-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_r.py
71 lines (67 loc) · 2.65 KB
/
analysis_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
This file contains R code for analysis.
Currently just fitting the mixed model with R.
A separate file is used for R code so that R does not need to be installed
to use most of the code in analysis.py
"""
import pandas as pd
from rpy2.rinterface import NULLType
from rpy2.rinterface_lib.embedded import RRuntimeError
import rpy2.robjects as ro
from rpy2.robjects.conversion import localconverter
from rpy2.robjects.packages import importr
from rpy2.robjects import Formula, pandas2ri
def fit_mixed_model_for_path_crossing_segregation(df):
"""
Fits mixed model using R.
df should be a dataframe with columns 'person', 'ses' and 'other_person_ses'
where each row represents an SES pair for one path crossing
and 'person' is a unique identifier for the person corresponding to 'ses'
The code here is based on these references (but converted to use rpy2):
- http://bodowinter.com/tutorial/bw_LME_tutorial.pdf
Note: Although lme4 is used, the following nlme model appears to be the same:
lme(other_person_ses ~ ses, random= ~ 1 | person, data=r_df)
"""
base = importr('base')
stats = importr('stats')
lme4 = importr('lme4')
with localconverter(ro.default_converter + pandas2ri.converter):
r_df = ro.conversion.py2rpy(df)
ro.globalenv['r_df'] = r_df
r_code = '''
withWarnings <- function(expr) {
myWarnings <- NULL
wHandler <- function(w) {
myWarnings <<- c(myWarnings, list(w))
invokeRestart("muffleWarning")
}
val <- withCallingHandlers(expr, warning = wHandler)
list(value = val, warnings = myWarnings)
}
withWarnings(lmer(other_person_ses ~ ses + (1|person), r_df))
'''
try:
result = ro.r(r_code)
lme_object = result.rx2('value')
raw_warnings = result.rx2('warnings')
converged = True
warnings = []
if not isinstance(raw_warnings, NULLType):
converged = False
warnings = [warning.rx2('message')[0] for warning in raw_warnings]
print(base.summary(lme_object))
print('Log likelihood:', stats.logLik(lme_object)[0])
fe_params = lme4.getME(lme_object, 'fixef')
ro.globalenv['lme_object'] = lme_object
var_corr = ro.r('as.data.frame(VarCorr(lme_object))')
return {
'a': fe_params.rx2('ses')[0],
'b': fe_params.rx2('(Intercept)')[0],
'random_effects_covariance': var_corr.rx2(1, 'vcov')[0],
'converged': converged,
'warnings': warnings,
}
except RRuntimeError as e:
return {
'error': e.args,
}