-
Notifications
You must be signed in to change notification settings - Fork 13
/
argument.py
457 lines (418 loc) · 15.7 KB
/
argument.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
"""
The original code is created by Jang-Hyun Kim.
GitHub Repository: https://github.com/snu-mllab/Efficient-Dataset-Condensation
"""
import argparse
from misc.reproduce import set_arguments
def str2bool(v):
"""Cast string to boolean
"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def ipc_epoch(ipc, factor, nclass=10, bound=-1):
"""Calculating training epochs for ImageNet
"""
factor = max(factor, 1)
ipc *= factor**2
if bound > 0:
ipc = min(ipc, bound)
if ipc == 1:
epoch = 3000
elif ipc <= 10:
epoch = 2000
elif ipc <= 50:
epoch = 1500
elif ipc <= 200:
epoch = 1000
elif ipc <= 500:
epoch = 500
else:
epoch = 300
if nclass == 100:
epoch = int((2 / 3) * epoch)
epoch = epoch - (epoch % 100)
return epoch
def tune_lr_img(args, lr_img):
"""Tuning lr_img for imagenet
"""
# Use mse loss for 32x32 img and ConvNet
ipc_base = 10
if args.dataset == 'imagenet':
imsize_base = 224
elif args.dataset == 'speech':
imsize_base = 64
elif args.dataset == 'mnist':
imsize_base = 28
else:
imsize_base = 32
param_ratio = (args.ipc / ipc_base)
if args.size > 0:
param_ratio *= (args.size / imsize_base)**2
lr_img = lr_img * param_ratio
return lr_img
def remove_aug(augtype, remove_aug):
"""Remove certain type of augmentation (string)
"""
aug_list = []
for aug in augtype.split("_"):
if aug not in remove_aug.split("_"):
aug_list.append(aug)
return "_".join(aug_list)
parser = argparse.ArgumentParser(description='')
# Dataset
parser.add_argument('-d',
'--dataset',
default='cifar10',
type=str,
help='dataset (options: mnist, fashion, svhn, cifar10, cifar100, and imagenet)')
parser.add_argument('--data_dir',
default='/data_large/readonly',
type=str,
help='directory that containing dataset, except imagenet (see data.py)')
parser.add_argument('--imagenet_dir', default='/ssd_data/imagenet/', type=str)
parser.add_argument('--nclass', default=10, type=int, help='number of classes in trianing dataset')
parser.add_argument('--dseed', default=0, type=int, help='seed for class sampling')
parser.add_argument('--size', default=224, type=int, help='spatial size of image')
parser.add_argument('--phase', default=-1, type=int, help='index for multi-processing')
parser.add_argument('--nclass_sub', default=-1, type=int, help='number of classes for each process')
parser.add_argument('-l',
'--load_memory',
type=str2bool,
default=True,
help='load training images on the memory')
# Network
parser.add_argument('-n',
'--net_type',
default='convnet',
type=str,
help='network type: resnet, resnet_ap, convnet')
parser.add_argument('--norm_type',
default='instance',
type=str,
choices=['batch', 'instance', 'sn', 'none'])
parser.add_argument('--depth', default=10, type=int, help='depth of the network')
parser.add_argument('--width', default=1.0, type=float, help='width of the network')
# Training
parser.add_argument('--epochs', default=300, type=int, help='number of training epochs')
parser.add_argument('--batch_size', default=64, type=int, help='mini-batch size for training')
parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float, help='weight decay')
parser.add_argument('--seed', default=0, type=int, help='random seed for training')
parser.add_argument('--pretrained', action='store_true')
# Mixup
parser.add_argument('--mixup',
default='cut',
type=str,
choices=('vanilla', 'cut'),
help='mixup choice for evaluation')
parser.add_argument('--mixup_net',
default='cut',
type=str,
choices=('vanilla', 'cut'),
help='mixup choice for training networks in condensation stage')
parser.add_argument('--beta', default=1.0, type=float, help='mixup beta distribution')
parser.add_argument('--mix_p', default=1.0, type=float, help='mixup probability')
# Logging
parser.add_argument('--print-freq',
'-p',
default=10,
type=int,
help='print frequency (default: 10)')
parser.add_argument('--verbose',
dest='verbose',
action='store_true',
help='to print the status at every iteration')
parser.add_argument('-j', '--workers', default=8, type=int, help='number of data loading workers')
parser.add_argument('--save_ckpt', type=str2bool, default=False)
parser.add_argument('--tag', default='', type=str, help='name of experiment')
parser.add_argument('--test', action='store_true', help='for debugging, do not save results')
parser.add_argument('--time', action='store_true', help='measuring time for each step')
# Condense
parser.add_argument('-i', '--ipc', type=int, default=-1, help='number of condensed data per class')
parser.add_argument('-f',
'--factor',
type=int,
default=1,
help='multi-formation factor. (1 for IDC-I)')
parser.add_argument('--decode_type',
type=str,
default='single',
choices=['single', 'multi', 'bound'],
help='multi-formation type')
parser.add_argument('--init',
type=str,
default='random',
choices=['random', 'noise', 'mix'],
help='condensed data initialization type')
parser.add_argument('-a',
'--aug_type',
type=str,
default='color_crop_cutout',
help='augmentation strategy for condensation matching objective')
## Matching objective
parser.add_argument('--match',
type=str,
default='grad',
choices=['feat', 'grad'],
help='feature or gradient matching')
parser.add_argument('--metric',
type=str,
default='l1',
choices=['mse', 'l1', 'l1_mean', 'l2', 'cos'],
help='matching objective')
parser.add_argument('--bias', type=str2bool, default=False, help='match bias or not')
parser.add_argument('--fc', type=str2bool, default=False, help='match fc layer or not')
parser.add_argument('--f_idx',
type=str,
default='4',
help='feature matching layer. comma separation')
