWdyAmamnqZwcH76Oy8kFRqU9hxRGQJVHYiJ6BQGOH11+8kkUhzyikf1dyXInVCZSeyROVykd27b6JYzLF27e8Tj3eEHUlElkhlJ7JE+/f/Gdnsw6xZ8zu0t58ZdhwROQGawE9kCV5//Zv093+Bdev+iI6O88OOIyInSHt2IseRzW5n796PkUpt4qyz/jrsOCJyElR2IscwPv4Mzz33Qdrbz+Yd77hP59OJ1Cl9jCnCwlcfLxRG+OUvP4dZjFNO+V0GB+8JIZmIVIP27EQWUChk6e//Iu4zrFv3cVpaMmFHEpFlUNmJzFMpui9QKo2ybt0f0dq6LuxIIrJMKjuROY4uuo/T3n5W2JFEpAr0nZ1IYGbmIAcOfIlyeUpFJ9JgVHYiwNTUPg4cuAOzBOvX/4kmdxZpMCo7aXqHDn2L/v7bSSQyrF//cVpaVocdSUSqTGUnTatcLrB//5/S33877e3n8La3/QHxeGfYsUSkBlR20pSmp/vZs+cj5POPsm7dH7Nq1a9iFg87lojUiI7GlKZz+PA97Np1AWNjO3n727/Bhg23q+hEGpz27KQhLTQjSqk0zuDgPYyOPkZr6xmsX/9vKZenFtxWRBqLyk4anrszNvY4g4P3UCpNkslcT2/v9dqbE2kiKjtpaNPTrzE4eDdTUy/Q1nYm69f/rmZEEWlCKjtpSIVCluHh7zE6+hPi8Q7WrPkdenreg5m+phZpRio7aSgzMwP88pd/wcDA3+DupNObyWSuIx5fFXY0EQmRyk7qxrEOJJmdPUQ2+zCjoz/BvUxPz2+SyVxHS0vvCiYUkahS2Undci8zOfkLcrlHmZh4GrM43d2Xkk5fQzLZF3Y8EYkQlZ3UnUIhy9jYE+TzOygUDhOPd5LJXEsqdSWJRHfY8UQkglR2UhdmZw+Rz+9gbGwXk5O/AJz29rPp7f1tOjsvIhZrCTuiiESYyk4iyd2ZnNzN0NBWhoe3Mjr6OOAkEr1kMtfR3f0ukslTwo4pInVCZSehOnLQiXuZ2dnXmZp6ienpl5iaepFCYQiA1tbTgz24C0gm12NmYUYWkTqkspMVVypNMzX1AhMTlT236elXmZ7eT7k8CUA83klb21mk01fT0XEBLS3pkBOLSL2rSdmZ2TXAl4A4cKe7/8W851uBbwC/DgwDN7n7K7XIIivL3SmVJpidPcjMTD8zMweC+35mZl5lYmIP09MvA+XgJ4xk8lQ6Oy+mvf0s2tvPoqVljfbeRKSqql52Vplw8A7gfUA/sNPMtrr77jmbfQzIuvvZZnYz8DngpmpnqSZ3B/zI0pxln7PMAuvm/1z5qHsoz9nuyOP525zcz1Xuy7iXgvujH0PpuOvK5RnK5UlKpSnK5UnK5SlKpcp9uTxFsThGsZilWByhUKjcuxfeMn6x2CoSiTTJ5KlkMtfS2rqWZHItLS2n6OASEam5WuzZXQLsc/f9AGZ2F3AjMLfsbgQ+Ezy+F/gfZmb+ZmPUxMDAV9i37xOcaGnJm8xaMEsSiyUxayEWayUWW0U83sGqVX3B41UkEj0kEmkSiRSJRIpYrC3s6CLSxGpRduuA1+Ys9wPvWmwbdy+aWR7oBYbmv5iZ3QLcEiyOm9neqieujtUskL8OnGDuQnCbqFGcJWmSsY6EeswM9Zl7BTP/QTVfLOyxPn0pG9Wi7Bb6smX+7tFStqmsdN8CRP6CY2a2y903hp3jRNVj7nrMDPWZux4zQ33mrsfMUD+5azEFfD9w2pzl9cDAYtuYWQLoAUZqkEVERKQmZbcT2GBmZ5pZErgZ2Dpvm63A7wWPPwRsq/X3dSIi0ryq/jFm8B3crcCDVE49+Kq7P29mnwV2uftW4H8Cf2dm+6js0d1c7RwhiPxHrYuox9z1mBnqM3c9Zob6zF2PmaFOcpt2qEREpNHpss0iItLwVHYiItLwVHZLZGZfNbPDZvbcnHWfMbMDZvZUcLtuznOfNLN9ZrbXzN4fUubTzGy7me0xs+fN7I+D9Rkze8jMXgzu08F6M7P/FuR+xswujljuyI63mbWZ2RNm9nSQ+b8E6880s8eDsf52cNAWZtYaLO8Lnj9jpTMfJ/fXzOzlOWN9YbA+Er8jQZa4mf3czO4PliM91otkrodxfsXMng3y7QrWRfo9ZEHurtsSbsAVwMXAc3PWfQb4kwW2PQ94GmgFzgReAuIhZF4LXBw87gJeCLJ9HrgtWH8b8Lng8XXA96mcB3kp8HhIY71Y7siOdzBmncHjFuDxYAzvBm4O1n8Z+HfB438PfDl4fDPw7ZDGerHcXwM+tMD2kfgdCbJ8AvgWcH+wHOmxXiRzPYzzK8Dqeesi/R6y0E17dkvk7j9k6ecC3gjc5e4z7v4ysI/KNGoryt0PuvvPgsdjwB4qs9fcCHw92OzrwAeDxzcC3/CKx4CUma1d4djHyr2Y0Mc7GLPxYLEluDnwXipT4sFbx/rI/4N7gavMVn7262PkXkwkfkfMbD1wPXBnsGxEfKznZz6OSIzzMUT6PWQhKrvluzXYXf/qkV15Fp4y7Vhv1jUXfHRzEZV/uZ/i7gehUizAmmCzqOeGCI938BHVU8Bh4CEqe5g5dy8ukOuoKfOAI1Pmrbj5ud39yFj/12Csv2iVK5VARMYauB34U968fEYv0R/r+ZmPiPI4Q+UfP/9oZk9aZfpGqKP3kCNUdsvzN8BZwIXAQeCvg/VLng5tJZhZJ/B/gP/g7qPH2nSBdVHKHenxdveSu19IZdagS4BzF9osuI9EZnhrbjM7H/gk8HbgN4AM8GfB5qHnNrMPAIfd/cm5qxfYNDJjvUhmiPA4z3G5u18MXAv8oZldcYxto5T7KCq7ZXD3Q8EbRRn4W9786GwpU6atCDNroVIY/9vd7wtWHzry0UJwfzhYH+nc9TDeAO6eA35A5TuLlFWmxJufK3JT5s3JfU3wUbK7+wzwv4jWWF8O3GBmrwB3Ufn48naiPdZvyWxm34z4OAPg7gPB/WHgO1QyRv49ZD6V3TLM+yz6nwJHjtTcCtwcHAV2JrABeCKEfEZltpo97v6FOU/Nna7t94Dvzln/0eCIqkuB/JGPKlbSYrmjPN5m1mdmqeBxO7CZyneN26lMiQdvHevQp8xbJPcv5ryRGZXvY+aOdai/I+7+SXdf7+5nUDngZJu7/ysiPNaLZP5IlMc5yNVhZl1HHgNXBxkj/R6yoJU8Gqaeb8DfU/norEDlXy8fA/4OeBZ4hsr/5LVztv8Ule9s9gLXhpT53VQ+QngGeCq4XUfl+4pHgBeD+0ywvVG58O5LwX/Xxojljux4AxcAPw+yPQd8Olj/K1SKdx9wD9AarG8LlvcFz/9KSGO9WO5twVg/B3yTN4/YjMTvyJz8m3jzyMZIj/UimSM9zsGYPh3cngc+FayP9HvIQjdNFyYiIg1PH2OKiEjDU9mJiEjDU9mJiEjDU9mJiEjDU9mJiEjDU9mJiEjDU9mJiEjD+//rjGJNO20sAwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAJ4CAYAAAD8/U2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XmcXHWd7//Xp7au6up9S3rJRohC2CJGQJFRQYdFhXEEjTOOzlxn0BlQR51FZtff9d5xrneccVxxUHEZgesaAVfA0fsbtgAhJECgQwLp9F69VnV11/a9f1QlNE130km6+9Tyfj4e/eiqU6eq3lXp9LvPt875HnPOISIiUs58XgcQERFZbio7EREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpewGvAxyPlpYWt379eq9jiIhIkXjooYeGnXOtx1qvpMpu/fr17Nixw+sYIiJSJMzs2cWsp2FMEREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpeyo7EREpeyU1N6ZIOevtvXHR63Z0XLuMSUTKj7bsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7KnsRESk7Ol8diIlSOe+Ezk+2rITEZGyp7ITEZGyp2FMkRKQy02TSDzO9PQzBALNVFV1UlW1Br8/4nU0kZKgshMpYpnMGIOD3yaR2I1zGfKDMTkAzII0N7+RxsY3YKb/yiJHo/8hIkUqmeymt/dL5HIz1Ne/hpqaLUQiG8lkJkilehkf/zXDwz9gYuJ+Vq16J5HIqV5HFilaKjuRIjQ29isGB79NMNhCV9eHqKrqOHJbMNhIMNhINHoG8fhjDA3dQk/Pp2lvfy81NWd7mFqkeGkHFZEiE4/vZHDwW1RXb2bt2hteUHRz1dScxdq1f0Uo1Elv7xeJx3euYFKR0qGyEykiMzO99PV9haqq9XR0vBe/v/qY9/H7o3R1/Snh8Fp6e79EPP7oCiQVKS0qO5Eikc0m6O39Aj5fFR0d78PnCy36vn5/NZ2dHyQcXktf303MzPQuY1KR0qOyEykSAwNfJ52O0dHxPoLBxuO+v98fob09X5K9vV8km00uQ0qR0qSyEykCw8Pbicd30tJyJZHIxhN+nGCwkfb2a0mnhxgY+BrOuSVMKVK6VHYiHstmEzz99PsJhTpobHzDST9edfVLaG39beLxnYyN3bMECUVKn8pOxGMHDnycmZnnWLXqdzHzL8ljNjS8nmj0TIaHv8fUVPeSPKZIKdNxdiIeisd309Pzz6xe/Z4lPSjczGhreyfPPvsxHnvsCrq6PozZsf+21RkSpFxpy07EQ88881H8/lo2bvzkkj92MNhIa+s1JJNPMz7+n0v++CKlRGUn4pHx8XsZGbmDtWv/kmCweVmeo67uVVRXb2Zo6Puk0yPL8hwipUBlJ+KR/fv/hmCwjc7O65ftOcyMVat+D8gxPPzdZXsekWKnshPxwOjo3YyN3c26dX+F3x9d1ucKBptoarqUyckdTE09vazPJVKsVHYiK8w5x/79f0so1El7+3tX5DkbGy8lEGhkaOhWnMutyHOKFBOVncgKGx39BRMT/8W6dX+D3x9ekef0+UK0tLyVmZmDTEz814o8p0gxWVTZmdllZrbXzLrN7KPz3F5lZrcWbr/fzNbPuu2GwvK9ZnbprOUfMrM9ZrbbzL5tZivzv17EYwcPfopQaDXt7X+wos9bW7uVcHgjw8M/IJebXtHnFvHaMcvO8ke5fg64HNgMvMPMNs9Z7T3AqHPuVODTwCcL990MbAPOAC4DPm9mfjPrBD4AbHXOnQn4C+uJlLV4fBejoz+js/MD+HxVK/rcZkZr69Vks5OMjf1yRZ9bxGuL2bI7D+h2zj3jnEsBtwBXzVnnKuDmwuXvAJeYmRWW3+Kcm3HO7Qe6C48H+QPaI2YWAKoBTdMuZe/gwX/G54vS0bEyn9XNFYmcQjR6JiMjP9NE0VJRFlN2ncDBWdd7CsvmXcc5lwHGgeaF7uucOwR8CngO6APGnXM/m+/JzexaM9thZjuGhoYWEVekOM3M9DI4+B+0t/83gsEmz3I0N7+ZXC6heTOloiym7GyeZXOnUl9onXmXm1kj+a2+DUAHEDWzd8735M65G51zW51zW1tbWxcRV6Q4HTr0bziXpavrTz3NEQ6vJxo9m9HRn2vrTirGYsquB1gz63oXLx5yPLJOYViyHhg5yn1fD+x3zg0559LA94BXncgLECkF+ROzfpHW1t8mEjnF6ziFrbspxsZ+4XUUkRWxmLJ7ENhkZhvMLER+R5Ltc9bZDry7cPlq4G6XP5HWdmBbYW/NDcAm4AHyw5cXmFl14bO9S4AnTv7liBSnwcFbyGTG6Oz8oNdRAAiH1xKNnsPo6D3kcimv44gsu2OWXeEzuOuBn5IvpNucc3vM7ONmdmVhtZuAZjPrBj4MfLRw3z3AbcDjwE+A65xzWefc/eR3ZHkYeKyQ48YlfWUiRaS394tEo2dSX3+h11GOaGr6TXK5BBMT93odRWTZLeoUP865O4E75yz7u1mXp4FrFrjvJ4BPzLP874G/P56wIqVoYmIHk5M72LTps+QHMopDOLyRqqp1jI7eRX39RYs6BZBIqdJPt8gy6+v7Ej5fNatWzbsPlmfMjMbG15NOD5BI7PE6jsiyUtmJLKNMZpyBgf9g1arfIRCo9zrOi9TWvpxAoEE7qkjZU9mJLKOBgW+Sy03R0fE+r6PMy8xPQ8PrmJp6kpmZg8e+g0iJUtmJLBPnHL29X6Km5uXU1r7c6zgLyn9eF2J0VAeZS/lS2Yksk3j8ERKJx2hv/0OvoxyV3x+ltvYVTE7uIJOZ9DqOyLJQ2Yksk/7+r2FWRVvb272Ockz19Rfi3AxDQ7d5HUVkWajsRJZBLpdiYOA/aGm5kmCw0es4xxQOn0IotJq+vpu8jiKyLBZ1nJ2IPK+399jzH8TjO8lkYqxe/e5jrlsMzIy6ugsZHv4uicQTRKOnex1JZElpy05kGYyP34vfX0dj46XHXrlI1NVdgFlAW3dSllR2Ikssk5kkkdhFXd35+HylM3gSCNTR3HwlAwNf13yZUnZK53+iSImYnHwQyFFX98pFDXkWk/b29zA8/D1isTtobX2L13FEloy27ESW2OTk/VRVraGqau45jotfY+NvEgy2MTj4ba+jiCwplZ3IEkqlhpiePkBt7Su8jnJCfL4Ara3XEIvdrmPupKyo7ESWUH4Ik5ItO4C2tm3kcklisR95HUVkyajsRJbQ5OQOwuGNBINNXkc5YfX1r6KqqovBwVu8jiKyZFR2IktkZqaXVOpQSW/VAZj5aG19OyMjPyGdHvU6jsiSUNmJLJH8EKYV9aTPi9XW9nacSzM8/AOvo4gsCZWdyBJwzjE5uYPq6tMIBOq8jnPSamu3Eg6foqFMKRsqO5ElMDPzLOn0ILW1W72OsiTMjLa2bYyO3kUqNeh1HJGTprITWQKTkw8BPmpqXuZ1lCXT2noNkNVemVIWVHYiJ8k5Rzz+MNXVp+H3R72Os2Rqas6hqmodw8M/9DqKyEnTdGEiJ2lmpod0epjGxsu8jnLS5k5vFolsZGTkx/T0fAafL/yC2zo6rl3JaCInRVt2IicpHn8YMGpqtngdZcnV1GzBuQyJxONeRxE5KSo7kZMUjz9MJLKJQKDW6yhLLhI5FZ8vSjz+qNdRRE6Kyk7kJOQPJO+ntvZcr6MsCzM/NTVnkUjswrms13FETpjKTuQkxOOPAJTVXphzRaNbyOWmSCa7vY4icsJUdiInIR5/mHB4I4FAg9dRlk00uhmzIPH4Tq+jiJwwlZ3ICUqlhpiZ6aG2tny36gB8viqqq08nHt+Jc87rOCInRGUncoISifyWTjRafnthzhWNnk0mM0Iq1et1FJETorITOUHx+C5CoQ5CoVavoyy7aPRMABKJ3R4nETkxKjuRE5DNxkkmu6mpOcfrKCsiGGwkFOogkdjjdRSRE6KyEzkB+S2cHNFoZZQd5Lfukslucrlpr6OIHDeVncgJiMd34ffXEQ6v8zrKiskPZWaZmnrS6ygix01lJ3Kccrk0U1N7qKk5G7PK+S8UiWzErEpDmVKSKud/qsgSSSafJpebrqghTACzANXVp5NI7NYhCFJyVHYixykefxSzINXVp3kdZcVFo2cUDkHo8zqKyHFR2YkcB+ccicSjVFdvxucLeR1nxT1/CIKGMqW0qOxEjkM8/iiZzGjFHHIwVzDYRCjUwdSUjreT0qKyEzkOsdh2wIhGz/I6imei0TNIJrvJZOJeRxFZNJWdyHEYHt5OOLyBQKDO6yieiUbPxLkMY2N3ex1FZNFUdiKLND3dQzz+UMUOYR4WDucPQRgZ+bHXUUQWTWUnskix2O1AflLkSubz5fdEjcV+rEMQpGSo7EQWKRbbTji8kVCo3esonotGz2Bm5lnNpiIlQ2UnsgiZTJzR0btoabkSM/M6jucOH4KgoUwpFSo7kUUYHf0ZzqVoabnK6yhFIRhsprr6dJWdlAyVncgiDA9vJxBopK7uQq+jFI2mpssZG/uVDkGQkrCosjOzy8xsr5l1m9lH57m9ysxuLdx+v5mtn3XbDYXle83s0lnLG8zsO2b2pJk9YWavXIoXJLLUnMsxMnInTU1X4PMFvI5TNJqaLse5FGNjv/Q6isgxHbPszMwPfA64HNgMvMPMNs9Z7T3AqHPuVODTwCcL990MbAPOAC4DPl94PIB/BX7inDsNOAd44uRfjsjSm5zcQTo9RHPzG72OUlQaGi7C54tqKFNKwmK27M4Dup1zzzjnUsAtwNwPLq4Cbi5c/g5wieU/xb8KuMU5N+Oc2w90A+eZWR3wG8BNAM65lHNu7ORfjsjSi8XuAHw0Nf2m11GKis9XRUPDaxkZ+anXUUSOaTFl1wkcnHW9p7Bs3nWccxlgHGg+yn1PAYaAr5rZI2b272YWne/JzexaM9thZjuGhoYWEVdkaY2M3Eld3QUEg81eRyk6TU2XMj29j2Ryn9dRRI5qMWU3337Wc48kXWidhZYHgHOBLzjnXgYkgBd9FgjgnLvRObfVObe1tbV1EXFFlk4qNcDk5A6am6/wOkpRamrKfwyvrTspdospux5gzazrXUDvQuuYWQCoB0aOct8eoMc5d39h+XfIl59IURkZ+QkATU0qu/lEIpsIh9er7KToLabsHgQ2mdkGMwuR3+Fk+5x1tgPvLly+Grjb5ecR2g5sK+ytuQHYBDzgnOsHDprZSwv3uQR4/CRfi8iSi8XuJBRqp6Zmi9dRipKZ0dh4KWNjd5PLpbyOI7KgY5Zd4TO464Gfkt9j8jbn3B4z+7iZXVlY7Sag2cy6gQ9TGJJ0zu0BbiNfZD8BrnPOZQv3eT/wLTPbBWwB/sfSvSyRk5fLZRgZ+SlNTZdr1pSjaGq6lGw2zsTEvV5HEVnQog4acs7dCdw5Z9nfzbo8DVyzwH0/AXxinuU7ga3HE1ZkJU1M3Es2O65DDo6hsfFiwM/IyE9paHiN13FE5qUZVEQWMDJyJ2YBGhtf73WUohYI1FNf/0p9bidFTWUnsoBY7A7q6y+q6BO1LlZj46XE4w+TSunwIClOKjuReUxPHySReEx7YS7S4UMQRkd/7nESkfmp7ETmcXgKLB1ftzi1tecSCDRrKFOKlspOZB6x2J1UVa2juvp0r6OUBDM/TU1vKJwKSWcvl+KjshOZI5ebYXT0FzQ3X6FDDo5DY+OlpFL9JBK7vI4i8iIqO5E5xsZ+TS6X0Od1x+nwRNkaypRipLITmSN/yEEVjY2v8zpKSamq6iAaPUtlJ0VJZ6KUitfbe+MLrg8M/AeRyKkMDHzLo0Slq6npUnp6PkM2m8Dvn/dEJiKe0JadyCyp1CDp9ADR6JleRylJjY2X6uzlUpRUdiKzJBK7AVR2J6i+/tX4fBENZUrRUdmJzJJI7CYYXEUo1OZ1lJLk94d19nIpSio7kYJcLkUyuVdbdSepqelSksmnSCYPeB1F5AjtoCJSMDW1F+cyKrtFmrtjz2GZzAQA+/f/FQ0NrwWgo+PalYolMi9t2YkUJBKPYRYiEtnkdZSSFgy2EQy2kkg85nUUkSNUdiKAc45EYjfV1afj8wW9jlPSzIxo9Cympvbq7OVSNFR2IkAq1UcmE9MQ5hKJRs/CuTRTU3u9jiICqOxEAB1ysNQikU2YhTSUKUVDZSdCvuxCoU6CwSavo5QFny9IdfXpJBK7dRYEKQoqO6l42WySZPJpbdUtsWj0TDKZGKlUn9dRRFR2IlNTTwA5ld0SO/x+aihTioHKTipeIrEbny9CJLLR6yhlJRhsIhTqOvJ5qIiXVHZS0Z4/5GAzZn6v45SdmpozSSa7yWTGvY4iFU5lJxUtHt9JNjuuIcxlEo2eBeQYGfmZ11GkwqnspKKNjNwJQDR6hsdJylM4vAGfr5pY7A6vo0iFU9lJRYvF7qSqah2BQL3XUcqSmZ9o9AxGRn6Mczmv40gFU9lJxUqnY0xM3KchzGUWjZ5JOj3I5ORDXkeRCqayk4qV/xwpV/hcSZZL/o8J01CmeEplJxVrZOROgsEWwuF1Xkcpa35/DXV15zMyorIT76jspCI5l2Vk5Cc0NV2Gmf4bLLempjcyObmDVGrA6yhSofS/XCrSxMQDpNPDNDVd4XWUitDc/EYAYrEfe5xEKpXKTipSLHY74Kep6TKvo1SEmpothELtGsoUz6jspCLFYndQX38hwWCj11EqgpnR3PwmRkZ+QjY77XUcqUAqO6k409MHSSQepbn5TV5HqSgtLW8hm40zNna311GkAqnspOIc3gVeZbeyGhsvxu+vYXj4+15HkQqkspOKE4vdTjh8CtXVp3kdpaL4fFU0NV3B8PB2nMt6HUcqjMpOKko2O8XY2F00N78JM/M6TsVpaXkL6fQgExP3eR1FKozKTirK2Ng95HLTR3aFl5XV3Hw5ZkGGhjSUKStLZScVJRa7HZ8vSkPDa7yOUpECgXoaGy9hePgHOOe8jiMVRGUnFcM5Ryx2O01Nv4nPV+V1nIrV0vJbTE/vI5HY43UUqSAqO6kYicQuZmZ6tBemx5qbrwSM4eHveR1FKkjA6wAiy6G398YXLYvF8idqTadj894uy2fu+x0On0Jv742EQqtftG5Hx7UrFUsqiLbspGIkEo9RVbVeJ2otArW1W0mlDjEz0+d1FKkQKjupCJnMJNPT+6mp0Ylai0FNzcsAIx7XCV1lZajspCJMTe0GHNHo2V5HESAYbCQS2aizl8uKWVTZmdllZrbXzLrN7KPz3F5lZrcWbr/fzNbPuu2GwvK9ZnbpnPv5zewRM7v9ZF+IyNHE44/h99dTVbXG6yhSUFOzlVSql5mZXq+jSAU4ZtmZmR/4HHA5sBl4h5ltnrPae4BR59ypwKeBTxbuuxnYBpwBXAZ8vvB4h30QeOJkX4TI0TiXZWpqD9HoWTpRaxGprT0XDWXKSlnM//zzgG7n3DPOuRRwC3DVnHWuAm4uXP4OcInl52K6CrjFOTfjnNsPdBceDzPrAt4I/PvJvwyRhSWT3eRy09TUnOV1FJklEKgnEtmkoUxZEYspu07g4KzrPYVl867jnMsA40DzMe77L8BfALmjPbmZXWtmO8xsx9DQ0CLiirxQPP4oZgFN/FyEamtfTirVx8zMIa+jSJlbTNnNN1vu3Hl+Flpn3uVm9iZg0Dl3zD/pnHM3Oue2Oue2tra2HjutyCzOORKJR6muPg2fL+x1HJmjpiY/lDk5+aDXUaTMLabseoDZn+p3AXM/UT6yjpkFgHpg5Cj3vRC40swOkB8WvdjMvnkC+UWOamamh3R6uLCruxSbQKCO6urNTEzcj3NHHeQROSmLKbsHgU1mtsHMQuR3ONk+Z53twLsLl68G7nb5WV63A9sKe2tuADYBDzjnbnDOdTnn1hce727n3DuX4PWIvEA8/ghgOuSgiNXVXUAmM0Iy2e11FCljx5wuzDmXMbPrgZ8CfuArzrk9ZvZxYIdzbjtwE/ANM+smv0W3rXDfPWZ2G/A4kAGuczpro6ygePwRIpFTCQTqvI4iC6ip2YJZFRMT91Fd/RKv40iZWtTcmM65O4E75yz7u1mXp4FrFrjvJ4BPHOWxfwn8cjE5RI5HKjVAKtVLa+vbvI4iR+HzhaitPZd4/CFyuW1ex5EypYOOpGzF4zuB/JaDFLfa2vPJ5aZJJHZ5HUXKlMpOylY8/ghVVWsJBpu9jiLHUF39Uvz+BiYm7vM6ipQplZ2UpXR6tDDxs/bCLAVmPurqziOR2EMqNeh1HClDKjspSxrCLD11da8EcvT333zMdUWOl8pOytLk5IOEQh1UVXV4HUUWqaqqg0jkVPr6vkz+yCWRpaOyk7IzPf0c09P7qK19hddR5DjV119EMvk0Y2P/6XUUKTMqOyk7g4O3AqjsSlBNzbkEAg309d3odRQpMyo7KTuDg7dQVbWeUEhzqZYany/EqlXvYmjou6RSw17HkTKispOyMjX1FPH4w9TVbfU6ipyg9vY/wrkUAwNf9zqKlBGVnZSV/BCmUVOjsitVNTVnUlf3Knp7v6TJoWXJqOykbDjnGBz8NvX1FxEMNnodR05CR8cfk0w+xcjIT72OImVCZSdlIx5/lKmpJ2hr0/yKpa6t7W2EQu309Hza6yhSJlR2Ujb6+7+GWYi2Nk38XOp8vhCdndczOvpzEok9XseRMqCyk7KQy6UYGPgmLS1XaS7MMtHR8V58vgg9Pf/idRQpAyo7KQux2I/IZGKsXv3fvI4iSyQYbGbVqnfR3/8NUqkhr+NIiVPZSVno6/sKoVAnTU1v8DqKLKGurj/FuRl6e7/odRQpcSo7KXkzM72MjPyE1avfjZnf6ziyhKLR02hquoJDhz5DNpvwOo6UMJWdlLz+/q8DOVav/n2vo8gyWLfur0mnh+nt/ZLXUaSEqeykpDnn6O//KvX1F1FdvcnrOLIM6utfRUPDxRw8+L/IZpNex5ESpbKTkjY6ehfJ5FO0t/+h11FkGa1b97ekUv309d3kdRQpUSo7KWmHDv0bwWArbW1v9zqKLKOGhtdQX/9qDh78JLncjNdxpASp7KRkJZP7icV+RHv7tfh8VV7HkWVkZqxb97fMzPTQ3/81r+NICVLZScnq7f084KOj431eR5EV0Nj4BurqXsmBA/+fPruT46ayk5KUzU7R13cTra2/TTjc5XUcWQFmximn/COp1CEOHfqs13GkxKjspCQNDHyLTGaUzs73ex1FVlBDw2/Q1HQ5zz33P0mnx7yOIyVEZSclx7kcPT3/SjR6DvX1r/Y6jqywDRv+B5nMKAcP/i+vo0gJUdlJyYnFbmdqag9r1/45ZuZ1HFlhtbVbaGv7HXp6Ps3MTJ/XcaREBLwOIHI8nHM8++wnCIc30Nqqww0q1YYNH2do6P+wZ881rF79rkXfr6Pj2mVMJcVMW3ZSUsbG7mFy8gHWrPkLfD79rVapIpGNdHZ+gImJ/2J6+jmv40gJUNlJSXnuuf9JKLRa82AK69f/LX5/DUNDt+Gc8zqOFDmVnZSMiYkHGB39BV1dH8HvD3sdRzwWCNTT3HwlyeTTxOOPeB1HipzGgaRk7N37h/h81fh8IXp7b/Q6jhSB+voLGRv7JcPD3yUaPQufL+h1JClS2rKTkjA+/v+TSDxGU9Ol+HzaqpM8Mz9tbdeQTg8zNnaX13GkiKnspOg553jmmb/C76+joeF1XseRIlNdfTrR6DnEYneSyYx7HUeKlIYxxVOLGY5MJB5nfPxXtLVt04TPFeBEhqhbW9/KgQMfY3j4h8d1KIJUDm3ZSVFzzjE8/H0CgWbq6y/yOo4UqVBoFY2NF+tQBFmQyk6KWjz+MDMzz9Hc/GbMNBAhC2tqeqMORZAFqeykaOVyaYaHv0co1Eld3flex5Ei5/dHZh2K8LDXcaTIqOykaI2N3UU6PUxb2zWY6UdVjq2+/kJCoU6Ghr5LLpf2Oo4UEf0GkaKUyUwwMvJjotGzqa4+3es4UiLyhyK8jUwmxtjYL7yOI0VEZSdFKRbbTi6XorX1aq+jSImprj6NaHQLsdiPdSiCHKGyk6IzPX2Q8fH/S0PD6wiFVnkdR0pQa+tbcS7D8PD3vY4iRUJlJ0XFuRyDg9/G76+hufmNXseREhUKtdHYeAkTE/cyPf2s13GkCKjspKjkfznto6Xlt/H7o17HkRLW1HQFfn8tg4O36lAEUdlJ8chmEwwPf49weCN1dRd4HUdKXP5QhKuYnt5HPL7D6zjiMZWdFI3h4R+SzSZYteodOtRAlkR9/YVUVXUxNPQ9crmU13HEQ4v6jWJml5nZXjPrNrOPznN7lZndWrj9fjNbP+u2GwrL95rZpYVla8zsHjN7wsz2mNkHl+oFSWlKJvczPv4rGhpeR1XVGq/jSJkw89Ha+jYymRFGR3/udRzx0DHLzsz8wOeAy4HNwDvMbPOc1d4DjDrnTgU+DXyycN/NwDbgDOAy4POFx8sAH3HOnQ5cAFw3z2NKhXAuy8DANwgEGmhpucrrOFJmqqtfSk3NFkZGfsrMTJ/XccQji9myOw/ods4945xLAbcAc38jXQXcXLj8HeASM7PC8lucczPOuf1AN3Cec67POfcwgHNuEngC6Dz5lyOlaHT0Z6RSh2hre4fOVSfLoqUlfyjC/v1/43UU8chiyq4TODjreg8vLqYj6zjnMsA40LyY+xaGPF8G3D/fk5vZtWa2w8x2DA0NLSKulJJUaoBY7HZqas6lpuYcr+NImcofinAx/f1fZXLyEa/jiAcWU3Y2z7K5+/EutM5R72tmNcB3gT91zk3M9+TOuRudc1udc1tbW1sXEVdKhXM5Bga+iVmQtrZtXseRMtfUdAWBQBP79n1EhyJUoMWUXQ8we4+BLqB3oXUsfx6WemDkaPc1syD5ovuWc+57JxJeSltv7xdJJp+itfVqAoF6r+NImfP7q9mw4WOMjd1DLLbd6ziywhZTdg8Cm8z/5pfmAAAgAElEQVRsg5mFyO9wMvcnZTvw7sLlq4G7Xf5Pp+3AtsLemhuATcADhc/zbgKecM7981K8ECktyeR+9u37C6qrN1NXd6HXcaRCtLe/l+rq09m37891KEKFOWbZFT6Dux74KfkdSW5zzu0xs4+b2ZWF1W4Cms2sG/gw8NHCffcAtwGPAz8BrnPOZYELgd8DLjaznYWvK5b4tUmRci7H3r3vwczHqlW/R/5vH5Hl5/MF2LjxUySTT3Po0Oe9jiMryEpp7Hrr1q1uxw7NhFDqDh36PE8/fR0vecmXgZzXcaSCdHRci3OOXbsuY3LyAc4/v5tgsNnrWHISzOwh59zWY62naSpkRU1NPcW+fX9GY+OltLe/x+s4UoHMjI0b/zeZzAQHDnzc6ziyQlR2smJyuTRPPPFOfL4Ip532FQ1fimdqas6kvf2P6O39PFNTe72OIytAZScr5tln/zuTkw/ykpd8iaqqDq/jSIXbsOHj+HwR9u37c6+jyApQ2cmKGB+/l2ef/QSrVr2LtjadfVy8Fwq1sW7dXxOL/YjR0bu8jiPLTGUnyy6dHuHxx7cRDq9l06bPeB1H5IjOzg8SDq+nu/vD5HcUl3KlspNl5ZzjySf/gFSqj82bb9XB41JU/P4wp5zyTyQSu+jr+6rXcWQZqexkWR069Blise2ccso/UVf3Cq/jiLxIa+vV1NVdyP79f006PeZ1HFkmKjtZNhMTD7Jv35/T3HwVXV06ZaEUJzNj06bPkE4PceDA33sdR5aJyk6WRTo9xuOPv51QqF2HGUjRq609l46O93Ho0GeJxx/1Oo4sg4DXAaT8OOfYu/cPmZk5yJYtvyIYbPI6kggAvb03LnhbJLIJv7+aPXuupqvrz+jsfO8KJpPlpi07WXK9vV9gePi7bNjwP6ivf6XXcUQWxe+P0tLyFpLJbiYn7/M6jiwxlZ0sqYmJ++nu/hBNTVewZs1HvI4jclzq6l5FOLyBoaHvkEoNex1HlpDKTpZMKjXA7t1vpaqqk9NP/wZm+vGS0nL4TBzZ7BT79umPtXKi30ayJHK5NHv2vJ1MJsYZZ3xPn9NJyaqq6qSp6TIGBr7OyMjPvI4jS0Q7qMiSeOaZv2B8/D857bRvMDn5AJOTD3gdSeSENTVdQTK5j6eeei+veMVu/P6o15HkJGnLTk7awMB/0NPzL3R2foDVq9/pdRyRk+bzBXnpS7/M9PQBnnnmr7yOI0tAZScnJR5/lL17/5D6+ovYuPFTXscRWTINDRfR2fkBDh36DCMjv/A6jpwklZ2csHR6hN2730Ig0Mjmzbfh8wW9jiSypE455R+prj6NJ5/8fdLpEa/jyEnQZ3ayKHMPxnUuy6FD/8b09HOsWfMRYrHtHiUTWT5+f4TTT/8mDz98AU8/fR2bN3/b60hygrRlJydkaOg7TE09wapVv0MkstHrOCLLprb25axf/w8MDt5Cf//NXseRE6Syk+M2NvYrxsbupqHhEurrX+11HJFlt3btR2loeB1PPfXHxOOPeR1HToDKTo7L1NRTDA5+m+rqM2htfavXcURWhJmfzZu/TSDQwJ49byWTmfA6khwnlZ0sWio1RG/vFwmF2mhv/yPM/F5HElkxodAqNm++lWTyGZ588r/hnPM6khwHlZ0sSjabpLf384Cjo+NP8PsjXkcSWXENDRexceMnGR7+LgcOfMzrOHIctDemHJNzWfr7byKV6qer6wOEQqu8jiTima6uD5NI7ObZZz9GJHKqJlIoESo7OSrnHE8//UESicdoa9tGdfXpXkcSWRFHO/ddbe0rGB+/l717/4B4fCennqoJFYqdhjHlqA4e/Cd6ez9HY+MbaGh4nddxRIqCWYCOjvcSCDTT2/sFJid3eh1JjkFlJwsaGPgWzzzzUdrattHS8ttexxEpKn5/lK6uD+DzVbFr1xtIJPZ4HUmOQmUn8xoe/hFPPvn7NDS8ltNO+5rOTScyj2Cwha6uD2MW5NFHX8/U1FNeR5IF6DeYvMjIyM/Ys+dqampexpln/hCfr8rrSCJFKxRq45xz7sK5LI88chGTk494HUnmobKTFxgd/SW7d/8W1dWnc/bZPyEQqPM6kkjRi0ZPZ8uWX+Hzhdm58zWMjt7tdSSZQ2UnR8Rid/DYY5cTDq/nnHN+rrONixyHaPQ0zj33vwiH17Fr1+X093/D60gyi8pOAOjv/waPPXYV1dVnsGXLfxIKtXodSaTkVFV1smXLr6ivfxVPPvkunnrqenK5lNexBJVdxXPO8eyz/8iTT76LhobXsGXLPSo6kZMQDDZy9tk/p6vrI/T2fo6dO19LMnnA61gVT2VXwTKZSfbsuYb9+2+gtfXtnHXWHQQCtV7HEil5Pl+AU0/9FJs330YisZsdO86it/dGzafpIc2gUqHi8V08/vg7mJp6ko0bP1XYfdq8jiVSko4228ratTfQ338zTz31Xnp6/oUzz/wB1dUvWcF0Atqyqzi5XIoDBz7GQw9tJZ0e5pxzfs6aNR9R0Yksk2Cwma6uP6Wt7XeYnt7Pgw+eSXf3n5HJjHsdraJoy66CjI7eTXf3h0gkdtHW9jvU1r6cZLKbZLLb62giZc3MR0PDa6ipeRnJ5F56ev6Z/v6vsWbNn9HZeZ0+PlgB2rKrAPH4o+zadQWPPnoJmcwYZ5zxfTZv/hZ+f43X0UQqSiBQx0tf+mVe/vId1NWdz/79N3DffRs4cOC/k0oNex2vrFkpfWC6detWt2PHDq9jFLXDnx0455iaeoLR0Z8zNfU4Pl81TU2X09DwOny+oMcpRQQgmdxPLHY7U1O7MQtSV3cB9fWvIRxeA0BHx7UeJyx+ZvaQc27rsdbTMGaZSadHmZy8j/Hxe0mnB/D762huvoqGhtfg90e9jicis0QiG+jqej8zM72Mjd3FxMS9jI//mqqqLurqXklLy28RCrV5HbMsaMuuDCST+xge/iHDwz9gfPz/Ao5I5FTq6l5Nbe1WbcmJlIhsNsHk5IOMj9/LzMwBzAI0NV3B6tXvorHxUgIBffQwl7bsypRzjpmZHiYm7mNs7G5GR39xZAeTaPQcmpvfSG3tBTowXKQE+f1RGhpeS0PDa5mZ6SWXm2Jg4BvEYtsxC9HQ8Fqam99Ec/MbiURO8TpuSdGWXZFLp8eIxx9hYuJ+JifvZ2LiflKpPgD8/loaGl5LY+PraW5+M5HIhqMe7yMipaWj41pyuQzj478iFruDWOwOksm9AFRXn05j4yXU1V1Abe35RCIbK/IQIm3ZFbm5pZTNJkilBkilepmZ6SWV6iOV6iWTGTuyTiSyiYaGi6mrO5+6uvOpqXmZhihFypzPF6Cx8WIaGy/m1FP/N1NT3YyM5Iuvr++rHDr02cJ6USKRDYTDGwiFOgiFVhMKtWH24l/zlbjjy6LKzswuA/4V8AP/7pz7xzm3VwFfB14OxIC3O+cOFG67AXgPkAU+4Jz76WIesxyl0yMkk0+TTHYzPPwj0ulB0ulBUqlBcrmpI+uZBQmF2olETqOqqoP29j+iru48nYVARKiuPpXq6g/S1fVBnMuSSOxhYuJ++vtvZnr6mcIZ0w+P2PkIBluPFF8w2EIw2EIi8QTh8Hr8/oiXL2VFHXMY08z8wFPAG4Ae4EHgHc65x2et8yfA2c6595nZNuAtzrm3m9lm4NvAeUAH8Avg8Dw5R33M+RT7MGYmM8709HPMzBxkZuYg09PPMT397JGCy2RGZq1tBAJNhEKtBINtBINthEJthEIdBIPNOjO4iJyQXG66MErUXxghGiCV6iOdHsK5zAvWDQZXFbYG1xMOry9sEbZTVdVOKJT/KvZCXMphzPOAbufcM4UHvgW4CphdTFcB/1C4/B3gs5YfPL4KuMU5NwPsN7PuwuOxiMdccpnMBOn0MM5lcS4LZHEuc+T6i5dlyGanyGbj5HIJstkE2WycTGacdHqYdHroyPdUaohcLjHnGf1UVXUSiWyire1tRCKnEolsIhI5ldHRezQEKSJLzucLEw6vIxxe94LlzuXIZidIp2PU1JzN9PQBpqcPkEzuZ2LiQYaGvotz6Rc9XiDQcKT4gsFmAoF6AoEG/P76wuU6fL4wZiF8vlDhe9ULrpv5C3/AG+A7crmqqhOfL7Qi78tiyq4TODjreg9w/kLrOOcyZjYONBeW3zfnvp2Fy8d6zCXX3/91urvff9KP4/NFCAZbC0MCrUQiLyEUaiUU6iQcXkNV1RqqqtYSCq3G55v/Lc4fIiAisjLMfAQCDQQCDaxa9bsvut25HOl0jFSqb9Z+A32F6/l9COLxXWSz42Qy4+RyyZPOtHXrY9TUnHnSj7MYiym7+XbvmTv2udA6Cy2fb4xu3vFUM7sWOPxpatzM9i6QcyEtwBLPw5MEnit8LatlyL6iSjl/KWeH0s5fytmhJPK/d6EbVjj7WUvxIOuOvcriyq4HWDPrehfQu8A6PZbf9aceGDnGfY/1mAA4524ETnh/ejPbsZjx3GJUytmhtPOXcnYo7fylnB1KO38pZz+WxewF8SCwycw2mFkI2AZsn7POduDdhctXA3e7/J4v24FtZlZlZhuATcADi3xMERGRJXHMLbvCZ3DXAz8lf5jAV5xze8zs48AO59x24CbgG4UdUEbIlxeF9W4jv+NJBrjO5fcCYb7HXPqXJyIissjj7JxzdwJ3zln2d7MuTwPXLHDfTwCfWMxjLpNSnlKklLNDaecv5exQ2vlLOTuUdv5Szn5UJTVdmIiIyInQkcsiIlL2SrrszOwrZjZoZrtnLfsHMztkZjsLX1fMuu0GM+s2s71mdqk3qZ9nZmvM7B4ze8LM9pjZBwvLm8zs52b2dOF7Y2G5mdlnCq9hl5mdW4TZS+L9N7OwmT1gZo8W8n+ssHyDmd1feO9vLexARWEnq1sL+e83s/VFmP1rZrZ/1nu/pbC8aH5uDjMzv5k9Yma3F64X/fs+2zz5S+K9N7MDZvZYIeOOwrKi/32zJJxzJfsF/AZwLrB71rJ/AP5snnU3A48CVcAGYB/g9zh/O3Bu4XIt+SnUNgP/BHy0sPyjwCcLl68Afkz++MULgPuLMHtJvP+F97CmcDkI3F94T28DthWWfxH448LlPwG+WLi8Dbi1CLN/Dbh6nvWL5udmVqYPA/8B3F64XvTv+zHyl8R7DxwAWuYsK/rfN0vxVdJbds65X5Hf+3Mxjkxd5pzbD8yeuswTzrk+59zDhcuTwBPkZ5i5Cri5sNrNwG8VLl8FfN3l3Qc0mFn7CscGjpp9IUX1/hfew3jharDw5YCLyU95By9+7w//m3wHuMTMm/OpHCX7Qorm5wbAzLqANwL/XrhulMD7ftjc/MdQVO/9Aor+981SKOmyO4rrC5vdXzm8Sc78054d7ZfziioMz7yM/F/pq5xzfZAvFaCtsFpRvoY52aFE3v/CUNROYBD4OfmtzTH3/Gy5szO+YEo84PCUeJ6Ym905d/i9/0Thvf+05c9GAsX33v8L8BdArnC9mRJ53wvm5j+sFN57B/zMzB6y/OxUUGK/b05UOZbdF4CNwBagD/jfheWLmfbME2ZWA3wX+FPn3MTRVp1nmaevYZ7sJfP+O+eyzrkt5GfwOQ84fb7VCt+LKv/c7GZ2JnADcBrwCqAJ+MvC6kWT3czeBAw65x6avXieVYvyfV8gP5TAe19woXPuXOBy4Doz+42jrFts2U9K2ZWdc26g8IsgB3yZ54fKFjPt2YozsyD5sviWc+57hcUDh4cLCt8HC8uL6jXMl73U3n8A59wY8Evyn0s02PNnu5yd8Uh+e+GUeJ6alf2ywtCyc/mzjHyV4nzvLwSuNLMDwC3khy//hdJ531+U38y+WSLvPc653sL3QeD75HOWxO+bk1V2ZTdnTPktwOE9NReauswzhc8ebgKecM7986ybZk+/9m7gh7OWv6uwl9QFwPjh4YeVtlD2Unn/zazVzBoKlyPA68l/7ngP+Snv4MXv/XxT4q24BbI/OesXlpH/3GX2e18UPzfOuRucc13OufXkdzi52zn3u5TA+w4L5n9nKbz3ZhY1s9rDl4HfLOQs+t83S2Il94ZZ6i/yJ4btA9Lk/wp5D/AN4DFgF/l/rPZZ6/81+c9l9gKXF0H+V5MfFtgF7Cx8XUH+M4m7gKcL35sK6xvwucJreAzYWoTZS+L9B84GHink3A38XWH5KeRLuBv4P0BVYXm4cL27cPspRZj97sJ7vxv4Js/vsVk0PzdzXsdreX5vxqJ/34+Rv+jf+8J7/Gjhaw/w14XlRf/7Zim+NIOKiIiUvbIbxhQREZlLZSciImVPZSciImVPZSciImVPZSciImVvUSdvFZHlZ2ZZ8rt4B8gf8/du59yUt6lEyoO27ESKR9I5t8U5dyaQAt7ndSCRcqGyEylOvwZOBTCzd1r+/HU7zexLhUmg/ZY/h9ruwvnJPlRYd4uZ3VeYkPj7sybiFqloKjuRIlOYA/Jy4DEzOx14O/kJfLcAWeB3yU+03emcO9M5dxb5+RgBvg78pXPubPJDon+/4i9ApAip7ESKR6Rw2p4dwHPk5x69BHg58GDhtkvIT/v0DHCKmf2bmV0GTJhZPdDgnPvPwuPdTP4ExyIVTzuoiBSPZGHr7YjCxMI3O+dumLuymZ0DXApcB7wN+NCKpBQpQdqyEyludwFXm1kbgJk1mdk6M2sBfM657wJ/C5zrnBsHRs3sosJ9fw/4z3kfVaTCaMtOpIg55x43s78hf3ZpH/kzfFwHJIGvFpZB/uShkD9FyxfNrJr8UOcfrHRmkWKksx6IiEjZ0zCmiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUvYDXAY5HS0uLW79+vdcxRESkSDz00EPDzrnWY61XUmW3fv16duzY4XUMEREpEmb27GLW0zCmiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUPZWdiIiUvWUpOzP7ipkNmtnuBW43M/uMmXWb2S4zO3c5coiIiMDybdl9DbjsKLdfDmwqfF0LfGGZcoiIiCzPdGHOuV+Z2fqjrHIV8HXnnAPuM7MGM2t3zvUtRx4RkXKRy2XIZuNks5Mv+J7LJcnlpsnlZub97tzz151L41wW5zKF71nghdcPX84vz18HB0D+VzdHrr/4++LWOeOM7xCJbFzqt2heXs2N2QkcnHW9p7DsRWVnZteS3/pj7dq1KxJORGQlZDKTzMz0kEoNkE4Pk8nESKeHj3xNTj5SKLLErNJKn9BzmQWOfPn9tZj5MQsA/iOX89/nLs9f9/mqeOFgoBUe115w/fnvx14n/zwrw6uys3mWuXmW4Zy7EbgRYOvWrfOuIyJSjDKZOMlkN8nk04WvZ5iYuJdMZpRMZpRcbnre+/l8Yfz+Gny+Gvz+WkKhVfh84cJX1Qsumx1eFioUVnCe737Mni+qjo5rV+otKBpelV0PsGbW9S6g16MsIiIn5dChL5BK9TMz8xzT0weZmTlIKjVANjv+gvX8/joCgSZCoVVUV59GINBIINBAIFCP319TKLgoPl/Qo1dSvrwqu+3A9WZ2C3A+MK7P60SkmPT23rjgbdlsgqmpp0gmnyKZfIZU6tCR4UWzIFVVXUSjmwkG2wiFVhW+t+LzhVcqvsyxLGVnZt8GXgu0mFkP8PdAEMA590XgTuAKoBuYAv5gOXKIiCyFXC7F1NSTTE09STL5FDMzPYDDLEg4vIGGhtdQVbWGqqq1hEKrMPN7HVnmWK69Md9xjNsdcN1yPLeIyFLI5VIkEruJxx8mHt+FczOYBQiHN9Lc/GYikZcQDq/XkGOJKKkzlYuInIyjDU0COJclHt/F5OSDJBK7cW4Gv7+GurrzqKk5l0hkk8qtRKnsRKTipdPDjI//mvHx/yKbncDvr6Wu7nxqa88lEnmJhiXLgMpORCpWMrmP0dFfEI8/AkA0ehb19RcRjZ6hgiszKjsRqSjOOZLJvcRit5NMPo3PV01j42/S0PBagsEmr+PJMlHZiUjJOtZncHNNTT1NLPYDkslu/P4GWlvfRn39hTokoAKo7ESk7M3M9DE8/H0SiUfx+xtoa9tGXd2rtbNJBVHZiUjZymaTxGI/YmzsHny+EM3NV9HY+Hp8vpDX0WSFqexEpOw455icfIChoe+QzU5SX38Rzc1XEgjUeh1NPKKyE5GyksmMMTDwTRKJxwiHN9DZeT3h8DqvY4nHVHYiUhbyW3P3Mzh4K86laW29hoaGi18w279ULpWdiJS8F27NbWT16ncTCq3yOpYUEZWdiJS0ycmHGRj4hrbm5KhUdiJSknK5FIODtzE2dhfh8AZWr/4Dbc3JglR2IlJUFnOgeDo9Ql/fjUxP76eh4WJaW9+KmX6dycL00yEiJSWR2ENf301Alvb2a6mtfbnXkaQEqOxEpCQ4lyMWu4ORkTsIhTro6Hivhi1l0VR2IlL0crkU/f1fJR5/mLq6C2hr+13NgiLHRWUnIkUtkxnn0KHPMTPzHK2tV9PQ8HrMzOtYUmJUdiJStFKpfnp6/pVsNkFHxx9TU3OO15GkRKnsRKQoJZPPcOjQZzHzs2bNnxEOr/U6kpQwlZ2IFJ1EYje9vV8kEGiks/MDhEKtXkeSEqeyE5FldzwnWY3Hd9LbeyNVVR10dn6AQKBuGZNJpVDZiUjRmJzcQV/fTYTD6+js/AB+f7XXkaRMqOxEpChMTj5IX99NRCIb6ei4Hr8/4nUkKSMqOxHxXDy+k76+rxCJbKSz8wP4fFVeR5Iyo6nBRcRTicTj9PV9mXB4LZ2d71fRybJQ2YmIZ5LJffT2fp5QaHVhiy7sdSQpUyo7EfFEKtXPoUOfKxxe8EH8/qjXkaSMqexEZMVlMuP09HwGM58OL5AVobITkRWVy81w6NBnyWYn6ey8XgeMy4pQ2YnIinEuR3//15iZOUh7+7WEw+u9jiQVQmUnIitmZOQO4vGHaWn5bWpqzvI6jlQQlZ2IrIjJyYeIxW6nru4CGhvf4HUcqTAqOxFZdjMzffT330w4vIG2tnfqfHSy4jSDioickMVO7pzLTdPX9yV8vhDt7e/F5wsuczKRF9OWnYgsG+ccAwPfIpXqZ/Xq9xAMNnodSSqUyk5Els34+K+ZnHyA5uY3E42e7nUcqWAqOxFZFjMzvQwN3UZ19Waami73Oo5UOJWdiCy5XC5Nf/9N+HxhVq/+fcz0q0a8pZ9AEVlyw8PfZ2amh1Wr3kUgUO91HBGVnYgsrUTiCcbG7qK+/rXU1JztdRwRQGUnIksom00yMPB1gsFVtLa+1es4Ikeo7ERkyQwPf5dMZpTVq38fny/kdRyRI5al7MzsMjPba2bdZvbReW5fa2b3mNkjZrbLzK5YjhwisnISiScYH/81jY1vIBI5xes4Ii+w5GVnZn7gc8DlwGbgHWa2ec5qfwPc5px7GbAN+PxS5xCRlZPLTR8ZvmxufrPXcUReZDm27M4Dup1zzzjnUsAtwFVz1nHA4bM11gO9y5BDRFbI8PD2wvDluzV8KUVpOcquEzg463pPYdls/wC808x6gDuB9y/0YGZ2rZntMLMdQ0NDS51VRE7S9PSzjI3dTX39bxCJbPQ6jsi8lqPs5pvO3M25/g7ga865LuAK4Bu2wFGnzrkbnXNbnXNbW1t1RmORYuJcloGBb+L319LS8hav44gsaDnKrgdYM+t6Fy8epnwPcBuAc+5eIAy0LEMWEVlGY2P3MDPzHG1t2/D7I17HEVnQcpTdg8AmM9tgZiHyO6Bsn7POc8AlAGZ2Ovmy0xilSAnJZMYYHt5ONHomNTXneh1H5KiW/Hx2zrmMmV0P/BTwA19xzu0xs48DO5xz24GPAF82sw+RH+L8fefc3KFOEVlhiz1HHcDQ0PeALK2t23QyVil6y3LyVufcneR3PJm97O9mXX4cuHA5nltEll8y2c3k5P00NV1OKKTP0qX4aQYVETkuzuUYHLyFQKBRp+6RkqGyE5HjMj7+f5mZOUhr61vx+aq8jiOyKCo7EVm0bDZJLLadSORUamq2eh1HZNFUdiKyaKOjPyGbnaS19RrtlCIlRWUnIouSTo8wOnoXtbXnEw6v9zqOyHFR2YnIogwP/xBwtLT8ltdRRI6byk5Ejml6+jkmJ++joeH1BINNXscROW4qOxE5puHh7+H319DUdJnXUUROiMpORI5qauoJpqaeoKnpcs1/KSVLZSciC3LOMTz8AwKBRurrX+N1HJETprITkQXF4zuZnj5Ac/Ob8fmCXscROWEqOxGZl3M5YrEfEgqtpq7uAq/jiJwUlZ2IzGty8gFSqT6am6/EzO91HJGTorITkRfJb9XdSSjURU3Ny7yOI3LSVHYi8iKTkw+STg/Q3PxGzPRrQkqffopF5AXyW3V3EAp1UFOzxes4IktCZSciLzA5uaOwVfcmbdVJ2dBPsogc4VyOkZE7C1t1+qxOyofKTkSOiMcfKuyBeYW26qSsBLwOICLLq7f3xkWt9/wemO3U1Lx8mVOJrCz96SYiAMTjj5BK9dLUpK06KT/6iRaRwlbd7YRCq6mt3ep1HJElp7ITEeLxndqqk7Kmn2qRCuecY2TkDoLBVdTWvsLrOCLLQmUnUuGmpvYwM9NDU9Nl2qqTsqWf7P/X3t1HyVXXeR5/f6uqn6urH0OnE6KAgIiAPERERETBFUTJ7Bx3xEXHGV3ZMw5nZtedncXjGY7rHs/Zcc44M7vLqvFhx1EZdHRdcxgUeUhgZAgmDhgIGG1IJEkn6U53VXWnu6vr6bt/1A02TXcSkqq+das+r3PqVN1bv3Q+/Ut3fXKr7oNIk5ucvC9g8PYAABjISURBVI9Eoo9U6vKwo4jUjMpOpInNze1mbu6X9PVdi5mORJLGpbITaWLp9H3EYp309Lw17CgiNaWyE2lS+fxBjhx5kt7etxGLtYcdR6SmVHYiTWpy8n7MEvT2viPsKCI1p7ITaULFYpbp6a2kUleSSKTCjiNScyo7kSaUTj+Ae4m+vneGHUVkRajsRJpMqTRHNvsIyeSltLauCjuOyIpQ2Yk0mWz2YcrlHP3914cdRWTFqOxEmki5XCCdfpDOztfR3v6qsOOIrBiVnUgTmZ5+nFJpir6+d4UdRWRFqexEmoS7k04/QFvbOjo7zws7jsiKUtmJNInZ2Z3k8wfo67sOMws7jsiKUtmJNIl0+kHi8R5dnFWakspOpAnMz+9ndvYZenuv0QmfpSmp7ESaQDr9IGYt9PZeHXYUkVCo7EQaXLE4xfT046RSbyYeT4YdRyQUNSk7M7vezHaZ2YiZ3b7MmN8xs2fMbKeZ3VWLHCJSOYjcvUhf37VhRxEJTdXfvDezOHAn8E5gH7DNzDa5+zMLxpwDfBJ4i7unzey0aucQESiVcmQyD9PVdSGtravDjiMSmlp8Un05MOLuzwOY2d3ABuCZBWM+Btzp7mkAdx+rQQ6RhjU6uvGExmWzj1IqTWurTppeLd7GXAvsXbC8L1i30LnAuWb2qJltNbNlT9JnZrea2XYz2z4+Pl6DuCKN6ehB5K2tp9PRoYPIpbnVouyWOlrVFy0ngHOAa4APAF8xs96lvpi7b3T39e6+ftUqnaFd5ETNzj5LPj9KX9+1Oohcml4tym4fsG7B8unA6BJjfuDuBXffDeyiUn4iUiWVg8hTdHe/MewoIqGrRdltA84xszPNrBW4Gdi0aMz/A94OYGaDVN7WfL4GWUSaUj5/kNnZp+ntvYZYrCXsOCKhq3rZuXsRuA24D3gW+I677zSzz5jZTcGw+4AJM3sG2Az8Z3efqHYWkWaVyWzBLEFPz1vDjiJSF2py3iB3vxe4d9G6OxY8duATwU1EqqhczjE19RjJ5HoSiVTYcUTqgs6gItJgpqYeo1zO0dt7TdhRROqGyk6kgbg7mcwW2trOoKPjzLDjiNQNlZ1IA5md/QX5/EH6+t4edhSRuqKyE2kgmcxm4vFuksnLwo4iUldUdiINolA4zMzMDnp6rtLhBiKLqOxEGkQm8zBg9PTomnUii6nsRBpAuZwnm32UZPJiWlr6w44jUndUdiINYHp6G+XyjA43EFmGyk4k4iqHG2ymtXUNHR3nhh1HpC6p7EQiLpd7nvn5vfT2vl1XNxBZhspOJOIymc3EYh2kUpeHHUWkbqnsRCKsWMwyPf0zUqkricXaw44jUrdUdiIRls0+ApS1Y4rIcajsRCLKvUgm8widnRfQ2npa2HFE6prKTiSipqefoFSa0nkwRU6Ayk4kojKZzbS0rKKz8/ywo4jUPZWdSATlci+Qyz1Hb+81mOnXWOR49FsiEkGZzBbMWkmlrgw7ikgkqOxEIqZQmGB6+qekUlcQj3eGHUckElR2IhFz4MBXcS/ocAORVyARdgARqRgd3XjcMe5lXnjhc3R0nEtb29oVSCXSGLRlJxIhMzNPUSxO0Nurww1EXgmVnUiEZDKbSST6SCbfEHYUkUhR2YlExPz8AWZnn6Wn52rM4mHHEYkUlZ1IRGSzWzBL0NNzVdhRRCJHZScSAaXSHNnsYyST60kkUmHHEYkclZ1IBExNbcV9XufBFDlJKjuROufuZDKbaW8/g/b2M8KOIxJJKjuROjc7+yyFwiEdbiByClR2InUuk9lCPN5NMnlZ2FFEIktlJ1LHCoXDzMzsoKfnKmKxlrDjiESWyk6kjmUyDwNGT8/bwo4iEmkqO5E6VS7nyWZ/QjJ5MS0tfWHHEYk0lZ1InZqe3ka5PKsdU0SqQGUnUoeOHm7Q2rqGjo5zwo4jEnkqO5E6lMs9x/z8Xnp7346ZhR1HJPJUdiJ1KJPZQizWQSr1prCjiDQElZ1InSkU0kxP/4xU6kpisbaw44g0BJWdSJ3JZh8BXDumiFSRyk6kjpTLBbLZf6Kr6yJaW1eFHUekYajsROrI9PQ2SqVp+vreEXYUkYaishOpE5XDDR4KDjd4bdhxRBqKyk6kTszNjehwA5EaqUnZmdn1ZrbLzEbM7PZjjHufmbmZra9FDpEoyWQeIhbrJJW6IuwoIg2n6mVnZnHgTuAG4HzgA2Z2/hLjuoE/Ah6vdgaRqMnlXuDIkSeCqxu0hh1HpOHUYsvucmDE3Z939zxwN7BhiXH/DfgckKtBBpFI2b//TgAdbiBSI7Uou7XA3gXL+4J1LzKzS4B17n7P8b6Ymd1qZtvNbPv4+Hh1k4rUgVJplgMHvkwyeQktLf1hxxFpSLUou6U+WfcXnzSLAX8F/KcT+WLuvtHd17v7+lWrdNyRNJ5Dh75FsZjWVp1IDdWi7PYB6xYsnw6MLljuBi4AtpjZHuAKYJN2UpFm5O7s2/c3JJMX6+oGIjWUqMHX3AacY2ZnAvuBm4F/e/RJd88Cg0eXzWwL8Cfuvr0GWURCNTq68ZjPz87+gtnZnQwN/a4ONxCpoapv2bl7EbgNuA94FviOu+80s8+Y2U3V/vtEoiydfoB4vJvu7svDjiLS0GqxZYe73wvcu2jdHcuMvaYWGUTq3fz8AWZmnmJg4D3EYi1hxxFpaDqDikhI0ukHMGuhp+easKOINDyVnUgIisUppqe3kkq9mUSiO+w4Ig1PZScSgkxmC+5F+vquDTuKSFNQ2YmssHI5Tyazha6uN9DaujrsOCJNQWUnssKmph6jXJ6hr++6sKOINA2VncgKci+TTj9AW9urdRC5yApS2YmsoJmZHRQKY/T3v1MHkYusIJWdyApKp+8nkRggmbw07CgiTUVlJ7JC5uZ2Mzc3Ql/fO6hc9lFEVorKTmSFpNP3E4t10NNzVdhRRJqOyk5kBeTz4xw58i/09LyVWKw97DgiTUdlJ7IC0un7MIvrIHKRkKjsRGqsUEgzNfUYqdSVJBK9YccRaUoqO5EaS6fvx71Mf/+7wo4i0rRUdiI1VCodIZv9J7q7L6elZfD4f0BEakJlJ1JD6fSDuOe1VScSMpWdSI0Ui1kymc0kk5fQ1rYm7DgiTU1lJ1Ij+/d/gXJ5jv7+G8KOItL0VHYiNVAqzbJv3+fp7Dyf9vZXhx1HpOklwg4gEjWjoxuPOyadfohCYZyhoQ+vQCIROR5t2YlUmXuRdPrHdHScTWenLuMjUg9UdiJVNjW1lWIxrc/qROqIyk6kityLTE7+kLa2V9HZ+fqw44hIQGUnUkXZ7KMUCocZHNygi7OK1BGVnUiVlMt5Jibupb39NdqqE6kzKjuRKslmH6FUymirTqQOqexEqqBczjE5+SM6O8+js/O1YccRkUVUdiJVkE4/RKk0zcDAhrCjiMgSVHYip6hUmiWdvp+urgvp6Dgr7DgisgSVncgpSqfvp1ye1VadSB1T2YmcgmJxmnT6QZLJy2hvXxd2HBFZhspO5BSk0/fhnmdg4L1hRxGRY1DZiZykYjFDJrOF7u430dY2HHYcETkGlZ3ISTp8eBPuZQYG3hN2FBE5DpWdyEmYn9/H1NQ/09t7Da2tq8KOIyLHobITOQnj498jFutgYODGsKOIyAlQ2Ym8QjMzO5mdfYaBgRuJx7vCjiMiJ0BlJ/IKuJcYH/8eLS2D9PS8Lew4InKCVHYir8Do6JfJ5/czOPjbxGItYccRkROkshM5QYXCJLt3f4qOjteSTF4adhwReQVUdiInaPfuOygWM5x22vt1CR+RiFHZiZyAI0d2MDr6Bdau/ThtbWvDjiMir1Ai7AAiYRsd3XjM592dffv+klisg/Z2XdVAJIpqsmVnZteb2S4zGzGz25d4/hNm9oyZ7TCzB83s1bXIIVINU1NbmZv7FYODv6VDDUQiquplZ2Zx4E7gBuB84ANmdv6iYU8A6939IuC7wOeqnUOkGkqlIxw+/F3a28+ip+eqsOOIyEmqxZbd5cCIuz/v7nngbuAlF/py983uPhssbgVOr0EOkVM2Pv59SqVZhoZuwUwfcYtEVS1+e9cCexcs7wvWLeejwA+Xe9LMbjWz7Wa2fXx8vEoRRY5vbm6Eqamf0Nd3HW1t+v+YSJTVouyW2ifblxxo9kFgPfAXy30xd9/o7uvdff2qVTrhrqyMcrnAoUPfIJHo11UNRBpALcpuH7Dwks2nA6OLB5nZdcCngJvcfb4GOURO2uTkPeTzBxka+iCxWFvYcUTkFNWi7LYB55jZmWbWCtwMbFo4wMwuAb5EpejGapBB5KTlcr9mcvLHpFJX0tX1+rDjiEgVVL3s3L0I3AbcBzwLfMfdd5rZZ8zspmDYXwBJ4B/M7Ekz27TMlxNZUe5FDh78OvF4N6tWvS/sOCJSJTU5qNzd7wXuXbTujgWPr6vF3ytyqiYm/pF8fj9r1nxcx9SJNBDtSy0SmJt7jsnJH5JKvZlk8g1hxxGRKlLZiQDlco6DB79GItHPqlXvDzuOiFSZyk4EGBv7NoXCBMPDHyEe7wg7johUmcpOmt709Dampv6Z/v7r6eg4O+w4IlIDKjtparOzv+TgwW/Q3n4WAwPvDTuOiNSIyk6aVqk0x86d/wazBMPDH6NyDnMRaUQqO2laIyN/zMzMDoaHP0JLS3/YcUSkhnTxVmlIx7sgaybzCGNj36Kv73q6ui5YoVQiEhZt2UnTmZsbYWzsbjo7X8/g4Ibj/wERiTyVnTSVQmGS0dEv0tIywPDwv9M16kSahH7TpWmUyzlGR/837gXWrv1D4vHOsCOJyApR2UlTcC8xOvol5uf3Mzz8MVpbV4cdSURWkMpOGp67c+jQN5mdfYahoVu0Q4pIE1LZScObmNgUnCHlRnp6rgo7joiEQGUnDW1y8kdMTt5LKvUWnSFFpImp7KRhpdMPcfjw9+nufiNDQx/EzMKOJCIhUdlJQ8pkHmZ8/Nt0dV3M6tW/r0MMRJqcXgGk4ezd+3nGxu6iq+vC4Fg6nfNSpNnpdGHSMNydX//6s+zZ82ckk5cxPPwRzPQjLiIqO2kQ7iVGRv4j+/f/T4aGPkQq9WZt0YnIi1R2EhnLndy5XM5z8OBXOXLkSfr6riOVulKf0YnIS6jsJNKKxSyjo18kl9vNqlW/Q1/ftWFHEpE6pLKTyMrl9jA6+gVKpVmGh2+lu/vSsCOJSJ1S2UkkTU1t5dChbxKPp1i37k9pb18XdiQRqWMqO4mUcjnP2NjdTE09SkfHuQwP30oi0R12LBGpcyo7iYz5+QMcOLCRfH6U/v4bGBh4r/a4FJETorKTuudeZv/+O3nhhc8Si7Wxdu0f0dX1+rBjiUiEqOykruVye9m166Ok0/fT1XUhQ0MfIpHoCTuWiESMyk5Ctdyxc+5lMpmHOXz4+4Bz2mm30NPzVp3MWUROispO6s78/F4OHfp7crnn6Ow8n6GhW2hpGQw7lohEmMpO6kapNMvExA/IZB4mFutk9erfo7v7Cm3NicgpU9lJ6MrlAtnsw0xM3Eu5PEtPz9UMDm4gHu8KO5qINAiVnYSmXC6Szf6EiYl7KBbTdHa+jsHB36a9/VVhRxORBqOykxXnXmZ8/Hvs3v1nzM3tor39DFav/j06O88LO5qINCiVnayYUinH2Nhd7N37eWZnd9LZeT5r1vwBXV1v0OdyIlJTKjupusWHExSL02Szj5DJbKZUmqa19XRWr/59ursv16V4RGRFqOykJtydXG4PU1OPMjW1FfcCnZ0X0N9/HR0d52lLTkRWlMpOqiqX28fk5I+YmnqMfP4gZi2kUm+it/da2trWhB1PRJqUyk5OWT4/zsTEPzI2dhfp9AOA097+GoaGPkQyeRnxeEfYEUWkyans5IQs/BzO3cnnDzAzs4MjR3aQyz0POIlEP/397yaVuoLW1tPCCysisojKTo6rUm6HmJsbYW7uOebmdlEoHAagre1V9PffSDJ5EW1t67TDiYjUJZWdvESl2EY5cuQpZmaeYmpqK9nsTygUxgCIxbro6Dibvr530dV1IS0tfSEnFhE5PpVdE3J3isU0udyeF29zc79iZuZpZmaepljMvDi2vf0s+vuvx71MR8fZtLYOaetNRCKnJmVnZtcDfwPEga+4+39f9Hwb8HfAZcAE8H5331OLLM2iXJ6nUEhTLGaCW5pC4TD5/CHy+YMUCpX7fP4gudyvKZWmX/LnY7FO2trW0NV1EW1ta2ltXUNb2xri8WRI35GISPVUvezMLA7cCbwT2AdsM7NN7v7MgmEfBdLufraZ3Qz8OfD+amepNncH/OjSguWXr3MvUC7ncS8c43Gecrmw4HGecnmWUmk2uJ8JHs8sua5YzFIsVgquXM4tm9ushXg8RSKRIh5P0d39RlpaBkgkBmhpqdxisU4d+yYiDasWW3aXAyPu/jyAmd0NbAAWlt0G4NPB4+8C/8vMzCtNUTOjo19iZOQTwdLRUlq+sBauC4tZArNWYrHW4L7txeVYrIP29gHi8Q5isU7i8c4F9x3E40ni8RSxWLuKTESaWi3Kbi2wd8HyPuBNy41x96KZZYEB4PDiL2ZmtwK3BotHzGzXK8wzuNTXjYhBKB6GIjAbdpaTEfG5j2x2iHb+KGeHSOT/98s9EYHsL/PqExlUi7JbahNi8abRiYyprHTfCGxc6rkTCmO23d3Xn+yfD1OUs0O080c5O0Q7f5SzQ7TzRzn78dRit7p9wLoFy6cDo8uNMbME0ANM1iCLiIhITcpuG3COmZ1pZq3AzcCmRWM2AR8OHr8PeKjWn9eJiEjzqvrbmMFncLcB91E59OBr7r7TzD4DbHf3TcBXgW+Y2QiVLbqbq51jgZN+C7QORDk7RDt/lLNDtPNHOTtEO3+Usx+TaYNKREQanU6FISIiDU9lJyIiDS/SZWdmXzOzMTN7esG6T5vZfjN7Mri9e8FznzSzETPbZWbvCif1b5jZOjPbbGbPmtlOM/vjYH2/md1vZr8K7vuC9WZm/yP4HnaY2aV1mD0S829m7Wb2UzP7eZD/vwbrzzSzx4O5/3awkxVm1hYsjwTPn1GH2f/WzHYvmPuLg/V183NzlJnFzewJM7snWK77eV9oifyRmHsz22NmTwUZtwfr6v71pircPbI34GrgUuDpBes+DfzJEmPPB34OtAFnAs8B8ZDzDwOXBo+7gV8GOT8H3B6svx348+Dxu4EfUjlO8Qrg8TrMHon5D+YwGTxuAR4P5vQ7wM3B+i8CfxA8/jjwxeDxzcC36zD73wLvW2J83fzcLMj0CeAu4J5gue7n/Tj5IzH3wB5gcNG6un+9qcYt0lt27v4IJ3583gbgbnefd/fdwAiVU5uFxt0PuPu/BI+ngWepnF1mA/D1YNjXgd8KHm8A/s4rtgK9Zja8wrGBY2ZfTl3NfzCHR4LFluDmwDuonMIOXj73R/9NvgtcaxbOOdiOkX05dfNzA2BmpwM3Al8Jlo0IzPtRi/MfR13N/TLq/vWmGiJddsdwW7DZ/bWjm+QsfRqzY704r6jg7ZlLqPwvfcjdD0ClVICjl/2uy+9hUXaIyPwHb0U9CYwB91PZ2sy4ezEYsjDjS05xBxw9xV0oFmd396Nz/9lg7v/KKlcXgfqb+78G/hQoB8sDRGTeA4vzHxWFuXfgx2b2M6ucihEi9npzshqx7L4AvAa4GDgA/GWw/oRPUbbSzCwJfA/4D+4+dayhS6wL9XtYIntk5t/dS+5+MZWz/FwOvG6pYcF9XeVfnN3MLgA+CZwHvBHoB/5LMLxuspvZe4Axd//ZwtVLDK3LeV8mP0Rg7gNvcfdLgRuAPzSzq48xtt6yn5KGKzt3PxS8EJSBL/Obt8pO5DRmK87MWqiUxbfc/f8Gqw8dfbsguB8L1tfV97BU9qjNP4C7Z4AtVD6X6LXKKezgpRnr8hR3C7JfH7y17O4+D/wf6nPu3wLcZGZ7gLupvH3510Rn3l+W38y+GZG5x91Hg/sx4PtUckbi9eZUNVzZLXpP+V8DR/fU3ATcHOzddSZwDvDTlc63UPDZw1eBZ9398wueWng6tQ8DP1iw/neDvaSuALJH335Yactlj8r8m9kqM+sNHncA11H53HEzlVPYwcvnvi5OcbdM9l8seMEyKp+7LJz7uvi5cfdPuvvp7n4GlR1OHnL3W4jAvMOy+T8Yhbk3sy4z6z76GPhXQc66f72pipXcG6baN+DvqbxVVqDyv5CPAt8AngJ2UPnHGl4w/lNUPpfZBdxQB/mvovK2wA7gyeD2biqfSTwI/Cq47w/GG5UL4z4XfI/r6zB7JOYfuAh4Isj5NHBHsP4sKiU8AvwD0Basbw+WR4Lnz6rD7A8Fc/808E1+s8dm3fzcLPo+ruE3ezPW/bwfJ3/dz30wxz8PbjuBTwXr6/71pho3nS5MREQaXsO9jSkiIrKYyk5ERBqeyk5ERBqeyk5ERBqeyk5ERBqeyk5ERBqeyk5ERBre/wdGbJmE9qSHCgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
    " ] }, "metadata": {}, @@ -737,9 +859,26 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAJ4CAYAAAD8/U2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8lfWd/v/XOwsJgQQICUsIECBhR1YBF6hKFRCU1mrF1qV2sc641c5Mq9/217FOnUedLnZaaxW1xaoVFXREioJ1AQRlCWsgLGEJW4BA2MKS9fP7IwcaY5AAOfmc5Xq255Fz7nOfc67cJrm4t89tzjlEREQiWYzvACIiIsGmshMRkYinshMRkYinshMRkYinshMRkYinshMRkYinshMRkYinshMRkYinshMRkYgX5zvAuUhLS3NZWVm+Y4iISIjIzc3d75xLP9t8YVV2WVlZLFu2zHcMEREJEWZW2JD5tBlTREQinspOREQinspOREQinspOREQinspOREQinspOREQinspOREQinspOREQinspOREQinspOREQinspOREQiXliNjSkijW9K7pR6p9819K4mTiISPFqzExGRiKeyExGRiKeyExGRiKeyExGRiKeyExGRiKeyExGRiKeyExGRiKfz7EQiWHlVOVNXTuU3i35DlavCzGiV0Iprc64lMyXTdzyRJqOyE4kgp04Qd86xYPsCZm+azcGTB8lIziAlIQXnHPn781letJyRmSOZ1GsSbZq38ZxaJPhUdiIRptpVMy1vGvMK59GjTQ9uu+g2+qb3xcwAOFZ+jHcK3uHDbR+ytngtP7r0R6S3SPecWiS4tM9OJIJUu2peXP0i8wrncU33a/iPS/+Dfu36nS46gBbNWnBj3xv5f5f/P6qqq/jd4t9x6OQhj6lFgk9rdiJhqL7xLJ1zvLDqBT7d+SkTcyYysefEz5RcXZ1SOnH/iPv57Se/5Xef/o5/v/TfadmsZTBji3ijNTuRCLFo56LTRXddr+u+sOhOyWqdxT0X30Px8WKeW/4czrkmSCrS9FR2IhGg+Fgxr+a9Ss+2PZnQc8I5vbZXWi++3u/r5O/P56PCj4ITUMQzlZ1ImKt21fxl5V8wM7418FvE2Ln/Wo/uMpp+6f2YsW4Ge0v3BiGliF8qO5EwN3fzXDYf3Mwt/W+hbVLb83oPM+P2gbfTLLYZf175Z6qqqxo5pYhfKjuRMHa07CizN81mYPuBjOg04oLeq3Via74x4BtsO7SN97a810gJRUKDyk4kjL1T8A7lVeV8tfdXG3RAytkMyxjGoA6DmLVxFlsObmmEhCKhQWUnEqZKTpQwr3Ael3S+hI7JHRvtfSf3m0yMxfCvf/9XHZ0pEUNlJxKmZm2cBcB1Pa9r1Pdt07wNX+n9FeZsnsNra19r1PcW8UVlJxKG9pTuYdGORYzuOprU5qmN/v5XZF3BsIxhPPDuAxpdRSKCyk4kDM3dPJf42HjGZ48PyvvHWAxTJk6h+HgxD//j4aB8hkhTalDZmdk4M9tgZgVm9lA9zyeY2auB5xebWVat5x4OTN9gZmNrTX/QzNaaWZ6ZvWJmiY3xDYlEuuJjxSzetZhLMi8hJSElaJ8zuONgfjDiBzyd+zSLdiwK2ueINIWzlp2ZxQJ/BMYDfYFbzKxvndm+Axx0zmUDTwCPB17bF5gM9APGAU+ZWayZdQLuB4Y55/oDsYH5ROQsnl3+LJXVlVyRdUXQP+vnV/6czimd+f6s71NRVRH0zxMJloYMBD0cKHDObQEws2nAJGBdrXkmAY8E7k8HnrSa46AnAdOcc2XAVjMrCLzf9sBnNzezCiAJ2H3h345IZKuoquCppU/RJ60PGckZQf+8ls1a8sdr/8j1067nN5/8hocuf6jeQahPuWvoXUHPJHI+GrIZsxOwo9bjnYFp9c7jnKsEDgNtz/Ra59wu4NfUlF4RcNg5N7e+Dzezu8xsmZktKy4ubkBckcj15vo32XV0F1d1u6rJPvO6XtdxQ58b+Pm8n1NQUtBknyvSmBpSdvWdqVr35JszzVPvdDNrQ81aXzcgA2hhZrfW9+HOuSnOuWHOuWHp6brApES33y/+PT3a9KB/u/5N+rl/GP8HEmIT+N7b39O5dxKWGlJ2O4HOtR5n8vlNjqfnMbM4oBVQ8gWv/TKw1TlX7JyrAN4ALj2fb0AkWqwoWsHCHQu5b/h95zXY84XISM7gV1f/io+2fcTH2z9u0s8WaQwN2We3FMgxs27ALmoOJPlGnXlmAncAnwA3Ah8455yZzQT+Zma/pWYNLgdYAlQDI80sCTgBjAGWNcL3IxJRau8fm5Y3jbiYONznNqw0je8O+S6v5L3C9Pzp9G/XnzbN23jJIXI+zvrPw8A+uHuBOUA+8Jpzbq2ZPWpm1wdmex5oGzgA5YfAQ4HXrgVeo+ZglneBe5xzVc65xdQcyLIcWBPIcea93iJRrrK6kiW7ljCw/UCS4pO8ZDAzplw3harqKl7Je0WbMyWsNGTNDufcbGB2nWk/q3X/JHDTGV77GPBYPdP/E/jPcwkrEq3y9uVxrOIYl2Re4jVHdmo21/e6nhn5M1hetJyhGUO95hFpKI2gIhIGPtn5CSkJKfRNr3uKa9Mb020MXVp14ZW8VygtL/UdR6RBVHYiIa60vJQ1e9cwvNNwYmNifcchNiaW2wfezrGKY0xfN913HJEGUdmJhLilu5dS5aoYmTnSd5TTOqd0ZmyPsXyy8xPW7lvrO47IWansRELcpzs+JTMlk84pnc8+cxOakDOB9i3a80reKxpKTEKeyk4khO0t3cu2w9sY2Sl01upOiY+N55b+t1B8vJi5W+odAEkkZKjsRELYij0rAEL2qMc+6X0Y0nEI72x6h/3H9/uOI3JGKjuREJZblEu31t2CcoHWxnJT35swM15f+7rvKCJnpLITCVFbDm5h++HtDOk4xHeUL5TaPJUJORNYuXclczdrc6aEJpWdSIiasW4GQMiXHcCXu3+ZtKQ0fvTej6h21b7jiHxOg0ZQEZGmNz1/Ol1adSEtKc3L53/RdevqiouJY1KvSTy/4nleWfMK37zom0FMJnLutGYnEoIKDxWyZNcShnYMzQNT6jMsYxiDOgzipx/+lLLKMt9xRD5Da3YiIeiN/DcAGNxhsOckDRdjMfxyzC8Z9/I4nsl9hvtH3H/6uTOtJerK5tJUtGYnEoKm509nYPuBtG/Z3neUc3JNj2u4qttV/Nf8/+Jo2VHfcUROU9mJhJh9x/bxyY5P+Grvr/qOcs7MjP++6r/Zf3w/zy5/1ncckdNUdiIhZvam2Tgc1/W6zneU8zIicwRXZF3BE58+QXlVue84IoDKTiTkzNo4i4zkjLDaX1fXjy79ETuP7GRa3jTfUUQAlZ1ISCmrLGPO5jlMzJmImfmOc97GZY+jf7v+/M/C/9EVzSUkqOxEQsj8wvmUlpeG7SbMU8yMH136I9YWr+Wdgnd8xxFR2YmEkrc3vk1iXCJXdbvKd5QLNrn/ZDqndObxhY/7jiKishMJFc45Zm2cxZe7f5mk+CTfcS5YfGw89w2/j/mF8yk6WuQ7jkQ5lZ1IiFhXvI6th7YyMWei7yiN5vaBtxNrsSzasch3FIlyKjuREDFr4ywAJvaMnLJr37I9E3tO5NNdn1JVXeU7jkQxDRcm4tmpobSeW/EcnVM68/dNf/ecqHHdOehO3trwFnnFeQxsP9B3HIlSKjuREHCi4gRbDm7hmh7X+I5yQeobA7OquorkZsks2rFIZSfeaDOmSAjYcGAD1a6afun9fEdpdLExsYzMHMnqvas1XqZ4o7ITCQFri9eSEJtA9zbdfUcJiks7X0q1q2bxrsW+o0iUUtmJeOacY13xOnqn9SYuJjL3LGQkZ5DVKktlJ96o7EQ823dsH/uP76dvel/fUYJqSMchbD+8nZITJb6jSBRS2Yl4tq54HUBE7q+rbVCHQQCs2rPKcxKJRio7Ec/WFq8lPSmd9BbpvqMEVfuW7enQsgMr9670HUWikMpOxKPyqnI2HtgY8ZswTxnUfhAbD2zkWPkx31EkyqjsRDxauH0hZVVlEb8J85SBHQZS7arJ25fnO4pEGZWdiEfvFrxLjMXQK62X7yhNIqt1FikJKazaq/120rRUdiIezdk8h+w22STGJfqO0iRiLIaB7QeSty+PiqoK33EkiqjsRDzZU7qHVXtX0bdddOyvO2Vg+4GUVZWxfv9631EkiqjsRDyZu3kuEPmnHNTVO603CbEJrNm3xncUiSIqOxFP5myeQ3pSOpkpmb6jNKn42Hh6tu1J/v5831EkiqjsRDyodtXM3TyXsdljibHo+zXsndabfcf2sf3wdt9RJEpE32+ZSAhYUbSC/cf3M7bHWN9RvOiT1geA97e87zmJRAuVnYgHczbPAQj769edr4zkDJKbJfP+VpWdNA2VnYgHczbPYXCHwbRr0c53FC/MjN5pvXl/6/s453zHkSigshNpYkfKjrBox6Ko3YR5Sp+0Puwp3XN6IGyRYFLZiTSxD7d+SGV1JWOzo7zs0mv22/1jyz88J5FooLITaWJzNs+hZbOWXNr5Ut9RvEptnkp2ajb/2Kqyk+CLzMsii4SgKblTcM7x+rrX6d6mO1NXTvUdybsvd/syL695mYqqCuJj433HkQimNTuRJhQtVyVvqC93/zJHy4+ydPdS31EkwqnsRJpQtFyVvKGuyLoCgHnb5vkNIhFPZSfShNYWryUtKS1qTzmoq21SW/ql92P+9vm+o0iEU9mJNJHK6ko2Htiotbo6RnUZxaIdi6iqrvIdRSJYg8rOzMaZ2QYzKzCzh+p5PsHMXg08v9jMsmo993Bg+gYzG1tremszm25m680s38wuaYxvSCRUbS7ZTFlVmfbX1TGq6yiOlB1h9d7VvqNIBDtr2ZlZLPBHYDzQF7jFzOr+tn4HOOicywaeAB4PvLYvMBnoB4wDngq8H8D/Au8653oDAwENgS4RbW3xWmIsht5pvX1HCSmjuowCYMH2BZ6TSCRryJrdcKDAObfFOVcOTAMm1ZlnEvBC4P50YIyZWWD6NOdcmXNuK1AADDezFGA08DyAc67cOXfowr8dkdC1rnhdVF2VvKE6t+pM11ZdVXYSVA0pu07AjlqPdwam1TuPc64SOAy0/YLXdgeKgb+Y2Qoze87MWtT34WZ2l5ktM7NlxcXFDYgrEnr2lO5hx5EdUXdV8oYa3XU08wvna5xMCZqGlJ3VM63uT+SZ5jnT9DhgCPAn59xg4BjwuX2BAM65Kc65Yc65Yenp6Q2IKxJ6Zm+aDcCAdgM8JwlNo7qMYt+xfWwq2eQ7ikSohpTdTqBzrceZwO4zzWNmcUAroOQLXrsT2OmcWxyYPp2a8hOJSLM2zqJNYhs6JdfdKCJQc5AKwIJCbcqU4GhI2S0Fcsysm5k1o+aAk5l15pkJ3BG4fyPwgavZHjETmBw4WrMbkAMscc7tAXaYWa/Aa8YAGvpcIlJZZRlzN89lQPsB1OzKlrp6te1FelK69ttJ0Jx1bEznXKWZ3QvMAWKBPzvn1prZo8Ay59xMag40edHMCqhZo5sceO1aM3uNmiKrBO5xzp06meY+4OVAgW4B7mzk700kJMwvnM+ximNc1O4i31FClplxeZfLmV+ok8slOBo0ELRzbjYwu860n9W6fxK46QyvfQx4rJ7pK4Fh5xJWJBzN2jiLxLhEeqX1OvvMUWZK7pTT9+Ni4th6aCuPf/w4P778xx5TSSTSCCoiQeScY9amWYzpNoZmsc18xwlpOak5ABSUFHhOIpFIZScSRBsObGDLwS1M7DnRd5SQl5mSSUJsgo7IlKBQ2YkE0ayNswC4Nudaz0lCX2xMLD1Se2jNToJCZScSRLM2zuKi9hfRpVUX31HCQnZqNruO7qLkRInvKBJhVHYiQVJ8rJgF2xdwXc/rfEcJG6f22y3cvtBzEok0KjuRIHlrw1tUu2q+1udrvqOEjW6tuxEXE6fz7aTRqexEgmRG/gy6te7GoA6DfEcJG/Gx8RoUWoJCZScSBIdOHuL9Le/ztT5f06gp5ygnNYdlu5dxvOK47ygSQVR2IkEwa+MsKqor+FpfbcI8Vzltc6isruTTnZ/6jiIRRGUnEgQz8mfQKbkTwzsN9x0l7PRo0wPDNCi0NKoGDRcmIg33+8W/5+8b/85lXS7jueXP+Y4TdprHN2dgh4HabyeNSmt2Io1s7b61VFRXMKSDrlp1vkZ1GcUnOz+hoqrCdxSJECo7kUaWW5RLcrNkctrm+I4StkZ1GcXxiuMsL1ruO4pECJWdSCM6UnaE1XtXM7TjUGJMv17n6/TFXLUpUxqJfhtFGtEb+W9QUV3BiMwRvqOEtQ4tO5CTmqOyk0ajshNpRC+tfon0pHS6te7mO0rYG9VlFB9v/5hqV+07ikQAlZ1II9l9dDcfbP2A4Z2G60TyRjCq6yhKTpSQX5zvO4pEAJWdSCN5Zc0rOBwjOmkTZmMY1aVmv938wvmek0gkUNmJNJKX1rzE8E7Dad+yve8oEaF7m+5kJGdov500CpWdSCNYu28tK/es5JsDvuk7SsQwM0Z1GcWC7QtwzvmOI2FOZSfSCF5e8zKxFsvN/W72HSWijOoyip1HdlJ4uNB3FAlzGi5M5AJVu2peXvMy1/S4RpswG8mU3CkA7D22F4BH5z3KyMyRANw19C5vuSR8ac1O5AJ9vP1jth/erk2YQZCRnEFSfBKbDmzyHUXCnMpO5AK9tPolWsS34Cu9v+I7SsSJsRiyU7PZeGCj7ygS5rQZU+Q8nNrMVlFVwctrXmZAuwG8vOZlz6kiU6+2vVi9dzUlJ0pIbZ7qO46EKa3ZiVyAvH15HK84rnPrgqhPWh8A8vfr5HI5fyo7kQuweNdikpsl0zutt+8oESsjOYPkZsms37/edxQJYyo7kfN0vOI4a/at4eJOFxMbE+s7TsQyM3qn9WbD/g06307Om8pO5Dyt2LOCyupKhmcM9x0l4vVO683hssPsKd3jO4qEKZWdyHnK3Z1L2+ZtyWqd5TtKxDu1mVibMuV8qexEzkNpeSn5+/MZmjFUVzhoAmlJaaQlpans5Lyp7ETOw8o9K6l21QzrOMx3lKjRu21vNpZspKq6yncUCUMqO5HzkFuUS1pSGl1adfEdJWr0TuvN8YrjLC9a7juKhCGVncg5OnD8AOv3r2dYx2HahNmEeqX1AuD9re97TiLhSGUnco7eXP8m1a6aoRlDfUeJKikJKWSmZDJn8xzfUSQMqexEztFra1+jXVI7Oqd09h0l6vRL78fH2z/mSNkR31EkzKjsRM5ByYkSPtj6AUMyhmgTpgf92/WnsrqSD7Z+4DuKhBkNBC3yBU4N+HzK0l1LqXJVDGw/0FOi6Na9TXeSmyXzbsG7usqEnBOt2Ymcg7x9ebSIb6ETyT2Ji4ljTPcxvFPwjoYOk3OishNpoGpXzdritfRr148Y06+OL+Ozx7P98HadYC7nRL+xIg20/fB2jpYfZUC7Ab6jRLWxPcYC8E7BO56TSDhR2Yk00Jp9azCMvul9fUeJal1bd6VPWh/eLXjXdxQJIyo7kQbK25dHtzbdaNmspe8oUW989njmFc7jWPkx31EkTKjsRBrgSNkRCg8V0r9df99RBBiXPY7yqnI+3Pah7ygSJlR2Ig2wrngdDqf9dSFidNfRtGzWkrc3vO07ioQJlZ1IA+Ttyzs9XJX4lxCXwLjscby98W2qXbXvOBIGVHYiZ+GcI39/Pn3T++qUgxByfc/rKSotInd3ru8oEgb0mytyFntK91BaXkrP1J6+o0gtE3pOINZieWvDW76jSBjQcGEiZ7GpZBMAOW1zPCcR+OwQbj3a9GDqyql0adWFu4be5TGVhLoGrdmZ2Tgz22BmBWb2UD3PJ5jZq4HnF5tZVq3nHg5M32BmY+u8LtbMVpjZrAv9RkSCZdOBTbRKaEV6UrrvKFLHRR0uYtfRXew/vt93FAlxZy07M4sF/giMB/oCt5hZ3bNqvwMcdM5lA08Ajwde2xeYDPQDxgFPBd7vlAeA/Av9JkSCxTnHxpKN5LTN0VUOQtCpAblX713tOYmEuoas2Q0HCpxzW5xz5cA0YFKdeSYBLwTuTwfGWM1fhknANOdcmXNuK1AQeD/MLBOYADx34d+GSHAcOHGAQycPkZOqTZihqF2LdnRs2ZGVe1b6jiIhriFl1wnYUevxzsC0eudxzlUCh4G2Z3nt74AfAV943LCZ3WVmy8xsWXFxcQPiijSeTQcC++tUdiFrYPuBbCrZxMETB31HkRDWkLKrb9tN3WtrnGmeeqeb2URgn3PurMcMO+emOOeGOeeGpadrn4k0rU0lm2gR34KOyR19R5EzuKjDRVS7ao2VKV+oIWW3E+hc63EmsPtM85hZHNAKKPmC114GXG9m26jZLHqVmb10HvlFgmpTySayU7N1fl0I69a6G8nNkpm5cabvKBLCGvIbvBTIMbNuZtaMmgNO6v5UzQTuCNy/EfjA1VxZcSYwOXC0ZjcgB1jinHvYOZfpnMsKvN8HzrlbG+H7EWk0RUeL2HdsnzZhhrgYi+Gi9hfxzqZ3KK8q9x1HQtRZyy6wD+5eYA41R06+5pxba2aPmtn1gdmeB9qaWQHwQ+ChwGvXAq8B64B3gXucc1WN/22INL4F2xcAOr8uHAxsP5DDZYeZXzjfdxQJUQ06qdw5NxuYXWfaz2rdPwncdIbXPgY89gXv/RHwUUNyiDSl+YXzSYhNoHNK57PPLF71Se9D87jmzNwwky93/7LvOBKCtCNC5AzmF86nR2oPYmNizz6zeNUsthlX97iamRtmUrMHReSzVHYi9Sg5UcKafWu0vy6MXN/zegoPF7Jm3xrfUSQEqexE6vHx9o8BnV8XTib2nIhhvLVeA0PL52kgaJF6LChcQEJsAlmts3xHkQZ6a8NbZLXO4rkVz9G+ZfvT0zVAtIDW7ETqNX/7fEZkjiA+Nt53FDkHgzoMYvvh7ZScKPEdRUKMyk6kjtLyUnJ35zK6y2jfUeQcDe4wGEBjZcrnqOxE6vhkxydUuSpGdR3lO4qco/Yt25ORnMHyouW+o0iIUdmJ1DG/cD6xFsslmZf4jiLnYUiHIRSUFHCk7IjvKBJCVHYidczfPp8hHYeQnJDsO4qch8EdB+NwrNqzyncUCSEqO5FaTlaeZPHOxYzuqv114apTcifSk9JZvkebMuWfVHYitSzdtZSyqjKVXRgzMwZ3GMz6/es5XnHcdxwJESo7kVpODf58eZfLPSeRCzGk4xCqXTWr9672HUVChMpOpJb5hfMZ0G4Aqc1TfUeRC9C1dVdaJ7ZmxZ4VvqNIiFDZiQRUVleycMdCbcKMADEWw6AOg1i7by3Hyo/5jiMhQMOFiQBTcqew7dA2SstLKa8qZ0ruFN+R5AIN6TCEj7Z9xLsF7/K1vl/zHUc805qdSMCmkk2ABn+OFNmp2bRs1pI31r/hO4qEAJWdSMCmA5tol9SOVomtfEeRRhAbE8vA9gOZtXEWZZVlvuOIZyo7EaDaVVNQUkBOW63VRZIhHYdwpOwI729933cU8UxlJwIUHS3iWMUxbcKMML3a9iIlIYU38rUpM9qp7ESAgpICAK3ZRZj42Hgm9pzI/63/PyqrK33HEY9UdiLUHJzSJrENbZu39R1FGtnX+nyNAycOsKBwge8o4pHKTqKec45NBzaRk5qDmfmOI41sbI+xNI9rzuvrXvcdRTxS2UnU23JwC4fKDmkTZoRq0awF1/W6junrpmtTZhRT2UnU+8eWfwDQs21Pz0kkWG7pfwvFx4t5f4uOyoxWKjuJenO3zCW1eSrtW7T3HUWCZFz2OFISUpi2dprvKOKJyk6iWmV1Je9veZ++aX21vy6CJcYlckOfG3gj/w1OVp70HUc8UNlJVFu6aymHyw7TN72v7ygSZLf0v4UjZUd4t+Bd31HEA5WdRLX3tryHYfRO6+07igTZVd2uIj0pnVfyXvEdRTxQ2UlUm7t5LsMyhtGiWQvfUSTI4mLiuKnvTby94W1Ky0t9x5EmprKTqHX45GE+3fkp1/S4xncUaSK3DLiFE5UneDP/Td9RpImp7CRqfbjtQ6pclcouilza+VK6t+nOC6te8B1FmpjKTqLWe5vfo0V8C0ZmjvQdRZpIjMVwx8A7+GDrBxQeKvQdR5qQyk6i1twtc7my25U0i23mO4o0odsH3o7D8eLqF31HkSYU5zuAiA/ritdRUFLAD0b8wHcUCbIpuVM+N61X215MXTmVn4z6ic6vjBJas5OoNH3ddAzjhj43+I4iHlzS+RI2H9zMwh0LfUeRJqKyk6j0+rrXubzL5XRM7ug7ingwpMMQWjZrydSVU31HkSaispOos37/evL25XFj3xt9RxFPEuISuKnvTby69lWOlR/zHUeagMpOos70ddOBmot6SvT69uBvU1peyrQ8DQ4dDVR2EnWmr5vOZZ0vo1NKJ99RxKPLOl9Gv/R+PJ37tO8o0gRUdhJVNh3YxKq9q7QJUzAz7h52N8t2L2PZ7mW+40iQqewkqmgTptR220W3kRSfxDPLnvEdRYJMZSdRwznHK3mvMDJzJJ1bdfYdR0JAq8RW3NL/Fv6W9zcOnzzsO44EkU4ql6ixeNdi1uxbwzMT9a94+efJ5u1btOd4xXHunnU3V3a7EoC7ht7lM5oEgdbsJGo8k/sMLZu15Jb+t/iOIiGka+uudG3VlXmF83DO+Y4jQaKyk6hw8MRBpuVN49YBt5KckOw7joSYK7KuoKi0iPz9+b6jSJCo7CQqvLj6RU5WnuT7w77vO4qEoIszLia5WTLvb33fdxQJEu2zk4jnnOPpZU8zvNNwluxawpJdS3xHkhATHxvPl7K+xKyNs9hTusd3HAkCrdlJxPt4+8fk78/n7qF3+44iIexLXb9EXEyc1u4ilMpOIt6TS5+kVUIrbu5/s+8oEsJSElIY0WkEn+z4hAPHD/iOI42sQWVnZuPMbIOZFZjZQ/U8n2BmrwaeX2xmWbWeezgwfYOZjQ1M62xmH5pZvpmtNbMHGusbEpmSO+X07bH5j/H62tcZmTmSl1a/5DuahLgx3cZQUV3Bs8uf9R1FGtlZy87iI0IoAAAgAElEQVTMYoE/AuOBvsAtZta3zmzfAQ4657KBJ4DHA6/tC0wG+gHjgKcC71cJ/Jtzrg8wErinnvcUuWBzt8wlNiaWMd3G+I4iYaBTSif6pPXhySVPUlFV4TuONKKGrNkNBwqcc1ucc+XANGBSnXkmAS8E7k8HxljN5X8nAdOcc2XOua1AATDcOVfknFsO4Jw7CuQDGpVXGtWRsiMs2rGIkZkjaZXYynccCRNjuo1h19FdvL7udd9RpBE1pOw6ATtqPd7J54vp9DzOuUrgMNC2Ia8NbPIcDCxueGyRs/tg6wdUVVdxTfdrfEeRMNKvXT96te3FE58+oZPMI0hDys7qmVb3J+BM83zha82sJTAD+IFz7ki9H252l5ktM7NlxcXFDYgrAicrTzKvcB6DOwymfcv2vuNIGImxGB4Y8QDLdi9j0Y5FvuNII2lI2e0Eao+amwnsPtM8ZhYHtAJKvui1ZhZPTdG97Jx740wf7pyb4pwb5pwblp6e3oC4IjCvcB7HK44zNnus7ygShm4feDttEtvwxKdP+I4ijaQhJ5UvBXLMrBuwi5oDTr5RZ56ZwB3AJ8CNwAfOOWdmM4G/mdlvgQwgB1gS2J/3PJDvnPtt43wrIjVOVp5k7ua59E3vS1brLN9xJAy9vOZlhncazhv5b/DfC/6btKQ0QANEh7OzrtkF9sHdC8yh5kCS15xza83sUTO7PjDb80BbMysAfgg8FHjtWuA1YB3wLnCPc64KuAy4DbjKzFYGbtc28vcmUeqjbR9RWl7KdT2v8x1FwtiVWVdiZjrJPEI0aLgw59xsYHadaT+rdf8kcNMZXvsY8FidaR9T//48kQtSWl7K3M1z6Zfej+5tuvuOI2GsTfM2DM8YzsfbP2ZCzgRaNmvpO5JcAI2gIhHlySVPcqzimNbqpFFc0+MayqvK+WjbR76jyAVS2UnEOFp2lF8v+jX90/vTrU0333EkAnRK6cSAdgP4cNuHlFeV+44jF0BlJxHjySVPcuDEASb2nOg7ikSQsT3GUlpeysLtC31HkQugspOIcKTsCL/+5Ndcm3Ot1uqkUWWnZtO9TXfe2/IeldWVvuPIeVLZSUR4csmTlJwo4ZEvPeI7ikQYM2Nsj7EcOHGAaXnTfMeR86Syk7B3pOwIv170aybkTODiThf7jiMR6KL2F9EpuROPLXiMquoq33HkPKjsJOz9YfEfOHjyII9c8YjvKBKhYiyGa3OuZf3+9UxfN913HDkPKjsJa4dOHuI3n/yGiT0nMixjmO84EsGGdBxCn7Q+/GLBL6h21b7jyDlS2UlY+9XCX3Hw5EEeveJR31EkwsVYDD8d/VPy9uXxf+v/z3ccOUcqOwlbv1r4K3616FdcnHExS3cvPX11cpFgubnfzeSk5vDovEd1+Z8wo7KTsPX3TX+nylUxqVfdawmLBEdsTCw/Hf1TVu1dxYz8Gb7jyDlQ2UlYKigpYMH2BYzqMor0Frr0kzSdbw74Jn3T+/KTD36i8+7CiMpOwtJPP/gpcTFxTMiZ4DuKRJnYmFgeu+oxNh7YyNSVU33HkQZS2UnY+Xj7x7y69lWu7n41rRJb+Y4jUWhSr0mMzBzJIx89womKE77jSAOo7CSsVLtqHnj3ATold2JsD12FXPwwM3455pfsOrqLPy79o+840gAqOwkrU1dOZXnRcv7n6v8hIS7BdxyJYl/K+hLjssfx2ILH2H98v+84chYWTofPDhs2zC1btsx3DPHkSNkRcv6QQ05qDgvuXMCzy5/1HUmi3K4ju/jFgl/w/aHf56kJT/mOE5XMLNc5d9YRJbRmJ2Hj5x/9nOJjxfzvuP/FTBe6F/86pXTiS12/xDO5z7BqzyrfceQLxPkOIHI2U3KnUHiokCc+fYLLu1xOblEuuUW5vmOJAHBdz+tYvXc19797Px/d8ZH+IRaitGYnIa+quooXV79ISkIKN/S5wXcckc9o0awFv7jqF8wvnM/r6173HUfOQGUnIe8fW//BjiM7mNx/MknxSb7jiHzO94Z8j0EdBvHgnAc5fPKw7zhSD5WdhLTNJZt5e8PbDGo/iMEdBvuOI1Kv2JhYpkycwp7SPTz0j4d8x5F6aJ+dhKzK6kru+L87iIuJY3L/ydoXIiHr1ADkV2ZdydO5T5OckEx2ajYAdw29y2c0CdCanYSsxz9+nIU7FnJL/1to07yN7zgiZ3V9r+tp27wtL65+kYqqCt9xpBaVnYSkZbuX8ci8R7i5380M7zTcdxyRBkmMS+QbA77BntI9/H3T333HkVpUdhJyjlcc59Y3bqV9i/b8acKftPlSwkr/dv25rPNlvFvwLptLNvuOIwEqOwk598y+h40HNvLCV17Q5ksJS1/v93XaJrXlzyv/TGl5qe84gspOQszUlVOZunIqPx39U8Z0H+M7jsh5SYxL5M5Bd3Lg+AF+OOeHvuMIKjsJIWv3reVf//6vXJl1Jf/5pf/0HUfkgmSnZjO2x1ieXf4sb+S/4TtO1NOpBxISjpQd4eoXryY+Np7x2eN5fsXzviOJXLDrel1HyckS7nzrTi5qf9Hp0xGk6WnNTryrdtXc9uZt7D22l+8O/q4uyCoRIy4mjtdufI24mDhufO1GXejVI5WdePfIR48wc8NMvt736/RK6+U7jkij6tq6Ky999SVW7V3Ffe/c5ztO1FLZiVcz1s3gv+b/F98e9G2uyLrCdxyRoBifM56fjPoJz694nt8v/r3vOFFJZSfefLLjE25981ZGZo7kqQlP6Xw6iWiPXvkoX+39VX7w7g+YuWGm7zhRRweoiBcb9m9g4isTyUzJZObkmSTEJfiOJBIUp8bNBLiq21WsKFrBTa/fxKJvL2JoxlCPyaKLOed8Z2iwYcOGuWXLlvmOIRdgSu4UDp88zOMLH6e8qpwfX/Zj0luk+44l0mRO/fzHxsTy/u3v079df9+RwpqZ5Trnhp1tPm3GlCZ1+ORhnvj0CY6WH+Xe4feq6CTqtEpsxf0j7ifWYrnyhStZvXe170hRQWUnTaboaBG//fS3HDhxgPuG30dW6yzfkUS86NCyA/O+NY+E2ASueqFm06YEl8pOmsSOwzu44oUrOHjiIPcPv5+ebXv6jiTiVU7bHOZ9ax5J8Ulc/pfLeW3ta74jRTSVnQTdkl1LGP7ccIqOFnH/iPvJaZvjO5JISOiR2oPF313MoA6DuHn6zfz4vR9TWV3pO1ZE0gEqElSv5r3Kt976Fh1bduTtW95m4Y6FviOJhJzK6kpeW/sa8wrnMbTjUJ6Z+IyO1GwgHaAiXpWWl/L9t7/P5BmTuTjjYpZ8bwn92vXzHUskJMXFxPGNAd/gu0O+y84jOxn+3HDuf+d+io8V+44WMVR20ug+3v4xA58eyLPLn+U/Lv0P3rvtPdKS0nzHEgl5F2dczPp71/Mvw/6FJ5c8SdffdeX+d+5n++HtvqOFPW3GlEaz7dA2Hn7/YablTSMtKY1vDfyW9s+JnKO7ht4FwPr963l84eO8tPolql0147PH8+3B32Ziz4k0i23mOWXoaOhmTJWdXLAdh3fwxKdP8NTSp4ixGP7tkn8jvUU6iXGJvqOJhL0Dxw8wv3A+q/auoqi0iDaJbbiu13Xc0PsGrulxDc3jm/uO6JXKToLKOUduUS5/WPIH/rbmbzjnuPWiW/nFVb8gMyXzM0MkiciFq6quYl3xOpYVLWP13tUcrzhOs9hm9E/vz79d+m9cm3MtrRNb+47Z5BpadhobU87JvmP7eDXvVZ5f8Tyr9q4iKT6Jey6+hwdHPkjX1l19xxOJWLExsQxoP4AB7QdQVV3FhgMbWLlnJSv2rOCbb3yTWIvlsi6XMSFnAhN7TqRPWh8Nrl6L1uzkrH758S/J25fH8qLlrN+/HoejS6suXN75ci7udDFJ8Um+I4pErWpXzdZDW1mzdw1r9q1h55GdALRt3pbJ/SczsedErsi6ImJ3K2gzppy34xXHmV84nzkFc5izeQ75+/MBaJfUjqEZQ7k442I6pXTynFJE6lNyooS8fXms2beGTQc2caLyBEnxSYzpNoYJOROY0HMCmSmZvmM2mkYtOzMbB/wvEAs855z7ZZ3nE4C/AkOBA8DNzrltgeceBr4DVAH3O+fmNOQ966Oya3ynNofk7s5ledFycotyWbJrCWVVZSTGJTK662hSElLom9aXjOQMbRYRCSPlVeVsPLDx9FrfgRMHABjYfuDp4hveaThxMeG7R6vRys7MYoGNwNXATmApcItzbl2tef4VuMg5d7eZTQa+6py72cz6Aq8Aw4EM4B/AqUERv/A966OyOz9llWXsOrqLbYe2feZWUFLAqr2rOF5xHIDmcc0Z1GEQIzNHMrbHWEZ3HU3z+OY62EQkAjjnKCotYs3eNew/sZ+F2xdS5apIik9iRKcRXNr5Uga2H8iA9gPITs0OmwJszANUhgMFzrktgTeeBkwCahfTJOCRwP3pwJNWswowCZjmnCsDtppZQeD9aMB7NrrS8lIOnjhItas+55vD/fN+Pf9AqLvGE2MxZ7wZ9pnHVa6KyupKKqoqqKyurLlf/c/7ZZVlnKw8yYnKE5yoOMGJyhM1j+u5f6ziGAdPHOTgyYOnv54qs9NZMdo0b0Na8zRGZo6ka6uudGnVhfYt2hMbEwtA4eFCXlz9YvD+Y4hIkzIzMpIzyEjOAOArvb5C/v58CkoK2HxwM/MK51HtqoGaEV0yUzLp2qorHZM70iaxDa0TW5++tUpoRWJcIvGx8TSLbUZ8TOBrrcexMbEYhpmd8WvHlh2Jj41vku+/IWXXCdhR6/FOYMSZ5nHOVZrZYaBtYPqndV57amfP2d6z0U1dOZX73rkv2B/TZAwjPjae+Jj4018TYhNIik8iKT6Jrq270je+L0nxSbRKbEVa8zTaJrWlTWKb06UmItGpRbMWDMsYxrCMmpWiiqoKikqL2HV0F3tK91ByvISdR3aSX5zP8crjnKw82eiDVOf9S16TDSPYkLKrbydN3VWbM81zpun1DVNW7/ZUM7sLuCvwsNTMNpwhp09pwP6m/lCHozzwv/PgJfMFCsfMEJ65lblpRHXm/o80ylXaG3TOU0PKbifQudbjTGD3GebZaWZxQCug5CyvPdt7AuCcmwKE9E4jM1vWkG3GoUSZm0445lbmpqHMTachA0EvBXLMrJuZNQMmAzPrzDMTuCNw/0bgA1ezY2smMNnMEsysG5ADLGnge4qIiDSKs67ZBfbB3QvMoeY0gT8759aa2aPAMufcTOB54MXAASgl1JQXgfleo+bAk0rgHudcFUB979n4356IiEgDhwtzzs0GZteZ9rNa908CN53htY8BjzXkPcNYSG9mPQNlbjrhmFuZm4YyN5GwGkFFRETkfOjirSIiEvFUdg1gZn82s31mlldr2iNmtsvMVgZu19Z67mEzKzCzDWY21lPmzmb2oZnlm9laM3sgMD3VzN4zs02Br20C083Mfh/IvdrMhoRQ5pBd1maWaGZLzGxVIPPPA9O7mdniwHJ+NXAgFoGDtV4NZF5sZlkhlHmqmW2ttZwHBaZ7/9molT3WzFaY2azA45Bdzl+QOaSXs5ltM7M1gWzLAtNC9u9GgznndDvLDRgNDAHyak17BPj3eubtC6wCEoBuwGYg1kPmjsCQwP1kaoZn6wv8D/BQYPpDwOOB+9cC71BzbuRIYHEIZQ7ZZR1YXi0D9+OBxYHl9xowOTD9aeBfAvf/FXg6cH8y8KqH5XymzFOBG+uZ3/vPRq0sPwT+BswKPA7Z5fwFmUN6OQPbgLQ600L270ZDb1qzawDn3HxqjjJtiNNDpDnntgK1h0hrMs65Iufc8sD9o0A+NaPXTAJeCMz2AvCVwP1JwF9djU+B1mbWMUQyn4n3ZR1YXqWBh/GBmwOuomboPPj8cj61/KcDY8yadnTtL8h8Jt5/NgDMLBOYADwXeGyE8HKGz2c+i5BYzmcQsn83Gkpld2HuDay6//nUaj31D6/m9Xo4gU04g6n5F3x751wR1JQL0C4wW0jlrpMZQnhZBzZTrQT2Ae9Rs4Z5yDl3amyl2rk+M7QecGpovSZVN7Nz7tRyfiywnJ+wmquZfCZzgK+fjd8BPwKqA4/bEuLLmc9nPiWUl7MD5ppZrtWMYAVh8nfji6jszt+fgB7AIKAI+E1gekOGV2syZtYSmAH8wDl35ItmrWeal9z1ZA7pZe2cq3LODaJmJKDhQJ/6Zgt8DcnMZtYfeBjoDVwMpAI/DszuPbOZTQT2Oedya0+uZ9aQWc5nyAwhvJwDLnPODQHGA/eY2egvmDdUMp+Vyu48Oef2Bv5gVAPP8s/NZw0ZXq1JmFk8NaXxsnPujcDkvac2MwS+7gtMD4nc9WUOh2UN4Jw7BHxEzb6L1lYzdF7dXKcz22eH1vOiVuZxgc3IztVcpeQvhNZyvgy43sy2AdOo2Xz5O0J7OX8us5m9FOLLGefc7sDXfcCb1OQL6b8bDaGyO091tkt/FTh1pOaZhkhr6nxGzcg2+c6539Z6qvbQbncAb9Wafnvg6KqRwOFTmy2aypkyh/KyNrN0M2sduN8c+DI1+xo/pGboPPj8cq5vaL0mc4bM62v9MTNq9snUXs5efzaccw875zKdc1nUHHDygXPum4Twcj5D5ltDeTmbWQszSz51H7gmkC9k/240WFMeDROuN2ouQFsEVFDzL5nvAC8Ca4DV1PwH71hr/p9Qs99mAzDeU+bLqdmcsBpYGbhdS81+i/eBTYGvqYH5DfhjIPcaYFgIZQ7ZZQ1cBKwIZMsDfhaY3p2a4i0AXgcSAtMTA48LAs93D6HMHwSWcx7wEv88YtP7z0ad/FfwzyMbQ3Y5f0HmkF3OgeW5KnBbC/wkMD1k/2409KYRVEREJOJpM6aIiEQ8lZ2IiEQ8lZ2IiEQ8lZ2IiEQ8lZ2IiES8Bl28VUSCz8yqqDl8O46ac/XucM4d95tKJDJozU4kdJxwzg1yzvUHyoG7fQcSiRQqO5HQtADIBjCzW63m+nMrzeyZwCDOsVZzXbS8wLXHHgzMO8jMPg0MMvxmrUGzRaKayk4kxATGchwPrDGzPsDN1AzOOwioAr5JzaDYnZxz/Z1zA6gZYxHgr8CPnXMXUbNJ9D+b/BsQCUEqO5HQ0Txw2Z1lwHZqxgkdAwwFlgaeG0PNkE5bgO5m9gczGwccMbNWQGvn3LzA+71AzYWHRaKeDlARCR0nAmtvpwUGC37BOfdw3ZnNbCAwFrgH+DrwYJOkFAlDWrMTCW3vAzeaWTsAM0s1s65mlgbEOOdmAP8fMMQ5dxg4aGajAq+9DZhX77uKRBmt2YmEMOfcOjP7KTVXjo6h5sob9wAngL8EpkHNBUGh5vIrT5tZEjWbOu9s6swioUhXPRARkYinzZgiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLxVHYiIhLx4nwHOBdpaWkuKyvLdwwREQkRubm5+51z6WebL6zKLisri2XLlvmOISIiIcLMChsynzZjiohIxFPZiYhIxFPZiYhIxFPZiYhIxFPZiYhIxFPZiYhIxFPZiYhIxFPZiYhIxAtK2ZnZn81sn5nlneF5M7Pfm1mBma02syHByCEiIgLBW7ObCoz7gufHAzmB213An4KUQ0REJDjDhTnn5ptZ1hfMMgn4q3POAZ+aWWsz6+icKwpGHhGRSHW84jgHjh/gaPlRSstLOVpW8/XU7dT0ExUnKKsqo7yq/DO3U9MqqiqodtU4XM1X53C4z3w99fwXTTsXr9/0Otmp2UFaMp/la2zMTsCOWo93BqZ9ruzM7C5q1v7o0qVLk4QTEfGlvKqcPaV72H109+lb0dEiDpw4UHM7/tmvJytPNuh942PiiYuJIy4mjtiY2JqvFnt6WozFEGMxmBkAFvhfzf+NzJRMzAJTA19PzV972qnXNzRTU/FVdvUtjXr/SeCcmwJMARg2bNi5/bNBRCQEHa84zvr969l0YBMFJQVsKqn5WlBSwN5jez83f4zF0CK+BS2ataBFfAtaNmtJ19Zd6Zvel5bNWpIUn0Tz+OYkxiaSEJdAYlwiCbGBr3EJNIttRoxd2F6ru4bedUGv981X2e0EOtd6nAns9pRFRCRonlzyJDuO7KDwUCHbD2+n8HAhRUeLPrPJr3VCa9JbpJOdms3FnS6mdUJrWif+89aiWYsLLqto56vsZgL3mtk0YARwWPvrRCQSVLtqlhctZ07BHOZsnsPCHQupdtUAJDdLpmvrrgzuMJjMlEzatWhHelI6CXEJnlNHvqCUnZm9AlwBpJnZTuA/gXgA59zTwGzgWqAAOA7cGYwcIiJN4feLf8+qPatYs28N+fvzKS0vBaBzSmeu7n413dt0p2urrrRObH1O+7Sk8QTraMxbzvK8A+4JxmeLiDSFiqoKZm+azYurX2TmhplUVFeQkpBC//T+9E3vS5/0PqQkpPiOKQFhdaVyERGfpuROoeRECfMK57FoxyKOlB0hJSGFy7tczrCMYXRv01371kKUyk5EpAGW7lrKs8ufZXnRcpxzDGg/gMu7XE7/9P7ExsT6jidnobITEaljSu6U0/e3HtzKzI0zWVe8jsS4RMZ0G8NV3a4itXmqx4RyrlR2IiL12H10N2/kv8GafWtoEd+CG3rfwOiuo2ke39x3NDkPKjsRkVqKjxXztzV/Y8H2BSTEJvCV3l/hyqwrSYxL9B1NLoDKTkSiUu1NlQDOORbuWMiM/BmcrDzJ6K6jua7ndbRs1tJTQmlMKjsRiXp7S/fy4uoX2VSyiezUbL454JtkJGf4jiWNSGUnIlHLOcdHhR8xY90M4mPjue2i27i086U6fSACqexEJCodPnmYqaumsq54Hf3S+3HHwDtoldjKdywJEpWdiES0uvvmADbs38BzK57jRMUJvjHgG4zuMlrDeEU4lZ2IRI1qV82czXN4a/1btGvRjgdHPqh9c1FCZSciUaG8qpypK6eSW5TLsIxh3HbRbTqdIIqo7EQk4h0+eZinlj1F4aFCbuh9A9f0uEabLaOMyk5EItqe0j387+L/pbS8lLuH3c2gDoN8RxIPVHYiEhHqOxBl26Ft/GHJHzCM/7j0P+jSqouHZBIKVHYiEpE27N/AH5f+kZbNWvKDkT+gXYt2viOJRyo7EYk46/ev58klT5LeIp0HRjxA68TWviOJZyo7EYkoG/ZvOF10Pxz5Q5ITkn1HkhCgMXFEJGJsOrCJJ5c+SVpSGg+OfFBFJ6ep7EQkIuw4soMnlz5JavNUfnjJD0lJSPEdSUKIyk5Ewt6Wg1v4/eLf0zyuOQ+MeEBFJ5+jfXYiElbqnmJwpOwIv1r4K6qqq3jw0gdJbZ7qKZmEMq3ZiUjYqqiq4E/L/sTBkwe5Z/g9GudSzkhlJyJhyTnHX1f9lS0Ht3DnoDvp0aaH70gSwlR2IhKWZhfMZsnuJUzqNYmhGUN9x5EQp7ITkbCzcs9KZm6YyYhOIxifPd53HAkDKjsRCSt7S/fyl5V/oUurLtx20W26eoE0iMpORMLGsfJjPJP7DLEWy91D7yY+Nt53JAkTOvVAREJOfVcwcM7xl5V/YffR3dw3/D7aJrX1kEzCldbsRCQsfLrzUxbvWsyEnhPo166f7zgSZlR2IhLy9pbu5ZW8V+iZ2pMJORN8x5EwpLITkZBWWV3JcyueIzYmljsH30mM6c+WnDv91IhISHtrw1tsP7yd2y+6XUOByXlT2YlIyNpcspn3Nr/H5V0uZ3DHwb7jSBhT2YlISCqvKueFVS+Q2jyVm/re5DuOhDmVnYiEpLc2vMXeY3u5beBtJMYl+o4jYU5lJyIhZ3PJZt7f8j6ju46mT1of33EkAqjsRCSklFeV8+LqF0ltnsrX+nzNdxyJEBpBRUS8qW+klNmbZlNUWsS9F9+rzZfSaLRmJyIho/hYMbM3zWZIhyEMaD/AdxyJICo7EQkJzjleyXuF2JhYvt7v677jSIRR2YlISFhetJy1xWuZ1GsSbZq38R1HIozKTkS8K68qZ0b+DDKTM7ki6wrfcSQCBaXszGycmW0wswIze6ie57uY2YdmtsLMVpvZtcHIISLh4b3N73HgxAG+3u/rGvtSgqLRf6rMLBb4IzAe6AvcYmZ968z2U+A159xgYDLwVGPnEJHwUHKihHcK3mFIxyH0SuvlO45EqGD8E2o4UOCc2+KcKwemAZPqzOOAlMD9VsDuIOQQkTDwZv6bADqnToIqGGXXCdhR6/HOwLTaHgFuNbOdwGzgvjO9mZndZWbLzGxZcXFxY2cVEY+2HNzCkt1LuLrH1aQlpfmOIxEsGGVn9UxzdR7fAkx1zmUC1wIvmtW/od45N8U5N8w5Nyw9Pb2Ro4qIL845ZuTPICUhhbE9xvqOIxEuGCOo7AQ613qcyec3U34HGAfgnPvEzBKBNGBfEPKIiGf1jZSyau8qCkoK+Eb/b2ikFAm6YKzZLQVyzKybmTWj5gCUmXXm2Q6MATCzPkAioG2UIlGiqrqKN/PfpH2L9lze5XLfcSQKNHrZOecqgXuBOUA+NUddrjWzR83s+sBs/wZ8z8xWAa8A33LO1d3UKSIR6pOdn1BUWsRXen+F2JhY33EkCgRlIGjn3GxqDjypPe1nte6vAy4LxmeLSGirqKrg7Y1v0611NwZ30NXHpWno7E0RaVILti/g0MlDfLX3VzGr73g2kcanshORJlNeVc47Be/Qs21PnUAuTUplJyJNZn7hfI6UHeG6ntf5jiJRRmUnIk2irLKMdwvepXdab3q27ek7jkQZlZ2INIl5hfM4Wn5Ua3XihcpORILuZOVJ5m6eS5+0PmSnZvuOI6/ogyMAABtASURBVFFIZSciQffRto9q1up6aa1O/FDZiUhQHS07ytzNc+mX3o8ebXr4jiNRSmUnIkH1hyV/4FjFMe2rE69UdiISNEfKjvDrRb9mQLsBdGvTzXcciWJBGS5MRKJT3asbzN40m4MnD3L3sLs9JRKpoTU7EQmK8qpy3t/6Pv3b9SerdZbvOBLlVHYiEhQfb/+Y0vJSxmeP9x1FRGUnIo2vsrqSuZvnkp2arfPqJCSo7ESk0S3etZiDJw9qrU5ChspORBpVtatmTsGc/7+9e4+uqr7zPv7+5kYwCSZIgEASEu6iXEWxBgHFC14q2mkfsdeZZeu0fVxPu1qfGTtdq/VpV6dju6bt80xdTm2H2ps66LRTtFgUFMJFIEEuAikYQiAhIdwCJEBCkvN7/jgbG2ICIZyTvc85n5frrJy9zzZ8/HnO+bDP2fu3KRhUwHW51/kdRwRQ2YlIhG09tJWG0w0sGLtA16uTwFDZiUjEOOd4vfJ1hmYMZUbeDL/jiHxAZSciEVNxtIIDJw9w95i7STK9vUhw6NkoIhHzeuXrZKdnM2vkLL+jiFxAZSciEbGhdgN7ju3hztF3kpqc6ncckQuo7EQkIr6/9vtkpGYwu3C231FEPkRzY4rIZek6/yVAXVMdS3cv5f7x95Oeku5DKpGL056diFyxFVUrSE1K5bai2/yOItItlZ2IXJGTLSfZeHAjJQUlZKZl+h1HpFsqOxG5Im9Xv01HqIP5o+f7HUWkRyo7Eemz1vZWVu9fzbTh0xiaMdTvOCI9UtmJSJ+tr1nPmbYz3DnmTr+jiFyUyk5E+iTkQqzYt4IxOWMYkzPG7zgiF6WyE5E+2VK/haNnjnLnaO3VSfCp7ETksjnneKPqDXKvymXq8Kl+xxG5JJWdiFy2vY17qT5RzR2j79CEzxIT9CwVkcv2xt43yEjN4JaCW/yOItIrKjsRuSwNzQ1sb9jOvKJ5pCWn+R1HpFdUdiJyWVbsW0FyUjLziub5HUWk11R2ItJrx88e552ad5g1chaDBgzyO45Ir6nsRKTXfr7557SF2phfrKnBJLboEj8i0q2ul/LpCHXw9LqnmXDNBEYOGulTKpG+0Z6diPTKlkNbaGxp1ITPEpNUdiLSKyv3rST3qlwmD53sdxSRy6ayE5FL2te4j6rGKm4vvl0nkUtM0rNWRC7prX1vkZ6SzkfyP+J3FJE+iUrZmdkCM9ttZpVm9mQP2/wPM9tlZjvN7IVo5BCRK3ei5QTl9eWUFJQwMHWg33FE+iTiR2OaWTLwDHAnUAuUmdlS59yuTtuMA74BlDjnGs1MV30UCajV+1fjnOO2otv8jiLSZ9HYs7sJqHTOVTnnzgEvAQu7bPMF4BnnXCOAc+5wFHKIyBVq62ijdH8pU4ZNITcj1+84In0WjbIbCdR0Wq711nU2HhhvZuvMbIOZLejpl5nZY2ZWbmblR44ciUJcEenJpoObaD7XrJPIJeZFo+ysm3Wuy3IKMA6YBzwC/MLMsrv7Zc6555xzM51zM3Nz9TdLkf7inGPlvpXkZ+Uz/prxfscRuSLRKLtaoKDTcj5Q1802f3TOtTnn9gG7CZefiATEnmN7ONh0kNuLb8esu7/DisSOaJRdGTDOzIrNLA1YBCztss1/A7cBmNkQwh9rVkUhi4j00ar9q8hIzeDGkTf6HUXkikW87Jxz7cDjwHKgAljinNtpZt8xswe8zZYDx8xsF/A28L+dc8cinUVE+qa+qZ6th7ZyS8EtumadxIWoTATtnFsGLOuy7lud7jvga95NRHzUdcJngD/t+RMhF+LWwlt9SCQSeZpBRUQu0BHqYM2BNVw75FqGZQ7zO45IRKjsROQC7x1+j8aWRuaOmut3FJGIUdmJyAVW719Ndno2U4ZN8TuKSMSo7ETkA0dOH2HXkV3MLpxNclKy33FEIkZlJyIfKN1fSpIlMbtgtt9RRCJKZSciQHgezHU165g6bCo5A3P8jiMSUSo7EQFgc/1mTred1oEpEpdUdiIChA9MGZoxlAlDJvgdRSTiVHYiQs2pGqoaq5gzag5JprcFiT96VosIpdWlpCalckv+LX5HEYkKlZ1IgjvbdpaNBzcyc8RMMtIy/I4jEhUqO5EEt/HgRlo7WnVgisQ1lZ1IAnPOsXr/agqvLqQou8jvOCJRo7ITSWDratZR11TH3FFzdYFWiWsqO5EE9mz5swxMGciNI3SBVolvUbmenYgES3fXrGtqbWLJziXcWngrA1IG+JBKpP9oz04kQa2rWUd7qJ05o+b4HUUk6lR2Igko5EKsObCG8YPHMyJrhN9xRKJOZSeSgHYd2cXRM0eZU6S9OkkMKjuRBLSqehWDBgxi+vDpfkcR6RcqO5EEc+zMMXYc3kFJQQkpSTpGTRKDyk4kwaw5sAZAB6ZIQlHZiSSQ9lA7aw+sZfKwyQweONjvOCL9RmUnkkC2HNpC07kmzYMpCUdlJ5JASqtLGXLVECblTvI7iki/UtmJJIi6pjr2HN/DrYW36gKtknD0jBdJEKX7S0lJSqGkoMTvKCL9TmUnkgBa21t5p/YdZgyfQdaALL/jiPQ7lZ1IAiirK6OlvYW5RTowRRKTyk4kzjnnWFW9ihFZIxiTM8bvOCK+UNmJxLlNBzdRc6pGF2iVhKa5gkTiSHfXrXt+6/MMSB7ArJGzfEgkEgzasxOJY6fPnaa8rpxZ+bMYmDrQ7zgivlHZicSx9bXraQu1acYUSXgqO5E4FXIhSveXMiZnDPmD8v2OI+IrlZ1InNp9dDeHTx/W1Q1EUNmJxK3V+1eTkZrBDXk3+B1FxHcqO5E41Hi2kW0N2ygpKCE1OdXvOCK+U9mJxKG1NWsJuZA+whTxqOxE4kxHqIO1B9YyKXcSuRm5fscRCQSVnUic2d6wnRMtJ3S6gUgnKjuROLN6/2py0nOYPHSy31FEAkNlJxJHGpobqDhawa2Ft5KclOx3HJHAiErZmdkCM9ttZpVm9uRFtvu4mTkzmxmNHCKJpvRAKUmWxOzC2X5HEQmUiJedmSUDzwD3AJOAR8xsUjfbZQH/C9gY6Qwiiehs21nW16xn2vBpXJ1+td9xRAIlGnt2NwGVzrkq59w54CVgYTfbfRf4AdAShQwiCefFHS9ypu0M80bN8zuKSOBE4xI/I4GaTsu1wAXXFjGz6UCBc+41M3viYr/MzB4DHgMoLCyMcFSR2NT1Uj7OOf557T8zImsE468Z71MqkeCKxp5dd1eHdB88aJYE/Bj4em9+mXPuOefcTOfczNxcnTMk0p19J/Zx4OQB5o2apwu0inQjGmVXCxR0Ws4H6jotZwHXA6vMrBq4GViqg1RE+m5V9SrSU9KZla8LtIp0JxplVwaMM7NiM0sDFgFLzz/onDvpnBvinCtyzhUBG4AHnHPlUcgiEvdOtZ5ic/1mbs6/mfSUdL/jiARSxMvOOdcOPA4sByqAJc65nWb2HTN7INJ/nkiiW3tgLe2hdh2YInIR0ThABefcMmBZl3Xf6mHbedHIIJIIOkIdlO4vZeKQieRl5fkdRySwNIOKSAx77/B7NLY0aq9O5BJUdiIxbFX1KnLSc5gybIrfUUQCTWUnEqMONR+i4mgFc0bN0TyYIpegshOJUauqV5GSlKJ5MEV6QWUnEoNa2lt4p/YdZuTNYNCAQX7HEQk8lZ1IDNpYu5GW9hbmFc3zO4pITFDZicSYkAvxVvVbFF5dyOjs0X7HEYkJKjuRGLO8cjmHmg9xR/EdmgdTpJdUdiIx5scbfkz2gGxuGHGD31FEYobKTiSG7Dy8kzer3mRu0VxSkqIyAZJIXNKrRSTAul637jfbfkNqUipzRs3xKZFIbNKenUiMaGptYsPBDXwk/yNkpmX6HUckpqjsRGJE6YFS2kPt3F58u99RRGKOyk4kBrR1tLGqehXX5V6nqxuI9IHKTiQGlNeXc6r1FPOL5/sdRSQmqexEAs45x8qqleRl5jEpd5LfcURikspOJODeP/4+NadqmF88XyeRi/SRyk4k4FZWrSQjNYNZ+bP8jiISs1R2IgHW0NzAtoZtzBk1h7TkNL/jiMQslZ1IgC3fu5yUpBSdbiByhVR2IgFVe6qWDbUbuKXgFl2zTuQKqexEAupH7/wIh+OuMXf5HUUk5qnsRALo2JljPLf5OW4acRNDrhridxyRmKeyEwmgf9v0b5xuO83dY+/2O4pIXNBVD0R81vXKBi3tLfxw/Q+ZOmwqI7JG+JRKJL5oz04kYNbsX8OZtjPcM/Yev6OIxA2VnUiAtHW0saJqBROumUBxTrHfcUTihspOJEA21G7gROsJFoxd4HcUkbiishMJiJAL8cbeNxh19SiuHXKt33FE4orKTiQgNtdv5vCZwywYu0ATPotEmMpOJABCLsSy95cxPHM404ZP8zuOSNxR2YkEwLv171LXVMd94+4jyfSyFIk0vapEfBZyIV7b8xp5mXnMHDHT7zgicUllJ+Kz8rpy6pvr+ej4j2qvTiRK9MoS8VF7qJ3X9rzGyKyRTM+b7ncckbilshPx0QvvvUDD6QbuH3+/9upEokivLhGftLa38u1V36ZgUIGOwBSJMk0ELdJPuk74/Na+t6g+Uc1XZn1Fe3UiUaZXmIgPWtpbWPb+MiZcM0GzpYj0A5WdiA/erHqTpnNNPDTxIc2WItIPVHYi/exU6yne3PsmM4bP0JUNRPqJyk6kn72651XaQm0snLjQ7ygiCUNlJ9KP6prqWLN/DXNGzWF45nC/44gkjKiUnZktMLPdZlZpZk928/jXzGyXmW03s5VmNioaOUSC5uVdLzMwdSAfHf9Rv6OIJJSIl52ZJQPPAPcAk4BHzGxSl822ADOdc1OAV4AfRDqHSNDsOLyDXUd2ce+4e8lMy/Q7jkhCicae3U1ApXOuyjl3DngJuODLCefc2865M97iBiA/CjlEAqOto41Xdr3C0KuGclvRbX7HEUk40Si7kUBNp+Vab11PHgVe7+lBM3vMzMrNrPzIkSMRiijSv3666afUN9fzN5P+hpQkzeUg0t+iUXbdnTTkut3Q7NPATOCHPf0y59xzzrmZzrmZubm5EYoo0n8ONR/i26u+zXW51zF12FS/44gkpGj8FbMWKOi0nA/Udd3IzO4AvgnMdc61RiGHiC+6Tgv2yy2/5Gz7WR6+7mGdQC7ik2js2ZUB48ys2MzSgEXA0s4bmNl04GfAA865w1HIIBIIlccr2XBwA3eOvpNhmcP8jiOSsCJeds65duBxYDlQASxxzu00s++Y2QPeZj8EMoGXzWyrmS3t4deJxKyOUAcvvvciOek53DP2Hr/jiCS0qHxT7pxbBizrsu5bne7fEY0/VyRIVlStoLapli/N/BIDUgb4HUckoWkGFZEoOHL6CK/ueZVpw6bpWnUiAaCyE4kw5xwv7HiB5KRkFl2/yO84IoLKTiTiyurK2HVkFw9OeJCcgTl+xxERVHYiEdXQ3MBLO16iOLuYuUVz/Y4jIh6VnUiEOOf48rIv09rRyuemfo4k08tLJCj0ahSJkCU7l/D7it/zwPgHyMvK8zuOiHSiSfpE+qDrLCmnWk/x1KqnKMou4o7ROrNGJGi0ZydyhZxz/Hb7bz/4+DI5KdnvSCLShcpO5Aqtq1nHtoZtPDjxQUZkjfA7joh0Q2UncgUOnz7Mkp1LmHDNBOYXz/c7joj0QGUn0kcdoQ4Wb1lMclIyfzft73T0pUiA6dUp0kevvf8a+07s45PXf1Inj4sEnMpOpA8qjlTw+vuvU1JQwo0jb/Q7johcgspO5DIdaj7E4q2LGZ45nIeve9jvOCLSCyo7kcvQEergM3/4DGfbzvKFGV/QpXtEYoROKhe5iK4nj//hL39gRdUKPjPlM4wcNNKnVCJyubRnJ9JL79a/y58r/8zsgtnMLpztdxwRuQwqO5FeqGuq4/mtz1OUXaRr1InEIJWdyCU0n2vm2fJnSUtO44s3fJHU5FS/I4nIZVLZiVxEW0cbz5Y/y/Gzx/nizC/qfDqRGKWyE+lByIX41bZfUXm8kr+d9reMHTzW70gi0kcqO5Ee/NPKf6KsrowHJz7IjSN04rhILFPZiXTje6Xf4+l1TzOncA4LxizwO46IXCGdZyfChefTrahawcu7XubmkTfzyORHMDMfk4lIJGjPTqSTlVUreXnXy8zIm8Fnp35WVzIQiRPasxMhfLXxV/e8yp/e/xPTh0/n0emP6orjInFEZScJryPUwYs7XmT1/tWUFJTw6Smf1h6dSJxR2UlCO9Fygk/+1ydZvX81d425i49N/Ji+oxOJQyo7SVi7j+5m4UsL2du4l09N/hRzRs3xO5KIRInKThLK+aMuNx3cxO/e+x2pSal8ddZXGXfNOJ+TiUg0qewkobS0t/DijhfZULuBMTlj+PyMzzN44GC/Y4lIlKnsJGGsrFrJd0u/y7Ezx7h/3P3cO+5eHXEpkiBUdhL3Gs828sQbT7B462KGZgzliVue0DyXIglGZSdx5/z3ciEXYu2Btfxx9x8503aGBWMWcN/4+0hLTvM5oYj0N5WdxKW/HP0Lr+x6hZpTNYwdPJZF1y+iYFCB37FExCcqO4krZQfL+MmGn1BxtIKc9Bw+P+PzzMybqXPnRBKcyk5innOO0v2lfH/t91m+dzmZaZl8YtInmDtqrq4qLiKAyk5i2DObnuHd+nd5u/pt9p3YR1ZaFg9NfIh5RfNIT0n3O56IBIjKTmJOxZEKfr3t1zxT9gxN55oYetVQFl2/iJKCEh18IiLdUtlJ4D23+TmOnTnGlkNbKDtYRvXJapIsiclDJzOvaB4Th0zUxM0iclEqOwmkjlAH5XXl/LnyzyzeupgDJw8AUDCogE9M+gQ3jbyJQQMG+ZxSRGKFyk4CoflcM2UHy3in9h3W16xnfc16GlsaMYyi7CI+NvFjTM+bztCMoX5HFZEYpLKTfhVyIWpO1lBxtIKKIxVUHK2gvK6c7Q3b6XAdAORl5jEpdxLX5l7LtUOuJTMt0+fUIhLrolJ2ZrYA+L9AMvAL59y/dHl8APBr4AbgGPCwc646Glmk/3SEOjjZepLjZ49T31RP7anav96aaqk+Uc3Owztp7Wj94N/JSM0gf1A+C8YuYHTOaIqzi8lIy/Dxv0JE4lHEy87MkoFngDuBWqDMzJY653Z12uxRoNE5N9bMFgFPAw9HOktQOefCP3G9Wtd5fW/XQXgvqj3U3u2tI9TR42PnOs5xpu1Mj7fmc800tjTS2NLI8bPHOX72OI1nGznRcuKCP/+89JR0ctJzGDxwMCWFJeRl5jE8czh5mXlkDci6orEUEemNaOzZ3QRUOueqAMzsJWAh0LnsFgJPefdfAX5qZuY6v2tHwc/Kf8bX3/g60LfyuJKSihepSamkJaeRkZZBRmoGV6VexZCBQyi8uvCD5YzUDK5Ov5qc9Byy07MZmDrQ79gikuCiUXYjgZpOy7XArJ62cc61m9lJ4BrgaNdfZmaPAY95i81mtjviia/cELrJHnB9ytzm/XOa01GIdEmxOM4Qm7mVuX/ETOa/5+/P3w1a5lG92SgaZdfdJIRdd296s014pXPPAc9daahoMrNy59xMv3NcDmXuP7GYW5n7hzL3n2iciVsLdJ5ePh+o62kbM0sBrgaORyGLiIhIVMquDBhnZsVmlgYsApZ22WYp8Dnv/seBt6L9fZ2IiCSuiH+M6X0H9ziwnPCpB4udczvN7DtAuXNuKfAfwG/MrJLwHt2iSOfoZ4H+mLUHytx/YjG3MvcPZe4nph0qERGJd5o9V0RE4p7KTkRE4p7KrhfMbLGZHTazHZ3WPWVmB81sq3e7t9Nj3zCzSjPbbWZ3+5S5wMzeNrMKM9tpZl/x1g82szfN7H3vZ4633szs/3m5t5vZjABlDuxYm1m6mW0ys21e5v/jrS82s43eOP+nd7AWZjbAW670Hi8KUObnzWxfp3Ge5q33/bnRKXuymW0xs9e85cCO80UyB3qczazazN7zspV76wL7vtFrzjndLnED5gAzgB2d1j0FPNHNtpOAbcAAoBjYCyT7kDkPmOHdzwL2eNl+ADzprX8SeNq7fy/wOuFzIG8GNgYoc2DH2huvTO9+KrDRG78lwCJv/b8DX/Lufxn4d+/+IuA/fRjnnjI/D3y8m+19f250yvI14AXgNW85sON8kcyBHmegGhjSZV1g3zd6e9OeXS8450rp/XmAC4GXnHOtzrl9QCXhKdT6lXOu3jn3rne/CaggPHPNQuBX3ma/Ah707i8Efu3CNgDZZpYXkMw98X2svfFq9hZTvZsDbic8FR58eJzPj/8rwHwz626Shai5SOae+P7cADCzfOA+4BfeshHgcYYPZ76EQIxzDwL7vtFbKrsr87i36774/G493U+XdrE37KjzPsKZTvhv8MOcc/UQLhfg/AXiApW7S2YI8Fh7H1NtBQ4DbxLewzzhnGvvJtcFU+UB56fK61ddMzvnzo/z97xx/rGFr05yQWaPX8+NnwD/AIS85WsI+Djz4cznBXmcHfCGmW228HSNECPvGxejsuu7Z4ExwDSgHvhXb32vp0LrD2aWCfwX8FXn3KmLbdrNOl9yd5M50GPtnOtwzk0jPFvQTcC13W3m/QxkZjO7HvgGMBG4ERgM/KO3ue+Zzex+4LBzbnPn1d1sGphx7iEzBHicPSXOuRnAPcD/NLM5F9k2KJkvSWXXR865Bu8NIwT8nL9+fNab6dL6hZmlEi6N3znnfu+tbjj/MYP387C3PhC5u8scC2MN4Jw7Aawi/N1FtoWnwuuaK1BT5XXKvMD7GNk551qBXxKscS4BHjCzauAlwh9f/oRgj/OHMpvZbwM+zjjn6ryfh4E/EM4X6PeN3lDZ9VGXz6UfAs4fqbkUWOQdDVYMjAM2+ZDPCM9UU+Gc+1GnhzpP1fY54I+d1n/WO7rqZuDk+Y8t+ktPmYM81maWa2bZ3v2BwB2Ev2t8m/BUePDhcfZ1qrweMv+l05uZEf5OpvM4+/rccM59wzmX75wrInzAyVvOuU8R4HHuIfOngzzOZpZhZlnn7wN3efkC+77Ra/15NEys3oAXCX981kb4bzKPAr8B3gO2E/4fntdp+28S/t5mN3CPT5lnE/44YTuw1bvdS/h7i5XA+97Pwd72Rviiu3u9/66ZAcoc2LEGpgBbvGw7gG9560cTLt5K4GVggLc+3Vuu9B4fHaDMb3njvAP4LX89YtP350aX/PP465GNgR3ni2QO7Dh747nNu+0EvumtD+z7Rm9vmi5MRETinj7GFBGRuKeyExGRuKeyExGRuKeyExGRuKeyExGRuKeyExGRuKeyExGRuPf/AbKE2N3526B7AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAAJ4CAYAAADx4z3eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8VfWB///X597sCSSEBBIJmBDWhB3cl1IRQasgVatY1y5Mx2U6dubb1pn5to4z9jGd76z9jbaN1Sq0VcQVKwZBxVoXhMiaEDABhLCGEAJkXz6/P+6FCSFAgHvzucv76SOP3Hvuufe+cwz3nbN9jrHWIiIiEg08rgOIiIj0FpWeiIhEDZWeiIhEDZWeiIhEDZWeiIhEDZWeiIhEDZWeiIhEDZWeiIhEDZWeiIhEjRjXAc5GRkaGzc3NdR1DRERCRElJyQFrbWZP5w+r0svNzWX16tWuY4iISIgwxnx5NvNr86aIiEQNlZ6IiEQNlZ6IiEQNlZ6IiEQNlZ6IiEQNlZ6IiEQNlZ6IiEQNlZ6IiEQNlZ6IiEQNlZ6IiEQNlZ6IiESNsBp7UyTaFJUUdTt93uR5vZxEJDKo9EQcO1WxiUjgqfREQtiR5iN8uONDDjYepLGtkdb2VrJSsijZXUJuWi79k/qfML/WAEVOT6UnEoLqW+pZtnUZ7217j5b2FvrE9yExJhGvx8vG/Rtpt+0A5PTNYVLWJC4adBEDkgc4Ti0S+lR6IiHmUNMh/vWjf6WmsYbJ2ZOZNXIWWSlZxx9v62hj95HdbK7ZzJo9a1i8ZTFvbnmTSdmT2Fm3k8Gpg096Ta0Bivio9ERCSFNbE//z2f9wtOUoP7z8h+Sn5580T4wnhiGpQxiSOoTpQ6dT21jLii9XsGL7Ckr2lHBZzmXcOfZO4rxxDn4CkdCm0hMJEe0d7RSVFLHryC4evOjBbguvO/0S+zFn1Bxm5M9gacVSiiuL2X1kN9+b8j3SE9ODnFokvOg8PZEQ8Vr5a5RWl/LNsd9kzIAxZ/38pNgk5oyewwNTHmBf/T5+9uHP2Fm3MwhJRcKXSk8kBOyv38+7297lyiFXcuWQK8/rtcZnjefRKx8lxhPDr0t+TWNrY4BSioQ/lZ5ICHhj8xvEeGKYNWJWQF4vKyWL70z6DjWNNfx+w++x1gbkdUXCnfbpiTi2/dB2Vu9ezdeGf43UhNSAve6w9GHcNOIm3tj8Bve+fu8p1yB1ZKdEE63piThkreXVTa/SJ64P04dOD/jrzxw2k9EZo3lx44tU11cH/PVFwo1KT8ShZVuXsblmMzcMv4HE2MSAv77HeLhvwn0AvPXFWwF/fZFwo9ITcei/V/43qfGpXH3h1UF7j7SENK6+8GpW7lrJ/vr9QXsfkXCg0hNxZGfdToorirl88OXEeIK7e31G/gy8xsuSL5YE9X1EQp1KT8SRZ9c8S4ftOO9TFHoiNSFVa3siqPREnGjvaOeZNc9wXf51ZCRl9Mp7am1PRKUn4sTSyqXsPLyT7076bq+9Z+e1vdrG2l57X5FQ0qPSM8bMNMZsNsZUGGN+3M3j8caYhf7HVxpjcjs99qh/+mZjzIxO0x8xxpQaYzYaY14wxiQE4gcSCQdPf/40mUmZzBoZmJPRe2pq7lQ6bAcfV33cq+8rEirOWHrGGC/wJHA9UADMNcYUdJnt20CttXYY8J/Az/3PLQDuAAqBmcBTxhivMWYQ8FfAFGvtGMDrn08k4u05soc3N7/JfRPu6/UrIQxIHsCojFF8tOMjOmxHr763SCjoyZrexUCFtXartbYFeBGY3WWe2cDz/tsvA9OMMcY//UVrbbO1dhtQ4X898I0Gk2iMiQGSgN3n96OIhLaikiKKSop4ZOkjtNt2kmOTKSop6vUcVw25iprGGjZVb+r19xZxrSelNwjoPFR7lX9at/NYa9uAOqD/qZ5rrd0F/BuwA9gD1Flr3+nuzY0x84wxq40xq6urNaKEhL81e9eQnZJNdp9sJ+8/fuB4UuJS+HDHh07eX8SlnpSe6WZa19FrTzVPt9ONMf3wrQXmARcAycaYu7p7c2ttkbV2irV2SmZmZg/iioSuI81H+KLmCyZmT3SWIdYby2U5l7Fu3zrqmuqc5RBxoSelVwUM7nQ/h5M3RR6fx7+5MhU4eJrnXgtss9ZWW2tbgVeBy8/lBxAJJ+v2rcNimZQ1yWmOq4ZcpQNaJCr1pPRWAcONMXnGmDh8B5ws7jLPYuBe/+1bgfes71omi4E7/Ed35gHDgc/wbda81BiT5N/3Nw3QDgaJeGv2rCEjKYOcvjlOcwxMGciI9BF8tOMjXXZIosoZS8+/j+4hYCm+YnrJWltqjHncGHPseOtngP7GmArgB8CP/c8tBV4CyoBi4EFrbbu1diW+A14+Bzb4c/T+Hn2RXtTQ2sCmA5uYmDUR3996bl02+DKqG6r5pOoT11FEek2PBvyz1i4BlnSZ9pNOt5uA207x3CeAJ7qZ/lPgp2cTViScbdi3gXbb7nR/XmeTsifxhw1/YMG6BVw+WHsXJDpoRBaRXrJm7xrS4tPIS8tzHQWAhJgEJmZNZGHpQprbml3HEekVKj2RXtDQ2sDG/RuZkDUBjwmdf3aX5lxKbVOtrrUnUSN0/vWJRLAPtn9Aa0cr47PGu45yglEZo8hKyWLB+gWuo4j0CpWeSC94u+JtYj2xDE8f7jrKCbweL3eOuZO3trxFTUON6zgiQafSE+kFb1e8zciMkcR6Y11HOck94++htaOVhaULXUcRCTqVnkiQVRysoOJgBWMyx7iO0q3xWeMZO2As89fNdx1FJOhUeiJBVlxRDEDhgELHSU7tnvH3sHLXSrbUbHEdRSSoVHoiQfZ2xdsMSx/GgOQBrqOc0p1j78RjPPxu/e9cRxEJqh6dnC4i56aprYn3t73PdyZ9x3WU07qgzwVcO/RaFqxfwGNTH8NjPKe87NG8yfN6OZ1I4GhNTySIPtj+AY1tjcwcNtN1lDO6e9zdbD+0nY92fOQ6ikjQqPREgujtireJ98YzNXeq6yhnNGfUHJJjk3VAi0Q0bd4UCbDOmwUXli4kPz0/LPaVJcclc0vBLSwqW8Qvrv+F6zgiQaE1PZEgqW2sZe/RvRRkFLiO0mN3j7ubuuY63tzypusoIkGh0hMJkvID5YBvqK9w8dXcr5LTN4fn1z3vOopIUKj0RIKk/EA5KXEpDOo7yHWUHvN6vNwz7h6KK4o51HTIdRyRgFPpiQSBtZbyA+WM7D8ypK6q0BP3TbiPDtvByqqVrqOIBFx4/WsUCRN7j+7lUPOhsNq0eczw/sO5YvAVfFL1CdZa13FEAkqlJxIEx/bnjc4Y7TjJublvwn3sObqH7Ye2u44iElAqPZEg2HRgE/0T+5OZnOk6yjm5reA2Yj2xfFL1iesoIgGl0hMJsPaOdrbUbAnbtTyA1IRUJmZPZNXuVbS2t7qOIxIwKj2RANtRt4PGtsaw3J/X2eU5l9PQ2sC6fetcRxEJGJWeSIBtOrAJgJEZIx0nOT8jM0bSL6Efn+zUJk6JHCo9kQArP1BOTp8c+sb3dR3lvHiMh0tzLqW0ulTn7EnEUOmJBFBjayOVtZVhv5Z3zOWDL8di+bTqU9dRRAJCA06LBNBHOz+iraMtrA5iOdV18wAGJA9gWPowPqn6hBn5MzDG9GIykcDTmp5IAL279V08xsPw/sNdRwmYy3IuY+/RvTpnTyKCSk8kgJZvW05eWh4JMQmuowTM5OzJxHpi+bjqY9dRRM6bSk8kQGobaynZXRJWmzZ7IjE2kUnZk1i1S+fsSfhT6YkEyIrtK7DYsD8/rzuXDb6MxrZG1u5b6zqKyHlR6YkEyPKty0mOTSavX57rKAE3sr/O2ZPIoNITCZB3t73L1RdeTYwn8g6K9hgPlw2+jLLqMnYd3uU6jsg5U+mJBEDV4So212xmWt4011GC5vIc3zl7C9YvcB1F5Jyp9EQC4N2t7wJw7dBrHScJnszkTIalD+O5tc/pOnsStlR6IgHw7rZ3yUjKYOzAsa6jBNXlOZezuWYzK3fpquoSnlR6IufJWsvyrcuZljcNj4nsf1KTL5hMUmwSv13zW9dRRM5JZP8LFekF5QfK2XN0T0TvzzsmISaBr4/+OovKFtHS3uI6jshZU+mJnKflW5cDMG1o5JcewNwxc6ltqmVpxVLXUUTOmkpP5Dy9u+1d8tLyGNpvqOsovWL60On0T+zPCxtfcB1F5Kyp9ETOQ1tHGyu2r4iKTZvHxHpjubXgVt7Y/Ab1LfWu44icFZWeyHko2V1CXXNd1GzaPGbumLk0tDbw5pY3XUcROSsqPZHz8O423/l51+Rd4zhJ77rqwqsY1GcQf9jwB9dRRM5K5I2XJNJLikqKmL9uPjl9cni9/HXXcXqVx3i4Y8wd/GLlLzjYeJD0xHTXkUR6RGt6Iueopb2FytpKRmVG3lUVemLumLm0drTy6qZXXUcR6TGVnsg5qjhYQVtHG6P6R2fpTcqexPD04TqKU8KKSk/kHJVWlxLjiWFE/xGuozhhjGHumLm8v+199hzZ4zqOSI+o9ETOUen+UoanDyc+Jt51FGfmjp2LxfJS6Uuuo4j0iEpP5BzsqNvBnqN7KMwsdB3FqVEZo5iQNUGbOCVsqPREzsGxIbgKB0R36YHvgJaVu1ZSebDSdRSRM9IpCyLnoLiymH4J/chOyXYdpdcVlRSdcL/DdgDw4sYX+fur/95FJJEe05qeyFlqbW9l+dblFGYWYoxxHce59MR08vvlaxOnhIUelZ4xZqYxZrMxpsIY8+NuHo83xiz0P77SGJPb6bFH/dM3G2NmdJqeZox52RhTbozZZIy5LBA/kEiwfVr1KYebD2vTZicXD7qY0upSNuzb4DqKyGmdsfSMMV7gSeB6oACYa4wp6DLbt4Faa+0w4D+Bn/ufWwDcARQCM4Gn/K8H8N9AsbV2FDAe2HT+P45I8C2tXIrXeBmVEZ3n53VnUvYkPMajozgl5PVkTe9ioMJau9Va2wK8CMzuMs9s4Hn/7ZeBaca33Wc28KK1ttlauw2oAC42xvQFrgaeAbDWtlhrD53/jyMSfMUVxVw2+DKSYpNcRwkZfeP7MjV3KovKFmGtdR1H5JR6UnqDgJ2d7lf5p3U7j7W2DagD+p/muUOBauC3xpg1xpjfGGOSu3tzY8w8Y8xqY8zq6urqHsQVCZ799fsp2VPCzPyZrqOEnFtG38Lmms2UVZe5jiJySj0pve721Hf9U+5U85xqegwwCfiltXYiUA+ctK8QwFpbZK2dYq2dkpmZ2YO4IsHzTuU7AMwcptLras6oORgMr2x6xXUUkVPqSelVAYM73c8Bdp9qHmNMDJAKHDzNc6uAKmvtSv/0l/GVoEhIK64oJjMpk4nZE11HCTnZfbK5csiVvFz2susoIqfUk9JbBQw3xuQZY+LwHZiyuMs8i4F7/bdvBd6zvg37i4E7/Ed35gHDgc+stXuBncaYkf7nTAO0TURCWoftYGnlUmYMm4HH6Gyf7txacCsb9m9g84HNrqOIdOuM/3L9++geApbiO8LyJWttqTHmcWPMLP9szwD9jTEVwA/wb6q01pYCL+ErtGLgQWttu/85DwO/N8asByYAPwvcjyUSeJ/v+ZwDDQe0P+80vj766wDaxCkhq0cjslhrlwBLukz7SafbTcBtp3juE8AT3UxfC0w5m7AiLhVXFGMwXJd/nesoISunbw6X5VzGy2Uv83dX/Z3rOCIn0TBkIj1UXFHM5Asmk5msA6q6c2x4skF9B/Fy2cs88acnji+reZPnuYwmcpxKT+Q0jn2Q17fU8/HOj7l++PUnjT0pJ5qYNZGXy15m3b51XDv0WtdxRE6gvfEiPVB+oByLjfpLCfVERlIGg/oMYt3eda6jiJxEpSfSA6XVpSTGJJKXluc6SlgYnzWeLw5+wdGWo66jiJxApSdyBtZaSqtLGZ0xGq/He+YnCOMHjsdi2bBfA1BLaFHpiZzB7iO7OdR0SFdVOAsXpl5IWkKaNnFKyFHpiZxBaXUpAAWZXS8uIqdijGH8wPGUVZfR2t7qOo7IcSo9kTMoqy7jgj4XkJ6Y7jpKWBk/cDzN7c2UHyh3HUXkOJWeyGk0tzXzxcEvdNTmORjRfwQJMQms3bfWdRSR41R6IqexpWYLbR1tKr1zEOuNpTCzkPX71tNhO1zHEQFUeiKntbF6I3HeOIalD3MdJSyNGziOw82HWbNnjesoIoBKT+S0yvaXMbL/SGK9sa6jhKXCzEIMhiVfLDnzzCK9QKUncgoVByvY37BfmzbPQ5/4PuSm5bKkQqUnoUGlJ3IKSyuWAuj8vPM0ZsAYVlat5EDDAddRRFR6IqdSXOm7SvqA5AGuo4S1MQPGYLEUVxS7jiKi0hPpTnNbM+9te0+bNgNgSOoQBiYP1H49CQkqPZFu/HnHn2lobdCmzQDwGA/XD7+e4opi2jvaXceRKKfSE+lGcUUxcd44RvQf4TpKRLhh2A3UNtWyctdK11EkyukisiLdKK4s5qohV5EQk+A6SkTYdWQXHuPhn//0z9w86ubj03VFdeltWtMT6aLqcBUb929k5rCZrqNEjKTYJPL75bNx/0bXUSTKqfREujh2qsKM/BmOk0SWwgGF7Dy8k8PNh11HkSim0hPporiymAv6XMCYAWNcR4kox46ELasuc5xEoplKT6STto42llUuY2b+TIwxruNElJy+OfSJ63P8+oQiLuhAFhGgqKQIgMqDldQ11xHjiTk+TQLDYzwUZBZQWl1Kh+3AY/Q3t/Q+/daJdFJaXYrBMCpjlOsoEakgs4CjLUfZWbfTdRSJUio9kU5K95cytN9QkuOSXUeJSAWZBQDaxCnOqPRE/I40H+HLui819FgQ9Y3vy5DUISo9cUalJ+K36cAmLFZDjwVZYWYhW2u30tja6DqKRCGVnohf6f5SUuJSGJI6xHWUiFaQWUCH7aD8QLnrKBKFVHoiQIftoLS6lIKMAh1VGGT5/fJJiEnQJk5xQv+6RfANPXak5Yg2bfYCr8fLqP6jKKsuw1rrOo5EGZWeCBwfE/LY0YUSXIUDCqlprGFzzWbXUSTKqPRE8B1CPyR1CH3j+7qOEhWO/XFxbJxTkd6i0pOoV9dUx9barTpVoRdlJGUwMHkgxZXFrqNIlFHpSdR7d9u7dNgOlV4vK8ws5IPtH+jUBelVKj2JesUVxSTEJDC031DXUaJK4YBCGtsa+XDHh66jSBRR6UlUs9ZSXFHM6IzReD1e13Giyoj+I4j3xmu/nvQqlZ5EtU0HNrHz8E4dtelAnDeOqy+8Wvv1pFep9CSqHVvL0P48N2bkz6CsukxXXZBeo9KTqFZc6du02T+pv+soUWnGsBkALK3UJk7pHSo9iVoNrQ18sP0DZg6b6TpK1CrMLGRQn0EqPek1Kj2JWh9s/4Dm9maVnkPGGGbkz2BZ5TLaOtpcx5EooNKTqFVcUUxiTCJXX3i16yhRbeawmdQ11/HZrs9cR5EooNKTqFVcWczU3KkkxCS4jhLVrh16LR7jobhCR3FK8Kn0JCptrd3Klpot2rQZAvol9uOSQZdov570CpWeRKVjpyqo9ELDjPwZrNq1igMNB1xHkQin0pOoVFxZTF5aHsPTh7uOIvj++LBYlm9d7jqKRDiVnkSdlvYW3t36LjOHzcQY4zqOAFMumEJ6Yrr260nQqfQk6ny04yPqW+u1aTOEeD1epg+dztLKpbqaugRVjOsAIr2pqKSIVza9gtd42X5oO0UlRa4jRbXOyz8+Jp69R/fykxU/4Z+++k8OU0kk05qeRJ2y/WUMSx+mUxVCzLHxT8v2lzlOIpGsR6VnjJlpjNlsjKkwxvy4m8fjjTEL/Y+vNMbkdnrsUf/0zcaYGV2e5zXGrDHG/PF8fxCRnjjUdIiqI1UaYDoEpSWkMajPIEqrS11HkQh2xtIzxniBJ4HrgQJgrjGm63VYvg3UWmuHAf8J/Nz/3ALgDqAQmAk85X+9Y74PbDrfH0Kkp459oBYOUOmFooLMAioOVnC05ajrKBKherKmdzFQYa3daq1tAV4EZneZZzbwvP/2y8A04zssbjbworW22Vq7Dajwvx7GmBzga8Bvzv/HEOmZsuoyUuNTGdRnkOso0o3CAYW023ZWbF/hOopEqJ6U3iCg88WuqvzTup3HWtsG1AH9z/Dc/wJ+CHSc7s2NMfOMMauNMaurq6t7EFeke+0d7ZRVl1E4oFCnKoSoYf2GEeeN06kLEjQ9Kb3uPh26HlN8qnm6nW6MuRHYb60tOdObW2uLrLVTrLVTMjMzz5xW5BRW7V5FQ2uDrpIewmK9sYzsP1JDkknQ9KT0qoDBne7nALtPNY8xJgZIBQ6e5rlXALOMMdvxbS69xhjzu3PIL9JjxRXFGAyjM0a7jiKncWy/XuXBStdRJAL1pPRWAcONMXnGmDh8B6Ys7jLPYuBe/+1bgfes7wzTxcAd/qM784DhwGfW2kettTnW2lz/671nrb0rAD+PyCkVVxSTm5ZLSlyK6yhyGseOrNXangTDGUvPv4/uIWApviMtX7LWlhpjHjfGzPLP9gzQ3xhTAfwA+LH/uaXAS0AZUAw8aK1tD/yPIXJ6NQ01fLbrMx21GQYGJA8gLy1P+/UkKHo0Iou1dgmwpMu0n3S63QTcdornPgE8cZrXXgGs6EkOkXO1bOsyLJYxmWNcR5EzMMYwc9hM5q+bT1NbkwYRkIDSiCwSFYoriklPTOfCtAtdR5EeuHHEjdS31uvUBQk4lZ5EvA7bQXFFMdflX4fH6Fc+HFyTdw1JsUks3tz18AGR86NPAIl46/etZ1/9Pmbm66oK4SIhJoEZ+TN4c8ubuuqCBJRKTyLesQMirsu/znESORuzRs6i6nAVa/eudR1FIohKTyLeki+WMCFrAtl9sl1HkbNww/AbMBht4pSAUulJRKttrOXjnR/zteFfcx1FztKA5AFcNvgyFm9R6UngqPQkoi2tXEq7befGETe6jiLnYNaIWXy+53OqDle5jiIRQldOl4j2xy1/JCMpg4suuMh1FDkLx66o3tTWBMCPlv+Ir1z4FQDmTZ7nLJeEP63pScRq72inuKKY64ddj9fjPfMTJORkpWSRmZTJ+r3rXUeRCKHSk4i1ctdKahprtD8vjBljGDdwHOU15cfX+kTOh0pPItZbW97Ca7zMGDbDdRQ5D+MHjqeto41N1ZtcR5EIoH16EnGO7Q+av34++f3yean0JceJ5HwMSx9GUmwS6/atY2L2RNdxJMxpTU8iUm1jLVWHqxgzUANMhzuvx8uYzDFs3L+RDtvhOo6EOZWeRKQN+zcAMHbAWMdJJBDGZY3jSMsRttVucx1FwpxKTyLSur3ryEzKJDtFo7BEgjGZY/AYD+v2rXMdRcKcSk8iTlNbE+U15UzImoAxxnUcCYDE2ERG9h/J+n06dUHOj0pPIk7p/lLaOtoYP3C86ygSQOMGjmPP0T1UHKxwHUXCmEpPIs7avWtJiUshPz3fdRQJoHEDxwFoAGo5Lyo9iSit7a1s2L+B8QPH64KxESYjKYOcPjm8Xv666ygSxvSpIBHlgy8/oLGtUZs2I9SErAn8ecef2V+/33UUCVMqPYkor5e/Tpw3jtGZo11HkSCYkD0Bi9UmTjlnKj2JGNZa3tj8BgUZBcR541zHkSDI6ZNDXloer5W/5jqKhCmVnkSMkj0lVB2uYnyWNm1GKmMMc0bNYfnW5RxuPuw6joQhlZ5EjEWli4jxxGh/XoSbM3oOLe0tvP3F266jSBjSgNMSEay1LCpbxLVDryU5Ltl1HAmijfs30ieuD//2yb9R11x3fLouLis9oTU9iQif7/mcbYe2cVvBba6jSJB5jIfxWePZuH8jre2truNImFHpSURYVObbtHnzqJtdR5FeMDFrom+4uQPlrqNImFHpSdg7tmlzWt400hPTXceRXjAqYxQJMQms2bvGdRQJMyo9CXtr9q5ha+1WbdqMIjGeGMYOGMv6fet1jT05KzqQRcLWsSukv7rpVTzGQ11z3fFpEvkmZk1k1e5VVBysYET/Ea7jSJjQmp6ENWstn+/5nFEZo0iJS3EdR3pR4YBCYjwxrN271nUUCSMqPQlr2w9tp7qhminZU1xHkV6WEJPA6IzRrN27Fmut6zgSJlR6EtZW7lpJjCeGSdmTXEcRByZmTaSmsYadh3e6jiJhQqUnYau9o53Vu1czfuB4EmMTXccRB8YNHIfBaBOn9JhKT8JWWXUZR1qOcMmgS1xHEUf6xPdhePpwnbogPabSk7C1ctdKkmOTKRxQ6DqKODQhawK7j+xmS80W11EkDKj0JCwdbj7M2r1rmXLBFGI8OvMmmk3MngjAK2WvOE4i4UClJ2HptU2v0drRyiU52rQZ7dIT08lLy+PlTS+7jiJhQKUnYWnB+gVkJGUwNG2o6ygSAiZnT+bzPZ+ztXar6ygS4lR6Ena21m7l3W3vclnOZRhjXMeREHBsE+fLZVrbk9NT6UnY+c3nv8FjPFwx+ArXUSREZCRlMOWCKSo9OSOVnoSV1vZWnl3zLDeOuJF+if1cx5EQclvBbazavYovD33pOoqEMJWehJU3t7zJvvp9zJukq2TLiW4ZfQsAr2zSUZxyaio9CStFJUXk9M1h5rCZrqNIiMlPz2di1kQWlS1yHUVCmEpPwsa22m28U/kO3574bbwer+s4EoJuK7iNT6s+1SZOOSWVnoSN33z+G4wxfGvit1xHkRB1+5jbAXhx44uOk0ioUulJWGhobeDXJb/mphE3MSR1iOs4EqKG9hvKJYMu4YWNL7iOIiFKpSdhYcG6BdQ01vA3l/2N6ygS4uaOmcu6fevYVL3JdRQJQSo9CXm/Wv0rHvvgMYakDqGsuoyikiKKSopcx5IQ9Y3Cb+AxHq3tSbdUehLySveXsvfoXqYPna4RWOSMsvtkMzV3Ki9sfEFXVJeT9Kj0jDEzjTGbjTEVxpgfd/N4vDFmof/xlcaY3E6PPeqfvtkYM8M/bbAx5n1jzCZjTKkx5vuB+oEk8izftpy0hDQmZ092HUVC2LEtAEUlRVyQcgEVByv4+/f+3nUsCTFnLD1jjBd4ErgeKADmGmMKusz2baDqK5/CAAAgAElEQVTWWjsM+E/g5/7nFgB3AIXATOAp/+u1AX9jrR0NXAo82M1rirB+33rKD5RzTe41Ok1BemxS9iS8xsuq3atcR5EQ05M1vYuBCmvtVmttC/AiMLvLPLOB5/23XwamGd92qNnAi9baZmvtNqACuNhau8da+zmAtfYIsAkYdP4/jkSan334M+K98Vw55ErXUSSMJMclM2bAGD7b9RltHW2u40gI6UnpDQJ2drpfxckFdXwea20bUAf078lz/ZtCJwIru3tzY8w8Y8xqY8zq6urqHsSVSLGpehMvlb7EV/O+SnJcsus4EmYuy7mMw82HeafyHddRJIT0pPS6O3Kg697hU81z2ucaY1KAV4C/ttYe7u7NrbVF1top1topmZmZPYgrkeKJD58gKTaJ6UOnu44iYWjswLGkxKXw27W/dR1FQkhPSq8KGNzpfg6w+1TzGGNigFTg4Omea4yJxVd4v7fWvnou4SVybanZwgsbX+CBix4gJS7FdRwJQzGeGC4edDGLNy+mpqHGdRwJET0pvVXAcGNMnjEmDt+BKYu7zLMYuNd/+1bgPes7VngxcIf/6M48YDjwmX9/3zPAJmvtfwTiB5HIcmxfnk5Gl/Nxec7ltLS3aFgyOe6MpeffR/cQsBTfAScvWWtLjTGPG2Nm+Wd7BuhvjKkAfgD82P/cUuAloAwoBh601rYDVwB3A9cYY9b6v24I8M8mYariYAW/W/87vjflewxMGeg6joSxwamDmZA1QZs45TgTTidvTpkyxa5evdp1DAmyO1+5kzc2v0HlX1WSlZKl0VfkvDS2NvLXS/+a9d9bz9iBY13HkQAzxpRYa6f0dH6NyCIhZe3etbyw8QW+f8n3yUrJch1HIsA3x32TWE8sz6x5xnUUCQEqPQkZRSVF3P3a3STFJjEgeYDG2JSAyEjK4JaCW3hu7XPUt9S7jiOOqfQkZGyp2cLG/RuZkT+DpNgk13Ekgjx40YPUNdfxhw1/cB1FHFPpSUiw1vJ6+eukxqdyTd41ruNIhLli8BWMGziOp1Y/pUGoo5xKT0LCa+WvUVlbyY0jbiTOG+c6jkQYYwwPXvQga/eu5ZOqT1zHEYdUeuJcc1szP1z2Q7JTsrli8BWu40iEunPsnfSN78uTq550HUUcUumJc0+uepLK2kpuLbhVV1KQoEmJS+G+8fexqHQR+47ucx1HHFHpiVM1DTX805/+iRn5MxgzYIzrOBLhHrjoAVo7Wnlq1VOuo4gjMa4DSHR7/IPHOdx8mH+77t/4eOfHruNIBOp62sv4geP590/+nR9e8UNdvSMKaU1PnNlSs4WnVj/FdyZ+R2t50mtmDJtBfWs9v/n8N66jiAMqPXHmh8t+SEJMAo9/9XHXUSSK5PfLZ1j6MP7j0/+gtb3VdRzpZSo9cWLF9hW8sfkNHr3yUQ0qLb1uZv5MdtTtYGHpQtdRpJep9KTXddgOfrD0BwzuO5hHLn3EdRyJQoUDCinMLOTnH/1cJ6tHGR3IIr2qqKSIj3d+zJq9a/jWhG+xYP0C15EkCnmMhx9d8SPuef0eXi9/nTmj57iOJL1Ea3rSqxpbG3mt/DVy03K5aNBFruNIFJs7di4j+o/gJyt+QoftcB1HeolKT3rV4i2LOdJ8hLlj5uIx+vUTd2I8MTz2lcfYuH8ji0oXuY4jvUSfOtJrNuzbwIrtK7jqwqvITct1HUeE28fcTmFmIY998BjtHe2u40gvUOlJr7DW8uCSB0mMSeTmkTe7jiMC+Pbt/ePUf6T8QLkuOxQldCCL9Ir56+bz4Y4PuWvsXRoFQ0LCsZFaOmwHg/sO5gfv/IAjLUeI8cQwb/I8x+kkWLSmJ0G37+g+Hln6CJcPvpwrhugqChJaPMbDnFFzONBwgPe3v+86jgSZSk+C7uG3H6a+tZ5nZj2jg1ckJB07b++tLW9xtOWo6zgSRPoEkqB6bdNrLCpbxE+/8lNGZYxyHUfklG4tuJXm9mbe3Pym6ygSRCo9CZqDjQd5YMkDTMiawP+5/P+4jiNyWhf0uYCrhlzFn3b8ibLqMtdxJEhUehIU1lq+++Z3qWmo4dlZzxLrjXUdSeSMbhpxE/HeeP66+K81PFmEUulJUDyz5hle3fQqP5v2MyZmT3QdR6RH+sT3YfbI2Szbuozfb/i96zgSBDplQQKu/EA5Dy55kNEZo0mJSznpIp4ioewruV9h26FtPLL0EWYOm0lGUobrSBJAWtOTgGpsbWTuK3OJ88Zx/4T7dbSmhB2P8fD0TU9zqOkQf/PO37iOIwGmTyQJGGst8/44j3V713Hf+PtITUh1HUnknIwdOJYfXfEj5q+bz9KKpa7jSACp9CRg/uvT/+J363/H4199nLEDx7qOI3Je/uHqf2B0xmjue+M+9h3d5zqOBIhKTwJi+dbl/O2yv+Xro7/O3131d67jiJyXopIi5q+bz60Ft1LTUMM186/hV6t/5TqWBIBKT87bhn0buPWlWxmdMZrnZj+n/XgSMXL65vCNwm9QVl3GO5XvuI4jAaCjN+W8/Muf/4Wff/RzDIZvjv0mL2x8wXUkkYC6ashVlB8o543Nb/Detve4Ju8a15HkPOhPcjlntY21/GLlL2hqa+LhSx6mf1J/15FEAs4Yw93j7iYrJYs5C+ewbu8615HkPKj05Jwcbj7M9b+/nuqGah6Y8gA5fXNcRxIJmsTYRB6++GH6xPXh+t9fz5eHvnQdSc6RSk/O2pHmI8z83UxK9pTw3UnfZWTGSNeRRIIuPTGd4ruKaWhtYObvZ7LnyB7XkeQcqPTkrBxpPsINf7iBz3Z9xsJbFzIha4LrSCK9ZsyAMSyeu5iddTu5/NnL+aLmC9eR5Cyp9KTHDjQcYNr8aXyy8xNeuOUFvj76664jifS6qy+8mvfvfZ+jLUe54tkrKNld4jqSnAWVnvTIv/z5Xxj7y7Gs3buWv5jyF9Q21WpMTYlaFw26iD/f/2eSYpO46rdX8dza51xHkh5S6ckZrdu7jn/96F851HSIv7rkrxg/cLzrSCLOjcwYyaff+ZRLcy7l/jfu597X76W+pd51LDkDE07XjJoyZYpdvXq16xhR5ZWyV7jn9XuI88bx0EUPMTh1sOtIIiGlw3aw9+heHv/gcfL65fHrG3/NtUOvdR0rahhjSqy1U3o6v9b0pFvtHe389P2fcuuiWxk3cBx/d+XfqfBEuuExHh6b+hjv3/s+HuNh+oLp3Pf6fVTXV7uOJt1Q6clJdtbtZNr8aTz+p8e5b8J9vH/v+7pigshpFJUUsblmM9+/5PtcP+x6FqxfwJD/GsL/++j/0dTW5DqedKLSk+OstSwqXcT4X41n9e7VPH/z8zw761kSYhJcRxMJC3HeOG4edTM/ufonDE8fzg+X/5DRT47mubXP0dbR5jqeoNITv12Hd/H1l77ON17+BkP7DWXNX6zhnvH3YIxxHU0k7GT3yeahix9i2d3LSE9M5/437mfU/4zit2t+S3Nbs+t4UU0HskS51vZWfrn6l/zf9/8vja2N3DTiJq4dei1ej9d1NJGIYK1l/b71vLnlTXYe3knf+L5cPeRqnp71NFkpWa7jhb2zPZBFpReFikqKfP8Q96/nlbJX2Fe/j9EZo7lz7J0MSB7gOp5IRLLWsunAJt7b9h4b9m8g1hPL7WNu5/uXfJ8pF/T4M1u6ONvS06WFooy1lg37NvDWF2+x7dA2BiYP5KGLHmLMgDHalCkSRMYYCjILKMgsYN/RfRxoOMBv1/6W363/HZOzJ3PXuLu4Y8wdWvsLMq3pRYn6lnoWli7kyVVP8vmez+mf2J+Zw2ZyxeArtClTxJHG1kY+qfqET6o+YUfdDgyG6fnT+ebYbzJn1Bz6xPdxHTHkafOmHNfa3soHX37Aq5te5Q8b/kBdcx2jM0Zz0QUXcWnOpSo7kRCy9+heVu5aSVl1GdsPbScxJpHp+dOZNWIWN464kYEpA11HDEkqvSjW3NbM+n3r+WjnR3y08yOWb13OoaZDJMYkMmf0HL43+XtcOeRKnv78addRReQUrLVU1layavcq1u9bz8HGgwCMHTCWa4dey9TcqVwy6BKVoF9QSs8YMxP4b8AL/MZa+y9dHo8H5gOTgRrgdmvtdv9jjwLfBtqBv7LWLu3Ja3Yn2kuvw3ZQXV/NnqN72HNkD9sPbef1za9zoP4Au4/uZn/9fjpsBwD9E/tz08ibuHnkzUzPn05SbNLx19FA0SLhwVpL1ZEqNuzbwJGWI3y04yOa232nPOSm5TIxayKFmYUUZBaQm5ZLTt8csvtkE+OJnsM1Al56xhgvsAWYDlQBq4C51tqyTvM8AIyz1n7PGHMHMMdae7sxpgB4AbgYuABYDozwP+20r9mdSCw9ay1HWo5Q01BDdUM1e47sOV5qe46eeHvf0X202/YTnh/jiaF/Yn+yU7LJ7pNNTt8c8vvl0y+xn6OfSESCpaW9hR11O9hWu41th7ZRdbiK6obq43/sgm9YtIHJA48XYFpCGmnxaaQlpJGakEpaQhopcSkkxyaTFJtEcpz/e6f7iTGJYbP7IxhHb14MVFhrt/rf4EVgNtC5oGYDj/lvvwz8j/EdCjgbeNFa2wxsM8ZU+F+PHrxmwB1pPkJtUy0dtuP4l7X2xPuceL+lvYXmtmaa25uP325pbznhfo8e6zKtrqmOAw0HONBwgNaO1pOyGgwpcSmkJqSSGp9Kblou4weOJzU+9fi09MR0UhNS8RiNMSASDeK8cQxLH8aw9GHHp7W2t7K/fj8HGw9S21TLoaZDHGo6RG1TLSW7S2hsa6SxtZGmtiYsPd+dFeuJJc4bR3xMPIkxieT1yzv++dM3ru/xz6HO31PiUojxxJz2y+A7StwYQ1ZKFnHeuIAvp9PpSekNAnZ2ul8FXHKqeay1bcaYOqC/f/qnXZ47yH/7TK8ZcM+ve56H3344qO8R44nBa7zd/s/2erzEemLxeryMzhjNxYMuJiMp44Svj3d+TGp8Kn3j+4bNX1oi4k6sN5ZBfQcxqO+g087XYTtobmumobXhpD/UT/jD3P+9pc03vam9icbWRmI8Mew+spvyA+XUNddR11TX7R/sZ2PjX26kcEDheb3G2epJ6XV38lbXPxdONc+ppne3atLtnyDGmHnAPP/do8aYzafIeb4ygAPn+yJt/v+aOf1QQ1vYcr5vdUxAcvcyZe4d4ZgZwjO3Mp+DMY+NOZendc194dk8uSelVwV0vqZMDrD7FPNUGWNigFTg4Bmee6bXBMBaWwQE/cgLY8zqs9kuHCrCMbcy945wzAzhmVuZe8/55u7JzqBVwHBjTJ4xJg64A1jcZZ7FwL3+27cC71nfETKLgTuMMfHGmDxgOPBZD19TREQkoM64puffR/cQsBTf6QXPWmtLjTGPA6uttYuBZ4AF/gNVDuIrMfzzvYTvAJU24EFrfYcfdveagf/xRERE/lePTuaw1i4BlnSZ9pNOt5uA207x3CeAJ3rymo6F68lr4ZhbmXtHOGaG8MytzL3nvHKH1YgsIiIi50MneImISNSImtIzxjxrjNlvjNnYadpjxphdxpi1/q8bOj32qDGmwhiz2Rgzw1HmwcaY940xm4wxpcaY7/unpxtjlhljvvB/7+efbowxv/DnXm+MmRRCmUN9WScYYz4zxqzz5/5H//Q8Y8xK/7Je6D/wCv/BWQv9uVcaY3JDKPNzxphtnZb1BP90578fnbJ7jTFrjDF/9N8P2eV8mszhsJy3G2M2+POt9k8L2c+P02QO3OeHtTYqvoCrgUnAxk7THgP+tpt5C4B1QDyQB1QCXgeZs4FJ/tt98A3dVgD8K/Bj//QfAz/3374BeBvf+ZGXAitDKHOoL2sDpPhvxwIr/cvwJeAO//RfAX/pv/0A8Cv/7TuAhSGU+Tng1m7md/770SnLD4A/AH/03w/Z5XyazOGwnLcDGV2mheznx2kyB+zzI2rW9Ky1f8J3ZGlPHB8+zVq7Deg8fFqvsdbusdZ+7r99BNiEb0Sb2cDz/tmeB272354NzLc+nwJpxpjsEMl8KqGyrK219qj/bqz/ywLX4BtaD05e1sf+H7wMTDOmd6/Ce5rMp+L89wPAGJMDfA34jf++IYSXM5yc+QxCYjmfRsh+fpyDs/78iJrSO42H/Kvyzx5bzaf7oddOP8ZPkPk360zE99f8QGvtHvCVDDDAP1tI5e6SGUJ8Wfs3X60F9gPL8P3VeMha29ZNthOG3gOODb3Xq7pmttYeW9ZP+Jf1fxrfVVBOyOznaln/F/BD4Ngoyf0J8eXMyZmPCeXlDL4/gt4xxpQY3+hWEPqfH91lhgB9fkR76f0SyAcmAHuAf/dP78nQa73GGJMCvAL8tbX28Olm7Waak9zdZA75ZW2tbbfWTsA3QtDFwOjuZvN/D4ncXTMbY8YAjwKjgIuAdOBH/tmdZzbG3Ajst9aWdJ7czawhs5xPkRlCeDl3coW1dhJwPfCgMebq08wbKrm7yxywz4+oLj1r7T7/h0YH8DT/u1rck6HXeoUxJhZfefzeWvuqf/K+Y5sd/N/3+6eHRO7uMofDsj7GWnsIWIFvv0aa8Q2tBydmO57bnDj0nhOdMs/0b2K21nd1k98SWsv6CmCWMWY78CK+zZr/RWgv55MyG2N+F+LLGQBr7W7/9/3Aa/gyhvTnR3eZA/n5EdWl12V79Rzg2JGdpxo+rbfzGXyj3Wyy1v5Hp4c6D/t2L/BGp+n3+I/CuhSoO7YZo7ecKnMYLOtMY0ya/3YicC2+/ZHv4xtaD05e1t0NvddrTpG5vNMHmsG3v6bzsnb6+2GtfdRam2OtzcV3YMp71tpvEsLL+RSZ7wrl5ezPlWyM6XPsNnCdP2Mof350mzmgnx+nO8olkr7wXcx2D9CK76+DbwMLgA3Aev/Cy+40/9/j26ezGbjeUeYr8a2qrwfW+r9uwLdP413gC//3dP/8BnjSn3sDMCWEMof6sh4HrPHn2wj8xD99qP8fUQWwCIj3T0/w36/wPz40hDK/51/WG4Hf8b9HeDr//eiSfyr/eyRkyC7n02QO6eXsX6br/F+lwN/7p4fy58epMgfs80MjsoiISNSI6s2bIiISXVR6IiISNVR6IiISNVR6IiISNVR6IiISNXp0EVkRCT5jTDu+w7Jj8J0jeK+1tsFtKpHIojU9kdDRaK2dYK0dA7QA33MdSCTSqPREQtOHwDAAY8xdxnfdvLXGmF/7B5n2Gt/13DYa37XHHvHPO8EY86l/YN7XOg3MKyKo9ERCjn+MyeuBDcaY0cDt+AbhnQC0A9/EN/DuIGvtGGvtWHxjPwLMB35krR2Hb1PpT3v9BxAJYSo9kdCR6L9M0GpgB74xTKcBk4FV/sem4RuqaSsw1Bjz/xljZgKHjTGpQJq19gP/6z2P7+LJIuKnA1lEQkejf23uOP9gxs9bax/tOrMxZjwwA3gQ+AbwSK+kFAljWtMTCW3vArcaYwYAGGPSjTEXGmMyAI+19hXg/wKTrLV1QK0x5ir/c+8GPuj2VUWilNb0REKYtbbMGPMP+K4k7cF3lZAHgUbgt/5p4LugKfguFfMrY0wSvk2g9/d2ZpFQpqssiIhI1NDmTRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoqPRERiRoxrgOcjYyMDJubm+s6hoiIhIiSkpID1trMns4fVqWXm5vL6tWrXccQEZEQYYz58mzm1+ZNERGJGio9ERGJGio9ERGJGio9ERGJGio9ERGJGio9ERGJGio9ERGJGio9ERGJGkEpPWPMs8aY/caYjad43BhjfmGMqTDGrDfGTApGDhERkc6Ctab3HDDzNI9fDwz3f80DfhmkHCIiIscFZRgya+2fjDG5p5llNjDfWmuBT40xacaYbGvtnmDkEREJFx22g4bWBupb6qlvrT/pe1NbEy3tLbS2t9LS3uK73dHa7bTW9lbabTsdtoP2Dv932+V71+k9vG+xxzP7Psr9tztNP9NjL9/2Mvnp+UFakt1zNfbmIGBnp/tV/mknlZ4xZh6+tUGGDBnSK+FERAKhw3ZQ01DDriO72H1kN3uP7qWmoYaDjQd9X00HT7zfeJD61vrzek+DwevxEuOJwWM8x78MxvfdmDPfp9N0//1BfQfh9XhPeM2u73v8tjE9eizG0/sV5Kr0TDfTbDfTsNYWAUUAU6ZM6XYeEREXrLXsq99H5cFKttZupbK2kspa3+1dh3dRdbiKdtt+0vM8xkNKXArJsckkxyWTHJtMTt8cRmaMJMGbQFxMHPHeeOK98cR544iP8X0/9uU1vlI7Vm5e4z2h6IJh3uR5QXnd3uaq9KqAwZ3u5wC7HWURETmj+pZ6/vlP/0zV4SqqjlRRdbiKXYd30djWeHweg6FfYj8ykjLITslmdMZoUhNSSUtIIzUhldT4VFLiUoj3xp+0NiS9w1XpLQYeMsa8CFwC1Gl/noiEiqKSIupb6qk4WMGWg1vYUrOFnXU7j++TivfGk9M3h4sGXUR2SjYDkgeQkZRB/8T+xHpjHaeX0wlK6RljXgCmAhnGmCrgp0AsgLX2V8AS4AagAmgA7g9GDhGRnmrvaOfjnR/zxuY3WFi6kF2Hd2GxxHhiGJo2lBuG38CQ1CHk9M0hPTE9aJsRJbiCdfTm3DM8boEHg/HeIiI9UVRShLWWytpKVlat5PO9n3O05Sgxnhjy++Vz44gbGdF/BHlpeVp7iyBhdeV0EZFA2Hd0H0u+WMJHOz/iQMMB4rxxjB84nolZEynILCAxNtF1RAkSlZ6IRLSikqLjt3fW7eSdynco2VNCu21nZP+R3DTiJiZkTSAhJsFhSuktKj0RiXiVtZUs+WIJG/dvJCEmga9c+BW+kvsVslKyXEeTXqbSE5GIVX6gnKdWPcW6fetIiUth9sjZTM2dSlJskuto4ohKT0QiQufNmA2tDbxe/jof7viQOG8cs0fOZlreNOJj4h0mlFCg0hORiGGtZdXuVSwqW8SR5iN85cKvcOOIG+kT38d1NAkRKj0RiQh1TXUsWL+ADfs3cGHqhTx88cMMSdV4vXIilZ6IhL03yt/g8T89TnNbM98o+AZfzfuqTh6Xbqn0RCSsdN5319bRxqKyRazYvoLBfQfzrYnf4oI+FzhMJ6FOpSciYelQ0yGKSoqorK1kWt40vj76604uVSPhRb8hIhJ2ttVu46nVT9Hc1sx3Jn2Hiy64yHUkCRMqPREJK2v2rOGZNc+QmpDKI5c+os2ZclZUeiISNv770//m1yW/JjctlwcueoC+8X1dR5Iwo9ITkZDT+WAV8J1/98ctf+SPX/yRiVkT+dbEbxHnjXOUTsKZSk9EQpq1llc2vcKyrcu4fPDl3D3ubp2OIOdMpSciIctay4sbX2TFlyuYmjuV2wtvV+HJeVHpiUhIstby8qaXWfHlCqYPnc4to2/BGOM6loQ5/ckkIiHpzS1vsnzrcqbmTlXhScCo9EQk5LxT+Q5vffEWVwy+gtsLb1fhScBo86aIONP1KE2Az3Z9xiubXmFy9mTuGneX9uFJQOm3SURCxuYDm3lu7XMMTx/O/RPuV+FJwOk3SkRCwu4ju/nl6l8yIHkAfznlL4n1xrqOJBFIpSciztW31PPUqqeI9cby8MUPkxyX7DqSRCiVnog41d7RztOfP83BxoN8b/L36J/U33UkiWAqPRFx6rXy19h0YBN3jr2T/PR813Ekwqn0RMSZ1btXs2zrMqZeOJUrh1zpOo5EAZWeiDjxRc0XLFi/gKH9hvKNwm+4jiNRQufpiUjQdT0fr7W9lZ9/9HO8xst3J30Xr8frKJlEG63piUive6n0JXYe3sn9E+4nPTHddRyJIio9EelVa/eu5U87/sR1+dcxduBY13Ekyqj0RKTX1DXVMX/dfIakDmH2yNmu40gUUumJSK+w1jJ/3Xxa2lv41oRvEePRIQXS+1R6ItIrPvjyAzZWb+SWglvI7pPtOo5EKZWeiARddX01r2x6hYLMAqZeONV1HIliKj0RCSprLQvWL8BjPNw97m5dG0+cUumJSFA9/fnTbK7ZzC2jb9HpCeKc9iSLSEB0d0HYg40H+ccP/pFRGaO4ashVDlKJnEhreiISFNZa/rDhD3TYDm3WlJCh0hORoFizdw0b9m9g1ohZZCRluI4jAqj0RCQImtqaWFi6kJy+OVyTd43rOCLHqfREJODe2PwGdU113DX2Lg0mLSFFpSciAbWjbgfvb3ufqy+8mrx+ea7jiJxApSciAWOtZWHpQlLiUrh51M2u44icJCilZ4yZaYzZbIypMMb8uJvHhxhj3jfGrDHGrDfG3BCMHCLSu0r2lFBxsIJZI2eRFJvkOo7ISQJeesYYL/AkcD1QAMw1xhR0me0fgJestROBO4CnAp1DRHpXS3sLr2x6hZy+OVw55ErXcUS6FYw1vYuBCmvtVmttC/Ai0PUaIhbo67+dCuwOQg4R6UXLKpdxsPEgtxfejsdoz4mEpmCMyDII2NnpfhVwSZd5HgPeMcY8DCQD157qxYwx84B5AEOGDAloUBE5e92NvFLbWEtxZTGTsicxov8IB6lEeiYYf451N+yC7XJ/LvCctTYHuAFYYEz3fxpaa4ustVOstVMyMzMDHFVEAuHV8lfpsB3cMvoW11FETisYpVcFDO50P4eTN19+G3gJwFr7CZAAaMgGkTBUWVvJZ7s+Y/rQ6Rp5RUJeMEpvFTDcGJNnjInDd6DK4i7z7ACmARhjRuMrveogZBGRIOqwHby08SXS4tOYOWym6zgiZxTw0rPWtgEPAUuBTfiO0iw1xjxujJnln+1vgO8aY9YBL2ZyzLYAABxESURBVAD3WWu7bgIVkRC3smol2+u2M2f0HBJiElzHETmjoFxayFq7BFjSZdpPOt0uA64IxnuLSO9oaW/htfLXyEvL4+JBF7uOI9IjOq5YRM7Je9veo665jlsLbtUpChI29JsqImetvqWepZVLGTtgLMPSh7mOI9JjKj0ROWvvbH2HhtYGZo/qOu6ESGhT6YnIWalrquPdre9y8QUXM7jv4DM/QSSEqPRE5Ky89cVbtNt2Zo2cdeaZRUJMUI7eFJHw191wY9X11Xy440OuGnIVmckaIUnCj9b0RKTHFm9ZjNd4+drwr7mOInJOVHoi0iNVh6tYtWsV1+RdQ2pCqus4IudEpSciPfJ6+eskxiYyI3+G6ygi50ylJyJnVHGwgg37N3Bd/nUkxyW7jiNyzlR6InJGb255k77xfbkm9xrXUUTOi0pPRE6r8mAl5QfKuW7odcTHxLuOI3JeVHoiclpvffHW/9/evUdXWd/5Hn9/yZWEEAVCuCQkXIJABbmJUK4iWFAX2hlXy8ypdRyr09O6eo6259SuruXy9MxZnTpzzvS0ZapotWM9U4s6ClUcBS8JlHIJRK4RCJCEEK4BQriFXH7nj/1EtzGJXPbO8+y9Py9XVvZ+9pPkw8/s55Nn7+f5PfRK7cWsgll+RxG5Zio9EenUgVMH2Hl8J/OHzddensQFlZ6IdOqtvW+RmZLJnMI5fkcRiQiVnoh0qLq+mu3HtjNv2DxdIFbihkpPRDr01p63yEjJ4NbCW/2OIhIxKj0R+ZytR7by0dGPmDt0Lj1TevodRyRiVHoi8jl/v+bvSU9O13l5End0lQWRBNf+agq1DbW8tus1FhYt1OwrEne0pycin7Fy70pSk1K5behtfkcRiTiVnoh84ujZo5TWljK7cDa9Unv5HUck4lR6IvKJ1ftXk9QjifnD5vsdRSQqVHoiAsCZxjOsq1nHtLxp9E7r7XcckahQ6YkIAB9UfkBLa4v28iSuqfREhIvNF/mw8kNuGnATub1y/Y4jEjUqPRFh3cF1nG86z+3Db/c7ikhUqfREElxLawur969mRJ8RDL9+uN9xRKJKpSeS4DYf3kzdhTpuH6a9PIl/Kj2RBOac49197zKg1wDG5o71O45I1Kn0RBLYewfe4+CZg8wfNp8eps2BxD/NvSmSANrPr9nm5+t/Tu+03twy+JZuTiTiD/1pJ5KgquurKT9Rzm1DbyMlKcXvOCLdQqUnkqBW7V9FWlIaswpm+R1FpNuo9EQS0OmLpymtLWX6kOlkpGT4HUek26j0RBJQSVUJzjldJFYSjkpPJME0tTRRUlXC2Nyx5GTm+B1HpFup9EQSTGltKQ2XGrSXJwlJpSeSQJxzvHfgPQb2GsiofqP8jiPS7VR6Iglk36l9HDxzkLlD52JmfscR6XYqPZEE8v6B98lIydDJ6JKwVHoiCeLkhZOUHSljRv4M0pLT/I4j4ouolJ6ZLTCz3WZWYWaPd7LO18xsl5ntNLN/i0YOEflUcWUxzjnmFM7xO4qIbyI+96aZJQFLgPlADbDJzFY453aFrVME/AiY7pw7ZWb9I51DRD51qeUSa6rXMH7AePpm9PU7johvorGnNwWocM7td85dAl4G7m63zkPAEufcKQDn3LEo5BARz8ZDGznXdI65Q3WagiS2aJTeYOBg2P0ab1m4kcBIM/uTma03swWdfTMze9jMSs2s9Pjx41GIKxLfnHO8f+B98rLyKOpT5HccEV9F49JCHR0H7Tr4uUXAHCAPWGNmNzrnTn/uC51bCiwFmDx5cvvvIyJhOrqE0O4TuznUcIhvjvumTlOQhBeNPb0aID/sfh5Q28E6y51zTc65A8BuQiUoIhFWXFVMRkoGNw++2e8oIr6LRultAorMbKiZpQKLgRXt1nkDuBXAzPoRerlzfxSyiCS00xdPU3akjOn500lNSvU7jojvIl56zrlm4BHgHaAcWOac22lmPzGzRd5q7wB1ZrYL+AD4b865ukhnEUl0a6vX0upadc08EU803tPDObcSWNlu2RNhtx3wmPchIlHQ0trCmqo1jMkZQ/9MnRUkApqRRSRubT26ldONp5lTMMfvKCKBodITiVMlVSX06dmHsblj/Y4iEhgqPZE4dOTsEcpPlDNzyEx6mJ7mIm30bBCJQyVVJSRZEjOGzPA7ikigqPRE4kxjcyPrDq5j4sCJ9E7r7XcckUBR6YnEmU21m7jQfIHZBbP9jiISOCo9kTjinKO4qphBWYMY0WeE33FEAkelJxJHKk9XUl1fzZyCOZpnU6QDKj2ROFJcVUxaUhq35N3idxSRQFLpicSJuvN1bKrdxNS8qaQnp/sdRySQVHoiceKFj16gubVZB7CIdCEqc2+KSHS1v25eq2vlZ3/6GSP6jGBw7/bXbBaRNtrTE4kDu47v4sT5E5pnU+QLqPRE4kBxVTFZqVlMGDjB7ygigabSE4lxdefr2H50OzOGzCC5h96xEOmKSk8kxq2pXgOgC8WKXAaVnkgMa25tZm31WsbljqNPzz5+xxEJPJWeSAwrO1JGw6UG7eWJXCaVnkgMK6kqoV9GP8bkjPE7ikhMUOmJxKjDDYfZU7dHF4oVuQJ6pojEqJLq0IViv5z/Zb+jiMQMlZ5IDLrUcon1Net1oViRK6TSE4lBm2o3cb7pvA5gEblCKj2RGFRSWcLAXgMp6lPkdxSRmKLSE4kxm2s3U1lfyayCWbpQrMgVUumJxJinS58mNSmVaXnT/I4iEnM0UZ9IgLW/hNCFpgu8uO1Fbh50Mz1TevqUSiR2aU9PJIasr1nPpZZLulCsyFVS6YnECOccJdUlFGQXUHBdgd9xRGKSSk8kRlScrKC2oVZ7eSLXQKUnEiNKqkromdyTyYMm+x1FJGap9ERiQENjA1uObGFa3jTSktP8jiMSs1R6IjFg3cF1NLc2M7Ngpt9RRGKaSk8k4FpdKyXVJYzsM5JBWYP8jiMS01R6IgFXfrycE+dPaJ5NkQhQ6YkEXHFVMVmpWUwYOMHvKCIxT6UnEmCnLpxi29FtTM+fTnIPTaAkcq1UeiIBtqZ6DYAOYBGJEJWeSEA1tTSxtnotX8r5Ev0y+vkdRyQuqPREAuqPe/5IfWM9swp1AItIpKj0RALq6dKnuT79esb2H+t3FJG4odITCaC9dXtZtX8VMwtm0sP0NBWJFB0OJuKz9tfMA3h116v0sB7MyJ/hQyKR+BWVPyHNbIGZ7TazCjN7vIv17jUzZ2aaQVfE09TSxLqD6xg/YDzZ6dl+xxGJKxEvPTNLApYAC4ExwF+Z2ZgO1ssCvgdsiHQGkVi2+fBmzjWd0wwsIlEQjT29KUCFc26/c+4S8DJwdwfr/U/gKeBiFDKIxKySqhJyM3MZ1XeU31FE4k40Sm8wcDDsfo237BNmNgHId869+UXfzMweNrNSMys9fvx4ZJOKBEzNmRr2ndrHzIKZmJnfcUTiTjRKr6NnqvvkQbMewD8D37+cb+acW+qcm+ycm5yTkxOhiCLBVFJVQnKPZL6c92W/o4jEpWiUXg2QH3Y/D6gNu58F3Ah8aGaVwFRghQ5mkUR3sfki62vWM3nQZDJTM/2OIxKXolF6m4AiMxtqZqnAYmBF24POuXrnXD/nXKFzrhBYDyxyzpVGIYtIzNh4aCONLY3MLpjtdxSRuBXx0nPONQOPAO8A5cAy59xOM/uJmS2K9M8TiQfOOYori8nrncfQ64b6HUckbkXl5HTn3EpgZbtlT3Sy7pxoZBCJJXtP7qWmoYb7xt2nA1hEokjzG4kEwIeVH5KRksGUwVP8jiIS11R6Ij47deEUZUfKmJ4/ndSkVL/jiMQ1lZ6Iz0qqS3DOMadwjt9RROKeSk/ER43NjaypWsPY3LG6UKxIN1DpifjolV2v0HCpgVsLb/U7ikhC0KWFRLpJR5cQ+unan4bm2eyneTZFuoP29ER8cuDUASpPV3Jr4a26UKxIN9EzTcQnH1Z+SFpSGlPzpvodRSRhqPREfHCm8Qylh0uZljeNnik9/Y4jkjBUeiI+WFu9lubWZm4dqgNYRLqTSk+km7W0tlBcVczofqMZ0GuA33FEEopKT6SblR0p4/TF0zpNQcQHKj2RbuScY9W+VfTP7M/Y3LF+xxFJOCo9kW5UcbKCyvpK5g2bp9MURHygZ51IN1q1fxWZKZlMy5vmdxSRhKTSE+kmR84eYevRrcwpnKOrKYj4RKUn0k1W719Nco9kXU1BxEcqPZFucOzcMf5c82em5U2jd1pvv+OIJCyVnkg3WLJxCc2tzcwbNs/vKCIJTaUnEmXnm86zZNMSbsq9SSeji/hMlxYSibD2lxAqriqm7kIdfzP+b/wJJCKf0J6eSBS1ulZW719NYXYhRX2K/I4jkvBUeiJRtO3oNo6dO8b84fMxM7/jiCQ8lZ5IlDjneHffu/Tt2ZcJAyb4HUdEUOmJRM2euj3sO7WP+cPmk9Qjye84IoJKTyRq3q54m95pvZk+ZLrfUUTEo9ITiYL9p/ZTfqKc+cPma8oxkQBR6YlEwcq9K8lMyWRWwSy/o4hIGJWeSIRV11ez/dh2bht2G+nJ6X7HEZEwKj2RCFu5dyXpyem6MrpIAKn0RCKo7HAZZUfKmDd0HhkpGX7HEZF2VHoiEfRk8ZNkpGRw27Db/I4iIh1Q6YlEyKZDm1ixewXzh83XXp5IQGnCaZGr1H5i6V9u+CWZKZnMHTrXp0Qi8kW0pycSAftO7WPH8R3cPvx2HbEpEmAqPZFr5Jzj9fLXyUrN0hGbIgGn0hO5RjuO7WDvyb3cNfIu0pLT/I4jIl1Q6Ylcg1bXyusfv07/jP7MHDLT7zgi8gVUeiLXYOOhjRxqOMSiUYt0JQWRGKDSE7lKTS1NrNi9giHZQ5g0cJLfcUTkMqj0RK7S+5XvU3ehjr8Y9Rf0MD2VRGKBnqkiV+HYuWOs3LuSsf3HMjpntN9xROQyqfRErsITHzzBpZZL3DvmXr+jiMgViErpmdkCM9ttZhVm9ngHjz9mZrvMbJuZvWdmBdHIIRIN249u59ktzzKnYA4Deg3wO46IXIGIl56ZJQFLgIXAGOCvzGxMu9XKgMnOuXHAq8BTkc4hEg3OOR579zGy07K5a+RdfscRkSsUjbk3pwAVzrn9AGb2MnA3sKttBefcB2Hrrwe+EYUcItes/fyaZYfLWL1/NV//0tfJTM30KZWIXK1ovLw5GDgYdr/GW9aZB4G3O3vQzB42s1IzKz1+/HiEIopcucbmRpbtWkZeVh6zC2b7HUdErkI0Ss86WOY6XNHsG8Bk4B87+2bOuaXOucnOuck5OTkRiihy5d6ueJuTF06y+MbFOhFdJEZF4+XNGiA/7H4eUNt+JTObB/wYmO2ca4xCDpGIOXr2KO/ue5epeVMp6lvkdxwRuUrR2NPbBBSZ2VAzSwUWAyvCVzCzCcAzwCLn3LEoZBCJGOccv9/xe1KSUvjL0X/pdxwRuQYRLz3nXDPwCPAOUA4sc87tNLOfmNkib7V/BHoBr5jZR2a2opNvJ+K7DYc2UH6inHtG3UPvtN5+xxGRaxCVK6c751YCK9steyLs9rxo/FyRSGtobGDZzmUMu36YDl4RiQOakUWkC6/seoWLzRe5b9x9ml9TJA7oWSzSiXcq3mHDoQ0sGLGAQVmD/I4jIhGg0hPpQP3Feh7640MM6DWAhSMW+h1HRCIkKu/picSa9jOvvLj1RWrO1PDD6T8kJSnFp1QiEmna0xNpZ9vRbfzp4J9YMGIBQ68f6nccEYkglZ5ImLOXzvK7bb9jcNZg7iy60+84IhJhKj0Rj3OOl7a9xNlLZ3lg/AN6WVMkDqn0RDxrqtdQdqSMe0bdQ352/hd/gYjEHJWeCFDbUMuyncsY3W8084fN9zuOiESJSk8S3sXmizy35TnSk9N5YPwDOgldJI7p2S0J75GVj3Co4RD333Q/2enZfscRkShS6UlCe27Lc/ym7DcsHLGQsblj/Y4jIlGmk9MloYSfhF51uoqn1j3F6H6jWXTDoi6+SkTihfb0JCE1NDbwzOZnyErN4lsTv6X38UQShJ7pknCaWpr4demvOdN4hm9P/ja9Unv5HUlEuolKTxJK2wno+07t44HxD1B4XaHfkUSkG6n0JKG8XfE26w+tZ9HIRUwaNMnvOCLSzVR6kjCeL3ue5buXM2XwFO4ousPvOCLiA5WeJIQ3Pn6Dh/74EGNyxnD/TfdjZn5HEhEf6JQFiTvtr423+8RufrHxFxRkF/DtSd8muYd+7UUSlfb0JK7tqdvDrzb9ipyMHB6Z8ghpyWl+RxIRH6n0JG7tqdvDLzf+kr49+/Lo1Ed1aoKI6OVNiU/lJ8r5l03/Qt+efXls2mP0TuvtdyQRCQCVnsSd0tpSXvjoBfpn9ufRqY+q8ETkEyo9iStLNi7huS3PMbzPcL4z+Ttkpmb6HUlEAkSlJzEr/CjNltYWXit/jfcOvMdNuTfxrYnfIjUp1cd0IhJEKj2JeeebzvPslmfZdXwXcwvncu+Ye0nqkeR3LBEJIJWexLSaMzUs3byUE+dPcN+4+5gxZIbfkUQkwFR6EpOcc5RUlbBs5zIyUjJ4dOqjFPUt8juWiAScSk9iTt35Or678rv8YecfGN1vNH874W91hKaIXBaVngRe+AErW49u5aVtL3Hu0jnuGXUPXxn+FV0AVkQum0pPYkL9xXpeLX+VjYc2kpeVx/du+R75vfP9jiUiMUalJ4HW0trCB5UfsPzj5TS1NnFn0Z3cUXSHJo0WkauiLYcE1jsV7/CDVT9gx7EdjOo3ir++8a/J7ZXrdywRiWEqPQmMtvfuDpw6wPLdyyk/UU5ORg4PT3yYiQMn6hp4InLNVHoSGAdOHeDNvW+y49gOMlMy+dqYrzG7cLZeyhSRiNHWRHzV6lp5a89b/NOf/4mSqhIyUzL56qivMqdwDunJ6X7HE5E4o9ITX5w4f4LffvRblm5eyt6Te8nvnc+9Y+5l5pCZKjsRiRqVnnSbSy2XePQ/HmXDoQ1sPbqV5tZmhl8/nAcnPMikgZM0X6aIRJ1KT6LqQtMFVu1fxRsfv8Hy3cs5eeEkWalZzBoyi5kFMxmUNcjviCKSQFR6ElHNrc2UHS7jp2t/yscnPqbiZAVNrU30TO7J2NyxTBk0hTE5Y7RXJyK+UOnJNTl54SRlh8vYcngLaw+upbiymPrGegAGZQ1ixpAZjMsdx8i+I3UUpoj4TlshuSxnGs9QcbKCipMVfHziY8qOlFF2uIyq+qpP1umf0Z9xueO4od8N3ND3Bk0CLSKBE5XSM7MFwP8FkoDnnHP/0O7xNOBFYBJQB3zdOVcZjSzStVbXSkNjA3UX6qhtqKW2oZbDDYdDt8/Wsv/UfipOVnDs3LHPfF1uZi5DsocwadAkhvQeQn52Pr1Se/n0rxARuTwRLz0zSwKWAPOBGmCTma1wzu0KW+1B4JRzboSZLQZ+Bnw90lmiyTkX+oy75tstroXm1uar/mhqaeJi88VPPi40X/j0dlPo9plLZ6i/WM/pi6c/83Gm8QwO97l/X3KPZLLTsumb0ZeRfUYyPX86/TP70z+zPzkZOaQlp0V9jEVEIi0ae3pTgArn3H4AM3sZuBsIL727gSe9268CvzIzc21tECXPlD7D99/9fofF07bhv5zbscIwknskk5KUQnpyOhnJGfRM6UlGSgYDswYy7PphZKSElmWmZHJd+nVkp2WTnZ5NZkqmpv0SkbgTjdIbDBwMu18D3NLZOs65ZjOrB/oCJ9p/MzN7GHjYu3vWzHZHPHFIv45+fgzoNLfD0eT9d57znORkN0frVCyOtTJ3n1jMHfeZ/46/i2KUK9I+d8GVfHE0Sq+j3YP2u0iXs05ooXNLgaUdPRZJZlbqnJsc7Z8TabGYW5m7RyxmhtjMrczd51pzR+OS0zVA+NU984DaztYxs2QgG4KzGyIiIvEpGqW3CSgys6FmlgosBla0W2cFcL93+17g/Wi/nyciIhLxlze99+geAd4hdMrC8865nWb2E6DUObcC+A3wOzOrILSHtzjSOa5C1F9CjZJYzK3M3SMWM0Ns5lbm7nNNuU07WCIikiii8fKmiIhIIKn0REQkYSRM6ZnZ82Z2zMx2hC170swOmdlH3scdYY/9yMwqzGy3mX3Fp8z5ZvaBmZWb2U4z+y/e8j5mtsrM9nqfr/eWm5n9wsu9zcwmBihz0Mc63cw2mtlWL/f/8JYPNbMN3lj/wTs4CzNL8+5XeI8XBijzb83sQNhYj/eW+/77EZY9yczKzOxN735gx7mLzLEwzpVmtt3LV+otC+z2o4vMkdt+OOcS4gOYBUwEdoQtexL4QQfrjgG2AmnAUGAfkORD5oHARO92FrDHy/YU8Li3/HHgZ97tO4C3CZ0HORXYEKDMQR9rA3p5t1OADd4YLgMWe8ufBv6zd/s7wNPe7cXAHwKU+bfAvR2s7/vvR1iWx4B/A9707gd2nLvIHAvjXAn0a7cssNuPLjJHbPuRMHt6zrkSLv9cwLuBl51zjc65A0AFoenVupVz7rBzbot3uwEoJzSbzd3Av3qr/Stwj3f7buBFF7IeuM7MBgYkc2eCMtbOOXfWu5vifThgLqGp8uDzY932/+BV4Daz7p23rYvMnfH99wPAzPKAO4HnvPtGgMcZPp/5CwRinLsQ2O3HVbji7UfClF4XHvF25Z9v282n46nUutpwR533ss4EQn/N5zrnDkOoZID+3mqByt0uMwR8rL2Xrz4CjgGrCP3VeNo519xBts9MpQe0TaXXrdpnds61jfX/8sb6ny10VZPPZPb4NdY/B/470Ord70vAx5nPZ24T5HGG0B9B75rZZgtN6QjB3350lBkitP1I9NL7NTAcGA8cBv63t/yyp0nrDmbWC3gN+K/OuTNdrdrBMl9yd5A58GPtnGtxzo0nNIvQFGB0R6t5nwORu31mM7sR+BEwCrgZ6AP80Fvd98xmdhdwzDm3OXxxB6sGZpw7yQwBHucw051zE4GFwHfNbFYX6wYld0eZI7b9SOjSc84d9TYarcCzfLpbfDlTqXULM0shVB7/zzn3797io20vO3if2y52F4jcHWWOhbFu45w7DXxI6H2N6yw0VR58NlugptILy7zAe4nZOecagRcI1lhPBxaZWSXwMqGXNX9OsMf5c5nN7KWAjzMAzrla7/Mx4HVCGQO9/egocyS3Hwldeu1er/4q0HZk5wpgsXfk2FCgCNjoQz4jNHtNuXPu/4Q9FD6N2/3A8rDl3/SOwpoK1Le9jNFdOsscA2OdY2bXebd7AvMIvR/5AaGp8uDzY+3rVHqdZP44bINmhN6vCR9rX38/nHM/cs7lOecKCR2Y8r5z7j8R4HHuJPM3gjzOXq5MM8tquw3c7mUM8vajw8wR3X50dZRLPH0Avye0W9xE6K+DB4HfAduBbd7gDQxb/8eE3tPZDSz0KfMMQrvq24CPvI87CL2n8R6w1/vcx1vfCF3Ad5/375ocoMxBH+txQJmXbwfwhLd8mPckqgBeAdK85ene/Qrv8WEByvy+N9Y7gJf49AhP338/2uWfw6dHQgZ2nLvIHOhx9sZ0q/exE/ixtzzI24/OMkds+6FpyEREJGEk9MubIiKSWFR6IiKSMFR6IiKSMFR6IiKSMFR6IiKSMFR6IiKSMFR6IiKSMP4/HGSHs56mfAEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "n: 100000\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAJ4CAYAAAD8/U2ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XmcW+V99/3PT8tomU2zebexwQZsSALEIRACgQAJSdOQ5g4padPmbtP4edrs6Za0vdPe6ZPX3fRuk3QhixuS0DQpIaRp3ZZCSFizsNhAAdsYDN7GM/aMRyPNohmNluv5QxozDGN7bEtzpKPv+/Wal6WjI81P8khfneu6znWZcw4RERE/C3hdgIiISLUp7ERExPcUdiIi4nsKOxER8T2FnYiI+J7CTkREfE9hJyIivqewExER31PYiYiI74W8LuBkdHd3u9WrV3tdhoiI1Iht27Ydcc71nGi/ugq71atXs3XrVq/LEBGRGmFm++azn5oxRUTE9xR2IiLiewo7ERHxPYWdiIj4nsJORER8T2EnIiK+p7ATERHfU9iJiIjvKexERMT3FHYiIuJ7dTVdmIjfje8c5/A/HWbw+4PE1sZY+8W1xNfGvS5LpO4p7EQ81re5j8JEgUPfPMT4E+NgEDs7RvqBNI+e/yhn/NEZrPrkKgJNaogROVUKOxGPTR2a4uCXDpIbzNH19i7aX99OqD1EPpVn8HuD7P3TvaQfTNNzw4sTuy/btMzDikXqj8JOxEPJu5Ps/z/7sbCx4uMriJ/9YpNlKBFi6QeWEogGGL5nmLbL2ogsi3hYrUj9UruIiEeO/NsRnnrbU4S6Q6z6o1UvCbqZun+pm0A0wMCtAzjnFrhKEX/QkZ3IAujb3PeS66OPjtL/9X6iq6Is/8hygs3BY9432BKk+x3dDHxngLFtY7RubK12uSK+oyM7kQU2/vQ4/Tf3EzszxvKPHT/oprVf3k5kZYTB7w1SzBYXoEoRf1HYiSyg3HCOQ984RNPyptIRXezEQQdgAaPnl3vIp/Kkf5qucpUi/qOwE1kgruA4dPMhilNFln1gGYHIyb394uviRM+KkvpxCldQ353IyVDYiSyQof8cYuK5CRb/ymKaljSd0mN0XNNB7kiOI/92pMLVifibwk5kAWT7siTvSNJ2SRttl7ad8uO0XNBCuDvMgc8fqGB1Iv6nsBNZAEP/MYQ12UtODD8VFjASVycY+ekIIw+PVKg6Ef9T2IlU2diTY4xtG6PjjR0EW+Y3IOV42l/XTrA9qKM7kZOgsBOpsr1/updALEDHtR0VebxANMCyTcsYvH2Qib0TFXlMEb9T2IlU0ei2UY786xE6rumY1/l087X8w8vB4ODfHazYY4r4mcJOpIr2fHoPoY4QiasTFX3c6Mooi969iP5/6Cc/kq/oY4v4kcJOpErSD6VJ3pFk5e+vnPfJ4ydjxSdWUBgt0H9zf8UfW8RvNDemSJXs/fRewj1hln94OQPfGajoY0/PtRlbF2PfZ/cRiAawoGnpH5Fj0JGdSBWkHkwxfPcwq/5wFaGW6n2n7Limg/xQnrHHx6r2O0T8YF5hZ2bXmdkuM9ttZp+c4/aImX23fPvDZrZ6xm2fKm/fZWZvnrH942a23cyeNrN/NrNoJZ6QSC3Y++m9NC1pYtlvV/dIq/mVzYQXhUnendTyPyLHccKwM7MgcBPwFmAD8B4z2zBrt/cDw865tcAXgM+V77sBuBE4D7gO+JKZBc1sOfARYKNz7nwgWN5PpO4N3zNM6r4Uqz61imC88n11M1nA6Li2g+zeLJlnMlX9XSL1bD5HdhcDu51zLzjnpoBbgetn7XM9cEv58u3A1WZm5e23Oueyzrk9wO7y40GpvzBmZiEgDvQhUuecc+z5X3uIrIiwdNPSBfmdbZe2EUwESd6RXJDfJ1KP5hN2y4GZUzX0lrfNuY9zLg+kga5j3dc5dxD4K2A/0A+knXM/nOuXm9kmM9tqZlsHBwfnUa6Id5J3JRn52Qir/ngVwWh1j+qmBcIBOq/tZOLZCdI/0/I/InOZT9jZHNtmdw4ca585t5tZB6WjvjXAMqDZzN471y93zm12zm10zm3s6Tm9eQVFqungVw/y7G8/S6grBMXSiMnpn2prv7ydYEuQfZ/dV/XfJVKP5hN2vcDKGddX8PImx6P7lJsl24Hkce57DbDHOTfonMsB/wK87lSegEitGH9ynOzeLF1v7cJCc33Pq55AJEDi6gTJO5KMPj66oL9bpB7MJ+weBdaZ2Roza6I0kGTLrH22AO8rX34XcI8rDQ3bAtxYHq25BlgHPEKp+fISM4uX+/auBnae/tMR8YYrOob+fYhwT/i0lvA5HYkrEwTbguz/3H5Pfr9ILTth2JX74D4E3EUpkG5zzm03s8+Y2dvLu90MdJnZbuATwCfL990O3AbsAO4EPuicKzjnHqY0kOUx4KlyHZsr+sxEFtCRfztC9kCWrrd1YcGFPaqbFowHj04QPblv0pMaRGqV1dO5ORs3bnRbt271ugyRl3n8iscZ3zHOmj9f41nYAXRe18lDZz7Eio+tYO1frfWsDpGFYmbbnHMbT7SfZlAROU1j/z1G+sE0iSsTngYdQHRVlEU3lCeIHtUE0SLTFHYip+ng3x8kEAvQflm716UAsOLjKyiMFDj09UNelyJSMxR2Iqchl8xx+NuHWfzexRVdr+50tF3cRttlbfT+TS+uUD/dFCLVpFUPRE5D/839FCeKLP/wckZ+PuJ1OUfP6Ws+v5mRn47w3Iefo+WCFgCtiCANTWEncpKmA8UVHfs/t5/Y2bGaCLqZWi5oIdgaZOSRkaNhJ9LI1IwpcooyOzPkh/IkrqzsKuSVYAGj5cIWxp8apzhV9LocEc8p7ERO0ehjowSiAZpf2ex1KXNqfXUrbsox/vS416WIeE5hJ3IKXMEx9vgYza9oJhCuzbdRbF2MYGuQsW1a2FWkNt+lIjVu4rkJiuNFWi6q3f4wC5aaMseeGlNTpjQ8hZ3IKRh9bBRrMprPr80mzGmtF7XismrKFFHYiZwkVyw3YZ7fTKCptt9CsbNjBFuCjD2mpkxpbLX9ThWpQZMvTFIYKdByYe02YU472pT55BiFiYLX5Yh4RmEncpJGt41iIaP5FbXdhDmt5aIWXNaRui/ldSkinlHYiZwE50pNmPENcYKx2pge7ERia2NYyEjdo7CTxqWwEzkJ40+Pkx/O0/Kq2m/CnBZoChA9M8rwPcNelyLiGYWdyEkYvrsUGPENcY8rOTnxc+OMPT5GLpnzuhQRTyjsRE7C8N3DhBeHCXeGvS7lpMTPiYND/XbSsBR2IvNUzBZJ3Z8ivr6+juoAomuiBJoDasqUhqWwE5mn9M/TFCeKNK+vj1GYM1nQSFyR0CAVaVgKO5F5Gr57GIIQOyfmdSmnJPHGBJmdGbJ9Wa9LEVlwCjuReRq+e5i217bVzSkHs3W8sQOA1L06upPGo7ATmYdcMsfo1lE6ru3wupRT1vKqFkIdIfXbSUNS2InMQ+reFDjovLbT61JOmQWNxFUJhn+ssJPGo7ATmYfk3UmCrUFaL271upTTkrgqQXZflsl9k16XIrKgFHYi85D6cYrElYmaXah1vhKXJwBIPaB+O2ks9f3OFVkAk72TTOyeIHFVwutSTlvz+c0E24OkH0x7XYrIglLYiZxA+v5SMCSurP+ws6DRflm7wk4ajsJO5ARS96UIJUK0vLJ+Jn8+nsQVCTLPZJgamPK6FJEFE/K6AJFal7ovRfsV7VjQvC7ltPRt7gM4Ohn0nk/vofWi0oCbZZuWeVaXyELQkZ3IcWQPZkv9dW+o/ybMadEzoljYmNg94XUpIgtGR3Yic5g+Chp5ZAQoHQ1Nb6t3FjKia6JMPKewk8ahIzuR45jYNUEgFiCyIuJ1KRUVWxcjeyBLYaLgdSkiC0JhJ3IcmWczxNbFsEB999fNFlsbAweTL+jkcmkMCjuRY8gN58gN5IifXX/r151I7MwYBFBTpjQMhZ3IMUwHQezs+lzS53gC0QCRVRGFnTQMhZ3IMUw8O1EKhZX+6q+bFl8bZ3LvJMVc0etSRKpOYSdyDH7tr5sWWxfD5R3ZfVrMVfxPYScyh3wqT+5wrm5XJZ+P2NrSc1NTpjQChZ3IHDLPZgB8OThlWrAlSNPSJjLPZbwuRaTqFHYic/B7f9202LoYk89P4grO61JEqkphJzIHv/fXTYuti1GcLDL25JjXpYhUlcJOZJZsf7bUX+fDUw5mm+63Sz+gJX/E3xR2IrOk7i+t4u3n/rpp4c4woa4QqQe1crn4m8JOZJbUfamG6K+bFlsXI/1gGufUbyf+pbATmSV1X4rY2ljdr183X7G1MXIDOSae1SkI4l8KO5EZsoeyTOyaaIj+umnxdaXmWjVlip8p7ERmSN9fGqgRP8f//XXTwovDhBeFNUhFfE1hJzJD6r4UwdZgw/TXAZgZiTckSN2bUr+d+JbCTmSG1H0p2i9vb5j+ummJqxJke7NMPK9+O/EnhZ1IWfZQlswzGRJvSHhdyoJLXFV6zql71G8n/jSvsDOz68xsl5ntNrNPznF7xMy+W779YTNbPeO2T5W37zKzN8/YnjCz283sGTPbaWaXVuIJiZyq6T6rxJWNF3bxc+I0LWkida/CTvzphGFnZkHgJuAtwAbgPWa2YdZu7weGnXNrgS8AnyvfdwNwI3AecB3wpfLjAfwNcKdz7lzgVcDO0386IqcudV+KYEuQlotavC5lwZkZiasSDN87rH478aX5HNldDOx2zr3gnJsCbgWun7XP9cAt5cu3A1ebmZW33+qcyzrn9gC7gYvNrA24ArgZwDk35ZzTV0rx1HR/XSDUmK37iasS5A7nyDyjVRDEf+bzrl4OHJhxvbe8bc59nHN5IA10Hee+ZwKDwDfM7HEz+5qZNZ/SMxCpgKnDU2R2ZhqyCXNaxxs7ANSUKb40n7Cba1ja7HaOY+1zrO0h4CLgy865C4Fx4GV9gQBmtsnMtprZ1sHBwXmUK3LypufDbMTBKdOiZ0aJrIwo7MSX5hN2vcDKGddXAH3H2sfMQkA7kDzOfXuBXufcw+Xtt1MKv5dxzm12zm10zm3s6emZR7kiJy91f+P2102b7rdL3ZfCFdVvJ/4yn7B7FFhnZmvMrInSgJMts/bZAryvfPldwD2u1Mu9BbixPFpzDbAOeMQ5dwg4YGbnlO9zNbDjNJ+LyEnr29xH3+Y+jvzgCJEzIhz6xiH6Ns/+Ltc4ElclyB3JMb593OtSRCoqdKIdnHN5M/sQcBcQBL7unNtuZp8BtjrntlAaaPItM9tN6YjuxvJ9t5vZbZSCLA980DlXKD/0h4FvlwP0BeA3KvzcROYlP5Jnqn+KtkvavC7FM9MBnxvKAbDvz/fRcU0HyzYt87IskYo5YdgBOOfuAO6Yte3TMy5PAjcc476fBT47x/YngI0nU6xINUw8V5o1pJEmfz6WcFdpnszMMxk6runwuhyRimnMMdYiM2SezWARI3pG1OtSakL83DiZZzO4gvrtxD8UdtLwJp6dIHZW46xfdyLx9XFc1jG5Z9LrUkQqRmEnDS0/mmeqb6qhlvQ5kfg5cTAY36lBKuIfCjtpaEf769apv25asDlI5IwImZ2aSUX8Q2EnDW1i1wTWZERXq79upuZzm5ncM0l+JO91KSIVobCThpZ5NkNsrfrrZouvj0MRUg9oNhXxB4WdNKypI1NM9U2pCXMO0bOiWNgY/tGw16WIVITCThrW9Pp1GpzycoFwgNi6GMN3K+zEHxR20rBS96VK/XU6v25O8XPjZHZkyPZlvS5F5LQp7KRhpe5Llc6vC6m/bi7x9aUj3uEf6+hO6p/CThpSbijH+FPjmiLsOCIrIoS7w+q3E19Q2ElDmh5lGD9b/XXHYgEjcXWC4R8NU1rERKR+KeykIaXuSxGIBXR+3Ql0XNPBVN8UmWd0grnUN4WdNKTU/SnaXtem/roTmF75QKMypd4p7KTh5JI5xp8cJ3FlwutSal5sdYzY2pj67aTuKeyk4aQeSIGDxBsUdvPRcU0HqftSFHNFr0sROWUKO2k46fvTBKIB2i5u3JXJT0bHNR0URguMPjrqdSkip0xhJw0ndV+pvy4Q0Z//fCSuSoChpkypa3q3S0PJJXOM/feYmjBPQrgzTOurWzVIReqawk4aSvrBdKm/ToNTTkrHNR2MPDRCfkxL/kh9CnldgMhCSt2fIhAN0Hpxq9el1IW+zX0AFCYKuLxjzx/vofm8ZgCWbVrmZWkiJ0VHdtJQUvemaLukjWA06HUpdSV2VgyCkNmlk8ulPinspGFMDUwx9sTY0ROlZf4CkdJsMxO7JrwuReSUKOykYUzP3t/xJoXdqYifE2dy/ySFiYLXpYicNIWdNIzhHw4T6gjRepH6605F/Jw4FGFit47upP4o7KQhOOdI3p2k45oOLKj5ME9F9MwoFjI1ZUpd0mhM8b2+zX1k+7JMHZzCInZ0hKGcnEBTgOiZUQ1SkbqkIztpCJmdpQ/o5vXNHldS3+Jnx8keyFLIqN9O6ovCThpCZkeG8KIw4e6w16XUtdg5MXAw8ZyaMqW+KOzE91zekXkuQ3yDViU/XdE1USxsasqUuqOwE9+beGECl3VqwqyAQLjUb6dBKlJvFHbie5kdGQiUm+DktMXPiZM9mCWXzHldisi8KezE98a3jxM7M0YwpinCKiF+ThxcaZ5RkXqhsBNfmzo8RXZ/lvh56q+rlOjqKNZkpO5V2En9UNiJryXvSgLQfL766yrFQkZsbUxhJ3VFYSe+lrwzSbA1SGRFxOtSfCV+dpzxp8eZGpzyuhSReVHYiW+5giP5wyTN5zVjAU0RVknTg31S9+noTuqDwk58a3TrKPmhvPrrqiB6RpRgS1BNmVI3FHbiW8k7k2DQvEH9dZVmQaP98naFndQNhZ341tB/DdF6cSvBFp1yUA2JqxJknsmQPZT1uhSRE1LYiS/lhnKMPjJK53WdXpfiW4mrEoD67aQ+KOzEl5J3J8FB11u6vC7Ft1ovbCXYrn47qQ8KO/Gl4bvKq5Jv1Krk1WJBI3FFQmEndUFhJ77jXOmUg45rtSp5tSWuTDDx3ATZg+q3k9qmsBPfGX96nKm+KTrfpP66apvutxu+d9jjSkSOT2EnvjP8w9IHb8ebOjyuxP9aXtVCqCOkpkypeQo78Z3kXUni6+NEV0a9LsX3LGAk3pDQiEypeSGvCxCphL7NfQAUp4qk7k3R/ob2o9ukuhJXJTjyr0eY3D9JdJW+YEht0pGd+MrEcxO4vNOsKQvo6Pl2asqUGqYjO/GVzI5MaQmas7UqebVNHzm7oiPYEqTvq30Us0UAlm1a5mVpIi+jIzvxlfEd48TWxQg06U97oVig9OUisyuDc87rckTmNK9PBDO7zsx2mdluM/vkHLdHzOy75dsfNrPVM277VHn7LjN786z7Bc3scTP7j9N9IiK54RxTfVPE12uVg4UWPztOPpkndyTndSkiczph2JlZELgJeAuwAXiPmW2Ytdv7gWHn3FrgC8DnyvfdANwInAdcB3yp/HjTPgrsPN0nIQKlJkyA5vPUX7fQpte3m9g14XElInObz5HdxcBu59wLzrkp4Fbg+ln7XA/cUr58O3C1mVl5+63Ouaxzbg+wu/x4mNkK4BeAr53+0xCBzM4MwbYgTcubvC6l4TQtbSLYFiTzbMbrUkTmNJ+wWw4cmHG9t7xtzn2cc3kgDXSd4L5fBP4AKB7vl5vZJjPbamZbBwcH51GuNCJXdIzvGKd5QzOl71mykMyM+NlxJnZNqN9OatJ8wm6uT47Zf83H2mfO7Wb2NmDAObftRL/cObfZObfRObexp6fnxNVKQ8ruz1IcLxLfoP46r8TOiZFP5ckNqN9Oas98wq4XWDnj+gpg9tm6R/cxsxDQDiSPc9/LgLeb2V5KzaJvNLN/OoX6RYDSKExAg1M8FD+n9NpndqkpU2rPfMLuUWCdma0xsyZKA062zNpnC/C+8uV3Afe4UlvGFuDG8mjNNcA64BHn3Keccyucc6vLj3ePc+69FXg+0qAy2zNEVkUItenUUa+EF4UJtgeZeFaDVKT2nPCTwTmXN7MPAXcBQeDrzrntZvYZYKtzbgtwM/AtM9tN6YjuxvJ9t5vZbcAOIA980DlXqNJzkQaVH8kz8cKEJn72mJkRPydO5pnS+XbqO5VaMq+vwc65O4A7Zm379IzLk8ANx7jvZ4HPHuex7wPum08dInNJ3ZuCIpoirAbEz4kz+sgomWcyNK/X/4fUDk0zIXUv+cMkFjFiZ2mKMK9Nn2+nVRCk1ijspO4l70oSPzuOhdRs5rVwd1jr20lNUthJXcvszjD5/KROOagR0/12qftSOt9OaorCTura8F2lVcmbz1f/UK2InRMjN5hj/Olxr0sROUphJ3UteWeS6FlRmhZpirBaET+3dJQ9/KNhjysReZHCTupWMVtk+J5hOq/r9LoUmSHcGSZ2TozhuxV2UjsUdlK30j9JU8wUFXY1qPPaTlL3p44u5iriNYWd1K3knUksbCSuTHhdiszScW0HxUyR9M/TXpciAijspI4l70zSfnk7oRZNEVZrElcmIIiaMqVmKOykLmUPZhl/elxNmDUq1Bai7ZI2hZ3UDIWd1KXkXUkAhV0N67img9Gto+SSWvJHvKewk7qUvDNJ07ImnV9Xwzqv7QSHZlORmqDODqkrfZv7cAXH0H8O0XJhC/3/0O91SXIMrRe3EmwNkrw7Sc//0MLL4i2FndSdyb2TFDNFms/TUV2t6ttcWt85emaUI98/QutFrQAs27TMy7KkgakZU+rO+PZxsBdn6pDaFV8fJ3ckx9TglNelSINT2EndGd8+TvTMKMHmoNelyAlMr2mX2ZnxuBJpdAo7qSv50TzZfVk1YdaJ8OLSkj8KO/Gawk7qSmZnBhwKuzphZsTXx8k8k8EVteSPeEdhJ3VlfPs4geYAkVURr0uReYqvj1PMFMnuz3pdijQwhZ3UDVd0ZLZnaN7QjAW0Knm9mB5INL5D69uJdxR2UjfGnhijMFpQE2adCbWFiKyMqN9OPKWwk7qRvLM0RVh8g045qDfx9XEmnp+gMF7wuhRpUAo7qRtD/zFEZFWEULvmQqg38fVxKEDqAU0dJt5Q2EldmDo8xchDI7S8qsXrUuQUxNbGsJBpFQTxjMJO6sLQfw6VTjl4lfrr6lGgKUBsXezoahUiC01hJ3XhyJYjRFZFiKzQKQf1qvm8ZjI7Mkzum/S6FGlACjupeYWJAsM/HKb77d2Y6ZSDetX8itJR+dB/DXlciTQihZ3UvOEfDVOcKNL19i6vS5HTEF4cJro6SvIONWXKwlPYSc0b2jJEsC1I4g0Jr0uR02BmdL61k+EfD1PMFr0uRxqMwk5qmis6jvz7ETrf0kmgSX+u9a7rrV0UM0WdgiALTp8eUtNGHx0ldzhH99u7vS5FKiBxVQKLmJoyZcEp7KSmDX5/EAsZnW/p9LoUqYBgPEjHVR0M3aFBKrKwFHZSs5xzDH5vkI43dRDuCHtdjlRI51s7mXh2gsxuzZUpC0dhJzVrdOsok3snWfTuRV6XIhU0fZSupkxZSAo7qVmDtw1iYaPrep1y4CfxtXFi58Q4suWI16VIA9GMulJz+jb34Zyj/+v9xM+NM3jboNclSYX1vLOH/X+5n1wyR7hTTdRSfTqyk5o0uXeSfDJP66tbvS5FqqD7l7qhAEP/roEqsjB0ZCc1aWzrGBYyTfzsM32b+4DS4KNQR4gDXzhw9ATzZZuWeVma+JyO7KTmuKJjdNso8Q1xgvGg1+VIFZgZLRe2kNmRoTip2VSk+hR2UnMmX5gkP6wmTL9ruaAFl3OMbx/3uhRpAAo7qTkjPx/BIkbLBVqo1c9ia2MEW4KMPTHmdSnSABR2UlMKEwVGt47SemErgaj+PP3MgqU+2fEnxynm1JQp1aVPE6kpQ1uGKE4Wabu0zetSZAG0XNhCcbJI5hnNpiLVpbCTmnLolkOEOkLEzo55XYosgPi5cQLxAKNbR70uRXxOYSc1I9ufJXlXkrZL2rCAViRvBIFwgJaLWhh7fIxCpuB1OeJjCjupGQPfGYAitF2iJsxG0nZxGy7rdIK5VJXCTmqCc45Dtxyi7ZI2mpY0eV2OLKDYuhihRIjD3znsdSniYwo7qQmj20YZf2qcxe9b7HUpssAsYLS+ppXkfyXJJXNelyM+pbCTmtD/tX4C8QCLf0Vh14haL27F5RyDt2vSb6kOhZ14rjBeYOA7A/Tc0EOoTdO1NqLIygixc2JqypSqmVfYmdl1ZrbLzHab2SfnuD1iZt8t3/6wma2ecdunytt3mdmby9tWmtm9ZrbTzLab2Ucr9YSk/gx8b4DCaIGlv7XU61LEI2bG4l9dTPr+NJP7J70uR3zohF+jzSwI3ARcC/QCj5rZFufcjhm7vR8Yds6tNbMbgc8Bv2xmG4AbgfOAZcCPzOxsIA/8rnPuMTNrBbaZ2d2zHlN8bHr2e4D9f7mf8OIw49vHyezQycWNavF7F7P303s59I+HWP0nq70uR3xmPkd2FwO7nXMvOOemgFuB62ftcz1wS/ny7cDVZmbl7bc657LOuT3AbuBi51y/c+4xAOfcKLATWH76T0fqTbYvy+Tzk7S/vp3Sn4w0qtiaGImrEhz6xiFc0XldjvjMfMJuOXBgxvVeXh5MR/dxzuWBNNA1n/uWmzwvBB6e65eb2SYz22pmWwcH1XntNyM/HYGAzq2TkiW/uYTJFyZJPZDyuhTxmfmE3Vxft2d/7TrWPse9r5m1AN8HPuacG5nrlzvnNjvnNjrnNvb09MyjXKkXxVyR9M/TtFzQooEpAkDPO3sItgU59PVDXpciPjOfsOsFVs64vgLoO9Y+ZhYC2oHk8e5rZmFKQfdt59y/nErxUt/GHh+jOF6k/fJ2r0uRGhGMB1n0nkUM3j5IfiTvdTniI/MJu0eBdWa2xsyaKA042TJrny3A+8qX3wXc45xz5e03lkdrrgHWAY+U+/NuBnY65z5fiSci9Sf9YJpwd5j4uXGvS5Ea0Le5j77NfYQ6QhQnijz7wWdfMpBJ5HScMOzKfXAfAu6iNJDkNufEm6G8AAAgAElEQVTcdjP7jJm9vbzbzUCXme0GPgF8snzf7cBtwA7gTuCDzrkCcBnwa8AbzeyJ8s9bK/zcpIZNHZ5i4tmJ0sAUTfosM0RXR2la2lTqzxWpkHl1lDjn7gDumLXt0zMuTwI3HOO+nwU+O2vbT5i7P08aRPrBdGlgyus0MEVeysxof307g98bJNub9boc8QnNoCILrpgtMvLzkdLAlHYNTJGXa7u0DQsbqfs1KlMqQ2EnC27wB4MUxgoamCLHFGwO0rqxlZGHRzRQRSpCYScLrn9zvwamyAm1v6Edl3Uc/ifNlymnT2EnCyrzbIbUvSkNTJETiq6OElkVoe/LfZQGd4ucOoWdLKj+f+jHQqaBKXJCZkbiDQnGnx4n/dO01+VInVPYyYIpZosc+uYhuq7v0sAUmZfW17QSbA/S9yWdbyenR2EnC2bwB4PkjuRYtmmZ16VInQhEAiz9zaUMfm+QyV4t/SOnTmEnC6Z/cz/RNVE6runwuhSpI8s/shxXdBz8+4NelyJ1TGEnC2J6YMrSDyzVwBQ5KbHVMXre2UP/V/vJj+k0BDk1CjtZEAf/7iAWNpb8xhKvS5E6tOITK8in8hy+RachyKlR2EnV5ZI5+r/ez+JfXUxkScTrcqQOtV/aTutrW+n9Yi+uoNMQ5OQp7KSq+jb38cxvPkMxUyydM1We2V7kZK38xEomdk9w5N+PeF2K1CGFnVRVMVckdW+K+IY4keU6qpNT1/3ObqKro+z/i/06yVxOmk52kqoafWSUwkiBjms1AlNOzcyWgLbXtTHwnQF2f3w3zRuadRqLzJuO7KRqnHMM3z1M04om4us1D6acvrbXtRFKhEjekfS6FKkzCjupmiP/eoSp/ik6r+2ktDi9yOkJhAN0vLmDiecmyDyb8bocqSMKO6kKV3Ds+ZM9hBeHaX1Nq9fliI+0v76dYFtQR3dyUhR2UhWHv3OYzI4M3dd3Y0Ed1UnlBJoCdFzbQWZnhvTPNEG0zI/CTiquOFVk75/upeXCFloubPG6HPGhxBUJgm1Bnv+95zUyU+ZFYScV139zP5N7Jlnz2TWaGkyqIhAN0P2ObkZ+PsLgbYNelyN1QGEnFZUfzbPvM/tof307ndd1el2O+FjbpW20XNDC83/4PIXJgtflSI1T2ElF7fvMPqYOTXHWX52lEZhSVRYwzvrrs8juy9L7xV6vy5Eap7CTihnfMU7vF3tZ8v4ltL1WK5FL9XW8sYOut3ex/7P7td6dHJfCTk5b3+Y+Dn71IE+/82msyYivj2sOTFkwaz+/Fld07PrNXbiiBqvI3BR2UhFjj40xsWuC7uu7CbVqFjpZOLGzYpz112cxfPcwfV/WFyyZmz6V5LQVxgoM3DpAZGWE9ivavS5HGsjR1gOD+Plxdn98N7lkjqbFTZo3U15CR3Zy2gZuHaAwXmDJ+5boVAPxhJmx5NeXYE1G/9f7KeaKXpckNUZhJ6dl4LYBRh8dpettXURWagkf8U6oPcTiX1tMdm+WwVt17p28lMJOTln2UJZnf+dZIqsjdL5Z59SJ91ovbKXzLZ2kf5LWACl5CYWdnJJivsjO9+6kMFZgyf9covkvpWZ0vb2L+PlxnvvQc5o7U45S2MkpeeGTL5D6cYqzv3w2kaVqvpTaYQFj6W8uJXpGlKd/6Wkm9k54XZLUAIWdnLTD3zlM71/3svxDy1n6G0u9LkfkZYLNQc7/9/NxU46nfuEp8um81yWJxxR2clJGto6w67d20X5FO2d9/iyvyxE5puZzmznv++cx8ewE22/YrhGaDU7n2cm87f3zvRz4vwcIxAN0/WIXh75xyOuSRI5peoDKol9ZxOF/PMwTb3iCxe9bzPL/Z7nHlYkXFHYyL9m+LL1/U5psd8VHVxBq05+O1If2y9rJJXMk/yNJsDnIsk3LNEl5A1IzppxQbjjHk9c9SWGswPIPL6dpcZPXJYmclK63dZG4KsHwj4bZ/3/2e12OeEBfz+W48iN5nrzuSTK7Miz7nWVEz4h6XZLISTMzet7dQyFTYM8f78FCxqo/WOV1WbKAFHZyTIXxAk+97SnGHhvjvH85j6n+Ka9LEjllFjCWvG8JsTUxXvjDF8gN5TjzL85Uk2aDUDOmzKkwXuCp658i/dM067+9nu5f7Pa6JJHTZkFj/T+tZ9lvL+PAXx5g1wd2aZRmg9CRnbxMLpXjqbc9xcjPRzj3m+ey6N2LvC5JpGIsaKy7aR3hrjD7/r99TOyaYMNtGzQ5gs+Zc/Wz2OHGjRvd1q1bvS7D1/b/9X4O/s1Bsn1Zlr5/Ka2vbvW6JJGqGXlkhMPfOkwgGmDpB5ay9q/Wel2SnCQz2+ac23ii/XRkJ0eNPT3Ggb88QH44z/LfWU7z+c1elyRSVW0XtxFZEaHvK330fr4XM2P1n68mGA16XZpUmPrsBICB7w3w2CWPUZwssuLjKxR00jAiyyKc8Udn0H55Owf+6gDbLtxG+iFNIO03CrsGlx/N89yHn2PHu3fQ8soWzvjjM4idFfO6LJEFFYgGWPyri3nlXa+kMFbg8Usf55n3P8PUgEYg+4XCroEN/dcQj573KAdvOsjyjy7ngvsuIJRQy7Y0rsm9k6z8/ZV0vKmDQ7cc4qHVD7H9xu0c/PJBr0uT06RPtgb0/B88z9B/DJHZmaFpaRMrf38lsbNiHPqm5roUCUQD9PyPHtova2fguwMMfneQ9E/SNG9oJvGGhNflySlS2DWIwniBwR8M0v+1ftL3pwm2Bul+ZzeJNyYIhHWALzJb05Imln9kOeP/Pc7AbQM8ceUTdP5CJ2v+9xqNUq5DCjsfmxqYYvjuYYbuGOLIvx2hOF4kckaEnht6aL+inUCTQk7keMyMlgtaiG+IUxgrcOD/HmDbxm10/WIXKz6+gsSVCc3AUicUdj5SzBUZeWiE5F1JkncmGds2BkCwJUjLBS20XdJGbG0MC+jNKXIyAk0BAp0Bzvj0GaTuSTH842GG/n2IpqVNrPrDVfTc0ENkmU5Kr2U6qbyOOeeY2D1B6t4UybuSDP9omMJIAYLQfmk7oc4Qzec1E1kVUcCJVFBxqsjotlFS96bI7suCQfvr2+m+vpvE1QlaXtmi99wCqehJ5WZ2HfA3QBD4mnPuL2bdHgH+EXg1MAT8snNub/m2TwHvBwrAR5xzd83nMeXlXNExvmOc9ANpUg+kSD+QPjo5c6gzRMsrW4ifFyd+bpxgXCfFilRLoClA+6XttF/aTrY/y9i2MUa3jfL87z1fur05QPSMKJ3XddL8imZaXlFqCg3G9L70ygnDzsyCwE3AtUAv8KiZbXHO7Zix2/uBYefcWjO7Efgc8MtmtgG4ETgPWAb8yMzOLt/nRI/ZkIr5IoV0gamBKSb3TZLdlyXzTIbRx0cZe2KMQroAQGRFhMQbSyPD4mfHCS8Oq+9AxAORpREib4vQ9bYucsM5JnZNkNmVIXsgy8GbDuKy5dazAETXRImujhJdFSV6RpTIqgjRM6KEF4UJtYUItgUJtYawoN7LlTafI7uLgd3OuRcAzOxW4HpgZjBdD/xZ+fLtwN9b6ZP3euBW51wW2GNmu8uPxzwes+LyY3nyw3kolo6ScC/++7JtRV5y2Tn34j6FUv+Ym3K4nHvp5akiLvfi5WK2SHG8SGG8cPSnOF6kMFaYe9tY4WV1B+IBmhY30fKqFqJrosTPjhPqCincRGpMuCNM+JIwbZe0AaXPi9xAjuzBLNm+LFP9U0y+MElmR+a4S2YFmgMvht+J/m0PEWwNYiErfSYEACsNrsGAwIzL5R8LvHh9PveZuf8x7wMv/jvj8ks+p2bt17SkacFGg88n7JYDB2Zc7wVee6x9nHN5M0sDXeXtD8267/Ly5RM9ZsUd+uYhdn94d7V/zcsZWJMRiAQINAWwqJU6vCMBrMkId4UJLCtdDsaDBOIBgs1Bwl1hQl0hQu0htf+L1CELGE1Lmmha0vSy0xWKuSL5VJ78UL70hXeiSHGyePTfwmRpWyFTIJfMvXh7eR/qZ7jFMb3m6dfQfN7CTE04n7Cb61N29st8rH2OtX2uKJ/zv87MNgGbylfHzGzXMeqsXQ7Iln8qoxs4UrFHa2x6LStLr2fl+P+1PL8ij3LGfHaaT9j1AitnXF8B9B1jn14zCwHtQPIE9z3RYwLgnNsMbJ5HnQ3DzLbOZ/SRnJhey8rS61k5ei0raz6NpY8C68xsjZk1URpwsmXWPluA95Uvvwu4x5XOadgC3GhmETNbA6wDHpnnY4qIiFTECY/syn1wHwLuonSawNedc9vN7DPAVufcFuBm4FvlAShJSuFFeb/bKA08yQMfdM4VAOZ6zMo/PRERkTo7qVxKzGxTuXlXTpNey8rS61k5ei0rS2EnIiK+p5mARUTE9xR2NcbMVprZvWa208y2m9lHy9s7zexuM3uu/G9HebuZ2d+a2W4ze9LMLvL2GdQWM4ua2SNm9t/l1/N/l7evMbOHy6/nd8sDpSgPpvpu+fV82MxWe1l/LTKzoJk9bmb/Ub6u1/IUmdleM3vKzJ4ws63lbXqvV4HCrvbkgd91zq0HLgE+WJ527ZPAj51z64Afl68DvIXSKNd1lM5H/PLCl1zTssAbnXOvAi4ArjOzSyhNafeF8us5TGnKO5gx9R3whfJ+8lIfBXbOuK7X8vRc5Zy7YMZpBnqvV4HCrsY45/qdc4+VL49S+lBZTmk6tVvKu90CvKN8+XrgH13JQ0DCzJYucNk1q/y6jJWvhss/Dngjpant4OWv5/TrfDtwtWletqPMbAXwC8DXytcNvZaVpvd6FSjsali52edC4GFgsXOuH0qBCCwq7zbXdG7LkaPKzW5PAAPA3cDzQMo5ly/vMvM1e8nUd8D01HdS8kXgDyjNHgul10av5alzwA/NbFt5tijQe70qtHhrjTKzFuD7wMeccyPH+UI8n+ncGlr53M4LzCwB/ABYP9du5X/1eh6Dmb0NGHDObTOzK6c3z7GrXsv5u8w512dmi4C7zeyZ4+yr1/M06MiuBplZmFLQfds59y/lzYenmyzK/w6Ut89nOjcBnHMp4D5KfaGJ8tR28NLX7OjrOWvqO4HLgLeb2V7gVkrNl19Er+Upc871lf8doPRF7GL0Xq8KhV2NKfdp3AzsdM59fsZNM6dkex/wbzO2/3p5pNYlQHq6CUTAzHrKR3SYWQy4hlI/6L2UpraDl7+ec0191/Ccc59yzq1wzq2mNEvSPc65X0Wv5Skxs2Yza52+DLwJeBq916tCJ5XXGDN7PfAg8BQv9ov8EaV+u9uAVcB+4AbnXLIcjn8PXAdkgN9wzm1d8MJrlJm9klInf5DSl7vbnHOfMbMzKR2ddAKPA+91zmXNLAp8i1JfaRK4cXrdRXlRuRnz95xzb9NreWrKr9sPyldDwHecc581sy70Xq84hZ2IiPiemjFFRMT3FHYiIuJ7CjsREfE9hZ2IiPiewk5ERHxPM6iI1AgzK1A65SRE6VzA9znnMt5WJeIPOrITqR0T5dnvzwemgP/X64JE/EJhJ1KbHgTWApjZe8tr8j1hZl8tT2wdNLNvmtnT5fXQPl7e9wIze6i83tkPptdCE2l0CjuRGlOeR/ItwFNmth74ZUoTBl8AFIBfpbQ233Ln3PnOuVcA3yjf/R+BP3TOvZJSk+ifLvgTEKlBCjuR2hErL0W0ldI0UTcDVwOvBh4t33Y1cCbwAnCmmf2dmV0HjJhZO5Bwzt1ffrxbgCsW+kmI1CINUBGpHRPlo7ejyvMh3uKc+9Tsnc3sVcCbgQ8C7wY+viBVitQhHdmJ1LYfA+8qr3eGmXWa2Rlm1g0EnHPfB/4XcJFzLg0Mm9nl5fv+GnD/nI8q0mB0ZCdSw5xzO8zsTyitZh0AcpSO5CaAb5S3AUwf+b0P+IqZxSk1df7GQtcsUou06oGIiPiemjFFRMT3FHYiIuJ7CjsREfE9hZ2IiPiewk5ERHxPYSciIr6nsBMREd9T2ImIiO8p7ERExPcUdiIi4nsKOxER8T2FnYiI+J7CTkREfE9hJyIivqewExER31PYiYiI7ynsRETE9xR2IiLiewo7ERHxPYWdiIj4nsJORER8T2EnIiK+p7ATERHfU9iJiIjvhbwu4GR0d3e71atXe12GiIjUiG3bth1xzvWcaL+6CrvVq1ezdetWr8sQEZEaYWb75rOfmjFFRMT3FHYiIuJ7CjsREfE9hZ2IiPiewk5ERHxPYSciIr6nsBMREd9T2ImIiO9VJezM7OtmNmBmTx/jdjOzvzWz3Wb2pJldVI06REREoHpHdt8ErjvO7W8B1pV/NgFfrlIdIiIi1ZkuzDn3gJmtPs4u1wP/6JxzwENmljCzpc65/mrUIyJSCa7oyKfz5IfzFMYLFDNFCuOFoz/T14uZIsVsEZdzuLyjmCtfLv8Uc0Vc/sXrruDAlR4fx0svF8E5B8Xy9pmXi8e437yfUIX3O8l9N3xvA/G18ZN48FPn1dyYy4EDM673lre9LOzMbBOloz9WrVq1IMWJSGMpTBSY3DdJtjfL1MEpsr1ZsgezZHuz5I7kyA3lyB7MUswUT+6DHyAIFrSjP0evB2ZdNko/AAEwZmwzMLOjt8GMbce6X6Wd4DGjZ0Tnve+0QHjhho14FXZzvRRz/gk55zYDmwE2btx4sn9mIiJH5YZz7PvMPqYOTTF1+MWffDL/sk+gQHOAUCJEqDVEsDVI68ZWgs1Bgs1BAvEAgUjpx5qMQFMAi5T+nd5moXKINYhlm5Z5XcJxeRV2vcDKGddXAH0e1SIiPtT7971k92eZ3DvJ5L5JJvdOkhvIHb3dIkbT4iZiZ8ZourSJcE+YUGeoFHCJEIEmDVb3E6/CbgvwITO7FXgtkFZ/nYicDuccmV0ZkncmSd6ZJHVPCpcrHa6FEiGiq6O0v66dyBkRIssiBNuDLzYNiu9VJezM7J+BK4FuM+sF/hQIAzjnvgLcAbwV2A1kgN+oRh0i4m8Hv3yQzK4MY4+PMb59nPxQHoDw4jDtl7cTPydOdHWUUKKulu6UKqjWaMz3nOB2B3ywGr9bRPxv9IlRDt18iEO3HKIwWsAiRnx9nM7rOmne0Ey4O+x1iVJj9HVHRGpa3+ZSd77LO0YeHSF9f5rJPZNYyGh+ZTOtr2ml+RXNCzqyT+qPwk5Ealpxskj6wTTDPxomn8rTtKSJnnf30HZJG8HmoNflSZ1Q2IlITSpmixz88kH2/q+9FMYKxM6JsfjXFxPfENfAEjlpCjsRqQlHmyudY3TrKEd+cIT8UJ74uXG63tFFbE3M4wqlninsRKRmTB2aYuCfB8g8kyGyMsLi9y6meUOz12WJDyjsRMRzxXyRoTuGSP5nEgsbi96ziPYr2htqBhKpLoWdiHgq81yGZ379GUYeGqHl1S0sunERoTZ9NEll6S9KRBbMdL/ctJGHRzj8T4exkLHkt5bQ9po2jyoTv1PYiciCK+aKDH5vkPT9aWLrYix5/xLCHToRXKpHYSciCyo/kqfvS31M7pmk49oOun+pu7T0jUgVKexEZMFMHZri4N8dJJ/Os3TTUlpf3ep1SdIgFHYisiBSP0mx/y/3YwFjxe+u0HlzsqAUdiJScbMHoozvHKfvpj5CnSGWf3g5TT1NHlUmjUphJyJVNf70OH1f6SO8KMyKj63QaQXiCf3ViUjVjD01Rv9X+mla2sSKj60g2KKJm8UbCjsRqYrMcxn6v9pP07Jy0GmFAvGQFoASkYrLHsi+2Ef3keUKOvGcwk5EKmrihQl6/7aXQDRQ6qNrVQOSeE9hJyIVkx/J89QvPoXLO5Z/dDnhTs2KIrVBX7lE5JTMPr3AFR0HbzpI5pkMKz62gsjSiEeVibycjuxEpCIGbx8k83SGRe9ZRPycuNfliLyEwk5ETtvIQyOkfpwi8cYEiSsSXpcj8jIKOxE5Ldm+LIe/fZjYuhg97+rxuhyROSnsROSUFSeL9H+1n0AkwNIPLNXqBVKzFHYickqccxz+9mGmDk+x9ANLCbVrvJvULoWdiJyS0YdHGX1klK5f7NKAFKl5CjsROWmT+yYZ+OcBomdF6XxLp9fliJyQ2h1E5Jhmn0sHpfPpej/fC8DS31yKBdRPJ7VPR3YiclKG7x5m4rkJen65h3C3ZkiR+qCwE5F5mzo0xdCWIVouaKHt0javyxGZN4WdiMyLKzoOf+sw1mQs+pVFmKn5UuqHwk5E5iX9YJqJ3RP03NCj0wyk7ijsROSEcskcg98fJL4+ruZLqUsKOxE5oYHvDoCDxe9drOZLqUsKOxE5rrGnxhh/YpyuX+jS6EupWwo7ETmmYq7I4HcHaVrSRMc1HV6XI3LKFHYickzDdw2TG8yx6MZFWEjNl1K/FHYiMqeJPRMk70zSurGV+HrNfSn1TeOHRWTOacH6vtoHBt3v6vagIpHK0pGdiLxM5rkMY4+N0fnmTsIdGpQi9U9hJyIv4YqOwdsGCXWE6HiTBqWIPyjsROQlRh8eJbs/S/c7ugk06SNC/EF/ySJyVHGqyOC/DhJZHaH14lavyxGpmKqEnZldZ2a7zGy3mX1yjttXmdm9Zva4mT1pZm+tRh0icnJS96QopAosumGR1qkTX6l42JlZELgJeAuwAXiPmW2YtdufALc55y4EbgS+VOk6ROTkFMYLJO9K0vzKZmJrY16XI1JR1TiyuxjY7Zx7wTk3BdwKXD9rHwdMzybbDrx83LOILKjknUmKE0W636FTDcR/qhF2y4EDM673lrfN9GfAe82sF7gD+PCxHszMNpnZVjPbOjg4WOlaRQTIDedI3Zui9bWtRJZHvC5HpOKqEXZzNfS7WdffA3zTObcCeCvwLTObsxbn3Gbn3Ebn3Maenp4KlyoiAMn/TOKKju5f1FGd+FM1wq4XWDnj+gpe3kz5fuA2AOfcz4EooHeZiAcmXpgg/dM0icsTWtVAfKsaYfcosM7M1phZE6UBKFtm7bMfuBrAzNZTCju1UYp4YN9n92FBo/OtnV6XIlI1FZ8b0zmXN7MPAXcBQeDrzrntZvYZYKtzbgvwu8A/mNnHKTVx/k/n3OymThGpoLnmv5wanOLQNw+RuDJBqF1T5Yp/VeWv2zl3B6WBJzO3fXrG5R3AZdX43SIyf8n/SpaO6q7TUZ34m2ZQEWlQU4NTjPx8hPbL23VUJ76nsBNpUDqqk0aisBNpQLlkrnRUd5mO6qQxKOxEGtDw3cMAWsJHGobCTqTBFMYKpH+Spu3iNsJdOq9OGoPCTqTBDN8zjJtydLxZR3XSOBR2Ig2kOFkkdW+K5guaiSzTHJjSOBR2Ig0k/WCaYqaoEZjScBR2Ig3CFRzDPx4mti5GbI3Wq5PGorATaRBjj42RH87Tca366qTxKOxEGoBzjuSPkoQXhWl+RbPX5YgsOIWdSAMY+dkI2b1ZOq7pwAJzLTkp4m+aOkHER+Za2QCg7yt9BJoDtF3StsAVidQGHdmJ+NzU4BRjT4yRuCJBIKK3vDQm/eWL+Fz6vjQYJK5MeF2KiGcUdiI+Vpwqkv5ZmtaLWgkl1GshjUthJ+Jjo4+MUswUSVylozppbAo7EZ9yzpG6N0XTiiaiZ0W9LkfEUwo7EZ+afH6SbG+WxJUJzHS6gTQ2hZ2IT6XuSxGIBWi7WKcbiCjsRHwon84zum2Utte16XQDERR2Ir6UfjANRZ1uIDJNYSfiM67gSD2QIn5enKZFTV6XI1ITFHYiPjP2xBiFdEGnG4jMoLAT8ZnUvSnC3WGaz9PqBiLTFHYiPpI9mGXiuQna39Cu1Q1EZlDYifhI6r4UFjbaL2v3uhSRmqKwE/GJ/EiekYdHaH1NK8HmoNfliNQUzQwrUofmWrcu9UAKl3W0X6GjOpHZdGQn4hPpB9NEVkSIrtY8mCKzKexEfGBy3yTZ/VnaL2/XPJgic1DYifhA+sE0FjZaX9vqdSkiNUlhJ1LnipNFRh4pD0yJaWCKyFwUdiJ1buTRkdLAlMs1MEXkWBR2InUu/WCapuVNRNdoYIrIsSjsROrY5P5Jsvs0MEXkRBR2InVsemBK22u1QKvI8SjsROpUcbLI6COjtG5sJRjXwBSR41HYidSp0a2jFCeLGpgiMg8KO5E6lX4wTdOyJqJnamCKyIko7ETq0OSBSSb3Tmpgisg8KexE6tDIT0awkAamiMxXVcLOzK4zs11mttvMPnmMfd5tZjvMbLuZfacadYj4UWGywMgjI7Rc2KKlfETmqeJL/JhZELgJuBboBR41sy3OuR0z9lkHfAq4zDk3bGaLKl2HiF8NbRmimCnS9jod1YnMVzWO7C4GdjvnXnDOTQG3AtfP2ucDwE3OuWEA59xAFeoQ8aVD3zhEqCNE/Ny416WI1I1qLN66HDgw43ov8NpZ+5wNYGY/BYLAnznn7pzrwcxsE7AJYNWqVRUvVqRWzbVAa244R/KuJJ3XdWIBDUwRma9qHNnN9Q50s66HgHXAlcB7gK+ZWWKuB3PObXbObXTObezp6alooSL1ZvShUXCoCVPkJFUj7HqBlTOurwBmf0XtBf7NOZdzzu0BdlEKPxE5Bucc6Z+lia2N0bSoyetyROpKNcLuUWCdma0xsybgRmDLrH3+FbgKwMy6KTVrvlCFWkR8Y/L5SXIDOR3ViZyCioedcy4PfAi4C9gJ3Oac225mnzGzt5d3uwsYMrMdwL3A7zvnhipdi4ifpH+WxiJG66u1GrnIyarGABWcc3cAd8za9ukZlx3wifKPiJxAMVtkdOsorRe1EohqLgiRk6V3jUgdGHtsDJd1asIUOUUKO5H/v717D7Kzru84/v6es2fPXs5esslm02wiREUhqAQbQxAR8NJCReiFjjha0XGGjgNVW1vHtjPW0stYHa/FOjDqVFGHIpYxtViIEAQhgYQGEIjUgLmHvWTPLWcv5/btH+cElnUTNptz9nnO2c9rZuec5zkPu19+k2c/+3ue5/f7NYD0Q2li/Ym1ZQoAABMYSURBVDHaz2gPuhSRhqSwEwm5/Eieif+boPv8bk36LDJPCjuRkMtszYBB9/m6hCkyXwo7kRDzspPZlqHjzA5ifbGgyxFpWAo7kRCb+NUExSNFPZgicooUdiIhlnkoQ6QtQmJdIuhSRBqawk4kpMqTZbI7s3St7yLSqlNV5FToDBIJqezObGVsnR5METllCjuRkMpszRBbHqPtVW1BlyLS8BR2IiE0sWeCiWcm6N6osXUitaCwEwmhoVuGAOjeqEuYIrVQl4mgRWTuZq5I7u4cvPEg7a9tJ7ZUY+tEakE9O5GQeWHdOj2YIlIzCjuRkMlszVTWrTtX69aJ1IrCTiREynmtWydSDzqbRELk6GNHKU+WdQlTpMYUdiIhktmaoWVpi9atE6kxhZ1ISBSSBcZ3jdN9XjcW0dg6kVpS2ImERPbhLLjWrROpB4WdSAi4V9ata3tVG63LW4MuR6TpKOxEQmBq7xT5w3n16kTqRGEnEgLprWksZnSt19g6kXpQ2IkErFwok92eJbEuQbQ9GnQ5Ik1JYScSsNwvcpRzGlsnUk8KO5GAZbZmiPZG6TirI+hSRJqWwk4kQPnhPLknc3Rv0Ng6kXpS2IkEaOj7Q1DW2DqRelPYiQTo+X9/nvjpceIr40GXItLUFHYiATn6+FFyj+fo2dgTdCkiTU8rlYssgJmrkQMM3zYMUeh6k8bWidSbenYiAfCSk30kS+INCaIJja0TqTeFnUgAck/lKGVLejBFZIEo7EQCkNmaIdoVpfN1nUGXIrIoKOxEFlgpVyL3RI6uDV1YVGPrRBaCwk5kgWUeyeBF1yVMkQWksBNZYJkHM8RfEadtdVvQpYgsGgo7kQU0uW+Sqf1T9LxZY+tEFpLCTmQBZR7MYC1G1waNrRNZSAo7kQVSLpTJPJIhcW6CaKfG1oksJIWdyALJPZajPF6m+wI9mCKy0BR2Igsk/WCalqUtdLxW69aJLDSFncgCKBwpMP7LcXrO79G6dSIBqEvYmdmlZvaMme02s0+d4LirzMzNbH096hAJi8zWDADdb9YlTJEg1DzszCwKfA24DFgLvNfM1s5yXBfwUeDhWtcgEiZedtIPpek4s4PY0ljQ5YgsSvXo2W0Adrv7c+6eB24FrpzluH8APgdM1qEGkdBIbUlRPFLUgykiAapH2A0C+6dtH6jue4GZnQusdvcfv9w3M7NrzWyHme0YGRmpbaUiC+Dwtw4T6YiQWJcIuhSRRasei7fOdvfdX/jQLAJ8CfjgXL6Zu98M3Aywfv16f5nDRQIz2wKtpVyJkdtG6H5LN5GYngcTCUo9zr4DwOpp26uA6b8FuoDXAfeZ2R5gI7BJD6lIM8puz+JFp+cCTQ8mEqR6hN124AwzW2NmrcDVwKZjH7p72t2Xufvp7n46sA24wt131KEWkUClH0wTXx2n7RWa9FkkSDUPO3cvAtcDdwG7gNvc/Skzu8HMrqj1zxMJq8m9k0ztm1KvTiQE6nHPDne/E7hzxr5PH+fYi+tRg0jQ0vensZjRtVGTPosETXfMReqgNFEisz1D15u6iLZr0meRoCnsROoguz2LTzk9b9UlTJEwUNiJ1Ji7k74/TXxVnLbT9WCKSBgo7ERqbGrvVGU18gt7MNOkzyJhoLATqbHUAyms1eg6Tw+miISFwk6khkoTJbLbs3owRSRkFHYiNZR9pPpgyoV6MEUkTBR2IjXywoMpq/VgikjYKOxEamRyzyRTB/RgikgYKexEaiT9QBqLG10b9GCKSNgo7ERqoJgu6sEUkRBT2InUwNB3h/C803thb9CliMgs6jIRtEgzm7lIq7uz9x/3Ej8tTvy0eEBViciJqGcncoomfjlB/vk8Sy5ZogdTREJKYSdyipJbkkQTURLrE0GXIiLHobATOQWF0QK5J3L0vKWHSEynk0hY6ewUOQWp+1MA9FykGVNEwkxhJzJP5XyZ9M/TJNYliPXFgi5HRE5AYScyT9ntWcq5Mr2XaLiBSNgp7ETmwd1JbUnRurKV9te0B12OiLwMhZ3IPEw+N8nU/il6L+7VcAORBqCwE5mH1JYUkfYI3ed1B12KiMyBwk7kJBXTRbKPZul+czeRNp1CIo1AZ6rISUrfn4Yy9F6kB1NEGoXCTuQklPNlUg+k6HhdB60DrUGXIyJzpLATOQnDtw5TSpdYcsmSoEsRkZOgsBOZI3dn/xf207qylY6zO4IuR0ROgpb4EZnFzGV8AHK7cuSeyDHwgQENNxBpMOrZicxRcnOSaHeUrg1dQZciIidJYScyB1OHphh/apzeS3q1uoFIA9JZKzIHyZ8msZjR+1YNNxBpRAo7kZdRSBbIbMvQfUE30UQ06HJEZB4UdiIvI7k5CQ597+wLuhQRmSeFncgJlI6WSD+QpmtDF7FlWrNOpFEp7EROIHlvEs87fb+rXp1II1PYiRxHebJMakuKznWdxFfGgy5HRE6Bwk7kOFI/S1EeL9N3qXp1Io1OYScyi/JUmeTmJB1ndtC+RiuRizQ6hZ3ILFI/S1HKllj67qVBlyIiNaCwE5mhlCuRvDtJx1kdtL9avTqRZqCwE5nh4L8dVK9OpMlo1QNZ1GaublCeKrP3hr10rO2g/VXq1Yk0C/XsRKZJbUlROlpi6eXq1Yk0k7qEnZldambPmNluM/vULJ//hZk9bWZPmNk9ZnZaPeoQORmlXImxu8bofH2nenUiTabmYWdmUeBrwGXAWuC9ZrZ2xmE7gfXu/gbgduBzta5D5GSN/c8Y5Ykyy/5gWdCliEiN1aNntwHY7e7PuXseuBW4cvoB7r7F3cerm9uAVXWoQ2TOCskCqS0pus7rIj6o2VJEmk09wm4Q2D9t+0B13/F8GPjJ8T40s2vNbIeZ7RgZGalRiSIvNfbjMbzsLHu3enUizageYWez7PNZDzR7P7Ae+Pzxvpm73+zu6919fX9/f41KFHlR/vk86YfS9F7Uq5UNRJpUPYYeHABWT9teBRyaeZCZvQP4W+Aid5+qQx0iczLygxEirRH6LtMcmCLNqh49u+3AGWa2xsxagauBTdMPMLNzgZuAK9x9uA41iMxJ7skcuSdz9L2rj5ZuDTsVaVY1Dzt3LwLXA3cBu4Db3P0pM7vBzK6oHvZ5IAH8wMweM7NNx/l2InVTLpYZuX2EWH+M3kt6gy5HROqoLn/KuvudwJ0z9n162vt31OPnipyMwzcdJn84z8qPrCQS0/wKIs1MZ7gsSoUjBX79d7+m/bXtdJ7TGXQ5IlJnukkhTW/m/JcAQ7cMUUwWGbxuELPZHiAWkWainp0sOhPPTZD+eZolb1+iAeQii4TCThYVLznD3xumpbdFkz2LLCIKO1lUUvelmDowRf97+om06Z+/yGKhs10WjcJogdEfjdJxdgeJcxNBlyMiC0hhJ4uCuzP03SEABt43oIdSRBYZhZ0sCpmHMozvGqf/j/qJLdX8lyKLjcJOml4hWWDkByO0n9FOz4U9QZcjIgFQ2ElTO3b50ovOwAcGsIguX4osRgo7aWqHvn6I8SfHWfaHy2hd3hp0OSISEIWdNK3crhzPfuJZOs7u0ETPIoucpguTpjBzSjAvOvs+uw9rMVZcs0JPX4oscurZSVMavWOUqf1TDPzJAC09+ptOZLFT2EnTye7Mkvxpkp6Le0is0+BxEVHYSZPJj+QZ+vYQ8dPi9F/VH3Q5IhISCjtpGuVCmcM3HwaDlddqQVYReZF+G0hTODaebmrfFCs+uILYMs2SIiIvUthJU0jenSS7LcvSK5aSOEf36UTkpRR20vBG/2uU0TtG6VrfRd/v9QVdjoiEkJ7JloYyczzd5N5J9n9hP/HVcQau0WoGIjI79eykYeWH8hz814NEE1EGrxsk0qp/ziIyO/12kIZUTBc5+NWD4LDqo6to6dVFChE5PoWdNJzS0RIHvnKAYrbIyutX0rpCEzyLyIkp7KShlI6W2P/F/RSGC6z8yEra17QHXZKINACFnTSM/Gj+xaC7biWdZ3UGXZKINAiFnTSEyb2T7HzLTgWdiMyL7upL6MwcXjB1cIoDXz2ATzmDHx2k4zUdAVUmIo1KYSehNr5rnEM3HSISj7Dqr1YRH4wHXZKINCCFnYSSu5O6J8XID0doXdHK4J8NEuvTfJciMj8KOwmdcr7M8PeGyWzLkFiXYMWHVhBp0+1lEZk/hZ2EytHHj7Lvn/eRP5xn6eVL6XtXHxbRFGAicmoUdhIKXnYO3niQZz/5LJF4hMGPD+qJSxGpGYWdBGL6E5f55/MM3TLExO4JOl/fycA1A7R06Z+miNSOfqNIYMqFMsnNScb+ewxrNQY+OED3xm6tXCAiNaewkwXn7mQfzTLywxGKR4ok3phg+dXLaenRP0cRqQ/9dpEF4+4kNyfZ85k9ZLZmaB1sZdWfr6LjTA0SF5H6UthJXR26+RBednJP5Bi7a4zJ5yZpWdLC8vctp+eCHiyqS5YiUn8KO6mb/HCesbvHSN2XonikSMvSSsh1n99NJKZxcyKycBR2UlPFo0XG7hxj6JYhjvzkCJSg/TXt9F/VT+KchHpyIhIIhZ2csr2f3cv4rnGOPn6U8afH8YIT7Y2y5O1L6D6/m/hKzWcpIsFS2MlJ8bIz/sw4mW0ZMg9nSN+fZnzXOAAtS1roubCHxLkJ2l/drplPRCQ0FHZyXMVskfFnxpl4ZoLc0zlG7xhlcs8k5YkyAJH2CG2vbKP/qn461nbQurJVY+REJJTqEnZmdinwFSAKfMPdPzvj8zjwHeC3gSPAe9x9Tz1qkdmV82UKRwrkD+WZOjRVeT04RfLeJIXRAvnn85TSpRf/gwjEB+N0vamLtjVttK1po3WgVb03EWkINQ87M4sCXwPeCRwAtpvZJnd/etphHwaS7v5qM7sa+BfgPbWupd7cvfqm+nVsnzPv/V50vOSV19m+jn1WcMqTZcrjZUrjJcoT1dfxaa/ZEsVUkUKyQDFVpJgsVrZHCnjh2A+dxiDaHSXWF6NzbSetA63EVsQqr/0xPUEpIg2rHj27DcBud38OwMxuBa4EpofdlcBnqu9vB240M/MX0qM+Dt10iN2f2P2SsMFnD60T7W8IEYi0RYh2RIm0R4h0VN63rWmj8+zOF7ZbeluI9lReW7pb9LSkiDSleoTdILB/2vYB4LzjHePuRTNLA0uB0ZnfzMyuBa6tbh41s2dqXnHjWcYsbfUSZWC8+iUn8vJtKSdD7Vk7jdWWfxrYTz5tLgfVI+xm6xrM7A/N5ZjKTvebgZtPtahmYmY73H190HU0A7Vlbak9a0dtWVv1uAlzAFg9bXsVcOh4x5hZC9ADjNWhFhERkbqE3XbgDDNbY2atwNXAphnHbAKuqb6/Cri33vfrRERk8ar5ZczqPbjrgbuoDD34lrs/ZWY3ADvcfRPwTeAWM9tNpUd3da3raHK6rFs7asvaUnvWjtqyhkwdKhERaXYaOCUiIk1PYSciIk1PYRcyZrbazLaY2S4ze8rMPlbd32dmm83sV9XXJdX9ZmZfNbPdZvaEmb0x2P+DcDGzNjN7xMwer7bn31f3rzGzh6vt+R/Vh6kws3h1e3f189ODrD+MzCxqZjvN7MfVbbXlPJnZHjP7hZk9ZmY7qvt0rteBwi58isAn3P0sYCNwnZmtBT4F3OPuZwD3VLcBLgPOqH5dC3x94UsOtSngbe5+DrAOuNTMNlKZou5L1fZMUpnCDqZNZQd8qXqcvNTHgF3TttWWp+YSd183bUydzvU6UNiFjLsfdvf/rb7PUvmlMkhlirVvVw/7NvD71fdXAt/xim1Ar5n91gKXHVrVdjla3YxVvxx4G5Wp6uA32/NYO98OvN20lMMLzGwV8C7gG9VtQ21ZazrX60BhF2LVyz7nAg8DA+5+GCqBCCyvHjbb9GyDC1dl+FUvuz0GDAObgWeBlLsXq4dMb7OXTGUHHJvKTiq+DHySyoR0UGkbteX8OXC3mT1anRoRdK7XhdazCykzSwA/BD7u7pkT/EE856nXFit3LwHrzKwXuAM4a7bDqq9qz+Mws8uBYXd/1MwuPrZ7lkPVlnN3gbsfMrPlwGYz++UJjlV7ngL17ELIzGJUgu577v6f1d1Dxy5ZVF+Hq/vnMj2bAO6eAu6jci+0tzpVHby0zTSV3fFdAFxhZnuAW6lcvvwyast5c/dD1ddhKn+IbUDnel0o7EKmek/jm8Aud//itI+mT7F2DfCjafs/UH1SayOQPnYJRMDM+qs9OsysHXgHlfugW6hMVQe/2Z6aym4W7v7X7r7K3U+nMuvRve7+PtSW82JmnWbWdew98DvAk+hcrwvNoBIyZvYW4AHgF7x4X+RvqNy3uw14BbAP+GN3H6uG443ApVQW9PmQu+9Y8MJDyszeQOUmf5TKH3e3ufsNZvZKKr2TPmAn8H53nzKzNuAWKvdKx4Crj63NKC+qXsb8S3e/XG05P9V2u6O62QJ8393/ycyWonO95hR2IiLS9HQZU0REmp7CTkREmp7CTkREmp7CTkREmp7CTkREmp7CTkREmp7CTkREmt7/A1sj9NYHByp8AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
    " ] }, "metadata": {}, @@ -747,10 +886,10 @@ } ], "source": [ - "for n, c in [[10,'b'],[100,'r'],[1000,'y'],[10000,'g']]:\n", + "for n, c in [[10,'b'],[100,'r'],[1000,'y'],[10000,'g'],[100000,'m']]:\n", " print('n:',n)\n", " \n", - " fig, ax =plt.subplots(2,1,figsize=(7, 11))\n", + " fig, ax = plt.subplots(2,1,figsize=(7, 11))\n", "\n", " samples_normal = np.random.normal(loc = media,\n", " scale = desvio_padrão,\n", @@ -772,17 +911,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Distribuição normal padrão\n", + "# Distribuição normal padrão\n", "\n", "Existe uma infinidade de possibilidade para uma variável X seguir uma distribuição Normal com média $\\mu$ e desvio $\\sigma$ quaisquer:\n", "\n", "$X \\sim \\mathcal{N}(\\mu,\\,\\sigma^{2})\\,$\n", "\n", - "Uma forma mais fácil de trabalhar com uma distribuição que segue uma normal é tornando-a uma normal padrão, e fazemos isso com uma operação bastante simples, basicamente dividindo todos os valores pela média da amostra e dividindo esse resultado pelo desvio padrão da amostra.\n", + "Uma forma mais fácil de trabalhar com uma distribuição que segue uma normal é tornando-a uma **normal padrão**, e fazemos isso com uma operação bastante simples, basicamente dividindo todos os valores pela média da amostra e dividindo esse resultado pelo desvio padrão da amostra.\n", "\n", - "Isso faz com que a média seja centrada no zero e o desvio padrão em um e isso vai simplificar muito as contas de agora em diante.\n", + "Isso faz com que a média seja centrada no zero e o desvio padrão seja o valor 1, e isso vai simplificar muito as contas de agora em diante.\n", "\n", - "A escala horizontal do gráfico da distribuição normal padrão corresponde ao score-z que é uma medida de posição que indica o número de desvios padrão em que um valor se encontra a partir da média. Podemos transformar um valor x em escore-z usando a fórmula:\n", + "A escala horizontal do gráfico da distribuição normal padrão corresponde ao **Z-Score**, que é uma medida de posição que indica o número de desvios padrão em que um valor se encontra a partir da média. Podemos transformar um valor x em **Z-Score** subtraindo o valor meedio µ e em seguida dividindo-se pelo desvio padrão $\\sigma$.\n", "\n", "$Z \\sim \\dfrac{x - \\mu} {\\sigma^{2}\\,} $\n", "\n", @@ -791,52 +930,44 @@ "- A área acumulada é próxima de 0 para z-scores próximos a z=-3,49.\n", "- A área acumulada aumenta conforme os z-scores aumentam.\n", "- A área acumulada para z=0 é 0,5000.\n", - "- A área acumulada é próxima a 1 para z-scores próximos a z=3,49.\n", - "\n" + "- A área acumulada é próxima a 1 para z-scores próximos a z=3,49." ] }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 84, "metadata": {}, "outputs": [], "source": [ + "# vamos trabalhar com a mesma média e o mesmo desvio padrão (samples_normal.std = 45.71075907280459)\n", + "media = 342.73\n", + "\n", "new_samples_normal = []\n", "\n", "samples_normal_std = samples_normal.std()\n", "for row in samples_normal:\n", - " new_value = (row-342.73)/samples_normal_std\n", + " new_value = (row-media)/samples_normal_std\n", " new_samples_normal.append(new_value)" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 85, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\sn3fru\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", - " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n", - "C:\\Users\\sn3fru\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", - " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" - ] - }, { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 58, + "execution_count": 85, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHjCAYAAADhSlFEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XeYXGdh9v/v2d77rrRN3bLkKtmyXLCpBkwzoYQeML2TBBJ+gSSEQCokeSF5SRxKbMprerPBQDDN2MayimVZxZbVt2ibtvedmfP7Y2SQhWSttLN7Zna/n+vStTs7Z5+9fcHM3nvOc54nCMMQSZIkzVxW1AEkSZLmC4uVJElSilisJEmSUsRiJUmSlCIWK0mSpBSxWEmSJKWIxUqSJClFLFaSJEkpYrGSJElKkZyofnBNTU24bNmyqH68JEnStG3durUnDMPaMx0XWbFatmwZW7ZsierHS5IkTVsQBIenc5yXAiVJklLEYiVJkpQiFitJkqQUsVhJkiSliMVKkiQpRSxWkiRJKWKxkiRJShGLlSRJUopYrCRJklLEYiVJkpQiFitJkqQUsVhJkiSliMVKkiQpRSxWkiRJKWKxkiRJSpEzFqsgCP4nCIKuIAh2nub5IAiCfw+CYF8QBDuCILgs9TElSZLS33TOWN0K3PAkzz8POO/4v7cB/zXzWJIkSZkn50wHhGF4dxAEy57kkBcDXwrDMATuD4KgIgiC+jAMj6YooyRJmm1heMLHc/j88e+f1uec4usz+PmFFVBQfi7/1Sl3xmI1DY1AywmPW49/zWIlSVpY4jEY74eJQZgcgYnh5MfJoSd+PjUO8QmITZ70cQLik7//MRGHMA5h4vjnid/9e8Ljx4856fGZyk+mu/5v4do/iToFkJpiFZzia6f8XykIgreRvFzIkiVLUvCjJUmaJfEYjB6DkS4Y6YaRHhjugv0/TxakqTGYGn3iv9jENAcPICsHsnOSH0/7L/v4cXkQBMl/ZP3u8yArOdYTPs86xXPB737ubyMET8wz3a81Xf67z08cNwhO+p6z/ZxTjDfNzxvWky5SUaxageYTHjcB7ac6MAzDzwKfBdiwYcM8qMiSpIw0MQSD7TDQmvw42J4sTOP9MD4A44PJonSq8wRBNuQVQ24R5BYmL0OVNfzucW4R5BZAdj7kFEBO/vHP83/3eVb2SYUlg2x4Y9QJ0loqitXtwHuCIPgacCUw4PwqSVLkxgfgnk8dP9t04r+e46XpJPmlUFABRdVQtQLySpJfyy89/vnxxzmFmVuKNOvOWKyCIPgq8HSgJgiCVuBvgFyAMAxvBu4Eng/sA0YBq6wkaXZtueV3nyfiyUt0gy0w0JY8CzXcCZPDJ3xDkDyzVFwLDeugsPr4hOeK3018zkrFuQYtdNO5K/DVZ3g+BN6dskSSJJ1OIg6dO+Hwfccv47XC4FFITCWfz8qF8kZYdFGyRJXUJj8W1UB2brTZtSBYzyVJ6eHEs1CPS8Sh7xD07k/+6zv0uwniuYVQ1gTLroWyRihvgpK645O2pWhYrCRJ6WWkG7oegZ5HoGdfchkCAihdDI1XQNVyqFwGhVXOdVLasVhJkmbXqc5EnShMQH8LdD4MHTthuCP59aIaaNoANedD9SrIK5r9rNIMWawkSdEYbIe2LdC2LbnMQZAFVSth6TVQdwEU10SdUDprFitJ0tyZHIaWB6B1MwwdTZap2jWw5gXJMpVXHHVCaUYsVpKk2RWGyUnnh++Fo9shEYOKpXDRy6B+fXJ9KGmesFhJkmZHIg67vw/3/GtyaYScfGi+CpY+Bcrqo04nzQqLlSTp7D3ZhPR4DNo2J7eIGelOriN18R9C44ZkuZLmMYuVJCk1wgS0boFH70xORi9vgstugvpLXFtKC4bFSpI0M2EIXbvhkR8kJ6SXN8Olr0ouk+A6U1pgLFaSpHM31AE7vw3HHkuuO3XZTVB/qYVKC5bFSpKUdKaFPE8Un4S9P4EDv4CcguQdfkuugazs2csnZQCLlSTp7HTuhp3fhLE+aLoC1t4I+aVRp5LSgsVKkjQ9sXHY9T1ouR9KFsPV74XqlVGnktKKxUqSdGbH9sNDt8FoL6x8Fqx+HmT7K0Q6ma8KSdLpJeLJ5RP2/xyKquCa90LViqhTSWnLYiVJOrXxAdj2Jejdn1wx/cI/SE5Ul3RaFitJ0u87th+2fRGmxmDda5OT1CWdkcVKkvQ7YQgHfwl77oCiarjyHVDWEHUqKWNYrCRJSYk47PwWHPkNLL4ELn0N5HrpTzobFitJmu+ms/Dn1ChsvRV69sKq6+H857u/n3QOLFaStNCNHoMHPgsj3XDpq6H5yqgTSRnLYiVJC9lgO2z6r+RlwCvfCTXnRZ1IymgWK0laqPoOJc9UZeXCNe+G0sVRJ5IynsVKkhainr2w+fOQXwZXvTN5B6CkGbNYSdJC07ETtt0CxXXJ5RQKyqNOJM0bFitJWkg6d8HWW6CsEa58O+QVR51ImlcsVpK0UHQ/Alv/J7ng51XvgNyiqBNJ846LlEjSQtDzGGz+AhQvSl7+s1RJs8JiJUnzXe9B2Py55AT1q97l5T9pFnkpUJIy0XRWUwcY6oDNn01OUL/qXZBfMru5pAXOM1aSNF+ND8AD/51cp+rKd0JBWdSJpHnPYiVJ89HUeLJUTY7CxrdBUVXUiaQFwWIlSfNNIpa8+2+oAza8Ecqbok4kLRgWK0maT8IQdnw9ubL6Ja+E2jVRJ5IWFIuVJM0nB38FrZvhvOdC85VRp5EWHIuVJM0XPXthz+2w6GJY/dyo00gLksVKkuaD0WOw9VYoqYP1r4XAt3cpCr7yJCnTxSaSq6oTwoY3Q05B1ImkBctiJUmZLAxhx9dg6Cisfz0U10adSFrQLFaSlMmO3AftD8Ka50Pd2qjTSAuexUqSMtVgO+z6HtSeDyufFXUaSbhXoCSll+nuARibgG23Qm4hrHudk9WlNOErUZIy0a5vw3A3rH8d5JdGnUbScRYrSco0rVug5QFYdT3UrI46jaQTWKwkKZOM9cHOb0Hlclh9Q9RpJJ3EYiVJmSJMwENfTX5c91rIyo46kaSTWKwkKVMcvje5bc0FL4bimqjTSDoFi5UkZYLhbthzB9SugSXXRJ1G0mlYrCQp3YUJeOi25KW/S14FQRB1IkmnYbGSpHR34JfQdxAufBkUVkSdRtKTsFhJUjob6YZHfwSLLobGy6NOI+kMLFaSlK7CEHZ8I3kJ8OKXewlQygAWK0lKV60PwLHHYO2LoKA86jSSpsFiJUnpaGIIdn8fqlbAkqujTiNpmixWkpSOdn0vudHyxa9wg2Upg/hqlaR007UH2rcm9wIsXRx1GklnwWIlSekkPpncC7CkDlY9O+o0ks6SxUqS0sn+n8PoMbjo5ZCdE3UaSWfJYiVJ6aLvEOz7GdSvg5rVUaeRdA78c0iSZtuWW6Z33ObPJ9equuAPZjePpFnjGStJSgddu6FzJ5z3HLetkTKYxUqSohaPwc7vQHEdrHh61GkkzYDFSpKiduDnMNoDF70MspyhIWUyi5UkRWl8APbdBYsvgdrzo04jaYYsVpIUpUd+AGEc1t4YdRJJKWCxkqSo9LdA62ZY/jQorok6jaQUsFhJUhTCEHZ/F/JKYNVzok4jKUUsVpIUhY4d0HsAzn8e5BZEnUZSilisJGmuxadgz+1QWg/NV0WdRlIKWawkaa4dvDu5H+AFfwBZ2VGnkZRCFitJmkuTI7Dvp1B3gcsrSPOQxUqS5tK+n0JsAta+KOokkmaBxUqS5sroMTj0a2jemJxfJWnemVaxCoLghiAIHg2CYF8QBH9xiueXBEHwiyAIHgyCYEcQBM9PfVRJynCP/gjIgtXPizqJpFlyxmIVBEE28BngecAFwKuDILjgpMP+CvhGGIbrgVcB/5nqoJKU0QZaoW0rLH8qFFZEnUbSLJnOGauNwL4wDA+EYTgJfA148UnHhEDZ8c/LgfbURZSkeeCRH0BuIax6VtRJJM2i6RSrRqDlhMetx792oo8CrwuCoBW4E3jvqQYKguBtQRBsCYJgS3d39znElaQM1LMXuh+B854NuUVRp5E0i6ZTrIJTfC086fGrgVvDMGwCng98OQiC3xs7DMPPhmG4IQzDDbW1tWefVpIyTRjCnjugsBKWXhd1GkmzbDrFqhVoPuFxE79/qe/NwDcAwjD8DVAAuKOoJD3yQxhogdU3QHZO1GkkzbLpvMo3A+cFQbAcaCM5Of01Jx1zBHgWcGsQBGtJFiuv9Uma37bc8uTPhwm4+5NQXAeNG+Ymk6RInfGMVRiGMeA9wE+APSTv/tsVBMHHgiC48fhhHwDeGgTBQ8BXgZvCMDz5cqEkLSztD8LQUTj/BreukRaIaZ2XDsPwTpKT0k/82kdO+Hw38JTURpOkDJaIJ9etKm2A+nVRp5E0R1x5XZJmQ+tmGO2B858Pv38vj6R5yle7JKVaPAaP/QQqlsCiC6NOI2kOWawkKdWO3AdjfXD+CyA41Yo1kuYri5UkpVJ8CvbdBVUroWZ11GkkzTGLlSSl0pH7YWIwuW6VZ6ukBcdiJUmpEo/B/rugagVUr4o6jaQIWKwkKVVaN8H4AJz3XM9WSQuUxUqSUiERS86tqlzm3CppAbNYSVIqtGxO3gno2SppQbNYSdJMJeKw76dQvgRq10SdRlKELFaSNFOtm2GsF1Z7tkpa6CxWkjQTYSI5t6q8CeouiDqNpIhZrCRpJo7uSO4JuPJ6z1ZJslhJ0jkLw+S6VcW1UH9J1GkkpQGLlSSdq569MNAKK58JgW+nkixWknTu9v8M8sug8Yqok0hKEzlRB5CktLLllukd138kecZq7Y2Q7VuppCTPWEnSudj3M8gthCXXRJ1EUhqxWEnS2RruhI4dsPRayC2IOo2kNGKxkqSztf8XkJUDy58adRJJacZiJUlnY2II2rZA8xWQXxp1GklpxmIlSWfj0D2QiMHyp0edRFIaslhJ0nTFp+DwvVB3IZTURZ1GUhqyWEnSdLVthclhWPH0qJNISlMWK0majjCEg7+EskaoXhV1GklpymIlSdPR8ygMdcCKp7nZsqTTslhJ0nQc+GVy+5qGy6JOIimNWawk6UyGjkL3I7DsuuT6VZJ0GhYrSTqTA7+CrFxY6vY1kp6cxUqSnszkSPJuwKYNkFccdRpJac5iJUlPpuUBSEwlLwNK0hlYrCTpdMIEHL4HqlZCWUPUaSRlAIuVJJ1O1x4YPQbLro06iaQMYbGSpNM5dE9yiYXFl0SdRFKGsFhJ0qmMdEP3nuSdgFnZUaeRlCEsVpJ0KofugSALllwddRJJGcRiJUkni01AyyaovxQKyqNOIymDWKwk6WRtWyE27hILks6axUqSThSGcPje5PIKlcujTiMpw1isJOlE/UdgsA2WPgWCIOo0kjKMxUqSTnTkN5CdBw2XR51EUgZym3ZJ89+WW6Z33NQYtG+Dhssgt2B2M0malzxjJUmPa9sK8cnk2lWSdA4sVpIEyUnrR+6DsiYob446jaQMZbGSJID+wzDYDkuvdtK6pHNmsZIkcNK6pJSwWEnS1Bi0P+ikdUkzZrGSJCetS0oRi5UkHbkfyhqdtC5pxixWkha2gVYYbIUlVzlpXdKMWawkLWwtmyArJzm/SpJmyGIlaeGKTyXnVy2+GPKKo04jaR6wWElauDp3wtQoNF8VdRJJ84TFStLC1bIJCiuh5ryok0iaJyxWkhamsT7ofhSaNkLgW6Gk1PDdRNLC1LoZCKF5Y9RJJM0jFitJC0+YSF4GrD4PiqqjTiNpHrFYSVp4ju2H0WPQfGXUSSTNMxYrSQtPyybIKYD6S6JOImmesVhJWlhiE9CxAxrWQ3Ze1GkkzTMWK0kLS8eO5IbLTVdEnUTSPGSxkrSwtG5JTlivXB51EknzkMVK0sIxPgA9e6HxcjdcljQrLFaSFo62rUAIjV4GlDQ7LFaSFo7WLVCxFEpqo04iaZ6yWElaGAbbYKjdSeuSZpXFStLC0LoFguzkMguSNEssVpLmvzCRnF9VtxbyiqNOI2kes1hJmv969sLEoJcBJc06i5Wk+a91C+QWQt2FUSeRNM/lRB1Aks7ZllvOfMzjW9g0Xg7ZvuVJml2esZI0v7mFjaQ5ZLGSNL+5hY2kOWSxkjR/uYWNpDk2rWIVBMENQRA8GgTBviAI/uI0x7wiCILdQRDsCoLgttTGlKRz4BY2kubYGWdyBkGQDXwGeDbQCmwOguD2MAx3n3DMecCHgKeEYdgXBEHdbAWWpGlzCxtJc2w6Z6w2AvvCMDwQhuEk8DXgxScd81bgM2EY9gGEYdiV2piSdJbcwkZSBKZTrBqBlhMetx7/2olWA6uDILg3CIL7gyC44VQDBUHwtiAItgRBsKW7u/vcEkvSdLiFjaQITKdYnWrGZ3jS4xzgPODpwKuBzwdBUPF73xSGnw3DcEMYhhtqaz01L2mWuIWNpIhMp1i1As0nPG4C2k9xzPfDMJwKw/Ag8CjJoiVJc88tbCRFZDrFajNwXhAEy4MgyANeBdx+0jHfA54BEARBDclLgwdSGVSSps0tbCRF5IzFKgzDGPAe4CfAHuAbYRjuCoLgY0EQ3Hj8sJ8Ax4Ig2A38AvjzMAyPzVZoSTqt+CR0PAyLL3ULG0lzblrvOmEY3gncedLXPnLC5yHw/uP/JCk6nbsgPpFcFFSS5pgrr0uaX9q2QX4ZVK+MOomkBchiJWn+mBqF7t3JJRYC394kzT3feSTNH0d3QCLuZUBJkbFYSZo/2rdBUQ2UN5/5WEmaBRYrSfPD+CD0PAaNl0FwqnWNJWn2WawkzQ9HHwRCaLgs6iSSFjCLlaT5oW0blDVC6eKok0hawCxWkjLfSA/0H/ZslaTIWawkZb72bcmPjRYrSdGyWEnKbGGYvAxYtQIKK6NOI2mBs1hJymxDR2G4w8uAktKCxUpSZmvbmlxlvX5d1EkkyWIlKYOFYXJ+Vc1qyC+JOo0kWawkZbC+QzDW5xY2ktKGxUpS5mrfBlm5sPjiqJNIEmCxkpSp4jFofxAWXQA5BVGnkSTAYiUpUx38FUwOQ4OXASWlj5yoA0jSE2y5ZXrHbf9/yTNVdWtnN48knQXPWEnKPPFJ6NgB9ZdAdm7UaSTptyxWkjJP1x6ITXgZUFLasVhJyjxt2yCvBKpXRZ1Ekp7AYiUps0yNQ9cuaFgPWdlRp5GkJ7BYScosnTsgEXNvQElpyWIlKbO0bYPCSqhcFnUSSfo9FitJmWNiGHr2Js9WBUHUaSTp91isJGWOo9shTECjlwElpSeLlaTM0b4NShZBaUPUSSTplCxWkjLDWB/0HvAyoKS0ZrGSlBnaH0x+9DKgpDRmsZKUGdq3QXkzFNdGnUSSTstiJSn9DXfBQKtnqySlPYuVpPTXvg0IoH591Ekk6UlZrCSltzBMFquqFVBYEXUaSXpSFitJ6W2wLXkp0MuAkjKAxUpSemvfBkEW1K+LOokknZHFSlL6ChPJZRZq10BecdRpJOmMLFaS0lffoeTCoA1eBpSUGSxWktJX2zbIyoXFF0WdRJKmxWIlKT0l4slNlxddCDkFUaeRpGmxWElKT8ceg8lhLwNKyigWK0npqW1b8kxV3dqok0jStFmsJKWf+BR07IDFF0N2btRpJGnaLFaS0k/XHoiNexlQUsaxWElKP+3bIK8EalZHnUSSzorFSlJ6iY1D567kSutZ2VGnkaSzYrGSlF46dkJiyr0BJWUki5Wk9NK+DQoqoHJZ1Ekk6axZrCSlj9Fe6H4kOWk98O1JUubxnUtS+tj9veTGy14GlJShcqIOIGmB2HLLmY+57/9CcR2UNc5+HkmaBZ6xkpQexvqh90DybFUQRJ1Gks6JxUpSejj6IBC6KKikjGaxkpQe2h6E8iYoqYs6iSSdM4uVpOiNdMPAEc9WScp4FitJ0Wt/MPmxYX20OSRphixWkqIVhtC2BapWQGFl1GkkaUYsVpKiNdAKw13QeEXUSSRpxixWkqLVtiW52XL9pVEnkaQZs1hJik4intwbsO5CyCuKOo0kzZjFSlJ0evbCxBA0bYg6iSSlhMVKUnTatkBuEdReEHUSSUoJi5WkaMQmoONhqF8H2W5bKml+sFhJikbHwxCf9DKgpHnFYiUpGm2bobAKKpdFnUSSUsZiJWnujQ9A997k2arAtyFJ84fvaJLmXvuDQAiNl0edRJJSymIlae61bYHyZihZFHUSSUopi5WkuTXUkdzGptFJ65LmH+9xljS32rYk51U1XnbKpzcd7J32UFcur0pVKklKCYuVpDmx6WAvhCHrDm9mrHgFj7ZPAdMvUZKUCbwUKGnOlI4eIX9qgJ7yi6OOIkmzwmIlac7UDDxMPCuXvrLzo44iSbPCYiVpTgSJGFUDu+gtXUsiKy/qOJI0KyxWkuZExfBj5CQm6KnwMqCk+WtaxSoIghuCIHg0CIJ9QRD8xZMc9/IgCMIgCLyPWtIT1PTvYDKnhMHi5VFHkaRZc8a7AoMgyAY+AzwbaAU2B0FwexiGu086rhR4H7BpNoJKymCjvVQMP0Zn1caz3sJmIhHwyHAhPZO55AUh+VkJ8rJC6vInZymsJJ276Sy3sBHYF4bhAYAgCL4GvBjYfdJxHwc+AfxZShNKyny7v0dWmJj23YAd47nc11fGw4NF7B0pJBaeuoz9d+sUL2qa4IXNEywtiacysSSdk+kUq0ag5YTHrcCVJx4QBMF6oDkMwx8EQXDaYhUEwduAtwEsWbLk7NNKykzbv8pofi2jBYuf9LChWBbfPlrD/3ZVEidgWeE4z6vr46LSUZoKJ5hMBEwmsphMBOwfLeS+3lI+uauET+4q4aLSEd6ypIP6gqnfG9eFRCXNlekUq+AUXwt/+2QQZAH/B7jpTAOFYfhZ4LMAGzZsCM9wuKT5oHsvtD5A96LrITjV2wlMJQJ+3FXJdzqqGYtn8ayafl5Wf4yqvNhph11dkixdPZM53Ntbxvc6qvng7uW8srGb59f1kXXqHyVJs2o6xaoVaD7hcRPQfsLjUuAi4JdB8k1zMXB7EAQ3hmG4JVVBJWWo7V+BIJueiktO+XTPZA6f3NfEobEC1pUN87qmLpoLpz9/qiYvxosX93Jd1SCfO7KYL7cuYlNfKe9Y1kFjgfOwJM2t6cwi3QycFwTB8iAI8oBXAbc//mQYhgNhGNaEYbgsDMNlwP2ApUoSxGPw0Ndg9XOJ5ZT83tOPDBfyoT3L6JzI5c9WtvKh81rPqlSdqCovxgdXtvKeZe20j+fzV48s5bGRgpn+F0jSWTnjGaswDGNBELwH+AmQDfxPGIa7giD4GLAlDMPbn3wESfPWllue/PnOXTDcCaWLYeyJT/2su5wvtCymLm+SPz+/LSVnl4IArqseZG3pKB/bu4S/39vMh85rfeKkUEmaRdPahDkMwzuBO0/62kdOc+zTZx5L0rzQsgnySqDuQjg8AEAYwv9rq+WOzmouLRvmj5e3U5yTSOmPrcmL8Terj/DxvUv4h8eaWLN4kI21vz+pXZJSzZXXJc2OyeHkGaumDZCVDSRL1Zdb67ijs5rn1vbxF6taU16qHledF+Mjq49QlRvjDfdU8Juu3Fn5OZJ0IouVpNnRuhXCODQlL8SFIXylrZYfdlVxQ20vb2zunPU796ryYvzN+UdoKo7ztvvKOTiUPbs/UNKCN61LgZJ0VsIweRmwvBnK6n97+e8Hx89U3dTcdbqVF1KuIjfOHy85xF/sWc4b7i7m79YcJj/r9Ku9uOaVpJnwjJWk1BtshaF2aE6erfqXXcXc0VnNc2r7eGNz55yVqsfV5sd47/J2Wsby+dzhxYSuoidpllisJKVeywOQlQMNl/H5vYV85pFinlXTz5siKFWPW1c+wsvre/h1bzl39VREE0LSvGexkpRa8Ri0bYXFF/Pdo5X83Y5Sntc4zluWdERWqh730vpjrCsb5taWOva5xpWkWWCxkpRanTthapTtxdfy51vKuLp2kk9tHEyLLWayAnjv8nYqc2N86kAD4/E0CCVpXrFYSUqtlvuZzKvkNbs3cn55jM9eM0B+Gt2MV5KT4D3Lj9I9mcfX2mujjiNpnrFYSUqdsX7C7ke5dfyp1BWG3HptP6W56TdTfE3JGM+t7ePHXZXsHfaSoKTUsVhJSpmBg1sICLkz6zq+fF0/tQXpV6oe9+rGbqrzYtx8uJ6phJcEJaWGxUpSSvSOw+CBzWwO1/CP1+bTXDw7K6qnSmF2grcu6aBtPJ/vHK2OOo6kecJiJWnGRmIBn7i7m2Y6qV55BWsr4lFHmpZ15SM8tWqA73dUc2g0P+o4kuYBi5WkGRmPw9vuK+eysXuIZeWzYvVFUUc6K29o7qQkJ85nDy8mkb5XLiVlCIuVpHM2mYB331/Otq4EL8m9n5zG9ZCTWWd+SnIS/FFTF/tHC/nVsfKo40jKcBYrSeckFk/wpw+U8bOj+Xx++d3kJiageWPUsc7JtVWDnF88ym1ttQxMOpFd0rmzWEk6a4lEyAe/tYMfthbwV5cM8ZSJu6G4FiqXRx3tnAQBvHFJJ0OxbD69uzjqOJIyWE7UASSll9s2HXnS5xNhyPe3t7H5UB/vv2CYt9QfgL0HYO2LiXzPmhlYXjTBs2r6+eL+Cl69YozzyjJjAr6k9OIZK0nTlghDvvdgslQ9fXUt7107Cofvg6xsaL4i6ngz9srGHopzQj66vZTQieySzoHFStK0JMKQ725rY8vhPp5xfh3PvmARQWISWjfD4nWQVxJ1xBkry4nzgQtHuLcrj5+050UdR1IGslhJOqNEGPLtra1sPdLHs9YcL1VBAO0PQmwcll4TdcSUee2KMc4vi/F3D5Uy7tVASWfJOVaSnlQiDPnW1la2t/Rz/do6nrlm0W+fG9p7Nzn5NewYqIDB3ghTpk5OFnzk0iFe++tKbnmsiHeuGY06kqQM4hkrSacVT4R8Y0sL21v6ec4Fi55QqioGH6V0rI2uyssyetL6qTxl0RTX10/wmUeK6B6fX/9tkmaXxUrSKT1eqna0DvDcCxfz9PPrnvD8qpZvkgiy6S6/NKKEs+vDlwwzHg/4t12ZP3dM0tzxUqCk3xNPhHx98xF2tg/yvItIsC0WAAAgAElEQVQWc915tU94Pjs2yrL2H3Ks7ELiOYURpZwdmw7+7pLmc2oDvnawknUFHSwrmvi9Y69cXjWX0SRlAIuVpCdYdvibfPpAAzv7y3h9UycvyH8ETlraqrbvQfJiw3RVXRZNyDnysvoe7j5Wzpda6/jr81rm2xVPSbPAS4GSfiueCPnMoXo29ZfxR02dvGBR3ymPq+vbymh+LcOFzXOccG6V5CT4w4Zudg0Vs2XAS4KSzsxiJQlIblPzoe/s4N7ecl7V0MULT1OqisaOUjLWTlfl5fNu0vqpXF/bT0PBBF9prSOWiDqNpHRnsZJEGIZ85PadfGNLKy+r7+El9adfOqGubyvxIIeeikvmMGF0cgJ4fVMXHRN5/Li7Muo4ktKcxUoS//TjR/jK/Ud4+1NX8If1Pac9Lis+Qc3ATnrLLySeXTCHCaO1vnyES8uG+fbRGgZj2VHHkZTGnLwuLRCn21z5N/t7uGPHUTYur2JJVRHByOnHqBnYSXZiMnkZcIH5o6YuPrh7Od9sr+HNSzqjjiMpTXnGSlrAdrUP8IMdR1lbX8aNlzYkt6k5nTCkrm8rI/mLGC5snLuQaaK5cJLra/u5q7uCljH3EZR0ahYraYE6cmyEr29uoamykFduaCbrDBPRi8fbKR7vSC6xsAAmrZ/KHzb0UJCd4MutdWc+WNKCZLGSFqCe4Qm+dP9hygtz+aOrl5GXc+a3grrebcSDXI6VXzwHCdNTWU6cl9X38NBgCQ8OFEcdR1IaslhJC8z4VJwv/+YwADdds4yS/DNPtcyOj1M9sJNj5RctqEnrp3JDbR+L8yf5YksdE/Go00hKNxYraQFJhCHf2trKsZEJXnPlEqpL8qf1fdUDD5MdTs37ldanIycLbmru5OhEPp/bWxR1HElpxmIlLSB37+1m99FBnndRPStqprmSeBiyqHcLIwX1jBQ0zG7ADLG+fIQrKwb5jz3FHBn2bVTS7/iOIC0QezuH+OnuTi5pKuealdXT/r6ykUMUTXTTUXXFgp20fipvaO4iJyvkb7aXEoZRp5GULixW0gLQ0jvK1ze3sKisgJeub3ryZRVOsqj3AaayizhWftEsJsw81Xkx/vSCEX7Rkc9P2l1+QVKSxUqa56biCd5z2zZCQl575ZJp3QH4uLzJfiqH9tJVuZ4wy/WET3bTqjHWlE/xt9tLGYl5Nk+SxUqa9z51114eah3gpeubpj1Z/XGLercA0FW1YTaiZbycLPj79UMcHcvmU7tcfkGSxUqa1zYdOMZ//nI/r9jQxEWN5Wf1vVmJKWr7H6SvbA2TuWf3vQvJ5TUxXrNijC88VsjWHs/qSQudxUqapwZGp/jTr29nWXUxf/OiC8/6+6sHHiY3PkZH1cZZSDe/fPjiYRqKEnxgSxmjsajTSIqSxUqah8Iw5MPfe5iuoQk+9cp1FE9jEdCTBmDRsc2M5C9iqGjJ7IScR0pyQ/7likEODefwTw9PcxkLSfOSxUqah76zrY0f7jjKnz57NZc2V5z195eOHqF4opPOapdYmK6raqd406pRvrS/iHs6c6OOIykiFitpnukcHOdv79jFxmVVvONpK89pjEW9DxDLLljQ+wKeiw9ePMyK0hgf3FLG4JSFVFqILFbSPBKGIX/53Z1MxBL888svITvr7H+5500NUDX4CF0V60lkeeblbBRkw79dMUjneBZ/86ALh0oLkcVKmkfu2HGUu/Z08oHnrGZ5zbnd/l/XuxWAzqorUhltwVhXFeO9a0f47pECvn5oYW9YLS1EFitpnjg2PMFHb9/Fpc0VvPnaFec0RlZ8grq+bfSVrmYy7+znZinpvWtHua5uko88WMrOPpdgkBYSi5U0T3z0jt0MjU/xyXO8BAiw9OiPyY2P0ukSCzOSHcCnrhygKj/Bu+4vZ2DS+VbSQuGfUlIGu23TEQD2HB3kjofaedbaOrYc6mPLob6zHywMWX34NkbzaxksXpbaoAtQdX7IZ64a4JW/rOQDm8v43DUD3mApLQAWKynDTcTi3P5QO4vK8nna6trTHrfyyDefdJyS0RaqB3dzsP75LrGQIpdXx/jwJcN87KFSbn60iHeuGY06kqRZ5qVAKcP9fE8XA2NT/MG6RnKyzv0lvejYA8Sy8ukpvySF6fTGVWO8oGmcT+4s5hdH86KOI2mWWaykDNYxMM69+3vYsLSSpdXnvglw7tQQVYN76K5cRyLbX/6pFATwyQ2DrKmI8b5NZewbzI46kqRZZLGSMlQiEfL97W0U5GZzw4WLZzRWXd9WAhIusTBLinLgc9cMkJ8Nb73PyezSfGaxkjLUt7a2crh3lBsuXEzR2e4FeIIgMcWi3i30l65mIq8qhQl1osaiBDdfPUDrSDbvvr+cWCLqRJJmg5PXpQzUNzLJP/5oD0urirhsaeWMxqrpf5jc+ChHq69KUTqdbNPB3t9+/uYl49x8uJ733pPDTc1dv3fslcstt1Im84yVlIE+8ZNHGByP8eJ1jWTN5A6+MKT+2P2MFNQzVLQ0dQF1Ws+oGeD5db38qKuKn/WURx1HUopZrKQM83DrAF/b3MIbrl7G4vKZbZlSPryPwsme5Nkql1iYM69r6uLSsmG+cGQxe4YKo44jKYW8FChlkDAM+egdu6guzuNPnn0eP3jo6IzGqz/2GyZzSuktvyBFCReWEy/xnY3sAP54eTt/+chS/vVAI/+45hC1+bGzGtNLhlJ68oyVlEG+v72drYf7+OBz11BWkDujsYrGOigfOURH9UbCwCUA5lpxToIPrmojHgZ8Yn8T43HPGErzgcVKyhDDEzH+4c49XNJUzssvb5rxeIuP3U88K5euystTkE7noqFgkj9Z0UbLWD7/eaieMIw6kaSZ8lKglIYe3wPwRD/Z1UHX0AQvvayJr21umdH4uVODVA/spKtqA/Hsmc3T0sxcWjbKaxu7+UpbHT/uHuN5deewz6OktOEZKykD9AxPcM++Hi5bUsGSqqIZj7e4dzMBIR3VV6YgnWbqhYt6ubx8iC+31rFvxKIrZTKLlZQBfvTwUbKzAp4zwxXWAbLjE9T1bqG3bA0TeTNbA0upEQTwrmVHqcyN8akDDQzHfGuWMpWvXinN7e8eZk/HEM9YXTvjCeuQ3L4mJzHB0ZqnpCCdUqUkJ8EfL2+jdzKXmw8730rKVBYrKY0lwpAf7jhKZVEu16yqmfF4QSLG4mP3M1C8jJHChhQkVCqtLhnntU1dbO4v5Uddnk2UMpHFSkpjWw/30TE4znMvXExu9sxfrjUDD5MXG/ZsVRp7fl0fl5cPcVtbLa1jeVHHkXSWLFZSmpqYivPT3Z0srSri4sYUbH0ShtT33MdIwWIGilfMfDzNiiCAty3toCArwX8eqifuJUEpo1ispDT1y73dDE/EeMEl9QQp2G6mcuhRCieP0V5zjdvXpLmK3DhvXtLJ/tFCbu+ojjqOpLNgsZLSUN/IJPfu62F9cwVNlTNfXiF5tupexnMr6C1z+5pMcHXVEFdXDvLNozUcGcuPOo6kabJYSWnoJ7s7CAJSsrwCQG3fVkrH2uiovhoCX/aZ4k1LOinJjvOZg/XEvCQoZQTfYaU0s72lnx2tA1y7qpbywpkvrwBw4f7PM5VdRHflupSMp7lRlhPnrUs7ODRWwHePeklQygQWKymNhGHIP/xwD8X5OTz1vJkvrwBQNbCLhp57OVp9FYms1BQ1zZ0rKoZ5StUA3+uopn3cuwSldGexktLI/+7u5IFDvVy/to783OyUjHnh/s8ymVNKV9UVKRlPc+/1TV3kZ4V84cgiFw6V0ty0NmEOguAG4NNANvD5MAz/6aTn3w+8BYgB3cCbwjA8nOKs0rw2FU/wzz96hFV1JWxYWjWt71l55JtP+nzheCfNnT+ntfapxLOdAJ2pKnLjvLqxm88fWcy9fWVcWzUYdSRJp3HGM1ZBEGQDnwGeB1wAvDoIgpNvK3oQ2BCG4SXAt4BPpDqoNN999YEjHOgZ4UPPW0N2VmqWQ2jsvod4Vh4dVW62nOmeVdPPqqIxvtRSx4h7CUppazqvzo3AvjAMD4RhOAl8DXjxiQeEYfiLMAxHjz+8H2hKbUxpfhscn+JTdz3G1SuqeeaaupSMWTDRQ9XgLjqrriCeU5iSMRWdrADesrSDwVg2X2uvjTqOpNOYTrFqBFpOeNx6/Gun82bgR6d6IgiCtwVBsCUIgi3d3d3TTynNczf/cj+9I5N8+PlrU7IYKEBDz70kghyOVl+VkvEUveVFE9xQ18dPuyvY3jutmRyS5th0itWp3uVPOX0yCILXARuAT57q+TAMPxuG4YYwDDfU1voXlwTQ3j/GF+45yEvWN3JxUwq2rgHyJ/uo6d9BV+XlxHKKUzKm0sMrGnqoyI3xl9tKiSWiTiPpZNMpVq1A8wmPm4D2kw8KguB64C+BG8MwnEhNPGn++5f/fZQQ+MBzVqdszIaeewmDLI7WXJ2yMZUeirITvKG5i139uXx5v5d4pXQznWK1GTgvCILlQRDkAa8Cbj/xgCAI1gP/TbJUdaU+pjQ/7Wwb4LsPtvGmpyxPzdY1HD9b1bedrsrLmMotS8mYSi9XVQzx1EUT/OuuYjrHnMgupZMzviLDMIwB7wF+AuwBvhGG4a4gCD4WBMGNxw/7JFACfDMIgu1BENx+muEkHReGIf9w5x4qCnN51zNWpmzcxu67IciivebalI2p9BIE8PH1w0wmAj72UEnUcSSdYFqzH8MwvBO486SvfeSEz69PcS5p3rlt05EnPH60Y5D79h/jhZfU84OHjqbkZxRMHKOmfwcd1RuZyi1NyZhKT0tL4rxnzQj/truEV3SM87TFk1FHkoQrr0uRiCdCfrSzg+riPDYun95ioNPR2P0rEkEO7TVPSdmYSl9vP3+UFSUxPvJgCePxqNNIAouVFIlth/voGprguRcuJicrNS/DwvFuqgd20ll1BbEcLw8tBPnZ8HeXDXF4JIf/fMS7P6V0YLGS5tjEVJyf7ulkaVURFzakbnJ5Y/evSGTlcbTmmpSNqfR3Td0Uf7BknJsfLeLAUGr2l5R07ixW0hz71WPdDE/EeP7F9SlbDLRovIPqwd10VF1JLCc1dxcqc/zlJUPkZ4f89YOlbtIsRcxiJc2h/tFJ7nmsh3XNFTRXpa4ANXX9klhWPkdrXGV9IaotCPngRSPc25XH7S1uti1FyWIlzaH/3d0JwHMuWJSyMUtHDlM5tJejNU8hnu2CkQvVa1aMcWnlFB9/qISBydScCZV09ixW0hxp6R1le0s/155XQ0VRXmoGDUOaO+9iMqeUjuorUzOmMlJ2AH9/2RC9E1n8yy4nsktRsVhJcyAMQ+58+Cgl+Tk87bzU7ZNZOfQopWNttNY9jURWbsrGVWa6qDLG61eN8ZX9hTzkJs1SJCxW0hy48+EODveO8uwLFpGfm5o7t4JEjObOnzGWX0N3xbqUjKnM94ELR6gtSPAXW0uZcpNmac5ZrKRZNj4V559+vIfFZQVcvrQyZeOuaP0uhZPHaKl7FgS+lJVUmhvyd5cNsWcgl/98xDtEpbnmu7E0y7543yFaesd4/sX1ZKVoeYXs2CgX7/svhoqa6StdnZIxNX88p2GSFzeP8x97itnd7yVBaS5ZrKRZdGx4gv/78308c00dq+pStxr6mkNfpmiimyOLrk/uyCud5KPrhqjIC/nzLV4SlOaSf8pIs+hTdz3G6FScDz9/DQ8c7Jv296088s3TPpc7NchF+/+b3tI1DBc1pyKm5qHK/JC/u2yQd/ymgpsfLeK9a0ejjiQtCJ6xkmbJY51D3PbAEV575RJW1ZWmbNzmzp8ThAmOLH52ysbU/HRD4yQvah7n33cX88iA291Ic8EzVtIs+Yc791CUl82fXJ+6OVDFo63UDuygreYpTOSlbiK8Ms+mg73TOu7GqgHu61rJ+zeX8d1n9JFvv5JmlWespFlw995ufvFoN+975nlUFaduMdBlHT9hMqeE9pprUzOm5r2ynDifuHyQ3f25fGJn6ub5STo1i5WUYpOxBH97xy6WVBXx+muWpmzcmoGHKRlro2XRs0hkux+cpu9ZDZO8YeUoX3isiF92pKjoSzoli5WUYrfce5D93SN89MYLyM9JzXWXrPgkzZ0/Y7iwgZ7yS1IyphaWD10yzJryGH+2uYzuce8klWaLxUpKoY6BcT79s8e4fm0dz1yTuo2WG3p+TV5siMOLn+vyCjonBdnwH1cOMDQV8IHNZSTCqBNJ85PFSkqhv79zD7FEyEdeeGHKxiwc76b+2G/orrjU5RU0I+eVxfnrS4e4uzOfLzxWGHUcaV6yWEkpct/+Hu54qJ13PX0lS6pTtJVIGLLs6A+JZ+VzZJHLK2jmXrtinBsax/nnh0t4oNuNu6VUc7kFaYZu23SEeCLkP37+GJVFuVQW5XHbpiMpGbu2fztlo0c40PAiYjnu+6Zzc/LSDK+s7eehnmW87d5S/umCg1TmxgG4cnlVFPGkecUzVlIK3Le/h66hCV54SQO52al5WeXERmjuvIvBoma6K9alZEwJoCg7wftXtjKWyOJTBxqJOd9KShmLlTRDvSOT3LWnk7WLS1lbX5aycZd03kV2fIJD9S9wwrpSbknhJG9fepRHhou4rbUu6jjSvGGxkmYgDEO+92AbWUHAjesaUzZu6cghavsf4mjN1YwV+EtPs+MpVUPcUNvLD7uquLc3ddsuSQuZxUqage9sa2Nf9zDPvXAx5YWpmQicHRtlRfsdjOdW0l771JSMKZ3OHzV1cX7xKDcfqmdHr9NupZmyWEnnqGd4go//cDdLq4rYmMJJv+v2fpqCyT4ONL6IRJZ3bWl25WTB+1e2UZYb5633ldMx5q8FaSZ8BUnn6GN37GZ0Is5L1jeSlaI5UHXHNnP+4dvoqNrIUPGylIwpnUlFbpz/b1Urw7GAt9xbzmgs6kRS5rJYSefg5490cvtD7bz7GauoKytIyZg5sVGuevivGSpaQsuiZ6ZkTGm6lhRO8O8bB9nVn+PK7NIMeEFdOku9I5P8f99+mPMXlfLOp6/kW1tbUzLuukf/jeKxdn561RcpH9qXkjGls1Ey0cFrmyb5SmsdH7h3mFc19pz2WNe8kk7NYiWdhTAM+fB3HqZ/dJIvvnEjeTnTP+m78sg3T/tc2fABVh/5Okerr7JUKVIvrOulbSyP73bU0FgwyXXVg1FHkjKKlwKls/DtbW38eFcHH3jO+VzQkJo1q3JiI6xs+z5jeTW01D0jJWNK5yoI4C1LOrigZJSbDy/m0WH3FJTOhsVKmqaW3lE+evsuNi6v4q3XrUjNoGHIirbvkxMfZV/zSwm9C1BpIHmnYCs1eTH+ZX8jXRP+/1KaLouVNA3xRMj7v7EdgH/9w0vJzkrNXYCLj22icngfRxY9h9GCxSkZU0qF0pwEH1zVSiwM+MS+Rkbj/rqQpsNXijQN//XLfWw+1Mff3nghzVWp2Qy5eKyd5q676C09n86qDSkZU0qlxoJJ/nRFG23j+Xz6QANx7xSUzshiJZ3BPY/18G8/3cuLLm3gpZelZtua7PgEq1q/zVROCQcabnQvQKWtS8pGefOSDrYPlvCFI4sJLVfSk/KuQOlJtPeP8b6vPcjK2hL+6aUXE6SiAIUhy9tvJ3+yn93L30A8x8nBSm/X1w7QM5nLdztqqM6b4mX1x6KOJKUti5V0GpOxBO/6f9uYmIrzX6+7nOL81LxcGnruoXpwD4cXXc9w0ZKUjCnNtlc29NAzmcs32mupyZviyuVRJ5LSk8VKOoXbNh3h9ofa2N7Sz6s3LuGBg708cLB3xuNWDO2lqesX9JRfTEf11SlIKs2NIIB3LD1K31QO/32onqub+7lu0VTUsaS04xwr6RS2Henj/gO9XLuqhosby1MyZsFED6tav8NIQT0HGl7ovCplnJws+MDKNhoLJ3jHb8rZ0evf5tLJLFbSSe7b18N3t7WxoqaY516YmiUQcqcGWX3k6ySCXB5b8grXq1LGKspO8KFVrVTmhdx0TwX7BrOjjiSlFYuVdIJHO4Z4+1e2Ul2Sx2uvXJqS9aqyElNc++AHyJ/s47HmlzOZm5ozYFJUqvJifPm6frICeP2vKzg66q8S6XG+GqTjOgfHeeMtD1CYm81N1yyjMC8Ff4mHCa7a8VfUH7ufg40vYqh46czHlNLA8tI4t17bz+BUwB/9uoK+CS9tS2CxkgAYnohx0y2bGRib4pY3XkFFUV5Kxl3/6L+x7OidbF/9x/RUXJqSMaV0cVFljM9eM8CRkWxuuqeCwSnLleTMQy14IxMx3nTrZvZ2DvE/N13BhQ3lPNQyMO3vX3nkm6f8+uKe37C086d0VG1kIic1GzZL6eaauik+c9UA7/xNOTf9uoIvXddPSa6riGrh8oyVFrSRiRhvvHUzWw718qlXruNpq2tTMm5N/0Ms7fwpx8rWcnjxc7wDUPPasxsm+Y8rB3moL4c33VvOaCzqRFJ0LFZasE4sVZ9+1XpedGlDSsat6d/BirbvM1C8jP2NL4HAl5nmv+c1TfCpjYNs6cnlzfdWMGa50gLlO74WpNkrVQ+xou17DBYvY++SVxNmebVdC8eLmif41ysGub87lzfdW8Gwc660APmurwXjtk1HABgan+LL9x+mrW+MV17RzNB47LfPzURN33ZWtN/OYPFy9i55FQnXqtIC9JKlE8Agf7aljNfeXcGt1/ZTme+cKy0cnrHSgtIzNMHNv9pP5+A4r7tqKZc0VaRk3NrercdL1QoetVRpgXvJ0gluvnqAPQM5vOJXlXSM+atGC4f/b9eCcfjYCDffvZ/JWIK3XLuCtfUpuFMvDGns+gUrjv6Q/pJVPLrkla6qLpGc0H7rtf20j2bx8l9UcmjYFdq1MHgpUAvC7Q+184V7DlJemMtN1yyjuiR/xmNmJabYuPOjNHX/mq6K9RxseIET1bVgbJrGpuTZwF+uGuCTB5bwkp9X8l9XD3BVrRs3a37zt4Dmtal4go//YDfv++qDNFYU8vanrUxJqcqZGuZpW97Nirbbaal9OgcbXmipkk5hZfE433lGH1X5CV53dwW3HSiIOpI0qzxjpXmre2iCd9+2jQcO9nLTNctYUVtMTtbMy0/Z8AGu2/YnlI628JuLP05Wwr/ApSezvDTOd5/Zx/s2lfHhbWU8OpDDX186TI5/i2geslhpXtp8qJf33LaNgbEp/s8rL+Ul65vO6s6/062mXjWwixXtt5MI8nhk6WssVdI0PH7Z8O0NxygNa/ni/mo2dcJ7l7dTk/e7Ba+uXF4VVUQpZSxWmlem4gn+/WeP8Zlf7KO5qohbbtrIBQ0zn6QehHGaO+6ivncTQ4VNPNb8cqZy3aZGOhtZAbyuqZulhRN8/sgiPrh7OW9d2sHVlUNRR5NSxmKljPf4maie4Qm+saWF1r4xLl9SyQsvqWd7Sz/bW/pnNH7BRA8r275HyVg7HVUbObLo2YRZ3uEknavrqgc5r2SM/zjYwKcONLK9up83NndGHUtKCYuVMl4iDNl8qJcfPdxBdlbAqzcu4eLG8pkPHIYsPraJ5q6fE8/KZW/zH9JXtnbm40picf4Uf3v+Yb7VXsP3OqrZOVTMPxaN8OyGyaijSTNisVJGO9gzwud/fZBDx0ZYVVvCyy5vorxw5utI5U/2sqLtDspGD9NXupqD9S9kKrckBYklPS4ngFc19rCufITPHV7MW++r4NkNE3x03RCNRYmo40nnxGKljBSLJ/j8PQf5Pz/dSxDAS9c3cvnSSoJgZnuTZcfHueDAF7hw/+cIg2z2N9xIT8WlMMNxJZ3empIx/vmCgzw81cSndxdz/U+qefeaEd503ihF/pZShvH/sso4v9l/jI/evotHO4d4zgWLuGxJJWUzPUt1fAX1y/d8gpKxNnrKL+LIomczlVuamtCSnlROAO84f5QXNo3zsYdK+ZddJdy6r5A/vmCUVy4fI8+lGZQhLFbKGO39Y/z9nXv44Y6jNFYUcvPrLue5Fy7iqw+0TOv7T7eEQvFoK81dv6B85CCj+bXsXvZ6hoqXpTC5pOlqKk7w2WsG2NqTwz/vLOGvHyzlc3uLeN/aEW5cMm7BUtqzWP3/7d17cFxXfcDx72+f2l2tZD1sWbYcW3acF3nbeZPEQAjQpAllCEkIDI80lA4tYYaUgTKlDDCdZlLa0qZAKO1AeCYkPNwyoU1oXoTEsWNsxyYI8vBbsqy3tM/7+PWPeyUrshTL1torKb/PzM6ee+7Ze3/ru9796dx7zzGz3lDR4ZtPvsK/P/EyviqfuGo1H71yFTXxmd2Zlyp209b9KI3DHTjRNDsXv43uxrWo2B1/xlTbmmaX+64c4LGuBHftyHDHpjq+vCPDravz3LyySCam1Q7RmElZYmVmraLjce/TO/nqYy8xkHe45qxWPv2O01jWmJ7RdjOFfbT2PE3j0G/xIkn2LFpHV+NF+NGZT3VjjKkcEXhTa5l1i8s81pXgax1pvrQty7++kOG9KwvcsrJAW8YucjeziyVWZtbJlVzu37SHrz/+EgeGSlxxykL+6upTOattBkMoqFI//AeW9Pyauvwu3EiS/c2X0dl0KV4sVbngjTEVN5pgvam1zObeGPd0pLmnI83XO9K8ubXM+1YWuHJxmYjdY2JmAUuszKzRM1Li27/eyb1P72Kw4HDBiga+ctN5XLyy6Zi3mSz30773Z5y85wHq8rsoxerY1fJWDjacj2c9VMbMOec3udxz6RA/7xjilwcXBI/OBTTFHa5oGuTypiGW1hwaC8umyTEnmqhW5zz12rVrddOmTVXZt5k9VJWNO/u5b+Me/mvbfhzP562nt9DenGF5U+aYtim+S0vvs6zc91OWdT1CVB26G85jOL2c3ro32Kjpxswjrg/PDmR5vLeerUMZFOHkdIFLG4e4qGGYa061qacqbu2Hqh1BVYjIc6q69kjtrIFH2q0AAA4XSURBVMfKVEXnYIH1W/Zz38Y9vNyTozYZ44Y1bXz4je2sWlh79BMmq1Jb2EfT4HaaBncQ93K4kSQHG86ju+F8CjWLjuO7McZUSywClzYOc2njMP1OlKf66niit55797Zw794W7tnr8LalJa5qLXFKnWdD0pnjzhIrc8Ls7s3z0PZOHtreNTZ/39rlDfz5ulVcc3Yr6cTRfRwjXomWvmdZsf/nNAz/noQ7jC9RBrKn0FN/JgO1q9GIfcSNeb1oiHtc29LPtS39dBbjPDuQZUe+gbu213LX9lpaajwubylzeUuZSxY6LErZhe+m8uxXxxw3fbkyz7zcy1Mv9vD0S7283JMDYMmCGq4+o4Uzl9TTnE3ieMpPf7P/yBtUnwXDf2Bx7zO09D7Lor6NxL0CXiTOYGYV/XWn0p89FS9ac5zfmTFmtmutcbh+cR9/1w6d+QhPHEjwxIEEj3QmeWBXcMNKW9rj/CaHNU0OZzU4nFbv2kjvZsbsI2QqYiBfpqNrmOf3DQaPvYNjiVQmEeWilU3ccvFyimWPhkxiWtuMunmaBnfQNLCN5oGtLOzfQo3TD8BgZgWvLL2OfYvWkcntsZ4pY8yUWtM+N7YXubG9iKewvT/Gxp44m3vjbDgYZ/2e4I8xQVlR63F6vcvqOo/2rEt7rceKWo/6hI2bZabHfo3MtKgqvbkye/sL7OnLs7e/wO6+HC8dzPFS9wi9uUN34bTW13Dm0nredf5SLlnVzNlt9cSjwXDJk147pUpNqYf63Ms0DP2OhqEOWno3kCodRAi+zAqJRoYzJ7EvcwVDmXbK8eCC1HSh05IqY8y0RQXOaXQ5p9EFCqjC/kKE7f0xHt7psKtQw3MHkzy0L4ly6IKsuphLa7LM4poyF7bGWFHrcVImeFjSZcazXySD7ys9uRJdg0U6B4t0DhToHCryzEu9DBZchooOQwUH13/1l0c6EWVhNkl7c4YL2xtZlE2yZEGKbM2hefs6uobp6BoGVZLOAM25XWRzu8jmd5HN7Q7Lu4l7+bHX5JOLKMXr6M+ewki6jZFUG25sZoOCGmPMZERgadpnabrMgnLfWH3ZF7pLcTpLCTqLCTpLCbqKCbYNZXi899Vzk2aiHi3JMouSDi0J51A56fCOU7LEbBqe1xVLrOY5z1cODpfoHCzQNVhk/2CRrsECnYPFsUTqwFDxsKQpHhVqkzHqU3HaGlLUL6mjPhWnIZ0IH3GS8SioEneHSZYHqSnvI9XfTbrUTarYTbp4gFSpm3QxWI75xbHtK0Ip0UAx0Uhv/ZkUE40Ukk3kaxbjxo5tmAVjjJlowyt9R240iUREaUuVaUuVD1tX8CJ0l+IcKMU5UE7QXYrTXYqzK1/DxoEsnh7q6YruUJamfZZnPJaN6+U6KeNxUq1HXdx6u+abaSVWIvJ24CtAFPimqv79hPVJ4F5gDdAL3KiqOysbqlFVio7PcMkhV/IYKjj05cr0jJTozZXHyn25Mr0jQbl7uIQ3IWmKRYT6VJy6VJyF2SQnL8zQXOOzMOHQFC/RGC+TlQLJMGFKOgMknAGS+QGSgwMky8Ej4QyQdAaJqHdYrL5EKceylONZyrE6RhqWUI7XUUw0Ukw0UUossDn5jDFzUirqszxdYnm6dNg6X6HPidFVChKuWKqO3bkou0eiPLQ3SX/51d1XCxI+J2U8WlMeLSmfRTU+i8LnlhqPRSmfhoTaqPJzyBETKxGJAv8GvBXYC2wUkfWq+ttxzW4F+lX1ZBG5CbgTuPF4BFxJqooqaFj2FZSwLiz7Om6dKo7r4/o+rufjuB6ur5TDZ8/zxtY7no/jKZ7n4/oejqe4nodTLuO4Lo7j4jhlXNfBcV1cx8VxHTzXwXVdvLC+VHIoOWVKZQfHKYN6xPCJ4BPDI4lDAoekOKTEZVnM4/SYRybqkol41Da5pCMuqYhHWsqktUDSzxP38sTdEeL9OWJeftLkaDxfIrjRdPhI4cbSDCXag3I0jRtL4UTTOGEi5UZT2IAxxpjXm4hAc8KlOeFCFmAQMkA4lF5+rLcrwYGwp+tAKcGOvhhPezUMOYefN4yLUp/wqUsodXGlLu5TF1eyo+WEkooqyaiSiAS9bcmokowwVheR4A/s0W/l0a/nseUp6kfrDrVTpGsICWtG1x36uhdEICJCJHw+tBzUybh1EREkAtHR8iSvlTn2WzKdHqsLgRdV9WUAEfkhcD0wPrG6Hvh8WH4AuFtERKs1rDuw5ZEfsPrJ21/9YeDVHywm1AkQmaTd6Aey6uJHbgKAC+oKfiSGX46hEgvKEsOLJPAjSbxoknxNC14kiRdJBM/RcN3YchI3GiRMfiRhiZIxxsxQOuqzIl1ixSS9XRBc29XvxOh3YgyEz/1OjBE3Qt6LknMjDGqSvTlhyBGGnAhl/wR/Nz/y5And3fhkazQpE179nj959Sn86eUrT2hcU5lOYrUU2DNueS9w0VRtVNUVkUGgCegZ30hEPgJ8JFwcEZGOYwn6OGtmQtxmzrJjOX/YsZw/7FjOL7PieN72Jbjt+O9m+XQaTSexmiwVntiFM502qOo3gG9MY59VIyKbpjMXkJn97FjOH3Ys5w87lvOLHc/DTecm0L3AsnHLbcDEYbLH2ohIDKgHju1WDGOMMcaYOWo6idVGYLWItItIArgJWD+hzXrgA2H53cD/VfP6KmOMMcaYajjiqcDwmqm/AP6HYLiF/1TVHSLyBWCTqq4H/gP4joi8SNBTddPxDPo4m9WnKs1RsWM5f9ixnD/sWM4vdjwnEOtYMsYYY4ypDBto3xhjjDGmQiyxMsYYY4ypEEusXoOI3CEiKiLN1Y7FHBsRuUtEfici20TkJyKyoNoxmaMjIm8XkQ4ReVFEPl3teMyxEZFlIvKoiLwgIjtE5PZqx2RmRkSiIvIbEfnvascym1hiNQURWUYwjc/uasdiZuRh4ExVPRv4PfCZKsdjjsK4KbXeAZwB3CwiZ1Q3KnOMXOCTqno6cDHwMTuWc97twAvVDmK2scRqav8EfIpJBjo1c4eq/q+quuHiMwTjsJm5Y2xKLVUtA6NTapk5RlU7VXVzWB4m+EFeWt2ozLESkTbgGuCb1Y5ltrHEahIich2wT1W3VjsWU1EfBh6qdhDmqEw2pZb9GM9xIrICOA/YUN1IzAz8M0Hng1/tQGab6UxpMy+JyCPA4klWfRb4a+DqExuROVavdSxV9Wdhm88SnIr43omMzczYtKbLMnOHiNQCDwKfUNWhasdjjp6IXAt0q+pzIrKu2vHMNq/bxEpVr5qsXkTOAtqBrSICwamjzSJyoap2ncAQzTRNdSxHicgHgGuBt9iMAHPOdKbUMnOEiMQJkqrvqeqPqx2POWaXAdeJyB8BNUCdiHxXVd9X5bhmBRsg9AhEZCewVlWrPnu3OXoi8nbgH4ErVfVgteMxRyece/T3wFuAfQRTbL1XVXdUNTBz1CT4S/XbQJ+qfqLa8ZjKCHus7lDVa6sdy2xh11iZ+e5uIAs8LCJbROTr1Q7ITF9448HolFovAPdbUjVnXQa8H3hz+H9xS9jjYcy8Yj1WxhhjjDEVYj1WxhhjjDEVYomVMcYYY0yFWGJljDHGGFMhllgZY4wxxlSIJVbGGGOMMRViiZUxpuJE5PMickeFtnWdiHy6Ets6in2OvMa6m0TkGRF5UETeeCLjMsbMfjbcgjGm4kTk88CIqv5DtWM5FiIyoqq1E+qiqupVKyZjzNxgPVbGmIoQkc+KSEc4d+OpYd0qEfmFiDwnIk+KyGlh/Q0isl1EtorIE2HdBhF5w7jtPSYia0TkgyJyd1i3XER+KSLbwueTpohlRES+LCKbw3YLw/rbRGRjuN8HRSQd1reLyNPhui+O2846EXlURL4PPB/W/TR8PztE5CPj2t4sIs+H7+vOyv7rGmPmCkusjDEzJiJrgJuA84B3AReEq74B/KWqrgHuAL4a1n8OeJuqngNcF9b9EHhPuL1WYImqPjdhV3cD96rq2QQTav/LFCFlgM2qej7wOPC3Yf2PVfWCcL8vALeG9V8BvqaqFwAT5wS9kGBC7zPC5Q+H72ct8HERaRKRJcCdwJuBc4ELROSdU8RmjJnHLLEyxlTC5cBPVDWvqkPAeoLJWS8FfiQiW4B7gNaw/VPAt0TkNiAa1t0P3BCW3wP8aJL9XAJ8Pyx/B5jqGicfuC8sf3dcuzPDnrPngVuA0R6yy4AfjNvueM+q6ivjlj8uIluBZwgmiF5NkEg+pqoHw2l4vgdcMUVsxph5LFbtAIwx88bECzYjwICqnntYQ9WPishFwDXAFhE5V1X3iUiviJwN3Aj82XT2KSJRYLRna72qfu41YvsW8E5V3SoiHwTWvUb8o3KjhXDC2auAS1Q1LyKPESSQMo1YjTGvA9ZjZYyphCeAPxGRlIhkgT8G8sArInIDgATOCcurVHVDmAT1EPT8QHA68FNAvao+P8l+fk1wyhGCHqdfqaqnqueGj9GkKgK8Oyy/F/hVWM4CnSISD18/6qkJ251KPdAfJlWnAReH9RuAK0WkOUz0biY4BWmMeZ2xxMoYM2Oqupng1NsW4EHgyXDVLcCt4amzHcD1Yf1doxd6EyRlW8P6BwgSnPun2NXHgQ+JyDbg/cDtU7TLAW8QkecIrnv6Qlj/NwRJ0MPA78a1vx34mIhsJEiepvILIBbu/4sEpwNR1U7gM8Cj4XvZrKo/e43tGGPmKRtuwRgz70w2XIIxxpwI1mNljDHGGFMh1mNljDHGGFMh1mNljDHGGFMhllgZY4wxxlSIJVbGGGOMMRViiZUxxhhjTIVYYmWMMcYYUyH/D/fTdcze2qflAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHjCAYAAADhSlFEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XeYXGd99//32d53tV1alZVkybLcbbkDNtWmh9AdHgMBHCAOSUiBBAL5ERICJIQnDwRwEpxAMI4NGAy4UG3jJqtLVrPVtb3vanuZ8/tjZCPLKrva2T2zM+/XdenanTlnzn4NmtFn7/s+3zsIwxBJkiRNX0bUBUiSJKUKg5UkSVKCGKwkSZISxGAlSZKUIAYrSZKkBDFYSZIkJYjBSpIkKUEMVpIkSQlisJIkSUqQrKh+cGVlZVhfXx/Vj5ckSZq0DRs2dIRhWHW68yILVvX19axfvz6qHy9JkjRpQRAcnMx5TgVKkiQliMFKkiQpQQxWkiRJCWKwkiRJShCDlSRJUoIYrCRJkhLEYCVJkpQgBitJkqQEMVhJkiQliMFKkiQpQQxWkiRJCWKwkiRJShCDlSRJUoIYrCRJkhLEYCVJkpQgpw1WQRB8MwiCtiAInjrJ8SAIgn8NgmBPEARbgyC4JPFlSpIkJb/JjFj9F3DDKY6/Glhx9M/NwNemX5YkSdLck3W6E8IwfDgIgvpTnPJG4FthGIbAE0EQlAVBMD8Mw+YE1ShJkqYiDON/CCGMHfP90cec6nj4wuMn+xknPjD986d67bzS+J8kcNpgNQl1wOFjHjccfc5gJUlKD+OjMNwLwz3xr6P9MDYEY4NHvx77ZxDGh59/bGIUJsYgNv7bPxNjEJuA2Ngxj09yLDbB88JQunnF/wcv+pOoqwASE6yCEzx3wv9XgyC4mfh0IYsXL07Aj5YkaQaMDUF/K/S3H/3aCv1tv/061BUPUEM98TA1Njj5a2dkQmYOZGTHv2ZmQ0YWBBnxY0HmMd9nQGYuZOfHn8/IOHr82O8z4n8AgoDn/ll+9vvg2X+mT/R9cPT0415z7PPBif6Zf9bJjp3k+eOfXnLNMT93stc4wfMLLj5JHbMvEcGqAVh0zOOFQNOJTgzD8FbgVoA1a9akYaSWJCWF8VHoPQzd+2HLHTDQCUOdMNgJg10nD0o5RZBbDDmFkF0AZQshe2X8+6z8eADKzoesvHhgejY4PRegsuOBSXGXvjvqChIuEcHqHuCWIAjuAK4Ael1fJUlKCk/+Bwx2QF8THGmOf+1rgqFunje5kpEJ+eVQUAFlSyC/DHKKIbcE8o5+zSkyFOm0ThusgiD4LnAdUBkEQQPwaSAbIAzDrwP3Aq8B9gCDwHtnqlhJkk5qfBRatkLDOmjZBq1PQev2+BokiE+XFVbDvCWw8DIorID8iniYyiv57XSaNA2TuSvwnac5HgJ/mLCKJEmajCe+Bl37oOOZ+JReb8NvQ1RuMRQvgPoXQ8n8+PdFNfHpOGkGJWIqUJKkmReLQdMmePp+2PcgNK6PtwLIyITSxfEQNa/+t1N5UgQMVpKk5LL+tt9+HxuH9t3xqb22HTDSBwRQthiWvxwqV8TDVGZOVNVKz2OwkiQllzAWn+Jr3ADNW+J36GXlQdUqqDkPqs+J35UnJSGDlSQpORxpgU3fhse/Gr9rLzMHas6Hukug6ux4rycpyfm3VJI0e46d5oN4p/DOPXDwkfh0XxiDypWw6nXx0ams3GjqlM6QwUqSNPvCGDRvhb2/jDfqzC6ApdfC4qugqDrq6qQzZrCSJM2e2ES8z9SeX8QbdxZUwvlvjfeVcgG6UoDBSpI082Ix2HE3PPSPMNAOpYvgkvfA/AtszKmUYrCSJE3f8WunjtW2E3b9BPoaoXg+rHk/1Jx7ms19pbnJYCVJmhmDnbD97vjWMgUVcNG74nf4OUKlFGawkiQl1sRYfFH6nl/GR6VWvQ6WXgeZ/pOj1OffcklS4nTtgy3fja+jmn8RrH4j5M+Luipp1hisJEnTNzEKu++L7+GXPw+u+FC8qaeUZgxWkqTpadwAv/kn6G+DxVfD6jfEt6CR0pDBSpJ0aie74y8MYf9DsPMeyC2BKz4Y389PSmMGK0nS1I0NwpY7oGVrfOuZC2+EnIKoq5IiZ7CSJE1Nz2HY+F/xjZJX/058Kxp7UkmAwUqSNBVNm2Dz7ZBTCFd/BObVR12RlFQMVpKk0wtD2PNz2H0vzFsKa94HuUVRVyUlHYOVJOnUJsZh6x3QuB7q1sAF77DZp3QSvjMkSSc33AdrvwZde+Hs18BZr3Q9lXQKBitJSlen2jgZYLQf1n4jvnnyxf8H6i6dnbqkOcxgJUl6oeFeeOJrMNgRX09Vc27UFUlzgsFKkvR8g53wxL/BSD9c/gdQuSLqiqQ5w2AlSfqtoW54/CswPgJXfsh2CtIUGawkSXHDffD4V2FsCK76QyhdFHVF0pyTEXUBkqQkMDoQv/tvpC8+/Weoks6IwUqS0t3YcPzuv4F2uOz9UL406oqkOctgJUnpLDYO6/8T+hrg0vdA5cqoK5LmNIOVJKWrMIStd0LnM3DhjVBzXtQVSXOewUqS0tXeX0DDk7Dieli4JupqpJTgXYGSlIpO11W9aRPs+iksuBRW3jA7NUlpwBErSUo33Qdg83dg3lK48B3u/SclkMFKktLJcB+s/ybklca3qsnMjroiKaUYrCQpXcQmYON/w/gwrHk/5BZFXZGUcgxWkpQudv0UuvbC+W+DkvlRVyOlJIOVJKWD5i2w71ew5EXeASjNIIOVJKW6/jbYcjuULYbVvxN1NVJKM1hJUiqbGIeN/wVBFlz6Xsi0y440kwxWkpTKdv8U+prgohshf17U1Ugpz2AlSamq42nY9yAsuRpqzo26GiktGKwkKRWNDsLm26GwynVV0iwyWElSqglD2HYnjPTBxf8HMnOirkhKGwYrSUo1W/8XmjfD2a+GskVRVyOlFW8PkaS55lQbLA/3woOfg/JlsPzls1eTJMARK0lKHWEI2+6Kb11zwTsh8CNemm2+6yQpVTRvgdan4lOARVVRVyOlJYOVJKWC0QF46ntQugiWXht1NVLaMlhJUirYfjeMDcKF74SMzKirkdKWwUqS5rq2HdC4Hs56BZQsiLoaKa0ZrCRpLpsYjS9YL6qBs14VdTVS2jNYSdJc9szPYagbzn+bGyxLScBgJUlzVX8r7P0VLLwMKpZHXY0kDFaSNDeFITz1fcjMhnPeEHU1ko4yWEnSXNS8GTqehlWvhdziqKuRdJTBSpLmmvFh2P5DKF0IS66JuhpJxzBYSdJc8/QDMNIH573FbWukJOM7UpLmko5nYP9DsOgKmFcfdTWSjmOwkqS55GefjC9YX/XaqCuRdAI2PZGkZLH+tlMfb98FT98fvwvQBetSUnLESpLmgthEfMF6QSXUvyTqaiSdhMFKkuaCQ49BfwusfqMd1qUkZrCSpGQ3Ogi774OKFVBzXtTVSDoFg5UkJbtnHoCxITj3TRAEUVcj6RQMVpKUzAY64MAjsPhKKFkQdTWSTsNgJUnJbPdPISMTVt4QdSWSJsFgJUnJqucQNG2CZddBXmnU1UiaBIOVJCWjMISdP4acQlj2sqirkTRJBitJSkbtu6DzGVjxKsjOi7oaSZNksJKkZBPGYNePoaACllwTdTWSpsBgJUnJpnED9DXB2a+BDJuBSnOJwUqSkklsPN4MtHQhLLg46mokTZHBSpKSyeG1MNQVH60K/IiW5hrftZKULCbG4Jmfw7x6qDon6moknYFJBasgCG4IgmB3EAR7giD4+AmOLw6C4NdBEGwKgmBrEASvSXypkpTiDj0Bwz2w8tVuXSPNUacNVkEQZAJfBV4NrAbeGQTB6uNO+yRwZxiGFwPvAP4t0YVKUkobG4I9P4fy5VC5MupqJJ2hydxucjmwJwzDfQBBENwBvBHYccw5IVBy9PtSoCmRRUrSnLf+tlMf3/drGOmDS97taJU0h01mKrAOOHzM44ajzx3rb4F3BUHQANwL/NGJLhQEwc1BEKwPgmB9e3v7GZQrSSlofAT2/DI+UlWxPOpqJE3DZILViX51Co97/E7gv8IwXAi8Bvh2ELzwdpYwDG8Nw3BNGIZrqqqqpl6tJKWiA7+B0X44+9VRVyJpmiYTrBqARcc8XsgLp/reB9wJEIbh40AeUJmIAiUppY2PxKcBq1bBvKVRVyNpmiYTrNYBK4IgWBoEQQ7xxen3HHfOIeDlAEEQnEM8WDnXJ0mnc+hxGB2AFddHXYmkBDhtsArDcBy4BXgA2En87r/tQRB8JgiCNxw97c+ADwRBsAX4LvCeMAyPny6UJB1rYjw+WlW+HModrZJSwaQ2oQrD8F7ii9KPfe5Tx3y/A3CnUEmaioZ1MNwLF94YdSWSEsTO65IUhdgE7P0llC6yb5WUQgxWkhSF5s0w2AErXmnfKimFGKwkabaFMdjzCyiuhZrzoq5GUgIZrCRptrVuhyPNsPwV8MKWf5LmMN/RkjSbwjA+WlVQAQsujroaSQlmsJKk2dS9H3oOwrLrICMz6mokJZjBSpJm074HIbsAFl4edSWSZoDBSpJmS387tGyDJddAVm7U1UiaAQYrSZot+x+CjAyof3HUlUiaIQYrSZoNowNweC3UXQp5JVFXI2mGGKwkaTYcfBRiY7D0pVFXImkGGawkaaaNDcOB30DVKiiZH3U1kmaQwUqSZtq2u2DkCCxztEpKdVlRFyBJc9r62059PAzh4S9A8QI3W5bSgCNWkjSTOvfEt69Z+hI3W5bSgMFKkmbSgd9AdiHUXRJ1JZJmgcFKkmbKUHe8IejiKyEzJ+pqJM0Cg5UkzZQDj8S/Lrkm2jokzRqDlSTNhIlROPQ41J4PBeVRVyNplhisJGkmNG6EsUG3r5HSjMFKkhItDOOL1ovnQ8VZUVcjaRYZrCQp0br3Q19jfLTKFgtSWjFYSVKiHfgNZOfHN1yWlFYMVpKUSCNHoHkLLLwcsnKjrkbSLDNYSVIiHX4CwhgsuTrqSiRFwGAlSYkSxuDgY1CxAopqoq5GUgQMVpKUKG274t3WbQgqpS2DlSQlyqFHIbck3hRUUloyWElSIgx1Q+uO+L6AGZlRVyMpIgYrSUqEQ4/Hvy6+Kto6JEXKYCVJ0xWbgENPQPVqyJ8XdTWSImSwkqTpatkGI30uWpdksJKkaTv0WHykqnpV1JVIipjBSpKmY6ADOp6Or60K/EiV0p2fApI0HYfXAkF8CxtJac9gJUlnamI8HqyqV0N+WdTVSEoCWVEXIElJa/1tpz7e8lR80friK2enHklJzxErSTpThx+Pd1qvXh11JZKShMFKks7EUE+80/qiy+20Luk5BitJOhMNTwIhLLoi6kokJRGDlSRNVRiLL1qvWAGFVVFXIymJGKwkaao6noHBThetS3oBg5UkTdXhJyC7AGoviLoSSUnGYCVJUzE6GN8bsO5SyMyOuhpJScZgJUlT0bwJYuPxuwEl6TgGK0maisNPQvF8KFkYdSWSkpDBSpIm60gL9ByM7wsYBFFXIykJGawkabIa1kGQEV9fJUknYLCSpMkIY9CwHqrOgbySqKuRlKQMVpI0Ge27YaTXReuSTslgJUmT0fBkvHdV9blRVyIpiRmsJOl0xo7tXZUVdTWSkpjBSpJOp+lo76qFTgNKOjWDlSSdzuEnobgWSu1dJenUDFaSdCr9rfaukjRpBitJOhV7V0maAoOVJJ1MGIsHq6pVkFcadTWS5gCDlSSdTMfTMNzronVJk2awkqSTOXy0d1XNeVFXImmOMFhJ0okM9cR7Vy24xN5VkibNYCVJJ7L9boiNuYWNpCnx1zBJ6Wf9bac/59EvQ1EtlC6a+XokpQxHrCTpeP2t0H0gPlpl7ypJU2CwkqTjNawHAntXSZoyg5UkHeu53lVn27tK0pQZrCTpWF37YbgH6tZEXYmkOchgJUnHalwPmTlQe37UlUiagwxWkvSsiXFo3hwPVVm5UVcjaQ4yWEnSs9p3wNiQi9YlnTGDlSQ9q3ED5BRB5dlRVyJpjjJYSRLER6pat8OCiyEjM+pqJM1RBitJAmjeArFxpwElTYvBSpIgPg1YUAllS6KuRNIcZrCSpKEe6NwTH61yCxtJ0zCpYBUEwQ1BEOwOgmBPEAQfP8k5bwuCYEcQBNuDILg9sWVK0gxq2giENgWVNG1ZpzshCIJM4KvAK4EGYF0QBPeEYbjjmHNWAH8FXBOGYXcQBNUzVbAkJVzjBihdDEVVUVciaY6bzIjV5cCeMAz3hWE4CtwBvPG4cz4AfDUMw26AMAzbElumJM2QIy3Q1+iidUkJMZlgVQccPuZxw9HnjrUSWBkEwaNBEDwRBMENJ7pQEAQ3B0GwPgiC9e3t7WdWsSQlUuMGCDKg7pKoK5GUAiYTrE60kjM87nEWsAK4Dngn8B9BEJS94EVheGsYhmvCMFxTVeWQu6SIhbH43oCVKyG3OOpqJKWAyQSrBmDRMY8XAk0nOOdHYRiOhWG4H9hNPGhJUvLqPgBD3U4DSkqYyQSrdcCKIAiWBkGQA7wDuOe4c34IvBQgCIJK4lOD+xJZqCQlXON6yMyB2guirkRSijhtsArDcBy4BXgA2AncGYbh9iAIPhMEwRuOnvYA0BkEwQ7g18BfhGHYOVNFS9K0xcahaTPUnAdZuVFXIylFnLbdAkAYhvcC9x733KeO+T4EPnr0jyQlv7ZdMDboNKCkhLLzuqT01LgecgqhalXUlUhKIQYrSelnbBhat8P8iyEjM+pqJKUQg5Wk9NOyBWJjsNBpQEmJZbCSlH4aN0JBBZTVR12JpBRjsJKUXvrboONpWHAJBCfqfyxJZ25SdwVK0pyx/rZTH9//GyCMBytJSjBHrCSll6aNUDwfSuZHXYmkFGSwkpQ+hrqhez8suDjqSiSlKIOVpPTRtCn+1WlASTPEYCUpfTRuhNLFUFgZdSWSUpTBSlJ66G+Fvgaoc7RK0swxWElKD02bgADmXxR1JZJSmMFKUuoLw/jdgOXLIL8s6mokpTCDlaTU19cYbwzqNKCkGWawkpT6mjZBkAHzL4y6EkkpzmAlKbU9Ow1YeTbkFEVdjaQUZ7CSlNp6DsQbg9bZFFTSzDNYSUptjRshIxtqLoi6EklpwGAlKXXFJqB5M1Svhuy8qKuRlAYMVpJSV9deGDni3oCSZo3BSlLqatwImblQszrqSiSlCYOVpNQUG4eWLVB7PmTmRF2NpDRhsJKUmtp3wdgQLLApqKTZY7CSlJoaN0F2AVSdHXUlktKIwUpS6pkYhdZt8U7rGZlRVyMpjRisJKWe1u3xcOU0oKRZZrCSlHoaN0JuCVQsj7oSSWnGYCUptYwNQfuOeO+qwI84SbPLTx1JqaVla7zjuk1BJUXAYCUptTRtgoIKKFsSdSWS0pDBSlLqGOiAjqfji9aDIOpqJKUhg5Wk1LH9bghjTgNKiozBSlLqeOoHUFwLJQuirkRSmsqKugBJmrT1t5382FA3HHoMzn7N7NUjScdxxEpSamjaHP/qNKCkCBmsJKWGpo1QuggKq6KuRFIaM1hJmvv626H3MNS5hY2kaBmsJM19TRuBAOY7DSgpWgYrSXNbGELTBihfBvllUVcjKc0ZrCTNbX2N0N/mNKCkpGCwkjS3NW2Mb7Y8/6KoK5Ekg5WkOSyMQeNGqFoFOYVRVyNJBitJc1jXfhjugbpLo65EkgCDlaS5rGkjZOZAzXlRVyJJgMFK0lwVm4h3W685F7Jyo65GkgCDlaS5qn03jA04DSgpqRisJM1NTRsguyC+cF2SkoTBStLcMzEKLdtg/oWQkRV1NZL0HIOVpLmn9al4uFpgU1BJycVgJWnuadwIeaVQsTzqSiTpeQxWkuaW0UFo2wkLLo53XJekJOKnkqS5pWULhBOwwLsBJSUfg5WkuaVxIxRWQenCqCuRpBcwWEmaO4Z7oXNPvHdVEERdjSS9gMFK0tzRtAkIvRtQUtIyWEmaOxo3QOkiKKqOuhJJOiGDlaS5oXMv9B6GOkerJCUvg5WkuWHb94AA5l8cdSWSdFIGK0nJLwxh213xhqD5ZVFXI0knZbCSlPyat0DnM/aukpT03L1UUvTW33bq4zt+BEEmzL9gduqRpDPkiJWk5BbG4k1Bq1dBTmHU1UjSKRmsJCW3zj0w0gt1l0VdiSSdlsFKUnJrWA9ZeVCzOupKJOm0DFaSktfEaHzT5fkXQmZO1NVI0mkZrCQlr9anYHwE6tZEXYkkTYrBSlLyatgAeWXx/lWSNAcYrCQlp5F+aN8Z38Im8KNK0tzgp5Wk5NS0Kd5qwWlASXOIwUpScmpcDyUL4n8kaY4wWElKPv3t0HPQ0SpJc47BSlLyaVwPBLDgkqgrkaQpMVhJSi5hCI0boHIF5JdFXY0kTYnBSlJy6TkIgx1Qd2nUlUjSlE0qWAVBcEMQBLuDINgTBMHHT3HeW4IgCIMgcGGEpDPTsB4ysqH2wqgrkaQpO22wCoIgE/gq8GpgNfDOIAhesGlXEATFwEeAtYkuUlKaiE3E2yzUngfZeVFXI0lTljWJcy4H9oRhuA8gCII7gDcCO4477++ALwB/ntAKJaWP9l0wNjCtuwHX7u867TlXLC0/4+tL0qlMJljVAYePedwAXHHsCUEQXAwsCsPwJ0EQnDRYBUFwM3AzwOLFi6deraTU1rAOsguhatWUXjYyAU91Z7G1O5tfHZ7PvsE8xsOApQXDLCsYZmnBMCsKh8nPjM1Q4ZIUN5lgFZzgufC5g0GQAfwL8J7TXSgMw1uBWwHWrFkTnuZ0SelkbAhat8OiKyAjc1IvGRqH7+zL59anC2gbjr+mLGucZYXDZAcx9g7k8UR3CQD5GRO8tqab11SffkRLks7UZIJVA7DomMcLgaZjHhcD5wEPBkEAUAvcEwTBG8IwXJ+oQiWluJatEBuDhaefBhwYD/j23nz+/ekCOkcyuKpqlM9c3M/F5WMcaOl43rlHxjPYN5jHL9rn8b3mSu5rm8cfjA3x3hVDFGf7+52kxJpMsFoHrAiCYCnQCLwDuPHZg2EY9gKVzz4OguBB4M8NVZKmpGE9FFRC2ZKTnvL4vi4e6izljsYqesazuLCkn4/Ud7KqaAhG4UDLC19TnBXjwpJBLiwZ5MBgLnc1VfKlHcV8e18+n7/0CC+bPzqD/1GS0s1pg1UYhuNBENwCPABkAt8Mw3B7EASfAdaHYXjPTBcpKcUN9UDnHlh5PQQnWn0A6zqy+cSuJewbzGdF4RB/tryBlUXDU/ox9QUj/MVZjeSVVvOxDSX8/qNlvL1+iE9e2O/olaSEmMyIFWEY3gvce9xznzrJuddNvyxJaaVpIxCesCnozp5M/u/OQu5vzKM8e4xb6pt4UXnfyfLXpAz3tvHJZe3c1VzJnQfK+VVTFh+ub2J18dDzzvPuQUlTNalgJUkzJgzjdwOWLYHCquee3tGTxb/uLOD+xjyKs2L88TkDXJLbQF5mYkaWsjNCbqxrZ03pEf7twAI++/RiPrCkhZdW9ibk+pLSk8FKUrSat8CRZjj/rQCs78jm67sL+EVzLsXZMT5yzgDvWzFIaU7I2v2Jn65bWTTMP5xzgH/ZW8fXD86nfTSbt87vmNaImKT0ZbCSFK0t3yUWZPKfHedy144inh4ooDhznLfMb+c11d0UZsXY1TizJRRkxvjYisP8x8Favt9cSdtINh9c0jyzP1RSSjJYSZpZ6287+bHYOOMb/odHw4v4+/0rqcoZ5b2LWriuojdhU36TlRXAHyxpoSp3jDubqugZy+Ku+gHyJtdSS5IAg5WkiAxPwL3r9/O74/18b+IlfPjoovTMCKfgggDePL+Tiuxxvn6wlg8+nsU3ruol13AlaZJOuwmzJCXaxs4sXv3zcvJbnuRIRglvOqeIayuiDVXHuq6ylw8sbuHBllz+aG0pY+6EI2mSDFaSZtXDLTnc+PA8CmL9XJ+1keIlF1OYnSSJ6hgvr+rlby86ws+acvnouhImbHMlaRKcCpQ0o9bu/+3efOt6ivjyvkrq8kb4p8qfkNE2wbaMsyOs7tTec9YQIxMBn9tWRF5myBcuPeLdgpJOyWAlaVY82lXMV/YvYFnBMH+14jCLDm1mIK+GwbzaqEs7pT84e5CB8YB/3VnI/PwYHz13IOqSJCUxg5WkGfebzhK+emA+q4qG+MuzGigfb6VoqImDNa+MurRJ+dPVA7QOZRwNVxO8c9nUttKRlD4MVpJm1J6BPL5+sJZzigb5+IoGcjNCqjq2EBLQUXZ+1OWd0rHTmG8o72J310I+sbGYnr5eLimNj1y57Y2kY7l4XdKM6egf4Ut765iXPcFHlzeSmxFCGKOyZxs9RWcxnlUUdYmTlhXAny5rZEnBCF/eV8fegbyoS5KUhAxWkmbE+ESMP7p9E33jmXx0eQPFWfGeBSUD+8kZP0JH2YURVzh1eZkhHz/rMCVZ43xhz0K6x2xwJen5DFaSZsQXHtjN4/s6+cCSFpYVjDz3fFXPVsYz8uguXhlhdWeuLHuCvzyrkaFYBl/aW8eoPa4kHcNgJSnhfrq1mVsf3sdNVy3h2oq+557PnBhhXt9OOkvPJcyYu0s8F+eP8KElzTw9UMDfbZk705mSZp7BSlJCtfQO81c/2MrFi8v45GtXP+9Yed8OMsPxOTkNeLyryo/w+ppOvr23gLsOuN5KUpzBSlLChGHIx3+wldGJGF9620XkZD3/I6ayZwtDOeX059dFVGFivbOunWuqR/nExmK2dc/dEThJiWOwkpQw/7vuMA/ubufjN6xiaWXh847ljnZTMngoPlqVIu3LMwP4f1f0UpUX48NPlNI/lhr/XZLOnMFKUkI0dA/y2Z/u5KplFdx0Vf0Ljlf2bCUEOkovmPXaZlJ5bsj/vbyPhoEM/n6r662kdOfYtaQzcvvaQ899HwtDvvnofkYnYrzorEruWHf4uWPLAcKQyt6t9BXWM5pTOvvFzrA1lWPcvHKQbzxdyKsWjPDS+aNRlyQpIo5YSZq2tfu72Nc+wGvPm8+8wpwXHC8aPEzeaHdKLFo/mY+eO8DZJeN8bEMx3SNOCUrpyhErSdPSPTDKA0+1sKK6iDX1807WPe7aAAAgAElEQVR4TlXPFiYysukqPmeWq5t5x2578/t1A/z1rno+/Eguf7Ks6XnnufWNlB4csZJ0xsIw5O5NjRDAmy6uIzjBovSMiVEq+rbTVbKaWOYLR7NSSX3BCG+Z38Hj3SU82lUcdTmSImCwknTGNhzsZk97PzecW0tZwYlDU3nfDjJjo7SVXTzL1UXjjbWdnFU4xG2Ha+gf9yNWSje+6yWdkb6hMe59qpn6ikIuP8U0V1XPJoZyKugvWDSL1UUnM4APLG6hfzyTO5uqoi5H0iwzWEmasjAM+dGWJsYnQn73kjoyTtKXqrh/PyWDh2mfd1HK9K6ajPqCEa6v6uZn7WXsG8yNuhxJs8hgJWnKfrK1mZ3NfbxydQ2VRScPDssaf0hIQEdp6t4NeDJvW9BBSdYE3zxUSyyMuhpJs8VgJWlK2vqG+dSPnmLhvHyuXl550vOC2DjLGu+hp3gFY9np1zizMCvG7y1s45mBfB7qTL3eXZJOzHYLkiYtvhfgNgZHJ/ibpbupa9h00nPL+naTP9LBoeqXz2KFyeUl5X38qqOM7zRW8cELuynLcehKSnWOWEmatDvXH+ZXu9r42A2rqMs7dXfx6p5NjGYV0lt81ixVl3yCAN67qJX+8Uz+eXvh6V8gac4zWEmalMNdg3zmxzu4alkF77m6/pTnZo/1U3bkGTpKLyQMMmenwCRVXzDCq6p6uH1fPnv60vt/CykdGKwknVYsFvLnd20hCAK++NYLyMg49R1+lb1bCAjjdwOKt8zvID8z5PNPpd9aMyndGKwkndY3H93P2v1dfOr1q1k4r+DUJ4ch1d2b6CtYxHDuyRe3p5OS7Ak+dPYgP2/K5cn27KjLkTSDDFaSTml7Uy9fuH83rzinhrdeuvC055cMHCBvtIu2eZfOQnVzx++vGKQmb4J/2FZE6Bp2KWUZrCSd1NDoBH98x2ZKC7L5/JvPP+FegMer7t7AeGYeXSWpt+HydORnwZ+dO8Dmrmzua7RpqJSqbLcg6QVuX3sIgB9tbmRPWz/vvaaeB7a3Pu+c5Sd4Xdb4APOO7KJ13mWEGU55He/N9cP85zMFfH5bIa9YMEKOv9pKKce3taQT2tncx9r9XbzorEpWVBdP6jVVPZvJCGO0lV8yw9XNTZkBfPz8fg4OZHH7vvyoy5E0AwxWkl6gb3iM729sYH5pHq9aXTO5F4Uh1d0b6StYzHCumw+fzHW1o1xdNcq/7iikbyx99k+U0oVTgZKeJwxDfrCxgbGJGG9fs4iszMn9/lUysJ+80W4aqq6b2QLnqLX7u577/vUVAzzWvpRPrw14R13nc89fsbQ8itIkJZAjVpKe5451h3m6tZ/rz62luiRv0q+r7t7IWGa+i9YnYVnhCNeU9/KT1nI6R/39VkolBitJzzncNchnf7KDZZWFXLmsYtKvyxrvZ17fLjrKLiDMMChMxjsWdBACdzbZ60tKJQYrSUC8u/pffC/eXf3NlywkYxKtFZ5V1b2FDGL2rpqC6twxbqju5qHOUg4N2X5BShUGK0kAfOvxAzyxr4tPvvYc5hXmTP6FYYzq7g30FSyx0/oUvam2k4LMGN9pcLG/lCoMVpLY3zHAP96/i+vOruLtly2a0mvL+veQN9ZDa/llM1Rd6irKivGm2k429xWxre80WwVJmhMMVlKaC8OQT9y9jZzMDD7/5gsm1V39WDVd6xjNKqa75OwZqjC1XV/dTVXOGP/TUE3MrW6kOc9gJaW5+59q4bG9nfzF9WdTM4W7AAFyRzop699L27xLCIPMGaowteVkhLx9QTsHhvK457BrraS5zmAlpbGh0Qk++9OdrKot5p2XL57y62u61xMjg7Z5dlqfjmvK+6jPH+aLTxUxPBF1NZKmw/uipTTz7D6AAL/c2UpjzxDvf/FS7lzfMKXrZMTGqOreQnfJOYxlT27LG51YRgDvWtjGZ59ZzLf35vOBlUNRlyTpDDliJaWp7sFRHnq6nfPrSllWWTTl11f0biMrNkxr+ZoZqC79nF8yyLU1I/y/nYX0jLrVjTRXGaykNHXftmaCAF59Xu3UXxyG1HStZzC3miMFU59C1Il9/Px+jowFfHVnYdSlSDpDBispDe1t7+eppj6uXVlNWcEUelYdVdmzmcLhlniLhSneRaiTO6dsgrfUD/Pfe/M5PODHszQX+c6V0sxELOTHW5qYV5DNi1ecWUPPlQe/y3hGLh2l5ye4On109QAB8I/bpj49Kyl6Ll6X0sza/Z20HRnhXVcsJjvzxL9bLT9010lfnzPWx+LmB2ituJxY5tRHu3Rq8wti/OGqAb60o4jXNw5zQ91o1CVJmgJHrKQ00tk/wi92tnJWdRHnzC85o2vUdK0jIKSl/PIEV6dnfWjVIOeWjfHJjSV0jTjVKs0lBispjfzTz3YzOh7jdefPn3KHdYi3WKju3kB3ySpGc8pmoEIBZGfAP1/WR+9owN9sspWFNJcYrKQ0sa2hlzvWHebq5ZVUT7HD+rMqe7aSNTFMc/kVCa5Ox1tVOsGfrB7gpw15/MSO7NKc4RorKQ2EYcin73mKisIcXraq+kwvQm3nWvrz5tNfMLWNmjU5a/d3Pe/xxbldLC9Ywl+tLyR7qI2y7Hhb9iuWlkdRnqRJcMRKSgM/3NzIxkM9/OUNq8jLPrM9/Ur795I/2kFLxRW2WJglmQF8uL6Z4VgG/36wltBNmqWkZ7CSUlz/yDifu3cXFy4s5S2XLDzj69R2rWU0q4iuknMTWJ1OZ2H+KO+sa2d9bzEPtLuuTUp2BispxX3lV3toOzLC377hXDIyzmykKX+4nbL+vbSWryHMOLMRL52511R3c0lpP99uqObAoOutpGRmsJJS2P6OAf7zkX285dKFXLx43hlfp7ZrLbEgi7Z5lyawOk1WEMCHljRTnDXBl/ctYGDcqVgpWRmspBT2dz/ZQW5WJn95w9lnfI2s8X4qe7bQXnYB41nuYReVkuwJ/mhpMy0jOfzNJruyS8nKYCWlqF/tauVXu9r445evoLr4zNorANR2PkkQTtBScVUCq9OZOLd4kDfP7+QHB/P5/sEz//9U0swxWEkpaGR8gr/7yU6WVRXy7qvrz/g6GROj1HSvp7t4FcO5FYkrUGfsd+d3cHnlKJ/eVORGzVIS8l0ppaDbHj3A/o4BPvW61eRknfnbvKpnU7whaKWjVckiM4h3ZQ+BP19XQswWDFJSsUGolCJuX3sIgL6hMb70i6c5p7aYpp7h556fsjDG/M4nOFKwyIagSWZRYYxPXdjPxzaUcNuefN63YijqkiQd5YiVlGIe2N7CRCzkNefPn9Z1Kvp2kDvWS1PF1QmqTIn0tvphXj5/hM9vK2JPny0wpGThiJWUQg52DrDpcA/Xrayiomga/Y7CkPkdjzGUU0lP8crEFaiEeHbrm7dV9fJk21JufqSAv1t1kKxjujC47Y0UDUespBQRC0N+srWZkrwsrj27alrXKhnYT+FwC82VV7p9TRIry57g/Uta2TeYzw+bvblASgYGKylFbDjYTWPPEK8+bz65WdObGlrQ8SijWUV0lF6QoOo0U66cd4Sr5/Vxd0sFzcPZUZcjpT2DlZQCeofGeGB7C0sqCrhgYem0rlXRs43Sgf20VFxJmOFqgbngpkWtZAch3zxc40bNUsQMVlIK+PIvnmZodILXX7CAYJpTd+fuvZXxzDxa3b5mzpiXPcHb6zrY2lfE2p7iqMuR0pq/jkpz3NOtR/jW4we5bGk5C8ryT3v+8kN3nfRY/nArC9sepKHqWmKZbvY7l7yqqpsHO0r578PVXFgyEHU5UtpyxEqaw8Iw5P/78XaKcrN45Tk1077egvZHmMjIoaX88gRUp9mUGcD7FrfQNZbN913ILkVmUsEqCIIbgiDYHQTBniAIPn6C4x8NgmBHEARbgyD4ZRAESxJfqqTjPbC9hUf3dPJnr1pJYe70BqBzRzqp6NtB67w1TGSdfuRLyWdl0TAvrejhp63l7O61t5UUhdMGqyAIMoGvAq8GVgPvDIJg9XGnbQLWhGF4AfA94AuJLlTS8w2PxfcDXFVbzI2XL5729RZ0PEoYZNBScWUCqlNUblzYTkFmjE9tKnYhuxSByYxYXQ7sCcNwXxiGo8AdwBuPPSEMw1+HYTh49OETwMLElinpeN94aB+NPUN8+vXnkpU5vVn9nNFeKnu20jbvEsayixJUoaJQkjXB2xa0s7YjhweacqIuR0o7k/k0rgMOH/O44ehzJ/M+4L4THQiC4OYgCNYHQbC+vb198lVKep6G7kH+7cE9vPaC+Vy1fPrraeZ3PgZAs9vXpIRXVPWwomScz20tYmQi6mqk9DKZRRknunf7hAPMQRC8C1gDXHui42EY3grcCrBmzRoHqaVJOn4j5TvWHSIWhpw7v+TMN1k+Kmesj+rujXSUXchozvR6YCk5ZAbwiQv6ec8jZXxrbz4fWOkmzdJsmcyIVQNw7Nb2C4Gm408KguAVwCeAN4RhOJKY8iQd73DXIFsbennRWVWUFUx/qmdB+yNASGPVi6dfnJLGdbWjXFszwr/uLKRrxG2JpNkymWC1DlgRBMHSIAhygHcA9xx7QhAEFwPfIB6q2hJfpiSIt1e476kWCnOzeMmKymlfL2e0h6qejbSXXcxoTlkCKlQy+eSF/QyOB3x5R2HUpUhp47TBKgzDceAW4AFgJ3BnGIbbgyD4TBAEbzh62heBIuCuIAg2B0Fwz0kuJ2kadrUc4UDnAC9fVU1u9vRvp1/Q8QgQ0FT1oukXp6SzomSCG5cN8Z19+TzTZ/sFaTZMqvFNGIb3Avce99ynjvn+FQmuS9JxJmIh9z/VQmVRLpfVl0/7ermj3VR1b6at/FJGs11blar+dPUAPzyUx99vLeK/XtQbdTlSyrPzujRHrD/YRXv/CDecW0tmxvTXzCxo/w0EAU2V1ySgOiWr8tyQj5wzwIMtuTzUYvsFaaYZrKQ5YGRsgl/sbKO+ooBz5k9/k93c0S6qerbQOm8NY9klCahQyeym5UMsKRzns1uLGI9FXY2U2tyEWZoDHn6mg4GRcW66cglBMP3Rqrq2hwmDTJor7VuVqtbu73re47fUjPLP+xbyufUxXlXVA8AVS6c/pSzp+RyxkpJca98wj+xp5/y6UhaVF0z7egXDLVT2bqWl4nLGsqc/+qW54bKyflYXDXJnUyWDE370SzPFd5eU5L70s6eJxeD6c2sTcr1Frb9iIjPPtVVpJgjgpkWt9I9n8oPm6Xfrl3RiBispie1uOcJdGw5z5bJyygunv/C4uvNJyvr30Fj5IiYy8xNQoeaSpQUjXFvRy31t82gdyY66HCklGaykJPa5+3ZSlJvFS1dVT/9iYcjFu/+FkewSWssvn/71NCe9fUEHmQH8T0MC/k5JegGDlZSkHt3TwYO727nlZWdRkDP9+0wWtfyMit6naKi6jjDD+1bSVXnOOG+q7eTJnmIebXXUSko0P12lJBSLhfzDvTupK8vnpqvq+cHGxtO+Zvmhu056LAgnuGDP1xjMraaj7IJElqo56LU1Xfy6o5RPby7mvld2ke2v2FLC+HaSktAPNzeyvamPv7zhbPISsHVNVfdG8ka7OFzzMgh826e7nIyQmxa1sedIFt/a61o7KZH8hJWSzODoOF+4fzcXLCzl9RcsmPb1MieGWNj2IH0FS+gpWpGACpUKLi3t59qaEb68vZD24en3RpMUZ7CSksytD++jpW+Yv3ndajISsHVNXdvDZE0Mc7D2+vg99xLxvwqfuqif4YmALz5VFHU5UsowWElJpLl3iK8/tJfXXjA/IRst5420U9O1jrZ5lzCYn5g+WEody4sn+P0Vg9x5IJ/NXS65lRLBYCUlkS/cv5tYCB+/YdX0LxaGLGl+gFhGNg3V103/ekpJt5wzSFXeBJ/aVMxEGHU10txnsJKSxObDPdy9qZH3v2hpQrauKet/hrKBfTRWX8t4VmECKlQqKs4O+eQF/WztzuY7LmSXps2xXylCt689BEAYhnzj4X0U5WZRVZT73PNnKohNsKTlZwzlVNJaflkiSlUKe8OiEe46MMoXnyrk+roRavJjUZckzVmOWElJYGtDL4e6BnnV6hpyE9BeobZrLXmjXRysfRVhMP3rKbUFAXz2kiOMxAI+s8WF7NJ0OGIlRWxwdJyfbGumriyfS5bMm/b1ckZ7qGt7iO7ilfQWn5WACpWq1u7vet7j36mNcWdDFRdsbuei0oHnnr9i6fRvpJDShSNWUsTu29bC0Og4b7q4jozptkMIQ+pb7gfgQO0NCahO6eQNNV0syB3hm4dqGI3ZmkM6EwYrKUJ72vrZcKibF6+oYkHZ9BcOzzuym3lHnqah+lpGc8oSUKHSSXZGyPuWtNI6msP3myuiLkeakwxWUkSGRie4e1MDFYU5vGxV9bSvlzExQn3zfQzk1tBacUUCKlQ6Oq94kGsrermnpYJ9g7lRlyPNOQYrKSJf+vluugfHeNMldWRnTv+tuLDtQbLHj3BgwWtdsK5puWlhK6XZ43ztwHzGvUFQmhKDlRSBrQ09/Ocj+7msvpxlldO/C2te7w5qu56kbd6l9BcsTECFSmdFWTE+sLiFQ0N5/KClMupypDnFYCXNsr7hMT7y3U1UF+fx6vOmv81MRmyMK7d9irGsAg7XvDwBFUpwadkALynv5e7mCp7q9gZyabJ8t0izKAxDPva9rRzuHuKOm6/kmdb+Sb1u+aG7Tnqsru1B5h3ZzdOL3s5EZl6iSpV496JWth0p4M/Xl3DPy7vI8Vdx6bR8m0iz6LZHD3DfUy385fVnJ2ST5YKhZha0P0JH6fl0l5ydgAql33p2SnBXbxb/usNtkaTJMFhJs2TjoW7+4d6dvOKcGm5+ybJpXy+ITbC88UeMZxXYs0oz5tKyAd5aP8RXdxXwWFt21OVISc9gJc2C7oFRbvnORmpL8/jnt15IMN1GoEBd+8MUjLSxf8HrmMhy81zNnL+9qJ9lxRP8yZMldAzbOFQ6FYOVNMNGx2P84e0b6egf5Wu/dymlBdP/rb9wqIkFHY/QXnYhPcUrE1CldHKFWSFfuaKXntEMPrquhFgYdUVS8nLxujRDbl97iDAM+f7GBjYe6uGtly5kW2Mv2xp7p3XdjIlRljfczVhWEQdrr09QtdKpnVM2wacvOsInNpZw69MFfPDswahLkpKSI1bSDPr17jY2Hurh5auquXjx9DdYBqhvuY+80U72LHyTdwFqVt24dJjXLhzmi08VsqHT38ulEzFYSTNk8+FufrGzjYsXlSVkyxqAip5tVPVsobHqxRwprE/INaXJCgL43KVHqCuI8eHHS2kd8p8Q6Xj+yiHNgLX7Ovn+xkaWVhbypkvqErJYPXeki6XNP6WvYBGNVdcmoEppctbu73re41sW9/M3u5fwe78u5NNnHyInI+SKpdNvHyKlAn/dkBJsb3s/N397A+UFObzriiVkZUz/bRbEJjir4fuEQQZ7634XAt+6is6SghH+aGkTewfz+MbBWkIXs0vP8dNZSqDO/hHee9s6sjIC3n11Pfk5idkMeXHrzykabmbfgjcwmlOakGtK03FZWT9vX9DBI12l/KjV0SrpWQYrKUGGxyb4wLfW09o3zH+8ew3lhTkJue7Shh9R2/UkzeVX0F2yKiHXlBLhd2o7uWZeL3c0VvGzpsT8fZfmOoOVlACxWMif3bmFTYd7+PLbL0rYHYAVPdu4fPtn6C2s51DtKxNyTSlRggA+WN/CsoJhPrK2lE3eKSi5eF1KhH+8fxc/3dbMX79mFa8+f/6kX3eqzZWzx/o5b9+/M5ZZwJ6Fb3FdlZJSTkbIX57VwN/vXcb7Hi3jey/tZlnxRNRlSZHxk1qapq89uJdbH97HTVct4QMvnv4egBBfrL7i8J1kTgzzzOK3MZ5VkJDrSjOhLHuC/35RDwDvfqSMdre9URpzxEqaotvXHnru+3X7u7h7cyMXLCxlZU0x333y8PR/QBiytPknFA818MzCNzOYVzv9a0ozbGnxBN98UQ/vfGge732kjDuu7aEo29sFlX4csZLO0FONvfxwcyMra4p4y6ULyUhAryqAhW2/pqpnCw1V19JVem5CrinNhovKx/nqlb3s7M3ig4+XMuyMoNKQwUo6A8+0HuF/1x9mUXkBN16emF5VADWdT1LX8Qit8y6hseolCbmmNJteNn+Uz196hEfacrjliVLGYlFXJM0upwKlKdrR1Md31x2iqiiXd19VT05WYkJVee8OlrTcT1fx2RyY/5r4LVfSHHFsd/ZFwO8vGuSbh2t5z69zuWVpMxlH/zrboV2pzmAlTcGPNjdy+5MHWVCWz3sS2AC0pH8/yxvvpr9gEXsW2lldc9/11T0MxzK4vbGa3MyQmxe3+LuC0oLBSpqkO548xF/dvY36ikJuunIJudkJClUD+1l56LsM55Sze9E7CDOyE3JdKWpvrO1iaCKDu1sqyQ5C3rOoNeqSpBlnsJJOIwxDvvbQXr5w/26uXVnFS8+uTtj0X0l/PFSN5MxjZ/1NTGTlJ+S6UrJ4+4IOxsKAn7RWMBILuHzpKJmOXCmFOd8gncLI+AR/dtcWvnD/bl5/4QJuvenShIWqmo4njoaqcnbW38R4VmFCrislkyCAd9W18+b5HTzYWcYfry1xQbtSmiNW0kl09I/wB9/ewIaD3fzpK1bykZefRZCgRSK17Y/xko0fORqq/o+hSiktCOBtCzrIz4jxPw3VDE8EfOXKXvISM5suJRWDlXSMZ5t/NvcO8e3HDzIwOs47L19MVXHulJt/nmy7moqerSxrvIehvCp2LXmXoUpp4/W1XayqzuNvNhVz02/KuPXqXspybCKq1OJUoHSczYe7+fpDe4mFITe/eDnn15Um5sJhyPyOxzir8YccKVzMzvp3G6qUdt61fJj/e0Ufm7uyedOv5rH/iMNWSi0GK+mo0fEYP97SxJ3rG1g4r4A/fOlZ1M1L0GLyMGRxy89Y3PoLOkvOZffiG5nIzEvMtaU55g2LRrj9JT30jmbwpl/P48l274RV6nAqUALa+ob5w9s3su5ANy86q5Lrz60lMyMx66kyJkZY3vhDyo/sprniCg7VvMrmn0pbxzYS/fTKLj7/zEJufLiUm5e0cG1FH2ATUc1tBiulvcf2dvCR725mYGSct1+2iAsXliXs2rkjXaw8/L/kj3RwoPZ6WiuuSNi1pbmuNneMv1t1kH/ZV8e/HVjA/sE83rWwLeqypGkxWCltxWIh//bgHr7086dZWlnI7R+4gvUHuhN2/dL+PZx1+AeEQcCuJe+ir2hpwq4tpYqirBh/veIw32mo5qdt5RwczONbCwaozHNRu+Ym11gpLXUPjPL7/72Of/rZ07z+wgXcc8uLWFlTnJBrB+EE5+75Bmcf/C4j2aVsX/Z+Q5V0CpkB3LSojVvqm3hmII/X/7KcLV3+3q+5yb+5SjubDnVzy+2baD8ywmd/5zx+74rFCetPlT/cytVb/oqarnV0lJ7H/gWvI5aRk5BrS6nuxRV91OWP8JWDi3nLr+fxiQv7effyIZckak4xWCltfOeJgzy+r5P7trVQkp/F+1+8lIwgSFh/qrK+3SxruoeMcJy9C95AR9mFLlKXpmhZwQg/fUUXf76uhL/dXMwT7dl8/tIjlNrvSnOEwUpp4cjwGN9dd5inGns5p7aYt1y6iPycxPTPyZwYZlHrL6jp3shAXi17Fv4uw7mVCbm2lI7KckL+/epe/vOZfP5xWxGv68nm/13Ry0Xl41GXJp2WwUop77G9HfzFXVtp7h3ihnNrefGKyoRN/ZUd2c3SpnvJHu+nqeIqGqpfSpjh20qariCA968c4pKKMf5obSlv/vU8PnT2IB9ZPUCOq4OVxPwXQClraHSCz9+/i/967ABLKwu5+cXLWFyRmE7nWeP9LGl+gMq+7QzmVvP04rcxkF+XkGtL6e7YXlcAn13ZwX8fruYru8r48cFMPlzfTH3BiP2ulJQMVkpJ6w508bHvbWVfxwDvubqej92wirs3NU77uhmxMWo7HmNh+8ME4TiHq66jufIawgy35ZBmSkFmjA/Vt3B52RFuPTifv95Vz+/UdnL+ohgF/iumJONfSaWU9iMjfO6+nfxgYyN1Zfl85/1XcM1ZCVjvFIYsaH+YS3Z+kZLBg/z/7d15kBzVfcDx72/u3Z09tIeOlRYQOgCBkIwkZCJjVBgTHGRwCIfwUQZjIFV2kCuhXBAqDjF/JASHxCmSEEISgw02h4ytXMaAJRCXjCQkhNCJbmm1u1rtaDU7s9Mz07/80b3SStai0Wq0o1n9PlVT3f36Tfev9+3x29dv+nXFJ7Jj9NU2lsqYITSjrocfxLfw1M5RLGxt5O2X89w3Ncl1LRn7nIg5bVhiZcres8t2kHeVZVs7eeWjNnJ5Ze7kJuaeN5LtnSm2d+4o+FjH+sRfvGcHLe2LqUltJx1pZP1Zt3KgelIxL8EYU6DqkMu3x7dyVVOCF9qaWfDbWp7+2OH+qT3MbMyWOjxjLLEy5c11lQ92JXh1XRv7kg6TRsb54sXNNFZHT/rYVendjGtfQl3yY5xQFdtGX0N7/QxU7LafMaV2fjzNoou6eHFbjL/9MM6NS0Ywq8Hh7vNSXDnGoUhTfRpzwiyxMmVJVVmyoYNHXt7AR63djKyO8tXZZ3PBmOqT+8SfKjWpbYzZ9w51yc1kgxXsGHUVbfWzcAPh4l2AMeakBQRuHt/LvJZenttawZObKvnm23VMqslx28QU88Zl7PlXZsiJamm+6WbOnKnLly8vyblN+XJyLv+7ppUn39zCh7u7Oau+ktnj65nWUkfgJBIqcXO0tL3K9PWPEu9tJRusYm/DpeytvxQ3ePK9X8aYUy+n8M7+Gv6rrZ7t6RhhcfnCOIcbz+5lziiHoPVinX5m3l7qCAomIitUdebx6lmPlSkL+5IZnl++k/zH4ssAAA3PSURBVKfe3kZbd4YJTVX89Q1T+aNLxvHiil2DPm5lupUJOxcyYddLVGbaSUca2DLmWvbVTbPnURlTZkLiTYvzmfputqaiLOms4/W9tSzaGaMplufacRnmjctwSUPWbhWaU8Z6rMxpK5nJ8VeL1rJqZ4KPO5K4ChOb4syZ2MikUfET7qHqG5gubpa65GaaulZRl9wMKAfiE2kbMYNE9WSbhsaYYWT6WfW81hpl0c4oi1ujZFxhTIWfZLX0Mm1Ezn7kS8l6rIw5tdq6e1m8vp3frG/njU0d9GZd6irDXD6piektdYyqiQ3quOJmqT24mYYDH1J/cD1B18EJxdnTOIf2EZfgROqKfCXGmNPBqh37aQBuHw3zmwIsT8R5p6ua/9wc58lNlYyMONwwPss1YzNcPCJnPVnmpFliZUrKybm8v6OLpZv2sWRjOx/u7gaguTbGTTNaqAgHOauhclDjpyJOguaOpYxtf50x+94ikkuSC0TprJlCZ+2FdFeNB7G5MYw5U1QEXS5v6Obyhm56cgHeS1TzTlc1/7axisc3VNEYzTN3tMOVYxzmjHRs4LsZFEuszJBSVbZ1pnj0lY1sajvIln09ODmXgEDLiEqunjKK80fXMKomWvCn+/pu8QXyGapTO6jp2U5NahtV6VYExQlVkYhPJlE9mUR8go2dMsZQFXKZ23iAuY0HmNzcwOttEV5rjfLrPVFe3F6BoJxXm2N2Y5ZZjVkuacgypsK124bmuGyMlTmlVJUd+1O8vyPBsq37Wbqpg11daQBGVIaZNKqaySPjnNsUJxYu/PlQonmqe7bTkPiAc3f9gnh6N5W9bQiKKwGSFePorjqHRPUkemLNNm7KGFOQvMKGZAUfHaxkfbKSjT0VZFyvZ7sh6nJhXZapI3JMHZHjorosYyst2TopNsbKmIEdSGfZ0pHk444etnQkWb/3IKt2Jtjf4wAQj4a4bEIDd18xgUSPQ0P8+I8xmLD9OWJOFxWZjqNe+whoHoBcIEpPRTN7GufQXXUOycoWe+aUMWZQggJTqtNMqU4DneQUtqVifNwT42CwljVdIR7fUElevWxqRMTlohFZLqjNMbE6z4Qab2m3Ec9clliZgvRm87R3Z9hzIE3rgTR7Er3sSaRpPeAt9yTSdPfmDtUPCDTGo4xvqOKzk5poqa9gVE3s0FipQ0mVKjGnk6p0K5XpVqp6W7313lbiqZ3UJrccSqAAMuFaUtEmDlSdSzo2kmRFM72RRuuRMsacEiGBiVW9TKzqBRLc2ACOK+xIR9mSirGlJ8bW7hjvtleQ1cNjNptieSZW55nkJ1pnx/OMq8oztjJPzCZvGNYKSqxE5Brgh0AQeFJV/+ao/VHgaWAG0AncoqrbihuqKaZc3iWRzpJIZUmkHBKpLPtTDh0HM94rmWGfv+w4mOFgv6SpT2UkSG1FmNqKMFOaa6iLhWmOw5hYnsZollg+SczZTtTpIrq/i2hbFzFnP1EnQe3BjYRzPUSzB45InADygQiZcC2ZcB1762eTjjWRjjaSjjThBiND9SUyxphjigT0cLLV5JW5Cu1OmN3pKLt6I+zujbA7FWVVZ5S0e2QmVRfKMS6u1EddGqJ9S+9V779qw0pNWImHXSqC9r9jOTluYiUiQeCfgM8Du4D3RGSRqn7Ur9odQJeqThSR+cDDwC2nIuChpKqogvbfBr9M/TIOLVXdI+u5/jbecXDVf9/h4+byefKuksu7uKrkXdffVvKu4rouedcll/fLD5V578lkHTJOjl4ni5PN4jhZMllvPetkcXJZsv62k82S6s2Q6s3S6zgEUSKSJUqWCFki5IhIlqpAngnhPNOCLvFQnqp4nsraHJWSpTrgUEWaCtJE8ylCuR5CvSnCyRShfOp3kqQjvp4IuWAl2VAluWAlqdhouqrPwwnXkgnX4kS8ZT4Qs98ixpiyEhAYHc0yOpplRr9yVejKhmh3wnRkwoeWiWyI3QeDrOsK0p2LHBrHdSxBUeIhJR5WqsNKPOR6y7BXXhN2iQa9hC8cgHBAiQSUiL8eDkAkqITlcJ1I0F/69QKiiH8dAYEAgEAAPVQmeL+aAxyuL/32+W/xlnLUNmfOr/VCeqwuBTar6hYAEfkZcD3QP7G6HnjQX38ReExEREs1Mh5Y9epPmbR0Af3bUfxk6PCyz0DlR75H8L/Z8L6pypYAxxve5PqvLLgSQCWEKyHygQj5QBQ3GCEfiJALxsiEa3EDkcP7AhHyQW+9L4nKBqvIBy1hMsacWUSgPpKjPpLj/Hh6wHoZV+jOBunOhejOBUnlA6Ty3jLd93L9bSfA/nRfeYhUPoCj5ffoGEFh4f/0S8bkGInZkRla//19+0TgTz8/mW9efu5QhH1chSRWY4Gd/bZ3AbMHqqOqORE5ADQA+/pXEpG7gLv8zaSIbBhM0KehRo66VlN2rA2HB2vH8mdtODwMaTve+RDceepPc3YhlQpJrI7VxXB0d00hdVDVJ4AnCjhnWRGR5YV8BNOcvqwNhwdrx/JnbTg8nMntWEjf4S6gpd/2OGDPQHVEJATUAvuLEaAxxhhjTLkoJLF6D5gkIuNFJALMBxYdVWcR8HV//UbgN6UcX2WMMcYYUwrHvRXoj5n6NvAy3uMW/kNV14rI94HlqroI+HfgxyKyGa+nav6pDPo0NOxub56BrA2HB2vH8mdtODycse1YsiltjDHGGGOGm/L7fKYxxhhjzGnKEitjjDHGmCKxxKqIROReEVERaSx1LObEicgjIrJeRD4QkZdEpK7UMZnCiMg1IrJBRDaLyH2ljsecOBFpEZHFIrJORNaKyIJSx2QGR0SCIvK+iPx3qWMpBUusikREWvCm/dlR6ljMoL0CXKSqFwMbgftLHI8pQL9pt74ATAFuFZEppY3KDEIO+DNVvQD4NPAta8eytQBYV+ogSsUSq+L5e+C7HOPBqKY8qOqvVbVvtul38Z7ZZk5/h6bdUlUH6Jt2y5QRVW1V1ZX++kG8P8xjSxuVOVEiMg64Fniy1LGUiiVWRSAi1wG7VXV1qWMxRfMN4P9KHYQpyLGm3bI/yGVMRM4BPgUsK20kZhD+Aa+TwS11IKVSyJQ2BhCRV4HRx9j1APDnwNVDG5EZjE9qR1X9pV/nAbzbEs8MZWxm0AqaUsuUBxGJAwuB76hqd6njMYUTkXlAu6quEJG5pY6nVCyxKpCqXnWschGZCowHVos3Hfc4YKWIXKqqe4cwRFOAgdqxj4h8HZgHfM5mDygbhUy7ZcqAiITxkqpnVPXnpY7HnLA5wHUi8gdADKgRkZ+o6ldLHNeQsgeEFpmIbANmqqrNzl5mROQa4FHgClXtKHU8pjD+/KQbgc8Bu/Gm4fqyqq4taWDmhIj3n+lTwH5V/U6p4zEnx++xuldV55U6lqFmY6yMOewxoBp4RURWicjjpQ7IHJ//gYO+abfWAc9bUlWW5gBfA670f/5W+T0fxpQV67EyxhhjjCkS67EyxhhjjCkSS6yMMcYYY4rEEitjjDHGmCKxxMoYY4wxpkgssTLGGGOMKRJLrIwxRSciD4rIvUU61nUicl8xjnUC50x+wr75IvKuiCwUkc8MZVzGmNOfPW7BGFN0IvIgkFTVH5Q6lsEQkaSqxo8qC6pqvlQxGWPKg/VYGWOKQkQeEJEN/nyM5/llE0TkVyKyQkSWisj5fvlNIvKhiKwWkTf8smUicmG/4y0RkRkicpuIPOaXnS0ir4nIB/7yrAFiSYrI34nISr9ek19+p4i85593oYhU+uXjReQdf99D/Y4zV0QWi8izwBq/7Bf+9awVkbv61b1VRNb41/Vwcb+6xphyYYmVMeakicgMYD7wKeAGYJa/6wngT1R1BnAv8M9++feA31fVacB1ftnPgJv9440BmlV1xVGnegx4WlUvxpsk+x8HCKkKWKmqlwCvA3/pl/9cVWf5510H3OGX/xD4F1WdBRw9x+eleJN0T/G3v+Ffz0zgHhFpEJFm4GHgSmA6MEtEvjRAbMaYYcwSK2NMMVwOvKSqKVXtBhbhTcL6e8ALIrIK+FdgjF//LeBHInInEPTLngdu8tdvBl44xnkuA571138MDDTGyQWe89d/0q/eRX7P2RrgK0BfD9kc4Kf9jtvfb1V1a7/te0RkNfAu3uTPk/ASySWq2uFPsfMM8NkBYjPGDGOhUgdgjBk2jh6wGQASqjr9dyqq/rGIzAauBVaJyHRV3S0inSJyMXALcHch5xSRINDXs7VIVb/3CbH9CPiSqq4WkduAuZ8Qf5+evhV/YtmrgMtUNSUiS/ASSCkgVmPMGcB6rIwxxfAG8IciUiEi1cAXgRSwVURuAhDPNH99gqou85OgfXg9P+DdDvwuUKuqa45xnrfxbjmC1+P0pqrmVXW6/+pLqgLAjf76l4E3/fVqoFVEwv77+7x11HEHUgt0+UnV+cCn/fJlwBUi0ugnerfi3YI0xpxhLLEyxpw0VV2Jd+ttFbAQWOrv+gpwh3/rbC1wvV/+SN9Ab7ykbLVf/iJegvP8AKe6B7hdRD4AvgYsGKBeD3ChiKzAG/f0fb/8L/CSoFeA9f3qLwC+JSLv4SVPA/kVEPLP/xDe7UBUtRW4H1jsX8tKVf3lJxzHGDNM2eMWjDHDzrEel2CMMUPBeqyMMcYYY4rEeqyMMcYYY4rEeqyMMcYYY4rEEitjjDHGmCKxxMoYY4wxpkgssTLGGGOMKRJLrIwxxhhjiuT/AUJW2czFUANoAAAAAElFTkSuQmCC\n", "text/plain": [ "
    " ] @@ -859,14 +990,37 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Z-score\n", + "# Z-score\n", + "\n", + "
    \n", + "
    \n", + "\\begin{equation*}\n", + "Z \\sim \\dfrac{x - \\mu} {\\sigma^{2}\\,}\n", + "\\end{equation*}\n", + "
    \n", + "
    \n", "\n", - "![z-score e suas probabilidades](http://www.portalaction.com.br/sites/default/files/EstatisticaBasica/figuras/distribuicaoNormal/normal3.PNG)" + "![z-score e suas probabilidades](http://www.portalaction.com.br/sites/default/files/EstatisticaBasica/figuras/distribuicaoNormal/normal3.PNG)\n", + "\n", + "Na estatística, o escore padrão **z-score** é o número fracionário assinado de desvios padrão pelo qual o valor de uma observação ou ponto de dados está acima do valor médio do que está sendo observado ou medido. Valores observados acima da média têm escores padrões positivos, enquanto valores abaixo da média têm escores padrão negativos.\n", + "\n", + "É calculado subtraindo a média populacional de uma pontuação bruta individual e dividindo a diferença pelo desvio padrão da população. É uma quantidade adimensional. Esse processo de conversão é chamado de padronização ou normalização (no entanto, \"normalização\" pode se referir a muitos tipos de proporções; consulte a normalização para saber mais).\n", + "\n", + "Os escores padrão também são chamados de valores z, escores z, escores normais e variáveis padronizadas. Eles são usados com mais frequência para comparar uma observação a um desvio teórico, como um desvio normal padrão.\n", + "\n", + "A computação de um escore z requer o conhecimento da média e do desvio padrão da população completa à qual um ponto de dados pertence; se alguém tiver apenas uma amostra de observações da população, então o cálculo análogo com média da amostra e desvio padrão da amostra produz a estatística-t." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cálculo das probabilidades p-value dos valores da distribuição normal com Scipy.Stats" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 87, "metadata": {}, "outputs": [ { @@ -875,7 +1029,7 @@ "0.5" ] }, - "execution_count": 41, + "execution_count": 87, "metadata": {}, "output_type": "execute_result" } @@ -887,42 +1041,82 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 90, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.8413447460685429" + "0.6826894921370859" ] }, - "execution_count": 42, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "scipy.stats.norm(0, 1).cdf(1)" + "2 * (scipy.stats.norm(0, 1).cdf(1) - scipy.stats.norm(0, 1).cdf(0))" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.3413447460685429" + "0.9544997361036416" ] }, - "execution_count": 44, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "2 * (scipy.stats.norm(0, 1).cdf(2) - scipy.stats.norm(0, 1).cdf(0))" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9973002039367398" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "2 * (scipy.stats.norm(0, 1).cdf(3) - scipy.stats.norm(0, 1).cdf(0))" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9999366575163338" + ] + }, + "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "scipy.stats.norm(0, 1).cdf(1)- scipy.stats.norm(0, 1).cdf(0)" + "2 * (scipy.stats.norm(0, 1).cdf(4) - scipy.stats.norm(0, 1).cdf(0))" ] }, { @@ -932,14 +1126,14 @@ "id": "RFBq4LpH2vjk" }, "source": [ - "### Teste de Normalidade\n", + "## Teste de Normalidade\n", "\n", "O test shapiro-wilks é um indicador de quão bem os nossos dados se ajustam à distribuição normal." ] }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 94, "metadata": { "colab": { "autoexec": { @@ -951,17 +1145,28 @@ "id": "h0rV4jm12vjl", "outputId": "d4e76aa2-0449-4789-d013-4e7c810ff748" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "poisson: (0.9078379273414612, 0.0)\n", + "uniforme: (0.9078379273414612, 0.0)\n", + "binomial: (0.9573074579238892, 0.0)\n", + "normal: (0.9999753832817078, 0.7880359888076782)\n" + ] + } + ], "source": [ - "# resultado_poisson = stats.shapiro(samples_uniforme)\n", - "# resultado_uniforme = stats.shapiro(samples_uniforme)\n", - "# resultado_binomial = stats.shapiro(samples_binomial)\n", - "# resultado_normal = stats.shapiro(samples_normal)\n", - "\n", - "# print('poisson: ', resultado_poisson)\n", - "# print('uniforme:', resultado_uniforme)\n", - "# print('binomial:', resultado_binomial)\n", - "# print('normal: ', resultado_normal)" + "resultado_poisson = stats.shapiro(samples_uniforme)\n", + "resultado_uniforme = stats.shapiro(samples_uniforme)\n", + "resultado_binomial = stats.shapiro(samples_binomial)\n", + "resultado_normal = stats.shapiro(samples_normal)\n", + "\n", + "print('poisson: ', resultado_poisson)\n", + "print('uniforme:', resultado_uniforme)\n", + "print('binomial:', resultado_binomial)\n", + "print('normal: ', resultado_normal)" ] }, { @@ -977,39 +1182,82 @@ "id": "MD8ZZ-vC2vjr" }, "source": [ - "### Test de Kolmogorow-Smirnov" + "## Teste de Kolmogorow-Smirnov\n", + "\n", + "Em estatística, o teste Kolmogorov–Smirnov (também conhecido como teste KS ou teste K–S) é um teste não paramétrico sobre a igualdade de distribuições de probabilidade contínuas e unidimensionais que pode ser usado para comparar uma amostra com uma distribuição de probabilidade de referência (teste K–S uniamostral) ou duas amostras uma com a outra (teste K–S biamostral).[1] Recebe este nome em homenagem aos matemáticos russos Andrei Kolmogorov e Nikolai Smirnov.\n", + "\n", + "A estatística de Kolmogorov–Smirnov quantifica a distância entre a função distribuição empírica da amostra e a função distribuição acumulada da distribuição de referência ou entre as funções distribuição empírica de duas amostras. A distribuição nula desta estatística é calculada sob a hipótese nula de que a amostra é retirada da distribuição de referência (no caso uniamostral) ou de que as amostras são retiradas da mesma distribuição (no caso biamostral). Em cada caso, as distribuições consideradas sob a hipótese nula são distribuições contínuas, mas não restritas.\n", + "\n", + "O teste K–S biamostral é um dos métodos não paramétricos mais úteis e difundidos para a comparação de duas amostras, já que é sensível a diferenças tanto no local, como na forma das funções distribuição acumulada empírica das duas amostras.[2]\n", + "\n", + "O teste de Kolmogorov–Smirnov pode ser modificado para servir como um teste da qualidade do ajuste. No caso especial do teste da normalidade da distribuição, as amostras são padronizadas e comparadas com uma distribuição normal padrão. Isto equivale a tornar a média e a variância da distribuição de referência iguais aos estimados da amostras, sabendo que usar isto para definir a distribuição de referência específica muda a distribuição nula da estatística. Vários estudos encontraram que, mesmo nesta forma corrigida, o teste é menos potente em avaliar a normalidade do que o teste de Shapiro–Wilk e o teste de Anderson–Darling.[3] Entretanto, estes outros testes também têm suas desvantagens. O teste de Shapiro–Wilk, por exemplo, é conhecido por não funcionar bem em amostras com muitos valores idênticos. \n", + "\n", + "
    \n", + "\n", + "
    \n" ] }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 95, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "KstestResult(statistic=1.0, pvalue=0.0)" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# from scipy.stats import kstest, ks_2samp\n", + "from scipy.stats import kstest, ks_2samp\n", "\n", - "# #kstest(np.random.choice(samples_normal, 500, replace=False), 'norm')\n", - "# #stats.kstest(samples_normal,'norm', alternative = 'greater', mode='asymp')\n", - "# stats.kstest(samples_normal,'norm')" + "kstest(np.random.choice(samples_normal, 500, replace=False), 'norm')\n", + "stats.kstest(samples_normal,'norm', alternative = 'greater', mode='asymp')\n", + "stats.kstest(samples_normal,'norm')" ] }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 96, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Ks_2sampResult(statistic=0.21999999999999997, pvalue=0.1546294612305996)" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# ks_2samp(np.random.choice(samples_normal, 50, replace=False), np.random.choice(samples_normal, 50, replace=True))" + "ks_2samp(np.random.choice(samples_normal, 50, replace=False), np.random.choice(samples_normal, 50, replace=True))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "## Mapa com a origem e relação entre os tipos de distribuição de probabilidade\n", + "\n", "

    \n", "![mapa_distribuicoes](http://blog.cloudera.com/wp-content/uploads/2015/12/distribution.png)\n", "

    " ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -1035,7 +1283,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.6.8" } }, "nbformat": 4, diff --git "a/1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/Exercicios.ipynb" "b/1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/Exercicios.ipynb" old mode 100644 new mode 100755 index 9b704ba..442218d --- "a/1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/Exercicios.ipynb" +++ "b/1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/Exercicios.ipynb" @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -18,127 +18,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### (1) Três dados comuns e honestos serão lançados. A probabilidade de que o número 6 seja obtido mais de uma vez é: " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.07407407407407407" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "2/27" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Wall time: 998 µs\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\sn3fru\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", - " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEKCAYAAAAb7IIBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGg5JREFUeJzt3X+UXGWd5/H3h/BDFCQBGjaTBMNgZAY9A0JvEsVxUNyAOBp2hDXCSGAyk7MrM8qunhGdPYKAe+C4/hxXPBGiiQeEiDpEZAYiv2ccQjr8SPghpgU29CSS1gQQUWYD3/3jeZpcOlVdt5Lu6lSez+ucPnXvc5+q+zx1q+tT99at5yoiMDOz8uwx3g0wM7Px4QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwKtWedSpImAlcAbwIC+AvgUeBaYDrwBPBfImKLJAFfBk4BngfOjoh78+PMB/5nfthLImLJSOs9+OCDY/r06e31yMyscKtXr/5lRPS0qqc6Q0FIWgLcFRFXSNobeDXwKWBzRFwq6XxgUkR8QtIpwN+QAmAW8OWImCXpQKAP6CWFyGrguIjY0my9vb290dfX17J9Zma2jaTVEdHbql7LQ0CSXgu8HbgSICL+PSKeBuYCQ5/glwCn5um5wNJI7gYmSpoMnASsiIjN+U1/BXBym/0yM7NRUuc7gN8HBoFvSrpP0hWSXgMcGhEbAfLtIbn+FODJyv0Hclmz8leQtFBSn6S+wcHBtjtkZmb11AmAPYFjgcsj4s3Ab4DzR6ivBmUxQvkrCyIWRURvRPT29LQ8hGVmZjuoTgAMAAMRsTLPX0cKhKfyoR3y7aZK/WmV+08FNoxQbmZm46BlAETEL4AnJR2Zi04EHgaWA/Nz2Xzg+jy9HDhLyWzgmXyI6CZgjqRJkiYBc3KZmZmNg1qngZLO6rkqnwH0GHAOKTyWSVoArAdOz3VvJJ0B1E86DfQcgIjYLOliYFWud1FEbB6VXpiZWdtqnQY6XnwaqJlZ+0btNFAzM9s91T0E1JWuXrm+ZZ0zZh3WgZaYme16vAdgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlaoWgEg6QlJayXdL6kvlx0oaYWkdfl2Ui6XpK9I6pe0RtKxlceZn+uvkzR/bLpkZmZ1tLMH8I6IOCYievP8+cAtETEDuCXPA7wbmJH/FgKXQwoM4AJgFjATuGAoNMzMrPN25hDQXGBJnl4CnFopXxrJ3cBESZOBk4AVEbE5IrYAK4CTd2L9Zma2E+oGQAA3S1otaWEuOzQiNgLk20Ny+RTgycp9B3JZs/JXkLRQUp+kvsHBwfo9MTOztuxZs97xEbFB0iHACkk/HaGuGpTFCOWvLIhYBCwC6O3t3W65mZmNjlp7ABGxId9uAn5AOob/VD60Q77dlKsPANMqd58KbBih3MzMxkHLAJD0Gkn7D00Dc4AHgeXA0Jk884Hr8/Ry4Kx8NtBs4Jl8iOgmYI6kSfnL3zm5zMzMxkGdQ0CHAj+QNFT/6oj4J0mrgGWSFgDrgdNz/RuBU4B+4HngHICI2CzpYmBVrndRRGwetZ6YmVlbWgZARDwGHN2g/FfAiQ3KAzi3yWMtBha330wzMxtt/iWwmVmhHABmZoVyAJiZFcoBYGZWKAeAmVmhHABmZoVyAJiZFcoBYGZWKAeAmVmhHABmZoVyAJiZFcoBYGZWKAeAmVmhHABmZoVyAJiZFcoBYGZWKAeAmVmhHABmZoVyAJiZFcoBYGZWKAeAmVmhHABmZoVyAJiZFcoBYGZWKAeAmVmhHABmZoWqHQCSJki6T9INef5wSSslrZN0raS9c/k+eb4/L59eeYxP5vJHJZ002p0xM7P62tkD+CjwSGX+MuCLETED2AIsyOULgC0R8Xrgi7keko4C5gFvBE4GviZpws4138zMdlStAJA0FXgPcEWeF/BO4LpcZQlwap6em+fJy0/M9ecC10TECxHxONAPzByNTpiZWfvq7gF8Cfhb4KU8fxDwdERszfMDwJQ8PQV4EiAvfybXf7m8wX3MzKzDWgaApD8FNkXE6mpxg6rRYtlI96mub6GkPkl9g4ODrZpnZmY7qM4ewPHA+yQ9AVxDOvTzJWCipD1znanAhjw9AEwDyMsPADZXyxvc52URsSgieiOit6enp+0OmZlZPS0DICI+GRFTI2I66UvcWyPiTOA24LRcbT5wfZ5enufJy2+NiMjl8/JZQocDM4B7Rq0nZmbWlj1bV2nqE8A1ki4B7gOuzOVXAt+W1E/65D8PICIekrQMeBjYCpwbES/uxPrNzGwntBUAEXE7cHuefowGZ/FExO+A05vc/7PAZ9ttpJmZjT7/EtjMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQu3M9QDM2nb1yvUt65wx67AOtMTMvAdgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVqmUASHqVpHskPSDpIUmfyeWHS1opaZ2kayXtncv3yfP9efn0ymN9Mpc/KumkseqUmZm1VmcP4AXgnRFxNHAMcLKk2cBlwBcjYgawBViQ6y8AtkTE64Ev5npIOgqYB7wROBn4mqQJo9kZMzOrr2UARPJcnt0r/wXwTuC6XL4EODVPz83z5OUnSlIuvyYiXoiIx4F+YOao9MLMzNpW6zsASRMk3Q9sAlYAPweejoitucoAMCVPTwGeBMjLnwEOqpY3uE91XQsl9UnqGxwcbL9HZmZWS60AiIgXI+IYYCrpU/sfNqqWb9VkWbPy4etaFBG9EdHb09NTp3lmZrYD2joLKCKeBm4HZgMTJQ1dUWwqsCFPDwDTAPLyA4DN1fIG9zEzsw6rcxZQj6SJeXpf4F3AI8BtwGm52nzg+jy9PM+Tl98aEZHL5+WzhA4HZgD3jFZHzMysPXWuCTwZWJLP2NkDWBYRN0h6GLhG0iXAfcCVuf6VwLcl9ZM++c8DiIiHJC0DHga2AudGxIuj2x0zM6urZQBExBrgzQ3KH6PBWTwR8Tvg9CaP9Vngs+0308zMRpt/CWxmVigHgJlZoRwAZmaFcgCYmRXKAWBmVigHgJlZoRwAZmaFcgCYmRXKAWBmVigHgJlZoRwAZmaFcgCYmRXKAWBmVigHgJlZoRwAZmaFcgCYmRXKAWBmVigHgJlZoRwAZmaFcgCYmRXKAWBmVigHgJlZoRwAZmaFcgCYmRXKAWBmVigHgJlZoRwAZmaFahkAkqZJuk3SI5IekvTRXH6gpBWS1uXbSblckr4iqV/SGknHVh5rfq6/TtL8seuWmZm1UmcPYCvwsYj4Q2A2cK6ko4DzgVsiYgZwS54HeDcwI/8tBC6HFBjABcAsYCZwwVBomJlZ57UMgIjYGBH35ulfA48AU4C5wJJcbQlwap6eCyyN5G5goqTJwEnAiojYHBFbgBXAyaPaGzMzq62t7wAkTQfeDKwEDo2IjZBCAjgkV5sCPFm520Aua1Y+fB0LJfVJ6hscHGyneWZm1obaASBpP+B7wHkR8exIVRuUxQjlryyIWBQRvRHR29PTU7d5ZmbWploBIGkv0pv/VRHx/Vz8VD60Q77dlMsHgGmVu08FNoxQbmZm46DOWUACrgQeiYgvVBYtB4bO5JkPXF8pPyufDTQbeCYfIroJmCNpUv7yd04uMzOzcbBnjTrHAx8C1kq6P5d9CrgUWCZpAbAeOD0vuxE4BegHngfOAYiIzZIuBlblehdFxOZR6YWZmbWtZQBExD/T+Pg9wIkN6gdwbpPHWgwsbqeBZmY2NvxLYDOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK1TIAJC2WtEnSg5WyAyWtkLQu307K5ZL0FUn9ktZIOrZyn/m5/jpJ88emO2ZmVledPYBvAScPKzsfuCUiZgC35HmAdwMz8t9C4HJIgQFcAMwCZgIXDIWGmZmNj5YBEBF3ApuHFc8FluTpJcCplfKlkdwNTJQ0GTgJWBERmyNiC7CC7UPFzMw6aEe/Azg0IjYC5NtDcvkU4MlKvYFc1qzczMzGyWh/CawGZTFC+fYPIC2U1Cepb3BwcFQbZ2Zm2+xoADyVD+2Qbzfl8gFgWqXeVGDDCOXbiYhFEdEbEb09PT072DwzM2tlRwNgOTB0Js984PpK+Vn5bKDZwDP5ENFNwBxJk/KXv3NymZmZjZM9W1WQ9B3gBOBgSQOks3kuBZZJWgCsB07P1W8ETgH6geeBcwAiYrOki4FVud5FETH8i2UzM+uglgEQER9ssujEBnUDOLfJ4ywGFrfVOjMzGzP+JbCZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVquXvAMxs93b1yvW16p0x67Axbol1mvcAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAOADOzQjkAzMwK5QAwMyuUA8DMrFAdDwBJJ0t6VFK/pPM7vX4zM0s6elF4SROA/wP8J2AAWCVpeUQ83Ml2mJmNp6tXrm9Z54xZh415Ozq9BzAT6I+IxyLi34FrgLkdboOZmdHhPQBgCvBkZX4AmFWtIGkhsDDPPifp0Z1Y38HAL0eqcOZOPHgHtexHF9ldtgnsPtulVj+6ZLvsLtuEM3euL6+rU6nTAaAGZfGKmYhFwKJRWZnUFxG9o/FY42l36Qe4L7ui3aUf4L60q9OHgAaAaZX5qcCGDrfBzMzofACsAmZIOlzS3sA8YHmH22BmZnT4EFBEbJX018BNwARgcUQ8NIarHJVDSbuA3aUf4L7sinaXfoD70hZFROtaZma22/Evgc3MCuUAMDMrVNcHQKuhJSTtI+navHylpOmdb2U9NfpytqRBSffnv78cj3a2ImmxpE2SHmyyXJK+kvu5RtKxnW5jXTX6coKkZyrb5NOdbmMdkqZJuk3SI5IekvTRBnW6YrvU7Eu3bJdXSbpH0gO5L59pUGfs3sMiomv/SF8k/xz4fWBv4AHgqGF1Pgx8PU/PA64d73bvRF/OBr463m2t0Ze3A8cCDzZZfgrwj6TfhcwGVo53m3eiLycAN4x3O2v0YzJwbJ7eH/hZg9dXV2yXmn3plu0iYL88vRewEpg9rM6YvYd1+x5AnaEl5gJL8vR1wImSGv0gbbztNsNkRMSdwOYRqswFlkZyNzBR0uTOtK49NfrSFSJiY0Tcm6d/DTxC+mV+VVdsl5p96Qr5uX4uz+6V/4afmTNm72HdHgCNhpYY/kJ4uU5EbAWeAQ7qSOvaU6cvAO/Pu+fXSZrWYHk3qNvXbvGWvAv/j5LeON6NaSUfQngz6dNmVddtlxH6Al2yXSRNkHQ/sAlYERFNt8tov4d1ewC0HFqiZp1dQZ12/hCYHhF/BPyYbZ8Kuk23bJM67gVeFxFHA38P/MM4t2dEkvYDvgecFxHPDl/c4C677HZp0Zeu2S4R8WJEHEMaGWGmpDcNqzJm26XbA6DO0BIv15G0J3AAu+Yufcu+RMSvIuKFPPsN4LgOtW207TZDgkTEs0O78BFxI7CXpIPHuVkNSdqL9IZ5VUR8v0GVrtkurfrSTdtlSEQ8DdwOnDxs0Zi9h3V7ANQZWmI5MD9PnwbcGvnblF1My74MOx77PtKxz260HDgrn3UyG3gmIjaOd6N2hKT/MHQ8VtJM0v/Ur8a3VdvLbbwSeCQivtCkWldslzp96aLt0iNpYp7eF3gX8NNh1cbsPazTo4GOqmgytISki4C+iFhOeqF8W1I/KTXnjV+Lm6vZl49Ieh+wldSXs8etwSOQ9B3SWRgHSxoALiB9uUVEfB24kXTGST/wPHDO+LS0tRp9OQ34b5K2Ar8F5u2iHzCOBz4ErM3HmwE+BRwGXbdd6vSlW7bLZGCJ0sWy9gCWRcQNnXoP81AQZmaF6vZDQGZmtoMcAGZmhXIAmJkVygFgZlYoB4CZWaEcAONM0rn5F41mZh3lABgjkkLS5yvzH5d04bA6HwIOrAwGNe4kfUvSabtAO86W9Hvj3Y5Ok/STnbjvhZI+3kb9AyT9sDIUccPz/iXtMq/PHSFpoqQPj3c7dkUOgLHzAvBnLX5+PgG4ZCxWnn8y3pXyj2LOBsY1AHI7Oioi3trB1Z0LPJzHyzkB+Hz+FfruZiJpSGUbxgEwdraSLur834cvGPqUHRHfiogY+oSVL2Jxh6Rlkn4m6VJJZ+YLRqyVdESu1yPpe5JW5b/jc/mFkhZJuhlYqnSxiW/m+94n6R0N2iJJX5X0sKQfAYdUlh2X27Na0k1qMDSwpPcqXaTiPkk/lnRoLt+vsu41kt6fy+dI+ldJ90r67tDhL0lPSPq0pH8GPgj0AlcpXcxjX0kn5nWsVbpIyz75fpfmtq+R9L8btO9CSd+WdKukdZL+qtLvz0l6MD/mByrb4DZJVwNrGzzeSO3/TC5fK+kPcvmfaNtFSe6TtH9+bm6p1J1befznRmpfg/b8ndJFhH4MHFkpP0LSP+Vtd9dQe4YJYH9JAvYj/cp0a6P1VLbpdu2WNF3p4izfUNqTuFlpWAMkvT6/Lh7IbZmW69+VH+deSW+tPPd3aOde/4sl3S7pMUkfyU2/FDgib4PPjbDtJ0u6M9d7UNIfN3sudhtjfcGDUv+A54DXAk+QBm/6OHBhXvYt4LRq3Xx7AvA06efh+wD/BnwmL/so8KU8fTXwtjx9GGlMFIALgdXAvnn+Y8A38/QfAOuBVw1r558BK0h7I7+X138aabiDnwA9ud4HSMNTDO/nJLb9ovwvgc/n6cuG2lupdzBwJ/CaXPYJ4NN5+gngbyv1bwd68/SrSMPhviHPLwXOAw4EHq2sf2KD9l1IurjOvnn9T+Z+vr/S70PzczM5b4PfAIc3eKxW7f+bPP1h4Io8/UPg+Dy9H2n4lT2B11Yes7/Sh6HXQsP2DWvPcaSQejXptdYPfDwvuwWYkadnkcaPGd6f/YHbgI2k1+t7mr2W823DdgPTScFxTF62DPjzPL0SeF+e3jf/vZr8OgRmkIY8gNF5/f8k3/dg0tg/e+X2PVjpT7Nt/zHg73KdCcD+4/0+MtZ/XXuYoBtExLOSlgIfIY1HUseqyANwSfo5cHMuXwsMfYJ/F3CUtl0T4rWS9s/TyyNiaF1vIw2FS0T8VNL/Bd4ArKms7+3AdyLiRWCDpFtz+ZHAm4AVeT0TSG8Uw00FrlXaO9gbeLzSxpfHLImILZL+FDgK+Jf8mHsD/1p5rGubPCdHAo9HxM/y/BLS4YuvAr8DrlDae7mhyf2vz8/JbyXdRrr4ztsq/X5K0h3AfwSeBe6JiMcbPM7sFu0fGpVyNSlYAf4F+IKkq4DvR8SA0kiW/0vS24GXSOO9Hwr8ovJYzdpXHSDwj4EfRMTzAJKW59v9gLcC3628RvZp0J+TgPuBdwJHkLb1XbH90MpD1KTdkLbP0Lg8q4Hp+TU5JdJ4Ngy9LiUdAHxV0jHAi6TX5JCdff3/KNKIuS9I2lRpX1Wz53YVsDhvn3+o9Ge35QAYe18ijU3+zUrZVvLht7z7XT3u+kJl+qXK/Ets2157AG+pvNGTHwvSp9eXi2q2sdGAUAIeioi3tLjv3wNfiIjlkk4gfQobun+jazOsiIgPNnms3zQpb9iPSAPozQROJIXNX5PezLar2mB+pOdmpHaM1P6hbfUieVtFxKU5nE4B7pb0LlKQ9ADHRcT/k/QEaS9n+LrqaLTt9gCejjTG/EjOAS6N9JG3X9LjpD3Fe5rUP3OEdldfty+SPuk3eg1AOiz6FHB0buvvKst29vU/vB2N3uOavZ7uzOH2HtLga5+LiKWN6u4u/B3AGIuIzaRd4gWV4ifYNpb/XPLokm24mfRmB0D+JNXInaR/WiS9gbS7/GiDOvOUrko0mW2fsh4FeiS9Jd9/LzW+qtIBpF112DZkbaM2TgLuBo6X9Ppc9urcrkZ+TTpEAWl43OlD9yONBHlH/qR7QKTx3s8Dmj0Pc5W+DzmIdJhhVe73B3K/e0h7Qs3e+Ia00/6hfh8REWsj4jKgj/QGewCwKb+JvgN4XYO71mnfncB/VvqOZH/gvZD2PIHHJZ2e2yBJRzdYx3pSeKL03c2RwGMjdKdOu1+W2/Fvkt6b17Fv/m7gAGBjRLxE2pbtftle9/U/pPpagibPraTXkfr3DdIInMe22a6u4wDojM+TjkkO+QbwJ5LuIR2fbfaJs5mPAL1KX3w+DPzXJvW+BkyQtJZ0eOXs2HZBmSE/ANaRdrEvB+4AiHRd4tOAyyQ9QDpU0OgMlQtJhxruAn5ZKb8EmJS/THsAeEdEDJLO7vmOpDWkN9RGX05C+p7k60rD/Yr0afW7uS8vAV8n/VPfkB/rDhp84Z7dA/wor+/iiNiQ+72G9P3AraTvH37R5P7k56Sd9g85r/Ic/JZ00fWrSNuvjxTQw8d/p077Il0X91rStvkecFdl8ZnAgrzeh2h8femLgbfm5/QW4BMR8csG9YbUafdwHwL+h6SNuX0HkV6X8yXdTTr8M1avfyBdSIl02O5BSZ+j+XN7AnC/pPtI3xN8uc12dR0PB227NaXfXjwXEdudIWSdI+kM0qf+28a7LbaN9wDMbExJ+hhpb6Pjv6uwkXkPwMysUN4DMDMrlAPAzKxQDgAzs0I5AMzMCuUAMDMr1P8HsUqDxt/hTvcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# definimos a quantidade de ensaios.\n", - "quantidade_ensaios = 10000\n", - "\n", - "# definimos a quantidade de lançamentos por ensaio.\n", - "lançamentos = 3\n", - "\n", - "# definimos a probabilidade de obter cara em cada lançamento.\n", - "probabilidade_sucesso = 1/6\n", - "\n", - "# binomial retorna o número de sucessos de cada vez que se realizou um ensaio de 8 lançamentos.\n", - "%time samples_binomial = np.random.binomial(n = lançamentos, p = probabilidade_sucesso, size = quantidade_ensaios)\n", - "\n", - "# construímos um gráfico.\n", - "eixo_x = 'Número de acertos por ensaio de 8 lançamentos'\n", - "sns.distplot(samples_binomial, axlabel = eixo_x, kde = False);" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 5807\n", - "1 3468\n", - "2 665\n", - "3 60\n", - "dtype: int64" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.value_counts(samples_binomial)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0725" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(60+665)/10000" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### (2) Seja X uma variável aleatória que contém o número de caras saídas em 12 lançamentos de uma moeda honesta. Qual a probabilidade de sair 5 caras em 12 lançamentos, P(X=5)" + "### (1) Seja X uma variável aleatória que contém o número de caras saídas em 12 lançamentos de uma moeda honesta. Qual a probabilidade de sair 5 caras em 12 lançamentos, P(X=5)" ] }, { @@ -146,15 +26,13 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "\n" - ] + "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### (3) Um departamento de polícia recebe em média 5 solicitações por hora.  Qual  a  probabilidade  de  receber  2 solicitações numa hora selecionada aleatoriamente? " + "### (2) Um departamento de polícia recebe em média 5 solicitações por hora.  Qual  a  probabilidade  de  receber  2 solicitações numa hora selecionada aleatoriamente? " ] }, { @@ -177,7 +55,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### (4) (Meyer,2000) Suponha que Xt, o nº de partículas emitidas em t horas por uma fonte radioativa, tenha uma distribuição de Poisson com parâmetro 20t. Qual será a probabilidade de que exatamente 5 partículas sejam emitidas durante um período de 15 min?" + "### (3) (Meyer,2000) Suponha que Xt, o nº de partículas emitidas em t horas por uma fonte radioativa, tenha uma distribuição de Poisson com parâmetro 20t. Qual será a probabilidade de que exatamente 5 partículas sejam emitidas durante um período de 15 min?" ] }, { @@ -191,7 +69,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### (5) Gere uma distribuição normal com o peso da população, utilize média=70, desvio=25 e 100 observações e Plot a Função Densidade de Probabilidade (fdp em português mas vocês acharam mais frequentemente pdf, probability density functions)." + "### (4) Gere uma distribuição normal com o peso da população, utilize média=70, desvio=25 e 100 observações e Plot a Função Densidade de Probabilidade (fdp em português mas vocês acharam mais frequentemente pdf, probability density functions)." ] }, { @@ -205,7 +83,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### (6) Normalize a distribuição anterior com z-score\n", + "### (5) Normalize a distribuição anterior com z-score\n", "\n", "$Z \\sim \\dfrac{x - \\mu} {\\sigma^{2}\\,} $\n" ] @@ -225,7 +103,7 @@ "\n", "![z-score e suas probabilidades](http://www.portalaction.com.br/sites/default/files/EstatisticaBasica/figuras/distribuicaoNormal/normal3.PNG)\n", "\n", - "### (7) Sugira um procedimento para descobrirmos qual a probabilidade de um individuo ter peso menor que 20kg (não é necessário calcular, apenas descrever).\n", + "### (6) Sugira um procedimento para descobrirmos qual a probabilidade de um individuo ter peso menor que 20kg (não é necessário calcular, apenas descrever).\n", "\n", "- Vamos supor que a probabilidade encontrada é p%, seria possível descobrir a probabilidade de encontrar um individuo com mais de 120kg através de p%?\n", "- E se quisermos saber apenas a probabilidade de um individuo ter peso entre 70 e 120?" @@ -277,7 +155,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.8" } }, "nbformat": 4, diff --git "a/1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/img/.DS_Store" "b/1-analise-explorat\303\263ria-basica/05-distribui\303\247\303\265es/img/.DS_Store" new file mode 100755 index 0000000000000000000000000000000000000000..5008ddfcf53c02e82d7eee2e57c38e5672ef89f6 GIT binary patch literal 6148 zcmeH~Jr2S!425mzP>H1@V-^m;4Wg<&0T*E43hX&L&p$$qDprKhvt+--jT7}7np#A3 zem<@ulZcFPQ@L2!n>{z**++&mCkOWA81W14cNZlEfg7;MkzE(HCqgga^y>{tEnwC%0;vJ&^%eQ zLs35+`xjp>T0fZUhL=jZnrS%8oe9Gop=P>B^7 z?1(ox{edu$fZ;^Tfg9#WV`E)`Ec*n0ntTYw+Y{Ky`Y0~?K7Lk4QLxZ(fq)Lf4S)Jq z{h`1NK!9qHk>uh)fmmYZ#83|kk)y?$!EBsGg}|a}_IBZ`TSC7$>bJP#s+y<+zkvE# z6e}JLfv{E{QKX@u#19#-#onnB0-7a*pRfYqL4?Z#fNrCSc^#3Fm7tEz1nZN31P;M| z!eoC0m@EG73b>olUBKIkN5vqNQTzx@-}$wL-@fiRg_9tPKy6KU{GPUUg^g;|8w$Uk zyOQ(^lY=THdPSzQ&+&urgN za|(?}Hn)k7G!?#k(qKg2+UL$+9GuSmd0a5YQ+F2qiU;00PnXT%u4s(h(6#K+MTXwY+%UmKz{sevEq|Yz8UT`L#f(hJ|mj{~6Us!M%Bh zDNspDwdoi`AGrIy3YNBGVzD1T-P)kf8XoK9yfp_ujUnCQusH`z2YTsG%?K(?MBwo$ zga!rP{C&1;dAK1S2c8eY4Fw@2_>Fn=0u}d^D|vVYqTEjj1|F~~a3H(v6(k5EZ163z zf^@K-2TTG;2PxJ&&VUg8&4S(S7NcP9+xi(ubjAKq>*9kU6KT;7XBp2r zv}I7+uwWQW9aFx zJ8PHkA6d*roW2&{>=3*hTOO9ZSgP0xmH>P5XVn-()a^B7jgi zp~b-}{H*(_hRVMsCNfLDEu-LjK7TYP9~EZ%R*c>eKfp=yT7Qm3uf+94w}f2^uJgGS zYXqTO;9ann!a6%ce=cL%F1!w2Y-TRrgNYq~{jd=}tz=uPN2zhwJnCDXX%L3PN=NGO z(3UFAk2`DIOJ>J2q0|HgSCfLG9R{l=C$|7=Mt$KH992Dd%7$?ge9FPffeWf25pTa{ zVX(ppe!!A#BL9?1U5duC;P~_S0^dCb!{c~fg$UWAQ5+WAg94MeN)gj21LFu{VgWlD zg0cf^?1HzFxFQHWQ{$5bUJ=0_2722A;XxejQgH&G_hZ`wHwPljf!hXp83OS_%*OXH z1M>%B-{R8>BLxTjL82LkhZf$Cr!5At6oQE7GKJ(4(T^uYgA)_Jn{)jInT&`od^G1! zPQZ=WBBVEme@e^>(-XQa(ln=l1k)g7VJ6*ItXTz@JBeA>>O1uqF|WTnEH;kA?-E$HAR#pBEDHlo(zXNNmZI#qEpUO zPTMe_@egA1(hM^h<%Px@*YiwY$_3MLeIFvA&4X28^jy=8zd=B5l9i636Tke z3AhRD0nvd41xONS64Ro3DO#y})`0fV`Xu*2s9BO}lR2!}qy^8= z@+|w1ype{9n}vdLonhYu|7gH|{BHd*)XD0sLx4&80VSnC8IuK)1;L5djL?h+y*@o@ zEm19>uAFXMhp!{7LzYvR1L2|Vk?%mzal)R%zSLpG{@GE+vDv}W5&Z7fkXOJ9HQ^NH z(8*NVgj--;oL#Je|4yPnW?%FV#7{F&n16y`c|UQ0e85X!bs$6_>wrk$3YY*?11vUd z2y6<>6Vx=+1GEnG7%U;?HKsmV0-6KrIEE#P2eCBT63P~Zr)0B^v$(9{l)g>Zs%1mj zK9~dD9nu}jozDIPN+JpYN*9?nc_~>3Sq-@gnSu;|8i@?H^oXRI3}51?w6#>2l!i3o zpMK_ZW@2V^W<*mXEqJX=o03ZruITJm-D2IAO;isE50f{rx5fK9bWXHOv_^Dobbgvh zYEK#h)$Wq^!s1%ATGgUQ*^EM)qU@T@THY#>B9wgPf_ur7YO8|G0#B`{sLX2Zc|t(ccg<4oU73D&${4VGM1S4*8WG4t&6GjrE-`g8Mh5sMx9 z4{5dCw&}J(*U7oX`tkZP+wHyK{Axe#-{}GI0eJ&VK};e>B9%rhd$^=ZMS?}zMN%e~ z2Z{&c2eTB?6wXQJNggWri>!+m=2R>)O?>8G$7oI*4~`FM7$g`27-e+kv`cgKxpc8~*g4d> z<-IUIP(5Njs6NU*bf1hIh&^;(#yq&b)IQ~I*z~^L9!Jof>o~T-eMr8Oy=|^dG_iSK zs2NZgRNjaQMCXMW1nr=>ptfXkpV(db4f|2_v*wfSn&d0(7WBUey$gj1C2c&mq1$G` zEF;px_!1gpDdREAv6Q4N_6BQ*5WwdkZlJjWY}htQyQx74_b}%%q$1#=E+bIFr6WDD z=x}pz`7nx5ojA=yZDs0WLX3Tk8O9ojrCbfVRX=B5SD+!F(V+!Uwon-;8py;bp2#Q3 zPRJEXHH))l#mXRxUF|Tpb6dV#G9A|MoT;`1dU!-wNhwW87MYvqqtek+T?BNfyBI$< z5aRH!xIVcuxDI&e+;V5krbFYCDd`H(yeU-S0{I)zgQlLzleJ_=Jsgu|Zk-d$H;ZgY%V_KV1e z6JHY>l)Dxt&5X?;CsHRwCI~gsRax=(coN-AdztGU>nF<3FO|NF-X#18itur{Y(2V5 zvek@;|KhIubbZ{VN z(sMez)xR(AC}K-LopyCUI}lI4W)KbPd**zUF80@C_S0fno7itG1GE!$%(X?d$LPKE zd{@mEm$zy+w!OvnCMpp2Vk4_AHD26Mc$~O3>PmF8x(IxHI%(RiyEocC*5GGx<2Ja92n`L?5;qlO#Z?n-d0pPV?$vMH{z;-!7!?PRC>0-)=;M`h?|h|w;5vTG#hhY@ zG`R1n_9g$Sw3IcuJhyII@v+n0=EX(C`gvu4zFH8S;kobHml_yK7NieL=^Ud+h`C{Ry-;@;!1dWhJSra-bZuik0%HP^(m~ z60zW2;X+|#tyT59(i1__*{L`qdjA83#4bIcEl^P8Vl8cUMP;m%F>Cr-z4^m)-OB{?$Rx(&Eb2Y=+g19kL-( zIRROd9Ai2g7-pm72i`mPrP3?ip=xeyW%M>?l5E*1&X~iPPwb5}l~lBJqZEdmzPv}` zdb5vPra`AU1gT?dttq;B*yY@;(R9Z8T82(DjcJ=cfyA~Wzh~V*FUv;@f-YyfE}6UJ zbG>kba)e`rRfcwlXUIEpjC2klsz_)|Ixa5Tu#SoUOa<2iP(t7KZ74EwmJ}mru|Bi? z3y1gREbw;ZR0fo8p=K{lWzY_+No)H@i8qje676 zO}I+ofz%yRN?2*mB^`4n)Iw>#obYrD%Se`i9ihzsBl3nq6=hK} z04~=QQ(S?<@7O)nTN?iYXaf;JN}jNm$Mzg={?KoY}&y|O+%s879J2tSmZrHc6_{rHh? z{aCo#&-vso`)NNoKKx4dVA^_kmke8xv4Owvy1-xDW^p+QH|;pXF5((GBOjw%qSx3p z@&NW?f1>i7_+0Qphv~iZbJTx15JIv^Tsx#Zl1Xk}5^I(<8ANj`u>f#WLnq*Ky!?AN zxfDc+AuqjR%avlVqWjZqRHF16{k9fg>T{w!>(^WEYiaQ?q<(Mq#jfqOmg0q9m2ixS!>?-Z`HJV}CgDT%#_PpG;1`}db2z@T*Wm}JMfirp7V{_f1S1raofpX8z2VU37oPKj6%E{4XGO#jNWBIt!D^y`j6>{GS#yl#O(77{rGJcjQv zzmb_>s}MiZ0Sz;nrII*DFHySB!5)ka@8Zu@^j z2Z@T{k_r`Z9q=b5m7bYjAH!f^MV+LkRX=Nfto>R|v>Ch1yn4X%j+YE@z;m&3o^f_? zKzIAPcHQXNB%M-Oi8_3m`glA}rc>v~0OQ+G$HhY} zlo45c7m*qK94r~?6V;8Kif#<25PccBEZG>|H}N`XJb>TFMAb$$NkU89rd%n0Exj-1 zU)PT}PeCYiGcUH#HoLQ+GmpD!&vEj#5VM`B4d1%doD9 zw~#SHG3g|BVxX7YlRUS%B;9$rpuYZHE%IvRezJ5?tyi$c;py&mVEeq2+MeY4qLerF zb@_b<{1P@K0vvZ7>K1n!o$F!#=>2MToc@KI)&{vf-6z1h^)ce&>pcB~+c#gsRt*6} zNe5&v0Ok*?T#-u)B-oA6A@B%fPX@YM32%7K45SwWF^5qh@Dc{ZD1IG_pAYd!G7lOx zjA%^-w+_ih+_KG)j=CJ;vxjewzlrE4c9$QmL|hIk`Sk@MCv2Txaq4r*{zw*zZxS0J zQCW*j3%ZPz70wrxGZ?Y!?V#44=8o(Q^^ND7VJN{V{wnWGmP?!}OHcHl>^Nc4-Mo%Sz%HiV3na>Y7F#H5pY_9q<~hab(nTNhA^SZeJ&T7Kg&BdJ!(!wZ_v&%|?+CrXo`kPT zk(JV(*aCUh6TCF1TDvU|UR_?;?sxX2HqJLRJN!G7!pe6Yh<0!Y2s0ZVd|ojXglQPu z$arDb?L{m(PlwAm_qgEEVTJK*YUv7!jh+SOg$-tCE#kEoCstSW8{_qyT#gL8ZVn3r zr-4=A(IAA76NC!@3(&n` zf2zHS8MZ#+?&wZ>4+p-_mXxHT?>xN{L)ZwxQ9Fix7@4sErDzXGGK1R2ZpL2rn%VHS0=8fbp>ZQG zD6dcv!A6DbcUTdU(qwYX?#!E%S&2MYEm%6~tm*6N@ELX_Z0A(u;mnhn)1#y6W43?z zCy-~yN7n|Ars179?%nTD+<9J&kqs1}vr&qnsiAx@uTj<*&S^>k@@RfE^K@FIDU|p$ z2b33N7W8#x`4#20#Rb(x#)VdOty+A_q#8}?7XijIUze$JNU)CyGI_{SHh;xbzEQJ-XcFnlzBciK%RmYT3ter zeq9$(4jq$Tk|>DMjkwP<{3|-_6x=h5le04&*`6#i2HAZ#nL&@l88fcXPYd``vpy5AMeCGG}|gb>5fcp-^)p@)Hp-9Yia#LIBAN zOp311lGo$jaFH^xTE*eDb1pBdpx)#5%E;04u{db3%)--`op<%a{q*~ZXQlfbaV6wR z02f1m*185y|D})B9vnNL04@Ms66emB;xAN8zosVqa~R^Fo+Jiwq@%=9L2Y4gVadGj zDf1&zD6~n~_}J!9V#CZT^CfOJFFpJV5JSN1U>}7h3O&+DI64`^g3-U~&#{rHBULG) zA!t1I3_a0~v4K_jlG;FXa&>Ced`-c=-6@f?t6jOBt-bG|`Of@S>%obnw-?~986Im& zWL3y({Oj-U?!iSt2a(4 zXs@uLNGb?>fOl{|A|>WYPKT!p88Va9zS4f)$>%_S*YcFD?X4SeOJm4xxsODV{ZzJI zR`PebsHRV_v8hh8*_5P>C@*^f_c-U9nw2sRdk;|(U6oCkVea~kOYYNj*&5El3>=4LUR9@m2bPCr z^GIV$ja)@ffykxR2;1m|r5>TJ`{U!LYKO}w!jbJv&)dh|mmQ=xK`ep?uP5{6`{7La z#Nwa@p#fGmt^3n{%V*Z(T>$jFn^e-vPL!|YtGkcqQPaHvJBz+Sw>f_Axesd2&~(q+ zHh5WY7jLqoXf7|~%X8;1?b?5#^{x)+q zB69z2W9!82&PVcJ8r=Wr|F9WIi2h5(*_w|;Q%;dc#Lm%-h>f0=o{@wfhKPuW*U{9R zTUk{6|H1#g@sa#;cDCncU~qGDqjzJWw{x^$VB+H9Vqj!uU}mQKr$OiBVe4$x z`hSi5e|AL8oJ<@o?VT;{Y>ED3*T~q;#hH(Uv4k0)EF{}Vy`C-z?dMAK@1c9VPg;d>vFMHgQwU#LS*jKwgX5aDfy)>2^ z9I>QO*%Gqzp|khmhwuagfg~_nwq9hFE97CA{M{DVHc@2mL3-S zH1srXnh7^{?l#-YcC6!mluwqrmR{r)>O9*bHT2pD75tWcw{ox7w#Q!$xim;a>qm5_ zTv!V+wz9EH-&`cZkgY`1Ywo-YpcH1EK3*Q4mh%>GG*$@UEu_ny&Z7|2Hd%UJ3jfsL zF1>VD_iBy&R+#nD*C>e0dfBb&=!iWn516mccM05J-Tc#saGPm;TQ%Kx({*nQIp^YE z?gzj0QhC#SGJSHjvh-5*BJX$o^agXaW2Nv=a<6mL@}+s&tcz)?)mynxF|%=?run)B zAcVb>v9091n%y`^(*)l+|7;0IwqIVzI=c;sAqIQMno9;&s&6^HqtB{urjEg{^xyzp0#EqNNv9yW-h6}cXLU)_A$Z=5$o zcW-qXgq5*ne%*9dC~A6XXr{S^zc98RreLNNXrU6^;4Mg+d9~bKOWoD*;?xM%7r7UE zp511iHk~V-H+Hxdd(Pj^X4mWZII?rEqxOpjw1#{^7K3fs#U;v$y1Ho8t9SXuRpcm$ zYh)WzY`xa6PS6RqtAsx|dNlOAc!0pLxKw_&2*(wQcW{CpdI| zHGR<-M+UZv)pf|8zByHLHrrQ*BZr@<%irT_6^ z!Tqw0iwy9@=w(|G_d4eGDEHJqdV2iKkawx$7Fc9bv6)x*`FMP(wCm9td-m4wC_k;O z-8e7}qO%m@SGp1_^5OAR1CW2pUHOmIEPMcM@sPnl(L{>pnBt>- z%1+aKHdDd)iQ1-jj=)mS;?D2B+I`iV?)3w$EJWY@cgZIs0cEpRUY6MCf;-dE7-Au@ zGc<8(hf3DUml!SZyp%_M-9Mvs+co=YW9L3`R}S5^+dPXe-oB-CxuGX&IHSK6$~>2S z>!j}DI z$lNVis48_EfDiu7k)FW23O)@meU5uv;(7DPtM*pC-z@O5{RXGj%d6f8h$ERa>O z_SHM8^XyX}nwxrLEsfV}2-1_DtiKg}@=ZBDvwYp0`|j?Xf&8rKwa5lE=V`qB`>;M$ z|Drkb+Lm2FlW|Vey0A4jB|t!%^#8a`E!KdVBnQwC=O~p5vCY~pTRbS?F|nl+ewgXLAMV=Vxf zq@c*B;Su;hLd=CQ^K1xV68NIU(6TM~!JY&QhFC}NVp7US8;J(c)1~)r&uI1)q|wvd z+6ZYgEpw6gMw3|TruNQ&11Fy3`uQ@d*Xp9Hs4P0{h0qjLRiRe4Accp$%*1a~#s#)d zX*K2Kv4WLS;LdNXgxFA^2_8f&Q>>OJgPqV}MF!-DX_(oPYetPagRW&oZKJzFSDj+= zLgQRaay381q+~K5_RPrl*z04GPOuE=s3TTr_fvEPJ#gVeu{$PIEvP8MQN2mQ?M!e= z{RqeBX|Jwcam|Vti%zNkoshim842C8UH}SLfJv@tRw<(}F*L+Oxx%^Sui>Df4WX@( zAOEr2J3^8yS!$dzD;yusNY74>$nDK7H-eH?eq+N)X~{h`$9~l>xve~y^s%lGV9;|6 z8M|jd|EVaT=B$mnp3!z5NJBk{#b)tG2hr+Q)D5UH7yfu{h;A+ZQJoks`t0AqFmP9; zw=ie@qafxp5h_2*T-r~@PO#Gmyq*+y4+Vo4CQ)jsqxnp2Heq6*Sf(`^03iQ(d<0m?Okr^R3s+ z_0oM7f&&EX>wbz$NEFrCfp597%!j0z*`Ngh@&X`cuk@c=BHhx`92g){JI9QXq`FoJ zo~mVKWydnvaE-xqRgIevj?u&o4(gac)Zx`lLI@+_Y0>=e%lT^_awZi z^dik!oeGYs-FjO<&%J3ky&7jn<|+eEv*MhdTXy##s30eUm4;Z%8}#Pw_AWCztW#Y=9c3YR#DLXa*w{!~B=Q`cC%OJ8+Uj|tw78cwsn)lPY ztBFuO^(SR? zv=r>|_aYf`;>k>3WThU-Mq`;_B5@~UHE5JJHF-I>^6_y`=amQXz~%$tGr4rmhx_#?#Vx_q0dPAwRqT=8q@f4c zsob_hs0^`FfP|vxtt6!$ERLFIF4lCCHwF7WNqkQUe0g9H79cG`{O|4i1bwInt%rI} z8s+4p-9ikj16q=2PAK$TdD!`xS_6~v-6r$MF5b8{V>zEn>aj6Soiqo0yQdF@nF8Fu z{>^%*3>z7#gYpvi$!iBWuH5?~QX+_?8?!Jds8#27agEN9Z+TFHIW%Gm^&wxEpiX!C zD;>%C^jQ@`>*{50QLeNndNl=RjCn`i;F58v##e&bXCa-R2oq3bA&BBNmEMeN#v~KX zOr{lUSrHRQ5+_G9!m!#v6Uku?GhNSa?n=mktnV8{fi%=x5M{}>;H#rJRZ!twXL&M= z00yR~r>u`e^hmW!r#Da{7#mIqaV<*2Et2;?(Lpm-6w!9@~gOwGPu6@*KM zZUQ$vA3IA>w*wubnVW^@gD6z7c4Jp|0}7;BxvD2V7MLgGDUA5+N0N@Tf86nG8ViX< zshpN{?XD){0nD$`GrrUOfrWe>K+n!#Nj7;YyZ$XgRMCnZv@gIV^-<%3uOcg0@U5^# z7{9EoR`%U;#Y9WuK6h*cO+N{koGy?_D=*~M{BdvlH*>#-b8;jth$cD`T3}OOoM^vTtD{}n7{)^Xszc&h>RoM_d{CCoAA4F zYQ{mmSm5oYjgV~S(XfxTkhJ#j+53TmlvHb>%H0#u80hXZ9EHw@$L*tZs=L6TZ5VvX;u>x+9Rb#akWFPXGN;Z9^AdU41?Ajplsul_?tdXX+;$cwH{u1Hwh>J zoczH6&50OBCQE4A6-v-dmeIxAxKNpK`yr&QR@rylSp6mmroj!bwevNeU=uJJ`J%mbbAH4n|7yj5pc7e@A= zyU4}}-qXp7x$e7VD0Bw2+{B7uB4DW?ONzHYcP?9&l9s&1Q`nS7m9I<;#~#)l`5H0M zRk0Il^koZcNlgJ|zc||_l|oDgS`3?X>)olj|87>qDHFDxnhy@ZNpC{PP{!=4kfKss ztL2>C2I}qu0gcFr7_UJN7Za6qQg`YIDSKwN7aadujW{}$%;5o#>kje-+|u%A&y4#^ zlha5&h+q->3?xy~`LQbR4{B zd}&|$)8W#*6}6`4xYZpZGRDrZ;UJ?!3%iGPyXC5O`y|JGN7kgpsv{Hm)e=7Ex!DIu z+B$`lEbV3)b1J1Ub2TxxNqsN2G(Pvpp93FpB0tfxD<4FGd+R@RhjiDn)Sel6n{r4B zZ(~Qj_K2Bi)4g=%g_08m^4Cxym!hJ$f30JC{6R-N#4)YhrG@|xJ8#cM;)10+PryK+ zn;{{=VltnqoxwgA?nxVGp}SGpFC{?j8m{j4NM)dn+K`qI0w}~2jw=Hj@#OcpfQFBd z$yB3lWm8q;hm*vib3N3Ip!`c_AVpy0P~M|^GaJP?GOD^JElz3R*>%lG#a;*2P&oiS zHL&?JgEYWB#4nN9G#UeSoXi!C73oOIN^ z>a`a1RVAXtkzwi?rm4xjNW*(&ka8{d3s_CQkWwI4ZlUl(*pk@WwM+Klp+hfMQ;lhc zNDRJ`d7z-XsGj0DD(zk)m1T{RX`gKdpDNc2co4Ogkm5)7AS6p_C~@fz557hjhzalL zXBYKl-DQ^yt!u?DF>bFEf#ml+ZwK|$I+k_aICnJYD3HaibD7?d*Z|MaL<7ya802AI z?hH!M!R4AXmvT#i7J;%BbQ$uSi2J8xdcP4VW zli_*l9h8leYInqQZd^=PQi7AEOIl?d;`}4fYZ&9C+^{*^-YKF zJ#X}Iax2G-hE-l&c3aPy)P`52G-^@4^4MDpJla&ab2ydC&l+L|p3l804#_Nb#13BP zz6F$JyF8ki-;mhERnT#oo2y1RWz&o5Jze^?sp!2fM=S=0VpbBNQ~u9B=#-)SgvtD^5cDyujyGiws4Pal`uwX6?~gW9wu-W zC2oL?OP4@O+6s(e(1d*?g+r@*B60`fkQTw&nskBpgC#E^m!t`#XX9ioMGg!hE}-o; z@rI)84uw+(`P=CdSbqMKysvOV*MlcUWqUS*!JKySA3_(;QqZvy+e|(}Mql~6f80S~ zhDXuzZBd3}%m%Zqi%CDSe)jc69Xh2UN#ZEhAY}G2`g5>d#P+nr1Qb%Hz;=h>1((IS_!lO2RaAe`pMK+ikVnKF!oeoDTji{6cj>3IN@A}&+^Yp#FA^*&LvDGPN z>ZM%2jw$DbRret(4?~GAL=#bV(`gY*`Vuj68tf3&(T2{wfidDW62_ux6TD-JyqP;g}#C;>G z_iCgpM^Md>vHlQxFuqj4lU9G@9&<#Rib)TaJh`n$S24Kz(orL4r9wXK8z`D%VZ077 zun%C?MR8aNt*l;~atI6?hBCWkIGt9InT8P=48GqX68*kQWd!4Rf($V*-dcj^a$NYojXU)=?5%2NF$~?&=n`0=BZo(c1p2 zlRQLnq>wgWYM$Q_P=??^MfAMoAIA2M6Cgu0%+jXO$i{mg5^B{_BjyK**_})wIHMAf zu#;aD7K$+&Tf!r=pYWZ+OwxCFuSH7PAX+E6+ocW^G|?=tGmcQ$4B!b-!)sZSq-X^R zmc?`ta#IuB04F9+E6k|vvebF7SQgJh6qeb6_GQ!|*^M+rwr^Aq4`y=DjNRmDMf*xX zoiWxg+OrH1p$O>gBN&NOs_1EqYGESwasFL$#0Z6L`mt_J1i!>u44-)QQAZ3=L0?5X zOM4Ro62DzCfdRK9x*&jyHf$D%L`c@VEf>(=LTR5t0n1GD!GMDSJnnoY!=vT3B~(yS zc_QW9Lu8V`JfuT(N_4~&w6v2Q5A|KL9GJP^L&3jE8@;5vhkwK5@Q2Qk^V8i(pI;77 zbxrd9L5Jv=@SBL*%8u4KN)Yka%^jm_mycn#xqd4`S42^aQ?Rxh%y{*Hle|l zJDgai+~QfIE~%U`+9TX$W}4&0ZFC}8Y%eCB^d5W=&!oo;3ArG-|WG>5b0kDjU!I#r|1ktZjIv?nU>_v#|4jhnXlOR#c4e*a0J za;)d^bwn|{R(0~27dmw2$gdt2KB$N_WM>ptK!{z8TsHQo)qY5DcmjVwE z&T!-N908i-25PTgM@vx=Lid~tdAGk>pDs?k;{^sQzvO^uZgVV$lQERl4G|H? zF;W>(!sHWuKW|r>xa5H^D;zHExXHCWm_nFvfQqQQ87wR{@^I+20b!kP`%6^6ykFFz zi)+meQGTl{>XfN1Z^GYoAI=h!m}hPP@DyXJJm+Hh%a=AR!C$?g%g;%zfYJSkZldjx zBg#+NFHx!}BuCn$;wr-gVTCp{vFwN=+nqHE9_{>o$(+ZKmY-e1uVUNSs=={F9!(i? zf&855Oftxdo}ar@4aS6rhv*Us5f!+cpmzmcm&}DCm(v<;KOqh)Ij%x~!~;G1i+9?P z=r8cdgk5w?ekK-dY;et}MWA^vXgjsVWQg62cvy<}x$fcQ#EuZ1%b^WmY~IM9G_h8k zf548m2QW%A3KTZ{r_-<_Y@r|Z-~Azhq5^vyDht`v{k+aBR|b>9RfO29$#*S8fQ7ck zyT0%Kjxo%Msi0K5G$o5&K-;%kNUgOFQ;Xjb=vyCX5*t8_Zt?868$@f=e( z^Svs|M+MLfld|i_Xr5I0FVdgC@lq*TVM%<$Vw(S2U?SSeD}%5mDqok&WUTv-`s9!b9c||(ra>1AwQPbcv=2JGZ^x!z@#CBp9Llcekik+_*Py`%Xty4UG z>G1r4k04bfk)_Y%+DeZNAf|OjYuj=&a}8WQ=cB?Zt6~vr#rP@GwZD*kYL03nf zFaxW>f=-rLVHfUS0FO=ZurkfWc5OCfjLd9mjGuE7S;NE58MYRLMf}7$>lh-s>8Ih4$1IaG1!ZXV$^?*B ze(6WF5C2efqE%HL6-=S*XPe@6 zodP+z>^njiCVA!_&`v;x>EeLgV^>1^6i-c$+=@nohn|2FyoxM)dvJ}ftWBszE5F=x z;5O|t4i#g(bIwbg+P{TyH{!a7VsDrz2va^8&#!h!_)dO=csX!FGFY zH1!#C@ewZ*V(H?cTssn7I~NSYw7c79#+jk!s1Q`)5eZ)>nI+!}2)S+;X%+#{>wK(j z1z)lfzpqw6r-x`#;ThafZY1aIf`{PR9mS^uVQ{W$Ux4K}y!#>w2!x{4o$SZCnD3Lf zx=NT?kG6PctBvLcnW#AILOEChm!`<$z!;xpYK!*^t1vvU_t3&72w>Bq%R<~9P!R%YJCM2Ih?Ly-OLXndyT9Fr%A=5kV|(w=3$L%Ebue( zLJQ2d7}6jPEnqkXMP8Ey`NtWls*ffrHs^WuYz_){l_dA1S4;!Z+~E|$exZFha9KM+ zjKJG41p)I%(0lp*Ds&#Yl`otMtbNyWN8gk!FYdr&Tr?q~h3L{urh!~in2R}?Qop># zGjKQlQ-C8Xx~#k0-#+eF5hd#85mrqI%h8-JSO+5$Z0I~QC@@3YG`aY1yJUu#kP;SC zP+@3gl&((Wkfqic$CQljQBH@dpR$Q&QeVd&j82DO=?ZV4d8G-Zl<#m&bsR?o*0Et9 z;=)!`J1*cxms>iy@HxgiHe|3U*HkKLoWB>Zz$46#Bn3sqQfzhwhYzXocgTz$$^(f$ zLy8<^(EZz~MxXj=fGtR(9j!R8GbcN`D+RODut!m25Nwk@@%vX|E#_GLA58!ac*2^X z?n}`hJ-|NM#P=|@j*s!UlI)wZXThudfHUw8IW#$Iiu4vK9r8C9(0pzAK^fL;kUAk= zZp0q4Hl2$F9Y&o@j`_W65;lG{zz2oYIz7ezBm`L7e1``CZIco|8y zC6ci#N%7G+2`rEfEe=+mD5qp_#E&~;cEG17@lJ)JzMzTLX(71d@vO4Be!lgcx-l<& z(@Jqu#RZlk0;RpxH{(obfv%~FHzTW097{v(E%nNG%cv%Q0dsJCdNKm(a9wKKPuV=gw>lW#y1};2Hr3euG)afQ!3y7k z{qm0rBX_J&J6&M+T6=`#Y_BErlk;?b{dG){I}bNiuU8k zUK?;=Z5)+|kcEt0>Rs4XI`VA19dd{84uQ+JoCI51GynE( z9OV}JE;PKPUmCK*2`6O->vTQKevB}gO4%o7zt8Tb*CN&M6IoFPT&$k%m*3|eXjs{q zipw7XlEp-F0PQ4E30}`A2A- z#a|v>nMB&73#ytB{(>>P-@bY3wjgVXK!8_O>Qr?qz9m(p;>$CR(Do>?(eOMbYj(&* zv6PN64WD$D&TaXmtGRPyXEKHOazoGJs~Xq=*9D8^s7ecEG?~Y*EhMF7yOpANeqHDM zJNW<+B9L}0SE*;ni~oKh{Og zr}1cHIQSqT;a*=7k_8=64cCbTknK^SZVV}l`jE9UZO3a%eh8?Z;&F`LqV6p1 z)F9Ta&(KeXILN2ai-yZZTY~TguiCQ%R=AGYSL5Vj#aYpBAlVvYi&ld?vVi7n9f1-2 zJ}{6naxi%a+-yN(5Vh9<#V2h%;!=d^I+LH1*$hC*E4rv)wNJj%wh%{ z)!y?@!Yodh*;WXy%f#5}`^#;B7ngkB|DsuCjM{D#Vu|%yuv}`5{NV0-&@9dVK*@DJ zbo4KPcEYa;S4gQ~A3OhBESXcf>S2cshC3l*QeIfyt-O+qVp~z0csN)BR`DJt&B6elnCq@^}#do??=l)W09tg8DQM7m_*I4f;dgiKUvz%Qk2y4Hb!7s*MusdNY&i3{`8KQ zs~q{P9Nmn%rH6dA?YM`ZsmGylUV%1_Z$3H+YYO#Hu&EoOySXa9JJ#2$-tYEwncM(1vw z@3~mdiF9hrAy=2x@l%UVul;x*2Wj@d-}f+63f<})KK6JW0~^L8(l(KzrghYruXIh- zy>uqdS~C=QKB>WHC0wcEl?eI3urrIk9A^tAXIM!{Lw5fm5Q0*lHZC5+$(RzhT*EMr zw`CO>BUtj-({n}fIboJf>oNYlcEA%0P)!lpJ+Rw3oc^FiOR>UcC4UZWY6D?X+IoXE z;XKJnmE1`yeW5r4c}gAa>qZTz8+2O$l`x_WFzocs3#l{b`SoU8&5>cuE<;l~|7^`I z83Z#c24s<5al&F#=WhF=8B5qSSqjP!ErJ26APeaWxC6k4D66NgC_`U)o0CHbIj=GK ze}d_QzM6;fm71S{%n;t6DdlF4XzqM(hI2!Ar?W*RrUhByJL4XRsZ)%Yc7Rb!RV$h= zXmpdGXWteX66+|{Wkd(hWoBOUR`&Y?1!69XdG&r&hjrN_~!{Z&|O zgQlx|y_#duPo)k@ZyjW65RKu%Y|92o^$oiF-& z3xDwj{7D>j6Y}?F1Z&rq4`wd4j+K}M@LJ}VRtS|-G7I&Z6_wr*nI$bnTveT&eeuxt z;dp)+i=b0$5%+JimsX#Z7Z#{)VBR&kQc)J6O#|)abG9U6AXDlhu&c5wwHg8mB1;fB zzMvk@>_4SGhJkDeD|C1ZIL~fUm`kjSfq+3k#n=JPvoM@nP3+h|93!kuZdxT&%BvKy zc`!YVkfj#VGXi#EXn&l0CGFi`kD~+Q=o>3KTPyy+il3f>28NRuHZTzE#wyD|xH3M2 zVVQQl{n_E<<$?#inCX)?|5S)e(qMpw+=oj(L#b#CjxdhrB!ix94HrDXNv|Dz%voO|oys^^YJ79n{K7{$5yOf~U6gBLq1){? zuVbjs;pH8LkM7?#(emt~>$6fTy2tlTr%G!%ji<9vE%^-4DHGK(nCd9<)Za9Gb4eOn z#B&&zGgFgz5^C}6(aCuB;COVRuw9f@{zFkwN0OF0T5wy~m&BLDU*t-0OZnqZ+7Wc$ zxhb`JCS?wTle(>rGe*9F-J+wbFCKY%Ao>~OT4U*&TtK-tO#_c-j1|tVa}$0OLgDb2 z`EW8maVSrU*?w=U7y&?_AW-L;gTY)+#W4Z1og~{u%Z@0WEPgQzAfNo3z46dfCwYef zzK%D*wdptu$Y3SSS(~OBEB9-nJdXSy>iCfw4eV1o=@h7Pyj`1^)8&lE&f$ujDyp z#k}(~??;YL#v}x}2Ag{Y%1`QPZ1Kb>RX3VwiiXXTyYL*V%z0POrjtB8UufZ#H0Lql zlb$cNkliitQEA<)yY#lX*B#>t2T|t8U}9tg2Kurhghs=AUqa7xD(&X>18W(bcAvY}Dc<4niYqB}C1r!;w$K5#GH#n ztGjdmQe00+AdO_|H@eqn^w1$wgHyG5=!sL=#V6i2dTjV5K*UcS#bxqW#bfi=ZTDLY zR`KI&1xZeS+2A*=iY%g3J`z~uBG)U*g)_M^!><9uID@4@h35GTU39LheR!Z2UwLpa z{_0D+;>q2E3^!*B7}9B?xSO-per_r=zh&YoIDVvADe*k#US(*Rhw{92uk9TbS*9b{ zZ+ftR#f*GfxLNWF3&KOic5-Mc?t9`em3SHO?7nx{PK4effH2c63aZ&sT;klp`7}Z) z&dnJWc~{)`{yWo7PbTUGIoRbO$Jb(WFYK!9z4oD zyQoTQk5~AH21Hd(3wg-=0HDXk8VZjUUPE1HHuoMH0S{#i;-~~Ge4KVJkGZfmy>`qL z>copV7Q665b+B)j1NH%;$h_DSR|c9d6Q23d>!lY;`KlwbWqsQ=0(S=7`{qmwUud@UUY!V+|SduuEY^y`uGD@Rc z92^7dH1j5nWJ7~Zg|R(pG&kbDr-$S5=f;y<`B5ik#WThg1~DqxXNFH&&$!yFiZ^&2^uai~*b|x{2 zOQZLhgOeEOCzA*5y+Tm|8>Sbu7aL(gU*|nOR(P*E8gGI3&Id+h?_2{PCPP_}zLEt- z1+GgMDaoxN1PCSL680*aX~0NRDRb4TGXJy;rdVJ=a{qeak9f-C;TR!!cz(*6Db1keFV__ zw2sDFj3JdntB6&;4t_q)5(TbO?>LL}7RyW0!f{TcfOt>`2EAa~6;D3X&p1Zhe80Up1G#50$T+lJfz~0=y(}oH3ic@7cDQh-X0$t?< zhK}0GI5yCX9ea-@%OvyZ>3{)#VDfE*NDoEsNo%_r*tu4 z$OV2is+h1(rPmdA-+w%I?>T{9mxl@-;_HPxRT?4U1NM~>>oejkW&=Px&J>h2nLyi5 zyvA6l>KSJyzxt5X zk6n9DQr~e;JAo&e27eaxb&Ib^x5BC%3%17h`h0|QGN6j9JGmp3ie;n%wy^DzbD8zx z>gJA?H~j>*JjkU@l>!QV!Njur7lE6J!z|vn=lQ94`01h8xo3z$!KTmpP*i-K{G3u; zfHY+BN{2Wf8giW!)VK(~UDMdALf=^P`Yz!hyE|Xz*u-jBS z1Mm4Ep29z6#;dwWrCxZ)1|idF%eR&!Qeq%2cq^3+>2XFUw79g2+)uvZD@98B(T^Thlj1?yIZ3T53VPn)MAh85&H#w^t>1+;FK7 zn8`80?$m)LmA@(KswQJM)oG_jJ7d?rVa}OhY{QQ<#Ktj*>aWy?N?c3!cS5H35`PpF|NF2eODkUQ zi5cgSSxdo#-~>WOFyBdNCdB?p<5Y&T@%XbtbRCSwb9)CF7Z%gPGZb1O?UKj&uAoEFC7ICm^X7u^Mij*iA>zPOu}#VPw9<3V#* zZz^X!p8lHPRe9;s9+DqYAWOpXiAy`+bfQvd#=d={arM@9v0}Z^1aF)9MLug({>e{;r|jm0i(ns2RC$Q!W2f*Gvv$o5 z*Q`d`z!HXY_KPHwDo14v{#EmXts=(X#R|t6^QGLF zq|u1{%2+2wjX}Rmw`L znImYyII^qrp&f&HlyStW7(bjRKgm<*`}8|ZW53VRYrytXN2g-V>WFzO{!V`=T^MEF>H4aGx6c6d7WY78}pvckXTkyFu4IxG9SViiCA35f@S zr=iAbfN}Lzm&KMXt7G-bT5P>yRaP8C1R$~|e5ATY1-?lk!yLEG{Tw(QWI(Yn;<>(AsXCPbu zS^1Ybg^w%|z|z)J4wQ#v6}!!u1cb*M>e3sf+^BT4BQk)OPJmekYgS!(ofzc@*y82H zm;2-DEo=AW(!7bAyBYyvU$m2PBpb9Pi%?v?M z@;ONCKQtLT4vw*e1qF=&Rl=mO%{l18ALse21PsN~fh#!cNgg}iqKnxHwmv!;W6(ib zb*7)YJ;xAh91UR6pB$;j5UZLGoNB}ni`WgY2ikM{1{e=>AchgtJMX+0*l5Z4kBXpx zLz_qgeUX3`YOiJ4#$EENB zu#`Z@dCDais-QYBi2R9dE>4FaW^0Cf8Wk>L+QTT==bk>A%IWHBHo!c5AIxP;nTsnR zsRVH0UU}yAn-vrzGf5t4>AMAj-E%v3X*}(YK~}0|Ts^#}ds~kkUKMnV-6}Z0d8-AS zWiJ1+$7JuSwW{|?WxNm1(>;$K2S#@WaHSr*FF^=gVYdZ&gl}s6I(3CJbr{x2ems15 zECvV1;*u>ZW7SGzl5+678cm(Zmt~a74*cFg@p>(=&A+Pz7_uCp$t`~F`OcBpH84q; z!$*2bz(FsRvX|%LlDxzCFaVrk&qeWw+8CAFirB?cEo;_v(xB@m4W6-JtDfW4$X6QUVj~ZOkkaqbzlOY@Jmz&(a`|Y{{3&^aKggaQ+Wq@Z z#)MQqMmq!p5AZ-ec0PM7o_%hB{bS`j>IixmdRMxI4tft=m@+u8zr8LPoew>( zCVbhDg!4_xJz2OY9?w}slNkr~3HKwT3q|V5T&0-u1(ggzFM#M6#VOJq5b4xTr%iXk zXzn1`B?q>?p#>pdbi;g(ahj!-=;Mrl(CTIAWZ<-$q@H3QCa-NR@^wEzG>+-+%9nic z4GC4DR7XFmLXnm!)&P0@@#o{dM+Rcwk)c?zat(TD1f@jfMT@q>0b_8jc@)&&9EI>qhWVg`1b6 z{Hr|jsZwV7g*W$)#U@>}A>s&Kc8@%ABEI|32~6W=^iV<7S$ij2VjXPX(v84jXxBPX z)!F2bN8kV}t)vkwrMUI16T=}VD5QYeN@0Mf0tf%~4>jZW|LBqUksrJ$ZomENSjD%} zW18uRmtGiKK_%@s6Qx4iLYWnVs_>agc9Knlzx}|W7{R;NgQr({gHlAI7vl$hf~Fkx zD-jgFGU=F>lpU0mo~Vw#W<20*$LB}l-FIFX*I%_E)^A(^p8T`RC5;RXGnhx2TS6fl zf#?+ngKO;U-bF*~xqjq~d))7Eu~8a2t~aCLmM+XfqdcL!b#>TP&bXH53da33m>|;` zAOFJMcy8APap$d@Xc5n4w|vU7uP!~9=1Wxl(4;l*coi!s`ACwovhrc-D|I`SBJ!b( z*f5#Goh$vFc$;ke-S z-XJvbKZtP67l`DT3-opBEvF583*)m1K90S6{=`fiJ$MLvb22th0yQ{0)@rr7(^TSc+WI!dId{Kh3Lh>&JdhY6~lX!_7{MK$j zCGqCc%qFvd0{;^r1PxJ3&yyPqx^%r=1gIqVtOXnlQ53o_73PF3d5dc~ap*|I%JnPA`xr*k z>g@lmb-@KKp_-GCG)TeN>B89^&@!MDy8J0H#Mfxjc#^ra+-rDFX4xTjW{#x|`c}jP z5A>t3y5iEy)_}3&)JmQfD&bO=mTW2ED#LI5(L8Aca{vk}w$b?JH}|q7(n<_M21QTk z!2=hdn$;T0Ze0|29b>9j`r%3VAUz|Qh!m;Jz$IINq>E+~r_O1(&ApcRUKdJ^Rc@kx zcs9Ov&oR6%m!Qzs^QH@Jz=fn~uy{=N%??Fjt27H%mEx3I&nNKI?PX0Ks=CrBan*Xd zCN(&fpp<93U<`^E_&5oq3!dqOpPCJJ4#aEK*}Wn+K5g84I5yxhSi5djzMHLJyb+ns zBEX{%a_)cSEzp41^mx?b(B2WIlGBh|&7zrX`_n^t&ob60XSl*|7J7ws$~QX8F`f3Q z=(Yd=KmbWZK~z>+?hxQTmi~iBd*jh3p2v8Yj0-kindA0~>{3p$&{D$+y2yEETs_l3 z@VdJ(3bL|Rud9QE2Ylcm&$*epNF$<_-B|8yhOA*=_BiO5^bQ{ziG2qL;?gba;?`R) zitBIKm>YoWaW-Ukm+26cx2nAS&f*NvZ(jM6d4#X#=yIE7S%>su!Yt});L2cwCb0uE zdkh@PGRs1n?uDR!>Sa70Z&OJy-i*zfpL%K_wm&4M83&R>8}rMc znmoEV(P__ByBwAM|8yQ`4-mk`YEJPqUSi5^>uF7asVJq|xu!Y=_=c(_GQ17j!L3~MEgrUBY_1pB-5SbK}YtLU>pj=y=`V#5PM}b3( zowESQgwyJG?miK_4&bg_!RCmX-DZk7X+aV>#~UOR-uE5fFTZ4>78Sx(a)Mdpa~L8k zJ{bdMa#%{H#mi|BWkzTfu?EsccD8=!_g;bVU;)5<8ete7BqK~F=HJ&nl>E!glIqu` z%G_dTPO;MX_G7H4V&z0-@8iS@`aB9s>s}=cnT{U4q}4?EZ`_P7w%iaOj{cI&d7Nab zVsNP3F21xUuDo(1OeF{TA%koyLjHWel{i;#Mo7%e8reC_n5TpL2Z6}Fq_}|+%1257 z=;luF@Ipb9s zlzt(R{tAbMW5Kpy(?Td?so&Cwa&23zQT~uah_PfjTNrjD;L_(jD3jZjO^`#mlo-|L2?xD61eJn(oXiP&(5oP(?Y?D6?sE~DrhJ|H5d2OBashZ?>||p6r^4YlrUT&L%V9Y zd35~K>l^(3nZIFK`QIReIey9;$Ry`<#W)&0ncEm|PRK4Z@?eLP<);_%h2iY4eHKNEyKJc`=`zA6n>`04{x8j@LuhO6_)j5`P0yDLR8P$MPvvRZD@So~X_X zPZYi5z4rU<&t59SzC&CNelvMEvGQCUg$%;yr4jQ|>AX45=DYec@AiJ!NG&>l0T1(b zu6Vo@9WAW*RyCZUq>4mlL#lfIQfa(7&$4V&r=r0sy+t`MG%U=!;e6m!QYwG*%dH!Q zlQkF4hdiE}0R^$D0V_6CwbYl)I5Q`iM(bLI&h6GC4_;Qcs$+Sv09Z)j6d8!4xLW6Ll;A1&rE)8kSs*CcdJoH@JOWcgXdHFuKTjzOfy>|Nds+OXLUP1Sb!>N^}7ag)2 zK=wk&EPMR`;^|c?&^&8ZMiSqmKaVd;ZQ+KvRG1`w6=1FR3r>^?|8ngXlji4k3^rg& zKD;SEouTX&KJ|v2Rh5ay0)n4SqLK$n-o0LUnisF&k0~p2HlCCy$DOHgM5zREC^6nB z`D%UmH6Mg6RRzZuYT(9Mj+wNGm4(tQG)AR|&h+8L23&HMXYx!k4C#wa;o<@$=iXXM z0Za<@9MSoSRTjU03UY;<>YO;966C?cebqCsUmVI8xQ`wx@7fs9VDefX%Y^d9_VX8~ z^yb|uG^jhwFZ3!rhSaU(KWPyY>q&Sk8KOiv*T2deo=lRjr@my1W zBU3QY?$F-mNdyP{Xh@wMi!;=jUQ$wLC=ciX&Eul6hFWI#z;`LD*|!?dV4 zWaT2aXvf&nnrE1o%1uR&%#{X^@A9jzeYd*iOVw$9!)L8fMNb~}o|t6K>l?OO9Fx^z z)ixn)z5co!WQGzfESbCHrDB%ED4B!%Ri2EJjDMCaCAMwPs<_ps+8)iHo}MPxmf`#- zTluUMQj4E>UL`)C(i?hG@FNeIKWjO0G~e)6GJrgGZdpotlYf%d(7GudZrE%%K zH=A$HM#EX}%SZ}BOCD1SQYO8%K#%CiF7rp;@p*fkvwfqzEGn5RDamy$CTzXDXz{bS zD+DSayaNWxWN8q#dLvpmwc~LvI2pf+mpo;e6u{=c(;lZi{l#)#W!a;MS)TLdpBPG# z)~6TB)N9N60$!P7CRQLzjmGtB{D3L&ktFA(vRY!O9Qbf590{ktH9;_QB%xqw9Mes8 zwrsV3$T(iVC@vq%7GidH@ziUR_tV)OSNu)B?05Z|ITLu}rQw2smq3vx3!-JDzZ8k* zpPysgw-)Ft;4cS4Bs==gk-|!oqvxKjZNr(ky7aPD`sZYAGD z{hnPs=F1zEBC7INF>-aENUv*199pF(E(USQb!5zU3#)vfAXULr1?==PZPEN9Tui3` zL;9Zce#(vsQ8s+qk`RpnHrRq|bM^Spf5S1D7zoqEFiypZqb(RkHW zmC|cG^1ahBEt%&#`OGUlCvs5<^LeUHynWhv6}R=u0ukP*NRU=&Y}ZYt@o5yl|6<&# z^h$mf_`kaUdL1nni7dLr+;NURN&Vpy=r>OBV0ttsf&y=)cT>-%2K70F@~MT0>M?bf z`Uhu){)+Sn=l5C|aGud@0FbGo`%0mlO*YC?^X}RC3N38RTlIlf(tc(^&zJ9JK6zfs z(*`RSyqLP#Q%KM3osLN>&Fc1xj_o&$n+0Wt`~abqx6}cCosT3Ae((jMBEsh{ctDbc zD_(f_w5uc#25^>>#4&l7A4ZCc@U#|lS{O&5@~FN-fm)(`Rb7;Y%hBwmGB?wyq^inG znp(sav&a~ko9bQAFAFD{N*kR;+0f0v>p7*Jj8?Nb&M$ME22R^$D$dL=SS8sih9rN! z!du8o8A$H6@8trS=2<)pGG8Vl9z{SFx)rRrtT0U5Ld6^4YdIyqBrEF3M6? zu6dyxfP>1^YiKC4q^z~@;daiP<^94(@&!