-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg162.py
44 lines (41 loc) · 2.32 KB
/
vgg162.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.layers import Activation, Convolution2D, MaxPooling2D, BatchNormalization, Flatten, Dense, Dropout, Conv2D,MaxPool2D, ZeroPadding2D
num_classes = 42
def model(input, num_classes):
model = Sequential()
model.add(Conv2D(input_shape=input, filters=64, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(filters=128, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(Conv2D(filters=128, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(filters=256, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(Conv2D(filters=256, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(Conv2D(filters=256, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(Conv2D(filters=512, kernel_size=(3, 3), padding="same", activation="relu"))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(units=4096, activation="relu"))
#model.add(Dense(units=4096, activation="relu"))
model.add(Dense(units=42, activation="relu"))
#model.add(Dense(units=num_classes, activation="softmax"))
print(model.summary())
return model
#"""
if __name__=="__main__":
input_shape = (128,128,3)
model = model(input_shape, num_classes)
#"""