## Optimization
# For small datasets, niter=2000 is enough for the full convergence.
# For faster optimzation, you can early stop the code based on the printed log.
parser.add_argument('--niter', type=int, default=500, help='number of outer iteration')
parser.add_argument('--inner_loop', type=int, default=100, help='number of inner iteration')
parser.add_argument('--early',
type=int,
default=0,
help='number of pretraining epochs for condensation networks')
parser.add_argument('--fix_iter',
type=int,
default=-1,
help='number of outer iteration maintaining the condensation networks')
parser.add_argument('--net_epoch',
type=int,
default=1,
help='number of epochs for training network at each inner loop')
parser.add_argument('--n_data',
type=int,
default=500,
help='number of samples for training network at each inner loop')
parser.add_argument('--pt_from', type=int, default=-1, help='pretrained networks index')
parser.add_argument('--pt_num', type=int, default=1, help='pretrained networks range')
parser.add_argument('--batch_real',
type=int,
default=64,
help='batch size of real training data used for matching')
parser.add_argument(
'--batch_syn_max',
type=int,
default=128,
help=
'maximum number of synthetic data used for each matching (ramdom sampling for large synthetic data)'
)
parser.add_argument('--lr_img', type=float, default=5e-3, help='condensed data learning rate')
parser.add_argument('--mom_img', type=float, default=0.5, help='condensed data momentum')
parser.add_argument('--reproduce', action='store_true', help='for reproduce our setting')
# Test
parser.add_argument('-s',
'--slct_type',
type=str,
default='idc',
help='data condensation type (idc, dsa, kip, random, herding)')
parser.add_argument('--repeat', default=1, type=int, help='number of test repetetion')
parser.add_argument('--dsa',
type=str2bool,
default=False,
help='Use DSA augmentation for evaluation or not')
parser.add_argument('--dsa_strategy', type=str, default='color_crop_cutout_flip_scale_rotate')
parser.add_argument('--rrc',
type=str2bool,
default=True,
help='use random resize crop for ImageNet')
parser.add_argument('--same_compute',
type=str2bool,
default=False,
help='match evaluation training steps for IDC')
parser.add_argument('--name', type=str, default='', help='name of the test data folder')
parser.set_defaults(bottleneck=True)
parser.set_defaults(verbose=False)
args = parser.parse_args()
if args.reproduce:
args = set_arguments(args)
"""
DATA
"""
args.nch = 3
if args.dataset[:5] == 'cifar':
args.size = 32
args.mix_p = 0.5
args.dsa = True
if args.dataset == 'cifar10':
args.nclass = 10
elif args.dataset == 'cifar100':
args.nclass = 100
if args.dataset == 'svhn':
args.size = 32
args.nclass = 10
args.mix_p = 0.5
args.dsa = True
args.dsa_strategy = remove_aug(args.dsa_strategy, 'flip')
if args.dataset[:5] == 'mnist':
args.nclass = 10
args.size = 28
args.nch = 1
args.mix_p = 0.5
args.dsa = True
args.dsa_strategy = remove_aug(args.dsa_strategy, 'flip')
if args.dataset == 'fashion':
args.nclass = 10
args.size = 28
args.nch = 1
args.mix_p = 0.5
args.dsa = True
if args.dataset == 'imagenet':
if args.net_type == 'convnet':
args.net_type = 'resnet_ap'
args.size = 224
if args.nclass >= 100:
args.load_memory = False
print("args.load_memory is setted as False! (see args.argument)")
# We need to tune lr and weight decay
args.lr = 0.1
args.weight_decay = 1e-4
args.batch_size = max(128, args.batch_size)
args.batch_real = max(128, args.batch_real)
if args.dataset == 'speech':
args.nch = 1
args.size = 64