-j8D9aH9BXA7J`qRIDU&qBw$)IP7h7?N zAeeqFy~a4V%oHX}3ztQ{FeW#d$ti zuu9kbEd+U>%431bZ~E=x=_e*PyeCe{N9K!vWuPz5p&_dRUJ|P+&+?c5ypcvgbL`Aj`kc-QwUe0--m_x^l11LKITNxu{KHIm{;G9S z-K>ra&lk{Nxc8#7EDVLINIc){hM|i<`2E}qYHD|U;lF-9cDleEQ+j7mwoWOmQMtLs z#jMj0DQq|Cv^C?1_$++Z2vHGddOUmni7&;UfArp9a~KqVGxk65wYcj`+cCWR<12sg z)i~;Vb5j7M>%9iXK@!m%%dKKl4r~CjRUF(45g#uWa@mb z#T4W5?T>yc9zN_&?#1ww^W_n@aS_KRd}Zrp4mu0%iqC!G z(Wuu(;#+_4nK)!QptzjEZMU9^%<)oArO5xMOX+!FD_f0Xr6QPN8o3qnp0C{!exkta3}K55zrx__=thUzNnh%B-I?gB;0Q$zR;H zJf@iNkUS%ADZivSdU$($=SxrIo>aj`s4j#kUv|vyC(W-%KXE#y`{TinJrqZ6`6|=g zE4;7lOM^Ks^qBQm6Xy8_C@cqM%C(pbC!W41?)r>;PjR@n)=c3e^PgqR`d04vKH1{? z)DKi@wT{Vn^i!XWd!HT5cn!;RTA7hXu%U2W;$fOuVyWE4GI@l(D<==f{hxU#21%1m zIp9;@A^BJQgr$I4J`ha*|5o0ztVp5@p`PMEpE2xX5Qr-Xd-5(q{6=cs%jB zPsNuWJlH~GA|CqGXW|joaU0+BNPOd~JJ~Fpf|;2>f1z{1(mWQPI^P&VySY$C)sX6J z<%--!9FK4R>1Sj6ATeMP4Ik#HgA;lMn$&SF0nq@{N{2X>7}7JZ@>lYhM<;2RHrORU zwXmC=Mb;84`L4vT-t%a>+Ouf!m^`*UKJ&Z(A^x}j`2WO5AKsS+f5T-Y;5VHb4f(C5 zhdrJi9Mti$!T0!Vg5uGu7D60kZZF5;#J+>ERl#FDh8m0UP1pP5xd(Sd{rc~TcW$h+ zhs{*1yX>-<9UqH5hmXak3oedL8`s77u_H0sy(TVUp|FX)Psje*+hYIWh&wKwi;1BV z?0Vi4&pvf99)I+KXuSKnSa_+4U4%x@=3hu#%Sz)^vO8Yb7|c1wyRi2hK1-@dj8n9C*lB% zb;a5(v3f&KtlNBHTu$LzXLJnjjPGunj;(iWiOHwG8;?A(KWe+Lh#$CgLtJ+g-`BwG z>57v(AB(5P`{LFcua8ZuTp3qpq*~w`;&uA5mFd^@z?VrMCe3_UMsPFbIk^8&tYs0% zjt=I@XKSqyyPteIj!dtNx7~U@+ta|VEQB_^|Jiu%)L2}&`Ks6mhCS;y$7Q#yWYJY{ zp;CYF-s5q>wO7QNiM{doBM-;mO*h4lu~PjtZ`&L_Ed1KB2EN+AH@2Oah>NbdHLhZv ztW!Imj=|d1>>@uA7hba>CI^S(c)?LmzSBLgRADeckQqu@ULF{|^inNaZvsA!Fcd~))u?vs^~fTTzvP*2V>}&tK-M6WwF0I zHb$Q|9eQwN_cQV2a6PtOdsAEi-_^mXw^iN?vhm7bNpjhp*!9R$F?q#}aT(XEu2>zT`;W))6|M`$ zC^s8=J+pE2smEeJa&s+ww`rBDi}%I&k^S+^vHrO5;_G4!^0|hE`mVh}UB~yDgYo1; z2c!FVKOeexi1>*QgH0V@i=gBXFUBFy71a7W7D0t#oAuI{#GyxGW*KVJA3S$yp#L| z0If+mIYa|pH3T*tH){ZcF`F*0WMSXK=%phQE906wu8B?P7#nC~2lvIZ1E=DGOD+SO zj_BLCHX4W6-)&|vjt)-6RX5)nn~>dENa%m=nb_Yy5trV4LtM6QWsHpvM*TQjbD#${ zU$`+ECr9JtjYK~Z(G&Q&M;*1v0K>>V6OR&I_+S>J9d29Ax!DUAPh7j2H(=y;qQ z?~hn_Ra`cCFm{gj#@1^ti4Ewa>HbqOF^#?(xGmnp+EHs()??}z_xex7_T7)gqtC90 zjW>hiC2P=;XaI~C>jC-c^$5zPx+}Ye{e<-mWz|uej)6nRVikG<%YmXSW5f%^WA6+ZKDk?1~K+vBX7R)cUA122aJn_;4JD_Umun8XLQ)FW|q!PdyR) zY53f9<4v)twzuZ7DL@n@uKLYjI{vtH zmVR?~AfEm1iMaIp?hFJQz2l2qv?eX?4C*xbY*T?&>pN)fu#^c(nFNvW&PsgcAR{O1=h^L?0 z7IRy!iW{!HGFI>nsxB7)?6n*w(lt-nDf@3?BMi{K>~3qs2TP-}tLf z#rRcs#D<|K;)`EC5jVZ(!g&0T{xZHf*o=#=*c8J%w#AO^hofWbHF5o>@woeUz7%VJ zRaxN z%QsTFqlAw<@zMC`U59BUY>P)ubj7U*OxM5@@$tXQBY*{@&-~ z(D-z$--;4nGZ5c?W_7&h_O2M%(;t^#e>vaW6Gz!DsHbBhc0B%UjBdU-ZUVzKtb98| zOQ}m7VY2+E9-@Nr`h12o5>PODVs%vF^uaUsR2=W!8aH2mfj-EXeEu8piBCVoS}J?v zQ5GJ(@Wz|t!rD;W^VyHa1G@%e@W7+-^?Q!T9Y1($9RK#V=zSMP)@nB^Wy^_&{xm-O zwc{~x{E>KkY<;}_+KZ!h>^t$%PkbeY@Zvo5*LTMu6wTHZ2jXjg^mJVF{;jd?FFqFc z9-fNztZ~#lxH}%+_H6WAbQv-^6W{pHUyttZdsl28`cC}6e{gpUPItzImv4;=sUTb` zqqR=rtH&uZE(oVV3Eb)tj3P%D?-)G4<%9(YX4?xZ&c}DC15l!jHwrzPJ|ydV4%{ ztRrr_{>tbZe=a`txlgk#Nk{B|@UD31$cnh*4)(MB?XSi9_uUaAU%V^6yz@ZxY`id5 zOdX9!zx7Ovt+^m>xcS1^_WK`;<6GYu*Y+KVKmW5oV>kJTzALVYtJl}#-Y2Kyo$uHX z{TRC!-+X0s3?7W#hh}2q>ap1N$b&Jt;WG3fjmAFZrg(T1oAb$Qrl*HQd8Ar}H$W9T zrGtv(z{5MDgGR>HYzQo`pM2)y@t0pdh#~(>JbJ7*Zn@=(=ox-GKKt>{#(~MHc=j9j z#xnyOSRivMKK8%-PCVVaGKL=coA~;{)$zC9etFCu`bzu-Ub_<~_r_zpCgalEu8+>W z_r#z6r!U6f)~n;Pj{Wh;|L>D=yg3mMBD-_bhvM$L_Qv{aZbUEi;ej$^4S3(pv6Z{? zi^a>yuZGYd&wo0$ zv8nR$-S@{gAFRb~-@iV-_J96Pd~>u9qw^c_Rd%Jg{av@m3NZZqC%+O$F?b$-Zg2En z{XKC}JR5)dfBbPgw}!^arm6VyfBN%yZe}Q+eE0#3&XaNfJv6%4UK+O{iwAe_;r!;f zadt-x&0ZE4vgWUSnJUEH|k0_*|Sx}$*gq^4y6i06}^D3OFQ z|5iGZGJ~PGKN-6o*dJ@&c~e~6SGV5*IzjpqXRqRp+j?V z+ihE8=-Z!NtI-VA`e#2HV_*GB9D$%6pE(fMec(g!OF#SH#hvWYR%2(Wt{O^=&0afU{vF3>;?BSS zlkrXz@%Q}j_s8uw{Am2_551k%2%dtzjj^^?k4HcINNoM!{}BJ;mwqB{+~_L6MNwA5 za{AGnzY(D_G;6dbH4;?b2D{b9^~z%9)#rxd{<{X_hyU5H$8UV(XJg~GM`9ljcYo*M zn7j6;;zPgi!FcZtoADU1u`qi`t>)JQ-yPe3BrbT*-;MX)dJTr=_s2W0dQbe!&-_qq zS*iD7eXQIt8_(VIaCG1KGx4uJ^uc&Hn^2#4=YeI|6IKPwu`_;zFWoKjC0Y4Wq9=X^U-zt55|wb z^X9njj_-|k-1H7``9NI0qKUU*RjgUZ3fzx;C+b_?7a#e^FUAjDw;_g~zAK)mb$rbQ zmq-8X(bzfI5vz;L>$V#9Nf#a{L@J4i)6e#MW)ul>V+ z6hCPye5wSg=Z#QT$KF~pSb(UxZwRi6TkkOABnfk9Ek0E`{TsnXXEJb zs_@=T@%KLX%kds~w(pK#h!6kR)zN(RDBGYkSoX#M(*SpTkn694EY z;REpKA~gCG1rti>yL$3OU2@efw&q#1>?X*eKz-~Qw`V*NYbPUBM@ zK)_>O%b^R=4Q=<`B#2@&@UylFv z|Nam0LswoN*RSo2iCuTc)6I9r6&GxdcdZ$XJv$zWXFA^&H{go<1}($KKlvZy|N1Xq zkAvTOBKBd7&2&ScE@E7lC+Qy4hJ^#t81U;g8Ngd5D?VLx!Mw?=H7c$-D*W!b)v@|Q ztXuoAo0BoYK2tj9gVl>y(5*0mqG@0(xF45O=X+MIq0+-}g6>X@)YuTe_V0fq8lU{n z@t5D;2mRAAGBuS2?>=TZ^&Zx!kE~=1j#BXzP*jzRDHMaVlwdc8Q$04(E#lsYy^LsT zusqU-8M{@uTcoA-V${_|hm$7a;r zn}AnRBETO3v(bzJIJN)m&a(n16D7Ix`j<3ep5zE|NQ0u6(7bGq6 z73JHj$XpG6nw`ebV@nc4@5WW!bA*mwJ~k!2Xm!fx3ep>%?xFHGRySR5npo_kH;!_n zo7k{=6{|vnp_`%ByQkpGHSzQR_Fu=v_x_jo^ao&)t6!zx{iEMz`~J zyoiG_Nq0<*EkI_PLvf06lBfd$<6MyasPHy zY^+G?^+tOCk%C~4TX3MfCy1NwAbOWpZD5-uytH(UtXsV~R`$|R9Pf+^R?^r7t7g56 zim(Xe8urwiodO->Vu)(MPE7YXvS>R|{G`^1&Mx z@>3$kmNwAew{CN+N}i#d#-(dbW~HlZn*3AQ)0Nhkao7aAvaDN!jKN39=v?o{xDeyL z!9J*)dP$G2Cx$%5G#jNGy6}R|!aVAjz8>~(qi&sb4^Rv!v^#e%LH;N460<)5-=B&j zv6C&rzVeCRj^F;op%{F^ad|UrDv!L=7#ya1+ai+NEvAP1%4sCSOKumIMV((h-+!ds zpP2Ds4`A2P$!5P>po{vg7bB%X57UYi%5HcHeu2g*wxbdU!#FbE@7{OcRP(HoN>XXGjb&Rv zBq7l0bk@pBLKdAgi=?x%nhuyS#W7&;AkQ`!jBPAzd5|q@ zvgWx|s(E_zc!&P|_W8c|o@7fZNu_#2ao)T4`|dZM^FMp=S$FO1=M2J|6== z@nf;k!n|rIKJ@O#;_{#R-(unZ_r$$de|P+czx}~F;TzW8{2H;TmMBpUYs zZa|U0;Jz3c|3ZA|v#*MueA6pqBbAYn(a~bY$~u4IccB(VZBs2=u8}rKmXA0$APP_ir2mI4e{FV9f%M7 z_WR<grDH-#`uA2_Q&=X ziwHO06YqRaJ1*-!9AoXvc}^?FPCgO${o(uL0A}s)dgHgm>)-t8_}H(1Fs|D2XdL?1 zH^(bbJWjoCUwr&eZj2AlTpI@;c_KFNMaZ&T((H*@1o?bC^p~HFCu!tb!zi?kJ+Wo( zj`+l9?}(p#1HK&-r)f+Zart*%9=H6-hvLR#*TidXcw@Y57fJ+;0BQ;Opd2p{s5GI2 zv+@QL0MA0mWy9?=r{lq|-W2cMb|&^-dqceb4X=!^B6~jcUi@`VPsTOh|9uEihQ=;C z5%2r$8{<`1j4_0ZvMC+TJrTEk^u`!{^~>V=*V0@6p;o-_#&^f*-D7dzj+e(z@7x@F zUa>#Mzxs)I&mSL;?xPF|4(y>ZoQQG!ygIDSb@29^$KlB|~Ke2i!=TgaG=N!^n`ffs9AWGHH;L{*=(A@f4)6sY4 z@%a45|1b`{;_A5JwQr0YeqejN=iTp)L)*vWk-aaAx9q?-^IP`DCn(nkhYrW&eFvg* z(KS@_e4IIX8pVK4Z(|mpLVa`?^85aMamyz@8XtbR8~3$0&}i+Az6ZV*r^k!p-e!%n z=~KruHxs9i#{`Xi13YFo;OoLs{MC^esCFn_5R~lkLdl7zJ-=j=nuZ8&n^`y&U%Bc1 zbnLH-mtA*5y!r<(j(2?OJu&}KD;}EL9Y1`<#jz6wX>k6=c-IH|V#gdq!p$p_X6Nx& z9L0L2q2UaMfqpEG-%fjZ(?>qTQ0U`v=+t<;>_@JR4YT*has0;?C};yb7fzj`)57G1 z@yA$HeLgN?JCWm3fd7dIW8jEg#xDB%&W+BO)c@B54R zv-_@!AH0U;ykr+T>p6>_hV$GjPY9j(?mBcW_kHh;sXeoC@2>svvpcuOi3wLTG6`mO zjCE*-=Hk{5zcW5~TQlCg6&Hll`{LW*gufw56c8b2^sZ*K2%cylXB^<>WltbCxB zE`RD?J_>3UsD7O2Hg4URD@rd6?~a#Wb5*?jic1*RJb;G0GcLP!Z*1Ly=Dh6^#w{<6 zEv!k?JpFLI=jQ47$-i|&Y-EMy%lFerZ5mFi(#Y=1qcyl8F28t3?78IPxOn%)v3m~& z_Ju96|I)pfLuGdxEpIEBD9cmt7O> zBag=9j_cybe(aSXR!=9F4~h&&SJN`=+@1lI?NvUT|P_>Erj^7ZZD5 z6K{R}b+LV98xHvkG1cB3m&3Sw!E4W+9kF-+D`VHf$vC_)6qjCp8GaNJvh=gUKvnN| zxWJs`mU`T{V;2oAy|?CY?7M7#?7!x^7&`G-j5hYg|NJ9wjGe6iG_?B~hBR7nV(LsB zJvIN8zc5ABv;>yW)oL{;t?Jh~wmC_zBGp#=gt1jeXF~j-B-W z_FWtMQ2_AIjBO0vz5Y5JJn7lkI1O#Plp%%9ap`X8?$S$GF@A4ca|-Z6lkfT0M={%pKDxsp7^LEXrpxY$OyEvfd+d@<@usZu6&Lj;;?Q_sy!Op+ z#W8Xux`Vso%FFh|G>-6x&YX<)@U`(>H{hI!_SZi*9kYX5S<~*~xZ=udajJSWCI(*? zKl+0=Fzky{^(EJV8+12yJPsX%?ykRqXKjyNdoGH-dpG0Q`9Pf9d`-OZEp&)l8_5G! zx|xx`7z{aKF&o%%aa?nyzHJeQj!wn?Z~w0Nu2<~961O3)c=^@%(H)L6qot z`HI-G6RYRKEVEcgprK3R$}6vr&Ep5~nb;oR^8;^*D^RSPTldG6J4aBePsQUnd2iqM z?eVHtToSvs?u<(=-yPF*9uG}#j&J+xZ;bsLHpWhdhUaJ)_w2tcF5R~qe%u*5_g)eE zcevOo>%Ni4?|8+fv3n;L8=z=yxg>_L^jx%a5467g0s7-LM1eFIL_*PV^Tu0cih~uZ&Hj2jWzBPyE0Sz9}xoV%FSo zMO?A11vaB`;ONQNwg1|9^;MU}?(N8-eLG?Z#eCDndy!k)W9#m#Y1pC5iQ#zDTizVs zvKvb!i&pQxcpvh8bM(WrJN6;tF4`75_w0>5dv~$c=|!>Q(mk=Awn3}Be`%bDAI!J; zJs-*T-&fh@Y}~dL3nt1QRLm+Xk`J1>fh!E4)=&9U>6-N>$u@yaW&WP*!rBGxXRHOP>9yb@;8;8a}HstCjndJQ}WgaUYmC8j>haL7Pp;o#r{j;iYu;+ z-mxcQa^z+4BR}x1_?cq;#+B!?)?A#PITnWxEYMkG)M_7cXg8BIScH0@HG&`JzSznB z_KRO0nqABn*cuDSH$*o6<>HhfukU%Zp!yJ8n@ z!DeV`nB!e07xi!05tm-Ji^(nu8kAP@>+Di~@bNnIycgc=yLY7blo8+rV$&@BXdtp^>a;?I|~a1;4)$NAmo1e4n+Rm&$T3_i}o)3T~CU z%tY*C2>0&KyeB?+JDT&%d|dfcZ;KzlYI_kM^@VIyzdjAjmHkoL~F+@;&1-+kHnRO(2R^yh-5KuPx}c^V-bHo3{_{< zT%K>bs@_eZDvTD31r1P+W&AZuK?i4#$0z>m<8kLhQ;fK5i|_cEpNzk@RX*h7urQsV z{z{fSonF6zhn8OT?0esswWsD5%p3|WudONdo80v5Z#jo&>pWDC#L}k4XXfCS<9&a2 zONPza3OA@g`lhBRhHHiC?Eb5a{IW8Tb0VGOv7&w+7u_{q?N*OB<`j1UcHnQ@+{ zKZeILE=YZxXQx0}Uh49M)$^S=StctQ#Xx7(>R3NMBR$5;oqFBFEZxDfHbh*gdF<$I zoC`bnbc`@;)TD8nhe?}Y(4oiX6m*mEkaD40oEZx?;E@fON|o>8IPcYWKtW~woUa~R zX7HPQWqnq(BMnI(%W>fc!pI%~0y@h@xy6a{82_g;hvP3JeT$9M941+Bt5g$8Akm1=sj3@S9#GCn|)gvY=Qc!(Ytz5vE$OSwbI%%-?` zUB{t8p9{Wt4{!}rcyShRz-?$4e@5*6PS}ucq@f=8b{6T$cSERs&2kjsX`K|l;xHH(L#X7-S3mwd`j4TBh2tFM$(y#~Up_X8J0B`NFUcy2 zFJtX+u5Hf@u=;5I#idE3H_I?@XO2PIO+yTub6oM1j8f496`=)n`7=wLAMl~Ti)CKi z2Sc#(8lO|>U2x28DSkST^ZWeCGwFU`VbE6@fJvWe14o$v0VUabsUOkb!ZfEs0PpIVKt$As>al#6~$+ zu#u2BZr-djXuDYvQn^n$V(%Q&6Avu)W&V<;@+)&%*T4K~o-;pOo$kK$hA zn#cG`cuGOa%RNygt~E>NC;2L&l<8C&$S(!Kpa}Kpbf@Bg^dXb{%Yat)I!+0F0ffq? zB6A;Xz@^C;uknzw-c+u1@x?K&O$8f+$VLKpkQ~om?>LoSDzpNnD!g^1bcPWAksQO{ zha*WhFhe#=a@Yl!pr9P9*9}u160md>#o4q=gRhk&eQ4k960u)5O`yk zSS^~alLvi}N(IkWY)Ov_3?HBOS6eo#E+yTNE1I>Wn-)G03wW~=ZWghu&_T!&XD!P{ zc@_JX&$drm%iy;h5UViO56Y3TznTbZot&N0;;hVm8b+^>4=)(GMTtQs6+-2>G$MW~ z;caOOKTe0)#PR$oI99^>PuVd`0)Thy;8wilY-urJ`W)W|e;$ChP?Bl$XrzvPk^dYiBnxld8fly8$pCkK-G!%kAu)!3Lq}5>Cl_% z{pDM)<-a_&ey~5+Oe&eSOd?a4O=U@rOV!A8mEh@O)y$y+dUaWFd9VPGm`O|6@?c45 zukXgVrgT;q}Y9)I~R@69@?wyPC3^Judq+ZfR$nBC^ApAL$mmhmpuTg#Rb2@GzFsLsbsyH;Zna#bR|3$9@Y6Q z7W>L6hqLYMb=fy0i-8Awj3#JRsm~`aYYK}OkXZ>W>mLkIo|<6c%vG&GJvC}AP|%!) zf&mOcsaQ2;IOjDLFTH@*uEkplJr%mjed&fj089*<5R}F@!;6Taqf}aEYm1u-Q>`?) zUH-h4z(d*cf>X^TZYfI^Ogc(Cw}rN_xm|jNLRq}L%+COha)#6ppr$4j4yGk$>6UfA zSH!&BC58e((-kcQv<+Zdnwo;S|m7*754MKb)G7MX+j(dCFN3on!ov- z%9IF!h%{GyQaCO9y>#4b3epMV8iUS;%TxqOUEVxWQH8A<7Nn}tZ>lUvJ*Cjx2-OId zslwGs(jWU?Msb1K4FD;u2-c#Ksq(h8>n8^0L#2sMFu*zRtHZge(3fU0p%?nH3sq*9^nrDc6NsqG*m<7{6^vJUy$Ei4EDeSW z7OLa@;8nL>LcE?6WCMRGXxNd~Fo&ahLqqJR&h7ZV4ZD6)V5hZ#lopwkLU>n!DBgs}Qbzx`X2uoT8}S=EXypMq8qY zRRTvqBhn$bz)H(N!&p=J9~hXG%)g=~#!p!JMYqmkER>&wTUrbW|!_lTOR?zWIHt^{BK$zA0`khn!J{ zVTogK7Ux`8xhPW#a;{(G$Er*t_b3(a}}b)|&NAj~B1FoE2totVcB6?pIlEW7igXBj1+e!L?ATEdsffguGwkF%|ADhmtux zzupO|6n*JiCR)<2Q*bfV&}N$SGy&5x{>TQ|Oy)#kP?n{}zP@oP!dgZHDZVIuLgqI| z`KDpi(H_O9!K}sU8Roel{rg+Z7$(4LpH@zoF=KkzBh2Aa@8f}MlE$q6I_vCH_E{p) z=OWB`0z^D7KK@=z1-pW$WiRKeqh7u2%JM6pkvMtI8@#$YmpoezFW$JCcFb$?h*)7Q zQa+<#F0hPJ%XnVwr{&!8NL;lADsiYw`OOMc&MjTB99ORQ#2QM4mWoU<^J%4|x*K#b z90pcVFULy3miUq1HGS1!u(hL;a4u2G8bafRWVPUuoFOF8nWmH4a_51vU-1{40$25& ze8j##*KsPcn)VHOUB*vPKP)!G;~gfEHT6mK46AkYawr(RLN@|+4Ct)PBIk7oM~MSPovfem#EI^iZ~zu$0@715g|ve#>B37oI#c5nsFI5KD6mv#R~+_~9QS z$l6B6YY0lp8VX#7KbgY~Fm1}Y#l~{&ASY|2<)pHlNjC!oAXGpleR9sgP3}=;<<%)I=SK>q0V2E>?rF{m8>9kzbWSOC>db{|78Vt7e?()6G>(=3p zJm^&XdDayfCP=i_6o;B*zvbBSD~}67!KgxN39xmDPF18NBDKfT&LsvMbMk@92hB{k zlIzm;Nvp5y)RkSE0S=JQg^ps~JVgv0gz=5tLqUsdSg9KLi7KB{!wl+%S~^lvKr5ob=bCZ#iht8;6xcrSUDr87SZ ztXFsPsnBH{-( zl@H&5=l6x15=RLN9P%&mC_+r-X>@cpzH-Nj*munimY$fyNqCawZHD84M~EpR{`^T! z1=8}IQdJyZPtYdaK`*(roYI~+m9lpUie_NQ&)<9mMV>`YH+5M*aU!;}oWc_<<#ER0 zPklIKR))J8&}FSYiQ!sH)~&g=p>wZ|2l=TJr*glh1%P{?zkatKc!;3E6Qa&^ zOUXL!Q?x!BFQXXG<0a2TpbSMY&oT*ptg_v8HU`%^)M6kkw>f(wLF8T$y3kWa57LF~ zmXN@J{@wckLw5wn8f0ysx!FEexgTL2w+-?2`wp@G7!823EwQZXhyD8ZdcxLThqz=< zuClPCkWVK=l_yr_n485?HyRtZum%}x|IO2LvFE&L`{wxU&4-~fXi(*ei;DxJ^3Lb3 zE`~fSb^wdadzEz+$Z6Jc@@P>K+^)fLomJt_{vxY3`3WpCrd9b7v-m(Q7>QWC_=mhM z>}2^R7qMVly21q%t>NP+oaKTG8>Z(fy^7P^EVMOWEOtoq1l6IunjO=T{J9>qPS2|g zXc#Cm*L`&;2n?C7Y@cA{YU9>{c;wL&{6=ZY4iBB(Mfxl>xticPD+MZ*AW1==6F)Rg zl-bg=owSV=I|rhK@lhL7v&n8wzfS+ES}s0BiZi)PN@tO5kyZGCCUS&2^zUsgFulAmbrVu ze%W{xnQXTW{?J03SlNhm;@C;n4*aY1oCq|qeos!%$0*F$$K)S})15u-WCi82kgmxN z+jExu>@FylIh7@VfaXg0Bh__z5!r>$o&IBIPCLSq4Ow2-mk#;Le=#gl@9f_A(qDB} z3Y2-SXYRDK@C@6r&X(f3?a~M=JJRUQI2Po8Aq(!pHEOlyjvH0K#--@0Qs4xe!9C)h%CDFCev z?y2i(Jq?d4bP85%aTHGmbgDj+7m6m|7bi~5$IL`81~=l1Fo(j;#Lc^1a0+_$T!Vd?LScRPCt#pOi!vdQEYs@7H6w`)4MO6gVwR))@?Rs$RE=j z*1EYlEq2PV!Z&&1g8eEO*o@VHDck+w%&5LFEXZG_XGH)a6F-%Lo*gxbjst0Eps~yL zE)R+8g_)ARD7v&&hS%jyu%fXOukrB-obVT7Y7D_Gc>JgASH+Td)f+sxiqcsrP`zSn zqX3nzn2kM}HNzpT!^dLo*WVkb|Hns(M>8MuSe*tZP^K2}g<@9T%m+Ubv;Xmb#Ke8~ zay^YcQ}XfJNC@Z?t|BPTe^!bGL@MFkm@J!W+7OBh=ic|&8D`*N*&AvyB!yX+OBUL! zs04v++rBBjaNEHou#BA{m#T54CRQs4>xfa4kyI3A9vMz69SLFO%vTo-e&Df5V*8*p z5&M50E9U~5=oCu?4dPHfKCuuFK6aWL=uz7%OsERhDcOA18cU^iMWOgWojk$P5DIMt zk|w&8*lVm%=Q_LMK}ux+-g1_d>CBmFe4xsZr-szw1hH_jL${k^C2v# z(VmYd51x6xkG$ZnR|#-oUSSl7X=p1;>U?p`4 zlW7$DW3&N90h7im%YzKL20F@!fU9W#UnDey>7=i+T^_ZiCEltsx6T5JJIB7?w;06jWhhP?%BNmk1{{W+ zLnqpC94phnV1LYFWmq6^<{Zk?JpLOqSfMs--W-QdE?~Vw;YzFVJ3C?+ZuE4!cMhvG(J8jL~z zUP(j30e$HtUazL$%)8Oi8D^QcVrF(ejvg)i>GiI4nt@57GU;?RrL$6?l4;0wZgq6F z1bpdhVP~ZebNB+oc6~&F#@mUQh4azCS0_!u#Ne5lAvOk)M!jE0^Hx1O4+zCHi7$Z# zpd`AoT}?o}6nUu~Sd~?|_855dH#>3Q$tmJ!1+(u^p71BrVmD`yHXOy>w^!K4!gA+> zhZ8>?^Gl`Js1_nC0`R5C_4$8hDh$bd(u%V?WhnE3<&MwS?m843wr)Z3M8WLNqyjaM zFVF%*dy^tnnB>BTEb+hp_(AZSP9%)I>BBe zeYsuSuatzfN-8fl-|5E#z0DFx)6PsnlNC}_B zIV@4F7{rNOKk6e#CX%)sbuTn2e$uH}uAX#u3Y3G9lva(g&j5}PLD8(WLTP?OIa-*G z0UGtL3*OF8<3x@EWpGV~oEpSj>F|s!y4U-pWIn?i;G4kjjsGJ zw>KFlX0+a6+RF&!Qt~4IzL>17$h|qFnS!{`&HyIx9>V9;1h`P{jNXf4nHa4|4p+xZ z9k@#e3bwA8AX=uu4XrpmqcDaB{z`#L42s;aQw(M>2cm|AY~gnwE(0@$ra@-6=?JIn zMkaM@IpcN_UGKZ_l5i={`v(SMlHn+ctCm^L{pyANSj+=q`%dX}6e;J&)CjGcajdR1)Pxdi{V_3F^d4rHMaK zNV;0+z-*Z7#4j0Ayr3n+KFFLM;%dwh(qLq$KaP*Lzy#Xlc$ukI(ezqF3Yy7IOjXxX z2nOHuBao4j(_}39>HGN*c*96y_>B2xfIa)L2=>&Phudcr2G&M`7JSVpB;ug zC+(~ubDW4#rj^5k<)(_xE^r*H;y0Z*g&&l(=42qK534YEf@`6_3l}HLU*jMyew0_H zu3=_S*4qg2KJaqll-JX$6l-t zbLQuJ@%WLMXb#|C#;m(}e0i8yhUE#O;$uTOgHP1Z;6NN<-Jr)0k0Rg{W(CVs#t>|7 z*Go!TP*_t&=}?71*3$X#iDR=dIyH;KAwzc1*euGt!<}>!IE7BG5tuZvUMS!NmLo|<*(KdzrImh2`oWz% zH52n#$%{~bfzMw@w}BF=;stQhH3Os=9;RVKfqL}u(}n$#54Ch^Q&Hxq97uE3z20^q zrUGD$Y#NBuqqwcGuA5CJLotbl`$a}yh~ShmFShN_3hGh1qNrL(cO4djpFw6%RF=_lvZKJMQ|@WvMS<$gOr_VnQ_3d}9f`@&GYL=w z5N2n`xK#@Y%tl-`7E zS<7t$)9_KCu%OIhb(v-8Y4OAGogpMnk1fQ((}@~47onzFD{|{foFz7;Oga>*LOBD` zy|3Ln2@MTsk7CvxiW9><$+(FQhDMIMA;HoTCwYe zi&JTxiri8o01!I6f^&M5@DGIOna9F8FftUUY5PVeRYJK+MM3PqQ2Dl+(h?_}Wv)v8 zfuJf$G7b)4y~$~YOFGdH(F|fH$v~PpA_r)!OV(s@VHvgi*n#Li@Nf(?2QaJawd0@^ zEUO|`q<`5$cQ41{f1oA;9{?@j1rMRSd8WBhc7l;%xV~ z;@-z+a_B}2UM9B1dbfV?Q=r#4WmAY{(uM>Bdoi$OFz$c2II1RA;p5+~(*DYbkzL&J9Xc!_P~ z@Jd?qkXK%m*K&=D!UdhO{IqXican~6uD{7KkSX$5+N$XALd7X*B@ro@(1)qyFKu6A zD4HW1utG(&a3nuS8#oEw*(M6@qM;!%Ts;V$y#iG+RPtHw7lv_dpDq@t&NRaZ5({PP zN0CyyWb_HkKsSaM!b?jNPGY^Az8c5xyF2dv(pRE|K+_khVW3V@5}2GTNWN&Dry4Jj zqzxo>2?%*QCKdD4PkYQdk`fuhVU)=NBiWGv2%xeNkl@_Z82**tO`UsG@r z2^A-kR?J?j&6-=2<+oTt2g^UQPoa;zWL=(!7*azy6>0wE7>h$jv*^Sp{vm(KPTMn#Ew?#HdiE0&b=!iVyk zOL3WI&>>XR3B;0Z;WWpOo^VMVC{S#nPjv!+ucmbN3REd)7S2K>y-*U%)kI+moSxhG zp~z6PaGAbP8PtFaS>+AF;v5Q8cYwW(n_~2l2N`F_>V!gIEQm!1@&u@Q*=j=SCCE#y z@W@~(yaDep%G2P?AdNoOIk42iX=C4YkwM}cb+M$h5nwt=&vNalDSUqzzsivK++Y04 z6oIRY&|VCDl7yv^D)jGB(G;&y%yHu=4~BzUKw0V;WR&5~ChJgj0MEs&0S&C6IaZaQ zV0`@yGw}-Ts$^6T=Bl-nY8I($*x|bYIw6yD_|UP=TS3bb)mN;g(w)1!szfSu6;cj) zrm$ioUcKI?I8EF-lUDF9mdZA?Ww;fs=h8+h6w=5#PX!{CCKRJwyNzvC>{O;2EGLCx zFf%JAgbvAYDuSX#ui%?X{W{0#*^5^IQ#|z(0CI|%>B?lsR}4`jwng4Q`%~8SSul`X zvaL%zq&IPEvUcelE-OfO!X7!|;%vsLoK?(ebOdirI$dP|J#Pgn3qnasBSdKs+}$zO zusOmC%37XOia4B&6IPKXTII~q+vEm`D7EnCfEQ&kNBFzinXA?O};K*s>vl##9v7@CY4LL$(i*3fb zfiHdMpcA)Jmyju(9I`rkoJJ5QgHw#5FVJi0V4a(po5|tiHp84Q?V>g6=*iQ}6m7>7 zN1;`YH}Q!A{bh8wcHlDK#X=yjAbt=+9emZwRXyOZgaZC3}Rtt z&D6*^YTY=41#^@&1X~9GB_;pxtp|1PLvQ6+o?f?K(o5Z$OQkU>hl3>Lcx#|Ru-ef$ zaCpoM!6fZ0TqSN|TH)*s7jyy{H1+ zWAtBev!El4T%V=$JH#;FljC}}5pLmSmn2_tl*_0&>mo^EhhIIXU)a5(VPNnadmwuaCb420Z@DUJ;>6YsXe_yS9fn)SFQ<@L%J<0&~fdj+bl_fp=Z0}s_= z20LXg@gh^vHl^06skbxSz$pxY)#6Hk>0zqtojwjAB_GLn398LNqMA=F2tOsS>+eSr z52a2z>cyQ8Ovb`O3!#N|ga&bHa)Bi$2mvw0@WL$P#1ri}h1KN*3c)jkjlqXABqi@zp8BWH+zb>E{?G0+;s+5|o*OD9i_vmC%AF@Eq7V;b?q z*i0NhImX&&^BD?a0E~{GLV-GHMDl`F)oiXYsNj>t0>a6}%tLku5ISGE?>JUTO6B>A z$JSWk&RKR-F{s!i~m_{#0aiIzPBZa5->g@SE{Wpa)m zJrl={jK|62lQGVELHhah5gtOt!JgoeBeQYWgC|RGC!b5b@Z9=cW$P<^XTEZceUWJy zCmXk7T{$s26?fftGzL}NiHoI~&h6OfELe@k@nd7DP|afTY@%HCoVAG4eFO9Gt#=>C z>6{6(#287EOU$bJ;8Eh_|7uOv=aO{^-hu|S_UatH5QA~ceGVU#GCY+A>M~Z_)mp%F zl`m-~37&e^T9TRqhd91K#kWQVI%l!Egp$K}1zusUpk41sJ!AQ@{SriEO1F)#YI8nrxqp-n zagkR^hX7@J`E;I4?2}HP@$u{AgvS_>S9(jgr%e2)Lc)XBN^#E~*imXB}u`J_U?#zL3Kz9>Q`@NdFGm&=u) zmG}4vngqiHGn53J^BD&1fM2uA5FU+yPOn<09ymlmO;RG6*!f&vQ@^iZ?6I|$meWL; zVMZv287xj`CZg3~(LiCMOYE{jeQ5KY4o>7u0d<|cWK-6|Yv7+Z2WCSIKO7<+)c8~t z=uX5cj7q&^jrg^C6M0J^T;(vAL!c+uBqIF){yh&L*AEIFlCPGPt?YYKp^epBz;lzc zY^*H5I3SBuG)>uQqoErhX3r^N%^WB6gOV$klY(S&*%$7qEuVSQdj7Hli_A!+Twxs)cb;0aLfzO^OrpE{8A}T5lGzW&pw8m8rsAy6b(GBJ4{BeSVrqd14nT6 zw@QzOc%#v3PqO?-0l^UN^UPZ4YOeD7MTQjVb&@ETf0{c~dYm2BbCwu?3+$^Doun76 z508YTBQzK0r^hgZKCXROSb8W4J)ENZIH&cgk8@3MpW^tFhst8jWzkO?&r%02zS}|j zN?grHRex&<*~~lmL0$amU)PDpo;(8sV(O%~*Xcuv0+Tkg?DYT9*oiq5$1$$OGcki^ z%BUz+HUx){%`+w2Wjv%&$&R{UxVfvsx>#4M7bx*i5ETwV_>kur%64k96=O5A@!*lN zURhbnMmi|7%5n{}ioY!TdQb9PEl->koGq24frvUY&8*C60z{6riRiBwl)n6yUfA)jz+OYDN4XR z?gC5%dgRy?XN*$^&vunB&iQ1Ma#`bp*!z3^^P~7=IVrHSIo)@7&Y9)&`24COG#M`L zD!1tf&N8C#=o-xT{m4ErAC#VNT+C5h_7WTqRos{irMacS0>qu6pm>5Kqc^u5l?9v&z z`@lqe`JSU#=Pa9aMtM@$IH|f4*hz(}wS?y;U)f8w?9{8ACuSyTVGO{GwbqBV{3Fo9 zG&48*@V(IKS2{sP>(*KLEALvzU*e-Iaw|sFzOsiOEUyu9avXK4zOnhU38}C*!sUi56^)!kh*uGaP~hsuGb~GLiyv z4I)Z0Qn|5!_a7LIuRp?2Cv-L2(wAv4`oyP2;l&GV#K~=!W1bVgE=veG6Le^#6`#E2 zc+6qJ6RujQDd22q1uIR)s}!fA=*e&7)f@|s0tTAuXVGNl8pJ2=o+pHZL*@LSTv`i~ z4*8XLdCxje@>>~(vsP2>%o3-S9J*LQDsR}(irWuO#O(+1w16R{|g%U3Sf_fH0kh+qyz-b=Y-6pd3 z$kq+<>3hz^0iw7&ylwzeM_hE#$YCqG$Z)3c7rFB+&tDg(6s<-2WN~cg`<(Sk=g!&Y z4fruV>!85_@Y)P-K7PCtcRn&rTUOymxF2!WYNhbD^C-WrRI>eeK}musETd?u7)c?W z3@Aeuog9*ZSR@>-;*c6-i(a3x9hz)o`y~-O_Yv*3FfSKNQUF_?{(>^M%5JI^!lJxT z*|gZ!zccL`n8F`EFcn|8I7S&}XBM zSs$!1_~|bn$(6wS!Bs^{>sF34Qzwgm?60+y_*nwzM-2bu&kw~(y2Z`@AuvGEL|~~X z_1Jfv#lA}E?6UQ@%4lNhbzs)VwT86$+!xAh(6jIF!T=%lmBDG8~_|Zz8_NGC$5(bSS-Jv{5G?)MZ;o{Pj$DQJqCbfsgyuFNW}_ zXXv2IOsNI%=^q-1ciwcAnVirDLkCDPKrNTAA1U-qC`mseQ-K9gDbZ`Z1P*Pf&1~0Z z3rBlK&2PG6IvzMSgH-?=k!6YV+7m0!49JT-(+3Z>v5pV2Jwqq$T_~IelI~LpNW!w6 zw7o-Su`Q0}FY={p;r5!Q%&Rhs-^woKdK*`a268!at=u7_ks{BBVhYFVo9-QpIfjw@ znaQ7v!K+iyZfcK8{K|t?1c9?spcdO)clhLxKoSCZPD1dwnAn3?KTrX(a1x5XB_8xu zFr0CXX4pEUz?A*QlLw-6_+X9^=kT3@A|1x7UYhU9cY4To`_832c+7V%-{yW^=EW56Cm+AhWhq$5w3CIha`v-RmBF z^i+KL&XWvvf(O{eXjphRB_&1WfN$6Gp%ip6b^gI;PY@rAVJhgU4~;wfZWS%^ z0NKa_E-T~m{qp3el)tVI?yHZxty6u>-^-8J=g;>xi=y?=mm>K z3>WV!$Lr@MM5_a;=d3NU=!dX$Sy7&B(%OB`MBH@0av9zfBfmttaz{u_!rx+)IC(|A zFLo7vxvloaa{0CSOpaCC=gjB|T#y~T%pnDl=*YjDnJGi_jMM(nd1<0A3=H!bB%an# z4DTQu#J$JjOJ5(u;>q=ZiWKM1;X59q!tZmctym=rWheJN@=_&g^tqEg4C}?lB^wyF z#VX)2J{H8%Bpe*Tn_lA4yyjo0jY$*7XsuG+E>WU!?436VB**3%>uk>vh_i>Fry*;? zpiQ=EX6K~>Q$F=R;MD+RK%2kEczFV6qmX&4uX!q{&t1Zo_KGD1N@rg3%%6%SAQHm9 z8#jIVAdy!$BD`4%s4)v-LkMw{AMg?fEi8RlS2)R*D$DYZFdT@%vya($=nITTAmoPP zGk@^_Kb&EvC56U;zmm#(s~@X!lMI%1TIx8lqO2yZbt(dPe*Hu|&KgNWgDz>KMTOal zjxkgUl6YxF(2vZ0X$4Y5sQ?FmOQX=`a6gUa@$tCzw#TwQy5KGy=d-*-dg4H#y`_DR zt#nESPa4P!lSlLEpLwQ?T30q=dAsY0@%YsJM~XmqDWE=_SV>;XOm7c8O^rUcDn_tZ)mN|O5S}#BL<>MKTW>5!d z^#L*R&vGu7eW~1eo^wSWiD!LndDkLN)x9-6*Z9`kmB+~(Nc_?{We}sJtx|^$H#Oit z1NqJ)lZH2Lh|k@ABJMsonmn0Uc~{cZa;$1hs;zXoh+~aW!7MRcJXaqp_hs&Q_G(Ub z?ix;tB3z0Ss}=}s+lNdxu=IOxK9CcBvhlC^HtDOPGoW6gpJf<|S&eIMmtiTr`6q6C zO!am(Vr3O3eI;1bKY1s|C`Ql~qNxvyrq`rb6Y{&$PkY#jOY2=lJn$9}lS`2mhk=V4J_}eSQyM&zu2r%1O&-{o7eV0l+9=WO8vkG&&G>J$Vwj zV;i7>pwL6gI<66Oc}HxL)}+yjmTKA($MmC0tk_R%xsG@GF=acGd#mqjkuRWwEO%n2 z{?I^{qj35SZj?+Y3m?+)bEe+0&S2b2kYMGQlZM*R2N2RYLU%TTz@IWH=}P(&U*024 zzl4d}eD0K4FoP6Ig0`;YFOQqS4xctY77K(daEy|&@sa7=VtvB1eqn)vqgBo?pixet z{IIl!F?$wHJRb9Bj$t6!5Z$kQDOy}}~6;71R{{SThOg=i330e6I65;rAD0S5ilG~~A4e^CW} zkvAhFs87Erpq5+t58lZ7H7FPhd&?37{hj#Itw-XwKmH{A*^Ln{SiqOS+0-_6QjZ}Z zIKrn0HMbH;NB)JTWFJ3<){wV}rNMn-#C{4w?qFMEWzkjxM&_gDJKYHoA~`%q?$Vk9 z0k8rPK0U}Mm2qrP%+8GX?;m<3zIe}M(wj2OrGdH*RatEJ6DvVcu_~CfIhitu!zmX5 z*n6?F^HC`PQ_e}p?i4!mIKTW_;gre=b#7Mru~z%07K)@4Iy)y?K!%612Hi=7r*qb19AHShN|?{L1SLjXpDk@w;ns=_!FNFCR;n3upJwA^U_$)`SBkUhpb(^7!ZC&nT;04MCR0usr>I4bw*}+5U~6}NE(Q@yb4J*vG_84r zFVVH<1PE(flYm(<%~VFN>l@yLa$1tCYM-S)d48Vz>5Kt#m zS|2H&093Y5&@#iESS4wZX25R-u4y^WJJX6^d;3@7(UahW13er^LF~oNBWPVbm|h-& zy@$fogSfhUI(*#cWD-i(;VXzptAW}?pR=wQbN~2F2ja6gA0U_;6@ud0MuV@Nqq~~9 zR(nc90uzMG!fZdj(XIFzPWJD3$6Z83#&H}0)onAC8myXHqKFrw?@CW0qz@g(+9(n| z@DRgn{Iz5& zcj?5;r`1UeIj($GarN2hTtIKJ=o}eLiy?zxylz3#;Gl$5~oVklEu|X#9cKYb+ z(c?#EA)}N{9U3?@KR~DXgP%Mczy5(oi9d$ZG)}<%{qUIL2)W}-;10@`bfxl`O189w ztSWUP4&vh0y3$Hm^O#qtOckuWY&EBXp_aC?@Vg43otiFksINVNZ0W>tB5VK3A3PK{ zeccXQgANW#I2g5UJHc4HfSp3Iu=DJ18d;4?uEb5W_FM_p$h$Ke{(2 zPfx@Uo!$mGCU($fM~zgfkpO+k;&<-8Bwt0MJjbK07_%d3JBCXQBReE_hCRi|NSpF$IZ7Ki>=#+kU)UsguO=jYL1xuEV z@{7M6ksKaHK-Jb2>1GH-W(bGyoA06QoJ1}!vFg}eA*RF0U5sHM#z<{m;zU#UVKV8}BR z-r|KO$<~{AlVHkuL!J2A!zbc5e&e?Im;c9KL+M00C$+`6`KitAweupV&k0RI`N`R zUZ>LFJ3S`vmiI5CN{)F(WS8Te4><2%Qc`wMQI7PJ>+3NKip=$4&h0d((FIWgkk{ET zAxE-NhtHfz%@}&T_ojn!*CSK$x8HhEyzZ4-a{BqR7s7^)x<~}<42ptEXoW}$cjZ+{ zi52b4;(_Y;>f30k)0lv;p)IqG?6b2$$5`dl{_K&{v+*C^acA86`d#tEH$YogZJ`)T zRP>Ey5)*}2eU0sacoo?sWV|Mm_!R`p@74BQ%XX_W9q7$0WwT>8KRXcH`WJ!)CUTf~ zvHeES^x&lhcxV8lOB?r%cieP5zI@wM{GIRF8Lz&6LtM0XH_xf?5o^&ABY{bpdg+ij zI|Zt$l_rgkRoBUeJ+rA?g|YbJNwhrxg9Z*$8INZ3#-Zq+VX%pazw;yX?g62N;Oer_ zYo84re02JT=;2{Kq5AtrnXQ18s%;~9`fyCr=*?fgJ^CKIKN=tU^LSv}VC?$g zAB~-tTpV*x9*KG4{S5Ei#`{so&}e;zLX(}$TW()E{Lbph3IH2%&5n<-PT6n$=AH59 zcbtliyIKrwPLf~36@Y1uLuL03CPAr`0Xanx*m63P1mQ;o)EHAQ=V0ZmU8$&Mg*s%RrdRs_1I`L z%n9A~^PEro>EkiYjJ2Qnr>~BE`?h8yp~1=FF_}@ziuYQVD=x{aJgJha2TCLjJ18y8 z+H(vMQ2z_iPjpeD?A>+-Saf+d9wS`FzyF;xarI@J;)=ZkaoO&TF@kxakA`#ij!iL= z);%-{teV@lZ;Y*kLrA5R-tNf8X6)XLu$T7aEs|`n(3Y;<)(TWPD|QK1{qwwUi}Fj} z=-u{XP0|XhRcWC!iNy)4_WTxjuUNzT>A=hpOw&j-Hh2S+>EoY26rca<@p$=VLvh7L z1F?JSX0W6oM2X+CV`o+jH1YWyv11G}Kbbuaa13y(v~HJCEQFO=)Q` ziB!Euj`@Rz&l7yfExz1NTGzo$a?rrq#$FfN=}e-O)5){9&jqPCb@3la|0sB4n9lD# z_a2E~yysB7`pWHb$=0E`_@Y5@LCFH2i*{~_5yOe3mADs|T(Xmn3VdAg{m$JRh{vUr zD@v(&l%YKLq%F=Rp`Rx}eC;<)MHUp9-~}nA$e+8O(;~^>m zVW_2*7QBIY*T;{=r#^QyuG_yk_U;^xZJXgWtS+0lZ}+Z^bfU$cWnoxH_Ts%e+1DIF zd?fVF-4|`f7YIXyFP8W0*zk^wxyUuChzeC9DDp-=xwa@U9ABYSvQzS+N?1bd2+|yS z!0DJ7hR(DincwP@K7q;IWhOi@$v!uDN(~ynO$rxb9WkFcxf$ zD=ynkCsIt*1d2XjJ&A?wO?E#0QQ=c+P(YMld_$AZht|$Yfy#pW@XQC9BO@-|VrHh8 zt~pDkw_%XMjhmu3J(j|1Q~!n-Kp=MzGD8G9+{Cm*&34|?8ED1e&?c-dN?@|Uw8g%W z5sN@PqY>ggY#@flNGu#b7|pxRMBl5v9Ss!*zW1IO-O`HITmO3Om}TbPBM-&&<}ER> zbxX7imI%-iaW>4nCs`805ttQC2_QM3xCal<#6t&<#ibW*!p{&K`|#oMGer4l_?(HD z3IL3OL|KZVi(_0r} z#OeIWM1^)%5|1R}ikQvEQwW

    SN=vd4$d#cbtF?y0LFN0*NzihC6kh@1k&KfK2eg zgMb(!D$rmiZhW}CG*05ie){}?6_@e@%K-!KJ^b*ZO@o1TqH|F%zJB0z96dH3`!3n) zMR}a3fPERF@$rShIK6^N3Lq<4F3Z}aQQta@eUp5)`!_=y?4wk*u&ykiR9XK1dE)r& zpi!i(Cr{4AQGDeN@12eIJ81CoOLylGR%c-*hKHB{1Kxv! zHhRD}C^Dg#>mfK~WfP@eg-ZId@^ULQ(yEv70ZET!?UsGdoUc^TlpZDEVKy6- zX_y9o`w&Cp$d7@loe1F3Y36*|=g~C$?Zo zZZAybaG=Xo4UIVD4j&`08}_^#rG0SdODpG)@qm1Of+GW;FC3ovJtFi}8DI`ey_IwP z8XAm|4a2dO{13ouc4pe}S3f*O)ZYy5Ye#uIZQK~gzk1KfK;Mjg7t?8*fd>gNz5ntp z(O@{fiw3r7E7s)xjSOiqdmY-^xUmr1npSWLLH4P{C!?FAdbFa(ECrx-;ko+Y zGnezFI+OIm!{IPwx-yFPj?n|_cE?a3qch0ataDp#l6kdVL#{P763`wPp2e7d!x#|y zY5PYmx*6`H#n1$y` zV4Cdk9M|!htS^Q`vQR2e2qhZs_5==>cibAYG}yzh{f?MDb|@ORe=XwWuZ+R{S4Q`q zdt&DJk=XQ_*GABT>)v`>Om|14dBb-Skemf@Z@VL=w_g;4*S{)yk3AH9j~|NmzDuHc z^;OaL)mvi>f2o0&T@#y7&boKr7UL*V{jYyrY@Ws=;m*6`_@<4q^IKnqLS{n<3~)YK zO99}JUIHglE11-xZE+T+yK(sB1a3);e}92t<52##z+hn&z&t{w zf71f{9eUXVC{;ET3#njE;eSVCfTd+%2PhFX>q;v9_j>~TG zXL{^ZFIcmiJP&}%0)JR@DZdK17NsV~+u+n>s83py_A;q})4=PyQT!)%Y1XZ=Rfs)4EeBtDm?r{)87 z5Pv8XDwHDSnsOs&8mAq~`&^*fI!DMulj(2|Z%GScY&|T}EVSvYs74=?I-qBVJ5^*8 zX0Y9|c?2bt&W#M1je@x%N%OupbLw|FE@zOX^O6cZRn=%G6k%ki!HVyp06jW^JYh(R zEcu`HnwH$eK{~a^wO_ZrVcyfT5Wj!V`bX^cV6>TOEL64Xu^5+5%S7vqfIRhMV_LGx{kdImfUFUS? zu5Hj45l*?&Kidm^UAdKHr4{9A#Vt^YnTVM&`GvALVnrwAiGy_9XtdD%IGrjETdqqc zfP0ZcDqRgbIvkVMlviDb{R~F!h)uexPzQT2-HH*0XIo#Eok#l0MI}mh(g>0drSfqMFh)$rSj%>4146e12Lw{ThJ z+$;Q;EXfNkjnDKsKDVTt)}Ff_Q#ck>tJCLwQ-lw>B%3{iNe4n!;WO#WRG438;#1LD zVFNFEzPJ>c%ZESZt3EEZ)_7Y_V3PvTp)6??=0sQ-ytHCP@O!>_I|WJwz-Lzg?dc+vZ$eJ0=AODPa^OhKGjv_+Unb5 z-Y=16Pg)bE_&^qIP3hb(>v^uQQ+4ACY-(cGT%Wyh^F>|R*d;EN*er2Q?8$?X{&&>7 zj;jStk$A4O3^BW75=at>TN?rIFU&j5k3ncs3d|m+^}@SUo1C?Uv6a2T+$%50i`tSn zRs@kn$*+Qmu9W83Nf#Y@dCl~xL%^yCR(#=kpP`_|L5yB64S`k@k6}sC5+Sw7+hU>> zFB|`)E9RCBHAlcTHzL+bAU%Qn|%A>ltMT%<~hqq8- zY?SqHOBER!>R>%G*n zPTc^*UvMq-RA{$@B4?YTLT8-D!nw+<3OAm!lGgL|_cJ?`Pa1OKm!Y1;tU+BTxD~*K zBbU{7UG-dMddg3JNM?)4lRT&9U4Qz%w9I)S02g!$t$Cf)n3gQIDHEZ;vq^T9&LUZy zd`0pBV?@0G8H&6*yTfgJlrn57dn*XY~Q zl*thIy(Tdv(D-z91m;f+bNHV6v7&q)oS*ch zBK7pNn75~&IG?|za|%dy$uP85e&%oKNBzf$Vh&f?iBTu8;m)2h=W2YU7l&w6m^#c% z%LWl23>!shxPkS-#tI26B8jojD#|EU31p%?tPF5L0qe=XbXcc>?eN?#_vWlNb7#I~ z0XF9)<$K6^yBzdgq<>mx%d*a`6AnF%wpV#x+rB~k@jS(NqTP!fDqw?)zh6v7_~i=%-@ za}=GQIoSgIlAiocnO$+Bk4{U!MhA=r9acnW5yOuLG{gKzzjj{4OrORcAzd1@jRxm5 zo?T000`0N!1MMu?3PWN%7l(7`O7{mVOxn$Mh;u8Iqz=hCu>n50g+gaLmBeQ?`{6I? zE&+a8ZhgqIwD@yzXZgwG#ylYTBn7)g-uK|+mh}TRZ9C?|#1(eo3m+_d&a>=(qvZQ$ z7w6l3Ja5l^_H3O=*;}JAQh=lqY0ax~n;8RZ3Ig|}&|oX$38KNnB*+GigtG{u1vs$} zu0mdCA$t1qKuEpjObqg1@AEmyxDZD+7H-WG|J9c}t1ne~cN(>JAQ5nCd5RVS)U_#> z(_FQE1fcr z6%A1TgeFQw$ZXlLWN#fFv!Qd?tRN$bbpE6l%OFlZ$KRf^!Q<1F$58NiXiKhSt=w*EE+Ort05B@g|I!z$uT_B z_pfv+ykh5z{ABy3B1PB>Ekd?mY?~-Ru8yE_)0uLPD`=%E%6Nqj=L$m9wm9+(JfbMC za;WmRLk5~+(zL$ThbNNUMl;v7hMt>&_ ziMq6F>_Ggt31`xQ`0O~#y3(pL&DuHJM4QUfpDX1vc`+63)akr|H~JcVnToFp!*B*P zq~aaA%i$N!r&bInpLl5TT~XJO)IieiTzF#fw}(9_J?VCDzX zC4H~7s3^e@XwGa%;cbD!ysf#yshP1!q)2PFfdP%WS|7&}X4spC0UoW^NT zOIy>0PGL%gbKY;`Gb=ueU*nwjsh}dj zvd{=)-XZ-KI%GB#y}j&}*{cJt28^WRuOMojXh4_7CF?GOA{1T1tvjBf4Qh?>qu;QeH@<4$RUI=r2y$r6&^tv7q%2mSKScp|1^|atF zre-VjsUutcM4j7xQYD~d#H_c~01)(%%WBXt*&4HUIdsJY4k~;epUVbivj~0gn@dJ@ z>D@a_+=Acq(QsjAtwPqf)2p@Ws)E`e>JukT86h7*#RbqKbR;8+m+Mrr!@m|(lr_jS z{hNrX)FpgIo0&ulU_H!8qME zGdbrnC7uU5uv1P$3)F$ZB3*)`uWttQ=tSChfi1htcvKNUo>OKgX{aDj8{m%;0G;~DHHjd5I=MzOQp%Kyc7f^*h^YlRX{Dh)O+hz*2Hz~S9i1WAa_ zR>&7z^R{RC^0}$J@Upy&1NW_)*~H3)++V~E0>`s!!m=YRAk;%#qxTl~T={EPVf{S$zBJU;i||2$66 zyKAeGfBNm{W!q6U^$?E=tx?UvC;{VZH* ztT2Sn@Op%UdJepB-$#En{_)@ZsraWq`>*5Y|NU>oJ(Dy@EpQM&8tb$G*vLUYDgguZ z{`$bE$!yjZv^CHeiF-frzWDT?-baT9K?mP9Q0RxP1MZ;$;63T8@L;i$R>zVhi==pl zjGmXn@s#@X8hY-dN8=THCBpN(Jq^*@axv*03T;s-W%jIyyt0r0owk!D&L0}?9zBYD zqwFlzF~IEY0nWEn8YuI^_`~t;U;deR+u#2u@pJ#>PhygKQ)*>ho)@Zl=9kn~Nc9yX ztk2U>Ydm=Lk8g~B^kaWJ{>jh&Lj0Rw{H?fulo1*DWXLuSIi3xavMO<*Jn&6dg;N@1 zA!{dI-T$$7#k>FP367z}6VuMlv-irgO;-2lER4p--|?^GZU5k><8A-yopIm{LwexV zKXXU?=l}EH#wQL^7bqPI?K|SPe*VA3Lp)<{4Y#Oq0God}k?}+lIKlK&ut*6qM}Lk3RSzeeC@o)(1ZS z18pG&pp&6^GA(4uzmek3$N4hYCLR+)G8Gtsz)w$SE@2ws{-tZQYuj42oqD-mHnUnQ zZo5bQGhd_^&6=pzjSp$|U5nH>;Y^)94nfS=ZK9O?*&L7+ZF0>+BV(n{=vP`hr=?>{+R`o67WxH(aEuzQbB_%dd4m3nxxH^K4>c zWOQWnP8L$!qAeIs#&xu751205b3|hZZM$LdEn44yx-OVJMh&|j*1S9J(5gc{nmqF? z)s)m~@eNya+M8aZ8Pz5ZD+tNwWa4zJ=BO{Ek;4-pacD!DwdT6}b%21G=bV3mCJ*e< zk~`{j{yQ(z6aqo6n|qV)TCq=+)6NjF_tdn1m-cK}t+g$Ks$rOE|HhSCx_vWo#!k_Z zhkvO>jbnAuj7jRP-=ceOpQ8siA6Dt~3pH&_o0i{nw^A>Cl`fn%Rt*bo(yF#+)81Sa0q3SF-+EZPmlGBFV6$pYJx!IJyL8*nXKQo$={l$M zh;IGiHClSOP2*?1NN1f=t)}%4X!e~8RhJpBSu-ai035H&JZAzARmu_~Y5XDjWBloy zos2}@3e1=CWEC2#Bby)6p6(avtKa#oUYy&k>+WbLuxPXHojqIYoBDL>nP;(vS&Q~8 z+n^P-`&b%jnkH4ZYvI*5XlYN4&Y#+^2d+g4SiMzcXJ4rEXG~V+zC?9;4s z&qVm6ly_%!aK-IfU2>LYO`NG|6U(*#p$D`F>r<-kVa@sVGPRuXd|fboVp!R|K&mmc zGer18IqSoL&d5jjvX*AFi9Anv`)Bm!|NCy$-Ey0@RZdaGf%`RY{==#(pQ7`o)u{Pk zo%XF=tK|o~bm|$Ws(;s7&7M6^^{1Sz)7sYRmp{Bw>sbr+w3#o^^CstYVCh2LI)9nE zE2e5Dyx7sUN8>L3gg)~A%hi3u%{u(z*XZ1Fw)>rYzO%K-`7lYLIspvs5%`?!TfAJo zr@via`RWy_+O$;n>`dvjvK_kX)_K~)N&u(NoThYhgLbZ2tu=d_H0IRls_fpQyMFdd ztuHxU=T{!q-2b^jOIU1p{F&$K%xUA*v}J|n{d$28^j2!-tZ7QM?ofW}U+6<0ewQXa zFjrfu&(e#|oUF#B^R$c3ab4%Rdc}o=3CbSO+Bw@*enGXC{_Hxf>l)D1b6%inW8p_+ zgVl8xz#S-dqCEb3=4g!^gx-K2aL;0uyz(RZ&(Hm}I_|km%Q7=4L!}&twgF0&#vDt9>*>cZZ zmSWnX^rRU&bwY`n5A0Lxp1pc#-AXOrxldDPo};np{aSNxjsEec|EfQK{bibrdxMQZ z$!Ho|s`o?^T>HeS2yW8&()$E)kAWw{Xawk^PG0)vx2SLBb=rrWdVC$xz=;!zDR;F!>uKLOswP1IzCQcu#{SW>~|L=33*Z)2=s6YMK zYgsdIw`PCyX4O*J>u>p2S0m= z9#3A|@3~4>UAIJgR?N{=-@8qF>$m9_-+E&cyC}(9{ zpKaZ!c|To>xEV*UcMLgTcq-MTmCY~GJKp$O%{=gH)e$Mb!p_vyFci?TU(k5u zdUyc%n4}*1f~}7wH7X-8rc)2WG{=u6T0cFpG8FP{w=UAE-CfEyFV=Uy^dqfng`cx5 zk1+pQ)xy8q=H9HW-R)u0PU91mVW=s0_(5HF+wE$jr}psOH|kfLSpb}8b1Hkw>G@N>Eeo#J=AKd=ymz)%>}}vFRk$;<-XNBNROde3cI!3TS#O2uX8mB% zJ}@X(SK9{doAfvO^u_Jkfl_a3uc#srB35N}G5m)$B9B$o&f__F+_Td>P2E0=ma|Dy z&7qT;$TfT!f6#rNagXv?0*HJw{5Fk%ktH5>E9=xsMhkX!_NjHl&HC;)exdpta;F3N zzxWOT4UPKEI>?Z6f0-Ex*$oWcJLc;rcRr*{cfID`^eZhrkkQ0xFW2*DQ0T6`+A;kM zomu0?%*y!5PeIq@#lw?j_-K_wV0JOcdwt3A6H$Gs!IE~C=R&sF>Op;Pz4Lx;+1yDP zm+R|a{BJEIwp}`RL~G{%LfiVQwc(y$Xl)PcaME~}<$Gw;;G_DLx?%P$YUt|Ks`)qR z)(y=nn{u(vJKr=?kMcBG6Hc23ad&D}{i%B8>))prHKWivUKiG^{5ZSQcu2aJ6=iZ@ zolGjp@{ZsI6scHd#_du3KQri>7vm2M?M_ia0O_$~9ke*FY*k)U$B)sz)j!h8?z9dr zUZiE4>lkeyur^pKw@Y{a&qDQLDPQ)}tMuJDTciEo^os>rzO6OfF+2gSdDYdrX3>6S z+BfQl*WZplQmUTqbM@&j|A=^Iz1lPP=lb5Qd$5d-Rr{f(`s|gT(a#rbjbXj8c)3o= z--)IZQlP@z7lr1*K{N&cKL9GiFRS0TTZabD&}-gshUVQoR|gte)st=2!L{@B{qNkY z+wQzYci(cm>iT;$_uuB})c5>@{_5R-qnB4_P_BB^RadXZ!D)Ka+uy1er+4YP@7IMT`GjcG zJ&jtmYNuZDC$CoH?7Osnf35Zs!M7u|TR;D9gZ}7CAJIqt`Hz+P@%Ocy!e#2ab=u|c z*4r+cr8XjqPrvNX^ojSpL>;S}^|lXvNtbR|qO}L}8b7&Iix%IhyKn!cZeQ?#+VJB! zuqDP-rz#ij(hL9m z-}R23)w+LmtI8%-Xam-hxp&;9dAHvys0u}Xqq-_;)V1;_x@*^JR+k^6wFj2!rz@BR zGY%`?(w&-d$*Xm4`B=U5Rez`#PJ>m*vSrS2P3C(ycCO>T?j8Ec7yd%8dey7-;|q+qHo=yCWcAN2YQeNo=;|MczX=FB)K@* zI3*SXi)?6&fU>q4l&25qmLL9;E(ez@uR5&P{?!X~YOY1UUNm2~&$~`{-@jH}p4iec zS%31^SU;w2)DJ%X-@1POZMyfCA8USnjb8MsGc~>9_w??U&(h&#cj?|GGxXtq`nW#* z?w4xUmwv2$6nyh_pV5QaYUV>U=(~5UP%DJf0sgxis`cV`y&P-cG`;Oj7i*jsO=p;_ z9A6<1X;--hQCghqlb)Op@|{?&8QMO)Ltp#wTlK0}zDG-{F4phA@O0%Hc0yD4Y2NH> zwe$$Gx~*0D=UuA5eci?CT6dSe|F!FN=Yl!9?WZ^Cz^vEkB~vPN-V5HYmz`Ozx!=8B z*|XoJk6!r?dR=~}ZoB?|IxCdA?~s1>u^*`WwBOSOD4pGs&~Z=x@Y5kfz4n3g%SAQ8= z>2^@J-za{h5L2RTRyH&T=}nh5ku{FE<4CFF?3!^U!;$|?@#op_g<<)H_cJQ;5mBV*FLPj zde;TI<11g+HEWK519j^T1K6BsvPye`$xk(PvxR^hgeq1f_iE;Y&FX0F*F_h;Ud!+P zgnn{&PM`WzsXEb|&%F2p`r$2~R*m1nb@#SFaCTf(wYsoOWe{v$K4R*bm+5t{xLm4P zrk{Q0UhVnJ3+NShVl60BwwI+USQDrp?L14=uhepiXrV)hpXq=wsizQSbQjE&AtW|Exd1fpE)i)^eTnhWt+33rNF311OMD z($qVGydCKo`^I{a&p=BhXX?Fg?A1FzH%~JW)Si`->gy59{E^b?pa<{XhAmduSD>f7 zx_cO+Ap&wII5`@3Cf}uYFq)b=sH^_-TD89ByPEfroAug1UZw6qmd;@bm$HgFtyo>B zhi+Y|kE~s!uG%`i?2HH1e%VCj=|N|RnBP{{$+8QHCCBxKn&(Um%T&!h((C^4 z3;LITd!uT`)Tm<`3+>n;ZTi-Sc^3YUeI4p< zZc$6CqX+qM_CJFyG2?q`gB_D0?O~IOQr|vWna*8HP|PrjGNs-{}q_k2Nrx#;Cu zJ@@_kf4~2itRh#Rz_4!oDaWU4>oxg>lkRn_|S&6*K1(v>-5bzKi8$^HGGM0 z-F}$$T=27SVpdo?1_-DA{(80apQ3SgeYy5(?W}p5{`ZS-mckI*RUoX+7Et`}* zP_MJ|_bBtO7vV#N#N-(b2Ro3H_QB$jSfOlzwqhO%x~)3TaJw10XMvzROE}wBuD5*f zYx?ZRFIQz1bzh1rPx(dq$M4V4pUiTuyLH{ae_D%YeOY(>{YJh0<=3dwuKBrYIvQ+o z_v?V{jtAot@y^m_^-0hv=v6 zJoAE=#Ao%_W^2cmMx|ad6sYF)L(w&N`3jex2ZifS%37=3w7t`{z8BM_0MX-CWJOp zq_nJ856{8r_2VDc2R^$_ul(RAbwMR7DmAeF4;G3Xem|WkTcrr20ZgD>9a(3G8El@c zNft~Le1>nb-t9c{O*RKmg4!7h$-sPPyy5Tk>dx)Dy9@Jm>MZ^7MOIT>Rv9$?hvo}ncy_g}}(T!65ooa3F#J38i14~`!gy~pI+I8*!`#b&9H4kDk z&L~S5h}M=a^@c`f#^JuBt?bD|D=Y&5fw~A?F+9e;tpiNY#PrIdlF(DdOFp7MW4i8L zolTsXq(A=RMY{d({!CYV@Ncy2C2!U1&a6^zbE`UA=(#gIj!8TS%QF~V7o(JE&AR+GdS3N| z`tS#@)aSo?vsxIAxnNeSZv56qbkq7iz2TGZRr|01NmpF)SNh@JQ}m~Q^?O+EKBV`4 z@#k8)=6`kNr@w)<1$=DTwD3CV3HePnEJ6qIx%3P{2hZ&9?ohfbuL;l;W(5t7J4dG- zTBy%{?vwiAqFpFX3|Zm?-qzH{x`9j*I_+}3;uQz=$v^pfUHOkc)=scG|HU<0_^W@_ zx9+LeOW*ycn%?~@{WZMye{ZPOoA5asSo2?c%Ll%qha2wGl~??S7P73_l68Cai8(8= z*4(Y7OTMp~?gwe9CUCxL9xdgEJE4$r*DcpJ1Xbdt%BAjg{;b zSc&JOJQ25nwhBFuA-vt2)LwqN&YC%i-c+wPt=g*esW?cUhEw6@2Xx>1Ju07asowa8 z3s`^Zh!)>8Pdl10dtSd^pSk*ndh_XM>r0mDKzl|t&wIY!_WG9*52{gHS2k$crROWR zeY>(_&d?b%xO@8!^;C@48D~yK&`}eB63VpAf+wU7o***6!^?^gTM*ezG}}?Hy*qn# z`peE%rH2dZ*JypiWWDOejB7K@xn#~f9mr47TmJa9n#}aC{W#I*$DN_mXVj>T@^_A% zs^?AU(as$?o%@n$s(W~+CR}!j%5fsUWA$#8&%98VkDH{i7f#Zl6}vR$#h2)mN)#=6 zx30xdh<}IWd$Nxz;$el-0pCi4sqs^xLEpW;R?}Z{fvP=?wPUxIZtK@2zjq#9OF3=) z^=z%_sn+FhdYjIhh=p$dPBmu$WCmkzhoXy!#@RJ-D!roa3gwXEBK zkiS^dGqsuzeYMUwU#}=VMN?lkU9D@kDKllNs&Y-LnRyY`0LNCzXg)w^^Nidc|bSoEH3sh|GqjjOrY*=ydjRV-7gvuB-xHGs+V_(L4H zZ?PU=hS1FEXX)It&tkFfHZ|_Tar%-oHHIE__Q(#+zmMUj^qG3=`!3hip2J$S@B!t| zev@8z;bb*!TBdu~ZP(;kuh#2dG0UbXc+NCsnPVFwfBbMiH~IIOlb3?dED%wY`pB3Y zx9+B0s%^lD{-QImfG}koU#7P8OEhn5y(XS{9z#s0Y22&|?O%PE`afTjY-!ImXc0rd zb$yd`8Nb5P_nte@bukT=L z`)PXBJ6^4s)vOn1Y=!|INo{xt%)z2aMjLHR+63=>L25IqKZM7K>A@x(;C>EuE-KUUP}YWg0Z*jEmu2qU=)_J8O^do*HHM zAJ&A6FV=+4^}1)t7ENUs?~)nJc=y1MWdsHq`j>p!Qj?@-g4Pnbj}`%q=jn7cZQG>o zF{f+R>EmpKiv{6Ja*bMW$33d+o}yR0`}I1j^q?NNeYp-yKUNjGFuiUn-G*{_~bxAbK#_i z^+KWHR6iLi9a2e-?a{sDd-~81?o*C2;nOgCe(i&=#j&!Ns|!N~ekK;0JWiI;PFWd@ z7ZqN0bRR{)*T%Om@^0Z|@@v?9M-eD{ag6m?<#5b+7V_;GjuFZIXwKc6cP}R?mkF@A zfAo^#PN?;TdN_KFow&7t&rz&SE>4u12G_lxLPlLKc8@t9TUGb5Xo`I%5#q=A9Xhi> zP4189B?a}R$4H|1{N%D@-^FW+M+$Z0x+p#~PWiwPntELPi_bcl+hVzfXo znxpxNmANTq5I>oWfP|DH!uaDif$L6~eyh=}93;&v-X{qK0fFNwyo7&H8B?7Gy^6Ax zC;KO7~+JK6M{&dJIuZ*$528IMaja2vboBPpG)C5PL?_r zEb$xR;s!l$pD{2>mI6r5g;_hE!4tUNvp#%pL_G%I_=D+^^`v-@X%@f&`6B!$3nuar zZJIMg3Wj29A!#has^RwCYTOb%4YP3qjK!od9EMK_7ujIe(n+a{-1)a#;*))U|t4l(xu|uJ{Og zNM70H8q)-K4535w)&MyA3dgMRN#8@^L%5g@gC|Xkg*r*-+OIXm8qfl*4+l(&bs4xs zp?`y>oaMl!P_GFtE;{8g?HD7@9mkVAFZ?(QxR~|=H-LA%84J8X16nlJ=J)7Wa@5CN zCti5~^#NRq@8C*bObT7<*w5tPN%%H*ns;JImP{qIVBgC^Mmd+apBTS=B=BioHG3bgClNLjdBh!8X@nl&Emx{v$)Rd^~p$uZt* zP?MAtG`WgrM_%|`)AjzxuJy7|y_>2$-3N zIy(M6$u&u1%6UI-IHqFNM*fE&P{^-~=ybGf$HNjQ;!xqZpI|~7O0vE`IbFD@aNw8) z%C{u)A@2A2la!9Z!CsN~hGg3%N%&z1CdIrKt}CJ#KZoA?So?+hlhb^IUqV`i8-{Fr zX+r*mgZz%Y0u7#YLMs61`cI^L5shL-lkIWk<4~j_<@95oFctak7!*fuafjuR)`p`e zpTV634)X(7N<;)#NG=+0M{>U`+)bS7G%H-tG@4}(u&mET^ zkPL$NT~C}&T!DJxXC1x5#O~y8FKJ=t_Xck zDIKrE`sZ`$IRu_V;5h`IL*O|CoP%jKLnKGWrCH6Q($HBdldH zbZ37aCekrm12+N2d2Og8;5zr)DIJ>>x)nAzG*q-xlq)o-QInzv6_^ac$@(EbV^h?E zy?rhnkAQnE2};Kw|BYV-K!+SJ9tl)OIkv@Kda(mj?71Jcz8IGxAVV;EwB4aS+TwGD z>(J$+<^OSynV!HQpculAk9*J1lhDzV>7@?6byVyR=^#HIITg>18oGIsm6ynTi})fE ze!$TEp%3(Nry@b}JFG_DCTB+a_ixCjA*DUOY%VaUjR1N5)D$QRSsWjCEt{{R%tISI zk5O_i)G1DuG9$*b!9qC-LB;?c$L(`qohhP@7HDWB0C;@GKl-mCE-uz_yihohY<}bH zqd)9fc=S1Bo?@jJ3Gh)K^H|s>DrfqA14(x`{dW?`+h|6qttwj0A1-(>*6UXP>Ebd)S~&= zQ4()&9I}#C#Y4E*2?~NRO?c(|uvT%EeI)F7SWMx=glb`n6e}5o=6Rd|FJ3r;w@Gg# z)JPn}42wZQ%XWD^%*n8(HPF$bH2zMj$_-Yio~AK_hXT&3_Jf4oGota2qRs#?$8nkr z=Uvm6@4}+VUQpW*n){vRZyT|C|LX*beG|rh=}L;R54Q02s$RY4>Y_?!R^n?M+bju!Ocd_6jq1?yjC6nzZ zn-Zs5?t)>`R+fmHJpf@O6;DG(kT}mY@xs4@1z>_E_)40!!W#?HtR%Lk83?Md|77zt z9IrRQB&Fh;eI^V<;Kve#w!yNn2~HV~nI8suGCd?jn{@r>CmR~2Cz9BpU-S=MJ+g*I7=fFD4E zvZ9sZd|=>nhJ;7>G0(>2vKIjeS~J}gqSSi^t<{16Eo9rX7pEdj2Fo207?V9ZdY;*8 zJ;@3?ixER{bY?1PLpc^R(+bzai=lLl5+Y0J#u&JK6c+h}s8Nmpvt{L$>B+1+pB*X5 zx&E!wF+n}3BlTTczN|KYaWBN}RuaPqxXfT23j*>v6B5Ug4~N}j@o8@ZT+Uf)jha*> z2)6up5MsWhlwLo|rel04q7hTr(NyH$Y2775z-BBjq2NZ|(|m)*5JXm<>gszn@6Ih+ zbl*Ov1v5q3j(3G9&(2D*27ag68fFhGDon+#`SYmqWU!pT&C1hCf{orbce}Q3KcaGi zwOWu_7+A2S?5Id!K6hfQlook1?jHqTiQGz*OHW{_aASr8W4IbppcoBC*MDc8U@pX`6q}1UNX-ic(!e0wF&k^eKNn%_Q!Q2 zfOMXk0_6%uW45C7@Ph|+&5xHy57$b8*L?~iuzp}b3|`^mmXH6!$7E7Cm+S>>J~moX z!Uir;(xdq04Qq(-yc?#$VrSp4qCz>Ul*Zp-?FA|LE1{zpG6pNtnd9zk-`1|HzPVgm zw{~gus(O9ro2x~f*0A(NY!u%)ddTSsfeobz21^u$qe&psUr!nrfdWn^RwCE1OvL7m%?zb5(rtr^iKcMP)0T;m{9yCiQ4Evy!qS7- z4#2H9+plYWcE8R%zeZ<2f2z)YK@E!y=XCA0>td)X_%!Z6Ce$t1LogMdJCdOpn)gK6 zar2fW57(LAqP&#V)`5pt)a${A>U8O=&e8K`R_TIErt0pyYPEVz0}Y@3F|h1~;O03f z5OKfd+OfwLA3tKZ6feqXza|ei*{{iNC%xbMu3FyrH)>vXKXlcpo-ch#hyL!<>Z)tP zI>m5H3a#AA7FfctqdvKqE^Peyhxhq-l*wBMA8cp&t?PfbPOaU2EZ0({IkUHF*Ul!+ z73eOx?dZLulJAbpYV4#c9X#BlU;c87a>Pgs zzs|5e!EDf4SkJj{G!dHHxMO?+CBS!f7udeFf%2BoA$Hl#ST6U-NKZ+DDl&r$-N6FC z}N60QY?7CxPF_)jGwNt^M> zt!Ol)kN?Jzb2bzu7ZyT_{h%q+oueJo*tPa*_OJKrg_lo9$!u3kD~mU0%k_dwPuI_G zT%{w;-CUR4Yo2CsG_Ve9P5d4?SUh1)3yl-S4Ttdo7NgE@-=nH`y;)1{Td2O>`&3?1 zsj^qUR2vpAWc36`hOQ2w?^|OM$P>O~WM2?gHuDU;68^45{-Idr!2ue)n{M5up1wZK zJfm7OPamskr%%xB_Z(77OD5o=ydpC@L!@x+V6EA z3zsjNe?U`DAEQZAt98!vPf>GcR`cf_L{2$EwiPFo2sG4iFgNZ7aI_@Xdr|IEE|<-g z@6OJgcC#L0DXthUe$a=n8v*GlDNsXAZG#o1s;VegTSG!Hj_`zfnJ~^MqJiJ8P7~(x z5I{4HSUB?b=G4;R#>xz1M&WN{(9CZK!Be{H7y+eNI5ThmoPsc~ZS0EQdB+vQjNl$k zHdCf?Q&QSri?s?y%rl$JLsR{xN46f$vQpr4v3*K;8%8%r1C=!HK~I!*kcK~xubq|i zUe=gATz>@Li?PaK{n-{cBmz1jl%Vw?#MUu1Wk_vv8vG{iv*Wp(Ok9wAHGW^HRC{I>;5=9)>XJ{eC z(ia1aISs&npb+i{D_7O&LKdU$>h4h{lhc$_%XOfx6WL}dVY!Mqq18-5`xuuA2tURywc4=JR}>OHYJ=g%m;w|GJWr zGHu;?2<98m#3|#{l}W1?D?%Tuq<8l8YvR;N+PH1I_8){Efi_v~9tP#S)q(_WPK+Yh zVYi^OC|?LD4j`11$sB#U`@TIo>zvcolj&EMhOn15u9q2jo+&$a+<@*~yvKbW1imd# zG?J#v!V^am51SW5Mwt@AVHYuIK7=3pa;-7c=|<7YLN1p@nL@#g;n1W99oCd+HJ^xH zNA`KkBw#4WCi4u+G{*+)UC)_S>l-wEdX0K}GFT5PX$?zJqWX353s2MHCHuG@UV{!3 zcMh6H(-XKQ^f|Jz8Jhbj~i8!3~;= z@8Mtar=&n7rhO|&DUB%|tDf#|dLNC^Lt~;oTld*aPfzJJ!ym;b%3&}9Tm?>t>$+4u zwgM(etNu_cemV#xdL{7QbLp`VII4)F0Ogsvg1?G;cdNE^sk1fBtTGhSo&n_s%G8}p zsV9emz%`Sf_dH#H>qdN6%(x!#a=`rEse??ZWnKl3?)93a!8;pduS&$x*5r~u<}3K6o~G+^0;Wu*__ z)>K#~6PbVOojWvR)`S=yHeWiPSYKaC6DAMh-_xtz`?IV(0WDdX_wZESRy->Qe&*;A zc;*q0E*K~CTP!MUt2c)S-5J4GY-eqc)^2ImMfhoUfe~{(@qMBrSYD+u3>B~1-h%SU zl4pL1l`q$ezebOEN{Uh}Q_vAzH`=}|VP~3}tZaiMA75xX842krX*L!tB>>Rf-K+Mt zjH+wKD%)S7HpX?!iR<9rtm}VdK=E`|*D(|h9qORR){l@GtNr^r)Y{q&5xKVkPR{}L zsFe`CRs>7*#>f@dga80Q07*naQ~;{1GNmI7vn*P6L^IAFr&h+$2Vh7$l;`@HONR24 z$>ua>Y^C-c?$fGOjrdEU(gUzN#K}})_K|R-se_jk#zf@dH#R6xS-@b{v~IoYfCd<5 zPnY_b@yWBzD?<#H97<;vW~~}iq4^KjF@v$o`a}2zg>^Ip+vp+A#2+W&w?tki9hk5f zpg^e)E3q{y6sS~3XUMQa)LCcm9^AymsJPPVj z7}Hr+OX<8!n_i{Xo?i8#DD{9-mLbvht{zREK2H1VGTOMk3Ck3-LXl;*+?m$mIge5| zBl3{xz__?v?gjI601T#{F;NE&_3Lm$8J|Z2DN)LPV z9KL4;+ypvGQn6u*Ek$#K=b2KrM=jrWDDeTK%r=?lurOuu)3Bv3Lod0tr%zL+RBO$S z25s2fjv%*5#=U6wtc};`Vd9WUpyHYj<=hBau+wOz+q;y4cET!*0+sJf6sWj1=!QMx zQP?*S#w0CRfMxGt5#>P)C2GJ;#6*0>c$5# zRi097M_%i(x|EmT2jo`K{&hSj=qdOy9yRj6ObdaL`lz&!>iEGG(B4UV3mz@@L-E7Dl70q=~YW}Pt1%mMo9zzOy_Lmyw3=kSQGD@yl%g5 zzs{UFMXiJ^=*CI42WiuV^{ES`pcf(D!?u;4-q%?l%MGufe4CUq3(%!2X zGp6WIjj*tJ zMFh&aVN0*dsx0#dm8HYn4i4G=3?IuZsSStwsne>pYHh3b;^I+)Yuc6@ZM7 zJ9TEl6`LAVQ(Y3nPklH__oEc_aWaPT9LSYW8hso~(`{~T>(lk{~POCQ8Yb>KP*?bkU zKaaxcj-358;YBd(;{o0DV#b_OskNIu8_kw-h%b>)qlcVeG&n5&%yhPHdyDFzag)br zClh{pGUyKcCBbctp=VaxQe}P}e*E>66sYKVQN1P1z!->`26)w%SF1Twa0r8Vf>|t~ zp2f+HP_#l|(7-rv55pw`^x~>vs>ar&j~@-+vm2(zrjVjiU>p%PZO!;O(M9QVqlK{X zO#CFGdm81y3sW*g@J{gtU^;+tkdxRucp)Bn)E|PQJYYJC^!T%N$`TM!i$LmdmFmKC(+8b?U^R8EKc{fhFhWP z^L{Gv+1#+xAq^lulrV@Y`1vs_XoQ_8x&pZVBScD}j2;#)LxbQ7W-ixf(gK^slX^4nCN>pWSmh1n@h zZJ2HQ)R8MA8f~>6UVj*T9L~T3{kM7g=)Wg?$N-UcDwt})vV%BASBv>k3>V=0#A3od zG-&q0a4$G(#R=uW{snEl{hBhNLJzE|Q*9%`S8Rm>YcsLow!9lHspwl04HRINGThS5 z6!V8Rv}odZob4HV=>?YzxFo($2}ZqO229H4G7N>L8Kx=KFX!(~_!f|?Jd7sdOa!^f zz%)Q3WdaEP^AKJeLry5@mW-Jm^=C8u1|XQTpCOqFPt9ivx=-6DD20NVcPIp&;^zcb zY)3;%%0n5=C=@vGLaE-l7ffjQ9sZ&Rb7t1QPo^t>aN)3G-T{G?Rp8QrvbAv4K_0;R zZ^k$on~7(Q28>*W#E&kaBn&2$5oSU`ETsd}(U)VL&Q7JvE5HY<6SS1W@?<|v|2FUS zW5w&pm1^SHQmxoguRRAlx!oNbo@w42B`GlyP$qcEYu|;VJjH`#u!fh1AN9)Z-N8pG zWK?nXraOTlvAMQrT^}xxJS7Fn9eJmN4XtX$U!W7ZshKnevn~D<{IHLK2`LasE`8R1 zJ0iA~q^il2lw&=l4wTIlLwH*cbSjr&ADk?po=d-pKv+5r4If9jpTGQ&QY>7W0nZ$b zm;If3=n31mr-ueD_ED;Efl@b$M0dv1g)4R4ygh+&Os0-!L7Srp@^JJv4VmYnTqQc( z(!+3P3r?zI5$29PW_*%Q5wC83XSk;q;ogk{bxFEL+v{_Ba9w>edyxil6u|_qC6lCW zQ$lhl@(EgUgH_(yP8fqeRWSXY35!ZM_iIe~7!B;*uJ#XJq1|8p0ke!5cDIj|VRi@- z_TA8hV#an z4lFRZjw!?9!sA#`;p(}2?UEOr?gAr^3apHfWm6anP^fKG;s+Mqa@xbJ#+@=nw=CGt zA;QfJR$~+9ni4EgY>nw~_#uwdW|V%{d8C);NOb|x5- z%g&eoW8Z?w7CeW{I6~Nm-3|19IoHcn{BFkY*ziGc^Ksb2*ayoDN|a}twfE;#Q#nR= zv*2}oV=sz54Jh20G08eoQ~7h}F{F-uJF9FJP@A9R@1O|l;qG@Kza{WyO^Xen|Y z9hHRFTrQuFo-N9Dwss$c#q2v8v(BDo_0;cG?-&}z9lKOUC$X`kQQPlb0wz|tOhb7A zSAq}6MpqxGfD46+#t%zCPj`tP+H^=`CsZ1=LFlrHi*pl0sgZg1x-O`-Uf{&`@wkdmx*u{)1r5=xT_V?{$3h={4FAU zfrq8I#>00pjOXD559u-6rH`q@*#U;{NO#_M02S8Jl({(Y^*fUHBs5)kXIwq9z7ldV zcH|r35@^TOnCsOChR{;TEGqgB4qKOh2OKI4FVt`pt{a}QTVF6c&$hZPn;LJIb(7-q3kul-ZPAA=i_O^lm^7pxi7$uk^#CO?4b1tFHtRcKFLE(Exz z^Le`Q(RY}d-UYQ6y)OkTXnLJ0YiAL4s_dt^C}VxMahbgp|t->9_;}=GjQ{o zWqB-BeS@9_gi|Nc$d3@2{0Omp0>+?2@7rP8G+7jcY=>!zx^>chPpzn8@rlY6yTa@8s z-eUZs1qU-`jk7*wR_iu5s)-m-TMl=E72?^>t8{BUgpfmMdDzpwVh(4}>zRuj??j^4 z)@QVK{UOa?dWffjvztXQ4Z(-vV4?0boM|%@rO2aoM>pJ79%;T@4r2vRmf+l*W?`~E z2+ZYlsrpNyH(v{eo*m^SfJ!~1m>5w5M3Q!h3@7_O;Tp~TWzi5A`;kaDQJ6>l0s!+O zIC-|A>-@out>6JI;AM}YGKPgsKZH2Kg~Qu~o_b7U1uJkl*b(eNcPu?XEH-=-X)q10 zgKN4Y?pcfjA?t=WJv}N!rUS|iD6us^n2I0`CarX79kYMOV6k(!hhBiPf?$6!w*z$L zXg3+T$zpr}%P!`oHj-aA3hkPI$kpm#^u@619a=v1wuw43rAW?;*?XPBAiurw|u@|aFdSiTMPFiIz+K)C=;7SI+D{^cpZ zwg6aYlwpE1#dJFgEpcQf;s< zCYDiS7udmEUeirX%eR1XEE>lU;fwue2ZBSW%zOp?pny~K6quAVqpYd5S4){*uW|S_ zwP&?$e>)7vkdp)Wc}5FZd1$l?ixd8>5md98&;`4QgS2ix>%f8e4kB&ewy-ua5wjj# z3dP@!pMH@AVJQ8vpXBBlC6uT5vao_6Sd$)psqS5IC}Qv+iFBB_J=+g=s12;}$bb&} z@jJ+hz8=0R1I)m~KMy<(V|CiPtAkiS9ZHWa*N=a-SsCK^L_~8dnpPx+nA1ZMd5Zad zx^8#g+|DGvnh7nrj!^|-eZ&Fc8nXVf_7W)uQKT;O_uD#Ur{z%1uwC75bw{!1~u z(AUwWTo1E^3ZxNRzM^sS4L;x(jFJ@A6r_>2B`7_X{R>ytYW|!~u9xP7TUe>0>?=w@8Wd>uZZn(D&czS3rTqou^fTAJwbCY%jtl1xN ziFyxZJ>(TQ;Z|T}p&m=hiU$sABeU>222f^03ei77^5I`F02&O*x@j#!zh zQ3E1=_L_aByo8-lHqBeXTEmRJPDp`rL5@o%ath)w1-6;gA8AD>GxLth?Lbp(qnEdv z85p%kSQf#6J@WqJ9ya=aBr*Za=uULeP_<$2Zb6G`q9@yq0NKwl$u^e1DM1OPvjMT# zGGf%Y$2TVr81+CUB~CabDYC)fD7`idq&;=rTD|!QL!k_V(%5z3WU>2js~Va0*-!VS z9|7)|G+xoXyE~=k#y;&m)UL*6qW*Hf9XWHE63w~mAPNJKwwW0dTp4(Sxe*UW1@n=Z zD5KFc4H>@&)*ex=1H}O6dply(wPtmQ2@76&DGx>i#*0OU^L^#S^??qtQthknPzNTw zycK!)dmnT;_nv(y9N_Bd+02khJHtKcDuZovyQG;Gj-doO_Fq2Ao)-Kto# zNy~1&RqaQbm??!tn7&x>tj*i!uB`{JYz~8q&3EPn%PGncas&tR z-ECNWtLebC;ZJy&kSd;^z>+sC-kl*tMmEz;dw>Hq=DPtD(E+^7yI6{G#pVX>XRXg0 z?{G{gTYvpW$Ayww@r>;-DD{)gLXv;qmGFt{+rGhGyR@mbM+e*S4z@x)p-R`>bBM`8 zoneJ?I0IXQjcd^4lYQ~iczt4vKEW4IhLA?7G?j?9?7o}}m0`@bnbo(ql%p`E`(p-P zimCbcZ|cyW|3OWd{=;Gy@9|SCaLky&pK)|lf0=Sf?#aP7s%_7xW;#6)rf+(jyuYDE zYj?HkCFhL~VP*RseZIIS2*%R?S&)JzJXGL0yovWDZI@}qh0p7u)pg2uW$?kM#3utU zi)!%9cB{Uwj|lh~0zl$-hs7X=)hWl+pgsbYDlAMH5Tz%aQDg%&@!Uk|N6SATHn z=|RCBXLsBcTUXo=T0~h44%ZaI+RBn!AM+3y4eJwFSq=0;-W{yzwr)eC&p>zmG*Bo9 z2={h;D>@HijjJk&89ym{!(ClC1S7n?bP1XjLd`?R%xAQJ8M8%yJa?Pk^R^kvvvfzv zU=>fajV9q;?+sU^5*d>SnaCqwA%yw1^~7$zW$%5bD!PdML}Ml_CAdAoemIf4V6b4i z%1SmrQNB|>ZOV67290nwFi(b4j-lXYbhzT-JU^L~_;o>3U{ywEZ|&B@&=tHyN6>4Y zuHDwH)25!HNt1A}ud*K*7Iiv1{m8T&Gw`~5I@NfjQ*B3#6+U$b>R6X@uP!=kJlXJ& zD)=&l7s@TaLm?f3=$Qu6$fJA=Gg1G{Aj>neZp}JODWw^F>T0yF4#PrMvra#Cyv7qi zxfJDm5I!5g{h%Kus*jFL8#9dS3AEhZ2{2ec=Pll)ZF^?u{8^J@(n~_Srm!H%WJ}!? zQ<2`i9ggW}R*_p&d(`(J!^H|)|?AA7L|S>eR@rjIVY z#1EH|gMkJ6rk;}_iB3p?au38#l|k{&H~@qR*5aDp8XU#BoVq%@qVX9-F~~EvyRXR> zgeYee*o951J~?)@*A~Y|?^jX(>7%h40LOkBsa6_!JK|K(vmL}y=Wu5dy*+$17)Xd1 zT6S*5eCr0?Br@t#fiKJpHto{+QXXMMIF(?J{q-nB*2Iy#gGAOIq`gnu8bwPN(}CO3 zPR)#5k30)2gOvdL=B152!+d27XLZ&0YHw{?uYH-7c-A{J#t1V4D+go8Lb86$Fois5 zfxH#BAv)mEVgqD;^;%`DgUdw}gbN1neM+T?fY0nQs}5b5&AYP9UT`Z0fx7qXk9}QI z;8a54Z8`V3ZTK^G;Yc=)k$U@KxC+8j7x(ad13nB>_%V@356U?tovlt@uEiy_|56%3 z-PgkO`d*ZBcrJSRNW_v9N)lb(JVWXOZs<_3Qx*6-G5jPJdkt9_cpJ9_zaobYPb7ZZ z%AtHN9yDN@s%s+FAJ+167VsW`ma>E=*k9LTecMq~n>V1u+ffY6JFEO#A3#v@le zyK@i)yuCZ8{<^GAKW#FBZL6?k;s=IY>cE-oATxBeINM-4fzlRf;kvB9a4@;VJiYbPQ8OBU8jGjvIA#R__d$nL)FEc)g zoydij#im2cow&CMxX%@MaL6NzkAB*>Cq%AE!CeSSLCu+&oPYn$5o0IgdE+?AmC?Qp zGLt9m)h3xKwR3kvTobfqM)Y4Wqk%{OdD=@j3|c3>sD|YPLmi zpDineK>hM*EZ3(tzOUtKBuTH+au z46T%6MJ`2ov=WtOT6!AAzLW+qHBe5E7t1KhR@%{|+Xu9Oa0n&LNVCFeJd>(&J`C9K zOhtifypp9>j1;nm-=?&F6r@3B)(sN2pdYJ>>3}v0r5#~zLGSJ*Nlq?I^#i7I{T*BRk5c+}oq98HUdH;8w7OA;ePWu4?HQQJs}0kG;UIN-z{+<#neV4W`WZ| zc;nhbEdYSo7OTo2W?QI)%LlZa-o_y`>oOX^eu!fb0qw;Bxwuf#C#TTQG}1+)?qjew zl_k|(XFA)@`1@ScV6K8B zr87n&Z|0y!TbI$j%Mm7(Sc?$6C763Xk8BWSAmyoc5fYghQxPq)55FEPPcT-NnT}`? z>Z`y^&Wy(t@mVycOut&vsM_857{oLeV{GSW>ceI)o;<86)54-4G@|!zKoV&}zCDzZ z(y~pK-Y*YMpqz5{ISmO9#X%c30W0f95 zz{KvXZke|WD?2!2tFa=MPt&`0-Pp7;FvzoZiE92TQX-?(}^$|n+z`p6qx_|2W4*z?zjOKuyJWZEJMR47M>8yN0{=RCr| z=w`^M0kFzqacaZIshOa@-ECmyWB5e{8{0Z#dNuDM>+V>*Pxq}j%&B+yCD~C=Inw9x)2oTTUZpe`*dS7IY0y~$E;%wnzqEBZ1&>+EJF=NFhMg;Z%=E@QR zg6%%UauA#7wZTAiSlC)AFl_$#87HaKy!n|-MMC#Nn}g*wp(L4n9G|EU1;9?xyY{y+ z<&|+4l2I{EEHepa7RqsW)PK3GftBeDhAD;4>{nnw7A)OEycFh0VNpqW7|I_He|jQ= zw={P4QyG8;^X1@NfknaBB6v~^+od^{X8MosEyb$hkP+Yg(XM!({SZocSIRz6t|RC* zq48k~IeC4gZ=4%&53iLnrM?SK)Q8s`k|tJTpo2GUGO=j|-p#Y0H(tgGJO&G&6fw$D zl`t>Zr1+pk@L|if=?P;r|A7vz-f$!=q0>{r zRQ+M)+X*8=gPwN7g@R>K=YbLrW0ts~2Lli5mV!w+eqiO(CaZtt9cudO->TuZUovwF z!5;5QEXKo>YMykqOk-}8?dW^pKs(OhSfHx#Kcw>jK!DDb19;b zGw#GbANbU6vt^Z&b?t5Yv~YPX%|=-`llR*~#Z#kRMxd-K(wE!0LHj|0+3Ix!V6{eM zC7e%@?p#LmV+#ID`vb4VCu9|v6=W1*NY(IUYkOM%b@d8m@ck@>mmOz|yW<^2Yjd$; zLv|K_48yJS7sGWfK`>cTj_A2ju81vZ{eaF&4)IbozCt?>4Cu=@@1m_lz9DmR@T1!X z_uCj<4=jM4?a4_{{SzmbmE4m{c5FhkmL1BFo!^LU;i!-}r4GU{*it~Q6@BY^s1k51*u8|3c{nr4ODd{jajvryQ**B zvNM=2ri>#{tgI%uk8}i1EdR;SN{9z&h4Py|qDO{9dwxWSqX6-n1+Ii6pt$q3s=2TcHC?}Tf zXZ)&TLsQ1bQY4rvdS+Gv-1A+s8VB-m`1PQ4rX2VYtUSw%m4bsmttg4L7zIWGuR->c z4;E0ab+E`#u7I{2N9wjrmu|ZIP*{-DW%Q^+kn{Ryy!0pj!pNhsabEej!)F1M(3#=t zSI_$O>aIOtvF4EzpQf=l0q`DM*g`bB`Qs!GJ5@;Tbh<*>!@E^Fu1ZY@_9}C*Iffac zDuy#4Ck|a)8JuX`DAOJmh~IkPhMk*&C)Fj;BB|J8Jsf-g;X2@TOu zn&(jNODZz4V#VjazEVv%n3rMg3x6{dR--)<;X95W-K0ZjE7mbg>3x?Ej6zwW^A?y{ zp$vQqGO6%;&~gZc(^%QHAj7b6`SgC>`(U&F=eq3 zU=!-3%Rp_r*6nvmFC|gHtC3HPzNoZP889lP6ZoUs4{6@A1F8m>h(X54!vL-s1B@&% zXMv~qNhc@q`X`wX&>o%}aD*$sXl-d{wQ0tBQ3N8uhc#*hvX!Uwq%z&Hx=FV#Zp56+ zkO8+ufnyji5lv6>?IZGXXeE-@ZL_s5RcQ+VW^p(CRWw*`$RM1BTl#eS!urszEu^eK z_|}t09?vY?2}}jB+}1&3B`{4Lp$azc#(~$pSWDT0P_p&OG#A5iY(qIPmMEyP&#^rB zC)O&2xh*fY!hmRL^+eS&ynOY~)+hAr(J5QIg2A8JazEL(MNij?0Muc>Eq@oAdiUa% zuB>MXjdB!2TbsbgLohCy6>>ht!2&##C@WP(%!&k$ zE_{Nnpsm4zf?&(9tiT7KGNfKojTNet1+JU)#qVrTPp5}S;Y~thc(|4R(uhl;bel#Z z=NJ_jRoFrRO)CN=;9~2qBiWnx(#Fl2kdK3n@v()@R`ambfvwwy6v}2lN|Xi|`W!P! zU;6PT-Mi=jZ3FVl@8S~{9n&?Rq|@zJ3||0~5i4K`xk0`SoPT;44vefJ<}tLmEi9#j zY=wKUj2LxgWA&l$?9+CZmP&JvU0_P_(-cE`NV9mx$@)4mv_qP>r2I$4g*=J_gAjjT zj>qsHJv^H$-LL_MbuIU9|LrHcP@pKZ{dz2ALg*&K_mSE&kM~RbKjKo7=Y+V2mMerd zCp}CMrfxSsr4Rs0W+B20|hh zYb`Lx+Vzb(+=2ywhTd3ucqPIP_`G2%n8__XqDO22WIL{dLZe%m zDT8}3F`+zU>hX01TVjHGoSY7WQiAN6-{6Tui@_$W#NPyrU(yV z0L`O(0;_1)3OE(83c(yt=Dt$=$p}$u!PSKpwsT*X$&&YhmEZ6EA#~}J9P&YbpWHMg zFV0SqFS2BQVgt1xlK_TaW;ZuXO!`cerKA8#K()VMIJQD3C{LaZ%aRL9GjXxq^pwje zwP(9}+Zg^cojD!%zDMwDoEv&9-s-QDo{UZ8hV9V0^nTiwCa~GL7li=plZV=jnt92` zO>-gBOj9VKVI2;I!8B(+2<#y5?8qNit#(=+melWm^0)cEQ z=_ND}{y^W_z~!_PL$ENf7VB*2e(_kcJyx$L6TM=df=}Qt{|@05eoRmn*yOS9dOEa2 zrj%jv9Vn^7EUTRo9&;|^30AX-^AB|ir z$-;g@f1D5a5=IT7W6ZeN`z+@fR;qQ|+HfW(1`q-){H-|etKy-<71wB$0syiJJs^0D z0RTiJv}-r5Jn?5rn4xG96UsQkh`mCIl6#Glv2gTtz6u|263n7u2zsu@85oRMl49w? z{XuuM1Z)$mj`1$&2A%Q@6X{7#kr$W6c_Ob#L+9Ux8s;4HG?7!L3dn^l6CJ~$umZE- zFNC#Y)dbxUO*(I$WOfwJcIs{3r+)m+Dgz7NLE~n{-*g#&@m{~X@bS^YKD*?{c%5XB zczwvN$Q!s6^IF)3ddcjl7G@CJ=_JC};OH8&R~gPUwxJZjKhasSr6m*s${NR9z+>eu zXNcTO0u9)2mbe)IbL~dtAJ$T6E7rRVdOLP~tvXd% ztp$hLwCv#n=H@ipGko{Ng?s zz|w|^mK?#&nL_jt>jUpLgse}%WS({4*--rUXk8aEEI#t}O}hG;O*jTS_E7~<5Bi9e zflx;tB|@BQLyiLgFAAamggF~t7et-`t5_bd73dF54VdLw2-lJs+~~>Yt#yM@nl(q< zOJR~C@+qsmUH$r-FRa&=jfYguaAxEuzvGUNo@eCg17?*kJ>p|A4VxF~rGJlsI zT6GYMd$OP`U~wBWvAEQAkYZ6ULuej8*(p(&5+Q85>7!Cp4j*C<-AL}z5dDeafUq(Z zAaQV8r$NW2>0%nXMV%EVW(9Q-#XUu|P0wI#U-gjM8)_MLAh;+l3VrQOF~gA`kQIGbXa>m?CW6{EXDq9y!p73okW1QW!(#aL9>utDFI)9eA5B_#TB#F*xHG8 zg-QIzaUcshChs34##B+EcbyE!WLaTqx7;_kY}s;zS#~&mGs0jyl9yn~BU`W_1YT%L zftUTpFnwdS12>=J<57xGqD+}ss*Igi0Pwa2tJa@=a*3|_`Fa#iCX8^bkC~3i3{c)- zzD2Pr)}4>L4qdOq0YlTe)h5e%$Nx%MnYMf)5I2OwG1Cd>3&Xv}15%+(md!csXera% z|8`Kuz`;q&7{rE&#{)C)I|FFL`?{oR{C?Tw*%nnm_~|Tbz7uMDkf^@irh8aVtFMiCA%tqjsr+w$ zut8URev$UH2>@ct?3us@t$gv9faKSW zJe(e@UW+9$Pi1L%N@1k6_)09i58SF5@?^q78infU2bxQxkLZ6zq}CEQa&BVTSUl=ZqwC!}=MwcE6AV`C^#URmCMu;OE7b66Y?Zlnx|#}Gn; zC_lCeTzlCxC*G)808_!2d-KNB^!ScnZ9B7%ZgP(Y*zh)C~DpSe?RJOAIe z&b>2$sHn&cyd0Q&`aXMqd#$zCUVH7e8On|74;-U3h*1AD=J z)k(@{Xe);0?iUxlVwe13B9YCx#)J>~J;qU_)I-uLA>u?SzOW{H(N~Dwma@8R0)frC zBz_Dx?WtS29jJQMam!Q3OA3!HYuZyD@kxe1(h7B(F0^VohG*Y3&%X8R7j5+DC5#?a zxgwRHhp!luKh$Z7L$^t_m6Gw=prKHSBta6*DwKZjbN+0W0+qE4P~(&q5=1O+F5ZYhDp0xX@5C3xnbWO)!x1=8f$eOT0Jxdn#jIF?LL zrD+6Vw7e7xpK{^i-%s+MV$`v16FMCct1x$z13p2g0R|c~dSWY9)e?AaH8cTjNqACL z_4L(niv$C;T%5b5ID?Nc(w{Vh92%_vx(qNU<%m9oF_x+v4Ld`p8fwlf!<7EY2R3rl z9Ox89fxv(+;58(w4?*u_fW30rzMHcm{37`!D}aQZD^SWGTdtHn^4SQ8QG|IO5wxXf zp+@?135F4x)H}v{kPj^ejaUnaffNyK!m~jm!XEmG5{NVY?mSDdB+QD%%Sn>=*Il>0_8PicE_z2|-rBT;kfvk`fhBLSMN##mbPS50Kdz7p#@?_!y88JcMm+6SG@_$nAl5=Y@dEt@ot6*zKoI=K~2 zDpNk?j%wJGjz$z8O9trRPvklB$F)i1ou7k|Tj#(_?QB}sDCpAvbPPfBsO1s}`1;%5 zu@g>t)E*i60dNExu7q{5Ae>2gJ{?!Y1*42~j(I?-vwFG+2$M39w zwlWt?)S+}GToMr(CK4BKNXB(JEfrWjG9Rae5fW5%(106m9o=5l zt~#K~snC)}PS1`GuQLM5H18#B{>r#r{O74we$N8iePGm%IdZUl_25Ca&z^m8LQr=2 zqDwy=Z$q2PEP3eyNW|=it#Bl1q=Gv9d9*-jYx%?!YQPwJLdiVp*IkERjd*V+F%Alyud2j5C zE9_TijIld!Im#Q`tRnvrS#8(LA(=rpPDA2LIxv*`rW@b1`EM^LBt~~%L|DEkn36)A z5GdYyv(r$5zo6DU%d4U$5iHm!XrlY02q${Q8eW#-WvN=uHEfWw-<&bo`gZSaU;k=v zU;8YIvpH1BL#hMSBZuw0sW|dMQCXB7mnrN$peE%IKSp^disdZ{jl{J)kj_~=BCTPS z7`=EYkSK~#XfjQZKMi|E6w8f{j)n^o2=qWRrxq-+>Ph3Q<-!XsnESp}UwwtGgf^Q` zIMxn0?pSM>`K~2OimX%reh7Ij6+?~$zcQ&hXxEMJlMgj28vb!VE*g8cB7xH+{N9YH zwh6f);HQ~H`3Yx{K}UIDB3_d6B)SsKsZ9D4{Xi?>P&#{t&jXJzg~U$8+PA6=h$(_4z<(I*xz;lwx$qB1=#pvTcE?E!VplGjIPCUO^%gHZ+ zrDILRL@cx>l~>MnD4LEHilxswlN?j2R6x;#aMjSd{)C(V3ES*3_h}~*I%jzBWi0bA zzck8jxvh)+>?b?hcTe8iiV1wHxOS>bwGi&J=0Z{V=Ns*bB9$m3fQsvrGIY$fCPo4R zE5jnJ>`^u!?&JhagsZIUF1J}aC~eHfrqhJ9w}ibjT1ZFUN2}@6ne=0|$Li>lR9f*%F(?Y3ruU3V7dhRd8$bs-V;|MW;}J zG$mC%Rq=f}0(xL?>a%Aty%F9}W2PHyWD`7!{rwz>NM=l}m6S^$z96TJ)y>nkiU5+U zmc@uzUSmD0O00ix%*1TYFkavMWHaJ-Hv9?6#NY56`m(>4Ek`CV8@}}go#|Utx?*H$ zJX}>IaSSM2OIn{E`8KdWONx{ujHGM|AKr=3J4v(tRtgO>Vx!U0LC#4*3U}`abh`yX=%@ zd3G3H`hK$JJn%0|+ltX*m17DvOjGskzW|=#(dIF+99uY0eD;O$t;pEBy zb%DV4ad7xFC(d~k6L7r9TDk;QTTNh7EU3Aic<*Cqu3ffhOlx|iYSOrs>N3Sp$+p;_Mw1v7NQ0Yfpc$UvJYK)+Hp<&WS#WgO?QG*ga->QW5P zTW5Uo@~u-pR*+{oj@4@w>!y#ln^}S6g35&x>39y=wbSO7Ac`d(Q(5JQB;o1Sa-A0! zTe_s1mG|lA)6G+*#A7Qew!TAmWZ54uBQ#4Pv&A}f=}Di4m@}O_TS-}&m6n%Synttm zOZZ=8(Nbc$p)BR2q!)B8p+m`V*V5(iII(QBAfY;!@65O6p5@5NURd0z6X;QE?TOyo zealq6WQtp(oIpe<$a-j~2>u(~zr;#P@~xSXhX`0G;B1;0Vrkq96lgQ_@e%Lxo@5_? z;S5H~NP{kavOw}o)?(U#G`uIO5YUq7p>jM*~Q*ju-%-Ujvs|01QS zR=0hza+p*u<%7L)qibZ$<*$zAyVuGM43En?C0CKS#*6on)fHIJQ$g6XqgCA;(< ziSQdL)L@|Hyi#DBCyOtNQkqV*I)1*M9_?!y#UY9kAB|%T?vI}%R@0U1Qmjdsvg%5P zM6u4O4#L@g)C=v76ua!Ewq0AR%=bcgCbExw?tQi`@o%+(#7Fry1r9sPh#`hFo1mS} zom;GQT>_n)&NE>Qq+EIal~pNG$Z$oik0Sf=LO_;*i(=8CkVlGfdnqYql2OVkRyJ78 zvU*FRn3oh4S$SEZ^&MDd#Wbm9EHtlmP)U%w65>Li%!OIvo8gsgjkY1gE7Z5&*M1{( zxSl~YdqbHH(`|cLiE~XR#}t`QVy@3kGBXF~COU6c%@QOLt!uy=*$=qmoEVXJwP>dT z`pJ~5A(8}EsXS&FXvq>uUsjWlwGPd?#YPP4&NFC=DxeYzDJ+}2P3)CnZQ++Q+4t{y z0xF&-6h8Gu{!-VJ7{Tb}Rtrs@XvAIXrmS_Wgb-uNgQ%E?Tgs~hjc*W>Mp(k$U#1s~ zx!kROuC+(49)+SCv9-GOLRra-8&|e}1kf zytq2Y_kad99uzt50lnhRMBOeam0tn)%0kltH~BoM?ls0Qu0!PD$`tbjT=NkUsZ;}2 z7M#9C9~42B7xAM`vVuTo0-_Zo-50%zu>7X($(f&bG~A@e8J3W9v9U@ZzaA{);76$y=U&YJ_i-Z+DikjMZIn98cWV(7TCZ+X2W(cn>XK5 zOO{yiAqSxxlvvA*X}H%lS=m8{T0>o}MW@fOW`;1!_TJZ87QAmcSe;VCcd)#{{VhFx zrbVmkta;a6th59LYw9#C56FUjcCm7Ve)H6KEQaD$_@zDQ02MQQCHV%n%3eF;6#9yU zGFOhr8ftQ!TxW^;Vz-SAlG$l%Cf}ND;fr&_tGQwnQHs-#Qy4S`#1N5a&6QWtoj-+) z=RkgjYSaUK5%~~9U+QquhD3;Rj=~VoDOa+MEP2uu1-5$+SrG)2qvgl#@*{duory=- ztK^=e44tWzvi?+6(k{Y-MRbgtQGVn~?j5{LrnB#)%~!6=RPx6G)o|$^1LSz zip*?M8|~Y&veAtXovKHTeu;ac025um&R1pps`bh@X^|7 zDe@$coPa2g6Zwa}wB;|T9=$PvcvXg6EN&?Y8~$naav$GzoRni3|9C+J@+tEuf#*yC z@u>E~It%MAbjDY*8gAvD5JO0b5H%fCFKA|nh&YGFP^M-DXXAwHTMMa8WAF6GE#(AJ zLAkO9QU^A~%kPECl5llK5RQ&(NXk%YrX=CHQq+B?QdA3PCmLM2-|m0QQ_W29p}n|(_A>@_aHYxn>FKmbWZK~xTX(|PuK$V(xe zdecaHnQzHr#hK3>l0c;Kb;5(*fUsRR=M%{g&!e&;nx~{>EWtsZWD4r1i)*#zxDV)9 z_D}VAvmFyP^f|1lnAN8f+><|3cGJ3C@}0_VSyVsj+~BKI#QW* ztZn_WXC;~130X?C>3MD9Ufovr=V#QBktVF?kc=Yv%*) zC@OgnyIX>I&gK64Sy4itW6R1}DK@T1`RCQnh1h9?A%$|84{4-v%ZSi1+q_Ms`e=Il zq%>TvtF+|9eX&%HYCyTBI#Ihri_ORnXyfvr1qs}!;Rta;y>ATD1`3q-Y{{S!k!Z=2 zNs*V*Sd8T4rkN$a5T^(Sb6YNBlL94)l7KbZpWXNapHwKnPa%-E)UiO;w;?lUP}Bq} z!Dp->uoSdY*Y%A!%9}LNJpVo_9M%IVEl~yHQjeMEvw3MF=*`N_XMQNG3~(TiX&265 zi4u^DPl;w+BsCik!pT9gax4?{6`hCIRSd_k-zLe%U?1;5+cIBlw28(vfXpaqm^9fiN-6FP}g-GefyUf#jp-u4E+Oy)jMu#R)x4WM2puL8RwYANo`lf$-4jMU1uH zb)M=lo13@60RYI8hFR#rt00mu8MJgSiJ;PqDQpUqH|+UKkn1m0GW8Y|0bL~FvnV*? z!Ko)nN=q+c-Qqhb;lzwQ`6%RyzqqdBf*Uo@mxKJLEY z=g=X~`0^C`pyZTtAux3yEsXnqjSOxr*~FJWa&x(*42gcorZ;q1oTSKL6-rW{dC-(B zQ|?p7xvb~8D3;zx3Tw)RV9V^)kgIFW@SQG0TS+=_`NBre_(g7jUj$hxt4f5$1!g-o0V)JA&e!SkrRN=A$BIEKGuby552 zYkZ0V_^%?RP{wk>O0eji6oOe+K&^)=LxHYotxmNWs-Fb1EH6L-)ymhp2A@l^>t-&a zJSm1%RhjC*^NXLJXcDD~w506o`3PZ2c#{nHYg?2KH>9UFz6(2eA>T<}E2NQRc#`2t zuYbuPO}6rkfgS%G6KEr(8Oa-2oWMx$vrx4FRIpcG6)E{971I(K~uh39YwnQh{Q{HnhXAsg)ui#YKWvGk&B@5x3tn z91^}}4$$z+nOCLYIekJ*rOH*t{M%k2zoT4m&o6L4ye7C*>8=Cvy;Kf%Zz@0El{A^$ z!q+779ULXWUj%~G)JHWK0Sp=yA@Z#9hQmylW)@k_zR1lRHY!n$r&8iHRaeL%gUP?= z%0I9C=HzPdg?uxd;6dpeukccsNA6{>`325ZcK_9zx~~(`1y5I?z#suZ=Hj0w0WSU$ zBPRJ?nqH)=2D$1j!JwLTBs07SI6~bicN-H2m$vE_7DddGDW&h6w4JJ;MB>n-J#e7} znC>JIv{K$hdpQt$ib97&#zKe^la{R6A`vP4Y9UiJ{<69$`S3^Y>x2y~vqI1BhgUn+ zuU8g7o@aiPQ7Pr*-4#lDmyjG~mXkC}BSVzp9}SJm1n$oxwEZ=naly|UTI|}bmf|Iz z3uoFwAMQ9s+F&k0FIpDgwelA!g^h&hQ^(>_Qg3GfLq$_CAsp$%IGsZ$;t6kboX)r} zNTd+b*^tYLrc29uC25o+>q~-0NwO3SCAzYF;$WX=Ni&nf~YPh_N)IH@zEu z>I~~arA;eOLIibf8+3h zI;WatD64)rLK9ZDepO=abtJy=&=ByE)>DjXvIaLni+^;qaga_Y3sI1mv8nQcrSr6S zO-|FuE*TSYg)exASW7{rz9jFJF1bm<=WhHEPlKbAq)%nG^|(^ZDxkttJxM*3y&Ud!Uz;#h4Us!3q2Q#HJm|I3*B{^XpvB<};ae0e zn?j~SP+=h8D3T=3Iy9s~0lmNOFC1^QJqlq4e*+RCK^9EQ9_o^rua;8 zEMcL}iVro5OA$7*LP)9dM&L8hY1`#7|Iw*O`0LEexcdl zYKdoY^2pXAAPT4ULNy!}hGHV80e1K*$x%8~kWm~&M^F$Kz%q*q$~VlV33+J`gvtBx zm=v)Hjiv`o1bf1Yy0VnQ9Yjl?aT^7Ky=K_Lzu{(Qwt&`Hi4g&3>Hu)jXm^D`Wop_>^J!kX{gWJ9oM(tTbt68c5J2U0`9U!o*Frvi@C0W7c$YG9|(gfw)N) zAQXvQRi}6#YV^_!!zI)+2Alw76v@?+F{`SrCU7508?#<|;>4+8u#~>fOoRfaF9tN4 z>3Cz9A4VbSaULtlBm6y#s4{rjy@cUmYj1fYFfxyP=AD$K9Qi-VN=HK^LUq`2f{xWT zT9pEeM!ML5zU4k7BJDhZA{a$LDX?ggnTo1VK>bV@O3o!2YEhj@z^PXx2Td(r87E3| zMLhu&yOdiuX0<3jOX!rRI)r%m?#9INnSt2SF9M3HQ9q(l4I^kqXcF3p)z(`*8evK2 z-qy90#vi&0k_2-lK2HwLlxhf*afWxrX=nzTtrmr@3Wz^OY683Cmir@cR9&gJutxH%li{wT-b+z8zJHuNH!O2fh>JmNNT!cG8BSl8ruibF1#=E?s~osIy$U5g`mpKewFZ6%OlQXunu zIG%a4^iI^6X$>@WMl>8Ds%n*U(3?`nA=u zTw_rmoav=}H52NFCPK&9lW7Cg@Y7MpdLoNw9_@?ssb^dC24>;`)wwgC(@KqREQ-b)(~pB7`Hf(-QA%))}zCr*JTqy9k}*2)M|RTCzYEnt)zn zVJGAwZBLpRjR|2#8x#lod}ujf5&O`hLc5@Z)#zrnEh+mqO;1@xkG1UTkWUTu4ASQ&a-1|=2*2rCAh#OvGjx^@7D+-x#A#~^pjjzsuB<|yG9QTo zvx;#RGv8C#)(y)O-@t{OJpvb{m3`Bs;HP~C274ZMcyQS62L@-|H!Y|mr)^t`8J6px z>kf&0%%*fV*f@vjKC~%6@7(vh;J`t<246n-@Ze|HzfAN59_0VbhkhO${_QJ+IjoI< za0=eI^U~l~zy5d76wD1SIrx{sd`~SwK-&!y-tg>0pZr`GSOS5p@sC=eM;pXb%|UY- zm9XaJ;I!_;g1wFqh6e>_Kk_yhG9uo(wNU$Bm(hcU#9WuqhzYT%IwmQNiO zeD|9N1P2}b_28n%=aa)k(Aa_jG#%%UeDI<$?5LZtQU0`7eiKb`@|+5${QaC@pFz6^ zhaY};aL6})6+E@5DoDpS#C83%pykEj{I6XaEKxzzAR}_`z~%n9`Tz|kOp*UUd`go8 zJ*9}jAo^Q2`L5vboFIu86VUDM7%MJMz-+r;MMCd34V3n z6WI&wk*BS4oae*;ZTt0}{2~v%%7qcKGaal7uKViV!A|=e9vpt?Zoxr6yCs<4fLz*O zYbzVZgv^~;!Eg8faWHaGlk;rbj^vf1U<%NjjNmLb86wgVf zwo#-W`utlfJ&|%8J)#+UYDy6?&2f7-IB%~J!OjOkPx}uKj=uQc!5YXX9bcbDsB!UA z8+_=~bAku192G3w;9{89HrmMK{X@K|67sK&Og~&m(w+9mRl%=*@b_S?=qp}F{gCHG zC@=i|RvK)39sR0p^PUh&srp1xP^CpDTNwJJ&9~?Gam}o__6n_VR6a*q`ot)aI^E+R7=n+xcf-VPj^m z_MUUa-0^nBdFR-LSKebQ(LQr>s%+{bkJT+uVGwTgMw)@%P>HfKVW_utaZDJzOBvnOx8$DVy}qFwd32W@E#eU>tKuK+C_ zTwJU5vZ)KWg|}>v$fuxUYE>^OmmXXbJ&wo@U$cL`1cq;2V({_uX)&3xuZd~O?l{Pd*SJO?94OIv0GkVW`#|w?17u^w1cjF&0c%;Mf>v!gR#W0 zvKg5R5eP{@b=_e%@+K@*(dvb12ue#t)K^9App$O2mtTI_ZaBbhq8`ubb?TXWVKNWRUjHtL-Fh_+p1Z(e(aUGUo*Y|>h+Z#k=M!man)9S`4X z*IaUmjhpwH{pHHrZAJ~wrOj(?&FUKKv14yr@MbN~@+~Y51<8f>*tPfC^K)OcKi=`U zt!~cn7rksm6g|8Qe<>dwfS?4AaFMgBX6MQYT7xLgrz}NN-t7>(-R0VKw)~nqZ60!M z#Y>OcdFPyESKj^2vcHz}`*@A{#>(iyk`VGl7R0PZGwALQG=zP2Q z?t5+2-Ot->Vi_@@U_IB)u*1^wev5y!X~cGvD&wuvgckSjd}=nwYlYOGqAk{TJIsbaN;@*T=;=@iug)*h@Yk@O<__y62) zV`(S;@b~8k%#6$n?JroOCFIa`CJxADDK?T@sL=U;QLtqfCRD7wO)x#A)_ z=MVpD?^V>>>;JsM&ZE7(>e0!}%FVGNMzxa73Jxw@XglBspZ(9d=q}WXHl((&^<4iN zpvufAWg|`D`DOjEDyw9%$F&ouSksrjY-RID+udWHv!ZU@?B$zou-OnppFum=&claW z-MAO+-%l(gw$9sj)j8ML(oX%YEI!WucHT?Y^T2&=U}qdOE9ctXw_Ih_efF}!HP70w zuAdCBDSPCyi|x!O>uldW3+;a)z_AQN^conq2mW@79sbQ@?SVP0(M2&DDkj@&y)Uu9 z9c}jhtmlm|bykGaSDGM{<->Yd?~*PyaL0jMBlnn@(HIa|m_Q}uB|ueP%D1IA0qo3$ z(U#BfRhh5l3zf1?EKs(hhQEoEExrGjtmwT_cHfv+thh_DjlbzCn~8w$KVV1OY4|{^ z82z+8{M zz5#|!cK;>6whNxAwS9N%WOrQrCwt)a3D!uE(pT>Kp&fD9(e~*3FfIhv!Vs-&lE?$! zoai&h9c`z)d3(%W&dVu=ADKSLFjNy}^mQ!oT5VHV{-N*Qd)U0^&a$zQ-c~Ssto`fR zX%?$iqj#;XDjR0I?=jeNOMBX|A^ogS5`?WIm;0mYK{*%s3KI?ail${~)=-;nL?cB6 zEUvKS1aW+A)^zJ}&{wSHwX5y^RZY;*0(<1|4_l=zv0E#o1ppGVCGBbu?egtGqH7bAUrL!7{ePM;=U zNS--PJkzk8q4F8it$svr8$g3q*0Z1Ow(Cw-u=Xu`;D*<2b%{!_{`@*Vouv)5p`+1t=*fWVDAph77RY#pO0+ zXdi~kkQ3C2CR-sz9aASj7p_|l#a4O(CC&0iJ92t*rHu|r3yNa{!J!-9n`spTi*2`V z`PMMyPJ3YT3@ap9>r;Qd)|Ntjum1g~_Qy99w%1OB@X3DLZae!9TS!~_`fcag4{n}s z`|MR>k6e7MJ+zRel$Jbh=l||bi}&ecg|)NnZ@2x^9sudJf*nh7a#;vu}OC#x1F$PP(FGHPYddOojHD$d*E;YQ+Z+ec-8Vh?BfS z*W1L+q0$sVA(3}QUO}nVubgNX9&?nH)eW$VCR|{N@qe`EpP6r6Ml|5kU1k-Hjn*3_ z>zN6ot#-kC7A#$2vF08&XulKfyzd`q{aU75x=X!PM+V!#e&x1!%0sMJeW3mM_EW9* zs!sO$w;r&0mtJT6`;D;EPCLVXd?>+tM}E)dytdB1cHBkw$bLVxB`@4&m!5r-ed~pb z?7chwVAF~(v#+nIwntuHY~MaN#|jH&=_$7ZzIm|i+hdWP@|{DhyU|O)7bZak<^zHp z(j^vLX+Y!L;#&wGG)iLzp++>ThjH$_{9LPDJkiem_EA<^JKQdL{Q_%x>T-Kw%seX} zUV(2w7ptvruzt;}S^I6A)y|)9B}-OW-5yZf;`ZUe3hGMLNxx;L5uToq2 z%6MBm{|LJg47)60*^?8Vuz45!&IS%Vz<&0#U)zrlp!f6qPi^))^K9PY-uB;r`n~PE z_yN2AtXpi~=g+i3v>t&wa;nBV{-)XzQA;z8p!`Y5cPfk8(#QthM=&x<5YiyYtPTZY+txN= z;ZyDDAt??9{m@K9qH}nmG-V5>{L4-{Y9f9a2icut54N{Yzse@fN?4zgl$8X#;1jpI z_1j~AJN~re?1-ZGZTc-U?2r?Vwm~Id&%Jl# zb-HT<6INMQW;>7QNA!m&_Tqh|cGjfR?HgqaZT_AY+r-8n5xj4pedBxIx9@%ba2vj8 zp5622yHGlYVHc6Lam7r>5Al z;9wg_%pl3~h1_$A|m*4WJsK52+eyrmj`-3M%A_yr*=!i)B>iGPpT>Hm1ZPTdXP>Ugb9saj-DKli#- zzrWJvtZ25O5)#R#4%}g8hR3@ z?$_*%S&!K9-3U)#9kbzwonvF4A7c}q|F<1pG19(z$2uGJ$TN2J3Hw`P1AqZq0UvB2 zBk9QAcEi&z*zl1T*~JgPW4-#(gUefmdczj0vWk*&>x_j+Q&_v80Vb1`*3yZ-EVCA( z1!ZW@Bkb_w4!5#}i&%|%l|BAWZ%a&OSmwcZtlPYa_U`fuYl0|pS-v9PSYZtcfv>b- zG;IZxNLn!lDTqZ>qk}EKWry%IOHqGrF6CP+>Tbm&jkA35(~?|2)cG ze02&6)!|mqxDE$OR+I;r<|Va6ht@naZK34&VkqHr6m@f7g}zjAQl#Wi@27qVlRlFL zc0TxYdkT7+@X~cQjEHrO3_%@n`tA0@_(}Hot!G-#DD;t2>g(Dilk2Rm2_zKHE-~F6 znA*#l5kfaSyvX{@8f)*=;AD;_AqNWtiyXE~4v0KL@*Jl39PQijuP>{6hyh<-yyuQxr>5(b`L=5Xy z)0&7KaLIl4#D691m)|+p<`UQF2e&?If9NsZe)y9ctuDWpbuC+It7Q(iT3gI|dA)FM zZ6YK>4;)rCd7%z-p&YJr9VgWt`RV`!*oG7M2q*HS21GcenRQ*z)_0W}Jap=?pnkZYN*y zxQ(6kmfdwB3TqrbrG-#)l*p-Ov2bA)wN)(8ESZ&bk9Eqgw&fKK z0>&CxQ?J^;8MW?3ouR1|vaiVsi&&;4vBDmDyN@L%UT1%KbcywuJHg(d?a;)AoZOf- zu3n8hh=%U8F~g68d}c-_Y2P!=eaNqVf6M%2=}8kzG^vU;s8M>MCoe+_6AN~->qft3 z&;MbljlTX#t7GUq2g~B#$6RJ(UU<>QJbAMX&&5s0s*Jg7zIpWUB5R@>^bF3_~buIjA1P9swA{~I^j{~Ncn zjeh1?J9(e(*20H!vHXbwWx-2>p9Zq&d+}bVV{VF9H&mdqf)B+12DnrJwEBue%lY`Gy^JM6Lbo8zgGH5F7dQ6fMJ|aR(AN#OA8#?atg^UxH-^DUTHE@Ng_ybJ806(n5}`sBpB9PGgI+* zJMl>Cy5v?n;@cKg z9=|&xm4+CG!