-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathkmeans.py
111 lines (96 loc) · 4.01 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import ipdb
import torch
from torch import nn
from torch.nn import functional as F
import torch_scatter
import os
import numpy as np
def calculate_prototypes_from_labels(embeddings,
labels,
num_protos=None):
"""Calculates prototypes from labels.
This function calculates prototypes (mean direction) from embedding
features for each label. This function is also used as the m-step in
k-means clustering.
Args:
embeddings: A 2-D or 4-D float tensor with feature embedding in the
last dimension (embedding_dim).
labels: An N-D long label map for each embedding pixel.
max_label: The maximum value of the label map. Calculated on-the-fly
if not specified.
Returns:
A 2-D float tensor with shape `[num_prototypes, embedding_dim]`.
"""
if num_protos is None:
num_protos = labels.max() + 1
# prototypes = torch.zeros((num_protos, embeddings.shape[-1]),
# dtype=embeddings.dtype,
# device=embeddings.device)
prototypes = torch_scatter.scatter(embeddings, labels, dim=0, reduce='mean')
# prototypes.scatter_(0, labels, embeddings, reduce='mean')
return prototypes
def find_nearest_prototypes(embeddings, prototypes):
"""Finds the nearest prototype for each embedding.
Args:
embeddings: An N-D float tensor with embedding features in the last
dimension (N, embedding_dim).
prototypes: A 2-D float tensor with shape
`[num_prototypes, embedding_dim]`.
Returns:
A 1-D long tensor with length `[N]` containing the index
of the nearest prototype for each pixel.
"""
dist = (embeddings[:, None] - prototypes[None]).pow(2).sum(-1)
labels = dist.argmin(1)
return labels
def kmeans_with_initial_prototypes(embeddings, prototypes, iterations=10, num_protos=3, return_proto=False):
"""Performs the k-means clustering with initial
labels.
Args:
embeddings: A 2-D float tensor with shape
`[num_pixels, embedding_dim]`.
initial_labels: A 1-D long tensor with length [num_pixels].
K-means clustering will start with this cluster labels if
provided.
max_label: An integer for the maximum of labels.
iterations: Number of iterations for the k-means clustering.
Returns:
A 1-D long tensor of the cluster label for each pixel.
"""
for i in range(iterations):
# E-step of the k-means clustering.
labels = find_nearest_prototypes(embeddings, prototypes)
# M-step of the k-means clustering.
prototypes = calculate_prototypes_from_labels(embeddings, labels, num_protos)
if False and i % 5 == 0:
print("Finished kMeans iter", i)
print(labels)
if return_proto:
return labels, prototypes
return labels
def kmeans(embeddings, iterations=10, num_protos=3, return_proto=False):
"""Performs the k-means clustering with initial
labels.
Args:
embeddings: A 2-D float tensor with shape
`[num_pixels, embedding_dim]`.
initial_labels: A 1-D long tensor with length [num_pixels].
K-means clustering will start with this cluster labels if
provided.
max_label: An integer for the maximum of labels.
iterations: Number of iterations for the k-means clustering.
Returns:
A 1-D long tensor of the cluster label for each pixel.
"""
labels = torch.randint(num_protos, (embeddings.shape[0], )).to(embeddings.device)
for i in range(iterations):
# M-step of the k-means clustering.
prototypes = calculate_prototypes_from_labels(embeddings, labels, num_protos)
# E-step of the k-means clustering.
labels = find_nearest_prototypes(embeddings, prototypes)
if False and i % 5 == 0:
print("Finished kMeans iter", i)
print(labels)
if return_proto:
return labels, prototypes
return labels