if args.net_type == 'convnet':
args.depth = 4
args.nclass = 8
# For speech data, I didn't use data augmentation
args.mixup = 'vanilla'
args.mixup_net = 'vanilla'
args.dsa = False
datatag = f'{args.dataset}'
if args.dataset == 'imagenet':
datatag += f'{args.nclass}'
if args.dseed != 0:
datatag += f'-seed{args.dseed}'
"""
Network
"""
if args.net_type == 'convnet':
if args.depth > 4:
args.depth = 3
args.f_idx = str(args.depth - 1)
modeltag = f'{args.net_type}{args.depth}'
if args.net_type == 'resnet_ap':
modeltag = f'resnet{args.depth}ap'
if args.net_type == 'convnet':
modeltag = f'conv{args.depth}'
if args.norm_type == 'instance':
modeltag += 'in'
if args.width != 1.0:
modeltag += f'_w{args.width}'
"""
EXP tag (folder name)
"""
# Default initialization for multi-formation
if args.factor > 1:
args.init = 'mix'
if args.tag != '':
args.tag = f'_{args.tag}'
if args.ipc > 0:
if args.slct_type == 'random':
args.tag += f'_rand{args.ipc}'
elif args.slct_type == 'idc':
# Matching
if args.match == 'feat':
args.tag += f'_f{args.f_idx}'
f_list = [int(s) for s in args.f_idx.split(',')]
if len(f_list) == 1:
f_list.append(-1)
args.idx_from, args.idx_to = f_list
args.metric = 'mse'
else:
args.tag += f'_{args.match}'
if args.bias:
args.tag += '_b'
if args.fc:
args.tag += '_fc'
# Net update
args.tag += f'_{args.metric}'
if args.pt_from >= 0:
args.tag += f'_pt{args.pt_from}'
if args.pt_num > 1:
args.tag += f'_{args.pt_num}'
if args.fix_iter > 0:
args.tag += f'_fix{args.fix_iter}'
if args.early > 0:
args.tag += f'_ely{args.early}'
if args.n_data >= 0:
args.tag += f'_nd{args.n_data}'
if args.inner_loop != 100:
args.tag += f'_inloop{args.inner_loop}'
if args.mixup_net == 'cut':
args.tag += f'_cut'
if args.lr != 0.01:
args.tag += f'_nlr{args.lr}'
if args.weight_decay != 5e-4:
args.tag += f'_wd{args.weight_decay}'
if args.niter != 500:
args.tag += f'_niter{args.niter}'
# Multi-formation & Augmentation
if args.factor > 0:
args.tag += f'_factor{args.factor}'
if args.decode_type != 'single':
args.tag += f'_{args.decode_type}'
if args.aug_type != 'color_crop_cutout':
args.tag += f'_{args.aug_type}'
# Img update
args.tag += f'_lr{args.lr_img}'
args.lr_img = tune_lr_img(args, args.lr_img)
print(f"lr_img tuned! {args.lr_img:.5f}")
if args.momentum != 0.9:
args.tag += f'_mom{args.momentum}'
if args.batch_real != 64:
args.tag += f'_b_real{args.batch_real}'
if args.batch_syn_max != 128:
args.tag += f'_synmax{args.batch_syn_max}'
args.tag += f'_{args.init}'
args.tag += f'_ipc{args.ipc}'
# For multi-processing (class partitioning)
if args.nclass_sub > 0:
args.tag += f'_{args.nclass_sub}'
if args.phase >= 0:
args.tag += f'_phase{args.phase}'
else:
if args.mixup != 'vanilla':
args.tag += f'_{args.mixup}'
# Result folder name
if args.test:
args.save_dir = './results/test'
else:
args.save_dir = f"./results/{datatag}/{modeltag}{args.tag}"
args.modeltag = modeltag
args.datatag = datatag
"""
Evaluation setting
"""
# Setting evaluation training epochs
if args.ipc > 0:
if args.dataset == 'imagenet':
if args.decode_type == 'bound':
args.epochs = ipc_epoch(args.ipc, args.factor, args.nclass, bound=args.batch_syn_max)
else:
args.epochs = ipc_epoch(args.ipc, args.factor, args.nclass)
args.epoch_print_freq = args.epochs // 100
else:
args.epochs = 1000
args.epoch_print_freq = args.epochs
else:
args.epoch_print_freq = 1
# Setting augmentation
if args.mixup == 'cut':
args.dsa_strategy = remove_aug(args.dsa_strategy, 'cutout')
if args.dsa:
args.augment = False
print("DSA strategy: ", args.dsa_strategy)
else:
args.augment = True