{bP8GPR*dX-{Y+@Iobp&J1*ugyuEdi;-&@5oYzUIIz|%OD7wc2-ajH zzV#E^FK@hk6Zv-P-3#rjzyE*M4dt?iS!kWQ#qF(IFSZ}u`l@w3>>w*g7(aEVKUtmqOl@@CvUJV_*B;SZNs%J|EfXS;& zWZll&hB!e!Sf+)OqA=%zQv*Y1YgVLf*vWsk!zv%Pv+rAAhwhlP>%M!e9eu-#R**)? zqH*47=U(>itVTQJ(7tACm|fOVWA*7WJMNr=Y|J@dgC~E?FwIJOc$B@WhGk(&?39c5 zv(cv?V?Vs|w>EuQwa@5IGvj()OFfgL;B$O%>tZPEV1~K{c2p{3L8`;7AJo=^PqI9t z_|gFlni34(t+B3qpJ_iHw#a^R&Arxb&%QSG@)PWYvu|gavwCOI-45$(GhSM42Y+ig zZ)3GhG*~qX`9Z%q#uh(uwjFcAckP<{-bO|dzpY`dt*tM$ub%rITXD~??1$(7${w0p zWnBuWlLWKZSPCpnn~DZx^(fOQ?Gc$R>QA_#59Z33C)y*{A~FxOHZP2bR&;Nh3lV(l2Kf>MrIe*tV~$%uU}^0 zDj#D%z4>L^@5jHe__QnS8^@hsmtQv))u_My_{ziV*^|F&C!Kw(&0?tCkoP!kSW#iV z&3N=YJMq5`wXvNJu#*lNfI*_hstCxQqTMUq;}|>gD{Jj%-=xj^^|Q9;AAV~6bBgTS z*M8ex{{UP-qrdsr?WCXIVAH!EVEfPftDSKADfYnhbu8UP%_Puu;MGvBGE7WCd_@8Z z63USeqXiABnBgYPTH=rPUB567m4>ri731G!1Nt(ajk73LodSeWZ1wy0&IfDoDH&q> z?$OVh=1;eGs#>fYE426S+|BaKQdYkT$2L|P?v$*yci)_8)g^;%uRVt1?2XWBSZ6b5 z&9SB;l&ZZTET#+BG7eeLwHFHkCard5g#}%^ShRk*%~-I~qQ(8}pnXPIa_w?!%x95L z7P*ndsuSbkiyD*G4Tr^=c(Dy&!OprB@8BfX$#&Ugh!x^^r`6YeKoTufHL5ad^TsAT z+#-CDsM&fsea0c_E*c{)2bkwxu|$4&4>Mmf{wx zT$-?w!QG6A7goPyip{O+j8Do4E5;=0&Ve1Y+#gjJvaZUynWlF~?}T2GIy{txMn(~3 zlJ%9gt}fTQG4(zVTBN^e1z15=&z)uOuWPh!gLbtMENWe`u*wRDz;6iTriz(1cSWJ~ zV%@Rw&Mah&z-D3!{FSyPSf{!p_^VT$ZD5a5t6K7oJ9X~9^FTUFC}7TCa_ps73qfVv z%eFXweH0!ab-h)zK{KKq?-7EA=8y*g7=3_)G?v^V=z;RPyX?jc6aWnHtBCCTPjv- ztJZ=W@0DP|TRdZ`EvZf0z+Lvh54OS9E=L(>*s7>;sf~O74O_Wvg5CD4*$t1}X8Yz7 z=Ab#xy7%sEsp=|Q3;p%%)0MbT3|7l8S7A25EW3QpmX_lVz$SiNz9TCG@*zc_V(B`| z>)PAOSbRJZU2U@$=h)!xxwdHbdsfr6zwJTj0PB@!)9?9>{c_S?_WHjsv99<#tzKSj z1-%Db*Mf+xMdrVca!}rPXWMCTAu_wt3J2mhoP*!$3*&6z%4znm2j|)k{^wTv?p{S! zvnFX>2X?mH#u}@rri)(0kUef9`7Ed_<8J}s43;v~*DKOYdstxodUv(Th0|<)eOKFS zw_Zeor%}P60HwR5d(QH8R@`Gp+jUqUMqkVpPn~3of^ypjSrc2;fDdMY-F@UQtopd0+Yx)?CbZM8 zHUOXChPrCjY?RC^^AIhO#!7p8=3Hy0%{y@KfoN7J-z-$TV)|S5K8siHwa+k1&6{Gg zT1t7pm-XmZ!Z3UzYt=@qGqjcmDB?@4jG_=RQr|)BL%h0y0;PhB808QeQ5+b>O5i+C z#Dv*TD{gDuA0m2CIK~Gvo39l`=GNbQJw5zXTyjZJ2t;iRuO(@?u#u3l@R9;oc_w*I znN)+RsL9$S_gY`&U61*o=0XAwNiAO(rQ<}PJv}C^Tjd*sB2v-&Q4JCDEMnfhAi^F^ z_}G^Eb;8ldlxZ>~>y!MT3=^tw)dGl7%)DBSTY={CTzd(>E~QHW!LnOeZV5AQ5@{#t zjRB`NW`~ld${)t3&^0YBp_a>+ouCo*N2I{1`9!eGmrom^6{ycbh8THP!cvNqe@rCO zF*m16vgT`0fuE}nCFz2G)k;^SMip_L!gt(~ zXNs}WE~E`O#cl9VG}R~tGAxOBLMQ&sISwQ<(bSA zp>sG&6wD>E^S%KIrFlbJvGG@^GM0i{ujYtnXGO0PKbp04E;GH5P*CW zwY&wS15XGzt;&WE7YyUk?GfriPn*XRlhCKbsHLJ98whWZuFU*d8Kt3wKylST0@e;U z#{)U)(v$B?rsBV&t}oF|DJ2tjLosj z9{Q_&3FXRH2+#vGTyjRp2iI_8Ay^cDkCh3A%f?-6=iT+T;&a*&zqr=U`1Y{Y=d=t} zga%(c&J1$5W=O#ky{Q}QmU+_f%FMj=Medx#s4vM*DN*Q!ND+w^+9k&muaAZ&_e5=sa`9O_u!5 zuk85!y6R2hUQr%8fhqw(CdAUj)Y4hzUE*M=W2bggL2-Rkj3};vS|!6k7arX;q!V{oS_nI9)|v;E2aJ&fy@7Gb8D+b z<==&=s2V(^uxF?A6Tl;+SD}Pp%hq_7uDt#^2_3PwWjr=ri_TYqD#L3a1#d}MNO97@ zvI5mLA;2Zj@Q*<87K>$G;W=TGA(AY=an;f1ddTZM=+4>L%`i9zqtxaQ~!FN?@Aue98nT&avz(TnAFs+tW$#yol?wwlYU1f)6 z!nF9M7)nw~jgEQAG0P;I+3D#JHSh?GBXY9gZz!TyL3ed^1?uNCM`z5SuAf9S%d-un17H~q$ExEd19 zXL#`of5qvNufS&h`{56QyNEl3zn+u8*5g`du$A!j%z9fkwGEhMz55;YP{nW>&Iob| zqVNo6seE8iBue5!m?Z}^yK$9@je#2L``q@YG z<3@S*oMsRN7h&Q!KtuFxovaY$V3v{UDoF3pV{bP3F?qG+ZUY%Tt6 zlS3g6t-sEIszWu}_$Z|rphX*UyC>F>1Qv~ate0AW!|PiwhL1b107M9AYl2FOsP>Gw zIIknaqF76^3Zr;SN{7>6_yjMY7`TxFOQ<@KSfZqLNZAXA=Q8xY{x`^k%Mq?^Nen-V zp0X^XoZvMHXF)r-xM+DFnbF;yLNubXIY1j^HpGsi`&zS7GCzt|GOz1(g`%hDcz> zz%2z5>|%_zMsG_B2~T_*`Eg~^#e;+txJW?&79A3Y7~zaipy%h;5I+BRagyW}%?KAD z(Xg9v!U82dT){$p3cHjl{{7#@NxY@zMtG?S(lC^0NJE>@lR)!(QbsvsbBl`_b2UN` znkyq}t+s>B6^2YXB$LEP@=x^AiH?v@x+Z$bb}j^r?hBsHwb<%ey_0>9!`Aea2c<~d zeb}2pF&=ie7#})TeS~kdC(X9vL{SWWKp3mg14f0Jt z+J09<;trXITx@RHl;KQ`wkP4YA8sH2Wv4L_3%xv6MRZO}Yid10L%sqztVt-LqDD`i zFHUKyVHR-cl4p+;rwBfXG*A>!IEY3#%*cOE zop!=@lN)}WT}CElAKiE_8*#Wv?nxmC&m`*<7fy>5Ga^Ri;C+S+%*iPZm4-|{GB0oa zow5g3lEtDGb#&#=<-?s^*DTA>f0GAYNQXLvmp4N|S=p`3XHihG*WYxid!hYKcSxHH z`huWR_#QPD@`cP5uXC(UrSj3%+2rzOY@f~orChaUHlq~iBbky&E@y9tcXdnIZhJ;2 zp3DYmWv*@XoK9Oep5HM2@QxFozPnL+t?zY|1J%5UK;f8s-xt%!{?*5 zM+2go_2?15@P&%H!>XKBi3LwQj}UOd918DHS>SR;P<8l%e$EVrI6-8-NpMMINSG-0 z8hE*%hWdF3HVKpLqnS7Uuk74XfFN}Nk1*FzXXvMdkmsKkOZQ58XozQXp7)i7xwZwaetE#86To?>_XKci=V%=4ga_tA^+Ilpb1&R zi!-I!+7uycAhZd*s-q; zJgW>znCrfbzLx9nBF)uDbUkK?6%wtQ-+IH&Lu zHZps2wqCBoa(Y2I+}sLXFM;j<& zTl6a&MRRS(Z4IHWZm*jZc9oljH{Id)iAQGHk>BoTB?ODqlyzAQ#O0#Fj>|`1Z0)pK zvfZj83qm78waC`2YP4x@uCk+#8{z&FQI@rFF7~c}h*rq0l1k33Uu;I(IrUKXItOJa z2AYAr)L7@zd3k%r64p>{wEgzo$#KeJ?mTKE^e^Mvqjn+e{IJ)t(Bvlq z56he-*@h=I$Ea?c6DHHD7dP9uamQKjuFM`w7I?beF_8QViFAvU__HM9C6FwZDGp55 zRj2JoKf0fF{0PI)h4t{Tl%+KrScR0&mxhA%Cx0^G#32`5hPxaGC()ue0~F5NNM3c! zz(hV_ocQ)|xKTnz6Cv2Og zKxJ}BJwXU0tlpSw-IB-|O^9{b38)q&M1dmxGJHZF^lX4F5f=hZLX|3lr(u9btWXId zP5}Y7NK;cVNl$^WqQuxxpD!ngPYVTguY3xoVTdFNM>M|7bMC((fTezsmCY>kCqT00 zZ#zt$LDHt&a^y{`*PmeOW}YT-5;`KTI2AaxiHTGeO|Iq{R}7RuR%+?if3^?-XirS( zlm$Kt;jm~K(Z-{3t0WqJeQgW{fmk*g;uDF8ejQuRU6JyW?H)}prGEI6ux5pEo5Et; zyC2Zkb}Sa70-op#RubR-pQSb7BYHyCcr;>$HuDJTyJ}6$rp;Z80=1)KtL1dx;h{YgQRBEUY)xp%H5kNDFq zXFyL+jX!5PhOWHL6@BsN%9F04jOaYY%(hO{$HE2GgdkEI5-xWm>!8vT>LFkI2lSEl z*~DY~Nr_IiLCt>C;7${MJFcV(NImHm4DfECQGAM|F zaB}5I4@i!Ii+?PGlY`0iAX#dKc`2)_sUUbamS&}+`e83c_0#b0<|$Ch5Q)oKUYmNe z=r9z7Yhn;IZ!MIdj$59lC=zrifyOA+KtlwIb}b>T7$|9GT1Zz4$B0QQu3;8*3F2X} z^O5s_Fzo?=Me|hgVX&`M*u4QLo};Xa3!()bHH4W~Tq%8={~dAjiWMVBnRFi=s++i4 zB8;UgleS{%8awdI0|}WThh7?at_S#ED1JuZvne`g!P*;a=n|;l5g33q3Uc#v?C#rN zv!jpQ-C_-Kn==<7{$&>9P%lk1C|o6Qs1W_RKvLyw=bJn3!mtSqX~JjYCoaOO60;Yd zU24P5?2Nk){3d2)6Hjmdh=gU`_*W98l`dSaX+lD-jTybzR;{eFY45DGefRF?@q4^e z#{wgIUL9)08nR9epoHc2y}30LX|1Aqph3|L1VmRDJkqvymDz&#nr+sM<+l5ty}e<~ zVM@KPMJnE-1>Mw)rfn597a=Ma2=wYwWdvIVa#C`YcX@`Ghm=zP9K0#1y=>_hK1QzPo=}*r`g_AS{DNNZS zu!r@0;|}*jtaMw(o^aAfNN*WX9Iq6y$%=}KY}UIhsm_|SS)3h9zC|iwqMPx%c?uLs zDgyypp)bzK2W0N{3guSI%P(7e#vIE(<#@~O*%w8N;8x>D6Tz2t$d3N1bsjiS=%DB@ zeUU~i`T=X&je6R0zjCkz`|TGhP47;(hF9LQ)E;|Sw}TEOZ3Y&mO}5lT79u|E%T~P4 zo|YUr(rRkztjqDoT5gY?z!^HiO4|-8Nziq?O%)W*JQ49o$jEt)iptNk2OgMYm21?N>V?I2+&6ac zp*;_{7fO-s7>$o9T1K$DSeE2QGOezvw}nI^|JI2kZ1m_4Y(U>G)`Mv6imRnww5;GT zGRq3Qh+=HzVjgbgglGp=i56omlGj7W=A5+Mvq=&{Ra26@-lG2p*c`M zVGxqFK#lzN#CBP>Y07D4J;Yk%d4$D*k>51&L4?&u^?(XY8|tJb3yVn1JIkUS-4i-; z-*wdh06+jqL_t*i({XDXo>7u`)U6}PF2zog;*g`xpj%gDk)pkImW zc}|u3uD`^K?X~c^*wNM0634ryY;NjQCZF6)EoPjN6eHhuf1*QT9z6a^CI-YbC}tZqh7RRZH29#K0ACiV@dJM z&YWk_Wy@^w9GFQKEv~kjrbZhwq^EUbnTMG(t8B@t z3Xh2FOAu}Ju5b!d+-70cWy5waaqDK+9^LG@ z7nUHKG_#5a5YSShye(8iNP13_AO7NYbw%(gGP4%-Wi?GCl>AoIDM{Gdv#PCyH3ob1 zW&z;x03~WUEXU}CX5#T;*p!475aOSuQ-Lq^x6O^xd&V&Uu}m55Ut^v%HE1FE7S=wk zwZ zxft)&Vx)+x^NkYXlTQY}9oCcTSa*<$kpb0PT23&h;rAtu0IAv?* z59l&`$_*wlFlr(?xv*%Wyjr$Sc<5Q}g&a-E3XOQY){jX1%-t4rtzpT_{A3RjgcP z1BP`*)6Tboz4x%y&p&Iu)~;iX)MCpYv8%0EFyDs88?2zP3yjIyXj0l_UFe`nl&nZ$ znE0@|S`a2$3+s)^)z+zV0pqdxw&$11?a?udY{ZV`R#?a|r_^i-Wl5cmtsQP2rF{WU zxd6`8xsDesuBFvu(6^w_5>55it6vXW&N`0Wy0BIk|I~BVH0y8)7cubmg{{h%`R{xG z@ghnoP(u~5cjvIeJIgK=cPhr=zL_=J3hc#k)%N|9yI2A1-w8)41fj)FY#CzIQF-e# zkrgnhoN7>9nn4%dup>^P5bm+3J6c!YYzr1v+K64dA|74n25Z+Y@K$b!!{#t#{VhH@`E~YAO;qQWx0* zhS6uTsQ2D`_ChJey5MqJvQ0E8{4=Dg?}J~4oj*lxI>@8cyW};C)3IQ5oz>H#*YPJm zUV6#&o#h)$iyvy+oQvk#{?vFo9!f*>m%#&YLyW*X>qssdbBhYSBBwX*DHy3j0wfv1 zP`k;8LRm*!tB!j|piPy;`An5A)diypI-k`vG+QT)%1|yDQ`8xDreg1-UhFkA>~!b& zQKSrZAv(g2Yf4s|Xp^)Q#(>v2=En^_!VB?-&XPn+lMyCIu0d>3b%<00YHQs{; zKJJIw`sB?MrC>7I=JJ8i(TY6r4LNnAM`CTNv7|a8UJ~>&0vo358$w?xdC+@-Fg@~s z*1`!IYFU>J)se`xddJ7dSsXWtP|v|B%GpZ}_u4Dxeo=HX2&c`oB(}`iC@@~aeQHfF|@SRHdh4#d4S<#(kz-^|`o0U=FLLo(S z;ySMKbY`OX*5zUi*7}v@y~}LIjC$_VA>`bLM_Xl&0Njpn`iSawp7Elp z{7m>!n?SJ}8&kG=UCervmm<@Mv6I&co=n=>s>U!S4R^BXees_+{(cr7J9e#DhOcZZ zzuvf0mUy&@)-a7#NIp2McPFI=t4A8^2>K(-Q_`8%ALrV~X+&F~qXZ)kEhwXL9V7p> zKBLwQ)J#6z^JCf$O}Y1VU@=DMeWjOD+9(B@oD^s>l7q%Q(Ktw}a$5Ph9Rb~#Gg6dK z%gqD{{8hjR{|ie{z$9hM{-rX!|{;XAl04 zIp0Y^vyIe|CbVfwkp_T)m*5g{Z{D_93RIX>XtLD@e0dBtR#Z%sI1X|ijKolO$gl)( z3gM%BK~szz^PH*?%^IcKGpJc~5$tX`nAf5i&-5G?+6>|`C%9ZO5zi(SzoMm{MFj~= zhUSTN5~1JZ%*u$n6NQSZHZdawIp~O+gfw`7gcQ9_l&cP_oXpxKSMNWsS@F9z(qF9>>F^$J9Cbb?L@X|G*KvBTI zgx7%>1;!D9v3cj9eT%WhzODvItRoAG=qJTQg|MvZz~o?2X|n0_YHa8ZU91tQ9$Mm} zR?6h6p|sW?>*bt|4cH#pK!REXXaj z-Za-@p{kd zniRDbr9t{ljkF`eQZxUMZ<@5_LsO2eBwqXS@P^-~EreyD6pO)68lr1P>26_$aC1ET zYl;h_6xUSFq#rkOE{ud>jPf^vN3-yv!z_hJ*F&6jtRYdoOBy`aB8-$aq}SBKyZoso z&=&frIc$P%v$xF~!XrVS5vF(+q^_|{DFQwOLgl0xPmCu}mMEljIEj*^dbkZ(k4lPB zrj#Sz$uNh+aw67<<_uGDT^r4sKc7TEsnT^-zAaW;&r01|m78HLz==0V$wJ_HV;E|T zaG*Pug()eujyyz z%xA(0`trsNKK01R@DcFvhd`zLQ)gE*Q>Pd#aB#)nAj-q(rj+&X*T*Kk^nvZULw6fK zsI&8#R=W4z70-yH9p`Plam!-rjkL?JjKY|aK`Nu@BFZpu3}=dEE7Mk1j-aKXYr%&i zHt=Gr-@?uD-%%7aIn&Z-n)ZbX+gO+KVtah-GW*5JJD{BMp5qmAU^r}(p)cye7l7R+=}hI3T)~pm zOyk~|pn=A~z~q*crsk{nFRU1ifjK$mc?}gMkw6S(dFMq#R-#1>jgp$^QNvMs)MF=U z$WG^Ah}O?B7^6H0Q*{E;7$azc^%>v%eJN4+@<~PW3NJ?2aw?y z#*_eDv_784$0DN&SD+ODLae|=L!OkwgI$7?Tw?rQmXCQ{9UmEPhihR=9~>T{eM%2m3tk$YhlJoXC8Q5t2*iHS$F)L&4`5Db#06+?#TTIjgqmtKEo7F2`2iL2b(UNJ%()khV+@;7K zd~T6D{H8F;h87Z`_n&QJ1RPVpm}ATFxu|Vu!XGbU4fHVL3{OExSTXZ#(dtI0ALkND z7cdVglAUOAJK0n$@nlFdqAj&-p@7x#=vSFVHn2OEsCd|Gqo*8C6wpg?d?_+WX}`U1q6Zi1?A1}$aOUV&ms&{=upm%j3%)nEAu{QLpFN*Jb|d8H&>%5m>Aa83w6wpKE%SA@({N{081> z@N?2(f=tZ+xTfn^{HTr$|C1f@F@I`rLi%i9+H}QRwBvv5X!_;5)d)T@%GN|1SkGUB z%87A7Sk-}<{u~G2hj_)nr2*?+JqlwTfAz?%2KZBdb^Hml24Uv7g;)u1;S|$18p3_Z z{bGIbKPZW`b-bC|W?7(ICMZ#FcvKbompRoj+Ar}1EGR4S&-&-dNV*OMs(bhFS%Id? z%)A#c)e|n_ETh9ok&*(1XS@f@;!c$B1vSjelxx0-LEnjC=_2`!E8c zCZFz#fLOG)8EZkA)iRVE7iMWzCC5?_(7;WZz0!vE+0lC?a!OPKKrQeq`qR;NvcVGy zT&p2+5O4+!@UzR!E3(=1>a7K5)^wy1c4BB;yocmYTdxv?cpTpp+zas6RQM4Y4H{w* z8#=7mo*1{<4%)qsm6kzkC=5A@;Rf~{Sr%;(N(TeckEl#Oo!Xurx5~QpU}6F?Jtv6| zkA_OL78~8^BIvSn=NxYnFjCAACt2%+lUwa{ENhO4ill2SpDL1xqV9yHZxnv{-#fi1`=8!;UJr zq(G@rOVJW}>=-avzOK&l2~Z@BSYzNCu1qpi(6xJ4duRS)d*Suf_M>A4IiGkj9aV?L ze?pvL3<>=V25on@vm*cy6@_%vRyN@x{;9)4Fn4jK_3P8s)@35gCh`9f4^}b5W6>%} zYf=zYdPxnY6b+@g9l_^CQSm6ZPg|yN3?fj*w7ocasTFD>h6G0o#&Vd&LypkMiQDAE z*mqE#y)=294cnpAb{SIcJS?n`@H~O=(FfQvJD118PcmRz+C)p45_$bA_wpC^kXy-{OQD84#6dCCY+ZaqjB%~uUuCmCYQimC-8Ks6% zCzy*H1eeYZL;Zj5&I7>CqdME?-n&&@vRq}bjg4)JF)b9EVoV5xZc6A7AV30yz)uJ` z)Ib6ubVx!E-2?-+Wn+V}v2pLcTawi!t81lQZM)@vo-_AKGPn^yyJB{~`}O%|-Z|&Y znKNf*(npEqfO1ytPM4mF6IiNbrNSi`+3iH_PtT6Dr=sNGkBW+brl$5jdw@KpoW^lm zP)=rGrvwnua-~Soa&y=JcBFWgGW4UeJcbfz_oF=pcHvbR&6xwlz^7%G9eAiLHNj6D z?Z#_?({=?ayY*C_h#kD0BTHObYG#~!%`VT%_H*&WV8MHKvnnSIB9mCj!<_TA`xSma z1u6^Kc08rW+zL{WAMb3Sg9g|Z9wrRp>V(QTLP+7>PHJ`s@_Z6WJM|fxlR*Hm#Fzb= z!}v|{9XODU2UGBI*wNZMADBe@6s)AzygKu2o&1b3VaRl*Uv*B8aUCidTj-Jq4V-)X z`}^bCrCZ{)AlpU%`3}DTktK*FSr?|_Ta{P;WPh?-DsyLbbk|`1bu!$HyWN3I&p!-p z^w;}hta~VWXk8$~5$gIt6fBhdd3oHiY9Jo=pxLQANv~;kNt!F@cgjF&6xQ7>*yzxi z*^qODrR*po6fk1b<`L)!>l=>rcHOC@w-E5U6lmS-YA{l`ISu7uFs@y)KIf;IP4~O9 zIAh%jl*08p_;q)}DvK7ZlIx_cHuq62QBk2-D$c3PZeGAVN66`^eN0eDhe0=VrQ@@= zd$yslvp!y(xyNSBogUXQjmFcDs>htESoIivRmJikZ~Cp|b3xn*KQ8YUVSAF1EjEUg zNn`9?sROXc9ND4~omHTDd0q$7VkRHlHzIDA$`@oUIvF5(6rEoYL(7ttA|9Z{W@ zPL)iF$~bc4eE`jA4>(V(lxeA0sxhdl)FP0N`mGO!_0I9>Fd5l6YC3$n%1m zx9%+@zu(&f_j(T^0E3b#ox&|ag1=QXy*@Z^?v3zzqPA>%wgt8rXe5tQmk0#73QMg zT9vsw#!-t~_!2nz+5!8{h^vF=sQ^AoR(gwk|y*`;Uw>+VB6I>+O^*+dF7kr zIh9Nps-ZJr%Wf4$`_MvLu@S`@-<3Mb(;zFN*AdQRED6-p-_59tYOKSd09}-KbheZp z3!P@`de>&>kM_0XE{OzcOTJRLkk6Z!48__3Mtn}|WrUO%G6OI;C{M<7n6%aeT4aod z+5bV);2chK)Tc>`{2EMx)jt^eZ=w$F!L<7?8k7C*8-Xpj58JY8ZTV z6d!4HVf;jqN1;^BojuPvoL~2jy4R3*Zl1eXdT!u83bD~S18ssYw6|9ODlA`B z`>Y7kb|E~75|}5P2nES>_(NG&vFdK3hiTK+Dx>L~5Y*9f-~;{W44+tu8=D5C+~hB^ zm3Tm8Vj{NVyyvtCzFW_Y5sBQ_3P_O2(zntBsa6AzA%IXJ>wHV0x4mpSFHfRcU23s*-EiE>gosaOU9M3qeBF$A zEV%8Up+5!CKqe8f6_u@9Dl^xPymjel3~a_+y@!s_Sf8}!Zl@b(&2lnYDl>?03f+9` zR}IBiPr5zc{#S=Hk`dgI5<2{5<%aM_mdnyYzuN~Zam zVz`Cg5bP;y$$VM{;63L^9dQ(q#o z8PmJs8>cLePrl>u=z*|YsJn8 zP+`PZPe04qF#Sc)Rpo$}Ru?KdmX)0QkQQFc`3)6oaCt@toX`@cSuH7LJMxgoJ>EKOlq2{0Y#%;zjY|~+k1Ly*G+^>jcyd$9BE}68ybzn z9xyk)fBuqq&9U>M3)8r!P6-6b1uiO1kPOG$9S$c`e*eH}v7D18tdXFX{3HL(H2F5- z#^sHeJ9{erWH3kD=`gLeFv%1cZuy37v223^gjk$gjChPAg$q&ssVJb*R)^HI9Cgv{ zv=wFj;_KGL9((jNnnjDJ!*;C|g`?18wp3A&s`cLJrkOmK1yO%~`MP-e6ZVaVJYZ(} zvna28uIhSb?6X8Hj*N%6cDF#f#VWf9z{AB@Rjhw;&GHzj49C>kj2zLU&zQ0%0rMSB z^sTdE)6!I>+qj9a|KX_{!LxCE3h!{ z)G|(TQGsTDaryf6-I1mSQ81lYv!9u;?K&T&ph}H?vHmIH^EYryzIW&x(Fx zVr3rLo7c>vObUI8RRfb%RRtD>(uoW%VH4Uq6HcOBZC$dIDcJErfEvWi+?L1NFXfw)?8k(X zDU}`*t0{K_j5R{x(uiQfFY*pE4D*cU$N`@3XGESYxbL6643@B;7(x&|<576!+3qTC zez)?;d?$96F=q-F{?w;r!t3rBW_9fz)`J3Dt`Adj4Qj3h%WXLQw3wazwv}`l!&EtI zIl^8V>j>@NEj5$(X)C;BFe8-i85 zMo>Jru?oNd{Mzir0z)hC%Rjmep*EO`x{F^U+32DI;WSGqoGlrdaQ6x+B$XQqOL)n~ zNmWgU?x`zp8j7JU_|?IixwaO(nx=nn8o{Mt1i6#bWI#*f_@->z(i3~mofcQ!vL?EIsT=&{%%ySgyxC0kz>3}5;6ZBg zk!@YbIM#xb7n9DwPW;%0fTfqEtIoZ2bKJC$$w+yIT2C>a6~3ptWoV}xNlo%08mcuF zApLn9f!Bos<@|s8wAN_EaW@+#slDxkaZ*p;TdkQn^1Y)yK>swnAcN`mLK&t!K!$2H@o^#fIM z(VidZ+X<@)T2+$Pj!HnU~g8rV`aX3k~A z%!tR9=P2EEBSW-giUwGPs47fjP*J;};0@hqr>&7qQE_f42+zzmwr(llYl%pJC>G=M zXOe~@go-c{osIb8)ER+dpRawkPDeiqfiOJdoeuvdl#(81t}$>qukMxi?^ zHJ6eojWZS`MF0)32Hc$4J#pj0;ke+Ybw%j}ORX-2`r57JwqV}f@ROb__DnvBr=8Cz zI=Z8lZi_|u=ggSdpNozrK8T}Hlq;8uaBibPDzy=C93Jn(jgzi-9AF0-={aZbN__i_ zB}|@31qzW?Y2h|7J(Vs2<kNn)s&7VqG35iU zi29@8j+2VHGA%c7bmr}?!?gaX#J2Ll8CR^y%D+zI%h{y; zZD|3g8?UA*ii*BQE6#RRuo&)p0lqI zR|VS3$)sr<>fXXGHwdoak^YL%pVk#aLgz=My*$aw6ZeDk$YhWnS016;wgpz0nhJlA zr!o;{;TtN+%wSsCGP5XH?MzpoCGn`{p7@yesRC|k7WNu4u0kDKA^r+{EB^9gu7W~0 zbH#P%@Kf{8pd&-^wdLL40ju9nfyysyS@Mq}N-7~;97_{+SC-`wU^to1O3QZ$+49KR zu$+%k$f{Dva=OgRQ{yU0h_{Rz#lrZfqJ=A%IAFU zG}Jf*6~p~DO^V5mJGxGPbFl&BnR@;z_&s_oEsPS z#YTJ!o%6reXG<7fm4JZExo4{OM@e~{w`eI(t4`tC)Et67fHH8?En1MF-x|v)l}F15 zpifz@&8l46eL|rDxRUgD{1V0PPFgP4FC9QhQi8E4H3F=Pjk2bPu;q}skeufDZrxD16Hdx$3_(jg#Hd0Y20N?tBW5Z z8M{kE#~J)(6sN>UgFz}!G8bJ+C^)%vnHCZ%YzJppvzLmSOVCT%q)lkYihyTS#_cXe z6KLZvAmtg$!)I$UBMOOI6?c#f61b$-37$`IusBO7_&BHsZIJqqJiuU%bT!YZMJUU~ zAoU8bmwT1G&pr0eVW(jw=~6;b5!a&W9!#WMyN*kD1z1^s5RZBZ2asODME>_&!nSU` zzoD3a?(frg^PJyx#$rR&S@+zt+2Tsa??kL5Do4?AuZi$&z+g%y%iU1b9LKOlAGd?b z;N)1451BQ_Qh{RBl#UWG*bH3w^;^7B-pW@e)sGC4Q_rUqYQ|EmAuI3!8yJ~OH^3;} z<5)^)y*cNF4*7PO572)%ZOY78vSbybq87$mo_9ETg(zT7<1?=*U<5ERo>W=>gC<5n zWI0>eNom>V4O3Y6FIc{nQ5^W~%%Z}x#R5}x^`JPxlw(+1x){OPMMZbbb?aFimKEY> zvog9&r!Q2h@fONtrJUal#pH*IHy5V zEUWP2?nZwUw``*jb&3%2vEn)V%C&Lz8youvq|u1p8B=pzPyICy+-ExO2)JL+rJ}M~$AU7pZ3OzkdN;Bz zhKFbjvMys~v@f3exO%+u$+%}=B>*a-r^2&rz*=hoM$+VWWgZ8=8$(RM(=Hh$qg2>j zLPZR-GN)TtcNObECtZ~qu(R+d{iztS=bo}nezIaG#{k0S^U@Ie?480A+!?Z;%ao{W z!NX2AnaT*~25X6en+3={Bb-18mE${iBWfeBI;s=JlJU}Jkbf*w;zHSrmvScG!BVHQ zz4r>HW8h0vd)FAXtq;7#Zkmpp^d|mnm9P#Pw^TxgZ z{N4(bWg^l0-Hrk!BPg7-px9rYL;-u40iR3f=cy2blVkCWp-aZ;H4|u}rTmF6^-w+l zY&@zWRmW`8m0SftysK_y6!NukPsUIb9rBj~pc2d1j>QIs{w`ayE#~ft!zC4!W9%!8 z9&@r#m%nXl2H!Fmw=$i<_fK6NFF$5~D!(b2J;)3+EjlrPNhV{a|A1*Cm*i3Av9h+? zq?CCVgnkQ4L@Z+l?UC^f@!&)DkDeaaQWPQm2Y8ET?p!t;ckCH+(g+rKX@F z=HG!?{(xEfqeLZ6a)H)fdF7iY-;NT*`fW_ux@tWW^k5;0KCGEk?zNuOhF~22^(k;# z5k{xD?qr(IQAQnE-ef6?51|yC`Mqa?7uWbgL$f&AYr8~tJNnDISmEmd<=fQI1p!R1(;-JB$0qX&qUk?#ShF(qf~G1TpE{2=mzVOkf}l zDJ%d|K&`*rdw`5mK_@e$-7IKm5HA%(A5o4e>^VUh=2VO$bnCY4_ki0^znaxg7Wb93VtUiv1H#dedV{&e(WCT z6m~ubakx*f`l*aN>({zuPNXd|#d(^%GXkywp1ujzcLwmyOqTDI47X{6>*blr`D^0L zR7vETbu?Q?yJG>qJFC{Sv<5`v1ez{xxP{i)+Rd%FZSi1Sbi-U{s9N~41vdlhU7TjfY|`Lzo-#^?}A(x$PvVZoYMfnvIbIgd6ms$;{Z z(YSum#+(PK!qC^Vu41I9PQGbhn zry|+iP)zxVFi{$n--vVY$635W1s#PGv~bHvnQi6OV7;+%y7wA%RgDhgCd}|?hu=GD zuLtX97t$Xwg;I%ZAkkC83GeZWfC5f<%*kt1ajAQ>KsO=QIBX zEOF>UJ!sjA=WZN+yVxW^hw#_I2m=(BC#-aA75o#8rMrSfk0m<h1jsne%%uRDft?rkEJ z;X1Z)6w)=Zg?UG&PZL`eaD_A&^7khZloJRDyAFPF&hohB=H<~fh1uA3uDzVk%@dcQc{=egD*_;ZQ4@+qUHN76xNYLMv9CoXhn9m=I{GS*aawgL zre6Ha7BAlrANbhi@$D}>8AXiY*HD`?DQD|=HzG8xv!*#YMEbyAvx|nvWlNiJ@)cO_ zdYD@bXYd@%VWp3XsuLGl=g;S2W@ohc@EX zM=`JlMXTl-XneH>EvrcB(qq)S1Fyy{ulv3`oH}_<{^Xqc!YO@HsYtBKyF2Pa-sP1YzY{O#$Qq%f!{d^-lFz)8 z7q}sBii3)%SeZ|0&|_U)#ITK5k>BD|;t@07PrA%w_!O*EIHf)BW#hnmB|#aV#l@8@ zA9wdBSaiQf$j>DT9#N-d@K}Y2F_sX5M8lpxGnj$%#uPHu2ZJSGT&30P@abG9$ea-J zdHkZR1Jjbl6^YW!CvoOe?M%0iC*!V@_uNASh4NWA!EkI{3kTiBn=I z6SeW{V3+$z3ScSPl0ttwWv}4u_!umvn|OR379^}7`V%xOEY$6b_+r>S>;#$m7ud`% zqg9|Mgi8u4K~X?~k&Bep`p09{;tg^2ZH$Pup@aOEHvL|~PoUcA$U{>#83L)ue}8u1 z)JbzzQYw=0;f;%Es94{VDO|$AiZ$HW)FoZ>Ef;GAkE&}2%DXxRQ<0^l0z=ow>!!;FQVyt)F7)=Q4m<@t0ZYgY_mWu^CHw4Zh1t ziY(bB0wra|ZsiUoWqi^Kq$2zTtWIE;K4)C4xSS9Q=NKdNE?KF9xeff8$sGQcG#PW2 zG?pNh=rYbp{gWBBtj+Tdn#(~{d5+wHp1h~U#eG)h?0u8C8?kLufoYbtf@g%2j=8o(tiUXAjVvwtY8xn^Rc5mtg@Ar| z@*=XX^E3A|*QNL@@MI!!@fe)93%|()#s4WaS>)0Vd6VJNw+XshzIHg)tfS(yvI94X zpuuF3j>_m_tBm2OT1S!6^ouf8M^In8XcIi-5L(KER$n2fLQ{#MMC`x&Ng6U`;z9aM z=k~HE|K0c%4l)tzS(hwhO8Xf&IfF+E4Ja_p-1s>$?~F=0eFM-Klg(iXU^GK9n=6d4 zMA2A-hTu>8viL@oNngM8?HghZ%T&~G47PjS?+a6DHMi4YApmNoal-MF4@eGw=__cu z*b4X15YZQc?%bdKdRc55z>0|gYGOHo%D_lIM5AJ_FPKB2Y5BmnyzQp%tAg1|&6cfx z8}Mq4QHJ!O2aRAB4{KtxP%!eqiMc-MCc^n(cbZm?};u~N0)?CYlT zYT$!XVT%5iT?ZDfeRN3ZY7dG4^;Z=~%qF9NzVySJW5J>g__B28M1ML;YwFgNnVLJq zAx<47YS-oPkNc$}z%Ai|VJ<95q2IA=Q!Kfi$@p*ruH%qVx7&aUtwA?vVo8NZgSXvx zj^EEloL|qpy$Cd5E-gRs%9bEPT{@+LDEp+;KW@hUkFk?V6VI>dWuwB%A<>!SN?d)* zhB)tnl{8Rj?c3tlkAcYcNG zBbvB@WZOlDYbfqLD4z@0_QWTD zu62QKLVGXxx2wLCUn#Lk3R6keZxmzBC=MUNOjy%U0#JZdpwcRiP**Whd1|33HBkVX zC`~P9Cui;qu9fSRZq9Sr7xz5xmWq^nHWdp(HVXU{f09$D@tnur7f#d1exd`ULh#2# z6?v}A5wD~r^QYqIp2m%{kHbJa@}D?>pICv9_$6NL^QL(6y!#sXs-!w0r{$nBR-Eej zUK@zcK0yMggsCL5{lvZRN(tQiGxu`0e7<3q2q8V&*?ZNlyCz+D*@7TJ#d6eU1iN6S zqCm}rL1Y%6*9#MKZq1Qss7!ecJ8r#)Ys8hqX=NzBRfe?hNV@qoP#X84UVSg$i6=sOr8KcvGqUucamALNKq1dvPrF~ov2`qBhGXh#_uwtZY zPx_L?aE;C`1~{74M8Zi`l--)PGuYV>$GNdq*pjq5#G5(0t%8sr)cbwH*t#2?s)jFILPMs)XyII&3w|vXn^*ybyjp{wnRl#*we;3) z8jg>C{?Zs4l3rbC7)1=4gTz1yWuskYla$O7w=7JGvWc~_QW=S_pT{7&A!rK`HHyH` zO3q#e1rivM`NBUm@&fr)p$oZ!9~j>D$TqM6Gp#MUY-j;i;U0lE`+Hk);^i!fbCn8| zd?~+M9>fRzW;!MA8oL1PVRj5u)J12Zvd ze@ot$X8kT@vLh%bx5KyN^1U3jQ+zK^-0Q9K@lH!6ON!^cYEqCH$S#D91q?%EOD5w( z7*VA;_XDKWzT!J%O3!fwoICzSKf+2q@2`c(|SRu}t9sheZR+RHL;G{_lkY|(mn3i5Nc#}{R z01^6A3F4Olf@&~4x(9(X#K@lcbiD*KW;=hFYbGUgu^=UDMPSVY-#!>^N?(jm?T>Mk z^PV}=V!<675f@iozOUr1Dfl@YKM}0<+ zD}1HngCDyFI(F0^f=aD}a&feo>8P5fWXOr9zoK{p0=$y~6Am%GTFaDCN|#^$nvt-J zw?@xYMvh?u&jns-%!!qiljq`66C1FyYsF*NGD|E~suaxNTC4*KEk>xJ$oK8pALpFE zI=*+p?X-r$Pg#gGZ#XGwTG{!|#KV+G+})2dmJ}u(xxB{av7R{bI%E=Qu8X65N7hTe zJ?F$qkMd6oOPh|8*08W7ZsKJ{=(B{Bo7=m_ z@~uhu(=NxH@6Y_RDMC687O!hn(b`fJ2Jq5HQ)Nm%Q`U=#oAi}5#x<_{j0$Rb-uK#D zM*(QZ={NJQExU@36d04Xq_cJ!Ckj13U--^n!Ey7@RI?K!d8w1HRLIFI=PA43tHc3} zvN4l*DYMw5E3Zp`9P0{HtXS>$#Vq6J8yx4iIZwk5-)<*F($2EWOZVf4n0}vNwv(UA z-jZsE?8EM;zzU9}ruMT6WftVx<|rw(P=Y=z`drp?G)K9XeU=C!_eIboyJhB6NO!(v zGIo5reRcBe3h|N$2xT)v>+6g(Nu|I-MX*{2B|$(4X|kmB4&9o{wt`==S z8$T&<6iSmcD0i&d3QM8zK^M&yeoTZDes}}Q4Him-NNK%62MXU5C<@M}bCii|5nQe>mK9z*?@2%Mj@OZ6i4~Y>LC{(!Zu+StO^Shy7%NZ=at^p& zerF>-ej4jCy8eq+)13YwQJbV7-A%GG|K!a*bR-XDvFCL%X@ex`#A7S`_9jl!8TEkj zENM>q5Sh`$2 zE=>Nh$#d;}X5B(bv19>}Sk7$AZx1L>_KqmLvc*g(rWMM! zRIG65ZH)4sh#71yGmoLIXBgxwY{sa9MI~?A*1VX+Q05QiOIYOZqdt;MXpDTkuxSH!R--R?}(8+xozF zMM0wwm&p)7_Kl}9%JrlTEKH7Mjaj{M!IdjxDf9HC<%AW?sW<6<7C`AyCMxCCA+u6; zq^gbUM1xd(jx0cNA-%GNlUs6d#nr3v+d(ENw4t94-z2T=L|bVRmj)BJB4E;Fu0S_F zBb8_At8toxs&wc)QjFe<>3#9b3)iuP2i>Pw1MT+YjpSuVR;9%52&M@HtJ8(2(nR7? z4!O9iHhnQ1Wa7|kZd%W1;3;$s<0=4mIhT>;4^t)|mI_Op3RZTZXhGSo1gMbO#Rp!U z%>wb*^02FTBR*z7KWl|iV(HZXkv+$Jh3Ar}CJ?18y8M2TtE5Sp!CxxDZJJjxzGXSe zBfgq0W@{dCtAl00MVe_>PFCvN%4;f9HU!hjSIpXSuFw`3Ny6<$w%zU7Wr}in#=<)D zy7e&UD@$Bu*Rv6FKVK+mD?G_%{w77RFbRoSNp6;H)`_HBT2QiNcIC?s7Gme7+>(w^ zoQhIFB+9dVmVC08ezKk*9x=?>%8eHq%5Hjr_xVhTUo#+U7zMX?*CoXbA zCX?el=efeWJYjx(rhQMW(t-qD#mFFL@?()<+wZF|!O!`=aqxjoJSL;_y_8iZDwE+) zCrw_w??92 zaBZO?C?I+@S4ehYKyybLlCk+#O+uF5002M$Nkl=jDafxY73q;qHIQ_!)#K-fQe+0b*B$1Z{ z)PkGnKw3NHm&40Rb~l!_rOP(Qg0*xHNjsTyu`F54w0n~I^dg&BsZ?3f zdF;j9iC1|~KLsht*^}*_!%o1rYO&~!b#d;+1Bt6XX3SV-gnYHU+u>_2PF%1^`MO(X zk9}r8%efhsTspusJXk3mY1o4j4v#fFC$A|}+8CtV1CZ=qu%aWfq$hIQrkMOlV#Wt@ zZ?5@{O&*^=^Wv3E?25vPzmH``8=15aj|rOSka&>Xl7ZaIchZDDmSqW^lr)>JLThc_$p^hx z^5CgBB@WVz=g^PmsZb_fT=YS&d0*P_-0!(@oVUG|2V%oBNryb*OFr&?dm4TC-UFq3 z-ysXd_$?g%asfU*RMKaLTs(uIdQIs3Iv^vNiz{VcQf3?tOtgbr={nIwMR15~W0>oV z3^Ljd#3)tioQHrj=Y zHCwDE?LFO2IjnsX|LKJ$;iQv<6&9jCa>%#eKJqJj9#84KbOFaBx#(?6dd3vb^H zZ86Cm@ij2H34@Omk`~iih~Knjdb!*{z}6krgFyNG z=dO#(nN{48VVY!HEmqg|&n6n1dlz)I>r-#ndg6v-s`+eE(F6ZyzIH=ga{XFHeKH&y zBCCUIS}7#n{JuNmF4!dP3;!g*DGSK%74gB8(ZDfTOUIc^o_WK9_4xB}%Zgh(w5pK@ zPWTfKHu0gg+u5=uCmn)i!A=Z)4u@XoRCBmV3Rh_4dp(9ms&V}BXUE1(Ta(^$ z@Isf}c;e^h{F&&`Nld{36`BNbjX9g7tFL_PnshY99FD&Y^n#)=4mLUCb|ziSq$Tjs zUj?30IrW$W@M_Zoq%&q*0*~JQMBbr zWt%T&M#V`8_({2Dq~eJbu+AVpD}oLtDI4s4AWi<=-(W2F8M5-=`!xkN2^{w$5PcFf zSB#`2kBUBH;~JGxl?vY3nT&Vxl?)us1OI4ccra#^=w1@4DdX|s~h;F7+Q=c zuAo#^oUR=LsO7u}#0?0}pd_sdYGzoVCTS2eu`=931vk!;EiHt#j?1~2VhR!RWdW*C zqWHM4YK_xh%5l{&1_nDEQT6%J8i2k923^eF-i3r77^=mmzI9_f>6t%_cfR{ zK%bRU%8sO!Ql;~}a4FT@P)e}i9v%odCY!;20#tpp2e$2 z<3k_46rqL$@L7~OU&*YCBC@t#g&{K;mSUC9d6$4<0{}UCqyks@q z1twyZm707ZHf?;ik9f?uN(GRkHvxs5=awbHd$2dLcvb5tM{{PxH@|mtTzL8F=*QQ^ zE<>N_$OTR&ESQF@oZXvew>E9KY|=Ou-yd8CFUb$cp`4h|BIllZyp7u~HVfW(j3c2Z z=hBz8Mp1%{A9n-hAZt=-s*F3=ma}QQ#;J7HL@Dc@G8)U*)#C%FQYu{Uq)B?UqSI>S zC|k=kcN2!(P9HWo1}k^ui#%oiI`j7B8g(SL)=4*aH9Lq?QYY89(;7$S+5Bb(!B84T zD)PLvSwI@WJz90Bovs+jW6c9~DtA`LCqI9o7+7 zL1&BlHnKRvITJs6jr%^6Be1}~i#f+`-_VNZyy>L)%70%KQ<$l|M@PgIR5F!BXeCET z|0oI&I@?~5<<5ls79JBVC?Ty+y>S!1JZGMLM|AIL7ZHo#Vr8jfDbiY0VQGxw;LU8= zJl_YlJz(K+H}uwvWv`3#9?pC79+-O0R@4f`9F-(AhT#*XLpi{^(@|)@cSD?h#tIZ% z1dLNuzX$6BPnji@6pqw^|iCw9%{bPdEHVEbi}r|HZL& z5Sp}$c@kh`5hYoZ7G-!=QslXYoT!6=R>@mdSK}AgQOQlG(x>~5@d)WcfH)_=H0GED zn3*%70hI!I3`~$i(pEPO8tJQpnUlFTm{$xt6xhK|;NTp0IS4lCi}=TTV#*Ze=enpK zKfOx)kOyF_g+iI<5=_=7%8JP#x5Ti>cNKBytBKzr7ka1zof4x9UoIOt;v_FtX^7Y@ z>Xba);6_bJ!`O|fHK467*0WB(Q2L~) zD^TL3|14nB$ju21(wB7&InPFzh8Qvo@4+j`^YmJhp1?+a61$p>HgI!JFmgm5-E;1q zI!!*TC4GT2b)y*iTo*K4l^(&kOj1pJT(1$2@~hg-c^8u~J5ehsl7ox&i8Pw7`x&I+ z`wT@?tN0km9EyD;o778c4Nes2VnAp~pPxn=~-r<6(ws`uOHFdsEj3V0{c?7>ty zp3Mye2}IIGt(Fy5G9g2;_jjSsMttYHx5dv+UmQ<4=79LG|9(;IyH{ZGi_A$kSra5O| zm6{diHvhe6eq4*gmYgjdkC{a}33-@G4&`wf%jf*v`>%-q`0ADMiWeOkfAzvcb7%%@53=;_`WtEl{=%#_-IOU8xV#`KG;`P_DrrAv?COpc#YGnfu z1UVkS0d9B*P^}JWnM_54f0vek?P-WFqwB|yrOC&02B z-Nfr>I0ik*qsX1M*2r^UgJ9lHPsB&7q~L~gb>b$5;)f+YM=dyVVaN$yiKjLi7oKx_ z{O5mN6UV>z3CK9^CExFQY*4@SvF_gVNF{nSq>= z-;ys$b1!AD<|C%k8IL8MiA9Gd$Y-G;p23i?U4~KLrYv)ocP9gsKdC3jaer}v-7%br z%d{exIw(ig7NuC}+VcYw6^d>^WuGiZvm&-_X7b(5HRy#rDVwyCC}*8RQn}741rAQq zB75bTw2?BNXRHSe+vOJ+pf`v^!Hnk_F)CS?bDl@0jmpc=bYrNGSCJ6BlU;>IXI%G_ zrcBCxhGOMO+RcJUbtNSd-=cL@*?Vp@_uDV#KJ*ay%E}yOoI5-EAN=6xdcc8H@>KXF zO2=n4=E_tSHr;36n0v&-qH7x64P0wY?TPLO9uV^mI+!^mnR%P|dsvF1zV|_~*P|X8 zQ&FNu_ce75vQr2~a60tZxwFgn77FDhgDhRQCB~Pq zP8qA(r?S+87VPkQ6dFfi6v}E7g@hmzWyL0wG-Jhhe>65Cgf+=$v@ziyj_FJbFL;K(%05^s-esmdPelSigQtY+OIcR2SQr zWUnU=F1n*DZ+K%ZUC zFs(urdtwkA;d~g~qboKuBlU_E>tnAyXM>ZLJH7!%S}jV1lLMs`i)g|{-|mW;ETH_@ zr_PEg{nNpQ1#!V9M<%Kis35r4#DcTA3{im=6Q=}+tR;;Cl$d~-%i-A7UTLVUf|fFH0IGzs0MLT<$>ADXa<4#<$4_eqnsd_++Gv__}JBObbE%-ye- zxgNm-d~#H5;$y?YsS5N-0jKRe*`_IhGJkBYg=e>(G?FXDC$EYXRv36T=?l!NRBq_F zd}mwKspPs)%63+sihOOy%VSBy#y=r~i?o>ri?E%f{bn}f@ed(iVB)07Hh^jB1LmGl z!F8a?d~2XaV-TAOn9TyyQRLZZ!^#k)jL6hGv%N+ao%LdcZuY&f_-@;)8QWCsU3tN^ z@rXzF2K9;&FgSEC2F|d);0z~NM$^hPWeP0=X)IIAe&Rw&0qG{62R(3~cdi^-Znj`(JC_claJMZqu5qZqd@3?X|N7?VFwoC$Diln9q z!-^MG(2qBkuZa4_f#^H*AedWo=2di!k%A}mmcKRoIH zC_r7rr?QokY|2j};Jb-J=DdC4y@?4z4DD0KtvLDI<*{%X=Iv?pkL%xru+APL1a&4K ze3SS{s#d#P$Bb;G)rd&?@Yfj|Vg4*z9R?$2%k`*uUQJqI6|8sGqE)ScZ!ovk;J{cs z@u&mhm_I)d#enj2_|Ozc1`M$JP87{;SRebV(LV*N8u+wm zSygSSQSNDUmCkIwYSK^6u;?Xm3%`&-`SnVh_+^m9vs`OwB1Ui#6N@z?tZCgf>H6Dm z-#zh-;yS>aE-hlh+9{*_zy$qdI+7PDMsilA!XCg9(9Oh#6$GiexD71XKq#a?k3}E{ zW3V?4@0p(>0t#mSCK*V3yiu1v+jOD0%9rvNT= z6Bz8mFwKZj@|cOv{JY}MFcnXY?t>nz16J7PR(`X=rS@Q#Z$S-&$bb5ckykM>vc%G3 zpYq&$nO&<0k2&GG{%H(SWOiqme$kM)>7TMHL-tI*FvFnz?%JG-0@Ge7Nuvhgbf zE;vmESFNK6L0@o5=Fx(!VR5oUq*iCnEO^zfn9e$;RvUDvtG2g zY()`tnHsU^$kYL3rhJV90O#erGU3KTDzIR#9el-dVr%q=P|Cm^(oj`jm7qyLt| z1P?SkdxLol9;o|6q0_NMB1kxe$^|q|`!IP*Q!yRuUPZTtDd_u@K$z&z^rAzP+8!W*^ox#ebdl>C^`k(EuZq@wwDychLp$TJ^YQPJ`p$bh_IZSID@|KE);V=(&@ZBvf|n(c z6v>C=+w#5N&jRIFGt)+_79gweNgM^uY!+BbP?(R_oYsIOcC1daVq#(p2rnzfbbr>o zhLV*8=EHm=nN^LO^KlBjh6de*b8o{gCqCnnXAVKs9Ft2kP+91-nynUFCixAXA$>A` zhgK$BkXuRwvpJ%JGXlZ1CVDy+YEc2VDnsn82)p1y)J2{k7o3ZWLFF~q1w^G(nP_1} zat@@ftjNHHS0sQ^>Dy9+48>LKC^=VCcLbWabXwXR=5bM^Je#=CX`!%Wt6DRRPu{8Q z9EDhf0Qo_1qE175v?FlRt&Zbb31K)7QQm|0nkeO}<2q@kKta06qGr4XK(1vfFj^Uk z*|sQ^#$1J=ZN-Vc4%Kzcx-GgFXj2y4xIS6vsVJ3JcbOrXgS1+HrP3j#8{}(q@Sv6ZP1x!2u5Yl3{HWx;nvPkE{p&qs3hw+@q79)f%3RDN=UjqeCqp*sA2&LSXXTjB8tenQg zIx(qJ1nFWmuB0v^QSs%rP#JawO>J-BDL)k;{9Ess`x?d(>|t5YVF7{9cm^3S{g8MI zJ1vblf{q+Fk;l2JiB>eQkcLzW?YbPNi?0_sl{$ueh5R#r8dL1;kuwYB@|!eCd|)Zv zS|+JGfW5NJH2J(ro%)AzGucnt=b$tcejC60X@L@cOTpri=wSr<6rCh&l%eDfo3<6x zD>LbrLcwb#G6fE8P6jZ8#=%~GQClW$#8-};<+zFIQy{J6ngE_wC5~lcTOt+b@FDKH z&r%C^b4>-K!FyeRiY<)jQ!OEGl{4Smg@TB@++D~5<%UCV>kvN>kykeI-$Q|6$OI2C z1W!jED8T7}Lr6PTuZ|BQ%z`Q1DGwagNYze0!2luVEalx`L;)atzz#g@)^hl<0zZ`m z*$;)ZgNJ3=QJAD}38k~YyY%m>YiY73ZKZW$!Vn(hr6`0XGKDs&ktPr_(h_PV8zPtP zP?eu?i5=l012G#GD56Zje5p7Qh3{CYN^g#yQs67%X!k--jKrgrtw66U!T64=HL~y! zpHSElOjZi4aylWuX4||_Xy!7@&sG)Ff2ahxqP=`t`chWDBH_{OJ5@`JB>JMF;#;OqE~V(2TANVru(1Eh5N5M*`Vcqy1AV z0I}xJXS=}ORsdty61S9PHX4aug|!DkuDr4gb1D;PPugtofDN6r22ozSChS~R?PGR1 zNI@Y5-`Oa!8fn2P?#GooT&rh;qZU)ZO5V%2lSaTsHwzU)c(jh3Q6Ske?mdr45q0@z@2GC^mT&><0!-ywGyFzRh zG5l4eQOT{$1d5ck%DGCBjXHhmvT{dOJJK<`jm@|G3_dx^Q?!V$;(UNyw=ASq?-d2# z65wTMN#&%O6T|K#`N8*(9n3EoWTPZGL5z|jm7j6kGxT$U=SZJjj4gOZ+0zRK+F(-A z0iL=t+ukX1<;YOWUggJl9cR~V{RjW#2vBL%{DPnO)}hxf;%nh=S4PIl*%SzOeP89% zHBiUs(dq%;l$9ikSD;k*+O%XGDpMv(e6v8v$X)Tf{|c1vAppjR(29oWwg*Q~)Jcqr zfnfBQPbw(0Z`N%@(~m8@`4E`qqf?5*c-8y1c9(Mr@&V!vpd`s(YuoX zhy!rPH3E}S#=)kLlJTfEh*ynLuuLW2-UUR%hwd??U@%__aVqVGmLQ1RA;9AZSf(^; z2ShwXAaPjWDnu#}7Gf89m%zF#Nb)phcd3-foGK~^+1E{;#o2{rvy$hyRDitCF<|k$ zc)0VUJB~XFRXZUQvXf%0kaJBk_)T^w%SIqw2ss}XQ&`v@v;uu(BB2*U3!(X&No?U0mx02s;8e!0;#ClUL-6v(n!s;KySlMAfJp9`o+F z6%RbvjbPS7m;Qpj#Bnug#SFSqeAlyG(B7$4FC~r&Ll%LJ8g@G7g<+gOyX74Mq<$wMFt2&!y$g1}?y;*$fe zB$nP&x5%6FFL79YJBQjw2s>Z6*W(nv5W)~kM%;dD+USGIO(#=E1v??Q8pN697VvE$~FkXM5YE=9|920QP3nA z1=R4ybuqv@Q*bV}RmW@zjMhMD<6F|F^DGs1ML)H6{{JLuWN!|1b23AF59yvl_(Zk|kF$i#@1 zmJ*dokIe(!P=jlkAoQkKGcXWqmoJG`n;Bs^YZ{~I74%)Pe&Lc>Pm^~h(}9dLq_@u8 zGil|6CdIWY0)eB?c>XDeX=Nv|r!E4Bzku@t~^}3OmHG}1r#;|76*s*caO=Yi@ zNh^#q`#0b%EpWLGBi+kmw5+Z0Fvmk$@V7Fnu{G8%+Z26srhzRj@1fyXziud4MJP5e zTNk4^Pdk^1LS1=fgUW7cD+a4ywS!$Ix7uZu-?QjCWoVw-!Af|X8l+L*5{oXoA(ld0 z>sBvi+z))YXMfJgV+}K~Y8hjHnlW?MR2scBtQ{px9O{=1XhsWslPMp@!P3UBbp%tj z5s-E8=Qx#LH#A38ktCGU)U=6dNBTO6YVRj_XJb^kRjlRB7+SY9wvF~OYrEFO@z}hQ z^2XZPgSOp7X4jiok7$|YI+FE)SbW2(=-XqDs12@QZN{5oY|7p-3&-a1QHTx&KYM(j zs|vJc{i^b1k+m2|G)7!GAv21`5SZF<*7EFV$sUvopWB&^c0T@N!B)7g6MI`Wk*=Z5 z8)D-?J*G@!RRglNX~T*b9O-6YR3B|zl;))SXp6nboDVHhVpS#@fgp8XyM2@jfe9F~QZ`$o z%&~8{=9}+qJ$%1Mv|jLn7qp&oekOc`kK~}$2_<7{1?2o^^J3u|8}APwb@$Odhe0PwN6;E zp>@MgPHUZa=?dbboxIc2qYbLN?Li#4+s1=WPAWXMC-XNB%qernFj~IZ8Xv2-hF4wM z`j^)}tM#PkJ-_wB7rdu+InQ74fxl@T|M^Sr@+M2MY(K|>w-eo6-FoZ8Uf4SAPU3BB z+y0ES%E-i>&N)mlo2?UH|LWGi|3G@?Qhi&NQ=>W3qO^!Zdiss`^2uHN(@ug|neKua z^gylDY;J3Szka{9ey1c}a>6OCvoBw|)0J{K4o&@b z7zPLU@iznb`A1>>=AB7%-Vh%`1NuN2YK?EWrS)6t&czA#jUfp`p%ZtFma4a^L1=C$S@i~T$c~-nueXeu*(jmtCU@o@%Z=% zX{@(KH(uNNkK>-*dgOuowGKM$=+-OV`X8+&JEdsBFVAkxKjYTcXwt?`H}a78cj8qR zKZg^4GYrFXMSeHLVtm+`z~#4){>>LB?7YZ#Wc#p5*xdS`zj{gQL;rbcJ8z3xAAQns ztxui#+x&)9ZjEievGs$GpGwWvYF%=?vhGc-Q*Na0yo)@ShM|#r%;8RzC9stTyycf1U`-`Qm)farV_2!paYti1KtaqTHL#UW8W9we9L3wrk{K%K6Tnv@u1gzJU(>nerYvu(^9ifvkbmSFH zNvuV*-lrZO?>%XL{MiTJ6&LOErug979vVx}njc^N)djKeh-bzdAA*%&E&gy=s($>z zx5qD+wPK%Vz9l~Ks-t7kS*OK~w=RvdZ@-vjfF2V6_<;|`k$W+hCq2_+MV?4&@Zj+lQ6-sTCQwZmMXT;A^zsnBjY_MogR;R@88B%2mfQd z_sxgI!ZS``vdv3l`6HeluRjcGxML%4Rbp`I+3_#%;kIWT8&6z4Cm#FvFNwpa55`IF z{)d=9xL>^SgCC8j%)KqFR+zu#%F_CMT5% z5&S4ivez2b%TzvHSXHQZxya4kY^v053|1z$=enI^5){A4Hc38acV;_nmu~N;N z*N6*G{_pt6*KUa^&wVuWs%a@%AM=m@XncR+x_H!!-yZ+`@}pzp?U%>TzcxQEf8ayn z<;NZpD}QoPoIiAZ?De>J#uJzQdwgU0lj9>Fd3zi-6U(|?dst_>TrO7?5< zwY2PJv;$J#UUp0wfVGL~P5>$IboI=L*)w}$^O8&BiXUANmkr(#w=b^5Yd-Ry@w|iS z(%x@4Za(Xz_}2gXL2Nzf=y(9uVtX4d{Q5`ZKhM4?_J8avf@zoQ*6X)D867Tu;!{Sq~dt!D8+Dn*q(mmiO&)#P+f@CG@ejmh%=Y0hy$PWPzq-xe){Quh_y#PBW9fa%{b}0m2vaW=EpCt*e~93{Bbdt0^RSh zC&qJL@E39T>@9K1NB$ROC*o(H`&_Ks^C>as*YA(dTsJ44w10Q}?DJwc#Q3{UpBK-2%^TzJJI;-deeG%nqAiOP-*-Z^9{rR!_K*YPK@WXo z?Ah0fML+sbd~?IRc-!ASFRnl32l3t8hoXDSui~@cI6Dq~@)P5r`epI?&z~0iKmKuX z?Z^H$uAcXjn0MoOapGCGpls4Or`&2dWSKO7Q+e8+$UpvpWrodwvUAj%T8Q1ZwHTuI zvo_NA6oXKV_fCoCrc2`=K5|0LeadU&WwRH=NB;T57{Ouu)DM3 z$T(z=YHYdWzvJ^4FN)W_@o!_w?LUo=o_a@A`d7u*z6gc~KQ$h<|El=LC%+LRhy8gB z|M36C33nbDPv}}5-~ZP6NluHGUmwHAd?mj8m^0&~D;ATEKGy8Tz%c8ec+Aru9fuzB zqJR4Rh^#E$n%fkJ&vBDSAerKEpqJ#Iwsy!q{~jZ;S-7svnoW9a|C zI?n$7#<=19`Edt*-C>5=yJt&WbIOvq;^NEW!i9Il z$gJMjwzU!m9(ip1?dzW!PkYUq;<+P>V(r{{@rVcS6AwT1@o~uBQ?fF%9hL6q&Xx># zDp3<1Qg4#F;p#Fpp4O%pQ(&7wY-Zgv(f_b#us9Yh!#arv#dBWu!Z>o?UePmsYD}Be zA6wR~h%?VUBThQ~npkq@m9ZK>u)ZmW$LnAIx_I(2FN`-FyH~Up-V!Tszcw~5c}o1v zOOJ`?zVYwkx%PMl}|F_lt4iRX>dR7hV{rp1(A%UCgMvSy)vD`{Url z9u*ImvtK;+36F}s`iB|KtSrE<1A*m;P~F*6-cABebu_Bwn}d3=Zt7?1(C=C|zH=-l z*^O4!g&$W}<-mB_^Ij51J!l`6;lcv?zd!1 z`K#jQi!X`Gm}t2&b!rR^bj1T7_l$V!8;*@*cmzGn!r?`{yFkGY3!bAut`9E zazWt(_Tbal)(Z}-2!LD~uYwc)H{0-u8>`NZ=N|W}c+L}#jaR<%=$L)Wm9egSub8vv z^w{r!hsU9NJ|G_P=x4>e>D%J0AFQQ9e?=T~>?`B7)5l}M`Pav~+Wzs_$3H(_^{9hm zD#U!~BaV*0e#vX&(cOE;p~t;6Uiid)W5a@FNk4p&QDzSLa6pOG{H~MyrFK(tLd*C| z>cd4B9{$d)*t0qfYcRMlfMN<3vfh!cDB&~W>Bqh#{`whDj2FM{m2uee8{n%#E8+l7?9lz!6kiwk(fj8~Eq|6<=j$?1STF7m}t{ z$9aqqHFFT!b*FRe1T&ceNc_}fb;!*r2uNTb zPSTZHUmX1Ocf?OVuwPs@|CczkF#-F!Md1=%>u$U(Zrk^en2ia2j22BF_7!};aJXaG z@RXj|RKGRWboipVB_8;c*Tww#r^fsfzZOUB?eN$>Do=!*!a4D9Us!#DA-UVnchac2 z-ccIt8R}gVbUpGbi37V zjb*HK69X&a2Ap>rDB~4o$v*b2{~4#A{`2_u2VNcfHrL{?3ccu*iEwMyX2I@_*tD5N zh+Xc)kXpFq#nLEQg7QEI@bbt+{6f|QQUYMvotMWQdMCYBHf%C?O{YxuHYr-ebYt;y zgM3fJI(gx#Uy1V$`D~o}lYfc5SUW=sb#!N|&Nw_Q4Wq0F*HxPyy;Hklu!Zztx4XhyOMVHlrVl*7V98rWm;+7Omm)11sbIH+L>Da#mFw zKQlYCo!y=8w%ujBw9wjCUI`e9B`VTFyMnxm4=Na?h>a#70n{o61VRERqCiy|Bg6-y zkq|&p5*r&p!3VXF`iS@_)lmA{vfb@IXJ>b2$KU_l@B4PTZ4EK$?%Zv^x!-r6=iGD8 zJ@?#u&wXLE(Pj_qwnty>uzYF1{dUVfJEgS8c5K^hU7QNaaFxq|Hk}s`-gK&(I{8c- z^AmxhnF&)5y$HS2?Ys`E7&HS5LbIaNuXy;zCRK2zYcQai3W8uU9OA$pzNN4(JtIAn z>s+?m4m9WX1{2-FAkcz0y4E?@e}{g!(H^>SwarDFCF9FuY%Cui>7$LB82Ck12%WSM z3O#pvuT`hIskz*g0EeTFKe5-I-S&51vdRu^v(4P;w_t8Fw*(Aw*oFIEp`rd!F7eiB zS^8&*{#L3m?r}(CsL%^;Gq!LsOH4g`9pqOkJ(fGR-DYz7OdHVqNna_Uw`9}(Acu%X zI4ztSA}uENxtxf;E+qn@lTKrc{%J_x=sr~lq+j{uj`DTlJXMG33#xJa!Uo&2`%mz1 zmd!GK_Tru%%Pd@gmVeL>tqch-eW(?p1)DXWnWzzvB#Bw)|@Q_5M-Y^WyjHvU9&++uzk`r?sAB z7cNfO*DqOSowskY`Ay7X*qbxX2{RUanZX$*ym*+@})R4`L{7>F99OCc`}C?}2#L#gOi3 z5!j~_c4}m+-Ttxn+sYNp>>p{eOIBZCZ8UWHz{~cjE8lMyuKTlHe%BSq*IasPdF+aC zJQKZW;lQZPS@=G?;=N|qfZI#fKW`_l`h+bhKW3+&x!l%V`!IqPIAC_mY7Y2diAT7h z4b_ab>YT(NRtdhEix2#|eUe9#8} z`BhtS-oT#0~cB9!vso%2xaAWGX^!Q-WUOIv*LXsR>bid>e%G4n`?>uk5d>f9j59 z9d`=bBnSg9B0ZhCWB0VRWKUw5kRy%$B{k8($weqYRt@*0Y z+1ahlRvZ@XfIs?T7TbkIa9OHj!iKQvu!GbT`=!`LW#`^z7+|&kpdY`#%E>W|1jme6*f@dvz!fREI3G!%M$> z*xq^T2K)LqAFvG%thbx4T5OO0{%@9VX|a+1MqB*$GpuLp*KE!DXKWND&I~4+GN}Lu zbv!!1n}k66f;i0oc5xKh#?+?1B9e59<)ke8!Lkti(7>n-Go?Bvm$Q94ciRAKzQ-NYMROh9>ya+(1kS3ey}b%`C2a&l@%b0~v3cV~g8o+iOqXYqxxPuU-52^|m0D z=T5fS%zBx%4k8xj!5PvxSGjUWoR037Z11i;+-N@A7STb=1N&|7zFsW1&$0I7W+OJC zH(`dOjzwY4PG=j(yoF%x=3d1@LyOJh?!Xk6Q)ju9ve3QLb`6xQxvAY+Te;(F z5GK>e#$m{0h>iKV#%44FBer*Ux20R!j8#Ht4RZ!8|A_afE6GhaJ&$|69{>OgiAh93 zR2>Pu9DVUYOah;b%8hWZUxlTXdU)*^_a~MaoEv#54fU}Eld~M1t#9{#tf#)sj)P%X z%M6a&%ftw_$-rZ=FbpHA=bpQ??byn!?UmQ;8?;(Dcy< z4bc@77yfH6;MfS4`l8RRZ=^o~BL}FhF~^L4bclUX*zIY?l*q1aw!hM1txZf^W(E@> z1sMBG%#2jZTyo8gxQz`n?7+V_+osLiY{!dF*e{Cb+hY%`wN_@c6)w1jU7}^E*w6_4 zjO8mW>16XPtrokii_PlI9qnjOwZusMB&j2W$N(_C6_zhP7Wfz5X>sb0)XZ6jG?-$k z;$@<*QgIlevcVd)w`&Zo3dSSTjp+Hf*nF5(g(kF?z5o23J+oyyo2Q?)jhPSF!#CTl5^g|)>WTGA&j5|aL-=yU#KH~ZyPaePmqG2ZG*X@bBe`6K2N$wO0;ij1p0g>ZPoJcp?OH%-ZEK|aqwC3ne zLIZu~AJ5s-n~HYH4HwyLSTLrFu<}deA;rtet!B~qd>OBZ#N7m(a$_*(G(v2IeYaOb z*Yu5h8P>zxpk&;ArX3$%Q{9-J_gA4n#xu1mz5e0E%1B>oUp5iUiT$OF>Pwuq)Hg4xz zhpoNq4qGt~Ayh;~JRkando&YT0}^1u)qd0I zyslJV`zYNyePpP%M1RomBR(x_;&lvep`QUa{y<>``|bDdvIn2riD0zE*4}fgy=M;g zd%$H*S~hps*t&PN|R#R5y3?U9#c$6V$L*ubcL5Vn>04z zN)wi$G~rZa^<4ypaWn}T(nx$_m~h%xUk>AO!2Z#CLgFGC>Pf*YPs{Rt9lS;czlsQm zOoM|%fly{Uj!p|on+cHos?DiC@TvXBp^u8jc`zaQL(89%Hw3Ci(NW;mL__Reb`Z61 zFQXHq;15*r3tp5LaYR4kl$l~VU7dQA6|NZwce+X@1Eyr5Tq_oGC3s=j`vi}JCq_&l zp+%3x<4p-rltpLphXbZfnc7R^OH%-@S)F$v2TNQ3Sn?3aAWoMJQ!V}iAaG+E6J!D~ zr4v)EL=t?E;ze}oKFr;s#)d2*N?m5@o1n>0c+veh6`jx!6ZaMi^^+=GGfl|G^C#gU zK$Cn*ovJ7J1figlnp&N}dk5out}tQc=J|P=fCIIM z20fLbzUmDQ?7I3z<@>pes11o)lP(qj)Sf<0QBQ1d02B46y;Cp+4S+gPC5nr&DqtKW z!HY+JAF_xSJKZ-XoTA(YmoP8I<=yF$0Z%jvvLa3c7D19iHE4$XLMIaD{X?8_4gCfR z0}RK57&$OdUDsrYAv;XMjc6st6Y+?ne&}>TJmE@0qmbzs@;;|t7d!PaVJxC)A*cqO z=-&H@*DbVLI8>qbRo#I=_z{x$C#usaGiibJ0bUIr=s$oS?&A_ZNTq%Tjz~g2dd80L z5}1T%@{g%cQ%RL2niJy13B{o_pt<&m(pS9uga^hGF`{8VRs39^dw0=^58>W38NZReRQo5;N>0ZKq6jeyS^IJB~7Bd=T( z5?**#MZvE;@Fk8LLRIqgxfp}d zuU9FmSK?Rgzzv;3n!Pl$;RvEoZQ?mItN!ZWlnO^fd+(B$zsdOUZ%3knP(p1yt6-`E z$(vOb6a(_Mt!Ac48U;?K1I3q{92VZIzJ@pveR+~7O?AwJa2q1k&NBf9Pc{x?hhUIt7WCN8&naA1H)b9ku-u@0s(lbI$fhj>1p2Qzf zoWmG_Se;u;PU9@2kD-=Qu65D?O9rUIj0%Y`j4x!AJl!)9>J^I0a{n|xVmKxs3Kg1M z#mVn6oU#~Qf}e?I>d=7JiD-la$1|99WGl5?6vnTY8#P4ipJWq>dE z`RqYacwFiDHD++}yNByV&NFjg^_N51#M8!KdGW|`T|7Atj}*Tg_1`0vmV9?l@)p%c z?{Wd|Bs7XU(GU3$(@zxt;FML+MgfPXosdt+BF3M;RXvnJB(FH1n8Z62%B(*wzbfG* zujfM{stJwZ&*1flA=|hT`VFosN=S3ib5f)za&_LyH{=!PNSf++o`pWhMRAgFF~hi% zh8WZOj2pmzRo$ebkv}w50%;ViI=h#LYv5uyqX3`L#1WFP$%&Omjp0M}pX{n}M3`ix zm^u@Ps$dQD0mk%AE?a1sxVWaKM~^?J@OH znZ!ThM~-kIL7Q1}cF&u4mP60#EV{2tcIc zA80(S-~uIqeuU@1k79HtN%1)RQA5Ojy?SF-N30RQSB<(joZcZE&`>)^&Y>9cz_|U7 z5L^vj93}pZuoR)su@wAO{Wyusx1eEByeV)3-`g*#K>(MhaOIV7kAFVwBT4C=2)_6u zzX>goqdv>US;o=gfQXbrq~w`o!j~%iCE@afoIEs&9_JZH`!CPCUAopU{$cguXGH|&#wB;tGA_h4XPh|*GG%3xschJQUP!9xG~MVgDk00YC}vk(>i zBrPgR{K?VI%);6f3=9yIpb4XjAzOEzGSNn7IKq9H?lh_7s2oTED{D4FtR#ji4n^_) zBPm2~GMKQKFcT>$wLhvjBxXk_Dd`Wy?2V_*w{+0tiIdsg>hZ6u^!&I~7tDR3cxGms zi4_br#=+TK7M(kAkb3OIsTF?h|)U}U5#m_?W1Tb&P)L~{%Wc^BnL*VEh5 zAQ}z^9vIkOsKHzJ@)uZ0eF(4$R22EBcVMg$)8gp6xv1a7>mjY3#e^ZlE4H@~%Nv4U zIIGurqRQ%M{9nMjSwEHB7=Ym{-Jr?9!bj--FGu9%kgf(*8>`u8Z=U^}JhWb$dYCAt0;FPqPETf-g6=AOEot$>b zn4(4^yx3*hSQOaoX?+BTOg_CvfHEGsby#D_(AecJkRO=L^L&sq#9Q^_+dV#1;|zT| zr~4-()S9lPpjo&aP2T5TR|k?xbv$Dw?RUi|tqvqyY}AW$=S`VFVY36g6A@Dw@z$4F zA~hTW^PT7LE=r!YOKibXGU_$Q2nPSH*Ja40O=I(&=!wP}J+{zDC+GEP#0e~!28Xq2 zaQb(rUuc-#i4YTdJPTvMLe; zNneZOML!iD+>0sr=<}tO%j=sCffhteX(Wg63E36u_s>Xd$kCEzB&;9u5Mx>vP>%&& zBHrqDx@;a~v4q3G(7E6wAWQtLx~cn$UnNIV3tlb45j&pW0An|bQ(a4jkH}9@q*;w` z2V!Rux?<}hE;;AfJfA9rU|kShJ}iW^wg$hQMl_vx?SiZ)PaXqF96!IY6WuPQTd9Yu z@l@RCS^Ur-3Wb;Xs?AGRs5CR;tYt5i9?gta5fE5T_6}n&P&Gcj0UQwif|s*jcI_z_ z!bSKj4=)cTq=G`Sai508h9L9=PriowRw#Wc7RieHh1VDS@+J@w*Yhk$*cO9wFW>$h zIJv7d39T|Xt`Ig3xRb#<4seYvs76v(B;h+60&@Q|V)#9OZ+kF&=>08fF7V^-5BA{o z{z%hMw*FoQV0_S1(H$({0{$O<63~gD1O^PF(Doz3iR?tvKiKyMBg=N5&M{pLQrFR#oBGnBuEEN+pAU0Yz^Pm zD`3xr|E{Q;+a6r!y+&VzJ^UKfW&ly2@lQ#2B&bj17%(z86j8GxDY+au?MkbkoK<-& zkxOyZB6z|rCHeRRaYg0xu%-cQv|6zAQKuTT^>{pB1OWyN_a8GdTfv&ypdLa#ChDGAZkI{9*a{B3vXfEk$lJ3**6U0cv zqU)s<$Z=`nRAqQ1Tjf3FwG6VEhMAICtPMlWsSUUW>@y7Gw`o)45{dC*Iz}A!ARPH0 zpdTn6V903mAoAFaiH)I+p^V{oiFeH@A>z2=nCH|BF$#?e!{v~Z3sd06(Z&nMRS%pG z-XCxrP>nm$mD7#Vr2$9*ceQNQYlbPgThwS6PBO$4A&&lz0W6bWjWA8wO%V;&d$jsi z#&~*yP2)`J%-~JO%z673r#Si)3^k11%oUBQ47x@I27x=#Th#}!hs#qAK;z_HDk{Mu zW^)vC!b8nT;Ykk$JqEH$;!1uUd7Y>hUq^U{G^Y>;qCMMv-=2Vjm~Dq0>AjMjANwf> zrn?LKh+FG@UO*5H(KuD#;ds)hn}1c5U8Me(%~-+Iu5WM9Z}ngyUt)xcyGeiwK#+gA zKeRtvkEs6=q#$e!{0I0T_=NYjuoJM?aN2M~@I=_>*m@W-7!K$oSQcm=Br+HaXzP@o zQuW%-5^|r$^{m^LEozE(ARXv0Q7+LgwRf)3V$lfE+Q_vi3dvi@D=1XR6=emINM%3B z3`nWT^2ZL!SV@OSYserEce5O`kg#B~Ae$I!B5I~u7o3W6e@k!F$=7LEL-&C8Fn)l1 zn7gXN839T)O7%^ZWXt+oW5I2Cw$NG; zF~c!4Iek8@H$5{QHrJAUomAOwn`|3!9-o=77p)hu(cBp-p!U}MnhcBvX7w-!FpCTn#CK+E5=iA3z1gNiD~1xP5lFB*L?u)Wba6I`({$}yGPqKJ+?ZweiC%jMI~kB zlWtavbjv`SOB-v8okNvd7KrJZ`UdA(^+xWx{cvDc{JQlt;@TBdd7HUv-TCnIAdLQ4 z+p!7ZN$QdOVeR{99lQ65nm(m|>4mu9x2zETfK4+sal&1R41lF%H#`NW1E{t3FTOFTp{> zVZsTbt)nwi){u)+-cpQ_A5th50`k-4#EYQwUG1z^POEsn@S}Jb+-Gn1w2CD5#`j*5KIJBg ziiF(ZKe{f1er6ao?Br4O$KJ=*D7VdynHrhGj3$nXjuL4ktFjSn^TxWFbh1=CR*x1R zpDMlPJxKZy<`Lj=+j_JYXyvxvL*9w?hPknyvo|SNW|UX$mrPXY3SfFzmQS`+7U|V> zb^@ym-z@H(pMQWNv~gi3lQUYp)n899DI*J?owjtITaXW5CXw~4JEnbmTW>n}dA!UpJZKw^$N9< zs+7!C*KD388lMxh6KqV z9A!)4fSJp|8I~J;mX^Hc)N1Zo^4SAEIVTP8F;@zgb{khSPg_fim%F>Cr-z4^m)+gQ z&e?9q!rapOREp(=9jXCJF(G-KJX10|BzCRT6aFL5snR|Do@!=f>9-B+IJu%h+#!b{ zpU4XtYUyt>wbEGfdI}z~EA>8Zsrs#E&}5E{l_r>GA*a(*h7&0(-&3^fX-%5+2qiZh z1w5;II$56@kaW13b;#YN?y5y^s^P)NwTY2D?~aer+^=O&4u3U9c9&C zr9-7nI|siERJ*CQferMFx^|*vq9~0i?&)YNiyH9;fne|c5-}JmzZp*Jd z=E4IQ`}9-3IYdo#61vZE=z$uIcDma#;zm?ZFJ1(e{Zumw<@}zVubn3JTUc}S@y!-G zzk0`IUO#L+h+1qYNVF>)XkeR=wNL8*#1Cj~^vG{Kfor1U#*PxO`{I00KlMv_(_sw6#!X*UtzeeHmF z5iv2OiV4Vlw?hu+Gy++o^&^C3b1!+n0An7bA)!7&O)XyyYCd^^bfM3o)|6jov9E>s zb)Wi`=?jOJ*Y^Z3g0hU`rQWI~Xa269S>t)xwiLgz?YlGHi;I{i)eA3>x!`Afca~5B zWv{&_F7xIC>8atiqJHzQQ@Z-(UFDuGR@Sc(S6nY=17Y8#TS~S-R08d(2QPaM55xMb z`e>b_Q%VP6@IR-bWHr=3cRedYrVAkfNNyG2n&AyeWRHm1kWTuBluYIo*pPHXW4d*Q zpm(U7dGFUDVRDHbfH$GrEDz+yA5=)LeG^4wxKE@TvF=v!8M(2WY51<%vAk7Z&mbuL z&4XHlh{EJTebLe|vxI94QA=!p#If+2bnIj7lRO9q;SPvV;F*%_dnEWSXf-&ya3XTc z1DwQ8zPUC=wpD&Ruig0a3Kt+Iibp1#$Gs~M7gzYh?EK(87EbtKVp91X;OYD40KR}-QzmHQXI+7# z^3cl^bUvgOWDO+$syZG%dakVK+@q*$?{jZKUzeCp;~0R{(a$9zQBrJv{?dDk(*h*xt8grIlWobS#ySyuerGGWM%03xd*ft z`PImSlULS7o6>ak+cdB|AS~!6_efMq>l3~TnhLHimZn14Pu?A63l&qh`9r|f<>>JS zdX{4Cl4WLXnNy{k<+3+V!{uzs0OgpI_@TaTd`JBB+Ja2$>8$$7Yq{vXrTgK+Nx5#$ zI;W?**RJi|W@2-kD@ZA8{N?oZ5*!rLCkh^Q5bPH9^IN8e*^T$T=|S=fUQ!dx#zdDO z+xpXhi?8#<8(!B;1$#L(7!^I3y&&Wlc;%8zIxwMjq!z&&FnjWMTcwBw=PY2l5zy0E zC4!(3FeZufNP=wW8`7C~;r+-~)Cemu>?92voXO~mK|b3A_5^Fle&Uze-;_v--$}i^ zK+B6*WtSZJ9C6%`2NM`ahDnxIqSC!v#7PU~56|cg+wyi$Yff@U^@e@L_f0X7aLB0P^r~qF88n=w>CZ9ImPB4 z=aS&cYyPRjzE-$q=iz!edM$7;ww1K&$MA{xGi5W~JVQFE5%E`4A7WQAJ~mGbMeDLj$9C1xt4;Xd?m&UoJ zkJ`}9P|(n(*1QCK;wnfJ@A1Ayi@0vg;mCVBoJP4v1rGKrj-=Dblu)jA%(Bd`vcPGQ zdr~we#J#1K@VJ^odPMDMoxjc(I%NkW$EH6$2j&?Fz@=7vd ziXAEYF*QXf%UJ5f;Gp`D?XbWo>eR^K_ul;pL?_NG_e(T)-g_fdeMPu*w0t-kSRd?j zwC{|^w1poPF#Kp|=rzd_s0e6xsZPkv8LEo1ONuM=bIS9KaxJSGHTjjvH0sn(fOlUj zQ}yCsH3KxsY5yH*YTNe{J##|%s#F5-M>A7jRU|LmM1jN1D2d8oy-T-|!0*yRJq*8<*!pQDNi%YkS zABU_Is~7ebj1)2F;n{R7>jhai;+->{w~r_q4%#YwlMYwh+?Z?PVL1%(^Sb}s`75I9fE;f6p57~qWKujszOJB-)*obZb0P!va zxmQ;Ti{z`L9<A>DMB3T;(H#&PX+mt7%V+d?@BBj&P6B?s=NHw3C{z7WpLl)ceCiRJRbr}E zsS1^sxWeef5Z9c^Y{ItADB*zZ+?qV;fDb)LGIK7mFi+V!U6Qr2R8963BATn}oN%D5aI#Buax z)*(`pDLU)AplgV$oQ@*+M*MEVa%wa#=Vly@SOAaaxh}Kn56#;%fRD>3#Phw(l?#{5 z+liv@xVw`GoEBMStzTMjJS^%5Y8xu#OFD8yPb~-72Tv??iEQ0(Zq`&=T%M8kZ6`Y( zp0;1?V7v(dH##nCC_@W6rOffSpQ->T&8-2c5tw zL+qX}>U@`&-r487A+F1LblhCL>A%9PBM$Fo_qyDHfq|!6r~;e;@^U=Jb~X%#CU!=q z4DL4ezv2vFV0`X8zaDK&oehcIZLDpbc-;9(|5bzM*YjVW8A*x%RmItgpA;bfiCEOm z(Uh2-fsKKQRNy@^F)^Q`i5ZWwn8bg`f4%XOes*@Y=V4@Yb8};GV`Z>&G-qVy=H_N( zVqs)qq5oBb-pRw(+0dQd)`{%jjr{+1#7v!x9WCsgE$nQG|7zFJ$j-%?pOo}3M*nyH z8>gwe#eX^3I{l|xzdFeHR|z9C0~6!_wf&2f@2{^spDf%>tpQ>dHm0^tzjz36b8zwf ztNtG)|K<1_rRIMrxtM<^{H@?WgnW#D;s32a{}$H2zW$PyzC*ebrg+at0Gv0eC#WY zxNfMgxi-^X?;%})xkB(w!dtmCsXR2_xRe;iTz6R;_m*oh!V|4!YQ>Z>riPw8$$2+* zC%o#O%s^*kL=?)8NMh&br>Enm=1IN2hoH30J-+LJNKHdha5Un7+(7Mgp>ulQw|1XD ziontAVLuUHi~p14uNK6=K%`WG!$pJr^QMNt81_b#`U3gSTL?8<=)g({g8YyBD;N}u z{=5Id{u3m1^aJjnJfgpl3IWHL{^aom5(E6bNhkE5Jjk8Cy3`MtLqR4LA5B? zwKL5m^vuwFz>OF)@s?-}j(rG&SR?s|cz(SC>Cl@iAwKxK_Z=%+6w}89t5GOx;a5Ds zpY_e6r$t9GA}cYOKR_9{{K=I8m~QSn&D=K4lzMDlVBr(ArmoL%QTPZ=xj!BR?g5Is zZ$B}D`jd`48;-76D41!ZtwN$Sk#X+K)P|P@D+zh>PKDY$f|~Z9;|SDF6JjGeMEKB? z@Ca07{==o0r?dS`q1>^%$+=o+&y zv!DGq8ZFHoUJ|7ibj=o?)WeU@qmtme{rSHno{KhIDkRXH2WZ?>`cQI)PINn3a?KnT zkpvh;hAW?L!!09QT58S_8I^s%mjJ3_iB1ZluKVZY_yXArXJUiosOs>orH`?F5lge5 zqdYmb540fONNuj=$3>V)@yEzCtHJJ>?Mkqs4!vDpna2z;KQ1onZ^2r^Zc@WBEJ?@rUqGinbEElS9qMk@}JrT>SpeIcBX zW}%e4vRiuevu>O143zZ*SuOb8+%-zrYyrF6ZpS)ukv?1pBYiz>S^cIbHgPdaYMm9G za(8P2i2&LUJ{uhcUuP;+hFJps0B10XwfEw-AcmBF+tVUI`{SvJL1m|zbRWNb)_%RQ zAnUbNGIj=Rz>X_q1o(EE@h4xywp(X7nk$e0fYKiLK~&G)DG%ShrHUbVgGPhGr_;HjzJgcvJaE0@e!ELbAfaFa(afuUC;O-v@Fj` zZqf}w)+_2H)y4{a$9?EPra|wj+W983C{$*>(gt4G(|*aa%&UozZke$G!tKhKiYMb} zwb8RSCZsd@9VGTj$bL{$2%nnqC$PoqVz_550lerqZ1X(5UdMl~RC^WF;pG9`MPtbB zRJ&4b3%4AO6PHBm_ptR)V^`n91HyLf(vMxs`%wlt9KQMgT7xo>NHS+vq~B{fJi!>7 z{Y9fCTI}M5HFfIZ(K3euEWx(QkTsmb$_s9`mNova5P{{tSoyEj3%E?$FM1l6z%G6d z;N4lw)|FKJCe>GpX3pRofmUeq^2=-4Owd%HRGc*rW{_BzQJ#V42%+0!*g{V?jGnd} z@^s%HPrDLutoQ9f;l{2Zl5MdpG9rm?kfByF{7ZM={$|VqRF{J%3*S01Bf|3p>CwVk zn|)L=vXB7)0@|C52h)z*z2e0+jKT!0RQyw>q?z(%{SU9Ab{S2#1{+4hX*&2016wk163ST*W*$A7YR zyx6<6Us75{5t+2}Qbo&G+IogL+|W{?oam>NdGZ?RBsRQw*J{o|Kd@?& zCH_Pr2#%_jTVP+#bHwIBe8>S}p&hAizA_&V5Ug z=RyvrJN`%R}vMmcW<0h~8obE3rc+BMqJ4t7F#M!ID+kF3!>>y~!r8&k>Z>Mfw_+&&NcQfm( z`hh0y!qpTIR*G(6Y|O&GAT?!WZVc^;O&HFQE}IR|j!y`T$^n@~1YO zJti0#|4Mzjhvq0U%X5K)-rbBLU40h|3k78~7<3QNA6WRg*k? zg8NpoSWe7z`%ymS2V_U@Jk*21GA?Q@Rv_ zj*x9CVV7lw-!&zZ?LKKg^8qf~oz{37#y)_3rsg_{m+<)<684+kHu!-ql`2WL27mB0 zNgjnLO0e3U8_0Rg$y$F-ZMUTn1`IPXysphL~CGZ_E;?+I=D@4g1?1@zZDDn*3y!1P``>myeM}D&0-ZiAqD&O||hws^=nFO0O=B7pS z2Ms)=_btLpXCH1Cuse!J{Z=htur}QWBe|CBXdjS^^ii6mGU7m`zBke;m)cip+g0!B zdZn`DPc{5GZ{IlRJ!kyLn-lt4BjyS8sqo-8v6bqu?&4p>HV9sG$~(FG`V;_{Z|sz&xB9*<6(pCenlE| z^K^`=O9Odq3ChsmqgpF-Z3~?qt=dLZH!w}>MsVA%pErZ!ImQtnA4{tU;x4+d*6G*U z1?GI*I*#|$?4>y?&b2uiH2gbwHM^T&a!Ll66@0uul&>}9`uy@?=@M>RY4@Gs3A)=o zpBNXZ7PGAJ#K{7olHlw#^kE#@0fz*}_Sr2n2hf#XS!+fpIW5c#RX)?0Va8W77nx*Y z2{`Lo?p?c;2%J`-qlq<7Xi)G@L-mt?YD=PUzRhqLFdPR zXM^Qfr@J<`H!rvI;n>MNacen$lF05yIG^ALC$}by4nmv;++4I=097+z7uOZ2w&bU1 zLY8yfrmC|tgTkr9SBr3FBx0@xuwbjZu$d6Cc}3%ym&k#;y(3}WhB_P7TOFLIuXRz4 zs6w(urraHH4&i+9w^X5ekVm!R)xoB?wrf0?hu=!LrxqTkQLmoHURCryJlBa4y8UjU zC2|0VAzIqW9cM5|?{S7&yE)tpL#dnPM4d@taT4V}(hVo1j*4jNHPVSQJ<>|9`;zQ3 z8WScZNpv9tT1dKQf)!Te)!J4XLEpr&uv?M%skDgtl*3!bv;d+)M4eR(GYscdhT_hs zc_$OjtKO0chq33&fd6?%=Sml%E*I9i@#?a*wi z#mS8(BR&6~pkJ04I>_^CF1dkkgZ}x;R9Ia{nA>#u*jmUwM&$tD7502istNl| z?A30IG2JIr26A4+Kf06cG8$c|%*#6NS$YC})KNQcE!``fB3BRBQ=QnqMlN2#eqix- zL*rG~;?wz*y?JoMT}OQP@&NSLC)AX)#l+MFsm;`RUdKD%b8_ z6y_2pYA#CgwuSWQc&X0E3fe!lfUnEZ*36K(owniwEFnV~qi61$jgFcsDP)-9tg)=T zBmuh{4~vhu)`pj>zFwxJ@FE9ZRd?{``cyib-}#A)wTt}M@VS?m3y?E7ZhHzQl|s@4 z1{-sDmaf}B73OhTd}kdqB2p^noKNzs)mL#!Lw#@`8Z^=@gr<)kofjJMI*d&e@&P}$ zN}JISWxdXH=6<__=S}1dAmJg}xj!7L8aC14zp=6a!0ksZq~BKHB~m>q>BLhR=aEhF z=8ZjEe0adwa(_*bb$pyHzlqwT%tQ=)*x-#@6ygiP-uxUlGh(5eF&Cn^8q9YFz3#V@ zds2P9oN4snef<&qonP-uXZbP_Z;4J?1PJBn-YYc)H_4KHLP${2hyS$`HvvXyond10zrRelB>cm%?DjC>N{;l+qP(+@8VuF`n{bl)hK)?gO8k z%@y3p*4|i)3<+*Pq>Y6LoY{Da%SMhBRO%w5Vw?5SOcM_p$Z!$iSy%%;@al&0?aRmcfLNj`5`YqKiRU5|HKk`K5?AR;Cr0>`L4ZOD-IJh0NNwz(` z30hCsz?nn2t9UszC}7q4(14i)V*<<3#F8%YZX`+J&j61o zqRc4q#zF4Iz1@tfWVDebUg6ITB`vckktn!`>=cn!)gSi1Z&K0YHY^A3&&Z+J8^SGi z-Vw6mBt(8Aa9wzw%u#%mns{wlZf5jR{5;Xs_;Vz@E`|pfx?^T}f#eFlv_CBv>XX5Q z%_#+GOv9Y!Lb&uu=DJkMeIX2o<;n`xV4m1Q_>`Atd{qWw7?sSh|Bmd-**&Z)KszE2 zLT30r@_A93)6Zw4D+r30+Ay<5ff_q&BxYI6kq78eX>J|l6xtP54GuGb3j%BM>e?p^ zkbosF9{a&jExvxBwSmnesaz?^JiXjHsEsFJeL09B0Q=#1n=}S%7OspdWW} zX#h=%^JCBP>MRoBeHb^<*e&~jziISVp(SOgG^A87jCV2$Qx!AFhUoR+!TMB`9Oze8 z3xLtApGqhC$;7!{zI|Mdu2Y9Ci;Ek?Tcdjeq&?RbWaOh-6D*%MYdvY)Ck&_ESQv=! zrQ1X?I_Fs}>BRv>>lE=UQ>^+`xmAI*UM8*&+n)C3^p?)FlX!iFTLSP%J)B&!tjjZE zk_23<5Kf3>4Ct-$sR*^G8hh~QPJ&I#GC|_(g0)pTi22Puy*Ex9j14p{Lg~5Z`ChGa z>DRJL6;EH}n0#*Z*xw$t`rX=*Jq1VRFxQKhHW}xEUJ|qKl&G=etwH#zi4XtXse~Y| zskYRduB#XepuM+948!p0C7y$R0!sv0CY%mnic+FJFKcsB4n%k`tovfnnzr&hACjzS zw^3%W`=eH@GH%p7D{1@P!Qec%+#TbI!Y%@zn9 zCoZ$G^y1_=45-^^X|@ly`=p2HnGJp2C~w97YhjEq-14$>Ek<;p+nrQwY;-Jb5eyOL#bCgn+J~FG^c!w=YxF#%b^+9KhHk`+#4UK@O zM;Y4$xM+$shsAJu+n|?Z<5bzuRh5jkhX-FE!ahTuA);D!xA({0m&X;I3H zJkQb5RN^69#Vg!*aa+iDRtw1-LbLaE+xvtVTgKHizI|k78^>}>R{KHXeJT0dGt-#HnC0bDfC9Cf$zskq)XYvLrbVDe^y}V z$`7=D@y6L6f)Xqv?RAvbYK}J4Y#RzJ{mjVc$d;j>8&Y?Eug{CBlf|YJYhLF>BQfYn zXCOf~21klSs?{Zhu?{@Xy(MhjB_ppNH!b&FRO196*j3B+m!ka(1CO408p_p{KGnBe zDFhv3)AipAPCsi0Hmu0mW!}BN$QI^1(=^r_`#tah#8V_D1FmiG<9>`bH0%rU0Q3$O z__btKUvas8()^m`RkEZ)H!O2Nv&Z{onpx1+r-(lUa6af<6=aZECNxXb_uANCf5&Ex zZ>_0)?qKzLuBb((T^nIp+vp|JQkH7F=xYZi);8Jyg5xwXp{kE(yAYUG?)QZfeG0mc z9zZIOZ357k(!sG$V5@MTT{~@*d%S+H{p!Kruad>`ZYR27B1!K78xE%o1THfiZ zEY34z5I}FZ1$}XFnV7$TyRWBYrTp}+*T>hZqT>DEH(3aX6gU&i;;~MaVlLE@xiDj& zF8jU#WyQh-wX8ZDX2I_V2lxZIHj7DNLFgw8X+#_LW9`!^$66MPRiLy*jU!$2aAd0t zl>X6nJJ#g{hP(`pA9R#_naa)kl=dL}WD`J}-(IY^s6IiR zbds(7<9a*slnAAy>Qds%pvQB?scmT@ZHIAYLj`lUzjyl5MP}s`WAF?f!tz$fBHZ=K zWfT0=yBEI49XIzGy%A+aho=&-G<;yM7zPA9Bx{+;`01>kBg+z|K;W2;cdI>; zY3ql(SZJ?wEIOo%@>3ql^>B)UP=k#h2OYQ`ikLucbFjy`Cj!SD)4{o{&>Xd|uord__ z=X=#iA%s;Tj3LTEC`jAnTs5Q#a&Pen3;N^MaZ@>KJ3v!NI@B9vb zexs)Q3H|vUe0vp-p#ie++Rx6NHwJfn;vcOf?KL{8pZ1)KnEd``f>}a*fHPTx6L@bZ zzW_&+CJaouiKT8HJjnFEsfet1dhf#PON(&Dni9o>4Npb-B48o589abt#nkuJQ%^JQ z##`bB3Tq_7#gt|T)l^%4Mlbv_cfY!CI@F#8R%(EJNvT!aU>(XZ|O$b@Hvy zv-52P?-c(r&(y&!e1pCQcUho?UpABc62q&+9DReyB9MDX3T5P#4I%2ms?0kFAF?h* z!OaM+Sb*lER0q~RijbnBBvVzNz?GMgUXu6Ti4{|J4*Ev89;TF4$otX)app{-L>Asx z2mP-u`087~-13n}3jxaaZMVn=*}j0tZC7MQ)R(tx;~4epi%SM8M&uh9AC9MjC-XLB zAEc#misWIZN&3bNgY40iY zZe5_L@lc|DvB9J1oIT}5aK8d5`8R8YBwE0_y2=$67q*ef0l`hatJwQygGXQfoJ0UC z0J6FhY*Edx7shuU5{{;tFMn0~N~Qpw;8CN`^le-fdx)8vu(}t+>!tZ%No^Y%~bJFaVZOSR@zuMxL%f?n6;)8ZHcrT{4YY*JE!{^Ob z3_W|@cE1yrvgN0THiD}?(Gz}#`c?>7v9#NIhYC)VL(5grYd2LaqLM3!eEW10Kyl=$0lC*xXIw-VJB*h87dcC6)Eeif;m(n-wRn86N>J zK0>_0FWtOB`|Z_qF%zB$gwh&5yc&L9!Xn54v>|skGHV=kv&l`RWW>9Wi&gBp_f`vN zf`!?^Qb_RCiN)UFt_B%4#YaiJ>WXC^9UIV=W9EC?^!$!3j2cWAOL8cK6A`rKe&*C6 zZtsfceY-HF>Fc}f4}IvFa`Gx0*7zdthen; zwl$AwT8LjH=f+65##~idN8#wnd%Lu}(kJhZMtR!xqv^&wCVG&vUF9BQS+v)M);`>$ zS)w8*j&b6?z<>RdzcLEe#vu<(gd4%bNFyEAd)CVeZaMUe)^gd!c%L9BHPvEVr1P*^%*KZ9I`1t3LDo zl!=$ab#xjr5|VH~DkNvCF^14Hu_9N^VE4s7!OK4Z*1w&OfcLH&iR(tEKX|picY2Vr+Ojb*N*VtGwmvQ%J^0 z;pqISBf0fwIc{;ScoK4J@ZSyvqK@mHA=^9Oxxg^*Sx=CQ={ zxzLg#D0FGGZj@&=<$*}v-B7+Xl%bFBWY(-0A+4Fa1Ni9n15MqlU2Vmsf$>QPV=~4i zj6PjB_yD;v{v3TkK(jo3U42XIR1N+~XR7u%s|2Jy5`Kzm^WU=*7=Y#D!i&9X@R7y# z%zl{Qt-0RieV%Z#`tcmSq}GyWcw;S)nZDi;m{5W0)3dyb@K~B=loxSbCn!V0sG~2Y zc6*nV4IPoIw~sDX6qSkny;nwt8y`4ptE|)hwob9$0n1@c)`oS&S^6bT_6;9?dXM8K zzh~%_KcVHj*6Zt5!Vj4ld0x{Xs=R}A>%Hc2^6kcr;JaS2JH`CzyX>b?LB-<&h-#0i z?~`H3bSjg5O2BLv6Zlap`KrgqZ>spa_f~3a5PdjRXtBxvVZc5oQ`Z09KfFxAjEOn} zyMCY{*-5VHm{{a`Y)PrnP92{7e5$KHj&hNeiA2<$bHPzx?r*b22!fLlSPpNJEizsC zg8I(F^d0@7npptp$v@L|ekF%=w+A?X|4G7f9yA#~>eE13YgJ#7>Flv_t1UZ=dFb)m z*7N_v?y%(5#1J1UdI&Iu({a^rM$QXM%io(;F&#Ws02Py{{?@5~1yM=S0ZhPhuP@wX zHZs&2Sh@*=4VbkxmDUPQ@h(hN*BZf96Rd?yi{D!Q%;QKF1VW_*;1_5E%!e`sMzB3A9E9*uy)1l0>y>ZJ@1G*rlTDQ64|)F${E% z{M#7+1=rve^0aXEVQCEaPw-L((!a8k^pvB*Gya4J_$#FeUOe&kcc09^lalCYeig|c zJJi(uV`zT8!v9K<^2iyk)%z1R#a~6z{0y$Y*_ZzTWsvhL<%$tQbMbeN;J>5n)%kxF zl?)9`{tqC(@}BmBNXI;Xk7)n9$;7{kC~ljVHU9(>L>f&7dR{#hQJef9lu`yIDA`aR zC44k@aes9JX5d?wJ8@7FJf;mj6=|sGZvV_RdK^Tug{0?$Xyvpd#~ZQJ^1-}k%sei46HoQOVEm6?@U zT~(P+c1I}4iNpQC{s9C81ScsWq67p4%>VsUhJyI6QA*}!0s_M1u@DwkkQ5dsRB*I2 zwXik;0#Xl2)__z-m2SLDpX{VD_|18gwbSpb;_|dY2grS~Y<6~sff)!X-oe>S z8ih!n-i~OU!ygD85g1ma47h%FBsSI+$fB43tI>x*tSz36w3qy>_w8$G1Q`<*2MB0C zT>qRw%#M2f|#sN0x$u65D6E6n&+P4``AIe!vWb0}(0<0J@GQ;&DVmQiM7*5vWW0 z;@=1R3X}QbXDVOV=65%uJ%h6oi;96SCI8}|yzy%dzkc3w3MWPohT8b!VKZsv3KP|! zGZ=n3b0OguCJR+U_>4qrpX~?N3lq`m_%{4SLiiW89%~y2$P}t5V}&>kp`SQ@2i~>! z7-G#F{V$Z5HA3gyZj}!E$Uwk7<&oa)PEnq^Q|eZllwPh?jG4T5TILOXx(bot-(HiJ z(%?2v>tkpH(wTKU#EJ0jqk03nmR@(hqTn>H_rv^A?%I>+XI$`>S=uaicLhVF`rf6G zIp};1?)L##2cjBP93w?7(6X}*2OaW9 zhR|d48!MO3FKs+ckobyNHo-HJTcj0pcou{>@k%0QtU|c>_C=&qewUc9#@$|<7io0C z2p|*=Xfd#IKdU~BKN-cJ7Ey5B?_cWU_wv)dO9rn9Z{WnaEnkNs7h*ah8$vGm zmw8+Y)dEm1a4uMjVI3WzU*|EcXI^_x)>CJ%!9iek*kA(t4Kgm_k)#_lA3|lqdsu*4=V3GWx_b{-(_KB!3BOH z5^X+bqO-sXyupyJBYl-fo{PjXWBYUa0^i&R!(n?~gb3QAlJ6JUg94MfN)k~k0b>hb zU;;bogR%juZG*QEyTS`TQsI#XUJ%0U2YTBB;X)j2Q*r>G_F>rrHwD7afZGOo=>zdV zOviOI0rLf7UE|RRAqEGHAyN;)K@081(G-DL2tveh8bfjl>&6kF!ioyr%($9ECLy2+ z9n3hC;d3E03+l|^9TTzq=nmZ!Zk&M4wS-q1J?=1)Qr<+tMc54Jj`9t~8Xehl;Ihl1 zmjc#;3wL+z+uNA5NiMN%5!nOY0w{LCZ+^PNbg}ax=f=>Fuy1qU1U*Z>69=Rd%FPg2 z6N4cqK)*q=2D=V`4uBcNj|nA_o}%bPP(E}%{Bg*3NHO6=Q$_QK zCR3eQ{jq_iZrvcgV4D&d)k%twEX*;`F^Fj@(h$vr)dWs|qhE7yb)2g|)Fjck(GCqh?=;(>oPnB=o0+^}t$yzxzL9|4xb3<_sH5d+hXA9rJqil`QbsdGGyEfsDZwcZ zI$b)F8p0Z0ZCPzVyRRdRL#9)h1Hr!Sfp34%Vf>E6uH=6C?#V&=p~>Fj0o?Y+pjW^X z6~P3>;L$|tAGg3-fL*Mf|5gHjMsM^N#8(qgn18%LSszh=T)BqH;6aLH(I-Q$O*{!$epB`WF@5Sq}615}nTVLsm=KH&G~hHctc%ZuIis^$w2QQx*HJtmJd9qzUgmFW(Kt}gQ5(=S z(fFt%sXVFimAi`D3W{n_Ym^J`Wzq|*3$v=%Yj`S&3z74b@^2-Qt1R;~@;x;kqB5#9 z<1~|3!?`Lux?kxYY#&VEWZ^nSG-94I3^RN)#94C9>n%7fFBUthV`kZAr)Dl^bZ2H~ zBIeuk?ow;IY}0ImE|YSKbmMemHrsl_`Bc8zKGOo?0&@EqgBXPkgewf1cW_7)3k3=_ z3nh&#_7wKS_NK|D$ej~S6Fq+6&9ls(nNl)KH}aZ(9HKh0-#Ol;q7$R{qnFZ}(k#;c zqOH|3sIsnx*W|4~Y=y6@Y0ashZIWy}sW+)}si$rAF`_UMZ?$R-yRbQrI?v?}=N92= zvIWVkVn?&_+@UKHEQ5-npOBSn=q*qs36g&`X6#y{aLvdDF>lmuw&Ibm?Sn zw{xg<%Y9pB|V6TRy=kGXSws(Hv+v+jAhK8&C})pBfweUo@4eOX`m z)5z+5rlLo#S8*lEADtVf7qo@!g3_G9b!2zpH{?g&$C5|7ZIq|Do!|E)_$nA8n7DS| zie{Vn<1Yf;4_^X9OeI_1UneB=#mkzQRflJ z;Zl*Fn6xo!NE*TE1H_ntB{N3EbEF=_0#PdvzbWv$&DK7k4 zRGkcOYw!TP3(j}Wbk03)TDP1jlZoOZzLnz6vt!$P+ttfYp2e<)u4LW-uggQ~1B@g3 z3%F%3x7^#FIiE`KwI8ofR_C=`{=A4D`pxUa6uPuJOo z&AWwULkZ6b^-7&{<0ghCkbhGC2>&5aOH*dS+u=@dGwxxkbFBMQc6zS(S@u*wYhGYw%_9?EHT6 z6r+U=IhB^(?ydTHenTEx^6s>){oamn^f85?SJyq`qjOms)MHc4jBOk5316n^o6Z>)Q(4 zG!DQs%k$OC#>;N2sm)_A<)+%I^})_dkDBjB>>)!E9bH{o3 zl7lfpAE|fSUFA#mQDGrtbbe~pxa4D}y~%@vfcf>z_INQTGR1w{xhvWK`;{uWJoX9w z3X;$Ili`N(b#K@Ck|IT3oKM=P=RS2-&xbjO8Ab0{Pu1+n_u$j>G;_7}l5?~@b&I5j ze(LI_|D(`W&}!$eJRmnQDnh!gc+TYH;1O*t`KS`9vT|0L%Y_$BfC!<>1_!9I6o}9Z zxQ`16$l*@R=CLwAZXZQd)20y_HEx6fL_ zh+vCkjv|r3O~G72WQ}Fjs^SBF%u)u-Dl8XI2a~7ft0@G0=%yIa2sC+n$*`%*;RU)I zZLX%Q#`IdjMcTy+E-5<|_bEp@hgK&?8&_w0yO+DWr>BR9mzUk+=I+H__u~B0#&o*n zl^v2kVi`VZqbx%jD;P$D#2fA_*SX>|?Y?qOY(?}YMxspV2==JMs88&b6s2UeRD&eC ztgf6#!fKO`TZUeTDFlgQON}v_Y1sM9w83Qh>Pos+6SZ-xF24AtBcEq&e-HCpGrTrO zn>MMt#ABUMy;6i@xn;U$yJyHNQjApg&!|GdQ7Hf*OTU(p@8lPb$IoKA)=z!m;giG| zS+mutO>=CXr<1_z;bUn~+PUhTROvO%RRZnwbM=$`wi54+?#eo^iqVSJ-NSDO)oyxy zcoXHSv5R1t;Em9`?;`&&uMg3|d}sD~?`?1?rwQO3t?RY=P<7`q9~DGDsFxn?0GRB- zcb{j|eQGh>?d!}={QV2*>Vt3DPdU3p#_!$v&S_GwojG3**L1Nb(mOHd?q%~u*kWg9 zT1|R=JcpXKveN1eEDnf1fsBi!S)RllQc_59#w877D%4DIwv6C-1Jgi;o(;a#|1I*0 zTp4*@A^1)KBxe6mlWFR zH(0smNf^`Ce%e7X>H=zWa#OO3N|6fqLfRtHgB>=?n2n28r);Tit2VtJ|03anePeu3 zeMCe_d0=`PCjh*W?62dj<%s8i=}^mb&HQJU@IwjlC~m2`Sw&P~Wk6;XcPiw_Ueu9O z?b;>=JHbZ65lZLc=+e4;>>sI*oiE}%>N;}srnRokv-$T!&cg8LIH%Tz%>1%j%&vSf5t!C%ru#=8cY{IUgQ*trd z#X1e0!*^g$_D8=S6CU%QXfeFEz7G1%`$LG=iE0LwhBL@ai(^eP$AhSk#piyysi5KW zI-W1wj4uXJpvy@u*>Wc9Eopx>85Ao%N58DZmG~TKPW$zg`C6FW4XWOne6VSHtt5Nl zRc4*$g8R(ZNuS%1dda(rA2N32M;mv28&@O5Pze(b-zjOj7!A@}^5Ry>S=xt<0{ ztErmzzRQDU3BaopJ;*_~!59!p9}}{`pAC*G8ZXGP!0Uv^_i2wp>{7OIKW~6R77#iF z+=uTly^tDV{UW;aO%amfJd!{QMb1Ra z6>KO$Dz`mJWa2jNK0rMndJzo49u^_PF(EqeNcLUSY<6~GhvSr0cM>^^c5R96tckvC z*!2H|4iXW@ArUO(+~Z43EIBc~Jp6%<8FiGBTJ@;@wqm}VU_E-CadC(19VZdsfa_xE zJmu`*fadmb>AKdvPBQUpDQf>=;_d!0iB^>lm(Q*>=V|h~vDi^*^kW*L2uu^K9*lQQ z6$clkKw5bIRako9eV}--S42B@BDx`*T;yr^ym)PB*T`$HVGnK>14R?XC=oSblVYjp zx#YHpZ&f$WG#S3s&9ul&)8xjC))a8jmhI$gCTcrX6TWfj0pUe@`}@VoEBC5Xai;ET zCZH-PBILf{SXe?+0rwa3FKiuj4Y|r|?p-B|UnXt~N9wmXe@-`1a^)MAEOQzvood`H zm%X`~Z|2g6$;X{UkMwksx|3$s7o|GR=TuietAw8|-H#T}s&w)<*gf67_G}-wQrZ$- zpA>T^KF&XHfSBZd=o}Bzd+%qH!?X{a)KUnygZ0| z;#ttBAp|Q**i}eYqUKHZG?c#~K0A2!co5>o=(ra~hrhZC(ym;2jw9j_SK*#K1LT-X@=P(~R%C&r0XA_|l z*d6~-A-q)59h)!5a)g`eRAaZ{!K2Ls)Ah=h*vj#OYKM1YR8aA%1r>*hSBtf#{{z#R}gG9>>yi%P1Te64$qX>N@PT7zii$%(~P^~!KHJBK~p zu8ZAFYIcq9luMmvRltq#i4Po{B*Q_Z84h_!&3TG3EMm-a~eC>i2v(# zH~ldBZ?(;)T8o}dcgsxm28x5z^hHA_tB>qQHYfrl1;JkKG2qhc@uK)i{f@&TkZa`= zn4k6q>s{qVRKMjOXG?qBdnoXAy0|z6ZR_Eg2*O$rmJ$MQ8!k8ul~9cmyh7~f2R#G3 zHAq;0*v{Ftc#$c)sBNN@GJz!$ZPaEUoq${Z5d#zE&l1!-MCk!dLpMV&d-W_hTYg(G z`cS~|6Y?`uM6f{t+YM%fgcPYPlRMKoMP>pwW;3Q%8cW)08eF;^G3zNMSvb>p#^lI| z>Zt7)-yfvu-yYW$nMt@PzK7Mxr?Lv(Or-Q+Up1&p11z#dap8u3p>=?a{TFKWf?k^h3qb)7-h&VswKKh4i zFX2P-0F$7}H|KV{*PkW-S*~RF+B%h!kyq_@duCwoew!cA`^(JTo0WU<#r0tGz`fLU zim()N!He$L?A`*Um{ zY)?^)s1N!bdxDl=$579rbWWwGKE6D$Y`P+E-{zFS(b=Zd#@g0<*K}igt#Ri>+|%>Z zT|GS3n9#C-$IyKL5-Sxm88^w(U-=MVqW8xqNl&SW@;B8QAw`Eo^{j6+8a7gcObX< z-K8)sxPACll*k;;ZJ25a>RcL^I*iIE8V?uhJ}wGym-{)ZS1vgZlcg)zdsDFN7P*xj z{_U6^7EQwq&DFBy-TA`jmcy(gXBIjHw(j@$>&ope@9+n% zvIi%-UpD!2UxdF#CxrgW|Cu(53LZ`yo+V2xZYVA{nLNlI2dIjunNyponyN0UCaTs} zz3{tcR{VK=0A@@B^7m-(cvS%b(k22Lhg4I;s8mx+l_wM(aRRCdvwOd4^j%^AwJ&mm z+mP|-zQ6j?`-I$p8{5kpaC!VrDr8$It2?X9%5WLk+0Ypn+ZmeBx!c%(=NW*2c-*2X{nuLmsr@z=-wz)8|7&`_9~2&@sX#yiK$0SY%I?7DI*{I| zDkxuJK>1Ibm8iueq7{Uc60QCP{@~zfA__<_;Xfj!AT4|)6oCbSsS5lF301(9E06^& zp;+gT6VBPc;Be?tr5(Liq%Uo^u3=gaE~xJ|r>43r1T%n8DPjMWWmr%wYc^e0?GWI9 z1rHP}`=-w3h+rypp?$#rU(qwl^UXeuc+Cxet{0iKR6#~l#z2MmSKg68JHOVi8rG!F zT_Vt36b%Fn2xl1c!u9f|>#%eG(MrR%p?cv-lMgd-r6`X60R2~bf`Q#yE|o}qapNi{ zh4iq?PNV)SC;-?kxdoW~adW5!j^AJ{AQ1w8q4vK`(y(BNH&Mg=dgz5)eW~@Q(|dG~ zm2^Ml-W@sywO1e1m7DDM^UC9L@PVc;)o=W_;Ph@DvW-B@&yO< zA$q}my9R_*b8ff$lINS!19E!@Obolu%NFalF`R{6rz5MWE{ZHae>5A$ zV2qxm*30edARBXS*gIg;EImt!cD5Z|NMi-NRchf-YRna;fJ8l$1qDuKvhPi#GnZ*L zTQU`c9Q}PbTdMbdapbw55gzLkHAGqN@!@9r6Q$eP(uK+vu;urKS6^RWrqz0Rf#ftL z*#{+b%w)Y8m}j-LH&s{|@ABx@7ov6KpoaH34aSoAMEdK`zQJ^?`Fb=ewlg3}cHD$K z_+>wSkCM#=HW2m3DUBN=j1=fwrg*pKgZ4UHmo%ww7(AX(rD`>Zo&E1Bl2!H0I>z`W ze|ysZVzAxSJBMvD$9J3fib9Jav2U$S<44}bz)1q`xR;S*7G6c-*I1aL9Kk8*df6nY z3)eebKYn>9G^X(kgDiup5^pe_jD*MIT8>3jSZ|*6-2x`E|I+E-a5~z%Yw!A0YZ3D6G)wyXP!kLGSFpF5e&6+Vk2o zlh1N09E-~dlKXtI2IbPaK>m%HI_714T@^;r^K%<(cThchus0RpBJ z%+7RE5esgPyxdT-GNWD&yLEr!H+vcZi9BV8i&fU|hXwNE^`S9&S$bHt@A4)7c=B23 zGx%7i8<R7l<;CL5_YwhF-~&p9sQK}4haYo+(>F52Gf0y(-);qx7O%E*uf$txeFNA1;2(q2A$ zeZ=35AEtFpQQRUrpi-^Y@NbnyM+Oz{a5qx0M;w)OTuW(E}F(^#~)6Iv`80*>cf(^d*^6aiDj2le$3gc}HA- zfQ86i+#lR1prs*|A~NecuUl`}@-{{m0>iw7cEcP*%l~tnw-*8qd)aonRw(3$FN?IC z4lnW0WxH?Rbiwi%2JvnUCY9UCzB1*F#Y%$-indJ1iB_N|$cIQoH!#;=XiKWtlq*Ot zs#o~}q8+ZYpQ^F?OE$fTU1xZ^Eh67kb>lKMH~x?HKL6eKb%6wa^n5kQVWKt6_sxtV z9*^7Oo^D@ev)$}~-@p8yMCu)MSlVI8fe>047eCh9od&OUUtJwgLjjQ^tmTm`DuQ#E z3Pbc3>(39_G#U-t!1ZqpnU!h}rxA(2-cCitHroO+f0Yo8_Q?l~Bv5;e^|gKQCgQom z{=K=_HOJ+z%@-adRIaW9>)cl;uS>*reSgLu-mLBYTy@3S(Q2{okHzEm_B%A@Hhf5; za=(gkL)_T&)o*VrQLNtqw*R&`u;?9_!C_OCd!5Z~0Ce=N>xW8~p8piju#TgjD~eb7 zfvE&_E(D`Q4<+u_b8DEP)r1R+ZyhUF`0*)~{lwIrjD@D)E#~!&N`m*%;zki;UmryD z!O^=C>4%8^x+LQKlv-GmHTYpK8!S#ijXfma-6UF2C%HC~`yf%+FW_}@szT<*u_I15H4!iYCD<#hb z!RWXHHA5J%==;RZxSbSp$qpK0n(WV({4LlaV{sA^l79Z&;44x>!P3jL77vt1PEzeQ zD#PoA@?Q?u+k$|Oi+Q6*a}kTXIAULmpd%JLvP_OHx2w&K-fldeKFz^UIESZ=-TN!6 z>uLTz@x8j2TF|tp%rTm``Vn279`BbrJ>o{0Og7owxJ`J4?Mp-s-B_&vPFTuaGk87U zU$3EQid7noBd&&5o84Xx{(^iy&=Sv{Jb*K9cq8x62@YBxtF0QmKdJP!epxx5r&Rls znHYLL4`{w04{GzgNA8@q;D-!(;klgNFR~V%uDB>i?wt|cN7K2Z!%-MMW;p|c0i~n@ zg2z}@#|{K38*QOV#Zo5@=veN_5n-CGwlQG@zL;jyIm1Pgi2}@I%zZbG>pvz8`W$WO zDFR)^S-OnfiMS5{3}K#EDJ9Emjb`#|JG~BjBb%aCE303;@YbvJ>ApE5D|2LVXQKo& zt#*0~6)My@)JNKk$26ezx*g7vTaEjyZUGVPsA;4A2SfDQJ zh0J{&mF`56im3O+k8`{(>yuMQk)YuPYSAN;PT<7>AVHg8w@^e@o2VO?HBp*w8^z*l z1_W?5S?gOmjy|97FC8(&I`kUPj0V_RK2SWfP^24d@sAj9B-Bdl_{=NXv z{@=#INDWUerwfAd#G=-t@kI|(dn25QO=~tJS;791!Oj%E9c^oB143Nmg2GSNh0SVt>}P!S6+fxFni)^%dozrYpjF(I z^Q&1pmCk&wD53~Lg^uH}WTJa+rO~XldO7nlbi=te?JI_~aRbhqOMOC%tBu`4GRe>d z2`R(gt%d|GiC#|)!O(t3s4Ay`J;HLqgaTGw?mhaIgqYY~dHM7EG(Uq#Ti|1=dd+s* zEVq;B{din+e_S!UnP5gv(F!=g)K3Bo8Y+wGJGA!( z7oU3OntODXcHr#n)E}?zLCEFKBkm2@OiHBURO*O7`w6@Z2r?a&+p=v_*JVBHwAlma z`h9Y$*6POikwx*?q>Y_Eoyx2P?`Q);+65F^2zZ1wjy*YpKp}J#$!dllkpD4j%G7!#+k9E?P+Ff+IUd#<|rqF7Y z*oe#JLWIU322wa4;S4-PG$pEDj}rJDuj*zbQ`r-MrXYR4qV@jk=(%j*NG+T=l|%uR zO1F!H?|B<^bo_K#8Z&SC?YI!IDtBJ3R;#-j)ouJ+7sacGKy>}%)hN#ZRNCyJg*Wfa z(n8!S$w5a*$0Y=KJX~)y7Vp4FP2!31`w3?XMIgxWzhe&9Oa6&mqa~Q3@4uV7;eSRm z`SdO_7+sAlR_O(kw^o=E*=b-ZpqI#V)41Vx9 z`pM*=AR{LL$#&smWB=%tqfgTp>G2xqruT$hmOVEiXSVd3mpSKkf;hfwc)pC}ze)9> zA@kPOS*o#8Z~Y~l=@mHhb`pG*SpSMS4iLMLI%j3r-K_l<(T{r4&FJ-LoedO=#SGE3 z=L8PmeN5AxTI5w*qQiZInWvB&xI{@+Xt4a%wcJbbXaD!5G7E&bo83@SIkUsL5={lW z6~HVPQI5q7z0~oM(}eWM6`6C$cAek?d)|5Cj2%e&z-~?V@(wHI2w#jo~nV|WN-$p(cs zQ^@BmMCdDRurn*>XR2)<&8IWkY}GZ$$7g>ip*dw}YlgDZB_U>Yh4-D_N;dYnpU76+gkQjnNoPyIUYe%kcv=4bD< zh1kr2;-ShoaF$7L_jz;GIWN91?(>0F7s6^gn#mW2^Z`+_%)plL^e=*~=XhW8Mg6G( zYyvZqK7m@Pih~wp=x}^|0yb2u&|X1_)de)3@)e!88ger~!ds@@jCN~WPqjudRy@t( zQ#!8L6&Ks{bV%kL0Qkv3ESRd27O~> zKhhrrdB*0g+)mN@e7tssKeYXtjJZFisjj=vfy7Sf1m$QNJsfj3;o*XFn_3ylWzuN4 zzD950yIIBI#RqXU)q}vvL_zB7y6Z3TUZ&BSNgiiwqe}q>i~D+8*_Tk=SM?MEl+xaf zNz3(pv<>=w4e#!kt25*Plbsj&D<&j(9VK{9<<{Qm$X%?$`>ORJK~uoxB$)Y2r0}{&~c2>A4ZLj~qOMXI00{1BJKREWoz% zuvkEEG@L~?wp7N7twQHp2|26IZpA`w*Aot)kR8tB<5l20(uLJn~n5{-E| ztL=5xQ?tzcU49FAOY~MuThHXQ<%GACu*jSIXb6G9I7M=lT(`)R1+{(jTdYvg_kmrg z6J)Zp+2}yq=kWddaN|wF7@ygGd%NmQeJX$*7#O(kI9{?gH)vPsgU({N%fTOv@lvtQ z9Qmz15rs~ha8bleNli4Mj&No)M*J!>AD3#w{CqGHgY#gts`2@}2k@k%2z4>+hBcag zSKCWpZ)Ue4+KZ%Bo%5Me!uLzvfmwow)b-#jzsGq&%KznxoO?< zonI>~6Wub1%`{k0tI;k`J!*l>EtRD>+e@26o+j{p&gbKsqF8Iep7t`{1oX0lkR8^H z?DXK>=;XgslEp_J|9zQc-)f67(-fY_;{2tD1IyKEx5f8St3)<+Lx6ehsp`!kIoLJK z*haJU3W;qdkhA_~%!j;}E;g0x^O(+u5zvu?g%!zRl-BitOcPT7GyOWEpof{)AvIJ( z=zTf}h@YcAHA2ksjxYgLIZjRelj#(1Qf*6igiEBNEw zt&?Y*PKPoKsz&QW@ptMgY-=ndmeH9@(e)+ZIS~ZNy0J?*?o;Gm<={tj0x3oq@g9F9 zP?N$B!0|>d=yG0iX67RZ#E|)!5Job%9_`4znV3;5)h7HQGfet?;F$8364SwZHJr7% z_RR6Z^p*1eIApZZ^m z{=Pn4)k3S~{Wi8l{;lD4Qk<&&IhnyqU3|KGmAlrfYNc4(!{&Htd2#;2yt=;Q(*%KV zzwnsbTQe*sZh?f9+B|kFaq$Ltvr5+Fsrq;qFLM?ALz{k|qT2rXu}U8{uy=+mC$-jK zBK_Wu2Ok{NJjj3&t>~C)jyy%(&nhiHB9E%{OK6@CuhOEtulBjk$`GS6qOAg&Juxq; z_o}1(fW}Ys&H6M3Y$=gz=i4vm4zO=qEzR})$wEjxTeneckaGT_I6+cs)<=;mL7A)7 z$Ki{`Y`X9jZFTv1*jb1adhdmK72|`pC5wo~&q44SgBinpYa%Fe%+|%^h>VZJf&IkK z3gj0IH@ZzhAQpFy0AWJw-y^&!Hh9~BbpfQi1>5VgA%K@ba<{4g8A(LFX5#i zbZc?r9j#{5jE`(P2)^-@ zE|jpC+{hsB=g8u*`aYd9?twIEul$KE!Fw|)}>` zjfS{xs9Zs~R`#@N`R}Oc+t-zdZ%-AJiwlm;yzd&3b^8f<{3PwM;WHMFj8@UdNoO}g z!)d~Q){<)!0CfSwssNZ)z{{?nYn@JS(TJ+pW0sa#ye3%BRV0$5>N*KmLE>r73_H!UD3=1lf~d z-mxeg?vueWWL4iACgD^$cw^@B_=m~(ur7386!gG_;Jev)TD<1O^xc?Zd|HQu_1nH; zx=?H1?M=sG#TQ1yx9_VXPoRg)>4|B7mu`4vfrMjDF*!GpNuO5*Es_O}_o zJy$l-8<)5q)<+c?nb*MQ1D-V$e^EgMH$$wKqJ)lh;||+^g$(?VQ6KuIu%EuLjll>r z0ISJ-OT3fBk$}{yB?IakLmg(wfSwg}Az&D=9S4KKdFzyZs1(_XD*J04yC&z)LK#4!bLE8x)#$ zG&M^@2;W91okBxJ$Nhzsx=@S3D8LMKC@opd>5tKQoLm7n|8xB3)(dytt6BsVnXY^} zi_J=>TkR#@(7q0fwHsKEa1^=^Nse&+SbS+=m$XL6GiQp#YuaD5k| zUy~EpT_{rj8kU%v8cx2_*y?^DUc3&sE8CCH)Nc!D(#j-SVo98;IAhq-Cw7s~j|#H5 zmRDrd1PX`3&TcG=#bBfLk_nFZ*Mxt(b_c_xN)^ft9?r#%_1F$>{Tp%|DkE*=U1EvIC6rA zk-zRy3P{gGDDwXCQxtMpWmhqY&x}Bz*$>jGHNkn-)5PR|vyPxftA=#%m~Cf&wr?;z z-IvH^S8%5=Tf8)wjL&p=IQi59RyU8n18`RZmwi@Ph4bRUu8j#oOywnHL^6D~$nNdz z;r-eQG8LtlrA{}yjk^d%2dH-r#$ighOdJ+(cz)|z|2g8DAF|Fk*erEyT3KswZyti< zF|Si`)+ep|81!#2wZN&X{BklZ z7i5$^YK;2kbzj&JZ3d)3K9{cpEx12<^yPqUSQxqbxCA|T6dyjthV-eNfYbXwfXesQ z!IA$yzzB;HP(WuiIlBqyDTx*@{a%83k8uuP(HIkNw69_?q+rpaX+QIFt)D&enkYH2 z7uZKbi)R>y*K2e-Pb~KI1n9H8in5N{TF2U7cc(Ey=lQTPi!