-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy patheval.py
165 lines (134 loc) · 6.63 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import json
import os
import os.path as osp
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm
from stark_qa import load_qa, load_skb, load_model
from stark_qa.tools.args import load_args, merge_args
def parse_args():
parser = argparse.ArgumentParser()
# Dataset and model selection
parser.add_argument("--dataset", default="amazon", choices=['amazon', 'prime', 'mag'])
parser.add_argument("--model", default="VSS", choices=["BM25", "Colbertv2", "VSS", "MultiVSS", "LLMReranker"])
parser.add_argument("--split", default="test", choices=["train", "val", "test", "test-0.1", "human_generated_eval"])
# Path settings
parser.add_argument("--output_dir", type=str, default='output/')
parser.add_argument("--download_dir", type=str, default='output/')
parser.add_argument("--emb_dir", type=str, default='emb/')
# Evaluation settings
parser.add_argument("--test_ratio", type=float, default=1.0)
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--device", type=str, default='cuda')
# MultiVSS specific settings
parser.add_argument("--chunk_size", type=int, default=None)
parser.add_argument("--multi_vss_topk", type=int, default=None)
parser.add_argument("--aggregate", type=str, default="max")
# VSS, MultiVSS, and LLMReranker settings
parser.add_argument("--emb_model", type=str, default="text-embedding-ada-002")
# LLMReranker specific settings
parser.add_argument("--llm_model", type=str, default="gpt-4-1106-preview", help='the LLM to rerank candidates.')
parser.add_argument("--llm_topk", type=int, default=10)
parser.add_argument("--max_retry", type=int, default=3)
# Prediction saving settings
parser.add_argument("--save_pred", action="store_true")
parser.add_argument("--save_topk", type=int, default=500, help="topk predicted indices to save")
# load the embeddings stored under folder f'doc{surfix}' or f'query{surfix}', e.g., _no_compact,
parser.add_argument("--surfix", type=str, default='')
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
default_args = load_args(
json.load(open("config/default_args.json", "r"))[args.dataset]
)
args = merge_args(args, default_args)
query_emb_surfix = f'_{args.split}' if args.split == 'human_generated_eval' else ''
args.query_emb_dir = osp.join(args.emb_dir, args.dataset, args.emb_model, f"query{query_emb_surfix}{args.surfix}")
args.node_emb_dir = osp.join(args.emb_dir, args.dataset, args.emb_model, f"doc{args.surfix}")
args.chunk_emb_dir = osp.join(args.emb_dir, args.dataset, args.emb_model, f"chunk{args.surfix}")
output_dir = osp.join(args.output_dir, "eval", args.dataset, args.model)
if args.model == 'LLMReranker':
output_dir = osp.join(output_dir, args.llm_model)
elif args.model in ['VSS', 'MultiVSS']:
output_dir = osp.join(output_dir, args.emb_model)
args.output_dir = output_dir
os.makedirs(output_dir, exist_ok=True)
os.makedirs(args.query_emb_dir, exist_ok=True)
os.makedirs(args.chunk_emb_dir, exist_ok=True)
os.makedirs(args.node_emb_dir, exist_ok=True)
json.dump(vars(args), open(osp.join(output_dir, "args.json"), "w"), indent=4)
eval_csv_path = osp.join(output_dir, f"eval_results_{args.split}.csv")
final_eval_path = (
osp.join(output_dir, f"eval_metrics_{args.split}.json")
if args.test_ratio == 1.0
else osp.join(output_dir, f"eval_metrics_{args.split}_{args.test_ratio}.json")
)
skb = load_skb(args.dataset)
qa_dataset = load_qa(args.dataset, human_generated_eval=args.split == 'human_generated_eval')
model = load_model(args, skb)
split_idx = qa_dataset.get_idx_split(test_ratio=args.test_ratio)
eval_metrics = [
"mrr",
"map",
"rprecision",
"recall@5",
"recall@10",
"recall@20",
"recall@50",
"recall@100",
"hit@1",
"hit@3",
"hit@5",
"hit@10",
"hit@20",
"hit@50",
]
eval_csv = pd.DataFrame(columns=["idx", "query_id", "pred_rank"] + eval_metrics)
existing_idx = []
if osp.exists(eval_csv_path):
eval_csv = pd.read_csv(eval_csv_path)
existing_idx = eval_csv["idx"].tolist()
all_indices = split_idx[args.split].tolist()
indices = list(set(all_indices) - set(existing_idx))
if args.batch_size > 0 and args.model == 'VSS':
for batch_idx in tqdm(range(0, len(indices), args.batch_size or len(indices))):
batch_indices = [idx for idx in indices[batch_idx : min(batch_idx + args.batch_size, len(indices))] if idx not in existing_idx]
if len(batch_indices) == 0:
continue
queries, query_ids, answer_ids, meta_infos = zip(
*[qa_dataset[idx] for idx in batch_indices]
)
pred_ids, pred = model.forward(list(queries), list(query_ids))
answer_ids = [torch.LongTensor(answer_id) for answer_id in answer_ids]
results = model.evaluate_batch(pred_ids, pred, answer_ids, metrics=eval_metrics)
for i, result in enumerate(results):
result["idx"], result["query_id"] = batch_indices[i], query_ids[i]
result["pred_rank"] = pred_ids[torch.argsort(pred[:,i], descending=True)[:args.save_topk]].tolist()
eval_csv = pd.concat([eval_csv, pd.DataFrame([result])], ignore_index=True)
else:
for idx in tqdm(indices):
query, query_id, answer_ids, meta_info = qa_dataset[idx]
pred_dict = model.forward(query, query_id)
answer_ids = torch.LongTensor(answer_ids)
result = model.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
result["idx"], result["query_id"] = idx, query_id
result["pred_rank"] = torch.LongTensor(list(pred_dict.keys()))[
torch.argsort(torch.tensor(list(pred_dict.values())), descending=True)[
:args.save_topk
]
].tolist()
eval_csv = pd.concat([eval_csv, pd.DataFrame([result])], ignore_index=True)
if args.save_pred:
eval_csv.to_csv(eval_csv_path, index=False)
for metric in eval_metrics:
print(
f"{metric}: {np.mean(eval_csv[eval_csv['idx'].isin(indices)][metric])}"
)
if args.save_pred:
eval_csv.to_csv(eval_csv_path, index=False)
final_metrics = (
eval_csv[eval_csv["idx"].isin(indices)][eval_metrics].mean().to_dict()
)
json.dump(final_metrics, open(final_eval_path, "w"), indent=4)