%b zwi}6Y%NSrFr08}0w=PFE8!MN`yIBDNXHL7ujCL=e=0q7re+tn-C;N1LUrcyIi7PMH z+Z!oMG+|Qlmk^C8(|}`_m>jlb27Pt^I_{1_p}?w26&|%a9qsl*5-jveW#NiFAGCv9 z8TsRE!#9U5E>rd6XN#@0d^V@X*{;;91|I=(g1d`gRp=6Lu(g0m`f|O zlklULCuz~82=M!drEk;h{i2sBcFU3lVr`#t%+FWxNDOTtjHg#H4yf6NTJTirjLb;k zKk$y`ty(6(=k^2{ZJw6$Ux33G$>Ku6NyQKVkLEry7j#XLy zJpyLbY2l!v6JN2f#cYePLuee_LGr{Y4cUb-2gY!q{SF(?T&SA$dAvKl$6r?1# zJ!4&6c4~`x+rPHBzK-s$PdRGg1Tl159!GdOYh#n@Kl%S8QGr6+04Q?3l_+8_T@{k= zU_lpdb$h%uzOLO>gZ%i06?93TLkA`oC|hhn(XD}UJb~KQUV)(3<#?O~h2J0q-CYFc zTD;NzWUiU*Z*m=FCZvEo{eubic8xH-d?TKvYXDNQ8=Y=OulFZ}Ry80vZTx~cDf=*j zZ}q^S5X(~M#i5xAkj&5-p)km`2*|Cqzr60wQzJ$qQGXzlInE7Di>P=in%eDgk8C&p zSpSEH0W>!T!w}9Qey7W<03q{qXwNo_Bk_Y$Z@v{TOTS5dBYF2u59Slm3p@{ghDOBr zcpwhtq)>5GRY3y>ud&6&JrQXCFPJ>RS%;cXl44xAt?11+9P32hkk(=*jpotF|+ zC7xwa`0FEv1a7uI3^1-AD5c-sX|bX+lhg2PGan#4|LtyxzkZF2DW>{GuZY9Zuh>KI zf1KIng#?%SRaGvP03u=KT^N76MCR~F zoy)=t*Ia%3#F#Si!BY(S z-Bc5uUI*fw7j&ULYN{ngscdi52+@~r%JLXu9pF4Z*yp^A!5~@G2Okh3W)uRgGpn`n#N-cKk6bfY!hGCQM7_ZSA){L^+{N z^XMgX{Y;UrA_{$+PbG&8T9A?o8}{Ewezy1@S`wjIax6OTM9$mvjtGEv^pW2{fM&Hl!L4JOy&)=GzJ&8+!)$kiIGIgf<2TPP zNwvY09M@{Ko%{uEYuNX_t*@i&b)_?#ou2$m|3#$ND0>5 zw~g#f)%5Ktlu?z8yg%^|BSeZzC@a_<>zHWgP_i~~@KxZRJdRIX{9@$m3q*M`${Uf?Ug_2>d$GN85JEn^3Mu&?hshMpX4ov(eL=Ysxh&=yCk(mqg zmdZmg7OZx+Cz{jYME^G~XGdM{HeVv!u{@4o*B~G|n!5Xk%`awu-vv zyjas1UtEzX+g@~ zC?JSv@f)nZnA>7s*_4cKoXNIgJT0tWb|VK7{mIgYGq@>`%><6jhmI4WW7RX-Rz8pD z$%brl)-tfY^d`Mq%>zBYava@~Y_r-_pS^tcchqI&$2R}YYX*yP0+zI@XbrBwBz8)# zob5x5SLcrjBSH(dKi)d8C=X)IWm46Q z@7=A6r>k^b50@NSJvsJ%WX@|$U2N~n3!Y{Cn|@ES`+VKNB;-C3U&!dva@#5(z~SGdH{ z^Dz%=C|&L65uT-~1L^fHgScT#1s~qAxt{Ptsv)QIoFkv0lUE#g4dZIV0eb4N=L$Ca?c}jz>n9EmG!5lUM+)u+Xa?dtM5N!H9{GGtU z9Td<_Ecg`ZEAV5lE0k=$hUi9QMX4%CvSa7Z@zNJ*v=qMU?g#jKk~fK@M9vTyU2Tx{ zZB&1uR)lUN6ZX(yDD>Lm^kthy;lGnsJXo$Lde)z&Il*IB0i~8(LAkxzF=~9#14ma6 z;yG~~zjH46N&hVHsFf>;%2!Q&NQwa))F5FSI3Y2f^P$u-3y{LKP>nRgg4Sb~aEWj^ zA(|tX!rb*qUvOBlA~Si@rs6sTJI#2c>-2je-!*%WlxL0=LbfVKzUpx_I+2j+r*= zlue!Su36!;EvUB=geH<3_dhMc8ul zFK_{p+Z;qR@`0l_w`p&gRc8fl@;BH4HrQ-#(S8yj!rSy~rkt1aHy-%RZ`f-kf3s}v z(t5M3@$dEwo5Z&)@Eh?-)M)@O;@dD&Z(uExPLBW^oQs>nA*0x28z*n;%;}r7JE_2t z7Pvyql+u#;@6XU;r!m>z`i)wKU){6N-A!|s<&COt+*3Td+rIqcN;2Ct+kmEEYB<@R zu5p9X8*2DBO2{Fxj~wqH>_E)VB5CYp^S2v%AEy-502 z^I2lq^Za|K$3=L;;0gFaXS?W~os7SAAtlKbH5Qq^E>~D#O11DkC1}--qHk}x<`<`n z%OZa4wnJP=a%;lelizq2x97dNEZ<>7+yxz6qsSU{^;yR7D884>^lbk}k6Eq{`gi6y z>d2lae5YL-+;s2*p?M&n`R-;? zUaS6TdW+F&3S_@Z1@hqg6XY3k3SkBgQ2Ez=`sp|;okmkxp3x)v4>=otssiQ;cjD(G zhPng9Yh#K$MJ9-u2>j?yfsu4CPmM+}XtUgBdQ#GlCaZ~*F^4taXtz}4NTNx1F57Qc zOBCPKv`~dN2-|wS4e8_UX$jiUlAO$}9NYb=Tg~3}1LOGP-f0;z1>*|V2fWzPcpw?Y zZ>Jj})IjSPe8KjKX49ht?J(9GygSDin7cN)53-gI0HQ&YddfTOl)*nb>~Mdqr~@l? zH!@!@7Nd_y0%OTSe6oC|#IXaDuzL z26uN2P67mXcMa}t!6CR4+}%BBaCi5EJJZ~I|A(2Ed1JAF)u*ZMuG;nO-LUowu!fIb z_2LT7E13uus5#x4KFxGHkI#F5IG?rag06QYIk|)h2Z}l9HS-zsa?T^1 zW|3gGhSjt!eE9I>1O6uV)K6^r_yI9MV=(i+3~@u9UJupf{QYv3w=LgqVzm_ zp?L*iS_*Iw`WKo(dC0%;|4!EBJJa`*U$&-jZhW7qK4(lR(Zp(CaWBO@LD=&AmpafO zyTg;8F8A9fgc3WOh<4k-tD0d9clCpBj|AUtR%h~*a3+;R5AR6iza#i0czB?E_~$nl zhc@=gp`Z?1j^f1_nPw_^)_Ue%^K#PS32yQiQlDMM=AO5CExWCqSfP1O(TPCuSkf~K zcS~V_HM>bn9&CBK{R~~Q^ce|hE?W1j-+PAY*IfvrC0!)iqJog#mX8TvKf}TSH`^x! z=npV0i!*0V86%xH~F*PRRfYG7$_8F3I{k0HuJ}LBG z?wQzZr*Xa}SSWFZm?!51oB8l>x9~!GQzU$S`mINeLs1o5?^Al~<(g{$m zzd<;c9Y|3Rm8F5e7)!vVGkOZ`JQI0OtVibX9B}}1ZnMvV$BO5(N3^i{3WFZC^gRCQ zD?-G>r!h4u0$4rR^M>W|*V<(-nXpQ5m7GX( zo-gSW;4HbVY*_U;R~(l8Gvjd_Jx21tXXZ%Fm0hD((}>aHY?xn9~%;mg3V^)pNeswqaGT6FKX!o445vD3jky&olKlSh@lMSDm--J z-yiMw+~_#8H4FScUk+Z(Px&pTDVS4e@{gwXBXkMBm3^O!{;m3z(Z~n!7!DhUgFrRODgy9UC0FP5`F#&~Sw;-4(}q(=J?OW8PlVb6knWJ&;he+hej3U{u>W8N@GF~h))R2WKnxsTUpKnXJ%2>9=1X`@W(g+e^T>(-|cLr zsp?!~@>PhAKXv)nvl9F?G-Tt-^|KR`{T6G)*LRef()u&G-?+7vm_?Z1^obyoeYZLp43+5v()3P&W`3>l8n7E$bjqhqnURr&L8%Ne_GleZY1%BI%@^k^y z&<<#bSgKT|aH`eC%KN>l+$$UtbZs5L?;R1cy9(PB+`AK3P>|68Wv)uxLjPSj&dYh+ zufQSMi!E>eRy8L&d-^Utn}0N%7?RHCvIpi#kXV4P^XZsA6Q$8^Ls!vege1ZBhKECl zqtr7%3mKT1;Jj3^mkx)po&1>pU48aNaGR?zf_Dggi|MfvBdfWu4$**N!&Xfya5C_4 zr(uo-2X+XO=v#79_l*GEb#g>s`kKk-R(TF$ao85W?od-q9RwR#|9QRtNl=Ppr@xn& z0%*W)zf~5j{7MIrEjQERmAP8d#0$Y9&m+WlSWIG27EurP!X(;NnGM%xT(h-`w2}YW zctn#F7e5@j;o1|-`OpWq896!|Q9NmDu!a#dwOch~H8((Gy%1i!Wa!5W<E%%e#ohcLS1G$G5u0h0?d1J-BvYPD0#$3{g4e< zUl@pdw#I0vd+j~}`3se-!n*0V{*?P~ggQ6$2QW>NNKWTAr9CblLZi|X^~ID4x&L7k zUU14T;>=e|=DyI7_Q4<%mA}V7=VWdGqRh6ZI5JAI>ZT5&{fhqz68PEO&5oshW@TwPPG{s$zVDlq0XRD^`HxwJGS~ zpGkC{?b&jJON`xYiSp*cFmCgEzdp=|vb^mJG>Xj^ozD=erveTT4jM(uA`b+>oaU$@CYw9tLXvM54NSkwMl z-5oILt<0^FY?r}N5fP4^8NELlCNg>bBh|@&kt>p7d`ab7x~k!-B0pWl++|V&OT$g> zE9y?!I{cUKPkYB&f0cL?pJR^A?5P$2%NRv{#BisO=8DdiGI0FJ9gxW_K*w`lh8a|A z67cF;$Q+e{<~gpI4InDxx`_oWtIzpXD*#o1ynMYkkr}5no-IUdU|`USl%u6HmskB0 zgzauO_KxE7N>#f{7cD|AmFv_eyFI)MZ&>qlOT3-q!tQG(2hq1H1a*DYoDUjtvODUK z4C=F<7q;2TLXCiN9H?%!*OL03Xfx`;LaaY<)pi_ldNPi0D z;Ea;^qE^v)l6AYudWluQ65;Gg8tMWdT%aQ3$e7-rZch&Gx|s;qWA26CAdsFu53zlr zH+bxKW7+TfS0ZReMz{ORt6ag}_TAKr)fDe8zbMOU?x?XsVFV5bgbv9V8(Pj36z*`H z|BX~{5$amjHpQ^2u1@Iw4jv0ubiG}nTrZ&b^?DaT{^tgC8w!nW-vDH6RVz>L0-(DB z_eN9l0r8OJ-T(}a_}+lm`A}b57UZ_E-@u*SMdsmb864ljwml*^Y2?tvRrA^{qh_we z*mJF%qNv}S3Zl`dj*6^AVw}L?7Q(u8dqrck8bTIH~!%B(i-xR?57X5DJMi;`` z&G(0;@L9E00a~NeACfN-nDik{>mG7kHl=_VHL=xlwdIm65IdNbZ$Oh+#qDSoiEdSk zMeFZ~8)$z#_6fI;9Ml%xP*Fehz9~CAlo@xwTKGclBgq!Eve4!0dm8srifD3yV-v7WTo1Xc zo5+WP{~Me%?Woo{(tP9?X@X?A1uEMf>D^k_|J{ZsK%|d4$7|NrT!k^ePY`8=>|cl1 zBP*je$yQV#0gvNhzyHEWA?p=lEG~whFaQ2N4;)-9t>Cmktf9bjw}8Cl*P^fyBRc1Y zAtOiKRftU%hwhqdO*H-G4azxABjRbn_%qN>k0XPk{>|rn8=^WNb(?FvY#~xSWlONk zm3?<^#$*Q~dQkUWR1I(AxW}-8{nz^9$i!-pOmxyK`NYyj!Qk;~BcJ=kbrMRa)BBce zbenJsne63R*um74Qiq~i^S~BQ+h&HgUitdQ;v$Oo>i4a*>kIDhLp%!f{Hj|$Ed_I* zBz%ZqmOVHx$6EIBb^(c$fdesm51&Na7?57Y7AkdI&SOR7We|_fdd!((peLX3Gk1M^ zhLf0}7V;-Zk4*`Pi$~dHlMM8f;=kr|-+Q9Oy*C&Ief2`C>Sr2CCvx8hrmfM-)4-E7 z_oCWF+d8k%a4TDff{+IXWoo~QuCsr(;*taJpjE`-ycr73Mk-g|^mc|HzyMnR2?5Le zD$hc|<7R4i^wibGmw~Wq&U{&UmJC@dgv$jEE}o{VTY$nI_%YR+qCs z0#AqeKc2rw*Y`^NHP?BHof2izjr_0fF#T+C1|zRmo> zL=6g!JXYk8k;`cl-=U|=U zZD&zZ)lUhca2fkdYDwIk#Yb)5ZV4Vc?fZJ0n3NsP?lq4n#}|$mO{pIQp35Qs)D1Z6 z6$KwDd@7@Bt`~IhOj{O5nHXC#fwdaiCwPo09+-&M*|+%XrDlixm2(?6cFV|+na+V~ zt_`s!&bb@!j@|~oJdwiQuy%qFdA|D`!|_3!o1OyqH_+Hb;o;k0ll%P{IL&Wrs~4A@ z?zxm+Q2LV5ywzRWY@%C}fF>lbo78G?k-(7In#~Fbw=5>O0!k3&cc*IJ5#cQriETVI zccX|x;z7uRMWVxt3q$rS%P6(Wz1nMxx-jc8S-M^I|H_7 z%cMx26iY&P2e~C7T)Wi25gphOJ)*uruYfkz?EVF(ee#)1LeRf9rX0V1l8AO^_)&F+ zK2#QS*Pyu7;Hhd6`Ca`CGJMGUU7EbVDXh%Z!m%;$Utpdh}1&BN|Dtl~DyGIRXo6#!`=?mM{Aj@yl18jmJap{yvos>}r0t9HdEe7toxj2&|U zCXWz6{_FF2ip!fYvDDtzmVs z=|(xJ7fB8ZbUo|T;|!;NGGF3fs#IMW5#sYF9I_sG0k#8+rL8U}$3GO&_|rwB@VOKg z!c^L%@r6IF5BcS`e1@%Y8~wgnJl;KXM$*VPLKcf>HN<=;6*H(mdQme0AzJJ5up*BM zY{PNu#7_n6H^C%h2ugno-dC$2W=3u#@7R91NPfPviYhNSZUXAGy| zvBi72IujS1$k6-Xz%fsRpxa)uRj|wXM>*MQDk&q*+Qr8qK}!Z4^h?gjnz}1~^%T)& zuw*vpRb95*IpU*JLi6*J)}c-Rnt|STBg#W!3PDR26CbkE7+OR5qV$ZIhlKQX+YCpu zIE>&M2{<$Zsn4qYTDxX{yw>K!9!Di^*Thyx)XDL}j}P>Ll*Xy};g)EzNRQGsTLaz!WG;0^!jl!8FTQX^C@*r6gh~cK4G?^Gnq~-puEO=Lft!h@%t{g2Y8D zA4xz~i5Vvn^wQX{$}39%81Jn-j9BEanY?qLWZpXn=wSo(iXR;Qu!q5>?OJ;ys@>~G z-Szh-GnFA)HkeGh{30#Fdv^pdBl^9-%B9;v1`l z0Da=dQ6+B!9;8plfs|b^t>Jnth=kdxnHFHJe7wB6Pkud!#iP5}rilnPiyTg!yHb#p zIb^QiCNb#=cC>A#oM{0&%~?Ovvyl)!hymsh&%CWVV4mq_b}VX&-U#nlEqOMjRr-cO zn8}+eiq+83(}TMwriE@2bSRIP%|SUMta|%wXkh7SVJfMt=l}dMjsoKhd>}N^G$b9b zD|zXEfKppjzHLG-&C|=1*JZ*ZYM<bKRgiVGu-oI%{$1lf|{_ z=ce10GJdk{+&DB;q-E>wlp>~${lVyZrKCR$&^l66Pr~h>4>6s3L?JNXh!95|H*{OS zvHbj*#s5=$##JG<^Dk_96j8h79Np=1!)T!GAE_}z!1x+HWoVkM*mSkx3Kpse*|!e1 zESL2;p^+}ct}4?IpJqdM@_X4{2C-h_q~P;cWYcaM#)%&#fE7U-x$s=mZBF$ZAfLEe ztOJ2ixEALxQb-rQ7yZ8KwN4lqzqme;gdQN`vOmzbOD|I^5ZrMy>fk`VUy(nsdQUOuCnk%7%zDYscYhqOO9Ki<>8XGq z6zp4*0}&*XNT|x6kvpk69cD52b2U~Uz#z`9pB^dR0&7rfz)cSrIS<<-$~DDva2qxx z4kDUz%E++Py)o>iF=~_hkvzk4PHrtqGeepkc8B|8p28(P#%Q2!EKFpN(6y4q)uo*Xdj|1Xly?%$s`OcVP=wXsAQ0<6c$RP=sLrd9q-G*EDyc9FFLcvXM z^0MiL#08n|DqnFADaq{0EW4*jOGSG-y`P;w=Eqa~WvEp0^ax3+67@~NkI|dLeKk-Y z?Zk5K4<(vsCXdK{+aKBV9xy%VkzY|*Uw)+iWbpn=gyNts&eeX;sicC2(E=`G0~Zn+ zdg70?T0*8D!EDi5C-toxaUv2DaPqL|(Rm}KRYdC&!cW6MVt9JqogO_KGGP*S$;Nyh zzLQo6pU;2_3LY>#j-pv@&OMSG`|Z}h)S_hQ8U!%p)K8nd>&X2(z-s4Va=j8+{zD#v ziv5X^S{|0R+zfLF%U=v$|8bYi0CQ@&8o0EmNf`;>e}~||1+yO_lp&*h(PkJNj}a+H zX|v8d%sF$K`5{6RC$zP`&H_T&0*b;IoB7m&Uadqwg;a}G0njjv?pVw&;ADWYaJED| z112y{A)S3Bexgh^eh^G7jHOEU^~nL=uRyM7hY+qIcCtt=XBw^hca_NQ90uP^l_&I# z53fRaGPNRfI7wFAgTpIJM#@?kv5;%TLt(QQ8b)=-FgeZC|78I@{2O`N3MHNoOq(9- zU78J$DZ~VL10T{m-MD^n`bJ1a_=N+ig?KJI6xozco8|2&8Ol3eBk@dXz_}AnEM^Jp zABSWbiYtpzp-V2gJ#I?m3RUr3NFPm0HXrm8X?Q7aG|zTBcnIhn*LR%Shm4*QR8Jcc zs8KPAoXNi&71a*onz;%z0ZuQ#&k%boS~H5NL|_4U*UGex(}QusqN4hN-lZpuSP*y8 z?ix!!Wbw}XA)bQ#B58YgE!s|46+5ECmCT3TC3mqbOfO=TM&#qLzE8FqUB}T;>8N2n^(oA*sXsp8I<4FN{4l0&%3Ah-4`ck z_Vw42nOKqAx2oAdPe$*mjo0u1ECJ!GHZjCPF&{2Crh?b0j63oo9C0D5?3=2h5Vv*5 zoaDtD9!*FTRjsDA{>@x26C@eoX|0krMl6;EcUx^~h(h-BqD8p``Zll@uL-XE6-{rhq*P(P6ULC*s=4H-P_(jPE3+T(W+*A9yF_oh&b8R2G==B*a)cA_iTedDy|E z)gt2~*Es`LP(agHiEG#|^rRw)e^cZHH^Ij}X#hfGfU(+al1S&&dlOulfYu%#z*V{m ze(V#G^y&NpV_i*JK|v4qZgbu254IZCJN-P{UWTZB^psbbHB@=lX0O>_m}gS9T^TX( zYYMja3=1-kL`ZbDH38v@R)6u2o$sghGb9#RmnDw#i+>z$4{=d|D>p+kQkl81Lny)z zu;b!R%Z7Ih!aKY#0Jj?QnFU=>q#KY66q=AF@wjObLU;ok##y-U|AK~mG2^QOJ=ZrA> z3Wpe9c0c3?P#Vz1erZf{8yFI z@)LW_k}H`UAph>4BsTbn01-G89`Gtz+t0Lhvl_Qz5067L5)fKXg-W1(QXlS z=QoB}#q=j<|VmE`a_fIQi3y~a;(DK9U%k`vwjPBFrRqT+}eEGj<#c@(r=mP~E z(Kqb@V>^D^6eiV92pUo%rGp76ZnY$E%o9$jnRK_qASTXjb}UA%SW6eYT#a*-P{$jX zhDk;eA$Exf3{WP^`zzOF=IO1A9o27r96$ThwFmRskvuK>bgCrOLZa@s<~P}_(Q(s zt!+#f%DHTaNqV><8#?IsDL&AXaq+rZLofXe#PY^1+h>$Khpw0^kp+p*iDwB#$dGRg zhR6+EzVTJ%6hMNWKg>rlH$YDagj=+|NwJ~$u$Yafe{z%s9Iy+qEkYw1O?p0$g$nhf ziL`;h`0U35k6W=1^m;>prmEav`E4yO)#2KG%p!leJ+ z4}jhxt2F{40~@s_k+$69yPH5%0rYeK^DM(mQzDf-Mw2EoxlG-@ zrh&LxRmjpbvJ`(dKW+@|Oyt%aavo@>ss=WB(s4ZwQ)P&_L}kF6zw7<&nU|5Lv%dS9 zYr_k&64@hpER&B*=W-0i5uNJm)B%~&0vkv>PaH1u7a7}t_?cIVj8(>c<64nH?E`xE z{06`SljU!}yJw*d3ube=U+T;A7LW8U^pBCfp=xfXx6`CQXj=j^$Fwmq^P8?Lj1^T^ zQG>@R<=M@xM#tfJBuxDfKKl$+h3sl^dj(8J)R+GsDQGck(dfvx zozc?~WTOWVIq2l}ubQMd9y-9feNLRMvWb)_c~GbqFr(cxE@c7!B+TEP4~?2lC`^PG zk}HPqMGlNnjnOq%Jc4#nNw<#H)}fn=oX>qeHHgn6HCLK<8#weU`!y`{s{HFUVl$Sj z`4*IA7R&QCj3BS=eu)anzOrSV+e*uP!H!Dr$6KV*&>hZDvqxt0JPkQEey8$&deA73 z0y4i-JAoTXm6?$|XpKB;kGyOoR6+0lNz~U=Oz1ll>z|3=W2wSw{MHz*3BZ7($fdS2AP1HWLqYQ;yx8;jz=nn00kmZ zT3h~DG!5G3UyUPd$ekyu9kM4nWJrwE?Q`4Kx#K7M*HZ(pw=RoC&uzqH?>jg_y+>?T z=**$=8e)To%PkxZ7a|3{@UKb@B(yz0NwQ(NiXy#hrKjCe69gfXhcminam}Z>M>=s- zjb5lUnS=3H19Aoz6h0CITp{S!P2}o3)U55h7+SESpS4bzqchfmzw$&FPEqeDsoVjP z$6aB`9qXd8M4547H^k~jc@8|=ta;**sfB7B{I6<6{p;-!mrm+8$92Ikp*WJA^|Vv< zVb2cVtr0z=L~9=Vxob{ND6?RQ+YuZ%K+SY+#Kvl**@(NF=V1IaL$9m5>jKDs>IcY^ zQMx`74t~Gvg2`-Zci5BFov^$aZ%kqsI$<$Hn(5+a9j2X1&>KwASDh?aee?RHgO*f% z|H&4Dtx=~n-TS2lo7)50e1S>^scNoHJUDjEPnPAwLKD6?I(1u5n;)WbcjpXoxQIE3 zk1ya+|3;Qh=@WBXVgz^@$jvN?XQIhb#8Jgsz3_!9_mL0h3d(t><@JuH%N>}ngslU%L#Kh6dR}wj_=EqzS*gA^R zT_b_`6?x(sb?et^G4XZD?ci(S6DS&P*ROp&s(9&Y0N9=h)uhy5i1Ktdk$9Om!dA)A z=Kpu$WGPBZ@@0`f+Uclk1xSHdlTOaVj!w5=KD7=z{NK3PT)f57a>>3IB>j+ejG&F; z)(Fl-am<)$ePxF2d2pl|#MWTEKq-Ph>osk@s?cI+e#7YcTc1Szg9B07He=Vy5eC0h z6nQfA6DN@$(EVHK)Cn;?%pAONNX-BX>Ulwrm`MUrY3dLC%aUY{E3%-Gbp+I*$X z3b$Gp6|;WFszIK^w^>gd6m{yg>>t|y+84r%#?b_c@~I$i|AMIwie;n_UKA~{cxN1) zSW^Fw+sWY;a(cM>Jzd{qtPf7lu%$}C-q427h3RtkGkkd(Z6$VpFvx#_!d!fNlcDQX zf^Q1L>ZTd&o|pD~1@0ktCoB7-J{IU$Lh-v8a+*)+Reyx25I6Md5T%o!(l2WxA*S^3d5Z%Ni!{AFnJCyPqhoA1uovgEE z`Rk|VCcLQ@F^Jv+amX1AqcI})?f!6f8@3Mo|9N-*?;nD;s)Fp6ojz_4O&Yg33pY4c zM}TTD{3Pq!U(V+jhHHd^PMIF<)Ff|7G3*pzHhr}_{EOUU+A-v!2_fzhWHiJM@$uQo ze9m|NR>}S#y?blr!SmLOo(@DYFR&q-OBTkV$|4LyEA}1g))uRA==JUvcQA4CD~o4I zlo{%1X*!tF4iJmzusEKJ&$+$fv6#vcSx#jyoV;wG|3l`ZD`xZb{cA7`4+L+Arz|1` z2TV-Zk?wU{00rGQlmLZnkx)uVB|=|A@2aig_y+nP=AwHUeuj1}wIXO^lxHc}eZ|Uc zJL70l4I6tIM1PI^D5mx+|#kjM7})V0mc8C zUhU)y!L}iFP2HB?lEuJ|nR(Nj?|FX?>?Zk8g^J>GfYC0yrS4pR+GVZ{FV3iBy4gq&oXX~r=l{unlz}XiU*93f&r^DY z*U%nSoQkL4{_o}A7LDMp1e|Q^HRqO`qKhp&WS#?8i!LAd|2wj0W+MS^NY&_A1#v6Y zr(MW0Gf5cSNeY7On0Mvs5l{5Pu@3aGLkq2Yb8r8EF%e{0E!_B8O$r1^>y$Fa@@)e{djz>=rty<2_~ z?mJfymhC&9Qo7z6kwxf10gZeg){i=p@(b1&KUN)K4Y6-_2T}>I?b7gk%e{U(-<~j; zT^Z@fhjbjWx#&6U47Ym@zMg*D>=TxE_2&@RbS^t0zz?e<{LbwY_0J2nHM^4jw+C|3olP)9f7m@_VP0GU#F#u3Zb6O#m;FGcK0gi)3m z{)~8^;~u*ZN^l>M@h0BzaPH9URc&3ZAim-tVK5vjO$#9(tzMK$Mf%2QXv2*r$=&?A zUZ^QB>B0ob$ypa0XszBXkUvA4bT3`kghfY*{HpF~K50;|dFm%M79i!{M6dAMvWwJ_ zGYIF(7C`bm=qNe`JZEP}z%xDva7S`qM^aZtEb={%GNHQcPzm}v@HKLvfEpFB3D#T@ zvp>1@_$wBHsZz(=z~b}{h37s ze+(t1>JF*8$mAcY4T>2OXY!CLiriG-`4~ zccS6__ka5gEn8?ket|Dy5~J60YHX+r$>9~ zQh&PP0RVzBuEHK({Z?^=AFuY-XbOSg0uqw2jcA122mS8RMMs4IoBffXmO9g&qpbvx z_H!%B%33#6xE4%N6voc?m;3C8b;iU~0W{a+2Z_u+u{}p_`%61DJVA_&sLIIUs3jD7 zMmzAxSgpEtlTj=IJ0?i4mbNny%{P?Eh?*t7ILHhrs zs`SUO+5R4IIc2b*@2JHUpz->AIV-C(cPW6?OA$V zE*N3m-1xQ6*T`Jw{(>c}gIh*=6Xh0&gIuC^=?!86q@{WGDGn`G1O0D>j2@T1WD(zU z55C-gE!hR+? zlF)h#kRtD4kaw}&*Qo)P@){k8BD9q)o z(TV$-?S)YYZ!++Ue9PUZA0zRSTHfx*c(bJx5N0YoBrJ^56~}LKx!+G)(seAAfku81 z(SV>K-~;S=d=lr_5S z;X`5{;nhvL_;`6?&vd=;?QX0?tyf<@+c#fMe&>HbMPc`~VSwh>7`idHTarojnV2LB z8@#*N*Z-Tx(aaF@=5KxHYIs2B#l7Rne=`B~a@mLM-egAZ1v&~{bXDUQg21fDDc560 z+BlCMc=#j-dTmnu^?b-1_3lBL2kBnR^wNP#9Q6zlt>>d!j^ z+KFhviqXuMG8)gyZ>3d#K|+UVB=ISJ(~g9@_8EjUe90JMhGzGt@TJ4csDst@IJ4nj zYb3ooVDj6qSRqxnhf>HuCqDxFbhZz~{WgKS@CrtF(j|(I@EzxxH9dodj&HfibK4=X zSPw)dQ`UvMq<)NQ9}Ee6S;=!hHz(lpCe;ruNB$Z)_@@QE`pnR_-a><1Gofl11r^{D z_vaE)IiH*ot?x02%GE`r)WFyvX){Y-jG>G85H`0ytAVPysjRVVg5jj+dRXm;6P zAv0~hy*HH4m%H8A%8YtgEE`wW)!=mp#mIV*19SAK%|y6nkD1C0QuE#%pF$lsflR_wbNf?$TN?!D-y09SUWV$hjd9qQi~I$a`(hp5^vHvcSG}_HxlyA2Ytv*QqaO+5%a)vk}qx&cI6nevsHu7h>kuSB2p<8o( z`N<%Th5H62W>|c0QTcUUu?Kyg=o>GDf(S-C#dhchl(TyTz6$H3c75f!9KN>OT(?zs z!O%v2hS^}yik4HK*p3yN+?*X@esLp3kI6z@NO(x?PME|R*Lx(2%H&7-x4n**NQxs7 zvDfXEAfbm?z5kjyAG9xSkU1zDix z+63{X9u8Tt;}PU9tfJwAodzbY^a;cCPMEGQ$0CiCnpSpbeuD@)v+l_~eE8A5&#Mgj zd*I4RN6i&p8W9Qk1VaNVh=%gV%SgkVGFj-)ZP(%FWW$L)bHtpvpFjV9L?eA z)C6{0KwKLRyLp_?hQhB*bP|zFig2L$jTet@-9pCEhrR!sM85+7?7dRN-Wb`lA#mP6 zPDn72C3$=wt#t9mOf@%D-vf++7J+7S5!ftBK+L)r_UHF2 zZU0_j;0*OM(T3LmdN(oxJ8gZpc)-%>&6lZ0Lnj1_&#yL`}tCxRF?u@_lG4<*-nk^EdYGr z@p1HPsZVQvH=z4o0ee5{WzBPDIrUM} zv=JTf68{ZMKMDqi&Ihnn$M|tT7bgV5KNPNf9Jw$+a-aE*vw->*ZZ*^&#<$yCzO|C3 zyKpQopd}PAEti6tVh2USB1;)dGh&QkLJ*Owiwx%~iWrMih~6kjkdd)cB)vw8Ka9Zc z(&?fIa*nxYNQHzNKKnbB{3{@G9MF?L7rrDj5(U2)(=it3o{&+D_^pBCMTIt<4FySZ zJ_*i)aCq{i6cwbImTNppaa;bb6DxjrF2MbmT@H$aDACT3c)TUV^|u$Xs@!hza+Sxw zcD%F3`N&%Z$XlEgv=>2IaBI8O<}FkZTgw4rO+eaGJ zuLab|)Q@9>q)EzUK1ga6({S=-v)xjjLBhq*WcT??-tyJdtQ<+r*X3|tL3Tq?{~{e! zE@oufm+HS{>EZu+5q0&F9Gn#%ym|B?_0#p6`XoPP8Pei{+M2_L$Iq?zJqeterC1B8 z$6M|N#pC&p!vZK}lC$jMp?qfzj5lU68hB;WioiVNq|gF>hX?$G<@dpWwf%Yb-8bBT z1rLkrB5(YAs&HZy72J{xo*0m;U~UfF2H4z&L5r0|zi~>Zx)5T^4dS9%kSQ8Uwi%4UZ>(*c~ z&42AS<%wP0xsJ<7QtpOY7zz;$YTJR~_^e3O1Ium}EJTPC&U9E$I%!>_!<6s%k@;`qXshX4QUbN&_KIEC zKnM~(!%(Zm_CYPouUz*!8R~NO&MCMF@@m(cy58__^Y5*Qnz@Rzcenz~+8P&5#0>*E z1G(HSrtGcG_yH_pyt$SMOIL=YPHfPFLJRdP%%^Z%x-rt$+1}5(DWunS4kEv}aa%Py zLpY{nJ7bLY#}psNUPzlxP6Y6CWtau2n$0~OAbwFg<_!(C{M_%$fk(bD z_y}r_h1Cf>h-wXf)){%@5kSZL`I%mbAf%ybKXRvIEt_fZo?(A1`AO0)ihTSRbq(-(GprbxaSd_-D(RK{!ZXr* zP*MGw^Pp|ZZmac!YuYbK7vXPhV(>*T9YW z@BpM@%t)t?U!nuIezl2pC1<4z?|QFavKh6oDXxp^bLc0kuxW8zzF9li&T`@w>NJh} zUa4(nbNfcVytPJu>$pdC_G_nMx!Yr}-jQkI-{(*%i)YjOI7i2I*RZ>_LGmA~PJ8t~ z@sZ7k#G0(o`9?b?A{$1ho4l`g{wnA>2_I{gFD$t>CeEzLZl?`2W%CfV%HR(-9?MTp z@J8P{9vXHKXG${8yW)B$zFkD1WMpWRZg@Jp6}>mP39{IjJZ8Pm6){9(6nw{Tzz{m3 z&5ACaj|`V|NRo_;ClXi0DHxD+q0?)uAua<0NTSFkFU>x+uQ2( zz02xa`T}U+Mjh7^kCm1ZaEH*?09wFEACna1MNf98-u;@M@1e8OMJCh+^+k4B!}4s zZF3HOCR4}#dDrKwl)8=PBM4{-Py zeKCi(J;Lggwd(~zIA-Q{!nf4ioNP=_(!q@kCGq3O6ZJt=VTIxAN`O2zNp?+Vq|Y> zcvEIpbcv@u(I3c3NQs8hWM{ZtFFi4jMt4!>Mw&Qu)Vis?8wiD;=)Y2~a;CHq->ItL z_?vs1RcZKQ?eSBraL5Nn47X%HO=Hk*D+F?XcDqVL*UcyALF6kJzgdcAAvswh?| z<^AD@+2Kqmh{2aS`l{Jf>^-nyC2HRxEiiFD*&nX%3HK27wm^vU3Ke|e43?{`FXF} z!@`=xmUC8?UGSkwg5cMkjjdc^FmFP~853Xhtd8&b7odIlTa*M9+hYW?!$--Gc3UT| zy%#*~uQMq-9o-#nGdGU$AyxAwPyQXvXg^$IIm1n}1Vn$hC|{UoBtuIN8x+DoEt_j& z+w0|x>&OTpqw};#49v&vbI!#6#ClJ%IV%$*foMvbR(Z%3_sHT zq!m$TxIw~E>VnN?cOo}RY zi{JNbNl~tLW{di(!cpSRn7>VzcY&`ol*oJ(Cz4{*Tjk=+*Ny{9KnnU}%QQ``dgxO! zs3@yFCv`QTCZw*C-og*@*dgMl`<4MDM@+H-tAmA0sZSS=PLwXKrK{xA^h0RCKUcwr;$ zB4eWhn7zy=Eh88ok1JNO&S`jWR-*io`t0d^8ezxu--UYF$KlRfu1*s0f$amlE_!js zs*dS}zJalY~Vr zkmV;4+)pucQj?GUXNK^ESS2mof1w^=dzI6hc_3s9t@alOFJe0IIe!+Lh77YA(Sog+ zz)dfKk)1fHY|xQfz$Jk*$V24M%Z~z)=FlDDB11~a27WxOPVP+S=FElj*CF4R%m*5k zfy>wT)aZYJZ#7BE?$z^8Qg)<(yEGj%rTOt{xc&xd->Eum*<`PcdtHv&Br}!w7hyl&l)u(HKcY0j1Q&leFRFPp+p zqitcuPUWk7>`nNu(>uQ~*0KNjVc&S>)I z=A?nBV{j$j5Bm!>ksyYg1_tnAhzHWwQ!^n|TgAP5@ipDuYoib?p(QV6XSt>w1CIZv zv9}6}qief{(ZMCSTOha(76QTDgS*23!2`h^g6rV!PH-69o#3uP2X}{jJokI@AO3yP zRl9rlRn=X!>sr!#eN=ZAC4un9_GnZ-UpU;m(eOtJErA!^dVW7h?&xo=zf+%<^yQXR4;W zw6&|<)ReJ*6KB~J^fH0+xM7KbMD>PRm?G3Ez=B#D+vWmC&AL}+x6*DRBFl=GUkV@_YajxawX#L}_-SlV|5SRbP*i=(c*$tBe5 zSg@$v(3X36Hs%Oz-=X$`(mxhnOWo>1RAxp-yOge&JrJMv8rp=?B!hDYCfS~NzCfCz zWCed}2rd;!AiQpc+gI&X1}}}WS+1Q&wLmLc5j4E=@vMi#BIuut-ue5^uAp`uQ38>% z^WTBt6-1-Ku`fr`?SrRZ^`t<#OLbAsR#^bHqcn;X6c^0s{Qr|vtis=o3$^egg67g7Qt4<*I&EC+r5$oeT+x4 zQPV1Xa={!Aqe91hq=W`Xm#RN**)V<-LQ$;P%7&=cZns!8#qLi>EfMa8(^HYB?<-Is zY3Ng!mhMOk($IY#b2;8OkY@}rZ^}@wB8xO`QSLqf<>sgDi+1tpN$gC@$LGW1`x*EV z_m=~9*7Cp&kn_AQ%I+ z#efY(HT8W$Y)h+iAI~qU`KvbGuMNSRGL(Pqn5%#DwbjbB1$}sO9XLF9W%|n{c z_smoF^Zmv4B9*y-RN#u%M=3}E)!KVuI3RyRes&$RdoVnWHzrf(>>zl%9cTtM@rv<1 z3uLX&1uby8dkIiVd{{i^uRhLXH+ebCTH9-=jMt^;M`Ld5g+m-X!?AdeKfNPrNOIDdYFKs5Xgy4A25+Yjm7`Hldv!*SD9LXaHHBdYDLrhd;v3Uc?VvS_>0GR_ z77@aw4pTg~lD@oMkJ)M@TRvDlerjot@`NU1`(dd52`b|AFOVqc!#Q}52A;q(_ zMqc-$Zja;85A^w$4}B;JZiQL&4#Mps*-9OqQDWbRs^gz`{v@@J?B#NH#HA*SuSmzt9d@NHo2%F*QFuXO@$S#MPWjTf#2 zr|r&lP@oUT*4@+o1p)3wuq9VsTIp`R|J|Yw>Mnbk)NtnSh(_I?PPy?-8QwloV-Isb> zdLHcYs8MXuv0rI;(Hwn0zCvb)g1|_(O0h;}jLL{q>I8BJ=T2Vx$|qxvqn;du(Djah zNle{2SgBseR{q91V?6%}EBeY8fAU_M_2Wgjq^TB|`3*L=j;}H$ z5f8QmN8}r}msS_Hlm>*@OU?MXQp=aZ5T0gbLM0OqWmux(V?HTpc7&&=-s8;~GakJ6 zH7d3lWr);a!5IvGWmk&lQ0QW#GmZx>s|Xw&%g-)fR>o=!)}3wGIHho)+X|7+l&Hb& z8;K5&m!&kom_^9|%krvy>_Fe}E22#E`jscn(y31WvAMhflSeNXgNbi*M{GyRdT1Re zZUmELd8PP6E#J&k`3?3nk_Udrbgu!L*1;W^z>g(x(3fu$G^ZK1q<0iMyI6~zd+uOs zbK^-!g*0WK%_*`qHxY)1kVb#x{;gHJkdMO7!FvpK6)}{Y9e9A)*?Ga+f!x-Jcm}wl zJRJi4pjL2~Y9!|==OI2i+OIOPIC<-4`v~IfuqoIJAty$D1}W)bu_AgA5=eN=yG<-% zsCC<~E;JZyo~{b2jyd=-hiCFB%GV32%bC+gMO&n5^I-9tnv#+p*8T$mwoG|b2Bp5E z@C!g%ik`U$LDc0v$~+IWS0xy6*3<%`=n5KLHxCeQYYm$`3N=F{ndnMc2AYkaR3dUf z3!aF^a1sK{oG>1)Gb~zBw}^uRd_p;(nlYqV7|b=sWPV*RjZfS?`fSqNa9|*WXDfmS z^6mb#SFa@Kt(h3F-KuCk=uFIf>{g*uf&TXF z4=hHK<$dii1k|S7zOU!PYt5lP3w&acHjjAs9jfv6=$ws+!i^UNoJB0Vvj?%3ORRUp z^glk6M$7)*k?Q($SWSFog~4qBvuz6tM?MBu=t0#ZgjhHW)4c?fhR_1+_LuMGqZ>BG z&Yhw0PgI3f)`vsZKxFiURYO2f$5LxR!+E_XcqS}8hlv{%5r-NE#-ELIGjJmxT9&;r z<={|_Zpn!b13v{(S}oMwY9Za_rTR_CcaIapd^9>8i<>i66H&Xp)DlVQ-H=D=X1bw1 zp7o;t=7%V9Bv0J^Sm{k>2V(N8Kl>gi<7ZsT3~v!MMl+evE(;rFu@1UV7cPc%ekH(G z4qXJm6j_v3Av}=b`YTJm;rk01DR3)r2R4|;RUs^rjU~I5$H^mZjX2IY>;bO< z#QLa@nnb3f5Z=(1v*d`|Mv&5V+ig~zupiY%;em$Yo-tRhCpB#N!&nDuQd9d)Jkd>aY zAzUFcaw$M97%_utda|3JcUKE!Ko*6-vG)-MUy5c<@;OPn$}|H=2{zj8v@P8Ixy-6HF`KBuxc|ul8V)rF%v@a;1~pFVt<1%bFL~L z7&cwJ{nOI15Mf5qWv}Y-hX?$X0ij%5vy|=fu_dB|W!|yZ>IpaI@clUKywhWa8Rgx1 z+Tx<%xK^*WjPY=Lfj-%`ILj_0I6|CMph>XxVY#W;p4S)a(3ZEcA~wiqx0bvA3l66i zzgK&`lG#N~Ez+bf0P5jP7L2#svGkFoJMq>5@1!H#P@Q;E4Qu#KGuIHer6vK9_>78} z5p$)3{Gx1E&1Lo^?4&-;o8Y&elF{rJ8hP*Juis-IeG)}Yr1zYU%|dxcEQJ)G`9(@9 z1pFAzGkjaez2-03{jpV68l4>R@a8Fr3y04*v8~Z)BLcDNFxPe03v{~WAF(raR4k_j z@Y8&J%CW%BlN?m|&0?PnU`IM|G89M-q-T*RC@w+B%^1Qw_Y(@jb;0Y-%N0cXAFkt+&K14D zM&Dy8U<&+p+vmXc$N(S)gpJ$o!TG?)(N-5uNz&yeeSxa(_$gZMJ(AiJ%(t@jQ-5}#0#n|Oa^f=;s)8&an9>AwMLINhvp zAuERpkR8hsQ#@+0*LuyBT%cRBtG_ZufnM?AzuT^FykrGfR%$oW3cRi`N9h=kQ1^=h z{KIb;0J;d5Bno}KinD?#PYvdo5P^O$NWBTYg49lyH3SRA1?c(%ZdR`HfxuJXn~+HP z-FBxn!Y=`eSK62an{oE)P^W#HM*&j-k64W+UG=dUUifKe&%aremKh>L@_7OQY zx}bf8I0o=h#JOmT$~ik|t#8BT0s%^{6{8|n6Axn3l>&3@AbzNmAtsS#7 z%25K{K(@+^6~idF@d${n@Ui%hwV0RhhY_!fyJ8srY+fHOWV1zD24sF1F;mrAG*hq!~XnPSroej5bCuB@$mu; z*TS%8=cv>#9eU;uptQfaVSK*o0>y4oV9Erq=^&1{bL4|wSgg z4{Xr@KX4O9Ic*1fd^UIenFv5a$eQf@?dA53v357&$z?9*9`NdlWdcF!1)kJQ^<4_$ zE$J;nXXShu-~SGCa~-IkQiF&L^$=melh^cH77QE+)PxR$~p1T z!x=spLP9o>XLfqSp!3OVUs~!12)-Ib;`h)~F;goA<#(N*Qyn9OQ;JYU5%U=i)&qZ7iHS>hyN|}D+zV|j0<{l!_-*X5v&k=HWGL6v)I-Cm%@IP z2&}8*a`(OHS0g=N?UA82QL6S2ON%VAWV;17IwrwxH0yVWJikFwKOW;Xd;y#;6j^8( z>UXH>y=AuFTnwlvq|+_c{)GHGmq3=rDk-vz`Z%~h;)68Q<+k!{mlk5D`Pevp%5%Nq zab^vZ2%mbXY@*;`Nq4iM>D_MGGu;OQ0|=!^_m#%D#r-mqbMkaE!(sqr7%%GogC@4N zP4^}5aTXN+8+ykdOke4-{(~WgHt(opW6a#0=JbE4<=dlx$A94EUJc$#{n6x=V0glG zo2%v=mQGu*->%Y1)Ln=>{kKzURrZnWxTTv1NW2q9eUUMh#Ek>*eiY&}S+Z3&iDoER zS{TIt)8PJ$HYE%kAtAco=!E*=k(Qz-TIy-P(XV~K*1*gtbap|!EupCa3n5A3NK;Mz zpx4r4rqz*65$MPZrj((~30TX7``g%*Q>ZNJ!$wkAVECz+f;rgm_1bT@QOcAzSuC!^ zA;x4Zr)hh0sW`eM3=#6i>BhAdRi62kwAxOu%x(fT{|f)&PO4}3nKmZ6!ok8O33^^I z@1w3RbFTd4Rb>0^D;5Kip((81K@2H5l+<^5gnj7cHyyk&T1j=7Swj0Be5FIA>Cn_1 z0f9QD(WYhdmyROr^MyyzfCOzahg6~0xgM<7??DPQG>S~UTCDh31H_c1zIWwb@ z35^F$;j9foq44G5MI2+ydKkJW1f_s7eO9yBs#xEy6wr#WHJI;dT_j!mpF(+n6COc?)T*iW{#D{sR zan0?5@0@DA4Er6@0Ktgm=1FpirTf8Sr(1(ERy?2QSt$CBw`SctmZ}#=wlo=#vU*u4 zmrReOrSr72PyUohnxqP9#cini>wgJmuA0u2`;nE~e#K}VbZ5h26n({C@t5S+B%fFx z@bhQULPP!hA&Hj&x6zUn8<` z_POSnNP)zLd1S*&I8IB_;jBfg6B#{eYAhe>93*Cs7H^Qj$FH%k)_Ea^utdRaxf;yH zYQw03jgE_g(Lm0a$R!|qVy1M#SP~*s#3th~d>GwoN@h)Ae$a_02^|qp#Khz`miqT5 zZn1)CNeI@zYC1F$D5;navQQ=5MQ*=1ow&HN!rmmKNAb2HJN!<=43oigfr|Qfr|eLQ z)U`y^`_ldcb;E_P+1ww#;ADVrm&Hf)VOb3&Ddn;ONL;*%;dbdX&bnm?J4(Ni*4rHE zA4mH4NOLLa^ZRa8&q>G+M{ylmxs@CawWL|Pct6Wa?lX`O*S7#y8}$Io+2y2^1I}LM z$~;MFGBrtj^ISoin-9ihZsj*R_YI}=c3|T9#pV|4$X&Zc?C}Q6Pp<~`8lEsPxGS;} zqUzPipIy}GdOCFz4{HOgi{DsFhqx6!5YQSH@5RWPFEhxD{^X-f+Tg5R%tT(3@ZtfV zm%iCBYxy@AcUtgHpxFmD8%x9nzy0dFLuOqqeBIb>9Wn|Y?$aemcFSKOWPLe zgnO>1&v>hE%1TST9Pr8AcAYinAJo~4v~4i+PE}9*>eR$Lp}ga!S*rz~KIOaxwjf_Q zsnD5FM#@_go9_oI$Ry8b=WO6i^U;=0`mKzGdv6)M8QnTG(>mW}@n9#3`e_a?^jPD( zX&l)O$!wb4Mt3C0J!LPKBmZqms0r4Gco(PSQ7i2QW~PYv@lH@G2sBlM$@x%t43Q>T z?+DteK~U0LW7OVG=w>VpN6!rxmN)Eu82h1vcs9{d9dP9jIU;v}_U5zbvv*T?Ia)Dr zY%j3SE7@;d#*CMmKjRxXeBk%w5ykiH)V8yundxdQ z&|=h~Z8;(I<%9E(H43Y?GW}m1N6Dp6!l0@5%)k&;}rs&3tu#f!ZK zrrRGLqEFccbX4FjxkjmCMzxDHrp%PiU4GayU`J-*b_Gwl?^aP!5#B`L-;=Wzkxuz; zC>34o6a$XE9n>U4bK3?)?4=aoik7RvJEmUmkhH+Z{qY;#iPTE4lnJi+75-r*vxv{f z%)vU*)H5hBI)Ld6cKMmH2@y_&F{?Rm77>MC_kUt-fXJjPE**Pn$vu*#x&@t`WU%vb zi;U)JvS^{;H-AT7IsEXY`L8GmN-pGShEm}p}*IZ0%Aj|7XImI^zX60j0c`H((Jz(+RRXqJF45u}r= z-7WAz0}h8vFg&Jai8Cx7g%g9kKfO-|tHf7E-nT`^4&;{S7G;}CxV%w<LtlSN-m?WoNV%D}GzQU2E8G^Bvb}^5t%AG)t|s~$z4xI- zj|h0MLMQ(zk53~MUm?qPx4FSwMKt4u^eNJX{7wU>$*Q|*Hb=v|IQlC5BCjxO>AYu0 zcNa1Y!sQHr=;E?*26on&j4*oivOf{4#YXil)(a=eqJ+1spFqYybQY4-7><;%0wCp{ zt6&A!$3TJUt|q3gW*USXnJ@gksS@U2EM*Yv?`Cv`@%Cdmxg){D;~xT90T#44D0fY7V!RPiUW#c}~7 zA5x8lTE#;2v>@|}?Kg(vE0eSV*Bq*AUy9QbK76uSZMI{jXa~je`LNwfmx@oa8L6jx zb?sf`C3=bc6@kynfMU8Lodc=aZ(dxS>Ub`&p%R-|innSXjVK{{8Jwf1^6T@ao@s8= zh|o($jcD4;1EwK?FwrL=)rMBmzV)ts8p9Dp(BaA#K((OA^PoUSK6UvrQwp7WJKN|{ zks6?d$K94o5h?E3*e}T5!m(wpRNdpM&8`!fn4^@^;R~h2A{AJ_ zkf&=azk?gj$u76stpqGnIrC`@>A%-oFaK$CU+m268i4Z~e!o6DxX7jdDka}?EPwvB z>!|Yf+xl+2dZW9TxaaZfay+bt&UDS+lGm0c)*$U-ZlXfv9e$;Tg2eVW`%BS%eN!Dv ziMPs`d&q6pX%aD=@abFA{8ha&vKvo){PYcBLLN47)@=SPdPGou#WtXKU6+~%%zpC~ zn(|LsZKCgzN+_vuH+ynMX(>>Bj32Ik+KR1Vw71s~(X+cdF z0+YBsob=Jf^*PyQp>7OZavArxHQM$d?*!S3zcQS*8G;LIffA1WV8z=&F53*QON zvd?g4Dz>1XCh>q*Vd3wbSAs? zom@z=iZ}~8D6p>0ua;@%c@aOw2Z=JC%|&bQE^n_|_ErlNwN78kn&K>bhYlW@9SvtSGiQ@y%r9lQXhg z&)M#I?3}|U$KT9+`c&-uk4wqG#==+5b1RGBllfmMfv7W^q`yw%jWp37Q;-m0WjPqD z&5Y|5#DuFBDtED8<+2z^J)fso_rxXsGN_(tf4j2_ zYQ7@}8>QrwE29Ccj$5_coHnx6;Vr>Ndg~jBfU_1acaqYiCaAkM0oRwreprQbwzX@5 z854^fu5dhZlcviU&*F>6_?a%Ep^F`_OpyaB#?0hR0T~2o1Znsfz@!qqC2QB6rPm)N z;UTO4jgVoqf5YGhZwhKO;oj_x-0zl?PCQ_QF2Gp?L&#G@Pru ze@D_3WcVg*WDTzwVL|MGf-;XbGN#kNeE1Zm4dVpEz{tL8{oO|0@~15Yg#BcUYIdQT zjP$*70pLv(oP)nq*O)#E(+QqM`V$FfPhiKL_C-t1gBp1WZXy-jI2D*AZtFTz{ z{-|&_!<_;hY0aXA*82v2|E|juwvM$VaLJfkn1TAKd?eb_t0nA*i!TXW`z^0q{TfM_ z(Yo;H;goi{!9nkIcdQ8fzuZw}IKAWswWZMVsUv2@!;#4+y`0?*say&rzsTMHHK+3tuOs4CPt(_vkE&-TGWt8jMb5SdAycF3DYbS{8g1$BcAy?Ex)He` zGja?qRQ|?>($8xZ81w_;!k5x>>=IQFK$!zrDSttbaq$ePlSQ25r#a1$XtxEklAMy~ z_0#kL!w{P`unm#LiWoA?(!0krfEoB~-E@Fv1ZrxhSId#9Q}3siUReD2|3pG_dK1 zJk%~ppGKX~%10E5GkRPub?_f-0EZ3aS~0@I0xT}5_?vwR8J%kkYBH;D-Mr`u(Q+_+ zF#jr96;cWzOvCNJpYB(INve$U$o_8##| zWZ)AyLw!YsMY>MAa*7RqqA7<$%`*Y?Q8T8qMLl=5g`L7MHyfI|#3jg)kt^%~CIFnz z>=(6MTr=L;`~L7taz-7{De36zrNK}f93fPkx{k(s_l>t`?-Uqrf8o4?LEH!7!j%vob+6EH~2Og$Di?SIRuG`pU1)BE(f&*?>71X z+>?uo>Dfl7`0WlDU4n&YYoBH@SmKZOMC;RrWT2jRk}&XE6uNClk5b@u@-z8M&4i&O+w#1Fnpsc#GqF)Bg&*)m%a^eUBXxHvdcL;04t zou%~wvxStap>D}v_HRQe)Fg&1nb3GtA(;YJL12cOlY>e6;Rg~!=Hxe{dC3&xb0(%P zoLxln2uwtNE(IZfHB)hB51*f{7mS9Cvsr)YR>t!Uc>GXB_0y8@VPv~Hh^Thbgt53JoGR#GiTpeIx%wLLjiiSx zt@7&UC*@}1FxtvzkR>DLOS&|D8-lAf5*cH=*xr{moT9Q3WDHJ1)X?UF3IEgLa!pT` ze_v5@>wDm#09N;6$*&%1)JC8XVNrQ!oXiejcXi_{(8u$m{noFnevnmB?3V!SiEGM1 z46FdeRV67XtS;0i;4f!>bglH{xA(R>n0^u0p69x@zIAi!FL=2X-xR|7m#Ab!6u!S>NfTDMEgQ$ZfHnNCnv#C zWVqDS(lSnUG@iy8Q?YvPJqeu(LKDmG0dG#;fE zQcF7#p6ha||Cxk8mc-g&T)9DBq)(B1s!r;;)nb~7gy7_L@KC20&7#8dw}tJ`yhv{| zYs2d5Ux_XHsb;$bi>GA`{Cm07uG9IzP|c%LogOj|XDe$CkyRqElYRkmU%wQ`^11r? za#!PK>z?$0k0E5yaZ=kTOs9FIK6pcAw&Yn9k1v?jYQ_p{52^Y(Q4NTPcqTmmWzjKThYL^;yuiUWF%LN2yJyxRz# zkaX0a2Q7mw_5K174nu+2#9T(Qmg>~)N0vdl>7p}OPpAL$J3)b#%u_xcbt5~*|6ili zkk-^I?baw2HMujBR~$+ZIiYUvIUghn+SM}R8@l&yT`nxZGRHghtD3FHH}Vrap}wI zOu~0XtyIuWp0Jq!x#mUzr6=(5@{W?KXu9MOOC{jZ6~A(~H9NIp8k7OgyBOU_T6A3X z_-<+Ck*0?@i{866_|g0!myQ8!3;PkBH#Ogvkm=Cd|6eH;;FhZwz9N6ufBlu#JAdAF&(xYV{Q2F$0k9g4H)$8*kmUb(*ekG*DR zlFTI8dnS`#HbO~35(yp`9smF!NlS^T003YOpY0`B=+Do%kDdSk0Ef>?R8&b?RFqiB z*}>e()(im93{BR8QNxgJxJ;ku_+~W1eU#-gsqC!sg9298e1uq83{@P80-lx>JU@cwcP~)9k zEo9M26d4^z*0}-!SYN;p#Y(~IW`<&7+yPcSf*%cjL=vs>9OONeXFV?;OG9Wl7%k0Etj99D59_%qh59sHtqb5Ci;165=^e8Jka`dzTAW`7Kgfs|G3vf<0|4f*g&8ZPX()Z9@jJ-w zJ;%^%mRO6h61FHEv%8ggoJ0LVchpA)H#>#7nl7nZX)*>mHqjP}zG<1)jOpJ=gcp0v znoEAPdfOhup^#6n6MPx}xqVb;#L(R1DNy($jpy|+Z^)Fw{{md4mkJUpXjyPiZqX-1 z2wcSAU39~9EX3}t3+{}pzn2$M5}@-X#y8f02oq$%;qezMZ~EQl0U);IxUY5g!kF=8 z&H;B3-zKc7U)!)~hR+hBkzp0t3y&lgUK^q6O{b;@#C*ks!tB5l%WRUSY@p5YW{`mZ z=ED?rYXDgMs|a`Vu{R#5+_+f!uquUDZXt1^;FO;`lDgD#||Wm zB^&`j=Yo@fEDNydr5-4KmmJL~dbf&1>U#aq9J^DT>RB>+MtOlE&1wEP6uXen6Wb7R z%e&0wQK}MxbwhIdx)9#p9`tL_WXmy+46&(=zb~7Mm_R7Pt~2i)rkht zPXw7?I=tVCm1jm=wH>9h;+WB@LVi?|L166vP)kZ`0@I9q!^=CUxb>C`=OTQSN05gS zQvE`*`IL#phA8xcK)#OpQ7nBf7Q>1g$mQ7h=RtV96$zMrNWGE$a3>X<4ir86^^n8xIPUSTvS2Z4MlyaQ!(L9mX zl6?F>a7E<{u%WZJ6J{05_rRuPfK&uB}{f!Tqr6Jgh{KP>P&#^lJ6 z3!hT~t0Z>qN5Sr{V_PeWF4-ln{TI%lmmsPgsB2nJgicNYw47+hAyRhuSJI$# zVufiETT)201h^MC_8;#35dDxw@qa{;$WPJrBJzHJGp4!zR+sve^^`0|8WGnhtw4@T zlc*-cBiSzREw62u%k+mSjm6gJrv}N}KL{E`0fHf; zD*!KGHz78GHi0rh*dyMvpaf6kN@Si>FUBY~E{>E#Nh?l=8%G;29#=bbJ%m5xIHVeP z`BwRD^joGTspdmHTkX10dj2*w8itDuF-5p@uyY8@gdzA&>y z(*|<{voQ+!4hVRFBXJH zT9d+)UJUvSWYxsg{JQeGv2Fg&2u_(U;Z8*R_6PobA&2ohPP@|kWxFQ_>4#=}3kOKs z8v{N;k2FN%R0BujsiPjjHL(sc27y}%f*CzgAJ89-fbhV0q0(NGAcdgE;L2d=V75Nd z;3Y^w*gAx-2%!kc@b|D2u(xnJaKi{h*q7M)81WcR=p$HGXkH{T7z=0{l-^Q}I<69O zO5^&r9m`gACA*ML^w(dm(XMrNZ_yIa2+=yowJD0p+sLaZRLK=(1yV_6zsd|seV64= z7?QD(4wu%DLHX0ma>_!&g2{qnYNUmvm0??SF3KI1)vQ~n+q91E1?^=5f&|Uo)L?R9 zoMY5uYGVq}{i5-vBUI}wYRxaK#;8^+xRXoIw=Kx3TCe7-AT2=4Rmr=NO0Kld%gFQA zx{u7L)Q;0mUj4~a(cbmUaBqKah9r;FKBN`>m|>jZpCQSXV_9d#ZGExOUKKsVF*7-R zIjuiEGaWJ4mV298-D#g@A99%lEYy$FkKSzU{weVNqxC&4C@v_ck2!={)JU}4sA&g} zOu0a)K)XQN#A;7zPhxM1Qijqs(LB*hm0*r-?#!H;RknfO{Ou6Kh4a?=HWiB$s}HM$ z-u&AFy()c;j!~s;6|y#e-C+xIZFLKL4;GXzx`+4-O`(yPzaLu+G^!G4={#3`g1@T4d znH;pfGTOlId-mOc(xCiGTresp+#qBN%?-UNgXhTMBH(ubWiMMU`L;=}@^)VDqwuqE zsBq%iT??jtCj24_1H3qw;C4La3cC!dz!py4p#1kpCo z87b??#VPM8#>kH-6pJ+rv*g4}pbOm{us4BCZ*Cb*tJkj78-iWDqHJVTCZuyL4GfWK zm?>_8Iy4IWmY$v~zZZZc z0|*NU@VM>0I*YXP+n*pG#QGyV*e}^z6s)r=YYxgLYV-s!y{s!I+p0_S8@juLYK%Ut zo?Kr~9;0<|VJ6eE+kDmE&#x(CieFu}bzj?1j@~9w3~IZk{glskS7dinW7rxvuB?Kz z6LieAMYV?+eDwU6&F2<3s@FDs#dk)_kauE!Rh(-)dZ6*T@MzQ&>1K8i`uVlfwc2#9 zwY;n#P2t6QXL&#S*!ehYHMV-~rCe9pwA?#*tk1N~xoe!+pYccg(EFYGO*}4KaX#AI zweU^*I(iBDDw*$Aqa>)&iKpVrmNDQ;;r0D&gA^mreVp?L3fi64+ZDriR0m7R&0{@rejySZ{(RK zxh&=p>k3A|_MPdP`FU^G^^z(@QBpwGulp`_#=wsi$ck=oY@lxO=zs9;eVV!2a>+g1 zmbyjO%{X}l>U%4&7q;11RE*6@jEsm=Gm<_ezQ9zwr%!+Xk=&ZX1A)ymV+*5>2s>Fw?1<>TY*!|Xk*PYz&Bs${^gqpyajE7 zM6GtFr!-{O$AEO~6%{rwkZ}OU1PUIqCPgw&7-mQbCA7Q)~%E%78=96ki#FGr$@Ova|wGHR&Zxr>Ow%dl&edh^Y}(d`LdT zE;*db2xOV|NjS^ae%e71#ymz-a%1xM?}gu?=F=8P?j3N^|Jb?dbjX+Jx9Bn&2rdxM zJ2u3J)I~%Tmj$P%amPY6P%JvnSPyykoBwW}s-An#61^`b9mX%wv?z}(s0hle|p9{p%!zvh+2A*{4~7!WN73F~kYyNe)r> zut|kz-6FmEj=@{VN5>=8hlGc`M|y1Et&fA=^S)5hb&~11IwJV=T3qebKPnMqqDn9!!To$c| z(o=srN`71Xn$j~M@2T{5v$1`TzTtYi7>rnvZY$eP}O);~o=hWkvq8S7yUpOG88m4@%86U$fa{Q{gK*dnw&lqf>( zr$1UIW{z-uF>0CpNg@lcY1aY90SQPr6n9XJ0?&-(z$@8*LA%M-jT4DmUeiVFEXut( zrlUIQvVJr09WF#n6pu`}fO}6MF|qi>{PGYU3n%g@CAIQF^JT?yIl*@LJmcaP-#1Pw z$O+%g+I7;^$qCcr?b3a%Yn^Odbt!WHe*ER`Fo|AW0AIkN1^77ex1q>cW%z9hx)4$u zvJR4eO&t#(JzrLI?pai}|FyqpphrwMW<09?C#Bfq;Ca#7?_Cq0z4|?*U2Jr1bdyAk zgiWfY!l&Y!LV;ENIP+xW5)bo23vIJ&3wra|i`Hxxe+zN@$?BgQmtN35nKzr4FDR;p$m^GBLD*Q2MK=sAk@OV+^p z3YTgR>t$b_rt8`CLCP@~@goDhq^_jt^#z&s^I7%P_e#+xYtN&Fvr4_Z4Nh-QpFR7B zt(4Y8_ebTN@wfB$Yp}=g0a38n!!VE7zfnLh^E=-sv%|DEywnz$&50gCwvCrTH-FcO z54@h4D)vff02MvJQ4lf^L8T1%4ItEs+$MMja3qJ=E=MxFWC7?!Lr-Is2|k7cm?SP^ z2y&tCNM|4-f1}t?Bd)@*lQeB|rlBu}`t1-n60D;Hh+pSMDU*~!NWHy5%Zu3LmL2;Y zbKH@K5tzh8NS0TleuG%V$^6M5ncW|;?d$ZtHPsW<7xo?BKiyE0OX5kvl^jSCFCAYf z3{4-lXNtxh#5Z~TdwH<1Uu|G~!Z$Fqw>}YEwO)(4(#v+-*6e)u9GiQbOMu=~lsWkaCAP!a9r9LHYzJX{n#YTj~L z1@o-Dg9*}uzP^43i5oWG;ce-T`Th=mo+>Iz!Q8rkB7wFQMx=%&*hcyhjzO$J4OK2d z`^Lz`X$v0S7rt}$SF+HYQ`|mLMvcfCl|FJam_f)R?}&*7hqf5w_KR%4wy}q?kE3Q5 zlD(ikBx6|Y;3L`-Y{U8r08%9)4A4=qJ5vg=mr4 z?cpbquu9(|Mp~%1FD7%0xyL++BYSYtbJK9aw5zoVi2HU9-nK4} z^0H;xpgIJOxX-Qr7_3{U)%pe82DOPa zyXRf%JVjXwy%5C168vUUg|GkE!{!L}HJ1=E2vZ98+MjYBHo8|+6X_uwrC(19i{zKH zo60$jf#%rq__FzmqGPK|0#`??N-KM7&u!zi`CqMD z7t-!-T2IZNF{Z@U`FzHf` z1{@Z9NR>E_`KKn{eBpm>NJ{-OWBI?apdugaDl#CtKf2U5hv1D*oI3@rt5C# zJ>G)f6{!&k#e%=QSHwGN6`Uaim z1l^~8=-C4kU7$^Y9FXY8@VLmL;^>q~C64NE!;b#wIv z^+ffWN|2y?X8GvzJs5KuAkeF={rNjMK$iqC2BV>YU7?|osz@w8kY@AmKsEM!}$X}W64%kh{v*fAKHIvATVc-lFB;tT)) zpC`{})6UG*h}hH4*4~B3lb`fo6g;2pf4Uh-iT_37YQs;eDX&B<>fmff%+A2Zz(gtl zPfSeA=WJ@uqar5pU+kaX_(?5YT^)HC89h8a7(7@R9Goo}nYp>S8JSoZSy<>lDd=6i z>|KpK>Fr&}{w?G`a>UGBOq{J8U9BAKiT{ynWbEMP%1=uA&qV+I{Ck~do>u=elfBD- zsr9KK<3A&e%nVG7|1JBImG7Tk9wjSJGh0nDD?2lLm(Mu_*jU;5{zd=)jr`Ay|BF-W ze>ho~{}1Q?8u>3yKE{6(_+JYB+gktX{WO;VJRjqKn_d8Z<|W+*01yI5iwUcFf}Ll> z8R~s+dS8;CWs}cnmOkRn!_byVUu8j|za=Im4IysG2R}vscve#OyaIXB{vxBLW)1!o z_>0(#P)7K0Rz12x ztdqM0{5vr*u~xVHLaGW2f2-H%+tqYG;POb~wGR_6DmVcJXlB^M{R{2>dxaOGLFN?c zes?pH?yFWME3-wi7mGR$O(ddW%e+^eCM7`ca<_}w1^b>o_p`++9VK2Y3=By2{r19^ z3(?8O#ec7%5M!C}Qx6w&SA3<@<-Cyl^OZS$uLDe<`vncrbsdK;GjvM1+R@2mb$xw( zMY7bMi691i0(v~xSEuYtEZ6H#fbo>zhp#7&LpR7A(8@Z=H6SA^E2^6} zA4jNraJ+QF{BO(BK)Lh5vmr1+#JzI5#%@%FkT))|DTb{&t+zUHSWXl3-c5^&W_)Ee zUtX>=3876GP7Yp);k2A1Ecv(TbHFFS$92E|arzUtagn5|z&szRVeq-5amV1YkJ8f7 ziLOy8WLa`<`8LpN))MRbY`(@6E&XHhe_U6)r*oXVCGV~uK-%|Y6iXbWs-1wv|aZVGwida8iOu!=*mq%we7{sbu6YRB%oWRXQDs9A9sTbg=cf)qUuRc- zM>wnset;Cu<~m{teE;;_6Q>H)|HrdZG}9PR8KJy%4mc{ZM5^)W0t4516ImGrt2^*nbJc4oiE zZ^_2eKyf643pD$FgQ}&S=Ci9N-USW1j&DgcwH&R@KhNI%V`p0*cs5z45X4E(W`5~e zTpe_%guS1)$8)Sp1GaWtBc|{!DmnwL5Pxt1_IuPSIfRbmW4pa+wkXn_KvU<~TfPw= z|4TRa?}S#b-6f9&C67FOn>BC8ptlUytfTN~8b-mX#ny)hXSwE)wJo)^775;2mKGwY z=C5gkU_%;=Ays(;PI2rpHm#Y!B8;ae3`gjr#Tvj$Jq5zW!V=Z;Jj&tfdgxfCo$`?P zNg}NR8i<*v+a-Nx)GM=!*9AM%rX8@q*p-(*KK zc69x@U3J3TR5SLJsG8GFPeFLWva_={8xQ{4ZVhD5#zVJ+QUAmK+?0s&{rTjeimvC; zMDKAarliVdjzSChh}B{e(MHYZ{uJ}L!JQk4&GwYgX@n(HrXlYISW@OX!ZkTpYerq` zMCOJte*lqbp`nUrkintLV z{cNSvXsK*izQAI<>d^DnZybPc(etz$Dg2Db;rrvF`z5ZH4w6?K0L`>LfFiiQ+H9v| z5b(ZNKv-k*e0TD274WfkYJJv^mcswII`_{;DPbt5jpC0iFOb1H4D`N{UJLkmt5VDn zAVDF1ZPp!m+k1bx*iTe!*7MkC>LvjB9j>m4fD)+`k-OCtc}@yz2SQuoeSk}6R19A` zzwIvi5ne8~P^G6hpUj~v@)>z-xM}>wb-ipmg3f47%CZesA6PG-kPHtv!c~w ziQ)6V0L|?ksv2enYe__zh|5>;zdU@?Y4uHx#+_f|X>qWjv#IBJ$WG^Q7?HtaZ;f@M zVXO|&T3Qe%it^XhXlL`6EDRJ#IQ`l^w0=YJ@FE!7T<5^pQm?R4snl|I+W16BY0xqR z|GSr0U2QpBR%6w}|28hrsL2n6a0Jy4dK$G5`0bA#XKMr5qP+l@TSvoiJsni5vc%YRmq6hAx36!6^D*HKDZ)9R z6??1^uz4;BOO5^qqL)0RBRofZ9;rdbGzCIJK^S!5=T$8E+Ld|fo;&95MtzmwJMinw` zyGblR2h)Nq%akk9%YNy1JAr_7}0!mr;#wy$uC+@^aNf1CO|NhI;s3ss7m(yK&OH2sqizja zh0^t`I@%YGZ?871B*C&U+%|b2{dS6mu+KP|l6~=tc+a zlb9ZFcp9$tZ)Ta(A|oRQdSzgKs8aG%(roV;2jPF;a=$|7urZ4GuGS29D;z~M6dzla zrXEvGLDOWXVLgXcRo7C;QgOPaxL3=-i2=f~!KV({;$og=3;>M@PlRQhof&+1FArH> z?+$Xg{<{{H=KfXkrWHhsf)Y@+$LH@m96yuBL@=LLy# z-SGBs0s#@rpvVH~RUD1aT@U=)?`f39^gWHzMVIUBeOT}vwU93GC@&zo+1`49_o^EY zhs&wqXguXk-8`1>`RD!d=Efnc>BmdY#~Pp|!gwh0cap3)0>JR0a)rb4Z*DC;x|RRa z01kXrDK?myIib3!kel4?z3LT=81GB%#q#1VHmCRqDf*0CAw7yHP~1N2RiQhFc{)gn0*kK(yQ{DC_ueaO_++lV6OZ<mUdZE%j$m`%_wVTqZIe>>U*-KFQ!nivQc1|E#1E>(;_AI!(L8DT#E`0<+; zEKtw)dXVI8D&YN=xQdvapK9cIE1})f0I*zMPK%e9O>G`=vQ#~D19`t=7KE(O)$>5~ zVT2<1>Ik6fMXyDiA4kI2T|E`OIWCB)2PH_w-C6R^5+=Zq#Dq)Htu`4Sz*m%4!v|8s zhkGoZ#MHr|F$k_NX5W=5t~e!Ff{pZrz^s)BzMT-e#dw)VWjnsY?TBK1r*vbXdRUqA z=O|Tk=)4}9e)oG=p$f#}wR>VMuw4}fy<7zZx+VU8c-h+eB7`3C&ot*)5qDKPfV?0%=l^=on{{jwruZun6PDuVuWFC zSf&kl5TE~bDrwse0sAC}ULS zkj&DqOTCgXl4t?99-KcTOWmce`{dN|96rUA12(D6t<9rG6xu2p`ns|?i{*YyExOtD zZ;>hjj>pj)3?*NG_>}#vixslk!{S~f42ON?C`ix9sT^K;HSQ@qbDp6 zpu{52Vj?%jONGf&a6adSpFbvG$rO42Kt=l)PqR3GShG*fsB~ZgH?kd=2OBbGHcmSy z4pOzOIlT|WMI71Ilh#))dd6ik6jJhwkFg;q@V9lA#W!sCoIzXjJB}lkpMg0Q@fPyt z7J?>`qN}h`55Hrwy#Wg&C^{5l>Fc3Y?1_iYD(-eeCJFrb2%Tjg3s5n7x|37Bz!Qd2d?nxbAp-jL3YsQJ3A+DAropT z7^_g>=f+!EO@H41j+u=OJE7qvZnz5j`R2P(8eN9X9l12e|rh5w_>&P(sB{GHH~;GpD&go zo{ngbZ|71-XZeokqjd~{m2Q#a=MHG}xoYDKgfkS4(MiPC?G6(52MCf>LTU2?G;2Ak+wR5s07y5nXJgsz0+0u*5^_xPifVok|`t zjFo6g5G<+s-eqt5RDyM!l$}POSJynEyR)hmN*Jr=LOtnYDxxp*5vwWhhUB-O0mm9e zsxE$D+EJSX8vPVmqt->S!gC+r@lQWV&2+WKuQMnaOeG$hUPmh*BTPp{srra6QFq}S z&n^$|MZ>X*|MK&}6u*#uLJ0IjW6;LvMNn$7_R%jEUdvSdot=kSP^mC~l}SfwePH^J z&QI^+h%phSVfK9H3jUM?vi_p=+wr(uA2j!G9EF!zi_qdu6c3($t$ij*hkn*sbX*v+pjJ?PE7R3rK z+VlQ=c0tcP$zklNb&DzFd`S{qg zF+f0LxwVlpPD0Je4t?LGAbwMFao2PN=eT>rm6kD36#yVj(@aYuCXh|-2^QLi#@xlm z#u*Jf)P0^CiqM8=8oKM0jj`_SNh7ZWr;|i)e}}C-gqb{r52P}mdI9TU=N#mX^dQ8< zDNg>6Ck*ONnVmh0t;Q@wCKQUnP!6qxmAQo9&j|Aj0=}GQ+WN-m0!f7L7wOF&J(KFn z>iO8Ij0aEPtZC^<2Nl;$5toSM(Bhvdy?s@{(5NRJR_(V8!7=>|zA3L_Q-gQ8T1vC2_x$1p73> z=5B5t`s$-?qA-={fYf7>hs$v+nwdjGs0*%4YxW!M zFheMbhq#n7Z4H7Mb`b8kh67%i^z3dJ7RRO=5S|uYpj+i^93f6&^$rRjFZZe>T_xB=AlIdk1cy<|BNG4M(_S zE+`CjnN9!15qE`7q4Tc-o)UmcikAVs@51+5Gi9VwrvR;{LbfO#CF}u>+F&tnQ~fUs zbbdvCQl(Ofzi-#$zJRG;c0dlX8Z=tw0pnMG?vMqe!kf)(ecmo-9}-s=h9g57V$1GY zy)fdS9oF)M>uCv(bM!rjC)?kpc}=#gJ9gGZE9DaJdOS@#{jPx6c6VmOD_|XW^V;}_ zrB9=?$_7@k0?(!Mm>#$|hyy4D(5lS1euQJj8uj6lw@?w5v+b43$# zZLhM!Nl0CrdZ@)V%Lq3{9V?=$V?(+nQ#nd-^$a~r?40@>zms*<0c|ECgULYS5&4h% z#`&D2+*ck!4a<_%OapgI5C7dxn=S!(q&;AZCR2$Z^W@s@N`|fIpLtjB8!z4r>#bF% z`|m!<^4*!Bi<{r~7qX2s&3SpcQ)_A+#=5V>*DM6%i`F*PhOs&1XA=gmH>vJGwIJyM zRL0@6`?IvJoi?w;Oqta2y`xS4>MkUIMt*GNf6?32Ul@qE3GMYE{S4k-=;-!d1;GPTX^oj8OcM^R&F9k^3%Ol;seln13FbT+ ziJ|a}a3ureIKJvKlY}7W9N*T^xtzGHvsdS~z5DQHWkpi{#$N{jmAW*&rwK2bL^}Jm9mtS0-5bG6N&oO3!wRY$s`I6_BtlvTom$w-mc9 zYFhEuYAeMXvrPHxKxg^m+}WM~6FUfZbnjPl)rP^PC(qwgO7ftp+26ES(S4%=g-gT{CZ1z=T=YfvD#Xsl&|3U+>|R4P zIs#kIuDW(hK=yeCe2$4rA4Zedm`n@Sl%^&fO2o!^KkQ{?p9|aJWQOVd6UnNJac7;m z7iueTX9z}TF|HYJtKnsLiGyL&u;^$q#rjIquSkzvHkOL#-Vm%P9*Gwd_j$^Af99!s zE%C&EM4AHkFHB!o+vdY{O;t}ae%aI`0#-%OP3Ibw2eMl{odtfFq9#9eJxvocZ*5Kw-4=C zA3MJtIV2(P4C3qOak(kjQqZTG%53lHZY{oKXQ*MuVec+k_r6-hUX;m^?W}&fPaf=2 z(m{8#m-C9AW3zABx-DoS`^doZyazod5Fuo}u%GmMi!!>R$I354P&oIVc7B^L@J>AO zgLO%|kcQ15MD#P%B$JvYnrQw}P_p%#vUzoX4Qf1>GPlWP=^?0g2kb~<<687(WV9{> z=~$oeGEcye`h^%a{v;;}TpIpKhahHs`llAp7z+ZWPP2KD)`5Kr&6&N;uMW+iMN;<@ z8~0j&P~If8j`?qPV~j2KOz&{B_A8T>X58={(MaR35muH+7=K{UVUqt!S2P zYNHY~)%8hy(`5c4^qskSt7MnNBYl=M6HXm*ax{49%T;jOyD;4{=8|(!5YgI9Jb6jk zEAKe{gOiZKb72Rf{~fBya(I~W^kZ&nk*mowr$`Rs#&j~U*qJU3T!-RJqUu<}G>^?O z=eX1!Lw>2A-}07kO?8efE?qR<%es21>n8J_%)DJmz^8383jfj!X?%`~6Cf3Zx}V@i z=Ev-Npf&z}U&FOO$rH&QNLeADxW?d@`aOfdLpQ3R(N#($6vufB*1zpO_Wdu{Gm4>$ zFqx5qqN)d@p}ih*Xm$!sg5x!xRDkLxd0|LwsMWa5e&MAwJCCYnVNF z!J)#@ktDY!IV;66U#=k*b~@7GW&F!U(ufQWZxfo{X|gA#JC~S19KouNMckgsR~-pB z`t%f6$XFB4_g!rBqa26g>>!b8>q19*Y~a1<##uBC$5l=0ft}^46cW(h#rl>d!Ob?J zzJ)uDT^!Pac6|?D)i=if;)sOwEm4J78Z3Yehw&Aw+oIXDSZi={mt5NuB`#i{@)>_4 zQ?7tHc?@qZUc!r3g8B-6tTJt;*DT?__=uMc>gf~0;r1mx2&B%>KoQ5X6MWPis%{%P zznf#dX&dp9s2q3Ey=k#)zmzDHBjCZDf1#j<)={l+u9Ub zYKjXPTY_K`7Nyqa%ghTTErNeg95Jd8nK!lakkt@7_4$uuOX!mADkGmtwB65(*d-cF zl^S;%&`MODERvpw?c?E0BEfO)B056KH8ECXdjRLtG0kt{>9?Z+73}9b{x|G5&zx=y zQwwERiVO9XWb&Ke$M@S+5N_o+)j0C&&ZH88S9o9(C0f3~lY`kbZFU}H=pM5PIRH1| z18!fd)`U{Qb>MHm%KUkjIB=nw#slw1!q_;qhbczx6Jt!{36hl}7$GeEx~nsgBSBn@ z+#h#lIu9l_V^LUDrrPjOJ|C>emp&7-q~*2936?gJoVHRoY%Y)dR@Kf!H%0b^W|meO z?|A4H$B-I^;YPyPImXsG*33D`{GrMry)##=wm@MPjC|iEkXR7R@UKN5JFzgXP~_b@ z89gW>6=4*h?yOM2zi#Y5nwp4PCLu3CAx~&)oUP9QqOrLl2QAE3z)X+I>QE|x!Dp%U!U<#`A!q&0jozsRx{^|8kGE&&wUyxZ!qSbV4 zZm}G{-P!i@9p+1l+(|643jln9C{_pgEaQ)P&yYX&QSGX7t3bhGRI!F6D2C#1N%4sK zsjq(F#17UZ*|H{hFTW_q#JE;#V&@M$6LDeflbxujLsA>A(cK;4*X${`~76H{t8-! zxJ<5e$6=fXx=AsvA{DZrlh-O2#lw{$IXh->&K|&Z8w`Kg9?VLkP3}F}V{M{H)K0;Nr0);I`bGFpOAss~7lUC<{ zfn6~nSHz>HBW>{Aj8brE^@gf=M%@;yaetL{=CIUU%vy97;;y!Sp2P2k-D*{KveBk> zq(K2v)YsU?1RT^Ig;vx&gE0FwQ`+*Z8=$Lct^dJ0r|(HglwBwH+)fevC*kvTt@;7Z z1P`#2?INi9@lB^5kI5T{rMmF%GONRi^~+2HtLi#H|J%-4>4^|>(Ms<;mAU?@U^@#xo=Ne_ACpDSw$+LsE-JVl6V zc7Z~WeOcVyLh&DMf>~_v^G7OQ4y;&10NOV%`13(hlB@0VKF6OKW|t_4Tv#dbRTg<( zo8dMNPz|zOf}rUIx&10LZ*c*#ouwh?>t>^BaHxROXQ`wiO~4dbZ*|Ay{_@88(_TS4 zYAqx&Tp*_51p91Cb7kV(5$rE)eH^e<*Bd;$)trS%f#GwOpi`nN^2L3DD7%2g6s)}s z`42jl5|Sbzx_qI1zN%8ui4rrwQXs$zeTLBYQKo0F_VP>RBRr74#vTnQzKU^p{dNk8HZ0-I+G)i|9DItxs4Ha# zAS~~KA!74-j8#Fg=36XwQp5{}A)ebT`~(Nb3O-;PcrQN_KYGPo4{~cyQsU3WR^ivB zGIt!rZB{N27w?9v-BM@^udv!urmN!AfrljFVur^0@|ncTAMXy3r86k$8$J$@?OU)I z@sxFw^M_zY)#u@YQGO#OAKp?8n>uBt&H6WmoT~6_jPP7iY=HjNa$4>46T`yzbctyx z{lu8FXe51wWf4h`K!W#m=qDnI9qxvN-2ZX4lFm_Y-4=a3_xUHia{4Zjzs-()ZM?8C zZj$#pEb`+`_aFUYT`x=yJdLDHeI zpe|Yg;_=!YE2)KQkhfJx7RbgTu2l;6Ok$UeYslS3hsO&PTP`(PRvmLHc!7dTE+TaN z13mu-yPI`V>-+m-DJ6MTbLv=7v)1?ImFf`JDjt9$xr`;*g;Q5w*n`MIGp91Y^h?}v zqmBY~h)tp3sd*5m-P^{!GVNRpxB3DR{Gcbt;gE`I#~EZqOrs8IpFT<(tBiSlyeuQ>u*F3u_%EJs6~ z>CJ-((BxBmChn=^Y=t@i?ky#9*C&%#>ArK5FZ2`jCaT16kRvXo38t&klt+)R0!x=o z8&_UhAW-X7->r-3oGgbQ`4+8Hl&Sw^1FGc|u3Asg@!oD*kBz z=E)rY8)=>Dhgt}at?p+r4IV}xy?X}*-*X!Y@zVS+kV3Br#rLSLhZAFv=y$_}CV35V zGf?JD?D3$0xB94ys(Yi3%Y+%e*k?wXLIr4o(|XH3mnfC5M}!GSge`TF#}fX4-xTC9 zT$f(kgf6;UFZz&)r>CvUxN(`xWSeC4UYb9U4E>IHfxI%VcbI!|4!)u;+7`ngcJhXm z2IKa&g!;ew{rK4&2gt+$14tP*bBdYH;YBck45wmP;jF`tb2%B=-qu-Ux2p_o+ zw!(E(*GwOA*zF4NQmH-!ye$Qc7*}=h7fkJZBDMyL=BZ&Du_Id;0~9?i8)y4zQAh7C z;FZ84@n*%E2Nn5<+wz<@y46*{+t8G@@ql-7#0mE5Cp1j3>J{`2=Ckt1RGD+qpKdIa zlTx8kRlw!fC#3VCxD1!ktTLQ}7$1h}`^J}Ym79g6G9b%ncFx%|5hgx)Yq~AmOR6~0 z;4+nLT}8*tOxO+iEel!=#xSbF(H5wZob&h*fmaSimz_eSZ7uDlmP6Umm+ zp8bCSJ3++05db=jMNkz2f=Fqk$2bF!LSkcqG;7J27eiVD6o37zc#h>Ez zWcDP_$VCg;nPV}M5kr%VD#^4!}H`y7FeIkOA) z>SD#pU##{ADJR#qQwDdoWikR`?xjHK%EaxSl`gDSlP_2O*HyODPCMC;^a=mpGOZi) z%$NYc(9ZkZRNdZ&jXlB~VYZaTInI7L$C!h7Kw$dxY*68$>KZ#X8_dfG49MEqpUaA_ znE+-zdu63&W3x{ER1gxFw+{+>J&c2G6{wTI5!E7~!yJ?c;;}5ms|LZ_2zX#U$giou zf^HAYgL&9p^J*RdB^H76^FaA{2Vw5c1L>-&;?Ltak`{1fuFL}<=^-DuJ$_@44WoHu zbEN4~3hdw%h>S5ZuxGXC2I&Y8o3BsWUuq)Zcal76v@i$B>G!gI-dUf!)z#IqCVM4- z%L5Pm(|#sTvb&2@9C7&J_WsnVQVY$fXOu`*NNV}Nq*@ZrFkD>W^2`6zCQ8b=OOp^? zW!~0Hv;GzO?eHU1bsQT7o(mY0A(*tTy*Q!H5g|I%5qOJGH94JfI{$NEuxxnIyC!Vy$0*}Fi2U(qV6S(QA z3D&bydpl|GDqEo4-ftZ<**Xh^&KR+CQ1$p2;K(ok`LB@Vb?a+0t-PeIoi?Pi6{|0Q zn>fejtf;k<2Ul3<(&CU$Sws7Gk@dk?NoPo^oh2IFE*tNGiu(__mq23mI{cVV=?z_z z4|MUJr7?@=9MZu^XU@!owNhiB%h)qd#|6&qr82`J@xTMKLB)p0j?z-fL4_NcH1#s{ zzBys4bY`^j_C`ZY&>9+KzDbbjBDp5N1W{N^0aWhSHt`p(%39H_4}G8GG2V~#h@}I9tq~sOE0lY zF1a+Mq0j!Ts1Ft8=QYbeUbFl^mw6i?QQp2hJUiykx{3P%AX>_7PfwagzTy)>d_VPo7{`kC>Mz1~d!AhGd73N|6%B+_bO8@qixl%b6 z*vW$`V)F2M#reHK0#VeR&}f;=*M9PopV$F1{`i;NNt}H0r==e45z6*@y}tDw)^P4%KIEaEP~+2F{xi) zd$-g*`VH&gh(rds@bkC?TiH@owwQ8S1(^9u=f`~NJHt-KHx-w>pMRb#J9(a;E}!vp zpY+Li&b@x_t-{Rge_iRDN|%gVU%S>-=9Y_(j1PyI|*aL>sMx=jF;lC~xGi4#wh zYVlP~(BCVIv9D{L(!2J>FMiQZl1MO7^Jv#zd#!!rvTxYbDO2n#0=7PyC5N7sa*%hS zTqqnbw+oC3;;4stIKa;P?X*Cpxtk_VPSB#F37RXzvav)HCk{TdXU`7hv};#p#hUjy zW@vBw>7#Gh)Oky6;>;ydqlvli+EZIEL7n)K#W+BHiRu*V$H6MUlZ;GI-IWv<*a3aY z?0Ky*o4QaYf6B93(#+w#OQmKk4%ZY#{j|NbU8$|9SraT72T76~CHr}E(qqz&$9X*016G)ZA9HlZjygI@Vot*~YxuAP5aKa6 zBFY$odRL!OQTg&yCXBaVJUoo_(it@6PM=vYC9=~2! zJG`yb_iwoZxKZv5n9JZRzeKbn-*mar9xE3D%*j9}XOvL|7W$>xP~(s+HG zCuxw(lT7D@czUimZ!V!mOd4xM)O!E`(i9&jg#MZv`sJ^FWtV>SEB0OaJ95iHj6J@s z6{p7@d#oh4+w4~|5?LeZ>qkHOQ2@hQjUQB&E0(VaAm*Tegcbs0C!Pfw0-#t%V$t~j z{@?!#Ci%>PIh{Oz{7{m&hpO(@CiA8}HSq(RJZGtuwJo#})jb4m%WTf#r8Z3W8RHmf zJRwwIu8q0C3LR-fkrp5ACu_x??c3PIc`I$f$~D%$O~y{&t-_`)SY?Y>)!3k}rD1N3 zX8PDHlyxI&RV3Dx0$fzB7>IZ~b6r~NKz@M5)rc-NA(41IMje3HEt15>jxCUCkq>~3 zopE~BK6|F=-ONZT6HWAw*App@VH9_Oj^_>atkr}xq6JW(Re{+OnfEXu5Ay}c%B8y5 zRkot&>3Jz9Oc<}h+s4YZ{sv31zsc+7Yuev{mz*!f&&U@Gc?i5<`7aqvfw*~E;*NzD zR%DoE1A;KFU2>ZZIg_UxzLYmxC# z4l)n!VuQ3qpZc9Scv&$|1B1_RH|gVx8gnG?dplrKcgnZT9D(W(t&R-LP|4?LkqL$j zQzSh=8yKcb2ws1(ybuTTfm1XQygu)P=k;sPLc098WLnbswddKkNAF);&vlgC9MI+m zw?^Pb0dqI8gYEVV4qH9wrkgN zyZ)(3R;mxAt0*b3!JUg`_|eXuoVr+!hihzLmr^UrHL|uYg0MqysXqMp<%j&|Nj-YX^wqXVPY zL&<4qnG|T?t}V0uq1FBpurQPP2iCCsQ@h!nsu2yq+$3q^(MKP(-~RTu!GxLt{g!~} zWi9h(-3?#_(+*5R10BZBmoZ=1lnsc%RFLurm_YM&eW%<5JTBW_Cb9uD0FikB7!u43 z5XB_=$tRx-Wy0`KHDMq?U59CL2Uc(}8zjZ}^77SKYY#r~pmh98?7wBsJYQeQ9XoUs z(^@16ZgwzlM*2jB)lc;n>&u+>zbillTo2G9nVFh*fk9%`hD1dl2=oUv6cXulfoyeE zRrp$FzUSF7&jtpI%Boc6AE7c2{0?r7f31f~&ch|9JV8m#wQ7;h+}lrnO9^ zq7N!9nCfb^k20~Ys}ntGE0QoD7cg8T5$1+y=iGU7ZPdt7fw4a&7X!0Y#(rY-y9re1 zDGwhgHLGjvfP)SUw0AoBa}OQc#(!YUVu^v?ECdEnc;=|h=)(&yybzu{D#-5Ly4xd< zK4OQDIy`6ve*Uwc+XtfQfa>b-A%o;|j#jKP#^@XKU)Npt>mca`P*+`O6d2$BK}0%# zmVejs0KnmB&Bc*E1RZ%kMOxoBV88&4rNu$g=U$~$frstZ+wQ*OeXHtRWk$^wSUtZNWgLslbO$dAlO}N;OL(a!nLBssY*k{^01E0q z<}*;)ogik@K@!GFsf3W;h{pmAfFkfB;Vl7EXMm@;xUGO~SpXj9Bw*%DuA^4Oy8>Po z25TOmM!*MHaz85_KIO9B2#|rHG5@f?R4jlWYDqw8x^}0#SoeMoAvLIs8l${by<^JwW&yc?boxU|J78_<)#42T5781E7523l}L(v~UBU zk+fid(B)B?L?Jl>s;HKbBt^F5Sz^q< ze8@u&J!D_`%2z^~TW+}}%o`ywKPKmP(2TWDKak%WEC6XU^&xEx9yC}EQJ)SBx3H+t zUf1Hu){Yd)IpLoFWGbG}&H%05ZZ(0ty0Sf{!As8h`QgUxW`D zOy{BX>{+wz2yI4n<(1zL>7n5@T5EOF%{K*b|Jl#3)y~2P*N=g=0<~%ZT~mQ)!jIZv z$jmzdri>9JK0d@4PmF`#{q}c3l?j;f0fY2UKpHt@*Iw4WLy7gNlzO~ZN8r-loxRYe z&0QMSh_RJRU2VfcX6mZ{g)*|XXV3OFpmT{Ws;RSqm0H}Sc1>Hb(xxw2ZAa?k33Vjn zdVM;&72Gi*p`p=$lSB^8JM*SXc-s#l^fYy_^+&Gr^LtrY0*1HzV3+ z!@}P^_P|32fCqKRAKUD%swgww(}6RRrJ>bOpjCjGzW^?MAf50-y5inZQt=h)OBH~6 zUQGEy%?H6uQS0FqVUp&*n3PBDgH#1Gs1`Hf1#Hu%Sm3rId@b`b6XJ_j7Z?PS??@rf zX-=t)nAGL+)dJA4h!v@ZGMNwi^rt@^*4xk)-XbKUF_MHnocUq>*S3!;Ub(|Yj+BHl zD=_~jCE0!HOJ54i1fZpUet-(#L_YylK;#{HT)0E-urI#&lAzMUFabt~mk8Sb^2;x2 zBf;CW@6iQ8in#rb+qJ6y?!bhRm|(#Cpe0}V01a*b`+a{8V0w{&5%9ya#rMAV-7vZT z1G&j&z6eH2`v{!FWLN3>AbCkeLPkAHUjX(Y0#ZIE`1(Iti+)~s;YDpB@y8%3v#=I3 za~SmuNp3ucljZ1*^;7ZNJXEpW{y=-4A*10;jiDO#6%{P;!-fsFpI-aZ@Ns~|jFby) zuqN!R4+bR)A4W*13l=WWhgAoCIP?tkrb9dEdyP0B2PaPQ8+#2%I18i7}hj`jUh2fa>jhPR3M zMVc#{FLV6e1!(;`Fuy9Tg8IkDSfPFyo%7+w$J{Wj;_ayqB=Y%BrH4F}t)$_{d4oYm zUD(0+^>Ki9R_faV9i!`}VZ$<_qXl1y%!f$<5JIgCI(RS$sI-T@!(5e^-;p2PsDwu>W|eiDM1V(b{NdFYR*xp#4G%R=+LKVI2-k{)X$Xw=2K@eY-{`!>D}7 z!(vY)9m)VOI47Q$Iav?DM?e+0ix^ZlEuSYXb0U~YV-C$1JMol-)bo%Q*}`l}<$06x zyv*dFYNxOB^Ugib4nFW8`?0>_0URdJ0WBu{ah(K{r~X>C52gu&1cWf)fO!BYYt}?} zOU{Ho)FcB;4v-~3X>Ypmrl3mX8VL<4gS_NHN=~L2;CcCYa|rEI8I(hx0b4#Am@fkC_+Wshlym5zhXwT+9{{K`0eK`)o*^^@?7pvO zgE{wizx&;K(BK(t^^oMS2^dY*T`9>w8R&E0go_0F=z(Vw#*mIkzV6=2X-7Igr~gd_ zF9RbH=EXjB(n(e*8uPq74|PCa)RNWuC@WE$n6v%s-G2>g-7eBvyz>5BYga5)_bxr8 ziY(9~Z$1+k-{BDUk5pqrdz0;;eI()DxS7jr;ffkNZfFU?Mc_}+e}VW>|f0yt5Eitks=8qJ4&kTGGkUH2QgMw0Vig1RG#orTR=X&bQUBc3f+ zXp+j1DpH3~9`Wh{%~A+|I7ve*r9i6yGk-SD2srZ6_%)IQZ)qPfnc-sMsKT&D?Ao=P zz@gj@KICA#>ra0Q%ye%79*h9fY39ISyfA;H7F3Zi3@GN}&`L>&m@M}--{OmDJF zqksjLVl``O1RSfBC#qb z`|WR2Wnl^Ep~gZYC=i(9e-DdMKn$aYWsi6u*yglAQv z1-SSS#A^jo+~P%x1(`&%Ajrj3_=B4_)m_lYcpUNVPJ=mEs8GTn)qBu zwjBkK1Z$tZb zu>%Hl59Ki*)vrr?Yo|H00(>nZ(Wr^}?FwzpRXDUqd%O0SzP7VGe#DTq{vF$f?O;6L zfB`!PwKDGy!Q(@_R8Nkidd{%~ed}pXIU{vCz7pBRIHM1&tc^S@qooSj;5JEuyXLQB zdh+u_9m!*fQdoFQ)D{z^e|HE9v??(37lkLsxqqo5Au&gU-?~-$VZ4D9^MC($wLs&; z00^gPK`ZJtUNQ_lm>+}Tco~$(kNaK^K*9ujR$#*9Kl4gRe5|QKiu#mPml#SQRb4A} z-}x7uA5@K~+5m*g%8D>AK{=>Fy<9*9Yf0wE04WRum?uO12B@KO#NY(riC^W>P{rHE zoD(dV@|d^q!2P}V-YYBtxJ$d_VH5)(ep!1uAVJb!B&pC(o%6N-x@d<~#bQ^~sHkX} z8)GhrcI>NuMn}4Zp-s^D5*gJXb4_Wv88Xx;>%~53EM{AlOGA8UPL4%lqnm+fql$hXrO$G=!ViMKgOndFPO!ZV_pn ztkRz&ZCdMGZO@Mn5&E++eM*+cvm%gh{Xrjc`dH!TVb8vm#*d!H9!q66xNiXBA^`(I zU0f?9>+db#;zt>-%Gv9~=CDAy^1V4#SJT7ni|HNB|sIOsr z=%E=q@4T$u#jI6Vf|)Buj?@Mtz38Hg0+V%y5`ap~A^?rv zEb69Qzt4H0fDDsmK!*A#Gg$D+Fyz9|Ul`($XoyD&!FsW$q>u43Xu$j(qX49l3NiO8 zl~E;tf#7ict7Sc)Tj4&j-EH1tmlvSo#Vy^$|t?& zslUz@;O%Hrmq}-lt@}03O#$67EaEpbwm^=1R@} z=YKG*&*-B`j(!iw*cUz@w>Htx)R|Wob`g-oa!)E8V;{Jah8>jxnxox>w_-a| z2`K?!L7KoM{wiUxuYF0rIGod^c;uyNXmmq-WCY2yq;gVtd_&H)&q(7h6Z!Z7cpkhg zu47ut=c=LZa79~*r993P<#OKxQWN*QERRptLtMBYD+*;Mx?kTvZ!1UAd)ZzlabB+1 z=V|lf$@8Nh|2P2h7ryX?P@bpdUhI{G6-)Aud6tGB0fZf>b(q($#c&e66OB*eJ(kt%usgjI>hDD zdYk;1%-bk`>|}l2elH1thiENZyVB?_#M|Y^*o@eUWF5(K6&^kW*4q|UoPR&rpIo;# z?~tQeD5S$cNoA*4X7=-z?XP257t5e>6mtde_y>Jyd;M|qYTquoorZpFXawV};c8>f ze5~cabCjcRQE64OGVZ}sJ(h`-n2}b4h0PhMzO&Lkpbel>N&?8-Dv^)HhWOa7O>7+1 zrJ+?*pjCmHGdq7`&TAU3*Ji2>OgFw9`DJ)sKjx<=KAFewdwM@6`ev>x*xyto$Kmqcr2?0_V`WJj?J=495pH^nDFX6*m7OlcqO2__4^oldvRz%zmb$Kqh}wB|q;9eDhR z8W0cy#OOYNC0iZMg=w3aXJp**Jl=FNG6u@(CrM16I%HoI3_2(y?mOnB3l*r22yhJ_ zEUlZat$ECB>%OI6wyi1NO6qH1HZY^c3@87(C3Ts$*Yj-}F3VCa>axtd_pGi^ASU%= zrc&V6all&rZb|*z*tW(G6;ysmVE&xrb$rfsn%hDGGm|qJd-BPQe1c-Uk(H%vM()T}lBdN>U=UE(+vi3$X~7EjHZ0jF=R@ z_(Goe2_7;9#;)tejAp~-wb&E@8U0lUV7o|Mb(3#48+WaAWW&r3`h|9L+{rQ}UG(PQ zi%=G(bT$vniE7Cq(!j@01Qq~@c;>deDpRzcRCF>>arq-Wdev7&m&7mGNVNF?f{+pJWbgNm9L#%fHpIBkrvUs0#;rYPu zBaK>AKR3|W`i~cVI@Rp@>odV3al!MplAd@%5@3P-wW=gA*H~Upui3RX8z(hqi%|D&a{*FJkF1P&#yUdC?wOcwM%@l z*Usl{bXQGo`cD2$sV^y+Y1I^LxiPzl7#Vm7{5XTL1Ndz@a$K5VGJE&4uv zrUP0_mem66?7Meari&~Xhy8B^vak*FlgmeKGh}wO)|PAAHZ960f0W_^rBqB*FE)-OvQ9V0si z!V2vjd)1z^`>j@PU+Y;%?nKV2tRz!zM--lCJ+j?pz^6sal18Ra|3H)WE99E0N?sS* z=*wEO{0g+G)d%k*9DUyFX7Ar;*?q2%BS3lUudNYt&$;@_J)?RM^L#CgKn`30OO%)x z|M58&X!yx1n~fVU7gP7kpyO$FTwo(mZT+%mM$VsE7nYF}hQnVU8*yz|gBmd)qY6cW zjpMq7ktl6$3!=bAaMu>pnGW;`m#{ zy%o-l@ww>b;^23|`~|kpuziASESwTQqn(2*<(6unedLcYa-ERg&uOr?)z7^Xun?HX z5?f)jvmeO+p}10xNd=|?wCVrs50}`=w=3<;eYG)UX!xhv3H+(&0FE8h|Sdg4|~g>Oh7zU8|5XZR@epwFX!xF4VbarN750o*TFGaPq-FS@qa^YKie&{x2{RZAGK3zMgGaP zu}xe!$^P@|Z`tw_SIOD%m%{yHjy=Zi{NtVW!yo=Ic*6HhI>XIo{wFX{`j~4cU5;#a z;~Vbjv#S`cHezj z?HiWSjtUmGS-J3ntQ~(sMq4P!v%U;GinNn-E#oK$fWAOFeq04|scZ+k=0k(DC9RtR zI|P{V2zk-iK=V57Zp^OGi?kgJ&TWyJ*j5DRyH{U*b=VM+ZR^?85=Xe~)%BH2wdtjt z=i*QpZ}DtV!Zt1rW|W-|D*3~PtuU^*;(NiX{xf67gk6;J&hJcSs_M^S6+FgU4HrHVLvWFkn(~mQb%^0X1kLRU>ZnL zg@r)^Bn@eS7xtgJ>>J+*`+NQV_rDKYs1$1*6Zell{VpQs|6G<&g4_+Y+`+O@lNDUV?2LnhXfV_f>u=33ix+8BGdSK6Hq&9SmU2#+;8l@`$aG55g<2x-xkE2e9db)6wf{7Dwl#G)8^R z;taS@k}h*wx~>PNO>8XrVDteLRZhH$$8gaC{=~816o|eN=}J*i+;45h%#3ze&uVO& zoOhetOvO&IxEW9N`|oeTDp4CcC`7Bqb55O$_C}C*96$ZLMK#!R+9K0VR?_4Q+{b9=T!5!2OIHs$m4Kszw#SfPJEwVzw9=FM)m z+iYHTzFlaaw^4Su9gsQLh7Q@?u3xe^s5sf%?Z-d9M$+TuHge?1u!$yH=n%YLUVd{p zhBoEe7A9*}%L1`&xn*Ur5op1)r)!;v#15 z&z+mKhab+^%{OK2nK4;yO%$yXPd`0lXPjZ$X!l1P~zJnTj9TR}DZt^mYzWk_=ir2Yg{duboCPUY>jfnsNS;I;Q{-1NEDr&C*d?cG^6uxEw!?$RNY9W2LG z=OX1{Cu`=`I_h(}z4BtASYl;1JTuIGn*Eu*qJJwhEA74P6#Hs+53#7Ml}XA3WEU-5 z6n4jkSv{|PIoLOjzOpAA_X+f&S%k=8>(z;&UFxf?)LtTm?X0kk{3enn_bi%4o3~OU ze7pfvfKEK}u@%Q5>eAJ#Gtwwzq>;#mJ;S7J*Lca=Ub0F&;DG3c*Q|y<&{H6WmnxBN-nZN)2?}v>jDdV%B{cPAJIawEy9~)s3 zh!4Q0bLu0ondfKZI=rg7svZD|$I1~^V*zIT*;+e&cz=6n{4{(1?U}Z>fNkphWp>=2 zeXXLj#8$3aEpJOjVQ1@GZn-7w^F|rxNg`wyXzJ8n*fugV%C5`&#-6cfZMCg5?fq-} zW+h?jYrCMZAOI=#ULwPkQ#2R2P#a>h31$~rUN$gGN^S;0eTrMKfK@r>4R>AejyC3; zX4d-<5nQ6G02p@bX`4aIw`dc*?+s&%F%~Tf0VGI*l_BQzcidspIApcyX{4Dn?RwVH zLkAmQ#s$t;B{EhSqwyG|eu${xV>@1@e^UxHKMJ&ZFk2VN0U-~3#n#rY4ywNM&p%&g z$9o6$3+ zQZt@@#_85YGwG4>#CX8$eeI_F{`>E1Bf_JCseV%OL7L-ND4?mWt+T$JJJ|64UBW!s zAD@5Ax_2zG_+@ryVfJ`blELx)OBlfBk7tNayvl{e81hFWA0Xl_+ar0KXIs2nJdvjtzSReM#Xh~&n$caf03qBH$lfT5n z%Cro{dHr{F6NX_QIe)-PR)o~Z{Wazp)8lWko1_3Ygf`>tq33hpl?i= zU=IrTC<7JV8m&yt2)JkuWmi;G1gY)KNpIScrOUK~b4NRQpDMfO5ku_g zA-(ODX;P`FJm&N=TH$({j9X5Xq=zI@#HY0fF{eIOWf$1__P=(umFwU4?7P+}Ba?G6 zGnOGBK~`33VX(>q*kF_nUVgsa0L_8Oxwu*#+oHb9G(59nt`*IBMRR2WvhK3}lrvzA zTSEIiuhXK1A0Yu<;)v80L5y*Q>O3P$+^jwKyg=+9sEVaRF3Z?%L$X?CVZrI|PCI3+ zyc{AR#l>>s^Cd2RC{QNn{`|RHXKg{&jomsi)+J?)sp5Tp^p~Aw!1PcfRu->n$*Y@fQd<_LB)1zjcL>4vwSnn&#sG zzv07&hwCEMO?Xvn+}@Zt(LSqL_>LVr+L&j?2xJ9r0<(cVI$7_EGMhSQiS5;=GJxU- z^OxFV6KB}5d-M}yit5Zl^??Ah4@VY9=|Al03_IQal=+LT&aASdv&UMIEdH2N!-^3w z>({SeU|>x#vF!$Ap%bw$k&B0j*r8e(dn|b0Y|iU4_-Jp|eJ{(l(ep&ifa5#YZv}wn zAVycB6cts0P-EG$j7^?w_Lo0r^g(99z@uF|wp}sJ^=761&IGB9v` zHKG&oX-Fy1vM8{_fSEIRUfSVWBn@cwlj%F5MDtr0U35`U4UV5M-nw<|rit+b!kif9 z`@MVj4h9j-gYCKJopjNYR{#E*2YcwDFjvK#6?vZ> z^Q>WD(n-b}JMTPD+snUbGiJ;Tb+>C%Xnh4{T|1Q6klqymtX8gGV>1>nH;$B#gywyu z9bPwTMnah+vd%Kl?XOw_S5HVjREn(w$an_Oyy1EJc~k`gK$9nDG={P^c5FsJ zdEe4zm>O1g(n%Tn)Td!jp9k(? z@PJy8p9esOHD!k!a!B}jyfYbRI52;HO$Ex}-YglDJf=;busB>K0}JAvX`z!KJ^S`-NoW;T-K}F_beiT<88E$EtvX5eF~kNOP`p$} zkLus#%w#($d!n_`Kb#A{t7QPFPVxG|oSV02t#X>`*tUv;snfT*RhC^oPx`bEwOFb+ zf?IhX0a>-SWa)$e8iWk!!MT%VTQze_)Z@5K>p727RL~~Z_h|Zb)40fJJ!AwjdMm?M z&EaP3i(jm>U3bk2!03IXf`(ZbBMi@m@?+eVXmeUdN`dA=fgKXeVA}bN+vAcC#=#2U zNiulO{a!LYnb*%fT_3G2`_Yen6s#FNzo&ui6sXM7c2Qjjc>drAKd?cA2Zwf|ioEd9 zU2M1Bm9k=t>%Q8Tw6V(eZRK|{f@o9BTfG!!Y0dA{sn1Gm9{BrBL?_I zJL<@zf|`}~czZY0FK_!cIl_fy+)>+SlohU7rZ%ca%RiF!;w;Ndf5Niudr8eWO!0;B zxyFuclcsHMC5$`3i#`#e6cr^iH;rGsSZl(bVS%%xvC&!0yJ~wiNnLEWqN!IKInreO z6X(b%BUmL;riO+~V@V(*O&U@Pv^EOJ*ekqE&AwkqFBn)nDt85U-g&28b=6g2o`>dd z4CD1~I?GXDHY7JGncl+6kSJ>OL7TM6gmDaIcagg-#r9(i> zgIHTURg{C7I_R#6GPK!}f$F?@NKk|*;D?sW07&Y@Nv8SQjMUR?h?%jD9V{4iTy|MT zUSqQLTdp99xg*?mHZ8y~cgKl6_3*LFgky z{nGQmw4R>fkps!=*|Ax84piF#bag5Na z2$Z=8PDC0~3bb+x>@Z-qy`G~3gC94x9i)fpuRbDuW!2@)j3!)Asp-bEcL07Ak3##?qu0jnopZI+3HHVS*E>yWT;Q;B@nso zL#`Q#ig~tN`XXm(OqXQjox@~3o3+uSOgPZ0pl_lWTCMvD>)R~qaJy-s<$G6&JZj4AYQx`REw8ku3uC;PYr(1S)RakQt?$m?c zwxa~YIARL`1c*hGdY7VT?Y#c`V+aePOXt=?3x3LxX0@f)oP!>E=6Y0Zbdk(DYjWB1%+a{S9aVHqvI$jW_M zl*Wb*B`rOR0nnnnXc!X9<&J}8E?Ig=DX_y+V7r4EFT4jpjn|kM2Qoi;n)H}bpq>JZ zm)t^W7AWA2#a1n~qSZ^xO1s2lk?YrI*%~JfVwBB!oXd&;BoAdaWvba@kFsxAR$C33 zee_W_NM70^Pe5kc>0E}Ga`;PA>yR`9fcblYI+b$co00tR+ZugI%S7d3}JzluIuN`ws6%A z-(LVu1eq9z6s4UC3Nun0YHzytGIrBVX7}Ecv3K8#jgSv(`^GoqX6nR@RaHA+#rZJG z0+g-5%jJUdLwD-WLqz%~r9eu7Mikg?VCF#P$5nE;d-of2?eX`Q+7$=)wB5S5w_1JT z@^YtNqm7LNRJs3sEl=Fa;{Zuw+Sd(a#y5HTdGC$)$T*+{BNVg+d$gE#@*;M zipk-x*~1TKv_rX>Hde4b_Q=>VM`!KeLrjaEGjcr@)5l>PK?)#?AjZ9T9?#OhDFspr zd>jgF7cdJiu~djK3pSyAddecp>iD@myID6$V;2tZVWZz&XonA|u&!meY6|+DkJG<2 zPfCG}rT|h{m~$h?vUjyNTDeU8y9mUX3uCOtqTYHdD_@CHC2EoL%P(i;tl8vREvvO* zX2;94e(3I|z3NCCWW8Vz5`8a5V2q_S%n8Tq^lwUmlmeSWf$aijeC6`Nt4&gD`ofj= zuz+i1b%y|Cs2xXDceJt7me~E1=Gz%VyBJ%bxHPvpolWzm6lg>NL?!fvj7QzzG5`=# z*~0N!x7O1N%Dc&#bDh=5FXE(kvSB{#_S*~W@yBEOegds8eaY;!Q?qv9L2S7aYp4|f z5|F?eJNu3CF;((B#-x8!3ZxYHcof)fV1}9|Bde{6A1$|D9g6L+DsAH-Zc?XywAJkR zCwHx|XQnT)xyx2tzly|U!^i7qnyXb)AWA@?ivf@}(AgY_g8sL_lJwX5@ zUE+{aZSk@Kd*Qh{yI=ER4?Licujy>D5*IdW|5ojdXEtDG=ELHia%u7_!wHL58%>hX3 zzpX=>wA227;|Y`OjT$#2-JQ`*?-m36lBz>Hn=MYCg$ z$=a^FWVEqsPLdI`OS_3jvzD) zGefRf#KkdrFWGR7KO7JjEO||PmR+m)v3G3Qisd%>^^SJUUrw|8CV$pSI#-5`FE2RP zZ2u8vT{{b*G-mk$R=^n{S~lv0ILcL>>#8)*-tDlM|7-(O%TrIFEB`MevBpF~> zk>w!y1#VM++c&br`$(gp^4axyUFA^+<>uEF+Mqh}rN(vEqe|VQdwyB8r>Q!;oq>K_ zI9=3U`WcvMUfb4NPA=`b%A*SItwkelG!fQCgC>%0(I`B9)D{$3+nR;eai!LL&0TD( z7SFJZZ0Wsk@wtdf@($9jM9)|IhfRB9mCbsjn>N6#v+=X{u(xOLXS1`1*$F3^9n|?v z8_<8X?NQ#rN>)~ApRqFS%&pf&8U>L=fe`|*MF8Ug#HX-DyOtJ~QXr+kMp9tAfSEJ= zHc}-X)~~&+8JF0^`73Ntmr|RmN3+=4Wnw@=4opq^PVb5Pa!QQ=TioJ77 z8!ORrkpnK<&-Ok`)*jTA>uc=aHtgp%BWPMtN`aO~f$aij&O}i*?%lJ!?a`y1y*_if z4XG@#Wm=fJm(+{J`UD+LCYn?@KF-c|x%jbyBQ>|my4p!Ttzr^v{V32{Y z#Ch`yw5VB@i7#aBo_n)4?$uthK-BmfsnCDL0PmhL1^_SG_{|6RjNmIr+=wQb3zFMe6_x&ygNm zH3b+b1bs=c@SbCVED8&Q6>Om`TW0pe6B)bXcC!cNsbh(@Vd>BzV<&zxx|$j`tj@Z3 zCtC#Ux;j3dtv2 zeQ#~ga!2UTb^$X8%gexA2Vt)sW%j#Q=h|~Km)M1ScD8PK{m9)5?@o@(@ z@=L>xNdX@VVS5zKWl5VT)51DiRa0p1PR`n^FJU59amnv}RGWrj1f1JY4e>{4OxJn@b#{&2CttW;w+$JI&H3Ip_T`s%HV zbWxnXKZC;q?=or9kW!#IP++@&nZGE!27p$-incaFs>az%SKIJjlFE?D3gos;5vU-E0ZI!OWo+*I1$Orx?d_I7XY8#>S?kj`V@DrtcEk}` z{W8|4Pga(&j65yS4^o)&hRYZi8F*s~GREp;c?+oVbMS1Os&!pOIz&)shwNz!R@zhY zmwLF?h4!v!*T^V{v}s5wu)Qg;UBJv=l*m4`Jv>YT6_L0~|4#S=0?r~}ZHPdWmA*_H zqEgGeA3szyE+lnnNGSM-iE&}bD0bewtc`xeY|6x}?bfw8c(0$MWn-tDlCg8n$=Xpz znYC*d^8!S8tdHX+9)(p=@(AU}xO$3FRo)nbcax{N2mcUk>VuCy`ThKUc=~w1z*cHr z`i}AQ?9USy*rHXn_W5Bw}uOf5L3&K>Ppgy$66*)wMpp&de|k7#OpWd?>}%Du4n znLFp4eRf@EpY`pv_S$>PlfRG1O*coRaZ7Bw(mNuxYP#^0!VI*ijtm15uMZVx0A+v_ zw%`rd(fq^V?V5CV(=pgl6!{v<%FS7`Rjxa#p?r#Mnp)J^D5E;phgJpF!T3nS-zhtx zB{~g+Cp`0?z5ra=%Z^4eK;td1z4H_(D+Q_*%*b8XT+=aF|FaIYrDMaIlAT!t9}@i0 zkbPq=>uWr8!Wlzl&z^jak`&ck=5}Hp*{oS2AAcOk(@#ShTaqN{X$8^?J2+o(W+2_V zMC7Ozu==Q3&qYDhf`}Unvz0oGe^w^1EUbrRW)%pXjd2@854U;qvve#hqwnjxuxGL7 zP_}w$&&{9r=I8QuK*l+c(^qd3F8+OGpGL9{Ljlt;ZaAWSJ?tvrmI0&1u{o2>_5!t{ zAb26Tpe=ayX)2FAWtE;Nu`Cm(A|2u=Kqp3AoW?Cglf64VAIof>lmJjUD$;P99 zwIRU;Pq?a4XfubJ8tKTS-(4peALN0rzkXmm`K=gJYPqeB? zB%=bge)id~5sEPl7TR53v@6>!<41^Jma8$$C4$oXj6BStnENXqgfT=XlZE99N{$=0 z*FU?ldAE9|BgIS!!dh!VxIKetTPR+v&phQ)fcB9E7_;98Dag=jvN0}+5`6}5TQdwS zmom3*THYHo2OfRpAf2!$UVF=l2_;TK6f$Qy2WM)_bsJJKzwwBX!V6Sua_D69mZ~;D!uM$Y4M^|x_Un!=?2w9PlqzU5M8`7o{ zzK^ThX6=z^1ybazw=kn!g1~JSKg57z6<({@G56UR#a!I6&CVI;^n_GBRaa zwKVKvqjyvr{klt4;r+4%8<{mx{7f22?as#b^?cDA+-QY}njU$tvo4nVhlnnQCsBP< zia+fmN^>F^o~PIqv!Eb}U1jX``L@{U{D&{jCZc(__j#sXi;Y~Ra{m5a99!ng{i#LX zwQvr*S=grE=?_qy9v6)9dh(uV6Ym0g#AxgIjCM_W^a zEbLvA?Y_4I}6vWH|WB8HG;2z`df-tBf$3_>2Hl8Ax@;j0rZ%)x~>og+WdT)0r` z1@2)=GLL=H%1FH5PkMG*Z~yIBMc&Ez9vOL83A~3S848d2Dh+` zZxzs!{JhM}_2kOGqZTe zTcHqo>md033L!rD9Yqj3uQs)&{AYvTi%kK*3|W&Ty9sl|^2`A)u7@``SlI!2)&GDm zn}fMh-Rpj08qfFnK$jB!L2`z*e5Ap}Kf8t%9r`obVQ*U@g4^>pVAezsf z<)nah$U-rkZw!5<`^ymepW7GI*gB`p45?nbL(V1y0R)xF;Y7G-IxG}bykhrhelD5t zgUNd?bJfl@jE@}93zR`nSb`?F1W^G&Lbj)=&7*u6Kw(|u=|DN_z%M#}M)L$|D>4%` zTDAKrG87qkd3j$cQKYW33IJ9mVr^l1Ir7IawA^r{7L~sxDR=l%xQ<<<$)L;9zSZes zjdfd?8Gpo#>6pOjwowD{bSYPi2vRH>gI6hEIl0EA$yBTac9!P3y z%`o63Fu{SmL5O~>Up7pvM~teWPKK|pa2uC65$dJ2HoL;%9wFshd1q_?@tXd#u1GRD zNN1hLo=p$UemwY4Vly+&3LJ%Y1LzMro-4kYG?vUR{yYEndf`nq zq#O%1HYoiGR$3tonZ?jvIpbf_->ETjP1v04E~tMO)!6_xgjFe<%->LnR@6m5jJmZe zl)lro^nNc7kv^%@X)s3C{LjS$cQyC;Nq3{&5s!x4@AwnhWK9f5%h{R3y+v0XejuCo z`-5`lNyYbl>v*m$mmxGawlX1kXO_5(Xt5zr#RdqBFTCw{%BovalFoQ^2VHHSeA_G&(- zw1{l5d_M@?frhm9p@IAmjJ$BXVIMz-k*m={Jc`?CQPO%gH~b5`PQA=p;q$0yndj*; z(=JzP1Ka(OI_-!XvJfSugMem?|i$ z^Tn*MhfcUS7KUL|0H(3AZzM88GJ|}ePCOi*iIyz*_1f*cZRKl5mpFOwtE=zzFu?)j z%g-_qJK#e;byNyHn1rBP)nLbTT?RchI}1P9VrUrnZyZ7LL9pEr12*Z(uE z-nqu(8atbJAWfR~m-AW;Ese5l5?>-}VtPSJ!3`Fw*yq?hHVs!yLVpFez=DF9r66{E zKJOXB^Kaaa>zX6IT-xt%=Y3ju@5dakzP(QRC&o+fvl8fmjE$51$P`?1EF|uaJ2|X}>ZTjSvpZmQj76SJ~ zKeT!m1WdhwQ%!cO)uD=kc1$DPUUH?%XiM?JrQ%VR=08UEL!xk`tXNnGkrkp;u84*G zxM|9WL7nad?4Bv1FbETADk6;Fk%Tmer+_y3(*jKPzLCObvcT%sbLZgjfyw8aMGX}R z`9OmxRHBj*tf?Wdgerrd_43k+qAk`+={C+02i?WQZhsf6-4@kk%%Vdy#6?#)Oo=*2 zXqGbIp3VnTjXa^(-*T5yIox^2G_w!b45PPL{#Fi(N@be*SJd6nu)r5Eq2RNqhR`xB zN&bNxf%MDWXAQt|_-Z$n#Gh2ofu6D$_$ibuoin4b{L=e^Csjq|B(tcz{u^lv(W=vL23D^LMMsSz|s0I#E77 zkzdy^aswCWIgR`FK^`dl7Y`QYPH|ns{qe2E7USa`{~penA&c1la$P9T&F4;1Itej% zvX}mn1u^aFpSUtv)i}q_*inwQqMrV%!he8ECIfyV0CErrhj(B08Z4Vle+D3p?&`NY zFhUgUOpwbzPkt+EM73}&48D#ePRA7EtBikFjKe8hP+wqwWQIG4md6beCMlmBjY~Ud zTkCAbWxjn44kQ`-Y^yaoW5gETI3)FU2+ZAgV-$@A ze1p9xtT6iV(LaR*NDl(pmCHlQz0@rMgXUbZ-`sAJD6#_l8O&bZPz#57&2njU<6N^s z)COi913gb&9w$^E0k?&z&>05G%89@3mkmH|_Bv2A?7p~}f$7?OUJuVlh0MBW#N4u> zAwcirIr7`H3-vhJ?@7`vfq>je1Ek7bBoBzqUOFVs_29+a_S{F-nk)p%Y9o=OAa-D4 zG8Qew7M5kaDHi%x;~r;hPZN0wphoLhkD>Rl)-LV-5kt1lo=&1&kHJ4g+avqb%wC+&Q=HV@*GV5NFIUCt>iA5z5=IS=J2?|b^Ay(Oi z^wpsV^mI6ew&vTFDim@`3UJdROV8GtL?T!H;hdIZt~W2I4HC5fLK9om{5sFuH^fGF zktHo}(3SrfRV zGJ9hK1MH;s20eZ}?RzJsMKkCCpl$2I?<>fF^6T50MiDn8J2EG5MtAl>$KeQ)#!<8x)uYCl1fM{C6}W=W2Rm2R!|| z3dbmiAGw^$j;M_cKv5X|oQ$qvcGZLshiJ1Xn_7>?)p#nXO+5hnH{Ta76+v$E#^QaK za|a%7el+q(KwYM5M|SWf8*|EX7=zgo;!FnWvG-0OQKmMGwq<(XXH>QRZ#B58(F;Q+ z()!a$XIb`?XDEl}&2B6Q_;g`~g9lRONHK<9zKxnA9Hl_wCyXN5 z;c3dgX8#FA@MR%6{I9fog%g--1{$1{_~?-sB;~OeSjSZzZ!^OM<|75){sHYi-!Om9 zf(#=4edYOVBZV>wk^e!BVj7hLTmRT6BMfP+Gm@A&GgJYqy_;tk$@%R5B{qmc)B(wK zdP#YWQ{QB>AmLAj$cmx{OIv#Xamr9-bVMiQD{2&Jx{v*l*7u0ZfC49!oe?P?Elzl& za3fuC;^Vb4!$R(@n&LX__xT|%Lx3`7I{ReM>y#<^H-MkuuO!POf#)XLW~jD2G7e8n z2@PcnAD)Xf?Ne!sd}nv~i;9+oDvW2pSz2X|X?D&A&nzse;O%{0FY!uq6JM zYZ;r9^_Eq4zB45HyrQ&vi=l{1wAT*9TMs(gXlEb3$Y$Jc&1~=NJwwWmP(7 zHz@c8;LgBaIhNubn&lLsO^&Qzt382fuX<=d6N#NvXl|^coZk06gdujc3N6F@5F|hn%gAwY}eez6YQ2qpCK| z%6BIz2?jW;GgLOZHi*0LvLB9eG2r$t+1C&%+^k$Zyg$Sq2-m~{&I0DH$=2@QZ`vEn zdsg0t8{&`1rX{Uqsv8E@8XLRnr5;7LoEmodl< zLkikVl{GQpIO=C@I+}QKYOzIz6;T^gx#r#)sGI$}(`FifrwWKv)}{hF>uOH>LgVuv zbhg(&i0sS z#LzZ-VQ#?7qZ+~$kWbZwj4kCyUi&@t3?}~C(!+<>-4dp<7#(D~mbxGtiRp#bw)i#{ zNdT*xQX-Zpq~4f^4Q?s7a5a#1(xmRPs>rtE;h@!?>1Trb7m79YA<=3VgSYKdA)5#UkF zkdfFWVA9rSUWG%B74bUl}y#iNv=J(cmf#;3$3)7qa#K!WZWHi zFaio}R-zpX%UVC@y4Uy(Rf=Q;+kc*qZoIfU{OG$t^ExeuPX68p+SKu+{E8h@^N;ee z^%Ly16cjOg`tioHIGRf63Dfd%(6T1;8D>WV)xGsOojs>C(+Hp;dbwiM5s7wYS9&WT171EY`518HO?PBE+XcbVW ztNd`$*iYoi&|RsrSO}2?RO{J0qCgU}N!3{Zo`drJWZN_`8Y=d0!K1 zEk~5OpE$UVXzHrTE?mi_0=7arB-TnTSryQ6+EG@?Lm=get9@T`RkuZ26p6Ryexv|< z_%hIyllsf%r(`Y#LU0u&(d?crS?R~uC2h>1K!TA63`P59!DaHg?pf+nO#}2al{5CNMNI9~XY(9OVlR{bA z^NX?n`zQWl{;?PX=cF)Wdoi(2CLxz99b_6rv=$?5+p(!GfG9=-PI5gS^!y^~;~t0G zb>Fh0&_j1m)6Ez!@1slpviNa}D~pPJ7DsWT$I&>%D{g8rssz5)D55}j{MdD-L$9GA zFtvu2?9)MtoL(gx5F5PVtB@Hb=;!v{-B~l%_65}~^PPM(M1q21K9!Rc*Q`p+G$O$# z#<|ew_$reww5ltiT`!y3bh#2DE)%Ml_s#DTvCQByfdAu0Y=#epM4X%q>r5AJ!2qjH z9&Q(o5zvo3I#|LjAsutx`l^kji5vVkRc$RdJGugIYUso00$T)iPei$uR8najrjRVp z2f-re-rsU7czFWUkSROM><3LK)h^xc$F5QG66~r3?YMe8D`h8(mJM=`;rQ|Z5-=a( z^_>|SaEU)zjL|i~2~tcAdN5028;*;^U@x^pkugrDXSU2~%|Ms$zrl`W8`^V9bG$)K zT;l_|tfIta5j4)aNs>?xVfIt$p0X1mX68jKO>$s3JfgGPW-}f-Z!@+W;*NRyHzxi$ zflGbnx;oF519d(+RnP0~v-Yo&>`Ym&>5g6cLd@^>DwVo!NT)tr@&`Q^xyjVzRJ8R6 zHV6CD=>8Fr+?H>c{F6)QtZo(vPN-AVXFQ!XW?h&K5l7ksB1dEQphqo>IBlwjP)ZK$ zOqr&Wve75Q9D6(c;%MI);eCW^B_9~bN3Tb!PfeH2Wyz4b(eXtTTqL8n0T;Q5>FDb> z0dl87mTBtOKK?3#rMUXo;jsgu=<9=`}zhLx2v)u9!{l1$-dfq{jrA@`O^x)=n=WR(KNDk`&{s zi83+4NYZGWOTO%+>QXhQT$pT^zkjcT-cO_ETq|?tbW1W`*yc|RenoR%z0S7fyxO;D z<%|G8P*=>EQ>(!Zb@oF4KBlr7YhIGb^@kALUNoSFT++Z96S&_|5QtC?dBn^>>?P1w zWqFTJ)a`RRmQoY*mZq=ad*YhaY8QfxP-wQA&}WFS2AX_2c9|^7K#{N^u%uCBbGDDY znBU-yo2aRfaOsH;z9TjxBERrhcXI4WBsBMi~6qk^lYe&%Rbir>ub`6j@*LqG))Nn$a)cW*yHL%MK<`UWPTB< zSvQ2Kw~15tpV@=9jK5c-RI`WqE&E5f(udfdLBX|ZCJdu@UIgu0>YUi%{zk2>tte^= zDUAe_Ee7kF{2IFFs{pAp_!ypn1e;Wc@Z8kL!;A{g2Mh9D%Bo<>!#vI9nE3uBPMowC zoJi9yA2FLm<|?waK6^@YzF9kT3==MrEC>jLCtIEOg}}!rc$=@yVqK5@?8*`|`BeT< z6DcWGC<{-;zt2I!{0<)m8>{#ZX{Sphl1L-qsHMnVIrPluDd>@6~Nk)whatcQ=GoL6d2UfoY;MIcbjY|4UIs?FK-=8#ZJBKB-ER)`Q9w?qenHYcPA5Z$*t+yO z2VMaD6Wvq(8S{X;drcmKE3`EYI@#>v^?I9eI=B#fqo-@Il_klIM(0}XD+RqP0=(D6 zVrsGc{&4-TZ?BDt`?b}fzuvq0e;457HJ!^Vq%1(2k5aI?4I+hU38W7(d8y%zdzCxd zH^3hr8(ibb{lZ0?QlFbiMV`}vJKu^{UJnnFWGkikZr*AU;!N;I>TbE8cwksf+O$9s zfbfC4?~~|xp>=v|?uu2PES`=#3u=0rzpB4up%MBzOSt)W>NK^WHdyZC>q(=cqD=lX z*wB2fbbz}d6(p=GTC2fbFfTJ{VZ}ekjS+n%PlB0riFAMP#Qwcyo-GsBp~cCEDvU>j z*j(8i)rdmn^F{yEH}}RJi|ccT6Ya+}9y(5Feca}l zwOA4?yf~OLXBy0UP?JNBtVZ3O>t+*F(*pG>8ecy?3s$vS_;rW5@NCtm_1bHb zw~JlJN5$>#JzUf8lm~{hsS^b1)BINJKKzM6WsdV)QKosTfm06QleXA?oOBcN8B@5Mw|mb90h~CQf)wt5y^hWYYgor^37+!QI1)xHS-Rix%9|RvSseup$n&B* z>{pz2(dQXgQKBBDTXgkFWnVI9-)9uL@-85d3oREH4$j*rwOb=SqsOed-G@!%?)(hp za-4y6rtfG2@m&SHVZ4@jiS7`09j12u18)hN%k8b<(T@%&u79>Z71YI3Y$9VGF6I4? z+EZ8&9ja_A0+x;|b-Q7GR7palV}cg>COv*w{15?Qryf?Sx5PnRU1S3qQM);5Pm^!e z@yn4%EiM);nZTU$uKw+%h>{!$DYNPmay%Dou=M9%3 z`ptMv_|nI2U7jD#o6P}Th~q}D)}LW71fy<`3}Zqu+PPJCfReFs!Bmc*4zY#J5uH*l zu1HJky}iUjGvA@}Gbng8ku3Y>x}Dp885P_j@%5ag-}05h@&r__j&MNBipUvn;mBd= zWPD4MFZ{F7FUe*-SHXujU}hV&it$fB6Vy?@ckkWVS}9?|5b#>y3)?i`OA>I+{r0Cn zYn<<%V(?_)iWdd4`mv3x0x}LdMbb*76?|}Y95vTix?YMNNci~E&#~#Narj@?XraNo z-*^ci$%w((2AeT}%vo~7#CMfJ7pC`aZ{|64G(=oAknq@xIsG@HHQciX};_gIFtG5{R$jCj4@SiMUgbw;N$dOe}>zLu||XTC;0h*;0DsgSBOR@ z%Q%E(0L*TGyn8DKR>gRyCdnPk$U*vjLeKkYP+bC74REF#5o8F;%LF4HEYmJP#awDr zh?QD!2E=cBG6WiidwRXiPHxMg&JbX8fIQmfJ!7-c?lgqHa|xqsZyFtL?0=vY!Z}mO zi?P6;T9g@;okRyDangTrs2{0grKnIEZEh)O5Z~S+Il+L=*2{+7N2AuI3B^w;gZ z^@Y`cx*vm_H!u+`0p_>p+XlqfLCa3CHB!Bk*Nqh*Lazl+TC&MLqfc38us_&F!1-FO zQEPEO&y6I&yY+GEH@7!J7V_Hgli@*-)W|Ycyfc`v#pChtZaCeKvv|H5^XH87Z1WYL zrbz~ny>=U(DEreX^!4><6Bg&?uk?k58LW{#*3tg4JZ@&ezk=97;NH7Q4kKoePP`<1 zIzp6??*#4{cv-B=`xHLLH-U3zzLZUCBqJrISRH!FfOpd++(9OZ2I<<^_W&`PX@=<-yz2kBj6GqZI}O0(CLC(P}302Lsxjw)ADU50cN;+Z~zF#N4stTIao?W89YO^m4U- zIvF()Ip7NfrR}4zu>1WBe#?rYS3>1`s)t~h5eXLGnOWtMh86H9t!1ZvxaprfDN9S! zm7V>NPg7j<54`Z(y8KK6dQe|H3%TmJQ|OXZ;Eh&~bBD5> zmMiyLj6w@=M4_Ic;B5{<3wz{*uTm782;itc?(r9$EYY{(x5>K`!>cUepn>S{X9XoH zw>7Iq00ohl5^l-^Sw}k+yqQ_L*mxXJKyFHG{$4ky%Ns!k+9GUMb3`oAbK}QPIR*AU z9pfN9JMpjU%~o-oHStrZz=f_K+`vs;=mhKy-%Tf|dLzLQc*2LpY7H|pzhX-(D}E>m ziPbJo6m82K#HbF%gUfeE#cs^WkS1g(0=e;vM5GIXFMQ!(YtRYUjO&8x zV8tW)moe?a*&30^PXmR1r0)C&$)>4pD}3(JY;HMa?5Bv#H$u`*61^@98kWGO8xEE)gDT-416peE>`KV zN6|{W4HPLeaIVrPfk_s9-GOn?e?{x7J{MMqeF@t1fdhh`seYXbC+lzf9+5dR!vekF z?VxthY}>vfT_qKXjou37F!PExWha1VZ=lLrsTbKJ#72$`zfqAPB;0%L6;V`*VFmc8 zi0vQd=Yc0}?q)}sqzuI)5^n>~i7vgtMT;_{LLD7&TjZpIR?&;;`nhyE5IE#;8ghoC z#Rrp5#bY1veZQ0H-<27rfF5IgKrx3&57HeVcc4rXVKTLIV22iQBlbWfw1HYmCJJF7 z-lJy6L%|uM5SuPTyl0T%4@^&G6zkGw%dKg3?t9Y?GQ2OX)9*pvIH=Q3ro>dswOww_ zdHow@A}3k}FbJ1>f1V8<@mWXi+zCUmg5dWPXNCS3{CXWO#fH8I8L4S$rRSmW#IOYN z46vl~MuOhvjI3Yq`FcHHlnO=2QeUW%F?s*^l*SYD$QuV8Sot32*re~aN4IigrH+%! zx|PZ#X~TaUes}(>ix(PcVF4Qt5$33ozpkz<%)BHBVtf0CmTm>rPM*Bi{*@^QAp;Do zEMQ_Z?eN|X{24ZP1l7HH-|4op<;`eOz~_n$Q8mK!s?Q6Y;V0~yOocq7bGyu0nv&)O zD+D^~qhvG+ykDAQ%4@JHZ*3#lQH)ZqF2@4IW+)QS_p)wA zMc=W$PmnW{@H#E}d7Q6neeQd8dw$Lk%|c6-)+?ZZjv^CR5J-Gf`+LB5%x_cpgVF=y z+CBln#Y2@3t%^1{17<_z3(DBaugQh|#Ep8u8$u^UrrK{4cQNeFCziwrj1^ zFh5WU5e3pL!yE=&Q4&KrWkVw}C_@|uU0D;~K`McCpFAXhA@@?sP_X3__MFniH4UVU zrLK#EO|bCq&ZY(HE1XITMQb1Yd;&X9k|LSju65}Y_j-a;E`n0Z>7O_it;amXPGD}h z_!SOe%#U`1xk!(8kK@7N%=5CJVWJ;(|fD_c0=@G)10rv#v?u;AF|tJ;Nv)3 z@Uz0%+?Gnt@d6Y!r#Yw114z*8tO$gETLfOk+vXyh6r((kyk_8(i?R{P@AinY`_aA$ zQ4Y$*C>MUw_)2*@JwC1muX0ZePOe^1jZDRcPD0I$Vq8RRobvE(lqC&9)*Ws%t4XzZ zMx=t}OJiX)Qhn<{b{DU5I^XW=llRD^Sa3z{7MpZkG4eKh2d^**zr!xkY885xDCX}n zEYafpR_iqz`)Ty=p&93ZP{^lIzUr=0QffS%0;>@Fcw&_#i-*Q4qv7CF;Jb`JB+a5O6#8SoIqCZ6RrCh1LGU+V5NhGKM4>1dPD(S} z9k6B{@fmfZ@hCcZ#Hc3`6r-oExdjtVLbxYoqtOAZ{72zpzmiV~Ib=C> z;>A41l%XS}(A2ELN;$9S@g~A=iyGPLO^P|(3F3&{kI>=gfr2osqvZE#Gx_qc|fdyY~wXP-`dYNRZT;;hEM)_hO0~hJc zSPsPCZ=UdW=@B6;!a|^*92%y(FwPw#8fUyjeJCQD$<0EX+G^qCcUUO$;NHi z{VyI}P?2q}uMrm1i79*)P(@XlWnC$MWiqG&()5C#SI&U z$laH{r<+zSmx_j7Loy0V*}ve^4%BjtO#6{LqTJ7;5r`fhuyP`$xrrb&S~h_SiBTav z^yQ==Se&Th_0+=)%YD=|$RVgcZ*MvS5pVghHL`{MdgypCGr93&w_5vvZ@cf~mV*DJ zEX@PenWX|*=-*ij6Ilv5DGANwyfg9%m`UDZ<$_g-*+ND(s?c09HkEA~ftDsQr|B0< zAAg064CP+ZWlSp3w!{{MNs-v@@XYzE@)=Yj*1X)|3= ze$qV?_3uJYJF`Kp6q2l^2+X`=Gim@^P43Zv_4e}(%lXGRQ>`v7+erBrgMUaXlM|#3 zHZaTuzH^L)8p-aDhoen(etgZ8F<3rD4N$n{W)459|Ez?Hg0VdeyL3AdN8@f%|7hIn zl88q6QjAJgG4VpJu5v!bM;{E|CG`(nU^e7jQjvDm^i}NiGDba`R#-B>v%Su{K2tru z&GCh!ZA3~{s);;d-VXjbbkl$yQG}(49Gh)4f2&f1_IPZRcOV^zK7*S3(&qu}kYu4y zXz^iuHL}v6oN_qJ1wl0+@yQIjgr-JLe^3>v!HqVhZ=!X&k=DWTJ4pgV)lthiYDR1e zoQh;mhszkUBTg;i`Gl#B>bqW;a`-JOIMve-1ucx>Lt~eHElcifNNYIt5<_J$elLsI z*rt*a*r6;j45>?XVf9PIB&uUC`ABe7jGlIR{{5Qj#w5V`YG2c8nxI39|HWTBJn);wl|usxNoh$qUXWmwUABsJX8 zeCbTj=!jl67H74-Er&In)-n;TCAle=QNBhlyHeR)kC`?2{36nnU_lE$;;gxn^pkR1 zp*o*XE+hCqI44t0`~bdfHgI$A0`IgcW2!||8Of>Xxg0fpzbF7DA6mC#?2ap>RFsyk z=8-g+-vTY_Q@^Skn5(X#6gclQRMsQ7kFJHrNj|hPdJVT2o5N22%v$hc)Mr!F<*Jik z-VIhofEi)o^Ee!30M=P1E|v1@nB{7tt<)VS%k)L(5jju7kK-r_yPfW3c%XadR8e?Q zJ3QE|#fDZqgD?f6PveopsJtzXV8pKdnOa)1pKq0&RBvd}^Q6lrW_cA{MnvktQP+bR zP(^GHjfY3n5(tlXZ_LsYh}Xg5tA_n)p<;gQKUJV}j>F%sEwLWbX)d|6&)1zxwXMxr z__LtTlkQOoN`0+9w9lh2!dI1|C%;|gdtn!EI##(A6vB6p%_mLtpCqs8#jvWXh<_1| zijnf}RmFh4`FckO{1el9qQU&W_>A_FV&uHm6E2eJ!odOkJeVc3wX6kMYoAf_iFrN@JJ&ZYFunb{f$0SF4 z89bYmD*B7UgX~vg0tC4LZStwgZUrJ_cEnX^(fP7*5c@Dns;zfr;$zFsL_D1^{*XmkN%jA)>&4WT1D`9K3nVkF-&qVBX=hAht8yc^P#tQ!r1 zi~?a;va{PMkw6VAaC{XXf$a7)I(&pekMFq7&@X{NGqb%OtM=AJOU}AJae{7+B+-;b zVvZV}-D}V)`igS_fSQi7h=nC<4(;bBEfOTAj7Id%aQ33=xWBYUH<8BsU2q$YmaFE6 zzWKYFE@un(dC%HgXaQ>w@N#RSsbO{&t)-_4v5r(o}kpx?fFHGCTrsDBgayO*A) zo^lylrkB}BL-2SMn>syTOL~^*JAZy^1PsXz#%CM(*Vt7~qkRX@^z$!dR|AcxrNSd| zqg)O3plc<=R*ni0vZtk|#o|CU2Zz9h8TQ=^H(hU{Hij`5F|Ls955tPcJ zk_Q5De!$4N2b*O`KM?{s zf;g5cB7eGFi+t{nHyy;tuz5$s_L}}GjTY;pSDn~^5~bLfiQG8m3|mW$+i%W_RIyAN z;mww2wV)GgP_>0JIez0mqF&ul`4#8LzU*)AC1*i?8zX{caq}Rx2f?gXRc13DD4|nu z4=;150MG9!P9hAjgl;X>L!*50yUU0t4=I2pZMS8@ZF!lo$ZP>jUwMk?I(u1wpqY145imao7Xus?hBwE>h)x8#uFs+u%1)v%GAO8j+>H3&hsz9rR_AscvnMMtuTo8X85KuuXSY_f;zoZ4A&j_qP z*(lW*A0x0qfV5Rc?Q&DjTndz}&~^MQZgYV14F@^fZypG@SEkxaSO6#h98`$4h3i3= z72zTZDrBh%xHI({H1Qzg|I(%$su4uCE`|VT zNuG4f28vcS?u%RSJ)knPj%Hd-JuGxHD$VN#YhLR1z5!r4c&!gd#lXjHPbEIc>E8iM zY&lYKPS}LAO?_@FGctF$43U5c_KcYhvJUV6egcw8s9n|+c0pJ#07))%aLuY!`j&A9naoqMJOT%Q194w)1XHP73i8TF0W06A{UP`8A z;AgSDPTlvuO0j2#e&PB&UlHQA|62#>t%k(77woZ%jxFd3G~RDc@^UBfP$Ny;1t*!T zLx&m6l9_A-Yi*OzM4@A1i8fKJrw#D!BcBMZt?|ou-Tr$)rYwLV^zR0MdMEcowLh{Z z9^4|7<&koh(PSo78eJzElT0G+$)7DbD_GL76%Cb`O@C*#c}QPx|7V})cWvS#*GlVp zFXtU?+^&7*!yb$1u`@j>5K+0X09!S`z|%*D1au8yPi~W&?Wx8+Zj~K!74)~zQHfxj z9Nt;HVg;R)UqbX|2ZynFu2ExCIaIKX+CNC=HoXf`J}$bc?*H1cEAax1o>Zs48)v8!C*j zynDS(%FWHtLBlbVhm~SRqo@w|%KF)=JRReRF_{oom7Qzucx}NkV!R}YjF~gImxN%W zbzIIiKpBdwG|6lzZ`~Cvt)mwgGar>T^=ujo1EQI%S@IEu!Xvoetp7C0q|_|1^D z@I-G-UVieQFES}A9HQ+qIR+gW#R?=56}>PPnPwuuUuPu=nQS7#;(8+RZYw9$DKdv|UCYk81THievebo09bz2sR4 zrx0*PUrk%;>=E<98HgqXCkBmR%~Ti@PtMBeVT)zN_r)57KTzxK{K$;FE0$n3hBHAe z$D#a0puAxMiCBC%e;&ecHR%9k>uOb6kZTYj{a2ihs)tgnXiq~VU07Zb zE}6b?XikOELdav`fSHo{Qa#VPKSw8ws`HR7J;ji~&}VVOLl46VohoAy$dLkD&WL2?`VH^@JNt*Wal@gdKPwcTw%S3?#%*cqKdpZ7kk z_0&}tlbNiNZ>6XmfCKiz4-#=vB;qqxR7NzRd(ct@=;AQYa zc@|BK*GYY+zgdT*oLGprNzHSRc92x+Qsn`JJqmfl+V)KeB9f4svk|TifUIiAn<7J1 z-yLohCh`-W7*j;N2$o7{N0HcONRC=~s-C(!Y#$U(yAm8OZc9mPUtU5U5u4F6|6UAy&0np%?s`wYczvs!?{pynvYb#KK=2y@2QnwwSj4s z_+i{DQUHjihO05+1V0IubA2|3jI&cY_s}+*iosheRG=zeO#G_^>lZ{Sb~aUef93E&{{{A>uK>w;B&#hcF>((b*XBOXJ#mc z{I#%*`J_p!rNKA2+FgZU_DAC3M-uq5Rxm z$D&Dfy=FjpZ2)1wgeQ{IFd8mzv&m@U-#oK7;hHueIZi;raVQ_a9aWNSN+v9rC7tDS z{yH3)+r(WG`8EXmr`@spY_%8dZwZYUk>B!e$ou+#q4HlAi^p}r2NUJ+a0KOrYGrM@ zBude3CoBbI?Az?t-sZ8JN>dFpLoNewFTeh)7KGrK!T@yaEV_+iz0ZdvCx3bbD-`eh zMY0Sm_kPC+)NxskValnfBqjU*TP22NFlK!!fi=d>4(@aA#=BNl~ze;Ikw{dOY>EC(Zy-0qijCV5s2!y{Ru7%vlK2B^#+BOjz9S=ivstwDjHVRUPEPf&hrE3$1SSFE{@DsypEF3Df2kD&y#Qmah8L4ujXs(1 zsf5axg+LRx*g`nYGr|xu8gns&IozzIh7BGh-1$?DE1vLuNxbf1w zS#vp}$r1XzLJHs$@f1iP3K($NIb8Iz`i0|E$F&Eu>Y%#Mv(hQR50HSyJ?{n$8l*pF zNG$$1KR3RDvXyqd9^2=BA4UJ96m7FH{oU-g#E z=k6)sDNr5?c+>pyP|e3lcnX9;EL@q={KH}VwWolmK>Sg_s~O|(o%j-Y3U~^53U~?} bAO-#(zjagSG7Pas00000NkvXXu0mjfQOzq$001!8FYtfREDk;l0D!?`DJ-lYDJ)E&;AC%RX=4fiXoRF_ zLa3lfH(h5;chMM*bDm^7&nP-61(W`gHXA2U6hRaPBZZ}xw{~MLp=asqukEQbY`8@_^0Ahlpi@7v1p*+1k;Ukso4$Wt0ZYT>!xBS8?VVQ9AqpQNkXaTi+@8h6UR4FEJbV zu7&+-UG~wzfJcfG{rkP*d=2NcopdSvJnI;9d7t#GJNgV&Lc!%e)7G-!b}yS#NO+RD zOF<0!{AEK{rRj zS~YBAMQxDsi%v&E4i<{##p|}*070{3>jvf{rKtD20fPWSZ9~5IoN45sTRl0IUrh)OMglR5Fr9Q&rd;=UtrDO zXUmp{8)9)_`TwajL4j}dqnBTCPq`9@SHMdBytNaHt%ici(z(V@p!do7bLADn? zkQc;*{oJ790BwX=pE!Md)HicB_gl1rxo_)dfXIr&q2|R0eI~-9J=QXgb!f|=mO;rp zj|E6G-8!5nHeno;7Ie**c3s~a;|&8mqdh|$qj9>Tz82e;ekL@KH$&*D#htb5_m2*) z7H~pkESum3@jc?21sn@}ym%EMGiDKNLdO!~IlpVnPt$&%?VB{3U<3e}15ymM;Mx>gc;A&zJl*3?^z$*gi!$2Pg01o)kE(HhBc|WEDP;(&M9GG38w*i0$d^Wy^35YKc^A?vz z2q8G=4+8ZtETqtWJWVmMr671brwIh7uwFbq3XG`G-JF{RL^3?8(9xV@IUW~$i=gft z?kOP)R8Q!(aMPST1{ia{4Ff+75cQx|J);eD*C3w*0}e=8Kc@qb4wU*(j05y0*iI1s zknyd!2OO9J2?~T125H=aP(~qJLATSk;%0B(?+_>E{<(Zw9?Dc&Q(JF6FXPavW3D?=j&ZZzvCGIF%!@S#y8V@tZ3 z484;Z8N*J41`UK7QdLAYFTD)~8)_H2c7*Mq-WcC-tnrBh2M)U&T3OsiaMAw0Lq|K4 z4)HaX9Rhp6M*#UA*d3JzbT>O6QeF)GDElt=UC^uKCs9BKf!rLS4G}0(BIE}oYp~lO z$RMa;!XKezl5=F;h=O4nBg#9PhP2o0*Ax+=i1=nnIT9?&Bo!$x@lIJUSuKNnhCdAH zOg4t$<`f1TBMv!+$$QipGN}aE2|eSEhrmv}Z{TmFZxF=PMZiU@#stRT#$d+K2LuP^ zWWY%rNsNnXr6{FFrBO2Q>7^NvQ%F;#Q!2+U$56*?$K+GaG}SZ{G+7!%8qbX^^_zwn zg}W3;D9%y@q+w2hPC-mFkw&PdtfsIATLW4{>yumqp{7YDO=i%hljht*%d>1la)#>0 z?&k7Fbq0MCe4_#T@w@fMzfM+X9RrNh56H>+%NWfO%<)b%X9QGbG`YYA$3b!2to zI{ciV9kZOn9PtnBj{F9KjuZAA_azT2_Ro$oj!h4ij$n7UhP(q_DDkJrhfb!_Cfoz- z;_PGf{dW@iGy9@{z<-(nVg3mM<^6;Kase-a)q&uFECa%UE1>+p8lW+uL!eWjo_YA}uB9AgLi$CXtusOCyrTlp2vxmF7(xm9mx$lT??2|I^QO&P2$B z$^>s>s0pi?X;X43%o&~Cs#C1fvWe^o?rHo6`nGsqhsuF+iPDIwg~~@AN$Ew6r_x>0 zURYdUDl6qQ-66|a@D9?n(O+4D~K zWcOqWD+}8>su}Z=X_V=gDbA8-(O}7Gb+y!46En{?KQnhdr#Cl07qQrp|BzPOZI^Br zbe)`AtQW5rv)$es&Zqj*{+%8WACNb|7{n-SC|qgSvWHEqSR_!SRU~O_d7yA0b}&mO zMdp%ZmgK37yU4P5VMf6$-NbA5b&TT7{^0bGhDL-ofL2CpMzch#Ok1aISZz}Sr^VZF z+y+-)+m_of-z?d5)?ixi+CbapYfNq|-e%nvc4d1Rb(zN<&Mm^#YzLfG&5mm8wMTJ= zao{lmd2x8EviCTnx#rpRK#Q)1uAc^;c2i4M`=OiHA=xp~<=VyEVeeSyp7+A=K=Fw2 zpz(Fv)G|CBlpnqk zh7t~wEOSZ9VsEfk2p((>{052}l@04AaW^F}{vP@~nq&k_)MW%xxKyMU1}%0DHZNKc zvNMNSsGW3OOo)-M5&c*Lp`@FBx60?t>k1?|Bq}67(iSp3Sp$hE*%Rp`$qA`^sYY?O zjA$8nv70^mc5cg;Yo_D+oeRYle-F1X3o*Gd(IQh5T~s=1sw=-XWf#N823#EO73U{s z2Im1ct$Xf_=~T%H-&#r6#i`w+-TL)6&r)||cM5NS_w_OL5&8-J73`|Fd)|HTf^QYr z2GskD^<^EGKQDr(!E65BK&MdZVDjJ{(MMsbuu#}D&b!;{%WaNP%YG5*aN=uXgHqSR zq^Xf9#6;?Z@C3ekx(W;K9(SU2o&kp#LuNip#`kpyo#f$wl>HV}=mL|3v%K)uJZ8I%ltuZ=pUB6Yc#pSKq zjcp&%y@?9Az1YaAOZ69bByMLe^|}(BtS&rX-%jdw>+X%Vk2Tm?>^QG%uXk@-Z~L9* zcF%*_^E57zR+dSCt7(cIU&sPf~Gu-!G`;r6W@02MOu`g&h5PUY@40nw02m3D9 zjFN{ktUmuQU|;1>?;DdfrkBi?^dPVkq83%@8Bb4YDp=*|ojl86}6OdvrM!!)Bh z+?WTa0iNlB}b2#LV^h3eBB1PfJ#FcBAkr{pt;e zgq@Q6oFjunyNjcptE;2K+rz`l%hS`_+x~fb|LUM;X>nz1HpA-19?<}y9FL?)mLZ)L z6unX61LvLVQt_4cP$f6EGI|?5Nv3QRYs_)XH}*z~LNZ#aQ4&p7PtG%Oz1i12Q@_&; zoY<+g)&$io>~e0_a5`gsEknDR+N4bnPkh^n&#P{rm-(XwPKTpihr~nTxn8J2DZ;73 zDnqNoE94z9MkIzY_+Nu+Kf5`yjeOJ8jlYWjLEzJW zRdAf&kKkyrH~)I@F|?A~9On|P=e_<^{ouJ66+}OzpAqdCH{FZpvB;+P(rUEd-<6Xz zu8er|#kcxfC8t#8_ovH)^R#{kbAdjN*-~$$Pg3r~+xDBV<=)(^y7cB`E;VaamGuW` zJb*rtl#94Up4bCIQb=*mH648>)Le1C9RG9+!%&8v4X(`pBl3n!1!++t04CQ2T}+FbBd~Ju`1Z#^d-V4do1KXwyxS;vSoU0I`sPdO9X!%ni7H&Yx$TI&ry5Ja({udGiG>QiqQ!Ve{8DPk<79zW8p9}8FeIi5UZ zJ{<xZ-OCMBO;{Ori4eHDSk^@EiSI?u$;0Q&LS7lZmqFhwb9p&+y38>K_bG~#DYbf z2Yg9MrDtZ>$53b(Q75Ts)z2CqYZj}CHe;8WR}VNo@e%=!IIdPMGcJyfsP13aZW}$D z#8b*EQHM`cACJe$v}$}feD-a*FVnY8B~D6XU$fxFpjw~}pu8Ju*f_|A(!z`H!qS7E zgC#?KB08~C(T(9`A}=GCB^$&0#@+{w2eA9-$Xdw8Nhpciw58KDR5=( zX2s@Org!GFW^q^TInI9OqINU2;ak_9;NB$n<8RL1c{g2(bM-%S0o6efA&-Tp!V+2v zILb)MSh{GMa#gq7`%0F|rtW`FH16*v&bN{CU+xeND_)`92+5CS&K*mvW$@x z&Ks387_sZ)sM?<9f#~z=8^hjp`b)85nVZsLLOcyc%G;5VHD zfdyGR&0o4~A|rxGL|+0o5gr*K{Y0WS!AkK?Ei!F3i5WRPZ9zdr#c_c(SyCNW2&DTg z)=-u{>xT=CbF$N=i$119wtEITW=~TxQ#^ae#mF(P)#G~G2;IP*gs)2BmC~Nr0y&lw zoHXZJ`z=o%9UkcJcebQ9jyDv0+&kmK%6Dz>b}(>oQyXqv9#LhuX(;T-cp2oD4ipZEQYWBcnEU*gS^wYYwzc)k{68!4$DBUwQnGP+BeKk)i+Ut)<^6e zok^eJ!1vjbl2p{4r&mI78$lQfaNJ$k;4l;dbqcUbF{&?m26h|Zuz|3>i(BzxGj>tC zBqFepR8TLf1=M<#jOp}?@qoZnLc7OOL5NF3n*9MQK zVV&9UJ?@Y^xL=JB_2nV6k%}QHfBB+cBdyV&QiT= zuPCoAE~qXtDzvI=)#OzoR&P?f2zZXH&D2Z&)(p}lwmrZ}B4n0)fQd3!>s(G@n{bqztVxGo?cIwrm( zk{6*J@tCLo*L2v+dt??TXJHzEFJK?;v{G-2Vu2S#& z`yrr1sHyOLDA>qrTp~m8ErR%UqP%j?_HcCt&Z%ibwz z%W+qYU)ssKyZf!KZSV0sm^=H+oZbD_d0&#Je9evUPej0U5RLE(9s~~%F{*q^UXMq^ zMasl#6}$J&xtxr=T95lH1AEWM;-LOAGk0Hh-qjD+lkF4tO7}VZO2`#IHX1*Tbq$W* zOCO5^7-l{mOaQ6`)}0^O-(NBP8XB{xPU1%ewS~QfCG&o#Opgemkj7!- zW1B;X4Ku4um)O}nbg(Y~`heNNJ~9m?I)ssMR1&xa!++hMQzJn~s$xV#(0J?_YN9eQ;)n!H21b0SAqyHY!Ad*4Izo!PDCgELWYFO`Qzc&rJ5RUwa&#o;w( z8b%6EvX{Tgah$3Cgm1FGQZdCi&$Z=7JzUSUI#WDw>6 z&)|MUO3ah2Hg^{yL?*FArNg|l?}6T~gY0_^o+?)r^u?$dPH8rH!K47+7sRi}RkhNoroNMlQlY(-Cj z@TJuV>*$50F20?|6tv zqw`%A7@$K4n1oPQN3T*>Pm?DQ9d!oOhS`7KH2JMCfH)Mp!*0oV_B`JF=zl|O!TveO zA9Q^N0Dy8VRWw{QWM#OF?QQ7{P3(jUR1j6=CrUa~XEOZP+d{6`g1UybAW?V`lV*gM5AI3{$ z;o{=JMNjYU?oQ{npn?zs>zxY zy<VRmbZhHo2(+iPJO}5JYITC@g+U_J=YqM-%Hc;8-P}O=J zkI^{UKzi>Qy(W8@c(xE(z-(YM@L;Vy4cwN4t*hC|G_6Il0ps#O*xgBev6ndOC=yZu z#YWEEvk4k*-S{8d|MC2&Wbp5-Yzj=%lw#A6vsb%XwSihiVL-vCT3AKPf*rZ6k`16K z@`v4~sbb*nVgrK#v$@5RT2;>i))f0^SX0f=&CM1Hy`3eTEuyo^cyZxET;VwahtKy!Jy1YOr9Q_O68#-B;*N)xdsy0xYU zN)AqjXQ0TYd6-a>IaP{2t)1Y_q9g7F?IT^?twv~J_)M9=6&Ei0o^H)d?RBQi+=S-u zhra7Hkf$)F%v3SHfxO4%Lr`YN-oOqWItNwtg~Jao;zlRYlE>yB5jcEH#Ii+LfOz72 zPIm0_WBjB#&2{8jV^NjZ;8zaDODVL8+NYs<#pjK(I4x3fhcSlO%BoG;*uP7oVZ2aJ ziIX7I-5X&m?;wdq*ZiqlUdq*BsI1`ELiC6(xA_q z7Tn^KI~qHpgCP5n&yvROu`H}F7WFJtIU{LV#2Z?r(!b@y5R^0ad*LMbS(wdcQ0itE zGM{Zex|+g7)g$KRun^&JP+*hj^WCcL~FD=%RzF zLq!n83FX8G5@-d=%y~GaQb+G5CZs*`u@CfQJVowH?o?p96--L(syUnraT{+mx-NOM zzhepc;!2e*%J~Vte7ElE7X0iNyzb%S#)avhCjxxOnlI9AHdnxJC{*hZV1r5V0lnAf z@gmy%q;cP$%1#D9cxTr~7#L8n;frt%CSj4$+010|i$Jl8Ol+m~`+h-9_waF6?)$&;5@Ig; z$YGy8ikqtN3CQ9DQY4x9%*Kc?$d!yNZkpQ(r(=LXO2hj#A&?E0M|EX*^K zjEmXu=xVxG@bo=}d;LL4k2ZPQcHbhL|8&x9i^=wLkl2?>?0VQ|DK&POk)9zFEQE7= zR+&pwc2t$mGw4pCW7zIA{C# z!7$&%E9hqhcQvdIv#Z9oXkj@oawt!xq5c^BP~L^aPPPV+E_gg9tH|dO>Wm*v&EZI^ zlgQ(FFVg>r2hIt4C{qtg6i{*!{>=8=@|?D6;O+1c#Du{~JWY9)D<{()Ks6;Wv2AW0 zcMqL0enzDHsxo5Opn@gG`Y3S4L%0L{`5pwOq@qq3NTnfs>ZV5|LA+yh_NP9b-?neR~>7kJp zGUygrlx24!^}9uhJX3b>_|_VCD29!0lw^tMx)adMX0xf_eth00=zo!&66U*0v@u%t zTx{K-wZRWs>b2PL8cmqgp2@j>-j(zn9?T9M!WQ_Cz;ljUu#Fa=?r9{VUWNZDOkq`0 ze=N80+5a)x`@Tz8npEN0R~|u2))v!-y{=xj9!)_r9zn)DO|;Y@u5fOaGI4}{6+fi?t)u68?Z^4I zUY)B;cz4tyymB?rY0{#~l@c%Qpdmp>Mg89~J5h+}LWYn+ik14-f{=&VH9vf&9Lb*m zgb5>5kaUqKEB;_=-!l(dhG8${kaWWCeiLwAAY9xo$M?7;=Mo(TFsSyImX9m0$c#Nn z5XVc9;77srn=-|R`%`fcgPAiaM{%!-ZyT~?L83J0G$p+>%i%Bb({IpBPlK1Hzg#<= z^4&^a{C0S7KPXnl(W9!Q+65YaAGLCklD+8^Eh#;mr%u*U4+i$O@95k;)m(9uErDenl=Be*?%z?B{Z%h+po3l5lY709{gg@mza-BJbzCc(4Z=g%VL@9BJv5o}Wsv z1*X=hMF4N-&p)^RJDOoc)?i^+C`2E^dsG4Rn1ellTMI zdDp5(G;U`QEL@KuiVi!JtSbuDuHZU=mg5e9{3O9xnpdllLf+I3|A#s5yDB)pMUBzm zZ}7gp7Hl+ib>UmeDSdY1lSuAkfH#6VW!iW+Q7=-&;fgXM^ie`x zf*g22J4)E9lV!&-#yiMlF@y?P>ROX|5moxH1?P?<&_@g_qwF;=j^BM#8Mb1DfDP!8 zzR`EOWhD~D$dVGb|18eUIT=$D`?;ggmB73O!96=tKuUPP<9WPx%Eb)Zrh$2m&Ux@g}ZOtCNM|M0RBVcYD zdH*z!;~LDrXjdlv!MACxTuDimn9o?vOFRy@X*7RR^RKVa_YqnGrE;02xZ$z+fpE-A zu1m=?7snhm|J%UtC>%d<#e5ySv}U)Yi!c>T&TS9oy`6tQdX=RVq1{$w+>26ToR-b` zcwsgA$rNAuuOb#a`+;}EK#=QfVm!n3vHsB{klJMJa6N!lLn6}K%9Ej|@d{oFoAMf| zF&8{J8=1)0uAG?2!1t-~70%0Gv0^vN*|uE zSpkuApQdp!&?Xp95ru_o8F%00t&J)4Jk5ynOkRb_RR+f6dqK{YUoQOyx4 zBP15|R<_7Pte6fC7$7XVFJo%{_}uh`Pj!PI-RB!Y4EzSt zi-k!%zTM>h&lWj`()){xRfU-Z*A+5y9crmR+6#YDpG4BG-#FXS!>>p(FSesl)vZL zt#g@n(}S0?)#WA^{(;mEI??O`fjh|~BQl_2ScKzDW;;=zd_L4L5*cx&zt zMO_Lq{aoRXPp3fyY3tL8W_fFpax|G{?KMrCuUkG@$iGqL#dK;C#X5_Y8GjJ+_@jD*AxV;%ocpmH4#yN}yp zKgX-@S3jTy$*Nb981dqH*?x9@KFESDa*RWhJ@=X*StlI(#8Fbxv6v{d@b`~wS+hHS zY2>@NC_~S)#)VbK&4776f*58(=J*DMs@JkQ;@qS(Bj#~i+;?i(mL`^Ma#agA%~M#l z@8p@pMRf*e6vV&g5;1%VT8%m~hGC}CB6|DP8eJb%~lSR0a%E|PCE_$*) zUw16o(QtoA{xR2hSK_w@kzg4L8v4YhW{A^;sbR*&X9Ujrt)S*hSf0TfDLiC-aMx#} zC6Q^%1Y}2(M2Ed(#ixt6L?$+Tj5ls0qP%*Y7HtTJ8rv@5g<1qlMXg~>s6#vR<8Y4A zfi~U6Q6$Mu)|HhD+MgPfv8P&!@9k2?bN1&Y-lZi+=)MA^9sZ#cuiCV<u6r*3W_07sGN0vV^hh)_!Gz%G#r?Ex#UlcVt#EMipp5>=E>=-*YIpc49|<2*1C2a1_L~Qi#i_@alsrHmgfi|vYbqxRipmak+KOtVgu3& zSF0WOplWVQmFZ}5E(Zv`b@**53t8qg{Z{*Rd9)zNB8yB*0LqFQ-T68z0e59%aaYrS zIfjZgd`d;9pMU$E^c^0z=@PSdpAa|t;j%mVuX_EfaHjCaBadQY6RL>h^z;IuDIADu z{XmO|B#l45(o~1i+Q$>2zr7UA)ICaS|5B#O!A`EHJQU{_Be}Sodb!3DFu7)iQ)a;G z2}h8qgF!>E+xUZ8XA_Ra0C(#gpMu2y0qY0|z$wHptPV8<-TY1iABr6a3IPUo5CQpe z+CTKi;Xw>cY!k!jmBI{12}i#X&ZVm8diTOf(27!FED?5GgT4(#3>b%c00W!agR8^g z@KQRSCHGjPjHWHB{5xPr!TQ$#J0zWpfJnaf5jMp;Iw3Z``7L-N8k5=NID1XW3y|H4 zG07XD9Hbg~9uJtfSF)e6bCKFS6LmgPRX0>e41=IZDh+8=P@&JG!{)X!F=p8WR0Nv3E0 z8FGhl9OmBLsc7<>ds$P@HU(&Hp;6#G87PkD>s-$t-JH3gAjTD1A47aU^bHpy-2z~& zT`dOOB?KaVXjRaBKCF>-(}FHdklTy-0ncxyrm7kOz$=EnMG%m4kw_*%(GW;&(mz(w zdT8qO<7pV2NzBHad>}SkCc;Q~x>ynH)Uquxrff!pUNCu=p@MjUQ;}JNvh+WEnqKib z%$mJPbLV}j-h3GtQBqY-QUq-5;+80(f?E8YNZJ2v_yQ?H5(w!4&^U!5_{&^pfn2Z5 zeMQ2Qdp=`bBYSzCiOMVr=Gqw7YJ5iT?KD(F{?q0wR=5NY5n z6Oelv-N&6MDrG9bkFBeLix@}%Uo23m6&>Z}hEcD*_wy?Q8?r`o|B+eREyGHJgn}lRoR@vVo3puqN%Zs±OiAO>PB zbB0BwlSZRm0=Ngk+FQP$U?|V>vYQE`6%y~vQS!HXTrX41>(nX@`a^F|4=%1c4ZZK2 zi92pXX{3xA1N_GVWZGj(8)Xv9o>=6I&9w?qh9gB(K}O4ag+|6{c*AY8s?(Ny*I|S! zc0-)MGG}#i1GXDdPtR^4W0Uy}-lHSNN@I}O;Kbdm8<^u-hKJLk0rWlSkXbzBkX7^a zFBFAB5SNH-MRa}t$-np`VlGZu7;-HM`+i!QbR2c8vy+UDMz0M#%yM?n)fCT?hRuS` zr=yR5G)Cy1Dm$D{Dlsgk2Z-`s@xcu&s^UPqow`}s_(U^}88>m}R-$Cj85HdX*%#SB zQ5OG1OhjA@b^Nf?FGN}CKbZycgR0ump-XGb!&8H3GtgcPK-T}&BV*^?PqpWL^_CD_ zt`FH8H7c(rnvV9o6FuaIfeg&_O`2J&brd)epJ%d6N8KPP0$>*u!laq#Aj9_5FcW02 zw3LQ~vjqq2;LtbsVt`PWCxzffVJ{p9T$7f(F->>K%4PRE(pU(Z9~gme{_8^Vl{r+H zjQ5cQ6Z#Bc;lW(yY4uz20Op|si|H`@cDg#icetYo+K~@-RgPg|cJ0cbFR08%y}DpX zr*Q%mtPFKfjd$fJE-$G|qz z|0Tr&Bb)m7&)1X3FrvUK>#kva1BNo18`?4SQzS^UmhNjXby(J2Dzsd85XDV&$o-nS zkJDwk>pt-!^W9yh#ar%Bd^b<@j&W&oH4G#nP%1P!E&3!|=8;kQwcXolHkoF(L8+Q+ zXB;Tgn{n!Yf?G{DY?&X?)l93b1_qStwk|U)((`H>desj}$X>3s$DLGCcPV^<5au1C z4s+z7UX=G8639_07^oD4ZifL2`4FGr@&J-a=%}rgbLz;&9Q99YV&O|B%s7G(AnbKPps7hP zp2o$x?jHyme5fl=F64E)Ot)EU6wS=cbnv-E#MN`4>9gPAvp9>hOvm@R@uN{3iXW_& zBbF3zIW57(8;` zCW~YLK<=2$$fq10-M`=MTCB)`TUDUHr*JOJoFl$zlq!O#wPgazu3g>yJ9-g`fRCbD zF8ef5Z3l~z?v@bBVTX|*+FNOQ-z#jg$jBKEa4Bj&M4S;yb09Rpky;voDtMFhHSA2+ zbg~pwWL1K25#!2DaPaT>kJBqfJKr+i?>57T&n5R2V^y;{U=GdA2)oi=NWG%!LVU4l zxIh@kavaDPK9vPPve%;bx#_WrT$P}J08d@dbLK(`@`*>nkljYBY-U!LqnKdCTn)+s z=vW6UD-L-0RE{PHFGeVJveqgfJawLi%PH_{d0|LNms_~38fKbhkmZMg+LAHCD15xR zgDJsd?v|4eCeJcDtAkw~S^m?zw}=td_WB_2;4919x#Z{78#z}U3)Q#a?;6CBjJF*M z@*U9GAM~~P1!CR!S|3$D%V$GJVMMjXa<>eau-y<1SlKcsIbe)kytpGD#xf&d-mO;$ z*BG7mR(UN{UjE4&k99Q!sJ~D`0aL2a<^`epb}`B4Ou4bZj?^^t)=_*cBFQgGf4wFpmYM2Aw;! zoMh~Y8iNPKw}lkF46YifAjb+~AnAyKYJ@B{+e|yYKeMwdltfe`$Fq5L*`5cZF^xte zPAZK+bQYpsF%}6h+!GFAKDUt>9{&1QOOE654ORprf5u7Wa)-<4=3Je92DcOKF2^|v zL`=GP9J#Szsev9a8>1$H?=WUZ z#Gwv*j~Xx6qM@RW-yMv#5HjKR8vCT0A?Fhl5T@Z?z)R&q6k4m&r6Rjcs`z;BF0pSM z;sF7vr_9v0_7R8k%&dKSdXn;fk1?to3en~J+bx!#Z?tVupRYU!Fvw_9UZ$&v>Cn7+ zBpi<`puPAzhp-VgX8@$oD1@^TB!z>Q=sZgpezeqd_(9J{?XI^NQ(;J><6j4wH#9Vo z`%7;*hf&TAOQF95$l%gPh9RDa;o0u|GTwV)C%Mbc_e6oKdaJyz7e8dp~*y;9cidFWo?_Zmn%g+Ifhyo{{&E0+TAL5!J_Ev#mUgaRhg>&# z92Et_2ugW%P{8E7i?AdN%s$X32R3|1dGUw%RGKn_sD6sAavN=^()6>em7#|ybi&92 z!`r$}d~5p*o61v%sP%Q*wJJ5{r^!NO#ogVt^O>Ft5%TC~4QGsX_x)qd&har#I%evo z8*{!iTB$+k(LowZ7VL=IQgxZ{k}iAVVZF|C`e0*S(5?AfXs7~Q|E3zBm=%Nk!3V)u zwTiiAyBTMje8CIhov|)8BquQy`Y9QjR*m|6AAF5$=WBRFz=|LO6_eS9IXVrOA81N0 zVAiE>l+TcA-{WR%FxvA0UE->mbB+%!9R8wot6X9RLo-!MWYhR5#gk0;AHJ-r4w3A^ zaOoh+iB#7>Q{qCHL2e@xn#pi_(oF;{FW`Vnb@jJGIpr4Rz@pWDhYp*~rk`V`vj6Mj zrD|0OL1|IkJ(T#hv!LO?PpVW9ZrsDu38W5Y%-hNK*{)13N9mRsKRQntn&py3L-DXw zCddehI$9?cHc;ntKZ<^t0|S3RTFxe#DPcQYr^l@Fuj<~Eu}vpEePA#^L9Y|koE-Ne zWx*#d+3@GON;~VQf6wjh)%_N7qDNx}qQMg|N$&k2RJmy-s^N4@uxT-rK6Ez7?ewDO z0x%qwY#S|_z7HdIK8%Ftr*Oq^21~dh=ojj*$C)C&kyK`bON~-@i!27?uBTjmkfIZM zm29FFrZ)GRS6MVl}WFsNgl_mp|} zDdmPOp6t?eu#aOoDC#SP{cL!FfWQ==^$kIk0pn&RxAK$4CWrE$zX)ZF<>BQq! zBO8_1n$I~h?eLJ-VuH7cGUVyIn*g_1fIp*RgfH#mK^W&f1?>UUzzGV-cY4mt&K(Cg zbXMjoU4I>6BmF%p&|#Z=)!bQ*$UCmYl)fXUHDVs9w^?JlFabmGC+Iv(lx|Lhgz7Ep z_`IKdl1hjQ(du%mp@M#ux$ZI=fpR5Z*$r4BInQLZW`T*A7IQ^)^O~avlK$P?WHt@# zKY?<|ssUpM!yh9!BafKvIFB(Oao0ddr_-*mXyWrY=>w1HW(%-)vBxhJ8E`}#k&)RD z0b*09#@0}=>bGl;qJW{>+&oL#PJnZiCmo1%xsM!U&S*VFXVt8iiTTV+H&W#df% zL#IW(xv${TdNy!R$aM{|KYu2&hmPE8bQ!>D=Nu3uFzjDQZ}+qxHg?PRnKeHSI9t$h zoo?a4bM0^Qvka zt(pirFF|~(;ce=X&ddQwpsaOnCZ>a2f;~7k0pSwnSnRp7xw4$q>}9{tW?0q)6|iMv zbs{}-9O&z6gTj?UdAdko6nU|V;Eh^|{*-Y1&TI7UX!0axqLmoKTL0U%<8nX6 z;eaF8bkGBFbdK|TyFH_d5`q(AviyutKyrlTZbfYu&NSZ!Vn`HZ%DaL*JTALHad3Kg z=;iLkrspLT{nq( zH3y|9sq$`^tGHC&R=l0qh0G40kG|BV=Y;O`^Wk0t%%uMll(LC(Qp6u%H zMJxl2aG1If)3Jb~AkmNJS{hJ@hwjsxQ+_g8H-{mML-4fwH^Nxq;=}aJyD?3xKwp>B zo5T%uwf*vCr5qu`8uy!R-ePpZv=WPMyDctUJ4Kn3_>*z+JeBe3^K!;Ze}0ICLZk@O zh_=6}X-8Zp_GcwdD_``|?%q+rD~G<1NLsik4<=K%Z98xUK(?5$0Y*$`?rKp!ijo@2 zdPFa6v?=o2KQM4S{f0h{wrj(A=P9b`jfSJqtO<8-HlZ;D+j$YhcUJom?(B9&y2xKy z=E$Qw4^}dtyk1aXnSt~`E>vbj@mA^MinKTa4njH@H*zDHCQdlcg`vQCen>QNb(F&^ z*HRGM@zYs)fgb;dwzq1Fs|(t7aS873?(XjH?$S5}4-P?s)400k$rN`v`#b1@zknuPQu#g}&eND&wu0oK}m)%}>R)fv9vf4}uD4&cNI z9z2z@7*nf1OrgXuOsqpx&?&WR^9^7?51G8T!L(6HwK8YKnw7ZeY<8--~J)ALmr}hPb)tUHF}$lg-2*j zmn0D5^?G+&6uz9ihYoE+8_OKGK4X-ofT6u_z zlhY8vOeBsg_S=e!eyt*H6Cc5uAfg7OP-HpEktc?O2pQombRg+^gJW+ph`g|1A(7DA zU36sn=+EmRA0gjAC>WgP$E6Le;u5>dGkDv6P6bsrgDpIO9k-XE!;VpY@pDQ?uyMdV z@p-H?p&nSNHw1{$me{JBl!tk40_Z%EEd9UKmPIBl1jqc0{Cjj#q)vRgO0);mtp8< zIv(QtiY!1Sgccgx2(g5hNWG*)EE1#%LJuc-`#O<3hN9+SmWo26C2`BzezYNAo+hx7 zl+}RW4cE^8jW8|)qR_%%EQ>*Kb!FwmV||G*OK_O*lCWMN3tx!=fDWpyw226Cd zISKxHoVrO`@vdkq!+t1S3`|-}64gX@S`hd| z<9=Xl_v^Hk9lOhLXBqxA5gMZpR8!!i5U+qf1rpHeMxWY`1Gx)9R)1X62G}7_Peq>bj|TAE{Yppec}s^Yh&rZ2EGr6j z6S?#FS%aKlT+O$Hs7FQ!1!k8V2I(~3or5B)j0cLm=uZkCq6nZyAlCn~#Ql(X&@&6v zp+N-a=|QEW9Kj@2&dIe2ioX!s$_xHVA3OAOTwSu;;u8guCv1dd@wu?_X1Tg0@vMma zW}vY53RPgSp-Gf6t1%<=gR}ZJD*LpxdCD#7Iqavhs^+eu*O&qV^x@f9KGki_& zz6qKoeVU+Kv5dB9R%8V%`=Q19q{3^Z6#29Vn+*q-0krdhKt%y)i7y)7a6R$jUm1t3 zLN!aVYXG*vJtX^ScQ%biL!g26J6x#K3zWui~p z>(>m~E+q#yzqN0|6_8FAnjTYc0q3i$AwVk=M?b>Jw)0x^H+adsV}`S;Z61Z^pZ3yx z-I*x$$lclzK?h2wst#9ovzxaqOK+BujO4K zDyYypqyl?i#wDu69a!QfNUH!|D^FHRav7d_dKBAu)Ej}lp4@?Y*{DHCmbJUYx?rLT z3j7kRjC5WLWaYskGvEAdSY}TsH%nR~(G@-gjQiE|nr?~hr$Ii~Gu1G6bSg_sr|aV+ zEV2Pieeg&^ppaWsClq5r2wLH7!QrQzx!wI^a29GRvzHVYXdkckQP;@s@idaw4;-uN zQ<2vS33u1vz>{t-+wr5^N}wP}6fWVg_sNfi>5oy7h2U*|b-D5f4e7AO<0j=iGt0M`_N zcRLAq3DNp{hjG{5l)*5nBw*Qe+$i+t zcD-5YzHqqj{I>qXmhw{zk=X?Y_z2kSt-X-As>F? zGM=$rrdMYHZIAYVTZ1W&&tMeIbgc-h`D%$#!^GHPO?^GiyayX`BhVCmZ?l;cyA?! zg=1w34#*9Cxq=N23SiY__O0Vj(Ol}*?s$&7UETU`x`vMvVMy#|cOhbp#7 zOZ8!PVSCN6%e$b*O1h(UGk&<Je%G}fpVz4gJ1lJ^GTHWjTY^Nv~u zpWmA+2b}lWJYC4uCU)()n>Z-WXgPy&SrOj6gWBTwH7U zngr->5SGIEk8-i(;E0=-REZLOi>eTQA1Z}%;3FjY-x=&Y1%UWAm5&**Q--EfVSYcD z9nh!rmD$_N4NHzX_&irXt}i|$R%;I{|9ef>Nq?Cb9IA81?38mx8lJ^DuO$hRt);-! zz3L*z^+Zo_AyWhh5$;=PElx`d=#wzSqx5@<30og*Lfl`_Z_fXN%I#i~O#lmoH=gLj zj&X4+S})h*IqD9}%BSp#lWrp)2^ILO}Ecx(Ze&-W)%2u?kA- zSmd_Nxh#>AA+716fLoFx2CszEdZ@_3V+)56xpo?>yZyyQs*$in z*Uy$u6hG9OG0v3FNSY<*DhK?PHH^DLtd!BEkDBWWm}(K^*KfqL(YNbd!>GEK1z14m z&*W69^S>Hf#5fLQ4&^Y-EHw!IJL<;2mR7EuqnW#W6=~L9K@P*JH-DGib+mV!t=J&z z5DM4P^j{;@t5G!?2yJ9V8H(U=VQIIP-u$$SYXlL zV)vJv11dcOp`wTz?({LP9r)o^70oYoHc^65dbNj7cWFbnQUU}2#-(r&dp(ax%|bWf z3Do+h`7t>vW+9ji3;328-ny5Dl9jl4M=Y70NA1Q$?0gRN6SiW_@T_bLfw`+bu>-z+ z%YsCw2V|_Qi3~dYI$;aY(9|4p8GBW}=R>w^xtTZaZjEC5`a1X)NUCz=)RTs0$z53rE+#sCh2TuB;FRpuV5qDgb}kHxv2Dh%5(XrsulviT6c`5O8dSl77c z(B#4CxZp1GQ9rlKb%f_ojAi;F0~91YvdDH@rn^0-14!ZohpcPv_T4PLof6)*>Sh%j z(Jcz;nxPTd8Zs9V{9j&Dkd2l8on2rS;hH6=(JOs5v8+d5&$%FCqaoivuKrXbh->d- z3^?v?PS1HOT_!z2r<86My=*)q>6}NN!hmit=JaC)!wiX0E)1koh>v_WM0vM9&ti1H zKiZ1tFN&m5d$@UmurD`_d2hnO zLXjzW6#CrjH01my!=pZ_z&SpMZ7gc7XgKF_W-cG`w9)%wOW-cM4B%6D6*l^ZI%ax* z$eDQtLCSs^enw0KAR0fSmUp!|X%iBwh@;Oar(n;SIi3_dE*@>=%ihf^VY_B^Hi4AE zhY32@A4EC(PhOSK zqw@oqj7yOm?{!+GyI#^>0otyKm$> z490(F!Z|n)sbgd-GGjL3d9;E4uuOteQ3g1FQtuv@YDwU$U-xyy*snYp-HB=d`gEXN zpZav#-7FydH5o`pq46X-VY-yMry^j_;R8%hs!@134xN*7)%I&TrR>EC_zS8^@DqWMEFcdA5&Sv z2K+!}m1N+rPRLY+32u9bA08I)uG)VcO~M=Qi^z1?Pz#x5QlMpY@RjhgRQUMW{Be{z zfysUIi231!UXyaCTYGGTy^`Zm@jZKAuGPQ-CKSgJ2yWKC(%bIiG8=jX7g>rL$cgkg z*y-t$-}ri^Oiu>hErPWtvG4>QL^}%(;(tJEB2-Y4j2KGBWUAA#Mj1lu|67Tv4zivz zsP~(-!#kGujB_jARvgJx=k)^&(uEaRgQHuk1bzZ|s`=rOUgpjDS3eH}7fD;``8Eff zs95olJ#LFa8OnYfZfmhX1o(LGvFD$J6+sUlDGkY#k7ZHmeknVJK_=gU%ep~9$EX^F z@!=L!!MN$IJ{$YFdbJw)D%u4@KI^M(5M|_0YiK z4lX3iUIw&9x=fE7_Y#89d*-jd>F~f^j@k9ha0*jJ1s|P%Zk@;FKtC$dF^*w4cx#=$~5TG2PlM1Z9+)^T%xC7aUJi zk~cN}Q^{>8X%y#eTb2J?>N3`x=c}I1Y7o~FEIXi^T*z@6;#)45FoFp9&B=>L;jE86 z2Fzvej(nI%D{<|6nm%lbccYm!MWkI@r-Y1}Rt53zBK{leQUtXjgk>&%QmOh12rnS` zf8{KiVJ{~o!V}u4Nz{P)#*>*)ol|Rj04OcumL@*T3E*i2z1jJ*a9NR1Rb8Aw&`(Kg zS@cUJm$TIeUGM7Fqk~c0962hX(?keb2rNS?ND?UZvRwcGsce5-?8D(xEV#^6OLCEF z=_ENes5yqPy{OK8adMLM2F#d97nM>C$8ki;|Oao@`(CjLIUkIFmz5fDX<@ zC3S$8(`U{9E4O{5)M?ym)$>d|+41Mm2YhMrNEn7ESA1VU=fQKHR*^B)Xi7K7B&y8# zK-}9XN1czLTJ|Sa3hkL4W{s&eGJcZo&$sHf*Od%(WOx!6zZl>BJTelbnV>S~msm^r zd}30?J}v$~j-2>JUADhqp)z@+3q)!0h|N_@Dwr!628_u|vjwaaTNJ~Czf*Rz*zs$Y6oR9vc3?D1D|SN0(I z18Th?94j&`ilpaL8P9WQVYc-nL||o-xnOg#Vl>YXuN48?SDpTge1@+0+UN-)xt-w4-PWXfvr?>e# z`S#*vzeP#6NJ5I7Xs-eNWsQ>4e9blMysImq{q!PX@|S-oXCky4t|Lf9-AZO7e)3h4 zM8F{^wIq&@tQdX)v580NYKQ?*dnSd+wap(<_1=7=BACuz*YcQ$mo#ihD>&@tK7Z;yu?N~B$!@&9oL^^$)%Gzz4cj3#E`=GNGy!o4EwiX;iS4#h#fgw zxQkyn6_v3BuTL<(LLH4=od{rQ?jq~gtfIx@NoR=$wvz3EiY{2(If99X?IVa|-IX1C zetd@X>}yjrRkpL?FHAGXn(y8_VP;`;XbLzz3yG-UzEA|dbUoPuh{+@Py85C}DxfFP z!q3w7W>`-cwxL!s-ihlAf(XP83-8$c0IvlNIa2m5rJx=Du^ zGz0n^Xq9zn=|?mS%HiAdoW%6bx%-$k8@m;IEc6V)TEwp@N6UJyultpQu!VieeymJ` zHe1CQW|Qf!YmZDnk_*K5|FReS0C|@8O;SQ{DCKS@#7*4u+k<(w?ERf2NLuM0)XB_PDQYDHcv`K4G*s{o33@`M#7252H$)@azb_(XCWVkdior zwN%*u;cP@UCWry)eqt(y^B>7+nJj`pkgdbJJ?UdVG=EbMS`LXT9H0D3f){)DZMkvl z0Os`Bz%sQ8+mwiD99>a1m{6YN-1Emj&Pnq5=>$k#)Me zzX>)>}UOeiQB0y9$SSc(X6Q%M&UkgA(co>^*oTb*vCk!R*%yk&nOpFu5A?J}e z{E98;M{N4}H2^w8rlnsnK5ig8|1< zA5#jA_L8mZ3TozHq!bHuoYv_Q`}$-F`iMJ7I($o?;^*|Eek$=HgQ)%xR4U z{?W6?X_w=si{r;CGEI39B^O05D|pyFFwf$MtIyOL|vnm0?Wb zQk#=N<(^+5t(333a5f;o6*1M8dG{#ulnsDhh+ahZXrsWvlwc?oW-j`zsz|USTnnE= zRvyMQEX?+RZabh)4xFeGXtZ+nh)um+GsyHz@Fpl*pK^VW6QdMT-FtnFSUp%#vb{}n z$o*%7`TAK5tj1hx0h08S@x*Jy^{+fUT0f6orpUw=M8`$D8^4zmp=c|UP=qQAaG~wQ zr@}m6b8w@rka=_rhSX9#);FoCFs=cI|NL>6d``$szN(Vp#PZL4Q>V0V;+O%|>}3^s zdi8YZFvb((wma#Jq{^PTt}`qF#^wnaQd;qROBzabVe6D#pQ9JXJo~XwK1RvnfvMFT z(Faeu#!&4@&v`Lu0SX~RkdccV7>s5(TK3LE0Gc*}jNBm(&fMI`E1sFC6(Hi63#)3X za)z4+K+*z3H$%qLCpZn+mdIL}*?t9Dd9na5E5@FUhlB5wBCwZsCe?+5DVM)ecbF45txehsOdj@oR=c_T+4~}wDtNQ^l64(sb z&1&>5P$wppZ+YI%msic$W=5nmfif)IBO={2IX+HV3~xiXTosZhsc0ka#Iptu_1|XH z4X?6x&M!wz*BKg_n*#~&_ey~f99HhprD)~{g?^;7gafw1Zwv*z>4W(Ggm#ySkWR{d zkZqwZ6$T@9HBC4Xef69sKLBow9B(p!t%Xcw#?t9WyJ!Gdz2-HVg;7Du69ysw7 zR8>v{850;xIn`pbQnat|Q^X`4>=CnfZHtB$2dOUKUxEzOb(v*wv^?n(D`qSUzmD9c z{r81Q;&)&pmxrs{X!t$Y^)^?3Q+4yVI-sFu$C^HH7_^^ox>_=aj?LlrB4P+cOhGy2 z-aZ(Oc6seCQaReHX55^dETys4KfXQsc>ioQ_N#O2wpk9Cb`TT{AL1n1naU9}^AXjf z1s?mg%@=acX6thK#VMBxZMS{BikIeC$=~gQVgFeH+HkAVieE8dK&tV{Nma>VnRMl? zAMoRZ#1r5Ic2`y!GG6_Q5bafZb`_r06iGo8(8ZvH?T;Gb6D=p#ts{HQKeSo{30Qg~toX?ee@3Yt1FGSdExkK_pR{#&t!D7O1_Vn{3 zeKQ}_(9-FVhAE=bQ)%6^hLB(mkbL_owKw$OkYUO7ZoOKyj9I31M?5rI<{wXzjK&7H zI($OKRl-GRKzB2fYP;F;bzpGri6&f`z{^SdQRMlG&1%`<^rc5vO|<>wzifd80wUjX zBGMxbEzd5chUqeC64E&6J*i9_lQ>195!8fmrk&V}8*o$XHH!Q6kPskWh|cHn%CAN+ z;+j!xF}fGkX74^RQ3BKH|2egXLwn%Elb-b5XH7_LWU83r*v>E~J{HfhmG0N)C<3ix z#b`F0wk5V%iI?T3k56PxvaV;vaTbPo85F0C zV=&oc6M`kvkRE0!u8sr7BHn{*OxDen5_%S|P583hWe-u#WtgseN?nf@{+(6!k0Y_5 zi{?YxurRv%-GFr zJtmrlp|#ZP@5nsvTBJccRbt__6n3<;H-H5Pe%HQdSKi5Q>Fh_~W|VD=@|rZ6d3+_Z z1f8k0VZQAOQM&3(VM&3<@V-Yht%RMg12Y=P3}5QSp)0-Y>Hs%~KL9zzkSIQRMh|h) z1x%S$BcIt!IRUTq&(^LZ?biLCBQ4DksqS`|xpA~+n-GpN;i=K37^ZYvaC-XLD1Q|+ zcy|3rJe7wy5OSt&qKU)aBmqbFsUGDcOVxw&`g2kz#DRDDMSBK%Ld~#D~ob-)Xx4wkqv}0c`uFv6%fzOXm zwIF(LZj|(C$8SS90SK0g7~S2E#Z!*8!-uPjIk=1F?ZW)vSSjH1v!Cx(KRixfbW>3t zm0Y~Mzkg@Iv65M`@rAvt{)k)6XQl$9NVJD%DSG{<_coANJVFb17I2xJ*v%ovMfLBFVj%c}_$bC1{i7{29ul*=DHlUEPtIB`40HH&cM%hvO_M?quUF)`$$ zEC>U>ofTvAJ{4v|WfNc5Uy+vjKBAubeJ`5M>Ug1q)8lX|ZhoM6)bX%0@^Pu*Z2PX* zApN``Lh52^Wu+A8etS4=80VQf&TSR5w=|OcayEKVqE)6^!h#~@ak%QrQ98&y7Gf6k zWc@Fh^}=z%Vhej38lN}Gi-^xzyT;)L>$^2R0MTkjjEneI;X#=w=Qdu_Vo_f1n)BGS zexCi0lMi;$kgl~a?+ET<* z+SRqSMcYm2rwhoj#_3tN`Uz}G_*wX)?`+C&5MQeWL;q27uB;bNmgaFP!SmQXvWb6 z7o?xBmiAE>22cCaX;=^0(qui3Jd}F#T~2fT8IE;26!{G#7_ar6{S{5Mo^}Za?=*g$ zA^U`0{S@0kQ_51rSH1HP9<7M5B9Dfre#=3Dr=^Ur)o%=#8?t!4$;#Fm8LYc=ME>2D z85U$$k;n;QgMT(*bYYL0<#^D}ir#c-y;oiPFl#twm+F&u$$ zL(kM#CXcQAZh<1vje!hLxhraLhyO$I1BMhV6!hBGp_0R^f@+?}7~(h0vx*Fv?&gjG z)7;S%U_(r&3Q9ET^iuc~5RK?*X>p})!y4JA6z}l*&?(3y8o9TVgm_);NaP9~SVGR^ zxkpp!;ht}I8y$VMoz5=V*$ai3*>!gavuLLe>!Z#`9Qyf_G*@%in5O^nQvip>oIQUy6qRnnEKC5m;~>qmySBv3+eU#CU&|7-LtDQ z?_2)J(zlVzchi9CSK?@elB-_8=SvA>4Kr@E0lL;h=shzVHp%O~pf|xBRqFimJU|c8 z52bQjgLI{Uha6W8rsM+}*qI*+G2pO&eFhkFdp1r#l|i5`L<-~D@_zkIF`2nP zB0uS7vuM9(<#|Z0;EeCEFGw-7Bb?xVa%z;=}{6wd%8+v&4u=#wF)4F$Zf>nZ@KDlq(PSpZJfAEAq z|2NYsl|EYW7R^35mzEV!?j_RCPt$CVwB}gkMhxtwzNW0J4L}vh9H^97C|g*USHYw4 zv~NOuys)gF05{9qaFY+Oa?Q+4H_NCb$ zH`K{ihhg5oOUg=zzL!vB^;$WDiEiP%CL?RRR9BdL^$5Y1NK0bWdM3S!_b_|JqpqD# zj+ZH|+iqpA;CtDM?{;Zb27$foF^AI$j_Hg39ERq&zNBncAU80AKD zUb^jR=ggJ<$K%mKtiQBjk9+4U82oRc;fUaA;(=EQeE4#ZUMtR>!8U0m_LeyvIGYbT zXJ2RN1G|5mGntLZjlLZG^uL%Ne7oqp6kYH1b}?)eo#CjJSFb#1Q47%c((^rc>vpv_ zeU+>uP(K3dUvGMA(BE74;iDcpwLjV{IlVy{um7gK#}jzpWOavuw!bodGqk3OvGy{2 zG;Ia`W=4E{UTnBF82V@Hc(A=0L}~Uq&G>Zkr<&vl-%nrn>=PGw6b>Z}9Vhn~bOsIt@*i_Ufn)9XWmhPcWTxwn2Ana;~#bLmm-Q4cg!(fJri=m+(Z ze_T@_`Luq2qPrP#aZVn6;08ZxoUUowtmt(svktFfJ#=0AWrgpgqhF-loP@g{H#j5# ze_0uPBi^7hloSGeI$j)-^q|vzkyb#TjBiW2$GPVq9r63B57Z9LLwMG=&ey*ewd0Xu zch>F4qm!2V^&|C27pAzQ9KQ}mU@89uYn~vv?N~zq;cema?33Gbk0-tA8Q2LJ`r0>L z`6<06Qk;mw}1%J$g{V zD|9{N374h3Oyrwn&n-?rl22n`$7RebOEH1NaYQBcNR)nHo2P*zvSisD0=ne!pr1q7 z{KKL61gk&>Wn-?ql3qcQ(F zq^DoxW2e$pjSxEiFzXZhD7WC%v$5v*shia7knC)LVR)1 zBA=u;596C;oSLaoft31u!wAg#d-83j>j{{NCJ&(1bJd6;$m zj`S90U%yxp{I@ED@b&d(2J=tLtN(Xi*fxN}VsVA!F!yua=33^->gN9@N^JM{k*^j; zZ)lKauk3`@{^$F!FC0ZW)jz#1Mdntjgrt7Dn$H?@1LHH^i($(%@{ZbCQ>T+$j`p;E zK8L&;8-H@{U)7FvdNNA-Vvddw@BcV{q>{U3*hY%u|CB#NsvunGu{9ea26wr}Hvjx# z8{e9}${a=w3k$P!;wB_vM7*R*8k_Ur{arVMc}r@>n@(eLKz06(Kb?td54sHX7bcw! z-TZ3pZEi09N!wgv;p5X|THl}NM#z{fQ4QdI7*T66$yNQ8pyITJ8cF3iVFO_`VR_=- z)FH3;q@1lh=^5H(`x-Fn$eUfY)75XTZtqA~yW0fAp(1>Z#U%Wm>o>DUrj`B(mpME< zUzHr3#o?P(R|DzZ>A=2N&jn|i%ffi^Ag|SiM(Ki(-n9*^j{>sPt2lXnQvtsd zp%ka8Co9otdpWaK5U;R1a(eE=$eZ!LMWH?Q;e0Ry#vJXt=c z4x;8X$-^KOk}PcH?mA)+i}{fgHt=rnVI-Tq!ZZsP95;((?{LRZG4fq>!1i-lnReWi zr+mUJ|4?46URq2R7J;&Hs6xd1+?wKkeul->|B5|5n{wgmvUGMofrW!~hWtP~%(s!B zDgn`}KYXT6VU7?*8r-nD&OlR31XL4W$eGS%D9h{6t3>z8dg*=$o<{ur@_>+*4EpjT zoDBI(l;tEFQg&#xY?Yq}f4?sY2C%V{jS@H-=AK`G!hrgvJQjN=!BpTyHdZ)$v(dzW z7T|_77{%$>0M(_TUBX}3U^njcH1j=BNw-Fy7Pj3~P~yz3utuo3ZH?ml6CPQ*OW^J4 z-tE48>Ur=IHOjx390X!`a3$ny5<4NV!0%NDIy>769s_BVbWmG4;1%)VaGp9r9E&%? z@$65p87eV9xy?zOIIpqOK+-5IH(1PcJjv@~i{XFgSqX?+$>`K1H5S@y@V}*V^#aSukTczm@d<_n` zKoUz8?K;jtZK7&IYspd7_bKEillBqB*eRg+Rm(#tnggtO`9e$(EF5=pyZm51FA3}z6iei2g{6};tHA=#E*RIOLP+$ z#>o*Pbtm!~Tq59u=70hY`5iK)2zZ2R(IP`C))*NWFf=ze`>7=*c>KNwv_+SGmDc4F zF0fOWR2`TqQ{#3&<=&y2cN!V>R{~AUn2gPDVMTJD8P{c zkuxHKMxxglVySXu?>~?mvNQkG1SJtGt5MDh*zs*6oaDL9)x~46fC@deilBOZ$NqlX zV__^>7bIyfK=e$2xWvvf5Za_9b-%dDx4F7>$5Ch_D%=(?>$=VTb@0&pAvjbQ7PVh| z*Tf_5{8P?&NmEGVYQ_zl5iMQhEB#6{8c%Wokv2XNCLwWd-0-=5QJVZ*A&(`q^$)sJ zLfMxhlBEt&61!LL{WutX0HBCi$V-`uT(7uc6vE}T{wJyh#H4B{1n(ATwyA<3D#^l8 zczk5Ujji@fDhwK9z57GO-boOV(bv2?u~1w)6p#Cxz+k>V`W+X^-jE08@LvRXT&)&L ziD!&!h2f^OhBuTl;VZ6B^!yom(jIv_L`|!qz;;Jn^R4 z)VQklCnC8ADD7bOjbzF&9{LvQL925ejG%@b^Kf&IwS3*ACH%@v{0);DR{%4;Qjna3 zKbV@|w}08)<8^PEVUVb`$?HKv`v7SHrTIt4wAS)o_Wsi|88TGoGpIWITssekb^AsZ%CM%9AwJk` z+p$DN0}D`r^)d>u32q+ANF8mOXx>r-nSw`}nmjVAQL+{IaH~l8!n(5ssh1+0l ztcVz#$%Gz89+ORO8{-=mW2go=&Cr;eK}R0FO=|9th;XEmgNn6g)W&wu@x+QYAD7jb z{xc<5w8wFm3!QdVpibtMQk{yJyspVg&T-urk6zS*(8TB}ht@Ak*+PbZlh>2do8ym&hO3I}WAQ#kw*GNYV^ZO?$A*(QUN+XA7FD~}?6ABvQ8r|0Q?dIiM?q86I z`-!&D&5`8!0Y$GkH&G+hqU%56p_#T_!tL5K*WXbPXhVc^z;U6Z%T{^K31cxp!(xJYmY(3Sq z-&}nJDE{<6F)MlMW83}86y=BhoD3WYfF4OUNC8R=5q`jGYx;S^zNG#$?+j8nGhTRZ_nendMcxDp4 z8e=n-Ch8BN@wHLp)!50cabgdAxEh9q2cHw|l~KUy?m1|~b<9hJ^dV?031H6?wJk%& zLk-9&ZeR%@LYc5Ur2sT6<4EX&il-A&PL1w4s;M7Ln#>~Qw=>5E3!7;fb*SiKTjoOy zJ;%-`IdzdL_SEOO{{70k;omZu!rcL8MOKSsWo3p$fj(78q8V`wCIfvI>qWA|j|YW( zGSGGkle2ak>Z*E(cAb8zV z#-!Hd7{ZE-CgpP;JURTVy4WkQk4dAc(@;jGG zh$O|UddETh_XjOXWH(vU`btwLd3_%gH{T5dhWr+Mc9aX|hV8Fgc1$c}iaPA;B6Tv` zM9dNc#7yNGF(o-i5)0gQbhU$NjxVSCJ;kHQ<;ztDBhVDAOO>P+WVI$_Ui%`|M;NvOHbeYHzH3TBAZxm;mQm`1#*GS zLEQU)l^ZK76>Vlf70wKA!R)xY70}`)m|d!OL$2Qa_9I)??pId5#vX&cy88WR>1aXMF#m=j2KRK~t@!q-m?3u}Y0 zU9cf=`J46>1lkM&60|M?L8wYyoT}XOVoAwH0_Z?G^kNvg>0H* zn{X4-M1a+)HKt^PJo_eJF|bRK+j8?2@YJzV$}*jbiFyEn`y(_of7dJ>$FK(Dp0Z%1 z=A-rEsW>(rFyb(RnbF;g>#MbHm{>8z1ZQNB8*9fn<4-ee5-&Gf&3 z_Hfmd1pIDnSzmDtAHqSgV4Tcj+6}6jl{LtPU>df|$N>cWDzEZQruZFktr~sgO9f|qN z6t1In@?_b${qQ7!fk}{F?E4NDrSA)d8Z@P3HJ9IxR!AI@W5iGqzRbv}gtbQ8x6{W| zMHa?RX8(?6&YedT8LLpc&xT5a<0>mqe3%1*nZ%gS)X8Q)0=l)id3?S|ZZvQA2l|KD zw@XOd2OYA<_lrAI9zx)R-O_KXN%#H{lrR*0sbF+{@*gF(gUP5$_vgu0-YFS98ai^v!0IaUVUak2|{ezu1*Q!hcY-`_2r>Nr^I1B!({{6GG^&OZI~ z!p;04z2t6(RcYUN>nc5k42`uozt+xiSQ$+kt8@L1_NEi?G?K!BXqn;4@;1kwY4Wi6 zo*Q2GJjU3!x6gq9M;p%;^xpG0fcGx&?3W-ZtSbA>(L z&HyRS-hPFZGb~1TugD9PGGkd`T*J})%kmnP8=}1ron!Ir_PMUQcW?K+Z=>NEp*2YVuXBJKBeV5ue&hA0J=T-Qp;k9J%CZMaOYZ z{Et4f_P2i6){zDsBQP}C=On)x!SdZe**0Sx`U4tB8V~r`Z1$dp|MxUuwfk_(=UAyW zTG8sZvh)z2MxfB^Urd|FYR_XHnHYN59a>bhrL|EUu6lubfNkYTq4p|z<6|ib3CFl4 zDnC(Prewnye$=f=K|L^I8O1=a$l>9vY0=E-zB~7d8!8CHx7i@3$&jr-A2z`4mQnsu zMBq|eI(}~82acAwF--%JGkEEhE+e2on6Q1_)K}Cdb@EG09jdp)~7REGY_N`|SR8@fRqCi?6 zy`%2Oy;wCj!}bHNirbBDV^3VSgPzX=n$U1~p5H?*3=PH^yu#~2*~Yb$kk)n!6yEz6RFd)H-K`zZ+qmA6{ESV>i|OyLb2bAGz5P>u8j?_}sYC`w09Y zM~&a@xEWLuR78BEWj!~pXOaOygQsl3WhN?J&hzF+e4>ArAWREyqqYj=C?x zr(3;&Z^FbU=lJqmUUd!ylrgMXeN`dLt+VRd>69RZOP!+hTBg?1J=s`%E|N})wW7S_ zT6TBzVhufdaCUN1=2%vH5Xcf@LDAs-s){9bct;+EsfEk|s*aZ!T0Sf-#lOgnay0X# z8KDX6HIVGnIuGM78t&>Y;p%xmFxu;CY?1unaCW~v>9BVq3B#YN0YVEsjCg*d8JTFY zGjy{)6A{Gk{pbHDYEM}#6j#+w((RPUF=;Lv;PKGF?>IQI)=|O4TU7=8i6ifN*PN}~ zDvh)7O65jxsR!k;VUO7*y4?DBy_)+zmZMeGGz}-wd%8gD?62Q6G6l(MeLVy>a>Yfg zRYV_4ZXaSS0kGZYJQj^O`NUxn_4~hZK`0YI@$b!@v3m&PsQfPgVnCh0=rOOl_KY}k zToLldICtd={5e-e9P~KWNIQnvXXRPR46=jXh$x>aeKQnP_X|y8r z;*i@nTQX`bQkg^u9{p~fGDk2<0w zku^75;{PG0$WJ#>lZ_(YSeQ3fMTlduP0C z`=IG$Ljb=&W{ix&5&(SRAG2+5S(Xl#5f#zH1F#q}V};M3$wNwRKgDPM%2mm7%o-=HX;%Dvs?Rh#LtTt(d(j8Vh6b zg0oh|2mj;0i>*Cb&$LYYO{3MRKDp}|Zi|rg4Bz!B+%Bj7x+ygLC?;y8N!-l2;;H64S)55~wi^`hxZV-@21w3h2SMDyAh z7%Gng_u`(IHg2~uDjV0w_Lu!Kd7Xf=mZucgDWi zWdj(?4GWtqMn^|8mQz#&*n0(tn_%@6hN?&ck*R6OQ?o=BR|2`H+??ve3~rP%-l4vtJ$gDLS~}`umQ>F9>HfIv+~)Y(Kiv|obQnhsQ-(;S z!#y?M#5tKuDnq%Be{@x;u#v5sK?iaP>S=_ zOrt8i<0TGM%$rg@8wK=Nb-@(GkV9-TPxB+0pB+xY+K;p7mL?L+EdogfBb-9C6&A+1 z;$U(mmsgi3i{*;8xmbZzo%{{uGi1#S1LTOw^L1>i;qU+jz))7ey3I9z{>QJ4E3bJ+ zoPX~15GJ_T9K`~V{3|hlOpcC3U6a#5KaA;31ZByz*e|VLv`w4Npqm&$`->%L2M?8jX4sGqqg|EQfy zerU{@hjUdf1}jt$)2ybE^W<6_yEPabW`>8NqpdR?bIK=>sT*pWV|-*N5#)MAYKiay zb6$?=xP(el0rC~e+pb+qU7X>29=tL}Rh7mT2r}chb?a7KIgTBKk|CPsx+$?+&h5*{VN%H!MswxBr4(F&eVXf#{7Y7a>@Foyu z-i!OyHxQ;fFdD6G_BkDT#{VpVl4tzhKh+JT`~r=@BjU*o%xp2AR6=U1m5K8rYz5+o zJSG{4_?vhP0GNP~d&n*3p~y%_33xNaSVYn#y;8ikeLNR=~Qs- zMWW=`q}%Yv?cy)*_9M-4%Mo_z!JMEj-S^|Z=eqKbJLW#6jDk*Eo#G&n*<6mfuQ$SL zpTN(%va1Pvj-+a?8v1#K* zre>b#x<;g}^4M|Dy|IkgbDO3W$3_%#)}y50$tiRK=>wTVe)=A<^YT{YX(o+F&bw>8T_8qA+|Y{@~AlEsXao zOj8vE-PzXC3=xG&7oLWnI^F1T{v?|7ILH3YcAHo(wafv?Z7#;yiIU-mjOU!;EsJex zN;1ggma?RDu!eyGB;Z`SY{W6=AVG*omynO&id?~)iP+^Kl0UL`7Ptx_}ki#U+_a5tuwd;GRGSVIg4(^Tfwr`E^ z-ugW%j`T!#&qk266y57L#QpPtC^E!DG=@-W%_J^Y-}cC;lrwse5@Le4q5s+;e+va`=L} zGyEV0CY0fTE}sI};0!!x^_ulqyVuw$dllnT=^2aH`2C4me$9{Ha;07ICEeOr-nPIvS23Rm64AM?Cx%8RVy2=Fk+d_W8@i)x z<@VS$(j2e;#Sg{DKY2qUN77=6vXZX?M{7fC?AiH9ilLatm*3a7Ct6y`0GgR(icnjC zpS}A}#L2-if~02Sfroa*z~Df9{_~$r_bX0}fQ;(7o93 z!vzc2M(UvuZ~28^fZ&5%Oim*;vXpqvI_u2Xb)q-w*00aTmHCGUr15n;=iu)4vK*^t zkqfG;@!n&woQG=HP@ScrY8mb(a24<%PJ=mwsn9od{0c zU3Z192?5875oXZbaKjA%_5%7#b8_C-V_?|3cW-iEv|xx(v~K0tp52e6(b1|oPY{L? zH3^WJphRMqj$IBsX{)wefk9F$wgx8#-VaEidX{F6-?I>p5+Qu^Oq?Qg0YFr=FUL|; z2Irq);*bC>e3-a`%=^^9+J^yV^ccLgrpRPJ66aqy7{~km-#B*QU+HIWvQv>C9#!;7 zYHFT~sJAeO|C2mehJ+HgBrzV=T}7!>?q6+?N$Q{vpgronvRxua_ThpjXpXT>iDqdN zsXgZQi9SoO`LW*}3_m$_a&VJ{9iq&*RinR87g0&DpjWjt;eKPxE8C;2bzO`w24|mj zeym`=>mY{UOqL{oHMg#I9?^IO!vNgH=6o zxVby_)py74^3HhkZ~b%p(Ld}UJW}Ht{l{8eg9NcK0kRWQkaG2Z?4UgTou^>z>EG(9 z-@%fma@q|WHYCG?9Cssz2={4tP;AzxIaQoWT=hHO`A#(9pR+8f2z=rYt?sc z3HgLYe>#hcAK^6Foj7j}gk2zGWFFt1pAuGS5xAt~m}_%nu0$j@v#3lqPA6a$cjVAkLu_DnCozDa=_f7i|`SsQ$x`*hRSY9F)2>ghl zMd~NdQq{2r>+C%0iM0_h9TOE-jXMsGw$K!XnpFWVq|lt>qx6rlpT@f&#Vn1YUlP7J zev-_f7S0>89Bw(GoudvCh3y(~A(bcMzXKh>cOKOthB`Ojx%Yb|0CRj%97(UD?m1*p-{ z(K!3;tqE6lkz3l=cLaCI1~~L+bakzX8*jQX&fIb)#)fjnwknPvxgUel0Yc%%;7lVp z(SaJ(J_gj3kOjE12w8wi&%tdg_0b}>Ro4*)xUwe-0B||ysXH&=j;R0>lkO?vXUr*W z3&z4>7*ib8a+=&b#oxsAdp`-Ef zT6DK^uB*f^UV*RF@%?chdYFu0Ni0X!AlwoR0ubBurw@NVR_DQrSi-SDgqd$CwXY*^nEO_+g8<2)2=;|!@S8l)cGm|VajA*}}%xqaFv z#@gZB@Wt~>i>Im&E0W8dD=7t2Pc5Xf>WO&ymECdR&^O|SFZ=)wv^iF0jHmWgLkxaPMo$(& z=%yIjje!wUawTPPW;xA1a2R2USoL(i9t=8!NLL_(NSZD4pBb2l8p0;GU3_MY?b{Ov z9vF&$`RbSBbyvS9^yXDs-%4uwEVO6mu0Lf*71#16#a_F1Z4%Seb+tBI;ZfflLTwVA zYe>q3NyNG5ZcPRvV=rQX3JJ<*v`Q>R|Vl zy{OEe{A9%M{(03Iw(rJ&c-Pybl6y8*6ytaP^v^Nmxx&R%)Ku~u=#;ZKr|Sj@X&TO3 zvuS(m96S;YXI>Y-{)bD z+qCKd1}x92Z^mx2Fc`foxe_ZgX>%5Y)L^W*Fwr}}7WYqM2QWYo2@@w>4!j4I_>kon z?Va;6cJK#r_l@6*jW~MWb@c{()NhDoRO=|4GbUQfpKQ@=pV@X=Ag{oZ>r^?VA0Ho2 zK$DCnAYv891QXtC35lD<+ADCK0!yI-Qs|mDiGvt@h4Qp0ZITTH5L;|cy$?*DLhr0y zzKV-Z#M*TYan&m>CyV53aoO9ii{ZccYDy@;y2Sm_%ZfPZ9iM&= zvdu%7hv(F*ne{@9iOMO^i!U4laSaS1_`Og)ghaLwT^;4Ia`kdV$a3l#KN9;M*%`YY z`hNWE+x{CwXeu7uF%%bFesy|eeKnjTftexyCw5Bu_{or}kQbfd28xQejq zzP-J@Nl(7;!V7=&wwab56vX7yWz;JaSKb;!AhOCqBM2KK3WS85eJc7%~zSDa}D6 zgA)d6Og?Y!gk`=Q(N`UOWMnj!BXv1rW`kK8r;NmVneD=Ho&!g(UD<*z&GR8HTe?@q z(D5dfTvkTZkI1H_6#|qHj#z8(1mZ-0x!r6LhePoYC0P2Rr>ibH zT07vzW$~H6|NXf7CGQ1suS()tiTA1^7ui@Nu%8bXYh};7mWJ$yW4hR}AG^t|%8r|3 zn!z{PR@RDeK68=#`(2o)8Tese z{F#vx_x@;e%pF7h!qX@2y|pS;IAPO%12GZy!h1*OFhC3p^Tw4C_j#-=vr z6fTF#GmU^20{}A;AHfhIb}H&ji%Zps+q)T)TBxcqY!E|uV9exmDKv1iU~f{0*^~P&O!Eg_KVxn`9rA!>`sG8iRtj z)|KK|-)MBNi&##Pwc$Sfw$N(aQWO1060rMhsVVRk3sQY`==2~Wn%v4JZG1gtui|Hh zLi`oMIUwqkJJFtQE^z_94smWC3cpZc2pvoXX-$J>9oa2~%GRimt)c^x@z42fF~stv z!vq0;|JFz1qKn@cjmx_dva8#hos)51pUKxn#N`{!9T@_rpO5n=CxVW>Ew?(4P=!+| zC7+MSx%?;Wo(FMBvEzMOj1l+M#_=qm^UhLEW}2Ac8C-Odwgv1FDeKF@;6xJ;(gmuH z3|o6WK@unS@y^F%*N$(*-~IjvV^en~lvY3xV*$&v4I_wN0uxmj6`C=|#2U9!VD7*- z2+|!IG9L z5Yx{T?^28OryXpHeB?SD(YnQIU^=t7@M`oPq&cu3&up_l&v_G3{7CWTnz;zA_+|>7 zB(#db*3YZXEB6(NZF1yt0Kj4vuHh@vSbDS4VDLn>IVpn$hFx%8C)pPLiJm1;4Wk*jn81Bl|9@q~-zI zDMOdPm9OX@nmJ&_gwyFVDn`_=Xd&^SG7cVts8B#@o*d!E`V|;qrelma;AyO&bqyQh z^>4lsmk0>JZIV>zHZ@<6mIwwt$Z(Jyif)TPPjytl&YJ?=k|w0HLu4)%CkYBUh!ivx zS6*>t+OMRLy`|6N+VoD@HR;(Ig<=PYm!7Ou7h42Ypa<^X5nInY53BxE(lZyB%Szln zRSb|sxB_mqpxHR}fg3y4z6uB|VMVo!k-q&Hs0cTmJsh9;=>LdI)>I_Ka>=UnQu&L? za??2buJUApK(KYVKJOloa&l-O3aBI9)SYcUaT1>`1ewstYT#mKtS>5tkHjxrb5Xqg zT|LtN6| z>Ht@9UIiQxV>DryWHBM8RyQw;!DCn&5la(^!0<3V#`iV|0@o8;ke)4l@E*dM^W(O> zp*$x0=O8j1W9J;=pbRC!Jz+T0SSriwc#CRgx_VXYJTw*e?Hwf~5I|YJDca85OxWEz z2u4H7BW>W>%h#+WhZH~79AyGZ+?eMIOS5FGSXdzK;BV@La6+GCqM~j>PJubKj3cF? zSlpA)+w&KHm(aN@h(E06vv&O&YzmDDF!k`1aBqo@MasogSHQLCLvn-Cr8x$ryv9Hf zeC*Zja8unWSdkqQI(+i@K%8;zg^2q|PH^FZ`YiT@8eB02YHrVxJ~;&;rsxxx0HR@~ zopl{fUz7o~dP>K#mRLp1@!!4w@>oNE8@-S5$P~g_K+K*3gDh!eHj#e%5(^ZSA==nS zIpGM3bNA-1=*0*)!}GrKk6(>LHQmv&swXO_+dM^538GhQubqtFx_(7eAaS*ce~DJ< z|EF)MX?*0d$uOCXZK_JiJ_MDlO}tzk5lV7o z{k#V1S3$LlWQ?TrJGhgXA;uQh;z*Zs%oYIv=C#~pckYpphjXfR+M;(Z5IZa4nN8w2 z8x>c#syhzdeJ`PS^-+h_aAH)07~&9IxweDr0Im~95w$lWL=jX{f(TR~5fmT*B8(3C z`EipbxFN_nL*jN-y}($cj3{vkxGSb7Mv)3yV$Z?J`2LPZ;*x9L60dpFmB8Ohba727 zT}*dFDv+1vU-2B|n*lH#3&%yV*77|y$n?3okpT#u$Xot(sZ4(gpi+0!dwaU2da9&^ z5=6$Y1ZA9=n~HYC%#%aI_>>_uT5*_R3{e#nvY(hH z%>rUrL9|8h(LROy%z4JhfX;)5$F|q0zi2@>C3EVdCQNp<4v25fs z0zStC37j#Di$#LXfGY}4Ou#LC1e~CWsHX)izj$|I7!F&&3R-LFlqp>VaKZHmQY8Qs zwTJLpu-@tz05t|JV(Jm;*+;G4;%Jd{H`D--T>A+@H!;L2@J$_8#3w#=B3jzt67TuV zFU7f+{xZJX%dp0tgLu{hkq0pl4m4iPQL1(U4xz&CyBS9M&_fR;$;5ZGxpj;l?~|}B zo%#5GQo%H>WWu^Y4x6o{6wG}OJ($F25w(PY38jN^uYvfuU>7vWclC>$iHw>8wT%@r zt5|MN4lUve(-XM;40p}vhh4a0vhc+;S4@=0v{fWa9MsRa@icw(sl0`Zp5@Ik4Z$8@ z#;$qK$D)sCj==e*;PSIh76h)GPg)o(p&oP2Kf9&`B@(JvS6QFK_gh^R7rpX=C~Kz9 zHw042Yi5?SDKgkccGe-rVUnLIT+^304clpfym>6GNNl-Lo8q&a*JFm**~Z668%q!) zw@{l}L_jAUPGi3BG#FKY2xzdv+W>}vr9uG{;YO?R%oyMJZ}A0zrj8K3W5+l~+FdOc z!%_6TE3WB|lOiKVi4$<(8PZ28+gf8Bu0Mp4!f?6@900;lU&pP> zVhAqX(6utg>6Z~!vgHNL%Afq~_u`%J|KG9Z(qEzjm@muL(Whk~MKd-qt`{Ky90`j# ztGeN{51mFv%r?XUYE@#p`#Ct#eEWlckt5=7D@YfPe#B@AMiLitJu z=_m19;PGq>abLG9wm@rPeR@#x`D`2@Whc61>s=gwgxR@kxNk5;bE6SLF_^roQG@bk7IEFW^y?C zhQG?JholFIUYJR5|pKiQ8@4nCmlh2ZQ8gcjsmrZ&<`tDt%?1tEBkOiTy@jt z7~sD59~+FC)g3X1xOo_nn`$UgoT`qaC#U00@AywZ%{g?YGfwsatO6Q{lGG>Q#C~a@ zL0Y8IY5HcKsO^k1&LEBLtn@usEtdLdm0TYCVFzRL!%vp#+zI z5g$b9YhQLfzHlwLh{_yGR0uqn;l15gMy_#`v8Jxa+ye(}XlP4)sIiC}#zq|iU;fgU zh>ylN)WCq#s->DDFGj0PTTms48?LM8xADk)FDXhV5dea~^<@x5v2O~3(2omnv~_i? zyY9{LKfiKUyyH*48E7CW+}Qs6N+Ab@NShgL#!(tnbZ3>WMu<-}7GUUd?AVV_mv_($ zxS&$c{vt7vCz*g9y@v%INdSKxjnl847Rakh!icIZTegsRuqoy7o=eG+g9i_$p!oIc zdq76CL7eO+E0{94apT$~j;$d6cGu1aWyKgP5U((ZxTdSoR{9f}F+^Gho(Y;`KSDU> zeV3Vpki$CWu~aV*1R~PR&Jumo6_k3NOd|3AgZpFUhQ`=@!M3>NuD~WiItl-$4NMHkhXU79h33duOU1xM@}Z@bu$$RO%wE)!&nM2z)4+A%wqSlDO(|J_&@7DlC9*S(ltRs6o^D(#8-y-f5+%N$@Pm{>8JN;Zv(Y3_0TzT5A&`Rj=^19;mIQp*~Hw{1H zHmVDFUC>B`++PAY#h(r9*2lVa>sZxM-!}81wNXR^Nq+g4e*fgqGv0B!)Cdmj-{4d-4O_x4Z5AN=i&F+qP*B%%+Hnpl`X3TPEV zpM^A4Ae@wu7Zl{j1bOtbIv~a}WacUKZ0p!C3enuPA|8BrSL*BOinw%B5PI(0t+(Eq zR(wBBRFj;;APsYS^GKg53_}wbCU)GnBO&o@S&g7>UXaG_Bp;hhWJj^X6c3CM7pX-aSsf{mvX@9KSxB>OGff`FE zf;FnrO6uD#*dDjtzMJ5J=2+gzDtDdOYw=5JD8=6q=bc}ObIt`n3AsCb^bp85LmvS` z#IS1#qr3CLug4=hzk!c;FvjNk0h*Jji*WEt^l=!iD+pBJhc@A<2187B4LQB`5d@W( zna^x{w_E$U{g~7as3pd~jj$lg>dJspO;a&s8JbXMO5A zmq(>nwYX}gC~6GIB1kNc|N3A4fO0#)FheIpn_;{vlpJWceDixTj$uy8Nn$dJpZt-% zyW{SAc8~$poCs!-5|Ec)etG=O-~3I=)$VB1b6OUC5b8-jzw!Qe#j0zsiRCMZsFPEJ zT*g~WN=>OiUg{ zxHa{yX?2AHAysEyaAuVHjuE(lv4+*;UVPTdIIFEAIxtIbq95Z}ez&dL5G(Xc!Vy;k z*v*LSoej-#`KFfWUa=;&b=F1y?jd54StqB0TF~WVas1ex=q5i}0lpHgOnnb>zzuVXk4 zfpi_IuX5iq2t{viU&;)-d&j+T>-TR>$EJ!C*dOMY8#uJS9~ETF*}@si@F)}@jz+|p zU!XO=LI0ib2Le`NNNQ%D=K2rC%P-%Csth4Cl0)&A+f+3(FAyiK;PY@^q1G}r3mV=q zEQ-9}|IWcQ4|5RxvZ*oVc0Sri`eN?k`{P$%|N7{lazw|@dk9^)#d z68S_pfyj?de^QhTqy4%VYPcRztq07G|?-2qv@Y@0ml1tTKz*5BA zh)ZG?(YZvZV>K4)`|f=tUi|vY>3TgN;o1xe@3bZFsFBLGjtueRu5djp?f{`h3mn&; zo}NVHB&7K~c#9v~^pWU0Rc3tDGeq9SmN43b8oc=Hhl30$A%)%Xg@3s(etn-33BRE; zC5(0rjKkG0dMRS30;u+;C4mfR(sJza_xZw$X7aSGrj=y@}+vA06vjCF? zr54UT9ov&aUXd+ta>^uXEh4Z8CqlYS!2^rP>^_m+^OqvB`{c;p!}A5c{GI}%97aMQ zC-yv%*?FBq?$IAt&g6PsS|^BZNu`|(jke?H#mqCvOV#_K$!I{&F`7rK@)SktYKVS9 z<|BrDoGOe>apVL=?M%MLAfmojMbwalp&9Oa&yF!t^DrvaVT~p&ut1-z2s%fQfPJV| zk1~3LWAlXYv{GRo3{3_b7o^h1F^g|>64yx`tFMnw)=-4IHePW4>!Z|9l?<%7s*b8u z;O`=2Esiql$Igp%33&xP0w;K9#Z$+lr>7^K=yyL)u6e)5IXAO1aoBin^m7K0p{F1@ zzV3;#Sh4Pkc-`AR8h73Co*3g;Qh`_RABhf|> z$kf4yQ?}8k{`f7?#cA;PRBqM+?D_Pt>$GZ*GnA?ymRDT^~LpPyWtDb)SBIZT6yn&54NWmg&8Rh7I%5vYWf|#d`YfY{B!ClKSB3a|60X|; zM@2l8(;AIci8~|toE0$c*d9MAMfLqDe&)CN?UTDWmD zvA)iWX`1E4D|fD49bfv_FCj`F#)1z4WuV*Pxbo1BP4i%{1oQ#vYpFsRsgk+szz9X-Y=1#+;C2mrB zAbPCU=C=0AXd-iK;QsH&)vMd%W50P-EMrbo)(S-EsV6ftizJjUr&(J%hfmlw5y^^; zHpOGbADaW7TZJuQV-p!gQt zV}g5{c(IE~tA<-I5YREM;R7Jp@!*lDhQkf3Cbf{>h7R++yZfVYWp%Wysf)hhQ5H|e z!c6p3%3~OYxDZG&IfAGp`6j&2XeZs8MIVhUX|ARmX@S%>VJea37FKt_+)2C!!B^Eh zZ$1W0*K6#G)|KbSLx)@9i#LzOfBgNg014e(3{gNOOOcw1AD~wo2*GUl@y5m#2yjWL z=3N~hZ33i$_1LzZLD|o;Cqa;982zR)*Bw;rWWmaul!Gw{Kq@IB+0c=l1^l?@!nD zql>6FIsQiu9ge+w_9S1g(MS4xjliWsh@c;;E>t&F>NuoK6v5l+(-4Lke7 zO9Sr*hLB3EmYd_=hpAqOGF4WKmlR$+Hz4JGY;NTC1qhT|3EBSrRFB-fJ016rbCDCcQ#*gsm!;6S^m_tRo&{m$ zzc`onOiW`(KsuSg3EH*(@_6Ta{+c**#){C#!-v6S(i&6aUX|u5!|xUt8`I>JCUp07 zuIh@1DM91o#74VOm zCMXD}l`v?PpupB?u0s;5Wi%D0{48jEpf45F!*cB*Lns~Z;gh|wFwz^p{hptVDriVG zJ54<-StALm?V@$|lG~q_?Md}ZPUzr@l!|LcLK)KLDsm$4x4!kQxaF2x64z8rHaco4 zNA;Y%SzP_L+ipuhci(;YB@QC8e*4?sPL&aFy6L90{oeP!m!hq_&j7|EnXE|evjs3y z1=XK-WA#tzkC;$CN0x~ytq%sEPR}55Tqa4 zHMmCoL*(VNxZ!4;twaan&cUVo4(*Tq5A8|PbeWDZnW^2#|y z97Wo1eB&F*zbfa{?s{j^I@_brBT9#l#kOtRV*mot4jFwFe%4a|RP4L&NU-!wJo3QF_~Jk9fS^Qt>Jwil@ATgI z_IDl(7&DVs12uc zT>IYtfv&a&;2~I#do{FivWB-5=pdXf0yq6OP!qnD0jxT;>VRm%`;>?R+pz9jite#U z8RIhx1iJQb39j!Y37g!)>F5a`w>GCZv9$CnW9fVqDg1aGsiG`}VEzys@a}+U06D6N z{@c1XM9!uaQBT_9AOFRtqHh3Xt!{>AbFW*YchPIMe4e!KC>dW7;GOAhm&0cELz^x5#PS;d)f)9kHA6H2d14; zznn*#lqKj6O)IPQUc)b3KbUSFzYv=)!ev5DU)@3)j}7F>K!`fSRU|SXf?HRaS4`-Y|IN-3Xp|Qj0>-40 z@T-6R(p_6mz!W~}nsSH&IG&8tUZ^M_Fv>nbEblE*NG;ts3&4;}a5Crc zd_qJE++XCXz~?(NjU5Bw!ZX%V`0du?WL|+2vsAil?N}2h9y$_V{K{y&`%O*Eb!)OB z%bm0>HL^NlDh~rT*VM2)3;SHs^D_MO-~P@m@#2?U5u>15MNQ;TFfG_#l@}P?2Oc61nOAM z;?&CsVmFL#6fu>#DQDvA<{DTsV+`+?K{?6ZQh2Dx#WvATS|}-*ioqSO;d|V< znZ|p7eM8t_C?#B=UwWSJYzjj5;_^^;`xhd`GjtbO5U_&x?Sv3?!<5psp0oH4`M7Y= zseS4DY4*pr`iV`Xw5j_l?uvX`oaML{<`yyYP(Al4M%(;u(>j{#X(FXuST1cXX1Cr` zkz3@JGb@UV+%^qT>(;G{CalJCi)xGxt;7wtwXqx|#j;z;^zj;#ukD|rx%YI-j)WsJ zp)?C{YK*BdN(I765WNEV&Uj}-`4TQk*fl~e z;Jb+{^~;F0-8T_$eD%9HnZ6HU1RHImQba36CUc?LucgiR{fR9h0KRZe92_G}viaoGb~G9{fVdO_3<5p^L_K#oQEL>3T3PCk!qJDLajHKyEvpZUn#i2x_}P22rP)n) zNtzOobezCwVZ-sxVcEHmxvX2aj`N1W$kI5-*{N4(E zjJEkZKQ6N8&HW;p2=4v;Epc$5z25tqT_Rvvhsan~7~-i`fgV|}2)5W1L!B5)yyolq z@-yj-o?=Wdv;lG7ej!$a&7;K3jsq*s{0K5Lw1f}R1)`+xA}y3aEgy6*+zkSSi;ZOs zUpCL5ICwPHLyZ3AGyjL19N?5u)v*-Vk)Ubu?0n<vo0Ot?t2XjnG z92NWlLJn%95pj3`*4(&aRXnhJH&5{0L|i{J33-VYrw_Tl&2Bq^HT&m&?&sp_YhQ}3 zf&qpI_U=C%|MaCV$G&^+jQ+8KXaZsD7qBf19F4i%_r$`!d!pvZL$P9LU;N42UmTzN z!*|E^q-bh_D4W4RiTGS8Yj*&6M~5LF3ck{OaP|>4ZNj2(rNPzjIU`C3pJ#uvH~I;k z&JiL%E$75;Jtm^s^6w5xevbR|DC)u5^Ntg5$`$;aRQwQ>=aMG!k-k6I{?MP#+ zK>NY}{9myPMEt`){B!*M-~Dy+M^{-T#ChQPwQU&TYMY~Xki2K5k~D@~zR33!=e_OX z6SxK`hieHoVIt+;3!2am;t=(KOS?ELt` z@4qQN^2;xei@?}*TxXb2%?!kncbiAFE)Za1^La~O#eJ$-c^~pI&tX%hp^Zg`@qBGg z$4_iIB8p%+g67;&ispbw%{dze0oLzB43cyRaXk?3bJ@a;7l2o3zB zc<5iRk-+{dlt(lY!`I^`KOx$$WU_3JGnn9c-0dtP)F~3c=#RGefz(AQBR_T-9 zm#0)lO<~#d6K60)4NJdEwNy~Hx4Dwq*yQJyVWw|d))XyVT3|K%;pxF>pxjOE@uTrO zZ@VrwAW*E}u57YMRBpp6pcE{y002Ab2LQ83A*`5{y)_%&Jlp+P#Pyi4A(R)i zNsm3>S{mOc(`k`OWE4?y#FabRq++%l;Y1*t0O7fAbMeH1Q)JBiHq} zuAQ{b5cgATt|6}QQ4|*2{@kL4#cUTpPFgj2y9M(8s)%u$!AF`107y4Q>Y4pZu!{dr z-B>pm261XDO(#87@0Hsfinel`5$7N*of@pm$3wpef0KqP=CD97NNB zSF!@b0+!PJJvr^CYQD>YIj(Fkxq_v$aK*HAbdr8I&)T^UBo!dPAyxvuIwxwp@=P5Ly?FvE)enb(oO4QJK(gI z{pKO6&B$%_KoJp?!5*U59C^aYm6N!9E?IF7%`r26BY$_L31P~X!f;ktzm84ecMp1U3p2W zxtx!Q_sGY|??1UgC~%MI?%e%|@JeJE{}$-i3OfV0RK3hDr+RPG>?3P%|)&5MW~ z*>JJRzRX~hn!`DqtpUaHjMm1^ojX(FynT{p7EuMNL9`LVIE&WNh5ME-1`1CRb=KbV z!g%k8ZV!rtq{Xj`aOfl-OV|=svv(36o-2GnJYCs9W}Ff@IEt+>1}3baG7%l*_x|G5 zTLODwG;q)5Eajpz49b^?WFgsHd|3iB$h}sV@C>`}RMOG&!UgsjS+$l#y2Ri||1c4R)j4G>aFOfIa?5F0=!{gE z*(^72cQKO51+ml1@(kfmnxIca!_uY$a(5iAs0nGqDy^dd_q7=d?iHoGUr7c{|0a z#WIW=HVqIqCn(clvmaWOZTWo^ixYCX6R7ok5j&j)P*kIsii8VbL^;GkU$V8)r$G8< zQU_1=dEEk)IT}-h)+yi-(78?_&D`SDypfgmfvFNJFU&2hpk!)uY}ok5Xxa8wEVO5H zO=hLfF8JyHmO-?PFq$vAFgV6Nu+pH3sq3Ki^d_$5SbeZ zTD*2;D>=H9B^ViwD>iM27P||+rWY2|Q8|)$>?AsY&NZLRIG3g)?e>r~$gOk44gABo ze3No5X-afTc^a&iN`XsGd0u=??|M4)R8A*lR5#8C+wVz#R*dDiZ30W9XF^fA5ENUj+izNoN>*kFqx zp-SpfeA!#FGJBKke)*SqI24(}$qh9~9>MTLdtCU2|HR==3}kYPr#H-2Tck8rY+8pA zr(<+cnMQEe5k7V z+aib0=jM<+=S>7vSGCDK9bA!F?wbm;vEKlBTRjQimK(KMVKB{_KbVXh*%h}Fv6TXI zu5<5v76b%1Zykm#8D`@HZ%EG9<}bCDvQwm6X&AWR$-%W4iA>DhFJ z6p5_(m-?RDnNMO<3-e@tYq%QAcJL<7YUs-j0ZsXTGi6joM}H^D#mh5!&^dL)G|@G z2968;NGDl$siU(ats*#!^|g$1y@6u*0;z@RlOQRbp4}H!jslT!97;Y*PV36;FXlP* zQN%J^WP}wxpH8c$4_0tI-bYznlymjPIaVjAZP^~b_h(;=-TjajGv^Uet^b@E<3KKC z=dSLy*nGyu^nO<2a12chu`aev!r6E9M2aKVb}%^DANTIK8zPGJ8Ofwbt!3RjNqkkR zVJQ+<7jcbbcqqvjSbh-;CJA-yuUiql)vKa{yx;b-UJ~#7z#k^7e;GN>*0Y%>JT>X) zTqy?+77eQ-_@k!xc)V=m`s6l}(iXM&=?OrRFj~y1@#7Qybx%R&>hV zjAJloCgcxrzAfk8x{II(i6k!=-bhQx$;8d!!*ro5=h`9;*`z}N90^XHp`^>?2%(KK zTM-`1>^$|6<_KWULN2jxqF0I_22Pp3Fo|oansm7%y{u=;(wtGdh8?8KAwdjt;!=R) zjz4vqMejqZB(7I3DJDwnj0`b3T8vuGyT=z2{kH7xk`;tek#zN)vc@_(C74@Ir z{?0d38WlnU0*bV9oGY)q@|5SmxN>8|H=S`tyzFH!i)C%g((eU0Y%_VS7jEB1@ql5Z zA&8vmRTu!#JQ!Q7VODEY(xvF!0GxWZb2X|+eGJyO#evBNR^Qti_ue;@g@|&h3mK?| zWZAV`4}vYjuJFpO+v5z(0wSZ4WCe&-;I#;G(B5^x`!HP1c8ZIfiev1EPAj^~K$ zHqn`EclxVjr_O8qeD3X7a`<`k^|U}E=fDv6KAQ)~$AOl>~T7nhR`A+sR zxamB|Zat|5mZ@CPNrE}EZS27i$URD08aene#Wj-^Q|Xg_!xf4cqKXDV@LvvPa)j4% zrhVY;dKw;|Pn9WVCBz4Gbnot+2AOO>G z_SQ|PA3jpQ@$FddXXBbHui;r`vHkq>5WUf#sRibeBgSsId@2Q=_|2fOiaZtNqp%#L z1|h&;)clocCHSeKqjABuGvmCixOAKg+B7PQNQdIVhZIBx;RFTSU;na~231$FrfUu7 zbSS6W39Qq;v(4+WmKh*_1aQ*{i+g`~a=K(G@;W~`_cfh0o3H%d&#&!|jKOo!eb*tn zO&({JJ`Rh}=%!^PC#2LefU?ATIHr-Fb17mV$h6R2 zAEdKJ<%+f_HkD$EB1Z$1ewm;a%rx$jvXedql*ZiLSTxoF&=Y%ET6CBI0}2$x z5diN1H#!WSawBn7%P}9nKoS69TwGXu1u}ydW|FiZ_;N2!93B{sM)bt-lMzP_?vBp& zZ81nCjwtVsQKaSKvQ;s){6+D(JIdqVeekBh=nJWUyI}pUQe>s-h$iBBOEIdmYea&2 zS*j-aU>U<1hz&H9swG1lCrAdYx%al)|HAW#GC8U*71*LBxU@h~k%TyeQTG!;| zyak9reY1rS3ehxrG!}N=NU+6p{HJ$clH7861;~1XSr~%?(hnv@(){Yl-Xcf5fkX

    esY3r5Q_1?>mQdO>o$tYCOR0&*l zF?Tb1&GW5gZ~7efT7)&HS3Sg%IT{w^z$Ws~l7Fjt()D(&owa@Y_UI;<;>eM{=moho zY^_)c7iJQ@PSJJ-Q>K8Ju)%B?bs$ptu(r4}&8W%cTCB0?q{$?5k3;j(dvY$?5h15I zeZvLoV($QkvlX3e2cw+wuJX_x3ZTt`?I#FgC_)?t31FD2osA2xyCC|;cCfU`H)H>f zzs0!p8A|JXh7|<h<+oTEgan}xVDHp>-TiaT^ zDvtLOXh6xC@w7Gz9E#GXvm~|;jzD}?ttAuj{Ma|r8o&03-w$%txe+q0ZXgE3T2iVC zXCGvCQW@V&KX+aqL8NtYKCAJrBnIp~1N5>Sbib^vCiIAl(B4 z@n`?|-{NOpyCqg4rdA@x4~!qiUUL~b@R`8aD%e1CRv<>p5?^(I5|1Gr?Y+*8wh}C)rl_bYo4f zCMzYg4z6C^73(*wOYS6-s%=hCPGQrF!HrG+nI+J521Hd#wvuG>`*GVeoxs0=@`-`K zS}1*m99oQvE~lvY*=I)Any#1{WL+INSubL187Xr8tQKF@xh!g00b1~=wTtz25o;$9 zC9k;V%#@41lJ!se`fexna3_A!0cx-hvwsA3Nz|5+Lp(f*tUS(O2zmzh!S4)l$$e3# zJWjHDo(3pzGZlf?kT=vn#yYaRvm!V;XayA~ilq_O5(X=wKFil#6d(V>_hJ`zyb@({ zGT)3ufd72to+51y&n~8Ivxvej$_)YQX_Z8QeryEs81X)ZDWd<*K=>x{{m!C(ASWmG zILjJOs~D&KM-EWX4-U`$RXtKlCW5QU@JpMbYVNl28B1G^R7>|g-S5JM+}3;hTz^X# zRMno(jbVQ7TTYSlt-eN)Fj)mn)1l45L5<1H0lsMAU|?Q1QSu=o66ciKh$#beRHUTi zRwbN=LnIG^a0EuP>PZItvwm+ffQVKZt@vt>A3PLiY-)<$qen)ju6WtC zgvn2wjGi;7n|0(+G-AlvvUxo^@3N>T@~My7PGg5A;>8zt#nF8c_uOsB;(A0!s#CyK zGrfx*fh#b1`c1$1SF#ibZ{|`i3D8s%5M9fV9Q1D+s33^nyMxeAGH<%Ody+1h%9z#> z1y&qHoo8&&87H}US=+ieI$jr_`o^v#=4UE2&*diKip(t;XuT=T@j|AI)oa!ycb$=0 z+Ph5Hm?wm^4ij(4Cu1^zbog<~JJRrvkqH_CO_sr+e^PT@^3Yqi!q@W+}o!np$>6~HsyysgxEs)ni zb5I4`oDw_OPGsI3Y-4gKS;5VgCSkGnsrWij=~AC*ts3}5!g+ie*0RzdRgS?1e4%JJ zfQwagIe3WC78ZjZ1Upu8Em3)YmTa9e5beAdT@x$uT~1S&``Av5PQz5Sq>%dH!4pwn z&D`SPNNnw1$3kPQ00_X=49!xFu!ExAU2)Nt*TmUpyfI#I!7pLmeMM~9@H(=KF2Pc~ zk_W0>)A2+s5a;+;p3J@YOCdmV!vbNBDVvHj`v>|Hr$2OTJpSm<{vZzCd_yv-%}iiC zqSGbTPg38Xhd@ok(aWe~+&fl`){Wca|9tK4Kuym4%!%E4@5RTnmHXN%^pDH(kvxV+ zN3bK5l8tMK?=w^aFgwY)VKDiCyfW$xAGs#Ijb`vDg7pK8@A5Owj<0;@_ISfv{{z)N zA2BW_wOqo=en}vx&PgDS_s);GP0z|tdIq++*euMb8VE}g4_7aIY_iQW@VI}oTV%@C zzuDs+|3MHxNMoGOj(U@%kLS?%r3?G$iz5Yi{x_GzX8b0VNt7aSGhdO zO@I1@R5kL9jjXOPMLzAWv6$c<4cLzM;Ah6Tjge-W#mpwc)iE_B7wabD;UfpAZn!+I ze9t?gE0vwZowd@?P9DAh^3IbYhy_?FK%7n7m;NO~3f&Y(#53P}@Z>;z;?w^h9JMyy z`kr5mUwZF*;`gd<2C>l*DaK~>SJ6s~wXNKf;sGoNGLMvOCSExS^GEj9#^=5=7$5vu zLcqA+(#B&>wGzOrdq(7y+t!hc0JXlxI;gy2ak=aj zD0H>I)Ii*65OZD*#tv7Qmr4|>tP4xTY+K$MtI+LV`LnN&G4Q5HB7r(@ z-86ZvRgE!nkb>wN+ws@(UgX$Sf`G&5sD+NE7{PJ9V%@g*@JBxrzy8|)5OoGR!!8{e zQBd`GfrllA%EQbV)|x!YGd!;CY#OV54gTR-ka%8Vn7S$ALOdX(wTSz5F7QRp@671& zScki4>y{2Ak`3{~Ew766I(Ro8>-6PB*?Cqy5`je^=R8-Jxbdmq!oV|uxZcxe`h1_K zEk&dizI0K(@P#jY#-8J|{w>>SfxHf`4)c61BnLL9zyhS4M5S~FU@^GBHbDkZ6N@gZ z!07>$l^M)XiLb@NbF)(OWQF2bT3CnskhZ7wxE2mFK^BYa0u{03RabUQHLhH@(@)!LK*CA?B z;xyT!ux9C|5m8KZs8n*c(P!hW=Rholha~E=Ro|Q@>EfoFz7&^T@d9uLUno^Gr>Waz z@<9zLP!l7A(ROA#1~xj1L{JVu&QcuS!f>U6;y+bASmv}IAMn3^`R@3IS8n5hATI8( z3Z6MlFh(U}a2g_yFb8sHLnt5Fa|r8xcUr7`1nI;YVDl14Tt4M2Q&Ne(Q5ZQH9RTZdbzw#_}{Y}9NsR_r8->Bn$JSuCvya<%5LL#h)bobqNr-&}Akm_N`t-rbM zdrAUZyvnYvhxX~-=V@KWh01y zKwgCo?E0^DE0)K-_YA~^=YwHzZi0qEL@*AZEk~q;4ejH(jtF*Lt6?$|RQ z|N4U?@zxLgDXu2OV-WW+hOY$4oQ@jH`5EHk9!_lxS4Z>_N#OX!)BvR1$S0btwZV85n>pW(2nDx)| z^8WI6Pr2oYn-dS=%a3aY=f|G%&7Z>y7t!K5>;aE1QitC_ib=GkYUjqOX<^*au zu%Z?dzkpbmE%OOzlle1`2rR-@g1Aa^7)P^4kUdlZ-4Lk8dcuN!gz!yMXNp4LBgdkp zrz6VIWg9wMW2o<7u(U6@*TA_Gv4HMY(9%V1n+5!u2#Tb_b;saTRU92!h=ctgOifc< za?Q`imG6h+79c_sXtFhhSh>DC#tEXRu23{oWOI@7c0^HNn(mn9mpC#U(2_CpB-5wB z3b^YGEc&u5F6Y6xx#nG$w*jJ5PmJ?2UIEuoiu)Xm#_o<7!*x`gZH$(+%`rSkfXd)W z4AJE4vL4e^?*nn>nXl#k*?Ln2qd;gm&?=?K-O>lDQDl5JY}zQkrJxyy-JR$Nj7IvCg+a1;2DX?a^GAf5;-l< z@79(hSNg%9ypQ?sr?btU{n&dvlh1hUy`Syh*{D6+Pk9peH^Crp4yeDK)KjHj7bn;n zRyA-z4MYX?FyzfeyiSv?wOI+TgfS~YAi5}!l%!u3%9P#5TaS~s3$u7W1q z?41XgT~~GQ*PV8!7ipxCH0sroY|8}~*_JCV*rph;jY%jEaNr{$c?rBgNCM^~FYSA@ zyyTG=2o8`J9Ka#;7~_ho+`A;J_cAKe=T5ut|J&!T(a~sTq|uBa}lt=(Jkbj&Pl!goI-;E@V6+NW zG`;`80}q99Z>2omsrJ5DQ0zy>II>9fqc`o z9gubf(@$lB@C@QPs7?6++_M;d$>M*ieMUi|LA|Nc?! zAVylw;l3ZW)l@`$pI0UAoToQ#3c!|aZGFpY5I%Pb|!sLqg z^IzO!PicAJ`hA-3o+Lx!UVZbaZNL4W|8}{}QudXqXLDDRWi(yZp{-y$$ z&9WD?h<+Jat2$9H6aWtr*flNYSa)jcA%;o-mB4cXW%V+K8_A!eC@}JF?WiP&e}gY9 z+v%y?y6f-(d~A8?08| zO*oiOuR9}TOeetBuEK28_>u@cVxR)4t;~&L6v82cjSv@U+x_0&3j5;^&DFvJ`MY*+ zk`x!}^R$_q9OfG}$J;3N`0@3JY}qC6vbVhPX6-`0SkGnQ&9ICYWRv3=h!pPK4n`sZ`c0JkJ_#8U8Z3~N~@^!Ve;;S8Ww1eFL|QnX&R?TV_jL7 zw4-E!EuLR#ySBV&H(Yw2#Hj$L7LMScd2qZhf=rDhP#_q8a?*{VNQdUbKkk4C`d!GE1`JohaTD$6@8wICh&DQ);HZv>c2@MHP}La!V}M_^?UysBim&zqRzd zD)Kc zs7?0PH{W8@XH1d1Ws~BT+U6~5?V}(4uuYP|jwzyyR_||Ezdd+v-FnNrZPv_sn^d`8 z+p?N{_xt~1yY^>owyly?d9sXCGDES#Li--$(pjyknl8Dk~y3rcz7T9<9XgW;vsheDC(`QbTYOL8I zbr_ZUn7DEl-9*qZ9?`k$a$#yppGna&seFAQAuE-~C8?{(yh^)s?ZM-4?EoGrcu9*i z;%Re_Fwni|$@u^4q&}r3W!n`1NFy@Vb*~qukLv2CtLqld)T8ebkZ0G=loeHLQS}|z zZ9BGFt2S1XND;7P>{2a|7Co8<34tD5Y?_ip>yp<|N)i&4Iz&VWY3jxFDUTuVM z&l=h;P5EFi<9U(xms+y$^svcWsaEkUS~Sn*&YLM!xk_VR=DO2%`f|R(JKtV;b)7o0 zaxrkquDSNQFunBbE6+=$Y2yIRKuHS^M!15oR#5d2b9O7AHi^IG7hh!m_3&d-^|jIE$;(Rh?9{yR##djq z3+AZ^x?h46$I}FQ((8onJJbSL=CwFKh+#d%dn==k1@O4K3~lHjXm7S(BsZFO&pQhC`1-A6uGsGa;vPK{-m4T?MQyl0JJt7Ks8Jsw zeUml4X;omy&TZP^P+vzBT3Yn(=f3o1`}}wBv5bn8ky>7^a`H8IKGemxn*;%CQ|FT{ z)Pnsfr`zv*@rU+@Z@<(&bm`Qv(4Eh`6fyM!P_%wG_=L*Z#~4@2sw~-z%Og`3McsI? z)t=wF-a6-As%g7!Tc(Bf8f9CV%2z<8=p>nkr@jv4U?7xQ9EcIsHPz=Sqi8WTn6~DJ z{eqnw2|VWq$N<}D1k!PJ++8C9uR8>dMjodkjgfb2qflyB(@2VQCej%PaUSrXQqGw- zU#yNC)dg*;2lMC8mjS0(z}7cs#K7Lz#KH}i3E?c3D^S5t@AeAJIQj$NPJsYt`+O}K z3|qNM4bGDnMpipi_GpQpc5SyhnN$DY-~N&P_|DH+&z=`$BT_mtLMcH_SLMsQDUukv z5r7+z8hDP)!1<9U&q56S0mb~B^r{sdi|&Qbuy7`xubZZEwLY1WQTchF(#!U$^d#|d zRFN8-lA9EFI%K3O;A7wz$uxPa$tkN_dY&~^F0}vq%a`rlcid%9?oHV~rO~9i?`}{h zMhB&Q+ci8;4(e*iK|wV0uMOmB3|uJRPmE3l(gF@?Lq1_GqAezVsT6$ng*rmdP$eBT z7|}g-LZNi>sG>p&0LY~uLnYdnt$FzDD-xG`{@mk-7f1L92~Yauk1(KfKnu9|;){=v z^drn>%wKm78uN??%a9(I9uXpQj%AckDGREg7`?_pyyJ`1E3~Txqc|FehKd*RG0(sF)e&iU3`9ec&S)tYt&kbsGsz?hv zs!HwkZ5`}i5PYeLPSUxzwx+c3X;HcMTjnPf}&H*?E&Bhrw$};h$rxflknl?tsnt)MB`(o z1s6UEUD>IcC2bjV>LFmzf1HCf6>JChAFyoecAGOPYj3~iLR`&0Kl2UyrysnkceQG%8JUZ9 z9>^(K0SRj{fjaPoLI&)4a*doeLwkue>>TJ`BLSv`MePu3Hfk>Zsdce9EpY;e!V-l?K!pa2Qvzb6QsK zX!=o8M;a1V73fQLb#f7$Z0pzUvKOCOXA950L;x2+G^GP$qVQ52zzl??jO!Qm<`9=> z#|o6&8Jf5bUWN~mR8mJlUDXrunan&~zL+--1rQ;qjK;J19A$)Jvw=cw($%Xexcz%o zChgEDM=;x?J)2ALUO?H9~JskFOt$ z?BMm%h!+LMhy$`%HDL+`cG*B;g!jZq%qQ|AU`S;u1Xkj&12>Ps8GGTd$0&H?A?+th z@Ud;&j#F}t>?xgYhq|WO#yutW)EcRw`Ah6WpZ!Nkxp~qlgZ4S zG1|jLBVyu^wC)}|L_k##j_ zwRiEAAG8Hm%Rz(H1(JT9`ubpzcK0vW(!`J!0#`W)!`GDp=>-m%-+Nv zDo`&NjkT`NKle=dAQtg4wgK8a*46Ukn!2zwNLldpz#>`Oscsi5shHTFss~!SSYMg8 z=GR}cv=$ar$~XC&fA)PGz$z$+uZMScWm%MTTrX-Rhw8F2<< zoPe5W`~(^_9=OI}B|5t{7pcyOIR$!joB%>41nO>?LVFcC6&OQ+*Yr<{p8%JyAJQu@ zX*?gWEK7B!pw#wtR@rO2Qug@TjBPkL*%q(-ZM*f){>2ttd%G}FEyIoGmb4i_p*EHa zfFWZ(-$xI^`a(Xb$z*G{#Gafv=v07h#4Kw7lO*Eeq$=I^u0T~AxtuIKHV#WnWb|Mh;W zRa)AyR_SQ8&bMArRVXOwsL!%2!y*swqhi|zYVgt|$s)2@x|Fb(Ux^@O+qGc6q*@!jcgvEd&Em_8YqdqJ zB&C2LmugMp2)MG!%lK}MJNDZoWjdp@!}dP@W4ro-Wp@34zs1g;Rc2E}m!QeAd9*Zy zJeE08zyK^64b=%y^tD@e+MbPTtfF?Vt&#+ur{RSL403{L(>J5!e4!ysA=6ew_NGxe zxg_MYgK-?H(W~sfmi`N02eSJQp9unwK#wB+_UY653REmm%hv9UMkgi z>S@A?3{qHhH4mDVn$7SymsKAggDlZ~7&NGiI`(lb=N|k;zaHS|41_cypw7W$NQGc% zQ5xX#fWE78u;rjl)#{#oa++XeKl>mz%aGTpx!d$SxmX_TwEf!V^8EQTtZ~h=w(HeL z?Q`$DQJ~dlN9)Ust^k8wUt!fNWW?00&?=Nu3Jx0tr0W}I&#=d5OtNR5ddB|he|}uw zJXATf&sR;Q=67Y~@0C>#G99jWgks5Q-IV5$qeGFt7fJ_3U8ooJ1enyDp@B6Pss94HiknkP>WCljZIpkn>_2Q_ zhm!>JwIY2$;y@7G zJatRt2sEa|Y&w^bL{5w0_itQl*GWQ6*8QLZFqNi`utyqANwFL~;#!B|5WEREddG%l z0T4ZK4w%?*fg?YHcVL{4mgFUG4*)sPOE*y0`Bu|J4a4KE@l?xPuO6=ejUB1WIrh=D zlr%Azrjpa6ax*) z9effZ!5HX32SoX)Wgv|zRwiq8wSb$Ehgnu$ULSt@m6kamHCHqYpH&rI3NY3wt_=Q% z(V9CY9ey6XLj|DJm3HEsF)!bx;=^)2_N4ASM;gZ^vZr+-N76)PCOuZL5$H7VqffSe zJrRnY&^vJ5U_fvi1~Bl8IuN{h`E(Ymcr!Wzct8w11}n23Da54> z*UsRaSI9l_pZ@vpLwQy|^@Q%o%3W1!9eeld<7WldE<;n9TqE-`Qm6CU?cno|*dO0~ zy}jp>DcX`oLtqk7SpzwA%6fvJMyO)4;f2lzsY{TlATmA)&2p%+?Q1t_YG{4{e`Sdx z^A1x@+Q&za_4Nulwy1OH>&dWy4^Y=I7S|K%NeAVf6z-91e}qcw9hOU5kE_>4C6FiJ z^}JD=QQ2Jzk4h$EoJhoXW1Q)zWhZ9p3*x4rqUi<<5QPZD;gYz*627@bMOu1Tv)CSZ z>{VN_^70^-y0oMSk0bn@8=K|TrFFpR;Bzc1O;){iNJkk z(L%ZCjzinu8|dha#WTtd<9Zzc?_d7a=j>p!cG}WbG@be`%f?OH&8AJa!m7x_s!QMD zoiVA{(ua21Qf(Ulu9cIlUTIYdOQn+fngPpoFtOYLqAno|9T24rwbRXB_JY>CS#67Z z^{UH59Jab;rBF%^8%5dxPcbBgB}qwuUoHS&51~DvlYl~?Q=)Ew$m=(6-n=js2AH_# z#w6ks*R>L^Pc)DQor8A}{1 zEZf!~SyxG9Gmu z(oUKh_pW>PVf)7a{_k4vE5C2*tpyf{(!7F_;5I^;!!SbNfiQV`R;c{stt{a3MLs$^ zIm;+dNU?O`a_yHbO+)GNc}~ml{bAV;bgf;Y^^R-+>I_T!0XPsQyrqaLNB^D!kowdO zA5=$`MG8}Q0PBHxE-C%qi5wlE@lFx|7yTe5YawL_J7HrawrN`$AEtzN6cmCrfO(_EpZCY1>lt6fOM|x+CU9|0I(Ccudwh!n?;424Yee zjQ0wjt_q zQYx=z%ED@(fDO#a)arNfGN>j%q9R8Xe*oWWh;&Hda|V&i^)kJi7-Xq z(B0i>O{L3hQ**w({DQtOq}4i8=Pj^nKl~o6zwnLXEOB3cxmXx?0~jyj#lXYp#0sdL zf!D(oY^lL<*iurbVutWWj_E^`+@J6$eq)Gpmk#kLFqwRTw9AJ!w9|vKI_);HXpU`d zkQ$-!IDJQv*6!xXD!${jXYEt}$+UoIv`)7yuY)j6BRk5=z2W@ogb3N-wXfl;>lkW%smb9&)y=-k@*n&bz=q__ePJ z?~1FBg0Z;1^^iUaJxSZJC>4V9V2Ih=soKjt0st<~Fvj<&daKh~~fK>C;eYNuP#LFI?v&kPjUH}|Iv39b9 z!7o~QUI5+Usu4f(8VeEq&*2D1Ki4xFC2cw@et?PRJVP?a)n>{wP^aeE9`CV# z{$38O&3xWvqJ~^cj`QN